JOURNAL OF CHROMATOGRAPHY LIBRARY
- volume21
environmental problem solving using gas and liquid chromatography
JOUR...
222 downloads
1252 Views
6MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
JOURNAL OF CHROMATOGRAPHY LIBRARY
- volume21
environmental problem solving using gas and liquid chromatography
JOURNAL OF CHROMATOGRAPHY LIBRARY Volume 1
Chromatography of Antibiotics, by G.H. Wagman and M.J. Weinstein
Volume 2
Extraction Chromatography, edited by T. Braun and G. Ghersini
Volume 3
Liquid Column Chromatography. A Survey of Modern Techniques end Applications, edited by 2.Deyl, K. Mecek end J. J a d k
Volume 4
Detectors in Gas Chromatography, by J.Sev'Eik
Volume 5
Instrumental Liquid Chromatography. A Practical Manual on High-Performance Liquid Chromatographic Methods, by N.A. Parris
Volume 6
Isotachophorsis. Theory, Instrumentation end Applications, by F.M. Evereerts, J.L. Backers end Th.P.E.M. Verheggen
Volume 7
Chemical Derivetization in Liquid Chromatography, by J.F. Lawrence and R.W. Frei
Volume 8
Chromatography of Steroids, by E. Heftmann
Volume 9
HPTLC - High Performance Thin-Layer Chrometogaphy, edited by A. Zlatkis and R.E. Kaiser
Volume 10
Gas Chromatography of Polymers, by V.G. Berezkin, V.R. Alishoyev and I.B. Nemlrovskaya
Volume 11
Liquid Chromatography Detectors, by R.P.W. Scott
Volume 12 Affinity Chromatography,
by J.
Turkovd
Volume 13
Instrumentation for HighPerformance Liquid Chromatography,edited by J.F.K. Huber
Volume 14
Radiochromatography.The Chromatography and Electrophoresis of Radiolabl led Compounds, by T.R. Roberts
Volume 15
Antibiotics, Isolation, Separation and Purification, edited by M.J. Weinstein and G. H. Wagman
Volume 16
Porous Silica. I t s Properties and Use as Support in Column Liquid Chromatography, by K.K. Unger
Volume 17
76 Years of Chromatography - A Historical Dialogue, edited by L.S. Ettre and A. Zlatkis
Volume 18
Electrophoresis. A Survey of Techniques and Applications. Pert A: Techniques, edited by 2. Deyl
Volume 19
Chemical Derivatization in Gas Chromatography, by J. Drozd
Volume 20
Electron Capture. Theory and Practice in Chromatography, edited by A. Zletkis and C.F. Poole
Volume 21
Environmental Problem Solving using Gas and Liquid Chromatography, by R.L. Grob and M.A. Kaiser
JOURNAL OF CHROMATOGRAPHY LIBRARY - volume 21
environmental problem solving using gas and liquid chromatography
Robe/t L. Grob Professor of Analytical Chemistry, Villanova University, Villanova,PA 19085
Mary A. Kaiser Supedsor, Separations Group, Central Research and Development Department, E. I. du Pont de Nemours & Co., Experimental Station, Wilmington, DE 19898
ELSEVIER SCIENTIFIC PUBLISHING COMPANY Amsterdam - Oxford - New York 1982
ELSEVIER SCIENCE PUBLISHERS B.V. Sara Burgerhartstraat 25 P.O. Box 21 1,1000 AE Amsterdam, The Netherlands Distributors for the United States and Canada: ELSEVIER SCIENCE PUBLISHING COMPANY INC. 52, Vanderbilt Avenue New York, N Y 10017
First edition 1982 Second impression 1985
ISBN 0-444-42065-7(Val. 21) ISBN 0-444-41616-1 (Series)
0 Elsevier Science Publishers B.V., 1982 All rights reserved. No part o f this publication may be reproduced, stored i n a retriewl system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V./Science & Technology Division, P.O. Box 330,1000 A H Amsterdam, The Netherlands.
Special regulations for readers in the USA - This publication has been registered with t h e Copyright Clearane Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCCabout conditions under which photocopies of parts of this publication may be made in the USA, All other copyright questions, including photocopying outside of the USA, should be referred t o the publisher. Printed in The Netherlands
V C ONTE NTS
................................................................... I X SCOPE OF THE PROBLEM....................................................... 1 1. 1.1 H i s t o r y and Backqround ..................................................... 1 1.2 M e t h o d b l o g i c a l Q i e s t ions ......... ......................................... 4 ......................................... 6 REFERENCES ....................... 2 . CRITERIA FOR THE SAMPLING PROCESS ......................................... 1 2.1 Requirements ..................... ......................................... 7. 2.1.1 General D i s c u s s i o n ........ ......................................... 2.1.2 C r i t e r i a f o r Sampling ..... .......................................... 9 10 Sample Types and Sanipl i n g Problem ................................... 2.1.3 2.2 Problems o f Sampling and Post-Samples ...................................... 12 13 2.3 R e g u l a t i o n s ................................................................ 14 2.4 Standards .................................................................. 2.4.1 O j s c u s s i o n .......................................................... 14 Preface
1
.....................
2.4.2 A v a i l a b i l i t y and Source o f Samples and S u p p l i e s REFERENCES................................................................. 3
.
3.1 3.2
16 22
................................... .................... 25 I n t r o d u c t i o n .......................................... .................... 25 Background and General D i s c u s s i o n ..................... .................... 26 3.2.1 Theory and S t a t i s x i c a l F o u n d a t i o n o f Sampling .. .................... 29 S i g n i f i c a n c e and R e j e c t i o n o f Data .... .................... 3.2.1.1 35 R e l i a b i l i t y and/or Confidence i n Analy i c a l Data ...........36 3.2.1.2 3.2.2 A e r o s o l s ........................... ................................ 3.2.3 Gases and Vapors ................... ................................ 40 3.2.3.1 Flow Measurements ......... ................................ 41 3.2.3.2 Volume Neasurements ....... ................................ 42 ................................ 42 3.2.4 L i q u i d s ............................ 3.2.5 Sampling P r o p o r t i o n a l t o Time and F ow .............................. 43 3.2.6 S o l i d s ............................. ................................ 44 3.2.6.1 S o i l s ..................... ................................ 45 3.2.6.2 P a r t i c u l a t e s ............................................... 46 49 Grab Sampl ing .............................................................. A i r ................................................................. 49 3.3.1 3.3.2 L i q u i d s ............................................................. 54 55 3.3.2.1 Composite Sampling ......................................... SAMPLING TECHNIQUES
77 J I
3.3
3.,1 3.5 3.6 3.7 3.8 3.9
........................................ ...................................................... ...................................................... ............................................................... ............................................................... ............................................... ......................................... ........................................................ ....................................... .........................................................
3.3.2.2 Continuous Sampling 3.3.3 Stack Sampling A d s o r p t i o n Techniques 3.4.1 Gases 3.4.2 Water Chemical R e a c t i o n Techniques Freeze-Out o r Cryogenic Techniques T r a p p i n g Techniques D i p p i n g Techniques and Tube Sampling Headspace Sampl i n g REFERENCES
56 56 59 6.. 0 68 69 72 74 77 78 79
................................................................ 4 . SAMPLE TREATMENT ............ ..............................................
87
................ .............................................. .......... ..............................................
a7 87
............................................
91
4.1 4.2 4.3
Introduction Storage o f Samples E x t r a c t i o n Techniques 4.3.1 L i q u i d - L i q u i d E x t r a c t on
....... ..............................................
aa
VI
...........................
4.4 4.5 5
.
5.1 5.2 5.3
5.4 5.5 5.6
5.7
4.3.1.1 Macro-Liquid-Liquid Extractions 4.3.1.2 Micro-Liquid-Liquid Extractions 4.3.2 Gas-Liquid E x t r a c t i o n 4.3.2.1 Headspace a n d / o r Vapor E q u i l i b r a t i o n 4.3.2.1.1 P r e p a r a t i o n o f Gas S t a n d a r d M i x t u r e s 4.3.2.1.2 E r r o r I n v o l v e d When P r e p a r i n g a B i n a r y Gas Mixture 4.3.2.2 P u r g i n g . S p a r g i n g a n d / o r Vapor S t r i p p i n g 4.3.2.3 Change i n I o n i c S t r e n g t h o f Sample S o l u t i o n Clean-up Derivatization REFERE~ICES
................................................................ USE OF LIQUID CHROrlATOGRAPHY IN ENVIRONMENTAL AIIALYSIS .................... Standards and C a l i b r a t i o n ................................................. Sample I n t r o d u c t i o n Onto t h e Column ....................................... REFERENCES
G. 6.1 6.2 6.3
91
........................... 94 .............................................. 95 ...................... 9 8 ........... 108 ........................................ 109 .................. 109 ...............111 .................................................................. 112 ............................................................ 120 ................................................................ 129 THE USE OF GAS CHROMATOGRAPHY IN ElJVIROfIMEI.ITAL ANALYSIS ................... 137 I n t r o d u c t i o n .............................................................. 137 137 Standards and C a l i b r a t i o n ................................................. 5.2.1 Volume Measurement and Standards f o r A i r Samples ................... 141 5.2.2 Volume Measurement and Standards f o r Water Samples .................147 147 Sample I n t r o d u c t i o n Onto t h e Column ....................................... 5.3.1 S y r i n g e I n j e c t i o n .................................................. 149 149 5.3.2 Gas Sampling Valves ................................................ 150 5.3.3 Automatic Sample I n j e c t i o n ......................................... 150 5.3.4 M i s c e l l a n e o u s I n j e c t i o n Systems .................................... Columns and Column S e l e c t i o n f o r S e p a r a t i o n and A n a l y s i s ..................151 154 D e t e c t i o n o f Sample Components ............................................ Q u a l i t a t i v e and Q u a n t i t a t i v e I n f o r m a t i o n .................................. 157 Q u a l i t a t i v e A n a l y s i s by Gas Chromatography ......................... 157 5.6.1 5.6.1.1 R e t e n t i o n Data ............................................ 158 159 5.6.1.2 R e t e n t i o n I n d e x ........................................... 160 5.6.1.3 A u x i l i a r y Techniques ...................................... 161 5.6.2 Q u a n t i t a t i v e A n a l y s i s by Gas Chromatography ........................ 165 A n a l y s i s o f A i r and Water c o n t a m i n a n t s ....................................
.................................................. .................................................... ........................................ .............................................. ............................................
6.2.1 Syringe I n j e c t i o n 6.2.2 Valve I n j e c t i o n Selection o f Separation Conditions 6.3.1 Water S o l u b l e Samples 6.3.2 Organic S o l u b l e Samples 6.3.3 Thin-Layer chromatography (TLC) S c r e e n i n g 6.3.4 Guard Columns and Precolumns 6.3.5 A p p l i c a t i o n s D e t e c t i o n o f Sample Components 6.4.1 R e f r a c t i v e Index D e t e c t o r 6.4.2 U l t r a v i o l e t Absorption Detector 6.4.3 LC-GC D e t e c t o r s 6.4.4 I n f r a r e d D e t e c t o r s ................................................. 6.4.5 Fluorescence D e t e c t o r s ............................................. 6.4.6 Electrochemical Detector 6.4.7 Thermal Energy D e t e c t o r ............................................ 6.4.8 C o n d u c t i v i t y D e t e c i o r 6.4.9 Derivatives REFERENCES
171
197 187 187 187 1% 188 190 190 191 191 192 196 1~G 197 197 190 198 198 19D 199 199 ?OD
.......................... .......................................
6.4
....................................................... ............................................ .......................................... .................................... .................................................... ..........................................
..............................................
........................................................
................................................................
VII
7
.
7.1
7.2 7.3
a. 8.1
SAFETY I N THE CHROMATOGRAPHY LABORATORY
...................................
202
....................................................... 202 .............................................................. 202 ...................204 ................................................... 206 ....................................................... 208 ................................................. 208 ....................................................... 210 ......................................................... 211 ................................................ 211 ................................................ 211 ................................ 212 ...................................................... 212 ................................................................ 212 REGULATIONS. REGULATORY AND ADVISORY GROUPS ............................... 213 213 Governmental Agencies. L e g i s l a t i o n . and R e l a t e d Groups .................... 213 8.1.1 I n t e r n a t i o n a l O r g a n i z a t i o n s ............. .......................... Hazardous M a t e r i a l s 7.1.1 Types 7.1.2 Use. D i s p o s a l and S t o r a g e o f Hazardous M a t e r i a l s 7.1.3 Compressed Gases Personal P r o t e c t i o n 7.2.1 P r o t e c t i v e Devices 7.2.2 Housekeeping Safety L i t e r a t u r e Books and P a n p h l e t s 7.3.1 7.3.2 J o u r n a l s and Papers 7.3.3 F i l m s and A u d i o v i s u a l P r e s e n t a t i o n s 7.3.4 Miscellaneous REFEREIICES
.................213 .......................... 213 ..................... 213 .................. .......................... 213 ......................... .......................... 213 .......................... 216 ........................ ........................ .......................... 217 ........................ .......................... 219 ............................... 219
8.2
8.1.1.1 UtlEP ( U n i t e d N a t i o n s Environrnen Program) 8.1.1.2 WHO (World H e a l t h O r g a n i z a t i o n ) CEC ( C o u n c i l o f European Commuti t i e s ) 8.1.1.3 8.1.2 National Organizations 8.1.2.1 Canada 8.1.2.2 Austria 8.1.2.3 Belgium 8.1.2.4 Denniark 8.1.2.5 Federal R e p u b l i c o f Germany 8.1.2.6 France 8.1.2.7 Iceland 8.1.2.8 Ireland 8.1.2.9 Italy 8.1.2.10 Luxembourq 8.1.2.11 The i ~ e t h e r l a n d s 8.1.2.12 Norway 8.1.2.13 Sweden 8.1.2.14 S w i t z e r l a n d 3.1.2.15 Japan 8.1.2.1G U n i t e d S t a t e s o f Anierica 8.1.2.17 U.S.S.R 8.1.2.10 A u s t r a l i a 8.1.2.19 Israel 8.1.2.20 Mexico 8.1.2.21 New Zealand 8.1.2.22 South A f r i c a Literature 8.2.1 S c i e n t i f i c J o u r n a l s and P e r i o d i c a l s 8.2.2 S c i e n t i f i c Books 8.2.3 R e g u l a t o r y I n f o r m a t i o n Sources 8.2.4 O t h e r Sources
.................................................... ................................................... ................................................... ..................................................... ................................................ ........................................... .................................................... .................................................... ............................................... ..................................................... .................................. ................................................... ................................................. .................................................... .................................................... ............................................... .............................................. ................................................................ ................................ .................................................. .................................... .....................................................
220 2?0 220 220 221 221 221 221 221 222 222 2 2 ~ 2.. 226 226 226 226 226 226 228 229 229
APPENDIX I:The D e t e r m i n a t i o n o f A d s o r p t i o n - D e s o r p t i o n E f f i c i e n c y o f Chromatographic Traps ...............................................
231
APPENDIX 1I:Comparison o f Modes o f Sample I n t r o d u c t i o n i n C a p i l l a r y Gas Chromatography ........................................
233
SUBJECT INDEX ...................................................................
235
This Page Intentionally Left Blank
IX PREFACE
"A question t o ponder i s t h i s : would t h i s l a r g e 'home' we c a l l t h e e n v i r onment s u r v i v e if we leave i t completely i n t h e hands o f Mother Nature? t h e answer i s yes, does t h i s a l l o w us t o be completely unconcerned?
If
If the
answer i s no, then how f a r should we extend o u r s t u d i e s and safeguards?
The
authors feel t h a t t h i s i s n o t an easy yes o r no question, b u t t h a t t h e answer l i e s i n f i n d i n g an e q u i l i b r i u m somewhere between the two extremes.
Once t h i s
p o i n t o f e q u i l i b r i u m i s found, i t i s simply a m a t t e r o f a d j u s t i n g t h e v a r i ables from time t o time so t h a t we d o n ' t s h i f t t o t h e ' r e a c t a n t ' o r ' p r o d u c t ' Grob, Environmental
sides and become incompatible w i t h t h e system."
(R.L,
Studies o f t h e Atmosphere by Gas Chromatography,
i n Contemporary Topics i n
A n a l y t i c a l and C l i n i c a l Chemistry, D.M, and M.A.
Evenson (Eds.),
Hercules, G.M.
H i e f t j e , L.R.
Snyder,
Plenum Press, New York, 1977)"
Environmental analyses can be j u s t i f i e d f o r many reasons: ( 1 ) considera t i o n o f the p o p u l a t i o n because o f r e s i d e n t i a l atmospheric p o l l u t i o n , ( 2 ) m o n i t o r i n g o f t e c h n i c a l advances t o c o n t r o l p o l l u t i o n , ( 3 ) assessing p l a n t damage and animal i n j u r i e s because o f environmental damage t o our a g r i c u l t u r a l systems,
( 4 ) i d e n t i f y i n g substances which e x p l a i n events o r a c t i v i t i e s
which have taken p l a c e i n t h e environment and ( 5 ) p r e s e r v i n g t h e work areas i n i n d u s t r i e s by d e t e c t i n g harmful components which can be i n j u r i o u s t o personnel.
A i r and water p o l l u t a n t s may be gases, l i q u i d s o r s o l i d s which can change the n a t u r a l composition o f our environment.
A i r p o l l u t a n t s can be c l a s s i f i e d
as emissions i f they escape i n t o t h e o u t s i d e a i r a f t e r being discharged from their pollution site o r
2s
emissions i f t h e y s t a y near t h e s i t e o f generation.
X
I n the United States smog r e s u l t s from c a t a l y s i s by s o l a r r a d i a t i o n o f o l e f i n s and n i t r o g e n oxides, whereas i n Europe most o f t h e smog r e s u l t s from t h e s u l f u r d i o x i d e released by f l u e gases. We can place t h e e f f e c t s o f a i r p o l l u t i o n i n b e t t e r p e r s p e c t i v e i f we
consider t h a t a normal b r e a t h i s approximately 0,5 l i t e r and a deep b r e a t h can be from 1.5 t o 2.0 l i t e r s , o f a i r / d a y ( i - e . 4,2-7.0
L/min).
Thus, on t h e average we i n h a l e about 6-10 m3 The nose, mouth, and t o some e x t e n t t h e
trachea and bronchia w i l l r e t a i n p a r t i c l e s which a r e 5-40 pm i n diameter b u t p a r t i c l e s 0.5-5
pm
t i c l e s l e s s than 5
i n diameter u s u a l l y e n t e r t h e lungs and dre deposited. pm
Par-
( f i n e dusts) a r e u s u a l l y exhaled.
Accuracy o f an environmental a n a l y s i s means i t s correctness.
Sensitivity
r e f e r s t o t h e s m a l l e s t amount o f a contaminant t h a t can be detected w i t h certainty.
I t i s t h e task o f t h e a n a l y t i c a l chemist t o s e l e c t and sometimes
m d i f y t h e method which w i l l be a p p l i e d so t h a t s p e c i f i c requirements o f accuracy and s e n s i t i v i t y are met and r e l e v a n t i n f o r m a t i o n i s obtained.
The
number o f d i f f e r e n t methods a v a i l a b l e are wide i n scope and t h e a p p r o p r i a t e procedure must be choien t o s a t i s f y t h e needs o f t h e problem,
The e n v i r o n -
mental problem may concern p r o p e r t y damage and l e s s e l a b o r a t e sampling p r o cedures and l e s s accurate methods may p r o v i d e t h e i n f o r m a t i o n .
However,
when t h e environmental problem i n v o l v e s a h e a l t h hazard i t i s n o t wise t o a l l o w economic c o n s i d e r a t i o n s t o preclude r e l i a b i l i t y and comprehensiveness. The number o f d i f f e r e n t methods and instruments a v a i l a b l e make i t necessary f o r the a n a l y t i c a l chemist t o choose the c o r r e c t system so t h a t he can p r o duce r e l e v a n t data. The authors have chosen t h e course t h a t sampling per se i s a technique which occurs o u t s i d e the l a b o r a t o r y (i.e.,
o b t a i n i n g a r e p r e s e n t a t i v e por-
t i o n o f the b u l k p o p u l a t i o n ) , whereas any m a n i p u l a t i o n o f t h e sample i n s i d e the l a b o r a t o r y f a l l s i n t o t h e realm o f sample treatment.
'
As a consequence
o f t h i s d e c i s i o n , headspace (vapor e q u i l i b r a t i o n ) sampling f i t s more
XI
a p p r o p r i a t e l y i n t o sample t r e a t m e n t , i.e.,
i n t h e g e n e r a l c a t e g o r y o f ex-
t r a c t i o n t r e a t m e n t o f l a b o r a t o r y samples.
We r e a l i z e t h a t a number o f r e a d e r s
and w o r k e r s i n t h e f i e l d o f e n v i r o n m e n t a l a n a l y s i s w i l l n o t a g r e e w i t h t h i s c a t e g o i i z a t i o n ; however, i t does have i t s m e r i t s . (1)
I t removes t h e o v e r l a p o r g r e y area o f what i s a c t u a l l y s a m p l i n g i n
t h e t r u e sense and sample t r e a t m e n t ,
(2)
I t c l e a r l y e s t a b l i s h e s t h e f a c t t h a t w h a t one does w i t h t h e " r e p r e -
s e n t a t i v e " sample i n t h e l a b o r a t o r y i s r e a l l y " p r e p a r i n g " i t f o r a n a l y s i s ,
(3)
When t h e a n a l y t i c a l c h e m i s t p e r f o r m s "headspace sampling,"
"vapor
e q u i l i b r a t i o n , " a n d / o r "purge and t r a p " t e c h n i q u e s he i s o n l y t r e a t i n g a sample t h a t must be r e p r e s e n t a t i v e o f t h e b u l k p o p u l a t i o n of sample a v a i l a b l e t o him,
A l l w r i t t e n works c e r t a i n l y have s h o r t c o m i n g s "
Nothing i s p e r f e c t i n t h e
w o r l d o f r e a l i t y , and a n y t h i n g t h a t endeavors t o be a b s o l u t e l y i d e a l c o u l d n e v e r be completed
Our completed work, i t s s t y l e o r o v e r a l l f o r m a t w i l l
n o t f i l l t h e r e q u i r e m e n t s o f a l l persons.
One w r i t e s what h e c o n s i d e r s t h e Construct-
best manuscript t o serve the m a j o r i t y o f the intended readership.
i v e comients a r e s o l i c i t e d , b u t we r e c o g n i z e t h a t agreement among a l l i s impossible
.
The c o n i p l e t i o n o f a w r i t t e n work i s n o t p o s s i b l e w i t h o u t t h e a s s i s t a n c e and comnents o f o t h e r s who a r e q u a l i f i e d t o r e v i e w t h e m a n u s c r i p t .
The
a u t h o r s w i s h t o thank t h e i r r e s p e c t i v e spouses, C e c i l (MAK) and Marge (RLG) f o r b e i n g u n d e r s t a n d i n g d u r i n g t h e t i m e t h i s was b e i n g w r i t t e n .
We a l s o
w i s h t o thank D r . G e r a l d R. U m b r e i t f o r r e a d i n g and commenting on a number o f c h a p t e r s and Norman Henry 111 and Joseph V i s k o c i l f o r t h e i r comnents o n c h a p t e r 7,
We a p p r e c i a t e t h e a s s i s t a n c e o f Mary Ann Q u a r r y , Mary E l l e n
McNal l y , Proespichaya Kanatharana, and S i t h i c h a i L e e p i p a t p i b o o n i n p r o o f r e a d i n g t h e f i n a l copy.
To D r . C e c i l Oybowski go o u r s p e c i a l t h a n k s f o r
h i s valuable e d i t o r i a l assistance w i t h t h i s manuscript.
We acknowledge
XI1 Linda Grob f o r the i l l u s t r a t i o n s , B e t t y B. Wolfe, Sharon
M. Dize and Dorothy
Lauder f o r s e t t i n g the manuscript i n t o p r i n t and being p a t i e n t w i t h a l l t h e changes and l a s t minute a d d i t i o n s , and f i n a l l y t h e support o f t h e OuPont Company i n t h i s connection.
This Page Intentionally Left Blank
This Page Intentionally Left Blank
CHAPTER I SCOPE OF THE PROBLEM
1.1
HISTORY AND BACKGROUND Environmental problems have burdened mankind s i n c e t h e f i r s t human roamed t h e As technology progressed and man's a p p e t i t e f o r a c a r e f r e e l i f e expanded,
earth.
Lodge ( r e f . 1 )
environmental problems became more complex and d i f f i c u l t t o a l l e v i a t e . suggested t h a t t h e f i r s t a i r - p o l l u t i o n
the
problem may have occurred when a p r e h i s t o r i c
man brought a b u r n i n g branch i n t o h i s cave.
C e r t a i n l y such an event c o u l d have been
viewed as d i s c o m f o r t i n g t o t h e cave's o t h e r occupants who c o u l d have f i l e d t h e f i r s t impact statement on t h e d e s i r a b i l i t y o f b r i n g i n g smoky branches
environmental enclosed areas.
t i o n , a i r p o l l u t i o n and solid-waste d i s p o s a l .
Water p o l l u t i o n has been p r e s e n t longer
than t h e o t h e r two and it i s a more widespread problem.
Modern technology is f i n d i n g
ways t o dispose o f o r use s o l i d waste and t o reduce t h e e f f l u e n t s from s t a c k s and auto-emissions;
however,
into
water p o l l u -
Three c a t e g o r i e s o f p o l l u t i o n a r e our b i g g e s t concern:
industrial
i t i s v e r y expensive t o c l e a n up p o l l u t e d water
and/or f i n d a market f o r i t s p o l l u t a n t s .
I t i s d i f f i c u l t t o i m a g i n e what may have been t h e f i r s t w a t e r - p o l l u t i o n problem.
Perhaps it was associated w i t h t h e n a t u r a l p o l l u t i o n o f l a k e o r r i v e r by an
overgrowth o f p l a n t s o r contamination by human waste. +he book o f
Deuteronomy
(Chapter
23:
Verses
references t o c o n s t r u c t i o n and placement o f
12-14)
sanitary
it is i n t e r e s t i n g t o n o t e t h a t c o n t a i n s one o f f a c i l i t i e s for
the earllest
human waste t o
avoid both a i r and water contamination. F o r y e a r s man used a smal I p e r c e n t a g e of t h e n a t u r a l r e s o u r c e s ( t r e e s , minerals, o r e deposits, animals and f i s h ) a v a i l a b l e t o him. fire,
r a i n , t h e content o f r i v e r s and streams, fish.
The d i s c o v e r y and use o f
disposal o f h i s waste products and work processes had l i t t l e o r no e f f e c t on t h e land erosion,
and l i f e c y c l e s o f animals and
These n a t u r a l resources were able t o r e p l e n i s h themselves because t h e y were I n
greater abundance than man.
The increase i n p o p u l a t i o n and technology has caused a
large s h i f t i n t h i s s i t u a t i o n .
We have disposed o f hundreds o f m i l l i o n s o f t o n s o f
garbage and t r a s h i n t o a few dumps and l a n d f i I I s ,
r e l e a s e d hundreds o f b i l l l o n s o f
g a l l o n s o f waste-containing waters i n t o our streams and r i v e r s and sent hundreds o f m i l l i o n s o f t o n s o f p o l l u t a n t s i n t o our atmosphere. Earth consists of
t h e troposphere
(The atmosphere n e a r s s t t o our
and t h e stratosphere.
The troposphere
i s that
p o r t i o n o f t h e atmosphere from E a r t h ' s surface t o an a l t i t u d e o f seven m i l e s ( 1 1 km); t h e s t r a t o s p h e r e begins a t seven m i l e s and extends t o Earth's surface).
17 m i l e s (27 km)
above t h e
2 F u l l e r ( r e f . 2 ) has presented a unique c o r r e l a t i o n between energy consumption and t h e number o f persons on t h e E d t h .
"The Egyptian pharoahs who b u i I t t h e g r e a t
pyramids commanded t h e labor (energy) o f 100,000 slaves.
The g l o r i e s o f Athens i n i t s
Golden Age were supported by t h e labor o f 125,000 slaves.
L i f e i n the United States
today i s smoothed by t h e energy e q u i v a l e n t t o t h e labor o f 40 b i l l i o n slaves. us
warm,
manufacture
our
goods,
grow
and
process
our
foods,
To keep
transport
these
n e c e s s i t i e s and l u x u r i e s t o our homes, and e n t e r t a i n us i n our l e i s u r e hours, each o f us comnands t h e energy e q u i v a l e n t t o t h e work o f 200 f u l l - t i m e slaves." I t has been estimated ( r e f .
3) that
nonrenewable n a t u r a l resources w i l l
i f our present mode o f
l i f e continues,
become exhausted and t h e death r a t e w i l i
rise
sharply. With t h e onset o f h i g h f o s s i l
fuel
use I n t h e
p o l l u t i o n became a s e r l o u s problem i n urban areas.
13th and 14th c e n t u r i e s ,
air
The f i r s t bans on t h e b u r n i n g o f
coal came d u r i n g t h e r e i n o f E l i z a b e t h I when Parliament banned coal b u r n i n g i n London c i t y l i m i t s w h i l e Parliament was i n session.
As a matter o f f a c t ,
i n most c o u n t r i e s ,
smoke and s o o t p r o b l e m s s p u r r e d t h e f i r s t p o l l u t i o n l e g i s l a t i o n . consumption o f
fossil
f u e l s continues t o
increase.
The r a t e o f
A reasonable e s t i m a t e
i s that
today f o s s i l f u e l i s being used a m i l l i o n times f a s t e r than i t can be formed. Often environmental as t h e
altitude)
l e g i s l a t i o n followed serious a i r - p o i l u t i o n
( r e g i o n s of
inversions
t h e atmosphere where t h e temperature
i n t h e Meuse R i v e r V a l l e y i n Western Europe i n 1930,
i n c i d e n t s such increases w i t h
Donora,
PA i n 1948
(four-day i n v e r s i o n p e r i o d k i l l e d 20 persons and caused more than 7000 persons t o be i l i ) , and i n London i n 1952 (four-day
i n v e r s i o n p e r i o d k i l l e d 4000 persons) ( r e f . 4 ) .
The a i r - p o l l u t i o n
episode i n Donora was one o f t h e most c a r e f u l l y s t u d i e d cases
modern h i s t o r y .
I t took many years o f
in
i n v e s t i g a t i o n and research t o conclude t h a t
z i n c ammonium sui f a t e probably caused t h e i I inesses among 43 o f t h e persons i n t h e Donora area.
The most probable source o f t h e p o l l u t i o n was t h e l o c a l s t e e l and z i n c
p I ants. Many f a c t o r s can e n t e r i n t o a i r - p o l l u t i o n c r i s e s .
I t i s n o t w i t h i n t h e scope
of t h i s book t o d e t a i l a l l o f these except t o say t h a t m e t e o r o l o g i c a l , t o p o g r a p h i c a l and some
light
intensity
factors
play
important
roles.
Earth
rotation
n a t u r a l a i r c i r c u l a t i o n because mountains and canyons d e f l e c t a i r f l o w .
distorts
Clouds and
haze absorb more heat than clean a i r , where a i r becomes warmer over barren ground than a i r over ground w i t h heavy vegetation.
Also a i r over water i s c o o l e r than ground a i r .
A l l these v a r i a b l e s a f f e c t t h e f l o w o f a i r ;
a i r movement i s l i m i t e d .
movement o f weather f r o n t s and mountain b a r r i e r s , reduce t h e u l t r a v i o l e t r a y s o f t h e sun. basin being formed
Due t o t h e slow
l i t t l e cloud cover
This r e s u l t s
i s present t o
i n a huge chemical
i n which photochemical r e a c t i o n s can occur.
Thus,
reaction
i n order t o
minimlze t h e p o t e n t i a l f o r these r e a c t i o n s , one must c o n t r o l t h e t y p e and q u a n t i t y o f e f f l u e n t s i n t h e basin.
3 A c i d r a i n s cause a g r e a t animal
life.
deal
of
damage t o o u r
bui Idings,
soil,
B e l g i u m and The N e t h e r l a n d s have t h e most a c i d i c r a i n
These p r o b a b l y r e s u l t from t h e f a c t t h a t t h e y a r e c e n t r a l l y
plant
and
i n t h e world.
l o c a t e d I n t h e European
i n d u s t r i a l complex. A number o f t e r m s f r e q u e n t l y appear i n t h e a i r - p o l l u t i o n
literature,
p o l l u t a n t 3 r e l e a s e d i n t o t h e atmosphere w i l l
interact with other pollutants,
these
concentration o f
r e a c t i o n s which
example o f
this
determine t h e
phenomenon
is
the
final
classical
formation o f
many
and t h e s e
A number o f
s h o u l d be f a m i l i a r t o t h e s c i e n t i s t w o r k i n g w i t h e n v i r o n m e n t a l p r o b l e m s .
and i t i s
pollutants.
peroxyacylnitrate
An which
o c c u r s when h y d r o c a r b o n s r e a c t w i t h oxygen atoms f r o m t h e d e c o m p o s i t i o n of n i t r o g e n d i o x i d e t o form
free radicals.
These f r e e r a d i c a l s r e a c t w i t h oxygen
and n i t r o g e n
d i o x i d e molecules t o form t h e p e r o x y a c y l n i t r a t e s . The maximum c o n c e n t r a t i o n health ill-effects
of
a p o l l u t a n t allowed
in the a i r
without
causing
The r e s i d e n c e t i m e o f a p o l l u t a n t i s
i s known as t o l e r a n c e l e v e l .
t h e t i m e n e c e s s a r y f o r t h e p o l l u t a n t t o be removed by n a t u r a l p u r i f i c a t i o n p r o c e s s e s . The greenhouse e f f e c t
i s t h e h e a t i n g o f t h e e a r t h ' s atmosphere because t h e atmosphere
t r a n s m i t s t h e v i s i b l e and u l t r a v i o l e t
light
infrared
L a r g e c o n c e n t r a t i o n s of c a r b o n d i o x i d e i n t h e
l i g h t generated a t t h e e a r t h ' s surface. atmosphere w i l I enhance t h i s e f f e c t .
f r o m t h e sun and a b s o r b s t h e
The r e s u l t o f t h i s e f f e c t i s t h a t t h e e a r t h ' s
t e m p e r a t u r e has i n c r e a s e d because t h e average c a r b o n d i o x i d e c o n c e n t r a t i o n has increased during t h e past century. A i r pol l u t a n t s a r e b a s i c a l l y any v o l a t i l e m a t e r i a l s g e n e r a t e d a t t h e E a r t h ' s s u r f a c e ( o x i d e s o f carbon, etc.)
sulfur,
nitrogen:
hydrocarbons:
gaseous m e t a l compounds,
and p a r t i c u l a t e m a t t e r ( a g e n e r a l t e r m w h i c h i n c l u d e s s m a l l s o l i d p a r t i c l e s ,
as
w e l l as l i q u i d d r o p l e t s ) . One o f
our
most
f r a g i l e natural
c o u r s e o f human development,
sources
the availability of
water
supply,
the
i n h a b i t a n t s were
of
Through t h e l o c a t i o n for
d i d not maintain a clean
f o r c e d t o move on t o a new
location.
clean sources of water.
t e c h n o l o g y has made i t p o s s i b l e t o u t i l i z e w a t e r removal
si~pply.
determined t h e
c o n t a m i n a n t s w h i c h cause
The g r o w t h o f
f o r m a n u f a c t u r i n g o f goods and a l s o
human h e a l t h p r o b l e m s .
W h i l e m o s t manu-
f a c t u r e r s acted responsibly i n t h e u t i l i z a t i o n o f t h i s n a t u r a l resource, not.
As t h e
fewer p l a c e s r e m a i n e d t o w h i c h g r o u p s were a b l e t o move,
and i t became i m p e r a t i v e t o m a i n t a i n good,
for
water
I f a settlement
s e t t l e m e n t and programs o f c i v i l i z a t i o n .
p o p u l a t i o n o f t h e e a r t h grew,
i s t h e water
a few d i d
The r e s u l t o f t h e s e i r r e s p o n s i b l e a c t s has been d e t r i m e n t a l n o t o n l y t o man, b u t
t o a11 p l a n t s and a n i m a l s . The i n c r e a s e i n t h e e x t e n t t o which w a t e r i s used i n o u r advanced t e c h n o l o g i c a l alone, s o c i e t y suggests g r e a t p o t e n t i a l f o r a c c e l e r a t i n g water c r i s e s . I n t h e U.S.A. 9 i t i s e s t i m a t e d t h a t 1 x 10'' t, (300 x 10 U.S. g a l l o n s ) o f w a t e r a r e w i t h d r a w n y e a r l y from lakes,
r i v e r s and s t r e a m s ( r e f .
5).
Over 90% of t h i s w a t e r
i n d u s t r i a l p u r p o s e s and much of i t i s used and d i s c h a r g e d as w a s t e w a t e r .
i s used f o r This water
may be changed s i g n i f i c a n t l y and p o s s i b l y c r e a t e h e a l t h problems.
Characteristics of
water which are c i t e d i n w a t e r - q u a l i t y c r i t e r i a a r e d i s s o l v e d oxygen; floating
solids,
viruses;
taste;
scum, odor;
particulates);
color;
turbidity;
s a l t s ( i n c l u d i n g ammonia,
organic compounds; p e s t i c i d e s ; herbicides;
cations,
man-made
organic
materials;
anions);
protozoa,
pH;
and r a d i o a c t i v e m a t e r i a l s .
have adapted t o t h e n a t u r a l o r g a n i c m a t e r i a l s recent
s o l i d s (sludge,
bacteria,
however,
i n t h e water, man
has
Aquatic species
and even some o f
increased
his
fuels,
plastics,
detergents,
solvents,
Unless t h e r e i s a s p i l l ,
dyes,
inks,
paint,
drugs,
the
production of
organic wastes which e n t e r our water system as i n d u s t r i a l by-products o r waste,
herbicides.
and
temperature;
pesticides,
e.g. and
most o f these p o l l u t a n t s a r e present i n small
amounts (as f a r as economical r e c l a i m i n g i s concerned) and cause t o x i c problems t o man,
animals,
and f i s h .
Many o f
these products a r e n o t biodegradable
broken down by b a c t e r i a ) , and are passed on from f i s h t o animal and man.
( a b l e t o be O i l f i l m s on
water prevent the oxygen and carbon d i o x i d e exchange between a i r and water and i n t u r n k i l l many waterfowl and f i s h .
Water p o l l u t i o n and i t s many r e s u l t i n g problems c o u l d
be reduced by t h r e e main requirements:
( 1 ) A i l municipal sewage be given primary,
secondary and t e r t i a r y p u r i f i c a t i o n
treatments.
( 2 ) I n d u s t r i a l waste be reasonably c l e a r o f such t r a c e p o l l u t a n t s b e f o r e being passed i n t o our waterways.
( 3 ) I n d u s t r i a l p l a n t s consider t h e r e c y c l i n g o f water. Subsequent chapters i n t h i s book w i l i o u t l i n e t h e r o l e o f chromatography
for
t h e a n a l y s i s and i d e n t i f i c a t i o n o f some o f our environmental challenges.
1.2 METHODOLOGICAL OUESTIONS The e f f e c t s o f our e f f o r t s t o p r o t e c t t h e environment are d i r e c t l y p r o p o r t i o n a l t o our capabi I i t i e s o f measuring t h e l e v e l o f changes i n our environment. awareness o f environmental problems i s needed;
however,
Popular
t h e r e s p o n s i b i l i t y f o r estab-
l i s h i n g an accurate environmental baseline, f o r s e t t i n g and implementing standards and f o r m o n i t o r i n g environmental
change must r e s t w i t h t h e
r e s p o n s i b i l i t y i s awesome and must c a r r y w i t h careful
implementation o f
all
aspects o f
analytical
i t a deep moral
chemist.
commitment
environmental/anaiytical
This for
chemistry.
the The
a n a l y t i c a l chemist must consider every aspect o f samples i n t h e l i g h t o f t h e problem a t hand from s e l e c t i o n o f t h e sampling s i t e t o t h e f i n a l data i n t e r p r e t a t i o n . I n o r d e r t o measure any s p e c i e s o f d e s i r a b l e t o separate i t from a complex m a t r i x . t h e a n a l y t i c a l chemist a r e gas and/or
interest,
o f t e n i t i s n e c e s s a r y and
The most common separations t o o l s f o r
l i q u i d chromatography.
I t i s w i t h these t e c h -
niques t h a t t h i s book i s concerned.as they r e l a t e t o environmental
problem s o l v i n g .
For a comprehensive survey o f gas and l i q u i d chromatograhy, t h e reader should r e f e r t o
5 t h e books by Snyder (re
and K i r k l a n d
6 ) , Grob ( r e f . 7 ) and T o u c h s t o n e and Rogers
(ref.
. 8). The s e l e c t i o n o f
a separation
method
i s dictated
by t h e
b i I ty,
t h e number o f samples,
t h e r e q u i r e d a c c u r a c y and p r e c i s i o n ,
method,
t h e amount of sample p r e p a r a t i o n needed and t h e c o s t ,
order.
I f o n l y one t y p e o f i n s t r u m e n t i s a v a i l a b l e ,
instrument
no+ n e c e s s a r i l y i n +ha+
t h e o n l y p r o b l e m may be t o demon-
s t r a t e t h a t s e p a r a t i o n can be c a r r i e d o u t t o t h e d e s i r e d s p e c i f i c a t i o n . on t h e
accuracy,
experiment,
p r e c i s i o n and s e n s i t i v i t y o f
availa-
sensitivity o f the
+he method must
a l t h o u g h i t c a n o f t e n be p r e d i c t e d f r o m t h e
Information
be checked by
l i t e r a t u r e data.
The
s e n s i t i v i t y o f t e n r e 1 i e s on t h e c a p a b i l i t y o f t h e d e t e c t o r s ( s e e C h a p t e r s 5 and 6 ) . The sample p r e p a r a t i o n t i m e depends on t h e n a t u r e o f i n f o r m a t i o n needed.
t h e h i g h e s t budget i t e m . criteria,
Most
s t a n d a r d methods
i n v o l v e gas chromatography. t e c h n i q u e t o use t h a n
labor i s
I t i s o b v i o u s t h a t much c o n s i d e r a t i o n must be g i v e n t o t h e s e
and t h e p r o c e d u r e s o u t l i n e d w e l l
analysis.
+he p r o b l e m and t h e d e p t h o f
A f t e r t h e i n i t i a l purchase c o s t o f t h e instrumentation,
i n advance o f +he a c t u a l
chromatographic analyses of
for
I n general gas chromatography
1s a
laboratory
the
environment
less expensive
i s more f a m i l i a r t o most c h e m i s t s ,
l i q u i d chromatography,
and
has t h e advantage o f b e i n g c a p a b l e o f s e p a r a t i n g 20% o f t h e known o r g a n i c compounds w i t h o u t p r i o r m o d i f i c a t i o n o f t h e sample. more s e l e c t i v e t h a n advantage t h a t
Gas c h r o m a t o g r a p h i c d e t e c t o r s a r e g e n e r a l l y
I i q u i d chromatographic detectors.
i t can s e p a r a t e m i x t u r e s a t
and s t a t i o n a r y phase f o r i n c r e a s e d s e l e c t i v i t y , packings.
L i q u i d chromatography has t h e
lower t e m p e r a t u r e s ,
vary both t h e mobile
and can use a v a r i e t y o f u n i q u e column
The t w o t e c h n i q u e s a r e complementary and can be automated,
chromatography may p r e s e n t fewer
automation problems
bration,
gradient
liquid
concerned).
chromatographic
The n e x t seven c h a p t e r s
environmental problems using chromatography.
Tables 1.1
t o compare components o f
elution,
and 1.2 "clean
and
lay t h e foundation
t h e two popular
a l t h o u g h gas
( e s p e c i a l l y as f a r mobile for
phase
as e q u i l i -
disposal
are
+he c o m p l e t e a t t a c k on
a n a l y t i c a l techniques,
gas and l i q u i d
p r o v i d e +he b a s e l i n e i n f o r m a t i o n w h i c h o n e needs air
and w a t e r . "
Chapter 8 c o n t a i n s e x t e n s i v e
i n f o r m a t i o n on +he r e g u l a t i o n s by v a r i o u s g o v e r n m e n t a l a g e n c i e s .
6 TABLE 1.1 Composition of dry a i r a ( r e f . 9 ) Element
2
Concentration (%,v/v) 18.09 m.95 0.03 0.93
C6
Ar2
Element
2 He Ne
CH4
Concentration(ppm) ( ppm, v / v ) 0.5 1 5.2 18 2.2
aWater i s u s u a l l y present from 0.1 t o 3% I n t h e atmosphere. TABLE 1.2 Typical c a t i o n i c c o n c e n t r a t i o n r a t i o s ( r e l a t i v e t o potassium) i n sea and f r e s h water ( r e f . 10) Concentration(ppm) Cat ion Sea water Fresh water Sod i um Magnes 1 um Potass I um Calcium
50 5 1 1
2 1 1 5
REFERENCES I 2 3 4
5
6 7 8 9 10,
J. P. Lodge, Jr. i n J. N. P i t t s , Jr., R. L. M e t c a l f and D. Grosjean (Eds.), Advances I n Environmental Science and Technology, Wiley, New York, 1980. E. C. F u l l e r , Chemistry and Man's Environment, Houghton M l f f l i n Co., Boston, MA, 1974, p.2. D. H. Meadows, D. L. Meadows, J. Randers, and W. W. Behrens, The L i m i t s o f Growth, Universe Books, New York, 1972. R. G. Bond, C. P. Straub, and R. Prober (Eds.), CRC Handbook o f Environmental Control, Vol. 1: A i r P o l l u t i o n , CRC Press, Cleveland, OH, 1972, pp. 149-154. Anonymous, I n d u s t r i a l Wastewater, O f f i c e of Research and Development, United States Environmental P r o t e c t i o n Agency, C i n c i n n a t i , OH, 1980, p. 1. L. R. Snyder and J. J. K i r k l a n d , I n t r o d u c t i o n t o Modern L i q u i d Chromatography, Wlley, New York, 2nd ed., 1979. R. L. Grob (Ed.), Modern P r a c t i c e o f Gas Chromatography, Wiley, New York, 1977. J. C. Touchstone and D. Rogers (Eds.), Thin Layer Chromatography, Q u a n t i t a t i v e Environmental and C l i n i c a l A p p l i c a t i o n s , Wiley, New York, 1980. R. G. Bond, C. P. Straub, and R. Prober (Eds.), CRC Handbook of Environmental Control, Vol. 1 : A i r P o l l u t i o n , CRC Press, Cleveland, OH, 1972, p. 3. M. Waldrop. Chemical and Engineering News, American Chemical Society, Washington, DC,1980, p. 31.
CHAPTER 2 CRITERIA FOR THE SAMPLING PROCESS
2.1 REQUIREMENTS 2.1.1 General di scussion There is a time-honored saying that the analysis o f any sample can only be as good as the sample is representative. What this tells us very concisely is that it matters little how much technique we have accomplished or how expensive and elaborate are our laboratory instruments, the information obtained from the analysis will be meaningless if the sample does not represent the system from which it was obtained. It follows then that a corollary regarding sampling and analysis is that there i s little or no difference between a biologically-derived material and an industrially-derived material. The only difference from the analytical viewpoint is the number and amounts of the various components making up these materials. Regarding environmental samples, one may cite the overly simplified statement of Umbreit (ref. 1 ) to bring across this point: "Anything detected in a water sample which is not water must be considered a pollutant or contaminant. The same statement, of course, is true of air." Fortunately, we all know the problem is not quite that simple. Before sampling and/or analyzing an environmental sample the analytical chemist must perform some preliminary non-experimental work. Answers to some or all of the following should be known. (a) What chemical compounds are known or of concern in the sample? (b) A t what concentration levels do they exist? (c) What are the major components of the sample? (d) How much sample will be available? (e) Where and under what conditions will the sample be taken? (f) Can destructive or non-destructive anaiyses be used? (9) What conclusions and/or decisions are to be based on the analysis? There are a number of review articles which may be good starting points for background information on environmental analysis. A review article for potentially hazardous environmental substances determined by GC/MS was published by Oswald et al. (ref. Z ) , another for the analysis of organophosphorus insecticides and metabolites by Burchfield and Storrs (ref. 3 ) and a general review of pesticide residues by Thornburg (ref. 4). A state-of-the-art presentation appeared in the May, June and July 1975 issues of Journal of Chromatographic Science. Saltzman
8 and Cuddeback ( r e f .
5 ) and Fishman and Erdemann ( r e f . 6 ) have p u b l i s h e d r e v i e w s on
a i r p o l l u t i o n and o r g a n i c s discussed
various
for
analysis,
determination
respectively. of
trace
Weil
7)
has
water
and
(ref.
substances
in
Rosen ( r e f . 8 ) has d i s c u s s e d a g e n e r a l o u t l i n e f o r t h e i d e n t i f i c a t i o n o f
effluents. organic
i n water
methods
pollutants
in
water.
The
initial
separations
were
based
upon
group
s o l u b i l i t y and a d s o r p t i o n chromatography. Having
decided
on
a
chromatographic
technique,
a
knowledge
s e n s i t i v i t y l i m i t s t o be achieved w i t h t h e d e t e c t o r system i s assumed. samples and t h e degree o f c o n c e n t r a t i o n r e q u i r e d i s d e f i n e d . must be s e t ,
i.e.,
Sampling p r o c e d u r e s
t h e number o f samples and t h e method o f o b t a i n i n g t h e samples
o t h e r c o n s t i t u e n t s o f t h e sample, or
the
C o n c e n t r a t i n g t h e sought component, i s o l a t i o n o f i t f r o m a v a r i e t y o f
must be made. component
of
The s i z e o f
chemical
p a r t i a l i s o l a t i o n o r c o n c e n t r a t i o n o f t h e sought
conversion
to
a
derivative
of
different
chromatographic
b e h a v i o r ’ are now a l l p o s s i b l e s o l u t i o n s t o t h e a n a l y s i s problem. F i n a l l y , s t a n d a r d s must be p r e p a r e d t o e s t a b l i s h t h e t r u e minimum l e v e l o f d e t e c t i o n and t o c a l i b r a t e t h e response o f t h e system.
The f i n a l measurement s t e p
includes
temperature,
choice
of
chromatographic
column,
operating
m o b i l e phase
c o m p o s i t i o n and d e t e c t o r t y p e . The commonly disposal,
analytical
used
and t h e
particulates,
c h e m i s t s h o u l d have
analytical
techniques,
chemical
and p h y s i c a l
and aqueous s o l u t i o n s .
a
operation
thorough
knowledge o f
of
instrumentation
behavior
Finally,
the of
gaseous
systems,
t h e most at
his
airborne
he s h o u l d a s s u r e h i m s e l f t h a t h i s
sampling procedures and number o f samples w i l l p r o v i d e t h e b e s t r e s u l t s . The amount ( s i z e ) o f sample needed f r o m a system i s i n v e r s e l y r e l a t e d t o t h e s e n s i t i v i t y o f t h e a n a l y t i c a l t e c h n i q u e used. governed by t h e sampling system; m l / m i n o r m3/min.
Time r e q u i r e d f o r t h e s a m p l i n g i s
t h e system may be c a p a b l e o f a s a m p l i n g r a t e o f
E f f i c i e n c y o f t h e c o l l e c t i o n system i s t h e c o n t r o l l i n g f a c t o r -
an adequate and r e p r e s e n t a t i v e sample must be p r o v i d e d .
Sampling t i m e w i l l p r o v i d e A number o f f a c t o r s w i l l
an average c o n c e n t r a t i o n l e v e l f o r t h e i n t e r v a l covered. c o n t r o l t h e minimum sampling t i m e . range of t h e sought component,
These f a c t o r s i n c l u d e t h e e x p e c t e d c o n c e n t r a t i o n
t h e r a t e a t w h i c h t h e s a m p l i n g i s t o b e performed,
t h e minimum d e t e c t a b l e q u a n t i t y o f t h e sought component by t h e a n a l y t i c a l p r o c e d u r e used, at
and t h e i n t e r p r e t a t i o n o r use o f t h e f i n a l d a t a .
least
751
i s necessary f o r most
all
A collection efficiency o f
environmental
analyses
(ref.
9).
To
m a i n t a i n t h i s l e v e l o f e f f i c i e n c y i t i s sometimes n e c e s s a r y t o u s e s e v e r a l p i e c e s o f apparatus a n d / o r techniques.
I f t h i s proves t o be necessary,
t h a t t h e c o l l e c t i o n u n i t s do n o t i n t e r f e r e w i t h each o t h e r . a i r sample, i t i s a d v i s a b l e t o remove p a r t i c u l a t e m a t t e r f i r s t . using a f i l t e r
ahead o f
t h e gas-sampling
unit.
t h e n one must e n s u r e When g a s - s a m p l i n g an T h i s may be done b y
C a u t i o n i s a d v i s e d because o f
a d s o r p t i o n o f t h e gaseous components on t h e f i l t e r a n d / o r p a r t i c u l a t e s .
One can
9 d e t e r m i n e t h e e f f i c i e n c y o r e f f e c t i v e n e s s of t h e s a m p l i n g system b y use o f s y n t h e t i c e n v i r o n m e n t a l samples under c o n t r o l l e d l a b o r a t o r y c o n d i t i o n s and a w i d e r a n g e o f standard concentrations.
Inefficient
sample c o l l e c t i o n u s u a l l y b e g i n s t o appear as
lower and lower c o n c e n t r a t i o n s t a n d a r d s a r e used. One may check t h e e f f i c i e n c y
of
v a r i o u s i m p i n g e r s o r wash b o t t l e s (see
Chapter 3 ) by c o n n e c t i n g s e v e r a l o f them i n s e r i e s and p a s s i n g a gaseous sample o f known contaminant c o n c e n t r a t i o n t h r o u g h t h e system.
Each b o t t l e i s s u b s e q u e n t l y
analyzed and if t h e contaminant u p t a k e i s g r e a t e r t h a n 9 0 % i n t h e f i r s t b o t t l e , may b e c o n s i d e r e d e f f i c i e n t .
E f f i c i e n c y o f a i r sampling approaches 100%
sample i s c o l l e c t e d by passage i n t o an evacuated c o n t a i n e r .
it
if the
in t h i s type
However,
o f sampling, one must c o n s i d e r w a l l e f f e c t s o f t h e c o n t a i n e r . A f i n a l comment about a i r sampling - a i r a n a l y s i s i s o f no use i f t h e
sample i s c o l l e c t e d w h i l e i t i s r a i n i n g o r snowing.
The presence o f t h e l i q u i d
phase tends t o obscure a c c u r a t e d a t a f o r an a i r sample. snow) i s a major source of n u t r i e n t s .
Precipitation
(rain or
Concentrations o f i o n i c species i n t h e a i r
u s u a l l y f o l l o w a p a t t e r n a c c o r d i n g t o sampling area l o c a t i o n and t h e season ( r e f . 10).
The
rainwater
has
distinctive qualities
and t h e r e f o r e has
r e g i o n a l , n a t i o n a l and c o n t i n e n t a l w a t e r s u p p l i e s .
an
effect
on
Many o f t h e chemical s u b s t a n c e s
found i n streams can be a t t r i b u t e d t o man's e n v i r o n m e n t a l p o l l u t i o n a n d / o r c o n t r o l . 2.1.2
C r i t e r i a f o r sampling Sampling
from
either
s t r a i g h t f o r w a r d procedure. are
directly
air
or
water
systems
is
not
a
simple
and
The a n a l y t i c a l c h e m i s t must be c e r t a i n t h a t h i s samples
r e l a t e d t o t h e c o n t a m i n a n t c o n c e n t r a t i o n s and t h a t
s u b s t a n t i a t e t h e reasons f o r c o l l e c t i n g samples i n i t i a l l y .
h i s data w i l l
The f a c t t o keep i n m i n d
i s t h a t e n v i r o n m e n t a l contaminants e x h i b i t a v a r i a b l e c o n c e n t r a t i o n and t h u s a r e d e s c r i b e d by normal s t a t i s t i c s
(ref.
11).
An adequate s a m p l i n g p r o c e d u r e s h o u l d
answer a number o f q u e s t i o n s : (a) (b) (c) (d)
When does one s a m p l e ? Where does one sample ? For what t i m e p e r i o d does one s a m p l e ? How o f t e n a r e t h e samples t a k e n ?
Again, s t a t i s t i c s can a i d us i n o u r d e c i s i o n s ( r e f s . number o f samples, where t o sample, has been t h e f i n a n c i a l
etc.
12-18)
regarding the
However, i n many e n v i r o n m e n t a l s t u d i e s i t
l i m i t a t i o n s o f the p r o j e c t r a t h e r than experimental design
f r o m f i r s t p r i n c i p l e s which d i c t a t e d t h e answers t o t h e s a m p l i n g problem. I n t h e a n a l y s i s scheme o f e n v i r o n m e n t a l samples, o v e r which t h e c h e m i s t has some c o n t r o l . by t h e f o l l o w i n g s t a t e m e n t s ( r e f . 19).
i t i s t h e sampling step
Thus, t h e o v e r a l l scheme may b e sumned u p
10
program
.
( 1 ) S t a t i s t i c a l p r i n c i p l e s w i l l govern t h e adequacy o f t h e s a m p l i n g (2) P r o b a b i l i t y w i l l replace c e r t a i n t y i n the r e s u l t s . ( 3 ) S t a t i s t i c a l s i g n i f i c a n c e w i l l d e t e r m i n e t h e soundness o f t h e
conclusions.
2.1.3
Sample t y p e s and sampling p r o b l e m The a n a l y s i s o f e n v i r o n m e n t a l
samples p r e s e n t s t h e a n a l y t i c a l c h e m i s t a
d i v e r s i f i e d and c h a l l e n g i n g a r r a y o f sample t y p e s and sampling problems. systems t o be analyzed a r e homogeneous,
i n t h e sampling s t e p .
Under t h e s e c o n d i t i o n s , we would e n c o u n t e r l i q u i d s i n l i q u i d s gases i n gases ( u n i f o r m m i x i n g ) ,
gases i n l i q u i d s ( c o m p l e t e
and s o l i d s i n l i q u i d s ( c o m p l e t e s o l u b i l i t y ) .
The homogeneous system of
(complete m i s c i b i l i t y ) , solubility),
If the
t h e n l i t t l e o r no problems would be p r e s e n t
a s o l i d i n a s o l i d would be t h e l a s t t y p e o f sample i n t h i s c a t e g o r y .
This type
o f sample would be found most commonly i n p a r t i c u l a t e m a t t e r samples. The sample t y p e s which may cause s a m p l i n g problems would be t h e f o l l o w i n g : ( A ) A e r o s o l s a r e systems o f c o l l o i d a l p a r t i c l e s to 5 x 10-5 cm i n d i a m e t e r w h i c h w i l l n o t d i f f u s e t h r o u g h animal o r v e g e t a b l e membranes) d i s p e r s e d i n a gas, e.g., dusts, s o o t , p a r t i c l e s , fumes, smoke and f o g s . ( 6 ) Gels a r e systems v e r y analogous t o s o l s ( s e e F b e l o w ) formed by t h e c o a g u l a t i o n o f a c o l l o i d a l l i q u i d . ( C ) Foams a r e a d i s p e r s i o n o f a gas i n a l i q u i d . ( 0 ) Emulsions a r e c o l l o i d a l suspensions ( a system c o n s i s t i n g o f s m a l l p a r t i c l e s k e p t d i s p e r s e d by t h e m o l e c u l a r m o t i o n i n t h e s u r r o u n d i n g medium) o f l i q u i d s i n a l i q u i d . The l i q u i d phases a r e i m m i s c i b l e . (E) M i s t s a r e a suspension of a l i q u i d i n a gas, i . e . , a cloud-like aggregation o f minute globules o f water i n t h e atmosphere. ( F ) S o l s a r e a c o l l o i d a l suspension o f a s o l i d i n a l i q u i d . The problem-type chemist
as
electrical
they
samples all
a r e a cause f o r c a u t i o n on t h e p a r t o f
involve colloidal
particles.
charge i n many cases and have a v e r y
p r o p e r t i e s t e n d t o cause a d s o r p t i o n o f o t h e r
Colloidal
the analytical
particles
l a r g e surface area.
carry These
an two
components on t h e s u r f a c e and may
r e s u l t i n n o n - r e p r e s e n t a t i v e sampling and m i s l e a d i n g d a t a . The t e c h n i q u e s o f sampling a r e d i s c u s s e d i n d e t a i l i n Chapter 3; however, i t i s w e l l t o p o i n t o u t t h a t t h e s e t e c h n i q u e s may be m o d i f i e d because o f t h e system
b e i n g sampled. Time-Proportional
If t h e component o f most i n t e r e s t v a r i e s w i t h t h e t i m e o f day, Sampling i s performed.
T a k i n g samples o v e r
a prearranged time
p a t t e r n f u r n i s h e s more i n f o r m a t i o n t h a n one sample t a k e n f o r a l o n g p e r i o d o f t i m e .
I n t h e l a t t e r case one o b t a i n s
an average
level
component o f i n t e r e s t , whereas i n t h e f o r m e r case,
for
the concentration
of
the
a more r e a l i s t i c p a t t e r n o f t h e
11 fluctuation i n concentration results.
A s i m i l a r o c c u r r e n c e can p r e s e n t i t s e l f when
sampling w a t e r f r o m a f l o w i n g stream.
Because t h e f l o w r a t e may v a r y w i t h time,
it
i s b e t t e r t o t a k e samples based upon a p r e d e t e r m i n e d volume o r t o sample a t v a r i o u s t i m e s d u r i n g t h e d a y r a t h e r t h a n on a t i m e b a s i s . Flow-Proportional
Sampling.
This technique
i s called
T h i s method g i v e s s u p e r i o r i n f o r m a t i o n s i n c e t h e sample
t a k e n over a p e r i o d o f t i m e can f u r n i s h o n l y average c o n c e n t r a t i o n l e v e l s o f t h e component o f i n t e r e s t . it i s stated that a i r
I n S e c t i o n 2.1.1
analysis
samples a r e c o l l e c t e d d u r i n g a p e r i o d o f r a i n o r snow.
i s o f no use i f t h e
One c o u l d o b t a i n u s e f u l
i n f o r m a t i o n about t h e e f f e c t o f r a i n on a i r p o l l u t i o n b y s a m p l i n g t h e r a i n w a t e r . The c o m p o s i t i o n o f t h e r a i n w a t e r i s t o be c o n s i d e r e d when one i s i n t e r e s t e d i n t h e c o m p o s i t i o n o f s o i l and i r r i g a t i o n w a t e r s ( r e f . 20). rain
If
gauge.
the
rain
"cleared"
the
air
T h i s c o u l d b e done b y u s e o f a then
one
would
expect
large
R a i n w a t e r w i l l "wash"
c o n c e n t r a t i o n s o f many a i r p o l l u t a n t s i n t h e r a i n sample.
o u t and c o n c e n t r a t e many o r g a n i c ( i n c l u d i n g p e s t i c i d e s ) and i n o r g a n i c p o l l u t a n t s o f the a i r
(refs.
21-25).
The c l o s e r t o t h e ocean shores t h e r a i n w a t e r sample i s
taken the higher i s the s a l t content. R a i n gauges may be c l a s s i f i e d as a manual t y p e because t h e volume r e a d i n g In the automatic recording type,
must be checked p e r i o d i c a l l y , o r a u t o m a t i c t y p e . when
t h e compartment
i s full
of
r a i n water,
a switch
of
times
the
switch
is
tripped.
i s t r i p p e d and an empty
A r e c o r d i s k e p t f o r t h e number
compartment i s p o s i t i o n e d f o r f u r t h e r c o l l e c t i o n .
Knowing t h e c a l i b r a t e d volume
of
t h e gauge
compartment, one has t h e t o t a l volume o f r a i n c o l l e c t e d . A
laboratory
Urbana-Champaign,
has
Illinois,
been to
set
analyze
sampling s t a t i o n s i n t h e United States.
up
at
the
rain-water'
University
samples
from
of
Illinois,
fifty
nationwide
The l a b o r a t o r y i s p a r t o f t h e U n i t e d S t a t e s
N a t i o n a l Atmospheric D e p o s i t i o n Program ( r e f . 26).
The f i e l d samples may be checked
f o r a c i d i t y and c o n d u c t i v i t y a t t h e sampling s i t e .
A l l o t h e r analyses a r e performed
i n the laboratory a t the University o f I l l i n o i s . H u m i d i t y can a l s o a f f e c t a i r q u a l i t y .
Low h u m i d i t y r e s u l t s i n i n c r e a s e d
suspended p a r t i c u l a t e c o n c e n t r a t i o n s and h i g h h u m i d i t y ( f o g c o n d i t i o n s ) b l o c k s s o l a r heating
and
therefore
prolongs
the
life
of
inversion
layers
(ref.
t e m p e r a t u r e and f o g u s u a l l y cause i n c r e a s e d m o r b i d i t y and m o r t a l i t y ( r e f .
27).
Low
28).
Another i m p o r t a n t sample t y p e i s t h a t o b t a i n e d b y Stack Sampling ( r e f s . 29 and 30).
T h i s t y p e o f sampling i s performed e i t h e r t o m o n i t o r t h e e f f i c i e n c y o f an
i n d u s t r i a l c o l l e c t i o n system o r where a suspected o r known p o l l u t a n t has been f o u n d i n surrounding a i r .
J u s t i f i c a t i o n f o r e i t h e r o f t h e s e s i t u a t i o n s c o u l d be:
( 1 ) t o d e t e r m i n e whether a company i s i n c o m p l i a n c e w i t h l o c a l o r r e g i o n a l regulations;
( 2 ) t o e n a b l e a company t o s e l e c t a p p r o p r i a t e c o n t r o l equipment f o r i t s manufacturing sites; ( 3 ) t o i d e n t i f y t h e presence o f a p e r s i s t e n t c o n t a m i n a n t i n t h e s u r r o u n d i n g area; ( 4 ) t o d e t e r m i n e ifp r e s e n t c o n t r o l equipment needs t o b e changed o r improved; ( 5 ) t o m o n i t o r e m i s s i o n s when a m a n u f a c t u r i n g p r o c e s s has been changed; (6) f o r l e g a l reasons, e.g., t o s e t t l e a c o u r t s u i t o r t o answer a governmental r e g u l a t o r y agency c i t a t i o n . 2.2 PROBLEMS OF SAMPLING AND POST-SAMPLES T h i s s e c t i o n d i s c u s s e s s a m p l i n g i n g e n e r a l , w i t h c o n e n t s on problems and general precautions.
S p e c i f i c d i s c u s s i o n o f v a r i o u s t e c h n i q u e s w i l l be r e v i e w e d i n
Chapter 3. The m a j o r i t y o f e n v i r o n m e n t a l samples a r e e i t h e r l i q u i d s o r gases. w i t h these two sample t y p e s t h a t we a r e m a i n l y concerned.
It i s
Sampling t e c h n i q u e s used
f o r s u r f a c e waters, groundwaters, i r r i g a t i o n and d r a i n a g e w a t e r s a r e e s s e n t i a l l y t h e
A s i m i l a r s t a t e m e n t may be made o f a t m o s p h e r i c a i r samples,
same.
samples,
stack
associated
samples,
with
"post-sampling"
and
sampling
general
may
be
in-house
classified
laboratory a i r
samples.
Many
as
occurring
those
of
the
problems
during
the
period.
Environmental problems w o u l d b e v e r y s t r a i g h t f o r w a r d i f a l l samples were stable f o r
long periods o f time.
analyses a r e performed. the
sample
obtained
in
and
the
stored,
Stability of
samples s h o u l d be checked b e f o r e
Storage s t a b i l i t y can be a f f e c t e d b y t h e s t o r a g e c o n t a i n e r ,
container,
environmental
concentration
of
the
conditions
under
contaminants
of
which
interest,
a sample i s adsorption
e f f e c t s , and presence o f o t h e r chemical e n t i t i e s i n t h e sample. Depending upon t h e s o u r c e and t y p e o f refrigerate, (i.e.
analyze
immediately,
l e a v e no headspace),
use c o m p l e t e l y
o r add a b a c t e r i a l
d i s s o l v e d gases w i l l escape f r o m w a t e r samples periods before analysis.
I n general,
i t may be n e c e s s a r y t o
sample, filled
water
inhibitor.
sample
containers
V o l a t i l e m a t e r i a l s and
i f a l l o w e d t o be s t o r e d f o r
f i l l i n g o f t h e w a t e r sample c o n t a i n e r
long (no
headspace) and r e f r i g e r a t i o n w i l l m i n i m i z e these post-sampl i n g changes. Other p o s t - s a m p l i n g occur.
problems may a r i s e i f chemical
o r p h y s i c a l changes
I n t h i s i n s t a n c e , h a v i n g as much advance o r a d d i t i o n a l i n f o r m a t i o n r e g a r d i n g
t h e sample source m i n i m i z e s t h e s e problems. sample, nitrogen,
for
example,
hydrolysis
may cause of
urea
to
such
The presence o f b a c t e r i a i n a w a t e r
changes
ammonia,
as
reduction
oxidation
of
of
ammonia
urea to
to
gaseous
nitrite
and
n i t r a t e , and f o r m a t i o n o f v o l a t i l e f a t t y a c i d s ( r e f . 2 0 ) . L i g h t can a c c e l e r a t e many chemical r e a c t i o n s .
Thus,
i s e s s e n t i a l i f t h e samples cannot be analyzed i m m e d i a t e l y . o f environmental
gas
samples where
samples were s t o r e d i n d i r e c t s u n l i g h t .
photochemical
storage i n the dark
This i s especially t r u e
reactions could r e s u l t
if t h e
13 Another problem w i t h e n v i r o n m e n t a l samples which p r e v e n t s t h e p r e s e r v a t i o n of
integrity
of
the
sample
is
loss
the
occurring
during
separation
and/or
concentration steps.
Due t o t h e low c o n c e n t r a t i o n o f many c o n t a m i n a n t s i n a i r and
water
analytical
samples,
the
chemist
must
employ
c o n c e n t r a t i o n t e c h n i q u e p r i o r t o t h e measuring s t e p .
some
separation
and/or
Disregard f o r t h e possible
makeup o f t h e sample can f u r n i s h sample a n a l y s i s d a t a w h i c h i s meaningless. distillation
Steam
i s a handy t e c h n i q u e f o r removing and c o n c e n t r a t i n g v o l a t i l e s f r o m
water; whereas, e x t r a c t i o n i s a good t e c h n i q u e f o r a c c o m p l i s h i n g t h e same end r e s u l t for
neutral
or non-volatile
components.
The r e a d e r
i s r e f e r r e d t o a number o f
r e f e r e n c e s r e g a r d i n g sampling and c a r e o f w a t e r samples ( r e f s . 31-49). 2.3 REGULATIONS Specific
i n f o r m a t i o n r e g a r d i n g t h e v a r i o u s w o r l d w i d e r e g u l a t o r y agencies
i s d i s c u s s e d i n Chapter 8.
Our concern a t t h i s p o i n t i s more a g e n e r a l s t a t e m e n t
c o n c e r n i n g t h e r e g u l a t i o n s on sampling as a whole. Each of
the associations
and a g e n c i e s o f
the
i n d i v i d u a l c o u n t r i e s has
r e q u i r e m e n t s which a r e p e r t i n e n t t o t h e i r s p e c i f i c problems. f o r a l l t e c h n i q u e s o f sampling,
The u n d e r l y i n g reasons
t y p e s o f samples and t h e i r subsequent a n a l y s e s a r e
about t h e same. The r o l e o f t h e a n a l y t i c a l important.
chemist i s v i t a l f o r t h e be e f f e c t i v e , initially, samples, last
but
chemist
in all
o f these p r o j e c t s i s very
He i s necessary n o t o n l y f o r t h e a n a l y s i s p e r se,' he
must
but the analytical
If he i s t o
success o f r e s o l v i n g e n v i r o n m e n t a l problems. be
an
integral
part
o f .the
t h e d e s i g n o f t h e s a m p l i n g program,
discussion
of
the
problem
t h e g a t h e r i n g and c o d i n g o f t h e
t h e l a b e l i n g and c a r e o f t h e samples a t t h e c o m p l e t i o n o f t h e study, not
least,
the
interpretation
of
t h e data.
and
He must b e c a p a b l e o f
d i s c u s s i n g and e x p l a i n i n g t h e d e t a i l s and r e s u l t s o f such s t u d i e s t o p e r s o n s n o t w e l l versed i n t h i s area, e.g.,
other chemists, b i o l o g i s t s , p h y s i c i s t s ,
p h y s i c i a n s , t h e man on t h e s t r e e t , judges, j u r o r s , and p o l i t i c i a n s .
engineers,
Rightfully, the
a n a l y t i c a l c h e m i s t must become c o m p l e t e l y i n v o l v e d i n e n v i r o n m e n t a l problems and n o t f o l l o w t h e narrow p a t h o f a c c e p t i n g samples,
analyzing
t h e s e samples,
and t h e n
p a s s i n g t h e d a t a t o someone e l s e . Having e s t a b l i s h e d t h a t an e n v i r o n m e n t a l p r o b l e m e x i s t s ,
t h e n e x t move i s
t o l a y o u t t h e p r o j e c t so t h a t s u f f i c i e n t i n f o r m a t i o n becomes a v a i l a b l e t o a r r i v e a t t h e c o r r e c t conclusions. There a r e a number o f o r g a n i z a t i o n s
w h i c h have t h e r e s p o n s i b i l i t y
e i t h e r s e t t i n g o r c o n t r o l l i n g r e g u l a t i o n s p e r t a i n i n g t o environmental The a d m i n i s t r a t o r
o f t h e U n i t e d S t a t e s E n v i r o n m e n t a l P r o t e c t i o n Agency (EPA),
example,
sure
must be
the
agency p u t s
forth
criteria that
reflect
of
guidelines. the
for
latest
14 s c i e n t i f i c knowledge u s e f u l
i n i n d i c a t i n g t h e e f f e c t s on p u b l i c h e a l t h o r w e l f a r e
expected f r o m p o l l u t a n t s i n ambient a i r and i n d u s t r i a l waste w a t e r e f f l u e n t s .
The
criteria
are
with
which
p a r t i c u l a t e matter,
they
have
been
s u l f u r oxides,
polychlorinated biphenyls
concerned
mainly
carbon monoxide,
(for
air
pollution)
n i t r o g e n oxides,
(PCBs) and o t h e r h a l o g e n a t e d o r g a n i c s ,
hydrocarbons,
and photochemical
oxidants.
For w a t e r p o l l u t i o n t h e y have been concerned p r i m a r i l y w i t h p e s t i c i d e s ,
herbicides,
p o l y c h l o r i n a t e d b i p h e n y l s and o t h e r h a l o g e n a t e d o r g a n i c s ,
toxic trace
A l l o f t h e s e p o l l u t a n t s and methods f o r t h e i r
m e t a l s and v a r i o u s i n d u s t r i a l wastes.
d e t e r m i n a t i o n a r e c o n s t a n t l y b e i n g reviewed. The Committee on t h e Challenges o f Modern S o c i e t y (CCMS) e s t a b l i s h e d b y t h e N o r t h A t l a n t i c T r e a t y O r g a n i z a t i o n (NATO) s e t up s e v e r a l a i r p o l l u t i o n s t u d i e s . Procedures p u b l i s h e d by t h i s commission d i f f e r f r o m c r i t e r i a s e t by t h e U.S.A
(ref.
50). The
National
Research
Counci 1 / N a t i o n a l
Academy
of
Sciences
(NRC/NAS)
p u b l i s h e d a number o f documents r e v i e w i n g i n f o r m a t i o n about many s p e c i f i c substances ( r e f . 51).
These were f o l l o w e d b y documents o u t l i n i n g a p h i l o s o p h y f o r s h o r t - t e r m
a i r q u a l i t y l i m i t s ( r e f . 52). The World H e a l t h O r g a n i z a t i o n (WHO) e s t a b l i s h e d a c o m n i t t e e on A i r Q u a l i t y C r i t e r i a and Guides and p u b l i s h e d a r e p o r t e n t i t l e d A i r Q u a l i t y C r i t e r i a and Guides for
Urban P o l l u t a n t s
(ref.
53).
The
p r e s e n t WHO
Environmental Health C r i t e r i a
Programme ( r e f . 54) was a r e s u l t o f t h e i n i t i a l s t u d y . The U n i t e d N a t i o n s Conference on t h e Human Environment charged WHO w i t h t h e t a s k o f e s t a b l i s h i n g p r i m a r y s t a n d a r d s f o r p o l l u t a n t s t h a t a r e common t o a i r , water,
and food,
common a i r
and d e v e l o p i n g procedures f o r s e t t i n g d e r i v e d w o r k i n g l i m i t s f o r
and w a t e r contaminants.
"Derived working l e v e l s "
a r e a l s o known as
e n v i r o n m e n t a l o r ambient a i r qua1 i t y s t a n d a r d s , maximum p e r m i s s i b l e l i m i t s , maximum a l l o w a b l e c o n c e n t r a t i o n s o r p r o d u c t standards.
Air
and w a t e r p o l l u t i o n abatement
are d i f f e r e n t for
w i t h i n a c o u n t r y f r o m one l o c a t i o n o r t i m e p e r i o d t o another.
e v e r y c o u n t r y and
I f the major health
problems a r i s e f r o m an inadequate c l e a n w a t e r s u p p l y o r o t h e r s a n i t a t i o n problems, less
emphasis
c a n be
given
to
air
pollution
problems.
Conversely,
a
highly
i n d u s t r i a l i z e d c o u n t r y may s u f f e r g r e a t e r a i r p o l l u t i o n exposure problems t h a n w a t e r p o l l u t i o n problems p r o v i d e d waste dumping i n streams were c o n t r o l l e d . 2.4 STANDARDS 2.4.1
Discussion Verifications
samples.
The
standard
of
a n a l y t i c a l procedures
samples
are
used
to
presuppose
check
the
t h e use o f s t a n d a r d
correct
functioning
of
15
analytical
i n s t r u m e n t a t i o n and procedures.
aware of
sources
of
such samples,
the
Thus t h e a n a l y t i c a l c h e m i s t s h o u l d b e c o o p e r a t i v e programs
which
govern
these
v e r i f i c a t i o n samples, and t h e t y p e s o f samples and s u p p l i e s a t h i s d i s p o s a l . Commercial
and
governmental
agencies
are
the
The EPA p u b l i s h e s A i r P o l l u t i o n A b s t r a c t s m o n t h l y ( r e f . concerned w i t h source sampling and analyses (ref.
main
sources
of
such
A number o f p u b l i c a t i o n s a b s t r a c t t h e e n v i r o n m e n t a l l i t e r a t u r e ( r e f . 5 5 ) .
samples.
58),
evaluation
and
detection
of
(ref.
5 6 ) and a number o f books
57),
aerosols
monitoring a i r pollutants (ref.
59)
and
monitoring
i n s t r u m e n t a t i o n and sampling d e s c r i p t i o n s ( r e f s . 60 and 6 1 ) a r e a l s o a v a i l a b l e . Air
and
water
concentration o f water volume.
quality
standards
are
legal
limits
placed
on
the
and a i r p o l l u t a n t s f o r a g i v e n p e r i o d o f t i m e o r a g i v e n
These c r i t e r i a a r e d e c i d e d by c o n s i d e r a t i o n o f economic, s o c i a l ,
technical
and p o l it i c a l i n f o r m a t i o n . The a v a i l a b i l i t y o f a i r and w a t e r s t a n d a r d s does n o t p r e c l u d e t h e removal o f interferences.
A number o f common a n a l y t i c a l t e c h n i q u e s a r e used f o r t h e removal
o f i n t e r f e r i n g substances.
These s h o u l d be c a l l e d upon t o a s s i s t i n many a n a l y s e s .
Some o f t h e more r o u t i n e l y used approaches t o removal o f i n t e r f e r e n c e s a r e : ( 1 ) change i n t e m p e r a t u r e o f t h e sample system; ( 2 ) ashing o f residues obtained e i t h e r from separation o f groups o f compounds o r s p e c i f i c substances; ( 3 ) use o f i o n exchange t o remove i o n i c i n t e r f e r e n c e s ; ( 4 ) d i s t i l l a t i o n t o remove low b o i l i n g components; ( 5 ) c o m p l e x i n g agents t o mask an i n o r g a n i c i n t e r f e r e n c e ; ( 6 ) change i n pH o f sample system; ( 7 ) use o f r e a c t i o n k i n e t i c s t o a l t e r amount o f i n t e r f e r i n g substances. I n t e r f e r e n c e s can o c c u r d u r i n g v a r i o u s s t e p s i n t h e process o f o b t a i n i n g t h e d e s i r e d analytical information. themselves,
The more common sources would be ( a ) a t t h e s a m p l i n g s i t e s
( b ) sample c o l l e c t i o n system c o u l d be t h e problem,
may t a k e p l a c e d u r i n g t h e sample s t o r a g e i n t e r i m , during the analysis.
These i n t e r f e r e n c e s may n o t be s o l e l y chemical,
p h y s i c a l i n n a t u r e , e.g., photo-oxidation),
( c ) r e a c t i o n which
and ( d ) p o o r l a b o r a t o r y t e c h n i q u e
temperature e f f e c t s ,
b u t may be
l i g h t e f f e c t s (photo-decomposition o r
t i m e i n t e r v a l between s a m p l i n g s t e p and a n a l y s i s s t e p , o r u n c l e a n
equipment. Control
o f sampling parameters and a n a l y s i s p r o c e d u r e s w i l l s t i l l produce
indeterminate e r r o r s i n the data.
These may be h a n d l e d i n a s t a t i s t i c a l manner.
The scope o f t h i s t r e a t i s e does n o t p e r m i t t h e coverage o f t h i s t o p i c . i s r e f e r r e d t o a number o f i : i s t r u c t i v e r e f e r e n c e s ( r e f s . 12-18).
The r e a d e r
16 2.4.2
A v a i l a b i l i t y and source o f samples and s u p p l i e s T a b l e 2.1 i s a l i s t i n g o f v a r i o u s s u p p l i e r s o f e n v i r o n m e n t a l s t a n d a r d s f o r
gas and l i q u i d chromatography.
Also included a r e those s u p p l i e r s which f u r n i s h
column s u p p l i e s and r e f e r e n c e samples.
T h i s i s n o t an a l l - i n c l u s i v e
a l i s t o f sources known a n d / o r used b y t h e a u t h o r s .
listing, but i s
T h i s l i s t i n g i s n o t t o be
i n t e r p r e t e d as an a p p r o v a l o r recommendation by t h e a u t h o r s .
TABLE 2.1 S u p p l i e r s o f e n v i r o n m e n t a l samples, standards, and s u p p l i e s Supplier
Product type ( s ) *
A i r c o I n d u s t r i a l Gases 575 Mountain Avenue, M u r r a y H i l l , NJ 07974, USA.
CRM, RM
A i r P r o d u c t s and Chemicals, I n c . S p e c i a l t y Gas Department P.O. Box 538, A l l e n t o w n , PA 18105, USA.
CRM, RM, Gas standards, Std. gas samples
A l d r i c h Chemical Co., I n c . 940 W. S t . Paul Avenue, Milwaukee, W I 53233, USA.
GC and LC s t a n d a r d s
Aldrich-Europe, D i v i s i o n o f Janssen P h a r m a c e u t i c a l s Turnhoutsebaan-30, 62340, Beerse, Belgium.
GC and LC s t a n d a r d s
Alpha A n a l y t i c a l L a b o r a t o r i e s D i v i s i o n o f Alpha Metals, I n c . 56 Water S t r e e t J e r s e y City, NJ 07304, USA.
CRM, RM
A1 1t e c h A s s o c i a t e s 2051 Waukegan Road D e e r f i e l d , I L 60015, USA.
GC standards, GC and LC pack ings
American Petroleum I n s t i t u t e Standard Reference M a t e r i a l s Carnegie-Mellon U n i v e r s i t y Schenley Park, P i t t s b u r g h , PA 15213, USA.
CRM, RM
Analabs, I n c . (Foxboro A n a l y t i c a l ) 80 R e p u b l i c D r i v e N o r t h Haven, CT 06473, USA.
GC standards, GC and LC packings
A p p l i e d Science L a b o r a t o r i e s , I n c . P.O. Box 440 S t a t e College, PA 16801, USA.
GC standards, GC and LC packings, RM
17 A p p l i e d Science Europe B. V. P.O. Box 1149, 3260 A C OudBeij e r l a n d , The N e t h e r l a n d s .
GC standards, GC and LC packings, RM
Arro Laboratories, Inc. P.O. Box 686, Caton Farm Road, J o l i e t , I L 60434, USA.
CRM, RM
Association o f O f f i c i a l Analytical Chemists, Box 540, Benjamin F r a n k l i n S t a t i o n Washington, DC 20040, USA.
GC and LC s t a n d a r d s
Bai r d C o r p o r a t i o n 125 M i d d l e s e x T u r n p i k e Bedford, MA 01730, USA.
CRM
Baird-Atomic L t d . Warner D r i v e , Springwood I n d . E s t a t e , Rayne Road, B r a i n t r e e , Essex, Great B r i t a i n
CRM
J. T. Baker Chemical Company 222 Red School Lane P h i l l i p s b u r g , NJ 08865, USA
CRM, RM, GC s t a n d a r d s , GC and LC p a c k i n g s
Baker-Chemi k a l i e n , P o s t f a c h 1661, Gross-Geran German F e d e r a l R e p u b l i c
CRM, RM, GC s t a n d a r d s , GC and LC p a c k i n g s
BDH Chemicals, L t d . Poole, D o r s e t BH12 4NN, Great B r i t a i n
GC s t a n d a r d s
Bramner Standard CO, 213-Essex K n o l l D r i v e C o r a o p o l i s , PA 19108, USA
CRM, RM
Brinkman I n s t r u m e n t s , I n c . Cantiague Road Westbury, NY 11590, USA
RM
B u r d i c k and Jackson L a b o r a t o r i e s 1953 South Harvey S t r e e t Muskegon, M I 49442, USA
RM, GC and LC s t a n d a r d s
Bureau of A n a l y t i c a l Samples, L t d . Newham H a l l , Newly, M i d d l e b o r o u g h TS8 9EA, Great B r i t a i n
GC and LC s t a n d a r d s
C a l i f o r n i a Bionuclear Corporation 7654 San Fernando Road Sun V a l l e y , CA 91352, USA
CRM
C a r l o Erba Strumentazione SpA P.O. BOX 4342, 1-20100 Milan, I t a l y
GC s t a n d a r d s and p a c k i n g s
18
Chem. S e r v i c e . I n c . P. 0. Box 194 West Chester, PA 19380, USA.
GC and LC s t a n d a r d s
Chrompack Nederland BV P. 0. Box 3, 4-330 AA M i d d l e b u r o The Netherlands,4330
GC s t a n d a r d s , GC and LC pack ings
Coast Engi neer ing Lab 13508 S. Normandie Avenue Gardena, CA 90249, USA.
GC s u p p o r t s
P. J. Cobert Associates, I n c . 10767 I n d i a n Head I n d u s t r i a l D r i v e S t . Louis, MO 63132, USA.
GC and LC p a c k i n g s
Columbia S c i e n t i f i c I n d u s t r i e s 11950 J o l l y v i l l e Road P.O. Box 9908, A u s t i n , TX 78766, USA.
CRM, RM
C. Desaga GmbH, Nachf. E r i c h F e c h t Maasstrasse 26-28, P.O. Box 101969, D-6900 H e i d e l b e r g 1 German F e d e r a l R e p u b l i c
GC s t a n d a r d s
Duke Sc i e n t i f ic C o r p o r a t ion 445 Sherman Avenue, P a l o A l t o , CA 94306, USA
CRM, RM
E. I . du Pont de Nemours and Co. Analyical Instruments D i v i s i o n Room 38830 Wilmington, DE 19898, USA
LC p a c k i n g s
Du Pont U.K, L t d . Ana 1 y t ic a 1 I n s t r u m e n t s Wedgewood Way, Steuenage H e r t s , SGI 4QN, Great B r i t a i n
LC packings
E. I . du Pont de Nemours (Deutschland) GmbH 'nstrument P r o d u c t s D i v i s i o n J i e s e l s t r a s s e 18, P.O. Box 1509, 06350 Bad Neuheimel, German F e d e r a l R e p u b l i c
LC p a c k i n g s
Eas tman Kodak Company Eastman Organic Chemicals Rochester, NY 14650, USA
CRM, RM
EM L a b o r a t o r i e s , I n c . 500 E x e c u t i v e B o u l e v a r d Elmsford. NY 10523, USA
RM
Environmental P r o t e c t i o n Agency Qua1 i t y Assurance Branch Environmental M o n i t o r i n g and Support Laboratory C i n c i n n a t i , OH 45268, USA
QC s t a n d a r d s
19 Environmental Resource A s s o c i a t e s Department A 120 E a s t Sauk T r a i l South Chicago H e i g h t s , I L 60411. USA.
Environmental r e f e r e n c e samples, p o t a b l e w a t e r r e f e r e n c e samples, p e s t i c i d e r e f e r e n c e samples
ES I n d u s t r i e s 8 South Maple Avenue M a r l t o n , NJ 08053, USA.
LC p a c k i n g s
Foxboro A n a l y t i c a l , see Analabs, I n c . Foxboro Nederland N.V. Analytical Division S. Gravelandseweg 557, P.O. Schiedam, The N e t h e r l a n d s .
GC standards, GC and LC packings Box 113
Hopkins and W i l l i a m s P.O. Box 1, Romford, Essex R M l lHA, Great B r i t a i n .
GC and LC p a c k i n g s
Hewlett-Packard Company 150 Page M i l l Road P a l o A l t o , CA 94304, USA.
GC p a c k i n g s , f u s e d s i l i c a OTC
I C N L i f e Sciences Group 26201 M i l e s Road Cleveland, OH 44128, USA.
CRM, RM
Jarrel-Ash(Div. o f Fisher S c i e n t i f i c Co.) Spectrographic Supplies Section 590 L i n c o l n S t r e e t , Route 128 Waltham, MA 02154, USA.
CRM, RM, GC standards, GC and LC p a c k i n g s
JASCO, I n c . 218 Bay S t r e e t , Easton, MD 21601, USA.
LC p a c k i n g s
Johns Manvi 1 l e Ken-Caryl Ranch, Denver, CO 80217, USA.
GC and LC p a c k i n g s
L.C. Company, I n c . 619 Estes Avenue Schaumberg, I L 60139, USA.
GC s t a n d a r d s , GC and LC pack ings
Leco C o r p o r a t i o n 3000 Lakeview Avenue, S t . Joseph, M I 49085, USA.
CRM, RM
Macherey-Nagel and Company, GmbH, E x p o r t , Werkstrasse 6-8, P.O. Box 307 D-5160 Duren, G.F.R.
GC and LC p a c k i n g s
Matheson Company P.O. Box E L y n d h u r s t , NJ 07071, USA.
GC s t a n d a r d s , GC and LC pack i n g s
20 Matheson Company N i j v e r h e i d s t r a a t 238, 8-2431 O l e v e l , Belgium
GC s t a n d a r d s , GC and LC pack ings
Nanogens-Analytical S p e c i a l i s t s P.O. Box 1025, W a t s o n v i l l e , CA 95076, USA.
RM
Packard-Becker BV P.O. Box 519, Vulcanusweg 259 26244 AV, D e l f t , The N e t h e r l a n d s .
GC p a c k i n g s
Packard I n s t r u m e n t Company 2200 W a r r e n v i l l e Road Downers Grove, I L 60515, USA.
GC p a c k i n g s
N.V. Packard I n s t r u m e n t S.A. L a k e n s t r a a t 168 6-1000, B r u s s e l s , Belgium.
GC p a c k i n g s
P e r k i n ' lmer C o r p o r a t i o n Main A$nue, Norwalk, CT 06851, USA. ,
GC and LC p a c k i n g s
Phase S e p a r a t i o n s L t d . Deeside I n d u s t r i a l E s t a t e Queenferry, F l i n t s h i r e , Great B r i t a i n .
GC and LC p a c k i n g s
Phase S e p a r a t i o n s Ltd., 255 Oser Avenue, Hauppauge, NY 11787, USA.
GC and LC p a c k i n g s
P h i l l i p s Petroleum Co. S p e c i a l Products D i v i s i o n B a r t l e s v i l l e , OK 74004, USA.
CRM,
P i e r c e Chemical Company P. 0. Box 117, Rockford, I L 61105, USA.
GC and LC p a c k i n g , s t a n d a r d s
P i e r c e Eurochemie, B.V. Box 1151, Rotterdam, The Netherlands
GC and LC p a c k i n g s , s t a n d a r d s
Polyscience Corporation 6366 Gross P o i n t Road N i l e s , I L 60648, USA.
CRM, RM, GC s t a n d a r d s
Pye Unicam, L t d . York S t r e e t , Cambridge CBI ZPX, Great B r i t a i n
GC and LC p a c k i n g s
Regis Chemical Company 8210 N. A u s t i n Avenue Morton Grove, I L 60053, USA.
GC s t a n d a r d s
RM
21 Research Organic/ Inorganic Chemical Corp. 11686 Sheldon S t r e e t Sun Valley, CA 91352, USA.
CRM, RM
S c i e n t i f i c Gas Products, Inc. 513 R a r i t a n Center, Edison, NJ 08817, USA.
CRM
The Separations Group P.O. Box 867, 16640 Spruce Street, Hesperia, CA 92345, USA.
LC packings
Shimadzu Corporation, L t d . i n t e r n a t i o n a l Manufacturing Div. 14-5 Uchikanda 1-chome, Chryoda-kui, Tokyo 101, Japan
GC packings
S c o t t S p e c i a l t y Gases S c o t t Environmental Technology,lnc, P l u m s t e a d v i l l e , PA 18949, USA.
CRM, RM, Cross r e f e r e n c e s e r v i c e c o l l a b o r a t i v e gas anal y s i s
Supelco, Inc. Supelco Park, P. 0. Box 581 B e l l e f o n t e , PA 16823, USA.
GC and LC standards, GC and LC packings, RM
Supelco S.A. European Rte De C l i g n y 3,1299 Crans. Switzerland
GC and LC standards, GC and LC packings, RM
Theta Corporation, Chemical D i v i s i o n , P.O. Box 167, Media, PA 19063, USA.
GC standards
U n i t e d States Geological Survey Water Resources D i v i s i o n U.S. Department o f I n t e r i o r Washington, DC, 20234, USA.
Ampoule water concentrates, prepared n a t u r a l water standards
Union Carbide Corporation, Linde D i v i s i o n , P.O. Box 372 51 Cragwood Road, South P l a i n f i e l d , NJ 07080, USA.
RM
U.S. Department of Commerce O f f i c e o f Standard Reference M a t e r i a l s , Washington, DC 20234 USA.
CRM, RM, Trace elements i n N a t i o n a l Bureau o f Standards water, gases f o r heavy duty v e h i c l e emissions a n a l y s i s
U.S. Department of I n t e r i o r Bureau o f Mines, Branch o f Engineering, Box H, 4372, H e r r i n g Plaza, A m a r i l l o , TX 79101, USA.
CRM, RM
LL
Universal S c i e n t i f i c , Inc. P. 0. Box 80402, 2070 Peachtree I n d u s t r i a l Court, A t l a n t a , GA 30341, USA.
GC s t a n d a r d s and packings, LC p a c k i n g s
Var i a n Associates 611 Hansen Way P a l o A l t o , CA 94303, USA.
GC s t a n d a r d s and p a c k i n g s , LC p a c k i n g s
Varian MAT CmbH Barkhausenstrasse 2, P o s t f a c h 1440 62, 2800 Bremen 12, G.F.R.
GC s t a n d a r d s and packings, LC p a c k i n g s
V-Tech C o r p o r a t i o n 16229 W. Ryerson Road, P.O. New B e r l i n , W I 53151, USA.
GC s t a n d a r d s
Box 183,
Waters Associates, I n c . 34 Maple S t r e e t , M i l f o r d , MA 01757, USA.
LC p a c k i n g s
Whatman, I n c . 9 B i r d e w e l l Place, C l i f t o n , NJ 07014, USA.
LC p a c k i n g s
Whatman L t d . S p r i n g f i e l d M i l l , Maidstone, Kent ME14 2LE, Great B r i t a i n
LC p a c k i n g s
*CRM = C e r t i f i e d r e f e r e n c e m a t e r i a l s ; RM
=
General r e f e r e n c e m a t e r i a l s .
REFERENCES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G. R. h b r e i t , Trace A n a l y s i s b y Gas Chromatography, i n R.L. Grob (Ed.), Modern P r a c t i c e o f Gas Chromatography, W i l e y - I n t e r s c i e n c e , New York 1977, p. 368. E. 0. Oswald, P. W. A l b r o and J.D. McKinney, J. Chromatog., 98, (1974), 363. H. P. B u r c h f i e l d and E. E. S t o r r s , J. Chromatog. Sci., 13 (1975), 202. W. Thornburg, Anal. Chem., 47 (1975) 157R. B. F. Saltzman and J. E. Cuddeback, Anal. Chem., 47 (1975), 1R. M. J. Fishman and D. E. Erdemann, Anal. Chem., 47 (1975) 334R. L. Wei 1, Muenchner Bei tr. Abwasser-Fisch-Flussbiol., 19, (1971 ) 191-200, C.A., 76 (1972) 3 7 1 3 7 ~ . A. A. Rosen, Symp. Org. M a t t e r N a t u r . Waters, 1968, pp. 359-367; C.A. 74, (1971), 6743r. P. M. Giever, P a r t i c u l a t e M a t t e r Sampling and S i z i n g , i n A.C. S t e r n (Ed.), A i r P o l l u t i o n , Academic Press, New York, 1976, p.6. W. H. Durum, C h a r a c t e r i s t i c s o f Water Resources, i n L. L. C i a c c i o (Ed.), Water and Water P o l l u t i o n Handbook, Vol. 1, Marcel Dekker, New York, 1971, Ch. 1. R. I . Larsen, C. W. Zimner, D. A. Lynn and K. G . Blemel, 3. A i r P o l l u t , C o n t r . Ass., 17, (1967) 85. W. J. Youden, S t a t i s t i c a l Methods f o r Chemists, Wiley, New York, 1951. American S o c i e t y f o r T e s t i n g M a t e r i a l s , ASTM Manual on Q u a l i t y C o n t r o l of M a t e r i a l s , Special T e c h n i c a l P u b l i c a t i o n , 15-C, ASTM, P h i l a d e l p h i a , PA, 1951. E. L. Bauer, A S t a t i s t i c a l Manual f o r Chemists, 2nd ed., Academic Press, New York, 1971. American S o c i e t y f o r T e s t i n g and M a t e r i a l s , Proposed p r o c e d u r e f o r d e t e r m i n a t i o n o f p r e c i s i o n o f committee D-19 methods, i n Manual o n I n d u s t r i a l Water and I n d u s t r i a l Waste Water, 2nd ed., ASTM, P h i l a d e l p h i a , PA, 1966.
23 16 J . D. Hinchen, P r a c t i c a l S t a t i s t i c s f o r Chemical Research, Methuen and Co., London, 1969. 17 A. J. Duncan, Q u a l i t y C o n t r o l and I n d u s t r i a l S t a t i s t i c s , 3 r d ed., R. D. Irwin, Homewood, I L , 1965. 18 D. J. Cowden, S t a t i s t i c a l Methods i n Q u a l i t y C o n t r o l , P r e n t i c e - H a l l , Englewood C l i f f s , NJ, 1957. 19 A. L. L i n c h , E v a l u a t i o n o f Ambient A i r Q u a l i t y b y Personnel M o n i t o r i n g , CRC Press, Cleveland, OH, 1974, p.213. 20 J. D. Rhoades and L. B e r n s t e i n , Chemical, P h y s i c a l and B i o l o g i c a l C h a r a c t e r i s t i c s o f I r r i g a t i o n and S o i l Water, i n L. L. C i a c c i o (Ed.), Water and Water P o l l u t i o n Handbook, Vol. 1, Marcel Dekker, New York, 1971, Ch. 3. 21 D. C a r r o l l . U. S. Geol. Surv. Water-Supply Paper. 15356, U.S. Dept. I n t e r i o r , . Washington, DC 1962. 22 F. A. Herman and E. Gorham. T e l l u s . 9 (1957) 180. 23 G. H. Neumann, 5. F o r s e l i u s and L.’Wahiman,’Intern. J. A i r P o l l u t i o n , 2 (1959) 132. 24 G. A. Wheatley and J . A. Hardman, Nature, 207 (1965) 486. 25 S. R. Weibel, R. B. Weidner, A. G. C h r i s t i a n s o n and R. J. Anderson, Advances i n Water P o l l u t i o n Research, Water P o l l u t i o n C o n t r o l F e d e r a t i o n , Washington, DC, 1967, pp 329-342. 26 Anonymous, Chem. Eng. News, Feb. 5 (1979) 17. 27 American I n d u s t r i a l Hygiene A s s o c i a t i o n , A i r P o l l u t i o n Manual, P a r t I , E v a l u a t i o n , 2nd ed., D e t r o i t , M I , 1972. 28 M. W. F i r s t , E n v i r o n . Res., 2 ( 2 ) (1969) 88-92. 29 H. J. Paulus and R. W. Thron, Stack Sampling, i n A. C. S t e r n (Ed.), A i r P o l l u t i o n , Vol. 111, 1976, pp 525-587. 30 J. S. Nader, Source M o n i t o r i n g i n A. C. S t e r n (Ed.), pp 589-601. 31 H.B.N. Hvnes. The B i o l o q_-v o f P o l l u t e d Waters. L i v e r p o o l U n i v e r s i t y Press, L i v e r p o o i , 1960. 32 L . K l e i n ( E d . ) R i v e r P o l l u t i o n , 11, Causes and E f f e c t s , B u t t e r w o r t h s , London, 1962. 33 K. M. Mackenthum and W. M. Ingram, B i o l o g i c a l A s s o c i a t e d Problems i n Freshwater Environments - T h e i r I d e n t i f i c a t i o n , I n v e s t i g a t i o n and C o n t r o l , F e d e r a l Water P o l l u t i o n C o n t r o l Admin., Washington, DC,1967. 34 C. N. Sawyer and P. L. McCarty, Chemistry f o r S a n i t a r y Engineers, 2nd ed., McGraw-Hill, New York, 1967. 35 L . E. Keup, W. M. Ingram and K. M. Mackenthum, B i o l o g y o f Water Pa l u t i o n : A C o l l e c t i o n o f S e l e c t e d Papers on Stream P o l l u t i o n , Waste Water and Water Treatment, Publ. No. CWA-3, Federal Water P o l l u t i o n C o n t r o l Admin. Washington, DC ,1967. 36 P. S. Welch, Limnology, 2nd ed., McGraw-Hill, New York, 1952. 37 G. E. Hutchinson, A T r e a t i s e o n Limnology, V o l . 1, Geography, Phys cs, and Chemistry, W i l e y , New York,1957. 38 G. E. Hutchinson, A T r e a t i s e on Limnology, Vol. 2, I n t r o d u c t i o n t o Lake B i o l o g y and t h e Limnoplankton, Wiley, New York, 1967. 39 F. R u t t n e r , Fundamentals o f - L i m n o l o g y ( t r a n s l . b y D. G. F r e y and F. E. J. F r y ) , U n i v e r s i t y o f T o r o n t o Press, T o r o n t o , 1953. 40 G. K. Reid, Ecology o f I n l a n d Waters and E s t u a r i e s , R e i n h o l d , New York, 1961. 41 Standard Methods f o r t h e Examination o f Water and Wastewater, 1 2 t h ed., American P u b l i c H e a l t h A s s o c i a t i o n , New York, 1965. 42 P. S. Welch, L i m n o l o g i c a l Methods, B l a k i s t o n , P h i l a d e l p h i a , PA 1948. 43 H. A. P a i n t e r , Chemical, P h y s i c a l and B i o l o g i c a l C h a r a c t e r i s t i c s o f Wastes and Waste E f f l u e n t s , i n L. L. C i c c i o (Ed.), Water and Water P o l l u t i o n Handbook, V o l . 1 , Marcel Dekker, New York, 1971, Ch. 7. 44 A. P. A l t s h u l l e r , A n a l y t i c a l Problems i n A i r P o l l u t i o n C o n t r o l , Proc. E n v i r o n . Q u a l . Sensor Workshop, Las Vegas, NV, EPA, Washington, DC 1971, pp 11-44. 45 L. A. R i t t m i l l e r , B. M. Zonkowski, and I. L. Wadehra, P o l l u t . Eng., 3 (1971) 26-28. 46 Y . S a i j o , Bunseki Kagaku, 21 (1972) 395-402; C.A., 76 ( 1 9 7 2 ) 15808f. 47 D. L . King, Water P o l l u t . Handbook, 2 (1971) 451-481.
24 48 K . Grasshoff, Chem. Oceanogr., (1971) 68-69; C.A., 76 (1972) 37207t. 49 R. C. Kroner and 0. G. Ballinger, Treatise Anal. Chem., Vol. 2 (1971) 343-412. 50 North Atlantic Treaty OrganizationlConittee on Challenges to Modern Society, Brussels, Belgium. Air Quality Criteria, Sulfur Oxides (N-7), Particulate Matter (N-8),Carbon Monoxide(N-lo), Nitrogen Oxides (N-15). Photochemical Oxidants and Related Hydrocarbons (N-29). U. S . Government Environmental Protection Agency, Research Triangle Park, NC, 1974. 51 Division of Medical Sciences, Biological Effects o f Atmospheric Pollutants, Fluorides ISBN-0-309-01922-2( 1971); Asbestos ISBN-0-309-01927-3, Lead ISBN-0-309-01941-9, and Particulate Organic Matter ISBN-0-309-02027-1 (1972) : Medical and Biological Effects of Environmental Pollutants, Manganese I SB N-0-309-0 2 143-X ( 1973 ) , Chr omi um I SB N-0-309-022 1 7- 7, Van adi um ISBN-0-309-02218-5, and Nickel ISBN-0-309-0231 4-9( 1974). National Research Council-National Academy of Sciences, Washington, DC, Vapor Phase Organic Pollutants-Volatile Hydrocarbons and Oxidation Products (NTIS-PB 249 357) (1975), Arsenic (NTIS-PB 262 167) (1976), Chlorine and Hydrogen (NTIS-PB 253 96), Ozone and other Photochemical Oxidants (PB 260 570-571, Selenium (NTIS-PB 251 318) (1976). 52 Advisory Center on Toxicology, Short-Term Limit Reports, Oxides of Nitrogen PB-199 903, Basis for Guides PB-199 904, Hydrogen Chloride PB-203 464, and Hydrogen Fluoride PB-203 465 (1971); Ammonia PB-244 336 (1972); Carbon Monoxide PB-244 338 and Chlorine PB-244 339 (1973): and Hydrazone, Monomethyl Hydrazine, and 1,l-dimethylhydrazine PB-244 337 (1974). National Research Council-National Academy of Sciences, Washington, DC. 53 World Health Organization, Air Quality Criteria and Guide for Urban Air Pollutants, Tech. Rep. Ser. No. 506, World Health Organization, Geneva 1972. 54 World Health Organization Environmental Health Criteria Programne, Report of a Meeting on Environmental Health Criteria and Standards, Geneva 20-24 November 1972, EP 73/1, World Health Organization Geneva, 1973. 55 Air Quality Abstracts, Pollution Abstracts, LaJolla, CA, 1974. 56 Air Pollution Technical Information Center (APTIC) Air Pollution Abstracts, U.S. Gov't. Printing Office, Washington, DC. 57 D. L. Brenchley, C. D Turley and R. F. Yarmac, Industrial Source Sampling, Ann Arbor Sci. Publ., Ann Arbor, MI, 1973. 58 M. Sittig, Pollution Detection and Monitoring Handbook, Noyes Data Corp., Park Ridge, NJ, 1974. 59 T. Cercer, Aerosol Technology in Hazard Evaluation, Academic Press, New York, 1 976. 60 Environmental Instrumentation Group, Instrumentation for Environmental Monitoring Air, 1st ed., Lawrence Berkeley Laboratory, University o f California, Berkeley, CA, May 1972: updates: Feb. 1973, Dec. 1973. 61 Air Sampling Instruments Committee, ACGIH, Air Sampling Instruments, 4th ed., American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 1972.
Chapter 3
SAMPLING TECHNIQUES
3.1
INTRODUCTION
Sampling i s t h e o p e r a t i o n o f r e m o v i n g a p a r t ( o f c o n v e n i e n t s i z e ) f r o m t h e whole i n such a manner t h a t t h e sample r e p r e s e n t s , w i t h i n m e a s u r a b l e l i m i t s o f e r - r o r , t h e p r o p o r t i o n o f t h e q u a n t i t y i n t h e whole. The p r i n c i p l e s o f s a m p l i n g a r e o f
importance t o t h e a n a l y t i c a l chemist f o r
several reasons: (1)
The g r e a t e s t c a r e t a k e n i n p e r f o r m a n c e o f t h e a n a l y s i s may be i n v a i n
i f t h e sample has been o b t a i n e d c a r e l e s s l y ;
i t i s n o t r e p r e s e n t a t i v e of
i.e.,
the
system be i ng samp I ed.
(2)
The
p r o p e r method o f
t r e a t i n g t h e sample(s)
i s dependent
upon
the
purpose o f t h e sampling. Methods o f
a n a l y s i s a r e m o r e p r e c i s e t h a n m o s t samp I i n g p r o c e d u r e s .
it i s possible t o determine t h e c o n t r i b u t i o n o f
Through e x p e r i m e n t a t i o n
errors of
a n a l y s i s and s a m p l i n g t o t h e t o t a l v a r i a b i l i t y o f r e s u l t s and t o c o n t r o l t h e combined procedure accordingly. of
subdivisions of
a
An economic b a l a n c e s h o u l d be m a i n t a i n e d between t h e number lot
( t h e b u l k sample) o f
material
that
a r e sampled
and t h e
number of subsamples from each s u b d i v i s i o n . To p e r f o r m t h e j o b p r o p e r l y , one s h o u l d know as much as p o s s i b l e a b o u t t h e n a t u r e and c o n d i t i o n o f m a t e r i a l s t o be sampled, and have adequate knowledge a b o u t a n a l y t i c a l
t h e t o o l s t o be used i n t h e s a m p l i n g
methodology.
One o f
sampling
i s t o j u d g e a c c e p t a b i l i t y o f t h e sample.
Most o f t e n ,
because
one
it
wishes
to
know
if
For t h i s purpose,
specifications.
the
material
t h e purposes o f
a sample
represents
meets
i s taken certain
t h e sample must a c c u r a t e l y r e p r e s e n t t h e whole
q u a n t i t y ( t h e p o p u l a t i o n a v a i l a b l e ) under c o n s i d e r a i i o n . Another f a c e t o f t h e a c c e p t a b i I i t y i s t o a s s u r e t h e absence o f c o n t a m i n a t i o n or d i r t from m a t e r i a l b e i n g sampled.
F o r t h i s i m p o r t a n t purpose,
it i s usually
p r e f e r a b l e t o sample i n a way t h a t g i v e s maximum a s s u r a n c e o f f i n d i n g c o n a m i n a t i o n , i f t h e c o n t a m i n a t i o n p r e s e n t does n o t a c c u r a t e l y r e p r e s e n t t h e b u l k q u a n t i y.
A t h i r d p u r p o s e o f s a m p l i n g i s t o i d e n t i f y unknown m a t e r i a l s . of
obtaining
an
accurate
sample
may
not
be
warranted
because
The expense a
particular
c o n t a m i n a t i o n does n o t p e r s i s t l o n g enough t o e s t a b l i s h i t s i d e n t i t y . Sampling t e c h n i q u e s f o r e n v i r o n m e n t a l samples i n c l u d e t h e t h r e e s t a t e s o f matter:
gas,
l i q u i d and s o l i d .
We w i l l
s u r v e y each o f t h e s e i n r e f e r e n c e t o w a t e r
26 and a i r p o l l u t i o n . A number o f r e s t r i c t l o n s are placed on a l l sampling methods.
c o l l e c t e d must represent t h e c o n d i t i o n s a t t h e t i m e o f sampling.
The samples
To p e r m i t accuracy
of t e s t i n g t h e samples must be o f s u f f i c i e n t volume and number t o f u i f i l l t h e reasons f o r t h e sampling.
The samples must be c o l l e c t e d ,
labeled, packed,
shipped and mani-
p u l a t e d p r i o r t o l a b o r a t o r y treatment i n such a way t h a t these processes minimize any changes i n a p a r t i c u l a r canponent o f i n t e r e s t o r sample p r o p e r t i e s t o be examined. The t i m e i n t e r v a l
between sampling and a n a l y s i s should be l i m i t e d f o r
a
number o f reasons:
(A)
decrease a d s o r p t i o n of gases and s o i l d s from sample t o w a l l s o f t h e
cont a iner ; (B)
(C)
minimize sample loss because o f leaks; decrease p o s s i b i l i t y of chemical changes because o f
i n t e r a c t i o n s of
sample components o r photochemical decomposltlon. The p h i l o s o p h y b e h i n d t h i s t i m e r e s t r i c t l o n
I s t h a t a minimum t i m e
I n t e r v a l between sampling and a n a l y s i s decreases t h e chances f o r any change i n t h e sample ( p h y s i c a l or chemical).
3.2
BACKGROUND AND GENERAL DISCUSSION
A number o f g e n e r a l r e f e r e n c e s a r e a v a i l a b l e t o t h e p e r s o n d e s i r i n g a d d i t i o n a l i n f o r m a t i o n on t h i s very important aspect o f environmental a n a l y s i s ( r e f s . 1-13). The volume o f sample c o l l e c t e d should be h e l d t o a minimum, c o n t r o l l e d by t h e volume needed f o r an accurate a n a l y s i s .
t h e sample volume by t h e lower l i m i t s o f p r e c i s i o n and accuracy, a volume a t l e a s t 2.5 t i m e s t h i s optimum value.
i t s s i z e being
I t i s not wise t o choose but r a t h e r t o choose
The number o f samples taken should
be s u f f i c i e n t so t h a t one may assume a r e p r e s e n t a t i v e sampling has been completed. T h i s i s n o t always p o s s i b l e as t h e t i m e ( t o sample and analyze) and cost are u s u a i i y important parameters. lake, r e s e r v o i r , e t c . , sample s i t e (e.g.,
A compromise must be made e s p e c i a l l y when sampling from a where a s i n g l e sample w i i l p e r m i t minimum i n f o r m a t i o n .
lake o r other large body o f water) i s fed by smaller streams, then
i t becomes important t o sample above and below t h e p o i n t o f entrance t o t h e
site.
I f the
large
The non-movement o f the water i n a lake makes i t more d i f f i c u l t t o p o i n t out
waste contamination by sampling a t one s i t e than f l o w i n g stream.
Measurement o f the c o n c e n t r a t i o n and volume o f
waste streams i s very important. are not useful
i f t h e sample were taken from a
alone;
r e c e i v i n g waters.
they must be i n t e r p r e t e d
Thus,
waste m a t e r i a l
in
Concentrations o f t h e p o l l u t a n t s i n waste e f f l u e n t s
flow r a t e s o f
i n terms o f
interactions with the
both t h e daste streams
and t h e r e c e i v i n g
waters must be known. Contamination
of
water
results
from
three
broad groupings:
dissolved
27 gases, d i s s o l v e d l i q u i d s and s o l i d s ,
and p a r t i c u l a t e s o l i d s .
Oxygen i s p r o b a b l y t h e
most commonly d i s s o l v e d gas measured i n a q u a t i c environments.
I f one i s i n t e r e s t e d
i n BOD ( b i o l o g i c a l oxygen demand) or COD (chemical oxygen demand) values,
then t h e
c o n c e n t r a t i o n o f d i s s o l v e d oxygen should be determined a t l e a s t t w i c e each sampling day
-
a t midafternoon and very e a r l y
i n t h e morning b e f o r e t h e sun r i s e s .
d i o x i d e i s another gas o f considerable i n t e r e s t f o r aquatic s t u d i e s . arises
because o t
t h e carbonate-bicarbonate
b u f f e r system
in a l l
Carbon
I t s importance water
systems.
However, t h e a n a l y s i s of f r e e carbon d i o x i d e i s not a u s e f u l endeavor because o f t h i s b u f f e r i n g system which i s present. Dissolved sol i d substances are d e f i n e d as those which pass t h r o u g h a 0.45 filter.
N i t r o g e n and phosphorus n u t r i e n t s ,
c h l o r i d e , s u l f a t e and carbonate s a l t s ,
and heavy metals and cyanide ( t o x i c m a t e r i a l s ) are t h e predominately d i s s o l v e d i o n i c inorganic s o l i d s .
With t h e exception o f t h e carbonate-bicarbonate b u f f e r system,
w h i c h s e r v e s as a r e s e r v e c a r b o n s o u r c e f o r
photosynthesis ( r e f .
14),
these
inorganics do not show much d i u r n a l v a r i a t i o n ( r e f . 15). Dissolved organic m a t e r i a l s g e n e r a l l y may be c l a s s i f i e d as:
( 1 ) those d i s s o l v e d n o n t o x i c o r g a n i c s present i n waste waters.
These a r e
an energy source f o r t h e h e t e r o t r o p h i c m i c r o b i o t a both i n t h e r e c e i v i n g waters and They are r e f e r r e d t o as biodegradable o r g a n i c substances.
t h e waste waters.
( 2 ) those d i s s o l v e d organics which a r e formed d u r i n g anaerobic f e r m e n t a t i o n o f organic wastes ( r e f . This t y p e o f
13).
These are n o t t o x i c t o
d i s s o l v e d organic
material
nor used by a q u a t i c b i o t a .
i s responsibile
for
t a s t e and odor
and
u s u a l l y may be c o l l e c t e d on carbon f i l t e r s . ( 3 ) those d i s s o l v e d o r g a n i c s which are t o x i c t o a q u a t i c b i o t a and which may be found i n n a t u r a l as w e l l as waste waters, e.g., The
dissolved
organic
materials
organic pesticides.
are
usually
present
in
much
concentrations than inorganics, mainly because o f t h e i r low s o l u b i l i t y i n water. t o their needed
Due
low c o n c e n t r a t i o n , more p r e c i s e and s o p h i s t i c a t e d a n a l y t i c a l techniques a r e for
identification
and
measurement,
e.g.,
extractions,
chrdmatographic
The i n o r g a n i c f r a c t i o n o f p a r t i c u l a t e s o l i d s i s m a i n l y
a n a l y s i s and spectroscopy. silt,
lower
sand and c l a y s o i l p a r t i c l e s ,
b u t t h e o r g a n i c f r a c t i o n may be e i t h e r l i v i n g o r
dead organic m a t e r i a l s . Sampling
volatile
constituents
components,
and
atmospheres
for
analysis.
Most analyses of t h i s t y p e deal w i t h t r a c e q u a n t i t i e s o f i m p u r i t i e s ,
and
l a r g e samples a r e u s u a l l y necessary ( r e f . phosgene,
mustard gas,
removal
16).
i e w i s l t e or chloride)
of
requires
sample
f o r t h i s reason,
of
contaminated
collection,
p o l l u t a n t s (e.g.,
concentration
of
efficient
Density of gaseous usually counteract
d i f f u s i o n processes t o t h e e x t e n t t h a t i t may cause s t r a t i f i c a t i o n ( r e f . for
t h i s reason t h a t
one
should
not
depend
upon
diffusion
17).
It i s
processes t o produce
homogeneous mixtures i n most cases. There are a number o f e f f e c t s which can r e s u l t i n c o n c e n t r a t i o n e r r o r s I n
28 many sampling techniques ( r e f .
(1)
18).
adsorption on w a i l s and connecting tubes,
( 2 ) s o l i d adsorbent c o l l e c t i o n system e f f e c t s , mechanical d e f e c t s i n equipment, effects,
( 3 ) d i f f u s i o n through p l a s t i c s ,
( 5 ) p a r t i a l vapor pressure e f f e c t s ,
17) temperature e f f e c t s ,
( 8 ) volumetric errors,
(4)
(6) s o l u b i l i t y
( 9 ) e r r o r s o f observation,
and (10) e r r o r s i n sampling r a t e . Most sampl i n g systems components:
(1)
for
airborne
usual l y
pollutants
i n t a k e and t r a n s f e r s e c t i o n ;
consist
( 2 ) c o l l e c t i o n device;
of
four
( 3 ) flow
measuring component, and ( 4 ) component t o keep a i r moving through t h e system. Each o f these components must perform p r o p e r l y f o r a successful sampling scheme.
One may consider t h e sampling system as t h e r e c e p t o r f o r t h e component or
e f f e c t t o be measured.
Any subsequent changes considered must be done w i t h r e f e r r a l
t o t h e receptor and what consequences t h e r e c e p t o r may have upon t h e success o f t h e sampl ing. Ambient a i r q u a l i t y i s influenced by t h e various m e t e r o l o g i c a l parameters existing
at
the
precipitation, radiation).
time
wind
of
the
velocity
sampling
and
(e.g.,
direction,
stability humidity,
of
the
temperature
Temperature decreases as one goes higher i n a l t i t u d e .
t o as lapse r a t e ;
and,
and
solar
This i s r e f e r r e d
C/lOOO m ( r e f . 19).
i t i s 9.8'
f o r dry a d i a b a t i c a i r ,
atmosphere,
The
l e v e l s o f a i r p o l l u t i o n a t ambient c o n d i t i o n s have been found t o be i n v e r s e l y r e l a t e d t o the wind v e l o c i t y ( r e f . 20). When choosing a sampling s i t e f o r continuous monitoring,
i t i s necessary t o
consider t h e proper s i t i ng o f t h e samp I ing system t o p r o v i d e ' proper r e p r e s e n t a t i o n and t o consider t h e s i t e s i n reference t o each o t h e r
(refs.
should be considered when s e l e c t i n g a sampling s i t e are: s h o u l d n o t be
lower t h a n 2 m above
contaminants a t E a r t h ' s surface, p r o t e c t e d from t h e wind by t a l l
ground
level
21-25).
Items which
( a ) t h e sampling
inlets
t o minimize c o l l e c t i o n o f
( b ) sampling s i t e s should not be located on t h e s i d e buildings,
accessible and secure from tampering,
( c ) t h e sampling s i t e should be e a s i l y
( d ) t h e i n t a k e o f t h e sampler should n o t be
exposed d i r e c t l y t o l o c a l i z e d p o l l u t i o n sources,
(e.g.,
chimney),
and ( e l t h e s i t e
should have adequate e l e c t r i c a l power f o r m a i n t a i n i n g t h e equipment. Two terms commonly
found
in
the
s o u r c e s a m p l i n g and e m i s s i o n s a m p l i n g . interchangeably,
however,
environmental
sampling
literature
These t w o t e r m s a r e v e r y o f t e n used
they mean d i f f e r e n t
things.
considered as t h e sampling o f t h e environmental
Source sampling should be
pollutants at their
source,
b e f o r e they have a chance t o e n t e r t h e atmosphere and become d i l u t e d . On hand,
are
the
i.e., other
emission source sampling r e f e r s t o t h e sampling o f t h e p o l l u t a n t s once they
have entered t h e atmosphere and a r e d i l u t e d .
Emission sources a r e u s u a l l y monitored
t o determine mass emission r a t e o f
p o l l u t a n t s from a
certain
source,
t o obtain
emission data from a number o f sources f o r i n p u t data t o an a i r q u a l i t y model and t o evaluate c o n t r o l devices which have been i n s t a l l e d a t c e r t a i n sources o f p o l l u t i o n .
The s a m p l i n g and a n a l y s i s o f a i r and w a t e r
i s of
i n t e r e s t because
it
c o n c e r n s a t o p i c w h i c h i s c o n t e m p o r a r y and i t uses t e c h n i q u e s and p r i n c i p l e s w h i c h may or may n o t be f a m i l i a r t o most s c i e n t i s t s . continually
New e n v i r o n m e n t a l
b e i n g e n a c t e d and o l d ones b e i n g r e l a x e d .
r e s t r i c t i o n s are
Environmental a i r problems
have t o i n c l u d e a l l volumes o f a i r s t a r t i n g a t t h e s u r f a c e o f t h e E a r t h t o a d i s t a n c e a t l e a s t 7 m i l e s above t h e E a r t h ' s s u r f a c e .
T h i s gaseous s y s t e m i s commonly known as i t be
a i r and s h o u l d have t h e c o m p o s i t i o n ( w h e t h e r
(78.08%). O2 K r , Xe,
(20.95$),
and He.
indoors o r out-of-doors):
N2
C02 (0.034%), A r (0.93%), and s m a l l e r p e r c e n t a g e s o f H2, Ne,
O t h e r components can be c l a s s i f i e d as c o n t a m i n a n t s .
o f c o n t a m i n a n t s we f i n d s u c h t h i n g s as h y d r o c a r b o n s ,
In t h e category
carbon monoxide,
compounds, n i t r o g e n compounds, m e t a l s , m e t a l i o n s , v a r i o u s o x i d a n t s ,
sulfur
pesticides, etc.
As has been p o i n t e d o u t by A x e l r o d and Lodge ( r e f . 2 6 ) . " p u r e a i r " p r e s e n t s a p r o b l e m o f d e f i n i t i o n because even t h e p u r e s t a i r t h a t we can sample on e a r t h , s t a t e , w i I I c o n t a i n hundreds o f c o n t a m i n a n t s . operational d e f i n i t i o n :
"pure a i r "
t o i n t e r f e r e with the analysis.
Thus,
i n the natural
t h e b e s t we can do i s t o use an
i s t h e n t h e a i r w h i c h i s f r e e o f a n y t h i n g known
Environmental
w a t e r p r o b l e m s have t o
m a t e r i a l ( s 1 w h i c h may b e i n j u r i o u s t o t h e w e l l - b e i n g o f m a n k i n d .
i n c l u d e any Here,
water
p r o b l e m s have v a r i o u s o r d e r s o f magnitude,
d e p e n d i n g u p o n w h i c h w a t e r we a r e
d i s c u s s i n g and f o r what use i t i s i n t e n d e d .
The p r o b l e m s o f o d o r s e m a n a t i n g f r o m
water
s u p p l i e s e n t e r s t h e a r e a o f b o t h water and a i r p o l l u t i o n .
I f t h e purpose o f
t h e s a m p l i n g and a n a l y s i s i s t o d e t e r m i n e whether t h e s o u r c e o f t h e o d o r w a t e r , t h e n i t i s a water p o l l u t i o n problem. odor,
i s in the
I f t h e purpose i s j u s t t o i d e n t i f y t h e
t h e n i t c o u l d r i g h t l y be c l a s s i f i e d as an a i r p o l l u t i o n p r o b l e m . I n t h e U.S.A.,
air
and water
q u a l i t y s t a n d a r d s have been i s s u e d b y t h e
E n i v i r o n m e n t a l P r o t e c t i o n Agency (EPA) ( r e f s . 27 and 28). u p d a t i n g and o t h e r
c o n t a m i n a n t s need t o be added t o
the
These a r e a l l I ist.
i n need o f
E n c l o s e d and/or
w o r k i n g a r e a s have had r e s t r i c t i o n s p l a c e d on them by OSHA ( O c c u p a t i o n a l S a f e t y and Health Administration) Health).
and
NIOSH
(National
Institute of
Occupational
Safety
and
I n C h a p t e r 8, t h e a u t h o r s have t a b u l a t e d a l l s t a n d a r d s t h r o u g h o u t t h e w o r l d
w h i c h a r e known or a v a i l a b l e a t t h e t i m e o f t h i s p r i n t i n g .
3.2.1
Theory and s t a t i s t i c a l
foundation o f samDlinq
A f i t t i n g way t o s t a r t t h i s s e c t i o n would be t o g i v e a d i r e c t q u o t e f r o m a c h a p t e r on t r a c e a n a l y s i s b y gas c h r o m a t o g r a p h y w r i t t e n by U m b r e i t ( r e f .
29).
IIIn
t h i s s o c i e t y we have r e a c h e d t h e p o i n t o f e n a c t i n g laws p r o v i d i n g r u l e s l i m i t i n g a t trace
levels the discharge o f
a wide v a r i e t y o f
s p e c i f i c compounds
e n v i r o n m e n t and have p r o v i d e d p e n a l t i e s f o r e x c e e d i n g such l i m i t s . even though t h e r e i s r e a s o n a b l e u n c e r t a i n t y compounds a t t r a c e measurements,
levels,
regulatory action
i n t o our
As a consequence,
i n the identification of i s t a k e n on t h e b a s i s o f
specific analytical
i n many c a s e s w i t h o u t r e g a r d t o an e v a l u a t i o n o f t h e a c c u r a c y o f t h e s e
measurements."
The a u t h o r s f e e l t h e passage speaks f o r
i t s e l f and no f u r t h e r
explanation i s necessary. The j u s t i f i c a t i o n f o r
sampling
i s q u i t e an easy
task
if
one considers
analyzing a l l p o s s i b l e a i r / a n d water environments on a c o n t i n u i n g basis. and cost,
however,
So,
are l i m i t i n g f a c t o r s t o such a p r o j e c t .
sampling program we should answer a number of questions.
The t i m e
before we begin a
I s our o b j e c t i v e t o secure
data about every a i r and water p o p u l a t i o n ( p o p u l a t i o n meaning every u n i t which goes t o make up a body o f w a t e r , environments, e.g., information of
t h e o u t s i d e a i r o f t h e environment,
confined a i r
work areas or a h o s p i t a l ) o r i s it o n l y necessary t o o b t a i n exact Also,
r e p r e s e n t a t i v e p a r t s o f these p o p u l a t i o n s ?
do we need t h i s
i n f o r m a t i o n on a c o n t i n u i n g b a s i s or f o r a s p e c i f i e d p e r i o d o f t i m e ? do we want t o know i f a l e v e l o f t o x i c i t y has been exceeded,
I n o t h e r words,
o r do we wish t o know
what t h e level o f contamination i s a t a p a r t i c u l a r t i m e and l o c a t i o n . questions come down t o are: have t o be?
What these
f o r what i s t h e data t o be used and how accurate does i t
One must r e a l i z e t h a t a c e r t a i n l e v e l of e r r o r w i I I be present i n t h e
sampling processes as w e l l as i n t h e measuring processes. t h e sampl i n g and measuring steps should be compatible.
The degree o f accuracy o f
By t h a t we mean, do not use a
very e l a b o r a t e sampling scheme when your measuring step i s accurate enough o n l y t o g i v e a yes or no answer as t o whether a c e r t a i n l e v e l has been exceeded.
Conversely,
one would not use an unplanned sampling procedure when t h e measuring step must have a very high degree of accuracy and p r e c i s i o n .
Conclusions drawn about t h e p o p u l a t i o n
from a sample may be completely d i f f e r e n t from t h e a c t u a l p o p u l a t i o n values.
This
d i f f e r e n c e i s mainly dependent upon t h e sampling survey r a t h e r than on t h e analyses o f t h e samples. Sampling e r r o r u s u a l l y decreases w i t h an increase i n sample s i z e ( i . e . , number o f u n i t s n s e l e c t e d i n t h e s a m p l i n g ) .
In fact,
the
i n many s i t u a t i o n s t h e
decrease i s i n v e r s e l y p r o p o r t i o n a l t o t h e square r o o t o f n (sample
size).
Sampling
e r r o r i s t h e e r r o r a r i s i n g from drawing inferences about t h e p o p u l a t i o n ( b u l k sample) on t h e b a s i s o f observations on a p a r t o f t h e p o p u l a t i o n ( t h e samples). shows t h a t sampling e r r o r decreases s u b s t a n t i a l l y as n increases,
however,
Fig.
increasing
sample r a t e becomes a marginal c o n s i d e r a t i o n as n continues t o increase. comment may be s a i d f o r t h e r e l i a b i l i t y o f t h e a r i t h m e t i c means, t h e number of measurements.
R,
3.1
A similar
as compared t o
In o t h e r words, t h e r e l i a b i l i t y o f t h e mean increases as
t h e square r o o t o f n (number o f measurements).
The mean i s 3 times as r e l i a b l e as t h a t of a s i n g l e measurement when n=9; The mean i s 4 times as r e l i a b l e as t h a t o f a s i n g l e measurement when n=16, etc.
L e t us look a t t h e sampl i n g process on a m r e q u a n t i t a t i v e b a s i s . we wish t o analyze a body o f i n s e c t i c i d e 2,4-0.
water
(e.g.,
a
I f we sampled t h e e n t i r e
lake) lake,
Suppose
f o r the concentration of our p o p u l a t i o n sampling
the
units
31
SAMPLING SIZE, n
F i g . 3.1 Sampling e r r o r change w i t h an increase i n humber o f samples.
would be N ( a p o p u l a t i o n ) . of
$EN.
A n a l y s i s of a l l these samples would p r o v l d e an e r r o r ,
T h i s e r r o r would be due t o t h e presence o f non-sampl i n g e r r o r s because we
sampled and analyzed t h e e n t i r e p o p u l a t i o n . n,
frcm t h e population,
samples (i.e.,
N,
I f we s e l e c t e d a random s e t of samples,
t h e p o p u l a t i o n e r r o r r e s u l t i n g from t h l s f i n i t e s e t o f
t h e divergence from t h e t r u e value, sample e r r o r ,
composed of two t y p e s o f e r r o r :
%En,,
would be $En
$En would be
and non-samp I 1 ng e r r o r ,
JEn2*
We may now d e f i n e some o t h e r terms:
CN = c o s t o f c o l l e c t i n g and a n a l y z i n g d a t a f o r each sample f r o m t h e population (N). Cn = c o s t of c o l l e c t i n g and a n a l y z i n g data f o r each sample i n t h e f i n i t e
set of samples ( n ) . Now CN should be greater than Cn; I n many cases, survey
however,
nCn should be less than NCN.
t h e sampling and non-sampling
f o r a c o r r e c t size,
n,
will
errors,
%En,
i n t h e sample
probably be l e s s than t h e non-sampling
errors,
32 $EN.
The t o t a l c o s t f o r any given sample s i z e can be w r i t t e n :
nCn + LE,
+
(3.1 1
LEn2
where L = loss involved i n making d e c i s i o n s on the survey r e s u l t s ,
i.e.,
l o s s per 1 %
error. So as n Increases,
LEnl.
would decrease.
minimum,
t h e components nCn and LEn2 would
increase,
whereas,
The value o f t h e sample s i z e n where t h e t o t a l c o s t reaches a
i s considered t h e optimum sample s i z e n.
This cost w i l l
go through a
minimum (see Fig. 3.2).
SlMPLlWC WE,n
F i g . 3.2 R e l a t i o n s h i p of sampling c o s t compared t o number o f samples taken.
The r e l a t i v e standard e r r o r o f t h e sample mean
2
from t h e measurement o f n
samples c o l l e c t e d by simple random sampling w i t h o u t replacement i s given b y
C t R ) = [(N-n)/(N-l
)]'/2C/(nl'/2
(3.2)
where C = p o p u l a t i o n c o e f f i c i e n t o f v a r i a t i o n .
To insure a r e l a t i v e standard e r r o r o f $e, we need a sample size, n, o f n = NC'/C(N-I)~
2 + c 21
(3.3)
33 random sample
A
randomness,
i.e.,
i s one
whose
selection
i s based on
the theory
i t i s a s a m p l e d r a w n i n s u c h a manner t h a t e a c h u n i t
p o p u l a t i o n h a d an e q u a l p r e d e t e r m i n e d p r o b a b i l i t y o f b e i n g s e l e c t e d .
of
in the Thus,
a
p r o b a b i I i t y s a m p l i n g scheme would be one i n which:
( 1 ) each p a r t ( i n d i v i d u a l sample
from
being taken,
the population)
has an e q u a l
probabiity
of
( 2 ) these discrete
samples a r e chosen by a random p r o c e s s t h a t i s c o n s i s t e n t w i t h t h e p r o b a b i l i t i e s ,
and
( 3 ) t h e a n a J y s i s o f t h e s e d i s c r e t e samples i s based upon w e i g h t s c o n s i s t e n t w i t h t h e p r o b a b i l i t i e s s e t i n s t e p one ( r e f . 3 0 ) . I f we s a m p l e n p a r t s , samples
N
is
(n)
w i t h equal
probability,
t h e number o f p o s s i b l e N i s l / ( n ) .The c o s t
and t h e s e l e c t i o n p r o b a b i l i t y o f each sample
f u n c t i o n o f a s a m p l i n g program, C,
can be e s t i m a t e d by ( r e f . 3 1 )
+ nC,
C = C whare C
C
(3.4)
= t h e o v e r h e a d c o s t s f o r t h e program
1
n
= t h e a v e r a g e c o s t o f a n a l y z i n g one sample u n i t = t h e number of sample u n i t s i n t h e program.
Laboratory
samples
for
quantitative
analysis
are
r e p r e s e n t a t i v e o f t h e p o p u l a t i o n l o t from w h i c h t h e y were drawn. such as samples f r o m a c l e a r sample.
Environmental
population;
solution,
samples,
on
assumed
to
be
For u n i f o r m samples
any one p o r t i o n w o u l d be a r e p r e s e n t a t i v e
the
whole,
are
collected
from
a
non-uniform
so t h e u s u a l p r a c t i c e i s t o s e l e c t a number o f p o r t i o n s t o c o n s t i t u t e t h e
sample on t h e b a s i s t h a t t h e a v e r a g e v a l u e of t h e component
i n t h e sample w i l l
be
e s s e n t i a l l y t h e same as t h e a v e r a g e t h a t w o u l d be f o u n d i f t h e e n t i r e l o t had been analyzed.
R u l e s o f thumb from p a s t e x p e r i e n c e and i n t u i t i o n ace o f t e n r e l i e d upon
f o r t h e s e purposes.
A p r o b a b i l i t y sample w o u l d f u r n i s h c r i t e r i a f o r e s t i m a t i n g t h e
sample s i z e r e q u i r e m e n t and p r e c i s i o n t o be a c h i e v e d w i t h m r e r e l i a b i l i t y . A
p r o b a b i l i t y s a m p l i n g p l a n makes use o f
the theory
of
probability
to
s e l e c t sample p o r t i o n s o r i t e m s w i t h a p p r o p r i a t e p r o c e d u r e s for s u m m a r i z i n g t h e t e s t results.
I n t h i s way a v a l i d o b j e c t i v e e v a l u a t i o n may be made o f t h e p r o b a b l e l i m i t s
o f sample e r r o r . A p o p u l a t i o n m a t e r i a l may be c o n c e i v e d as composed o f N d i s t i n c t p o r t i o n s
of units,
each p o s s e s s i n g t h e g i v e n p r o p e r t y b u t n o t n e c e s s a r i l y t o t h e same e x t e n t
o r magnitude.
The u n i t s may be i n d i v i d u a l
p o p u l a t i o n by means o f a s a m p l i n g d e v i c e .
i t e m s o r s m a l l q u a n t i t i t e s t a k e n from a Any group o f n u n i t s c o u l d be c o n s i d e r e d
a sample o f t h i s u n i v e r s e i f t h e n u n i t s have been i n d e p e n d e n t l y s e l e c t e d a t random. Such a sample w o u l d p e r m i t c e r t a i n i n f e r e n c e s t o be drawn;
and,
from these inferen-
ces, one c o u l d answer a v a r i e t y o f q u e s t i o n s a b o u t t h e p o p u l a t i o n . If
t h e sampling i s performed c o r r e c t l y ,
a second p r o b a b i l i t y sample o f n
u n i t s drawn from t h e same p o p u l a t i o n s h o u l d have an a v e r a g e v a l u e or r a n g e o f v a l u e s e s s e n t i a l l y o f t h e same o r d e r o f magnitude.
34 An important p a r t o f a sampling plan i s t h e d e t e r m i n a t i o n o f t h e number o f samples needed so sample averages w i l l have t h e r e q u i r e d p r e c i s i o n .
The c a l c u l a t i o n
o f minimum sample s i z e r e q u i r e s an advance estimate o f t h e standard d e v i a t i o n o f t h e u n i t s i n t h e sample population.
A f a i r l y good e s t i m a t e may be d e r i v e d from t h e range
(lowest t o highest value i n t h e sample u n i t s ) o f t h e p r o p e r t y t o be determined and t h e shape o f t h e d i s t r i b u t i o n curve. (a)
If
data values r u n r a t h e r
u n i f o r m l y throughout
t h e range,
w,
the
standard d e v i a t i o n , s, w i l l be about 0 . 3 ~ . (b)
I f t h e d i s t r i b u t i o n o f data values i s skewed ( l y i n g a t one end o r t h e
o t h e r ) , then t h e standard d e v i a t i o n , s w i l l be about 0 . 2 5 ~ . (c) deviation,
s,
I f t h e data values are predominantly i n t h e middle,
t h e standard
i s about 0 . 2 ~ .
A level o f p r e c i s i o n must be s p e c i f i e d ,
1.e..
we must decide:
(1)
what
d i f f e r e n c e can be t o l e r a t e d between t h e estimate t o be made from t h e sample and t h e r e s u l t t h a t would be obtained by t e s t i n g every u n i t i n t h e population, r i s k i s acceptable i f t h e t o l e r a n c e i s exceeded ?
and ( 2 ) what
Keep i n mind t h a t t h e smaller t h e
t o l e r a n c e or t h e r i s k , t h e l a r g e r w i l l be t h e sample s i z e r e q u i r e d . Most evironmental samples may be considered single-stage universe c o n s i s t s o f N u n i t s , n o f which may be drawn as samples,
n = (to/€)
sampling.
I f the
then ( r e f . 29)
2
(3.5)
where n << N t = f a c t o r corresponding t o t h e acceptable r i s k o f exceeding E; 0
= advance e s t i m a t e o f t h e standard d e v i a t i o n ;
E = d i f f e r e n c e t h a t can be t o l e r a t e d between t h e sample e s t i m a t e and t h e universe.
There a r e a number o f values f o r t, depending on t h e r i s k we wish t o take. These are shown i n Table 3.1.
TABLE 3.1
Factor values corresponding t o t h e r i s k o f exceeding d i f f e r e n c e chosen f o r sample estimate and t h e value o f t h e p o p u l a t i o n ( r e f . 32)
t
P r o b a b i l i t y t h a t E w i l l be exceeded
3
3 i n 1000
2.58
1 i n 100
2
45 i n 1000
1.64
I i n 10
35 R e p r i n t e d by p e r m i s s i o n o f D.
Van N o s t r a n d Company.
Analysis,
P a r t A,
6 t h ed.,
p.24
Educational Publishing,
Vo1.2,
b y F.
W.
S t a n d a r d Methods o f
Welcher,
(Ed.),
Chemical
( c ) 1963 by L i t t o n
Inc.
When N i s n o t
l a r g e compared t o n,
then a l i m i t i n g value,
nL m u s t b e
c a l c u I ated.
+ n)
nL = Nm/(N
(3.6)
I f t h e sampl i n g i s based on an e s t i m a t e o f have been c o m p l e t e d c o m b i n i n g eqns.
value of
d
E,
,
based on e x p e r i m e n t a l
once sampl i n g and a n a l y s e s d a t a may be c a l c u l a t e d b y
3.5 and 3.6.
E = to[(N-n)/nN]1/2
(3.7)
The new v a l u e o f
E
is
independent
of
any e r r o r
i n t h e advaace e s t i m a t e
( r e f s . 33-35).
3.2.1.1
Significance
and r e j e c t i o n o f
data.
Assuming
e n v i r o n m e n t a l t a s k has been c o m p l e t e d s u c c e s s f u l l y , t h e samples. of
the
sampling
phase o f
the
one p r o c e e d s t o t h e a n a l y s i s o f
Many p e o p l e u n d e r t a k i n g a n a l y s i s o f e n v i r o n m e n t a l samples ( o r any t y p e
sample f o r
that matter) are b l i n d l y
l e d by t h e b e l i e f
that,
if
the analytical
t e c h n i que emp I oyed f o r t h e ana I ys i s possesses a r e I a t i ve I y h i gh degree o f and p r e c i s i o n ,
any :tray
f u r t h e r from t h e t r u t h .
o u t l y i n g p i e c e s o f d a t a may be d i s c a r d e d .
accuracy
N o t h i n g c o u l d be
U n l e s s t h e p e r s o n p e r f o r m i n g t h e a n a l y s i s knows o f some bona
f i d e r e a s o n t h a t t h e sample was n o t r e p r e s e n t a t i v e or t h a t some s t e p i n t h e p r o c e d u r e was n o t f o l l o w e d ,
an o u t l y i n g p i e c e o f
data
c a n n o t be r e j e c t e d .
I f one o f
the
r e p l i c a t e r u n s f o r t h e s e p a r a t i o n and a n a l y s i s o f t h e e n v i r o n m e n t a l sample b y e i t h e r gas
or
liquid
chromatography
chromatogram a c c o r d i n g l y .
appears
different
from
the
others
-
mark
the
I f t h i s p r o b l e m o c c u r s , r e p e a t t h e s e p a r a t i o n and a n a l y s i s
o f t h e sample and mark t h i s r e p e a t chromatogram a c c o r d i n g l y . A f t e r t h e c a l c u l a t i o n s a r e c o m p l e t e and one s t i l l
has an o u t l y i n g r e s u l t ,
he may check h i s s e t o f d a t a f o r r e j e c t i o n o f t h a t p i e c e o f d a t a . o f t h e s e methods a v a i l a b l e t o t h e a n a l y s t .
There a r e a number
He may check t h e o u t l y i n g d a t a b y means
o f t h e Q - t e s t ( r e f s . 36 and 3 7 ) o r t h e v a l i d i t y t e s t u s i n g S t u d e n t ' s 38).
t-tables
(ref.
The Q - t e s t i s an easy method f o r c h e c k i n g f r o m 3 up t o 25 p i e c e s o f d a t a . To use t h e Q - t e s t
a r r a n g e t h e d a t a i n n u m e r i c a l sequence and d e t e r m i n e t h e
r a n g e w o f t h e s e t of d a t a .
Range = w =
xn
-
x1
(3.8)
36 The end p a i r s o f t h e s e t o f data may then be checked: ( a ) Smallest v a l u e ( X 1 ) (3.9)
( b ) Largest value ( X n ) (3.10)
I f Q calculated
1.
Q table,
t h e p i e c e o f d a t a may be r e j e c t e d a t t h e
confidence level chosen. To use t h e v a l i d i t y t e s t based on Student’s t - t a b l e s ,
one needs t o have
c a l c u l a t e d t h e standard d e v i a t i o n , s, o f t h e s e t o f data.
(3.11)
From a t a b l e of t - v a l u e s one chooses t h e r i s k (a) t h a t t h e t r u e v a l u e ( P ) w i l l f a l l o u t s i d e o f t h e confidence l i m i t s i f an i n f i n i t e number of measurements had been made.
C.L.
=
R
The confidence l i m i t s (C.L.)
are c a l c u l a t e d from
1/2) +-(ts/(n)
(3.12)
I f t h e r i s k ( a ) i s 0.10.
then 0.10
t h a t one would expect t h e t r u e value other words, 0.05
Is t h e area under t h e normal d i s t r i b u t i o n c u r v e ( u ) t o f a l l o u t s i d e t h e confidence l i m i t s . I n
( 5 % ) on e i t h e r t a i l of t h e curve.
Another way o f i n t e r p r e t i n g t h i s
i s t h a t one f e e l s t h e r e i s a 90% p r o b a b i l i t y t h a t t h e t r u e value, t h e c a l c u l a t e d confidence 0.05,
limits.
Many a n a l y t i c a l
u,
w i l l f a l l within
chemists choose a r i s k
(a) o f
which means a confidence l i m i t of 95% o r approximately two standard d e v i a t i o n s .
3.2.1.2
R e l i a b i l i t y and/or
Confidence I n a n a l y t i c a l
o u t l y i n g r e s u l t s of a s e t o f a n a l y t i c a l data have been checked by: physical reasons f o r e l i m i n a t i o n (e.g., t o o l a r g e a sample).
column and/or
(a)
Once t h e legitimate
d e t e c t o r o v e r l o a d because o f
A recent p u b l i c a t i o n discusses t h i s very important t o p i c a t a
level anyone using chromatography can understand ( r e f . 39), v a l i d i t y t e s t using student’s t-values, average value o f t h e sample,
K,
and t h e standard d e v i a t i o n ,
sample d e l i v e r y ,
etc.
( b ) t h e Q-test,
and ( c )
those remaining may be used t o c a l c u l a t e t h e
had been analyzed t o check operator technique, r e p e a t a b i l i t y of
data.
s.
I f a standard sample
v a r i a t i o n i n Instrumental c o n d i t i o n s ,
i a r o u t i n e procedure t h a t should always be
followed), t h e data can be used t o c a l c u l a t e t h e r e l a t i v e e r r o r .
37
(O/OO)=[
Re I a t i ve e r r o r
3.2.2
(X-p )/p]xlOOO
(3.13)
Aerosols
The c o l l e c t i o n o f an a e r o s o l
sample i s o f t e n d i f f i c u l t and r e q u i r e s
attention t o details.
By an aerosol we mean t h e general c l a s s i f i c a t i o n o f lyophobic
(solvent-non-affinity)
colloids.
This c l a s s o f
colloids
which t h e dispersed m a t e r i a l i s n o t I n t r u e s o l u t i o n .
includes a l l
systems
in
Although lyophobic systems a r e
unstable, they may p e r s i s t unchanged f o r long p e r i o d s o f time.
The aerosol
i s a more
s p e c i f i c c l a s s i f i c a t i o n o f t h e lyophobic c o l l o i d which may be o f two types:
a smoke
which i s a s o l i d dispersed i n a gas, or a fog which i s a l i q u i d dispersed i n a gas. Aerosols are g e n e r a l l y formed by condensation (i.e.,
aggregation) o f t h e dispersed
phase i n t h e m a t r i x phase. I f aerosol formation i s suspected,
t h e r e are a number o f reasons why one
would be I n t e r e s t e d i n t h e i r c o l l e c t i o n (sampling): ( 1 ) t o decide whether o r n o t a hazardous c o n c e n t r a t i o n o f a pol l u t a n t i s
present i n t h e atmosphere and,
more e s p e c i a l l y ,
i f ambient a i r standards have been
exceeded ; ( 2 ) t o determine t h e e f f e c t i v e n e s s o f m o n i t o r i n g programs and t o reduce ambient c o n c e n t r a t i o n s o f p o l l u t a n t s ; ( 3 ) t o e s t i m a t e emission l e v e l s a t a source; ( 4 ) t o judge t h e e f f e c t i v e n e s s o f c o n t r o l equipment;
( 5 ) t o p i n p o i n t p o l l u t i o n sources. Tobacco smoke i s an example o f a l i q u i d aerosol, "The
science
and technology
... is...advanced
t o the
compositions and p a r t i c l e s i z e s can be produced a t w i l l measured
quite
accurately
c o n c e n t r a t i o n and i n time.
(ref.
40)".
Aerosols
as i s f o r e s t - f i r e
p o i n t where
and t h e i r
in
the
smoke.
aerosols of
many
characteristics
atmosphere
vary
in
The p a r t i c l e s range from a few hundredths t o a few t e n t h s
o f a micrometer. S t r a t o s p h e r i c aerosols have been found t o c o n s i s t mainly o f
2
t
(SO4-), small amounts o f ammonium and hydrogen ions (NHq and Ht)
sulfate
and water.
ion The
s t r a t o s p h e r e i s t h e layer j u s t above t h e troposphere which i s t h e lowest layer o f t h e atmosphere. Tropospheric aerosols have s u l f a t e ion contents o f a few percent t o n e a r l y 100% ( w / w ) . (C1-),
Tropospheric aerosols may a l s o c o n t a i n n i t r a t e i o n (NO;).
silicates,
traces of
c h l o r i d e ion
t
ammonium ions (NH 1, sodium ions (Na'), c a l c i u m ions (Ca2+) 2nd 4 i r o n , l e a d , vanadium, manganese and magnesium. An
m e t a l s such as
a p p r e c i a b l e q u a n t i t y o f organic m a t e r i a l i s a l s o found i n t r o p o s p h e r i c a e r o s o l s . one t i m e or another,
t h e r e are l a r g e aerosol p a r t i c l e s (>lum) i n t h e troposphere.
At
A
n e g l i g i b l e f r a c t i o n o f aerosol p a r t i c l e s i s i n normal s t r a t o s p h e r i c a i r . The v a r i a t i o n i n p a r t i c l e s i z e may be due t o t h e shape o f
the p a r t i c l e
38 (which w i l l
affect
its
aerodynamic
properties),
the density
and v e l o c i t y
(which
a f f e c t s i n e r t i a and e l e c t r i c a l charges). The momentum o f aerosol p a r t i c u l e s (product o f source of e r r o r i n aerosol sampling. and each time t h e flow original
i t s mass and v e l o c i t y ) i s a
Aerosol p a r t i c l e s a r e l a r g e r than gas molecules
d i r e c t i o n changes t h e
l a r g e r p a r t i c l e s c o n t i n u e on t h e i r
l i n e and are displaced somewhat from t h e o r i g i n a l p a r t o f t h e gas stream.
The problem becomes more severe as p a r t i c l e s i z e and v e l o c i t y increase.
Thus,
it i s
necessary f o r a l l p a r t s o f t h e stream t o be sampled and p r o p e r l y weighted so t h a t a r e p r e s e n t a t i v e sample i s obtained. To insure t h a t t h e r e i s no change i n momentum and t h a t t h e sample w i I I be r e p r e s e n t a t i v e o f gases,
as well as aeroso\s, one samples i s o k i n e t i c a l i y .
accomplished by using a t h i n - w a l l e d
This i s
tube a l i g n e d w i t h t h e stream flow and drawing
sample i n t o i t a t t h e same l i n e a r v e l o c i t y as t h e stream flow a t t h a t p o i n t .
Reasons
for f a i l u r e t o o b t a i n a t r u l y r e p r e s e n t a t i v e sample may be r e l a t e d t o a number o f
factors : (1)
s t r eam
The a i r f l o w i s always d i s t u r b e d by t h e presence of t h e probe.
(2)
The sampling p o i n t chosen may n o t be r e p r e s e n t a t i v e o f
(3)
Turbulent
t h e whole
. flow could be set up a t t h e p o i n t o f
sampling w i t h t h e
r e s u l t t h a t t h e sample w i l l c o n t a i n more o f t h e smaller p a r t i c l e s t h a n t h e l a r g e r particles. (4)
Sample may be l o s t i n t h e sample l i n e by deposition,
agglomeration or
dispersion.
Studies have shown t h a t ( r e f . 4 1 ) : (a)
l s o k i n e t i c sampling i s dependent upon sample alignment as we1 ve Ioc i t y
as
.
(b)
l s o k i n e t i c c o n d i t i o n s favor t h e c o l l e c t i o n o f a l l p a r t i c l e s i es
(c)
The small mass o f t h e smaller p a r t i c l e s (under 3 ,,m diameter)
.
minimizes i n e r t i a l e f f e c t s . (d)
Slow-moving p a r t i c l e s have l i t t l e or no momentum, thus ambient a i r does not r e q u i r e i s o k i n e t i c c o n d i t i o n s .
The processes t a k i n g p l a c e i n F i g . 3.3 a r e t h e f o l l o w i n g : ( 1 ) F i g . 3.3a
shows i s o k i n e t i c sampling,
i.e.,
c o l l e c t i o n of an amount o f
p a r t i c l e s p r o p o r t i o n a l t o what a c t u a l l y e x i s t s i n t h e stream.
F i g . 3.3
i l l u s t r a t e s the e f f e c t of non-isokinetic
i s o k i n e t i c sampling of
Thus V s = Vn and Cm =
sampling as compared t o
gases ( w i t h or w i t h o u t aerosols or p a r t i c u l a t e s ) .
d e f i n e some terms and symbols.
L e t us
39
SAMPLE
A. ISWINETIC SAMPLING
SAMPLE
I
f
I STREAM LINES
,
Vn*Vs CrnrCt
E SAMPLE VELOCITY TOO LOW NON-ISOKINETIC
SAMPLE
STREAM UNES Ml *vs h
F i g . 3.3 Aerosol sampling i n a moving gas stream.
F i g u r e s r e p r i n t e d by p e r m i s s i o n of
t h e American P u b l i c H e a l t h A s s o c i a t i o n from Methods of second e d i t i o n ,
1977.
A i r Sampling and A n a l y s i s ,
40 Vn = velocity of the gas stream, i.e., sampling velocity; V S = velocity of the stack or duct gas; C = measured concentration of the pollutant in the gas stream; C, = "true" concentration of the poi lutant in the gas stream. The processes taking place in Fig. 3.3 are the following: ( I ) Fig. 3.3a shows isokinetic sampling, i.e., collection of an amount of particles proportional to what actually exists in the stream. Thus Vs = Vn and C, =
Ct' ( 2 ) In Fig. 3.3b more particles are collected than actually exist in the stream. Thus, V n < Vs amd C, > Ct. (3) In Fig. 3 . 3 ~fewer particles are collected than actually exist in the stream. Thus, Vn < Vs and Cm > Ct. The effects of improper sampling flowrate for aerosol systems have been studied by a number of workers (refs. 42-45). Improper gas flow will result in an inaccurate particle-size distribution. The control of gas flow for aerosol systems is not critical when sampling particules less than 3-5,,m in diameter; smaller particles exhibit less inertial effect and thus cause minimal error in the sample process (ref. 4 6 ) . Control is also not as stringent when sampling from stagnant or
low velocity air masses (e.g., ambient air sampling). However, wind velocity and gravitational effects can interfere with sampling of aerosols f r m ambient air. Millipore filters are available which can be used to collect aerosol particulates (ref. 4 7 ) . They are made of mixed esters of cellulose and have a pore size of 0.8 p m (Type A A ) . A number of contaminants listed by OSHA (Occupational Safety and Health Administration) can be collected and quantified by gas chromatography (ref. 48). Among these are alpha naphthyl thiourea (ANTU), Toxaphene, chlorinated diphenyl oxide, chlorodiphenyl, DDT. dibutyl phthalate, di-2-ethylhexyl hexachloronaphthalene. octachloronaphthalene, organophosphorus phthalate (DOP), pesticides, pentachlorophenol, terphenyls, and tributylphthalate. Krzymien (ref. 4 9 ) has demonstrated the collection of fenitrothion in vapors and aerosols on plates of cascade impactors, and its subsequent determination by gas chromatography using a flame photometric detector. He was able to quantify lo-" g/e in an air sample. 3.2.3 Gases and vapors The sampling of air is generally more complex than the sampling of liquids. The main reason is that the sample itself is not visible (in most cases) and is quite likely inhomogeneous. Sampling of a plant stack (Section 3.3.3) usually is done within the stack or directly over the top. This is quite differen-t compared to sampling in slowly moving air (e.g., testing pollution in the region o f a highway or
41 on p l a n t g r o u n d s ) .
I n t h e former
( s t a c k sampling),
t h e sample moves p a s t t h e
sampling p o i n t but one can be reasonably assured t h a t m i x i n g takes p l a c e . l a t t e r case (slow-moving a i r ) ,
In the
a s i n g l e sample i s u n l i k e l y t o r e p r e s e n t a c o r r e c t
p i c t u r e o f t h e p o l l u t i o n problem.
The sampling p o i n t and t h e t l m e i n t e r v a l should be
varied
before
(i.e.,
mean i ng
.
multiple
samples)
the
analytical
results
have
slgnificant
The p e r s o n c o l l e c t i n g t h e samples must know t h e volume o f t h e sample c o n t a i n e r and/or
t h e f l o w r a t e of t h e sampling system.
depends upon t h e method chosen f o r sampl ing. the c a l i b r a t i o n of
flow control
M a t e r i a l s Method 0-1071-55
50).
devices.
Which parameter he chooses
There are a number o f procedures f o r
The American S o c i e t y f o r T e s t i n g and
g i v e s a good d e s c r i p t i o n o f most of these techniques ( r e f .
An e x c e l l e n t coverage o f f l o w and volume measurements has been presented by
Nelson ( r e f . 5 1 ) . Atmospheric gas sampling r e q u i r e s a t t e n t i o n so t h a t an unmodified sample i s obtained.
Gaseous components i n t h e atmosphere a r e n o t s u b j e c t t o t h e same e f f e c t s
as discussed f o r aerosols ( i n e r t i a l and e l e c t r o s t a t i c e f f e c t s ) . movlng a i r mass ( d e n s i t y d i f f e r e n t i a l
uneven d i s t r i b u t i o n o f t h e gas w i t h i n t h e a i r mass. from a t u r b u l e n t flow,
Gases
i n an
T h i s may be overcome by sampling
which may be induced a t t h e sampling s i t e .
Leakage i s one o f t h e b i g g e s t problems w i t h gas samples, samples.
Stagnant o r slow
between t h e gas and a i r ) may r e s u l t
may
diffuse
through
such
materials
p l a s t i c i z e d p o l y ( v i n y 1 c h l o r l d e ) (PVC) ( r e f s . 52-53)
rubber,
neoprene
and
and c o n t a i n e r s o r s e a l s made o f
these m a t e r i a l s should be eL.aIuated where samples w i l l excess o f a few hours.
as
especially stored
be s t o r e d f o r p e r i o d s
in
Some gaseous components a l s o r e a c t photochemically; opaque
c o n t a i n e r s f o r sampling and storage w i l l e l i m i n a t e t h l s problem.
3.2.3.1
Flow measurements.
A l r samples can be taken e i t h e r by t h e grab
technique (see Section 3 . 3 ) o r by t h e i n t e g r a t e d technique. u s u a l l y p a r t o f a p r e c o n c e n t r a t l o n t e c h n i q u e where (Sections 3.4 and 3 . 7 ) .
I n t e g r a t e d sampling i s
l a r g e volumes a r e sampled
A p r o p e r l y i n t e g r a t e d sample r e q u i r e s t h a t t h e volume o f t h e
sample be a c c u r a t e l y known,
i.e.,
t h e sampling r a t e
i s constant.
A
f l o w meter
between t h e sampler and t h e pump i s t h e e a s i e s t and most f r e q u e n t l y used d e v i c e f o r t h i s technique.
I t s g r e a t e s t disadvantage i s t h a t it must be c a r e f u l l y watched and
adjusted, s i n c e changes i n back pressure can a l t e r t h e flow. There are a number o f ways t o m a i n t a i n a uniform sampling r a t e w i t h t h i s type o f system: (ref. 54).
55).
(1)
Place a r e s t r i c t i n g o r i f i c e on t h e dlscharge s i d e of t h e pump
( 2 ) Sense t h e a i r f l o w r a t e and a l t e r t h e pump speed f o r adjustment ( r e f .
( 3 ) Use an a s p i r a t o r o r siphon b o t t l e ; t h l s system must m a i n t a i n a c o n s t a n t
head o f pressure t o m a i n t a i n constant sampling r a t e ( r e f . 5 6 ) . may be used t o m a i n t a i n constant f l o w r a t e sampling.
(4) Critical orlflces
Commonly used c r i t i c a l o r i f i c e s
are t h e hypodermic needle ( r e f s . 57 and 5 8 ) o r g l a s s c a p i l l a r i e s ( r e f . 5 9 ) .
( 5 ) Use
42 a f l o a t I n c o n j u n c t l o n w i t h an o r i f i c e ( r e f s . 60 and 61) t o m a i n t a i n constant flow. ( 6 ) Use a d i f f e r e n t i a l
flow c o n t r o l l e r
(ref.
it has t h e advantage o f o n l y
62).
r e q u i r i n g a 1 8 0 - t o r r p r e s s u r e d r o p f o r good o p e r a t i o n ; approxlmately 0.5 atm. ( 7 ) and 6 4 ) .
c r i t l c a l o r i f i c e s need
Use f l o w meters connected t o an a d j u s t a b l e v a l v e ( r e f . 63
This equipment i s expensive b u t it makes e x c e l l e n t c o n t r o l p o s s i b l e .
3.2.3.2
Volume measurements.
When one o b t a i n s a sample o f a i r w i t h a r i g i d
sampling system and then uses t h e e n t i r e volume o f container
volume must be a c c u r a t e l y known.
t h e sample f o r
The volume o f
analysis,
the container
the
may
be
obtained by weighing t h e c o n t a i n e r empty, then f i l l i n g i t compietely w i t h a l i q u i d o f known density.
One reweighs t h e Container and c a l c u l a t e s t h e volume from t h e weight
and d e n s i t y o f t h e I l q u i d . An a l t e r n a t i v e technique i s t o evacuate t h e c o n t a i n e r t o a very low known pressure.
One c o n n e c t s t h e c o n t a i n e r t o a known volume o f a i r and a t t a c h e s a
pressure gauge. container,
The known volume of
air
i s allowed t o expand
and t h e r e s u l t i n g p r e s s u r e r e c o r d e d .
i n t o t h e evacuated
The volume o f t h e e v a c u a t e d
c o n t a i n e r can be determined from t h e i n i t i a l and f i n a l pressure and t h e volumes o f t h e a i r - f i l l e d c o n t a i n e r and guage.
3.2.4
Liquids The main concern when
sampl i n g p r e s s u r i z e d or
pub1 i c water
systems
is
o b t a i n i n g a sample w h i c h has n o t been s t a n d i n g q u i e s c e n t i n t h e system.
This
quiescent sample may have d i s s o l v e d m a t e r i a l s from exposure t o v a l v e packing,
chack
valve, pump f i t t i n g s and o t h e r l u b r i c a n t s . t i m e w i l l circumvent t h i s problem. c r i t i c a l b u t i t must be clean. metal f o i l
Opening t h e system f o r a s h o r t p e r i o d o f
The sampling device ( c o n t a i n e r ) i s g e n e r a l l y not The cover f o r t h e c o n t a i n e r should be l i n e d w i t h
(aluminum) o r PTFE ( p o l y t e t r a f l u o r o e t h y l e n e ) t o avoid leaching of o r g a n i c
m a t e r i a l from t h e cover. When samples above ambient temperature a r e c o l l e c t e d , one may use a c o o l i n g c o i l t o a d j u s t t h e sample t o approximately r e q u i r e temperature adjustments,
ambient temperature.
Some t e s t methods
and these c o n d i t i o n v a r i a t i o n s should be c a r r i e d o u t
where indicated. The e x a c t p o i n t o f generator design,
s a m p l i n g a steam g e n e r a t o r depends on t h e steam
l o c a t i o n o f chemical and feed l i n e s and other l o c a l c o n d i t i o n s .
special sampling nozzle i s t h e most d e s i r a b l e method f o r t a k i n g a sample;
A
however, a
p r o p e r l y located continuous blow down l i n e may serve as a s a t i s f a c t o r y s u b s t i t u t e . Locate nozzles or sampling tubes a t p o i n t s remote from c o n f i n i n g surfaces and i n a submerged p o s i t i o n . the p o s s i b i l i t y of matter,
incoming
I n s e l e c t i n g t h e l o c a t i o n f o r nozzles and sampling l i n e s , avoid unseparated steam
feed water
inclusion,
and added chemicals.
excessive amounts of Significant
particulate
variation
in
the
43 composition of matter may exist throughout the steam generator system and, for this reason, samples should be taken from several locations simultaneously. A cooling coil may be necessary to collect these samples. In the absence of any sampling connections, samples taken from below the water level are not usual l y representative of the average water and should not be used in the case of controversy. When sampling streams that are under pressure, regulate the rate-of flow in the sample line to not less than 500 ml/min after first flushing the sample line sufficiently to remove all sediment and gas pockets. There are three main procedures for sampling water in the environment: grab sampling, composite sampling and continuous sampling. The general requirements of sampl ing I iquids are the same as mentioned in sampl ing of gases and vapors. The goal of sampling is to obtain for analysis a truly representative portion o f the main body of water. The critical factors necessary to achieve this are points of sampling, frequency of sampling, time of sampling and maintenance of integrity of the sample prior to analysis. Homogeneity can never be assured so multi-point sampl ing is usual l y necessary. A single, most representative sampling point may not be practical to understand the interrelationships in the bulk sample; so a minimum number of sampling points will have to be chosen. Most single-point samples collected from a system shou I d be recognized as unrepresentative to sohe degree. 3.2.5 Sampling proportional to time and flow
Composite sampling i s the combining of individual (grab) samples taken at frequent intervals or by means of automatic sampler4 and is adaptable to subsequent chemical and physical analysis. One should indicate whether the volume of sample is proportional to the rate of flow or to time. Determinations on the composite sample will represent the average for the stable constituents; variations of unstable constituents should be determined on individual samples. Collect composite samples from process waters during one 24-h period or during at least one complete process cycle if the process is cyclic in nature. This information should be on the sample label. One should choose a suitable flowrate to give the proper volume (ca. 4 8 ) for the composite sample. When samples are taken on a time basis (e.g., from a stream) composite samples usually are composed of equal quantities of daily samples for a suitable number of consecutive days. When considering whether to sample proportional to time or to flow, one must consider whether the concentration of the pollutant and flow velocity of the stream are steady with time. If both or one of the units is steady with time, constant sample rate will yield a true average concentration per sampling time. If the concentration and flow velocity are unstable, the sample rate is proportional to flow velocity variations at
44 p o i n t of sampling ( r e f . 65). Factors which may a f f e c t t h e mlnlmum sample d u r a t i o n t i m e would Include: ( a ) estimated c o n e n t r a t l o n of component(s) t o be encountered,
( b ) r a t e a t which t h e
sampling may be performed,
and ( c ) t h e s e n s i t i v i t y o f t h e a n a l y t i c a l procedure t o be
used i n t h e determination.
As was p o i n t e d o u t before, t h e end use o f t h e data i s a
very important c r i t e r i o n and t h e sampling t i m e should be adjusted accordingly.
3.2.6
Solids The sampling o f s o l i d s f o r environmental purposes should f a l l i n t o two main
categories:
t h e sampling o f s o l i d s suspended i n water o r gases and t h e sampling o f
s o l i d s , e.g.,
s o i l samples.
i n S e c t i o n 3.3.2.
The sampling o f suspended s o l i d s i n l i q u i d s i s mentioned
I n t h i s t y p e o f s y s t e m t h e s o l i d s may be f i l t e r e d f r o m t h e
r e p r e s e n t a t i v e sample and t r e a t e d as an i n d i v i d u a l s o l i d sample.
I n t h e sampling o f
s o l i d s it i s necessary t o be concerned about having enough sample t o perform t h e
A number of g u i d e l i n e s are a v a i l a b l e I n t h e l i t e r a t u r e ( r e f s . 66 and 67).
analysis.
I f t h e s o l i d s are being sampled from a moving stream,
t h e opening o f
t h e sample
container should be a t l e a s t t h r e e times t h e s i z e o f t h e l a r g e s t p a r t i c l e s . s o l i d s t o be sampled are not moving ( a t r e s t ) ,
t h e minimum weight
0.05 times t h e l a r g e s t p a r t i c l e (measured I n mn).
The s t a t i s t i c a l l y c o r r e c t number
o f samples can be c a l c u l a t e d u s i n g eqns. 3.5 and 3.6
i n Sections 3.2.1.
When c o l l e c t i n g s o l i d s which a r e suspended precede t h e gas and/or a b s o r p t i o n containers. c o l l e c t o r (i.e., follow.
Use
t h e f i l t e r ) does n o t of
a
synthetlc
I f the
i n kg should be
i n a gas,
the
filter
should
Care must be taken so t h a t t h e f i r s t
I n t e r f e r e w i t h any sample c o l l e c t o r s which
atmosphere
e f f e c t i v e n e s s o f t h e sampling system.
will
assist
one
in
determining
the
To o b t a i n accurate data from such a procedure
t h e c o l l e c t i o n and measurement steps must be performed under c o n t r o l l e d c o n d i t i o n s . In general,
a l a r g e number of
locations f o r the c o l l e c t i o n of
intermittent
samples w i l l p r o v i d e more r e l i a b l e data than samples c o l l e c t e d on a continuous b a s i s a t a small number o f sampling s i t e s .
A
number
of
techniques
are
available
to
obtain
solid
samples
from
environmental sources:
( 1 ) A l l o w i n g t h e p a r t i c l e s t o s e t t l e because o f g r a v i t y .
This technique i s
widely used I n a i r p o l l u t i o n s t u d i e s ( r e f s . 68 and 69).
(2) samples.
F i l t e r i n g out t h e s o l i d s .
This may be used f o r e i t h e r a i r o r water
The f i l t e r i n g m a t e r i a l should be chosen so as not t o r e a c t w i t h t h e sample
p a r t i c l e s ( r e f . 70).
(3) a solution.
Passing t h e p a r t i c u l e s
through a narrow bore o r i f i c e and then through
C o l l e c t i o n r a t e s may v a r y f r o m 0.75
e f f i c i e n c y I s almost 100% ( r e f s . 71 and 7 2 ) . a i r p o l l u t i o n studies.
t o 1.5
f t 3 /min.
Collection
T h i s procedure Is predominantly used i n
45 A
(4) (12,000
high e l e c t r i c a l V d.c.).
t o 45,000
difference
i s maintained across
two e l e c t r o d e s
P a r t i c l e s c o l l e c t e d by t h e e l e c t r o s t a t i c p r e c i p i t a t i o n
technique are e a s i l y removed from t h e e l e c t r o d e s
(washing or brushing t e c h n i q u e s )
A thermal g r a d i e n t may a l s o be used f o r t h e c o l l e c t i o n o f t h e p a r t i c l e s .
( r e f . 73).
i n thermal p r e c i p i t a t i o n t h e smal I p a r t i c l e s m i g r a t e t o t h e
lower temperature zone
( r e f . 74). Sampling devices which remove p a r t i c u l a t e m a t e r i a l from t h e a i r are never completely e f f i c i e n t (i.e., present;
thus,
100%). The reason i s t h a t a l l s i z e s o f p a r t i c l e s may be
one should choose a c o l l e c t i o n technique which i s e f f i c i e n t
f o r the
p a r t i c l e s i z e range o f i n t e r e s t .
3.2.6.1 samples.
Soils.
We w i l l
split-barrel
A number o f s a m p l i n g methods a r e a v a i l a b l e f o r s o i l
c o n s i d e r t h r e e o f t h e m o s t common:
auger-boring
sampling,
sampling and t h i n - w a l l e d tube sampling.
Auger-boring
sampling
distance i n t o the s o i l .
requires
The s o i l
that
the
auger
penetrate
i s removed f o r examination
process i s repeated u n t i i enough sample
i s obtained.
The s o i l
desired The
s t r u c t u r e may be
destroyed and t h e m o i s t u r e content changed by t h i s t y p e sampling. be sealed i n an a p p r o p r i a t e c o n t a i n e r and labeled c l e a r l y .
the
and a n a l y s i s .
A l l samples should
I f more than one t y p e o f
s o i l i s sampled w i t h t h e auger, be sure t o clean t h e sampler each t i m e and prepare a separate c o n t a i n e r f o r each t y p e o f s o i l . T h i s s a m p l i n g method i s l i m i t e d o n l y by t h e s o i i c h a r a c t e r i s t i c s and ground-water
conditions.
purpose where d i s t u r b e d
I t has t h e advantage o f being simple, samples
may
be taken
and being
determination and i n d i c a t i o n of changes i n s t r a t a .
being used f o r any
usable
for
ground-level
The disadvantages a r e t h a t i t i s
easy t o contaminate t h e sample and t h a t does not p r o v i d e a r e p r o d u c i b l e sampling u n i t w i t h uniform cross-section In s p l i t - b a r r e l
t o t h e desired depth. sampling of
it i s necessary t o c l e a r o u t a hole.
soils
When sampling s a t u r a t e d sands o r s i l t s , withdraw t h e d r i l l b i t s l o w l y . loosening t h e s o i l around t h e hole. penetration i n t o the s o i l . 5 ft.
(1.5m)
noted. the s o i l
A minimum depth of 18 in.
(0.45 m ) i s s u f f i c i e n t
The sampling o p e r a t i o n should be repeated a t i n t e r v a l s o f
i n homogeneous s t r a t a and a t every p o i n t where a change o f
The sampler i s brought t o t h e surface, sample
condition).
T h i s prevents
i s recorded (i.e.,
opened and a c a r e f u l
composition,
Samples are then put i n t o j a r s ,
structure,
strata i s
description of
consistency,
color
and
sealed ( w i t h wax o r h e r m e t i c a l l y sealed)
t o prevent evaporation o f t h e s o i l moisture.
The s o i l
samples should be p r o t e c t e d
against extreme temperature changes. This sampling method can not be used f o r s o i i s c o n t a i n i n g rock. p r o v i d e r e p r e s e n t a t i v e samples o f
soils for
laboratory testing,
t h e r e s i s t a n c e o f t h e s o i l t o p e n e t r a t i o n o f t h e sampler, sample and can be used on hard s u r f a c e s o i l s .
I t does
g i v e s a measure o f
p r o v i d e s an uncontaminated
The disadvantages a r e t h a t one needs
46 equipment t o c l e a r o u t t h e hole b e f o r e using t h e sampler and i f sampling on t h e hard s o i l surface,
precautions must be taken t o i n s u r e t h a t t h e fa1 I i n g weight (depth o f
p e n e t r a t i o n per blow o f hammer) i s not reduced by f r i c t i o n . The same precautions as noted above f o r s p l i t - b a r r e l followed f o r thin-walled
tube sampling.
I n t h i s technique,
sampling should be
t h e sampling t u b e
is
pushed i n t o t h e s o i l by a continuous and r a p i d motion (no impacting o r t w i s t i n g ) . When t h e s o i l s a r e so hard t h a t a d i r e c t pushing motion w i l l n o t penetrate, driving action with a light-weight split-barrel
a slight
hammer i s p e r m i t t e d ( o r one s h o u l d u s e t h e
Before withdrawlng t h e tube, t u r n i t a t l e a s t two
sampling technique).
r e v o l u t i o n s t o shear o f f t h e bottom.
The samplig o p e r a t i o n i s performed e x a c t l y as
described above f o r t h e s p l i t - b a r r e l sampling technique. sampling tube cannot be used w i t h stony,
The t h i n - w a l l e d
soil
dry,
or
sandy
I t has t h e advantages t h a t it can be used t o o b t a i n r e l a t i v e l y undisturbed
soils.
samples
samples,
which
provides
cross-section
are
suitable
for
reproducible
laboratory
sampling
testing,
units
p r o v i d e s uncontaminated
with
approximately
uniform
t o t h e d e s i r e d depth and does p r o v i d e a r e p r e s e n t a t i v e sample.
with the split-barrel
sampling,
As
one needs t h e equipment t o c l e a r o u t t h e h o l e b e f o r e
sampling.
3.2.6.2
Particulates.
Air-metering
devlces
are required t o r e l a t e the
q u a n t i t y o f p o l l u t a n t c o l l e c t e d t o t h e t o t a l volume o f gas sample.
Thus,
a precise
and accurate measurement o f t h e volume o f gas drawn through t h e sampling device i s needed.
Flow measurement
i s made downstream
from t h e
between t h e c o l l e c t i n g device and t h e vacuum source.
c o l l e c t i n g device,
i .e.,
This arrangement makes i t
necessary t o measure t h e pressure and temperature t o c a l c u l a t e t h e c o r r e c t volume.
No c o r r e c t i o n f o r gas leakage from t h e pump i s r e q u i r e d i f f l o w i s measured i n t o t h e pump.
T h e r e a r e t w o t y p e s o f gas measurement d e v i c e s :
orifices,
nozzles,
venturimeters,
displacement) meters, e.g., (See Sections 3.2.3.1
and
rotameters;
( a ) ratemeters,
and
(b)
volume
wet t e s t meters, dry t e s t meters, and c y c l o i d gas meters.
and 3 . 2 . 3 . 2 f o r f l o w and volume measurements).
volume f l o w r a t e i s measured by ratemeters.
Instantaneous
They have t h e disadvantage o f
frequent
m o n i t o r i n g t o be sure an accurate c a l c u l a t i o n o f t h e t o t a l volume i s made. advantage i s t h a t they r e q u i r e l i t t l e space. t h e system i s measured by volume meters. volume sampled.
e.g.,
(positive
Their
I n t e g r a t e d t o t a l volume passing through
Thus,
they p r o v i d e a d i r e c t r e c o r d o f a i r
The dry t e s t meter i s most commonly used i n t h i s t y p e o f sampling
because i t i s economical,
l i g h t - w e i g h t and f a i r l y sturdy.
These meters are accurate
t o +l.O$. C o l l e c t i o n devices f o r p a r t i c u l a t e a i r samples r e q u i r e measurement o f t h e q u a n t i t y (volume) o f a i r passing through t h e system. used,
e.g.,
vacuum pumps.
displacement and c e n t r i f u g a l .
Vacuum sources a r e commonly
There are two major types o f
vacuum pumps:
positive
P o s i t i v e displacement pumps a r e l i n e a r w i t h respect t o
47 s u c t i o n pressure (head ) and capacity,
whereas t h e c e n t r i f ugal types a r e non- I inear.
C o l l e c t i o n o f p a r t i c u l a t e s i n f l o w i n g gases i s c a r r i e d o u t as d e p i c t e d i n F i g .
3.3
( S e c t i o n 3.2.2). The h i g h volume sampler method may be used i n t h r e e modes: Rotameter mode The high-volume sampler i s f i t t e d w i t h a clean f l l t e r and r u n f o r a t l e a s t
5 min.
A rotameter i s attached and t h e b a l l adJusted t o read 65.
mechanism i s then sealed so t h a t it can not be changed.
Shut o f f t h e motor,
t h e f i l t e r and a t t a c h an o r i f i c e c a l i b r a t i o n u n i t (see F i g . t y p i c a l o r i f i c e meter) i n i t s place. different,
The a d j u s t i n g
3.4
remove
f o r diagram o f
a
Operate t h e high-volume sampler a t a s e r i e s o f
b u t constant, a i r f l o w s (minimum o f 6 ) .
Record t h e d i f f e r e n t i a l manometer
reading on t h e o r i f i c e c a l i b r a t l o n u n i t and a l s o r e c o r d t h e r e a d i n g o f t h e rotameter a t each a i r f l o w .
Convert t h e d i f f e r e n t i a l
c a l i b r a t i o n u n i t t o m3/min. use of P o i s e u i l l e ' s
manometer r e a d i n g o f t h e o r i f i c e
The f l o w r a t e o f an o r i f i c e meter may be c a l c u l a t e d by
law ( r e f s .
75 and 7 6 ) .
/ FILLING
ORIFICE 7 CONTROL VALVE
GAS
-
r- -
yfi
0
MERCURY MANOMETER
PORTS
"P2
\ PI-
F i g . 3 . 4 Drawing o f an o r i f i c e meter. Arbor Science P u b l i s h e r s I n c . )
Reprinted by permission o f t.he p u b l i s h e r (Ann
(3.14)
3
where Q = flow r a t e (ml/sec). 3 6 m /10 m l ) ; P
1
=.
To convert t o m /min,
upstream pressure (dynes/cm
2
);
2
= downstream pressure
r
= c a p i l l a r y flow r e s i s t a n c e (g/cm4-sec)
L
= c a p i l l a r y length (an);
d
= i n t e r n a l diameter c a p i l l a r y (cm);
11
= v i s c o s i t y o f gas ( p o i s e o r g/cm-sec);
micropoises. H
(1
(dynes/cm 1;
P
2
m u l t i p l y by (60 sec/min)
4
= (12&L))/rrd ;
v i s c o s i t y o f a i r a t 18'C=182.7 -6 To convert micropoises t o p o i s e s , m u l t l p l y by 10 ;
= 3.1416.
P l o t rotameter reading versus Q.
I d e n t i f y t h i s p l o t w i t h t h e high-volume sampler and
rotameter s e r i a l number f o r f u t u r e use ( t h e o r i f i c e must remain c l e a n and o t h e r w i s e unaltered).
D r a f t guage mode The h i g h volume sampler i s f i t t e d w i t h an o r i f i c e c a l i b r a t i o n u n i t . for at
l e a s t 5 min,
multi-holed
orifice plate b u i l t
f i t t i n g used f o r
Run
then a t t a c h t h e d r a f t guage t o t h e f i t t i n g p r o v i d e d i n t h e i n t o the
t h e rotameter).
discharge o f
the
sampler
(this
i s the
Operate t h e high-volume sampler a t a s e r i e s o f
d i f f e r e n t , but constant, a i r flows (minimum o f 6 ) .
Record t h e d i f f e r e n t i a l manometer
readings on t h e o r i f i c e c a l i b r a t i o n u n i t and t h a t on t h e d r a f t guage a t each a i r flow.
Q,
Convert t h e d i f f e r e n t i a l manometer readings t o m3/min,
P l o t draft-guage readings versus Q.
u s i n g Eqn.
3.14.
I d e n t i f y t h e p l o t w i t h t h e high-volume sampler
and draft-gauge s e r i a l numbers f o r f u t u r e use.
Recorder mode The high-volume d e s c r i b e d modes, draft-gauge. a series of differential
sampler
i s connected e x a c t l y
as
in
the
two p r e v i o u s l y
except a r e c o r d e r i s i n s t a l l e d I n p l a c e o f t h e r o t a m e t e r o r
Run t h e u n i t f o r a t l e a s t 5 min and operate t h e high-volume sampler a t different, manometer
but constant,
recorder a t each a i r flow. using Eqn. 3.14.
air
flows
(minimum o f
readings on t h e o r i f i c e c a l i b r a t i o n
unit
6).
Record t h e
and t h a t
of
Convert t h e d i f f e r e n t i a l manometer readings t o m3/min,
P l o t t h e recorder readings versus Q.
the
Q.
I d e n t i f y t h i s p l o t with the
high-volume sampler and recorder s e r i a l numbers f o r f u t u r e use. I f t h e pressure o r temperature during t h e c a l i b r a t i o n o f t h e high-volume sampler
i s substantially
different
from
the
pressure o r
temperature
during
the
49 o r i f i c e Calibration,
a correctlon of the flow rate,
Q,
may b e r e q u i r e d .
if
necessary, t h e c o r r e c t e d f l o w r a t e may be c a l c u l a t e d from t h e f o l l o w i n g equation:
(3.15)
where
Q, Q,
3 = t h e c o r r e c t e d flow r a t e i n m /min;
3
= t h e f l o w r a t e d u r l n g t h e high-volume sampler c a l i b r a t i o n (m /min);
Ti = t h e absolute temperature during o r i f i c e u n i t c a l i b r a t i o n T
(OK);
= t h e absolute temperature d u r i n g high-volume sampler c a l i b r a t i o n
2 P, = t h e barometric pressure o r i f i c e u n i t c a l i b r a t i o n ( T o r r ) ; P
2
(OK);
= t h e barometric pressure d u r i n g high-volume sampler c a l i b r a t i o n ( T o r r ) .
T h i s c o r r e c t i o n a p p l i e s o n l y t o o r i f i c e meters having a constant o r i f i c e coefficient.
3.3 GRAB SAMPL I NG
When one does not wish an e l a b o r a t e sampling program o r a f i e l d m o n i t o r i n g program, t h e grab sampling technique i s used. o u t f o r a i r samples w i t h t h e use o f
T h i s sampling technique may be c a r r i e d
evacuated bulbs o r
i n f l a t a b l e p l a s t i c bags.
Large-volume hypodermic syringes are commonly employed t o o b t a i n grab samples from t h e atmosphere.
These may be used dry o r have an absorbing s o l u t i o n i n t h e b a r r e l .
For water sampling,
an a p p r o p r l a t e s i z e r i g i d c o n t a i n e r may be used.
most c o n t a i n e r s i s determined by c a l c u l a t i o n o r by.a Halogenated hydrocarbons ( f l u o r i n a t e d and c h l o r i n a t e d )
The volume o f
l i q u i d displacement technique. i n t h e a i r were c o l l e c t e d by
t h i s technique i n metal c o n t a i n e r s and analyzed i n an extremely c l e a n s t a i n l e s s s t e e l samp i n g and c a l i b r a t i o n system ( r e f . 7 7 ) .
3.3.
Air
F l e x i b l e containers.
P l a s t i c bags such as aluminized Scotch-pak,
and Saran are t h e t y p i c a l m a t e r i a l s used.
The sample may e n t e r t h e bag by use o f
Tygon o r g l a s s t u b i n g o r even an o r d i n a r y t i r e valve.
Decay curves should be r u n on
t h e substance sampled so a reasonable storage t i m e can be e s t a b l i s h e d . introduced
Mylare
i n t o t h e bag by a hand-operated
pump o r a squeeze bulb.
The sample i s Bags can be
r e u s e d a f t e r p u r g i n g w i t h c l e a n a i r and c h e c k i n g f o r any r e s i d u a l components. C e r t a i n contaminants can n e i t h e r because of t h e i r r e a c t i v i t y . l a b o r a t o r y p r i o r t o f i e l d use.
be sampled
nor
stored
in
any
type
p l a s t i c bag
R e a c t i v i t y of a substance should be determined i n t h e i f storage i s necessary, t h e bags should be p r o t e c t e d
from d i r e c t s u n l i g h t . A review o f much o f t h e work done u s i n g bag sampling has been p u b l i s h e d by
50 S c h u e t t e ( r e f . 761,
i n which he addressed t h e f a c t o r s which a r e
m a i n t a i n i n g a r e p r e s e n t a t i v e sample ( i . e . , factors are the concentration o f humidity, temperature,
t h e gas,
t h e surface area of
relative
Many o f t h e f a c t o r s l i s t e d c a n
a l s o be i m p o r t a n t f o r o t h e r t y p e s o f c o n t a i n e r s as w e l l , i f a p p r o p r i a t e p r e c a u t i o n s a r e taken,
r e p r e s e n t a t i v e sample.
This
e.g..
the application of
i s b o r n e o u t by t h e number o f plastic
bags
for
glass,
metal,
etc.
one c a n be a s s u r e d of h a v i n g a
used t h i s t y p e of c o n t a i n e r v e r y s u c c e s s f u l l y ( r e f s . 78-84). study of
The i m p o r t a n t
t h e bag,
p h y s i c a l and c h e m i c a l p r o p e r t i e s o f t h e bag m a t e r i a l , as w e l l
as t h e p r e s e n c e o f r e a c t i v e components i n t h e sample.
However,
important for
i n t e g r i t y o f t h e sample).
benzene,
k e t o n e and m e t h y i e n e c h l o r i d e a t c o n c e n t r a t i o n s
i n v e s t i g a t o r s who have S m i t h and P i e r c e d i d a
methanol,
methyl
isobutyl
w h i c h b r a c k e t e d t h e 1969 TLV
(Threshhold L i m i t Values) ( r e f . 83). Rigid containers.
Evacuated g l a s s b u l b s may be p r e p a r e d by use o f a vacuum
pump and t h e neck s e a l e d by h e a t i n g and d r a w i n g t o a t i p ( s e e F i g . suitable
for
s a m p l i n g atmospheres f o r
oxygen, methane,
c a r b o n monoxide,
analysis
of
gases
hydrogen and n i t r o g e n .
s a m p l i n g v e r y r e a c t i v e gases such as hydrogen s u l f i d e ,
such
3.5).
These a r e
as c a r b o n
dioxide,
They a r e n o t s u i t a b l e f o r
o x i d e s of n i t r o g e n or s u l f u r
because such gases may r e a c t w i t h d u s t p a r t i c l e s , m o i s t u r e , t h e wax s e a l i n g compound, and even w i t h g l a s s o f
By t h e t i m e t h e sample
the container.
i s analyzed,
the
p r o p o r t i o n s o f t h e s e gases w i l l h a v e been a l t e r e d . A s i m i l a r e v a c u a t e d c o n t a i n e r may be used t o c o l l e c t samples d i r e c t l y i n a
chemical a b s o r b e n t . 3.5
in that
The b u l b d i f f e r s f r o m t h e c o n v e n t i o n a l t y p e i l l u s t r a t e d i n F i g .
it c o n t a i n s a l i q u i d absorbent
for
t h e p a r t i c u l a r gas t o be a n a l y z e d .
The l i q u i d a b s o r b e n t d i s s o l v e s and p r e s e r v e s t h e gas sample i n a f o r m t h a t may be d e t e r m i n e d by c h e m i c a l a n a l y s i s .
R EAllI IC SCRATCH . . . . , ,
SEALED WITH WAX-FILLED CARTRIDGE
WAX-FILLED CARTRIDGE
50 to300 LC. CAPACITY
F i g , 3.5 R i g i d e v a c u a t e d sample c o n t a i n e r .
51 To prepare a sample b u l b such as shown i n F i g .
3.5,
t h e b u l b should be
I f i t i s n o t p o s s i b l e t o reach such a low
evacuated t o a pressure o f I T o r r o r less.
p r e s s u r e , t h e b u l b s h o u l d be p r e p a r e d i n an u n c o n t a m i n a t e d atmosphere and t h e evacuated pressure
obtained should be measured w i t h a mercuty manometer.
evacuated, t h e f l a s k
i s sealed a t t h e t i p w i t h a t o r c h and removed from t h e vacuum
The volume of sample,
system.
vs
= Vb(P1
Once
a t barometric pressure may be c a l c u l a t e d as f o l l o w s :
- P,)/P,
(3.16)
where Vs = volume o f sample a t barometric pressure; Vb = volume o f t h e bulb;
P
1
P
2
= barometric pressure; = pressure i n evacuated bulb. To c o l l e c t a sample o f gas w i t h t h i s t y p e o f c o n t a i n e r , one breaks t h e t i p
a t t h e s c r a t c h mark p r o v i d e d on t h e neck o f t h e c o n t a i n e r .
The s u r r o u n d i n g
atmosphere immediately e n t e r s and f i l l s it t o atmospheric pressure.
The c o n t a i n e r i s
then sealed by f o r c i n g a w a x - f i l l e d c a r t r i d g e over t h e open neck. Two a d d i t i o n a l sampling set-ups t o o b t a i n grab samples a r e d e p l c t e d i n F i g . 3.6.
:n F i g . 3.6a,
p a r t i c u l a r system,
If using t h i s
an evacuated b u l b i s used t o o b t a i n t h e sample.
t h e sample volume may be determined by use o f t h e i d e a l gas
law
a f t e r r e c o r d i n g t h e t e m p e r a t u r e and p r e s s u r e b e f o r e and a f t e r t h e s a m p l i n g i s completed.
The f o l l o w i n g equation may be used for t h l s c a l c u l a t i o n .
(3.17)
where
V s = volume o f gas a t STP;
vf vr
= volume o f f l a s k ;
T
= temperature a t standard c o n d i t i o n s ,
p
= pressure a t standard c o n d i t l o n s ;
= volume o f absorbing s o l u t l o n ,
i f any;
0' C(273O K ) ;
= i n i t i a l pressure i n f l a s k ( T o r r ) ; i P = f i n a l pressure i n f l a s k ( T o r r ) ; f T = i n i t i a l temperature I n f l a s k ( O K ) ; i Tf = f i n a l temperature i n f l a s k ( O K ) .
P
F i g . 3.6b
shows t h e use o f a f l e x i b l e bag f o r t h e grab sample.
When using
t h i s technique a vacuum i s drawn on t h e r i g i d sample box which i n t u r n causes t h e f l e x i b l e bag t o i n f l a t e , t h u s drawing i n a grab sample o f t h e atmosphere.
Once t h e
sample has been c o l l e c t e d , t h e bag i s sealed and t r a n s p o r t e d back t o t h e l a b o r a t o r y for
analysis.
The r i g i d sample c o n t a i n e r serves a t w o - f o l d
purpose:
i t i s the
52
3 WAY VALVE
STACK
VALVE
FILTER A. EVACUATED FL
\, \
B. FLEXIBLE BAG
FLEXIBLE BAG
PROBE ‘ILTER *STACK WALL \,
\
F i g . 3.6 Systems f o r grab sampling;
GRABSAMPLE
SUCTION
( a ) evacuated bulb,
from A i r P o l l u t i o n C o n t r o l , John Wiley 8 Sons,
( b ) f l e x i b l e bag.
Reprinted
Inc.
c o n t a i n e r d u r i n g t h e sampling w i t h a f l e x i b l e sampling bag and a p r o t e c t i v e c o v e r i n g f o r t h e bag and sample f o r t h e t r a n s p o r t t o t h e l a b o r a t o r y .
A modification of t h i s
t y p e sampling would be t o surround t h e f l e x i b l e bag w i t h water.
During t h e sampling
process, t h e water i s allowed t o d r a i n a t a steady r a t e . Gas samples may a l s o be c o l l e c t e d by displacement ( F i g . sampler may be metal o r glass,
closed w i t h stopcocks o r
3.7).
The gas
screw clamps and rubber
t u b i n g i f t h e sample does not r e a c t w i t h rubber.
One may p i n c h t h e clamps and rubber
t u b i n g i f t h e sample does not r e a c t w i t h rubber.
Pinch clamps are not s a t i s f a c t o r y ,
as they may not have enough t e n s i o n t o c l o s e t h e rubber t u b i n g completely. c o n t a i n e r s should be c o n s t r u c t e d o f tinned-iron
i n e r t metal,
e.g.,
stainless steel.
Metal Iron or
sample c o n t a i n e r s a r e prone t o r u s t i n g and consume t o o much oxygen.
250 to 300 C.C. CAPACITY
F i g . 3.7 D i splacement sample tube.
53 Metal c o n t a i n e r s are n o t s u i t a b l e f o r sampling of many substances (e.g., oxides o f sample. gas-phase
n i t r o g e n ) because t h e gases r e a c t w i t h t h e metal Copper
HZS, SOp, o r
and a r e l o s t f r a n t h e
i s r e a c t i v e w i t h acetylene and a c t s as a c a t a l y s t f o r a number o f
reactions.
To f i l l
any o f t h e above c o n t a i n e r s I t 1s necessary for t h e
o r i g i n a l a i r or gas content t o be completely swept o u t and r e p l a c e d by t h e gas t o be sampled.
This may be accanpi lshed by pul I ing t h e gas sample through f o r a p e r i o d o f
t i m e or completely evacuating the tube.
An a s p i r a t i n g device such as a double-acting
rubber b u l b ' a s p i r a t o r or a double-acting
f o o t pump may be used.
An a s p i r a t o r may
also be made o f a b o t t l e or can f i I led w i t h water, as shown i n F i g . 3.8. To sample by gas displacement, a double-acting rubber b u l b may be connected 50
t h a t pressure and re1 i e f on t h e rubber bulb w i l I draw t h e o r i g i n a l c o n t e n t o f a i r
o u t of t h e sample c o n t a i n e r and admit t h e atmospheric sample (see F i g . compression-aspiration
3.9).
The
process should be repeated about t h i r t y - f i v e times t o r e p l a c e
the a i r i n a 250 mi container.
Before u s i n g t h i s technique, check t h e performance by
compressing t h e bulb and n o t i n g whether t h e r e i s any leakage. This
sampling
technique
is
limited
to
those
contaminants
for
which
s e n s i t i v e a n a l y t i c a l methods are a v a i l a b l e or t h e contaminant I n t h e t e s t atmosphere i s a t high concentration.
The technique has t h e advantage t h a t t h e
sampled need not be a c c u r a t e l y known,
volume
r e q u i r e s r e l a t i v e l y simple equipment,
of
air
offers
v a r i e t y and f l e x i b i l i t y t o many sampling a p p l i c a t i o n s and i s inexpensive. Some disadvantages o f t h i s technique a r e t h e small sample s i z e , sample loss on w a l l s o f t h e c o n t a i n e r , leaks
a n a l y s i s f o r r e a c t i v e gases must be performed q u i c k l y ,
i n sample c o n t a i n e r t o e x t e r i o r
i n t e r i o r of container.
and contamination by
leaks from o u t s i d e t o
Since t h e sample i s n o t concentrated,
t h e technique i s more
s e n s i t i v e t o contamination by leaks.
Fig.
3.8
Water-filled
displacement.
bottle
(aspirator)
for
collection
of
gas
sample
by
54
Y
F i g . 3.9 Double-acting rubber b u l b t o admit gas i n t o sample c o n t a i n e r .
3.3.2
Liquids
Grab
sampling
i s e a s i l y applied t o
lakes, p i p e l i n e s , processing tanks,
water
from we1 1s.
rivers,
streams,
steam generators, e t c . a t atmospheric pressure o r
higher pressures f o r chemical a n a l y s i s .
A grab sample r e p r e s e n t s o n l y t h e c o n d i t i o n s
e x i s t i n g a t t h e p o i n t and t i m e o f t h e sampling.
The sample c o n t a i n e r
should be
r i n s e d several times w i t h t h e water t o be sampled b e f o r e t a k i n g t h e sample. The p o i n t of scum.
sampling should be chosen w i t h extreme care;
avoid surface
A wide v a r i e t y o f c o n d i t i o n s i s found i n l a r g e bodies o f water so it i s n o t
p o s s i b l e t o recommend t h e exact p o i n t o f sampling.
Ordinarily,
samples a r e taken a t
a number o f p o i n t s and combined t o o b t a i n an i n t e g r a t e d (composite) sample f o r such large bodies o f water. flow a t the time of thorough mixing.
Allow s u f f i c i e n t d i s t a n c e downstream, w i t h r e s p e c t t o stream sampling,
from a t r i b u t a r y o r source o f
I f t h i s i s n o t possible,
p o l l u t i o n t o permit
sample t h e stream above t h e source o f
p o l l u t i o n and a distance o f I t o 3 m i l e s below t h e source. The composition o f raw water from a l a r g e body o f water may be determined using i n d i v i d u a l samples a t random i n t e r v a l s .
Samples taken from t h e s h o r e l i n e o f a
lake o r r i v e r should be taken a t s h o r t e r t i m e i n t e r v a l s .
55 Water control.
undergoing treatment must be sampled a t a frequency
adequate f o r
The s a m p l i n g t i m e i s d i r e c t l y r e l a t e d t o t h e r a t e a t w h i c h c r i t i c a l
c h a r a c t e r i s t i c s can become d i f f i c u l t t o c o n t r o l . Normally water samples a r e taken w i t h o u t separation o f p a r t i c u l a t e m a t t e r and t h u s t h e presence o f c o l l o i d a l or f l o c c u l e n t m a t e r i a l should be i n c l u d e d so t h a t they are present i n r e p r e s e n t a t i v e p r o p o r t i o n .
2 t o 411.
One should c o l l e c t a sample volume o f
When sampling h i g h l y r a d i o a c t i v e water,
a smaller sample may be d e s i r a b l e
t o reduce t h e r a d i a t i o n hazard. Samples should be c o l l e c t e d a t l e a s t 0.5 m i l e below dams or w a t e r f a l l s t o a l l o w f o r t h e escape o f e n t r a i n e d a i r . l o c a l c o n d i t i o n s (e.g.,
Unless one i s i n t e r e s t e d i n t h e e f f e c t s o f
i n l e t streams,
s t a g n a n t a r e a s ) be s u r e t o a v o i d t h e s e
unrepresentative areas when sampling. I f a i r c o n t a c t would cause a change i n t h e c o n c e n t r a t i o n or C h a r a c t e r i s t i c s o f a c o n s t i t u e n t t o be determined, container.
Sampling of
reservoirs,
etc.)
sample w i t h o u t a i r c o n t a c t and completely f i l l t h e
unconfined water
a t s p e c i f i c depths (e.g.,
ponds,
lagoons,
d u r i n g which a i r c o n t a c t or a g i t a t i o n would cause a change i n t h e
c h a r a c t e r i s t i c s o f a c o n s t i t u e n t should be c a r r i e d out w i t h an apparatus i n which t h e
A volume equal t o f o u r
sample flows through a tube t o t h e bottom o f t h e c o n t a i n e r . t o t e n times t h e volume o f t h e sampling c o n t a i n e r sample I s t a k e n . apparatus t h a t w i l l
should pass through b e f o r e t h e
I f d i s s o l v e d gases a r e o f no i n t e r e s t , p e r m i t t h e c o l l e c t i o n of
any
less complicated
t h e sample a t a desired
depth o r
a
composite sample from several p o i n t s i n a v e r t i c a l s e c t i o n w i l l be adequate. When samples are t o be shipped, possibility of
f r e e z i n g may occur.
s u f f i c e s f o r t h i s purpose.
do n o t f i l l
An a i r
space o f
t h e b o t t l e completely approximately
25ml
if a
usually
I f v o l a t i l e s are t o be determined, t h e sample should f i l l
t h e c o n t a i n e r , which then should be sealed t i g h t l y and p r o t e c t e d from f r e e z i n g . i f t h e w a t e r t o be sampled i s a t low p r e s s u r e , provided t o e x t r a c t t h e sample. arrangement.
A positive-displacement
sampling c o n t a i n e r
at
s p e c i a l means must be
I n s t a l l a t i o n o f a barometric
atmospheric
leg i s the simplest
type pump can be arranged t o discharge i n t o t h e pressure.
between t h e pump and t h e sampling p o i n t .
The sample
receiver
may
be
placed
An arrangement o f t h i s t y p e p e r m i t s one t o
e q u a l i z e t h e r e c e i v e r t o atmospheric pressure and d r a i n i n t o t h e sampling c o n t a i n e r . Grab
sampling
bacteriological analysis.
is
a
simple
and
inexpensive
technique
suitable
for
A l i m i t a t i o n i s t h a t grab samples r e p r e s e n t t h e c o n d i t i o n s
e x i s t i n g o n l y a t t h e p o i n t and t i m e o f sampling.
3.3.2.1
Composite sampling.
As s t a t e d i n Section 3.2.5,
t h e combining o f i n d i v i d u a l grab samples.
composite sampling i s
This type o f water sampling i s n o t s u i t e d
f o r b a c t e r i o l o g i c a l assays and i s l i m i t e d o n l y t o s h o r t - l i v e d
radionucleides.
It is
a simple and inexpensive sampling technique s u i t a b l e f o r chemical and p h y s i c a l analyses when one i s i n t e r e s t e d i n average sample data.,
i.e.,
d a t a p r e s e n t i n g an average
value f o r t h e c o n c e n t r a t i o n o f
various
technique f o r t h e determination of sample (e.g.,
I t i s n o t a good sampling
constituents.
unstable o r
v o l a t l i e components o f
t h e water
carbon dioxide, c h l o r i n e , oxygen, e t c . ) .
3.3.2.2
Continuous sampling.
f r o m s o u r c e s such as w e l l s ,
T h i s procedure may be employed t o sample water
reservoirs,
pipelines,
generators on a continuous b a s i s f o r chemical,
When simultaneous samples from several a r e required,
l o c a t i o n s i n t h e same water source
t h e water may be drawn c o n t i n u a l l y from each p o i n t ( p r o p o r t i o n a l
f l o w ) and mixed i n t o a s i n g l e sample. t h e v a r i a b l e s (e.g.,
size,
i f they
especially
p r o c e s s i n g t a n k s and steam
p h y s i c a l and/or r a d i o l o g i c a l analyses.
to
P a r t i c u l a t e matter o f t e n accounts f o r some o f
q u a n t i t y and t y p e ) which i n t r o d u c e e r r o r s i n t h e analysis,
are d i s t u r b e d .
The water
system should
flow
fast
enough t o
maintain t h e heavier p a r t i c l e s i n suspension and t h e volume should be l a r g e enough t o prevent undesirable f i l t e r a c t i o n . gas-liquid
Pumps employing s u c t i o n p r i n c i p l e s d i s t u r b t h e
d i s s o l v e d gases such as oxygen or carbon d i o x i d e and these
balance o f
types should be replaced by submersible pumping types. The t i m e response o f a system (i.e., reach 63.2% o f t h e t o t a l
t h e t i m e r e q u i r e d f o r t h e system t o
change between t h e i n i t i a l s t a t e o f e q u i i i b r i u m and t h e
f i n a l s t a t e o f equi i i b r i u m r e s u l t i n g from a step change introduced a t t h e I n p u t t o the
system)
describes
the
sampling
system's
ability
to
to
respond
transient
c o n d i t l o n s i n t h e water source. T h i s sampling procedure has e s s e n t i a l l y no i i m i t a t i o n s . on-stream
analyzers,
matter causes
chemical,
physical
and
radiological
I t i s suitable for
analyses.
Particulate
i i t t l e e r r o r and t h e technique possesses a h l g h degree o f
accuracy.
The main drawback i s t h a t t h e equipment i s more complicated and more expensive than o t h e r grab sampling techniques.
3.3.3
Stack sampling
Stack sampling i s u s u a l l y done t o
monitor a source o f suspected p o l l u t i o n
No m a t t e r
o r where i t i s desired t o measure t h e e f f l c i e n c y o f c o l l e c t i o n equipment.
what t h e purpose o f t h e study, t h e sampling procedure must be capable o f a reasonably accurate e v a l u a t i o n o f specific pollutants.
t h e source expressed i n terms o f
(e.g..
emission o f
( 1 ) t o o b t a i n d a t a about t h e
Stack sampling may be necessary:
emissions f o r an emission source or t o
the rate of
i d e n t i f y a predominant source
i n t h e area
t o d e t e r m i n e t h e h y d r o c a r b o n r e l e a s e f r o m an o r g a n i c s o l v e n t used i n a
degreasing t a n k ) , information
for
( 2 ) t o determine compliance w l t h the
proper
selection
of
control
regulations,
equipment,
(4)
e f f i c i e n c y of c o n t r o l equipment i n s t a l l e d t o reduce emissions (e.g.,
( 3 ) t o gather to
determine
i f a device i s
guaranteed t o be 95% e f f i c i e n t f o r removal o f p a r t i c u l a t e matter t h e e f f l u e n t stream must be sampled a t t h e i n l e t and o u t l e t o f t h e device t o determine i f t h e guarantee
57 has been met),
( 5 ) t o evaluate emission changes r e s u l t i n g from process o r equipment
modifications,
( 6 ) t o c o l l e c t data f o r legal evidence.
The l a b o r a t o r y sample s i z e d i c t a t e s t h e sampling procedure t o be employed. S t a c k gases may be c o l l e c t e d by a b s o r p t i o n , sampling.
adsorption,
and shape.
A s a t i s f a c t o r y sample would be one t h a t
p a t t e r n i n t h e duct and stack,
i s f r e e of
evidence of chemical o r physical change.
and g r a b
i s representative o f the flow
extraneous contamination and shows no
i n stack sampling,
a i r o r gas f l o w through t h e duct, stack, r o o f monitor
t h e approximate range of
sampling,
stack o r
one measures t h e r a t e o f
, window
or other cross-section
i f p a r t i c u l a t e s a r e t o be
a t which p o l l u t i o n c o n c e n t r a t i o n s a r e t o be sampled. sampled,
freeze-out,
P a r t i c u l a t e matter sampling i s more d i f f i c u l t due t o p a r t i c l e s i z e , charge
duct v e l o c i t y
must be known p r i s r t o
A number o f
T h i s enables one t o use t h e i s o k i n e t i c sampling procedures.
instruments f o r measuring a i r v e l o c i t y are a v a l l a b l e ( r e f . 86-89);
t h e standard p i t o t
tube ( r e f . 90) combination w i t h a d i f f e r e n t i a l pressure gauge i s t h e most w i d e l y used and t h e most s a t i s f a c t o r y velocity-measuring
instrument.
Obtaining a r e p r e s e n t a t i v e sample from a stack all
process parameters vary w i t h
both t i m e and
i s a compiex t a s k because
location w i t h i n the
c o n d i t i o n s i n a s t a c k may be d e s c r i b e d by t h r e e r e l a t e d t e r m s : concentration,
( 2 ) stack gas f l o w r a t e ,
stack.
The
(1) pollutant
( 3 ) p o l l u t a n t mass emission r a t e .
The
p o l l u t a n t mass emission term i s t h e most important because many r e g u l a t i o n s s p e c i f y p e r m i s s i b l e emissions on t h i s basis. PMR = s
cs
The t h r e e terms may be r e l a t e d as:
Fs
x
(3.18)
where K R S = t h e average p o l l u t a n t mass emission r a t e ;
E5
= t h e average stack poi l u t a n t c o n c e n t r a t i o n ;
Fs
= t h e average r a t e o f v o l u m e t r i c stack gas flow.
The average r a t e o f average gas v e l o c i t y ,
-
v o l u m e t r i c stack gas flow,
-V s ,
Fs Is
and t h e area o f t h e stack, A
determined by measuring t h e
5'
-
Fs = Vs x A
(3.191
B a s i c a l l y stack measurements may be d i v i d e d i n t e r n a l and those e x t e r n a l t o t h e stack.
pressure and flow r a t e o f t h e exhaust gas. temperature,
f l o w r a t e and t o t a l flow.
i n t o two c a t e g o r i e s :
those
The i n t e r n a l measurements a r e temperature, E x t e r n a l measurements are gas sample
These a r e measured t o e s t a b l i s h t h e proper
sampling r a t e and determine t h e t o t a l q u a n t i t y o f sample withdrawn. A good discussion o f stack sampling may be found i n Volume I l l o f S t e r n ' s
multi-volume t r e a t i s e on A i r P o l l u t i o n ( r e f . 9 1 ) .
Archinger and Shiegehara ( r e f . 63)
c h a r a c t e r i z e d sources according t o t h e i r v a r i a t i o n s i n cross-section
and time.
Stack
pollutant concentration can have time and cross-sectional variation because
E S and F S
must be measured in such a way that the resulting average pollutant mass emission rate,
is representative (i.e., unbiased). When source conditions are steady (1.e..
no variation with time) and
uniform (i.e., no variation from point to point within the cross section), only one measurement is needed for accurate results. Into th i s category
.
Sampling for a gaseous pollutant falls
When source conditions are steady with regard to time and non-uniform with regard to velocity, a series of measurements must be made. The number of measurements is determined b y the shape and dimensions of the stack and its proximity to various obstructions such as elbows.
A coal-fired
particulate emissions is an example of this category.
power plant measured
for
Usually a composite sample is
A composite sample is one on which a series of pollutant measurements is
extracted.
made on the sample collected in the same pollutant collection device, as opposed to using a separate collector for each measurement. When source conditions are unsteady with time and uniform with velocity. measurements are needed at only one location within the cross section.
The longer
the sampling period for noncyclic operation the more representative the measurement will be (e.g., sampling of a cyclic operation for a gaseous pollutant at a point where the gas stream is not qulescent).
If the source (time) and the flow conditions
(velocity) are both non-uniform, one must use more complicated sampling procedures. Under these conditions it is very difficult to obtain a representative sample. The cross-sectional concentration of gaseous pol lutants in a stack
is
usually uniform because of the diffusion and turbulent mixing processes which are present. Thus, with the concentration conditions uniform, it is necessary to sample at only one point in the stack to determine the average concentration,
cS
.
The gas
samples may be taken on an integrated sample flow rate basis or a grab sample basis to meet the sampling strategy requirements decided upon before the project was
in these sampling tralns are a filter, a and a gas mover. Thermometers and manometers may also be used to monitor the temperature and pressure. Tne filter removes the particulate matter that may Interfere in the gaseous component analysis (see Fig. 3.10). The gas meter measures the sampllng flow rate and/or the total gas volume sampled, while the gas mover (pump or other vacuum source) provides the suction to move the gas sample through the other sampling components. Bias occurs if isokinetic sampling is not achieved; sampling rates for particulates are above or below the proportional rate. A particulate sampling train (Fig. 3.11) is composed of a nozzle, probe, a device for collecting the particulate matter, one or more gas meters and a gas mover. General l y a pl tot tube is used to A number of operational measure the stack gas velocity (see Section 3.2.3.1). principles may be used for the collector, i.e., filtration, electrical preclpitation, undertaken.
The basic components used
probe, gaseous pollutant collector, gas meter, flow regulator
59 l i q u i d scrubbing, condensation o r any combination of these.
wn
WDRE lR COLUMN
COLLECTOR Fig.
3.10
Absorption set-up
mni VOLUM
CASFLWV RATE METER
GAS METER
f o r gaseous p o l l u t a n t s i n a s t a c k .
R e p r i n t e d by
permission o f t h e p u b l l s h e r (Ann Arbor Science P u b l i s h e r s Inc.).
V M
PROBE
Fig.
3.11
oa
A p a r t i c u l a t e sampling t r a i n .
Reprinted by permission o f t h e p u b l i s h e r
(Ann Arbor Science P u b l i s h e r s I n c . ) .
I f no r e g u l a t i o n e x i s t s f o r t h e s a m p l i n g s t r a t e g y , selected.
t h e n one must be
A p r e l i m i n a r y survey would determine t h e source category.
t h i s t y p e are beyond t h e scope o f t h i s book.
Dlscussions o f
I n f o r m a t i o n concerning such surveys may
be found i n Chapters 3 and 5 o f t h e book by Brenchley e t a l . ( r e f . 88).
3.4 ADSORPTION TECHNIQUES
The
use o f a d s o r b e n t s i s a u n i q u e t e c h n i q u e t o i s o l a t e a ' v a r i e t y o f
p o l l u t a n t gases.
The technique
i s not s e l e c t i v e
for
s p e c i f i c gases because t h e
commonly used adsorbents have n o t been developed t o t h a t
level.
Consequently,
a
m i x t u r e o f gases i s u s u a l l y r e t a i n e d which may cause d i f f i c u l t i e s when t h e sample i s analyzed i n t h e laboratory. gel,
molecular sieves,
Commonly used adsorbents are:
porous polymers,
a c t i v a t e d alumina, s i l i c a
ion-exchange r e s i n s ,
charcoal
and Cellte..
The samples a r e drawn through a c o n t a i n e r and over t h e adsorbent maintained a t e i t h e r ambient o r subamient temperatures.
The adsorbed m a t e r i a l s can be removed by h e a t i n g
t h e adsorbent t o v o l a t i l i z e t h e trapped m a t e r i a l ( t h e n f l u s h e d w i t h an I n e r t gas i n t o a chromatograph o r o t h e r a n a l y s i s system) oc by removal from t h e adsorbent w i t h a s u i t a b l e solvent.
A n a l y s i s may be made i n a number of d i f f e r e n t ways.
A number of problems a r e associated w i t h t h e technique.
Water vapor can
d e a c t i v a t e t h e adsorbent o r t h e adsorbent can cause i s o m e r i z a t i o n o r r e a c t i o n t o
60 occur
and
thus
alter
the
sample
(refs.
79,
89
and
90).
Because
of
the
n o n s p e c i f l c i t y o f t h e adsorbent concentrated gases on t h e surface can r e a c t w i t h each o t h e r or because of t h e i n s t a b l l i t y of c e r t a i n gases and adsorbents decomposition can occur when sorbates are removed. Adsorption sampling has been used as a f i r s t step i n t h e measurement o f a wide v a r i e t y o f gases, e.g., gases ( r e f .
931,
monoxide ( r e f . 96). Iindane ( r e f . 99).
organic gases ( r e f . 911, r a d i o i o d i n e ( r e f . 92), v o l c a n i c
n i t r o u s oxide
(ref.
94),
carbon d i o x i d e ( r e f . Versino e t a l .
(ref.
ammonia and amines
97),
ozone ( r e f .
98)
(ref.
95).
carbon
and t h e p e s t i c i d e
100) described t h e sampling o f organic a i r
p o l l u t a n t s by what they r e f e r t o as "dynamic
enrichment"
on an a d s o r p t i o n column.
They used t h i s technique because it was judged by o t h e r s t o be r e l i a b l e .
The b a s i s
f o r r e l i a b i l i t y i s t h a t ( 1 ) t h e adsorbed Components can be t h e r m a l l y e l u t e d ( a v o i d s the need f o r u l t r a - p u r e s o l v e n t s ) , e a s i l y automated.
( 2 ) t h e a d s o r p t i o n and desorption procedures are
( 3 ) t h e technique a l l o w s complete a d s o r p t i o n o f components t h a t
have a r e t e n t i o n volume lower than t h e sample volume passing through t h e a d s o r p t i o n column and an e q u i l i b r i u m c o n c e n t r a t i o n p r o p o r t i o n a l o r i g i n a l sample f o r more v o l a t i l e components, i n situ. area ca.
t o the c o n c e n t r a t i o n
i n the
and ( 4 ) t h e sampling can be performed
The porous polymer, Tenax GC (poly-p-2,6-diphenylphenyleneoxide, s u r f a c e 2 30 m /g, 60/80 mesh) was used as t h e adsorbent because i t i s hydrophobic,
has low a d s o r p t i o n strength,
a l l o w s t h e thermal
e l u t i o n of r e l a t i v e l y high b o i l i n g
compounds, has good thermal s t a b i l i t y and does n o t r e a c t w i t h most o r g a n i c compounds. An e x c e l l e n t review o f t h e technique o f e x t r a c t i n g o r g a n i c compounds from water by means of t h e adsorption sampling technique has been presented by D r e s s l e r ( r e f . 101).
3.4.1
Gases Gases and v a p o r s w i I I adhere t o some e x t e n t t o any s o l i d s u r f a c e a t
ordinary or
Porous s o l i d s n o t o n l y have e x t e r i o r surfaces b u t
low temperatures.
i n t e r i o r surfaces as w e l l ,
and some such s o l i d s possess vast networks o f extremely
minute channels and submicroscopic pores. (non-polar),
These s o l i d s i n c l u d e a c t i v a t e d carbon
s i l i c a gel ( p o l a r ) and a c t i v a t e d alumina ( p o l a r ) .
number and k i n d s o f
substances they
substances they w i l l r e t a i n .
adsorb,
as well
as
Each d i f f e r s i n t h e
i n t h e amount o f
sorbed
S e l e c t i o n o f an adsorbent r e q u i r e s c o n s i d e r a t i o n of a
number o f p r o p e r t i e s o f t h e adsorbent.
I t should have a h i g h s p e c i f i c surface area.
( A 1 0 1 and s i l i c a gel ( S i O ) u s u a l l y range from 200-600 m2/g, whereas 2 3 2 2 a c t i v a t e d carbon can vary from 500-2000 m /g, depending on t h e a c t i v a t i o n process.
Alumina
The adsorbent should have some s e l e c t i v i t y towards p o l a r e.g.,
and non-polar
sorbates;
alumina and s i l i c a gel have g r e a t a f f i n i t y f o r p o l a r compounds whereas charcoal
(carbon) has more a f f i n i t y f o r
non-polar
compounds.
There should be no chemical
61 r e a c t i v i t y between sorbents and sorbates unles one d e s i r e s t h i s p r o p e r t y t o enhance selectivity.
R e t e n t i o n c a p a c i t y f o r t h e sorbates should be h i g h and t h e sorbent
should not e a s i l y f r a c t u r e o r crush.
On t h e o t h e r hand,
t h e d e s o r p t i o n r a t e should
a l l o w r a p i d q u a n t i t a t i v e recovery o f t h e sample. S i l i c a gel and a c t i v a t e d alumina may be used f o r s h o r t d u r a t i o n sampllng from atmospheres t h a t a r e s u f f i c i e n t l y dry so t h a t t h e adsorbent does n o t become s a t u r a t e d w i t h moisture.
A c t i v a t e d carbon i s capable o f adsorbing o r g a n i c gases and vapors I n
preference t o atmospheric moisture. adsorbing
The carbon has a g r e a t e r o v e r - a l l
and r e t a i n i n g atmospheric
greater s e l e c t l v i t y . gases and vapors,
gases
and vapors
but
silica
capacity f o r
gel
exhibits
a
A c t l v a t e d carbon i s more s u i t a b l e f o r c o l l e c t i n g a m i x t u r e o f
e s p e c i a l l y when present
gases and vapors from s i l i c a gel
i n small concentrations.
Desorption o f and it I s
i s e a s i e r than from a c t i v a t e d carbon,
p o s s i b l e t o o b t a i n some separation of gases and vapors by s e l e c t l v e d e s o r p t i o n from s i l i c a gel.
Passing contaminant-free a i r a t temperatures up t o 3 5 0 T has been found
t o be e f f e c t i v e i n removing gases and vapors sorbed on s i l i c a g e l .
Other e f f e c t i v e
methods i n c l u d e e x t r a c t i o n w i t h p o l a r s o l v e n t s such as w a t e r o r a l c o h o l s and d i s t i l l a t i o n with
s a t u r a t e d steam a t
ambient
pressures.
Each
adsorbent
can be
s u i t a b l y surface m o d i f i e d by o t h e r s a l t s t o make it s u i t a b l e f o r chemisorption ( r e f s . 102 and 103) o f gases and vapors. Adsorptlon u s i n g a c t i v a t e d carbon f o l l o w s t h e general h a v i n g c r i t i c a l t e m p e r a t u r e s b e l o w -50°C
moderately adsorbed,
gases
and b o i l i n g p o i n t s b e l o w -150OC a r e
e s s e n t i a l l y not adsorbed a t o r d i n a r y temperatures. temperatures between 0°C
scheme t h a t
Gases and vapors w i t h c r i t i c a l and O°C
are
w h i l e heavier gases and vapors ( b o i l l n g p o i n t s above O°C)
are
and 12OOC and b o i l i n g p o i n t s between -1OOOC
r e a d i l y adsorbed and r e t a i n e d a t o r d i n a r y temperatures
(e.g.,
odorous o r g a n i c and
i n o r g a n i c substances). One o f t h e simplest i s o l a t i o n and c o n c e n t r a t i o n techniques,
applicable t o
a i r and gaseous samples,
c o n s i s t s o f a t r a p immersed i n a c o l d b a t h t o condense t h e
components o f i n t e r e s t .
This t y p e o f t r a p (see F i g . 3.12) i s more e f f e c t i v e i f it i s
packed
with
some
solid
condensation may occur. s i l i c a gel, charcoal, m a t e r i a l s (e.g.,
material,
thus
presenting
a
large
surface
on
which
M a t e r i a l s t h a t may be used f o r t h i s purpose a r e alumina,
porous polymers and even l i q u i d - c o a t e d chromatographic support
coated diatomaceous e a r t h s ) .
Most o f t h e chromatographlc supply companies s e l l prepackaged and presealed adsorption tubes which may be used f o r t h i s t y p e of sampllng (SKC, PA,
U.S.A.
and Supeico,
Bellefonte,
PA,
U.S.A.
a r e two).
Inc.,
E i g h t y Four,
The a d s o r p t i o n t u b e i s
taken t o t h e l a b o r a t o r y where it may e i t h e r be connected d i r e c t l y t o t h e i n j e c t i o n p o r t of
t h e gas chromatograph and t h e sorbed gases removed w h i l e c a r r i e r
gas
is
f l o w i n g through t h e tube o r t h e gases may be desorbed and condensed i n a c o l d t r a p t o be i n j e c t e d as a l i q u i d . tube f o r subsequent
Proper desorption techniques w i l l p e r m i t t h e use o f t h e
sampling.
Fig.
3.13
I s one p o s s i b l e arrangement which may be
62
ro VACUUM AND FLOW MhlMENT
SAMPLE IN
WnlNC
J
LCOOLANTWATER, DRY ICE, ICE,UQUIDN2
F i g . 3.12 Tube t r a p t o condense and concentrate gas samples. P r a c t i c e o f Gas Chromatography,
John Wiiey d Sons,
Reprinted from A i r P o l l u t i o n C o n t r o l , John Wiley &
F i g . 3.13 Gas adsorption system. Sons,
Reprinted from Modern
Inc.
Inc.
used f o r t h i s t y p e o f sampling. The adsorbed gases and v a p o r s may be desorbed by d i s p l a c e m e n t superheated steam and/or
heating the
desorbed m a t e r i a l i n t o c o l d t r a p s .
adsorbent
t h e non-organic
solution.
and
distilling
the
The adsorbed gases may a l s o be removed by
s o l v e n t c a r b o n d i s u i f i d e and t h e sample a n a l y z e d as a
Some i i m i t a t l o n s o f t h i s technique a r e t h a t it I s n o t always p o s s i b l e t o
remove t h e adsorbed gas w i t h o u t retained
vacuum
The e x t e n t of adsorption i s i n v e r s e l y r e l a t e d t o
temperature and q u a n t i t y o f gas adsorbed. u s e of
under
with
which
can
cause
decomposition
analytical
inexpensive technique capable of
and a m i x t u r e o f
difficulties.
isolation of
gases
Adsorption
o f t e n can be e a s i l y d e a c t i v a t e d by w a t e r vapor adsorbents are known t o cause removal
of
i s o m e r i z a t i o and/or
some
adsorbates
i s usually a
simple,
a d e s i r e d component f r o m o t h e r
c o n s t i t u e n t s and c o n c e n t r a t i n g t r a c e amounts of a sample component.
sample whereas
is
The adsorbent
i n t h e sample s t r e a m . hydrolysis
cause chemical
and t h u s
changes,
Certain alter
e.g..
the
esters
hydrolyze when steam i s t h e e l u e n t . Table 3.2 i s a r e p r e s e n t a t i v e l i s t i n g of t h e many types of adsorbents which
63 have been used and t h e types o f compounds which have been sampled.
TABLE 3.2
Sorbents used t o samples various components i n a i r and/or enclosed atmospheres
DMSO = d i m e t h y l s u l f o x i d e ; ECD = e l e c t r o n - c a p t u r e detector; FID
= flame i o n i z a t i o n detector;
GC
= gas chromatography; HPLC = high-performance
FPD = flame photometric detector;
MS
= mass spectrometry;
l i q u i d Chromatography;
RSD = r e l a t i v e standard d e v i a t i o n ;
TCE
= trichloroethylene. 12 (10 ) are meant.
I n ppb and ppt,
9 t h e American B i l l i o n (10 ) and t r i l l i o n
Sorbent
Sor bates
Comments
Ref.
ALUM I NA
Halogenated alkanes, n-alkanes, alcohols, nitrogen-containing compounds
Thermal s t r i p p i n g ,
Benezene i n a i r
Thermal desorption, NZ c a r r i e r , FID, Detection
FID
104,105
106,107
3 l i m i t : 0.05 mg/m ;RSD=2.5%
CARBON Charcoa I
Glutaraldehyde
Water-ultrasonic desorption, F ID.
108,109
Hydrocarbons
Charcoal coated on f e r r o magnetic wire. R e s u l t s compared t o porous polymers and support bonded phases.
110,111
Aromat ic hydrocarbons
Use of Bendix F l a s h e r f o r desportlon
112,113
Benzene
CS s o l v e n t removal, backf l8sh technlque. RSD = 0.62%
114,115
116
Ambersorb
CHC I 3 ,C5H 12 s
FID, h o t - w i r e d e t e c t o r .
XE-340
CH30H
Back f l u s h technique w i t h He.
Carbosieve B
Halogenated n- I k vinyl chloride, dimethyl e t h e r
Activated carbon
Halogenated alkanes, n-alkanes. alcohols, nitrogen-containing
es,
Thermal d e s o r p t i o n ppb s e n s i t i v i t y . F I D and ECD.
117
Thermal s t r i p p i n g FID
104,105
64 TABLE 3.2 (Cont'd.) compounds. Alkanes, a I kynes
al kenes,
0.2-1000ppb.Thermal desorption, FID
118
Granu I a r Active Carbon
Organic vapors
P y r o l y s i s w i r e coated w i t h a c t i v e carbon. Therma I desorpt ion.
119
Act I vated Carbon
Benzene, t o l u e n e
Personal a i r sampling devices.GC-MS.Solvent desorption.Detection l i m i t s : 1.0 ppm.
120
Dried Active Carbon
Aromatic hydrocarbons
CS desorption 2 N carrier.FID. 2
121
A c t i v a t e d Carbon
s-Tetrachloroethane other chlorinated hydrocarbons.
Thermal desorption
122
Packed Char coa I
Vinyl chloride
CS2 desorption. N2 c a r r i e r . FID
123
Car bopack BHT
Low-molecular-weight organ i c s
Thermal elutlon,FlD
124
Amber sorb XE-340
Low-molecular-weight organics
Thermal elution,FID
125
Car boc hrome
C -C organic c b p b z n d s . 136 pounds checked.
Thermal desorption
126
V o l a t i l e s from chicken manure
GC-MS
127
Dexsi I 300GC/ Chromosorb
Organic p o l l u t a n t s
Thermogradient desorption GC-MS
DC-200 Silicone 0 1 1
C h l o r p y r i f o s and Ronnel ( b o t h phosphorus compounds).
Thermal g r a d i e n t . ppb sensi t iv i ty.FPD
117
Dinonyl p h t h a l a t e on Parol i t h
Halothane
Desorbed a t 100°C. A r c a r r i e r , FID
128
C Firebrick p%?yethyIene g l y c o l , 400/ Chromosorb W.
Vinyl chloride
CH30H-CO c o o l a n t . Thermal gesorption.N2 carrier.FID
129
A n a l y s i s on poly(pheny1e t h e r )+H3W4.
130
Carbos ieve B/ Porapak QS
8
.
CM-
LIQUID SUBSTRATES
OV-1 01 /Chromosorb,PorasiI D
Su I f u '5-'l$
Hydrocarbons compounds
80
65 TABLE 3.2
(Cont'd.)
PMS-I 00/ S i I i c a gel
Thermal d e s o r p t i o n
131
Thermal desorptlon. Temp.programmed, 55-1 35OC.
132
133
PFMS-4/Cel i t e 545
Dimethyl t e r e phthalate.
GC Durapak-
Chlorpyrifos
Carbonax 400/ Porasi I F
pesticides
( C H ) 0 extraction. 2 5 2 ECD.ppt conc.
ov-I7
V o l a t i l e s from t r i o l e i n heated i n a i r
82 peaks obtained. and MS.
Acrol E i n
3-8, g/g(97 +_ 1 1 % recovery)60-200,,g/g (90 ? 7% recovery)Dynamic d i l u t i o n of samples.FID.
134,135
Thermal desorption.FPD. R e s u l t s compared t o Porapak P, Q; Carbopack B, Tenax, Chromosorb 102, Molecular s i e v e 1 3 X .
136
+
FID
134,135
MOLECULAR SIEVES Molecular Sieve 13X
Molecular Sieve 5A
POLYMERS Porous Po I ymers
Halogenated hydrocarbons
E s s e n t i a l l y 100% recovery. Flow: 0.05-2.0 a h i n .
137
Chromosorb 106
CHCl3,C5Hl2,CH30H
FID,hpt-wire d e t e c t o r s . B a c k f l u s h technique w i t h He
116
Porapak N and R
Aromatic hydrocarbons, halogenated n-alkanes phenols, alcohols,aldehydes, ketones.
Thermal d e s o r p t i o n ppb s e n s i t i v i t y . f l D and FPD
117
Porapak P and Q
Halogenated alkanes, n-alkanes, a l c o h o l s nitrogen-containing organic compounds.
Thermal s t r i p p i n g . F I D
104
S u l f u r compounds, al i p h a t i c animes, carbonyl compounds, hydrocarbons, alcohols, phenols, f a t t y acids, indoles.
p p t t o ppb range
138
Chromosorb 102
Pesticides
E x t r a c t i o n w i t h acetonehexane, ECD.Efficiency o f s o r p t i o n and d e s o r p t i o n 70-965
139
Porapak Q
Halogenated hydrocarbons
Thermal d e s o r p t i o n
140
66 TABLE 3.2 (Cont'd.) Chromosorbs 101 ,1 02,103
Halogenated hydrocarbons
Thermal d e s o r p t l o n
140
Porous Polyurethane Foam (PPF)
P e s t i c i d e s vapors
Solvent e x t r a c t l o n w l t h toluene.ECD
141
Porapak Q
Halocarbons
E l u t i o n extractlon.ECD
142
Porapak N
CHqsC2H4, NO
Headspace over s o i l
143
Porapak Q
Combust Ion and p y r o l y s i s products from polymers
C o l l e c t i o n done a t 2 temps: CO -acetone(H2S,HCN,C4 hy8rocarbons) ,-196°C
144
(carbon oxides,alkanes). SILICA GEL
Halogenated alkanes, n-alkanes,alcohols, nitrogen-contalnlng compounds.
FID.Thermal
desorptlon
Organic s o l v e n t vapors: acetone,methanol.TCE, benzene,toluene.
Aqueous DMSO desorbent >go$ recovery. 8.18 RSD.4.9
145
N i t r o t o l u e n e and t o l u i d l n e Isomers
CH30H elution,N2 carrier,FlD
146
A n l I I n e compounds
C H OH e x t r a c t l o n . Hgpqanol I n t e r n a l s t d . He c a r r l e r . F I D
141
Volcanic gases, H 9 , so2
Thermal desorption, 1 30°C
148
4,4'Methylenebls (2-chloroanlline)
CH OH e x t r a c t i o n . 1O:l InJected i n t o
149
104,105
-
HPLC. Reversed-phase system.UV detectlon.Quant. 0.15 ~g/sample.Preclsion: 9.2% a t 1.5 pg/sample and 14% a t 0.15 vg/sample. SUPPORT-BONDED CHROMOSORBS
High-molecular-weight organic v o l a t i l e s
Sorbates removed by solvent extraction
150
TENAX POLYP-2.6-01-
Acetone, diDhenvlamine p e t r o I ium, n-C6
Recoveries from 90-1 OO$.RSD=5% a t ppb l e v e l .
151,152
Aromatic hydrocarbons
Use o f Bendlx Flasher desorption.
112,113
F I D , hot w i r e detectors.Backflush technlque w i t h He.
116
PHENYLPHENY-
LENEOX I DE )GC
67 TABLE 3 . 2 (Cont'd.) Aromat 1 c hydrocarbons , halogenated alkanes, phenols.
Thermal desorption. ppb sensi t i v 1 ty.F ID and PFD.
117
Halogenated alkanes, n-alkanes,alcohols nitrogen-containing compounds.
Thermal s t r i p p i n g . F ID.
104
Phenols and c r e s o l s
94-981~0I I e c t i o n efflclency.ppb.FlD.
152
Food v o l a t i l e s from r i c e and soybeans
Thermal desorption
153
Odorous compounds from a x i l l a area of humans. 1-propyl e s t e r s o f f a t t y acids, aldehydes, anti-oxidants.
GC-MS. Thermal des o r p t i on
154
Alcohols,ketones, acids,S-,N02-,CI-,
Solvent e x t r a c t i o n . Liquid injection for
155
NH2-compounds,
phenols.0thers
pheno I s.
desorption.
C i g a r e t t e smoke voiatlles:isoprene, acetaldehyde, a c r o l e i n .
Thermal d e s o r p t i o n
thermal
I n s e c t chemosensory compounds
156
157
Halogenated hydrocarbons
Thermal desorption
140
Vinyl chloride
Thermal desorption N2 c a r r i e r . F I D
158
Low-moiecularweight organics
Thermal e l u t i o n . F ID.
125
Esters, a I dehydes, ketones,alcohols, acids,anhydrides, amines,hydrocarbons, c h l o r i n a t e d hydrocarbons
C a l c u l a t e d breakthrough volumes and s a f e sampling volumes.
159
S u l f u r dioxide
Sampl i n g r a t e : 20-50 ml/min. polyphenylether+ H3W4 on 40/60 Chromosorb T,
160
Zm x 3.2 mm column, recovery ,951. L i m i t of d e t e c t ion, 2 ppb, ambient temp. t r a p p i n g
XAD-2,
Halogenated alkanes,
Thermal s t r i p p i n g
104,105
68 TABLE 3.2 (Cont'd.) XAD-4 XAD-7 Res i ns
n-alkanes,alcohols, nitrogen-contalning organlc compounds
FID.
XAD-4 Resin
Halogenated alkanes,
C2H5 e l u t i o n
al kenes
60-95s r e c o v e r l e s . ECD.
Organophosphorus pesticides
A l k a l i FID. Sample e f f i c i e n c y ca. 84?4%.
162
D i ch I orvos
FPD. Confined a i r locations. Re80%. coveries
163
XAD-4 Resin
161
MISCELLANEOUS Potassium n i t r a t e
-
Gold-coated g l a s s beads
H S,dimethyl s u l f i d e mithy I su I f i de,R-S compounds
Thermal d e s o r p t i o n FPD.Iimits o f detecti0n:O.l ppt.
164
Polished copper mesh
C h l o r i n a t e d hydrocarbons
P a r t s per t r i l l i o n . C o l l e c t i o n a t -196OC. A n a l y s i s on Porapak Q.MS d e t e c t i o n .
165
Nylon gauze
Ma1a t h i o n
Acet one-hexane ( 1 : l ) e x t r a c t i o n FPD.
166
Adsorption sampling techniques are much more e f f i c i e n t f o r gases than f o r liquids.
L i q u i d s may be sampled more e a s i l y by grab sampllng ( S e c t i o n 3 . 3 . 2 ) , dipper
techniques ( S e c t i o n 3.8),
etc.
The adsorption technique,
been used d i r e c t l y and I n d i r e c t l y .
I n t h e d i r e c t mode,
f o r water
sampling,
has
t h e water t o be sampled i s
passed through a column o r porous polymer o r s i m i l a r adsorbent where t h e components o f i n t e r e s t are removed from t h e water stream.
The volume o f water passed over t h e
adsorbent should be monltored so t h a t component(s) c o n c e n t r a t o n ( s ) can be r e l a t e d t o sample volume.
In t h e i n d i r e c t mode,
t h e water sample i s s t r i p p e d of
Its volatile
components by bubbling an i n e r t gas (N2 or He) through t h e water sample. stream i s then passed through a column c o n t a i n l n g charcoal, o r s i l i c a gel.
The gas
a porous polymer, alumina
Knowing t h e volume o f water which has been sparged one can c a l c u l a t e
t h e concentration o f t h e v o l a t i l e components a f t e r a n a l y s i s .
Whether t h e water
is
sampled d i r e c t l y o r i n d i r e c t l y by t h e a d s o r p t i o n technique, t h e subsequent removal o f sorbates i s achieved by h e a t i n g t h e adsorbent, (leaching).
steam s t r i p p i n g or s o l v e n t e x t r a c t i o n
The g a s - s t r i p p i n g technique has been used by a number of workers i n t h e
f i e l d ( r e f s . 99 and 102). organics (CAM,
i.e.,
A closed loop technique o f g a s - s t r i p p i n g and removal o f
carbon adsorption method) has been used by Grob and Grob ( r e f .
69 151).
The d i r e c t a d s o r p t i o n technique has been used by many workers ( r e f s .
106, 108,
110, and 1 1 2 ) . The volume of water r e q u i r e d as a sample w i l l contamination.
U s u a l l y 500-1500
ml
i s adequate.
a d s o r p t i o n should be approximately 5-7 ml/min cross-sectional sampling,
area).
desorption,
organic m a t e r i a l .
Fig.
3.14
separation
depend upon t h e
levels of
The sampling r a t e for
(depending on sorbent-bed
direct
depth and
r e p r e s e n t s one p o s s i b l e a r r a n g e m e n t f o r t h e
and
determination
scheme o f
a water
sample
of
The l i m i t a t i o n s and disadvantages are discussed i n S e c t i o n 3.4.1
apply t o water samplings w e l l as a i r sampling. Table 3.3
l i s t s many o f t h e adsorbents which have been used and t h e t y p e s
o f components which have been sampled by t h i s technique.
-
WATER SAMPLE
4
PUMP
1
FLASH HEATER
He
He
=
AOSORPTION COLUMN
(glass lined s.s.1
F i g . 3.14
Adsorption and e l u t i o n system f o r
permission from J. Chromatogr.,
water and gas samples.
R e p r i n t e d by
122(1976) 373-388.
3.5 CHEMICAL REACTION TECHNIQUES A sampl i n g technique which involves a chemical r e a c t i o n i s used
when t h e cmponent t o be determined does n o t e x i s t i n a form t h a t i s r e a d i l y detected by a chromatographic method.
Many such techniques
m e a s u r i n g s t e p i s a s p e c t r o s c o p i c one ( r e f . d e t e c t o r tubes,
t h e D r a g e r a n a l y z e r tubes,
a r e a v a i l a b l e where t h e f i n a l
178).
T h e r e a r e t h e K i t a g a w a gas
t h e Gastec d e t e c t o r t u b e s ,
detector tubes and t h e S p e c i f i c chemical d e t e c t o r tubes.
t h e NBS
70 TABLE 3.3
Sorbents used t o sample v a r i o u s components i n water samples
See Table 3.2 f o r a b b r e v i a t i o n s Sorbent
Sorbates
Comments
Ref.
Thermal desorption w i t h He backf iush,FID, h o t - w i r e detectors.
116
CARBON Ambersorb XE-340
CHCl3, C5H,2,
CH30H
Spherocarb
Organic contaminants
Organic s o l v e n t e l u t i o n , waste and d r i n k i n g waters
167
N i t r o u s oxide
Adsorption a t O O C , thermal desorption. Molecular s i e v e 5A f o r determination.EDC
168
Chromosorb 106
CHCl3,C5Hl2,CH30H
Thermal d e s o r p t i o n w i t h He blackflush.FID, h o t - w i r e detectors.
116
Macroporous PO I ymer
Aromat ic hydrocarbons
ppb l e v e l s . sorption.
169
Porapak Q and Chrmosorb 101
Vinyl chloride
FID
Styrene-divinylbenzene
Pesticides
Porous Polyurethane Foam (PPF 1.
Pesticides
TENAX-GC
CHC13,C5H12,CH30H
Thermal d e s o r p t i o n w i t h He backf I ush.F ID,hot-wire detectors.
116
Petroleum, n-C 6’ acetone, d i pheny I ami ne
Recoveries v a r i e d from 90100%.RSD=5%a t ppb l e v e l
151
Haloforms
Thermal desorption.GS-MS ppb l e v e l s .
172
Haloforms
Thermal desorption, FID,ECD.
113
MOLECULAR S I E V E S 13x
POROUS POLYMERS
Thermal de-
110 171
DC-200/Gas Chromatogr
112
0 160OC. ECD.
71 TABLE 3.3 (Cont'd.) V o l a t i l e organic
n-C e l u t i o n . SE-30 174 5 SCOT column. GS-MS. Poly nuclear aromatic hydrocarbons done by LC.
compounds from marlne b i o t a
Ozonlzation products from waste water. c -.C7-.C8-,Cgaqdehydes
N i t r o g e n sparged samples
175
XAD-2
Haloforms
P y r i d l n e elutions.ECD
176
XAD-4
Organic contaminants
Organic s o l v e n t e l u t i o n . Waste and d r i n k i n g water samp I8s.
167
XAD-2
2,3,7,&Tetrachlorobenzo-pd i o x i n (TCDD)
lo-11 t o 10-12 g/e C H OH e l u t i o n . GC-MS. R&c%verI es o f 52-84s w it h 0.0001-0.15 pg standards.
177
XAD-RESINS
I f a gas w i l l r e a c t c h e m i c a l l y w i t h a l i q u i d ,
a d s o r p t i o n e f f i c i e n c y tends
t o be much higher than would be expected from p u r e l y physlcal a d s o r p t i o n ( r e f . 1 7 9 ) . Ethylene has been sampled by t h e a d s o r p t i o n technique u s i n g charcoal which has been impregnated w i t h bromine.
T h l s c o n v e r t s t h e e t h y l e n e t o e t h y l e n e dibromide which i s
more e a s i l y r e t a i n e d ( r e f .
180).
Adsorption on a c t i v a t e d charcoal may be increased
by t h e Impregnation o f o t h e r chemicals on i t s surface; more r e a d i l y s o r b e d when t h e c h a r c o a l phosphoric acid.
has been
a l k a l i n e p o l l u t a n t s are
impregnated w i t h s u l f u r i c o r
Hydrogen s u l f i d e can be r e a d i l y sorbed and concentrated
charcoal has been impregnated w i t h lead acetate. t h e sorbed components r e a d i l y a v a i l a b l e would,
e.g.,
for
i f the
The l a s t two examples do n o t leave
gas chromatographic
analysis.
They
however, be more a v a i l a b l e f o r ion-exchange chromatography. I n chemisorption t h e r a t e I s very h i g h due t o t h e h i g h e f f i c i e n c y o f a c t i v e
surfaces as compared t o small areas. can be trapped. sampling time.
As a consequence,
smaller amounts o f p o l l u t a n t s
T h i s r e s u l t s i n a smaller a l r volume belng r e q u i r e d o r a s h o r t e r Another r e s u l t I s t h a t low c o n c e n t r a t l o n s o f t o x i c substances may be
determined by t h e sampllng o f l a r g e a i r volumes. Traces o f water i n a gas sample may be determined by t h e use o f a flame i o n i z a t i o n d e t e c t o r I f t h e gas sample i s c o l l e c t e d by passing over c a l c i u m carbide. The product from t h e r e a c t i o n o f water and c a l c i u m c a r b i d e i s acetylene, r e a d i l y detected by flame i o n i z a t i o n .
a substance
3.6 FREEZE-OUT OR CRYOGEN IC TECHN I QUES
The c o l l e c t l o n and c o n c e n t r a t i o n o f a t m o s p h e r i c gases and v a p o r s by c o n d e n s a t l o n a t low t e m p e r a t u r e s has some a d v a n t a g e s o v e r o t h e r c o n c e n t r a t i o n methods, analysls,
Collected material
is
immediately a v a i l a b l e f o r
w i t h o u t r e q u l r i n g removal o f
further
separation or
s o l v e n t s o r d e s o r p t i o n from an adsorbent.
Condensation I s g e n e r a l l y t h e most r e l l a b l e method f o r p r e s e r v i n g sampled gases and vapors ( i . e . ,
no chemlcal r e a c t i o n w l t h any p a r t o f t h e c o l l e c t l n g d e v i c e o r i n t r a
and I n t e r m o l e c u l a r r e a c t i o n s ) . The main disadvantage o f c o l l e c t l o n by condensatlon I s t h e l a r g e q u a n t i t i e s
of water
that
However,
condensatlon o f
a r e u s u a l l y condensed w l t h t h e c o l l e c t e d vapors atmospheric
contaminants
w l t h water
(see F i g .
3.13).
I s n o t general l y a
serious problem because t h e l r e x t r a c t l o n from water i s e x p e r i m e n t a l l y s t r a l g h t f o w a r d . A special problem I n low temperature c o l l e c t i o n techniques i s caused by t h e f o r m a t i o n
of condensation m l s t s from t h e cooled a i r .
Such m i s t s a r e composed o f
I l q u l d p a r t i c l e s ( a e r o s o l s ) and o f t e n pass through t h e c o l d t r a p s q u a n t i t i e s t o reduce t h e c o l l e c t i o n e f f l c l e n c y o f t h e equipment. such as a g l a s s wool p l u g ,
solld or
i n sufficient
A simple f i l t e r ,
I n t h e c o l d t r a p m i n i m i z e s such losses.
As sample
c o l l e c t i o n proceeds, t h e s o l i d condensate a c t s as a f i l t e r and c o l l e c t i o n e f f l c l e n c y increases u n t i l t h e r e s i s t a n c e of t h e equipment t o f l o w becomes t o o g r e a t . Selection
priorities
of
refrigerants
for
condensation
or
freeze-out
technlques are given t o those m a t e r i a l s which m a i n t a i n a constant temperature b y change of phase. 3.4.
Some o f t h e more common r e f r i g e r a n t s a v a i l a b l e a r e g i v e n I n Table
I n a d d i t i o n t o t h e l i s t i n g I n Table 3.4 o t h e r
a v a i l a b l e by use o f
slushes ( r e f .
181).
i n t e r m e d i a t e temperatures a r e
A s l u s h may be prepared by p l a c l n g t h e
s o l v e n t i n a Dewar f l a s k and addlng l i q u i d n i t r o g e n w i t h s t i r r i n g u n t i l t h e system t u r n s t o a s l u s h ( s e e T a b l e 3.5). atmospheric oxygen i n t h e trap,
L i q u i d n i t r o g e n r e f r i g e r a n t may condense
especially a t
oxygen may then r e a c t w i t h a number of
low sampling r a t e s .
t h e condensed components.
The condensed One s e l e c t s
a
r e f r i g e r a n t s u f f i c i e n t l y c o l d t h a t t h e vapor pressure o f any trapped m a t e r i a l w l l l be low enough t o prevent s i g n i f i c a n t evaporation d u r i n g t h e sampling.
Generally,
the
vapor pressure of condensed gases and vapors should be about 1 T o r r (133 Pa) o r lower a t t r a p temperature. make t h e sample
A i r sometimes I s trapped w i t h t h e condensed sample which can
less s t a b l e .
F l u s h i n g t h e t r a p w i t h helium u s u a l l y removes t h e
trapped a i r b u t a l s o w i l l f l u s h o u t some o f t h e sample components ( r e f . technique most f r e q u e n t l y employed uses a s e r i e s o f temperatures.
traps at
Thus, some degree of f r a c t i o n a l condensation can be achieved.
l a s t t r a p I s empty, one has some assurance t h a t t h e sampling was e f f i c i e n t . e t al.
(ref.
182).
progressively
183) described an assembly
for trapplng
contaminants
c o l l e c t i o n assembly used a d r y i n g tube f o l l o w i n g t h e sample t r a p .
The lower
I f the Shepperd
in air.
The
The o u t l e t o f t h e
d r y i n g t u b e led t o a condenser w h i c h c o u l d b e c o o l e d i n l i q u i d n i t r o g e n .
By
73 c o n t r o l l i n g t h e temperature o f t h e sample t r a p one could do a f r a c t i o n a l d i s t i l l a t i o n of
t h e sample components
i n t o t h e condenser.
After d i s t i l l a t i o n a t a given
temperature i s complete, t h e f r a c t i o n i n t h e condenser i s evaporated d i r e c t l y i n t o t h e i n l e t system o f a gas chromatograph o r mass spectrometer.
Problems a s s o c i a t e d
w i t h t h i s procedure include t h e a d s o r p t i o n o f a c i d i c and unsaturated o r g a n i c vapors by t h e A s c a r i t e i n t h e d r y i n g tube and t h e c o l l e c t i o n o f some water I n t h e condenser. This technique
>2 T o r r (266 P'a).
is
l i m i t e d t o samples having
low p a r t i a l
pressures,
e.g.
P a r t i a l pressures below 1 T o r r (133 Pa) prevent any m a t e r i a l from
being a v a i l a b l e f o r f u r t h e r separation o r a n a l y s i s , w i t h o u t r e q u i r i n g t h e removal o f s o l v e n t s from t h e adsorbent.
I t may be used f o r a wide range o f o r g a n i c s as w e l l as
a t both ambient and source emission m o n i t o r i n g c o n d i t i o n s . Schmidt e t a l .
186) used t h l s technique t o sample very
(ref.
substances from a p r e s s u r i z e d p l l o t p l a n t .
volatile
The sample was b l e d o f f by means o f a
n e e d l e v a l v e and t h e n condensed i n a m e t h a n o l - c a r b o n d i o x i d e c o o l e d e v a c u a t e d container.
A f t e r c o l l e c t i o n t h e vacuum i s r e l i e v e d and t h e sample system i s allowed
t o reach thermal e q u i l i b r i u m . taken
along
highways
chromatography.
and
Deimel and Dulson ( r e f .
then
separated
and
the
condensate
by
gas
They were able t o i d e n t i f y 38 hydrocarbons.
Angerer e t a l .
(ref.
188) c o l l e c t e d a i r samples i n c o i l e d s t a i n l e s s s t e e l
which was imnersed i n l i q u i d n l t r o g e n .
Gas chromatography-mass
technique o f d e t e c t i o n f o r t h e components i n a i r . application")
187) condensed a i r samples
analyzed
spectrometry was t h e
T h i s type of sampling ("pressure
a l l o w s t h e s e p a r a t i o n t o be c a r r i e d o u t a t a l o w e r t e m p e r a t u r e .
Chloromethane has been frozen out of a i r streams by use of a loop packed w i t h g l a s s
TABLE 3.4
Common r e f r i g e r a n t s f o r use i n condensation sampling techniques R e f r i q e r a n t system e q u i l i b r i u m i qu i d )=
N2(gas)
i qu i d)=02(gas)
TemDerature
-195.0 (I
-183.0
liquid)=Alr(gas)
-147.0
sol id)=CSZ(
-118.5
I iquid)
Ice(C0 (s))-Acetone 2 I iquid)=COZ(gas)
-80.0 -78.5
NH3(Iiquid)=NH3(gas)
-33.4
ice water-salt
-16.0
H20(soIid)=
H20(liquid)
*requires careful handling
0
(OC)
74 beads and Immersed i n l i q u i d oxygen ( r e f . 189). Durapak n-octane on P o r a s i l ,
separation o f sample components and m o n i t o r i n g o f t h e
e f f l u e n t by mass spectrometry ( s u l f u r compounds,
V a p o r i z a t i o n i n t o a column o f
a t m/e 50 completed t h e a n a l y s i s .
Trace odorants
lower a l i p h a t i c amlnes, carbonyl compounds, hydrocarbons,
a l i p h a t i c mono-alcohols,
phenols,
lower f a t t y a c i d s and i n d o l e s ) a t ppt-ppb
levels i n
a i r , were trapped using l i q u i d oxygen o r t r a p p i n g on porous polymer beads a t ambient temperature ( r e f . 190).
The a i r sample volume v a r l e d from 1 - 5 / ~ .
o f t h e technique were 0.05-2
Detection l i m i t s
ppb.
TABLE 3.5
Cold bath slushes ( r e f . 181)
S I ush
Temperature
~
("C)
~~
Carbon t e t r a c h l o r i d e s l u s h Chlorobenzene s l u s h Chloroform slush E t h y l acetate s l u s h Toluene s l u s h Methyl cyclohexane slush n-Pentane s I ush lsopentane slush
-23.0 -45.0 -64.0 -84.0 -95.0 -126.0 -130.0 -160.0
3.7 TRAPPING TECHNIQUES Trapping techniques a r e taken t o i n c l u d e bubble t r a p s which a r e f i t t e d w i t h f r i t t e d discs, bubblers and/or d i f f u s e r s .
To operate such sampling equipment it i s
necessary t h a t some s o r t o f pumping device be a v a i l a b l e t o move t h e sample through t h e trap.
Appropriate gas pumps should have adequate c a p a c i t y and perform u n i f o r m l y .
Mechanical pumps ( e l e c t r i c ) are used f o r prolonged p e r i o d s o f
sampling o p e r a t i o n .
I n d u c t i o n motors are p r e f e r r e d s i n c e they operate more u n i f o r m l y even w i t h v a r l a t i o n s i n l i n e load. Hand pumps ( l a r g e g l a s s syrlnges o r p i s t o n pumps) are s u i t a b l e f o r sampling small volumes or when gas flow need not be constant.
A s p i r a t o r s a r e usable where
t h e r e i s an adequate supply e i t h e r o f water o r a i r under constant pressure. may be used when small sample volumes a r e adequate o r when very a r e needed.
Siphons
low sampl Ing r a t e s
I t i s d e s i r a b l e t h a t t h e gas I n l e t tube of t h e siphon b o t t l e extend t o
t h e bottom t o m a i n t a i n a uniform f l o w as t h e l i q u i d l e v e l f a l l s . Gas metering devices a r e r e q u i r e d when t h e sample i s pu I l e d by means o f an a s p i r a t o r o r a pump t h a t sampler.
a c t s t o m a i n t a i n a reduced pressure downstream o f
These meters may e i t h e r be volume meters o r r a t e meters.
the
75
,
2
F i g . 3.15
Trapping absorbers f o r a i r samples:
.-..
:-
.
( 1 ) sample bubbler,
( 2 ) d i f f u s e r type,
( 3 ) s p i r a l type, and ( 4 ) bead packed tower.
Absorbers a r e c l a s s i f i e d i n t o f o u r b a s i c groups:
( 1 ) Simple bubbler having an absorbent c a p a c i t y o f 5 t o 100 m l and sampling f l o w - r a t e s of 5 t o 3000 mi/min.
They a r e very s i m p l e i n design,
u s u a l l y non-plugging
b u t have a s h o r t g a s - l i q u i d c o n t a c t time.
( 2 ) D i f f u s e r bubblers h a v i n g an absorbent sampling f l o w - r a t e s o f 500 t o 100,000
ml/min.
capacity of
1
t o 100 m l
and
They a r e easy t o use and have good
g a s - l i q u i d c o n t a c t tlme, b u t a r e s u b j e c t t o p l u g g i n g .
76 ( 3 ) Spiral
10 t o 100 ml
and
They a r e f a i r l y e f . f i c l e n t a t
low
( 4 ) Bead-packed t o w e r s have an a b s o r b e n t c a p a c i t y o f 5 t o 50 m l
and
sampling f l o w - r a t e s
absorbers having an absorbent c a p a c i t y of of
40 t o 500 m l / m l n .
flow-rates. sampling flow r a t e s o f
500 t o 2000 ml/min.
Their
flow r a t e s a r e v a r i a b l e w i t h Each of these absorbers i s
r e s i s t a n c e and a r e o n l y e f f i c i e n t a t lower flow-rates. depicted i n F i g . 3.15a-d.
I t may be necessary t o extend t u b l n g beyond t h e sampler I n o r d e r t o reach t h e desired p o i n t f o r sampling.
I n such cases, t h e t u b i n g must be l a r g e enough n o t
t o o f f e r high r e s l s t a n c e t o gas flow.
The t u b i n g must be a p p r o p r l a t e f o r s p e c i a l
c o n d i t i o n s such as h l g h temperatures and they must n o t adsorb o r absorb a p p r e c i a b l e p o r t i o n s of any sample components. metals, however,
No s i n g l e m a t e r i a l I s usable f o r a l l
glass and v a r i o u s p l a s t i c s have f r e q u e n t l y
been used.
l i n e s ; some
Every m a t e r l a l ,
i s suspect u n t i l It has been demonstrated t o have minimal i n t e r f e r e n c e . I f a i r t o be sampled I s c o n n e c t e d t h r o u g h a system w l t h t u b i n g w h l c h
e x t r a c t s some p a r t o f t h e sample,
It i s e s s e n t l a l t o avoid any r e c l r c u l a t l o n o f such
sampled a l r through t h e e x t r a c t l o n equipment.
The a i r t h a t has passed through t h e
equipment must be e j e c t e d i n t o a space from which sampling I s impossible. sampling t h i s I s accomplished by simply exhausting t h e a i r downwind.
I n outdoor
In s t i l l air,
vent t h e exhaust by a tube o r duct o r blow it by a fan away from t h e i n t a k e l o c a t i o n . The sampler i s always used I n s e r i e s w l t h a gas-meterlng device which may be followed by a pressure gauge o r manometer. several useful purposes:
A pressure gauge o r manometer serves
it enables one t o declde whether t h e gas volume should be
c o r r e c t e d because o f t o o low a pressure f o r acceptable accuracy and i n t u r n f u r n i s h e s t h e data f o r such a c o r r e c t i o n .
The pressure measurement I s necessary I f t h e r e i s a
l i k e l i h o o d o f Increased r e s l s t a n c e t o gas f l o w i n t h e absorber ( f r o m I c e formation, precipitation or
presence o f
partlcules).
When t h e gas b e i n g sampled c o n t a i n s
p a r t i c u l a t e matter, an a p p r o p r l a t e f i l t e r should be placed ahead o f t h e sampler.
The
f i l t e r s h o u l d p r e c e d e any m e t e r l n g o r gas-collecting e q u l p m e n t and s h o u l d be nonreactive and nonabsorbing t o t h e gases being sampled.
Dry f i b r o u s glass,
p l a s t i c f i l m s and c e l l u l o s i c paper have proven s a t i s f a c t o r y .
c e l l u l o s i c paper s h o u l d n o t be used when hydrogen f l u o r i d e Non-reactive
plastics
(e.g.,
polymers
of
v i n y l idene
t e t r a f i u o r o e t h y l e n e ) may be used to o b v i a t e t h i s d i f f i c u l t y .
porous
Siilceous materlal or i s b e i n g sampled.
chloride,
ethylene
or
The gas meter and t h e
pump should be downstream from t h e sampler t o prevent loss o f t h e gas c o n s t i t u e n t being sampled and t o minimize contamination o f t h e samples o r d i l u t i o n o f t h e samples by extraneous a l r .
Col l e c t l o n o f p a r t l c u l a t e matter w i t h t h e gases and vapors i s u n d e s i r a b l e because It may I n t e r f e r e w l t h t h e chemical a n a l y s i s t h a t f o l l o w s t h e sampling o r i n t e r f e r e w i t h t h e c o l l e c t i o n o r metering o f t h e sample. A l l meters and sampling assemblies must be c a l i b r a t e d r e g u l a r l y t o assure
77 accuracy.
The b a s i c apparatus f o r t h i s c a l l b r a t i o n I s t h e gasmeter ( b o t h volume and
r a t e types). A b s o r p t i o n of gases o r v a p o r s i s a s o l u b l l i t y phenomenon whereby gas molecules are p r e f e r e n t i a l l y d i s s o l v e d i n a l i q u i d - c o l l e c t i n g phase.
Therefore,
t e c h n i q u e s h o u l d be used o n l y w i t h gases and v a p o r s w h l c h a r e s o l u b l e
The technique I s i l m l t e d t o use w i t h low r a t e o f gas flow.
absorblng s o l u t i o n .
thls
In the By
proper s e l e c t l o n o f absorblng s o l u t i o n t h l s sampling method can be used t o separate t h e d e s i r e d c o n s t i t u e n t from contaminants, concentrate t r a c e components from a sample and o f f e r s i m p l i c i t y and low c o s t . gas f l o w due t o any p a r t i c u l a t e s ,
Problems a r i s e because of increased r e s i s t a n c e t o evaporatlon r a t e o f t h e s o l v e n t and t h e small s i z e
o f t h e sample t h a t I s a v a i l a b l e .
3.8 DIPPING TECHNIQUES AND TUBE SAMPLING Dipper sampling I s a p p l i c a b l e f o r sampling I l q u i d s and s e m i - l i q u l d s where a f r e e o r open discharge stream e x l s t s ,
( 2 in.
i n diameter o r
as
i n small
f i l l i n g and t r a n s f e r
l a s s ) and f i l l i n g apparatus f o r b a r r e l s ,
piplines
packages and cans.
The dipper should have a f l a r e d bowl and a handle o f a convenient l e n g t h made o f such m a t e r i a l (e.g.,
t i n n e d s t e e l ) t h a t w i l l n o t a f f e c t t h e product being sampled.
The
dipper must have a c a p a c i t y adequate t o o b t a i n a r e p r e s e n t a t i v e sample and should be p r o t e c t e d from dust and d i r t when n o t i n use. The dipper
i s i n s e r t e d i n t o t h e f r e e - f lowing stream t o c o l l e c t a p o r t l o n
from t h e f u l l cross-sectlon
of t h e stream.
should be approximately O.l$, being sampled.
closed,
of the t o t a l
quantity
The sample p o r t i o n s are poured i n t o a clean, d r y sample c o n t a i n e r as
soon as c o l l e c t e d . transfer,
The gross amount o f sample c o l l e c t e d
b u t n o t more than 4 0 gallons,
The c o n t a i n e r must be kept closed, except d u r i n g a d i p p e r - p o r t i o n
When a l l
p o r t i o n s o f t h e sample have been c o l l e c t e d ,
the container
Is
labeled and d e l i v e r e d t o t h e l a b o r a t o r y f o r a n a l y s i s . Since t h e dipper-sampling technique I s l i m i t e d t o samples from open streams
(when one wishes an instantaneous or grab sample), b a r r e l , packages and cans, o b t a i n e d by t h i s technique cannot be considered as r e p r e s e n t a t i v e samples.
samples Sample
volumes are u s u a l l y small and t h e technlque I s n o t always s u i t a b l e f o r t a k i n g samples a t lower l e v e l s of t h e c o n t a i n e r s . Tube sampling i s useful drums,
b a r r e l s and cans
f o r sampling
l i q u i d s and s e m i - f l u i d
materials in
( t h e s e t y p e s o f c o n t a i n e r s a r e becoming more o f
environmental problem because o f waste-disposal
regulations).
an
A g l a s s o r metal tube,
designed t o reach t o w i t h i n 1/4 i n . o f t h e bottom w i t h c a p a c i t y o f approximately 0.5 t o 1 . 0 e may be used.
To sample a b a r r e l o r a drum, stand t h e c o n t a i n e r u p r i g h t and
sample from t h e top through t h e open bung hole. capacity
or
larger
should
be
sampled
in
a
Containers o f
simllar
manner
5 gallons ( 1 8 ~ )
using
a
tube
of
p r o p o r t i o n a t e l y smaller dimensions.
Containers o f less t h a n 5 g a l l o n s ( 1 8 ~ )c a p a c i t y
I f a large
should n o t be sampled but t h e e n t i r e c o n t a i n e r taken as t h e sample. number o f these smaller c o n t a i n e r s a r e t o be analyzed, i n accordance
random or
with
agreement
then they a r e s e l e c t e d a t
among t h e p a r t i e s
involved.
An example
sampling t a b l e I s shown i n Table 3.6. The tube sampllng technique opening i n a container.
is
l i m i t e d t o use w i t h an e a s i l y a c c e s s i b l e
T h i s i s a technique s u i t a b l e ,
under proper circumstances,
f o r t a k i n g r e p r e s e n t a t i v e samples and very adaptable t o securing small
samples of
I iquids.
3.9 HEADSPACE SAMPLING Headspace sampling I s a technique which i s more a p p r o p r i a t e l y discussed i n t h e chapter on Sample Treatment (Chapter 4 ) .
T h i s sampling procedure i s used mainly
t o o b t a i n samples o f t h e v o l a t i l e components above a l i q u i d ( o r s o l u t i o n ) and sometimes above a s o l i d .
Thus, t h e sampling procedure 1s performed i n t h e l a b o r a t o r y
as opposed t o f i e l d sampling.
However,
i f one i s going t o use t h e headspace sampling
technique t h e r e a r e necessary precautions which must be followed d u r i n g t h e sampling o f t h e water supply or s o l i d m a t e r i a l . A number o f
appl i c a t i o n s o f
considers t h e reason(s) residues
t h i s t e c h n i q u e become e v i d e n t when one
f o r t h e analyses.
A manufacturer concerned w i t h s o l v e n t
i n a product: odors from v a r i o u s f r u i t s and foods;
tobaccos,
pharmaceutical
container
and/or
contents),
s t a r t i n g materials), plant effluents,
products,
gases
petroleum
present
products,
in
a l c o h o l i c beverages,
packaged
polymeric
goods
substances
physiochemical s t u d i e s o f gas phase e q u i l i b r i a ,
rivers,
(odors
from
(unreacted
volatiles
in
lakes, w e l l s and sewage and waste products.
TABLE 3.6 Minimum number o f c o n t a i n e r t o be s e l e c t e d f o r sampling from a l o t ( r e f . 191) Number o f containers 1 to 3 4 to 64 65 t o 125 126 t o 216 217 t o 343 344 t o 512 513 t o 729 730 t o 1000
Number t o be sampled
Number o f containers
Al I
1001-1 331 1332-1 728 1729-21 97 21 98-2744 2745-3375 3376-4096 4097-491 3 6860-00
4 5 6 7 8 9 10
Number t o be sampled
11 12 13 14 15 16 17 20
R e p r i n t e d by p e r m i s s i o n o f 0. Van N o s t r a n d Company. "From S t a n d a r d Methods o f Chemical AnalysisI1, 6 t h ed., Vol. 2, P a r t A, by Frank A. Welcher, Ed. ( c ) 1963 L i t t o n Education Publishing, Inc.
79 Coupling o f t h i s technique w i t h gas chromatography makes p o s s i b l e analyses and s e n s i t i v i t y not otherwise a v a i l a b l e w i t h o u t i n v o l v e d processing o f t h e samples. The outstanding f e a t u r e o f headspace sampling i s t h e absence o f a l a r g e s o l v e n t peak which may completely obscure smaller peaks on t h e f r o n t or t a i l o f t h e s o l v e n t peak, Thus,
we w i l l c o n c e r n o u r s e l v e s w i t h p r e c a u t i o n s and/or
bulk-sampling
step,
safeguards d u r i n g t h e
i f headspace s a m p l i n g ( S e c t i o n 4 . 3 ) w i l l
be u s e d i n t h e
laboratory. (1)
etc.),
I f sampling from a
I i q u l d b u l k sample
( t a n k storage,
stream,
use a r i g i d ( g l a s s p r e f e r r e d t o m e t a l ) c o n t a i n e r and f i l l t o top.
seal t h e container
w i t h a top which has an
inert
liner
(PTFE or
well,
Immediately
aluminum
foil),
Label t h e container and s t o r e i n an i c e c o o l e r t o t r a n s p o r t t o t h e l a b o r a t o r y . (2) well,
I f sampling a s o l i d m a t e r i a l which has small enough p a r t i c l e s t o pack
f i l l c o n t a i n e r t o top,
t h e laboratory.
seal and l a b e l .
S t o r e i n a c o o l e r f o r t r a n s p o r t back t o
I f t h e s o l i d m a t e r i a l p a r t i c l e s are not smal I enough t o pack we1 I ,
use a r i g i d c o n t a i n e r large enough t o h o l d t h e e n t i r e sample,
seal,
label and c o o l .
Large-size samples a l s o may be placed i n aluminized p l a s t i c bags which can be sealed, labeled and cooled.
( 3 ) An a l t e r n a t e sampling procedure f o r (NaCI, KZC03, Na2S04, e t c . ) t h e b u l k sample.
The amount o f
s o l u t i o n when t h e c o n t a i n e r
liquids
i s t o add enough
s a l t added should be enough t o form a s a t u r a t e d
is half-filled
with the l i q u i d (especially
water s u p p l i e s which may have low c o n c e n t r a t i o n s ( t l ppm) of The c o n t a i n e r i s immediately sealed, the laboratory.
salt
t o t h e c o n t a i n e r b e f o r e going i n t o t h e f i e l d t o o b t a i n
i f sampling
v o l a t i l e components.
labeled and placed i n a c o o l e r f o r t r a n s p o r t t o
The presence o f t h e large c o n c e n t r a t i o n o f s a l t increases t h e i o n i c
s t r e n g t h of t h e sample and thereby decreases t h e s o l ' u b i l i t y o f t h e o r g a n i c components i n t h e sample (e.g.,
hydrocarbons
-
both a l i p h a t i c and a r o m a t i c ) .
NOTE:
If this
procedure i s used d u r i n g t h e b u l k sampling phase, t h e top o f t h e c o n t a i n e r must have an opening ( f i t t e d w i t h a septum) t o a l l o w f o r easy e n t r y o f t h e sampling s y r i n g e i n the
laboratory.
Do not perform t h e headspace sampling technique f o r
f h i s sample
u n t i l i t has reached ambient c o n d i t i o n s i n t h e l a b o r a t o r y .
REFERENCES 1 2
3
4
5
H. B. N. Hynes, The B i o l o g y o f P o l l u t e d Waters, L i v e r p o o l U n i v e r s i t y Press, L i v e r p o o l , 1960. L. K l e i n (Ed.) R i v e r P o l l u t i o n , 1 1 , Causes and E f f e c t s , Butterworths, London 1962. K. M. Mackenthun and W. M. Ingram, B i o l o g i c a l Associated Problems i n Freshwater Environments Their identification, I n v e s t i g a t i o n and C o n t r o l , Federal Water P o l l u t i o n C o n t r o l A d m i n i s t r a t i o n , Washington, DC 1967. C. N. Sawyer and P. L. McCarty, Chemistry f o r S a n i t a r y Engineers, 2nd ed., McGraw-Hill, New York 1967. L. E. Keup, W. M lngram and K. M. Mackenthun, B i o l o g y o f Water . P o l l u t i o n : A C o l l e c t i o n o f Selected Papers on Stream P o l l u t i o n , Waste-Water and Water
-
80
9 10 11 12 13 14
15
16
17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32
33 34 35 36 37 38
Treatment, Publ. No. CWA-3, Federal Water P o l l u t i o n Control A d m i n i s t r a t i o n , Washington, DC 1967. P. S. Welch, Limnology, 2nd ed., McGraw-Hill, New York 1952. G. E. Hutchinson, A T r e a t i s e on Limnology, Vol. 1, Geography, Physics and Chemistry, Wiley, New York, 1957 G. E. Hutchinson, A T r e a t i s e on Limnology, Vol. 2, I n t r o d u c t i o n t o Lake B i o l o g y and t h e Limnoplankton, Wiley, New York, 1967. F. Ruttner, Fundamentals o f Limnology ( t r a n s l . by D. G. Frey and F. E. J. F r y ) , U n i v e r s i t y o f Toronto Press, Toronto 1953. G. K. Reid, Ecology of I n l a n d Waters and Estuaries, Reinhold, New York, 1961. Standard Methods f o r t h e Examination of Water and Wastewater, 12th ed., American P u b l i c Health Association, New York 1965. P. S. Welch, Limnological Methods, B l a k i s t o n , P h i l a d e l p h i a , PA, 1948. L. L. Ciaccio, (Ed.),.Water and Water P o l l u t i o n Handbook, Vols. 1-4, Marcel Dekker, New York, 1971. D. L. King, i n Advances Toward Understanding Lagoon Behavior, Eng. Extension Ser. No. 6, U n i v e r s l t y o f Missouri, Columbia, MO, 1966, pp.88-110. D. L. King, Sampling i n Natural Waters and Waste E f f l u e n t s , i n L. L. C i a c c i o (Ed.), Waste and Water P o l l u t i o n Handbook, Vol. 2, Marcel Dekker, New York, 1971, p.462. R.D. Cadle, P. L. M a g i l l , A. A. Nichol, H. C. Ehrmantraut and G. W. Newel1 Sampling Procedures, i n C. Ackley, (Ed.), A i r p o l l u t i o n Handbook. McGraw-Hill, New York, 1956, Section 10. L. V. C r a l l e y , L. J. C r a l l e y and G. D. Clayton, I n d u s t r i a l Hygiene H i g h l i g h t s , I n d u s t r i a l Hygiene Foundation o f America Inc., P i t t s b u r g h , PA, 1968, CH.1. Methods o f A i r Sampling and Analysis, Amer. P u b l i c H e a l t h Assoc.. Washington, DC 1972, P a r t 1. R. Perry and R. J. Young (Eds.), Handbook o f A i r P o l l u t i o n Analysis. Chapman H a l l , London, 1977, Ch.1. R. S. B r i e f and R. G. Confer, A i r Q u a l i t y M o n i t o r i n g : Procedures: Data Analysis, i n Heating, Plping, A i r Conditioning, 1972, pp. 103-110. ASTM Annual Book o f Standards, Standard Recommended P r a c t i c e f o r Planning t h e Sampling of t h e Atmosphere, ASTM, P h i l a d e l p h i a , PA 1973, D-1357-57, P a r t 23. A i r P o l l u t i o n Manual, P a r t I, Evaluation, 2nd ed., American I n d u s t r i a l Hygiene Association, D e t r o i t , MI 1972. A. C. Stern, A i r P o l l u t i o n , 2nd ed., Academic Press, New York, 1968. R. J. Charlson, J. A i r P o l l u t . C o n t r o l Assn., 9 (1969) 802. F. Pooler, J. A i r P o l l u t . Control Assn., 24 (1974) 228-231. H. D.Axelrod and J. P. Lodge, Jr., Sampling and C a l i b r a t i o n o f Gaseous P o l l u t a n t s , i n A. C. Stern (Ed.). A i r P o l l u t i o n , Academic Press, New York, 1976, Ch.4. Federal Register, 36, (19711, 8195 ( A i r q u a l i t y ) . Federal Register, P a r t I I , Feb. 1978 ( D r i n k i n g w a t e r ) . G. R. Umbreit, Trace Analysis by Gas Chromatography, i n R. L. Grob (Ed.), Modern P r a c t i c e f o Gas Chromatography, Wiley-Interscience, New York, 1977, p. 417. W. G. Cochran, F. M o s t e l l e r and J. W. Tukey, S t a t i s t i c a l Problems o f t h e Kinsey Report, American S t a t i s t i c a l Assoc., Washington, DC 1954. M. N. Murthy, Sampling Theory and Methods, S t a t i s t i c a l P u b l i s h i n g Society, Calcutta, India, 1967, Ch. 1-3. L. Tanner, P r o b a b i l i t y Sampling o f M a t e r i a l s i n F. W . Welcher (Ed.) Standard Methods of Chemical Analysis, Voi. 2, P a r t A, D. Van Nostrand Co., Princeton, NJ, 1963, p.24 Acceptance o f Evidence Based on t h e R e s u l t s of P r o b a b i l i t y Sampling, ASTM Designation: €141, ASTM, P h i l a d e l p h i a , PA, 1975. Choice o f Sampling Size t o Estimate t h e Average Q u a l i t y o f a L o t or Process, ASTM Designation: E122, ASTM, P h i l a d e l p h i a , PA, 1979. W. J. Youden, S t a t i s t i c a l Methods f o r Chemists, Wiley, New York, 1951, Ch. 4 , R. 8. Dean and W. J. Dixon, Anal. Chem., 23 (1951), 636. W. J. Dixon, Ann. Math. Stat., 22 (1951), 68; B i o m e t r i c s , 9 (1953) 74. J. F. F r i t z and G. W. Schenk. Q u a n t i t a t i v e A n a l y t i c a l Chemistry, A l l y n and Bacon, Boston, MA 1978.
81 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 14 75 76 77 78 79 80
G. R. Umbreit, J. Chromatog. Scl., 17 (1979) 482. J. P. Friend, A Report on Research A c t i v i t i e s a t Drexel U n i v e r s i t y , 1, No. 1 (1978) 5. H. Watson, Amer. Ind. Hyg. Assoc. Quart., 15 (1954) 21. W. C. L. Hemeon and G. F. Haines, J. A i r P o l l u t . Control Assn., 4 (1954) 159. S. Badzloch, J. I n s t . Fuel, 33 (1960) 106. V. V l t o l s , J. A i r P o l l u t . C o n t r o l Asssn., 16 (1967) 79. E. B. Sansone, Amer. Ind. Hyg. Assn. J., 30 (1969) 487. G. A. Schmel, Amer. Ind. Hyg. Assn. J., 31 (1970) 758. Technical S e r v l c e B r i e f TS002, M i l I l p o r e Corp., Bedford, MA, Feb. 1978. A i r Q u a l i t y C r i t e r i a f o r S u l f u r Oxides, Publ. No. AP-50, C i n c i n n a t i , OH, (Environmental P r o t e c t i o n Agency), 1969. M. Krzymien, Lab. Tech. Rep. LTR-UA ( N a t l . Res. Counc. Can., Unsteady Aerodyn. Lab), LTR-UA-49, 8pp, 1979; C. A., 91 (1979) 205519b. American Soclety f o r T e s t i n g and M a t e r i a l s Methods D-1071-55, P a r t 19, ASTM, P h i l a d e l p h i a , PA, 1971. G. 0. Nelson, C o n t r o l l e d Test Atmospheres, Ann Arbor Scl Publ., Ann Arbor, MI, 1971, Ch. 3. R. J. Gordon, H. Maysohn and R. M. Ingels, Environ. Sci. Technol., 2 (1968) 117. D. M. Allen, U. S. Patent, 3,501,899 (1970). G. Herman, Chem. Techn. ( L e l p z i g ) , 17 (1965) 97. J. P. Lodge, Jr., J. B. Pate, B. E. Ammons and G. A. Swanson, J. A i r P o l l u t . Contr. Assn., 16 (1966) 197. M. Corn and W. Be1 I, Amer. ind. Hyg. Assoc., J., 24 (1963) 502. C. Huygen, J. A i r P o l l u t . Contr. Assn., 20 (1970) 675. A. S e t t e r l i n d , Amer. J. Pub. Health, 34 (1944) 863. H. Scholz and 0. J. Stebel, Gas-Wasserfach, 91 (1950) 127; C.A., 44 (1950) 7593d. A. F. Wartburg, H. D. Axelrod, R. J. Teck, M. D. L a t t u e and J. P. Lodge, Jr., Anal. Chem. 45 (1973) 423. Product B u l l e t i n s , Brooks Instruments, H a t f i e l d , PA 1973. Product B u l l e t i n s , Tylan Corp., Torrance, CA 1973. W. C. Achinger and R. T. Shlgehara, J. A i r P o l l u t . Control ASSOC., 18 (1968) 61 5. W. W. Anderson, Sampling o f Solids, i n F.W. Welcher (Ed.), Standard Methods o f Chemical Analysis, Vol. 2, P a r t A, Van Nostrand Co., Princeton, NJ, 1963, pp. 28-38. P. M. Giever, P a r t i c u l a t e Matter Sampling and Sizing, I n A. C. Stern (Ed.), A i r P o l l u t i o n , Vol. 3, 3 r d ed., Academlc Press, New York, 1976, Ch. 1. J. S. Nader, J. A i r P o l l u t . Contr. Assn., 8 (1958) 35. M. B. Jacobs, The Chemlcal A n a l y s i s o f A i r P o l l u t a n t s , W i l e y - l n t e r s c i e n c e , New York, 1960, p. 36. W. J. Smith and A. L. Benson, Spec. Tech. Publ. No. 555, ASTM, P h i l a d e l p h i a , PA, pp. 137-142, 1974. J. B. L l t t l e f i e l d and H. H.Schrenck, U. S . Bur. Rep. Invest. Mines, Rl-2392 ( 1922). A. L. L i n c h and M. Corn, Am. ind. Hyg. Assn. J., 26 (1965) 601. H. J. White, I n d u s t r i a l E l e c t r o s t a t i c P r e c i p i t a t i o n , Addison-Wesley, Reading, MA, 1963. L. Waldman and K. H. Schmitt i n C. N. Davies (Ed.), Aerosol Science, Academlc Press, New York, 1966, pp.137, 162. P. A. Hersch, J. A i r P o l l u t i o n Control Assoc., 19 (1969) 164. D. Jentzch, J. Gas Chromatogr., 5 (1967) 226. Y. Makide, T. Tominaga, T. Rowland and F. Sherwood, Chem. L e t t . , (1979) 355. F. J. Schuette, Atmos. Envlron., 1 (1967) 515. R. A. Baker and D. C. Doerr, I n t . J. A i r Water P o l l u t . , 2 (1959) 142. C. A. Clemons and A. P. A l t s h u l l e r , J. A i r P o l l u t . Contr. Assn., 14 (1964) 407. A. P. A l t s h u l l e r , A. F. Wartburg, I . R. Cohen and S. F. Sleva, I n t . J. A i r Water P o l l u t . , 6 (1962) 75. T. A. Be1 l a r , J. E. Slgsby, C. A. Clemons and A. P. A l t s h u l l e r , Anal. Chem., 34 (1962) 763.
82 A. p. A l t s h u l l e r , T. A. B e l l a r , C. A. C l e m n s and E. Vander Zaner, I n t . J. A i r Water P o l l u t . , 8 (1964) 29. 82 R. S. Ajemian and N. E. Whitman, J. A i r P o l I u t . Contr. Assn., 20 (1970) 310. 83 8. S. Smith and J. 0. Pierce, Use o f P l a s t i c Bags f o r I n d u s t r i a l A l r Sampling, i n Analysis o f I n d u s t r i a l A i r P o l l u t a n t s . Vol. I l l , MSS I n f o r m a t i o n Corp., New York, 1974, p. 94. 84 American Conference o f Governmental I n d u s t r i a l Hygienists, A i r Sampling Instruments, 4 t h ed., ACGIH, Gin-innatl, OH 1972. 85 American Conference o f Governmental I n d u s t r i a l Hygienists, I n d u s t r i a l V e n t i l a t i o n , 13th ed., ACGIH, Lansing, M I 1974. 86 Methods f o r Determination o f V e l o c l t y , Volume, Dust and M i s t Content o f Gases, B u l l . WP50, Western P r e c i p i t a t i o n Corp., Los Angeles, CA 1968. (Annual), h e r . SOC. 87 Guide and Data Book 1975 Fundamentals and Equipment . . Heat., Refrig., A i r Cond. Eng., New York, I975 88 D. L. Brenchiey, C. D. T u r l e y and R. F. Yarnmac, I n d u s t r i a l Source Samp ing, Ann Arbor Press, Ann Arbor, M I 1973. 89 A. Turk, J. I. Morrow and B. E. Kaplan, Anal. Chem., 34 (1962) 561. 90 P. W. West, B. Sen and N. A. Gibson. Anal. Chem., 30 (1958) 30. 91 H. J. Paulus and R. W. Thorn, Stack Sampllng i n A. C. Stern (Ed.), A i r P o l l u t i o n , Voi. I l l , Academlc Press, New York (19761, Ch.14. 92 G. Pearson, J. W. R. Dutton and F. E l l i o t t , U. K. A t . Energy Auth. Prod Group, PG Rep. 408 (19621; C. A., 58 (1963) 7583a. 93 J. J. Naughton, E. F. Heald and I. L . Barnes, Jr., J. Geophys. Res , 68 (1963)
81
-
539. 94 R. Rock and K. Schutz, J. Anal. Chem., 237 (1968) 32. 95 T. Ohlra, M. Takeda, T. l s h i g u r o and 0. Koyama, J. Jap.Soc. A i r Po l u t . , (1967) 48. 96 L. Dubois and J. L. Monkman, Mikrochim. Acta, (1970) 313. 97 G. J. Ferguson, Rev. Sci. Instrum. 34 (1963) 403. 98 E. B r i n e r . Helv. Chim. Acta. 21 (1938! 1218. 99 W. Bertsch, E. Anderson and.G. Holzer, J. Chromatogr., 112 (1975) 70.
2
B. Versino, H. Knoppel , M. DeGroot, A. Pel I, J. Poelman, H. Schauenbury, H. Vissers, and F. Geiss, J. Chromatogr., 122 (1976) 373. 101 M. Dressler, J. Chromatogr. 165 (1979) 167. 102 B. J. Dowty, D. R. C a r l i s l e and J. L. Laseter, Environ. Sci. Technol., 9 (1975) 100
762. 103 M. J. O'BrIen and R. L. Grob, J. Chromatogr. 155 (1978) 129-148. 104 J. Angerer, A. Haag, and G. Lehnert, Comm. Eur. Connunities, EUR 5360, Proc. In+. Sym. Recent Adv. Asses. Health E f f . Environ. P o l l u t . , Vol. 3, 1975, pp 131 7-1 329. 105 R. Sydor and D. J. P i e t r z y k , Anal. Chem., 50 (1978) 1842. I06 A. K. Burnham, G. V. Calder, J. S. F r i t z , G. A. Junk, H. J.Svec and R. W i l l i s , Anal. Chem., 44 (1972) 139. 107 J. Kasche and K. Schroeter, Chem. Tech. ( L e i p z i g ) , 31 (1979) 311; C. A. 91 (1979) 128246f. 108 G. A. Junk, J. J. Richard, M. D. Grieser, D. Witiak, J. L. W i t i a k , M. D. Arguello, R. Vick, H. J. Svec, J. S. F r i t z and G. V. Calder, J. Chromatogr., 99 (1974) 745. 109 W . WliSzczak, F. Meisinger and G. Kainz, Mikrochim Acta, (1971) 139. 110 C. Osterroht, J. Chromatogr.. 101 (1974) 289. 1 1 1 J. D. TwibelI and J. M. Home, Nature, 268(1977) 711. 112 P. R. Musty and G. Nickless, J. Chromatogr., 89 (1974) 185. 113 Gas-Chrom Newsletter, Applied Science Laboratories, inc. S t a t e College, PA Vol. 19, No. 2, March 1378, p.3. 114 V. Leoni, G. P u c e t t i and A. G r e l l a , J. Chromatogr., 106 (1975) 119. 115 Hewlett-Packard Co., A p p l i c a t i o n Note AN 228-6, VOl. 8, NO. 1, 1978. 116 W. A v e r i l l and J. E. P u r c e l i , Chromatography Newsletter, Perkin-Elmer Gorp., Norwalk, CT 6, No. 2 (1978) 30. 117 J. W. Russell, Environ. S c i . Technol. 9 (1975) 1175. 118 E. Neuber, J. Mueller and R. S a r t o r i u s , Mikrochim. Acta, 2 (1979) 131. 119 8. A. C o l e n u t t and S. Thornburn, Chromatographia, 12 (1979) 519.
83 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
152 153 154 155 156 157 158 159
F. A. Bencsath, K. Drysch, D. L i s t and H. Weichardt i n M. Eggstein and H. M. Weichardt (Ed.), Mass Spectrcin. Comb. Tech. Med. C I i n . Chem. C I i n . Blochem. Sym., Univ. Tubingen, 1977, pp 421-432; C. A. 91, (1979) 2 1 5 8 4 8 ~ . E. Burghardt and R. Jeites, Atmos. Environ. 9 (1975) 935. S. K. Yasuda and E. D. Loughran, J. Chrmatogr., 137 (1977) 283. J. E. Cuddeback, W. R. Burg and S. R. Birch, Environ. Sci. Technol., 9 (1975) 1168. T. A. B e l l a r and J. J. Lichtenberg. EPA Report 670/4-74-009, National Environmental Research Center, C i n c i n n a t i , Ohio, Nov. 1974. G. Holzer, H. Shanfield, A. Z l a t k i s , W. Bertsch, P. Juarez, H. M a y f i e l d and H. M. Liebich, J. Chromatogr., 142 (1977) 755. B. V. Loffe, A. l s i d o r o v and I . G. Zenkevich, J. Chromatogr., 142, (1977) 787. M. S. Smith, A. J. F r a n i c s and J. M. Duxbury, Environ. S c i . Technol., 11 (1977) 51. E. Schoentube and M. Schaldlich, Ergeb. Exp. Med.. 20 (1975) 219; Anal. Abstr., 32 (1977) 3H18. K. Tanaka, K. Fukaya, N. Nishiyama, Y. Wada and S. Fukui, E i s e i Kagaku, 23 (1977) 48; Anal. Abstr., 33 (1977) 2H21. J. Charlton, R. Sarteus and J. M. Sharkey, O i l Gas J., J u l y (1975) 96; Anal. Abstr., 31 (1976) 3H24. M. I . Afanas'ev, L. V. Denisova, T. i. Lomovtseva, B. P. Okhatnikov, V. A. R o t i n and V. S. Yusfin, Zavod. Lab., 41 (1975) 1202; Anal. Abstr., 30 (1976) 5C44. A. A. Khvastikova, S. A. Reznlkov, R. I . Sidorov, L. I . Z u i t s e v a and G. I. Vakhrusheva, Zh. Anal. Khim., 30 (1975) 1001; Anal. Abstr. 30 (1976) 5H16. R. G. Melcher, W. L. Carner, L. W . Severs and J. R. Vaccaro, Anal. Chem., 50 (1978) 251. E. Selke, W. K. Rohwedder and H. J. Dutton, J. Amer. O i l Chem. SOC., 54 (1977) 62. A. Gold, C. E. Dube and R. B. Perni, Anal. Chem. 50 (1978) 1839. M. S. Black, R. P. Herbst and D. R. Hitchock, Anal. Chem. 50 (1978) 848. R. Jeltes, Atmos. Environ. 3 (1969) 587. Y . Hoshika, T a l k i Osen Gakkaishi, 14 (1979) 210; C. A., 92 (1980) 1 0 4 7 6 ~ . X . Guardino, J. B a r t u a l and M. J. Berenguer, Afindad, 36 (359) (1979) 9, C.A., 91 (1980) 617689. T. Tanaka, J. Chromatogr., 153 (1978) 7. B. C. Turner and D. E. G l o t f e l t y , Anal. Chem., 49 (1977) 7. J. W. Russell and L. A. Shadoff, J. Chromatgr. 134 (1977) 375. P. Zimmerman and R. Rasmussen, Environ. Sci. Technol., 9 (1975) 1177. M. Yamamura and S. N i s h i , Bunseki Kagaku 24 (1975) 635; Anal. Abstr., 30 (1976) 4C76. M. Okumura and S. Nakanlski, Shin. Nippon Denki Glho. 13 (1978) 42; C.A. 91 (1979) 128147Z. E. G. ivanyuk and Y. A. Kollevskaya, Zavod., Lab., 43 (1977) 157; Anal. Abstr., 33 (1977) 2H23. G. 0. Wood and R. G. Anderson, Amer. Ind. Hyg. Assoc. J., 36 (1975) 538. F. Guern, LPI Contrib., (1979) 368; C.A. 91 (1979) 1 8 6 0 0 6 ~ . S. M. Rappaport and R. Morales, Anal. Chem., 51 (1979) 19. W. A. Aue and P. M. Tsl 1 , J. Chromatogr. 62 ( I 9 7 1 ) 15. K . Grob, Jr., and G. Grob, J. Chromatogr. 106 (1975) 299. 0 . Furukawa, T. Hasegawa and Y. Shig t a , Akusku no Kenkyu, 7 ( 3 4 ) (1979) 35; C.A. 92, (1980) 10499h. T. Tsugita, T. lmai, Y. Doi, T. Kurata and H. Kato, Agr, C l o l . Chem., 43 (1979) 1351; C.A. 91 (1979) 11222216Z. J. Labows, G. P r e t i , E. Hoelzie, J. Leyden and A. Kligman, J. Chromatogr., 163 (1979) 294. J. S. Parsons and S. Mitzner, Enviorn. S c l . Technol., 9 (1975) 1153. S. G. Zeldes and A. D. Horton, Anal. Chem., 50 (1978) 779. M. Vanhaelen, R. Vanhaeien-Fastre and J. Geeraerts, J. Chromatogr., 144 (1977) 108. M. F. lves, J. Ass. O f f i c . Anal. Chem. 58 (1975) 457. R. H. Brown and J. H. P u r n e l l , J. Chrmatogr., 178 (1979) 79.
84 160 161 162 163 164 165 166 167 168 169 170
I. Kifune, K. Kawata and K. Oikawa, E i s e i Kagaku, 25 (1979) 205; C.A. 92 (1980) 1 1 5497j. L. Renberg, Anal. Chem., 50 (1978) 1836. J. E. Woodrow and J. N. Seiber, Anal. Chem., 50 (1978) 1229. R. J. Bryant and W . Minett, P e s t i c . Scl., 9 (1978) 525; C.A., 91 (1979) 152591k. R. S. Braman, J. M. Ammons, and J. L. B r i c k e r , Anal. Chem. 50 (1978) 992. 8. J. Tyson, Anal. L e t t . 8 (1975) 807. G. Winnett and M. S i e w i e r s k i , B u l l . Environ. Contam. Toxicol., 14 (1975) 681; Anal. Abstr., 30 (1976) 6H23. A. Tateda and J. S. F r i t z , J. Chrcinatogr., 1 5 2 ( 2 ) (1978) 329. Y. Cohen, Anal. Chem., 49 (1977) 1238. Z. Voznakova, M. Pop1 and M. Berka, J. Chrcinatogr. Sci., 16 (1978) 123. J. A l b e r t and 8. Jonke, Z. Wasser. Abwasser-Forsch., 8 (1975) 140; Anal. Abstr.,
31 (1976) 1H63. 171 V . D. ChmiI', Zh. Anal. Khim., 30 (1975) 2444; Anal. Abstr. 31 (1976) 3H61. 172 0. P. Beggs, Hewlett-Packard GC/MS Application Note, AN 176-224, 1979. 173 C. A. B u r g e t t and L. E. Green, Hewlett-Packard A p p l i c a t i o n Note, ANGC5-76 (1976). 174 S. N. Chesler, B. H. Gump, H. S. Hertz, W. E. May and S. A. Wise, Anal. Chem., 50 (1978) 805. 175 R. E. Sievers, R. M. Barkley, G. A. Eiceman, R. H. Shapiro, H. F. Walton, K. J. Kalonko and L. R. F i e l d , J. Chromatogr., 142, (1977) 745. 176 L. D. K i s s i n g e r and J. S. F r i t z , J. Amer. Water Works Assoc., 68 (1976) 435. 177 A. Cavallaro, G. C o I l i , A. Lemma, G. I n v e r n i z z i , L. Lucian; and A. Gorni, Bol I . Chim. Unione, l t a l . Lab. Prov. P a r t e Sci., 5 (1979) 472; C.A. 91 (1979) 169298t. 178 A. L. Linch, E v a l u a t i o n o f Ambient A i r Q u a l i t y By Personnel Monitoring, CRC, Cleveland, OH 1974. 179 S. C a l v e r t and W. Workman, Ind. Hyg. J., Aug (1961) 318-324. 180 A. Turk, J. Morrow. P. F. Levey and P. Weissman, I n t . J. A i r Water P o l i u t . , 5 (1961) 14. 181 E. R. Hendrickson i n A. C. Stern (Ed.), A i r P o l l u t i o n , Vol. I I , Academic Press, New York, 1968, pp. 3-53. 182 M. F e l d s t e i n and S. B a l e s t r i e r i , J. A i r P o l l u t . Contr. Assn. 15 (1965) 177. 183 M. Shepherd, S. M. Rock, R. Howard and J. Stormes, Anal. Chem., 23 (1951) 1431. 184 E. R. Weaver, E. E. Hughes, S. M. Gunther, S. Schuhmann, N. T. Redfearn and R. Gordon, J. Res. Nat. Bur. Stand., 59 (1957) 383. 185 G.C.B. Carie. TaDDi 46 (1963) 1 . 186 H. Schmidt and C'.'E. Doering, Chem. Tech. ( L e f p z i g ) 288 (1976) 677; Ana Abstr., 32 (1977) 6J30. 187 M. Deimel and W. Dulson, Staub-Reinhalt. L u f t , 39 (1979) 332; C.A., 92 1980) 46671 x . 188 J. Angerer, A. Haap and G. Lehneri, Z. K I i n . Chem. K I i n . Ciochem., 13, (1975) 129; Anal. Abstr., 29 (1975) 5H29. 189 D. R. Cronn and 0. E. Harsch, Anal. L e t t . 9 (1976) 1015. 190 Y. Hoshike, T a i k i Osen Gokkaishi, 14 (1979) 210; C.A. 91 (1980) 1 0 4 7 6 ~ . 191 W. V. Cropper, Sampling o f Liquids, i n F. J. Welcher (Ed.), Standard Methods of Chemical Analysis, Vol. 2 . P a r t A. Van Nostrand Co., New York, 1963, p.46.
85 RELATED READINGS ON SAMPLING 1 2 3 4
5 6
7
S 9 10 11 12 13 14 15 16 17 18 19 20 21
An I n v e s t i g a t i o n on C h a r a c t e r i z a t i o n o f T r a c e Odorants i n A i r by Gas ChromaY. H o s h i k a t o g r a p h y Using P r e c o n c e n t r a t i o n ; I t s E v a l u a t i o n and A p p l i c a t i o n . and G. Muto, Bunseki Kagaku, 29(2)(198O)T10-19. On-Column Cryogenic T r a p p i n g o f Sorbed O r g a n i c s f o r D e t e r m i n a t i o n by Capi l l a r y Gas Chromatography. D. Kalman, R. D i l l s , C. P e r e r a and F. DeWalle, Anal. Chem., 52( 12) (1980)1993-4. S o l i d Sorbent C o l l e c t i o n and Gas Chromatographic D e t e r m i n a t i o n o f t h e P r o p y l e n e G l y c o l B u t y l E t h e r E s t e r s o f 2,4,5-T i n A i r . M.L. Langhorst, Am.Ind. Hyg. ASS^^. J., 41(5)(1980)328-33. Base Peak P r o f i l e s o f Gas Chromatography-Mass S p e c t r o m e t r i c Data O b t a i n e d From Thermal D e s o r p t i o n o f A c t i v a t e d Carbons. K. Alben, Anal. Chem., 5 2 ( 1 2 ) ( 1980) 1821 -4. F i e l d Comparison o f P o l y u r e t h a n e Foam and Tenax-GC Resin f o r High-Volume A i r Sampling o f C h l o r i n a t e d Hydrocarbons. W.N. B i l l u n g s , T.F. Bidleman, E n v i r o n . S c i . Techno1 ., 14(6)(1980)679-83. Sampling o f Hydrocarbons i n t h e Atmosphere f o r Gas Chromatographic A n a l y s i s . V. S i m i k , M. Jednacak, N a f t a ( Z a g r e b ) , 31 (5)(1980)262-6. D e t e r m i n a t i o n o f t h e P o l l u t i o n o f t h e Bay o f T a l l i n n by P e t r o l e u m Hydrocarbons u s i n g I n f r a r e d Spectroscopy and Gas Chromatography. K. T i k a , A. T a l v a r i , Kh.1. Y a n k o v s k i i , T e z i s y Dok1.-Resp. Konf. Molodykh Uch.-Khim., 2nd, 2(1977)28. Automation o f Gas Chromatographic A n a l y s i s o f A i r Samples Trapped on A c t i v a t e d Carbon Ampuls. 1.1. Ferm, U. Samuelsson, I n s t . V a t t e n - L u f t v a r d s f o r s k . , ( P u b l . ) B, IVL B559(1980)35 pp. Methods o f E v a l u a t i o n o f P o t e n t i a l l y Hazardous O r g a n i c s i n I l a t e r . R.P. C o l l i n s , Report, W80-02761, ONRT-A-O72-CONP.I( 1 ) ( 1 9 8 0 ) . O r d e r No. PB80135122, Gov. Rep. Announce, Index(U.S.), 80(11)(1980)1844. Method f o r Sampling a L i q u i d f o r Gas Chromatography. Hokushin E l e c t r i c Works, Ltd., Jpn. Kokai Tokkyo Koho 80, 101,046,Aug. 1, 1980. Houston A e r o s o l Characterization-GC/MS Study. C.M. Sparacino, Spec. Conf. Ozone. Oxid. I n t e r a c t . T o t a l Environ., ( P r o c . ) , 2nd(1979)234-46. A n a l y t i c a l Methods and T h e i r Problems i n t h e A n a l y s i s o f O i l i n Water. R.J. Law, Oily Water D i s c h a r q e s : (Proc. S e m i n . ) ( l 9 7 8 ) ( P u b l . 1980), 167-76. E d i t e d by C.S. Johnston and R.J. M o r r i s , Appl. Sci., B a r k i n g , Engl. B e h a v i o r o f Hydrocarbons i n t h e Atmosphere. 1. Continuous Sainpl i n g w i t h Bags f o r D e t e r m i n a t i o n o f A1 i p h a t i c Hydrocarbons. A. Matano, A. Keminotsu, T. Mizuhata and K. I s h i i , Okayama-ken Kankyo Senta Plempo, 4(1980)62-8. B e h a v i o r o f Hydrocarbons i n t h e Atmosphere. 2. S o r p t i o n w i t h Tenax Beads f o r D e t e r m i n a t i o n o f A r o m a t i c Hydrocarbons. A. Matano, A. Kenunotsu, T. M i z u h a t a , and K. I s h i i , Okayama-ken Kankyo Hoken Senta Nempo, 4(1980)69-74. R e a c t i v e Adsorbent D e r i v a t i v e C o l l e c t i o n and Gas Chromatographic Determinat i o n of C h l o r o m e t h y l E t h e r i n A i r . M.L. Langhorst, R.G. Melcher, and G.J. K a l l o s , Am. I n d . Hyg. Assoc. J . , 42(1)(1981)47-55. Sampling and I n t a k e o f T o t a l Atmospheric Hydrocarbons f o r Gas Chromatographi c D e t e r m i n a t i o n s . Rong-Xian, Zhang,Huan Ching K ' o Hsueh, 2 ( 1 ) ( 1 9 8 1 ) 6 1 ,lo. A Gas-Chromatographic Method f o r t h e D e t e r m i n a t i o n o f V i n y l i d e n e C h l o r i d e i n A i r . K.S. K i r p a l , J . Anal. T o x i c o l . 4 ( 5 ) ( 1 9 8 0 ) 2 6 6 - 8 . Gas Chromatographic D e t e r m i n a t i o n o f V i n y l C h l o r i d e and V i n y l A c e t a t e i n t h e A i r a t Work Places. M. Dobecki and J. K r a j e w s k i , Chem. A n a l . (Uarsaw), 25 ( 3 ) (1980)351-7. E v a l u a t i o n o f t h e B a s i c GC/MS Computer A n a l y s i s Technique f o r P o l l u t a n t A n a l y s i s . J.E. Bunch, N.P. C a s t i l l o , D. Smith, J.T. Bursey and E.D. P e l l i z z a r i , Gov. Rep. Announce. I n d e x ( U. S. ) , 80( 22) ( 1 980)4744. D e t e r m i n a t i o n o f N i t r o g l y c o l i n t h e Ambient A i r by Gas Chromatography. S. Tanaka, A. Akabane and Y. Urashiina, Sangyo Igaku, 22(5)(1980)390-1. Method f o r T r a p p i n g Low L e v e l s o f Phosphine a t Ambient Temerature f o r Gas Chromatographic A n a l y s i s . T. Dumas, E.J. Bond, J. Chromatogr., 2 0 6 ( 2 ) ( 1 9 8 1 ) 384-6.
86 22 23 24 25 26
27 28 29 30
C o l l e c t i o n and A n a l y s i s o f Trace Organic Vapor P o l l u t a n t s i n Ambient Atmospheres. The Performance o f a Tenax-GC Adsorbent Tube. R.H. Brown, C.J. P u r n e l l , J. Chromatogr., 170(1)(1979)79-90. An A p p l i c a t i o n o f GC/MS t o t h e A n a l y s i s o f Odorants i n A i r . S . Naka ama, T. I s h i g u r o , Y. S h i g e t a and T. Kato, Koenshu-Iyo Masu Kenkyakai, 4(1$79) 121-30. Gas Chromatographic A n a l y s i s o f A c e t i c A c i d i n A i r . K.E. H i l l i a m s , J.F. Mazur, Am. I n d . Hyg. Assoc. J., 41(1)(1980)1-4. Gas Chromatography-Mass S p e c t r o m e t r i c I d e n t i f i c a t i o n o f O r g a n i c Compounds and D e t e r m i n a t i o n o f A c r y l o n i t r i l e i n t h e A i r o f t h e Kawasaki I n d u s t r i a l Area. H. Suzuki, S. Satoh, Koensho-Iyo Masu IKenkyukai, 4(1979)113-20. S t u d i e s on O f f e n s i v e Odor. 2. A n a l y s i s o f Odorous Substances f r o m S o l i d Wastes by Gas Chromatography-Mass S p e c t r o m e t r y . A. Kamiya, H. M i z u t a n i , M. Hayakawa, D. Aoyama and Y. Osi, Kankyo Osen B u s s h i t s u t o Sono T o k i s h i k o r o j i i Shinpojumu, (Koen Yoshishu), 6th(1979)43-5. S o r p t i o n o f Phenols f r o m Water and Subsequent Thermal D e s o r p t i o n f o r GC A n a l y s i s . Z. Voznakova, M. Popl, J. Chromatogr., 17(12)(1979)602-6. Method f o r t h e D e t e r m i n a t i o n o f T o x i c Substances i n t h e A i r U s i n g Chromatography and Mass Spectrometry. M.T. D m i t r i e v , E.G. Rastyannikov, S.A. Volkov, A.G. Malysheva and B.M. Samkhodkin, Gig. S a n i t . , (5)(1980)42-4. D e t e c t i o n o f Environmental P o l l u t a n t s . Measurements o f N i t r o s o a n i n e i n Atmosphere. K. A i h a r a , and 14. S i n o z a k i , Kanagawa-ken Kogai Senta fiempo, 10( 1977) 184. Sampling f o r Chemical A n a l y s i s . B. K r a t o c h v i l and J.K. T a y l o r , Anal. Chem., 53( 1981)925A.
CHAPTER 4 SAMPLE TREATMENT
4.1
INTRODUCTION Sample t r e a t m e n t i s t h a t p r o c e s s o f m a n i p u l a t i v e p r o c e d u r e s u s e d by t h e
a n a l y t i c a l c h e m i s t t o p r e p a r e t h e sample f o r t h e a n a l y t i c a l measurement s t a g e . Sampling per se I s n o t performed I n t h e l a b o r a t o r y ;
sampling i s t h e process e x t e r n a l
t o t h e laboratory environment (see Chapter 31 which
i s necessary f o r t h e a n a l y t i c a l
chemist t o judge whether o r not t h e sample i s t r u l y r e p r e s e n t a t i v e . The technique o f headspace gas sampling i s discussed i n Sectlon 4.3.2.1. i s a subtopic o f t h e general s e c t i o n d e a l i n g w i t h e x t r a c t i o n s . r e f e r r e d t o as a sampling technique,
Although
b a s i c a l l y i t I s a sample treatment
This
it i s
procedure.
The j u s t i f i c a t i o n f o r t h i s statement can be seen i n t h e f a c t t h a t i f t h e sample i s n o t representative a t t h i s point,
g r e a t a t t e n t i o n t o procedural
d e t a i l w i l l n o t produce
data which t h e a n a l y t i c a l chemist can consider as t r u l y r e p r e s e n t a t i v e .
4.2 STORAGE OF SAMPLES Chemical
preservatives
should
be
added
to
samples
for
chemical,
physical,
b a c t e r i o l o g i c a l o r r a d i o l o g i c a l examination o n l y when s p e c i f i e d i n t h e p a r t i c u l a r t e s t method.
Quick f r e e z i n g may be b e n e f i c i a l i n p r e s e r v i n g some o r g a n i c c o n s t i t u e n t s . I f t h e samples are t o be h e l d more than 1 h b e f o r e examination, they should be
stored i n a r e f r i g e r a t o r or
i c e chest a t a temperature o f n o t m r e than 4'C.
i n t e r v a l between c o l l e c t i o n and a n a l y s i s o f water samples should n o t exceed 12 h, a t a l l possible.
The
if
Shipment of t h e sample should be i n an i n s u l a t e d iced c o n t a i n e r t o
m a i n t a i n t h e temperature between 0" and 4°C t o p e r m i t a n a l y s i s w i t h i n t h e 12 h p e r i o d . This
i s one o f
t h e steps
i n the series
determination o f a component i n an environmental Samples are c o l l e c t e d ,
from t h e sampling stage t o a c t u a l sample which o f t e n
i s overlooked.
transported t o the laboratory, only to wait f o r various time
i n t e r v a l s (hours t o days) before t h e actual a n a l y s i s .
Environmental samples emphasize
a very important problem which many chemists may f o r g e t : one i s not always sure o f a l l the
components
in
the
sample.
There
may
be
components
present
which
are
photochemically a c t i v e which may i n t e r a c t w i t h o t h e r sample components o r which simply undergo some r a t e - c o n t r o l l e d chemical decomposition w i t h tlme. A good r u l e of thumb i s t o assume t h a t t h e sample r e c e i v e d (gas o r l i q u i d ) w i l l
undergo some t y p e o f change w i t h t i m e and, these changes.
thus,
t a k e proper precautions t o minimize
Storage i n t h e dark a t a low temperature ( a t l e a s t 4'C
t h e best procedure one could p r a c t i c e .
)
i s possibly
Mold can grow i n water samples, reduce t h i s d i f f i c u l t y .
(1-2
interval
days),
and t h e r e f o r e t h e low temperature storage w i l l
I f a n a l y s i s w i l l not be performed w i t h i n a reasonable t i m e
adequate storage space must
be a v a i l a b l e
in the
laboratory.
Sample containers which have not been chosen c o r r e c t l y and t h o r o u g h l y cleaned w i l l adsorb a number o f t h e contaminants on t h e walls. i s necessary
I t sometimes
I n a i r p o l l u t i o n s t u d i e s t o determine
p o l l u t a n t has been adsorbed or absorbed by t h e l o c a l vegetation. f r e s h p l a n t samples must be p r o t e c t e d from enzyme a c t i o n , fermentation.
whether
a
I f t h i s be t h e case,
e.g.,
autolysis
and/or
Mold growth on such samples can cause e r r o r s i n subsequent analyses.
Samples which w i l l be analyzed w i t h i n a day o r two may be k e p t i n g l a s s j a r s which a r e I f more than a couple o f days w i l l pass b e f o r e a n a l y s i s i s possible,
t i g h t l y sealed.
these types o f samples should be stored i n t h e frozen s t a t e ( r e f . they must be analyzed as
decompositlon r a t e
will
1).
Once thawed,
be accelerated.
Miles e t al.
( r e f . 2 ) described a technique f o r t h e storage and a n a l y s i s o f water and mud samples contaminated w i t h Abate.
Giever ( r e f . 3) has noted t h a t environmental samples should
be stored away from heat and l i g h t and t h e c o n t a i n e r m a t e r i a l checked f o r i n t e r a c t i o n s w i t h the sample.
He recommends g l a s s c o n t a i n e r s over s y n t h e t i c compound c o n t a i n e r s .
Samples which must be d i l u t e d p r i o r t o a n a l y s i s should n o t be d i l u t e d u n t i l t i m e f o r t h e analysis. effects w i l l solution.
Brq
s o l u t i o n than
from a concentrated
I t has been shown ( r e f . 4) t h a t storage o f water samples c o n t a i n i n g C I
increases t h e
methane,
Decrease o f contaminant c o n c e n t r a t i o n because of a d s o r p t i o n
be more pronounced from a d i l u t e concentration of
haloalkanes
(e.g.,
chloroform,
2
Or
bromodichloro-
dibromochloromethane and bromoform) because o f r e a c t i o n s between halogen and
haloalkanes.
Ascorbic acid,
sodium s u l f a t e ,
sodium b i s u l f i t e ,
sodium t h i o s u l f a t e o r
hydrazine w i l l s t a b i l i z e t h e s o l u t i o n .
4.3 EXTRACTION TECHNIQUES E x t r a c t i o n o f environmental samples may be c l a s s i f i e d by t h e sample t y p e ( i - e . , physical s t a t e o f sample). (1)
Leaching ( l i q u i d - s o l i d e q u i l i b r i u m ) .
E x t r a c t i o n o f components o f
from a s o l l d sample by use o f a l i q u i d - e x t r a c t i n g s o l v e n t .
interest
The a n a l y s i s o f p a r t i c u -
l a t e samples f o r polynuclear aromatic hydrocarbons (PAHs) i s an example o f t h i s t y p e of e x t r a c t i o n system.
( 2 ) Liquid-liquid
partition
(liquid-liquid
equilibrium).
The e x t r a c t i o n o f
p o l l u t a n t s from a l i q u i d ( o r g a n i c o r aqueous) sample by use o f another which
is
immiscible
w i t h t h e sample phase.
An example o f
e x t r a c t i o n o f o r g a n i c p o l l u t a n t s d i s s o l v e d i n a water sample,
o f waste water e f f l u e n t s o r w a t e r e x t r a c t i o n of
l i q u i d phase
t h i s technique i.e.,
i s the
octane e x t r a c t i o n
i o n i c species ( i o n p a i r s ) from
petroleum-base samples. ( 3 ) Gas-liquid
p a r t i t i o n (gas-liquid
have several s u b d i v i s l o n s :
equilibrium).
T h i s t y p e of
system can
89 ( a ) Headspace sampling f o r v o l a t i l e contaminants from an aqueous sample. example would be t h e headspace a n a l y s i s o f water samples (e.g..
low molecular weight a l k y l
An
h a l i d e s from
ethyl chlorlde or vinyl chloride).
( b ) Water e x t r a c t i o n o f a gas sample f o r water-soluble
components,
e.g.,
e x t r a c t i o n of SO
or CO from a i r samples or aerosol e x t r a c t i o n w i t h water. 3 2 ( c ) Organic s o l v e n t e x t r a c t i o n of a gas sample, e.g., l y o p h i l l c aerosols i n
an a i r sample. ( 4 ) Gas-solid
equilibration
(gas-solid
equilibrium).
m a t e r i a l s f r o m a s o l i d w i t h an i n e r t (He o r N 2 ) gas,
Sampling
e.g.,
of
volatile
vapor e q u i l i b r a t i o n
(headspace) o f v i n y l c h l o r i d e v o l a t i l e s from a polymeric substance o r odors from a p a i n t e d surface.
( 5 ) E x t r a c t i o n of
l i q u i d by
a solid
(solid-liquid
equlllbrium).
r e f e r r e d t o by a number o f w o r k e r s i n t h e a r e a o f e n v i r o n m e n t a l e x t r a c t i o n technique (which
it r i g h t f u l l y
is);
however,
following
between sampl i n g ( e x t e r n a l t o t h e l a b o r a t o r y ) and sample treatment l a b o r a t o r y ) , t h i s technique i s discussed i n Chapter 3, use o f c a r b o n as t h e a d s o r b e n t carbon-chloroform
(CAM)
is
a n a l y s i s as an our
delineation
(internal t o the
Sections 3.4.1
i s a standard technique
e x t r a c t (CCE) and carbon-alcohol
This
and 3 . 4 . 2 .
The
from which t h e
e x t r a c t (CAE) are o b t a i n e d ( r e f s .
D r e s s l e r ( r e f . 10) has provided an e x c e l l e n t overview o f t h i s technique.
5-9).
( 6 ) E x t r a c t i o n o f a i r by a s o l i d ( s o l i d - g a s e q u i l i b r i u m ) .
See t h e d i s c u s s i o n
i n c l a s s i f i c a t i o n number 5 above.
The f i r s t f o u r c l a s s i f i c a t i o n s have one b a s i c p r o c e s s e q u i l i b r a t i o n o f two phases.
Thus,
i n common,
i.e.,
they a l l i n v o l v e an e q u i l i b r i u m constant KD which
i s dependent upon temperature and pressure.
Each system may be d e f i n e d by t h e Nernst
d i s t r i b u t i o n law ( r e f . 1 1 ) .
Component S
-,
Eqn.
4.2
Component S
(4.1)
Phase 2
Phase 1
i s v a l i d o n l y when S i s t h e same species
weight) i n both phases.
(i.e.,
has t h e same molecular
I f component S has a d i f f e r e n t form i n one o f t h e phases,
a
b e t t e r d e s c r i p t i o n o f t h e e q u i l i b r i u m would be t h e d i s t r i b u t i o n r a t i o D. ( a l l forms) i n phase 23 D - [[ tt oo tt aa ll cc oo nn cc ee nn tt rr aa tt ii oo nn oo ff SS ( a l l forms) i n phase 1 1
(4.3)
The t o t a l c o n c e n t r e t i o n o f t h e forms o f S i s t h e a n a l y t i c a l c o n c e n t r a t i o n C a n a l y t i c a l c o n c e n t r a t i o n o f a substance i s equal t o t h e sum o f t h e e q u i l i b r i u m
.
The
concentrations, t h u s
n
(Cslq =
z
CS,12
(4.4)
cs,1,
(4.5)
i=l n
(cs)l =
z i=l
We may then r e w r i t e Eqn. 4.3 as (4.6)
The use o f eqn. 4.6 o n l y becomes important when one has i o n i c species, metal ion being
removed by c h e l a t i o n o r
when
dimerlzation or
polymerization
reactions
are taking
place.
Most i m p o r t a n t l y I t i s used when e x t r a c t i n g h i g h c o n c e n t r a t i o n s o f phenols or
metals,
e.g.,
i n t h e Consent
Decree L i s t o f
P r i o r i t y Pollutants.
However,
most
environmental samples have low c o n c e n t r a t i o n s o f phenols and metals; t h e r e f o r e t h e KD value i s o f more importance than t h e D value.
Additionally,
when d e a l i n g w i t h phenols
f o r e x t r a c t i o n s we work w i t h v e r y a c i d i c s o l u t i o n s so t h e u n d i s s o c i a t e d f o r m predominates,
i.e.,
the equilibrium i s driven t o t h e l e f t :
H+ C6H50H W
C
6
H
5
0
-
+
(4.7)
H+
The use o f metal c h e l a t e s f o r e x t r a c t i o n s o f metals i s s i m p l i f i e d by u s i n g an excess
of t h e c h e l a t i n g reagent and d r i v i n g t h e e q u i l i b r i u m t o t h e r i g h t : M ~ ++ nL(xs)
L
,M
L ~
One should r e a l i z e t h a t what
(4.8)
i s presented
i n eqns.
4.7
equi I i b r i a and t h a t a smal I amount o f t h e component o f aqueous phase.
i n t e r e s t w i I i remain i n t h e
i n t r o d u c e l i t t l e o r no e r r o r
in the analytical
Some components w i l l not have a d i s t r i b u t i o n constant h i g h enough t o
permif q u a n t i t a t i v e e x t r a c t i o n i n one t r a n s f e r . two o p t i o n s :
r e p r e s e n t s dynamic
However, t h e q u a n t i t y remaining i s a very small amount o f t h e o r i g i n a l
concentration and i n many cases w i l l determinations.
and 4 . 8
Thus,
we f i n d o u r s e l v e s faced w i t h
( 1 ) Carry out m u l t i p l e e x t r a c t i o n s w i t h f r e s h a l i q u o t s o f
measure t h e amount o f p o l l u t a n t
i n each a l i q u o t ,
s o l v e n t and
o r ( 2 ) Perform one e x t r a c t i o n and
make a c o r r e c t i o n f o r amount unextracted. The second o p t i o n can be r i s k y matrix.
i f one
i s not sure o f
t h e complete sample
I f t h e d i s t r i b u t i o n constant i s known and no o t h e r components ( p r e s e n t i n t h e
91 sample)
interfere,
the
amount
remaining
unextracted
can
c o n s i d e r a t i o n I s whether i t e x i s t s I n more than one form.
be c a l c u l a t e d .
Another
Some o r g a n i c cmpounds may
dimerlze o r polymerize I n t h e o r g a n l c layer (benzoic a c i d dimerize9
i n benzene) o r
they may form an i o n a s s o c l a t l o n product (amines c o u l d be e x t r a c t e d i n t o t h e o r g a n i c layer by i o n - p a i r i n g w i t h an anion from an a c i d i c aqueous s o l u t i o n ) .
4.3.1
Llquld-liquid extractlon F o r c l a r i t y we w l I I d i v i d e t h i s t o p i c
extractions
where
s o l v e n t (50-200
l a r g e volumes
ml)
are uesd;
of
sample
i n t o two subheadings:
(up t o
several
(2) micro-extractions
(10-25 ml) and e x t r a c t i n g s o l v e n t (0.2-3
liters)
volumes of
where small
m l ) a r e used.
( 1 ) macro-
and e x t r a c t i n g sample
U n f o r t u n a t e l y most o f t h e EPA
methods o f a n a l y s i s employing l i q u i d - l i q u i d e x t r a c t i o n use t h e macro-extraction meThod ( r e f . 12).
T h i s i s p r e s e n t l y belng r e v i s e d ( r e f .
4.3.1.1
Macro-liquid-liquid
because they r e q u i r e
extractions.
large sample volumes
volume o f t h e e x t r a c t i n g solvent,
13).
Macro-extractions a r e n o t a t t r a c t i v e
( n o t always a v a i l a b l e ) ,
require a large
Introduce e r r o r s (sample component
t h e c o n c e n t r a t i n g procedure ( u s u a l l y an e v a p o r a t i v e technique),
losses) d u r i n g
and a r e c o s t l y .
These
macro-extraction procedures evolved p r i m a r i l y because t h e c o n c e n t r a t i o n l e v e l s o f t h e p o l l u t a n t s were low and t h e methods o f d e t e c t i o n lacked s e n s l t i v l t y .
This s i t u a t i o n
has been reversed t o a large e x t e n t i n t h e case o f many of t h e p r i o r i t y p o l l u t a n t s . This has been brought about by t h e Increased s e n s i t i v i t y and s e l e c t i v i t y of many of t h e present-day d e t e c t o r systems (see Chapter 5, Section 5.5). P u r i t y o f e x t r a c t i n g s o l v e n t i s o f concern when used f o r s e p a r a t i o n o f e n v i r o n mental sample components. as t h e sample component of
Solvent contaminants may be o f t h e same o r d e r o f magnitude Not o n l y can t h i s cause spurious peaks b u t I t
interest.
may enhance t h e peak one i s m n i t o r i n g . large s o l v e n t peak
Choice of t h e wrong s o l v e n t may r e s u l t i n a
which o v e r l a p s t h e peak(s) o f
s o l v e n t would be one t h a t
Interest.
The
ideal e x t r a c t i o n
i s very s e l e c t i v e f o r types o f compounds,
has a very
b o i l i n g p o i n t and has a r e t e n t i o n volume equal t o t h e v o i d volume o f t h e column,
VM =
low
i.e.,
vR ' Methylene c h l o r i d e
e x t r a c t i n g solvent,
(CH2C12)
possesses many o f
the
properties of
an
ideal
p r o v i d i n g one i s not a n a l y z i n g f o r halogenated contaminants which
have low b o i l i n g p o i n t s .
I t b o i l s a t 35'C
and has a d e n s i t y of
1.336 g/mi.
This
l a t t e r p r o p e r t y makes it an e x c e l l e n t s o l v e n t because It w I I I be t h e bottom layer an aqueous-methylene c h l o r i d e system, e x t r a c t i n g vesesl.
t h u s p r o v i d i n g ease o f removal
Some o f t h e o t h e r commonly used e x t r a c t i o n s o l v e n t s (n-C5-,
and n-C8-hydrocarbons)
and w i l l
have d e n s i t i e s l e s s than water
in
from t h e n-C6-,
c o n s t i t u t e the top
layer i n t h e e x t r a c t i o n system. Benzene has been recommended i n some o f t h e o l d e r i t s t o x i c effects,
It should be avoided.
n-Pentane
l i t e r a t u r e ; but,
and n-hexane
because of
u s u a l l y can be
92 s u b s t i t u t e d w i t h l i t t l e o r no decrease i n e x t r a c t i o n e f f i c i e n c y . The question o f how many e x t r a c t i o n s are necessary t o be c e r t a i n o f q u a n t i t a t i v e t r a n s f e r t o t h e organic phase constant o f every p o l l u t a n t ,
i s a v a l i d one.
I f we knew t h e
distribution
i n any t y p e o f m a t r i x , t h i s would be easy t o answer.
can, however, c a l c u l a t e t h e f r a c t i o n remaining f
We
by use o f eqn. 4.9.
(4.9)
where n = number o f e x t r a c t i o n s o r t r a n s f e r s ,
K
D
= d i s t r i b u t i o n constant,
V
= volume organic phase,
V
= volume aqueous phase.
Unfortunately,
we do not know t h e d i s t r i b u t i o n constants o f
many o f
the p r i o r i t y
p o l l u t a n t s , but we are making progress. To demonstrate t h e e f f e c t o f a c o r r e c t e x t r a c t i n g solvent, c a l c u l a t i o n s u s i n g eqn.
4.9.
Hites (ref.
l e t us present a few
1 4 ) used as a t y p i c a l example o f a
macro-extraction one I n which V w = 3.5 L and Vo = 200 ml.
Taking h i s volumes,
l e t us
c a l c u I ate:
(1)
f r a c t l o n s remaining a f t e r 1-10 e x t r a c t i o n s where t h e KD = 1 (contaminants
e q u a l l y s o l u b l e i n both phases);
(2)
f r a c t i o n s remaining a f t e r 1-10 e x t r a c t i o n s where t h e KD = 5 (contarninants
5X more s o l u b l e i n organic phase than aqueous phase);
(3)
t h e value o f KD necessary t o e x t r a c t 998,
u s i n g one e q u i l i b r a t i o n ( e x t r a c t i o n ) .
95% and 90% o f t h e contaminant
T h i s would compare t o u s u a l e x t r a c t i o n
c o n d i t i o n s o f large water samples.
The r e s u l t s o f these c a l c u l a t i o n s are shown I n Table 4.1.
May
and
Stalling
(ref.
15)
have
described
r o t o e v a p o r a t i o n vessels (250 ml and 100 m l ) chloride extraction, technique
the
use
of
double-reservoir
f o r s o l v e n t evaporation a f t e r methylene
gel permeation and l i q u i d chromatography clean-up
circumvents
the
s o l v e n t c o n c e n t r a t i o n (e.g.,
problems
associated
Kuderna-Danish
with
solvent
apparatus) steps.
transfer
steps.
This
and o r g a n i c
Petroleum products i n
n a t u r a l water have been i d e n t i f i e d and determlned by gas chromatographic a n a l y s i s o f t h e hexane e x t r a c t using a SE-30 d e t e c t i o n ( r e f . 16).
o r OV-l/Gas-Chrom
Q column and flame i o n i z a t i o n
BHC residues were determined by GC a n a l y s i s o f t h e e x t r a c t s from
freshwater i n Northern I r e l a n d ( r e f . 1 7 ) . hexachloride and 1-5ug/t
They were able t o d e t e c t 1 mg/E o f benzene
(ppb) of D i e l d r i n , p,p'-DDT
and i t s m e t a b o l i t e s .
Overton e t
93 al.
(ref.
18) separated and determined petroleum hydrocarbons
u s i n g w a l l - c o a t e d open t u b u l a r g l a s s c a p i l l a r y columns.
i n marine
sediments
P h e n o l s i n w a t e r were
e x t r a c t e d w i t h d i e t h y l ether ( r e f . 191, converted t o t h e i r f l u o r i n a t e d d e r i v a t i v e s and d e t e c t i o n was by e l e c t r o n capture.
Thiophene (and c h l o r i n a t e d d e r i v a t i v e s ) ,
benzene
and toluene have a l s o been e x t r a c t e d from waste water and determined i n t h e e x t r a c t e d d i s t i l l a t e s from s o i l , water and p l a n t s ( r e f . 21).
A t h e r m i o n i c d e t e c t o r was used and
TABLE 4.1
Example data o f e x t r a c t i o n e f f i c i e n c y f o r water p o l l u t a n t s
Vo = 200 ml; V w = 3.5 e . ( 2 ) F r a c t i o n remaining
( 1 ) F r a c t i o n remaining
unextracted: KD=l
unextracted: KD=5
f l = 0.946
f l = 0.778
f 2 = 0.895
f 2 = 0.605
= 0.847
f 3 = 0.471
f
3 f 4 = 0.801
f 4 = 0.366
f 5 = 0.758
f 5 = 0.285
= 0.717
f 6 = 0.222
f
6 f 7 = 0.678
f 7 = 0.173
f 8 = 0.641
f a = 0,134
f g = 0.607
f g = 0.104
f 1 0 = 0.574
f 1 0 = 0.081
(3) n = 1
%
Extracted
K,-Necessary
99
1734
95
333
90
158
a d e t e c t i o n t h r e s h o l d o f 0.02
mg/kg was obtained.
been e x t r a c t e d f r o m w a t e r samples ( r e f s .
Organophosphorus p e s t i c i d e s have
22 and 23) and d e t e r m i n e d b y a method
y i e l d i n g a d e t e c t i o n l i m i t o f 1 ppb and an e f f i c i e n c y o f > 95%.
The study ( r e f . . 2 2 )
showed t h a t p e s t i c i d e s were adsorbed on t h e w a l l s o f t h e s y r i n g e from hexane e x t r a c t s but not
from acetone e x t r a c t s .
S t a l l i n g and H u c k i n s ( r e f .
2 4 ) a n a l y z e d and
c h a r a c t e r i z e d toxaphene i n f l s h and water by an e x t r a c t i o n technique f o l l o w e d b o t h by
94 electron-capture
detection
and
gas
chromatography-mass
spectrometry.
labeled p e s t l c l d e s were e x t r a c t e d from serum w i t h hexane, u s i n g c a p i l l a r y columns c o a t e d w i t h SE-30 o r OV-1
Carbon-14
separated and determined
(ref.
25).
Flunitrazepam,
d e s m e t h y l f l u n i t r a z e p a m and c l o r a z e p a m were e x t r a c t e d f r o m p l a s m a and t h e f i n a l s o l u t i o n was a hexane-acetone ( 4 : l ) mlxture. OV-225
column
using an e l e c t r o n - c a p t u r e
T h l s was separated and analyzed on an
detector
(ref.
26).
Aldlcarb,
aldlcarb
s u l f o x l d e and a l d i c a r b s u l f o n e have been e x t r a c t e d f r o m w a t e r w i t h c h l o r o f o r m , separated on a F l o r l s i l column and detected w i t h a H a l l e l e c t r o l y t l c d e t e c t o r ( r e f . 27).
ppm a l d l c a r b .
Smoke condensate f l a v o r i n g s
have been e x t r a c t e d from ground sausage w i t h d l e t h y l
S e n s l t i v l t y o f t h e method i s 0.05
e t h e r and determined by gas
chromatography ( r e f .
28).
One-tenth
ppm could be detected.
E t h y l e n e t h i o u r e a was
e x t r a c t e d and d e r i v a t l z e d i n one step from water samples ( r e f . 29). and flame-Ionization 4.3.1.2
Electron-capture
d e t e c t l o n were used f o r i d e n t i f l c a t l o n and q u a n t i f i c a t i o n .
Micro-llquid-liquid
e x t r a c t i o n technlque are t h a t one
extractions.
The a d v a n t a g e s o f t h e m l c r o -
i s able t o extract
and c o n c e n t r a t e p o l l u t a n t s
s i m u l t a n e o u s l y and t h e r e i s no p r o b l e m w l t h s u b s e q u e n t e v a p o r a t i o n s . macro-extractlon (carbon-alcohol
methods,
the
CCE
e x t r a c t ) technlques,
(carbon-chloroform
extract)
I n most
and
the
CAE
t h e s o l v e n t phase r e q u i r e s f u r t h e r c o n c e n t r a t i o n
which u s u a l l y r e s u l t s i n s e r i o u s losses o f sample components. Murray ( r e f .
30) developed an e x t r a c t i o n f l a s k 4 l m i l a r t o t h e r a p i d l i q u i d
e x t r a c t i o n technlque used by Grob e t a l .
(ref. 31).
t h i s f l a s k wherein Vo = 200 p& and V w = 980
m.
F l g . 4.1
I s a representatlon of
Murray compared t h l s m i c r o - e x t r a c t i o n
method t o two macro-methods (steam d i s t l l l a t l o n e x t r a c t i o n and a continuous e x t r a c t i o n system).
To show t h e l o s s of s o l u t e d u r i n g t h e e v a p o r a t i o n s t e p ,
n-hexane were made t o c o n t a l n 1.0 ppm o f a group o f o r g a n i c compounds: n-alkanes and phthalates.
standards o f pesticides,
A 10.0 m l a l i q u o t of t h l s standard was then evaporated t o 1
m l and each component i n t h e standard was determined by gas chromatography.
Two
evaporative techniques
The
(micro-Snyder column and r o t a r y e v a p o r a t o r ) were used.
r e c o v e r i e s ranged from 37-842 w l t h t h e micro-Snyder
technlque and 8-100$ w l t h t h e
r o t a r y evaporator. A comparison of t h e r e s u l t i n g chromatograms from t h e m i c r o - e x t r a c t i o n
two macro-methods showed t h a t t h e mlcro-technique spiked s o l u t i o n .
and t h e
y i e l d e d a b e t t e r recovery o f t h e
The data showed a c o n c e n t r a t l o n f a c t o r o f
1250X for t h e micro-
e x t r a c t l o n technique compared t o t h e macro-technique. To emphasize t h e advantage o f a m i c r o - e x t r a c t i o n ,
l e t us present t h e c a l c u l a -
t i o n s f o r a t h e o r e t i c a l system, t h e r e s u l t s o f which a r e i n Table 4.2. t h e t a b l e p o i n t out,
less has been e x t r a c t e d i n t h e 0.200-ml
As t h e data i n
(200 M I )s o l v e n t volume;
however, t h e d e t e c t o r would sense more mass o f t h e p o l l u t a n t than i n t h e o t h e r cases. Thus, t h e advantages one f i n d s a r e t h a t :
( 1 ) t h e s i g n a l from t h e d e t e c t o r i s t h e same
order of magnitude as I f one had e x t r a c t e d w l t h a l a r g e r s o l v e n t volume (l.e., t h e
95 chromatograms
look t h e same) and ( 2 ) t h e evaporation step and
its allied
loss o f
sample were by-passed.
CAPlLLA
F i g . 4.1 Representative m i c r o - e x t r a c t i o n f l a s k .
TABLE 4.2
Comparison o f macro- and m i c r o - e x t r a c t i o n techniques
Sample:
1 t o f waste water c o n t a i n i n g 1 mg/e
n-hexane.
o f contaminant C,
F i n a l volume o f s o l v e n t a f t e r evaporation:
i.e.,
r;
1 ppm.
Solvent
1.00 ml (except 200 u l e x t r a c t ) .
KD o f contaminant C = 15.
2 i n f i n a l Samp I e I Q u a n t i t y o f
h o u n t of C
volume(mg) vo I ume
injected***
inject-
jetted**
(mg)
ed ( u t )
0.4000 0.8696 0.9302 0.9970
100.0 10.0 5.0 0.200 *'remaining
** ***
= 'initial
0.6000 0.1304 0.0698 0.0030
0. 3000 0. 0652 0.0349 0. 0030
50 50 50 0
(V~/(K,,V~
+
50 50 50 50
0.015 0.00326 0.001745 0.00075
3.0003 3.000652 3.000698 3.00075
vW)).
E x t r a d i g i t s c a r r i e d t o demonstrate p o i n t . Amount i n j e c t e d i n a 50
I sample from o r i g i n a l e x t r a c t ,
i.e.,
no e v a p o r a t i o n .
The m i c r o - e x t r a c t i o n technique has been a p p l i e d t o several o f t h e EPA p r i o r i t y p o l l u t a n t methods w i t h a h i g h degree o f success.
A r e c e n t paper by Rhoades and N u l t o n
( r e f . 32) has demonstrated t h i s technique f o r t h e e x t r a c t i o n o f aromatics, p h t h a l a t e s , polynuclear aromatics and phenols.
4.3.2
Gas-liquid extraction I n t h i s system f o r sample treatment t h e s o l v e n t f o r t h e water p o l l u t a n t s i s a
gas ( c l e a n a i r ,
The p o l l u t a n t s which may be e x t r a c t e d by t h i s
n i t r o g e n o r helium).
technique must have a h i g h enough p a r t i a l pressure ( P i ) t h a t t h e y can e a s i l y d i s t r l b u t e between t h e gas and l i q u i d phases,
i.e.,
t h e i r p a r t i a l pressure ( i n terms o f
moles) should exceed t h e i r water s o l u b i l i t i e s (expressed i n m o I e s / I i t e r ) . few
data
available
pol i u t a n t s .
on
the
solubilities
Several reasons
of
the
hydrocarbon
types
can account f o r t h i s discrepancy
There are of
in the
priority
Iiterature:
( 1 ) Hydrocarbons and hydrocarbon t y p e s a r e r e l a t i v e l y i n s o l u b l e i n water and p r i o r t o
environmental r e g u l a t i o n s they were usual i y c l a s s i f i e d slmply as "insoluble18. these r e g u l a t l o n s ,
Due t o
i n many c o u n t r i e s these c o n c e n t r a t i o n s had t o be c a l c u l a t e d because
( 2 ) No one r e a l l y needed t h e
most p o l l u t a n t s a r e present a t t h e ppm o r ppb l e v e l s . data so they were never determined.
( 3 ) I n t h e past,
a n a l y t i c a l techniques were n o t
a v a i l a b l e t o determine these low concentrations. Several
techniques a r e
available
under
the
general
heading o f
gas-liquid
extractions. ( 1 ) Headspace a n a l y s i s o r vapor e q u l l i b r a t i o n ( S e c t i o n 4 . 3 . 2 . 1 ) .
This
is a
A volume of i n e r t gas i s e q u i l i b r a t e d w i t h a known volume o f
t r u e e q u i l i b r i u m system.
water sample ( r e f s . 33-36).
( 2 ) Gas s t r i p p i n g o r purge-and-trap nonequi I i brium technique.
technique ( S e c t i o n 4 . 3 . 2 . 2 ) .
phase c o l l e c t e d by a d s o r p t i o n on a s o l i d ( s e e S e c t i o n 3 . 4 1 , containing a solvent condensed component.
i n which gases o f
i n a t r a p which
This
is a
The water sample i s sparged w i t h an i n e r t gas and t h e gas absorbed by a t r a p
I n t e r e s t are absorbed (see Section 3.7)
I s cooled below t h e b.p.
of
the
or
lowest b o i l i n g gaseous
I n t h i s l a t t e r case t h e c o l d t r a p may c o n t a i n a s o l i d adsorbent o r simply
g l a s s wool ( r e f . 37-42).
( 3 ) Gas-i i q u i d e x t r a c t i o n f r o m a w a t e r sample t o w h i c h has been added a s u f f i c i e n t q u a n t i t y o f a s o l u b l e s a l t (e.g.,
KCI, Na2S04. NaCI, e t c . )
t o Increase t h e
i o n i c s t r e n g t h o f t h e sample ( t h i s i s r e a l l y a m o d i f i c a t i o n o f technique No. The presence o f t h e s a l t decreases t h e s o l u b i l i t y o f
Section 4.3.2.3)).
i (see nonpolar
and/or s l i g h t l y p o l a r organic solutes, t h u s a l l o w i n g more vapor t o e n t e r t h e gas phase ( r e f s . 43 and 4 4 ) . Each o f these w i l l be discussed i n subsequent sections.
Gas-liquid extraction
i s being used more and more i n t h e area o f environmental a n a l y s i s . more d i r e c t a p p l i c a t i o n t o waste water e f f l u e n t s .
I t w i l l soon have
Many organic molecules which were
not p r e v i o u s l y determined by t h i s technique are now e a s i l y measured, advantages (see Section 3.9) and t h e s e n s i t i v i t y of d e t e c t o r s (e.g.,
because o f t h e flame i o n i z a t i o n
and electron-capture d e t e c t o r s ) . Kojima ( r e f . japonica.
4 5 ) s t u d i e d t h e pungent odors
Components
i d e n t i f i e d and
p r o p y l - i s o - t h i o c y a n a t e and 3-butenyl Reshetnikova e t coatings
during
al.
setting.
(ref.
determined
from t h e h y d r o i y z a t e o f
were
ally1
Wasabia
isothiocyanate,
iso-
isothiocyanate. 46)
sampled
Compounds such
as
the
volatiles
CO,
acetaldehyde,
(b.p.
20-300°C)
acetone,
from
toluene,
97 benzene,
b u t y l alcohol,
b u t y l acetate,
isobutanol and e t h y l benzene Yere i d e n t i f led. 3 mg/m N l k l t i n e t a l . ( r e f . 47) determined
.
S e n s l t i v l t y o f method I s g l v e n as 0.05-0.1 hydrocarbons i n a i r ,
snow, t r e e bark and leaves by p l a c i n g t h e sample i n a s a t u r a t e d
sodium c h l o r i d e s o l u t i o n and h e a t i n g t o 80-90'C. o u t o f t h e c o n t a i n e r s w i t h c a r r i e r gas.
The v o l a t i l e hydrocarbons were swept
Fedchenko and Vigdergauz ( r e f . 48) showed t h e
e f f e c t o f water vapor as e l u e n t as compared t o n i t r o g e n .
C5-,
C8-,
and Cl0-acid
C,3-alkanes.
C4-.
nltriles;
Compounds s t u d i e d were t h e
Cll-
and C8-,
and C g - a l c o h o l s
C7-,
and
The HETP ( h e i g h t e q u i v a l e n t t o a t h e o r e t i c a l p l a t e ) values decreased
w i t h t h e t r a n s i t i o n from n i t r o g e n t o water vapor.
E l u t i o n t i m e s were 2.4X
longer w i t h
n itrogen. Methane,
e t h y l e n e and n i t r o u s o x i d e were
above s o i l samples u s i n g t h i s technique.
identified
using b o t h a Porapak N and a Porapak S column ( r e f . 49). iosmers up t o C column.
50).
)
i n t h e headspace vapor
The v o l a t i l e s were separated and determined V o l a t i l e f a t t y acids (plus
i n u r i n e samples were determined on a 3% F l u o r a d FC 430/Chromosorb G
5 The c a r r i e r gas was n i t r o g e n and t h e d e t e c t i o n was by flame i o n i z a t i o n ( r e f .
Headspace sampling o f t h e v o l a t i l e s over r o a s t e d c o f f e e ( r e f s .
used t o study t h e aging process.
51 and 52) was
N i t r o g e n c a r r i e r gas and flame i o n i z a t i o n and flame
p h o t o m e t r i c d e t e c t o r ( t h e l a t t e r i s s p e c l f i c f o r s u l f u r compounds) were used. V o l a t i l e m a t e r i a l s decreased more i n q u a n t i t y w i t h t i m e f o r t h e whole-roasted than for t h e ground-roasted beans.
Using t h e headspace technique,
53) were a b l e t o determine Cog i n HCI gas a t t h e 5-100 ppm l e v e l . t h e c a r r i e r and TCD was t h e means of detection.
Rath e t a l .
bean (ref.
Hydrogen gas was
V o l a t i l e s i n beer were determined by
t h e headspace technique ( r e f . 5 4 ) by means o f adding 28 g o f NaCl t o 100 m l o f beer and h e a t i n g i n a c l o s e d c o n t a i n e r t o 4 O O C .
Diketones,
high-molecular-welght
alcohols
and e s t e r s were determined using e l e c t r o n - c a p t u r e and flame i o n i z a t i o n measurements. Tarasova substances.
and
Kataeva
(ref.
55)
determined
The polymeric sample was placed i n water,
o i l added and t h e c o n t a i n e r sealed.
separated on a Apiezon L/Chromosorb W column.
as a s u r v e y o f
chlorinated
i n water
in
polymeric
sampled by s y r i n g e and
Drozd and Novak ( r e f . 56) have w r i t t e n
Various aspects o f t h e technique a r e discussed as
applicatlons.
hydrocarbons
chloride
aqueous alcohol o r sunflower
The c o n t e n t s were heated,
a review o f headspace gas a n a l y s i s . well
vinyl
The t e c h n i q u e has been used t o d e t e r m i n e
samples
(refs.
57 and 58).
Volatile
m e t a b o l i t e s from b i o l o g i c a l t i s s u e have been s t u d i e d by M a i o r i n o e t a l . They were able t o d e t e c t 2 pmoles/ml
i n b l o o d and 10 pmoles/g
in
halothane (ref.
59).
l i v e r samples.
Aromatic hydrocarbons I n gases s a t u r a t e d w l t h water vapor have a l s o been done by t h i s technique ( r e f . 60).
These same authors determined t h e KD values f o r benzene, t o l u e n e
and m-xylene between water and a i r a t temperatures r a n g i n g from 10-30°C.
Kolb e t a l .
( r e f . 52) u t i l i z e d t h e technique f o r samples i n j e c t e d o n t o c a p i l l a r y columns.
This
e l i m i n a t e d t h e need f o r i n l e t s p l i t t e r s and i n l e t pressure was r e g u l a t e d w i t h narrow bore c a p l l l a r i e s .
T h e i r system was used f o r a n a l y s i s o f f l a v o r s ,
crude o i l vapor e x t r a c t s .
water p o l l u t a n t s and
Vinyl c h l o r i d e and d l c h l o r o e t h a n e I n e t h y l e n e g l y c o l were
98 determined i n t h e headspace from sealed c o n t a i n e r s a t 30°C ( r e f . 6 1 ) .
5 5%.
volume percent w i t h a r e l a t i v e e r r o r
o f t h e method i s 5 x
The s e n s i t i v i t y Benzene, t o l u e n e
and xyiene were measured i n a i r samples c o l l e c t e d i n a c e t i c a c i d ( r e f . 62).
The a c i d
s o l u t i o n was made basic w i t h potassium hydroxide and t h e headspace vapors analyzed by 3 The standard d e v i a t i o n o f t h e technique i s 0.02-0.04 mg/m
.
gas chromatography.
N i t r o u s oxide has been determined by headspace sampling and e l e c t r o n capture d e t e c t i o n (ref.
P r e c i s i o n b e t t e r t h a n 2% was a c h i e v e d w i t h w a t e r samples > 60 m i .
63).
Long-ter? storage o f samples showed a 2 . 3 % v a r i a t i o n i n c o n c e n t r a t i o n o f t h e n i t r o u s
A study o f headspace sampling by standard a d d i t i o n f o r t h e d e t e r m i n a t i o n o f
oxide.
benzene i n water a t t h e 1-1000,g
range i n a c o n t a i n e r w i t h 50 ml o f a i r and 50 ml o f
water, showed 8-28 e r r o r a t t h e r e s p e c t i v e l e v e l s ( r e f . 6 4 ) . t o 0.02-2
ppm benzene i n t h e aqueous phase.
t h e determination of
water
These l e v e l s correspond
A r a v e r s e use o f headspace sampling was
in sincalide at
100°C
(ref.
65).
The water
determined by gas chromatography u s i n g a Porapak Q column and thermal detection.
was
conductivity
Hydrogen s u l f i d e i n heated m i l k was determined by g a s - l i q u i d
graphic headspace a n a l y s i s ( r e f . 66), also.
vapor
chromato-
The headspace sample was separated on a
p o l y t e t r a f l u o r o e t h y l e n e column o f poly(pheny1 e t h e r ) and phosphoric a c i d and detected by flame i o n i z a t i o n . The headspace technique vinegars
and alcohol i t
has been a p p l i e d t o a n a l y s i s of
beverages
(ref.
671,
monomer i n p l a s t i c packaging and beverages monochlorobenzene and dichlorobenzene)
wine
(ref.
aromas
(ref.
vinyl 68,
chloride
in
acryionitrile
69) and t r a c e o r g a n i c s (benzene,
i n HCI gas,
methylene c h l o r i d e and methylene
bromochloride i n HBr gas ( r e f . 70) and v o l a t i l e aromas from t h e gardenia flower ( r e f . 71).
Smith e t a l .
(ref.
72) converted hexafluoroacetone from i n d u s t r i a l waste water
t o f l u o r o f o r m (CHF3) f o r headspace a n a l y s i s by gas chromatography. l i n e a r f o r CHF
4.3.2.1
3
The method was
c o n c e n t r a t i o n o f 10 ppb-1000 ppm.
Headspace and/or vapor e q u i l i b r a t i o n .
Headspace a n a l y s i s i s a method
o f determining v o l a t i l e o r g a n i c components as p o l l u t a n t s i n water i n which t h e aqueous phase i s e q u i l i b r a t e d w i t h an i n e r t gas phase u s u a l l y of equal volume.
The fundamen-
t a l s o f t h i s technique have been described by M c A u i I f f e ( r e f . 35). The method may be defined as t h e e x t r a c t i o n o f components o f i n t e r e s t by a gas and t h e subsequent a n a l y s i s o f t h i s gas phase by gas chromatography.
T h i s technique
may broadly be separated i n t o two c l a s s i f i c a t i o n s :
( 1 ) The a n a l y s i s o f t h e vapor phase,
i n e q u i l i b r i u m w i t h t h e l i q u i d phase, from
a closed s t a t i c system;
( 2 ) The sparging o f t h e l i q u i d phase by an i n e r t gas f o i lowed by a n a l y s l s o f t h e gas phase.
I n t h i s c l a s s l f i c a t i o n , t h e gas phase may be trapped by a d s o r p t i o n or
condensed a t cryogenic temperatures ( r e f s . 73-77). In t h e f i r s t c l a s s i f i c a t i o n ,
t h e c o n c e n t r a t i o n s o f t h e components i n t h e gas
phase do not change appreciably unless a large sample has been withdrawn.
In the
second c l a s s i f i c a t i o n , Thus,
the
system
t h e component c o n c e n t r a t i o n s decrease c o n t i n u o u s l y w i t h time.
devlates
from e q u i l i b r i u m ;
in
fact
t h e cmponent
concentration
approaches zero a s y m p t o t i c a l l y . D i f f i c u l t i e s may a r i s e i f t h i s technique i s used improperly, and q u a n t i t a t i v e l y . cial
both q u a l i t a t i v e l y
One c o u l d n o t expect a complete q u a l i t a t i v e a n a l y s i s o f a commer-
sample by t h i s technique because many o f
present a t t h e ppm l e v e l or even ppb l e v e l .
the
sample
components
Bassette e t al.
may o n l y
be
78) s e l e c t i v e l y
(ref.
removed components from t h e sample by use o f s p e c i f i c chemical reagents.
For example,
they were a b l e t o remove ketones from t h e e q u i l i b r a t e d gas phase by r e a c t i o n w i t h acidified
hydroxylamine
Sulfur-containing
reagent
and
esters
with
alkaline
hydroxylamine
reagent.
compounds were s e l e c t i v e l y removed w i t h m e r c u r i c c h l o r i d e .
Palo
( r e f . 79) employed t h e same technique f o r q u a l i t a t i v e headspace a n a l y s i s . L i t t l e a t t e n t i o n has been g i v e n t o t h e design o f t h e headspace e q u i l i b r a t i o n equipment.
R e l i a b l e p e r f o r m a n c e o f t h e e q u i p m e n t i s one o f t h e most
One must be a b l e t o c o n t r o l
r e q u i r e m e n t s f o r q u a n t i t a t i v e headspace a n a l y s i s .
t h e o p e r a t i n g c o n d i t i o n s and be a b l e t o reproduce them.
It
headspace gas a n a l y s i s than f o r o t h e r q u a n t i t a t i v e techniques. careful
important
i s more important
for
The chemist must be
i n b o t h c o l l e c t i n g and t r a n s f e r r i n g t h e sample so .that changes do n o t occur
because o f condensation or
leakage.
Clean equipment
components are n o t present from a previous sample.
i s essential
so t h a t
This i s especially
residual
important
in
environmental s t u d i e s because o f t h e concern about c o n c e n t r a t i o n l e v e l s . Cal i b r a t i o n o f such a system can be accompl ished by separate p r e p a r a t i o n o f an a p p r o p r i a t e model
standard,
initial
or by p r i o r determination o f t h e d i s t r i b u t i o n c o n s t a n t w i t h a
analysis,
by d i r e c t
d e f i n e d l i q u i d phase c o m p o s i t i o n .
addition
of
a standard t o t h e sample a f t e r
An a l i q u o t of t h e e q u i l i b r a t e d g a s phase is
t r a n s f e r r e d t o a gas chromatograph f o r a n a l y s i s u s i n g e i t h e r a g a s - t i g h t gas-sampling v a l v e ( i n c e r t a i n circumstances).
s y r i n g e or a
The method can be a p p l i e d t o a wide
v a r i e t y o f v o l a t i l e o r g a n i c compounds which are p o l l u t a n t s i n water. i n v e s t i g a t e d ( w i t h normally v o l a t i l e compounds),
I n every case
the application of t h i s technique I s
u s u a l l y s e n s i t i v e t o l e v e l s o f 10 ppb or less i n t h e o r i g i n a l sample. A v a r i a n t o f t h e headspace gas a n a l y s i s technique has been described by Gottauf
( r e f . 80) i n which he determined t h e t r a c e v o l a t i l e s i n water samples.
The headspace
gases were concentrated by adsorption on a cooled adsorbent and losses by a d s o r p t i o n o r adsorption i n t h e o r i g i n a l sample were minimized. w i t h an R.S.D.
The l i m i t o f d e t e c t i o n was below
o f 20.05%.
The type of m a t e r i a l used i n t h e seal when sampl i n g by means o f a s y r i n g e has
el),
been shown t o i n t r o d u c e e r r o r s .
Maier
(ref.
Nursten
have
demonstrated t h e
(ref.
83) independently
because o f r u b b e r s e a l s (e.g., s i l i c o n e rubber septa.
serum b o t t l e s ) .
Davis ( r e f .
82) and G i I l i v e r and
loss o f
sample
components
S i m i l a r l o s s e s were n o t e d w i t h
Davis's ( r e f . 82) data r e v e a l e d t h a t exposure t o rubber s e a l s
f o r t h i r t y minutes decreases component c o n c e n t r a t i o n o f
hydrocarbons and aldehydes.
100 The r a t e of
d i f f u s i o n among t h e various
components i s another
q u a n t i t a t i v e d a t a by t h i s t e c h n l q u e .
source o f
for
T h i s e r r o r becomes p r o n o u n c e d when t h e
e q u i l i b r a t i o n t i m e i s s h o r t and t h e headspace volume i s l a r g e ( r e f . samp I i ng and
advantages and d I sadvantages o f
error
i n j e c t i n g w It h
a
84).
The
have
been
syringe
t r e a t e d by Binder ( r e f . 8 4 ) . The i n i t i a l r e s u l t o f t h e headspace gas a n a l y s i s because t h e m a t r i x gas i s not measured. (which i t u s u a l l y does),
t h e c a l c u l a t i o n o f t h e c o n c e n t r a t i o n f o r t h e n t h component
may not n e c e s s a r i l y be v a l i d because a partial
i s o n l y a r e l a t i v e measure
I f t h e gas c o n t a i n s more than one component linear
relationship w i l l
n o t e x l s t between
pressures and c o n c e n t r a t i o n s unless t h e s o l u t i o n s and gaseous phases both
approach
ideality.
components,
Since most
the t o t a l
pressure
headspace gases a r e m i x t u r e s (vapor
pressure)
i s the
of
sum o f
several the
volatile
partial
vapor
pressures:
p
t
= p t p t Pj t 1 2
... t Pn = X1PY
.+
x2P'I
.+
. a .
.+ XnPZ
(4.10)
where Pt = t o t a l vapor pressure o f system; P, e t c . = p a r t i a l pressure o f each component; Py e t c . = vapor pressures o f t h e pure components; x1 e t c . = mole f r a c t i o n s o f each component.
Using eqn. 4.10,
one assumes t h a t t h e p a r t i a l pressures are s u f f i c i e n t l y small
so t h a t they may be i d e n t i f i e d w i t h D a l t o n ' s p a r t i a l pressures:
P
= (n
T)/V
(4.11)
T h i s imp i e s t h a t t h e number o f moles nl, chemical a n a l y s i s o f t h e vapor volume, V.
(
)
n2,
......nn
a r e e a s i l y determined from the
Thus, one must consider two s i t u a t i o n s :
As t h e pressure o f t h e headspace gas increases, c o m p i i c a t i o n s a r i s e because
o f d e v i a t i o n s from t h e i d e a l gas laws. ( 2 ) Total pressure ( P t ) dependence on the sum of t h e p a r t i a l pressures v a r i e s from system t o system,
and i t i s m r e accurate t o i n c o r p o r a t e a c t i v i t y c o e f f i c i e n t s
y
i n eqn. 4.10. P =',X1Py t
t y2X2P20 t
...... t Yn x nPnO
Because of t h e v a r i e t y o f
(4.12)
samples encountered
i n headspace gas a n a l y s i s ,
a
number o f s i t u a t i o n s may present themselves.
( A ) The components o f s i m i l a r t y p e molecules).
the
sample could
show no mutual
Linear dependence o f t h e t o t a l
interaction
(i.e.,
pressure w i t h t h e p a r t i a l
101 pressures w i l I f o l l o w , as shown i n eqn. 4.10. y,
I n t h i s case, t h e a c t i v i t y c o e f f i c i e n t s
w i l l equal 1 .
( B ) The i n t e r a c t i o n s between l i k e molecules are g r e a t e r than t h e i n t e r a c t i o n s between u n l i k e molecules i n t h e vapor phase.
The l i k e molecules tend t o d i s p l a c e each
o t h e r from the m i x t u r e and increase t h e i r p a r t i a l pressures. t i v e d e v i a t i o n from R a o u l t ' s
law.
This r e s u l t s i n a posi-
I t a l s o means a l i q u i d phase o f these components
w i l I b o i i a t a temperature lower than e i t h e r o f t h e pure l i q u i d s . some o f t h e molecules have p o l a r groups and some o f groups (e.g.,
a l c o h o l s and hydrocarbons).
a c t i v i t y coefficients, (C)
y,
T h i s i s p r e d i c t e d by eqn.
4.12,
when t h e
are not equal t o 1.
The reverse o f
u n l i k e molecules
T h i s occurs when
t h e molecules have non-polar
s i t u a t i o n B could
i s g r e a t e r than
the
occur
interaction
(i.e.,
the
between
I n t e r a c t i o n between
l i k e molecules).
This
decreases t h e p a r t i a l vapor pressures from t h e values f o r an ideal m i x t u r e and causes negative d e v i a t i o n s from R a o u l t ' s components w i l l
boil
at
law.
The l i q u i d phase o f t h e m i x t u r e s o f these
a temperature higher
than e i t h e r o f
t h e pure components.
Systems l i k e t h i s occur when t h e a t t r a c t i v e f o r c e s a r e o f e l e c t r o s t a t i c o r i g i n ,
i.e.,
t h e molecules possess permanent o r induced d i p o l e s which can lead t o t h e f o r m a t i o n o f hydrogen bonds or o t h e r l a b i l e bonds between t h e molecules.
( D ) A combination o f B and C,
i.e.,
b o t h p o s i t i v e and n e g a t i v e d e v i a t i o n s
in
t h e gas phase. S i t u a t i o n s 6, C and D w i l l ,
i n many cases,
show p a r t i a l pressures n o t v a r y i n g
l i n e a r l y w i t h c o n c e n t r a t i o n o r which are completely
independent o f c o n c e n t r a t i o n i n
Headspace gas a n a l y s i s under these c o n d i t i o n s w i l l n o t
t h e high-concentration ranges.
g i v e q u a n t i t a t i v e r e s u l t s or may even g i v e t h e same r e s u l t f o r d i f f e r e n t concentraThe systems described i n B, C and D can be minimized i f t h e experimental work
tions.
i s performed a t h i g h d i l u t i o n ( r e g i o n o f shown t h a t
headspace gas analysis; i s linear. ketones,
i n fact,
alcohols,
i n water
at
low
concentrations
using
t h e r e l a t i o n s h i p between peak area and c o n c e n t r a f i o n
Ozeris and Bassette ( r e f .
aldehydes,
Hachenberg ( r e f . 8 5 ) has
ideal m i x t u r e s ) .
a c r y l o n i t r i l e may be determined
86) demonstrated t h a t ,
at
low c o n c e n t r a t i o n s ,
d i e t h y l s u l f i d e and e s t e r s show a l i n e a r r e l a t i o n s h i p
between peak h e i g h t and c o n c e n t r a t i o n (0.01-10
ppm l e v e l s I n water).
Sometimes t h e c o n c e n t r a t i o n s of t h e components of i n t e r e s t a r e a t l e v e l s where the detector signal
i s o f t h e same order o f magnitude as t h e noise.
one simply enriches t h e components i n t h e headspace gas. t h e headspace gas i s t o increase t h e
I f t h i s occurs,
The e a s i e s t way t o e n r i c h
i o n i c s t r e n g t h o f t h e , aqueous s o l u t i o n .
a d d i t i o n o f h i g h l y s o l u b l e s a l t s w i l l do t h i s very c o n v e n i e n t l y .
s u l f a t e ( r e f . 87). ammonium s u l f a t e or sodium c h l o r i d e ( r e f . 87) have been used. c a l c i u m carbonate (which I s not t h a t s o l u b l e
I n water)
The
S a l t s such as sodium Even
has been used s u c c e s s f u l l y
( r e f . 88). The b i g advantage o f headspace gas a n a l y s i s by gas chromatography s o l v e n t peak i s e l i m i n a t e d .
i s t h a t the
Combining t h i s advantage w i t h t h e enrichment technique
p e r m i t s one t o do an a n a l y s i s w i t h g r e a t l y reduced d e t e c t i o n l i m i t s .
T h i s advantage
a p p l i e s e q u a l l y t o systems where one i s d e a l i n g w i t h nonaqueous s o l v e n t s ( r e f . 8 8 ) . The d i s t r i b u t i o n contant of a s o l u t e I n headspace gas a n a l y s i s i s r e a l l y t h e inverse o f Henry's law;
however, t h e chemist i s more concerned w i t h t h e mass balance
o f t h e s o l u t e between t h e two phases.
he f i n d s i t m r e convenient t o d e f i n e t h e
Thus,
d i s t r l b u t i o n constant I n terms o f t h e r a t i o o f t h e e q u i l i b r i u m c o n c e n t r a t i o n s o f t h e s o l u t e i n t h e condensed and gaseous phases. KD = (WL/VL)/(WG/VG)
(4.13)
where W
and WG = mass o f t h e s o l u t e I n t h e condensed and gaseous phases, L t l v e l y , and VL and VG = volumes o f these two phases.
respec-
I t i s f a i r l y easy t o o b t a i n q u a n t i t a t i v e data i f one has a one-phase
system.
However,
i n headspace gas a n a l y s i s t h e s o l u t e component
i s d i s t r i b u t e d between two
phases.
Thus one must know t h e magnitude o f t h e mass d i s t r i b u t i o n between t h e two
phases.
To o b t a i n t h i s i n f o r m a t i o n a l l one needs i s t h e t o t a l amount o f t h e s o l u t e
i n t h e system and t h e amount of t h e s o l u t e which has been equi I i b r a t e d i n t o t h e gas phase.
W
n
= c
Thus t h e t o t a l amount o f t h e solute, Wn,
nG
(K V
D L
+
can be expressed as:
VG)
(4.14)
where cnG = WnG/VG-
By q u a n t i t a t i v e gas chromatography one can o b t a l n a value f o r c of VL and VG are known and i f one knows KD, t h e v a l u e o f Wn p r o b l e m Is t h a t one v e r y seldom knows t h e v a l u e o f
The values nG' Is e a s i l y c a l c u l a t e d . The
KD.
T h i s p r o b l e m may be
circumvented i n several ways ( r e f . 5 6 ) .
( 1 ) Use experimental c o n d i t i o n s i n which t h e value of KD i s e s s e n t i a l l y equal t o zero.
This may be achieved by working a t e l e v a t e d temperature.
I n t h i s case, eqn.
4 . 1 4 becomes:
wn
=
(4.15)
CnGVG'
Using q u a n t i t a t i v e gas chromatography, method i s very seldom used;
i t i s easy t o determine t h e value o f cnG.
( 2 ) Use a standard system s o l u t i o n , components of t h e unknown sample determined.
The
preference i s given t o ambient c o n d i t i o n s .
plus
i.e.,
-
a sample which c o n t a i n s a l l
the
a known amount o f t h e sample component being
I f one keeps VL and VG t h e same f o r both samples, t h e KD f o r both samples
has t o be t h e same.
T h i s being t h e case,
because i t . i s common t o bcth systems.
t h e f a c t o r (KDVL + V G ) I f Wn*
I s the t o t a l
w i l l be e l i m i n a t e d
amount o f
the solute
103 i n i t s gas
component i n t h e standard system s o l u t i o n and cnG* i s i t s c o n c e n t r a t i o n phase one o b t a i n s :
w * = c nG*(KDVL
+ VG)
(4.14A)
VG)*
(4.148)
and
Wn = c
nG
(K'V
D L
+
D i v i d i n g eqn. 4.148 by eqn. 4.14A:
W"
=
(4.16)
Wn*CnG/CnG*'
Determining c value f o r Wn.
and cnG* under t h e same gas chromatographic c o n d i t i o n s g i v e s us t h e
nG
T h i s method i s n o t used because
it
i s almost
i m p o s s i b l e t o make a
standard system s o l u t i o n which i s t h e same as t h e unknown.
( 3 ) Use o f t h e standard a d d i t i o n method.
The assumptions made h e r e a r e t h a t
t h e added amount o f t h e component t o be determined i n v o l v e s l i t t l e o r no change i n t h e values o f VG and V L change o f change.
(i.e..
the r a t i o of VL/VG).
t h e thermodynamic
properties of
This,
i n turn,
causes l i t t l e or no
KD does n o t
t h e s o l u t i o n and t h e r e f o r e
The main c o n s t r a i n t p l a c e d on t h i s method i s t h a t t h e sample,
a f t e r t h e a d d i t i o n o f t h e known amount o f component n, identical conditions.
b e f o r e and
must b y a n a l y z e d u n d e r
The amount o f added component must be g r e a t e r
than t h e
e s t i m a t e d c o n c e n t r a t i o n i n t h e unknown ( a minimum o f 2-3 t i m e s g r e a t e r ) .
F o l l o w i n g these c o n d i t i o n s t h e q u a n t i t y Wn may be c a l c u l a t e d :
wn
= (WS
-
WOn)/((COnG/CnG)
-
1)
(4.17)
where Ws = mass o f added standard;
Won = e s t i m a t e d amount o f component n b e f o r e standard a d d i t i o n ; conG = c o n c e n t r a t i o n i n gas phase a f t e r standard a d d i t i o n .
T h i s t h i r d method o f a n a l y s i s i s t h e one recommended f o r t h e a n a l y s i s o f aqueous waste e f f l u e n t s f o r t h e presence o f p r i o r i t y p o l l u t a n t s . There are a number o f
good p u b l i c a t i o n s
concerning
headspace
analysis:
a
review w r i t t e n by Drozd and Novak ( r e f . 561, two books ( r e f s . 89 and 90). and a r e c e n t paper
describing
i t s applications t o the analysis of
water e f f l u e n t s ( r e f . 91).
p r i o r i t y pollutants
i n waste
Any o f these r e f e r e n c e s w i l l f u r n i s h t h e needed background
f o r someone u s i n g t h e technique f o r t h e f i r s t t i m e .
M c A u l i f f e ( r e f . 35) p u b l i s h e d a method o f headspace gas a n a l y s i s which i s more
s p e c i f i c a l l y t i t l e d "vapor e q u i l i b r a t i o n analysis".
H i s o r i g i n a l work was concerned
w i t h hydrocarbons i n water b u t has now been extended t o many o t h e r t y p e s of compounds. The technique involves e q u i l i b r a t i n g equal volumes o f an aqueous s o l u t i o n and an i n e r t gas ( u s u a l l y helium o r n i t r o g e n )
A t t h i s p o i n t i n the
i n a l a r g e g l a s s syringe.
procedure t h e chemist has two o p t i o n s : ( 1 ) The e n t i r e gas phase may be i n j e c t e d i n t o t h e sample loop o f a gas sampling
valve m u n t e d on t h e gas chromatograph. into
the
syringe.
The
procedure
A second equal volume o f
is
repeated
several
i n e r t gas i s drawn
times.
The
original
concentration o f components i n t h e sample can be c a l c u l a t e d from t h e dependence o f c o n c e n t r a t i o n i n t h e headspace on t h e s e r i a l number o f e x t r a c t i o n s performed.
( 2 ) A f t e r f i l l i n g t h e s y r i n g e w l t h equal volumes o f aqueous sample and i n e r t gas ( c l e a n a i r may a l s o be used), t h e s y r i n g e may be capped w i t h a rubber septum and a l i q u o t volumes removed by means o f another smaller smaller-volume the
sample
s y r i n g e may be i n j e c t e d
injection
port.
syringe.
The c o n t e n t o f t h i s
i n t o t h e chromatograph through t h e septum of
R e p l i c a t e samples may
be
injected
without
seriously
a f f e c t i n g t h e q u a n t i t a t i v e r e s u l t s o f t h e method. The method o f
standard
e q u i l i b r a t i o n technique.
a d d i t i o n may a l s o be used w i t h t h i s
s y r i n g e vapor
T h i s has been demonstrated r e p e a t e d l y ( r e f s . 64, 92 and 9 3 ) .
One removes a volume VG o f t h e headspace gas from t h e e q u i l i b r a t e d system and i n j e c t s The component o f i n t e r e s t w i I i have a peak area A
i t i n t o t h e gas chromatograph.
.
A
known mass W s i s then introduced i n t o t h e e q u i l i b r a t e d s y r i n g e system and allowed t o re-equilibrate.
A second volume V o G
i s t h e n removed and i n j e c t e d i n t o t h e gas
chromatograph g i v i n g a peak area A',.
The mass o f t h e component
in the original
sample may then be c a l c u l a t e d :
Wn = ( W s
- Won)/((AonVG/AnVoG)
Using t h i s
-
technique,
aromatic hydrocarbons (0.001
(4.18)
1)
a hydrophilic
-
solute
(1-100
ppm)
and
aliphatic
and
20 ppm) have been determined w i t h r e l a t i v e e r r o r s o f
approxlmately 20-22$ and 10-12%, r e s p e c t i v e l y ( r e f . 9 4 ) . C u r r e n t l y t h e method developed by B e l l a r and Lichtenberg ( r e f s . 95-95) has been w i d e l y applied f o r s i m l l a r analyses. trap",
T h e i r method,
d i f f e r s from t h e v a p o r - e q u i l i b r a t i o n
requires s i g n i f i c a n t l y
more e l a b o r a t e
trapping e f f i c i e n c y of
each component o f
commonly designated
method.
equipment
and
a reliance
concern o r a c a r e f u l
t r a p p l n g e f f i c i e n c y and p r e c i s e d u p l i c a t i o n o f sample processing. v a p o r - e q u i l i b r a t i o n a n a l y s i s i s f a r lower,
"purge and
The p u r g e and t r a p method upon
either
delineation of
100% the
Equipment c o s t f o r
and i t s use i s c o n s i d e r a b l y s i m p l e r .
In a
number o f cases t h e purge and t r a p system may be more s e n s i t i v e because t h e t o t a l v o l a t i l e organlc content of
an aqueous sample (5-60 m l )
instrument f o r a s i n g l e a n a l y s i s . e q u i l i b r a t i o n analysis.
However,
can be t r a n s f e r r e d t o t h e
T h i s i s g e n e r a l l y n o t t r u e i n t h e case o f vapor r e p l i c a t e analyses o f t h e same sample a r e much more
105 r e a d i l y o b t a i n e d b y vapor e q u i l i b r a t i o n . transfer
of
t h e sample
i t s original
from
extreme care i s exercised w i t h t h i s step,
The p u r g e and t r a p s y s t e m r e q u i r e s a c o n t a i n e r t o t h e purge t h e most v o l a t i l e
and/or
t h e o r g a n i c contaminants can be l o s t i n unknown p r o p o r t i o n .
system.
Unless
least soluble of
Alternatively,
even
If
t h e purge system c o n t a i n e r i s used t o o b t a i n t h e sample ( n o t common p r a c t i c e because o f t h e l i m i t e d sample s i z e ) ,
i t must g e n e r a l l y be opened i n o r d e r t o mount it i n t h e
instrument system, w i t h p o t e n t i a l attendant vapor losses. One m a n u f a c t u r e r ( r e f s . technique
of
analysis."
98-101)
Volatile
uses what
organic
i s d e s i g n a t e d as t h e "dynamic
components
in
a
water
sample
are
continuously purged by a gas and then q u a n t i t a t i v e l y t r a n s f e r r e d t o an a d s o r p t l o n t r a p where t h e y a r e l a t e r t h e r m a l l y desorbed and b a c k f l u s h e d o n t o an a n a l y t i c a l gas chromatographic column. multi-sample
unit
Another manufacturer ( r e f s .
i n which
the
detectors
102-105) has o f f e r e d a dedicated,
and c o n t r o l
units
samples can be accommodated w i t h f u l l y automatic o p e r a t i o n . of flame-ionization w i r e detector,
detector,
phosphorus d e t e c t o r ,
i n a d d i t i o n t o column-effluent
a r e modular.
electron-capture
d e t e c t o r o r hot-
s p l i t t i n g and dual-detector
operation.
The u n i t w i I I accept i i q u i d or s o l i d samples and can be used f o r alcohol residual
monomers
i n polymers,
lndustrial
hygiene
(e.g.,
Thirty
The u n i t o f f e r s a c h o i c e
vinyl
chloride
f o r e n s i c work (amphetamines i n u r i n e ) and environmental s t u d i e s (e.g.,
i n blood, in air),
hydrocarbons i n
water). With v a p o r - e q u i l i b r a t i o n a n a l y s i s i t i s p o s s i b l e t o t a k e t h e sample i n t h e same c o n t a i n e r u l t i m a t e l y used f o r i t s a n a l y s i s . once obtained,
t h e sample
i s never
T h i s c o n t a i n e r i s septum-sealed so t h a t ,
again opened,
even d u r i n g t h e a n a l y s i s .
losses are precluded as long as t h e septum m a t e r i a l components o f
interest.
equilibration
analysis
A number of such septum m a t e r i a l s a r e a v a i l a b l e .
method
has
shown
distinctive
Vapor
i s not permeable t o t h e sample
superiority
The vapor
because
of
this
s i m p l i f i e d sampling i n t h e a n a l y s i s o f chemical process waste l i n e s which a r e o b t a i n e d a t elevated temperatures. Residual acetone.and
vinyl
chloride
injected directly
in
poly(viny1
c h l o r i d e ) ( P V C ) may
be
extracted
by
I n t o t h e gas chromatograph or a sample o f PVC may be
heated (sealed c o n t a i n e r ) w i t h a small amount of d i e t h y l e t h e r and a headspace sample taken
(ref.
Cowen e t a l .
106). (ref.
Both techniques
are consid ered good approaches t o t h e problem.
107) r e p o r t e d t h e c o n s t r u c t i o n o f a device t o a i d i n septumiess
i n j e c t i o n s o f headspace gas and compared i t t o t h e s y r i n g e i n j e c t i o n technique. I n a t y p i c a l analysis, 50-mi
using McAuliffe's
technique ( r e f .
35). one would use a
glass s y r i n g e c o n t a i n i n g 25 m l o f t h e water sample and 25 ml o f an i n e r t gas.
A f t e r t h e two phases have e q u i l i b r a t e d ,
one may use t h e e n t i r e gas phase or an a l i q u o t
taken w i t h a smaller s y r i n g e (see above).
Unless one knows t h e v a l u e o f t h e d i s t r i -
b u t i o n constant KD, t h e data w i l l be more q u a l i t a t i v e than q u a n t i t a t i v e . water phase i s not a problem;
Loss o f any
t h e second gas e q u i l i b r a t i o n i s c a r r i e d through w i t h a
gas volume equal t o t h e decreased l i q u i d volume.
The c r i t i c a l parameter i s c o n t r o l o f
106 temperature;
t h i s should remain constant from one equi I i b r a t l o n t o t h e n e x t .
Determination of t h e d i s t r i b u t i o n constant KD can e a s i l y be performed. ( A ) E q u i l i b r a t e equal volumes o f i n e r t gas and water sample I n a 50-ml syringe.
(8) I n j e c t a known volume of t h e gas phase i n t o t h e gas chromatograph and measure e i t h e r t h e peak a r e a o r t h e peak h e i g h t and r e l a t e t h i s measurement t o concentration.
(C) Remove any remaining gas phase i n t h e 50-ml s y r i n g e . ( D ) E q u l l l b r a t e t h e water phase w i t h several a d d i t i o n a l equal volumes of i n e r t gas and repeat steps B and C w i t h each.
(E)
it can be shown ( r e f . 35) t h a t t h e f o l l o w i n g equation w i l l r e l a t e KD t o
c o n c e n t r a t i o n i n t h e water phase: log ( ( X I
g n
= -nlog(KD
+
1)
+
log KD(Xll
(4.19)
where ( ( X )
) = q u a n t i t y of component X i n t h e gas phase a f t e r n e q u i l i b r a t i o n s , g n ( X I , = i n i t i a l q u a n t i t y o f X i n t h e water phase.
and
A log p l o t of area o r peak h e i g h t ( i n terms o f c o n c e n t r a t i o n ) versus t h e number of e q u i l i b r a t i o n s . w i l l produce a s t r a i g h t l i n e having a slope o f -log(KD intercept of
l o g KD(X)l.
Having t h i s p l o t ,
A r e p r e s e n t a t i o n of
such a p l o t
+
11,
and an
i s shown i n Flg.
4.2.
one can s e l e c t any two adjacent gas phase c o n c e n t r a t i o n p o l n t s ,
d i v i d e t h e smaller value i n t o t h e l a r g e r value and s u b t r a c t one from t h e q u o t i e n t t o One then d i v i d e s t h e i n t e r c e p t log KD(X)l
o b t a i n t h e numerical value o f log KD.
by
1000 800
-
sz P
0
604 0 1 0 1
1 2
1 3
1 4
1 5
1 6
1 7
8
I
9
:
EQUILIBRATION NUMBER F i g . 4.2 P a r t i t i o n i n g of a s o l u t e between equal volumes o f H20 and an I n e r t gas (e.g., hei ium)
107 l o g K and o b t a i n s ( X I l , D o r l g i n a l water sample.
t h e c o n c e n t r a t i o n o f t h e component o f
Interest in the
I n a d d i t i o n t o t h e ease o f o b t a i n i n g t h e numerical value o f KD,
as described
above, t h i s technique has two o t h e r o u t s t a n d i n g f e a t u r e s . ( 1 ) Most enfironmental water samples need o n l y be equi i l b r a t e d two times.
The
f i n a l data w i l l n o t be as accurate as a m u l t i - p o i n t p l o t b u t w l i l have a h i g h degree I f two equi I i b r a t l o n s are performed,
o f accuracy. flrst
equilibration
((X)
M u l t i p l y t h i s quotient, Knowing t h e KD, I n t e r c e p t by K
Q,
d i v i d e t h e c o n c e n t r a t i o n from t h e
second e q u i l i b r a t i o n ( ( X ) 1 g l 9 2' by t h e f i r s t c o n c e n t r a t i o n t o o b t a i n t h e i n t e r c e p t value.
1
by
concentration
(previous analysls of
from
samples
from t h i s
system) one d i v i d e s t h e
D t o o b t a i n t h e c o n c e n t r a t i o n of t h e component i n t h e water sample.
(4.20) (4.21)
(4.22)
( 2 ) I f t h e water samples come from a g i v e n l o c a t i o n , which i s being monitored, (i.e.,
i f one has a llconstantll
m a t r i x composition),
t h e KD v a l u e need be checked
p e r i o d i c a l l y ( i t should be c o n s t a n t ) and each sample can be e q u i l i b r a t e d o n l y once. One may then c a l c u l a t e t h e c o n c e n t r a t i o n o f X i n t h e i n i t i a l sample by:
(4.23) The q u a n t i t y o f organic m a t e r i a l found i n t h e vapor four v a r i a b l e s : ionic strength.
( a ) concentration; McAuliffe ( r e f .
(b) partial
pressure;
phase
i s dependent upon
( c ) temperature;
and ( d )
108) presented t h e r e s u l t s of t h e e f f e c t s o f these
v a r i a b l e s a t a symposium on environmental a n a l y s i s .
The r e s u l t s o f h i s study showed:
( I ) a decrease i n s o l u b i l i t y ( i n c r e a s e i n q u a n t i t y found i n gas phase) o f s i x t o seven orders o f magnitude as t h e n-alkane hydrocarbons ( C 6
- CZ4)
pressure;
(3)
and
( 2 ) aromatic
i s changed from methane t o dodecane;
showed a s i m i l a r decrease i n s o l u b i l i t y or increase i n p a r t i a l
aromatic
hydrocarbons
are
cycloalkanes w i t h t h e same number o f atoms (e.g.,
mre
soluble
than
n-alkanes
or
benzene > cyclohexane > hexane).
The method o f vapor e q u i l i b r a t i o n has been shown t o have h i g h p r e c i s i o n ( r e f .
35) provided one c o n t r o l s t h e gas:water volumes and temperature ( b o t h remain c o n s t a n t throughout
replicate
measurements).
standards,
McAul i f f e
obtained
Using
standard
hexane,
deviation
cyclohexane of
20.78,
and
+0.8$
toluene and
as
20.58,
respectively. This method i s not r e s t r i c t e d t o systems where t h e gas:water 1:l.
i t has been shown ( r e f .
(sample) r a t i o i s
108) t h a t an increase i n t h e gas:water
r a t l o glves a
108 corresponding percentage Increase i n t r a n s f e r o f t h e i n d i v i d u a l gas phase.
Alkanes,
hydrocarbons t o t h e
alkenes and cycloalkanes show a decrease i n c o n c e n t r a t i o n per
u n i t volume o f gas phase whereas aromatic hydrocarbons g i v e e s s e n t i a l l y a constant r a t i o ranges o f 1 : l O
c o n c e n t r a t i o n per u n i t volume o f gas phase over t h e gas:water 1O:l.
One f i n a l comment:
and
Although t h e hydrocarbon classes p a r t i t i o n t o almost t h e
same extent, they a l l demonstrate an increase i n p a r t i t i o n i n g t o t h e gas phase w i t h an increase i n molecular weight.
One would expect t h i s t r e n d because water s o l u t i l i t i e s
( A s o l u b i l i t i e s ) decrease more r a p i d l y than vapor pressures increase ( b P i ) .
4.3.2.1.1
laboratory-prepared
I t i s the authors' opinions t h a t
standards are easy t o prepare and t h u s p r e f e r a b l e t o o t h e r o p t i o n s
where c a r e i s p r o p e r l y e x e r c i s e d . presented here.
L e t us describe t h e prepara-
P r e p a r a t i o n o f gas standard mixtures.
t i o n o f a gas standard f o r these types o f analyses.
I t i s f o r t h i s reason t h a t t h e d e t a i l s a r e
One should use a p p r o p r i a t e s a f e t y precautions f o r h a n d l i n g compressed
gases and c y l i n d e r s (Chapter 7).
For 1000 ppm standard gas mixture, one takes 100 m l
o f an i n e r t gas ( h e l i u m or n i t r o g e n ) i n a standard 100-ml c o n t a i n some 2-mn g l a s s beads (6-8 beads) f o r mlxing.
s y r i n g e which a l s o should
T h i s 100-ml s y r i n g e i s capped
i m m e d i a t e l y w i t h a r e d r u b b e r septum cap o v e r a n e e d l e hub.
A lecture b o t t l e
c o n t a i n i n g t h e pure standard gas(es) has e i t h e r a commercial pressure-reducing system o r a standard l e c t u r e - b o t t l e valve added.
valve
The l e c t u r e - b o t t l e system w i t h t h e
added valve o r pressure reducer i s f i t t e d w i t h a septum seal a t t h e e x i t end. valve system(s1 between t h e e x i t and t h e l e c t u r e - b o t t l e
A l l the
v a l v e a r e opened and t h e en-
closed volume i s evacuated by means o f a l a r g e standard g l a s s s y r i n g e by i n s e r t i n g t h e syringe needle ( w i t h t h e s y r i n g e plunger a l l t h e way down i n t h e s y r i n g e b a r r e l ) .
The
i n t e r n a l volume or o f t h e o p e r a t o r ' s
plunger i s p u l l e d back t o t h e I i m l t e i t h e r o f
a b i l i t y t o withstand t h e atmospheric pressure o p p o s i t i o n .
I f t h e s y r i n g e chosen f o r
t h i s purpose i s t o o smal I, t h i s procedure should be repeated unt i I an e v i d e n t vacuum i s contained i n t h e i n t e r i o r space o f concern.
The a u x i l i a r y v a l v e i s t h e n c l o s e d and
t h e main tank v a l v e i s opened long enough t o f i l l t h e space between t h e two valves and then
imnediately closed.
I n s e r t a standard
glass
mounted septum and then open t h e a u x i l i a r y valve. 'ihould a l l o w a 5-
t o 10-ml
syringe
carefully
through
the
The l i m i t i n g o f t h e volume segments
s y r i n g e t o absorb a l l
t h e gas expansion which r e s u l t s
without exceeding e l t h e r t h e s y r i n g e c a p a c i t y o r t h e o p e r a t o r ' s a b i l i t y t o c o n t r o l t h e s y r i n g e plunger.
Close t h e a u x i l l a r y valve, withdraw t h e s y r i n g e and i t s contents and
discharge t o an adequately v e n t i l a t e d system.
Any r e s i d u a l pressure I n t h e space
between t h e a u x i l i a r y v a l v e and t h e septum should be r e l i e v e d by again i n s e r t i n g t h e s y r i n g e and withdrawing gas u n t i l an e v i d e n t vacuum e x i s t s w i t h i n t h e a c t i v e space. T h i s e n t i r e process should be repeated a t l e a s t t h r e e times t o minimize t h e d i l u t i o n of pure gas w i t h a i r which was o r i g i n a l l y contained i n t h e system and t o avoid bleedi n g unreasonable q u a n t i t i e s o f p o t e n t i a l l y t o x i c gas i n t o t h e l a b o r a t o r y atmosphere. F i n a l l y , t h e l a s t sequence i n v o l v i n g opening o f t h e second valve should be done w i t h
109 an empty s y r i n g e needle through t h e septum t o a c t as a f i n a l purge. t h e empty needle should be withdrawn and t h e a u x l l i a r y v a l v e closed. involves f i r s t , opening t h e main t a n k v a l v e and c l o s i n g it;
Following this, The l a s t step
second, opening t h e aux-
i l i a r y v a l v e and c l o s i n g it, removing 0.2 t o 0.3 m l o f t h e contained gas i n t o a lockable v a l v e s y r i n g e such as t h e Pressure-Lok t h e s y r i n g e valve.
Series A-2
syringe,
f o l l o w e d by c l o s i n g
The removed volume should be discharged t o t h e v e n t i l a t i o n system
w i t h opening o f t h e s y r i n g e v a l v e which should be immediately closed. again i n s e r t e d through t h e septum and 0.2-0.3 s y r i n g e v a l v e closed.
The s y r i n g e i s
ml, t r a n s f e r r e d t o t h e syringe,
The s y r i n g e plunger should be c o l l a p s e d t o t h e 0.1-ml
excess pressure r e l i e v e d t o t h i s p o l n t .
and t h e mark and
To assure t h a t an excess pressure e x i s t s , t h e
needle t i p should be placed below a l i q u i d surface t o a l l o w f o r v i s u a l o b s e r v a t i o n o f t h e r e l e a s e o f t h e gas. r e l i e v i n g t h e pressure.
The s y r i n g e v a l v e s h o u l d be i m m e d i a t e l y c l o s e d a f t e r
The needle o f t h i s s y r i n g e then should be placed through t h e
s y r i n g e cap on t h e 100-ml syringe.
i n d i v i d u a l gas. (I-ml
s y r i n g e and t h e 0.1-ml
I f gas m i x t u r e s a r e d e s i r e d ,
volume t r a n s f e r r e d t o t h e
larger
t h i s p r o c e s s must be r e p e a t e d w i t h each
Lower e r r o r w i l l r e s u l t i f one prepares a 1000-ppm standard m i x t u r e
pure standard gas + 99-ml o f m a t r i x gas) and subsequently removes 10-ml
c a r e f u l l y mixed 1 % standard and t r a n s f e r s t h i s t o a second 100-ml
of the
syringe containing
90-ml o f clean m a t r i x gas.
4.3.2.1.2
Error involved when p r e p a r i n g a b i n a r y gas m i x t u r e .
One may c a l c u l -
a t e t h e ppm o f a standard gas i n a d i l u e n t gas ( m a t r i x gas) by t h e f o l l o w i n g equation:
(4.24)
where Vs term
= volume o f standard gas and VD = volume o f
i n t h e denominator
diluent
may be neglected when p r e p a r i n g c o n c e n t r a t i o n s
because t h e c o n t r i b u t i o n o f Vs t o t o t a l volume i s i n s i g n i f i c a n t . r e p r e s e n t a t i v e data f o r t h e p r e p a r a t i o n of gas standards.
The Vs
( m a t r i x ) gas.
Table 4.3
5
5000 ppm l i s t s some
Examination o f t h e data i n
Table 4.3 demonstrates t h e f a c t t h a t any e r r o r involved i n u s i n g a 100-ml s y r i n g e f o r d i l u e n t ( m a t r i x ) gas and a 1-5-ml
4.3.2.2
s y r i n g e f o r t h e s o l u t e standard gas i s v e r y small.
Purging, sparging and/or vapor s t r i p p i n g .
I f t h e o r g a n i c components o f
a water sample are v o l a t i l e or can be v o l a t i l i z e d , one may analyze t h e r e s u l t i n g vapor w i t h a h i g h degree o f
sensitivity.
The t h r e e terms
s t r i p p i n g e s s e n t i a l l y mean t h e same t h i n g ,
i.e.,
purging,
sparging
and vapor
a technique wherein an i n e r t gas i s
used t o evacuate or f r e e organic components by means o f a g i t a t i o n o f t h e sample.
What
i s d i f f e r e n t among t h e t h r e e techniques i s how it i s performed and how t h e equipment i s p h y s i c a l l y set-up.
Purging o f a water sample u s u a l l y i m p l i e s a continuous f l o w o f
110 TABLE 4.3 C o n t r i b u t i o n o f V 4 t e r m i n denominator of Eqn. 4 . 2 4
Accounting f o r
V,
+
V
Neglecting
term
Relative error ($)
Vs term
(PPm)
(PPm)
1
1.000001
Io
-~ -~
10
10.0001
1o
100
100.01
1 o-2
1000
1001.0
1 0-1
5000
5025.0
0.5
Relative error = ((exact value
-
approximate v a l u e ) / e x a c t v a l u e ) x 100.
an i n e r t gas through t h e sample and t h e passing o f t h e v o l a t i l e s t h r o u g h a t r a p p i n g tube wherein t h e v o l a t i l e components a r e adsorbed.
Sparging o f
a solution
a g i t a t i n g t h e s o l u t i o n w i t h an i n e r t gas b y means o f a sparger (e.g.,
implies
a f r i t t e d disc)
charcoal)
e i t h e r by a d s o r p t i o n on a s o l i d adsorbent (Tenax GC or or f r e e z i n g - o u t t h e v o l a t l l e s i n a t r a p submerged i n d r y i c e acetone. l i q u i d
nitrogen,
etc.
and c o l l e c t i n g v o l a t i l e s
Vapor s t r i p p i n g i s an a l l - i n c l u s i v e t e r m which c o u l d r e f e r t o e i t h e r
technique. I f t h e v o l a t l l e s a r e adsorbed on a s o l i d , i n t o a gas chromatograph.
t h e y may be desorbed and b a c k f l u s h e d
I f t h e v o l a t i l e s have been condensed i n a c o o l e d t r a p ,
f i n a l sample w i l l c o n t a i n a c e r t a i n q u a n t i t y o f water, gas chromatographic a n a l y s i s . t r a p w i t h a d e s i c c a n t tube. b u t c r e a t e s another,
i.e.,
the
which may i n t e r f e r e w i t h t h e
T h i s problem may be minimized by p r e c e d i n g t h e c o o l e d The presence o f t h e d e s i c c a n t tube e l i m i n a t e s one problem
some of t h e v o l a t i l e s a r e adsorbed on t h e d e s i c c a n t .
The technique of p u r g i n g a s o l u t i o n o f
i t s v o l a t i l e components and t r a p p i n g
them i s commonly r e f e r r e d t o as t h e "purge and t r a p " method o f s e p a r a t i o n . i s c r e d i t e d t o B e l l a r and L i c h t e n b e r g ( r e f s . 95-97 and 109).
The U.S.
The method
EPA has adapted
t h i s s e p a r a t i o n t e c h n i q u e t o s e v e r a l o f i t s a n a l y t i c a l procedures ( r e f s . 110-112). The technique o f s p a r g i n g a water sample o f
i t s v o l a t i l e s and c o l l e c t i n g them
i n a cooled t r a p i s c r e d i t e d t o Swinnerton and Linnenbom ( r e f s . Their
main work
in t h i s
hydrocarbons i n seawater.
area
was
the
identification
A sensitivity of
0.1
and
38,
4 2 and 113-115).
q u a n t i f i c a t i o n of
p p t was a c h i e v a b l e because o f
lower the
l a r g e sample volume and t h e c o n c e n t r a t i n g step i n t h e procedure. Vapor s t r i p p i n g t e c h n i q u e s p r e s e n t a p r o b l e m o f c a l i b r a t i o n b e c a u s e t h e e f f i c i e n c y i s a f u n c t i o n o f t h e s o l u t e and t h e i o n i c s t r e n g t h .
The use of an i n t e r n a l
111 standard o r an i n t e r n a l standard o f a labeled isotope o f t h e component o f (e.g.,
interest
deuterated benzene) w i l l e l i m i n a t e t h i s problem ( r e f . 116). T h i s sample treatment technique i s very s i m i l a r t o t h e sampling technique by
adsorption discussed
i n Chapter 3 ( S e c t i o n 3.4).
The reader
Is referred t o t h i s
chapter f o r more i n f o r m a t i o n . Several b o i l i n g p o i n t l i m i t s ( f o r purgeable compounds) have been s t a t e d i n t h e literature.
Grote and Westendorf ( r e f . 1 1 7 ) s e t t h e b o i l i n g p o i n t l i m i t a t 15OOC and
a water s o l u b i l i t y o f 3%. whereas H i t e s ( r e f . 118) has s t a t e d a l i m i t o f 100°C f o r t h e b o i l i n g point. Be1 i a r e t a l .
(ref.
applied t h e i r
119)
determination o f v i n y l c h l o r i d e ,
a t t h e vg/e
"purge
and t r a p "
l e v e l by gas chromatography.
was t h e purging gas and t h e adsorbent was e i t h e r s i l i c a gel
A halogen-specific
temperature.
technique t o t h e
d e t e c t o r was used.
Nitrogen
o r Carbosieve a t room
Some new columns were used f o r
t h e separation and determination of organic p o l l u t a n t s i n water by Mindrup ( r e f . 120). The v o l a t i l e s were removed by "purge and t r a p "
technique and determined on a 80-100
mesh Carbopack C/O.2%
Oowty
Carbowax
1500 column.
et
al.
(ref.
121)
determined
halogen and nonhalogen c o n t a i n i n g p r i o r i t y p o l l u t a n t s a t t h e < 1 vg/& ( 1 ppb) l e v e l . They increased t h e i r b y e (ref.
from t h e sample. ethers,
s e n s i t i v i t y by use o f "purge and t r a p "
and mass spectrometry.
122) trapped p o l a r water-soluble compounds on Tenax GC a f t e r g a s - s t r i p p i n g The types o f compounds t e s t e d were alcohols,
halogenated hydrocarbons and aromatic hydrocarbons.
methanol
and ethanol,
l e a s t 75% e f f i c i e n t . n i t r o g e n gas.
most o f
the strippings,
adsorptions
aldehydes,
ketones,
With t h e e x c e p t i o n o f and d e s o r p t i o n s were a t
Dissolved n i t r o u s oxide i n seawater was s t r i p p e d (purged) u s i n g
The gas was adsorbed on molecular s i e v e 13X a t 0°C.
Thermal d e s o r p t i o n
was done a t 250OC and t h e n i t r o u s o x i d e determined on a molecular s i e v e 5A column a t 25OOC u s i n g e l e c t r o n - c a p t u r e d e t e c t i o n ( r e f . 123).
4.3.2.3
Change i n i o n i c s t r e n g t h o f sample s o l u t i o n .
The removal of nonpolar
o r compounds o f low p o l a r i t y from t h e aqueous phase i n t o t h e gas phase may have t o be enhanced f o r several reasons. ( 1 ) The c o n c e n t r a t i o n level
equilibration,
a t which they are present
i s very low and vapor
p u r g i n g or sparging may not t r a n s f e r a s u f f i c i e n t a m u n t t o t h e gas
phase f o r accurate d e t e c t i o n .
( 2 ) One d e s i r e s t o approach q u a n t i t a t i v e t r a n s f e r
( a t l e a s t 95%) o f t h e
components from aqueous phase t o gas phase. The s i m p l i e s t technique t o increase t h e amount o f p o l l u t a n t i n t h e gas phase i s t o increase t h e i o n i c s t r e n g t h o f t h e sample. compounds w i l l
The r e s u l t i s t h a t t h e low p o l a r i t y
have more i n t e r a c t i o n among themselves which r e s u l t s
i n t h e i r p a r t i a l pressures. o f t h e aqueous phase ( i . e . ,
Thus, one has "squeezed" one has s a l t e d them o u t ) .
i n an
increase
these low p o l a r i t y molecules o u t T h i s i s accomplished by adding
enough o f a s o l u b l e e l e c t r o l y t e t o form a very concentrated s o l u t i o n o r i n some cases
112 Compounds such as NaCl, Na2S04 and (NH4)2S04 ( r e f . 8 7 )
t o s a t u r a t e t h e aqueous phase.
as we1 1 as CaCOj ( r e f . 8 8 ) have been used. The same e f f e c t i s seen I n performing a l i q u i d - l i q u i d e x t r a c t i o n w i t h water as The a d d i t i o n of a l a r g e s a l t c o n c e n t r a t i o n t o t h e water phase
one o f t h e phases.
It Is
would enhance t h e e x t r a c t i o n o f low p o l a r i t y compounds i n t o t h e o r g a n i c l a y e r . n o t w i t h i n t h e scope o f t h i s book t o discuss t h e t h e o r y o f
out, etc.
i o n i c strength,
salting
One may f i n d i n f o r m a t i o n r e g a r d i n g i t s b e n e f i t s by reading t h e a p p r o p r i a t e An e x c e l l e n t treatment o f t h i s t o p i c
s e c t i o n i n a p h y s i c a l chemistry textbook. given by Glasstone ( r e f . 1 2 4 ) .
i n c r e a s e d i o n i c s t r e n g t h f o r t h e headspace gas a n a l y s i s t e c h n i q u e , addltlon,
for hydrophilic
is
Drozd and Novbk ( r e f . 92) have s t u d i e d t h e e f f e c t o f
s o l u t e s (e.g.,
acetone,
methanol,
ethanol
by standard
and p r o p a n o l ) .
The increase i n i o n i c s t r e n g t h demonstrated an Increased s e n s i t i v i t y f o r acetone and propanol.
4 . 4 CLEAN-UP
Sample clean-up
i s used when an environmental sample c o n t a i n s o r
t o c o n t a i n a wide v a r i e t y o f components.
i s suspected
The goal o f t h i s procedure i s t o i s o l a t e
groups o f compounds so t h a t I n j e c t i o n o f an a l i q u o t o f t h e e x t r a c t i n g s o l v e n t does n o t r e s u l t i n a very complicated chromatogram ( l . e . , which
leave t h e data
t h e removal of unwanted components
i n doubt as t o r e l i a b i l i t y ) .
The s i m p l i e s t approach t o t h i s
problem i s t o pass t h e sample as r e c e i v e d ( o r an e x t r a c t o f t h e sample) through a clean-up column t o o b t a i n an i n l t i a l group separation. A c t i v a t e d charcoal
( r e f s . 125 and 126) and t h e v a r i o u s porous o r g a n i c polymers
a r e w i d e l y used t o ' c l e a n up and c o n c e n t r a t e p o l l u t a n t s f r o m w a t e r . techniques,
carbon-chloroform
illustrations
of
adsorption-extraction
Charcoal has advantages (e.g., and disadvantages (e.g., not
always
e x t r a c t (CCE) and carbon-alcohol
quantitative
systems
for
clean
The t w o
e x t r a c t (CAE) a r e two up
of
water
h i g h a d s o r p t i o n c a p a c i t y and h i g h thermal
samples. stability)
organic compounds a r e n o t adsorbed completely; d e s o r p t i o n I s and t h e
desorption
process
sometimes changes
the
sorbate
molecules) ( r e f . 1 2 7 ) . Porous polymers a r e good f o r
c l e a n i n g up water
samples
because t h e proper
sorbent causes a s h i f t i n e q u i l i b r i u m towards t h e sorbent more than toward t h e o r g a n l c phase i n a I l q u i d - l l q u i d e x t r a c t i o n .
The c o n c e n t r a t i o n f a c t o r
l i q u i d - s o l i d e x t r a c t i o n than f o r l i q u i d - l i q u i d e x t r a c t i o n .
will
be g r e a t e r
for
Porous polymers have some
unique p r o p e r t i e s which make them t h e choice f o r c l e a n i n g up and c o n c e n t r a t i n g water pollutants.
I f t h e proper porous polymer i s selected, t h e d i s t r i b u t i o n constants (KD)
tend toward i n f i n i t y . surface
i s inert;
Adsorption o f water
and t h e i r
"wetability"
organlc p o l l u t a n t s from t h e water.
is
i s minimal low which
a t best;
t h e porous polymer
increases t h e a d s o r p t i o n o f
The more hydrophobic i s t h e sorbent surface,
more adsorption c a p a c i t y i s a v a i l a b l e f o r non-polar
the
(or low p o l a r i t y ) molecules i n t h e
113 water phase ( a s molecule p o l a r i t y decreases, t h e water solubility decreases). Removal o f organic molecules from t h e surface o f t h e porous polymer may be accomplished
by
liquid-desorption
(see above,
Solvents o t h e r
than c h l o r o f o r m and alcohol
d i e t h y l ether,
n-hexane,
pyridine.
acetone,
Experience
with
e.g.,
which
isopropanol,
thin
layer
or
CCE and CAE) have been used
methanol,
methyl
liquid-solid
or
by
lsobutyl
are
ketone and
chromatography
advantageous i n t h e sample clean-up process and f a m i l i a r i t y w i t h Snyder's
will
(ref.
be 128)
A word o f c a u t i o n i n
e l u o t r o p i c solvent s e r i e s would be a g r e a t asset t o t h e novice. t h e use o f t h e e l u o t r o p i c s o l v e n t s e r i e s :
heating.
successfully
when using non-polar
porous polymers an
increase i n s o l v e n t s t r e n g t h wiI I g i v e t h e o p p o s i t e e f f e c t (more a d s o r p t i o n and less desorption). n-hexane
The best
solvents
benzene
>
> d i e t h y l e t h e r > propanol > acetone > ethanol
>
for
> e t h y l acetate > butanol
desorption
would
follow t h e order
methanol > water ( r e f . 1 0 ) . Desorption volume o f t h e e l u e n t
i s usually
i n t h e range o f
10-25
mi.
This
l i q u i d desorption step as w e l l as t h e c o n c e n t r a t i n g step ( e v a p o r a t i o n t o a smaller volume) which f o l l o w s ,
introduces e r r o r .
sample may a l s o cause an e r r o r I t may
solvent.
i n t e r f e r e or
s o l v e n t peak may be removed,
The
because o f
large amount o f e l u e n t
the
completely cover
e.g.,
if
l a r g e peak
i n the final
which r e s u l t s from t h e
a p o l l u t a n t peak.
p y r i d i n e were used f o r
Sometimes t h e
t h e desorption,
the
sample pulse could pass through a small precolumn c o n t a i n i n g CuCI2 and t h e p y r i d i n e s e l e c t i v e l y removed ( r e f . 129). of high p u r i t y measuring.
-
NOTE:
The s o l v e n t ( s ) used f o r t h e d e s o r p t i o n must be
they may c o n t a i n no more than a ppm o r ppb o f t h e component one i s
One
should
purify
all
solvents
chromatographed, a t a h i g h s e n s i t i v i t y s e t t i n g , Table 4 . 4
used,
unless,
when
they
i s a t a b u l a t i o n o f a number of comnonly used s o l i d s i n clean-up
c o n c e n t r a t i o n o f p o l l u t a n t s i n water.
are
no i n t e r f e r e n c e peaks a r e noted. and
We have given p r o p e r t i e s and s e l e c t i v i t i e s o f
these v a r i o u s s o l i d adsorbents so t h a t they may be used as a r e f e r e n c e p o i n t i n water p o l l u t i o n analysis.
A c i d i c compounds were found t o be e a s i l y desorbed w i t h aqueous
NaOH, whereas b a s i c components a r e e l u t e d w i t h d i l u t e HCI.
TABLE 4 . 4 S o l i d sorbents used f o r clean-up and c o n c e n t r a t i o n o f water p o l l u t a n t s Sorbent
AmberIite XAD-2
Chemical make-up
Styrene-divinyl-benzene copol ymer
Chemical and p h y s i c a l properties
Compounds sorbed*
Recovery
Ref.
Hydrophobic. Pore diameter, 85-90 A. S p e c i f i c surface2 area: 290-330 m /g. 20-50 mesh.
alcohol^ ( 1 0-1 00 PPb)
91-102
130
A I dehydes and ketones (10100 ppb)
92-1 02
130
(Z)
114 Sorbent
Chemical make-up
Chemical and p h y s i c a l properties
Compounds sorbed*
Recovery
Ref.
E s t e r s (10100 p p b )
91-103
130
PAHs (10100 p p b )
92-101
130
Alkylbenzenes (10-100 PPb)
ca. 93
130
(%)
Ha I ogen93-99 ated arom a t i c hydrocarbons (10-100 p p b )
130
Aromatic amines ( 1 0 100 p p b )
130
91-100
Nitro-cornpounds, a n i I ines, quinol i n e s , (10100 p p b )
AmberIite
Styrene-divinylbenzene copolymer
Hydrophobic. Specifi c s u r f a c e a r e a : 750 m2 /g.Av. p o r e diame t e r , 50 A .
Ethers 91-99 (aromatic) (10-100 p p b )
130
Pesticides herbicides (20 p p t )
93-96
130
Alcohols (2-10 p p b )
93-103
131
Esters (2-10 ppb)
91-99
131
Aldehydes and k e t o n e s (2-10 p p b )
92-105
131
(65-30) A l k y l benzenes ( 2 - 1 0 PPb)
131
PAHs (2-10 ?Pb)
(83-87)
131
93-105
131
Phenols (alkylated) (2-10 p p b )
115 Sorbent
Chemical make-up
Chemical and physical properties
Amber-
Styrene-divinyl-
Ilte XAD-1
benzene copolymer
Specific surface 2 area: lOOm /g. Mean,, pore diameter: 200 A.
Compounds sorbed*
Recovery
Aromat ic ch Io r 0 compounds (2-10 ppb)
91 -93
131
Ac I ds (2-10 ppb)
90-1 07
131
Pheno I s (ha I ogenated) (210 ppb)
91 -99
131
Deter-
100
132
Insect i cides, pH = 2.0
100
132
Methy I ene blue, rhodamine blue, pH = 7.6
100
132
Hum ic acids. pH = 2.0
100
132
Vitamins B2 and B,2
100
132
100
132
93
133
Benzene
100
133
Methy I i sobuty I ketone
100
133
o-Ethy I p heno I
97
133
90
135
Ref.
(P)
gents, pH = 2.0
-
DH = 2.0 and 7.6 respectively. Cholesterol pH = 2.0 Chromosorb S t y r e n e - d i v i n y l 102 benzene copolymer
Tenax-GC
Hydrophobic. Chloroform S p e c i f i c surface area 2 300-400 m /g. Meano pore diameter: 95 A.
Poly
S p e c i f i c surface
Pest i c I des
(2,6-d ipheny l -
area: 19-30 m'/g. Pore volume: 0.667
( f r e e C12 i n water
116 Sorbent
Chemical make-up
Chemical and physical properties ml/g ( r e f . 134). Av pore r a d l u s : 720 A. Good sorbent up t o 320°C. Reaction w i t h n l t r o g e n oxide o r n l t r l c a c i d does not a f f e c t i t s e f ficiency or capacity.
p-pheny Iene oxide)
Polyurethane, open pore
Urethane PO I ymer
1-10 um agglomerated s p h e r l c a l p a r t i c l e s bonded together. Bases break up openpore s t r u c t u r e . S t a b i l i t y increased as pH o f water sample decreased.
Po l yurethane porous foam
U r ethane polymer.
pH 6-9. Increased water f I ow r a t e causes decreased ads o r p t ion.
Compounds sorbed"
Recovery
Ref.
(I)
causes oxidation of pesticides)
-
PAHs (0.1 ppb l e v e l )
85-90
135
Benzene, aniline, p-creso I
89-99
136
92-108
137
.
PAHs
Ch l o r i nated insect 1 c i d e s and poly-chlor1 nated b 1 pheny I s.
97-114
138
-
-
PAHs Amberl y s t A-26 i o n ex-
MacroretlcuI ar
change resin.
porous po I ymer
*By
.
Anion-exchange r e s i n with trimethylamine group. S p e c i f i c sur2 face area: 25-30111 / g. 27% p o r o s i t y .
Pheno I s (pH 1212.5)
pH 3.0,62 pH 10.0,76
139
95-102
127
group or i n d i v i d u a l compound l i s t i n g .
**Individual
compounds l i s t e d had t o have a minimum o f 90% recovery.
Recovery ( $ ) =
((Amount remaining a f t e r c o n c e n t r a t i o n s t e p ) / ( A m u n t o r i g i n a l l y present I n s o l u t i o n ) ) x 100.
Once t h e components o f
t h e water
sample have been removed ( d e s o r b e d ) a g r o u p
s e p a r a t i o n may be used t o s e l e c t i v e l y remove g r o u p s o f compounds. separation i s dependent on pH ( r e f . compounds are not sorbed.
T h i s group
140) because s t r o n g l y i o n i c organic o r i n o r g a n i c
117 WATER SAMPLE clean-up by a d s o r p t i o n
Wash w i t h
REMOVAL OF
I
I M HCi*
I
AC iD I C SORBATE:
REMOVAL OF
Wash w i t h __j
BAS I C SORBATES
*
COMPONENTS CONCENTRATED ON SOLID SORBENT
0.05 M NaOH
REMOVAL OF
A
d i e t h y l ether
Recoveries 7-75 $ w i t h o n l y d i s t i l l e d water; 40-108
Use o f a f i n e r p a r t l c l e s l z e (ca. ppm range,
Wash w l t h
NEUTRAL SORBATES
%
w i t h HCI.
150 mesh), v a r y i n g s o l u t e c o n c e n t r a t i o n from ppb t o
changing t h e f l o w r a t e o f t h e moblle phase, and t h e a d d i t i o n o f up t o 50 g
NaCl per l i t e r produced l i t t l e or no change I n t h e r e c o v e r i e s . The Amberlite XAD-7 sorbent i s a h y d r o p h l l l c m e t h a c r y l a t e polymer having a 0 T h i s i s a good s p e c i f i c surface area o f 450 m2/g and a mean pore diameter o f 80 A . clean-up sorbent f o r f a t t y acids, phenol,
and m-chlorophenol.
Adsorption increases as
t h e f a t t y a c i d chain length Increases ( s o l u b i l i t y decreases).
The polymer i s u n s t a b l e
i n a l c o h o l i c sodium hydroxide s o l u t i o n (causes h y d r o l y s i s o f t h e e s t e r group). A m b e r l i t e XAD-8 r e s i n i s a methyl m e t h a c r y l a t e r e s i n w i t h average p o r e diameter
2
o f 250 A and s p e c i f i c surface area o f 140 m /g.
The r e s i n adsorbs a l i p h a t i c systems
i n p r e f e r e n c e t o a l i c y c l i c a n d / o r a r o m a t i c c a r b o n systems.
> -NH2. f u n c t i o n a l groups i s -CH3 > -COOH > -CHO > -OH an inverse of s o l u b i l i t y trends.
One o f
The p r e f e r e n c e f o r
Both o f these preferences a r e
i t s main uses i s t h e c o n c e n t r a t i o n o f
molecular weight organic s o l u t e s and n a t u r a l o r g a n i c p o l y e l o c t r o l y t e s (e.g.,
low
fulvic
and humic a c i d s ) . A n o t h e r g r o u p o f s o r b e n t s w h i c h may be used f o r c l e a n - u p Polymers (manufactured by Waters Associates,
Framingham, MA,
USA).
i s t h e Porapak Porapak Q I s an 0
ethylvinylbenzene-divinylbenzene copolymer having a mean micropore diameter o f 74.8 A 0
a v a i l a b l e up t o 500 A )
142).
and a s p e c i f i c s u r f a c e area o f
2 630-840 m /g
(refs.
The polymer has i t s b e s t a p p l i c a t i o n f o r t h e c o n c e n t r a t i o n o f
hydrocarbons (e.g.,
benzene, toluene, o-xylene,
naphthalene).
Adsorbed o r g a n o s i l i c o n
compounds can be removed by e l u t i o n w i t h methyl i s o b u t y l ketone ( r e f . 143). (manufactured by Lachema, s i m i l a r t o Porapak Q.
Brno,
Czechoslovakia)
141 and aromatic
Synachrom
i s a copolymer w i t h p r o p e r t i e s very
The s o r p t i o n process i s physical
sorption;
thus,
s o r p t i o n on
t h i s copolymer i s i n v e r s e l y p r o p o r t i o n a l t o s o l u b i l i t y o f sorbates i n water. Porapak N i s n o t a very good copolymer f o r clean-up purposes. Porapak Q i t i s found t h a t 143).
Comparing i t t o
i t possesses no abi I i t y t o t r a p s i I icon compounds ( r e f .
118 TABLE 4.5 Comparison o f various types o f a m b e r l l t e ( r e f . 144)
Compound
Concentratlon (ppb) 50
Acenaohthene 2-benzothiazole Bis(2-chloroisopropyl)Bther p-Cresol D i benzof uran n-Hexadecane I-Methylnaphthalene 2-Methylnaphthalene o-Nitrotoluene Naphthalene Pheno I -Ter p i neo I sym-Tetrachloroethane Dehydroabietic a c i d 100 Di-2-ethylhexyl phthal a t e 2-Ethyl hexanol lsophorone Palmitic acid Pentachlorophenol 1 -BHC L i ndane -B Hc Aldrin Die I d r i n Cumene 10,000 Ethylbenzene Naphthalene n-Hexane Pheno I Octanolc a c i d o-Creso I Chiorophenol
Recovery(%) f o r XAD r e s i n t y p e 1 2/4 8 217 2 2/8 2/4/1/8 50 40
84 82
81
81
81 14
76 50 83 8 15 72 79 77 32 71
16 44 93 3 76 15 82 79 14 81
80 69 82
64 63 53 64 19 36
11 47 95 80 11 11 78 29 62
71 83 80 38 80
82 68 84 11 19 77 83 80 46 80
35 31
59 85
66
61 94
12 86
-12
22 74 46 12 83 -
13 79 41 16 11 28 11
---
33
11 91 86 79 84 90 107 81 50 107
13
3
-
61 59 93 83 45 81 67 a5 ..
-
63 82
-
85
12
20 75
33
99
4/8
68 53
-
72
4
-
77
85 16 61 84 53 45 71 51 61 61 60 90 82 27 58 59 70
Ref. >
145
145
9
146
10 32 25 25
-
-
-
141
(by permission o f p u b l i s h e r . )
Another group o f polymers which may be used i s t h e Chromosorb Century Series. Chromosorb 105 I s a p o l y a r m a t l c t y p e polymer having an average p o l a r i t y , and average 2 T h i s polymer pore diameter of 0.04-0.06 p m and s p e c i f i c surface area of 600-700 m /g. i s not recommended f o r clean-up
properties.
Chromosorb 106 i s very s i m i l a r t o t h e
Chromosorb 105. Table 4.5
i l l u s t r a t e s a comparison o f t h e various types and/or m i x t u r e s o f t h e
Amberlite XAD r e s i n s . the
most
efficient
The data show t h a t a 1 : l m i x t u r e o f XAD-4 and
that
resin
XAD-4
is
very
and XAO-8 r e s i n s i s
efficient
for
chlorinated
119 insecticides.
XAD-7
i s a b e t t e r sorbent than XAD-2 for p o l a r compounds,
has a h i g h e r p o l a r i t y . water
studies
XAD-8
because
it
i s most s u i t a b l e ( a s compared t o XAD-2) has
less
tendency
to
become
because XAD-7
f o r natural
clogged
by
natural
p o l y e l e c t r o l y t e s ( r e f . 144). A comparison o f t h e r e c o v e r i e s w i t h XAD-2
300) was made by C h r i s w e l l e t a l . ( r e f . 148). d a t a show t h a t t h e p o r o u s p o l y m e r ,
XAD-2,
and a c t i v a t e d charcoal
(Filtrasorb
These data a r e shown i n Table 4.6. i s more s u i t a b l e t h a n c h a r c o a l
The for
r e c o v e r i e s o f t h e v a r i o u s sorbates except f o r a c i d i c t y p e compounds ( n e i t h e r sorbent i s acceptable) o r alkanes.
A s i m i l a r study between A m b e r l i t e XAD-4
and Spherocarb
(carbon molecular s i e v e ) f u r n i s h e d e s s e n t i a l l y t h e same i n f o r m a t i o n ( r e f . adsorption
capacity of
carbon
is
lower
than Amberlite
XAD r e s i n s ,
131).
The
Synachrom and
open-pore polyurethanes ( r e f . 10).
TABLE 4 . 6
Comparison o f r e c o v e r i e s w i t h A m b e r l i t e XAD-2 and a c t i v a t e d carbon ( r e f . 148) (by permission o f p u b l i s h e r ) Compound
Number o f i n v e s t i g a t e d compounds
Recovery ( % 1 Resin Carbon
A I kanes Esters A l coho I s Phthalate esters Pheno I s C h l o r i n a t e d alkanes and alkenes C h l o r i n a t e d aromatic compounds Aromatic compounds Aldehydes and ketones Amines C a r b o x y l i c acids Pesticides M i sce I I aneous
5 4
5 61 73 82 45 43 70 68 74 54 1 34 33
a
3 10 5
13 7 3
13 11 4 14
15 49 47 24
7 55 11 6 4 54 2 16 11
M a r c e l i n ( r e f . 149) used Tenax-GC as a clean-up packing when a n a i y z l n g m i x t u r e s of
permanent gases
and heavy organic
compounds.
A
short
pre-column
of
Tenax-GC
adsorbed t h e organic m a t e r i a l and passed t h e permanent gases and water i n t o a column o f Chromosorb 101 f o l l e d by a column o f Porapak QS f o r separation.
Thermal d e s o r p t i o n
o f t h e organic m a t e r i a l and separation on a 10% XE-60/Chromosorb WHP column followed. A clean-up
and c o n c e n t r a t i o n system f o r
described by Solomon ( r e f .
150).
chlorinated
i n s e c t i c i d e r e s i d u e s has been
Hexane s o l u t i o n s o f t h e c h l o r i n a t e d p e s t i c i d e s were
chromatographed on a F l o r i s i l column and e l u t e d w i t h hexane-dlethyl Recoveries o f 87-100% were reported.
Baird e t a l .
t h e e f f l u e n t s from four p i l o t t e r t i a r y waste-water compounds.
ether
solvent.
( r e f . 1 5 1 ) c a r r i e d o u t a study on treatment systems f o r t r a c e o r g a n i c
The e f f e c t s of ozone and f r e e and combined c h l o r i n e were a l s o studied.
They used various combinations o f alum f l o c c u l a t i o n , for
removal
of
volatile
chlorinated pesticides,
filtration,
polynuclear
and p o l y c h l o r i n a t e d biphenyls.
and carbon a d s o r p t i o n aromatic
hydrocarbons,
Gas chromatography was t h e
Carbon adsorption reduced t h e t r i h a l o m e t h a n e l e v e l s almost 90%.
method o f analysis. Chang and F r i t z
halogenated organics,
152) used macroporous
(ref.
XAD-2
r e s i n t o c o n c e n t r a t e and then
determine various p o l l u t a n t s i n water. Average recovery was 83% a t t h e 3-200 9 ( 1 0 ) l e v e l , w i t h an o v e r a l l r e p r o d u c i b i l i t y o f 5-8$.
ppb
4 . 5 DERlVATlZATlON D e r i v a t i z a t i o n i s t h e process o f c h e m i c a l l y m o d i f y i n g a molecule i n order t o make I t more ccmpatible w i t h an a n a l y t i c a l procedure.
T h i s i s n o t a process unique t o
D e r i v a t i z a t i o n s are performed f o r a v a r i e t y o f reasons:
chromatographic separation.
( 1 ) To increase v o l a t i l i t y o f a component or t o increase I t s thermal s t a b i l i t y
i .e.,
f o r gas chromatography,
improve t h e chromatographic behavior o f t h e component.
An example would be t h e s l l y l a t i o n o r a c e t y l a t i o n r e a c t i o n s o f hydroxyl o r c a r b o x y l i c a c i d groups.
In l i q u i d chromatography t h i s may be used t o change t h e p o l a r i t y o f t h e
parent molecule, The
sensitivity
e.g.,
conversion o f a l c o h o l s t o e t h e r s o r c a r b o x y l i c a c i d s t o e s t e r s .
in
liquid
chromatography
may
nitro-substituted ester of the carboxylic acid. nitro-substituted
ester
is
greater
than
the
be
increased
simple
ester.
The
f l u o r m e t r i c d e r i v a t i v e p r i o r t o t h e Separation a l l o w s t h e use o f d e t e c t o r and increases t h e s e n s i t i v i t y a hundred-fold
(21 To f a c i l i t a t e t h e s e p a r a t i o n o f
by
forming
a
The m o l a r a d s o r p t i v i t y o f t h e making
of
a
a fluorometric
( r e f . 153).
components
i n a mixture:
The p a r e n t
molecule may be changed t o another chemical form which has a r e t e n t i o n t i m e d i f f e r e n t
from t h e parent molecule.
This technique may be used i n gas chromatography as w e l l as
i n l i q u i d chromatography; however,
i t s use i n l i q u i d chromatography i s l i m i t e d because
o f t h e v a r i e t y o f s o l v e n t systems a v a i l a b l e . n o t g i v e a more s e n s i t i v e s i g n a l e.g.,
f r e e acids o r amines,
In t h i s a p p l i c a t i o n t h e d e r i v a t i v e need
than t h e parent molecule.
Very p o l a r compounds,
are d i f f i c u l t t o separate b y gas chromatography as are
some t h e r m a l l y l a b i l e compounds.
The chemical m o d i f i c a t i o n o f t h e f u n c t i o n a l
group
improves t h e chromatographic behavior of t h e molecules ( i t s abi I i t y t o be determined b y gas chromatography).
( 3 ) To increase t h e d e t e c t a b i l i t y by imparting a measurable c h a r a c t e r i s t i c t o t h e parent molecule:
P o l l u t a n t s are u s u a l l y present i n t h e ppm o r ppb range and one
may increase t h e s e n s i t i v i t y o f t h e method by forming a halogen or acyl ( t a g g i n g w i t h a p e r f l u o r o a l k y l o r acyl group).
c a r r i e d o u t by use of an e l e c t r o n - c a p t u r e d e t e c t o r .
A minimal r e s u l t a n t Increase i n
s e n s i t i v i t y by a f a c t o r o f a thousand i s o f t e n obtained. or s o i l s may e a s i l y be detected i n t h i s manner.
derivative
In t h i s manner t h e d e t e c t i o n can be
P e s t i c i d e r e s i d u e s i n food
One may extend t h e u t i l i t y o f
iiquid
chromatography d e t e c t o r s by t a g g i n g molecules o f i n t e r e s t w i t h s t r o n g UV chromophores
121 o r w i t h a flUorophore ( f o r f l u o r e s c e n t d e t e c t o r s ) .
There a r e a number of reagents
a v a i l a b l e f o r making d e r i v a t i v e s o f molecules t o enhance t h e i r d e t e c t a b l l i t y .
These
reagents may be grouped according t o t h e type o f parent molecule and reagent type. Parent molecules having a r e p l a c e a b l e hydrogen e a s i l y react, and phenols.
Halogenated t r i m e t h y l s i l y l
trifluoroacetic
anhydride
(TFAA),
h e p t a f l u o r o b u t y r i c anhydride
(TMS)
e.g.,
derivatives
pentafluoropropionic
(HFBA) are commonly used.
amines,
are
very
anhydride
form d e r i v a t l v e s w i t h
Also
(PFPA),
and
These d e r i v a t i v e s n o t o n l y
increase t h e d e t e c t a b l l l t y b u t a l s o a i d i n v o l a t i l i t y and s t a b i l i t y . amines
alcohols
good.
A l c o h o l s and
N-trifluoroacetylimidazole and N - h e p t a f i u o r o b u t y r i m i -
A very good reagent f o r primary and secondary amines i s p e n t a f l u o r o b e n z o y l -
dazole. ch Io r i de.
I f d e r i v a t i z a t i o n i s t o be used, one must decide I f t h e chemical t r a n s f o r m a t i o n
w i l l t a k e place b e f o r e i n j e c t i o n o n t o t h e column (pre-column d e r i v a t l z a t l o n ) ,
during
t h e separation process i n t h e column (on-column d e r i v a t i z a t i o n ) o r a t t h e completion o f t h e separation (post-column d e r i v a t i z a t i o n ) . ( a ) Pre-column d e r i v a t i z a t i o n
i s used when t h e d e r i v a t i v e f o r m a t i o n r e a c t i o n
t i m e I s long o r may r e q u i r e d r a s t i c c o n d i t i o n s .
The chemical r e a c t i o n may t a k e p l a c e
o v e r n i g h t followed by gas o r l i q u i d chromatographic s e p a r a t i o n o f t h e product. ( b ) On-column d e r i v a t i z a t i o n may make use o f t h e heated i n J e c t i o n p o r t and/or column ( i n gas chromatography) t o e f f e c t t h e chemical r e a c t i o n .
D e c i s l o n making on
t h e system can n o t w a i t u n t i l t h e n e x t day because d e r i v a t i v e s made t h i s way must have f a s t r e a c t i o n t i m e and be a c l e a n r e a c t i o n .
This technique i s p r e f e r r e d over
p r e - c o l u m n d e r i v a t i z a t l o n because of t h e speed and s i m p l i c i t y .
These t y p e s o f
d e r l v a t i v e s (gas chromatography) mean m o d i f i c a t i o n t o system equipment. procedures are t o be used on a r o u t i n e basis,
Unless these
one should consider doing pre-column
derivatization. ( c ) Post-column rather
than
enhanced. derivative; derivative.
derivatization
i n gas chromatography
is
primarily
used
in
liquid
chromatography
so t h a t t h e d e t e c t a b i l i t y o f t h e components
is
This i n v o l v e s t h e separation o f p a r e n t compounds and t h e d e t e c t i o n of t h e whereas,
w i t h a and b.
t h e Separation and d e t e c t i o n a r e based upon t h e
T h i s mode o f d e r i v a t l z a t l o n introduces t h e p o s s i b i l i t y o f m i x i n g o f t h e
separated components of t h e sample a f t e r they e x i t from t h e column and b e f o r e t h e y enter t h e detector. I n a l l t h r e e techniques, m a t r i x e f f e c t s can I n t e r f e r e . be c e r t a i n o f t h e q u a l i t a t i v e make-up o f t h e sample. i n t e r f e r e n c e i s pH,
Thus It i s e s s e n t i a l t o
One parameter which can cause an
because t h e change i n hydrogen i o n c o n c e n t r a t i o n may i n h i b i t t h e
r e a c t i o n o f I n t e r e s t o r a c c e l e r a t e an unwanted r e a c t i o n .
A reagent t o be useful f o r d e r i v a t i z a t l o n should meet c e r t a l n c r i t e r i a : ( 1 ) it should form no more than one d e r i v a t i v e w l t h each p a r e n t compound.
( 2 ) Reaction completion should r e q u i r e minimum t i m e under m l l d c o n d i t i o n s .
122 ( 3 ) Any by-products or excess reagent should not I n t e r f e r e w i t h t h e s e p a r a t i o n o f t h e compounds o f i n t e r e s t .
I n o t h e r words,
non-UV a d s o r b l n g o r s u f f i c i e n t l y d l f f e r e n t
r e a c t i o n by-producfs
should be e l t h e r
i n s t r u c t u r e from t h e d e r l v a t l v e o f
i n t e r e s t t h a t separatlon i s no problem.
( 4 ) D i f f s r e n c e s among t h e p a r e n t compounds should be preserved t o a l l o w t h e i r separation. S u b s t i t u t e d aromatic compounds are t h e most commonly used UV chromophores f o r l i q u i d chrunatography d e r i v a t i v e s .
They r e p r e s e n t t h e b e s t general compromise among
s i z e , p o l a r i t y , and molar a d s o r p t i v i t y . The most commonly used d e r i v a t i v e reagent f o r gas chromatography has been t h e s i l y l ether.
The r e a c t i o n between sample component and s i l y l a t l o n reagent i s f a s t and
A s i l y l d e r i v a t i v e may be made I f t h e
leaves a pure d e r l v a t l v e I n f a i r l y h i g h y i e l d .
sample component has a f u n c t i o n a l group w i t h sllyl acceptor a b i l i t y . with
oxygenated
derivatlve.
or
nitrogen-containing
functlonal
groups
Most compounds
w!lI
form
this
type
One can rank these f u n c t i o n a l groups I n o r d e r o f t h e i r a b i l i t y t o r e a c t
w i t h a s l l y l reagent.
Alcohols a r e more r e a c t i v e than phenols which are more r e a c t i v e
than c a r b o x y l i c acids,
which are b e t t e r t h a n amines and amides.
grouping t h e order o f
reactivity
Within a functional
I s primary > secondary > t e r t i a r y because s t e r i c
f a c t o r s p l a y an Important r o l e i n t h e formation o f d e r i v a t i v e s . There I s a wide v a r i e t y o f l i q u i d Chromatography.
derivatives
discussed here.
and
I l t t l e interest
carbohydrates and amlno a c i d s ) and so w i l l n o t be
t o t h e environmental chemlst (e.g.,
King ( r e f .
a v a i l a b l e f o r gas chromatography
Many o f these a r e f o r compounds which a r e o f
For a general d i s c u s s i o n o f d e r i v a t l z a t i o n see t h e book by B l a u and
1 5 4 ) , t h e book by Lawrence and F r e i ( r e f .
1 5 5 ) , and t h e s p e c i a l
issue o f
t h e Journal o f Chromatographic Science e d i t e d by Lawrence ( r e f . 1 5 6 ) .
A t t h e present tlme, pollutants.
gas chromotography, However,
t h e making o f
derivatives
i s not o f t e n performed f o r
The p o l l u t a n t s which a r e o f t h e most concern can e a s i l y be determined by gas chromotographyhass
spectrometry,
t h i s does not r u l e o u t t h e p o s s i b i l i t y
of
or
l i q u i d chromotography.
d e t e r m i n i n g by d e r i v l t l z a t l o n
p o l l u t a n t s which may be added t o t h e various p r i o r i t y p o l l u t a n t l i s t s throughout t h e w o r l d or t h e d e r i v a t i z a t i o n o f p o l l u t a n t s t o i n c r e a s e d e t e c t a b i l i t y .
We have
t a b u l a t e d d e r i v a t i v e s w h i c h may be used a t t h i s t i m e ( s e e T a b l e 4 - 7 1 , w i t h t h e p r o j e c t i o n t h a t higher molecular weight or interest.
I f t h i s comes t o pass,
compound w i l l
be needed.
less v o l a t i l e p o l l u t a n t s w i l l
become of
d e r i v a t i v e s which are more v o l a t i l e than t h e parent
Another
justification
for
derivatives
will
d e t e c t i o n o f p o l l u t a n t s i f t h e maximum a l l o w a b l e l i m i t s a r e lowered. t h e a n a l y t i c a l chemist w i l l need more s e n s i t i v e means of
detection.
be
for
the
I f t h i s occurs, lncorporatlng
f u n c t i o n a l groups i n t o a parent p o l l u t a n t molecule may make i t more e a s i l y detected (e.g.,
halogenated d e r i v a t i v e s so t h a t smaller amounts may be detected by e l e c t r o n -
capture d e t e c t o r s i n l i e u c f flame I o n i z a t i o n d e t e c t o r s ) .
123 The f o r m a t i o n o f d e r i v a t i v e s can impose some p e n a l t i e s w h i c h s h o u l d b e F i r s t o f a l I t h e t i m e f o r an a n a l y s i s w i l l
considered.
cost per sample analyzed.
-
derivatives
again
increase t h u s l n c r e a s l n g t h e
a d d i t i o n a l reagents w i l l be necessary t o form t h e
Secondly,
increasing t h e c o s t per sample analyzed.
Thirdly,
additional
Although most pol l u t a n t s a r e easi l y determined a t t h e present time,
t h e use o f
equipment w i l l become necessary w l t h i t s a d d i t i o n a l costs.
a derivative
and
i t s subsequent
determination
i s a straightforward
c o n f i r m i n g - t h e presence o f a p a r t i c u l a r p o l l u t a n t .
technique
for
T h i s i s e s p e c i a l l y t r u e f o r those
l a b o r a t o r i e s which do not have mass spectrometry c a p a b l l i t l e s . Sulfur-containing
acids,
I n atmospheric
diazomethane and t h e r e s u l t i n g e s t e r s
aerosols,
have been methylated w l t h
separated on a d i e t h y l e n e g l y c o l
column and d e t e r m i n e d w i t h a s u l f u r - s e n s i t i v e
detector ( r e f .
succinate
A similar
214).
technique converted carbamate p e s t i c i d e s t o s u l f o n i c e s t e r s and separated them on a LSX-3-1295
o r W-98 on CHromosorb W column 2 2 0 T ( r e f .
122).
N i t r o g e n was t h e c a r r i e r
gas and d e t e c t i o n was w i t h e i t h e r e l e c t r o n - c a p t u r e o r sulfur-mode detectors.
123) separated and q u a n t i f i e d 2,4,6-trichloro-
Solomon and K a l l a s ( r e f .
l e v e l s u s i n g a 0.1% QF-1
phenyl e t h e r d e r i v a t i v e s a t sub-ppb
flame photometric
chromotographic column and electron-capture
detection.
+ 0.1% OV-17 g a s - l i q u i d
C h l o r i n a t e d phenols may be
d e r i v a t i z e d w i t h diazomethane o r diazoethane o r a s i l a n l z i n g agent and then determined a t ng/ml
(ppb) l e v e l s using e l e c t r o n - c a p t u r e d e t e c t i o n ( r e f . 2 1 5 ) .
i f t h e phenol does
not c o n t a i n a group w i t h e l e c t r o n capture response, h e p t a f i u o r o b u t y r a t e may be used as the derivatizing
agent.
Recoveries o f
20-200 ppb level were g r e a t e r than 75%. of
phthalate esters
by
formatlon
of
the
f l u o r i n a t e d phenol
derivatives
at
the
Giam e t a l . ( r e f . 216) confirmed t h e i d e n t i t y the
N-(2-chloroethyl)phthalimlde
derivatives
f o l l o w e d by separation on a 3% SE-30 column and d e t e c t i o n w i t h a 63NI e l e c t r o n - c a p t u r e detector.
Cochrane
217)
(ref.
has reviewed t h e use o f chemical
p e s t i c i d e s p r i o r t o gas chromatographic o r analysis.
high-performance
derivatization of
l i q u i d chromatographic
I n gas chromatography t h e p e s t i c i d e s are d e r i v a t i z e d t o more s t a b l e and
v o l a t i l e products;
while
made t o
detectability.
increase
introduces e i t h e r
i n high-performance In
a chromophoric o r
I l q u i d chromatography,
high-performance
fluorophoric
group
liquid
derivatives are
chromatography,
i n t o t h e molecules.
one This
lowers t h e d e t e c t i o n l i m i t s below t h e ppm l e v e l . Cyanide ion may be detected by gas I i q u i d chromatography by c o n v e r t i n g I t t o cyanogen c h l o r i d e u s i n g c h l o r a m i n e T ( r e f . 218). H a l l c a n i d M-18
on Anakrom ABS
d e t e c t o r used f o r q u a n t i t a t i o n . environmental converted
to
--diketones chelating
i s used f o r
t h e separation
chelate
and an e l e c t r o n - c a p t u r e
D e t e c t i o n l i m i t s are 25 ng/ml
samples may be d e t e r m i n e d by gas metal
A p a c k e d column made f r o m 7 %
complexes
which
are
(25 ppb).
Metals i n
l i q u i d chromatography stable.
Fluorine
if first
substituted
a r e e x t r e m e l y s e n s i t i v e t o e l e c t r o n - c a p t u r e d e t e c t i o n and t h u s t h e
agent
of
choice.
The
hexafluormonothioacetyl
C u ( I I ) , Z n ( I i ) , N i ( l I ) , C d ( I I ) . and P b ( i i ) have been prepared.
acetonate
cmpiexes
of
D e t e c t i o n I i m i t s range
124 from t h e nanogram.to t h e picogram l e v e l s ( r e f . 219).
TABLE 4.7 D e r i v a t i z a t l o n used i n gas and l i q u i d chromatography P o l l u t a n t type
D e r l v a t l v e and/or
Comnents
Ref.
179
d e r i v a t i v e reagent Acidsccar-
o-p-Nitrobenzyl-N,N'-
L i q u i d chromatography
boxyl i c )
dllsopropyllsourea
pre-column d e r i v a t i v e . Long-
(PNBDI)
chain a c i d s separated from s h o r t - c h a i n a c i d s by adsorption.
p-Bromophenacyl
L i q u i d chromatography pre-
bromide (PBFB) w i t h
column d e r i v a t i v e .
18-Crown-6( 1,4,7,10,
s o l u t i o n may be chromotographed
13,16-hexaocxcyclo-
d ir e c t I y
180
Resulting
.
octadecane). Ac I ds
bis-Trimethyl-
Gas chromatography
(Fatty)
silyltrifiuoroace-
derlvative-pre-column.
157
tamide(BSTFA) + t r i methylchlorosilane (TMCS). 4-Bromomethyl-7-
L i q u i d chromatography pre-
methoxy coumarin
column d e r i v a t i v e .
181
( BMC )
Acids
BSTFA
+ TMCS
(phenolic)
A I coho I s
Gas chromatography d e r i v a t i v e
157
pre-column. Trimethyl-silyl
Gas chromatography d e r l v a -
(TMSIether
tive-pre-column.
158-1 62
3,5-Dinltrobenzoyl
L i q u i d chromatography,
155, I56
chloride(DNBC)
no f u r t h e r workup needed,
163,164
125 Pol I u t a n t t y p e
Der i v a t i ve and/or
Cmmen t s
Ref.
d e r i v a t i v e reagent
pre-column d e r i v a t i v e .
Pyruvoyl c h l o r i d e
L i q u i d chromatography,
(2.6-dini tropheny I )
f u r t h e r workup needed,
hydrazone
column d e r i v a t i v e .
p-lodobenzenesul-
L i q u i d chromatography,
fonylchloride
f u r t h e r clean-up,
no
165
requires
165
pre-column
derivative.
Benzoyl c h l o r i d e
L i q u i d chromatography,
166
pre-column d e r i v a t i v e , r e q u i r e s f u r t h e r clean-up.
p-N i trobenzoy I
L i q u i d chromstography, pre-
chloride
column d e r i v a t i v e ,
167
requires
f u r t h e r clean-up.
Aldehydes
Ox ime
Gas chromatography pre-
168
column d e r i v a t i v e .
and ketones
Methoxime
Gas chromatography pre-
169
column d e r i v a t i v e .
Phenylhydrazone
Gas chromatography p r e -
170
c o l umn d e r i v a t i v e .
Dinitrophenyl-
Gas chromatography p r e -
hydraz i ne
c o l umn der i v a t i ve.
p-Nitrobenzyl-
L i q u i d chromatography p r e -
oxyamine HCL(PNBA)
column d e r i v a t i v e .
Dansyl hydrazine
L i q u i d chromatography pre-
( 1 -dimethy I amino
c o l umn der i v a t i ve.
naphthalene-5s y l f o n y l hydrazine)
171-173
163,174
181
126
Pollutant type
D e r i v a t i v e and/or
Ref.
Comments
d e r i v a t i v e reagent
Am Ines
BSTFA
Gas chromatography precolumn d e r i v a t i v e ,
175
90°C
f o r 15 min, e t h y l a c e t a t e so Ivent.
N-DNP
Gas chromatography pre-
176-1 78
column d e r i v a t i v e .
N-Dimethylamino-
Gas chromatography pre-
methylene(DMAM1
column d e r i v a t i v e .
N-TMS
Gas chromatography pre-
182
183
column d e r i v a t i v e .
N-Trifluoro-
Gas chromatography pre-
acetamide(TFA)
column d e r i v a t i v e
N-Heptafluoro-
Gas chromatography pre-
160,189-
b u t y r i c acid(HFB)
column d e r i v a t i v e .
191
N-Pentafluorophenyl-
Gas chromatography pre-
1 89,192-
e s t e r (N-PF Pheny I 1
column d e r i v a t i v e
194
N-Pentafluoro-
Gas chromatography pre-
1 89,192-
benzylidine(N-PF)
column d e r i v a t i v e
194
184-1 88
Benzylidine).
N-Pentafluoro-
Gas chromatography pre-
189,192-
benzamlde(N-PF
column d e r i v a t i v e .
194
N-Pentafluoropro-
Gas chromatography pre-
195-1 98
p i o n y l (FFP)
column d e r i v a t i v e .
Benzamide)
PFB-car barnate
Gas chromatography pre-
1 99-20 1
column d e r i v a t i v e . Hoffman degradation
Gas chromatography pre-
202
127 Pollutant type
D e r i v a t i v e and/or
Ref.
Comnents
d e r i v a t i v e reagent
column d e r i v a t i v e .
Amines
CS2 w i t h -NH
(phenolic)
group. BSTFA w i t h
2
Gas chromatography pre-
175
column d e r i v a t i v e .
-OH group.
DNBC
L I qu i d chromatography derivative,
155,163
clean-up n o t
necessary, pre-column derivative.
2,6-(Nitrophenyl)
L i q u i d chromatography pre-
hydrazone
column d e r i v a t i v e ,
165
no clean-
up necessary.
p-Methoxybenzoyl
L i q u i d Chromatography pre-
ch l o r i de
column d e r i v a t i v e ,
203
clean-up
necessary b e f o r e sample i n jection.
Am i nes
N-Succinimidyl-p-
L i q u i d chromatography pre-
(primary
nitrophenyl acetate
column d e r i v a t i v e .
+
( SNPA)
secondary)
2,4-Di n i t r o - l -
L i q u i d chromatography pre-
f I uorobenzene
column d e r i v a t i v e ,
163
155
clean-up
necessary b e f o r e sample i n j e c t ion.
AmInes
( pr
imary )
5-N,N-dimethylamino-
L i q u i d chromatography pre-
naphthalene-1-sulfonyl
column d e r i v a t i v e ,
chiorlde(DNS c h l o r i d e )
necessary.
DNS c h l o r i d e
Reaction c a r r i e d o u t i n
155
clean-up
a l k a l i n e b u f f e r . L i q u i d chromatography pre-column d e r i v a t l v e .
181
128 P o l l u t a n t type
D e r i v a t i v e and/or
Ref.
Comments
d e r i v a t i v e reagent
Amines
7-Chloro-4-nitro-
L i q u i d chromatography, pre-
(primary and
benzo-2-oxa-1,3-di-
column d e r i v a t i v e .
secondary)
azole(NBD c h l o r i d e )
m i l d l y a l k a l i n e conditions.
Herbicides
Trimethylanilinium
Gas chromatography pre-
hydroxide (TMAH)
column d e r i v a t i v e .
181
Formed under
204
Also on-
column w i t h h i g h temperature I n j e c t i o n port.
Isocyanate monomers
p-Nitrobenzyl-N-n-
L i q u i d chromatography pre-
propylamine hydro-
column d e r i v a t i v e .
chloride(PNBPA)
I l m l t s of 0.7ppb(v/v)toluene
205
Detection
isocyanate i n 2 0 - l i t e r a i r samp i e
Pesticides
BSFTA
.
Gas chromatography pre-column
206,207
derivative.
N-methy I car-
o-Phthaldehyde(OPA1
bamate i n -
L i q u i d chromatography post-
21 3
column d e r i v a t i v e .
sect i c i des. Pheno I s
TMS e t h e r
DNBC
Gas chromatography pre-column
161,
derivative.
208-21 2
L i q u i d chromatography precolumn d e r i v a t i v e ,
155,163
no d e r i v a -
t i v e clean-up necessary b e f o r e injection. 2,6-N it r o p hen y I
L i q u i d chromatography pre-
hydrazone
column d e r i v a t i v e ,
165
no clean-up
necessary.
p-iodobenzenesul-
L i q u i d Chromatography pre-
fonylchloride
column d e r i v a t i v e ,
clean-up
necessary b e f o r e i n j e c t i o n .
165
129 Pol I u t a n t type
Der i v a t i ve and/or
Comments
Ref.
L i q u i d chromatography pre-
155
d e r i v a t l v e reagent
DNS c h l o r i d e
column d e r i v a t i v e ,
clean-up
necessary b e f o r e i n j e c t i o n .
Thlols
NBD c h l o r i d e
L i q u i d chromatography pre-
181
column d e r i v a t i v e .
REFERENCES 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28
29
R. D. Cadle, P. L. Magi1 I, A. A. Nichol, H. C. Ehrmantraut and G. W. NedelI, Sampling Procedures, i n P. L. M a g i l l , F. R. Holden and C. Ackley (Eds.). A i r P o l l u t i o n Handbook, McGraw-HI I I , New York, 1956, Ch. 10. J. W. Miles, E. W. Dale and F. C. C h u r c h i l l , Arch. Environ. Contam. T o x i c o l . , 5 (1976) 29; Anal. Abstr., 33 (1977) 1H59. P. M. Giever, P a r t i c u l a t e Matter Sampling and Sizing, i n A. C. Stern (Ed.), A i r P o l l u t i o n , Academic Press, New York, 1976, Ch. 1 . L. D. K i s s i n g e r and J. S. F r l t z , J. Amer. Water Works Ass., 68 (1976) 435. A. A. Rosen and F. M. Middleton, Anal. Chem. 31 (1959) 1729. F. M. Middleton and J. J. Lltchtenberg, Ind. Eng. Chem., 52 (1960) 99A. R. A. Baker, J. Amer. Water Works Ass., 58 (1966) 751. H. Braus, F. M. Middleton and G. Walton, Anal. Chem. 23 (1951) 1160. G. F. Lee, G. W. Kumke and S. L. Becker, I n t . J. A i r Water P o l l u t . , 9 (1965) 69. M. Dressler, J. Chrmatogr., 165 (1979) 167. W. Nernst, 2 . Phys. Chem., 8 (1891 ) 110. Methods f o r Organic Cmpounds i n Municipal and l n d u s t r l a l Wastewaters, U. S. EPA Environmental M o n i t o r i n g and Support Laborator.y, C i n c i n n a t i , OH March 1979. R. L. Grob, Progress i n P r i o r i t y P o l l u t a n t Analysis, Special Issue, J. Environ. Sci. Health, P a r t A, Environ. Sci. Eng., A15 (1980) 379-543. R. A. Hites, Advan. C h r m a t o g r . 15 (1977). T. W. May and D. L. S t a l l i n g , Anal. Chem. 51 (1979) 169. R. Dell'Acqua, J. A. Egan and B. Bush, Environ. Sci. Technol., 9 (1975) 38. D. B. Harper, R. V. Smith and D. M. Gatto, Environ. Polln., 12 (1977) 223. E. B. Overton, J. Bracken and J. L. Laseter, J. C h r m a t o g r . Sci., IS (1977) 169. N. T. M. Kleverlaan, Chem. Weekbl., 71 (1975) 13; Anal. Abstr., 30 (1976) 5H34. Z. I . Chalaya, L. S. Mikhailova, A. I. Mashkevich, 0. A. Egorerichenko and 0. M. Polichchuk, Zh. Anal. Abstr., 30 (1976) 5H43. I. S. Kofman and V. I. Kafanov, Gig. Sanit., No. 10, (1979) 41; C.A., 92 (1980) 35763~. G. C. CeBel and 0. T. Williams, J. Ass. O f f i c . Anal. Chem., 62 (1979) 1353. P. F. Blanchet, J. Chromatogr., 179 (1979) 123. D. L. S t a l l i n g and J. N. Huckins, U.S. Environ. P r o t . Agency O f f . Res. Dev. Rep. EPA-600/3-76-076 (1976); Anal. Abstr., 33 (1977) 1D66. J. J. Franken and 8. J. M. Lyten, . . J. Ass. O f f i c . Anal. Chem.. 59 (1976) 1279. J. P. Cane, J. Guintrand. C. Aubert and A. Viala, Arzeneim.-Forsch., 27 ( 1 ) ( 2 ) (1977) 338; Anal. Abstr., 33 (1977) 2039. M. Galoux, J. C. VanDamme, A. Bernes and J. Potvin, J. Chromatogr., 77 (1979) 245. W. Bates, K. W i l c o p o l s k i and B. Lehmann, Lebensmittelchem, G e r l c h t l . Chem., 33, No. 4 (1979) 73; C.A. 91 (1979) 191465s. J . Singh, W. P. Cochrane and J. Scott, J. B u l l . Environ. Contam. Tox col., 23 (1979) 470.
130 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
D. A. J. Murray, J. Chromatogr., 177 (1979) 135. K. Grob, K. Grob, Jr. and G. Grob, J. Chromatogr., 106 (1975) 299. J. W. Rhoades and C. P. Nulton, J. Environ. Sci. Health, P a r t A, Environ. Sci. Eng., A 1 5 (1980) 467. C. 8. Koons, Proc. 1977 O i i S p i l l Conference, American Petroleum I n s t i t u t e , Washington, DC, 1978, 589-591. C. 0. M c A u l i f f e , Sclence 158 (1969) 478. C. D. M c A u l i f f e , Chem. Technol. 1 (1971) 46. P. D. Wagner, P. F. Naumann and R. B. Laravuso, J. Appl. P h y s i o l . 36 (1974) 600. C. 0. McAuliffe, U.S. Patent 3,345,137, Oct. 3, 1967. J. W. Swinnerton and V. J. Linnenbom, J. Gas Chromatogr., 5 (1967) 570. K. Grob, J. Chromatogr., 84 (1973) 255. J. Novak, J. Zululeckey, V. Kubelka and J. Mostecky, J. Chromatogr., 76 (1973) 45. K. Grob and F. Zurcher, J. Chromatogr., 117 (1976) 285. J. W. Swinnerton and V . J. Linnenbom, Science, 156 (1976) 1119. C. D. M c A u l i f f e , J. Phys. Chem.. 10 (1966) 1267. L. C. Price, B u l l . Amer. Ass. Pet. Geol., 60 (1976) 213. M. Kojima, Nippon Shokuhin Kogyo Gakkaishi, 24, No. 2 (1977) 90; C.A. 91 ( 1 9 7 9 ) 1561 72x. L. E. Reshetnikova, L. I. Slyusareva, T. N. Shivalova, I . I. Prusakova and N. T. Karabanov, F i z . Khim. Metody Anal. 3 (1978) 98. I. Y. N i k i t i n and 0. V. K l i p i k o v a , Deposited Doc., VINITI, (1978) 1054; C.A., 91 (1979) 162471k. G. S. Fedchenko and M. S. Vigdergauz, Khim. Tekhnoi. Topl. Masel., No. 7 (1979) 51; C.A., (1979) 1 6 3 4 7 7 ~ . P. Zlmmerman and R. Rasmussen, Environ. Scl. Technol 9 (1975) 1077. U. Cernot, C I i n . Chim. Acta, 94 (1979) 48; C.A. 91 (1979) 119722f. P: J. Noomen, Chem. M i k r o b i o l . Technol. Lebensm., 6 No. 2 (1979) 48; C.A., 91 ( 1979 1 122254k. B. Kolb, P. P o s p i s i l , T. Borath and M. Auer, J. High Resolut. Chromatogr. Chranatogr. C m u n . , 2 (1979) 283. R. J. Rath, D. Schmidt and J. Wimmer, Chromatographia, 12 (1979) 567. A. 8. Danllovtseva, Y . D. Kadaner and K. A. Kalunyants, Izv. Vyssh. Uchebn. 91 (1979) 54535a. Zaved. Pishch. Tekhnol., (1979) 122; C.A., N. A. Tarasova and S. E. Kataeva, Gig. Sanit, No. 3 (1979) 48; C.A., 91 (1979) 54648q. J. Drozd and J. Novak, J. Chromatogr., 165 (1979) 141. E. A. Dietz, J r. and K. F. Singley, Anal. Chem., 51 (1979) 1809. K. L. E. Kaiser and B. G. 01 i v e r , Anal. Chem. ,48 (1976) 2207. R. M. Maiorino, I . G. Sipes, A. J. Gandolfi and B. R. Brown, Jr., J. Chromatogr., 164 (1979) 63. V. V. T s l b u l ' s k i i . I . A. Tsibul'skaya, and N. N. Yaglitskaya, Zh. Anal. Khim., 34 (1979) 1365. G. G. Rusakova and I . A. K i r p a . Khim. Prom-st., Ser.: Methodv Anal. K o n t r o l y a 92 (1980) 3 3 4 2 6 ~ . Kach. Prod. Khim. Prom. s t i . ; No. 7 (1979) lO;-C.A., B. V. l o f f e , A . G. Vitenberg and I . A. T s i l b u l ' s k a y a , J . Chromatogr., 186 1979 1 851. J. W. Elkins, Anal. Chem., 52 (1980) 263. J. Drozd and J. Novak, J. Chranatogr., 152 (1978) 55. R. C. Huber, A. 0. Niedermayer and A. L. Weiss, J. Pharm. Sci 67 (1978) 239. E. L. Thomas, G. A. Reineccius, G. J. OeWaard and M. S. Swinkard, J. Dairy Sci ., 59 (1976) 1865; Anal. Abstr., 33 (1977) iF20. D. T. Williams, J. Ass. O f f i c . Anal. Chem., 59 (1976) 30. A. Jabbagy and J. Hal lo, Nahrung, 20 (1976) 287; Anal. Abstr., 31 (1976) 4F32. G. B. M. Gawell, Analyst (Londen), 104 (1979) 106. K. W. Grubaugh and G. E. Stobly, Anal. Chem., 50 ( 1 9 7 8 ) 377. T. Tusuneya, N. Ikeda, M. Shiga and N. Ichikawa, I n t . Congr. Essent. O i l s (Pap) 7 (1977 Pub 1979), 454-457. J. S. Smith, D. T. B u r k e t t , and J. M. Hanrahan, ASTM Spec. Tech. Publ., 1978, STP 686, Measurement Organic P o l l u t i o n Water, Waste Water, 1979, pp. 251-255.
.,
.,
131 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
97
98 99 100 101 102 103 104 105 106 107 108 109
110 111
G. M. Loper and J . L. Webster, J. Chromatogr. Sci., 9 (1971) 466. R. T e r a n i s h l , T. R. Mon, A. 8. Robinson, P. Cary and L. Paullng, Anal. Chem., 44 (1972) 18. A. B. Robinson, D. P a r t r i d g e , M. Turner, R. Teranishi and L. Pauling, J. Chrmatogr., 85 (1973) 19. R. E. Hurst, Analyst (Londen), 99 (1974) 302. R. E. Hurst, Anal. Chem., 47 (1975) 1221. R. Bassette, S . Ozeris and C. H. Whitnah, Anal. Chem., 34 ( 962 1540. V. Palo, Chrmatographia, 4 (1971) 55. M. Gottauf, Z. Anal. Chem., 218 (1966) 175. H. G. Maier, J. C h r m a t o g r . 50 (1970) 329. P. L. Davis, J. Chromatogr. Sci., 8 (1970) 423. P. J. G i I I i v e r and ti. E. Nursten, Chem. Ind. (Londen) (1972 54 H. Blnder, Z. Anal. Chem., 244 (1969) 353. H. Hachenberg, TIPS, 41 GC, Bodenseewerk Perkin-Elmer Uberlingen, G.F.R., April 1970. S. Ozeris and R. Bassette, Anal. Chem., 35 (1963) 1091. R. E. Kepner, H. Maarse and J. S t r a t i n g , Anal. Chem., 36 (1964) 77. D. Jentzch. H. Kruger and G. Lebrecht, Angewandte Gaschromatographia, 19, P a r t 9 Bodenseewerk Perk i n-E lmer Uber I I ngen, G.F. R., 1963. H. Hachenberg, I n d u s t r i a l Gas Chromatographic Trace Analysis, Heyden, P h i l a d e l p h i a , London, 1978, pp. 108-123, H. Hachenberg and A. P. Schmidt, Gas Chromatographic Headspace A n a l y s i s Heyden, P h i l a d e l p h i a , London, 1977. G. R. Umbreit and R. L. Grob, Envlron. Sci. Health, P a r t A, Environ. Sc Eng., A15 (1980) 429. J. Drozd and J. Novak, J. Chromatogr., 136 (1977) 37. J. Drozd, J. Novak and J. A. R i j k s , J. Chromatogr.. 158 (1978) 471. W. J. Khazal, J. V e j r o s t r a and J . Novak, J. Chromatogr., 157 (1978) 125 T. A. B e l l a r and J. J. Llchtenberg, J. Amer. Water Works Ass., 66 (1974) 739. T. A. B e l l a r and J. J. Lichtenberg, Semi-automated Headspace A n a l y s i s o f D r i n k i n g Waters and I n d u s t r i a l Waters for Purgable V o l a t i l e Organic Compounds, U.S. EPA, Environmental M o n i t o r i n g and Support Laboratory, C i n c i n n a t i , OH, June 1978. The Analysis of Trihalomethanes i n F i n i s h e d Waters by t h e Purge and Trap Method, Method 501.1, U.S. EPA, Environmental M o n i t o r i n g and Support Laboratory, C i n c i n n a t i , Oh, May 15, 1979. D. Beggs, Amer. Lab., J u l y (1978) 81-87. W. D. Snyder, Hewlett-Packard Technical Paper GC-71, Hewiett-Packard, Avondale, PA 1971. J. Watkins and J. Poole. Hewlett-Packard Technical Paper 78, Hewiett-Packard, Avondale, PA 1978. R. R. Freeman, T. Rooney, T. Przybski and L. Altmeyer, Hewlett-Packard Technical Paper 83, Hewlett-Packard, Avondale. PA 1980. B. Kolb, J. Chromatogr., 122 (1976) 553. B. Kolb, J. Chrmatogr., 112 (1975) 287. B. Kolb, E. Wiedeking and 6. Kempken, Angewandte Gas-Chromatographie, Bodenseewerk Perkin-Elmer, Uberlingen, G.F.R., Perkin-Elmer Technical B u l l e t i n , Model F42 Head Space Analyzer, MP8/75 10, Perkin-Elmer, Norwalk, CT, August 1975. M. Mikaus and A. Vanko, Petrochemia, 19, No. 3 (1979) 49; C.A. 92 (1980) 4 2 5 7 4 ~ . W. F. Cowen, W. J. Cooper and J. W. H i g h f i l I , Anal. Chem. 47 (1975) 2483. C. D. M c A u l i f f e , Symposium on Environmental Analysis, F a l l 1978 ACS Meeting, Miami Beach, FL, 1978. Development and A p p l i c a t i o n o f Test Procedures f o r S p e c i f i c Organic T o x i c Substances i n Wastewaters, Category 11-Purgable and Category 12-Acroiein, A c r y l o n i t r i l e and Dichlorodifluoromethane, Report f o r EPA C o n t r a c t 68-03-2635, C i n c i n n a t i , OH, 1979. Puraeable Halocarbons. Method 601, U.S. EPA. Environmental M o n i t o r i n q and Support . . Labgratory, C i n c i n n a t i , OH, A p r i 1.1979. Purgeable Aromatics, Method 602, U.S. EPA, Environmental M o n i t o r i n g and Support Laboratory, C i n c i n n a t i , OH, A p r i l 1979.
,
.
132 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
A c r o l e l n and A c r y l o n i t r i ie, Method 603, U.S. EPA, Envlronmental M o n i t o r i n g and Support Laboratory, C i n c i n n a t i , OH, A p r i l 1979. J. W. Swinnerton, V. J. Linnenbom and C. H. Cheek, Anal. Chem., 34 (1962) 1509. J. W. Swinnerton, V. J. L l n n e n b m and C. H. Cheek, Anal. Chem., 34 (1962) 483. J. W. Swinnerton, V. J. Linnenbom and C. H. Cheek, Envlron. S c l . Technol., 3 (1969) 836. S. P. Wasik and W. Tsang, Anal. Chem., 42 (1970) 1649. J. 0. Grote and R. G. Westendorf, Amer. Lab., Dec. (1979) 61-66. ’ R. A. H i t e s , Advan. Chromatogr., 15 (1977) 69-112. T. A. B e l l a r , J. L. Lichtenberg and J. W. Eichelberger, Environ. Scl. Technol., 10 (1976) 926. R. Mlndrup, Jr., N3S Spec. Publ. ( U . S . ) , 519 (1979). B. J. Dowty, S . R. Antoine, and J. L. Laseter, ASTM Spec. Pub1 1978, STP 686. Measurement Organic P o l l u t i o n Water, Wastewater, 1979, pp. 24-35. H. A. Moye, J. Agr. Food Chem., 23 (1975) 415; Anal. Abstr. 30 (1976) 1G20. R. A. Solomon and G. J. Kal las, Anal. Chem., 47 (19751 955. S. Glasstone, Textbook o f Physical Chemistry, D. van Nostrand, New York, 2nd ed 1946, pp.700, 729, 967, 1254. A. A. Rosen and E. M. Middleton, Anal. Chem., 31 (1959) 1729. J. W. Eichelberger and J. L. Lichtenberg, J. Amer. Water Works Ass., 63 (1971) 25. C. D. C h r i s w e l l , R. C. Chang and J. S. F r i t z , Anal. Chem., 47 (1975) 1325. L. R. Snyder. . - P r i n c i p l e s of Adsorptlon ChrmatoaraDhy. . . - Marcel Dekker, New York, 1968, p. 192. C. D. C h r i s w e l l . L. D. K l s s l n a e r and J. S. F r i t z . Anal. Chem., 48 (1976) 1123. G. A. Junk, J. J. Richard, M.-D. Gresser, D. W i t i a k , J. C. Wltiak. M. D. Arguello, R. Vlck, H. J. Svec, J. S. F r i t z and G. V. Caider, J. Chromatogr., 99, (1974) 745. A. Tateda and J. S. F r i t z , J. Chromatogr., 152 (1978) 329. J. P. R i l e y and D. Taylor. Anal. Chim. Acta, 46 (1969) 307. K. Salodynskii, L. Panina and N. Kilnskaya, Chromatographla, 7 (1974) 339. V. Leonl. G. Pucceti and A. Grella, J. Chrmatogr., 106 (1975) 119. B. Verslno, H. Knoppel, M. DeGroot, A. P e i I , J. Poelman, H. Schauenburg, H. Vissers and F. Gels, J. Chrmatogr., 122 (1976) 373. J. D. N a v r o t i i , R. F. Slevers and H. F. Walton, Anal. Chem., 49 (1977) 2260. H. D. Gesser, A. Chow, F. C . Davis, J. F. Uthe and J. Reinke, Anal. Lett., 4 (1971) 883. J. Saxena, J. Kozuchowskl and D. K. Basu, Envlron. Sci. Technol., 1 1 (1977) 682. A. K. Burnham, G. V. Calder, J. S. F r i t z , G. A. Junk, H. J. Svec and R. WiI is, Anal. Chem., 44 (1972) 139. J. F. Johnson and E. M. B a r r a l , I I , J. Chromatogr., 31 (1967) 547. 0. L. H o l I Is and W. V. Hayes, J. Gas C h r m a t o g r . 4 (1966) 235. R. M. Cassidy, M. T. Burteau, J. P. Misian and R. W. Ashley, J. Chromatogr. sci., 14 (1976) 444. R. L. Malcolm, E. M. Thurman and G. R. Aiken, Proceedlngs of t h e 1 1 t h Annua Conference on Trace Substances I n Environmental Health, Columbus, MO, 1977, PP 307-31 4. P. van Rossum and R. G. Webb, J. Chromatogr., 150 (1978) 381. P. R. Musty and G. Nickless, J. Chromatogr., 89 (1974) 185. S. F. Stepan and J. F. Smith, Water Res., 1 1 (1977) 339. C. D. Chriswel I, R. L. Erlcson, G. A. Junk, K. W. Lee, J. S. F r l t z and H. J. Svec, J. Amer. Water Works Ass., 69 (1977) 669. G. Marcelin, J. Chromatogr., 174 (1979) 208. J. Solomon, Anal. Chem., 51 (1979) 1861. R. Baird, M. Selma, J. Hasklns and 0. Chappelle, Water Res., 13 (1979) 493. R. C. Chang and J. S. F r i t z , Talanta, 25 (1978) 659. L. R. Snyder and J. J. K i r k l a n d , I n t r o d u c t i o n t o Modern L i q u i d Chromatography, Wiley, New York, 2nd ed., 1979, p. 568. K. Blau and G. S . King, Handbook of D e r i v a t i v e s f o r Chromatography, Heyden, London, Bellmawr, NJ, 1977. J. F. Lawrence and R. W. F r e i . Chemical D e r i v a t i z a t l o n i n L i a u i d Chromatooraohv.
.,
-
.
133 156
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 20 1 202 203 204 205
E I sev i er, Amsterdam, 1976. J. F. Lawrence (Ed.), Special Issue, D e r i v a t i z a t i o n i n Chromatography, J. Chromatogr. Sci., 17 (1979) 113-176. M. R. Guerin, G. O l e r i c h and W. T. Rainey, Anal. Chem., 56 (1974) 761. A. E. Pierce, S i l y l a t i o n o f Organic Compounds, P i e r c e Chemical Company, Rockford, IL, 1968. P. S. Mason and E. D. Smith, J. Gas Chromatogr., 4 (1966) 398. T. Walle and H. Ehrsson, Acta Pharm. Suec., 7 (1970) 389. F. Karoum, C. F. R. Ruthven and M. Sandler, Biochem. Med., 5 (1971) 505. J. B. Brooks, J. A. L i d d l e and C. C. Alley, Anal. Chem., 47 (1975) 1960. T. H. Jupi I le, Amer. Lab., May (1976) 85. H. D. Durst, M. Milano, E. J. Kikta, S. A. Connelly and E. Grushka, Anal. Chem., 47 (1975) 1797. R. W. Rms, J. Chromatogr. Sci., 14 (1976) 505. J. W. Higgins, J. Chromatogr., 121 (1976) 329. E. Nachtmann and K. W. Budna, J. Chromatogr., 136 (1977) 279. J. W. Vogh, Anal. Chem., 43 (1971) 1618. H. M. Fales and T. Lauakkainen, Anal. Chem. 37 (1965) 955. J. Korolczuk, M. Daniewski and Z. Mielniczuk, J. Chromatogr., 88 (1974) 177. L. J. Papa and L. P. Turner, J. Chromatogr. Sci., 10 (1972) 744. H. K a l I io. R. R. Linko and J. K a i t a t a n t a . J. Chromatoar.. 65 (1972) 355. R. J. Soukup. R. J. Scarpell i n o and E. Danielczik, Anal. Chem., 36 1964) 2255. F. A. F i t z p a t r i c k , M. A. Wynalda and D. G. Kaiser, Anal. Chem., 49 1977) 1032. N. Narasimhachari and P. Vouros, Anal. Biochem.. 45 (1972) 154. S. Baba, J. Chromatogr., 88 (1974) 373. T. Walle, Acta Pharm. Suec, 5 (1968) 367. 0. J. Edwards and K. Blau, Anal. Biochem., 45 (1972) 387. 0 . R. Knapp and S. Krueger, Anal. L e t t . 8 (1975) 603. H. D. Durst, M. Milano, E. S. K i k t a , S. A. Connelly and E. Grushka, Anal. Chem., 47 (1975) 1797. "Fluorotags", Technical B u l l e t i n , Regis Chemical Co., Morton Grove, IL. J. P. Thenot and E. C. Horning, Anal. L e t t . 5, (1972) 519. M. G. Horning, A. M. Moss and-E. C. Horning, Biochem. Biophys. Acta, 148 (1967) 597. E. Anggard and G. Sedval I, Anal. Chem., 41 (1969) 1250. M. Donike, J. Chromatogr.. 78 (1973) 273. P. Cancalon and J. D. Klingman, J. Chromatogr. Sci., 10 (1972) 253. M. Donike, J. Chromatogr., 103 (1974) 91. M. Donike, Chromatographia, 7 (1974) 651. S. B. Matin and M. Worland, J. Pharm. Sci., 61 (1973) 1235. M. G. Horning, A. M. Moss, E. A. Boucher and E. C. Horning, Anal. L e t t . , 1 (1968) 31 1 . J. Vessman, K. H a r t v i g and M. Hoiander, Anal. L e t t . 6 (1973) 699. B. Maume, P. Bournot, J. C. Lhugenot, C. Baron, F. B a r b i e r , G. Maume, M. P r o s t and P. Padieu, Anal. Chem., 45 (1973) 1073. D. D. Clarke, S. WiIk and S. E. G i t l o w i n H. A. Szymanski (Ed.) Biomedical A p p l i c a t i o n s of Gas Chromatography, Plenum Press, New York, 1964, p. 53. J. C. Lhugenot and B. F. Maume, J. Chromatogr. Sci., 12 (1974) 411. F. Karoum. F. Cattabeni. E. Costa, C. R. J. Ruthven and M. Sandler, Anal. Biochem., 47 (1972) 550. E. Gelpi, E. P e r a l t a and J. Segura, J. Chromatogr. Sci., 12 (1974) 701. E. C. Horning, M. A. Horning, W. J. A. VandenHeuvel, B. Holmstedt and C. J. W. Brooks, Anal. Chem., 36 (1964) 1546. D. D. Clarke, S. WiIk and E. Gitlow, J. Gas Chromatog., 4 (1966) 310. P. H a r t v i g and J. Vessman, Anal. L e t t . 7 (1974) 223. P. H a r t v i g and J. Vessman, J. Chromatogr. Sci., 12 (1974) 722. P. Hartvig, W. Handl, J. Vessman and C. M. Smith, Anal. Chem., 48 (1976) 390. H. V. Street, J. Chromatogr., 73 (1972) 73. C. R. C l a r k and M. M. Wells, J. Chromatogr. Sci., 16 (1978) 332. F. S. Tanaka and R. G. Wien, J. Chromatogr., 87 (1973) 85. K. L. Dunlap, R. L. Sandridge and J. K e l l e r . Anal. Chem., 48 (1976) 497.
- -
134 206 207 208 209 21 0 21 1
21 2 21 3 214 21 5 21 6 21 7 218 21 9
S . J. Yu, U. Kilgemazi and L. C. T e r i e r e , J. Agr. Food, 19 (1971) 5. G. T. F I l n t and W. A. Aue, J. Chromatogr., 52 (1970) 478. I . E. Smiley and E. D. Schall, J. Ass. O f f l c . Anal. Chem., 52 (1969) 107. N. E. Hoffman and K. A. Peteranetz, Anal. Lett., 5 (1972) 589. F. K. Kawahara, Anal. Chem., 40 (1968) 1009. I. C. Cohen, J. Norcup, J. H. A. Ruzicka and B. B. Wheals, J. Chromatogr., 44 (1969) 251. H. Ehrsson, J. T. Wal l e and H. B r o t e l l , Acta Pharm. Suec., 8 (1971) 319. J. Muth and J. Giles, A l t e r Chromatogram, 3, No. 2 (1980) 5. R.-D. Penzhorn and W. G. F i I b y , Staub-Relnhalt L u f t , 36 (1976) 205; Anal. Abstr., 33 (1977) 2H14. L. L. Larnparskii and T. J. N e s t r i c k , J. Chromatogr., 156 (1978) 143. C. S . Giam, H. S . Chan, T. F. Hamargren, G. S . Ness and D. L. S t a l I I n g , Anal. Chem., 48 (1978) 78. W. P. Cochrane, J. Chromatogr. Sci., 17 (1979) 124. I. Sunshine, Methodology f o r A n a l y t l c a l Toxicology, CRC Press, West Palm Beach, FL, 1975, p. 116. T. D. Luckey and R. Venugapol, Metal T o x i c i t y I n Mammals, Plenum Press, New York, 1977, Ch. 1 and 5.
135 RELATED READINGS ON SAMPLE TREATMENT
1 2 3
The Gas Phase E x t r a c t i o n and A n a l y s i s o f V o l a t i l e O r g a n i c P o l l u t a n t s I n Water U s i n g a Tenax-GC A d s o r p t i o n Tube. B . I . Brookes, S.H. J i c k e l l s and R . S . N i c o l s o n , J. Assoc. P u b l i c Anal., 16(4)(1978)117-21. Problenis and P i t f a l l s i n Acetaldehyde D e t e r m i n a t i o n s . C.J.P. E r i k s s o n , A l c o h o l . C l i n . Exp. Res., 4 ( 1 ) ( 1 9 8 0 ) 2 2 - 9 . Tenax-GC E x t r a c t i o n Technique f o r Residual P o l y c h l o r i n a t e d B i p h e n y l and P o l y a r o m a t i c Hydrocarbon A n a l y s i s i n B i o d e g r a d a t i o n Assays. F1.P. S h i a r i s , T. S h e r r i l l and G.S. Sa,yler, Appl. E n v i r o n . Microbial 39(1)(1980)165-71. Study o f t h e Composition and Content o f P e t r o l e u m Hydrocarbons i n B a l t i c Sea Water Using C a p i l l a r y Gas Chromatography and I R S p e c t r o p h o t o m e t r y . K. T i k s , S i n t . I s s l e d . B i o l . Swedin., T e z i s y Dokl. Konf. Holodykh Uch., 6 t h ( 1978)91-2. D e t e r m i n a t i o n o f P e t r o l e u m Hydrocarbons i n Tap \dater by Gas Chromatography. V. D u r d o v i c , A c t a Hydrochim. H y d r o b i o l . , 7 ( 5 ) ( 1 9 7 9 ) 5 2 7 . Gas Chromatographic Headspace A n a l y s i s i n Brewing. E. G e i g e r . I n A p p l i e d Headspace Gas Chromatography, B. Kolb, ed., Heyden, London, 1980, pp. 73-9. GC Headspace A n a l y s i s Used i n Government F o o d s t u f f s C o n t r o l - A p p l i c a t i o n s f o r T e s t i n g R e q u i s i t e s . J.J. Doemling. I n A p p l i e d Headspace Gas Chromatography, B. Kolb, ed., Heyden, London, 1980, pp. 171-0. Simple Rapid and S e n s i t i v e Method f o r t h e Simultaneous Q u a n t i t a t i o n o f E t h a n o l and Acetaldehyde i n B i o l o g i c a l M a t e r i a l s Using Head-Space Gas Chromatography. C.L. Mendenhall, J. FlacGee, and E.S. Green, J. Chromatogr., 190( 1 ) (1980)197-200. A n a l y s i s o f Headspace Gases f o r P a r t s Per B i l l i o n C o n c e n t r a t i o n s o f V o l a t i l e Organic Contaniinants i n Water Samples by Gas Chromatography. D.A.J. Murray, E n v i r o n . S c i . Res., (1980)?07-16. t4easurement and A n a l y s i s o f A i r P o l l u t i o n . 6. D e t e r m i n a t i o n o f T r i n i e t h"v l amine i n A i r . S. Sano, Kanagawa-ken T a i k i Osen Chosa Kenkyu Hokoku, 21 (197911 17-23. Acetaldehyde, Methanol, and E t h a n o l A n a l y s i s by tieadspace Gas Chromatography. R.M. Anthony, C.A. Sutheinier and I . Sunshine, J. A n a l . T o x i c o 1 . , 4 ( 1 ) ( 1 9 8 0 ) 43-5. D e t e r m i n a t i o n o f Residual Acetaldehyde i n P o l y ( e t h y 1 e n e t e r e p h t h a l a t e ) B o t t l e s , Preforms and Resins b y Automated Headspace Gas Chromatoqraphv. M. Dong, A.H. DiEdwardo and F. Zitonier, J . Chromatog. S c i . , 1 8 ( 5 ) ( 1 9 3 0 ) 2 4 2 - 6 . A Gas Chromatographic Method f o r t h e A c c u r a t e D e t e r m i n a t i o n o f Low Concent r a t i o n s o f V o l a t i l e S u l f u r Compounds i n A l c o h o l i c Beverages. O.Leppanen, J. Denslow and P. Ronkainen, J . I n s t . Brew., 85(6)(1979)350-3. Gas Chromatographic Head-Space Assay o f Formic A c i d as M e t h y l Forniate i n B i o l o g i c F l u i d s : P o t e n t i a l A p p l i c a t i o n t o Methanol P o i s o n i n g . C . A b o l i n , J.D. McRae, T.N. Tozer and S. T a k k i , Biocheni. Pled. 2 3 ( 2 ) ( l!I80)209-13. D e t e r m i n a t i o n o f Hydrogen Cyanide i n B l o o d U s i n g Gas Chromatography w i t h A l k a l i T h e r m i o n i c D e t e c t i o n . R.W. D a r r , T.L. Capson and F.O. Hileman, Anal. Chem., 52(3)(1980)1379-81. Supplementary Report to"Gas Chromatographic D e t e r m i n a t i o n o f COHb by t h e Use o f a Heated Gas Sampler." K. Yaniamoto, and Y. Yamamoto, Nippon Hoigaku Zasshi, 3 3 ( 6 ) ( 1 9 7 9 ) 7 1 8 - 2 0 . Study o f F l a v o r o f Wines f r o m " T i e r r a de B a r r o s " ( S p a i n ) by Phase Separat i o n Through S a l t A d d i t i o n and Gas L i q u i d Chromatography o f t h e O r g a n i c Phase. J.L. Mesias, J . I . Maynar and I . Mareca, Rev. Agroquim. Tecnol, A1 inient, 20( 2 ) ( 1 980)240-6. Methods o f D e r i v a t i z a t i o n i n A n a l y t i c a l Gas Chromatography: General P r i n c i p l e s and Recent Developments. A . P a n n a t i e r , B. Testa, Pharm. Acta Helv., 5 5 (4)( i g a o ) 100-1 3. Use o f Headspace Gas Chromatosraphic A n a l v s i s f o r D e t e r m i n a t i o n o f V o l a t i l e I m p u r i t i e s i n Polymers. B . V . - I o f f e and T:L. Reznik, Zh. A n a l . Khirn., 3 5 ( 7 ) (19ao)i410-27.
.,
4
5 6 7
a 9
10
11 12 13 14 15 16
17
ia 19
136 20 21 22 23 24 25 26
Enhancement of Electron-Capture D e t e c t i o n o f Chlorocarbons by I o d i n a t i o n . A.J. Watson, G.L. B a l l and D.H. Stedman, Anal. Chem., 53(1)(1901)132-4. I s o l a t i o n and C h a r a c t e r i z a t i o n o f Odorous Components i n S o l i d Swine Manure. A. Yasuhara, and K. Fuwa, A g r i c . B i o l . Chem., 44(10)(1980) 2379-85. Determination o f Halogenated Hydrocarbons i n S i l i c o n Halides w i t h Two GasRath, and Chromatographic Methods and a Comparison o f These Ana1yses.H.J. J. Wimner, Fresenius' Z. Anal. Chem., 303(1)(1980)14-17. Determination o f Cyanides and Thiocyanates i n Water by Headspace Gas Chroma tography w i t h a Nitrogen-Phosphorus Detector. G. Hota, V.R. W i r a g l i a , C. Improta and A. Acampora, J. Chromatogr., 207(1)(1981)47-54. A p p l i c a t i o n o f Headspace Gas Chromatography t o t h e Determination o f C h l o r i nated Hydrocarbons i n Waste Waters. L. Lukacovic, M. f l i k u l a s , A. Vanko and G. Kiss, J. Chromatogr., 207(3)(1981)373-7. Preconcentration f o r Trace A n a l y s i s o f Organic Compounds, F.W. Karasek, R.E. Clement and J.A. Sweetman, Anal. Chem., 53(1981)1050 A. Preconcentration f o r Trace Element Determination i n Aqueous Samples. D. E. Leyden and W. Wegscheider, Anal. Chem., 53(1981)1059A.
CHAPTER 5
THE USE OF GAS CHROMATOGRAPHY I N ENVIRONMENTAL ANALYSES
5.1
INTRODUCTION The preceding chapters have discussed t h e environmental
(Chapter 11,
t h e c r i t e r i a used f o r
sampling
these
environmental
samples,
u s i n g gas
2),
(Chapter
(Chapter 3 ) and t h e sample treatment (Chapter 4 ) .
problem I n general
the
sampling process
We can now discuss t h e analyses o f
chromatography
and
l i q u i d chromatography
(Chapters 5 and 6). There i s a v a s t amount o f s c i e n t i f i c l i t e r a t u r e a v a l l a b l e r e g a r d i n g t h e use o f gas Chromatography chromatography.
for
environmental
analyses,
much more t h a n e x i s t s
There are a number o f reasons f o r t h i s ;
for
liquid
paramount among these i s
t h e f a c t t h a t gas Chromatography has been more r e a d i l y a v a i l a b l e when environmental problems came t o t h e f o r e f r o n t and t h a t t h e m a j o r i t y o f compounds t o be determined are e a s i l y handled by t h e gas chromatographic process. an a i r pol l u t i o n problem e x i s t s .
T h i s i s e s p e c i a l l y t r u e when
To present an a l I - i n c l u s i v e discussion o f analyses
by gas chromatography would r e s u l t i n a very long monograph i t s e l f .
Thus,
we s h a l l
h i g h l i g h t t h i s area o f a n a l y s i s and f u r n i s h many e a s i l y o b t a i n a b l e references.
To
condense many of these references we W I I I make use o f t a b l e s t o summarize t h e s a l i e n t features of the a r t i c l e s .
5.2 STANDARDS AND CALIBRATION We
have
presented
in
components which are a v a i l a b l e .
Chapter
2
necessary procedure t o have q u a n t l t a t l v e system.
Meanlngful
sources
information
Information w i l l r e s u l t
r e g a r d i n g t h e volume o f sample,
of
many
reference
(standards)
C a l i b r a t i o n by use o f these standard components i s a for
any environmental
i f r e l i a b l e information
volume o f standard s o l u t i o n ,
sample
i s given
and f l o w measurements
f o r gas and l i q u i d samples. Perhaps one o f t h e most d i f f l c u l t aspects o f c a l i b r a t i o n and q u a n t i f i c a t i o n i s being able t o express t h e small c o n c e n t r a t i o n s found i n environmental samples.
Table
5.1 summarizes many o f t h e mass-volume o r volume-volume r e l a t i o n s encountered i n t h e area o f t h e a n a l y t i c a l chemistry o f environmental systems. The p r e p a r a t i o n o f standard aqueous s o l u t i o n s
I s best performed by s t a r t i n g
w l t h a concentrated s o l u t i o n and making t h e a p p r o p r i a t e d i l u t i o n s t o f u r n i s h l e s s concentrated standards.
The choice o f
p r e d i c a t e d upon t h e t h e o r y t h a t must be mlnimlzed.
containers
for
these
solutions
should be
loss o f s o l u t e and contamination from t h e c o n t a i n e r
These two g o a l s can be achieved by using clean g l a s s v o l u m e t r i c
138 f l a s k s and/or v i a l s w i t h e i t h e r standard tapered stoppers o r screw-on l i d s l i n e d w l t h T e f l o n (PTFE) o r aluminum f o i l . t o r or freezer. when needed.
Once prepared, they should be s t o r e d i n a r e f r i g e r a -
Very d i l u t e standard s o l u t i o n s (10 ppm o r l e s s ) a r e b e s t prepared
Prolonged storage of very d i l u t e standards r a i s e s questions r e g a r d i n g
their stability.
Adsorption on w a l l s o f c o n t a i n e r s and/or loss by v o l a t l l i z a t i o n a r e
t h e most frequent causes o f t h i s decreased concentration.
TABLE 5.1 Mass-volume and volume-volume r e l a t i o n s h i p s f o r environmental samples.
I.
Mass-vol ume mg/a = 1 ppm
= 1000 ppb
ug/ml = 1 ppm
= 1000 ppb
ug/5.0 m l = 0.2 ppm = 200 ppb ,,g/IO.O
m l = 0.10 ppm = 100 ppb
pg/20.0 m l = 0.05 ppm = 50 ppb ug/IOO.O m l = 0.01 ppm = 10 ppb (grams/1000 m l
Equation f o r c a l c u l a t i o n : mg/ml = 1000 ppm = 1,000,000
) x
lo6 = ppm
ppb
II. Volume-volume pl/ml = 1000 ppm = lo6 ppb = 0.1% ml = 100 pprn = ppb = 0.01% ~1/10.0 pl/lOO.O ml = 10 ppm = lo' ppb = 0.001% pl/1000.0ml = 1 ppm = lo3 ppb = 0.0001% 100pl/lO.Oml = 10,000ppm = lo7 ppb = 1.0% lOpl/l.Oml = 10,000ppm= lo7 ppb= 1.0%
lo5
Equation for calculation: (Ctl/ml) X
lo6 = ppm
I l l . Inter-relationships
%
PPm
100.00 10.00
I .oo 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
rng/100 m l
PPb
I , 000,000 000 10,000 1,000 100 10 0.1 0.01 0.001
UNIT
1 00,000 10,000
too,
I
gluI
I , 000 100 10 1 1 ,000
100 10 1
0. I 0.01 0.001 0.0001
10-6
10-7 10-8 10-9 10-10 10-11 10-12
u9
ng
P9
139 Preparation of water s o l v e n t .
aqueous standards p r e s e n t s another
T h i s "pure"
w a t e r must be f r e e o f
( v o l a t i l e as w e l l as n o n - v o l a t l l e ) .
I n many cases,
problem,
that
of
rtpurelf
s o l u b l e o r g a n i c substances
r e g u l a r d i s t i l l e d water
i s not
adequate and must be p u r i f i e d f u r t h e r . (1) V o l a t i l e contaminants. I f o n l y v o l a t i l e contaminants a r e present, t h e Ifpure" water may be prepared by b o i l i n g t h e water i n a clean atmosphere. Standards prepared i n Itpure" d i s t i I l e d water should have no gas phase above t h e I i q u i d phase. The standard s o l u t i o n s should completely f i l l t h e c o n t a i n e r . ( 2 ) N o n - v o l a t i l e contaminants. These contaminants may be removed by u s i n g t h e sampling techniques discussed I n Chapter 3. Adsorbents used can be Porapak Q o r Bondapak ( r e f . 1 ) . Amberlite XAD-2 r e s i n o r a c t i v a t e d charcoal ( r e f . 2 and 3 ) and Tenax GC ( r e f . 4 ) . Creed ( r e f . 1 ) c a u t i o n s t h a t " p u r e " w a t e r made by t h e s e techniques should n o t be stored longer than t h r e e days. A f t e r t h e f i r s t couple o f days, t h e blank c o r r e c t i o n begins t o increase. ( 3 ) Non-aqueous solvents. I t has been t h e authors' experience t h a t l a r g e volumes of "clean" s o l v e n t s ( > 500 m l ) should be s t o r e d i n another room t h a n t h e laboratory. Only small volumes (ca. 100 m l ) should be k e p t i n t h e l a b o r a t o r y . R e f i l l i n g o f t h e l a b o r a t o r y supply should be performed i n t h e storage area. A good philosophy f o r s o l v e n t s used i n t r a c e environmental a n a l y s i s i s t h a t no s o l v e n t should be considered pure. Acetone and methanol can be p u r i f i e d by d i s t i l l a t i o n i n a glass apparatus, whereas n-pentane, n-hexane and isooctane should be d i s t i l l e d a f t e r s u l f o n a t i o n o f t h e aromatic i m p u r i t i e s and n i t r a t i o n ( r e f . 5).
R e s t r i c t i o n s placed on s o l v e n t s and c o n t a i n e r s are more s t r i n g e n t t h a n those placed on t h e p u r i t y o f t h e standards.
Standard compounds need be no h i g h e r p u r i t y
than 99% f o r environmental t r a c e a n a l y s i s . S o l u b i l i t y o f many organic compounds (e.g.,
hydrocarbons) i n water i s very low
and aqueous standard s o l u t i o n s may have t o be prepared by u s i n g an o r g a n i c s o l v e n t which i s s o l u b l e i n water. e x t r a c t i o n of
the
A disadvantage t o t h i s technique i s t h a t ,
aqueous s o l u t i o n ,
a
large quantity of
i n subsequent
t h e organic
solvent
is
c a r r i e d through and may overlap s o l u t e peaks of i n t e r e s t i n t h e chromatogram. A i r o r gas samples o f f e r a unique a p p l i c a t i o n f o r gas chromatography.
s o l v e n t here i s a i r and blanks must be made f r o m "zero a i r . " appeared
i n T i t l e 40 of
t h e U.S.
Federal Regulations,
P a r t 86 o f
Control
P o l l u t i o n f o r New M o t o r V e h i c l e s and New M o t o r V e h i c l e E n g i n e s , requirement
for
the
flame
ionization
detector
(FID)
and
other
TABLE 5 . 2 Federal R e g i s t e r 33(108),
< < < <
1 ppm ( v / v ) * t o t a l hydrocarbons as carbon 1 ppm ( v / v ) * carbon monoxide 400 ppm ( v / v ) * carbon d i o x i d e 0.1 ppm ( v / v ) * n i t r i c o x i d e 18.0 - 21.0 ( v / v ) * oxygen
*See Table 5.1 f o r e x p l a n a t i o n o f c o n c e n t r a t i o n s .
of
Air
w h l c h had a
S p e c i f i c a t i o n s f o r "zero a i r " are shown i n Table 5 . 2 .
Zero a i r s p e c i f i c a t i o n s from U.S.
The
The term Ifzero a i r "
(1968), P a r t I I
analyzers.
140 The laboratory air and outside air may meet these criteria, and no purificatlon procedure is necessary.
Preparation of tlzero air" may be produced in a number
of ways (ref. 6).
(1) (2)
Purification of the normal atmospheric air on site; Purification of normal purity oxygen and nitrogen, then blended in proper
ratio; ( 3 ) Purchasing special purity oxygen and nitrogen which is then mixed in the gas phase for proper ratio; ( 4 ) Purchasing "zero air" commercial l y .
One defines sensitivity of an analytical technique as the lowest concentration (smallest amount) of a component that can be determined with certainty.
To be
certain that the concentration measured is meaningful, one must determine a blank or zero air for air samples. The blank is the same volume as the sample but does not contain the pollutant in question. ttZeroair" is synonomous with "reagent blank" in other analytical techniques.
Usually the blank is run concurrently with the samples.
Over a period of time, one obtains fluctuations in the value of the blank.
The
arithmetic mean of these blanks can be used as the "zero value." Many analytlcal data terms are used loosely. terms
whlch
are
interchanged
are
accuracy
Perhaps the two most common
and
precision
(see
Chapter
3).
Reproducibility of a method is a measure of t h e repeatability (precision) but accuracy indicates the error of the mean, i.e., agrees with the "true value." both qualities;
how close the experimental value
It is not always necessary that a method possesses
the monitoring of trends in a particular air or water pollution
study requires a reproducible analytical method more than an accurate analytical method. Calibration and standardization are often used incorrectly.
We will use the
word calibration to mean comparing an instrument or analytical technique to a reference
that
is
constant,
concentration.
but
Standardlzation
between the analytical Accurately-prepared
not
necessar i I y
representative
of
implies that there is a one-to-one
the
tltruet'
relationship
technique (or instrument) and the "true" concentration.
test
atmospheres
are
used
for
both
calibration
and
standardization. The defining of analytical systems for environmental work may be carried one step further to set forth clarity of terms.
Primary systems are those in which the
concentrations of trace substances are calculated constants.
from
flow rates and physical
Secondary systems are those in which the trace substance concentration i s
measured as it appears in the system. Meaningful data are obtained from environmental samples only when comparison is made to some standard. Thus, all equipment used from the sampling step to the quantitation step must be calibrated. The greatest errors occur either when concentration
levels being measured are very
effects are significant.
low
(<
p p b ) or when chemisorption
Solid or l i q u i d standards have a longer stability than do
141 gaseous standards;
t h i s i s espec,ial i y t r u e a t low c o n c e n t r a t i o n s ( < ppm).
f o r t h e ppb range should be prepared as needed.
Standards
Changes i n c o n c e n t r a t i o n o f stand-
ards u s u a l l y a r e due t o s o r p t i o n e f f e c t s a t t h e w a l l s o f t h e c o n t a i n e r , through t h e c o n t a i n e r wal I s and/or photochemical e f f e c t s .
permeatlon
There i s no one c a l i b r a -
t i o n or s t a n d a r d i z a t i o n technique which i s workable f o r a l l t y p e s o f samples;
the
a n a l y t i c a l chemist must evaluate t h e problem frm t h e aspects o f sampling t h r o u g h t h e separation and q u a n t i t a t i o n steps.
The best c o n d i t i o n s are those which a r e performed
w i t h t h e minimum of e f f o r t and y i e l d t h e maximum o f r e l i a b l e i n f o r m a t l o n . meter t h a t i s o f t e n overlooked i s t h e d e t e c t o r response.
A para-
I t makes I l t t l e d i f f e r e n c e
i f a thermal c o n d u c t i v i t y d e t e c t o r (TCD), a flame i o n i z a t i o n d e t e c t o r (FID),
an e l e c -
t r o n c a p t u r e d e t e c t o r (ECD), o r a mass spectrometer d e t e c t o r (MSD)
.Each i s
i s used.
a f f e c t e d by t h e o p e r a t i n g parameters and t h e t y p e of sample belng separated. The use o f standards and/or c a l l b r a t i o n techniques r e q u i r e s an understanding o f t h e system and t h e i n s t r u m e n t a t i o n r e q u i r e d f o r t h e a n a l y s i s .
As a r u l e o f thumb,
one should prepare between 5 t o 10 times ?he volume o f standard r e q u i r e d f o r one measurement. Some o f t h e more commonly employed c a l i b r a t i o n t e c h n l q u e s a r e :
dynamic
c a l i b r a t i o n gas generator ( r e f s . 7-10), d i f f u s i o n c e l l s ( r e f s . 11-13), d i l u t i o n ( r e f .
14-19). permeation tubes ( r e f s . 13 and 20-24), exponential d i l u t i o n f l a s k ( r e f s . 13, 25 and 261, r o t a t i n g s y r l n g e technique ( r e f . 271, s t a t i c systems f o r p r o d u c i n g gas 101, p r e p a r a t l o n o f weight/weight, weight/volume, o r volume/volume s o l u t i o n s (see Tables 5.1, 5.3 and 5.41, and p l a s t i c bag c a i i b r a t l o n technlques
mixtures ( r e f .
( r e f s . 15, 28 and 29). 5.2.1 Volume measurement and standards f o r a i r samples Data f o r a i r p o l l u t a n t s a r e u s u a l l y r e f e r r e d ‘to a
m3 o f a i r and t h e amount o f
3 3 p o l l u t a n t expressed I n terms o f weight (mg/m or rg/m ) o r as volume r a t l o (1:106 = p a r t s per m i l l i o n = ppm o r 1:109 = p a r t s per b i l l i o n = ppb).
R a t i o expressions (ppm
o r ppb) are independent o f pressure and temperature, whereas weight/volume
3
expressions
vary according t o t h e gas
laws.
I n t h e Federal
Germany, p o l l u t a n t c o n c e n t r a t i o n s a r e expressed as mg/l Nm3 ; meanlng 1
(mg/m3 o r
kepubllc o f
m 3 of d r y gas
a t Normal Temperature and Pressure ( r e f . 30). Welght/volume values (mg/l Nm3 may be converted t o r a t i o expressions (ppm o r ppb) by t h e f o l l o w i n g equation:
3 ppm = (mg/l Nm ) ( m o l a r volume/molecular weight)
(5.1)
Table 5.3 summarizes t h e more commonly used r e l a t i o n s h i p s and c a l c u l a t i o n s f o r gaseous systems.
T h i s t a b l e complements T a b l e 5.1 s i n c e I t p r e s e n t s s p e c i f i c
c a l c u l a t i o n s and r e l a t i o n s h i p s f o r gaseous systems. Two parameters are necessary f o r t h e p r e p a r a t i o n of These are t h e flow r a t e and volume measurements.
standard gas m i x t u r e s .
C a l i b r a t i o n procedures a r e under-
142 taken t o r e l a t e d e t e c t o r response t o c o n c e n t r a t i o n o f component belng determlned. Another
j u s t l f l c a t i o n f o r t h i s procedure I s t h a t t h e c o r r e l a t i o n between d e t e c t o r
response ( i n t e g r a l response) and sample c o n c e n t r a t i o n ( w e i g h t o r volume r e l a t i o n s ) i s n o t l i n e a r over t h e e n t i r e c o n c e n t r a t i o n range used.
TABLE 5.3 Measurements and c a l c u l a t i o n s o f c o n c e n t r a t i o n s Volume/volume r e l a t i o n s
Concentration (ppm) = [va/(VD v
= volume o f solute;
Concentra-:ion
V
D
va)] x 106
+
(5.2)
= volume of s o l v e n t ( d i l u e n t gas)
(ppm) = [pa/(pD
pa = p a r t i a l pressure solute;
+
pa)] x
lo6
(5.3)
P = p a r t i a l pressure of s o l v e n t ( d i l u e n t gas). D
A t concentrations < 5000 ppm, t h e va o r pa terms i n t h e denominators may be dropped. T h i s causes < 0.5% r e l a t i v e e r r o r . ppm = micromoles of s o l u t e gas/mole of s o l v e n t gas ppm x ( 1 x
= %(v/v)
= mg/m3;
ppm (mol. wt./24.45)
where,
24.45 = (62.361 x 298"K)/760 Torr = RT/P.
= 1 ppm
1 ppb x ( 1 x
1 % (v/v)(lO,OOO) = 1 ppm (mg/a)(1000) = mg/m 3
6 = pg/m 3
(mg/a)(l x 10
Concentration (ppm) = [(mg/m 3 x 24.450 x T'K
x 760 T o r r ) / ( m o l .
wt.
x 298'K
x P(Torr)]
(5.4) Concentration (mg/m3 1 = [(conc.(ppm)
x mol.
wt.
x 298'K
x P(Torr))/(24.454
760 T o r r ) ]
x TOK x
(5.5)
Weight/volume r e l a t i o n s Concentration (w/v) = Wa/V W
D = weight of s o l u t e (mg);
(5.6) VD = volume s o l v e n t ( d i l u e n t gas)
3
Concentration i n w/v u s u a l l y given i n mg/m 3 6 lm3 = 10 m i ; 1 0 ml = 1 l i t e r ; t h u s 106 m l = 1000 l i t e r s or 1 m3 = 1 x 109 mm3 = 264.17 U.S.
gal Ions
143 TABLE 5.3 ( C o n t . ) 6 c o n c e n t r a t i o n (ppm) = ( W / V 1 x 10 a D n
= Wa/(MW)a
and PVa = naRT;
PVa = (Wa/(MW)a)RT
Wa/Va
(5.7)
thus
P = barometric pressure
= P(MW)a/RT or Va = WaRT/(MW)aP = va
from ( 5 . 2 )
C o n c e n t r a t i o n (ppm) = ( v a / V D ) 1 0 6
= ( (WaRT)/(MWaPVD)) x 1 o6
C o n c e n t r a t i o n (ppm) = ((pavaRT)/((MWIaPVD pa
)
x
(5.8)
lo6
(5.9)
= d e n s i t y = Wa/va
R e l a t i o n s h i p o f c o n c e n t r a t i o n ( w / v ) and c o n c e n t r a t i o n (ppm)
U s i n g eqns 5.6 and 5.8;
w
= Conc.
s o l v e eqn 5.8 for Wa and s u b s t i t u t e i n t o eqn 5.6
(~~~)(Mw)~Pv~/Io~RT
Conc. ( w / v ) = (Conc. (ppm)(MW)aPVD/106RT)/VD = (Conc.
(ppm) x I O - ~ ( M W I ~ P ) / R T
(5.10)
I n t e r m s of vapor p r e s s u r e :
C o n c e n t r a t i o n w/v = ((MW)aP/RT)(Pa/PD A t STP:
PD
P (5.11)
Thus, c o n c e n t r a t i o n ( w / v ) = (MW)aPa/R
Common c o n v e r s i o n u n i t s
Dynes/cm2 x (1.4504 x
= pounds/lnch2 = p s i
Dynes/cm2 x (10.197 x
= grams/cm ( a b s o l u t e )
2
2
2
P o u n d s / i n ( a b s o l u t e ) x 70.307 = grams/cm ( a b s o l u t e ) Grams/cm3 x 1 = grams/ml
( a t 4’C
Grams/cm3 x 0.03613 = p o u n d s / i n c h Grams/crn3 x 8.3452 = pounds/U.S.
3 Grams/cm3 x 62.428 = p o u n d s / f t
only)
3 gal Ions
144 TABLE 5.3 (Cont.) Pounds/ft 3 x 0.0602 = grams/cm 3 3 = pounddinch Pounds/ft 3 x (5.7870 x Pounddin'
x 6893 = Pa
p p m (v/v) x ( 1 x
= partial pressure of one constituent divided b y total
pressure of mixture mg/m3 x ( 1 x
= mg/e
pg/m3 x ( 1 x
= mg/e 3
3
mg/e x ( 1 x 10 1 = mg/m 6
mg/e x ( 1 x 10 1 = ug/m
3
,,g/m3 x ( 1 x = mg/e Angstrom units x ( 1 x 10-l')
= m
Angstrom units x ( 1 x
= micrometers, pm
Angstrom units x ( 1 x lo-')
= cm
x
pm
(I
= m
x
mm x 1000 = cm x ( 1 x 104 ) = um 3 3 mn x ( I x = m m3 x 264.17 = U.S. gallons ft
3 x 0.02832 = in3
ft
3
cm
3
x 28.316 = e x (1 x
(i)
= m3
The dynamic calibration technique is useful when one needs a continuous
source of a calibrated gas or when the gases under study are unstable.
The con-
centrations are readily calculated from either the vapor pressure of the liquids or the flow rates of the liquids or the flow rates of the gases employed.
It has been
found that the equipment used Is slow to equilibrate (at low concentrations) and thus, changing from one sample type to another I s time consumlng. It is possible to prepare standards in which the concentration of one component ranges from several ppm to 50%. The technique I s not useful for compounds which are liquids at temperatures lower than 0°C. Each contaminant gas concentration can be varied by changing its flow rate in the diluent stream. Concentration in the gas stream is based upon the partial flow rates of each gas:
C = volume concentration of contaminant gas in ppm; cg flow-rates of contaminant and diluent gases, respectively.
where:
and F
and F cg
=
dg
Angeiy et al. (ref. 3 1 ) have published a technlque for the preparation of
145 standard samples
for
detector calibration,
whereas A v e r e t t
a l l - g l a s s apparatus s u i t a b l e f o r p r e p a r i n g corrosive-gas monitored by a mercury manometer.
Brockway e t a l .
(ref.
32) designed an
standards;
pressures were
( r e f . 3 3 ) have described a method
for t h e simultaneous c a l i b r a t i o n o f gas analyzers and meters.
Axelrod e t a l .
(ref.
34) made a pressure device o f ceramic t o prepare gas contaminants a t t h e 100 ppm level.
The ceramic d i s k
contaminant gas,
was connected d i r e c t l y t o a h i g h pressure tank o f
the
and t h e f l o w r a t e through t h e ceramic f r i t p r e c i s e l y c o n t r o l l e d by
r e g u l a t i o n o f t h e pressure.
A n o v e l method o f g e n e r a t i o n o f gases a t t h e ppm l e v e l was d e v e l o p e d by Hashimoto and Tanaka ( r e f .
NO (NO and NO
2
),
35) which enables t h e generation o f such gases as SO2,
HCN, NH3 and H2S b y a simple apparatus and simple o p e r a t i o n s .
generated gases can be u t i l i z e d f o r c a l i b r a t i o n o f measuring instruments,
The
attainment
of b i o l o g i c a l and medical t e s t s and t h e study o f chemical r e a c t i o n s i n ambient a i r .
The s o l u t i o n for gas generation c o n t a i n s a s p e c i f i c s o l u t e sodium hydrogen s u l f i t e f o r SO2,
sodium n i t r a t e f o r NOx,
ammonium c h l o r i d e f o r NH3 and potassium cyanide for HCN. s o l u t i o n i s c o n t r o l l e d by b u f f e r i n g a t a s p e c i f i c pH. f o r generation o f gases
i n t h e range o f 0.01-0.1
f o r each gas:
sodium s u l f i d e
e.g., f o r H2S,
The pH o f t h e g e n e r a t i n g
The pH range o f t h e s o l u t i o n
ppm f o r SO2
for NOx
i s 5.0-6.0,
6.0-7.0 and f o r H2S 12-13. A l i n e a r l o g a r i t h m i c r e l a t i o n s h i p was found between c o n c e n t r a t i o n i n t h e gas phase,
C
presumed
( i n ppm) and c o n c e n t r a t i o n i n s o l u t i o n , Csoln(in p g h l ) . gas t h a t t h e gas g e n e r a t i o n occurred by d i f f u s i o n due t o
I t was t h u s concentration
d i f f e r e n c e s expressed i n F i c k ' s law. Hashimoto conventional
and
Tanaka
state
permeation tubes are:
that
(1)
the
advantages
no requirement f o r
smaller temperature dependence, and (3) f a s t e r e q u i l i b r a t i o n .
of
their
method
over
tube p r e p a r a t i o n ,
(2)
Other gases, e.g.,
CO,
C02 and HF, can be generated by t h i s method. ( i i ) The o p e r a t i o n o f permeation tubes i s based on t h e f a c t t h a t n e a r l y a l i
p l a s t i c m a t e r i a l s w i l i r e t a i n a l i q u i d w h i l e a l l o w i n g i t s vapor t o d i s s o l v e w a l l s and d i f f u s e a t a c a l c u l a b l e r a t e . function o f
absolute temperature and a d i r e c t
surface area of t h e tube. weight of
any c a r r i e r
in the
The d i f f u s i o n r a t e i s an e x p o n e n t i a l function of
wall
thickness
and t h e
The r a t e o f d i f f u s i o n i s a l s o dependent upon t h e molecular
( d i l u e n t ) gas which passes over
the outside
wall
and
its
m o i s t u r e content ( i f t h e permeating gas r e a c t s w i t h w a t e r ) . Fick's
law o f
d i f f u s i o n approximately describes t h e d i f f u s i o n r a t e o f gases
from t h e Dermeation tubes:
D = dsa(Pi
-
Po)/W
where: D = volume of t h e d i f f u s i n g gas; d = t h e gas d i f f u s i o n constant;
(5.13)
146 s = s o l u b i l i t y o f gas i n tube m a t e r i a l ; a = area of t h e tube; W = tube w a l l thickness; PI = i n s i d e pressure o f tube; P = o u t s i d e pressure o f tube. To assure constant permeation r a t e , constant temperature i s maintained ( s o l u b i i i t y ( s ) and d i f f u s i o n r a t e ( s ) are temperature-dependent). r a t e i s n o t instantaneous;
The attainment o f a permeation
t h u s one a l l o w s t h e tube and t h e system t o come t o
e q u i l i b r l u m b e f o r e a c t u a l l y performing t h e c a i i b r a t l o n . Permeation r a t e s a r e c a l c u l a t e d by measuring t h e weight loss ( u s i n g a microbalance) w i t h time.
Weight losses a r e u s u a l l y expressed as nanograms per c e n t i m e t e r
o f tube length per minute (ng/cm.
min).
O'Keefe and Ortman ( r e f . 20) have presented
a d e t a i l e d study o f permeation tube c a l i b r a t i o n .
I n t h i s study both t h e
inside
diameter and w a l l t h i c k n e s s o f t h e tubes were v a r i e d f o r such gases as SO2, NO2, C3H8,
Cog, C6H6,
etc.
The tube length, L, necessary f o r a p a r t i c u l a r c a l l b r a t i o n , may be c a l c u l a t e d by d i v i d i n g t h e d e s i r e d r a t e , RR, o f permeation (ng/min) by t h e r a t e , RM, o f a t u b e o f s i m i l a r m a t e r i a l i n ng/cm. min.,
i.e., (5.14)
L = RR/RM An outstanding
f e a t u r e of
permeation tubes
is that
the
permeatlor) r a t e s remain
r e l a t i v e l y constant over t h e l i f e o f t h e tubes. (Ill)
McKelvey and Hoelscher
which allowed easy p r e p a r a t i o n o f
(ref.
11) reported the f i r s t d i f f u s i o n c e l l s
low c o n c e n t r a t i o n s o f v o l a t i l e m a t e r i a l s i n a i r .
The c e l l c o n s i s t e d o f t w o f l a s k s j o i n e d by a d i f f u s i o n t u b e . contained t h e I i q u l d and s a t u r a t e d vapor.
The lower t u b e
T h i s s a t u r a t e d vapor would d i f f u s e t o t h e
t o p f l a s k where it would mix w i t h a f l o w i n g d i i u e n t gas.
The r a t e o f d i f f u s i o n ,
T,
cou I d be c a l c u I ated:
y
= 2.303(DPMA/RTL)log
P/(P-p)
(5.15)
= d i f f u s i o n c o e f f i c i e n t o f t h e vapor; = t o t a l pressure I n chambers (atm); = molecular weight o f d i f f u s i n g l i q u i d vapor; 2 = cross-sectional area o f connecting d i f f u s i o n tube (cm ) ; = gas constant ( I i t e r - a t m / m o l ° K ) ; = absolute temperature ( O K ) ; = length o f d i f f u s i o n tube (an); P = vapor pressure o f d i f f u s i o n l i q u i d vapor a t Tcatrn).
where: D P M A R T L
(iv)
The e x p o n e n t i a l
standards f o r c a l i b r a t i o n .
d i l u t i o n f l a s k o f f e r s a u n i q u e way o f p r e p a r i n g
With t h i s technique one can prepare a dynamic range o f
concentrations o f t h e contaminant gas.
The d i l u e n t gas e n t e r s t h e t o p o f t h e f l a s k ,
147 is mixed w i t h an i n i t i a l known c o n c e n t r a t i o n o f gas ( b y means o f a magnetic S t i r r e r o r paddle wheel assembly), then e x i t s a t t h e bottom o f t h e f l a s k . f l o w r a t e o f t h e d l l u e n t gas and volume o f t h e m i x i n g chamber,
Knowing t h e gas
one can c a l c u l a t e t h e
c o n c e n t r a t i o n , C, o f contaminant gas a t any time:
c
=
c
e-tQ/V
(5.16)
0
where: C = i n i t i a l gas compositlon; Vo= volume o f f l a s k ; Q = t h e flow r a t e ; t = time.
One o u t s t a n d i n g f e a t u r e o f t h l s technique Is t h a t It a l l o w s one t o study t h e dynamic range of a gas chromatographic d e t e c t o r i n a simple experiment. Bruner e t a t .
2 6 ) and Fotmer ( r e f .
(ref.
3 6 ) have comblned permeation tubes
The disadvantage o f t h i s combination is t h a t t h e
and t h e exponential d l l u t l o n f l a s k .
c a l i b r a t i o n curve begins t o lose l i n e a r i t y as t h e contaminant gas approaches v e r y low c o n c e n t r a t i o n s (which may be a t t r i b u t e d t o a d s o r p t i o n o f t h e contaminant gas on t h e walls
of
the
A
container).
syringe-dllutlon
variation
of
thls
type
of
calibration
is
the
technique where successive d i l u t i o n s o f t h e gas sample a r e made w l t h
a glass InJectlon syringe ( r e f . 36).
5.2.2.
Volume measurement
and standards f o r water samples
Measurement o f water samples can i n v o l v e any o f t h e t h r e e s t a t e s o f m a t t e r (gas,
l i q u i d o r s o l i d ) d i s s o l v e d i n t h e aqueous s o l v e n t o r any combinatlon(s) o f t h e
three.
The treatment o f gases,
4.2.2.1
Headspace and/or
i n solution,
has been t r e a t e d i n Chapter 4 ( S e c t i o n and w i l l
vapor e q u i l i b r a t i o n )
not
be discussed
in this
s e c t ion. Water samples a r e u s u a l l y taken i n a f i x e d volume c o n t a i n e r and an a l i q u o t i s then analyzed i n t h e l a b o r a t o r y .
Knowing t h e volume o f t h e a l i q u o t , t h e volume o f
water brought t o t h e l a b o r a t o r y and t h e t o t a l volume o f t h e water source o r i t s f l o w r a t e a t t h e sampling s i t e , concentration(s)
in
the
one may r e l a t e t h e a n a l y s i s data t o t h e contaminant(s)
water
supply
(see Chapter
3
for
additional
information
concerning sampling o f l i q u i d s ) . Table 5.4
I l l u s t r a t e s many o f
t h e most common t e r m s and e q u a t i o n s f o r
expressing measurements and c o n c e n t r a t i o n c a l c u l a t i o n s f o r l i q u i d samples.
5.3 SAMPLE INTRODUCTION ONTO THE COLUMN
The gas chromatographic system i s necessary f o r t h e t r a n s f e r r i n g of a measured amount o f t h e sample m a t e r i a l onto t h e column.
A sample
s i z e o f 0.001 m l ( 1 ~
1 t) o
10 ml may be i n j e c t e d i n t o t h e c a r r i e r gas s t r e a m t o o b t a i n q u a n t i t a t i v e and r e p r o d u c i b l e data ( t h e smaller volumes are used f o r sample volumes may be used f o r gaseous samples).
l i q u i d samples whereas
larger
Maximized chromatographic response
r e q u i r e s t h a t t h e sample be contained I n t h e s m a l l e s t column volume p o s s l b l e .
The
148 TABLE 5.4
Measurements and c a l c u l a t i o n s of c o n c e n t r a t i o n Liquids i n l i q u i d s Concentration (ppm) = (v,/(Vo
t va))10
6
va = volume of s o l u t e and V o = volume of s o l v e n t ( d i l u e n t ) .
A t concentration < 500 ppm, t h e va term i n t h e denominator may be dropped.
This
g i v e s a maximum o f 5.0% r e l a t i v e e r r o r .
Examp Ie :
Approximation: conc.
(ppm
Relative error
lo6
= (0.1
mi/10 m i ) x 4 = 1 x 10
lo6
= ( ( 1 x 104)-(0.99
x 104)/(0.99 x
= ((0.01 x 1O4)/(0.99
x
x
=
lo4))
lo4))
x 100
x 100
= 0.0101 x 100 = 1.01% Solids i n l i q u i d s 1 mg/e expressed as g/ma i s : 1 mg/a = 0.001 g/1000 me = 1 part/1,000,000 = (1 part/(l
1 ug/mt expressed as mg/pl 1 ug/t = 0.001 mg/1,000
p a r t s = 1 ppm x
mg/a = 1 ppm; ng/ml = ppb;
= 1 ppm
is:
u l = 1 part/1,000,000
= (1 part/(l x Therefore:
lo6)) lo6
ug/mi = 1 ppm;
p a r t s = 1 ppm
lo6)) lo6
= 1 ppm
pg/e = 1 ppb;
ng/ul = 1 ppm
l a t t e r r e s t r i c t i o n on sample i n j e c t i o n i s necessary ( 1 ) t o minimize band spreading as t h e sample migrates through t h e column,
and ( 2 ) t o be c e r t a i n a i l sample components
begin t h e separation process a t t h e t o p of t h e column as c o n t r a s t e d t o being spread over several column volumes a t t h e i n i t i a l t i m e to. More d e t a i l s about t h e v a r i o u s
149 sample i n j e c t i o n technlques out1 ined below may be found I n d l s c u s s l o n s by Debbrecht ( r e f . 37), SchiI I ( r e f . 381, Cavagnol and Betker ( r e f . 39). Szonntagh ( r e f .
40) and
Lebbe ( r e f . 41).
5.3.1
Syringe i n j e c t i o n The most common mode o f l i q u i d sample i n t r o d u c t l o n I s by d i r e c t s y r i n g e i n j e c -
t i o n i n t o t h e column c a r r i e r gas stream.
For l i q u i d samples t h e chromatographer uses
a 5.0 o r 10.0 P I s y r i n g e and normally I n j e c t s 1.0-2.0 P I o f sample. a 1.0 p l sample f r a n a 10.0 P I released.
This e r r o r
needle (ca. 0.8 P I )
The i n j e c t i o n o f
s y r i n g e may i n t r o d u c e 2-5% e r r o r I n t h e a c t u a l volume
i s caused by t h e a d d i t i o n a l
sample volume h e l d back by t h e
and t h e t i m e necessary t o inJect,
t h e s y r i n g e from t h e i n j e c t i o n p o r t .
depress t h e plunger and remove
The common s y r i n g e f o r
l i q u i d samples has a
glass b a r r e l and a metal o r polymer-coated metal as t h e plunger. under h i g h pressure should have metal b a r r e l s (e.g.,
L l q u l d s sampled
brass o r s t a i n l e s s s t e e l ) .
t h e sample must be i n j e c t e d e i t h e r c o l d o r a t a h i g h temperature,
If
t h e b a r r e l may be
enclosed i n a j a c k e t which may have e i t h e r c o o l i n g o r h e a t i n g I l q u i d s c i r c u l a t i n g through it. Gas samples may a l s o be i n j e c t e d by syringe; necessary.
The authors have found t h a t g a s - t i g h t
however,
a gas-tight
syringe i s
sampling s y r i n g e s w i t h v a l v e s such
as those manufactures by P r e c i s i o n Sampling C o r p o r a t i o n (Baton Rouge,
LA,
U.S.A.),
a r e more c o n v e n i e n t and r e s u l t i n b e t t e r r e p e a t a b l l l t y o f sample volumes t h a n gas-tight
syringes which do not i n c o r p o r a t e push-button
valves a t t h e bottom o f t h e
Proper a l i q u o t removal w i t h t h i s gas s y r l n g e I s ensured i f t h e f o l l o w i n g
barrel.
steps a r e followed: container,
(1)
i n s e r t s y r i n g e ( w i t h s y r i n g e v a l v e open)
i n t o t h e sample
( 2 ) p u l l plunger back t o a b a r r e l marking i n excess o f t h e d e s i r e d sample
volume f o r i n j e c t i o n ,
( 3 ) s l i d e t h e plunger back and f o r t h several times t o minlmize
a sample a l i q u o t f r a c t i o n a t i o n ,
( 4 ) s e t t h e plunger a t t h e b a r r e l marking i n step 2
and c l o s e push-button valve a t base o f s y r i n g e b a r r e l ,
( 5 ) compress t h e plunger t o
r e q u i r e d sample volume marking and open and c l o s e t h e v a l v e t o e q u a l i z e excess) pressure i n t h e syringe.
(relieve
T h i s type o f s y r i n g e I s recommended when p e r f o r m i n g
headspace a n a l y s i s (see Section 4.2.2.1).
5.3.2
Gas sampling valves There a r e numerous gas-sampling
scientist. h i g h or
low pressure,
which have been used. A number o f
i n l e t systems a v a i l a b l e t o t h e environmental
Systems a r e a v a i l a b l e f o r sampling gases from l i q u i d s , and c o r r o s i v e samples.
from systems under
We w i l l mention t h e v a r i o u s systems
The d e t a i l s o f o p e r a t i o n may be found I n t h e r e f e r e n c e s c i t e d .
these sample systems have very
l i t t l e applicability
t o environmental
samples, but t h e i r a v a i l a b i l i t y and a p p l i c a t i o n a r e useful I n f o r m a t i o n . By-pass sample systems are o f two types:
(1)
constant volume p i p e t s and
( i i ) by-pass sample v a l v e f o r s y r i n g e i n J e c t i o n .
( 1 ) Constant-volume p i p e t s ( r e f s . 42 and 4 3 ) .
These may be made o f g l a s s o r
150
stalnless steel.
In the system.
The llpipet" is a detachable piece of tubing which is easily mounted The volume of these plpets can be from 0.1 ml (I00
to 10.0 mi.
Dependlng on the volume necessary, the llplpettfmay be made from capillary tubing, large I.D. tubing or a bulb. They are similar to gas sampling valves in that they must be flushed wlth sample prior to sample introduction. to large volume samples.
This restricts their use
Another disadvantage is the need for a pressure measurement
and volume calibration.
( i i ) By-pass sample valve for syringe injection. Syringe injection (Section 5.3.1) may be combined wlth a constant volume pipet (see above). The pressure in the by-pass loop is reduced to atmospheric conditions before injection of the sample. Smal I error is incurred i f the syringe is leak-proof;
the gas pressure in the loop
Is carefully controlled and the injection technique remains constant. 5.3.3 Automatic sample iniection The application of gas chromatography to process and/or quality control analyses requires dedicated lnstrument(s). systems of this type.
A number of restrictions are imposed upon
They should be able to be activated by remote controls, be
able to operate overnight or over a weekend, must be leak-proof, and should not have valve systems easily contaminated.
The valve systems for these sample systems work
by electrical controls, electromagnetic controls or electromechanical controls.
The
type of valves used in these sample injection systems may be piston-type valves, diaphragm
valves,
rotating-plate
valves
or
linear-sliding
valves,
Automatic
sample-injection technique can be applied to liquid, solid, and gas samples.
The
reader is referred to the information provided b y Shill (ref. 38) and Jeffery and Kipping (ref. 42) for additional information and details of the sampling systems. 5.3.4 Miscellaneous injection systems Several injection systems which are for specific types of samples have been discussed in the literature.
Since these do not have universal application to many
sample types, they will be mentioned with
little discussion.
The environmental
analyst having use of such systems should consult the original literature. Glew and Young (ref. 44) designed a l i q u i d nitrogen trap injection system for small amounts of condensable gases.
A trap that is more practical (does not have to
The be mounted on the gas chromatograph) was used b y Russel I and Bednas (ref. 4 5 ) . former system requires mounting on the instrument as well as flushing the sample (once it has reached room temperature) from the U-tube sample holder onto the column, whereas the latter system involves injecting the sample through a septum wlth the needle located at the base of the sample chamber. It is possible to generate the gas sample in the gas Chromatograph.
Any
volatile gas, e.g., C02, HZS, NH3, which can be liberated from a sample b y use of the proper reagent (acid or base) inside a small reactor connected to the gas chromatograph may be determined in this manner.
Using this technique, the detector
response may be calibrated by the same technique using a pure compound.
151 The components o f i n t e r e s t may be removed from a stream o f gas by a d s o r p t i o n on an
i n e r t material,
heating
in
a
e.g.,
desorption
a c t i v a t e d charcoal chamber
attached
o r Tenax-GC
to
the
gas
and then r e l e a s e d by
Small
chromatograph.
c o n c e n t r a t i o n s may be determined by passing a l a r g e volume o f sample t h r o u g h t h e adsorbent tube (see Chapter 3, Section 3.4.1). The a n a l y s i s o f chemist.
sol I d samples
presents several
options t o the a n a l y t i c a l
He may i n J e c t t h e s o l i d sample d i r e c t l y i n t o t h e gas c h r o m a t o g r a p h ,
d e p o s i t i t on a
d i s s o l v e it i n a s u i t a b l e s o l v e n t and t r e a t It as a l i q u i d sample, piece of stainless steel low-melting
metal
(e.g.,
o r p l a t i n u m gauze o r e n c a p s u l a t e
wood's
metal,
m.p.
60.5T)
or glass
it i n a piece of (ref.
sample i n j e c t i o n i s n o t used t o any g r e a t e x t e n t f o r environmental
45A).
Solid
samples.
Most
s o l i d samples are u s u a l l y e x t r a c t e d w i t h an a p p r o p r i a t e s o l v e n t and then t r e a t e d as a I i q u i d sample.
Employing t h i s technique p l a c e s r e s t r i c t i o n s on t h e a n a l y s t .
s o l v e n t used must ( 1 ) n o t r e a c t w i t h any o f t h e components o f t h e sample,
'The
( 2 ) not
leave any sol i d r e s i d u e remaining unless one i s sure t h a t t h e components o f I n t e r e s t have been dissolved,
and ( 3 ) not e l u t e w l t h any o f t h e components of I n t e r e s t .
The
technique o f d e p o s i t i o n o f t h e s o l l d sample on a p i e c e o f s t a i n l e s s s t e e l o r p l a t i n u m gauze has t h e a d v a n t a g e s t h a t components o f i n t e r e s t ,
( 1 ) s o l v e n t peaks w i l l n o t i n t e r f e r e w l t h t h e
( 2 ) d i l u t e s o l i d samples may be concentrated on t h e gauze,
and ( 3 ) n o n - v o l a t i l e components u s u a l l y w l i I n o t e n t e r t h e column and c a u s e contamination.
Encapsulatlng s o l i d samples i n e i t h e r a low m e l t i n g metal or g l a s s i s
usad when t h e sample v o l a t i l e m a t e r i a l s are a p a r t o f t h e a n a l y s i s scheme. 5.4 COLUMNS AND COLUMN SELECTION FOR SEPARATION AND ANALYSIS The v a r i e t y o f columns a v a i l a b l e t o t h e environmental chemist I s confusing, t h e least.
at
A n a l y t i c a l chemists who have been worklng I n t h e area o f s e p a r a t i o n s have
t h e i r speclal columns f o r s o l v i n g most environmental problems b u t t h e n o v i c e becomes bewildered when s e l e c t i n g a column f o r a p a r t i c u l a r t y p e sample.
I f t h e sample he
has I s governed by some r e g u l a t o r y agency's procedure, t h e column and c o n d i t i o n s a r e predetermined.
The acceptance o f procedures p u b l l s h e d by governmental
agencies can
r e s u l t i n a l a b o r a t o r y stocked w i t h numerous t y p e s and lengths o f columns. The wise a n a l y t i c a l chemist w i l l have a stock o f "dependable" columns t o meet most problems t h a t may a r i s e .
A tldependabIetl
i n d i v i d u a l c h e m i s t s b u t one such l ' l n v e n t o r y ' '
i n v e n t o r y means d i f f e r e n t t h i n g s t o o f columns w o u l d i n c l u d e :
molecular s i e v e column (5A o r 13x1 f o r s e p a r a t i o n o f gases such as CH4,
(2)
a porous polymer column
and ( 4 ) a Carbowax 20M column f o r
phenols,
for the
( 3 ) Apiezon L column f o r
h i g h b o i l i n g a l i p h a t i c and aromatic hydrocarbons and s i m i l a r non-polar components,
a
H2, 02, CO and
(Porapak o r Chromosorb Century s e r i e s )
separation o f gases and low molecular weight components,
(1)
t y p e sample
p e s t i c l d e s and halogenated
compounds. The inexperienced chromatographer
i s n o t completely a t a disadvantage.
First,
152 i f he needs t o separate a m i x t u r e he should know q u a l i t a t i v e l y t h e make-up o f t h e S t a r t l n g w i t h t h i s I n f o r m a t i o n and f o l l o w i n g t h e general r u l e t h a t I l l kes
sample.
d i s s o l v e I i k e s l l he can proceed t o s i m p l i f y h i s problem. Rohrschneider ( r e f s . 46 and 4 7 ) represent v a r i o u s solute-solvent f o r donor-type for
interactions,
acceptor-type
2-butanone.
nitromethane f o r d i p o l e - t y p e
interactions.
characterize stationary
to
i n i t i a l l y chose t h r e e compounds (probes
i n t e r a c t i o n s f o r t h e process o f s o l u t i o n :
When
l i q u i d phases,
his
polarity
ethanol
I n t e r a c t i o n s and p y r l d i n e scale
was
broadened
two more probes were added:
to
benzene and
These two compounds extended t h e i n t e r a c t i o n t y p e processes t o i n c l u d e
e l e c t r o n d e n s i t y and hydrogen bond acceptor, r e s p e c t i v e l y . McReynolds ( r e f . 48) added f i v e more probes and changed t h r e e o f t h e o r i g i n a l Rohrschneider
probes,
i.e.,
n i t r a n e t h a n e and 1-butanol that
these t e n
(squalane)
and
squalane).
2-pentanone
f o r ethanol.
probes (compounds) the
stationary
The d i f f e r e n c e
for
2-butanone,
The b a s i s o f
are compared on
phase
in
question
i n t h e adjusted
1-nitropropane
a non-polar
stationary
(considered
more
t i m e or
adjusted
retention
volume o f t h e probe on t h e two columns expressed as r e t e n t i o n index, t a b u l a t e t h e AI(McReynolds c o n s t a n t ) values. system (see Section 5.6.1.2)
The b a s i s f o r
i s a homologous s e r i e s o f
The r e t e n t i o n index of each n-alkane
n-alkanes.
atoms i n t h e molecule, These comnercially
available
I,
polar
phase than
retention I s used t o
the retention
even-numbered
Is
Index
carbon atom
i s 100 t i m e s t h e number of carbon
hexane = 600, octane = 800, e t c .
i.e.,
McReynolds
for
t h e McReynolds constants
constants
have
l i q u i d phases.
McReynolds constants for a l l
been
tabulated
for
all
Most chromatographic s u p p l i e r s
the
common
furnish the
To use these constants one
l i q u i d phases they s e l l .
s i m p l y matches t h e t y p e compounds t o be s e p a r a t e d w l t h t h e a p p r o p r i a t e p r o b e compounds and s e l e c t s t h e I l q u i d phase w i t h t h e .highest McReynoIds constant.
Table
5.5 matches t h e ten-probe compounds w i t h sample compounds which would be expected t o behave s i m i l a r l y . L i q u i d phases which have e q u i v a l e n t McReynolds constants f o r a l l t e n probes compounds are s i m i l a r t y p e phases: s i l i c o n e ) o r OV-17
and SP-2250
e.g.,
SE-30, OV-1,
(both methyl/phenyl
OV-101 and DC-200 ( a l l methyl Most books on gas
silicones).
chromatography have a s e c t i o n d i s c u s s i n g column s e l e c t i o n and t h e use o f t h e McReynolds constants; 49).
The t a b l e s
an e x c e l l e n t book on t h i s t o p i c
I n t h e appendix of
Suplna's
book
i s t h e one by Supina ( r e f .
list ail
the
l i q u i d phases
in
numberical order according t o each probe compound and a l s o a l p h a b e t i c a l l y by l i q u i d phase.
These t a b l e s g i v e t h i s book an a d v a n t a g e o v e r o t h e r
listings of the
McReynolds constants. Glass open-tubular equipment
in
c a p i l l a r y columns
( O TC ) have become a standard p i e c e o f
many l a b o r a t o r i e s and a r e no longer considered t o be a "novel" c o l umn.
Grob and Grob ( r e f . 50) compared two chromatograms of t h e same lake water e x t r a c t on a packed and a wall-coated open t u b u l a r (WCOT) g l a s s column.
Although t h e c a p i l l a r y
153
TABLE 5.5 McReynolds probe compounds compared to sample compounds Sample compounds whlch should
McReynold compound
behave similarly Aromatics and olefins Alcohols and phenols (weak acids) Aldehydes, ketones and esters Nitro and nitrile compounds Bases and aromatlc heterocycles Alcohols and branched chain compounds Halogen compounds Acetylenes and possibly olefins Ethers and bases Non-polar steroids, terpenes and naphthenic compounds.
Benzene 1 -But atlo I 2-Pentanone 1-Nitropropane P y r id i ne 2-Methyl-2-pentanol 1-lodobutane 2-0ctyne 1.4-Oioxane cis-Hydrindane
column was 12 times as long as the packed column, there was only 1 % as much stationary phase on the walls of the WCOT column.
As a result, smaller sample sizes
had to be used with the capillary column as with the packed column (0.010 P I for the capillary column to 2.0
pI
for the 0.125 In. O.D.
packed column).
Four times as many
component peaks (very narrow and symmetrical) appeared from the WCOT column as with the packed column, meaning higher separation efficiency.
Basellne stability of the
capillary Separation is an indication of nearly complete sample resolution, optimum experimental conditions and thermal stability. m m I.D.)
Thin-film, narrow-bore columns (0.25
are more efficient than large-bore (0.5 m I.D.)
efficiency of narrow-bore columns decreases rapidly
(i.e.,
plates per meter decreases) as film thickness Increases capillary columns (0.5 mn I.D.) pm
(>
columns.
However, the
number of theoretlcal 1.5 pm).
The large-bore
can accommodate stationary phase fiims u p t o 2.0-2.5
and thus are able to be used with direct
Injection techniques,
larger sample
These added advantages do bring sizes, and a larger sample concentration range. 3 disadvantages: lower column efficiency (ca. 10 plates per meter) and longer analysis times.
The outstanding advantage of capillary columns versus packed columns
is that the choice of stationary phases becomes less of a problem because their efficiency is so high.
This translates into the fact that a smaller number of phases
will be necessary, 1.e..
a nonpolar phase (e.g.,
SE-30 or OV-101), a polar phase
(e.g., Carbowax ZOM), and an Intermediate polar phase (e.g., OV-17). This does not imply that packed columns will disappear from the laboratory. They will always have a place for the separation and analysis of samples containing
10 components, low molecular-weight gases, preparative work and separations coupled with detectors (e.g., infrared or nuclear magnetic resonance) for low sensitivity. The reader i s referred to a number of excellent books concerning capillary columns in order of their publication:
Open Tubular Columns in Gas Chromatography b y
154 51 1,
Ettre (ref.
Gaschromatographie,
Chromatography by Freeman
(ref.
by Schmberg ( r e f .
53)
521,
High R e s o l u t l o n Gas
and Gas Chromatography w i t h Glass C a p i l l a r y
Columns by Jennings ( r e f . 54). An important concern i n c a p i l l a r y chromatography i s q u a n t i t a t i o n . most common mode o f sample i n t r o d u c t i o n onto c a p i l l a r y columns which a s y r i n g e - i n j e c t e d column and a vent, usually
seen
I s w i t h valves
wide
boiling-point
range
samples
T h i s problem i s
and/or
polar
compounds.
increasing t h e I n l e t temperature may help i n some cases, b u t it i s n o t a c u r e - a l l t h i s problem.
in
sample i s dynamically s p l i t i n a heated tube between t h e
d i s c r i m i n a t i o n o f sample components can occur.
with
Because t h e
The c o l d on-column
for
I n j e c t i o n i n t o an unheated i n j e c t i o n p o r t has been
demonstrated t o be i n d l s c r i m i n a t e as f a r as t h e sample components are concerned ( r e f . 54A).
A s p e c i a l l y designed i n l e t f o r c o l d on-column
c o m m e r c i a l l y a v a i l a b l e from H e w l e t t P a c k a r d Co., Strumentazlone ( r e f s . 548 and 54C)). method cannot be automated.
i n j e c t i o n i s needed. Avondale,
(This i s
PA and C a r l o E r b a
U n f o r t u n a t e l y , t h i s c o l d on-column
injection
(See Appendix 1 1 . )
5.5 DETECTION OF SAMPLE COMPONENTS A number o f d e t e c t o r s a r e a v a i l a b l e t o t h e environmental f o r use i n gas chromatography ( r e f s . 55-57).
a n a l y t i c a l chemist
The two most w i d e l y used d e t e c t o r s a r e
(FID) and t h e e l e c t r o n c a p t u r e d e t e c t o r
t h e flame i o n i z a t i o n detector
(ECD).
flame I o n i z a t i o n d e t e c t o r destroys t h e sample d u r i n g i t s measuring process;
a predetermined percentage o r r a t i o o f t h e column
by use o f gas stream s p l i t t e r , effluent
can
Identification.
be
diverted
The
however,
away
from
the
detector
for
further
study
and/or
I n t e r f a c i n g t h e gas chrcinatograph w i t h a mass spectrometer ( r e f . 58)
provides a means o f both i d e n t i f i c a t i o n and q u a n t i f i c a t i o n . To o b t a i n good gas chromatography-mass necessary techniques,
to
optimize
the
gas
spectrometry (GC-MS)
chromatographic
and t h e i n t e r f a c e techniques.
method,
operation,
mass
As a f i r s t e s t i m a t i o n ,
pumped mass spectrometer can r e c e i v e 1 cm3 atm/min (1.3 x c a r r i e r e f f l u e n t gas.
the
it i s
spectrometric
a differentially
l i t e r Torr/sec) o f the
The mass spectrameter can accomodate t h e c a r r i e r e f f l u e n t
from e i t h e r packed o r open-tubular w i t h a gas chromatographic-mass
columns.
To achieve good q u a l i t a t i v e a n a l y s i s
spectrometric system,
pure chemicals a r e necessary.
The best gas chromatographic-mass spectrometric d a t a come from chromatography systems which have high column e f f i c i e n c y p r i o r t o t h e mass s p e c t r o m e t r i c a n a l y s i s . high column e f f i c i e n c y i s not always necessary because unresolved peaks can, cases, be I d e n t i f i e d by GCMS. troublesome using t h i s
technique,
especially
if
the
compounds being e l u t e d
chemically s i m i l a r ( a l c o h o l s and aldehydes a r e t h e most troublesome). probably
react
i n many
The t a i l i n g of peaks from p o l a r compounds can be very
chemically with t h e adsorption s i t e s o f
whereas non-ionlc s u r f a c t a n t s probably f u n c t i o n more as w e t t i n g agents.
are
This problem
may be m i n i m i z e d by a d d i n g s u r f a c t a n t s t o t h e l i q u i d s t a t i o n a r y phase. surfactants
This
Ionic
t h e column,
Some common
155
surfactants used are: lgepal CO880, Alkaterge T, and Span 20. The carrier gas used in GC-MS must ( 1 ) be chemically inert, (24 not interfere with the mass spectrometric pattern, ( 3 ) enable enrichment of the sample components in the gas stream, and ( 4 ) not interfere with the total ion detection. The most commonly used carriers in GC-MS are helium, hydrogen, and nitrogen. Helium is the best. Hydrogen interferes with total ion detection and nitrogen does not always enrich the sample components in the carrier stream, interferes with the total ion detection, and interferes with mass spectral patterns' in the low mass range. Additional qualitative information may be obtained when specific chromatographic detectors are used in combination with the mass spectrometer. For example, a flame photometric detector for compounds containing phorphorus and/or sulfur, the coulometric detector for compounds containing sulfur, nitrogen and/or halogens, the thermionic detector for compounds containing phosphorous, halogen and/or nitrogen, and the electron capture detector for compounds containing halogen and/or sulfur as well as functional groups, i.e., conjugated carbonyls, di- and trisuifides, and nitriles. Gas chromatographic detectors may be placed in two categories: ( 1 1 detector response is concentration-dependent, or ( 2 ) mass-flow-rate dependent. The sensitivity is the ability of the detector to respond to compounds entering its environment. The sensitivity of concentration-dependent detectors is expressed as: Sensitivity = (peak area x flow-rate)/sample weight 3
= (mV x cm /min)/mg
(5.17) (5.18)
The sensitivity of mass-flow-rate dependent detectors is expressed as: Sensitivity = peak area/sample weight =
A/g
(5.19) (5.20)
The lower limit of detection (LLD) is the smallest amount of sample which.will cause a measurable signal (i.e., twice the noise) over the noise signal. This is also known as the minimum detectable limit (MDL) or minimum detectable quantity (MDQ). Detector specificity is the ratio of the detector response of a contaminant (interfering substance) to that of the desired component. Detector linearity is the range over which the detector maintains constant sensitivity to increasing concentration of a specific component, i.e., it is the range over which the response is directly proportional to the mass flow-rate or the concentration of a component. If a larger quantity passes through the detector the output is no longer proportional and the detector is "saturated." The component peak in the non-I inear range wi I I be rounded at the apex. Detectors are also described by their response time (time necessary for the detector signal to reach 63% of its true value). A recorder which has a response time slower than that of the detector limits the detector response time.
156 Table 5.6 sumnarizes some o f t h e more w i d e l y used detectors.
The a n a l y t i c a l
c h e m i s t must choose t h e d e t e c t o r on t h e b a s i s o f t h e t y p e o f compound t o be q u a n t i f l e d and i t s c o n c e n t r a t i o n range i n t h e samples. TABLE 5.6 Widely used gas chromatographic d e t e c t o r s
Type
Components detectable
Linearity
Flame i o n i z a t i o n
Organic
5 x
( F ID)
compounds
7 x
E I e c t r o n capture
Halogenated,
10' -1 OL
(ECD)
oxygenated
Response category
lo6lo7
*
MFR*
Minimum detectable Iimits
10-l'
Samp I e compound
g(C)/sec.
Propane
moles/cm3
Lindane
-
C**
compounds Flame photometric
Phosphorous
5 x 102(S) MFR*
and s u l f u r
1 x 103(P)
10-l' g(S)/sec 2 x 10-1'g
Thiophene
(FPD)
compounds
l o g / l o g scale
(P)/sec
phosphate
Phorphorous
lo3
5
Azobenzene
Thermionic/alkal I
MFR*
10-l~
containing
5
compounds
(P)/sec
1 o4
Organic,
-
(N)/sec
flame (TID)/(AFID) and n i t r o g e n
Thermal conducti-
Tr i b u t y I
C**
Tr 1buty I
10-l~
5 x 10-l'
-
phosphate g/ml
Propane
1 norgan Ic,
v l t y (TCD)
compounds *Mass f l o w r a t e dependent,
(mv/mg/sec)
**
Concentration dependent,
(mv/mg/ml) -
Permanent gases may be detected i n t h e ppb range w i t h t h e use o f a h e l i u m detector.
A beta-source
(250 mC) e x c i t e s t h e helium atoms which i n t u r n e x c i t e
molecules having an i o n i z a t i o n p o t e n t l a l lower than t h a t of helium.
Representative
If t h e gases t o be determined a r e i n t h e ppb range, a 400 V e l e c t r i c f i e l d w i l l y i e l d measurable i o n c u r r e n t s o f about 4 x i o n i z a t i o n p o t e n t i a l s a r e shown i n Table 5.7.
10' A.
The helium d e t e c t o r r e q u i r e s h i g h l y p u r i f i e d h e l i u m for t h e c a r r i e r gas and
has a s e n s i t i v i t y
h i g h e r than t h e thermal
ionization detector (FID).
conductivity c e l l
(TCD) o r
the
flame
157 TABLE 5 . 7 I o n i z a t i o n p o t e n t i a l s (eV) o f s e l e c t e d gases
10.4
H2S O2 s02
co2
15.5
N2
13.1
co
14.5
CH4
12.5
15.6
14.1
H2 Ar
15.7
14.4
Ne
21.5
He
24.5
5.6 QUALITATIVE AND QUANTITATIVE INFORMATION
The realm o f q u a l i t a t i v e and q u a n t i t a t i v e a n a l y s i s i n GC i s much broader than t h e 'luser''
o f chromatography r e a l l z e s .
To t h e a n a l y t i c a l chemist these two d l v l s l o n s
o f a n a l y s l s are v e r y s p e c i f i c categories.
I n t h e general sense o f t h e word,
qualita-
t l v e denotes t h e k i n d s o f components present, whereas q u a n t i t a t i v e conveys t h e amount of
each
component
chromatographic
that
Is
present.
Obtaining
system i s a s t r a l g h t f o r w a r d
quantitative
data
from
process once t h e chromatographer
a has
e s t a b l i s h e d accurate q u a l i t a t i v e data. There
I s no e r r o r - p r o o f
solely from t h e chromatogram.
way o f
obtaining
reliable
qualitative
information
There a r e a number o f very b a s i c reasons f o r t h i s .
( 1 ) The number o f peaks present from an unknown sample i s no guarantee o f t h e number
of components I n t h e sample. t i m e ( o r volume)
Several components c o u l d have t h e i d e n t l c a l r e t e n t l o n
under t h e c o n d i t i o n s t h a t t h e .separation
( 2 ) The
was obtalned.
assumption t h a t one makes i s t h a t t h e e n t l r e sample was t r a n s p o r t e d through t h e column.
P a r t o f t h e sample may be deposlted a t t h e t o p o f t h e column and never moved
down t h e column. s t a t l o n a r y phase,
( 3 ) Improper c o n d l t i o n s ( i . e . , etc.)
temperature,
pressure,
column
may have been used and e i t h e r p y r o l y s i s o f t h e sample
components o r r e a c t i o n o f t h e sample components w i t h t h e column r e s u l t e d .
What t h i s
means t o t h e a n a l y t i c a l chemlst i s t h a t each peak must correspond t o a s i n g l e sample component.
The authors wish t o emphasize t h i s p o i n t because we have seen many
persons come t o t h e wrong c o n c l u s i o n uslng t h e chromatogram as t h e i r s o l e source o f information. component,
I f t h e chromatographer succeeded I n s e p a r a t i n g each and every sample there
i s no absolute method o f e s t a b l i s h i n g e x a c t l y t h e correspondence
between peaks and sample components from r e t e n t l o n data alone. 5.6.1 Q u a l i t a t i v e a n a l y s l s by qas chromatography
Q u a l l t a t i v e data I n gas chromatography gories of
Information:
(1)
a r e o b t a l n e d from two general c a t e -
I n f o r m a t i o n o b t a i n e d from r e t e n t i o n data and ( 2 )
formation obtalned by employing a u x l l l a r y technlques.
In-
R e t e n t i o n 'data a r e a f u n c t i o n
o f t h e p a r t l t l o n c o e f f i c i e n t ( a thermodynamic f u n c t i o n ) ;
however,
t h e y may n o t be
158 t o o i n f o r m a t i v e unless t h e component make-up of a sample i s known o r t h e components a r e a l l members of an homologous series.
The use of
r e t e n t i o n data t o
identify
components of a complete unknown sample leaves much t o be desired. 5.6.1.1
Retention data.
Retention data i n terms o f tlme,
i.e.,
retention time
It
(tR) and adjusted r e t e n t l o n t i m e (tIR) a r e t o o dependent upon column parameters. i s b e t t e r t o use r e t e n t l o n volume,
VR. (5.21)
VR = tRFc
adjusted- r e t e n t i o n volume, V I R V I R = (tR- t M ) F c
n e t r e t e n t i o n volumn, V
VN = j V l
(5.22)
N
(5.23)
R
o r s p e c i f i c r e t e n t i o n volume, V
9 (5.24)
where Fc = volumetric f l o w r a t e of mobile phase a t column o u t l e t i n ml/mln.,
tM= r e t e n t i o n t i m e of an unretained peak, j = p r e s s u r e g r a d i e n t c o r r e c t i o n f a c t o r = 3/2 ((pl/po)2-l)/((pi/po)3-l
);
pi
and po a r e t h e mobile phase i n l e t and o u t l e t pressures; T = column temperature
(OK),
and
wL = welght of s t a t i o n a r y phase i n column,
because t h e s e p a r a m e t e r s a r e l e s s dependent upon column c o n d i t i o n s . r e l i a b l e term f o r q u a l i t a t i v e a n a l y s i s I s r e l a t i v e r e n t e n t l o n volume, r
The more
a/b'
because one i s canparing t h e r e t e n t i o n volume of a component t o t h e r e t e n t i o n volume o f a s t a n d a r d s u b s t a n c e under t h e same column c o n d i t i o n s . standard I s dependent upon ( 1 )
i t s a v a l l a b i l l t y and ( 2 )
other components I n t h e sample (should be half-way
The c h o i c e
of t h e
I t s r e t e n t i o n compared t o
i n t h e range o f r e t e n t i o n volumes
being compared). Additional qualitative informatlon may be obtained If one separates the sample components on two columns of different polarity and plots the log adjusted retention volume ( V f R ) versus the reciprocal of absolute column temperature. The slopes of the data lines from each column usually are different and even the order of elution of some components change. 5.6.1.2 Retention Index.
The retention index of Kovats (refs. 59-62) compares
retention data to a series of standards, rather than one compound standard. series
of
standards
was
the
even-carbon-atom
n-alkanes
and
their
index,
definition, was 100 times the number of carbon atoms in the molecule, i.e., was 200;
hexane was 600, etc.
The
by
ethane
This index system is described mathematically as
I = lOON t 100( logVIR(A)-logVIR(N)I / ( logVIR(n)-logVIR(N))
(5.26)
where A = unknown component;
N and n
= the smaller and larger n-alkanes which bracket the unknown component
A.
The n-alkanes which are chosen should give peaks compIetely separated from the sample component.
Hupe (ref. 63) has constructed a nomogram from which one may calculate I
values without doing the lengthy calculations. Polar compounds display greater temperature dependence than do non polar compounds on the Kovats' index scale.
When reporting temperature dependent data it
is useful to give the temperature coefficient of the I value In reference to a 10' C temperature change plus the temperature range covered, e.g., (5.27) Some general guidelines for using thls index from data collected on a single stationary phase are:
( 1 ) as the number of carbon atoms increases in an homologous
series, the retention index Increases b y 100 units,
( 2 ) the same functional groups
on compounds having similar structures increase the retention extent,
index to the same
( 3 ) a simple relationship exists between boillng point and retention index
on a nonpolar phase (thus index systems can be used to predict boillng points of unknown components) and the difference between the retention indlces of
isomeric
compounds can be approximated by the difference in boiling points ( 6 1 = 56 b.p.). Guiochon (ref. 64) extended Kovatsl work on the index system to molecular structure and concluded that
( 1 ) I values of nonpolar compounds are usually constant
using any stationary phase,
(2) I values for some components on different polarlty
phases are characteristic of molecular structure, same on nonpolar stationary phases, and
( 3 ) I value of any compound is the
(4) the presence of unsaturatlon sites,
functional groups and rings in a compound add incremental values to the basic
160 retention Index. The Kovats retention index Is more accurate than other retention data parameters, provided the support material causes no adsorption effects with polar compounds, the column temperature and the mobile phase flow rate are controlled, and the sample size is in the linear portion of the partition isotherm.
Reproducibility of
retention indices are very good for nonpolar compounds and within 2% for polar compounds. 5.6.1.3 Auxiliary techniques. The use of retention data does not give the analytical chemist unequivocal identification of sample components so other techniques must be employed.
This additional
information may be obtained from
modification of the chromatographic system per se or b y employing measurements of detection other than the usual chromatographic detectors.
(i)
Chromatographic measurements may be obtained b y
detector or a combination of detectors or As pointed out in Section 5.5,
using a specific
(1)
( 2 ) using other chromatographic systems.
various detectors respond t o certain types of
compounds or functional groups, e.g.,
electron capture detectors for compounds con-
taining halogens, the flame photometric detector for phosphorus- and sulfur-contain-
ing molecules, and radioactive detectors f o r the detection of labeled compounds (ref. Additional information may be obtained b y doing a preliminary separation using liquid chromatography (Chapter 6 and ref. 66), thin-layer chromatography (ref. 6 7 ) or paper chromatography (ref. 68). Golovkin et al. (ref. 69) combined retention indices and selective detectors for the quaiitatlve identification of halogen, phosphorus and
65).
sulfur containing pestlcides. ( i i ) Qualitative Information may be obtained b y combining other detection tech-
niques than the usual chromatographic detectors.
The combination of GC and MS is a
widely used system for qualitatively identifying components in environmental samples (ref. 70). Dioxin in tissue has been determined b y the combination of capillary GC and atmospheric pressure negative chemical ionization (ref. 71);
mirex pollution in
water has been assayed b y using capillary GC-MS (ref. 721, and the light fractions in tar have been identified using GC-MS (ref. 73).
Infrared spectro-chemical detection
was used by Baranski et al. (ref. 74) to study the catalytic properties of NaHY zeolites, whereas cresols in work area air were detected b y 75).
Vistocco and
Beggio (ref.
Sulfur compounds in flue gases were identified a n d determined b y non-flame,
source-induced sulfur fluorescent detectors (ref. 76) and Chow and Karmen (ref. 77) Derivatives were determined primary amines b y on-line fluorescence measurements. made of amino acids (oxazolidinones) and measured b y flame ionization detection (ref. 78).
Pannatier and Testa (ref. 79) have written a review article about the use of
derivatives to aid in the identification of components in unknown mixtures. ancillary technique which may be mmbined with GC is that of pyrolysis.
Another
Kessel'man
and Ogloblina (ref. 80) did a preliminary separation of organic compounds with thirrlayer chromatography and then pyrolyzed the spots followed by GC.
Eight Bacillus
161 microorganisms i n c e l l s were i d e n t i f i e d by p y r o l y s i s GC by Chou ( r e f . 81). 5.6.2
Q u a n t i t a t i v e a n a l y s i s by gas chromatography Q u a n t i t a t i v e GC i s concerned w i t h how much o f
sample.
a component
i s present
in a
For a more d e t a i l e d coverage of t h e v a r i o u s techniques o f obta4ning q u a n t i -
t a t i v e data, t h e reader i s r e f e r r e d t o t h e e x c e l l e n t chapter by Debbrecht ( r e f .
82)
and t h e book by Novak ( r e f . 83).
All
t h e commonly used d e t e c t o r s i n GC (TCD,
differential
chromatogram,
flows through t h e c e l l
FIO,
ECD,
FPD,
etc.)
produce a
I f c o n d i t i o n s a r e i d e a l and t h e column e f f l u e n t
i.e.,
uniformly,
one o b t a i n s peaks which a r e gaussian
i n shape.
These may be mathematically described by eqn. 5.28:
n = 0.5m
-
-1/2 (dt)
i2/4Dt
(5.28)
where n = c o n c e n t r a t i o n o f gas molecules;
m = t o t a l quantity of d i f f u s i n g material; n = constant = 3.1416;
D = diffusion coefficient; t
time; and
i = distance molecules d i f f u s e .
The s i z e o f t h e peak i s p r o p o r t i o n a l t o t h e amount o f component I n t h e sample.
i f t h i s i s true,
t h e peak area and/or t h e peak h e i g h t w i l l
be p r o p o r t i o n a l t o t h e
Peak h e i g h t I s p r o p o r t i o n a l t o the amount
amount o f t h e component causing t h e peak.
o f a component c o n t r i b u t i n g t o t h e peak i f t h e r e !s no change i n t h e system which w i i i cause a change i n t h e peak w i d t h when comparing a sample t o a standard.
parameters may I n f l u e n c e t h e peak width:
( 1 ) temperature,
mobile phase, ( 3 ) sample I n j e c t i o n , and ( 4 ) column overload.
To m a i n t a i n an accuracy
o f 1 % i n t h e a n a l y s i s t h e temperature must be c o n t r o l l e d t o w i t h i n +0.3OC,
-+0.loC
and t h e f l o w r a t e c o n t r o l l e d t o w i t h i n 20.1%.
an e f f e c t on peak width;
are a f f e c t e d t h e l e a s t .
preferably
Poor sample i n j e c t i o n w i l l have
peaks which emerge q u i c k l y (i.e.,
volume) are a f f e c t e d t h e most.
Four
( 2 ) flow r a t e of the
1-2 t i m e s t h e hold-up
Peaks which a r e a t l e a s t t e n t i m e s t h e hold-up volume
Component adsorption on t h e column a f f e c t s peak w i d t h t h e
most when t h e c o n c e n t r a t i o n i s low.
When t o o l a r g e a sample i s I n j e c t e d ,
the
s t a t i o n a r y phase becomes saturated, which broadens t h e peak and consequently reduces peak h e i g h t . The peak h e i g h t o r area may be obtained by manual methods o r by use o f integrator. measurements.
Fig.
A
5.1
Illustrates
the
constructions
necessary
for
an
manual
l i n e AB i s drawn along t h e base o f t h e peak so t h a t it connects both
sides o f t h e peak t o t h e baseline. maximum and labeled CD.
A
perpendicular t o l i n e
AB
I s drawn from t h e peak
A t a p o i n t halfway up t h e p e r p e n d i c u l a r CO,
i s drawn p a r a l l e l t o t h e base
AB.
This l a s t
another
l i n e EF
l i n e i s known as t h e peak w i d t h a t
162 half-height.
The product o f CD and EF i s t h e area of t h e peak.
F i g . 5.1 Lines and p o i n t s o f c o n s t r u c t i o n f o r peak s i z e measurements. I n t e g r a t o r s r e c e i v e t h e d e t e c t o r response s i g n a l and i n t e g r a t e I t d i r e c t l y on a t i m e b a s i s ( p r o v i d e d t h e number o f c o u n t s p e r u n i t t i m e a r e p r o p o r t i o n a l
to
d e t e c t o r response) which g i v e s a simple r e l a t i o n s h i p between t h e t o t a l number of peak counts and t h e peak area.
T h i s can be shown mathematically by eqn. 5 . 2 9 :
n i = KA,B-'(db/dt)-' where
(5.29)
ni = t o t a l number o f i n t e g r a t o r counts;
K = p r o p o r t i o n a l i t y constant; B = recorder constant db/dt = recorder c h a r t speed; and A, = peak area. Returning t o F i g .
5.1
one sees t h a t t h e r e are t h r e e measurements which are
p r o p o r t i o n a l t o t h e amount o f a component from t h e chromatographic peak: ( 1 ) t h e peak height, CD;
( 2 ) t h e peak area measured by t h e product o f peak h e i g h t CD and t h e peak w i d t h a t h a i f - h e i g h t EF, and
( 3 ) t h e peak area measured by t r i a n g u l a t i o n , GHI, which i s GD times one-half
t h e base H I .
i.e.,
t h e area of t h e t r i a n g l e
163 Once t h e chromatogram has been i n t e r p r e t e d by use o f peak h e i g h t o r peak area, i t i s necessary t o use some S t a n d a r d i z a t i o n technique t o r e l a t e one o r b o t h o f these
measurements t o standards. ization.
We s h a l l
Alternatively, analysis.
we
There are several
techniques
n o t discuss each one and/or shal I
present
t h e more
wldely
More d e t a i l may be obtained from r e f s .
a r t i c l e i n American Laboratory by I. G.
the variants o f used methods
for
environmental
82 and 83 or from a t h r e e - p a r t
Young ( r e f . 8 4 ) .
from t h e column separated from a l l components o f t h e sample,
( 1 ) elutes
( 2 ) elutes close t o the
( 3 ) has a s i m i l a r f u n c t i o n a l g r o u p ( s ) t o t h a t o f t h e
( 4 ) i s s t a b l e and u n r e a c t i v e w i t h sample components,
desired component,
standard-
t h e techniques.
for
A standard substance i s chosen t h a t
( I ) Internal standardization.
desired component under study,
available
or (5) i s
n o n - v o l a t i l e enough t h a t standard s o l u t i o n s may be made and s t o r e d f o r long p e r i o d s o f time.
Several standard s o l u t i o n s c o n t a i n i n g known weights o f t h e chosen standard
and d e s i r e d component t o be s t u d l e d should be prepared. for
these standard s o l u t i o n s should be
desired component
i n t h e sample,
The weight range chosen must
A p l o t o f weight r a t i o versus area r a t i o
not overload t h e column or t h e d e t e c t o r .
linear.
To determine t h e amount o f
a known weight o f
the standard
i s added.
the The
response f a c t o r , F, o f t h e desired component i s c a l c u l a t e d from any o f t h e standard s o l u t i o n s prepared and t h e f o l l o w i n g equation:
F =
weight o f d e s i r e d component/weight o f standard peak area o f desired canponent/peak area o f standard
The weight o f t h e desired component, Wc,
(5.30)
i n t h e unknown can then be c a l c u l a t e d using
eqn. 5.31:
Wc
= (Ac x W i ) / ( A i
where W.
x F)
(5.31 1
and A . are t h e weight and peak area o f I n t e r n a l standard i n t h e sample,
i s t h e peak area o f t h e desired component,
AC
and F I s t h e response f a c t o r o f d e s i r e d
component ( c a l c u l a t e d from eqn. 5.30). ( i i ) External standardization.
A c a l i b r a t i o n c u r v e 1s p r e p a r e d ( u s i n g
i d e n t i c a l c o n d i t i o n s as t h e sample) f o r each substance i n t h e sample which i s t o be quantitated.
This curve may be ( 1 ) peak area versus c o n c e n t r a t i o n o r ( 2 ) peak h e i g h t
versus concentration.
When t h e sample i s run,
t h e peak h e i g h t o r peak area o f t h e
substances t o be q u a n t i t a t e d I s compared t o t h e c a l i b r a t i o n curves. ( i i i ) Internal normalization.
To use I n t e r n a l normalization,
sample component must produce i t s own i n d i v i d u a l peak.
each and every
One o f t h e sample components
may be used as t h e reference, or another component which i s separated from a l l sample components may be used. each component.
A standard sample
i s made up c o n t a i n i n g known weights o f
The r a t i o o f peak area ( o r peak h e i g h t ) o f each substance t o a c t u a l
164 weight percent i n Standard sample i s c a l c u l a t e d f o r each component. component
F,
i s assigned a response f a c t o r ,
of
The r e f e r e n c e
100 ( r e f .
unity or
85),
and t h e
response f a c t o r o f t h e o t h e r components i n t h e standard are c a l c u l a t e d by d i v i d i n g t h e r a t l o of each component by t h e r a t i o of t h e r e f e r e n c e component. i l l u s t r a t e s data f o r a standard sample and Table 5.9
Table 5.8
i l l u s t r a t e s data f o r an unknown
sample using t h e response f a c t o r s from Table 5.8 TABLE 5.8
I n t e r n a l n o r m a l i z a t i o n o f standard sample Component
Weight used(mg)
Weight
Peak area
Area
Area
%
%
wt.5
Response factor,F
1 2 3 4
354.3 296.7 542.3 441.5
21.67 18.15 33.17 27.01
3901 3654 5236 4768
22.22 20.81 29.82 27.15
180.0 201.3 157.8 176.5
1.000 1.118 0.877 0.981
Total
1634.8
100.00
17559
100.00
TABLE 5.9
C a l c u l a t i o n o f weiaht Dercent o f each comDonent i n unknown samDle Component
Peak area
Area
Area F
Weight
%
4265 3231 5496 3765
25.45 19.28 32.80 22.47
4265 2890 6267 3838
24.71 16.74 36.31 22.24
16757
100.00
11260
100.00
%
~~
1 2 3 4 Total
~~
( i v ) Standard a d d i t i o n . addition
are very
similar
I n t e r n a l s t a n d a r d i z a t i o n (see i above) and standard
techniques;
however,
the
r e q u i r e s no new component t o be added t o t h e sample. determined i s t h e standard which "spiking"
a sample.
t a t i v e technique. (1)
i s added.
standard In fact,
a d d i t i o n technique t h e component t o be
Standard a d d i t i o n
i s a l s o known as
Two i n j e c t i o n s o f t h e sample are necessary t o use t h e q u a n t i There are several v a r i a t i o n s o f t h e standard a d d i t i o n technique;
measurement o f t h e sample component o f
r e f e r e n c e s u b s t a n c e i n t h e sample, substance t o t h e sample.
interest,
( 2 ) measurement o f
and ( 3 ) measurement o f
For t h i s discussion we are o n l y concerned w i t h t h e system
where a sample component I s used as t h e standard substance, The f i r s t s t e p chromatographic unknown.
another
an added r e f e r e n c e
is to
inject
a known amount
i.e.,
(l.e.,
v a r i a t i o n 1. volume,
v)
of
The component o f i n t e r e s t , c, w i l l have a peak area A
t h e c o n c e n t r a t i o n o f component c,
i s expressed i n m o l a r i t y o r
C'
i n weight,
the If the
165 technique may be used.
The sample
N o w t h e component c w i I I have a peak area,
component t o be determined. means standard added). added.
i s then "spikedvf w i t h a known amount o f
Acs
T h i s increased peak area i s due t o t h e amount o f
the
(sub s "spiket1
Knowing t h e peak areas and t h e amount o f standard component c added, one i s
able t o c a l c u l a t e t h e amount o f c i n t h e o r i g i n a l sample. Assume 1.0 u l o f an unknown sample ( t o t a l volume = 1.0 m l ) produced a peak of 2 area equal t o 40.0 mn To t h e sample one add 10.0 p I o f t h e pure component having a
.
d e n s i t y o f 0.900 g/ml.
(0.900 g/ml) x 0.010 mi = 9 x
g = 9 mg
The o r i g i n a l volume o f sample was 1000 o f o r i g i n a l sample.
I f t h e volumes o f sample and added standard are a d d i t i v e ,
mg/1009 p I of 'Ispikel1.
2
150 mm
component c.
.
less t h e 1.0 u I i n j e c t e d g i v e 999
(1.0 m l ) ,
s o l u t i o n has a volume o f 1009
f i n a l "spiked"
peak of
p l
(5.32)
1.e..
pl,
9 x
g/1009
1.0 P I sample i n j e c t i o n o f t h e "spiked"
T h i s means t h e
increase o f
p1
the
or 9.00
s o l u t i o n produces a
110 mm2 i s due t o 8.92 x
mg o f
Thus,
t h e o r i g l n a l sample i n j e c t e d corresponded t o 3.24 x mg o f 2 m g ) / l l O mm ) . So t h e o r i g i n a l sample (1.0 ,I) Component c (40 rm2 x (8.92 x contained:
(3.24 x 10
3
mg/p1)(1000
p l )
= 3.24
(5.33)
mg component c
5.7 ANALYSIS O f AIR AND WATER CONTAMINANTS In t h i s section,
we p r e s e n t a number o f t h e more r e c e n t methods f o r t h e
a n a l y s i s o f b o t h a i r and w a t e r pollutants.
samples
The l i s t i n g i s by no means complete;
The methods a r e i n t w o c a t e g o r i e s : samples,
f o r many o f t h e commonly e n c o u n t e r e d however,
( 1 ) a i r samples,
it i s representative.
T a b l e 5.10
and ( 2 ) w a t e r
No d e t a i l e d e v a l u a t i o n s a r e presented f o r any o f t h e methods.
Table 5.11.
The main j u s t i f i c a t i o n o f such a s e c t i o n i s t o g i v e t h e reader a p o i n t o f o r i g i n a t which he may f i n d a discussion o f one or more o f h i s problems.
In addition,
we have
not given any references p r i o r t o 1978, unless they represent an e x i s t i n g p r e s e n t day state-of-the-art
methodology.
The r e a d e r d e s i r i n g more i n f o r m a t i o n a b o u t gas
chromatography methodology f o r a i r and water samples may c o n s u l t several v e r y good sources: Columbus,
( 1 ) Chemical A b s t r a c t s p u b l i s h e d by t h e American Chemical OH,
USA,
( 2 ) Gas and L i q u i d Chromatography
Abstracts
Society,
p u b l i s h e d by t h e
Chromatography Discussion Group o f Great B r i t a i n , Trent P o l y t e c h n i c , Nottingham,
( 3 ) The Preston Technical Company o f
Niles,
IL,
A p p l i c a t i o n Reviews of odd-numbered
USA.
A b s t r a c t s published by t h e Preston Technical Two o t h e r
Analytical
excellent
Chemistry ( r e f .
years and the Fundamental
Reviews o f
which a r e published i n t h e even-numbered years.
sources o f
and
Abstracts
information
are the
8 6 ) which a r e p u b l i s h e d i n t h e Analytical
Chemistry
(ref.
87)
Both a r e p u b l i s h e d by t h e American
166 Chemical Society,
Washington,
Dc,
USA.
The Fundamental Reviews cover t h e t o p i c of
gas chromatography whereas t h e A p p l i c a t i o n Reviews c o v e r a i r p o l l u t i o n , pollution,
water
and p e s t i c l d e residues.
TABLE 5.10 A I R SAMPLES Cmpound(s) tvoe
Column(s)
Tetra-,Hexa-, Hepta-,Octachlorodibenzop-dioxin isomers
2 m x 210 cm Low-resolution glass. 0.6% OV-17 MS +0.4$ P o l y S-179. 80-100 mesh Permabond methyl s i l i c o n e .
F l y Ash, Low p p t Activated Sludge, P a r t i culate Matter
N-nitrosamines
Basic A1203
Thermal energy anal y s i s
Cigarette smoke
0.1 ng
89
ECD, TID
Air
1-5 ng
90
F ID
Tobacco smoke
Organophosphorus SE-30 Pesticides Carbowax 20M Polycycl l c aromatic hydrocarbons and naphthalenes
--
Detector(s)
Sample twe
Detectlon I imit(s)
Reference 88
--
91
1,2-Dibromoethane
1.5% ov-17+ 1.95% ov-210
ECD
Ambient a i r
3 P9
92
1 ,2-Di bromo-3chloropropane
1 .5$ OV-l7+ 1.95% OV-210
6 3 ECD ~ ~
Ambient a i r
0.02 ppb
93
Nitrogen containing compounds
--
MS
C i g a r e t t e smoke
N i t r i c oxide
--
ECD
Air
0.01 ppm
95
Rel. Error
96
Waste gases from tetrachloroethane production. CI, HCI, CZH2, C02
6 nrn x 3 m TC D Silokhrom S-120 = ( l m ) + Porokhrom 3 (2m) coated w i t h di-buty lphthal ate
Waste gas
s-Triazine herbicides
Carbowax 20M WCOT
FID. AFlD
Environmental samp I es
Vinyl c h l o r i d e , ethyl chloride, Tetrachloroethy I ene
Carbowax 1500 on Carbopack A
F I D , Microwave plasma
Air
Pesticides
3% OV-17 on Chromosorb W-AW
ECD
Air
Hydrogen cyanide
Porapak Q
AFlD
A i r in f i r e environment
--
<
94
IS
5-i0ng(1:90) 50-7Opg(I:20)
97
0.0438.0 ug/m
99
5 pg
100
IP
167 TABLE 5.10 (Cont.1 Compound(s) type
Coiumn(s)
Detector(s)
Sample type
Detection I imit(s1
Reference
CHC i F2
Chromosorb 102
ECD
Ambient a i r
9’ P P t
101
Benzene
10% oxydiprop i o n i t r i i e on porol i t h
FID
Air
0. 05mg/m3
102
Porapak R
TC D
HC I
*5
PPm
103
Styrene
10% FFAP on chromosorb W
FID
Air
0.33 @/ml
104
Smoke condensate
6% OV-17 Chromosorb W
F ID
Cigarettes
HCN
4 m x 3m Porapak Q
FID
Exhaust gas
PentachloropheS i l i c o n e DCFSnoi, t e t r a c h l o r o - 1265. Chrcnnosorb phenol WAW DMCS
ECD
Air
Poiycycl i c aroma- SKT-30, S i l o t i c hydrocarbons chrom S-80
FID
Waste gases
1.1 x10-6mg
108
Acetone
15% Carbowax 1500, Chromaton N AW
FID
Air
2 mg/m3
109
3% SE-30, m i t e CO
Diato-
ECD
A i r particuI ates
3 . 2 m x 2m Polyphenyl ether + H3P04 on Chromosorb T.
FPD
Air
fl
B u t y r a l dehyde
20% polyethylene F I D g l y c o l adipate on Chromatone N-AW-MDS
Air
O.Ollmg/m
Bromoethane, chloroethane,
4 m x 1 m FSb on INZ 1200
FID
Alr
0.01 ug
Dc-550 t OV-17 + SE-30 on chromocorb WAW - DMCS
FiD
Air
MS
F ID
105
< 0.1 ppm
106
107
-
-
Beryllium
so2
<0.0001 Ug/m3
110
111
2 PPb
3
112
113
ethanol, butanol, chiorobenzene C H Br, C2H4CL2 5CH3CI
Chlorinated dioxins Trimethylamine
---
--
114
F l y ash
230 Pg
115
Air
0.2 ppb
116
168 TABLE 5.10
(Cont.)
Compound(s) type
Co I umn ( s )
Detector(s1
Sample type
Detection I imit(s)
Reference
Methane, acetyI ene
3mn x 6m, 16% ~,~-oxydipropionitrile
FID
Ca I c I um 0.000294%( v/v) carbide rea c t i o n gas
117
Methyl c h l o r i d e
2m Porapak Q
F ID
Ambient a i r
11.9 ppb
118
Tetraethyllead cpds.
OV-101 on GasChrom Q
Atomic absorptlon
Air
0.2ng/m3
119
Aldehydes
1 % PEG-HT on Chromosorb WAW DMCS
FID
Air
0.3 ppb
120
TID
Auto exhaust
50 DDb
121
Detector(s1
Sample type
Detection I imlt(s)
HCN
-
--
TABLE 5.11
WATER SAMPLES Compound(s) type
Co I umn ( s 1
Twelve c h l o r o benzenes
In x 30m Carbo63Ni ECD wax-20M. lmn x 30m SP-2100.
Water
O.Olnq/i 500ng/i
Arenes, v i n y l c h l o r i d e , haloorganic-volatiles
ECD 3m Chromosorb 102. 2m, 20% SEFID, PID 30 on Gas Chrom Q. 2m Porapak T.
Water
1!lg/a
Ketones
4m x 3mn glass column. 5% Carbowax 1500 on Chromaton N-AW-HMDS
FID
Waste water
V o l a t i i e s from urea-formaldehyde glue p l a n t
2.2% E t h o f a t 60/ 25 on Chromosorb 101.
FID
Waste water
1
ECD
R i v e r water Sediments
0.01-4.0ng/g
Chlorophenols
--
Aroclor 1016 8 1242
12 d i f f e r e n t phases
ECD, MS
Real samples
Nitrobenzene
5% OV-225 on Gas-Chrom Q. 2% Si I icone DcQF-1 on GasChrom Q.
ECD
Water, ments Fish
Insect Ic I des
6% QF-1 10% Dc-200
ECD,
R iv e r Water
FPD
Sedi-
Reference
to
122
123
0.2mg/L
-5
124
ppm
-0.01-1 ugh
125
126
127
.O
128
169 TABLE 5.11
(Cont.)
Compound(s) type
Column(s)
C C I 4 . CHCi3
S i Iar 1 0-C, Chrom Q
N-methylpyrroI ldone
Detector(s)
Sample type
ECD
Water
100 p p t
15% PEG-6000 + F ID 4% KOH. C e l i t e 545
Waste water
0.0059/ i
31
Organochlorine insecticides, polychlorinated b Iphen y I s
OV-I + QF-1 on Chromosorb W. Apiezon L on Chromosorb G
Water
3-1 5mg/i
32
Bayer 73
OV-3,
Chlorinated pesticides
OV-17, XE-60, QF-1 (2:1:2) D i a t o m i t e CQ
Gas-
Gas Chrom Q
ECD
Detection I Imit(s)
Reference 130
106ng/a
--
63Ni-ECD
Mud water
ECD
Water
0. D07mg/kg
134
Thiocarbamic acid herbicides
S i l i c o n e DS-550, TID Chromaton N-AW-DMCS
Water
0.02mg/kg
135
Chlorobenzenes
Methyl phenyl s l l - ECD icone d Bentone 34
Waste water
0.02 150 ppb/200 m l
Monochlorophenoxy-al kane carboxyl i c a c i d s
OV-17 on Chrcinaton N
ECD
Water
0.005mg/r.
137
SP2100 + SP-2401 on Supe I c o p o r t
ECD
Sed lment
0.5mg/kg
138
Mirex
+ photo-
m irex
Nltrophenol
Aplezon L + H3W4 MS on Chromosorb W.
--
N It r o x y I enes
-
136
Fresh water 0.17mg Ocean sediment
139
FID
Waste water
O.lg/&
140
F ID
Water
0.08,ml
MS
Water
0.1 ug/E
Phenol s
ov-17 or ov-1 01 o r 1 % SP1240 DA
Styrene
Tenax
Polyhalogenated p h e n o l i c cpds.
4% SE-30 + 6% QF-1 on 80-100 mesh Supeicoport
3H,
Hydrocarbons
4 m x 120cm S.S. 7% Carbowax 20M on Chromosorb WAW
FiD
Chlorophenols
2% T-100 + 0.5% H PO on Gas4Chrom Q
ECD, MS
- GC
133
10% PMS-100 .DOI YTrace o r g a n i c s . FID from manufacture methyl-si loxane on of acetylene Cel I t e 545. 20% PEGS
ECD
e/i
141
142
D r i n k i n g water 10 p p t
143
--
144
Tap water
145
Water
5mg/1
146
170 TABLE 5.11
(Cant.) Detection I imit(s)
Reference
Compound(s) type
Col umn ( s )
Detectorts)
Pesticides
SE-30 on Chromosorb N-AW-DMCS
FID, ECD, FPU
Water
V o l a t i l e haloorganics
3m Chromosorb 102
PID
Water
Alkylbenzenes
Apiezon L
F I0
Organic P r i o r i t y Pol l u t a n t s (U. S. EPA). V o l a t l l e Organoha1 ides
1 % SP-1000 on Carbopack B
H a l l Model 700A conductivity
Volatile a r m a t ics
5% SP-2100 + 1.75% Bentone 34 on Supelcoport
HNU,
A c r o l e l n and acrylonitrile
Chromosorb 101
F ID
Water
2vg/r
150
Pheno I s
1 % SP-1240 DA on Supelcoport
FID
Water
1 .4-1 Ovg/t
1 50
Phenol s as pentafluorobenzyl derivatives
5% OV-17 on Chromosorb W-AW-DMCS
ECD
Water
Sample type
~~
147
Water
0.0006%
149
Water
0.0009 0.09vg/e
-
10% Carbowax 20M 2% KOH on on Chromosorb WAW. 10% SP-2250 on Supe I c o p o r t
+
PiD
Nitrogen-Phosphorus Hal I Reductive
Water
Water
Water
Not determined 150
--
150
0.3-1 .OPg/t
150
0.002-0.04pg/e
150
1.5% SP2250/1.95% ECD SP2401 on Supelcop o r t . 3% Ov-1 on Supelcoport
Water
Nitroaromatics + lsophorone
1.95% OF-1 + 1.5% FID, ECD OV-17 on Gas Chrom Q. 3% OV-101 on Gas Chrom Q
Water
Haloethers
3% SP-1000 on Supelcoport Tenax-GC
Hall Conductivity
Water
0.04-2.2
Hal I C o n d u c t i v i t y
Water
Pg/a
ECO
Water
1.5% OV-l + 1.58 OV-225 on Gas Chrom Q
150
0.02-0.13, 14-31 p g / t
Pestlcldes + polychlorlnated b i pheny I s
Chlorinated hydrocarbons
150
n-Octane on Porasi I-C
ECD, F I D P h t h a l a t e e s t e r s 1.5% SP2250 + 1.95% SP2401 on Supelcoport. 3% OV-1 on Supelcoport Nitrosamines
~~
0.0005ng
0.001-0.018,g/fi
150
150
171 TABLE 5.11
(Cont.)
Compound(s) type
Co I umn ( s )
N i t r i t e ion 1.5% OV-1 t 1.58 ( d l a z o t l z a t i o n ) OV-225 on Gas Chrom Q Permethr i n
209 PCB Isomers
-.-
Detector(s1
Sample type
Detection Iimlt(s)
Reference
ECD
Water
Ion m o n i t o r i n g MS
Raw wastewater
MS
Commercial, D.0lug/t environmental
153
MS Chemlluminescence
Sewage water
lug/&
-154
0.5 ppb
0.05 ppb
151
152
N-N Itrosam i nes
--
Kepone
--
ECD, MS
Natural waters 2ng/r
155
V o l a t i l e organics
--
FID, ECD, MS
Water supply
156
--
ECD
Sea water lndustrlal e f f I uent
Dinltrotoluene is m e r s
ng Range 0.03ug/r
i57
REFERENCES
1 2 3 4 5 6 7 8 9 10
11 12 13
14 15 16 17 18 19
C.G. Creed, Res./Develop., 27 ( 9 ) (1976) 40. G.A. Junk, J.J. Richard, M.D. Grlesser, D. W l t i a k , J.L. Witiak, M.D. Argueiio, R. Vick, H. J. Svec, J.S. F r l t x and G.V. Calder, J. Chromatogr, 99 (1974) 745. G.A. Junk, H.J. Svec, R.D. Vlck and M.J. Avery, Envlron. Scl. Technol.. 8 (1974) 100. 8. Versino, H. Knappel, M. DeGroat, A. P e l I , J. Poelman, H. Schauenburg, H. Vlssers and F. Gelss. J. Chromatogr., 122 (1976) 373. P.R. Musty and G. Nickless, J. Chromatogr., 100. (1974) 83. A.T. Borsocchl and R. Knobel, Am. Lab., 12 ( 2 ) (1980) 81. R.S. Braman, I n R.L. Grob, (Ed.), Chromatographic A n a l y s i s of t h e Environment, Dekker, New York, 1975, pp. 82. J.E. Lovelock, I n R.P. Scott, (Ed.), Gas Chromatography 1960, B u t t e r w o r t h s , London, 1 960. D.H. Desty, C.J. Geach and A. Goldup, I n R.P. Scott, (Ed.), Gas C h r q a t o g r a p h y 1960, Butterworths, London, 1960. G.O. Nelson, C o n t r o l l e d Test Atmospheres, P r i n c i p l e s and Technlques, Ann Arbor Press, Ann Arbor, MI., 1971, pp. 95-161. J.M. McKelvey and H.E. Hoelscher, Anal. Chem., 29 (1957) 123. A.P. A l t s h u l l e r and I.R. Cohen, Anal. Chem., 32 (1960) 802. R.L. Grob, Environmental Studies o f t h e Atmosphere w i t h Gas chromatography, I n D.M. Hercules, G.M. HieftJe, L.R. Snyder and M.A. Evenson, (Eds.), Contemporary Topics i n A n a l y t i c a l and C l i n i c a l Chemistry, Plenum, New York, 1977, pp. 127-1 94. B.E. Saltzman and C.A. Clemons, Anal. Chem., 38 (1966) 800. B.E. Saltzman, C.A. Clemons, and A.E. Coleman, Anal. Chem., 38 (1966) 753. F.H. Huyten, G.W.A. R i J l n d e r s and W.V. Beersum, i n M. vanSwaay, (Ed.), Gas Chromatography 1962, Butterworths, London, 1963. E.R. Stephens and M.H. P r i c e , J. A l r P o l l u t . Control ASSOC., 15 (1965) 320. G.F. C o l l i n s , F.F. B a r l e t t , A. Turk, S.M. Edmonds and H.L. Mark, J. A i r P o l l u t . C o n t r o l ASSOC., 15 (1965) 109. C.C. Anderson, E.C. Gunderson, D.M. Coulson, B. Goodwin and K.T. Menzles, Generation o f Test Atmospheres of Toxlc Substances f o r E v a l u a t i o n o f A i r Sampling Methods, I n D.D. D o l l b e r g and A.W. V e r s t u y f t , (Eds.), A n a l y t i c a l
172
20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45A 46 47 48 49 50 51 52 53 54 54A 548 54C 55
Techniques I n Occupational H e a l t h Chemistry, ACS Symposium S e r i e s 120, Amerlcan Chemical Soclety, Washington, Dc, 1980, pp. 1 - 1 1 . A.E. O'Keefe and G.C. Ortman, Anal. Chem., 38 (19661 760. A.L. Lynch, R.F. S t a l z e r and D.T. L e f f e r t s , Am. Ind. Hyg. Assoc. Q., 28 (1968) 79. Methods o f A l r Sampling and Analysis, I n t e r s o c i e t y Committee Publication, American P u b l i c H e a l t h Association, Washington, DC, (1972), pp. 22, 24, 29. A n a l y s i s of Atmospheric Inorganics, U.S. Dept. of HEW, EPA, NAPCO, C i n c i n n a t i , Ohio, 1976, Section '411-2, pp. 1. F.J. Debbrecht, i n Modern P r a c t i c e o f Gas Chromatography, R.L. Grob, (Ed.), Wiley, New York, 1977, pp. 166-211. J.E. Lovelock, Anal. Chem., 33 (1961) 162. F. Bruner, C. C a n u l l i and M. Passanzlnl, Anal. Chem., 45 (1973) 1790. R.S. Braman and E.S. Gordon, IEEE Trans. Instrumental and Measurement, IM-14, (1965) 11-19. T.A. B e l l a r , M.F. Brown and J.E. Slgsby, Jr., Anal. Chem., 35 (1963) 1924. A.P. A l t s h u l l e r and C.A. Clemons, Anal. Chem., 34 (1962) 466. W. Lelthe, The A n a l y s i s o f A i r P o l l u t a n t s , Ann Arbor Science Publishers, Ann Arbor, MI, 1971 Chapter 2. L. Pngely, E. Levart, G. Guiochon, and G. Perslerbe, Anal. Chem., 41 ( 1 1 ) (1969) 1 446. W.R. Averett, J. C h r m a t o g r . Scl., 8 (91 (1970) 552. J.M. Brockway, A.W. b y n e and J.G. Gordon, J. Appl. Physlol., 31 ( 2 ) (1971) 296. H.D. Axelrod, R.J. Teck, J.J. Lodge and R.H. Allen, Anal. Chem., 43 ( 3 ) (1971) 496. Y. Hashimoto and S. Tanaka, Proceedings o f t h e 4 t h I n t . Clean A i r Congress, Tokyo, May 16-20, 1977, pp. 349-351. O.F. Folmer, Anal. Chlm. Acta, 56 ( 3 ) (1971) 440. F.J. Debbrecht, I n R.L. Grob, (Ed.), Modern P r a c t i c e o f Gas Chromatography, Wiley, New York, 1977, pp. 203-210. R. S c h i I I , i n R.L. Grob, (Ed.), Modern P r a c t i c e o f Gas chromatography, Wiley, New York, 1977, pp. 304-321. J.C. Cavagnol and W.R. Betker, L.S. E t t r e and A. Z l a t k i s , (Eds.), The P r a c t i c e of Gas Chromatography, Wiley-Interscience, New York, 1967, pp. 106-123. E.L. Szonntagh, I n L.S. E t t r e and A. Z l a t k i s , (Eds.), The P r a c t i c e o f Gas Chromatography, Wiley-interscience, New York, 1967, pp. 512-519. J. Lebbe, i n J. Tranchant, (Ed.), P r a c t i c a l Manual o f Gas Chromatography, E l s e v i e r , Amsterdam, 1969, pp. 54-62. P.G. J e f f e r y and P.J. Kipping, Sample Transfer Systems, Macmillan, New York, 1964, Chapter 2. G.L. P r a t t and J.H. P u r n e l l , Anal. Chem., 32 (1960) 1213. D.N. Glew and D.M. Young, Anal. Chem., 30 (1958) 1890. D.S. Russell and M.E. Bednas, Anal. Chem., 29 (1957) 1562. M.A. Kaiser and B.J. Wood. J. Chromatog. Scl., 19 (1981) 104. L. Rohrschneider, J. Chromatogr., 22 (1966) 6. L. Rohrschneider, Adv. Chrmatogr., 4 (1967) 333. W.O. McReynolds, J. Chromatog. Scl., 8 (1970) 685. W.R. Supina, The Packed Column I n Gas Chromatography, Supelco, B e l l e f o n t e , PA, 1974. K. Grob and G. Grob, l d e n t l f i c a t i o n and A n a l y s i s o f Organic P o l l u t a n t s I n Water, Ann Arbor Science, Ann Arbor, M i , 1976, pp. 75. L.S. E t t r e , Open Tubular Columns i n Gas Chromatography, Plenum, New York, 1965. G. Schomberg, Gaschromatographie, Verlag Chemie GmbH, Weinheim, 1977. R.R. Freeman, (Ed.), Hlgh R e s o l u t i o n Gas Chromatography, Hewlett Packard Co., Avondale, PA, 1979. W. Jennlngs, Gas Chromatography w i t h Glass C a p i l l a r y Columns, 2nd. ed., Academic Press, New York, 1980. K. Grob and K. Grob, Jr., J. Chromatogr., 151 (19781 311. M. G a l l i , S. T r e s t i a n u and K. Grob, Jr., HRC d CC, 2(1979) 366-370. M. Gal i i and S. Trestlanu, J. Chromatogr., 203(1981 ) 193-205. D.J. David, Gas Chromatographic Detectors, Wlley-Interscience, New York, 1974.
173 56 J. Sevclk, D e t e c t o r s I n Gas Chromatography, E l s e v l e r , Amsterdam, 1976. 57 J.J. S u l l i v a n and M.J. OIBrien, i n R.L. Grob, (Ed.), Modern P r a c t i c e o f Gas Chromatography, Wiley, New York, 1977, pp. 213-288. 58 W. McFadden, Techniques o f Combined Gas Chrcnnatography/Mass Spectrometry, Wiley-Interscience, New York, 1973. 59 E. Kovats, Helv. Chim. Acta, 41 (1958) 1915. 60 A. Wehrli and E. Kovats, Helv. Chim. Acta, 42 (1959) 2709. 61 E. Kovats, Z. Anal. Chem., 181 (1961) 351. 62 E. Kovats, Helv. Chlm. Acta, 46 (1963) 2705. 63 K.P. Hupe, J. Gas Chromatog., 3 (1965) 12. 64 G. Guiochon, 'Anal. Chem., 36 (1964) 1672. 65 B.A. Galushkin, V.D. Grishin, Zh. Anal. Khlm., 35 (1980) 2039. 66 L.R. Snyder and J.J. K i r k l a n d , I n t r o d u c t i o n t o Modern L i q u i d Chromatography, Wiiey-interscience, New York, 1979. 67 J.C. Touchstone and M.F. Dobbins, P r a c t i c e of Thin Layer Chromatography, Wiley, New York, 1978. 68 J. Janak, I . KIimes and K. Hana, J. Chromatogr., 18 (1965) 270. 69 G.V. Golovkin. A. I. Smol'chenko, L.N. Zotov, S.E. Sazonov, Zh. Anal. Khim., 35 (1980) 964; C.A., 93 (1980) 63372~. 70 E.B. Ledford, Jr., R.L. White, S . Ghadiri, C.L. W i l k i n s and M.L. Gross, Anal. Chem., 52 (1980) 2450. 71 R.K. Mitchum, G.F. Moler and W.A. Korfmacher, Anal. Chem., 52 (1980) 2278. 72 F.L. Onuska, M.E. Comba and J.S. Coburn, Anal. Chem., 52 (1980) 2272. 73 J. Andrzej, M. Koralewska, B. Z l e l i n s k a and M. Sochacki, Kohs. Smola. Gaz, 25 (1980) 95; C.A. 93 (1980) 222940r. 74 A. Baranski, S. Ceekiewicz and J. Galuszka, Wlss. Z.-Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. Reihe, 27 (1978) 595; C.A. 93 (1980) 226312k. 75 R. Vistocco and P. Beggio, AES, 2 (1980) 51; C.A. 93 (1980) 209507k. 76 D.R. Gage and S.O. Farwell, Anal. Chem., 52 (1980) 2422. 77 F. Chow and A. Karmen, C i i n . Chem., 26 (1980) 1480. 78 V. F e l t and P. Husek. J. Chromatogr., 197 (1980) 226. 79 A. Pannatier and B. Testa, Pharm. Acta Helv., 55 (1980) 100. Khlornaya Prom-st., 80 Y.G. Kessel'man and I.P. Ogloblina, Khim. Prom-st., Ser.: ( 1 ) (1980) 9; C.A. 93 (1980) 215054b. 81 F. Chou, Wei Sheng Wu Hsueh T'ung Pao, 7 (3) (1980) 136; C.A. 93 (1980) 2 1 7869v. 82 F.J. Oebbrecht, P a r t I I , Q u a n t i t a t i v e Analysis, I n R.L. Grob, (Ed.), Modern, P r a c t l c e o f Gas chromatography, Wiley. New York, 1977, pp. 166. 83 J. Novak, Q u a n t i t a t i v e Analysis by Gas Chromatography, Dekker, New York, 1975. 84 I.G. Young, Amer. Lab., 7 (1975) 27; 7 (1975) 37; 7 (1975) 1 1 . 85 D.M. Rosie and R.L. Grob, Anal Chem., 29 (1957) 1263. 86 A p p l i c a t i o n Reviews, Anal. Chem., 47 (1975) IR-364R; 49 (1977) IR-286R; 51 ( 1979) 1 R-342R. 52 87 Fundamental Reviews, Anal. Chem., 48 (1976) IR-442R; 50 (1978) IR-384R; ( 1 980) 1 R-383R. 88 L.L. Lamparski and T.J. N e s t r i c k , Anal. Chem., 52 (1980) 2045. 89 K.D. Brunnemann, W. F i n k and F. Moser, Oncology, 37 (1980) 217. 90 M.A. K l i s e n k o and D.B. Girenko, Gig. Sanlt., (9) (1980) 57; C.A. 93 (1980) 21 61 49y. 91 R.F. Arrendale, R.F. Severson and M.E. Snook, B e i t r . Tobakforsch. Int., 10 (1980) 100; C.A. 93 (1980) 218116.j. 92 J.B. Mann, J.J. Freal, H.F. Enos and J.X. Danauskas, J. Environ. S c i . Health, 815 (1980) 507. 93 J.B. Mann, J.J. Freal, H.F. Enos and J.X. Danauskas, J. Environ. S c i . Health, B15 (1980) 519. 94 Y. Saint-Jalm and P. Mooree-Testa, J. Chromatogr., 198 (1980) 188. 95 K. Funazo, M. Tanaka and T. Shono, Anal. Chim. Acta, 119 (1980) 291. 96 L.D. Molchanov, N.F. Rogozhkina and V.K. Golyshkin, Khim. Prom-st., Ser.:Metody Anal. K o n t r o l y a Kach. Prod. Khim. Prom-sti., (7) (1980) 7; C.A. 93 (1980) 21 50669. 97 E. Matisova, J. Krupcik and 0. Liska, J. Chromatogr., 173 (1979) 139.
.
174 98 99 100 101 102 103 104 105 106 107
108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
J.S. Hobbs, I n t . Environ. Saf., March-April (1978) 22. X. Guardlno, J. B a r t u a l and M.J. Eerenguer, Afinidad, 36 (1979) 9; C.A. 91 (1979) 617689. M. Paabo, M.M. B i r k y and S.W. Womble, J. Combust. Toxicol., 6 (1979) 99. K. Shlmohara. S . Sueta, T. Tabata and N. Shlgemorl, T a i k l Osen Gakkalshl, 14 (1979) 31; C.A. 91 (1979) 1 2 8 1 5 3 ~ . J. Kasche and K. Schroeter, Chem. Tech. ( L e l p z l g ) , 31 (1979) 311; C.A. 91 (1979) 128246f. H.J. Rath, D. Schmldt and J. Wimmer, Chromatographla, 12 (1979) 567. K.K. Choi and K.W. Fung, Analyst (London), 104 (1979) 455. W.S. Schlotzhauer, O.T. Chortyk and R.F. Severson, Tob. Int., 181 (1979) 63. N. Fukuda, H. Itoh, A. Tsukamoto and H. Tamarl, Eunseki Kagaku. 28 (1979) 569; C.A. 92 (1980) 27645a. A. Dahms and W. Metzner, Holz Roh-Werkst., 37 (1979) 341; C.A. 92 (1980) 35229h. B.V. Koval'chuk, N.G. Kolesnlk and L.F. Pushkareva, Khlm. Prom-st., Ser.:Metody Anal. K o n t r o l y a Kach. Prod. Khim. Prom-stl., ( 7 ) (1979) 1; C.A. 92 (1980) 81361t. E.B. Koroleva, L.V. Sakharova, A.L. Kondrasheva and L.B. Sevryugov, Gig. Sanit., (11) (1979) 67; C.A. 92 (1980) 8 1 3 7 2 ~ . P.C. Ensor, J. Assoc. P u b l i c Anal., 16 (1978) 129; C.A. 92 (1980) 9 8 6 6 1 ~ . I. Kifune, K. Kawata and K. Oikawa, E l s e i Kagaku, 25 (1979) 205; C.A. 92 (1980) 115497j. V.I. Lyashenko and V.E. Prisyazhnyuk, Gig. Sanit., ( 1 1 ) (1979) 56; C.A. 92 (1980) 1 5 2 1 3 8 ~ . V.E. Dorogova, L.I. Zultseva and V.A. Khomutova, Gig. Tr. P r o f . Zabol., ( 1 2 ) (1979) 51; C.A. 92 (1980) 184961t. A. Krynska and M. Posniak, Pr. Cent. I n s t . Ochr. Pr., 28 (1978) 389; C.A. 92 (1980) 2 0 2 6 4 1 ~ . R.E. Clement, G.A. Eiceman, F.W. Karasek, W.D. Bowers and M.L. Parsons, J. Chromatogr., 189 (1980) 53. M. Nagase, Bunsekl Kagaku Sap. Anal. 29 (1980) 293; C.A. 93 (1980) 1 0 0 7 1 7 ~ . T.N. Shaklna, A.I. Kuznetsova and L.F. Abramas, Khim. Prom-st., Ser.:Metody Anal. K o n t r o l y a Kach. Prod. Khim. Prom-stl., ( 4 ) (1980) 10; C.A. 93 (1980) 106535~. K. Watabe, S. Iida, T. lchikawa and M. Kondo, E i s e i Kagaku, 25 (1979) 343; C.A. 93 (1980) 154984t. W.R.A. DeJonghe, D. Chakaborti and F.C. Adams, Anal. Chem., 52 (1980) 1974. K. Ono and T. Hayakawa, Talk1 Osen Gakkalshi, 14 (1979) 479; C.A. 93 (1980) 2445002. H. Kachi and Y. Kakano, Jldosha G i j u t s u k a l , 20 (1980) 64; C.A. 93 (1980) 244576d. B.G. O l i v e r and K.B. Bothen, Anal. Chem., 52 (1980) 2066. R.S. Narang and B. Bush, Anal. Chem., 52 (1980) 2076. P. Buryan, J. Rlha, A. Capek and J . Macak, Plyn., 60 (1980) 6; C.A. 93 (1980) 209663h. D. Barcelo, and I. Eek, Pergamon Ser. Environ. Scl., 3 (1980) 335; C.A. 93 (1980) 209711x. T. Tsukloka, M. Maruyama and T. Katsuno, Nagano-ken E i s e i Kogai Kenkyusho Kenkyu Hokoku, 2 (1980) 86; C.A. 93 (1980) 215057e. P.W. A l b r o and C.E. Parker, J. Chromatogr., 169 (1979) 161. K. Kenmotsu, K. Matsunaga and T. Ishlda, Okayama-ken Kankyo Hoken Senta Nempo, 2 (1978) 164; C.A. 91 (1979) 324139. A. Lablanche, B. Soulard, G. M a r t i n and E. David, Tech. Eau Assalnlssement, 387 (1979) 17; C.A. 91 (1979) 3 3 9 5 6 ~ . G. Brozowski, D. B u r k l t t , M. Gabriel, J. Hanrahan, E. McCarthy and J. Smith, NBS Spec. Publ., Washington, DC, 519 (1979) 175. L.M. N e r e t i n a and L.Y. Yarpovetskil, Khlm. Tekhnol. ( K i e v ) , ( 3 ) (1979) 19; C.A. 91 (1979) 1 4 5 4 9 0 ~ . Organochlorine I n s e c t i c i d e s and P o l y c h l o r i n a t e d Biphenyls i n Water, United Kingdom Dept. of t h e Environment Publ., National Water Council, London, 1979.
175
133 C.W.
Luhnlng, P.D. Harman, J.B. S i l l s , V.K. Dawson and J.L. A l l e n , J. Assoc. Off. Anal. Chem., 62 (1979) 1141. 134 H. Dubsky, K. Hana, M. Komarkova and 6. R i t t i c h , Vet. Med. (Prague), 24 (1979) 493; C.A. 92 (1980) 4809t. 135 I.S. Kofman and V.I. Kofanov, Gig. Sanit., ( 1 0 ) (1979)41; C.A. 92 (1980)
35763~. 136 Z.C. Bao and C.H. Chao, Huan Ching K'o Hsueh, (6) (1979) 50; C.A. 92 (1980) 99353b. 137 V.D. ChmiI, Zh. Anal. Khlm., 35 (1980) 132; C.A. 92 (1980) 123199d. 138 R.J. Norstran, H.T. Won, M. Van Hove H o l d r i n e t , P.G. Calway and C.D. N a f t e l , J. Assoc. Off.,Anal. Chem., 63 (1980) 37. I39 K. Matsunaga, F. Shibata, N. Saito, N. Torigashi, K. Kenmochi and Y. Ogino, Okayama-ken Kankyo Hoken Senta Nernpo, 3 (1979) 192; C.A. 92 (1980) 140189t. 140 L.A. Shutova, N.M. Stupina, V.V. Zhdanova and G.M. Permyakova, Khim. Prom-st., Ser.:Metody Anal. K o n t r o l y a Kach. Prod. Khim. Prom-sti., ( 8 ) (1979) 7; C.A. 92 (1980) 168552e. 141 R.T. Coutts, E.E. Hargesheimer and F.M. Pasutto, J. Chrmatogr., 179 (1979) 291. 142 B.1. Brookes, S.M. K i c k e l l s and R.S. Nlcolson, J. Assoc. P u b l i c Anal., 16 (1978) 117; C.A. 92 (1980) 168923b. 143 C. Morgade, A. Barquet and C.D. Pfaffenberger. B u l l . Environ. Contam. T o x i c o l . . 24 (1980) 257. 144 V. Durdovic, Acta Hydrochim. Hydrobiol., 7 (1979)527; C.A. 92 (1980) 185573e. 145 T. Kodama, Aichi-ken Kogai Chosa Senta Shoho, 7(1979) 8; C.A. 92 (1980) 208565~. 146 L.S. Masalova, N.N. Kedrina and V . I . S t a v r a t i , Khim. Prom-st., Ser.:Metody Anal. K o n t r o l y a Kach. Prod. Khim. Prom-stl., (6) (1980) 21; C.A. 93 (1980) 142373t. 147 E . I . Babkina, A.V. Debtseva and A.A. S i v e r i n a , Khim. Sel'sk. Khoz. 18 (1980) 55; C.A. 93 (1980) 162521t. 148 R.S. Narang and B. Bush, Anal. Chem., 52 (1980)2076. 149 A.D. Pakhomova, V.L. Berendeeva, L.A. K a l i n i c h e n k o and I.T. Goronovskli, Khim. Tekhnol. Vody, 2 (1980)33. 150 Federal R e g i s t e r , P a r t I l l , 44 (1979) 69464, U.S. Federal Government P r i n t i n g O f f i c e , Washington,
DC.
151 T. Chikamoto and S. Nagata, Chem. L e t t . , (6) (1980) 737. 152 M.M. Siegel, B.E. H i ldebrand and D.R. Hal I , I n t . J. Environ. Anal. Chern., 8 (.1. 9 - -8-0.) 107. - . 153 G.W. T l n d a l l and P.E. Wininger, J. Chromatogr.,.196 (1980) 109. 154 M.L. Richardson, K.S. Webb and T.A. Gough, E x o t o x i c o l . Environ. Saf., 4 1 9801 207. 155 I.R. DeLeon, P.C. Remele, S.K. M i l e s and J.L. Laseter, Anal. Lett., 13 ( 9801 504. 156 A.P. Sandhofer, Swiss Chem., 2 (1980) 41; C.A. 93 (1980)245130r. 157 A. Hashimoto, H. Sakino, E. Yamagami and S. T a t e l s h i , Analyst (London), 05 (1980) 787.
176 RELATED REAOIHGS ON A I R AND WATER AllALYSES
1 2
3 4 5 6 7
8 9
10 11 12 13 14 15 16 17 18
19 20
Gas Chromatographic Method f o r t h e D e t e r m i n a t i o n o f Traces o f Carbon D i s u l f i d e i n t h e A i r . E. Saulova, PI. Pankova, Khim. I n d . ( S o f i a ) , ( 4 ) ( 1 9 8 0 ) 1 6 4 . A p p l i c a t i o n o f a D i r e c t Aqueous A c e t y l a t i o n Technique t o t h e Gas Chromatog r a p h i c Q u a n t i t a t i o n o f N i t r o p h e n o l s and 1-Naphthol i n E n v i r o n m e n t a l Water SamDles. R.T. C o u t t s . E.E. Harqesheimer, F.M. P a s u t t o , J. Chromatogr., 195( 1980) 105. Methods o f E v a l u a t i o n o f P o t e n t i a l l y Hazardous O r q a n i c s i n Water. R.P. C o l l i n s , R e p o r t 1980, W80-02761, OWkT-A-O72-COf4l4(i); I n s t . Water Resourc., Univ. C o n n e c t i c u t , S t o r r s , CT, USA. The A n a l y s i s o f Organic Water P o l l u t a n t s by Gas Chromatography and Gas Chromatography-Mass Spectrometry. R.A. H i t e s , Adv. Chromatogr., 15( 1977) 69-112, Dekker, N.Y. D e t e r m i n a t i o n o f P o l y b r o m i n a t e d B i p h e n y l and R e l a t e d Compounds by GasL i q u i d Chromatography w i t h a Plasma E m i s s i o n D e t e c t o r . K.J. H u l l i g a n , J.A. Caruso, F.L. F r i c k e , A n a l y s t (London), 105(1980)1060. Problems and P i t f a l l s i n Acetaldehyde D e t e r m i n a t i o n s . C.J.P. E r i k s s o n , A l c o h o l . : C l i n . Exp. Res., 4(1)(1980)22-9. S e n s i t i v e Gas Chromatographic D e t e r m i n a t i o n o f Phenols as Bromophenols usi n g E l e c t r o n Capture D e t e c t i o n . Y. Hoshika, G. Muto, J. Chromatogr., 179 (1) (1979)105-11. D e t e r m i n a t i o n o f Vapors o f O r g a n i c S o l v e n t s i n t h e Working Atmosphere by C a p i l l a r y Gas Chromatography. J. H r i v n a k , M. Revus, A c t a Fac. Rerum Plat. Univ. Comenianae, Form. P r o t . Nat. , 4(1979)63-72. A n a l y t i c a l Method o f C5-C20 Hydrocarbons i n A u t o m o t i v e Exhaust by G l a s s C a p i l l a r y Columns. T. I t o h , H. Kachi, Y. Nakano, J i d o s h a G i j u t s u k a i Ronbunshu, 19( 1 9 7 9 ) l l - 1 6 . Development and A p p l i c a t i o n o f an Automated A i r b o r n e Methane-Nonmethane W.R. C o f e r 111, Proc., Annu. Meet. A i r Pollut. Hydrocarbon Anal z e r Control ~ s s o c . , Y2(4j(i979). Analyses o f Water P o l l u t a n t s . 5. A n a l y s i s o f Soap and S y n t h e t i c C l e a n s i n g Agents. Y. Ogino, M. fiagao, Okayama-ken Kankyo Hoken Sento Nempo, 3(1979) 283-6. S p e c t r o m e t r i c and Chromatographic Methods i n Water A n a l y s i s . G. Franke, H. Hein, Chem.-Tech. ( H e i d e l b e r g ) , 8(6)(1979)295-302. Analyses o f Marine Sediments. 3. D e t e r m i n a t i o n s o f P a r a f f i n i c Hydrocarbons and Organic S u l f u r . M. Imanaka, K. Matsunaga, H. Hata and T. I s h i d a , Okayama-ken Kankyo Hoken Senta fiempo, 3( 1979)131-41. I d e n t i f i c a t i o n and A n a l y s i s o f O r g a n i c Substances i n t h e Environment. Analyses o f Trace O r g a n i c s i n Ir'ater and Sediment. M. Koga, R. Shinohara, A. Kido and S. Etoh, Koenshu-Iyo Masu Kenkyukai, 4(1979)153-9. D e t e r m i n a t i o n o f t h e C o n c e n t r a t i o n o f P h y s i o l o g i c a l and V o l a t i l e A n e s t h e t i c Gases i n R e s p i r a t o r y Gases by Gas Chromatography. F. Zheng, Yu-Hei X i e and Li-De J i n , Chung-hua I Huseh Tsa Chih, 59(8)(1979)495-9. Glass C a p i l l a r y Gas Chromatography o f C h l o r i n a t e d Dibenzofurans, C h l o r i n a t e d A n i s o l e s and Brominated B i p h e n y l s . T.J. F a r r e l l , J. Chromatogr. S c i , 18( 1 ) (1980)10-17. A S e l e c t i v e GC Column f o r Trace A n a l y s i s o f V i n y l C h l o r i d e i n A i r . 0. Krockenberger, H. Lorkowski and L. Rohrschneidgr, Chromatographia, 1 2 ( 1 2 ) (1979)787-9. Analyses o f M i c r o O r g a n i c Substances i n Tap \ l a t e r by GC-MS-CON System, H i g h Resolution-GC-NS and Mass Fragmentography. R. Shinohara, 1.1. Koga, A. Kido, S. Eto, T. H o r i and T. Akiyama, Koenshu-Iyo Masu Kenkyukai, 3 (1978)69-76. S e l e c t i o n and Chromatographic A n a l y s i s o f Gas Samples i n t h e Vacuum T r e a t ment o f M o l t e n S t e e l . Y.T. K r u t , 1.1. Ansheles, V.L. Safonov, A.A. Ezhov, S . I . O'yakov and G.F. Yakovenko, Zabod. Lab., 46(1)(1930)11-12. Gas-Chromatographic D e t e r m i n a t i o n o f Hydrogen Cyanide and Dicyanogen. V.K. Steba, V . I . Z r a z h e v s k i i and V.O. Parkhonienko, Hetody Anal. K o n t r o l y a Kach. Prod. Khim. Prom. S t i . , ( 1 1 ) ( 1979)6-8.
-
.
177 21
22 23
24 25 26 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41
Column D e a c t i v a t i o n f o r t h e A n a l y s i s o f Picogram Amounts o f U n d e r i v a t i z e d Chlorophenol s and C h l o r o c r e s o l s b y Combined Gas Chromatography' Mass Spect r o m e t r y . M.A. White and K.R. P a r s l e y , Biomed Mass Spectrom., 6 ( 1 2 ) ( 1 9 7 9 ) 570-2. O r g a n i c M a t t e r o f Groundwater A c c o r d i n g t o Data o f Gas-Chromatography S t u d i e s . S.G. Me1 ' k a n o v i t s k a y a , Geokhimiya, (2)(1980)272-85. A p p l i c a t i o n o f Head-Space A n a l y s i s t o t h e S t u d y o f V o l a t i l e O r g a n i c Impuri t y Concentrates. Gas Chromatographic D e t e r m i n a t i o n o f A r o m a t i c Hydrocarbons i n Atmospheric A i r . B.V. I o f f e , A.G. V i t e n b e r g and I . A . I s i b u 1 ' skaya, J. Chromatogr., 186(1979)851-9. Gas Chromatographic P r o f i l e A n a l y s i s o f P o l y c y c l i c A r o m a t i c Hydrocarbons i n Water. G. Grimmer and K.W. Naujack, Vom Wasser, 53(1979)1-8. Gas Chromatographic D e t e r m i n a t i o n o f DDT i n I n d u s t r i a l Wastewater and Env i r o n m e n t a l H a t e r w i t h S t a t i o n a r y L i q u i d s and Supports. Ju-Si Wang and L.H. Zhao, Huan Ching K ' o Hsueh, 1(1)(1980)20-5. Gas Chromatographic Method f o r t h e A n a l y s i s o f P o l y c h l o r i n a t e d B i p h e n y l s i n Transformer O i l . J. Ogata, J.D. Okun, J.W. H y l i n and A. Bevenue, J. Chromatogr., 189(3)(1980)425-7. An A i r Sampling and A n a l y s i s Method f o r M o n i t o r i n g P e r s o n a l Exposure t o Vapors o f A c r y l a t e Flonomers. M.W. Bosserman and N.H. Ketcham, Am. Ind. Hyg. Assoc. J., 41(1)(1980)20-6. Gas-Chromatographic D e t e r m i n a t i o n o f Hydrocarbons i n e x t r a c t s o f Atmospheri c Dust. L.S. Lysyuk and A.N. K o r o l , S o r b e n t y D l y a Gaz. i Z h i d k o s t n o i Khromatogr., M (1979)82-5. D i r e c t Aqueous I n j e c t i o n Gas Chromatography f o r t h e A n a l y s i s o f Trace O r g a n i c s i n Water. P. Simnonds and E. Kerns, J. Chromatogr., 186(1979)705-94. The C o n c e n t r a t i o n , I s o l a t i o n , and D e t e r m i n a t i o n of A c i d i c M a t e r i a l f r o m Aqueous S o l u t i o n . J.J. R i c h a r d and J.S. F r i t z , J. Chromatogr., Sci., 18( 1 )(1980)35-8. D e t e r m i n a t i o n o f Ammonium-Nitrogen i n Water. T. I t o , Jpn. Kokai Tokkyo Koho 80 01,552 ( C l . GOlN31/00), 0 8 Jan 1980. Steam-Modified Gas-Solid Chromatography: a Complementary Technique f o r O r g a n i c P o l l u t a n t Survey. C.L. G u i l l e m i n , F. M a r t i n e z and S. T h i a u l t , J . Chromatogr. S c i . , 17(19)(1979)677-81. Chromatographic A n a l y s i s o f M a j o r T r a c e Components i n S o l v e n t s w i t h Concent r a t i o n P r i o r t o Sample I n j e c t i o n . V.G. B e r e z k i n , M.N. Budantseva and E. Dows, J. Chromatogr., 191 ( 1 ) ( 1980)309-12. Measurement o f P e t r o l e u m O i l D e p o s i t s on C i t r u s Leaves by G a s - L i q u i d Chromatography. G.O. Furness, R.T. Howard and P.J. Smith, P e s t i c . Sci., l O ( 6 ) (1979)478-84. Simple M u l t i - R e s i d u e A n a l y s i s o f Organophosphorus P e s t i c i d e s by Mass Chromatography. H. Kobayashi, M. Kojima, 0. Matano and S. Goto, I l i p p o n Noyaku Ga k k a i s h i , 4 ( 4 ) ( 1979)463-72. D e t e r m i n a t i o n of C a r b o f u r a n Residues i n P o t a t o , Onion and T u r n i p ; Comparat i v e Analyses U s i n g Gas Chromatography-Selected I o n M o n i t o r i n g o r H i g h Performance L i q u i d Chromatography. J.R. Robinson and R.A. Chapman, J. Chromatogr., 193( 2) (1 980)213-24. A n a l y t i c a l Method f o r Residues o f D i t h i o c a r b a m a t e F u n g i c i d e s i n A g r i c u l t u r a l Products. 1.1. Uno, T. Okada, Y. O n j i , T. Ohmae and Y. Nishikawa, Shokunin E i s e i g a k u Zasshi, 20(6)(1979)450-5. A c t i v a t e d Carbon f o r A n a l y s i s . S. Kuendig and D. Bauer, Chem. Rundsch., 33 ( 8 ) ( 1980) 1,G ,9. Q u a n t i t a t i v e Treatnlent o f Chromatograms o f Coke-Oven Gas and R o a s t i n g S i n t e r i n g Gas. M.N. Borisova, N.O. A f a n a s ' e v , Y.G. Husatova and V.A. Botryakova, Khim. Prom-st., Ser.: F o s f o r n a y a Prom-st., (6)(1979)49-52. D e t e r m i n a t i o n o f Residual 2,6-Dichlorobenzonitrile i n S o i l and Water. F. H e r z e l , J. Chromatogr., 1 9 3 ( 2 ) ( 1930)320-1. Study o f P e s t i c i d e Residues i n S t r a w b e r r y . G. V i s i and F. Orosz, Flovenyvedelem (Budapest), 1 4 ( 1 9 ) ( 1 978)408-11.
178 42 43 44 45 46 47 48 49 50 51 52 53
54 55
56 57 58 59 60 61 62
Organic S o l v e n t - S o l u b l e Organic M a t t e r f r o m S o i l s U n d e r l y i n g N a t i v e Range and C r e s t e d Wheatgrass i n S o u t h e a s t e r n A l b e r t a , Canada. J.F. Dormaar, A. J o h n s t o n and S. Smoliak, J. Range Manage., 33(2)(1980)99-101. Gas Chromatograph f o r Problems o f E n v i r o n m e n t a l P r o t e c t i o n . P. Popp, G. Oppermann and G. Andrae, Z f I - M i t t , 22, Suppl. (1979)94-105. M i c r o c o u l o m e t r i c D e t e r m i n a t i o n o f C h l o r i n a t e d O r g a n i c Compounds i n Rhine Water. L. B r a u n s t e i n , K. Hochmueller and K. Spengler, Vom Wasser, 53 (1979)27-51. A n a l y s i s o f A l k y l a t e d M i x t u r e s o f P o l y c h l o r i n a t e d B i p h e n y l s by C a p i l l a r y Gas Chromatography-Mass Spectrometry. J. K r u p c i k , P.A. L e c l e r c q , J. G a r a j and A. Simova, J. Chromatogr., 191(1)(1980)207-20. H i g h R e s o l u t i o n Gas Chromatography: An Overview. S.P. Cram and F.J. Yang, Adv. Chem. Ser., 185(1980)105-21. Gas-Liquid Chromatographic D e t e r m i n a t i o n o f Organophosphorus I n s e c t i c i d e Fernandes, Residues i n F r u i t s and Vegetables. J.R. F e r r e i r a and A.1l.S. J. Assoc. O f f . Anal. Chem., 63(3)(1980)51%-22. M o d i f i c a t i o n o f t h e AOAC Method f o r D e t e r m i n a t i o n o f Fumigants i n Wheat. M. Clower, Jr., J. Assoc. O f f . Anal. Chem., 63(3)(1980)539-45. Gas Chromatographic A n a l y s i s o f V o l a t i l e N i t r o g e n Bases o f B o i l e d Beef as P o s s i b l e P r e c u r s o r s o f N-Nitrosamines. R.V. Golovnya, I.L. Zhuravleva and Y.P. K a p u s t i n , Chem. Senses F l a v o u r , 4(2)(1979)97-105. Gas-Chromatographic D e t e r m i n a t i o n o f Carbon Monoxide i n t h e A i r . F1.T. D m i t r i e v and G.M. K o l e s n i k o v , Gig. S a n i t . , (3)(1980)53-4. A n a l y s i s o f M a l e i c , Fumaric, and S u c c i n i c A c i d s i n A i r by Use o f Gas Chromatography. 8.M. Wathne, A n a l y s t (London), 105(1249)(1980)400-3. Gas Chromatographic D e t e r m i n a t i o n o f Carbon Monoxide i n Atmospheric A i r . N.S. Nosova and N.N. Tomina, Sb. Nauch. T r . Mosk. N I I G i g i e n y , ( 1 3 ) ( 1 9 7 9 ) 63-4. Gas-Chromatographic Procedure f o r t h e Measurement o f C o n c e n t r a t i o n s o f M e t h y l , E t h y l , I s o p r o p y l , and N-Butyl A l c o h o l s i n t h e A i r o f I n d u s t r i a l P l a n t s . E.K. Prokhorova, V.E. K a l i n i n , V.L. Boyarskova and V.N. B l i n o v , Kompleks, P r o b l . Okhrany Truda, M. (1979)116-19. S t u d i e s on t h e S u l f u r Compounds i n Crude O i l s and Heavy Fuel O i l s Exposed o n t h e Sea S u r f a c e by t h e FPD Gas Chromatography. 2. S. U t a s h i r o and H. Matsuo., Kenkyu Holoku - K a i j o Hoan Daigakko, Dai-2-bu, 25(1)(1979)11-21. Gas-Liquid Chromatography A p p l i e d t o t h e A n a l y s i s o f Complex E n v i r o n m e n t a l Samples. A P r e l i m i n a r y I n v e s t i g a t i o n o f a Method o f Simultaneous E x t r a c t i o n and D e r i v a t i z a t i o n o f S o l i d Samples b e f o r e A n a l y s i s b v G a s - L i a u i d Chromatography. A. Waggott and C.L.' Saunders, Tech." Rep. i R - W a t e r 'Res. Cent., TR 44(1977)12 pp. D e t e r m i n a t i o n o f S e l e c t e d V o l a t i l e Organic P r i o r i t y P o l l u t a n t s i n Water by Computerized Gas Chromatography-Quadrupole Mass Spectrometry. W. P e r e i r a and B.A. Hughes, J. Am. Water Works ASSOC., 72(4)(198D)220-30. A Simple and S e n s i t i v e D e t e c t i o n Method f o r N i t r i l o t r i a c e t i c A c i d i n D r i n k Linckens, E n v i r o n . Technol. i n g and R i v e r N a t e r . J.K. R e i c h e r t and A.H.M. L e t t . , 1 ( 1 )(1980)42-9. M i c r o a n a l y s i s o f Aqueous Samples f o r Phenols and O r g a n i c A c i d s . W.A. P r a t e r , M.S. Simmons and K.H. Mancy, Anal. L e t t . , 13(A3)(1980)205-12. A Study o f t h e P a r t i t i o n i n g o f Phenols b y Use o f Spectroscopy and Gas Chromatography. R.L. Grob and M.L. F u l t z , J. E n v i r o n . S c i . H e a l t h , P a r t A, A15( 1 ) ( 1980)45-64. A n a l y s i s o f P o l y c h l o r i n a t e d B i p h e n y l s (PCB) by Glass C a p i l l a r y Gas Chromatography. Composition o f T e c h n i c a l A r o c l o r - a n d Clophen-PCB M i x t u r e s . K. B a l l s c h m i t e r and M. Z e l l , F r e s e n i u s ' Z. Anal. Chem., 302(1)(1980)20-31. Ov-17-QF-1 C a p i l l a r y Column f o r O r g a n o c h l o r i n e P e s t i c i d e A n a l y s i s . M.Cooke and A.G. Ober, J. Chromatogr., 195(2)(1980)265-9. E v a l u a t i o n o f t h e E f f e c t i v e n e s s o f F i r e p r o o f i n g Agents b y a G a s - L i q u i d Chromatographic Method. V. A n z o r ' e , N . I . L y t k i n a , L.N. Vansyatskaya and A.V. Zhurko, Kauch. Rezina, (7)(1980)55-6.
179 63 64 65
66 67
68 69 70 71
72 73 74 75 76 77
Gas-Chromatographic D e t e r m i n a t i o n o f Small C o n c e n t r a t i o n s o f D i c h l o r o methane i n P u r i f i e d Wastewater f r o m S y n t h e t i c F i b e r P r o d u c t i o n . N.M. Sergeeva., Khim. Volokna (1)(1980)54-5. N o n e x t r a c t i v e Gas Chromatographic D e t e r m i n a t i o n o f Low C o n c e n t r a t i o n s o r O r g a n i c Substances D i s s o l v e d i n Water. V. Y. Botsan and V . I . Kofanov, Khimiya i Tekhnol. Vody, 1(1)(1979)39-42. D e t e r m i n a t i o n o f T r i c h l o r o s i l a n e and S i l i c o n T e t r a c h l o r i d e i n Hydrogen C h l o r i d e E x i t Gas. S. Semenikhina, N.A.Palamarchuk, L.A. Nechaeva and B.P. Krasnov, Khim. Prom-st., Ser.: Metody Anal. K o n t r o l y a Kach. Prod. Khim. Prom-sti., (4)(1980)24-6. Chromatographic D e t e r m i n a t i o n o f P o l y c y c l i c Aromatic Hydrocarbons. V.D. Ovsyanik, L . I . Uspanova and V.G. Watvienko, Khim. Prom-st., Ser.: Metody Anal. K o n t r o l y a Kach. Prod. Khim. Prom-sti., (4)(1980)22-3. Q u a n t i t a t i v e D e t e r m i n a t i o n o f Trace I m p u r i t i e s o f Lower A l c o h o l s i n Aqueous S o l u t i o n s by Gas Chromatography. A.N. K o r o l , G.V. F i l o n e n k o , N. Omel'yanets and L.I. P e t r i k , O t k r y t i y a , I z o b r e t . , Prom. Obraztsy, Tovarnye Znaki, ( 2 0 ) ( 1980)218. D e t e r m i n a t i o n o f Formaldehyde i n Room Atmosphere by Headspace Gas Chromatography. A. K e t t r u p , H. Stenner, J . Heuel and W. Lorek, Appl. Headspace Gas Chromatogr., (GC Headspace Symp.)(1980)23-31. New P o s s i b i l i t y o f M o n i t o r i n g Gas Emissions w i t h an I o n i z a t i o n D e t e c t o r . P. Popp, G. Oppermann and G. Andrae, Z f I - M i t t . , 22(1979)154-64. A Sampling and A n a l y t i c a l Method f o r V i n y l A c e t a t e . D.L. F o e r s t and A.W. Teass, ACS Symp. Ser. 120(1980)169-84. Gas-Chromatographic Procedure f o r Measuring C o n c e n t r a t i o n s o f M e t h y l , E t h y l , I s o p r o p y l , and n - B u t y l A l c o h o l s i n t h e A i r o f I n d u s t r i a l B u i l d i n g s . E.K. Prokhorova, V.E. K a l i n i n , V.L. Boyarskova and V.N. B l i n o v , Compleks. P r o b l . Okhrany Truda, M., (1979)116-19. Reduced P r e s s u r e Headspace A n a l y s i s (RPHA) f o r t h e D e t e r m i n a t i o n o f Volat i l e Components i n t h e Lower and Sub-ppm Range. W . S t o t z k a , Appl. Headspace Gas Chromatogr., (GC Headspace Symp.)( 197B)(Pub.1980)56-6D. D e t e c t i o n o f Environmental P o l l u t a n t s . Method f o r A n a l y z i n g f o r A r o m a t i c N i t r o Compounds. H. Sugiyama, Y.Fushiwaki and K. Tanaka, Kanagawa-ken Kogai Senta Nempo, 10(1977)192. GC-MS D e t e r m i n a t i o n o f V o l a t i l e Organic Compounds i n Water. D.P. Beggs, O e s t e r r . Chem. Z., 81(4)(1980)98-9. C h a r a c t e r i z a t i o n o f C h l o r i n a t e d Hydrocarbons i n t h e M a r i n e Environment: Sampling and A n a l y t i c a l Aspects. S.P. Pavlou, R.N. D e x t e r and W. Hom, Pergamon Ser. E n v i r o n . Sci., 3(1980)185-96. I n t e r f a c e f o r C a p i l l a r y Columns on an A u t o m a t i c Headspace Gas Chromatog r a p h i c System. T. Meyer, HRC CC, J. H i g h R e s o l u t . Chromatogr. Chromat o g r . Commun., 3(7)(1980)357-8. Simultaneous A n a l y s i s o f R e s p i r a t o r y Gases and N i t r o u s O x i d e i n D e n t a l P a t i e n t s . J.E. O ' R e i l l y , G.I. Roth, J.L. Matheny and J.E. Dean, J. Dent. Res , 59( 4 ) (1980)675-82. Chemical Composition o f D i s s o l v e d Gases o f Subsurface Waters i n Dagestan a c c o r d i n g t o t h e R e s u l t s o f Gas-Chromatographic Analyses. Z.M. Shtanchaeva, 1.0. A z i e v and O.A. Mamaev, Akad. Nauk SSSR, Dagest. F i l . , I n s t . Geol. ( T r ) , 1 ( 1 4 ) ( 1977)94-100. C a p i l l a r y Gas Chromatography D e t e r m i n a t i o n o f C2 t o C11 Hydrocarbons i n Ambient A i r . I. A S t a t i s t i c a l E s t i m a t i o n o f Photochemical R e a c t i o n f o r O l e f i n s and A r o m a t i c s . Y. T s u j i n o , T a i k i Osen G a k k a i s h i , 14(6)(1979)231-42. Chromatographic Methods o f A n a l y s i s f o r Methanol and E t h a n o l i n A u t o m o t i v e Exhaust. C.J. R a i b l e and F.W. Cox, Report 1979, CONF-7906132-2, Energy Res. Abstr., 5 ( 1 ) ( 1 9 8 0 ) . D e t e r m i n a t i o n o f Oxygen Content i n t h e A i r o f an I n d u s t r i a l Type o f S t o c k Farm by a Gas Chromatographic Method. T.A. Pak, V . I . B a l a n i n , Y.V. E f i m o v and A.A. Khomchenko, Sb. Nauch. Tr. L e n i n g r . Vet. I n - t , 59(1979)18-24. D e t e r m i n a t i o n o f P e r c h l o r o e t h y l e n e i n t h e S u b - P a r t s - p e r - B i l l i o n Range i n Ambient A i r by Gas Chromatography w i t h E l e c t r o n C a p t u r e D e t e c t i o n . A.L. Sykes, D.E. Wagoner and C.E. Decker, Anal. Chem.,52(11)(1980)1630-3.
.
78
79 80 81 82
180 D e t e r m i n a t i o n o f Lower F a t t y Acids C2-C6 i n Waste Waters and Sludges by Gas Chromatography. J. Sabata, J. Zabranska, J. K r i z and P. Grau, Sb. Vys. Sk. Chem.-Technol. Praze ( 0 d d i l ) F : Technol. Vody P r o s t r e d i , F23(1979)145-79. Trace D e t e r m i n a t i o n o f N-Cyclohexyl-2-Benzothiazole Sulfenamide and 284 (4-Morpho1inothio)benzothiazole i n Water and Sediment by Gas Chromatography w i t h a Flame P h o t o m e t r i c D e t e c t o r . S. Eto, R. Shinohara, A. K i d o and T. H o r i , Bunseki Kagaku, 29(3)(1980)213-16. D i r e c t D e t e r m i n a t i o n o f O r g a n i c Compounds i n Water U s i n g Steam-Solid Chro85 matography. J. T e p l y and M. D r e s s l e r , J . Chromatogr., 191(1)(1980)221-9. E x t r a c t i o n and Gas Chromatographic D e t e r m i n a t i o n o f a H e r b i c i d e (Neburon) 86 A p p l i c a t i o n t o N a t u r a l Waters. and i t s Metabolite(3,4-Dichloroaniline). A. Copin, J . D e l m a r c e l l e , R. Deleu, A. Renaud and Ph. Dreze, Anal. Chim. Acta , 116( 1 ) (1980)145-52. Trace A n a l y s i s o f Organics i n Water by Gas Chromatography. R. Mindrup, 87 Pergamon Ser. Endiron. Sci., 3(Anal .Tech.Environ.Chem.)(1980)325-33. Gas-Chromatographic A n a l y s i s o f t h e S o i l Atmosphere. K.A. Smith, Adv. 88 Chromatogr., 15(1977)197-231. 89 GC-MS i n t h e S t u d i e s o f t h e A q u a t i c Environment. R. I s h i w a t a r i , S h i t s u r y o Bunseki , 2 6 ( 4 ) (1 978)301-11. D e t e r m i n a t i o n o f Very Low C o n c e n t r a t i o n s o f P r i m a r y A l c o h o l s i n Water. 90 J . Tesar, V. Kubelka, J. Novak and J. Mostecky, Sb. Vys. Sk. Chen.-Technol. Praze (Oddi 1 ) F : Technol Vody P r o s t r e d i , F23( 1979)217-48. 91 Determi n a t i on o f Ch romi um( III) and Ch romi um( V I ) by Gas Chromatography S.R. Wang, F.Z. Xu, H.F. Zhou and X.L. J i n , Huan Ching K ' o Hsueh, l(3) ( 1980) 11- 16. A Rapid Method f o r t h e D e t e r m i n a t i o n o f P o l y o l s i n C i g a r e t s and L e a f 92 Tobacco. S. I s h i g u r o , T. Ohsumi, S. Matsushima and S. Sugawara, Kenkyu Hokoku-Nippon Senbai Kosha Chuo Kenkyusho, 121 (1979)7-11. 93 Gas-Chromatographic D e t e r m i n a t i o n o f N i c o t i n e i n Tobacco and C i g a r e t Smoke by Means o f a N i t r o g e n - P h o s p h o r u s - S e l e c t i v e D e t e c t o r . G. L i o n e t t i and N. Carugno, Riv. Merceol., 19(2)(1980)99-111. 94 U t i l i t y of Mass S p e c t r o m e t r y i n t h e Measurement o f Trace Q u a n t i t i e s o f Hazardous O r g a n i c Species i n Ambient Atmospheres. J.T. Bursey, 1I.D. E r i c k son, L.C. M i c h a e l , R.A. Z w e i d i n g e r and E.D. P e l l i z z a r i , AIChE Symp. Ser. 76 (1 96) ( 1980)338-45. 95 D e t e r m i n a t i o n o f N-Nitrosamines f r o m D i e s e l Engine Crankcase Emissions. E . U. G o f f , J.R. Coombs, D.H. F i n e and T.M. Baines, Anal. Chem.,52(12) ( 1980) 1833-6. 96 Automated S e q u e n t i a l Sampler f o r Gas Chromatographic D e t e r m i n a t i o n o f T r a c e A i r b o r n e P e s t i c i d e s . H.L. G e a r h a r t , R.L. Cook and R.W. Whitney, Anal. Chem., 52(13) (1980)2223-5. 97 Gas-Chromatographic D e t e r m i n a t i o n o f t h e Components o f Waste \,later f r o m Dimethyl T e r e p h t h a l a t e P r o d u c t i o n . P. Kusz and A. A n d r y s i a k , F r e s e n i u s ' Z. Anal. Chem., 301(5)(1980)432-3. 98 I d e n t i f i c a t i o n o f O r g a n i c Compounds i n a Mutagenic E x t r a c t o f a S u r f a c e D r i n k i n g Water b y a Computerized Gas ChromatographylMass S p e c t r o m e t r y W.E. Coleman, R.G. M e l t o n , C. F r e d e r i c k , K.A. Barone, System (GC/MS/COM). T.A. Aurand and t1.G. J e l l i s o n , E n v i r o n . S c i . Technol., 14(5)(1980)576-88. 99 Gas Chromatographic A n a l y s i s o f Trace Hydrocarbon P o l l u t a n t s i n Water Samples. B.A. C o l e n u t t and S. Thorburn, I n t . J. E n v i r o n . Stud., 1 5 ( 1 ) ( 1 9 8 0 ) 25-32. 100 GC/MS I d e n t i f i c a t i o n o f Trace O r s a n i c s i n P h i l a d e l o h i a D r i n k i n a Waters Duri n g a 2-Year P e r i o d . I.H. S u f f e t , L. B r e n n e r and P.R. C a i r o , i a t e r Res. 14 ( 7 ) [ 1980 1853-67. 101 D e t e c t i o n o f V o l a t i l e N i t r o s a m i n e s i n I l a s t e Water f r o m Chemical P l a n t s by Combined C a p i l l a r y Gas Chromatography-Mass Spectrometry. G. H a r t m e t z and J. Slemrova, B u l l . E n v i r o n . Contam. T o x i c o l . , 25(1)(1980)106-12. 102 Gas Chromatographic-Mass S p e c t r o m e t r i c A n a l y s i s o f C h l o r i n a t i o n E f f e c t s on Commercial Coal-Tar Leachate. K. Alben, A n a l . Chem., 52(12)(1980)1825-8. 83
.
.
181 103 H i g h l y S e n s i t i v e D e t e c t o r f o r Anines and T h e i r D e r i v a t i v e s . E.Y. Zandberg, A.G. Kamenev, V . I . Paleev, U. Kh. Rasulev, Zh. Anal. Khim., 3 5 ( 6 ) ( 1 9 8 0 ) 1 188-94. 104 V o l a t i l e Phase P r o f i l i n g o f Mainstream Smoke by Glass C a p i l l a r y Gas-Chromat o g r a p h i c Techniques. B.W. Good, M.E. P a r r i s h and D.R. Douglas, HRC CC.J. H i g h R e s o l u t . Chromatogr. Chromatogr. Comnun., 3(9)(1980)447-51. 105 Chromatographic Methods o f A n a l y s i s f o r Methanol and E t h a n o l i n A u t o m o t i v e Exhaust. C.J. R a i b l e and F.U. Cox, SAE Tech. Pap. Ser. 790690(1979)7 pp. 106 D e t e r m i n a t i o n o f Dimethyl and O i e t h y l S u l f a t e i n A i r by Gas Chromatography. J.C. G i l l a n d , J r . and A.P. B r i g h t , Am. I n d . Hyg. Assoc. J., 41(6)(1980)459-61. 107 C o n s t r u c t i o n and T e s t i n g o f B u l k F i l t e r s w i t h Coupled Gas Chromatographs f o r D e t e r m i n i n g Halogen Compounds i n t h e A i r . H. Hartkamp and A. Ionescu, Staub-Rei n h a l t. L u f t , 40( 4) ( 1980) 151-6. 108 O e t e r m i n a t i o n o f P a r t i c u l a t e O r g a n i c M a t t e r i n E n v i r o n n l e n t a l Samples by Gas Chromatography-Mass S p e c t r o m e t r y and H i g h P r e s s u r e L i q u i d Chromatography. R.C. Lao and R.S. Thomas, Pergamon Ser. E n v i r o n . Sci.,3(1980)97-110. 109 Q u a n t i t a t i v e A n a l y s i s o f l l e t h y l c h l o r i d e i n t h e Atmosphere by Gas Chromat o g r a p h y w i t h E l e c t r o n C a p t u r e D e t e c t i o n . C. Vidal-Madjar, F. Benchah, M.F. Gonnord, J.P. O l i v o and G. Guiochon, Pergamon Ser. E n v i r o n . Sci., 3 ( 1980) 141-9. 110 Gas Chromatoqraphic Methods f o r Atmospheric S u l f u r D i o x i d e and Carbonyl S u l f i d e a t t h e P a r t s - P e r - T r i l l i o n L e v e l . P.J. t l a r o u l i s , D i s s . A b s t r . - I n t . B. 41(3)(1980)946. 111 C h a r a c t e r i s t i c s o f D e t e r m i n i n g Carbon D i o x i d e by G a s - L i q u i d Chromatography. 1.0. Aziev, Akad. flauk SSSR, Dagest. F i l . , I n s t . Geol., ( T r ) , 1 ( 1 4 ) ( 1 9 7 7 ) 101 -3. 112 C o u p l i n g o f C a p i l l a r y Gas Chromatograph and F o u r i e r T r a n s f o r m Mass S p e c t r o meter. E.B. L e d f o r d , R.L. W h i t e and S. Ghaderi. Anal. Chem., 52(14) (1 980)2450-1. 113 A Recent Case o f E n v i r o n m e n t a l P o l l u t i o n : Some A n a l y t i c a l A p p l i c a t i o n s . A. F r i g e r i o , Pergamon Ser. E n v i r o n . Sci., 3 ( 1980)151-5. 114 Q u a n t i t a t i v e O e t e r m i n a t i o n o f Naphthalenes i n Tobacco Smoke b y Gas Chromat o q r a p h y . R.F. A r r e n d a l e , R.F. Severson and M.E. Snook, B e i t r . Tabakforsch. In?. ,' l b ( 2) ( 1 980) 100-5. 115 Use of Thermoionic D e t e c t o r i n Gas Chromatoqraphy o f Some Carbamate and Organophosphorus I n s e c t i c i d e s . T. Shinohara and- Y. Marumo, Kagaku K e i s a t s u Kenkyusho Hokoku, Hokagaku Hen, 33(3)(1980)136-9. 116 Gas-Chromatographic Method f o r t h e D e t e r m i n a t i o n o f Traces o f Carbon D i s u l f i d e i n t h e A i r . E. Saulova and ll. Pankova, Khim. I n d . ( S o f i a ) , ( 4 ) ( 1980) 164-5. 117 A p p l i c a t i o n o f a D i r e c t Aqueous A c e t y l a t i o n Technique t o t h e Gas Chromatog r a p h i c Q u a n t i t a t i o n o f N i t r o p h e n o l s and 1-Naphthol i n E n v i r o n m e n t a l L l a t e r Samples. R.T. C o u t t s , E.E. Hargesheimer and F.M. P a s u t t o , J. Chromatogr., 195( 1 ) ( 1980)105-12. 118 The A n a l y s i s o f O r g a n i c Water P o l l u t a n t s by Gas Chromatography and Gas Chromatography-Mass Spectrometry. R.A. H i t e s , Adv. Chromatogr., 15(1977) 69-1 12. 119 A Gas Chromatographic O e t e r m i n a t i o n o f B e n z o t r i c h l o r i d e and R e l a t e d Compounds i n t h e Work Environment. H. M a t s u s h i t a and S. Kanno, I n d . H e a l t h , 17 ( 4 ) ( 1979) 1 99-206. 120 Gas-Chromatographic D e t e r m i n a t i o n o f A l c o h o l s and Amide S o l v e n t s i n t h e B i o l o g i c a l l y P u r i f i e d Wastewaters f r o m t h e P r o d u c t i o n o f F i b e r - F o r m i n g Polymer M a t e r i a l s . N.V. Makovskaya, B . I . Panchenko and I.N. A g r a n o v s k i i , Khim Volokna, ( 3 ) (1980)53-4. 121 D e t e r m i n a t i o n o f P o l y b r o m i n a t e d B i p h e n y l and R e l a t e d Compounds by GasL i q u i d Chromatography w i t h a Plasma E m i s s i o n D e t e c t o r . K.J. M u l l i g a n , J.A. Caruso and F.L. F r i c k e , A n a l y s t (London), 105(1256)(1980)1060-7. 122 Sample P r e p a r a t i o n and Q u a n t i t a t i v e D e t e r m i n a t i o n o f t h e H e r b i c i d e A t r a z i n e ( s - T r i a z i n e ) f r o m Water and Organic M a t t e r : t h e Use o f Gas Chromatog r a p h i c Methods i n B i o l o g i c a l Experiments. G. Gunkel, Arch. H y d r o b i o l . , SUPP., 5 9 ( 1 ) ( 1980)17-31.
182 123 Trace A n a l y s i s o f N-Formylmorpholine i n Hydrocarbons and Water by GasL i q u i d Chromatography. A.H. Tameesh, T.M. S a r k i s i a n and K.R. Hameed, C h r o m t o g r a p h i a , 13 ( 1 0 ) (1980)617-18. 124 D e t e r m i n a t i o n o f P e t r o l e u m G a s o l i n e and Benzene i n t h e A i r b y Gas Chromatography. J. K r a j e w s k i and K. Nowicka, Med. Pr., 31(1)(1980)1-6. 125 E x t r a c t i o n - F r e e Gas-Chromatographi c Determi n a t i o n o f Small C o n c e n t r a t i o n s o f Organic M a t t e r D i s s o l v e d i n Water. V.Y. Botsan, V . I . Kofanov, K h i n . Teckhnol. Vody, 1(1)(1979)59. 126 The Measurement o f A i r b o r n e Benzene Vapor. H.G. B a x t e r , R. Blakemore, J.P. Moore, D.T. Coker and W.H. McCanbley, Ann. Occup. Hyg., 2 3 ( 2 ) ( 1 9 8 0 ) 117-32. 127 A Convenient Flethod f o r t h e D e t e r m i n a t i o n o f Ambient N i c o t i n e . W.E. Crouse, L.F. Johnson and R.S. Marmor, B e i t r . Tabakforsch. I n t . , 10(2)(1900)111-13. 128 D e t e r m i n a t i o n o f P o l y c y c l i c A r o m a t i c Hydrocarbons i n A i r b o r n e P a r t i c u l a t e s a t Various S i t e s i n T a i p e i City by GC/MS and Glass C a p i l l a r y GC. P.H. Chen, H.H. Shieh, J.M. Gaw, Proc. N a t l . S c i . Counc., Repub. China,4(3)(1980)280-4. 129 Atmospheric D e t e r m i n a t i o n o f Some C h l o r i n a t e d O r g a n i c P r o d u c t s D u r i n g E p i c h l o r o h y d r i n P r o d u c t i o n . D. Tolan, F. Pop, G. K a l m u t c h i and R. Popescu, Rev. Chim. (Bucharest), 31(6)(1980)596-7. 130 M o d i f i c a t i o n s t o Methods f o r V o l a t i l e O r g a n i c s A n a l y s i s a t Trace L e v e l s . H.C. Hu and P.H. Weiner, J. Chromatogr. Sci., 18(7)(1980)333-42. 131 Gas-Chromatographic A n a l y s i s o f P r o d u c t s o f t h e High-Temperature C h l o r i n a t i o n o f Methane. T.S. Deineka and V.L. Senechko, Khim. Prom-st., S e r . : Metody Anal. K o n t r o l y a Kach. Prod. Khim. Prom-sti., ( 9 ) (1980)7-9. 132 C2-C6 Hydrocarbons i n A i r : Gas Chromatographic A n a l y s i s o f C2-C6 Hydrocarbons i n A i r U s i n g a C o n c e n t r a t i n g Technique. E. Burghardt., R e p o r t 1978, IG-THO-H-393; S c i . Tech. Aerosp. Rep., 1 8 ( 1 4 ) ( 1 9 8 0 ) . 133 GC A n a l y s i s Aldehydes: Gas Chromatographic A n a l y s i s o f c 2 - c 6 Alkanes i n A i r U s i n q an I s o l a t i o n and C o n c e n t r a t i o n Flethod Based o n B i s u l f a t e Adduct i o n Formation. C. VanWaas, R e p o r t 1979, IG-TNO-H-399; S c i . Tech. Aerosp. Rep., 18(14)(1980). 134 A n a l y s i s ' o f ' W a s t e . G a s e s f r o m D i r e c t and O x i d a t i v e C h l o r i n a t i o n . V.L. Senechko, Khim. Prom-st., Ser.: K h l o r n a y a Prom-st., (1)(1900)13-14. 135 S e l e c t i v e Gas Chromatographic D e t e r m i n a t i o n o f C h l o r i n a t e d Hydrocarbons i n A i r w i t h P r e l i m i n a r y Removal o f I n t e r f e r i n g I m p u r i t i e s . Y.S. Drugov, and G.V. Murav'eva, Zh. Anal. Khim., 35(7)(1900)1319-25. 136 Measurement o f P h t h a l i c A c i d E s t e r s i n A i r . H. Hayashi, T. I s h i d a , H. Suzu k i , M. Nagata, S. Sat0 and t1. I c h i h a s h i , Kawasaki-shi Kogai Kenkyusho Nenpo, 6 ( 1978)22-7. 137 I d e n t i f i c a t i o n o f Acephenanthrylene i n Combustion Eff 1uents. S. K r i s hman, R.A. H i t e s , Anal. Chem., 53(2)(1981)342-3. 138 Apparatus f o r S e l e c t i v e I n j e c t i o n o f Sample Gases I n t o A Gas Chromatograph. Appl. 7g/4,506, Jan.(1979) f r o m M i t s u b i s h i Monsanto Chemical Co., Gasukuro Kogyo, K.K. Jpn Kokai Tokkyo Koho 80 96,451. 139 D e t e r m i n a t i o n o f O r g a n o c h l o r i n e P e s t i c i d e s and P o l y c h l o r i n a t e d B i p h e n y l s i n Water by Gas Chromatography. J.D. M i l l a r , R.E. Thomas and H.J. S c h a t t e n berg, 111, Anal. Chem., 53(2)(1981)214-19. 140 D e t e r n i i n a t i o n o f t h e C o n c e n t r a t i o n s o f O r g a n i c S o l v e n t s Simul t a n e o u s l y P r e s e n t i n Air i n t h e Workplace. 11. Mukhtarova, K h i g . Zdraveopaz, 2 3 ( 2 ) (1980)173-7. 141 D i s t r i b u t i o n o f M e t h y l n a p h t h a l e n e Isomers b y C a p i l l a r y GC-MS: a Means o f Demonstrating a Component o f P e t r o l e u m O r i g i n i n Complex Groundwater o r Chemical S p i l l Samples. G.M. Frame, C o n t r o l Hazard. Mater. S p i l l s , Proc. N a t l . Conf., (1980)180-4. 142 Assay and Recovery i n E n v i r o n m e n t a l A n a l y s i s . M.A. B e n n e t t , Lab. P r a c t . , 29 ( 9 ) (1980)931. 143 Importance o f F r a c t i o n a t i o n o f E n v i r o n m e n t a l Samples P r i o r t o A n a l y s i s by High R e s o l u t i o n Gas Chromatography. K. Tjessem, Chem. Scr., 1 5 ( 4 - 5 ) ( 1 9 8 0 ) 189-92.
183 144 Determination o f Organochlorine I n s e c t i c i d e Residues. II. Determination of a - , B - , y-, 6-, &HCH and HCB i n Water. S. Waliszewski, Fresenius' Z. Anal. Chem., 304(2-3)(1980)143. 145 A Method o f N i t r o g e n Oxides Analysis by t h e Gas Chromatograph. S. Fukazawa, Y. Fujiwara and S. Tosaka, Hokkaido Kogyo Daigaku Kenkyo Kiyo, 6(1978)15-27. 146 Automated Gas Chromatographic Determination o f Atmospheric Carbon Monoxide a t t h e P a r t s - P e r - B i l l i o n Level. A. llarenco and D.J.C. Delaunay, Anal. Chem. 53(3)(1981)567-70. 147 Estimated A p p l i c a t i o n o f Gas Chromatographic Headspace A n a l y s i s t o P r i o r i t y P o l l u t a n t s . L1.F. Cowen and R.K. Baynes, J. Environ. S c i . Health, P a r t A, A15(5)(1980)413-27. 148 Precise Determination o f Dissolved Gases i n Seawater by Shipboard Gas Chromatography. T. Gamo and Y. Horibe, B u l l . Chem. SOC. Jpn, 53(10)(1980)2839-42. 149 Gas-Chromatographic Analysis o f Trace V o l a t i l e Halogenated Hydrocarbons i n Water ( D r i n k i n g Water). Z.Y. Hu, I1.C. Shih, T.F. Chen and F.C. Tao, Huan Ching K'o Hsueh, 1(5)(1980)38-43. 150 Enhancement of E l e c t r o n Capture Detector Response t o P o l y c y c l i c Aromatic and Related Hydrocarbons by A d d i t i o n o f Oxygen t o C a r r i e r Gas. D.A. M i l l e r , K. Skogerboe and E.P. Grimsrud, Anal. Chem., 53(3)(1981)464-7. 151 Gas Chromatography o f Simple Monocarbonyls i n C i g a r e t Whole Smoke as t h e Benzyloxime D e r i v a t i v e s . D.F. Hagin, J. Chromatogr., 202(2)(1980)255-61. 152 Development and A p p l i c a t i o n o f Methodology f o r Determining 1 ,2-Oibromo-3Chloropropane (OBCP) i n Ambient A i r . J.B. tlann, J.J. Freal, H.F. ENos and J.X. Danauskas, J. Environ. S c i . Health, P a r t B, B15(5)(1980)519-28. 153 Determination o f Atmospheric Organic Compounds by C a p i l l a r y Gas-Phase Chromatography Coupled w i t h l4ass Spectrometry (GC)*(MS)). M. Termonia, X. Monseur, G. A l a e r t s , A. DeMeyer, P. Dourte and J. klalravens, Corn. Eur. Communities (Rep) EUR, EUR(1980)6621. 154 N a t i o n a l Emission Standards f o r Hazardous A i r P o l l u t a n t s ; A l t e r n a t i v e Test Method f o r V i n y l C h l o r i d e i n Solvents and P o l y ( v i n y 1 c h l o r i d e ) Resins. United States Environmental P r o t e c t i o n Agency, Fed. Regist., 46(29)(1981) 12188-90. 155 An Improved Procedure f o r Sampling and A n a l y s i s o f D i n i t r o t o l u e n e Vapor Concentrations i n Workplace A i r . R.J. Hunt, N.R. Neubauer and R.F. Picone, Am. Ind. Hyg. Assoc. J . , 41(8)(1980)592-4. 156 Gas Chromatographic llethod f o r the Determination o f S e l e n i t e and T o t a l Selenium i n Seawater. C . I . Pleasures and J.D. Burton, Anal. Chim. Acta, 120( 1980) 177-86. 157 Analysis o f Trace Levels o f V o l a t i l e Organic Contaminants i n Municipal D r i n k i n g Water by Glass C a p i l l a r y Gas Chromatography Using Simultaneous Flame I o n i z a t i o n and E l e c t r o n Capture Detection. L.V. McCarthy, E.B. Overton, C.K. Raschke and J.L. Laseter, Anal. L e t t . , 13(A16)(1980)1417-29. 158 Determination o f Organonercury Using a Combined Gas Chromatography-Mercury Analyzer. X. Zhang and X.G. Ren, Huan Ching K'o Hsueh, 1(6)(1980)34-7. 159 Determination o f N i t r i l e s i n Environmental Samples. K. Humada, H. Tanaka and T. Kasai, Yamanashi-kenritsu E i s e i Kogai Kenkyusho Nempo, 23(1980)65-70. 160 Gas-Chromatographic Determination o f Substances Separating from Varnishes. T.D. Stepanenko, G.V. Frolova and L.M. Plesakova, Derevoobrab. Prom-st., ( 7) (1 980)ZO-1. 161 Development o f an A n a l y t i c a l Method f o r F e n i t r o t h i o n and F i v e D e r i v a t i v e s i n Water Using XAD Resins and Gas L i q u i d Chromatography (GLC). G.G. Volpe and V.N. M a l l e t , I n t . J. Environ. Anal. Chem., 8(4)(1980)219-301. 162 Formation o f Chloroform From t h e C h l o r i n a t i o n o f Diketones and Polyhydroxybenzenes i n D i l u t e Aqueous S o l u t i o n . S.D. Boyce and J.F. Hornig, Water C h l o r i n a t i o n : Environ. Impact Health E f f . , 3(1980)131-40. 163 Determination o f P h t h a l i c Anhydride i n t h e Atmosphere o f Workplaces by Gas Chromatography. A. Popler, Prac. Lek., 32(6-7)(1980)216-19. 164 Methods o f Determining Micro Q u a n t i t i e s o f l1,li-Dimethylaminopropionitrile i n A i r . V.E. S h e f t e r , R.S. Krupenina and N.P. Ivanova, Zh. Anal. Khim., 35( 9 ) (1 980)1813-17.
184 165 Gas Chromatographic Determination o f E t h y l A c r y l a t e , 2-Ethylhexyl A c r y l a t e and M e t h a c r y l i c A c i d i n A i r . S. Czerczak and T. Rogaczewska, Chem. Anal. (Warsaw), 25( 3 ) (1980)459-64. 166 GC/MS Methodology f o r Measuring P r i o r i t y Organics i n Municipal Wastewater Treatment. D. F. Bishop, U.S. Environ. Prot. Agency, O f f . Res. Dev., (Rep.) EPA 1980, EPA-600/112-80-196, 5 pp. 167 Room Temperature Chromatographic Determination o f Helium-Argon-NitrogenOxygen-Methane-Carbon Dioxide-Hydrogen Sulfide-Water i n Underground Gas and Gas from Under round Water. H.F. Liu, C.L. Chang and T.H. Chang, Fen Hsi Hua Hsueh, 8 ( 37 ( 1980 1230-3. 168 Use o f Two-Flame-Thermionic and N i t r o g e n Detectors f o r t h e I d e n t i f i c a t i o n o f Chemicals i n t h e A i r and Water. S.A. Volkov and E.E. Sotnikov, Gig. Sanit., (11) (1980)62-3. 169 Study o f Hydrogen S u l f i d e Emissions from a S a l t Water Marsh. A.B. Goldberg, P.J. Maroulis, L.A. Wilner and A.R. Bandy, Atmos. Environ., 15(1)(1981) 11-18. 170 I d e n t i f i c a t i o n o f Alcohols, Aldehydes, Ketones and Esters i n Wastewaters. 2. I d e n t i f i c a t i o n o f I n d i v i d u a l Organic Compounds. M.F. Prokop'eva and N.K. Tadzhieva, Deposited Doc. 1979, V I N I T I 3352, 16 pp. 171 Gas-Chromatographic/Mass-Spectrometric A n a l y s i s o f D e r i v a t i z e d Amino Acids i n Municipal Wastewater Products. J.L.Burleson, G.R. Peyton and W.H. Glaze, Environ. S c i . Technol., 14(11)(1980)1354-9. 172 D i r e c t A n a l y t i c a l Method f o r A l i p h a t i c Compounds i n Water by Steam C a r r i e r Gas Chromatography. K. Urano, K. Ogura and H. Wada, Water Res., 15(2) 173 Q u a n t i t a t i v e Determination o f Dissolved Gases i n Underground Gas o r Water by Air-Standard Gas Chromatography. T.C. Chiang, L.C. Chao, K.C. Yuan, H.N. Yu and S.C. L i , Fen S Hua Hsueh, 8(4)(1980)351-3. 174 Gas-Chromatoqraphic Determination o f f~,f~-Dimethvlformamide i n A i r Samples i n the Micro-Range. G. Boehm, 14. Wliszczak and-G. Kainz, Mikrochim. k c t a l ( 5 - 6 ) (19801485-93. 175 Gas Chromatographic Method f o r t h e Determination o f Dimethyl S u l f a t e i n A i r . K.S. Sidhu, J . Chromatogr., 206(2)(1981)381-3. 176 Determination o f Halocarbons i n A i r by Gas Chromatography-High Resolution Mass Spectrometry. F. Bruner, G. C r e s c e n t i n i , F. Flangani, E. Brancaleoni, A. C a p p i e l l o and P. C i c c i o l i , Anal. Chem., 53(6)(1981)790-801. 177 The Determination o f Some C h l o r i n a t e d Organics i n t h e Environment by Gas Chromatography-Mass Spectrometry. C.S. Creaser, I n t . Environ. Saf., (Oct) (1%0)29-31. 178 Analysis o f Sludge E x t r a c t s by High R e s o l u t i o n GC w i t h S e l e c t i v e Detectors. V. Lopez-Avila, HRC CC, J . High Resolut. Chromatogr., Chromatogr. Comnun. 3 ( 11 ) (1980)545-50. 179 Determination o f Carboxylic Acids and Phenols i n Water by E x t r a c t i v e A l k y l a t i o n Using Pentafluorobenzylation, Glass C a p i l l a r y GC and E l e c t r o n Capture Detection. E. Fogelqvist, B. Josefsson and C . Roos, HRC CC, J. High Resol u t . Chromatogr. Chromatogr. Commun., 3(11) (1980)568-74. 180 On-Column I n j e c t i o n i n Gas Phase Chromatography-Capil l a r y Columns. A p p l i c a t i o n t o t h e Analysis of P o l y c y c l i c Aromatic Hydrocarbons i n t h e Environment. C.K. Huynh, Mit., Geb. Lebensmittelunters. Hyg., 71(4)(1980)FHJF. 181 Synthesis and I d e n t i f i c a t i o n o f t h e 10 Hexachlorodibenzo-p-Dioxin Isomers by High Performance L i q u i d and Packed Column Gas Chromatography. L.L. Lamparski and T.J. N e s t r i c k , Chemosphere, 1O( 1 ) (-981 )3-18. 182 Determination o f L i g r o i n e i n Wastewater by Gas-Liquid Chromatography. T. Palaveeva and R. Daskalov, Maslo-Sapunena Prom-st. , 16(1)(1980)32-5. 183 The Use of Porous Polymers f o r t h e C o l l e c t i o n o f P l a n t V o l a t i l e s . R.A. Cole, J . Sci. Food Agric., 31(12)(1980)1242-9. 184 Rapid Method f o r t h e Determination o f Polycycl i c Aromatic Hydrocarbons i n Environmental Samples by Combined L i q u i d and Gas Chromatoqraphy. L. Szepesv. K. Lakszner L . Ackermann, L. Podmaniczky and P. L i t e r a t h y , J.-Chromatogr.-, 206( 3) (19111 1611-16.
185 185 186
187 186 189 190 191 192
D e t e r m i n a t i o n o f N i t r o u s Oxide i n F l u Gas. T. F u j i i , Kogai t o T a i s a k u , l 6 ( 1 2 ) ( 1980)1187-91. Some C r i t i c a l Parameters i n C o l l e c t i o n , Recovery and Gas Chromatographic A n a l y s i s o f O r g a n i c P o l l u t a n t s i n Ambient A i r U s i n g L i g h t Adsorbents. G. B e r t o n i , F. Bruner, A. L i b e r t i and C. P e r r i n o , J. Chromatogr., 203(1981) 263-70. Gas ,Chromatographic D e t e r m i n a t i o n o f M e s i t y l Oxide and D i a c e t o n e A l c o h o l i n t h e A i r . M. Hiazek-Kula, P r . Cent. I n s t . Ochr. Pr., 30(104)(1980)3-15. D e t e r m i n a t i o n o f Methylcyclopentadienylmanganesetricarbonyl by Gas Chromatography-Atomic A b s o r p t i o n S p e c t r o m e t r y a t ng m-3 L e v e l s i n A i r Samples. M. Coe, R. Cruz and J.C. Van Loon, Anal. Chim. Acta, 120(1980)171-6. A P o r t a b l e P h o t o i o n i z a t i o n GC f o r D i r e c t A i r A n a l y s i s . I.I.J. B a r k e r and R. C. Leveson, Am. Lab. ( F a i r f i e l d , C o n n . ) , 12(12)(1980)76-8. Gas Chromatographic D e t e r m i n a t i o n o f Some O r g a n i c Compounds i n Wastewaters. N.N. S h k i l e v i c h , L.K. Knnshaeva, M.T. Belova, Prom-st. S i n t . Kauch.,lO ( 1980)9- 10. Gas-Chromatographic D e t e r m i n a t i o n o f A c r y l i c and M e t h a c r y l i c A c i d E s t e r s i n Atmospheric A i r . E.A. Komrakova and L.V. Kuznetsova, Gig. S a n i t . , ( 1 ) (1981 )43-5. D e t e r m i n a t i o n o f Halogenated Hydrocarbons i n l l a s t e w a t e r s by Head-space Gas Chromatography. C. P i c c i n i n i , B o l l . Chim. Unione I t a l . Lab. Prov., P a r t e S c i , 6 ( 6 ) (1980)266-71. PCBs i n T r a n s f o r m e r F l u i d s . N.A. K i r s h e n . V I A . V a r i a n I n s t r u m . ADD^., . . - 15 ( 2 ) (1981 ) l o . A n a l v s i s o f D i s s o l v e d Gases. B. ThomDson. 15 , - V I A . V a r i a n I n s t r u m . ADD^.. ,. ( 2 )( i s 8 1 )11. A Compact Automatic System f o r Measuring Carbon D i o x i d e and E t h y l e n e Evol u t i o n by H a r v e s t e d H o r t i c u l t u r a l Crops. A.E. Watada and O.R. I l a s s i e , H o r t S c i ence, 16( 1 ) ( 1981 )39-41. Trace A n a l y s i s o f F u n g i c i d e s i n Grape J u i c e and Wine U s i n g Glass C a p i l l a r y Gas Chromatography. T. S p i t z e r and G. N i c k l e s s , HRC CC, J . H i g h R e s o l u t . Chromatogr. Chromatogr. Comnun., 4 ( 4 ) (1981 ) 151 -5. I n t e r c o m p a r i s o n o f t h e T o t a l Carbon A n a l y s i s , Flame I o n i z a t i o n D e t e c t i o n , and Gas Chromatographic Methods f o r Measuring S o l v e n t Vapor Emissions. T.L. R i l e y , R.S. Marano, E. Chladek, J.11. H o g g e t t , S.P. L e v i n e , J.M. Reinke, and R.W. D e v l i n , Proc., Annu. Meet.-Air P o l l u t . C o n t r o l Assoc., 7 3 r d ( 3 ) (1980) Paper 80-41.2, 16 pp. C o n t r o l l e d Environment P o r t a b l e Gas Chromatograph f o r I n - s i t u A i r c r a f t o r B a l l o o n - b o r n e A p p l i c a t i o n s . W.C. K u s t e r , P.D. Goldan and F.C. Fehsenfeld, J. Chromatogr., 205( 2 ) ( 1 981 )271-9. D e t e r m i n a t i o n o f Lacquer Benzine C i n t h e A i r by Gas Chromatography. J. K r a j e w s k i and K. Nowicka, Med. Pr., 31(4)(1980)305-10. Gas Chromatographic D e t e c t i o n o f S u l f u r D i o x i d e , N i t r o g e n D i o x i d e , Amines and Halocarbons U s i n g an A e r o s o l I o n i z a t i o n D e t e c t o r . P. Popp and G. Oppermann, J . Chromatogr., 207(1)(1981)131-7. A p p l i c a t i o n o f Glass C a p i l l a r y Gas Chromatography f o r D e t e r m i n a t i o n o f P o t e n t i a l Hazardous Compounds i n Workplace Environments. G. Becher, A. B j o e r s e t h and B. O l u f s e n , ACS Symp. Ser., 149(Chem. Hazards Workplace: Meas. C o n t r o l ) ( 1 981 )369-81. Sampling and D e t e r m i n a t i o n o f S,S,S-tributyl Phosphorotrithioate, Oibutyl D i s u l f i d e , and B u t y l Mercaptan i n F i e l d A i r . B.W. Hermann, J.N. S e i b e r , Anal. Chem., 53(7)(1981)1077-82. Flame I o n i z a t i o n D e t e c t i o n . V. Danes, Czech. 184,565 ( C l . G01N23/00), 15 Aug.(1980), A p p l . 76/2,782, 2 8 Apr(1976); 2 pp. Hydrocarbon A n a l y s i s on a R e c e i v i n g Stream. W. K a l b f u s , Muench. B e i t r . Abwasser-, F i s c h . - F l u s s b i o l . , 3 2 ( S t o f f h a u s h a l t Fliessgewaessern),(l980) 187-94.
.
193 194 195 196 197
198 199
200 201
202 203 204
~
186 205 206 207 2 08 209 210
21 1 212 213
214 21 5 216 217 218
Gas-Chromatographic Determination o f N i t r a t e s and N i t r i t e s i n Water. A.L. P e r t s o v s k i i , T.V. Markovskaya and G.A. Kharnikova, Gig. S a n i t . ,(2)(1981)70. Gas-Chromatographic Determination o f Traces o f N i t r a t e , S u l f a t e , and PhosDhate i n Aqueous Solutions. W. F a i q l e and D. Klockow, Fresenius' Z. Anal. Chem., 306(2-3)(1981)190-5. The Use o f an Inexpensive E l e c t r o n i c F i l t e r f o r Improvinq D e t e c t i o n L i m i t s i n t h e Gas Chromatographic-Chemiluminescent Determination o f Nitrosamines. M.E.B. Brown, D.L. James and J. Warren, Anal. Chin. Acta, 126(1981)125-33. Chromatographic Determination o f Water i n A c e t i c A c i d Products. G.S. Khzanyan, Zavod. Lab., 47(5) (1981)25-6. C a r b o x y l i c Acids i n Gases. Q u a n t i t a t i v e Determination o f V o l a t i l e C A.I. P a r i m s k i i , U.S.S.R. 819,713 (Cl. GO?N81/08), 07 A p r ( l 9 0 1 ) , Appl. 2,655,787, 11 Sep(1978). I d e n t i f i c a t i o n o f P o l y c h l o r i n a t e d Dibenzo-p-dioxins and Dibenzofurans i n Environmental and I n d u s t r i a l Samples Using High-Resolution Gas Chromatography and Mass Spectrometry. H.R. Buser, Anal. Chem. Symp. Ser. (1979) (Pub.1980). 4(Recent Dev. Mass Spectrom. Biochem. Med., 6)515-21. Current Status o f Continuous Automated Measurement o f O f f e n s i v e Odor. 2. Continuous Measurement o f S u l f u r Compounds. T. Haseagawa, S e i k a t s u t o Kankyo, 25( 11 ) (1980)53-60. Gas Chromatographic Determination o f Nitrosamines i n t h e A i r . A. Audere, J. Dundurs, Z. Lindbergs, V. Berzins and A. Berzina, Gig. Tr. Prof. Zabol. (1) (1981 )47-9. Gas Chromatographic Measurement o f N-Containing Compounds; Determination o f Trimethylamine i n Ambient A i r w i t h TENAX-GC Preconcentration and Chemiluminescent N i t r o g e n Detector-Gas Chromatography. N. Kashihira, K. K i r i t a , Y. Watanabe and K. Tanaka, Bunseki Kagaku, 29(12)(1980)853-8. I d e n t i f i c a t i o n o f Odorous Compounds i n Emissions f r o m Municipal Sewage P l a n t s A. Zeman and H. Hagenguth, Proc., Annu. Meet. - A i r P o l l u t . Conby GC-MS. t r o l Assoc. , 73rd(3) , Paper 80-40.7(1980)16 pp. Component Loss During Evaporation-Reconsti t u t i o n o f Organic Environmental Samples f o r Gas Chromatographic Analysis. W.D. Bowers, M.L. Parsons, R.E. Clement and F.W. Karasek, J. Chromatogr. , 207(2)(1981)203-11. A New Concept i n Environmental Chromatography. G.F. H e w i t t and J.N. D r i s c o l l , Anal. Instrum., 19(1981)5-6. A n a l y s i s o f V o l a t i l e Organic Compounds i n Water, llastewater and an I n d u s t r i a l E f f l u e n t . P. L e i n s t e r , A.E. McIntyre, J.N. L e s t e r and R. Perry, Chemosphere, 10(3)(1981)291-301. Determination o f Toxic Organic Components i n I n d u s t r i a l Wastewater from t h e Volga-Don I n d u s t r i a l Complex. M.M. Evstifeev, A.I. Voloshina and Yu. M. Gavrilko, I z v . Sev. Kavk. Nauchn Tsentra Vyssh. Shk., Tekh. Nauki, ( 4 ) (1980)21-2. Gaseous and V o l a t i l e L i q u i d Hydrocarbons i n t h e Marine Environment w i t h Emphasis on t h e G u l f o f Mexico. T.C. Sauer, Jr. and W. M. Sackett, E l s e v i e r Oceanogr. Ser. (Amsterdam) , 27A(Mar. Environ. P o l l u t . , v l : Hydrocarbons) (1980)133-61 , 531-68. Separation o f Aqueous Organic M i x t u r e s by Pervaporation and Mass Spectrometry o r Coupled Gas Chromatography-Mass Spectrometry. H. Eustache and G. H i s t i , Adv. Mass Spectrom. , 88(1980)1460-7. Gas Chromatographic A n a l y s i s o f Water Phenolic P o l l u t a n t s Using Acid-Washed G r a p h i t i z e d Carbon Black. A. D i Corcia, R. Samperi, E. Sebastiani and C. S e v e r i n i , Chromatographia, 14(2)(1981)86-8. Determination o f P o l a r V o l a t i l e s i n Water b y V o l a t i l e Organics Analysis. T. Ramstad and T.J. N e s t r i c k , Water Res., 15(3)(1981)375-81.
-
219
220 221 222
CHAPTER 6
USE
OF LIQUID CHROMATOGRAPHY I N ENVIRONMENTAL ANALYSIS Due t o I t s inherent
lack o f d e t e c t i o n s e n s i t i v i t y for most compounds,
chromatography (LC) has n o t been t h e technique o f choice i n environmental The r e c e n t development o f more s e n s i t i v e d e t e c t o r s (e.g.,
liquid
analysis.
the fluorometer), d e r i v a t i -
z a t i o n methods, and t h e n e c e s s i t y t o u t i l i z e t h i s technlque f o r separations o f complex mixtures, have aided r a p i d growth i n environmental a n a l y s i s methods u t i l i z i n g LC. This chapter o u t l i n e s t h e approach t o t h e a n a l y s i s o f environmental samples by l i q u i d chromatography.
While
it cannot and w i l l
l i q u i d chromatographic analysis, separations.
Identification,
n o t c a t a l o g every environmental
it w i l l review major c r i t e r i a f o r development o f good
and q u a n t i t a t i o n .
6.1 STANDARDS AND CALIBRATION
One o f t h e most p e r s i s t e n t p r o b l e m s i n e n v i r o n m e n t a l chromatography
i n v o l v e s t h e a v a i l a b i l i t y o f standards.
a n a l y s i s by l i q u i d
Some commercial
laboratories
have made g r e a t advances toward s o l v i n g t h i s problem,
but
i t seems t h a t t h e most
f r e q u e n t l y requested analyses a r e f o r
for
which
exist.
Frequently,
the material
those compounds
i s available
standards do n o t
as a m i x t u r e ( i n a f o r m u l a t i o n o f a
h e r b i c i d e , f o r example), o r t h e m a t e r i a l I s a small component o f a complex s y n t h e s i s mixture,
Standard m a t e r i a l s can be obtained from t r a d i t i o n a l
manufacturer,
as w e l l as from sane supply houses.
Table 2.1
sources,
such as t h e
(Chapter 2 )
identifies
t h e sources f o r chromatographic standards.
6.2 SAMPLE INTRODUCTION ONTO THE COLUMN The p r i n c i p l e o f sample i n t r o d u c t i o n o n t o a l i q u i d chromatographic column i s t h e same as f o r a gas chromatographic column,
namely, t h e sample should be Introduced
as a n a r r o w p l u g t o m i n i m i z e peak b r o a d e n i n g .
F o r some l i q u i d c h r o m a t o g r a p h i c
columns, e s p e c i a l l y t h e s m a l l - p a r t i c l e columns, t h i s p r i n c i p l e I s e s p e c i a l l y important since t h e h i g h r e s o l u t i o n inherent w l t h t h e column can be negated by r e s o l u t i o n losses from i n j e c t i o n broadening forces.
6.2.1 Syringe i n j e c t i o n The l e a s t expensive ( i n i t i a l l y ) and t r a d i t i o n a l method o f sample i n t r o d u c t i o n
I s w i t h a syringe.
Many s y r i n g e models have been designed f o r i n j e c t i o n under h i g h
188 u s u a l l y up t o 5000 p s i (35 MPa) w i t h o u t sample leakage o r blow-by.
pressure, syringe
injection,
however,
i s t h e l e a s t r e p r o d u c i b l e means o f
sample
Manual
introduction
w i t h a p r e c i s i o n no b e t t e r than two percent.
A very important component o f a s y r i n g e i n j e c t i o n system i n I i q u i d c h r m a t o graphy i s t h e septum. materials,
Septa are u s u a l l y f a b r i c a t e d from elastomeric,
such as s i l i c o n e rubber,
neoprene,
or
fluoroelastomers.
self-sealing
Some septa a r e
made w i t h a layer o f T e f l o n t o reduce a t t a c k on t h e m a t e r i a l by t h e s o l v e n t . w i t h these coatings, however,
Even
l i q u i d chromatographic septa have s h o r t e r l i f e t i m e s t h a n
gas chromatographic septa since t h e c o n d l t i o n s t o which LC septa are exposed a r e more deleterious. Some instruments have a septumless I n j e c t o r avoids t h e problem of s o l v e n t a t t a c k .
for
l i q u i d chromatography
which
The s y s t e m a l l o w s v a r i a b l e volume,
high
pressure i n j e c t i o n s , but t h e volume range and p r e c i s i o n are l i m i t e d somewhat.
Since
t h e i n j e c t o r plumbing remains i n t h e flow path, t h e system i s c o n t i n o u s l y purged. To avoid i n j e c t i o n under h i g h pressure, I n t h i s method,
stopped f l o w i n j e c t i o n has been used.
i n j e c t i o n s are made onto t h e column under atmospheric pressure.
sample s i z e i s kept small t o avoid band broadening, on.
The i n j e c t i o n time i s not c r i t i c a l ,
(<
The
5 p i ) then t h e pump i s t u r n e d
s i n c e l i q u i d / l i q u i d d i f f u s i o n i s n o t as g r e a t
a problem as gas phase d i f f u s i o n i s i n gas chromatography.
6.2.2
Valve i n i e c t i o n
The most common mode o f sample i n t r o d u c t i o n I n modern l i q u i d chromatography i s valve injection.
Valve i n j e c t o r s are more convenient and more p r e c i s e than s y r i n g e
i n j e c t o r s and can be used f o r h i g h pressure o r h i g h temperature i n j e c t i o n s .
Long,
narrow bore t u b i n g i s p r e f e r r e d f o r sample loops s i n c e narrow t u b i n g decreases band w i d t h and thus does not degrade column e f f i c i e n c y ( r e f . I ) . sample volume ( s e v e r a l m i l l i t e r s ) up t o 7000 p s i error (ref. 2).
Furthermore,
automatic valve i n j e c t o r s .
Reproducibility o f larger
( 4 8 MPa) can g i v e l e s s than 0.2%
automated a n a l y s e s can be r e a d i l y p e r f o r m e d w i t h
For environmental a p p l i c a t i o n s where many s i m i l a r samples
a r e involved, automated analyses a r e an important convenience.
6.3 SELECTION OF SEPARATION CONDITIONS An advantage inherent i n l i q u i d chromatography which
i s not available
i n gas
chromatography I s t h e v a r i e t y of b o t h mobile and s t a t i o n a r y phases f o r o p t i m i z a t i o n of separation conditions.
T h i s d e g r e e o f freedom adds more t h a n i t s s h a r e t o t h e
difficulty
i n f i n d i n g a good s t a r t i n g p o i n t .
variety of
special
features
for
Table 6.1
l i q u i d chromatography.
s e l e c t i o n process f o r t h e LC separation's mode.
g i v e s a synopsis o f
the
F i g u r e 6.1
the
out1 lnes
-/ ION -CHROMATOGRAPHY-
CEL
A EC ANION EXCHANGE
CPC
CATION EXCHANGE
I
ALUMINA ADSORPTION
SILICA ADSORPTION
I I
CELLULOSE PARTITION
F i g . 6.1
Flow d i a g r a m f o r s e l e c t i o n o f node o f LC s e p a r a t i o n .
CELLULOSE PARTITION
190 TABLE 6.1 Separation modes i n l i q u i d chromatography Packing
Mode
Separatlon mechan i sm
Features
Liquid-Liquid LLC
L i q u i d coated on so I i d support
Partition
High s e l e c t i v i t y (Cautionchoose mobile phase t h a t w i l l not d i s s o l v e s t a t i c n a r y phase).
Liquid-Sol i d LSC
Active s o l i d
Adsorption
Good f o r isomer separations, s t a b l e . (Caution: can get i r r e v e r s i b l e adsorption).
Bonded Phase* Bpc
Surface-reacted (chemical I y bonded) o r g a n i c
Partition in comb i n a t i o n with p a r t i t i o n / adsorption.
BP n o t r e a d i l y removed u n l i k e LLC (Caution: wide v a r i a b i l i t y i n d i f f e r e n t manufacturer's products).
Ion Exchange IEC
Ion exchange r e s i n or bonded phase p a r t i c l e
Ion exchange
Separated i o n i c species. Less e f f i c i e n t than o t h e r LC methods.
Ion P a i r IPC
L i qu i d-coated support, s o l id, o r bonded phase
ion p a i r partitioning
Good f o r p o l a r samples.
Size e x c l u s i o n SEC
Organic g e l s o r r i g i d particles
Exclusion o f l a r g e molecules from pores.
Good f o r l a r g e molecule separations.
Sedlmentation F i e l d Flow F r a c t ionat ion SFFF
None
M o b i l i t y of mol e c u l e s i n gravatational f i e l d
Good f o r l a r g e molecule separ a t ion.
*Note :
6.3.1
Reversed phase chromatography uses a p o l a r mobile phase and a less p o l a r stationary phase, e.g., a C-18 bcnded stationary phase and an a c e t o n i t r i l e / w a t e r mobile ohase.
y a t e r s o l u b l e samples F o r samples c o n t a i n i n g a wide m o l e c u l a r s i z e r a n g e s i z e ,
Chromatography (SEC) i s t h e method o f choice.
size exclusion
For molecules o f s i m i l a r s i z e , bonded-
phase chromatography (BPC) i s t h e most u s e f u l and g e n e r a l l y a p p l i c a b l e . For i o n i c species ( i o n i z a b l e ) , tried.
ion exchange o r i o n - p a i r chromatography may be
For samples i n which i o n i z a t i o n may be suppressed,
t h e separation c a r r i e d o u t as i f t h e sample were not
t h e pH can be adjusted and
ionized.
For s t r o n g l y b a s i c
samples (pKa above 6 ) t h e pH cannot be adjusted without causing degradation o f most bonded phase packing m a t e r i a l .
Thus,
i o n - p a i r chromatography
(IPC) must be used f o r
t h i s application. I
6.3.2
Organic s o l u b l e samples
For
samples
containing
a
wide
molecular
size
range,
size
exclusion
191 chromatography
(SEC)
i s t h e method o f choice.
For samples o f
low m o l e c u l a r weight
( l e s s than 2000) bonded phase o r l i q u i d s o l i d chromatography i s used. For adjustment, samples,
ionic (or
ionizable)
bonded-phase
species where
chromatography
I o n i z a t i o n may be suppressed by pH
can be a p p l i e d .
For
non-ion
suppressible
IPC o r IEC i s used.
LSC o r BPC are used.
For non-ionic species, mode depends on whether
isomers are present,
The s e l e c t i o n o f t h e a p p r o p r i a t e
LSC being t h e technique o f c h o i c e f o r
isomer separations.
6.3.3
Thin-layer chromatography (TLC) screening
Thin-layer Chromatography i s an o f t e n overlooked, o f separation. i s possible.
With t h e proper d e t e c t i o n methods,
r e l a t i v e l y inexpensive means
a d e t e c t i o n l i m i t o f one microgram
Furthermore, m u l t i p l e analyses can be completed i n l e s s than one hour.
Thin-layer
chromatographic p l a t e s are a v a l l a b l e i n t h e same chemical
t h e conventional LC packings. environmental
form as
Thus TLC can be used e i t h e r as a screening process f o r
LC a p p l i c a t i o n s o r f o r t h e a n a l y s i s i t s e l f .
Once t h e s e p a r a t i o n has
i t i s not d i f f i c u l t t o t r a n s f e r t h e i n f o r m a t i o n gained
been performed on a TLC p l a t e ,
i n t o a LC separation system ( r e f s . 3 and 4 ) .
6.3.4
Guard columns and precolumns
Two classes column:
mechanical
of
contamination
and chemical.
affect
the
l i f e of
column and r e s u l t s from t l d i r t y t ' samples o r p a r t i c l ' e s system
itself.
These can be removed by proper
(column) l i q u i d chromatography,
a
liquid
chromatographic
Mechanical contamination causes blockage o f from t h e
the
I i q u i d chromatography
sample "clean-uptf
by
low pressure
f i l t r a t i o n o r c e n t r i f u g a t i o n o f t h e sample, o r i n - l i n e
filtration. Chemical contamination r e s u l t s from i r r e v e r s i b l e r e a c t i o n between tomponents o f t h e sample and t h e packing m a t e r i a l .
Often i t i s not p o s s i b l e t o p r e d i c t t h i s problem
and t h e column may be severely a l t e r e d ,
n e c e s s i t a t i n g i t s replacement.
A solution t o
t h i s c o s t l y problem i s t h e i n s t a l l a t i o n o f a guard column between t h e I n j e c t o r and t h e a n a l y t i c a l column.
Guard columns are packed u s u a l l y w i t h t h e same m a t e r i a l
as t h e
a n a l y t i c a l column and t h u s can t r a p any m a t e r i a l s f r o m t h e sample w h i c h m i g h t contaminate t h e a n a l y t i c a l column. stationary
phase
in
order
to
Guard columns sometimes are packed w i t h another
assist
the
analysis
by
selective
adsorption
or
r e t a r d a t i o n o f s p e c i f i c types o r c l a s s e s o f compounds. Guard columns can degrade chromatographic r e s o l u t i o n e i t h e r through i n e f f i c i e n t packing o r poor column connections. pellicular,
larger-diameter p a r t i c l e s .
repacked when necessary.
Guard columns
are f r e q u e n t l y
dry-packed
with
The s h o r t columns can be emptied r e a d i l y and
Some chromatographers s l u r r y pack guard columns,
especially
192 those c o n t a i n i n g porous packings,
I n order t o increase o v e r a l I r e s o l v i n g capabi I i t i e s .
These guard columns should be connected w i t h minimum
lengths o f
narrow,
low-dead-
Narrow t u b i n g causes less r e s o l u t i o n l o s s than wide t u b i n g .
volumne t u b i n g .
Precolumns d i f f e r from guard columns I n t h a t these a r e u s u a l l y l o c a t e d between t h e s o l v e n t pump and t h e i n j e c t o r . resolution
since they precede t h e
Precolumns do n o t degrade c h r o m a t o g r a p h i c
injector,
For
slightly
soluble
liquid
phases,
precolumns are used t o s a t u r a t e t h e mobile phase w i t h s t a t i o n a r y phase l i q u i d . analyses where t h e pH and s a l t c o n c e n t r a t i o n are high, particle,
For
precolumns packed w i t h large-
high surface area s i l i c a are used t o s a t u r a t e t h e mobile phase w i t h s i l i c a .
Both procedures a r e c a r r i e d out t o p r o t e c t t h e a n a l y t i c a l column.
6.3.5
Applications
The d i r e c t measurement o f p o l l u t a n t s by l i q u i d chromatography i s n o t g e n e r a l l y f e a s i b l e due t o t h e materials
of
lack o f
Interest.
e x t r a c t a n t s o r adsorbents; Frequently, clean-up,
additional
s e n s i t i v i t y and t h e u s u a l l y
Thus,
concentration
even an LC column
sample
treatment
is
steps itself
usually
employed
for
sample
preservation,
One o f these steps may i n c l u d e a
s y s t e m a t i c s e p a r a t i o n by c l a s s e s o f t h e components o f t h e sample, extractables, supplies t o
neutral extractables, industrial
effluents)
etc. has
using
(see Chapter 3) may be used.
performed
and p r e l i m i n a r y analyses (see Chapter 4 ) .
low c o n c e n t r a t i o n s o f t h e
are
e.g.,
acid
Every sampling l o c a t i o n ( f r o m r u r a l water i t s own
percularities
development f o r p o l l u t a n t a n a l y s i s d i f f i c u l t .
Thus,
which
makes methods
t h e r e c a n be n o g e n e r a l l y
a p p l i c a b l e scheme f o r a l l sampling l o c a t i o n s . The r e s t o f t h i s s e c t i o n c o n t a i n s s p e c i f i c i n f o r m a t i o n on p o l l u t a n t a n a l y s i s by l i q u i d chromatography.
Survey sources were Chemical A b s t r a c t s ( r e f . 5), NIOSH manuals
( r e f . 6 ) and A n a l y t i c a l Chemistry Reviews ( r e f . 7 ) .
TABLE 6.2
A p p l i c a t i o n s o f l i q u i d chromatography t o environmental problems Compounds(s), Type
PAH ( p o l y c y c l i c aromatic
Column(s)
C-18
hydrocarbons)
Mobile Phase
0-100% Acetoni-
Detector ( A i n nm)
UV(202)
Comments
Ref.
32 P r i o r i t y
8
pol l u t a n t s
t r i l e (ACN) i n water
PAH
AI2O3
Cyclohexane; 9 7 : 3 cyclohexane: E t 2 0
UV(Z30-470)
9
193 TABLE 6.2
(Cont.)
PAH
PAH
C-18
C-18
70:30 ACN i n
UV (254,280,
water
340,267,308)
20:80 water i n
UV(254); F l u o r -
ACN
= escence: X ex 238; 265 iem = 370;
10
11
352; 420; 425
PAH i n water
C-18
ACN i n water
Fluorescence: Xex
= 280; 305;
Aem
= 340, 430,
16 PAH's 12
500 PAH
PAH i n water
C-18
C-18
8O:ZO ACN i n
Fluorescence:
water
.Aex
= 305;
Aem
= 430
8O:ZO ACN i n
UV (254)
Selectiv-
13
i t y factors
on graph- 1 4 i t i z e d car-
water
bon b l a c k
PAH i n r e f i n e r y water
C-18
70:30 methapol-
UV (254)
15
water
PAH, phenolics, h e t e r o c y c l i c s
Interla-
C-18
16
b o r a t o r y compar i son
PAH
PAH
uv
Po I ar
17
on of 7 bond-
phases
ed phases
C-18
84-100%
UV-scanning
C-18
0-100% water i n met hano I
TLC i s o l a - 18
t ion
methanol i n water
Non ion i c s u r f a c t a n t s
Comparis-
bonded
UV(280);M.S.
19
194 TABLE 6.2 ( C o n t . )
c-18
Phenol i n a i r
85:15 methanol
UV(365)
p-nitro-
20
benzeneazo-
i n water
pheno I derivative
C-8
HCHO i n a i r
35:65
ACN i n
UV ( 3 4 0 )
water
Aldehydes i n a i r
C-I8
t o hydrazone
30-428 ACN i n
UV (254 1
water
F a t t y acids i n r i v e r water
C-18
21
Converted
Converted
22
t o hydrazone
40-1008 ACN i n
UV (254 )
water
Converted
23
t o phenacyl ester
A r o m a t i c Amines
M HC 1 O4
C a t i o n ex-
1 0-3-1
change r e s i n
i n water
NH3 and a l k y l amines i n
0.0025 NH4N03
24
UV (254 )
Conduct i v i t y
automobile exhaust
Ion chro-
25
motography (IC)
lsocyanates i n working
C-18
atmosphere
80:20(3) ACN i n
UV(254); F l u - C o n v e r t e d
water ( t r i e t h y l -
orescence
t o urea
amine p h o s p h a t e )
xex = 254 xem = 412
derivative
pH=3 lsocyanates i n working
C-18
atmosphere
75:25 ACN i n
UV(254)
water
26
C o n v e r t e d 27 t o urea derivative
P o l y c h l o r i n a t e d azobenzenes
C-18
80:20 ACN i n w a t e r UV(254)
28
4,4-methylene
C-18
80:20 ACN i n w a t e r UV(254)
29
bis(2-chloroan-
iI ine) NH4+ i n ambient aerosols
0.006N HN03
Conductivity
IC
30
195 TABLE 6.2 ( C o n t . )
F
-
-2
, Cr04
.
-, NO2 - , NOx.
NO3
Conductivity
IC
31
Conductivity
IC, 24-
32
amines, a z a r e n e s
SO
0.003M NaHC03;
i n atmosphere
2
0.0024M Na2C03
129/!lg/ 3 SO2
m C I , E r , P, S,
I,
F organic
0.0030M NaHC03;
Mgt2,
Cat2,
Nit’,
Cut’,
Bit3,
Lanthanides
TI
Conductivity
IC
33
Vis(540)
Post-
34
0.0024M Na2C03
e I emen t a I
Mnt2,
Fet2,
Znt2,
Cdt2,
Cot’, Pbt2,
i n n a t u r a l waters
Strong acid ion
C i t r a t e , pH 4.6, 4.8
exchange
Anion
reactor
SO 2 i n w a t e r
exchange
A c r y l i c a c i d monomer
c o I umn
-CN;-NH2
Atomic
35
absorption
0.01% o r t h o p h o s -
UV(195)
36
UV(254)
31
phoric acid i n water
F l u o r i d o n e i n water
c-18
60:40 methanol i n water
Pesticides - a review
33
Pesticides - a review
Carbamate p e s t i c i d e s i n water
C-18
116 p e s t i c i d e s
39
Electrochemical
40
0.05M p h o s p h a t e
UV(233); F l u o r -
41
b u f f e r (pH 6 . 9 )
escence A
o r 0.05M b o r a t e
Xem=470
pH 6 aqueous phosphate b u f f e r i n ACN
N i trogenous organ ic s
C-8
b u f f e r (pH 8 . 9 ) i n methanol
ex
=390;
196 TABLE 6.2 (Cont.)
uv (202)
0-100% ACN i n
c-18
32 p r l o r i t y p o l l u t a n t s
42
water
P r i o r l t y p o l l u t a n t phenols
43
30-80s ACN i n
C-18
water ( 1 % acetic acid)
Carbaryl;
43:57 ACN i n
c-18
1-napthol
UV(222)
44
UV(214;229
45
UV(230) an I i n e
46
water
Pesticides
50:50 ACN i n
c-18
water
4,4'-Methylene
b l s (cyclo-
3:7:90
Silica
ethanol,
der i v a t i ve
isopropanol,
hexyl Isocyanate) i n a i r
i sooctane
6.4 DETECTION OF SAMPLE COMPONENTS The selective,
ideal has
reproducible.
liquid a
wide
chromatographic iinear
range
detector and
high
for
environmental
sensitivity,
U n f o r t u n a t e l y , t h e ideal d e t e c t o r does n o t e x i s t ,
and
substances is
rugged
is and
but enough o f these
requirements are u s u a l l y embodied i n t h e more commonly used detectors,
and these can
be s a t i s f a c t o r y f o r most s p e c i f i c a p p l i c a t i o n s . There are two general c a t e g o r i e s o f detectors,
u n i v e r s a l and s e l e c t i v e .
u n i v e r s a l d e t e c t o r s respond t o changes i n some b u l k p r o p e r t y of t h e e f f l u e n t changes
i n r e f r a c t i v e index),
properties
of
quantitation,
the
solute
whereas t h e s e l e c t i v e d e t e c t o r s r e s p o n d t o some
(e.g.
absorption
of
a
characteristic
detector,
energy).
t h e most important d e t e c t o r c h a r a c t e r i s t i c s are s t a b i l i t y ,
and t h e r e l a t i o n s h i p o f d e t e c t o r output t o c o n c e n t r a t i o n . frequently
reconsidered,
The (e.g.,
especially
with
For
sensitivity,
The l a t t e r f a c t o r must be
selective detectors
l i k e the
ultraviolet
where a minor c o n s t i t u e n t can g i v e a l a r g e r d e t e c t o r s i g n a l than a major
c o n s t i t u e n t i n cases of l a r g e d i f f e r e n c e s i n molar a b s o r p t i v i t y .
6.4.1
R e f r a c t i v e index detector The r e f r a c t i v e index ( R I ) d e t e c t o r was one o f t h e f i r s t l i q u i d chromatographic
detectors.
The R I d e t e c t o r responds t o changes i n t h e RI of t h e e l u e n t ,
mobile phase as a reference.
using the
I t i s very s e n s i t i v e t o f l o w and temperature changes
197 g).
used w i t h s o l v e n t gradient,
i n the refractive
phase.
due t o changes
In general,
the R I detector
and s u f f e r s from a lack o f s e n s i t i v i t y
i s not
t h e mobile
t h e R I d e t e c t o r approxlmates a
Although i t i s not t r u l y a u n i v e r s a l detector,
u n i v e r s a l detector,
index o f
s i n c e i t responds t o a l l compounds which have r e f r a c t i v e i n d i c e s
I t i s most f r e q u e n t l y used i n s i z e e x c l u s i o n
d i f f e r e n t f r o m t h e m o b i l e phase.
chromatography f o r t h e d e t e c t l o n of polymers and i n p r e p a r a t i v e l i q u i d chromatography.
6.4.2
U l t r a v i o l e t absorption detector The u l t r a v i o l e t absorption ( U V ) d e t e c t o r i s t h e most commonly used d e t e c t o r i n
l i q u i d chromatography.
The UV d e t e c t o r responds t o changes I n t h e amount of
reaching a photometer.
The q u a n t i t y o f
by absorption o f l i g h t by chromophores i n t h e s o l u t e .
The q u a n t i t y o f l i g h t absorbed
i s p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n o f s o l u t e and i t s molar a b s o r p t i v i t y . d e t e c t o r i s very s e n s i t i v e f o r h i g h l y absorbing compounds selective,
light
l i g h t reaching t h e d e t e c t o r can b e decreased
The UV
g) and can be very
Three t y p e s o f UV d e t e c t o r s a r e
depending upon t h e wavelength monitored.
available: single-wavelength
( u s u a l l y 254 nm)
multiwavelength; and variable-wavelength. The 254-nm band can be used f o r a wide v a r i e t y o f appl i c a t i o n s s i n c e many compounds absorb a t o r near t h a t wavelength.
The m u l t i w a v e l e n g t h d e t e c t o r can be used t o o b t a i n
qua1 i t a t i v e i n f o r m a t i o n about a s o l u t e peak, v a r i e s w i t h wavelength.
s i n c e t h e a b s o r p t i o n o f v a r i o u s species
The most v e r s a t i l e (and most expensive) UV d e t e c t o r
v a r i a b l e wavelength d e t e c t o r which can be s e t t o any wavelength spectrum.
i s the
i n the UV-visible
The v a r i a b l e wavelength detector a l l o w s f o r t h e g r e a t e s t f l e x i b i l i t y ,
since
i t allows one t o choose a wavelength f o r t h e best s e n s l t i v i t y and/or s e l e c t i v i t y .
6.4.3
LC-GC d e t e c t o r s
Gas chromatographic chromatography.
d e t e c t o r s can a l s o be used f o r
some s o l u t e s
!n
liquid
Gas chromatographs have been i n t e r f a c e d t o l i q u i d Chromatographs t o
g i v e a second dimension o f separations power t o t h e LC system.
T h i s c a p a b i l i t y can
o n l y be used f o r s o l u t e s t h a t can be determined by gas Chromatography alone,
so t h a t
additional
t r e a t m e n t o f t h e LC peak may be needed t o make i t c o m p a t i b l e w l t h a
GC system.
GC d e t e c t o r s are much more s e n s i t i v e ,
i n general,
than LC d e t e c t o r s (see
Chapter 51, and can add f u r t h e r qua1 i t a t i v e information.
A v a r i a t i o n o f t h e LC-GC technique o f d e t e c t i o n i s t h e s o l u t e - t r a n s p o r t - d e t e c tor,
T h i s d e t e c t o r i s comprised o f a moving b e l t onto which t h e e f f l u e n t
ted.
The v o l a t i l e mobile phase i s evaporated, and t h e n o n v o l a t i l e s o l u t e i s d e t e c t e d
by some means such as a flame
ionization detector.
I n t h i s system,
i s deposi-
no a d d i t i o n a l
198 s o l u t e separation i s done and t h e mobile phase does n o t i n t e r f e r e w i t h d e t e c t i o n .
6.4.4
Infrared detectors
The i n f r a r e d ( I R ) detector i s s i m i l a r t o t h e UV d e t e c t o r i n t h a t i t responds t o
IR changes i n t h e l i g h t l e v e l due t o t h e absorption o f l i g h t by t h e s o l u t e molecules. -6 detectars are not common due t o lack o f s e n s i t i v i t y (10 g a t b e s t ) and t h e r e q u i r e ment t h a t t h e mobile phase be f r e e of any absorbing species.
Since c e l l s are u s u a l l y
constructed from s a l t s , water o r a l c o h o l s cannot be used i n t h e mobile phase. I R d e t e c t o r s are used i n size-exclusion
chromatography ( S E C )
Usually
and p r e p a r a t i v e l i q u i d
chromatography.
6.4.5
Fluorescence d e t e c t o r s
The fluorescence d e t e c t o r i s one o f t h e most s e n s i t i v e and s e l e c t i v e l i q u i d chromatographic detectors.
This d e t e c t o r responds t o l i g h t e m i t t e d by c e r t a i n s o l u t e s
when they are e x c i t e d b y h i g h energy ( U V ) l i g h t .
I t i s s e l e c t i v e , s i n c e these special
compounds w i l l be e x c i t e d o n l y by c e r t a i n wavelengths. by a p h o t o m u l t i p l i e r a t a 90’
I i g h t i n t e n s i t y i s not measured.
be detected.
The e m i t t e d l i g h t i s measured
angle from t h e e x c i t a t i o n source, Thus,
picogram (lO-”g)
so t h a t t h e e x c i t a t i o n
q u a n t i t i e s o f m a t e r l a l s can
Fluorescence d e t e c t i o n has been used for t h e d e t e c t i o n o f polynuclear
a r o m a t i c h y d r o c a r b o n s and a f l a t o x i n s .
In addition,
fluorescent d e r i v a t i v e s of
nonfluorescing compounds may be made t o enhance t h e i r d e t e c t i o n l i m i t s .
6.4.6
E I e c t r o c hem i ca 1 d e t e c t o r The most common form o f electrochemical
detector
amperometric d e t e c t o r based on t h e mercury polarograph.
i s the constant-potential-
As an e l e c t r o r e d u c i b l e o r an
e l e c t r o o x i d i z a b l e substance i s passed through t h e detector,
t h e c u r r e n t changes.
The
magnitude o f t h e c u r r e n t
i s proportional t o the concentration o f the electroactive
species.
d e t e c t o r s are most f r e q u e n t l y used i n reverse-phase chroma-
Electrochemical
tography (aqueous mobile phase), since t h e mobile phase must have h i g h c o n d u c t i v i t y .
6.4.7 Thermal energy detector
The thermal energy d e t e c t o r has had g r e a t u t i l i t y i n t h e f i e l d o f n i t r o s a m i n e analysis.
The N-NO bond i n nitrosamines i s t h e r m a l l y cleaved, and t h e NO r a d i c a l pro-
duced r e a c t s w i t h ozone t o produce e x c i t e d n i t r o g e n d i o x i d e which emits l i g h t which i s detected by a p h o t o m u l t i p l i e r tube.
T h i s d e t e c t o r i s very s e n s i t i v e (10 p p t ) ;
and,
although t h e thermal energy d e t e c t o r can r e a c t t o o t h e r n i t r o g e n - c o n t a i n i n g compounds, i t i s very s e l e c t i v e .
199 6.4.8
Conductivity detector
The c o n d u c t i v i t y d e t e c t o r I s used almost e x c l u s i v e l y w i t h ion-chromatography. it i s based on t h e generation o f an e l e c t r i c a l c u r r e n t i n t h e presence o f second column used
i n most
ion-chromatography
removes t h e
unwanted
ions.
The
Ions from t h e
mobile phase and enables t h e s o l u t e Ions t o be detected i n a low background s o l u t i o n . The c o n d u c t i v i t y d e t e c t o r i s used w i t h reverse-phase l i q u i d chromatography.
Table 6.3
sumnarizes ions detected by t h e c o n d u c t i v i t y d e t e c t o r .
TABLE 6.3 Ions detected by t h e c o n d u c t i v i t y detector i n ion-chromatography
Inorganic ions
Inorganic ions
Organic ions
Organic ions
ammon i u m ar senate azide bar i urn borate b r m i de calci um carbon a t e ces i um ch Io r a t e chloride chromate t h ionate thiosulfate f I uor ide hypochlorite iodide I ithium
magnes i um monofluorophosphate nitrate nitrite o-phosphate perchlorate potassium r u b i d i um se I anate sod i um s t r o n t iu m su I f a t e sulfide tetrafluoroborate thiocyanate formaldehyde
acetate ascorb a t e benzoate butyrate butylphosphate citrate ch I o r o a c e t a t e chloropropyl su I f o n a t e cyclohexyl amine dibutylphosphate dichloro acetate d i e t h a n o l amine dimethyiamine e t h y l amine t r i - c h l o r o acetate formate g l uconate g I ycol a t e hydroxy-citrate I actate
ma I e a t e malonate methacry l a t e methyl amine methyl phosphonate N-butyl amine oxalate propionate phtha I a t e pyruvate sarcosinate succi n a t e tartrate tetra-methyl-ammoniumbromide
6.4.9
t r i - e t h a n o l amine t r l - e t h y l amine t r i m e t h y l amine t r i - n - b u t y l amine
Derivatives
Since most common
l i q u i d chromatographic
d e t e c t o r s a r e not
d e r i v a t i z a t i o n i s f r e q u e n t l y used t o enhance d e t e c t a b i l i t y . before,
during,
very
sensitive,
D e r i v a t i o n can be done
or a f t e r i n j e c t i o n onto t h e l i q u i d chromatograph system.
Table 6.4
summarizes comnon d e r i v a t i v e s . Fluorescence
detectlon
offers
the
S e n s i t i v i t y r i v a l s imnunoassay techniques
greatest (see 6.4.5).
selectivlty Peak
and
sensitivity.
i d e n t i f i c a t i o n through
fluorescence and emission spectra i s a g r e a t p o t e n t i a l advantage.
2 00 TABLE 6.4
Common d e r i v a t i z a t i o n reagents
Class o f compound (Reactant)
Reagent
Comments
Dinitrobenzoyl-chloride(DNBC)
alcohols,amines,phenols
UV
Phenylthio-hybantoin(PTH)
amino acids
uv
p-nitrobenzyl-bromide(PNB6)
carboxylic acids
p-nitrobenzyl-N-n-propylamine
i socyanates
uv
N-succinimidyl p-nitro-phenylacetate (SNPA)
amines, am ino-ac i ds
uv
p-nitrobenzyloxyamine hydrac h l o r i d e (PNBA)
aldehydes,
uv
o,p-nitrobenzyl-N,Ntdiisopropylisourea (PNDBI)
c a r b o x y l l i c acids
uv
4-bromomethyl-2-methoxy-coumarin
carboxylic acids
f I uorescence
t h i o l s , primary and secondary amines
f I ourescence
1-dimethylamino napthalene-5s u l f o n y l c h l o r i d e (Dansyl chloride
primary and secondary amines. phenols
fluorescence
1-dimethylamino napthalene-5s u l f o n y l hydrazine (Dansyl hydrazine)
aldehydes
fluorescence
4-phenyIspiro-[furan-Z(BH), 1 I-
primary amines
fluorescence
reducing compounds
forms C e ( I I I )
e l e c t r o c h e m i c a l , UV
hydrochloride(PNBPA)
ketones
( BMC 1
7-chloro-4-nitrobenzo-2-oxa-l,3 d i a z o l e (NED
-
Chloride)
phthalan]-3,3' dione (fluorescarnine) Ce ( I V )
REFERENCES 1. J. L. Glajch, D. C. Warren, M. A. Kaiser, and L. B. Rogers, Anal. Chem., 50 (1978) 1962. L. R. Snyder and J. J. K i r k l a n d , I n t r o d u c t i o n t o Modern L i q u i d Chromatography, 2. 2nd. ed., John Wiley k Sons, New York. 1979. 3. 6. Cog, J. P. Nicolas, A. Lamotte, and M. P o r t h a u l t , J. Chromatogr.. 97 (1974) 137. 4. R. Amos and S. G. Perry, J. Chromatogr., 83 (1973) 245. 5. Chemical Abstracts, American Chemical Society, Washington, DC, January 1972 through October, 1981. 6. NlOSH A n a l y t i c a l Methods manuals, National I n s t i t u t e o f Occupa+ional Safety and
201
7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
17. 18. 19. 20. 21. 22. 23. 24. 25.
26. 27. 28. 29. 30.
31. 32.
33.
34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46.
Health, Washington, DC, through volume 5. A n a l y t i c a l Chemistry, b i e n n i e l reviews, A p p l i c a t i o n s , 1979, 1981. K. A. Pinkerton, JHRC 8 CC. 4 (1981) 33. T. Dutkiewicz, J. Maslowski, S. Ryborz, N. Masny, Bromatol. Chem. Toksykol, 13 (1980) 89. R. K. S o r r e l 1 and R. Reding, J. Chromatogr., 185 (1979) 655. J. Chmielowlec and H. Sawatzky, J. Chrmatogr., Sci., 17 (1979) 245. K. Ogan, E. Katz, and W. Slavin. Anal. Chem., 51 (1979) 1315. E. Katz and K. Ogan, J. L i q u i d Chrmatogr., 3 (1980) 1151. A. Lagana, 6. M. Petronlo, and M. R o t a t o r i , J. Chromatogr., 198 (1980) 143. H. G. Preston and A. Macaluso i n Measurement o f Organic P o l l u t a n t s i n Water and Wastewater, C. E. Van H a l l , Ed., American Society f o r T e s t i n g and M a t e r i a l s , 686 (1979) 152. H. S. Hertz, L. R. H l l p e r t , W. E. May, S. A. Wise, J. M. Brown, S. N. Chesler, Guenther I n Measurement o f Organic P o l l u t a n t s I n Water and and F. R. Wastewater, C. E. VanHal I , Ed., American S o c i e i y f o r T e s t i n g and M a t e r i a i s , 686 (1979) 291. J. Chmlelowiec and A. E. George, Anal. Chem., 52 (1980) 1154. D. R. Choudhury and B. Bush, Anal. Chem., 53 (1981) 1351. A. Otsukl and H. S h i r a l s h i , Anal. Chem., 51 (1979) 2329. K. Kuwata, M. Uebori, and Y. Yamazaki, Anal. Chem., 52 (1980) 857. R. K. Beasley. C. E. Hoffmann. M. L. Rueppel, and J. W. Worley, Anal. Chem., 52 (1980) 1110. K. Kuwata, M. Uebori. and Y. Yamasaki, J. Chrom. Sci., 1 7 (1979) 264. D. A. H u l l e t t and S. J. Eisenreich, Anal. Chem., 51 (1979) 1953. J. 0. F r o h l i g e r , K. S. Booth, N. Kotsko, American Chemical S o c i e t y Symposium Series, 120 (1980). R. B. Zweldinger, S. B. Tejada, J. E. Sigsby, Jr., and R. L. Bradow i n Ion Chromatographic Analysis o f Environmental P o l l u t a n t s , E. Sawlckl, J. D. Mullk, and E. W i t t g e n s t e i n (Eds.), Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, USA, (1978) 125. C. Sango and E. Zimerson, J. L i q u i d Chromatography, 3 (1980) 971. C. Sango, J. L i q u i d Chromatography, 2 (1979) 763. L. G. Richards, A i t e x Chromatogram, 2 ( 1 9 7 8 ) . S. M. Rappaport and R. Morales, Anal. Chem., 51 (1979) 19. J. D. Mulik, E. Estes, and E. Sawicki i n Ion Chromatographic A n a l y s i s o f Environmental P o l l u t a n t s , E. Sawicki, J; D. Mu1 i k , and E. W i t t g e n s t e i n (Eds.), Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, USA (1978) 4 1 . E. Sawicki i n Ion Chromatographic A n a l y s i s o f Environmental P o l l u t a n t s , J. 0. M u l i k and E. Sawicki (Eds:), 2 (1979) 1 . J. D. Mulik, G. Todd, E. Estes, R. Puckett, E. Sawlckl, and D. WiI Iiams, i n Ion Chromatographic Analysis o f Environmental P o l l u t a n t s , E. Sawicki, J. D. M u l l l k , and E. W i t t g e r s t e i n (Eds.), Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, USA, 1 (1978) 23. J. F . C o l a r u o t o l o i n Ion Chromatographic A n a l y s i s o f Environmental P o l l u t a n t s , E. Sawicki, J. 0. M u l l i c k , and E. W i t t g e n s t e i n , Ann Arbor Science P u b l i s h e r s , Inc., Ann Arbor, Michigan, USA, 1 (1978) 149. R. M. Cassidy and S. Elchuk. J. Chrom. Sci., 18 (1980) 217. J. Korkisch and I . Steffan, I n t . J. Environ. Anal. Chem.. 6 (1979) 1 1 1 . Chem. Abstr. 91:128789k. L. Brown, Analyst, 104 (1979) 1165. S. D. West and S. J. Parka, J. Agric. Food Chem., 29 (1981 1 223. 0. Matano and N. Shiqy, Bunseki, 3 (1981) 157. J. Chromatog., 159 (1978) 207. J. F. Lawrence and D:'Turton, J. L. Anderson and D. J. Chesney, Anal. Chem., 52 (1980) 2156. N. M. Ram and J. C. Morris, J. L i q u i d Chromatogr., 4 (1981) 791. K. A. Pinkerton, HRC 8 CC, 4 (1981) 33. P. A. R e a l i n i , J. Chrom. Sci., 19 (1981) 124. R. J. Bushway, J. Chromatog., 211 (1981) 135. J. F. Lawrence, J. Chromatog., 211 (1981) 144. R. A. Shoemaker, J. Chrom. Sci., 19 (1981 1 321.
CHAPTER 7 SAFETY I N THE CHROMATOGRAPHY LABORATORY The modern chemist has made immeasureable progress I n r e c o g n i z i n g and a p p l y i n g safe p r a c t i c e s i n t h e chemical l a b o r a t o r y .
Today a l l s e c t o r s o f t h e chemical w o r l d
r e a l i z e t h a t immense personal and common b e n e f i t s can be gained by g r e a t e r emphasis An e n l i g h t e n e d a t t i t u d e i s beginning t o permeate every l e v e l of.
on safe operation. administration,
c r e a t i n g a genuine i n t e r e s t
i n s a f e t y which 1s t r a n s m i t t e d t o a l l
personnel through renovations of e x i s t i n g f a c i l i t i e s and emphasis and c o n s t r u c t i o n o f new f a c i l i t i e s .
Safety education programs and a v a s t
devoted t o t h i s subJect.
wealth o f
literature
are
Some o f t h e I n t e r e s t i n s a f e t y has been r e i n f o r c e d by laws
such as t h e United Kingdom Safety and H e a l t h Act and t h e U n i t e d States TSCA ( T o x i c Substances Control Act),
SDWA (Safe D r i n k i n g Water Acts),
S a f e t y and H e a l t h A c t ) ,
t h e German F e d e r a l Emmissions C o n t r o l A c t and r e l a t e d
legislation.
is
it
the
aim
of
this
chapter
c o n s i d e r a t i o n s f o r t h e chromatography l a b o r a t o r y . all-inclusive,
to
and OSHA (Occcupational
point
out
specific
safety
By no means w i l l t h i s treatment be
b u t it i s hoped t h a t it w i l l g i v e fundamental
i n f o r m a t i o n on which t o
b u i l d an extensive s a f e t y program. Flammable
liquids,
exothermic
reactions,
unstable materials
and t o x i c
and
c o r r o s i v e m a t e r i a l s p l a y a large p a r t I n l a b o r a t o r y accidents and r e s u l t i n g I n J u r i e s (ref.
1).
A study o f
100 s i g n i f i c a n t
l a b o r a t o r y f i r e s by t h e N a t i o n a l F i r e
P r o t e c t i o n Assoclatlon showed t h a t 71% o f t h e f i r e s s t a r t e d w i t h i n t h e l a b o r a t o r y ,
56% s t a r t e d between 6:OO p.m. and 20% by missuse o f
and 6:OO a.m.,
flammable
21% were caused by e l e c t r i c a l equipment
liquids (ref.
2).
The Chromatography
laboratory
u s u a l l y has m r e than i t s share o f these p o t e n t i a l hazards. 7.1 HAZARDOUS MATERIALS 7.1.1
Types A hazardous m a t e r i a l s may be defined as any substance which endangers h e a l t h
or l i f e .
M a t e r i a l s t h a t may b e f o u n d I n t h e c h r o m a t o g r a p h y l a b o r a t o r y c a n b e
c l a s s i f i e d as flammable, explosion hazard.
chromatography l a b o r a t o r y . Flash p o i n t :
corrosive (skin,
Table 7.1
eye,
or respiratory i r r i t a n t ) , toxic,
or
l i s t s some common compounds u s u a l l y encountered i n t h e The terms used i n t h e t a b l e a r e described here.
The temperature o f t h e l i q u i d a t which s u f f i c i e n t vapor from t h e
l i q u i d I s a v a i l a b l e t o form an I g n i t a b l e mixture.
The f l a s h p o i n t i s g e n e r a l l y con-
sidered t h e most s i g n i f i c a n t parameter i n assessing t h e flammable n a t u r e o f l i q u i d s .
203 TABLE 7.1 Hazardous m a t e r i a l s i n t h e chromatography l a b o r a t o r y I
a w i t h permission, ACGIH, P.O.
Box 1937, C i n c i n n a t i , OH, TWA;
bHCN l i b e r a t e d on c o n t a c t w i t h acid;
'suspected
o f inducing malignant neoplasms;
dfumes may decompose t o phosgene when heated s t r o n g l y ; e r e I eases t o x i c cyan ides when heated t o decomposition.
Substance Acetone(2-propanone)
F I ash
Boi I ing
I gn i t ion
p o i n t ( "C)
poi n t ( O C )
temp. ( "C)
-17
56
538
TLV(ppm)a 1000
Comments Hygroscopic Lachrymator
Acetonitrile Benzene Butanol-1
-1 1
a0
562
10
ACGIH (A2)'
29
117
365
50
I rr it a n t
100
20
Stench
10
ACG I H ( AZ ) c * d
25
ACG I H(A2 )'
79 -30
Carbon t e t r a c h l o r i d e
o-Dichiorobenzene
46 77
Chloroform Cyclohexane
40
a2
Butylchloride Carbon d i s u l f i d e
61
-20
81
74
1 a0
N,N-Dimethylformamide
260
300 50
153
10
-4 5
35
D i oxane
12
101
180
50
€ t h y I acetate
-4
77
427
400
Ethano I
13
7a
393
1000
Diethyl ether
Heptane Hexane
1 a0
9a -22
lsopropanol Methanol
11
Methylene c h l o r i d e
69
261
400
lrr I t a n t Peroxidizable PeroxidizableC
-
Hygroscopic
-
100
-
a2
400
Hygroscopic
65
200
Hygroscopic
464
200
Pentane
36
600
Pyr i d i ne
115
5
Tetrahydrofuran
-
400
40
66.0
200
-
I rr it a n t e Peroxidizableirritant
To1 uene
b
4
110.6
1,2,4-Trichlorobenzene
21 3.5
2.2.4-Trimethvloentane
99.2
536
100
-
irritant
-
204 B o i l i n g point:
The temperature a t which t h e vapor pressure o f a l i q u i d e b a l s
t h e atmospheric pressure.
I g n i t i o n temperatures:
The minimum temperature r e q u i r e d
t o i n i t i a t e o r auto-sustain combustion i n t h e absence o f spark o r flame. TCV<(TWA):
Threshold i i m i t value ( t i m e welghted average):
t h e t i m e weighted
average c o n c e n t r a t i o n f o r a normal 8-h work day o r 40-h work week t o which n e a r l y a l l workers may be r e p e a t e d l y exposed day a f t e r day w i t h o u t adverse e f f e c t s . Corrosive:
A substance which a c t s t o i n j u r e skin, eyes or surface t i s s u e s o f
the respiratory t r a c t . Toxic:
A substance which may cause i n j u r y by d i r e c t chemical a c t i o n w i t h body
t i ssues. 7.1.2
Use, disposal and storaqe o f hazardous m a t e r i a l s A t t h i s t i m e t h e r e a r e over 2,000,000
o f these i s not known.
Over 6,000
known compounds;
t h e t o x i c i t y o f most
compounds are considered by v a r i o u s groups t o be
cancer suspect agents or known carcinogens.
Very few o f these have been t h o r o u g h l y
tested.
What can a chromatographer do when faced w i t h an untested o r unknown sub-
stance?
Of course, t h e e a s i e s t answer i s t h a t ,
m a t e r i a l which i s not hazardous.
Of course,
whenever possible,
use an a l t e r n a t i v e
I f an a l t e r n a t i v e i s n o t p o s s i b l e , then
i t should be t r e a t e d as i f i t were hazardous.
The most important requirement when
working w i t h these m a t e r i a l s i s t h a t as much i n f o r m a t i o n as p o s s i b l e be a v a i l a b l e t o t h e a n a l y s t r e g a r d i n g physical p r o p e r t i e s ,
t o x i c o l o g y and safe p r a c t i c e .
A general
c h e c k - l i s t o f safe p r a c t i c e s I n t h e chromatography l a b o r a t o r y i s given below: Check l i s t o f safe p r a c t i c e s : ( 1 ) The l a b o r a t o r y should have a minimum o f two e x i t s .
( 2 ) Labware should not be used f o r food o r beverage. ( 3 ) Smoking should not be allowed i n t h e l a b o r a t o r y . ( 4 ) P i p e t l n g should be done mechanically,
never by mouth.
(5) A l l b o t t l e s should be labeled p r o p e r l y . ( 6 ) Only t h e minimum q u a n t i t y o f t h e m a t e r i a l needed f o r t h e a n a l y s i s should be present I n t h e laboratory.
( 7 ) Flammable s o l v e n t s should be kept I n s a f e t y cans,
i f possible.
(8) Trays large enough t o h o l d t h e contents o f t h e storage c o n t a i n e r should be under the container. ( 9 ) Chemicals which may r e a c t w i t h each other should be separated.
(10) V o l a t i l e or photo/heat-sensltlve
m a t e r i a l s should be kept away from s u n l i g h t ,
switches, h e a t i n g mantles, e t c . ( 1 1 ) M a t e r i a l s should be used i n an approved hood.
( 1 2 ) Personal p r o t e c t i o n should be worn (gloves, s a f e t y glasses, r e s p i r a t o r , etc., depending upon t h e s i t u a t i o n ) .
(13) Appropriate f i r e and f i r s t a i d p r o t e c t i o n should be provided. ( 1 4 ) A l l personnel should have frequent medical checkups.
205 TABLE 7.2 OSHA d e f i n i t i o n s f o r flammable and c o m b u s t i b l e l i q u i d s t
Combustible
F I amnab 1% CI ass
Definition
Class
IA
F l a s h p o i n t below 22.8"C
11
Definition
F l a s n p o i n t a t or above
and b o i I l n g p o i n t b e l o w
37.8OC and b e l o w 6OoC
37.8OC
18
F l a s h p o i n t b e l o w 22.8OC
F l a s h p o i n t a t o r above
111A
and b o i l i n g p o i n t a t or
6OoC and b e l o w 93.3'C
above 37.8'C
F l a s h p o i n t a t or above
IC
F l a s h p o i n t a t or above
1118
22.8OC and b o i l i n g p o i n t
93.3OC
below 27.8OC
( 1 5 ) A l l p e r s o n n e l s h o u l d be a d e q u a t e l y t r a i n e d w i t h an o n g o i n g s a f e t y program. ( 1 6 ) S y r i n g e s s h o u l d be s t o r e d w i t h t h e n e e d l e s secured. ( 1 7 ) Compressed gases s h o u l d be s e c u r e d w i t h a c h a i n or c y l i n d e r s t a n d .
Flammable
gases s h o u l d n o t be s t o r e d w i t h o x i d i z i n g gases. Storage o f small
service
quantities of
flammable m a t e r i a l s p r e s e n t s s p e c i a l
laboratory.
problems e s p e c i a l l y t o t h e
The l i q u i d c h r o m a t o g r a p h y l a b o r a t o r y o f t e n needs l a r g e
p u r e flammable s o l v e n t s .
These m a t e r i a l s a r e b e s t s t o r e d
in fire-
r e s i s t a n t flammable l i q u i d s t o r a g e v a u l t s w i t h a u t o m a t i c f i r e - e x t i n g u i s h i n g systems. I f possible, als.
a s e p a r a t e b u i l d i n g s h o u l d be used f o r b u l k q u a n t i t i e s of t h e s e m a t e r i -
A v e n t i l a t i o n system s h o u l d be p r o v i d e d and a l l m a t e r i a l s s h o u l d be s t o r e d w i t h
spill-trays
under b r e a k a b l e c o n t a i n e r s .
( F o r good c h r o m a t o g r a p h i c p r a c l ' i c e ,
t i c s s h o u l d be s e p a r a t e d f r o m o t h e r o r g a n i c s o l v e n t s . ) near t h e cabinet.
Toxic,
explosive,
aroma-
Smoking s h o u l d n o t be a l l o w e d
c o r r o s i v e or o x i d i z i n g a g e n t s s h o u l d a l s o be
s t o r e d s e p a r a t e l y and have t h e i r own v e n t i l a t i n g , s p i l l , and f i r e - p r o t e c t i o n systems. OSHA r e g u l a t i o n s
(Occupational
Safety
and
Health Act)
and
NFPA
Standards
( N a t i o n a l F i r e P r o t e c t i o n A s s o c i a t i o n ) i n d i c a t e t h a t c l a s s I A and 1B l i q u i d s may be s t o r e d i n g l a s s c o n t a i n e r s o f volumes no l a r g e r t h a n 1 g a l l o n (3785 ma) i f t h e p u r i t y would be a f f e c t e d i n m e t a l c o n t a i n e r s or i f c o r r o s i o n o f t h e m e t a l c o n t a i n e r w o u l d r e s u l t (see Table 7.2
for definitions).
These l i q u i d s s h o u l d be s t o r e d
in closed
containers (Table 7.3). I f r e f r i g e r a t o r s a r e used t o s t o r e s o l v e n t s ,
special
precautions
taken t o assure t h e y are a p p r o p r i a t e f o r t h e intended purpose.
s h o u l d be
Household and
commercial r e f r i g e r a t o r s , even i f t h e y a r e l i s t e d by U n d e r w r i t e r s L a b o r a t o r y (U.L.),
206
TABLE 7.3 Maximum s i z e o f storage c o n t a i n e r s 'tanks;
a473.2 m l ;
Type
b946.4 ml;
'3785
Class 1 A
G I ass Metal ( o t h e r than Dot drums) Safety cans Metal Dot drums Approved p o r t a b l e
ml.
Class 1B
Class 1C
Class 1 1
Class 111
1 pinta 1 gallon
1 quart 5 gallon
1 gallonC 5 gal Ion
1 gallon 5 gallon
1 gal Ion 5 g a l Ion
2 gallon 60 g a l l o n 660 g a l l o n
5 gallon 60 g a l l o n 660 g a l l o n
5 gallon 60 g a l l o n 660 g a l l o n
5 gal Ion 60 g a l l o n 660 g a l l o n
5 gal Ion 60 g a l l o n 660 g a l l o n
were n e v e r d e s i g n e d f o r s t o r a g e o f f l a m m a b l e s .
"Safety"
r e f r l g e r a t o r s should be c e r t i f i e d by a p r o f e s s i o n a l agency.
o r "Explosion
Safe"
The r e f r i g e r a t o r should
be i n compliance w i t h c u r r e n t r e g u l a t i o n s . Known carcinogens, storage ( r e f .
on t h e o t h e r hand,
r e q u i r e special c o n d i t i o n s f o r use I n
These should be used I n r e g u l a t e d areas where o n l y a u t h o r i z e d
3).
No food,
persons can e n t e r .
food containers, smoking, smoking m a t e r i a l s or cosmetics
should be allowed I n t h e area.
These areas should be a t a lower atmospherlc pressure
than surrounding nonregulated areas. checked f o r contamination.
The m a t e r i a l s
l e a v i n g these
areas must be
Safety equipment should be I n o r near t h e area where
d l r e c t exposure could occur and personnel should be t r a i n e d i n t h e i r use.
Medical
s u r v e i l l a n c e o f personnel may a l s o be r e q u i r e d , Disposal o f hazardous m a t e r i a l s v a r i e s according t o l o c a l material,
and hazard type.
Burning,
disposal through sewers,
laws,
quantity of
burying
I n chemical
l a n d f i l l s and disposal by a commercial disposal company are common methods.
Most
l i q u i d chromatography s o l v e n t s can be I n c i n e r a t e d and s o l u t e e i t h e r burned o r b u r l e d , The f a t e o f t h e s e m a t e r i a l s s h o u l d be d e c i d e d by a s a f e t y o f f i c e r or a s a f e t y committee who should be aware of t h e legal and chemical aspects o f t h e problem. 7.1.3
Compressed qases Compressed gases pose a special hazard s i n c e they possess l a r g e q u a n t l t l e s o f
potentlal
energy
-
much g r e a t e r than compressed l i q u i d systems.
Thus,
compressed
gases should be handled c a r e f u l l y as i f they were p o t e n t i a l r o c k e t s o r fragmentation bombs.
Some o f t h e gases used i n Chromatography are flammable,
supportive, c o l d hazards,
o r t o x i c (Table 7.4).
resulting
in
unconsciousness
and,
not I I f e
C y l i n d e r s f i l l e d w i t h oxygen-poor
substances and s t o r e d i n c o n f i n e d spaces can cause anoxemia, deficient,
corrosive,
in
minutes,
making blood oxygendeath
(the
ambient
concentration o f oxygen i n b r e a t h i n g a i r need drop t o o n l y 15% t o asphyxiate). confined spaces i n c l u d e c y l i n d e r ovens.
closets,
dry boxes,
refrlgerators,
Such
and cryogenic
L i q u i d n i t r o g e n and dry i c e are t h e two most common c o o l i n g gases and may
207 p r o v i d e a c o l d hazard i f bare s k i n comes I n c o n t a c t w i t h these m a t e r i a l s .
Compressed
gases have very h i g h r a t e s o f e f f u s i o n (hydrogen 2000 m/sec).
laboratory
can be permeated almost instantaneously i f a leak occurs.
Thus t h e
Hydrogen which i s used as
a f u e l gas f o r gas chromatography d e t e c t o r s and as a c a r r i e r f o r h i g h - r e s o l u t i o n gas chromatography c o u l d be an e x p l o s i v e hazard under some circumstances.
I n general few
accidents have been a t t r i b u t e d t o these c h a r a c t e r i s t i c s ;
one should be
however,
aware o f t h e i r p o t e n t i a l .
Most accidents w i t h c y l i n d e r s r e s u l t from p h y s i c a l s t r a i n
i n movlng large c y l i n d e r s .
The check l i s t (below) Includes some h i n t s on p r e v e n t i n g
c y l i n d e r mishaps.
TABLE 7.4 P r o p e r t i e s o f common compressed gases 3 a 1 MPa, 9.9 atm, 7.5 x 10 Torr; 2 g - c a l / ( s e c ) ( c m )(OC/cm) x l o 5 a t OT; United States Department o f Transportation; i g n i t i o n temperature 5 8 5 0 ~ ; i g n i t i o n temperature 540'C; use no grease o r o i I .
Gas
B.p(OC)
Crit.('C) temp.
(M
P A )~
Thermalb conductiv.
DOTC
Physiological property
Labe I
-
5.6
Oxidant
Non-flamm.gas
-1 22
4.9
3.9
Inert
Non-fIanun.gas
31
7.4
3.4
Inert
Non-flarnm.gas
-268
0.23
33.6
Inert
Non-flamm.gas
-253
-228
1.3
39.6
-
F I amm.gas d
Methane
-162
-82
4.6
7.2
-
Flamm.gase
Nitrogen
- 1 96
- 1 47
3.4
5.68
Inert
Non-flarnm.gas
-1 83
-118
5.1
5.70
Oxidant
Non-flamm.gas
Air
-1 89
Argon
-186
Carbon dioxide
-78(sub.pt.)
Hei ium
-269
Hydrogen
Oxygen
f
-
Crit:press
C y l i n d e r s a f e t y check l i s t (1)
Everyone i n t h e l a b o r a t o r y should know i f t h e contents o f a c y l i n d e r are
(2)
The c y l i n d e r should be p r o p e r l y secured w i t h chains o r o t h e r s t a b l e support.
(3)
The smallest s i z e c y l i n d e r should be used f o r t h e job.
(4)
Traps should be used t o prevent back contamination o f t h e c y l i n d e r .
flamnabie, c o r r o s i v e ,
l i f e supportive, poisonous, o r a c o l d hazard.
Proper regu I a t o r s shou I d be used w i t h each c y I Inder.
Regu I a t o r adapters shou I d
never be used. The main v a l v e should be closed when the c y l i n d e r i s n o t being used.
The
pressure i n t h e r e g u l a t o r should be reduced t o atmospheric pressure. O x i d i z i n g and flammable c y l i n d e r should be separated, p r e f e r a b l y by a t l e a s t e i g h t meters. C y l i n d e r s should not be s t o r e d near sources o f heat. Steel c y l i n d e r s should never be immersed i n l i q u i d n i t r o g e n .
7.2 PERSONAL PROTECTION P I i n y t h e e l d e r made t h e f i r s t r e f e r e n c e t o personal p r o t e c t i o n devices i n t h e f i r s t century A.D.
He recommended a crude bladder mask be worn over t h e faces
workers i n cinnabar (HgS) operations t o prevent i n h a l a t i o n o f t h a t t o x i c dust. then,
slow,
but steady,
commercially a v a i l a b l e .
progress has been made,
and a v a r i e t y o f
devices
Of
Since i s now
The q u a n t i t y and type o f these devices depends on t h e s i z e
and o p e r a t i o n o f t h e laboratory.
I n t h i s section,
emphasls w i l l be g i v e n t o those
devices which may be u s e f u l i n t h e chromatography l a b o r a t o r y . P r o t e c t i v e devices
7.2.1
Concern f o r t h e e f f e c t i v e n e s s o f p r o t e c t i v e devlces has increased r a p i d l y i n t h e l a s t decade.
Studies o f "gas masks" and gloves f o r s o l v e n t h a n d l i n g have shown r e -
peatedly the physical and chemical l i m i t a t i o n s o f these devices.
The American Socie-
t y f o r T e s t i n g and M a t e r i a l s Comnittee F-23 continues t o evaluate chemical p r o t e c t i v e c l o t h i n g and suggest t e s t methods f o r e v a l u a t i o n o f chemical p r o t e c t i v e c l o t h i n g . The important c o n s i d e r a t i o n i n s e l e c t i n g a p r o t e c t i v e device i s t h e s p e c l f i c a t i o n s f o r i t s intended use.
One should a l s o s e l e c t a device whose s p e c i f i c a t i o n s f a r
exceed t h e worst p o s s i b l e case o f
intended use.
Furthermore,
one should n o t r e l y
e n t i r e l y on t h a t device f o r p r o t e c t i o n s i n c e v a r i a t i o n s i n i t s manufacture can change s i g n i f i c a n t l y i t s properties.
For example, t h e p e r m e a b i l i t y o f p r o t e c t i v e gloves can
change w i t h changes i n t h e thickness,
f i l l i n g agent, o r p l a s t i c i z e r used.
Eye p r o t e c t i o n should always be worn i n t h e l a b o r a t o r y .
For most work,
hardened
g l a s s or p l a s t i c lens p r o v i d e adequate p r o t e c t l o n from mechanical hazards and chemic a l splashes.
As t h e p r o b a b i l i t y o f splashes increases and when working w i t h c o r r o -
sive materials, side shields,
s a f e t y goggies or f u l l - f a c e s h i e l d s may be necessary.
Under no circumstances should c o n t a c t lens be allowed i n t h e l a b o r a t o r y .
These lens
could i n t e n s i f y t h e I n j u r y from any splash since they prevent n a t u r a l eye f l u i d s from removing contaminants from t h e eye.
A new group has been organized +J c e r t i f y personal p r o t e c t i v e equipment made f o r t h e United States.
(SEI),
a non-profit
Associatlon,
The o r g a n i z a t i o n e s t a b l i s h e d I s t h e Safety Equipment organization
Arlington,
Virginia
established (ref.
4).
by
the
Industrial
Safety
According t o t h e a s s o c i a t i o n ,
lnstltute Equipment the SEi
209 program w l i l be t h e f i r s t nongovernmental program t o t e s t and c e r t i f y such equipment. The
inltial
work
i n v o l v e d c e r t i f y i n g h a r d h a t s and p r o t e c t i v e eyewear.
The
o r g a n i z a t i o n was s t a r t e d because o f f i c i a l r e g u l a t o r y channels were n o t meeting t h e needs f o r product c e r t i f i c a t i o n .
Only r e s p i r a t o r s ,
gas-detection tubes,
meters and noise dosimeters now r e q u i r e c e r t i f i c a t i o n by t h e National
sound-level Institute for
Occupational Safety and Health. SEI w i l l administer a t h r e e - p a r t c e r t i f i c a t i o n program f o r v o l u n t a r i l y submitted
products, facilities
product-testing by
an
by independent l a b o r a t o r i e s ,
independent
quality-assurance
i n s p e c t i o n s o f manufacturing
auditor
and
review
of
contested
c e r t i f i c a t i o n d e c i s i o n s by an i m p a r t i a l appeals board.
TABLE 7.5 Permeation o f common s o l v e n t s through glove m a t e r i a l s a f t e r 0.5 h ( r e f . 5) A:
(0.1%;
8:
0.1
-
1%;
C:
l-lO%;
0:
> l o % ; PVC = p o l y ( v i n y 1 c h l o r i d e ) ;
PVA = p o l y ( v i n y 1 a c e t a t e ) ( r e f . 5 )
Solvent
Natural rubber (0.4 mm)
Carbon t e t r a c h l o r i d e Chloroform Methylene c h l o r i d e 1 ,1,2,2-Tetrachloroethane 1,1,2-Trichioroethane Perch1 oroethy lene Methanol Ethano I 2-Propanol n-Butanol Benzene To1 uene Acetone Methyl e t h y l ketone Tetrahydrofuran Dimethylsulfoxide Dimethylformamide Pyr i d i ne D i oxane n-Hexane Water
D
D D D D D A A
A A
D D B C
b t e r ia L Neoprene Neoprene+ Nltrlle PVC PVA (0.4 mm) n a t u r a l rubber (0.4 mm) (0.2 mm) (0.4 mm) (0.5 nm)
D D D D D D A
D D D D D D A
A
A
A A D D C D D A
A B D
A
A C B C A
A D D C D A A A A
A C C D D D A C D
D B C
D A
C B A A
A
A A
D D D D
D D B B B B D D
C C
D D D B D
D D D A
C A A D
Hand p r o t e c t i o n i s an area t h a t i s o f t e n ignored i n t h e chromatography laboratory.
Leather, wool-lined gloves or Kevlar'
aramid gloves f o r h a n d l i n g hot-gas chro-
matographic apparatus should be located near each instrument. be used f o r mechanical p r o t e c t i o n i n general
handling o f
These gloves can a l s o
abrasives o r glassware.
Surgeons' gloves are useful f o r handling wet glassware. C o r r o s i v e m a t e r i a l s should be handled w i t h heavy rubber gloves t o p r o v i d e t h e best mechanical p r o t e c t i o n .
Rubber
210 gloves are o f t e n not very useful many s o l v e n t s .
f o r s o l v e n t h a n d l i n g since t h e y a r e permeable t o
( A c c o r d i n g t o NIOSH, p r o t e c t i v e c l o t h i n g s h o u l d r e s i s t p e r m e a t i o n f o r
a t l e a s t 60 m i n ( r e f . 5 ) ) .
Thus,
a g l o v e which i s impermeable t o t h e s o l v e n t s h o u l d
be worn o v e r t h e r u b b e r g l o v e ( w h i c h p r o v i d e s good m e c h a n i c a l 7.5).
The o u t e r
in a
g l o v e s h o u l d not be r e u s e d b u t p l a c e d
protection) special
(Table
used-glove-
disposal container. Where heavy o b j e c t s ( s u c h as gas c y l i n d e r s ) a r e t r a n s f e r r e d , recommended.
Usually steel-tipped
graphic operations.
s a f e t y shoes a r e s u f f i c i e n t
P e r f o r a t e d shoes,
sandals,
foot protection i s f o r most chromato-
o r sneakers a r e n o t a p p r o p r i a t e f o r
l a b o r a t o r y work. L a b o r a t o r y c o a t s o r aprons s h o u l d a l w a y s be worn when w o r k i n g i n t h e l a b o r a t o r y . These garments s h o u l d be c l e a n e d r e g u l a r l y and i s o l a t e d f r o m o t h e r garments. R e s p i r a t o r y a i d s such as gas masks or s e l f - c o n t a i n e d b r e a t h i n g a p p a r a t u s s h o u l d be a v a i l a b l e .
Self-contained
not universally effective.
d e v i c e s a r e more r e l i a b l e s i n c e c a n i s t e r g a s masks a r e
F o r non-emergency
a i r from remote s o u r c e s ( e . g .
bottled air,
situations,
a i r l i n e masks t h a t p r o v i d e
l a b o r a t o r y a i r s u p p l y ) may a l s o be u s e f u l .
W i t h t h e s e d e v i c e s i t i s i m p o r t a n t t h a t t h e p a r t i c u l a r f i l t e r s be checked f r e q u e n t l y . Many
older
instruments special equipment
chromatographic it
is
ovens
were
i m p o r t a n t t o keep d u s t
fabricated l e v e l s as
p r e c a u t i o n s when m o d i f y i n g t h e o v e n w a l l s . necessary w i l l
vary
with the quantity
and
with
asbestos.
With
these
low as p o s s i b l e and t o t a k e The d e g r e e o f location of
protective
asbestos.
Dust
masks, r e s p i r a t o r s . and d i s p o s a b l e head c o v e r or c o v e r a l l s may be c o n s i d e r e d . 7.2.2
Housekeeping Good housekeeping
i s t h e key t o s a f e l a b o r a t o r y o p e r a t i o n .
a l l o w f o r a more p l e a s a n t , o r g a n i z e d work e n v i r o n m e n t , p o t e n t i a l s o u r c e s o f danger. a c l e a n , o r d e r l y w o r k i n g area, samples,
N o t o n l y does
it
b u t a l l o w s easy r e c o g n i t i o n o f
Good housekeeping i n c l u d e s n o t o n l y t h e m a i n t e n a n c e o f b u t a l s o t h e o r g a n i z a t i o n of procedures f o r processing
m a i n t a i n i n g equipment and r e c o r d k e e p i n g .
General housekeeping r u l e s ( 1 ) A l l b o t t l e s s h o u l d be l a b e l e d b e f o r e t r a n s f e r s a r e made o r s o l u t i o n s p r e p a r e d .
( 2 ) Hoods s h o u l d be s t o r a g e p l a c e s o n l y f o r i t e m s t h a t w o u l d be h a z a r d o u s i n t h e l a b o r a t o r y atmosphere.
( 3 ) Hoods s h o u l d be checked p e r i o d i c a l l y w i t h a v e l o m e t e r t o be s u r e t h a t t h e y a r e e f f e c t i v e f o r a l l h a z a r d o u s m a t e r i a l s ( a t l e a s t 100 f t / m i n ) . ( 4 ) S y r i n g e s s h o u l d be s t o r e d i n drawers w i t h n e e d l e s c o v e r e d and t h e d r a w e r s l o c k e d when n o t i n use. ( 5 ) Hands s h o u l d be washed f r e q u e n t l y ,
e s p e c i a l l y b e f o r e e a t i n g or smoking.
(6) Gas c y l i n d e r s s h o u l d be clamped t i g h t l y i n p l a c e . ( 7 ) Long h a i r s h o u l d be c o n f i n e d . ( 8 ) A l i s a f e t y a p p l i a n c e s ( i n c l u d i n g v i s i t o r s ' s a f e t y g l a s s e s ) s h o u l d be a v a i l a b l e i n convenient places.
211 ( 9 ) Emergency telephone numbers should be p r o m i n e n t l y d i s p l a y e d near t h e telephones.
( 1 0 ) Housekeeping should be checked f r e q u e n t l y by s u p e r v i s i o n or s a f e t y cornnittee. 7.3 SAFETY LITERATURE 7.3.1
Books and pamphlets
"Matheson Gas Data Book", "Carclnogens Public
-
Health
Matheson Gas Products, East Rutherford, NJ 1971.
Regulation and Controlt', Service,
Center
for
US Dept.
Disease
o f Health, Control,
Education and Welfare,
National
Institute
for
Occupational Safety and Health, D i v i s i o n o f Technical Services, C i n c i n n a t i , OH, 1977. "Hazards I n t h e Chemical Laboratory",
Chemical Society,
"The Handbook o f Reactive Chemical Hazards",
London,
1977.
by L. B r e t h e r i c k , Butterworths,
London,
1979. "Patty's
I n d u s t r i a l Hygiene and Toxicology",
Clayton, Wlley.
"The Merck Index",
Merck 6 Co.,
"Dangerous P r o p e r t i e s o f Reinhold, New York, Wegistry of
D.
e d i t e d by G.
Clayton
and F.
E.
New York, 1979. Rahway, NJ, 1978.
I n d u s t r i a l Materials",
e d i t e d by N.
I . Sax,
Van Nostrand
1979.
Toxic E f f e c t s o f Chemical
Substances",
National
I n s t i t u t e f o r Occu-
p a t i o n a l Safety and H e a l t h and t h e American Chemical Society, Washington,
DC, 1978.
" D o c u m e n t a t i o n o f t h e T h r e s h o l d L i m i t V a l u e s f o r Substances i n Workroom A i r " , American Conference o f Governmental I n d u s t r i a l H y g i e n i s t s , C i n c i n n a t i , OH, 1978. "TLV's
Threshold L i m i t Values f o r Chemical
Workroom
Environment
Governmental "Guide
with
Intended
Substances and Physical
Changes
for
1979",
American
Agents
of
I n d u s t r i a l Hygienists, C i n c i n n a t i , OH, 1979.
f o r Safety I n t h e Chemical Laboratory",
Van Nostrand Reinhold, New York,
Manufacturing Chemists Association,
1972.
" F i r e P r o t e c t i o n HandbookN, N a t i o n a l F i r e P r o t e c t i o n Association, Boston, MA, 7.3.2
i n the
Conference
1976.
Journals and papers
S. Aitman, "Guidelines t o Chemical Hazard Evaluation",
J. Chem. Educ.,
55 (1978) 140.
21 2 M. M. Renfrew, "High1 i g h t l n g Safety P r a c t i c e s t o Students",
J. Chem. Educ.,
55 (1978)
J. Chem. Educ.,
55 (1978)
145.
D. 0. Hedberg and E. B u s s e l l , "Lab Safety Questionnaire", 148.
F;
W.
Micheiotti,
IfHazardous Chemical
Safety
i n t h e Laboratory",
Anal.
Chem.,
51
(1979) 441A.
7.3.3
F i i m s and audiovisual p r e s e n t a t i o n s
"28 Grams o f Prevention" ( f i l m ) , Fisher S c i e n t i f i c Company, P i t t s b u r g h , PA, 1978. "Safety A t t i t u d e s " ( s l i d e ) , National Safety Council, "Using
Fire
Extinguishers
Association, Boston,
MA,
the
Right
Way"
Washington,
(film),
DC.
National
Fire
Protection
1978.
" L i q u i d s Can Burn" ( f i l m ) , National F i r e P r o t e c t i o n Association, Boston, MA.
7.3.4
Miscellaneous
Toxic and Hazardous Chemicals i n I n d u s t r y Chart,
Lab Safety Supply Co.,
Janesville,
WI. Chemical,
Gas and M a t e r i a l Techniques and signs f o r t h e p r e c a u t i o n a r y l a b e l i n g o f
hazardous i n d u s t r i a l chemicals, Lab Safety Supply Co.,
P o s t e r s and S i g n s ,
School and I n d u s t r i a l
J a n e s v i l l e , WI.
I n s p e c t i o n Check
list,
National F i r e
P r o t e c t i o n Association, Boston, MA.
Posters, National Safety Council,
Chicago,
IL.
REFERENCES 1
2 3 4 5 6
Case H i s t o r i e s i n t h e Chemical Industry, Manufacturing Chemists Association, 1(1962), 2(1966), 3(1970). F i r e Record B u l l e t i n FR88-3, National F i r e P r o t e c t i o n Association, Boston, MA. Carcinogens Regulation and Control DHEW P u b l i c a t i o n No. NIOSH77-206 U.S. Dept. o f Health, Education 8 Welfare, CDC. NIOSH, C i n c i n n a t i , OH, 45226, Aug. 1977. Chem. Eng. News, J u l y 27 (1981) p . 10. Chem. Eng. News, A p r i l 2 (1979) p. 15. E. B. Sansone and Y. 8. Tewari, "The Permeabi I i t y o f Laboratory Gloves t o Selected Solvents", AlHA Journal, 39 (1978) 169.
-
CHAPTER 8
REGULATIONS, REGULATORY AND ADVISORY GROUPS
The c r e a t i o n of concern
has
problems.
r e g u l a t o r y and advisory groups f o r
followed
the
development
of
These areas have included a i r ,
use and waste disposal,
transportation,
legislation
energy,
noise.
issues o f environmental
directed
toward
specific
animal and water resources,
land
It is
and h i s t o r i c a l p r e s e r v a t i o n .
not w i t h i n t h e scope of t h i s book t o d e t a i l a l l t h e a v a i l a b l e i n f o r m a t i o n concerning these problems;
however, t h i s chapter w i I I survey t h e major groups and r e g u l a t i o n s
of
importance and p o i n t o u t o n l y those r e g u l a t i o n areas where e i t h e r
international
gas or l i q u i d chromatography may p r o v i d e s i g n i f i c a n t measurement i n f o r m a t i o n . 8.1
GOVERNMENTAL AGENCIES, LEGISLATION, AND RELATED GROUPS
8.1.1
International organizations UNEP (United Nations Environment Proqram) P. 0. Box 30552,
8.1.1.1 Kenya.
This o r g a n i z a t i o n
finances research and environmental
Nairobi,
programs.
Funding
comes from v o l u n t a r y c o n t r i b u t i o n s and t h e UN general fund. WHO ( W o r l d H e a l t h O r g a n i z a t i o n ) Geneva 27,
8.1.1.2
Switzerland.
This
o r g a n i z a t i o n was e s t a b l i s h e d i n 1946 w i t h t h e o b j e c t i v e o f attainment by a l l people o f t h e highest p o s s i b l e level o f h e a l t h . c o l l e c t i o n and dissemination o f
I t has a wide range o f s e r v i c e s i n c l u d i n g
statistical
data,
establishment o f
standards and
education. 8.1.1.3
CEC
Environment.
(Council of
The o b j e c t i v e o f
-
European Communities) t h i s organization
Proqram o f A c t i o n on t h e
i s constant
improvement
of
the
l i v i n g and working c o n d i t i o n s o f t h e peoples o f t h e European Economic Community. On March 20, Council.
1970,
a d i r e c t i v e on motor v e h i c l e emissions was made by t h e
The d i r e c t i v e s t a t e d t h a t t h e mass o f carbon monoxide and t h e mass o f
hydrocarbons must be less than t h e amounts given i n Table 8.1. deals w i t h c h a r a c t e r i s t i c s o f surface water
The d i r e c t i v e a l s o
intended f o r d r i n k i n g purposes as given
i n Table 8.2. 8.1.2
National o r g a n i z a t i o n s 8.1.2.1
for
Canada.
protecting
the
Department o f t h e Environment: country,
environment
and
This agency has r e s p o n s i b i l i t y
natural
provinces and m u n i c i p a l i t i e s have t h e i r own l e g i s l a t i o n . Atmospheric Environment Service,
Policy,
Planning,
although
I t i s divided
Environmental P r o t e c t i o n Service,
Land, Forest, and W i l d l i f e Services, and A d m i n i s t r a t i o n Service.
resources,
many
i n t o the
F i s h e r y Services,
and Research Service, Finance
214 TABLE 8.1 Motor v e h i c l e emission l e v e l s -CEC Type 1 t e s t
-
v e r i f y i n g t h e average emission i n a congested urban area a f t e r a c o l d
start.
Reference Weight (RW) ( k g )
750 850 1020 1250 1470 1700 1930 2150
<
< < < < <
< <
RW RW RW RW RW RW RW RW
< < <
< < < <
CO(g)
Hydrocarbons/test(g)
100 109 117 134 152 169 186 203 220
7 50 850 1020 1250 1470 1700 1930 2150
-
8.0 8.4 8.7 9.4 10.1 10.8 11.4 12.1 12.8
TABLE 8.2
CEC D i r e c t i v e on D r i n k i n g Water C h a r a c t e r i s t i c s G = Guide;
1 = mandatory.
A1 = simple p h y s i c a l treamtent and d i s i n f e c t i o n ; A2 = normal physical treatment, chemical t r e a t ment, and d i s i n f e c t i o n ; A3 = i n t e n s i v e p h y s i c a l and chemical treatment, d i s i n f e c t i o n , and extended treatment. A1 -
Parameter
A2 -
G N i t r a t e s (mg/r
NO;)
25
1
50
G
-
1.5
0.1
0.3
1.0
Manganese (mg/l Mn)
0.05
-
0.1
Copper (mg/e Cu)
0.02
0.05
0.05
Zinc (mg/i Zn)
0.5
3.0
1 .o
-
1 .o
Boron (mg/e B)
Dissolved i r o n (mg/E Fe)
1
50
0.7-1 .O
F l u o r i d e s (mg/i F-)
A3 -
0.7-1.7
-
G
-
1
50
0.7-1.7
-
2.0
1 .o
-
-
1 .o
-
1 .o
-
5.0
1 .o
1 .o
-
5.0
1 .o
-
Arsenic (mg/i As)
0.01
0.05
0.05
0.05
0.1
0.05
Cadmium (mg/t Cd)
0.001
0.005
0.001
0.005
0.001
0.005
Chromium (mg/i C r )
-
0.05
-
0.05
0.01
-
0.0005
0.001
-
0.1 0.05
Selenium (mg/i Se)
-
Mercury (mg/i Hg) Barium (mg/i Ba)
Lead (mg/i Pb)
Cyanide (rng/i CN-)
0.05
0.05
0.05
-
0.05
0.01
-
0.0005
0.001
0.0005
0.001
-
1 .o 0.05
-
0.05
0.01 1 .o
21 5 TABLE 8.2 Cont. S ~ f aI t e s (mg/e SO;-)
150
250
150
250
150
C h l o r i d e s (mg/L C 1 - )
200
-
200
-
200
Phosphates (mg/a P205) Phenols (phenol index) (p-nitroaniline,
0.4
-
0.001
250
0.7
-
0.7
-
0.001
0.005
0.01
0.1
4-
aminoantipyrene) (mg/e C6H50H) Polycyclicaromatic hydrocarbons (mg/e ) Dissolved/emulsified
-
0.0002
-
0.0002
-
0.001
0.05
-
0.12
-
0.5
hydrocarbons ( a f t e r e x t r a c t i o n by l i g h t petroleum
(mg/t) Total P e s t i c i d e s (parathion, BHC. d i e l d r i n ) (mg/t) N i t r o g e n (by Kje\dak 1
-
0.001
-
0.0025
-
0.005
1 .o
-
2.0
-
3.
-
0.05
-
1.0
1.5
2.0
4.0
Ammon i a (mg/a NH4')
Examples o f n a t i o n a l
l e g i s l a t i o n are g i v e n i n Table 8.3.
p o l l u t a n t s under Canadian laws a r e given i n Tables 8.4
-
Specific l i m i t s f o r
8.11.
TABLE 8.3 Canadian L e g i s l a t i o n ( N a t i o n a l )
Water Act of 1970
Federal Clean A i r Act
Shipping Act Motor Vehicle Safety Act o f 1970
Provided f o r j o i n t Federal and p r o v i n c i a l water basin planning, d e s i g n a t i o n o f water q u a l i t y management areas, j o i n t agencies f o r water q u a l i t y management and commissions t o conduct water resource management programs. Authorized t h e Federal Government t o s e t a i r q u a l i t y o b j e c t i v e s and n a t i o n a l emissions standards where t h e r e i s a danger t o h e a l t h o r where i n t e r n a t i o n a l agreements are involved. P r o h i b i t e d p o l l u t i o n o f t h e atmosphere by ships and p r o t e c t e d against water p o l l u t i o n by discharges from vessels. Defined c h a r a c t e r i s t i c s o f motor v e h i c l e emissions.
21 6 TABLE 8.4 Exhaust emlsslons under t h e k t o r Vehlcle Safety Act (Canada)
Pol I u t a n t
L l m l t of p o l l u t l o n
Hydrocarbons
2.2 g / v e h l c l e m l l e 275 ppm by volume f o r heavy-duty v e h l c l e 23 g / v e h l c l e m l l e 1.58 by volume f o r heavy-duty v e h l c l e s
co
TABLE 8.5 Amblent a i r c r l t e r l a under t h e Clean Envlronment Act o f Manltoba
V = By volume, W = by welght.
Name o f contamlnant
Sulphatlon
Concentratlon for resldentlal o r r u r a l land use
1 h average
0.40
0.20
24 h average
0.20
0.10
annual average
0.05
0.02
1 .o
0.4
0.15
0.15
24 h average
0.10
0.10
90% sampl lngs o f
0.07
0.07
0.20
ppm I n a l r ( V )
s02
Concentration f o r comnerclal o r land use
Period o f measurement
Unlt of concentration
2 mg S03/100 cm /
30 days
day d r y ( W ) Ox 1 dant s
1 h average
ppm I n a l r ( V )
any one month &Ides
of
ppm I n a l r ( V )
N I trogen Beryl I lum
vg?
In a l r ( v )
F I uor Ides
ppb I n a l r as
1 h average
0.20
24 h average
0.10
0.10
24 h average
0.01
0.01
24 h average
4.0
1 .o
HF ( V ) F I uor Ides
ppm I n forage
I n forage
lndlvldual
30 days
vg/100 cm3/
as gas
30 days ( W )
co
ppm I n a l r ( V )
Austrla.
(Vienna):
Thls
programs.
Accordlng
35
-
40
samp I e
(W)
F I uor Ides
8.1.2.2
-
agency to
1 h average
60
60
8 h averaae
15
15
Federal M l n l s t r y o f Health and Envfronmental P r o t e c t i o n has r e s p o n s l b l l i t y the
Austrlan
for
federal
constltutlon,
envlronrnental
prlmary
protectlon
responslbll I t y
envlronmental p r o t e c t i o n I l e s w l t h t h e p r o v l n c l a l and l o c a l governments.
for
217 8.1.2.3
Belgium.
M i n l s t r y o f P u b l i c H e a l t h and Envlronment ( B r u s s e l s ) :
Thls agency has r e s p o n s l b l l i t y f o r c o o r d i n a t i n g water,
noise, and a i r p o l l u t i o n laws.
TABLE 8.6 Ambient water c r i t e r i a under t h e Clean Environment A c t of Manitoba
Contaminant a
Concentration (mgma
Concentratlon (rng/%)a
Contaminant
Not t o be exceeded
As
NO - ( i n terms of N)
0.05 250-350
CI
10
3-
0.05
C r ( V I ) (as C r )
0.05
p04 Se
cu
1
Ag
CN-
0.2
so:-
400
Fe
0.3
Zn
I
Pb
0.05
Mn
0.1
N (organic i n
1.5
0.01
0.05
terms o f N )
TABLE 8.7 Atmospherlc emission c r l t e r l a under t h e Clean Environment Act of Manitoba
aMeasured f o r 30 mln.
b V = b y volume
Contaminant
so2
Concentration a p o i n t of imp ingement
Unit o f concentration ppm i n a i r ( V )
b
0.3
co
ppm i n a i r ( V )
5
f l uor 1 des
ppb i n a i r ( V )
10
Be
H2S
ug/m3
in air
0.01
pprn i n a i r ( V )
0.1
ppm i n a i r ( V )
0.03
NH3 CH2S
ppm i n a i r ( V )
5
ppm I n a i r ( V )
0.15
HC I
ppm I n a i r ( V )
0.04
Pb
ug/m3 i n a i r
20
21 8 TABLE 8.8 E f f l u e n t l i m i t c r i t e r i a under t h e Clean Environment Act of Manitoba Contaminant
L i m i t (mg/e)
Contaminant
L i m i t (mg/r)
As
0.5
CI
t h e c o n c e n t r a t i o n which would increase t h e c h l o r i d e c o n t e n t of t h e r e c e i v i n g body by 10
Cr
0.5
cu
1
CN-
0.25
Fe
t o be considered i n relation t o the r e c e i v i n g body o f water
Pb
0.5
Mn
10
N (Organic i n terms of N )
20
NO3-
100
oi i
15
Po43-
0.5
Se
0.1
Ag
0.5
TABLE 8.9 O n t a r i o Btandards f o r e m i t t e d contaminants (aMeasured f o r 30 min.;
= by volume) Contamlnant NH3 Be
U n i t of concentration (in air) ppm ( V )
u g/m
3
b
Concentrat i o n a t p o i n t of impi ngementa
5.0 0.01
0.01
Br2 CdO
10
CHZS
ppm ( V )
0.15
co
pprn ( V )
5.0
ppm ( V )
0.1
Cl2 Fluorides
ppm ( V )
5.0
HC I
ppm ( V )
0.04
HCN
ppm ( V )
1 .o 0.03
H2S Fe
10
Pb HN03
20 vg/m3
65
N i t r o g e n oxides
ppm ( V )
0.25
Ag
aim3 ppm ( V )
1 .o 0.3
so
21 9 TABLE 8.10 Ontarlo c r i t e r i a f o r desirable a i r q u a l i t y
V = by volume
Contaminant
Unlt of concentrat ion
Be
ugh3
co
ppm i n a i r ( V )
F I uor ides
Concentration a t point of impingement
0.01
F l u o r i d e s i n forage
24 hours
40
1 hours
15
8 hours
8 1 .o
ppb I n a i r ( V )
24 hours 24 hours 30 days
0.5 35 t o t a l
ppm i n forage ( W )
Per i o d o f measurement
individual
f o r cmpsumption by
samp I e
I ivestock F I uor I dat ion (F-)
ug/l OOcm2
H2S
ppm i n a i r ( V ) 3 ug/m
Pb
40 t o t a I
ppm I n a i r ( V )
Oxidants
30 days
1 hour
0.02 15
24 hours
10
30 days
0.10
1 hour
0.03
24 hours
0.20
1 hour
Oxides o f n i t r o g e n
ppm i n a i r ( V )
0.10
24 hours
Sulphation
mg S03/100 cm
0.4/day
30 days
ppm i n a i r ( V )
0.25
1 hour 24 hours
2
s02
0.10 0.02 8.1.2.4 agency,
created
Denmark.
1 year
M i n l s t r y o f Environmental P r o t e c t i o n (Copenhagen):
I n 1971, c o n s i s t s o f
a secretariat,
control
This
and a d m i n i s t r a t i o n ,
p l a n n i n g and development and an O f f i c e o f Environmental P r o t e c t i o n w i t h an e x p e r t and a
service
section.
Local
responsibility
for
pollution
control
I ies
with
m u n l c l p a l i t i e s and l o c a l h e a l t h c o u r t s .
8.1.2.5
Federal Republic o f Germany.
M i n i s t r y of
the
Interior
(Bonn):
T h i s agency has t h e most i m p o r t a n t r e s p o n s l b l l i t y i n t h e government f o r w a t e r management,
a i r quality,
and noise c o n t r o l .
The VDI
proposes a i r qua1 I t y I l m i t s , but has no legal power.
(German Engineering S o c i e t y ) The TAL (Technische A n l e i t u n g )
i s a Federal a d m i n i s t r a t l v e r e g u l a t i o n which must be f o l l o w e d (Table 8.12).
220 TABLE 8.11 Saskatchewan surface water q u a l i t y c r i t e r i a Constituent
Maximum c o n c e n t r a t i o n (mg/e)
Carbon Chloroform E x t r a c t ( C C E ) ( i n c l u d e s Carbon Alcohol E x t r a c t :
0.2
(CAE)
Constituent
Max. conc. (mg/a)
Constituent
Max. conc. (mg/e
Methyl mercaptan
0.05
Na
30
Phenol i c s
0.005
9-
0.05
Resin acids
0.1
Zn
0.05
B
0.5
As
0.01
cu
0.02
0a
1 .o
Ch I or i de
1.5
Cd
0.01
Fe
0.3
Cr
0.05
0.05
CN-
0.c1
1 .o
Pb
0.05
Hg
0.0001
Se
0.01
Ag
0.05
Mn
N ( t o t a l organic and i n o r g a n i c ) P (as
0.15
8.1.2.6 (Paris):
France. This
-
15
M i n i s t r y f o r t h e p r o t e c t i o n o f Nature and t h e Environment
agency,
organized
in
1970,
is
responsible
for
chairing
i n t e r m i n i s t e r i a l Committee which administers r e g i o n a l and n a t i o n a l parks, hunting,
)
and f i s h i n g a c t i v i t i e s and water p o l l u t i o n research.
the
wildlife,
I t also coordinates
water p o l l u t i o n c o n t r o l programs and programs f o r p r o t e c t i o n o f n a t u r a l and h i s t o r i c sites.
P o l l u t i o n control
i s enforced by normal
Laws have been i n i t i a t e d t o e n f o r c e g e n e r a l
p o l i c e action of
the Prefecture.
p o l i c i e s and programs.
Specific
r e q u i r e m e n t s a r e u s u a l l y d e s i r e d by t h e i n t e r m i n i s t e r i a l Committee s u b j e c t t o n o t i f i c a t i o n of t h e M i n i s t r y f o r t h e P r o t e c t i o n o f Nature and t h e Environment. 8.1.2.7
Iceland.
M i n i s t r y o f Health (Reyk.javik):
c e n t r a l i z e d agency t o c o o r d i n a t e environmental p o l i c y . Communication,
Industries,
At
present'there
i s no
The M i n i s t r i e s o f F i s h e r i e s ,
and Social A f f a i r s a r e r e s p o n s i b l e f o r p o l l u t i o n c o n t r o l
e f f o r t s r e v e l a n t t o t h e i r domains. 8.1.2.8
Republic o f
Ireland.
M i n i s t r y f o r Local Government ( D u b l i n ) :
m i n i s t r y i s r e s p o n s i b l e f o r water p o l l u t i o n c o n t r o l p o l i c y , control of
local
water
and sewage programs,
financing,
and t h e c o o r d i n a t i o n o f
This
planning, t h e regional
and
A s u b d i v i s i o n o f t h e i r agency,
the
l o c a l planning. 8.1.2.9 Central
Italy.
Board o f
M i n i s t r y o f Health (Rome):
Control
(which c o n s i s t s o f
representatives o f
several
different
221 Departments),
sees t h a t t h e a i r p o l l u t i o n laws a r e e n f o r c e d .
e s t a b l i s h e d I n 1966. 8.1.2.10
Luxembourg.
(Luxembourg V i le):
M l n i s t r y o f t h e I n t e r i o r , P u b l i c Health. and P u b l i c Works
T h i s agency I s r e s p o n s i b l e f o r n a t u r e conservation.
Department i s r e s p o n s i b l e f o r e n f o r c i n g t h e environmental 8.1.2.11 (Leidschendam):
T h i s b o a r d was
There a r e no water p o l l u t i o n laws.
The Netherlands.
The P o l i c e
law.
M i n i s t r y o f P u b l i c H e a l t h and Environmental Hygiene
T h l s agency i s r e s p o n s i b l e f o r I s s u i n g l i c e n s e s r e l a t i n g t o s u r f a c e
water under s t a t e j u r i s d i c t i o n . surface waters.
The National
Provlnclal administrators are responsible f o r other I s responsible f o r
i n s t i t u t e f o r E f f l u e n t ' Treatment
examining surface water q u a l i t y and a d v i s l n g t h e M i n i s t r y on p o l l u t i o n p r e v e n t i o n measures. 8.1.2.12
M i n i s t r y f o r t h e P r o t e c t i o n o f t h e Environment (Oslo): T h i s
Norway.
m i n i s t r y i s r e s p o n s i b l e f o r p r o t e c t i n g t h e a l r , s o i l , f r e s h and sea waters. 8.1.2.13
Sweden.
National Environment P r o t e c t i o n Board (Soina):
T h i s agency,
which i s r e s p o n s i b l e t o t h e N a t i o n a l Franchise Board and t h e M i n i s t r y o f A g r l c u l t u r e , a d m i n i s t e r s a i r , water, and noise p o l l u t i o n problems. 8.1.2.14
Switzerland.
O f f I c e o f Environmental P r o t e c t i o n (Bern):
p a r t o f t h e Department o f
Interlor,
i s responsible f o r preparing
overseeing i t s execution i n t h e cantons, working w i t h l o c a l a u t h o r i t i e s , Federal
government,
informing
the
public,
and
taking
part
In
T h l s agency,
l e g i s l a t i o n and advislng t h e national
and
i n t e r n a t i o n a l meetings and o r g a n i z a t i o n s . TABLE 8.12 Gaseous emission l i m i t s i n Germany (G.F.R.) M I K D = Highest p e r m i s s i b l e mean c o n c e n t r a t i o n w i t h continuous exposure;
MIKK =
h l g h e s t p e r m i s s i b l e c o n c e n t r a t i o n w i t h i n t e r m i t t a n t exposure ( h a l f h o u r l y mean); = maximum e m i s s i o n c o n c e n t r a t i o n o f t h e T e c h n i s c h e A n l e l t u n g ;
a l l o w a b l e c o n c e n t r a t i o n a t t h e work place. a Three times per day.
Once I n 8 hours. Once i n 2 hours. Compound
MIKK
MIKD
MAK
TAL
ppm
3 (mg/m 1
ppm
c12
0.1
(0.3)a
0.5
(1.5)a
HC 1
0.5
(0.7)'
1
(1.4)'
HNO
0.5
(1.3)'
I
(2.6)'
---
HZS
0.1
(0.15)a
0.2
(0.3)'
0.15
(0.3)
No 2
0.5
1
(2)"
1
(2)b
s02
0.2
0.3
(0.75)'
0.4
(0.75)'
co
--
(0.5)'
--
--
(mg/m
--
3
)
ppm
3 (mg/m 1
0.3
(0.6)b
--
---
--
(PPm) 1 5 10
b
20 5 5 50
TAL
MAK = maximum
222 Swiss Federal
I n s t i t u t e o f Technology
I n s t i t u t e has no r e g u l a t o r y powers.
(EAWAG):
T h i s r e s e a r c h and t e a c h i n g
I t provides a d v l s o r y s e r v i c e s t o t h e government
and a c t s as an i n t e r n a t i o n a l r e f e r e n c e c e n t e r f o r waste management o f WHO.
8.1.2.15
Japan.
Environment Agency (Tokyo):
T h i s agency was e s t a b l i s h e d i n
1971 t o c e n t r a l i z e and implement a n t i - p o l l u t i o n programs. TABLE 8.13 Environmental q u a l i t y standards for Japan
a Not t o be exceeded. i n e i g h t consecutive hours.
Dai I y average of
0.1 ppm b
0.04 ppm
so2
co
10.00 ppm 0.04
NO,
8.1.2.16 largest,
-
20.0 ppm
0.06 ppm
United States o f America.
The United States o f America has t h e
most e l a b o r a t e r e g u l a t o r y system f o r
c o n t r o l o f any c o u n t r y i n t h e world. and municipal safety.
Hour I y val uesa
hour I y vai uesa
Cmpound
regulations
In t h i s section,
pertaining t o major
environment p o l l u t i o n
analysis
and
There a r e hundreds o f n a t i o n a l , s t a t e , county, all
aspects o f
environmental
health
and
l e g i s l a t i o n and r e g u l a t i n g bodies a r e o u t l i n e d
in
order t o g i v e t h e reader an overview o f these important laws and agencies.
A.
Legislation
OccuDatlonal Safety and Health Act (OSHA) became e f f e c t i v e A p r i l 28, 1971. I t s purpose was " t o assure safe and h e a l t h f u l working c o n d i t i o n s f o r working men and women by a u t h o r i z i n g enforcement o f t h e standards developed under t h e act, by a s s i s t i n g and encouraging t h e s t a t e s i n t h e i r e f f o r t s t o assure safe and h e a l t h f u l working c o n d i t i o n s , by p r o v i d i n g f o r research information, education and t r a i n i n g i n t h e f i e l d o f occupational s a f e t y and health, and f o r o t h e r purposes.Il
Under OSHA,
up mandatory s a f e t y and h e a l t h standards. i n i t i a t e s and enforces t h e standards;
t h e f e d e r a l government s e t s
The DOL (Department o f Labor)
t h e Department o f
Health and Human Services implements educational and t r a i n i n g programs.
223 TABLE 8.14 Maximum contaminant l e v e l s f o r lnorganlcs from SDWA
Contaminant
Concentratlon (mg/k)
A r sen Ic Bar i um Cadm I um Chrom ium Lead
Contaminant
0.05 1 0.010 0.05 0.05
Concentration (mg/fi)
Mercury N i t r a t e (as N) Sel en 1 um Silver
0.002 10
0.01 0.05
TABLE 8.15 Maximum contaminant l e v e l s f o r organics from SDWA Compound
Concentration (mg/r)
0.0002
Endrln (1,2,3,4,10,10-hexachloro-6,7-epoxy
1,4,4a,5,6,7,8,8a-octahydro-1,4, endo-5.8-dimethuro
endo,
napthalene)
Lindane (1,2,3,4,5,6-hexachloro
cyclohexane,
0.004
gamma isomer) Methoxychlor (l,l,l-trichloroethane);
2,2-
0.1
-b i sCplnethoxyphenyl1 Toxaphene (Cl#loC18
-
technical chlorinated
0.005
camphene, 67-698 CI ) 2,4-D
(2,4-dichlorophenoxyacetic a c i d )
2,4,5-TP
0.1
S i l v e x (2,4,5-trichlorophenoxypropionic
0.01
acid)
Mine Safety and H e a l t h Act (MSHA) became e f f e c t i v e I n 1977.
It
provided f o r t h e establishment o f t h e Mine Safety and Health A d m i n i s t r a t i o n i n t h e DOL.
Both OSHA and MSHA r e l y on NIOSH
(National I n s t i t u t e for Occupational Safety and H e a l t h ) f o r h e a l t h and s a f e t y c r i t e r i a .
Safe D r i n k i n g Water Act (SDWA) became e f f e c t i v e i n 1975.
I t sets
requirements f o r contamlnant l e v e l s , monitoring, and a n a l y s i s o f d r i n k i n g water (Tables 8.14 and 8.15).
Clean A i r Act (CAA) o f 1963 w i t h numerous amendments s e t s amblent a i r q u a l i t y standards f o r a v a r i e t y o f p o l l u t a n t s .
The EPA.is
charged w i t h s e t t l n g and checking these standards (Table 8.16).
224 TABLE 8.16 Primary and secondary ambient a i r q u a l i t y standards from CAA
a Annual a r i t h m e t i c mean. Maximum 24 h c o n c e n t r a t i o n not t o be exceeded more than once per year. Maximum 3 h c o n c e n t r a t i o n not t o be exceeded more than once per year. Annual geometric mean. Maximum 8 h c o n c e n t r a t i o n not t o be exceeded more than once per year. Maximum 1 h c o n c e n t r a t i o n not t o be exceeded more than once per year. Maximum number o f days per calendar year < 1 . Maximum a r i t h e m e t i c mean averaged over a calendar q u a r t e r .
CanDound S u l f u r oxides (
so2 )
P a r t i c u l a t e mat1-er
Primarv standard
Secondarv standard
80 pg/m3 (0.03 ppmIa b
1300 u g h 3 (0.5 ppm)'
365 pg/m3 (0.14 ppm) 3d 75 u g h
3d
3b 150 u g h
260 pg/m3b Carbon monox i de
60 pg/m
10 ug/m3 ( 9 ppm)e
40 u g h 3 (35 ppm)
f
(CO) Ozone
0.12 ppm (235 pg/m3)g
0.12 ppm (235 pg/m3Ig
(03 1 Hydrocarbons
160 u g h 3 (0.24 ppm)' ( 6 t o 9 AM)
Nitrogen dioxide
160 u g h 3 (0.24 ppm)' ( 6 t o 9 AM)
10 pg/m3 (0.05 ppm)a
100 ug/m3 (0.05 ppmIa
( NO2)
3h 1.5 u g h
Lead
1.5 pg/m
3h
(Pbl B.
Orsanizations
ACGIH (American Conference o f Box 1937, C i n c i n n a t i ,
Governmental
I n d u s t r i a l H y g i e n i s t s ) , P. 0.
OH 45201 i s an o r g a n i z a t i o n composed o f o n l y
professional,
i n d u s t r i a l , governmental, o r academic h y g i e n i s t s .
& (American
Chemical Society) 1155 S i x t e e n t h S t r e e t NW, Washington,
DC
20036, p u b l i s h e s j o u r n a l s and sponsors a D i v i s i o n concerned w i t h Environmental Chemistry.
AlHA OH
(American I n d u s t r i a l Hygiene A s s o c i a t i o n ) , 475 Wolt Leages Pky, Akron,
44311 i s t h e a c c r e d i t a t i o n o r g a n i z a t i o n f o r i n d u s t r i a l h y g i e n i s t s .
&&
( A s s o c i a t i o n o f O f f i c i a l A n a l y t i c a l Chemists), P. 0. Box 540, Benjamin
F r a n k l i n S t a t i o n , Washington,
DC
20044, USA i s comprised o f government and
i n d u s t r y a n a l y t i c a l s c i e n t i s t s who t e s t and sponsor improved-methods f o r
225 a n a l y z i n g products r e l a t e d t o h e a l t h and a g r i c u l t u r e .
APCA ( A i r 15230,
P o l l u t i o n C o n t r o l A s s o c i a t i o n ) , P. 0. Box 2861, P i t t s b u r g h , PA
i s comprised o f i n d i v i d u a l s concerned w i t h seeking economic answers
t o t h e problem o f a i r p o l l u t i o n .
APHA (American Washington,
Public Health Association), 20036,
DE
1015 F i f t e e n t h S t r e e t NW,
i s a p r o f e s s i o n a l a s s o c i a t i o n t h a t seeks t o p r o t e c t
and promote personal and environmental h e a l t h .
ASTM (American Society P h i l a d e l p h i a , PA
f o r T e s t i n g and M a t e r i a l s ) ,
19103,
consensus standards.
1916 Race S t r e e t ,
i s a p r i v a t e s o c i e t y which develops v o l u n t a r y
I t provides a l e g a l , a d m i n i s t r a t i v e and p u b l i c a t i o n s
forum w i t h i n which producers, r e p r e s e n t i n g a general
users, u l t i m a t e consumers, and those
i n t e r e s t can meet t o w r i t e standards which best meet
t h e needs o f a l l concerned.
CMA (Chemical Washington,
Manufacturers A s s o c i a t i o n ) ,
Dc
20009,
1825 Connecticut Avenue NW,
i s comprised of manufacturers o f b a s i c chemicals and
i s i n v o l v e d w i t h p u b l i c education, broad-based research, and promotes s a f e t y and emergency i n f o r m a t i o n programs. ECE (Environmental -
Contaminant E v a l u a t i o n ) i s a program sponsored by t h e
United S t a t e s F i s h and W i l d l i f e Service. research studies, monitoring,
of p e s t i c i d e s , fish, w i l d l i f e ,
Program p a r t i c i p a n t s p e r f o r m
and f i e l d analyses t o a s c e r t a i n t h e e f f e c t s
i n d u s t r i a l chemicals, heavy metals, and o t h e r p o l l u t a n t s on and t h e i r h a b i t a t s .
EPA (Environmental
P r o t e c t i o n Agency),
Control Administration,
formerly the National A i r P o l l u t i o n
i s t h e agency charged w i t h s e t t i n g g u i d e l i n e s and
e s t a b l i s h i n g t e s t procedures f o r t h e a n a l y s i s o f p o l l u t i o n .
MSHA (Mine Safety OSHA,
and H e a l t h A d m i n i s t r a t i o n ) i s a government agency l i k e
i n v o l v e d w i t h t h e mining i n d u s t r y . ( N a t i o n a l I n s t i t u t e f o r Occupational Safety and H e a l t h ) i s a
governmental agency which e s t a b l i shes c r i t e r i a f o r h e a l t h standards based on i t s research program.
I t i s p a r t o f t h e Center f o r Disease C o n t r o l , a
u n i t of t h e U. S. P u b l i c Health Service,
Department o f H e a l t h and Social
Services.
OSHA (Occupational
Safety and H e a l t h A d m i n i s t r a t i o n ) i s t h e branch o f DOL
r e s p o n s i b l e f o r implementing t h e Occupational Safety and H e a l t h Act. 8.1.2.17 agent,
U.S .S.R.
The philosophy of S o v i e t l e g i s l a t i o n i s t h a t any atmosphere
even i f i t can n o t be proved as harmful,
the individual.
should n o t be p e r m i t t e d t o t h r e a t e n
Thus a i r p o l l u t i o n l i m i t s a r e s e t b e l o w t h e l e v e l a t w h i c h a
physiological e f f e c t i s f e l t .
226 TABLE 8.17 Sovlet a l r p o l l u t i o n I i m l t s Compound
Concentration
s02
co No2 HC I 8.1.2.18
A u s t r a l la.
Time i n t e r v a l
d m 3
PPm
(h)
0.05
0.02
24
0.5
0.2
1
0.9
3
2.4
0.085
0.045
0.2
0.15
0.5
24 0.3 24 0.3
Department of Environment and Conservatlon (Canberra):
T h i s Federal Department mediates legal problems.
A i r and water p o l l u t l o n c o n t r o l a r e
t h e responsiblity of the state.
8.1.2.19
I s r a e l Environmental P r o t e c t i o n Service
c m r d l n a t e s environmental services,
s t u d l e s t h e problems,
(Jerusalem):
T h i s agency
and makes r e c o m e n d a t l o n s
on t h e i r s o l u t i o n s .
8.1.2.20
Mexico Environmental P r o t e c t l o n Agency (Mexico,
i s p a r t of t h e M l n l s t r y of Health.
D. F.):
T h i s agency
The m l n l s t r y ' s power d e r i v e s from t h e 1972 Laws
t o Prevent and Control Envlronmental P o l l u t i o n , which designated t h i s agency t o study problems,
implement methods,
8.1.2.21
New Zeaiand Commisslon f o r t h e Environment ( W e l l i n g t o n ) :
admlnlsters water,
8.1.2.22 for
Issue r e g u l a t i o n s , and s t a r t c o n t r o l measures.
South A f r l c a :
Three agencies located I n P r e t o r i a ,
a d m i n i s t e r i n g envlronmental
Department o f Water A f f a i r s ,
8.2
T h i s agency
s o i l , and a i r p o l l u t i o n problems.
laws:
Department o f
Planning
are responsible
i n the
Environment,
and t h e Department o f Health.
LITERATURE There are two types o f l i t e r a t u r e w i t h which t h e environmental chromatographer
must be concerned
- scientific
and governmental.
T h i s s e c t i o n w i l l g i v e an overview
o f t h e most l i k e l y places one may f i n d i n f o r m a t i o n u s e f u l t o those concerned w i t h a i r and water analyses by gas and I l q u i d chromatography.
8.2.1
S c i e n t i f i c j o u r n a l s and p e r i o d i c a l s
Advances i n chromatography, (Eds.),
J. C. Giddings, E. Grushka, J. Cazes, and P. R. Brown
Marcel Dekker, New York, NY
10016, USA ( f r o m 1965)
American i n d u s t r i a l Hygiene A s s o c l a t i o n Journal, AIHA,
Akron, Ohio
44313, USA
American Water Works A s s o c i a t i o n Journal, American Water Works Association, 6666 W . Quincy Avenue, Denver, CO
80235, USA
227 A n a l y t i c a l Chemistry, American Chemical Soclety, Washington, Archives o f Environmental Contamination and Toxicology, Avenue, New York, NY
20036, USA
DC
Springer,
175 F i f t h
10010, USA
Archives o f Environmental Health, Heldref Pub1 I c a t l o n s , 4000 Albemarle S t r e e t ,
NW, Washington,
DC
20016, USA and Oxford 0x3, OBW,
Association of O f f i c i a l A n a l y t i c a l Chemists Journal, Benjamin Frank1 i n Station, Washington,
England,
AOAC,
Great B r i t a i n
P. 0. Box 540,
20044, USA
DC
Atmospheric Environment, Pergamon Press, Headington H i l l H a l l , Great B r i t a i n Chromatographla,
Vleweg, P. 0. Box 5829, 0-6200,
Wlesbaden,
G.F.R.
C r i t i c a l Reviews I n Environmental Control, CRC Press, 2255 Palm Beach Lakes Blvd.,
33409, USA
West Palm Beach, FL
Ecological Modeling,
E l s e v i e r S c i e n t i f i c P u b l i s h i n g Co.,
P. 0. Box 330,
Amsterdam, The Netherlands Ecotoxlcology and Environmental Safety, Academic Press, York, NY
1 1 1 F i f t h Avenue, N e w
10003, USA
Env ronmental H e a l t h Prespectives,
National I n s t i t u t e o f Environmental H e a l t h
Science, Department o f Health and Human Services, U. S. Government P r i n t i n g O f f i c e , Washington,
DC
20402, USA
Env ronmental P o l l u t i o n , Applied Science P u b l i s h e r s , R i p p l e Road, Barking, Essex, Great Br It a I n Environmental Research, Academic Press,
1 1 1 F i f t h Avenue, N e w York, NY
10003,
USA Environmental Science and Technology,
American Chemical Soclely, Washington,
DC
20036 USA European Journal o f Toxicology,
49 Rue S t .
I n d u s t r i a l Water Engineerings Wakeman CT
Andres-des Arts, P a r i s
- Walworth,
Inc.,
75006,
France
P. 0. Box 1144, Darien,
06820, USA
I n t e r n a t i o n a l Journal o f Environmental Studies, New York, NY
Gordon 6 Breach,
Journal o f t h e A i r P o l l u t i o n C o n t r o l Association, P i t t s b u r g h , PA
1 Park Avenue,
10016, USA APCA, 4400 F i f t h Avenue,
15213, USA
Journal o f Chromatography,
E l s e v i e r , S c i e n t i f i c P u b l i s h i n g Co.,
P. 0. Box 330,
Amsterdam, The Netherlands Journal o f Chromatography Science, Preston P u b l i c a t l o n s , . N l l e s , Journal o f Environmental Science and Health, Marcel Dekker,
IL
60648,
USA
NY
10016,
New York,
USA Journal o f High R e s o l u t i o n Chromatography and Chromatography Communications, M l t h i g , Heidelberg, G.F.R. Journal o f L i q u i d Chromatography,
Marcel Dekker, New York,
NY
P e s t i c i d e s M o n i t o r i n g Journal, EPA O f f i c e o f Toxic Substances, P r i n t i n g O f f i c e , Washington,
DC
20402,
USA
10016, USA
U. S. Government
228 P e s t i c l d e Sclence Soclety o f Chemical I n d u s t r y Journal, P e s t i c l d e Sclence Society,
London, Great B r i t a i n
P u b l i c Health Report, HEW Health Resources A d m l n i s t r a t i o n , U. S. Government P r i n t i n g O f f i c e , Washington,
DC
20402, USA
Separation and P u r i f i c a t i o n Methods, Marcel Dekker,
Inc.,
New York,
NY
10249,
USA .Separation
Science and Technology, Marcel Dekker, New York,
T o x i c o l o g i c a l and Environmental chemistry Review, Gordon Publishers, 42 W i l l i a m I V St.,
8.2.2
A
NY
10249. USA
Breach Science
London WC2, Great B r i t a i n
S c i e n t i f i c Books
A i r P o l l u t i o n Control, W.
Strauss (Ed.),
The Analysis o f A i r P o l l u t a n t s , W.
John Wiley,
New York,
1971.
Lelthe, Ann Arbor Science Publishers, Ann
Arbor, M I , 1971. A n a l y t i c a l Techniques i n Environmental Chemistry, Press,
J. Albaiges (Ed.),
Pergamon
Elmsford, NY, 1980.
A n a l y t i c a l Techniques i n Occupational Health Chemistry, ACS Symposium Series No. 120.
D. D. D o l l b e r g and A. W.
Washington,
DC,
V e r s t u f y (Eds.),
1980.
Applied Headspace Gas Chromatography, B. Kolb, Atmospheric P o l l u t i o n 1980, M. M. Benarie (Ed.), Co.,
American Chemical Society,
Amsterdam, New York,
(Ed.),
Heyden
A Son, London, 1980.
Elsevier S c i e n t i f l c Publishing
1980.
Chromatographic Analysis o f t h e Environment, R. L. Grob (Ed.), York,
1975;
Marcel Dekker,
New
Russian T r a n s l a t i o n , 1979.
Environmental Glossary, W. New York, NY
F r l c k (Ed.),
Government i n s t i t u t e s ,
inc.,
Box 5918,
10036, 1980.
Environment USA, R. R. Bowker Company, 1180 Avenue o f t h e Americas,
New York,
NY
10036, 1980. Instrumental A n a l y s i s f o r Water P o l l u t i o n Control, by K. H. Mancy, Ann Arbor Science Publishers, Ann Arbor, M I , 1971. Methods o f A i r Sampling and Analysis, Washington,
DC
American P u b l i c Health Association,
1972.
Paper and Thin-Layer Chromatographic Analysis of Environmental Toxicants, by M.
E. Getz. Heyden
A Son, London, 1980.
P r i o r i t y Toxic P o l l u t a n t s , M. S i t t i n g (Ed.), Ave.,
Park Ridge, NY
Water P o l l u t i o n : (Ed.),
07656,
Noyes Data Corp.,
1980.
A Guide t o I n f o r m a t i o n Sources, A.
Gale Research Co.,
M i l l Rd. a t Grand
W.
Book Tower, D e t r o i t , M I
Knight and M. A. 48226,
1980.
Simmond
229 8.2.3
Requlatory l n f o r m a t l o n sources
(e.g.,
t h e U.
Regulatory
S.
i n f o r m a t i o n sources can be obtained
Federal R e g i s t e r ) .
The o r g a n i z a t i o n s
from t h e
i n i t i a t i n g body
l i s t e d below g i v e summary
i n f o r m a t i o n on environmental r e g u l a t i o n s . Environmental Research and Technology,
Inc.,
Concord, MA
01742, USA,
Environmental M o n i t o r i n g Series, O f f i c e o f Research and Development, Envlronmental Research Center, USEPA, Research T r i a n g l e Park, NC
(bulietlns) National 27711,
USA
NIH/EPA CIS ( N a t i o n a l i n s t i t u t e o f Health/Envlronmental P r o t e c t i o n Agency), Chemical I n f o r m a t i o n System,
I n f o r m a t i o n Sciences Corporation, Washington,
M: USA Bureau o f N a t i o n a l A f f a i r s ,
1231 25th Street,
NW, Washington,
M: 20039, USA
Chemical Regulation Reporter index t o Government Regulation Chemical Substances Control A i r P o l l u t i o n Control Environment Reporter i n t e r n a t i o n a l Environment Reporter Occupational Safety and Health Reporter E a r t h Law Journal, Academic Book Services Holland, Gronlngen,
Journal Dept.,
P. 0. Box 66,
The Netherlands
Environmental P o l i c y and Law, E l s e v i e r Sequoia S. A.,
P. 0. Box 851,
1001
Lausanne I , Switzerland Environment Regulation Handbook, Environment Information Center, Madison Avenue, New York,
8.2.4
NY
Inc.,
292
10017, USA
Other Sources
Gas and L i q u i d Chromatography Abstracts, R. P. Taylor,
(Ed.),
Applied Science
Publishers, Barking, Great B r i t a i n Gas Chromatography L i t e r a t u r e , Publications, Niles,
IL
L i q u i d Chromatography L i t e r a t u r e , Preston 60648, USA
INFO t e r r a , United Nations Environment Programme
-
a directory of potential
sources o f environmental i n f o r m a t i o n which can be accessed i n over one hundred N a t i o n a l Focal P o i n t s (NFPs) P o l l u t i o n Abstracts, 40202, USA
Data Courier,
Inc.,
620 South F i f t h Street,
L o u i s v i l l e , KY
This Page Intentionally Left Blank
231
APPENDIX I THE D E T E R M I N A T I O N OF ADSORPTION-DESORPTION
EFFICIENCY OF
C H R O M A T O G R A P H I C TRAPS Chromatographic adsorbents After
for
sample
separated
air
The
in
the
pollutants by
obtain
is
below
are
that
to
desorbed
gas
of
and
help
used and
or
the
each
the
then
liquid
collection
component
reproducible
in
as
4-6).
chapters
both
efficiency
accurate
given
are
(see
either
important
desorption
to
order
outline
the
is
It
and
materials
pollutants
quantitated
chromatography.
known
packing water
collection,
and
efficiency
and
be
results.
determination
of
these efficiencies. The by
desorption
injecting
a
A minimum o f
sampling tube. per
concentration
calculated onto
the
tube.
tubes
to
should
compound
is
desorption) the
set
be
and
the
as
calculated
the
from
is
tube
aside
desorbed
and
the
or
packed
(either
by
The
chromatographic
data
t o
stand
except
that
of
( t h e blank). or
treated similarly.
sample.
be
set
solvent
sample
can
second
A
manner
taken
a solution
as
allowed
tubes
stock
unknown
determined the
quantity
neat
similar of
tubes a
The
either sealed
a
any
and
is
compound
compound o n t o
equilibrium.
in
to
blank
a
studied.
complete
d e s o r b e d compound,
of the
injected
added
then
same f a s h i o n
is
The
assure be
sample should
and
of
t h r e e s a m p l i n g t u b e s must b e
range
directly
overnight
efficiency
known q u a n t i t y
are
thermal
The b l a n k ,
analyzed
desorption (peak
no The
in
the
efficiency
areas)
by
the
following equation: Desorption = a r e a of desorbed sample-area efficiency The
adsorption
a l i q u o t s of
efficiency
t h e sample
peak a r e a s obtained the
can
introduced
be
tube effluent give
onto
the adsorption tested.
A
tube is f r e q u e n t l y used
the tested section.
calculated
by
analyzing
the sampling tube.
from t h e a n a l y s i s o f
sampling tubes should be o r a back-up
o f b l a n k x 100%
a r e a of s t a n d a r d
The
t h e a l i q u o t added
efficiency.
second
Each
section
to trap the
of
and
lot
of
the
tube
effluent
from
232
Adsorption
= std.
area
-
(effluent area
efficiency
+ b l a n k a r e a ) x 100
standard area
(constant load)
Calculations: A.
Q u a n t i t y adsorbed i n sample t u b e (Q)
cavs
Q
I
1000
Q
I
quantity adsorbed ( p g )
I
concentration i n a i r (ppm,
'a
p
pl/k)
v o l u m e s a m p l e d ( l ) ( c o r r e c t e d t o 25OC a n d 7 6 0
vS
t o r r ( 0 . 1 MPa)) P
B.
I
density (g/ml)
Concentration f o r c a l i b r a t i o n curved(CF)
CF
FXVsM 24450pV0 f r a c t i o n a l c o n c e n t r a t i o n ( ~ s1o l u t e / m l d e s o r b i n g agent)
F
f r a c t i o n a l q u a n t i t i e s of a i r c o n c e n t r a t i o n
X
s u s p e c t e d a i r c o n c e n t r a t i o n (ppm, p l / k )
(2,1,0.5,..)
vS
volume s a m p l e s ( k )
M
molecular weight (g/mole)
24450 =
m o l a r v o l u m e ( m l / m o l e ) a t 25OC, 0 . 1 MPa
P
d e n s i t y of s o l v e n t (g/ml)
"D
volume of d e s o r b i n g a g e n t ( m l ) ( e . g . ,
P l o t C F v e r s u s peak h e i g h t o r peak a r e a .
CS2)
233
APPENDIX I 1
COMPARISON OF MODES OF SAMPLE INTRODUCTION I N CAPILLARY GAS CHROMATOGRAPHY S i n c e some m e t h o d s required what
high
resolution
precision
and
column s t u d i e s .
accuracy
The
of
pollutants'
a
columns,
most
can
one
common
analyses
frequent
from
obtain
problem
have
question
in
is
capillary
from
changing
p a c k e d t o c a p i l l a r y c o l u m n s comes from s a m p l e d i s c r i m i n a t i o n upon
There are f o u r methods
injection.
of
introducing
the
sample o n t o a c a p i l l a r y column: 1 . d i r e c t method, 2 . s p l i t method, 3 . s p l i t l e s s method, 4 . ~ 0 0 1 on-column
.Direct
injection.
Method The d i r e c t method u s e s a
column o r a s u p p o r t - c o a t e d
open
wide-bore
tubular
open t u b u l a r
(SCOT) c o l u m n .
The
d i r e c t m e t h o d of i n j e c t i o n a l l o w s o n e t o p u t a l a r g e r s a m p l e onto the uses
a
column;
it has
however,
lower
resolution
the
column
disadvantage
than
the
that
it
traditional
narrow-bore c a p i l l a r y column. * S p l i t Method The s p l i t method o f mode
of
introduction
onto
the
p o r t i o n ( 1 : 5 0 , 1:100, 1 : 2 0 0 , the
column.
This
separations;
method
however,
discrimination
by
i n j e c t i o n is t h e t r a d i t i o n a l capillary
1:300) o f
allows
column.
A
small
t h e sample goes o n t o for
high
resolution
l o s s of q u a n t i t a t i o n c a n o c c u r d u e t o p o i n t i n t h e s p l i t t i n g of t h e
boiling
sample. splitl less I n j e c t i o n
This effect." of
the
condensed
method
takes
advantage
the
of
"solvent
I n j e c t i o n p o r t t e m p e r a t u r e must b e lower t h a n t h a t boiling in
point
the
first
of few
the
solvent.
centimeters
The of
the
solvent
is
capillary
are column wherein the higher boiling impurities concentrated. The t e m p e r a t u r e o f t h e o v e n is r a i s e d a n d t h e S p l i t t e r valve This technique
is is
t u r n e d on ( u s u a l l y a f t e r 0 . 5 m i n u t e s ) . n o t q u a n t i t a t i v e f o r compounds w i t h a
b o i l i n g p o i n t lower than t h a t of t h e s o l v e n t .
234 0
Cool-on-column
injection
I n t h e cool-on-column introduced directly
without
onto
the
splitting wide-bore
b o i l i n g p o i n t of t h e s o l v e n t .
i n j e c t i o n method, in
a
column
liquid
at a
(not
t h e sample i s vapor)
temperature
state
near
the
S i n c e t h e i n j e c t i o n i s made a t a
lower t e m p e r a t u r e , t h e p o s s i b i l i t y of decompoaition and t h e r m a l rearrangements a c c u r a t e method chromatography.
is of
minimized.
This
sample i n t r o d u c t i o n
technique in
high
is
the
most
r e s o l u t i o n gas
235
SUBJECT INDEX
a b s o r p t i o n s p e c t r o m e t r y (U.V.) 197 203, 224, 225 acid rains 3 ACS 224 adsorbents 59-71, 113-120 a m b e r l i t e 67-68, 113-1 15, 117-1 19 a l u m i n a 60, 61, 63 c a r b o n 60, 61, 63-54, 70 m o l e c u l a r s i e v e 63, 70 polymers 65-69, 70-71 s i l i c a 60, 61, 66 a d s o r p t i o n 59-68 gases 60-67 sampling 59-GC a d s o r p t i o n chromatography 189-1 90 a e r o s o l s 10, 37-40 s t r a t o s p h e r i c 37 t r o p o s p h e r i c 37 AIHA 224 a i r 6, 29, 40-42, 49-53, 139 c o m p o s i t i o n 6, 29 s a m p l i n g 40-42, 43-54 a s p i r a t o r b o t t l e 53 d i s p l a c e m e n t b u l b 52 d i s p l a c e m e n t t u b e 52 evacuated b u l b 51-52 f l e x i b l e bag 51-52 f l e x i b l e c o n t a i n e r s 49-52 r i g i d c o n t a i n e r s 50 z e r o 139 A i r P o l l u t i o n C o n t r o l A s s o c i a t i o n 225 a l u n i na 60, 61, 6 3 a m b e r l i t e 67-53, 71, 113-115, 117-119 American Conference o f Governmental I n d u s t r i a l H y g i e n i s t s 233, 224 American I n d u s t r i a l Hygiene A s s o c i a t i o n 224 American P u b l i c H e a l t h A s s o c i a t i o n 225 American S o c i e t y f o r T e s t i n g and M a t e r i a1 s 225 a n a l y t i c a l d a t a 36-37 c o n f i d e n c e i n 36-37 r e l i a b i l i t y o f 36-37 a n a l y t i c a l methods 16G-171, 192-196 a c e t o n e 167 a c e t y l e n e 163, 169 a c i d s 169, 195 a c r o l e i n 170 ACGIH
a c r y l i c a c i d monomer 195 a c r y l o n i t r i l e 170 a i r 166, 167, 168, 194, 195 aldehydes 168, 194 amines 195 a n i o n s 195 arenes 168 a r o c h l o r 168 ash, f l y 166, 167 a u t o e x h a u s t 168, 194 azobenzenes 195 Bayer-73 169 benzene 167 b e r y l l i u m 167 bromoethane 167, 169 b u t a n o l 167 b u t y r a l d e h y d e 167 c a l c i u m c a r b i d e r e a c t i o n 16C c a r b a r y l 196 c a r b o n d i o x i d e 166, 167 c a r b o n t e t r a c h l o r i d e 169 c a t i o n s 195 chlorobenzenes 167, 163, 169 c h l o r i n e 166 c h l o r o d i f l uoromethane 167 c h l o r o e t h a n e 167 c h l o r o f o r m 167, 168, 169 c h l o r o p h e n o l s 166, 169 c h l o r o d i b e n z o - p - d i o x i n 166 c i g a r e t t e smoke 166, 167 dibromo-3-chloropropane (1,2) 166 d i bromoethane (1,2) 166 d i c h l o r o e t h a n e 167 d i n i t r o t o l uene 171 d i o x i n , c h l o r i n a t e d 166, 167 e t h a n o l 167 e t h y l c h l o r i d e 166 e t h y l e n e 166 f l u o r i d o n e 195 formaldehyde 194 Freon-22 167 h y d r o c h l o r i c a c i d 166 hydrogen c y a n i d e 166, 167, 168 i s o c y a n a t e s 196 isophorone 170 kepone 171 k e t o n e s 168 methane 168
236 m e t h y l ene b i s ( 2 - c h l o r o a n i 1 ine (4,4) 195 methylene b i s ( c y c l o h e x y l i s o c y a n a t e ( 4 , 4 ' ) 197 methyl p y r r o l i d o n e 169 M i r e x 169 naphthalenes 166 n a p h t h o l 197 n i t r i t e 171 n i t r o x y l enes 169 n i t r o s a m i n e s 166, 170, 171 n i t r o g e n - c o n t a i n i n g compounds 166, 167, 168, 169, 170, 171, 195,196 n i t r i c o x i d e 166 n i trobenzene 168 n i t r o p h e n o l 169 P a r t i c u l a t e s 166, 167 p e n t a c h l o r o p h e n o l 167 p e r m e t h r i n 171 p e s t i c i d e s 166, 168, 169, 170, 196, 197 phenols 169, 170, 194, 195 p h t h a l a t e e s t e r s 170 p o l y c h l o r i n a t e d b i p h e n y l s 169, 170, 171 p o l y c y c 1 ic a roma t ic hydrocarbons 166, 167, 192, 193 sediment 169 s l u d g e 166 s t y r e n e 169 s u l f u r d i o x i d e 167 s u r f a c t a n t s 194 t e t r a c h l o r o e t h a n e p r o d u c t i o n 166 t e t r a c h l o r o p h e n o l 167 t e t r a e t h y l 1ead compounds 168 t r i m e t h y l ami ne 167 urea-formaldehyde v o l a t i l e s 168 v i n y l c h l o r i d e 166, 163 waste qas 166, 167 w a t e r -168. 169, 170, 194, 195, 196 AOAC 224 APCA 225 APHA 225 a s p i r a t o r b o t t l e gas sampler 53 Association o f O f f i c i a l Analytical Chemists 224 ASTM 225 atmospheric v o l a t i l e c o n s t i t u e n t s 27 b l a n k 139, 231-232 BOD 27 b o i 1 ing p o i n t 204 CAA 223-224 c a l i b r a t i o n 14-15, 16-22, 137-147 carbon 60, 61, 63-64, 70 see a l s o a n a l y t i c a l methods, sanp e t y p e s ) c a t i o n i c c o n c e n t r a t i o n r a t 0s i n fresh water 6 i n sea w a t e r 6 CEC 213-215
Cherni c a l i l a n u f a c t u r e r s A s s o c i a t i o n 225 c h e m i c a l - r e a c t i o n , s a m p l i n g 71-72 CHA 225 Clean A i r 4 c t 223-224 Clean Environment A c t o f M a n i t o b a 21 7-21 8 COD 27 c o l l e c t i o n e f f i c i e n c y 3, 231-232 c o m b u s t i b l e 204 c o m p o s i t e s a n p l i n g 55 compressed gases 206-206 c o n d u c t i v i t y d e t e c t o r 156, 199 c o n f i d e n c e l i m i t s 36-37 c o n t i n u o u s s a m p l i n g 43, 56 c o n v e r s i o n u n i t s 142, 143 c o o l i n g b a t h s 73 c o r r o s i v e 204 C o u n c i l o f European Comnuni t i e s 2; 3 c r y o g e n i c s a m p l i n g 72-74 c y l inders , gas 206-208 d e r i v a t i z a t i o n 120-1 29, 199-200 a c i d s 124-200 a l c o h o l s 124, 200 a1 dehydes 200 amines 127, 200 amino a c i d s 200 c h l o r i n a t e d phenols 123 c y a n i d e 123 h e r b i c i d e s 128 i s o c y a n a t e monomers 128, 200 k e t o n e s 200 m e t a l s 123, 200 p e s t i c i d e s 128 p h e n o l s 128, 200 p h t h a l a t e e s t e r s 123 s u l f u r - c o n t a i n i n g a c i d s 123, 123 d e t e c t o r s 154-1 57, 197-200 gas c h r o m a t o g r a p h i c 154-157 1 i q u i d c h r o m a t o g r a p h i c 196-200 c o n d u c t i v i t y 199 e l e c t r o c h e m i c a l 193 f l uorescence 198 i n f r a r e d 198 r e f r a c t i v e i n d e x 196 t h e r m a l energy 198 u l t r a v i o l e t a b s o r p t i o n 197 d i f f u s i o n t u b e s 144-147 d i l u t i o n f l a s k 146-147 d i p p i n g 77-78 d i s p l a c e m e n t sample b u l b 52-53 d i s p l a c e m e n t sample t u b e 52-53 d i s s o l v e d gases i n w a t e r 26-27 d i s s o l v e d l i q u i d s i n w a t e r 27 dissolved organic materials i n w a t e r 27 d i s s o l v e d s o l i d s i n w a t e r 27 d r a f t gauge s a m p l i n g 48 d r y a i r c o m p o s i t i o n 6, 29 dynamic c a l i b r a t i o n 144-145
237 EAUAG 222 E C E 225 electrochemical d e t e c t o r 198 emission sampling 28 emulsions 10 environmental contaminant evaluat;ion environmental problems 1 background 1 history 1 Environmental P r o t e c t i o n Agency 225 EPA 225 e r r o r 27-20, 30-32 evacuated a i r bulb 51 exponential d i l u t i o n f l a s k 146 e x t e r n a l s t a n d a r d i z a t i o n 163 e x t r a c t i o n 88-1 1 2 gas-1 i q u i d 95-112 l i q u i d - l i q u i d 91-95 l i q u i d - s o l i d 88 e x t r a c t i o n e f f i c i e n c y 93, 231-232
Federal Clean A i r Act 215 flammable 205 f l a s h p o i n t 203 f l e x i b l e bag sampler 51-52 f l e x i b l e gas c o n t a i n e r s 49 flow measurements, gases 41-43 flow-proportional sampling 11,43-44 f l uorescence d e t e c t o r 198 foams 10 f r e e z e - o u t sampling 72-74
i n t e r n a l normalization 163 i n t e r n a l s t a n d a r d i z a t i o n 163 k s o k i n e t i c sampling 33-40 225
J u s t i f i c a t i o n f o r sampling Kovats index
1 1 , 30
159
l a p s e r a t e 28 leaching 83 legislation (see regulations) l i q u i d s , sampling 42-43, 54-56 l i q u i d s u b s t r a t e s , s o r p t i o n on 64
NAK 221 NcReynol ds index 152-1 53 measurement r e l a t i o n s h i p s 138, 142-1 44, 148 methods ( s e e a n a l y t i c a l methods) NIK 221 Nine S a f e t y and Health Act 223 Mine S a f e t y and Health Administration 225 minimum sample s i z e 30-34 m i s t s 10 molecular s i e v e s 65, 70 tlotor Vehicle S a f e t y Act o f 1970 21 5-216 HSHA 223, 225
National I n s t i t u t e f o r Occupational S a f e t y and Health 225 gases 40-41, 53, 60-67, 141-147,,206-.208 NIOSH 225 compressed 206-208 n o n i s o k i n e t i c sampling 38-40 sampling 40-41, 53, 60-67 n o r n a l i z a t i o n , i n t e r n a l 163 s t a n d a r d s 141 -147 g e l s 10 Occupational S a f e t y and Health Admingloves 209 i s t r a t i o n 225 grab sampling 43, 49-53 OSHA 222, 225 a i r 49 l i q u i d s 54 p a r t i c u l a t e s 27, 46-49 greenhouse e f f e c t 3 sampl ing 46-49 guard columns 191 i n water 27 permeation, s o l vent 209 hand p r o t e c t i o n 209-210 permeation tube c a l i b r a t i o n 145-146 hazardous m a t e r i a l s 203 peroxyacyl ni t r a t e 3 headspace sampling 73-79, 88, 95-11 2 p o l l u t i o n , h i s t o r y of 1-4 Health and Human S e r v i c e s 222 polymers as a d s o r b e n t s 65-66, 70-71 high volume sampler method 47-49 precol umns 191 -1 92 d r a f t gauge mode 48 problems, sampling 1 0 , 12-13, 15 recorder mode 48 p r o t e c t i v e d e v i c e s 208-210 rotameter mode 47 pure a i r 29 housekeeping 21 0 purge-and-trap 96, 110-111 humidity, a i r q u a l i t y e f f e c t s 11 q u a n t i t a t i o n 163-165 index 152-153, 159 r a i n 3, 11 Kovats 159 acid 3 HcReynolds 152-153 sampling 11 Rohrschneider 152 r e c o r d e r sampl ing 48-49 i n f r a r e d d e t e c t o r 198 recovery 19, 231 -232 interferences 15 r e f r a c t i v e index d e t e c t o r 196
2 38
r e f r i g e r a n t s 73 r e g u l a t i o n s 13-14, 213-229 A u s t r a l i a 226 A u s t r i a 217 Canada 21 5-220 C o u n c i l o f European Communities 213-215 Denmark 219 France 220 Germany 219, 221 I c e l a n d 220 I r e l a n d 220 I s r a e l 226 I t a l y 221 -222 Japan 222 Luxembourg 221 Mexico 226 Nether1 ands 221 New Zealand 226 Norway 221 South A f r i c a 226 Sweden 221 S w i t z e r l a n d 221-222 Union o f S o v i e t S o c i a l i s t s R e p u b l i c 225-226 U n i t e d S t a t e s o f America 222-225 U.S.A. 222-225 U.S.S.R. 225-226 r e j e c t i o n o f d a t a 35-36 r e l a t i v e s t a n d a r d e r r o r 32 r e l i a b i l i t y 36 residence time 3 r e t e n t i o n d a t a 158 r i g i d a i r c o n t a i n e r s 50 Rohrschneider i n d e x 152 r o t a m e t e r sampl ing 47-48 Safe D r i n k i n g iJater A c t 223 s a f e t y 202-212 Safety Equipment I n s t i t u t e 208-209 s a l t i n s o u t 96, 111 sample- 31, 87-112, 120, 147-151, 187- 188 clean-up 11 2-1 20 e x t r a c t i o n 88-112 i n t r o d u c t i o n 147-151, 187-188, 233- 234 gas chromatography 147-151 c a p i l l a r y 233-234 s y r i n g e 149, 233-234 v a l v e 149-1 51 l i q u i d chromatography 157-188 s y r i n g e 187 v a l v e 188 r e c o v e r y 11 9-231 -232 s i z e , v e r s u s c o s t 31 -34 s t o r a g e 87-83 t r e a t m e n t 87-134 sampl ing composite 43, 55-56 c o n f i d e n c e 36
c o n t i n u o u s 43, 56 c r i t e r i a 9-10, 25 c r y o g e n i c 72-74 c o s t 33 d e f i n i t i o n 25 d i p p i n g 77-78 d r a f t gauge 48 e m i s s i o n sampl ing 28 e r r o r 25, 30-32 f l o w measurements 41-42 flow-proportional 11, 43-44 f r e e z e - o u t 72-74 general discussion 7 g r a b 43, 49-58 headspace 78-79, 88, 95-112 h u m i d i t y e f f e c t 11 interferences 15 i s o k i n e t i c 33-40 j u s t i f i c a t i o n f o r 11, 30 l i q u i d s 42-43, 54-56 minimum sample s i z e 30-34 n o n i s o k i n e t i c 38-40 p a r t i c u l a t e s 47 p o s t - s a m p l i n g problems 12 problems 10, 12-13, 1 5 program, c o s t o f 33 r e c o r d e r 48-49 r e c o v e r y 119, 231-232 r e g u l a t i o n s 13-14 ( s e e a l s o regulations) r e j e c t i o n o f d a t a 35-36 r e 1 i a b i l it y 36 r o t a m e t e r mode 47-43 s i t e , f o r continuous monitoring 28 s o l i d s 44-45 s i z e 30-34 s o u r c e sampl i n g 28 s t a c k sampl i n g 11, 56-59 s t a t i s t i c a l f o u n d a t i o n 29-35 t e c h n i q u e s 25-86 t h e o r y 29-35 t i m e - p r o p o r t i o n a l 10, 43-44 t u b e 77-78 t y p e s , chemical 63-68, 70-71, 115-115 a c e t a l d e h y d e 67 acetone 66, 70 a c i d s 67, 115 a c r o l e i n 65, 67 a l c o h o l s 63, 65, 66, 67, 70, 113, 114, 116 aldehydes 63, 65, 67, 71, 113, 114 a n i n e s 65, 67 a n h y d r i d e 67 a n i l i n e 66, 116 a r o m a t i c s 63, 64, 66, 67, 70 114, 116 benzene 63, 64, 66, 115, 116 c h i c k e n manure v o l a t i l e s 64 c h l o r o f o r m 63, 65, 66, 70, 115
i 39 chlor?;rifos 64, 65 c h o l e s t e r o l 115 c i g a r e t t e smoke v o l a t i l e s 67 c r e s o l s 67, 116 d e t e r g e n t s 115 d i c h l o r v o s 68 d i m e t h v l t e r e ~ h t h a l a t e 65 d i p h e n y l amine 66 e s t e r s 67, 114 e t h e r s 114 e t h y l e n e 66 e t h y l phenol ( 0 - ) 1 5 f o o d v o l a t i l e s 67 g l u t a r a l d e h y d e 63 halocarbons 63, 64 65, 66, 67, 68, 70, 71, 115, 16 human a x i l l a v o l a t i es 67 humic a c i d s 115 hydrocarbons 63, 64, 65, 66, 67, 63, 70, 114, 115, 116 hydrogen s u l f i d e 65, 66 i n d o l e s 65 i n s e c t chemosensory compounds 67 i s o p r e n e 67 ketones 65, 66, 67, 113, 114 M a l a t h i o n 68 m a r i n e b i o t a v o l a t i l e s 71 methane 66 methanol 63, 65, 66, 70 methyl enebi s ( 2 - c h l o r o a n i 1 ine) (4,4' 166 methylene b l u e 115 m e t h y l i s o b u t y l k e t o n e 11 5 methyl s u l f i d e 68 n i t r i c o x i d e 66 n i t r o u s o x i d e 70 n i t r o g e n - c o n t a i n i n g s p e c i e s 63, 65, 66, 67, 60, 70 n i t r o t o l u e n e 66 o z o n i z a t i o n p r o d u c t s 71 pentane 63, 65, 66, 70 p e s t i c i d e s 64, 65, 66, 67, 70, 93, 94, 114, 115, 116 phenols 65, 67, 93, 114, 115, 116 p y r o l y s i s p r o d u c t s 66 r e c o v e r y 11 9, 231 -232 rhodamine b l u e 115 r i c e v o l a t i l e s 67 Ronnel 64 s o l v e n t vapors 66 ( s e e a l s o the specific solvent) soybean v o l a t i l e s 67 s u l f u r d i o x i d e 65, 66, 67 TCDD 71 tetrachlorobenzo-p-dioxin 71 t e t r a c h l o r o e t h a n e 63, 66 t o l u e n e 64, 66 t o l u i d i n e 66 t r i o l e i n v o l a t i l e s 65 v i n y l c h l o r i d e 63, 64, 67, 70, 105 v i t a m i n s 115
v o l c a n i c gases 66 types, physical a e r o s o l s 10, 37-40 a i r 40-42 emu1 s ions 1 0 foams 10 gases 40-42 g e l s 10 l i q u i d s 11, 42-43, 54-56 m i s t s 10 p a r t i c u l a t e s 46-49 r a i n 11 s o i l s 45-46 s o l i d s 44-45 s o l s 10 vapors 40-41 w a t e r 11, 68-79 v e r s u s sample s i z e 30 volume measurements 42 s e p a r a t i o n method s e l e c t i o n 5, 188- 1 91 s i l i c a 60. 61. 66 s i z e , sampling. 30, 33 SDWA 223 S h i p p i n g A c t 215 s i t e , f o r continuous m o n i t o r i n g 28 s o i l s ( s e e s o l i d sampl i n g ) sol i d sampl ing 42-45 s o i l s 42-45 a u g e r - b o r i n g 45 s p l i t - b a r r e l 45 t h i n-wal 1ed t u b i n g 42 suspended i n gases 44 s o i l s 45-46 sols 10 sol v e n t p e r i i i e a t i o n 209 sampl ing ( s e e sampl ing) s t a c k s a m p l i n g 11, 57 s t a n d a r d a d d i t i o n 164 s t a n d a r d d e v i a t i o n 36 s t a n d a r d i za t i on 163 e x t e r n a l 163 i n t e r n a l 163 s t a n d a r d s 14-15, 16-22, 137-147 a v a i l a b i l i t y 16-22 p r e p a r a t i o n 103-1 10, 137-147, 231-232 s o u r c e s 16-22 s t a t i s t i c a l foundation o f sampling 29-35 s t o r a g e 204-208 stratosphere 1 s u p p l ies 16-22 TAL 221 Tenax-GC 66-67, 70-71, 115-116 t h e r m a l energy d e t e c t o r 198 t h r e s h o l d l i m i t v a l u e 204 t i n e - p r o p o r t i o n a l s a m p l i n g 10, 43-44 TLV 204
240 tolerance level 3 t o x i c 204 trapping 59- 77 adsorbents 60-71 cryogenic 72-74 f r e e z e - o u t 72-74 i n l i q u i d s 74 troposphere 1 tube sampling 77-78 u l t r a v i o l e t absorption d e t e c t o r 197 UNEP 213 United Nations Environment Program 21 3 vapor 40-41 vapor e q u i l i b r a t i o n 98-108, 109-111 volume measurements
78-79, 88, 96, 42, 141
Water Act o f 1970 215 water c a t i o n i c concentration 6 e x t r a c t i o n 1 1 , 68-69, 89 pure 139 q u a l i t y 4 , 139 sampling 68-69 standards 139 WHO 213 World Health Organization 213 XAO r e s i n s 117-119
67-68, 71, 113-115,
zero a i r 139