This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
})/Z(,S3)).
This result can immediately be applied to the case where M = S3 and {/?} consists of p unlinked, unknotted circles; in that case it will certainly be possible to decompose S3 into exactly p components each of which is both a copy of S3 and contains only one circle. This reduces the calculation for p unlinked, unknotted circles to that for a single unknotted circle; we have (2.26)
(W(S\ {R}/Z(S')) = (W(53,fl,)/Z(S3))...(\V(S3,Rp)/Z{S*)) or W(S\ {R}) = W(S\ «,)-W(5 3 , Rp).
Now we must get to the skein relation itself; this is done by abandoning our earlier restriction that no knots may pass through the join in the connected sum Mt#M2. To this end let we decompose M = M,#M2 as before but this time we suppose that the knots have produced 4 punctures in the S2 joining M, to M2; we further require all 4 representations at these punctures to be the 2-dimensional defining representation of SU(2). This means that the Hilbert space H^RRRR = H^4 of the 4-fold punctured S2 has dimension 2-this
238
L. Boi
can be seen by nothing that the physical Hilbert space must be 5f/(2)-invariant and the trivial representation occurs precisely twice in the tensor product R ® R ® R ® R. Now suppose that we carry out such a decomposition three times and ordain things so that the only difference between the three decompositions is that, when we look into M2, 2 of the 4 strands are arranged according to the three skein configurations
X L+
L_
LQ
This gives us three equations like 2.19; using +, - and 0 for over, under and zero crossing we have (2.27)
M = Ml#M+2, M = Ml#M~1, M = Ml#M°2 W(M, {R+}) =
But, because H^ 4 is only two dimensional, the three vectors V+2, V~2 and V°2 are linearly dependent, that is (2.28)
a+V+2 + orV-2 + a°V°2 = 0 =>a+ W(M,{R+}) + a- W(M,{R-}) + a° W(M,{R°}) = 0
and this is the skein relation. We are now in a position to calculate W{M,{R}) explicitly for the case when M = S3. By (2.26) we only need to calculate W{S*,{R}) for a single unknotted circle. To do this we use the skein relation (2.29)
tW(M,{R+}) -t'W(M,{R-})
+ (tm -r" 2 ) W(M,{R°}) = 0
with {R+ {representing the single unknotted circle. It is elementary to verify that this choice has the consequence that {/?+} = {/?-} while {R0} consists of two unlinked, unknotted circles; hence, using the normalised correlation functions, we have (2.30)
tW(P,{R+}) -t'W(S\{R-}) + (r"2 - tm)W(S\{R°}) = 0 =>(f - rW(S\{R+}) + {tm- r"2){W(S3, {/?+}) }2 = 0 3 + =>W(5' ,{/? }) = - ((f- f-')/(f"2 - f-"2)) .
It follows from (2.26) that for a link L = {R} consisting of p unlinked, unknotted circles we have (2.31)
W(S\{R})=
{-((r-f-')/(f" 2 -t-" 2 ))}''
Topological Knots Models
239
Thus if we analytically continue t to real values and write (2.32)
Vdf) = ~ ((tm - rmW-
*-')) W(P,{R})
then VL(t) is the Jones polynomial since it satisfies the skein relation (2.16) and agrees with (2.7) when L consists of p unlinked, unknottedjurcles. Finally we must describe the transformation in W(M,{R}) under a change in framing. Let M = M, u z M2 represent a decomposition of M obtained by cutting into two so that the boundaries of M, and M2 are the Riemann surface £. Suppose, then, that M has been cut into these two pieces and a framed Wilson line passes through £ at a point P. If we apply a 2%t Dehn twist around P then the framing of C will change by an amount t. Hence the procedure for changing the framing of C is to cut M as instructed and then to apply the Dehn twist to P e SMj and then rejoin M, and M2. The effect of the Dehn twist is detected as a linear transformation on the space H^ and, from conformal field theory, we can calculate that this transformation is just scalar multiplication by the factor exp[27u7/i/{], where fiR is the conformal weight of the primary field in the R representation. Summarising, the transformation law of W(M,[R}) is (2.33)
W(M,{R})^>exp[2mthR] W(M,[R}).
2.3. Knots theory, geometrodynamics and quantum gravity Another line of development of knot theory in theoretical physics is related with Wheeler's quantum geometrodynamics23, which has taken up again and developed in new and unexpected directions the long-term vision of W. K. Clifford and A. Einstein according to which there is nothing in the world except curved empty space. On the classical level the Einstein-Maxwell equations are the basic set-up of geometrodynamics. They are studies in otherwise empty space-time admitting multiconnected manifolds as spacelike hypersurfaces. Charge may thus be regarded as "flux lines trapped in topology" and mass as manifestation of the energy of the electric and magnetic field. The main extension of this familiar model is to assume that these wormhole initial hypersurfaces W3 = S1 x S1 are in general knotted embedded in spacetime, thus accepting Wheeler's proposal to describe an elementary particle as "a knottedup region of high curvature." The interest in knotting results partly from the possibility of introducing concisely the concept of the "scattering" of embedded manifolds. Thus "wormhole scattering" is a means of changing not only the topology, but also the knot invariants of the scattered hypersurface; i.e., intuitively, the incoming and outgoing manifolds are differently knotted and linked. A characterisation of links according to the number of their basic constituents with respect to topology change can be established as a first result of the "scattering" concept.
J. A. Wheeler, Geometrodynamics, New York, Academic Press, 1962.
240
<* _
L. Boi
m
- higher links of knol wormholes
R" "lime-
Figure 18. "Vacuum Sea" of "Virtual" Knot wormholes. As examples a link h£W2) of a trivial wormhole with a "trefoil" wormhole is drawn in figure 18e, whereas links of unknotted wormholes are shown in figure 18d. Links and knots can exhibit important discrete symmetries, which likewise will appear at least in wormhole links L U (W 2 ). Consider the following inversions of knots: (a) Reversing the string orientation: K - * K; (b) Taking the mirror image: K -> K = {(x\ x2, -x^/x" e K}. Knots obeying the following equivalence relations are called: (i) amphicheiral, K = K; (ii) reversible, K = K; involutory, K = K. As an example, the figure-eight handle (figure 18c) enjoys all these symmetries, whereas the trefoil x is known to be only reversible. Left- and right-handed trefoil wormholes are shown in figures 18b and 18b, respectively.
According to general relativity theory, the framework in which the Universe has to be understood should be viewed as an elastic (both extensible and contractile) spacetime woven by light and curved by matter. In the attempt to construct a theory of quantum gravity, the physicist theorist Abhay Ashtekar introduced in 1990 a formalism in which the spacetime manifold constitutes a valid approximation at large distances, whereas at very short distances the geometry might be viewed as a sort of weaving interwoven by a complex system of threads. More precisely, Ashtekar proposes to replace Riemannian geometry, which successful provides the mathematical framework to formulate general relativity (as well as other modern theories of gravity), with what he called "a nonperturbative quantum geometry." In this new framework, Riemannian geometry emerge only as an approximation on a large scale, upon a suitable coarse graining of the semiclassical states of the full-fledges quantum theory. So then what is the mathematical framework for describing the "atoms" of geometry, its "elementary excitations", its "basic quanta"? Following Ashtekar, one can say that the resulting quantum geometry is strikingly different from the familiar continuum descriptions. In particular, the triad operators-as well as area operators associated with intersecting surfaces-fail to commute giving rise to certain intrinsic uncertainties in the simultaneous measurements of geometric quantities. The basic excitations are 1-dimensional, rather like polymers. And geometry is "quantized" in the old-fashioned sense of the word: geometrical quantities such as length, areas and volumes, which take continuous values classically, are represented in the quantum theory by operators with purely discreta spectra.24 24
A. Ashtekar, "Geometric Issues in Quantum Gravity", in S. A. Huggett et al. (eds), The Geometric Universe. Science, Geometry, and the Work of Roger Penrose, Oxford Univer. Press, 1998, 175-76.
241
Topological Knots Models
The upheaval brought recently by string theory in our conception of space and spacetime is still much more revolutionary. It is well-known that the "elementary"25 particles in terms of which the structure of matter is understood are described as points in space. Forces between particles result from exchanges between them of other elementary particles, and the fundamental interactions occur in a local way, at coincident time at the same point in space. For example electromagnetic interactions forces between charged particles result from the exchange of photons, with local couplings to the charged particles. In string theory, particles are not described as points, but instead as strings: one-dimensional extended objects. If Ms and M (Rx Ms) denote the space and spacetime manifolds respectively, then we can picture strings as follow:
JVI
•
'fixed time)
point particle
\^S
J
open string
closed string
M (space-time picture) Figure 19. A string representation of particles and spacetime.
While the point particle sweeps out a one-dimensional -worldline, the string sweeps out a worldsheet, i.e. a 2-dimensional real surface. For a free string, the topology of the worldsheet is a cylinder (in the case of a closed string) or a sheet (for an open string). Roughly, different elementary particles correspond to different vibration modes of the string just as different minimal notes correspond to different vibrational modes of musical string instruments. In string theory the theory of spacetime is coded in the laws by which the strings propagate. One consequence of replacing world-lines of particles by world-tubes of strings is that Feynman diagrams get smoothed out. (One can think about a Feynman diagram intuitively as representing a history of a spacetime process in which particles interact by the branching and rejoining of their world-lines, although they are used in the perturbative quantum field theory more conventionally to calculate scattering
25
To the present day limit of distance scales up to approximately 10~15 cm, electrons and quarks do not show any substructure, and that is why they are viewed as 'elementary particles'. However, which particles are elementary in this way may change over time, since at smaller distance scales substructure may be found in terms of more elementary particles.
242
L. Boi
amplitudes). World-lines join abruptly at interaction events, but world-tubes join smoothly. String theory, if correct, entails a radical change in our concepts of spacetime. That is what one would expect of a theory that reconciles general relativity with quantum mechanics. Thus, once one replaces ordinary Feynman diagrams with strings ones, one does not really need spacetime any more, at least any background fixed spacetime; one just needs a two-dimensional field theory describing the propagation of strings. And perhaps more fatefully still, one does not have spacetime any more, except to the extent that one can extract it from a two-dimensional field theory. 3. The Role of Knots in Enzymatic Processes into the Cell We would now like to offer some observations on the interesting connection between knot theory and biology and, hence, with life. For many years, molecular biologists have known that the spatial conformation of DNA knots are phenomena that make up part of the physical universe and living matter, that is to say that knots and links are macroscopic as well as microscopic objects carrying a tremendous amount of precious information on the emergence of new forms in nature and the functions of organisms, and that knotting and unknotting are "universal" principles underlying these processes. In particular, this spatial conformation and the proteins that act on DNA are vital to their biological functions26. Furthermore, differential geometry and knot theory can be used to describe and explain the 3-dimensional structure of DNA and protein-DNA complexes. Biologists devise experiments on circular DNA which elucidate 3dimensional molecular conformation (helical twist, supercoiling, etc.) and the action of various important life-sustaining enzymes (topoisomerases and recombinases). These experiments are often performed on circular DNA molecules, in which changes in the geometric (supercoiling) or topological (knotting and linking) state of DNA can be directly observed. The information content of DNA molecule is embodied in its sequence of paired nucleotide bases and is independent of how the molecule is twisted, tangled or knotted. In the past decade, it has become clear that the topological form of a DNA molecule has an important influence on how it functions in the cell. Enzymes called DNA topoisomerases, which convert DNA from one topological form to another, appear to have a profound role in the central genetic events of DNA replication, transcription and recombination. It is a long-standing problem in biology to understand the mechanisms responsible for the knotting and unknotting of DNA molecules. Large amounts of DNA are wound up and packed into the average cell. In fact, there is enough DNA in a two metre human body to stretch from the earth to the sun and back fifty times! This of course means that the embedding of the DNA in the cell is exceedingly complicated.
26
See on this subject J. Wang, "DNA topoisomerases," Ann. Rev. Biochem., 54 (1985), 665-697; N. R. Cozzarelli, "Evolution of DNA Topology: Implications for its biological roles," in Scientific Applications of geometry and Topology, De Witt L. Sumners ed., Proc. Sympos. Appl. Math., Vol. 45, Amer. Math. Soc, 1992, 1-16; J. H. White, N. R. Cozzarelli, W. R. Bauer, "Helical Repeat and Linking Number of Surface-Wrapped DNA," Science, 241, July 1988, 323-327; S. A. Wasserman, N. R. Cozzarelli, "Biochemical Topology: Applications to DNA Recombination and Replication," Science, 232, May 1986, 951-960.
Topological Knots Models
243
The DNA in the cell knots and unknots, ties and unties itself according to a definite scheme. Knots and links appear during replication and recombination. Certain enzymes (topoisomerases, which behave like topological entities in living organisms) are responsible for the knotting and unknotting. They are able to cut a strand of DNA at a particular point, grasp another strand, pass it through the opening and then close the opening. In other words, these enzymes replace overerossing by undercrossing (see figure below). A molecule of DNA is usually thought of as two linear strands intertwined to form a double helix with a linear axis, or as a ring consisting either of a single strand or of two strands wound in a double helix; moreover, both kinds of DNA ring can be converted to other topological configurations. Quite different geometrical manipulations (the complete operation of breaking, passage and resealing) of the strands are needed to accomplish such topological conversions. Actually all the transformations are based on the same general mechanism. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking), the enzyme mechanism can be characterised and explained (see further the picture). building blorK* of ONA phosphate sugar
sugar phosphate
base
[Q| lil Q
doubl«-«fat-d«d DNA
.^fe-. Nt
o o o o D D
ss iW IWTTT
K
UJ
niKlaolida ONA double hell*
5'
a o
o n o
so:o
sugar-phoaphate backbone
1M o 3 £
rO o IKX o o ME <) o AJdJJ J k>> 5' L-T—13hydrogen-bonded baaepalra
Figure 20 (a). DNA and its building blocks. DNA is made of four types of nucleotides, which are linked covalcntly into a polynucleotide chain (a DNA strand) with a sugar-phosphate backbone from which the bases (A, C, G, and T) extend. A DNA molecule is composed of two DNA strands held together by hydrogen bonds between the paired bases. The arrowheads at the end of the DNA strands indicate the polarities of the two strands, which run antiparcllel to each other in the DNA molecule. In the diagram at the bottom left of the figure, the DNA molecule is shown straightened out; in reality, it is twisted into a double helix, as shown on the right.
244
L. Boi
minor groove
major
",'...
: G
O
hyiifoyfii bond
—"phosphodiosw bond
v
5 on.)
3' e n <|
181
Figure 20 (/>). The DNA double helix. (A) A space-filling model of 1.5 turns of the DNA double helix. Each turn of DNA is made up of 10.4 nucleotide pairs and the ccnler-lo-centcr distance between adjacent nucleotide pairs is 3.4 nm. The coiling of the two strands around each other creates two grooves in the double helix. As indicated in the figure, the wider groove is called the major groove, and the smaller the minor groove. (B) A short section of the double helix viewed from its side, showing four base pairs. The nucleotides are linked together covalently by phosphodiester bonds through the 3'-hydroxyl(-OX) group of one sugar and the 5'-phosphate(P) of the next. Thus, each polynucleotide strand has a chemical polarity; that is, its two ends are chemically different. The 3' end carries an unlinked -OH group attached to the 3' position on the sugar ring; the 5' end carries a free phosphate group attached to the 5' position on the sugar ring.
template S strand gene A
gene B n
I I
sano
r-
C > DNA double Mb
geno oxpr
J protein A
J proiWn B
Sst'.ind 5-07 i ' ( T " 6o _ oQ 0
C6
.
,
3-?S' strand Q Q O
9
9
,
v
•••
/ MM
'- J 3'' 0~^3'
, immi '
5'
30 O O O P now S'slrand
5'1
.
.
O O P
....._...._
9
0 0
.',y
pBtent DNA double helb protein C
3J> P P O P P O O template S' strand
/?T9\9S'
Figure 21 (a). The relationship between genetic information carried in DNA and proteins, (b) DNA as a template for its own duplication. As the nucleotide A successfully pairs only with T, and G with C, each strand of DNA can specify the sequence of nucleotides in its complementary strand. In this way, doublehelical DNA can be copied precisely.
245
Topological Knots Models
3'
5'
6' I
3'
v
<> c: 5'
3'
Right-handed double helix
3' U
^S'
Left-handed double helix
Figure 21 (c). Two possible helical forms of DNA are mirror images of each other. The geometry of the sugar-phosphate backbone of DNA causes natural DNA to be right-handed. The geometry and the chemical composition of the subunits of DNA determine that when hydrogen bonds are formed between bases, the strands assume the form of a double helix with the sugar-phosphate backbones on the outside and the base pairs in the middle. The helix is right-handed: it has the same direction of twist as an ordinary wood screw. The structure of the double helix was first analyzed in crystalline fibers, where it was found that the strands revolve about each other completely once every 10 base pairs; this structure is designated the Watson-Crick B helix. Recent results from Wang's group at Harvard show that in DNA molecules in solution the strands of the double helix make a full turn every 10,5 base pairs.
Genes carry biological information that must be copied accurately for transmission to the next generation each time a cell divides to form two daughter cells. DNA encodes information through the order, or sequence, of the nucleotides along each strand. Each base - A, C, T, or G - can be considered as letter in a four-letter alphabet that spells out biological messages in the chemical structure of the DNA. However, as is known, organisms differ from one another because their respective DNA molecules have different nucleotide sequences and, consequently, carry different biological messages. But how is the nucleotide alphabet used to make messages, and what do they spell out? Now it was known well before the structure of DNA was determined that genes contain the instructions for producing proteins. The DNA messages must therefore somehow encode proteins (figure 21a). This relationship immediately makes the problem easier to understand, because of the chemical character of proteins. Nevertheless, the properties of a protein, which arc responsible for its biological function, are determined in turn by the linear sequence of the amino acids of which it is composed. The linear sequence of nucleotides in a gene must therefore somehow spell out the linear sequence of amino acids in a protein. The exact correspondence between the four-letter nucleotide alphabet of DNA and the twenty-letter amino acid alphabet of proteins-the genetic code-obeys a process, known as gene process, through which a cell translates the nucleotide sequence of a gene into the amino acid sequence of a protein. The complete set of information in an organism's DNA is called its genome, and it carries the information for all the proteins the organism will ever synthesize. The amount of information contained in genomes is staggering: for example, a typical human cell contains 2 meters of DNA. Written in the four-letter nucleotide alphabet, the nucleotide sequence of a very small human gene occupies a quarter of a page of text, while the complete sequence of nucleotides in the human genome would fill more than a thousand books the size of this
246
L. Boi
one. In addition to other critical information, it carries the instructions for about 30,000 distinct proteins. At each cell division, the cell must copy its genome to pass it to both daughter cells. The discovery of the structure of DNA also revealed the principle that makes this copying possible: because each strand of DNA contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand, each strand can act as a template, or mould, for the synthesis of a new complementary strand. In other words, we designate the two DNA strands as S and S\ strand S conserve as a template for making a new strand 5', while strand 5' can serve as a template for making a new strand S (figure 21b). Thankfully, DNA is a very malleable, deformable molecule, being able to recombine through a series of phases; otherwise the world would be populated by clones. Moreover, one of the most striking structural properties of DNA molecule is its flexibility or plasticity, which influence in an essential way its biological functions. Thus, the molecule can freely move about, although under certain chemical and geometrical constraints, in the space of the cell's nucleus and convert itself into several sorts of shapes without losing a certain structural stability and a certain energetically (biochemical) favourable condition. This movement is twofold: the three-dimensional two-strands helical structure of DNA molecule can extend and compact. The extended (unfolded) conformation of DNA, which put it under tension as if the molecule was subjected to shear one dynamic force, seems to be especially required for DNA replication. By this process each of the two strands of DNA is used as a template for the formation of a complementary DNA strand. The original strands therefore may remain intact through many cell generations. DNA compaction inside cells occurs by successive orders of coiling. A DNA double helix is compacted in about four successive steps. Only the first step of nucleosome formation is well understood. In this step, DNA coils twice in a left-handed helical fashion around a set of proteins called histones. The nucleosomes are then coiled successively to give the final form, called a chromosome. In the phases of this process (the recombination), the knot type of the DNA molecule is actually changed. The whole process, from the original splicing to the recombination, is the result of the effect of a single enzyme/catalyst called a topoisomerase. The term topoisomerase is relatively easy to explain. Chemically, two molecules with the same chemical composition but different structure are called isomers. It follows that two DNA molecules with the same sequence of base pairs but different linking numbers are also isomers. Do to the difference in linking numbers, "topologically" they are inequivalent. So, these DNA molecules are called topoisomerases, which is, hence, the enzyme that causes the linking number to change. The process of mutation due to a topoisomerase can be in simple terms be described as follows: First a strand of the DNA is cut at one place, then a segment of DNA passes through this cut, and finally the DNA reconnects itself. In figure 22 we give two examples of the action of a topoisomerase on a DNA molecule (for clarity, we have not drawn the helical twist). The place where the strand is cut is denoted by "0". The simple strand, in figure 22(a), has a single cut due to a topoisomerase and the DNA passes through it and recombines; this is called a Type I topoisomerase. While, in figure 22(b), a cut in a double-strand DNA, due again to a topoisomerase, allows a double-strand DNA to pass through it and recombine, this is as expected called a Type II topoisomerase.
247
Topological Knots Models
(a)
(b)
Figure 22 (a), (b). The action of a topoisomerase on a DNA molecule.
A molecule of DNA may also take the form of a ring, and so it can become tangled or knotted. Further, a piece of DNA can break temporarily. While in this broken state the structure of the DNA may undergo a physical change, and the DNA will finally recombine. In fact, in the early 1970s it was discovered that a single enzyme called a topoisomerase can facilitate this whole process, from the original splicing to the recombination. The process of recombination involves some interesting topological changes in the substrate. It is worth noting that knowledge of the topology of the substrate and product(s) can be use to compute the Jones polynomials of other products. For instance, a cut in a double-strand DNA, due to a topoisomerase, allows a doublestrand DNA to pass through it and recombine. Finding such a topoisomerase is relatively straightforward, since these enzymes occur in organisms small and large, from bacteria to the body of the reader of this article. The effect of a certain topoisomerase (called a recombinase) is usually called a site-specific recombination. A site-specific recombination is a local operation. The effect of the recombinase on a DNA molecule is either to move a piece of this DNA molecule to another position within itself or to import a foreign piece of a DNA molecule into it. The result is that the gene transmutes itself. The exact process of a site-specific recombination is fairly easy to understand. Firstly, two points of the same or different DNA molecules are drawn together, either by a recombinase or by random (thermal) motion (or even possibly both). The recombinase then sets to work, causing the DNA molecule to be cut open at two points on the parts that have been drawn together. The loose ends are then recombined bt the recombinase in a different combination that the original DNA molecule. In figure 23(a)~(c), we have shown a simple site-specific recombination that has been carried out in the manner described above.
(a)
(b) Figure 23. The Writhing process of the DNA molecule.
(c)
248
L. Boi
8 (a)
(b)
-0 (c)
Figure 24. (a), (b), (c). If the orientation on the DNA molecule and the orientation induced by these local orientations agree, then this arrangement is called a direct repeat, figure 24 (a). On the other hand, if they do not agree, then the arrangement is said to be an inverted repeat, figure 24 (c). For a site-specific recombination one can show the following: (1) If the substrate is a DNA knot and the arrangement is a direct repeat, then the product is a 2-component DNA link, figure 24 (a). If, however, the arrangement is an inverted repeat, then the product is a DNA knot, figure 23 (c). (2) If the substrate is a DNA link (i.e., two DNA molecules entwined), then after recombination the product is a DNA knot, figure 24 (b).
Before the action of the recombinase, the DNA molecule is called a substrate; after the recombination it is called a product. The process of going from the DNA molecule to a state in which two parts of the DNA molecule have been drawn together, is said to be the writhing process. When at this stage the recombinase combines with the substrate, the resultant combined complex is called a synaptic complex, figure 2"(b). Within the synaptic complex, we can assign local orientation to the respective, relatively small part of the DNA molecule (or molecules) on which the recombinase acts (within the circle in figure 23(a), (b), and (c)). The following propositions follows from empirical evidence: Proposition 1. Almost all the products obtained by the site-specific recombination of trivial knot substrates are rational knots (or links), i.e., 2-bridges knots (or links). Proposition 2. The part of the synaptic complex acted on by an enzyme (recombinase), mathematically within the 3-ball, is a (2,2)-tangle (figure 25.1). Therefore, the product is just the replacement of one (2,2)-tangle by another (2,2)tangle. For example, the (2,2)-tangle within the circle Tis figure 25.1 is replaced by the tangle R to form the product shown. Mathematically, it is perfectly reasonable to consider S to be a (2,2)-tangle in T. The numerator of the sum of S and R is then the product, figure 25.2. So the following "equation" holds: N (S + R) = P (the product).
Topological Knots Models
+
249
© R
Figure 25.1. Sum of tangles in a synaptic complex; and replacement of tangles.
Figure 25.2. The numerator of the sum of S and J? is the product.
Further, we may divide the substrate into the external tangle S and the internal tangle E, since the substrate is the numerator of the sum of S and E, figure 25.3. Again, we have a quasi-equation holding: N(S + E) = S (the substrate). We already said that the double-helix structure of DNA is a geometrical entity, or more precisely, a topological configuration. This topological configuration is itself a manifestation of linking or knotting27. Further, it has been shown that when a topoisomerase causes DNA to change its form, the process is very similar to what happens locally in the skein diagrams (see above, section 2.2). Therefore, for the geometrical entity-knotted or linked-the linking number is an important concept, while the action of the toposoimerase is related to the new skein invariants. In fact, the linking number Lk between C, and C2 (where C, and C2 are the two backbone curves that form the boundaries of the ribbon B and that represent the closed DNA strands) is an invariant, and its changes have a very important effect on the structure of the DNA molecule. For example, it is known that if we reduce the linking number of a doublestrand DNA molecule, the DNA molecule will twist and coil, i.e., what is known as supercoiling. In other words, the linking number difference is a measure of supercoiling process (see figure 26). Interestingly enough, in the case of a link formed from C, and C2, the linking number defined on the DNA molecule in biology, and the linking number computed from the mathematical knot theory turns out to be the same. Moreover, the untying mechanisms
27
See N. R. Cozzarelli, op. cit.; and D. W. Sumners, "The Role of Knot Theory in DNA Research," in Geometry and Topology, Manifolds, Varieties, and Knots, C. McCrory and T. Shifrin eds., New York, Marcel Dekker, 1987, 297-318.
250
L. Boi
lk(C,,C2)=l Wr(B) = 0, Tw(B) = 1
lk(C,,C 2 ) = - l Wr(B) = - 1 , Tw(B) = 0
(a)
(b) Figure 26. Supercoiling process in the DNA molecule.
used in cells bear an uncanny resemblance to the simplest mathematical method for generating the new polynomial invariants. The number of twists of the ribbon B along the axis C is called the twisting number, and is denoted by Tw(B). The writhe, Wr(B), can be defined as the average value of the sum of the signs of the crossing points, averaged over all projections. These numbers, Wr{B) and Tw(B) are invariants. They are not, however, invariants of the knot (or link) obtained from the DNA molecule, but differential geometrical invariants of the ribbon B as a surface in space. The three invariants mentioned above are related by the following basic formula: Lk (C„ C2) = Tw(B) + Wr(B). The application of this expression to DNA molecules is an explanation of its propensity to supercoil. The remarkable fact about this result is that two geometric quantities that may change under deformations of the curves add up to a topological quantity, which is invariant under such deformations. Moreover, the linking number has a very important topological property: it is unchanged under any continuous deformation of the pair of curves, no matter how the double-strand ring is pulled or twisted, so long as the two strands remain unbroken28. It is worth noticing that one may give a "goal-oriented" interpretation of DNA topology (hence, not reducible to a pure mechanism): i.e., why and how the topological structure of DNA evolved. All biologists are fascinated by evolutionary explanations because they seek to answer the fundamental question: Why are we the way we are? Evolutionary explanations are also heuristic in that they often provide the hunch that is behind the stated rationale for an experiment. It is extremely difficult to determine how something evolved, especially for something so basic to life as the genetic material. 28
See on this very interesting and complex subject J.H. White, An Introduction to the Geometry and Topology of DNA Structure, Boca Raton, CRC Press, 1989.
Topological Knots Models
251
However, some significant steps have been taken towards a better and deeper understanding of the structure from which the genetic material is made. DNA inside cells is a very long molecule with a remarkably complex topology. Topological properties of DNA are defined as those that can be changed only by the breaking and rejoining of the backbone. There are three important topological properties of DNA: 1) the linking number between the strands of the double helix, 2) the interlocking of separate DNA rings into what are called catenanes, 3) and knotting. The linking number of DNA in all organisms is less than the energetically most stable value in unconstrained (relaxed) DNA. This puts the DNA under mechanical stress which causes it to buckle and coil in a regular way called (-) supercoiling. The name supercoiling derives from the fact that it is the coiling of a molecule which is itself formed by the coiling of two strands around each other. Although, strictly speaking, supercoiling is a geometric property, it is a consequence of a topological one, the linking number difference between supercoiled and relaxed DNA.
Figure 27. The linking number of DNA. The winding of the two strands of the DNA double helix about each other, represented by filled and open tubes, can be measured by the linking number between the strands. It is equal to one-half the number of signed crossing of the two strands in any projection of the molecule; the sign convention is given in Fig. 28. The linking number of the small circular DNA in the diagram is equal to 12; but it is orders of magnitude larger for naturally occurring DNA.
Figure 28. DNA catenanes and knots. The duplex DNA is depicted as a tube; the arrows indicate the orientation of the DNA as defined by base sequence. The simplest example of catenanes (A) and knots (B) are shown. There are two crossings in the case of the singly linked catenanes in A and three for the trefoil knots in B. The topological sign of the crossings is given by the convention implicit in the drawings. A(-) crossing is one in which a clockwise rotation (< 180°) of the arrow on top is needed to make it congruent to the underlying one; a (+) crossing is one in which a counterclockwise motion is needed for the operation. The two possible topological isomers of each form are shown. As the number of crossings in a knot or catenane increases, the number of possible isomers grows exponentially.
252
L. Boi
Figure 29. Negative supercoiling. Shown are interwound (left) and solenoidal (right) forms of supercoiling of duplex DNA (line) molecules of the same length and linking number. These two forms of supercoiling differ geometrically, not topologically. Free supercoiled DNA in solution adopts the interwound form, but supercoiling around proteins is usually solenoidal.
Supercoiling
o
^^k^-'
C.
Figure 30. Reactions of topoisomerases. Duplex DNA is shown as a tube and the arrows indicate orientation. Illustrated are the change in linking number by introducing (-) supercoils (A), forming a (-) singly interlocked catenane (B), and tying a (+) trefoil knot (C). The reverse reactions of removal of supercoils, decatenation, and unknotting are also carried out by topoisomerases. All the reactions are affected by the same operation of passing a segment of duplex DNA through another at the filled arrows. Because these topological changes are brought about by making duplex DNA transiently permeable to the passage of other DNA segments, the enzymes are called type-2 topoisomerases. Type-1 topoisomerases make single-stranded regions of DNA transiently permeable to duplex or single-stranded DNA.
Topological Knots Models
253
Metophaso chromosome
[ Loops
DNA
O £?- 0> bfe.
® | 8 «
I
Proloin scaffold
'
DNA double-
V.
\«
\»
\»
V.
Figure 31. Model for the packing of chromatin and the chromosome scaffold in metaphase chromosomes. In interphase chromosomes, long stretches of 30-nm chromatin loop out from extended scaffolds. In metaphase chromosomes, the scaffold is folded into a helix and further packed into a highly compacted structure, whose precise geometry has not been determined.
L. Boi
Figure 31.2. DNA compaction inside cells by successive orders of coiling. A DNA double helix is compacted in aboul four successive steps (a-d). Only the first step of nucleosome formation (a) is well understood. In this step, DNA coils twice in a left-handed helical fashion around a set of proteins called histoncs. The nuclcosomes are then coiled successively to give the final form, called a chromosome (d).
•
Figure 32.1. Topoisomerases of the DNA Molecule. Type I topoisomerases, which cut one strand at a time, can carry out several topological operations. The first topoisomerase to be found, a type I enzyme of E. coli, was discovered by James Wang in 1971. Topoisomerases are now known to exist in many species, including man. By cutting one strand of a supercoiled DNA ring the lype I enzyme can put the ring into the relaxed slate (/). Il can lie a single-strand ring into a knot (2). The knot is lied when Ihe single-strand ring crosses over itself. If the two loops formed in this way are pulled together, the enzyme can cut one loop and pass the other loop through the opening. When the break is sealed, the ring is tied in a knot. Structures 2c and 2d arc topological^ equivalent: each form can be made from the other without cutting the strand. The type I enzyme can also interlock two single-strand rings (3). If the rings have complementary base sequences, a double helix results. Although the operations seem quite different, each requires that a strand be broken, a segment of DNA be passed through the break and the break be resealed.
Topological Knots
Models
255
Double -stranded helix •
Topo I ) Binding of Topo I
\
(
Nick DNA; form covalont DNAphosphotyrosine bond
Pass cut 3' end under other strand and reseat DNA
-H>
>
3 negative supercoils
Figure 32.2. Action of E. coti type I lopoisomerase (Topo I). The DNA-enzyme intermediate contains a covalcnt bond between the 5'-phosphorly end of the nicked DNA and a tyrosine residue in the protein (inset). After the free 3'-hydroxyl end of the red cut strand passes under the uncut strand, it attacks the DNA-enzyme phosphocslcr bond, rejoining the DNA strand. During each round of nicking and rcscaling catalyzed by E. coti Topo I, one negative supercoils is removed. (The assignment of sign to supercoils is by convention with the helix stood on its end; in a negative supercoils the "front" strand falls from right to left as it passes over the back strand (as here); in a positive supercoil, the front strand falls from left to right.)
:A
<&
&
®. A §, K O, SI ©, §§,
Q ®, @, H Figure 32.3. DNA knots produced by lopoisomerase I. A standard reprcscnlation of each knot produced by lopoisomerase I is shown, nol including cnanliomers of chiral knols. Knots 4, and 63 are amphichiral and knot 6C has Ihrce stereoisomers. All olher knols arc chiral with two enantiomcrs. All possible knol forms with seven or fewer nodes were produced by lopoisomerase I.
It must be emphasized that the complex topology of DNA is essential for the life of all organisms. In particular, it is needed for the process known as DNA replication, whereby a replica of the DNA is made and one copy is passed on to each daughter cell. The most direct evidence for the vital role played by DNA topology is provided by the results of attempts to change the topology of DNA inside cells. Two related questions arise immediately from the recognition that DNA topology is essential for life. How did the complex topology of DNA evolve, and why is it so important for cells? DNA is the only molecule in cells that has a complex topology. The evolution of proteins has taken a contrary course. Proteins also naturally subdivide into domains and thus local knots or links could readily occur, but they do not. In addition, no knots, catenanes, or supercoiling have been found in RNA, polysaccharides, or lipids. With the evolution of
256
L. Boi
type-1 topoisomerases, compaction by nucleosomes could occur and the size of DNA could grow to about 105 kb. However, as DNA grew in length, the problems of accidental knotting within domains and catenation of separate domains and segregation of the products of DNA replication became acute. These problems were solved by the evolution of the type-2 topoisomerases, which promote the passage of duplex DNA through transient double strand breaks. A type-2 topoisomerase could have evolved from a type-1 topoisomerase by the development of an interaction between two copies of a type-1 enzyme. Further increases in DNA size required only the evolution of successively higher orders of DNA compaction. So we are faced, once again, with a genuine topological problem. 4. Topological Transformations and Biological Processes Explained by Pictures 4.1. Catenane and knot catalogue with representative examples of linked DNA forms All forms shown are chiral (different from their mirror image). The node sign, displayed for a single node, or crossing, in each form in the top row is determined as follows. Arrows are drawn to indicate an orientation of the DNA primary sequence. If the overlying arrow can be aligned with the underlying one by a clockwise rotation of less than 180°, the node for duplex DNA has a value of - 1. If a counterclockwise rotation produces alignment, the node has a value of + 1. Top row: (a and b) The two forms of the simplest knot, the trefoil. A trefoil is a torus knot, that is, it can be drawn on the surface of a doughnut-shaped object. Other members of the torus family of knots and catenanes are shown in (e to i). (d) A redrawing of the knot (d), illustrating why a trefoil is also a member of the twist knot family. Twist knots are formed by strand passage between two looped ends of a molecule twisted on itself. Another twist knot is shown in (k). Middle row: (e to h) The four types of multiply interwound torus catenanes are represented as doubly linked forms. Drawing of this type makes it possible to distinguish right-handed parallel (e), left-handed parallel (/), right-handed antiparallel (g), and left-handed antiparallel (h) double helical interwindings. (h') Redrawing of
Figure 33. Examples of linked DNA forms. (See S. A. Wasserman and N. R. Cozzarelli, 1986).
Topological Knots Models
257
catenane in drawing (h). Bottom row: (() Right-handed torus knot with seven (+) nodes. (/') Right-handed torus catenane with eight nodes, (k) Right-handed twist knot with seven (-) nodes. (/ and /') Compound six-nodded knot composed of two (-) trefoils. 4.2. Topoisomerases of the DN A Molecule The tying of knots in rings of DNA is one of the capabilities of the enzymes known as topoisomerases. The genetic material of many organisms has the form of a ring made up cither of one strand of DNA or of two strands twisted in a double helix. The ring can assume a number of topological configurations. The conversion of the DNA ring from one configuration to another is catalysed by the topoisomerases. The upper electron micrograph shows single-strand DNA rings from a virus known as bacteriphage fd, which infects bacteria. The lower micrograph shows the rings after they were exposed a topoisomerase from the bacterium Escherichia coli. By cutting the DNA strand, passing a segment of the ring through the break and rejoining the cut ends the enzyme has tied a knot in each ring; such knotting has been seen only in the laboratory. The process of breaking, passage and resealing is essential to the action of all topoisomerases. Some of the enzymes, designated type I, cut a single strand of DNA; others, designated type II, cut both strands of a double helix. Type II topoisomerases acts only on a double-strand ring. The first type II enzyme to be found was the one called DNA gyrase; it was discovered in E. coli. DNA gyrase can negatively supercoil a relaxed double-strand ring in the presence of ATP. (7) It can relax a negatively supercoiled ring without ATP, but the reaction proceeds slowly. The type II enzyme can tie and untie knots in a doublestrand ring, as the type I enzyme does in a single-strand ring. (2) Many topoisomerases molecules can work on a ring at once. If the cut ends where free to drift apart during the knot-tying process, the base sequence of the ring might be rearranged when the breaks were sealed. No rearrangement has been seen. When the ring is cut, the enzyme forms a covalent bond to the DNA strand; the bond prevents the cut ends from separating. DNA gyrase can also interlock two double-strand rings and separate interlocked rings (3).
Figure 34. The rings on which acted a topoisomerase from the bacterium E. coli. (See 1. C. Wang. 1985).
258
L. Boi
Figure 3S.1. The action of type II lopoisomcrase on a double-strand ring. (See 1. C. Wang, 1985),
(b)
Catenation
Decatenation
Catenane
Figure 35.2. Action of E. coli DNA gyrase, a type II topoisomerase. (a) Introduction of negative supercoils. The initial folding introduces no stable change, but the subsequent activity of gyrase produces a stable structure with two negative supercoils. Eukaryotic Topo II en/.ymes cannot introduce supercoils but can remove negative supercoils from DNA. (b) Catenation and decatenation of two different DNA duplexes. Both prokaryotic and eukaryotic Topo II enzymes can catalyze this reaction. (See N. R. Cozzarelli, 1980, Science, 207.)
Topological Knots Models
259
4.3. Supercoiling of the DNA molecule Supercoiling of a double-strand DNA ring deforms the ring into a more twisted and compact shape. The shape of a DNA ring is strongly affected by the number of times one strand goes around the other; the quantity is called the linking number. It is a topological quantity: it cannot be altered while the strands are intact regardless of how the ring is pulled or twisted. If the strands are cut, however (7), and the rotated about each other in the direction opposite to that of the twist of the helix (2), the helix unwinds. When the cut ends are rejoined (J), the linking number is decreased by the number of rotations that have been made. The strands of DNA in a linear molecule revolve once every 10.5 base pairs because that configuration puts the least strain on the double helix. A ring in which the ratio of base pairs to linking number is 10.5 is said to be relaxed. Increasing or decreasing the ratio strains the double helix, which responds by supercoiling (4). Reducing the linking number causes negative supercoiling; raising the linking number leads to positive supercoiling. The upper electron micrograph shows a relaxed DNA ring from a bacterial virus called PM2. The lower micrograph shows a negatively supercoiled DNA ring from the same virus. It is now clear that many DNA are closed molecules, i.e., their axes as well as their backbone curves are closed curves (figure 37b), instead than a linear (open) form (figure 37a). In fact, the axes of these closed DNA can assume almost any path in space. It has been found by direct experiment that most closed DNA have the shape shown in figure 37c. Such DNA are called supercoiled since the axis is seen to coil back on itself and so the backbone helices are supercoiled. The supercoiling of the closed circular molecule into an interwound superhelix can be understood in terms of the relation between three mathematical quantities, which are linking, writhe, and twist. Because molecule is underwound it has a deficit in linking number compared with a relaxed molecule of the same size. It compensates by writhing and by twisting and bending, satisfying equation Wr = Lk - Tw. The remarkable fact about this result is that two geometric quantities (writhing and twisting) that may change under deformations of the curves sum to a topological quantity (linking number) which is invariant under such deformations. Supercoiling is one of the three fundamental aspects of DNA compaction; the others two being flexibility and intrinsic DNA curvature. For example, the problem of DNA compaction in E. coli can be putted in the following words: The DNA must be compacted more than a thousand fold in the cell, yet it still needs to be available to be transcribed. (Recall that the length of a typical bacterial operon - usually about 3 genes -, is about as long as the entire bacterial cell, if it is stretched out in its B-DNA double helical conformation!). In order this compaction to be effected, it is requested some kind of anisotropic flexibility or "bendability" of DNA, which is very much sequence-specific, and is different from the static "rigidity" of DNA. Whereas persistence length of DNA is relatively non-specific, and just has to do with its overall "rigidity" (on average, DNA has a persistence length of about 44nm, which is quite a bit longer than proteins - one way of thinking about this is that proteins tend to fold up into little spheres, or "blobs", and DNA is a bit more rigid), anisotropic flexibility is a measure of a particular sequence to be deformed by a protein (or some other external forces). Some sequences are both isotropically flexible and "bendable" - for example, the TATA motifs. Perhaps one of the best examples of this is the binding site for the Integration Host Factor (MF) - there are certain base pairs that are highly distorted upon binding of this protein. It is quite impressive that this protein induces a bend of 180
260
L. Boi
degrees into a DNA helix. In other words, the curvature k at each sequence of the two strands of DNA helix must be very sharp in order the DNA double helix may assume its characteristic extremely compact form. Indeed, one consider that the DNA must be compacted more than a thousand fold in the cell, it is probably not that surprising that almost any protein that binds to DNA will bend it. Moreover, since the total curvature K of entire DNA double helix segment depends on the torsional stress which applies to DNA strands, and these strands forms hence a twisted curve, i.e. a curve of double curvature in three-dimensional space in a nucleosome inside a cell, the DNA double helix must coils by overwinding or underwinding of the duplex; in order supercoiling appears, the DNA must either be a closed circle, or the ends must be constrained. Notice that the supercoiled DNA runs much faster than the linear, whilst the relaxed DNA runs much slower than the linear. Moreover, the reduction in size taken up by the DNA when it is supercoiled is very important. There are two types of supercoiling: the plectonemic supercoils, which is unrestrained, and the toroidal supercoils, which is restrained by proteins; in fact, wrapping DNA around histone octamer introduces supercoils. Notice that solenoids can be further compacted and folded under various conditions into giant supercoiled loops in higher order chromatin associated with metaphase chromosomes; additional supercoiling and compaction generate the metaphase chromosome. The toroidal supercoiling plays a fundamental role in the compaction of DNA and chromatin. That explains mathematically why a supercoiled molecule is more compact than a relaxed one. The idea is that the more supercoiled a molecule is, the more it appears to cross over itself; hence the smaller the area it presents in the face of the fluid through which it is moving, and hence the faster it sediments. In other words, consider a rubber tube that has been coiled around a cylinder with its ends joined in such a way that all twist is relieved, then it jumps into an interwound helix coiled in the opposite direction when the cylinder is removed. If the are N right-handed turns in the first configuration, and if the pitch angle oti at which each helical turn inclines away from the horizontal is small, then in the second configuration there will be approximately N/2 turns going up and N/2 going down and the new pitch angle Ofe will be large. That means that DNA having a deficit in linking number supercoils into interwound right-handed double helix. That is closely related to an intrinsic mathematical property of torus knots. These knots are restricted to the surface of a torus, which is considered to be embedded in three-space in the most natural way. Pushing a knot inside a torus shows that the knot winds three times around the inner circumference marked by path a. Pushing the knot to the outside of the torus (lower right) shows that it winds five times around the outer circumference marked by a path b. More generally, any torus knot will wind p times around the inner circumference and q times around the outer circumference. For example, in the illustration at the top of this page, for the knot shown at the left p equals 2 and q equals 3, and for the knot shown at the right p equals 2 and q equals 5. Note that the paths a and b lie in the complement of the knot and have a common base point on the torus. The group of any torus knot can be presented by the homotopy classes [a] and [b], which are related by the single, simple equation [af = [b]q. This equation means that in the complement of the torus knot a path that is homotopic to a wound p times around the inside of the torus can be deformed into a path homotopic to b wound q times around the outside of the torus. It is straightforward to prove that the groups of two torus knots are the same if and only if the knots have the same pair of values p and q.
Topological Kiwis
Models
261
Figure 36. Torus knols are a class of knots for which the group is particularly effective invariant. Only a torus knot and its mirror image cannot be distinguished by the torus knot group.
262
Figure 37. Supercoiling of shape. The shape of DNA other; the quantity is called shows a relaxed DNA ring supcrcoiled DNA ring from
L. Boi
a double-strand DNA ring deforms the ring into a more twisted and compact ring is strongly affected by the number of times one strand goes around the the linking number. It is a topological quantity. The upper electron micrograph from a bacterial virus called PM2. The lower micrograph shows a negatively the same virus. (See J. C. Wang. 1985).
Topological Knots Models
(a)
(b)
263
(c)
Figure 38. (a) The linear form of the double helical model of DNA. (b) The relaxed closed circular form of DNA. (c) The plectonemically interwound form of supercoiled closed DNA.
4.4. Knots in the embryo A last remark about the development of embryo. In discussing the adhesion of blastomeres in early sea-urchin embryos, Balinsky has listed three mechanisms by which cells appear to stick together, (i) In "ordinary contact", long stretches of two plasma membranes remain in relatively close contact, but with a gap of some 140 A between them, this being presumably filled by some electron-light intercellular substance, (ii) In some cases contiguous cells seem to be held together by the formation of numerous interdigitating processes, (iii) Intercellular connecting bars appear, usually in groups forming the structures known as desmosomes. In the cleavage stages of the eggs of the mollusc Limnea peregra one can see what appears to be a new form of intercellular "contact body". During early cleavage the blastomeres are not everywhere in close contact with one another in the centre of the embryo, although a well-developed blastocoel has not yet been formed. In the angles of the spaces between cells, or occasionally bridging across the middle of a gap, one sometimes finds avoid or roughly
264
L. Boi
spherical bodies, which are made up of highly folded regions of the cell membranes. The overall dimensions of the bodies measure one or two m\l, and a straight line through one of them would cross some 8-15 membrane profiles. In some cases it is difficult to be sure that the membranes which are folded together are derived from more that one cell, but in several examples this seems fairly certain, and it is thought that in general the bodies represent places in which the membranes of two (or more) cells are crumpled together to form what may be regarded as a "knot". Presumably such "knots" could play an important part in holding the cells together. 5. Geometrical and Topological Properties of the Double Helix Virtually every physical, chemical and biological property of DNA - its transcription, hydrodynamic behavior, energetics, enzymology and so on - are affected by closed circularity and the deformations associated with supercoiling. Understanding the mechanism of supercoiling and the consequences of this structural feature of DNA, however, presents problems of considerable mathematical complexity. Fortunately, there are two branches of mathematics that offer substantial help in this effort: topology, which studies the properties of structures that remain unchanged when the (geometrical) structures are deformed, and differential geometry, which applies the methods of the differential calculus to the study of curves and surfaces. In what follows we shall first describe a mathematical model of closed circular DNA and then discuss the implications of the model for the real DNA. For our purposes it is preferable to choose a model whose axis coincides with that of the double helix. In addition we specify that the ribbon must always lie perpendicular to the pseudodyads, or twofold axes of rotation, which are distributed along the double helix. This ribbon model follows the axis of DNA double helix and twists as the two chains of the molecule twist around that axis. In addition, because the sequences of atoms in the two-polynucleotide chains run in opposite directions the edges of the ribbon will be assigned opposite orientations. This model can be analyzed mathematically in a number of different ways. One way consists in studying the relation between the oppositely directed edges of the ribbon. When the ends of a ribbon are joined, each edge describes a closed curve in three-dimensional space. Furthermore, when the ribbon represents a closed circular molecule of DNA, a number of 360-degree twists are introduced before the ends of the ribbon are joined, and so the two curves described by its edges are linked. In other words, it is impossible to separate the curves without "cutting" one of them. If each loop in a linked pair represents a covalently bounded molecule, as is the case with the twopolynucleotide chains of the double helix, the two are said to be joined by a topological
bond. This is a peculiar type of bond in that although no part of one molecule is covalently joined to any part of the other, it is nonetheless necessary to break a covalent bond in order to separate the two. In mathematical terms the linking of two closed curves is a topological property: no matter how the curves are deformed (pulled, twisted and so on), as long as neither one is broken they will remain linked in exactly the same way. The linking number Lk is defined as a signed integer that describes a property of two closed curves in space. To separate a pair of curves without actually cutting them the value of Lk must be 0 (although the converse is not always true). If the curves in question are the edges of a closed ribbon with N turns in it, their linking number will remain unchanged when the
Topological Knots Models
265
ribbon is deformed. Notice that although the edge of the ribbon model of DNA were no chosen to coincide with the sugar-phosphate backbones of the double helix, the linking number of the ribbon will be exactly that of the backbones. Another way to analyze the ribbon model of DNA is by looking not at the relation between its edges but at the way the ribbon twists. For a ribbon whose axis follows a straight line the idea of a numerical value expressing twist is intuitively obvious. Here we shall adopt the convention that a night-handed twist of 360 degrees has a value of + 1 and a left-handed twist has a value of - 1. The definition of twist is less obvious, however, for a ribbon whose axis is not straight. Perhaps the best way to understand this concept is to imagine a small arrow placed perpendicular to the axis of the ribbon, pointing to one of its edges. As the arrow is moved along the twisting ribbon it rotates about the axis, and the twist of the ribbon can be defined as the integral of the arrow's angular rate of rotation with respect to the arc length of the axis curve. In the special case where the axis of the ribbon is confined to a plane this value can be measured simply as the number of rotations the arrow completes about the axis as it is moved along the ribbon. For example, when the ribbon models a closed circular piece of DNA 5,000 base pairs long that is relaxed (that is, its axis lies in a plane), the arrow makes one complete rotation for every turn of the double helix, and so the total twist Tw equals + 500, with the plus sign arising one again because the double helix is right-handed. For a relaxed circular piece of DNA 5,000 base pairs long, then, both the linking number and the twist are equal to + 500. From this example one might well assume that linking number is just another way of expressing twist, but that is not the case. Indeed, it is particularly important to understand the distinction between these two quantities. To begin with, linking is a topological property, whereas twist is geometrical: if a ribbon is deformed, its twist may be altered. Moreover, to compute the linking number (which is always an integer) the ribbon must be considered as a whole. On the other hand, twist (which may not be an integer) can be considered locally, and the twist values of individual sections can be summed to obtain the total for the ribbon. The realization that linking and twisting are distinct properties raises another question. Is there a geometrical significance to the difference between these properties, that is, to the difference between the linking number of a ribbon and its total twist? In 1968, it has been proved by J. H. White that the linking number of a ribbon and its total twist differ by a quantity that depends exclusively on the curve of the axis of the ribbon. This quantity is well known to mathematicians as the Gauss integral of the axis curve. In other words, assume that the axes of two closed ribbons follow the same curve in threedimensional space; then even if the ribbons themselves turn and twist in entirely dissimilar ways, their values of linking number and total twist will differ by exactly the same amount. At about the same time, it was suggested the name writhing number for the quantity by which the two differ. Thus for a closed ribbon in three-dimensional space the writhing number Wr equals the difference between the linking number Lk and the total twist Tw, or Wr = Lk - Tw. The writhing number of a ribbon is a powerful quantity whose value generally changes if the axis of the ribbon is deformed in space. Hence writhing, like twisting, is not a topological property of the ribbon but a geometrical one. The writhing number can be obtained by computing the Gauss integral, but is generally far easier to calculate it by evaluating the linking number and the total twist of the ribbon in question and then taking their difference. It is only in certain special cases
266
L. Boi
that it is convenient to compute Wr directly. For example, if the axis of a ribbon lies entirely in a plane or entirely on the surface of a sphere, then it can be shown that Wr is zero. Substituting this value into the equation Wr = Lk - Tw gives Lk = Tw, which explains why in the example of the relaxed closed circular molecule of DNA both Tw and Lk were found to be + 500. Now consider what happens if the axis of this DNA molecule is made to writhe in such a way that its writhing number is no longer zero. When the writhing number of the molecule is made to change, the linking number remains the same (it can be altered only if one of the backbones of the double helix is broken) and so the twist must change. It is this relation that underlies the phenomenon of supercoiling. A ribbon's linking number, total twist and writhing number do not depend on the ribbon's location or orientation in space. They are also independent of scale, but if one axis of space is inverted (as it is the case when the ribbon is reflected in a mirror) or three axes are inverted (as is the case when the ribbon is inverted through a point), then the sign of all three quantities is changed. On the other hand, if any two axes are inverted, as happens if one looks into an ordinary microscope (that is, not a dissecting one), their sign are unchanged. In fact, any operation that turns a right-handed screw into a left-handed one without introducing other distortions will change the sign of the linking number, the total twist and the writhing number. It is also been shown that there is one other special mathematical operation that changes the sign of these quantities but leaves their magnitude unaltered: inverting the ribbon through a sphere. This result explains why the writhing number of a ribbon whose axis lies on the surface of a sphere is zero. Under this operation the closed curve described by the axis is transformed into itself. Although the equation Wr = Lk - Tw demonstrates that linking and twist are mathematically distinct, the physical difference between quantities may not yet be evident. It may be helpful, then, to consider what happens when a mathematical ribbon is wound around a cylinder in such a way that its surface is always flat against the cylinder. We shall call this pitch angle of the helix described by this ribbon a. In other words, a is the angle at which each turn of the helix inclines away from the horizontal, so that when a is small, the helix is shallow, and when a is large, the helix is steep. Now assume the ribbon is wrapped around the cylinder N times before its ends are joined in the most straightforward way. Then if the effects are ignored, it can be demonstrated that the linking number of the ribbon Lk equals Nsina. Therefore when the helix is stretched out so that the pitch angle a increases, the number of turns and thus the linking number remain the same, but the twist goes from a small value to a large one, clearly demonstrating the difference between linking and twist. Moreover, since a ribbon's writhing number is defined as the difference between its linking number and its total twist, the value of Wr for this ribbon is N - Ns'ma, or N(l - since). As this formula indicates, when a is small and the twist is small, the writhing is substantial, but when a is large and the twist is large, the writhing is minimal. The relation can be easily observed in a coiled telephone wire: when such a wire is unstressed, it assumes a highly writhed form with little twist; when its ends are pulled out, a highly twisted form that writhes only slightly is obtained. Consider how these findings apply to a real DNA, say to the polyoma-virus DNA. Remember that this DNA can be resolved through sedimentation into three components:
Topological Knots Models
267
I and n, which are circular, and HI, which is linear. It can be determined experimentally that the average linking number for a population of relaxed circular molecules of this DNA is about + 500. On the other hand, for a population of closed circular molecules (the supercoiled molecules that make up component I) the average linking number is about + 475. Thus, the closed circular molecules of the polyoma-virus DNA are underwound, having a deficit in their winding number of about 25. This finding suggests a way to define supercoiling. It is equal to ALk, the difference between the linking number of a molecule in the natural closed circular state and the linking number of the same molecule in the relaxed closed circular state (where the energy of deformation is at a minimum and the writhing number is zero). For example, for the DNA's of both polyoma-virus and the monkey virus SV40, ALk is approximately - 25. It can now be understood why a deficit in the linking number of a molecule of DNA causes the molecule to supercoil. A linear molecule of DNA in solution normally assumes a form known as the B configuration, in which the nucleotide bases are approximately perpendicular to the helical axis with 3.4 angstrom units between them and in which there are about 10 base pairs for each turn of the double helix. This is a configuration of minimum energy, and if the molecule is bent or twisted, its energy is increased. If a long molecule is simply circular, however, the diameter of the circle is large compared with the thickness of the double helix. Hence the curvature of the molecule is small and its energy is increased only slightly. As a result nicked circular molecules such as component II of polyoma-virus DNA hardly depart from the B configuration. The situation is quite different for a closed circular molecule with a deficit in linking number. To satisfy the condition that the value of Lk be less than that of a relaxed molecule (say 475 rather than 500) the double helix would have to be untwisted, a transformation that would substantially increase the deformation energy of the molecule. By supercoiling, however, the closed circular molecule minimizes the amount by which it departs from the B configuration. More precisely, as the analysis of the ribbon model revealed, one way that underwound DNA can reduce its deformation energy is by writhing. Since writhing and twist are interconvertible, it is apparent that by changing the extent of writhing it is possible to minimize the twist of a molecule, thereby minimizing the twisting component of its deformation energy. On the other hand, writhing always introduces some curvature, and so it increases the bending contribution to the energy of the molecule. Therefore the supercoiled configuration that the underwound DNA molecule assumes is one that minimizes twist while introducing the smallest possible amount of bending. To make a detailed analysis of the supercoiling of real DNA requires a fairly precise knowledge of all its elastic constants, not only end effects but also such matters as charge repulsion and thermal motion. The preceding arguments show quite clearly, however, why a closed circular DNA molecule, with a deficit in its linking number (or as is sometimes the case an excess) will writhe into a supercoil. In nature most closed circular DNA is negatively supercoiled, that is, the supercoiling results from a deficit in linking number. The analysis of the rubber-tube model explains why such molecules can be expected to assume the configuration of an interwound superhelix whose handedness, rather surprisingly, is the same as that of the double helix, namely right-handed. To create DNA molecules with different degrees of writhing it would be convenient to be able to make a nick in one of the backbones of a DNA double helix, relax the molecule
268
L. Boi
by a few turns and then close the nick. Astonishingly, enzymes have been identified that do just that. Many enzymes have been discovered in a variety of sources, including different bacteria virus and the nucleus and mitochondria of animal cells. These nickingclosing enzymes, which are also called topoisomerases, generally require no energy source to function. They always act to reduce the supercoiling of a DNA molecule and thereby lower its energy. Nicking-closing enzymes have proved to be invaluable tools for studying the physical chemistry of DNA. To begin with, adding a topoisomerase to a solution of supercoiled DNA gradually reduces the supercoiling until all the DNA molecules are in or near the relaxed state, but much more ingenious applications have been devised for these enzymes. For example, suppose a high concentration of ethidium bromide is added to a closed circular DNA, causing it to supercoil in the direction opposite to its usual one. If a topoisomerase is then added as well, the molecules in the solution will become relaxed, but because of the large amount of intercalated ethidium bromide they will be considerably more underwound than they are in their natural state. Now, if first the topoisomerase and then the dye is removed, the molecules will compensate for the additional reduction of the linking number by supercoiling even more strongly in the usual direction. In this way supercoiled molecules can be created, molecules that have many more superhelical twists than are usually present. This type of energy storage and transfer may be central to the role of supercoiling in the cell. We can even conceive of a chemical engine that by going through a similar cycle or operations turns chemical energy into work. It has been found an enzyme in the bacterium E. coli that given an energy source such as adenosine triphosphate (ATP) will reduce the linking number of relaxed circular DNA, thereby increasing its writhing number and making it supercoil. The activity of an enzyme of this type, called a gyrase, is essentially opposite to that of the nicking-closing enzymes. So far gyrases have been found in a variety of microorganisms but not in any higher organisms. Nicholas Cozzarelli and his colleagues have shown that a gyrase seems to act by bringing two segments of the DNA molecule close together. The enzyme then cuts both of the backbones of one of the segments and passes the other intact segment through the resulting gap before it rejoins the originally cut backbone. It is easy to show that such a process would alter the linking number of the DNA in increments of two rather than one, and that is exactly what has been observed experimentally. How and why does supercoiling arise? In the SV40 virus and the polyoma virus the DNA is supercoiled because it is usually not naked in the nucleus of the cell. During replication the double helix is wound on nucleosomes (beads of protein consisting of eight histone molecules with one or two associated molecules). When the DNA molecule slips off this supporting structure, it supercoils (in much the same way that the coiled rubber tubing discussed above does). In fact that the linking number is always reduced in naturally occurring DNA implies that when DNA winds around the nucleosomes in a solenoidal coil, the coil is left-handed. It is difficult to determine the exact number of supercoils that are generated by each nucleosome, but it appears likely that the number will turn out to be between 1 and 2. Nucleosomes are found in association with DNA in all higher organisms; in lower organisms the origins of supercoiling are not completely clear.
Topological Knots Models
269
Figure 39. Closed circular DNA is modeled by a Misted ribbon whose ends have been joined, (a) Since the sequences of atoms in the two chains of the double helix run in opposite directions, it is also convenient to assign the edges of the ribbon opposite directions. When the edges are viewed as directed closed curves in three-dimensional space (/>), they are found to be mathematically linked; in other words, there is no way to separate them without breaking one or the other. This relation can be described mathematically by a linking number Lk whose magnitude expresses the number of times one curve is linked through the loop of the other and whose sign depends on the way the curves arc labeled. One way to compute the value of this quantity is to examine a projection, or two-dimensional representation, the two curves and to each point where one curve crosses over the other (but not where a curve crosses over itself) assign an index number according to the following rule: If a clockwise rotation is required to move the top piece so that it coincides with the bottom piece, then +1 is assigned to the crossing point, and if a counterclockwise rotation is required, then - 1 is assigned (c). (This convention is the reverse of the one normally employed in mathematics, but it ensures that the linking number of right-handed closed circular DNA will be positive.) IJt is then calculated by adding up the index numbers and dividing by 2 (the number of curves). The linking number obtained in this way is a signed integer equal to 0 if the two curves arc unlinked (), to +1 or -1 if one curve links through the other juste once (e), to +2 or - 2 if one curve links through the other twice {/), and son on. The sign of the number will change if the orientation of cither one of the curves is changed or if the pair of curves is viewed in a mirror (g). The value of the linking number remains the same no matter how the two curves are deformed (h), and so since the linking number of a twisted ribbon is equal to the linking number of the sugar-phosphate backbones of the DNA molecule it models, the linking number expresses an important constraint on the possible supercoiled structure of the DNA.
270
L Boi
fiv-
0 1* - 0
Kr- 4t,U • *l
Figure 40. Twisting of a ribbon can be assigned a numerical value by placing a small arrow on Ihe ribbon perpendicular lo ils axis and pointing to one of its edges. As the arrow moves along the ribbon it rotates about the axis, and the magnitude of the total twist Tw can be defined as the integral of the angular rate of this rotation with respect to the arc length of the curve described by the axis. Whether this quantity is positive or negative depends on whether the rotation of the arrow about the axis is respectively righthanded or left-handed. When the axis of the ribbon lies entirely in a plane as is shown here, then the total twist is easily computed, being equal to the number of rotations the arrow makes about the axis. The twist can be computed separately for different parts of the ribbon and can then be summed to obtain the total value.
Topological Knots
Models
Figure 41. Completion of replication of circular DNA molecules. Denaluration of the unreplicated terminus followed by supercoiling overcomes the steric and topological constraints of copying the terminus. At least with SV40 DNA. the final two steps (synthesis and decatenation) can occur in either order depending on experimental conditions. Parental strands arc in dark colors; daughter strands in light colors. (Inset) Electron micrograph of two fully replicated SV40 DNA molecules interlocked twice. This structure would result if synthesis was completed before decatenation. Topo H can catalyze decatenation of such interlocked circles in vitro. (Drawing adapted from S. Wasserman and N. Cozzarelli, 1986. Science, 232, p. 951. Micrograph from O. Sundin and A. Varshavsky, 1981. Cell, 25, p. 659.)
L Boi
272
Overwound region
Figure 42. Movement of the growing fork during DNA replication induces formation of positive supercoils in the duplex DNA ahead of the fork. In order for extensive DNA synthesis to proceed, the positive supercoils must be removed (relaxed). This can be accomplished by E. coli DNA gyrase and by cukaryotic type I and type II topoisomerases. t*i
m
DNA with I F M end
DNA with fued and*
SV^TC^N^XTCX*^?^^**
|<2<W^X?W**x*yWS
unwind t o DNA base paire (one helical turn)
|<*r^>^
h^C^^CN.-^^
DNA helix mutt rotate one m m
DNA helix forme oneiupercoll
protein molecule JooMX**5.
NEGATIVE SUPERCOILING helix opening facilitated
f+Jf+x ^KJ
POSITIVE SUPERCOILING helix opening hindered
Figure 43. Superhelical tension in DNA causes DNA supercoiling. (A) For a DNA molecule with one free end (or an nick in one strand that serves as a swivel), the DNA double helix rotates by one turn for every 10 nucleotide pairs opened. (B) If rotation is prevented, superhelical tension is introduced into the DNA by helix opening. One way of accommodating this tension would be to increase the helical twist from 10 to 11 nucleotide pairs per turn in the double helix that remains in this example; the DNA helix, however. resists such a deformation in a springlike fashion, preferring to relieve the superhelical tension by bending into supercoilcd loops. As a result, one DNA supercoil forms in the DNA double helix for every 10 nucleotide pairs opened. The supercoil formed in this case is a positive supercoil. (C) Supercoiling of DNA is induced by a protein tracking through the DNA double helix. The two ends of the DNA shown here arc unable to rotate freely relative to each other, and the protein molecule is assumed also to be prevented from rotating freely as it moves. Under these conditions, the movement of the protein causes an excess of helical turns to accumulate in the DNA helix ahead of Ihe protein and a deficit of helical turns to arise in the DNA behind the protein, as shown.
Topological Knots Models
273
6. Conclusions As we saw in previous section, knots have formed the basis of fruitful speculations in the realm of matter, and that inorganic and organic chemists and physicists claimed that the molecule they study and observe may form knots or links. In addition, section 2 has been devoted to show that, according to recent mathematical theories, physical space might be of string nature and that it might be knots-shaped. Almost a century after Einstein's accomplishment in fashioning general relativity, string theory give us a quantum-mechanical description of gravity that necessarily modifies general relativity when the distances involved become as short as the Planck length. Whereas general relativity asserts that the curved properties of the universe are described by Riemannian geometry, string theory asserts that this is true only if we examine the structure of the universe on large enough scales. On scales as small as the Planck length a new kind of geometry must emerge, one that aligns with the new physics of string theory. This new geometrical framework is called quantum geometry, and knotted structures are very likely one of its most fundamental ingredients We have given reasons why, in many contexts at the relativistic as well as at the quantum scales physics, 3+1 dimensional space of the special theory of relativity is the proper space for describing the physical world. However, further investigations led by supergravity and superstring theorists showed that the 11-dimensional topological space are the most physically relevant, notably because they allow for unifying gravity with the other fundamental forces in nature within the same mathematical framework. In the very recent years, it appeared clearly that quantum field theory, knot theory and topological and arithmetical invariants theory are intimately linked and involved in the same reality. One might say that knots are ideal topological configurations which optimises the energy needed by any physical, chemical or biological system in order to may evolve in space and time by avoiding its dissipation outside the system. In addition, knots seems to be involved in some kind of robustness property pertaining to many of those dynamical systems. For example, one of the inherent properties of vortex theory in modern fluid mechanics and molecular dynamics is that of transmutation, according to which knotted vortex atoms change their knot type if their energy is increased beyond a certain threshold, as do physical atoms change their atomic structure. Another example concerns the ideal fluids (in which there are no dissipative effects). Vortex or magnetic line topology is frozen in the ideal fluid while the structures of these objects, in continuous motion, can be highly distorted by the background flow. This means that if these tubes (the presence of tube-like structures at different length scales seems to be a generic feature of organized fluid patterns) are initially knotted or linked, they will evolve and deform in the ideal fluid by preserving the type of knot or link that ties them together, even through their geometry may become utterly complicated. This is a fundamental, intrinsic property of the governing equations (the Euler's equations). Topological properties of ideal fluids are therefore flow-invariant, and physical information expressed in pure topological terms is therefore bound to the conserved as well. Concerning finally the role of knots in living processes, it has to be once again stressed the participation of topoisomerases in nearly all cellular processes involving DNA. Because the enzymes affect the topology and organization of intracellular DNA,
274
LBoi
the primary effects of inactivating a topoisomerase are also likely to generate farreaching ripples. The regulation of the cellular levels of the enzymes themselves and the association of the enzymes with other cellular proteins are closely tied to the cellular functions of the enzymes. One major cellular function of the topoisomerases is to prevent excessive supercoiling of intracellular DNA. However, supercoiling is sometimes utilized in vivo to drive a particular region of intracellular DNA into a conformation suitable for a particular process. Initiation of DNA replication, for example, often requires that the DNA be in a negatively supercoiled state. Indeed, replication is the best known process that generates supercoils in intracellular DNA. The involvement of various topoisomerases in the removal of positive supercoils generated by replication is generally in accordance with their known in vitro specifities. Namely, eukaryotic DNA topoisomerases I and II, and bacterial DNA topoisomerases IV, can efficiently remove supercoils of either sense; bacterial DNA topoisomerases I and HI, and eukaryotic DNA topoisomerase HI, can remove negative supercoils, but not positive supercoils, unless a single-stranded region is present in the DNA. Bacterial gyrase is unique in its ability to convert positive to negative supercoils; depending on how fast the positive supercoils are generated and how fast they are converted to negative supercoils, gyrase can either prevent accumulation of positive supercoils in an intracellular DNA segment or keep the segment in a negatively supercoiled state. The DNA topoisomerases presumably co-evolved with the formation of very long and/or ring-shaped DNA molecules. To solve a variety of problems that are rooted in the double-helix structure of DNA, nature has created not one but three distinct enzymes. In eukaryotes, members of all three subfamilies of DNA topoisomerases have been found in the same cells; in bacteria, four members from two subfamilies participate in nearly all cellular transactions of DNA. The past decade saw much progress in the study of the DNA topoisomerases, but many questions remain. The key to answering to them may lie in the elucidation of interactions between the DNA topoisomerases and other cellular proteins. Complexes between these enzymes and transcription factors and chromosomal proteins illustrate new avenues yet to be fully explored. Furthermore, whereas the information available on topoisomerases-DNA interactions is substantial, that on interactions in the context of chromatin is scarce; whether eukaryotic DNA topoisomerase II has a structural role in the organization of interphase and/or metaphase chromosomes, for example, is yet to be settled. By the 1960s, it became clear fhat-alfhough the informational content of the genetic code was embodied in a linear array of bases-it was the three-dimensional structure of the DNA double helix that ultimately would govern its physiological functions. This is very likely the crucial point. As an illustration of this point, in perhaps the most striking biological example of "form dictates function", the two complementary parental strands of DNA must separate during semi-conservative replication in order to act as the templates for each of the two newly synthesized daughter strands. This discovery led to the realization that the structure of DNA, while elegant, burdened the cell with previously unimagined topological problems. Although these topological problems were originally recognized only for circular molecules, because of the long length of chromosomal DNA, we now know that they apply to linear genomes as well. The key for finding the solution to these problems seems to lies in the conformational, organizational and biological roles of the topoisomerases which, because of their extreme structural and functional complexity, still remains in part to be elucidated. All
Topological Knots Models
275
that strongly suggests that the secrets of life maybe lies in topology, namely in the fact that forms possesses the capacity to convert objects, structures and events one into another. References Alberts, B. et al., Molecular Biology of the Cell, fourth edition, New York, Garland Science, 2002. Atiyah, M., "Topological Quantum Field Theories," Institut des Hautes Etudes Scientifiques, Publications Mathematiques, 68 (1988), 175-186. Atiyah, M., The geometry and physics of knots, Cambridge, Cambridge University Press, 1990. Baez, J. and J. P. Muniain, Gauge Fields, Knots and Gravity, Singapore, World Scientific, 1994. Balinsky, B. I., An Introduction to Embryology, (2nd edition), Saunders, London, 1965. Berger, J. M , "Structure of DNA topoisomerases," Biochimica et Biophysica Acta, Vol. 1400 (1-3), 1988,3-18. Berger, J. M., Gamblin, S. J., Harrison, S. C , and Wang J. C , "Structure and Mechanism of DNA Topoisomerase II," Nature, 379 (1996), 225-232. Birman, J. S., "New points of view in knot theory," Bull. Amer. Math. Soc, Vol. 28, No. 2, 1993, 253-287. Birman, J. S., Braids, links, and mapping class groups, Princeton, Princeton University Press, 1974. Blanchet, C. et al., "Topological quantum field theories derived from the Kauffman bracket," Topology, Vol. 34, No. 4, 1995, 883-927. Boi, L., "Geometrical and Topological Foundations of Theoretical Physics: From Gauge Theories to String Program," International Journal of Mathematics and Mathematical Sciences, 34 (2004), 1777-1836. Boi, L., "Les formes vivantes: de la topologie a la biologie", in Vie, Monde, Individuation, J.-M. Vaysse (ed.), Georg Olms Verlag, Hildesheim, 2003, 159-170. Boi, L., "Immersions topologiques de la sphere S3 et gastrulation chez l'embryon," J. Theoret. Bio., 2004 (to appear in 2006). Bonahon, F., "Geometric Structures on 3-Manifolds," in Handbook of Geometric Topology, edited by R. J. Daverman and R. B. Sher, Elsevier, Amsterdam, 2002, 93-164. Burde, G., Zieschang, H., Knots, Berlin, W. de Gruyter, 1985. Carbone, A. and M. Gromov, "Mathematical Slices of Molecular Biology," Gazette des Mathematiciens, No. 88, Special Issue; SMF, Paris, April 2001. Carter, J. S., How Surfaces Intersect in Space. An Introduction to Topology, World Scientific, River Edge, N. J., 1995. Carder, P., "Developpements recents sur les groupes de tresses. Applications a la topologie et a l'agebre," Asterisque, Vol. 189-190 (1990), 17-67 (Seminaire Bourbaki, 1989-90, exposes 715-729). Charvin, G., Bensimon, D, and V. Croquette, "Single-molecule study of DNA unlinking by eukaryotic and prokaryotik type-II topoisomerases," Proc. Natl. Acad. Sci. Usa, 100 (17), 2003, 9820-9825. Cluzel, Ph., Lebrun, A., Heller, Ch., Lavery, R., Viovy, J.-L., Chatenay, D., Caron, F., "DNA: an extensible molecule," Science, 271(1996), 792-794. Conway, J. H., "An enumeration of knots and links and some of their related properties," in Computational Problems in Abstract Algebra, edited by J. Leech, Pergamon Press, New York, 1970, 329-358. Cozzarelli, N. R., "Evolution of DNA Topology: Implications for its biological roles," in New Scientific Applications of Geometry and Topology, Proc. Sympos. Appl. Math., Vol. 45, Amer. Math. Soc, Providence, 1992.
276
L. Boi
Cozzarelli, N. R., Boles, T. C , and J. H. White, "A primer on the topology and geometry of DNA supercoiling," in N.R. Cozzarelli and J.C. Wang (eds.), DNA Topology and Its Biological Effects, Cold Spring Harbor Laboratory Press, New York, 1990, 139-184. Crowell, R. H. and R. H. Fox, Introduction to Knot theory, Ginn and Company, 1963. D'Hoker, E., "Perturbative theory of strings and superstrings," Notes de cours du Centre Emile Borel, N° 34, IHP, Paris, 2001. De la Harpe, P., Kervaire, M. and CI. Weber, "On the Jones Polynomial," L'Enseignement Mathematique, 32 (1986), 271-335. Dean, F. B. et al., "Duplex DNA Knots Produced by Escherichia coli Topoisomerases I," The Journal of Biological Chemistry, Vol. 260, No. 8, April 1985, 4975-4994. Deibler, R. W., Rahmati, S., and E. L. Zechiedrich, "Topoisomerase IV, alone, unknots DNA in E. coli," Genes andDev., 15 (6), 2001, 748-761. Dehn, M., Papers on Group Theory and Topology, New York, Springer, 1987. Delbriick, M., "Knotting problems in biology," in Mathematical Problems in the Biological Sciences (M. Delbriick ed.), Proc. Sympos. Appl. Math., Vol. XIV, Amer. Math. Soc, Providence, 1962. Edelman, G. M., Topobiology: An introduction to molecular embryology, New York, Basic Books, 1988. Epple, M., "Topology, Matter, and Space, I: Topological Notions in 19Ul-Century Natural Philosophy," Arch. Hist. Exact Sci., 52(1998), 297-392. Fox, R.H., "A Quick Trip Through Knot Theory," in Topology of 3-Manifolds and Related Topics, M.K. Fort, JR., ed., Prentice-Hall, Englewood Cliffs, 1962, 120-167. Fuller, F. B., "Decomposition of the linking number of a closed ribbon: A problem from molecular biology," Proc. Natl. Acad. Sci. Usa, 75 (1978), 3557-3559. Fuller, F. B., "The writhing number of space curve," Proc. Natl. Acad. Sci. Usa, 68 (1971), 815-819. Gambini, R. and J. Pullin, Loops, Knots, Gauge Theories and Quantum Gravity, Cambridge, Cambridge University Press, 1998. Gary-Bobo, C. and F. Leterrier, Biologie membranaire : structure et dynamique des membranes biologiques, Paris, Hermann, 1989. Ghrist, R. W., Holmes, P. J., and M. C. Sullivan, Knots and Links in Three-Dimensional Flows, Heidelberg, Springer, 1997. Gordon, C. McA., "Some aspects of classical knot theory," in Knot Theory (proceedings, Planssur-Bex, Switzerland, 1977), J. C. Hausmann ed., Springer-Verlag, Heidelberg, 1978, 1-60. Gordon, C. McA, Luecke, J., "Knots are determined by their complements," J. Amer. Math. Soc, Vol. 2, No. 2, 1989, 371-415. Griend van de P., "A History of Topological Knot Theory," in History and Science of Knots, J. C. Turner and P. van de Griend eds., Singapore, World Scientific, 1996. Hagerman, P. J., "Flexibility of DNA," Ann. Rev. Biophys. & Biophys. Chem., 17(1988), 265286. Harrison, S. C , "A structural taxonomy of DNA-binding domains," Nature, 353(1991), 715719. Hemion, G., The Classification of Knots and 3-Dimensional Spaces, Oxford University Press, Oxford, 1992. Holmes, V. F., Cozzarelli, N. R., "Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling," Proc. Natl. Acad. Sci. Usa, 97 (4), 2000, 1322-1324. Jacob, F., Monod, J., "Genetic regulatory mechanisms in the synthesis of proteins," Journal of Molecular Biology, 3(1961), 318-356. James, I. M. and E. H. Kronheimer, Aspects of Topology, Cambridge, Cambridge University Press, 1985. Jones, V. F. R., "Hecke algebra representations of braid groups and link polynomials," Annals of Mathematics, 126 (1981), 381-394.
Topological Knots Models
277
Jones, V. F. R., "A polynomial invariant for links via von Nueman algebras," Bull. Amer. Math. Soc, 129(1985), 103-112. Kauffman, L. H., On Knots, Princeton, Princeton University Press, 1987. Kauffman, L. H., "New Invariants in the Theory of Knots," Amer. Math. Monthly, 95 (1988), 195-242. Kauffman, L. H. (editor), The Interface of Knots and Physics, Proc. Symp. Appl. Math., Vol. 51, Amer. Math. Soc, 1996. Kauffman, L. H., Knots and Physics, (third edition), World Scientific, Singapore, 2001. Kauffman, L. H., "Knots," this Volume, pp. 135-210. Kauffman, S. A., The Origins of Order, New York, Oxford University Press, 1993. Kohno, T. (ed.), New Developments in the Theory of Knots, Singapore, World Scientific, 1989. Romberg, A., Structure and Functions of DNA, and Binding and Unwinding Proteins and Topoisomerases in DNA Replication, New York, W. H. Freeman, 1980. Kouno, M., Motegi, K. and T. Shibuya, "Behavior of Knots under Twisting," in Aspects of Low Dimensional Manifolds, Advances Studies in Pure Mathematics 20, Edited by Y. Matsumoto and S. Morita, Mathematical Society of Japan, Tokyo, 1992, 113-124. Kuiper, N. H., Meeks, W., "Total curvature for knotted surfaces," Invent. Math., 77 (1), 1984, 25-69. Lapidus, M., "T-Duality, Functional Equation, and Noncommutative Stringy Spacetime," this Volume, pp. 1-92. Laurie, B., Katritch, V., Sogo, J., Koller, Th., Dubochet, J., Stasiak, A., "Geometry and Physics of Catenanes Applied to the Study of DNA Replication," Biophysical Journal, Vol. 74, June 1998, 2815-2822. Lickorish, W. B. R., Millet, K. C , "A Polynomial Invariant of Oriented Links," Topology, 26 (1987), 107-141. Lickorish, W. B. R., "Prime Knots and Tangles," Trans. Amer. Math. Soc, Vol. 267, No. 1, 1981,321-332. Likorish, W. B. R., An Introduction to Knot Theory, New York, Springer, 1997. Lodish, H. et al.. Molecular Cell Biology, fourth edition, New York, W. H. Freeman, 2002. Mathews, K., Holde van P., Biochemistry, Benjamin, Redwood City, CA, 1990. Milnor, J., "On the total curvature of knots," Ann. of Math., 52 (1950), 289-296. Moffat, H.K. and A. Tsinober (Eds.), Topological Fluid Mechanics, Cambridge University Press, Cambridge, 1990. Murasugi, K., Knot theory and its applications, Boston, Birkhauser, 1996. Nash, C. and S. Sen, Topology and Geometry for Physicists, London, Academic Press, 1983. Novikov, S. P., Topology I, "Encyclopaedia of Mathematical Sciences," Vol. 12, Berlin & Heidelberg, Springer-Verlag, 1996. Pohl, W. F., "Some integral formulas for space curves and their generalization," Amer. J. of Math., 90 (1968), 1321-1345. Pohl, W. F., Roberts, G. W., "Topological considerations in the theory of replication of DNA," J. Math. Biology, 6 (1978), 383-402. Postow, L., Crisona, J., Peter, B. J., Hardy, C. D., and N. R. Cozzarelli, "Topological challenges to DNA replication: Conformations at the fork," Proc. Natl. Acad. Sci. Usa, 98 (15), 2001, 8219-8226. Prasolov, V.V., Sossinsky, A.B., Knots, Links, Braids and 3-Manifolds, Translations of Mathematical Monographs, Vol. 154, American Mathematical Society, 1997. Rashevsky, N., "The Geometrization of Biology," Bull. Math. Biophys., 18 (1956), 31-56. Roca, J., Berger, J. M., Harrison, S. C , and J. C. Wang, "DNA Transport by a Type n Topoisomerase: Direct Evidence for a Two-Gate Mechanism," Proc. Natl. Acad. Sci. Usa, 93 (1996), 4057-4062. Rolfsen, D., Knots and links, San Francisco, Publish or Perish, 1990 (second edition). Rovelli, C. and L. Smolin, "Knot theory and quantum gravity," Physical Review Letters, 61 (1988), 1155-1189.
278
L. Boi
Rushing; T. B., Topological Embeddings, New York, Academic Press, 1973. Sauvage, J.-P., "Les Catenanes," Nouveau Journal de Chimie, 9 (5), 1985, 299-310. Schiicker, Th., "Knots and their Links with Biology and Physics," in Geometry and Theoretical Physics (J. Debrus, A. C. Hirshfelsd Eds.), Heidelberg, Springer, 1991. Schwarz, A. S., Quantum Field Theory and Topology, Heidelberg, Springer-Verlag, 1993. Seeman, N. C , "DNA Nanotechnology: From Topological control to Structural Control," in Pattern Formation in Biology, Vision and Dynamics, A. Carbone, M. Gromov, P. Prusinkiewicz editors, World Scientific, Singapore, 2000, 271-309. Seifert, H. and W. Threlfall, Lehrbuch der Topologie, Leipzig, Teubner, 1934. Simon, J., "Topological chirality of certain molecules," Topology, 25 (1986), 229-235. Simondon, G., L'individu et sa genese physico-biologique, Grenoble, Millon, 1995. Stasiak, A. et al., "Ideal knots and their relation to the physics of real knots," in Ideal Knots (A. Stasiak et al. eds.), Singapore, World Scientific, 1998. Sterwart, I., Life's Other Secret, Penguin, London, 1998. Strick, T. R., Allemand, J.-F., Bensimon, D., and V. Croquette, "Behavior of Supercoiled DNA," Biophysical Journal, 74 (1998), 2016-2028. Strogatz, S. H., Nonlinear Dynamics and Chaos, Perseus Publishing, Cambridge, MA, 1994. Sumners, D. W., "Knot theory and DNA," in New scientific applications of Geometry and Topology (D.W. Sumners, ed.), Proc. Sympos. Appl. Math., Vol. 45, Amer. Math. Soc, Providence, 1992. Taniyama, K., "Cobordism, Homotopy and Homology of Graphs in R3," Topology, Vol. 33, No. 3, 1994, 509-523. Thistlethwaite, M. B., "Knot tabulations and related topics," in Aspects of Topology. In memory of Hugh Dowker 1912-1982,1. M. James and E. H. Kronheimer eds., Cambridge University Press, 1985, 1-76. Thorn, R., "Topological models in biology," Topology, 8 (1969), 313-335. Thurston, W. P., Three-Dimensional Geometry and Topology, Princeton, Princeton University Press, 1997. Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds, Walter de Gruyter, Berlin, 1994. Waba, D. M., "Topological stereochemistry," Tetrahedron, 41(1985), 3161-3212. Waddington, C. H., "Membrane knotting between blastomeres of Limnea," Exptl. Cell Research, 23 (1961), 631-633. Wang, J. C , "DNA topoisomerases," Ann. Rev. Biochem., 54 (1985), 665-697. Wang, J. C , "DNA Topoisomerases,'Mnrcw. Rev. Biochem., 65 (1996), 635-692. Wasserman, S. and N. R. Cozzarelli, "Biochemical Topology: Applications to DNA Recombination and Replication," Science, Vol. 232, May 1986, 951-960. White, J. H., An introduction to the geometry and topology of DNA structure, CRC Press, Boca Raton, CA, 1989. White, J. H., Cozzarelli, N. R. and W. R. Bauer, "Helical Repeat and Linking Number of Surface-Wrapped DNA," Science, Vol. 241, July 1988, 323-327. White, J., "Self-linking and the Guass integral in higher dimensions," Amer. Jour. Math., 91(1969), 693-728. Whitehead, J. H. C , "A certain region in euclidean 3-space," Proc. Natl. Acad. Sci. Usa, 21 (1935), 364-366. Whitney, H., "On regular closed curves in the plane," Comp. Math., 4 (1937), 276-284. Whittington, S. G., Sumners, De Witt and T. Lodge (editors), Topology and geometry in Polymer Science, Springer, New York, 1998. Witten, E., "Topological quantum field theory," Comm. Math. Phys., 117 (1988), 353-386. Zeeman, E. C , "Twisting spun knots," Trans. Amer. Math. Soc, 115 (1965), 471-495.
Part ffl
Mathematical and Logical Modeling in the Natural Science and Living Systems
"The exploration of topological space is the exploration of the last great frontier the human mind. These space have been created by humans for the purpose of understanding the world in which we live. But ultimately they lead to an understanding of our mind, for it can only be understood in terms of its creations. Topological spaces, then, are at once a form of art and a form of science, and as such they reflect our deepest intellect." J. Scott Carter, How Surfaces Intersect in Space, 1995.
This page is intentionally left blank
BEYOND MODELLING: A CHALLENGE FOR APPLIED MATHEMATICS PETER T. SAUNDERS Department of Mathematics, King's College, Strand, London WC2R 2LS, England peter. saunders@kcl. ac.uk
Abstract: Biologists and social scientists often carry out their research in ways that are quite different from those used by physical scientists. Their results are often different as well; the nature of their subjects makes it less likely that they can produce the firm and generally quantitative predictions that are standard in physics. As mathematics is being applied more and more outside the physical sciences, a new methodology is appearing that better reflects the nature of these other subjects. This is happening only slowly, chiefly because the relevant work is generally seen only in its context of trying to solve a particular problem rather than as a contribution to applied mathematics as such. The aim of this paper is to encourage progress by describing some results that have already been obtained, and by discussing explicitly some of the issues that arise.
Introduction Over the past twenty or thirty years, there has been a very great increase in the number of applications of mathematics to biology and the social sciences. There is now hardly a field that does not have a journal devoted to mathematical and theoretical papers. But while mathematics has been expanding into new and exciting areas, most of the work has been done using methods and methodology developed over three centuries in connection with the physical sciences. There have been useful contributions, but many important problems remain largely untouched, chiefly because we are not equipped to address them. Organisms and societies are both complex and highly structured, and we need techniques that are capable of dealing with such systems. Developing them is not primarily a matter of deriving new mathematical results, though that will be part of it. What is required is a new methodology, new ways of applying mathematics, and that makes this above all a challenge for applied mathematicians. There has already been progress, but it has been slow and largely uncoordinated. This is partly because while mathematicians are accustomed to learning new results, we are less used to thinking about new ways of applying those we already know. The chief reason, however, is that we do not generally set out to develop a new methodology in the way that we might decide to investigate a particular field or try to solve a known problem. What generally happens is that we are trying to solve a particular problem and the logic of the 281
282
P. T. Saunders
situation (combined, more often than not, with a lack of success by familiar methods) leads us to attempt something novel. Thus both those who are doing the work and those who are criticising it generally see it in its role as a possible contribution to a particular field rather than as part of the development of a new paradigm. They will not be expecting methodological problems, and will be taken by surprise when they appear1. Each example will tend to be seen in isolation, which makes it unlikely that we will learn from similar problems that have occurred in different contexts2. The aim of this paper is to explore the issues and to make them explicit. Whether we are engaged in developing and using the new methodology, or whether we are watching from the sidelines, it is important to understand what is happening. Like everything else in science, the new developments must ultimately be judged by whether they contribute to our understanding of the phenomena, but in arriving at this judgement we have to realise that both the questions we are posing and the kinds of answers we can accept may be different from what we are accustomed to. Most of the current applications of mathematics in biology are not novel in the sense that I mean here. Many, including some of the most useful, are not so much biology as physics or chemistry in a biological setting. In others, mathematics is applied directly to biology but in a way which at least looks like what happens in physics. For example, theoretical ecologists often write down and solve differential equations which are supposed to represent the interactions of different species with each other and with the environment. They do not claim that simple equations are precise models of reality. The expectation, however, is that they are close enough for the purpose, that while the details may be inaccurate they capture the general behaviour of the ecosystem in question. This approach has its own disadvantages, largely because we can think that we are closer to the paradigm of physics than we actually are, but if carefully used it can produce useful results. The applications described in this paper are different. They are not intended to be models at all, at least not in the usual sense. They are closer to what Pielou (1981) refers to as investigations. We do not set out to build a model of a whole system. Instead, we ask one or two specific questions about the system, and try to use mathematics to help us find the answers.
' A colleague in the humanities once suggested to me that the reason disputes within mathematics can be so fierce is that we can almost always reach a consensus by formal reasoning, and therefore find it very difficult to cope with situations in which we cannot. 2 See, e.g. Saunders (1999)
Beyond Modelling
283
A major difference with most conventional modelling is that we generally do not have a definite hypothesis about the mechanism that is producing the phenomena. That is not to say, however, that we ignore the mechanism altogether. On the contrary, we specifically assume that the phenomena arise out of a conventional mechanism and not, for example, from morphic resonance (Sheldrake, 1981). We often rely heavily on the assumption, explicit in the case of catastrophe theory and implicit or at least less rigorously translated into mathematics in others, that the mechanism is in some sense no more complicated than it has to be to produce the phenomena that we are observing and trying to understand. In conventional modelling, if our predictions turn out to be wrong, we generally conclude that the mechanism is not what we thought it was. In the new approach, our conclusion would more likely be that the mechanism is not as simple as we had thought. The phenomenon is not merely something we would expect a system of this kind to do; there is something else going on. This can be a very useful piece of information, because when faced with a complex system it is not always easy to know which features require special explanations and which do not. We can waste a lot of time trying to account for things that were bound to happen anyway. The approach can and does lead to testable predictions, though not always in quite the same way as in conventional modelling. To illustrate this, I shall discuss two early examples in detail, both depending on catastrophe theory. In the first, Zeeman (1974) predicted that there could be a wave associated with the formation of a boundary in a previously undifferentiated tissue. In the second, Bazin and Saunders (1978) predicted that an amoeba should modify a certain chemoattractant. Both predictions turned out to be correct. Naturally, that was gratifying to the authors, but the chief point is that results obtained using the new approach can indeed be held up to nature and tested, no less than those derived by conventional methods. In conventional modelling, and especially in physical science, we often construct a model and then treat it largely as an exercise in mathematics, only translating back into science at the end. In both the examples here, arriving at the prediction required mathematics and biology to be used together. When we are answering questions rather than making complete models, we generally find we have to keep the original problem in mind the whole time. This requires especially close cooperation between mathematicians and their colleagues in other disciplines. It also means that each will have to learn about the other's subject, because effective cooperation requires an overlap of knowledge between the collaborators.
284
P. T. Saunders
Catastrophe Theory Catastrophe theory was developed by Rene Thorn in the 1960s and first came to the attention of the general scientific community with the publication in 1972 of his book Stabilite structurelle et morphogenese. Briefly, what the theory says is the following. Imagine a system which can, in principle, be modelled by the sorts of differential equations that are commonly used in conventional modelling. Note that it only has to be possible in principle; the system may be far too large and complex for it to be practicable. Then under quite weak conditions, the number of qualitatively different configurations of discontinuities that can occur is independent of the size of the system and typically very small. If there are no more than four 'control variables' there are only seven possible 'elementary catastrophes'3. The applications generally have to do with the forms that can arise, as in the study of caustics, or in the question of when and where discontinuities will occur, as in the two examples discussed in this section. A distinctive feature of catastrophe theory is that the results we obtain are qualitative. Almost everything is specified only up to a diffeomorphism. While this may not be what applied mathematicians are accustomed to, it is generally an advantage, because in many applications it is qualitative results that we really want. Or perhaps I should say that given the nature of the data that are available, it is only qualitative results that we can reasonably expect, or can compare with the observations. In fact, this is not as different from conventional modelling as it sounds, because the equations we write down in biology are generally chosen because they have the right general form, rather than because we believe them to be a close representation of the mechanism of the system. No one sees the LotkaVolterra equations, or the many variations that are now being used, as the ecological equivalents of the equations of motion of the planets. And when we solve the equations we have written down, the actual numbers we obtain are seldom significant. What matters is what they tell us about the qualitative behaviour of the system: whether a species will persist, whether there will be oscillations, and so on. Thus we are actually using a quantitative model to find answers to questions that are essentially qualitative. This can be a useful strategy, but it has its drawbacks. When we write down equations we introduce many extra
3
For an accessible account of catastrophe theory and a more precise statement of the result, see Saunders (1980).
Beyond Modelling
285
assumptions into a model. The logistic equation dx/dt = rx (1-x/K) contains far more than the statement that the specific growth rate of a species tends to decrease as the population rises and that the population eventually levels out. For example, it also supposes that there is a fixed 'carrying capacity', K. Whether or not we really believe this to be the case, the fact that it is part of this standard model can lead us to include the idea in our thinking even when we are not using the equation in which the parameter occurs. When we use the logistic equation, or others of that kind, we are left with the problem of deciding whether our conclusions follow from our assumptions about the system, or whether they are merely artefacts of the particular equations we have chosen to model it. We may derive a large number of results about the equations, but how much they tell us about the real system is another matter. Qualitative results may be harder to obtain and do not give the same (generally misleading) impression of precision, but it is easier to identify the assumptions on which they depend and, therefore, to know how relevant they are to the system we are studying. When catastrophe theory first appeared it aroused a great deal of interest, but this soon turned to extreme scepticism, especially in the USA. The critics claimed that while the mathematics itself was correct, and while the theory could be applied to some problems in physics (such as phase transitions or the properties of caustics), it had nothing to contribute to biology and the social sciences (Zahler & Sussman, 1977). The attacks were directed against catastrophe theory in particular, but since the controversy concerned the applications rather than the mathematical foundations, the issue was broader than either side realised at the time. The real question was whether the only legitimate ways of applying mathematics are those that are standard in physics. As a result, when the critics won the day, they not only largely blocked the development of catastrophe theory, they also held back the growth of applied mathematics in general. As we shall see, catastrophe theory can indeed be applied in biology. It can produce results which are not obvious and which can be tested by observation or experiment. All the same, it is not difficult to imagine why so many mathematicians were suspicious and were so readily convinced that there was some sleight of hand going on. The theory seems to be offering something for nothing. You need little or no knowledge about the mechanism, and not much data, and yet you can derive results. This must be a violation of some sort of theoreticians' conservation law — more information is coming out of the analysis than was put in.
286
P. T. Saunders
In fact, this is not the case. If, for example, we write down and solve the equations that describe the fluid flow around an aircraft, then, within the accuracy of the model, we have completely determined the motion of the air at every location in the vicinity of the aeroplane. Catastrophe theory, in contrast, tells us only one thing, viz. that there can be a shock wave and, if there is, we expect it to be in the shape of a cusp. This is only a minute fraction of the information contained in the solution of the hydrodynamical equations. It may be the most interesting piece of information, but that's another matter. It is possible to answer specific questions with only a very small amount of input in the form of data and hypotheses. It's like driving through a tunnel rather than going over the top of the mountain. You don't get to see the whole panorama but you do reach your destination, and using much less energy. We may say that catastrophe theory is efficient, by analogy with the concept of an efficient estimator in statistics, i.e. one that gives you the most information about a particular parameter from a given amount of data. I have written of answering specific questions as though we could always find a way of addressing any question we might wish to ask. That, of course, is not the case. It could hardly be, for if it were we could build up a complete model by answering many questions one at a time. Nevertheless, it is sometimes possible, and when it is we should not be allow ourselves to be put off by those do not understand what we are doing. And on the whole, those we can answer to tend to be the important ones, and the same ones that we are generally trying to answer when we use other techniques. Even if what we discover is not what we most wanted to know, it is still information about the system and it may give us important clues that can help us in conventional modelling. For example, Seif (1979) fitted a cusp catastrophe to observations on patients with hyper- and hypothyroidism. He used this to explain some of the peculiarities of the treatment of patients with thyroid conditions. He then fitted a cusp surface numerically to the data, and from this he was able to infer that the number of secretory granules bound to a membrane should be two. This quantitative result did not follow from catastrophe theory alone, but would have been much more difficult to obtain without it. Primary and Secondary Waves The application that became the centre of the controversy about catastrophe theory was Zeeman's (1974) paper on travelling wave fronts. Zeeman claimed that when a frontier forms in a region that was previously undifferentiated, i.e. either homogeneous or with at most a gradient in properties along it, then this
Beyond Modelling
287
frontier does not first appear in its final position. Instead, it forms to one side, and then moves through the region before stabilising. The proof consists in showing that under quite plausible conditions catastrophe theory can be assumed to apply to the situation. We then suppose that the mechanism that creates the frontier is no more complicated than it has to be to produce the observed phenomena. This implies that the process involves a cusp catastrophe, which means there are two control variables, and the obvious pair are t, the time, and s, distance measured at right angles to the forming boundary. With these assumptions, and since we know that at an early time to the properties of the region are continuous whereas at some later time t] there is a discontinuity, we infer that there is a cusp in the s-t plane. The 'world-line' of any cell is a line s = const. Any cell whose world line crosses both branches of the cusped curve will undergo an abrupt change in its properties as it crosses the second branch. In general, different world lines will cross this cusp at different values of t, i.e. different cells will change from one state to the other at different times, and so the frontier between cells in one state and cells in the other will move as it forms. The only case in which this does not happen is when the axis of the cusp lies precisely in the t-direction. Only one world line crosses the cusp twice (in two coincident points) and this is where the frontier appears and remains. (See Fig. 1) Zeeman then argues that this is a non-generic case, i.e. that it occurs with zero probability. Hence, he concludes, the frontier always moves as it forms. How far it moves, we cannot say, and indeed there is nothing to say that it must move more than a very small amount, far too little to be of any interest. Within the model, the movement might be less than the length of a single cell, and in that case no observable motion whatsoever would be predicted. Perhaps it would have been better to say that a frontier may move. That is not the sort of result applied mathematicians are used to but it is sufficient for the purpose. For it is not at all obvious that a frontier forming in a previously undifferentiated region can move as it forms, not because of some additional factor but simply as a natural consequence of the process by which it appears. What is more, the result, even in this apparently tentative formulation, has two important consequences. The first is that if we see a frontier moving, there does not have to be some special mechanism, some chemical signal, some gene. We do not immediately have to ask what selection pressures during evolution have brought about the motion. It may be that it's just what systems of this kind typically do.
288
P. T. Saunders
to (a)
(b) Figure 1. Two possible orientations of the cusp in the s-t plane. In (a), the generic case, the boundary first appears at so at time to and stabilises at si at time ti. In (b), the non-generic case, the boundary appears at so at time to and does not move.
Beyond Modelling
289
The expression "of this kind" is important here. When Zahler & Sussman (1977) attacked Zeeman's work, they wrote: "Zeeman's 'proof consists of no more than the observation that, if the frontier did not move, that would be quite exceptional. To evaluate this kind of reasoning properly, notice that the same logic, if correct, would apply equally well not just to frontiers of tissues but to anything whatsoever. So, Zeeman's reasoning 'proves' that everything moves except for those exceptional objects that do not." In fact, this is a caricature of Zeeman's reasoning, which applies only to the mathematical model he had derived and hence only to frontiers that form in certain ways. It does not apply to those that are formed by other means nor to objects in general. No one was claiming that a stone wall must move as it is being erected. Even within developmental biology there are models that fall outside the class included in Zeeman's account. For example, if we suppose that a chemical gradient is established and then either one gene or an alternative is turned on depending on the local chemical concentration, we would expect the resulting boundary between the two types of tissue to form in its final position. To see the importance of Zeeman's result, we have to return to the biological problem that stimulated the work, which has to do with what he called primary and secondary waves. The idea is that sometimes a wave travelling through a region starts, at each point through which it passes, a process which will have an observable result some time later. This will appear as a second wave passing through the region, although in fact what is then happening at each point is independent of what is happening anywhere else. This is especially interesting if the primary wave is invisible, because then what we observe is a wave with apparently nothing to trigger it or to drive it, and with the unusual property that it cannot be halted by a barrier. For example, when an epidemic is spreading across a continent, we cannot see the virus as it passes from country to country. What we observe is the onset of the disease, which happens several days later. Yet by this time nothing is actually being transmitted, and if we now close international borders to travellers, the disease wave will proceed just as inexorably as if we had done nothing. To stop the spread of the disease we would have to act before the invisible primary wave passed through. What the result accomplishes, therefore, is the following. Suppose we see a wave of activity moving through a region. We want to know how this comes about, and so we might set out to discover the stimulus that sets it off, and how this influence is transmitted through the region: in the case of tissue, from cell to cell.
290
P. T. Saunders
We now know there is another possibility. We are led to ask whether a boundary has recently appeared in the region. If it has, then we know that it may have moved as it formed, even though no motion was actually observed, and what we are seeing now may be simply a secondary wave. In that case, there is no separate stimulus to find and nothing is being transmitted. We haven't proved that this is what is happening, but we can now set out to verify whether it is or not. For example, we can insert a barrier into the region and see if this stops the wave: if it does not, then it is in fact a secondary wave. Ultimately it will be observation and experiment that decide the issue, but it is the mathematics that suggests what observations and experiments we should undertake. In fact, Elsdale et al (1976) later found direct evidence for the existence of the wave that Zeeman had predicted. Some time after Zeeman's work appeared, Lewis, Slack and Wolpert (1977) suggested a model for the formation of a frontier using the particular equation
Here g is the concentration of some gene product, S is a 'signal substance' and the Kj are constants. In fact, this is one of the class that is included in Zeeman's analysis, except that it has only a single control variable, S. This is therefore a non-generic case, and without catastrophe theory to alert them to the need for a second control variable, Lewis et al failed to notice the possibility that the boundary might move as it forms. Saunders & Ho (1985) generalised (1) to include a second control variable (by the simple device of taking K3 as a parameter, not a constant) and derived a model to account for an otherwise puzzling pattern of transformations in Drosophila (the fruit fly) that had undergone treatment with ether in early development. This example illustrates a common misconception in mathematical modelling. We are all accustomed to writing down and solving equations in physics and obtaining precise answers. Unfortunately, this can mislead us into believing that an analysis using equations must always be better than one that does not. This is by no means always the case. Equation (1) looks plausible and it produces the desired behaviour, but it is not actually a model of any particular known system. It is also not structurally stable, which means that it misses some important features of the system it is meant to represent. In fact Saunders & Ho also wrote down an equation for illustrative purposes, but because they had used catastrophe theory first, they were in a position to ensure that their equation was structurally stable and therefore a better model of the system.
Beyond Modelling
291
Critical Variables This application (Bazin & Saunders, 19784; Saunders, 1980) arose out of an attempt to model a predator-prey interaction in a continuous flow system. This had turned out to be unexpectedly difficult, because the specific growth rate of the predator, the amoeba Dictyostelium discoideum, did not depend in a straightforward way on the density of the prey, the common gut bacterium E. coli. The relationship was neither smooth nor even single valued. Instead, the growth rate switched abruptly from one nearly constant value to another, even though the prey density was varying smoothly and over a wide range. The sudden jumps suggested that the response of the amoebae could be modelled using catastrophe theory. The simplest singularity that would serve was the cusp, which has two control variables, and Bazin and Saunders chose these to be the prey density, H, and the time t. They plotted H as a function of t, marked on the graph the points at which the abrupt changes in the state variable (the specific growth rate of the predator) occurred, and hence inferred the position of the cusp. See Fig 2, Fig 3. There is, however, a problem with this model. The sudden changes in the state variable occur as the trajectory enters the cusp, whereas the theory leads us to expect them to occur as it leaves it. It is possible to account for the observations on this model, but it requires a more complicated mechanism than we might expect. One that has been suggested (Bazin & Saunders, unpublished) requires the amoebae to be sensitive not only to the prey density but also to whether this is increasing or decreasing. That can account for the observations, but it's not an especially simple mechanism, especially from the point of view of the amoebae. Now while it is usual in microbial ecology to suppose that the specific growth rate of a predator depends on the prey density, for other organisms we might expect it to depend on the ratio of prey to predators, H/P5. Bazin and Saunders therefore repeated the analysis based on the cusp catastrophe, but using H/P instead of H as one of the control variables. The result is shown in Fig 3, and this time the abrupt changes do indeed occur as the trajectory leaves the cusp.
The reader may notice that this paper was published in the same journal as Zahler & Sussman's (1977) article claiming that catastrophe theory cannot be applied in biology, but a year later. For the record, it was submitted (and originally rejected) before Zahler & Sussman's article appeared. For humans, what matters is the amount of food per head of population. The situation with bacteria is different because the way they take up nutrient is more similar to a chemical reaction.
292
P. T. Saunders
Time (h) Figure 2. Prey density H as a function of time t. Dots indicate the places where abrupt changes in the specific growth rate of the predator occur, and the position of the cusp has been sketched in. From Saunders (1980).
Time (h) Figure 3. As Fig. 2 except that the ordinate is the prey/predator ratio H/P. From Saunders (1980).
Beyond Modelling
293
We now have a single question to be answered: To what do the amoebae respond, the prey density, H, or the prey/predator ratio H/P? The mathematical analysis suggests that if it is the former, they require a rather complicated mechanism, whereas if it is the latter, a simpler mechanism will do. We therefore infer that the critical variable is H/P. If we knew the mechanism, we might stop here, but in this case we look for confirmation. For this, we take the argument one step further. If the critical variable is H, then the amoebae must be responding to some substance which is secreted by the bacteria, probably folic acid, but if it is H/P then the substance must also be being modified by the amoebae. For if folic acid increases with H and decreases with P, it can serve as a measure of H/P. Bazin and Saunders therefore suggested that if folic acid is indeed the signal, then the amoebae must be modifying it. Thus the result led to a prediction which could be tested. As it happened, at almost the same time the paper appeared, Pan and Wurster (1978) reported that Dictyostelium discoideum do indeed inactivate folic acid, thus confirming the prediction. The mathematical result also explains what purpose this serves, which Pan & Wurster were not able to infer from their experiments. Dynamical Systems There are not many general statements we can make about systems in general, but one of them is that any system is, in some sense, stable. It has to be, because if it were not, we would not recognise it as a system. Unfortunately, while that explains why the systems we observe are stable, it tells us nothing about their other properties, nor even why there are systems at all . We can infer much more, however, if we concentrate on complex, non-linear systems. For if such systems are stable, they generally have a number of distinctive properties which we do not find in linear systems. For example, they are likely to have a number of equilibrium states rather than only one. These can be equilibrium points but they can also be trajectories. In either case, they are well defined and there is a finite number, not a continuum. About sixty years ago, the embryologist CM. Waddington (1940) identified a number of properties that are common to many organisms while they are developing. An organism does not have to have a perfect environment to develop into a recognisable individual of a given species, and it can survive many 6
Compare the principle of natural selection which allows us to understand why organisms are adapted to their environments (because if they were not, they would not survive) but does not tell us why they have the properties that they do, or indeed why there are organisms at all.
294
P. T. Saunders
perturbations while it is developing. Two embryos do not have to be genetically identical to turn into very similar adults. When an embryo is recovering from a perturbation, it does not return to the state it was in when it was disturbed; instead it continues to develop, eventually reaching more or less the state it would have been if there had been no perturbation. What is stable is not the state of the embryo but the developmental trajectory. Waddington introduced new terms to describe these phenomena: homeorhesis (similar flow) to describe a system that returns to a trajectory, chreod (necessary path) for the stable trajectory itself, and canalisation for the property that the end states typically form a discrete set rather than a broad spectrum7. He also devised the metaphor of the epigenetic landscape, a figure in which the developmental system is pictured as a mountainous terrain, with the valleys corresponding to the possible developmental pathways. Why do organisms have these properties? Was there selection for each of them through evolutionary history? It is hard to see how they could have originated through selection, although we might imagine that there would be selection for different kinds of stability once they had appeared. The simple answer is that because organisms, whatever else they are, are complex non-linear dynamical systems, they are almost bound to have the properties that Waddington identified. It would be surprising if they did not. That's not to say that there have to be organisms, though it does increase the likelihood. But if there are going to be organisms, than we would certainly expect them to have those properties; they are all part of a package, so to speak. So we do not need separate explanations for each of them. In fact, thinking of organisms as dynamical systems does not merely allow us to see why they have the properties that Waddington identified. We can derive others as well, as we would expect when we have the power of mathematics at our disposal and not just intuition. For example, the stability of the normal developmental trajectory and the existence of stable alternatives means that we would not expect large changes to occur as long sequences of small ones. Instead, we would expect that large phenotypic changes will occur abruptly as the developmental system is diverted into a new pathway, possibly by a small genetic change. Thus the mode of evolution that Eldredge and Gould (1972) called punctuated equilibria is precisely what we would expect to observe.
7
There can, of course, be small variations about the end states; the point is that there are identifiable types without a spectrum connecting them.
Beyond Modelling
295
The dynamical systems approach suggests that when species split there can be more than two successor species, which is contrary to what palaeontologists assume when they are trying to work out the course of evolution. We can also show that part of the cause of the irreversibility of evolution may lie in the properties of the developmental system. (Saunders, 1993). And all this without knowing much about the mechanisms involved. Self-Organisation Self-organisation has been recognised for a long time; the classical example, Benard convection, was described at the beginning of the twentieth century. Only recently, however, has it become a major research topic, as more work is being done on non-linear systems. It is being found that many non-linear systems are capable of self-organisation, generally as a bifurcation parameter passes through a critical value and a more or less uniform state becomes unstable. One of the best known examples is Turing's (1952) reaction-diffusion model of pattern formation. In fact, this paper is an example of the overlap that can exist between the different types of modelling. He gave it the title The Chemical Basis of Morphogenesis, and it does include an explanation of why he chose to concentrate on chemistry, rather than the elastic or other physical properties of tissue. He also intended to apply the model to the particular problem of phyllotaxis, though his tragic death meant that this was never done. All the same, Turing's real aim was to establish by an example the general point that a pattern can appear in a previously uniform region with no preexisting template, and through a comparatively simple mechanism. There are two reasons why he set out to do this. The first is that from the standpoint of developmental biology it is the initial symmetry breaking that is the major puzzle: once there is a rudimentary pattern it is comparatively easy to imagine how this might serve as the basis from which later ones can develop. Turing's chief motive, however, was deeper than that and really a part of the new approach being described in this paper. As he remarked to his student Robin Gandy, his ideas were "intended to defeat the argument from design." This term usually refers to the claims of eighteenth and nineteenth century natural theologians that since (so they believed) there is no natural process by which organisms could possibly be as well organised and their bodies as well adapted to needs as they are, we are forced to the conclusion that there must be a Creator. Most readers will be familiar with William Paley's metaphor about finding a watch on the ground and concluding from this that there must be a watchmaker somewhere.
296
P. T. Saunders
This argument was eventually refuted by Darwin's theory of natural selection, which provided a mechanism by which (apparent) design is possible without a designer. Ironically, however, modern neo-Darwinists also employ the argument from design. According to them, the only natural process that can produce organisation is natural selection, and so natural selection is the key to evolution, the 'blind watchmaker', as Dawkins (1986) has put it. What Turing showed, and recent work in non-linear dynamics amply confirms, is that this is not the case. Non-linear systems can self-organise, and while the patterns that appear in the development of an embryo may persist on account of natural selection, they may no more owe their origin to it than do Benard convection cells or the red spot on Jupiter. The dynamical systems approach can be used in other fields as well. For example, two fundamental concepts in psychology are the complex and the archetype. But while these concepts do seem to represent real phenomena, and many analysts have found them useful in their work, they have never been able to say exactly what they are, or even what sorts of entities they are. And in the case of the archetypes, which are supposed to be common to all humans, they cannot agree on when they appeared in evolution or indeed whether they have been there since the beginning and, if so, in what form. Saunders and Skar (2001), however, have pointed out that as the brain is a complex non-linear system, and as it is known to be involved in a constant process of organising information, we would expect that what psychologists call complexes should form by self-organisation. Moreover, because we all have similar brains and undergo similar key life experiences, such as being cared for by our mothers or some substitute mother figure, we would expect the complexes formed around certain typical developmental experiences to have the same general features. It also follows that there is no problem about when archetypes appeared; they appeared naturally as human brains and societies became sufficiently complex. Recognising that self organisation is by no means rare can also help us avoid a common error in science. We often insist that such and such a phenomenon does not occur not because it has been investigated in detail — or at all — but because it 'violates the laws of science', by which we really mean (or ought to mean) that it seems to run contrary to all our other experience of nature as collected and codified. 8 The term neo-Darwinism refers to the synthesis of Darwinian natural selection and Mendelian genetics. It is now the dominant theory of evolution, so much so that its supporters use the terms "evolution" and "natural selection" more or less interchangeably.
Beyond Modelling
297
Now this is often a useful strategy. We don't have to waste time analysing a proposed perpetual motion machine because the second law of thermodynamics tells is that it is impossible. The problem, however, is that it is all too easy to claim that something is impossible when it is not. That can happen because relevant scientific knowledge is not yet available, as in Lord Kelvin's objection that the Earth was not old enough for Darwinian evolution to have taken place. Darwin could not deal with this at the time; only after radioactivity had been discovered could Kelvin's point be refuted. More commonly, however, the problem is simply that we have not been clever enough at using the knowledge we already possess. For a long time, scientists and doctors in the west were sceptical about the efficacy of acupuncture because there seemed to be no possible mechanism by which it could act. Eventually, but only after the evidence that it works became too strong to be ignored, it was realised that there are ways in which it could happen that are not at all inconsistent with conventional western science. In general, it is difficult to know what sorts of forms can appear through selforganisation in a given system without going through the detailed calculations. On the other hand, simply to recognise that self-organisation is a common phenomenon can allow us to see that something is possible in principle, even if we cannot account for it in detail, and this should make us more cautious about dismissing it out of hand. We will not be so ready to jump to the conclusion that every pattern we observe in organisms must have been created by natural selection, or that regular piles of rocks on a plain must have been put there by extraterrestrials. Conclusion The application of mathematics to complex systems, especially in biology and social sciences, is leading to new ways of applying mathematics. Instead of setting out to construct a model which describes the whole system, we may ask one or two specific questions. Or we may look for the sorts of behaviour which systems of this kind typically exhibit. The new approach does not eliminate mechanism from explanation, even though it significantly alters its role. For while we do not base our work on a particular mechanism, we generally assume not only that there is a mechanism, but also that it is of the kind that a conventional modeller would be likely to imagine, and that it is no more complicated than it needs to be. In effect, we are studying the common properties of the class of the simplest mechanisms that are consistent with the observations.
298
P. T. Saunders
That mechanisms can fall into classes in this way can pose a serious problem for conventional modelling. We tend to assume that if we make a hypothesis about the mechanism of a system and if and if this leads to predictions which are borne out by observation, then that is strong evidence in favour of our hypothesis. If many mechanisms can produce the same phenomena, then the support for our hypothesis is much weaker. An example is provided by the work of Douady and Couder (1991). They found they could reproduce the characteristic pattern of spiral phyllotaxis — successive elements separated by the Fibonacci angle of about 137.5° — by allowing magnetised drops of fluid to fall onto a flat plate in a non-uniform magnetic field. They modelled their experiment using the appropriate (inverse fourth power) expression for the force between the droplets, and found that this gave the correct angle. But they also found they could get the same angle using many different expressions for the repulsion. One might have thought that for a model of phyllotaxis to produce the correct angle was almost conclusive evidence in its favour, but this turns out not to be the case. The process that determines phyllotaxis in plants, whatever it is, is certainly not the mutual repulsion between magnetic dipoles. Wherever the Fibonacci sequence, the golden section and the angle of 137.5° appear in nature, they are surely the result of the operation of some mechanism. Nevertheless, there seem to be a number of different mechanisms that can give rise to them, which gives them a status which in a real sense transcends individual mechanisms. There seems to be something more fundamental about this mathematical sequence than any of the mechanisms that can produce it. This is an example of the return of the formal cause as part of explanation in science (Saunders, 1989). We cannot really describe what is happening as a revolution9, partly because the classical methodology will continue to play an important role in modelling in the soft sciences, and partly because the distinction between the new and the old is not absolute; there has always been work with elements of both. Turing's reaction-diffusion model of pattern formation was presented primarily as a piece of conventional modelling of chemistry in a biological setting. Nevertheless, its primary significance was (and was recognised by Turing to be) the demonstration that the sorts of processes that occur in development can lead to pattern formation in a straightforward way. And indeed, it is the latter aspect that explains why it remains such an important paper, even though it is now
9
In the sense of Kuhn (1961).
Beyond Modelling
299
generally accepted that pattern formation by reaction-diffusion is not very important in development. A century ago there was a major change in applied mathematics when quantum mechanics and relativity appeared. Explanation was no longer necessarily in terms of mechanisms, and applied mathematics became less centred on differential equations. But what happened in applied mathematics was part of a larger change that was taking place in science. The present situation is different. Biologists and social scientists have always worked differently from physicists, as one would expect given the complexity of what they study, and mathematicians are now finding ways of using mathematics that reflect the differences. One of the most significant differences from the methodology appropriate to the physical sciences is that we do not set out to construct a model of the system we are studying. Even in quantum mechanics the aim is to have a model which is complete in the sense that it includes everything that we believe Nature allows us to know. If the model does not tell us which slit the photon passed through, that is because that is not a question that we are allowed to ask, at least not on our current understanding of the science. In chaotic systems too, the reason we do not have complete information about the future is not through a shortcoming of the model. It is a reflection of how things really are, or at least of how we believe things really are. Biologists and social scientists do not generally claim to have as complete an understanding of the systems they work with, and the way we apply mathematics to their subjects should acknowledge this. If we insist on doing only the sort of modelling that we are familiar with in physics, we are likely to convince ourselves that organisms and societies are much more like the solar system or a gas-filled container than they really are. If the only tool you have is a hammer, it is very tempting to see everything as a nail. For example, most contemporary evolutionists consider the organism as a collection of largely independent 'traits' each largely governed by a single gene10. This view cannot but be strengthened by the fact that only if we assume it to be the case are the evolutionists' mathematical models valid. The predominance of linear techniques in mathematics is not the cause of the reductionism that pervades biology and the social sciences, but it contributes to
No neo-Darwinist I know of will admit to believing the 'one gene/one character' assumption, but they do base their work on it. Perhaps 'one gene that makes any difference/one character' is a better description (Bateson, 1982; Saunders 1988). (I apologise for using such old references, but neoDarwinists are usually very reluctant to explain the assumptions they are making.)
300
P. T. Saunders
it. Even those who do not use mathematics in their own work are strongly influenced by the ideas that have proved so outstandingly successful in physics. Evolution theory and neo-classical economics are not part of Newtonian theory but they are part of the Newtonian paradigm. Similarly, much work in both ecology and economics depends on the assumption that the systems they are setting out to describe are at equilibrium, and we may ask whether this is because experience suggests they are or simply because it makes the mathematical analysis tractable. Of course tractability is important: there's little point in setting up a mathematical structure if it is too ill defined and too complicated to yield any results. But there is no point in having a tractable structure that doesn't represent the real system sufficiently closely. Indeed, it is worse than useless, because it will produce misleading results. The systems we deal with in biology and the social sciences are typically both complex and structured, and if we cannot model them in their entirety we can set ourselves the more modest task of using mathematics to learn something more about the system. This is, after all, closer to the way that people already working in those fields tend to proceed. They seldom have overarching theories from which they expect to deduce everything; instead there is a process closer to induction in which one tries to discover properties and gradually build from them a coherent picture. Mathematicians can look forward to the time when our subject has the same status in biology and social science that it has in physics. Our colleagues in the soft sciences are going to have to understand mathematics, just as physicists already do. But we are going to have to understand their subjects and their ways of working too, and develop with them a methodology that is appropriate for the task. References Bateson, P.P.G. (1982). Behavioural development and evolutionary processes. In Current Problems in Sociobiology (eds King's College Sociobiology Group). Cambridge University Press, Cambridge, pp.133-151. Bazin, M.J. & Saunders, P.T. (1978) Determination of Critical Variables in a Microbial Predator Prey System by Catastrophe Theory. Nature 275 (1978) 52-54. Dawkins, R. (1986). The Blind Watchmaker. Longmans, London. Douady, S. & Couder, Y. (1991). Phyllotaxis as a physical self-organized growth process. Phys. Rev. Lett. 68, 2098-2101.
Beyond Modelling
301
Elsdale, Y., Pearson, M. & Whitehead M. (1976). Abnormalities in somite segmentation induced by heat shocks to Xenopus embryo. J. Embryol. exp. Morph. 35, 625-635. Eldredge, N. & Gould, S.J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In Models in Paleobiology (ed. T.J.M. Schopf). Freeman Cooper, San Francisco, pp. 82-115. Kuhn, T. (1961). The Structure of Scientific Revolutions. Chicago University Press, Chicago. Lewis, J., Slack, J.M. & Wolpert, L. (1977). Thresholds in development. J. theor. Biol. 65, 579-590. Pan, P. & Wurster B. (1978). Inactivation of the chemoattractant folic acid by cellular slime molds and identification of the reaction product. J. Bacteriol. 136, 955-959. Pielou, E.C. (1981). The usefulness of ecological models: A stock-taking. Q. Rev. Biol. 56, 17-31. Saunders, P.T. (1980). An Introduction to Catastrophe Theory. Cambridge University Press, Cambridge. Saunders, P.T. (1988). Sociobiology — A house built on sand. In Evolutionary Processes and Metaphors (M.W. Ho & S.W. Fox, eds). Wiley, Chichester, pp 275-294. Saunders, P.T. (1989). Mathematics, structuralism and the formal Cause in biology. In Dynamic Structures in Biology (B.C. Goodwin, G.C. Webster & A. Sibatani, eds). Edinburgh University Press, Edinburgh, 1989, pp 107-120. Saunders, P.T. (1993). The organism as a dynamical system. In Thinking about Biology, SFI Studies in the Sciences of Complexity, Lecture Notes Vol. Ill (F. Varela & W. Stein, eds). Addison Wesley, Reading MA, pp 41-63. Saunders, P.T. (1999). Darwinism and economic theory. In Sociobiology and Bioeconomics (ed. P. Koslowski). Springer, Berlin, pp.259-278. Saunders, P.T. & Ho, M.W. (1985 ). Primary and secondary waves in prepattern formation. J. theor. Biol, 114 491-504. Saunders, P.T. & Skar, P. (2001). Archetypes, complexes and self-organisation. J. anal. Psych., 46, 305-323. Seif, F.J. (1979). Cusp catastrophe in pituitary thyrotropin secretion. In Structural Stability in Physics (eds W. Guttinger & H. Eikemeier). Springer, Berlin. Sheldrake, R. (1981). A New Science of Life: the Hypothesis of Formative Causation . Blond & Briggs, London.
302
P. T. Saunders
Thorn, R. (1972). Stabilite structurelle et morphogenese. Benjamin, Reading MA. (English translation by D.H. Fowler (1975): Structural Stability and Morphogenesis. Benjamin, Reading MA.) Turing, A.M. (1952). The Chemical Basis of Morphogenesis. Phil. Trans. Roy. Soc. 237B, 37-72. Waddington, C.H. (1940). Organisers and Genes. Cambridge University Press, Cambridge. Zahler, R.S. & Sussman, H.J. (1977). Claims and accomplishments of applied catastrophe theory. Nature 269, 759-763. Zeeman, E.C. (1974). Primary and secondary waves in developmental biology. In Some Mathematical Questions in Biology VIII, Lectures in Mathematics in the Life Sciences, vol. 7 (ed. S.A. Levin). American Mathematical Society, Providence, pp 69-161.
FONDEMENTS COGNITIFS DE LA GEOMETRIE ET EXPERIENCE DE L'ESPACE ALAIN BERTHOZ College de France Chaire de Physiologie de la Perception et de VAction 11, place Marcelin Berthelot, 75005 Paris, France
ABSTRACT: We try to describe and explain how are perceived motion and three-dimensional space, and how human beings perceive and control bodily movements. Reviewing a wealth of research in neurophysiology and experimental psychology, we argue for a rethinking of the traditional separation between action and perception, and for the division of perception into five senses. In our view, perception and cognition are inherently predictive, functioning to allow us to anticipate the consequences of current or potential actions. I assert in this paper that the brain is a biological simulator that predicts by drawing on memory and making assumptions. This interpretation of perception and action allows us to focus on psychological phenomena largely ignored in standard texts: proprioception and kinaesthesis, the mechanisms that maintain balance and coordinate actions, and basic perceptual and memory processes involved in navigation. We combine geometrical considerations of the components of perception and action with synthetic concepts borrowed from psychophysics and neurosciences to discuss the sensory receptors that enable us to analyze movement in space.
1. Introduction Ce texte est issu, en partie de deux cours sur le cerveau et l'espace au College de France que j ' a i donne en 1997 et 1998. Le deuxieme cours a ete consacre plus particulierement au probleme des fondements cognitifs de la geometrie et il a ete accompagne d'une serie de seminaires auxquels ont participe plusieurs des auteurs de ce livre (L. Boi, G. Longo). La geometrie est-elle le signe d'une realite exterieure a l'Homme ou est-elle incarnee, immanente ? Est-elle un geste ou une image ? Quels sont les liens entre l'espace physique et l'espace phenomenal, ou sensible, ou representationnel ? Y a-til une ou plusieurs geometries mentales ? Sont-elles categorielles ou metriques ? Comment, a partir de la fragmentation des informations sensorielles dans des espaces tres differents, une perception coherente des proprietes geometriques du monde se constitue-t-elle, et quelle est la contribution du mouvement a la perception tridimensionnelle ? Quels sont les referentiels utilises par le cerveau ? Le concept d'espace absolu a-t-il un sens ? Comment fonctionne la memoire de l'espace ? Comment se developpe la geometrie chez l'enfant et comment se degrade-t-elle par suite de lesions du systeme nerveux central ? Enfin, le controle du mouvement est-il fonde sur des invariants geometriques ou des regies de la 303
304
A. Berthoz
dynamique. Voici quelques-unes des questions immenses que nous aimerions envisager mais qui sont encore hors de 1'analyse scientifique approfondie. Nous essaierons toutefois d'examiner quelques reponses ici. Je proposerai d'emblee une hypothese, un objectif: rehabiliter le corps sensible et Taction dans les theories sur les fondements de la geometrie. Je pense, en effet, que Taction est le fondement principal de notre connaissance du monde et que le cerveau projette sur le monde ses intentions, ses predictions, en relation avec les actions qu'il prevoit. J'ai soutenu cette these dans Le sens du Mouvement (Berthoz, 1997) et je 1'ai developpee dans La decision (Berthoz, 2003). Je pense aussi qu'il faut rehabiliter les theses d'Henri Poincare qui propose que le fondement de la geometrie est dans nos actions et « qu'imaginer un point dans l'espace c'est imaginer le mouvement qu'il faut faire pour l'atteindre ». Si l'approche formelle de la geometrie telle qu'elle a ete promue par Hilbert a fait ses preuves, elle ne peut nous cacher l'ancrage profond des concepts mathematiques dans le fonctionnement de notre cerveau. Ma theorie est done qu'il faut chercher la presence des concepts les plus elabores de la geometrie dans les operateurs qui sont apparus au cours de revolution et qui nous permettent aujourd'hui de manipuler mentalement, de simuler, le monde exterieur avec un codage allocentre de l'espace et non plus seulement egocentre comme c'est sans doute le cas chez tous les animaux jusqu'au singe. D 'Euclide a Poincare et Einstein Meme si Ton peut trouver en Egypte et dans les grandes civilisations du MoyenOrient des signes d'une pensee geometrique, c'est en Grece qu'est nee la premiere veritable grande theorie geometrique et, meme si Tarchitecte Thales de Millet fut le premier a formaliser le plan d'une ville selon des principes geometriques, tout le monde s'accorde a en donner la paternite a Euclide. Avant lui, de grands precurseurs avaient propose diverses theories sur la perception des objets, y compris la fameuse theorie de « Textramission » d'Empedocle qui suggerait que le cerveau eclaire les objets de son feu et que cette lumiere se reflechit en retour sur la retine. Mais c'est Euclide qui a donne le premier ensemble coherent et complet de principes et de regies d'ou est nee la geometrie qui porte son nom. II est hors de notre propos de retracer l'histoire de la geometrie mais il est important d'analyser en premier lieu, dans les temps modernes, la facon dont Poincare (Poincare, 1932 ; Poincare, 1970) en traite les fondements. La raison pour laquelle j'ai choisi Poincare, en particulier le texte de Science et Methode (Tedition de 1930 ; p. 97) est que Poincare fait une veritable rehabilitation du role du corps et de Taction dans Torigine de la geometrie. Comme on le sait, les theories qui en mathematiques rapprochaient la geometrie de Texperience sensible de l'espace ont ete balayees au debut de ce siecle par les disciples de Pasch et d'Hilbert qui ont reussi a creer une mathematique formelle dont Tobjectif etait de dissocier completement les mathematiques de Texperience sensible.
Fondements Cognitifs de la Geometrie et Experience de L'espace
305
L'espace absolu D'apres Poincare, ce mot est vide de sens : nous ne pouvons pas connattre la valeur absolue d'une distance. Poincare attribue aux comportements associes a l'espace, les actes de prehension, de capture, de parade, ce qu'il appelle « les evidences des verites geometriques ». II definit d'abord « ce petit espace qui ne s'etend pas plus loin que ce que mon bras peut atteindre » et que nous appelons aujourd'hui « l'espace de prehension ». II utilise les actions de parades pour definir le point geometrique. II distingue aussi deux espaces: l'un restreint a des coordonnees liees au corps ; l'autre, « etendu », est celui forme des divers points definis ainsi qu'il vient d'etre resume. Un point est done «la suite des mouvements qu'il convient de faire pour l'atteindre a partir d'une position initiale du corps ». La geometrie est ainsi fondee sur des gestes orientes vers des buts. Cette pensee est a rapprocher de celle exprimee recemment par le mathematicien G. Chatelet dans son ouvrage Les enjeux du mobile (Seuil, 1993 ; p. .31). « Ce concept de geste nous semble crucial pour approcher le mouvement d'abstraction amplifiante des mathematiques qui echappe aux paraphrases rationalisantes - toujours trop lentes -, aux metaphores et a leurs fascinations confuses et enfin, surtout, aux systemes formels qui voudraient boucler une grammaire des gestes : Godel a bien montre que des enonces rebelles - vrais, mais non prouvables - sont aussitot secretes par une syntaxe tant soit peu ambitieuse ». Et plus loin : « La veritable geometrie doit saisir l'instant ou l'espace frissonne enfin des virtualites qui l'habitent et nous invite a eprouver la dimension comme invention d'une articulation. Elle nous conduit pour ainsi dire par la main pour reapprendre le mouvement qui separe et lie a la fois, et pour savoir capter dans un simple fragment l'adresse et la continuite d'un geste » (p. 157). L'idee d'une relation profonde entre perception de la forme et action a ete aussi suggeree par Rene Thorn qui ecrit: « la forme biologique suggere une action » (Mathematical Models of Morphogenesis, 1983, p. 166). Poincare franchit alors une etape dans le raisonnement et dit que le mouvement est fondamental pour definir l'espace puisqu'un etre conscient qui serait fixe au sol ne connattrait pas l'espace. II expose ensuite longuement pourquoi il pense que l'espace est a trois dimensions et, ici encore, il justifie le caractere tridimensionnel de l'espace par le besoin de ranger les categories de comportement, d'atteinte ou de parade d'objets qui est un tableau a triple entree. Espace geometrique et espace sensible Poincare s'est aussi interesse a la difference entre l'espace geometrique et l'espace sensible qu'il appelle « representatif ». Dans La Science et I'Hypothese, il discute d'abord les differences. L'espace geometrique et l'espace representatif sont tres differents. II entre alors au cceur de notre question en disant : « mais, si l'idee de l'espace geometrique ne s'impose pas a notre esprit, si d'autre part aucune sensation ne peut nous la fournir, comment a-t-elle pu prendre naissance ?» «Aucune des sensations, isolee, n'aurait pu nous conduire a l'idee de l'espace, nous y sommes amenes seulement en etudiant les lois suivant lesquelles ces sensations se succedent».
306
A. Berthoz
Ces lois sont issues des observations que nous faisons du changement des objets pendant nos mouvements. En effet, Poincare remarque que dans notre entourage les objets dont les deformations peuvent etre corrigees par nos mouvements sont les corps solides. II conclut alors : « S'il n'y avait pas de corps solide dans la nature, il n'y aurait pas de geometrie». Poincare se prononce aussi sur la difference entre la geometrie d'Euclide et celle de Lobatchevski: « L'experience ne peut decider entre les deux. En effet, les experiences ne peuvent porter que sur les corps et non sur l'espace ». II poursuit « Par selection naturelle, notre esprit s'est adapts aux conditions du monde exterieur, il a adopte la geometrie euclidienne car c'est la plus avantageuse a notre espece. La geometrie n'est pas vraie, elle est avantageuse». Ici, la geometrie est une expression d'un besoin naturel - un acte perceptif, dirait Janet - pour constituer le monde exterieur en y cherchant a distinguer des objets utiles a Taction. On ne peut eviter de rapprocher le texte de Poincare de celui ecrit par Husserl en 1907 sur le role des kinestheses (au risque de me faire designer comme "neo-husserlien") dans la constitution de l'espace percu. Husserl (Husserl, 1989), apres avoir rappele, comme le fait Poincare, l'importance des mouvements du sujet dans la constitution des proprietes percues des objets, ecrit: « Nous voulions considerer la chose visuelle et la constitution visuelle de la spatialite et de la localite, et voici que nous introduisons d'emblee les mouvements de notre corps et, a travers eux, les sensations de mouvement, qui n'appartiennent pourtant pas au genre des contenus visuels » (Choses et Espace - Legons de 1907, PUF, 1989, p. 194). Le point de vue d'Einstein On peut a ce sujet evoquer le temoignage d'une autre grand physicien de notre siecle, Einstein. Sa conception n'est pas tres differente. Dans son livre Conceptions Scientifiques (A. Einstein, 2001), il discute la facon dont est constitute notre conception de l'espace. « Une importante propriete de notre experience sensible et, plus generalement, de toute notre experience, est de l'ordre du temps. Cette propriete d'ordre conduit a la conception mentale d'un temps subjectif, un schema pour ordonner notre experience (...) Mais avant la notion de temps subjectif se trouve le concept d'espace et avant ce dernier se trouve le concept d'objet materiel; ce dernier est directement lie aux complexes des experiences sensibles (...). Poincare a justement insiste sur le fait que nous distinguons deux sortes de changements dans l'objet materiel: "des changements d'etat" et des "changements de position ". Ces derniers, disait-il, peuvent etre corriges par des mouvements arbitraires de notre corps ». II poursuit par une etude detaillee des conditions d'elaboration du concept d'espaces, et ecrit plus loin : « L'erreur funeste qu'une necessite mentale precedant toute experience est a la base de la geometrie euclidienne et du concept d'espace qui lui est lie, est due au fait que la base empirique sur laquelle repose la construction axiomatique de la geometrie euclidienne etait tombee dans l'oubli.
Fondements Cognitifs de la Geometrie et Experience de L'espace
307
Dans la mesure ou Ton peut parler de I'existence de corps rigides dans la nature, la geometrie euclidienne doit etre consideree comme une science physique, dont l'utilite doit etre montree par son application a l'experience sensible ». Les hypotheses de la perception phenomenale Un argument essentiel pour discuter les conceptions formalistes de la geometrie est la nature biologique de l'espace representatif, ou phenomenal comme le nomme Michotte (Michotte, 1962). Le fait que l'espace phenomenal est different de l'espace physique est suggere par de nombreuses illusions. Par exemple, on peut rappeler les illusions des chambres de Ames qui montrent que le cerveau deforme la realite en faisant des hypotheses de symetrie, de rigidite, et de regularite. Ces hypotheses sont aussi faites pour 1'interpretation des proprietes tridimensionnelles de forme et de courbure des objets en mouvement, 2. Le cortex visuel et la geometrie Nous allons ici rappeler brievement comment le systeme visuel, chez les Primates et chez l'Homme, traite les proprietes geometriques du corps, des objets et de l'environnement dans les premiers relais neuronaux des voies visuelles. Les operations neuronales dans les voix visuelles Notre systeme visuel est subdivise en analyseurs qui effectuent une segregation dans les proprietes de l'environnement et des objets. Deux grandes voies transmettent au cerveau les informations visuelles : la voie colliculaire et la voie corticale. Lorsqu'on analyse les mecanismes de la representation du monde visuel dans les voies retino-thalamo-corticales, le point le plus important est I'existence de deux voies principales issues des parties parvocellulaire et magnocellulaire du corps genouille lateral dans le thalamus. Ces deux voies different dans leur traitement des donnees visuelles par les aspects suivants : acuite, contraste, couleur, sensibilite au mouvement et a la vitesse de celui-ci. Lorsqu'on analyse les traitements qui sont effectues au niveau de l'aire VI, ou aire de Brodman 17, premier relais cortical visuel, les deux voies parvocellulaire et magnocellulaire se projettent dans des zones differentes de VI, appelees respectivement « blobs » et «interblobs ». Les neurones des blobs, sur lesquels se projette la voie parvocellulaire, sont sensibles a la couleur et insensibles a I'orientation. Le systeme magnocellulaire se projette sur les neurones des interblobs qui sont selectifs a I'orientation et a la direction du mouvement et insensibles a la couleur. Dans l'aire corticale suivante de cette chaine de traitement, l'aire V2 ou aire de Brodman 18, on trouve une organisation en bandes de plusieurs millimetres de large qui sont de deux sortes : "minces" ou "etroites", et "larges". Les blobs s'y projettent sur des bandes etroites ou les neurones n'ont pas de selectivity a I'orientation et 50% sont sensibles a la couleur. Les champs recepteurs y sont plus
308
A. Berthoz
grands que dans VI. Les interblobs se projettent sur les bandes pales de V2. Les neurones de ces bandes sont selectifs pour une orientation mais pas pour la direction, et 50% sont de type "end stopped" : ils sont actives par 1'extremite d'une ligne, des coins, ou des zones des images qui ont une courbure tres forte, et detectent aussi la direction de la fin d'une ligne. On trouve done, des cette aire, un traitement des proprietes geometriques des lignes. Les interblobs se projettent sur des bandes larges de V2 dont les neurones ont une selectivity a l'orientation mais pas "end stopped". Ils codent la disparite binoculaire et participent a la perception de la profondeur stereoscopique. II existe dans l'aire V2 des neurones selectifs a l'orientation des frontieres de contraste aussi bien qu'a des contours illusoires. Ces neurones preferent des barres longues avec des orientations obliques comme on les trouve dans les triangles reels mais aussi dans des figures de Kanizsa ou, malgre 1'interruption des cotes du triangle, nous percevons un cote illusoire alors que les neurones de VI ne repondent qu'aux vrais contours mais pas aux contours illusoires ou a des formes cachees dans des nuages de points. Dans VI, des qu'une ligne est interrompue, le codage de la ligne par les neurones cesse. On trouve dans V2 des neurones qui repondent a une ligne formee de points. Les neurones de V2 ont des proprietes de detection de contour qui sont influencees par l'orientation de la tete par rapport a la gravite et recoivent done des entrees vestibulaires. Cette propriete pourrait contribuer a l'invariance perceptive. Dans les premieres stations du traitement, une segregation est done realisee dans l'analyse de la couleur, du mouvement, de l'acuite, du contraste. Au niveau suivant, une segregation est realisee entre forme, couleur, mouvement et profondeur. De facon generale, il semble que le systeme magnocellulaire soit implique dans la perception 3D et qu'il assure la segregation entre la figure et le fond, entre les objets et l'environnement. Un aspect important de cette construction geometrique de l'unite des objets dans l'environnement est de trouver des "linking features", des caracteres qui relient des elements de figure et assurent la perception de l'unite de l'objet lorsqu'il est fragmente. Le systeme parvocellulaire voit la couleur et peut l'utiliser pour detecter des bords mais, alors que le systeme magno est incapable d'un examen stable et durable (il s'inactive apres quelques secondes de vision), le parvo peut maintenir l'image pour l'examiner en detail. Le magno serait plus primitif et le parvo plus recent. Le parvo est tres developpe chez les primates et permet d'examiner la forme, la couleur et la surface des objets et done, de leur assigner des attributs. Les proprietes du parvo et du magno se distribuent respectivement selon les voies visuelles dites dorsale et ventrale. II se produit done une segregation tres precoce des proprietes des objets visuels dans les voies primaires. Toutefois, une autre theorie a ete proposee recemment pour interpreter les faits empiriques concernant l'activite des neurones dans VI, V2, ... La couleur et la forme pourraient etre codees dans un meme neurone par le decours temporel de la frequence de decharge des neurones (Eskandar, Optican et al., 1992). Ce codage serait "separable", ce qui veut dire que, si besoin en est, les
Fondements Cognitifs de la Geometrie et Experience de L'espace
309
caracteristiques de couleur et de pattern peuvent etre retrouvees dans la forme du decours temporel de la decharge du neurone. Pour ces auteurs, le "liage perceptif' qui assure la recombinaison des proprietes des objets, qui sont separees dans les premiers relais visuels, n'est done pas assure par une « synchronisation » comme le pretendent d'autres theories. La separation observee serait done due a un codage different des combinaisons de proprietes. Le controle centrifuge de la perception visuelle : le cerveau projectif La vision n'est pas un processus a un seul sens, centripete, de la retine vers le thalamus, puis VI, V2, V3, V4, etc... Chacun de ces centres recoit aussi des influences centrifuges : un anatomiste a dit un jour que VI recoit plus d'informations du reste du cerveau que de la retine. Nous savons qu'une situation semblable est vraie pour les noyaux dits vestibulaires dans le tronc cerebral. On peut ainsi, chez 1'Homme, montrer que les aires visuelles primaires sont activees lorsqu'un sujet imagine un objet dans le noir: cette activite, observee grace a la camera a emission de positons, est due a des projections des centres de la memoire vers les aires visuelles primaires. Notre cerveau projectif peut done modifier ce que nous percevons en fonction de ses memoires ou ses projets d'actions qui evoquent des preperceptions. J'ai developpe les consequences de ce fait dans La decision (Berthoz, 2003). Un autre exemple de cette action centrifuge est celui de 1'intention d'action et de signaux moteurs sur 1'activite des neurones visuels, par exemple la direction du regard. La decharge de neurones dans le thalamus visuel ou dans les premiers relais visuels corticaux est en effet modifiee par la position de l'ceil pendant les saccades oculaires, en particulier dans les aires du cortex parietal 7a, VIP, LIP. Plusieurs effets ont ete decouverts ou suggeres : a) Des changements de coordonnees transformeraient le codage retinien de la position d'une cible en un codage dans un referentiel lie a la tete ou meme a l'espace. Recemment, dans notre laboratoire, l'enregistrement des neurones de l'aire VIP, a permis de dissocier, chez le singe, les activites des neurones codes dans un referentiel lie a la retine et a l'espace grace a une procedure de test des champs recepteurs d'un neurone tres rapide qui permettait de tester le champ recepteur associe a chaque saccade, et done ses modifications en fonction de la direction du regard. La nouveaute de cette decouverte reside dans le fait que si dans d'autres aires corticales "visuelles" l'invariance spatiale est codee par des populations de neurones, on a affaire ici a une propriete de chaque neurone. Toutefois cette interpretation est fondee sur l'idee que le cerveau reconstruit la position des cibles en coordonnees spatiales pour controler les mouvements des yeux. Cette idee est contestee par certains qui proposent que le cerveau ne code que des positions relatives de l'ceil par rapport aux cibles et ne travaille done pas dans un espace absolu mais uniquement par une detection d'erreurs.
310
A. Berthoz
b) Le champ recepteur des neurones ne serait pas fixe comme on le pensait, mais se deplacerait avant meme la saccade pour anticiper la direction vers ou le regard se dirige (Colby and Duhamel, 1996). c) La direction du regard est prise en compte au niveau de l'aire MST pour assurer l'invariance perceptive de la direction de notre trajectoire pendant la locomotion. En effet, des enregistrements de neurones suggerent que la distorsion du flux optique, introduite par le fait de regarder de cote pendant la marche, est compensee automatiquement a ce niveau par des signaux moteurs corollaires de la position de l'oeil dans l'orbite (Andersen, Bradley etal., 1996). Cette influence des signaux du regard ne se produit pas seulement au niveau du cortex visuel. Les signaux dits « vestibulaires » sont eux-memes influences par la direction du regard des les premiers relais sensoriels vestibulaires, comme nous avons ete les premiers a le montrer. L'hypothese que j'ai proposee dans plusieurs articles est que la direction du regard est en elle-meme une reference autour de laquelle est organisee la geometrie de notre espace percu. 3. Ontogenese de la geometrie chez l'enfant L'enfant ne possede pas la capacite de traiter des proprietes geometriques des la naissance. Ces proprietes s'etablissent au cours de l'enfance et de l'adolescence ; elles ne se developpent pas de la meme facon chez les garcons et chez les filles. Les deux voies centrifuges et centripetes suivent des processus de developpement chez le jeune animal, et sans doute chez le jeune bebe, qui sont tres differents. Des mecanismes moleculaires guident done ce developpement, independamment de toute action exterieure. Les voies centripetes sont mises en place plus tardivement, au cours de la premiere annee, en meme temps que se developpe le cortex cerebral. Les donnees de la neuroanatomie et de la neurophysiologie du systeme visuel eclairent les etapes du developpement des fonctions d'analyse du cortex cerebral, mais il est interessant d'examiner aussi cette question a un niveau plus global, celui de la Psychologie experimentale. Les theses de Piaget: la succession topologie, geometrie projective, geometrie euclidienne Piaget s'est interesse au developpement de la perception de la geometrie. Dans le livre La Representation de I'Espace chez I'Enfant, ecrit avec Inhelder, Piaget soutient une these principale : l'enfant construit d'abord une representation des proprietes topologiques de l'espace avant d'en comprendre les relations metriques. II critique a la fois Kant et Poincare. « Kant, dit-il, concevait deja l'espace comme une structure a priori de la "sensibilite", le role de l'entendement consistant simplement a soumettre des donnees spatiales perceptives a une suite de raisonnements susceptibles de les debiter indefiniment sans en epuiser le contenu. (...) Poincare, de meme, lie la formation de l'espace a une intuition sensible et rattache ses vues sur la signification du groupe des deplacements au jeu des sensations proprement dites, comme si l'espace sensori-moteur fournissait
Fondements Cognitifs de la Geometrie et Experience de Vespace
311
l'essentiel de la representation geometrique et comme si l'intellect travaillait sur du sensible deja tout elabore au prealable »(p. 11). Piaget dit qu'en realite l'enfant construit effectivement, des le debut de son existence, un espace sensori-moteur lie a la fois aux progres de la perception et de la motricite « qui prend une grande extension jusqu'au moment de l'apparition du langage et de la representation imagee (c'est-a-dire de la fonction symbolique en general). Cet espace sensori-moteur est lui-meme greffe sur divers espaces organiques anterieurs (postural, etc..) mais dont il est loin de constituer un simple reflet (...)». «Puis ensuite seulement vient l'espace representatif dont les debuts commencent avec ceux de l'image et de la pensee intuitive, contemporains de l'apparition du langage ». Alors, poursuit Piaget, se produit un phenomene tres curieux... «tout en profitant des conquetes de la perception et de la motricite, (lesquels fournissent, sur leur plan, l'experience de ce que sont par exemple une droite, des angles, un cercle et un carre, des systemes perceptifs,...) la representation precede ab initio comme si elle ignorait tout des rapports metriques et projectifs, des proportions, etc. La representation est obligee de reconstruire l'espace a partir des intuitions les plus elementaires, tels que les rapports topologiques de voisinage, de separation, d'enveloppement, d'ordre, etc. (...) mais en les appliquant en partie deja a des figures projectives et metriques superieures au niveau de ces rapports primitifs et fournies par la perception ». « Faute de preter attention a ce divorce entre la forme de connexions representatives initiales et le contenu perceptif (...), on s'imagine que l'intuition geometrique s'appuie directement sur les donnees sensori-motrices ». Piaget distingue alors l'activite « representative », apparue plus tardivement, et l'activite « perceptive » fondee sur les activites sensori-motrices et il montre le rejaillissement de la premiere sur la seconde. II denonce alors l'equivoque entre les rapports du « representatif » et du « perceptif » du au fait que l'adulte ayant perdu tout souvenir des etapes anterieures s'imagine alors que chaque perception utilise des l'origine des systemes de coordonnees, ou les rapports de verticalite et d'horizontalite, en realite tres complexes qui ne sont acheves que vers 8 a 9 ans. II distingue plusieurs periodes dans le developpement. - La premiere (jusqu'a 4 mois) est caracterisee par une « non-coordination » des divers espaces sensoriels entre eux. Seules les proprietes topologiques de voisinage, de separation, d'ordre, d'entourage ou de d'enveloppement (par exemple, le nez entoure du visage) sont identifiees. Piaget rappelle que Poincare avait identifie un continu "empirique" base sur le voisinage. A ce niveau, dit Piaget, le bebe ne percoit que des rapports spatiaux elementaires qui caracterisent cette partie de la geometrie appelee "topologie", etrangers aux notions de forme rigide, de distance de droite, d'angles, etc. ainsi qu'aux rapports projectifs et a toute mesure. Cette periode ne comporte « que des rapports pre-perspectifs et pre-euclidiens » qui s'apparentent aux relations topologiques elementaires. Mais il s'agit d'une topologie perceptive et motrice et surtout radicalement egocentrique.
312
A. Berthoz
- La seconde periode (4-5 a 12 mois) est caracterisee par la coordination entre vision et prehension qui permet la perception des formes. Mais, dit Piaget « contrairement a I'hypothese centrale de la theorie de la Gestalt, nous croyons que des bonnes formes elles-memes (ou formes euclidiennes simples) se developpent, avec 1'image, en fonction de l'activite sensori-motrice, mouvements du regard, exploration tactile, analyse imitative, transpositions actives (...). La Constance des grandeurs est liee, par exemple, a la coordination des mouvements controles perceptivement. La decentration perceptive de cette periode associee a l'activite motrice aboutit a la constitution de rapports metriques et projectifs ». - Pendant la troisieme periode (seconde annee) les changements de points de vue, les deplacements contribuent a l'elaboration d'une perception des mouvements des objets les uns par rapport aux autres (allocentriques). La seconde moitie de cette periode, « en marquant le debut des coordinations interiorisees et rapides qui caracterisent Facte complet d'intelligence, voit apparaitre l'image mentale en prolongement de rimitation differee (...). De purement perceptif, I'espace devient done en partie, representatif. Ce n'est alors que vers 7-8 ans qu'un espace intellectuel sera construit, qui sera capable de l'emporter definitivement sur I'espace perceptif. C'est la motricite qui est le facteur commun entre ces deux constructions, representative et perceptive. L'image est, pour lui, une imitation interiorisee qui procede par consequent comme telle de la motricite ». Ces analyses de Piaget portent toutes sur le primat de la topologie sur la metrique. II remarque la demarche inverse qu'auraient faite le developpement de la perception d'une part, et la science de la geometrie d'autre part, et ecrit: « on comprend que relevant des conditions elementaires de Taction, ces rapports fondamentaux aient echappe si longtemps a la science geometrique qui a debute avec la mesure et ne s'est engagee qu'extremement tard dans la recherche des notions primitives ». Nous avons, pour illustrer ces theories, pris quelques exemples comme 1'apparition de la notion de droite projective ou de droites affines. Piaget remarque que la droite n'est pas, en effet, une notion topologique car pour transformer une simple ligne (seule envisagee par la topologie) en une droite, il est necessaire d'introduire un systeme ou bien de points de vue, ou bien de visee (notion que Ton retrouve dans l'analyse de Husserl). Le dernier niveau envisage par Piaget apres la construction de I'espace topologique, celui de I'espace projectif, est celui de I'espace euclidien. Celui-ci se construirait par la coordination des points de vue des objets de I'espace entre eux, ce qui conduit a la construction de systemes de coordonnees. Pour Piaget, l'image n'est done jamais que l'imitation interieure et symbolique d'actions d'abord anterieurement executees, puis simplement executables, ce qui evoque evidemment le concept d'« affordance» de Gibson. (Gibson, 1966 ; Gibson, 1977).
Fondements Cognitifs de la Geometrie et Experience de L'espace
313
Critiques de la chronologie de Piaget Recemment, plusieurs critiques ont ete faites de la chronologie de Piaget. Le developpement de la rationalite ne peut se reduire a la substitution majorante des structures nouvelles, qu'elles soient symboliques ou sub-symboliques, mais se developper c'est aussi, et souvent, inhiber une structure concurrente. Les auteurs ont tente de relier l'apparition des fonctions superieures a la capacite qu'a le cortex prefrontal d'inhiber des comportements automatiques et primitifs en quelque sorte. J'ai moi-meme insiste dans mon livre Le sens du mouvement (Paris, 1997) sur le role fondamental, et mal connu, de l'inhibition comme facteur de modulation et d'organisation de l'activite. Les theories recentes attribuent a l'enfant des capacites perceptives tres precoces (avant 4 mois) et contestent souvent le constructivisme de Piaget. Cette precocite a ete montree pour plusieurs operations perceptives : a) la Constance de la forme et de la taille, la perception de l'inclinaison. II est interessant de constater que des donnees recentes de neurophysiologie chez le singe confortent ces observations. En effet, des neurones du cortex parietal repondent, chez cet animal, a l'inclinaison des surfaces ; b) la reconstruction d'un objet cache (paradigme dit « d'occlusion »); c) la perception des formes, des contours illusoires, des visages ; il a ete propose, a ce sujet, que le developpement de la geometrie etait du a l'interet de la detection des formes geometriques en mouvement pour F evaluation du risque que representent les objets de l'environnement; d) la perception du mouvement biologique. Le developpement de la geometrie de l'espace de navigation L'espace de navigation et la memoire des deplacements sont, en plus de l'espace de prehension, de manipulation, l'un des espaces les plus importants dans le comportement. La navigation et la representation de l'environnement peuvent etre realisees par des strategies cognitives differentes comme, par exemple, les strategies de simulation des mouvements et des reperes sur une route, qui different de revocation d'une carte. Une tache interessante est celle, par exemple, de reperer des objets dans un environnement et memoriser leur place. C'est la tache que j'appelle « les ceufs de Paques ». Lorsque les enfants ne trouvent pas tous les oeufs, il faut que les parents se rappellent ou ils ont cache les oeufs non trouves. La conclusion est que les enfants de cet age, comme cela a ete aussi montre pour les rats, utilisent les indices geometriques. Les adultes utilisent des combinaisons d'informations geometriques et non geometriques. II est done possible que chez F Homme, il y ait deux modules independants (Cheng, 1987 ; Cheng and Gallistel, 1984 ; Helmer and Spelke, 1994) pour le codage des informations egocentrees et allocentrees, les dernieres utilisant la geometrie des relations de l'environnement, meme a un age tres precoce. L'imagerie cerebrale suggere qu'un module specialise existerait dans le parahippocampe (Epstein and Kanwisher, 1998) et dans le cortex frontal pour le traitement des caracteristiques geometriques de l'environnement. La perception de la geometrie des formes, dans la mesure ou elle est liee a Faction, implique une identification des objets en relation avec leur usage ou leur
314
A. Berthoz
signification. Or, le developpement des mecanismes neuronaux peut 8tre sous l'influence de l'environnement et, en particulier, de l'environnement social. C'est ce qu'a etudie Luria. Inspire par les travaux de l'ecole russe, en particulier ceux de Vitgosky, il a compare la perception des formes geometriques chez des populations agricoles et urbaines. Sa these principale est que I'attribution cognitive de la signification a des formes geometriques est intimement liee au degre de culture de ces populations et qu'il ne faut pas oublier la dimension historique et culturelle dans l'etude des mecanismes de la perception de la geometric 4. La geometrie et le mouvement La perception des formes geometriques, loin d'etre comme on le pense souvent, une propriete statique de traitement d'images, est profondement liee a la perception et au controle du mouvement. Elle est multimodale. Elle est une decision perceptive et pas seulement un traitement passif. Elle evalue des grandeurs pertinentes pour Taction en cours. Les aires medio-temporales (MT ou V5) et medio-temporale superieure (MST), qui font suite aux aires VI, V2, V3, V4 dans le traitement seriel de 1'information visuelle, sont specialisees dans le traitement du mouvement. Recemment, une autre aire specialised dans le traitement du mouvement (KO) a ete decouverte dans le cortex occipital chez l'Homme par imagerie cerebrale. Cette region est situee a peu pres au meme niveau que la region MT et V5 chez l'Homme mais plus posterieure et mediane le long de la surface occipitale. Cette region est particulierement sensible aux frontieres de mouvement, appelees en anglais "kinetic boundaries", que Ton peut provoquer en fabriquant une image dans laquelle des bandes paralleles se deplacent a des vitesses differentes ou meme opposees, comme les voies d'une autoroute. Nous avons considere ici principalement les aires MT et MST parce qu'elles ont fait l'objet d'etudes qui permettent de relier la perception chez l'Homme avec les activites des neurones enregistrees chez le singe de facon remarquable. Proprietes des neurones de MT Les champs recepteurs de MT sont legerement plus grands que ceux des aires precedentes mais nettement plus petits que ceux de MST. Les neurones de VI sont en general accordes sur une direction du mouvement visuel. lis repondent a un bord qui se deplace avec une certaine orientation. lis ne peuvent toutefois pas coder, a travers la petite fenetre sur le monde que constitue leur champ recepteur, de fa§on non-ambigue la direction car ils ne mesurent que la composante du mouvement perpendiculaire au bord. C'est le probleme dit « de 1'ouverture ». Les neurones de MT ont une direction preferentielle ; le probleme de 1'ouverture est done leve a leur niveau. De plus, alors que les neurones de VI repondent de la meme fa§on au mouvement dans leur direction preferee, meme s'il y a dans le champ recepteur un autre mouvement dans une autre direction, les neurones de MT, eux, seront fortement inhibes s'il y a un autre mouvement dans une autre
Fondements Cognitifs de la Geometrie et Experience de L'espace
315
direction. Cette propriete dite « de suppression contraire » est peut-etre importante pour enlever du bruit dans la reconstruction des surfaces en mouvement dans laquelle MT est particulierement impliquee. L'aire MT joue aussi un role dans la perception de la profondeur selon laquelle sont disposees des surfaces en mouvement, la segmentation de ces surfaces, par exemple ces neurones repondent a des ensembles coherents de points qui se deplacent. II s'agit done d'une aire ou les traitements visuels les plus elabores pour la reconstruction de la geometrie des objets et de l'espace en mouvement sont executes. La reconstruction de la forme tridimensionnelle avec le mouvement Les objets de l'environnement ont une forme dans l'espace tridimensionnel. Or, leur image se projette sur la surface spherique de la retine. Comment le cerveau reconstruit-il la forme 3D ? Le mouvement est utilise par le cerveau pour cette reconstruction. Nous avons presente une demonstration de notre laboratoire sur cette propriete et avons decrit des experiences faites recemment grace a l'imagerie cerebrale par emission de positons qui revelent les aires corticales impliquees dans cette reconstruction de la forme a partir du mouvement. On a utilise des perceptions «bistables» e'est-a-dire des stimulations visuelles qui peuvent evoquer alternativement une perception 2D ou 3D. Des enregistrements de neurones chez le singe, en utilisant aussi des presentations de stimuli visuels bistables (cylindres), ont montre que les neurones de MT modifient leur activite lorsque le percept (evalue chez le singe par des methodes psychophysiques) change. Proprietes des neurones de MST Les neurones de MT se projettent sur MST ou sont accomplies d'autres transformations et analyses des messages sur le flux optique. Les neurones de MST ont des champs recepteurs plus grands que MT. II y a done dans ces voies un agrandissement progressif des champs recepteurs. lis ont egalement une selectivity directionnelle, mais ils repondent aussi a de nombreuses autres caracteristiques du flux optique : la rotation, l'expansion et la contraction, le « curl», la spirale, la divergence, le mouvement laminaire, etc. L'idee que le cerveau contient des neurones selectifs pour ces aspects geometriques du mouvement operateurs avait ete suggeree par la psychophysique. L'existence d'un repertoire de formes dynamiques ainsi detectees par les neurones de MST correspond peut-etre a la distribution des vecteurs de mouvement dans le flux optique pendant les mouvements naturels. Si, par exemple, nous avancons en ligne droite en fixant un point au sol, le flux optique aura, autour du point de fixation, la forme d'une spirale. Les neurones de MST ont une capacite remarquable a continuer a signaler ces composantes du mouvement visuel quelle que soit la localisation du stimulus dans le champ recepteur qui, rappelons-le, est tres large. On appelle cette propriete « l'invariance de position et d'echelle ».
316
A. Berthoz
L'influence des signaux moteurs du regard Les signaux moteurs du regard modifient les decharges des neurones de MST, qui est done un centre de convergence pour les messages visuels et des messages dits « extraretiniens », endogenes, venus d'autres parties du cerveau et associes a Taction. Par exemple, la decharge des neurones de MST ne cesse pas, contrairement a celle des neurones de MT, lorsque l'ceil poursuit une cible visuelle et que la cible disparait de facon transitoire. C'est un signal d'origine motrice qui entretient la decharge pendant un bref moment; ce signal n'est pas necessairement une decharge corollaire de la commande motrice : il peut aussi etre une prediction de la position ou du mouvement de la cible. Le cerveau est un predicteur. Ces signaux lies au mouvement du regard sont aussi utiles pour le maintien de l'invariance de la direction pergue du mouvement propre pendant la navigation. Gibson avait propose l'idee que pendant une translation vers 1'avant une portion particuliere du champ visuel, appelee «le foyer d'expansion de l'image retinienne », peut etre utilisee pour determiner la direction du mouvement. Ce foyer d'expansion est dans la direction de la marche si les yeux et la tete ne bougent pas et sont parfaitement dans l'axe sagittal du corps. Si les yeux bougent, alors un mouvement laminaire se produit dans le flux optique, en sens contraire du mouvement des yeux, et s'ajoute a l'expansion, creant un flux optique extremement complexe. Or, nous continuons a percevoir la direction de notre marche en avant, par consequent celle du tronc, meme si la tete et les yeux bougent. On a recemment demontre chez le singe que les neurones de MST peuvent etre impliques dans la correction du flux optique par les mouvements du regard de facon a retablir un flux optique qui corresponde a la direction de la marche. L'invariance perceptive est done peut-etre realisee a ce niveau du traitement. De meme, ces neurones re§oivent des entrees vestibulaires et la compensation peut done etre aussi realisee pour des mouvements de la tete. Autres aires corticales impliquees dans la perception des formes geometriques La sensibilite a la rotation a ete trouvee au-dela de MT, dans l'aire parietale PG. On a suggere que ces neurones combinent une mosai'que de detecteurs de direction circulairement disposes ; ils pourraient etre de veritables detecteurs de "curl". Mais les neurones du cortex parietal detectent aussi des proprietes complexes qui ne sont pas necessairement liees au mouvement dans un plan fronto-parallele mais sont peut-etre impliquees dans la detection des objets ou des surfaces.
5. La perception des objets Les questions que pose la remarquable capacite du cerveau a reconnaitre des objets sont nombreuses : existe-t-il un systeme unique pour la reconnaissance de tous les objets dans le monde ou y a-t-il plusieurs systemes suivant la categorie des objets (visage, train, chien, arbre, etc.) ? les objets naturels sont-ils plus facilement percus que les objets artificiels ? comment s'effectue la classification des
Fondements Cognitifs de la Geometrie el Experience de L'espace
317
objets ? comment est reconstruite I'unite de I'objet, on dit aussi comment se fait le "liage", apres la decomposition qu'effectue la vision en ses composantes de mouvement, couleur, forme, contrastes, etc. ? les objets sont-ils codes dans des referentiels lies a I'objet ou a l'observateur ? quelles sont les relations entre le codage de I'objet et les actions que l'observateur envisage de faire ? comment est assuree I'invariance de I'objet percu lorsqu'il se deplace ou lorsque l'observateur change de point de vue ? le codage de I'objet est-il dependant du point de vue ou abstrait ? comment interagissent les descriptions verbales de I'objet et les descriptions spatiales ? La litterature concernant ce domaine, surtout pour la perception visuelle, est considerable. Nous citerons trois aspects seulement. Le premier concerne la decomposition des objets en formes prototypiques ou composants. Une des theories recentes sur cette question, est celle de Biederman (Biederman, 1987). Le deuxieme aspect concerne la perception des visages. Le visage est, en effet, un objet d'un interet primordial qui est a la fois geometriquement tres bien defini, porteur de messages qui suscitent la crainte aussi bien que la tendresse, tout a la fois predateur et proie, principal interprete des emotions et des intentions, porteur de l'histoire de chacun d'entre nous mais aussi reflet des conventions et des grands courants de la societe ; son dessin peut etre le temoin de troubles profonds de la cognition. On peut a ce sujet evoquer les theories modernes qui proposent l'idee que I'unite de I'objet est realisee par la synchronisation temporelle de l'activation des structures dans lesquelles sont memorisees ou activees les composantes de I'objet au meme moment. Dans ces theories, I'unite de I'objet est done assuree par le temps. La decomposition de I'objet en formes prototypiques et en composantes Les resultats recents concernant la reconnaissance visuelle des objets suggerent qu'il n'existe pas, dans le cerveau, de systeme general de reconnaissance des objets a usage multiple. Au contraire, on trouve des representations multiples des objets, formees dans diverses parties du cerveau, chacune specifique aux transformations requises soit pour la perception soit pour Taction. La reconnaissance des membres prototypiques d'une categorie d'objets, le codage des transformations des objets ou des parties des objets, le codage de la taille, de l'orientation, de la forme, de l'identification des membres individuels d'une classe d'objets homogenes, et la planification des mouvements qui sont, en general, associes aux differents objets familiers, dependent de representations differentes formees dans des centres nerveux nombreux et grace a des ensembles de liaisons neuronales differentes. II existe, de plus, des contraintes severes sur la capacite qu'a le cerveau de reconnaitre des formes. Par exemple, nous ne pouvons pas identifier un visage a l'envers. Cet effet n'existe pas chez le singe qui a l'habitude de voir des visages suivant de multiples orientations. De meme, le jeune enfant semble reconnaitre les visages, meme a l'envers. La polarisation de la perception est done acquise en meme temps que se mettent en place, comme nous l'avons vu, les mecanismes qui
318
A. Berthoz
permettent l'identification et la memorisation de configurations complexes avec la mise en place de fonctions corticales superieures. II est lie a l'identification de "configurations" des elements dans la reconnaissance des visages. L'identification des objets est done parfois independante du point de vue ; elle semble "centree sur l'objet lui-meme" dont les proprietes ont ete en quelque sorte "generalisees" comme disent les psychologues; mais elle est parfois dependante du point de vue. Toutefois, les travaux de Psychologie cognitive n'ont pas encore elucide completement cette question. D. Marr (Marr, 1982) a ete un des premiers a proposer l'idee selon laquelle le systeme visuel reconstruit progressivement les objets a partir de leur analyse decomposed par ses premiers relais. Nous avons choisi d'analyser la theorie recente proposee dans ce sens par Biederman. II propose que la perception des objets est fondee sur la decomposition des images en composantes qu'il appelle des « geons ». La premiere decomposition serait effectuee dans les premiers relais VI, V2, V3, etc. Elle assure 1'extraction des contours de l'objet grace aux informations de luminance, texture, couleur, etc. Elle donne une information de contour par des lignes. II faut noter I'existence d'une theorie recente parallele qui suggere la possibility que soient extraits non seulement le contour mais le squelette d'objets qui serait particulierement utilise pour l'analyse des objets non rigides en mouvement comme, par exemple, les animaux. Puis se produirait une detection des proprietes dites «non accidentelles » telles que la colinearite, la symetrie, la courbure continue, le parallelisme, etc., et un decoupage en zones principalement dans la partie concave des formes. Cette double analyse permet de decomposer la forme de l'objet en composantes. L'etape suivante serait la comparaison des composantes avec des representations presentes dans la memoire. On voit que la memoire est essentielle dans ce processus d'analyse. Ces memoires sont composees d'elements simples appeles « geons » (pour ions geometriques). Un geon est un volume defini par le deplacement d'une courbe fermee dans un plan le long d'un axe suppose etre a angle droit par rapport a la surface plane comme des cylindres, des cones, des cubes, des parallelepipedes, etc., qui correspondent aux criteres gestaltistes de « bonne forme ». Une bibliotheque d'environ 36 geons permettrait d'identifier un nombre considerable d'objets largement superieur a tous les objets que nous rencontrons ou que nous souhaitons memoriser et reconnaitre. Une des consequences importantes de la theorie de geons est que le principe de la Gestalt s'applique a chaque geon et non pas a la figure dans son ensemble. La consequence en est que ce sont les composants qui sont stables en cas de bruit perceptif. Le probleme est de savoir si la neurophysiologie moderne confirme cette decomposition en formes elementaires. Nous avons vu dans les cours precedents que Ton distingue actuellement deux grandes voies neuronales : la voie dite « dorsale » et la voie dite « ventrale » dans l'elaboration des informations visuelles
Fondements Cognitifs de la Geometrie et Experience de L'espace
319
et les relations avec Taction. Un accord est maintenant fait sur Pimportance de la voie ventrale dans 1'identification des objets. II est aussi suggere que les deux hemispheres droit et gauche analysent des proprietes differentes des objets. Certains pretendent en effet que l'hemisphere droit s'interesserait aux proprietes globales de forme des objets et travaillerait dans un repere spatial, alors que l'hemisphere gauche ne serait concerne que par les attributs locaux de chaque objet, entre analyse des proprietes spatiales de coordonnees et proprietes categorielles, comme le propose Kosslyn. Role du cortex infero-temporal dans la reconnaissance des objets L'aire infero-temporale (IT) est une region du cerveau qui, chez le singe, est situee dans la zone juste anterieure au sillon occipital inferieur et s'etend jusqu'au pole temporal et du fond du sillon temporal superieur (STS) au fond du sillon occipito-temporal. II correspond a peu pres aux aires 20 et 21 de Brodman. II est divise en aires TEO et TE pour certains et en PIT, CIT et AIT pour d'autres, mais de nombreuses subdivisions ont depuis ete introduites dans cette zone du cerveau. TEO recoit des projections organisees de facon topographique des aires V2, V3 et V4 et, en retour, se projette aussi sur ces aires. Les traitements qui se font dans TEO peuvent done influencer les etages precedents. TEO se projette sur de nombreuses aires du cortex temporal mais aussi vers les FEF, l'aire 46, l'amygdale, l'hippocampe, etc., et des structures sous-corticales telles que la formation reticulee, le colliculus superieur. Cette partie du cerveau est connue pour son role dans la reconnaissance des objets, la formation des habitudes, la memoire associative, et des deficits de ces fonctions ont ete observes chez des patients porteurs de lesions. Ces aires continuent la chaine des traitements visuels et sont disposees fonctionnellement de facon sequentielle. La taille des champs recepteurs le long de cette chaine augmente de 2 a 3 degres jusqu'a 30 a 50 degres, suggerant que des proprietes locales des objets sont progressivement integrees dans des proprietes plus globales de l'environnement. Les neurones de IT sont sensibles aux attributs visuels comme la couleur, l'orientation, la texture la forme. Mais, bien que deja dans V4 on trouve des neurones sensibles a la forme, e'est dans IT que Ton trouve une grande proportion de neurones qui repondent a des variations de formes complexes, a des objets synthetiques, des descripteurs de forme parametrique, ou des fonctions de Walsh qui sont des patterns visuels produits mathematiquement. De plus, cette region contient des neurones specifiquement sensibles aux visages ou a la main. Certains neurones repondent a un objet meme si on en change les attributs comme la couleur, le mouvement ; par contre, ils sont sensibles aux contrastes, ce qui est coherent avec le fait que la reconnaissance d'une forme est liee aux ombres. IT contient done tous les elements necessaires pour la reconnaissance des objets mais la question est de savoir si les objets sont represented par quelques neurones « gnostiques » ou par l'activation conjointe de petits groupes de neurones qui
320
A. Berthoz
represented chacun les differents attributs ou les geons de l'objet, ou encore s'ils sont representes de facon implicite par des combinaisons de decharges dans des populations larges de neurones. II semble actuellement qu'au moins deux sortes de code soient presentes. D'une part, des neurones qui codent pour des composants de la forme ou des parties et qui peuvent contribuer a l'identification d'un objet par leurs combinaisons en fonction des relations spatiales des composants ainsi definis, ce qui fait penser aux geons de Biederman, mais aussi des neurones qui codent les aspects globaux des objets avec une selectivity particuliere a la configuration des elements. De plus, par des methodes d'imagerie optique de portions du cortex IT chez le singe, on a recemment suggere que dans une zone d'environ 1 mm2 de surface sont presents des neurones qui codent les aspects successifs d'une forme ou d'un visage, par exemple plusieurs points de vue. Ceci suggere que les attributs codes pour une meme forme sont places dans des regions bien delimitees et de facon tres organisee. Le cortex temporal inferieur coopere avec le cortex perirhinal et enthorinal, pour assurer la memorisation et le rappel des formes visuelles lorsqu'il faut comparer une forme nouvelle avec une forme deja vue. Des neurones pour ajuster la main a la forme des objets Des travaux recents apportent des donnees sur la detection de la forme dans des taches de prehension, autrement dit, le couplage entre perception et action. Rappelons que, lorsque nous attrapons un objet, le cerveau traite en parallele les commandes de la trajectoire du bras et celles qui controlent les doigts et permettent d'adapter la forme de la main a la taille des objets. Or, on trouve dans l'aire intraparietale inferieure (AIP) des neurones qui dechargent en relation avec la forme de l'objet qui est saisi par 1'animal. La plupart des neurones de type visuomoteurs preferaient un objet particulier a la fois pendant la manipulation et la simple fixation visuelle sans manipulation. Ceci est vrai lorsque l'objet a une forme canonique proche des geons de Biederman (cylindre, cone, sphere, etc.). lis jouent sans doute un role important pour ajuster le pattern de mouvement de la main aux caracteristiques spatiales de l'objet pendant la manipulation. Ceci correspond bien aux deficits observes chez les patients porteurs de lesions de cette zone qui ne peuvent pas ajuster la forme de la main a l'objet. D'autres neurones repondent a l'orientation de l'axe d'une barre lumineuse dans l'espace. Certains d'entre eux associent le codage de la forme de l'objet (cylindre, sphere) a celui de l'orientation de son axe. Ceci pourrait correspondre aux observations chez des patients porteurs de lesions parietales qui ont une perception biaisee de l'orientation des objets. Dans d'autres aires parietales, on trouve des neurones sensibles a la fois a des surfaces et a une orientation particuliere de la surface. Par consequent, le cortex parietal est implique dans la perception des proprietes 3D des objets liees a la stereopsie (beaucoup des reponses observees exigeaient la vision binoculaire).
Fondements Cognitifs de la Geometrie et Experience de L'espace
321
Le systeme cortical dorsal est done divise en deux voies distinctes. L'une a un relais dans l'aire V5 (MT) et se termine dans V5a (MST) et l'aire VIP. Elle est impliquee dans la vision du mouvement. L'autre voie contient un relais dans l'aire V3-V3a et se termine dans des aires autour des sillons parieto-occipital et intraparietal. Les aires V6, LIP, et 7a sont concernees par la representation de la position en coordonnes egocentriques alors que IPS est important pour le traitement des informations de haut niveau sur la stereopsie et la forme 3D. L'aire AIP est essentielle pour le contr61e du mouvement de la main pendant la prehension. Elle influence l'aire F5 du cortex premoteur qui envoie les commandes motrices au cortex moteur afin d'accomplir la manipulation des objets. L'avenir dira si cette correspondance remarquable entre les predictions de la theorie de Biederman et les resultats de la neurophysiologie tient la route mais on voit ici comment les deux approches theorique et experimentale nous conduisent a mieux comprendre les fondements cognitifs de la perception de la geometrie a defaut encore de nous reveler les fondements cognitifs de LA geometrie. 6. La neuropathologie de la cognition de la geometrie Le deficit de la reconnaissance des formes visuelles (Griisser and Landis, 1991) chez l'Homme est appele « agnosie visuelle ». Bien que deja Thucydide decrivit en 430-429 avant J. C des agnosies chez des patients apres une epidemie de peste a Athenes, et bien qu'Hippocrate fit allusion a cette maladie dans son livre, les premieres descriptions modernes furent faites par Quaglino en 1867. Munk en 1877 remarqua que des chiens pouvaient voir des objets mais ne les reconnaissaient pas et nomma ce deficit "cecite corticale". C'est Freud qui inventa le terme "d'agnosie visuelle" et utilisa ce concept comme Wernicke. La periode de 1880 a 1900 vit fleurir les travaux de Charcot, Wilbrand, Dejerine et des ecoles de neurologie franchise et allemande. Particulierement pertinent pour les questions que nous avons etudiees dans ce cours, on peut noter le travail de Pick qui decrivit, en 1908, un patient qui, a la suite d'une atrophie du lobe occipital, ne pouvait plus reconnaitre des objets de grande taille bien que son acuite visuelle et sa capacite a reconnaitre la couleur soient normales. Ceci est sans doute la premiere identification de ce qui est appele aujourd'hui "l'agnosie simultanee". De nombreuses revues recentes resument les decouvertes sur la pathologie de ces fonctions. Notons toutefois l'interessante distinction faite par Liepman en 1908 de ce qu'il appela l'agnosie "dissolutionnelle" qui comporterait trois niveaux : un deficit de la fusion des signaux sensoriels a l'interieur d'une seule modalite ; un deficit de la memoire liee a une seule modalite; enfin un deficit de l'association des "images", ou plutot des representations de l'objet dans differentes modalites sensorielles. II etait, dans le cadre de ce cours, hors de notre propos de resumer un siecle de recherche et d'observations cliniques. Nous avons toutefois rappele la classification du livre de Landis et de Griisser. Ces auteurs proposent de diviser les agnosies en 5 niveaux qui correspondraient a des niveaux d'integration des informations
322
A. Berthoz
sensorielles : la sensation ; la perception ; l'aperception ; l'association ; la cognition. Wundt fut le premier a definir le niveau d'analyse des objets qu'il appela «aperceptif». Lissauer, en 1890, proposa de diviser le processus de reconnaissance en deux etapes : l'etape de conscience d'une impression sensorielle ou « aperception », et l'etape d'associations d'autres notions avec le contenu de la perception ou « association ». Ce concept a ete l'objet d'un nombre considerable de discussions et a ete reformule de nombreuses fois. Landis (p. 204) note que, chez tous les patients presentant un deficit aperceptif, la perception des qualites visuelles est intacte ou montre des deficits mineurs. Ceci est en contraste saisissant avec leur deficit de reconnaissance, de discrimination, de comparaison ou de copie des formes visuelles simples. Par exemple, ces patients ne reconnaissent pas des figures faites avec des points, ils ont du mal a effectuer la difference entre la figure et le fond, et semblent done avoir un deficit de la perception des formes au sens de la Gestalt. Milner precise a propos du malade DF : « la perturbation de la reconnaissance des formes chez DF ne vient pas d'un deficit de canaux sensoriels particuliers (les detecteurs de contours par exemple) mais d'un deficit qui intervient a un niveau plus eleve ou au-dessus d'un mecanisme general d'extraction des primitives de la forme ». Ces malades ont une capacite a detecter le mouvement. Landis remarque que certains des patients de Golstein, Efron, Adler, et le patient qu'il a etudie utilisent meme des strategies curieuses de tracage des formes par une action de poursuite visuo-motrice pour reconstruire la forme. Ceci serait l'equivalent des strategies de route utilisees par certains sujets pour memoriser un trajet. Bien que tres peu de donnees anatomiques detaillees soient disponibles sur les patients qui souffrent d'agnosie aperceptive, il semblerait possible que cette affection implique les voies temporo-occipitales et done plus particulierement le systeme magnocellulaire. 7. La geometrie et le controle du geste et de la posture Comment intervient la geometrie dans le controle du mouvement ? Jusque dans les annees 1980, les neurophysiologistes ont ete interesses par les bases neurales des reflexes et ont surtout cherche a comprendre comment etaient resolus des problemes de dynamique : par exemple, comment, a partir de la detection de 1'acceleration de la tete, le cerveau pouvait produire des signaux qui controlaient la position du regard, ce qui suppose des integrateurs au sens mathematique, e'est-adire des operateurs qui transforment l'acceleration en vitesse et puis en position. Puis vint l'idee que le cerveau devait aussi resoudre des problemes de geometrie. Par exemple, les informations de mouvement de la tete, codees par les capteurs vestibulaires selon les trois plans des canaux semi-circulaires, dans un referentiel euclidien trirectangle, doivent subir des transformations pour produire la contraction correcte des muscles oculaires et cephaliques. On proposa alors d'assimiler le cerveau a un tenseur qui effectue des transformations de coordonnees dans des espaces differents et resout les problemes dits de « transformation inverse » (Pellionisz and Llinas, 1980).
Fondements Cognitifs de la Geometrie et Experience de L'espace
323
On proposa aussi que le cervelet est l'organe qui contient les operateurs neuronaux pour realiser ces transformations inverses. Une formulation plus recente de ces memes hypotheses a ete donnee suggerant que le cervelet est un veritable modele interne des proprietes mecaniques des membres. Grace a ce modele interne neuronal, une veritable simulation interne de la geometrie et de la cinematique de la trajectoire du mouvement ainsi que les corrections appropriees peuvent etre realisees avant meme que le mouvement soit execute. L'idee que le cerveau effectue des transformations visuo-motrices geometriques complexes pour le controle du mouvement a ete a l'origine de nombreuses etudes recentes. Mon objectif n'est pas de decrire en detail ces mecanismes, mais, en suivant le cadre general des theories, d'inverser completement l'approche traditionnelle. En effet, si Ton se contente de croire que le cerveau va mesurer toutes les informations des sens (vision, informations vestibulaires, mesures des longueurs et des vitesses d'etirement par les muscles, etc.), les informations a traiter seraient considerables, heterogenes, codees dans des referentiels tres differents avec des proprietes geometriques et dynamiques differentes. Compte tenu des centaines de degres de liberte a controler, le probleme serait probablement insoluble ou au moins demanderait beaucoup de temps et ne permettrait pas la necessaire rapidite des gestes, la prediction, et 1'anticipation. De plus, les systemes biomecaniques des membres sont surdetermines, il y a plusieurs trajectoires possibles pour arriver a un point donne de l'espace. Comment done le cerveau choisit-il la solution particuliere ? Quelles sont les contraintes biomecaniques, neurales, qui limitent le nombre de solutions, etc. ? Est-ce la dynamique qui est controlee ou est-ce la geometrie ? Quelles solutions la nature a-t-elle trouvees pour simplifier la complexite de la geometrie du corps ou encore, comme le disait Bernstein (Bernstein, 1967), reduire le nombre de degres de liberte ? La correspondance entre les espaces des capteurs sensoriels, par exemple le fait que les plans des canaux semi-circulaires sont les memes que ceux des directions preferentielles des neurones du systeme optique accessoire ; la stabilisation de la tete qui devient, grace a cette stabilisation, une plate-forme de guidage pour la coordination des mouvements (Pozzo, Berthoz et al., 1990 ; Berthoz and Pozzo, 1988) ; la geometrie du squelette, par exemple les blocages articulaires (Graf, de Waele et al., 1994), (Berthoz, Graf et al., 1991) et le fait remarquable que le cerveau connait les regies des mouvements naturels possibles ; la geometrie des muscles, par exemple les muscles bi-articulaires ; les synergies musculaires qui constituent un repertoire de mouvements tres simples et des contraintes cinematiques dans 1'execution de ces synergies et de leurs relations, par exemple la loi de 1'antiphase entre bras et avant-bras (Lacquaniti, Soechting et al., 1986) ; les bases neurales des synergies, l'anatomie des collaterales d'axones code la geometrie ; les lois simplificatrices, par exemple, la loi de Listing (Hepp, 1994 ; Haslwanter, 1995 ; Misslisch, Tweed et al, 1994 ; Hepp, 1995) et la loi de la puissance 1/3 qui lie la vitesse tangentielle et la courbure de la trajectoire d'un geste (Viviani and Flash, 1995 ; Wann, Nimmo-Smith et al., 1988) ; le choix, par
324
A. Berthoz
le systeme nerveux, de variables globales et non pas de variables locales, par exemple les mouvements du bras qui sont controles par la definition de l'azimut et de l'elevation, la dissociation entre le controle de la distance et de la direction, etc. Le controle de la posture et de I'equilibre Les mecanismes fondamentaux du controle de la posture ne sont pas encore connus. L'ecole reflexologique a suppose qu'une chaine de reflexes assurait la regulation posturale et la resistance aux perturbations. A 1'oppose de ce point de vue, des theories « globalistes » utilisant le concept de schema corporel propose par les neurologues du debut du siecle, ont soutenu que la posture et I'equilibre sont controles de « haut en bas » par un mecanisme cortical (Gurfinkel, 1994). Le debat est encore ouvert car meme les variables controlees ne sont pas encore connues. Certains suggerent que c'est la position du centre de gravite ou du centre de masse dans le poly gone de sustentation qui est controlee ; d'autres suggerent que c'est la geometrie du squelette ; d'autres enfin ont propose que le cerveau controle des relations entre des variables cinematiques qui correspondent a des synergies posturales simples, par exemple la strategic dite « de la cheville » qui fait tourner le corps autour de la cheville comme un pendule inverse, et une autre dite « de la hanche » qui le fait se plier autour du bassin. Le controle postural resulterait d'une combinaison de ces strategies elementaires (Nashner, 1985). Une derniere suggestion, enfin, est que le cerveau controle la geometrie (Lacquaniti, 1997), c'est-a-dire les rapports entre les angles que font les segments corporels entre eux. Par exemple, la longueur totale et l'orientation par rapport a la verticale de chaque membre seraient controlees avec precision. L'idee est que ces deux variables, orientation et longueur, sont controlees independamment par le cerveau et que les neurones des voies dorso-spino-cerebelleuses les codent separement. La caracteristique remarquable de ce codage est que ces deux parametres, orientation et longueur du membre, definissent la position de la patte dans des coordonnees polaires globales sans tenir compte du detail de la configuration du membre qui permet d'atteindre cette posture particuliere. Elles definissent done une posture sans se preoccuper de la facon dont elle est executee. La litterature contient des propositions theoriques sur la facon dont le cerveau pourrait realiser ce type de controle. La theorie du point d'equilibre Une theorie dite du « point d'equilibre » a ete decrite dans un cours precedent. Rappelons que l'idee de Bernstein fut que la position d'un membre peut ne pas etre specifiee en tant que telle mais peut etre codee implicitement en definissant la relation des tensions de deux muscles antagonistes autour d'une articulation. Le « point d'equilibre » qui sera atteint lorsqu'on impose aux muscles une certaine force ou tension determine la position. Cette theorie est interessante car elle implique que le cerveau peut se contenter de controler une seule variable qui est la relation ou le rapport des deux tensions. Si Ton approfondit encore la theorie, on
Fondements Cognitifs de la Geometrie et Experience de L'espace
325
decouvre que le cerveau pourrait se contenter de controler un seuil de sensibilite des motoneurones car, en controlant ce seuil, on controle la contraction du muscle. (Feldman and Levin, 1995). Comme on le comprend peut-etre par ces explications trap breves, la theorie du point d'equilibre suppose que la geometrie soit codee de facon implicite et non pas explicite. II n'est pas necessaire d'avoir dans le cerveau des tenseurs et des representations cartographiques de la geometrie du squelette, le cerveau utilise des variables intermediaires pour transformer des instructions globales (azimut, elevation, orientation, longueur, etc.) en activite musculaire. Ceci expliquerait aussi pourquoi un meme point peut etre atteint avec des configurations differentes. Nous travaillons nous-memes sur l'idee que le cerveau utilise des variables composites (Hanneton, Berthoz et ai, 1997) dont la theorie a ete proposee par Slotine. Posture et geometrie En mesurant les angles que font, chez le chat et chez 1'Homme, les angles des pieds par rapport a la jambe, de la jambe par rapport a la cuisse, de la cuisse par rapport au tronc, on observe qu'ils sont lies deux par deux par des relations lineaires pendant des reajustements posturaux. Ceci se traduit par le fait que, si Ton porte sur un diagramme tridimensionnel ces relations d'angles, les points experimentaux restent dans des plans. Cette covariation des angles des articulations de la jambe suggere qu'il se produirait une transformation intermediaire de type inverse qui transforme les cordonnees de l'extremite (ce qui est controle) en un ensemble de commandes qui reglent les angles des segments corporels entre eux selon des rapports tres fixes. Lacquaniti (Lacquaniti, 1997), qui a fait ces observations, suggere que ce comportement est caracteristique des systemes dynamiques gouvernes par des attracteurs chaotiques. La contrainte planaire pourrait emerger d'un isomorphisme entre le modele interne du schema corporel, le mouvement reel du membre et sa perception par la proprioception. Alors, l'orientation specifique du plan dans l'espace des articulations devient signifiante non seulement d'un point de vue du controle moteur, mais aussi d'apres une perspective sensorielle. En resume, l'equivalence motrice implique que se produise une recalibration continue de l'espace sensori-moteur par 1'intermediaire d'associations sensori-motrices variables. La theorie du minimum de secousse. Son caractere morphogenetique Une autre theorie, concue pour expliquer la generation de trajectoire pendant un geste, suppose que la variable controlee par le systeme nerveux ait simplement un minimum d'energie (minimum de secousse, la secousse etant la derivee de 1'acceleration). II suffirait, d'apres cette theorie due a Flash et reprise par Flash et Viviani (Viviani and Rash, 1995), que le cerveau connaisse les points de depart et d'arrivee du geste, ainsi qu'un ou plusieurs points intermediaires (appeles « via points» en anglais), pour que la trajectoire soit definie. Cette theorie est interessante car elle suggere que le cerveau ne connatt pas la trajectoire
326
A. Berthoz
geometrique du geste qui est planifie. II n'y aurait pas dans le cerveau de planification de la courbe du geste. Celle-ci resulterait de la mise en oeuvre du principe de minimisation de la secousse avec ces quelques contraintes de position. C'est en cela que Ton peut dire que le minimum d'energie est morphogenetique. Notons que la theorie du point d'equilibre a de semblables proprietes. Pour le moment cette theorie n'a ete testee que sur des mouvements de la main et aucun travail experimental n'a ete realise sur la posture. 8. La simulation mentale de la geometrie des trajets au cours de la navigation On a decrit, depuis les auteurs grecs presocratiques, les strategies mentales que le cerveau peut utiliser, pour memoriser les mots, les evenements, ou eventuellement les objets. Par exemple il utilise une methode, "mnemotechnique", qui consiste a les ranger mentalement dans des villes, des palais, des maisons, ou parfois a les disposer sur des echelles ou dans des pots comme un apothicaire (Yates, 1984). Les representations internes de l'espace sont done utilisees par la memoire et la recuperation des donnees s'effectue grace a une veritable navigation mentale dont les regies de fonctionnement cognitif sont sans doute les memes que celles de la navigation mentale que nous faisons lorsque nous essayons de retrouver un trajet. Pour effectuer cette interaction entre la memoire et l'espace, le cerveau peut utiliser differentes strategies cognitives (Tolman, 1949) (Tolman, 1948) (Garling, Book et al., 1982 ; Allen, Siegal et al., 1978). On trouvera des resumes recents de la litterature dans les ouvrages de (Denis, 1989), (Golledge, 1999), (Burgess, Jeffery et al., 1999), (Kosslyn, 1980 ; Kosslyn, Alpert et al, 1993). Par exemple nous pouvons nous rappeler une route que nous avons parcourue de la porte d'un hotel a une salle de conference ou de notre maison a notre bureau de plusieurs facons. La premiere de ces strategies cognitives peut etre appelee la "strategie de route" qui consiste a se souvenir des mouvements, des tournants, des translations, que nous avons effectuee et a les associer a des reperes visuels que nous avons remarques. Cette memoire des routes suppose des mecanismes assez complexes qu'il faut decomposer pour esperer les comprendre un jour. Une deuxieme strategie cognitive pour se rappeler un trajet a ete appelee par les psychologies qui Ton etudiee "strategie de survol". Elle consiste a evoquer une carte de l'environnement vue de dessus et a suivre notre trajet sur cette "carte mentale". La strategie de survol, qui consiste a visualiser une carte, ou a en faire une description propositionnelle, est utilisee en particulier lorsque nous cherchons a nous souvenir de grandes distances. Elle a ete etudiee par l'imagerie. On doit a Kosslyn de nombreux travaux sur cette facon de manipuler mentalement la representation d'un environnement (voir aussi Mellet, Tzourio et al., 1995). Une troisieme strategie a ete decrite (Thorndyke and Hayes-Roth, 1982). Lorsque, par exemple, nous essayons de nous rappeler ou est le bureau d'un de nos
Fondements Cognitifs de la Geometric et Experience de L'espace
327
collegues dans un batiment. Dans ce cas, le cerveau construit une representation interne en quelque sorte transparente du batiment qui n'est ni une carte, ni vraiment une route constituee de sequences de lieux et de mouvements. De nombreux auteurs ont elabore des classifications de ces strategies mentales. Par exemple Touresky et Redish (Touretzky and Redish, 1996) ont propose de diviser les strategies de navigation en quatre sortes : les deux precedentes (route et carte), plus deux autres qu'ils appellent la navigation par "taxons" (il s'agit de l'approche directe d'un but ou de l'evitement d'un obstacle, c'est la plus primitive des navigations); et la navigation "praxique" qui serait une navigation purement endogene due a une sequence de mouvements programmes en interne (peut etre la trajectoire d'une ballerine sur la scene serait un exemple de cette navigation). lis ont propose dans le livre de Burgess et al. (1999) cite plus haut, une synthese de cette theorie. (Trullier, Wiener et al., 1997) ont aussi propose une classification des differentes sortes de navigation en quatre categories. La strategie de route Considerons maintenant la strategie que nous avons appelee de "route". Cette strategie est tres importante a de nombreux egards. Par exemple le mathematicien Henri Poincare a propose que cette simulation mentale de nos deplacements dans l'espace intervient dans les fondations de la geometric II ecrit: « localiser un point dans l'espace, c'est simplement se representer le mouvement qu'il faut faire pour l'atteindre ». II precise ensuite que lorsqu'il dit que nous nous representons le mouvement il veut dire que nous nous representons les "sensations musculaires" qui sont associees a ce mouvement et qui n'ont aucun caractere geometrique. Nous avons propose (Droulez, Berthoz et al., 1985 ; Droulez and Berthoz, 1991 ; Droulez and Berthoz, 1988 ; Droulez and Berthoz, 1990) l'idee que le cerveau ne represente pas l'espace sur des cartes spatiotopiques seulement. Nous avons suggere que, pour produire et controler des mouvements, le cerveau utilise un processus de reactualisation dynamique, utilisant un mecanisme de "memoire dynamique". Cette memoire consiste en fait en une reactualisation permanente de la localisation de Taction sur une carte par des signaux reentrants corollaires de signaux de commande motrice, ou combinant des signaux proprioceptifs avec la decharge corollaire. Selon cette theorie, le cerveau n'aurait pas besoin de construire une representation de l'espace absolu, en coordonnees spatiales, pour controler un mouvement de l'ceil, du bras ou un deplacement locomoteur. II suffit que le mouvement de l'effecteur, ou meme sa vitesse soit reinjecte sur la carte sensorielle ou le point de l'espace que Ton veut atteindre est code en coordonnees "sensori-topiques" c'est a dire dans l'espace que les roboticiens appellent « l'espace des capteurs », et par consequent ne presupposent aucune representation de l'espace (Poincare, 1970). Par consequent Poincare nous propose l'idee que les fondations de la geometrie sont dans les mecanismes biologiques de Taction (voir Berthoz, cours au College de France, Annuaire 1997-1998). Einstein a approuve cette theorie qui a ete critiquee par des logiciens comme Hilbert et les theories de
328
A. Berthoz
la logique formelle qui ont domine les mathematiques dans les quelques dernieres decades (voir a ce sujet l'analyse de G. Longo dans Intellecticd). Nous devons rehabiliter les idees de Poincare et d'Einstein, nous devons reintroduire le corps en action dans les theories concernant la memoire de l'espace. II faut substituer une theorie dynamique basee sur la memoire de Taction a des theories ou domine l'idee que le cerveau ne travaille que dans un univers d'abstraction cartesien deconnecte du corps sensible. Cette idee a ete developpee dans (Berthoz, 1997). De fa£on tres generale, cette theorie suppose que Ton peut trouver des preuves de l'utilisation par le cerveau des derivees successives de la position (vitesse, acceleration) ou meme combinaison de celle-ci comme nous 1'avons recemment suggere (Hanneton et al. 1998). Autrement dit cette theorie suppose que Ton puisse demonter que le cerveau utilise, et peut etre aussi memorise, des variables dynamiques du mouvement comme la vitesse par exemple, de preference a la position. II y a plusieurs avantages a travailler dans l'espace des vitesses. D'abord pour s'affranchir des problemes de condition initiale, ensuite on s'affranchit des problemes de derive. II est aussi connu que la stabilite est meilleure etc. Enfin un certain nombre de capteurs sensoriels (comme les capteurs vestibulaires, mais aussi la voie du systeme visuel qui code le mouvement, ne detectent que des derivees de la positon (vitesse, acceleration etc.). Notre equipe a essaye de mettre au point de nouveaux paradigmes pour etudier chez l'homme, les mecanismes de la memoire des trajets et du guidage de la locomotion par des simulations mentales de la navigation. Nous donnerons cidessous quelques exemples de ces travaux. La simulation mentale des trajets Une premiere question concerne la reactualisation des orientations et de la position d'un objet pendant la locomotion. En effet nous ne pouvons nous rappeler un trajet que si nous avons fait une reactualisation de la position des objets pendant notre route, un liage perceptif en quelque sorte entre les differents points de vue d'un meme objet. Cette question des changements de point de vue avait ete etudiee par Rieser (Rieser, 1989), mais il n'avait pas considere les processus mentaux qui accompagnent ces changements de points de vue. Amorim (Amorim, Glasauer et al., 1997) a propose l'idee qu'il y a deux mecanismes possibles qui nous permettent de reactualiser mentalement la position et l'apparence d'un objet dans l'espace pendant la locomotion. Considerons par exemple une personne qui marche dans une piece les yeux fermes et qui essaye de se souvenir d'un objet dans la piece pour en memoriser l'orientation, la position et la forme. Amorim et al. (1997) ont montre que le cerveau peut adopter deux tactiques. L'une, "sequentielle", consiste a se concentrer, pendant la marche, sur les mouvements du corps et, une fois arrive a destination, a la fin de la trajectoire, a effectuer mentalement la reactualisation de la position, de l'orientation et de la forme de l'objet. Mais Ton peut aussi effectuer
Fondements Cognitifs de la Geometrie et Experience de L'espace
329
la reactualisation des proprietes de 1'objet de fagon continue pendant la marche (strategie continue). Ces deux tactiques cognitives sont toutes deux de type "egocentrees" en ce sens qu'elles referent 1'objet exterieur par rapport au corps propre du sujet, mais elles different par l'ordre dans lequel sont effectuees les operations mentales. II est done clair que pendant la locomotion aveugle le cerveau utilise une simulation mentale des relations avec l'environnement pour guider la locomotion. Ceci a plusieurs consequences que nous allons brievement decrire. La simulation mentale d'une trajectoire guide la locomotion : le pointage locomoteur Les paradigmes de pointage locomoteur consistent en general a demander a un sujet de marcher en l'absence de vision vers une cible prealablement memorisee. Ceci correspond done aux grands paradigmes classiques de la physiologie experimentale qui sont ceux soit du pointage manuel, soit du pointage oculomoteur. Thomson (1983) a demontre que le cerveau peut reactualiser de fagon tres precise les cartes mentales d'un environnement visuel lors de la locomotion. Ses ont ete dupliquees par un grand nombre d'auteurs. Toutes ces etudes ont confirme qu'il etait possible a un sujet d'atteindre une cible vue prealablement jusqu'a des distances d'une vingtaine de metres, meme si le sujet effectue des detours assez complexes. Plusieurs theories ont ete proposees pour expliquer cette capacite. On peut imaginer que le sujet possede une carte mentale comme une carte de geographie et que lors de la locomotion le cerveau procede a une reactualisation de la position du corps sur cette carte. On peut egalement imaginer que le cerveau ne fonctionne pas du tout avec une representation metrique. La litterature de psychologie cognitive montre que les sujets utilisent des strategies completement differentes. Certains sujets dits « visuels » semblent effectivement reconstituer une image de la piece dans laquelle ils evoluent et d'une fagon encore mysterieuse parviennent a reactualiser la position de leur corps par rapport a cette image. Ces sujets ont tendance a incliner la tete vers la cible, comme s'ils la regardaient. D'autres sujets n'ont pas du tout cette strategie et semblent utiliser des informations proprioceptives ou des informations liees a la commande motrice. Nous avons repris ces paradigmes en posant quelques questions simples. En effet si le cerveau peut effectuer cette reactualisation des cartes mentales il ne peut utiliser, les yeux fermes, que les informations d'origine vestibulaires, ou les donnees de la propioception des jambes, ou encore des decharges corollaires des commandes motrices. Laquelle de ces trois sortes d'informations sont-elles utilisees ? Les informations vestibulaires sont-elles utiles dans cette navigation aveugle pour la manipulation mentale des representations de l'environnement ? Nous avons, pour repondre a ces questions, employe des methodes que je voudrais rappeler tres rapidement. II est possible, grace a des cameras reliees a un ordinateur, d'obtenir en trois dimensions les deplacements des differents segments
330
A. Berthoz
du corps et ensuite d'en deriver des parametres de vitesse, d'acceleration et de distance. Nous avons dans le passe utilise ces methodes dans I'etude de la locomotion pour montrer qu'au cours d'une simple marche, un sujet qui se deplace a la tete stabilised dans l'espace de facon remarquable en rotation (Berthoz and Pozzo, 1988 ; Pozzo, Berthoz, and Lefort, 1990). Et nous avons ensuite specule sur le fait que cette stabilisation de la tete permet precisement de simplifier le traitement des informations vestibulaires de deplacement et d'utiliser les capteurs vestibulaires pour traiter les problemes complexes que pose la differentiation gravito-inertielle, cette ambiguite venant du fait que la gravite est detectee par les otholithes. Nous avons ici demande a des sujets porteurs de marqueurs d'effectuer la tache de l'experience de Thomson. Des sujets avec des lesions des capteurs vestibulaires peuvent realiser cette tache avec une tres grande precision (Glasauer, Amorim et al., 1993). Ceux-ci ne sont done pas necessaires pour ce pointage locomoteur balistique. Nous avons emis l'hypothese que cette contribution des capteurs vestibulaires deviendrait peut-etre apparente si nous demandions au sujet de marcher suivant une triangulation (dessiner sur le sol un triangle d'environ 3 m de cote, a parcourir d'abord les yeux ouverts puis les yeux fermes). II y avait ainsi en plus d'un probleme de distance la realisation de deux rotations. C'est une tache de "retour au gite" dans le noir. Dans une tache comme celle-ci, la question theorique que Ton peut se poser est de savoir si la distance parcourue est traitee par le cerveau par les memes mecanismes que la direction de la tete. Existe-t-il une dissociation entre la distance et la reorientation de l'espace (d'ou l'interet des deux marqueurs permettant de reconstruire Tangle de la tete par rapport au corps) ? Nos experiences ont d'abord montre que juste avant de tourner le coin, la tete commence a indiquer la nouvelle direction avant meme que le sujet soit arrive a ce coin. Lorsque nous tournons autour d'un coin, la tete anticipe et va en quelque sorte diriger le corps dans la nouvelle direction. Cette propriete reste conservee meme dans le noir. Cette avance de phase de la direction de la tete par rapport a la trajectoire du corps a ete montree en mesurant la vitesse tangentielle de la tete le long de la trajectoire. Ceci est pour nous l'indice que dans le guidage de cette locomotion, pendant cette tache memorisee, le cerveau ne se contente pas en quelque sorte de suivre les pieds, mais la locomotion est guidee par une simulation interne de la trajectoire. C'est cette poursuite de la trajectoire qui entraine, pensons-nous, une orientation de la direction du regard vers la nouvelle direction attendue (il y a prediction). Nous avons en effet enregistre les mouvements des yeux. II y a une veritable anticipation par le regard (Grasso, Prevost et al., 1998). La formule que je voudrais proposer est « nous allons la ou nous regardons », c'est le regard qui guide la locomotion et c'est une poursuite interne d'une trajectoire mentale qui guide le regard. Cette affirmation apparemment triviale est importante, car en robotique le probleme du guidage des robot a de grandes vitesses se heurte encore a des difficultes non negligeables. Aussi etonnant que cela puisse paraitre, cette idee tres
Fondements Cognitifs de la Geometrie et Experience de L'espace
331
simple que la navigation d'un robot, a partir d'une simulation interne d'une prediction des deplacements futurs dans l'espace, puisse etre guidee non pas par ses roues mais par son regard (en l'occurrence des cameras orientables) n'avait pas ete «implementee » sur les robots mobiles. Nous nous sommes aussi pose la question des developpements de cette capacite predictive. Nous avons essaye de regarder ce qui se passe chez les enfants (Grasso, Assaiante et al., 1998). II n'y a pas d'anticipation chez l'enfant de trois ans, mais elle est presente chez l'enfant de huit ans. Chez les patients presentant des lesions labyrinthiques bilaterales, la realisation de la tache les yeux fermes ne presente pas de deficit pour le premier segment, la premiere rotation s'effectue bien (Berthoz, Amorim et al., 1999). Par contre, un deficit important apparait lors de la deuxieme orientation (lorsqu'il y a cumul des directions). Ceci nous suggere que ces informations sont utilisees par le cerveau dans ce type de tache. II existe une grande variabilite dans les resultats en fonction du type de lesion. Les donnees montrent que chez les patients vestibulaires uni ou bilateraux, il se produit tres peu d'erreurs en distance, mais beaucoup en direction (reorientation). D'ou l'idee d'une dissociation possible entre le controle de la distance et celui de la direction, suggere il y a longtemps notamment par Paillard. Dans une autre serie d'experiences sur la locomotion aveugle, nous avons propose une marche non plus en triangle, mais en cercle. On montre au sujet un cercle dessine sur le sol puis on lui demande de reproduire la trajectoire en effectuant deux tours et de s'arreter dans la bonne direction. Le sujet doit done faire une tache de production de trajectoire memorisee, avec un aspect generation d'une forme de trajectoire, une tache de reproduction d'une distance et une tache de reorientation finale. Le sujet devait en plus accomplir une tache d'arithmetique mentale (compter a l'envers a partir de 200). II est ensuite possible de mesurer la performance en prenant des indices, comme la distance totale parcourue, Tangle final de la tete par rapport a Tangle de depart, et un indice important pour retrouver la capacite du cerveau a produire une trajectoire qui est le rayon moyen. Pendant ces taches locomotrices, qu'elles soient effectuees dans la lumiere ou en obscurite, la tete anticipe d'environ 300 ms sur le mouvement du corps. Chez les patients ayant des lesions vestibulaires on constate une segmentation de la trajectoire en petits elements. Mais surtout les resultats suggerent qu'il existe bien une dissociation entre le controle de la distance et le controle de la direction (la distance peut etre correcte, mais non la direction par exemple) car les patients ayant des lesions vestibulaires bilaterales peuvent reproduire la distance (car leur systeme somatique du controle du pas qui met en oeuvre les membres inferieurs est intact), mais perdent Torientation. La memoire vestibulaire Si le cerveau construit une memoire des trajets a partir des donnees des sens, il faut montrer que ces informations peuvent reellement etre utilisees pour
332
A. Berthoz
revaluation de nos deplacements dans un espace de grande dimension et que ces informations peuvent etre stockees en memoire spatiale et ensuite reutilisees pour memoriser un trajet ou conduire une action d'orientation. Ceci est bien connu pour la vision. On sait aussi que les informations proprioceptives peuvent etre memorisees et que, dans le cas de trajets rectilignes elles peuvent conduire a une navigation assez precise (H. Mittelstaedt and M.L. Mittelstaedt, 1992). Toutefois il nous fallait demonter que les informations vestibulaires pouvaient etre memorisees et utilisees pour guider une reproduction de trajet ou un acte de pointage oculomoteur ou manuel. Ceci a ete demontre par plusieurs experiences que je resumerai rapidement ici. a) Reproduction de mouvements de rotation et de translation passifs Nous avons demontre, avec I. Israel, que le cerveau peut utiliser les informations vestibulaires de rotation donnees par les canaux semi-circulaires pour la memoire des rotations. Nous avons aussi montre que cette memoire des rotations peut guider des mouvements des yeux vers des cibles dont la position est memorisee, et que des patients ayant des lesions corticales du cortex vestibulaire, du cortex frontal et prefrontal montrent des deficits dans cette tache de saccades vestibulaires memorisee (Andre-Deshays, Israel et al., 1990 ; Israel, Fetter et al., 1993 ; Israel, Rivaud et al., 1995 ; Israel, Rivaud et al., 1991). Les informations vestibulaires de translation detectees par les otolithes peuvent aussi etre utilisees par le cerveau pour la memoire des deplacements (Berthoz, Israel et al., 1995 ; Israel and Berthoz, 1989). Par exemple nous avons utilise un robot mobile sur lequel le sujet pouvait etre soumis a des translations passives. Les sujets pouvaient ensuite prendre le controle du robot et induire son deplacement en variant la vitesse. lis etaient assis sur le robot les yeux fermes, par consequent sans aucun indice visuel concernant leur mouvement. Le robot se deplacait de quelques metres vers l'avant (5 a 10 metres), distance appelee "distance imposee". Apres quelques secondes d'arret du robot, le sujet devait a son tour lui imposer un deplacement vers l'avant d'une distance egale a celle qu'il avait parcours pendant le deplacement impose. La seule information disponible pour le sujet concernant cette distance devait avoir ete derivee de la mesure de 1'acceleration du robot par les capteurs vestibulaires (otolithes) puisqu'il etait dans le noir complet et n'avait aucune information visuelle. En effet nous avons verifie que 1'evaluation du temps de parcours n'etait pas indispensable (par exemple en imposant plusieurs distances lors de parcours d'une meme duree). La reproduction de la distance fut tres precise. Le cerveau peut done evaluer, a partir de 1'acceleration lineaire, une grandeur qui permet cette reproduction de la distance. L'explication la plus triviale de ce processus est qu'il y a, dans le cerveau, des mecanismes qui accomplissent cette "integration", au sens mathematique, entre acceleration et deplacement. Une grandeur representant le deplacement serait memorisee et comparee, pendant la tache de reproduction, avec une autre mesure integree du deplacement detectee par les otolithes.
Fondements Cognitifs de la Geometrie et Experience de L'espace
333
Toutefois la question est de savoir dans quelle mesure le cerveau memorise reellement des distances ou un mouvement. En d'autres termes, comme l'a propose Poincare, ce qui est memorise est peut-etre le mouvement que nous devons faire pour aller d'un point de l'espace a un autre et non un nombre dans un espace cartesien. Effectivement si nous varions le profil de vitesse du mouvement passif impose pendant la translation du robot (en changeant les profils de vitesse et d'acceleration) les sujets tendent a reproduire les profils de vitesse comme si ce qu'ils avaient memorises etait un pattern dynamique de mouvement. Si cela est vrai alors le fait qu'ils reproduisent une distance est un effet secondaire d'une reproduction precise du profil de vitesse. Dans ces conditions la memoire du mouvement peut etre une memoire cruciale pour la reproduction des distances. Un nouveau paradigme : la reproduction de trajectoires memorisees pendant la navigation dans un corridor virtuel. Nous avons recemment elabore un nouveau paradigme (Sreung, DEA Paris VI, 1997, Viaud Delmon, These Sc. Paris VI, 1999, Berthoz et al. 1999) destine a accomplir plusieurs objectifs. D'abord permettre de tester la memoire des trajets pendant des taches de navigation et poser la question de la nature des informations qui sont memorisees ; ensuite permettre la dissociation des informations visuelles, vestibulaires, de decharge corollaire, et proprioceptives pour pouvoir varier leur poids respectif, creer eventuellement des conflits et nous permettre d'observer 1'effet de l'adaptation au conflit sur la memorisation de l'espace parcouru; enfin donner au sujet une tache active de navigation qui mette en jeu les circuits qui construisent la cognition spatiale. Les sujets etaient assis sur une chaise tournante (une simple chaise qui pouvait tourner sur elle meme sous l'impulsion des pieds du sujet). lis etaient soumis a deux situations differentes. La premiere situation est une condition de "navigation virtuelle" : des images visuelles d'un couloir comprenant plusieurs segments rectilignes joints par des angles etaient presented dans un casque de realite virtuelle dont le champ monoculaire etait d'environ 50 degres par 40 degres. L'ordinateur imposait aux images dans le casque un mouvement de translation a vitesse constante dans le couloir virtuel correspondant a une vitesse de locomotion normale. Le sujet etait done soumis a une translation visuelle passive dans le couloir virtuel, mais la rotation de sa trajectoire dans le couloir virtuel etaient actives, il les realisaient avec son corps. En effet, la rotation horizontale de la tete du sujet etait mesuree par un systeme a ultrasons qui ensuite pouvait modifier 1'image du couloir dans le casque de realite virtuelle. Lorsque le sujet tournait sur sa chaise la trajectoire dans le couloir virtuel effectuait une rotation. Par exemple, lorsque le sujet arrivait dans le couloir virtuel a l'extremite d'une branche rectiligne du couloir s'il ne faisait rien avec son corps il heurtait le mur. Pour tourner dans le monde virtuel il fallait
334
A. Berthoz
qu'il tourne dans le monde reel sur sa chaise. Nous avons teste les sujets dans deux conditions : sujet assis et debout. Dans ce dernier cas, les sujets devaient tourner leur corps pour effectuer la rotation. II s'agit done d'une "locomotion virtuelle" assise ou d'une locomotion virtuelle debout dans laquelle seules les rotations sont reelles. L'avantage de ce dispositif est que Ton peut modifier les relations entre le monde virtuel (visuel) et le monde reel (la rotation sur la chaise ou le corps debout). Par exemple pour tourner de 90 degres dans le monde virtuel le sujet peut etre oblige de tourner de 120 degres dans le monde reel. Ceci permet de briser la coherence des traitements des informations visuelles, somatiques et vestibulaires. Le rapport est done normalement 1. Nous avons employe deux rapports de 0.66 et de 1.5. Le rapport de 0.6 correspond au fait que si le sujet tourne la chaise de 90 degres la rotation dans le couloir virtuel est de 59.4 degres. II est done possible d'etudier l'adaptation a ce conflit et pour decouvrir la nature de l'interaction qui se produira entre les deux "mondes". L'avantage de ce paradigme est qu'il est possible de construire une "trajectoire", dans le couloir virtuel, qui est la somme du deplacement passif a vitesse constante imposee par l'ordinateur et les rotations du sujet. La deuxieme condition permet d'etudier la memoire des trajets. Nous l'avons appelee "navigation mentale". Dans cette condition, le sujet est assis, ou debout, et ferme les yeux. II doit mentalement simuler la navigation visuelle a laquelle l'ceil a ete precedemment soumis. Lorsqu'il pense qu'il est dans le couloir rectiligne, il ne bougera done pas ; lorsqu'il pense qu'il doit tourner au bout du couloir, il doit tourner le corps et la tete sur sa chaise ou debout. On obtient ainsi une "trajectoire" de cette navigation mentale qui permet d'avoir une representation des processus mentaux du sujet. Les sujets accomplissent la tache de navigation visuelle sans aucun probleme aussi bien lorsque le gain est 1 que lorsqu'il y a conflit. Cette experience a donne plusieurs resultats remarquables. D'abord chez 53 sujets ayant subi la navigation avec un conflit (gain 0.66 ou 1.5) aucun sujet n'a ete conscient de ce conflit. Ceci est probablement du au fait que les plages de rapports utilises ne sont pas tres au-dessus de la gamme des rapports qui sont compenses par des mecanismes sous corticaux (comme une variation du gain du controle du regard lorsque nous mettons nos lunettes est inconsciemment compensee par des mecanismes cerebelleux). Lorsqu'on demande au sujet de reproduire, les yeux fermes, les angles de rotation qu'ils ont effectues dans la situation de navigation visuelle on constate que les sujets reproduisent les angles de rotation dans le monde qui a l'amplitude la plus importante dans le rapport de gain entre vision et rotation du corps. Ceci nous suggere que, dans le cas d'un conflit comme celui-ci, le cerveau ne memorise pas une combinaison ponderee des informations mais semble choisir, operer une selection, entre les deux principales sources d'information et attribuer une priorite a l'une d'entre-elles, celle dont l'amplitude est la plus elevee. Un des meilleurs
Fondements Cognitifs de la Geometrie et Experience de Vespace
335
temoins de ce fait est le dessin que realisent les sujets apres T experience. Celui-ci montre bien que c'est l'une ou l'autre des informations qui est memorisee et non un melange des deux. Les consequences de ces observations sont importantes pour comprendre les strategies cognitives associees au controle de Taction. Le cerveau ne se contente pas de traiter passivement les informations des sens. Suivant le contexte et la tache, il selectionne et decide d'attribuer un role preponderant a telle ou telle information. Cette hierarchie de selection dependant du contexte et du but de Taction a ete suggeree (Nashner and Berthoz, 1978) dans le cas de Tadaptation aux prismes (Melvill Jones and Berthoz, 1985) et la compensation des deficits vestibulaires (Berthoz, 1985 ; Berthoz, 1989). Cette capacite de jouer sur un repertoire de strategies est sans doute dependant d'un jeu subtil entre Tinhibition et Texcitation dans le systeme nerveux central (Berthoz, 1996). Un systeme appartenant au repertoire sensorimoteur peut etre choisi qui se substitue au systeme deficient. L'adaptation requiert une decision. Un troisieme resultat important de ces experiences concerne la nature des caracteristiques de la trajectoire qui est memorisee. Lorsqu'on demande au sujet de dessiner la trajectoire, on decouvre que la precision de la reproduction sur un plan en coordonnees cartesiennes, done sous forme d'une carte, n'est pas tres bonne (bien que dans le cas de conflit elle reflete le choix entre memorisation de la vision ou des perceptions somato-vestibulaires). Si le rythme general de la trajectoire est bien memorise, au contraire il y a une grande variation d'un essai a l'autre pour un meme sujet. Par contre, si on prend la derivee de cette trajectoire, e'est-a-dire la vitesse angulaire, par exemple, on obtient un trace qui est nul lorsque la trajectoire est rectiligne, mais la vitesse angulaire de la tete varie en forme de cloche lorsque le sujet tourne sur sa chaise. Le resultat remarquable est la similarite des courbes ainsi obtenues lorsqu'on compare ces courbes pour la condition de navigation virtuelle visuelle et la navigation mentale dans le noir. Malgre de grandes variations d'un essai a l'autre, et d'un sujet a l'autre, la forme de ces courbes est tres reproductible entre ces deux conditions de navigation. Pour ecarter la possibility que cette ressemblance soit due a une memoire motrice de la rotation du corps (le sujet se rappellerait les commandes motrices qu'il a donne pour tourner), nous avons introduit entre la session de navigation visuelle et la reproduction mentale un changement de la raideur de la chaise tournante (dans le cas ou le sujet est assis). Cela n'a pas modifie le resultat et les deux courbes de vitesse pendant la navigation visuelle et la navigation mentale, restent tres proches. Ces donnees nous suggerent, une fois de plus, comme Tavaient aussi suggerees les donnees de Berthoz, Israel, Georges-Francois, Grasso, and Tsuzuku, (1995), que le cerveau memorise un aspect dynamique de la trajectoire et pas seulement le deplacement d'un point sur une "carte cognitive". Ces etudes suggerent Texistence d'une classe particuliere de memoire spatiale qui pourrait etre appelee "memoire topokinetique" ou "topokinesthesique"
336
A. Berthoz
(Berthoz, 1999) qui implique plusieurs structures du cerveau (le cortex parietal, le cortex parieto, insulaire, 1'insula, le cortex cingulaire, la formation hippocampique, le cortex frontal dorso lateral etc.), et done un systeme implique dans le processus de navigation active. Par memoire topokinesthesique, nous voulons dire une memoire du mouvement construite pendant la navigation et associee avec une serie d'evenements ou de reperes visuels. II s'agit d'une memoire motrice particuliere qui met en relation des actions dans l'environnement et des indices sensibles, des configurations d'indices. Cette memoire a un rapport avec la memoire episodique mais concerne une sequence d'episodes. C'est une memoire episodique sequentielle. Un script retroactif des relations entre le corps et le monde environnant. Un des caracteres les plus importants de cette memoire est qu'elle concerne des evenements auto-induits par une recherche active d'un environnement. II est bien connu que les cellules de lieu de l'hippocampe et les cellules de direction de la tete ne construisent leurs proprietes que si l'animal explore activement l'environnement. Ce mecanisme contient par consequent des secrets importants pour comprendre le role de l'activite. 9. Bases neuronales de la memoire des trajets a) Donnees de la neuropsychologic La memoire des deplacements est done un processus mental complexe qui associe l'ensemble des souvenirs perceptifs et les souvenirs de nos actions et dans lequel intervient le langage (voir Denis, 1989). De nombreux travaux ont ete consacres recemment aux bases neurales de la memoire des trajets. II est hors de notre propos de les resumer ici et nous renvoyons aux ouvrages de synthese mentionnes au debut de ce texte. Nous donnerons quelques indications utiles pour notre demonstration. On trouve dans les donnees de la neuropsychologie des indications interessantes a ce sujet. Des dissociations claires entre les differentes strategies ont ete trouvees chez divers patients porteurs de lesions cerebrales. De nombreuses etudes ont montre des deficits de memoire topographique et une dissociation a ete trouvee entre la capacite de reconnaitre des reperes familiers et celle de decrire des routes bien connues avec des reperes (Whiteley and Warrington, 1978 ; Incisa della Rocchetta; Cipolotti et al. ; 1996 ; Pallis, 1955 ; Paterson, 1994). Parfois des patients peuvent decrire leurs routes et reconnaitre des reperes, mais se perdent quand meme parce que les reperes ne contiennent plus, pour eux, des informations de direction (Haecan, Tzortzis et al., 1999). L'hippocampe n'est pas necessairement la seule zone du cerveau impliquee dans ces deficits de la memoire spatiale. Habib and Sirigu (1987), par exemple, ont montre que des lesions chez les patients ayant des deficits de la memoire topographique etaient limites au parahippocampe et au subiculum mais ne s'etendaient pas a l'hippocampe, ce qui rejoint les travaux recents de l'imagerie cerebrale. De plus le patient R. B., qui avait une amnesie retrograde severe apres la lesion de l'hippocampe, n'etait pas perdu dans son voisinage (Zola-Morgan, Squire et al., 1999).
Fondements Cognitifs de la Geometrie et Experience de L'espace
337
Le patient etudie par Incisa della Rochetta, Cipolotti et Warrington (1996) avait des deficits severes pour decrire des routes familieres dans son environnement mais aucune difficulte a identifier des pays d'apres les cartes de leurs frontieres et a nommer une ville dans un pays lorsqu'on l'identifiait par un point. La memoire episodique et semantique etaient atteintes chez ce patient. La suggestion est que ce patient avait un deficit specifique pour la connaissance categorielle d'objets inanimes (collines, batiments et autres objets). II semble done exister un codage specifique des objets topographiques distinct d'autres classes d'objets et une separation entre les objets qui demandent qu'on les atteigne par la locomotion et d'autres objets situes dans l'espace de prehension par exemple. II est interessant de remarquer que cette dissociation rappelle la distinction enter les diverses categories d'espace (personnel, extrapersonnel, environnemental sur lesquels neurologues et psychologies ont souvent insiste (voir a ce sujet Griisser and Landis (1991)). b) Donnees de I'imagerie cerebrale Pour etudier les bases neurales des strategies de navigation mentale deux experiences ont ete realisees (Ghaem, Mellet et ai, 1997). La question abordee etait la suivante : s'il y a reellement des mecanismes differents dans notre capacite a memoriser les deplacements en utilisant une strategie de type route et de type carte, peut-etre pourrions-nous observer chez l'homme l'activation de structures differentes lorsqu'on donne aux sujets ces deux types de taches. Nous avons propose d'abord une tache de type route. Les sujets se promenaient a pied dans la ville d'Orsay sur un trajet inconnu, et on leur indiquait des reperes visuels (station essence, porche, etc.). On leur demandait ensuite d'effectuer une locomotion mentale le long de ce trajet. Pour essayer de verifier que ces sujets effectuaient bien une route mentale, nous avons utilise des travaux montrant qu'il faut le meme temps pour imaginer un deplacement que pour le realiser effectivement. Dans de nombreuses taches, il existe en effet une isochronie entre le deplacement effectue et le deplacement mental (Decety and Jeannerod, 1995 ; Decety and Michel, 1989 ; Decety, Jeannerod et al., 1989). La comparaison des donnees temporelles a ete effectuee (il y a bien sur une compression dans le temps, cette isochronie n'est pas valable pour toutes les distances). Cette locomotion mentale a de nouveau ete effectuee par le sujet enregistre par la camera a emission de positons. II lui etait alors demande de se rendre mentalement d'un point de repere a un autre le long du trajet qu'il avait memorise. Trois conditions ont ete etudiees : repos, imagination simple des reperes (tache de memoire visuelle), trajet mental. Les deux hippocampes, le gyrus cingulaire posterieur et des regions du gyrus temporal median ainsi que du gyrus precentral ont ete activees de facon significative. Le deuxieme depouillement a consiste a comparer les regions activees pendant la locomotion mentale a celles activees pendant le repos. II y a plus de regions activees, le gyrus pre-frontal dorso-lateral, des regions hippocampiques gauche et droite, le noyau pre-cuneus situe dans le
338
A. Berthoz
lobe parietal, le gyrus cingulaire, l'AMS activee en association avec la preparation du mouvement, des regions du gyrus occipital, du gyrus fusiforme et des regions pre-motrices. On effectue ensuite une comparaison entre la condition de simulation mentale du trajet et la condition d'imagerie visuelle des reperes. On constate cette fois que les regions actives sont I'hippocampe gauche, le precuneus et l'insula. Cette activation de I'hippocampe gauche est un peu surprenante car une grande partie de la litterature attribuait plutot a I'hippocampe droit son role dans les representations de l'espace. Ceci fait actuellement l'objet de comparaisons. Le noyau pre-cuneus est une structure interessante. II a ete montre que cette zone, situee au voisinage de l'aire 7 de Brodman, est activee dans plusieurs types de taches. II serait « I'oeil de I'esprit » (« minds'eye » ) ; cette expression est due a Fletcher, Frith et al. (1995). Ce noyau serait requis pour l'imagerie consciente visuelle et serait fondamental pour revocation de souvenirs episodiques impliquant une imagerie visuelle et non pas une imagerie semantique. II serait implique dans de nombreuses taches visuo-spatiales: le traitement mental des attributs (caracteristiques visuelles et spatiales des objets) visuo-spatiaux, le traitement de l'attention spatiale, lors de l'apprentissage, du rappel (a partir de la memoire) ou de la reconnaissance de figures geometriques complexes, et enfin lors de l'imagerie visuelle et visuo-spatiale, lorsque nous imaginons des objets ou des lieux. Le precuneus a ete active dans une autre experience recente (Mellet, Tzourio, Denis, and Mazoyer, 1995) en utilisant le paradigme de l'tle de Kosslyn (paradigme de psychologie cognitive dans lequel les sujets doivent explorer soit visuellement soit mentalement la carte d'une tie). L'exploration visuelle de l'ile a ete comparee a I'exploration mentale. Pendant I'exploration visuelle, les auteurs ont trouve une activation des aires visuelles primaires, des gyri occipitaux superieur et inferieur, des gyri fusiforme et lingual, du cuneus et du pre-cuneus, des gyri parietaux superieurs bilateraux et des aires pre-motrices. Pendant I'exploration mentale, seules quelques zones sont activees, comme le cortex occipital superieur, l'AMS et le vermis cerebelleux. Une deuxieme experience a ete menee sur I'exploration mentale d'une carte (Mellet, Bricogne et al., 2000). Cette fois les sujets devaient imaginer mentalement une carte et devaient accomplir trois sortes de taches. Ces donnees preliminaries suggerent done qu'un reseau different de centres corticaux sous-tend la navigation mentale a l'aide de cartes et a l'aide de memoire de routes. Des travaux semblables ont ete menes recemment avec d'autres taches de navigation qui eclairent ces mecanismes (Maguire, Frith et al., 1998 ; Maguire, Frackowiack et al., 1997 ; O'Keefe, Burgess et al., 1998), mais il faudra sans doute encore des experiences et des idees theoriques pour en comprendre bien les composantes. c) Donnees de la neurophysiologie chez Vanimal: des rotations, de la direction et de la position de la tete dans l'espace Les donnees recentes de la neurophysiologie suggerent une segregation des systemes neuronaux qui traitent des informations sur les mouvements de la tete
Fondements Cognitifs de la Geometrie et Experience de L'espace
339
pendant la navigation. Trois systemes a la fois distincts et en interaction ont ete decouverts a ce jour. lis concernent respectivement le codage des rotations, de la direction et des lieux ou de la position. Codage des rotations Les rotations de la tete mesurees par le systeme vestibulaire sont transmises aux noyaux vestibulaires ou elles sont combinees avec les informations sur le mouvement visuel donnees par le systeme optique accessoire. Nous savons maintenant qu'une voie conduit ces informations vers le cortex cerebral a travers le thalamus sensoriel et qu'une structure du lobe parieto-temporal (le cortex parietoinsulaire) contient des neurones (Griisser, Pause et al., 1982) qui codent les rotations de la tete chez le singe. Cette decouverte recente a ete confirmee par des travaux d'imagerie cerebrale chez l'homme qui ont montre I'activation de cette region du cortex par la stimulation calorique (Bottini, Sterzi et al., 1994), et galvanique (Lobel, Kleine et al., 1998). II est interessant de constater que cette derniere etude a montre I'activation d'une region du cortex frontal qui correspond a l'aire 6 qui est aussi activee dans des taches de memoire spatiale et qui donne lieu a des syndrome de negligence d'origine frontale. Le codage de la direction Dans plusieurs parties du cerveau chez le rat (Ranck, 1984 ; Taube, Muller et al., 1990), il existe des neurones appeles neurones de direction de la tete. Ces neurones presentent une decharge maximale lorsque l'animal a la tete dans la direction particuliere d'un lieu connu. Cette direction est controlee, entre autres, par des indices visuels. (Sharp, Blair et al., 1995) ont enregistre ces neurones dans le postsubiculum et dans le noyau antero-dorsal du thalamus. lis ont eu l'idee de dissocier la frequence de decharge de ces neurones dans deux conditions : ils ont pris d'une part les donnees qui sont obtenues lorsque l'animal se tourne dans une direction dans le sens des aiguilles d'une montre (ou le contraire). Alors que dans le postsubiculum les deux courbes sont parfaitement superposees, il n'en est pas de meme dans le noyau antero-dorsal du thalamus. Ces auteurs ont bati a partir de cela une theorie selon laquelle le systeme neuronal possederait la capacite de predire en quelque sorte la position future de la tete. Cette anticipation neuronale pourrait etre a l'origine de 1'anticipation que nous avons trouve dans des taches de locomotion (voir ci dessus les travaux de Grasso et al). Une deuxieme question est de savoir s'il est possible de trouver dans ces structures des activites neuronales refletant la propriete du cerveau de mettre en correspondance un lieu avec un deplacement. Si Ton regarde les moments ou le rat a la tete a 45°, on s'apercoit que la plupart des decharges ont eu lieu dans une region particuliere de l'arene. II y a done association dans le codage par ce neurone d'une direction et d'une zone de la piece. Par ailleurs, si Ton examine la relation entre la frequence de decharge du neurone et la vitesse angulaire avec laquelle la tete a tourne, on constate que ce neurone decharge plus particulierement lorsque le
340
A. Berthoz
rat tourne la tete vers la gauche. II y a done codage d'une direction, d'une localisation et d'un certain domaine de vision. Chez le rat libre de ses mouvements en enregistrant simultanement des neurones dans I'hippocampe et des neurones de direction de la tete dans le thalamus on constate que si Ton manipule l'indice, le neurone de direction de la tete du thalamus effectue une rotation du meme angle et dans les memes conditions (le codage reste invariant par rapport a l'indice visuel). II y a done un couplage entre le codage dans les neurones de I'hippocampe de la place par rapport a l'indice visuel et le codage de direction de la piece. Cartes cognitives et codage de lieux Une theorie essentielle en ce domaine est celle proposee par O'Keefe et Nadel. Ces auteurs attribuent a I'hippocampe un role crucial pour la constitution et la manipulation de "cartes cognitives". Leur theorie est basee sur les proprietes des neurones de lieu qui codent la position du rat dans une piece familiere quelque soit la direction de sa tete. Cette theorie a ete toutefois defiee par d'autres auteurs (voir le livre recent de Burgess et al., et celui de Ono et al. (1999), Rolls and O'Mara, (1992), Berthoz (1973), Eichenbaum and Wiener (1989)). Les neurones de I'hippocampe qui codent les lieux peuvent aussi etre actives par les signaux vestibulaires. Nous avons cherche s'il etait possible de trouver dans I'hippocampe des neurones sensibles aux mouvements chez le singe. Nous avons trouve des neurones actives par des mouvements particuliers (exemple : translation vers la porte, mais non pas en s'eloignant de la porte) (O'Mara, Rolls et al., 1992). Nous avons reproduit ces experiences chez le rat avec un robot mobile (Gavrilov et al.) et montre d'abord que le rythme theta de I'hippocampe est modifie avec la vitesse de la rotation de la tete, et ensuite que les neurones de I'hippocampe peuvent etre sensibles au mouvement, mais associent ce mouvement avec une partie de la piece dans laquelle se trouve l'animal. Autrement dit, le codage du mouvement dans I'hippocampe est associe au codage des lieux. Nous avons aussi pu montrer chez l'homme, par enregistrement de l'activite par IRM fonctionnelle, que la stimulation vestibulaire calorique activait la region de I'hippocampe sur laquelle se projette le cortex vestibulaire par 1'intermediate du cortex cingulaire. II existe un degre supplemental de complexite dans le codage des lieux (Booth and Rolls, 1998). Un grand nombre de neurones de I'hippocampe ne codent pas seulement la position de l'animal dans un lieu donne, mais egalement des conjonctions, des associations entre differents indices de l'espace (visuels, texture, olfactif). On a meme propose (Tamura, Ono et al., 1992) que certains de ces neurones sont sensibles a des objet naturels importants pour le singe et a des signification de ces indices pour l'animal (plaisir, danger). Chez l'homme, les structures impliquees dans le codage de la direction n'ont pas ete trouvees. Toutefois un travail recent (Vallar, Lobel et al., 1999) a ete effectue concernant un aspect particulier de cette question. II est en effet connu que les patients souffrant de lesions du cortex parietal droit (principalement) presentent
Fondements Cognitifs de la Geometrie et Experience de L'espace
341
le syndrome dit de negligence spatiale qui s'accompagne d'un decalage de la perception du droit devant. Nous avons montre que la perception egocentrique de l'axe sagittal du corps est associee a l'activation d'un systeme impliquant les aires du cortex parietal postero-inferieur et premoteur frontal bilaterales, mais principalement dans I'hemisphere droit. Plus precisement les aires activees etaient le gyrus occipital superieur et le sillon precentral gauche, d'une part, le sillon intraparietal, le gyrus angulaire et le gyrus frontal inferieur droit de l'autre. Ces aires sont aussi connues pour etre impliquees dans les lesions qui entrainent la negligence. Dans une autre experience d'imagerie cerebrale, nous avons montre les differences entre les aires activees lorsque le sujet resout un probleme en coordonnees allocentriques ou egocentrique (Galati, Lobel et al., 2000). Ainsi la manipulation mentale des systemes de reference est maintenant a notre portee. Nous sommes done loin de comprendre completement les mecanismes neuronaux qui permettent notre navigation et les bases neurales de la memoire des trajets et des differentes strategies cognitives qui sont disponibles. II nous faudra aussi comprendre les strategies individuelles dans le traitement mental de l'espace et , en particulier, les differences entre les sexes (V. Delmon, Ivanenko et al., 1997), ou le role de facteurs lies a l'emotion (V. Delmon, Ivanenko et al., 1999). Mais la combinaison des approches comportementales, neuropsychologiques, d'imagerie cerebrale et de neurophysiologie animale combinees a la modelisation permettra sans doute d'avancer dans ce champ si interessant des sciences de la cognition.
BIBLIOGRAPHIE 1. Einstein (1990) Conceptions scientifiques, Flammarion, Paris. 2. Allen G.L., Siegal A.W., Rosinski R.R. (1978). The role of perceptual context in structuring spatial knowledge. J. Exp. Psychology: Human Learning and Memory 4: 630. 3. Amorim M.A., Glasauer S., Corpinot K., Berthoz A. (1997). Updating an object's orientation and location during non visual navigation.: a comparison between two processing modes. Perception and Psychophysics 59: 404-418. 4. Andersen R.A., Bradley D.C., Shenoy K.V. (1996). Neural mechanisms for heading and structure-from-motion perception. Cold Spring Harb Symp. Quant. Biol. 61: 15-25. 5. Andre-Deshays C, Israel I., Berthoz A., Popov K., Lipschits M. (1990). Gaze control and spatial memory in weightlessness. Proceedings ESA Symposium on Human Physiology in Microgravity. ESA SP, 2002.
342
A. Berthoz
6. Bernstein N.A. (1967). The coordination and regulation of movement. Pergamon Press, New-York. 7. Berthoz A. (1973) Mathematical models in vestibular research. Proceeding Int. Cong. Bioenginering, 20-35. 8. Berthoz A. (1985) Adaptive mechanisms in eye-head coordination. In: Berthoz A., Melvill Jones G. (eds) Adaptive Mechanisms in Gaze Control. Reviews of Oculomotor Research., Elsevier, Amsterdam, pp 177-201. 9. Berthoz A. (1989). Cooperation et substitution entre le systeme saccadique et les reflexes d'origine vestibulaires : faut-il reviser la notion de reflexe? Revue Neurologique Paris 145: 513-526. 10. Berthoz A. (1996). The role of inhibition in the hierarchical gating of executed and imagined movements. Cognitive Brain Research 3: 101-113. 11. Berthoz A. (1997). Le sens du mouvement. Odile Jacob, Paris. 12. Berthoz A. (1999). Hippocampal and parietal contribution to topokinetic and topographic memory. In: Burgess N, Jeffery KJ, O'Keefe J (eds) The hippocampal and parietal foundations of spatial cognition. Oxford University Press, Oxford, pp. 381-399. 13a. Berthoz A. (2003), La decision, Odile Jacob, Paris. 13. Berthoz A., Amorim A., Glasauer S., Grasso R., Takei Y., Viaud-Delmon I. (1999). Dissociation between distance and direction during locomotor navigation. In: Golledge RG (ed.) Wayfinding behaviour. John Hopkins University Press, Baltimore, pp. 328-348. 14. Berthoz A., Graf W., Vidal P.P. (1991). The Head-Neck sensorimotor system. Oxford University Press, Oxford, New York. 15. Berthoz A., Israel I., Georges-Franijois P., Grasso R., Tsuzuku T. (1995). Spatial memory of body linear displacement: What is being stored ? Science 269: 95-98. 16. Berthoz A., Pozzo T. (1988). Intermittent head stabilisation during postural and locomotory tasks in humans. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait: developement adaptation and modulation. Elsevier, Amsterdam, New York,Oxford, pp. 189-198. 17. Biederman I. (1987). Recognition-by-components: a theory of human image understanding. Psychological Review 94: 115-147. 18. Booth M.C.A., Rolls E.T. (1998). View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb. Cortex 8: 510-523.
Fondements Cognitifs de la Geometrie et Experience de L'espace
343
19. Bottini G., Sterzi R., Paulelscu E., Vallar G., Cappa S., Erminio F., Passingham R.E., Frith CD., Frackowiack R.S.J. (1994). Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp. Brain Res. 99: 164-169. 20. Burgess N., Jeffery K.J., O'Keefe J. (1999). The hippocampal and parietal foundations of spatial cognition. Oxford University Press, Oxford. 21. Cheng K. (1987). Rats use the geometry of surfaces for navigation. In: Ellen R., Thinus-Blanc C. (eds) Cognitive processes and spatial orientation in animal and man. Martinus Nijhoff, Dordrecht.The Netherlands, pp. 153-159. 22. Cheng K., Gallistel C.R. (1984). Testing the geometric power of an animal's spatial representation. In: Roitblat H.L., Bever T.G., Terrace H.S. (eds) Animal Cognition. Erlbaum, Hillsdale N.J., pp .409-423. 23. Colby C.L., Duhamel J.-R. (1996). Spatial representations for actions in parietal cortex. Cognit. Brain Res. 3: 105-115. 24. Decety J., Jeannerod M., Prablanc C. (1989). The timing of mentally represented action. Brain Behaviour Research 34: 35-42. 25. Decety J., Jeannerod M. (1995). Mentally simulated movements in virtual reality: Does Fitts's law hold in motor imagery. Brain Behaviour Research 72: 127-134. 26. Decety J., Michel F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. B. C.N.W: 87-97. 27. Denis M. (1989). Approches differentielles de l'imagerie mentale. In: Reuchlin M., Lautrey J., Marendaz C , Ohlman T. (eds) Cognition : L'universel et I'individuel. Presses Universitaires de France, Paris (forthcoming). 28. Droulez J., Berthoz A. (1988). Servo-controled conservative versus topological (projective) modes of sensory motor control. In: Bles W., Brandt Th. (eds) Disorders of posture and gait. Elsevier, Amsterdam, pp. 83-97. 29. Droulez J., Berthoz A. (1990). The concept of dynamic memory in sensorimotor control. In: Humphrey D.R., Freund J.R. (eds) Motor Control: concepts and issues. Wiley and Sons., Chichester. 30. Droulez J., Berthoz A. (1991). A neural network model of sensoritopic maps with predictive short term memory properties. P.N.A.S. 31. Droulez J., Berthoz A., Vidal P.P. (1985). Use and limits of visual vestibular interaction in the control of posture. Are there two modes of sensorimotor control ? In: Igarashi M., Owen Black F. (eds) Vestibular and Visual Control on Posture and Locomotor Equilibrium. Karger, Basel, pp. 14-21.
344
A. Berthoz
32. Eichenbaum H., Wiener S.I. (1989). Is place the (only) functional correlate? Psychobiology 17: 217-220. 33. Epstein R., Kanwisher N. (1998). A cortical representation of the local visual environment. Nature (London) 392: 598-601. 34. Eskandar E.N., Optican L.M., Richmond B.J. (1992). Role of inferior temporal neurons in visual memory. II. Multiplying temporal waveforms related to vision and memory. J. Neurophysiol. 68: 1296-1306. 35. Feldman A.G., Levin M.F. (1995). The origin and use of positional frames of reference in motor control. Behavioural and Brain Sciences 18: 723-744. 36. Fletcher P.C., Frith C, Baker S.C., Shallice T., Frackowiack R.S., Dolan R.J. (1995). The mind's eye : precuneus activation in memory - related imagery. Neuroimage 2: 195-200. 37. Galati G., Lobel E., Vallar G., Berthoz A., Pizzamiglio L., LeBihan D. (2000). The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp. Brain Research. 38. Garling T., Book A., Ergenzen N. (1982). Memory for the spatial layout of the physical environment: differential rates of acquisition of different types of information. Scandinavian J.of Psychology 23: 23-35. 39. Ghaem O., Mellet E., Crivello F., Tzourio N., Mazoyer B., Berthoz A., Denis M. (1997). Mental navigation along memorized routes activates the hippocampus, precuneus and insula. N.R.T. 8: 739-744. 40. Gibson J.J. (1966). The senses considered as perceptual systems. Houghton Mifflin, Boston. 41. Gibson J.J. (1977). The theory of affordances. In: Shaw R.E., Bransford J. (eds) Perceiving .acting and knowing. Lawrence Erlbaum.Ass, Hillsdale. N.J, 42. Glasauer S., Amorim M.A., Vitte E., Berthoz A. (1993). Goal directed linear locomotion in normal and labyrinthine defective subjects. Exp. Brain Res. 43. Golledge R. (1999). Wayfinding behaviour. The John Hopkins University Press, Baltimore. 44. Graf W., de Waele C., Vidal P.P. (1994). Biomechanics, movement strategies and the evolution of the head-neck system in mammals. In: Delgado-Garcia J.M., Godaux E., Vidal P.P. (eds) Information Processing Underlying Gaze Control. Elsevier, Amsterdam.
Fondements Cognitifs de la Geometrie et Experience de L'espace
345
45. Grasso R., Assaiante C, Prevost P., Berthoz A. (1998). Development of anticipatory orienting strategies during locomotor tasks in children. Neurosci. Behav. Rev. 22: 533-539. 46. Grasso R., Prevost P., Ivanenko Y.P., Berthoz A. (1998). Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy. Neurosci. Lett. 253: 115-118. 47. Griisser O.J., Landis T. (1991). Visual agnosias and related disorders. In: CronlyDillon J. (ed) Vision and visual dysfunction. MacMillan, London. 48. Griisser O.J., Pause M., Schreiter U. (1982). Neuronal responses in the parieto-insular vestibular cortex of alert Java monkeys (Macaca fascicularis). In: Roucoux A., Crommelinck M. (eds) Physiological and Pathological Aspects of Eye Movements. Junk Publishers., The Hague, pp 251-270. 49. Gurfinkel V.S. (1994). The mechanisms of postural regulation in man. In: Turpaev T.M. (ed) Physiology and General Biology Reviews. Harwood Academic Publishers GmbH, Switzerland, pp. 59-89. 50. habib M., Sirigu A. (1987). Pure topographical disorientation: definition and anatomical basis. Cortex 73-85. 51. Haecan H., Tzortzis C, Rondot P. (1999). Loss of topographical memory with learning deficits. Cortex 16: 525-542. 52. Hanneton S., Berthoz A., Droulez J., Slotine J.J. (1997). Does the brain use sliding variables for the control of movements? Biol. Cybern. 77: 381-393. 53. Haslwanter T. (1995). Mathematics of three-dimensional eye rotations. Vision Res. 35: 1727-1739. 54. Helmer L., Spelke E.S. (1994). A geometric process for spatial reorientation in children. Nature 370: 57-59. 55. Hepp K. (1994). Oculomotor control: Listing's law and all that. Curr. Opin. Neurobiol. 4: 862-868. 56. Hepp K. (1995). Theoretical explanations of Listing's law and their implication for binocular vision. Vision Res. 35: 3237-3241. 57. Husserl E. (1989). Choses et espace. Lecons de 1907. PUF, Paris. 58. Incisa della Rocchetta A., Cipolotti L., Warrington K. (1996). Topographical disorientation: selective impairment of locomotor space? Cortex 32: 732-735.
346
A. Berthoz
59. Israel I., Berthoz A. (1989). Contribution of the otoliths to the calculation of linear deplacement. J. Neurophysiol. 62: 247-263. 60. Israel I., Fetter M., Koenig E. (1993). Vestibular perception of passive whole body rotation about the horizontal and vertical axes in humans: goal directed vestibuloocular reflex and vestibular memory contingent saccades. Exp. Brain Res. 96: 335-346. 61. Israel I., Rivaud S., Gaymard B., Berthoz A., Pierrot-Deseilligny C. (1995). Cortical control of vestibular-guided saccades in man. Brain 118: 1169-1183. 62. Israel I., Rivaud S., Pierrot-Deseilligny P., Berthoz A. (1991). "Delayed VOR": an assessment of vestibular memory for self motion. In: Requin J., Stelmach J. (eds) Tutorials in motor neuroscience. Kluwer Academic Pub., Netherlands, pp. 599-607. 63. Kosslyn S.M. (1980). Image and Mind. Harvard University Press., Cambridge. Mass. 64. Kosslyn S.M., Alpert N.M., Thompson W.L. (1993). Visual mental imagery and visual perception: PET studies. In: Le Bihan D., Turner R., Mosley M., Hyde J. (eds) Functional MR1 of the Brain: A workshop presented by the Society of Magnetic Resonance Medicine and the Society for Magnetic Resonance Imaging. Society of Magnetic Resonance in Medicine, Arlington,VA, USA, pp 183-190. 65. Lacquaniti F. (1997). Frames of reference in sensorimotor coordination. In: Boiler F., Grafman J. (eds) Handbook of Neuropsychology. Elsevier, Amsterdam, pp. 22-64. 66. Lacquaniti F., Soechting J., Terzuolo C. (1986). Path constraints on point to point arm movements in three dimensional space. Neuroscience 17: 313-324. 67. Lobel E., Kleine J.F., Le Bihan D., Leroy-Willig A., Berthoz A. (1998). Functional MRI of galvanic vestibular stimulation. J. Neurophysiol. 80: 2699-2709. 68. Maguire E., Frith C, Burgess C, Donnett J.G., O'Keefe J. (1998). Knowing were things are:parahippocampal involvement in encoding objects locations in virtual large-scale space. J. of Cognitive Neuroscience 10: 61-76. 69. Maguire H., Frackowiack R., Frith C. (1997). Recalling routes around London: activation of the right hippocampus in taxi drivers. J. of Neuroscience 17: 7103-7110. 70. Marr D. (1982). Vision. W. H. Freeman, San Francisco. 71. Mellet E., Bricogne N., Tzourio-Mazoyer N., Ghaem O., Petit L., Zago L., Etard O., Berthoz A., Mazoyer B., Denis M. (2000). Neural correlates of topographical mental exploration: the impact of route versus survey perspective learning. Neuroimage. 72. Mellet E., Tzourio N., Denis M., Mazoyer B. (1995). A positon emission tomography study of visual and mental exploration. J. Cogn. Neuroscience 7: 433-445.
Fondements Cognitifs de la Geometrie et Experience de L'espace
347
73. Melvill Jones G., Berthoz A. (1985). Mental control of the adaptative process. In: Melvill Jones G., Berthoz A. (eds) Adaptative Mechanisms in Gaze Control. Elsevier, Amsterdam, pp. 203-208. 74. Michotte A. (1962). Causalite, perrmanence et realite phenomenales. BeatriceNauwelaerts, Paris. 75. Misslisch H., Tweed D., Fetter M., Sievering D., Koenig E. (1994). Rotational kinematics of the human vestibulo-ocular reflex. III. Listing's law. J. Neurophysiol. 72: 2490-2502. 76. Mittelstaedt H., Mittelstaedt M.L. (1992). Homing by path integration in a mammal. Naturwiss. 67: 566-567. 77. Nashner L.M. (1985). Strategies for organization of human posture. In: Igarashi M., Blak F. O. (eds) Vestibular and visual control of posture and locomotor equilibrium. Karger, Basel, pp. 1-8. 78. Nashner L.M., Berthoz A. (1978). Visual contribution to rapid motor responses during postural control. Brain Res. 150: 403-407. 79. O'Keefe J., Burgess N., Donnett J.G., Jeffery K.J., Maguire E.A. (1998). Place cells, navigational accuracy, and the human hippocampus. Philos. Trans. R. Soc Lond.[Biol.] 353: 1333-1340. 80. O'Mara S.M., Rolls E.T., Berthoz A., Walsh V. (1992). Whole-body motion cells in the primate hippocampus. 81. Pallis C.A. (1955). Impaired identification of faces and places with agnosia for colours. J. Neurol. Neurosurg. Psych. 18: 218-224. 82. Paterson A. (1994). A case of topographical disorientation associated with unilateral cerebral lesion. Brain 68: 212-227. 83. Pellionisz A.J., Llinas R. (1980). Tensorial approach to the geometry of brain function. Cerebellar coordination via a metric tensor. Neuroscience 5: 1761-1770. 84. Piaget J., Inhelder B. (1981). La Representation de I'Espace chez I'Enfant. Presses Universitaires de France, Paris. 85. Poincare H. (1932). La science et I'hypothese. Flammarion, Paris. 86. Poincare H. (1970). La valeurde la science. Flammarion, Paris. 87. Pozzo T., Berthoz A., Lefort L. (1990). Head stabilisation during various locomotor tasks in humans. I. Normal subjects. Exp. Brain Res. 82: 97-106.
348
A. Berthoz
88. Ranck, J. B. (1984). Head direction cells in the deep layers of the dorsal presubiculum in freely moving rats. Soc. for Neurosc. Abstr. (10), 599-603. 90. Rolls E.T. (1991). Functions of the primate hippocampus in spatial and non-spatial memory. Hippocampus 1: 258-261. 91. Rolls E.T., O'Mara S.M. (1992). Neurophysiological and theorical analysis of how the hippocampus functions in memory. In: Ono T. (ed) Brain mechanisms of perception: from neuron to behavior. Oxford U.P., New York. 92. Shapiro M.L., Tanila H., Eichenbaum H. (1997). Cues that hippocampal place cells encode: Dynamic and hierarchical representation of local and distal stimuli. Hippocampus 7: 624-642. 93. Sharp P.E., Blair H.T., Etkin D., Tzanetos D.B. (1995). Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells. J. Neurosci. 15: 173-189. 94. Tamura R., Ono T., Fukuda M., Nishijo H. (1992). Monkey hippocampal neuron response to complex senory stimulation during object discrimination. Hippocampus 2: 287-306. 95. Taube J.S., Muller R.U., Ranck J.B., Jr. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10: 420-435. 96. Thomson J. (1983). Is continuous visual monitoring necessary in visually guided locomotion ? /. Exp. Psychol. 9-3: 427-443. 97. Thorndyke P.W., Hayes-Roth B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cogn. Psychol. 14: 560-589. 98. Tolman E. C. (1948). Cognitve maps in rats and men. Psychological Review 55: 189208. 99. Tolman E. C. (1949). There is more than one kind of learning. Psychological Review 56: 144-155. 100. Touretzky D.S., Redish A.D. (1996). Theory of rodent navigation based on interacting representations of space. Hippocampus 6: 247-270. 101. Trullier O., Wiener S„ Berthoz A., Meyer J.A. (1997). Biologically-based artificial navigation systems.Reviews and prospects. Prog. Neurobiol. 51: 483-544. 102. Vallar G., Lobel E., Galati G., Berthoz A., Pizzamiglio L., Le Bihan D. (1999). A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp. Brain Research 124: 281-286.
Fondements Cognitifs de la Geometrie et Experience de L'espace
349
103. Viaud Delmon I., Ivanenko Y., Berthoz A., Jouvent R. (1997). Sex, lies, and virtual reality. Nature Neuroscience 1: 15-16. 104. Wann J., Nimmo-Smith I., Wing A.M. (1988). Relation between velocity and curvature in movement: Equivalence and divergence between a power law and a minimum-jerk model. J. of Experimental Psychology 14: 622-637. 105. Whiteley A.M., Warrington E.K. (1978). Selective impairement of topographical memory: a single case study. J. Neurol. Neurosurg. Psych. 41: 575-578. 106. Wiener S.I., Paul C.A., Eichenbaum H. (1989). Spatial and behavioral correlates of hippocampal neuronal activity. J. Neuroscience 9: 2737-2763. 107. Yates F .A. (1984). The Art of Memory. The University of Chicago Press, Chicago. 108. Zola-Morgan S., Squire L.R., Amaral D.G. (1999). Human amnesia and the medial temporal region:enduring memory impairement following a bilateral lesion limited to the CA1 field of the human hippocampus. J. Neuroscience 6: 2950-2967.
This page is intentionally left blank
THE REASONABLE EFFECTIVENESS OF MATHEMATICS AND ITS COGNITIVE ROOTS GIUSEPPE LONGO Laboratoire d'lnformatique CNRS and Ecole Normale Superieure 45, Rue D'Ulm, 75005 Paris (France) www. di. ens.fr/users/longo
"At the beginning, Nature set up matters its own way and, later, it constructed human intelligence in such a way that [this intelligence] could understand it." [Galileo Galilei, 1632 (Opere, p. 298)]. "The applicability of our science [mathematics] seems then as a symptom of its rooting, not as a measure of its value. Mathematics, as a tree which freely develops his top, draws its strength by the thousands roots in a ground of intuitions of real representations; it would be disastrous to cut them off, in view of a short-sided utilitarism, or to uproot them from the ground from which they rose." [H. Weyl, 1910].
Summary: Mathematics stems out from our ways of making the world intelligible by its peculiar conceptual stability and unity; we invented it and used it to single out key regularities of space and language. This is exemplified and summarised below in references to the main foundational approaches to Mathematics, as proposed in the last 150 years. Its unity is also stressed: in this paper, Mathematics is viewed as a "three dimensional manifold" grounded on logic, formalisms and invariants of space; we will appreciate by this both its autonomous generative nature and its effectiveness. But effectiveness is also due to the fact that we re-construct the world by Mathematics; we organise knowledge of space and language by Mathematics, and give meaning by it to their structuring. But, what is "meaning", for us living and historical beings? What does "mathematical intuition" refer to? We will try to propose an understanding of these crucial aspects of the mathematical praxis, often disregarded as "magic" or as beyond any scientific analysis. Finally, some limits of the remarkable, but reasonable effectiveness of Mathematics will be sketched, in particular in reference to its applications in Biology and in human cognition.
Introduction In the twentieth century, two major foundational paradigms have been splitting man and the world around him from one of its major conceptual constructions, Mathematics. On one side, formalism proposed the perfect rigor of mechanical rules as the core for certainty, effectiveness and objectivity of Mathematics: stepwise deductions along finite strings of symbols, perfectly independent of meaning, were meant to reconstruct completely mathematical reasoning or even propose a method for mathematical creativity (to be transferred, possibly, into digital computers). The philosophical background (and the practical aim, in the latter case - Artificial Intelligence) was based on the idea of a possible mechanical implementation of "the Universal Laws of Thought": once these were all formally described in a symbolic notation, without the 351
352
G. Longo
ambiguities of meaning, we could fed a machine with them and completely simulate reasoning, action or general human behaviour. On the other hand, the naive platonistic reactions to this bold program, explained the failure of the formalist program as well as the certainty and objectivity of Mathematics by assuming independent ontologies; usually, this perspective as well refers to absolute "laws of thought" or to the perfect geometry of absolute "mathematical spaces", but as meaningful structures of truth, as "essence" which underlies the world, "per se". In either cases, Mathematics was separated from our "being in the world", from our forms of knowledge as embedded in our living and historical beings, where "understanding" is based on non-arbitrary proposal and descriptions constructed while interacting with that very world. Then, time to time, some leading colleagues came up with exclamations of surprise: "how is it possible that this game of meaningless symbols (or, alternatively, this perfectly independent ontologies) happens to say something, indeed a lot, about the "concrete reality" surrounding us? What an amazing miracle!". So, after inventing or accepting a schizophrenic split, some tried to recompose it by referring to magic or metaphysical, inexplicable connections (even ... "not deserved"?!, see [Wigner, I960]) and forgot that human knowledge should be analysed in a scientific perspective and not in terms of miracles nor in search for "absolute knowledge". Mathematics is the result of a "knowledge process", as one of the ways we relate to the world, while constructing our own "cognitive ego": our intelligence is an ongoing and active organisation of phenomena while trying to make them intelligible to us, it is co-constructed while structuring phenomena. We cannot separate Mathematics from the understanding of reality itself; even its autonomous, "autogenerative" parts, are grounded on key regularities of the world, the regularities we see and develop by language and gestures. In this paper we will try to hint to the unity of human conceptual constructions, as well as to the rich way in which various forms of knowledge are articulated. They constitute a network of meaningful attempts to understand the world, all rooted in "acts of experience", as active forms of interpretation and reconstruction of reality, deeply embedded in our cognitive and historical lives. Mathematics is one of these forms whose peculiar nature, by its "conceptual invariance and stability" as we will stress, is not independent from the others and, by this, it can "say something", indeed a lot - but not "everything" - about them and the world: it is reasonably effective. 1. The Formalist Foundation of Arithmetic and the Role of
Geometry in Mathematics 1.1 From the Geometry of space to Logical Truth Let's first briefly recall a story which begins with a major crisis: the loss of certainty in the absolute of physical space, whose geometry was identified to Euclidean geometry. For more than two thousands years, the "pure intuition of space per se" guaranteed certainty and foundation to the many constructions of Mathematics: the "synthetic a priori" of geometry was behind the objectiveness and effectiveness of the drawing of the geometric sign, of the proof carried on "more geometrico", on the perfect planes and spaces of Euclidean geometry. But... what happens if the world were curved? With this motivation, Gauss analysed another "possible world": the idea was to look at a surface "per se", not as embedded in an Euclidean space. That is, to analyse the
The Reasonable Effectiveness of Mathematics
353
surface "without leaving it", by moving, say, along its geodetics, as lines of (relative) minimal length. The connection to Euclid's fifth axiom was explicitly made by Lobachevskij and Bolyai. Riemann pursued Gauss's aims and developed the (differential) geometry of curved surfaces: he thus invented the fully general notion of "manifold" (topological, metric, differentiable manifolds... in today's terminology). Riemann actually considered the curvature of the physical space as related to the presence of physical bodies ("their cohesive forces", as said in his Habilitation): the notion of Cartesian dimension, a "global" property of space, is topological, while the curvature and the metric is a local property, which may depend on the "cohesive forces of matter", an amazing anticipation of Einstein's relativity1. As a matter of fact, by the analysis of the geometric structure of space (as ether), Riemann meant to unify action at distance (heath, light... gravitation). Clearly, Riemann greatly contributed, by his n-dimensional differential geometry, to demolish the absolute and certainty of Euclidean space, just a special case of his general approach. Yet, he tried to re-establish knowledge as related to our understanding of the (physical) world. For him, geometry is not "a priori" by its axioms, but it is its grounded on certain regularities of physical space, to be singled out and which have an objective, physical, meaning (continuity, connectivity and isotropy, for example). In Riemann's approach, we actively structure space, as manifold, by focusing on some key properties, which we evidentiate by "adding hypotheses". Thus the foundational analysis consists, for Riemann, Klein, Clifford, Helmoltz ... in making these regularities explicit and in spelling out the transformations which preserve them. However, this "relativized" neo-kantian attitude turned out to be unsatisfactory for many, since it dangerously involved an analysis of the "genesis of concepts", as apparently originating from our more or less subjective presence in the physical world. In fact, these concepts, as for instance those of differential form, group and curvature are objective because they are invariants that we actively single out of the hysical world; that is, they become concepts as a result of the interaction, at the phenomenal level, between us and the world. How to re-establish then absolute certainty and objectiveness, after the shocking revolution of non-Euclidean geometries, while avoiding this "implication of the subject" into knowledge? First, avoid any reference to space and time, the very reference that had given certainty, for so long, not only to geometry, but also to algebra and analysis. For Descartes and Gauss, say, algebraic equations or the imaginary numbers are "understood" in space: this is so in analytic geometry and in Argand-Gauss interpretation, over the Cartesian plane, of V-l (of the complex numbers, thus). But, if our relation to space is left aside in order to avoid the uncertainties of the "many geometries" and the shaky sands of human cognition, then language remains, in particular the logical laws of thought that the English school of algebra had already been putting forward, in a minimal language of signs ([Boole,1854]). Language, considered as the locus of the manipulation of (logical) symbols, with no reference to phenomenal space, nor, in general, to forms of experience.
1 Riemann's Habilitation is of 1854, under Gauss' supervision [Riemann, 1854; it. transl. 1999]; more remarks were made in the '60s. A broad analysis may be found in [Boi, 1995], [Tazzioli, 2000].
354
G. Longo
Frege best represents this turning point, in the foundation of Mathematics. His search for "absolute knowledge" was meant to exclude, first, any hint to "intuition" or "empirical evidence", any analysis of the "knowledge process" (see [Frege, 1884]), in particular in reference to phenomenal space and time. In his work, the fight against Stuart-Mill (empiricism) is explicit, the one against Herbart (psychologism), who had largely influenced Riemann, and to Riemann himself is evident: empiricism and psychologism are Frege's worst enemies. We must acknowledge the depth of Frege's analysis. His scientifically plane style as well: he established a novel standard of rigor by his "language of formulae", where universal and existential quantification (the "for all x ..." and "there exists x ..." so relevant in Mathematics) are finally handled in a uniform and sound way, in contrast to the mathematical practice up to that time, or most of it (the formal gaps in Cauchy's work, say, are well-known). The too elementary "laws of thought" of the British algebraists (Boole, Babbage) are thus enriched by the so-called (first order) quantification: Mathematical Logic is born, as the search for "unshakeable certainties" in absolute assumptions and laws of deduction. Absolute, but meaningful: the assumptions and the laws must have a "logical meaning"; even arithmetical induction, a technical proof principle for number theory, has a logical meaning for Frege. Arithmetical computations are logically valid deductions. The reference is again to a platonic realm of logical and absolute truth, independent of man: "pure concepts", without conceptor. The search for foundation (and certainties) in the interaction between us and the world, starting with physical space, is abandoned: Mathematics is brought back to sit in platonic realms, detached from us and the world. What a surprise when some will rediscover that it is very ("unreasonably") effective, in Physics in particular, as if it where constructed to say something about the world, in a suitable language for us. 1.2 Formalism and linguistic stratifications An alternative path towards grounding Mathematics away from human reasoning about reality, was proposed by Hilbert's foundational work, once again for good reasons and by a strong proposal. Suppose that you have a proof of existence and, maybe, of uniqueness of the solution of a system of (differential) equations or of a finite basis for certain algebraic systems; yet, assume that you cannot give the solution explicitly, as an elementary function, say, nor construct it as the limit of suitable (Fourier) series nor provide effectively the finite basis. Where does this solution, this finite set, live? In which platonic/logical realm? Hilbert has an original and robust proposal for an answer to this: provide a finite axiomatic frame for your proof, with finitary (effective) deduction rules, then the "existence property" in your theorem may be guaranteed by a proof of consistency (noncontradiction) of the axiomatic theory. In '900, he poses, as a key open problem, the proof of consistency of Arithmetic (and thus, by Cantor-Dedekind construction of the reals, of Analysis). A proof to be carried on in a "potentially mechanizable" fashion, in order to reduce certainty to the finite manipulation of symbols, with no reference to (actual) infinite nor to (possibly geometric) meaning. This is Hilbert's conjecture of the finitistically provable consistency of Arithmetic (and other key formalised theories). The project is strong and revolutionary: two dangers are avoided at once. Infinitesimal analysis had introduced the infinite to analyse the finite: since the XVIII
The Reasonable Effectiveness of Mathematics
355
century, powerful tools had been developed to describe physical, finite, movement around us (speed, acceleration) by actual limits, some sort of dangerous metaphysical infinities (based on Leibniz's monads, say). In spite of the work of Cantor, the foundation of infinity remained uncertain and flawed by paradoxes (contradictions). By the formalist program, and its developments, the situation could be reversed: in particular, once proved, by finitistic tools, the consistency of theories that formalise the infinite, such as (Zermelo's) Set Theory, then, by the consistency of the theory, the "existence" issue is solved, including the existence of infinite objects (sets, functions, actual limits ...). As a matter of fact, in Hilbert's program, mathematical existence is provable consistency of the intended theory, and nothing else. No need to dream of platonic realms, at least in the foundational work: once consistency is proved by finitary tools, the working mathematician could happily live in Cantor's paradise of infinite and ideal objects (in his practice of mathematics, Hilbert was far from being a formalist!). Moreover, the shaky reference to space (Euclidean, non-Euclidean? physical?) may be avoided as well: as for foundational purposes, geometries are just finite sets of (provably consistent) formal axioms, which may be interpreted in many ways, and the interpretations are irrelevant to deductions and proofs. And this is so, since deduction rules are applied mechanically, i.e. according only to the syntactic structure of the formulae (well-formed strings of symbols) in the assumption, with no reference to their meaning (logical, geometric ...). Then the bold enterprise of the formalist finitism began, grounded on one further and crucial idea of Hilbert's. He proposes to carry on the foundational analysis in a mathematised "metalanguage", whose object of study is the object language of the formal theories. Moreover, these theories, at their purely syntactical level, with no reference to metalanguage nor meaning, should be able to describe completely Mathematics. That is, any formalised assertion of it should be decided by finitistic deductions from the axioms. And here is Hilbert's conjecture of "completeness" of the key axiomatic theories, such as formal arithmetic. In summary, by finitistic metamathematical tools one should be able to prove consistency and completeness of the core of Mathematics. Hilbert's "linguistic stratification" (language, meta-language) is a remarkable way to organise the "discourse of Mathematics", perhaps comparable to Euclid's proposal to organise physical space. Yet, as much as Euclid's, this is not an absolute. That is, Hilbert's proposed distinction between theory and metatheory is not the only frame within which one may approach the foundational problems: other conceptual construction may violate this organisation and the blend of levels (and of meanings) may require an analysis that goes well beyond it. Indeed, the failure of this paradigm is the very reason for the incompleteness phenomena, as we will briefly hint below. The fact is that the formalist paradigm for mathematical knowledge (both foundation and praxis) marked the century and many still beleive that a "sufficient collection of (settheoretic?) axioms", once fully formalised, may allow a complete deduction of Mathematics ... yet, this very same people show a great surprise when, in spite of this assumed automatism (or "meaning independence") of the discipline, it helps us in understanding and giving meaning to the world. A few soon reacted to Hilbert's program, such as the "lone wolf" among Hilbert's students, Hermann Weyl, who conjectured in Das Kontinuum, 1918 (!), the incompleteness of formal arithmetic (§.3 in [Weyl,1918]). He also stressed in several
356
G. Longo
places that the idea of mechanisation of Mathematics trivialises it and misses the reference to meaning and structures. Unfortunately, Weyl calls this crucial reference to meaning, "the mathematician's insight" or "intuition", with no further explanation; a reference to the "unspeakable" that we have to overcome: below, we will try to understand what these words may mean. Besides Weyl (and Poincare and a few others), Wittgenstein is another thinker who criticised Hilbert's program. For him "Hilbert's metamathematics will turn out to be a disguised Mathematics" [Waismann, 1931], since "[A mefamathematical proof] should be based on entirely different principles w.r. t. those of the proof of a proposition ... in no essential way there may exist a metamathematics" (see Wittgenstein, Philo. Rem., § 153; quoted in [Shanker,1988]), and ... "I may play chess according to certain rules. But I may also invent a game where I play with the rules themselves. The pieces of the game are then the rules of chess and the rules of the game are, say, the rules of logic. In this case, I have yet another game, not a metagame" [Wittgenstein, 1968; p. 319]. As for arithmetic, the key theory for finitistic foundationalism, these remarks may be understood now in the light of Godel's Representation Lemma [Godel, 1931]: by this very technical result, one may encode the metatheory of arithmetic into arithmetic itself, thus the "rules of the metagame" are just viewed as ... rules of the "arithmetical game". Moreover, many proofs which entail the consistency of arithmetic, such as (Tait-)Girard proof of "normalisation" of Impredicative Type Theory ([Girard et al., 1989]), need a blend of metalanguage and language; or even purely combinatorial statements, such as Friedman's Finite Form of Kruskal's theorem, provably require the same entangled use of metatheory, theory and semantics, by the impredicative notions involved: an indirect confirmation of Wittgenstein's philosophical insight (see [Harrington et al., 1985] for the mathematics; a discussion and more references are in [Longo, 1999a]). These theorems are some of the many recent examples of more or less "concrete" incompleteness results of formal arithmetic; that is, they are interesting arithmetic statements whose proof requires essentially "non formalizable" (not effective-axiomatic) tools. They are not self-referential "tricks" such as Godel's independent statement of arithmetic, a simple proof-theoretic translation of the Liar's Paradox2. The point is that, in the arithmetic proofs of these interesting (concrete) statements, meaning is essential; more precisely, at a certain point of the proof, in order to go "from one line to the next", one has to refer to some variables as interpreted by sets, to others as interpreted by their elements (use of some form of an impredicative second order comprehension axiom), or to the well-ordering of integer numbers (second order induction), or to similar "concepts" which provably cannot be formalised arithmetic, in a finitistic way. Computers get stuck, but human beings, by referring to the wellordered structure of integer numbers in space or time, by "seeing" sets and elements, as meaningful and conceptually distinguished notions, have no problem in understanding and carrying on the proof, even though these are provably not formalizable in a finitistic, mechanisable fashion (or by symbols which run independently of meaning). Thus, meaning steps in and the formalist analysis has been such a strong paradigm as to prove this for us, by these and the many other unprovability results in formal theories 2
Godel's incompleteness theorem is an immense achievement as for technical inventions and insights, essentially by the tools used in the proof of the Representation Lemma: godelization, recursive functions ... . The "unprovable" statement "per se" has no mathematical interest, in contrast to the many recent examples, as those quoted above.
The Reasonable Effectiveness of Mathematics
357
(the independence of the "continuum hypothesis" and of the "axiom of choice", whose analysis motivated formal Set Theory are further examples, see any text in Set Theory or [Longo, 1999c] for more discussions and references to this even more severe "debacle" of formalism). It is time now to go further and stop believing in the absolute of the Hilbert-Tarski foundational frame (theory, metatheory and semantics); that the finitistic formal level and the metalinguistic, yet mathematical, analysis can say everything about Mathematics and its foundation or that the close structuring of mathematical concepts, in this specific way, coincides with the foundational analysis of Mathematics. A large amount of technical work can surely still be done along this paradigm, as reductions to least purely formal frames are often very informative; it is the underlying philosophy that must be overcome. Many theorems tell us that this failed, yet the philosophical prejudice, the unscientific myth of "absolute knowledge" or the reference to certainty as mechanical deduction only or the idea that the foundational issues of Mathematics may be treated only mathematically, still resists, along the lines of Hilbert's relevant, but too rigid stratification, not proper to the human-mathematical experience. The major merit of the formalist-mechanicist approach was to set the philosophical and mathematical basis for inventing, in the thirties, the (mathematics of) computing machinery: Boole-Frege "laws of thought", independent of human thinking, are finally implemented in meaningless strings of symbols, pushed by machines according to meaningless rules. The idea of transferring human rationality in machines, to refer to computers as the paradigm for "logic and rigor", is probably the main fall-out (indeed, a relevant one) of this "splitting" proposal: splitting man from one of his major forms of knowledge, Mathematics. Yet, as a consequence of some of the incompleteness theorems mentioned above, the concept of infinity turns out to be essential to prove the consistency of formal arithmetic; let alone of those theories of infinity, the theories of sets whose consistency depends, at each infinitary level, by the use of even more infinitary constructions. Now, infinity is a robust human conceptual construction, the object of a lively debate for centuries, which stabilised with Cantor into a operational, mathematical notion. As suggested in [Longo, 1999a], we have, so far, no better "foundation" for the infinite than the reference to its historically meaningful specification as a mathematical concept, i.e., the analysis of its "progressive conceptualisation", to put it in F. Enriques' terms. The set theoretic specification of this concept, a technically remarkable clarification and "stabilisation" of the notion, is not a "foundation", since it transfers to larger infinities, by the consistency proofs, the foundation of each level of infinity. The foundation of mathematical infinity lies in the analysis of its conceptual genesis, of the knowledge process which brought it to stabilise as a mathematical invariant (see [Longo, 2001]). The rooting of this path in our relation to the world, its constitutive role for our (mathematical) interpretation and re-construction of it and, thus, its meaning, are the reasons of its mathematical effectiveness, as a conceptual tool of analysis. In particular, the use of the concept of infinity is robust and effective because it is co-defined with our ways of organising the world by Mathematics: from the early "theological" debates, to the structuring of trajectories and lines, by tangents and limits (Newton), rich of physical meaning (speed, acceleration ...). These notions organise, for us humans, the movements of finite objects around us by actual infinity and, once distilled in a rigorous mathematical practice (since Cantor), they are as effective as no other human construction in describing physical reality.
358
G. Longo
1.3 Mathematics as a "three dimensional manifold" In a very schematic way, I tried to summarise the main approaches to the foundations of Mathematics by a very incomplete reference to three major scientific personalities: Riemann, Frege and Hilbert. Each one of their intended foundational ways stresses some crucial aspects of the conceptual construction of Mathematics. As a matter of fact, there is no doubt that Mathematics is grounded in logic, those "if ... then ... else ..." and much more that unfold along proofs (Frege). Similarly, one uses formal computations, in an essential way: purely algebraic reasoning pervade proofs and equations follow from equations following abstract rules, whose meaning is irrelevant to deductions (Hilbert). But symmetries also or other regularities of space (connectivity, say) contribute in singling our structures and their relations (Riemann). These have no logical meaning, yet they appear in theory building and in proofs (see for this the novel insight which originated in [Girard,1987]). This richness of Mathematics is lost in the logicist and formalist approaches: only logic or finitist formalism (and possibly not both!) found Mathematics. In particular, our relation to space is only a matter of "ad hoc extensions", largely conventional for the formalist, to be found on the concept of "ratio as number" for the logicist [Frege, 1884; pp. 56-57 and §.14]3. One may instead synthesise the variety of grounding components of Mathematics by looking at it as to a "three dimensional manifold" (a generalized "three dimensional space"). Mathematics is found on, and uses in its developements: • logic, • formal computations, • geometric construction principles. The generative nature of Mathematics is due exactly to the blend of these "three dimensions". For example, once some key regularities of space are singled out (by suitable linguistic descriptions), one uses logical or formal principles (which belong to language) to derive new properties of space (to be given in language); similarly, but entirely within language, formal computations unfold consequences of logical principles. In either case, invariance preserving transformations are applied, as both the rule of logic and of formal computations preserve meaning as invariant or stable conceptual structures: this is what they have been spelled out for! (technically: they preserve "validity w.r.t. the intended interpretation"). In particular, they preserve meaning in space. That is, if a statement about space, say, is realized in some structuring of it, then logic and computations preserve its validity via deductions and lead us to new realizable statements about the world. Thus, we add the generative power of (logical or formal) reasoning, a key linguistic tool for organising/understanding the world, a "meaning preserving" tool, and transform basic invariants of space, say, into novel meaningful invariants. Sometimes this is done by taking major detours and, then, remote techniques for algebra turn out to be useful in Geometry or in differential calculi or alike. But one may also go from (formal) language to space. For example, by symmetries and dualities one "understands", in the Cartesian plane, the "meaningless" i = \ - l and
-* This is essentially insufficient: only Euclidean geometry is closed under homotheties - or only its group of automorphisms includes ratio preserving maps; even in the '20s Frege will keep referring to Euclidean geometry only, in his attempt to broaden the logicist foundation of Mathematics.
The Reasonable Effectiveness of Mathematics
359
even -i (by a key generative simmetry of the Cartesian plane: the addition of the negative coordinates). And then the complex numbers, the result of the formal/mechanical solutions of certain equations, suddenly become particularly relevant for Physics, that very Physics which describes space and action in space: formal matrices, say, represent generalised vectorial computations in multidimensional spaces ... (a crucial step in Quantum Mechanics). Then one derives properties of complex numbers, and of functions on them, by a blend of spatial properties (symmetries ...) and language transformations, i.e. by geometry, logic and algebra. There is no miracle here, but the relevance of a conceptual construction, Mathematics, whose aim is to focus on key invariances: of space, of reasoning and of formal deduction. Geometry makes space intelligible by singling out some key regularities of it and turning them into invariant properties w.r.t. to the intended transformations that action in space suggest to us. Similarly, logic evidentiate some invariants of language: the logical principles "pass through proofs" or are present on all proofs and do not depend on contextual constructions. Some may be detached from meaning, even logical meaning, and become purely formal computations, to be applied mechanically: the formal rules then impose the computational invariants. The blend of these three conceptual dimensions makes Mathematics generative and effective. This form of generativity is the reason of the "extraordinary" effectiveness of mathematics. In summary, starting with some basic regularities (invariants) of space, say, Mathematics "generates" further invariant properties by using logical trasformations and invariants (regularities) of language (that very language we use to "organise" space) and so on so forth in all possible combinations of its "three dimensional" nature (in Girard's logical systems, for example, one uses geometric principles - such as symmetries, connectivity, ... the unfolding of knots in "proofs nets" - to carry on deductions). This is effective, as its strength is in the maximal (not absolute!) invariance and stability of each dimension of the conceptual constructions and on its "interpretation preserving transformations". It may be surprising, because, say, the unexpected spatial interpretation of the formal symbol i embeds it into a novel meaningful frame, the locus for deductions grounded on very different principles, space, yet compatible as given in another conceptual dimension. 2. Meaning and Intuition The foundational project, besides the formalist analysis that can still provide relevant information on least deductive frames (and suggest ways to implement on computers as much Mathematics as possible, an interactive help to the proof), should now be extended to an analysis of "meaning" and "intuition", this betrayed notion by the logicist and formalist tradition and that many, in contrast, mentioned so often (Riemann, Poincare', Weyl ...). The point is that Mathematics is effective also because it is meaningful and because it is grounded in intuition. Mathematical knowledge is constructed by an interaction with human intuition, a notion to be discussed below, which is dynamically modified along the genesis of the discipline. As for MEANING, before proposing a further specification, in connection to intentionality and life (in §. 3), let's more closely describe meaning as given by a network of (sufficiently stable or invariant) practical and conceptual experiences, grounded on mathematical but also on other (conceptual) praxis. For example, meaning
360
G. Longo
is added to an analytic equation of geometry, when it is understood as a line, a plane, a n-dimensional surface ... V-l aquires a meaning on the cartesian plane, as a different conceptual constructions, "per se". Thus, meaning is first in "setting bridges", displaying metaphors, elucidating rigourously references, by mutual explanations. The very fact that this embedding and bridging is made in many and different active experiences allows us to extract the meaningful mathematical invariants, the stable "conceptual contours" common to many of them. Then, INTUOTON may be analysed as a direct, yet pre-conceptual, reference to a variety of meanings, whose interconnections motivate and provide robustness to the mathematical construction. It is a largely pre-linguistic experience; often an "insight" or "mental seeing" of (part of) the mathematical structures, as mental constructions, whose network is meaningful to us. The mathematical intuition is the ability to insert a more or less formal expression, either a "hint" or a symbolic notation, into a "network" of meanings. Seing is its main organ, as the trained mathematician can (re-)construct an image from formulae, similarly as a trained musician may "hear" music when reading a piano score (the mental reconstructions of images from verbal descriptions is a very common experience). Thus, intuition precedes and follows language. It follows it, in the sense that it is "seing" the result of a conceptual, even formal, construction, also or entirely developped in language; it precedes it, as this seing, usually, needs to be later specified in language, as it may yield a vision of a novel structure, a combination of previously inexisting ones, to be fully determined and communicated by language. Mathematical intuition is far from being static and "pure". Training is an essential part of it: it is ever changing and rich of the impurities of the subjective experience, yet it is brought to be shared and "objective" by the common cognitive roots and by intersubjective exchange. It is a crucial part of the good teaching of mathematics, it really makes the difference w.r.t. the bad teaching, as teaching to use mechanically "compulsory", meaningless formulae: the good, passionate mathematician teaches "to see" and to conjecture (seing before the proof), before and jointly to teaching how to prove. Intuition is mostly "local", as pointed out in [Piazza, 2000], even if it may be very broad (yet, "if everything were intuitable, nothing would realy be so" [Piazza, 2000]). The mathematician "understands" by using well established or original references to meanings and structures: he then "sees" the meaning as a structure (geometric, algebraic) or in a structure, this is his intuition. Intuition integrates different conceptual experiences, it allows a blend of methods without caring of the details of a formal proof: one "sees" unrelated structures toghether, proposes unexpeted bridges, by joining, in a new meaningful structure, long lasting work in different areas. This constituting of meaning should not be understood in a shallow way: its analysis must span from the earliest and deepest relation of our "being" in the world and relating to others, even in pre-human phases, up to the human, historical and most complex endeavour towards knowledge. The project then is to single out the objective elements of this formation of meaning and how it underlies intuition, since they step in the proof, as we said. The aim is to analyse in a scientific fashion what has been explicitly "hidden under the carpet" along the XX century: the role of intuition and meaning, even in proofs. Memory, for example, is one of the ways by which we constitute "meaningful" invariants, by selecting, comparing, unifying, by providing analogies. Forgetting is one
The Reasonable Effectiveness of Mathematics
361
of the major tasks of human memory, in contrast to digital data base: a goal directed or "intentional" choice, yet largely unconscious, of what is relatively relevant, a way to focus or single our what is stable or what is worth considering as an invariant. And by memory I both refer to individual and collective memory, that one which stabilises and enriches through history or through shared, intersubjective experiences. Or even to phylogenetic memory, as it seems that some pre-conceptual invariants, such as small numbers, are part of our inherited experience (see [Dehaene,1998], [Longo, 1999]) By this cognitive and historical formation of sense, meaning, as reference to space, or action, or to structures of language, that we later called "logical", or to other forms of knowledge, is at the core of the certainty, objectiveness and effectiveness of Mathematics; these are the final result of this constitutive processes towards conceptual stability. In other words, Mathematics is based on the constitution of conceptual invariants, grounded of a variety of "acts of experience", distilled in praxis, by our action in the world, from movement in space to memory and displayed by language in intersubjective communication; these invariants are "what remains" once the "details" are erased; they are the common conceptual structure which explicitly expresses our relation to the phenomenal world. The permanent reference, while theory building or problem solving, to the networks of constituting meanings is the reason for their certainty, effectiveness and objectivity. The mathematician's intuition is the grounding of understanding into this network of meanings. Its analysis is an integral part of a foundational project and, as such, it cannot be only a (meta-)mathematical problem: it is a cognitive issue, which spans from Biology to History. 3. Meaning and Intentionality, in Space and Time "Geometry ... is engendered in our space of humanity, beginning with a human activity " [E. Husserl, 1936]. The first locus for meaning are space and time. Well before any explicit or conscious representation, the first goal directed action is that of the living cell that moves in a direction, in order to maintain or improve its metabolism. And this a "meaningful action" and its meaning is at the core of life: it is meaningful, at the most elementary level, as it is part of a goal, of an intention (it is intentional4). In order to understand this approach to meaning, we need to analyse the difficult entangling of finalism and contingency that is central to life. In contrast to inanimate objects, a living being needs to "interpret" the world, in order to live in it. This may be at the most elementary bio-chemical level of the cellular reflex or at the incredibly complex level of our brain. At each moment we need to interpret the environment relatively to our main aim: survival. It is the "finalistic contingency" of life that forces 4
I am broadening by this the notion of intentionality in Husserl, as the prevailing husserlian tradition restricts intentionality to a conscious activity: intentionality is the (conscious) "aiming at an object (of consciousness)" and this object is meaningful exactly because it is "aimed at", consciously (see, for example, [Lanfredini, 1994] or the many papers on this in [Petitot et al, 1999]). In view of the remarks below, I dare to expand Husserl's clear and robust notion, in a compatible way, I hope.
362
G. Longo
us to give meaning relatively to an aim (finalism), our unavoidable aim, but it does not need to be there and strictly depends on, but cannot be reduced to, the context (its contingency): each individual life or even that of a species, life itself is contingent. This paradigm is finalistic, but it stresses contingency, as no species, no living being would be alive if it did not have this aim at each instant of its life; yet, life and its specific realisations are not a necessary consequence of the "previous state of affairs" (they are contingent). Thus, by contingency I also mean "context dependence"; and the two meanings are related, as "depending on the context" is entangled with the lack of general necessity. The relation to finalism interests us, since giving meaning to an incoming information is "inserting/contextualising that input" into or w.r.t. an aim, a goal, this is the main thesis here (a similar idea is briefly hinted also in [Bailly, 1991], a remarkable essay in philosophy of science). We have at each instant both inputs and aims, at least a major one, life. The living being, beginning with the most elementary form of life, interprets inputs by comparing them against its main aim: preserving or improving its metabolism. Thus, "meaning" is first given by how much the inputs helps or diverts from it. In particular, this is where begins our relation to space and time, as living beings, well before any symbolic notation can be detached from them. Human geometry is effective, because it begins with the action in space of the amoeba, or with the squid choosing the shortest path to hide behind a suitably large rock (see [Prochaintz,1997] and Longo's review, downloadable). These are the very early steps towards an attempt to organise space, up to the human proposal to make space intelligible: geometry. A proposal among others: we called "mathematical" the one focusing on invariants and conceptual stability. Of course, these are just the very remote origin of our relation to the world: it is like a little stone in the enormous mountain that evolution and, later, human history have been adding on top of it. Between the "meaning" of a chemical stimulus interfering with its metabolism, for an amoeba, and the meaning, for us, of a ... mathematical proof, there is an abyss, two billions years wide. However, there is also the continuity of life, a "non differentiable" continuum perhaps, with sudden turns, as life is necessary to meaning: this is constructed, first of all, as interpretation w.r.t. life's implicit finalism, then as a network of mutual references, of "explanations", up to the reflective equilibrium of our (scientific) theories. In summary, meaning is at the core of effectiveness, in Mathematics and in other forms of knowledge as well. That is, Mathematics is effective since it is meaningful, if one understands meaning as relation to "our active presence in the world", from the simplest action of the living cell up to our endeavour towards complex relational life and knowledge. Or the rich blend of them, as one cannot clear cut between the "meaning" for the individual cell and that for the human individual, made out of cells. In our brain, neurons react as cells to stimuli, but they do it as part of assemblies of neurones ([Edelman,1992]), which in turn are influenced by our unity as living beings and, thus, by our "external" action and intersubjective exchange. These levels are not "stratified", one on top of the other, the one below specified independently of the above, but they interact in a self supporting way (in an "impredicative" fashion, to put it in logical terms). Moreover, senses are far from being "input channels", their computational parody, but they are a dynamical interactive systems, where the "form" of the input cannot be detached from action and aims: sensorial inputs are always actively
The Reasonable Effectiveness of Mathematics
363
selected and structured, according to an ongoing interpretation, for the purposes of action. This yields the complexity and richness of meaning for humans, as the non additive sum of "meanings" from the living cell up to intersubjectivity in history. 3.1 From Euclid's "aithemata" to Riemann's manifolds I pause here to sketch again some historical and philosophical remarks at the base of the author's contribution to a project, a scientific analysis in progress, as this analysis of human meaning in Mathematics is a long term goal, even when "restricted" to phenomenal space and time (see [Longo et al, 1999]). First, we react to space as living beings: distance is measured by movement, muscular thresholds, vestibular memory of rotations, [Berthoz,1997J. Time is related to it by action. But how do we go from these pre-conceptual experiences to the mathematical concepts? The interlocking of space and time contributes to give meaning to both of them: explicit metaphors for time refer to space and conversely, or we understand one in terms of the other and of our presence in them (see the "metaphors" in [Lackoff and Nunez,2000]). We perceive the symmetries of Physics (the reflections of light, crystals ...) and we give them a major relevance: they are "meaningful" to us, as symmetries shape our bodies and our lives, they underlie our actions and aims, towards pursuing life. Our geometric proposals are shaped along symmetries, as well as along lines of least action, geodetics, a further relevant regularity of space. This is so, say, for Euclid's "aithemata" (requests), which are five practical constructions with least tools (ruler and compass), grounded on least paths and symmetries: they are surely not "axioms" in the formalist sense, as they are rich of meaning, as action or constructions in space. The first axiom, for example, that is "draw a straight line from any point to any point", describes an action along a Euclidean geodetic, and so on so forth with three more. The fifth axiom describes the most symmetric situation when drawing a line on a plane, by a point distinct from a given line. More precisely, following Euclid's statement, consider, on a plane, a straight line d cutting two straight lines b and c. Then b and c meet exactly on the side where they form, with d, two angles of sum less than 180°. Or, they are parallel exactly when, on both sides of d, the sum of the angles is 180°. Why this geometric assumption should be "the most convenient" for understanding the space of every-day life, as many claim, Poincare' in particular, but not fully general for a physico-mathematical analysis, as we know since relativity theory (and as Riemann and Poincare' himself had conjectured, see [Boi,1995]) ? There are here two phenomenal levels, which stress the internal generativity of Mathematics, once its conceptual tools are well established: the local and the global analysis of space. First, the local analysis of neighbouring distances, as the space of movement and local perception, and its extension to the Euclidean plane. At this level, Euclid's fifth axiom describes the most symmetric situation: if one assumes convergence of the two lines on both sides (Riemann), or many lines that would not converge on either side, even when the internal angles are different form 180° (Lobachevskij), then many symmetries, on the Euclidean plane, are lost. That is, for the local-Euclidean analysis, the two non-Euclidean cases lose all symmetry axes orthogonal to the two lines, except one, as well as the parallel (central) axis of symmetry. In equivalent terms, if one draws, in a point, exactly one parallel to a given line on a Euclidean plane, then
364
G. Longo
one obtains more symmetries than when following the two "possible negations" of the Euclid's fifth axiom, naively represented in the Euclidean plane. Euclid's geometry constructively proposes an organisation of physical space grounded on (planar) symmetries (and straight lines understood as light rays, according to [Heath, 1908]) Yet, there is another phenomenal level. This one focuses on the locality of the Euclidean manifold and suggests also a global look to space. This understanding of the world is constructed in a difficult intersubjective practice, through history: it is the passage from the Greek geometry of figures to geometry as a science of space, from Descartes to Gauss and Riemann. Along this path, man had to get used to manipulate actual infinity, a difficult historical achievement, far away from Euclid's understanding (see the fuzzy use of "apeiron", indefinite, in the fifth axiom and in the definition of parallel: "eis apeiron", "in apeiron" ..., a truly indefinite concept, in contrast to the perfect rigor of the other notions). One major step towards this achievement, consisted in conceiving the convergence point of two parallel lines, "out there", into actual infinity, a necessarily global look to space. This is projective geometry: it provided an early, implicit, distinction between the local level of the figures of Euclidean geometries and a global level of a geometric space, which includes the point at infinity. Projective geometry is still compatible with the Euclidean approach, yet it is a relevant extension of the latter, largely due to the pictorial experience of the prospective in the Italian renaissance (this is when projective geometry was actually invented). The mathematical proposal grew out from the interaction with painting, a remarkable example of this singling out of mathematical concepts from our attempts to describe the world, even for very different purposes. By this, also, it became possible to conceive the phenomenal level of actually infinite planes, where one may have that remote convergence point of parallel lines. In summary, the geometrical experience is enriched by the proposal of a second phenomenal level, the global level of actual infinite spaces, beyond, but compatible with the local level of Greek geometry of figures. The infinite and absolute of Newton's spaces is a further development of this new conception. Gauss and Riemann's analysis of curved surfaces is a dramatic change of view point. The idea is that the global geometric properties could differ from the local ones: ratio of distances could vary when enlarging figures. As a matter of fact, Euclidean geometry is the only one whose transformation groups (whose automorphisms) contain the homotheties (i.e., its local properties, such as ratio of distances or angles, are invariant w.r.t. arbitrary enlargements and their inverse): homotheties are not automorphisms in non-Euclidean geometries. In Gauss and Riemann's differential geometry, distance can be defined locally in an Euclidean fashion, by generalizing Pythagora's theorem to differentials (in a bi-dimensional manifold one may set ds2 = £gjj dx'dy) and this determines the local structure - the metric and curvature). As for the global structure, it is topology that matters, as the Cartesian dimension is a topological invariant (dimension is preserved exactly under topological isomorphisms), while (relative) distance is a local property (the metric structure is a local property). As already mentioned, Riemann, in 1854, conjectured that the presence of physical bodies could be related to the local properties of distance, the metric: a remarkable insight towards relativity theory, as acknowledged by H. Weyl in 1921 (see [Boi, 1995]). Riemann (but Gauss and Lobachevskij as well) was explicitly working at a geometry of physical spaces. This stresses the relevance of his revolutionary proposal
The Reasonable Effectiveness of Mathematics
365
towards a way by which we organise space and understand the world (see [Bottazzini, Tazzioli, 1995]). A proposal grounded on "acts of experience", as Weyl would say, i.e. on a progressive formation of sense, through history (see [Weyl, 1927]). This change of perspective largely influenced our understanding of Physics, as we all know, since it modified the key "phenomenal veil", in the sense of Husserl, as the interface between us and physical space, and thus it modified the geometric intelligibility of it. Non-Euclidean geometries, or, more generally, the treatment of space as a (riemannian) manifold, proposed a novel phenomenal level, as locus of the interaction between us and space. A new Physics is constructed over it: the effectiveness of the proposal is due to the fact that it is the very (mathematical) language for a new conception of space and time. It organises the world and generates the new objects of the physical reality; by this, it defines an understanding and helps to predict. There is no pre-organised reality that we perfectly describe, by miracle, by our independent tools (either formal or platonic Mathematics): these very tools are proposed while organising reality, in space and time, and trying to make sense of it, from Euclid to Riemann. 3.2 More on symmetries and meaning As already mentioned, in Euclidean geometry, the local properties are extended for free, by homotheties, to the entire space; in particular, the local notion of parallelism is extended "indefinitely", by the (apparently) more symmetric situation (i.e., w.r.t. the naive Euclidean interpretation of the two negations of the fifth axiom). And symmetries are meaningful for us, as living beings: our own body is organised according to symmetries; we detect them very easily and use them regularly in action and pattern recognition ([Berthoz,1997], [Ninio,1991] and many others, for example in gestaltist approaches to vision). But how could physicists give up, in this century, such a meaningful and relevant physico-mathematical property as symmetry and prefer, in some contexts, nonEuclidean geometries? The point is that the newly constructed phenomenal level, the one which allows to conceive different "global" geometries, has still enough symmetries, from an algebraic point of view. Yet, how to count symmetries, as they are infinitely many? A sound way is to analyse the group of isometries. Now, this group, on the plane, is generated by the symmetries (as reflections) and it can be proved that there are isomorphisms (of different sorts: algebraic, topological) between these groups in the various geometries. Thus, from the new, subsequently generated mathematical point of view, that of algebraic geometry, one has that symmetries, in the different geometries, have a "similar" algebraic expressiveness. And then, physicists, when working at the abstract level of formal representations of space, may indifferently find more suitable, in order to describe space, one geometry or the other, according to empirical evidence, when possible. That is, as far as symmetries are concerned, there are no general-algebraic reasons to prefer one geometry to the other, at least not grounded on symmetries, while there may be empirical ones (the curvature of light in astrophysics, typically); yet, the Euclidean approach is the most obvious (convenient?) extension, by homotheties, of our local space of senses, with all its symmetries. These are the "evidences" behind Euclid's axioms. Note instead that the mathematical descriptions of space in microphysics and in astrophysics are not closed under homotheties, so far: the geometry of quantum
366
G. Longo
mechanics, the Euclidean geometry of "medium sized objects" and the spaces of relativity have properties that cannot be transferred one from the other by homotheties. There is no unified geometry (so far; yet progresses are being made) for these three phenomenal spaces, a geometry invariant under homotheties; but there are good reasons, there are evidences which underlie each geometric proposals. As a matter of fact, the evidences for the non-Euclidean negations of Euclid's fifth axiom, are based on a peculiar "path through history", which we sketched above and which enriched our mathematical constructions: by this we could propose new physical experiences and describe a different understanding of geodetics, say (the light rays of Relativity). As a matter of fact, the concept of infinity, symmetries and their interplay in the distinction between local and global phenomenal levels, in the analysis of space, gave us a language by which could propose a new understanding of (the notion of) rigid body and light ray. As for the notion of "evidence" above, the point we are trying to develop is beautifully hinted by Husserl: "the primary evidence should not be interchanged with the evidence of the "axioms"; since the axioms are mostly the result already of an original formation of meaning {Sinnbildung) and they already have this formation itself always behind them" [Husserl, 1936; p. 193]. Axioms, then, even the "meaningful constructions" by Euclid's, are not the bottom line of the foundational analysis: geodetics or symmetries, as meaningful aspect of our manifolded relation to the world, are "behind them", in Husserl's sense. And these properties of space and of our relation to space, do not depend on the specific geometry, but, in different forms, they are also "behind" the axioms of non Euclidean geometries, jointly to the other properties that Riemann, Poincare', Weyl and a few others begun to analyse: isotropy, continuity, connectivity (see [Boi, 1995]). Thus, the formal, unintepreted axioms, Hilbert's style, are far away from founding Mathematics. Instead, they, in turn, are grounded on meaning, often to be made explicit, often necessary to the proof, as mentioned in the section 1.2, even for the most mechanisable of our mathematical theories, the arithmetic of integer numbers. These meanings relate Mathematics to the world, ground its constructions in it and, by this, turn Mathematics into a certain, objective, effective science. Intuition is the bridge that provides foundation, by "understanding", that is by embedding formal notations in a network of meanings; these are "behind" the constituting of conceptual invariants, as intentional selection of common elements, of bridges and analogies, interpreted for the purposes of aims, such as life, actions and human search for knowledge. 4. Contours and Stability There is no split between mathematical constructions and the world, as we draw Mathematics, its "geometric or conceptual contours", on the "phenomenal veil", that is on the interface between us and the world. We ground it by this in regularities of the world, while singling out these very regularities and defining our own "self. The construction of objects, our singling them out, and of concepts, derives and gives meaning from and to the world. By these reasons, by this rooting of knowledge in the meaningful presence of our biological and historical life, by this cognitive presence of ours in the world, Mathematics is so effective for its purposes. Mathematics is, by definition, the collection of the maximally stable concepts that we can draw on the phenomenal veil, the invariants that we may transfer in many other forms of description of phenomena, exactly because of their stability and invariance or strong contextual
The Reasonable Effectiveness of Mathematics
367
independence. And we always need to single-out an invariant in order to constitute a (physical) object. Moreover, we simultaneously design and force a formalism from and onto reality: Mathematics is normative and generative, as it proposes rules and methods for deriving new concepts, new structures. These may then suggest a new understanding of the world, a new tool for "reading" it. Mathematics, thus, is effectively applicable to different contexts of knowledge: it forms the underlying texture of our representations of the world, by its very construction. The point is that we actively single out objects and propose concepts. And we extend this "action" into autonomous mathematical constructions: the (more or less formal) mathematical developments are a purely mental extension, made in language and intersubjectivity, of the human praxis of generating stable (geometric or conceptual) contours. Of course, Mathematics also departs, by its internal methods, from its direct rooting in our understanding of the world, but these very methods derive their sense and are made possible exactly by our active and creative intuition, in the husserlian sense (see [Boi, 1998] for a clear understanding of Husserl vs Kant on intuition). In other words, while determining our "spaces of humanity", we simultaneously draw the borders of "objects", we single out relevant contours, we understand while interpreting and naming. Our ego is constructed at the same time as the world of phenomena around us. Of course, there is a reality "outside there", which oppose "resistance and frictions" to our action, but phenomena are constituted in the interface between us and this unorganised "reality". Mathematics plays a major role in this process, at least in Physics, or as soon as our action tends towards scientific or sufficiently general knowledge. Mathematics "singles out" contours of objects, by the drawings of geometry and, more generally, by conceptual shaping of images and ideas. Mathematics is the drawing of contours which do not need to be there. Human vision is a good paradigm for this, as we do not "swallow" images passively, but they are (re-)constructed by active interpretations. In vision, some areas of our primary cortex reacts only to contours. But contours are not objects, they are singularities, in the mathematical sense, at the edge of bunches of wave length. We perceive these singularities and use them to isolate one object from the other, by deciding where and how to "cut" or delimit those inexisting lines. This is done in a continual interplay between incoming messages and interpretation: visual illusions tell us the permanent role of interpretation in vision, on the grounds of memory, interpolation, tridimensional reconstructions. Consider, say, the names of colours, so history dependent, yet not arbitrary. It is a completely human and historical choice that of categorising colours, like separating blue from green, by giving, with a name first of all, "individuality" to this or that colour, marking borders in the "continuum" of wavelengths, between say "burnt siena" and "red amaranth" or even "blue" and "green" (Euclid, as all Greeks, had the same name for blue and green). Yet wavelengths are there, as well as our retinal receptors, which have "pigments" sensitive to three primary colours (they have excitement peaks corresponding to the wavelengths of red, blue and green): these colours, as parameters in a three-dimensional space (an example of a three dimensional manifold, mentioned by Riemann), allow the reconstruction of all possible wavelengths, but many other triples would do as well.
368
G. Longo
It would be interesting to know more about the role played, in the history of language, by those three primary colours that evolution has given us to reconstruct the others. They are like "pivots" upon which we build our mental categorisations and that probably drive our choices favouring some lengths over others, thus making nonarbitrary our categorisations. Because this is the point: scientific (and mathematical) reconstructions of the world are possible proposals and yet they are not arbitrary. Thus, the foundational issue is in singling out the phenomenal "pivots" on which, along history, we built up our forms of knowledge. As for geometry, and following Riemann, Poincare', Weyl, we referred to symmetries, isotropy, continuity and connectivity of space, regularities of action and movement, as "meaningful" properties. They are meaningful as they are embedded in our main intentional experience, as hinted above: life. In Mathematics, then, we have been singling out conceptual contours, grounded on these "pivots" and regularities in the world, comparable to the three primary colours in the pigments of our retina. Then, we stabilised them in "abstract" (contextual independent, yet meaningful) geometric and linguistic invariants. More precisely, the core of the mathematical work is in turning the relations between invariants into norms and, then, using these norms to carry on further constructions (and proofs of further relations between constructions). This is the normative character of Mathematics: by Mathematics, we structure scattered phenomena by norms. Then, further mathematical structures extend the conceptual construction to more complex forms, built one on top of the other, interrelated by morphisms, which preserve the intended invariant (continuity say, for topological morphisms, operations for algebraic ones) ... and this gives "categories of objects and morphisms"; then categories are related by "functors", which transform objects into objects and morphisms into morphisms. By continuing the category-theoretic metaphor, "natural transformations" relate functors and categories and so on so forth. Mathematics acquires then that typical autonomy from the world which singles it out from other forms of knowledge: it is grounded on a few cognitive and historical pivots and, once some invariants are stabilised by drawing and language, we use a variety of conceptual tools, a blend of many experiences (logical, formal, spatio-temporal ...), to constitute norms and derive new invariants, often far away from the ones we originally derived by our active, interpretative presence in the world. 5. Microphysics and Dynamics Physics has always been the privileged discipline of application for Mathematics. Indeed, Mathematics itself owes most of its own constructions to attempted descriptions of the physical world, beginning with Greek geometry, a dialogue with the world and with Gods at the same time. By this, geometry was detached by them from the "measure of the ground", an early process of "singling out" perfectly stable and invariant figures. Up to the infinitesimal calculus and Gauss-Riemann differential geometry, explicit attempts to describe movement and physical space. And further on, till the Mathematics of Quantum Mechanics, where the audacity in singling out inexisting but non-arbitrary contours reaches its highest level. "Each element ... must be prepared; it must be sorted; it must be offered by the mathematician. We then see to appear, in physical sciences, the opposition between descriptive and normative. The attributing of a quality to a substance was once of a descriptive nature. Reality had just to be shown. It was known as soon as it was recognised. In the new philosophy of science, we must
The Reasonable Effectiveness of Mathematics
369
understand that the attributing of a quality to a substance is always of a normative nature. Reality is always the object of a proof." [Bachelard, 1940; p.89]. As a matter of fact, in microphysics, we see nothing but some "crick-crack" or spots on measure instruments, which are far away from "phenomena". Then a mathematical theory is proposed, which gives unity to these "symptoms" by drawing a mathematical interpretation and, by this, by turning them into elements of a phenomenal description. Actually, even the physical measure instruments are constructed on the grounds of a theory, as they are just a practical explicitation of a theoretical hypothesis: we should measure this and that, in this way. Atoms, electrons, photons, gravitons ... are not there, they are "mathematical contours" which we single out by unifying a few signals. They are a way to propose non-arbitrary physical or conceptually stable borders. They are not "objects", yet they are as objective as our most robust theories of the world, since the physical world does "make resistance" and forces some signals towards us and the measure instruments we constructed. Physicists are ready to update them continually, even if, at each stage, the proposed invariants may be at the core of a relevant mathematized theory, often rich in applications. This drawings of contours, these constructions of invariants and of perfectly stable conceptual entities are at the core of the applicability of Mathematics to inanimate matter, they actually are at the origin of Mathematics itself. Or, following Boi's interpretation of Weyl, "physics is but geometry in act" ... "so that the mathematical understanding of this world cannot be separated from the understanding of reality itself, [Boi,1998] (see [Connes,1990] for a geometric insight into Quantum Mechanics). Or, to put it otherwise, we understand Physics (movement, gravitation, non-locality, say) or we have it as "phenomena", by the very act of proposing a mathematical theory of space-time. Of course, the effectiveness of the mathematical tool is relative to the interaction of an ongoing proposal and the various phenomenal levels: unifying phenomena is a major criteria for effectiveness. This proposal is an integral part of phenomena, but gaps are possible as we make "choices" while setting conceptual contours. These choices are not arbitrary, as they are grounded on incoming signals, on meanings, on accumulated, historical knowledge. The selection is made with reference, often, to other forms of knowledge, by implicit analogies and metaphors (such as the metaphor of the planetary system, say, to understand the atom). Thus, they may yield incomplete descriptions. An example is given by the dynamical systems which are sensitive to initial conditions: we cannot predict completely they quantitative evolution by our mathematical tools. Their effectiveness then is limited, as predictability is a component of effectiveness, even if they give a better understanding of phenomena, by unification or explanation. Of course, impredictability is not a matter of the world: there is no way to know whether the "physical reality" is "chaotic per se". The question only makes sense at the phenomenal level, the only accessible one, the actual interface between us, or our nonarbitrary proposals to organize the world, and "reality". As a matter of fact, God may know very well where the Earth will be in more than 100 millions year (see [Laskar,1990] for impredictability results on the solar system). In deterministic, chaotic systems, the only "fact" is given by an increase of "complexity" of some phenomena; but this understanding is already a theoretical proposal, an organized understanding. That is, impredictability shows up when something is said (dicere), or concepts are
370
G. Longo
displayed, or they are proposed by a (living and thinking) conceptor: it is not a metaphysical truth. Impredictability requires an attempted prediction, while interacting with "physical reality" (or signals coming out of it); it concerns our mathematical attempts to organise these signals and it says that our attempts are "provably incomplete". 6. Incompleteness in Mathematics and Physics One may draw then an analogy between the incompleteness results in formal theories (see sect. 2) and the one mentioned above, concerning dynamical systems. Let us first recall that the incompleteness results in mathematical logic, in formal arithmetic in particular, evidentiate a "gap" between the formal, theoretical level and meaningful mathematical structures: one cannot "remove the machinery" from proofs, a machinery which refers to transfinite ordinals or well-orderings, as constructions in mental space and time. In these cases, the normative structuring of Mathematics extends iteration and order, beyond phenomenal time and space, towards and by the concept of infinity. This is the nature of purely mental constructions, well beyond the finite, such as transfinite orders or infinite well-ordering. In a sense then, infinitary constructions in mental space and time may be understood as the subjective traces of intersubjective extensions of the objectivity of the phenomenal world, i. e. the are the "mental marks" of the objectivity we constructed in intersubjective, historical praxis, over basic regularities. The concept of actual infinity is the result of many historical conceptual constructions (theological, based on the projective geometry of renaissance painters ...). Its objectivity is obtained as an integration of "metaphores" (see [Lakoff&Nunes, 2000]; but they are not just linguistic metaphores) and by the normative structuring of Mathematics, well beyond phenomena and leaves traces in our minds; it is extended by a blend of manifolded experiences (the metaphysics of infinity, say, played a major role in the constituting of the mathematical concept, from St. Thomas to Leibniz, see [Zellini,1980].) The finitary formal approach, which does not include these meaningful structures, such as infinitary mental constructions (the well-ordering of the set of all numbers, say), cannot completely describe their properties, as it has been proved. In the case of arithmetic, the incompleteness is due to the fact that the well-ordering of standard numbers cannot be axiomatized in a finitistic-effective way, yet it is an absolutely clear and robust structural property of integer numbers, seen as actual infinity in mental spaces: when used in (human) proofs it yields formally unprovable results (see, for example, the proof of Friedman's Finite Form of Kruskal's theorem, quoted in §. 1.2). One century before Hilbert's wrong conjecture of the completeness (and decidability) of formal theories, Laplace had formulated a similar one, in mathematical Physics: in his opinion, the systems of (differential) equations could completely describe the physical world. More precisely, if one wanted to know the state of the world in a future moment, with a given approximation, than it could suffice to know the current state of affairs up to an approximation of a comparable order of magnitude. By formally computing a solution of the intended equations, or by suitable approximations by Fourier series, one could deduce (or predict or decide) the future status, up to the expected level of approximation. Poincare', as a consequence of his famous theorem on the three bodies problem, proved that minor variations of the initial conditions could give enormous changes in the final result or, even, that the solutions could depend discontinuously on the initial
The Reasonable Effectiveness of Mathematics
371
conditions. Then, predictability, as "completeness w.r.t. the world" of a suitable set of formal equations, failed. These results, thus, and the subsequent work in dynamical systems, are the mathematico-physical predecessors and analogues of the many prooftheoretic incompleteness theorems, since Godel. They set a limit to the effectiveness of mathematical tools in Physics, but they are also at the origin of beautiful and new mathematical theories, where qualitative predictions replace quantitative ones and where the "mathematical understanding" does not need to coincide with predictability (see [Thorn, 1972]). Moreover, these theories, by forcing more geometry and topology into the prevailing analytical approaches to Physics, gave further richness and unity to Mathematics (see [Devaney, 1989] for a survey of the geometric approach to dynamical systems). In conclusion, there is no absolute effectiveness of the mathematical tools, in Physics, but the constructed objectivity of Mathematics is grounded on an interaction with the world around us (and in us) that guaranties a relative effectiveness, though remaining often incomplete. No choice of a specific level of description, such as the mathematical one, given by some linguistic constructions and some geometric contours, may yield a complete representation of the richness of the universe we are embedded in as we have several and interacting forms of representation. Moreover, language and drawings are rich of our internal finalism and interpretation and cannot perfectly coincide with any "independent" physical reality. Their are reasonably effective because meaningful, i.e. because they are grounded in our cognitive being, as an ongoing process that constructs "reality" while living and interpreting it. Yet they are incomplete, by this very same reason: their objectivity is constructed by us, with our changing limitations. unpredictability and incompleteness results are there to remind this to us, and to encourage the permanent invention of new methods and the construction of new "phenomenal levels". We have been able to do so throughout history by dramatic expansions of our tools or changes of paradigms: the birth of infinitesimal calculus and of non-Euclidean geometries are two of the most fantastic examples of this open-ended process, in Mathematics. The believe in "perfect completeness" or "absolute effectiveness" of the current mathematical tools (even of "formal" tools w.r.t. to specific mathematical structures, say), instead of the understanding of their relative completeness and reasonable effectiveness, may be misleading and may made us blind w.r.t. the growth of other form of knowledge, which may stimulate the change. 7. Some Limits to Effectiveness: The Phenomenology of Life The extension of the mathematical method to other sciences, where conceptual stability and invariance are not the main concern, is even less straightforward and sets further limits to its successes. As a matter of fact, the richness of Mathematics is grounded on its unique invariance and stability: one may even define Mathematics as the locus of the maximally invariant and stable concepts that humans could propose, in their endeavour towards knowledge. Mathematics is normative in that this invariance and stability provide the norm, they are not (passively) descriptive. Its effectiveness, in Physics, is due to the essentially constructed (and mathematical) nature of "physical objects", as this is how we "single them out" (by mathematics). But, are mathematical invariance and stability, its (fully general) norms, at the core of Biology?
372
G. Longo
Consider, for example, the notion of neural synapses. Of course the biologist has to "define" it, as he has to communicate knowledge, propose a description. Yet, the notion of synapses does not need to be as stable as a mathematical concept, for many reasons. Synapses change in evolution and ontogenesis; they are dynamical; their behaviour is largely contextual and no fully general norm describe it, as the causal relation w.r.t. the context is less relevant that the finalistic organisation of the system of which it is part. Norms are very effective in explaining causes, much less in understanding the contingent finalisms of life. The ecosystems of life change continually the rules of the game. The underlying physico-chemical invariants are part of the phenomenon, but are not sufficient to describe it. Their analysis contributes to the explanation, but the phenomenal level of our relation to living beings is a different one. By this, Physics and Chemistry, and their invariant laws, are necessary to understand life, but they are not sufficient to derive its properties. Clearly, we may change mind, in history, as for the description of an electron, as well: experiences may bring in new facts and suggest novel interpretations. But, in Biology, it is not just knowledge that may be revised, as in Physics and all empirical sciences, but stability, full generality of the "formal" description, repeatability of the experience, are less central than in Physics. What really matters are variation, nonisotropy, diversity, behaviours in an ever changing ecosystems. Again, one needs to write about and, then, to define the synapses, but, by the reasons above, a mathematical definition of it would not have the same interest nor relevance as the unavoidable and crucial or fully explanatory, mathematical description of a particle, in microphysics (see [Jacob,1970], [Bailly,1991], [Longo,1998], among others). For example, one may mathematically define a quark and derive (some) of its properties as theorems, to be later checked by experiences; a mathematical definition of a neural synapses in no way (or in minor, very specific ways) could give properties of the biological entity as "theorems", to be formally derived from the definition. However, although "biological objects" may be hardly captured by the normative nature of the physico-mathematical description, one may consider another element of the biological phenomenon, which has no counterpart in Physics: functionality. It is possible, that the "function" of a living component, organ or being (in an ecosystem or in a compound form of life), may be more effectively described, by mathematical tools, than the "object". The problem of effectiveness then is transferred to the analysis of the "right level" of invariance to attribute to functionalities, i.e. to propose an informative and effective level at which the function can be actually abstracted form contextual dependencies, or may be given the right level of dependence on them and, thus, stabilised in a mathematical description. The point is to find "what depends on what", or how much a specific function of life may be independent, say, from the "hardware" that realises it. Indeed, this kind of problem is typical of Mathematics, in its own context. Category Theory, in Mathematics, beautifully centres it: one has to find the right category to work in, i.e. the structural properties that morphisms or isomorphisms are exactly meant to preserve. A category spells out the invariants that matter, this is the main reason for its conceptual superiority in the foundation of Mathematics w.r.t. Set Theory. Moreover functors relate categories to other categories, tell what must be added or forgotten to embed one into the other. Natural transformations relate functors and unify the various notions stabilised in and by functors and categories. But proofs as well, in Mathematics,
The Reasonable Effectiveness of Mathematics
373
require a close analysis of invariance. When proving a theorem for all real numbers, say, or an arbitrary algebraic structure, one may "use", in the proof, a generic real or a generic example. Then, at the end of the proof, the mathematician has to observe: "look, my proof only depends on the fact that this is a real or that is this kind of structure, no more no less is used". The task may be non obvious: it may happen that the proof "proves more" the statement, i.e. that less properties where required or that, under those hypothesis, more may be actually proved. Or, conversely, some implicit assumptions have been used. In both cases, the level of invariance proposed is the wrong one, too narrow or too large. The research problem then, w.r.t. the uncertain effectiveness of Mathematics outside Physics, is to single-out some truly stable invariants, in Biology, say. Or, otherwise, to "adjust" Mathematics to more plastic conceptual constructions: instead of using well established methods and structures, with their usual conceptual stability, and work on the data provided by biologists, we should perhaps reconstruct concepts by interacting also with their methods, which are very different form those in Physics (see [Longo, 2001] for more on the distinction between concepts and structures in Mathematics). As a matter of fact, it is very hard to transfer outside Mathematics the crucial theoretical praxis of the discipline, grounded on invariance. It is already very hard to apply it on the borderline of the mathematical activity, e.g. with reference to its applications, as we so often slipped into metaphysics: the relevance and stability of a proposal was confused with an absolute. So, for two thousands years, we were told that Euclidean geometry was "absolute", that it perfectly coincided with physical spaces, independently of any context or assumption, to physical space "per se". Similarly, Cantor-Dedekind's construction has been seen as "the continuum" of space and time. Closer to our times and to the problem we are discussing here, Turing Machines have been presented as the mathematically invariant definition of (human) reasoning, as discussed next. 8. Thought as a Function In 1935-36 the many formal approaches to computability (Herbrand-Godel, Church, Kleene, Turing ...) were shown to be equivalent. The everybody exclaimed: we have an absolute. We coherently defined deductions as computations, independently of the formalism, machine or ... whatever implements it. May it be a Turing Machine, a mechanical (or, later, digital) computer, a set of formal rules ... provided that they contain certain features (as described by the partly informal notion of "algorithm"), then they all compute the same class of functions, the general recursive ones (this is the so called Church Thesis). And there comes the metaphysical slip: since these functions, as deductions, describe the "act of effective reasoning" (the "human computor in the act of deducing", to put it in the words of Gandy, a student of Turing) we have got the universal notion, the invariant defining human intelligence, in a complete and effective fashion. This is the so called "functionalist" approach to human mind. We all know, since then, the many failures of Strong Artificial Intelligence, and the successes of many of its more modest "sub-programs" (the interactive expert systems and theorem provers and much more, which did not assume the full generality of the strong claim). As well as the successes of Computer Science, which is a "science" exactly because the "art of programming" is independent from the machine. Programs must be portable, this is the key motto of programmers. Programming languages must
374
G. Longo
be "universal", i.e. compute all recursive functions and being transferable from a machine to another. Both key points are grounded on Turing's remarkable idea of distinguishing software from hardware. But even operating systems, as implementation of Universal Turing Machines, are transferable: so, when a machine dies (a new technology is born) one may take its operating system, its programs and date base and transfer it on another. This practice of "metempsychosis" is a remarkable technology and is at the core of Computer Science. Yet, some proposed for decades this model of computing, its perfect mind/body dualism, as a model for human intelligence (without necessarily being Indus). The mistake again was to believe that "intelligence" may be grounded on formalised "laws of thought", as rules independent of meaning. Meaning as reference first to the "hardware" that implements it, our living and historical brain, and which is rich of the finalistic contingency of life we mentioned above. By this, the proposed level of invariance was the wrong one. The objectivity and generality of reasoning is instead grounded on that very peculiar hardware which is our brain through history, i.e. our human brains interacting by language and action with the world and among them. Its invariance is due to the common biological and cognitive roots and, later, to intersubjective exchange, which allows to focus on what is "stable" as shared with other humans, in an enlarging communicating community. Stability of (mathematical) reasoning, though very high (indeed maximal, among our forms of knowledge), is not an absolute and it is the result of a process towards invariance. It is very hard to spell out, in mathematical terms, which are the constitutive invariants, underlying this very "function", human thought, which produces invariants. The irony is that even machines now do different things than that "absolute" proposed in the '30s. Distributed, concurrent, asynchronous computing uses open systems, working with evolving operating systems and data base, with no absolute time (a crucial physical difference w.r.t. Turing Machine). They perform very different tasks, in some cases, not even vaguely comparable with those of sequential computing with an absolute clock (see [Monist, 1999]). And we still do not have a sufficiently good mathematical description of these novel computer systems, which Physics and engineering have been giving us. Yet, the "functionalist" approach to human thought still presents that wrong level of invariance (the "laws of thought" do not depend on life, are formal and, thus, they may be implemented on a Turing Machine) as the core of cognitive analyses. This shows the difficulties in transferring the normative analysis of Mathematics from "objects" to "functions", when dealing with the phenomena of life and history. It is hard, if ever suitable, to single-out living individuals, mathematically; it is a nonobvious scientific challenge to extend the reasonable effectiveness of Mathematics to "functions", from the simplest living structure (e.g. the internal and external topology of a cell) to those which span life and history, such as human intelligence. 9. Brain Plasticity and Neural Nets A more recent mathematical approach to mental functions has been grounded on the idea of "interactive net of formal neurones". These theories are beautiful physicalmathematical models, a qualitative change w.r.t. those that rely on mathematical-logic descriptions, such as Turing Machines or alike, based on the assumption of a universal "computational logic". Following McCullogh, Pitts and Hebb, neural nets on the
The Reasonable Effectiveness of Mathematics
375
contrary are inspired by the plasticity of the brain and aim at modelling this crucial aspect of it. In contrast with the functionalist theories, rather than asserting that the "hardware" which realises the thinking is irrelevant (Turing machines, systems of balls and marbles, computers or brains "are all the same" for the functionalist), the mathematical theory of neural nets assumes as essential a biological property of that specific hardware which is "the (human) brain", plasticity. In other words, instead of starting with a logical analysis of (mathematical) deduction and defining it to be an analysis of thinking, the connectionist hypothesis (such is the name for the theoretical proposal of neural nets) stresses a fundamental property of the brain, the plasticity of its electrical connections, and turns it into Mathematics. And this is a Mathematics very rich in powerful tools: "spin-glasses" and methods from statistical Physics, based on the Mathematics of dynamical systems, one of the most modern and powerful instruments of analysis in contemporary Physics. But, at this point ... one forgets the original anri-functionalist project, the one which tries to develop and is prompted by the biological reality of the brain. One forgets that neurones are alive and have behaviours which are not always independent of their individual unity, let alone of their context. Indeed the brain plasticity itself depends on a number of causes. The first set of such causes is the spatio-temporal nature of the electrical message, its geometry. The second is the ability to prime "cascades of chemical reactions", which induce changes in synaptic structure. Third, the huge number of elements which regulate the chemical reactions within cellular and extracellular liquids. And still more causes, not yet well understood, including the tridimensional geometric structure of the proteins exchanged by the synapses. The connectionist proposal seems to mutate into the following: it does not matter how brain plasticity is achieved so long as it is plasticity; the formal nets will simulate it by their very refined Mathematics of electrical connections of continuous weight. But then as soon as we start drifting away from functianaflsm, have we immediately gone back to it? We end up simulating with electrical circuits only one function, the one implemented by neural plasticity as variation of electrical conductivity, even if the real communication, along synapses, is also bio-chemical, it uses the convection of liquids etc.. At a certain point then one does not refer any longer to the structural characteristics of the brain, or forgets many of them which might be crucial but are not considered as such (fluids, bio-chemistry, ... ); again, we are back to thinking that "machines" are interchangeable. The subject then develops, driven by its internal methodology which again bears the physical-mathematical imprint. All this is very interesting, since new questions can be asked to the biologist, and some specific situations simulated. But, mostly, formal neural nets suggest an original way of building extraordinary new machines, very different from digital computers. Still I think that physicists and mathematicians working with neural nets should not present their theory as a cut and dried "Theory of Brain": as we have said, the electrical signal along the axon is very important for understanding brain functions, but there are other factors which play a relevant role and "boundary phenomena" between membranes, Chemistry and liquids have their relevance too: the synaptic connection is far from transferring only electrical information, as it was once believed. Moreover, everything is coherently managed by that living cell, the neurone, which has its own well defined and aggressive individuality. This is killed if it is "conceptually dissected", if one focuses on a single physical phenomenon, the threshold electrical calculus.
376
G. Longo
Moreover, this cell is immersed in contexts which are themselves alive and full of connections, which have their own unity and intentions (as aims of life), that are killed off by the "cutting plane" of the mathematical formalisation of the electric signal. As I already stressed, this is the main reason why modelling in Physics differs qualitatively from that in Biology. Today, for instance, to shape a new kind of wing for an aeroplane one can often avoid experimenting in a wind-tunnel. Computer simulation of fluid dynamics has now reached a very high degree of precision and reliability. It is, in fact, an important element for cost-cutting in aeroplane construction. The mathematical description of that physical reality, namely the decoupage of the "physical outlines", of the key parameters of the phenomenon and their electronic elaborations, are a good enough approximation for this practical issue. In this case the mathematical theory, even if at a level of approximation and formally incomplete, is an effective "theory" of the physical phenomenon. On the contrary, there is a qualitative difference when trying to give a theory made of physical and mathematical invariants, which should capture the dynamics of living brains, say; or to propose a "theory" of the biological phenomenon, an effective one for simulating and forecasting the activity of the brain, beyond some very restricted aspects (mostly related to very small numbers of neurones). This is because the few mathematisable aspects will be conceptually isolated from the living whole, and one would work on them using one's own methods of conceptual stability; yet, it is that whole that contains an interconnected network of individual and global aims and intentions. As said in §. 3, intelligent behaviour is meaningful for this. Certainly one must continue working at the mathematical modelling of biological phenomena, but keeping clearly in mind the limits of this approach. And the same to be able to talk productively to biologists (I have seen biologists and physicists with great difficulties in understanding each others on the theme of modelling and neural nets). In particular, in order to progress one must always remember that there is a qualitative difference between mathematical simulation in Physics and in Biology; a difference which I have tried to single out with these observations on "decoupage", as a mathematical practice to isolate invariance, so crucial and effective in Physics, but rather unsuitable when transferred on the unity of living beings and their ecosystem. Moreover, I wish to add that prudent researchers in this area, such as Hertz, Krogh and Palmer [Hertz, 1991], admit that these theories have taken only one or two ideas from neurobiology, and do not make any pretence of giving a "mathematical model" of the brain. It is instead possible that these studies, with their autonomous practical and mathematical developments, might one day provide us with formal "neural" machines that can be even more revolutionary than those which have already changed our life: digital computers. As already mentioned, also Turing Machines were considered by many as the "ultimate" model for human reason, an absolute: they served to a, perhaps, more significant purpose, as they gave us brand new forms of elaborating and exchanging information. Computers are used for some fast numerical computations, impossible to man, or, mostly, for word-processing and world-nets of data, fantastic achievements, that do not even vaguely resemble our mental activities, but enrich them enormously. Good science is worth pursuing, when technically deep, even if the early philosophical project is basically wrong: the indirect fall-out may be as amazing as unexpected. Subsequent philosophical reflections may help to revise it, or in inventing
The Reasonable Effectiveness of Mathematics
377
new research directions or, at least, in further understanding the world or our descriptions of it. 10. Conclusion In this essay, I tried to delineate the "cognitive" reasons for the successes of Mathematics in Physics: Mathematics is drawn, simultaneously to Physics, on the phenomenal veil, i.e. on the very locus where we apprehend and (re-)construct physical phenomena, as living and historical beings. Its internal generative character, by norms and invariants, goes often further and independently of the relation to Physics; or, even, it may give, sometimes, indirect or unexpected new tools for drawings contours to novel physical phenomena. Thus, its effectiveness is contingent, as much as life itself, since it is first grounded in our active relation, as living beings, to space and time, by language and by all forms of intersubjective communication (gestures are not irrelevant in communicating Mathematics). Mathematics then may be described as a three dimensional space, as hinted in §. 1.3, since invariants of space, of language and of formal computations interfere in a synergetic way while generating mathematical concepts and proofs. Mathematics grows along with the reasonableness of History, which made us construct models of the physical world, since Greek figures of space, while creating the key structures of Mathematics or its very language. Yet, the effectiveness of extensions of Mathematics' fruitful paradigm to Biology is largely reduced, let alone to other disciplines where relational human activity is grounded in but go well beyond biological life. When departing from the analysis of the causal and local or elementary interactions in Physics, the developments of mathematical tools must be done with a similar simultaneous attention not only to the facts and data of Biology but also to its own methodology, so indebted to finalism and global phenomena. As a matter of fact, in a two-ways interaction, the phenomenal level on which we draw Mathematics may change dramatically and it may require great changes in the mathematical methods, as least as relevant as the invention and use of actual infinity or of non-Euclidean geometries. Of course, the switch from the analysis of "objects", in Biology, to that of "functions" has been at the core of a remarkable revolution. Morphogenesis is in part a consequence of this change of perspective: the analysis of singularities and fractals provided original tools for it (see [Thom,1972] and the many writings on Mathematics in Biology), yet the underlying physico-mathematical paradigm, upon which these ideas were born, still leave many biologist unsatisfied. I have been choosing above the most complex of the "biological activities", human thinking, as an example of a "function". This is probably not fair, as the reasons for its complexity go well beyond Biology, in view of the role in it of human intersubjectivity, through history. Yet, at all levels of complexity, as soon as we examine functions of life, it seems particularly hard to isolate mathematical invariants, to find the right "category" and mathematical structures. This is largely due to the systemic unity, contingency and finalism in biological phenomena. For these reasons, in [Longo,2001], it is suggested that, in order to gain in effectiveness, the interaction with Biology should begin by the analysis of the conceptual and even pre-conceptual constructions of Mathematics, which precede or underlie the explicit mathematical proposal for a structural invariant. We shouldn't only
378
G. Longo
try to use well established or autonomous mathematical tools in order to contribute to Biology, but we should rediscuss foundational issues in Mathematics with reference to biological experiences (see [Longo, 1998], [Longo et al., 1999]). In conclusion, Mathematics does not capture "the essence of the world", even not in Physics, as we only interact with physical reality at the phenomenal level, where we "draw" the structures of phenomena exactly as mathematical objects, with no pretence to understand essences. Let alone in Biology where the unity of individuals, the interactions with the ecosystem and their contingent finalism appear instead as an "essence", well independent of us. The kantian paradigm shows here how linked it was to the peculiar relation between Physics and Mathematics. In any case, though, Mathematics is as effective as it may be human language, as a tool for communicating. Human language is very effective, as we understand each other very well, but it is not unreasonably effective, nor "complete" in any sense. We need gestures, smiles, caresses, we need to hit or touch each other and make love to communicate more fully what language, in many situations, cannot express. Moreover, each human historical language is incomplete relatively to the others (and thus, it is "essentially" incomplete), as the following example may suggest. A friend of mine, a French sinologue, had to translate a classic Chinese poem. This poem described a river running through a forest. In each ideogram there was a fragment of the ideogram that evocates the notion of fluidity, of running water ... . The visual, pictorial, impression was (reportedly) fantastic and it was an essential part of the poetic communication. This was clearly lost in the oral communication and, a fortiori, by the translation in an phonetic writing. Dually, it is almost impossible to translate in Chinese our complex temporal constructions, such as the past of the future or the future of the past; yet, both Chinese and our languages are very "effective" in describing the world. The universal and complete language of all possible expressions is a wrong dream as much as the universal (and complete) system of (mathematical) signs for all sciences. And this is fortunate, as it confirms the richness of the world and of our tools to understand/organise it. This is why we invented autonomous conceptual (and linguistic) tools, w.r.t. Mathematics, for the analysis in Biology or, say, in History. Indeed, each method has some mathematical aspects, the mathematizable fragments. For example the morphology of a jelly-fish, which is shaped like a drop of milk falling into water (an old example recalled by R. Thorn), or the spots on some fours whose distribution is optimal, according to some geometric criteria (more work in morphogenesis, since Turing), are beautifully mathematisable fragments of live; indeed, they are "physical aspects" of life. Similarly the physical structure or the "geometry" of the visual cortex may require some relevant Mathematics in order to be analysed closely. Yet, the biological phenomenon is also elsewhere: how comes, say, that this forms are genetically stabilised and are reproduced in offsprings? Or, how to analyse the crucial redundancies in evolution and even in ontogenesis, which are so unrelated to the optimal path or geodetics of mathematical Physics? By which path through evolution the "double jaw" of some reptiles of 200 millions years ago is potentially the hears of birds and mammals (the "latent potentials" in Gould's analysis)? The intended structures and concepts are so dynamical in evolution, that any mathematized focus on their conceptual stability and invariance would not be the most relevant aspect, as it necessarily is in Mathematics.
The Reasonable Effectiveness of Mathematics
379
On one hand, then, it is possible that some fragments of life may be (increasingly) understood by Mathematics, but dually Mathematics owes greatly also to the other forms of description and knowledge, which do not need to be reducible to it. It contains some elements of these forms, which actually contribute to its foundation, as it is rooted also in them or, better, it possesses some common roots, the cognitive ones. And this is one of the reasons for the effectiveness of Mathematics. Once more, this is not a vicious circle, but the virtuous spiral of the open and dynamical system of our forms of knowledge, if we reconstruct its unity as a network, not as a fake ultimate system of axioms which explains or "covers completely" everything, by formal derivations (the "fake wooden frame" to which refers Weyl in the introduction to Das Kontinuum, see the English translation; Weyl's anti-formalist stand is even more strongly presented in his posthumous [Weyl, 1985]). The project then is in acknowledging first the differences in languages and methodologies, as well as their internal limitations, as for effectiveness, and then try to enrich them by interaction and, possibly, by singling out the common cognitive roots of our different conceptual constructions. Fortunately, these constructions, including Mathematics, are not God given, nor perfect and static platonic realms, but human and "plastic", as much as our interacting brains: thus we may invent better ones, as we did very often along history, and then unify them by cross explanations and mutual influences or translations. We may follow new meaningful aims, which may lead us to propose entirely novel concepts and ideal structures. References (Preliminary or revised versions of Longo's papers are downloadable http://www.di.ens.fr/users/longo).
from
Bachelard G., La Philosophic du non, Paris, PUF, 1940. Bailly F., "L'anneau des disciplines", special issue of Revue Internationale de systemique, Vol. 5, No. 3, 1991. Berthoz A., Le sens du mouvement, Paris, Odile Jacob, 1997. Boi L., Le probleme mathematique de I'espace. Une quite de I 'intelligible, Berlin and Heidelberg, Springer-Verlag, 1995. Boi L., "The role of intuition and formal thinking in Kant, Husserl and in the modern Mathematics and Physics", Mathesis, 2005. Boole G., The laws of Thought, 1854. Bottazzini U., Tazzioli R., "Naturphilosophie and its role in Riemann's mathematics", Revue d'Histoire des Mathematiques, 1 (1995), 3-38. Connes A., Geometrie non-commutative, Paris, InterEditions, 1990. Dehaene S., The Number Sense, Oxford, Oxford University Press, 1998. (Review/article downloadable from http://www.dmi.ens.fr/users/longo.) Devaney, R. L., An Introduction to chaotic dynamical systems, Addison-Wesley, 1989. Edelman G., The matter of Mind, Naw York, Basic Books, 1992. Frege G., The Foundations of Arithmetic, 1884 (english transl. Evanston, 1980.) Galileo G., Dialoghi sopra i due Massimi Sistemi, U, 1632. Girard J.-Y., "Linear Logic", Theoretical Comp. ScL, 50 (1-102), 1987. Girard J.Y., Lafont Y., Taylor P., Proofs and Types, Cambridge U. Press, 1990. Godel K., Nagel E., Newman J., Girard J.-Y., Le theoreme de Godel, Paris, Seuil, 1989.
380
G. Longo
Harrington L. et al. (eds) H. Friedman's Research on the Foundations of Mathematics, Amsterdam, North-Holland, 1985. Heath T.L., The Thirteen Books of Euclid's Elements, Cambridge, Cambridge University Press, 1908. Hertz J., Krogh A. and Palmer R., Introduction to the Theory of Neural Computation, 1991. Husserl, H., The origin of Geometry, part of Krisis, 1936. Jacob F., La logique du vivant, Paris, Gallimard, 1970. Lakoff, G. and Nunez, R., Where Mathematics Comes From: How the Embodied Mathematics Creates Mathematics, New York: Basic Books, 2000. Lambert D., Structure et Efficacite des interactions recentes entre Mathematiques et Physique, These de Doctorat, Louvain-la-Neuve, 1996. Lanfredini R., Husserl: la teoria dell'Intenzionalita, Roma, Laterza, 1994. Laskar J., "The chaotic behaviour of the solar system", Icarus, 88: 266-291, 1990. Longo G., "Mathematics and the Biological Phenomena" in International Symposium on Foundations in Mathematics and Biology: Problems, Prospects, Interactions, Pontifical Lateran University, Vatican City, November, 1998 (proceedings, Basti ed.). Longo G. "The mathematical continuum, from intuition to logic" in Naturalizing Phenomenology: issues in comtemporary Phenomenology and Cognitive Sciences, (J. Petitot et al, eds) Stanford U.P., 1999c. Longo G., "Mathematical Intelligence, Infinity and Machines: beyond the Godelitis" Invited paper, Journal of Consciousness Studies, special issue on Cognition, vol. 6, 11-12, 1999a. Longo G., "The Constructed Objectivity of Mathematics and the Cognitive Subject" Quantum Mechanics, Mathematics and Cognition (M. Mugur-Schachter ed.), Kluwer,2001. Longo G., "Memoire et Objectvite en Mathematiques", Le Reel en Mathematique, colloque de Cerisy, 1999 (a paraitre). Longo G., Petitot J., Teissier B. Geometrie et Cognition, research project, downloadable from http://www.dmi.ens.fr/users/longo, 1999. Philosophy of Computer Science, special issue of The Monist (G. Longo ed.), vol. 82, n.l,Jan. 1999. Ninio J., L'empreinte des sens, Seuil, Paris, 1991. Piazza M., Intorno ai numeri. Oggetti, proprieta', finzioni utili, Mailand, Mondadori, 2000. Prochiantz A., Les anatomies de la pensee, Odile Jacob, 1997. (Recensione/articolo downloadable da http://www.dmi.ens.fr/users/longo.) Riemann B., "On the hypothesis which lie at the basis of geometry", 1854 (english transl. by W. Clifford, Nature, 1873; trad, italiana di R. Pettoello, Boringhieri, 1999). Shanker S., Godel's Theorem on focus, Croom Helm, 1988. Tazzioli R., Riemann, Le Scienze, Aprile 2000. Thorn R., Stabilite structurelle et Morphogenese, Benjamin, Paris, 1972. Zellini P., Breve Storia dell'Infinito, Adelphi, 1980. Waismann F., Wittgenstein und der Wiener Kreis, Frankfurt a. M., Suhrkamp, 1967 (Waismann's notes: 1929-31). (English translation: Wittgenstein and the Vienna
The Reasonable Effectiveness of Mathematics
381
circle: conversations recorded by F. Waismann, Barnes & Noble Books, New York, 1979) Weyl H., "Uber die Definitionen der mathematischen Grundbegriffe", Math, naturwisss. Blatter, 7, 1910. WeylH., Das Kontinuum, 1918. Weyl H., Raum, Zeit, Materie, 1918 Weyl H., "Comments on Hilbert's second lecture on the foundations of Mathematics." [1927] in van Heijenoort J., From Frege to Goedel, 1967. Weyl H., Philosophy of Mathematics and Natural Science, Princeton, Princeton University Press, 1949. Weyl H., Symmetry, Princeton University Press, 1952. Weyl, H. "Axiomatic Versus Constructive Procedures in Mathematics." (Edited by T. Tonietti) The Mathematical Intelligence, Vol. 7, No. 4, 1985. Wigner E., "The unreasonable effectiveness of Mathematics in the Natural Sciences", Comm. Pure Applied Math., XIII, 1-14, 1960. Wittgenstein L., Philosophical Remarks, translated into English by G.E.M. Anscombe, Barnes & Noble, New York, 1968.
This page is intentionally left blank
PATHWAYS OF DEDUCTION A. CARBONE Equipe de Genomique Analytique INSERM U511, Universite Pierre et Marie Curie 91, blv de I'Hopital, 75013 Paris (France)
1
Deductions, foldings and the brain
Different models of various regions of the brain have been proposed and they stimulated the discussion on the way our mind works. The essential feature of most of these models is the hierarchical structure which is underlying the organization. What we "see" is nevertheless not necessarily the basic mechanism. Recent studies in computational complexity and proof theory reveal that hierarchical organizations, even though structurally appealing, are computationally inefficient. In fact, our brain seems to be "fast" in performing certain tasks (such as perceiving the presence of an animal in the landscape, or intuitively grasping a complicated mathematical idea) and extremely "slow" in performing others (as the construction of a mathematical proof). No hierarchical structure conceived by man displays similar features. In this paper we would like to show how the usual hierarchical approach to the construction of formal mathematical proofs (introduced with the work of Prege and established through the work in logic until this last decade) is inappropriate to reveal the intricate structures underlying proofs. There are two basic operations which one finds in every complex system: replication and folding (or cancellation). (Based on these two operations one can suggest a formal definition of complexity.) Replication and folding arise in many forms, going from a more abstract to a more concrete nature. On the abstract side, it has been and remains a challenge to study the effect of replication and folding on mathematical structures. For example, the folding in the combinatorial group theory corresponds to word cancellation and it is encoded in the 2-dimensional language of the van Kampen diagrams. On the concrete side, these two operations underly many biological systems, where the perfection and the symmetry of a mathematical structure is broken. Yet "pseudo-structures" seem to be preserved and one looks for mathematical tools to handle them. 383
384
A. Carbone
Replication and folding manifest themselves in vastly different situations where they are governed by different laws. In molecular biology for instance, one observes the replication in the production of thousands of copies of the same RNA strand, followed by the physical folding of those. This kind of folding constraints the dynamics of the cell and may interfere with the rate of production of RNA (via the network of protein-DNA interaction). DNA also folds, but for different purposes. For example, the 2 meters of human DNA must fit into the cell nucleus of 10 microns. This folding is organized (in chromosomes) along very specific structural patterns serving several biological functions. One more example involves proteins. They fold in the course of translation into a compact 3-dimensional conformation where the geometry of the specific active sites on the boundary determines their bio-chemical activity. Summing up: - folding allows a large object to fit into a small space, - the complexity of the functions performed by the object depend on the complexity of the folding, and - these two properties go along, since reducing the space necessarily produces complicated foldings. Possibly the evolution first folded "primordial DNA" in order to save space and then as a bonus came up with more complicated behavior. Folding and size reduction make possible to control the object but sometimes make the manipulation of the object a slow process, in particular if a local unfolding needs to be realized (as in the transcription of RNA from DNA). Biologists are searching for rules of folding and unfolding and it remains unclear, for example, in how many ways a (natural) protein can fold. Do foldings follow specific pathways? Amazingly, this pure biological (and superficial) discussion remains meaningful in the context of formal proofs. In proofs, and as we believe in most complex systems, replication and folding play a crucial role, and the analysis of the interaction of these operations in proofs is the main object of this paper. The biology will remain in the background, to contrast what happens in formal proofs. In proofs the folding and the replication are tide up in intricate ways (the unfolding induces replication and the folding induces identification) while biological systems tend to separate folding and replication in order to operate efficiently. As a result, the dynamics of proofs turns out to be very different (at least to a casual eye) from the dynamics of biological systems.
Pathways of Deduction
385
Dynamics in proofs underlies a process of computation. We are after the structure of this dynamics, or if one prefers, of the computation behind proofs, where we shall see that short proofs need to contain cycles and that the elimination of these cycles might enlarge the proof in such a way that no human mind could possibly embrace the details. A proof, as understood in this article, represents a finite computation despite the presence of cycles which might create an illusion of infinite computations hidden behind. (There are proofs that might describe infinite processes but we shall not consider them here.) This will be clarified in Section 6 where we shall show that infinite iterations (intrinsic, for instance, to autonomous dynamical systems) are not present in proofs. The absence of infinite iterations becomes apparent if one introduces possibilities of parallel computation in a proof (see Section 6), otherwise one necessarily has cycles which bias our perspective towards a dynamical view. Why do we look at proof theory and at the notion of formal deduction instead of considering the notion of "truth"? Here is a basic fact which might give a clear picture of the reason to the non-logician: if we extend our mathematical theory with an inconsistent axiom, we might end-up with a new theory for which there is a k > 0 such that all proofs of length (i.e. the number of formal deductive steps) smaller than k are proofs of true statements. This means that even if we work in an inconsistent setting we can still deduce interesting results. Proof theory allows us to speak about what is going on in the stretch of computational time < k and permits an analysis of the structure of the computation when resources are bounded (e.g. with respect to time and space). I would like to acknowledge the numerous conversations I have with Misha Gromov in the subjects touched in this paper.
2
A formal language to describe proofs
In the thirties, Gentzen introduced a logical system (i.e. a finite set of rules for the manipulation of logical formulas) which, nowadays, is used at large in the study of formal proofs. Its success is due to the useful combinatorial properties concerning the formulas appearing in the proofs as well as the graph-theoretical features of the structure of the proofs. This logical system allows the manipulation of sequences of formulas which, for our purposes, will be simply chains of symbols that one can combine through controlled transformations of the sub-chains as described below. The alphabet out of which the chains are constructed is the logical language containing variables, constant, function and relation symbols, as well as
386
A. Carbone
logical connectives A (and), V (or) and logical quantifiers V (for all), 3 (there exists). Some extra symbols are used as separators, that is (,) (parenthesis) and , (comma). For each relation symbol R there is a unique complement R1 that represents the logical negation of R (often written ^R). The symbols A, V are complementary to V, 3, and the complement of a chain of symbols is the chain obtained by complementing all relation symbols and logical symbols in it. For instance the complement of the formula p Viq1 A r) is p1 A (qVr1), and the complement of (A1{c)AB{d))\/3x C(x) is {A{c)V Bx (d)) AVx Cx(x). For convenience, if A is a formula then we shall denote with the symbol AL its complement. (The reader might notice the analogy with the WatsonCrick complementarity in DNA for which the complement of the sequence ACGGGGTTTCC is TGCCCCAAAGG, where the letters A, C are complementary to T, G. One might entertain herself by looking at other examples of duality and parity in mathematics and physics.) An example of sequence of formulas is J4J-(c),Vi/ B(y,d) A C(d),BL(a), where Ax(c), Vj/ B(y,d) f\C{d) and BL{a) are formulas. An example of rule is T,A
A,B
T,A,AAB to the effect that given two sequences of formulas T, A and A, B one can construct a new sequence containing both collections of formulas T and A (which might be empty) and the formula A A B. (The logical meaning of the rule should not worry the reader.) Similar rules are defined for the other logical connectives and quantifiers. Together with those rules allowing the construction of new formulas lying in a sequence, there are two extra rules: A, A, A A,A contraction
A, A1
T,A
T,A cut
The contraction rule says that if two copies of a formula A lie in the same sequence, then they can be identified and only one remains. The cut rule says that if two sequences contain complementary formulas then the two formulas cancel out. In logic, the cut rule is a generalization of the wellknown rule of modus ponens, saying that if the lemma A has been derived, then the sequence of formulas A is derivable from the sequence A, A1. The occurrences A and AL in the two sequences considered in the cut rule, are called cut-formulas or lemmas.
Pathways of Deduction
387
Figure 1: Triangles with inscribed circles. The set of rules which we described, together with sequences of the form (called axioms), define the so-called predicate logic. If quantifiers are not allowed to occur in the formulas, the logic is called propositional. A formal proof is a manipulation of sequences of formulas by means of the rules above, which starts from axioms, creates new sequences which can be combined with any of the previously derived sequences and any of the axioms, and which ends with a sequence called theorem. An example of formal proof is illustrated on the left hand side of Fig. 2. The use of the cut rule in formal proofs allows the construction of compact deductive arguments. We give two intuitive examples of the use of cuts in proofs. They illustrate the power of lemmas in deductions.
TJAJA1
Example 1 We take an "isoscele" triangle and we inscribe a circle in it as illustrated in Fig. 1. Repeatedly, we inscribe a smaller circle on the top of the previous one and so on. We shall obtain an infinite number of such circles, one on the top of the other. To compute the sum of the radiuses of such circles (see Fig. 1 on the left), we can calculate the radius of each circle and then sum up the values, but this sum is infinite. This approach produces an explicit computation in the sense that each radius is explicitly considered in the reasoning and contributes to the sum. A finite but implicit solution, is illustrated in the picture on the right of Fig. 1, where one can see that the sum of the radiuses coincides with half of the height of the triangle. (Infinity is present in this solution but suppressed by the implicitness.) The short cut we used to pass from an argument involving an infinite computation to a finite argument corresponds to the presence of lemmas in a formal proof. (For all apparent simplicity, no known automatic deduction system is able to come up with this short cut.) Example 2 To avoid the explicit calculation of 20 +19 +18 + . . . + 3 + 2 + 1 , at the age of seven, Gauss observed that if we add by columns the following
A. Carbone
388
additions 20 + 1 +
19 + 2 +
18 + 3 +
... + ... +
2 + 19 +
1 20
the result will be 10 times 21. By using the lemma n + ra = p—>(n — 1) + (m + 1) = p one can even avoid the addition by columns: one computes 20+1, and applies 20 times the lemma. The lemma allows to codify the explicit calculation and to deduce the solution faster. The reader might have a sense now of the shortening induced by certain mathematical arguments contrapposed to the length of the constructions that one would generate if lemmas were not allowed to be used. These are toy examples, but in the next section we discuss some concrete mathematical ones.
3
Unfolding
A precise statement concerning explicit and implicit constructions, that is constructions allowing or not the use of lemmas, was proved by Gentzen Theorem 3 (The Cut Elimination Theorem - Gentzen) If U is a formal proof (with cuts) of a statement S, then there is an effective way to transform II into a formal proof II' of S which does not make use of the cut rule. This holds for both propositional and predicate logic. The transformation is possible by means of local manipulations which unfold the proof II into the proof II', usually much larger than II. The price to pay for the elimination of cuts may be exponential for propositional logic, and multi-exponential (i.e. a tower of 2's) for predicate logic. From these values, it is clear that there are situations where one might find a small proof with cuts, even though one might never be able to look at the cut-free form because too huge. But why would we like to look at the cut-free form of a proof? Roughly speaking this form corresponds to the combinatorial version of the original proof. In a proof free of cuts, the construction of an "object" in the proof is done "piece by piece" and we might be interested to know how large this object is, or in how many steps we can build it, etc. (We shall comment on a concrete example of such construction in Section 5.) Since the complexity of the object and the length of the proof are related, one hopes to extract bounds
Pathways of Deduction
389
from formalized proofs by analysing cut elimination. This is a direction of research proposed by Kreisel. In mathematical practice proofs with "large" cuts are regarded as less elementary than those with "smaller" ones. For instance, the Prime Number Theorem was originally proven with the cutting edge of the Riemann zeta function while the elementary proof was found much later and with a great effort. On the other hand, it took a long time to furnish a short non-elementary proof of the van der Waerden Theorem on arithmetic progressions. The beauty of the van der Waerden Theorem resides in the simplicity of its formulation given a finite set of points in a finitely colored (partitioned) plane, there is a parallel translation followed by a dilation which moves the set into a monochromatic position. Amazingly, there is still no logically simple proof of the result. In 1987, Girard showed that one can formally recover (by cut elimination) the elementary combinatorial argument used by van der Waerden from the dynamical system proof of Furstenberg and Weiss (where the key transcendental ingredient is the fact that the intersection of a decreasing sequence of non-empty compact sets is non-empty). This transformation consists of purely local combinatorial manipulations of formulas (together with some finitarisation of compactness). Thus the proof based on dynamical systems contains, in some codified form, all information needed for the combinatorial proof. Girard's theorem is a single result of this kind, and in most significant cases in number theory and algebraic geometry there is no elementary counterpart to analytical proofs. In no single case there is a formal derivation of one kind of proofs from the other.
4
A geometrical view of t h e unfolding
This section and the following one represent a condensed survey of the subject and the reader should not be surprised if they turn out to be hard to follow in detail. A formal proof is usually visualized as a "finite tree" of rules (growing downwards), whose root is the theorem, the leaves are axioms, and the internal nodes are intermediate sequences of formulas derived from one or two sequences (which label the antecedents of the node in the tree) through the formal rules. An example is illustrated in Fig. 2. There is another kind of graph, not necessarily a tree anymore, that can be associated to a formal proof. It represents the "flow of formulas" in the proof, and it is called the logical flow graph. This graph carries more information
390
A. Carbone
d-.c 1-
C ,
p^, p P
X
,CAP
&-,
C
C^,C^, C /v P, P^/N C C\
CAP,
P ^ C
C"", (Os P) v- (P"1" A C ) Figure 2: A formal proof and its associated tree of derivation. Each node of the tree corresponds to a sequence of formulas in the proof. There are three axioms and three leaves of the tree, three intermediate sequences and three internal nodes of the tree. The theorem corresponds to the root.
&~, c
cr, c
Figure 3: Logical paths between formula occurrences in formal proofs. The proof on the left displays a splitting point of the graph correspondent to the contraction of the formula C; the figure on the right displays a proof whose logical flow graph contains an oriented cycle. (In both pictures, only parts of the logical flow graphs are traced.)
than the tree derivation (for instance, it distinguishes proofs with cuts from those without cuts) and the process of cut elimination can be adequately expressed in terms of combinatorial operations over this graph. Two examples of logical flow graphs are illustrated in Fig. 3. They show the occurrences of the formula C logically linked within the proof. The left hand side diagram in Fig. 3, displays a proof with links for P as well as for C. By looking at the pictures one observes that contractions correspond to branching points in the graphs. We distinguish the branching points where a directed edge forks in two edges by calling them defocusing points, while vertices where two directed edges come together and are followed by a single edge are called focusing points (see Fig. 4).
Pathways of Deduction
focusing
391
defocusing
Figure 4: Branching points. When lying in a logical flow graph, they correspond to the use of contractions.
Figure 5: A defocusing point follows a focusing one. Between the two branching points there is a path linking them. This configuration corresponds to the presence in the proof of two contractions, and of a cut in between them.
A logical flow graph might be arbitrarily complicated. In fact, every (non-oriented) graph with degree of the vertices < 3 can be topologically embedded into the logical flow graph of some proof. The more complicated the graph is, the more logical information the graph carries. A good combinatorial way to understand this point is to count the number of different paths encoded in a logical flow graph. Let us consider for instance the graph in Fig. 5. It is easy to count 4 different oriented paths coded in it. Each one of the paths shares with the others, some part which might be constituted by a very long chain of nodes. It is the sharing of nodes that reduces the complexity of the representation. In Fig. 7 we can see how an exponential number of paths can be coded in a small graph. During the process of elimination of cuts, the logical flow graph of a proof undergoes significant topological changes and with this, its size blows up. The key idea is to transform a graph which contains paths starting from a focusing branching point and arriving to a defocusing one (see Fig 5) into a graph free of such configurations. The branching points where the graph splits or recombines are locally disrupted and this induces global effects in the topology of the graph (for instance cycles might be disrupted as illustrated in the second diagram on the right of Fig. 9).
392
A. Carbone
Figure 6: A subgraph H of the logical flow graph G is duplicated. The branching points below the nodes b, c and above the nodes e, / disappear with the duplication. Some new branching point is introduced: one below the node a and the other above the node d.
Figure 7: A graph where several directed paths share common parts (left) and its unfolding (right). The number of paths is exponential in the number of diamonds in the graph. Observe that the folding plays the role of the universal covering in the category of oriented graphs.
393
Pathways of Deduction
Figure 8: Duplication of a path. This kind of duplication might give two different connections between the nodes a, b and c, d. (This is reminiscent to how the enzyme recombinase alters DNA strands by switching one of the connections above (on the right) into the other.)
d
c
d
c
d
Figure 9: The duplication of a path might induce the splitting of a cycle.
The combinatorial idea which underlies the cut elimination procedure is the following. Given the logical graph of the proof, the procedure chooses a subgraph of it and resolves some of the focusing or defocusing points by duplicating the subgraph, as illustrated in Fig. 6. By doing this, some of the branching points are eliminated but some new ones might be introduced. All in all, one moves around branching points and pushes them towards the boundary of the graph, until they are absorbed by the boundary and eliminated. Gentzen Cut Elimination Theorem ensures that this can be always done with a finite number of duplications. Among the effects that the operation of duplication might generate, one can see Fig. 8 and Fig. 9.
394
5
A. Carbone
Cyclic structures
Proofs without cuts are acyclic as well as proofs with cuts and no contractions. This means that cycles are built through the interaction between cuts and contractions. As a side effect of the rules for the manipulation of sequences of formulas, cycles in a proof organize following an interesting geometric pattern. In fact, any cyclic structure (i.e. any group of cycles nested together, as illustrated in Fig. 10) is linked to the rest of the graph in such a way that - there is a point in the graph, which is external to the cyclic structure, and from which it starts a path that arrives to any point lying in the cyclic structure, and - there is another point in the graph, which is again external to the cyclic structure, and to which it arrives a path that starts from any point lying in the cyclic structure. This means that for each cyclic structure, there is (at least) a path going in the structure and a path going out from it (as in Fig. 10). In other words, cyclic structures in proofs behave essentially as "open systems". The existence of ways in and of ways out in a cyclic structure can be proved by observing that if no way in or no way out was present in a cyclic structure, then the operation of duplication illustrated in Fig. 6 could not split (some) cycles and therefore reduce the logical flow graph of the proof to a cycle-free graph. Since we know that cycles can always be eliminated by applying the procedure of cut elimination, the above hypothesis leads to a contradiction. The elimination of cycles through duplication is done at great expense of the proof size. Hence, it is useful to ask, whether cycles are relevant for a proof to be short.
Figure 10: A cyclic structure lying in the logical flow graph of a proof, together with a path going in and a path going out the cyclic structure.
Pathways of Deduction
395
When one considers a logic with quantifiers the answer is positive. This can be shown by proving in a few steps of deduction, that large integers exist. It turns out that not only one can prove in a very few steps that n, 2 n , 22" exist, but that also 222 and e(2, n) (i.e. a tower of n 2's) can be constructed with essentially n steps of formal deduction. To construct 22 and e(2, n) with such a small complexity of derivation, one needs cycles, and it can be shown that any cycle-free proof of size n can construct only objects of size much smaller than 22 . These short proofs codify in a small space the complete description of the object of large size. This codification exploits the high symmetry of the object and this latter is reflected in the argument of the proof by a logical description of a repeated substitution of logical "terms" (in essence, given a chain of symbols, some of these symbols are substituted with the chain itself, and this operation is allowed to repeat). In the logical flow graph, this repeated substitution corresponds to the presence of cycles. Are cycles necessary to short cuts in propositional logic? Surprisingly the answer is negative. In fact, there is a fine procedure for the manipulation of lemmas in proofs that allows to transform locally the structure of the proof until cycles are eliminated (but cut-formulas will still be present). The resulting proof is of polynomial size in the size of the original proof, and the degree of the polynomial is the number of cycles of the original proof. We do not know whether all true propositional formulas have polynomial size proof in the logical system described in Section 2. If this were the case then NP would be equal to co-NP. This problem is a brother to the famous P = NP question. We believe that an understanding of the folding and unfolding of propositional proofs might turn out to be crucial for complexity issues and possibly shade some light on P =? NP.
6
Cycles and spirals
Cycles cannot be eliminated silently when quantifiers are involved in the deduction (as seen in Section 5) since an explosive blow up in the size of the proof might occur. Also, cycles suggest a codification of an infinite process while we know, by the Theorem of Cut Elimination, that this codification represents only a finite number of iterations. Therefore the "intuition" of infinity is an illusion, and one wonders why cycles appear at all in our formal representation of proofs. There is a set of rules for the manipulation of chains of formulas that creates different geometric structures in proofs, where cycles do not appear but spirals replace them instead. A comparison of the two deductive systems shows that cycles are projections of spirals, as illustrated in Fig. 11.
396
A. Carbone
Figure 11: The projection of the spiral back down to the circle. Observe that the spiral is the universal covering of the circle and that the map represented in the figure is the canonical projection. Spirals properly represents the dynamics within a proof but the complexity of this representation is large: if the size of a proof with cycles equals n, then the size of the corresponding proof where spirals replace cycles is roughly 22 . Thus the proof with spirals is too big to be handled, and one is obliged to work in the "projected space", where spirals turn into cycles. One might speculate that computational complexity forces the brain to follow cyclic pathways of deduction, being aware, at the same time, that the "real" dimension of the space of reasoning is bigger than the "descriptive" dimension. The interweaving of these two modes of human reasoning underly the difficulty of our attempts to understand how our mind works. Taking this view, one starts doubting how often what we call "natural" corresponds to "reality".
7
Conclusions
We have seen how proof theory provides a procedure for unfolding a proof with cuts, e.g. turning the trascendental proof of the van der Waerden theorem into the elementary one. Yet there is no procedure for compactifying a proof by folding. Not every proof can be in principle folded. For this, a proof needs to contain many repetitive patterns, some kind of hidden symmetry. There are at least two situations where such folding is desirable: the first concerns real mathematical proofs such as the above van der Waerden theorem where one has an intuitive feeling for the symmetries but yet the actual process of folding is by no means automatic. The second concerns automatic proofs
Pathways of Deduction
397
generated by computers where the symmetry, even if present, might be hard to detect. Moreover, once it is detected, the symmetry does not immediately yield the pattern of folding. Transforming an automated formal proof into one acceptable by a human mind remains an open problem. The difficulty resides in the fact t h a t local relations between formulas may be lost during the unfolding (this is due to duplication) and in order to fold one has to "guess" where to insert these relations. As a comparison, look at the following geometric picture: start with the universal (infinite) covering of a compact space and consider a bounded domain in this covering which projects onto the underlying space. The problem is how to reconstruct this map of the domain together with the underlying space where it goes, by using the information encoded in the (partial) local transformation of the domain which comes from the Deck transformation group of the covering. One should be aware that the combinatorics of proofs is by far more complicated than t h a t of the coverings.
8
Bibliographical guide
An introduction to the combinatorics and complexity of cut elimination can be found in [CS97a]. An exhaustive source (but more technical) is [Gir87b]. For a survey on propositional proof systems and their relations with complexity theory see [Pud96, Kra96]. Gentzen's original paper on the cut elimination theorem appeared in [Gen34] and, more recently, in [Sza69]. The bounds on the complexity of cut elimination are due to Statman, Orevkov and Tseitin [Sta78, Ore79, Tse68]. Some references for the work of Georg Kreisel on the importance of extracting bounds from proofs using cut elimination as the main tool are [Kre77, Kre81a, Kre81b]. The original paper of van der Waerden with the combinatorial proof of his theorem on arithmetic progressions is [VdW27]. The proof by Furstenberg and Weiss appeared in [FW78]. Girard's proof of the transformation (through cut elimination) between the combinatorial proof and the proof in dynamical systems is included in [Gir87b]. Other examples of formal proofs analysed through cut elimination (and Kreisel's counterexample interpretation) can be found in [Bel90, Kol93a, Kol93b, Kol94]. The notion of a logical flow graph is introduced in [Bus91] and an analysis of its properties appears in [Car97, Car99a]. The constructions of numbers as 2 2 , e(2, n) together with the cyclic structure underlying these constructions are studied in [Car98a], and the relation of these cyclic structures to group presentations is developped in [Car99b]; cyclic structures with their ways in
A. Carbone
398
and ways out are analysed in [Car99a, Car97a]; the evolution of the logical flow graph during cut elimination is studied in [Car97a, CS97b]; cycles and their spiral representations are the object of study in [Car98b]. The cost of the elimination of cycles for predicate logic is computed in [Car98a], and for propositional logic in [Car97b]. The notion of symmetry and quasi-symmetry in proofs and mathematical structures in general is the main theme of [CS97b, CS96a].
References [Bel90]
G. Bellin. Ramsey interpreted: a parametric version of Ramsey's Theorem. Contemporary Mathematics, 106:17-37. AMS Publications, 1990.
[Bus91]
S. Buss. The undecidability of fc-provability. Annals of Pure and Applied Logic, 53:72-102, 1991.
[Car97]
A. Carbone. Interpolants, cut elimination and flow graphs for the propositional calculus. Annals of Pure and Applied Logic, 83:249299, 1997.
[Car97a] A. Carbone. Duplication of directed graphs and exponential blow up of proofs. Annals of Pure and Applied Logic, 100:1-76, 1999. [Car97b] A. Carbone. The cost of a cycle is a square. Symbolic Logic, 2000. To appear.
The Journal of
[Car98a] A. Carbone. Cycling in proofs and feasibility. Transactions of the American Mathematical Society, 5:2049-2075, 2000. [Car98b] A. Carbone. Turning cycles into spirals. Annals of Pure and Applied Logic, 96:57-73, 1999. [Car99a] A. Carbone. Streams and strings of formal proofs. Theoretical Computer Science, 2000. To appear. [Car99b] A. Carbone. Asymptotic cyclic expansion and bridge groups of formal proofs. Journal of Algebra, 2000. To appear. [CS96a]
A. Carbone and S. Semmes. Looking from the inside and the outside. Synthese, 2000. To appear.
[CS97a]
A. Carbone and S. Semmes. Making proofs without modus ponens: An introduction to the combinatorics and complexity of
Pathways of Deduction
399
cut elimination. Bulletin of the American Mathematical Society, 34:131-159, 1997. [CS97b]
A. Carbone and S. Semmes. A Graphic Apology for Symmetry and Implicitness. Mathematical Monographs, Oxford University Press, 2000.
[FW78]
H. Furstenberg and B. Weiss. Topological dynamics and combinatorial number theory. Journal d'Analyse Mathematique, 34:61-85, 1978.
[Gen34]
G. Gentzen. Untersuchungen iiber das logische Schliefien I—II. Math. Z., 39:176-210, 405-431, 1934.
[Gir87b]
J-Y. Girard. Proof Theory and Logical Complexity, volume 1 of Studies in Proof Theory, Monographs - Bibliopolis, Napoli, Italy, 1987.
[Kol93a] U. Kohlenbach. Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallee Poussin's proof for Chebycheff approximation. Annals of Pure and Applied Logic, 64:27-94, 1993. [Kol93b] U. Kohlenbach. New effective moduli of uniqueness and uniform a priori estimates for constants of strong unicity by logical analysis of known proofs in best approximation theory. Numer. Fund. Anal, and Optimiz., 14(5&6):581-606, 1993. [Kol94]
U. Kohlenbach. Analyzing proofs in analysis. Proceedings of the Logic Colloquium 93 - Keele, 1994.
[Kra96]
J. Kraji'cek. Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press, 1996.
[Kre77]
G. Kreisel. From foundations to science: justifying and unwinding proofs. Symposium: Set theory. Foundations of mathematics, dans Recueil des travaux de l'lnstitut Mathematique, Nouvelle serie (Belgrade) 2(10):63-72, 1977.
[Kre81b] G. Kreisel. Extraction of bounds: interpreting some tricks on the trade. In P. Suppes, editor, University-level computer assisted instruction at Stanford: 1968-1980, number tome 2 (10) in Institute for Mathematical Studies in the Social Sciences, 1981.
400
A. Carbone
[Kre81a] G. Kreisel. Neglected possibilities of processing assertions and proofs mechanically: choice of problems and data. In P. Suppes, editor, University-level computer assisted instruction at Stanford: 1968-1980, number tome 2 (10) in Institute for Mathematical Studies in the Social Sciences, 1981. [Ore79]
V.P. Orevkov. Lower bounds for increasing complexity of derivations after cut elimination. Journal of Soviet Mathematics, 20(4), 1982.
[Pud96]
P. Pudlak. The lengths of proofs. In S. Buss, editor, Handbook of Proof Theory. North Holland, 1996.
[Sta78]
R. Statman. Bounds for proof-search and speed-up in predicate calculus. Ann. Math. Logic, 15:225-287, 1978.
[Sza69]
M.E. Szabo (Editor). The Collected Papers of Gerhard Gentzen. North Holland, Amsterdam, 1969.
[Tse68]
G.S. Tseitin. Complexity of a derivation in the propositional calculus. Zap. Nauchn. Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:234-259, 1968.
[VdW27] B. L. van der Waerden. Beweis einer baudetschen vermutung. Nieuw Archiv Wiskunde, 212-216, 1927.
PHENOMENOLOGIE ET THEORIE DES CATEGORIES FREDERIC PATRAS Laboratoire J. A. Dieudonne CNRS-UMR6621 Universite de Nice - Sophia Antipolis Pare Valrose, 06108 NICE cedex 2 patras@math. unice.fr
Abstract: The mathematical community has become aware that 20-th century epistemologies such as Bourbaki's structuralism are not satisfactory. In particular, it appears that mathematicians should take signification problems, which have been long neglected, systematically into account. This is obvious for what concerns educational questions, but the recent writings of such an eminent and influential mathematician as Alexandre Grothendieck emphasize that dealing with significations, that is not only with formal or computational tools, is necessary even for research and for the internal progress of science. Husserl's phenomenology is, among other things, a theory of knowledge that deals with such problems. We show in the present article that modern mathematical theories, such as category theory, combine remarkably with Husserl's philosophy to create simultaneously a new image of mathematics and new approaches to classical philosophical concepts and distinctions such as transcendental subjectivity vs. objectivity.
1. Les apories du structuralisme L'art precede les savoirs theoriques : l'edification d'une grammaire serait inconcevable sans une maitrise prealable de la langue et l'idee d'une geometrie n'aurait guere de sens en dehors d'un contexte de vecus spatio-temporels, sauf a jouer assez artificiellement avec les mots en les degageant du terreau de significations et de pratiques sur lequel ils se sont formes. En regie generate, l'essence meme de la temporalite veut qu'il ne soit jamais possible de nommer et, a fortiori, de decrire que des contenus conceptuels deja constitues. Bien entendu les concepts, une fois acquis et sedimentes dans des pratiques langagieres ou scientifiques, s'affranchissent peu a peu des determinations liees a leur mode d'apparition historique. Aussi l'idee d'une grammaire universelle, si elle peut etre contestable pour telle ou telle raison tenant aux structures de la langue et de la pensee, est-elle cependant tout a fait legitime a titre de projet, de meme que la notion d'espace ou de geometrie peut etre encore employee dans des situations limites ou seules de vagues intuitions justifient l'emploi des termes sur le fondement de criteres formels et sans veritables contreparties intuitives1.
1
II en va ainsi pour les espaces de la topologie et la geometrie algebrique modemes. 401
402
E Patras
Dans l'univers mathematique, cette transition des contenus de pensee a des structures formelles susceptibles d'etre depouillees de toute emprise intuitive est codifiee par la methode axiomatique. L'idee de la methode est tout sauf neuve : le projet d'une organisation analytique du discours scientifique a partir d'un ensemble de propositions admises comme vraies (les postulats ou axiomes de la theorie) et de regies de deduction est tout d'origine grecque et, plus precisement, aristotelicienne. L'originalite de son usage, a la fin du dix-neuvieme siecle et surtout au vingtieme, tient, outre a son caractere systematique, a une certaine distanciation quant aux axiomes. Ceux-ci sont susceptibles de varier, donnant ainsi naissance a autant de theories qu'il y a de choix possibles de systemes d'axiomes fondamentaux. Parmi les systemes d'axiomes, il faut surtout retenir les systemes dits ouverts. Leur role a ete decisif pour la philosophie et la pratique mathematique a partir des annees 1920-30, c'est a dire des travaux de l'ecole d'Emmy Noether et la naissance d'un corpus d'"algebre moderne" avec des ouvrages comme le celebre traite de van der Waerden2. Les axiomatiques ouvertes codifient des concepts generaux comme ceux d'espace vectoriel, de groupe ou de topologie, et permettent d'unifier au sein d'un meme formalisme des objets ou des phenomenes d'essences apparemment distinctes. Au cours du vingtieme siecle, la terminologie des structures3 mathematiques, plus familiere sans doute au grand public du fait de son invocation par les differents courants structuralistes des sciences humaines, s'est graduellement substitute a celle des axiomatiques ouvertes, entre autres sous 1'influence du groupe Bourbaki4 qui a fait des structures le cceur de sa conception des mathematiques5. Le concept de structure (qui n'est d'ailleurs pas defini de maniere univoque dans la litterature et a une fonction tres souvent programmatique) coincide, dans son usage courant, avec celui d'axiomatique ouverte, et la substitution d'une terminologie a l'autre aurait peu d'importance si elle n'etait l'indice d'une mutation de sens et de valeurs. Dans la pensee hilbertienne qui, des Grundlagen der Geometrie de 1899 jusqu'aux recherches formalistes6, est au coeur de la problematique axiomatique dans toute sa dimension philosophique, la pensee axiomatique a une vocation universelle. En un sens, elle est l'heritiere de la mathesis universalis leibnizienne et d'un grand projet de legislation des sciences de la nature. C'est a ce projet que les mathematiciens de la seconde moitie du vingtieme siecle ont longtemps tourne le dos, entraines par un mouvement de constitution internaliste de leur discipline. Historiquement, 1'abandon du
2
B. van der Waerden. Moderne Algebra. 2 vols. Berlin, Springer, 1930. P. Carter. Structures. Dictionnaire d'histoire et philosophie des sciences. Ed. D. Lecourt. Paris, P.U.F., 1999. 4 P. Cartier. Bourbaki. Dictionnaire d'histoire et philosophie des sciences. Ed. D. Lecourt. Paris, P.U.F., 1999. 5 N. Bourbaki. VArchitecture des mathematiques. in Les grands Courants de la pensee mathematique. Paris, Hermann, 1948. 6 Nous renvoyons a la biographie de Hilbert: C. Reid. Hilbert. Berlin, Springer, 1970. 3
Phenomenologie et Theorie des Categories
403
programme axiomatique general et le desinterdt pour les grandes questions epistemologiques attenantes coincident a peu pres avec l'essor du courant "structuraliste". En France, une responsabilite importante dans cette disaffection resolue d'une part importante de la communaute des mathematiciens pour «le reel et les grandes categories de la pensee »7 incombe a Bourbaki. Les limites de la strategic de l'autruche philosophique, revendiquee explicitement dans les quelques textes programmatiques du groupe et dans presque toute l'ceuvre de son porte-parole le plus influent, Jean Dieudonne (faire abstraction des problemes logiques et philosophiques de signification ainsi que des enjeux ontologiques du discours mathematique) sont aujourd'hui evidentes. Deux exemples suffiront a en convaincre. La physique mathematique, largement ignoree par Bourbaki, est indubitablement l'un des moteurs les plus actifs du developpement du corpus mathematique et contribue de maniere decisive au renouvellement de ses problematiques. Des travaux recents, comme ceux d'Alain Connes8, montrent a quel point la question de la structuration du sens des theories physiques, celle de la renormalisation par exemple, est essentielle. Elle deborde d'un cadre strictement mathematique puisqu'il y va vraiment, au travers d'un formalisme algebrique, de la structure de l'univers physique. La pedagogie mathematique est, de son cote, a la croisee des chemins. Le structuralisme, s'il propose d'organiser le corpus, ne dit rien sur les mecanismes d'apprentissage et de creation des savoirs. La science dont il rend compte est une science figee. Les idees de Claude Chevalley, membre du groupe Bourbaki, decrites par sa fille Catherine, malgre qu'elles ne pretendent pas refleter une vision partagee par les autres membres, decrivent bien le type de mathematiques auxquelles Bourbaki visait a aboutir : « Le manque de rigueur donnait a mon pere l'impression d'une demonstration ou Ton marcherait dans la boue, ou Ton souleverait des sortes d'immondices pour avancer. Quand on les avait ecartes, on pouvait acceder a l'objet mathematique, une sorte de corps cristallise dont l'essentiel est la structure. Quand cette structure etait construite, il disait etre interesse par cet objet pour le regarder, l'admirer, presque le faire tourner, mais certainement pas pour le transformer... Si Ton observe la facon dont mon pere travaillait, il semble que c'etait d'avantage cela qui comptait, cette production d'un objet qui, alors, devenait inerte, mort en somme. »9 En d'autres termes, 1'edification de structures ou plus generalement d'axiomatiques est un processus tardif, qui ne vient qu'apres le travail createur celui-la meme dont la pedagogie moderne voudrait apprendre a rendre compte, quitte a deconstruire les belles architectures de la science constituee. 7
N. Bourbaki. Op. Cit. A. Connes et D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199, 203-242 (1998). 9 Extrait de Nicolas Bourbaki, faits et legendes. M. Chouchan. Editions du Choix, Argenteuil, 1995.
404
E Patras
Les alternatives a la cecite epistemologique sont nombreuses, comme le sont les directions de recherche : mathematisation et modelisation du reel physique et social, genealogie voire archeologie au sens foucaldien des savoirs scientifiques, etudes morphologiques dans une perspective 'a la Thorn'... On s'interessera ici aux problemes de fondement, au sens le plus radical du mot, a savoir en deca des questions posees par la logique mathematique ou la m£tamathematique. Plus precisement, il s'agira de dire toute l'actualite mathematique de la pensee husserlienne et des grandes distinctions qu'elle a introduites au sein de la theorie de la connaissance : ontologie formelle/ ontologie materielle, logique formelle/ logique transcendantale, noese/ noeme. II devrait apparaitre que chacune d'elles continue de faire sens pour l'epistemologie contemporaine. 2. Deconstruire le terrain des evidences naturelles L'axiomatique, on l'a dit, est un moment tardif de la pensee, mais c'est egalement le cas de tous les grands edifices de la connaissance. L'evidence de la geometrie euclidienne, de 1'analyse moderne et de toutes ces theories dans lesquelles les mathematiciens se meuvent avec autant sinon plus d'aisance que dans le "monde de la vie" ne doivent pas dissimuler qu'il s'agit la de savoirs complexes. Le terrain d'evidences originaires sur lequel ils sont d'abord parus nous est masque par l'oubli des apprentissages effectues et par la puissance du langage institue qui fait comme si des concepts comme ceux de droite, de forme geometrique ou de nombre allaient d'emblee de soi. Ces categorisations deja effectuees dans le langage ou les theories scientifiques sont evidemment indispensables : sans elles, pas de science a proprement parler. Pour autant, leur pouvoir est egalement coercitif: si 1' "espace" est celui de la mathematisation galileenne de la nature, comment accepter ensuite les espaces courbes de la relativite generale et des geometries riemanniennes ? Dire les mecanismes primaires de constitution du savoir n'est pas aller contre les interets bien compris d'une science en progres et oublieuse de ses racines ; c'est egalement menager un espace de liberte ou il sera possible, lorsque necessaire, de transvaluer les axiomatiques depassees. On sait par exemple 1'importance que Grothendieck10 attachait a la quete de noyaux de sens, quitte a devoir chambouler les edifices trop figes de la geometrie, de la topologie ou de l'arithmetique ! Pour lui, la science semblait pouvoir progresser vers une adequation parfaite de ses concepts et de ses techniques a nos intuitions les plus fondamentales. Husserl s'attache a un projet analogue, mais ses outils theoriques sont herites de la grande tradition philosophique : Descartes, Kant, Bolzano..., et ses ambitions sont resolument epistemologiques (logiques, au sens classique du mot). Les textes husserliens qui traitent du probleme de l'origine des savoirs scientifiques sont nombreux. Notre ambition ne sera pas ici d'en expliciter le contenu mais, sans 10 A. Grothendieck. Recoltes et semailles. Reflexions et temoignage sur un passe de mathematicien. Manuscrit. Grothendieck est l'un des quelques mathematiciens du vingtieme siecle dont les idees ont bouleverse l'edifice mathematique.
Phenomenologie et Theorie des Categories
405
veritable souci de fidelite, de penser a la maniere husserlienne et de degager d'une oeuvre complexe et fascinante quelques materiaux particulierement significatifs pour le developpement contemporain des mathematiques. L'Origine de la geometrie11 est un texte commode pour aborder la pensee husserlienne. Manuscrit bref date de 1936, il explore, a l'image de La Crise des sciences europeennes et la phenomenologie transcendantale12, le processus de constitution des objets de la geometrie a partir d'un processus d'idealisation dont les sources vives sont les materiaux intuitifs concrets du monde ambiant. Texte peu technique, il permet de degager la necessite et la saveur epistemologique de l'approche phenomenologique. Suivons-le. Un ecueil important dans la recherche des origines du sens mathematique tient au statut de l'historicite des concepts. C'est sans doute l'un des points les plus delicats dans la deconstruction methodique des evidences logiques qui forment le terreau d'une pratique normale (mais pas necessairement satisfaisante) de la science. II n'est par exemple pas indifferent que Bourbaki ou Dieudonne aient attache autant d'importance a l'histoire des sciences : une histoire figee, heroi'que et factuelle fait le jeu d'un discours teleologique et normatif. Aussi faut-il se garder de 1'historicisme, en sciences comme ailleurs. Foucault est la pour nous le rappeler, mais son archeologie du savoir hesite devant les mathematiques : «A ne reconnattre dans la science que le cumul lineaire des verites ou l'orthogenese de la raison, a ne pas reconnattre en elle une pratique discursive qui a ses niveaux, ses seuils, ses ruptures diverses, on ne peut decrire qu'un seul partage historique dont on reconduit sans cesse le modele tout au long du temps, et pour n'importe quelle forme de savoir: le partage entre ce qui n'est pas encore scientifique et ce qui Test definitivement... II n'y a sans doute qu'une science pour laquelle on ne puisse distinguer ces differents seuils ni decrire entre eux un pareil ensemble de decalages : les mathematiques, seule pratique discursive qui ait franchi d'un coup le seuil de la positivite, le seuil de l'epistemologisation, celui de la scientificite et celui de la formalisation. »13 Le renvoi par Foucault du langage mathematique a l'image qu'en a donne le structuralisme, a savoir l'idee d'une cloture formelle et d'une certaine autonomie epistemologique est significatif. II temoigne des difficultes qu'il y a a interroger les dimensions du discours mathematique qui echappent a cette cloture et forment pourtant le cceur du mouvement vivant de constitution du savoir. Les intuitions, les programmes de recherche, les deficits de sens informent et donnent corps a la pratique mathematique, mais ces composantes du discours echappent pour l'essentiel a la diffusion publique et ecrite. " E. Husserl. L'Origine de la geometrie. Trad. J. Derrida. Paris, P.U.F., 1962. Cite VOrigine dans la suite. 1 E. Husserl. La Crise des sciences europeennes et la phenomenologie transcendantale. Trad. G. Granel. Paris, Gallimard, 1976. Cite La Crise dans la suite. 13 M. Foucault. L'Archeologie du savoir. Paris, Gallimard, 1969.
406
E Patras
Une autre composante de 1'attitude de Foucault, tout aussi influente dans ses jugements sur les mathematiques, est une mefiance affirmee a I'egard du transcendantal, qui se retrouve d'ailleurs dans les diverses epistemologies affranchies de toute reference au kantisme. De meme qu'il faut rejeter l'illusion d'une cloture epistemologique du discours mathematique, il faut aller contre de telles prises de position, puisque vouloir interroger les origines du savoir sans se cantonner a la surface des phenomenes ou vouloir questionner les objets mathematiques dans leur surgissement passe par la prise en compte d'un moment transcendantal. Refus de toute autonomie du discours scientifique et transcendantalisme sont deux aspects decisifs de la phenomenologie husserlienne. Le type d'historicite revendique pour les mathematiques par VOrigine est, a sa maniere, tout aussi archeologique que chez Foucault. Mais l'archeologie dont il s'agit est une archeologie du sens. La sedimentation de sens qui s'est accomplie avec le developpement des methodes formelles, et ce des la naissance de la geometrie grecque, doit etre etudiee comme telle et chaque strate n'indique pas seulement telle ou telle etape d'un processus historique, mais bien un moment eidetique incontournable et irreductible. Faire revivre chacun de ces moments, non pas seulement comme percee heroi'que accomplie par un Descartes, un Gauss ou un Galois, mais egalement dans sa plenitude de sens, aussi problematique qu'elle puisse etre : telle est l'ambition d'une histoire phenomenologique. « Nous pouvons dire aussi: l'histoire n'est d'entree de jeu rien d'autre que le mouvement vivant de la solidarite et de l'implication mutuelle de la formation du sens et de la sedimentation du sens originaires. »'4 3. Ontologies formelles et materielles Le projet husserlien ne releve pas seulement de l'analyse des significations ou d'une epistemologie ancree dans la metaphysique occidentale. Ses implications sont concretes et concerneraient aussi bien la pedagogie ou l'ecriture mathematique que l'histoire des sciences. La phenomenologie ne se reduit pas a une theorie de la science et se manifeste par des methodes d'investigation concretes des contenus conceptuels. Hermann Weyl ne s'y est pas trompe, qui a reconnu 1'influence exercee par Husserl jusque sur son style mathematique et, plus generalement, son style de pensee («ce fut Husserl qui, me degageant du positivisme, m'ouvrit l'esprit a une conception plus libre du monde »)15. Pour autant, la realisation des ambitions husserliennes -reconcilier la science et le "monde de la vie", et en particulier « effectuer une reactivation integrate et authentique jusqu'a la pleine originarite, par une recursion vers les archievidences, dans les grands edifices de la geometrie et des sciences dites 14 Origine, p. 203 [380] (la reference a l'edition originate est donnee systematiquement entre crochets, apres la reference a la pagination de la traduction francaise). 15 Cite dans Hermann Weyl (1885-1955), C. Chevalley et A. Weil. L'Enseignement mathematique. Ill, fasc. 3, 1957.
Phenomenologie et Theorie des Categories
407
"deductives" »- passe par l'edification d'une theorie rigoureuse qui permette de concilier vecus intuitifs et pures formes logiques. Pour cela, il faut apprendre a ne pas eradiquer du discours scientifique les residus intuitifs et leur part d'incertitude. C'est aussi la voie a suivre pour edifier sur des fondements universellement valables le projet d'une "axiomatisation" des sciences de la vie, de l'homme et de la nature. Pour mieux en comprendre les enjeux, rappelons ici les conclusions du structuralisme sous sa forme bourbakiste : « en fin de compte, cette intime fusion dont on nous faisait admirer Fharmonieuse necessite [celle des sciences experimentales et des mathematiques] n'apparait plus que comme un contact fortuit de deux disciplines »16 ! L'enormite du propos et sa desuetude ne doivent pas dissimuler une difficulte authentique. Affirmer ainsi que la mafhematisation de la physique est un phenomene "fortuit" est evidemment un tour de passe-passe tout aussi douteux qu'inacceptable. Pour autant, l'idee d'une rigueur apriorique des sciences experimentales est difficile a soutenir. Aussi la phenomenologie, sans renoncer a tenir un discours rationnel sur les sciences experimentales et leurs fondements (y compris mathematiques), ne remet-elle pas en cause leur inaptitude acreerde l'eidos : «Une science eidetique se refuse par principe a incorporer les resultats theoriques des sciences empiriques. Les positions de realite qui s'introduisent dans les constatations immediates de ces sciences se transmettent de proche en proche a toutes les constatations mediates. Des faits ne peuvent resulter que des faits. » Pour autant, « si toute science eidetique est par principe independante de toute science de fait, c'est l'inverse par contre qui est vrai pour les sciences de fait. II n'en est aucune qui, ayant atteint son plein developpement de science, puisse rester pure de toute connaissance eidetique et done independante des sciences eidetiques formelles ou materielles [...] C'est ainsi qu'elle entre en rapport avec le groupe de disciplines qui constituent la « mathesis universalis » formelle'7 ». Pour reprendre un exemple deja evoque, qui fera office de pierre de touche, les methodes mathematiques connues sous le nom de methodes de renormalisation en theorie quantique des champs18 se situent bien, comme toute la physique mathematique, dans ce domaine eidetique intermediate entre le formel et le materiel. Les objets de la theorie, etres purement mathematiques susceptibles d'un traitement symbolique-formel, ont tout de meme une teneur materielle incontoumable des lors qu'ils ont vocation a decrire I'univers phenomenal. Que la theorie de la renormalisation ne soit pas encore vraiment bien comprise a l'heure actuelle ou le fait que ses objets mathematiques, comme les diagrammes de Feynman, correspondent ou non a une "realite" quelconque importe peu ici : il 16
N. Bourbaki, Op. Cit. E. Husserl. Idees directrices pour une phenomenologie. trad. P. Ricoeur. Paris, Gallimard, 1950. p. 33 [18], cite Ideen dans la suite. 18 Voir par exemple C. Itzykson et J.-B. Zuber. Quantum Field theory. Singapour, McGraw-Hill, 1980. 17
408
F. Patras
suffit pour nous qu'ils fassent reference a un mode precis d'idealisation des phenomenes pour ne plus relever seulement de la mathematique, mais egalement de cette science eidetique materielle dont Husserl fait etat dans les Ideen'9. Expliquons-nous plus en detail sur un autre exemple. La physique newtonienne a ete mise en defaut en tant que systeme pr^dictif par la physique einsteinienne et la physique quantique. Pour autant, ce qui se joue au niveau des ontologies materielles et de leurs fondements formels (la theorie mathematique correspondante) dans la transition d'une physique a l'autre n'est pas du seul ressort d'une logique naive (celle de la validation et de la refutation), mais a un moment eidetique irreductible vis a vis duquel une notion comme celle de refutation n'est que tres partiellement pertinente. Aussi convient-il de penser le depassement quantique ou relativiste de la physique newtonienne egalement en termes d'a priori synthetiques materiels (les concepts classiques d'espace, de position, d'energie..., et leur transvaluations au sein des nouvelles theories physiques, quelque problematique que soit par ailleurs leur aprioricite eventuelle). A ce stade, et compte tenu de 1'extreme ambigui'te du concept de science eidetique materielle, l'epistemologue pourrait etre tente de subordonner les ontologies materielles a l'ontologie formelle comme, dans l'epistemologie traditionnelle depuis Aristote, les differentes sciences se subordonnent a la logique generale. Cela reviendrait de fait a restaurer la position dominante de la mathesis universalis dans le pantheon des sciences et a faire par exemple de la composante materielle des concepts de la physique mathematique un simple supplement de sens au regard de leur structure formelle. A cette subordination, qui est aveugle au primat du phenomenal dans la constitution des idealites physiques, geometriques, etc., il conviendra plutot de substituer une juxtaposition des relations de dependance logique et des relations de dependance genetique, qui vont du formel au materiel et temoignent de l'ancrage de toute pensee dans des vecus (spatiotemporels, de significations,...). Concretement, il y va des modes de constitution des objets mathematiques a partir des eidetiques materielles et des eidos correspondants : espace, temps, denombrement, collectivisation... C'est cette dimension-la du savoir qu'il nous faut reapprendre aujourd'hui a legitimer. 4. La genese des objets mathematiques A 1'etendue de la tache, on devine que les voies d'enquete qui s'ouvrent aujourd'hui encore a la phenomenologie sont nombreuses. D'autant que le developpement recent des mathematiques et de la logique mathematique avec, pour cette derniere, 1'emergence de phenomenes lies a des residus incontournables
19 Ce projet d'une science eidetique materielle est intimement lie a la possibility d'un a priori synthetique materiel -extremement problematique. Nous renvoyons pour une etude detaillee du projet husserlien et de ses racines historiques et philosophiques a J. Benoist, Z/a priori conceptuel. Bolzano, Husserl, Schlick. Paris, Vrin, 1999.
Phenomenologie et Theorie des Categories
409
de sens dans les preuves des theoremes fondamentaux , fournissent de nouveaux outils d'analyse. La suite de cet article privilegiera un probleme precis, qui aura fonction d' illustration pour les ressorts et les potentialites de la methode phenomenologique husserlienne dans la construction, aux cotes d'approches plus internalistes21, d'une epistemologie mathematique post-structuraliste. II s'agira de la logique du mode de constitution des idealites mathematiques dans la conscience, logique etant entendu ici au sens d'un ensemble de regies apodictiques structurant un champ d'actes intentionnels et conceptuels. Nous chercherons surtout a montrer que certains phenomenes, par exemple la formation de certaines axiomatiques ouvertes (i.e. de structures mathematiques) peuvent etre reconduits a des phenomenes frequents en theorie des categories (passage a la limite, existence d'objets initiaux, problemes universels, adjoints...). II ne s'agit pas par la de pretendre que la theorie des categories est un nee plus ultra epistemologique, mais c'est sans doute a ce jour la theorie mathematique la plus a meme de permettre la description rigoureuse de certains phenomenes eidetiques, des lors qu'elle codifie et organise au sein d'un symbolisme ces deux notions fondamentales pour la pensee mathematique que sont celles d'objet et de relation . Pour en revenir a la phenomenologie, elle repose, au moins pour le type de questions considerees ici, sur l'idee que les mecanismes de creation eidetiques (en termes plus classiques, grossierement equivalents, que les actes de synthese) sont organises et relevent d'une logique specifique. Des notions comme celles d'horizon ou de variation eidetique permettent de decrire cette organisation. Un des moments cruciaux de cette description est l'edification prealable d'un modele a un niveau ontologiquement pur, e'est-a-dire independamment de toute determination psychologique ou empirique, de la distinction operee classiquement entre la conscience et son objet. Revenons sur l'exemple des diagrammes de Feynman : il s'agit de diagrammes utilises par les physiciens pour etudier formellement les contradictions auxquelles conduisent certains calculs d'integrales en theorie quantique des champs. Les mathematiciens, qui deplorent depuis longtemps les lacunes mathematiques du calcul de Feynman, le concoivent quant a eux selon les normes ontologiques de leur discipline : de maniere formelle. L'epistemologue hesitera sans doute pour sa part sur le statut a donner a ces objets et calculs dont 1'introduction, justifiee par son efficacite, reste assez problematique pour ce qui est de l'elucidation mathematique des techniques de renormalisation. II s'agit done d'objets multiformes, qui relevent a la fois d'un type d'ontologie materielle ", de par leur signification physique, et de l'ontologie formelle (la
G. Longo. Colloque de Cerisy "Mathematiques et psychanalyse", Septembre 1999. C'est a dire relevant du seul domaine mathematique ou d'interactions disciplinaires. 22 Voir aussi notre article Categories et foncteurs. Dictionnaire d'histoire et philosophie des sciences. Ed. D. Lecourt. Paris, P.U.F., 1999. 23 Celle des particules elementaires. 21
410
F. Patras
mathesis universalis) de par leur existence mathematique (par exemple lorsqu'on les considere comme des graphes independamment de toute autre interpretation). Si Ton se place maintenant du point de vue des structures de la conscience pure, le premier facteur a prendre en compte dans 1'etude d'objets comme les diagrammes de Feynman est leur existence comme objets "dans la conscience". D'une certaine facon la conscience preexiste toujours a son objet et une theorie de la science doit rendre compte de cette anteriorite. En fait, en regie generale, « ce qui informe la matiere pour en faire un vecu intentionnel, ce qui introduit l'element specifique de l'intentionnalite, c'est cela meme qui donne a l'expression de conscience son sens specifique et fait que la conscience precisement indique ipso facto quelque chose dont elle est la conscience24 ». Le terme husserlien de moment noetique ou de noese designe ce moment et cette structuration de la conscience. Sa prise en compte dans les debats sur le statut ontologique d'objets comme les diagrammes de Feynman, en restaurant la dimension intentionnelle du savoir, devrait permettre de renouveler des problematiques par trop exclusivement centrees sur la coherence mathematique du formalisme. Pour ce qui est du savoir mathematique lui-meme, les moments noetiques purs, a supposer qu'ils puissent etre isoles dans l'analyse, sont les moments decisifs. Les moments de la conscience pure : regard porte sur l'objet, variation ideale de ses caracteristiques (comme lorsqu'en topologie on deforme continument une surface), intuition d'une analogie de structure (comme l'analogie celebre entre corps de fonctions et corps de nombres); tous ces moments, en tant qu'ils sont susceptibles de descriptions "rationnelles" doivent etre abordes par l'epistemologue au travers d'analyses noetiques25. Plus radicalement, c'est l'analyse noetique qui permet de comprendre les regies de formation d'idealites : « Les problemes les plus vastes de tous sont les problemes fonctionnels portant sur la « constitution des objectivites de conscience ». lis concernent la facon dont les noeses, par exemple dans le cas de la nature, en animant la matiere et en se combinant en systemes continus et en syntheses unificatrices du divers, instituent la conscience de quelque chose »
u
Ideen,p. 174 [291] Husserl aborde le theme des variations de structure des espaces topologiques dans les Recherches logiques (trad. H. Elie, A. Kelkel, R. Scherer, Paris, Presses Universitaires de France, 1969): « C'est en 6tudiant le mode selon lequel on passe d'un genre de multiplicity spatiale a un autre par variation du degre de courbure que le philosophe ayant appris les rudiments de la theorie de RiemannHelmholtz peut se faire une certaine idee de la maniere dont les formes pures de theories, de type nettement distinctes, sont reliees entre elles par le lien d'une loi ». On trouvera une £tude des rapports entre le concept topologique de variete et la perception spatiale, ainsi qu'une reflexion critique sur la portee de la phenomenologie descriptive dans L. Boi, Questions regarding husserlian geometry and phenomenology. A study of the concept of manifold and spatial perception. Publication n. 191 du CAMS, Paris, EHESS, Avril 2000. 25
Phenomenologie et Theorie des Categories
411
«Le point de vue de la fonction est le point de vue central de la phenomenologie [...] Au lieu de se borner a l'analyse et a la comparaison, a la description et a la classification attachees aux vecus pris isolement, on considere les vecus isoles du point de vue «teleologique » de leur fonction, qui est de rendre possible une « unite synthetique ». On considere des divers de conscience qui sont pour ainsi dire presents par essence dans les vecus eux-memes, dans leur donation de sens, dans leurs noeses en general, et qui sont pour ainsi dire prets a en etre extraits.26 » Un certain idealisme, souvent qualifie abusivement de platonisme, est frequent chez les mathematiciens et s'exprime selon des termes vaguement analogues : il y a une necessite a l'agir mathematique ; la decouverte mathematique est la vision d'essences, etc. L'analyse eidetique revele des structures prescrites et ontologiquement pures de la conscience et releve d'un idealisme transcendantal, mais il faut bien entendu se garder de lui donner un tel contenu naif. 5. Categorisation et synthese Si le programme de la phenomenologie husserlienne est clair, sa realisation achoppe a de nombreuses difficultes. Par nature, les lois pures de la pensee sont delicates a apprehender en dehors d'un contexte analytique, et il y va chez Husserl de quelque chose comme le synthetique a priori kantien sous des formes renouvelees par les techniques intentionnelles post-brentaniennes27 et, plus radicalement, par le projet meme de la phenomenologie tel qu'il est expose dans les Ideen. Notre these sera ici que les developpements mathematiques amorces dans les annees 50 (mais dont la cristallisation en termes de fondements methodologiques et 1'acceptation par la communaute scientifique est plus recente28) permettent de donner corps au projet husserlien, au moins pour ce qui a trait aux origines du savoir. Un exemple fondamental est celui des operations de la logique elementaire et de la logique des quantificateurs. L'algebre de la logique a la Boole est un modele tres interessant mais, comme Frege le remarquait deja, il manque a une telle approche de la logique une justification a priori des lors qu'elle a vocation a s'appliquer a des contenus et des jugements effectifs, et pas exclusivement a des objets mathematiques. Si algebrisation des regies de pensee il doit y avoir, elle doit etre etayee par une etude des structures de la conscience pure, sans quoi 1'algebrisation operera une disjonction de fait entre les formes symboliques et l'activite de jugement ordinaire.
26
Ideen. p. 294 [176], Nous renvoyons a l'ouvrage de J. Benoist, ou ces questions sont traitees systematiquement: Phenomenologie, semantique, ontologie. Husserl et la tradition logique autrichienne. Paris, P.U.F., 1997. 28 La theorie des categories est encore aujourd'hui a peu pres absente des cursus mathematiques universitaires, ce qui est tout aussi aberrant que la tres faible presence de la logique. 27
412
F. Patras
L'approche categorielle , due pour l'essentiel a Lawvere indique que la logique des connecteurs propositionnels ou des quantificateurs est fondee sur des processus universels qui ne sont pas specifiques a la logique et apparaissent egalement en geometrie, en topologie ou en algebre, pourvu que les fondements de ces theories et leurs methodes soient decrits en termes categoriels. Ces resultats suggerent qu'il existe en amont de la mathematique formelle ou de la logique mathematisee un arriere-fond de regies aprioriques de la pensee qui transcendent les compartimentations sectorielles usuelles. C'est d'ailleurs la these defendue par Lawvere, qui voit dans des techniques de theorie des categories comme Fadjonction'1 1'archetype de constructions universelles susceptibles de rendre compte de distinctions comme : etre et devenir, qualitatif et quantitatif.. .32. L'exemple de la construction categorielle de l'operateur logique "et" (&) est eclairant car elle indique le cheminement de 1'esprit dans la creation des connecteurs propositionnels. En d'autres termes, cette construction ne se contente pas de justifier ou de decrire, a l'instar d'une modelisation d'essence calculatoire ou axiomatique : elle designe au travers de processus mathematiques des structures pures de la pensee et/ou de la conscience. Nous verrons plus avant que ces processus sont assez proches de ceux qui legiferent la constitution des objets transcendantaux dans les philosophies kantiennes et husserliennes. Pour en revenir a l'operateur &, sa regie de formation est la suivante. Supposons fixe un univers de pensee (une categorie) structure en propositions (objets) et regies d'inference (relations satisfaisant les regies usuelles Nous passons volontairement sous silence les definitions precises d'une categorie ou des concepts fondamentaux de la theorie (foncteurs, adjoints...), en nous contentant d'indications sur la signification des objets considered, et de renvois a des articles ou traites pour des precisions. II y faudrait trop de developpements pour que I'insertion d'arguments techniques precis ajoute a l'intelligibilite de cet article pour un lecteur n'etant pas au fait de la theorie. Nous l'encourageons done a consulter des manuels introductifs comme le Categories for the working mathematician de S. MacLane, Berlin, New York, 1971. Pour fixer les idees, la donnee d'une categorie est la donnee d'une collection d'objets et de transformations (dites aussi morphismes ou relations) entre ces objets. Ces demieres doivent satisfaire des conditions naturelles : la composed de deux transformations est une transformation, la composition est associative... Les groupes, les espaces vectoriels, les ensembles finis, mais egalement les espaces topologiques forment des categories. 30 Voir S. MacLane et 1. Moerdijk. Sheaves in geometry and logic. New York, Springer, 1992. 31 On peut passer d'une categorie A donnee a une autre categorie B par un procede analogue aux applications ensemblistes : il faut associer a tout objet et toute relation de A un objet et une relation de B de maniere a preserver les regies de composition des relations. Les transformations correspondantes portent le nom de foncteurs. II y a adjonction entre deux categories lorsqu'elles sont reliees entre elles par deux foncteurs en sens inverse l'un de l'autre, satisfaisant en outre une condition d'isomorphisme. En pratique, la donnee d'une adjonction entre deux categories implique l'existence de relations profondes entre elles et entre les foncteurs correspondants. De nombreuses notions elementaires, comme les proprietes des bases d'un espace vectoriel ou des generateurs d'une algebre de polynomes se reformulent elegamment en termes d'adjonction. Nous allons voir que c'est egalement le cas de certaines notions logiques. 32 F.W. Lawvere. Categories of space and of quantity. Philosophical, epistemological and historical explorations, Ed. J. Echeverria, Berlin, Walter de Gruyter, 1992.
Phenomenologie et Theorie des Categories
413
d'associativite), notees <. Etant donnees deux propositions B et C, il s'agit de construire la proposition B & C. A priori il n'est pas clair que B & C existe : il y faut des conditions sur I'univers de pensee33. En tous les cas, si la proposition B&C existe, elle doit necessairement satisfaire a la condition : pour tout A, si A < B et A < C, alors A < B & C, B & C < B et B & C < C. En fait, B & C doit etre "universel" parmi toutes les propositions satisfaisant a ces conditions. Toute proposition D verifiant (pour tout A) les conditions imposees a la proposition B&C est equivalente a B&C, au sens ou on a simultanement : D < B & C e t B & C < D . Cette construction de l'operateur & serait simplement anecdotique si elle n'etait le prototype d'un mode de construction valant pour tous les connecteurs propositionnels et pour les quantificateurs. En termes categoriels, elle s'enonce: l'operateur & est un produit (un adjoint a droite au foncteur diagonal). A son tour, l'adjoint a droite de l'operation &C est l'implication "C => ...", etc.35 Le noyau de ces arguments est la notion categorielle de limite -limite sur des families d'objets et de relations dans des univers de pensee structures comme des categories. La limite d'une famille d'objets et de relations entre ces objets est un objet qui, intuitivement, approxime au mieux et de fa9on coherente ces donnees. Ainsi, la proposition qui approxime le mieux la donnee simultanee de B et C n'est autre que la proposition B & C ! Le champ d'application de la notion de limite ne se restreint evidemment pas a la logique : dans un ensemble strictement ordonne la notion de limite coi'ncidera ainsi avec celle de borne superieure. Elle a une signification generate, qui excede le domaine des mathematiques et de logique formelle : les classifications d'origine aristotelicienne en genres et especes precedent du meme principe - trouver un denominateur commun minimal a des donnees tout a la fois diverses et organisees (comme dans les classifications botaniques ou zoologiques). Elle intervient done tout a fait legitimement dans un contexte d'ontologies materielles, dont elle contribue a 1'organisation theorique. Le formalisme des limites n'y a peut-etre pas d'emblee la validite inconditionnelle que la theorie lui confere en mathematiques, mais cela ne porte pas atteinte a la valeur intrinseque de la methode, pas plus que les ambigui'tes de l'utilisation du syllogisme dans un contexte materiel n'en inferent la valeur analytique. Un exemple simple (dans l'esprit de ce que les physiciens appellent un "toy model", essentiellement a valeur d'illustration) permettra de cerner les enjeux du concept de limite dans un contexte de vecus et de phenomenes de pensee et du langage ordinaires. Considerons I'univers (structure comme une categorie) des classes d'etres vivants avec pour relations les relations de subordination entre Techniquement, l'existence de produits finis dans la categorie. On notera que l'operateur "et" a ici une fonction externe. II coordonne deux relations d'inference, contrairement a l'operateur & que Ton cherche a construire, et qui est une operation interne. On pourra consulter pour des arguments precis l'article: S. MacLane, Categories in geometry, algebra and logic. Math. Japonica. 42, (1995), 169-178 ou S. MacLane et I. Moerdijk, Sheaves in geometry and logic. Springer, New-York, 1992. 34
414
F. Patras
classes. La relation "avoir des ailes, des plumes, deux pattes et pondre des ceufs" definit une classe d'etres, les oiseaux36, qui est la "limite" (en l'occurrence 1'intersection) des classes definies par les relations : "avoir des ailes", "avoir des plumes", etc. Le terme de limite exprime ici le fait de considerer la plus grande classe d'etres pour lesquels la relation est satisfaite. Repetons-le encore : il s'agit la d'un toy model. La pensee ordinaire ne procede d'ailleurs pas par des calculs de classes mais plutot par un calcul de "concepts" au sens fregeen37 (un concept au sens fregeen est un critere de decision permettant de dire si tel objet donne tombe ou non "sous le concept" : lorsqu'il nous faut decider si tel animal est un oiseau ou un reptile, nous examinons s'il a des plumes, deux pattes..., et certainement pas s'il appartient a une hypothetique classe des oiseaux !). Au demeurant, la notion de limite continue de faire sens dans un contexte fregeen, ainsi que notre analyse du concept d'oiseau. Cet exemple, pour rudimentaire qu'en soit le traitement qui en a ete donne, illustre bien les deux usages epistemologiques possibles du concept de limite, ainsi d'ailleurs que les difficultes qu'il y a a le mettre en ceuvre (faut-il privilegier un calcul de classes ou un « calcul de concepts » plus en adequation avec nos modes de pensee effectifs, mais beaucoup plus problematique?). II a une fonction descriptive (decrire les subordinations conceptuelles et en rendre compte a posteriori), mais egalement une fonction constitutive (le concept d'oiseau ne preexiste pas a sa creation ; il est par essence un concept limite edifie, comme tous les concepts materiels, sur le terreau d'experiences sensibles et de classifications successives). Retenons simplement que la logique generate traditionnelle, qui codifie les processus d'abstraction conceptuelle a partir des donnees sensibles en termes d'actes synthetiques pourrait, pour une bonne part, etre ainsi reinterpretee en termes categoriels, l'idee de construction de limites venant se substituer a celle de synthese ou, plus exactement, la modeliser. La portee de ces remarques est evidente. Elles indiquent un terrain epistemologique nouveau sur lequel fonder et legitimer le synthetique a priori, y compris sous ses formes materielles. Le vieux reve kantien d'une application en philosophie des constructions mathematiques reprend ainsi corps38. Accessoirement, une telle legitimation implique une devaluation de l'ideal de scientificite cartesien, a savoir « que la science universelle ait la forme d'un systeme deductif, systeme dont tout 1'edifice reposerait ordine geometrico sur un fondement axiomatique servant de base absolue a la deduction » 9. La synthese
Des lors que nous nous inteiessons ici au langage ordinaire, c'est volontairement que nous preferons une definition approximative et naive du concept d'oiseau a une definition plus scientifique comme « vertebre couvert de plumes, aux membres anterieurs transformed en ailes, etc. ». 37 G. Frege. Grundlagen der Arithmetik, Breslau, 1884. E. Kant. £55131 pour introduire en philosophie le concept de grandeur negative. Trad. R. Kempf. Paris, Vrin, 1991. 39 E. Husserl, Meditations cartesiennes, trad. G. Peiffer et E. Levinas, Paris, Vrin, 1947, p. 26 [6]. Citees Les Meditations dans la suite de l'article.
Phenomenologie et Theorie des Categories
415
doit reconquerir ses droits aux cotes de ce systeme deductif. En outre, tout comme pour les deductions analytiques, la validite des actes synthetiques doit etre reconduite et subordonnee aux lois pures de la pensee, qui leur conferent un mode specifique de scientificite. 6. Noeses et noemes Par categorisation, nous entendrons desormais la mise en evidence de structures typiques de la pensee et de lois de regulation pour ces structures typiques (comme les constructions de limites) et ce aux differents niveaux possibles de purete eidetique, de la conceptualisation de I'experience sensible aux formes pures de la pensee. Les types de categorisation esquissees au paragraphe precedent ne pretendent pas etre plus que l'indication de modalites nouvelles de developpement de la phenomenologie husserlienne. Pour autant, meme a titre de simples esquisses, ils permettent de degager des problemes specifiques aussi bien que de nouveaux modes d'entente de problemes classiques en phenomenologie. Dans un univers de pensee suffisamment riche (semantiquement, historiquement, syntaxiquement...), l'existence de "limites" est portee par le langage constitue. Ainsi, dans l'utilisation ordinaire de la logique elementaire, nous raisonnons avec les differents operateurs & (et),-i (non),V (pour tout), 3 (il existe)... sans nous inquieter de leur provenance ou de leur mode de formation. II nous suffit qu'ils existent et nous soient disponibles. De meme, les concepts du langage ordinaire "vont de soi", encore que cet "aller de soi" soit beaucoup plus problematique qu'il n'y parait. Pourtant, des que Ton questionne en deca des evidences du langage ordinaire ou lorsqu'il s'agit d'enseigner des notions originales et dedicates, la question se pose du mode de formation de concepts nouveaux ou, plus simplement, de la justification de procedures conceptuelles dont la validite quotidienne se fonde sur 1'habitude plutot que sur des justifications aprioriques. Le formalisme categoriel, qui permet de degager des regies de formation d'objets comme les limites mathematiques (theoremes d'existence...), permet aussi de clarifier certaines conditions d'existence ou de formation d'objets en dehors des mathematiques. Toutefois, des lors que Ton cherche a etendre la categorisation a l'ensemble des structures de pensee, il faut au prealable bien s'entendre sur des concepts comme celui d'objet ou de relation. Nous sommes passes outre ces problemes dans un premier temps, en admettant que divers "univers de pensee" non mathematiques puissent etre structures comme des categories. II nous faut maintenant traiter du statut phenomenologique de l'objet dans une perspective categorielle. Si 1'intentionnalite est le fait premier pour la phenomenologie et la condition de possibility meme d'une activite de la conscience, son correlat theorique, la noese, herite de cette priorite. Aucun objet n'existe pour nous en dehors de la conscience que nous en avons. L'objet est, par necessite, «dans chaque moment de conscience, 1'index d'une intentionnalite noetique lui appartenant de par son sens, intentionnalite qu'on peut rechercher, et qui peut etre explicitee ». De ce fait, de
416
F. Patras
meme qu'aux vecus intentionnels sont associes des moments noetiques, des moments noematiques ou noemes sont associes aux visees correspondantes, c'est a dire encore aux objets intentionnels40. L'objet au sens de la phenomenologie, et en particulier l'objet mathematique, n'a done pas l'immediatete que lui procure l'imagerie "platonicienne" traditionnelle et son recours a la transcendance. En particulier, aucun objet n'est concevable sans un horizon de sens, ce sens fut-il purement formel, comme avec les productions des systemes axiomatiques. L'objet mathematique est toujours insere dans les horizons de la conscience du mathematicien ; c'est ce qui rend, de fait, la creation possible. Si l'imagination etait bridee par le carcan des structures mathematiques deja constituees, la science mathematique serait indefiniment condamnee a se repeter et a n'ameliorer qu'a la marge ses contenus. En d'autres termes, c'est dans la correlation cogito-cogitatum que prend racine la pensee mathematique. L'insistance portee historiquement sur le cogitatum, a savoir sur les descriptions objectives et le corpus des mathematiques constituees, a occulte les potentialites de recherches plus originaires -la possibilite meme d'une science du sens et des lois d'essence des objets mathematiques. La theorie des categories intervient de maniere subtile dans ce debat, des lors que la structure interne des categories reflete en partie la dichotomie noeme/noese. Ainsi, la construction des connecteurs propositionnels effectuee au paragraphe 5 a une teneur noetico-noematique qu'il est possible d'expliciter. Dans ce cas, les objets sont les propositions, e'est-a-dire les correlats noematiques de visees intentionnelles d'un type particulier (assertorique). Les relations, qui sont des relations d'inference, sont, bien entendu, susceptibles d'etre egalement obtenues comme correlats noematiques de visees intentionnelles d'un autre type (deductif), mais 1'articulation de ces relations entre elles, la possibilite de les faire varier a 1'interieur d'un horizon (l'horizon de variation de la proposition A et des inferences correspondantes au paragraphe 5): tout cela renvoie aux structures noetiques de la conscience. Bien entendu, ces considerations categorielles sont loin d'epuiser la signification de la dualite noetico/noematique, mais elles donnent tout de meme de bonnes indications sur ce qu'il faut attendre, dans les textes husserliens, de notions comme celles d'horizon ou de variation eidetiques, qui ont une composante dynamique et supposent que soient inscrites dans la structure meme des objets (du monde, de l'esprit...) des lois de variation ideales. 7. Le sujet transcendantal Pour que ces interactions entre theorie des categories et phenomenologie ne demeurent pas entierement allusives et programmatiques, cet article se conclura par une analyse precise. II s'agira de (commencer a) reecrire la theorie de la
Ideen, p. 305 [182],
Phenomenologie et Theorie des Categories
417
subjectivite transcendantale41 dans une perspective categorielle . Le sujet, correlat indispensable de ces objets que nous souhaitons penser en termes de categories, est la donnee premiere de la phenomenologie, heritiere en cela du cogito cartesien. L'ego cogito n'est-il pas un « domaine ultime et apodictiquement certain sur lequel doit etre fondee toute philosophic radicale ? 43». Pour autant, si le sujet est phenomenologiquement premier, cela ne signifie pas que son concept aille de soi. Que signifie, typiquement, que le sujet puisse etre transcendantal ? Jusqu'ou est-il done possible d'argumenter au-dela de l'evidence cartesienne de l'ego pour essayer de fonder la subjectivite ? II n'est pas inutile d'en revenir a la premiere formulation de la subjectivite transcendantale dans la Dialectique transcendantale kantienne. N'est-il pas remarquable que cette formulation soit d'emblee presque mathematique ? « Comme fondement [d'une psychologie transcendantale], nous ne pouvons rien donner d'autre que cette simple representation, vide par elle-meme de tout contenu, moi, dont on ne peut meme pas dire qu'elle soit un concept, mais qui est une simple conscience accompagnant tous les concepts. Par ce « moi», par cet « il », ou par cette « chose qui pense », on ne se represente rien de plus qu'un sujet transcendantal des pensees = X. Et ce sujet ne peut etre connu que par les pensees, qui sont ses predicats: isolement, nous ne pouvons en avoir le moindre 44
concept .» Et Kant d'ajouter, « II doit d'abord sembler etrange que ce qui conditionne ma pensee en general, et qui n'est par consequent qu'une qualite de mon sujet, s'applique en meme temps a tout ce qui pense, et que nous puissions pretendre fonder sur une proposition qui parait empirique un jugement apodictique et universel tel que celui-ci: tout ce qui pense est constitue comme la conscience declare que je le suis moi-meme. La raison en est que nous attribuons necessairement a priori aux choses toutes les proprietes constituant les conditions qui seules nous permettent de les concevoir ». La pensee kantienne est tres explicite. II y a au fondement de l'idee de sujet et, a fortiori, de la subjectivite transcendantale, l'experience qui est la mienne et celle de ma pensee, dans toute sa specificite et sa particularite. Elle ne peut pretendre a l'universel que des lors que les structures qu'elle detecte dans les modalites de son fonctionnement sont apodictiques. Et e'est bien ce que signifie la mise en equation : sujet transcendantal des pensees = X. L'edification des concepts Telle que nous la considerons, la theorie de la subjectivite transcendantale est kantienne plutot qu'husserlienne. Cela dit, on sait la dette de la phenomenologie a l'egard de la pensee critique, particulierement evidente pour ce qui est de la subjectivite transcendantale. Aussi nos remarques s'appliqueraient-elles telles quelles a I'egologie transcendantale husserlienne et a ses diverses variantes phenomenologiques. 42 Nous suivons les descriptions du sujet transcendantal donnees par J. Benoist dans Autour de Husserl. L'ego et la raison. Paris, Vrin, 1994 et dans Kant et les limites de la synthese. Paris, Vrin, 1996. 43 Meditations p. 42 [16]. 44 E. Kant. Critique de la raison pure. Ximt ed. p. 341 [264]. Trad. J. Barni, Paris, Flammarion, 1976.
418
F. Patras
transcendantaux, a commencer par celui de sujet, precede d'une algebre generalisee ou les concepts transcendantaux apparaissent d'abord comme les indeterminees du systeme, construits par un precede de renvois successifs. La subjectivite transcendantale est "cela" a quoi renvoient le "moi", la "chose qui pense", le "il", et tous les concepts de meme nature. C'est ce que signifie que « le sujet ne puisse etre connu que par les pensees, qui sont ses predicats : isolement, nous ne pouvons en avoir le moindre concept». Cela parce que la subjectivite transcendantale, malgre son apodicticite, n'a pas de sens en dehors du systeme de renvois qui vient d'etre evoque, et qui la constitue. De la meme fa§on, nous n'avons jamais de concept propre ou d'intuition propre de l'infini, sinon au travers de processus limites ou d'images geometriques. Au fond, la subjectivite transcendantale n'est-elle peut-etre rien d'autre que l'expression de la necessite du renvoi de toute pensee a une « chose qui pense ». Comment approximer la mise en equation « sujet transcendantal = X » par le langage des categories ? Considerons l'ensemble des objets pensables, c'est a dire le « monde » (constitue au travers des differents modes de variations concretes et ideales de la pensee). En font partie aussi bien les representations associees a des vecus concrets (cette table, cette chaise...) que les representations conceptuelles (la justice, la beaute, le nombre...), imaginaires (le centaure), les representations de mots, etc. A quoi il convient d'ajouter pour chacune de ces representations les variations possibles de ses modes d'existence (presence immediate, souvenir, possibility, anticipation...). A chaque objet primaire ainsi considere est associe une representation (et un objet) secondaire, aux contours plus ou moins bien definis, qui est celle de la conscience accompagnant la representation de l'objet primaire. Dans la plupart des cas cet objet secondaire est le moi vivant concret (je pense, je vois, concois cette table, cet homme, ce jugement), mais il peut arriver que l'objet primaire renvoie, dans sa constitution meme, a d'autres consciences que la mienne. Des propositions comme « Pierre doit me presenter a Paul » ou « un athee ne croit pas a l'existence des Dieux » font etat de tels renvois. Dans l'ensemble des objets du monde, je peux done isoler ceux qui apparaissent comme le support d'une activite de conscience : le moi actuel, passe ou futur, Pierre, les athees, l'humanite, etc. Ce sont les objets A qui sont en relation avec d'autres objets B sur le mode de la conscience (A a conscience de B). Lorsque je fais prendre virtuellement a A et B toutes les valeurs possibles selon un precede ideal il me reste le schema formel « X a conscience de Y », qui est l'archetype de toutes les occurrences possibles de jugements « A a conscience de B ». Cet X et cet Y ideaux, auxquels tous les A et B intervenant dans de tels jugements seront lies par un rapport de substitution des variables dans le schema formel « X a conscience de Y », ne sont rien d'autre que le sujet transcendantal et son correlat inevitable : « l'objet non-empirique, c'est a dire transcendantal = Y » kantien. En d'autres termes, la proposition "X a conscience de Y" (c'est a dire, le sujet transcendantal a conscience de l'objet transcendantal) est la limite sur tous les objets et les relations possibles (l'objet initial dans le langage des categories) d'une
Phenomenologie et Theorie des Categories
419
categorie dont les objets sont les propositions "A a conscience de B", les relations etant des relations de dependance conceptuelle et d'inference dont le prototype serait la specialisation de "X a conscience de Y" en "A a conscience de B". Les autres relations peuvent etre construites sur le modele de la specialisation de propositions comme "nous aimons la liberte et la fraternite" en "j'aime la liberte" ou "nous aimons la fraternite"45. Bien entendu, il est loisible de douter de la pertinence, et surtout de l'utilite de telles considerations. Au-dela de convictions propres aux mathematiciens ayant pu observer la portee hermeneutique du langage des categories, nous pouvons attirer 1'attention sur le fait que les analyses precedentes mettent en relief un non-dit essentiel des analyses kantiennes (et post-kantiennes) de la subjectivite et l'objectivite transcendantale. En effet, il n'est pas de sujet ni d'objet transcendantal concevable sans le "a conscience" qui unit le X et le Y dans "X a conscience de Y". En d'autres termes, il doit exister quelque chose comme un mode de conscience transcendantal reliant le sujet transcendantal = X a l'objet transcendantal = Y pour valider la construction kantienne ! A la lumiere de la construction categoriale du sujet et de l'objet transcendantal, il faut done introduire un problematique "mouvement de pensee transcendantal" de l'un a l'autre, qu'il convient d'interpreter comme l'ouverture necessaire de tout sujet a ce qui l'excede. Le sujet est transi d'exteriorite : « Ce qui constitue le sujet, comme objet singulier, en tant qu'il y va du rapport a l'objet en general, e'est la relation a ce qui n'est pas lui. Le sujet est deja toujours « dehors » »46. Le formalisme categoriel met ainsi en evidence les ressorts et racines d'arguments philosophiques delicats et longtemps debattus, en 1'occurrence les regies de constitution de la subjectivite transcendantale. Sa portee philosophique, des lors que ses conclusions rejoignent et etayent celles de travaux philosophiques recents, nous semble done aller de soi. Plus generalement, les avancees conceptuelles et techniques des dernieres decennies ont permis aux mathematiciens d'acquerir une maitrise nouvelle sur les structures de certaines de leurs intuitions (toutes celles qui ont trait a l'idee de structure mathematique, de theorie algebrique, de variation ou de transitions entre champs theoriques...). Cette maitrise peut et doit se refleter sur notre conception de l'activite mathematique, du terrain sur lequel elle se deploie, mais egalement de questions plus radicales : signification et portee de la mathesis universalis de tradition leibnizienne, conditions de possibilite et limitations intrinseques d'une axiomatisation des sciences de la nature, etc. Autant dire que la « mathematique philosophique » n'a pas dit son dernier mot !
Le choix d'autres types de relations, plus complexes, serait envisageable. J. Benoist. Autour de Husserl. Op. cit. Chap. III.
G e o m e t r i e s of N a t u r e , Living S y s t e m s and Human Cognition The collection of papers forming this volume is intended
N e w I n t e r a c t i o n s Of
to provide a deeper study of some mathematical and
Mathematics with
physical subjects which are at the core of recent
Natural Sciences and Humanities
developments in the natural and living sciences. The book explores some far-reaching interfaces where mathematics, theoretical physics, and natural sciences seem to interact profoundly. The main goal is to show that an accomplished movement of geometrisation has enabled the discovery of a great variety of amazing structures and behaviors in physical reality and in living matter. The diverse group of expert mathematicians, physicists and natural scientists present numerous new results and original ideas, methods and techniques. Both academic and i n t e r d i s c i p l i n a r y , the book investigates a number of important connections between mathematics, theoretical physics and natural sciences including biology. The cover photograph is taken from the < ollection, lorge Eiebon (Niccoli, Italy), Nodo (Knot), 1996. (Courtesy: lorge Eduardo Eielson)
World Scientific
ISBN 981-256-474-E
www.worldscientific.com 5929 he
9 "789812 564740"