DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN
HANDBOOK OF
GRAPH THEORY EDITED BY
JONATHAN L. GROSS JAY YELLEN
CRC PR E S S Boca Raton London New York Washington, D.C.
© 2004 CRC Press LLC
DISCRETE MATHEMATICS and ITS APPLICATIONS Series Editor
Kenneth H. Rosen, Ph.D. AT&T Laboratories Middletown, New Jersey
Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs Charalambos A. Charalambides, Enumerative Combinatorics Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses, Constructions, and Existence Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications Jonathan L. Gross and Jay Yellen, Handbook of Graph Theory Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory and Data Compression Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability: Experiments with a Symbolic Algebra Environment David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and Nonorientable Surfaces Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon, Abstract Algebra Applications with Maple Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science and Engineering Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration and Search Charles C. Lindner and Christopher A. Rodgers, Design Theory Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography Richard A. Mollin, Algebraic Number Theory Richard A. Mollin, Fundamental Number Theory with Applications Richard A. Mollin, An Introduction to Crytography Richard A. Mollin, Quadratics
© 2004 CRC Press LLC
Continued Titles Richard A. Mollin, RSA and Public-Key Cryptography Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary Approach Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and Coding Design Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography
© 2004 CRC Press LLC
8522 disclaimer.fm Page 1 Tuesday, November 4, 2003 12:31 PM
Library of Congress Cataloging-in-Publication Data Handbook of graph theory / editors-in-chief, Jonathan L. Gross, Jay Yellen. p. cm. — (Discrete mathematics and its applications) Includes bibliographical references and index. ISBN 1-58488-090-2 (alk. paper) 1. Graph theory—Handbooks, manuals, etc. I. Gross, Jonathan L. II. Yellen, Jay. QA166.H36 2003 511'.5—dc22
2003065270
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microÞlming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of speciÞc clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 1-58488-090-2/04/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. SpeciÞc permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identiÞcation and explanation, without intent to infringe.
Visit the CRC Press Web site at www.crcpress.com © 2004 CRC Press LLC No claim to original U.S. Government works International Standard Book Number 1-58488-090-2 Library of Congress Card Number 2003065270 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper
© 2004 CRC Press LLC
PREFACE
! " "
# $
% & Format
' (
) $ * ( ) + (
" $ ,- + . /
! ) ( . 0 '
) ' !
1 ( " Terminology and Notations
2 3 4 . ) ( 5
0 ( 6 ' 7 ' ) 8 / 7 " ) ) *
© 2004 CRC Press LLC
' 2(
9 ( ) : Æ 6 7 * ( ;
6 ) 2 ) . Feedback
" (
(
Acknowledgements
+ ( ( 5 <
( 8 = 1 <. >
! + ( ( = . ? 2 ? ;
© 2004 CRC Press LLC
? ( 0 ? ? 0
? ( 5 "
© 2004 CRC Press LLC
About the Editors ? 2 < : 8 0 < /
'5= < /
Æ 9 9 /
/ < 2 5
@ '5= " 8 : 2 " 0 2 8
A 9( ( 9 " : 8 ( ? ;
" + " ( 0
( ( < : < 2 = > < : 8 ( ='" <> B >
? ;
0 < =
8 5 = = < : 9 ;( ( ! : > ;
0
: 9 ;( / / ' " , 8
1 : 2 ' " : ' ( ? @ 2 '5= < ! " 8 ( 9
/ 9 ;( ' 0 C 6 <
> ;
! 8 $
© 2004 CRC Press LLC
CONTRIBUTORS 0 A 0
/
5 0
' /
> 0
= 0 /
@
+ 5(
@ /
#
# ! $ # ! % & # ' (
5D 5
D
# ! $ $ #)
# ! # ! - %1$ # ! $ / 5 #
8 /
# ! %$
5 5
0 /$
5
8 9 2
1 5 (
= ( 2
2
? 2
?
? @ 2
# ! # ! ' # ! *$ #) ( # + , # >
# ! -. /01$
#
# ! & 3 # #
2 2
$ # ! . $ #)
0 E >
" + 8
>* +
= 0 8
# ! ($ 32 &4 '2 2 . $ /0
= >
# ! $
? /F
# ! $ /
© 2004 CRC Press LLC
3 / # # ! *$ / !
2
/ '
# ! - %1$
? E
# ! / $
? @
# ! $
#
2
@
< E (
5 =
"
/ ==
E %E"& "
# ! &$ / !
< ( =
# ! &
! (
5 # # ! 9
0 "
!
9
0 " (
A 9(
" + " (
? )
H " $
6 * # $ 7 # ! . / #
2 < (
!
" G$ < (
# ! .8 8$ /
= <
% #
<G$ <G(
# ! .8 8$ /
E 5
! / # /
>
#
> @
!
© 2004 CRC Press LLC
/ # ! * 6 / 5 #
! / # ! % 02$
0 A
# ! '
= ( 1 + (
/ #
0 " +
( #
? +
9 # $ #)
9 +
# ! ($
? ;
< H
( #
CONTENTS Preface 1.
INTRODUCTION to GRAPHS
1
2.
! " # & & " # ' &( & ! )& * " & +&& & "# $
56 $%
126 ' $ %
CONNECTIVITY and TRAVERSABILITY ' ' ' '' ' '$ '
© 2004 CRC Press LLC
DIRECTED GRAPHS
4.
GRAPH REPRESENTATION
3.
& ( , " - & # %& % . ' % ( " " # )/ -0& $ ) ( - " # & & ( # %& %
193 ' ' $
5.
COLORINGS and RELATED TOPICS ' $
6.
$ $ $' $ $$
$ % ' ' '' '
+ -
#( . $ "(, 2& -& $ 0$ 1 , -& ( ) * * , 23
484 '% $ '
TOPOLOGICAL GRAPH THEORY ' $ %
© 2004 CRC Press LLC
'
ALGEBRAIC GRAPH THEORY $
7.
* + & * + ! - 0 & & 1 ( ,, " & ( + & # -, ),. / $
340
- & ,4+ ,4+ 4( * *3 !# #
2
, ( * ( ( ) (( " 5,
610 $ $ $' $$ $%' $$ $
8.
ANALYTIC GRAPH THEORY %
.3 6 6 , 5 ! % 5( , % # % %' " ## & * % +
9.
%% % % %$ %
%$GRAPHICAL MEASUREMENT
& * ' ( ' & % (
' )4 ,
10.
787
872 % %% '
GRAPHS in COMPUTER SCIENCE
952
-& ' 5 & + % , ), ( 7 %(( ## % 7 4 ## ,
' + &( & '$ ! $
11.
NETWORKS and FLOWS
*3 4 / " * 4 % ( * & + ) " ' & 5 4 6 * ( )! ",(8!
© 2004 CRC Press LLC
1074 %
Chapter
1
INTRODUCTION TO GRAPHS 1.1
FUNDAMENTALS of GRAPH THEORY
1.2
FAMILIES of GRAPHS and DIGRAPHS
1.3
HISTORY of GRAPH THEORY !" # GLOSSARY
© 2004 by CRC Press LLC
2
Chapter 1
1.1
INTRODUCTION TO GRAPHS
FUNDAMENTALS OF GRAPH THEORY
Introduction !" " " # " " #" $
1.1.1 Graphs and Digraphs % #& # # " ' " " ( $ # # Basic Terminology DEFINITIONS
)
%
* + ,
+ ,
¯ ¯
¯ - " %
# + + , + ,, ./ /
) ' .
) )
% .
" # " . & #
& #
© 2004 by CRC Press LLC
Section 1.1
) ) ) )
3
Fundamentals of Graph Theory
% & %
% # #
.
) # #
#
)
% &
% 0/1 01 # .
01
' " 0 1 " /
EXAMPLE
)
% * + , 2 ' ./ * / * / " /
Figure 1.1.1
REMARKS
)
% 3 / " " " 4 " $ "
) (" " % / 56 7 +. /" 6 , Simple Graphs
8 " # # # # # DEFINITIONS
) )
% / / % .
© 2004 by CRC Press LLC
4
)
Chapter 1
%
INTRODUCTION TO GRAPHS
./ /
Edge Notation for Simple Adjacencies and for Multi-edges
% & # # &./ (" + , " # / ." " # " 2 # EXAMPLE
)
2 /
Figure 1.1.2
*
General Graphs
8 9 / 8" / " + /, + :,
% 0 1 / / " " " DEFINITIONS
) %
/ +' / ,
) )
.
&
/
EXAMPLES
)
2 #3 4
Figure 1.1.3
© 2004 by CRC Press LLC
Section 1.1
)
2
Figure 1.1.4
)
5
Fundamentals of Graph Theory
/ 2 ;
Figure 1.1.5
! " !#!"
Attributes
% # # # #" # # " $ + " , + " , % # + , $ ; DEFINITIONS
) % ./ # #
) % / # # Digraphs
% # %/ ! & $ < # # / 8" " $ " ! # # # # . DEFINITIONS
) % + , " " +, +,"
% # + / .,
© 2004 by CRC Press LLC
6
Chapter 1
INTRODUCTION TO GRAPHS
' "
) ) ) )
% % + , %
/ /
% + , # ' . " 0 1
) +" / , Ordered-Pair Representation of Arcs
' " . . + , + , = / #" +' $ & , 2
#&/ " / > #& / & ? # ! / ! $ +" , = # " / # # - " # " # " 9 > #& EXAMPLES
)
2 @ /)
Figure 1.1.6
© 2004 by CRC Press LLC
" !$
Section 1.1
)
7
Fundamentals of Graph Theory
% #
Figure 1.1.7
% !$ "
Vertex-Coloring
= ./ " $ ; DEFINITIONS
) % ./ $
) % ./ & >
) )
% ./
+, # /#
" + ,"
REMARK
) " " " ¼ + ," # # 01 / #
0 1
EXAMPLE
)
2 A / ./ /#" # %" # / /# / /#B " ¼ + , *
Figure 1.1.8
%" +
, * ¼ + , *
1.1.2 Degree and Distance . $ # ÜC
© 2004 by CRC Press LLC
8
Chapter 1
INTRODUCTION TO GRAPHS
Degree DEFINITIONS
) + , . " +," # # / +2 " " # #,
% " .
) 9 # . /
) . # B . # - /
)
% . 6
EXAMPLES
)
2 C 9
6"
" " " @" @" . 3
Figure 1.1.9
)
" #!&
2 6
. Figure 1.1.10
!" " '"&
FACTS
2 " 5DCC" Ü 7 # .
(
) +-, #
() ()
' " # #
% / 9
© 2004 by CRC Press LLC
Section 1.1
9
Fundamentals of Graph Theory
(
) ' " # 9 #
(
) 9 " / 9
(
) " / " 9 9 " # Walks, Trails, and Paths DEFINITIONS
)
%
9 "
* ¼ ½ ½ ½ * " ½ '" " ½ " ¯ ' " ! # # 9 ) * ¼ ½ * " ½ & ¯ ¼ ¯ + , ¯ % .
) )
) )
# + , %
! . .B "
%
!
% + ,
) ) )
!
($
% . % % !" " .
EXAMPLE
)
' 2 " . 9 ! " . 9
Figure 1.1.11
© 2004 by CRC Press LLC
10
Chapter 1
INTRODUCTION TO GRAPHS
Distance and Connectivity
) ! #
) . . !
) ) )
% # ! %
% . . !
) .
) )
.
.
EXAMPLE
)
2 B #
Figure 1.1.12
" $ &&" %)$ &&"
1.1.3 Basic Structural Concepts = # 9 " " # Isomorphism
' " "$ " % .//. // " DEFINITIONS
) % . #& ) " . & . +, & +, '" #& +, +,
© 2004 by CRC Press LLC
Section 1.1
11
Fundamentals of Graph Theory
) % #&/ ) ) " & #& & +, +,
)
=
)
%
. ! ! + , *
*
.
& 6
) % + , EXAMPLES
)
2
% &
Figure 1.1.13 ' $ . # 9/ ! " 0! & !1 & )
!
*
6 6 6 6
6
6
! *
6 6 6 6 6
6
= # . ! . !
© 2004 by CRC Press LLC
12
Chapter 1
INTRODUCTION TO GRAPHS
)
2 " ! 9 > ./#
Figure 1.1.14
% & "" ) #!" *"
) 2 ; / 9 +' ,
Figure 1.1.15
% % #!& "
FACTS
(
) # #& ./ 9 "+E,
/. /
()
% ! + ," ! /
( )
# " # " 9 ( " " # -. ;
( )
- + , & . 9 . Automorphisms
3 DEFINITIONS
) )
%
+, *
) + , *
) )
% # % #
© 2004 by CRC Press LLC
Section 1.1
13
Fundamentals of Graph Theory
FACTS
() ()
. # ./ # /
EXAMPLE
)
2 2 @" . # " # ./ /
Figure 1.1.16
Subgraphs DEFINITIONS
) % # +F" # # # ,
) ' " * " + ," ./" "
+ + ,, *
+ + ,, * +
,
)
% # + , * + , +%" # " , ) % # # ' " (
#
EXAMPLE
)
2 2 :" # # # " # # #
Figure 1.1.17
© 2004 by CRC Press LLC
! !& !
14
Chapter 1
INTRODUCTION TO GRAPHS
FACTS
(
) ? ) # " # # # # # +# ,
()
' # #
2 *
# #
"
Graph Operations
" " " # " # $ " DEFINITIONS
)
* + ," " . " + . #,
) * + , . #
)
+ , * + , & . + ," + ,
* + ,
#
) + , + , ) % + , .
) )
%
#
+ / , . "
)
+ ,
+ +
)
#
G , * + , + , G , * + , + , + ,
+ ,
+ ,
+ +
G
, * + , + ,
, * + , + , + , + ,
#
+ , + , + , + , + ," + , + , + , + , + $, + ," $ + ,
© 2004 by CRC Press LLC
Section 1.1
15
Fundamentals of Graph Theory
) ./ / & " " ./ /
) %
&
%
EXAMPLES
)
2 A /
Figure 1.1.18
)
+&""
2 C &
Figure 1.1.19
)
, "
2 6
Figure 1.1.20
-" !&"
) ' 2 C #" . /." . . /
1.1.4 Trees / " ! % 3
© 2004 by CRC Press LLC
16
Chapter 1
INTRODUCTION TO GRAPHS
Acyclic Graphs DEFINITIONS
) ) )
% + ,
)
#
%
+" $$ $,
% .
9
+ Ü ," $ $ " . " + 2 ; # , EXAMPLE
)
2 B
Figure 1.1.21
" "% +"
FACT
(
) # . ,
&½ &¾
+ Ü
Trees as Subgraphs
> #/ " . % 9 . # / DEFINITIONS
2 ' " ' " '
) % ' '
)
%
'
/
#
EXAMPLE
) 2 2
" ' # #!" / ' "
© 2004 by CRC Press LLC
Section 1.1
17
Fundamentals of Graph Theory
" " " " / '
Figure 1.1.22 " %" " . . .
(# 2
' " # " / FACT
() ? ' # " # ' # # ' +2" . ' " " / , Basic Tree-Growing Algorithm
# / . # ! !
% /. // 6 Algorithm 1.1.1: /&
+% %" 0"1 2
)") . !") ' +, ./# '3 ' . = # 6 . '3 # )* = ' +, ' ? # % . ' = # . )* G ' ./# +,
+,
'
REMARK
) 53#! " 4!"!" +% 7
= + #! ," % # 9 + " , 9 & " # + ,
© 2004 by CRC Press LLC
18
Chapter 1
INTRODUCTION TO GRAPHS
#!
FACTS
" # # +, () ' . # / .
() % # / # Prioritizing the Edge Selection
/3 / # # / Algorithm 1.1.2: +5" +%
)") " . " 3 !") ' ./# '3 ' . '3 ' = # 6 . '3 # )* = ' F ' ? # ' ? # # % + . , ' = # . )* G ' ./#
FACT
( ) > 3 >
) "*+ $ + **+ * ," *+ $ ++ **+ * ," + *$ ," ,- +$ ** , + 6 ,
References 5A;7 " " H/4 " CA; 5CA7 #I "
" " CCA 5?C@7 ? ?!" " - " 4" CC@ +2 - " J= J#" C:C,
© 2004 by CRC Press LLC
Section 1.1
Fundamentals of Graph Theory
19
5DCC7 K ? K D"
" J" CCC 54C7 2 4"
" J " CC +2 - " % /=" C@C, 5 C 7 L 8 H "
" K = M " CC 5667 = "
" # " 666 5=6 7 ="
" - " J/4" 66 +2 - " CC@,
© 2004 by CRC Press LLC
20
Chapter 1
INTRODUCTION TO GRAPHS
© 2004 by CRC Press LLC
1.2
FAMILIES OF GRAPHS AND DIGRAPHS
! ' /< ' N
Introduction = " O O 9" # % " 3 5=CA7 > #
1.2.1 Building Blocks # # # # DEFINITIONS
) % & #
) ) ) ) ) )
&
& #
&¼ &½ . . /
% #
(
&
) /. " +N " # # ,
)
/.
(
"
REMARKS
) % 01 " / #
© 2004 by CRC Press LLC
Section 1.2
21
Families of Graphs and Digraphs
© 2004) by= CRC PressLLC 01
01 9 " 0 1 0 1 !
EXAMPLES
)
Figure 1.2.1
&" &"
) Figure 1.2.2
" &$&
1.2.2 Symmetry
!
Local Symmetry: Regularity
DEFINITIONS
)
% .
) ) % )
¯ ' . )
)/ #
FACT
()
% (* + Ü ,
EXAMPLES
) )
2
) * 6 " . )/
; & + 6," + ," & + ,
)
5=CA7 . /
Figure 1.2.3
© 2004 by CRC Press LLC
@
"% + ! %" @ '"&
22
Chapter 1
INTRODUCTION TO GRAPHS
)
& & & / :/ . ./ ' / / :/. ./
) ( /
Figure 1.2.4
A " ./
6' + ! &&" %" A '"&
Global Symmetry: Vertex-Transitivity
( ./ # Ü@ DEFINITIONS
) + * , * * = # # # # * = # " B #
) *
% +B * , "
#
. " & ) > ) * % B
) + " , )/. &
&
) + + , /! / # + , 6
)
)
*
© 2004 by CRC Press LLC
&
G &
*
Section 1.2
)
23
Families of Graphs and Digraphs
6/. / 2 ;
Figure 1.2.5
5"
EXAMPLES
) . G Æ / ' /! &
)
% /! J ) / " #" " "
) J ./" + , ' 6" " " "
)
&
FACTS
()
54# 3 7 # 9 & 9 > . +
()
= / # + " )
+ *
& +
&
* 6
1.2.3 Integer-Valued Invariants # / / # ( # Cycle Rank
$$ 6 " + ,
© 2004 by CRC Press LLC
24
Chapter 1
INTRODUCTION TO GRAPHS
DEFINITION
) * + , # G + @ ! ! , 8 " + , " ! # + , + , G + , EXAMPLE
)
! 6
Figure 1.2.6
" %" ! " 6' '"&
FACTS
()
5 3 7 9 ' + " 5DCC" 7,)
' ' '
(
+ "
,
% ' # .
) 5' +, 7 ? # ) +, +,
&½ ' ' ' # # # ' " ' ¼
. & .
¼
+ ,
() ()
! ! %
Chromatic Number and k-Partite Graphs
' " &" " & >
/ . ; ; DEFINITIONS
) % # + , " & +2 " &½ , ' , $ " # ,$
© 2004 by CRC Press LLC
Section 1.2
Families of Graphs and Digraphs
25
) % # . & ' , $" &
) % ) # ) +
, &
) % ) )/ & > % ' ) ½ " &½ ¾
" ," & EXAMPLES
) )
- #
- # #" # #
)
/ & /
Figure 1.2.7
&" +"" & . *
FACTS
(
) 5 3 7 % # + " 5DCC" ;7,
( ) % )/# )/ ( ) 2 ) " # )/ HJ/ k-Connectivity and k-Edge-Connectivity
# 3 $$ *$$ : . DEFINITIONS
) " - + ," # /
) " - + , # /
© 2004 by CRC Press LLC
26
Chapter 1
INTRODUCTION TO GRAPHS
# 0 1 - " - . - - "
)
% - ) ) -9" )/ ) /
) % / - ) " ) )/ /
) % ) + ) , )
) % ) + ) , ) Minimum Genus
# 3 DEFINITIONS
) + , # # # / + : , /
)
% 6
1.2.4 Criterion Qualification % " " # . DEFINITIONS
) % ! . + . ,
) % + ; . ,
) % )/ ) # + ; ,
) % )/ ) . + ,
/
) % )/ / ) // + ,
) 0+ , B 0+ , & . %" # . 0+ ,
© 2004 by CRC Press LLC
Section 1.2
27
Families of Graphs and Digraphs
) % . # + Ü, EXAMPLE
) Figure 1.2.8
"
FACTS
() ¯
5? 37 9)
¯ 5L7 # # . ¯ 5:67 H 2 C #
Figure 1.2.9
()
!& !
%
EXAMPLE
)
Figure 1.2.10
© 2004 by CRC Press LLC
"!" %" " ! '"&
28
Chapter 1
INTRODUCTION TO GRAPHS
References 5:67 ? = !" 3 "
C + C:6,"
CP ; 5DCC7 K ? K D"
" J" CCC 5L7 K L3" Q R IQ = I." ;6 + C," :;PAC 5=CA7 K =" ! " (. F J" CCA
© 2004 by CRC Press LLC
Section 1.3
1.3
29
History of Graph Theory
HISTORY OF GRAPH THEORY
!" #
# ; %
Introduction % A:A" / # #! :; ? - + :6:/A, LS # # # 3 2 # 5?=CA7 5=CC7
1.3.1 Traversability # #! -T ! LS # # # + :;," #9 " # J L! + A6@/C;, = 4 + A6;/@;, " The Königsberg Bridges Problem
#. " " 2 " ! / ! # LS # . O " ! # Ü . " C
c
d g
A
c
D
a B
Figure 1.3.1
© 2004 by CRC Press LLC
b
' 78
30
Chapter 1
INTRODUCTION TO GRAPHS
FACTS 5?=CA" 7
() ( @ % :; ? - 0 #/ 1 % J# " " ! # () ' :@" - " / # () - 5-) :@7 # " # 0 # / 1 % :@" : " # :; () -T " # #"
LS # #
() - #" # # 9 %" " " + , % % & + # # % # % ," % " " & & 4 # 9 ." # LS # # # () ' #" - # # #
. %" " " # # / 0 ! 1" ./ 9 #
() -T ) ¯ ' & #
# # "
¯ ' # # . " & # ¯ '" " # # " 9 & # /"
"
() - " # "
#" # " # % # 43 54) A:7 A: Diagram-Tracing Puzzles
% * $ "%% " 9 # # ! 33 # #! P ." % .
© 2004 by CRC Press LLC
Section 1.3
31
History of Graph Theory
FACTS 5?=CA" 7
( ) ' A6C ? J 5J) A6C7 #)
" 9 $.# # # " & 9 J # # " # ' " 9
( ) ( / 33 # 5) A7 K ? 5?) A:7 #! $ " 0 1 () ' AC" ( 9 ! # # # " # 8 5) A: /7 #
&
() # LS # # # /
33 3 C ' # = = 5) AC 7
% # # 2 # C g
c d e
A b
D f
a B
Figure 1.3.2
" 78
Hamiltonian Graphs
% # # # & . 4T $" " + Ü;," & # L!" # 4T " # FACTS 5?=CA" 7
() % . # / " " ! T # " @ 9 & # # #!
© 2004 by CRC Press LLC
32
Chapter 1
" 5<) :: 7
INTRODUCTION TO GRAPHS
# - 5-) :;C7" %/ <
() ' A;; L! 5L) A;;7
& 4 / # " . # # 0 #1 + 2 ,
Figure 1.3.3 7)9 :& ; 1
() % ! / #" 4
4 #9 " + 2 ," " . R
Q P
Z
W
B
X H J V
S
C
G
D
N
F
M
K
L T
Figure 1.3.4 <"9 &
() ' AA" J /
2 ;,
Figure 1.3.5
#9 # = 5@7 C@ +
!""9 +'" +" $
() Æ # # # %
5 ; 7" ( ( 5(@67" K % < I C:@"
© 2004 by CRC Press LLC
Section 1.3
33
History of Graph Theory
() 4 # " # % /4 + C@6," 4 8 + C:,"
1.3.2 Trees " " ! L> + A /A:," / ! ?" # % + A /C;," K K + A6@/C:," JI + AA:/ CA;," " # Counting Trees
- 9 # > " # # " - ! Ü@ FACTS 5?=CA" 7 5JA:7
( ) = ! # # ! 0 >
1" 5) A;:7 /
( ) T ! " # # # + 2 @, root
root
Figure 1.3.6 ="" " "
? ! # # #" G !½ G !¾ ¾ G !¿ ¿ G 9 F 9"
+ , ½ + ¾, ½ + ¿, ¾ # # !
() % A:6" K $ 0$ $ 0$ () ' A:" 5) A:7 Æ # " " !
© 2004 by CRC Press LLC
34
Chapter 1
() ' AAC" 5) AAC7
INTRODUCTION TO GRAPHS
# # 4 . * @" # # 4 JS 5J A7) # // # # 9 #
() ' C:" JI 5JI:7 # # # JIT ! # K 4 5 :7" # T # $ #& () ? # ( 5(A7 + 54J:7, #9 # 2 4 54;;7" 5@7" Chemical Trees
A;6 ! # . +, " +, ! " # # # % " # # # " %. 2 : " "
H
H
H
C
C
H
H
H
O
H
H
H
C
C
H
H
O
H
Figure 1.3.7 "" " FACTS 5?=CA" 7
() T .
" # . +, # > 2 A H
H
H
H
H
H
C
C
C
C
H
H
H
H
H H
C
H
C H
H
H
C H
Figure 1.3.8
© 2004 by CRC Press LLC
C H
H
H
% > !" !"
Section 1.3
35
History of Graph Theory
() 5) A:7 / Æ +!,
# " B # # ! * A 2 H#
;
C
A
() = L > # # #
# 9 " # ' A:A" 5) A::/A7 & # " ! ) - # .# # " L!I
" /
( ) ' A:A" 5) A:A7 !
" ( ) ?
C 6 C6 % ? K L 5? C7 3 " JI T #/ #
1.3.3 Topological Graphs -T 5-) :;67 " ' . ' C6" 3 # # # L33 L ! + AC@/ CA6," ! P # # H #" J " P . Euler’s Polyhedron Formula
! " # ! # # " " 1 )
G1 *
' : " I " # -T # 4 " " # !
© 2004 by CRC Press LLC
36
Chapter 1
INTRODUCTION TO GRAPHS
FACTS 5?=CA" ;7 5CC7
() " H# :;6" - # # " +, & + , # " " " ' # # # . # # " G * G
() - # ' :; # / " # # %/8 ? 5?) :C7 :C" () ' A " %/? 5) A 7 # -T # /
&
() % " /%/K ? 5?) A 7
. " # 4 -T P " " / + " RT , 2 / " ?
G1 * 6 . " # "
G 1 * # & &$" 9 1 $ $ $ + : ,
() ' A@ / " ? 5?) A@ / 7 '
( " ./
." > 3 # -T ! # $ #9 ' " 4 JI ! ? T AC;/ C6 #
() ! JIT ! " /
# 8 J 4 5 46:7 + , / ) '
* ! 4 # ( <# 5<
7 9 % 8 C @
Planar Graphs
# / & # & + 2 C, # # " #9 # L !
© 2004 by CRC Press LLC
Section 1.3
37
History of Graph Theory
K3.3
K5 Figure 1.3.9
7!"%) &
&
FACTS 5?=CA" A7
() % A6" % 2 8S# 33 / ) ! ' ! # # U 9 ! # # " # 4 3) ! & ! # # U ' " #
&
() % #" #" " " * * $ $ " " # 4 5 7 " C ) 33 " " " =" " -" " %" " " + 2 6, #
&
W
G
E
A
B
C
Figure 1.3.10
+%"+&"&"$
( ) ' C6 L ! 5L67 # # B # # ( 2! J %
&
&
( ) ' C 4 = 5= 7 # #
© 2004 by CRC Press LLC
38
Chapter 1
INTRODUCTION TO GRAPHS
4 " " # # # 8?
() ' C; = 5=;7 3
. " 5;C7 / C;6 # L !/ + Ü@@, Graphs on Higher Surfaces
% +# &, ! " . " # J 4 + A@ / C;;, ? 4> + A@ / C@ , # " # 4 3 + AA6/ C@, /# " # # # D 4 & C@6 H # J 3 L !T CA6 FACTS 5?=CA" :B :7
() ' AC6" 4 54) AC67 #
&
4 # # " #
() ' AC " ? 4> 54) AC 7 #
# " 4 T #
() ' C 6" 4 3 5 67 . 4>T // # " 8S # # & " / 4 4 # L #" # # J 2! 527 C" . ' C;" ' L 5L;7 /# " " @ () 4 /# C; #
# # Æ" 66 8 / C@6" C@A # D 5D@A7" = T 5@7 # C@ $ " " # K ? 5:7 3 # #&" 3 " + Ü:," + = ! 5:7,
() ' 9 CA6 " #
5A;7 " # " 0# # 1 + Ü::, 4 " " # # # " 2 /# " " C:C 4 4 " K J 4!" = 54=:C7 # 6 # # &
© 2004 by CRC Press LLC
Section 1.3
History of Graph Theory
39
1.3.4 Graph Colorings - ! " " # / # # 2 A; " # +, 01 # % L A:C ' # L % = 4! C:@" # ! L" !>" 4 4" " #9 # H #" " J " # 5 CC7 8 " # " 5 AA67" < <3 C@ % " # # D C@A The Four-Color Problem
8 # #! / # / # FACTS 5?=CA" @7 5=6 7
() ! / # % 8 4" (# A; 8 # ! # & # > 2 ! " # # 2" - 4 # () 8 " # #
Æ ( 6 % A@6" # " #!
" # 8 F # J" / #
( ) ( K A:A" ? 8 " ! # # " # # Æ " Æ T
( ) ' A:C" L 5L) A:C7" # " # / !
" # # L #" # . 4 9" ! #"*$ " / LT " " 9 " # + / , () ' AA6" 5) A:A/A67 0 1 / " ( / #
© 2004 by CRC Press LLC
40
Chapter 1
INTRODUCTION TO GRAPHS
? +? ," 2 + ? ," < K 8 =
() ' AC6" 4 54) AC67 # + ! #
" LT " / " 3 # " + Ü , 4 #9 # . #" C6 L " # #
() 6 "
LT O " F # # J =! 5=) C67 + 2 ," # J 2!" # 4 ?#
digon triangle
quadrilateral
two pentagons
pentagon and hexagon
Figure 1.3.11 ?&)9 !' "
$ $+ O # . / ) /. / !> 5) C 7 2 +! !> , #
Figure 1.3.12
/)*
() ' C " !> 5 7 # ) " )" $ $ "
() ' C
" 2! 52
7 # # / " / #
;
() % C;6 4 # # / ( . " 4 54@C7 #
© 2004 by CRC Press LLC
Section 1.3
41
History of Graph Theory
() ' C:@" % 4! 5%4::" %4L::7" K L"
# # A # " # / 9 # / #
() % CC" #" " " 5C:7 /
F # # # " 3 %/ 4! " # # @ #
Other Graph Coloring Problems
% ! / #" #
#
FACTS 5?=CA" @7 52=::7 5KC;7
( ) ' A:C " L 5L) A:C7 # & > / ! # 4 = C # #9 ! / #
( ) ' AA6" 5) A:A/A67 / 9 # .
() ' C @" LS 5LS @7 # . #
+ Ü
,
() & > C6" ! =" J () ' C " ? ! 5 7 #
. G " + Ü; ,
9
() ' C;6" # ./ # % " $ $ "
() ' C@" < <3 5<@7
. # G ' " <3 /
() # / # # 3 # # O ." 8 3 C@6" J - V
© 2004 by CRC Press LLC
42
Chapter 1
INTRODUCTION TO GRAPHS
Factorization
% )* ) # # " ./ % )*&$ )/ # 2 ! # K J 5 AC/ C 67 = 5 C / 66 7 + Ü;, FACTS 5?=CA" 67
() ' AC " J 5J) AC 7 3 " # ' ) " )/ # / 4 / /" 01B # & # () ' ACA" J 5J) ACA7 "
" + 2 ," # /B " " # / + !, / + ,
Figure 1.3.13
5"
( ) ' C:" 5:7 3
/ 2 . 3 )/" )
1.3.5 Graph Algorithms # #! C " 2 3 + Ü , 6 # #" #" + Ü," # # ' # !" " + W ., # #" ! FACTS 5 A 7 5??A;7 5?JA@7
( ) 2 " !
# "
© 2004 by CRC Press LLC
Section 1.3
History of Graph Theory
43
A ' C6" J" 3 %H
3 " 2!" 8 K 5 2K;7 # C ' CA6 # C # J # 5JA:7 + Ü@,
() $$ " " !
/ " # #! ( ! 5 @7 # K L! 5L;@7 % " < KI! + C ," # J + C;:, + Ü 6 ,
() # 3 2! 5 2;7 . $ # !" # - 4 54@ 7 ( 3
/ ! () 2 " " !
C6 C;6" 1 +J - 9, # F H # # # J8 + $ 4, # J H 3 & + Ü ,
() Æ !"
# ! - = &! 5 ;C7 + Ü 6 ,
() #"
" # 8 +8/L L , 5@67 C@6 + Ü,
() ' # /
# &# 9 ! ! LS # J 4 54;7" ! 0 1 54<;67 #& # # + Ü ,
() C@6 # # # Æ/ " - 5- @;7 # / . ! 5: 7" L 5L: 7" HJ/ " " / #/ " * $
J" 4 # HJ/ ' ! J * HJ 2 # 5K:C7
References 5%4::7 L % = 4!" - /#) J " " + C::," CPC6 5%4L::7" L %" = 4!" K L" - /#) J " #" + C::," CPC6
© 2004 by CRC Press LLC
44
Chapter 1
INTRODUCTION TO GRAPHS
5?=CA7 H ? " - L ? " K ="
,-./0,1./" (. F J" CCA 5 7 !>" % # " ! + C ," P@
5 7 !>" # " ; + C ,"
;P A
5?@7 !> ? " " " @6 + C@," ;;P; 5 @7 ( !" ( &I #I I I" " " & 2 + C @," :P;A 5 7 ? !" ( !" # # " : + C ," CP C: 5) A 7 %/? " Q / I" ) #0 C + @, + A ," @APA@ 5) A;:7 % " ( " # +, + A;:," : P :@ 5) A:7 % " ( " # +, : + A:," P@ 5) A:C7 % " ( " # % " + + A:C," ;CP @
,
5) AAC7 % " % " + # + AAC," :@P :A 5: 7 % !" . / " ; P ;A # . "
! " %8" H D!" C: 5) A7 " 5 7 #" & + A," 6CP @ 5CC7 J " #
" # F J" CCC 5 A 7 3 " # " 3 % + CA ," PA 5 2K;7 3 " 2! 8 K" / / #" 3 % + C;," CP 6 5 46:7 8 J 4 " % " ) '
* ! + C6:," ;P 6 5 8) A@67 % 8 " % " " # = = " "
H @C + A@6," ;6 P;6
© 2004 by CRC Press LLC
Section 1.3
45
History of Graph Theory
5 ;C7 - = &!" % # . " & + C;C," @CP : 5 ; 7 % " # " # " +, + C; ," @CPA 5 7 4 - " J." " @ +K C ," C ,"
6 +%
5- @;7 K - " J" $ " : + C@;," CP@: 5-) :@7 ? -" + :@, # " 0 " # A + :; ," AP 6 5-) :;C7 ? -" T 9 9 Q " " 4 ; + :;C," 6P: 52=::7 2 K =" ) 0 ! " J" C:: 522;@7 ? 2 2!" 8. $ A + C;@," CCP6
!"
52
7 J 2!" #" + C
,"
;P @ 527 J 2!" % . #" # + C," @P@C 5K:C7 8 K"
! " = 4 2 " C:C 54F=:C7 4 4 " K J 4! = " 6 # & "
+, : + C:C," P:6 54@ 7 - 4" 8/ ! $ " " C + C@ ," ;; P;;@ 5:7" K ? " < " C + C:," CP @ 5:7 K ? = !" N ) 4 #" #5 ;; + C:," C P6 5@67 8 " " " 6 + @/ @@ * C@ ,B + C@6," :P :: 5@7 = " (# # " 4 " @C + C@," : P :; 54;7 J 4" ( #" " 6 + C;," @P6 54<;67 J 4 4 - < " #" : + C;6," P ; 54) A;@7 = 4" 8 # +, + A;@," @
© 2004 by CRC Press LLC
"
46
Chapter 1
INTRODUCTION TO GRAPHS
54;;7 2 4" # " " " " " :A + C;;," ;P@ 54J:7 2 4 - 8 J" 54) AC67 J K 4 PA
) " % J" " 8/ " + # +
S 54) AC 7 ? 4>" F# J# H# #" ::P;A6
C: AC6,"
A + AC ,"
54@C7 4 4" F 3 <##" 4 " A 6WA 6WA 6#" # '" 8/</XS " C@C S 54) A:7 43" F# 8S !" ?3 = F# 3 " @ + A:," 6P 5KC;7 K " # " =/'" CC; 5L;7 ' H L " % 4 "
AP
#
+ C;,"
5L: 7 8 L" # # #" A;/ 6 ( ! + - 8 K = ," J J" C: 5L) A:C7 % L" ( # "
+ A:C," CP 66 5L) A;@7 J L!" ( " @ + A;@," P A
# % "
S 5LS @7 LS " F# % 8 " :: + C @," ;P@; 5L;@7 K L!" ( # #" # " : + C;@," AP;6 5L67 L L !" #Q # " ; + C6," : P A
5??A;7 - ? ? " K L ?" % 4 L" + ,"
2 " # 3 " =" CA; 5?) :C7 % 8 ? "
)6 6 6 +
," 2 " J" :C
5?) A 7 ?" I I T IQ T- Q " . IQ #" 6 " " #6 + A ," : P6 5?) A:7 K ? " < 3 " H %# + A:," A PA:;
© 2004 by CRC Press LLC
' " +%#
, 8
Section 1.3
47
History of Graph Theory
5?) A@ / 7 K ? " S ." 7 * ' 6 + A@ / ," C:P A 5?JA@7 ? ?I3 8 J" 8 " !
0 C" H/4 " CA@ 5?) AA 7 - ?" %6 6 6 8 " < " /<" J + AA , 5? C7 % ? K L " ' " #
+ C C," 6 :P 6:C 58@C7 K 8" ? #Q I #"
@ + C@C," ::P C; 5(@67 ( (" H 4 " @: + C@6," ;; 5(A7 (" # " ! C + CA," ;AP;CC 5JA:7 8 = J # " (3 ; / # # # " 3 % @ + CA:," P: 5J) AC 7 K J" S "
6
; + AC ," CP
5J) ACA7 K J" IQ " 6 ; + ACA,"
;P
: 5J) A6C/ 67 ? J" Q " ) # + A6C/ 6, + 6," @PA 5JI:7 JI" L# %3# S " <# " @A + C:," ;P ; 5JIA:7 JI " ) ! 9
" " CA: 5J A7 4 JS " H 3 S# J" # +, : + C A," P 5@7 " ( # / " 0 " A + C@," CCP 6 5 :7 K 4 " / #" C + C :," P;; 5) A: /7 8 " - # # 9 A I T & # TQ Q &" # + , ; + A: /," @P 6 5:7 "
" " C: 5D@A7 K = D " 4 / #/ " # & " :" @6 + C@A," AP;
© 2004 by CRC Press LLC
48
Chapter 1
INTRODUCTION TO GRAPHS
5A;7 H # J " O " "2 ,1;< + ' % ," ? 8 ? H 6 + CA;," # F J" ;P : 5C:7 H #" " J " " / "
9 " 4 :6 + CC:," P 5) AC 7 = = "
% # ! # # +
% )," 8" ? " AC 5=AA7 4 " 8 #3 K =" % ) -T LS / # "
+ CAA," P C 5C7 - " % !" # A + CC," AP ; 5) A::/A7 K K " #" & : + A::/A," A 5) A:A7 K K " ( # 9" + A:A," @P ; 5) A:A/A67 J " ! " # % " )
6 + A:A/A6," : C 5 67 4 3" - ! S# J# LS# / 2S" 0$ C + C 6," ;;P :C 5@7 = " ( " " + C@," CAP 6 5:7 = " 3 " "
+ C:," 6:P 5;C7 = " 8 " " C6 + C;C," ; :P;; 5:67 = " ( "
C + C:6," ACP C@ 5<) :: 7 %/ < " 9 #Q " 6 " =#> + :: ," ;;@P;: 5<
7 ( <#" "" % 8 9 ? C @" H D!" C
5<@7 < <3 " ( / " + C@," ;P6 5<@;7 < <3 " " ; + C@;," CP : S 5=) C67 J =!" F# ! <#3" ;A + C6," P @
© 2004 by CRC Press LLC
Section 1.3
49
History of Graph Theory
5= 7 4 =" H/# " + C ," ;P :
# & " :"
5=;7 4 =" ( # " ;: + C;," ;6CP; 5=CC7 K =" " : - " CCC 5=6 7 ="
© 2004 by CRC Press LLC
:
! + ' 8 K,"
"Æ " J F J" 66
50
Chapter 1
INTRODUCTION TO GRAPHS
GLOSSARY FOR CHAPTER 1 &$&& ) $$ '"1 * + ," #,
./
) / + .
+ ./
, * + ,) / + ,
@&&$ "1 P
. !
./ ½ ¾ )
& 6 @&" )
! + , *
@&" '"&) &) $ ""!") B ( !" P ) "" ) / B # & +2 " &½ # #,
!#!" ) + , . / &" !&" + " $, P )
+
, * + , + ,
+
, * + , + , + , + ,
+ * , P * ) ./ " *
-$$ ½
-$$ ¾)
+ * , # 0 1
&" ) $ " &" '"1 P ) . 9 &"& ! P ) #
/#
&&!" +B * ,) &) # #B $ +& ) ./ & ) + , 01B 01 # " ) + , & +" ,
&") *$"
© 2004 by CRC Press LLC
51
Chapter 1 Glossary
&" "" ) # . & . ' , $" &
&" & ) # " #
&" & ) & #
&" )+"" &½ ¾
) )/
& > % $" " "
&" P ) . # &&" ) # ! )+&&" ) ) " " #
) )/ ' -+ , - + , &" P ) + , # &&"'"$ ) #
&"&$ )+&"& ) # ) / #
+ Ü; ,
&"&$ )+&&" ) .
+ Ü ,
)
&"&$ )+ +&&" ) /
+ Ü ,
)
/
&! ) " $ " &!) " $ &!"+ ) # &!"") $* ( &!"+'"1 + $",) . #
&$&) &$& ) /. "
&$& ) P
+ , G + ,
* + ,
+ , ) # + ,
+ $, P . " +,) #
# / +2 " 9 # #,
#!& P ) 9 # . /
" '"1
* + ,) . " #
© 2004 by CRC Press LLC
52
Chapter 1
INTRODUCTION TO GRAPHS
* + ,) ./ " # /
"
" P ) . $$ $" ! + $ ",) ) & &" "& . " . P )
"
!
&" + $,)
" ' "
&" ) " &" P ) "& P # ) ! # &&"&"$ '"1 P ) .
) # " * + , +& P ) / $
""!") / # # " $
+&" P ) ./
"
+ ,
)+ +&&" ) #
+&&"'"$ '
-+ ¼
,
) # - + ,
)
)
)/ /
+""' ) "$ & ) ") " ! ) ! .
+ . ,
! " P ) &" P ) # )+&" P ) )/ # ") " P ) B
) # / / . .
© 2004 by CRC Press LLC
53
Chapter 1 Glossary
!)
* + ,) $ " "
"
" ) + Ü; . ,
Ü
) $ $&! + ) /! / # $&! ) / +½ , 6 , &&) # P . ) # !& ! P * ½ ) # ./
'" P " " '"1 P ) . 6 & ) # H/ )
*
'" P ) B " #
) #& ) ) " & #& &
+, +,
) #& ) "
+, +,
@½ + " ,)
+ +
G , * + , + , G , * + , + , + ,
G
+ ,
@¾) G 0&1 @¿) 0&1 " %)) # ½ P ) 0+ , ./ / " & .
¾) % # " .
0+
,
) &* " ) &* " ! ! + !, ) # # # H) 2 + , 2 + ,
© 2004 by CRC Press LLC
/ + :
,
/
54
Chapter 1
INTRODUCTION TO GRAPHS
1 ) "
$ " !"+&) !"+ ) " !" ) / . " # /
P .) & . " P ' ) ' ! ) ./ / B &¼ &" ) / / &¾ " '"1 P )
+, *
P ) + , * !" P . ) #
"
"$ &" ) # 3+"" ) ./ 3 # ½ + " ," #
&
"" ") 3*" ") . " &) $ . " ) " . " () /. " +N " # # ,
(
5" ) 6/. / " ;/ "
/ &
) 6" " #
"& ) ! "& ) / O " #" " "
!&") $ " $ ) & +& ) / &
'"1+& ) ./ &
! P ) $$ $" ! ! ) . ' )* . )
© 2004 by CRC Press LLC
55
Chapter 1 Glossary
+) & +!. + P ) & % *
%
) / / ) / / 1) . / Æ - ' )* " (
)" +
/ * ) G * , )/. & )
&
! P ) # . " P ) # " A'"1B P ) # # # # 6
# #
" $ &&" ) . .
!
! )
"
!) - ") $ ") ! ") " P ' ) ' "' &½ ) . "' %). ". ") ! 3 !$ P . #) # + " / ,
) ./ / & " " ./ /
! " P
'&) '"1 ""!") ./ # #
'"1+& P
) ./
$
'"1) # " * + , '"1+""' ) %) P ) 9 * ¼ ½ ½ ½ "
* "
" &) " )
!
!
½
. .
. > .
%)$ &&" ) " % " P ) + $ , #
© 2004 by CRC Press LLC
Chapter
2
GRAPH REPRESENTATION 2.1
COMPUTER REPRESENTATIONS OF GRAPHS
2.2
THE GRAPH ISOMORPHISM PROBLEM
2.3
2.4
THE RECONSTRUCTION PROBLEM
RECURSIVELY CONSTRUCTED GRAPHS
! ! " " " GLOSSARY
© 2004 by CRC Press LLC
Section 2.1
2.1
57
Computer Representations of Graphs
COMPUTER REPRESENTATIONS OF GRAPHS
Introduction
! "
# # $ % #
2.1.1 The Basic Representations for Graphs # & ' & DEFINITIONS
(
(
) * + ! ,
- * +
) * + ! , -
( . ) * +, ' ' * + & ( . ) * +, ' ' & ( / *½ ¾+, *¾ ¿+,, * ½ + ' ½ ' ( ) * + # ¾ ( ) * + # ¾
© 2004 by CRC Press LLC
58
Chapter 2 GRAPH REPRESENTATION
( ) * + ' , # 0 1 ) ' ' 2 0 1 ) 3 #
(
) * +
, ' 4 ' , % & %
(
' , # ' 0 1 ) ' 3 #
4 , 0 1 )
) * +
3 #
EXAMPLES
( 4 # & ' &
! "# # ! !
Figure 2.1.1
(
' ' # #
)
* +
3 3
* + * + * + * + 3 3 3 3 3 3 3 3
FACTS
$(
& '
$(
) * + # % *
& ) * + %
© 2004 by CRC Press LLC
*
5
¾+
+
Section 2.1
59
Computer Representations of Graphs
REMARKS
%
(
4 , 06781, 0
6791, 0:; <31, 0-8=1, 091
%
(
, &
#
, %
%
(
>
¾
) *
/
+ , & ' &
*
+ 6# , # & ', #
# ' , # # & #
*
+ 4 , & '
#
%
(
? &
# & ( '
,
'
2.1.2 Graph Traversal Algorithms @ % A ! ! /
/
4
/ , & # % #
Depth-First Search ALGORITHM A ! . , % B#C > ' , % BC A ! # % # ' &
, % ,
# B ! C
# * + % #
DEFINITIONS A , !
%
, # (
(
(
*
*
+ #
! '
+
* + '
!
(
*
+ '
!
(
© 2004 by CRC Press LLC
60
Chapter 2 GRAPH REPRESENTATION
&$# '
Algorithm 2.1.1:
# ( ) * +, # ) 01 & ' $ # ( !
!( *+ ! () ! !
01 () 2
! () ! ! 01 ) 2 *+2
!( *+ 01 () 2
! ' 01 ! 01 ) *+2
FACTS
$( $(
+ ) * + . # ! ' # B*C B+C, / ! A ! %
*
5
' #
$(
. ! , % REMARKS
%
( A ! =D3 08 681 Æ !
%
( A ! !
Breadth-First Search
! / ' . ! ' # . !
' ,
© 2004 by CRC Press LLC
Section 2.1
61
Computer Representations of Graphs
ALGORITHM
! ! ! ! ! * "+ ' % / " ! ! *"+ / " !
, % 5 . , ! % % Algorithm 2.1.2:
) &$# '
# ( ) * +, # ) , 01 & ' , ! ' $ # ( !
!( # * + ! () ! !
01 () 2 01 () 2 01 () "2
01 () 2 01 () 32 " / "2
! ! * "+2 *" " ! () ! ! *"+2 ! ' 01 ! 01 ) 01 () 2 01 () 01 5 2 01 () 2
! ! * "+2
DEFINITION
"
( ; #$ # , 01 , * 01 + 01 #$ # * +
"
FACTS
$(
! %
© 2004 by CRC Press LLC
*
5
+ ) * +
62
# * + 01
$(
Chapter 2 GRAPH REPRESENTATION
REMARKS
%( ; % ! , ! =D3 -
! " #
%( ! % A &% E E !
2.1.3 All-Pairs Problems # ( #
4 & '
All-Pairs Shortest-Paths Algorithm
< # # # # # %# %# > # A &% E ALGORITHM
# 4> # 4> & ' # ) * + 4 # ' % 0 1 * + . % 0 1, # % 0 1 ! >
4>
, # 0 1
' ' 4 # %
, FACT
$( 4> ' # ) * + * ¿+ * ¾+ REMARKS
% ( 4 4> 06781 0:; <31
© 2004 by CRC Press LLC
Section 2.1
63
Computer Representations of Graphs
Algorithm 2.1.3: $"!&+ # "" #
(
% 0 1
( : '
$ #
) * +, #
)
'
0 1 # 0 1
!( &'*+ ! () ! ! ! () ! !
0 1 () % 0 12 ! () ! ! 0 1 () 32 ! () ! ! ! () ! ! ! () ! ! 0 1 5 0 1 ( 0 1 0 1 () 0 1 5 0 12
% ( ; 0 1 ' '
' , ' > 0 1 ) * ½ ½0 1 5 ½0 1+ . ' # 4> FE
Transitive Closure
. # & # %# # ' ' ' ) * + > ) * + # & ' , # # ' $ $ 0 1 , 3 # > $ & ' # 4> ' , FACT
$ %! *+ * ¾+
$ (
*
¿+
REMARKS
%( < > 0>G 1
© 2004 by CRC Press LLC
64
Chapter 2 GRAPH REPRESENTATION
Algorithm 2.1.4: #
, #- ."!#(
( ) * +, # )
0 1
& '
( ' $ 0 1 # , 3 #
$ #
$ 0 1
!( $ %! *+ ! () ! ! ! () ! ! $ 0 1 () 0 12 ! () ! ! ! () ! ! ! () ! ! 0 1 ) "# 0 1 () 0 1!0 12
%(
; $ 0 1 ) ' '
' , ' >
% 0 1 ) % ½0 1 ! % ½0 1 % ½0 1 # ! . '
# # FE
2.1.4 Applications to Pattern Matching & ! % " ' ' #
< : F
# DEFINITIONS
(
*?4+
) * + #
'
,
'
&
H ) # H !
#
,
) © 2004 by CRC Press LLC
Section 2.1
65
Computer Representations of Graphs
( ?4 * ! ' # *
( (
'
! . + , + *& * & ( ; £ A! ) ) ) ½ , , !
?4
( ; H ! ! #(
H
, ' ) ' ) 4 H, ' . ' + , * 5 + ' + , ' + , *£ + ' +£
> # ' F £ 5, 5 4 ' , ***-£ ++ 5 + # -£ 5 ' - 3 Kleene’s Algorithm
< : F ' ! , # #, 4> ALGORITHM
; ) * + ?4 # FE * #+ # % / % # % 0 1 ' ' ' # ' *' + REMARKS
%( %(
FE 0FDG1
FE , # % 0 1 ' ' # ' , ' % 0 1 ' ' ' *% 0 1+£ ' ' " # ' % 0 1 ' '
© 2004 by CRC Press LLC
66
Chapter 2 GRAPH REPRESENTATION
Algorithm 2.1.5: /"0# "!
# ( ) * +, # ) , ' 0 1 $ # ( ' % 0 1 # % 0 1 '
!( .
*+ ! () ! ! ! () ! !
% ¼0 1 () 0 12 ! () ! ! % ¼ 0 1 () ) 5 % ¼0 12 ! () ! ! ! () ! ! ! () ! ! % 0 1 () % ½0 1 5 % ½0 1 *% ½0 1+ % ½0 12 ! () ! ! ! () ! ! % 0 1 () % 0 12
' , % ½0 1 *% ½0 1+ % ½0 1+ # ( , " , # '
%( 4> FE # % 0 1 () *% ½0 1 % ½0 1 5 % ½0 1 . 4 > # E #
, 4>
*+ %( FE # % 0 1 () % ½0 1 5 % ½0 1 % ½0 1 # 5 !
%( , 6
, 7 FE 06781 %( @ % ! ?4 ' ! ' % ( 4 ! ' 0=3, <79G1
© 2004 by CRC Press LLC
Section 2.1
67
Computer Representations of Graphs
References 0=31 I , ! , DDJ33 , - K I ; #, . , ==3 06781 I , K - 6
, K A 7, >, =8
06791 I , K - 6
, K A 7, >, =9 0<79G1 I , < , K A 7, >, =9G
0:; <31 6 : , : - ; , ; , : < ,
! . , 33 0-8=1 < -,
" :
< , =8=
04G 1 > 4, =8 *< +,
# $ D*G+ *=G
+, D
0681 K - 6
- &, -Æ , # $ G*G+ *=8+, 8 J89 0K881 A K, -Æ # %, $ *+ *=88+, J
%#
0FDG1 < : F, ! , J3 , - : - < K : , 7 , =9D 08 1 - &, A ! , * + *=8 +, GJG3 091 - &, , =9
& ' < .
0>G 1 < > , ,
© 2004 by CRC Press LLC
$ %# #
%# $ =*+ *=G
+, J
68
2.2
Chapter 2 GRAPH REPRESENTATION
THE GRAPH ISOMORPHISM PROBLEM
I ! / . D : '
Introduction , !, Æ # # . ' '$, Æ ' . ' *% + *' *¾ ++, *' * ++
'$ *' *½¾·´½µ+ '$ # ' , , ! #
2.2.1 Variations of the Problem DEFINITIONS
( # ½ ) *½ ½+ ¾ ) *¾ ¾+ , ½ ¾, , , ( ½ ¾ , # * & ½, *& ½ ,**+,*&+ ¾ < & & ,
( #
(
# L ,
, ! . L , $ , # #
# ½ ) *½ ½+ ¾ ) *¾ ¾+
½, ,*+
, ( ½ ¾,
( * +, # , # ½ ) *½ ½+ ¾ ) *¾ ¾+ , ½ ¾,
© 2004 by CRC Press LLC
Section 2.2
, ½ ¾ ¾
,
(
,
(
(
,
,
½ /
½ ¾ / ½
69
The Graph Isomorphism Problem
*
+ )
/ ¾ *
+
½ ¾
½ , ,
,
* +
,
)
* +
#
/
¾ 2
*+ ) ½ ¾
) *½ + 0 ) !½ ! + & ! ( )
, # *
'
FACTS
$
(
#
½
¾
# &
1 1 ½ 1
'
¾
)
½
¾
,
½
# ! ' # & L
$
(
/
'$
$
(
/
'$
EXAMPLES
(
-' # 2
, %2
, %
< , # , * 0F=D1+
(
2
½
)
,
3 # & ' > !
*
*
*
+ *
+
+ '
+ !
'
2.2.2 Refinement Technique / & #
# #
< #
/ , 0:831, 0>8G1, 0>8=1 ,
#
Æ " '$
! * 06781, 0- <931, 0=81, 0:91,
© 2004 by CRC Press LLC
70
Chapter 2 GRAPH REPRESENTATION
0:91, 0AA;881, 04 931, 04M < < 91, 06;<>981, 091, 06>81,0F=D1,
(
08=1, 0 91+ # % N #
'$
*
+
N /
DEFINITIONS
%
(
3 ( %
' #
(
(
3
1
(
(
4
(
5 6
&
4 %½ 4 % * +
* +
3
1
%½ % %
) 0
1 #
,
#
½
%
3 ) 0%½ %1 '
+
'
* + ) 0
*
* +
+3
(
.
3
,
%½ %
) 0
'
* +
5 6
* +
4
#
3
0
* & %
1,
% 5 * 6
#
# $
* + )
(
3 *
+ ) 0
%½ %¾ %
1
73 *
+ ) 0
1 )
4* % *
+
* %
#
*4 , Æ (
" 3
!
* +
, ! 4 3 , ! "
(
5 & 6
(
½
¾
+
.
#
*
,
, ½ (
*
+
3 ¾
*
+
½ ¾ FACTS
$
(
;
3½
3¾
!
+ 3½ *
(
;
3½
3¾
*
¾ ,
, ,
,
+ 4 ,
*
+
*
½ ¾
#
© 2004 by CRC Press LLC
½
+ 3¾ 5 ½* * ½ 6
+
$
½ ¾
#
½
+ )
5 ¾ ,* 6
,
*
¾ 3½
* ++
, .
*
+ )
3¾ *
+
7 3½ *
+ )
7 3¾ *
+
Section 2.2
71
The Graph Isomorphism Problem
$(
; 2½ 2 , #
2 2
REMARK
%(
" / * 0=31+ 4 ' , # '
8*+ ) 08 1
0 12
0 1
# 8 ' . , ' A E % 0A3 1 , B ' # ! ! 'C Backtracking
! / % % DEFINITIONS
(
% % # / 9 2 9, # 9 , #
9
(
# 92 9, # 9 9 "
( 4 9 2 9, ', , 9 , '
9, %
*&( + # " #
. " ,
( ; % 9, * % , : " 9 % # # ( * % * > !' * % , % ¼ : # % , ( % ¼ ( % ; FACTS
% '$ % % # ! Æ # # ' Æ % % # !
$( *0 891, 0 8=1+ . # &
*
+
E %
© 2004 by CRC Press LLC
72
Chapter 2 GRAPH REPRESENTATION
$( *0 DD1+ ; O ! & P, O P , ¾ , ¾ 5 Æ # !' ' "
$ ( . % % , !' ' , % % * +, # ' / , * + ' # , !' ' ' * 0:91, 091+
2.2.3 Practical Graph Isomorphism FACT
$ ( - # (
* - J 06781+2 * 6
> 06>812 4 048G1+2 * ; % 0; 8=1+2 * 6 06=D1+2 D # * 0 931, 4 04 931, 0 331+2 G # ' * ; % 0; 9 1+2 8 # & * , , 0 9 1+2 9 # * 0991+ REMARKS
%( -Æ > ; * "
! + 0=81
%(
(, A F 7 (, 2 (
%( ( # : 7 'L; ' %( # ( #
%( %
0 91, # ! / (
© 2004 by CRC Press LLC
Section 2.2
73
The Graph Isomorphism Problem
% % 2 % % *' , # ' + , #
9
%(
(
" ½ ) 8GD, ( "&) * !, # " ) G888 > , Æ , ! , %
% #
(
2.2.4 Group-Theoretic Approach * 0>;G91, 0>8=1, 08=1, 04 6; 931, 0; 9 1, 0; 91+ '$ , DEFINITIONS
( * + ! FACTS
'$ 4 Æ 08=1 0; 9 1 #
, * + # , % ; % 0; 9 1 # Q ; %E / , #
!
$
( * 08=1+ ' , ! ' * + , # * + , '$ / ! * +, H
* &
;
$(
!*+
* & !
!'
*; %09 1+ . * +
, # #
!
4 *+, * < 3+ # * < 3, ! * + !' + $( ' < 3 !* + ) !* + ! * + ) ! *+
© 2004 by CRC Press LLC
74
Chapter 2 GRAPH REPRESENTATION
> < , 3 ! * ·½+ ! * + ! * ·½ + ! * + 9
$
( ! % 9 , , ! * ·½ + !'
$(
! ! * + '
9 *! * ·½ + ! * ·½ +
$(
06;<>981
*¿ +
'$
. , # ' / , ' , REMARKS
%( % (
4 4 ; %E /
4 G %#
%
( <@:E9 *0; 91+
*' *½¾·´½µ +
2.2.5 Complexity # %# ? , . # ; E 0;8D1 1 ) 41 , 41 ) 41 1 # ' '$
* 0K8=1, 0FM=1+ DEFINITION
( / '$ FACTS
'$
* 0678, =, 89, ::89, 8=, 6<9 , ; 91+
$(
# ( 2 2 * # , +2 # # 2
© 2004 by CRC Press LLC
Section 2.2
75
The Graph Isomorphism Problem
D # * , !*+, # ,*+ ) +2 G *
' +, !*++2
8 * 9 2
!*++2
= 2 3 / * # # , , , , # / +
$( 41 * % # , ( ½ ¾ + $ ( *F %% 0F3 1+ ' %'$, # % REMARKS
%( @
'$ ' ' %'$, ? , $ %# ) 4 = '$
%( . # # % , ; < % *0<8 1, 0<8G1+,
References 06781 I , K - 6
, K A 7, , >, =8 08=1 ; , B: C, , =8= 0- <931 ; , - M, < <%, , $ %# # = *=93+, G 9JGD 0 9 1 ; , A R , A , . # , # +, # $ # # *=9 +, 3J 0; 91 ; - ; %, : , # +- # $ # # *=9+, 8J9 0=81 ; , . I : , F , A I %, : : .. . > ; , 7=83, K =8, 7 M M
© 2004 by CRC Press LLC
76
Chapter 2 GRAPH REPRESENTATION
0=1 A , / / ,
.
D *==+, GJGG 0991 6 ; , ' , %# *==3+, GJG 0891 F < , . , ! / , $ %# # 8 *=89+, 8J 8= 0 DD1 6 %, A $ ! , # # $ # # 89 *=DD+, GJ9 0::891 K : : K : , , " &' 3 *=89+, DJ = 0:91 K : F < , ; , , , $ %# # 3 *=9+, 3J D 0:831 A : : : , Æ , %# $ 8 *=83+, DJG 0:91 A : , , %# D *=9+, DJG 0AA;881 ? A, K A , - ; , # , ( 8 *=88+, GJ3 0A3 1 A ; < E %, ', " & &' * S;... * 33 +, ?# R % < , 9JDG 04 931 . < 4 K ? , !' , # +/ # $ # # 8 *=93+, GJ 048G1 4, ; , J # 0 # . *< , -+, - 7 , =8G 04M< < 91 4M , > < , - < % , ? , # +- # $ # # *=9+, GJ83 04 6; 931 4 , K 6
, - ; %, ' , < : : , , : *=93+, & *=93+, GJ 04 6; 931 4 , K 6
, - ; %, , # /+ !!! # 1 # # *=93+, GJ
© 2004 by CRC Press LLC
Section 2.2
77
The Graph Isomorphism Problem
06;<>981 T , : 6$, - ; %, : <
, > , *¿ + *¿+ , %# $ *=98+, DJD 0K8=1 A < K,
& , 4 , =8=
"
091 , , $ # G *=9+, =J G 0 331 , . ! , # 0/ $ # # * 333+, =J G 0 R=91 K ; K R, ===
" , :: ,
069 1 4 6 , , <, / % , %# $ # *=9 +, DJ 0681 K - 6
: F >, ; , # 2 # $ # # *=8+, 8 J9 069 1 : 6$, . , . & G, < , =9 06=D1 > 6 , *?+
, $ %# # *==D+, J= 0F=D1 F , : M % , M % , , : : . : *: + 7=D3, A" =D, 7 M M 0F3 1 F A %%, ' " , $ %# * 33 +, D3JD G 0FM=1 K FM , 7 < M , K U, , %M , ==
"
0F =1 A F ; 6 , @ ' , $ # 8 *==+, D8J 8 0F 3 1 . F %, ;, A , 7 , $ # DG * 33 +, 9=J= 0;8D1 - ; , @ , # $ # *=8D+, DDJ8
%# #
0;==1 K ; #, , : 3 * D DJG+ , - , ==
© 2004 by CRC Press LLC
78
Chapter 2 GRAPH REPRESENTATION
0; 91 ; #, < ? , $ %# 3 *=9+, J 0; 8=1 < ; % F < , , %# $ G *=8=+, 9J=D 0; 9 1 - ; %, . , %# # # D *=9 +, JGD 09 1 !, # ' % , 3 # %# $ # 4 5/6 *=9 +, DJ8 08=1 , , .
9 *=8=+, J 0 91 A F, , & 3 *=9+, DJ98 0<8 1 ; < % , / ' # / / ' , # +0 !!! ' *=8 +, DJ = 0 891, , @ / ( , # +7
# $ # *=89+, DJD9 0 8=1, , , %, %# # *=8=+, 9J 0 931, , . , # +/ # $ # 8 *=93+, DJ D 0=31, U , A # , 88JD $ * K , -+, > , ==3 0<8G1 ; < % , , *=8G+, J 0>G91, > ;, , & 5 # /6 = *=G9+, JG 0>8=1, > , *+ @ ! , . & $ DD9, < , =8G 078G1 K 7, , %# $ *=8G+, J
© 2004 by CRC Press LLC
Section 2.3
2.3
79
The Reconstruction Problem
THE RECONSTRUCTION PROBLEM
# :& < : A % E F E D ;U"E 2 ?> E ; G A 8 . A %
Introduction . ! # " *=88+, & " :& B
C D , # # > # %# ,
2.3.1 Two Reconstruction Conjectures < # ( # , ¼ / V . # % # %#, , Æ > %#, , %#
¼
Decks and Edge-Decks DEFINITIONS
( ; 4 ' , 4 , ,
( , *+, ' , *+, % . ' , *+ %
© 2004 by CRC Press LLC
80
Chapter 2 GRAPH REPRESENTATION
, % % , ,
. , . # , # # . A!
, &
(%
%
EXAMPLE
(
4 # ' %
Figure 2.3.1
# 1
Reconstructibility
# 06881, 0?891 %#
, # < , ' 0-991, 0991, 0;981, 0=1 0;< 31 DEFINITIONS
( 0 # % .
( # % , CONJECTURES
< 0 *0 + ) *+ @ # > %
, %!#(! .!( 0FD8, 7G31(
0
* # + %
, &%!#(! .!( 06G1( %
* #
. , % *+ , % # % / / , , # # ! # %
© 2004 by CRC Press LLC
Section 2.3
The Reconstruction Problem
81
EXAMPLES
( .¾ , .½ # ,
:& , .¾ .½
( ) .¿ .½ , .½ ¿ * +.½ *+ , .¾ 0 ) 1¿ .½ *# 1¿ +, *+ ) *0 +, 0
- :& , Relationship between Reconstruction and Edge-Reconstruction
. % %2 %, % ' ., 4 :& # , - :& 4 # FACTS
$
( * #E + 0 81 ; # % , , *+ / *+ , ,
$
( *6 E + 06G=1 .¿ REMARKS
%(
> , # ,
%(
- # , %# ' , / > / Reconstruction and Graph Symmetries
Æ % % < , , ' , , / , # DEFINITION
( ; !' , # # , #
© 2004 by CRC Press LLC
82
Chapter 2 GRAPH REPRESENTATION
. # , $
, #
FACTS
$
(
.
·½
,
,
½
,
$
(
0F8, M 8G, =31 4 !'
,
$
(
,
099, =31 .
¿
,
/
%
REMARK
%
(
! ¾ ! ! ! !
4 D ;
%
!
,
¿
!
! !
# #
!
/
# # #
<
, #
#
,
'
/ , #
#
%
!
!
&
&
#
2.3.2 Reconstructible Parameters and Classes Reconstructible Parameters DEFINITION
(
$ %
,
;
0
#
)
, * +
#
0
FACTS
,-
,
4
$
(
* 0;< 31+
$
(
/
*< 0=,
;< 31+
$
(
%
,
* 0;< 31+
© 2004 by CRC Press LLC
'
Section 2.3
The Reconstruction Problem
83
$
( 4 # ,
, #E
$
( % , # #
$(
*FE ;+ 0FD81 ; 0 # *+ < , 0 *+ 0 0 , Reconstructible Classes
> # B C, % % , . ! ! % , , , # ' ! # DEFINITIONS
( " * "+ , * + -/ , " * "+ *+ * *++ #
(
* * + -/ , #% * #% + , # ' , / % * %+
+
FACTS
# # # * #
, #E +
$( $( $( $(
* 0;< 31+ A * 0;< 31+ 0FD81
0G=1 < * , # + #
$(
0R991 &
$(
0 881 # #
$( $ (
04 89, 4 ;9, ;91 ' 0 8G1 @
© 2004 by CRC Press LLC
84
Chapter 2 GRAPH REPRESENTATION
$ ( 0 91 .
E , . , ,
$( 0R 9 1 . ' E ,
#
$( 04=1 # $( 0T=9, T=91
3 H =*H+ *+ =*H+
$( 04> >31 < # % * , #
. +
$( 0:81 .
$( 00-S 991 :# $( 0-6981 REMARKS
%( .
?> E ;, # # # %( # #
* , + ' # * , , + 6# , , , , ' Æ % 0< 91
%( 06881 ?
%( !
, / , # D ,
2.3.3 Reconstructing from a Partial Deck % % . , # * + 06GG1, * ' + 0G=1
© 2004 by CRC Press LLC
Section 2.3
85
The Reconstruction Problem
Endvertex-Reconstruction DEFINITION
( # ' / ' %
FACTS
$( $ (
06GG1 '
0 81 4 , ' # '
D # ' Reconstruction Numbers
% , 6 069D1 ! DEFINITIONS
( , *+, % / , *+, !
( ; , *+, % , # , / , *+, ! FACTS
4 #
/ 5 / # 5
$ ( $(
099, =31 /
0=31 # . ,
/ 5
$(
$( $(
0;3 1 . 5 .
06981 .
, *+ /
0=31
© 2004 by CRC Press LLC
86
Chapter 2 GRAPH REPRESENTATION
$( 06;981 . ' '
*+
' # / "
$( /
* 0;< 31+
. , , *+ ., , .¿ .½ ¿, *+ .
, 5 $( 0=D1 ;
$( 0=1 -
$ # *$ +
CONJECTURE
6 ; 06;991( .
, *$ +
FURTHER REMARKS
%(
, ' # *+ *+ . ,
% ( > % ,
, , # # ¿ , 0991 # %#
% ( 0991 ,
% # ) / < ! # ) ) / @ , # Æ % *+ Set Reconstruction
6 06G1 # , < : & CONJECTURE
# + % . # # . # , #
' %!#(! .!((
%, %# # %
© 2004 by CRC Press LLC
Section 2.3
The Reconstruction Problem
87
DEFINITION
( FACTS
$ (
08G1
$ (
08G1 4 # ' , /
$
( 08G1 / #
$( $( $(
08G1 08G1 ?
< * , # + #
$( $( $(
0831 0 8G1 @
0 :81 7 * , + Set Edge-Reconstructibility
, , % >
# > # FACTS
$( $ (
08G1 /
0A43 1 / # / / # #
' , / /
$
( 0A I=G1 . # #
, Reconstruction from the Characteristic Polynomial Deck
< #% 0< 8=1 %, # # 6 #% # / % , # #
© 2004 by CRC Press LLC
88
Chapter 2 GRAPH REPRESENTATION
FACTS
$
(
0< 8=1
%
$
(
. %
#
,
% * 0;< 31+
$
(
0:;=91
%
$
(
0< 1 .
;
%
Reconstructing from -Vertex-Deleted Subgraphs
'
>
< D # #
6 #
FACT
$
(
09=1 ;
/ Æ
' * + , #
. ,
* +
2.3.4 Tutte’s and Kocay’s Results . FE ;
, #
0 8=1 # # FE ; '
, # / . 0F91, F E #
F E
' 0=1 0;< 31
Kocay’s Parameter DEFINITION
(
;
+
* +
)
) *
½ ¾
+ / * $
* + (
© 2004 by CRC Press LLC
½ ¾
/
* +
) *
+
)
*
+
Section 2.3
89
The Reconstruction Problem
FACTS 0 8=1, 0F91 * 0=1, 0;< 3 1+
$(
; ) *½ + / * ( *+ ; >* + ! * +
#
# % * + ) * + * +
>
# !
$( $( $ ( $ (
6 # !
The Characteristic and the Chromatic Polynomials DEFINITION
( #
4
, * +
* +
FACTS
$(
0<G1 * 0 =1, =+ ;
8
5
8
8
5
5
Æ
)
*+
5
# '
$(
0> 1 * 0 =1, 88+ ;
- * 5 - * 5 5 - * -
Æ
- )
*+
# '
© 2004 by CRC Press LLC
90
Chapter 2 GRAPH REPRESENTATION
$(
0 8=, F91 *< 0=, ;< 3 1+
$(
0 8=, F91 *< 0=, ;< 3 1+
2.3.5
Lovász’s Method; Nash-Williams’s Lemma
. /
;U " 0;8 1 # , , % ' 7 ;U", M 0M881 . / * ;U "+, ?> 0?891 # ;U"E M E # ' ' 0-991 0=1 0;< 31 The Nash-Williams Lemma DEFINITIONS
0
0
( 4 ,
! & ' ,
0
0 00 1
(
0
, #
* + , &
*+, & '
0 0
0 1
0
0 #
REMARK
%(
0
0 0
? 0 1 0 1 , 0 1 , 6# , 0 1 ,
0
0
0
0
FACTS
$(
0;8 1 ;
0 *+ 0
0 1 )
© 2004 by CRC Press LLC
* + 0 1
0
Section 2.3
$(
91
The Reconstruction Problem
0?891 ; 0 0 % 00 1 ) *+ 5 * + *00 1 01 +
)%/ -
*+,
*< 0=1, 0;< 31+
$(
0 ,
*: ?> E ;+ *< 0=1, 0;< 31+ < ?> E ;, ,
* + * +
$(
0
0 < 32 , 01 < 32 1 ; *+ < ¾ ; , 0 1
0;8
$ (
0M881 ;
,
< W
$ (
0=31 6 # Æ % Structures Other Than Graphs
, # ! * X + # ! , X , , # , Y E X / #
/ , X
*
. , # , ' , X
# ,
DEFINITION
( . ,
;
FACTS
> # # ! , # ? > ; , % # / ' ' 0=, ;< 31
$(
0
0;< 31 ; # , # ' * +
0
< 0; $( 0:F 9=1 ; * X + © 2004 by CRC Press LLC
<
0
<
X
92
Chapter 2 GRAPH REPRESENTATION
$ < 0< =91 ? , +, ",
$(
0< =91 <
$(
0< =91 4 ,
$(
#
$(
?
?
0< =91 4 , ? =@*+ , * +
@
0 ==1 ! + * , # ! ! " +
$(
03 1 : # +¾ =3 ! +¾ / D , 2 ,
, D 0:F 9=1 ' The Reconstruction Index of Groups
;% * X + X DEFINITION
( :*X + X # , * X + FACTS
$(
- :& ( A ) , , A , A , :* + )
$
( 0=91 ' ' D 4 ' , 0:=G, =G, 98, = , =D1
2.3.6 Digraphs & # , #
© 2004 by CRC Press LLC
Section 2.3
93
The Reconstruction Problem
, '
DEFINITION
( 0=81 4 / * * + * ++, FACTS
$ (
0<88, F9D1 ' !
$
( 06G81 ! *< 06881+ < 0A =3, =G, I ==1 CONJECTURE
, 4 &%!#(! .!( ! # * +(
4
* #
%
2.3.7 Illegitimate Decks DEFINITIONS
(
% ( #
% FACTS
$(
09 1 A # %
$
( 06<9 1 / % # ' % 0FM < =, F 6=1
References 0:F 9=1 ? , R : , . F %, R , : , %# # 5 # (6 8 *=9=+, DJG
© 2004 by CRC Press LLC
94
Chapter 2 GRAPH REPRESENTATION
0A I=G1 ; A , < A , A I , @ & , %# # $ # # # 3 *==G+, J= 0 :81 - & A : , 7 6 E :& , # $ # (# 8 *=8+, D=JD=G 0;3 1 F K % K ; , @ # , # G * 33 +, 8J9 06981 A > , - % %, ; 6 6, : , %# " *=98+, J 3 0 =1 ? ; , " , : 7 , == 0=31 U , , %# " *==3+, J 0G=1 K , @ FE # # # # GD *=G=+, 98J=8 0G=1 K , @ 7E & , 8 %# $ # *=G=+, 9J 99 0=1 K , E , J D A F# *-+, 9 , : 7 , == 06881 K ; 6 , N , %# " *=88+, 8J G9 0 81 , @ & , %# # *=8+, =J 0:=G1 K : , < # &# *==G+, J 0:81 T : , #
, 8J8 : , K 4 F % *-+, : " , < I , =8 0:;=91 A :% U ; U , <% ' & , (# # # $ # & # # $ # *==9+, =J33 0A43 1 : A , @ 4 , A , @ / , $ # D= * 33 +, =J33 0A =31 A : A : , @ , %# # # # D *==3+, 3J 0-991 ? - , , # & # G *=99+, J 3
© 2004 by CRC Press LLC
Section 2.3
The Reconstruction Problem
95
0-S 991 ? - , ; R S ' , :#
, %# " *=99+, DJD 04=1 6 4, - # N.I, # $ # # 8 *==+, 9J 04> >31 6 4, R; > , : F >, @ !' # %, " # 8* + * 33+, J D 04 891 < 4 , # , .., %# # # # # *+ *=89+, 33J G 04 ;91 < 4 K ; , ' , .( , %# # 5 # (6 3 *=9+, 99J=D 0 8G1 > , %, %# # 5 # (6 3 *=8G+, 3JG 0 91 : A A F, < , %# # 5 # (6 3 *=9+, 9DJ 9= 0 81 A ; #, , # # $ # # 3 *=8+, J 0 =G1 : , , $ # D *==G+, 8J9 06G1 4 6 , @ , 8JD 4 *-+, " , < < =G, , =G 06;981 4 6 K ; , ' , " *=98+, DJD 06;991 4 6 K ; , @ , 3 # %# $ # 4 5/6 = *=99+, 8JG3 06GG1 4 6 - , ' , # %# $ # 9 *=GG+, 93J93 06G81 4 6 - , @ , $ # $ # 8 *=G8+, J 069D1 4 6 , , %# "
= *=9D+, DJD 06<9 1 4 6 , , <, / % , %# $ # *+ *=9 +, DJ 06G=1 ; 6 , @ , # # $ # # *=G=+, 9DJ98
© 2004 by CRC Press LLC
3
96
Chapter 2 GRAPH REPRESENTATION
0FD81 K F, , 8 %# $ # 8 *=D8+, =GJ=G9 0FM< =1 K FM , 7 < M , K U, "
, %M , == 0F91 > ; F , @ , *=9+, 3J F9D1 > ; F , @ < % E , %# " = *=9D+, 8J8G 0F81 A F , ? , $ # & # ): = *=8+, DDJG3 0F ;3 1 . F %, ;, A , 7 , $ # DG * 33 +, 9=J= 0F 6=1 A F ; 6 , @ ' , $ # 8*+ *==+, D8J 8 0;91 K ; , ' ..( , %# # 5 # (6 3 *=9+, =GJ 0;981 K ; , N # / # , 5 (6 *=98+, DJG 0;< 31 K ; < , " :
, : 7 , 33 0;8 1 ; ;U", %# # 5 # (6 *=8 +, 3=J3 09 1 !, # ' % , 3 # %# $ # 4 5/6 *=9 +, DJ8 0831 , , # %# $ #
*=83+, DDJG3
08G1 , @ , %# # 5 # (6 *=8G+, DGJGD 0991 , ( , # & # G *=99+, 88J98 0=G1 , 4 4 : , A , 7 - , ? # , ==G 0 881 A F, : %# " *=88+, 9J 9 0981 I % , , $ # & *=98+, =8DJ=93
© 2004 by CRC Press LLC
Section 2.3
The Reconstruction Problem
97
0= 1 I % , , # # $ # = *== +, 9J8 0=D1 I % , % , %# # # ; # 3 *==D+, GJ 8 0=91 I % , , # # $ # D *==9+, =JG 0=1 , , < ' # %# "
* + *==+, 8J3 0=D1 , , %# "
=*+ *==D+, 8DJ9 0M8G1 I M , , # $ # )9# 8 *=8G+, 83=J8= 0M881 I M , # ¾ 6 , %# # 5 # (6 *=88+, 9J 9 0991 > K , 9 : , A , 7 > , =99 09=1 > K , , 9 *=9=+, J 8 0=31 > K , # ! , %# " *==3+, =JGG 0-6981 > K , ? - A 6$, , %# " *+ *=98+, 9J3 0?891 : < K ?> , , : 9 ; > % K > *-+, " , , ;, =89 0=31 ; , , %# " *==3+, 8J8= 0< =91 K $ A < , ? , %# # 5 # 6 9* + *==9+, G=J98 0< ==1 K $ A < , , 3 ! %# # *===+, 8 0=81 < , 4 " & *# *==8+, J = 03 1 A , @ 6 , %# # 5 # 6 == * 33 +, J=
© 2004 by CRC Press LLC
98
Chapter 2 GRAPH REPRESENTATION
0<G1 6 < , " "# F % , # $ # *=G+, = 0< 9D1 K < M , 0< 8=1 K < #%, < , " , ?# R % < 9 *=8=+, 9J9= 0< 1 . < , , . , DG * 33 + DJDG 0<881 F < % , & , %# " *=88+, =J D 09=1 , / ' , $ # 8= *=9=L=3+, 38J 0 8=1 > , % E N K 7 < *-+, " : , , =8= 07G31 < 7, $ , > *. +, ?# R %, =G3 0I ==1 I , , %# # # # *===+, GDJ88 0> 1 6 > , ' , (# # $ # # 9 *= +, D8 JD8= 0R 9 1 6 R , , %# # 5 # (6 *=9 +, DJ DG 0T=91 R T, @ .., %# . $ # # D8 *==9+, G9J 8 0T=91 R T, @ ..., %# # 5 # (6 8 *==9+, 3 J3 0T991 R R T , & , %# " *=99+, 8J
© 2004 by CRC Press LLC
Section 2.4
2.4
99
Recursively Constructed Graphs
RECURSIVELY CONSTRUCTED GRAPHS
! ! " " " < " 4 : -/ : "
Introduction A! , &
, # ** &+
* &
DEFINITIONS
( ! * ! + , - ! # # !
( -
# #
REMARK
%(
, , & < 3
2.4.1 Some Parameterized Families of Graph Classes Trees DEFINITION
( # ' * + # * + ; * + # *½ ½+ ! *¾ ¾+ % & ½ ¾ *½ ¾+ # ) ½
© 2004 by CRC Press LLC
100
Chapter 2 GRAPH REPRESENTATION
, * + A!
6# , ! ½ * +
EXAMPLE
(
4
Figure 2.4.1
%(#- !#(! !
Series-Parallel Graphs
4 , . 0A GD1 4 2 $ ! # , , #
Figure 2.4.2
2!#& """ ##& """ #
4# , # ! DEFINITION
( # * + ! #( " * ) )
+ * + #
" * + # * + # #
" * + # * + # # #
" * + # * + # 2 #
( & %% ! # # , , !
EXAMPLE
(
! 4 ! 2 #
© 2004 by CRC Press LLC
Section 2.4
101
Recursively Constructed Graphs
Figure 2.4.3
.!!#! ! !# ! ##& """ #
-Trees and Partial -Trees DEFINITIONS
( ' , . , # 5 * + ' & . ,
(
. , .
(
*
+
( / " ' / FACTS
$( $( $( $(
, < .
, , * + EXAMPLES
(
# 4 , #
© 2004 by CRC Press LLC
102
Chapter 2 GRAPH REPRESENTATION
Figure 2.4.4
.!#(! ! & " &
A 4 B
C # .¿ ! ' 3 , # * + ' @ 4 ,
(
4 D # 2 * + # ! & ! -'
Figure 2.4.5
##& """ &
Halin Graphs DEFINITION
( & ) $ % , # $ # ' % $ FACTS
$( $(
6
6 % , , 6 6 EXAMPLES
( 6 4 G #, # # 2
© 2004 by CRC Press LLC
Section 2.4
103
Recursively Constructed Graphs
Figure 2.4.6
3 "
(
4 8 # 2 ' 6 2 !
Figure 2.4.7
! 3 "
Bandwidth- Graphs DEFINITION
(
* + ' ' ! $ *!+ *+ *# =+
(
EXAMPLE
(
# # 4 92 #
Figure 2.4.8
© 2004 by CRC Press LLC
) *& *& #
104
Chapter 2 GRAPH REPRESENTATION
Treewidth- Graphs
# % < *, 0<9G1, 0<9G1, 0<=1+ !
# , # % E # % , , > E
& , DEFINITIONS
(
"
" "
( (
) * + *
) *
$ +, # $ # '
* &+ # * & $ ,
(
'
# %
#
REMARK
%(
, , , ! ' * + @ , # , , , # * , # # +
EXAMPLE
(
# 4 = 4 , , ' ( ½ ) ½ ) ) ) ) ) # ' 4 =, * + , # 2 ,
$
Figure 2.4.9
© 2004 by CRC Press LLC
$
# " &!!#!
Section 2.4
105
Recursively Constructed Graphs
Pathwidth- Graphs DEFINITIONS
(
#
/ '
( (
,
½
¾
' ½
(
, !
# %
#
EXAMPLE
(
# 4 3 ' !
#
$
Figure 2.4.10
&!!#!
Branchwidth- Graphs DEFINITIONS
$ +, # $ &
( ) * + * # ' '
(
$
. '
$
$
, *
$ +
( ; * + ) * + ' ½ ¾
$ , # * ½ + * ¾ +
$
( $
$
*$ + '
© 2004 by CRC Press LLC
$
106
Chapter 2 GRAPH REPRESENTATION
(
(
# %
#
FACTS
$
# 3
$
( 0<=1
( 0<=1 # ' # /
$
( 0<=1
#
#
EXAMPLE
(
# # 4 * +2
Figure 2.4.11
) *& # &!!#!
-Terminal Graphs DEFINITIONS
,
% *# ++ ! # , #
( ) * $ + ' $ ) ½ ¾ , # $ ( ! + ) ½ ¾ # #
EXAMPLE
(
# 4 I # 2
© 2004 by CRC Press LLC
Section 2.4
107
Recursively Constructed Graphs
%(#- !#(! ! & "
Figure 2.4.12 REMARKS
%
(
,
$
)
#
.¾
*,
%
(
½
%+ *
+ #
% # + *
+, #
4
½
(
(
#
*
+ )
¾ *
+
$
$ ½
,
) *
$
) *
+,
+ #
¾
)
* + (
* +
$ $ $
(
½ ½ ¾ ¾ ½ ¾ ½
"
½ ¾ ½
"
$
'
"
+
& ' ;
"
*
+
,
#
,
)
*
+ )
¾ *
+
$ ½ $½ ¾ $¾
(
% +*½ ¾ + & *½ + *¾ +
*
.
' ,
*
+ #
½ *
+ )
Cographs DEFINITION
(
!
#(
"
# '
"
.
"
.
½ ½
¾ ¾
, &
,
%
½
¾
¾
½
¾
, #
*
½ ¾
+ #
½
:
© 2004 by CRC Press LLC
½ ¾ ½ ¾
108
Chapter 2 GRAPH REPRESENTATION
EXAMPLE
(
4 ! *+ #
Figure 2.4.13
.! !#(!
FACTS
$ ( $(
0:; 91 0:; 91
Cliquewidth- Graphs
. + # 0:-=1
% DEFINITION
( ; 0%1 ! #(
#
# *+ ) *+ 01 / # % . ½ ¾ / # 01, *+ & ½ ¾ / # * + *½+ / # , # *½+ ½ *½ ¾+ *½ + ) *¾ + ) *+ *½+ / # , # *½+ ½ # #
" "
REMARK
%(
A! 9 ! / # / # / # / #
,
, ' , , ,
. , . . %, / ! ( # &
© 2004 by CRC Press LLC
Section 2.4
109
Recursively Constructed Graphs
- # , # #
< , / / # ,
/ # # / . + * 0:@331+ EXAMPLE
(
/ # 4 -' ,
! *+ #
Figure 2.4.14
"4(*& !#(!
-NLC Graphs DEFINITION
( ; 0%1 # 0%1 0%1 '( $ % ! #(
# *+ ) *+ 01 %?;: . ½ ¾ ?;: 01, & ½ ¾ ?;: , # ½ ¾ ½ ¾ *½ ¾+ # ½ ½ , *½ + ) 2 ¾ ¾ , *¾ + ) * + *½ + ?;: , # ½ # #
" "
"
EXAMPLE
(
4 ?;: . 4 D,
, , , , , , # # % ) # ! # , * &+ # * + !
© 2004 by CRC Press LLC
110
Chapter 2 GRAPH REPRESENTATION
Figure 2.4.15
&25. !#(!
-HB Graphs A B ,C DEFINITION
( & $ % # *¾ + #
/ # * 5 + REMARKS
%(
# , ,
%(
/ # ?;: , ' '
%
( ' * +
%
( / , # / # $ 6 4 , 0K< 3 1
% (
6# , 6 ! @ ,
/ # , / # 6
2.4.2 Equivalences and Characterizations Relationships between Recursive Classes
/ ! < # 7 !
© 2004 by CRC Press LLC
Section 2.4
111
Recursively Constructed Graphs
, 4 = * + 0 ;< ==1 FACTS
$( $( $(
# - # # #
! * 5 +
* 0> 69G1, 0> 981+
$( $( $(
# # & %%
< #
$( $ (
< #
6 2 !
$ ( $( $( $( $( $( $( $( $(
0:-=1 : / # 0:@331 - # / # * ½ 5 + 0<=1 - # # ; 0<=1 - # #
5
0>=1 : ' ?;: 0>=1 - # * ·½
+?;:
0>=1 - / # ?;:
0>=1 - ?;: / # 0K< 3 1 - /
# 6
Characterizations
< " DEFINITIONS
( ,
) * +
, # * + )
* + )
( # # ' *B C+ ! ,
# ' # & , #
( 0 ! / '
© 2004 by CRC Press LLC
112
Chapter 2 GRAPH REPRESENTATION
REMARKS
%( ! & * + F > # ( < # 0 , 0 , ' ! 0½ 0 0 , 0 %( < *0<991+ ! > E & # , " 7 , , , ' 2 # %# " %( , < " !
%( %# * 4 #+,
' %#
FACTS
$ ( 0:; 91 : 1
$ ( .
$(
,
.
$( . . $( ( # 4 G
.
Figure 2.4.16 $! !# ! " &#
2.4.3 Recognition . , Æ , # "
© 2004 by CRC Press LLC
Section 2.4
113
Recursively Constructed Graphs
REMARKS
%( <
4 ' , 6 " !
* , +, ! , * 0:? 91+
%( ", ,
# * 0A GD1+( ' * + * + # * +2 2 ' , , 2 # , # # . # .
%( <
* 0 9G1+ # *0<=G1+
EXAMPLE
(
/ # 4 8
Figure 2.4.17 %(! ! !# ! " & Recognition of Recursive Classes FACTS
$( " $( < " $( # , # , # , # "
( 4 !'
*
+
4 G
$( 4 G " % !' (
4 8
$( > , 4 G * 0=1
$ ( >
) 2 0<=G1 #
) +
, # 4 G
$ ( # 0<=1
© 2004 by CRC Press LLC
114
Chapter 2 GRAPH REPRESENTATION
$( < " ! , " * 0<991+
( 4 # < 6# , ' '
$( 0> 981 - # ¼ ¼ 4 ' , ' , ¼
B C 4 ' , $( 0:<9D1 : "
$( ' " / # $( ' " ?;: $( 0K< 3 1 . 6 , ! # / # ,
# #
/ # *+ 6
/ # #
References 0 : 981 < , A : , % #% , : ' ! % , $ %# $ *=98+, 88J 9 0 : <=1 < , : , % #% , A <,
, %# $ *==+, JG 0 6 =1 < , < 6 , % #% , *+, -Æ % , $ # *==+ 0 9D1 < % #% , : " % , & *=9D+, G=J8D 0 9G1 < % #% , : " , $ %# $ *=9G+ 3DJ 0 :=31 < , % #% , A : , 4 " , $ # *==3+, J= 0@=91 ; < @ , @ # # 1 , $ # *==9+, J 0 81 ; > % - , " % , $ *=8+, JD
© 2004 by CRC Press LLC
Section 2.4
Recursively Constructed Graphs
115
0 <=1 A %, ? , A < , , Z % ' , %# # ( *==+, 8J 9 0991 , ( , A A , < . : < , . , =99 0=31 6 ; , : # # , # :# :)) =2//, A : < , 7 7 , ? , ==3 0=1 6 ; , # , *==+, J 0=G1 6 ; , ! # , $ %# *==G+, 3DJ8 0 6F=D1 6 ; , K , 6 6 , F%, ' # , # , , %# *==D+, 9J DD 0K< 3 1 , K ; K, I , K < , / # % ,
* 33 + 0F=G1 6 ; F%, -Æ # # , %# *==G+, D9J3 0M=1 6 ; 6 M , # #
, $ %# $ # *==+, 9J9G 0=1 , % , , :, A , $ %# $ # *==+, 9JD3 0 ;< ==1 M , I ;, K < , " 9, <. A
, <., *===+ 0:=31 : , .( " ! , # # *==3+, J8D 0:= 1 : , ...( , , ' , # > # *== +, D8J 9G 0:=D1 : , I...( @ , . *==D+, 3J 0:=G1 : , S( ; , *==G+, 98J 0:-=1 : , K - , " , 6 # , %# *==+, 9J 83 0:F 91 A : A F % %, 4 ! , & *=9+, 8J G
© 2004 by CRC Press LLC
116
Chapter 2 GRAPH REPRESENTATION
0:; 91 A : , 6 ; , ; < , : , $ # *=9+, GJ8 0:=1 : , , *==+, =J9 0:? 91 : &, A ?, > %, 6 , $ *=9+, 98J = 0:@331 : < @ , 7 / # , $ # * 333+, 88J 0:<91 A : , R , ; F <# , : ( , , & *=9+, =J D9 0:<9D1 A : , R , ; <# ,
, $ %# *=9D+, = GJ= 0A GD1 K A Æ, , %# $ # # # *=GD+, 3J9 0==1 : 7 , @ / # , . & GGD *===+, DJ8 0 <%=1 A A <% F , ?: " , $ %# $ *==+, JD 06R981 S 6 R R, # , *=98+, DJ9 0F.79D1 R F& , . " %, < 7, : " % , 8=J9 # ?=-, =9D 0F=1 F%, # ' , . & , < I , == 0FF =D1 F% A F , # , %# *==D+, GGJ 9 0=1 K [% , ! , %# *==+, J 0 =1 % #% , / ! , D=JG33 # $ @ " $ , < ==, : < , < , == 0= 1 , 4 ' # / %, J 9 # A , == 0=1 , # ( ?# : <
, 98JG 9 +AAB, , : 7 , ==8
© 2004 by CRC Press LLC
Section 2.4
Recursively Constructed Graphs
117
081 A K , @ " % , $ # *=8+, 8J 0<91 ? A < , . -' , %# # ( *=9+, =JG 0<91 ? A < , ... # , %# # ( *=9+, =JG 0<9G1 ? A < , .. # , %# *=9G+, 3=J 0<9G1 ? A < , I -' , %# # ( *=9G+, = J 0<9G 1 ? A < , I. A &
, %# # ( *=9G+, DJ9 0<991 ? A < , I.. A & , %# # ( *=99+, J D 0<991 ? A < , SS > E & ,
, =99 0<=3J1 ? A < , .I # # / , %# # ( *==3+, 8J D 0<=31 ? A < , .S A &
, %# # ( *==3+, 3J88 0<=3 1 ? A < , I... F #%
, %# # ( *==3+, DDJ 99 0<=1 ? A < , S @ , %# # ( *==+, DJ=3 0<=1 ? A < , SI. -' ,
, == 0<= 1 ? A < , SS.. .
% ,
, == 0<=1 ? A < , S. A , %# # ( *==+, 8 J3G 0<=D1 ? A < , S... & , %# # ( *==D+, GDJ3 0<=1 ? , A < , , Z % ' , %# # ( *==+, J9 0<=G1 A < , @ # , $ %# $ # *==G+, 3J8
© 2004 by CRC Press LLC
118
Chapter 2 GRAPH REPRESENTATION
0< =31 < ; , " , & ' *==3+, ==J 0< 991 < \ , > # V, # 1 $ # , % F/ *=99+ 0<=1 A < , : , *==+, 8J 0>=1 - >%, %?;: , $ # *==+, DJ GG 0> 981 I > , ; % , A A , A : < , : 7 , =98
© 2004 by CRC Press LLC
119
Chapter 2 Glossary
GLOSSARY FOR CHAPTER 2
) * +(
, ' 2 ' , %
&
"# J
J ) * +(
' , # 0 1 ) ' ' , 0 1 ) 3 #
-# !#(! ( J
%
( /
""& # #!#& # !"( #
"" !#(! ( J ( 1 J ( & '
*& ( # ' '
!
$
*!+ *+
(
( # # &!!#! J ) * +( *$ +, # $ # ' ' & $
, "( # ' $
*& ( # # * J ( # %
&6# # ( ! ', ' '
&6# ( ' !
! " ( "! (
/ *+ ) ½ ¾ , # ) *½ + 0 ) *!½ ! + $ & ! ( )
! " ( J ( '
.7( # # 6 ! #!!#(
½ ¾
, /*½+ ) /*¾+ $
½ ¾
/
#
! " ( " ## &!#(! ( J ( % # , # , /
© 2004 by CRC Press LLC
120
Chapter 2 GRAPH REPRESENTATION
( % # , #
, /
" ## !#(! ( J
" *& (
.½ ¿
"4(* J ( Æ
, # , & ,
( ! # *0%1 +( # *+ ) *+ 01 / # % . ½ ¾ / # 01, *+ & ½ ¾ / # * + *½+ / # , # *½+ ½ *½ ¾+ *½ + ) *¾ + ) *+ *½+ / # , # *½+ ½ # #
"4(*&
" "
! ( !
" # '
½ ¾ , & ½ ¾ . ½ ¾ ,
½ ¾ , # % ½ ¾ *½ ¾ + # ½ ½ ¾ ¾
" . "
!"! (!!# !" .7( !
, #
!"! " ## J (
( 3 ( % ' % * +2 , 3 ) 0%½ %1 '
!"! J
, - " J ( ' !"!&#- ( # %
%
J / ) *½ ¾ + * # $ +( / ) *½ ¾ + * + * + ) * + ) 2 * +
!- !
!## J ( & #
1 J
( *+ '
! - ( & #4( J
© 2004 by CRC Press LLC
( /
, #
121
Chapter 2 Glossary
-!
3
J
5 6
# &6# !# &6# # ) *
* + ) 0
) 0
%½ %
1(
4 %½ 4 % * +
* +
1
+( #
¾
( ! ! (
', %
& ',
'
&6#
(
!
&! !
J
#
) *
+(
# ' *B C+
,
# ' #
& , #
&1 &" #(
J
( *
J
+
(
2 % #
&&" #(
& !
J
J
&!8 " " ##
) *
(
( ,
&!#("
(
+(
,
#
&!#(" #
( ,
,
&%!#(! .!(
( &
&!#(! ( %
J
#
(
/
&!#(! ! 0 &!#(! !" ! #(( (
*
# % *
,
X(
&&!#(! !"
/ ,
X
" - -&1
+ J #
/ #
X
(
,
/ ,
( #
J
( ' #
J
© 2004 by CRC Press LLC
(
122
Chapter 2 GRAPH REPRESENTATION
-&!#(" (
/
' %
$"!&+ # "" "!( *
+ # '
' ,
!* J ( &
'
#!!# !" 9':( Æ
# #
&!( J (
# #
3 " ( # ,
# ,
&3)
( # 2 A! 3
½ , %
"" 1(
"" 1 !"( #
%
) * + ' , # 0 1 ) 3 # J ) * + ' , # ' 0 1 ) '
J
9':(
3
# #
# #
0 , 0 #!!# ! " " # 0 ( , ( 0 , , ,*+ #!! #( #
#!!# ! #" #( ' & &
#!!#&!" !"( / /" "!#( ! # ! ##
(
)
½
'$
/"0# "!( '
#
" " ( # L , #
, !
" & "!(
+
*
! J %(
(
* 5 +
! /
)
%
!("( # , '
!!!# * !
( &
© 2004 by CRC Press LLC
0
J , # * +
!
123
Chapter 2 Glossary
!
0
!
!
* + * + , * + * + # 0 1
0 0
!!!# J
0
0 ! 0
( ( , * + * + 0 1 (( * /
B , C+
!
0
!!! J '
4 *+
(
0
& .
&25. !&" "&!!"" ( ! # *01 , # 01 01+( " # *+ ) *+ 01 ?;: " . ½ ?;: 01, & ?;: , # * + # , * + ) 2 , *+ ) * + " * + ?;: , # # # !# 6 (! !( * # +
# , , ! ,
2&!#(" (
$
* * + * ++, , Æ / ! J * + ) * +( ' $ , # * + * +
$ $ $ " &( ( / * + * + * &!!#!( #
+
*& ( # * J
2
( # %
#
( # /
" ' /
" - ! ( ' '
!"! " 1( * +
%
!"! "& "!(
** 5 + +
) * + ! J ( # # , # !8 " " ## ! #( , ,
%
© 2004 by CRC Press LLC
124
Chapter 2 GRAPH REPRESENTATION
!#(" ( , # ,
!#(" (
#
%!#(! .!(( & #
!#(! J X( #
,
* X +
( % /
( 0 # %
!#(! ( J
#
!#(! !
(#-" !#( " ##( ! * ! + #, 2 ! # # !
6 ! !"! J #
( # # #
(" ##!(
, , F
##& """ # , * + J !
(
"
"
"
"
*½ ¾ + * + # ) ½ ) ¾ *½ ½ ½+ # *¾ ¾ ¾+ ½ # ¾ # ½ ¾
*½ ½ ½+ # *¾ ¾ ¾+ ½ # ¾ ½ # ¾ # ½ ½
*½ ½ ½+ # *¾ ¾ ¾+ ½ # ¾ 2 # ½ ½
# &!#(" J ( %
# !#(" J ( %
# # ) * +( # # "8 ! ! !"! 3( ! . 3
# " !"!( !
#((( * X + # ! , X
,
& " (#- ( ,
*< A! D +
© 2004 by CRC Press LLC
125
Chapter 2 Glossary
#- "!#( !
( ,
(
*
+
# , #
(#-" 6(
# '
& #
&
* !+(
.
2 ,
2 ,
' &
.
,
"( &!!#! J ,
"
)
" * "
* J
* &
+
) *
$
+(
,
*
$
+,
# '
* & $ #
,
( # %
2 #
*& ( # # -&" #( J ( '
2 (% #
&-&" #(
J
(
* 1" &!#(" J (
*½ *¾
#
J * J *
© 2004 by CRC Press LLC
#
* 1" !#(" J (
$ $
+( '
+( '
$
Chapter
3
DIRECTED GRAPHS 3.1
BASIC DIGRAPH MODELS AND PROPERTIES
3.2
DIRECTED ACYCLIC GRAPHS
3.3
TOURNAMENTS GLOSSARY
© 2004 by CRC Press LLC
Section 3.1
3.1
127
Basic Digraph Models and Properties
BASIC DIGRAPH MODELS AND PROPERTIES
Introduction ! "
"#
$ %&'(! $)*&&(! $+,( " - $ ),(
3.1.1 Terminology and Basic Facts
-
.! # " - !
" / 0 1 "
"
Reachability and Connectivity DEFINITIONS
2
3 ! ¼ 4
5 ¼ ½ ½ ¾
½
" ! / 0 5 ½ / 0 5 5
# 6 " "
2 2
- # 6 4
# 7 #!
2
" - # 6 - # 6 7" " / " # 60 %
© 2004 by CRC Press LLC
128
2 2
Chapter 3
DIRECTED GRAPHS
" # "
74" !
"
2 % # " 5 !
" " " " EXAMPLE
2 # ! ! ! 8 "- "- -
! # -
Figure 3.1.1
FACT
2
% -
4"
! 4"
Measures of Digraph Connectivity
+ # " " 9 9:
; # # 6 /0
/'90 DEFINITIONS
2 # "! / 0
© 2004 by CRC Press LLC
Section 3.1
129
Basic Digraph Models and Properties
2 5 / 0 " "- !
/ 0 -
2 -" - 5 / 0! /0! < " " / " -" 0
2 -" ! /0 <
+ ! "- - "
! " ! "
= >
"- - / 0 Directed Trees DEFINITIONS
2 2
#
" " !
! " " ! -
.
!
!
REMARKS
2 ! - 4
2
6
Tree-Growing in a Digraph
! # #! - # / 0! 3 ! ! # " " " /! -# 0! "
DEFINITION
2 # #
© 2004 by CRC Press LLC
130
Chapter 3
Algorithm 3.1.1:
DIRECTED GRAPHS
! " #$ %
2 " !2 # "-
3 < " +
, " 3 <
25 + % /0 /# 0 " +
" 25 ? "-
+
" ! # " 6 #"
#
EXAMPLE
2
#
@ " # +
" ! #
" / ,0 8 # # "- "
Figure 3.1.2
&& '&
FACTS
2 % # "
" " " "-
2 3 ! ! " REMARK
2
7 "
#
© 2004 by CRC Press LLC
Section 3.1
Basic Digraph Models and Properties
131
2 # - # " ! . @ # 7 - #! A
" /,0! A - A ! ! ! $ )&&(! $)*&&! 9(! $& ( Oriented Graphs DEFINITIONS
2 ! " # "! #
2 ! - ! # " "! " "
2 - EXAMPLE
2
. # ! ¾
Figure 3.1.3
(&) ¾ &) '&
8 ¾ " - 3 ! - Æ < # " B7 & & FACT
''* " $ &(
2 -
Adjacency Matrix of a Digraph DEFINITION
2
5 / 0! ! "
$ ( 5
© 2004 by CRC Press LLC
5 - 5
132
Chapter 3
DIRECTED GRAPHS
FACTS
2 #- 1 4 "! - 4
2 % # 1 " $ ( # 4 - # 6 EXAMPLE
2
1 9 "
'! " - # 6 4 ! # / 0-
5
, ,
Figure 3.1.4
,
,
, , ,
, , ,
+) ,
REMARK
2 #! #
! #
" / 0 # '9
3.1.2 A Sampler of Digraph Models 3 ! # #
Markov Chains and Markov Digraphs
6 " 6 # ! # -
1 /! $ :C(! $+&9(0 DEFINITIONS
2
4 " ! 5 , ! 5
5 , ! " 3
! -
/ 5 5
© 2004 by CRC Press LLC
5 5 0 5 / 5 5 0
Section 3.1
133
Basic Digraph Models and Properties
2
A
! / 5 5 0 5
2 5 / 0 # - # "- 5 ! - 5 ,!
2
6 " #
EXAMPLE
2
2 # D
# # 3 ! # D E #! D B
DC %
! # 5 5 , 9 C! 4 - 6 " 6 " 6 " # C
,
, :C , , ,
9
C
,
, , :C , , ,
Figure 3.1.5
, , , :C , ,
, , , , :C ,
9 C , , C , , C , C , C ,
$'& * , - ./
Equipment-Replacement Policy
+
< # -A EXAMPLE
2
F # D'!,,,! #
DC,, 1 " 6 # # ! A" .
D',, / 0 D&,, / 0 D,, / 0 D',, / 9 0 D,, / C 0
G D !,,, / - - 0 D!,,, / - - 0 D&!,,, / - - 0 DH!,,, / 9- - 0 D'!,,, / C- - 0
- &2 "!
'!
$ ' ' A
© 2004 by CRC Press LLC
134
Chapter 3
DIRECTED GRAPHS
# ! ! # " " # " ! # " # 6 ! " 5 #
? ? " ' # # " C # -#
D,,
Figure 3.1.6
0 & # & '&
A / - 0 " " ' 6 ! "
6 16 F , The Digraph of a Relation and the Transitive Closure
.
" /
0 DEFINITIONS
2 2
# A
# A # " ! #
E ! # " " / 0 # " !
# # ! ! / 0 # " "
2 #
" ! " " $ ! $
2
#
#
# A / 0 # 4 5 5 % / 0 #! 5 , % 74" ! " #
#
"
#
2
%
# " # #
© 2004 by CRC Press LLC
Section 3.1
Basic Digraph Models and Properties
135
! / 0! 5 "
-
! - & "
EXAMPLES
2
# 5 " " / 0 / 0 / "0 /" 0 /" 0
# " # :
Figure 3.1.7 " / &
2 -"
-# 6 # A - # 6 ! " "
! " 6 - " A
" # -
Constructing the Transitive Closure of a Digraph: Warshall’s Algorithm
% -" # " ½ ¾
Æ
! +
$+ '(! 4 ! &¼ &½ & ! &¼ 5 ! & ½ & ! 5 ! & " & & & ½ & ½
/ 0 / & ½ 0 #" & ½ ! " "
Figure 3.1.8 " / 0
& ½
© 2004 by CRC Press LLC
136
Chapter 3
Algorithm 3.1.2:
DIRECTED GRAPHS
1 &&* " / 2& 314
2 -" & # " ½ ¾ !2 " & 3 < &¼ 5 5 3 / 0 & ½ % 5 3 / 0 & ½ / 0 & ½ / 0 & Activity-Scheduling Networks
3
1! 6 & # 6 G 6 " " 6 6 #! " # 6 @ # 6
Figure 3.1.9
/) '&
Scheduling the Matches in a Round-Robin Tournament
! # 6
/
" 0 3 @ ! 1" " 4 # + "# ÜC'C DEFINITIONS
2 - #
2 " # " # #
© 2004 by CRC Press LLC
Section 3.1
2
137
Basic Digraph Models and Properties
5 / 0
# " @ ) <
ÜC
ÜC!
ÜC9
REMARK
2
- - -
! # "! < 6 " / C'0
ÜC'
- '
Flows in Networks # 6 6 # 6 7 !
1 ; # # 6 1
6 ! # 6
DEFINITIONS
2
!
5 / " " 0 # "-
! - ! " " 2
" 2
2
) ! " 2
! 5
( !
) A
¾
/0 5 ,
/ " 0 /
#
0 # " " 2 " !
" !
2
!
!
(!
# < !
# <
!
; #
- # 6 6 ; #
% 0 ; #
4 ; # /
/
2
0
! A %
; # # 6 / " 0 4
/
0
Software Testing and the Chinese Postman Problem ! # F ; # " # "
!
3 # ! #
6
DEFINITIONS
2
#
© 2004 by CRC Press LLC
# 6
138
Chapter 3
DIRECTED GRAPHS
2 / 0 # 6
2
)" -#
!
"
" A -#
- &
2 # F ; # ! # "! !
A 4 # " 6
< 4" I I ! #
-# 4 REMARKS
2 6 ! # < / 0 3 ! # 4
2 J ! ; # F ! #
2 7 ! # !
Ü9! " " I I
Ü9 Lexical Scanners
# ! ! < # & # + # - # 6 < # " "
" '
! , . " ! @ " ! # " A " ( ! " A 7
# 6 3 A ! " A
Figure 3.1.10
© 2004 by CRC Press LLC
# 5 6
Section 3.1
139
Basic Digraph Models and Properties
3.1.3 Binary Trees A
! 3 ! 3
!
B # #
Rooted Tree Terminology DEFINITIONS
2
3 !
2
! /! ,0
"
! 4
/#
4 0
2
3 "
2
0!
"
"
2
/
"
4
/
3! !
0
5
!
!
# "
A
2
# " ! - - " #
2
# " # !
2
' )
Figure 3.1.11
/0-
"
FACT
2
7"
© 2004 by CRC Press LLC
"
140
Chapter 3
DIRECTED GRAPHS
Binary Search
$ # A . A ! & - 6 !
-
# DEFINITIONS
2 /0 ! # "
6 ! 6 " 6 " ! 6 "
2 " "! "
@ EXAMPLE
2
- # 6 2 H & 9 H C 9, 9'
Figure 3.1.12
'& ' )# '&
Algorithm 3.1.3:
! )#7 #" 7
2 - 6 !2 " %/0 5 ! 8J%% 25 / 0 + / 5 8J%%0 / 5 %/00 3 %/0 25 * " /0 7 25 + " /0
- " # " ! 3
! # " # B! # -
- ,/ * 0 # "
© 2004 by CRC Press LLC
Section 3.1
141
Basic Digraph Models and Properties
6 ! ,/ 0
References $ )&&(
G ) ! ! 7 ! -+ ! &&& $ ),( K -K ) )! ! " ! -G
! % ! ,, $ %&'( ) % % 6! # 7 !
B
! % L8# * 6! &&' $ :C( 7
! $ ! I-B
! &:C
$)*&&( K % ) K *
! ! &&&
I!
$ &( B 7 ! # Æ ! ! %! % 9' /& &0! HMH $ :'( ! % % ! I-B
! &:' $ H9( ! ! I-B
! &HC $& ( B K ! ! 6L ! && $#&( N
8 # ! ! K + O ! && $+ '( +
! ! & ' % & /&'0! M $+,( +! 3 ) ! 7 ! ,,! I-B
! / 7 &&'0 $+&9( + % + ! . 2 ! 7 ! I! &&9
© 2004 by CRC Press LLC
142
3.2
Chapter 3
DIRECTED GRAPHS
DIRECTED ACYCLIC GRAPHS 7 ) I 9 .<
Introduction + !
! ) + ! 4
" " ! " " 6 )
"
3.2.1 Examples and Basic Facts DEFINITIONS
2 2 2 2 2
#$ " < " <
" " " " EXAMPLES
2 ( )
1
6 # P 6 . 1 " 6 Ù Ú 6 Ù Ú ! ! ! " 1 #
# )! # ! 1 2 " 6 # " "
© 2004 by CRC Press LLC
Section 3.2
Directed Acyclic Graphs
143
Figure 3.2.1 & /
2 $ $ / ! ! 0 / ! <! 0
3 4! # ! ! ! / Ü 0
Figure 3.2.2 )
2 $'
! # " 6 % & !
" 6 &
# ; # # & )Q
8 ! " # A ! # I
) ! /Ü 90
Figure 3.2.3 " &&
2 * ' # # 9 #
© 2004 by CRC Press LLC
144
Chapter 3
DIRECTED GRAPHS
# 3 ! # !
# = # #> = > " 6 !
Figure 3.2.4 && %'
2 = > ! #
" # #
!
! ! 6 # 6 # B #"! # )! # ! " # "
&
2 $ % " !
! ! # A
" # 6 = > L
# 3 " " A /! - - 0! )
&
FACTS
2 7" ) 6 2 7" ) 4 ! !
2 7" ) ) 2 " ) ) 2 ) " # 6 2 ) " !
1 !
< " /
Ü 9 A 0
2 ) C #
Figure 3.2.5
© 2004 by CRC Press LLC
Section 3.2
2 2
145
Directed Acyclic Graphs
)
/
! # 6 0 /
! # 6 0
2 2 2
) " ! " )
7" # - " ! !
8 ! " ½ ¾ # REMARKS
2 2
)! $B &9!
'( $ :'! ÜM (
!
3 !
# E Ü 3 !
! ! 4 #
3.2.2 Rooted Trees 3 & ! & )! F " " B #"! ) " ! $)*&&! Ü ( DEFINITIONS
2 2
#
# " !
! " " ! 4
3 # # 6! #
# # 3 ! # # - -! '! "
Figure 3.2.6
© 2004 by CRC Press LLC
"% %)
%
146
Chapter 3
DIRECTED GRAPHS
2
"
# # ! ! #
2 - #
"!
#
EXAMPLES
I" 7 B
2 ! #
!
# ! ! # : # A # " - - !
7 # 6 1 $ 3 # 6 ! A A # "
3 : # " / "0
@ + 6 # ! 4 @ ! # # " # 7 '! # # ! #
Figure 3.2.7
2
" 6 % / ## ' &/&
1 A A # H #
© 2004 by CRC Press LLC
Section 3.2
147
Directed Acyclic Graphs
Figure 3.2.8
FACTS
2 2
7" )
! " / 0 ,!
" DEFINITIONS FOR ROOTED TREES
2 " ! ! 4
2 2 2 2
" 3 / 0 !
G " 3 "
2 2 2 2
" !
" # , / 0 " - # " " - #
- -- # " " -
" " &
Figure 3.2.9
2& & ) 8# )9
2 # " 6 @
2 - #! " # " ! 6 @ #
© 2004 by CRC Press LLC
148
Chapter 3
DIRECTED GRAPHS
REMARKS
2 ! ! ! 6 A A ! # ! # ! /9'C0 "
/9'C 5 C'90!
2 , #
/ ! 0 B #"! ! 5 5 ! # !
! @
!
@ 3 ! " " E
Figure 3.2.10 : FACTS
2 -- - " " % 2 % -" --
?
- -
#
-- Spanning Directed Trees
" ! " 3 !
"! # B #"! ! #
# # # 4 # 4 #
" + E , $)*&&! ( 3 #
E '9 B # # 6 FACTS
2 3 & ! A
#
A 2 " " & "
&
© 2004 by CRC Press LLC
Section 3.2
Directed Acyclic Graphs
149
Functional Graphs
! " @ ! DEFINITION
2
# "
EXAMPLES
2
+ A . ! A & # " . # / 0 + / 0 5 A ! " . B! & /# 0
2 A
! " ! @ @ , & 3 #
Figure 3.2.11
" & '& 8 9
FACT
2 % & ! 3 & ! " -
3.2.3 DAGs and Posets " # ) 7" ) ! " ) " # ! $ &,! :M( DEFINITIONS
2
, - 2
! E
2
! ! 5 E
2
$ ! $ ! $
© 2004 by CRC Press LLC
150
Chapter 3
DIRECTED GRAPHS
2 ! / 5 / 0
!
2 2 2
$
7 7
/
! #
2
!
!
5
/ 5 / 0 # "
2 $
/ 5 / 0 # "
1 "
2 % / - # " 1 # # EXAMPLE
2
% 5 9 C H , , ' B / 5 / 0 #
Figure 3.2.12
2 '&) ;
FACTS
2 2
3 ! )
7" B )
/
#0
2
7" ) &
# / " &!
3 ) & / !
!
" ! # 6 " & & / 0 &
3.2.4 Topological Sort and Optimization 3 )! " # "
# J ! < "
! 6
© 2004 by CRC Press LLC
Section 3.2
151
Directed Acyclic Graphs
" ! < Æ DEFINITIONS
2 " " ½ ¾
#- - "
2 ! ! # / !
0
# $ H9! Ü'( FACTS
2 2
)
) A Algorithm 3.2.1:
"& &
2 & ! 2 & )E # 0 25 &E % 5
%& 5 1
" 0 - 25 " 0 < 3 " ! 2 & ) 0 25 0 8# 0 ) 0 # % 25 %?
,
REMARK
2 # ) ! # 1 #
! " ! #
$)*&&! : M :'( Optimization
! # -# ! # " " L )! "
-
$B%&C! ,( "
# "
# A
" A
3 ! A! " " 3 ! # " "
© 2004 by CRC Press LLC
152
Chapter 3
Algorithm 3.2.2:
DIRECTED GRAPHS
! ) 0 <
2 ) & # " ½ ¾ E # /0 " / 0 ! ! 2 " 3 < /½0 % 5 / 0 # / 0 ! % Algorithm 3.2.3:
! ) 0 7 <
2 ) & # " # /0 " / 0 !
! 2 "
3 < /0
0 25 & % 5 25 0 0 ) J / 0
# / 0 0 0 25 0
EXAMPLES
!
# # ) "
Figure 3.2.13
2
& / 20-
. $ ! # #
# 2 "! ! 6 # " ! 6 "! 6 ,
/ 0 6 6 ! 6
" B # 46 " Q 6
© 2004 by CRC Press LLC
Section 3.2
Directed Acyclic Graphs
153
! # /0 # " # 4
# %
/ 0 5 / " #0 3 < 2 /½0 5 /½ 0 5 ,! /8 2 ½ 5 0 J 2 / 0 5 / 0 ? /0 / 0 3 3 < 2
! /0 5 /0! J 2
/ 0 ! / 0 5 / 0 / 0?/ 0 ! # /0! ! / 0 A " A ! % $B%&C! &( ! 7 !
2 . $ " 3 6! 6
! " # # 1 ! # # # %
/ 0 5 / #0 3 < 2 /½ 0 5 ,! J 2 / 0 5 / 0 ? / 0 / 0 3 3 < 2
! /0 5 ,! J 2
/ 0 ! / 0 5 / 0 / 0?/ 0 ! # /0
2 $ + # # "
! # # Q 3 # 6! # / " !
0! / ! #
0 3 )! # 6 " / " 0! A
# % ¼
/ 0 5 / #0 3 < 2 /½ 0 5 ,! J 2 / 0 5 / 0 ? / 0 / 0
© 2004 by CRC Press LLC
154
Chapter 3
DIRECTED GRAPHS
3 3 < 2 / 0 5 ,! /0 5 5 ! J 2
/ 0 ! /0 5 /0 / 0?/ 0 ! # " / ¼0
2 + # # "! #
# Q " )! #
7 9 /
# # " #0 2 B # # " "Q 3 )! " ! / 0 5
3 < 2 /½0 5 ! /½ 5 0 J 2 / 0 5 /0 / 0 3 3 < 2 / 0 5 ! /0 5 , 5 ! J 2
/ 0 ! /0 5 /0 ? / 0 ! # " /0
2 %- + # # " # #
# # "Q
- "
- 3 9 ½ " 9 3 ! # #
! # # " # "
Figure 3.2.14 " , /&
, /&
© 2004 by CRC Press LLC
Section 3.2
155
Directed Acyclic Graphs
3 )! " !
/ 0 5 " 3 < 2 /½ 0 5 ,! /½ 5 0 J 2 / 0 5 /0 / 0 / 0 3 3 < 2 / 0 5 ,! /0 5 5 ! J 2
/ 0 ! /0 5 /0 / 0 / 0 ! # " /0
2 % - + # # " # # Q - 4 " # 6! # " ! # 6 ;
# ; # 3 9 ½ " ' 7 : ! !
/0 < , FACTS
2 M " < ) / "0 2 3 1 )!
2 ) " 1 6 /1
# 1
! #
1 '
60
References $ &,( N ! ! B K " "! &&, $)*&&( K % ) K *
! ! &&&
I!
$B &9( B ! ! I! &&9 / ! + ! &'&0 $B%&C( B
) % ! ( ) ! 7 ! ) #-B
! &&C $ :'( ! % % ! I-B
! &:' $ H9( ! ! I-B
! &HC
© 2004 by CRC Press LLC
156
3.3
Chapter 3
DIRECTED GRAPHS
TOURNAMENTS A 7 I ! ! " 4 9 " ! 6 ! C N! . ! ' : H G
Introduction
# - / 0! - ! ! 1 " !
! # 6 # " E !
K + F
$ 'H( &'H 3
; # 6! ; C 4 " " "
B #"! "
/ $B 8 'C(! $B ''(! $+:C(! $:&(! $H(! $R &(! $)&C(! $ )&'(! $&'(0 # 6 <
/ $ )&H(0 ! # " " " < ! 6 -K ) $ ),(
3.3.1 Basic Definitions and Examples
" " #
/ 0
DEFINITIONS
2 ! ! # " " / 0
2 " #
2 " / 0 " / 0 + / 0
© 2004 by CRC Press LLC
#"
Section 3.3
157
Tournaments
2 " " "
" " "
2 / 0 " " 3 /0 8 ! #
#
/0 / 0 " " 3 / 0 / / 00
2
& / 0 - 0! # " ! !
- /
2 "- # " " " " '
2 " &! ,/ 0!
" ! ! 2 / 0!
"
3 &! - "
! ( / 0 / ( / 0 & 0
FACTS
2
/ ¾ 0 @
-
!
! "
"
2
$ C9( / 0 - /
0 - "
" " " "!
/ 0
/ ¾ 0 / 0
/ ¾ 0 S 5 S
A # " / 0 "
/ 0
9
C
'
:
H
&
9
C'
9C'
'HH,
&C '
, &:
EXAMPLES
2
9
© 2004 by CRC Press LLC
,C'
158
Chapter 3
Figure 3.3.1
DIRECTED GRAPHS
"
2
) < - !
3 "! /
' / 0'
0 3 ! " " / $ 'H(0 -
- CC
! ' ! C Regular Tournaments DEFINITIONS
2 #
/! /0 5
" / 00 / 0 # /0 /0 5 ¾
2 #
" 1 " /! % ,/ 0 ,/0 5 %!
" 0
2 % 5 - ? # , %
-- , " ! ? 5 , ! - - ! # "
, & # "- /&0 5 - /&0 A 2 / 0 /&0 &
# #/ 0! #/ 0
2
% 5 / 0 A A # ! # ! / 90! % " !
" 4 /
* 0
#/ 0
& FACTS
2 2
#/ 0! # 5 !
-
$:&( 3 -
- !
/ 90 "! -
/96 ? 0 M /96 ? 90 /96 ? 90 B ?F F BB 5 /96 ? 903 B ? B 5 3! # 3 / B
6#-B 0 $:(
© 2004 by CRC Press LLC
Section 3.3
159
Tournaments
REMARK
2 4 ! 5 - ?
#
/ 0 6 ) !
EXAMPLES
2 &- #
" " 9! "! 5 ) 5 9 ' H
#
/ 0! #
0 1 8 2 7
3
6
5
4
Figure 3.3.2 " & &
#
/ 9 ' H9
2
:- # 4 -
# / 0! # 5 /:0 5 9 ." ! -
,/ 0 ,/0 5
"
4 :-
Figure 3.3.3
/ 99
#
Arc Reversals
- - 4 " FACTS
2 $ ' ( 3
# - # 4! 4 " -
© 2004 by CRC Press LLC
160
Chapter 3
DIRECTED GRAPHS
2
$: ( 3 # - % A # % ! 4 " %-
REMARK
2 $HH( # "- B A
- # " B #"! / $H9(0 CONJECTURE
T = =* 2+ $'9( : 7" - "
# "
3.3.2 Paths, Cycles, and Connectivity I - " #
" "
-K ) " $ )&'( 6 $ ),(
A # DEFINITIONS
2 / 0 &
" & / 0 &
" & /B 9C0
2 & / 0 " " &! EXAMPLE
2
# ! #/ 9 ' H0 " , '
C 9 H : ,
" "
!
REMARK
2 : 4 A " " FACTS
2 $T 9( 7" "! "
© 2004 by CRC Press LLC
Section 3.3
161
Tournaments
2
# 4" - 2 / 0 /0 /0 $ C&( /0 " " " %! % ! % $ 'H( / $B ''(0
2 $) :( 2 - 4 4 / '0
2
$ '(
-
2
,/ 0 A !
,/ 0 A / $ ),( $ &(00
2
$G ,( 7" - / ? 0'
Condensation and Transitive Tournaments DEFINITIONS
2 3 # " ! # - ! ! ! %- # "-
# #"
"
"
2
" ! ! $ ! ! $ ! $ EXAMPLE
2
&- "-1 - ! ! ! # " " " " " " !
" " " " " A C / 0 / 0 / 0! " - # "- ! ! ! # ! FACTS
2 2
$B 8 'C( "
# A" 4" - $ 'H( / 0 " /0 /0 4 /0 4 /, 0 /0 "
! /! $ ( 0
© 2004 by CRC Press LLC
162
Chapter 3
DIRECTED GRAPHS
2 7" / ½0- " - Cycles and Paths in Tournaments FACTS
2 $ ':( 7"
- ! !
-!
- / $H,( 0
2 $K :( 7"
- !
-! 9 - / $H,( 0
H!
2 $ :9( " / 0
- ! # " -! $H,( 0
-
!
-
:! /
2 $H,( " / 0
- ! #
" / $)G &:(0
-
-
!
-
,!
Hamiltonian Cycles and Kelly’s Conjecture CONJECTURE
>&&)* + / $ 'H(0 -
- / 0' ! # EXAMPLE
2 - 4 :- #/ 90
2
,
9 C ' ,E
, 9 '
C ,E
, 9 C '
,
REMARK
2 N
F 1
# 6 7" 1 2 & / ! $H(0E " - ! C! # -1 $RH,(E
- ',,, -1 $H( "
#
FACTS
½ !
-1
2 $BU & ( " "! -
"
"
2 $HC( 7
-
© 2004 by CRC Press LLC
Section 3.3
163
Tournaments
Higher Connectivity DEFINITION
&
2 % / % 0 " " &! &
% #
FACTS
2 $H,( 7" - "! A - " " 9- "! A -
2
$H:( 3 %- 3 % # ! - 3
2
$H9( " % ! ½ ¾ ! / 0- ! ½ ¾
%
2
$ & ( -! - ! " - - ! '! # "-1 - -! 4 # / 90 / - 5 ! # # $HC( $ ),,(0
2
$ ) %,( 3 %- - # "-1
"
H
%
!
%
Anti-Directed Paths
, ! " 3
! /
0!
3 ! %
% DEFINITION
2 / 0 & 4 & & EXAMPLE
2
# - -
9
© 2004 by CRC Press LLC
164
Chapter 3
DIRECTED GRAPHS
Figure 3.3.4 "% # # )& FACTS
2 $B ,, ( % @ - !
C ! 4 #/ 90 " / # A "
- &: $):(0 2 $IH9( 3 " '! " - - / 1 # A
" C, $: (! # "
" H $ :9(0 2 $B ,, ( 7" - ! 'H! " /0
/0 # / # A " ½ $H'(0
3.3.3 Scores and Score Sequences ,! B ) % $% C (! 8 <
/ " $&'( 4 $)&&(0 FACTS
2 $% C ( 4
/ 0! # ! 4 -
! # ! 4 -
%
%
5
2 $B 8 'C( 4
%
%
5
5
5
/ $B ''(0
2 %
5 / 0 4 " # ! - 5 4 - # 4
© 2004 by CRC Press LLC
Section 3.3
165
Tournaments
½
# - ! 4 / 0- / $:&(0
2 $"H,( 4
5 / 0 4 - !
4 /,0! /! ! 0! /! ! ! 0! /! ! ! ! 0 / $&H(0
2 $VH9( % 5 / 0 4 7" - # 4 4
5 /
0
2 $* HH( $* H&( 7" - " EXAMPLE
2 3 " 4 /! ! ! 9! 9! 90 A
,! ! 4 '- 3 ! '- # "-1 - ! 3 ! # " " " " 3 4 /! ! ! 9! 9! 90 A 4 ! '- # 4 /! ! ! 9! 9! 90 REMARKS
2 " - - #
! # 4
- - #
!
- # 4 ! 4 - )" - " ! # 4 " # $ :H( 2 ) & )" - ! #
6 6 6 # J ! 6 " 6 /# : " 0 # 6 4! # " $ 9( 6 "
! # ! # # " #! " 6 ! # F - . A - " " 6 # !
" $ 'H(
© 2004 by CRC Press LLC
166
Chapter 3
DIRECTED GRAPHS
The Second Neighborhood of a Vertex DEFINITION
2
% " & ! / 0!
" & - - / 0 5 $ ! ( ( / 0 ( ( / 0 ¾
(
FACTS
2 2
$&'( 7"
"
/ 0 ( / 0
(
$B ,,( 3 ! # " ' CONJECTURE
7) * '
+ / $&'(02 7" "
$
#
(
/$ 0
/$ 0
(
&
-
3.3.4 Transitivity, Feedback Sets, Consistent Arcs 3 - / - 1 " # 0! 1 # / # F
"0
6 !
" " -
DEFINITION
2
EXAMPLE
2
% # "- # % #" %! ? ! 5
/ ? 0 0 6 !
/ ? 0 6
Smallest Feedback Sets
6 - 4" A " - / 0 / 0 5 / 0 " #
© 2004 by CRC Press LLC
Section 3.3
167
Tournaments
6 # $ " " " $ B+ &'( + 6 -# 6 -# $ )B+ &:( $*,( FACTS
2
# " "
6 / $ B3 &C(0
2
6 4
" / $ B3 &C(0
2
$ B3 &C( 3 #
6 ! "
# -
2
$ B3 &C( &
6
Acyclic Subdigraphs and Transitive Sub-Tournaments DEFINITION
2 & & FACTS
2 $:L:! H ( 3 */ 0
" - */ 0 ! " "½ "¾ ½¾ ¾ ? "½ ¿¾ */ 0 ¾½ ¾ ? "¾ ¿¾ "! "
# /$'&! :(02 (
*/ 0
9
C
'
:
H
&
,
9
'
&
,
9
,
C
99-9'
2
$I :,! 8&9! T &9( 3 / 0
" - " - # / 0 "!
9 : 9 H / 0 5 C 9 : ' H ¾ /' ':0 / 0 ¾ ? C9 / 0 ¾ / 'CC0 ? : CC
2 $ B &H( $)) +&H( 4 5 /½ ¾ ½ 0! # ½ ¾ ¿ ½ ! " " - " " "! ! #" / 0 / $,( ! $ B &( -
0
© 2004 by CRC Press LLC
168
Chapter 3
DIRECTED GRAPHS
Arc-Disjoint Cycles
" ! / 0 -1
! "/ 0
6 !
/ 0 5 / 0 "/ 0 5 "/ 0! # 6 "
-
REMARK
2 8 4 / 0 4 -1 /0 ! # # $ )B:( 4 / ' 0/ 0' FACTS
2 2
! / 0 "/ 0
$N :'( ,! / 0 ! "/ 0 ! ,! -
6
-1 / $:C( $ ),( $3&C(0
3.3.5 Kings, Oriented Trees, and Reachability N = > "
# # =6>
/ # 6 $% C (0 $ H,(
7 # " - " " = -> 6 = " "> " / H #0 "! 6 < !
- /! $&'(0 DEFINITIONS
2 " - -
2 "
- -
" " !
" " !
2 % ! % ! " " 6 % " 6 FACTS
2
$G C( 7" 6 3 ! " " 6 $% C (
2 %
$ H,( " % ! - # 6 % ! % 5 ! /% 0 5 /9 90 / $H(0
© 2004 by CRC Press LLC
Section 3.3
Tournaments
169
2 $H,( , % ! - #
6! ! " 6
# A2 /0 % ? ! /0 5 % 5 ! / 0 5 % 5 5 9 % ! ! ! /90 / % 0 / 9 0! /C 9 ,0! /: ' 0 / $ & ( 0 %
2 $H9( %- " 9% ? " "!
# 4" 2 /0 %- /9% ? 0 /0 /9% ? 90 /9% ? 90 6#- B / 0
/9% ? 0- 2 $ H,( 3
" " 6 / $ 'H(0 3 ! " %!
%- $H9( REMARKS
2 " 1 -
# 6 " # $H( $+ H9( ) #
" ) 6 - # $H,( # 6 6 $&'(
2 A ! 6 ! Tournaments Containing Oriented Trees
/ 0 ! / 0 - #
" CONJECTURE
7 * + / $+ H (02 7" / 0- " " EXAMPLE
2
H 9 # C '-
Figure 3.3.5 " REMARK
2 8
#
Æ 1! 4 = - > 4½ ½E
/ 0- " ."
© 2004 by CRC Press LLC
170
Chapter 3
DIRECTED GRAPHS
, "
/ $B ,,(0!
# 1 FACTS
2 $B ,,( 3 + / 0 - " -- -
" " ! + / 0 /: C0' /7 @ + / 0 $BU
&( + / 0 ' $B ,,(0
2 $%+ I ,,( 7" - ! H,,! - ! # !
" " -
2 $I,( 7 / ? 0-
? # ! # 2 $ &( - -
-1 ! A " !
/ 0 ! / 0 -
- 3 - - ! " " ! - 1 - Arc-Colorings and Monochromatic Paths CONJECTURE
0 ? + / $ + H(02 " %! " /%0 " - " " %
/%0 " # " " ! " REMARK
2 1 " " ! /0 5 C' # /0 5 &- - # - # / 0 / $ + H(0 3
! 7U
6 / 0 5 3 " 6 # /%0 A % 1 # / $% &'( $,,(
" 4 0 FACTS
2 $ + H( 3 # # ! " " " 5 ! / $H9( 0 2 $HH( 3 #
- " - #
! " " " 5 !
© 2004 by CRC Press LLC
Section 3.3
171
Tournaments
3.3.6 Domination 3 "
" B #"! !
# 5 / 0 5 % " % 6 #! # "! " 6 #
" % /0 Ü& DEFINITIONS
2 " "
" "
2 "- ! 1 #"
2 /0 # #
" "!
2 ! 5 / 0 EXAMPLE
2
% " - # "- # #" " / 0 - # " " " - ! " / 0 " - / " 0 ! 6 !
" " ! 5 / 0 5 FACTS
2
$):( " %!
%¾¾ ¾! # / 90 4 - % / $BB,(0
2
$%&H( 6 # #
"!
3
! - ! 6 # #
"
2
$%&&(
6 ! !
# "
" 1 " # < $K%&H(
2
$<<'C( 3 - # A 5 / 0 *¾ *¾ *¾ ?
© 2004 by CRC Press LLC
!
172
Chapter 3
DIRECTED GRAPHS
3.3.7 Tournament Matrices # 6 )
K + 8 K I
/ Ü E $):(0E # 6 B K $ '9( # " # < =>! ! F " E # 6 6 $'C( # # < < V % $%H ( # 6 6
6 < " " <
# 6
DEFINITION
2 4 6 5 /- 0 ,F F! # ,F - ? - 5 !
" "! ½ ¾ ! ! 6 5 $- ( ,- " - 5
, #
! 1 " " EXAMPLE
2
' # '
Figure 3.3.6
,
REMARK
2 " 6 6 ? 6 ? 2 5 7 ! # 2 ! 6 6 ! 7
F "! 1 6 1 ( " ( ! ! / 6 5 / ½( / ! "
© 2004 by CRC Press LLC
Section 3.3
Tournaments
173
FACTS
2 $)'H( % ½ ¾ " ! # ½ ¾ , ! ½ / 0'! / 0' ½¾ ! 5 "! 6 2 " 6 ! ! 2 6
2 $ )NI &(
! " E " B /! 6 6 5 2 0 # " 6
2 $&C( 3 ! 6 4 / 0' 5 , 74 A " / 0' /#
0 7 " 6 / 0' / 90 A ! # " / 0'9!
/ 0 / 0 # ,F / ! / 0
F " , / 0 0
# # / 0 " F
, / 0 / ! ,F0 2 $&(
-
" -
< " 4
=Æ >
4 /'0/ 0! 4 - " -
3.3.8 Voting + 6 ! " - ! " " " A " !
+! ! ,$ ! ) - , Deciding Who Won
" 6 => " / "0 " " " => " "
=#> "
" 7 - ! " ! 4 # 2 "
/
0! " " 1 ! " # 6 " ! # " = > " /
0! " "
" = ">
! "
© 2004 by CRC Press LLC
174
Chapter 3
DIRECTED GRAPHS
" - / 6 0! "
/ 4 0 K- % F $% &:( DEFINITIONS
2 / "0 " / "0 ! " 1 "
2 & - !
# " ! "- ! " " & 1 -
2 & " & 1
" &! " /
" " " & @ " " 0
2 " /! 6 0!
" F 1 /! 1 0 REMARK
2 3 A 1 ! " A = ">! - # " =" > ! 1 " F 1 " 3 " ! 1 EXAMPLE
2 :
1 " C- ½ ! ¾ ! ¿ 3 # ½ ! ¾ ! ¿ ! ## " " # ! ! " " "
! " " ! ! " 1
! #
1 " ! 1 "! ! 1 "
Figure 3.3.7
© 2004 by CRC Press LLC
" + )
Section 3.3
Tournaments
175
Tournaments That Are Majority Digraphs FACTS
2
$C&( 7" - /! " 0 1
? ! ! ? ! "
% -/ 0
-" 1
-/ 0 # " ! */ 0
- 1
*/ 0 # "
2
! -/ 0 /CC ' * 0 $C&(! " -/ 0 ! /" ' * 0 $7 '9(
2
$ 'H( */ 0 # ! */ 0 5 */90 5 */C0 5 ! */ ? 0 */ 0 ? ! -/ 0 */ 0
2
$ &&( 3 1 ! ! ' ! !
- ! "
8 "
! / 0 8 # 3 ! (
" -
Agendas DEFINITIONS
2 " /! " 1 0
2 " 4 " #! " /½ 0 "! " A " ! # " ! # " !
2 )" 1 - / 0 " " " ! " ""
" /! / 0 " 0 " 1 "
3 ! ! ! " 6 / 0 EXAMPLE
2
)" / " 0 1 # H! " " #
© 2004 by CRC Press LLC
176
Chapter 3
Figure 3.3.8
DIRECTED GRAPHS
-+ )
FACT
2 $::( ! " "
/ ! $& (0 Division Trees and Sophisticated Decisions DEFINITIONS
2 )" /½ ¾ 0! /½ ¾ 0
!
! ! "
- 4 /½ ¾ 0E
/½ ¾ 0E ! , ! " " #
4 /½ ¾ 0! /½ ¾ ¿ 0! # " " ? !
/½ ¿ 0!
/¾ ¿ 0
2 % 1 - /½ ¾ 0 " " " "
" /½ ¾ 0 ! #
" " " 1 # # " 6
" " E " ! , ! !
" " " 1 #
# " " ? FACTS
2
$ HC( " "
" 4 " " -
2
8 " " /." $::( $H,( " $&(0
2
$&:( # "
" - !
!
EXAMPLES
2
" / $ 0 # & )" 1 #! " , "
© 2004 by CRC Press LLC
Section 3.3
177
Tournaments
"
!
" 8 $ ! #
:
Figure 3.3.9 / + )
2 1 9- # ,
"
: ! / 0!
Figure 3.3.10 + ) # Inductively Determining the Sophisticated Decision
# # A /
2 /$ 0 - " $ 0 FACT
2 $+H9( % 1 - /½ 0
" 6 " 3" A 4 $ $ $
#2 $ 5 ! ! !
$ 5 $
#
2 /$ 0
$
References T T ! I ! MH ' " ! ! $'9( T $ ! < I ! &'9
© 2004 by CRC Press LLC
178
Chapter 3
DIRECTED GRAPHS
$ ':( !
! ! %! /! , /&':0! H MHC $ :H( N ! 4 ! &! /&:H0! 9M9& $ :9( ! N I
! ! &! ! / : /&:90! MH $ H( ! 9- ! %! /&H0! M& $ B &H( B ! " # ! ! 9& /&&H0! HCM& $"H,( I " ! C:M'9
4 ! &!
$ HC( K 6! " ! 0 ' /&HC0! &CM ,'
9 /&H,0!
$
$ &( K -K! 7-1 - -
! &! ! / C /&&0! M $ B &( N ! % + 6 B ! # ! G" 3 &! 1 /&&0! H M&9 $ ),,( K -K! * ) ! * ! " ! %! 9 /,,,0! ::MH: $ ),( K -K ) )! ! ! ,,
" "
$ )&'( K -K ) )! I ! ! ! ! C /&&'0! M:,
$ )&H( K -K ) )! ) < 2 " ! H /&&H0! :M,
&!
$ B3 &C( K-I T T ! . B ! ) 3
6! ! ! " ! ! %! /&&C0! &M:' $:( K ! . W F ! %! ' ! $! : /&:0! CMC $:C( K- ! ! 'CMH, + 2 $ ! 8 B
! &:C
$H( % + 6! 2 " " ! 9MCC E # ! &H! 3 %! $! 3 C! J" I! ! &H
© 2004 by CRC Press LLC
Section 3.3
179
Tournaments
$N :'( K- * N @! J F " F ! )! ! ! )! (! ' 4 4 , /&:'0! H M& $H( K- C /&H0 M9
!
2 " !
&!
$+:C( % + 6 K + ! " ! M9H ) ! ! $ ! 1567! ! &:C $)'H( 3 ) ! . ! /! ! %! $! :9 /&'H0! M C $):( 3 ) ! 6 ! ! C /&:0! M H $%H ( V %! J ! / /&H 0! 'M::
3
&! !
$VH9( V %! # " ! &MC ! I! &H9 $,( K ! % F 4 " - ! &! H /,,0! 99MC9 $ C&( I ! ! ! )! ! $! I 9& /&C&0! CMC $ )NI &( ! ) ! K N6
! 8 K I
! K ! " ! 3 ! '& /&&0! :&M& $ )B:( ) ! )
B! ) # ! &! ! / , /&:0! M9 $ ) %,( ) ! K ) B %! I " ! &! ! / H /,,0! M, $ )B+ &:( 3 - ! )T ! . B + ! 8# ! %! 'CL'' /&&:0! &M C $ B+ &'( 3 - ! . B + ! .
! %! ' ! $! /&&'0! MC' $ C9( % "!
! M9,
/! %! / ! ' /&C90!
$7 '9( I 7U % ! . ! ! %! ! ! ! $! & /&'90! CM
© 2004 by CRC Press LLC
180
Chapter 3
DIRECTED GRAPHS
$H ( + <
G ! . ! &! ! / /&H 0! HM $&'( ! 4 2 F 1! &! /&&'0! 9 M9H $%&H( ! K %! < N !
! &! & /&&H0! , M, $%&&( ! K %!
2 " ! &! & /&&C0! 9HMC,C $)) +&H( ) ! ) T T
! T I + ! - - " ! &! ! / : /&&H0! HM&' $)G &:( * ) % G 6 ! ! ! %! :& /&&:0! :M C $B ,, ( B "! . B ! &! ! / /,,,0! M $BU & ( BU 6"! B ! ! ! ! /&& 0! CM $B ''( B % ! ! ! %! % : /&''0! M9' $B 8 'C( B ! R 8 ! #! $ % ' ! K + O ! &'C
© 2004 by CRC Press LLC
Section 3.3
181
Tournaments
$B ,, ( B " T! . B 2 F 1! &! ! / :H /,,,0! 9 M: $B ,,( B " T! 2 F 1! &! C /,,,0! 99MC' $BU &( BU 6" ! ! /&&0! M , $BU &:( BU 6" ! . B ! &M C " " 8 " 1559:!
J" I! &&: $3&C( ) 3
6! 6 ! 7 &! ! /&&C0! & $K :( . K 6 ! &:
! ! J" !
$K%&H( ) K< K %! # ! ! /&&H0! M $% C ( B ) % ! .
333 ! /! %! / ! C /&C 0! 9 M9H $% &:( K- % ! $ %. ;! ! &&: $% &'( G %6 ! - ! ! 99 /&&'0! CMH $%+ I ,,( X %! -+ + K I ! ! ' /,,,0! 9M9: $ H,( ! 6 6 ! %! %! C /&H,0! ':MH, $ &&( K
! . - 1 " ! %! $! $! : /&&&0! &M99 $ &( * 6! - A B ! ! %! ' /&&0! &&M, $::( 8
! ) - " ! ! &! ! $! /&::0! :'&MH, $H,( 8
! # 1 " 2 - " ! ! &! ! $! 9 /&H,0! 'HM&' $&C( ! 6 ! ! %! % , /&&C0! ' :M' & $ 'H( K + ! ! B ! ! + ! &'H
© 2004 by CRC Press LLC
182
Chapter 3
DIRECTED GRAPHS
$ '( K + % !
! %! /! C /&'0! 'M'C
!
$8&9( G 8 % ! I 6 ! ! , /&&90! ' M '' $I :,( 7 I 6 N ! 1 7U ! &! ! & /&:,0! CM H $I,( G I "! C&'
# ! ! /,,0! C&M
$IH9( G I "! B ! C&M'& " $" 15<9! J" 8 " ! 8 " ! &H9 $,,( N ! - !
! 9' /,,,0! M9 $T 9( % T! 7 6
3 $ ! <
:
$'&( N ! . ! ! %! /! /&'&0! 'M': $: ( N ! 74" - " 6- " ! ' /&: 0! ' MH,
%!
$H,( N ! # 6 ! ! & /&H,0! H,&MH' $H( N ! 7" " 6!
%!
H /&H0! & M&H
$H9( N ! ! " ! $ ; 3 % ,: /&H90! M $HC( N ! # # - ! :M ! " C %! $!! 8 -B
! &HC $& ( N ! 1 2 " ! %! $! $! /&&0! M& $&( N !
# # " 1 " # ! ! %! /&&0! MH $&'( N ! 2 ! 6! < ! ! C /&&'0! :M
$&:( N ! 74 2 " ! $ 0 ' 9 /&&:0! ' M :H $:&( N % + 6! ! '&M,9 ! I! % ! &:&
© 2004 by CRC Press LLC
$
Section 3.3
183
Tournaments
$:( N 7 #!
4" 6# B ! &! ! /&:0! M H $H9( N
! 6 ! :MH ! I! &H9 $BB,( N ! ! B B! ! ! ,, $+ H ( N 8 + ! 7 - ! $ $! %! H /&H 0! ::M H: $ :9( ! - B ! / ' /&:90! 9M9
&! !
$ '9( B K ! < ! , M9 ) % - ! J" + I! &'9 $T &9( T <- ! .
" ! ! , /&&90! ':M :' $ + H( ! 8 + #! . ! &! ! / 9C /&H0! ,HM $HH(! ! . - ! / /&HH0! ,HM $&( % ! . ! CM 'H
3 !
&! !
'L'9 /&&0!
$+H9( N + ! J " " # ! ! &! ! $! H /&H90! 9&M:9 $*,( 3 /3 - 0 . * /. B 0! " # / 0! ! ! ! ( ! H /,,0! : M& $ & ( R !
! / /&& 0! HMC
&! !
$:L:( K ! . 6 ! /&:L:0! CM H $C&( ! " ! !
%! %
'' /&C&0! :'M:'
$<<'C( 7 <6 ) <6! . U 7U ! 9& /&'C0! &,M& $&H( I ! < 4 ! /&&H0! C:MC& $: (
%! =!
&! ! / :
! B ! , /&: 0! M H
%! !
© 2004 by CRC Press LLC
184
Chapter 3
DIRECTED GRAPHS
$H,( ! B - ! &! ! / H /&H,0! 9M' $H( ! 7-1 B ! ! 3 %! $! 9C /&H0! CM'H $H9( ! " ! ,CM ! ! &H ! I! &H9
$HC( ! B
! %! : /&HC0! C&M' $H'( ! I ! ! ! %! $! &' /&H'0! ':MH, $HH( ! " ! %! : /&HH0! : MH' $G C( B 7 G ! . #
- ! + &! %! /&C0! 9,:M9 $G ,( % G 6 ! 2 ! %! 9C /,,0! &MC $+ H9( N +
! ) 6 ! ! 9C /&H90! M H $* HH( X * ! F 1 / /&HH0! 9HM9H9
0! > -
$* H&( X * ! . 1 ! $! /! 9 /&H&0! H,9MH,H $RH,( V R ! 7"
# -1 B ! &! ?' " $ ( ! ) ! /&H,0! :,MH $R &( N- R R- ! $! : /&&0 HHMC
© 2004 by CRC Press LLC
M " ! &! . @!"
185
Chapter 3 Glossary
GLOSSARY FOR CHAPTER 3
/)
2 # 6
1
/) @
2 # 6
1
+) ,
M 2
#
M " 2 " /! "
1 0
& &
/
02
M " 2 4 " #! "
½
/
0 "! "
" ! #
A
" ! #
" !
/ ,
M 2 " 4
E
# )&
M
#
&
M
&
&2
4
&
&2
4
&
) & # @ # '
2 #!
!
#
# !
5
2 "
2 " 8
2
2 - 2
" " "
"
' ' )
2
2 # " # !
!
'&
2 " "! "
@
' )#
/02 ! # " 6 !
6 "
!
& / ,
!
6 "
6 " M 2
" #
&
E
M 2 # ! #
'&)
© 2004 by CRC Press LLC
M /
02
# "
186
Chapter 3
'& &
02
# " "
-
M /
& -# )
2
--
DIRECTED GRAPHS
" "
&
2 # "!
# ½ ¾ 2 ½ ¾ / 0 / 0 " " 2 # "- ½ ¾ " ½ ¾ / 0! # - ! # " #"
"
"
M
# "-
5
2 ,
2 " -
/! 6
0!
" F 1 /! 1 0
2 %
M " 2
/ "0
/)
/ "0
!
"
"
1 "
# 0 M - 2 < "
/ " -" 0 /0 "- /
"
/0
&
M
A% % . /
2
&2
&
02
M /
# "
1 "
/
M /
$
02
$
202 & 0 -
2
I 2 # 6 " A
6 # # 1 8 ! - " A A
$
2
M " 1
/
½ ¾
!
"
/
6
0
M "
- !
0 "2 !
2
# ½ ¾ 0
/
/! 0
4
/ ,
© 2004 by CRC Press LLC
M 2 "
E
"
4
Chapter 3 Glossary
187
2 ! )&2 # ! ! ! .-/ ! 2 # &
!
& # A 2
# " ! #
%.2 & ! %.&) 2 # E !
)& 2 # 2 0 0 '&2 A -#
" #
)&2
/ 02 ! # !
# 3 #! # #
2 #
2 #
%&. M ¼ 2 4 ¼ ½ ½ ¾
½ " ! / 0 5 ½ / 0 5 ! 5
¼ - # 6
/ M " 2 ! A :
M 2 " " " "
/ $ 0M " 2 " !
M 2 "-
!
' M 2 E
! 1 #" 5 / 0
'&)# & 2 #/) M -" 2 <
/0 /0 / 0 M 2 # ! !
#
& 2 # 6 # '. M 2
A% % .2 & © 2004 by CRC Press LLC
188
Chapter 3
M
" #
DIRECTED GRAPHS
2 #
& 2 # " & )& / 0 M &2 "
&
& / 0 M &2
"
&
; M 2
- # "
1 # #
2 M 2 #' / 0 M 2 #
"
# M " /!
E
/ 0
/
# M " &2
2
"
/ 0 #
"
2 / 0
& / , M 2 - # 2 $ %# 2 . M 2 " " - -
0
"
E
!
& M 2 " # , & ' M " 2 -
& %&.2 - # 6 4 &/& / , M 2 & , M 2 " " ½ ¾
#- - "
& 2 " -# ) 2 + ) & M - !
# # "-
- ./ 2
"
1
"-
"
-
&
2
# - " #
- " E 6 "
,#A% '&2 ; # "
- # 6
6 ; # % 0 ; #
4 ; # /
##A% '&2
A
%
; # # 6 / " 0 4
© 2004 by CRC Press LLC
189
Chapter 3 Glossary
&&) '& / M
2 " " # 6
" " 7" "
# /" " # 60
' 2 % .2 5 / 0
" # 6 ; # E
" " ! " ; # !
!
# A%2 # 6 5 / " 0 # " " 2 ( ! " !
! # < !
" !
&! # <
A% 5 / " " 02 # "- ! "2
!
!
)
-
" 2 2 )
" ! "
A%2
# 6 5 / " " 0 " 2 ( ! " 2 2 ) A /0 5 ,
)
(
¾
/
0 5 ,
# " ! "
¾
2 "
!
A
2
# " A
2 M 2 ! 6
2
#' / 0 M 2 # /
$ 0 M " &2
" E
,/ 0
( / 0
/ # => 0
# 2 !
# # / , M 2 "
& 2
E
!
"
&&) 2
/
;"! !
0
2 ! % #2 % 2
/ &02
# 6
#& M 2
# " @
© 2004 by CRC Press LLC
190
Chapter 3
DIRECTED GRAPHS
/
M 2 " " "
A,/ & #2 #!
! #
& 2 #
! & / 02 # /0 /0 5
¾ ! '&)#2 #
" 1 " /! % ,/ 0 ,/0 5 %!
" 0
& M 2
# ! #
' M " 2
-
2
2 " " !
! " " ! - .
! $ ! $
! -# )2 # " " - # E
-
& 2 # / 0! #/ 0 E #
! A
A% % .2 & " 2
" /! /0 # 0 0 / 0 / B / 0 M - 2 - / 0! # " ! !
/ 2 * ' M "
&2
" & - - E ( / 0
M 2 " " " ! - -
'& M 2 & 2 # - - & 2 # - - M " 1 - /
0 " " " 2 " ""
" /! / 0 " 0 " 1 "
. M 2 " < M " 2 ! A H M 2 " < ' M 2
"
© 2004 by CRC Press LLC
191
Chapter 3 Glossary
. )&2
/0 # #
" "!
& 2
# " ! - - " #
M 2 2
M 2 2 ! %#2 " % # "
&) 2
# " # "
! ! # "
&) '& #
)'& M 2 ! A &2 & & 2
#
2 ,2 4 6 5 /- 0 ,F F! # ,F - ? - 5 !
/! 1 0
2 # "
'&2 $ ! B
2 E ! A ! '&2 # "- # - !
½ ¾ " " ½ " " ¾
! %#'&2 # " " 6 % " 6! # % ! #2 ! ! -"
/ & M "
&2
&
/ 2 #! / 0 / 0 ! / 0 / M 2 " / & #2
#!
$ ! # #$ ! #$ / 2 " "
! ! $ ! ! $ ! $
M 2
" " " -
& & 2 #!
" ! #
© 2004 by CRC Press LLC
192
Chapter 3
DIRECTED GRAPHS
/ ,# M 2 " #
% M 2
" !
< <
© 2004 by CRC Press LLC
Chapter
4
CONNECTIVITY and TRAVERSABILITY 4.1
CONNECTIVITY: PROPERTIES AND STRUCTURE
4.2
EULERIAN GRAPHS
4.3
CHINESE POSTMAN PROBLEMS ! " #
4.4
DEBRUIJN GRAPHS and SEQUENCES $ %&' ( '
4.5
HAMILTONIAN GRAPHS ' ' )*
4.6
TRAVELING SALESMAN PROBLEMS
4.7
& +' $
FURTHER TOPICS in CONNECTIVITY
GLOSSARY
© 2004 by CRC Press LLC
4.1
CONNECTIVITY: PROPERTIES AND STRUCTURE
Introduction ! " # *,-* $% " ! Æ $ & ' ( (&% )! * % + !& ! ! & ! , ( , -. / 0 -* 110 -2 340 -+ /0 -* 2 110 ( ! #&
5' -6770 -8970 -$ 9/0 -8* 3/0 -(/10 -(/ 0 -(/40 -:/0 -;/70 -2<//0
4.1.1 Connectivity Parameters " , !
2 # = >
= > ; ! ! Preliminaries DEFINITIONS
' # ! & !
© 2004 by CRC Press LLC
Section 4.1
195
Connectivity: Properties and Structure
' 6 ! # !
' : ? = > 6 6 # " ? ! !
' : ? = > 6 6 ? = > # ? !
' = >
# ! @
'
#
' = > ! @
' = >
FACTS
' A !
'
Vertex- and Edge-Connectivity
6 ! B ,- ' - DEFINITIONS
' 6 = > !
' 6 = > !
+ # ! C D " = > = >
= > = >
EXAMPLE
'
( ! # !
© 2004 by CRC Press LLC
? ?
196
Chapter 4
Figure 4.1.1
CONNECTIVITY and TRAVERSABILITY
?
?
FACTS
'
?
? 1
½ ½
½
? 1
½
$
#
?
?
'
"
?
!
'
"
?
"
"
8 !
½ =
> ? 1
! !
'
6
Relationships Among the Parameters
6
! !
Æ
Æ
=
> + #
="
Æ
=
>
>
FACTS
'
-+0 (
'
Æ
-* 730 (
!
?
?
Æ ?
1
#
DEFINITIONS
'
! ? Æ
'
!
!
'
?
!
?
Æ
!
Some Simple Observations 6 ! ,
FACTS
'
© 2004 by CRC Press LLC
AB
Section 4.1
'
"
'
197
Connectivity: Properties and Structure
·½
?
!
E
!
'
A & !
Internally-Disjoint Paths and Whitney’s Theorem DEFINITIONS
'
# ,
#
'
6
=
½ ¾
5
>
!
# 6
=
>
=
> ?
?
FACTS
'
-+ 0
'
!
+ % &
'
!
5 ! 5
! & !
Strong Connectivity in Digraphs ( # #& -:/70 -* F 730 -8 210
DEFINITIONS
'
"
'
! &
! &
!
'
(
?
=
>
, !
?
=
> =
>
!
'
:
6
=
> =
> C D
© 2004 by CRC Press LLC
=
> !
198
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
'
" # ! !
" = > ? = >
! = > ? = >
Æ Æ 6 , Æ ? Æ Æ
'
F Æ 6 ! 2 * = > ( 9 FACT
'
-2* 910 (
Æ
!
! ? Æ
? ? Æ
An Application to Interconnection Networks
6 !& = > ! ! & = > - & !& 8 *
-8* 3/0 " # !& 6 B = >
!& Æ
B = > # !&
4.1.2 Characterizations + ! 5 5 " 6 ! 5 5 + ! & Menger’s Theorems DEFINITION
' : ! 5 => => !
@
( 5 =>
© 2004 by CRC Press LLC
?
=>
Section 4.1
199
Connectivity: Properties and Structure
( ! 5
=>
#
FACTS
' '
? => ' 5 -$% $90 ( 5 => ? => ' => $ , ! B (
'
'
-$ 90 A 5 ! => ? => =>
( => !
= > @
=> # ' -'.
' '
=A $% > -A(47((470 => ? => (
= > ? =>
REMARKS
'
. $% #
'
6 $% ! ( (& -((470 & "-/& F!& )! Other Versions and Generalizations of Menger’s Theorem
" ! # $% # -. /90 -(/40 -$3 0
$% -;10 DEFINITIONS
'
2 # #
'
= = > > #
' '
! ?
# = B
# >
'
# ! 5
6 # = > 5 = > = > = >
© 2004 by CRC Press LLC
200
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
'
6
5
'
"
6
=
> ?
=
=
=
>
>
'
6 $ B
" # # !
'
=
> ?
=
>
2 -2 70 5 ( 4 C# D
!
=
=
# 5
B #
>
>
=
> : G
-:970 5
=
>
> 8 5 ! $
'
-$ 93$ 930
=
>
=
>
=
>
=
>
REMARK
'
6 $% =( 3> (
&
5
Another Menger-Type Theorem
(
=
> #
5
B
5
=
(
>
FACTS
'
6 # ! ! B
*!
?
=
>
=
> !
=
>
=
>
=
> ?
=
>
6 $ B
( /
'
-AH 99:F 930 6 # 5
B = @
>
Whitney’s Theorem " # ! # ! 5 ! ! =( >
$% !
&
! !
+ "
FACTS
'
-+ % +0
=
© 2004 by CRC Press LLC
5
>
Section 4.1
201
Connectivity: Properties and Structure
# 5
' =A + % >
= > : 6 # ½ ¾ ? ½ ¾ 5 = ! # > = > ? ?
' =6 ( : > :
Other Characterizations
! 5 ( & $ 6 5 ! : G
2I =! !& > ( =( > FACTS
! E ½ ¾ ½ ¾ ½ E ¾ E E ? ½ ¾ = > ? = >
' -:992930
!
? = > ½ ¾ 5 = > ½ ¾
' -/90
4.1.3 Structural Connectivity
* ,
Cycles Containing Prescribed Vertices
6 , . ! ( 4 FACTS
' -. 710 :
6
! 6 ! E ! ? !
' -+ $790 :
Cycles Containing Prescribed Edges — The Lovász-Woodall Conjecture
: G -:9 0 + -+990 5 '' ' = ! # >
© 2004 by CRC Press LLC
202
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARK
' : G -:9 :990 , ! +01-(' . ? 6 5 ! ! ? -A234:/10 ? 4 - /70 B *I & 6 -* 630
= E > =! > $ 5 J ! = ! > FACT
'
! -J 1 J 1 J 1J 10 :
6
$
Paths with Prescribed Initial and Final Vertices
2 ! # 5 = > $% $% ! 5 ,# = > F! ! # ! DEFINITIONS
' B ½ ¾ ½ ¾ @ # ? # 5 ' = > #
5
' ,
5 !
' 6 ! FACTS
' '
& ! = > -: $ 910 -H910 = > ( # => => &
'
6 -631 0
& 6 , -340
( => => ! & &
© 2004 by CRC Press LLC
Section 4.1
203
Connectivity: Properties and Structure
CONJECTURE
= E > ? => ? E
-631 0 ( FACTS
' -;&3 ;&34;&390 " ½ ¾ ½ ¾ = > ! 7 = > = > # 5 ' -*/0 ( = E > E => E ' -;&33;&/1 0 (
= E > = E > E => => = E > E ' -610 A => =, ( /> ! # & ' -/90 : 6 =½ ½ ½> =¾ ¾ ¾> = > ! ½ ¾ ½ ¾
½ ¾ @ ? = > ? # 5 = > ? = >
Subgraphs
* =( 9> =( 3> *! # FACT
' -$ 9 0 A
REMARK
' ! 6 -6330 " $
4.1.4 Analysis and Synthesis B ! = > C D 6% ! ! ! & +
!
( !
© 2004 by CRC Press LLC
204
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Contractions and Splittings DEFINITIONS
' 6 ,
=& 5 ? > :
' 6 ' # ! Æ ! 5 ! 5 5 $ ! ? Æ E ! &
' ( # 5 # ! ½ FACTS
'
" #
! = > " ! ! ? Æ
' '
-6310 A
-630 A - = >
'
-670 A ! , B # EXAMPLE
'
" ( " ! #
Figure 4.1.2
!" "
REMARKS
'
" #
© 2004 by CRC Press LLC
Section 4.1
205
Connectivity: Properties and Structure
'
6 ( 3 J !& % ( 3 6% =( 41>
' 6% # ( 5 ! -J10 ! = !>
'
( 41 ! -670' ! !
'
-9 0 B ( 4 *! : G -:9 0 $ -$ 93 0 = !> Subgraph Contraction
6 DEFINITION
' # FACTS
'
/
'
-$;/ 0 A !
-6630 A !
'
-J110 A
CONJECTURE
-$;/ 0 ( Æ Edge Deletion DEFINITION
' # = #> FACTS
'
-$ 9 0 A !
© 2004 by CRC Press LLC
! E =! >
206
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
-;&330 : ! : ½ ? = ? > 6 = > 6 # => 6 # ' -;&/10 : ! "
! ? ? = ? > ! E # ' -*;&/0 ( # ! # ! #
REMARK
' ( ;& -;&/40 B
Vertex Deletion FACTS
'
-J : 90 A
#
' -630 A = E > => ! ' -A390 A = E > ! REMARK
'
( 4/ ! 5 : G 6 ( /
Minimality and Criticality
B # = > !
# ! DEFINITIONS
'
= > = >
= > = >
'
# => ? => ?
FACTS
'
-$ 9$ 90 A = E
© 2004 by CRC Press LLC
>
Section 4.1
207
Connectivity: Properties and Structure
'
-$ 90 A #
'
'
E
A # !
! -* 30 A
REMARKS
'
* -* 7/* 110 # # ! : & -: 90 8 ! $ =( 7>
' ( 7 * = > $ % =( 7> # 6 # # J -J 9 0 Vertex-Minimal Connectivity – Criticality
$ -$ 990 '
' - ' ! ! DEFINITION
'
= >
# ! ! = > ? + ? !
FACTS
' '
-$ 990 6 = >
½
6 C& D = ¾·¾ - 0> = > = E >
' -330 6 E B !
'
-$ 990 " = > 7 ¾ 6 , = >
REMARKS
'
= > ! 5 -$ 3 0
'
( 77 5 ·½ = > $ ! ! , =( 79> ' ( 73 ! $ , !
© 2004 by CRC Press LLC
208
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Connectivity Augmentation
+ -(/ 0
* " ' - * * !
? = > , ! ¼ ? = > . !&
! ! + F & -+ F 390 ,
" Æ 6 B ! -(/0
References -. / 0 . $% =// > 4K47 -8 210 H 8 H 2 2 L : 11 -8970 8 F! <& /97
A F *
-8* 3/0 H 8 F * : !& 4 =/3/> 19K -* 730 2 ( * 2 ! 7K 7 !""# F! <& /73 -J : 90 2 J . : & $ % =/9> 7K73 -:/70 2 : : &
* :MF! <& //7
& 6 A
-. 110 . A 2 6# $ L 9 L F! <& 111 -. 710 2 . " & 2 I
N $ ' =/71> 7K34
2
-A(470 A ( A # )! !& ()* ( "6K =/47> 9K/ -A390 < A ! ! = + % , =/39> 9K99
© 2004 by CRC Press LLC
>
Section 4.1
209
Connectivity: Properties and Structure
-AH 990 A . H & 2 (*** % =/99> 71K 7 -A2340 : AI A 2I
$ 7 =/34> K -((470 : ( . (& $ # )! !& $ 3 =/47> //K 1
+
-(/10 ( & & K 9K11 8 J : : G * H I 5 =A> -. /0%(0 8 //1 -(/0 ( & B $ 4 =//> K4
%($ +
-(/ 0 ( & !& K7 H 8 J2 $ =A> $ 1 % !!2 6 N $ // -(/40 ( & !& )! K99 2 $ 2I : : G =A> A 8L //4 -2 70 6 2 $ # $ I
( & 2 $ % =/7> K9 -2* 910 . 2 ( * 8 =/91> 14K
0 ' $
37
-2 340 2 N //7 -2<//0 H : 2 H < 8 ///
(
-2930 A 2I ; 34K / F * /93 -* 110 * $ , + 4 =111> 3K4 -* 7/0 * 4
+ 9 =/7/> 41K
-* 30 < ; * OB P # G G + % , 1 =/3> K1 -* F 730 ( * Q F . ! 5 4 . /73
© 2004 by CRC Press LLC
( 3 4
210
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-* 630 *I
& 6 , $ =/3> /K
-* 2 110 $ * * 2 ! # ' ! B + =111> K41 -*/0 *& Æ ! & & 9 =//> K4
-*;&/0 *& * ;& # 5 $ , 3 =//> 4K43 -H910 * H A L Q I 2 $ 39 =/91> /4K1 -J 1 0 J J ! ; ! 5 ' : G
+ 5 + % , 3 =11> K -J 1 0 J J ! 6! ' : G
+ 5 -J 10 J J ! A# ! ' : G + 5 -J 10 J J ! : G
+ 5 -J 9 0 6 J F * % +
% , 9 =/9 > K -J110 $ J % , 31 =111> K 3
+
-J10 $ J # 3 =11> K1 -: $ 910 . 2 : $ ; # , ! & 0 $ % 1 =/91> K71 -: 90 . : & $ =/9> 93K3 -:9 0 : : G 4
$
+ ) . $
=/9 > 3
-:970 : : G ; $
% 3 =/97> /K3 -:990 : : G
% 1 =/99> K4
$
-:/10 $ L : / =//1> 4K
© 2004 by CRC Press LLC
4
Section 4.1
211
Connectivity: Properties and Structure
-:/0 : : G
//
*6 A F *
-:F 930 : : G L F : $ . $ $ / =/93> 7/K97
$
-$ 90 + $ $ & I 2 ,# / =/9> K3
-$ 9 0 + $ A# I 6 2 I J $ % 7 8 9 =/9> 37K/9 -$ 90 + $ A& 2 I 2 $ ,# =/9> /K -$ 90 + $ 2 & Q 2 14 =/9> /K -$ 9 0 + $ J + 2 7 8 =/9 > 39K1 -$ 990 + $ A & I
I K4
& 2
$ %
$
-$ 93 0 + $ $ =/93> 4K7 I -$ 930 + $ N $ # & 5& ,# 1 =/93> 4K7 I -$ 930 + $ N $ # & ,# =/93M9/> 39K 1
+
+
$
/ =/99>
$
$
-$ 9/0 + $ , 77K/4 * ! 2 3 * /9/ : $ : F 3 /9/ -$ 3 0 + $ ; 3/K/3 ! 4( 5 6789: 6 ;F /3 -$ 990 8 $ H ; $ 1 =/99> 44K7
-$3 0 + . $ $% 6 =/3 > 9K /
+ 3
-$;/ 0 + . $ J ; % , 71 =// > 13K -$90 J $ Q J
+
- $ 1 =/9> /7K4
-;10 ; ; L $% 6 : + 8 & H + =A> %
© 2004 by CRC Press LLC
212
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-;/70 ; ; ' ' 7 =//7> K4 -;&3 0 * ;& + , 9 =/3 > 4K9 -;&340 * ;& "" 9K4 H & =A> ' + , /34 -;&390 * ;& """' # =/39> 4/K3/ -;&330 * ;& + % , 4 =/33> 4K44 -;&/1 0 * ;& A ! & & 7 =//1> 9/K34 -;&/10 * ;& 4 /K44 8 & * =A> L * //1 -;&/40 * ;& = E > =//4> K91 -340 F . 2 R 4K9 % 8 !9: =2 ! /34> : $ : F 1 N /34 - /70 . ; , $ 4/ =//7> //K 4 -9 0 H , 3K/3
+ 9 =/9 >
-330 H H % 5 ;6 * # =/33> 794K793 -/90 S < $% $ 94 =//9> /K/7 -610 6 6 AI G =11> K -631 0 6 & * + =/31> 9K93 -6310 6 , , +
% , / =/31> K9 -630 6 F + 4 =/3> 4K4
© 2004 by CRC Press LLC
Section 4.1
Connectivity: Properties and Structure
213
-6330 6 /9K : + 8 & H + =A> % ((( : /33 -6630 6 8 6 F + , =/3> //K -670 + 6 6 ' < (
$ =/7> K 44 -6770 + 6 6 8 N 6 : /77 -+ $790 $ A + & . $ $
+ $ / =/79> /K3 -+ F 390 6 + F & A + % % 4 =/39> /7K -+0 * + + $
4 =/> 41K73 -+ /0 + 6 # K " $ *
L J& =A> 0 ' % 7/ $ ( // 8 // -+990 . + , + % , =/99> 9 K93
© 2004 by CRC Press LLC
214
4.2
Chapter 4
CONNECTIVITY and TRAVERSABILITY
EULERIAN GRAPHS 8 ., A 6 A 6 A ; 2 2 4 L 6 A 6 . 7 6 A 6
Introduction A JI 8 ' ( ( = > A
C
D
B
(a)
(b)
Figure 4.2.1
! &
! & T : A ! 97 -A970U 6 ! C , D ( # -(/1 (/0
4.2.1 Basic Definitions and Characterizations
6 #
? = > ! #
= >
5 C D C D CD
© 2004 by CRC Press LLC
Section 4.2
215
Eulerian Graphs
DEFINITIONS
' = > ! & = > , # #
' ' '
# #
" # B
" ** !
B
' = # > = # >
' = > = > = > Some Basic Characterizations FACTS
( ! -69 $3 +/1 (3/ (/10
'
1 =-A970 -* 390 -L L0>
:
6 ! B
'
= >
=>
=>
' ' ' ' '
? = > = > =-9/ (3/ (/10>
' = > => =>
(
% ! B
% % %
© 2004 by CRC Press LLC
216
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
'
( A =-A970> ! ( = > ( => ! * -* 390 6 B
( => ( => L =-L L0>
'
8 ( ( 7 !
' '
F
6 # # ( Characterizations Based on Partition Cuts DEFINITIONS
' : = > 6 ! = > ! ? = > # ,
'
# ! = >
' 6 = # > = > ! = > 6 = > ! = >
' : # # 6 Ú = > ! ?
"
Ú Ú FACTS
' '
' = > => =>
= > :
= > = > = > ? = >
# 6 ! B
'
= > ¬ = > = >¬ = > ¬
¬
REMARKS
' + ( => ( 9=> = > = > # ( 1=> =! ( 3 / >
© 2004 by CRC Press LLC
Section 4.2
217
Eulerian Graphs
' ( 1
! # & "-/& ; , % U % -((70
4.2.2 Algorithms to Construct Eulerian Tours + ! !
= -(/10> Algorithm 4.2.1: #"$%"& $!"' (#)*
#' ! 5'
# + # # % A % #
, '-< = 1> ! & EXAMPLE
' 6 & !
R CD 6 ? & & & & % ? ! ( 6 ! % # ¼ ? & & & & # ¼ ½
Figure 4.2.2 REMARKS
' 6 * % -
© 2004 by CRC Press LLC
218
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
6 (% ! !
(%
-:3/ 0 Algorithm 4.2.2:
$"& $!"' ( $)*
! ' = ? ¼ : ? ( ? ' : ? = > " = > ? : ? = >
#' A 5' A
A
>
? = > A# ?
The Splitting and Detachment Operations
6 ' * DEFINITIONS
' : ! # => 6 !
# ! ¼ ¼ 5 6 = ( >
Figure 4.2.3
$! " "! $
' : # ! => => => => ! ! ? => =! > 6 6 = ( >
© 2004 by CRC Press LLC
Section 4.2
219
Eulerian Graphs e3 e3 e4
e2 e1
e4
v
e5
G
Figure 4.2.4
e2 e1
v1 v3
v2 e5
H
+" '
' B # = > ( -F 9/ F 34 F 340 FACTS
'
+** : # ! => ½ ¾ ¿ Ú = > " # ½¾ ½¿ => " # ½ ¿ @ & ½¿
' : # = > ! => " ½¾ ½¿ ½¾ ½¿ # ( " ½¾ ½¿
' '
REMARKS
' 6 : =( >
= -(/10> " !
= ! > ( : -(110
' ., ( ! ! " = > & = 5 > ! -' @ =>
' 6 ! ! # ! ! # !
© 2004 by CRC Press LLC
220
Chapter 4
Algorithm 4.2.3:
CONNECTIVITY and TRAVERSABILITY
,$! $!"'
#' A ! ' = > 5' A " ? ? ¼ : ? ( ? ' " = > ? : ? = > = > A " # ? = > = > A ? @ & '? = E > A# ?
REMARKS
'
K '
' 6 @ ! (% # 1 ' B (% !
" ! : ! = -(/10> ;
4.2.3 Eulerian-Tour Enumeration and Other Counting Problems 6 8A6 6 # " , * =( 4>
= > 6 ! ! # ! +
) 8 5 = >
.F B
B .8 5 DEFINITIONS
' 1
!
' : % =%> 5 # ! =%> ? 6 =%> ! ,
?
© 2004 by CRC Press LLC
? ? = > U
Section 4.2
221
Eulerian Graphs
'
: ? ½ ! ! B ! # B
' : 6 % = > ! U ½ ( ! ½ % 5
# ½ ½ # ¾
( # = > #
!
FACTS
'
, * 2 % =%> ? ½ ? =%> J @ # 6 %
' " % B
' '
% ? 3) - * -A84 6 0 : % =%> 6 ! =)= > >V (
' ( ! * ' = > = > ,# ,
'
6 8 5 %
=% >> !
= >
==> ? )=> ?
' 6 ! 8 5 B 8 5 % B
8A6 6 8 5 B
½ = V>
EXAMPLE
' 6 8 5 10>
© 2004 by CRC Press LLC
% % ! (
4 = -;/
222
Chapter 4
CONNECTIVITY and TRAVERSABILITY
0000
000
1000 D 2,4 :
00
D 2,3 :
001
0100
010
1100
10
01
1101 011
11
0010
010
1010
101 110
0001
1001
100
001
100
000
0101 1011
101
0110 110
111
0011
011
1110
0111 111
1111
Figure 4.2.5
-". !" % %
REMARK
'
.8 5 ? ! ! B 6 % ! .F B 6
! ! ! B ' % J ! ! = -S10>
4.2.4 Applications to General Graphs " ! U
# !* ! * = > " ! B ! B Covering Walks and Double Tracings DEFINITIONS
' = >
! &
' ! & # ! !
© 2004 by CRC Press LLC
Section 4.2
223
Eulerian Graphs
'
! & ½ ? = ? >
' '
6 !
= >
= >
FACTS
'
: ! $ 1 6 ! B U ?
' A "
' - 990 = >
' -6390 " !
B
' -6770 -6390 ! = > 1
'
-L940 : = > = > ! = > ; ( = & ? = > REMARKS
'
6 =., /> ! ! ! ! ! ! !
'
6 B ( 4 , ! 5 Maze Searching
" # *1 ! ! # 6 % 5 *1- * = -(/0 # >
" => ! # , =>
© 2004 by CRC Press LLC
224
Chapter 4
CONNECTIVITY and TRAVERSABILITY
""& $!"' ( ) *
Algorithm 4.2.4:
#' 5'
Ú
=
"
>
? 1
?
=
> ?
+ =
+ =-
>
=
>0
=
?
'?
'?
:
>
?
>
-
=
A#
>0
=
>
E
?
?
=
>
'?
'?
E
Covers, Double Covers, and Packings DEFINITIONS
'
+
'
+
# !
+
'
.
+
=.>
5
!
'
+
+
!
+
CONJECTURES
! "
!
=.>' A .
' A
.
#
!
'
A .
Three Optimization Problems DEFINITIONS
6
'
:
! ! !
!
! &
'
'
+
6
$%
6
+ =
+
© 2004 by CRC Press LLC
=
! !
>
=
> ?
¾
=
=
> ?
'
,
=
¾
>
= >
6
>
& =$+ >
,
>
$ %
&
! + +
+ =
& &
> #
=$+ > ,
Section 4.2
'
225
Eulerian Graphs
6 & & , ! ! & ! => = >
FACTS
'
-(370 : 6 . & + . + 6 . 5
'
-(2340 6 N $ # + &
$ +
'
-(2340 : ! ! ! " N + $ # + & =+ > ? = > = > ! = > ! = > '? => ¾
'
-(2340 ( + $ + N =+ > ? = >
'
( ! ! N + $ + =+ > = > 6 = > ! B ==+ > ? = > ? 1 >
Nowhere-Zero Flows DEFINITIONS
' : ' =%> , = > ? = > =%> ¾ ¾
%
6
'
' : ' = > - : % !
=%> = > , = > '? => 6 ' )! % ' )! ( => ? 1 = > ' ' )! => = > ¼
¼
CONJECTURE
)* +, 4 )! -64 0
=FQ4(> A !
FACTS
' '
-30 A ! 7 )!
-64 0 " => ! )!
' ! )!
! )!
© 2004 by CRC Press LLC
226
Chapter 4
CONNECTIVITY and TRAVERSABILITY
' 6 FQ4( . !
'
-9/0 : ' = > ! ! B
' = > 6 # + = >
.
6
# => + => ( = >
¾ ¼
= >
¾
= >
# =>'
¼
REMARKS
'
. K A ! ! # -2Q/ 0 -Q/90 )!
' F! )! ! = = >> => !
4.2.5 Various Types of Eulerian Tours and Cycle Decompositions DEFINITION
' : % " = >
%
% FACTS
'
-J470 : ! # = > ? 6 5 ! ½ = > ? ¾ = > U ! !
'
-3 ((/10
&
'
: # # !
'
6
-A840 : %¼ !
% ? =%¼ > 6 # %
© 2004 by CRC Press LLC
Section 4.2
227
Eulerian Graphs
'
- (/40 : ½ = > ! ? ½ #
= > / U = > / ! /
REMARKS
' '
( 3 : =( >
( / # = -Q/90>
' % -(+3/ (/10 *!
%¼ ! = =%¼ >> + (
= 8A6 6 -( 30> Incidence-Partition and Transition Systems DEFINITIONS
' ( # => ?
6 = > ?
Ú => ==>>
¾
' 0 = > 0 = > ? => = > => ?
=> A => ' + 0 0 ! A 0 0 ! + 0 0 + ' : = > = > = = >> => = > = > , ' + 0 0 ?
¾
6 C D C D
' = > ,
# = > , = > => = > => = >
© 2004 by CRC Press LLC
228
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
' -J730 = > Ú = >
=
> ,
+ > # +
' -(310 2
=
' -(310 :
=
! =>
$
" => 1 > #
' -((/10 :
=
> 6
! > = > ,
=
' -(310 : " => $ = > EXAMPLE
' 6 ( 7 ! 0 = > ? E ¼ = E >¼ ' 4 7 ? 0 = > ! ! ( 7 1
5
3’ 5’
1’ 2’
2
4’
4
3
Figure 4.2.6
/! 0 =>"! $ $ '
REMARKS
' 6 + ! => 1 = > H - 3/0' W%
W% ! ' ( 4 ! ( 3 =( > ' (
( + = # > &! '= * . "
. 5 F! Q 4 (! 5 -(:3 (33 (1 (10
© 2004 by CRC Press LLC
Section 4.2
229
Eulerian Graphs
' ( 7 ! # # ' ( ! ( 7 &
' + ( 7 9 # ! = -Q/90>
' = > -(/10 F ! ., # = > Orderings of the Incidence Set, Non-Intersecting Tours, and A-Trails DEFINITIONS
' 2 # ,# B ½ Ú Ú Ú 1 => " 1 => &!
' : # ! => ! Ú 1 => ? Ú 0 = > 1 => ! 2 0 = > 6
0 = > 0 =
>
'
: ! 1 => 0 = > 0 = > ! 1 => ! => + 0 0
'
: ! 1 => 0 ? E ? = =>>
' ! # #
'
= >
EXAMPLE
'
B ! ( 9 ! 7 1 3 / 9 4
© 2004 by CRC Press LLC
230
Chapter 4
CONNECTIVITY and TRAVERSABILITY
2
1 11
10 9 8 7
12
6 4
5 3
Figure 4.2.7
" $ "
FACTS
' 2 #
1 => =
' " ! => B
=
>
>
' -(/40 6 ! - ' -(/30 U ' :
# Æ = > 3 ! 3
# ! # 5
# 6 REMARKS
' ( 3 : =( > B : , = > ' 6 ! 0 = >
= > ' ! U : &! , 0 = > = 0 = >> 5 0 = >
© 2004 by CRC Press LLC
Section 4.2
231
Eulerian Graphs
4.2.6 Transforming Eulerian Tours The Kappa Transformations 6 &
6
( -(/10
DEFINITIONS
'
6
? ?
+ + + '
:
?
?
B
'
=
=
?
=
+
'
:
?
=
> ?
'
¼ =
>
+
=C ! D>
?
=
>
>
!
=
>
=
> #
:
=
? =
> 6 ! !
+
>
2
6
+
6
>
> 6
6
?
'
=
> ?
> ?
=
A ¼¼= >
¼ : £ ¼ £ ¼ ? = > # = > ? ¼ ¼¼ ¼ £ ¼ ¼¼ + + ? + + 6 ? = > ? = = >> '
'
:
!
'
6!
0½ 0¾
?
@
© 2004 by CRC Press LLC
=
>
6
?
=
>
£ ?
=
>
@ ?
232
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARK
' 6
, !
# *
FACTS
' : ½ ! @ > = -J310 -&30 -(/10>
B
= #
' : ! = >
@ = > 6 B ! + ! + ? B = > ! 1 => > @ 6 B ! + ! + ? B
' :
=
' : ! @ B
6
=! > ! = >
# 6
' "
EXAMPLES
' 6 ! ? 3 =!
B> ! ( 3= > 6 & ! 6 ¼ ? 3 9 7 4 = > = ( 3=>>
Figure 4.2.8
' 6 A# 4 8
+ ? ! ?
? 4 7 9 3 =! B> =( /= >> © 2004 by CRC Press LLC
Section 4.2
/=>>
233
Eulerian Graphs
¼¼
? 9 3 4 7
=(
Figure 4.2.9 Splicing the Trails in a Trail Decomposition
+ ! 6& ! = > Algorithm 4.2.5: 0"& $!"' (*
#' 5'
: ? ½ + ! ? = > = > ? : ¼¼ : ? = > '?
'?
References -J310 H J 6 A $ =/31> 74K7/ -2Q/ 0 8 : 2 O Q 2 ! $ % ) =// > K4 -(/40 : . * ( 6 F , ,
$
=//4> 1K -(/30 : . * (
$ =//3> //K
© 2004 by CRC Press LLC
234
Chapter 4
CONNECTIVITY and TRAVERSABILITY
- (/40 $ * ( , + =//4> 9K -;/0 2 ; ;
" $ $2 ! * // -A840 6
A F 2 8 5 % %8 =/4> 1K9 -A970 : A =97> 9 3K 1 ? ; " L 9 K1 -(330 ( .# + 33 49K7
-(310 * ( A : J I & . I J + - ) =/31> 4K79 -(3 0 * (
. H 8 N $ =A> /3 K 7 -(370 * ( 5 +
-) =/37> /K1 -(330 * ( ! ' =/33> 3K 3
-(3/0 * ( A = > - $ % /39
$ =/3/> F K 4K/ -(/10 * ( * ) $ F * //1
/
-(/0 * ( * ) $ F * //
/ = .
.
8 1 * ) )57('1 %
$ . =A> J!
-(110 * (
111 /K39
-(10 * ( = > 6 = > $ =11> K -(10 * ( 8 % 5 $ =11> 99K3 -((/10 * ( ( & ; + - =//1> 4K4
© 2004 by CRC Press LLC
Section 4.2
Eulerian Graphs
235
-(2340 * ( $ 2 ; ! =/34> 7K79 -(+3/0 * ( A + $ , # =/3/> 44K71
%
-((70 : ( . (& -. '. N FH /7 I -* 390 * N $I & : + N $ 12 =39> 1K -J470 J A ? ! B =
&> $ -> %8 =/47> F K7 ? -J730 J $ ! $ -> =/73> F 97K31 G : )4 4 $4 (/ 2 KL , -:3/ 0 $ A 3/ -$3 0 6 $J ' " ! $ =/3 > 9K -F 9/0 H F + H + =A> ; N U $ J /93 ) ' $ ( =/9/> 39K/9 -F 34 0 H F + . A % 8 " =A> /34 $ % 0 ' % N : =/34> 9K4 -F 340 H F + A + 0 $ % =/34> F 9K/ - 3/0 H . 6 I 2 $ =3/> /K1 - 990 2 6 ! & & $ 5 ) @@/ * =A> ( ; N * K /97 -9/0 . ) H 8 N $ =A> F! <& /9/ K47 -3 0 . A + - =/3> 9K3 -30 . F! 7 )! + - =/3> 1K4 -9/0 * & =/9/> 19K13
© 2004 by CRC Press LLC
236
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-&30 . J & A
- % J $ J * < =A> $ /3 : F $ 8 F! <& /3 3K4 -6 3/40 2 6 : P '8 $ =3/4> 39K/1 -6340 6
=/34> 7K73 -690 6 A + - ( =/9> K 4 -6770 . H 6 ; $ $ =/77> /9K // -6970 6& ! A $
$ =/97> 73K7 1 -64 0 + 6 6 +
$ =/4 > 31K/ -6 0 + 6 6 8 ; !& $ $ =/ > K9 -L0 ; L B $ 34 =/M> 37K/ -L0 ; L $ % "" =/> K/ -L940 . L
. A $ =/94> K -+/10 . + $J% $ =//1> 9K1 -S10 H S % ( '. F!& 6 J! . 11 -Q/90 O Q ( -. 8 $ .&& " F! <& //9
© 2004 by CRC Press LLC
Section 4.3
4.3
237
Chinese Postman Problems
CHINESE POSTMAN PROBLEMS
! "
#
6 8 " L N . $ #
Introduction 6 !* ! * = > " #
!
6 , 2 = J! $ J> /7 -270U
C D H & A =-A74 0>
4.3.1 The Basic Problem and Its Variations DEFINITIONS
'
! &
'
2 , ? = > ! ! ' & & & !
.
6
' 6
' 6
&& - && && ! &&
' 6 && $ && *,' FACTS
' '
N .
= > $ F = >
© 2004 by CRC Press LLC
238
Chapter 4
CONNECTIVITY and TRAVERSABILITY
The Eulerian Case DEFINITIONS
'
= > ! & , # ! &
= >
#
'
#
'
! &
'
"
? =
B
" #
!
> #
( 3 3 (
& =
*! # C D
>
=
>
( 3
FACTS
'
#
'
'
"
= #>
REMARK
'
# $ #
Variations of CPP DEFINITIONS
'
'
6 B
= >
'
. '
,
; '
'
. '
, B
= >
'
'
" N
6 !
# CD = !
>
" ! ! @ !
'
'
&' * *
6
! B
© 2004 by CRC Press LLC
Section 4.3
239
Chinese Postman Problems
6 ! ! ! => # !
'
'
6 #
FACTS
'
6
"
½
¾
, = > B , #
!
4
!
4
½
¾
! = , > !
Æ
, ! !
"
U
* >
'
½
! ,
¾
&"
=
(
! , B
=
'
-AH90>
-+ /0 6 ! F
'
6 F
M ! = -2 H9/0>
REMARK
'
" # #
!
# -A 2: /4 0 -A 2: /4 0 A#
-(/0
4.3.2 Undirected Postman Problems 6 2 ! # = >
6
) ! ! A =-A74 0> !
DEFINITIONS
'
$
# =$
'
© 2004 by CRC Press LLC
! !
>
#
240
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Algorithm 4.3.1: ,$ 5677 #' 5' $ !
! !
: ! ( ( 3 ( ! ( 3 ( # ! ! ( ! 4 ( 4 . :
6
! ! @ ! !& A = -A74 0-A74 0> 6 , 6 ! ( = -J 790> ' 2 ! & #
! =(%
> EXAMPLE
' ( U ! , 6 ! !' L#
: 4
Figure 4.3.1 $ $!"'
! ( ! 4 6
© 2004 by CRC Press LLC
Section 4.3
241
Chinese Postman Problems
½ ½
6 ! ( 6
= ! 1> ! & !'
REMARKS
' 6 !
# ! ! ! & = & > ! = -2 H9/0>
' " ( B
B # ! A H =-AH90>
' 6 # ! & N ! * , ! ! , ' !
! ! &
" !
8 ! ! ! = > ! ! !
4.3.3 Directed Postman Problems 6 . " !
6
FACTS
' ! &
' 6
! U
6 & " /& ; = >
© 2004 by CRC Press LLC
242
Chapter 4
Algorithm 4.3.2:
CONNECTIVITY and TRAVERSABILITY
,$ 677
#' ! !
5' $ ! " A
( ? 5= > )&5= > ! '
¾
(
(
¾
( 1
¾
( ?
( ( = >
Producing an Eulerian Tour in a Symmetric (Multi)Digraph
B = > 6 ! = -A840> DEFINITION
' ! # Algorithm 4.3.3:
7"! " $" !"
#' A 5' A
# £ ( £ ( # ? £ : ! 5 = > : £ # £ ! !
!
? £ ' # = > = > # U © 2004 by CRC Press LLC
!
Section 4.3
Chinese Postman Problems
243
EXAMPLE
' ( , #
#
# , ! ' ( ? ( ? U ( ? U ( ? 1 ! ! , = > # ! ( 6 ! Æ# ! # , = > ! # B'
Figure 4.3.2 $ $!"' REMARKS
' 6 !& )! A H =-AH90>
' 6 B ' " B ! # # ( # (
!
4.3.4 Mixed Postman Problems FACTS
' 6 # $ - U 6"("8":"6< = - 970>
© 2004 by CRC Press LLC
244
Chapter 4
CONNECTIVITY and TRAVERSABILITY
' $ - ! # = > # ! ! = -2 H9/0
Deciding if a Mixed Graph Is Eulerian DEFINITIONS
' 6 #
' '
#
# # # B
#
' # , + = > @ ! + = > + = > + + 5 +
= > + = -((70> FACTS
'
=> # ,
'
$ #
EXAMPLE
'
# ! # 6 ( , # B ½
Figure 4.3.3
$" 89 +"
6 = > B #
, # ! 6 ! & ! , 6 !& )! !
© 2004 by CRC Press LLC
Section 4.3
245
Chinese Postman Problems
! 89 +" 2 $"
Algorithm 4.3.4:
#' # 5'
( ? 5= > )&5= > : ! ! !& )! '
¾
(
(
1 (
( ?
= >
" = > ( " ( ? ; A ( ? ; A : A = >
EXAMPLE
'
6 = #> ( ( " ,
! # # 6
( ( , = > = > ! , 6 # !
Figure 4.3.4
$ $!"' !" !"
© 2004 by CRC Press LLC
246
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
'
6 ., & & = @ ! > 5
'
" !
= > ! =! @> # ! = -AH90>
The Postman Problem for Mixed Graphs
$ F ! + & ! !
,* * ! ! , ; # *! ! B @ # ! = -A 2: /4 0 -A 2: /4 0> DEFINITION
' , REMARK
' " $ !
# " = ( 4> ! ;! ! M FACT
'
#
6 # = > 6 , # ! ( & =-(9/0>
© 2004 by CRC Press LLC
Section 4.3
247
Chinese Postman Problems
EXAMPLE
' 6 B # # ( 4 U ! " # ! F! ! ! ,U ! B ; ! ' U N !
Figure 4.3.5 2" : ''" /!"
" ! ! !
!& )! U
-AH90 " # @ ! ! M
Approximation Algorithm ES
6 ! # ! 5 M 6 ! = -AH90 -(9/0> 4 C M D Algorithm 4.3.5: "9' $!"' ,
#' #
5'
! M !
N # , : ; M :
6 # 4 /#
© 2004 by CRC Press LLC
248
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARK
' = > & A " ! ! ( & FACT
' -(9/0 6
A
# "
A# 7 ! EXAMPLE
' # ( 7 ! ! , 6 A = > ; ! ! E 6 6 ! * ! ! 6 , ! " ! E 16
Figure 4.3.6 $ "9' $!"' ,
Approximate Algorithm SE
# A ! =#/> = -(9/0>
6
7 = -(9/0> M 4
© 2004 by CRC Press LLC
Section 4.3
249
Chinese Postman Problems
Algorithm 4.3.6: "9' $!"' ,
#' #
5'
! M !
# # : N : = >
EXAMPLE
' ( 9 A *!
Figure 4.3.7 $ "9' $!"' , Some Performance Bounds FACT
' -(9/0 6 A
! # A# 9
! EXAMPLE
' ( 3
A ! A ! ! A
Figure 4.3.8 $!"' , , "& :"
© 2004 by CRC Press LLC
250
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
' " ! # 4 =A>
7 =A> *! A# 3 ' # ! A = > ! A ! ! ! A
' 6 A# 3
B !
!' + A A ! @ T "
C D ! + !& @ B @
6 , ( & =-(9/0> ! ! ! ! ! !
# ' " =-(9/0> ( & 6 ! !
' +
-(9/0 ! U ! ! ( / ! 8 /// ! , ( & # !
L = L//0> ! 6 ( /
Figure 4.3.9 :" " ' $!"' , ,
' (! $ &
*! !
F #
! B &
6 $
" , '
$ B @ = -8 6/0 -8 6/0 1 > 6 - - &'-
© 2004 by CRC Press LLC
Section 4.3
Chinese Postman Problems
251
References -889 0 A : 8 : . 8 F!& L $ + '. =/9 > 74K/ -8 6/0 8 8 & 6 . . 2 %($ + $ =//> 3K41 -8 6/0 8 8 & 6 2 : 6 . 2 ( 9 =//> 444K43 -8310 8& 6 $ # F!& ( < % 0 ' % AA L F! <& =/31> 4 K77 -8 $3 0 , A 8 L A $ ; $ $ # % $ 5 > 0 ' ( % :! F! <& =/3 > -A74 0 H A 6 5 ) =/74> 9 -A74 0 H A$ # $ ! 1 L + ) ' , % 7/8 =/74> 4K1 -A74 0 H A 6 (! + $ 9 =/74> /K 79 -AH90 H A A H $ A 6 $ 4 =/9> 33K -A840 6
A F 2 8 6 ; : 2 % %8 3 =/4> 1K9 -A 2: /4 0 A $ 2 2 : "' 6 5 ) =//4> K -A 2: /4 0 A $ 2 2 : ""' 6 5 ) =//4> //K -(/0 * ( A 2 6 L $ 41 F * =//> -((70 : ( . (& -. '. N FH =/7>
© 2004 by CRC Press LLC
252
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-(9/0 2 ( & # +
$ 7 =/9/> 43K44 -2 H9/0 $ 2 . H ( 1 ' +* ( F! <& =/9/> -270 $ 2 2 N A ; $ =/7> 9K99 -23 0 $ 2 + $ ) *6 =/3 > K/ = > -23 0 $ 2 ; +
$ / =/3 > K 7 -J J9/0 J 2 J 6 $ #
$ =/9/> 3/K1 -J 790 J - F! <& =/79> -: Q330 < : < Q F! . 5 ) 4 =/33> 499K43 -$ 9/0 A $ & 6 $ # F!& $ % 4 =/9/> 7 K7 3 -F /70 < F H ; $ # '. 9 =//7> /4K13 -;9 0 ;@ ( L '. 4K7
=/9 >
- 970 * ; # A 6 + $ =/97> 4 K44 - / 0 + :
& $ # F!& 5 ) 0 7 =// > K - :/40 + : $ : $ # F!& 5 ) =//4> 9/K 3/ - L//0 8
H L ¾¿ # $ # %($ + $ =///> 4K - /0 6 J ; $ # 5 ) 0 =//> K9 -+ 3/0 Q + ; + A 2 $ =/3/> /9K
© 2004 by CRC Press LLC
Section 4.4
4.4
253
DeBruijn Graphs and Sequences
DEBRUIJN GRAPHS AND SEQUENCES $ %&' ( ' .8 5 2 8 2 8 5 B F 2
Introduction F 8 5 , = > ( ! 8 5 " ! 8 5 ! 8 5 B
4.4.1 DeBruijn Graph Basics DeBruijn Sequences DEFINITIONS
'
5 , & #
? !
6! 8 5 B C BD
' " 7 / $ & &¼ & 6 ! ¼ 7 & , 7
' " 7 / $ B ! ! 7
/
' ? ½ ¾ ¿ ? ·½ ? 6
' '
½ ¾ ½ ¾
© 2004 by CRC Press LLC
½ ¾
½ ¾
? ½
?
½
254
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
'
! 8 5 B @ B
' 6 8 5 &
& 8 5 B
EXAMPLES
'
1111 8 5 B " 111 11 11 1 1 1 11
'
11111111 8 5 B
DeBruijn Graphs
8 5 B
! B DEFINITIONS
'
=> !
! B L# 5 #
8 5 =>
A ,
# ! ! # !
' 6 8 5
' 6 8 5 8 5 EXAMPLE
'
( ! 8 5
FACTS
' 6
8 5
' A # 8 5 6 , ! 1 ,
' '
A # 8 5 A 8 5
© 2004 by CRC Press LLC
Section 4.4
255
DeBruijn Graphs and Sequences 0000
000 0001
1000 1001
001 0010
100 0100
010 0011
0101
1100
1010 101
1011 011
1101
0110
0111
110 1110
111
1111
Figure 4.4.1 -". !" ""
' A 8 5
' 6 = > 8 5 => ! 8 5 B 6 B , # ' -".& "' -8 90 ( 8 5 B
½
¾
4 7 7 1 3 791337
¾
½
REMARKS
' 8 5
8 5 *! 8 5% ! 8 5 B
' 8 5 8 5 => ! 8 5 ! #
4.4.2 Generating deBruijn Sequences Æ 8 5 B , 8 5 & A 8 5 #
© 2004 by CRC Press LLC
256
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
' -2 70' ! # A ' " 8 5 => B #
# =6 B , , 8 5 > ' 6 B A 8 5
8 5 B E
EXAMPLE
' ( 8 5 B 8 5
0000
000 0001
1000 1001
001 0010
100 0100
010 0011
0101 1011
011
1100
1010 101
0110
0111
1101 110 1110
111
1111
Figure 4.4.2 $" "
=>
REMARKS
' 6 ( ( Æ A =>
# ! ! ( ( ! B 8 ( ( ! W1%
W% ALGORITHM
' 6 8 5 B (% =B > A 8 5 = > 6 B A =(% >
© 2004 by CRC Press LLC
Section 4.4
257
DeBruijn Graphs and Sequences
Necklaces and Lyndon Words
( & J -(J990 & 8 5 B DEFINITIONS
' = B
>
' B
' 0 & ! : & + & #
B
& FACTS
'
& : ! ! !
' 8 8 & 8= >
! 8= >
- 0
'
-(J990' " =# > : ! ! # ! 1 8 5 B # REMARK
' 6 - = > & ! # ! + - =1> ? 13 - =4> ? /
-
=4> ? 3 !
EXAMPLES
'
( , B
4 01101 11010
0
1
1
10101 01011
0
1
10110
Figure 4.4.3
'
0$ ""
6 : ! 1 + 11 8 5 B
© 2004 by CRC Press LLC
258
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
6 : ! 11 1 + 1111 8 5 B
'
+ ! ( (4 ? : !
" #
111 11 1 1 " ! ! ! ! # 8 5 B 11111111
4.4.3 Pseudorandom Numbers ( $ = >
@ 8 $ B .8 5 B ! ! DEFINITIONS
' B B
' -2790 6 1 B
!'
6 %
@ 1%
B 6 ! 5 = E > ! ! = E 11 11>
' B ! ' 1 2 8 5 B # 1% # %
'
-390 6 .
+
,
= >
7 / /
! 7=/> 6 , / B +
© 2004 by CRC Press LLC
Section 4.4
259
DeBruijn Graphs and Sequences
FACTS
'
; 8 5 B
B
'
8 5 B , 2% , ! (
% # B 1% !
B #
'
" = # > 8 5 B
&
;
B 2 5 8 5 B ! ! B
'
-H/0' 6 !
B
8 5 B
4.4.4 A Genetics Application 6 .F # Æ 8 # # !& 6
.F ! 6 #
, B # ! .F B B #
6 Æ 6
+ - 6 + 10 , 8 5 !
B 7
B
DEFINITIONS
!)
'
'
( + ?
, B 2 6
½
7 7¾ 7
.F B ! , +
+
6!
5 .F B 7 ! ,
REMARK
'
A B & +
8 5 Æ !
6 = > B
! # ! @ + 8 5
© 2004 by CRC Press LLC
260
Chapter 4
CONNECTIVITY and TRAVERSABILITY
References -;0 " & & : ! 8 5 B
!!! M M M&MF& M -390 2 H ( N /39 -. 70 F 2 8 5 ' <
=/ 7> 943K97
/
-(J990 * ( & " J :# 8 5 B + % =/99> 9K1 -H10 H H ; B /7K1 8 * B!A = : 8 . > L 11 -2 H9/0 $ 2 . H ( 1 ' + * ( X /9/ -2790 + 2 % ) % * . /79 -2 70 " H 2 F + 0 $ % =/ 7> 79K 9 -22$ ://0 H ( 2 Æ + $ 2 H * $ :! $ + * ( /// -2<//0 H : 2 H < (
/// -* 790 $ * H 8 /79 -$ 10 Q $& A ' ( # C % , 9 =11> //K1 - 6 + 10 * 6 $ + A .F ' % /3 =11>
© 2004 by CRC Press LLC
Section 4.5
4.5
261
Hamiltonian Graphs
HAMILTONIAN GRAPHS '
' )*
4 * 4 6 & 4 A# 4 $ 6 ; * T 44 2 47 (
4.5.1 History F = -2 H9/0> ! F + ! * 341 * # # *
. 349 6 ,
6 ! & ! 34/ ! , ! * % 4 * , B " -J 470 344 6 J & B ' 2 ! , => # 6 J & & B * N J & ! ( -8 :+ 370 DEFINITIONS
' ' '
= >
4.5.2 The Classic Attacks 6 @ 6 & Æ U #
© 2004 by CRC Press LLC
262
Chapter 4
CONNECTIVITY and TRAVERSABILITY
6 # ( Degrees
6 # Æ = >
Æ =
>
DEFINITIONS
' + = > ! 6 = >
' 6 ! = > 5 5 !
' ( ' ? = 9 > = ? 9 > 5 5 ( 3 9 ! E
6 ! '
: =
>?
/ (
(½ (
FACTS
' '
-. 40 " :
-;710 " : = >
Æ = >
: = >
-;70 " := > E
EXAMPLE
'
! ! # , = ( 4> 6 * Æ = > ? =* > := > ? * . % 6 ;% 6 =( > 6 ! Æ = > ? * : = > ? * ! ; = ( 4>
Figure 4.5.1
' -H 310 :
2$$" ! " " & ;"& "$
© 2004 by CRC Press LLC
!
Section 4.5
263
Hamiltonian Graphs
' -$$70 " ? = 9 > = > ! => E => E 5 9
'
-8970 :
! =
6
> ! ,
!½=
!=
>
>
' -*/0 REMARK
'
6 # 6 => & , *!
! " #
1 6 ! ! ! =! >
Other Counts DEFINITION
' 6 # ( - =(>
5 ( - =+ > + 5 # +
! "
+ ! ,
' 6 = > !
#
'
= >
EXAMPLE
' 6 =5 *> ! * # + ! + ? ? 5 ? * 5 ! ! 5 + * + Y ¾ ( 4 ! ! = 7> = 4> © 2004 by CRC Press LLC
264
Chapter 4
Figure 4.5.2
+"
= 7>
CONNECTIVITY and TRAVERSABILITY
= 4>
FACTS
'
-;70 " ½ E ( ! # E
= > = 4> "
'
-( 3 0 "
/ / (=> => = > ?
' -8 8L: 3/0 " := > E = >
'
-A90 :
=
>
= > = > " = > = > " = > = > E ' -+930 " + - =+> ' -(370 : " # & + ! & ! - =+ > "
'
-8L/0 -( 2H :/0 "
- =+ > + ! REMARK
'
6 #
1
Powers and Line Graphs
! & = >
DEFINITIONS
' 6 ;= > ! ! ! ! ;= >
5 5 = >
© 2004 by CRC Press LLC
Section 4.5
265
Hamiltonian Graphs
' !
#
!
' + 5 = ½ > 5 ' 6 ! = > ? = > ! = > = >
'
= # 5 > = >
"
FACTS
' -* F+740 : ! 6 ;= > ½
' -2*//0 : ! 6 ;= >
! = >
'
' '
-+ 90 " -(9 0 "
" -8930>
! Æ = >
; =
> ? ;=;= >>
= > =
Planar Graphs FACTS
'
-630 A = -6470>
' -2730 : ! ! " 5 ! 5¼ # ! = >=5 5¼ > ? 1
4.5.3 Extending the Classics Adding Toughness DEFINITION
' " # + + ! & &
, & =+ > + ! =+ > & 6 #
FACTS
'
-H930 :
© 2004 by CRC Press LLC
:= >
6
266
Chapter 4
'
-8 $L/10 :
CONNECTIVITY and TRAVERSABILITY
'
-8L/10 : 6
:= > 6
! Æ = >
REMARK
'
G 5 & & ( & ? *! -8 8: L110 # =/ 6> 6 $ 1 !
More Than Hamiltonian DEFINITIONS
' '
2 2
' ! / # / E =! > ( # #
2
' = > B = > B
FACTS
'
=> Æ = > => := > !
-8( 2:/90 "
EXAMPLE
' 6 ! 6 FACTS
'
-8990 "
'
! = > ¾
-*/10 " := > # ! : = > = 4> # ( Æ = > = E > #
'
-*/0 " ? = 9 >
5 ( 3 9 ! =(> E =3> E
© 2004 by CRC Press LLC
Section 4.5
267
Hamiltonian Graphs
' -*/0 : / " ? = 9 > Æ = > / = > $ ¾ / E /¾
' -J /70 -J /30 6 # Æ = > = E > ! ' -J //0 : " => E # ' -( 2J: 0 : ! " => E => E = /> 5 REMARK
' 8 !
N# . ! ;
4.5.4 More Than One Hamiltonian Cycle? A Second Hamiltonian Cycle FACTS
' A 6 = -6 70>
' -6/30 "
/ ! / 11
! ! : # ! ! '* =! > = - => = =! >>> 6 ! ¼ ! ¼ ? ! # ! ! ¼ ! !
' -6/90 :
' -*110 ( # =>
! Æ = > => Æ = > Æ E " =Æ = >Æ = >>
' -$ 970 -2$ 970 6 #
! 5
!
Æ =
>
' -Q 970 -3/0 6 # , # 4
= > !
© 2004 by CRC Press LLC
268
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARK
'
( 6 -6930 # % 5 ! 5 = ! > 6 # =( >
Many Hamiltonian Cycles FACTS
'
-6/70 :
! ' (½ 3½ (¾ 3¾ ( 3 (½
= > " 3½ 3 (½3½
=> " 3½ 3 $ ½ ¾ =1 ' > ! 3 ½ (3 ·½ = '>V ½
'
71¾ :¾ = > E
-( 340 :
= > "
5 => " 7 ¾ ½ E 5
' -A/0 : ! = > " ! :¾= > Æ = > 5
Uniquely Hamiltonian Graphs DEFINITION
'
#
FACTS
' -A!310 6 # , B !
'
-H +3/0 B # = E /> B #
'
-8H /30 A B #
¾ =3 > E ! ? = ¾ > ½ ( B !
© 2004 by CRC Press LLC
Section 4.5
269
Hamiltonian Graphs
Products and Hamiltonian Decompositions DEFINITIONS
' = E >
'
A ! & # = ½> = ¾> 6 ? ½ ¾
=
> ? =½ ¾>=½ ¾> ½ ? ½ ¾¾
=
6
=
> ? =½ ¾>=½ ¾> ½½
?
=
¾> ½ ½>
¾ ? ¾
¾
½½ =
?
¾ ¾
=
¾>
¾ = > ? =½ ¾>=½ ¾> ½ ? ½ ¾¾ ¾ ¾ ? ¾ ½½ = ½ > ½ ½ = ½ > ¾¾ =
6
½>
½
¾>
6 = ! > ? ½- ¾0
=
> ? =½ ¾>=½ ¾ > ½ ½
=
½ ? ½ ¾¾ =
½>
¾>
REMARK
'
H & -H 9/0 5 E B ' " ½ ¾ ½ ¾ T
FACTS
' -/0 : ½ ¾ ! 7 & ! & 7 6 ½ ¾ ! '
7 & => & =>
=>
¾
= >
½
'
77&
" ½ ¾ * ½
¾
'
-8/10 -Q3/0 ½ ¾ " ½ ¾
© 2004 by CRC Press LLC
270
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
-( : /30 6 ½
'
-8 30 6 # !
' -J/90 = > "
=> =>
= > - 0 " = > - 0 " = > - 0
=> " =>
= > - 0
= > - 0 " = > - 0 " = E > = > E - 0 " # = > - 0
=> " =>
#
4.5.5 Random Graphs + 5= > ! - ? DEFINITIONS
'
=3 > 1 * : - ! * ' =3 . ( > 4 ? 4 = > ! &
6 7 ? @ ! 4 # + ! 7
' ! @ B = >
& & ? 1 -
' " Z ! Z " 5="> F B
"
' 6 4 2 %
# 2 6 %
© 2004 by CRC Press LLC
Section 4.5
271
Hamiltonian Graphs
FACTS
'
- 970 -J970 6 # ¾ ' -J970 -J30 <= > * ? E E <= > 4 = > ? E E <= > 6
'
4 = > ? = E
1 E >' 5= > ? ' ' ' -+/ +/ 0 ( 5 5 ' -(/ 0 % ' -(110 % " % ; % % -J30 (
REMARKS
'
" - V =! B > ! C D = *> AI ! , 5 ! & 6 ! , 8G
' " & ! # !
, 8G
( ( -8((340
'
B
4.5.6 Forbidden Subgraphs DEFINITION
'
= > 6 - # 5 ! => 6 => 6
; ! # 5 5 # # = &>
Figure 4.5.3
© 2004 by CRC Press LLC
!" - ;
272
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FACTS
'
-.2H 30 "
½ -
= >
=>
'
U
-8.J110 6 # ,
-
'
-8L/10 "
'
-2H 30 "
'
-8/0 "
'
-( 2/40 "
-
-
-
1
Other Forbidden Pairs B ' T 6 ! -8/0 -( 2/90 1 + !
FACTS
'
,
?
+
+
6
, +
-
, +
?
=
-
>
-
=
-
!
1>
'
-( 2/90 :
, +
,
'
?
+ 9
?
1 6
-2: 0 :
9
?
= > A
, + ? > , + - -
=
=>
,
-8/0 -( 2/90 :
9
'
9
?
!
>
?
;
-( 2/90 "
!
Claw-Free Graphs " !
=
6 ! B
'
9 - - - - ?
6 B '
!
" !
T 6 ! ! -( 2H :10 ! !
!
&
Æ
( -( 2H 0
Æ ! 8& -810 ! ! " -( 2H 0
!
© 2004 by CRC Press LLC
Section 4.5
273
Hamiltonian Graphs
DEFINITIONS
' ( # ( -- =(>0
( -- =(>0 =- =(>> =; ! ! >
' 6 ! 2= > , # (
' 6
5/=
>
FACTS
'
-( 2/90 : , + =, + ? > 1 6 , + # , ? + - -
-
' -/90 "
'
-/90 :
2=
> ! ,
=>
5/=
! 6
= > =>
> ? 5/=2= >>
2=
> ?
REMARKS
'
6 ! @ = -8970> ( -8110
' 8 ( 73
!
2=
>
'
6
! ( -8930 -8930 -+ 2 3 0 -8/40 -2 /70 -2/0 -210
References -8 30 Q 8 2 * # + % , =/3> 4K7 -8 8: L110 . 8 * H 8 : * H L F
$ // =111> 9K -8 8L: 3/0 . 8 * H 8 * H L :
* & F + % , 9 =/3/> F 9K
© 2004 by CRC Press LLC
274
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-8 $L/10 . 8 $ A * H L : ! $ 9/ =/3/M/1> 4/K91 -8970 H 8 L G
=/97> K4
$
4
-8( 2:/90 8 2 H ( H 2 : : & ; + =//9> 74K9 -8/0 8 - . 6 $ N //
-8930 H 8 * % 8 & + A : =/93> -8 :+ 370 F : 8 A J : H + N ;# =/37>
:
DE" !E" ;#
-8((340 8 8G 6 " ( $ ( ; $ % F! <& /34 1K / -83 0 8 8G
6 37 =/3 > 49K9
$ %
-8H /30 H 8 8 H & L B + % , 9 =//3> 74K94 -8990 H 8
+ % , =/99> 31K3
-8930 H 8 * ! % *
F SS" =/93> K3 -8/40 H 8 8 K ( A =//4> 4K1 -8/10 H 8 &
J! =//1>
-810 H 8& ( $ 4 =11> 9K97 -8.J110 8 I ( ( . A JI : = ! > %($ + 1 =111> 77K 799 -8110 * 8 Q 5G [& " ' 7 =111> 9K 3 -8L/10 * H 8 * H L ½¿ $ 8 & A 8" + L $ + Q =//1> 3K /
© 2004 by CRC Press LLC
Section 4.5
275
Hamiltonian Graphs
-8L/0 * H 8 * H L : ! + 4 =//> /K3 -+ 90 2 A + ; # % $ 3 =/9> K 3 -A90 L G AI =/9> K
%
$
-(/ 0 $ ( * + % , 7 =// > 4K7 -(110 $ ( * ) % 7 =111> 7/K 1 -2 /70 H H 2 *
$ 47 =//7> K3 -. 40 2 . =/4> 7/K3
0 $ %
-.2H 30 . .@ H 2 $ H (
2 H . 2 : : & . : & =/3> /9K7 -A/0 < A ! A 5 ; / =//> 4K41
%7 + $
-A!310 A * ! +
% , / =/31> 1K1/ -( 3 0 2 * ( F! Æ , 9 =/3 > K9
+ %
-( : /30 ( H : * / =//3> 4K44
+
-( 2/90 H ( H 2 $ 9 =//9> 4K71 -( 2H 0 H ( H 2 $ H ( ' -( 2H 0 H ( H 2 $ H ( ' Æ -( 340 H ( A 5 .
% =J $ /3 > + F! <& =/34> K / -( 2H :/0 H ( H 2 $ H : : & ;
. % $ 14 =//> 7K9
© 2004 by CRC Press LLC
276
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-( 2H :10 H ( H 2 $ H : : & ! $ / =11> 9K3 -( 2J: 10 H ( H 2 J& : : & "
. + F =11> //K1 -( 2/40 H ( H 2 Q 5G [& " ( ' 1/ =//4> K -(9 0 * ( 6 B ! + % , 7 =/9 > /K -(370 ( ! Æ + 1 =/37> 14K 1/ -2 H9/0 $ 2 . H ( 1 ' ( F! <& =/9/> -2: 0 H 2 6 : \ & ( ' -2/0 H 2 N K + 4 =//> K49 -210 H 2
K / F =11> 9K4 -2*//0 H 2 A * ,
( 7 =///> 7K 3 -2H 30 H 2 $ H ( $ =/3> 3/K/7 -2730 A H 2 ! 08 $ F =/73> 4K43 -2$ 970 8 2 H $ & 5 $ =/97> /K/7 -* F+740 ( * H F + ; $ , =/74> 91K91 -*/10 2 * A# $ 34 =//1> 4/K9 -*/0 2 * A# + % , 4 =//> /K -*110 * & : ! $ =111> 94K31
© 2004 by CRC Press LLC
Section 4.5
277
Hamiltonian Graphs
-H 9/0 8 H & A 5 +
0 $ % => / =/9/> K7 -H 310 8 H & * + % , / =/31> 9K 7 -H +3/0 8 H & + + ! B + =/3/> 499K431 -H930 * H ; # , $ =/93> /K -J //0 * J 2 F G &I &! ; + =///> 9K4 -J 470 6 J & ; ) % =:> 7 =347> K 3 -J30 H JG A G : # $ =/3> 44K7 -J /70 H JG 2 F G &I A G ; B ) / =//7> /K -J /30 H JG 2 F G &I A G 5 =//3> K71 -J970 . J AI G * %8 $ 9 =/97> 971K97 -J/90 $ J # +
0 =//9> 4K3 -$ 970 $ $ =/97> 9K 1
#
-$$70 H $ : $ ; ( +
$ =/7> 7K74 -;710 ; ; $ $ 79 =/71> 44 -;70 ; ; * + $
=/7> K9 - 970 : G * $ =/97> 4/K7 -+/0 + F + ) % =//> 9K4 -+/ 0 + F + ) % 4 =// > 7K9
© 2004 by CRC Press LLC
278
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-3/0 $ 5 4 $ 3 =/3/> 41K44 -/90 Q 5G
[& ; ! + % , 91 =//9> 9K -/90 ( 8 * ! + % , 4 =//> 9K/ -/0 * $ /1 =//> 7/K/1 -6930 2 6 * B
$ =/93> 4/K73 -630 6 + 9 =/3> 7/K97 -6/70 6 ; 4 =//7> 9K -6/90 6 + %
, 9 =//9> K -6/30 6 " + % , 9 =//3> 1 K1/ -6 70 + 6 6 ; + 0 $ % =/ 7> /3K1 -6470 + 6 6 $ % 3 =/47> //K7 -+ 2 3 0 . + H 2 K * $ 4 =/3 > /K1 -+930 . + Æ + % , 4 =/93> 3 K37 -Q 970 H Q & 4 +
% , =/97> 7K -Q3/0 $ Q . 3 =/3/> 43K73
© 2004 by CRC Press LLC
Section 4.6
4.6
279
Traveling Salesman Problems
TRAVELING SALESMAN PROBLEMS
& +' $
7 6 6 7 A# 7 * 7 " * 74 6 2 6 77 6 L
Introduction 6 6 =6 > " 6 Æ 6
# - 10 " ! 6 2 6 L
4.6.1 The Traveling Salesman Problem J $ -$0 ! , 6 =6 > * # ! ! & " ! ! ! ! ! =( ! 6 -*+340> " 6 Symmetric and Asymmetric TSP DEFINITIONS
' # 3#& =#3#&>' 2 = > ! ! , = > !
'
3#& =3#&>'
2
!
© 2004 by CRC Press LLC
! ! ,
280
Chapter 4
CONNECTIVITY and TRAVERSABILITY
' 6 / 3#& 6 ! A ! A !
'
6
#
8 3#& ! 6 6 Matrix Representation of TSP
A 6 ! # ! # 6
6 DEFINITIONS
' 6 = > 6 # % ? - 0 ! ! ! 6
6 # % ? - 0 ! !
' 6 E EXAMPLES
'
6 ! 1 % ? 9
# 7 4 1 1 9 4
1 / 3 1
! ( 7 6 V ? 7 ! / 9 1 9 6 !
Figure 4.6.1
'
,7
6 ! # 1 1 9 1 1 / % ? 9 / 1 9 7 / 4 1
© 2004 by CRC Press LLC
9 7 4 / 1 1 7 7 1
Section 4.6
281
Traveling Salesman Problems
! ( 7 4 V ? 6 4 !
Figure 4.6.2
,,7
Algorithmic Complexity FACTS
' 6 # 6 ! !' ! 1 U ! 6
'
( 6 F B
8 ! 1 ! 5 ( ! !
'
- 2970 ( 5 ?F
! ! 5
Exact and Approximate Algorithms DEFINITIONS
' '
!
= > &
: ! # 6 = 6 == > == > == > ! ! =
' 6 * -Q30 ! #! =!> = == > == >>= == > == >> & 6 = ! == > ? == > FACT
'
-* J10 6 #
#! =!> 6 ! #! =!> © 2004 by CRC Press LLC
! 6 !
282
Chapter 4
CONNECTIVITY and TRAVERSABILITY
The Euclidean TSP
. ( 4 ! ! A 6 ! 6 6 ! , -/30 //7 = ( 7> $ -$ //0 ! = -10> FACTS
' - 992 2H970 A 6 F 6 $ 1 !" A 6 , E 6
' -10 (
' ! =6>> - /30
!" #
1= E
6
!" ! 6 -10
' -6/90 6 # 5 $ A 6 1= > A , 5 F REMARKS
' % =( 7> A
*! ( 3 ' A# B
= # >
# ! ( # !
' 6 ! ' 4 * * 4 $ ! 6 -2340 -H2$<QQ 10 -H$10
4.6.2 Exact Algorithms 6 F * Æ 6 F
! ! = > -8 /30 ( 6 ! # -: 10
© 2004 by CRC Press LLC
Section 4.6
283
Traveling Salesman Problems
FACT
' 6 - # # 6 @
=
>V @
°
Integer Programming Approaches
L 6 6 + , =-8:110> '* ** =- 30> -'' -'- = -8 6340 -( :610 -F 10> 6 ! &! =-+/30> 6 = > 6 . (& H -. (H4 0
' .,
( ?
(
= > 1 !
: ! = > 6 6 # ' > ?
( 5 ( ? ? ( ? ?
( + 1 + ¾ ¾ ( ? 1 ?
FACTS
' 6 , #
# # # 6 ! ! 5 # *! " ! # 5 = - >
' 6 - * B
+
+
' 6 ! * ! * 1= > -+/30 ! # 5
! !
© 2004 by CRC Press LLC
°
"
&
? 6
284
Chapter 4
CONNECTIVITY and TRAVERSABILITY
;! ! ( # ! B 6 6
4.6.3 Construction Heuristics #
!
Greedy-Type Algorithms
6 6 ! # #
Algorithm 4.6.1: < " <! " 3<<4
#' # - 0 ,# # ½ 5' 6 ½ ¾ ½ " + '? ½ ( ? ½ ? ½ ¾ + '? +
# 5
°
= > #
°
= >
Algorithm 4.6.2: +" #" 3+4
#' # - 0 5' 6 =6 >
+
=>
+ ? / ? = > = 6 > / ? = > = 6 > => ½ ¾ ! ( ? / " + => # 5 => + '? +
EXAMPLE
' + >> 6 A# !
( 7 # >> # # # 6 ! 1 =! ! >
© 2004 by CRC Press LLC
Section 4.6
285
Traveling Salesman Problems
Figure 4.6.3
,7
# -H2$<QQ 10 ! 6 >> U ! 111] # 6 -H$10 ! >> ! A 6 >> 6 Insertion Algorithms
, 6 ( 6 !
! # ( 6 ! 6 # !
6 ! 5 B ! 6 DEFINITION
' : ! ? ½ ¾ ½ # B # ! ( = > ! = > = > ! = > = > = ( 7 > 6 ! = > 6 = > ? = ·½> / ! = > ? ½ ¾ ½ = > ? = ½> ! = > ? ½ ¾ ½
Figure 4.6.4
2" /"9 " =
>
REMARK
'
'* , , , ! , ! @ # A ! -^0 #
© 2004 by CRC Press LLC
286
Chapter 4
Algorithm 4.6.3:
CONNECTIVITY and TRAVERSABILITY
1"9 2" 3124
#' # - 0 5' 6 ½ : ! " ! ? ( 7 ? : # ! -^0 " # = > ! ? ! ! = > ! = > = > ! ! '? ! = >
2 # ! = ! >
!
= ! > ?
DEFINITIONS
' '
6 567 # !
6 )67 # 6 = ! > ? = ! >
' 6 ,67 # ! # 6 = ! > ? # = ! >
6 # B
! A 6 = -H$10> # ! # 6 -22<Q 10 ! # A Minimum Spanning Tree Heuristics
6 6 6 -H2$<QQ 1H$10 ( 6
% ** 4% : <' = 7 7 -2<//0> + ! , , % # !
DEFINITION
' 6 6
" ! A 6 -H$10 *! = -H$10> , ! A 6
© 2004 by CRC Press LLC
Section 4.6
287
Traveling Salesman Problems
Algorithm 4.6.4: 6"= #" 36#4
#' # - 0 5' 6 ½ ¾ ½
( ( ! 4 ! = > ? = > 4 : ? ½ ¾ ½ =! B > ( 7 ? " ? & 7 ·½
FACT
' -H 340 1= ¿ > Worst Case Analysis of Heuristics
+ #
6 Æ $ # ( # ! 2 6 = 44> 6 6 !
6 FACTS
6 6 ! B ! >> B ! ' -2<Q 1 0 (
' -90 : # = 6 !
6 ! = >V ! ! = >
= >V
' -2<Q 1 0 ( ? 7 6 !
# ! = >V ' ( 6 ! B % ! ! ! ! 4 = -H 340> *! ! % B ! ! ! V - $ J 10 REMARKS
' , ( -2<Q 1 0 "
= -2<1 0>
© 2004 by CRC Press LLC
288
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
( 7 ( 4 @ ! , L "
- 970 2
< -2<1 0 6
! # ? 7 -6 310
= -* 7/0>
4.6.4 Improvement Heuristics # = > 6 &! ' , ! = > ! = >
( ! &! *' * B # 6 6 !
# : J =+-$ > =-H2$<QQ 10 -H$10> 6 #
" , : J -210 : J 6 6 6 = -H2$<QQ 10> DEFINITIONS
'
( 6 8 ! 5 ! ! = ( 74> ; ! 6 = #>
Figure 4.6.5
!
2
" "$
2
' ( #
= >
' 6 , U @ => => =
> 6
© 2004 by CRC Press LLC
Section 4.6
289
Traveling Salesman Problems
FACT
'
- $ J 10 & # ,
= > !
1= >
6
Exponential Neighborhoods 8
_=
>
# #
= >
'
6
( 6
! # !
=
>
" # 6
!
1= > =1= >>
6
-A; 10 -.+110 -2<Q 1 0
+ 6
# ! 6 ! 6 # ! # ! # ! = ! &>
4.6.5 The Generalized TSP 6
1' !
# 6 -( 610
DEFINITIONS
'
6
1 ( 3 # & 13#&'
2 !
,
! # = > #
?
'
6
# = >
#
'
6
1 ( # 3 # & 1#3#&
!
REMARK
'
; B W % W# % 26
26 ! B
6 W# %
26 26
© 2004 by CRC Press LLC
290
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Transforming Generalized TSP to TSP ; ! 2 6 6
6 Æ 26 6
26 6 -F8/0 -: //0
FACTS
'
" -F8/0 26 6
+ , 6
# 6
4
! " ! #
'
" -: //0 26 6
! , Æ ! ! ( #
!
4 !
!
4
¼
6 !
!
!
?
!
½ ½ ½ 4 ¼
¼
¼
"
!
26
6 ! ! !
! 26
6 ! !
4
=
4
> !
! 8 #
¼
!
26
'
( -: //0 -F8/0 5 !
*
&
#
Exact Algorithms FACTS
'
# =-82 <Q 10 -: //0> !
-F8/0 -: //0 2 6 *! B 6 % = > ! =>
'
26
-( 610 : 26 -F8/0 6 # 5 &
6 26
'
% ? = > ½ ¾ % #
# ½ ¾ F ? = # B > -2<10 :
6 & !
© 2004 by CRC Press LLC
Section 4.6
291
Traveling Salesman Problems
Approximate Algorithms 6 # 2 6 , 2 6 6 6
FACTS
'
( -: //0 -F8/0
& #
'
6! -( 610 -82 <
Q 10 # = # >
6
26 26 6 ! 26 !
½
=> :
=
>
B
8
8
8
! ½ ¾
# #
# 26 -82 <Q 10
! @ !
!
½ ¾ ½ # = # > 6
!
! >
=> ( !
!
=" -( 610
-82 <Q 10 => :
8
B
*! -82 <Q 10 ! !
! !
4.6.6 The Vehicle Routing Problem 6
! * 4!:
! .
-. 4/0 6 = ! > 6 L L ) 6 B
"
DEFINITIONS
'
2 !
1
! ! ! " ¾ ?
# 1
© 2004 by CRC Press LLC
"
!
1
65&
! !
?
292
Chapter 4
'
6
CONNECTIVITY and TRAVERSABILITY
6 5 & 65&'
E
2 !
1 ?
! " , L ! !
REMARKS
'
; '
! = #> !
* &'&
! @
@ - J + //0
'
" L =
½ >
F
= W %> L -L /70
Exact Algorithms FACTS
'
6 Æ # L
=-8*110 -F 10 - J 60>
'
( L #
-6L 16L 10
'
L 6
3 ! " -
L ! -8 10
6 # ! L
6 ! 11
# ! L ! ! 4 - J 66L 10 ; L
& #
6
L
Heuristics for CVRP L ! '
L
B &U
6 &
@ ! B
=-A;0 -2: 10 -6 /0 -6L /30>
( L
B & )# # ! L '
&-
+
REMARK
'
6 ! L
L ! W % W % W % W%
© 2004 by CRC Press LLC
Section 4.6
293
Traveling Salesman Problems
Savings Heuristics
6 & + -+7 0 &! L * ! ! -2 /0 -+7 0 -: 10
= > ( # + &=+ > = # > !
6 + => 6 # + =+ > ?
¾
DEFINITIONS
' !½ !¾ =!½ !¾> ! # B =!½> =!¾> 6 !½ !¾ # " = = =!½> =!¾>> ">
' 2 !½ !¾ =!½ !¾> 7=!½ !¾> 7=!½ !¾> ? &= =!½>> E &= =!¾>> &= =!½> =!¾>>
°
'
: , ? !½ !¾ ! / ! ! # 1 6 %=,> ! /
!½ !¾ ! =! ! > # = =!½> =!¾>> "
! =! ! > 7=! ! > REMARKS
'
" "-( * =-+7 0-: 10> !
! &= =! >> 6 #
&= =! >> ! 6 =! > !
' 6 ! !½ !¾ & +
" = 1> !½ # 1 =1 > !¾ # 1 ! = > ! = ( 77>
Figure 4.6.6
6$ "0>"! '"! $ !½ !¾
REMARKS
' 6 ! 4 =! ! > ! # 7=! ! > 4 " ! 4 -: 10
© 2004 by CRC Press LLC
294
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Algorithm 4.6.5: , /! #" 3,#4
#' # - 0 ? "
5' L , ? !½ !
" / ? ! ? 1 1 ? / " , ? !½ ! + / $
%=,>
4 %=,> ! 4 / ( =! ! > 4 , '? =, ! ! > =! ! >
/ '? /
' ; , ,
6 = 7 > ( # -: 10 L & + Insertion Heuristics
" L -: 10 ! ! ? 1 1 6 B 6 ! W % # ! ! , " B !
! ! 6 # ! &= =! > > &= =! >> REMARKS
' # , $ 6 -$ 69/0 ' ( H & -( H 30 6 1' * ! * , W % Two-phase Heuristics
6 &- ½ 6 1 ? + * -+*90 ! B A L ! 1 A A !
+ !
! =1 > 6 # ? =8 > ! 8 ! 1 1 6 ! !
© 2004 by CRC Press LLC
Section 4.6
295
Traveling Salesman Problems
Algorithm 4.6.6: ,:! #"
#' # - 0 8 ? " 5' L
!
?
½ ¾ 8
" + ? ?
?
(
7
?
" =+
>
'?
8 ½
7
?
$ "
E
'? + ?
+
(
:
6 +
!
1
REMARK
' # L -8 /40 # ! -*$ 69/0
References -A; 10 J 5 ; A H 8 ;
B
$ =11> 94K1 -2 /0 J & 8 2 5 ) / =//> 47K 7/ -8 /30 . A 8 # L G
+ & ; 6 $ + $/ *6 / ($ , !!9 ((( =//3> 7 4K747 6 M4M///
-/30 # A 6 +$ 4 =//3> 94K93 9 "AAA ( //7 3 "AAA ( //9 -10 # 6 " 8 % / =2 2 A> J! 11 -8 6340 A 8 6 8 8 $ " 8 % 1 5 > =A : : ! H J : * 2 J . 8 A> + /34
© 2004 by CRC Press LLC
296
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-8:110 8 : # ( % $ 111 -82 <Q 10 . 8 2 2 $ < Q 6 2 6 6 ' # 5 ) 0 =11> 49K74 -8*110 N 8 + *I
G H . ( JI 6 111K37 -8 /40 H 8 . : 5 ) =//4> 7 /K771 -8 10 H 8 . : 8 L / ) = 6 . L A> "$ 11 -+7 0 2 & H + + 5 ) =/7 > 473K43 -$ 69/0 F , $ 6 6 L " 5 > = $ 6 A> + /9/ -. (H4 0 2 8 . . (& $ H 5 ) =/4 > /K 1 -. 4/0 2 8 . * 6 & $
% 7 =/4/> 31K/ -.+110 L 2 . & 2 H + # B $
% 39 =111> 4/K4 -A;0 ; A H 8 ; ( ' $ 11 -( :610 $ ( : 6 A# $ 6 8 % / =2 2 A> J! 11 -( 610 $ ( H H 2G
6 6 2 6 ; 8 % / =2 2 A> J! 11 -( H 30 $ : ( H & '. =/3> 1/K -2 2H970 $ 2 : 2 . H F 9 $ % =/97> 1K
© 2004 by CRC Press LLC
Section 4.6
Traveling Salesman Problems
297
-2: 10 $ 2 2 : H < $ L " / ) = 6 . L A> "$ 11 -22<Q 10 ( 2 2 2 < Q 6 * + 5 ) / =11> 444K473 -2340 8 : 2 + ! A * 8 % 1 5 > =A : : ! H J : *2 J .8 A> + /34 -2<//0 H : 2 H < (
/// -2<1 0 2 2 < 5 ) 0 1 =11> /9K// -2<1 0 2 2 < # 6
O !
$ / =11> 19K7 -2<10 2 2 < 2 6 + 9 =11> /K4 -2<Q 1 0 2 2 < Q 6 ' 6
$ 9 =11> 3K37 -2<Q 1 0 2 2 < Q A# F . 6 8 % / =2 2 A> J! 11 -* J10 * J > # + =11> /K -* 7/0 ( * + /7/ -*+340 H *@ + * 8 % 1 5 > =A : : ! H J : *2 J .8 A> + /34 -H2$<QQ 10 . H 2 2 : $2 < + Q
Q A# * 6 8 % / =2 2 A> J! . 11 -H$10 . H : $2 A# * 6 8 % / =2 2 A> J! 11
© 2004 by CRC Press LLC
298
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-H 340 . H * 8 % 1 5 > =A : : ! H J : *2 J .8 A> + /34 -: //0 2 : (
('-5) 9 =///> K1 -: 10 2 : ( * L / ) = 6 . L A> "$ 11 -: 10 : 6 ! " 8 % / =2 2 A> J! 11 -$0 J $ . * * $ ; =/> K -$ //0 H 8 $ 2 # ' # 6 $6 %($ + 3 =///> /3K1/ -F 10 . F 6 8 6 8 % / =2 2 A> J! 11 -F 10 . F 2 8 L / ) = 6 . L A> "$ 11 -F8/0 A F H 8 : 5 ) / =//> 7K7 -F8/0 A F H 8 Æ ('-5) =//> /K - 990 * 6 A F % =/99> 9K - 30 * J 5 > * /3 - J + //0 2 J $ + A N A " A //3M - 10 6 6 ' ( L 8 % / =2 2 A> J! 11 - $ J 10 ( $ J 6 '
# 4 =11> K9
© 2004 by CRC Press LLC
Section 4.6
299
Traveling Salesman Problems
- J 60 6 J : J + & : A 6 ; $
- /30 + # C D C D EA $ % =//3> 4 1K441 -210 ( 2 : $ 8 % / =2 2 A> J! 11 -90 L " & A 6 ' $ =/9> 3K = > - 2970 6 2 # +$ =/97> 444K474 - 970 L "
; / '8 ,%%) % - > $ '8 =/97> 9K = > -6 /0 A 6 ' . =//> 77K79 -6 310 6 + 6 * % , / =/31> 73K9
¾ / 3 +
-6L 10 6 . L 8 8 L " / ) = 6 . L A> "$ 11 -6L 10 6 . L $ # #
$ =11> 39K4 -6/90 : 6 + * A ' # 6 $6 =! $ % =//9> K/ -L /70 . L * + 5 ) 3/ =//7> 13K7 -+/30 : + ( + //3 -+*90 + * 5 ) I =/9> K -Q30 A Q $ B # $ 5 ) 7 =/3> /K
© 2004 by CRC Press LLC
300
4.7
Chapter 4
CONNECTIVITY and TRAVERSABILITY
FURTHER TOPICS IN CONNECTIVITY
9 * 9 8 9 9 2
Introduction ! =Æ > ! ( ! # = # > F# ! ! = !> ( C D ( #
4.7.1 High Connectivity ! C D ! # , ! C D . @ ! ' = > L ! => = > => = > => : = > 6 ! # # Minimum Degree and Diameter
: ? = > ! Æ = # > " Æ Æ Æ ` DEFINITIONS
' 6 ! ,
© 2004 by CRC Press LLC
Section 4.7
' '
301
Further Topics in Connectivity
6
# 7& = > ¾
6
<=
> #
* # *
' = > = > FACTS
' '
-:9
? Æ
' ' ' ' '
Æ B Æ 0 " 5 => E =>
-770 "
% ? ? Æ -L330 " Æ E ? Æ -L3/0 " * =* > ½ Æ ? Æ -6L/0 " * =* > Æ ? Æ -. L/40 " B < * Æ ? Æ - 940 "
!
REMARKS
' ' '
( ( ( 4 * ?
! ( (
" ( 9 -. L/40 Æ B ! - Q3/0 Degree Sequence
( # # ! B ? Æ ( # - => 5 FACTS
' -2+930 " # = > = C D # > = > E = > ? ? Æ
'
'
, 4 => 9 4
-2A9/0 " #
? Æ
¾
-89/0 : ! " B ? Æ , = E > ! Æ ? Æ
© 2004 by CRC Press LLC
302
Chapter 4
'
-. L/90 " Æ Æ Æ ! Æ ? Æ
CONNECTIVITY and TRAVERSABILITY
= E Æ
'
-L10 7 ! B ! ? ? 1 ! " Æ Æ Æ # Æ ? Æ =Æ E > #
> = > E
< * : ? ?
REMARKS
'
F ( 3 ( ! ( / ( $ ! # - Q3/0 ( / ( (
' ( 1 ( ! ! - Q3/0 ( /
'
(
S -S/ 0 ! = ( > ! ( ( 1
' ( -L330 -L3/0 ! ( 9 (
! -*L10 ( # U => ? => => Distance DEFINITIONS
' 6 7& = > ! ! 7& = > ! >
= > =+
' 6 ; ! 5 5 = > FACTS
'
: ? ? 6 ! ; , $= > ? = > E ; %=; > %= > E
'
- Q3/0 :
'
-8 ( ( /70 :
# #
! , 7&= > 6 = ? Æ > 6
; " ;
!
= > "
=>
!
© 2004 by CRC Press LLC
Æ
;
# = ? Æ >
# = ? Æ >
Section 4.7
303
Further Topics in Connectivity
REMARKS
'
6 Æ ( # ( ( Æ B ! ( 4= >
'
( & ( 4= > ( ( = &% >
Super Edge-Connectivity
* ! DEFINITION
' # U # EXAMPLE
'
( 9 ! #
6 e
g
Figure 4.7.1
f
' 9' $$ ! "
FACTS
'
-:9 0 :
=>
'
¾ ¾ " 5 ?
" 5
' '
-J90 "
Æ E
=> E
=> E => E
-( /0 " ! Æ ! => ? Æ = >
'
-/0 :
! # ` "
$ Æ E `
REMARKS
'
( 9 3 ! ( B ( 7
© 2004 by CRC Press LLC
304
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
( / , ( =! B > ( 1
Digraphs
** ' =
B
>
DEFINITIONS
' 6 = >
# !
' 6 = >
!
= > => -' 5 * # => -'
5 # U Æ => ? => => => Æ ? ¾ => Æ ? ¾ => => Æ ? ¾ Æ => ? Æ Æ = > ( #
! ` #
=
(
5
>
= >
#
FACTS
' '
% ? ? Æ -S/ 0 : " = @>
= > Æ = > E Æ = > ? ? Æ ' -*L10 : ! ! 6 => ? => => ' -*L1 0 : ! Æ " # # 9 # # 9 ? Æ ' -*L10 : * Æ ! * " =*Æ >=* > => ? => =>
' -*L10 : ¼ ¼¼ Æ ! " =(> E =3> = E > ( 3 ¼ ( 3 ¼¼ => ? => => -H90 "
!
REMARKS
'
F Ga&% =( > B H =( > ( ( 3
© 2004 by CRC Press LLC
Section 4.7
305
Further Topics in Connectivity
'
( ! . & L& ! B -. L/9. L110 ! !
' ( ! ! # $ H % =( > -(;!110
'
B ( (
Oriented Graphs DEFINITIONS
' # ! 5 # !
' = > ! ! = > == > = >> EXAMPLE
'
( 9 ! # " ? ( 3 = - 0 > =
5 # ! >
u
x
v
Figure 4.7.2
y
' 9' $$ "
FACTS
'
-(910 :
!
Æ = E > ? Æ
Æ "
' -( /0 " !
'
-( /0 "
! !
© 2004 by CRC Press LLC
Æ E
306
Chapter 4
CONNECTIVITY and TRAVERSABILITY
REMARKS
'
( 9 3 ( ! ( / (
B ( /
' " Æ -(910 -( /0 =( 9 3> ! Æ E Æ Æ E Æ E ( ! ( 3 /
'
* * !
Semigirth
6 H % =( > !
! " # = > DEFINITIONS
' -( ( 3/( ( A/10 ( ? = > ! % @= > @ ! % = > 7&= > @ ! & B ! & 7&= > E
7&= > ? @ ! & ' ( * ! #
=>
* 5 # 6
EXAMPLE
'
( 9 ! ! @ ? % ?
Figure 4.7.3
© 2004 by CRC Press LLC
,'!" @ ? % ?
@ B
Section 4.7
307
Further Topics in Connectivity
FACTS
'
-( ( 3/0 :
'
-( ( /7 8 210 :
!
@ = > " % @ ? Æ => " % @ ? Æ => " % @
Æ $ %
* =* >
% @ E * ? Æ " % @ E * ? Æ " % @ E *
= > " => =>
'
! #
REMARKS
' 6 ( 1 @ ! ! ( = > ! Æ
7&= > 7&= > @ * @ #
' '
@ ( ( 1= >
( H % =( > " = > Æ E % ( (
Line Digraphs DEFINITION
' 6 ; ; =; > = >
# = > 5 # = > > ? = ' = > = > > > 6 ; , ; ? ;; ½ FACTS
'
6 ; B =; > ? = > Æ =; > ? Æ = > ? Æ $ =; > ? = >
'
" $ % @ ;
%=; > ? %= > E @=; > ? @= > E - 790-( ( 3/0-( <3 0-J*:30
© 2004 by CRC Press LLC
308
Chapter 4
'
-( ( 3/0 : @
CONNECTIVITY and TRAVERSABILITY
!
Æ$
%
% @ ; = > # " % @ E ; = > # " % @ E ; = >
= > " => =>
REMARK
'
! ( 4 ( ( 1 Girth
( M ! ! DEFINITION
' 6 , =., > = ! &> "
@ ? @=
> ? @= > B = > !
? =
>
FACTS
'
-F "34F " 39( ( 3/0 : ! %
% " % " %
= > " => =>
'
? Æ ? Æ
-8 ( ( /7 ( //0 :
: 6
%=; > " %=; > " %=; >
= > " => =>
'
;
! Æ $ ! %=; >
? Æ ? Æ
-( ( /7 0 ! #
REMARKS
'
Æ $
( 7 B ., 4 ( 1
© 2004 by CRC Press LLC
Section 4.7
309
Further Topics in Connectivity
' ( 3 ( ! Ga&%
Cages DEFINITIONS
' = > !
' ? = > 9
# ? # # ! EXAMPLE
'
6 : ! ( 9 = 7> !
Figure 4.7.4
# : !"
FACTS
' -(*/9S+ + 10 = > = > #
' '
-. //H $/30 A = > !
' '
-$ 8 ( 1T0 A = > !
1 -+ S+ 10 A = > ! #
' '
-$ 8 1T0 A = > !
-$ 8 1T$ 8 10 A = >
B
-$ 8 1T0 = 7> = 3> #
CONJECTURE
-(*/90 A = > #
© 2004 by CRC Press LLC
310
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Large Digraphs
6 ! = > DEFINITION
%
' ( ! # ` $ =` %> =` %> ? E ` E `¾ E E `% FACTS
' '
# ! # ` % =` %> -+ 790 6 = > ! $ % ,
=% > E
'
-";&340
Æ - =` % > E ` E 0 " Æ - =` % > E `0
= > " =>
'
$ =Æ >- =` % > E ` E 0 ? Æ " $ =Æ > - =` % > E `0 ? Æ
= > " =>
'
-( /0
Æ - =` % > E 0 E ` " Æ - =` % > 0 E ` E
= > " =>
' = > =>
-( /0 :
" $ % ½ E ? " $ % E ?
'
-/( / 0 :
= > "
$
=> "
$
% ½ E %
¾ E % ½ E %
% ? ¾ E E ¾ E % % ? ¾ E E ¿ E ¾ E %
EXAMPLE
'
( 94 ! ! ? 7 ` ? Æ ? ? % ? $ % ½ E $ % E ( 4 # = ? ? >
© 2004 by CRC Press LLC
Section 4.7
311
Further Topics in Connectivity
Figure 4.7.5
? ??
REMARKS
'
6 &! ( 9 + & ! , ! % ! = > " ! 5 ! % $%
' ! / = > ! / % *! Æ =6
%' ? ! % ! ? ! ! C D %>
'
" ! & $ , " ! ! & C&D ! ( 3 =
( /> ( 41
' ( 41 ( 3 F ! ( 41=> ! $ =` %>
? `
Large Graphs
! A -A340 &
-F " 390 -/0 -( /0 -( / 0 DEFINITION
' 6 $ ! # `
% =` %> ? E ` E `=` > E E `=` >% FACTS
' = > " =>
-F " 390 $
=Æ >- =` % > E 0 E `
" $ =Æ >=` >%
© 2004 by CRC Press LLC
E
? Æ
? Æ
312
'
Chapter 4
-/( / 0
%
= > :
=> :
Æ
"
CONNECTIVITY and TRAVERSABILITY
$ Æ - =` % > E 0 E =` >%
½
% Æ 4 " $ =Æ >- =` % > E `0 ? Æ
4.7.2 Bounded Connectivity 6 B = > " ! #
A-Semigirth 6 ! , =., > DEFINITION
' -( ( 3/0 : ? = > ! Æ %
A 1 A Æ 6 A @& = > @& ! %
7&= > @& B A ! & 7&= > E 7&= > ? @& ! &
= > =>
FACT
' -( ( 3/0 : ! Æ $ % A @& 1 A Æ ! ; 6 = > " % @& Æ A => " % @& Æ A => " % @& =; > Æ A => " % @& E =; > Æ A REMARKS
'
A @&
'
A Æ !
F @ @ $ ! , ! 6 , @&
Imbeddings
* ! ; & - Q/30 - Q10
© 2004 by CRC Press LLC
Section 4.7
313
Further Topics in Connectivity
DEFINITION
'
+ !
+
!
FACT
' -90 : $ 1 =! " ' - 90> 6 =4 E E 3> Adjacency Spectrum
2 = > ! # ! 6 5 5 = 74 #& -8 / 0 - . /40> DEFINITIONS
' 2 ? = > # # ! ? 5
? 1 !
' 6 & # =
, & ? + = + > ! + + > +
FACTS
'
-/48/40 : #
6 & $ %¾ # ! # ! ! =6 -8 ( ( /70>
2
'
-( 2 </90 : Æ ! %¾ $
= 5 # > =? Æ > $ $ $ : =(> '? =( >= > ¾ Æ 6 = > Æ ' ' ¾ Æ REMARKS
' 8 ( 49 8! -8/70 #
' ( !& -8* J 30 -: 10
' F ( 4=> ! ( 43
© 2004 by CRC Press LLC
% ?
# ;
314
Chapter 4
CONNECTIVITY and TRAVERSABILITY
Laplacian Spectrum DEFINITION
' 2 0 , ; ? % ! % # # 5 # = -8 / 0> 6 0
: #
6 :
B½ ?
= > !
, FACTS
'
; ,
! , B " Æ ! = >
=? Æ > $ $ :
B B B ! B ? Æ ? 5
'
-( 90 :
! :
1 ? 1 => ( ! = > = > => ( # ! = > = > ' : Æ ! % $ :
B =? 1> B B B " Æ (((½ (¾½¾(½ ((½( ? Æ = >
REMARK
'
( 7 5 B ( 43 :
4.7.3 Symmetry and Regularity Boundaries, Fragments, and Atoms
6 = > ! ( ! + & -+ 910 $ -$ 90 6 ! -970 , # * -* 990 -* 310 -* 30 8 !
! , =( , > DEFINITIONS
'
6 # C 5 * C 5
© 2004 by CRC Press LLC
Section 4.7
'
315
Further Topics in Connectivity
6
< < < ? = > ' < ? = > '
' : ! # C ? = C > ? C ? =C > ?
'
:
! # < ? D < ?
D
' # - 0 D 5 -0 < -< 0
'
= >
EXAMPLE
' ( ( 97 ? = > ! = > = > &> < = > ? =( > =3 > < = > ? => (> =& 3> " # F
z
x y t
u
v
Figure 4.7.6
" !'
FACT
'
" C ? - C ? 0 C -C 0 # => < -< 0 N ! ! , '
? C ' C ? ?
? < '
Fragments and Atoms in Undirected Graphs FACTS
'
-+ 910 " ! 5
© 2004 by CRC Press LLC
316
Chapter 4
CONNECTIVITY and TRAVERSABILITY
'
-$ 90 : ! : ½ ! 6 ½ ¾ ?
'
:
¾
! " ! ? $
REMARKS
'
6 B & + & ' C" $ " C D ! " -+ 910 " C D ! $ -$ 90 C D C D " B ! D
'
+ & -+ 910
$ -$ 90 F ( 7 ( 7
'
, -H+ 990 -* 3/0 Fragments and Atoms in Digraphs
6 B ! * FACTS
'
-* 990 : ! = > = > 6 ? " ! = > 5
'
-* 310 " !
= > D #
Æ · = Æ
>
REMARKS
' ! !
!
'
( 79 H % =( >
Graphs with Symmetry
2 ! CD
" ! ! 2
7 7 DEFINITION
'
= >
= > ! = > = > >
>
© 2004 by CRC Press LLC
Section 4.7
317
Further Topics in Connectivity
FACTS
' '
-$ 9+ 910 :
'
-$ 910 :
A # # ! 6 ?
? E (
?
! 6
?
'
-+ 910 : # ! 6 -0 # $
= >
'
-* 990 : # ! = > 6 -0 # ( = > = >
' -* 30 : # ! = > 6 ? $ REMARKS
'
6 , ! ( 7/ B ( 7 6 $
' ( ( 9 9 = > B # = > ! # = ? ? Æ > " &! = > = >
'
8 ( 77 * -* 990 J % # -J 9 0 * # Cayley Graphs
6 # = > ! = 7 7> " & ! & ! &! . ' " *
! . E ? . E E DEFINITIONS
' : b , ! + b 6 ? =b + > ! b = > ! + " ! + ? + =! + ? ( ' ( + > !
+
' ' ¼
" b
+ b ! + b
© 2004 by CRC Press LLC
318
Chapter 4
CONNECTIVITY and TRAVERSABILITY
' 6 c
' : ( !
6
( ? (EE
FACTS
'
-"9/0 : + b ? c ! 4 (+( ½ ? + ( b 6 =b + > # = ? + >
'
-* 3 0 : b , ! + : = > =b + > 6 b + = > =b + > b !
'
-* 3 0 : b , ! + : 6 =b + + > #
+ + ½
'
-* /70 : b + b + 1 : % ? =b + > 6
# = = >>% ! ? $ ! B =3+ > ½½ = >
REMARKS
' '
( 94 * ( 9
( ( 97 ! 2 -230 B & J -&J390 * : G -* : /0 -/0 = > ! = ! , , E > Circulant Graphs
8 !& ! & " " # !& = -8*/40-86 3 0> FACTS
' -* 3 0 : b . : + B 7 = ?>½ ¾ = > ·½ ½ ? 7 6 =b + > # = ? 7>
' -* 3 0 : b . : + B 7 = ?>½ ¾ = > ·½ ½ ? 7 + + ! + = > + 6 =b + + > # = ? + + >
© 2004 by CRC Press LLC
Section 4.7
319
Further Topics in Connectivity
'
6 . B
+ . * =. + > # = ? + >
REMARKS
'
6 + ¼ ? + ( 9/ = > ! -8(910 C # D ½ ½ = -86 3 0>
' ( 31 * ! =( 5 ! -* /70> Distance-Regular Graphs
6 ! 8 /91 . ! ! ! " # DEFINITIONS
'
: ! % ! % 2 ! ! 7&= > ? 5 ! E ' # = U > !
5 ! 5
FACTS
' : 6 !
' '
A # -8$340 A #
CONJECTURE
-8/70 A # REMARKS
' '
( 3 B ( 3
6 5 '' 1 = = >
5 , >U -2/0 " 5 ! 5 2 -230 #
#
© 2004 by CRC Press LLC
320
Chapter 4
CONNECTIVITY and TRAVERSABILITY
4.7.4 Generalizations of the Connectivity Parameters 6 @ ! -8 8: 390 -8; 10 -* 30 -+90 * ! ! # !
!& Conditional Connectivity
6 # ! , DEFINITIONS
'
2 ? = > 7 # ¼ C = > ! 7¼ 7¼ 7 ¼ 7 <= > ! 7¼ 7¼ 7
' 6
7 6 7 FACT
' = > => => =>
-( ( 3/( ( A/1( ( / 0 :
!
% : @ ? ) ½ 6 " % @ ? Æ " % @ ? Æ Æ " % @ Æ Æ " % @ Æ
Æ $
CONJECTURE -( ( / 0
% @ 7 =7 E >Æ 7 " % @ 7 =7 E >Æ 7
= > " =>
REMARKS
' * -* 30 " # ! ! ,
' F = ( 3 ( 7> " $ Æ
$ Æ
'
6 5 ! 7 = Æ $ @ $ =7 E>> -( ( /70 $ 7 ! Æ Æ ! -8 ( ( /90 -8 //0
© 2004 by CRC Press LLC
Section 4.7
321
Further Topics in Connectivity
Distance Connectivity
* ! = > -( ( / 0 -8 ( /70 ! & ! DEFINITIONS
' : ? = > 2 = > =
> + => + => => => => => ' : ? = > ! % 2 & & % & =&U > ? =&> , =&> ? => ' 7&= > & & => ? ! & =&U > ?
=&> ? => ' 7&= > & & FACTS
' = > =>
? => ? => => =%>
? => => =%>
' : > 6
!
Æ $ @ = .,
Æ % @ E ? =@ E > " Æ % @ ? =@>
= > " =>
'
? Æ % @ =@ E > Æ => ? Æ % @ =@> Æ ' A ! => Æ # = >
'
:
!
&
=&U
> ? =&U >
' = > =>
=&U > ? =&U >
Æ $ % ? => " Æ % ? = > % ? = > " Æ % ? = > :
!
© 2004 by CRC Press LLC
322
Chapter 4
' = > =>
=> Æ
? Æ % % = > Æ = > Æ ? Æ % % = > Æ
'
CONNECTIVITY and TRAVERSABILITY
! => Æ #
REMARKS
' " ( 39 =&> =&> , & % ! Æ
'
( 37= > ( 33 ! H % =( >
'
( /1 ! ( 37 ( 3/ @= > ? = >
High Distance Connectivity DEFINITIONS
' 2 # => ? #Ú¾ 7&= > => ? # ¾ 7&= > ' ( & & % & Æ =&> ? Æ =&> Æ =&> ! Æ =&> ? ¾ => ' => & Æ =&> ? ¾ => ' => & ' ! % 7 7 % ! 5 B 7 " 7 ? % = -8JQ730- Q9 0> FACTS
' Æ ? Æ=> ? ? Æ=5> Æ=5 E > Æ=%> ' ( & & % =&> =&> Æ=&>
& ! =&> ?
& ! =&> ? Æ =&>
=&> ? Æ =&>
'
" & 5
'
#
# &
7 6 = > =&> ? Æ =&> =@ E > & 7 E => =&> ? Æ =&> =@> & 7 ' -8 ( ( /9 0 : 7 = > # & & 7 % @ => # & & 7 E % @ -8 ( ( /9 0 :
© 2004 by CRC Press LLC
Section 4.7
' = > =>
323
Further Topics in Connectivity
% 6 & % % # & % % # & % :
!
Maximal Connectivity
" & ! = > ! # 6 !
. # = # > FACTS
' ' - : *370 (
! # ( 2 ` ' - : *370 : # ! Æ = > " Æ Æ => " Æ = E > ! = E > => " Æ = E > ! = E >
` ? !
Hamiltonian Connectivity DEFINITIONS
! ' = > $ + = > ! ? + # ! + = ' *
> FACTS
'
"
'
-2+ 370 : 5 ! =>E=> E
= >E
-2+ 370 ( ! = E > = > REMARK
'
6 =., 9> $ F 2 2
© 2004 by CRC Press LLC
324
Chapter 4
CONNECTIVITY and TRAVERSABILITY
References - 790 $ ; $ G 1 =/79> 47K7 -&J390 8 & 8 J ; (*** 7 =/39> 334K333 -/40 F 6 ! +
=//4> 3/K/4 -/0 8 ! (*** =//> 9K/ -(910 HF "6 ( ; (*** 6 9 =/91> /K41 -8 //0 $ 8 A# 7 $ /4 =///> /K4 -8 8: 390 J 8 :+ 8 & $H : A ; ' 71 =/39> K -8 ( ( /70 $ 8 H (P $ ( ; '. 3 =//7> /9K14 -8 ( ( /9 0 $ 8 H (P $ ( ;
7 ! $ 9 =//9> /K9 -8 ( ( /90 $ 8 H (P
$ ( A# ! $ 79M73 =//9> 34K11 -8 ( /70 $ 8 $ ( .
+ =//7> 3K/ -8*/40 H 8 ( .( * . !&' + =//4> K1 -8; 10 :+ 8 & ; ; A 6 $ 4 =11> K 4 -8 / 0 F 8 N // -89/0 8 8G ; ! B $ 3 =/9/> K -8(910 ( 8 ( '. =/91> 7K3
© 2004 by CRC Press LLC
Section 4.7
Further Topics in Connectivity
325
-8* J 30 ( 8 ( * H J 2 !& ' '. =/3> 49K7 [ QG +
-8JQ730 H 8G & J 4 =/73> 91K97 -86 3 0 ( 8 6 + 3 =/3 > 39K // -8/40 A 8! 6 0
7 3 =//4> 79K9 -8/70 A 8! <( I / =//7> 9K 1 -8$340 A 8! .$ $ 6 * + 7 =/34> 4K7 - ( //0 $ 8 H (P
; '. =///> /9K14 -770 2 %($ +
$ =/77> 993K93 -970 2 ; # = > ;> =/97> /K1 -: 10 A $H : L '
$ 3 =11> 7K9/ -90 H & * !% $ 0 1 =/9> 1K19 - . /40 . & G $ . d * %
6 H 8 L : //4 -. //0 $ . = > $ // =///> 19K4 -. L/40 . & : L& F! Æ B 1 =//4> 91K93 -. L/90 . & : L& . B # + 7 =//9> 9K -. L110 . & : L& . B # B $ =111> 9K -A340 * A :! + / =/34> 41K4 -( ( 3/0 H (P $ ( $ # + =/3/> 749K773
© 2004 by CRC Press LLC
326
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-( ( / 0 H (P $ ( A# ! $ 9 =// > 7K91 -( ( /7 0 H (P $ ( 8 ! #
$ 7/ =//7> 7/K99 -( ( /70 H (P
$ ( ; # $
44 =//7> /K49 -( 90 $ ( > $ + =/9> /3K14 -( /0 $ ( ; + 7 =//> 4 4K444 -( /0 $ ( 6 + 9 =//> K 4 -( / 0 $ ( 6 $
=// > 79K93 -( ( / 0 $ ( H (P ; $ 4 =// > 7/K97 -( ( A/10 $ ( H (P $ A /8 =//1> 9K -( 2 </90 $ ( A 2 H: < 6 !
$ 79M73 =//9> /9K19 -( <3 0 $ ( H: < " : = > (*** =/3 > 11K 1 -(;!110 2 ( & ; ; * ! 6 =111> -(*/90 *: ( J * + =//9> 39K/ -2/0 2 !& 1 1
$ 9M3 =//> 14K 7 -230 . 2 AB =/3> 7K79 -2A9/0 .: 2 A Æ B + =/9/> 4K 44 -2+930 .: 2 6 + ; ! B
$ =/93> K7
© 2004 by CRC Press LLC
Section 4.7
Further Topics in Connectivity
327
-2+ 370 $ 2 < + & ; +
% , =/37> K7 -* 990 <; * % G ) % %4 3 =/99> 4K47 -* 310 <; * D $ =/31> 14K17 -* 30 <; * OB P # G G +
% , 1 =/3> K1 -* 30 ( * '. =/3> 9K49 -* 3 0 <; * ; * +
4 =/3 > 1/K -* 3/0 <; * % , $
9 =/3/> /9K11 -* /70 <; * !& K/ . Q . =A> .
5 J! . //7 -* :/0 <; * : G ; 6 B
$ 9M3 =//> 94K31 -* /70 <; * ; ; ! B $ % / =//7> 19K 1/ -*L1 0 *! : L& $ #
+ 9 =11> K -*L10 *! : L& $ # -"9/0 + " ; + % , 7 =/9/> K7 -";&340 $ " 6 & J ;& ! (*** =/34> 79K9 -H $/30 6 H . $ + / =//3> 4K -H90 H: H # G G ) % 9 =/9> 3K41 -H+ 990 * H $A + & ; , , $ $ 3 =/99> K -J 9 0 6 J F * % +
% , 9 =/9 > K
© 2004 by CRC Press LLC
328
Chapter 4
CONNECTIVITY and TRAVERSABILITY
-J90 J J
9 =/9> K4 -:9 0 : : & $ 3 =/9 > 4K4 I -$ 910 + $ N Q I
2 $
,# =/91> K7 -$ 90 + $ A A 2 $ ,# =/9> K7 -$ 8 1T0 S $ 8 A -$ 8 1T0 S $ 8 " ; ! , # -$ 8 ( 1T0 S $ 8 " H (P
=Æ > ! 1 -$ 8 10 S $ " 8 A B $ - 8 210 " 8 H 2G ; * 43 =11> 4K - : *370 J : & * $ # M =/37> 4/K91 - 940 H Ga& - ) ' 7 8
$ 1 =/94> 9K/ [ QG - Q9 0 H Ga&
- ) ' 7 8 $ / =/9 > /K [ QG ; B - Q3/0 H Ga& $ , # 4 =/3/> /K4 - Q/30 $ S Q ; + % , 9 =//3> 1K3 - Q10 $ S Q ; "" * + / F 3 9 =11> -J*:30 $ H2 J * * * : ; ! # =A =/3> 13K17 -/0 6 &
$ 9M3 =//> 4K4
© 2004 by CRC Press LLC
Section 4.7
329
Further Topics in Connectivity
-F "340 6 & * F & $ " Æ # (%%9: =/34> 3K3 -F " 390 6 & * F & $ " Æ # $ 7 =/39> 4K77 -6L/0 H 6 : L& Æ B
+ 9 =//> 7/4K911 -L330 : L& 8& * J 2 - & * 0 7 8 , $ 9 =/33> 94K9/ -L3/0 : L& A * + =/3/> K7 -L10 : L& . B B B + =11> K 4 -+ 790 $A + & !
$ $ 9 =/79> /9 -+ 910 $A + & + 3 =/91> K/ -+ S+ 10 + 8 S H + * + 1 =11> e -+90 . + 6 +
% , 4 =/9> 4K44 -S/ 0 H $ S Æ B $ =// > 4K3 -S+ + 10 8 S + H + ; = 7 =11> 3K/
© 2004 by CRC Press LLC
>
330
Chapter 4
CONNECTIVITY and TRAVERSABILITY
GLOSSARY FOR CHAPTER 4
'
'
. ' "9
K = >
!
?
'
#
? =
> #
= >
? 1
!
$! " / K #
'
:
''" !" 3" " !" 4'
!
"9' 3" "9' 4 $!"''
&
" "' '
''" !" ' '
''" ,7 3,74' !
' K '
$ K #
+
=
>
+
'
+
=
> @ !
5
-". !" "" B
' !
U #
+
5 #
=
>
+ + +
=
>
!
8 5 U
, # ! ! # !
$ !" ' '
$ " K
= # >'
= # >
$ /"9 K ' # ! B " !" $"' 5 5
(
3 9
!
E
" !" ' ! ! # = > " 9 K ' !
$0 K ' # " K # ' ! " !' ' "! K ' ! U
-'
© 2004 by CRC Press LLC
331
Chapter 4 Glossary
!
>
=
'
!
6 $ 34!"
+
K b !
' = > !
, ! b
6 7' 7" $'
½
!
b
' ,
! U
$ :" $"
'
*
$? ' "
K
' #
'½ ' !" " $$
K ' # K ' # ' ! # ! & !
=
>
'
'$ ! " !
=
>
#
' ! !
' !
' !
' , = >
'
,
5
!"
-
?
>
' ,
" $ ! " $ !"
'
=&
!
'
!
/"! : $0
=
* >'
K
' ! &
" $$ !" ! ' /"9 617 "
'
'
'
K ' # ! K ! ! #
1 '
! ! ! "
!
1
# 1
$ /"
K
'
$ '
>
?
!
"
! !
+
+
¾
?
K = >
'
=
= >
$ $ /" 36 64 # !
© 2004 by CRC Press LLC
+
'
+
332
Chapter 4
! / = / E =! >
$ 9 $'
CONNECTIVITY and TRAVERSABILITY
> #
$$' # #
$ 0! K ' 5 $ K ½ ¾ ½¾ ' ? ½ -". K ½ ¾ ½¾ ' ? ½ $'
!" $"' 5 5 ! !" ? K
' = >
' " ' ., ' K ' B #
=
'" K = > ' # ! !" ' ! U ' '
>U
''" K ' ! = > = > ' $ ' ! U * '
*-
' ! U &"
' " $$ ' = >
= >
"!$ ' !
'
#
! & U
3"!$4 ' ! U - - '
''"½' ! = > # ''"¾' = #
> B
! !½ K
' !
! !¾ K
' !
! 3/"94 K
' !
=> K ' = # > !
@
© 2004 by CRC Press LLC
333
Chapter 4 Glossary
! 3/"94 K
' !
& / 7& = > !
=
>
K = >
&
' "9
6 ' #
!
½
K !
5
¾
"!$ " !" '
' ! "'
!
! =
2
>
!
? - 0 !
= >
7&
%
!
U ,
K ! #
!
'
'
2
'
! & !
1
#
$ " !' ! & # ! " $'
!
"!' ! ' ! 5 ? = >
=
>
! " ' ! " K #
?
E
?
' #
!/½ K '
U
!/¾
!
=
>
K '
!
U
!' ' ' - !. ' !''" !" ' !
$ ,7' ! $" !" 3" !" " '9 !" 4' $" " K = >' ! & = > ,
# ! &
#
/ !" ' ! 9 $!"''
½ ¾ "'
"
K
'
>U
"
© 2004 by CRC Press LLC
*
=
' = # 5 >
> ?
=
> =
=
>
334
Chapter 4
" !' K
CONNECTIVITY and TRAVERSABILITY
'
!" $% *$' = > ! # * ! = *>
!" $% ,7' ! 7! !" ' 9 ., 4 !" K ' $ !" K # ' '$ ' ! ! '$ $' '$ ''
= E>
'$ !" ' ""' B
B
?$' #
' ! K + ' ! + ! " K = >' ! U
= >
K # ' = > ! =
? U >
" '' ., 7 !" K # ' 5 &' # ! & ' "' K ' ! 5 /"' ! ! !" 3" !" 4 ' # = >
! #
U = > - 0
" K # ' # 7&= >
"" /"9 K ' # ! 5 " $$. ' ! #
"' ! !" 3" !" 4' = > ! ! !" 3" !" 4' = > !
© 2004 by CRC Press LLC
Chapter 4 Glossary
335
" $'' ½ ¾ ½ ¾ ! # 5 ½ ¾ ? ' ' ' 5 =! > 5 0 " "' '
U U 7 @ $ ' "9 K ' # ; ? =2 > ! 2 ? => 5 2 ? 1 ! $ !" K ' !
# = > 5 # = > " K ' $ !" K ' ! ! ! ! ;= > 5 $0 !" ' B @ ½ ¾ ½ ¾ # ? # 5 "$0 !" ' ! , 5 ! $ $ '$ K # ( -- =(>0 ' -- =(>0 =- =(>> ' !' ! ! # " K ' # ' 9' $$ !" 3" !" 4' = > ! B ' 9' $$ ! !" 3" !" 4' = > ! B ' 9'' !" K = > ' # = > '' $$ !" 3" !" 4' = > = > = > '' $$ ! !" 3" !" 4' = > = > = > ''' 3&4!" K = > ' & = > ''' !" K = > ' = >
''' !" K = > ' = >
© 2004 by CRC Press LLC
336
Chapter 4
'9 !" ' 8" K
CONNECTIVITY and TRAVERSABILITY
' #
#
! /
D" !'
K
'
!
! / ' K ' ! / " K # !
! / ! " K
! / " !' K
!
#
! , #
'
'
' !
! "½ K # (' 5 ( ! "¾ K + ' 5 # + " K = >' !
· =
U
>
!" K # ' 5 &' # ! & " K # ' #
7& =
>
"' ' $' = > * " !" ' ! # * #
" K
!
'
? =
> !
?
=
=
>
>' U
=
! & ! & ! ,
'
/
K
D" !'
#
'
5
K
'
#
!
/ ' K ' ! / " K # '
/ ! " K # ! #
/ " !' K
© 2004 by CRC Press LLC
U ,
>
'
' !
337
Chapter 4 Glossary
' " $'' , = ! >
"' '9' # =!
> "" $' # = #> ! 0" " ' # ! "' ! :' ! = >
' " = &">' K ' ! &
:" K ' ! = = > = >
> ?
=
> !
? !" '
# ! ? # # !
"" K ! &
·½
? ·½ =
' ! & ½ ½ >
·½ ?
·½
"" " : $0' ! & " "' # 5 # 5 ; -
'!" @ K ' @& A ? 1 '!") A K '
' = > 7&= > @ ! & B A ! & 7&= > E U => 7&= > ? @ ! &U @&
" ! K #
'
3$4 " K
½¾
'
? ½ ¾ ¿ ? ·½ ?
! !" 3" !" 4 K
' = >
$! " ' ., 0" " " $'' # !
"!$ !" ' ' "!$ "!$ " !" ' ! ! !" " '
© 2004 by CRC Press LLC
338
Chapter 4
CONNECTIVITY and TRAVERSABILITY
" !" ' # ! 5 # U ,
" !" ' # ! # U ,
''" !" ½' ' ''" !" ¾' ' ''" !" ¿' ! #
9
U
''" !" ' ! # ''" ,7 3,,74 K = > ! ' !
$ !" K # #
,
'
$$ " ! ' 2 # ! K ' # & & =+ > + ! =+ > + " $' " '' ., 9 " /$! $' " $'' , ! ! ! U ** !
" !$ ? $ K ! = >' E ! ! #
# = ! >
,7' * * ''" 3,74' , ! !
* '
= >
$ '
!" $% K !
6 ! A ! A !
½ ' , ! # = > # ?
=>3!4 ' '
' # #
/$ "! " $') 36174 K ! E ! 1 ?
! ! " ' , L ! !
© 2004 by CRC Press LLC
339
Chapter 4 Glossary
3/"94/½ K '
!
U
3/"94/¾
Ú
K '
!
U
Ú
/"9 $!'
! #
! 5
5
!
# U
: $0'
/"9''" !" '
! 5
#
B
B
: 0$ $0 !" '
=
> #
5
: 0$ !" '
:$'
! U
' '
#
!
© 2004 by CRC Press LLC
!
# 5
Chapter
5
COLORINGS and RELATED TOPICS 5.1
GRAPH COLORING
5.2
FURTHER TOPICS in GRAPH COLORING
5.3
INDEPENDENT SETS and CLIQUES
5.4
FACTORS and FACTORIZATION
!" # $ 5.5
PERFECT GRAPHS
% &' ( % 5.6
APPLICATIONS to TIMETABLING
) ( % & " *+ ,
) #"+ - ./ GLOSSARY
© 2004 by CRC Press LLC
Section 5.1
5.1
341
Graph Coloring
GRAPH COLORING ! !" # $ % & ' () *'
Introduction ' " $ ' " $ + ,
- # - ' + ' , - .+ !' / 0 ,
' 1
2 341 5 6 , ' ' + , / 77
% + - - ' 315&6 381 556
9 " , '!
- - + + , + )
5.1.1 General Concepts , , '
' + ' , ) - .+ 0 % ' ' + - , + , , 2 , # 1 . 0+ - ' ' ' Proper Vertex-Coloring and Chromatic Number DEFINITIONS
:
; '
< . 0 ' :
' ' - ' = >
© 2004 by CRC Press LLC
342
Chapter 5
COLORINGS and RELATED TOPICS
' , ? - : ; - ! , (' - + , . )
, 0
< :
1
:
;
! -, 0 ½
, ?
! 0
:
<
½ .0
<
-
;
½ .0
.@
'
' - ! ,
' !
. 0! : 1 ' +
.0+ - ! :
;
EXAMPLES
:
1
:
;
-
.
0 0 < .0 .
A ' '
' '
( + ' - ! + , ' !
FACTS
:
; ' )
0
.
' -
:
+ , .0
3" BB6 1 ,
"
.
0
´µ
.
1 02 $
' +
)
.
0 <
C
0
.0
.7 0 , .0
¼ · : D : Ê Ê + ' , .70 < (' < . 0 + ' - + - ' - .0+ .0 .0 ¼
' - )
© 2004 by CRC Press LLC
Section 5.1
343
Graph Coloring
List Coloring and Choice Number E ' ,
DEFINITIONS
:
' , ' , ' -
; .- 0
-
:
'
1
.
:
('
<
:
;
:
1
'
1 = > '
,
.0 '
+
0 ' - !
'
+
' ! ' - !
!
+
'
+
" .0+
-
.( ' +
.0
'
" .00
EXAMPLES
-
:
1
:
1 ( !
!
!
, . 0 . 0 . 0 . 0 . 0 . 0 ! ! + ! +
. ' , . 0 . 0 . 0
+
-0 ( + ,-+ ' - !
+ , '
- . '
-'0
FACTS
:
:
3
*1&56 1
:
:
" . 0
.7 0 , .0
38776 ('
. 0 .0
.4 8 3;56A 31 560 ;
-
. C .00
'
7+
<
. 0
< . C
< . C
.
0 '
. 0 7
.00 . 0 ,
" . 0
.00
" . 0 < . . 00 ' . 0 A . . 0 . . 000 ' , +
+ '
3;8@55+ 556 1
' '
. - ' +
© 2004 by CRC Press LLC
0 + !
344
Chapter 5
COLORINGS and RELATED TOPICS
The Hajós Construction FACTS
:
3F$6
- '
'
' ' ' , :
.0 ( , - G
+ '
.0 F- - !?
. < 0+ -
,
+ + ,
.0 ( ' ? -
:
35$6
- '
'
'
' .0
.0 -+ ' , :
< . 0 ! , ? - - + ' , ¼
. 0 F-
,
'
Lovász’s Topological Lower Bound DEFINITION
< . 0 + ' - :
.0
1
'
, - - '
FACT
:
3D &B6 ('
+
0 C
.0
'
!
!
.
Alon and Tarsi’s Graph Polynomial Characterization DEFINITION
:
1
+
< . 0 , < -
< . 0 :< -
'
<
<
+
¾
+ , ) < . 0 :<
¾
.
.
'
0
0
FACT
: 3;156 ; ! ' '
© 2004 by CRC Press LLC
Section 5.1
345
Graph Coloring
List Reduction FACT
:
31 5&6 D < . 0 + ! . 0+ + ' , - - (' . 0 !
+ , .0 + ' + ,
' - ( + ".0 ". 0 C
5.1.2 Vertex Degrees DEFINITIONS
: 1 . H
IF?0 ' +
.0 .
0 - ' , ' - + - ', ,
: ; ' '
. .0 . 0! 0 FACTS
:
# -
+
.0 .0 ".0 .0 J.0 C ,
:
.0
+ $ '
. I 1 0 3 $6 # < . 0 ! + .0 C .0 C
:
3 *1&56 1 I ' : ".0 C ".0 C
.0 C .0 C
:
3F@/&76 - < . 0 , J .J C 0!
:
."
2K 1 0 3"6 ('
+
.0 J.0
:
J.0 < 3&$+ *1&56 . "
2K ' 0 ('
+
".0 J.0
J.0 < / 0
© 2004 by CRC Press LLC
.@
'
346
Chapter 5
COLORINGS and RELATED TOPICS
REMARK
:
' " J C + "
2K
/ < J C " < J C 1
+ < ' ' . 0 @ '+ 315&6 ' ) ' < " < " + ' " < FACTS
:
3 *15&6 ; !
' ' -
' ! - - + - + - ! - , , ,
:
3;776 1 ' , 7 +
".0 . 0 ,- - ' - + ".0 . .00 .0 .0
5.1.3 Critical Graphs and Uniquely Colorable Graphs 1 , : ! . 0! + ! , ? ! DEFINITION
:
#
+ ! < . 0 ' . !0 <
' -
! A ' . 0 <
' - -
FACTS
: - !- ! + , - + !
:
31 &B6 ; - ! ' ' ' 2 - !
: # < < + =! > ' ' =!- ! > 1 ! + !
:
. "
2K 1 0 - ! + ' . 0!+ < <
: 3E56
- !
© 2004 by CRC Press LLC
< .
0 '
Section 5.1
347
Graph Coloring
: 3$6 (' ! + - '
, - 2 -+ ' " !' ' , 2 + ! , - ' " .1 " 0
: 3@ B 6 # + ' + ' 2 1 ) ! , - ' ,
-
. 0!
: 3D &6 ; " ' ! ' '
" ' "! .' ! ." 00 . 0!
: 3@&+ 1 &6 1 ) ' ! -
, .(
2 , , # ! ! 0
: 3 &6 ; ! .
0
-
: 3$6 ; ! . 0 -
C
C
¾
: 3D &6 # !
- + L + ' ) -
' + : 3*M 1B 6 D $. %0
' , - % .+ ' 1N + ' B0 (' . C 0! $. %0 - +
%! + $. %0 1
.# . C 0! + $. C % C 00 : 3*M 1B 6 D + , - & @
' -+ .0 - .0 C + .0 .0 C 1+ ! ' + - .0 & .0 .(
2 , , - G -
! , - ' - G0
: . *M 31 B 60 1 ' ! ¾
# + ' #
OPEN PROBLEMS
:
' ! - . )+ 0 : .4 O O *M 0 # + ' . 0 - . C 0! , , - P
© 2004 by CRC Press LLC
. 0 - !
348
Chapter 5
COLORINGS and RELATED TOPICS
FACT
: 388 6 1 ' . 0 + + - QK ! Q K EXAMPLES
: 1 ? ' , ? ' $ C $!
< $ C - , C .3 60 E + ' ! - . # 0 + , # 7 : % < B$ C - + . 0 ? - ' $ C + ' + ? + ' ' 1 ! + , $ .31 &760
Uniquely Colorable Graphs DEFINITION
: ; < . 0 ' ? ! , < .0 . ' ' 0
1 ! + ' , ,
EXAMPLES
: :
1 !
(' ! + - ' , ' + ! ( + ! '
' , ! - ' ., ' , - - ' '0
FACTS
: 3 $56 - ! . 0! : 3" &B6 (' ! - + ,
+ ! E -+ , ' )
: 3" &B6 D ! - + , ! ,
' , (' + ! E -+ , ' )
5.1.4 Girth and Clique Number 1 , , '
2 ! A , + ' - -
© 2004 by CRC Press LLC
Section 5.1
349
Graph Coloring
FACT
: 3 56 # #+ ' - ( !! ' ( # - E -+ ' +
' ! - , , R. 0
REMARK
: 1
' 3 56 ' /
H K # ( + ,A ' (+ + + 3D $B+ *M &56 ; ' + - - *? . 0 - + ' 3DS@BB6
EXAMPLES
: 3T56 (' ! !' +
' - ! ? ' . < 0+ , , ' / . 0 1 ! . 0 . 0 . 0+ ? 1 . C 0! !'
: 3B6 (' ! ' $+ 2
' ) < . 0 C+ , & < - !?
' . < &0 # ' & . 0 ! * + , ' , * . 0 1 . C0!
' $
: 3E 6 # - ' ! !' + 2 , - ? ' + ? , - 1 . C 0! !'
+ '
: .8 0 3D &B+ "N&B6 1 - ' 8 . 0 ! ' . 0+ , - ? ' ' , ! ? 1 . . 00 < C + . 0 !' ' E -+ - ! ' . 0
- ! - ' -
.3@&B60
CONJECTURE
: 3*5&6 # - + .0
.J.0 C .00 C
FACTS
: 3*5&6 # - & J + ' J.0
J .0 J.0 C &+ .0 J.0 C & E -+ 7
' J.0 + .0 . 0.J.0 C 0 C .0
: # , 2 , 3;?8 @/B76 *
,.) $0+ ' , ' .0
$+ ' # < #.$0+ , - .0
© 2004 by CRC Press LLC
#
350
Chapter 5
COLORINGS and RELATED TOPICS
(' .0 $ J.0+ $ .J.0 C 0 .0 $C
: 3" 8 &&+ &B+ D&B6 D $
: 3 $&6 1
.0 <
.0
, , R. 0
: 34 5$6 # - -
!'+
# ' # J.0 J.0 " .0 J.0
: 34 5$6 (' !'+ " .0 # ' J.0
# J.0 J.0+ '
: 385 6 (' + " .0
,
7 J
. C J.0J.0 0
: 38 E&&6 # - J + !' J .0
,
: 3"76 D < . 0 !' ! + ,
1 :
A -+ ' - + .0 38 &B6 # - J ( < (.J0 .0 J C ,- .0
( J
: 3E@5&6 (' - -
C C .1 ' 0 3*@76 (' - ' + .0 .1
+ .0
:
/ ' 3@B6 - !' , ' ! 0 ; + ' , - , ! / .3*760
CONJECTURE
: . H I#ID -N/ ? 0 1 '
!? '
FACT
: 3856 (' !? ' ' - + .0 < C . 0 " .0 < C . 0
© 2004 by CRC Press LLC
Section 5.1
351
Graph Coloring
The Conjectures of Hadwiger and Hajós CONJECTURES
: .F,K ? 0 3F6 # - ! + ' - G !
:
.F?N K ? 0 # $+ - ! -
' + + - ? ?
FACTS
: :
3 6 "
F,K F?N K ? '
<
3 &56 (' .0 < + - ' , ' ' ' - .(
2 , , - ' , ' '
' - 0
:
3T5B6 1 !
, ! - ' : 3 &56 # - & !
- '
:
39&6 1 ! ' ! '
F+ ' < + F,K ? .
9K 0 - # 1 .' 0
:
3* @156 # < $+ - ' F,K ? ' # 1
:
- + F,K ?
:
38 B6 D ..0
' -
1 ..0 C ..0 $ ' - - +
3" B7+ 8 B6 # - , .0
,
@
'
5.1.5 Edge-Coloring and -Binding Functions
( , , , DEFINITIONS
: ; ' '
' + , -
:
1 ' +
' ! '
© 2004 by CRC Press LLC
¼
.0+ !
352
Chapter 5
:
COLORINGS and RELATED TOPICS
) 5 7 ' ! / !
. 0 !/ !
,+ ' - ! 1
! '
:
:
0A
.
.
+
¼
00
.
< . 0 '
+ ! ,
'
.!0 < .0 ,-
1 '
'
' / '
¼¼
00
" ¼¼.0
.
< . 0 1 .0 ' - ' + , ' ? .0 ' - 1 / .0 - + .0+ -A -+ ?
! / .0 ' ' ! 1 - A , - ? '
:
D
:
0
.
¼
;
- '
¼¼
A
" .0 .
;
.
.
00 '
' '
:
REMARKS
:
+ ¼
0 <
.
0 <
.
.
.00
" ¼ .0
/ .00
"
<
" ..00
+ ¼¼
.
¼¼
.
0 < " ./ .00
( + ,-+ - '
¼
" ¼
'
" +
'
:
1
.0 .
/ .00
., 0 U ! U . 0
1+
J.
E -+
" ¼ .0
¼
0
.
0
.
.
00
J.
0
0
J.
/ .0 ' < . 0 ' 0 .0 , + , ! ? 0 ' ' ! :
1
0
<
© 2004 by CRC Press LLC
Section 5.1
353
Graph Coloring
FACTS
: ./K 1 0 3$6 (' + ¼
.0
J.0 C
(' 1.0+ ¼
.0
J.0 C 1.0
# ¼.0 J.0 ' , .) - 3@560 1+ .0 < C ! ' ' ' + .0 < '
: 38@B6 ('
.0
:
.0 C
.8M
K 1 0 38M
$6 ('
.0
!+
+ .0 < J.0 ¼
: 3E *5B6 1 '
¼¼
.0
J.0C ' ' -
: 35 6 (' + " ¼.0 < J.0 : 3 56 @ ! ,
' ! + '
: # - + " ¼¼.0
"
.0 < (' + " .0 <
¼
.0 C
: 385$6 # - ' J+ " ¼ .0
.0
7 J
¼
¼
. C .00J+ ,
CONJECTURES
: ./ 3$6A "/0 # - , 1.0+
J.0 C 1.0 C ( + ' + .0 J.0 C : !"#$ .; 4 9 F 0 (' .0 < J.0 C J.0 .0 + = -'> + + " ,
." 0 J." 0 ." 0
¼¼
.0
¼¼
¼
: %& ./A A ; A " N F0 # - + , - " ¼ .0 < ¼.0 : .- EL0 E ? &+ ' - ,!'
, - " .0 < .0
O : ." + 8 2 9
A 4-+ E @22 -2A F 4 0 # -
+ " .0 < ¼¼
¼¼
.0
: .8 2 9
0 E ? +
' ' -
© 2004 by CRC Press LLC
"
.0 <
. 0
354
Chapter 5
COLORINGS and RELATED TOPICS
Snarks DEFINITIONS
: ; ! ' - , +
: ;
. ' = - 2>0 !+ !! ' + !! REMARK
:
; , - /K + ' ' J.0 J.0C+ - F+ 2 - ' ' 1 L 2 , - ) @- ' , ' ' ' + + 38 76 3 E*@ 5B6
FACTS
: 3 B 6 (' - ? . &$0 '+ 2 ' B
:
3 B6 (' !V , ? . 0 '+ !! 2 ' &
:
38 5$6 # - (
( !! 2 '
Uniquely Edge-Colorable Graphs DEFINITION
: ; < . 0 ' ? ! , < ¼ .0 . ' ' 0 EXAMPLES
:
1 ! 1 ! - 1 !! . / - ' < 0
:
31&$6 1 ' , 5! 2 2 2 3 3 3 ' 23 . 5+ 50 !! 1 2 , !' ! ' <
FACTS
:
31&B6 1 ! + '
: (' ! ! + ' , =YIJ > ! ! D
© 2004 by CRC Press LLC
Section 5.1
355
Graph Coloring
* - ½ ¾ ½¿ ¾¿ ' <
' - ,
, -
½ ¾ ¿
Further -Bound Graph Classes CONJECTURES
:
:
/+
.N 'N A @0 # -
'
3B&6 1
/
! '
! ' ' ' , -
FACTS
:
38S56 ;
! ' '
'
:
/
3@5&6 # -
/ + '
/ + ! ' ' /
- '
5.1.6 Coloring and Orientation Paths and Cycles FACTS
:
3$B+ * $&6 ;
:
3E$6 ;
:
'
'
.0 ' ' ' ' '
-
,
0 ' -
.
,
'
3156 ( Æ E K - ? ' ' .
0
.1 I* 1 +
0
E - -+ '
! ' ' ( ' +
-+ + '
:
!
3" &$6 ( - '
'
! . 0+
Eulerian Subgraphs DEFINITION
4 < . 4 0 4 < . 4 0 ' 4 , - + , .0 < .0 ' " 4 A + 4 < , - 4 .@ - ' " :
;
0
© 2004 by CRC Press LLC
'
·
356
Chapter 5
COLORINGS and RELATED TOPICS
FACT
4 3;156 (' ' ' , - ' L ' ' , ' 4 ! ,- ) .0 ' + .1 - 0
:
Choosability and Orientations with Kernels FACTS
4 < . 4 0 - "4 ! @
* ' - * ' "4
* (' , .0 ' +
:
:
1 - - ; , * . % 0 ' ! % 3 " . 0 ( + Æ , !
: (' - ' - + , ! + ' + - 8M IF ( + ' ) -! + " .0 C E - ! . 0 Acyclic Orientations DEFINITION
: . ' 3E1 B6 3;BB+ 60 1 , ( + S ; .Q;K0 ! ! ' + S @ .Q@ K0 +
1 - , ? ' 1 ' 5
) ', + , 6 2
9
#.0 ' ,
5 6
FACTS
:
3;115 6 (' < . 0 $ - , #.0 < +
& ' ' .(
2 ,+ ,-+ , #.0 C . 0 '
- 0 : 3;115 6 # - (+ < . 0 , ( #.0
+ '
© 2004 by CRC Press LLC
Section 5.1
357
Graph Coloring
: 3;15 6 # , - + #. 0 < R. 0 , .0
,- 7 ) # + #. 0 < . 0
5.1.7 Colorings of Infinite Graphs FACTS
' ' - : 34 56 # + ) " .0 ' ' - ) ' !
: 3" &&6 (' .0 < + ' - ) 5 + :
3" 6 # + ) ) ' !
,
:
.0
5
38 56 1 .0 ,!) ' - + - !
9!% 1 A - + - ; '
:
38 BB6 1 ' , : 1 < + .0 < + ." 0 ,- ." 0
< . 0
Coloring Euclidean Spaces DEFINITIONS
:
1 ' - A
' ,
: - .) ) 0 = > 7 < + .70 - A , - ? ' ' 7 FACTS
: : : : : : :
&
3F 6 ( + . 0
3E E $6 " ! - - + . 0
3 76 ( ! + . 0
; ! 5 - . 0 3D* &6 ;
+ . 0 . C .00
3#9B6 ; + . 0 . C .00 3@5 6 1 " . 0 ) ' ' <
< .() , ) - 341 5 60
: # - ) 7+ ..700 7 C : # - 7 , 7 < + ..700 .3T760 # +
,-+ ' !
/ '
© 2004 by CRC Press LLC
358
Chapter 5
COLORINGS and RELATED TOPICS
: 3 @2B 6 (' 7 ' + ..700 < E -+ ..7 00 < ..7 00 <
: .W 8 / A 3*1 76A W S 9 @0 D 7
' - + ' ' 7 < ' (' 7+ ..700 ) '
7A ' < 7+ 7 ..700 <
References 3;BB6 E ;+ 4$ " + 9I1+ 5BB 3;115 6 E ;+ 1+ T 1/+ @ ' ' + * !"5 .55 0+ I7 3;?8 @/B76 E ;? + 4 8 N
+ @/N+ ;
* + .5 4$5 " 5 5 .5B70+ I$7 3;56 ; + * ' + I 8 92 . 0+ 4$ + S " '+ D E @ D
@ B&+ - S+ 55 3;776 ; + + 5 5 $ .7770+ $I$B 3;8@556 ; + E 8--+ " @2 -+ D ' ! + 4$ 5 .5550+ I& 3;156 ; E 1+ ' + 4$ .550+ I 3;15 6 ; T 1/+ 1 + 3 5 5 $ .55 0+ $I$B 3"N &B6 ( "NN+ ;
' ' 8K ? + .5 4$5 " 5 .5&B0+ I$ 3" &&6 " " N+ + (5 !"5 5 5 .5&&0+ 5&I5B 3" &B6 " " N + + .5 4$5 " 5 ( .5&B0+ I$ 3" BB6 " " N + 1 ' + 4$ B 5BB+ 5I 3" B76 " " N+ S ; + S H + F,K ? ' - + ) 5 .5 4$5 .5B70+ 5 I55 3" &$6 4 ; " + ? ' D + .5 !"5 5 .0 .5&$0+ &&IB
© 2004 by CRC Press LLC
Section 5.1
359
Graph Coloring
3" 8 &&6 % " ; 8 2+ % ' K + K + .5 4$5 " 5 ( .5&&0+ &I 7 3"76 @ " + ; ! ' !' + * !"5 .770+ I$ 3"6 * D "
2+ % ' , 2+ # 5 4$ #"5 5 & 5+ 5I5& 3" 6 "? S H + ; ' ) ' + & 5 %5 ,"5 # 5 5 .5 0+ &I& 3 &B6 S ; + ; ' + * !"5 .5&B0+ BIB 3 &56 S ; + F?N
K ! ? : - + .5 4$5 " 5 ( $ .5&50+ $BI& 3 E*@ 5B6 ; - + E E+ " *+ # @ + ; - 2 , : + + .5 " " B .55B0+ &IB$ 3 B6 ; + %
- !! + S 1+ - ' 9
+ + 5B 3 $56 S + % + .5 43 $5 " $ .5$50+ &I&B 3 76 + ; ! ' !
+ * !"5 $ .770+ BI57 3B6 " + @
2 5+ ) % 7 .5B0
3 6 ; + ; ' ! 2 + .5 !"5 5 & .5 0+ B I5 3 &6 ; + ; ' * D "
2 ? ' F F,+ # 5 !"5 5 162 & .5 &0+ $I5 3 @2B 6 * "
+ S H
+ 8 @2 + + .5 5 .5B 0+ B$I77
4$5 " 5 (
3 5$6 E D + D ' !' / + 4$ $ .55$0+ I 3 56 S H + + 45 .5 !"5 .5 50+ IB 3 $&6 S H + @ 2 + 4+5 !"5 $ .5$&0+ I $ 3 F$$6 S
H
; F?+ % ' ! +
& .5$$0+ $I55
© 2004 by CRC Press LLC
360
Chapter 5
COLORINGS and RELATED TOPICS
3 *1&56 S H + ; D *+ F 1 +
+ S 9 ! ' + 1 + ; + ! ' + 4 5 & 5 XX( .5&50+ I & 3#9B6 S #2 * E 9 + ( , ! + 4$ .5B0+ &I$B 3$6 1 + 8 (+ #$5 !"5 75 5 5 5 B .5$0+ $ I5 3$B6 1 + % + IB S H
% F 8 . 0+ " " + E @ 4 " + 1 .F0+ 5$$+ ; S+ @ + 5$B 35 6 # -+ 1 ' + .5 4$5 " 5 ( $ .55 0+ I B 38 56 # - S 8 ?N + ' + # !"5 5 .550+ &I& 3 B 6 D + ; ' - ? + I$ + !F E @ + 5B 35$6 @ -+ ; F?N
!2 ' + * !"5 .55$0+ 55I7 3D &6 , D D -N/+ ; ' + !"5 5 5 5 .5&0+ I7 3B&6 ; N'N+ S ' , ' + X(X .5B&0+ I M 3F6 F F,+ 8)2 @ 22 + 8" "5 & "5 5 9 " BB .50+ I M 3F 6 F F,+ 2 2 * 2 E+ # 5 !"5 .5 0+ BI 3F@/&76 ; F? @/N+ S
' ' ? ' H
+ $7I$ S H + ; *N+ 1 @N . 0+ 4$ " 5 77 + E @ 4 " + !F + 5&7 M 3F$6 F?N
+ 8 2 !'M + ,5 5 ! 3 " 35 3,$ !"53& 5 " + 7 .5$0+ $I& 341 5 6 1 * 4 " 1 ' + " 4 # $+ 9!( + 55 34 5$6 ; 4 + ; - ' ' + E + 4 55$ 34 5$6 ; 4 + 1 ' + S - + ; 55$
© 2004 by CRC Press LLC
Section 5.1
Graph Coloring
361
34 56 S 4 + 1 ' + $ .550+ I B 3856 4 8+ !? , C . 0 + .5 4$5 " 5 5 .550+ I5 385$6 4 8+ ;
! + .5 4$5 " 5 & .55$0+ I 5 388 6 4 " 8 D E 8+ S + &$ .5 0+ &B$I&5
38S56 F ; 8 @ S+ * , ' ! + .5 " " B .550+ 5I5 38@B6 F ; 8 4 F @+ @ ' /K
- ' + * !"5 .5B0+ &&IB 385 6 4 F 8+ % "
2K ' + 4$5 # $$5 45 .55 0+ 5&I 38 5$6 E 8 + @2 , + .5 4$5 " 5 ( $& .55$0+ I& 38 76 E 8 + @ ' , ,!/
!V ,+ ) 5 .5 4$5 .770+ BI7$ 38 BB6 S 8 ?N + ) + 7 .5 !"5 $ .5BB0+ B I5 M 38M
$6 8M + ;, ' E+ !"5 5 && .5$0+ I$ 38 &B6 ; 8 2+ + + $&5I$5$ ; F?! 1 @N . 0+ 4$ + E @ 4 " B+ 8/ .F0+ 5&$+ !F + 5&B 38 B6 ; 8 2+ 1 F, ' , - ' - + ! *% 5 5 B .5B0+ &I B . *0 38 B6 ; 8 2+ % F, ' + &I ; F?+ D D -N/+ 1 @N . 0+ - 7: + E @ 4 " &+ .F0 5B+ !F + 5B 38 E&&6 ; 8 2 S E/ -+ ; ' + ! *% 5 5 7 .5&&0+ I5 . *0 381 556 4 8 -NY+ T 1/+ E + , ' :
+ BI5& * D . 0+ 4 * !" + (E; @ @ E 1 @ 5+ ; E @ + 555
© 2004 by CRC Press LLC
362
Chapter 5
COLORINGS and RELATED TOPICS
38776 E 8--+ 1 ' + 4$5 # $$5 45 5 .7770+ 5I$ 3D* &6 D ; * + 1 / ' , + !"% 5 .5&0+ I 3D&B6 4 D,+ - - ' , ' + * !"5 .5&B0+ $I$B 3D $B6 D D -N /+ % ' ) ! + !"5 5 5
5 5 .5$B0+ 5I$& 3D &6 D D -N /+ ( + 5 !"5 3 5 B .5&0+ $ I$B 3D &B6 D D -N/+ 8K ? + +
.5 4$5 " 5 .5&B0+ 5I 3DS@BB6 ; D
/2+ * S + S @2+ *? + 4$ B .5BB0+ $I&& 3E1 B6 E E 1 + 1 L ' ' F
' - + # 5 ;<" -=4 .5B0+ 7I& 3E56 S EN
2+ ; ' "
2K + * !"5 .550+ I$ 3E@5&6 S EN 2 ( @+ ' ' , + + 55& 3E$6 4 E + ; ! ' + 5 !"5 !" $& .5$0+ $I$ 3E *5B6 E E " *+ ;
+ 4$3 B .55B0+ IB7 3E E $6 D E 9 E + S S7+ 45 .5 !"5 .5$0+ B&IB5 3E 6 4 E2+ @ + 4+5 !"5 .5
0+ $I$
3*M &56 4 O O *M
+ ;
' ' ' , + .5 4$5 " 5 ( & .5&50+ I& 3 $6 ; 4 9 + % + 5 !"5 !" $ .5 $0+ & I&& 3*76 " * + ! ' (: / + * !"5+ 3*@76 " * ( @+ , + *5 !"5 " " .770+ $&IB
© 2004 by CRC Press LLC
Section 5.1
Graph Coloring
363
3*5&6 " *+ + J+ + .5 " " & .55&0+ &&I 3* @156 * + S @ + * 1 + F,K ? ' !' + 4$ .550+ &5I$ 3*M 1B 6 *M
T 1/+ % + .5 4$5 " 5 ( B .5B 0+ 7I 3* $&6 * * + K + -7= .5$&0+ &I 3*1 76 ( T */+ T 1/+ E + , ) + .5 4$5 " 5 ( B .770+ BIB& 3@5 6 4 F @+ 1 ! ' + $ .55 0+ $ I$B 3@&B6 ; @?-+ ! ' 8 + , ; 92 $ .5&B0+ I$ 3@5&6 ; @
+ ( ' + .5 " " .55&0+ 5&I 3@B6 S @ + ,!/ $!V ,+ .5 4$5 " 5 ( 7 .5B0+ 7I 3@56 @ + ; ' , 2+ .5 !"5 #"5 B .550+ BI 3@&6 E @ - + % ! + 5 !"5 5 & .5&0+ $&IB 3@ B 6 E @ /+ ! , ? !- + $5IB F @ . 0+ " " .S ' 1 + + *+ 5B0+ 1!1 / E 2 &+ 1+ 5B 3@B6 S @+ @ ' + &I &$ + S ' 8/
.E0+ 9+ 5B 31&B6 ; 1 + F + 3 * !"5 .5&B0+ 5I$B 31 &76 " 1 ' + % ' ' ! + 5 !"5 5 .5&70+ $I&7 31 &6 " 1 ' + 1, ! + 5 !"5 5 & .5&0+ BIB5 31 &B6 " 1 ' + ; - ' ! , ' , ! - + * !"5 .5&B0+ &5IB&
© 2004 by CRC Press LLC
364
Chapter 5
COLORINGS and RELATED TOPICS
31 B 6 " 1 ' + @ ' + &BIB$ * " 2+ F @+ 9 . 0+ " - "
"> -" 5 , + " #/2 + 5B 31 6 9 1 1
+ ; ' + 45 .5 !"5 $ .5 0+ B7I5 31&76 9 1 1
+ E + 5I * 8 . 0+ 4$ " + "+ 5&7 31&$6 9 1 1
+ F + 5I55 .* + 5&0+ 1 (+ ;
- D+ &+ ; / D+ * + 5&$ 3156 T 1/+ + .5 4$5 " 5 ( $I
.550+
315&6 T 1/+ , U ; -+ *5 !"5 " " & .55&0+ $IB 315&6 T 1/+ ! ' F + + 55& 31 56 T 1/ E + '0+ F+ 55
+
$ %
.
31 5&6 T 1/ E + D + * !"5 &5 .55&0+ &I $
3$6 /+ % ' ' ! + ! *% 5 5 .5$0+ 5I& . *0 3&$6 /+ - ' + ! " #" + 5 .5&$0+ I7 . *0
3556 F + %
. 0 ' .5 " " .5550+ 7I$ M 39&6 8 9+ ' 8 + !"5 5 .5&0+ &7I 57
3T5B6 9 T+ , ! + * !"5 B .55B0+ 7 I 3T76 X T+ ' , ' + .5 " " .770+ 5 I7& 3T56 ; ; T2 -+ % ' + !5 $ % .570+ $IBB . *0
© 2004 by CRC Press LLC
Section 5.2
5.2
365
Further Topics in Graph Coloring
FURTHER TOPICS IN GRAPH COLORING E # @' @ # 1 ' S ' F ; *'
Introduction ( , - ' + ' @ ' .+ ' ' 0 -, - ' - ! ' + - ' , - @
/ - ,
1 - @ ' .S 0
5.2.1 Multicoloring and Fractional Coloring DEFINITIONS
:
Ê
;
' ' : ' - < . 0 '
.6 0
1 )
' .+ ' ! ! 0+ , ' - ' ' -
:
6
1
'
.0 :<
. 0
, 2 - ' - ! ' .1 " 0 .0 ) 0 - + ' ' < . 0 ) - ' 6 6 6 .
0+ , ' (
.0
: # , ' ( ' Æ+ , (.0 .0 ' + < . 0 . (0 ' ' - , < .0
© 2004 by CRC Press LLC
366
Chapter 5
COLORINGS and RELATED TOPICS
' ' < (.0 ' ' ' < ' 1 ' G ( + + =.2 30!
> .0 < 2 (.0 < 3 ' (' (.0 < ' - - + , EXAMPLE
: # - $ + ' .$ C $0!
.3;1 5&60 ' C FACTS
: # - + , -
.0 ( + '
' +
: # - < . 0+ , -
. 0 . 0
.0 < .0
.0 .0
: # - - + -
.0 <
'
.3 4 &B60+ ' .' $50 ) ' , ' .3#5 60
: 3*@5B6 # - $+ '
.0 $+ ' . ' F,K ? 0
: 3D & 6 # - + .0 . C .00 ; + - 0
." 0
." 0
- C .,
'
: 3*576 # ' ' + 1
? .'
0 + +
.0 J.0 C ' -
: 38776 1
' + + ' - 7 < .0 .0 " .0 . C 0 .0+ ' - : 3;1 5&6 # - + - ' 23 .2 30!
.0
: ."
2K 1 ' 0 3 *1&56 @ +
' 2 (' .0 ' ' - - + !
: $ % 31 5$6 # 5+ .& &0!
' & : 1 D * . 31 5&6
+
0 ' .& &0!
: 31 5$6 - !
.& &0!
+ ' - &
© 2004 by CRC Press LLC
Section 5.2
367
Further Topics in Graph Coloring
OPEN PROBLEMS
: : " .
3 *1&56 ( - .2 30!
.2& 3&0!
' 3 *1&56 - '
" 0 " .0" ." 0P
& P
" ' - +
REMARK
:
; Æ - , S , Æ - , S ! ' ' - 31 5$6
5.2.2 Graphs on Surfaces F + ' ' + ' , ' ' + , - - ! ' + ,
' ' ' ' ;?
' ' ' A ' -
, ' ,2 DEFINITIONS
: :
; , -
; . '0 ' ' '
: ;
' - ,2 ' ' FACTS
: : :
.#- 1 0 3F:B576 - ! .# 1 0 3; F&&+ ; F8 &&6 - !
31:BB76 ;
! ' ' !!
:
3" &56 - ! '
, '
: :
.M
/K 1 0 3 56 -
¿ !' !
3F:B5B6 ; ! ' ' ' - - -
: - !
.31560+ !!
! .3 560
: :
38156 -
¿ !' !
315 6 ; ' )- !
© 2004 by CRC Press LLC
368
Chapter 5
: : :
COLORINGS and RELATED TOPICS
3;156 ; !
3 5 6 1 !!
¿ !'
3 F&6 - - , ,
: 3F56 1 ' , REMARK
:
;
' # 1 - 3* @@15&6A '
' , - ' 2 ,
Heawood Number and the Empire Problem DEFINITION
:
1 ! " ' '
". 0 <
&C
E + ' -
" . &0 <
6 '
5
& , ,
$& C C
.$& C 0¾
FACTS
:
3F:B576 (' ' 6 +
' , 6 U - + 6 U , " . 0
: :
3#6 - , 8
$!
3*W $B6 %
' 6 8
+ ' 6 " . 0
:
3 6 . < < 0+ 3;F&56 . < 0 (' 6 ' ' ! +
8
+ - " . 0! 6 ´µ
:
3"M
E @ 556 9 ' < + - ' 6 ' , " .0 < " . 0 ´µ
:
3F:B576 (' ' ' '
& .& 0+ , " . &0
, L .# $& 0
: 34*B6 # - & + , ' + , $&
© 2004 by CRC Press LLC
&
Section 5.2
369
Further Topics in Graph Coloring
: " . &0 ' - & .F 1 3B760+
? - .34*B60 8
.34*B 6 ' 3" B56 ' & < 0
&
OPEN PROBLEM
:
. S 0 # , ' 6 ' , - ' & 6 , & . &3 0+ " . &0 ' ' P Nowhere-Zero Flows DEFINITION
4 < . 4 0 ; " D #" ' 8 :
:
8 8 + .
' - -
0<
.
0
FACTS
:
31 6 ; ! ' ' , ,!/ !V , .1 ' '0 ( + # 1 - - , ! ,!/ !V ,A M
/K . ' 0 - !! ,!/ !V ,
:
31 7+ E$&6 ; ! ' ' ,! / !V ,A !! ' ' ,!/ !V , ( + ' / ' % .+ 0 ' - !
:
3@B6 - , ! ,!/ $!V ,
CONJECTURES
: '() !V ,
:
31 6
- , ! ,!/
31 6 - !! ,!/ !V ,
Chromatic Polynomials DEFINITION
: 1 . 90+ 9 + ' < . 0 ' , - 9 .9 < 0 ' : 9
' , 9 F+ , L - '
© 2004 by CRC Press LLC
370
Chapter 5
COLORINGS and RELATED TOPICS
EXAMPLE
: 1 '
- + -+
.
90 < 9
.9 C 0
9 . 90 <
Z < 9.9 0
FACTS
:
!
. ! # 0 # -
< . 0 -
+ , - . 90 < . ! 90 .! 90+ , Q!K Q!K
' !+ -
: 3"6 (' - + . 90 '
9+ , Æ + .0 9 . 90 < 7
:
,
. ( 0 31&76 ('
:<
C
- +
. : C 0 < : ¿
½¼ ¾. :
C 0
REMARK
: ; ' ( . : C 0 7 ' - .: C < $B0+
!'
' ' # 1 .;
' ' + . : C 0 / ' - 0
5.2.3 Some Further Types of Coloring Problems Variants of Proper Coloring
9 V ' + , ', ' DEFINITIONS
: ; $ ' - ! : - - ' ' .0
: 1 $ ' '
: ; ' - ! ' ?
: 1 '
"
: ; ' - ! - ? - -
© 2004 by CRC Press LLC
Section 5.2
:
371
Further Topics in Graph Coloring
1
"
' '
3! : ; 9 . . 0 0 - ! : 7 .+ C 0 ' .0 .0 + ' - - .0 < .0 : - / 7 + / : .0 .0 / ' : ; ' .0 ., 7 .0 ' 0
- + , ' .. 0 .0 ' 0
:
;
'
' - !
' ,
FACTS
:
0
.
1 ' '
?
%
+ ' )
I ' I
'
@+ + 3 @&56+
3FF"B6A 3@B6 , L
:
(
NP!
+ - ' .3
! - ' ' .3
0
, '
7 .38 8760
5&60+
5B60 (
+ '
REMARKS
:
9 ' 3(E556 381 76 ' -
:
3! .+
0
%
.+ ,
:
J C
9! 2
,
# ' '
:
9! +
'
( - '
:
Æ
3W56+ 3 85$6+
/ ! + 7 /
@+ + 3156+ 395$6+ 3 DT556
< J
0 ' - , J
3" 81D776
1 ' / - '
, 9 ' - 3T76
+ 3" #48E 76 - '
:
1 ' - / ' -
@ 3
5&6 ' -
Graph Homomorphisms DEFINITION
:
;
' < . 0 "
:
© 2004 by CRC Press LLC
.0.0
'
< .
0 -
372
Chapter 5
COLORINGS and RELATED TOPICS
; -, ! - - E -+ " "
1
" " ! + "
" ! 1 , .+ , .0.0 0 FACT
:
31556 D .0 1 , # ' " ! + Coloring with Costs DEFINITIONS
: ; ' < # # # 7 , ( , ' 7 # # + ' .0
: - < . 0 ' + : ¾ # 9
[ .0 ' - ! ' (' ' < +
) [.0 :< ¾ .0 '
: 1 ' , ' ' ! (' ' < + ' ' FACTS
:
31 ;E@B56 ('
:
& +
B&
[.0
3EE 5&6 # - ) '
.& C 0
' / ,
:
31576 ' - ' ) # - ) + .. C 0 . 0 0 E -+ ' - ) +
, ' )+ , - ' ) '
:
3EE 5&6 - ' J
:
' <
J C
1 # $ ' - J , .3EE @5&60 , ' < .3495560 REMARK
: " + -
, -
- ( ' + - ' -
- # ' + + + 3E76
© 2004 by CRC Press LLC
Section 5.2
373
Further Topics in Graph Coloring
Vertex Ranking DEFINITION
: ; ' < . 0 . 0 : , ' , - ' + - I - ; , .; 0 .0 1 ' + + ,
.0 (
' +
EXAMPLE
:
3" 488EM 15B6 1 '
.
0 2
.
C
(. 00+ , ' (. 0 ) - , (.0 < + (.0 < (.0+ (. C 0 < (. C 0 C ' - . ' -0
FACTS
+ # <.0 .0A ' 2 + & &0!
' - & .31 5$60 : 3" 488EM15B6 (' .0 < .0+ .0 < .0 E -+ ." 0 < ." 0 ' - " ' ' '
' :
# -
.
Partial Colorings and Extensions ; + , , ', '
DEFINITIONS
:
' < . 0 - =
;
! : =
( % + - % + , - + + ! 1 , ! ! ' : # - $+ $% - ' S , - $ :
.F+ 7!S
- ' ' 2 ,
! 0 : (
' - + , ' , ; , '
? +
-
2 , 9
FACTS
< . 0 ! + $ - + ' - : 3;F776 (' ! , - +
' - $!
- :
('
© 2004 by CRC Press LLC
374
Chapter 5
COLORINGS and RELATED TOPICS
:
(' !
, - + - + ' - $! . $ 0 3 556 E -+ ' ' + $ - ' 3476 .( ? 3;F776
, - ' $! 0
:
. ' 0 (' / ' + ! ! ' '
/ .38S1560A ' ! !'
! ! .3D560 REMARKS
: ( - + Æ Æ - ' ' ' 3F15$6
:
* ! - 385B6
Partitions with Weaker Requirements REMARKS
: 1 , - ! !
+ ' ,2
) " 3" + + ' ' " ' .0 ' " ; ' - 3" "#E@5&6
: @ - # ' 2 ' + + + 39 76
5.2.4 Colorings of Hypergraphs " ' ) . 0+ ,
) ', ' ' ' !- ' = > # + ' - 3 76 DEFINITIONS
:
; ! < . " 0 - A " ' 9 " < + ' " : ; ' ! : ' ! - + - : ; ' !
'
- !?
:
1 .!0 ¼ .!0 ' - ! + - & + + ) '
© 2004 by CRC Press LLC
Section 5.2
: :
375
Further Topics in Graph Coloring
; - ' -
- - 1 - ' . -0+
# +
< + ' -! ' : ; ! < . 0 - + , ' :
' 7 + - ( ' < + ' ' < + 7 ' < 9
' + - .' ! 7!0 , -
: ; ' - ! , + - ' ! , - , - 7! , - , L .( ,+ 7! ? 0
*
: ; ' + ' K
: (' ! + ' " +
.!0 .!0+ -
: ; ! ' ! . ' 0
.!0 < .!0
EXAMPLES
: (' ! ' ! + .!0 < + - , A ' ! 7! + .!0 < + -
:
1 .-, 7! 0 .# 0 < A , -, ' ! + .# 0 < - (' < # + < # +
. 0. 0+ !
: 3 D & 6 D < + , < ' -+ -! ' ' ' - - , - 1 -!'
! + ' - : 31 776 1 ' , ! < . 0 : ! ' ! < . 0+ < + < + ! * ' ! ' ' * FACTS
:
3 $6 # - - + !! -!' , ', -
: 3*@776 # Æ - ' -+ - -!' , 7& ! + Æ
) ! .1 -
:
¿½
- 3"&B60
.@ 3D $B+ *M &56 0 # - ' - ( + -!' , (
© 2004 by CRC Press LLC
376
Chapter 5
:
3876 # - -
,
Æ
; + '
,
:
¾
COLORINGS and RELATED TOPICS
- ' - !- ' < . 0
7 5
.
7 )0
-!' , - < . 0 " .+0 < . C .00 .+ 0 , .0 ' ' Æ ' + " .+0 .+0 < . C Æ 0 - 7
38 @ 776 ('
- .
C 0! +
!
:
31 776 1 - '
:
< .
0 ,
<
-
.
0
.
0
+
! + ' .
$
¿
0
!
31 776 1 D
< . 0 ' -
+ . 0 C ¾ - ' ' !
' + ' , # -
!
!
:
31 T76
!
-
'
E + -
, $ ¼ , $¼ ¼ ¼ ) ' .+ - ' ¼ ¼ ¼ 0 < $¼ 0+ , . 0 < $ . + - ? , $ , $¼ + , ¼
, ' +
!
!
!
:
!
34E1 976 # - )
:
!
!
! 6
!
6
! ' '
!
.388S 776A ; 0 (' '
) + ' - '
' ,
!
!
REMARK
:
@ , 3E15&6+ - ' @ !
. 2 0 # -+ 3E1 76
Clique Hypergraphs DEFINITION
:
"
1
'
< .
0
-
( ,
OPEN PROBLEM
:
A
' , '
3@@9 56
P
© 2004 by CRC Press LLC
0
.
.
' -
0
Section 5.2
377
Further Topics in Graph Coloring
FACTS
.0 ' - :
+
< ' + . - 0 : .0 ' .3@@9 560+ ,!'
: 3"S@6 1 ' , -
, ' .3"S@60
: 38156 # ' +
.0
.0 + ? -
: 3E @2556 (' + !
'
5.2.5 Algorithmic Complexity FACTS
: " .+ ! 0 / ! : 1 !
/ . ! / 3 *1&560
: 3E$B+ #@$56 1 : 38&6 # - + NP! , .0 ; +
NP! , ' ! .34 @ &$60
: 3F B6 . < 0+ 3DB6 . !
0 ( NP! , !
: 3"D 5B6 # - ) + ,
- ! + ' ,
: 3D @B6 1 ' ' !
: 1 ! ' , +
! ' ' + .3*@760 %
+ ! ' !' ! ' !' NP! .3@9 760
: 38176 # - + NP! , ! '
, .0 < !
: 38176 (' + ' ! .
' 0 ' ! -
: S ! + ! + !
%
.39560+ #P!
' ! '
© 2004 by CRC Press LLC
378
Chapter 5
COLORINGS and RELATED TOPICS
: 3156 - , ! - +
! ' REMARK
: 1 ! ! ! Æ 1
' '
# 1 ! + ' Q K ! 2 , FACTS
: 38819 76 # ) " + -3." 0 '
" .0 ' -3." 0 ' " ' ' .
' , - 0+ NP! '
"
: 3F576 # - ! " !
" NP! ,
: 3776 1 ' " ., " )
0 ' ' " ,
' - + ,
+ - A #P!
, : 3FT5$6 @ ' , ' " : ;
/
" ! ' ' /
/ " 1 " !
: 399 56 1 , /
: # -
+ \! , ".0 .315&60 (
\ !
.35$60
/ NP!
'
< ' < !'
: 34@5&6 ( NP! , , - - : 38156 1 D NP! ! ' ' , . ' 0: - + - + - - %
+
- ' - ' - + - + - - : 3D &6 # -
+ NP! ,
! ( NP! ' < !'
: 31 T76 ( NP! , A - , + !NP! ,
!
!
: 3E76 # -
+ ' [!
\ !
! +
, - - .1 ,
' - ! + \ ! 0
© 2004 by CRC Press LLC
Section 5.2
379
Further Topics in Graph Coloring
:
% NP! + .38@B560 ' .387760
: 345&6 (' ' + NP! '
:
3F156 S ' + + - , Æ . 0
" E A NP! ( NP! - ' ? .38560
:
3"F156 % - + !S - + !S NP! .% - + S 2 , NP! 3E760
:
!S ! - .3E760 NP!
.345&60
: 3" 488EM 15B6 ( NP! 2 ' !
+ ' '
: :
3DW5B6 1 2 ' NP!
1 2 ' '
.31 @5 60+ ' ' / .3" 488EM 15B60+ - .3;F560+ , ' .3"88EM 760
: 381556 ( NP! , + 2 ., ' + ' 2 / 3" 488EM 15B60 Approximation DEFINITIONS
:
D -. 0 : ' ; -. 0 ' '+ ' - - , - .0 -. 0 .0 ; / + + " .0
: ; ) , - . +% 0+ U U ' +
? .+ . 0 .¼ ¼ 0 , ¼ ¼ 0+
C C '
$
$
FACTS
%. 0! ! : 3#85B6 ZPP < NP+ ! %. 0!
:
3" @5B6 P < NP+ ! ' .0+ , 7
' .0+ , .38@5B60
© 2004 by CRC Press LLC
7 1 - ' '
380
Chapter 5
COLORINGS and RELATED TOPICS
: 38D@776 P < NP+ !
! , C
: 1 ,
%. . 0. 00 .3F560+ , %. 0 %.J 0
' )
& .3S760
: 1 !
%. 0! !
.3"85&60 E -+ / ! ,
%.J J 0 %. 0 + , < .0 J < J.0 .38E @5B60 : # .0 ".0 .0+
! ' , + , -
: 3#M5&6 1 L
.0 , $7B5
: 3" F85 6 1 2 ,
%. 0
: 385B6 # - ! -
%
! , . 0 # < < - . 0 .
0+ -
%
% : 3"B6 # - + !
' )
, ' ! ' ; ' ' , " " + ,- " ) ! .3 5B60 # " + Æ
' .0
2 ,
References 3;F776 E % ; + @ + * F+ S + + .7770+ I7
3;F&56 E % ; 4 S F + 1 ' K ! + &' (! + B .5&50+ &I& 3;156 ; E 1+ ' + .550+ I
+
3;1 5&6 ; + T 1/+ E +
' + + $ G$$ .55&0+ IB
© 2004 by CRC Press LLC
Section 5.2
381
Further Topics in Graph Coloring
3; F&&6 8 ; 9 F2+ - ' S (: ! + + .5&&0+ 5I57 3; F8 &&6 8 ; + 9 F2+ 4 8 + - ' S ((: * + + .5&&0+ 5I $& 3;F56 " ; S F+ # ' - + ) .550+ BI 75 3"S@6 "N + @ -+ ; N 'N + E S+ ; @H +
' + + 3"&B6 4 "2+ % ! +
+ .5&B0+ &I&
3" @5B6 E "+ % + E @+ # + S S ! ! ! , + & .55B0+ B7I5 3"6 "2 L+ ; ' ' ' , ' + + .50+ I$ 3"F156 E "N
+ E F? + T 1/+ S ( ( - + + 77 .550+ $&I&5
. ¿ 0! ' ! + 3"85&6 ; " 8+ ; % * + + $ .55&0+ 5I 3" 488EM 15B6 F D " + 4 @ + 8 4+ 1 8 2+ 8 + F EM + T 1/+ *2 ' + + .55B0+ $BI B 3" F85 6 F D " + 4 * + F F' + 1 8 2+ ; ! , + , + + B .55 0+ BI 3" 81D776 F D " + 1 8 2+ * " 1+ 4 - D,+ ; !
' ! ' + S @1; @ 777+ D
@ &&7+ 777+ 5 I7$ . - 0
9
3"M
E @ 556 1 "M + " E + E @ /+ K ! '
! + + .5550+ &I5 3" #48E 76 " 2+ #?-O/+ E 4-+ S E 8+ " E + 1 ' + + 77 . 0
+
.5&50+
3" B56 % " + * ! 8
+ ' + 5 .5B50+ I
,
3" &56 % " + % ' + I$
3" "#E@5&6 E " ,2+ ( " + E #2+ S EN
2+ @O+ @-
' ' + + & 55&+ I 7
© 2004 by CRC Press LLC
382
Chapter 5
COLORINGS and RELATED TOPICS
3"88EM 76 F 4 " + 1 8 2+ 8 + F EM + ; !
' ;1!' ' - + .770+ 5I$7 3"D 5B6 8 "N T D + ' + + B .55B0+ I5
3"B6 @ ; "+ @ - - ! - ! ' + + 7 .5B0+ &I&& 3 5&6 8 ,+ @ + + $ .55&0+ 5I$ 3 5B6 8 ,+ 1 ' + + BB .55B0+ B&I5& 3 85$6 4 8 + 1 + 5 .55$0+ 75I$
. 0! +
3 DT556 4 + !# D+ X T+ ) + & .5550+ 5I$5 3 556 + ; , ' + .5550+ 57I5
/
! +
+
3 F&6 + S + @ 1 F + , ' + + 7 .5&0+ I 3 @&56 ; @ E @2 ,+ @ ' ' + ) + & .5&50+5I 5 3 4 &B6 -N + E * + @ 4 + 1, !
+ + .5&B0+ I 31 @5 6 S 1 + * ,+ ; ; @ML+ % 2 '
+ .55 0+ 5I$B 3 6 ; + E +
+ .5
0+ B7I57
38156 L+ F ; 8 + 9 1 1
+ # + + B .550+ BI$ 3@@9 56 L+ " @+ E @+ * 9
,+ 1, !
, ! + + & .550+ 75I$ 3#M 5&6 * E #M + ; ' ! - ! /!
+ -. / + S ; ; E @ 1 ' + ; E+ 55&+ $I$ 3 5B6 S 2+ F + E-+ / + + $ .55B0+ 5&I
© 2004 by CRC Press LLC
Section 5.2
383
Further Topics in Graph Coloring
3776 E + 1 ' + , + & .7770+ $7IB5 3 5&6 8 ,+ 1 + I& " + D E @ D
@ + + D E @ + 55& 3 $6 S H
+ % ((+ .5$0+ I&
+
3 D & 6 S H
D D -N/+ S ! + $75I$& ; F?+ * * 1 @N . 0+ 0 $ + E @ 4 " 7+ !F + 5& 3 *1&56 S H
+ ; D *+ F 1 +
+ S 9 ! ' + 1 + ; + ! ' + &+ XX( .5&50+ I & 3#85B6 # 4 8+ T 2 , + + & .55B0+ B&I55 M 3#@$56 F!4 #2 F @+ - F @ 9' @2 'M T + &+ 5 .5$50+ &IB$ 3#5 6 #+ # , + .55 0+ 7I75 3#6 S #2+ ; ! +
+ 7
*+ .50+ $I$5
3B76 E + E +
+ .0 .5B70+ I
34 @ &$6 E * + @ 4 + D 4 @ 2+ @ ) S! + + .5&$0+ &I$& 38776 8 E 8+ ! ' + * + + & .7770+ $ I$5 3W56 4 * * 8 W+ D , + + .550+ B$I 5 3D @B6 E M
+ D D -N /+ ; @?-+ S ' ' + I $ * + !F E @ + BB+ !F + ; + 5B 3 56 F M
/+
' / 'M 2' / ' 8+ 1 50+ 75I7
2+23 " 21 2& , B .5
399 56 9 ?+
9/+ 9 + S + .550+ 5I$
+
35$6 @ + 1 '
+ .55$0+ 5I7
© 2004 by CRC Press LLC
+
5
384
Chapter 5
COLORINGS and RELATED TOPICS
315&6 @ E 1+ @ 2 .2 : 30!
+ + 55& 3D56 ; N'N 4 D+ + .550+ BIB
L - ! ' !' +
2
3F56 E E FN + ;
' ' + * + + .550+ 5I 3F56 D @ F + , , + ; EI@(;E @ ; .@ # + 550+ ; E+ 55+ 5 I 7 3F:B576 S 4 F,
+ E + IB
4 * + .B570+
3F:B5B6 S 4 F,
+ % ' ! + 4 * 5 .B5B0+ &7I$
+
3FF"B6 @ E F + @ 1 F + 1 "+ ; '
. 0 ' + S @! ' + 1 + & $ .5B0+ I$ 3F576 S F 4 O O+ % ' ) + B .5570+ 5I7
" ! +
3FT5$6 S F+ 4 O O+ X T+ ' + + B .55$0+ BI5& 3F B6 ( F + 1 S! ' ! + &BI&7
+ 7 .5B0+
3F156 E F? T 1/+ S ((
+ 3 " $ .550+ I 3F15$6 E F? T 1/+ S ((( ' ' + * + .55$0+ I $ 3(E556 * 9 (- # E -+ 1 ! ' + + 5 .5550+ &I 34*B6 " 42 *+ E ' + $ .5B0+ I7
&!
? - +
34*B6 " 42 + *+ @ ' F,
K + , ' + & .5B0+ $I 34*B 6 " 42 *+ F,
K + B .5B 0+ $BI&B 345&6 8 4 % + 5 + D
@ 7+ I$
© 2004 by CRC Press LLC
) +
2
Section 5.2
385
Further Topics in Graph Coloring
34@5&6 8 4 S @]+ / ' !2 + + & .55&0+ I
3476 4 E 4+ ; ' + S @! ( ' + 1 + & .770+ & I&5 34E1 976 1 4+ E+ T 1/+ + " 9 + 1 ' + + B .770+ 75IB 349556 1 4 " 9 + ' , ' + + .5550+ I B 38776 4 8+ ;
' ! ' + + & .7770+ &I $
,
38E @5B6 8+ * E
,+ E @+ ; ) + + .55B0+ $I$ 38&6 * 8 + * + B I7 * E 4 9 1 . 0+ 5 + S S+ 5& 38D@776 @ 8+ D+ @ @'+ % ' + + 7 .7770+ 5I 385B6 F ; 8 + %! ! + 5I7 385B6 F ; 8 + *- ! + + + !F + 55B+ I$5
+ 7
.55B0+
! , "
38S156 F ; 8 + @ S+ 9 1 1
+ %! - + + & .550+ &IB5 38 876 8 / * 8 + % + + .770+ 7BI 38 @ 776 ; 8 2 E @ /+ % ' ! + + 7 .7770+ I 7 388S 776 8NK+ 4 8 -NY+ ; S 2 ,2+ F!4 + + &5IB5 2 + D!
@ 5B+ @ + 777 38819 76 8NK+ 4 8 -NY+ T 1/+ 4 9 + ! ' , ' + I$ ; " M " D+ 2 + D
@ 7+ @ + 77 3856 4 8 -NY+ S , ) + $ .550+ 5I
© 2004 by CRC Press LLC
3 "
386
Chapter 5
COLORINGS and RELATED TOPICS
38156 4 8 -NY T 1/+ ; ' + + 7 .550+ 5&I7 381556 4 8 -NY T 1/+ *2 ' + + .5550+ &IB
38176 4 8 -NY T 1/+ % '
' + + .770+ 7I 381 76 4 8 -NY+ T 1/+ E + % ! ' + 7I7 D 8O+ + 2 + D
@ &+ 77 38@5B6 E 8-- " @2 -+ ; ' ' + * 6 7 + @;K5B+ 55B+ &&IB5 3876 E 8-- F +
+ ) + B .770+ I & 38@B56 82 ; 4 @,2+ ; + 5I * 89 + 5B5 3DW5B6 1 9 D # D W+ + B .55B0+ &IB$
2 ' +
3DB6 D- T + S! ' ) ' + + .5B0+ I 3D &6 D D -N/+ - ' + S @I ' + 1 + &+ B .5&0+ I 3D & 6 D D -N/+ % ' ' -+ .5& 0+ BI57
+
3E76 E+ 1 ' + * $ -::- + D
@ 7+ I 3E76 E+ 1 ? + + 77 3E76 E+ 1 ' + + 77 3E76 E+ S + + 77 3E$B6 9 E + ; ! ' , + ," ' + 7 .5$B0+ BIB 3E15&6 D E// T 1/+ ' @ + + & .55&0+ &I 5 3E1 76 D E// + T 1/+ + @ ' @ : -+ + $ .770+ 55I
© 2004 by CRC Press LLC
Section 5.2
387
Further Topics in Graph Coloring
3E$&6 4 E + ; ! ' - + + .5$&0+ $I$& 3EE 5&6 4 E S E + % ! ' + + & .55&0+ 7I
3EE @5&6 4 E + S E + @+ %
' + + + + & .55&0+ 5I O 3E @2556 " E * @22 -2+ 1 M
/ ' ' + 4 $ .5550+ *$+ 31556 4 O O 1'+ + 5I * D . 0+ + (E; @ @ E 1 @ 5+ ; E @ + 555 3S76 1 S + ;
' ! + + $ .770+ $&I&
$
3*@776 4 *2 ; @-+ ( - ' ! + , + $ .7770+ I 3*@76 " * ( @+ ! +
&
'
!' + 2
3*@5B6 " * S @ + # F,K ? + ) + & .55B0+ &I
3*W $B6 * 4 9 1 W + @ ' F,
! ! + * & 3 + $7 .5$B0+ BI 3* @@15&6 * + S @+ S @ + * 1 + 1 ' ! + ) + &7 .55&0+ I
+ & .5570+ B&I5 3@B6 S @ + ,!/ $!V ,+ ) + 7 .5B0+ 7I
3*576 4 *+ #
+
3@9 76 4 @ 4 9 + 1 ' , + .770+ 7&I 3@B6 4 @ + % ' + S @! ' + 1 + & 7 .5B0+ 5I$$ 31:BB76 S 1 + % ' + * .B&BIBB70+ 7I 7 3156 " ; 1+ D &&IB5 3156 1 + .550+ B7IB
© 2004 by CRC Press LLC
/ !
' +
, 7
+
- !
+
+ 7
.550+
) +
$
388
Chapter 5
COLORINGS and RELATED TOPICS
315 6 1 + ! ! ' + .55 0+ 7I7&
) + $
31 ;E@B56 1 + S H
+ W ;-+ S 4 E+ ; 4 @,2+ 1 ' + + .5B50+ I & 31 76 9 1 1
+ % ' '+ ;-<+ .5 70+ &IB
* +
31 6 9 1 1
+ ; ' + + $ .5 0+ B7I5
31&76 9 1 1
+ E + 5I * 8 . 0+ + "+ 5&7 31576 T 1/+ ! + I 5 31 5$6 T 1/ E + % ? ' *+ 5 .55$0+ $5IB
+ $ .5570+
H
+ * 1 +
31 5$6 T 1/ E + - !
.& &0!
+ + .55$0+ I 31 776 T 1/ + + + 55 .7770+ 75I&
31 T76 T 1/+ + F T + + + B .770+ I$ 3956 D 4 ; 9+ 1 ' 1
: + * + .550+ BIB& 3 56 E + D ' +
+ 7 .550+
3 5 6 E + ;
!
, !+ .55 0+ IB 3 76 ( + 5 % + ; E @ + S -+ 77 395$6 ; % 9+ ; ' .55$0+ &I
/
I5
+ $
= 2
! +
) + + B
39 76 * 9
+ D ' + * ) 2 + D E @ D
@ BB+ - S+ 77 3T76 X T+ : -+ 7
© 2004 by CRC Press LLC
+ 5 .770+ &I
Section 5.3
5.3
389
Independent Sets and Cliques
INDEPENDENT SETS AND CLIQUES
" ) ; ( S # ; " ( ; $ F *'
Introduction # 9 - --, '
5.3.1 Basic Definitions and Applications ( + + +
- '!
! Some Combinatorial Optimization Problems DEFINITIONS
: # ?
:
+ 6 ' - ' , - 6
1 ' - !/ ' .0
'
: ; ' ? - ' 1 +
.0+ ' - '
: ; 6 ' -
' - ' 6
:
;
' !? '
REMARKS
:
1 . .0 ' - 0 . .00 %-
!
© 2004 by CRC Press LLC
.0 < .0 ' + ,
390
Chapter 5
COLORINGS and RELATED TOPICS
:
; ' )! - - '
:
@ , , , ! - , -
EXAMPLE
:
( -' ' S , # .0 < + - - /
Figure 5.3.1
.0 < +
$ & #$,
Vertex-Weighted Graphs DEFINITIONS
: ; " ' - - ! - , +.0A
. +0 : 1 " 6 - !, ' , ' - 6 1 , ' !,
. +0 1 , ' !,
. +0 REMARKS
:
1 " . . +00 / , : , - - ' ; ! 2 ' "
:
1 ) ' ' , ' ' )
FACTS
: # - - !, . +0+ , ,
. +0 < . +0
1+ -
:
< . 0 - - ' ' 6
:
/ '
; 6 ' -
1 / ' - '
: 38 + 6 (' + / ' ' - - '
© 2004 by CRC Press LLC
Section 5.3
391
Independent Sets and Cliques
Applications Involving Hamming Distance
1 - ' / - S ' DEFINITIONS
: 1 ! , < . 0 - ' ' , <
< . 0 '
:
1 - ' ! " . 0 ' - , ; ' - " . 0 ? ' F ,
REMARKS
:
1 F ' ' ! : ; ! ' ' - + ' , - F . 0 3E@&56
:
; : F , - ,
, , - F P ( - ' ) ' " . 0
: # ' ' + + ' + 3" "! SS556 3%76 % ' 3"S57+FS56+ 3F @2B5+F4576+ , 2 ! 3EE77+ET-6
5.3.2 Integer Programming Formulations 1 ' ' !, ! '
*'"&* -
: D < . 0 - !, , < , + < +. 0 1 , ' ' - ' , : + < ?
+
C ' < 7 <
FACTS
:
( ! ' + - ' - 6 ' ' ' ,: < ' ' 6 : 31&+1& 6 D .7 0!- ! ' ' + > < : < 1 ! ' < ' - >
© 2004 by CRC Press LLC
392
Chapter 5
COLORINGS and RELATED TOPICS
REMARKS
: ' + # $ - ' - !
- ' ' ! ' ! - ' + ,
' ! '
3" "SS556
: 1 - ' ! ' ! ' ' !, ! ! + , -! ' , / ) 3@576
!$ -:
+
+ < ?
< 7 ' < 7 <
@ 3@576 -
'
Two More Formulations of the Maximum-Clique Problem
9 ' - - ' ,+ ' , E
/2 @ 3E @ $ 6 - DEFINITIONS
:
1 J J < , :
#
5 "
,
) ' ,:
7
<
, ? 5
<
-
,
+ (.0 <
: D < . 0 , - 6 1 , ) ' ,: < . 0+ , < ' 6 < 7
, FACTS
: ./0'!& $- 3E @ $ 6: D < 2-(&2(.0 : J .+ J ' , (.0 0 1
.0 < (. 0 (.0 ' J
E -+
6 ' - ' ' ' < 2-(&2(.0 : J
# , ? 5 + .0 < " 5 C ." 0
© 2004 by CRC Press LLC
Section 5.3
393
Independent Sets and Cliques
: 1-/ $- 3" 5&6: D 6 ' - ' 1
6 ' ' < 2-(&2 .0 : J .0 6 ' ' / ' .0 : J .0 ; / ' .0 : J - .0
REMARK
: % ,2 ' E
/2!@ ' (.0 : J '
' /
- 3SS57+ S45 6 1+ " /K - ' E
/2!@ ' '
5.3.3 Complexity and Approximation 1 ! ' ) , S! 38&6 @
- ' Æ
' .+ + 3; 8ES55+ " "SS5560 % ' ' Æ - # 5
? ' ! ! + ?.0
? , .0 (' @ ' ! + @.0
@ ,
.0 ('
FACTS
: 3F556 D @ ! ' !
S < S+ ' .7 6+ !- ', .0 ½ ¾ -
: 3" F56 1 ! + .0 ?.0 < . ¾ 0
?
@.0
'
!-
: 3#6 1 ! ? ' !- +
.0 ?.0 < . . 0¾ ¿ 0 REMARK
: # 7 . 0
' ' S 3F5B60
H .
Some Results Involving Maximum Degree
@ # - ,2+ ! ' ' , % J.0 ' # --, ' ! , ' ' J.0+ 3D176 # , '
© 2004 by CRC Press LLC
394
Chapter 5
COLORINGS and RELATED TOPICS
FACTS
:
3;#9T5 6 S < S+ 7 ! ? ' , .0 ?.0 < .J.00 ' -
: - . 3F5B60 1 ! ? ' - + .0 ?.0 < .J.0 J.0 J.00
:
3W76 D @ ! ' ! . 0 ' ' S < S+
!- @.0 ', - ´´µµ ½ ' ' 1 ' ' !- ! - REMARKS
: 1 ! ' !- ! - ! - ! .+ , , 0: ) A - - ' A - - ' #
+ 3; 8ES556
:
1 2 # 5 + ,+ ,
1 ! !- ! - + .- ! !
0 - + , '
+
1 = > , - # %- ' ' ! ' -
5.3.4 Bounds on Independence and Clique Numbers - ! ! - = > , ( + , = >
' DEFINITIONS
: :
1 % +
9# .0+ - '
5 1 ' ( ' - +
B .0+ ' - ? + B 36 < B .0 Lower Bounds
9 , - # + ; @ 3;@ 56 -
' ' * + @2+ 1 2+ W! /2 / # - !, .# $0 FACTS
:
3 &5+9B6 D
© 2004 by CRC Press LLC
< . 0 1 .0 ¾ .!(.0 C 0
Section 5.3
395
Independent Sets and Cliques
< . 0 6 ' , ¾ +.0.!(.0 C 0 ¾ +.0 3 $¾% +.C06 E -+ ' : 3@1 W76 - - !, : 3@56 D < . 0 1
.0
!(.0 . C 7 !(.0 C ¾% !(.0 C 0 ¾ !(.0 C
: 1 ? ' + + ! - A + - .+ + 3F 4 B 60 : 39B$6 #
- + .0
, - " 3"60
& .1
Upper bounds FACTS
: 39$&6 # + .0 9# .0 C ' '
# + ^ .0
' - '
5
: 3;F&6 # + .0 ^ .0 C '
'
: 3"6 # - + .0 :
-2 5
' - - ) , 3"6
. 0+
REMARK
: " 3"6 ' &77 ' 77 77 # + ' ) , , ,
5.3.5 Exact Algorithms Clique Enumeration
F * 3F* &6 ' ! ' 1 - ' .+ + 3" $+F* &+S 560 1 ) ) .# 0
M + E
+ E 3E E $ 6 1
' ' ! - # $
© 2004 by CRC Press LLC
396
Chapter 5
COLORINGS and RELATED TOPICS
DEFINITION
: - + ' !? , FACTS
:
3E E $ 6 1 ' !-
¿
' 7 .& 0 ' .& 0 ' .& 0
.@ ' 3@60
:
3 B 6 1 ' ' < . 0
.2.0 1.00+ , 2.0 ' 1.0 '
: 31 11BB6 1 ' ' !-
. 0 REMARKS
:
1 # - .
1.00
' - 31(;-@&&6
: 1 # $ ) ' 2 2 ' " 8 3"8&6 ( ' H !E
!E # + # $ + +
( , '
' 7 7+ D 22 3D B6 , !) - ' ' 3"8&6+ 31(;-@&&6+ 3D 1B6 D 22K Æ Maximum-Clique and Maximum-Weight-Clique Algorithms
+ - . ' ! ) 0 ) F ,-+ !
! ' ' ! ' FACT
: 3* B$6 1 ' - ! , . ' 0+ , ' - REMARKS
:
# & , * 3* B$6 ' -
' 1? 1 ? ,2 311&&6 1 ! 2 , ' !
© 2004 by CRC Press LLC
Section 5.3
:
397
Independent Sets and Cliques
"!! , , ' - !
/ + + +
Ü$
F ,-+ ' ! +
!! + + ' ! '! ! !! 3* @76
:
1 - Æ !! ' !
,
@+ + ,
3%76+ , " 3"576
; '
' ' 3%76
:
"!! ' !, ! !
3" "SS55+%76
( 3%76+ , , ',
:
@ - '
' # ' ' '
! ' 34 15$6 3FS56 M % _ 3%76 ' ' ' !, !
:
1 ' ! !, !
@ - ' ' - - ' L .+ + 3%7+%60
1 ', ! !, !
' - ' .+ + 36 3%760
5.3.6 Heuristics 9 ' !,
' /
., 0 - 2+ E -+ ' '
Construction Heuristics and Local Search DEFINITIONS
:
;
' ,
-
:
;
'&(
' ' + !
+
'
"$ "
'
+ +
:
;
& .
0
,
,
)
© 2004 by CRC Press LLC
398
Chapter 5
COLORINGS and RELATED TOPICS
REMARKS
: - ' + - 2 , F ,-+
'
: 1 ' !
- (
- ' 38 *B&6 ; -+ - ' - 38 *B&6
:
E ' - / + ' + ' ! ' 3" F56 3#6
D -
'
, ' ! 3ET-6 - D !
- V ' ! A V V ,
Tabu Search
1 " -
! L , DEFINITION
: ) , ,
-
' ! $ REMARKS
:
1 , - 3B5+576 F 4 3F4576 =S> ' ! , ' .+ + 3#F957+@ 5$60
1! - )!
-
1 , , -
' ! "
S
3"S76 , ?
: # ' '
! + 3" "SS556
References 3;#9T5 6 ; + #+ ; 9 + T2+ / + 5 .55 0+ $7I& 3;@ 56 ; 4 F @ + * + 9+ 55
© 2004 by CRC Press LLC
Section 5.3
399
Independent Sets and Cliques
3;F&6 ; 1 ; @ D F2+ ' ' + .5&0+ $5I & 3; 8ES556 ; + S /+ + 8+ ; E
! @ + E S
+ 5 5 + @ + 555 3"S76 * "
E S
+ * - ' + 5 .770+ $7I$& 3"S576 S " ; S+ ' ' + * -: $2 ., + 80+ .5570+ 7I$ 3"576 "+ @ ' + .* * 4 9 + 0+ D + 557 3" 5&6 ( E " /+ .55&0+ I$
- , +
/
7
3" "SS556 ( " /+ E "+ S E S + E S + 1 E S + ! / ; > < .!T S E S + 0+ 8,+ 555 3" $6 * " + % + I
) , "
B .5$0+
3"8&6 " 4 8 + ; &: # ' + $ .5&0+ & I && 3"6 E "+ " ' +
+
3 &56 W + , + 1 * + 1!;-- + 5&5 3 B 6 1 /2+ ; .5B 0+ 7I
36 - ' :GG G GG G -G 3 6 -N + % ' + $IB
+! .50+
3#6 #+ ; - + E + 77 3#F9B56 #+ ; F /+ E 9+ @1;"D@: ; ) , .5B50+ I 3W556 4 D 4 W+ 555
© 2004 by CRC Press LLC
+ * S+
400
3B56 # -+ 1 I S (+
Chapter 5
COLORINGS and RELATED TOPICS
/, .5B50+ 57I$7
3576 # -+ 1 I S ((+
/, .5570+ I
3EE776 + + E + ( E + , 2 + / .7770+ I& 3ET-6 + + E + ; T- - + , 2 + +
3W76 + ; + ; W + ; ' % / S + 5 .770+ I 7 3F5B6 E FN
+ ; ' + *,/
[email protected]+ .55B0+ I
* *2
3F4576 E!F F 4+ 1 ' - ' ! ' ? + * , .5570+ I 3F4576 S F " 4+ ; ' ' + .5570 &5I7 3FS56 4 F+ S S S + 2 2+ 1 ' + / .550+ $IB 3F* &6 # F ( * + ; ' + 7 .5 &0+ 7 I 3F556 4 F_ + , ½ + .5550+ 7 I 3F 4 B 6 * ; F * 4 + 5 5B
B
+ - S+
3F @2B56 * F 1 @2 + @ ' + 777 * .5B50+ $BIB7 34 15$6 @ 4 + E 12 . 0+ = 0 % 2 + (E; @ $+ ;E@+ 55$ .
:GG G G $ 0 38&6 * E 8 + * + 5 2 .* E 4 9 1 + 0+ S S+ 5& 38 6 8H + /+
+! B .50+ $I5
38 *B&6 * 8 ' *+ ; ' , ' + $ 7 .5B&0+ $&IB7
© 2004 by CRC Press LLC
Section 5.3
401
Independent Sets and Cliques
3D176 F W D F # 1+ 1
: Æ ' + / .770+ I7 3D B6 D 22+ ; , 2 2 ' ' ' ' + 5 .5B0 BI B5 3D 1B6 D 22 1 + ; ) '! ' ' + & .5B0+ 5I$$ 3E@&56 4 E9 4 ; @ + !F + 5&5
7 +
3E E $ 6 4 9 E
D E + % + IB
.5$ 0+
3E @ $ 6 1 @ E
/2 @ + E ' ,
' '
' 1N+ & .5$ 0+ I 7 31&6 D D 1
+ S ' - 2 ! + * $ .5&0+ BI$ 31& 6 D D 1
+ 2: @ + * B .5& 0+ IB M 3%76 @ 2 S * 4 % _ + K + 7+ 2 += ! 3 " = , 1B+ 77+ 1 ' - ' ( M 3%76 S * % _ + ; , ' !, + & B .770+ I$ M 3%76 S * % _ + ; ' ' + 7 .770+ 5&I7&
3SS576 S E S ; 1 S + ; / ' -
+ .5570+ 75I$ 3S 56 E S @ F + E/ ' ) , ' + ,7 7 !B .5 50+ $I$& 3S45 6 E S ; 4
+ # ' ! ' + & &'! .55 0 I7 3* B$6 4 E * + ; ' + .5B$0+ I7
&
3* @76 # * @ @ + ; !! ' ! + / , + B .770+ $I& 3@6 " @ *
+ E , - + S + 77
© 2004 by CRC Press LLC
402
Chapter 5
COLORINGS and RELATED TOPICS
3@1 W76 @ @2+ E 1 2+ 8 W/2+ ;
'
, + $ .770+ I 3@56 @ E @2 ,+ ; , ' + .550+ $I$ 3@576 T @ + "
+ / .S E S 4 " * + 0+ / , .5570+ $I$B 3@ 5$6 S @ E + 1 ' + 34 15$6+ I+ 55$ 311&&6 *
1? ;
.5&&0+
1 ? ,2+ # + &I $
31 11BB6 1 + ; 12 F 12+ 1 , ! ' ) + , 372,28 5BB 31(;-@&&6 @ 12+ E (+ F ;- ( @2,+ ; , ' + $ .5&&0+ 7 I & 39B6 8 9+ ; , ' + " D 1 E + B!&!5+ 5B 39$&6 F @ 9'+ 1 - ' + .5$&0+ 7I
+
39B$6 F @ 9'+ 1 ' ' + ) 7 .5B$0+ I&
© 2004 by CRC Press LLC
Section 5.4
5.4
403
Factors and Factorization
FACTORS AND FACTORIZATION !" # $
S !# # # # / *'
Introduction 1 - ' , 2 ' ' / ,
' (+ ' / ) - ' 3 .' Ü 0+ ' ! ? E -+ $ .' Ü 0 -, ' !' + , , ' ' : - + - , ) ' ' ' '
5.4.1 Preliminaries DEFINITIONS
: - . + 0 + , " ' ' " ' : ; ' !
: ; ' ) ' ' -
: ; ' ' !
-
: (' !? ' ' ½ + , ' ' FACTS
1 , 2 )
' ' / , ! ' 4 S 1 ' "M ' '
)'
: 3SB56 ; ! , !' . !' 0
© 2004 by CRC Press LLC
404
Chapter 5
COLORINGS and RELATED TOPICS
: 3SB56 - ! !' .+ + ' / !' 0
:
3"M B6 - !! . C 0! !'
REMARKS
: 1 ' , ' ' ;2 8 3;28B 6
:
1 , - # + ) !' ) ' ' ,
: ; - ' S K ' / ' ' 3 5 6
5.4.2 1-Factors 1 ' ' , 9 - Ü ( + , ' !' ' ' Conditions for a Graph to Have a 1-Factor DEFINITIONS
:
; . 0 ' ' - !? , .0 : 1 ½ ¿ ' " ; ½ ¿
"
: - ' - ' - - ? : 1 ' +
.0+ ) C ,
,
6 #. 6 0 6 .0 , 2 - 6 .0 #. 6 0
' ' 6
:
1 ' B . 0
<
+
.0+ )
.0 B . 0 < .0
: 9 ' ! - ½ ' ' - ' , -+ + ½
© 2004 by CRC Press LLC
Section 5.4
405
Factors and Factorization
FACTS
;+ V ' !' ? @3 "
: 31&6 2& ' $-: ; !' ' ' ' 6 .0+ #( . 6 0 6 + , #( . 6 0
'
' 6 , - ' - : 3SB56 &2& $-: !'
- !! !
: 3"MB6 - .- 0!! ! , - ' - !' 1 / S K
: 3@&+ @&$6+ 3D& 6 (' ,!' ' - + !'
: 3@&$6 (' ! ' - + ' ! ½ + !' : 3#F E$ 6 ('
!'
-! ' - ! +
! . 0 ' - ' D .0 . 0+ !' .; &+ D .0
. 0
' 0 : (' ' - .0 + !' 1 ' , : 3&B+ &56 ('
' 1
K !' 1
- !' ' '
: 38&6+ 3D &6 1
: . ; 3;&60 D
.0+
' -
B . 0 .0
('+ '
!' 1 : 3DF & 6 (' ' -
' , - .0+ !' -
F ' - - !' REMARKS
: ; ' Æ ' ; -
39 576 ; Æ '
- !' . -+ 32 36!' . ,00 ' 3 % 8BB6 . -+ 385760
: 1 , - ' !'
) F ,-+
' ' !' + , , -
? 3S5+ S5$6
© 2004 by CRC Press LLC
406
Chapter 5
COLORINGS and RELATED TOPICS
The Number of 1-Factors DEFINITION
: ; ' C !' ' - '
, L - C .# ' + 3D SB$60
`.0
' !' FACTS
:
D
- !' 1:
.0 38 56 !' A
.0 3D SB$6 - ' . C 0A .0 3F . 06 .0 . .0 0
:
! !' + .0 Z !' + .0 ('
( , - ( - Æ `.0
:
(' + `.0 .0 C @ ' " ' + A .0+ . 3D SB$60 / -
:
(' ! !' + ' .0 Æ + Z !' REMARKS
:
,+ 8 1? 38155+ 8176 - . 0 , + !' ) + '
: % `.0 , ' #Æ .# + 3D SB$A B60 ( , + S'Æ `.0
:
1 - ' `.0
,
1-Factors in Bipartite Graphs
( ' + ' !' ,
+ S F 3F 6+
8M 38M
+ 8M 6 DEFINITIONS
' .0 - '
/ ' -
: ; ' - '
: 1 ' -
: : .0
© 2004 by CRC Press LLC
Section 5.4
407
Factors and Factorization
: 1 '
: E .0
:
1 '
/ '
5+
5+ -
5<
2
2
2
½) ) )
, -
? '
FACTS
:
3F 6 +2& $-: D , - .0 < 5 0 1 ' 5 0 ' ' B . 0 + ' 5 : 3#6 . $-: D , - .0 < 5 0 1 !' 5 0 ' ' .0 5 < 0 .0 B . 0 + ' 5 1 ' #
' FK 1
: ( + - ! - E .0 : .0
: :
38M
+ 8M 6
342& $-: (' + E .0 < : .0
3FB6 D , .0 < 5 0 + - 5 (' !' + Z !'
:
D
! -
Z `.0 .Z0
1
1 ) - ' , 48 39$6 + , , - 3#B6 3 B7+ B6 1 , - 3"&6
:
3@5B6 ('
! ' + `.0
. 0
REMARKS
: ( ' + , FK 1 8M K 1 - : @ 8M K 1 ' '
'
+ ' ' 0 + ' # , ) ' + ' + 3D SB$A & 6
© 2004 by CRC Press LLC
408
Chapter 5
COLORINGS and RELATED TOPICS
5.4.3 Degree Factors
0-factors DEFINITIONS
: :
; '
!
; . -+ 0 '
- F . -+ 0+ + ' .0 FACTS
: 3 48 @B 6 (' .0 + -N 3 &60
:
!'
.1 , ?
+ - ! - (' F.0 . C 0 . C 0.0
!' ..0 F.0 ! 3B56 D
- + -0
: 3(56 D - ' + - 1 ' .0 C .0 + ' ' !? - + !' .1 = ' % , ) ' , Æ ' ' F 0
:
3(5&6 D ' + - @ ' 5 . 0 C 1 ' B .0 B .0 .0. C 0 ' ' ! ? - + !' .1 Æ "$ " 0
:
356 D '
-+ Æ .0 1 ' .0 .0 + '
' !? - + !'
:
3###DD556 (' ,!' ' , Æ .0 + !' , 3$ .Æ .0 C 06 E -+ !'
. ¿ 0
:
38&6 (' - ½ ½
+ ½ / , ! '
: 38 B6 (' - ! - + ' !' ' .0+ !'
:
3@56 @ , !' ' - 1 ' !' ' + ' !'
:
38 B6 ('
+ !'
© 2004 by CRC Press LLC
Section 5.4
:
Factors and Factorization
409
& ! - 1 .0 ' & & -+ ' .0 & C + ' .0+ .0 &!' A .0 ' + .0 -+ .0 & C ' .0+ .0 .& C 0!' : 38 576 D , .0 < * 3576 D
- 1 ':
< * + .0 Æ .0 + .0 C + , + , -+ .0
!' : 356 (' , .0 - ' Æ ..00 .5 C 0B+ .0 !' : 3856 D - '
, - (' ' ' ? - ' + .0 C .0 +
F ' !' F+ 3 C 6!'
REMARKS
: 38 9 B&+ B56 - # &+
: 389&6 - -
' ' # ' !'
: @ -! ! - 9 ; - ' ' , - !' 2 , 3" @9 B 6 @+ 2 , , 3*5B6
:
F 3FB6 ' , + !' ! ? ' - , - 4 34 776 -factors
9 !' , - - + !' - ' L DEFINITIONS
: D ,
+ ! -+ !- ' .0 1 " ' ' ' .0 < .0+ ' .0
: ; 6 .0 #( . 6 0 6 .* 1
K !' 1 + , !' ! 0
© 2004 by CRC Press LLC
410
Chapter 5
COLORINGS and RELATED TOPICS
D ! .5 0 0
' ? -
0
5
FACTS
: '
31 6
2& ' $-: 1 !' '
.70 .6 0 C * .6 0 .7 6 0 7 ' ? 7 6 .0+ , .7 6 0
' ' ' .7 6 0 ! . .' 0 6 0 C . .' 00 . 0 .70 .6 0 C * .6 0 .7 6 0 . .00. 0+ ' ? 7 6 .0 : 31B6 ; !' ' '
- ! .; ! / ' ! 9 0 : 38 76 D ,
7 .0 D !- ' .0 .0 .0 ' .0 (' -
' ' !' + !' + .0 : 38 1776 D 2 3+ , - @ '
+ .0 + .0 Æ .0 , + + .0 .0 , , .3 C 2 0
1 ' ' ' .0 2 2 C 3 !'
:
.0 -+
349B56 (' !! , !' -
+
REMARK
:
1 ' !' !' ¼ @ 7 ' 3D SB$6 3
"6-factors
DEFINITIONS
: D 2 3 2 3 ; 32 36 ' " 2 .0 3+ ' .0 .1+ !'
2 .0 3+ ' .00
: D ' ' .0 - ; ' , - .0 .0 . 0 ' : ; 3 C 6!' . 0 '
:
;
32 36 ' 2 .0 3+ ' - - .0
© 2004 by CRC Press LLC
Section 5.4
411
Factors and Factorization
FACTS
:
3DD5B6 ('
! ,!' +
3 6!
'
:
3DT 76 ('
:
3
+ 3
:
.
356 ('
0
.
.
.
+ ' .
3D&B+ ;8B6 D
:
.
$
6!'
23
+ '
0 +
+
1
3
.
0
'
6
6!' ' ' .
0
6
0 1 ' 1
K !'
3W8BB6 D
.
C
6!'
- ' '
-
7
6! 3
0 0 C + ,
0 3 :
C
!' ,
C 6!'
38@B6 @
('
! ,!'
- ) $ ) -$ - - ) $ 2 3 Æ 2 3
6 #( 6 ¾ +
0! !' ' '
' '
.
0
.
1 6 .0 1
0
. 0+ '
/ ' 1
K !' .@ 388760
:
3D &7+ 1&B6 ('
:
31B6 ('
.
0
3
!+
- -
3
C 6! +
C 6!' '
3
C 6!' '
+ 7 + 7
-
-
-factors
DEFINITIONS
:
D
) +
-
-
. 0
:
. 0
D
'
0
.
'
!' ' -
. (
+ .
'
.
0 !
(
. 0
0
0
-
(
) +
-
. (
(
; .
(
. 0
. .
( (
'
.
0
. 0 '
.
0 !
' '
.
0
'
0!' .+ . 0!' 0 ? !'
FACTS
:
.
( ' $ ( ' 7 ( 6 * 6 7 6 ( 7 6 7 6 ( ' 7 6 ( ' ( ( ( ' ' ( ( '
3D &76 .
! ' 6 .
0
0C
0
.
: 1
.
00
.
0
.
0 C
' ' ?
:
.
'
3D&B6
-
'
'
0 -
. 0
.
.
.
.
0 7
3
0 <
© 2004 by CRC Press LLC
.
0!' ' '
.
0 < '
a .
0
0+ , a .
7
0
'
. 0 '
, !- ' )
. 0 1
0+ -
0
. 0 <
.
.
0
0!' ' ' '
0 '
6
.
.
. 0
<
. 0 < +
'
412
Chapter 5
:
3
85$6 D
(
( .
0
. ' - ' ? -
(
:
35B6 D
.
7 6
' 76 ! ' 6 '
'
.
.
.
:
0
.
*.
6
0
C
. 0
C
+
(
0C
.
.
00
3XD1 5B6 D
.
(
.
.
:
3;56 D
-
.0
.
0 !
.
(
0
0!'
-
7
' '
1
( ( <
A
<
+
0
'
' .
0 ,
( . 0
. 0
½ ( (
.
0+
.
C
(
!' D
. 0
. 0+ '
-
+
- +
-+ '
-
.
0
0!'
, ! ,
.0 ' - .0 ,
. 0+ '
0
0!' +
. 0
.
7 6 (
0+ ,
(
. 0
0 -
1
.7 6 ( 0
- !- '
0
C
. 6 0 C
0
' ?
('
' '
0!' ' '
(7
(
.0 7 .0
. 0
('
.
-
COLORINGS and RELATED TOPICS
'
!
- +
!
REMARKS
:
' +
@ 3;5B6 ' Æ ' ' . 3;57+ FF8D576 ' )
(
' ' +
0!
38B+ 857+ DB56 ' ' ' - '
:
:
( 2 , , '
(
.
0!'
# ' ' , , 2 V ,
' 3#455+ #455+ #455+ #47+ 8 @ 56
Factors in Random Graphs 1 - ' !
9 ,
' '
DEFINITIONS
:
D
' -
' -+ ,
7 ,
, .
:
; -
'
© 2004 by CRC Press LLC
! +
- ,
1
0 ' '
. * **0+
!
S
!
< (
<
Section 5.4
413
Factors and Factorization
FACTS
:
3 *N$$6 D - !'
1
< . 0. C +. 00+ , +. 0 <
: 3@ B6 D < . 0. C .- 0 C +. 00+ , - +. 0 < @ ' ' .0 - , . 0 - 1 !'
REMARKS
:
# - ' + ' + 38B+ 85 + 4D*77+ " B + " 7+ E *7+ @ B+ @ B6
: 1 ) ' ' ' ' ) @ 3*5+ ;B+ ;B+ ;BB+ ;5+ ;E@5+ ;B+ ;@B+ "&+ F S @ B&+ @ &&+ @ B + @ B + @ B5+ 5+ S 56
5.4.4 Component Factors DEFINITIONS
: ; ' ' ' ,
: ; ,
FACTS
:
3; 88,E76 D ! - ,!' , Æ .0 1 ' , - C -
: 3@ B6 (' !' ' ' B .6 0 6 + ' - 6 .0 .1 -, / ' FK 1 ! 0
:
3EM &5+ F8B6 1 ' ) ,
!'
5.4.5 Graph Factorization * 2+ ' ' / ' ,
2A , , -
© 2004 by CRC Press LLC
414
Chapter 5
COLORINGS and RELATED TOPICS
Edge Partitions DEFINITIONS
: ; ' , '
: 1 ' ' ! ' , .0 CONJECTURES
$ ' / : D ' - (' , J.0 395&A 560
3;2
+
¼
.0 < J.0A +
!' / .@
FB76: 1 ' - ! . C 0
FACTS
:
3 FB56+3 576 (' . & 0 . & 0+ ! # / ? 1
, ?
:
3S156 D ' - 1.0 - 1 ' J.0 -. $ C 0+ ¼ .0 < J.0 1 -,
' # #$
:
- 7+ B < B . 0 ' ' -
B + J . ½ C 0 .0 + !' / 1 - - '- ' ' !# / ? ' => .@ 3S*5&6 FM2- . 00
: 3TT56 - ! ' !? !' + ' 1
!# / ?
:
2 3 7 2 3 1 .0 32 36!' / ' ' 32& 3&6! + ' &A .0 - 3B& C 7 C 6! 3 6 ' / 38B 6 @
:
3WS9 1 776 D ( , ' .0 ! - D & - % , 7 % % &. 0 (' .&( C & C % & & %0 +
.( 0!' / .@ 3W5 6 '
0
:
1 .0 - -! , - 3 C 6!' / A .0 - . C 0! 3 6!' / 3 B$6 D
© 2004 by CRC Press LLC
Section 5.4
415
Factors and Factorization
CONJECTURE
'5$62& 3
Æ ½
½
.
0
C
B6: ('
C
+
,
-
!TN ' - ?
<
½
<
C
-
< 3 F$6 ,
# ' 34 776
? ,
C
!' , -
<
.
0
; 3;5B6 -
Æ
REMARKS
:
(
Æ , '
- -
!
( -
' @ 3;BB+ D9 5B6 ' '
:
@ 3S176 ' ' !' /
Vertex Partitions 9
' -
<
3
.
0 <
½
6 - ) P
9
- '
FACTS
:
3&B6+3D &&6 D
- '
.0 < -
.0
¼
'
½
½
!
@ '
.0
<
<
C
C
1
¼
'
+
.0 ' ' - .0
2 ½
5 2 5 Æ 5
:
3
E5&6 D
'
<
:
.
+
@
0+
.
3
.
60
.
7+ '
0
.
00 ' - 3
6
0
3
<
C
C
1 -
0
.
.
-
0
.
0 <
.0 31B6 # ' - .
) $ ( ) $ ( ) $ 6 / $
2½ 2 Æ 5½ 5 ) $ F ) $ Æ 6/ )
'
,
-
'
, .
.
0+ -
0
.
0 <
0 . -
.
6 - - . - 0
+ -
.0 3FB6 E -+ '
)
$
+
) $ ) .
0
!
0
C
$
REMARK
:
# #& - 2 ,
' 3 8M
B6
© 2004 by CRC Press LLC
416
Chapter 5
COLORINGS and RELATED TOPICS
Factor Algorithms and Complexity DEFINITIONS
: D ; ' " ½
' ' " . 0 - .0
:
5'/ .0: (@1; : ; " b @1(%: " !' P : 1 ' # .0
' # .0 ' ' .0 : ; ' - ' : 1 " %+ - ) " + ' ' " P : (' ' $ + , $ .; - ' - $ ' - .0 0 : 3 BB+ BB6 ; $
' - $ ' $
.0 : 1 $,
, % . - .
%0: - - $+ $! P
$ ' ; ' "
' 1
1 + < .0 & < .0 FACTS
:
1 ) ' , ' ! 3 $ 6 2 , $ " ( . 0
: 1 ' ' .+
0 .& 0 E / 3EB76 .@ 3SD BB60 . +
' ' ' ,
' Z .@ 35600 @ E!/ , + ,
315+ "576 - E!/ -
: # + ,-+ (' ! + ' S 3SB56+ - !' ( + . 0 - 3"" D76 ' ) !' ; . 0 -+ '+ +
© 2004 by CRC Press LLC
Section 5.4
Factors and Factorization
417
: 1 ,+ 8 1? 31855+ 1876 - ) , + !' ) + ' + 2 , - !' +
: ; 3;B 6 -
' '
.( 0!'
!' ' ' ,
+ . ¿ 0
'
' ' ( : ; ' ) !' + ' + , ) '
4 3 4 &76 (' !' !'+ - .@ 3 SB760 (' , ' ! ' $ +
, S! 3F888BB6 1 ,
+ + , ! ' , ! ' + -
: 1 ' ,
F '
) - .38&+ 8& 60 S! 1 S! + - ' ! 34 1&$6
! ! 3S56
: 1 , ' 5'/ . 0 . -0 , => 5'/ . 0 S 5'/ . 0 ? '
' ' " E + ' ' ? ' ' + 5'/ .0 : 38FB6 (' ' , - + 5'/ .0 S!
: 38,76 D ' , Æ .0 1
!' + ,
, -
: 3@94BB6 1 ' # .0 S!+ ' ' !
' ' ' F ,-+ '
' ,
!'
: 3F B6 1 ' ' S! ('
+ ,-+ # B$
: 342& *' $- 38M $+ 8M $6: (' +
¼ .0 < J.0 1
' .& 0 !
: S + ' 8
*// 38*776
' @?- 3@5B6 ' ! + - / ' .0 J.0 (' - - +
- ' .@ 3*760
: 3F B6 @ 1 ' .0 '
S! F - - )-
S!
: 3"D 5 6 (' " , +
" ! S
© 2004 by CRC Press LLC
418
Chapter 5
COLORINGS and RELATED TOPICS
: 3 15&6 1 " ! S S! ,- " , .@ 3; W5B60
: 3"F 5&6 1 ) ' / ' -
! , !' !' , ' /
: 39 B6 (' - $+ -!
' /
$
: " + 2 , ' !' / # #5 , ) - - :
$ .0
: 3 9 BB6 D $ $
1
$!
¼
.0
: (' -! $ - C + $! 1 ' , ' /K
: 3 BB6 D ! ' - ! ! 1 .0 E -+ ' /
: 3@"&B+ F* 9 &B6 - + " !? ' $ ' " ' ' . 0 7. $0 REMARKS
: 3F9&&6 - - , ( # / S - ? ' !' /
' . + , !' 0 ' 2 ' @ - 3@ B+ E* B 6 - 395&6 : 1 ! % ' ' / F ' ' ' ' 2 - + 2 ' ' , ' @ 3D S 576 ' - ' ' CONJECTURES
3"F 5&6: 1 ' /
.0 , ! ' , !' !' + .0 , ! '
!' !'
3FB 6: D ! ' < ½ C C
' (' + ' / !? "½ " + , " ' .1 - ?
S! '
- 0
© 2004 by CRC Press LLC
Section 5.4
419
Factors and Factorization
Subgraph Problems DEFINITIONS
: 1 , %: - + ! P .F ,
! 0 (' < + 2
: / 0 ' (: !
- !
FACTS
:
0 ! - ' !' + .0 < 7 ' !' ' ' + .0 < ' !' ' + .0 < C + , .0
' - . C 0! '
3B6 D .0 .0
.0
:
31B6 "K ? .1
'
- ' ) ! 0
:
3 576 1 ! @ * S S! '
:
3 % 556 (' , .0 C$ Æ .0 C+ , - !? , .+ ' ½ ¿0 .1 ,
0
REMARK
:
1 ' , , - ' = > , = > 1 ' - 3 B+ 57+ * 57+ "5$6
2 3" 57+ 57+ * 556
References 3;5B6 @ ;+ @ ' + S 1+ * - + 55B 3;B6 * ; + ; / ' 1
K !' + ) & .5B0+ 55I75 3;B6 * ; + 8M K ' ) + + 5 .5B0+ I 3;BB6 * ; + E ) + ) .5BB0+ B&I
© 2004 by CRC Press LLC
420
3;56 * ; + () +
Chapter 5
COLORINGS and RELATED TOPICS
5
.550+ I
3;E@56 * ; + E E * @ + % ' 8M
K
' ) + ) .550+ &I57 3;B6 * ; !9+ E ) + + ; S+ 5B+ &I&5
*
3;@B6 * ; + !9 @ @+ ; ' ' -+ * + & .5B0+ I$B 3;2 FB76 4 ;2+
# F+ - 2 (((+ - + " 7 .5B70+ 7 I& 3;28B 6 4 ;2 E 8 + # ' / ' I -+ 5 .5B 0+ I 3;BB6 ; + 1 ' +
$ .5BB0+ I
3; W5B6 ; + W * W + S2 - + $ .55B0+ I& 3;8B6 ; ; E 8 + % ' , - + .5B0+ I$ 3;&6 ( ; + @Æ ' + * .5&0+ 5I$
7
B
3; 88,E76 8 ; + W ,+ ; 82 + 8 8,+ F E ! + S ' ,!' + .770+ 5 I77 3;B 6 * ; + ;
' ' 1
K !' + .5B 0+ I
&
&'
3;576 * ; + @ ) ' .( 0!' + .5570 5IB 3;56 * ; + E : ' + .550+ &I
$
3;5B6 * ; W + E Æ ' - ' + B .55B0+ I M 3"M B6 # "M+ T M @ 2 %+ " 7 .5B0+ & IB& 3"5$6 D "2+ +
&
.55$0+ I$
3"D&B6 " E D + % ' , + & ! 1 7 .5&B0+ $ I&$ 3"F 5&6 " S F N2+ ! !' !' + 7 .55&0+ 75I&
© 2004 by CRC Press LLC
Section 5.4
421
Factors and Factorization
"" D76 1 "+ S " + ; D,+ Æ ' S K + B .770+ 7I 3"576 E "+ ; , + + * .S ' & ( ; 0 .5570+ B$I 5& 3" B 6 " " N +
, + F " 4 - - .5B
3" 76 " " N +
, .
0
0+ - S .770
3" @9 B 6 " " N + ; @ 9 + * ' ' + 5 .5B 0+ 5&I7 3" 576 4 " N2+
+ 8, ; S + 557
3"&6 D "c+ ' - + ! ! &! , .5&0+ &I7 .*0A " ! .5&0+ 5 I55 . 0 3"&6 * "+ @ ) - ' 8M
K + & .5&0+ 7$I7
3"D 5 6 8 "N T D + ; ' F + * B ' '! / + - ' 1, + + 1 + 55 3 56 E + 32 36!' / ' +
.550+ BI7
3 576 # + 1 ' + & .5570+ 5I$B 3 FB56 ; , ; F + !' / , : - + & .5B50+ 7I 3 B6 # * + * + + + & .5B0+ - S+ 7I 3 &6 -N + 1 + IB 3 * 556 ; * +
.5&0+
+ %' - S+ 555
3 SB76 N? 9 S2+ S' !' ! + 2 ;* = 3 " 7 = &' = 8.9.<+ E S @ .5B70+ I& 3 F$6 8 N ; F?+ % ' + .5$0+ I5 3 8M
B6 ( /N 4 8M + : , 2 + 777 & .5B0+ I
© 2004 by CRC Press LLC
422
Chapter 5
3576 * + - S+ 557
COLORINGS and RELATED TOPICS
0 + %'
3576 * + ) + 2 + " ( + E+ 557+ $IB5 3 15&6 E 1+ S! :
'
' F K ? + $ .55&0+ $$IB& 3 $ 6 4 + S + V ,+
& .5$
0+ 5I$&
3 4 &76 4 4 + E : , - ' + + "+ 5&7+ B5I5 3 B$6 W
,+
K ? 3 C 6!' / ' +
.5B$0+ &I7
3 B56 W , F
+ @Æ ' ' !' + , + , ( S .5B50+ 5$I7 3 85$6 W , E 8 + @Æ ' - .( 0!' + .55$0+ B&I57 3 % 556 W , 8 % + !? , + .5550+ I$
5&G5B
3 B76 c-+ @ ' - 9 ' + .5B0+ $ I&+ .*0 3 B6
c-+ 1 ' - 9K ' +
.5B0+ 55I7
3 BB6 E
! "
+ ( ' / ' ' - + .5BB0+ 7I7
3 BB6 E + ( ' / ' -! - + $5 .5BB0+ 5I
3 9 BB6 E 9 + ( ' / ' ! + + & .5BB0+ I 3 B6 E
!TN + % +
7 .5B0+ &I7
3 48 @B 6 F
+ " 42 + S 8 ; @ + 1 ' !' + 5 .5B 0+ B&I5 3 E5&6 F
@ E + , - (((+ .55&0+ I$ 3 % 8BB6 F
+ 8 % E 8 + ; Æ ' - !' + .5BB0+ I
© 2004 by CRC Press LLC
Section 5.4
423
Factors and Factorization
3 *N$$6 S H
; *N+ % ' ' ' ' + & .5$$0+ 5I$B 3#B6 #2+ S
' ' - 9 ? ' + ! 5 .5B0+ 5I5B+ 5 & .*0 & 5 .5B0+ & I&5 3###DD556 * #+ % #- + #+ F D T D+ % !' ,!' + 7$ .5550+ I& 3#4556 # !S 42+ " , 2 V , ( ; ' ', 2 ' ' + &'! .5550+ IB 3#4556 # !S 42+ " , 2 V , (( @ + &'! .5550+ 5I 3#4556 # !S 42+ " , 2 V , ((( @ + &'! .5550+ I $ 3#476 # !S 42+ " , 2 V , ( + &'! & .770+ 5I7 M 3#6 # + E / - + * ! 1 $ .50+ $I&&
#C
3#F E$ 6 #2 + ;F L E E;,+ @ ' , + & .5$ 0+ $$I&& 381556 F ,+ F 8 * 1?+ ! + + ; E , W 2 555+ &7I&B 38176 F ,+ F 8 * 1?+ ! + 7 .770+ 5IB 3156 F , * 1?+ # ' ! + B .55+ B IB 3B6 ; + ! C ! + B .5B0+ 5I77
+
34 1&$6 E + 4 * 1?+ 1 ! S! + .5&$0+ &7I& 3&B6 M
+ % - ' + $ = #= 8.96< + !F + 5&B+ B I5
;*
3FB6 ; F?+ S ' , - + .5B0+ 5 I55 3FB6 E F+ - ' + 5I5$
© 2004 by CRC Press LLC
)
.5B0+
424
3F 6 S F+ % - ' +
Chapter 5
COLORINGS and RELATED TOPICS
+ 7 .5
0+ $I7
3F* 9 &B6 # F+ * * 9 + ( ' / ( + .5&B0+ I$7 3F9&&6 # F 9 9+ ( ' / (( ! + & X(X .5&&0+ IB 3FF8D576 8 F+ S F+ 82 2 D+ : ; ) ' .( 0!' + B .5570+ I& 3F8B6 S F 82 2+ % / + + .5B0+ I
*2
3F888BB6 S F+ 82 2+ 4 8 -N ( 8ONO/+ % , ! ' + .5BB0+ &IB 3FB6 F+ E , !' + & .5B0+ I$
)
3FB 6 ; F + # / ' ' + .5B 0+ 5I5$ 3F B6 ( F + 1 S! ' ! + &BI&7
5
7 .5B0+
3F B6 ( F + 1 S! ' + 7 .5B0+ &I&&
3F S @ B&6 E F /+ 8!S S ,2 8 @ L+ (? - ' + D
E + B+ @ !+ 5B& 3(56 1 ( 1 + ; %! ' ' !' + & .550+ I$ 3(5&6 1 ( 1 +
!' + 7 .55&0+ IB
!
349B56 " 42 * 9
+ ;
, !' + .5B50+ &&I B7 34dD*776 @ 4 + 1 D d /2 ; *2+ , + 9 ( .7770 34 776 S 4 + % ' , !' + .7770+ &I 34 776 * 4 + % ' 5 .7770+ I
!TN K ? +
38B6 E 8 + ' , - + D
E + 7& .5B0 $I$B
© 2004 by CRC Press LLC
= 8.AD+
Section 5.4
425
Factors and Factorization
38B 6 E 8 + 32 36!' / ' +
5 .5B
0+ 5I$
38576 E 8 + ; Æ ' - 32 36!' + $ .5570+ I
B7
38576 E 8 + @Æ ' - ' + .5570+ 5I$
3856 E 8 + ' ' + = = ."?+ 550+ 9 @ ) S! + 55+ 5I5B 38876 E 8 8 +
: % + .770 . 0
38@B6 E 8 ; @ +
: 32 36!' ' + .5B0+ I$ 38*776 ; 8
* *//+
: .7770+ 57I5$
! +
38B6 E 8 N 2+ ; -, ' + 385 6 E 8 N 2+ * + IB7
&
$ .5B0+ 5IB5
! +
- .55 0+
38&6 * 8 + * + 5 + S S+ 5&+ B I7
38& 6 *8 + % ' + &'! .5& 0+ I$B 38 B6 S 8 + @ ' !' ' - + $!" .5B0+ &I&& 38 576 S 8 + E ' ' !' + $ .5570+ I B 38 1776 S 8 12 + E &' 5 .7770+ I7
!' +
38 9 B&6 S 8 9
+ " '
' !' + 4 B .5B&0+ IB 38,76 8 8,+ !' + 5 .770+ IB 38FB6 82 2 S F+ % ' ' ! + .5B0+ $7I$75 389&6 8 9+ ; ' , - - ' + $ .5&0+ &BIBB
© 2004 by CRC Press LLC
426
Chapter 5
COLORINGS and RELATED TOPICS
38 @ 56 9 8 @ + " , 2 V ,+ & .550+ &I
)
M 38M
$6 8M + ;, ' E+ && .5$0+ I$ 38M $6 8M + 2 N 2/N2 N 2 N / 2 N N+ E 7E .5$0+ 7I5 38M 6 8M + + 0
$ +! B .50+ $I5 .F!
M 38M 6 8M +
8
2 . ;, ' E /0+ ; < $ .50+ I&5 38 76 8 8
+ # + .770+ I
38 56 ; 8
/+ % ' ) , ' ((+ F " ! ! > 5 .5 50+ $I 5 38&6 @ 8+ 1 !' ? +
&
2$
$ .5&0+ $&I&$
3D& 6 E D + ;
+ E ;* = 8.9B<+ N * % N+ & .5& 0+ &I$7
3D&B6 E D + ; ' 1
K !' + .5&B0+ I
3DD5B6 D T D+ % ' .55B0+ I&
½¿
!' +
3DT 76 D+ " T + % 3 C 6!' ,!' + $ .770+ 7&I5 3D9 5B6 1 D 9 + # ' '
' + B$ .55B0+ &I$ 3DF & 6 D
+ F + % ' ! + .5& 0+ I 3DBB6 D+ % .( 0! - + BIB 3DB56 D+ % 32 36! - + I
;7 <
B .5BB0+ .5B50+
3D S 576 E D @ S ?2+ @ 2 U -+ ;/'= 8..:<+ S+ F+ 557+ 5I 7 3D &76 D D -N /+ @ , -+ 5I$
© 2004 by CRC Press LLC
B .5&70+
Section 5.4
427
Factors and Factorization
3D &6 D D -N /+ ' , !' + 5I
*
3D &&6 D D -N /+ ; ' ' + 7 .5&&0+ I 3D SB$6 D D -N / E S+
.5&0+
+ !F + 5B$
3E* B 6 E ; * + %!' / ' U -+ 5 .5B 0+ I$ 3EB76 @ E /+ ; . ½ 0 ' ) + * -8 $ ;< .5B70+ &I& 3E *76 E E " *+ @ ! .770
* +
3EM &56 4 EM + !' ' : / + * + B .5&50+ 7&I
5
.550+
356 # + ! ' ' ) + I
3S 56 # 8!S S ,2+ E ) + ) $ .550+ I&
35B6 1 +
: ; / ' - .( 0!' + ) & .55B0+ I $
3*5B6 1 " * + * ' ' ' ! + B .55B0+ B5I7 3 576 1 D 2+ ' - ' + .5570+ I$ 3B56 1 + ( + - ' + .5B50+ &5IB& 3576 1 +
: * ' ' + I5 356 1 + * ' ' ((+ 7I77
3
B .5570+ $ .550+
356 1 + ; ' ' !' + $ .550+ I 356 1 + ' ' +
© 2004 by CRC Press LLC
B .550+ 5I
5
428
Chapter 5
COLORINGS and RELATED TOPICS
3&B6 1 /2+ D , ' ' + * & = E .5&B0+ &I & 3&56 1 /2+ % , ' ' + .5&50+ 5I $ 3SB56 4 S + 1 M + 7
.B50+ 5I
3SD BB6 S S E D + 1 ' E /+ .5BB0+ I 3S56 S +
: ' ! + .550+ $I& 3S156 E S @ 1 + * ' !' /! + * + .550+ 5I77 3S176 E S @ 1 + ; ' - !' + 7 B .770+ e* 3S56 E S+ .550+ &&I5
: -+
&
3S5$6 E S+ .55$0+ I
: +
3
$
3*56 * * + # / ' - + 5I7
4 /5
7 .550+
3*76 * *//+ # !' ! + .770+ BIBB 3* 576 * + + 3@56 ; @ + %!' !' +
; <
.5570+ 5I5
5 .550+ I$
3@"&B6 4 @M
; " 2+ ' ' ! + ;)< .5&BG&50+ 7 I 3@B6 ; @?-+ " + ' !' !' ! / ' + " + D E @ D
@ B .5B0+ 7&I 3@5B6 ; @?-+ " .J&0 + .55B0+ BIB$
3@5B6 ; @?-+ !' + ) & .55B0+ I
© 2004 by CRC Press LLC
B
Section 5.4
429
Factors and Factorization
3@B76 ; @?- 9 + % , ' + 1 .5B70+ I& 3@ B6 @ .5B0+ 5$I7
'+ % ' +
& !
5
3@ B6 @ '+ %!' - + .5B0+ BIB$ 3@94BB6 E @ + 9 9 9 4!D+ 1 ' !
+ @ ' + 1 + ." * + D;+ 5BB0 & $& .5BB0+ 5I$$ 3@ B6 * @ ( + ' / + + + .5B0+ IB 3@ &&6 8 @ L+ E + 3@ B 6 8 @ L+ E + .5B 0+ 5I$
5 .5&&0+ $
I$B
! '
3@ B 6 8 @ L+ #2 + > B& .5B 0+ &I& 3@ B56 8 @ L+ 1 !' ' + - F - .5B50
2
C , *
2 ;9% 8.A8% + = < F+ 5B+ $I&
3@ B6 # @ /+ % ' ' +
3@&6 @+ % 1
K ' / +
E 7$+ @ .5&0+ 7I 3@&$6 @+ !' !' + I 5
+ D!
+
.5&$0+
31B6 12 -+ ! ' ! .*0+ : & $ .5B0+ $I$ 31B6 1 + ; 2 ' ' D -N/ 1
+ .5B0+ I
31B6 1 + , - + & .5B0+ $ I$& 31&6 9 1
+ 1 ' / ' + 7&I
+
31 6 9 1
+ ;
' ' ' ' ) + $ .5 0+ &I
© 2004 by CRC Press LLC
.5&0+
430
Chapter 5
COLORINGS and RELATED TOPICS
" ; = = = 8.99<+ ; E .5&B0+ B5I5
31&B6 9 1
+ 1 + 31B6 9 1
+ ' +
.5B0+ &5I5&
3&56 D + 1 ' + B .5&50+ B5I7
3&56 D + 1 ' + B .5&50+ 7I
356 /+ ; ' ' -
' . 0 + .550+ &I75 3 5 6 D 2+ * + ' + ' S K
+ 2> 5& .55 0+ 5I 39$6 " - 9+ S + &
2>
.5$0+
395&6 9 9+ / 2$ + 8, ; S+ 55& 39 576 9
+ !'
' + + .5570+ B I5
39 B6 9 + ( ' / (( * + B .5B0+ &I 3XD1 5B6 " X+ T D 1 1 2+ ' ½ !' !
.( 0!' + .55B0+ 5I5 3W5 6 W+ @ , .( 0!' / ' + B .55 0+ &&IB
3WS9 1 776 W+ 4 S+ 9 1 1 2+ '
.( 0!' + $ .7770+ &I$ 3W8BB6 W E 8 + @ ' ' + .5BB0+ &I 3TT56 !b T W T+ # / ' + ) $ .550+ &IB5
© 2004 by CRC Press LLC
Section 5.5
5.5
431
Perfect Graphs
PERFECT GRAPHS % &' ( % ( @ S' E
- ; E * ' S' Æ ' S $ ' S' & 1 @ S' 1 *'
Introduction 1 ' ' ' ' ' E -+ ' - ' ' - # + S! ) ' + ' ' 3 B76 - - ' ' ' 3" B6 2 ) ' ' 3;*76 - - ' ; + + -
'!
!
5.5.1 Cliques and Independent Sets 1 ' ' , , ' + DEFINITIONS
: ; ' - ?
. ,+ => - ' ' ? - 0
'
:
1 '
:
; '
+
.0+ / '
' - -
: 1 ' - '
© 2004 by CRC Press LLC
+
G.0+ / '
432
Chapter 5
COLORINGS and RELATED TOPICS
: ; + $ + ' -
!?
: 1 ' +
.0+ / '
: ; ' ' - - ' 1 / ' ! - '
.0
: 1 ' +
.0+ ' - ' @ . Ü 0 + / ' ! -
: 1 . 0 . < . . 0 ' < . 0 - ): . C0 . ' ' . C0
FACTS
: @
. + ' ,
? -
.0 < .. 0 .0 < ..0
:
#
.)0
+ .0 < G.. 0
G.0 < .. 0
.))0
: ( ! - ' - ' + ' L @+ - L 1+
.0 .0 .0 G.0
.) ) )0
EXAMPLE
: 1 ' # ' / + + 1 . ' / + + 3 1 ' / + + 3 1 . ' / + + !? 1 ! - .2 #0+ .3 0+ .! 0 ' + - .2 #0+ .3 0+ .! 0 '
. b
a
c
a f
f
e
c
e
d
d c
G b
Figure 5.5.1
© 2004 by CRC Press LLC
G
#$ * & -#- .,
Section 5.5
433
Perfect Graphs
5.5.2 Graph Perfection " + " 3"$6 ) 3 ' .0 < G.0 ' ' - . ! 0 - ! " ' + ." 0 < G." 0 " , .f0 .ff0 -+ " , ! ' @ "K ' ' ' 3"5&6 ; , ? ! ' ! ' - + " ? ' ' @ S' ? 1 - , , , ' ' + ' .fff0 - - .f0 .ff0 I + + - , I DEFINITIONS
:
; " < . ¼ ¼0 ' < . 0 ' , - C ¼ + . C0 ¼ ' ' . C0
: ; ' ' - . ! 0 - ! " ' . " < 0+ ." 0 < G." 0 : ; ' ' - . ! 0 - ! " ' . " < 0+ ." 0 < ." 0 : :
;
' ! ' ! '
; ' , ! - -
: :
, + +
; ' ; / ,
FACTS
: #$ $-: .D -N/ 3D &60 ; ! ' ' ' ! '
: 1 S' 1 : ; ! ' ' ' ! ' .F+ , ' ' - + , ! ' ! ' 0
: .D -N/0 3D &60 ; ' ' ' ." 0." 0 ." 0 ' - . ! 0 - ! " '
: $ ! #$ $-:
. -2+ * + @ + 1 3 * @1760 ; ' ' ' "
© 2004 by CRC Press LLC
434
Chapter 5
COLORINGS and RELATED TOPICS
EXAMPLE
:
- ' # < .½ 0+ -
.0 < .0 < ! + - - - @
+ - /
5.5.3 Motivating Applications ( + , , ' 1 ) + + ,
- ' "K
) ' ' 1 ' 1 , - ' , .0+ .0+ .0 G.0+ Æ + - DEFINITIONS
: 1 . 0
- ' L - , ,
- ' ' ,
-
: 1 " ' , " ) ' , # - ' - C ' " + - C " + , C ¼C¼ " ' ' ? ¼ C < C¼
C ? C¼ " < ¼ : 1 " ' ' , '
: .@ 3@ $60 ; S ' ' + , - .. 00 < .. 00
: .@ 3@ $60 1
' ) .. 00
EXAMPLE
:
& 4 4" 1 ! ! ' , +
' ' - . 0 ' 1 / ' ! '
+ , ' / .. 00
+ ' -
+ 2 ,
, 2
!
# + )- . 0 ! + ' , .. 00 < ; ' ! - ' + +
( ! + ' 1 , . 0+ !
© 2004 by CRC Press LLC
Section 5.5
435
Perfect Graphs
' L ! ' ! .. 00 %- ' ! , , ! +
' , ' ' L ! # + - ' ! 1 ' . . 00½ + ' .. 00 ! ' ' + '
' . . 00½
' .. 00 1+ , " ' + .. 00½ REMARKS
: D -N/ 3D &56 - @ ' ! - ½ < ( . 0 : 1 .. 00
. . 00
/ ' ! (' S ' + .. 00 < .. 00+ @ .. 00
: % ,
.. 00 . . 00 G. . 00 G.. 00 ' , ' , ' . 0 ' + . . 00 < .. 00
'
: 1 / , !
- 2
' L
1
' @ 3@76 ' EXAMPLE
6 - .- 0 ,2+ , $ % 2 ' ! 2 ' ,2 - ' # + ' ,2
- , 1 Æ
- + ) , ! ,2 ! '
, # )- , 2 - L P 1
' : " 4 " 1 '
B
Tour B Tour C Tour A
Tour E
A
E C D
Tour D
Figure 5.5.2 7 & 0 & * $ &&* #$,
© 2004 by CRC Press LLC
436
Chapter 5
COLORINGS and RELATED TOPICS
- ' + ' , - ' 1, - ? ' , - 9 + L , 2+ - . 0 '
# )+ !
- ,
) ' ' ! 1 ' ' ' Æ + ' , ' + + ) ' , 2 2 '
" ,! - @ S' ? +
2 '
5.5.4 Matrix Representation of Graph Perfection ' ' /!
1 ' ' , , +
7 .
0 '
!
1 .
0 '
9 ' +
7 .
0+ , '
'
@+
1 .
0
DEFINITIONS
:
1
- ' '
'
:
! -
; 7!
7
!- -
8
1
.
0 '
A + .
7! , , 0 '
!
' ' - !- -
+
- - ' :
78 1 E
:
7
8
?
.
0 '
, , - ' '
' '
! -
7!
A + .
0
!
FACTS
7 1 . :
# ' + ' ,
.
0 <
:
.
.
0
G
.
0 <
.
0
8
?
7 8 8 .
0
+
7! -
.0
0 - ' ' , : E
:
.
0 - ' ' , : E
:
1 7 .
9
9" 7 9 8 9 8 9 8 7 8 8 ?
('
' : E E
© 2004 by CRC Press LLC
?
0
+
7! -
.0
-
+
?
9
.
+ .0 .0 '
.
0
+
9" 7 9 .
0
+
.0
.0
Section 5.5
437
Perfect Graphs
:
K ' ! ' - .0 - .0 REMARKS
: ( .0+ 8 - ' ' - ; 8 ' 7.08 ' : 1 ? - ' 8 .0 ' - + E 8 / ' : ( .0+ 9 - ' ' 1 ' 9 , ! ' 7.0 , ' 9 ! - ' 1 9" 7.0 ' - '
C - - ' + +
:
1
% .0+ ! ! ' + .0 1+ .0 - ' : E
7
8 ? 1.08 + 8 7! -
G.0 - ' : E ? " .0 + 7! -
9
91
9
FACT
$62& $- 3 & 6: 7.0 '
:
;
' ' '
REMARKS
:
" -N K 1 + , ' + .0 .0 -
!- %' + ' ' + , 2, .0 < G.0
:
8
1
9
7
@ .0 < .. 0 + S' 1 + . ' , ' + ' , ' ' + .0 '
1
5.5.5 Efficient Computation of Graph Parameters ( ' ' + .0 .0 82K ' + ' .0 + ' , ' .0 ' '
' - '
7
DEFINITION
: 3D &56 1 & 1 H.0 ' ( ) -
© 2004 by CRC Press LLC
438
Chapter 5
COLORINGS and RELATED TOPICS
FACTS
:
D ., 0 - ' , '
:
1 .0 G.0+ / ' - ' + S! '
:
.
+ D -N/+ @?-0 3D @B6 .0 H.0 .0
. 0
.0
, - ' ? - ' .0+ ' .0 ' ) / '
:
1 D -N/ H.0
' - REMARKS
:
@ .0 < .0 ' ' + . 0 .0 < H.0 1+ ' ' + H.0 .0 G.0 . ' .0 < G.00+ +
2 + .0 .0
:
1
- ' ) H.0 ' D -N/K ' @ ' . 0
5.5.6 Classes of Perfect Graphs 1 2 , ' ' F ,-+ ' '
' ' ( , V - ' , '
2 ,
' ' DEFINITIONS
: ; ' - , ½ - ? - , -
: 1 .0 ' - ' ' A , -
' .0 ? ' ' , ' , - FACT
:
1 ' ' '
Interval Graphs
( - , ) F? 3F &6 1 - + ,
© 2004 by CRC Press LLC
Section 5.5
439
Perfect Graphs
DEFINITIONS
: 1 ." 0 ' ' " ' ' - - ' A , - ? ' ' ' - !
: ; ' ' ' ' - '
: ; ' - ' ,
' ' -
: ; ' - , - " ' , - ' " - '
- ' "
: 1 0 ' 7! , , ' - . 0 ' ' ! - ? ! -
: ; 7! 2 ' , K - FACTS
: :
( - '
3" D&$6 ! + , - ' '
: 3* $56 ; - - ' '
½¿ + ,+ - !
:
3* $56 ; - ' ' ? - K
:
3#$ 6 - ' ' . 0 - K
EXAMPLES
:
- * - S 9 - ' + + + - - 9 2 , 6
' , - ' 1 - / ' , 6 ' - (' , 7! , , ' ' . 0 < '
' 6 + / ' '
- K
.
© 2004 by CRC Press LLC
.
440
Chapter 5
COLORINGS and RELATED TOPICS
: # @ 3" 56 "/ - 77 ' ' - 1+ 2 , L ' ' ; .
' ; , , 0 "/ , 2 , , - ' ' , , ) ' 1 + -, - / ; % - ' , - - ' , - - 1 "/K + - P 1 - ' 77C , , - 1 , ) - - ; , - REMARKS
: " 2 ' ( ' + , 2 , + + ; + , , 2 , , ; , '
K ; "/ ' '
- 1 ' '
' ' - L ' 1 L + + , ' L 1 , - ' ;
:
; / ' - ! . 3 B76 ' ' ! 0+ ,
' Chordal Graphs
, ) F? @N 3F@ B6 , - , ! ' 1, ' DEFINITIONS
: ; ' - ' + + ? ! - - , " 3 " " "
: ; ' ? - + + ,- .2 30 .3 #0 .2 #0
: ; , - ' ? ' . 0+ ' + ' ' ' ?. 0 ?.0 : ; - ' ' - '
© 2004 by CRC Press LLC
Section 5.5
441
Perfect Graphs
: ; ' - , ' - , - ?
- FACTS
: : :
; - ! ' '
3F $0 - ' ' .1+ - ' 0
: 3D" $6 - ' '
:
3$6 1 ' ' - . !
0 ' - '
:
3#$ 6 -
,
-
:
3#$ 6 ; ' ) ! - + - - (' -
' +
1 ' 3* 1D&$6
: 3&6 1
' '
' '
5.5.7 The Strong Perfect Graph Theorem ( ' 77+ E -2+ * + S @ + * 1 3 * @176 . 0
' ' @ S' 1 + + ' ' ' " + +
' " - ! ' ' '
' 1 , - - " ' ; ' L - - 7 - -' @ S' 1 ' ' ' - ' -
' ' + +
2 ' , ' 1 '
' '
2 - L
' + ' , ? ' + ? + 2 - 3 76
/ ' " DEFINITIONS
: ; ' ' '
© 2004 by CRC Press LLC
' +
- !
442
Chapter 5
COLORINGS and RELATED TOPICS
: ; 0 < . 0 ' , ½
? ! 5 0 < + ' ' , .0 1 .5 5 0 .0 00 ' +
,
.0 # < + - '
' 5 ' 0
.0 # < + ' 5 0 ' - ' +
: ; 30 < . 0 ' + 5 0 ' 7 ' ' , : .0 - - 5 0 0 + - - .0 1 .5 ' 0+ .5 0+ .0 70 .0 0 ' .0 1 , ' , ' - : .5 70+ .5 0+ .0 ' 0 .0 0 : ; " < . 0 ' , * - ' ' - ' * FACTS
:
@ 1 ' " 3 * @176: ; ' '
"
.0 + ' +
' ' , ' A
:
.0 ' ' , ' - : !? ' .+ E!? ' + 2, '
+ !? '
I 1 @ S' 1 3 * @176: "
- '
REMARK
:
-2 3 76 - E!? - / ' "
References 3;*76 4 D * ;' " ; *+ + * 77
+ 4 9 @ +
3" 56 @ "/+ % ' ) + 3 .5 50+ $7&I$7
© 2004 by CRC Press LLC
* &
Section 5.5
443
Perfect Graphs
3"$6 "+ #M - M /, 8 .T'0+ 1 2+ 3 " 21 = 2& , 7 .5$0+ I 3"5&6 "+ E
- ' ' ? + $ G$$ .55&0+ $I&7 3" B6 " -N + + 5B
2
* + !F + ; !
3" D&$6 8 "
D2+ 1 ' - + - + ! + .5&$0+ I&5 3 76 E -2+ " 1 1 ; + S + S - E + 77 3 * @176 E -2+ * + S @ + * 1 + 1 @ S' 1 + 3 & 6 -N + % , + ) B .5& 0+ BI
3 76 E '
+ N? + 8 2 -+ @ ' + )+ 3$6 ; + + &I&$
3 "
3#$ 6 * #2 % + ( - + .5$ 0+ B IB
.5$0+
* 0
3&6 # -+ 1 ' + ) $ .5&0+ &I $ 3F $6 S ; F L+ ; / '
' - + $ .5$0+ 5I B 3 B76 E + 5B7
* + ; S+
3D @B6 E M
+ D D -N/+ ; @?-+ 1 / + .5B0+ $5I5& M 3F@ B6 ; F? 4 @N + VM
- - M 1 + 3 " ) 7C"C = .5 B0+ I 3D" $6 D2222 4 " + * ' ) ' - + $ .550+ I$ 3D &6 D D -N /+ ,2 ' ? + .5&0+ I$&
© 2004 by CRC Press LLC
444
Chapter 5
COLORINGS and RELATED TOPICS
3D &6 D D -N/+ ; / ' ' + .5&0+ 5 I5B 3D &56 D D -N/+ % @ ' + .5&50+ I&
)
777
3* $56 # * + (L + 5I$ * + # F+ ; S+ 5$5
2
3* 1D&$6 * + * 1?+ D2+ ; ' - ! + .5&$0+ $$IB 3@ $6 @ + 1 / ' + 2- .5 $0+ BI5 3@76 @ + S' + * ;' " ; *+ 4 9 @ + 77
© 2004 by CRC Press LLC
,7
+ 4 D *
Section 5.6
5.6
445
Applications to Timetabling
APPLICATIONS TO TIMETABLING ) ( % & " *+ ,
) #"+ - ./
$ @ ) ' 1 S $ !1 1 $ - 1 $ - 1 $ @ 1 *'
Introduction 1 ' '
/ ' , 2 + ! ! + + , 2 V , ; ) ' - ,' ' G ! !
1 ' , -
- , ' 9 ' : ! + - + - !
+ , ' 2 - ! - 9
' - - ' Automated Timetabling: Historical Perspective
1 ' - - ! ) ' - 7 " 55 - 3"5$6 ' ' 5$7 55 1 , ) ,
5$7 5&7 1 , ' 5&7+ , 2 5B7 2 ' - $7 55 + ' ( ' S 1 ' ; 1 .S;1;10 3"* 5$6 ( 55$ ; ' % ! * @ 9 2 ; 1 , + - 77 ' $7 REMARKS
: 1 ) ' - , - '
+ ,
+ - + + + , -
'
© 2004 by CRC Press LLC
446
Chapter 5
COLORINGS and RELATED TOPICS
: 9 S , 39S $&6 - , ! 5$& 1 ) ' '
- ; ' , !
:
(
- ' K 5B$ - 3 B$6 - -, ' !
+ D - 55 3 D5$6 1 '
- - ) .+ 3B !6+ 3"5$6+ 395$6+ 3"4895&6+ 3 D5B6+ 3@5560
1 + ' -
5.6.1 Specification of Timetabling Problems 1 - , + '
' ) - 3"8S5&6+ 38776+ 376 % ) - The General Problem DEFINITION
: ; , ' : / + ) '
A ,+ ) ' A A + ) ' A ' + ) ' 1 '
' 1 ' ) , Times
; , - ' + / - ) ) ' - ' DEFINITIONS
: ;
:
$
' '
/
' '
; -
FACTS
: :
1
.) - -0
( + - - ' ' - # + ' ,
, - ? +
'
' ' ,2+
: @ : - ,2+ - , ,2+ @
- % .+ 0
© 2004 by CRC Press LLC
Section 5.6
447
Applications to Timetabling
Resources E +
+ ' + . ' 0+ + , ,
DEFINITIONS
:
;
-
' '
,
' '
:
;
-
FACT
:
*
' .) - -0 @ !
EXAMPLE
:
1 ' + ,
+ + +
+ + ' ' % / ' L # + ' - +
' ' + , )
+ + L
L
Meetings DEFINITION
:
;
&
'
;
-
'
'
EXAMPLES
:
( + ,
:
+ ' .
0+
:
(
+ ,
?
,2+ , '
+
+
. ' 0
:
( L + ,
L '
-+ , ' L
+
Constraints 1 - / ' L
/ - - +
- -
'
9 -
© 2004 by CRC Press LLC
448
Chapter 5
COLORINGS and RELATED TOPICS
- - ' 7 ' + - -
DEFINITIONS
:
D 6 ' - ;
!- ' . : 6
..+0 <
:
;
7 + ) ' +
' ,
'
7
,
+
+ ..+0 < 7 ' .
:
) ; ,
6 ) +
D 6 ' - ;
6
+
+ ' ; , ' ' ) : 6
I
1 +
' , ).+0 '
:
D 6 ' - 1
' ' 3 : 6 3.+0 - ' +
6
6
I
:
1
:
1
. # 0
-
- -
,
:
1
) -
' ' / # + ! -
1 #
EXAMPLE
:
D ' - . . .
' !
) ) ) ;
'
, ' -:
3.60 <
. .60 C
+ ) .60
, , + - V
' + , +
REMARKS
:
( - + ! ,
' ' ' ' . ' - 0
:
9
+ ,
+ , ) - ' ,
© 2004 by CRC Press LLC
#
Section 5.6
Applications to Timetabling
449
+
9
.
+ + 0
? A ' + S -,
' /
:
1 - ' ) ? , - '
:
'
' : - ' A - A , /A ,2 , /A
5.6.2 Class-Teacher Timetabling ! ' , !
+
+ '
9 ) - ' +
/ " $ . ! 0+ , - @
+ - , L
- , L The Basic Class-Teacher Timetabling Problem DEFINITIONS
: 1 3 $6 ! , !
+
+
1 ! -
: ; ' ! ' ? L
.0
:
1 ' +
¼.0+ ' L ' ! ' FACTS
: 1 +
9 , '
+ , - - ,
-
: 1 ! *' #"- "# #$ 3"B+ B !6
' + + & ! , & (' + ,
© 2004 by CRC Press LLC
450
Chapter 5
COLORINGS and RELATED TOPICS
, , ;
A ! -
!
: ; - , ! ' + +
' L ' ! + - 8M K .# B0 ' ! + ,
- , + , J : 38M + 5$6 D 1
'
'0
J.0 @ + ¼
.0 < J .@ 3W556+ Ü7+
REMARKS
: ; J L ,!
3"B6 1 ) E Ü ' !
: 1 , ! ! , ) 3 $ 6+ 3@@ B76
Extensions to the Basic Class-Teacher Problem
9 - ' ! EXAMPLES
: @ - ' ' ' ' 1 , ) + ) + , S! 3 -( @&$6 ; , + , - ' , : E
, 1 ' 2 34 &56+ , + , S! : @ = > - - - ! ' 1 S! +
3;76
: *
(
! +
- + '
( + '
L L +
('
+ , - S! - , - $ Graph Models for Subproblems of the Class-Teacher Problem
( ' - ! ' - , ', 2 ('
+ ' . ' -
© 2004 by CRC Press LLC
Section 5.6
Applications to Timetabling
451
)0 (' - ' '
+ , 3 $6 MODELING EXAMPLES
: @ , , ' # , 2
1 , 2
' - ' , 1 - '
. 2 ,0+
, - ' , 1# #$ .*:
' + - , + ?
) - ,- - '
) 1 '
- ' 3 856 :
7 / , , 2 ,
- -
1# #$ .*: 1 ' ' .& $) -)0+
, & + $)
' &+ -)
' & 1
- ' ' 1 ' .- $0+ , - $ , - 1 - ' . ' 0 ; ? -
-
# + ' $) , , ? A ' -)
, , ? -
, + ' - + '
: 9 - ,
-
-
9 2 , , ' , 2
A ' ) - .+ 0 1
+
, , - - -
1# #$ .*: 1 '
' A +
' / ,
#
+ , ' , ; , '
'+ ,
K
+ ' 1 , ' -
3B !+ 856
: (' ' ' # + + - ' '
'
' 1 + , L - + %3A $ :)0 ) .*: # " 3
' + , ' '
© 2004 by CRC Press LLC
452
Chapter 5
COLORINGS and RELATED TOPICS
# ! , '
-
3
' 1 ! - ' - # ! + 2+ , ' , ;
% A
3
, , ' '
' '
REMARK
:
'
# ' ! , 2 V ,+ + ' + 3SB6
!
Ü
5.6.3 University Course Timetabling - L ' ! ! '
' +
' - '
' ,
Basic Model 1 ' ,
, ' '
D
<
'½ '
' L
,2 = + , = -, ' 9 ' . ½ ' # ! + + ' < ' ' ' # ) + 6 ' )
DEFINITIONS
:
;
' '
= ' #
+ ' ' #
:
- +
, ' '
#
6 '
' <
' ' ) +
(
, + ,
) -
: 1 V !' . 0 REMARKS
:
# , .+ !
' 0
:
( , - ' + ' '
( , , ! V 1 ' /
- ' V
; ' - ' V '
, - 2
' 1 ' / ) ,
© 2004 by CRC Press LLC
Section 5.6
453
Applications to Timetabling
A Graph Formulation % ' + ? '
+ , , - ' V
DEFINITIONS
:
'
( " +
1
+
'
+ ' V , ,
'
' , - 2
' + +
+
$ ' ' 6
<
# ' # '½ ' '. + ' - ) - ) ' ' - ) :
;
+
!, ) ' ,:
+
<
+ '
+
7+ , ,
'
+
+
<
+
,
( + , ,
'
'
,
"$
+
'
#
, '
1 ?
C
3
C
6 1
V - ! @
'
C
.
:
0
C
(
0
'
:
;
? ,
C
!
+ ' !?
.
'
'
'
? - L ;
!
L
FACTS
:
1 ) <
=
+
6 6
;& .
:
0 <
+ .
' 6 :
' !
' ' 6
;
&
-
'
' ,
.
0
0
( ! !
. V !'0
&
+ /
;& .
&
'
,
;& .
0
<
7:
, '
- +
=
0 < 7 - ! +
' L L
-+ - ! + !
- .
0
'
<
=
' ,
' '
;& .
0 < 7
1+
!
:
! ! : !
, ' ! ! + -
© 2004 by CRC Press LLC
454
Chapter 5
COLORINGS and RELATED TOPICS
: # ' + ' ' , ! . 0 A ' ' . 3"B60 " S! ! .- ! 0 Ü Ü EXAMPLE
: # $ - ' - (
-+ , -
- - 9 - L @
+ , , , - , , . ' L 0 - - 1 ,
' + , !
, , - < < ' < ' < '½
'
< '½ ' < ' ' 6 < ' ' ' 6 < ' ' 6 < ' 6½
+
6
+
+ + + +
< < < < <7 <
Figure 5.6.1 7 8-# &9 -", ' '
' '
: :
;
' '
' '
.& 0 < .!(!3'
'
: :
60
Scheduling Multi-Section Courses
@ ' & + ' ' ' + ;+ '
+ ' ,2
. ' ' + , . . . 1 ' , ' ! ' ' & + +
' + ( ( (+
. ' ' 1 ' ,
© 2004 by CRC Press LLC
Section 5.6
455
Applications to Timetabling
!# : < . , 0+ , '
< '½ ' ' + , < . + ' < &+ 3' 6 ' < .
!# : S ' $ ' ' (' J ' # 8M K .# B0+
+ + J < & .
J! + ,
# ! ' + .'0+ < &+
' ' . 0 ' %-
.'0 < . + < &
!# : - < (
( ( ' + < . , 0+ , ' < ' ' '+ , < ( ( (+ ' + < & < + 3' ( 6 ' ' ( ' !# : ; ' '
' ' '
, ! '
D (.'0
' ' FACT
) @ + ' !( .' 0 < . ' + J! ' ' ' ' ' ' @ .@ 3;FM5B60 : 3FMB6 -
REMARK
: ( ' + # ' ' ' ' - ' '+ + (.'0 <
.'0 .< . 0+ < &+ '
' ! ' ' EXAMPLE
: .@ 0 1 , # $
Figure 5.6.2 1# #$
© 2004 by CRC Press LLC
&<
..
&<
. . 0 < .$ 0 ,
* ..
. . 0 < .$ 0,
456
Chapter 5
COLORINGS and RELATED TOPICS
.@ 0 # # $ -+ J < $+ $! 2 3 # ! ' , , . 0 3' 6 $ " '½ 2 3 # ! ## ' 3 ! 2 ## ' # 2 ! ! $ ' 2
' !
1+ ' - ' , .' 0
' ' . ! 0 ' ' '+ < &:
.' 0 < 2 3 # !
.' 0 < 2 3 !
.' 0 < 2 # !
.' 0 < 2
.' 0 < ! .@ 0 1 , # $ , ) ' - + ( ( ( # + ( ' + '+ '+ ( ' '
Figure 5.6.3 1# #$
,
.@ 0 ; $! ' # $ , %- ' - ! K ' @
( ( ' ! ' ' ' ! 2 '
© 2004 by CRC Press LLC
( ( ( ( ( " 2 3 # 3 ! 2# # # 2 ! # #$ !
Section 5.6
457
Applications to Timetabling
5.6.4 University Examination Timetabling Basic Model
L ' - ' , F ,-+ - ' 9 - ' ½ -
. 0
1 ' - ( - ' - ' , ' ,2 1 / L '
DEFINITION
: - + # ' , 2 FACTS
:
( ' . 0 - -
( , + ' +
- '
Z
: ( +
- '
- %
+ ' '
@ ' - 2 1
- $ , - .½ 0
)- (
'
9
V '
) EXAMPLE
:
#
+ - . 0 )-
V ( + ! + ? , , -
9 , , .0 ! ' , - 2
' 1 , # $ , V , .-
2
0 F ,-+ + -+ , + + &+ - 1 ) ! ! , ! - ! 1 ' , ) )- . 0 Period 1 Exam-1 Exam-5
© 2004 by CRC Press LLC
Period 2 Exam-3 Exam-4
Period 3 Exam-2
Period 4 Exam-6
Period 5 Exam-7
458
Chapter 5
Exam-1
COLORINGS and RELATED TOPICS
Exam-2
1 7
3 7
Exam-3
5 Exam-4
3
Exam-5
2
Exam-7
7
Exam-6
Figure 5.6.4
7 #$ -* #9# #"-,
A More Compact Schedule
( - -
P (' , ', + , ; - # $ , Period 1 Exam-1 Exam-5
Figure 5.6.5
Period 2 Exam-3 Exam-4 Exam-6 Exam-7
Period 3 Exam-2
Period 4
Period 5
7 & $ #"- $ && 9 $ &,
REMARK
:
1 # $ . 0+ )-+
' ' F ,-+ ' , + , 2 + & , . 0 # $
%
+ - 2 # $
# $ 2 FACTS
:
1 ! ' + ' '
+
' + # +
+ - - 2 - '
: ( , ! + ? -
/ ' - V " ' ,
' ' : ,
+ , + DEFINITION
:
1
© 2004 by CRC Press LLC
Section 5.6
Applications to Timetabling
459
) ' - ' ' ' ' . - )0 The Breadth and Variation of Exam Timetabling Constraints
( 55$+ "2+ + # + 9 3" # 95$6 ! / ' ! ' $ " - 1 ' , ! ' " - . 55 0 1 2 !
; 5 , 1 - ' " - REMARK
: 1 ' - ' ! ! ' ! , ' , + V , ' ,
( ,
, ' ' K
, Heuristic Methods
- ! 3"$6+ 3 $6 ! ; + , , - 9 S , 5$& 39S $&6 1 ! - - ' ! 1 - 3 B$6 D 3 D5$6 - ! --, ' - ' ! ! ' ! FACTS
: % ' ' - !
. 0 ' , Æ . 3 B$60 1 -
:
1 ' ) !
Æ
' ' ' ! ! , HEURISTICS
+: %& : 1 2 , .
' 0 ) 1 - V ,
+: %& ;$* : 1 D
, ' , - - V
+: : F+ , ) - '
V .0 ,
-
© 2004 by CRC Press LLC
460
Chapter 5
COLORINGS and RELATED TOPICS
+ !
: : 1
) - ' - , - REMARKS
:
9 '
' - + - 2 ! ! ! '
3"$6+ 3 $6+ 39S $&6+ 39 $B6+ 3EB6+ 3EB6+ 3" 956 # ' + - 3B !6+ 3 B$6+ 3"5$6+ 395$6+ 3"4895&6+ 3 D5$6+ 3 D5B6+ 3@556
:
1 - ,
- . ' 0 2
1 ; 2 ! ' 2 ' ' 3 D 56 3 DD5$6
: , ' ) + - )
' V ; , ? -
@ 3 4 76 ' ' Two Different Random-Selection Strategies
"2+ ,+ 9 3"95B!6 ' ! 1
2 , - ! ! 3" . V ! ,0+ , 1 , / 3"95B!6 , .0 ; ' + Æ ' , . 0 .0 1 Æ . 0+ ' Hybrid Graph-Coloring/Meta-Heuristic Approaches
1 557+ ! + + 3 "+ $ "+ , - - ' - ! @) ! , ' ! ! #
' - - ' ' + 3B ! 6+ 3 B$6+ 3"5$6+ 395$6+ 3"4895&6+ 3 D5$6+ 3 D5B6+ 3@556 1 ) ! -+ 38 76 EXAMPLES
: , 1 31 5$!+ 1 5$!6
G ! ' - ! ! - ' 9 @, 1 , 2 , 1 )
© 2004 by CRC Press LLC
Section 5.6
Applications to Timetabling
461
) .$ 0 : .0 ,
+ .0 ,+ .0 ' + .0 ' L + .0 ' + .'0 , , ,+ .0 77 - - 1 '
/ ' ' : .0 / ' , - 77 ' 7+ .0 / ' ' - !
-
: "2+ , 9 55B 3"95B!6 !
.D + + @ 0 , )! E ' - ! . ' 0 , . ' !0 1 - , , , 2 , 2 ! 3"95$6
: "2 , - ? ,
3"556 1 - , ' + , , - F ,-+
' - ' -!
3 B6
: @' 3@76 + , 2
' F / 9 3FB&6+ ! 1 , ' ,
, - - V , ' +
, ' 2 # ' 2 + , - , . +
0 ! '! ! 77 REMARK
: ;
,2 , 5
' ' "2 ,
2 Æ # ! 3"556+ ! , / ' 7 ' 77 ' , L - 1
2!
Æ ( , ) ' - . C 0
© 2004 by CRC Press LLC
462
Chapter 5
COLORINGS and RELATED TOPICS
5.6.5 Sports Timetabling 1 ' - ' '
9 , , '
! ! @ , - - - / 1
.11S0
3
176 ( '
+ , ' 9
' 3"B6 ' ' 3B6 '
DEFINITIONS
:
;
' (
'
'
<
'
' , K
:
:
+ F+ '
- '
( .'
(' ,
'
" + ;+ '
<
+
+
'
! 0 , ' '
:
, ,
A
'
REMARK
:
# ' + , '
'
A Simple Graph Model
1 '
) , '
,
! +
; ,
'
.
, '
+ ?
%- '
3
6 ;
0 '
DEFINITIONS
:
D
'
'
! + ' ,
:
'
A .
#
0 ,
, '
1 ' '
© 2004 by CRC Press LLC
;
1 ! )
'
! ! , '
1 '
! '
4
Section 5.6
463
Applications to Timetabling
9 ! .+ 0+
4
1 ' ' - Ü : D # # # ' ! ' # # + < + A ' # 4
' # # - ! ' + A : ; ' . 0 ' .0 - ' .0 : ; ' + + ' !
' ' ' ; ' 4 4 ' ' !' / ' ; !' / 4
)
; ' !' + , - -!+ ' E + + ' ' / FACTS
:
; !' / ' ! ' +
# ' ' + < 1+ ' !' /+ ! '
:
; # + ! ' 4 '
!' /!
:
1 ! !' / ' ' + + L
@ + ! + !' / ' ! ' + ,
EXAMPLE
:
# $$ , ! . 0 '
< ' < $
Figure 5.6.6
© 2004 by CRC Press LLC
7 * ' ,
464
Chapter 5
COLORINGS and RELATED TOPICS
4½ 4 0+ ' 4 , , 1 !' / + . .# $&0 1 , ' 1 ' / ) ! ' ( + , # + + + 4 .0 4 .0 4 .0 4 .0 ! 4 . 0
. $0 . 0 . 0 .$ 0 . 0 . 0 . $0 . 0 . 0 .$ 0 . 0 . 0 . $0 . 0 . 0
Figure 5.6.7
" ## ## $
7 -# &$*,
%- ' )- + , # 1 2 ' , ' ! ' . 0!' / + , '
Profiles, Breaks, and Home-Away Patterns of a Schedule DEFINITIONS
: D 6 ' ' 1 " .F;S0 , 6 . 3B60+
" .6 0+ . 0 )
;% , % & & . .6 0 < F ' ' '
: # - . 0! 6 ' ' + 4 '
, ' " .6 0 1+ ) ' FK ;K , , '
: # - 6 + ) ' , ' ' + '
,
: # - 6 + . C 0 ' . .6 0 < . .6 0 (
, + ) ' , - FK , - ;K+ , ' . C 0 EXAMPLE
:
# $B , F;S , ! ' # $$ # $& 1 2 !
- )
© 2004 by CRC Press LLC
Section 5.6
465
Applications to Timetabling days
1 teams
Figure 5.6.8
1
2
3
4
5
A
H
A
H
A
A
H
H
A
2
A
H
H
3
H
A
A
4
A
H
A
H
H
5
H
A
H
A
A
6
H
A
H
A
H
$ +7 &&* )$ $ &$* ,,,
A Lower Bound on the Number of Breaks
%' ! + , '
+ , .+
' 2 /0 DEFINITION
: ; ' !? . 0 1 ' +
.0+ / ' @
' ! .0 ' .0 FACTS
3BB6 D !' / + .4½ 4 4 0 !' / ' ! ' 1 . .00 2
:
:
@ ' + . 4 0 ' 2 0! + .4 REMARK
: # - # $&
' 2 Irreducible and Compact Schedules DEFINITIONS
: ; '+ ,- ,
+ ' 2
: ; ' .+ F;S 8 0 FACTS
: ; ! !' / '
© 2004 by CRC Press LLC
466
Chapter 5
COLORINGS and RELATED TOPICS
:
( + ' , ; ) ' C +
, F ) ' C 1+ + $ % .( # $B+ , 0
:
" - ' . , 2 ' ' 0+ , ' 6
- 2 6 # ' + , ., ' 0 ,
# 5 , ' ,
-
6
! + 3
, 2 + D ' 2 3 ., 3½ 3 3 0 ( + , ) 3 < 3 < C
: .0
! 1 ' , - :
6 + , D 2 3 <
! ' .0 1 .3 3 0! , - ' < C .0 < < D ' < D
.0
EXAMPLE
:
# 6 # $& . F;S # $B0+ .3 3 3 30 < . $0 D < D < + .0 ' # 5 ) 1 , .0 )+ < A < A 1 - ' :
<
< < $ < < $ < < $ ( , ' , -' .0 ) Complementarity
;
' ' DEFINITION
: ; 6 ' '
? / / , / - ) FACTS
:
3BB6 (' 6 .' 0 2+ 6 . # &0
© 2004 by CRC Press LLC
Section 5.6
467
Applications to Timetabling
: (' 6 .'
0 , 2+ 6
: 1 , ,
- 2 EXAMPLES
: @ # $& F;S+
- # $B 1 / < $+ / < + / < ,
@
: # $5 , !' / ' < 6 ( F;S , 6
- . , 20 a
d a
b
d a
c b
d a
c b
K4
c b
F1
"
! 5 5
5 " 5 "
c F3
F2
"
d
"
5 " # # " $ 5
Figure 5.6.9 7 *" -# &$*
,
Constructing a Compact Schedule with a Minimum Number of Breaks
9
+ , < ; $ , - . + 0 - 2+ ,+ # + EXAMPLE
: # $7 ; $ ' %- ! - # $$
Figure 5.6.10 $ '*9 &$*
© 2004 by CRC Press LLC
#** "9 7$- ,,,
468
Chapter 5
Algorithm 5.6.1: 7:
7 . 0' 9 !$*
COLORINGS and RELATED TOPICS
;$ 10&
. 0! , 2
=:
@ . 0!' / ' : # < < 3 6 3 C 6 . 0 : < @ % : # < ('
3 6 . 0
3 6 . 0 # < ('
3 C 6 . C 0
3 C 6 . C 0
REMARK
:
1 ' / ) @ ' 3"B+ 6 ( ' / 3BB6
An Alternate View of the Canonical Factorization
D J J J J
+ -+ . 0 ' / ; $ . 0 ' ! ' + ) < < + < FACTS
: # < + ) ! X < J J J < J J J ( + < < J 1+ # 5+ ) , J - 2 3 < C + <
: # ' / - 2 ' EXAMPLE
: # + , - < < < J < J < J < $+ ' F;S ' # $B+ < J < - 2 + , < J < - 2 + , < J < $ - 2
© 2004 by CRC Press LLC
Section 5.6
469
Applications to Timetabling
Some Characterization Results FACTS
:
D 6½ 6 , ' + , 2 ('
- 3 3 3 ' , 2 + F;S+ " .6 0 " .6 0+ . ' ,0
:
- +
3 < 3 < + , , < .3 3 3 3 3 3 0+ , ' ' .3 3 0! ' ! ' ) # .# + ' # $& 7 < . 0 .3 3 3 30 < . $00
7
:
- 7 < . 0 , C C < + , F;S ' ,: ' ) ' , ; 2 C C C A ) ' , ; 2 # ) ' J ' ) ' EXAMPLE
:
1 F;S # $ # & ' < $
"
5
"
"
5
"
5
"
5
5
"
5
"
5
"
5
"
5
5
"
5
"
5
"
"
5
"
5
"
5
J J
!
J
Figure 5.6.11
7 +7 *
7
7
< . 0
" ## ## ## $ < . 0
,
REMARK
:
; 7 < . 0 ' - , C C <
- F;S ' , 2 # + F;S # $
' Feasible Sequences DEFINITION
: ; 7 < . 0 F;S ' ' , 2 FACTS
:
3BB6 (' 7 < . 0 ' ' + 7 < . 0 ' 7 7 '
© 2004 by CRC Press LLC
470
Chapter 5
COLORINGS and RELATED TOPICS
: / ' ' A ,-+ ' ' - / . 3E(,E760 : - .½ 0+ , F;S
: , J J J + , J - ! )A J - 2 C C C . < 0A ) ' , ;
# - F;S '
/ ' + , ) ./ 0 < / . < 5 / . < "
./ 0
: 3E(,E76 (' - F;S '+ '
/ ' + ./ 0 ' , / E -+ -
- + , -
./ 0
/
: 3E(,E76 ( ' 2 / + Æ
. J J 0+
/ - ' -
1+ ' 2 %. 0 - + , + '+ ' 7 < . 0A ' $+ 7 ,
' F;S CONJECTURE
3E(,E76 1 - # Æ ' 7 ' F;S REMARKS
: 1 , ' -
1 ' - '
: ; + ' 2 .'
+ - , ) 0+
,
' , ' 2
: @ ' - ' ! - 3 176 : #+ - ' /
'!
/ ' 1
' ' / ' . , -
- , - 0 @ 3B6 3B !6
© 2004 by CRC Press LLC
Section 5.6
471
Applications to Timetabling
References 3;FM5B6 ; @ ; + 1 E 4 + * FM 2- + + - S+ 55B
)
3;76 ; 9+ ; / !1 E ' @ 1 S + 7 / , .770+ I 3"5$6 ; "+ ; @
- 1 : 1 , 9-+ "2 S * . 0+ *
;* 8..G= 7 = H= < ;+ & = > 88GD< @ + .55$0+ I
3"B6 "+
+ !+ S+ 5B
3"$6 @ " + # @+ 5I5B
& .5$0+
* 2 ;* 8..9= = = = < ;+ & = > 8B:A<+ @ + 55B
3" 5B6 "2 E . 0+
* > ;* -::-= = ) = = < ;+ & = > -9B:<+ @ + 77
3"76 "2 S 2 . 0+
3" 956 8 "2+ + * # 9+ ; - 1 @ " E + , 7 & .550+ IB 3" # 95$6 8 "2+ + S F # * # 9+ ! 1 " - : @-+ "2 S * . 0+ * ;* 8..G= 7 2 = H= < ;+ & = > 88GD<+ @ + .55$0+ &$I57
* 2 ;* -:::= # = = = < ;+ & = > -:9.<+ @ + 77
3" 76 "2 9 . 0+
3"4895&6 8 "2+ 8 @ 42 + 4 F 8 + * # 9+ ; 1 : 1 @ ' ; + 7 .55&0+ $ I & 3"8S5&6 8 "2+ 4 F 8 S 9 S + ; @ # ' 1 ( + "2 E . 0+ *
;* 8..9= = = = < ;+ & = > 8B:A<+ @ + 55B
3"556 8 "2 4 S ,+ ; E ! - ; '
1 S + 777 7" .5550+ $I&
© 2004 by CRC Press LLC
472
Chapter 5
COLORINGS and RELATED TOPICS
3"95$6 8"2+ 4S,+ *#9+ ; E ; ' -! 1 + "2 S * . 0+ *
;* 8..G= 7 = H= < ;+ & = > 88GD< @ + .55$0+ I 7
3"95B!6 8 "2+ 4 S ,+ * # 9+ ; @ F @ ' 1 S + * 7 ;7@.A<+ ( @ !;+ , W 2 .55B0+ & I &5 3"95B!6 8 "2+ 4 S ,+ * # 9+ ( / @ - - 1 + 7" $ .55$0+ BI7 3"* 5$6 "2 S * . 0+ *
2 ;* 8..G= 7 = H= < ;+ & 2 = > 88GD<+ @ + 55$
3 B6 E 9 + ; ; ' S 1 S ! + 1! * AD2:6+ ' ( + - ' 1
.5B0 3 B$6 E 9 + ; @- ' S ; ' ; + / , .5B$0+ 5I7
1
3 4 76 E 9 4 + ( / !
1 + / , + .770+ BI 3 D5$6 E 9 D + * - S 1 + "2 S * . 0+ *
;* 8..G= 7 = H= < ;+ & = > 88GD<+ @ + .55$0+ I
3 D5B6 E 9 D + * - S 1 + "2 E . 0+ *
;* 8..9= = = = < ;+ & = > 8B:A<+ @ + .55B0+ I5
3 D 56 E 9 + D + 4 9 2+ ; @ @ + .550+ 75I7
3 DD5$6 E 9 + D + @ D+ 1 : ; ! @ ; + / , & .55$0+ &IB 3 &6 S T + ; , S ! @ * + E + 4 " #+ E 8 2 . 0+ , + @ + .5&0+ &I& 3 $6 ; 4 + 1 S ' 1 @ @ + & .5$0+ &I
© 2004 by CRC Press LLC
Section 5.6
473
Applications to Timetabling
3 856 1 "
4 F 8 + 1 @ ' * ( ' 1 S + $ .550+ $ I$ 3 $ 6 4 + " 2 @ + - ' 1 + 5$
*+ S + @
' !
3B6 9+ @ @ + S F . 0+ * + !F + .5B0+ BI5
3B6 9+ E/ ( @ @ 1 + .5B0+ &I$ 3B !6 9+ ; ( 1 + 7 I$
/ ,
3B !6 9+ + F ! 1 + , ; = $,< 5 .5B 0+ 7I
5 .5B 0+
/
3B !6 9+ % E ' - : ' ' @ @+ &'! .5B 0+ I$ 3BB6 9+ @ E ' ' @ @ + .5BB0+ &I$ 35&6 9+ 1 ' 1 + .55&0+ 7I
7 / ,
2 5$
376 S 2 "+ * ' - ! F S * + "2 S 2 . 0+
* > ;* -::-= = ) = = < ;+ & = > -9B:<+ @ + 77
3 176 8 + + E 12+ @ - 1- 1 ! S : ; ( S S ; + "2 S 2 . 0+ * 2
> ;* -::-= = ) = = < ;+ & = > -9B:<+ @ + 77
3 -( @&$6 @ -+ ; ( + ; @+ % ' ! V , + .5&$0+ $5I&7 34 &56 E * @ 4 + + 9F # + 5&5 38 76 # - 8 8 +
! + 8,+ 77
3 $6
+ 1 ' !1 1 + $* + .5$0+ &I&& 3W556 4 D 4 W+ 555
© 2004 by CRC Press LLC
*
+ * S+
474
3FMB6 * FM2- + ,
Chapter 5
COLORINGS and RELATED TOPICS
7 ) + E 5B
3FB&6 ; F / 9+ 1 @ 1 ' + 5 .5B&0+ I 38776 4 F 8 + E 1 S , @11D+ "2 9 . 0+ * ;+ & = > -:9.<+ @ + .770+ I 7 3EB6 8 E + 1 ; ' E @ S + .5B0+ &I$ 3EB6 8 E + ; " E @ + .5B0+ B I5B
72
3E(,E76 * E + F (,2+ 1 E + $ * ' & )!+ "2 S 2 . 0+
* > ;* -::-= = ) = = < ;+ & = > -9B:<+ @ + 77
3SB6 F S 8 @ /+ 5 + S !F+ 5B
/ %
3@556 ; @'+ ; @- ' ; 1 + .5550+ B&I&
0 ," '
3@@ B76 @ 1 @ M
+ 1 U ;
" ! + .5B70+ 7&I$ 31 5$!6 4 1 8 ,+ ' @ ; ' 1 S + / , $ .55$0+ 7 I B 31 5$!6 4 1 8 ,+
@ ' @ ; " 1 @ + "2 S * . 0+ *2
;* 8..G= 7 = H= < ;+ & = > 88GD<+ @ + .55$0+ I$
39S $&6 4 ; 9 E " S ,+ ; " '
' ; 1 S + 7 .5$&0+ B IB$ 39 $B6 9
+ ; @ ' - 1 + .5$B0+ I& 395$6 ; 9+ @+ 1 * I ; @ * P+ "2 S * . 0+ *
;* 8..G= 7 = H= < ;+ & = > 88GD<+ @ + .55$0+ $I&
© 2004 by CRC Press LLC
475
Chapter 5 Glossary
GLOSSARY FOR CHAPTER 5 $- -"
:
I '
' - !
' ,
-&
. ' 0 ! '
C 6+ ' 7
3
& . !0 I : 6 $: ' ##8- < ##8-= $-:
.
:
' '
'
0 #( . 6 0 6
2
'
-. 0'##8- $- I ' -. 0 :
Ê
"9
- ,
.0 -. 0 .0 .,
: ' -
- + - ' 0
I '
:
' !?
,
'&&- I - .0 ' : , < . / < 0 ' - - .- !0 &* # I : ' - , ' - , - ?
-
&9-#9 -& &9 .
5550:
< .0 #( . 6 0 6
-
. 0+ '
S
'" . ' 0 I : 6 1 #$: , " #$: , C !' ' - ' ,
C
L -
.
0
"'$9##$: , "* -" .0 I ' :
B
)
0 B . 0 < .0 "# #$: , - , - ' - , - $ -" I ' : - !
" .0 . ( 0'$&" #$ I ' , ' ( : Æ: ' < .0 ' - - +
' ' < (.0 ' ' < ' '$&" #$: ! ' - ! '$&" #$ I ' ' : Æ: ! ' - , < .0 '
.
0
.
$* #$:
<
<
, - '
? ! - - 0
© 2004 by CRC Press LLC
"
.+
476
Chapter 5
COLORINGS and RELATED TOPICS
'$- #$: ' - < !
. 0!
$- *8 I ' :
' ! '
A '
.0 $- -" I ' : ' - '
.0 $- #9- I ' : ' - + - ' ! ' A
. 90 $- &- I ' : ' - ! , $ A
[.0 && > : ' ' J.0+ ' ' .0 < J.0 C ) I ' : ' ½ )' #$ : ? I ' : ' ' - - ' ? $9##$ I ' < . 0: ,
- ,! +
- (
.0 ? * -8 I ' : 7! +
7.0+ , , - ' ' A + . 0 ' -
' ? -" I ' +
.0: / ' ? # -" I ' : # .0 ' # .0 ' ' .0 ? I : ' - ? ¼
¼
. : !' ) 0
?
I
:
? ' - . :
!
' ) 0
&&
I - .0 : ' - .0 -
&: '" #$: - , " -8* $9##$:
!
'" I + , : ' - . 0 ' -" I ' : - ' - ' A
.0 " ' I ' : ' " ': ,
© 2004 by CRC Press LLC
477
Chapter 5 Glossary
-#"9 #$:
, ?
2 30 2 #0 -#- I ' : . < . . 0 , < . 0 ' ,: - ) . C 0 . ' . C0
-# -' - $9##$: -! ' - A
# . ' - 0 - + + ,- .
3 #0
.
.
( #$:
, - .+ + 0
, , , -
& 2& ##9 I 7! .:
' , '
.
K -
& $&:
' ,
-
& $- -"
I '
+
, -
':
'
!
& &: - , ' #$: ! , ,! -
-# #$:
,
' - !
'
99 '*'* #$:
,
- , +
" '*-#& #"-:
) ' ,: - )
! '
*&" "9 $:
;
' " P
, ' !
$ $
$
$
"+
* '" #$: ! , * $ -" I ' : ' ' A
0 *@' '@ 7'* I ' : *'$- -" I ' : ' L ' ! ' A
.0 "
¼
.
¼
*': ' . 0 + ##: ! , , - - 8 $-: - / !
© 2004 by CRC Press LLC
478
Chapter 5
! '
:
'
COLORINGS and RELATED TOPICS
0'**': ' , - . 0 . 0+ ' ' .0 - + .( 0': ' ( . 0 - .0 . 0 ' .0 + 32 36': ' ' ' , 2 . 0 3+ ' .0+ , 2 3 2 3 + ': ' - !? , .0 + ': ' , + .
,
'
. ,
0: " ' .0+ ' .0+ , + ! -+ !- ' .0 + ' I ' " : ½ ' ' " . 0 - .0 + ': ! ' #"- 5'/ .0: ) (@1; : ; " b @1(%: " !' P / I ' : ' ' ½ ' ! ? ' ' .0 .( 0' &: - .( 0!' ' ' .!' ' - . (.0 ..0 .0 ' .0 +
I '
. 0 <
&" & $- -"
: )
I ' :
- - A
.0
8' Ê
: ' ' ' ' -
+ ' .( 0!' I ' : - < ./0 , .0 7 / #/ ( . 0 . 0 . 0 F . 0 < + ,
- , - #/ = >
= > ' ! 32 36'#$: , 2 . 0 3+ ' - - .0 #$ I : ' ! -
' . 0
*9 -" I ' : ' - ! , , -
' +-- *& I , < . 0 < . 0 ' - : ' ' , < +-- #$ " . 0: , - - , !
; ' - " . 0 ? ' F , + - -
$* &
: )
© 2004 by CRC Press LLC
479
Chapter 5 Glossary
$ I : ' , + + , ! - -
" : - ' - ' " , ' - ' "
' : " A '
: "
$--#$&- I ' .0
$9##$:
. 0
! < . " 0 , .- 0 "
$9#$- I : , F + ' ,
+ ' .0 $9#" I : , F + ' , + ' .0
*#* -": ' - !/
'
*#* & I ' ?
:
' -
!
*#* &: !? ' - *#*'& I ' : ' ' - - '
: 7! +
1.0+ , , - ' ' A + . 0
' ' -
*#*'& * -8 I '
& #$ I ' ' ' ' - :
. 0 , ! ! , ' - ' , -
' ? ' ' , ' , !
#$: ' , ' ' -
+ + ! ! , - ' - ' , - ' ? ' ' - - '
##: - , - '
,
- ' -* I ' - : ' ' - ' , ' I < . 0: ' ,
? ! 5 0 < + ' ' , , - '
.0 1 .5 5 0 .0 00 ' +
,
.0 # < + - '
' 5 ' 0
.0 # < + ' 5 0 ' - ' +
© 2004 by CRC Press LLC
480
Chapter 5
.' I < . 0:
5 0 ' 7
COLORINGS and RELATED TOPICS
' -
+
' ' , :
5 0 0 + - - .0 1 .5 ' 0+ .5 0+ .0 7 0 .0 0 ' .0 1 , ' , ' - : .5 7 0+ .5 0+ .0 ' 0 .0 0 #$ I ' : +
.0+ , - ' ' , - ' .0 ? ' ' ,
, ' "9 I ' : ' ! ' , .0 ' &: ' , ' & &&- I - ' : ' = ,> , - ' .0
- -
& $- *8 & * $- -": & $- -": & " #$: ! , !
&$:
' ' +
+
'
"$ "
' +
+ +
-#-:
, ,
' ,
)
) $- -" I ' : A
.
!0
'
-$ -" ' : / ' A
E .0 -8-- ?: ' - !/ ' -8* $9##$: , ' + . ' 0 + ' ': , 7 ! + 7 ': , ' ! @ + ":
- + ?9 " : ? + '
$"$* -#8 - '
+
I '
:
, -
- -
)$'/ '()
I :
7 +
, ' '
!V , . ' , ,
- 0 !V , . ! 0+ -
**'9 ##9:
, - '
- - ?
' :
- -
½ ' + ' ½ ½
- - 2 ,
© 2004 by CRC Press LLC
481
Chapter 5 Glossary
* '
:
I '
! ! , !
' A ' ,
# # -" - G
'
: ' ' - G
I '
+
#$ #$ $-@ $ I '
# #$ # -8
/ ' -
' ,
! ' ' '
: ' :
! '
! ' ! '
: : 7!
7
, ' - !- -
+ !- -
:
G.0:
E
8
8
- - '
'# #$: , - . ! 0 - ! " ' .! " < 0+ ." 0 < G." 0 '# #$: , - . ! 0 - ! " ' .! " < 0+ ." 0 < ." 0 #- I ' 5: ' ) 5 < 2½) 2) 2) , - ? ' A
5 #- #$: , - ' , ? ' . 0+ ' + ' ' ' ?. 0 ?.0 9.0: - ' 5 # * I ' : - ' ' +
' ' , A
< . 0
# #$ # 8&
:
8
: 2 , -
' + -
'
$'8:
S
,
$
-
-
## 8'
I '
'
*- #$ +
: D
!
!:
- ,
' -
' -+ ,
- ,
7 ,
, .
0
I '
:
1
' '
. 0
0 -"
!
!
!
< 1
' - !
, - ' A
0
.
$' #$ : © 2004 by CRC Press LLC
, - $ $ .0
482
Chapter 5
COLORINGS and RELATED TOPICS
$' "-A 1 ) : - - $+ $! P &-# 8 I ' : - , - '
&0: ! ' + , !!
& &: +
+ ' &? I ' : ' ? - A
&"9 -" I ' +
.0: / '
&** &-#8: J < , : 7 < < &$ I ' : ' , & ' I ' : - ! , +
- ' ! , - , - 7! ,
- , *L ! #$ $-@ $: ' '
' !
!/0&B; -": " &$: , , -
' !
-" #"-:
'
' '
: ' - . - 0 +
##:
, , ? - G -
#$ I ' < . 0: - + C ? '
A
/ .0 $&& I ' : ) C ,
,
?
6 #. 6 0 6 .0 , 2 - 6 .0 #. 6 0
' ' 6
.0
: '+ , ' ' -' - $9##$: - - - ?9 <8'=" #$: ? , ' + '
?9 *'" #$: ? ! , ' + '
## $- -" I ' : ' A
.!0
8 I ' : ' .0 - '
'
© 2004 by CRC Press LLC
483
Chapter 5 Glossary
'8' #$: ! ,- -
,
8': ' - . - 0 + ##: , , ? - - 8' -" I ' : / ' - - A
: .
0
*9 -8
I '
- .
8'** &"#$:
C
.
0
¼
.
0
© 2004 by CRC Press LLC
7! , , '
+
:
"
C C
< .
¼
- ? ¼
0 '
' , -
8')$* #$: ,
0 ' '
, - -
¼
+ .
< .
0
¼
-
0 ,
' '
! -
Chapter
6
ALGEBRAIC GRAPH THEORY 6.1
AUTOMORPHISMS
6.2
CAYLEY GRAPHS
6.3
6.4
ENUMERATION
! GRAPHS AND VECTOR SPACES
"!# ! $
6.5
SPECTRAL GRAPH THEORY
6.6
MATROIDAL METHODS IN GRAPH THEORY
%& &
' $( ) GLOSSARY
© 2004 by CRC Press LLC
Section 6.1
6.1
485
Automorphisms
AUTOMORPHISMS
!
" # $%
Introduction &
' ( ) ) ) $
* + , - ) ) + !( !, $ ) ) . / 0 + , $ ( ) % ( ) . % /( ( % ( ) )
1 + , ( )
6.1.1 The Automorphism Group DEFINITIONS
2
( + , + , +, +, + ,
+ ,
2 ( ( )
+ ,
( ) + ,
)
2
© 2004 by CRC Press LLC
486
Chapter 6
ALGEBRAIC GRAPH THEORY
REMARKS
2
1 & + , ( &
2 $ ) ( & ) + , + ,
2
1 . / ( ) ) & ) + , $ &
) ( + , ) EXAMPLES
2
3
+ , 4 4 ( + , 4 ( ) %& ) ( %& ) + , 4 5 - ( + , ( ) ) )
2
2 67!8 5 +,(
% )9
2
& + % , % ½ ( ) + % ,
FACTS
2
3 + ,
)
+ ,
2
7 (
2 % ( : & :
%& )
6.1.2 Graphs with Given Group DEFINITIONS
2
( & +, 4
2 ) + , + , $ - ( & - ( &
© 2004 by CRC Press LLC
Section 6.1
487
Automorphisms
2 +½ ¾, +½ ¾ , & +½, 4 ½ +¾, 4 ¾
2 7 4 ( ) 1 ½ ¾ &
; 2 ½ ¾ ) 9 2 ½ ¾
++,, 4 6;+,8+ +,, ½ ½
( 7
Figure 6.1.1
$ ( (
2 ½ ¾ ) 9 2 +½, +¾ , ½ ¾
& ½
+½ , +¾ ,
& ¾ 2 2 )
+ ,< NOTATION
7 % ( + , + , + ,
EXAMPLES
2 + ,
5 +, = )
2
7 + , +, ) +, ) ) ( ( ) 5 +,
2 ¿ ½¿ +¿, ) ) +½¿, FACTS
> : < (
+ ,( + , 4 +, +,
2 6= "8 + , +) ,
& ¾
© 2004 by CRC Press LLC
488
Chapter 6
ALGEBRAIC GRAPH THEORY
2 618 3 ) ( $ & ( 2 67"8 ! ( & % + , +) , ) ) 67?8
# (
2 65!8 $ 7* ( + , (
)
(
+ ,(
( @ )
$ ( 7 & ( ) - + , ) +$ + , )
( + , ) ) ) , ' ( . / )
.) /
2
) ) 9 & & ( +, 4 ! 2 6A)!8 $ % 0 ( ( ( + , 2
+ , 4 ?< +
, 4 B< + , 4 +5 65 !8,
REMARK
2 >&
( 7*
FURTHER READING
C 671!8
6.1.3 Groups of Graph Products $ ) ( ) D ) D ( % ) & + , + ,(
) ) + ), 9 $ ) + 6$ $C!8, & & B % E
( ( ( + D ,D D+ D ,
© 2004 by CRC Press LLC
Section 6.1
489
Automorphisms
DEFINITIONS
%
2 3 ) ) 3 ) + , ( ) + , 5 + , + , + , 6 + , 4 8 6 4 + ,8
) ( 4
<
6 + , 4 8 6 4 + ,8 6 + , + ,8
( 4
< + , + , ( 4 < + , 6 4 + ,8 ( 4 6 8
7 ( )
Figure 6.1.2
" # $% #
2 + D, & 4 D 4 D
2
+ D, ( ( &
2 + D,
2 3 ! ) " ( 1 % ! ) # " & & × ! #+ $, 4 ++ , «× +$,, + $, " GENERAL FACTS
2
6$ ?8 &
$ ( 6 8 4 6 8( ) ( ) ( ) + & ,
2
& ( ( 6 8 4 6 8
© 2004 by CRC Press LLC
490
Chapter 6
ALGEBRAIC GRAPH THEORY
FACTS ABOUT CONNECTEDNESS
2 + ( ,
) 2 3 ) ) ) ) 2 6 8 FACTS ABOUT DECOMPOSITION
2 65 B8 > :
2 7 ) )
2 6$ !8 &
) ) (
( : FACTS ABOUT AUTOMORPHISMS
2 65 B8 $ ( + , )
7 B
2 3 ) 4
+ , + , C &
7 ) ( % + , 4 + , + , 2 + , + , $ & 4 ( % +, 1 % ) &+ , + , + , ) + , &+ , % +, 4 % +,< + , + , % +, 4 % +, < + , F+ , 4 2 65 8 3 ) + 6 8, 4 + ,+ , 2 + , &+ , 4 F+ , ( +
, + , 4 F+ , 2 > D & ) & FURTHER READING
7 ( 6$ G BB8
© 2004 by CRC Press LLC
Section 6.1
491
Automorphisms
6.1.4 Transitivity DEFINITIONS
2 $ ( + , ) 4 2 +, 4
) C & + , + , ) ) + ,
2 + ,( & + , +, 4 + ,
2 + , + , 9 ( & + , +, 4 +, 4
2
& ) )
2 ) &
)
2 ( +', ) ' &( ) ) ( % % % % ) + , 4 6+',) 8 $ + , ( B( $ + , 4 B( $ 6 +* ,)' 8 )(
$ )& )
( FACTS
2
$ & ( + , 2
+ , + , 9 ) + ,< + , 4 + , 2 +, 4 < $ % ( + , 4 + , + ,
2
$ & (
&
2
$ ) & ( ) $ ( + , & ) + ,( ( )
2 2 2
67 !8
B $ ( ) & 6 8
! > %
7 & (
© 2004 by CRC Press LLC
492
Chapter 6
ALGEBRAIC GRAPH THEORY
2 6A !B8 7 ( & ? + H , 2 6= "8 ! 2 61"?8 > % )&
2 6"8 3
) ( & ( % : 2
<
+ , + , % + ) , ) - + ,) % )% ) C + ,) ) %
I % * 6A!8
( 2
2 $ ( % ( &
(
( ( B + 6 +,)' 8 + ( )
2 6 "8 & + , - % ) % ( ) % )
2 65?8 7 %
EXAMPLES
2 1 , 4 ( ) & 2 - ) $ 4 ( - & ) ) ( 7 +- , 4 = ( - )< +- , 4 " 2 & ) J ' + * , 2 3
4 ) ) (
4
'
2 ( ( & + % ,
% &
2 % ) ) - % : 7 - * + 7 , )
+ H , + 61"?8, REMARK
2 7 & &
( 6$"!8
© 2004 by CRC Press LLC
Section 6.1
6.1.5
493
Automorphisms
-Regularity and -Transitivity
$ & ) %
) ) DEFINITIONS
2 $ (
4
2 1 )
2 7 B( -
2 ) + , *+ +
2 ) + ,
2
, ,
FACTS
2
$ (
( : +, 4 $ % ( 4
2
6 8 3 ) & <
. + , H ( . + , <
( + H ,
2
61!8 3 ) % + H / , ( / ( ( / $ + , ) ( ! 4 + C %
5 65?8, EXAMPLES
2 2 2 2 2
B
) ) ) 4 : < :
© 2004 by CRC Press LLC
494
Chapter 6
2 2
ALGEBRAIC GRAPH THEORY
$ :
: ! ( % 3 +! , ) 7 * 4 B ( & * ) 9 * ( * H ( * H
6.1.6 Graphical Regular Representations DEFINITIONS
2 ( + , + , ( (
2 +% % , 2
) )
&
0
&
0
4
0
& < 4
,
,
0
<
<
" :
1
C
FACTS
2
$ I
( + , 4 $ )
)
2
6I ( 5 ( $ !B8 )
) 4
2 2
6J "( 1!8 J C
) C
2
(
4 61!8<
+, 61!8,<
1
4 61!8<
) ! & 6J 1!)8< ) " &
6J 1!( 1!8
( (
2
6=! 8 > % ) ) ( C ( ) &
2 2 2
61!8 5 +,
+,
6 "8 > % )
6A) "8 3 ) ) 2 3 + , ) )
© 2004 by CRC Press LLC
Section 6.1
495
Automorphisms
+ , * & 2
( ( 3+ ,
1 ) ) % *
$ ( 68 4 *
2
2 *
61! 8 3 ( 2 * 68 )
9 + , ( + , 4 ¾
$ ¾ + , % (
%
6.1.7 Primitivity DEFINITIONS
2 3 ) ) 4 +
, ( +4 , 4 4 +4 , 4 4 I ( )
$
) -<
) - ) -(
< )
) -(
2 4
$
4 ) -( (
2 )
& EXAMPLES
2
+ ,
$ ( ) - ) ) &
2
( )
< )
+ ,
2 2
>& (
) ) - C ( &
& FACTS
2
& & ) - + , =
2
$
( : E + ,(
&
© 2004 by CRC Press LLC
496
Chapter 6
ALGEBRAIC GRAPH THEORY
2
61""8 3 ) %
( ( ( 1
%
2
6K1"?8 3 ) & % ( % (
4 4
2
6K1!!)8 3 ) & + , 4 Æ )
& ) )
( ( )
2 61B8 3 ) % ( %
+ , 4 ( ( & ) & ) ) # ( ) ) / /
2 6 $ 511 "?8 3 ) % ( ( &
6.1.8 More Automorphisms of Infinite Graphs . / % ) ) 0 ./ ( )
% ( % ) = 6= 8 $ ) ( ) %
( + , DEFINITIONS
2 3 & & + , 1 & & & & & & + , ) +& &, +& &,
%
$ : + ,
2
:
+ , ( % 5+ , 4
+ ,
2 $ ) & + ,( & ) ) & $ & & + ,( & &
2
2 + , + ,
+ ,(
+ , +, +, + ,
$ ) 9 ( > % ) 9
© 2004 by CRC Press LLC
Section 6.1
497
Automorphisms
2
%& % ) + ,( ( + , 4 %
2 ) + , + , % ) 1 + ,
2 % ) % FACTS
&' ()"*+ *,
2 6GL 82 3 ) + ) % , : % ( ( 9 ) 5 ( & 9 &
2
$ ( % $ 5+ , 4 B
2
6= 8 3
& &
+ ,
% % )
: 2
& & J % ) & & % 9 +% , &&
2
1 % ( 5+ , : )
% % ) + , I + , + ,
2
6= !8 > %& % )
2
6= !8 $ % %& % ) (
2
% ( ) % + , ) % + ) ) ,
2
6= !8 > % %& )
2
6= !8 $ % ( + , ( 5+ , 4 ( A ) 7 = K 6K"8( )
% %
2 2
$
( % ( 5+ , 4 ¼
5 $ ( 5+ , 4 + . / ) , $
( 5+ , 4 $ & ( 5+ , 4 ¼
© 2004 by CRC Press LLC
498
Chapter 6
ALGEBRAIC GRAPH THEORY
2 65?!8 $ : ( + , ) + , % ) 2 65?!8 ) :
2 6A)1"B8 5
% $ + , ) " + ,( 5+ , 4 $ " + , ( + , + H , 6+ , 4
2 65?8 3
) ( % ( & + ,
) % ) & + ,
2 6= "8 >
9 &
( ( ) %
9 ( %
9 $ (
9 )
& EXAMPLES
2 ) ¼ ( C (
) E ( % 5 % (
%
2 3 ) ) ( ) $ % (
& = ( % (
& $ (
+ ) , 2 3 + , 4 ( + , +, , +, H , +, B, +, H B, , ( ) 7
: 5+ , 4
2 % + % ,
¼
2
> + , & : &( +
, : &( +
, & & : &
2 ) +(
&, & ( ) & Strips
© 2004 by CRC Press LLC
Section 6.1
499
Automorphisms
DEFINITIONS
2
%+ ,,
+
2
& )
+ , %+ ,
+ ,
%
( ½ + ,(
+ ,
%
REMARK
2
$
(
) % %
½
(
$
9 +5 6K1!!8,
FACTS
2
7 % ( : 2
<
% + , % )
6K1"8<
2
% ( 5+ , 4 ( + , 6$ 5""8
6$ 5""8 3 ) (
% ( &
2
6K1"8 5 + , )
) ! + ,
½
! 4
+ , 4
(
( 5+ , 4 (
7
% ) 7
2
61?8 $ (
2
61?8 3 ) '
+, 4 +
+ , + H ' H ', 2 + ,8 + ,
,)8 8 4
9 +
,8
& + ,8
& ) )
2
6K?8 3 )
)
+ ,
% )
+ , %&
$ (
) + ,( % %
Some Results Involving Distance DEFINITIONS
+ ,( + +,, + 9
© 2004 by CRC Press LLC
+ ,
& 9 ( B
2
500
Chapter 6
ALGEBRAIC GRAPH THEORY
2 ) ) 9 )
2
)
3 ) ) :+, %
:+, 4
+ , + ,
+, + , ) 9
2 2
) & ) :+&, ( B
$ + ,( & +&, &
( & FACTS
2
6K1"8 ) ) + , & GL * .' -
/( - % 2
2
6 1?8 7 & + , ( & )
2 B :+, ) $ ( :+, 4 ( )
2 6 1?8 $ ; + , %& ) ( ) %& ) C ;
2
6 1?8 5 ; + , %& ) $ :+ , + ( ; %& ) :+ , ( :+ , $ :+ , 4 (
2
6KJ ?8 $ ; + , ( :+&, 2 & ; 4
EXAMPLE
2
3 + , 4 & + , 9 + , + ,( % ) , 3 ; + , 4 + H H , + , + , 3 ) ) + , + H , + H , + H H , :+, 4 ( J & + , 2 ; ( %& ) ;
References 6A)!8 3 A) ( E
( +?!,( !M!B
© 2004 by CRC Press LLC
Section 6.1
501
Automorphisms
6A) "8 3 A) I N ( E I ( +?",( ?M 6A)1"B8 3 A) # > 1- ( I % ( +?"B,( ?BM? 6A!8 = A(
% ( +?!,( BM
6A !B8 $ O A ( P& ) (
+?!B,( M! 6I 8( IQ I ( E 5) ( ?M?
+?
67 !8 K 7 - (
(
+?
,(
!,( M
67!8 7( N * G L ( +? R!,( !M 67"8 7( =
) )- ( ! +?",( ?MB 67?8 7( ) ( +??,( M!"
671!8 7( K > ( # > 1- ( C ( " +?!,( M" 6 "8 I N ( * ) ( 2 " ! # + I 5C ?!",( 3 3 SC P 5S ( ,( I : 5 KS A ( J = ( ( ?"( M? 6 $ 511 "?8 I N ( 1 $ ( J 5 ( # > 1- ( 1 1 ( E ) % ( # ! +?"?,( M " 61""8 K > # > 1- ( C %
( +?"",( ?M B 6 "8 $ -( N % ( $% &' +?",( ?MBB L 6= 8 = ( ') 1 (
+?
,( M!
6= "8 = ( N #& C C 1 ( ( +? ",( ?M! 6= !8 = ( % % ( $ " +?!,( M"
© 2004 by CRC Press LLC
502
Chapter 6
ALGEBRAIC GRAPH THEORY
6= "8 7 = > # ( E ( # 5 = +? ",( M ? L 6=! 8 N =C ( ') L N TL ) ( ! $ !+ ( ?!
) *
6= "8 N 7 = ( ) ( +?",( BMB L 6$ ?8 1 $ ( ') & - - ( ! +? ?,( "M
#
6$ !B8 1 $ ( ) ( 2 &! ! +I : # 5 KS A I : A U ( = ? ?,( >U ( ( P 5S ( J = ( ( ?!B( M 6$ !8 1 $ ( C - ( ( / &&( +?!,( BM?
+ ,! - .!!
6$ $C!8 1 $ = $C) - ( ( +?!,( !!M" 6$ G BB8 1 $ 5 G VC( 1 D 5 ( $( J Q -( BBB
!
# !* % " ( K
6$ 5""8 1 $ J 5 ( ( +?""R"?,( M! 6$"!8 P $ ( E ) & ( +?"!,( !M" 6K"8 = K( % ( "M"" 6K?8 = K( E % %& % ( M
)!
! )!
+?",(
)! +??,(
6KJ ?8 = K J ( N % ( ( +??,( "MB 6K1!!8 = K # > 1- ( E % % ( ! +?!!,( M 6K1!!)8 = K # > 1- ( E % & ( )! ( M 6K1"8 = K # > 1- ( 7 % ( ! +?",( ?M 6K1"?8 = K # > 1- ( %
( +?"?,( M !
© 2004 by CRC Press LLC
Section 6.1
503
Automorphisms
6GL 8 N GL ( ( 3 C ( ?
# ( -
P
6J "8 3 J C( E & C ( +? ",( ?M 6J 1!8 3 J C # > 1- ( ) ( $( +?!,( ??MBB" 6J 1!)8 3 J C # > 1- ( ) ( $$( +?!,( BB?MB" 6 1?8 J # > 1- ( E ) ( " +??,( M
65!8 5) ( ( +?!,( M 65 B8 5) ( (
0! +?
65 8 5) ( & ( !M!" 65 8 5) ( P& ( 65 !8 5) ( W (
B,( M!
) - +?
! +?
% ( J
,(
,( M"
( # ? !
65?8 J 5 (
( +??,( M
65?!8 J 5 P $ % ( : ( +??!,( BMB 61"?8 I # > 1- ( $% & ( ( ( +?"?,( "M 6"8 P $ % (
( $% - +?",( J ( BM! 6 8 1 (
# !( ' ( ( ?
61!8 # > 1- ( E ) (
+?!,( ?MB
61!8 # > 1- ( E 1( 2 # &! !( +Q ( N 3 -( 1 ( , 5 P ( A ( ?!( BM 61!8 # > 1- ( (
(
( 1 +?!,( BMB 61! 8 # > 1- ( (
+?! ,( !M
© 2004 by CRC Press LLC
504
61?8 # > 1- ( > ( BM!
Chapter 6
ALGEBRAIC GRAPH THEORY
+??,(
61B8 # > 1- K > ( C %
( ( L 61!8 # 1 ( ') L ( ?M
+?!,(
618 = 1 ( I ( +?,( BM "
© 2004 by CRC Press LLC
Section 6.2
6.2
505
Cayley Graphs
CAYLEY GRAPHS I $
5) 7 C 7
Introduction :
: E
I )9
6.2.1 Construction and Recognition 1 % ( % ( ) ) % 1 I % I % ( I % I % ( DEFINITIONS
2 3 ) % 3 ) ) 4 ½ ( ( ½
( I+ < ,( %2 I+ < , < 9 2 < I+ < , < 4 2
1 : $ ) ) ( ) ( 4 < 4 2 H
I
I+ ,
2 I 1 I +< ,
2 2 2 2
) 2 +<, 4 2<
2 ) 9 & + , ! " ! +, +,"
© 2004 by CRC Press LLC
506
Chapter 6
+ ,
2
)
2
3
+ ,
+ ,
) % X
ALGEBRAIC GRAPH THEORY
: ( )
$
%
2
%& X <
4X<
=½ =
X(
: 2
= 2 4 =
EXAMPLES
2
) 1
) C I )
(
C ) 1
) C
I ( ) C 9
2
) I
( 1
)
2
( , (
C) ,( )
C
2
% % 7 +>,( >
: 7 +>,(
2
#
+ ,(
4
!
Figure 6.2.1
)
-
- "- .' $ *"" "
FACTS
2
> I &
2
I I+
2
65"8
<
,
/$"
2 I + ,
)
REMARKS
2
5) * ) )
- C
) I $ )
2
I
$
© 2004 by CRC Press LLC
-
Section 6.2
507
Cayley Graphs
6.2.2 Prevalence
I &
I
:
% &
& I (
& I &
Figure 6.2.2 0 #1%*% 23# 2 " EXAMPLE
2
$
(
)
) -
) & 9 I ( &
)
(
( Æ %
FACTS % ) C )
:
/
2
2
( ( ) ) :
2
3
/ > ) / + >
/>
2
/ > < ¾ > 4 / ( > 4 < > 4 H / / 4 > 4 / 4 H < / 4 !( > 4 <
© 2004 by CRC Press LLC
<
508
Chapter 6
2 3 / > ) 2 /
>
/
# + ,
/
4 !(
/
# > # + ,(
/
# > # + ,(
/
4 !(
>
/>
<
>
/ + >
ALGEBRAIC GRAPH THEORY
>
# + ,<
4 <
/
/
( /
>
>
4 <
<
4 ?
2 3 / > ) / + > + />
/>( / > ) ( />( / > ) ) 2 ·½ /> 4 + H ,+ H ,( $<
/>
/>
4 + H ,+ ,( <
4 +
4 + H ,)<
/>
/>
4
H ,)
/>
4 + ,)
4 +> H ,)<
/
4 +> ,)(
/
<
4 H
( 4 / > < / > /
> <
>
4 +/ H ,)
>
4 + ,)
/
4 / H (
4 +' H ,)+' H ,(
'
/
/
4
'
' H (
/
/ ( >
/ ( >
4
4 +' ,)+' ,(
) +'
4
H (
) <
/
/
H <
4 + H ,)<
4 +' ,)+' ,(
+'
H ,)+' H ,( ' + ,) /
4
>
>
>
>
4
+'
/ ( >
,)+' ,( 4 +' ,)+' ,(
) <
,)+' ,(
4 +' ,)+' ,(
'
<
/
/
4 ( > 4 + H ,)( 4 ( < 4 + H ,)( > 4 ( 4 H ( 4 <
/
4 (
>
4
4 ?<
/
4 !(
>
4 !
4 !
RESEARCH PROBLEM
42 $ ) ' ( B ' Y - C )
6.2.3 Isomorphism 5 - I :
I
© 2004 by CRC Press LLC
Section 6.2
509
Cayley Graphs
DEFINITIONS AND NOTATIONS
2
I I+ < , " I+ < , 4 I+ < ,( & %+ , 4 +,
2 2
" I
I$
3
2
3 4 /½½ /¾ / ) C 7 , B , + ( + , 4 +, , , ,
,
: $
,
# ,+ / , B ,
+ /
( 4 $
3 & +, 4 ,+, 2 B , + 7 ) & $( & +, & +, , 4 B " 1 ( & & 2 3 4 /½ /¾ / ) C $ 4 + , $
+ , J
4 B( 4 $
3 + , )
( & $ $ ( &( 4 ( ( +&, 4 +&,) $ ( +&, 4 +&,( +&,
&
EXAMPLES
2 I +!< , I +!< , - 2 2 N% ) ( )
2
7
4 ( 6 4
4
? ? B 8
? B ?
I +< , I +< , ) E (
4 % ( I$ FACTS
2 6A!!8 3 ) I % I$ ) + , 9 + ,
© 2004 by CRC Press LLC
510
Chapter 6
2 63 B8 $
I$ (
ALGEBRAIC GRAPH THEORY
)
2 6#?!8 I$ 4 ,( :
B (
,
" ? "
2 3 / ) / I$
E (
/ 4
/ H
( I$ :
E I$ I I$ ) S * 6A 8 &
2 6 !8 $ / ( ) & /
;+, /
+/ ,) ; >
2 6 # B8 $
4 / / / ( / 4 ( )
/ / /
;+,
½ ¾
;+,;+ , ;+,
& Ê
- ) ( - ) & $ / 4 ( & 4
& - ) EXAMPLE
2 1 7 4 B ) +(,( +(,( +(,( +(,( +(, +(, ( & ( +(, 5 / 4 ( & 4 ( ) & 4 +, 4 7 & 4 ( +&, 4 & 4 - ) 7 & 4 ( +&, 4 & 4 "( ) ) 7 ( & 4 ( +&, 4 & 4 " ) 1 ) % B RESEARCH PROBLEM
42 7 /(
I$
© 2004 by CRC Press LLC
Section 6.2
511
Cayley Graphs
6.2.4 Subgraphs : ) I 5
& (
$ 9 &
& )
DEFINITIONS
2
½
( (
2
)
(
( 4 ( ! "( ( ! " ! "
%&
)
! "
4
(
=
(
$
- +
2
0 4
)
4(
0
=
FACTS
2
3
$
2
)
(
$
& $
(
&
& (
2
6#!( 1!B8 $
&
2
6 ?8 $
I+
2
2
<
,
&
!
:
6IZ "8 3
2
( I
,(
&
)
) I % ) $
)
7
,
& ( & 5 ( B( & & 5 H
7 (
(
(
=
) $
© 2004 by CRC Press LLC
)
=
61 "8 > I
( =
/ ( /
512
Chapter 6
ALGEBRAIC GRAPH THEORY
6.2.5 Factorization DEFINITIONS
2 2
( ) ½ )
2 =
( =
2
) ) FACTS
2
65"8 > I 2 4 '<
) <
C
2
65"8 I
I C 2 <
) ) & < / / / (
2 $ ) I ) ) & ( C
2
63 ? ( 3 B8 $ 4 I+ , I )
I ( =
2
67 ?B8 $ " ( ) 1
C ) " 7 ( C " )
RESEARCH PROBLEM
42 3 ) ( I ( &
$ ( + ,(
C ) Y
© 2004 by CRC Press LLC
Section 6.2
513
Cayley Graphs
6.2.6 Further Reading REMARKS
2 & ) ) I
) ) 5 I ! ) - 6"!8( 6 !8( 61B8 & 6 K1B8
2 I I ) 7 6OB8 I : - ) - 6[B8 6-G"?8 I - & & 6 ?8 63?8
2 I 63 B8 2 ) & I 6A?8 ) 6$B8
References 6-G"?8 5 - A G (
-( & ! +?"?,( M 6 ?8 A ( I ( +??,( !M?
& !
6 ?8 J ( )(
- 2 ! 3 &&( 3 ( # L 3 3 S C( #$ J = ( ??( !?M!" 6 # B8 A # # ( > I 2 $( )! +BB,( !M? 6A!!8 3 A) ( $ )
( " ? +?!!,( ?M
6A?8 3 A) ( ( ( (
- 2
! 3 &&( 3 ( # L 3 3 SC( #$ J = ( ??( !MB 6A 8 J A 9( S * ( I ( 1 ( J Q -( ?
© 2004 by CRC Press LLC
!(
514
Chapter 6
ALGEBRAIC GRAPH THEORY
6IZ"8 I I I J Z ( E
) ( I ) # P$$$( ( ! ! ( 5 P ( ?"( M 67 ?B8 K 7 -( E ) ( +??B,( BM 6"!8 K 3 1 -( ?"!
#
" # ( 1 ( J Q -(
6$B8 # $ I > ( E I & ( +BB,( M? 63 ??8 I = 3 ( 7 I$ ) ( ?M
63 B8 I = 3 ( E % I \ ( +BB,( BM
+???,(
)!
63 ? 8 K 3 ( =
I ) ( ( +?? ,( !M" 63 B8 K 3 ( =
I ) ( ( 63?8 3) C-( I 2 ( & -( ( +??,( M"? 6#!8 1 #( > > ( +?!,( M S * 9 ( 6#?!8 # #C-( E S +??!,( ?!MB
!
)!
V 6 > B8 A ( K 5 S V( K9( - # 1- ( I ( 6 !8 (
( 5 P ( J Q -( ?!
65"8 5) ( E %& ( +?",( "BBM"B 65"8 5 ( E C) I ( +?",( ?"MB!
6 !8 K (
) ( +? !,( M 61!B8 # 1- ( I ( M? 61B8 1 ( # ! 2 # ! = ( ( BB
© 2004 by CRC Press LLC
2!(
+?!B,(
# 5 ( J
Section 6.2
515
Cayley Graphs
61 "8 N 1 ( I
(
6[B8 K [(
+?",( B!M
" !! 2 & (4 -!
( G (
N ( BB
6OB8 [ O( I )2 ( B
© 2004 by CRC Press LLC
)!
+BB,( !M
516
6.3
Chapter 6
ALGEBRAIC GRAPH THEORY
ENUMERATION
! I I I I I
5 # N I
I 5
Introduction $ - I ) C :
(
- ) C
$( ( : & ) # : ) ?! - S + 6S "!8 > , 7= 6=8 & (
( (
) I 6I!( I"?8( % ./ #
) A =C 6A =( A =)8
) S 6S "!8( E 6E"8( = 6=?8 & ( ) )
( ) 6=!8 ( - % :( : - % 65 ?8
6.3.1 Counting Simple Graphs and Multigraphs DEFINITIONS
2 ) ( ½ ¾ ( ) )
)
2 4
© 2004 by CRC Press LLC
Section 6.3
517
Enumeration
2
. ) .
% ) 2 ' . +, . +, .
2
. .
)
FACTS
2
) ) , )
5 ) Æ ,
2
+ , 7 , ( ¾ ( ) ) , ) ) ,
2
) )
Table 6.3.1 ,
B
5 )
5$*" * - 2 " "
B B B B B B
(B
B
! " ? B
+¾ ,
"
,
!
"
B ( (BB (BB ( ( (BB (BB ( B
B (B (?" B(? ( ("B B(?B ?(?B (! (! ?(?B B(?B ("B
" !" (! B(! ?"("B ! (!B ("(BB (B"(B (?B (?BB ((B (!("B B((! !(( B B( ( BB
(! "
(B?!(
2 6 8 ) )
4
+¾ ,
4
+¾ ,
"((
(
)
5 )
2 S * ( ( +* , 4 * )
© 2004 by CRC Press LLC
518
Chapter 6
Table 6.3.2
ALGEBRAIC GRAPH THEORY
1 " *$*" * - 2
"
!"
! (!B
("
(
" ("(?
) - C ' +* ,( ' 4 7 & ( +* , !( * 4 ( * 4 ( * 4 * 4 * 4 * 4 * 4 B
2
5 + ,
( ( + , 4
]
] ' * ]
+ ,+
¾ ¾·½ ,
¾
= - +* , ( + , + ,
( >& + , 2
4 4 4 H ]
H
]
]
]
4 H ? H " H
4 H B H B H 4 H
H B H B H
H B H B H "B H B
H H B H B
2
) )
+¾ ,
2 +, 4
) ,
2
6=( S "!8 2 +, & ) ) ) & + , ) ) H 5 )
2
) )
& + , ) ) ) 5 )
© 2004 by CRC Press LLC
Section 6.3
519
Enumeration
Table 6.3.3 /* -
, B
! " ? B
2 "
, "
? ?
!
"
B ?! " " ?!
B ?"B ( (! (
(B
(
+¾ ,
2 ( ) % 2 )
, +, 4
)
)
, 2 6=( S "!8 , +, &
) ) ) & + , ) ) % H H H H 5 )
9
½ 9
Table 6.3.4 5
* * -
, B ! " ? B
© 2004 by CRC Press LLC
2 " , "
! " B
! ! ! ? ? ? ?!
" " ! B
" ! ( " (!
520
Chapter 6
ALGEBRAIC GRAPH THEORY
EXAMPLES
2 7 0 0 ) % ) B 0 )
Figure 6.3.1
/* - 2 " "
2 7
7 & 0
Figure 6.3.2
0"" * *
* * - 2 " "
6.3.2 Counting Digraphs and Tournaments DEFINITIONS
2 ) ( ½ ( ) ) )
2 + , ( ( ( & ) )
2 + , ( ( &
2
. ) . 4 % ) . 2 + , ' +. +, . +,
2
)
. . FACTS
2 ) ) , )
Æ 5 )
2
7 , ( ( ) ) , ) ) + , ,
© 2004 by CRC Press LLC
Section 6.3
521
Enumeration
2 " ,
Table 6.3.5 5$*" *
* " -
,
B
B ?B (B (" (B "(! B !!(B (?!B !(? B "(! (B"(!
B
B ? !? ? !? ? B
! " ? B
(B?
2 ) ) )
5
+¾ ,
2 ) )
)
(
2 5 + ,
( ( + , 4
]
] ' * ]
+¾ ,
= - +* , ( + , + ,
(
>& + , 2
4 4 H
]
]
]
H " H H
]
]
4 H H 4 H
4 H B H B H H B H B H
4 H H B H
H ?B H B
H H H ?B H B H B
© 2004 by CRC Press LLC
522
Chapter 6
ALGEBRAIC GRAPH THEORY
2 +, ) )
+, 4
) ,
2
6=( S "!8 +, &
) ) ) & + , ) ) H 5 )
2
) )
& + , ) ) ) 5 )
Table 6.3.6
- 2 " ,
,
B
! " " " !
!? !B! ( (?B ( !B
"
?( B"
! " ? B
2 2
( ) %
´ ½µ
6N8 ) " ) ] " 4 ] ' * ] +* , C ) -(
+* , 4
+ ,* *
*
5 ) !
2
6# "8 3 " +, 4 H H H H H H ) ( 7 +, 4 H H H H H )
" +, +, 4 H " +, 5 ) ! J &
© 2004 by CRC Press LLC
Section 6.3
523
Enumeration
Table 6.3.7
" - 2
5
(""B ?( ?(!(B ?B(!(" (B"(( "
B
! " ? B
(BB" !"( ?((?? ""( (?B (B(?(!
EXAMPLES
2 7 0 ) % ) B 0 )
Figure 6.3.3
*
* " - 2 "
2 7 E
Figure 6.3.4
- 2
6.3.3 Counting Generic Trees DEFINITIONS
2 ) ( ½ ¾ ( ) ) ) )
2 &( ( %
© 2004 by CRC Press LLC
524
Chapter 6
ALGEBRAIC GRAPH THEORY
2 + , FACTS
2 1%*% * 6I"?82 )
5 ) "
2
) ) 5 ) "
Table 6.3.8
5$*" "
" *$*" - 2
3)
3)
? !(!! !( ? (B?!( (B (! (BBB(BBB(BBB (?!(( B !(BB"(!B( "" (?"(B"((" !?(!(!!(( ?(?(? (B(?B( ((?(B( B (" (?"B
! " ? B
2
)
(? ("B! ( (!"(? ? BB(BBB(BBB (!(?!( ? (?!( ( (!?( B(?(B! ( ?(?(!(? (? (?(B "(?(! !(B!(?(B!(?!(?
) &
+, 4
½ &
4 H H H H ? H B H
2 6I!8 Æ & +, )
+, 4
½
+ ,
½
% & S + 6S "!8,
+, 4 & 5 ) ?
© 2004 by CRC Press LLC
+ ,
Section 6.3
525
Enumeration
2 ) "
$+, 4
½
" 4 H H H H H H
2 6 * 6E"82 Æ " $+, )
+, 7 ! )
$+, 4 +, +, +,
5 ) ?
2 I : &
+, 4
½
7 4 H H H H H H B H
2 Æ 7 & )
+, 4
½
+ , H
% &
+ , 4
H
&
½
+ ,
2 ) !
<+, 4
½
! 4 H H H H H H H
2 6=?8 Æ ! <+, )
& +, 7 )
<+, 4 + H , +,
H +, H
+ ,
5 ) ? ) J & EXAMPLES
2 7 B 0
) % 0 ) 0 )
Figure 6.3.5
© 2004 by CRC Press LLC
- 2
526
Chapter 6
Table 6.3.9
ALGEBRAIC GRAPH THEORY
" 7 7 " "" - 2
? B " " !? (" (! (" (?! "!(" (" ("! (!(? ( ""( ! (" (" ((" ?!(B(" "("(" !(!(?" (B !(!( (!?( (B (B"(!(? (BB!(B ( ? (" ((B" ( ("!(?! ??!(!((??" ("B?(?((!BB !(??("?(!"( (B?(( !( " ((!B("(B !?( (?B(B( B?(""(B?("B( B (!(B("("(B? (((?(?(B (!B(!"B(B!?( (
B B !" ? " ( (?"" ( ! B(?" (B? (! "(" B(! (!? ?(? ( (B!B (( ? (B?(" B(!( " B((!? ( B( "(B("" ! !?(? B("(! !(?!(B! ( (B!( (BB( "("
! " ? B ! " ? B ! " ? B ! " ? B
! B (B (? !(! ?(B "( ? (" ! !(? "(B ((B ( (! (""(B! ?(??("?! B( ("?B !?(!?(B !(B ( B (B((B ( ?( (" ("B("!("B B(B("?(BB B?(?!(B( BB( "(" ("B "(!!?( (! ( ( ((! ( (B (B!(!" !( ?( !!(?B(! !( ((( (?B((!!?( (??B(!(!"(
2
0 % 7 ( 0 ( 0 ?
2
7
© 2004 by CRC Press LLC
Section 6.3
527
Enumeration
6.3.4 Counting Trees in Chemistry DEFINITIONS
2 2
#$ & # #$ &
REMARKS
2
) + -,
I = ) H
2 ) )
I = E= ) ( H ( E= FACTS
2
) 0 H + ,
+, 4
½
0 4 H H H H
H " H ! H
2
6A =8 Æ 0 +, )
+, 4 H +, H +, +, H +, 5 ) B
2
I + , : % ( & ) ½
2+, 4
4 H H H H ? H " H
2
Æ 2+, )
+, 7 ) 2+, 4 +,
H
+, + , H " +, +, H +, H + ,
2
) 4 + , H
+, 4 © 2004 by CRC Press LLC
½
4
4 H H H H H H H
528
Chapter 6
ALGEBRAIC GRAPH THEORY
2
6A =)8 Æ 4 +, )
2+, +,
+, 4 2+ , H +,
½¾
+,¾
+¾ ,
5 ) B ) EXAMPLES
2
7 0
Figure 6.3.6
# - 2 "
2
% 7 ) & 0 ( 0 ( " 0
6.3.5 Counting Trees in Computer Science DEFINITIONS
2
% & :
B ) & 9 ) ) $½ $¾ $ ,
2 & ) ) > ) ) % ) )
2 & ) )
2
) & B
REMARKS
2 2
$ (
E
( ) ) ( )
© 2004 by CRC Press LLC
Section 6.3
529
Enumeration
Table 6.3.10 #
" # " # -
! " ? B ! " ? B ! " ? B ! " ? B
2 "
+ ,
+ -,
" ! ? "? B! (" (B! !( ? ?( "(" (?B (?" "B(? ( (BB ( (B? (!(" "( ?( B("(?! ?(BB(" !( ( ! ("?(??( (B(!B("" ((!("B (" (B(" ? ?(??( ("" !((" (B ?B(?"((B ("!("((? (BB(B( B!( (" (B(B!( ? (B("(B(!" ?"("B(!!?(!B(" ("((BBB(!! !B("B!(?! ("(! (?(BB(BB( ("?
? " ! ? "B ("" (! B(? ("? B( "(" (? ?B(! (!"( " (!("B (?B( (!?!("" ?("?( B(("B !(B( (?B(B!( ((" (! B( B(B!(!? !(!((! ? !((B""( B ""( ( (? ?(!"(?(?B (?(?!(""(" (B(?B(!"B( "(? (!!(!(? ( !(!"(?(? ? ("("B(!(
2 A E )
© 2004 by CRC Press LLC
530
Chapter 6
ALGEBRAIC GRAPH THEORY
2 3 : & ( ) ) H ( ( ( (
FACTS
2 % )
4
4
4
H H
H
+,] 4 H + H ,] ]
B
5 )
1* 8$
Table 6.3.11
I J )
I J )
? (B (" (!? "(!" B"(B !(?BB ( !(B ?( ?(" (!( !B
! " ? B ! " ? B
?( (!?B !!( "(!BB (! !( (?B ( (B(B ( ( !(BB ?("( ( B (B?( ( B ("?(?B(!( (" (? (B( "( !((B!( ?((B(? (BB (!!(?(!B( B (BB(( ( ( " ("(?" (B(B?(B (( (B?( (?B? ((B ("!!(B"(?"
! " ? B
2 ) I ) 5 )
2 ) ) 5 ) 2 ) H 5 ) EXAMPLES
2 7 ! ( 7 " ) ( 7 ? !
© 2004 by CRC Press LLC
Section 6.3
531
Enumeration
Figure 6.3.7
Figure 6.3.8
Figure 6.3.9
"" - 2
$% - 2
*# - 2
References 6A =8 I # A = =C( ) ( +?,( BMB 6A =)8 I # A = =C( ) )
( +?,( B!!MB" 6I!8 I ( E ( +"!,( ?MB 6I"?8 I ( (
6 +""?,( !
6N8 3 N ( 5
(
MB
! "
M!"
!
+?,(
6=8 7 =( ) ( ( ( ( ! !" +?,( M 6= ?8 7 =(
# ( 1 ( ?
6=!8 7 = > # ( #
© 2004 by CRC Press LLC
?
(
( ?!
532
Chapter 6
ALGEBRAIC GRAPH THEORY
6=?8 7 = ( ) ) ( ( B +??,( M 6 8 > J )( > ) ( 6# "8 K 1 # (
! !( = ( 1 ( ?
6E"8 E( ) (
"
2 ? +?",( "M??
6S "!8 S I ( !( 5 P ( ?"! 6 "8 K (
" +? ,( BM
2 # !* # !*
& !!( 1 ( ?"
65 ?8 J K 5 5 0(
( ??
© 2004 by CRC Press LLC
2 &" 1 !(
Section 6.4
6.4
533
Graphs and Vector Spaces
GRAPHS AND VECTOR SPACES "!# ! $ A I N% I 5) ' I 5) ' ) I I 5) I I 5 N I RIA ! C I I 5
Introduction > )
) ) 2 G 0* ( G 0* E * > ) ( ( ) ) G 0* : ) C ( G 0* : ) C ( % ) ) ( $ ( ( 9
5
) % ) ) ) & ) T # )
C
6.4.1 Basic Concepts and Definitions
( ( )
) I 7 - ( ) ) % 7 ( 6Q??8 65?8
' %(
(
4 ½ ¾ (
© 2004 by CRC Press LLC
,
(
4 + , + , 4 ½ ¾
534
Chapter 6
ALGEBRAIC GRAPH THEORY
$ + , ( ) ( ) + , DEFINITION
2 &
) ) ^ REMARK
2
$ + ( ,
EXAMPLE
2
>& ? 7
v1 e1
e3
v2
v3 e2
e4
e5
e7 e6
v5
e8
v4
Figure 6.4.1 Subgraphs and Complements DEFINITIONS
2
4 + , 4 + ,
2
> ) % : ) 4 + , 4 + ,( ) % J )
2
> ) % : ) 4 + , 4 + ,( ) & J & )
2
) 4 + , 4 + ,( ) , + ,
© 2004 by CRC Press LLC
4 +
Section 6.4
535
Graphs and Vector Spaces
EXAMPLES
2 7
4 ½ ( )
7 7 +, 7 4 ( & ) 7 +),
v1 e1
e3
v2
v3
v5
v4
e8
(a) An edge- induced subgraph of the graph G
v1 e1 v2
v4 (b) A vertex-induced subgraph of the graph G
Figure 6.4.2 0 "#"" $ " 23#"" $
2 )
7 +),
7 +,
v1
v1 e3
v2
e1 v3
v2
v3
e2 e4
e5
e7 e6
v5
v4
v5
(a) Subgraph G'
Figure 6.4.3 0 $
© 2004 by CRC Press LLC
e8
v4
(b) Complement of G' in the graph G
" *
7
536
Chapter 6
ALGEBRAIC GRAPH THEORY
Components, Spanning Trees, and Cospanning Trees DEFINITIONS
2
-
( N% B
2 &
5 $
(
% N% !
2 2
)
& ) & )
2 ) $
"
2 / (
/
2 "
"
2 3 ) & , / 8+ , + , ) 8+ , 4 / + , 4 , H /
EXAMPLE
2
" 7 v1 v1
7
e1
e3
v2
v3
v2
v3
e2 e4
v5
v4 (a) A spanning tree T of G
Figure 6.4.4
e5
e7
v5
e6
e8
v4
(b) The cospanning tree with respect to T
0 " "
FACTS
2
& )
© 2004 by CRC Press LLC
Section 6.4
537
Graphs and Vector Spaces
2 & ) , H / / ) , H / REMARK
2
' (
Cuts and Cutsets DEFINITIONS
2 I 4 + , 3 ½ ) 9 ) 4 + ( , & ! " & (
2 $ (
( >: (
EXAMPLE
2
7 7 ( ! "( 4 4 ( ( 7 +, 5 ( ! " (
7 +),
v1 v3
e1 e2
v2 e4 e7
v5
v4
e8 (a) A cut of the graph G
v1 v2 v3
e5 e4 e6
v5 v4
e7 (b) A cutset of the graph G
Figure 6.4.5
© 2004 by CRC Press LLC
0 "
538
Chapter 6
ALGEBRAIC GRAPH THEORY
The Vector Space of a Graph under Ring Sum of Its Edge Subsets DEFINITIONS
2
5 4 ½ ) ) )
7 & ( ) + B B B B, ) 7
2
+ ' , ( ( ) ) )
2 , 4 + , 4 + , 4 +? ? ? ? ? , ( ? 4 ) ) ( + + ( ) B 4 < B ) 4 < B ) B 4 B< ) 4 B, FACT
2 , ) , ) , ) + , , 7+,( % (
) + ) , ) _+ , REMARKS
2 2
)
$ ) ) , + , ) ) , ) E) + ^, B _+ ,
2 2
$ ( 6 8
) & 65 8( 6I!)8( 6N!8( 65?8( 65"8
6.4.2 The Circuit Subspace in an Undirected Graph DEFINITIONS
2 & I (
2
) ` + , $ ( ` + ,
9 ^,
© 2004 by CRC Press LLC
+
Section 6.4
539
Graphs and Vector Spaces
FACTS
2 2
)
9 ( ) ) )
2
) ( ` + ,
2 ` + , ) _+ ,
EXAMPLE
2 7 ( ( 7 v1 e1
v1 e3
v2
e1
e3
v3 v 2
v3
v2
e2
v3
e2 e4
e7
e7
e4
e6
e6 v5
v4 v 5
e8 (a) Circ G1
Figure 6.4.6
e8
v4
(b) Circ G2
v5 (c) G1
G2
- "
REMARKS
2 2
7 ) P) 6P8
( + Ü,
( ( &
Fundamental Circuits and the Dimension of the Circuit Subspace DEFINITION
2 " : (
$
" (
FACTS
2
" ( , H ( "
© 2004 by CRC Press LLC
540
Chapter 6
ALGEBRAIC GRAPH THEORY
2 " ( (
"
2
+, H , ` + , )
2 $ ( ) &
2
) ) ` + ,( ( ` + ,
: , H ( + ,
2
) ` + , : + , 4 , H /
/
EXAMPLE
2
7
"
4
½
I I I I
4
4
4
4
$ ) % ( ( ( ( ( 7
6.4.3 The Cutset Subspace in an Undirected Graph % 5 ) ) & DEFINITION
2 9
) 6+ , ^ ) 6+ , FACTS
2
> 9 ( 6+ ,
2 2
6+ , ) _+ ,
< ( 6+ ,
© 2004 by CRC Press LLC
Section 6.4
541
Graphs and Vector Spaces
EXAMPLE
2
I 7 ½ 4 !½ " 4 ! " 7 ( 4 ( 4 ( 4 4 4 ( 4 ( 4 # ( ) 4 !0 4 "( 0 4 4 ( 4
4 4 (
4 4 (
4 4
$ ( ) 7 Fundamental Cutsets and the Dimension of the Cutset Subspace DEFINITIONS
2
3 " ) ( ) ) " $ & " ( ! "
) "
$ ) )
2 &
"
(
FACTS
2
( ) "
"
(
2
) " )( ( ) ) "
2
& ) 6+ ,
2 $ ) ( ) & 5
2
) ) 6+ , ( 6+ ,
: ( - 8+ ,
2 ) 6+ , : 8+ , 4 /
/
2 & ) ) 6+ ,
© 2004 by CRC Press LLC
542
Chapter 6
ALGEBRAIC GRAPH THEORY
EXAMPLE
2 7 7 ( " 4 ½ A A A
4 (
4 (
4
,(
A 4 $ ) % 4 ) ( ( ( ( ( ( 7 B
6.4.4 Relationship between Circuit and Cutset Subspaces A ) ( 7 7 5 - ) & & Orthogonality of Circuit and Cutset Subspaces DEFINITIONS
2 ) , < ) < ,
,
2
)
+ , C J C ) ) FACTS
2
)
=( )
2 7+, C
2 ) ) ) )
) ) >: (
2
) ) ) )
) ) >: (
© 2004 by CRC Press LLC
Section 6.4
2
543
Graphs and Vector Spaces
)
Circ/Cut-Based Decomposition of Graphs and Subgraphs DEFINITION
2
)
) & J C
FACTS
2
$ ) (
2
6I!8 )
)
2
$ ) ( ) + , ) &
2
6I!)( 1 #!8 > ) $ ) : '( EXAMPLES
2
I 7 ! $ ) % ) ) 5 )
) _+ , E ) ½ ( ( ( 2
4 + B B B
B,
4 +B B B
B,
4 +B B B
B ,
4 +B B B
B B ,
4 + B
B B,
4 + B B
B B,
4 +B B
B B ,
$ ) ) & ( 7
© 2004 by CRC Press LLC
544
Chapter 6
ALGEBRAIC GRAPH THEORY
7 ( +B B B ,( ) ) ( ) & 2 +B B 4
+
B ,
B B B
4
B B, + B ,
+ B B B B B ,
( + B ,
e4
e7 e3
e2
e5
e6
e1 Figure 6.4.7 9
**
2 I
7 " $ ( ( ( = ) ) ) & = ( 7 ( ) % 2
+ ,
4
+ B B
B, +B B
+ B B B , ( ( ( (
B
( +B B B ,
v1 e1 e6 v2 Figure 6.4.8 9
© 2004 by CRC Press LLC
e4
e2 v4 e5 e3
,
v3
**
Section 6.4
545
Graphs and Vector Spaces
6.4.5 The Circuit and Cutset Spaces in a Directed Graph $ ( A(
&( 0
:
$ (
)
&
( (
)
( ( ( (
Circuit and Cut Vectors and Matrices DEFINITIONS
2
) ( -
- + ,
2
3 ) 4 + ,
(
% )
2
+ , ) (
2
( 4 + ,
% )
2
3 ) 4
½ ¾ (
)
,
+½ ¾ ,(
4
2
B
3 ) 4
½ ¾ (
)
,
+½ ¾ ,(
4
2
B
3 ) 4
½ ¾
3 ½ ¾
½ ¾ ) ( (
© 2004 by CRC Press LLC
$
,
&
546
Chapter 6
ALGEBRAIC GRAPH THEORY
,
&
The Fundamental Circuit, Fundamental Cutset, and Incidence Matrices
J&( % & REMARK
2
% % )( ( ( & + ( ,( & ( & ) +½ ,(
4 B
+ ,
+ ,
DEFINITIONS
2
) " ( ) ( ( +, H , ) & & 5
( & " ( ) 1 ( + , ) & & 3
"
2 ( 0 ( ) & & ) & & ) 0
2 & )
: ) & & : ( B EXAMPLES
2 I 7 ?+, ) 7 ?+), +,( + B B B , + B B B B ,(
2 I " 7 ?+, ( ( ( " &
& 2 7 I # &2 I I I
© 2004 by CRC Press LLC
B
B
B
B B B B B B B B
Section 6.4
547
Graphs and Vector Spaces
v5 e4
e7 v1 e3
v3
v2
e1
v1
v4 e2
e2
e2
v3
e6
e5
v4
v2 e5
e5
v5
e6 v3 v1
e3
v4
v2
e1 (a) A directed graph.
(b) A circuit with orientation
(c) A cut with orientation
Figure 6.4.9 0 "" 7 7 " - 7
I # &2 A A A A
$ # &2 J J J J J
½
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B B
B
Orthogonality and the Matrix Tree Theorem
)
)
FACTS
2
)
'
$
( )
'(
( C
( + ,
3
)
) +,
,
)
% ) ` + +),
% )
6+ ,
© 2004 by CRC Press LLC
)
548
Chapter 6
2
$
2
ALGEBRAIC GRAPH THEORY
% $ ( ) &
) Æ
)
) &
5
(
)
Æ )
2
` + , 6+ , $ (
(
2
` + , 6+ ,
%
) ) ( : ,
H /(
( :
/(
- ( / )
2
)
2
2
I "
½
)
)
4
& 4
& C ,
5
4
H 4
C
1
1
4 6@
) & 1
2
1
@
4 64
( 8( @
) & 4
) & 1
8(
" 5
(
@
&
" # ( 1
4
4
&
) 5
( &
2
+
( ! !
& 0 0
, 7 (
: )
EXAMPLE
2
>&
7
REMARKS
2
A
)
% (
2 +,
- H ,(
+ N% ,
© 2004 by CRC Press LLC
& +
% -
,
Section 6.4
Graphs and Vector Spaces
549
2
& 0 0 ( $ ) % + , & : & 0 + * , : ) & & + , 7 ) 65?8 &
65"8 Minty’s Painting Theorem
+ , ) DEFINITIONS
2
2
2
&( ( 4 1 C ( ) ( ( ) ( & ) - FACTS
2
+ ! , 6# 8 3 ) 7 ( & 2 & - ) ) ( - & - ) ( -
2
> ( ) ) )
REMARK
2
# * + - , )
+ 65?8, 7 7 E - ) # ) % 6# B( # 8 5
) ) 6PI"B( I! ( 1 !B8
6.4.6 Two Circ/Cut-Based Tripartitions of a Graph $ Ü A ) 9
© 2004 by CRC Press LLC
550
Chapter 6
ALGEBRAIC GRAPH THEORY
1 ) ) Bicycle-Based Tripartition DEFINITION
2 ) ) ( ) EXAMPLE
2
½ ( ( ( 7 " )
FACT
2
6 !"8
2
)
)
)
% ) 7
REMARK
2
6 !"8 7 ) 6?8
A Tripartition Based on Maximally Distant Spanning Trees DEFINITIONS
2 ( +" ",( ) % +" ", 4 +" , +" , 4 +" , +" ,
"
2 " " +" ", " "
+
"
" "
,
& ) )
2 & " " 5
" " ) 2
3 A ) " % ) 3 A ) " % ) A
© 2004 by CRC Press LLC
Section 6.4
551
Graphs and Vector Spaces
) ( ) : A½ ( A A 4 A ) A + & -
2
) N%
)
2
+
& " " , ')
) ')
) FACTS
2
6G G ?8 3 " " & " " % )
" "
) " " % )
) " "
2
6G G ?8 I 4 + , 3 ) ( ( 4 + , + , ( ( + , + , &
EXAMPLE
2 $ ) % " 4 " 4
& 7 B 2 4 ( 4 ( 4
e1
v2
v3
e5 v1
e8 e4
e2
e6 e7
v4
e3
v5
Figure 6.4.10 REMARKS
2 $ ) + - , : , H ) ) ) )
, H
) : ) :
© 2004 by CRC Press LLC
552
Chapter 6
ALGEBRAIC GRAPH THEORY
) ) ) C : ) ) , H ( - E- ( $ C- ( 1) 6E$1!B8 ) ( & ) ( (
) ) : ) ) )
- ) G G9 6G G ?8 ) E- ( $ C- ( 1) 6E$1!B8 ) - 5 65"8 & )
2 3 63 ! 8 A 1 ) 6A1!8 &
6.4.7 Realization of Circuit and Cutset Spaces $ ) ( & -
&
& ) ) 6?8 I) 6I"8 6 "8 ) ) 1 Æ C) & & 5 65 8
) ( & Æ * C) DEFINITIONS
2
7
& - +
v5
v6
v4
v1 v2
v3 (a)
Figure 6.4.11
2
v5
v1
v4 v2
v3 (b)
- & - +
& 7 7 4 67 @ 8( @ &( )
© 2004 by CRC Press LLC
Section 6.4
553
Graphs and Vector Spaces
7
2 &
) Æ ( ( B 2
9
(
( B(
& ) + Æ ( ( B, C + , ) C
2
)
& ) * * -
FACTS
2
7 (
&
2 2
0
"
&
7
& ( ( B ( * ) * - ) + - & ,
7
2 & & (
B 4 B B
B
7
B
2
7
2
7
& C) & & G - 7
7
& C) &
& G - 7
7
REMARKS
2
# 6#!B8 * C) ( * ( !
2 > - % 6 B( 8 A 6A!B8 % & ) & & ) &
& C ) A * 65"8
2
& C )
- $ & I)
6I"( I?8 C ) $ ( A 6A!B8 A Q 6A Q 8 C
© 2004 by CRC Press LLC
554
Chapter 6
ALGEBRAIC GRAPH THEORY
& & N A * ) ) 65"8 Whitney and Kuratowski
1 ) - ) 1 618 G - 6GB8 1 ) ) ( 1 ) = % ) + 65?8, - ) N% : DEFINITION
2 ¾ ½ ) ¾ ¾ ½ ½ FACTS
2
$ ) ¾
½( ½
2 2
¾
618
$ -( G - 6GB8 ) G - REMARK
2
5 61B8 G - * $ : G - * C) & C )
References 6A!B8 P P A ( 5 2 (4 - &! !( N ( N > > ( $ $ ( #( $ ( ?!B 6A Q 8 7 A N I Q ( 5 -( ! +? ,( MB
&
6A1!8 K A 3 1 )(
( " &! ! +!,( !M 6I"8 $ I) ( # )
( B( ! +",( M 6I?8 $ I) ( & ) - ( +??,( !M!
© 2004 by CRC Press LLC
&% !
Section 6.4
555
Graphs and Vector Spaces
6I!8 1 G I( E ( B +?!,( M? 6I!)8 1 G I(
# ( J =
&
( ( ?!
6I! 8 3 E I N # (
-( & ! ! !! +?! ,( ?M 6N!8 J N ( # = ( ?!
4 ! " " (
6> 8 3 > ( 5 ) 5 ( " +! ,( "MB 6 "8 3 ( ( 6Q??8 K 3 K Q ( ???
! " +?",( ?M
# &! !( II (
6G G ?8 G Q G9 ( #& ( & ! +? ?,( MB 6GB8 I G - ( 5 ) I ) ( 7 +?B,( !M" 63 ! 8 # 3 ( ( & ! !! +?! ,( M" 6#!B8 1 #( * C) ( ! +?!B,( B M 6# B8 K # ( # -(
&
& !
% * !+?
B,( ?M
6# 8 K # ( 5 - a * ( &% ! " +? ,( ??MB 6# 8 K # ( E & ( - -
( +? ,( "MB 6E$1!B8 E- ( Q $ C- ( = 1)(
& -( & ! ! +?!B,( ?M?? 6?8 G ( ! ( J N ( $ ( ??
# ( #=
6 8 # A ( 2 ) ( I" +? ,( !M
) I
& !
6 !"8 I ( E ( ! 2 )! ! +?!",( ?M
© 2004 by CRC Press LLC
556
Chapter 6
65 8 5 5 # A ( 1 ( ?
ALGEBRAIC GRAPH THEORY
# ! (4 -!(
65"8 # J 5 5 G ( 1 +$ ,( ?"
# !* (4 -! " !(
65?8 G # J 5 5 ( 1 +$ ,( ?? 6?8 1 ( # ( !M
# !8 " !(
! 2
?B +??,(
6 B8 1 (
) ( +? B,( ?BM?! 6 8 1 ( 7 (
+? ,( B"M!
6PI"B8 K P 3 E I( ) ( & ! ! !! ! +?"B,( " M" 6P8 E P) (
!! !( # 5 ( ?
61B8 N A 1(
& # ( =
618 = 1 ( (
( BB
7 +?,( !M"
61 #!8 1 1 3 # #& (
) ( & B +?!,( "M"? 61 !B8 N = 1 ( -( & ! ! !! ! +?!B,( M!
© 2004 by CRC Press LLC
Section 6.5
6.5
557
Spectral Graph Theory
SPECTRAL GRAPH THEORY
%& & A # & 1 - 5
3 ( 5 ( > A N 5 I C 3
Introduction 5 + , + ) ,
A
& ) B 9 & )9 ) 3 I C ' 5 C 6I 5 !8 ?! 5 )9 ( )
6.5.1 Basic Matrix Properties # & - & ) 6# # 8 6 B8 DEFINITIONS
2 ) + , : & 0 + 0 , 0 4
! B
9
2
9 &
2 2
+C
0,
6 )
2 7 (
© 2004 by CRC Press LLC
558
Chapter 6
ALGEBRAIC GRAPH THEORY
2 6 0 4 6 FACTS
2 ) 9 &
( . ( ( : & 9 + =
& ,
2 2 2
) :
9 & 0 ) C( ( :
& @ + , @ 0@ 4 @ 0@ ½ &
2 9 & ( ( ( B( 9 & B
2 ( 9 ) - 9 &
2 $ ( 6 6 +5 9 & ) ( - 7 ) M 6# # 8,
2 $ ( $ + : 7 ) , 5 9 &
( )
: ) )
2 3 ) )
2
1 ) )
) +
7 ?,
2 6
)
B( (
6
REMARK
2
A 7 (
) ) (
EXAMPLES
& + (
- ,
2 2
+ ,½ ½ * ½ ) 2 , B
© 2004 by CRC Press LLC
2
*,
Section 6.5
2 2
559
Spectral Graph Theory
2
+'#) H ,½ ' 4
2
-
2 +'#),½ ' 4 J (
(
2 I+, 5 2 + ,½ B ½
2 2
)
2
1
+ ',+, ' 4 B
+ H , 9 * & 5 2 +'#),½ ' 4 H
2
2
+ + 4 I+,,2 B * * 2 B * *
2 )
1
2
6.5.2 Walks and the Spectrum Walks and the Coefficients of the Characteristic Polynomial DEFINITIONS
2 )
2
& 9 %
FACTS
2
2
$ '
$ 0 9 & ( ' &
2 2 2 2
) -
9 & ( & 0
0
) -
0
) -
0
0
0
'
)
& )
65 8 $ H H H H
( 4 4 B ( ) ) + &
+C 0,,
© 2004 by CRC Press LLC
560
Chapter 6
2
ALGEBRAIC GRAPH THEORY
65 8 $ H ½ ½ H H ½ H
( 4 +, ( ) % ' ( +4 , ) 4 ( +4 , ) 4 REMARK
2
7 " Æ! $
6IN 5?8 $ & 7 ! Æ
Æ )
) & ' %& + , 7 ( + , + , (
Æ ) % ' 7 ( ) %( )
+ - ( - , )
Walks and the Minimal Polynomial DEFINITIONS
2
>+, ( >+0 , 4 B
2 * + ) + , H FACTS
2
,+, 4 -
+ 6 ,
2 $ 9 & 0( 0 4 B ' + $( 0 4 B
2
$ , ( , H ) ) $ 7 B
2 2
+ , &
2
) +
7 ( ) \ - \ : ) , EXAMPLES
2
J & ( ( ( I+,( - ( ( 1 )
2
& )
© 2004 by CRC Press LLC
Section 6.5
561
Spectral Graph Theory
OPEN PROBLEM
4
I C ) : E (
) Regular Graphs DEFINITION
2 ' (
+ 6 , <+, 4 + 6 ,
) - :
3 D : & : FACTS
2 + , + 7 ) ,
2
B + ) 0 ,
2
) +> ) ,
2 2
D
2
0
D
9 & : 0 C = 6 ( 6 0 :
6= 8 7 9 &
<+, <+0, 4 D
0
= 0
6.5.3 Line Graphs, Root Systems, and Eigenvalue Bounds ) ) ) E ) ) & " E
6=?8 DEFINITIONS
2
: & ) )
2 ( A+ ,( A+ , 9 ( (
© 2004 by CRC Press LLC
562
Chapter 6
2
ALGEBRAIC GRAPH THEORY
&
( B $ ) + , ( ( )
2
½ (
A+ < ½ ,
A+ , -
I+ ½ , I+ ,
& A+ , 9
2 %( - 9
$ (
( 9
I+ , I+ ,
NOTATIONS
6+ ,
b+ ,
FACTS ABOUT INTERLACING
2
3 0 )
6
2
& 6½
) &
6
6
$ ! ) (
! ( 6
6
6
6
6
6 (
6
(
6
4 ,
FACTS ABOUT THE SMALLEST EIGENVALUE 6+ ,
2
$ ! ) ( 6+! ,
2
$ : C
6+ ,
2
J
) B
2
*
2
2
%
)
2
+
*
:
*
)
>& ,
Line Graphs and Generalized Line Graphs FACTS ABOUT THE LINE GRAPH A+ ,
2
$ & & (
2
$ & & ( &
% (
© 2004 by CRC Press LLC
4 C H0+A+ ,,
Section 6.5
563
Spectral Graph Theory
2 6= !8 7 ( 6+A+ ,, 2 6N !B8 % 6+A+ ,, & ( )
(
*
2 % 6+ , + FACTS ABOUT THE GENERALIZED LINE GRAPH 6+A+ < ½ ,
C
7
& ) & & 7 ( C 7 B ' )
2 6IN5"8 7 6+A+ < ½ , 2 6IN5"8
% ) 6+A+ < ½ , ( 4 A+" < B B, " 4 A+! , ! ! & ( )
2 6= !8 $
4 6½ ( 6 6 6 A+ , 6 H ( 4 + , + ,)
EXAMPLES
2 7 +>& ,
+
A
,
2 ) 7 +>& ,( ¾ A+ , Root Systems
7 &
%
3 ) + 6I"?8( & , ) FACTS ABOUT ROOT SYSTEMS
) 0 ( ( ( ( + H ,)( + ,( ( ( B ( 0 E )
- 0 ( ( ( ( 0 4 C H 2 6I55! 8 ! 4 A+ , ) )
2 6I55! 8 6+! , &
0
2 6I55! 8 ! 4 A+ < , )
© 2004 by CRC Press LLC
564
Chapter 6
ALGEBRAIC GRAPH THEORY
2 6I55! 8 1 % ) & ( 6+! , !
C & + % ) , ( ( ) & ) 7 " ' : +) , - ) &
2 $ 6+! , ( ( ! ) ) ( ! B & ( B (
C 6+ , ( ) 61 J?8
*
) 0 C
EXAMPLE
2 3 ) ) Ê I 2 4 H H $ (
' % ( ) ( & : 0 4 C H
7
Figure 6.5.1
Eigenvalue Bounds FACTS ABOUT THE LARGEST EIGENVALUE b+ ,
# ) ) ) )
2 $ ! ) ( b+! , b+ , $ ! ) ( b+! , + b+ , 2 $ c & ( c b+ , >: 2 6IN "8 $ b+ , + ( - ( " + ,( " + ,( " + ,( " + , " + * ', ) - ( ( E E ! ( ( E $ & ( (
Figure 6.5.2
© 2004 by CRC Press LLC
" + * ',
Section 6.5
2
565
Spectral Graph Theory
6IN "8 $ b+ , 4 ( ½
( " + ,( " + ,( " + ,
* ,
5
) b+ , + + H
+ 6IN "8,
FACTS ABOUT THE SECOND LARGEST EIGENVALUE A ( 6 + ,( ) )
2 2
+
65 !B8 6 + ,
B
63 ?8 6 + ,
*
,
6 + ,
*
6 + , +
*
+ H
* ,
,)
)
) 6I5 ?8( 63 ?8(
65 ?8
FURTHER READING 0 ) )
6B8
6.5.4 Distance-Regular Graphs >
DEFINITIONS
2
/ B
* '
+ * ', ) '( ) % * /
2
> ) / $
! + ,(
+ ,
9 ( (
)
) ) ( ( 0
2
$
,
D + ,(
)
9 ( )(
) ' ( )(
'
EXAMPLES
2
! + , ) 1
$
2
D + , A+ , $
© 2004 by CRC Press LLC
566
Chapter 6
ALGEBRAIC GRAPH THEORY
Distance-Regular Graphs and the Hoffman Polynomial
+ / , ( = 0
DEFINITIONS
2
F
) % 0 4 C "
0 4 0 9 &( 0
&(
& + *,
F B
2
F
/
& -
+ *,
FACTS ABOUT THE MATRIX 0"
2
( 2
0
7 ( 0 0
0
4 D (
/ 0
&
) )
4
0
0 0
H + 0
,
0
) ' 4 B
2
) 9 & 0
H
2
= 0
2
)
FACTS ABOUT THE PARAMETERS /
2
- -
4
/ - (
) )
)
2
0 0
- -
0 - ( 0 -
2
-
2
(
Strongly Regular Graphs DEFINITION
2
+ 6 , ) ( ( 6 4 / 4
/
(
EXAMPLES
2
2 A+ , ++
2
3 2 A+
© 2004 by CRC Press LLC
,) ,
, +
,
Section 6.5
567
Spectral Graph Theory
2
2 - +/ , % % 7+/ ,
9 ( % ( 0 : +
)
/
+/ +/
,) +/
,) +/
) , ,),
FACTS
- &
) & 0
&(
) ( 9 &(
2 +
6
7 + 6 ,( +
, 4
6,
¾
2
5 0( 0 ( C (
+ : ( 9( 9 , * C = 0
$
( + 6 ,(
¾
0
2
H +
6,0 H +
,C 4 D
+ 6 ,
2
¾
H +
6, H +
,
$ ( ( ( 0 B
2
7 + 6 ,(
6½ 4 ( 6¾ 4 +6
,) H F
½¾
6¿ 4 +6
,)
F
½¾(
¾
¾
F 4
6 H 6
6 ( ,¾ ( ,¿ ,¾ H ,¿ 4
,¾ 6¾ H ,¿ 6¿ 4
2
$ F 7 ! :( ,¾ 4 ,¿ 5
2
E
5 6¾ 4 6¿ ( ,¾ ,¿ :
+ 6 ,
)
,¾ ,¿
EXAMPLE
2
¾
7 (
½¾ + /
¾,(
H +
,¾ 4 ,¿ 4 +/
6, H + , 4 ¾ H +/ ,)
H ,)(
6¾ 6¿ 4
FURTHER READING 7 ) &
6 B8
6AI J"?8
© 2004 by CRC Press LLC
568
Chapter 6
ALGEBRAIC GRAPH THEORY
6.5.5 Spectral Characterization E : - 2 C ) Y 7 )
EXAMPLES
2 7 (
½ B & ) : + - ) , )
5
( : )
)
Figure 6.5.3
** *
2 7
) + ,+ H ,+ H ,
Figure 6.5.4
** " *
2 7 ) )
+ , B
+ H ,+ ,
Figure 6.5.5 1 * - $ 2
© 2004 by CRC Press LLC
Section 6.5
569
Spectral Graph Theory
2
7 ½ 5 ( ( % $ ( 9 A+ , + , A ( + - " , ) a
b
c
d
a
e
e
f
f
g
g
a
b
c
d
a
0 *% * *
Figure 6.5.6
Eigenvalues and Graph Operations
E ) DEFINITIONS
2 ( ) ( & ) + , & & 9 ( ( 9
2
+ 9 , ( ( ) ( ( ) & 9
FACTS
2
&
2 6
) ) H 6( 6 6
2
3 ) 7 $ 4 B ,( % ! ) - I ) ) ) ) ) $ , $ !
2
65!8 3
+ , )
-#
+ , 4 - ½ +,- ¾ ¾ +, H - ½ ½ +,- ¾ +, - ½
-½ ¾
2
!
½ -¾
¾
65!8 ) ( ))
© 2004 by CRC Press LLC
570
Chapter 6
ALGEBRAIC GRAPH THEORY
EXAMPLES % & ) K = 0
+ K = 0 6# !8, 3 ½ )
2
N% !
) - $ ,
( $ 4 B , !
$ -
( (
2
=
! + ,
) )
( )
REMARK
2
) C J>5 ) N I- S
6IN 5?8
6.5.6 The Laplacian 3 9 & ) 9
$ ( (
- )
3 (
- )
DEFINITIONS
2
-
: &
&< 0
$ ( A 4
0
9 B 0(
&
9 &
$ ( 4 C ( 0 A ) )
9 &
3
2
67 !8
6
6
6
3 A
% ) 6
FACTS ) 3 ) 3 ;
4 ; + , ) )
) ) * A
3 A
) &
(
9 A )
9 A
+A ,
2
; + , 4 +
2
9+A, 4 ; D
2
B A )
,
2
6
4 ; + ,
© 2004 by CRC Press LLC
Section 6.5
571
Spectral Graph Theory
2 5 6¾ 4 6¿ 4 4 6 4 ( ; + , 4 ¾ 2 ) 2
+
6¾ ½
) ¾, 4
6¾+ ½ , 6¾+ ¾ ,
2 6JBB8 $ (
½ + ,
6¾
EXAMPLES
2
6¾ -
2
6¾
2 2
6¾
2
6¾
+
, 4 + +#),,
+
, 4 + +#),,
6¾ 1
+
, 4
+
, 4
+ , 4
,
FURTHER READING
3 ) A # 6# ?8 & ) # J 6JBB8
References 6AI J"?8 > A ( # I ( J ( )! 5 P ( ?"? 6I"?8 1 I(
%" # !(
# ! 2 ( K 1 D 5 ( ?"?
6I 5 !8 3 I C ' 5 C( 5 - ( $ " +?!,( !M
6IN "8 N I- S(* # N )( $ ( E 1 5 N J >& + H ,½¾( ! +?",( M? 6IN5"8 N I- S( # N )( 5 5
S( C ( +?",( "M?? 6IN 5?8 N I- S( # N )( = 5( A( ??
#
2 # !( K )
6I5 ?8 N I- S 5 5
S( E * & + ,)( )! +??,( M! 6N?8 > N ( ( " +??,( ?M
" !
6N=B8 > N 1 = = ( 1
) Y( " &! (
© 2004 by CRC Press LLC
572
Chapter 6
ALGEBRAIC GRAPH THEORY
6N !B8 # N )( ( 2 *
* ( +?!B,( M 67 !8 # 7 ( ) ( ?"MB 6 B8 7 (
'! - +?!,(
2 !* P $( $$( I ( ?
B
6I55! 8 K # ( I ( K 5 ( > 5 ( 3 ( ( " +?! ,( BM! 6 ?8 I ( "
!( I =
6 B8 I ( "
( ??
" ( 5 P ( BB
6=?8 1 = ( $ ( " ! # +??,( ?M 6= 8 K = 0 ( E
( BM
+?
6= !8 K = 0 ( > ( M ! &&( N 7 - ( >( # +?!B,
,(
# *
63 ?8 K 3 ( " ! 2 " !( N ( ' # )( ?? 6# # 8 = # # #( 2 5 ( 1) D 5
( ? 6# ?8 A # ( 3 \ ( !M"
5 &1 !(
)! +??,(
6# !8 # C(
( +?!,( !!M? 6JBB8 # J ( # )( BBB
! 2 " !* # ( '
6B8 # S O 9 S( 5 ( ' G9( BB
! " !( 7
65 8 = 5( AC C G -
( ) +? ,( ?M 65!8 K 5-( !
! ! ( J N +>2 7 =,(
( ?!( !MB! 65 ?8 * 5 5
S( 5 + ,)( " +??,( ?M!
© 2004 by CRC Press LLC
Section 6.5
573
Spectral Graph Theory
65 !B8 K = 5
( 5 ( BMB ! !( >2 ( = = ( J 5( K 5L ( A +?!B, 61 J?8 E M" +??,( !!M?
© 2004 by CRC Press LLC
*
(
" !
574
6.6
Chapter 6
ALGEBRAIC GRAPH THEORY
MATROIDAL METHODS IN GRAPH THEORY ' $( ) # 2 A N% >& & 5
N # ' $ I : 7 E ! I # " ' # ? >& # I C B 1 ( 1 ( 5
) I # ' # I
Introduction > (
: ( E ( C
- ) 1 +?!MBB, 6!?82 .$ ) ) & )) & % )
/ )
6.6.1 Matroids: Basic Definitions and Examples
&
= 1 +?B!M?"?,
% ? 618 DEFINITIONS
2 9 % +9 , + 9 , +9 , ) ) ( ½ ¾ ) +9 , ½ ¾( ) ¿ +9 , ¿ +½ ¾ ,
7: ( +9 , +9 , ))
© 2004 by CRC Press LLC
Section 6.6
575
Matroidal Methods in Graph Theory
2 ) ) (
2 2
+ , &
9½
G +9½ , +9¾ ,
G+ , 9¾
( 9½ 4 9¾(
9½
9¾
) -+9 ,(
9
) ,+9 ,
REMARK
2
$ % ) EXAMPLES
2
0 & )
$* 3* " #E$N 9
+ ,( %* "
E'JN 5> +9 ,
9
I$I'$5 +9 ,
$JN>>JN>J 5>5( ,+9 ,
A5>5 -+9 ,
C + , 2 C
7 2
) 0
C 2 C )
&
2 4 , H
C 2 C ,
4 2 4 4 ,
+ ,(
2 " 6 8(
9 0
& 0 % 7
) "( @
+B , ,
2
3 9 ) +9 , 4 +9 , 4 9 4 9 + ½ , 4 9 + ¾,( ½ ¾ 7 -+9 , 4 ( 9 4 9 608( 0 &
B B B
© 2004 by CRC Press LLC
B B
B B
B B
B B
576
Chapter 6
ALGEBRAIC GRAPH THEORY
1 1 2
3
4
2 G
3
1
5
4 G 2
6 5
6
Figure 6.6.1 9 ½ " %*" " 9
2 $ ) ( % 9 % % $* / * " I
I
9 4 9 + ,
)
9 4 9 608 & 0 %
)
) 7 +,( %
) 7 +,
) %
FACTS
$ ( 9
2 : @ 2 $ 9 ( 9 4 9 + , 2 +1 * $ 618,
) ) ) : 2 + , & < +
, + ,< +
, ) ) 9 ) ( ) ( (
:
2 :
) 2 $ 9 ( 9 2 9 9 ) ) ) ( & )
B
© 2004 by CRC Press LLC
Section 6.6
577
Matroidal Methods in Graph Theory
6.6.2 Alternative Axiom Systems # ) C ) 0 & & E ) ( & ( 6E&?8 (
% $ )
"" 3 ) , $
:; ,< :; ) ) , , +, ,< :; , (
,
< 3 ) - $ ) :<; - < :<; ½ - (
4
4
4
4
4
4 +4 , -
DEFINITIONS
$ ( 9
2 $ 0 ( & ) 0 ( 0( +0, + % +0,,
2 + , - + ,
2 ) - + , 2 & 2 + , 2 + , 4 + , 2 . + , + , 4 2 2 $ ( 2 + , 9
9
9
9
9
9
2
2
FACT
2
$ 6 8 ) ) ( % + , 4 + 6 8, '+ 6 8, '+ 6 8, )
6 8 EXAMPLE
2
7 7 ( +9 + ,, 4 + , 4 +9 + ,, 4 + , 4 $ ( + , 4 T -
© 2004 by CRC Press LLC
578
Chapter 6
ALGEBRAIC GRAPH THEORY
6.6.3 The Greedy Algorithm # -
C )
G- * %
)- Æ - ) )
Algorithm 6.6.1:
9"% 0*
3 ) %
,
, E,
) )
( (
+
(
E+ , )
+ , 5 4
* 4 B
+
, $
& (
4
&
$
3 E )
, ( (
E+,
+
,<
4 4 + ,
+
, * +
, + , 5
EXAMPLE
2
3 ) +, N% E+, 4
+,
9 G- * ( 4
FACT
2
,
) %
(
E (
4 ) & )
,
&
6.6.4 Duality # & )
DEFINITIONS
2
9
9 +9 , - +9 , 4 +9 , 4 2 4 -+9 ,
) + 7 ? ) ,
2
( ( ( 9 ( 9
( )(
9
2
9 4 9 + ,
7 ( +9 + ,,
+ , 9
© 2004 by CRC Press LLC
)
Section 6.6
579
Matroidal Methods in Graph Theory
2 ) EXAMPLES
2
) %
$* * $ 3* # N
9 + , @ 9 + , @
9 6C 8 & 6C 8 9 6 C 8(
C
) 6 8
2
9
½ 7 ½ 7 E) + ½ , + ½ , + ½,
( ( ( ( (
9
2
4 1
6
3 G* 1
Figure 6.6.2
5
9 ½ * "* ½
FACTS
92 2 - +9 , 4 +9 , 4 2 4 -+9 , ) +9 , 2 +9 , 4 9 2 - 9 + , 4 +9 , H + , 2 9
) 9 2 9
4 9 2 7 ( 9 + ,
$ ( 9 + , 7
2
+ ,
2
C
C
> & 6 8 6
© 2004 by CRC Press LLC
8
580
Chapter 6
ALGEBRAIC GRAPH THEORY
2 2 (
) %& % ( (
$* /* " * )
)
9 9
"
9
9
9
9
9
9
REMARKS
2
) )
)
2
# $ ( & ) 9 + , 9 + , ( &( &
6.6.5 Matroid Union and Its Consequences ( ) J1 6J 8( :
DEFINITION
2 9½ 9 9
) C C C C ,+9 , +5 7 ", $ ) 9 . 9 . . 9 FACTS
2 3 9 9 9 )
) C C C C ,+9 , ( %
2
$
9
- ( -
9
. 9 . . 9
+ , H 2
Covering and Packing Results
- ) - ( 7 ) ) 7 B ( ( J 7 B
© 2004 by CRC Press LLC
Section 6.6
581
Matroidal Methods in Graph Theory
FACTS
2
9 ' 9 ) ( ) '+ , H +9 , '+9 , 2 6> 8 9 ' +9 ,
( ) +9 ,( '+ , +9 ,(
6> 8
2
'
6 ( J 8 9
( + ,( ) 9 0 + , )
#
' #
2
#
6 8 ( ) + ,(
#
) ' 9
'
+ 6 8, + ,
2
6> 8 3 ) 4
) )
) 4 4
4 +)
) , : 2 + ,
% 4
)
9 +
, 7 # + ,( ) 9 +# , +
,
6.6.6 Fundamental Operations N ) ) ( ( % ) ) ( ( C > C DEFINITIONS
9"
9)"
9 + " , 9+ " , 9 " 2 B 9 B ) ) 9 ) :
B B 4 9 2 ! ! ) ) ) :
2
( (
7 :
9
© 2004 by CRC Press LLC
9)
9 ( 9 9)
582
Chapter 6
$* #
+9 , "
"
"
C +9 , " C , +9 ,
+9 , "
"
9½ 9¾ (
+9½ , +9¾ ,
2
+9½ , +9¾ ,
4
-+9 " ,
C½ C¾
" 9½
2
C 4 , +9 ,
)
9
C +9 , "
+9 ,
2
9
2
+9 ,
9)" (
,
+9 , "
"*
$ "
5
9 " (
ALGEBRAIC GRAPH THEORY
2
C , +9 ,
9¾ (
+9½ , +9¾ ,
4
EXAMPLES
2 9 + , 4 9 + ,( ) ) 2 9 + ,) 4 9 + ),( ) ) )
(
( )
2 @ 4 @
½
2 @ ) 4 @ ½
½
,4
,4B
@
@ ½
½
@ ) 4 @
½
4
2 9 608 & ) )
&
0
2
$
0(
& ) ) )
2
$
½
¾
9 608)
& 9 (
9 + ½, 9 + ¾,
½ ¾ # ( ½ & ½ ¾ & ¾ ( 9 + ½ , 9 + ¾ , ) ) ½ ¾ ( ) ½ ¾
) ) - 9
FACTS $
2
(
9)" ,
+
9 ( 9½ (
4
9 " <
9¾
+
9 " ,
4
9)"
+9½ , +9¾ , 4
+N
,
2
$ 9 ) +9 ,( 9 4 9 + , 9 < 9)) 4 9)+ , 4 9) ) < 9 ) 4 9)
© 2004 by CRC Press LLC
4
Section 6.6
2 2 2 9¾
$
9½
583
Matroidal Methods in Graph Theory
+9 , " ( % + , 4 % + " , % +" ,
9¾ 4 9¾ 9½
3 B½ B¾ ) -C 4 +9½ B¾ , . +B½ 9¾ ,
+
9½
,
+
9¾
,
9½
6.6.7 2- and 3-Connectedness for Graphs and Matroids ( DEFINITION
2 9 ( +9 ,(
7 ( . / . / ) . ) / EXAMPLE
2
$ 7 ( ½ ¾ ( ( 9 + ½ , 4 + , ( ( 9 + , 9 ¾
FACTS
2
3 ) + , ( (
2 9
2 2 2
9
)
6 8 $
9
+9 ,(
9
9)
63 8 $ 9 ( 9 :
) %& +9 ,
A ) 7 B ( ) 2
2 3 ) + , ( ( ) Bounds on the Number of Elements
7 9 ( +9 ,
C ( (
© 2004 by CRC Press LLC
9
+9 ,
)
584
Chapter 6
ALGEBRAIC GRAPH THEORY
$ +9 , ( +9 , +9 , ) C ( ( 9 9 < +9 , +9 , ) C 9 9 2 63E&B8 3 9 ) + , $ 9 ( +9 , + +9 , ,+ +9 , , H +
, +9 , ¾½ +9 , +9 , 2 +3 : 63!?8, 3 9 ) ( +9 ,
+9 , + +9 , ,+ +9 , , H &
: 7
2 3 ) + , & C ) 2 61?!8 3 ) ) C )
+ ,
1 61BB8 : ) ( 1* ) ) ) ( 0
2 +>U , 6>?8 3 )
+ , + + , ,
) : 7 +
, : )
C 7 ?
2 6J '??8 > ) + ,
2 6#BY8 > ) C
) P + 6E&B8,( OPEN PROBLEM
4! 3 9 ) N 9
+9 , Y
© 2004 by CRC Press LLC
Section 6.6
585
Matroidal Methods in Graph Theory
2-sums and 3-sums
>& >( C
C (
C ) DEFINITIONS
2 9½ 9¾ 9 ( ( /½ +9½ , /¾ +9¾ ,
+ +9½ , /½, + +9¾ , /¾,( 9½ /½ ( 9¾ /¾ (
+½ /½, +¾ /¾, 9 / $ ) 9½ ¾ 9¾
2 )
2 3 9½ 9¾ ) ) 5 +9½ , +9¾ , 4 " " 9½ 9¾ " 9½ 9¾ 9½ 9¾ + +9½ , +9¾ ,, " T 7 " 7 +9 , T 9 EXAMPLES
2
3 ½ ¾ ) / ) 3 ) ) ) ½ ¾ ) /½ /¾ % ( ( ½ ¾ 9 + ½ , ¾ 9 + ¾, 4 9 + ,
2
3 ½ ¾ ) 7 ( + ½, + ¾, 4 ) ) - ½ ¾ ½ ¾ 9 + ,
9 + ½, 9 + ¾, 1
1 3 2
3 2
G 1
Figure 6.6.3
G 2
+ ,
9
G
#
+
9 ½
,
"
+
9 ¾
,
FACTS
2 2 2
+9½ ¾ 9¾ , 4 9½ 9¾ 9
9
3 ) + , + ,
9
© 2004 by CRC Press LLC
586
Chapter 6
ALGEBRAIC GRAPH THEORY
REMARK
2
6 8 % ' ' ) $ ) ) ' ' 5 6I"( $1"( E&"8 ' ( C ' )
6.6.8 Graphs and Totally Unimodular Matrices E % 5 * ) )
( )
C +( & ( 65" 8, ) & EXAMPLES
2 3 ) ) ) &
& & 9 + , %
2
6A !!8 I & 0 7 +, & 3 &½ ) ) 0 & 4 & # ( &( & 4 9 +, &) 4 9 +, FACT
2
65"B8 ) ) ( ( ( ( &
6.6.9 Excluded-Minor Characterizations G - 1 6GB( 1!8
) &
DEFINITIONS
2
)
2
B (
B
© 2004 by CRC Press LLC
Section 6.6
587
Matroidal Methods in Graph Theory
FACTS
2
2 (
( ( ) %& % ( (
2 6 5BY8 7
( &
%
2 63"8 7 % B ( ( =( ( 1( ) % &
EXAMPLES
2 %
+) ,(
( - 7 ( ) > ! E 7 ( 7 $ 0 7 ( 7 ( ) (
J
1 4
(a)
1 5
7
2
(b)
3
4
5
7
2
3
6
Figure 6.6.4 :;
6
# "7 7 :$; "7 7
2 ) % &
) 6"( "( ?8 C ) A &) 6A !?8 5 65!?8 $* 3*""# > * " I
>&
@
@
)
@
@ 7 7
I
>&
@ @ 7 7
@ 7 7 9
+ , 9 + ,
+
,
+
@ 7 7 9 9
,
2
)
CONJECTURES
9 )
© 2004 by CRC Press LLC
588
Chapter 6
ALGEBRAIC GRAPH THEORY
1! + * I 9 6 !8, 7 % % ( % &
) 1! 7 % % ( /
) ( % &
/ REMARKS
2
7 " )) (
Æ 7 ? 7 " & 9 ) 7 " ) &)
2
7 ) ( > ( &
7 +>, ) % ( ( G 6GBB8 7 +,( ) & &
* I 9 > & 5 I 9 I ) ) 1 61B8 ) ( ( 1 61B8
6.6.10 Wheels, Whirls, and the Splitter Theorem 6 8 % ) ) ) - 5): ( C 6 8 5 ( C ( ) 5 65"B8 ( ( ) J
6J"8 DEFINITIONS
2 7 ( 0 ) & 9 ) + , &
2
7 ( 0 0 0 & ( -
2 3 9
B
B
)
9
B
9
2
/ - ½
/ ( ' ( ' - ' H
EXAMPLES
2
7 0 ( ( 9 +0 , 0 9 +0 , 0
© 2004 by CRC Press LLC
Section 6.6
589
Matroidal Methods in Graph Theory 1 5
1
6
1
(a)
(b)
6
5
(c)
6
5
2
3
2
4
Figure 6.6.5 :;
3
2
3
4
0
4
" :$; 9 +0 , " :; 0
2 A 7 7 & - 2 : - ) - & 6C C 8 +, C & ) ) C
& C (
7
FACTS
2 6 8 3 : 2
)
+ , 7 ( +
,
) )
-
2 6 8 3 9 ) : 2
+ , 7 +
,
9
9 9)
9 +0 , 0
9
(
2 + 5 65"B8, 3 9 B )
B
9 ( +B , ( 9 5 B 4 9 +0 ,( 4 0 ( 9 0
< B 9 9 +0 ,
: 9 9 9
9 4 9 < 9 4 B < ( ( 9
9
) 5 ( I 6I "8 + 6I E&?8,( 5 * 5 ) $ - 7 ) ( % 5
2 61 B8 3
7
!
)
) 4 !( ! #L
Figure 6.6.6
© 2004 by CRC Press LLC
# .' $ *""7
!
590
Chapter 6
2 6=8 3 ) 4
ALGEBRAIC GRAPH THEORY
2 65"B8 3 9 ) ) 9 9 4 7
2
3 4 0
2
)
6E&"?8 3
9
7
0
)
0
+ ,
7 !< +
, ' ( ) ) 9 & )
Figure 6.6.7
- #-*
) 6?8 ( ( (
2
6E E&?8 7
B
2
( B
0
6N E E&P?!8 7 ( B B
@
@
+
9
, 9 + , 9 +0 , 0
-
6.6.11 Removable Circuits # ' ) '
C ' 4 = ( #* DEFINITIONS
2 ' & )
) '
'
2 7 ' (
© 2004 by CRC Press LLC
' 9 &
9
Section 6.6
Matroidal Methods in Graph Theory
591
FACT
2 +#, 6#!8 $ '
' H ( ) #* + , ½ +' H , + , &
) )
& )
2 63E&??8 3 9 ) ) 9 $ +9 , +9 , H +9 ,( 9 9 9 +9 , 4 +9 , $ ( + , 4 +9 , +9 , +9 , H ( 9 ) 2 63E&??8 3 9 ) ) 9 $
+9 ,
"
+9 , H +9 , 4 +9 , H ( +9 , H +9 ,
9 9 9 +9 , 4 +9 , & ) )
2 3 ) ) $ + ,
+ , + ,( )
$ (
+ , + ,( ) 2 3 ) ) 5
+ ,
"
+ ,
( + , + ,
2 6 #?!8 3 )
$
( 9 )
2 6#BY8 3 ) $
( ) ) 7 ( #* +7 B, ) ) )
2 65 ?"8 3 )
%
) >& >? ) C & C ) & )
2 6 K??8 3 9 ) ) % $ 9
) 7 7 ( 9 ) +9 , 4 +9 ,
© 2004 by CRC Press LLC
592
Chapter 6
ALGEBRAIC GRAPH THEORY
REMARKS
2 7 ( )
)
2 7 ) ) ( (
( ) ) ( ( (
2 = )) ) ) - >
) EXAMPLES
2 63E&??8 I 2 )
& ! " ? B< ) ! " ? B( & E& 9 ) ) C 9 + , C A 9 + , ) ) ) C 7 B
) ' 4
2 K- 6K"B8 ( ( ) + 6K"B8, = ))* : +?, ) % 7 "+, 2 6 #?!8 7 ) ( 7 "+),
) ) ) 9( # 7
2 7 ( @ ( H ( )
(a) G 1
(b) G 2
Figure 6.6.8 8
+
9
,
9
+ ,
2$*
PROBLEMS
4:;! 6 K??8 $ $ ) $ ) Y 4:;! 6 K??8 $ 9 ) (
© 2004 by CRC Press LLC
9
) Y
Section 6.6
593
Matroidal Methods in Graph Theory
6.6.12 Minimally '-Connected Graphs and Matroids 7 ' ( ' ' ' 7 ' ( DEFINITIONS
2 7 ' ( ' '
'
2 7 ' ( ' 9 '
2 3
9
9
)
9
9
'
EXAMPLES
2
$ , ' (
' 7 ( - 0
0
2
7 7 )
FACTS FOR ARBITRARY CONNECTIVITY
2 6#!8 7 & '
'
(
'
2
6#!?8 7 ' ( )
'
'
'
'
+' , + , H ' '
2
6E&")8 7 ' ( ) + , + , H ' REMARKS
!
7 !B ' 4 ) N 6N !8
6 "8( ( ' 4 ) = 6= ?8 7 ! )
!
) 7 !( ) 7 ? )
( : ) 7 !B
!
6#? 8 ) - ) 9 &
)
& 7 ? ) ) '
© 2004 by CRC Press LLC
594
Chapter 6
ALGEBRAIC GRAPH THEORY
FACTS FOR SMALL CONNECTIVITY
2 $ 9 9 4 9 + ,
( ) +9 , 9 & 2 6N !( "( = ?8 7 ' (
'
'
2 6E&"( E&")8 7 ' ( + , +
,
9
2 61?"8 3
9
9
2 6= ?8 3
+9 , H + '
)
)
+ , +
,
)
'
' < , ' '
9
9
<
9
+9 , H
)
# ( + ,
"
+ , + ,
+ , + , < + , ? + , !
: ) 0
¿
,
2 6E&"8 3 9 )
+9 ,
"
+9 , +9 ,
+9 , <
+9 ,
) : ) 9 +¿ , ,
9
+0 ,
E ) 7! 7!+
, ( 2
2 6E&")8 3
)
# + , H ! ¿
# + , +
¿
+ , ? + , + , < ? + , + , + , ?
, H
7!+
, 7!+
, 2
2 3 ) + , $ ( ) + ,
© 2004 by CRC Press LLC
Section 6.6
595
Matroidal Methods in Graph Theory
+
, 3 )
) ) + , H
)
6.6.13 Conclusion # ) ) ) )
( ( T +5 6AE&?8 61??8, $
( & ) &
( C ( ) )
References 6A !!8 > A &)( G - * 1* (
+?!!,( M
6A !?8 > A &)( E * C (
+?!?,( !MB
6AE&?8 A - K E& (
( M + J 1 ,( I ) ' ( ??
6I "8 I I ( .# # 9 A # /( N ( J ' ( ?" 6I E&?8 I I K E& ( >& * 1 1 ( +??,( BMB 6I"8 1 = I ( E ( +?!?,( ?M??
B
6N E E&P?!8 N ( A E - ( K E& ( N P ( ' )
( ! +??!,( M?? 6> 8 K > ( 3 * J 1 ( %! ( ! ?A +? ,( !M! 6>?8 >U ( E & ( " B +??,( !M
61B8 K 1 ( A * 9( " +BB,( MB
© 2004 by CRC Press LLC
596
Chapter 6
ALGEBRAIC GRAPH THEORY
6GBB8 K 7 ( # = ( G ( &
7 +,M ) (
!? +BBB,( !M?? 61B8 K ( # = ( 1 ( A : ( " +BB,( "!
6 K??8 3 A K- ( ) ) ( +???,( ?M
6 #?!8 3 ( K = ( 5 # ( )
( ! +??!,( BM 6?8 A 5 )(
( )! ?M! 6=8 N 1 = (
- ( M!
B +??,(
? +?,(
6= ?8 = ( ' L)
( " +? ?,( !M""
C
L
6= ?8 = ( O C
L ( $ " +? ?,( M 6$1"8 $- 3 1 )( 1 ( )! ! +?",( M
& "
6K"B8 A K- ( )
( 9 +?"B,( "M? 6GB8 G G - ( 5 ) d ) ( 7 +?B,( !M" 63"8 3C ( ) ( +?",( M 63 8 3 ( 5 ( +? ,( "!M! 63!?8 3 ( E : ( BM!
& !
" " !
+?!?,(
63E&B8 # 3 K E& ( ) C ( ! +BB,( B?MB 6#!8 1 #( >-
( +?!,( ?M
C
L
6#!8 1 #( GC 1 ( " +?!,( "!MB
$
6#!?8 1 #( I % ( M? ! ! + A A )S,( I ) ' ( ?!?
© 2004 by CRC Press LLC
Section 6.6
597
Matroidal Methods in Graph Theory
6#? 8 1 #( E
( !* :
! ! " 3 9 + N # - S( P 5S ( 5CU ,( KS A # 5 ( A ( ?? ( M? 6#BY8 5 # ( I &
( )
6#BY8 5 # ( I ) ) ( )
6J 8 I 5K J1 ( > 9 % ( +? ,( MB
6J 8 I 5K J1 ( (
2 # ! +$ 5 ( ,( N ( ( ? ( M 6J"8 5 J
( C ( +?",( ?M! 6J '??8 P J 3( > I ( K ' ( ) ( )! ?!R?" +???,( M 6E E&?8 A E - ( K E& ( ( ) ( ! +??,( ?M! 6E&"8 K E& ( E C ( ?B +?",( B!M 6E&"8 K E& ( E ( ?MB"
6 ,52 9 +?",(
6E&")8 K E& ( E ( +?",( !M"
!
6E&"?8 K E& (
( +?"?,( ?MB
( E& ' ( ??
6E&?8 K E& (
6E&B8 K E& ( E ) ( ! !* 9;;< + K 1 = ,( 3 # 5 3 J ""( I ) ' ( BB( ??M? 6 !8 I ( I ) ( ( +J ( 5 ?!B,( P ( ( ?!( ?M
& "
6 5BY8 J ) N 5 (
[[ 1* 9( ( 65" 8 5 9(
2 &" " "( 1 ( ?"
65!?8 N 5 ( # +?!?,( ?M!
© 2004 by CRC Press LLC
7 +,(
598
Chapter 6
ALGEBRAIC GRAPH THEORY
65"B8 N 5 ( N ( +?"B,( BM?
"
65 ?"8 5 ( .5 5- > I /( N ( ' 3 ( ??" 6"8 1 ( $( ! +?",( M B 6"8 1 ( $$( "" +?",( M! 6?8 1 ( # ( !M
""
!
!
+??,(
6 8 1 ( E ) ( +? ,( MB 6 8 1 ( 3 ( +? ,( M!
%! ( !
6 8 1 ( I (
" +?
L 61!8 G 1( ') > 5C G - ( +?!,( "BM" 61 B8 G 1( A - C = P ( M 61??8 N 1 (
( BM" 618 = 1 ( (
?A
,( BM
)
+? B,(
% ! " !
+???,(
+?,( M
618 = 1 ( E ) ( ! +?,( B?M
61?"8 = 1( E & ) (
! +??",( "M?!
61?!8 3 1( ) ) (
+??!,( B!M 61BB8 3 1( >& ) ( )! +BBB,( ??MB"
© 2004 by CRC Press LLC
599
Chapter 6 Glossary
GLOSSARY FOR CHAPTER 6 "?% 3 M
2 B & 0
( )
9 (
F # "2
%
9 &(
0"
0
4
C
&(
F
* 2 M % 2
% )
4
0
B
*$ 2% 3 6
* 2 2
0
& + * ,
6
6
2
%$+ ,
#2
-
# 2 2
+ ,
% 2
2
M
(
(
M (
%$+ ,
2
$ "" M % 2
) ) &
$ @2 $
& 9 %
M
$%*
92
&
9
M 2 ) )
$% 2 M ) 2 B $* + M
)9 2 )
1
(
# +4 ,
2*2
4
(
)9 # 1 (
(
4
) -
9
4
( ( )9
$ "
M
2
)
$
M &
$
M 2
2
"2
& )
1* $ 2 : ) % ) 4 4 H H H 1%*% " M
% 2 % ( %
( +% ,
© 2004 by CRC Press LLC
&
&
I
600
Chapter 6
1%*% ½2
ALGEBRAIC GRAPH THEORY
I
1%*% 2
I
1%*% 2
)
1%*%
2 ) ) (
*% * M
2
+C
0, 9
&
"
M 2
1#2 1# 2
% 2 , +% 2 , 4 +% 2 ,( %+%, 4 + ,
I +
&
%
%
I
I$
M 2 9
(
M 2 )
""
M 2
(
2$*
M ' 9 2 '
(
9
9 '
3
M + ,2 &
(
M 2
)
$
` + , % ( )
M 2
<
` ) + ,
2
M 2 ) ,
2
M 2 , <
* 2
I
* " " "*% *
M
/
/
2
)
/
M 9 2 & ) +9 ,
-
* 2
M + 9 , (
) <
(
M 9 2
+* %
I+,2
9
+
* $
M 2
<
4 + + , + ,+ ,,
M 2 & )
" 2
© 2004 by CRC Press LLC
)
601
Chapter 6 Glossary
2
M " 9 2 9)" +9 ,
M + ,2
) :
2
"
+9 ,
"
M " 2
3
2
M " 2
" <
"
M 2
"
&
)
, <
2 M !½ ¾"
2 ) ,
M 4 + ,2 & ½
¾ 4 M ½
½
M 2
)
¾
M 2 &
(
""
M 2
$ ½
$ ¾
%* " M
M 2
) 7 +, M 2
) 2
"
M &2 ) &
"* M
" 9 2 9
9 +9 ,
""
"
+9 ,
"
) (
½ ¾ (
)
)
"
M 9 2 9
"7 *$*"2
"
)
M 9½ 9¾ 9 2 +9½ ,
+9¾ ,
9½ 9¾
" #*
M /
(
B
* ' 2
'( )
"2 M H2 % * /
0 4( & 0H4 (
2
½
" $*% 2 2
© 2004 by CRC Press LLC
602
Chapter 6
ALGEBRAIC GRAPH THEORY
"*½
+ ,2 ) &
( ) & ( + Ü! ,( 9
"*¾
+ ,2 N% Ü M 9 2 +9 , ) ) 9 "# 2
"* 9
"# 2
"# 2 ) 9
9 9
"# 2 2
2* M 2
2* #" :* -; $ " M )
+ , H
*% @2 )
¾
2
% 2 " M % 2 : )
) ) % )
" M 2 2 2 & +5
, 3*"" M
2 )
2 A M
9
2 & )
+
9
, %& -
"* 3 M
2 +, H , ) & & ( ) ) 4 < ( %
"* M
: )
"
"
2
"* 3 M 2
+ , ) & & < ( % "* M 2 : + ½ ¾ (( ½ ¾
*>" "%* 2 ) ) ) ( )
) ( ) % & 9 ) %
© 2004 by CRC Press LLC
603
Chapter 6 Glossary
" "
2 )
2 ( ( ) 9
"½ " H
M 2
M 2
7 *$*"
2
) (
(
) )
* *
-
2
&
' ) 8( +', ) ' %& & ( )
M %
)
9 *# 2 B* " 2
2
6 + ,
2 & ( ) M 2 =
+ , =
+ ,
B* # "
2
=
B* #*$*
(
2 ) 0 4 0 4 ( =
B ! + ,2 + , < 9 ( ( ) + ) ) (
(
0,
"% **
)
B C *% * '
'
M 2
% %
M
(
2 #
)
2
( ) -
*
%
:
!2
<+,
4
2 #
+, # * ! 2 2 # 9 ( +, + , 9 ! %* M 9 2 & ) +9 , ) 9
" 3
M 2 &
< &
( *
*
* (
&
B
" 3
M 2
© 2004 by CRC Press LLC
) & &
604
Chapter 6
ALGEBRAIC GRAPH THEORY
" M &2 & " 2 M 2
& ( ) &
" 2 M 2 )
&
9 2 9 "" $ " $ + ,2 ) & "" $ 23 $ + ,2 & @ 2% M + ,2 "" M
%
*" 232 & C
2 ) )
> M
9½ 9¾ G
+9½ , +9¾ , 9½ G+ , 9¾
" 2
2
( ) 9 )9
! 2 ) 9 2 # 2 # +, #
*
* ! 2 ) 9 2 #
+, +, 9 ! 9
D D + ,2 ) <
9 ( )( + ) ' ( )( ',
& - + 2 7
( C
5* 32 : &
( &< 0 9 B
( ) A+ ,2 & ( A+ , 9 ( (
*
( *>" A+ < ½ , M
½ 2 ) - 9 A+ , - I+ ½ , I+ ,< & A+ , 9 ( 9 I+ , I+ , *
M
© 2004 by CRC Press LLC
9 2 +9 ,
605
Chapter 6 Glossary
"
9 2 % +9 ,( 9 (
) ) +9 ,
+9 , +½ ¾,
¾ )
+9 , (
¿
$%2
+9 ,
9 ½
½
¾ (
) ¿
&
% 7 +, (
$ "
M 2
) (
2
)
( # "2
( (
) ( # "2 ) (
2
(
*2
(
*2
(
$* M %
)
& (
*2
(
@
2
2 B
, (
+" " ,( "
% :" $* %;2 %2
+, H , )
3**% " 2
%
)
+& ,
"½
"¾
+"½ "¾ ,
"
%
+
**% '# " 2
'
'
**%
' # "
"2
'
(
'
'
*% *
>+0
2
>+,
(
, 4 B
M 2 ) ) ) :
( (
M 9 2
) ) 9 ) :
(
M 9 2
9 :
#* " M
9
2
)
M 9 2
9
** 2 **% ,
M ( , / 2
H/
+ ,
© 2004 by CRC Press LLC
:
606
Chapter 6
ALGEBRAIC GRAPH THEORY
!½ " M 2 (
(
M 2
* * M 2 )
C
* $ 2 )
) ) : C
M 2
4
&
+) ,( Q
+,(
+ ,(
4*% 2 I % % >
# + ,( :
*** * 9
9
37 F # "2 &
/
+ * ,
+ ,( + ,
7 >
7 >
2
-
7 " $*% 22
)9
7 22 ) -
7 *2 )
7 *2 %
( : 2
1 %&
<
4 <
( :
#
1
+
#
, 4
2 1 + )9,(
1
( *2 &) C ( 22 )9
( )9 M 2 2 2
&
2 2 ) - * $
M
2 N%
" M ! 2 H &
# (
& ) 9 !
H!
+ M
/ 2 ) < - : / ) 8+ ,<
© 2004 by CRC Press LLC
607
Chapter 6 Glossary
+ M 0 2 & ) 0 - 9 & ) +9 , % M % 2 %
( # * M % 2 ) ) ( " $* M % 2 % "" " 3 M 2 ) & & + , * M 2 * 32 N% ? B
#* 2
*2*% 2
2$* %* M ' 2 ' - ½ 2 ) ( ) ) < ) - 2 + , + ,2 4 +? ? ? ? ? ,( ? 4 ) )
& + ) B 4 ( B ) 4 ( B ) B 4 B( ) 4 B,
% 2 + (
, &
M / 2 / ( M 9 2 ) +9 , ) +9 , M 2 2 < ( $*> & 2 ) %$ %& &
) 2 )
+ ,) + ,(
2
) !
%! ! +! , % +! %! , ! *% * M + 6 ,2 & 9 9 6 ( 9 9
# " 2 9 9 9 ( / ) 9 < / / + +9 , / , + +9 , /, 9 /( 9 / (
+ /, + /, 9 /
© 2004 by CRC Press LLC
608
Chapter 6
# " 2
)
+9½ , +9¾ ,
9½
9¾
ALGEBRAIC GRAPH THEORY
"
9½
9¾
< + +9½ ,
+9¾ ,, "
T
% "C M )
½
¾(
½
7 "
¾2 ½
) )
7 +9 ,
T
9
¾<
)
½ ¾
% 2 % 2%2 &
% "2
&
%
$ 2
7 +,
) % (
%
**% "* 32
&
: ) &
2
)
B ( ) )
(
&
(
2 ( *% "2 ( ( (
&
2 M 2 # 2 2
* 2
%& % )
&
*$*"
) (
½ ¾
)
( )
)
)
M 2 ) ( #2 & ( #
" #2 & ( $%2 & ) ) >
) ) %
)
)
**% ""2 ( *#2 ) & B ( ""2 & : $½ $¾ $ , B ) (
& 9
)
)
""2 (
"2 &( ( (
%
© 2004 by CRC Press LLC
609
Chapter 6 Glossary
2* 2
&
"* 32
&
& :
M
(
9½ 9 9
9
2 " 32
*
2
C C
) &
)
<
<
(
23#" " 3 23# 2 2
C
)
C
2 2
)(
: )
( B
M 2
(
&
&
( H ( . /(
(
. -/
-*
-*
2
2
& +
-*7
02
0
(
&,
9
) ) 9 &
+
,(
( 0
&
.)/)
-
- " M ! " ( 2
" # % # + $, 4 ++ , +$,,( ! $ "
© 2004 by CRC Press LLC
Chapter
7
TOPOLOGICAL GRAPH THEORY 7.1
GRAPHS ON SURFACES
7.2
MINIMUM AND MAXIMUM IMBEDDINGS
7.3
GENUS DISTRIBUTIONS
! " 7.4
VOLTAGE GRAPHS
! " 7.5
THE GENUS OF A GROUP
#! $ 7.6
MAPS
%& ' (% 7.7
REPRESENTATIVITY
) % ' 7.8
TRIANGULATIONS
*$ + * , 7.9
GRAPHS AND FINITE GEOMETRIES
! # # $ GLOSSARY
© 2004 by CRC Press LLC
7.1
GRAPHS ON SURFACES
Introduction ! "#$ % ! & ! ' ! #!! ! !
! ( )
7.1.1 Surfaces 2-Manifolds and 2-Pseudomanifolds DEFINITIONS
* ! + ! ! ! &
" $ ¾ , ¾ + " $ ¾ , ¾ " $ - ¾ , ¾
! . + ! #! ! ! .
* / + ! 0 !+ & + ! 1+ ! 1+ ! !0 1 / 1
* / 1
! & & + ! # 2
Figure 7.1.1
* / #!! ! ! ! !
! ! ! ! 1 !0 1
* ! 0 ! ! ! !& ! !
! ! 1
© 2004 by CRC Press LLC
612
* * *
Chapter 7
TOPOLOGICAL GRAPH THEORY
/ 0 + 1 / #!
# ! % 0 # ! ! !
! 0
! 1 !0 1
! 1 + ! !
* / 0 " 1 $ 0
& % & FACTS
* ! & ! ! !
! + !
* .&
0 & 0 % EXAMPLES
* * * *
! . 0 ! 1 #! ! !0 1 0 #!
! ! #
+ ! 2
* / "
! $ # ! #
! #! ! ! + ! # ! ! 2
Figure 7.1.2
!
Some Standard Surfaces DEFINITIONS
"* / " ¼$ ! ! ! " $ ¾ , ¾ , ¾ 3 * / " $ #!! ! ! !
" $ ¾ , ¾ 3 © 2004 by CRC Press LLC
Section 7.1
613
Graphs on Surfaces
¼
Figure 7.1.3
*
/
" ½ $ ! !
! ! 1
! & ! ! 1
*
/
$ ! ! ! " $ #! ! ! " $ " $
"
! 4 ! & !
Figure 7.1.4
# $%& & ' & ! ( &
" ½ $ ! ! ! " $ " ¾ ¾ $ , 3 3 - ! 0 *
/
! . ! 0
*
!
"
! ! !
Figure 7.1.5
"
¾ $ ! ! ¾ , ¾ 3 " $
$ " $ !
#
½ ) & ¾
FACTS
*
/ ! 1 !
*
/ 5
! 1 6 &
*
! !
! # ! "
© 2004 by CRC Press LLC
$
¾
,
¾ 3
"
$ " $
614
Chapter 7
TOPOLOGICAL GRAPH THEORY
EXAMPLES
*
! ! + ! + ! 7
*
/ 1 #! + #!
#! #
*
/ 5
#!
Surface Operations and Classification DEFINITIONS
*
!
8 ¼
#
¼
! 1 ! ! ! &
*
8½
*
Figure 7.1.6 * *
*
!
# ¾ & ¿ !
! 6 &
/ 0
+
!
! !
!
"
½
+
8 ½
! 0
! ! !
! 5
'! #
*
!
" $ ! !
!
!
*
!
! !
*
*
!
/
9 " $
0
" $ % ! * "
$ 3
" $ 3
& ! 6 1
*
*
!
/ &
# '! #
/ &
© 2004 by CRC Press LLC
1
! !
Section 7.1
615
Graphs on Surfaces
*
/ &
*
/ &
!0
!
5
FACTS
*
/ 4& # ! & !
# 6 1 ! ! ! ! +
& !
*
! # % " ! ! $
&
&
*
/ 0 ! ! # 0
. 0
*
/ 0 ! !
. 0
" *
! * +!
*
* .! ! !
! # *
*
! *, +!
*
-
* .! #!
! #! !
.!
% + & !
+ ! !
* *
8
¼
3
·
¼+
8 ¼ 3 · ¼ + 8
3 ·¾
! & & *
"$ "$ 0 "$ 0 & "$ 0 &
EXAMPLES
" *
! ! ! : ! ( 0 *
! 7 ! 6 & 0 +
# ! ! ( 0
*
! 5
0 #! + (
0
*
;! ! < & !
! & & ! !
! ! + ! !5
)
!
! ! & & ! 1
*
! ! "=!>$ 0
&
© 2004 by CRC Press LLC
616
Chapter 7
TOPOLOGICAL GRAPH THEORY
7.1.2 Polygonal Complexes DEFINITIONS
"
*
/
! #
& " +
1# 1# $ !
*
#
! !
! ! ! !
*
/
! ! ! ! & !
"#!!
! % $ ;! +
?
!
! ! !& !
?
! ! !& !
!
*
!
! ! ! &
*
.!
& & +
#!
& ! !
*
½
/
#1 ! 0 1
#! !
! #1 + & # ! "
! +
! !
# ! + ! # !
! ! &
* *
/
!
,,$
&
! 4
! ! ! %
*
/
"
! !
"
* *
'
& #! #1
!
!
#1 ! 0 1 ! & ! !
"
*
!
! #1 4 ! ! @ & $
! !
! #1 !
*
!
!
#1 !
*
!
! % #!
0 1 ! & ! #1 &
© 2004 by CRC Press LLC
Section 7.1
617
Graphs on Surfaces
* / #! # %
! ! !
! ( !
* /
#! 0 #1
* ! 0 % ½½ ½ ½½ ½ ¾¾ ¾ ½¾ ½ ½ ½
* !
% ½ ½ ¾¾ FACTS
*
/ ! #1
* *
/ (
/ ( 0 !
! ! ? ( 0 + + & & ! ! !
! ! ! 1 "! & ! 1 $
EXAMPLES
*
/ # " $ !
! + 4 + ! ! ! ! ! !
1
Figure 7.1.7
* *
'& , - !
! 0
1 #!
%
½ ½ ½ ¾ ¾ ¾ ¿ ¿ ¿
! ½ ½ ½ ½ ½ ½ & ! ! % ½ ½ ½ # 1 !
*
! 5 %
0 1 ¿¿
½ ½ +
#!! !
*
# ! ½ ½ ½ ! 5
% . + ! ( 6 &
*
! !
"*
½ ½ ½
( ! ! #!
! ! ! ¼ ! !
© 2004 by CRC Press LLC
½ ½
½
618
Chapter 7
TOPOLOGICAL GRAPH THEORY
7.1.3 Imbeddings DEFINITIONS
*
/
" %
!
& ! & ! ! ! !
*
/
!
0 0 ? ! + ! ! ! ! !
! ! 0
! !
"
*
/
! 0 0
*
/
(
*
/
/
! ! !
*
!
! ! ! ! 1? ! + ! ! ! 1
*
/
! ! ! !
1? ! + # ! %
*
!
! "
+ $ ! 0
!
"$
! !
"$
!
* / ! "
+ $
*
!
! !
"$
*
/
!
! !
! !
!
* !
! "
+
$ ! ! ! ! !
"
*
/
"$
9
$
9 "
*
!
! ! !
! !
"$
! !
9
*
/
! 0
© 2004 by CRC Press LLC
Section 7.1
619
Graphs on Surfaces
FACTS
* .& % ! ! ( ! .0 0
* / ! ! * AB CD .& ! ! ! "* A EF D ! + ! !
!
* ACCD G ¼ ¼¼ ! 0 !
¼¼
¼
!
0
* G ¼
! 0 ! ¼ !
0 ¼¼
¼¼
* A;!D .! 0 !
4 ! ! ! ! + & * A !FHD ! ! ! I 0! * A HHD 2 & ! % ! 0 ! ! ! % ! ! ! %
! ! !
! 1 # ! & ! ! !
4 (
* . * .! ! #! & 0 + % !
, 3 " $
* A/CD 2 ! + J"$ "$ , + ! # & + !
* A/CFD / ! 0
1 * .& ! ! ! & & ! 6 6 & #! EXAMPLES
* 2 F ! # # ! ! ! + ! !
Figure 7.1.8 ( ,& !
© 2004 by CRC Press LLC
620
Chapter 7
TOPOLOGICAL GRAPH THEORY
*
! & 0& % "$"KC F$"CK$" C$"F $"KF$ ! ! ¿ ! # * 3
4
8
7
5
6
2
1
Figure 7.1.9
# ,& ! &
* # 4& ! ! # & 0& %
¿
¿
! & !
" CK$"KF $"F C$"CKF$ "F C$" FK$"CKF$"KC $ ! # 2 -
5
1 2 3
7 4
8
a
5
6
1
c 8
b 5
Figure 7.1.10
b
2
4
3
3
5
6 7
a 3
c
( - ,& !
¿
7.1.4 Combinatorial Descriptions of Maps DEFINITIONS
* / % & #! + # * ! !
( # + ! ! ! !0 #! #! ! ! ! ! ! ! & ! !0 ! & #!! !
* / ! !0 ! &
© 2004 by CRC Press LLC
Section 7.1
Graphs on Surfaces
621
* ! ! !
! !0 ! ! + ! 1 #! !
* / $ % !
! & ! ! ! !0 #! ! ! &
* ! $ % ! ! &
* ! ! ! ! ! #! ! " ! ! # &
! ! & 4 $
* / ! ! #1
!
"*
! ! 3 " $ L + #! ! ! #! & #! !
* / " "! L$
ALGORITHM
; ! ! & ! !0 ! & ; # 1 !
+ # ! ½ # !0 ! & + + ! # M ! ! ! !+ # & ( & #!! ! !0 #! ! ! ! Algorithm 7.1.1:
' # ,
- ,. !0 + & + ! /,. 0 ! - 1 !0 % ;! !0 !
" $ !0 # # ="> *3 ; *3 !" " $$ " !0 $ N 3 # ! =$> #! #! 0
! ! ( ! + & &
& + + ! AO F D
© 2004 by CRC Press LLC
622
Chapter 7
TOPOLOGICAL GRAPH THEORY
EXAMPLES
* / & # ! 2 0 / ! !
! !0 ! & + ! ! ! 2 + ! ! ! ! !
!
3 " $"
$"
$"
$
3 " $" $" $" $" $" $
! ! ! 6 #! 0 + #!! ! #1 ! N !
!0 & ! # ! &
*
! #
!
! ! 0 F0
* / ! 2 ! " ! ! / ! ! ! # ! ! ! + a
c
b
a
c
b
Figure 7.1.11 # ,& !
"
" !+ ! % ! #1
3 " $
3 " $
3 " $
+ & + ! % !
3 # * "$
* " $
* / ! 2 ! " ! / ! ! ! # ! ! +
© 2004 by CRC Press LLC
Section 7.1
623
Graphs on Surfaces
a c
b
b
c a
Figure 7.1.12 ,& !
"¿
/ #1 + ! ! %
3 " ½ ½ ½$
! % !
3 # * "$
* " ½ ½ ½ $
* / ! 2 ! "¿ ! 7 / ! ! ! # ! ! +
a
c
b
b
a c
Figure 7.1.13 ) & ,& !
"¿
/ #1 + ! ! %
3 " ½ ½ ½$
( ! % !
3 # * "$
* " ½ ½ ½ $ L 3
FACTS
"*
! ! 6 & #! !
+ ! !
* O (
*
! ! % ( ! #!
© 2004 by CRC Press LLC
624
Chapter 7
TOPOLOGICAL GRAPH THEORY
References A/HCD /! + ! ! ? & + & ! ! " 2 + /+ HHK$ "HHC$+ KPK
+ ! ! + ! N& + HCF
A/CFD O / +
A:;! HD I G : + / ;! + GGI + N&
+ H H
+
ACCD / 1 + ! + + : !+ ! " "HCC$+ F PF AO--D < G O
+ O! ! + # $ " + 7 Q +
+ ---+ K PK H
AO F D < G O
; 1 + % % + & + -- "2 . + ; 0 + HF $ A HHD : !+ / ! ! &" ! $ " "HHH$+ CPC A EF D
+ O + 1+ / O E + ' ! + " ' "HF $+ HPH A;!-D / ;! + FF+ . & + -- A;!D Q ;! + 0
! ! +
+ I !0Q ! 0 & ! " "H$+
PF
AB CD < ; B + ! !+ ! "HC$+ -PK
© 2004 by CRC Press LLC
" "
Section 7.2
7.2
625
Minimum and Maximum Imbeddings
MINIMUM AND MAXIMUM IMBEDDINGS
2
N : * N 0 G # :
7 # 10 !
K / !
Introduction ! ! ! #
! ! ! # ! % ! # ! ! ! ! ! ! !
& ! EG + ! + ! ! !
!& 6 06 / !
7.2.1 Fundamentals DEFINITIONS
* / ! 0 0 ! * ! ! !
* ! ! * ! !"$ ! + !"$ ! =! !> =! >
* *
.! !"$ ! !"$
! ! ! ! ! 0
! 0 1 "'
# ! $
* !
! *
! !
* !
! * !
! !
!
* ! "$ " ! "$$ ! ! ! ! ! !
© 2004 by CRC Press LLC
626
Chapter 7
TOPOLOGICAL GRAPH THEORY
* !
9 "$ " !
9" $$ ! ! ! ! ! !
2 !+ 9 "$ 3 -
* ! "$ ! ! ! ! ! " $ !
"
* !
"$ ! ! ! ! ! " $ ! 0
* ! , ! " ! & $ ! ! + $ "$ ! ! 0 & EXAMPLES
*
2 + ! ! - G1 # + ! !
-
! 0
!
* 2 ! 4 % + !
-
& + & * 2 ! " + !
-
" $& + &
*
! ! ! 4
-+ !
FACTS
* A:D / ! ! ! ! ! ! + 0 ! !
!
! !
*
! ! # - $ "$& + #! $ "$ ! 1 ! ! !
# - $ "$
* / . " + AO
F D$* / ! * ! #! & + + ' + % ! , ' 3
* A:Q7BCD "/& O $ G
0 ! ! " $3
"
%
% %
% !
$
* AI ;! D "/& O $ G % % % ! 0 0 ! ! " $3
© 2004 by CRC Press LLC
"
%
$
Section 7.2
627
Minimum and Maximum Imbeddings
Whitney Synthesis of 2-Edge-Connected Graphs
/ 2 K+ + # ! 0 ! ! 0 0 ! ;! R
! # ! 0 0 ! & ! & ! ! ! DEFINITIONS
* / " 3 A(½ (¾ ( D ! ! (½+ (¾+ + ( ! ! (½ (+ + ! #! #! (½ , , ( ½ .! ! ( "
# ! + ! ! ! 1 ! ! $
* ' ! * ! ! # !"$ 1 ! ! ,
* / ! # ! ! !"$ ! #
! ! ! + ! # ! # # M ! , 2 "$
*
! # ! # M ½ !"$+ ! ! ½ ¾ ! ! + ! # ! # ! " + ! # $ ! , 2 "$ ¾
+ ! # * % # ! ! # ½ ¾ & # ! !
! # ! ! ! # #! # ! ! # ! ! + & ! # # ! # !
(a) Figure 7.2.1
(b)
0 ( ,&
* ( ! * ! ! + ! # ! # # %
* ! # # M ½ ¾ !"¼ $+ ! !"¼ $ #! ! !
© 2004 by CRC Press LLC
628
Chapter 7
TOPOLOGICAL GRAPH THEORY
* ! # + + ! !"¼ $+ ! ! & ! " $ !
! ¼ + #!! ! ; ! ¼ ! !" $ # ! ! ! ! & " $+ ! ! # ! #! 1 FACTS
* *
A;!D / ! ! 0 0
! & ! + & !
7.2.2 Upper Bounds: Planarity and Upper-Imbeddability ! ! & ! ! ! -
! $ "$&
4 1+ ! DEFINITIONS
* "*
/ ! -
/ !
" ! ! ! & 2 $
" $
$ &
* / ! ! ) ! 4
0
*
/ " 3 A(½ ( ( D ! ) * + , ( , ( ! ! ! ! + & ! ( , (
+ *+ ! ! 0 ! (
! 0 ! ! ! 0 ! / 0 0 ! & 0 0 ! FACTS
*
A7-D "7 # 1 ! $ / !
! ! ! !
* A; D / ! ! ! "* A!H-D .& 0 ! ! 0 "N
+ # & # 01 # 0 ! $
*
A;!D !
!
# 0 !
*
A C-D .& 0 ! ! ! #!! & + ! + &
© 2004 by CRC Press LLC
Section 7.2
629
Minimum and Maximum Imbeddings
* A2FD .& ! ! ! #!! & !
* +
AI ;! D / ! 0 !
! ! ! 0 + !
* *
A7 D .& 0 0 ! # 0 6
.& 0 0 ! 0 " ! # ! # A7 D$
*
A.CKD
!
!
$ "$ " AO F D$
REMARKS
1*
: 2 C+ ! 0 ! !
! 0
1*
A!/OHCD 0 ! ! 0 EXAMPLE
*
! ! ¿ 0 " #! $ Deficiency
. ! 0 # & ! 0 !
! !
M & ! ( ! ! !& & & ! ( ! DEFINITIONS
* ! + ! ! " ! 0 + $
* / ) ! 0 " $ !
* ! , " + $ ! 0 +
& " $
+
% !
% !
* / + * % , " + $ 4 ! % , "$ ! ! # ! !
© 2004 by CRC Press LLC
+ )
* AS HD ! , "$
, " + $ & + ! !
*
+
+
630
Chapter 7
TOPOLOGICAL GRAPH THEORY
* AI FD 2 - ! + % " -$ " -$ ! - #! 1 #! & 1+ & + . " -$ 3 " -$ , " -$ - ! + , . "$ % ! . " -$ & - ! ! FACTS
*
# 6 ½ # !
!"$ !
*
A!7HHD / ! ! ! ! ! 0 "$ 6
"* *
+
AS HD ! "$ ! 4 "$ "$ , "$$&
AI FD . "$ 3 , "$ "$ "$ . "$$&
! "$ ! !
4
*
A!7HHD
! ( 0 ! !
*
/ ! 0 " -$ , " -$ -+ - + #! "-$ "-$ ! - #! 1 #! & 1+ &
* * *
AI FD G ! 0 A S HD 0 ! 0
A1I FHD 0 & 0 & ! ! 0
* *
! !
A1 &HD G
! 0
AQG--D " , $0 ! "$0 ! 0 EXAMPLES
* *
! !
0
! !
0
/
7.2.3 Lower Bounds ! 0 % 01 , ' 3 ! ! #! ! + ! #! !
© 2004 by CRC Press LLC
Section 7.2
631
Minimum and Maximum Imbeddings
Lower Bounds for Minimum Genus DEFINITIONS
"
* ! " + 0" $ ! 0 #1 " 0 + ! 0" $ 3 ? ! + ! ! #1 ! # # $
* ! !
* ! - *" $
! ! !
%
#! . ! ! " $3
)
,
H
FACTS
*
0%$2( 01* 2 ! 3
! !
"* * *
¾
3 #!
'
+
" $
0
# ! ! (
! ! ! ! ! ! 2 !
3 #!
'
+
'
+
" $ 0" $
*1
*
0%$2( - 1* 2 !
3 #!
'
+
*1"$' ! # ! . 02 .4 2
*
2 !
"$
*
G
G
3 +
" *1"$ $ *1"$
!
"$
*
C
,
"$
© 2004 by CRC Press LLC
" *1"$ $
*1"$
!
,
!
9 "$
9 "$
,
,
!
,
9 "$
,
632
Chapter 7
TOPOLOGICAL GRAPH THEORY
* !
3 ! + ! !
" $3
C
,
* ! 3 ! 0 + ! !
9
" $3
,
* !
3 ! 4 0 + ! !
" $3
,
"* !
3 ! 4 0 + ! !
9
" $3
,
REMARK
1* /
! ! " 0 $
! ! !+ !+ 4 ! ! ! &
& # 01 # !
E ! !
4
FACTS
" 1 !
$ ! # AO F D
* AB CFD 2 ! ! & + #! + "
$3
" $" $
9
"
$3
" $" $ C
! "A2D$ 9 " $ 3
* AB CFD "2 ! Q #
6 $ ! ! & ! 7 4 Q #
! 2 * G ! ! + ! " $
"
, $
* ACKD 2 ! ! #! / + "
© 2004 by CRC Press LLC
$3
" $" $
Section 7.2
633
Minimum and Maximum Imbeddings
*
AKKD 2 ! !
*
A< FD 2 ! !
& + #! + " $ " $ 3 ,
& + #! +
9
"
!
*
$ 3 " $
3 K+ 9 "$ 3 " $ ,
A;! -D G & + !
3
+ #!
½
"
)
"
*
" $3 ,
&
"
)
$
$
A F-D G ) 0 + *0 ! ! ! + ! )
2
& + !
9
*
*
" $3 ,
* 2
$3 ,
"* $
! + ! 9
"
)
$3 ,
"* $
Lower Bounds on Maximum Genus
: ! & ! + # % !
! 0 &
! ! ! ! 0 ! $ "$& !
# ! ! 0 0 DEFINITION
* AO7HD / "* 0$ ! "* , 0$0 * 6 ! ! 0
! ! 0 & !
Figure 7.2.2
2!3 " -$ 4 1 3 " $
© 2004 by CRC Press LLC
634
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
"
*
! 1 1 "* 0$ * , 0 ,
*
AO7HD
*
A!OHKD
! & 1 ! 1
! #
! 1
*
A!7OHCD G !
"$
$"$&
!
! !+ ! ! %
! #! $"$&
*
G 0 !
"$
$"$&
" A/,-D$
!
2 K ! !
& 0 0 !
*
A!7OHCD
! %
0 0 !
#! 4
*
$"$&
A/,-D G 0 !
! "$
$"$&
!
!+ 2 K
*
A!/OHCD 2 C 2 KPKK 0 ! 0
#! ! 0& !
*
2+ # ! # ! !&
& ! &+ + !+ ! 0 AQG--+ GG--D
7.2.4 Kuratowski-Type Theorems ! 7 # 1 ! 4& !
! ! ! ! 2 ! & #+ 7 # 1 ! & ! ( ! % + #!! & !
! +
! ! !
Complete Forbidden Sets for Minimum Genus .T
75
A7 CD ! 4 #! ! ! 7 # 10 ! 0 !
! ! "
0 $ %
DEFINITIONS
*
/
!
*
G
*
G
! !
+
!
/ !
!
! /
+ ! !
© 2004 by CRC Press LLC
&
!
& ! !
Section 7.2
Minimum and Maximum Imbeddings
635
FACTS
*
! ! 1 !
! " ! & & ! 7 # 1 ! $
* AOQ FD ! % !
! ! ! 6 & / AOQ; HD A/FD
"*
A/QFHD 2 & 0 + ! % !
! !
*
A FFD "2 1 # ; R 6 $ /
! ! % / "A FK+ FF+ H-+ H-+ HKD$ !
*
*
2 & -+ !
! #!
A H-D 2 & -+ ! % !
!
*
A HD ! ( ! REMARKS
1*
!"$ ! = !1> ! ! # % !
! ! & & +
! + !
! N + ! # ! ! ! & ! "$
1*
/ &
2 C # & ! A HHD ! ! ! M !
A !H D ' ! ! !+ ! ! + & & ! 3 + &
!
! ! ( ! ! ! 2 C Complete Forbidden Sets for Maximum Genus
! & 2 + ! 4 % # 0
" + ! ! #! & # 0
$ ! ! " " + ! ! A# D #
0
# + & $ Q # & + & ! "% $ 3 #! ""$ 3 - ! + 7 # 10 ! & 2 C DEFINITIONS
* G ! 0 & #! # ! # 3 "# 3 ! & $ ; ! ! ¼ ! & ¼ & ! & ! # ! & # 3
© 2004 by CRC Press LLC
636
Chapter 7
TOPOLOGICAL GRAPH THEORY
* # ! ½ !
!
! 0 & ! # ! ! ! !& ! ! FACTS
* *
/ 0 0 ! ! -
AI ;! D / ! ! - & # M ! ! !
*
A!OHD / 0 ! !
! ! ! 1 ! ! 2
Figure 7.2.3
5 ! ,- ,,
*
/ ! ! 0 ! & + ! 0 ! ! ! 1 ! ! 2
7.2.5 Algorithmic Issues 2 # G A2 GFFD ! ! ! !
&
R ! ! + ! ! # ! ! !
+ ! ! ! ! ! !
Minimum Genus Testing DEFINITION
* / ! & ! ! I ! #! ! & ! FACTS
*
AQ D ! 0 ! ! ! 0 & ! ! ! !
"*
AQ ; D ! ! ! !
! !
* A2 HD ! ! #! ! ! !
#! 4" $
© 2004 by CRC Press LLC
Section 7.2
Minimum and Maximum Imbeddings
637
* A HKD G ) % ! ! ! ! & ! #! ! )
* 2 !
+ ! ! ! ! ! !
* A HHD 2 ! % + ! 0 ! !+ &
! + !
! " ! & ! % & ! 2 ! 0 ! $
* A !FHD ! # I 0 * & ! + #! ! "$ * A !H D ! #! ! ! !
& I 0
* A HFD ! #! ! ! !
& I 0 Maximum Genus Testing FACTS
* A2OFFD ! ! !
& ! " ! S I 1T ! ( 4 ! 0 ! ! + #!!
& AOFKD$
* A!HD 2 % + ! ! !
#! ! & ! ! +
+ ! ! ! !
"* A!HD 2 % + !
! ! ! * AOHD !+ ! 4
0! 0 ! & ! & 0 ! ! ! + ! ! ! = >
* AOHD ! = > ! ! + ! !+ & 0
REMARK
1* 2 F F ! ! M !
© 2004 by CRC Press LLC
638
Chapter 7
TOPOLOGICAL GRAPH THEORY
References A/Q CD 7 / ; Q1 + .& 0 + " F "H C$+ P
&
A/FD /! + / 7 # 1 ! ! 6 & + ! % K "HF$+ PC A/,-D /! + < ! + B Q+ 7!+ G+ B G+ I + U 1 & + + &+ I 1TR ! + $ " + A/QFHD /! Q 1 + / 7 # 1 ! 0 + ! % C "HFH$+ P A:Q7BCD < : + 2 Q+ B 7 + < ; B B + /& !
!+ & " CF "HC$+ KCKPKCF A:D Q :!+ # 0 + & - "H$+ P A!H-D < ! + % ! + ! + N& + "HH-$
"
+
!
A!HD < ! + / !
! ! & + &" ! $ " "HH$+ CPC A!/OHCD < ! + /! + < G O
+ &+ $ " H "HHC$+ HPH A!OHD < ! < G O
+ 7 # 10 ! & + % K "HH$+ --P
!
A!OHKD < ! < G O
+ I # & + ", % ,, + B /& / !# 1+ ; 0 "HHK$+ FPH A!7HHD < ! 7!+ O! ! + &" ! $ " "$ "HHH$+ HP A!7OHCD < ! + 7!+ < G O
+ / ! # ! 0 !+ $ " KC "HHC$+ FP- A2FD 2+ ' ! ! + & "HF$+ HP
" ( ) *
A2 GFFD 2 # G + I &
& 0 + ! & " K"$ "HFF$+ P H A2 HD G 2 + O + < + ' ! ! 4" $ + ++ & & " % "H H$+ P
© 2004 by CRC Press LLC
Section 7.2
639
Minimum and Maximum Imbeddings
A2OFFD 2 + < G O
+ G / O !+ 2 0
! + ! & " K"$ "HFF$+ KPK AOFKD Q I O # + .Æ ! ! + , H "HFK$+ -P- AOQ FD Q O & + < Q 1 + ! ! ! 6 & % + $ " "H F$+ PKC AOQ; HD Q O & + < Q 1 + 0 ;+ - ! ! ! 6 & + ! % "H H$+ P - AO7HD < G O
+ . ; 7 + O + ' ! & !+ H "HH$+ KPC AOHD < G O
O + G 0 % ! + % K "HH$+ KHP AO F D < G O
; 1 + . + ; 0 + HF
% % + & + -- 2
AQ #H-D < Q #
+ 0 ! + AQ D < Q " "H $+ KHPKCF
!
- ! " "FH-$+ PF
6+ .Æ +
! &
AQ ; D < Q < ; + G !
! ! + . & & " % "H $+ PF AQG--D B Q B G+ !
! #! ! & & + & " - "---$+ KPKK AQG--D B Q B G+ + !+ & " + "---$+ PF A< FD < + / ! ( 0 ! + " "H F$+ -P-C
% &
! ! ! O! +
& /
A7 D 7+ : ! 6 + "H $+ HHP-
! %
A7 CD 75 +
"HC$
A7-D 7 7 # 1+ V ! + 0 K "H-$+ PF AGG--D G B G+ + ! &+ ! "---$+ CKPCK
"
A HFD : !+ ' ! ! #! + $ " F "HHF$+ KPK
© 2004 by CRC Press LLC
640
Chapter 7
TOPOLOGICAL GRAPH THEORY
A HHD : !+ / ! ! + &" ! $ " "HHH$+ CPC AI FD G I 1T+ / # ! ( ! !+ ' " ! "HF$+ C-PC
)
AI FD G I 1T+ .& + ! + ! % K "HF$+ -KP- AI ;! D . I ! + : #+ / ;! + ' ! !+ ! % "H $+ KFPC A S HD I Q S + N & ! + $ " "H H$+ PF- AB CFD O < ; B + ! Q #
0 0 + & 1 & C- "HCF$+ FPK A FKD I
+ O! W & + KP ' +234+ /
+ N&
+ HFK A FFD I
+ O! SS ; R 6 + + "HFF$ A H-D I
+ O! E 0#! # 0 4 0 + ! % F "HH-$+ PK A H-D I
+ O! E / 7 # 1 ! + ! % F "HH-$+ KKPFF A HKD I
+ O! S + ! % C "HHK$+ CKP-
! 6 !
A HD + / ! + ! + HH U A1HD 1 & + ! ! # + F "HH$+ KPF-
$ "
U A1I FHD 1 & I + ! & 0 & ! + $ " F "HFH$+ HPFC A !FHD !
+ "HFH$+ KCFPK C
! ! I 0 +
A !H D !
+ ! ! + CH "HH $+ KPKF
! & "-$
! %
A !H D !
+ /
! ! !! 0 + ! % - "HH $+ -CP A C-D ; + & ! + , " PF
© 2004 by CRC Press LLC
- "HC-$+
Section 7.2
641
Minimum and Maximum Imbeddings
5 A; D 7 ; + N . ! 7 + " & "H $+ K -PKH- A;!D Q ;! + I 0 ! + "H$+ HPC
% & "
& ! "
KK
A;!D Q ;! + / & ! + "H$+ PK
AS HD I Q S + Q # ! !+ % C "H H$+ PK AS HD I Q S + N 0 ! + ! C "H H$+ CP
© 2004 by CRC Press LLC
!
%
642
7.3
Chapter 7
TOPOLOGICAL GRAPH THEORY
GENUS DISTRIBUTIONS ! "
I
O 2
'!
K ! N C /& O
%
Introduction ! ! ! 00 0 & ! % !+ #!! # O
2 AO2F D ! & ! / 1 +
! 0 ; ! #
=! > ! !& 4& & + ! 1
! ! #
7.3.1 Ranges and Distributions of Imbeddings DEFINITIONS
* ! ! & ! ! ! ! ! ! "$
*
! ! ! ! ! ! ! ! "$
* *
! + ! & A "$ "$D
! + "$+ ! 4&
! + 4& " $+ ! ! !
*
! . ! ! 4 #! "$+ #! "
$ 4 ( + # ! 4 ! + ! % 4 (
© 2004 by CRC Press LLC
Section 7.3
*
643
Genus Distributions
!
5 "
½
$ 3
"$
* !
+
1 # ! ! ! ! ! ! ! ! "$ * !
+
1 # ! ! ! ! ! ! ! ! "$ " *
! *
+ !
!
"$ "$D
& A
+ "$+ ! !
4&
. ! ! 4 #! "$+ #! "
$ 4 ( + # ! *
!
4 !
+ ! % 4 (
*
!
5 " $ 3
*
/
½
"$
# 6 ! ) # & # & ) I * )
#
Figure 7.3.1
*
/
# &',, !
# 6 ! ) # & ) I * )
0
&
Figure 7.3.2
*
!
# 6-',, !
! 4 ! 4
© 2004 by CRC Press LLC
#!
644
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
* ACCD 2 &
#! ! !
+ + #! &
"$ "$+ ! "$ &
* G
! 4
! ! 4&
½
"$ 3
¾
A "$ DX
! ! ! ! ! ! & & + ! & 5 "$ & !
* A FD 2 &
"$
"
#! !
! + + #! & $+ ! "$ &
* G ! ! ! 4&
" $ 4
½
"$ ,
½
"$
3
¾
A "$ DX
! ! ! ! ! ! & ! ! ! !
!
&
* AO2F D ! 0 # ! 0
! & ! & + 4 ! ! ! & ! !
* ! & 0 ) # ! #
4 ! ! 0 ) ! +
" ) $ 3 " ) $
* ! & 0 ) # ! ! 4 ! ! 0 ) ! + " ) $ " ) $ " ) $ , * .& ! 4 & 0 )
# ! ! ! 0 ) EXAMPLES
/ ! # ! " $ !
*
! !
! ! # 4 * - -
© 2004 by CRC Press LLC
Section 7.3
*
645
Genus Distributions
! 4
%¾
! ! # 4 * - -
*
!
"
! ! # 4 * - -
*
! !
! ! # 4 *
- - - -
*
! 0
! ! # 4 *
"- F- C-F C - - $
*
! 0
! ! 4
" - - - $ ! & 0
! ! 4
" - - $
RESEARCH PROBLEM
1 /&,
* ! ! ! & # ! REMARK
1*
! & !+ & + ! & + &
! C
7.3.2 Counting Noncellular Imbeddings ! ! # ! 0 ! !
&
1 ! DEFINITIONS
* / + #!! !& !
* / !
© 2004 by CRC Press LLC
#!
646
Chapter 7
*
TOPOLOGICAL GRAPH THEORY
/ & ! !
! !
! !
*
/ & !
& #!! !
.4& + ! !
"
*
O& !
+ !
! 0
0 & ! ! #! 1
*
O& !
+
"
0
& ! ! ! ! ! ! !
* O& ! + !
! 0 0 & ! ! #! 1
FACTS
*
.& ! ! !
4 ! !
"
*
! ! 6 &
#! ! !
*
.& ! ! ( &
*
.& ! 0
! 4 ! !
*
! ! 6 & 0
#! ! ! ! ! &
*
/
!
! +
! ! ! ! + ! ! ! ! & !
!
EXAMPLES
*
! !
! & + !
C 3 F - -
Figure 7.3.3
© 2004 by CRC Press LLC
! + !
! 4
Section 7.3
647
Genus Distributions
*
.! ! # ¾ ! %& 2& %& # " + ! 0 $ ! + !
%& M
! + ! + F + . + F
$
* .! ! ! ! %& #
! ! N !
3 + ! 4 . 3 K + # ! ! " $ 4 K , F 3 C / ! + # FF
7.3.3 Genus Distribution Formulas for Special Classes .& ! ! & + # ! & !4 # M ! &
! DEFINITIONS
* ! 6 ! ! ! ( ! ! ! !+ 2
Figure 7.3.4
' ' 6
* ! 7 ! ! & ! 0& ! ( + 2 K
Figure 7.3.5
© 2004 by CRC Press LLC
&& 7
648
Chapter 7
TOPOLOGICAL GRAPH THEORY
* ! . % ! ! #! & 0
+ 2 C
+, &.
Figure 7.3.6 FACTS
* A2OFHD ! 0 !& ! # ! *
"6 $ 3
-
½
,
! #
! # ! # !
!
6 6 6 F - C 6 C F 6 FF K C F -
C C KC -
*
A2OFHD ! ! !& ! # ! *
"7 $ 3
,
-
! # ! # !
! ! 7 C 7 C C 7 C F C 7 KC - C HC
*
AO FHD ! 4 !& ! # ! 0 *
"% $ 3 " $X #! !
"$ 3 8
8Y
"$
8 ! + " & $ $ A8 3 ! Æ $ D
#! ! % !
© 2004 by CRC Press LLC
Section 7.3
649
Genus Distributions
& ! <1
A<F D ! #
! &
"% $
*
"% $ 3 - - "%¼ $ 3 "%½ $ 3 - 2 3 "%¾ $ 3 3 -
2 * " , $ "% $ 3 " $" $" $¾" $ "% , " $" $ "% ½$
¾$
! &
"% $ 3 3 K
X 3 X 3 C FKX 3 C C--F X 3 K-CF CF- FK HX 3 CFF-
REMARKS
1* G 01 ! !
! Q #
0 " A D$ O ! AOF D ! = > =5
> A --D ! 0 = > 1* ! !
# 4 ( ! AHD = > 1* AH-D ! ! ! !
= >+ #!! ! #! # & 0
/ # + <1
+ E A/<EHD
1 0! !
1* ! AHD 0 ! 1* 7#1+ 7+ G A7#7G HCD
1 !
! & 1* 1 AHKD
1 !
! 1* ! AH D ! (
1* / ! 4 ! ! !
& ! &
& "
& $ 4 " AO D AO F D$
© 2004 by CRC Press LLC
650
Chapter 7
TOPOLOGICAL GRAPH THEORY
7.3.4 Other Imbedding Distribution Calculations + 0 4
! + !
#
! ! & B ! & !
4& # ! =
1 1 > #! &
& DEFINITIONS
*
! ! ! &
55 " $ 3 5 " $ , 5 "$ 3
½
"$
,
½
"$
* O& ! ! + + ! ! 3 A/ D & ! + 3 9#* "!$ / 3 3 # - ! #
! 9#*"!$ ! ! ! ! ! ! + , ,
* ! : * : * ! ! ! ; * ! ! * ! ! ! 2 & ; # : :
Figure 7.3.7
*,, 6 ! ,& :
:
FACTS
*
;! 0 !
+ ! + ! ! $ "$ ! # #
55 " $
3
¾
A "$ DX
* A FHD G !+ + + !
!
* " $ 3
© 2004 by CRC Press LLC
"!$ 3 " $ "!$ 3 " 0 $
Section 7.3
651
Genus Distributions
! + ! ! #! 0
"* A!OHD ! 0 4 4"$ ! #! + ! 1 ! & 4"¾$ Q # & + ! 1 !
&
!
* A!OHD 0 !& ! #
55 " $ 3
½
½
5
*<#
, *<#
, 5 " $
* A!OHD ! !& ! #
55 " $ 3
½
½
5
*<#
, *<#
, 5 " $
REMARKS
1"* A;!FFD
0 ! 1
# & ! -#1"$ ! ! ! 1* A7#G HD
0 ' ! 0# ! & " $ ! & ! ! ! ! ! 1* A7#!-D & ! 4 EXAMPLES
"* ! & 2 F+ ! ! + K+ C ! + ! # + + ! 1 ! ! 0 + ! " 2 H$
© 2004 by CRC Press LLC
652
Chapter 7
TOPOLOGICAL GRAPH THEORY
Figure 7.3.8 +, ! 6 , -
+
* & 2 + A!OHD ! ! ! #! ! + 2 H ! = > & + #!! & 1
67
7 6 , - & 2 + A!OHD ! + ! !
Figure 7.3.9 2
*
#! ! + 2 -
! = > &
7
Figure 7.3.10 *&&
* 1 + 2 ! # ! # ! C M ! !
Figure 7.3.11 / ,& !
: R G
.! ! ! ! ! & ! 0
© 2004 by CRC Press LLC
Section 7.3
653
Genus Distributions
+
& ! " ! ! $0 4&
+ 2
Figure 7.3.12
! , ,
7.3.5 The Unimodality Problem DEFINITIONS
*
/ 4
"
! ! ! ½ / ·½ / & #!
* / 4
4 4 FACTS
*
/ 4 % ! + 2
Figure 7.3.13
*
# , . ! ,- ,
A7 O D / 4& !
© 2004 by CRC Press LLC
¾ ·½
½
/
654
Chapter 7
*
A2OFHD
TOPOLOGICAL GRAPH THEORY
! & 0 !
*
A2OFHD
! & ! 0
*
AO
FHD
! & 4
REMARKS
1
*
+
; & ! ! 4 % ! +
! , ! !
! +
& +
! ! ! ! 4 %
! ! 4
,
#!! 4
1
*
AHD
! !
& !
+
1
*
AH-D
! ! 4 %
! 4
!
! !
RESEARCH PROBLEM
1 /&,
* #! ! ! & !
7.3.6 Average Genus DEFINITIONS
*
!
! +
"$+ ! & & !
! + 1 &
* ! ! + $"$+ ! , ? !
! !
*
AO7HD /
"* 0$ * , 00
* 6 ! 0
! ! 0 & !
*
G ! ; ! #
!
# # # & # ! ! # ! ! # # & !
*
;
!
! # # & 3 ! & 3 ! !
! ! 0
3
© 2004 by CRC Press LLC
Section 7.3
655
Genus Distributions
* ; ! * 0 ! ! ! + ! # ! #
GENERAL FACTS ABOUT AVERAGE GENUS
*
AO7HD ! & ! #! & !
*
AO7HD ! & ! ! &
!
"*
A!OHKD 2 0 !
*
+
"$ "$
A!OHKD 2 0 !
! ! +
"$ C $ "$
*
A!HD
! ! & ! &
*
AO2F D ! & ! 0 # !
4 "$ , ") $
* A!OHD G 0 !+
! !
"$
" $
)
!
"$ ,
FACTS ABOUT SMALL VALUES OF AVERAGE GENUS
* / ! ! & -
! ! & ! # AI ;! D
* *
! 1
! # AS HD
AO7HD ! & 1 "* 0$
© 2004 by CRC Press LLC
656
Chapter 7
TOPOLOGICAL GRAPH THEORY
* AO7HD .! !
& & (
1 2 ! & ! # ! ( ! !
Figure 7.3.14 1 8 ! - , 6 6
! 6
* A!OHD . 1 + ! ! 0 ! &
! ! 4 %¿ + ! " + ! ! !& &
K C
F
& 2 K ! # ! ! %& ! ! ! &
Figure 7.3.15 6 '
( 6
"* 2 H !
% ! &
! * A!OHD
! ! 0 ! #! & 4
Figure 7.3.16 '
( 6 .
FACTS ABOUT CLOSE VALUES OF AVERAGE GENUS
* AO7HD / ! ! 0 !
!& ! &
© 2004 by CRC Press LLC
Section 7.3
*
A!OHD 2 !
&
!
*
657
Genus Distributions
*
A!OHD 2 !
!& &
!
*
*+
% 0 ! !&
*+ % 0 !
FACTS ABOUT LIMIT POINTS OF AVERAGE GENUS
*
AO7HD
! !
&
&
*
A!OHD
!
& & 0 ! !
*
A!OHD
!
& & 0
! !
*
A!OHKD G # &
REMARKS
1
*
2 & +
!
1
*
/ & & AHCD+ AHHD+ AHKD+
AHKD
7.3.7 Stratification of Imbeddings 6 !
M
! ! #! ! # & !
!
DEFINITIONS
:½ : ! ! ! ! & 0 Æ : : * # ! ! ! ! ! ! & ! 0 : : * 2 ! + ! ! ! ! 06 ! 06 "* ! ! ! !
! * / ! ! & ! !
*
#
! &
M & !
! !
FACTS
*
!
© 2004 by CRC Press LLC
"$
658
Chapter 7
TOPOLOGICAL GRAPH THEORY
"* AO HD ! ! % !+ ! + !
* AOHD ! !& ! * AOHD I +
!
0 + & ! ! ! #
* AO HKD 2 & & ! % ! + ! ! !
! & ! ! REMARKS
1*
! #! A !FHD+ #!! & ! ! I 0
1* ! #! A2OOFFD+ #!! ! 0 0 ! 1"* AO HKD
! # # ! #!
!& 1 M ! % !
! !
! + ! !! 0
References A/<EHD O . / # + <1
+ E + / !
!
0 + &" ! " & K "HH$+ PKK A!HD < ! + / 0 !
! ! & + &" ! $ " "HH$+ CPC A!OHD < ! < G O
+ G & "$* 0 0 ! + ! % KK "HH$+ FP- A!OHD < ! < G O
+ G & "$* 0 0 ! "#! < ! $+ ! % KC "HH$+ -FPH A!OHD < ! < G O
+ 7 # 10 ! & + % K "HH$+ --P
!
A!OHD < ! + < G O
+ O + '& 0 + $ " F "HH$+ PH A!OHKD < ! < G O
+ I # & + % 5 5 & 5 / + (6)5 "5 +227*+ FPH+ ; 0 + I # B 1+ HHK A!OHKD < ! + < G O
+ O + G # ! & + ! % H "HHK$+ FPHC
© 2004 by CRC Press LLC
Section 7.3
659
Genus Distributions
A2OFHD G 2 + < G O
+ + O #
! + ! % C "HFH$+ PC AO2F D < G O
G 2 + Q ! 0 &
!+ ! % "HF $+ -KP- AOHD < G O
O + G 0 % ! + % K "HH$+ KHP
!
AO7HD < G O
+ . ; 7 O + ' ! & !+ H "HH$+ KPC AO FHD < G O
+ + ; 1 + O 4 + ! % "HFH$+ HP-C AO HD < G O
; 1 + G ! + & 8 & H "H H$+ KPK AO F D < G O
; 1 + % % + & + -- 2 . + ; 0 + HF AO HKD < G O
; 1 + % ! + " "HHK$+ PFC
$
A<F D <1
+ ! + #! + % & " HH "HF $+ FKPF- A7 O D < 7
Q O + + & CC "H $+ FCPFH
! &
A7#7G HCD < Q 7#1+ O 7+ < G + ! 0 & + $ " KC "HHC$+ P - A7#G HD < Q 7#1 < G + . ! + K "HH$+ HPK
$ "
A7#!-D < Q 7#1 Q !+ 4 + $ " F "--$+ HP-F AHCD 1 !+ ! #! & + $ " KH "HHC$+ FKPH- AOF D G / O !+ !
! + 0 N& + HF
A FHD : !+ / ! + "HFH$+ KP
$ "
F
A;!FFD : O + O + / ;! + . 0
! + & " - "HFF$+ P- AH-D O + !
© 2004 by CRC Press LLC
! + ; ! N& + HH-
660
Chapter 7
A D O +
" % + 0E + H
TOPOLOGICAL GRAPH THEORY
AHKD / 1+ ' ! !
+ & "HHK$+ HPHF AHHD !(+ & + ! % C "HHH$+ PC
AH-D !+ ! + $ " F "HH-$+ K P F AHD !+ 0 * . 0 ! + ! % K "HH$+ HPF AHD !+
! + $ "HH$+ FPHH
" FH
AHD !+ ' ! ! +
! "HH$+ HPC AHKD !+ : ! & ! & 0 ! + $ " "HHK$+ KPK AHKD !+ ' ! & ! !+ ! % - "HHK$+ PF AH D !+ ' ! (
+ C PC- A --D . Q KPK
+ O +
A !FHD !
+ "HFH$+ KCFPK C
! " $ "
! ! I 0 +
C "---$+
! & -
AS HD I Q S + Q # ! !+ % C "H H$+ PK
© 2004 by CRC Press LLC
H "HH $+
!
Section 7.4
7.4
661
Voltage Graphs
VOLTAGE GRAPHS ! " E O!
I E + G O + I / !
E O!
& #! E O!
K ! 7!! M E G# C E O!
O!
F G E O!
H / E O!
Introduction ! & ! + ! #! " =& 0 >$ % ! #! / ! %
! 0
0& ! " = 4 >$ ! + & ! ( !
7.4.1 Regular Voltage Graphs ! & ! ! / + & ! ! ! & ! !
& + ! ! 6 DEFINITIONS
! & ! # # AO D ! % ! ! K C &
*
G 3 " $ ! / ; * ! ! #! & ;"$
! * O! ! ! ! " $ ! * !
#! & & ! 3 " $ * % # * " $ 3 3 + ! " $ 3 3 ! & & + ! ! 3 " $ ;
;
;
! &
© 2004 by CRC Press LLC
#
#
3 "# $ ! &
3 " ;"$$
662
Chapter 7
TOPOLOGICAL GRAPH THEORY
E ! & ! % ! + ! ! ! ! & & ! ! + + ! & + " $ !
!
! ! &
& 0 +
* ! / " $ #! ! !
& ! & ; #
! & ! /! ! & " + ! $ &
+ +
# # !
! C+ ! #
EXAMPLES
*
2 ! # ! # ! !
! K K ! # 0
Figure 7.4.1
# 6
,
*
%
! *
2 "$ & ! ; * ! & !
Figure 7.4.2
+ 2
"$
# 6
, 6
.! 0 ! & ! 6 # #0& + ! ! 0
& # ! & + !
© 2004 by CRC Press LLC
Section 7.4
Voltage Graphs
663
& 0 !
! ! & # & + ! ! 0 ! & !
#0& 0& ! ! 4 ! 0 + & - TERMINOLOGY
0 6 6
/
& ! &
0
& ! ! ! 0 ! & ! ! + ! & & #! ! · ·
!
! ! ! ! + #! " $ ! REMARK
1*
! & ! # ! + #!
Fibers DEFINITIONS
*
G ! & ! & ! 3 " $ ; * ! & 3 * ! $% &
+ ! 3 * ! $% &
* G 3 " $ ; * & ! ! ! ! & ! ! & ! & ! & & + ! " ! + ! 6 & = >$ EXAMPLE
7 * 2
+ ! #¼ #½ #¾ " $ "#! # # ! =#0& >$ ! & % & # ! ¼ ½ ¾ " $ "#! # # ! =0 >$ ! % & FACT
*
! % ! & ! ! ! & 0 ! & ! % + ! #! & + ! 0 ! & ! % + ! #! & Bouquets and Dipoles
2 + ! ! #! # &
© 2004 by CRC Press LLC
664
Chapter 7
TOPOLOGICAL GRAPH THEORY
DEFINITIONS
* *
! . % ! 0& ! #! 0
! " ! # 0& ! #! 6 ! # &
EXAMPLE
E ! ! & ! # #!
+ ! ! %
*
2 ! # ! 2 + ! & !+ % &
Figure 7.4.3
6
, 6
2 "$ & #! 0& % + 2 ! + # !& =
! > ! & % ! & !+ ! #
! & + # !&
! ! & ! 2 "$ & #! 0& " N ! #
& ! ! & ! & ! ! + #!
+ ! ! & ! ! ! % 6 & #! M ! 2 "$ & ! #
! ! ! #! 0& " ! ! / AO F D AOB HHD FACTS
*
! ! #! "$
0 ! ! & ! % ! 4 % #! &
& 0
* ! ! &
! & ! ! ! 4 % " !
2 $
* ! ! &
! & ! ! ! 4 % +
! ! ! &
© 2004 by CRC Press LLC
Section 7.4
665
Voltage Graphs
* ! ! &
&
- ! ! ! "
* ! 0 ! &
! & ¾ ! ! "
7.4.2 Net Voltages, Local Group, and Natural Automorphisms Net Voltages DEFINITIONS
* / #1+ ! & ! # ! !
0 ! ! ! &
* ! . #1 = 3 ¼ ½ ½ ¾ ! 4
& ½ + #! 3 ;" $ ;" $ ½ + #! ! & ! # 1# + &
"
* ! & ! ! ! & 4 EXAMPLE
7 * ; ! & ! 2 &
Figure 7.4.4
+ !
# 6
, 6
! #1 = 3 # # # ! & , - , 3 ; & ! ! #1 #¼ ¼ ½ ½ #½ ½ ¾ ! & !+ #!! # ! #1 = + ! & % & ! ! K The Local Group DEFINITION
* !
& & ! 3 " $ ; *
! ! ! & #1 !
& G
© 2004 by CRC Press LLC
666
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
*
A/O CD ! & + ! ! ! & & 0 + ! ! & 6 ! ! &
* A/O CD 2 & ! ; * + !
! & ! 4 ! A * G D ! ! &
*
A/O CD ! ! & !
!
EXAMPLE
7 *
! 2 "$ ! 0 #! & R ! ! # ¿ ! + ! #
! & ! REMARKS
1*
#
& * ! !+ ! ! ! & ! ! & * "! + ( ! + & 0 $ & ! & !
1
* ! ! ! # & A/O CD ! Natural Automorphisms
! ! ! ( & ! ! & ! DEFINITION
* G ; * & !+ > * & !
#
#
!
! + & # & ! !+ ! & # & ! & ! FACTS
AO F D
"*
! % & ! + ! & ! & ! ! & + & + #! ! % " ! ! % $
*
! & ! & #! ! & % & ! #! ! %
*
G ; * & ! / ! & ! ! & ! % & ! ! > G
© 2004 by CRC Press LLC
Section 7.4
Voltage Graphs
667
EXAMPLE
7
* ! ! >!" 2 "$ 0 ! & ! ! & R
7.4.3 Permutation Voltage Graphs ! & ! AO D ! 6 ! + ! ! ! ! & ! ! "2 K$ DEFINITIONS
* G 3 " $ ! / Y ; * Y ! ! #! !
! ; Y
O! ! Y ! ! ;"$ ! * ! $Y %
#! & ! 3 " $ ; * Y % # * " $ 3 3 + ! "$ 3 3
! & # & ! ! 3 " $ ! & # 3 "# $ ! & 3 " ;" $$ EXAMPLE
*
2 K ! # Y0 & ! ! & !
Figure 7.4.5
9 : # ;¿'6 4 9 : 6
! % & 0
& # ! ! ! "# # # $+ ! & "$ ! % & 0
# 6 " $" $+ ! & "$"$ & # & ! !+ ! ! % &
! & % & # ! & % & + ! & #! ! & "$
© 2004 by CRC Press LLC
668
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
*
AO D .& ! & %
0 & ! 4 % "
A1FKD$
*
2 :5 R ! A:5 FD " 2 C K$+ # ! & 0 0 " , $0 ! %
& ! 4 % + 0 ! % &
*
/ ! & &
& & ! # ! ! ! !
REMARKS
1
* / ! + ! & 0 0 Y0 & ! & & 0% + ! #! & + 0% + ! #! / + 6
1
* 2! & ! & AO F D AOB HHD
1
* & ! # #! + #! ! ! & & & 2 & + ! & ! % 2 & + ! X &
1
* +
! 4 %¾ #! ! # ! "#! ! :6 $
! ! & ! ! 0 :6 ! ! & ! ! &,,% 3 !
7.4.4 Representing Coverings with Voltage Graphs & + & & ! %
& ! & 0 & ! & + ! ! !
+
! ! & ! & & ! ! & & % + ! Coverings and Branched Coverings of Surfaces DEFINITIONS
*
G 9 + 9 * 9 + ! ! ! # ! * .& ! ! !
? ! ! ! 9 "? $ ! ! 9 ? ! 9 * 9 ! 9
© 2004 by CRC Press LLC
Section 7.4
669
Voltage Graphs
*
G 9 * 9 & 6 2 ! ! &
+ ! 9 ½" $
*
9 % 9 ! ! G 9 + % 9 9 9 & 6 ! ! ! 9 * !% ! 9 * 9
! 9 ! %9 !
! ! !
EXAMPLES
*
! & 6 ! ! ! % & ! #$ #$ & + ! ! & ! 1 ! + #!! - ! !
* * *
!
! & ! A/-D .& ! & ! !
! ! 3 " $ @ * , , 3 - ! " $ " $ ! 4 ! ! ! & 6 ! 6 & & + ! ! & 6 ! # ! =
> ! = > & 6 !
5
REMARK
1*
! ! & ! ! + ! !
!
Using Voltage Graph Constructions
/ # & ! & ! FACTS
G 3 " $ ; * & ! !
* * *
"$ 3 "$
! ! #
"$ 3 "$
! % & & "$+ & & ! !
/ ! ! % ! & !+ ! # * & & ! % & & "$
! "/ ! #! 0
!& $
*
9 AO HD G + ! !
0& + !
& ! +
© 2004 by CRC Press LLC
670
Chapter 7
TOPOLOGICAL GRAPH THEORY
EXAMPLES
*
! ! & ! !+ # & ! ! ! ! - & K ! & &
- K K+
2 C+ # 1 ! #! &
! ! ! #! 2 + ! ! 0& + #!! # !
# ! '
! # + ! "¿ + 0 : 2 F+ ! ! ! ! & ! + ! # 2 C+ !
!
% $,
Figure 7.4.6
# 6
, ! /
; 1 0& ! !+ ! K : 2 H+ #
! & - ! 2 C ! # !
"
* : + # ! ! !
& & & ! ! & C +
! & &
: !
. H+ # # !
# ! !+ # # !
& /
- 0
! % 0
/
! & ! 0
0& C0 ! #! # 6 + #! 0 + Action of the Group of Covering Transformations
! % ! #!! & ! &
& ! 4 #! ! DEFINITIONS
* G 9 * 9 & 6 / ! ! 9
9 3 9 '
! ! ! ! + % ! %
"*
* / ) & & 6 9 * 9
) ! ! % 9 / ) & & 6 9 * 9
! % &
*
/ & 6 9 * 9 ! ! ! & ! + ! 9
© 2004 by CRC Press LLC
Section 7.4
671
Voltage Graphs
! ! = & ! > &
( ! ! 9 ! ! ! ! 9 ! & 6
+ + 0
#! (
EXAMPLE
! ! #$ #$ & ! + &
! % & & ! ! + ! & 6 !
"7 *
FACTS
"* AO D G ; & ! & !
! ! & !
* AO D G
( ! !+ 9 & ! ! ! ! ( ! & ! &
"=.& & ! ( &
>$
* AO D G ; & !
& !
! ! & !
* AO D G ( ! !+
9 & ! ! ! ! ( ! & ! &
"=.& & ! ( &
>$
* G ; & !+ #! & !
! ! & !
! ! & ! ! Y0 & ! ; Z + #! Z ! ! ! Y "=.& &
&
>$
* G ; & !+
! ! & + ! & ;"$ & ;"$ + ! ! & !
! ! & !
* G
9 * & 6 ! + ! ! ! ! & ! 9 * ! & ! 1 + #!! - ! ! ! - ! ! !
7.4.5 The Kirchhoff Voltage Law ; ! ! 7!! M & #
! ! & ! ( ! ! + & ( + ( ( !
© 2004 by CRC Press LLC
672
Chapter 7
TOPOLOGICAL GRAPH THEORY
DEFINITIONS
* G = 3 #1 & ! ; * + & 4 G ! ! #1 =
3 " $ " $ " $ "
! #1
*
=
$ " $ " $
G = 3 #1 & ! ; * Y + A A & 4 G ! ! #1
! #1
=
" $
A
A
" $
A
"A" $$
" "A" $$$
A
" "A " $$$
A
* G = #1 & ! ! & = ! ! & + ! # ! 0 $12% ! = FACTS
*
AO + O D G = #1 & ! ! 7!! M & # ! = + ! & = = #1 ! & !
* AO D G = #1 & ! ; * + #! & G !& ! & ! ! !
4 = =% =% =% #1 ! & !
N ! ! ! 2 F+ ! ! #1 = 0 ( 4 + ! + #!
#1 ! & ! ! #1 ! 0 =
* AO D G = #1 & ! ; * Y + #! & A G A !& ! & Y ! ! ! 4 = =& =& =& #1 ! & !
N ! ! ! 2 H+ ! ! #1 = 0 ( 4 + ! + #!
#1 ! & ! ! #1 ! 0 = + !
7.4.6 Imbedded Voltage Graphs & ! ! + ! + ! ! & ! & ! " $+ ! " K$+ " C$
© 2004 by CRC Press LLC
Section 7.4
673
Voltage Graphs
DEFINITIONS
* G [ ! #1 ! & ! ! ! [9 ! + #! [+ !
* G ; & ! ! ! ! ! " $ ! ! ; ?
+ ; ! + !
;
=
*
=
9 ! #1 ! & ! 0 G [ & ! ; ! 0 ! % 9 ! #1 [ "#! 4 ! ! ! ! #1$ ! !
* G ; & !
! 6 * ! + ! 6 9 ! ! ! "#! ! #1 ! $+ #! 2 F ! !
9
* "*
/ #! #1 ! ! 4 / #! #1 ! ! 4
FACTS
"*
G ; & ! ! ! & + ! & ? & + !
+ !
! &
* AO/ + O D G ; & ! ! 7!! M & # ! ! #1 & ! + ! ! 6 9 * 9 & 6 7EG ! + ! ! 6 ! &
EXAMPLES
*
2 ! # & ! #!! ! ! ! 4 %¾ + ! ! + ! & ! B ! & ! ! ! ! & ! ! + 7EG ! #1 ! + ! ! & ! ! ! + ! 6 & 6
Figure 7.4.7
9 : ,& 6 4 9 : 6 ,&
© 2004 by CRC Press LLC
674
Chapter 7
TOPOLOGICAL GRAPH THEORY
*
2 F ! # ! & ! #!! ! ! ! 4 %¾ ! & ! B + ! ! ! ! & ! ! !
Figure 7.4.8
# ,& 6
%
! ! + + # + 7EG !
! #1 ? + ! & ! #1 !
K ! B ! + ! ! & ! K
! +
! # K0 -0 ? ! 6 ! & 6 + #! ! ! ! . ! ! & 3 K -,+ # ! ! &
*
AO D .& \0 #! 3 1 3 1 01 3 0 0 1 0
! ! / & E ! !
!& & #! ! & !
7.4.7 Topological Current Graphs ! & ! # ! % " AO/ D AO D$ ! --0 0B
AB CFD "
A D$ ! 4&% ,2 $ , AQ *FH-D+ #!! ! !
& ! ! & & ! ! !& DEFINITIONS
* G ! #! & 0 0 + / ; ! & ;"$ ! ! ; + !
* G 3 " $ ; * ! ! & ! #! + ! ! "#!! & & & ! +
$ 2 ! + # % ; " $ 3 ;"$
&
* ! ; * ! ! & + ! + ! & ! ;
© 2004 by CRC Press LLC
Section 7.4
Voltage Graphs
675
* G & ! ! ! ! + ! # ! 0 $/2% ! " + ! ! ! ) # 0 + ! ! ! $ EXAMPLE
* 2 H+ ! # ! # + #! ! ! ! !+ ! ! ! & #! ¾ # +
! 1 ! ; & ! 7EG ! ! ! & ! #! + 7G ! ! & ! !
Figure 7.4.9
6 ,& !,
REMARKS
1*
O R AOCD+ ! # 0 ! #! & # 1 #! & #1 ! & + #! # 1 #! 0 B O R = > "B R $ & !+ ! #! % + #! & ! ! &
& ! Q #
! 0 & # ! ! & ! #1 # " $ ! % 0 !
1"
* ! ! ! AO/ D ( ! & 0 ! 1 H % + 6 ! + # & ! #! 0 + % ! ! & ! !
& ! AO D ! ! + #!! & 00 4 ! + . H ! ! & ! AO D !
© 2004 by CRC Press LLC
676
Chapter 7
TOPOLOGICAL GRAPH THEORY
1
* ;! ( ! 6 ! & & !+ ! 6 ! ! & !
! !+ #!! & ! A CD ! 0 ! ! & ! ! ! # A <F-D AO< FD / M & & & A/HD
7.4.8 Lifting Voltage Graph Mappings ! # ! + ! 0 ! ! # # !
! # ( ! # # & &
! M ! DEFINITIONS
* G * ) ! ! ! + ! ! "/ ! ! ! $
* G * ) ! ! ! !
! ½ "$ "/
! & 4 ! !
& & ! & +
! ! $ ! * ) ! & + 1 & & ! !
* G * ) ! ! ! ! ! ½ "$ "/ 1 ! 4 !
! 1 & ! & +
! ! $ ! * ) ! + 1 & ! ! FACTS
*
AO!HCD / ! ! ) ! & ! & ! )
* A/O&H D+ A/1H D / ! ! & ! & ! )
*
AO!HCD / ! ! ) ! (
! & ! & ! ) REMARK
1*
AH-D
'! AI 1--D+ A--D+
© 2004 by CRC Press LLC
Section 7.4
Voltage Graphs
677
7.4.9 Applications of Voltage Graphs : ! ! ! #! & + & ! !& 4 & ! REMARKS
1* ! & ! ! ! #! ! & A/OFD+ A/7#G --D+ A2 7#-D+ A7 H D+ A7#Q G --D+ A7#G HHD+ AG FD+ AH D+ A--D+ A-D+ A-D 1* 2 & & & !+ A7#G -D 1* / ! ! & ! & ! A.#Q HD+ A2 7#7G HFD+ AQ HD+ AQ HD+ AQ HKD+ AQ HKD+ AQ 7#HD+ AQ 7#G HCD+ AQ 7#G HHD+ A77G HHD+ A7#!G HFD+ A7#Q G --D+ A7#G HD+ A7#G HD+ A7#G HFD+ A7#7G HCD 1* 2 & + A/G-D 1* 2 ! E
& 1 & + A -D 1* 2 # & ! ! + AG FD 1* 2 # & ! # 1 + A -D 1"* 2 ! & ! !
! ! & + AHD A-D
Applications of Imbedded Voltage Graphs and Topological Current Graphs
& ! ! !& 0 #! & REMARKS
1* 2 #! +
! ( !+ A FKD+ A FCD+ A F D+ A FFD+ AI 1H D+ A F-D+ A F-D+ A FD+ A HD
1* 2 ! & ! ! + A7#!G HFD+ A7#7G HCD+ AG 7-D+ AG 7-D+ A F D 1* / & ! ! ! " K$ AO D+ AOG F-D+ A<;!F-D+ A HD+ A FHD+ A D+ A FD+ A H D+ A ;HD+ A F-D+ A FD+ A FD 1* E ! !& ! 1 A/ KD+ A:QF D+ AO HD+ A;! FD+ ! 1*
! & ! ! % " H$ ! / ;! A;!-D
© 2004 by CRC Press LLC
678
Chapter 7
TOPOLOGICAL GRAPH THEORY
References A/ FD /0 !
+ . ! + % "HF$+ KP A/-D < ; / + I + -P
& "
A/ KD / + # ! + ! & F "H K$+ -P-
!
C "H-$+
% 5
A/O CD / < G O
+ ! & ! + ! % 5 - "H C$+ FP- A/G-D / / I G+ ! & * O ! ! &+ "--$+ PF A/OHD / / O + 2 & ! + ! % 5 - "HF$+ FPF A/HD /! + ! ! & 0 + - "HH$+ P
$ "
] + A/O&H D /! + O& (61+ < ] ! + " ' "HH $+ PH A/7#G --D /! + < Q 7#1+ < G + B !+ : & ! + $ " "---$+ KPC ] + 1 & + ] A/1HD /! + : ! + < ] :! &0 ! ! + & ! H "HH$+ -HP 5 A:5 FD 2 :5 + N \ 5 1 '+ " # ' - "HF$+ KPF A:QF D I : ; QM+ & 0" + + $ #! 0 + ! F "HF $+ KPC A.#Q HD .# Q + ' & ! ! #! & + & K "HH$+ F PHC A2 7#7G HFD ^ 2 + < Q 7#1+ < 7+ < G +
!
! & + &" ! $ " "HHF$+ CKP A2 7#-D B ^ 2 < Q 7#1+ % 0 ! + ! "--$+ KKHPKCK AO HD : G O+ E ! !
1 + % "H H$+ KPC
© 2004 by CRC Press LLC
!
Section 7.4
679
Voltage Graphs
AO D < G O
+ E ! +
$ " H "H
$+ HPC
AO D < G O
+ .& ! & ! !+ % 5 "H $+ P
!
AO/ D < G O
/ + ! ! ! + % 5 "H $+ FP
!
AO!HCD < G O
< ! + / % # 1
& ! ! + " % H "HHC$+ KP - AO< FD < G O
+ : <1
+ 1+
+ ; & 0 ! ( + K "HF$+ P AOG F-D < G O
< G + / ! 10 + ! % "HF-$+ CKP AO D < G O
; 1 + ^ ! * & ! Q #
0 + 9 ! " KK "H $+ HP- AO D < G O
; 1 + O ! & &
+ $ " +3 (+2::*+ PF AO HD < G O
; 1 + 2 & ! ! + & 8 & H "H H$+ KPK AO F D < G O
; 1 + % % + & + -- "2 . + ; 0 + HF $ AOB HHD < G O
< B + HHH
% &+
+
AOCD+ ; O + ' ! + "HC$+ P K
& "
- ! "
"FH-$+ PF
AQ HD Q + ! & 6 + "HH$+ PF
&
AQ *FH-D < Q #
+ 0 ! +
CH
AQ HD Q +
! ! ! & + " HF "HH$+ KPF
$
AQ HKD Q + . & 6 + $ " F "HHK$+ KPC
&" !
AQ HKD Q + O! & 6 % & 0 & % 0% + $ " "HHK$+ F PH AQ 7#HD Q < Q 7#1+ & #! ! ! + ! % "HH$+ CPC
© 2004 by CRC Press LLC
680
Chapter 7
TOPOLOGICAL GRAPH THEORY
AQ 7#G HCD Q + < Q 7#1+ < G + ! & #! & !& !
! + $ " F "HHC$+ FKP-K AQ 7#G HHD Q + < Q 7#1+ < G + : ! #! % + & " KH "HHH$+ KPC A< FD : <1
+
+ 1+ / ! ! + ! % K "HF$+ KKP A<;!F-D < / ;! + ' ! % + ! "HF-$+ PK A77GHHD Q 7 7+ < Q 7+ G+ I
!
! & !+ K "HHH$+ PC A7 H D < 7 !&+ / 1 # 1+ < / + & ! + ! % 5 "HH $ A7#!G HFD < Q 7#1+ < Q !+ < G + . ! &
!& % & + &" ! $ " "HHF$+ PFK A7#Q G --D < Q 7#1+ Q + < G + B !+
#! & !+ & K "---$+ HPC A7#7G HCD < Q 7#1+ O 7+ < G + ! 0 & + $ " KC "HHC$+ P - A7#7#-D < Q 7#1 B 7# + ! !
!& & ! + , & & C "--$+ HHP F A7#G HD < Q 7#1 < G +
! 0
! + $ " -K "HH$+ P A7#G HD < Q 7#1 < G + . ! + K "HH$+ HPK
$ "
A7#G HFD < Q 7#1 < G + ! 00 & + $ " F "HHF$+ HP A7#G -D < Q 7#1 < G + . ! & + ! - % % + < G O
; 1 + N&
+ -- A7#G HHD < Q 7#1+ < G + B !+
! 1 & + ! 6 % ; F "HHH$+ KP- AG FD O G + / ! & ! % % + $ " C "HF$+ CP
© 2004 by CRC Press LLC
Section 7.4
681
Voltage Graphs
AG 7-D < G < ; 7+ . ! ! \" $0 &
+ ! "--$+ KPF AG 7-D < G < ; 7+ ' ! & ! ! + F "--$+ HP AG FD 2 G ! + 2 & ! + "HF$+ PF
! % 5
AI 1--D / + I + 1 & + G ! ! &
+ ! "---$+ H PH AH D Q ( + !
& ! + & K "HH $+ P A--D Q ( +
! & ! + & K "---$+ KPC A--D Q ( + \ ! & + ! F- "---$+ PK
% 5
A-D Q ( + G0 ! &
+ $ " KC "--$+ KP A-D Q ( + G0 & ! + "--$+ PH
!
A FKD : !+ /1 #! & + $ " K "HFK$+ PH A FCD : !+ / & ! 0 + ! - "HFC$+ HP-C A F D : !+ ! 1 + ! "HF $+ P
% 5
% 5
A F D : !+ ! +
! % 5 "HF
A FFD : !+ :! 0 & +
$ "HFF$+ HPF
$+ CFPFC
A -D Q & + # # 1 + < C "--$+ KP AI 1H D I 1 & + &
0 + ! F "HH $+ F- PF A F-D
+ ! + ! -P-
% 5 H "HF-$+
A <F-D
+ 1+ : <1
+ # 4 0 & ! + $ " F "HF-$+ PK
© 2004 by CRC Press LLC
682
A F-D
Chapter 7
TOPOLOGICAL GRAPH THEORY
1+ O ! +
% "HF-$+ P
!
A FD 1+ I ! + ! % C "HF$+ HP- A HD 1+ ' 4 ! + " -H "HH$+ -P-K
$
A FHD 1 ; 1 + ! #! + ! - "HFH$+ CHP K A HD
1 ; 1 + F "HFH$+ K PC
$ "
! # 1 Q +
A ;HD 1+ ; 1 + ; + + "$+ PF
!
A -D G !+ E ! + # ! + C "--$+ F P A D E 7 + & + H
!
% + !
A FD E 7 + ' ! 0 + % "HF$+ KPKF A D O +
" % + 0E + H
$ "
! + N0
& "
CC
AB CFD O < ; B + ! Q #
0 0 + & 1 & C- "HCF$+ FPK A-D +
! & ! + + C "--$+ PFC AHD +
!
! & + C
$ "
&
F "HH$+ P
A1FKD < 1 & + ^ ! & + ! % 5 F "HFK$ PK A HD !+ 0 ! + "H H$+ HP-
! % 5
A;! CD ! / ;! + O
! + $ " "H C$+ HPHC AH-D : # 1+ G ! ! ! + ! % 5 K- "HH-$+ KPH A CD / ; 1 + :! & + & " FKHPFC
© 2004 by CRC Press LLC
"HC$+
Section 7.4
683
Voltage Graphs
A F-D ; 1 + I & + % & "HF-$+ C P H A FD
;
"
KF
1 + 2 0 ! +
% 5 "HF$+ FPHF
!
A FD ; 1 + / % Q#( ! 0 ! + ! % 5 C "HF$+ PCF A;! FD / ;! + : 1 ! + K "H F$+ CCPF A;!-D /
;! +
© 2004 by CRC Press LLC
! % 5
+ I !0Q + --
684
7.5
Chapter 7
TOPOLOGICAL GRAPH THEORY
THE GENUS OF A GROUP
#! $ K O!
K ! 0Q#( .4 Q#(R
K O G # O
K O 2 O
KK I
!
Introduction ;! ! " $ % + ! + ! !+ & ! + ! + # ! ! & ! ! ! + !
! ! !
! ! ! !
! ! !
! $ $, ;! A;! +;!FD % ! + ! ! : A:D ! 4 + ! & + !
7.5.1 Symmetric Imbeddings of Cayley Graphs ! ! " $ + ! 1 #! ! ! & 0 & ! !
! # ) ! + DEFINITIONS
* ! / " $ #! ! !
& ! & ; #
! & ! ; ! & &
+ ?
# # !
!
* ! + #!! "$+ ! ! !
! ! !
© 2004 by CRC Press LLC
Section 7.5
685
The Genus of a Group
* ! ! ! ! " $ !
! ! & !
" $ ! " ! ! ! + "$ 3 " $$
* ! ! ! 1
& ! &
* ! ! ! ! & & %
* ! % !
! ! !
!
* ! &
! ! ! & !
* / ! " $ ! ! " $
* / ! " $ ! ! " $ 0 & "*
! " & + $ !
+ C"$ " & + C "$$+ ! ! !
! " & + $ !
/ ! !
/ ! A:;! HD FACTS
* *
! % ! "$
! ! &
C"$ C "$
! ! " $ & 0
* AKFD / ! ! ! !
!
! + ! ! ! & 0 &
*
AO F D / 0 & ! ! & "! ! & & ! $+ ! ! ! + ! + ! !& !
! & & & + &
* 2 ! ! ! " $+ # & ! ! &
* ! & ! & ! 4 + #! !
& ! & + & ! ! " $ .& ! ! #
© 2004 by CRC Press LLC
686
Chapter 7
TOPOLOGICAL GRAPH THEORY
* AO F D / 0 & ! ! &
! & ! ! !
& + ! ! ! & 0# ! !
+ ! # ! ! & !& ! & !& ! + & * E # ! & !
" # & $ & ! '
#! & ! 4
! ! ! & / ! #! # 0 & ! !& 0 & & ! ! ! # & * AO F D ! & ! # + ! !
& + ! ! # ! # &
& + ! ! "$ ! & + ! ! & ! # + !
"* A FD / ! % ! ! " $ ! & 0 + ! ! ! C"$+ & C "$+
! ! ! + & + & +
* + ! C"$ C"$ C "$ C "$
+ !
* A: D + ! ! 0 ! + "$ "$
EXAMPLES
* E # ! !& #! & G ! H- ! !
G ! ) ! ! ! 1 ! & ! ! ! !
& 0 & + ! & + ! 3 ! + ! & ! & + ! !
*
¾
3 3 3
3 " "
* G ! & + ! F-
! & ? ! ! ! +
! & # ! ! ! ! & 0 & + ! &
+ ! 3 ! + ! & !
& ! !
*
3 3 3
#!! ! ! F
© 2004 by CRC Press LLC
Section 7.5
687
The Genus of a Group
REMARKS
1*
! & + ! & & + #! ! % ! % + ! & &
? ! ! 1 ! ! & !& ! & ! !
+ ! &
!& ! ! & +
! & ! &
% ! #
1
* ' 0 & ! ! % + ! & + & ' !1
+ #! ! # * ) 2 + !+ # & + ! ! !& ) ! & % ! & :
! ! !& !
! ! &
! ! !& + & & % + ! ! & ! "1 ! $ AO F D
7.5.2 The Riemann-Hurwitz Equation and Hurwitz’s Theorem O& & ! + ! . ! ! 0 ! & + ! ! & + ! . ! + ! ! & ! /
& 0& & ! + 0 ! ! ! # DEFINITIONS
* ! ! ! " $ ! ! + ! & ! & ! ! 4 % ! ! ! 0 & ! !
*½ * ! ! . ! "+ $ ! 3 -" . "#! ! ! $*
"+ $ 3 " " $
*
! 4
*
*
!
! " & !$ #!
& ! * ! ! &* ! ! & +
! = > + #!! %
*
" &
!+ ! ! 0Q#( 4 $
* / 4 ! ! 0 !
& ! ! & + ! !
© 2004 by CRC Press LLC
688
Chapter 7
TOPOLOGICAL GRAPH THEORY
+ ! 4 ! !
& ! ! # & + ! ! 3 -" .
"+ $ 3
*
" " $
&*$
/ % #!
* *
'
3 ( 3 " $ 3
! !
! ! ! & #! 8&9 8 D 8&* "! ! ! + .
! + #! ! ! !+ 4 +
! 8$
*
/ 1 $, $#.#%
*
!
* *
'
3 ( 3 " $ 3
! !
*
¾
3 ¾ 3 ¾ 3 " $ 3 " $( 3 " $ 3
) ! 8&9 8&D 8&*
*
/ 1 $, ! * ¾ 3 ¾ 3 ¾ 3 " $ 3 " $ 3 " $ 3 $#.#% (
* / "9 D *$ + #! & + "9 D *$ ! ! # " ! ! # $ FACTS
*
" D *$ + ! ! 0Q#( 4 !
. ! 3 3 , 9 D 9 D
3 )¾
3
9
D
* + " D *$+ ! !
3 9 D
*
"Q#(R ! AO F D+ AQ* FHD+ A F-D$ !
C "$ 2 + !
!
F"C "$ $
#! 4 " $ ! C"$ 2 + ! CF"C "$ $+ #! 4 " $
* A F-D / 2 K+ ! % &
!
© 2004 by CRC Press LLC
Section 7.5
*
689
The Genus of a Group
A F-D " 0! & Q#(R ! $ "$
#! 4
2
+ !
CF" "$ $
" $
* A F-D / 2 + ! % & !
*
<& ',
,
A:HKD+ A !HKD * ! % & 0 & ! & 2 + ! % ! & 2 REMARKS
1*
! Q#( ! !& ! + ! ! # C"$ "$+ ! & # # !
! & !
Q#(R ! !
! 0Q#( 4 #! "+ $ - ! % & + #! & C"$ C "$ 2 + 2 F-"C"$ $+ ! " $+ " $+ " F$ 2 % Q#(R ! AO F D+ A FD
1*
! ! & Q#(R ! ! ! . ! ! ! ! & & (
+ #! ! & ! ! . ! ! 2 !+ ! ! ! !
+ ! & 00 #! = ! > ! % & + #! & + Q#(R
! + ! ! !
! ! " AO F D+ A FD$
7.5.3 Groups of Low Genus 2 # + !! 2 + ;! R ! ! 0 ! 4 ! ! + ! ! ! +
! ! ! ! *
! ! ! + . ! "& # ! . $ DEFINITION
* /
! . !
! ! ! ! ! "! & ! ! !
& ! % $
! ! # ! $ + &
© 2004 by CRC Press LLC
690
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
2 & ! !
"* ! . +
! + 0 ! # 01 # A F-D * " AHCD+ AO F D$ ! -
+ # + + $ + ! - ! ! #! ! #! " ! + !
( ! !
2 + "$ 3 C"$ 3 - "
* " A:CD+ A D+ A FD+ AO F D$ . ! + "$ 3 C"$ 3 & + C"$ 3 %
4 ! . ? ! " A F-D AO F D$ ! ! + #! "$ 3 C"$ 2 !& + F+ F
"$
3 * 3 3 3
"$
3 * 3 3 3
"$
3 * 3 3 "
$
3
* "O # A FD$ !
HC ! " F$ *
3 *
! ! "$ 3 !
3 3 3 " $ 3 " $ 3 " $ 3 " $ 3 " $
* " A\HKD$ ! * ! ! !
* " A\H D$ ! * ! " $ ( 6" $+ " $ ( 6" $ "
1 # 7 R
CF$+ ! " C$ " " $ * " # A\--D$ ! C
+ - + -
7.5.4 Genus for Families of Groups / ! 0 ! &
( "4 $+ ! # ! 04 + ! & ! !& ! * ! # !& #!
! ! ! 1 ! + #! ! ! & + # ;! R A;! D #! ! ! / ! ! #! 2 + " $ ! , &CF+ ! ! & Q#(R
!
© 2004 by CRC Press LLC
Section 7.5
691
The Genus of a Group
DEFINITIONS
"*
/ "
*
# 4 !
½ " "
!
"
#!
·½ 3 *
/ /
!
!
+ ! * !
* *
/ " $¼ -" / " $ -"
FACTS
* A<;!F-D ! ! !& "¿ ! /½ & ! 1 * 3 ! "$ 3 , "* $&+ #! & ! ! ! 4
*
A:4HD+ A 1;!F D ""¿ "¿ "¿$ 3 + ! ! & + M (
*
A FHD G % 1 # ! + ! " $ 3 , "* $&
"
* A -D+ A\HD
*
! 1 #
*
A F-D 2 2 C + ! + " $ 3 , X&CF 2 C
Q#(
*
/ ! C " 9 D$
9 D? ! Q#( / ! 2 C ! G ! Q#( AG HHD
* ! ! A ;; HD+ ! 0 A FKD+ ! 1 # I ! ! + ! C"$ 3 C "$+ ! #
*
A\-D 2 & + " $ 3 & C
C
"" " $ 3
/
+
C
""¿
REMARK
1*
2 + ! # ! ! C
1 # #! ! C !&
7.5.5 Nonorientable Surfaces
+ + ! + 1
© 2004 by CRC Press LLC
692
Chapter 7
TOPOLOGICAL GRAPH THEORY
DEFINITIONS
* . ! " $+ ! " $
!
" # !
% ! &
! ! !
+ ! & 1 ! ! ! ! 5
$
* 2 + ! 4 " $ ! ! + ! . +
+ ! .
* !
! + 9"$+ ! ! !
! !
*
! ! + "$+ ! ! !
.
*
! ! + C "$+ ! ! !
! .
*
/ ! " $
! " $
"
* !
+ C 9 "$+ ! ! !
!
* / !
! & ! ! &
! - + #! ! ! 0 &
0 & FACTS
*
/ ! " $ ! ! ! & !
& ! ! !
*
! % ! #*
"$ 9"$ C 9 "$ "$
"$
C "$
"$
"$
3 "$ 9"$
"&$
C "$
3 C"$ 9"$
* / ! 0 + ! + ! ! ! 9"$ "$ ,
*
+ ! 9"% $ 9"$+ :R
© 2004 by CRC Press LLC
! A:
D
Section 7.5
693
The Genus of a Group
* A FD ! ! ! + + ! C 9 "% $ C 9 "$ "* Q#(R ! ! & * A FD ! ! . ! + ! "¾ ! & + ! . ! 0
+ #! ! 0 & + C "$ "9 C "$ $ *
! # .
*
" "
"
0
3 3 A D 3
! . + ! 6 &
& + ! ! ! . . 2 3 3 + + ! + "$ 3 "$ 3 + "$ 3 "$ 3 ! #! C "$ 3 K ! $ ?
! "$ $ 3 K " A HD+ A\-D$
*
! #! 9 3 ! #! 3 - ! #! ! #
#! 3 ! #! C 9 3 ! #! C 3 - 6 ! ! #! 9 3 '! #
A HD+ A\-D
*
!
1 #
* Q#( + ! 9"$ 3 , &F + 9"- $ 3 , &F 2 C A FKD
References A: D G :+ ! + KP-
! % "H
A:HD G :+ E 0 & ! & 0 & + ! K "HH$+ KF PC A:1D :1 + ! ! + CKPCCH
$+
%
& ! "
K "H$+
A:;! HD I : / ;! + + " , + N&
+ H H A:4FFD O : 4 + ' ! H "HFF$+ P A:D ; : + H A FKD +
% 0 +
+
!
N&
+
! + HPFC
% 5 H "HFK$+
© 2004 by CRC Press LLC
" " "
!
694
Chapter 7
TOPOLOGICAL GRAPH THEORY
A H-D . + Q#( * & + "HH-$+ KHP -
& "
A ;; HD . + / ;
+ / < ; + !
+ & " C "HH$+ CKPCC A F-D Q ; ' < + ; $ "! $+ 0E + HF- AO F D < G O
; 1 + % % + & + -- "2 . + ; 0 + HF $ 5 AQ*FHD / Q#(+ N !
!+ " & "FH$+ -P A<;!F-D < / ;! + ' ! % + ! "HF-$+ PK AG HHD / G! +
1 Q#( + ! & H "HHH$+ KPKC ACKD !+ / ! + , " K "HCK$+ CHHP A*FHCD Q !1 + KCPH
! % +
& ! "
F "FHC$+
A\HD G < \ + ! % + ! " "HH$+ --P A\HKD G < \ + O + " ! "HHK$+ KPH
=
A\H D G < \ + ! ! + ! " "HH $+ K PKH-
#
A\--D G < \ + O + % "---$+ PK A\-D G < \ + ! . ! 0+ ! " "--$+ P K
!
#
A\-D G < \ + ! & + , " + A 1;!FKD : !+ 1+ 1 & + / ;! + ! ! + $ " KC "HFK$+ F PFH A D E 7 + & + H
© 2004 by CRC Press LLC
!
% + !
! + N0
Section 7.5
695
The Genus of a Group
A FHD 1 ; 1 + ! #! + ! - "HFH$+ CHP K AKFD O
+ '
% 0 ! + "HKF$+ F--PF-
& "
H
A !HD !
+ ! ! 7 & 0 & ! % + % & " "HH$+ FHP-K A F-D ; 1 + ! & + KF "HF-$+ C P H A FD
;
% & "
1 + 2 ! +
% 5 "HF$+ FPHF
A FD ; 1 + ' R + F "HF$+ HP
!
! %
A FD ; 1 + / % Q#( ! ! + ! % 5 C "HF$+ PCF A FD ; 1 + "HF$+ CHP K
! # +
! % 5 C
A HD ; 1 + ! + -KP- % 5 5 & "7(
HFF$+ ; 0 + HH A;!FD / HF
;! +
5 +
A;! D / ;! + ' ! + -P
© 2004 by CRC Press LLC
& . + I !0Q +
% & "
"H $+
7.6 MAPS
! " #!! $ !% ! !! & ' (! ) &
Introduction * & ! + $ ! %+ , % ! '" & ! & $ '--. % #! ! % %, #! / ( 0! 1 + / 02 02 3 /% * 4 56 %! 5 & ! 789)": 78) : 7" : 75*' : 7*-: 73-:
7.6.1 Maps and Polyhedra Maps 8 ; ! ! !! & 2 * 4 & ! 2 $ DEFINITIONS
; # < ! 4 2 * & & !
; ;
+ = ;> ? @ * $ $
*
& ? @
; ;
! & ? @ * $ *
& $
© 2004 by CRC Press LLC
! "
#
$ $
½
%
¾
½
¾
&
"
" $
" $
$
"
&
$ $
EXAMPLES
' ()*
$ $ + $ $ " ,
3
1
1
4 1
2
2
6 5
1 2
2 3
1
3
1
3
4
6 5
M Figure 7.6.1
4 1
M*
' ()-
-& $ .& $ ' ) $
Figure 7.6.2
© 2004 by CRC Press LLC
698
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
" "
Figure 7.6.3 REMARKS
# ! $
"
% % & "
"
$
% '( )**+% " % "
"% " "
" &
" " $ % % & "
, %
%
-
& % " %
" "
- % "
% " . $
-
% % " / % % " "
FACTS
%
#" #"
/
/ %
% %
%
¼ ½ ¾ 0
¼
1
1
½
%
1
" "
$+
" "
2
'
"
" & $ & "
¾
! " #$ % &
&
- %
! &
'
' 34+ - ! " "
%
½ ¾
© 2004 by CRC Press LLC
½
1
¾
"
½
¾
52
/ % " %
Section 7.6
699
Maps
REMARKS
!"#$%& ' %
(
*
Æ
!$& )
CONJECTURES
+
)
+
# , - , ,
7.6.2 The -Vector, - and -Sequences, and Realizations + ' # . )
+
'
Æ
)
# + / 01$0 " 2/ 0$
DEFINITIONS
)
3 4
. 5%
#
#
#
'
+
'
6
)
© 2004 by CRC Press LLC
6
6
700
Chapter 7
TOPOLOGICAL GRAPH THEORY
REMARK
!
"
EXAMPLES
# "
(
) &
* + '- ,.
01 +& ).
+' ) ).
$ %&' (
& )
01 +
* +, '- . /
# " $ %&-
&
'. *
01
$ "
)0"
$ %&,
Figure 7.6.4 FACTS
#
1
0
$ "
01 ( * " (
2
01
2
4 5 " "
+
$ 6" 7
-.
2 ' )
2
4''
+
-.
+&
3
+&
2
3
2 '
'.
+'.
" (
2 ,+
.
2 '-
+-.
8 +-. Æ
6 " *
2 -
1
. 2 '- 6
)
2 & )
01 " ( " $ 4 5
# " 9 % :) # 7 * 4 5 " (
44*;- /
" (
2
) )
© 2004 by CRC Press LLC
* 4
3
* 2
2
+
.
0 +
2 -
2 )
2 -
+
.
2
. 6 *
6
<
Section 7.6
701
Maps
!" # $!
% &' (
% )& *
+)
.
# 0 , +/ +-
" , -
+ /
1 " /
2
/
+ $/
1 3
-
-. . 4
,
-
+$
/
1
3$ +
,
/
+ /
1
#
2
1 8
8
8
!"#$
# 0 +
+""
/
$ 5 %# 67 &"
8
1 $ .
/
9 $
$
2
1 3
+""
/
1 "&
!&!0
:.
5 2" 3 "
- ( :
- .
. .
< &!
+
/ ; . .
:.
;. !$'
Figure 7.6.5
!"#$ ! " % " " "!&
© 2004 by CRC Press LLC
702
Chapter 7
TOPOLOGICAL GRAPH THEORY
7.6.3 Map Coloring
DEFINITION
Æ Æ ! "
! # FACTS
$ %&' ( ) $ *)' ( & $+,&-' ! # .
( % / )01 1) 2 3 4
) 53 " 6 $ 0*' 1 53 $ 0%' 7# 53 2! *3 893 $+:: 0&' ; )3 REMARKS
!
<-51 : =
6 >
6 $ %&' Æ 7 $+:: 0%'
! !
! $<-0?' #
4 ! 4 + , $+,&-' © 2004 by CRC Press LLC
Section 7.6
703
Maps
EXAMPLES
!
"
#
$
% !
#
$ &
#
#
$
$ & ! '(
#"
' $ 1
2
3
4
5
6
7
1
3
4
5
6
7
1
2
3
Figure 7.6.6
) * +,- " .
# ' $ / !
Figure 7.6.7
7.6.4 Minimal Maps )
0 1! * !
'
! 2 ! 2 3 # $
"
4 ! !
)
DEFINITIONS
)
)
#
$
"
! ! , )
!
! !
5
© 2004 by CRC Press LLC
704
Chapter 7
TOPOLOGICAL GRAPH THEORY
e
Figure 7.6.8
EXAMPLES
! ½ ¾ " #$%&'
( ) * + &,- )( )! .
a
Figure 7.6.9
b
FACTS
/ ¼
¼
&0
")
)"
¾ ¾ ¿ $ ¾
+ )% #$%,' 1 2 %
© 2004 by CRC Press LLC
Section 7.6
705
Maps
! " # $ $
# % %
&
'$
( ) *
!
REMARK
* (
! # %
½ $
7.6.5 Automorphisms and Coverings
$
$ % ! + %,
- % #
" % $ $ % $
&
% # $ . . /0
$
12
DEFINITIONS
!
½
-
-
¾
/
½
34!
¾ $ #
%
+ ( $
½
5
½
6
½ ¾$
½
% !
5
½
½
5
¾½ $
¾½
½
7!
! # %
¼ ½ ¾
¾¼
6
¾½ 6 ¾¾
¼ ½ !
6
6
½ ¾ !
¾ ¼ !¾ 6
6
'!
EXAMPLES
& 32 % %
& 324
7( $ $ % #
© 2004 by CRC Press LLC
706
Chapter 7
TOPOLOGICAL GRAPH THEORY
Figure 7.6.10
FACTS
!
"#
"#$
%
& # ' !( %
&
& &
'
& *
"#
+,-./
Ï Å
*
.
Å
&
'
Ï
)
Å
0
Å
$
1 2 2
&
#&
2 2
3
1
Figure 7.6.11
© 2004 by CRC Press LLC
2 2
2 2
Section 7.6
707
Maps
#$%
*
½ ¾ !
'
!
"
"
& ' ( )
$+
( * - ! " $+ . / / ! 0 -
,
" . # 1
$/ & '
'
'
'
2
! "
REMARK
3 4$ /5
6
! "
!
"
. 6
! - - - "
.
7.6.6 Combinatorial Schemes -
0
, )
DEFINITIONS
,
"
!
7
¾ ´µ
(0*
!
"
8
½ 7 ! ¼ ½"
½ 7 ! ½ "
·½
7
½ ¾
7
"
!
( ! "
6
) )
2
"
!
9
© 2004 by CRC Press LLC
708
Chapter 7
TOPOLOGICAL GRAPH THEORY
Æ
!"# !
$
%
&
' '(
¼ ½
½
)
* "
#(
¾
+!,
(
- * " . - -
-
REMARKS
/
01234 05674 0684 019634 0:674 09 3*4
+!,;
0<3'4 = 0> 624 0+684
0?34
?
½
#(
EXAMPLE
@ > 62"
½ ) " '
© 2004 by CRC Press LLC
¾ ) " # 7
¿ ) 7 # '
Section 7.6
709
Maps
· · · · · · · · · · 1
ï 2
2
ï 5 ï 3
0 0
ï 4
+ 2
+ 3
+ 4
Figure 7.6.12
ï 1
1 2
+ 5
1
0 2
+ 1
0
2 1
1
2
1
1
0 2
1 0
0 1
1 2
1
0 0
0 1
2
FACTS
! " ! ##! Æ ´ µ Æ # ! $ Æ Æ
# %&' ! # ! Æ # %&' ! ( # %&' # 7.6.7 Symmetry of Maps
) ! $ ! * # +" # DEFINITIONS
¼ ½ ¾ ( ! # ,#
,# © 2004 by CRC Press LLC
710
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
!
"
#! $%&
REMARKS
'
"
&
(
!-
)#*
"&
+
,
EXAMPLES
!
"
' .&
/
/
/
.
.
"- &
/
/
0
0 / -
$
$
1
2 , $-
"' 0%&
#! %0
,
$
.
/
.
. /
/ 0
0 /
/
/
$
/
' ! ' 1 ' %
$ .
.
/
341%5 , ' 0 6 -
$ %0
. /1
- 7
0
' %/
( ' 1
0 / "%$ . 8
& &
/
0
0
/
Figure 7.6.13
© 2004 by CRC Press LLC
"%$ 8
"$1 8 &
Section 7.6
711
Maps
$! % $
' '"%'
'
( , -.
"
' ' '
& ! "
!
"
"
/ * ) 0 '
Figure 7.6.14
3 4 '
(
) * +
"
!" #
&
1 2
/ 5
( 6 5
!
! !%
5 $
6 '
0
0 4 3 2 1 0
Figure 7.6.15
0
- 3 )
$! ! !"%
3 ) 7 $ ! !"%
/ *
'
2 )
' ' !#
*
)
( ) *
'
; ;; ' ;;
/ ) 9 &&
&& :"
!"
. ) * ) * !'
'
8 3
7' ( ) ! 4*
'
,
$ %
) <= $! %' ( ) *# ) 4
%
'
) *# ) , 3 '
© 2004 by CRC Press LLC
3 >
3 * ? $# @ ) 4
712
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
½
½
½
½
!
!
!
! !
" ! !
! ! ! #
!
$ ! ! %
! ! ! & '
()*'+ (,-*+ . ! ! ! !/
!
$ !
!
.!
0 /
! 1 2! !
()*'+
½ ½ 5
!
½¾
-34
/ !
6 ($ 7809+ ! !
#
(,*:+ 1 !
(<-9+ 1
!
!!
()*' *'+ 1 !
!
%
= =!#
/ > !
4-
; & ' 3
! !
!!
!
> !
. !
'
!
¼ ½¾ ¼½¾½
1 ! !
!
> ? (>?4-+
© 2004 by CRC Press LLC
¿
! -399 !
4 4
!
Section 7.6
713
Maps
¾
"#$%"&#$% '
¾
!
(
) $ !
7.6.8 Enumeration * "+,% $#+)- .
/
"0 1,(% "2##%
! 3 "4#5%
DEFINITIONS
6
(
EXAMPLES
'
!
7
' 5+$+ !
( (
8
' 5+$+
9
Figure 7.6.16
© 2004 by CRC Press LLC
7
!
9
714
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
!" # $ %&'
(
) (
+ +
) $
*
·¾
¾
7.6.9 Paths and Cycles in Maps * *$* ,$
- .
/ 0
* $, $ / $ ,$ " $ $ 1 2 , "
DEFINITIONS
3
"
3 / , $, $ / , * . ,
* " 3
4 $ "
¼
¼
,
$
0
* ,"
© 2004 by CRC Press LLC
Section 7.6
715
Maps
EXAMPLE
¾
¾
Figure 7.6.17
FACTS
! "#
$
$
%
$
&"'# !
%
$
$
$
% $
! ( )
*+ ,'#
% -
$
! ( )
./",# 0
0 0 ) 1
2 3
%
./"# 3 4$
(
'
© 2004 by CRC Press LLC
716
Chapter 7
¼
!
#$ %
&!
¼
,
$
'
!" &
!"
!" !
¼
()#* +
!"
TOPOLOGICAL GRAPH THEORY
- ,
-
-
!" . /
, &! $
( 0 ! " 1
! ! ! $& ! $& ! $&
½ ¾
2#3 #$ .
!
4 -,
!
-
&
!!
! !
!
5 + 3*
½
#- " ! ! Æ ! " 5
½
! !" !
6
6
REMARK
&"
! !&!&7
8 !
/ !
References %#' 8 % 9 ! 9
3 -##' -':-#$
%3- % % 9! 5 ,& ! '&
¿
!
- -#3- ,--:,$
%(* % % ! ; ( < / !
=$ -#* -$3:-=3
%(3 % % ! ; ( / ! ,& ! 0
,
%
'= -#3 ->':-,'
%3> 0 ) %! < ! / -#3> ''=:'3
© 2004 by CRC Press LLC
8 -
Section 7.6
717
Maps
!"
#
! $ % $
&%
'( !!"
)#)
*! + * , - ./- - &% - ./- -
' !! " '#
* $ * -- $ - -% -% - 0 - --
1
!"
#
* ! $ * -- + / % 2 - - &-
!!"
)#
*34 ! $ * -- 5 3-6 7 4 % 8 %
'
!! " !#)11
* 9 *&& -%
&%
! "
)# )
* 9 *&& :% - -- -%
( !" )1)#)1
*+!' ; 5 * &- ; ; +--
< & /, & 9 = >
!!'
*!1 ? * % 5%
=-% =
& : - &% -% 8 =%
!!1"
')#
! &
!!1
*<!' ? * % 3 <% 7 6- -% - -% 0 -
!
!!'" (!#'
"
# $ ;7; 5 * 7- @+ !!
*<%! ? * % <%- 5%
)('#)'
*!) ? * % A B 5%
, * ')'#''( 9-%/ -
"
# %& $ !!)
*) 3 *= - /
'
!)" '#'('
*:( 3 *= : :-- 8 -% - -
/
!(" '#'
*B7! 7 * - * B% 7 * 7%- < - & - &
0 - %- &%
&
!!"
1 #)
*<-11 *& $ <- - 7 6- & -- %
-
)
)
© 2004 by CRC Press LLC
( 111" (
#''
718
Chapter 7
TOPOLOGICAL GRAPH THEORY
!"!
#$ % & '
#
(#$
$# ) * + , - .
* /0 1 ($#
2( 0 2 '
3 45 (
2 267 8 4 2 . ) 26 % * 79 %
/
: ( ;";
2 : . % 2 8 '
!
# (: :!:
/= ' " # ;1 (#: $":
<#: < & 5 >
?
/
<# * <9 3' +
! (#
!#"!
<@#( ) <' , @ ' 3 = '
$
(
(#( (#":
< ;! < 9 8 +
: (;! ;:;";:(
A #( A 8 ' 5 ;/ 5
" #
:8 (#(
!!"!!(
A)3 ! . % A . )' % 2 3 B 8 ' '
$ (! ;("!#
A. ; @ A . 9
% .'
, C
* D6 E 9 (;
A ; A 5 3'
2 ' F '
;
(; #!"(
A 3# . 4 A 3 , 39
.' , C *
D6 E 9 (#
A G # 1 A G ' +
()*&+,
&'
;"
A G :# 1 A G
$ -
@ (:#
)( . ) 6 / '
.
! (
;;";;
)( 8 ) 65 & ' A 3 '
© 2004 by CRC Press LLC
! ( !;"!!
Section 7.6
719
Maps
!"
# $ % %& %
"
''
(( ) * + , - . / % $ 0 1 2
((( "'!
) * 2 30/ $ 2 $
"(
) * 2 +/4 $ 0/2 )
!"!(
5 1 5 5-2 -$2
!
60710/ 5 '"'
8 8 )07 2
" #
"
83 . 8 . 9 3: 02 $ 0
$
"
6 1 66 .; $ /
%
"!
6 1 66 . /0 :%
"(
66< 1 66 + 6 = < . 2 $2
' !'"!!
6 + 60 > - $ 2 /2 2
!"(!
630( + 60 > 302 % / 1
& '
30 0 ?- @7
((
6<(( + 6 = < .; $ 2 $ /
' '
&
' ((( '!"'!
4 4 A-( . A 6 -% . 2 $ ,0 ,0
((
'"
1 B ? 1 - B A% 0 $
&
! ! " !
1 B ? 1 - B A% 0 $ ,0 ,
"
.C ) . < 3 C $ 0 ?, 27 7 2
( )
© 2004 by CRC Press LLC
( '"''!
720
Chapter 7
TOPOLOGICAL GRAPH THEORY
!"#$ %"%&%
'#( ' )Æ *+ , + ,
!"##($
-"& -
'#- ' ' *+
-. !"##-$ %&
#" / 0 ,
" !"##"$ "%-&" #
#1 / 0 ,
!"##1$ "-&"
2 ) + 3 4 2++ / + + +5 6+7 8+ 9 1 -
1% !"# $
1#& -
2( ) + 3 4 2++ : ;7 9 ,+ <= +
, 1
(. !"#($ % 1&%(%
'#( ' > ? ,+ 0 * ,
%1 !"##($ 11-&1#
." 3 @ A ;0 , , , + , 0
" !%.."$
!
-&-%
. + * B + , +5 , ,
% # !"#.$ "%#&"
"" !"#.($
"# $ %
1 !"#%%$
C .( ) 5 >
)+ +
+ (&
%% ) 5 + + , "&"1#
'#. ; ' ) , , = + +
!"##.$ "
&"--
'#" ; ' '+ , 8+ + 0 7* 0 , D7
'#1 ; ' 60*+ ,
1%1 !"##"$ (. &(1
#
!"##1$ #&".
'#- ; ' ;+ * + , D7
-. !"##-$ (-&"..
'- 2 '
& '!&
> 0
E 3 "#-
'1 ' 2 '< 6 , , , ,
© 2004 by CRC Press LLC
1 !"#1$ %
&
Section 7.6
721
Maps
! " #
% ! %"
$$
$
% ! %" & ' "
$$
% ! %" (' )
% ! %" * + ' ,
$ $
& - . /+ )
$$$
0
. ! .
1 .0
/ 2.' ! $
. $ / . + 1 '.
$
$
- 1 0 '
- & #" ) '
$ $
$
- 3 + ' #
$$$
4 5 4
67 !" " 2. 8
4 9 4 :; . ,' "+" ' 73
<) ! <) 3 *= ' > "" "
© 2004 by CRC Press LLC
$ $
722
7.7
Chapter 7
TOPOLOGICAL GRAPH THEORY
REPRESENTATIVITY
! "# $ % & ' ( & #& & "'
Introduction ½¼¼ ½¼¼ ) ' *) + , ) + ' !- ' , ' . . ' "
+ )
,
' ' / + .
+ + ' )' '
+ . 0
) " ) 1" 223 . )
) . 1 )2 3 1& 43 ' ' ' ' '
+
7.7.1 Basic Concepts + 5
) . ) ' # )'
) DEFINITIONS
6 / 7 8 9
: '
' ' ' 7 :
6
) ' '
) . ;
6 / . ' # <)
6 6
/ ' ) ' + '
/ ' )
' . ' 7<*)+
. + + , = . )+ :
© 2004 by CRC Press LLC
Section 7.7
723
Representativity
"
!
"
! !
#$
!
!
"
%
!
!
& ' # ! ! $
EXAMPLES
( ))* ! ! &
! !
! + !
! , !
Figure 7.7.1
( )), !
!
© 2004 by CRC Press LLC
-
724
Chapter 7
TOPOLOGICAL GRAPH THEORY
Figure 7.7.2
FACTS
"
!
# $
"
%
!
!
$
"
%
%
$ '
%
%
'
&
&
'( '
#
$
$
&
( $
'
© 2004 by CRC Press LLC
Section 7.7
725
Representativity
!
"
!
#$% & " !
7.7.2 Coloring Densely Imbeddable Graphs ' ( "
) * *
" " & + ", " " & "
-!, " * " "
, !" * ! ., " *
' & ! *
*, ! " & & " " & ! &Æ"* *
Coloring with Few Colors / 0 " ! 1 " ! ! 2 ! ! ", 3& ! 0" *
FACTS
' " ! $( 2
(,
$. 2
&"
1 "
&"
,
1 " 4% &
"* ! " ,
! " 5 ", * "
( "
&" * 8 "
4#$( "
6& &
7
$% 4 " 0 & "
& "
* "
& " 1 "
REMARK
2 "&" * & " ! "* ! "
5 ", 4 " 8, 1 " 4 " 1
Coloring Graphs That Quadrangulate / " " & ! " , "0" *, ! * "
9 " "
:; 9", !" * * ( . "
© 2004 by CRC Press LLC
726
Chapter 7
TOPOLOGICAL GRAPH THEORY
DEFINITION
FACTS
!
"
#$%&'
(
!
#)*%+'
+
+
#,%-' .
/
+
#,%-' 0 /
+
#$112%%' #*"%%' )
0
+
REMARK
/
0 ! "
!
+
Coloring Graphs That Triangulate DEFINITIONS
3
4
FACTS
! 4
#$5"%%'
© 2004 by CRC Press LLC
4
+
Section 7.7
727
Representativity
! ! "#
PROBLEMS
$% &
! "
'
() *
,, -
*
, !
# .
+
+ ,! ! !
-'
/
! ,'
0'
, ! 40
1! 12 3
Æ#
7.7.3 Finding Cycles, Walks, and Spanning Trees ! $
$"2 - , , ! # 5 6 ! , ,#
DEFINITIONS
6 # , 6 !
!#
FACTS
, ! , , )6#
7 )#
& ,
!
6+
, !!!
822 0 , , , !!!
0#
819." 0 , , !
:
, !!! 0#
. 0;
¿ < ; ; (+ , ¿
!# & , + # &
-#
=% >
-(;
0 , ! # & , 06 ,
) +
!!! - #
=% >
-(;
- , ! # & , ;6 ,
) +
!!! 0+ 1- #
© 2004 by CRC Press LLC
728
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
"# $ ! % &'
% #(##
CONJECTURE
)! (
& !
! ! *$ # %!
!#
7.7.4 Re-Imbedding Properties +! $ +!,, %* ! *$ , %! ! $ - # ! %
! %* # !# # %!
* $ . / 0 $ % %! !* # %% 1
LEW-Imbeddings DEFINITIONS
2 #
&! & ! $ ! ! ! ! $ &'
2 %! # & ! ! * (
& ! * (
& !
FACTS
)!3 2 %! ! + # # !##%!# $%
4 ! # ( ! ### # ! %!
)!3 + # , %!
! $ ! $ !
!
)!3 )! %$# # !# ! * , %!
! + #
Ë
567/ . !
#
!*
! ! # (
!
Ë
)!
! ! # 8(
&
(% ! & ! # # $
Imbeddings and Connectivity DEFINITIONS
& ! $ 9%% !
%! * $ & ! % !
½ ¾
& %!
!
!* $ & * ##
# )! & % ! #
#%
$
¾
& ! # # !& . , & )!
© 2004 by CRC Press LLC
# $
Section 7.7
729
Representativity
Figure 7.7.3
FACTS
½
½
¾ !
¾
"##$ %
"&'$
"&'$ (
()
!
#
()
!
Imbeddings and Genus
Æ
FACTS
.''
"*&+$ (
!
)
,-
)
"% &$ /
0
,1 / 23
-
Re-Imbedding Results DEFINITION
(
4
Æ
,
-
5
¾,- 6 2
4 !
5
½,- 6
½2 7 ¾2
© 2004 by CRC Press LLC
½ ¾
730
Chapter 7
TOPOLOGICAL GRAPH THEORY
FACTS
! " #
!$
"
½ ¾
%
&
"
'
! " " " #
() !) *+ , #
" # ,
"" -
./ ! " #
"
" + 0, "
" # # , " 0 "# # 1 "
2 " #
3" " # " , "& # "
" # # , " " " , " " .4
CONJECTURE
53 , "#
"
& " #
+,
7.7.5 Minors of Imbedded Graphs ! # "# " " + " + " - # " + " 6 + # # 7 8" 9 * : " ;))
* " + # " " " " .)$
Surface Minors DEFINITIONS
*
"
# + " - #
" "
* + < "
+ < "
*
" " + #
" #
" +&
* +& "+" "" # "
: # " #
" #
" + " - # " " & ,
=#
" " +
"
" " # "# "& " # -
"
FACTS
"
53 "#
+ >
"
7 - " "
© 2004 by CRC Press LLC
? " +
Section 7.7
731
Representativity
!" #
$
#
#
%
&'()"
" *
#
# #
+ #
#
,
Finding Imbedded Cycles #
$ + + #
-+$
+ # # .
DEFINITION
/
½
#
0
#
FACTS
(1" '+ #
,
1
)
2 ,# 3 2 ,#
6 7
45(!" '+ #
,
# 9 ½ (1" *
2 ,#
# #
8 67 6
: (;" * # ' # #
8 67 6 7 $ 9 ½
7.7.6 Minor-Minimal Maps <7
$
,
= . , #
$
$ #
,
# ,
, / #
,
, #
, +
© 2004 by CRC Press LLC
732
Chapter 7
TOPOLOGICAL GRAPH THEORY
DEFINITIONS
FACTS
#
!
"
$ %&
$
'
)
¼
¼
%
' (
%
¼
'
*+,-.
/
*01-.
/
%*0,!. *2,/.' -
$
*01-. - / *3. 45 $
-
Similarity Classes on the Torus DEFINITION
6
REMARK
© 2004 by CRC Press LLC
3
Section 7.7
733
Representativity
FACT
!
¿
¿
"
Kernels # $% & '
(
( ( ( )
! ' (
DEFINITIONS
' ( '
()
*
,
' !
+
-
( ! %
!
¼
!
# '
(
!
(
.
)
¼
)
'
)
FACTS
/ £ £
!
0 ( 1
)
!
¼ % . ¼ ' ' ' 3
- 2
¼ !
/ 0 (
(
%(
References #"4 5
6
#' ) 6 7 ' -)
)
#"- 5
6
' )
' 2
8
9 ) + ) 4"4
#' +
:
3) * (
" 4"-) ;<
# - = #
) = '
( )
4-)
4>;>
# ?@@ 6 =
#
)
A
7
? ) #
@%)
B 6) 9 ' 3 ( ) >< -884) 488;44
© 2004 by CRC Press LLC
@ ()
734
Chapter 7
& '
TOPOLOGICAL GRAPH THEORY
!" #$ % "
! !!(
& ' #
) !!
*( + , - . * # ,# # '
'
( )())))
+/ *) * % / 0 + # - , / 1 * * 2 " %$ 3 % 4 $
) ) !!
/* * % / * * 2 & #
#$
!5!
+ ( 6 + * # 7 ,# 3 8"
9 , $$
55 *
( ( !)!!
2 2 ": !555
+( / 0 + # - 2
%
(
;<%**) = * ; = 6 <% > * * 0 *$ ?#% $ % 3 & '
!5 ) !5
;/( 2 ;> / ? 8% "$%
5 ( !!
( / 3
%' %3 6 @ ' 3 ,#"
# ,# # (
% = . % >
"7
' !55
A % $%# ? & % ( % , #
$
6
< < +# B
1 3
#$
!5!
< C < / "# # " ' % / B C># 0 @ ' C>#
<%) = 6 <%
" #$ %3 8 3
' "
) ) ))
<%*2 ( = 6 <% * * 6 2 #% ? +% " %
© 2004 by CRC Press LLC
( !55! !!)!
Section 7.7
735
Representativity
!" # $
*(& " * +, -
%& !'($ ')'%
.& !'((&$ /)0/
*1' " * -
2 - 3 4 5
6 *- 2 6 7 2 % !%11'$ '.)'0/
*8(0 " * 7 8 4
0 !'((0$ &)'''
*8( " * 7 8 9 -
/ !%11'$ /)&
*2(( " * 4 : 2- +
*;1' " * ;-
. !%11%$ /1')/'1
5< =
4
%11'
8(& 2 4 8 *- -
%
!'((&$ '/)'0/
820 7 8 4 : 2- -
>? #9
.' !'(0$ (%)''.
82 7 8 4 : 2- -
>@@? :
. !'((1$ %)%
8;(' 7 8 8 ;- A - B
' !'(('$ .1&).'(
8>(1 7 8 8 > 8 - %(/) /%
!"#!
" B 6 6C D 5 4 E -
2 2 +> " '((1
2(% 2 A F
<
!'((%$
'.0)'01
2(/ 2 - -
!'((/$ '.&)'
2(. 2
G -- +,
0' !'((.$ %'&)%/0
2;(0 4 : 2- 8 ;- =F
-
%/ !'((0$ //&)/.(
;(( 8 ;- 8 9 - - %1')%%%
%&&& 4
'(((
© 2004 by CRC Press LLC
$
: 6- : 4 - =
736
Chapter 7
TOPOLOGICAL GRAPH THEORY
!!"##
$ %& ' (
$
"!
%& ' (
)* "$$
+, -. $'
( (
/ &
)* *)"*#
!
$"$
# ' 12 (
& 0 !
# # )#"
(!) 3 ( 0
* !)
")
4* 5 4 *'
$' & / &
! * "*
3$$ 6 3 *'
7) 8 0 7( ' / &
!! $$ *!"*!
* ) *"
**#
7(# 9 7( 8/
-
:
$ # $$$"$!
© 2004 by CRC Press LLC
Section 7.8
7.8
737
Triangulations
TRIANGULATIONS
Introduction ! "#
$ ! ! !
# # % & # ' # (
7.8.1 Basic Concepts )# # & ! % & # # # & ' *&#* % ! + ! ! ' DEFINITIONS
, ) # % # #
! ,
!
# * % & # !
# ¿ # #
, ) # ! ( * -" ! !
, % # # ' ! % # * # .
, #
, # ! & & -.
# ! -. # !
, ) # ! #
, ) / # 0 ! # # ! # # ! # '
© 2004 by CRC Press LLC
738
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
"
#
½
¾
$ ! %
½
½ ½
&
¾ ¾
¾
½
&
¾
' !
(
))
NOTATIONS
!
!
*!
!
´µ ¿
+
! +
!
!
EXAMPLES
, !
© 2004 by CRC Press LLC
Section 7.8
739
Triangulations
Figure 7.8.1
!" #
! $
Figure 7.8.2
% & "%
% '& & & ( !
! !" & ' % #) " "%
! "!
% & *"% !"
& & ! & !" ! & ( ! % # !" " "%
*
! "!
FACTS
+ "! ! &
%
+ ! , ( &
%
+ !&
&
- - ! !
+ !&
! !
& - - ! ! -"
( "% ! !&! ( "%
&
© 2004 by CRC Press LLC
740
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
" "
#
!! $
# "
!
%
!
"
!
"
!
( & & &
! ! " ! ! !
"
¿
'
") "
!!
& '
%
£ !
& & &
*
£
!
!
"
+ "
" &
&
EXAMPLE
%
%
"
¼
" ' ,
¼
&
'
"
Æ &
- " "
'
. /
'
7.8.2 Constructing Triangulations 0 & && & 1 ( & ( Æ "
Triangulations with Complete Graphs 2 3 &4 &
!
&
!
)
&
! 5$
6 !
!
! '
"
& & " & && (
© 2004 by CRC Press LLC
Section 7.8
741
Triangulations
DEFINITION
½
FACTS
!
$
"
"
%&
!
'
# $ %& ! '
*$
$
"
"
# % $ (
) !
(
+ ,
-.#% ! /
01 %&
- 22.## !
& &
¾
¾
%0 $(
%0 33 %#4
EXAMPLES
5+60
!
-.#%
!
%
-+03
!
& 1
REMARK
7 8
9 +:0(
#
Minimum Triangulations ; ' "
© 2004 by CRC Press LLC
! <
742
Chapter 7
DEFINITION
TOPOLOGICAL GRAPH THEORY
FACTS
#
"
#
%$ ! !!
&'
(&
(
) * +
# ,
" !+ +
#
! !! !+
# '
-
. ', / ! !! !0 . ', / ! !! !0
&
(&
!+1
EXAMPLES
/ ! !! + +2 +
!0
+
/ * + * ! !! 3 0 + 1
!+ !
Covering Constructions 4 5+ 6 / ! + +
7
+ 80
* : ! " ! !0 !+ +
5+ 6 / ! 0 0
! + 0
9
$&
/ 0
!
DEFINITIONS
;$& # +
1 ! + / +
!
/
+ +
!
+ 0 -
/
00 3< !0
+
0 - +
© 2004 by CRC Press LLC
Section 7.8
¾
´ µ
½
¾
½ ½
743
Triangulations
!
½ ¾
¾ ¾
½
´ µ
""#
$
FACTS
% &' !
% &' *
¿
+ ,
( )
-./ *
/ 0 1
´ µ
-./
! 2/
´
µ
'
´ µ
"
´ µ
#
3
0
"
EXAMPLE
4 5 &.0
7
¿ ½
+6*
&
! 5 /'
5 Æ
Figure 7.8.3
"
¿ ½
© 2004 by CRC Press LLC
!
744
Chapter 7
TOPOLOGICAL GRAPH THEORY
7.8.3 Irreducible Triangulations
!
Edge Contraction DEFINITIONS
" # $ % & ' (
Figure 7.8.4
" "
) ) " ) * FACTS
"
) ! ! + " ,-.(/ ) REMARK
"
) 0 + 1
© 2004 by CRC Press LLC
Section 7.8
745
Triangulations
Classification and Finiteness in Number DEFINITION
FACTS
! "
# $
%&'! " # (
# ) *&+ " $
,
Figure 7.8.5
-&*! " '.
# ) *&/ # # 0 ".
" ". "'.
" $
-12*! " '+ 3 " 0 # 3.
3'. ) *&* # 3. 3 ) *&& # 4 5
% &2! " 0
162+!
.*.7'
7
88
#
7
8
9
*'
EXAMPLES
"
© 2004 by CRC Press LLC
746
Chapter 7
Figure 7.8.6
Figure 7.8.7
½ ½
TOPOLOGICAL GRAPH THEORY
¾
¾
¾
½ ¾
© 2004 by CRC Press LLC
Section 7.8
747
Triangulations
Figure 7.8.8
¾
REMARKS
Other Irreducibility ! !
! "
# !
$
DEFINITIONS
%
%
%
&
FACTS
'
$ #
(
# $
)* +, -
)**+, -
).* +&, $ -# / #
© 2004 by CRC Press LLC
748
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
REMARKS
"#
# # #
$ % #
! "& '(&)
*
+
,-.&/
7.8.4 Diagonal Flips + 0 1 23 + Æ 4 5 2 '&*
DEFINITIONS
+ 0 ! 67& 8 2 9
Figure 7.8.9
$
% 0 2
+
$
2
¿
67: ;
Figure 7.8.10
© 2004 by CRC Press LLC
! <
$ 9
;
Section 7.8
749
Triangulations
!
FACTS
" # $% &
& ' '
( " # ) &
*
& ' ' ( " +,$ &
& ' ' ( ' ' " # ) &
- & ' ' ( ' ' " . ( / ' ! &
½
¾ & ½! 0 ¾ ! ! ( ' ' " 1, . ( / ' 2 ! &
½
¾ & ½ ! 0 ¾! 2 ! ( " )3 4 ½
¾ &
& '
' (
35 !!
&
' ½
¾ ( " 6
EXAMPLES
" . ¼ ( *
½ ( ½
- ¾ ( & & '"
¼ ! 0 ½ ! 0 % ½ ! 0 , ¾ ! 0 5 "
7 8 ( &( "
3
9 $ :
,
% 5 9)
93
" ; ´µ
( 6
REMARKS
" ' & (
& !
& '
( & & 8 ' < ; ' ' '( '
' &
)3 © 2004 by CRC Press LLC
750
Chapter 7
TOPOLOGICAL GRAPH THEORY
!" #
$%&&'
( ) $%&& '
*
!& (
+
Estimating Bounds
DEFINITION
,
-
.
FACTS
$%&!' , /
$%&!' 0
/
Æ ÎÌ
12
-
$%34' 0
( /
*
5
4& 4"
$%&"' 6
7
1
1
$8% 93.' ,
:
$8% 3.' ,
/
.3
;
<
"
$6 = 34' ,
7:
EXAMPLE
, / <
+
© 2004 by CRC Press LLC
Section 7.8
751
Triangulations
REMARK
Catalan triangulations
!
" " ! #$%& '
( # ))& ( ( (
DEFINITION
*
(
FACTS
# ))& *(
( -
! "
+.
+,
/
/
#01%2& *(
34
5
#
$ .. & *(
5
#
$ ..& *(
6
5
#
73 $ .-& 7
/
½ ¾ ½ 8 ¾
5
Preserving Properties *( ! ( $ ( +
- " (
(
DEFINITIONS
*
/
9
*
(
*
© 2004 by CRC Press LLC
!
!
!
752
Chapter 7
½
TOPOLOGICAL GRAPH THEORY
FACTS
!"# $
% &
'
%
(
%
)
%
*
% &
)
!"# $
'
( %
!!# $
& % &
+ % %
*
'
!!# % & %
+ % %
( (
EXAMPLES
(
, (
-
-
-
.
.
REMARK
+ % ( *
© 2004 by CRC Press LLC
!!#
!"#
Section 7.8
Triangulations
753
7.8.5 Rigidity and Flexibility
Equivalence over Imbeddings
!"
DEFINITONS
½ ¾
½ # ¾ ½ ¾
½ # ¾ $ %
# $ % $ %
FACTS
& '
" $ % ( "
$ % ) ) $ % $ % * " $ % $ % Uniqueness of Imbeddings
&
+ + Æ + © 2004 by CRC Press LLC
754
Chapter 7
TOPOLOGICAL GRAPH THEORY
DEFINITIONS
FACTS
!"#
$# %
$# &
Figure 7.8.11
&
$%# '
(
(
$% # &
)
)
Figure 7.8.12
&
Re-Imbedding Structures *
+ ,
© 2004 by CRC Press LLC
Section 7.8
755
Triangulations
DEFINITIONS
½
FACTS
!""#
!!"$# !!"$# %
%
%
!!"$#
&
' %
"# ( ) *' ' +' ,' - *
% )
./+# ( *' ' +' ,' 0' -' 1' */' *' *,'
*-' ,' ,1 */ %
EXAMPLE
%
'
3
4 *
&
4 *
'
'
2
' )
'
4 */
4 +-
)
REMARK
%
' Æ ' 2 1+
5 ' &
6
7
% . !!"$#
© 2004 by CRC Press LLC
756
Chapter 7
TOPOLOGICAL GRAPH THEORY
Imbeddings into Other Surfaces
DEFINITION
FACTS
!
! " #$%% & ' ()*" +
Figure 7.8.13
$$,- .* ' " / $$,- .* $ 0 / $-.. ! 0 / 1 ). )2 - 1 ). / -.* 3 24 5 4 5 " / ½
EXAMPLES
! / ! / 6
+ ! & !*" & &) 7 (% ! / 8 . ) % 4 )25 ! 9 :; /
© 2004 by CRC Press LLC
Section 7.8
757
Triangulations
References
!"# $ % $ ! & " % '( '
)* # +#
! + ! , ' ( -
** + *
! . + / ! % . ' ( ' 0 '
)1 + * +
6 ! ,,2 3 4 ! 5 $ , 2 ,' $ 27 6 .8 ( ' ( ' ' ( '
1+ ) +
! + ! 3 ' 9 ' ( : ; < :
* + *) *#
! +9 ! 3 ' ' ( ' : ( '
) + #1 1
!2 $ ! = 2 '; " ' '
* +
!" ") = ! " > 2 " <' ( ' ' '( ' ' '0 '
)+ )
# *
3 " 3 3 7 ' " > <' ' '
) 1 +*
3 " 9 3 3 7 ' " > <' ?9 '
#
3 ,5 " 3 3 7 ' 3 , 57 @; " > <'
' ( '( '
# )* 1
1* ? : / A' ( ' '
1*
*
. =1 4 B . & = 3 ' ( 5C
9' 9
* 1 * *
D" " 2 D'> ! 5 = " 5 ' ( -
D* 4 D > '8 9
© 2004 by CRC Press LLC
+ # *#
) * *)* *)
758
Chapter 7
TOPOLOGICAL GRAPH THEORY
!" #$%#!&
'($! ) ' ) ( * +, ,
!&
#$$!" .&%/&
&. ) 0 1 ,
!&." #2%#.
3 4 35 6 7
/$
!" !/%!/
3! 4 35 8
!!
!!"
!./%!//
3 && 4 3 9 : * ; ',, ,
"
" ,,/% 6 :9 49 '9 <; !&&
)$ 6 ) 6
!./
!$" !#!%!/.
< 44 3 < : 49 4 * +, = .
&
!" %#
0& 0=9 > 2$
!&" /#%#
/! 4 /
? 6 @/&$$#? A @
!$" #/2&%#/.2
0# 0=9 > ; , , B; ,
/.
!#" !%#$
04& 0=9 4 <
&$
!&" #/%#!
04 0=9 4 8 , <
&&
!" #!!%#!
04(. 0=9 4 : > ( > , = , , !2/
!." 2&%2
66 # : 6C 6
/
!#" !.&%!.
64/ : 6 4
4" .
-
!/" /&%&
6 4D$2 6 : 49 < D * +, 3 ,
,
6 4$2 6 : 49 * +, 3 , B; , ,,
© 2004 by CRC Press LLC
Section 7.8
759
Triangulations
!""
# $% #% &
!"
' ( &% )
)) ")!")
+ '" ' * ', + - &%% . % $$
/" ' 0 . % $%
)) /" 1!/
/) ' 0 .2 %2 $ 345$
"1 /) /!"
/) ' 67 15 5 $%
51
/)
8 ' ' 8 #
) !11
) ' # 9$
" )
!"
:1 ' ; : & < 25%
)" 1 !)
; ' ; ; =5
))
)!
/ ' # 9$ $$
) / "!)
' # 9$ 42
' >
) $ !)
) $ !
' # 9$ $ 5
) / !1
' ' ? '> 56
$ . %
)
/ !"
= ( = 8 % % @A % A % & # >
© 2004 by CRC Press LLC
!"
" " !"1
760
Chapter 7
TOPOLOGICAL GRAPH THEORY
!"#!" $ ! "! ! !" !
%% & ! ' ( ) "! !! (!# ! "! ( * +# !*
,%%- ./.%
! 0 ! !1 ( 2 ( " " 3 + ( (
* (
4
" 5 "1"6 "! # ( "$# 7# 8"( "! ! "$# !
). 9 ) 4 6" 1" $+ + +! ,.- :./:
© 2004 by CRC Press LLC
.
Section 7.9
7.9
761
Graphs and Finite Geometries
GRAPHS AND FINITE GEOMETRIES
Introduction !
" ! # $%
&
% " ! '
7.9.1 Finite Geometries % ( % ) ( ! DEFINITIONS
* + , & & %
* *
+
! "
, "
&
+ ,& +%% , + , " - " *
. /
. /
. % /
* * *
+ ,&0$01
-
+ ,&0$01 "
- -
+ ( ½ ¾,& 2 ) 0$01! / % / ! " " &2 + 2, % / ½ + ¾ , +%% ,
© 2004 by CRC Press LLC
762
Chapter 7
TOPOLOGICAL GRAPH THEORY
! " #
½ " $ ¾ #
! " #
%
& #
&
#
'
Æ
( $
& $ (
(
)
( $
( $
(
( * #
FACTS
+
,+,- ! " #.,+,- ! " #,-
¿
&
/
0 ( 0
'
* #
(
1
&
'
2 3 /
4 ) $
'
5 )6 )#" ( % 1 )
7,8209 +
# ' 2
$
1 )
' ¾ ¾ * * # #,+,- : ¾
( * * # ( Æ
© 2004 by CRC Press LLC
Section 7.9
763
Graphs and Finite Geometries
EXAMPLES
! " Æ
"
'
#
'
#
#
(
#
$
$
#%%&
$"# !
"# !
) * * * * +# !
, , + +- "#(%%& . /0 1 ¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
( "
&
* * * +# !
+ +- "#(%%& . /0 1
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
¼
&
"
2 ! Æ $ " ¾ ¾ 3 3 "#%%& * 4 $ " # Æ +# " $# Æ $ $" 5#
! 4 6 " * $ " ¾ 3 3 ¾ 3 3 3 3 "#%%& * 4
2
$ " # +# " $#
4 6 Æ 6
¼
6" Æ
$ " $ "
© 2004 by CRC Press LLC
764
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
""# $ !
%
Figure 7.9.1
&
%
!! ' % (
) *%
" *
+ ( % ! , % * ! ! -. ! & *% ! % %
!
! )! * * ! /
,
! * %
0
1 *% 2 * ! &
+
)
%
+ * % % 1 1 4 & & 5 1 & - . 1 4 & - * ! ! + ! 3 !
! ( ¼
& - . .
¼
¼
# !! ! 3 !
+6
)! / & ! ! ! !
+ 7)
! - & % # !
+ % +
! *
+
/
/ +
+ / &
+ - /
-
&
+ +
/ -
+
& /
& +
-
-
+
+ /
7 * * ! 8!!
+ +
© 2004 by CRC Press LLC
Section 7.9
765
Graphs and Finite Geometries
7.9.2 Associated Graphs DEFINITIONS
½
!
"
! "
FACTS
# $#$%
&
"'" (
&
!)" *
! "
)"
+**,
- . * ! /
-
- .
) 0
/ - . * ! /
-
- .
1 . !$% "
# &
EXAMPLES
!
# &
/ /
2! (
2 /. &
/ / 3 "'" 4 * ! "!
2!
4 1 . / ! "
4! 5 ! "
& * 6 / 4 1 . !7$#$% 87 )" 9 5" 2:/ ! & 4!)"
© 2004 by CRC Press LLC
766
Chapter 7
Figure 7.9.2
¿
TOPOLOGICAL GRAPH THEORY
¿
´¿µ
7.9.3 Surface Models DEFINITIONS
!
"
#
!
!
$ % " & !
# #
#
#
% # %
%
% %
'%
FACTS (
$ % % %
# # #
! !
# )
© 2004 by CRC Press LLC
!
Section 7.9
767
Graphs and Finite Geometries
!" #$%&
!' ())& * +
+ ,
- -
!(./& 0
-
¾ 1 1 2
1
3 1 ¾ 1 1 ¾ 1 1
3
)
- 3
¾ 1 1
¾ 1 1
4
¾ · ·½
3 , 5- 3
¿
, !()& ,
3 3 3-
¾ 2 ) *77+
6
8
9 * ,
: 3 5- , 3
3 , 3 3 ; - 3
-
3 ,
, ; 8
- 5- 3 3 3 ;
EXAMPLES
:
3 4
-
<
'
<
3
<
' 6.
- " = 3
© 2004 by CRC Press LLC
¾ ¿
3 3
768
Chapter 7
Figure 7.9.3
TOPOLOGICAL GRAPH THEORY
¯ ¯ ¯ ! "# Ü$%& ' ( ) ' * + ( , - .
# " ' -
, $% ,
, $% , /
Ü$%" , $%
Figure 7.9.4
References
012%3 2 - 14 - 5 2 ' 6
" "%% 778% © 2004 by CRC Press LLC
Section 7.9
769
Graphs and Finite Geometries
!"# $"%&$'$
( ) * ( + , - .
+
!%/ # $'&$$0
+ 1
2 3 % !%/
# ' &''"
/0 4Æ . 5 3
!'# 6 !%//0# ''&00
%
7
, + % "%
" !""# $6/&$/'
© 2004 by CRC Press LLC
! "$$
770
Chapter 7
TOPOLOGICAL GRAPH THEORY
GLOSSARY FOR CHAPTER 7
!
© 2004 by CRC Press LLC
"
"
"
"
771
Chapter 7 Glossary
½ ·½
! "
#
$
$
Æ
¾ ½ ¾ ¾
%
© 2004 by CRC Press LLC
772
Chapter 7
TOPOLOGICAL GRAPH THEORY
½
½ ¾
½
¼
¾
!
"
¼
!
!
!
#
½ !
$
¾ !
$ $
$
!
!
$
© 2004 by CRC Press LLC
!
½
$
$
773
Chapter 7 Glossary
$ %
$
(
'
$ &
"#
½
!
)
$
*
$
+ $ !
!
$
/
,
© 2004 by CRC Press LLC
&
Ê
/
,
- .
,
/
/
774
Chapter 7
TOPOLOGICAL GRAPH THEORY
! " ! " ! ! # ! # $ % ! % ! ´ µ !! ! ! ! ! $ % ! % !
´µ !!
$
½
$ &'
¾
( *
)
) +
,
)!
,
!
,
-
-
)
. /
! %
!
!
© 2004 by CRC Press LLC
775
Chapter 7 Glossary
¼ ¼ ½ ½
¼ ½
¾
!
"#
$
%
½
'
'
(
'
'
)
%
)
%
&
(
© 2004 by CRC Press LLC
776
Chapter 7
TOPOLOGICAL GRAPH THEORY
½
!
"
# $
!
%
!
!
&
½
& ' &
! & '
(
(
*
)
+,-
© 2004 by CRC Press LLC
777
Chapter 7 Glossary
¾ ¾ ¾
!
! " # $
$ !
½ ¾ ½ ¾
¾
% &
¾
% "
© 2004 by CRC Press LLC
778
Chapter 7
TOPOLOGICAL GRAPH THEORY
¾ ¾ ¾
!
"
!
# !
!
! $ %
& '
(
$ Æ )
$ $
!
'
$
$ (
© 2004 by CRC Press LLC
$ *
779
Chapter 7 Glossary
!
!
"
## " $ $ $ $ $ $
% & ' (
)
© 2004 by CRC Press LLC
780
Chapter 7
TOPOLOGICAL GRAPH THEORY
½
·½
!
"#
½
!
"#
$
%
%
& '
*
&
(
$
$
)
· ·
&
· ·
&
+
+
,
© 2004 by CRC Press LLC
781
Chapter 7 Glossary
½
¾
½
½ ! ¾
! ½
! " "#
# # © 2004 by CRC Press LLC
782
Chapter 7
TOPOLOGICAL GRAPH THEORY
!
! "!
$
# # !
$
%
Ê $
! &
' '
¼
Ê ¿
!
© 2004 by CRC Press LLC
¾
¾(
¾ ( ¾ ( ¾ ) "
783
Chapter 7 Glossary
!
"
# $
$ $
$
&
%
!
'
(
$ ) $
$
!
*
½
&
&
#
+
-
© 2004 by CRC Press LLC
,
+
½
!
+
½
784
Chapter 7
TOPOLOGICAL GRAPH THEORY
! ½ ¾ ¿ " ! " # !
$ % ½ ¾ ¿ ½¾¿ $ % "
© 2004 by CRC Press LLC
785
Chapter 7 Glossary
½
·½
¾ ¾ ¾ ¾ ! !
" ¾ ¾ !
!
#
¼ ½ ¾
$ %
$
& '
' (
& ¼ ½ ½ ¾ ½ & ½
© 2004 by CRC Press LLC
786
Chapter 7
TOPOLOGICAL GRAPH THEORY
© 2004 by CRC Press LLC
Chapter
8
ANALYTIC GRAPH THEORY 8.1
EXTREMAL GRAPH THEORY
8.2
RANDOM GRAPHS
8.3
RAMSEY GRAPH THEORY
! 8.4
THE PROBABILISTIC METHOD
" # GLOSSARY
© 2004 by CRC Press LLC
788
8.1
Chapter 8
ANALYTIC GRAPH THEORY
EXTREMAL GRAPH THEORY ! " #$! %!&' ( ) ! * + !& & , -!! & & . / 0 ' !1 2!! . 3 4 !& ! 5! ( ( &
Introduction / ! && %! ! 6!! / &! / !7! & ! 6!! ! 4&&!/ 8 ! ! %! 8 ! & / 7 8 ! & ! !9 & : ! ! ! 7! % % &! % ! !& % / 8 7 / !/ & ! &! !& ! ! 7 8 ! %!& % && !& / !7! & !' 8 ! !! / 8 & &!7! 8 &!6 8 ! & 8 / ; & & ! NOTATIONS AND CONVENTIONS
2 !&! 8 / 9 7 <= > ?@ / %! 7 !& ? @ / %! 7 !& ?A B@ / ?A # B@ 8 A! ! > ?@ %! 8 7 7 / 8 ! -!!B 7 / !! / ! -!!
?@ ?@ 7 !& / ! /
© 2004 by CRC Press LLC
Section 8.1
789
Extremal Graph Theory
C?@ Æ ?@ ! !! / ! 7 / 8 D ? @ ! ! !/8 D
? @
! ! / E
%!& /
½
½
E
/
? @ D
¾
!F! /8
½ ¾
? &! @8 !8 !
% / F!!/ 7 7
D? @ !
? @ >
? @ % ! ! &
! !
/
¾
? @
?@
½
7 7
½ G ¾ $
¾ / %!
&! & /
!
DEFINITIONS
:
!7 /
8 %
! !
: 4 ! & / 7 !& &!6 /
:
!7 /
:
:
4 / !
?@
& &
!
8 ?@
7
& &
?@
?@ 6
8
! ! / &!6
! &!6 ! &
! ! %
& &!7!
/ !!&
/
! 7 !& 7 !
! !
&
EXAMPLES . ! !H & % %! % ! ! / %! %
:
.
?@
!! !/ &7 /
& / %!
7 !&
?@
!
6! !H ! ! ! ! / 8
:
! A 7 & & / %!
! /
&! & & %! !
7 !& B
! !
7 !& ! ! ! &
! / %! % ! !: ! ! ! !77!/ 7 !& 8 !! / 8 & &!7! 8 &!& & ? ! / & & @
8.1.1
Turán-Type Problems
6! ! ! / ! %!/ 6 ! : /!7
I
8
© 2004 by CRC Press LLC
?@
?@I
% ! ! !' /
6!7 8 % ! ! !'
&!
790
Chapter 8
ANALYTIC GRAPH THEORY
DEFINITION ! / !'
:
½
.
/
?@
7
? @ ! &
&!
/
! & 8 !!
! 9 ! &
6 & !! /8 J? @
J? @ %!&
½
?@
? @
>
&
? @
6 & &
½
! / !
!! ! /
Turán’s Theorem and Its Extensions !7!/ & /
!
&
DEFINITIONS
:
.
! /
?@
! &
!
/ % & 6 !
:
?@
! !' /
?@
FACTS
:
G
>
?3
@8 ?@
8
& &!!
?@
>
"
?@
<53,= /
:
!
?@
>
:
?@8
<# $"0=8
? ?@@ 7 8 > ?@
:
%!
:
<"= /
> ?@
!
"
8 >
?@
!
K !
?@ "
8
> ?@ ! 8 ?@ > ? ?@@ &
<+= /
>
?@ ?@K
?@
/ 8 ! ! / ?@8 & ? @ ? @ 7 ?@ ! & /8 & ? @ ? @ ?@
? @
!
> ?@
:
& &!!
G
>
?@
<,3= L 7
>
!"##
7
<M,,=8
>
# $
?@
© 2004 by CRC Press LLC
% 7
?@
!
8
Section 8.1
791
Extremal Graph Theory
: "# %& # ' # <5+*= /
½ /!7
¾ ´ µ ¾ ´µ
> ?@ ! ·½
¾ ´
µ
¾
: (" # ' #
?@ ! ·½ ! ½ /!7 ' 8
¾ ´ µ ¾ ´µ
G
¾ ´
µ
¾
¾
¾ ´
?@
µ
. ½ ' ! ½ 6! ! ?@ ! ! ! ! > 8 ½ > > 8 7 !& ½ &!6 ! Structural Properties of the Graphs ? ?@ G @
1 / 7 ? ?@ G @ &! ·½ 8 !7 !/! 7 ! & / E % !& &! ! NOTATIONS
?½ @ & ! / %! & !' ½ &!7 / · ?½ @ ! ! ?½ @
!/ / 9 &!9 &8 ! 8 ½
L Æ ? @ ! 7 & 7 / ? @ &!6 %!
? @ : Æ ? @
FACTS
): (*
? ?@ G @ 7 %! / ? @ ? G D? @ !& ½ ?? @@ /
@ ½ &
+: (
: (*
> ? ?@ G @ % 3 . 7 ! / ? @ > ? 8 ? @ > ? @ 8 D? @ ! ! 8 7 7 D? @ ! F! 7 7 D? @
: <+= L 7
3 ! > ?@ 3 & 7 ? ¾ " G @ &! ¾· ? / ½ @
: # <!,= L 7
? ?@ G @ &! · ? @
: , <%,,=8 <%, = 8 Æ ? @
© 2004 by CRC Press LLC
Æ&! / 8 7
¾
?@8
792
Chapter 8
:
ANALYTIC GRAPH THEORY
@"8 ?@8
¾?
Æ ? @
?@
REMARKS
$:
8 L& ! ! 8 !& ! ! 9 / && !
/ > ? ?@ G @ · ? @ ! ! Æ&! / -% 7 8 L& // ! ! ! 8 / % %
& !
$: $:
N !$!7 % L& * 7
! L& + &9 &F & N 3 ! !Æ& 6 ! ! Æ ? @ ½ ?@ ?@ ? 8 /8 <P =@
Books and Generalized Books
$ % !!! ! 0+ <+= & & H !& 7 8 $8 & ! & 8 / DEFINITION
):
L 8 ! /
!/ & &!6
´ µ
&!!/ !!& ? G@ &!6 8
7 ! & $K % %! ´µ ?@ !' / $ ! / E & $ ! %! ?@ ´¾µ?@
FACTS
: # - ? ?@G@ &! ·¾ %! / 7
: , <5=8 !"## . /##0 <M!,0=
¾ "
G
+
! ! 6! ! ! ! ! 7! % %!/ / . > +
!! <= ! + !½½ 8 !½¾8 !½¿8 !¾½ 8 !¾¾8 !¾¿ %! !½½ > !½¾ > !½¿ > !¾½ > !¾¾ > !¾¿ > G L " F! 7 7 ! 7
7 ! 8 " > F! 7
7 !½ 7 7 !¾ !' !/ / ! / ¾ " G 8 ! $!' ! + G
© 2004 by CRC Press LLC
Section 8.1
793
Extremal Graph Theory
: . . $ <L(0"= ? @¾ Æ&! / 8
´µ ?? @@
! !
" ? G @
L 8 3 9 / %! ?@ > < = <= <= F! % 7 !& ?½ #½ $½@ ?¾ #¾ $¾@ ! ! ½ > ¾ #½ > #¾ !/ >
>
% 7 > ? @8 8 ´µ ?@
>
¾
): . 12# <L0*= ! + & ! > ?@ Æ ?@ 8 ?@
Vertex-Disjoint Cliques
% ! ! / !&8 -F ' ! 8 / % !!9 N !
! 7 !F! &! / !
+
: . / & ?@ > ? @ 7
! !
FACTS
+: 3 #%4 5
<-+= . %! > 8 > ? @ > ?@ Æ ?@ 8 &! 7 !F! & & / G 8 / !&8 ! Æ ?@ 8 &! ¿
4 5 %&"#
: <-',3= > ?@ C?@ 8 ?@ & !! ! G ! & !' % !H
8.1.2 The Number of Complete Graphs 4 &!!/ !Æ& ! ! ! ?@ /!7 7 ?@ ! % !!!/ %8 / ! / 7
© 2004 by CRC Press LLC
794
Chapter 8
ANALYTIC GRAPH THEORY
FACTS
: $ - <+=
"
G
! ! 6! ! !
: 6 " # <.! = % 8
"
G%
%
! ! 6! ! !
: . 3 % / ! ! !/ % !F! / / & / ?@ ?@ ! /!7
G &
?@ > ? %@ > %
: <+0= L 7
3 % 8
! > ? @ 3 > ? @8 & !
?? ?@ G %@@
? %@
! ! 6! ! !
: # ? @ " ?@
0 ,? @
! ! ! '? @
: / &, <+=8 <55+= > ?@ ?@ 3 ?@ ? @ ??@ @ ?@
: (*
. &! (?@ 9 ! & 7 > 8
?!@ (? ? ?@@@ > ? ?@@K ?!!@ ( ! ! ! ! 7 < ?
© 2004 by CRC Press LLC
?@@ ? ?@@=
?@
(? ?@@
Section 8.1
8.1.3
795
Extremal Graph Theory
˝ Erdos-Stone Theorem and Its Extensions
& ! & *3 K ! %! &! ! & 7! % &! ! 1 : !/ ?@ / ! / / ·½ ·½ ?@ ! / 6!7 8 7 !& 9 ! ! / NOTATION
L 3 8 )?
@ ! & 7 ? ? G @¾ @ &! ·½ ?@ Æ&! / FACTS
): %& <"+= L 3 8 &! )?
@ !9! % !9! !& ?@ ! &!&8 ! !! !7! <!++= ! > ½ ! 9 ! / G > ! *? @ 8 ? @ >
¾ G +?¾@
+: (*
½ ¾ 3 &
½ / )? @ ¾ /
: (* . #
/
)? @
/ ½
3 & !
! 3 & ! 3 )? @
/ / ½
: 3 &"# <' = )? @
: (* & !
/ *33 / ½
,
3 ,
3
7 / Æ&! / %! ?@ ? G @¾ &!
·½ ? %@ & ? , @
© 2004 by CRC Press LLC
/ / ½
? , @
/ /
% ½·¾
796
Chapter 8
ANALYTIC GRAPH THEORY
: 7#8 # <3= ! & - 3 & !
3 ,
3
7 / Æ&! / %! ?@ ? G @¾ &!
·½ ? %@ & - ? , @
/ / ½
- ? , @
/ /
%
The Structure of Extremal Graphs
& / ! ! % ! & 9 ! ! / 5 7 8 !! !7! /!7 !! & / %! ! /8 7! !' ! & ! FACTS
:
# <!+ = L 7 ! > ?@ & ! % 7 ·½ / ? ?@ %@ ! &!&
:
*? @ >
<+ =8 # <!+ = . / %!
G L 7 3 ! Æ 3 & ! ! / ?@ ?? @ Æ @¾ ! ?½ @ %! ½ G G > & ! &/!/ ¾ /
: <+ =8 # <!+ = .
> ½ 9 / ! %! G > ! *?@ ½ ? G @ &!/ ! %!& & & &! 7 !& ? @ >
? @ ¾ G '?¾ ½@
J? @ ! & ?@ > ? @8 Æ ?@ > ? @ G +?@ %!/ : ?!@ 7 !& & !! !
& & !' G +?@K
?!!@ & 7 ! F! 7 !& ! % & & L 7 3 7 !& F! 7 !& ! % & ! +?@K ?!!!@ '?¾ ½@ / F!!/ 7 !& &
: # <!+ = . 9 ! / ! Æ&! / 7 / > ?@ %! ?@
? @ G ? @? @ G
&! ·½ 8 > ½ G ? @
© 2004 by CRC Press LLC
Section 8.1
797
Extremal Graph Theory
8.1.4 Zarankiewicz Problem and Related Questions #$! %!&' ! & 1 !! /K ! !Æ& R ! 7 % 7 !& ! NOTATION
. $ ? @ / !' !! / &!!/ & !! / ? @8 $ ? @ > $ ? @ FACTS
): ? ? @@ $ ? @ ? ? @@
+:
2 . & <M*"= 8
$ ? @ ? @ ? G @
G ? @
$ ? @ ? @ G '?@
: $# <( !* =
?!@ $ ? @ ?@? G " @K ?!!@ 7 > G G 8 % ! % ! 8
$ ? @ ? G " @ > ? @? G G @
?!!!@ !
$ ? @ >
: . $ # & <(++=8 (, ? @8 % 7 G ? G @ ? G G . @ ? G @ G !
?@
? . @ >
/!7!/ % ! ?@ 7 !& G G ! F &!7 / ? @ 7 9 8 % ! ? # $ @ ? # $@ F! ! ! G # # G $ $ > 3
: 2 #
? G G . @ ? G @ ! ! % ! 8
? G G . @ > ? G @
© 2004 by CRC Press LLC
798
Chapter 8
-Free
ANALYTIC GRAPH THEORY
Graphs with Large Minimal Degree
0, ! & !!! / %! / !! / & ! &!!8 &!& & / ! 8 !7 !/! % 8 ! & ! % ! Q ! ! !7 H / 6 ! ! 8 & /!/ %!& ! &F & 7 > ?@ %! Æ ?@ ! " &!& DEFINITIONS
: E / ! / ! ! !/ : ?@ ? @ & ? @ 0 ?@ !! ? ? @ ?@@ 0 ? @
: . ! / %! ?@ > <= ?& " @ 0 ?@ ! ! & " >
:
! ! & %
EXAMPLES
:
<5 &**= Q 9 6 & / 1 1 %: 1 > K 1 ! 9 8 ?1 @ > <= ?1 @ > < G =8 0 ?1 @ !
0 ?1
@ ?& " G @ : ?& " @ 0 ?1
@ ? G &@ : &
L 7 &8 / 1 ! *?1 @ > & !&8 / 1 ! . K / 1 ! $%
: ! <4+= ! > 7 & ! & ?& @ % . L 7 &8 / ! ! *?1 @ > !&8 / ! ! . K / ! ! $% FACTS
9 0 #. & <4,"= / > ?@ ! %!
: !! /
Æ ? @
! &!&
: %4 5 % # 8 : <!,= 38 2 ! Æ&!
/ 8 ! / ?@ %! Æ ?@ ? @ *?@ 2
: 42 88# <-/ = 7 / > ?@ %! Æ?@ !& ! > . !9 ! 6! *?@
!
: 42 88# <-/ = L 7 8 ! " &!&8
8 3 / / 0
: ;# <S!0*= 7 > ?@ %! Æ?@ 30 ! !& / ! !9 ! 6! *?@
© 2004 by CRC Press LLC
Section 8.1
799
Extremal Graph Theory
) 3 . ;#
: <SM0,= 7 &!& > ?@ %! Æ ?@ ! !& / ! *?@ "8 1
+: (
"
42 88# ;#
: <-S!0 = . > ?@ . Æ ?@ "8 ! !& . " ! ! 8 !
8 . 8 / ? @ ! !& .
8.1.5 Paths and Trees O 7 ! / !
& - 5-:
%
7 / ? ? @ G @ &!
&F & ! &! &!! /8 / & ! NOTATION
/
FACTS
: %1 # <*0= 7 > ?@ %! ?@ ? @
&! / > ? @ G 8 ! / > ? ? @ @ &!!/ /
: &-: G ? / @ >
G
3
8
/ $%
: ( *
: & - <" # <E0,= 7 . / ? ? @ G @ & !
: < 8. 6# 6# <E..33= 7 / ? ? @ G @ % / & ! /! * &!
:
*
@ G @ % / & !
? "@ &!
© 2004 by CRC Press LLC
800
Chapter 8
ANALYTIC GRAPH THEORY
8.1.6 Circumference DEFINITIONS
: ?@
:
/ ! / ! / & & !
/ ! / ! & &
NOTATIONS
& & / / ! . ?@ ?@ ! / 7 ! . ?@ +?@ ! / ! . ?@ FACTS
: 1 # <*0=
?? ? @? @ G @@
): (* 42 88# ?@ Æ?@ 8 ?@
? @ ! ! 6! ! !
+ 8 , #
: </5! 0= > ?@ ! ? @ G ?@ % 7 % F& 7 !& 8 ?@ ? @ ! ! 6! ! !
: # - ?@ ! & & %! Æ?@ > Æ 8 ?@ Æ
: = 8 ?@ ! & & 8 !! / %! Æ ?@ > Æ
8
+?@ Æ ?@ Æ
8.1.7 Hamiltonian Cycles -!! / ! / - % 7 % $% %! A B ;7 DEFINITIONS
: :
4 / > ?@ ! !
"
! . ?@
/ ?@ ! ! && !7 F!!/ 7 % F& 7 !& %! ? @ G ?@ FACTS
:
# - ?@8 8 Æ?@ 8 !
-!!
© 2004 by CRC Press LLC
Section 8.1
801
Extremal Graph Theory
: &# <!0=8 (* (#8,
> ?@8 3 7 !& / 3 8 ! & & ! !& 7 7 3
: > ?@ %! 8 ! ? @G ?@ % 7
% F& 7 !& 8 ! -!!
: ? < += . > ?@ %! 7 %! ? @8 7 !& / & !/ ! 8 7 !& / ? @ & ? @8 ! -!!
: 3 6 0 ( 3
: 3 <7,= . > ?@ %! %! 7 /
?@ ?@ 7 ? @ ! ? @ ? @ 8 ! -!!
): 3 % <,= ?@ ?@8 ! -!!
+: 42 88# ?@ Æ ?@ *,8 6 .
&!
8.1.8 Cycle Lengths : . ?@ % & & / ! / - &F & %!/ % FACTS
: 1 0 .
. &"# <M "= ! 3 &
7 / > ? @ % 7
:
. ?@ /?@
: 1 0 . ?2. &"#. =#8 < P *= ! Æ&! / ? G @8
:
. ?@ ?33 / @ ½
Cycles of Consecutive Lengths
! &! % 7 Æ&! &!! ! !' !! / ! & / ! 7 ! . ?@ & & / FACTS
: ( % #
© 2004 by CRC Press LLC
802
Chapter 8
ANALYTIC GRAPH THEORY
: = 2
1 8
:
G . . . . > ? & @ . .
: 1. 4 @. &- <-3= L 7 3 ! & > ?@ & ! > ?@ Æ ?@8 &! & & 7
7 <" ?@ = 7 < +?@ = Pancyclicity and Weak Pancyclicity
0, N !& && & &!&! & !& ! !7 E % % $% DEFINITIONS
: ):
4 / > ?@ ! & ! . ?@ ! ! 7 4 / > ?@ ! & ! . ?@ > < =
FACTS
: ( ? "@ ! -!!8 ! & &!& > ? @
: ( ? " G @8 ?@ ? G @ !
% $ & &!&
) 9 . # . #. 1
: <4LL = 38 > ?@ ! -!! Æ ?@ *8 ! & &!&
+: &# <! += *38 > ?@ ! -!! 7 % F& 7 !& 8 ? @ G ?@ "*8 ! & &!&
: ( . 1 " + , ?@
( . . 1
:
& &!& !!
(
(*
© 2004 by CRC Press LLC
Section 8.1
8.1.9
803
Extremal Graph Theory
Szemerédi’s Uniformity Lemma
2!! . ' !8 % % 7 !! & 7 !' 8 ! $ ! !& !& .
8 ! / 7 / 9! / & 8 %!&8 !!/ 8 ! ! && &$ !Æ& &!! N% . M $T' ' !8 & !7 2!! . 8 7 !Æ& / !/ &F & L & !7 7 ! <M!0+=8 <M00=8 <M33= DEFINITIONS
+:
. 3 4
! &!
% !! ! !
: 4 !! / %! & ! ! & ! 7 ! 7 4 ! 5 %! 4 ! 5 % 7 0 ?4 5 4 5
@
0 ?! @ !
: 4 !! / %! & ! ! & ? Æ @ ! ! ! ? @ Æ ?@ Æ ! % 7 7 !8
!
FACTS
: &"# A #0# 6 <' ,+= L 7 3 ! > ?@ > ?@ & 7 / ! !! ?@ > ! !/ &! !:
?!@ ?@K
?!!@ 8 ?!!!@
:
> > K
! ? @ !
&! ?@ ! ' !1 2!! . ! 7
% /
1, *
: <%0 = ! & 3 3 & 3 8 ! / % 7 !& & !! &&!/ &! ! ?!@ ?!!!@ ' !1 2!! . ! / % /
: (,%: 6 . . & 2". &"# <M0,= L!
/
%! ?@ > < = L 7 Æ C 3 ! 3 & %!/ L! !F! !' Q 9 / ?@ %:
© 2004 by CRC Press LLC
804
Chapter 8
ANALYTIC GRAPH THEORY
?!@ ??@@ > 7 ?& " @ 0 ?@8 & / %
?!!@ ?@@ > 7 ?& " @ 0 ?@8 & ? Æ @ ! ! %
?@ C? @ C
Applications of the Uniformity and Blow-up lemmas
2!! . N% . % ! / E % ! !&! 8 ! &8 &! ! &! ! !/ % FACTS
):
. & 2". &"#
<M0 = L 7 3 ! > ? @8 & !
> ?@ Æ ?@
G
/ &! % -!! & &
)+: 9 B <4U0+= L 7 3 2 ! > ? 2@8 & ! ! / 2 %! *? @ >
> ?2@ Æ ?@
G 2
/ &! &
):
. & 2". &"# <M3= . / 2 *? @ > ! > ? @ > ? @ & ! > ?2@ Æ ?@
2 G
&! &
):
. & 2". &"#
<M3= L 7 38 ! & 8 7 / > ?@ %! Æ ?@ ? G @ &! 7 & C ? @ /
8.1.10 Asymptotic Enumeration 4 !!/!/ 6 ! ! % / %! /!7 ! L & ! ! !$ A ! B A !& / !!& B !& % 7 ! DEFINITIONS
:
4 ! / ! & !!
© 2004 by CRC Press LLC
Section 8.1
805
Extremal Graph Theory
: 4 / / ! & /
! / !! / 7
: 4 / / ! & !& /
! / !! / 7
:
L / / 8 / > : / ?@ > / ! 7
?/ @ > ?/ / @
: . 3 ! / 4 / ! & ? @ ! ! 7 !& & & ! &8 7 !& & %! & & &!6 & 8 ! %!
: ?/ @ ! / ! / ! / & 8 ! / &! 7 ? @ & / NOTATION
!7 ! / 8 ? / @ ! / ! / > ?@ %!& ! / > ?@ %! ? @ > ? @ 0 ? @ 0 ?@ > 8 7 / %! / /
FACTS
) . # . $-#
: <M(,= / ! /!7 !&
/ >
G +?@
): . . $2 <L( += . / %! *? @ > 2 / ! /!7 !&
/ 2 >
)
G
G +?@
##. ?2. $-#
: <M ( ,= L 7 / ?@ 2 &!& / ?@ !
2
>
):
4 / ! ! ! ! 6 & / & / ! & &! / 7!/ / !!&
):
4 / ! ! ! ! ! 6 & / & / ! & &! / 7!/ !& / !!& &!/ ?/ @ ! & ! & 3 ! ? @ &
© 2004 by CRC Press LLC
806
Chapter 8
) : ?2 &8
?@
%
> 3 8
< 0= !
.
%! !&
>
> ? G
ANALYTIC GRAPH THEORY
&
! /!7
¾ +?@@
)): ?2 &8 < 0=8 < 0= L!
8 B
/
! A !& / !!&
? / @
!
>
/
?/ @
++: 9 <4 0=8 (*
!
>
?/ @ ?/ @
!!
?/ @ >
!
?/ @
!
+: &-# # <!0"= L 7 !
/8
%!/ ! : ?!@
/
Æ&! /
! ! !& 3 K
?!!@ / > V?@ ! / ?!!!@ ?!7@
38
38 /
/
K
K
+: (*
?/ @
>
? / @
!
!
>
/8
?/ @
+: ( 8. (* . <# #-
!
/
%!/ ! :
?!@ ! & &! ! /
/ >
6 ?@& K
?!!@ ! / ?!!!@
8 / > ¾
/
?!7@ ! /
8
K
/ >
6 ?@
&
Æ&!
K
¾
8.1.11 Graph Minors / ! % !!! !7 &F & -%!/ 7
&!& /
! -% 7 8 !
7! %8 ! ! % &!!/ !
© 2004 by CRC Press LLC
Section 8.1
807
Extremal Graph Theory
DEFINITIONS
):
. / E ! 8 % %!
! !F! 7 ? @8 ? @8 & 7 ? @ !& & & / ! 8 7 ? @ 0 ?@8 ! / % 7 ? @ 7 ?@
+:
. 8? @ !! 8 & ?@ 8?@ !!
FACTS
+: <5+,=8 <5+ = 8? @
/
-
+: (* . 3 # .
+:
.
<M =8 <M "=8
< "=
8? @ > '?
+:
/
/ @
<3= ! !&! & > 30 & 8? @ > ? G +?@@
+ :
, ? @ > !
/
<5 3= !7 / 8
¾
9? @
%!
¾
>
% 9? @ /!7 !/ 7 !& 8? @ > ?, ? @ G +?@@
8.1.12
/
Ramsey-Turán Problems
( ! & %! %! !&! ! & L & !7 7 ! !& <!3=K % % !/!/ NOTATIONS
.
9 / . ? ?@@ ! !' / ?@ %! ?@ ?@ % / & & ! & ! ! & & E %! ? ?@@ ! ? ?@@ % !
. ?@ ! ! & & & / & / ! &8 ! &!& !/ & ! & ! ? @ & © 2004 by CRC Press LLC
808
Chapter 8
ANALYTIC GRAPH THEORY
FACTS
+): 8 : <+= L 7 ! 3 & ! ! Æ&!
/ ! / > ?@ %! /! )?@ ! &
?@
+: & <,3=
G +? @ % & %!/ /: $ / ?@ & ! & & 8 % ! !' & ? +?@@ >
: (* ?@ %! ?0 @ ? @ " 7
?0 @ 8 ? +?@@ G +? @
: &"# <' ,= ? +?@@
G +? @
: . 4 5 . & . &"# <- = ? +?@@ >
+
* G +?@ "
7 % &! %!/ /: % > "? @ $ 0 G ? %@8 & ? %@ & 8 % ! !'
: & <,3= ? +?@@ >
G +? @ "
: . 4 5 . &. &"# <- = ? +?@@ >
?@ G +? @ ?@
: . 4 5 . #. &. &"# <-0= ? +?@@ > ? +?@@ >
*
G +? @ G +? @
6 ! / ? . . +?@@ >
© 2004 by CRC Press LLC
G +? @ "
Section 8.1
809
Extremal Graph Theory
References <4,"= N 4 !8 P 8 O & &! % &!& 8 ! &!6 !! / /8 ?0,"@8 3*W <4LL = Q 48 L!8 L! 4 8 & &! ! -!! /8 ) ?00@8 W <4 0= P 4 $ 78 (/ 7 ! & / ?( !@8 ?00@8 " W*, <4U0+= 4 ( U 8 ?00+@8 +0W
& ! /8
T <4+= N 4!8 2 ! ! ? @8 ?0+@8 ""W"**
© 2004 by CRC Press LLC
810
Chapter 8
ANALYTIC GRAPH THEORY
8 4& !& 8 0,
! 5 !&8 .
/ + ?00,@8
© 2004 by CRC Press LLC
Section 8.1
Extremal Graph Theory
811
?0+@8 ",W"
¾8 !
<%,,= %8 / 7 / !/ ! /8 8 ) ?0,,@8 3W3 <%, = %8 / %! / 7 / 8 ! 1 2 8 -8 4 % U$8 0, 8 0W3+ <5= %8 4 % / !/ %! & / 8 5&! <L( += 8 L$ P (T 8 !& / & !!/ 9 / / 7!/ 8 ?0 +@8 W <L(0"= 8 ( L ( 8 / !' / 8 ?00"@8 0W* <L0*= 8 ( L T!8 O $ !' / %! / !! / 8 + ?00*@8 *W"+
© 2004 by CRC Press LLC
812
Chapter 8
ANALYTIC GRAPH THEORY
</5! 0= U /% 5! 8 / & & ! / %! !! / 8 ?0 0@8 *+W+ <M(,= 8 Q S M ! N . (&!8 4 !& !
/8 1 0 3 %4 ()*5, 008 0W, ' 6 (* 63 8 ( 8 0,+ <- = 8 4 -F8 P ' !8 5 ( 8 ?0 @8 +0W <-0= 8 4 -F8 5 !7!8 P ' !8 (
! !& & 8 ?00@8 W*+ <+= 8 !! 8 ?0+@8 "+W* <+= 8 O & / &! ! & ! /8 " 0 =778 4 ?0+@8 "*0 "+" <+= 8 O ( & 8 0 ?0+@8 W, <+= 8 O & ! /8 0 ?0+@8 *+W+3 <++= 8 & ! / ? @ ,W3 ! $ %0 4 ()77,8 N &8 % U$K Q8 ! <+ = 8 O % ! 6!! && !/ ! /8 ,,W ! $ %" 1 ()77,8 4& !& 8 0+ <+0= 8 O & / &!&! &! ! /8 8 "8 ) ?0+0@8 03W0+ <,3= 8 O / ?-/!@8 ?0,3@8 "0W* <*0= !8 O ! &!&! /8 + ?0*0@8 ,W*+ <(++= 8 4 ( ! P 8 O / 8 ?0++@8 *W* <!++= 5 !7!8 4 !! ! / 8 ?0++@8 *W*,
<!,= 5 !7!8 O 7 & ! / 8 ?0,@8 W" <,3= P 8 $ ( 1 1 8 0*W"3" ! 00 %" 1 ! $- ()7), -8 4 8 0,3
© 2004 by CRC Press LLC
Section 8.1
813
Extremal Graph Theory
< = P 8 O / !'! 1 / 8 W * ! " 8 N!$T 8 0 <"+= 4 - 8 O & ! /8 ?0"+@8 3 ,W30
< P *= 4 8 - T 8 ' ! N P!/8 O &! & & & / ! /8 ?0 *@8 "W* <%0 = E % 8 .% % ' !1 !! 8 # ?00,@8 W, <-/ = ( -T//$7!8 O & & &!9 / ! !! /8 0W00 ! % ()9(,8 - 5 8 8 -8 0 <-S!0 = ( -T//$7! S!8 %! /! 7 !/ !! / 8 ?00 @8 *W+ <-',3= 4 -F ' !8 &F & T 8 +3W+ !
0 00 %" 1 $- ()7), -8 0,3
© 2004 by CRC Press LLC
814
Chapter 8
ANALYTIC GRAPH THEORY
<S!0*= S!8 !/ &!& /8 ?00*@8 *W ,3 <3= U !/!8 &F & N M $% T 8 ?33@8 W*" <M,,= MX'!!778 6!! / ?(!@8 4 + ?0,,@8 ,0W,0+ <M00= S M 8 % 8 " ?000@8 +W,+ <M33= S M 8 !!/ 8 + ?333@8 3W <M = 4 M&$8 !! -%!/ / %! /!7 / 7 !& ?(!@8 3 ?0 @8 ,W* <M "= 4 M&$8 4 % -%!/ / ! 7 / / 8 ?0 "@8 3,W+ <M!0+= S M 5 !7!8 ' !1 /! ! !& ! ! / 8 " : 8 P ?M ' 8 00@8 0*W*8 N ! & 5 8 8 S N ! 5 &8 N 8 00+
<M ( ,= M!!8 - T 8 N (&!8 ·½ /: !& & 3 %8 + ?0 ,@8 +,W+, <M0,= S M 8 $T' 8 ' !8 N% 8 ?00,@8 30W <M0 = S M8 $T ' 8 ' !8 &F & / /8 ?00 @8 "W+3 <M3= S M 8 $T' 8 ' !8 4 U &F & 8 ?33@8 **W+0 <M3= S M8 $T' ' !8 !/ ! /8 " + ?33@8 0,W"+ <.! = . .7' 5 !7!8 O & / / 8 "*0W"0*8 N!$T 8 0 <5+,= E 5 8 -! !/ & ! M !& 7 ? @8 ?0+,@8 +*W+ <5+ = E 5 8 -! T ' T ? @8 ?0+ @8 *"W+ <53,= E 5 8 8 - 7 $8 E 5 8 S ! ! 5 8 L & E 4 E H8 ; /' + ?03,@8 +3W+ <55+= S 5 . 5 8 O 8 <2 0 <- 3 , ?0+@8 W +
© 2004 by CRC Press LLC
Section 8.1
815
Extremal Graph Theory
<5+*= 5'$! 8 5 ! / % 8 ?0+*@8 *W*"3 <5 &**= S 5 &! $!8 &!/ / ?L &@8 1 8 ?0**@8 +W+ <5 3= S 5 4 8 &! & !8 ! <+= N %8 !/ ! ! /8 ?0+@8 W"
. 8
<! += ( !8 O &!! & &! -!! / ?! @8 ?00@8 ,0W03 <!0= ( !8 !/ -!! &!!8 ?00@8 +,W,
<!+ = 5 !7!8 4 7!/ ! / 8 !! 8 ,0W0 ! $ %" 1 ()77, 4& !& 8 0+ <!,"= 5 !7!8 / %! !& / 4!! &!& &!!8 ?0,"@8 "0W,+ <! = 5 !7!8 / 8 +W33 ! ? . E N ! $ ( S E!@8 7 8 4& !& 8 0
<' ,= ' !8 O / &!!/ & / %! " 7 !& ?- /!@8 ?0,@8 W+ < "= 4 8 4 &! &&! /8 " " ) ?0 "@8 +W+*
© 2004 by CRC Press LLC
816
Chapter 8
ANALYTIC GRAPH THEORY
<3= 4 8 &! & !8 ?33@8 W <"= 8 O ! / ?-/!@8 2 #3 ?0"@8 "+W"*
= 0 ?0,,@8 *,W,3 <E..33= 5 E/8 .! 4 .!8 4 T &F & 8
?333@8 W, <# $"0= 4 4 # $78 O ! ! & ?(!@8 6 CD ?0"0@8 +W
© 2004 by CRC Press LLC
Section 8.2
8.2
817
Random Graphs
RANDOM GRAPHS
( 5 L&! / Q / 6 & " !! * 5 5 ! ( + ( ( / , O ( 5 ( & ( &
Introduction 9 / & ! ! % %! ( ! ! 0*0W+ ! ! & ! ! !!!& 8 % & / % 7 ! & / %! ! ! 8 / !7 8 ! !/ / 7 % !&7 L !& 8 / / & ! ?! &! @ 7 ! &! ! 9 / 6 8 ! %! &! / & /8 %! 7 / / %! & 4 / & ! 7!! !!/ & &!&! %$ 7 / 7 7 F & ?
8.2.1 Random Graph Models
L 8 !!7 ! / 6 8 3 6 8 > 6 4 7 ! / 7 > <= > / ! & / ! : > ¾ !! &! ? 8 &!7 8 7!& !
=
DEFINITIONS
- % &! % & /
: L 3 6 8 ? # @ 8 ? 6@8 ! !! & % !/ ! 7 / !!
&! ! ! &! !/ / && ! %! !! 6 & 6!7 8 !! /!7 / %! / ! 9 6
© 2004 by CRC Press LLC
818
:
Chapter 8 L 3
?
:
8
ANALYTIC GRAPH THEORY
@ 8
?
@8 ! ! !! & / %! &
/
7 !&
7 / / ! : ½ ! / %! !! !! ! ? 6@8 % %! ? 6@K !7 % %! ? 6@ &
:
4
8 !!
$
! / ! %!& 7 ! !&! !7
;
/ !! & 8 7 /
!/ / %!
:
4 /
;
9 7 ! % 8
! 7 !
;
; ! ! / ; % 7 ;
! !/ /
:
4 / ; ! $ ! ; % 7 ½ ¾ ½8 ¾ 7!/ ; %! 7
:
%
:
& !& !/ !
! !& !/ & !/
EXAMPLES
:
.
;
/ A! & B
?; ?
:
.
;
A7
7
?;
?
?
:
6
6 ?
@8 %
½
·½
! ! % 7! & &7 8
!! / :
@ >
@ >
/ B
! A
@8 % 7
@8 % 7
?;
?
! ! B L N ! /
?
L ( ! /
@ >
6
!
B ! /
8 A
! & B ! ! !& !/ & !/8 7 / & B ! &7
A
! &7 8 % A
REMARK
$
:
! & / && & !
6 ?
@ !! &&!
!!
Asymptotics 5 ! ! / ! ! !& 7!
6 > 6?@ > ?@ &!
© 2004 by CRC Press LLC
8 %!
Section 8.2
819
Random Graphs
DEFINITIONS
:
4 7
!
8
!
?
?@ ! ?!@ ! 9 6 & !! &
! ! 7
8 &
N ! /
( ! /
?
@ %!
? 6@ %! 6 > 6?@ > ?@
&!
()8 &! ?@8 )?@8 (?@ (?@ ! 8 % %! > '?)@ ( 3 8 % %! > +?)@ !7 8 ) ) > '?)@ ) > '? @8 % %! > V?)@ ?@ > ? G +?@@)?@8 % %! )
& +?)@ ! > +?) @8 &7 ! ! ' ?) @ V?) @
3
)
:
!!&! !
.
3
3 B
! 6!!
4½ 4¾ 7! < 3 & < !
E
&
?4 ?
9 ! / &!
+
:
38
4
L 7!
>
@ >
< Z
:
E
4 > 4
? 4 ? [
!! @8
%%
!
@ >
G
!
<
>
@
!
= 4
!
=
½
¾ ¾
% 8 !
%%
9 7
8
? 7 @8
&
?%! !/
? @ ! !
O 9!!
' ?)@8 > V ?)@ > +?) @8 &!7 >
4
+?)@
! 8 6!7
9!!8 &&!/ 7 !
>
= 4 8 $ !
%! 3
+?@ G
4
+?@
! ! !
4[ > ?4 4 @
%!&
! 6 & 7! !77!/
!8 7 8 % %! A
()
&!
>
+ ?)@
>
L !& 8 <SY .(33=
'?)@8
)
> V? @
FACTS
; / 3 6 > 6?@ 6: > ?@ ! !!7 ! / &!8 9 > ? @
> 6: G 6: ?!@ ; ! ! ? @ % 7 ! 8 ; ! ! ? 6@ :
?
&
© 2004 by CRC Press LLC
820
Chapter 8
ANALYTIC GRAPH THEORY
?!!@ &7 ?!@ ! ! ; ! &7
: ?L%!/
$:
L& % % &! ! ! L !& 8 ! ! L& ! ? @ %! ¾8 & 3 L ! 8 % !! 7 !/ ! F 8 % & !/ ! L&
$
: !& /8 !& ! /8 !! ! %! K ! ! % ! ! & &!6 8 &! %! ? @ L 8 !7 !& / %! 7 !& 8 / !/ 8 ! !/
!! ? @ !/ & & 6 !/ % ! ! L !! % /
8.2.2 Threshold Functions DEFINITIONS
: 4 ; ! ? 6@ ! &! ?@ & ? 6@8 %! 6 > 6?@8
?? ;@
3 ! 6 > +? @ ! > +?6@
!7 8 & ! ! %! 3 ! &/
:
4 &! ; !
?? ;@
! 7 9 > 38
3 ! 6 ? >@ 8 ! 6 ? G >@
? %! 3 ! &/ @ FACTS
:
:
+?/ @ &!
© 2004 by CRC Press LLC
? 6@
&
Section 8.2
:
821
Random Graphs
))
<4&L = L 9 8 !/ & &! ! ? 6@
: < = . ! ! ! 9 /8 !8 !/ 7! 7 !& 8 !/ 6! F& & !8 N & &!7 8 6!9 8 L !! 8 3 8 ! ? 6@ %! 6 > 8 ! ! !
: <( +3= L ? 6@ 9 8 ?/ @ ! &! !! 7 / !/
:
/ 7 ! L& ,
/!7
REMARKS
$:
6
L /!7 8 & !&
$:
/ L& " ! / !! & && !/ ?%! &!!8 ! & L& "@
$:
&! $% ! 8 ! %!& && !! ! $% ! &
$
: L& + ! ' % ! /K <SY.(33= <3= & ! !&
$ :
L& , / ! ?/ @ ! &! !/ / & & <( +=8 7!/ &!/ %!& ! ! & ?! ! 7 @ 7 ?! ! @ <( ++=8 7!/ -! & & <M' =
$)
: &! 9 ! ? @: ! &! ; ! ? ;@ 3 > +? @ ? ;@ > +?@ ? %! 3 ! &/ @ &! 9 ! 7! % L L& 8 ¾½ / ! &! ! ? @ ! ! ! L& , 8 !8 7 8
?
?
8.2.3 Small Subgraphs and the Degree Sequence DEFINITIONS
:
/ !
8?@ >
0 ? @ ? @ : ? @ 3
: 4 / ! ! ! ! ! ! &! 7 !6
>
© 2004 by CRC Press LLC
822
Chapter 8
ANALYTIC GRAPH THEORY
FACTS ABOUT SMALL SUBGRAPHS
! 9
\ @ / %! / 8 4 ?4 / ? 6@ ? ? @8 &!7 @ !!&
-
): 4 ! !&
! %!
+: ?
: <( = 0 ? @ !!! 4 ! !& ! ! 6 ? 6@
: <S0"= 0 ? @ 8 8 : ?: @ 8 4\
! !&
À
: <SY.(03= L 7 6 > 6?@ 8 ] > ! ?4! @ : 0 ? @ 3
??4 > 3@ À %
: ??? @ ! !! @ L > 38 / "
\ " > 3@ / ? @ ! ? >@ / ??4
??4\ " > 3@ / ? @ ! ? G >@
: <E0+= L 6 > +? @8 ??4" > 3@ L > : > +? @8
??4\" > 3@
: < 0= L ? @8 ??4 > 3@ ? ! & @ !H & !& G &! & &!!& / ?! 8 / % !! & &!& @ FACTS ABOUT THE DEGREE SEQUENCE
7 !& / ! / ! ? 8 ! & !/ !/ / 7 !&
: <( += . 9 8 9 8 > ?@ > # Ü 8 ?/ G / / G G +?@@ ? @8 ?? > G @ > G ? ! !! 7 / @
: ?@ 8 9 > 3 > 6 > 6?@ > ? ! ? 6@8 7! ? ! !&
! %! ? ? > 6 ? 6@ @
): ?@ ! ?!@ 6 3 8 ?!!@ 6 ! % 3 ?6@ 6 8 7! ? ! !&
! ! ? 6@8 ! 7!! !& % ? > ? ?@ ! 7! @ > @ ?@ 3 ? & @ ?@ > '?@@
© 2004 by CRC Press LLC
Section 8.2
+:
823
Random Graphs
7 9
8 ! ? 6@
!
? 6 #@ > 6 G
%
:
6? 6@ ?/ @ # ! 9
?? ? 6 #@@ > #
6
?
6 6
!6 7 !6 7
@
/
?
$ Z
$ % G
@ !6 7
!! / !H
6? 6@
! / !6 7
/
!H
! /
6 ?
@
!! /
! ?@ 6 & ! !! 6@ ?%!& ! !!! / /!7 7 ! ? 6@@ ! / 6 & " ?@ ? 6@8 " ?@ ? @ . ! 7 9 6 & 8 ! / 6? 6@ ! ! 6? 6@ / ?!@ > 6: ! % ! / 8 !!! 7 ! ! % " ?@8 ! ?@ !& 6 & %! 8 !H +?@ ?!!@ 6 !!! %! 6 7!& 6? 6@?: @8 & ! ! 7 ?3 @ !!! 7 ! ! % " ?@8 !¼ ?@ !& 6 & %! 7 8 !H +?@
:
<5&E0,8 += .
7! 8 & N!?
REMARKS
$+:
O /8 !! !& &!
%
! S ? <SY .(338 +=@ - ! & ?! & @ L &! 7 !F! &! 8 /! ! & ! & 8 %! !/!9& ! !/ ! <03=K !&! ! <SY .(33= &7 !/ 7 7 &
% /!7 & <03=8 /
!/ ! !/
7 !& L ? 6@ &! &!& & /!7 /
7 &!/ /
8 $:
<(T (0*= O !!! ! ! !!!
4
4\ 8
!
7 ! % ?
$:
L& , ? !! @ %! !!!/ !!
!& % 3 8 &7 !/ % /
L ! 8 !
!! !!!/ !!! 6 3 L 8 L& , ! % %!
> ?/ G / / G @8
?? G @ $:
6 ?
5 ! / 6 &
@
?
" ?
@
@8 &!7 8 % L&
!&!
6 !
?? G @ 3
6 &
% 7
© 2004 by CRC Press LLC
!
" ?
@ /
! &F & ! <5&E0,=
6? 6@ / 8 %!& &7
824
Chapter 8
ANALYTIC GRAPH THEORY
8.2.4 The Phase Transition ( ! !!! / ? @ 77!/ F &8 /%!/ 8 !& & / !/ & & / / 8 9 & / % > : !// ! ! ! ½¾ 8 % !& !/ +?@ & &/ !' / & '?/ @ & ! - % ! ? @ ? 6@ ! / !/ ! 5 L& E /! %! ! % ( !8 !! %!& '
:
<( +3= L! 38 9 > ?@ ! G & > ? L!/ @ . A 7 !& ! / & ?& @ ! ? @ % >
A>
'?/ @ ¾¿
! 8 V? @ ! > 8 ? G +?@@ !
Figure 8.2.1
8, 0 8# E
5 &! !! N / 7 ! ! % !! $ & !! % 7 % 7 %! ¾¿ % & > G '?¾¿@ &!!& 8 ! &!!& ! &!!& ( &!7 8 !/!9&& A FB ! ! !!&8 ! ! ! % 6!!/ 9 & ! DEFINITIONS
: :
4 & & / ! % & & @
:
%! 7 !& / !
! ! & ! ?
! / / %! ! 7 /
FACTS
L 8 &!9& $%
© 2004 by CRC Press LLC
Section 8.2
825
Random Graphs
Throughout the phase transition
: <S0= L ?@ ¾8 / ? @ & & %! % 7 !&
:
: <( +3= 3 > ! 9 8 !' / & ! ? @ ! ? G +?@@ / % > ?@ > ? / @
Figure 8.2.2 #" 0 8 -: E Subcritical phase:
: <( +3= 3 ! 9 8 !! ? @ ¾ ! ! !& 8 & 7 !& /!/ & & % ? @ ? @8 / & ? G +?@@?@ /? @
: ? <SY.(33=@ .
9
): <SY.(33= L 8 !! ? @ &! & & ! ? @ ? ! 3 ! &!!& @
+: 8 3 8 > ?@ 8 ? 6@ 7 !& ! !& &!& & 6 8 / / & & !
: <SY.(33 &! *"= . B / & & !
?
L > ?@ @ !9 B B
8 /
Critical phase: > G '?@
: <SY.(33 &! **= . > G '?@ & ? @ %! & L > ?@ 8 8 7 !& ! & & ? @ !
@ 9 !!
! ? @ & & & & & / & ! ! ½ ¾ Z " Z ? @Z G '? @ Z Z
: <SMY. !0 *= . > G '?
© 2004 by CRC Press LLC
826
Chapter 8
"
ANALYTIC GRAPH THEORY
"
G G G ? ! & @ & !!
@ # 30* & & ! & G '?
%
>
: G % ! & ?3 0@
/!7 !' & & & ? @8 ! 3 ! ! & !/ %! &8 6 & ? 3 0 @ ? 3 0@ &7 / ! !!! 6 & ?4 4 @ ?4 4@
: ? <SY.(33 &! **=@ > G '?@ > ?@ / B / & & ! ? @ !9 B B Supercritical phase:
! G & > ! ? @8 ! & & %! G '?@ 7 !& 8 %! 7 & ! & 7 !&
:
/ & & ! % ?+ G +?@@ ?,"0+ G +?@@
:
? G @ /
: ?@ 8 / B / & & ! ? G @ ! / & !9 B B8 / & & ! / &
): > N L& + % / & ! !6 . 5 7 !& ! & / & ? @8 5 7 !& ! / & ! & 8 5 & / & L > '?@ %! 8 5 ? @ 8 5 5 ? G @ L 8 & 7! ! !& !! 8 5 G 5 ? @ 7 !& 5 G 5 G 5 ? ? G @@ / ! / & REMARKS
$: .
? @
/ ! !/ / &
?8 ! ! / & 8 @ L L& 08 ! % > '?@ 8 !& %!& ! ? @ % ? *" ! <SY.(33= &! @ - > 8 ?3 @
$: O ! !/ & !! & 7! %!/ / & ? &! @
8.2.5 Many More Properties of Random Graphs
& &!7! / ! ?@8 / & &!7! @8 !! 7 / Æ ?@8 ! & ?@8 &!& *?@
© 2004 by CRC Press LLC
Section 8.2
827
Random Graphs
FACTS ON CONNECTIVITY, DIAMETER, MATCHINGS, CYCLES AND PATHS
& !! !/ & & 8 ! &!&! %! 7!/ !! /
+: <( += L 9
3 > ?@ > ?/ G / / G G +?@@8
??? ? @@ > @
# Ü
? ? @@ > G
: @ > Æ ?@
6 9 8 3 6 8 > L ? 6@ > > ? & @8 % ! 3 7 !& !! / ! 3 > 8 ! !6 ! 8 & 48 ? @ > Æ ? @ &8 Æ ? @ Æ ?@ G 3 &
:
: ?@ ! / 8 % 9 6 6
> /?@ 6 ?/ @ 8 ? 6@8 ! ! ! G 8 !! ! ! % ! ! : ! 6 / ? 6@ ? 6@ ! K ! : / ? @ !
L& "" "* !& ! %!& 7! & &!!8 !! / 8 ? L& ,@ 9 ! &!& &! & & ? 6@ %! !& 7 ! /
: <( ++= L 6 > 6?@ > ?/ G G +?@@8 !! & &!/ #
Ü
: 6?@ > ?/ G G +?@@8 !! ? 6@ & ?! 8 !/ / & Ü % & ! !!& @ # %! !& ! / !7!!
L& "+ && %!& 7! & &!!8 !! / 8 ? ( $ 0 L& ,@
: <M' = L
6 > 6?@ > ?/ G / / G G +?@@8 !! # Ü
? 6@ -! & &
: <4FM' = . ?@ - & ? 6 > @ &! / - ?@ 3 8 ! ?@ > FACTS ON INDEPENDENT SETS AND CHROMATIC NUMBER
6 > 6?@ ? 6@ !9
Æ Æ 3 L 9 > 3 ! & ?@ ?@ %
:
> ? 6@
> /& /& /& 6 G /& ? @ G G ?@ >6
?/ 6 / / 6 G /? @ G ?@ >@ L & .' 8 ! & ?@ ? 6@ !9 ! 6! ?@ 7! .' 6 > 6?@ /
):
> 3 > 6
© 2004 by CRC Press LLC
828
Chapter 8
ANALYTIC GRAPH THEORY
+: 6?@ 8 ? 6@ *?@ / ? / 6@
: <40=8 <M33= . > 3 6?@ ' 8 ? 6@8 % 7 *?@ * ?@8 % * ?@ ! &!& ? ! &!& @
: < !E0+= L 9 8 ! & & ! ? 6@ &! 6 > % > ! ( 8 ?8 @8 ?8 @ > 8 &Z ? & / ! ! / !! / @
: <50+= . 7 > : *?? @ > " ?L L& *8 % 7 8 !& / %! & & ? @ & @ FACTS ON PLANARITY, GENUS AND CROSSING NUMBER
: <( +3= L ! ! ? @8 > ! &! 5 &! G ?% ! &@
: <40*= 6? 6@ ?/ @ 8 / ? 6@ ! ?G +?@@ 6
: <(T0+= L 7 ! / & 8 ! ? 6@ ! ? G +?@@?&"?& G @@6
6 8 /
: <3= & 7 &!/ ? 6@ ?! 8 !! &!/ ! ! %!/ ! 8 / &!/ !@ ! +?6 @ ! 6 V?6 @ ! 6 > 9 FACTS ON EIGENVALUES, AUTOMORPHISMS AND UNLABELLED GRAPHS
: ! ? 6@8
< 6 < > 6 G '? / @
): <E,3= & ! ? @ !H !? : @ ?/ @ & % ! ! % /
! : 7 ! /
+:
/ 8 3 8 > ?@ ! & ! : ?/ @ . ? @ & / 7 !& / ! ?? ;@ !H ?? ;@
8.2.6 Random Regular Graphs ! & ! !/ / ! ? 6@ ? @ O & ! !&! ? @8 / %! &!9 / 6 & ( / / &! & !
© 2004 by CRC Press LLC
Section 8.2
829
Random Graphs
L 3 7 8 ! !! & &!!/ F / / 7 !& 8 !/ 6! FACTS
& & ! ! N 9
: L 9 9 / %! / 7 !& 8 / / &! / !!&
:
: <MPE3=8 <L( 3= L > ?@ "8 / / ! & &
: 3 ! ??@ ! 6!!
G / ½ G / ½
/ +
??@
!9
G / ½ ?? G >@ / @
: <5&E "= > ?@ > +? @8 & ! ?& L& *0@
: <M!P3= !
> ?@ "8 !7!
: <MPE3=8 <L( (!3= > ?@ 308 8 ?@ / /?? @@ *?@ ?@
: <(E0"= L 9 8 / / -! & & 8 8 / &!& 6 8 <M!E3= 9 8 !! ! / ! / ¾ -! & & ? 7 @8 ¾ ½ -! & & & &!/ ? @
): <MPE3=8 <L( 3= L > ?@ 8 / / ! !!
+: <5& = L 9 4 8 ! !/ 7 F& & ! %!& !
"? @ ¾ G +?@ =?¾ ¾@
:
F& & ! ! G / G +?@
:
?! 7 @ F& & ! ! '? @ 7! > +? @ REMARKS
$: ! !/ !! % / 8 ! &!/! ? <E00= <SY.(33=@
© 2004 by CRC Press LLC
830
Chapter 8
ANALYTIC GRAPH THEORY
$:
7! !' / ! 8 !!/ 8 &! ! 7 % ! ? ! <E00=@
$
: / %! /!7 / 6 & 8
! / / L !& 8 / %! /!7 / 6 & 8 %!& ! % )8 7 & &!7! 6 !! /
8.2.7 Other Random Graph Models 5 / 8 & !!!& 8 7 & !7 & ! !/ & & 8 % /!7 7 ! ! 8 ! & !/!9& F & !!:
8.2.8 Random Graph Processes 4 / & ! ! / ! ! / & ! & / 8 %!/ ! !& ! & ! !/ ! ! ! %!& ! DEFINITIONS
):
\ @ /! %! / ? % / ! 8 & & !
\ @ ! 5$7 &! ! ?% ! / @ ?L 8 ? ! & 6!7 / ? @8 ! ! & 6 & ? @ @
+:
/ ; ! ! : ? @ )
FACTS
\ @ / !9! 4 4 8 !& /!/ ? 7 7 %!& % 9 / /!7!/ / & ! ! 9 / %!& ?! @
:
:
© 2004 by CRC Press LLC
Section 8.2
831
Random Graphs
!/ / !F! -! & & 8 ! ! 8 &!/ !'
!F! & & 8 ! 6 !!/ ! 7!/ !! /
: ?@8 !!/ ! !/ & & ! 6 !!/ ! 7!/ !! /
: . / 9 & & ! \?@ <S ,= ¾ 9 " 8 ?? > " @ 6 > K ½ 6 8
#
: <SMY. !0= !! \?@ ! &! & & ! ? G +?@@ % REMARK
$): 4 % / & ! !& & %!& % !7 % %! %
References <4&L00= Q 4&! L! /8 4 &!! 8 4 " ?000@8 +W,3 <4FM' = 5 4F!8 S M 8 ' !8 / ! /8 ?0 @8 W <4 !33= Q S 4 N ! 8 O / %! !!/!/ 7 !& : / & /! & 8 4 , ?333@8 ,0W3 <40= 48 ( !& &!/ /8 W ! ' ())5 M E$ ?@8 !/ 2!7 ! 8 00 <4M!0,= 48 S - M!8 S & 8 & &!/ ! / ! /8 0 33 ?00,@8 ,W , <40*= Q 4& & Q4 8 / /8 " ?00*@8 W,
Q N &8 !/ &! / !/ 8 "+ ?33@8 0W**
© 2004 by CRC Press LLC
832
Chapter 8
ANALYTIC GRAPH THEORY
.
8 O 8 00
8 ! 5 !&8 !/ P /8 0,0
?0
@8
© 2004 by CRC Press LLC
Section 8.2
Random Graphs
833
<L0"= 4 L! ' 8 -! & & ! & ! & /8 + ?00"@8 *W+ <L( 3= 8 4 L! ' 8 N ( 8 ( / / & / : & &!7! -! & & 8 " ! ?33@8 "0W+ <L( (!3= 8 4 L! ' 8 N ( 8 O (!8 ( / / & / : ! & &!& 8 " ! 8 W" <( +3= 4 ( !8 O 7! /8 " 0 * ?0+3@8 ,W+ <( += 4 ( !8 O / & & /8 ?0+@8 +W+, <( ++= 4 ( !8 O ! & & / & & /8 , ?0++@8 *0W+
+ ?0 ,@8 W3 <S0= S8 / # $ 4! 8 5 ! 4 5 & *"8 4 5 &8 7! & 8 ( ?00"@
© 2004 by CRC Press LLC
834
Chapter 8
ANALYTIC GRAPH THEORY
<S0"= S8 5!& &!& & ! / & 8 4 ! " ?00@8 ,W " <SMY. !0= S8 Q M8 . Y &'$ N ! 8 ! /! & 8 4 " ?00@ W* <SY.(03= S8 . Y &'$8 4 (&! $!8 4 ! !! ! & &!9 / ! /8 ,W , ! 4 ?95 5 M$!8 S S%$! 4 (&!$! ?@8 E! 8 003 <SY.(33= S8 . Y &'$8 4 (&! $!8 4
8 E! 8 333
<S(3= S 4 (&! $!8 ! ! 4 3 ?33@8 ,W" <M03= ( 5 M8 !!7 & !/8 4 ?003@8 ,W0 <M!P3= S - M!8 N $78 P P8 O / / /8 4 ?33@8 +W" <M!E3= S - M! E8 ( &!/ %!& !& -! & & 8 !! &!! / /8 ?33@8 3W"" <M += P L M&!8 4 ! ! ! 5 !& /! !/ O!!'! % 8 &8 !&! Q!7!!8 % U$ ?0 +@ <M00= P L M&!8 4 & & ! 5 !& ! 4!& !8 * !/ 2!7 ! 8 000 <M' = S M ' !8 .!! !!! ! & -! &!&! ! /8 " ?0 @8 **W+ <M!33= 5 M!7 7!&8 &!& /8 " 0 ?333@8 0W+ <MPE3= 5 M!7 7!&8 N $78 P - P8 E8 ( / / !/ / 8 4 ?33@8 "+W + <MP3= 5 M!7 7!& P P8 !! ! /8 ! ?33@8 "W*,
© 2004 by CRC Press LLC
Section 8.2
Random Graphs
835
0
E! 8 0 * < !E0+= N ! 8 S & 8 E8 / & /! & ! /8 +, ?00+@8 W* < 0= - S T 4 / 8 !& / &!!/ 9 & &!!& /8 ?00@8 "+W", < 0+= - S T 4 / 8 O !& & !/ /8 ?00+@8 ,W* < 0+= - S T 4 / 8 !/ /8 ' % *" ?00+@8 W* <(!33= O (!8 !/ / /8 " 0 ?333@8 *W" <(E0"= ( E (! E8 4 / / ! !8 4 * ?00"@8 +W," <(T(0*= P (T 4 (&! $!8 &! ( ! 8 ! ?00*@8 *W,3 <(T0*= P (T ( 8 O / /8 4 + ?00*@8 W
© 2004 by CRC Press LLC
836
Chapter 8
ANALYTIC GRAPH THEORY
<( = 4 (&! $!8 E / / !! I " 4 # , ?0 @8 W3 <(E0= 4 (&! $! E8 ( / & %! / !& !8 " ?00@8 +0W 3 < = S & 8 # % /8 ?0 @8 0,W* <03= S & 8 &! ! 8 * ?003@8 +W3* <3= S & 8 $ 4 !&8 !/ P /8 N !8 33
4/! !
< 3= S & 8 !/ /8 4 ! ?33@8 ",W* <03= E 8 4 & ! ! 6! ! !! 7 !/ & / /8 4 ?003@8 W"
8 000 <E,3= 5 E!/8 %! /!7 / 8 + ?0,3@8 W0
^ ( & ! /
© 2004 by CRC Press LLC
Section 8.3
8.3
837
Ramsey Graph Theory
RAMSEY GRAPH THEORY
!
( 1 L ( !& ( " !' ( * !' ( + ( 5!! , !'! P!! ( &
Introduction / ! % ! % $% & / ! ! // / ! ! & / & / ! & ! ( N 8 ! ! ( !/ ? @ N !/ ? @ 5 7 8 ! &&! !
8 ! ! !! & ! ! &! & & / 7! L ( <(3= - 7 !!7 ! / 8 ! ! / & ! & / ! & ! ( N 8 %! ! ( N & ! / !
? @8 ! & ? @ ( ( / ! & & !/ / 5 / 8 & ! !& F %8 &!& / ! R F & /8 / !/ / & ! !& !/ &
8.3.1 Ramsey’s Theorem ( 1 !/! ! / !!&! !& &!!& / L &! ! ( 1 8 <(03=8 < , =8 < 0+=8 7
!&
8 ! !!7 ! / ? @ & 8 !! $ $ $ / & / %! 6 ? @8 ! & & / % / ! $
: ?$ <(3=@ !7 !!7 ! /
© 2004 by CRC Press LLC
838
Chapter 8
ANALYTIC GRAPH THEORY
DEFINITIONS
: ?½ ¾ @ ! & ?½ ¾ @
: !! / & / ! ! &! &!/ / %! &8 &!9& Ramsey Numbers for Arbitrary Graphs
( 1 !! ! & A&!&B & / ! ! & ! / &!/ Æ&! / & / !&
/ 7 !& ! !!& / 8 ! ! & 6 & ( 1 ! ! & ( ! / DEFINITIONS
: ( ) ?½ ¾ @ & &! / ½ ¾ ! !!7 ! / & / &!/ 8 ! & &!& & ! & &
: !7 / ½ ¾ 8 / ! ! ?½ ¾ @ ! / &!/ ! & &!& & ! &* & ! ! ?½ ¾ @ 8 ( ?½ ¾ @ ! / & ?½ ¾ @
: [?½ ¾ @ ! !' ?! 8 / @ / & ?½ ¾ @
: 4 / ! ?½ ¾ @ ! ?½ ¾ @8 / % REMARKS
$: $:
& &8 > 8 ?½ ¾ @ > ? ½ ¾ @
!& / ( %! & % & 6! &!& / ! & 8 %! / !' / ( !77 / !'! ! /
$:
! $!/ 6 ! & A!H B / A%B ( !! / &! ! +
8.3.2 Fundamental Results 7 F! ( / && &!/8 7 & ! ! & 6 & 9!! FACTS
: L ! / ½ ¾8 ?½ ¾@ > ?¾ ½@ 5 / 8 / ! ! /
© 2004 by CRC Press LLC
Section 8.3
839
Ramsey Graph Theory
: L / &!7 8 ? @ ? @
: L 8 ? @ > ? @ >
: &" <'*= L 8 ? @ ? @ G ? @ %! !& ! 6! ! ? @ ? @ 7 4 & 6 & ! ! G ? G G @
REMARKS
$: ' $ /!7 9! (
! 9! / & !/ 9! & & &! 9! /
$: 7 ( ? @ > 68 % $ 4 ! /!7 % / &!/ 8 ( N &!/8 ! ! ( N 8 ( N &!/ ! !! ! ( N $: & / &!/8 %! ( N 8 ! ! ! &7 ! F / 8 %!& / !& ( / 8 & N / EXAMPLE
: % ? @ > +8 7 ! L!/ ! ( N &!/ %! ! ! &8 7 ' $ ? @ ? @ G ? @ > G > +
Figure 8.3.1
? @ *E
8.3.3 Classical Ramsey Numbers Q !!/ &!& ( ! 6! !Æ&8 !7! &!& ( $% &! ! 7 !! O !7! !& ? &@ &!& ( ! $%
! !7! % & ( ? @ $%8 %!& ! / 7! & !Æ& ! !!/ (
© 2004 by CRC Press LLC
840
Chapter 8
ANALYTIC GRAPH THEORY
* EE - #- $ * ? %@E
% %
"
*
+
+
"
"
0
*
+
"
,
0
3
"
*
"
*
*0
+0
,
"3
"+
*
*0
++
,
+
"
+
"
*
"0
0
0 "0
",
*
"0
*+
+0
3
0+
"
*
, " +
+
""
3
0*
"
+* 0
"0*
, 3
,
3 ,
*
,,
* "0
3 ,*
*
" *
* 0
"
* + ,
,"
+
0
*"3 3 , + ,
3* + ,3 * +303
,
0
+ +*
+,,
0 *+*
* 3 **+
3 ,0
Ramsey Numbers for Small Graphs
&! $% &!& ( ? %@ / %! % 7 / / / 3 / ! !/8 / % / % & ( 7 & 8 ! 8
© 2004 by CRC Press LLC
Section 8.3
841
Ramsey Graph Theory
% ! L !& 8 ? @ > 8 ?" @ ! % *+ " & & & 7 ! ! / %! & % 8 % & ! !!& / % !& ( L !& 8 M+" ! ? +@ > 4 !!/ ( & & & ! &!& ('!%$! <(3= FACT
: 1 , 1 <**= ? @ > , REMARK
$: ! %$ !!/ &!& ( % %
<**=8 M <M +"=8 7 U&$ <U+ = .% % ! %! !&! !!& &!/ !/ / !& &!6 8 % ! !/ / &!6 5 & 8 5&M 8 ('!%$!8 / !&!8 7 &! & !6 8 % /!8 &!/ % ! / (
% -% 7 8 / % % ! 7 7
Asymptotic Results
! !& 7! ( ? @
! !& 7 !7 ! ' $ ?L& L*@ % ? @8 ! !& ? @8 & ! %!& !& 7 ! ! > < = 7 ? @8 M! <M!0*= 7 !9 !& % FACTS
: < = L 8 ! & &
G ? G G @
! !& ? G G @
: L & !!7 8
? @
): ?< =8 <M!0*=@ & & /
? @ /
!!!& &!6 7 ! & &!/8 &!9& & !/ !!
© 2004 by CRC Press LLC
842
Chapter 8
ANALYTIC GRAPH THEORY
8.3.4 Generalized Ramsey Numbers &!7! &! ! / !' (
! / ( % !! 7
7 &! 8 % %! 7! % F % !/!/
Initial Generalized Ramsey Results FACTS
+:
? %
/ %!
:
/ /
< +,=L !!7 ! /
?/
/@
/
/
8
@ >
G
>
%
!
&!
/ 8
>>
!
! !!7 7
&
!!7 ! / %!
½ ¾ @ >
? %
& &!/ ! /
?
>
! !!
!/ 7
@ G
?
> %! L
@ > G >
> 8
7 3 %!
REMARK
$ :
/ /
/
8 8 ! ! & 8 / / !
& %
%
( L& &!/ !7 ! & /
/ /
Ramsey Numbers for Trees ?
@
& ! %!& ( $% -% 7 8 & $%8
?
@
G
!
FACT
:
>
@8
! 7
@ > G
?
CONJECTURES
3: 3 5-
@ G
?
© 2004 by CRC Press LLC
?
%!
8
>
Section 8.3
843
Ramsey Graph Theory
3: %& 3 5- 4 / %! 7 !& ? @ G / &! ? @ / REMARK
$):
&F & !! F &
Cycle Ramsey Numbers
( & & / 7 && !!& ( CONJECTURE
3: ( 3 5- " EXAMPLE
:
L 8 &! / &!/8 %! ( 8 N 8 8 ( / ! " 8 N / ! !!& &! / % 9 % % & / ! ( 8 !!/ / L ! ( . 8 !& & ( / 7 !& 8 ! N . !& / !! 7 & & 8 ?. . .@ " " FACTS
:
?<(,=8 <(,=8 ? @ ?" "@8 ?. .@ >
G G
% ! 8 % 7 8 % ! 7 !
L / &!/ & & ( 7 !! ! 8 !! ! & !Æ&
:
:
:
<(U0= ?. . . @ > , * <.00= L "8 ?. . .@ ?" G +?@@
Good Results
(
: ?@ & ! 7 7 &!/ %! *?@ &8 7 & & 7 !&
© 2004 by CRC Press LLC
844
:
Chapter 8
ANALYTIC GRAPH THEORY
?@ ! & !
? @ > ?*?@ @? @ G ?@ FACTS
: ?( ? @? @ G % &F & ! <L(, = L& , ! & > > 8 7 !9 > % 7 !9 > " * +8 ! !! 7 ! <!3= " G
: ?3 <,,=@ L ! / 8
? @ > ? @? @ G ! 8 %!& & ! /8 / !' ! % % ! & 7 & / %! &!& & & & /
):
+
: ? @? @ G Æ&! / 8 ! ! ?@ > 8 ! *?@ 7 &!/ & / !& % & & ! / &!/
:
. ! / & & / !!7 & ½ ¾ & ! / ! ! Æ&! / ?!@ ¿8 "8 0 ? @ ?, G @*8 ?!!@ 8 "8 0 ? @ G ¾´ ½µ8 ?!!!@ <L( *= 0 ? @ G ½ 8 C? @ ¾ 8 ?!7@ .¾·½ 0 ? @ ? G ¿ @8 ?7@ ¿ > ½ G . ?% @8 ?7!@ .¾·½ > ¾ G ¾ EXAMPLES
:
! ( N &!/ ´ ½µ´ ½µ ! %!& N / ! 7 !F! &! & / ½ ?? @ ½@ ( / ! & /8 ½ ¾ ½ 8 % ½ > ¾ > ½ > ! N 8 ! & N & & / %! 7 !& 8 ! (
: / &!/ /!7 % ? @ ? .@ 5 7 8 ! / %! &!& ! ( / ! &!/ !! ! &!& *?@ > ! & & / 8 ? @ ? @? @
© 2004 by CRC Press LLC
Section 8.3
845
Ramsey Graph Theory
: L 6 > ?*?@ @? @ G ?@ 8 &! ( N / &!/
! %!& N / &! *?@ !F! & / & / ?@ 8 ( / ! & / ! N ! & & / ! ( ?@ REMARK
$+: 4 & !7 A/B & !
5 / !' ( 7 / % ! ! 7 - <-,=8 & <,,=8 - <- 0= L!/ !& / %! 97 7 !& 7 ! 7 !& / &! !/ /!& ! & G / %! 8 % ! / ? !6 @ ! ! ! !/ 7 & /
Figure 8.3.2 1 : 0
* ,# # E
REMARKS
$: /!7 !/ ( $% ( / 97 %! ! 7 !& 4!! !! & & ! <(3= $: ( 7 & / 7 ! 8 ! & 7 ! ! <(3= $: ( ! ? ¿ @ % 7 ! 6 !
+ !
! ! / 6 3=8 6 > , ! 0
$: !/ ( ? @ / %! 7 / %! ! 7 !& & ! <- ,= $: ( ! ? @ % ! & & / * ! ! % && !
© 2004 by CRC Press LLC
846
Chapter 8
ANALYTIC GRAPH THEORY
* EE 1 #" $ * 0 8 :E
[
/¿
¿ /
.
/ / " * " +
0 /
* + * 3 0 3 +
* + 3 . / , 0 * , * /
/ .
/
* 0 "
A
. * 3 "* .
.
/ 0 3 "
/ / ? / @ / / 0 **
*
? @ / /
. /
Linear Bounds
N !/ ' !1 /! 8 <( = 7 !9 %!/ &F & & 6 & A! B / / & / /8 ! ! !& !&! CONJECTURE
3: 3 5-
DEFINITION
)
: 4 / ! ! 7 !& & ! & %
7 8 & F& & && ! F& &! & ! FACTS
: <( = ! ! / %! ! / C8 ? @ C !!7 & ?! 7 !9 F & @
: <&0= ! / / 8 ! ? @ ! ! !
: <&0= ? @ ! /8 ? @ ! ! !
:
<(0+= ! / / 8 ? @ ! ! ! CONJECTURE
3: ( # 3 5-
/ ! 8 ! & > ? @ & ? @
© 2004 by CRC Press LLC
Section 8.3
847
Ramsey Graph Theory
8.3.5 Size Ramsey Numbers & ! ! !' ( [? @ % & !
8 <L(, = General Bounds FACTS
:
0
?@ G 0 ? @ [? @
: <L(, = L 8 ?!@ ?!!@
[? @ >
´ µ ¾
´µ8 ¾
[? ½ ½@ > G
REMARKS
$: 4 /
? @ 7 0 ?@ G 0 ? @ ? @ !! [? @ ´ ¾ µ
& / 8 & ´ µ
$: ! !7 !/ !! [? @ %! ´ ¾ µ
0 ?@ G 0 ? @ N !!!! && Linear Bounds
!' ( [? ½ ½@ ! ! ! 8 %! / ! & ( / ! ? ½ ½@ ! 6!& ! N &$ ?
:
&
! / C Æ&! / 8
?!@ ?!!@ ?!!!@
[?/ /@ 8
[?. .@ 8 [? @ C_ ?_ / @½¾
): <-M0*= L %! ! / C8 ! & & [? @ C REMARK
$ : 7! % &F & !
© 2004 by CRC Press LLC
848
Chapter 8
ANALYTIC GRAPH THEORY
CONJECTURE
3: (- 3 5- ?C@ & [? @ Bipartite Graphs
L & !! / 8 % 7 8 <L(, = X X! ( < (, = % % 7 ( <(0=8 !& DEFINITION
+
: 4 %! & & !/ %! / %! FACTS
+:
<L(, =8 < (, =8 <(0= L +8 ?+3@ [? @ ?@
:
@
> ? G @? G @
REMARKS
$)
: O !! &! 7 !' ( $%8 !& & !Æ& && / !' ( %! & 6 ! & / %!& $%
$+:
&! 7 !' ( / !! ! ! 8 ! &! & %!/ &F &
3: & 3 5-
8 > >
8
[? @ >
6
% 6 > G : & G " > Small Order Graphs
& !' ( $% /8 7 / ! ! ! !Æ& && 4 ! && ! !& !' ( 8 %!& ! ! !&!/ A%!/B / % ! (
© 2004 by CRC Press LLC
Section 8.3
849
Ramsey Graph Theory
* EE. : E " $ /*
"
*
+
,
0
3
"
*
+
,
0
© 2004 by CRC Press LLC
3
850
Chapter 8
ANALYTIC GRAPH THEORY
* EE. : E " $ /*
*
+
,
0
3
"
© 2004 by CRC Press LLC
Section 8.3
Ramsey Graph Theory
851
DEFINITION
:
L / 8 ? @ ! !! !' / ? @ & ? @ REMARKS
$:
8 %!& & !
$:
4 A%!/B / & !/ !' ( % !/ ! / 8 ! / 8 !6 &! ! & %! ! ! & <=
8.3.6 Ramsey Minimal Graphs DEFINITIONS
: L ! ? @ /8 % ? &@ > : ? &@ / ! % ? &@ ! ? @ : 4 / ! ? @ ! % ? &@8 / ! ! % : ( !! / ! % ? &@ %! %? &@
:
! ? @ ! * ! !!& / ! %? &@ ! !9! O %! 8 ! ? @ ! *
: 4 / ! *(
! ! ! & & & %! % 7 !& ! ! EXAMPLES
:
L / 8 & ? ¾@8 ! ? ¾@8 7 / - & 8 %? ' @ > 8 ! ? ¾ @ ! ( 9!
: O 7 / &!/ & & . %! 7 & &!7 / %! & & ! 8 . ?/¿ /¿@ 8 / . %! A%B ?/¿ /¿@ 8 ! ?/¿ /¿@ ! ( !9! 8 ! ! % %?/¿ /¿@ > . : FACTS
X X! (T < (, = !!! ( !9! ( 9! ! ! 7 !/! ! %$ % !
© 2004 by CRC Press LLC
852
Chapter 8
ANALYTIC GRAPH THEORY
: ?/!!# $2 < (, =@ ! ? @ ! ( !9! ! ?!@ *?@ 8
?!!@ ! * & & 8 ?!!!@ ! &!!/ /
:
:
: <.0"=
! ! &!/ &! & & 8 ! ? @ ! ( !9! REMARKS
$: O & 6 & L& * ! &!/ > ! / & ! %! / ! ( 9! !
$: L& * % 6 ! !
8 ! ( !9! /
$: 4 & && !'! ! ( 9! ! $%8 & ! $% ! / ! / CONJECTURE
3 : $ %F # 3 5- ! ? @ ! ( 9! ! ! ! ?!@
! &!/8
?!!@
!
8.3.7 Generalizations and Variations / !'! &!& ( % 7 &! ! ! 7 E %! ! ! ! &! 7 Graphs
!& ( / A%!/B 8 !& & !& / !& ! & ? @ % 7 !9 (T ! ! & ! <(,=8 % 7 !9 ! !&!
© 2004 by CRC Press LLC
Section 8.3
853
Ramsey Graph Theory
/ ? @ 7! / & ! <M (0 = DEFINITIONS
:
? @ ! !!7 ! / & ! / & / &!/ ?( N @ ! !& & ! ( !& & ! N
: L !! / & ? @ ! !! / & ? @
):
&
+
? @ ! /
? @ / !& & & ! & &
: L / 8 ? @ ! !! &!& &! ! / &!/ ( / % > ? @ REMARKS
$
: ! & !! ( & ? @ % 7 !9 ( <(*+= && !& / 8 8 & !! / ! !! 9!! &
&!& 8 F &!& %
$:
<, = % ? @ > ? @ ! ! !/ & -% 7 8 ? @ ? @ / %! !/ 8 & <, = %! /
$
: - ! <- ,"= && ? @ / 8 7 % ( !!&!! $% Hypergraphs
!&! ( ! ! !& /8
&!7 &!/ / -% 7 8 !/! ( ! ! / % DEFINITIONS
: 4 &! 7 !& / 8 & %!& ! 4 / ! ! ! / 7 &!!
:
L ! / ?½ ¾ @8
?½ ¾ @ ! ! / & ! & %! &8 %! & !!& & ! & &
FACT
: ?- . $ #"#",# <5&(0=@
¿?" "@
>
REMARKS
$):
&!& / ( $% ! ¿?" "@
© 2004 by CRC Press LLC
854
Chapter 8
ANALYTIC GRAPH THEORY
$+: L& + ! ! %! & 8 %! " %! ! 7!/ &8 ! ! &!/ ! %!
References
3 ?0 3@8 0W3
© 2004 by CRC Press LLC
Section 8.3
855
Ramsey Graph Theory
0 ?00@8 3*W
8 , ?0 @8 *W <,,= P 78 & / ( 8 0
, ?0,,@8
<-,= P 7 L - 8 !' ( /8 , ?0,@8 "W"+ <( = P 78 P ( 8 ' !8 E 8 ( %! ! / 8 " 8 0W" <,,= 5 & 8 ( 8
?0,,@8 0W0
<(*+= ( (8 4 !! && ! 8 + ?0*+@8 ",W" 0 <L(, = 8 ( S L 8 ( 8 ( - & 8 !' ( 8 % && ! / !' ( 8 " 0 ?0, @8 "*W+ <L(, = 8 ( S L 8 ( 8 ( - & 8 O & & & / ( 8 ?0, @8 *W+" <L( *= T8 ( S L 8 ( 8 ( - & 8 5!! /W / ( 8 * ?0 *@8 W
© 2004 by CRC Press LLC
856
Chapter 8
ANALYTIC GRAPH THEORY
<(0= ( 8 !' ( & !! /8 ?00@8 *0W+ <'*= ' $ 8 4 &!! ! / 8 ?0*@8 "+W",3 <
<
0= 8 4 !/ !!'! /! ( 8 ,*W,0 !
?U 47! @8 458 0 0 0= 8 4 % ?* *@8
?0 0@8 0,W0
< 0= 8 4& : O ( ?" +@ ?* +@ ? @8
* ?00@8 * < 3= 8 !&! 6 / ! / 8 ! ?33@ < -5 = 8 - -8 5 / 8 ( 7 8
*4 ?0 @8 ? & 7 N!! !! @8 ,,W +
8 3W 0 ! 8 & 4 58 00
8
?00@8 0W"
& & / ! 8 " ?0 3@8 0W33
© 2004 by CRC Press LLC
Section 8.3
Ramsey Graph Theory
857
<( ,= ( . P (T8 ! ( 8 ' ! ? E! @8 !/ 2!7 ! 8 0 , <(03= ( . 8 N . (&!8 S - & 8 4 8 S E! a 8 003 <U+ = S 7 S U&$ 8 / !& &! %! ( 1 8 " ?0+ @8 *W,* <**= ( % 4 5 8 !! ! &!& /8 , ?0**@8 W, <( = ! ( 8 O ( ? @ ? 0@8 ?0 @8 ,W* <-5! = L - # 5! 8 !' ( P: !' (
/8 ,W ! " ! ! $ " 2 ? T8 . 48 -'8 4 $T' 8 @8 N!$T 8 0 <- ,"= L - !8 !' ( /8 P: ( !!&! /8 6E " ?0,"@8 +W, <- M0*= - 8 U M $%8 !' ( 8 0 0 ?00*@8 +W," <- ,= ( - 8 !/ ( / %! 7 / 8 & ?0 ,@8 W" <- 0= - 8 ( / %! 97 7 !& 8 ?0 0@8 "*W"
<- 0= - 8 ( ? ¾ G @ ? G . @8 & * ?0 0@8 "3W*" <-#0 = U ( -/ M 5 #/8 4 % & &!& ( 8 ?00 @8 ",W*3 <M+*= S M; !&8 &! &! / &!& /8 ?0+*@8 *,*W* " <M++= S M; !&8 !& / ( 1 8 " 2! 7 ! E 8 ?0++@ <M +"= M 8 O ( ?-/!@8 * ?0+"@8 3"W" <M!0*= S - M!8 ( ? @ /! / 8 4 , ?00*@8 ,W3, <M (0 = U M $%8 - S T 8 P (T 8 & ( 8 ?00 @8 ,W"3"
© 2004 by CRC Press LLC
858
Chapter 8
ANALYTIC GRAPH THEORY
<.0"= .&'$8 O ( !! /8 ?00"@ <.00= .&'$8 ?. . .@ ,"W ,
?" G +?@@8
,* ?000@8
<50"= S 5&$ 8 !! ! 8 " 8 2!7 ! -%!!8 00" <5&(0= N Q 5&M ('!'%$!8 9 &!& ( / ! & 8 3"W3 ! " $ ! 0 OQ4108 L&!&8 00 <5&(0*= N Q 5&M ('!'%$!8 ?" *@ > *8 ?00*@8 30W
0
<5&(0,= N Q 5&M ('!'%$!8 / &!/ ! !! ( 8 +0 ?00,@8 0W30 <50= N Q 5&M M 5 #/8 7 ( ? @8
+ ?00@8 00W3* < 0+= S X X!8 ( 8 * ! $ 00 ?( . 8 5 & 8 . .7 ' @8 5 8 ?00+@8 W"3 < (, = S X X! P (T 8 & &!!& /8 ?0, @8 0*W33 <!3= P !$!78 & & & / ( 8 ! < , = Q 8 ( / 8 +W " ! 8 ?. E N ! $ ( S E! @8 4& !& 8 0,
<(3= (!'!'%$!8 ( 8 Q !& 7 ?33@ <(M = (!'!'%$! Q . M 8 & /! ( / ! / !8 ?0 @8 *0W, <(3= L ( 8 O /!&8 " %A, 3 ?03@8 +"W + <(,= P (T8 ! ! / / !' ( 8 !8 2!78 8 0, <(0+= P (T ( 8 4/ !! &!6 !7!!8 +W0 ! $ " : ?( . S X X! @8 !/ P /8 00+ <(,= P (8 O ( S 4 N T 8 8 * ?0,@8 0"W3" <(,= P (8 O ( S 4 N T 8 8 * ?0,@8 3*W3
© 2004 by CRC Press LLC
Section 8.3
859
Ramsey Graph Theory
<(= ( S 8 !' ( & ! !! /8 ! <(U0= (%! U U/8 O ! ( / %! 97 / 8 ?00@8 W < = S N 8 4 ! & !/ /8 "+ ?0 @8 W , <, = Q 8 & & ( 8
< = 4 8 4 ( 8 ?0 @8 *30W*,
?0, @8 "0W**
© 2004 by CRC Press LLC
860
8.4
Chapter 8
ANALYTIC GRAPH THEORY
THE PROBABILISTIC METHOD "
#
" L! 5 5 " 4 ! " .7' .& . "" (T ! "* N ! Q!!! ( &
Introduction
!!!& & 7 !!!& ! / !&8 ! ! 7 Æ&! / / &!9
8.4.1 The First Moment Method DEFINITION
) ! 7 %!& !Æ& !! 7 !/ &&!7
: * !77 9!/ 7! 8 $% / % & 7 ?! 8 9 @ & 7 6 ! ! & !& & EXAMPLES
:
7 ! ! %! 7 !& Z ´ ½µ -! 8 & & & -! !& Z ! ! & /8 & !/ ! ! ! %! !! ´ ½µ8 & ! Z ´ ½µ ! !! ! Z
:
: 4 > ? 0 : & > @ ! *( ! ! !! ! 7 ! % & & & 0 > 0 > & / ! ! % / ! & -% 7 8 <+= % ! 0 &
© 2004 by CRC Press LLC
Section 8.4
861
The Probabilistic Method
½
! & ! !! % & / %!& & !
:
<0"= 4 ! ! 7 3 ! 7 3 7 !& ? @8 ! 7 > ?3 @ 3 & / %!& F! 3 ! & % 8 ! 8 7 ! 3 Q 9! ! %! 3 I % ! 7 !8 ! & %!& !9
? @
?@
! / . @ 7 !& %!& %!& ?3 @ ! ! ?@ ! & 7 @ 8 9 7 ! & %!
3 L / ! /!7 ¾? @? G +?@@ ! ! & !/ ! 8 !& ' $ 7 ! ? @ ! 7 !& ! %! 3 8 ? @ & 3 ? 5 <5,0=@ O !$ ! /!7 ! $ 4 & <433= Ramsey Numbers DEFINITIONS
: 4 / ! / &!/ ! %!& 7 / ! & !
: ? @ ! ! / & ? @8 7 / &!/ & / &! !
Q !!/ &! 7 ? @ 7 !Æ&8 ? @ ! $% & * 4 % 7 &! FACT
O ! % 7 !/ % % ! ! !!!& 7 ! % !!!/ & % ! !
:
<",= L Æ&! / 7 8
? @ ? +?@@
¾
?@
REMARKS
$:
L& ! 6! O % % ! ! !/ ! ?@8 & 9 / &!/ %! &!& &
7 7 !Æ& & !&! &!/ %! /!7 ! % & %:
, - 8 0
© 2004 by CRC Press LLC
862
Chapter 8
ANALYTIC GRAPH THEORY
, ,# :## :* *## # -# 8 ,# :: , , 8 %!& !
%! &!& ! 7 + & &!/ %! & !&! &&!/ ! ! & !!!&
$:
&&! 7 && 7! @ %!& & &!&
! &!/ 4 ! &&! % & 7 ?@ @ & &
??@ @ ?@ @
%
$:
??@ > 3@ 3
L& ! !& ! !Æ& &! 8 8 $ 8 (&!8 & <(03= ! (T < (T 03=
8.4.2 Alterations O ! !!& &!6 && ! !! % &!& /! DEFINITION
: ! 9 / F & !8 ! ! % ! EXAMPLES
% &F & / %! / /! 7 &!& 8 ! 8 ! &! & 7 / %! & & / ) & & %! ?)@ & ! ! 8 ! F !
: <*0= 7 ! ! / B ! / %! /! &!& B L !!!& 8 / %! 7 <= > ! %!& & ¾ ! / && %! !! 68 %! & &!& 6 > '?@ Æ&! / % & / 7 !& & / %! 7 !& 8 /! ! !' B 4 1 / %! &7!& 6!
: N !/ & & / 7 ?@ & % ? @ ? +?@@ ¾
: 4 !!8 !!& ! % N &$ b? ½¿@ N &$1 % !9 !7 & 7 ! > b? ? @½¾@ ! % ($! !!7 <(33=
© 2004 by CRC Press LLC
Section 8.4
8.4.3
863
The Probabilistic Method
The Lovász Local Lemma
4 9 8 ! ! L& FACTS
: ?.7'@ , 7 ! .& . : !7 & &! 7
! ! ! 8 % %! 7 ! ! ! !! & %!& ! && ?!@ ??! @ 6 & > ?!!@ ! / C D !9 ?C G @6 ? 7 "C6 @8 ?? ! @ 3 ! ! ! !! & !
$
: & ! !/ !7 % ? @ E & /! & 7 !& &!6 / & &! !/ !7
?@ ? @ ? +?@@
%!& ?@ EXAMPLES
: .
> ? 0 : & > @ / ! %!& 7 / & / ! & / ? G @ ! & E & 7 ! ! 9 / 0 ! & !7 7 ( > ! & > 8 % 9 D %! 7 ( & 7 ! ! ! 7 %!& F& ! ! / D & / &!/8 6 > C > & 7 + &!/8 ! 8 7 / ! &
): ! && ! &!/ - % 7 /
> ? 0 @ & ! % & A 6 ! ! & & & A & &!/ ! / ! ! & ! A !! &!/ ! ! / ! !! & ! ! & %!/ ! &
7 ! !&! & ! $ 5 ( <5( 3= 7 %!/ ! ?!@ A B ?!!@ & A + ! & ! !/ ! ! & & ! A & & &! 7 ! !#8 %!& & ! & / & ! ! !! ! !!7 !! 7 %! && &!/ ! &!&&
+: - ! ! !&!
> ? 0 @8 > 8 !7! . C ! / C % & % !! ! 8 > !' 8 ! ! !' %!& &! & & !
& & & % ! ! ! %! !!7 !! 7 9 / 7 !# %! ! &
© 2004 by CRC Press LLC
864
Chapter 8
ANALYTIC GRAPH THEORY
REMARKS
$:
! !9&! & & 8 7 % 7 E ! ! ! !/ % $ ! & ( & & <0= 4 8 L! ' ( <4L( 0*= % ! & ! & & &!/ -! & &
$:
4 &! & ! &&!7 ! ! ! /! 9!/ F & ! !/ %! $/
N &$
8.4.4
The Rödl Nibble
! & !/ ! $ ! % 9 ( <(T *= Æ &F & -! ! !!/ & & % &!& !/ DEFINITION
: &! & ! 6! F & ! ! ! & ! FACT
:
<(T *= . 1 ? B@ !! !' ! <= %!& &! 7 B <= & 8 % 7
1 ? %@ > ? G +?@@ + + ! % / !' / / %! ( ! / & < ! 0= EXAMPLES
: S <S0+= ! % &!& !/ / ! '? @ ! ! ! & &! 7 8 ! & 7! & 7 ! &!& & & ! 48 & % %! !!7 !! 7 &!/ /!
!
:
¾ M! <M!0*= ! % ? @ > b? @ % ? @ ! !! & 7 ( N &!/ & / &! ! ¾ ( !/ N & ! &!&! %! '? @ 7 ! 4F!8 M8 ' ! <4M' 3=
© 2004 by CRC Press LLC
Section 8.4
865
The Probabilistic Method
: M <M0+= ! 7
+ /
! C G +?C@ - % & / / 8 !/ ! &
& /
: 5 ( <5( 0 = ! %
! / ! C G '?@ &!& ! !! & & / 7 !& / /
7 ! !&! cF& / c7 &
8.4.5 Bounds on Tails of Distributions !!!& %! 7 % !! ! !! / 7!! 7! FACTS
%!/ % ! 6!! %! ! !!!& &!!&
: ? 4' - H!/ ! 6! R /8 <433=@: .
@ > @ ?5 5 5 @ 7! 8 %! 5 5 5 ! &/!/ 7 7! 5 &/ 7 @ 3 % 7
??@ ?@ @ @
?"@
: % & 3 4 8 & & 4 ! & ! %! !! 6 L & &! ! ! ! 4 8 % % ! !! d 3 &! ! S <S03= 7 d %!& ! ! 6! % d ? ??! 4 @@ ?*@
% ! & LM ! 6! L!8 M !!
: 6! ?"@ % L! ' 8 8 M$!8
! % % !/ / / %! ! / % !/ 7 ! % !/ ! !&! / 4 % !/!/ ! ! 7 7 !H % !/ / C?@ / ! !! %!& % !/!/ ! O
© 2004 by CRC Press LLC
866
Chapter 8
ANALYTIC GRAPH THEORY
& 7 ! & %! !! 6 > % ?*@ !! % & % / & & REMARKS
$: ! ! 6! / <0+= & ! & 6! ?"@
$: ! & ! F & F & / <43"=8 <5( 3=8
References <4FM' 3= 5 4F!8 S M8 ' !8 4 ( 8 0 ?0 3@8 *"W+3 <4L( 0*= 5 4 8 4 5 L! ' 8 N 4 ( 8 5!& -! & & 8 $ ?00*@8 (3 <40= 48 4 /!!& 7 ! & 8 4 ?00@8 +,W,0 <433= 4 S & 8 " 8 & !!8 E! &! & 8 333
, ?333@8 W, <",= 8 $ /8 $ * ?0",@8 0W0" <*0= 8 !! 8 ?0*0@8 "W <+= 8 O &!! 8 6 ?0+@8 *W3 <0= S & 8 .! & ! 7 8 3 ?00@8 *W*"
© 2004 by CRC Press LLC
Section 8.4
867
The Probabilistic Method
/8 " ?33@8 3W, <(03= ( 8 N (&!8 S & 8 4 8 E! 8 003 <S03= S8 ! !! / 7!!8 4 ?003@8 W3 <SY.(33= S8 . Y &'$8 4 (&! $!8 4
8 E! 8 333
<S0+= 4 S8 4 !& &!& !/ /8 Q54 & !& 8 00+ <M!0*= S M!8 ( ? @ /! ¾ / 8 4 , ?00*@8 ,W3, <M0+= S M8 4 !& / ! &!/8 , ?00+@8 W*0 <5( 0 = 5 5 N 4 ( 8 L /!!& & & 8 " 5F $ ?00 @8 *"W*0 <5( 0 = 5 5 N 4 ( 8 4 &!& 8 ! ?00 @8 "W 3 <5( 3= 5 5 N 4 ( 8 !/ 8 33
" 8
<5,0= S 58 8 -8 ( !8 E!8 0,0 < (03= S X! P (T8 $ 4 8 !/ P /8 003 < ! 0= ! / S & 8 4 !& 7! &&! ! /8 * ?0 0@8 "W" <(33= S ($! 4 !!78 7 /! / % &!/8 4 + ?333@8 "W <( *= P (T8 O &$!/ &7 !/ 8 + ?0 *@8 +0W, <3= 5 ( 7!8 4 ?G>@ !! /! !!!/ / !/ % /!!& 7 ! .7' & 8 !
" $ # ! 0 % / ,8 33
<0"= S & 8 " 8 & !!8 45
!&!8 00" <0+= 5 /8 & ! ! ! !& ! 6!! ! & & 8 " 1 ?0 ?00+@8 ,W3*
© 2004 by CRC Press LLC
868
Chapter 8
ANALYTIC GRAPH THEORY
GLOSSARY FOR CHAPTER 8
9 0 # 8 : ! /
.
:
&
8 & ?&
@
% & &
% 8 * 8 :
: /
8
7
% 7 !& & ! & %
& !/
F& &! &
,# 8 8 : 0
&&
!
!
? @ W && ! ( : % %! @ ! / &!/ ! & &!& * & & ! & ?
:#- ' - ? 4
4 4 4 = 4 :#- ?# ' - ? 4 < + 9 [ > ?
?
? [
8
@
>
*
<
%* *#"
/
: & &! ?
W /
:
G @ &!6 !/ &
: /
%!
-#-0 - -#'
8
%
!/ & /
- #- :
6 & &
?@ 9 ! /
!
/
G
¾ Ô% # ½
4 W 7! : 6 & & 38
ZG
: & &!
8
@ >
W 7! :
@ >
&
4 +?@
*?@
/
>
?@
/
& ! 7 7
&!/
! /
&8 7 & &
7 !&
W /: / / & &
W ! /: ! & /K % !H
9!!
-#'
W ! /: & /8 & ! ! !&!K
% !H 9!!
-#' * - ?
@ W /
:
7 !& ! / &!6
?@ )? @ G )?@
W /: / !
F& 7 !&
%!
-:@ 8 : - - # # ' #
: & & /
%!
&& !7 F!!/
0 ?@ ?@
: !! 7! !H
! / K &!6 %!!
*
%-
- 8 :
: & & / & & %! % 7 !& !
!
- @ 8 : ::
:
/
%- - # 8 8 : :: # @#
)
7
/
7
W /: / / %! 7
7 8 ! /
) /
: & !/ /
W /
8
: !
W /
:
0 ?@ ?@ ! ! / !7!
7 !& 8 $ 7 /
© 2004 by CRC Press LLC
869
Chapter 8 Glossary
# @- @ 0 -# ¾
: ! 0 ?@
W /
%
: !H & 0 ?@
W /
?
?@
@ W ! /
!
: 7 /
&! % 7 ! / / ! &! ! /
@ 8 : %0 - F %0 8 : 8# # :: ) ) :# 0
W ! /
!
:
/ %!
! / %! / ! / W /
7 !&
: & &! !F! &! /
&7
: !/ & 7 7!
!! K &!6 %!! W %
! /: / / !!&
W /: / ! & & W /:
/ / 7!/
! %! 7 !&
: ! /8 !/ : ?@ ? @ &
0 ?@ !! ? @ ?@ 0 ? @K / /8 ! / !/ : 0 ?@ 0 ? @ & ! ! / 0 ?@8 ? @ ? @ ! ? @ 0 ? @
:8 : % #0 %:8 :$ * : 7 !&
8
8
: / % / !'
!
!!& &
! &
# - # 8 8 : :: # : - * # : 6 " 6- 6 # 0 8 : 8 : :: -## 8 : : --#- 8 : : ## :, 0 -- :
?
& %!& !
@: ! / & &8 %! &
& %!
&
! / &
!/ /
?
@ W /
:
/ ! 7 !&
! !
W 7 !& ! / : %!!
:
F& 7 !&
!/ %!
&
7
: /
6 & / !
&&!
: ! ! !& !/ & !/
: /
1 1 !
!& 6 & &&
!&!7 5 &! $!
: -!! / 7!/ & & ! / !
7 !&
W /: 8 / ! !/ %!&
/ & /% 7 7 /
: /
!
&"
>
* * *
© 2004 by CRC Press LLC
%!
?@ >
?& " @ 0 ?@ !
870
Chapter 8
:* *###- :
ANALYTIC GRAPH THEORY
7!/ ! & F & %!/ ! !
%! !!7 !!
$2 #**: %!!
!' &&!7 & ! K &!6
$ 8 : ! ? @: / & ? @ $ #:#-# ? @: !! &!& &! /
! / &!/ ( /
$ * / &!/ & & 8
?½ ¾
@:
%
&
>
!!7 ! /
!
*#: # & ? @:
? @
&
&!& & /
7 !& !! /
? @
!
&
- #- W ?½ ¾ @ % & ! & / 8 -
-8 ? @: 7 !& ! / 8
? @
&
& / !& & & ! & &
# 8 : ( ? @ %! > ? @: !!7 ! / & 8 # -8
8
/
!& &
& / &!/ ?( N @ ! ( !& &
$ %F # : # ? @:
$ %# F # : # ? @: @8
8 :½:
! N
%!
? @
! / & !9!
!!& !! /
?½ ¾
%!
? @
W ?½ ¾
@:
/
/
@
7
! ?
K !! &! !
! &! !/ / && ! %! !!
*# # ? 6@:
&
% ?½ ¾
!! & % ! !
@ / 7 <= >
8
!
!
! / & 9!
!!& !! /
C$ D # # 8 :
!! & % ! !
? @ / 7 <= >
½ ¾
&
7
!
K !! &! !
! &! !/ / && ! %! !!
6 > 6?@ 8
&K &
#0 ? @:
! !! & ! ? @ /
7 <= >
K
¾
!
%! &
/ K &
% 7 !! & / !
- .(
6?@
>
: 0 -# W /!/ !! / ? 6@8 /
!
;:
&!
´µ , ´µ >8
?@
? 6@
> 38 ? 6@ 7 ; ´µ G > ? %! A , ´µ
&
;
!
7 B AB ! &/ @
: 0 -# W /!/ ! / ? @8 /
!
;:
&!
´µ , ´µ >8
?@
? 6@
7 B AB ! &/ @
© 2004 by CRC Press LLC
> 38 ? 6@ 7 ; ´µ G > ? %! A , ´µ
&
;
!
871
Chapter 8 Glossary
#" $ *: ?½ ¾ 8
#-:
/ /
&
@
!! !' 8 ! 8 / 8 /
7 !& &
%!
? @
? @
' 0 --: & & & & 0: / ! %!& & & ! : !! / ½ #- * - 8 :: / % ! !
! !& /
! ! ! /
0 -# W / ;:
6 ?
@ 7
;
!
6
>
6 6
/!/
+? @8
?
?
;
? %! A 7 B AB ! &/ @ ( /!/ 9!! ! %!
8 : ?@: @
6
&
&
! /
?@ & > +?6@ ? @8
@8 &!
@
!
7 !& % & ?
6 !
* ?@: &!&
/
%: :*:
, : --#- 8 ::
© 2004 by CRC Press LLC
7 !&
9!/ / ! /
/ 7!/ / ! &!9 !
&!& &
!
!
/ 7!/ & & ! / !
Chapter
9
GRAPHICAL MEASUREMENT 9.1
9.2
DISTANCE IN GRAPHS
DOMINATION IN GRAPHS
9.3
TOLERANCE GRAPHS
9.4
BANDWIDTH
! " "
!# $% GLOSSARY
© 2004 by CRC Press LLC
Section 9.1
9.1
873
Distance in Graphs
DISTANCE IN GRAPHS
Introduction ! " ! # $ $ %
& ' $ $ $' ' & $ $' ( ) ' * $ !
"
+,$ -.#
9.1.1 Standard Distance in Graphs ($ $ /$ ' 0
* & 0
$ ' 0 Distance and Eccentricity
' *
$
* 1 2 * 1 DEFINITIONS
3 3
4 * 1 & "#
3 4 * & " # "$ # % ( % " # %
* 1 &
"# 5 1 " # ܾÎ
EXAMPLE
3 6 * 1 4 $ * 1 * 1 "# 5
© 2004 by CRC Press LLC
874
Chapter 9
Figure 9.1.1
GRAPHICAL MEASUREMENT
FACTS
3 4 * & " # ' %!
3 0 0 * % " & " "# # % &#& & 0 $
3 " # - "# " # 5 - '
5
" # 5 " # "# + " # " # 7 " #
. "# + .
Radius and Diameter
! $ 1 $
* DEFINITION
3
$ ' *
& "#& 1 $ ' & "# REMARK
3
/$
1
¾
" #
EXAMPLE
3
6 * 1 4 $ '
"# 5 "# 5
Figure 9.1.2
© 2004 by CRC Press LLC
Section 9.1
875
Distance in Graphs
FACTS
3
4 * ' * & "# "# "# '& 8 9 $ "# & '& % $& 0 1 & /$
"# "# "# '
3 +:;. 4 * ' * & 1 "# 5 "# 5 4$ & $ "$ * # $ 7 Center and Periphery
$ * $ DEFINITIONS
3 ( * 1 "# 5 "#< * 1 "# 5 "#
3
$ $ ' * & "#& $ $ ' *
& "#
EXAMPLE
3
6 * 1 4 $ ' "# 5 "# 5 ' 4 $
Figure 9.1.3
FACTS
3 3 3
+,$ =. 6* ' " # +> . * '
)
+?@ . * '
* 1 ¾ 4$ &
* 1 ' " # 5 " #
!
3 +, '=. ( * " # ' ' * ' * 1 ' * 1 '
© 2004 by CRC Press LLC
876
Chapter 9
GRAPHICAL MEASUREMENT
Self-Centered Graphs DEFINITIONS
"# 5 !3 (
$ $ $ 3 (
EXAMPLE
3 * 4 $ %
¾ % &
Figure 9.1.4
"# $ $# $
FACTS
%3
+,$; . A $ 1 % & 2 & $ '
" #" # " 7 7 @ # B
5 5 & 5
&
3 4
% $ &
& 2 &
3
+A C -. 4 * % & 1 % 1
' $ "# $ $ "# $ $ $ $
3
+A C -. 4 * ' 0 $ D& 1 % $% $ D
9.1.2 Geodetic Parameters Geodetic Sets and Geodetic Numbers
4 * ' & 1 *
* ' * 1
*
© 2004 by CRC Press LLC
$
Section 9.1
877
Distance in Graphs
DEFINITIONS
%3 ( * 1 % * 1 $ 5 " & * 1 # &
3 4 * & + . & & * ' % < "#& + . * ' + . 5 + . ¾
Ë
3 ( * + . 5 "# ( $ ' ' $ & "#
3 ( 1 % $ $ $ " # $ REMARK
3
6 * 1 $ $ * ' B $& %* 1
* '
EXAMPLES
3
5 4 $ % & $ " # 5 B & 5 $ & "# 5
Figure 9.1.5
'
3
5 $ 4 $ @ $ $ ' " # & $ $ u
v
C4 :
G: x
Figure 9.1.6
© 2004 by CRC Press LLC
u
v
x
w
w
( )
878
Chapter 9
GRAPHICAL MEASUREMENT
FACTS
3 3
+A . $ >%
+EF-. B & "# 7 & $
3 +,$G$. A * "# "# 5
' 5 " # "# 5 ' 5 "½ ¾ #7 & ' 7 7 7 5
3
+EF-. 4 * '
* & & & 1 "# 5 "# 5 "# 5
3 +EF-. ( * $ $ '
* ' * 1 ' * 1 '
!
3 +EF-. ( * $ $ ' ' Convex Sets and Hull Sets
* ' * ' * ' * DEFINITIONS
3
( * + . 5
+ . * 1
3 4 * & +. 5 & +. 5 +.&
+ . 5 + + .. 4 & /$ * + . 5 + . & " # + . & & * 1 $ & + . & "#& * '
"# 5 1 " #
3 A * B + . 5 "#& ( $ $ ' ' $ $ "#
##
3 ( 1 $ $ $ " # $ $
EXAMPLES
3 B 4 $ ; & 5 5 +. 5 5 +. 5 & * 1 < * 1 4$ & * 1 $
© 2004 by CRC Press LLC
Section 9.1
879
Distance in Graphs
u
u
x
G:
w
x
w
v
S1 = {u, v, w}
v
S2 = {u, v, w, x}
Figure 9.1.7 *
!3 B 4 $ =& 5 + . 5 ¾ + . 5 "#& $ B & $ $ "# 5 4$ & " # 5 s
t x
G:
u
z
w
y
Figure 9.1.8 ( ## REMARK
3 6* ' $ * $ $ "# "# * ' FACTS
%3 +> =. A $ "# 5 5 5 -& 5 5 & 5 7 &3 +6* =. B & "# 7 3 +6* =. B % & "# 3 +EF--. 4 * ' & 1 % $ "# 5 "# 5 3 +EF--. 4 * ' * & "# 5 " ¾ # 3 +EF--. 4 & "# 5 '
5 "½ ¾ # 7 & & * & 7 7 7 5 3 +EF--. ( * $ $ $ ' * '
© 2004 by CRC Press LLC
880
Chapter 9
GRAPHICAL MEASUREMENT
9.1.3 Total Distance and Medians of Graphs Total Distance of a Vertex DEFINITION
3
"
# * 1
0 '
" # 5
" #
¾ ´µ
ALTERNATIVE TERMINOLOGY3 * 1
* 1
EXAMPLE
%
3 6 * 1 4 $ * 1 $&
" # 5
¾ ´µ
" # 5 - 7 7 7 7 7 7 7 7 7 7 @ 7 ; 5 ; 2 u
0 2
G:
4 3
6
5
7
1 1
4 2
Figure 9.1.9
#
FACT
3
+6?;@. A 2
"# " #" 7 #
"#
$ ¾ The Median of a Connected Graph
' $ H
$ DEFINITIONS
!
3 ( * 1 *
%
3 *
$
! "# $
© 2004 by CRC Press LLC
$ '
Section 9.1
881
Distance in Graphs
EXAMPLE
&
3 6 * 1 4 $ - & * 4 $ - 38 37
29 28
G: 37
26
26
u
v
42
34
52
M(G) : u
vv
29 38
Figure 9.1.10
(
FACTS
3 !3
+=-. 6* ' " # +=. * '
)
Centers and Medians of a Connected Graph
* DEFINITION
&3
4 $ &
" # 5 " # 3
" # " #
FACTS
%
3 += . 4 * ' * & 1 $ "# & ! "# & " "# ! "## 5
&3
+> . 4 * '
& & &
$ $ & 1 $ "#
& ! "# & "# ! "#
9.1.4 Steiner Distance in Graphs 2
*
' * $ 6$
)& * & ) Steiner Radius and Steiner Diameter
( 1
© 2004 by CRC Press LLC
882
Chapter 9
GRAPHICAL MEASUREMENT
DEFINITIONS
: * 2 ' & " 5 * & "" # 5 " #
3 4 ' " * & "" # " $ 2 "$ # $ " > '& $ $
&
" 3 A 4 & * 1 & "#& 1 $ % *
3 & "#& & "#& * '
"# 5 "# "# 5 1 "# ¾ ´µ
¾ ´µ
EXAMPLES
3
A 5 4 $ " # 5 *
2 &
4 $ u
u z
v
y
w
z
v
T:
G:
w x
x
Figure 9.1.11
( "
3 6 * 1 4 $ % ' ¿"# 5 ¿"# 5 @ 6 5
5
G: 5
5 4 6
Figure 9.1.12
© 2004 by CRC Press LLC
5
5
6
$
Section 9.1
883
Distance in Graphs
FACTS
3 +E: F= . A 4 * '
& " # 5 " # 3
+E: F= . 4 * '
" #
* '
&
" #
4 $ + : -.
3
+ : -. B &
"# "# "#
" # "#
"#
3
+ : . 4 * ' * '
"#
&
7 "#
Steiner Centers
$ DEFINITION
3 4 & * 1 "# 5 "# $ $ ' % *
FACTS
3 +: -. A 6* ' " # %
3 +: -. A
" # %
' %*
9.1.5 Distance in Digraphs
$ 0 * 1
DEFINITIONS
3 A * # B # % & " # %
#
© 2004 by CRC Press LLC
884
Chapter 9
GRAPHICAL MEASUREMENT
3 ( # " # # % % * ' * # Radius and Diameter in Strong Digraphs
0 '& $& $
$ "
0 # DEFINITION
3 "# # * 1 # $ ' * # & "##& 1 $ ' & "## EXAMPLES
3
% # 4 $ ( % " # 5 : & % # B & % # ' * 1 "5 # #
- & # u
D: v
(
Figure 9.1.13
3
* # 4 $ ' %
: * "## 5 "## 5 & & $ "## "## 5
D:
2 4
4
3
Figure 9.1.14
2
FACT
3 +E? . 4 * ' * # "## 5 "## 5
© 2004 by CRC Press LLC
& 1
Section 9.1
885
Distance in Graphs
The Center of a Strong Digraph DEFINITION
!
3 "## # $ $ ' * "# 5 "## EXAMPLE
3
# 4 $ 4 $ & 5
u u
D:
4
2
4
C(D) : v
3
Figure 9.1.15
2 v
FACT
!
3 +E? . 4 * ' #& 1 " # # Strong Distance in Strong Digraphs
' ' 0 & 0 $ $ "
0 # DEFINITIONS
%
3 4 #& " # $ 2 $ #
&
3 "# * 1 # * 1 #
3
$ ' * # 1 $ '
"## "##
EXAMPLE
3 B # 4 $ @ & " # 5 & " # 5 & " # 5 * #
& "# # 5 @ "# # 5 - © 2004 by CRC Press LLC
886
Chapter 9
10
w
v
GRAPHICAL MEASUREMENT
10
10
D1 :
6
D2 :
x
u
6
6 10
10
y
Figure 9.1.16
10
"
FACTS
%3
+E6F %. * 1 $ "## "## "## * ' #
&3
+E6F %. 4 * ' & & 1 # "## 5 "## 5
3
+E6F %. B # $
" #
& "##
Strong Centers of Strong Digraphs DEFINITIONS
3 ( * 1 # "# 5 "# $ $ ' * #
"## #
3 ( # & #
"## 5 "##&
EXAMPLE
3 "## # 4 $ ; 10 10
10
D:
u
6
6
6
u w
v
w
SC(D) :
v 10
10 10
Figure 9.1.17
FACTS
3
+E6F % . 6* ' " #
© 2004 by CRC Press LLC
Section 9.1
887
Distance in Graphs
3 +E6F % . 4 * ' % $
& 1 0 ' ' '
References +, '=. ,
) '& * &
= " =#& @ I; +,$; . 4 ,$ ) '& % * $& " ; #& I +,$ -. 4 ,$ ) ' 4 '& & ( %C '&
-
+,$G$. 4 ,$ ) '& 4 '& A J G$ & 61 $ $ & +,$ =. 4 ,$ ) '& F & ? & : * & " =# ;I +E6F %. E& 6 & & F& & " #& I +E6F % . E& 6 & & F& :
& " #& I@ +EF--. E& 4 '& F& : $ $ & ; "---#& I= +EF-. E& 4 '& F& : $ & "--#& I@ +E? . E& A ?& & 3
& = " # = I +E: F= . E& : : & & , F$&
& " = #& I- +6?;@. E 6 & 6 ? )& 6 ' & & @ " ;@#& =I @ +6* =. 6* , & $ $ & ; " =#& ;I +A . 4 '& 6 A$)) & E $& $ & ! ! ; " #& = I +> =. 4 ' ? >
& E* 1 ' & " ! @ " =#& =I -
© 2004 by CRC Press LLC
888
Chapter 9
GRAPHICAL MEASUREMENT
+> . 4 ' F >& ' $
& # = " #& I + : -. ( & : : & E & : $ & " -#& I + : . ( & : : & E & : * 1 $ ' & $ $ ! ! " K (*& 4 L E$& A & 4 $#& B( $ " #& I- += . L & ( & % & J & $ " = # I= +?@ . E ?& $ & % ;- "=@ #& =I - +A C -. A
E C& : $ $ % & &!! % " -#& I@ +> . L >*' & : & ' & J & $ " # ;I-- +: -. : : & & " -#& =I ; +:;. ( :& 0 $ & " ;#& ;I; +=-. ? & ' & " =-#& = I +=. $2 2'M ) & E $ ' & " =#& I=
© 2004 by CRC Press LLC
!'
Section 9.2
9.2
889
Domination in Graphs
DOMINATION IN GRAPHS
B$ ' E ,$ >$ >$%$%' $ @ J 2 H E! $ ; E =
9.2.1 Introduction C * 8 9 " # *
' 1
0 B ' $ )&
& 2 & & $ 1 '& ' 1
) ' ' &
+ =& = . 1 $% * ' $* '
$ +( ;.& + @.& + A -. 4 * ' &
$ + =. * --
DEFINITIONS
3 ( 5 " $ # * 1
! * 1 ( * 1
3
% "# $ ' C $ % "#
EXAMPLE
3
5 & 5 ' 4 $ * & $ ' " % "#% # % "# 5
© 2004 by CRC Press LLC
890
Chapter 9
Figure 9.2.1
5
& 5 '
GRAPHICAL MEASUREMENT
+
Equivalent Definitions of a Dominating Set $ ' N 1 % ) C /$ * 0
DEFINITIONS
'(
3
* 1
" &
' * 1#
* 1
&
!
( "#&
#
3
'
Ë
¾ ( +. 5
$
' 3
$
-
¾ * *$ $
'
'"
#
&
) %
3
)%
3
A
*
( +. 5 ( "#
* ' * 1 & ( +.
"
3
* '
* 1
& " #
* 1
!
3
" %%
$
% "# 5
$
!
© 2004 by CRC Press LLC
% "# *
( )
-
'3
Section 9.2
Domination in Graphs
891
Applications of Domination
*
' 0 * $ ' % $ ' 4 & $ )& ' $ & $* ' & ' EXAMPLES
3
, +, ;. )
$ $ $* ' $ $
$* ' $
3
A $ +A @=. $ $ )&
& & * ' ' )
3
' B 0 * % * % " # * ! ' N % & * " #% * & & *
&
1 & LO & & +L;.
3
( '
* ' )
& $ % (
' /$
9.2.2 Minimality Conditions > & * ' $ * & * ' $ ' DEFINITION
%
3 ( $ EXAMPLE
3 4 4 $ & ¾ 5 '
$ 6' ) $
C $ : +:@. FACTS
3 ": H # +:@. A # 5 " $ # # ' #
3 +.3 1 * 1 # $ ( "## 5 < +.3 * 1 ! * 1 #
3
+:@. B 5 " $ # * 1 # & #
© 2004 by CRC Press LLC
892
Chapter 9
GRAPHICAL MEASUREMENT
3 +,E; . B * 1& 1 $ * * ' * 1 '
The Domination Chain
$ /$ ' DEFINITIONS
&3 3
( *
'
* !
&
* "#& 1 $ %
3 & "#& /$ $ ' 1 "( 1 $ #
3 C $ % "# ' & & D"#& 1 $ '
3 4 ' & ( " # 0 ¾ ( "# ( + . 5 ( " # ( *
* ' * 1 & ( +. ( + . 5
3
$ ' 1 $
3
1 $ ' $
& "#
& +"#
EXAMPLES
3
4 $ 1 N 2 3 @ ; = $& "# 5 * " # 5 @
Figure 9.2.2
!3
( + " # 5 * " # 5 @
4 $
N 2 3 & @ ; = @ ; = $& % " # 5 D" # 5 @ ">
& " # 5 +" # 5 @#
© 2004 by CRC Press LLC
Section 9.2
893
Domination in Graphs
4 $ 1 $ N 2 3 = @ = - $& " # 5 +" # 5 ">
& % " # 5 # %3
Figure 9.2.3 (
+ " # 5 % " # 5 +" # 5
FACTS
3 +, @. ( 1 '
3 +, @. 6* ' 1 3 +E ;=. ( ' $
3 +,E; . 6* ' 1 $
* ' 1 & * ' 1 $ & * /$ ' & 0 * ' E )' &
& ;=
!3 +E ;=. 4 * ' &
"# % "# "# * "# D"# +"# %3 +E4=. B & * "# 5 D"# 5 +"# REMARK
3 /$ ' & ) &
'< 1 ' -- *
$ * $ /$ /$
4
1 & E )' & 4*& '& $ +E4'$--. 2
% " # 5 " # *
$ $ 2 ' ' +' . $
$ $ ( % $ * 2 $
* + '-.
© 2004 by CRC Press LLC
894
Chapter 9
GRAPHICAL MEASUREMENT
9.2.3 Bounds on the Domination Number $ >% "
+?; . E + =.#& 0 $ REMARK
3
: * $' & % "# 6/$ ' $ ' P"# 5 & /$ ' $ $
' P"# 5 -& & 5
Bounds in Terms of Order and Minimum Degree
$ * $ * & * /$ 4 $ $ $ *
% "4 -# DEFINITION
3 5 Æ ' " #
* 1 ! * ' * 1 ' Æ & $& $ ' * 1 " #& * 1 ¼ ¼ FACTS
&3 3
+:@. B * 1& % "#
+4 ?L =& Q$=. B * 1& % "# 5 ' ' Æ '
3
% "# 5 2 ' +,E--. +J =.
3
B $
Æ "# & $ $ 4 $ * % %0 1 * 1 " $ 1 * # '& E + = . 0 8 9 4 $
Figure 9.2.4
3
( ## , ,)-
+ = . B Æ "# & & % "#
© 2004 by CRC Press LLC
Section 9.2
895
Domination in Graphs
¾ -Minimal Graphs
E + = . $ ' $
/$ 0 0 ' $ ' 2 *%% & " 0 = # DEFINITIONS
!3
( %* 1 '
3
%
Æ "# & "
# & "
# % "# %3 4 & ' ! * 1 ' %* 1 " 7 # ' - "
4 $ "## &3 ( $ ! ' '
' * & ' & * 1 B $& ' * & ' ' #" # " #
"
4 $ " # " ##
Figure 9.2.5
.
3 ( ' & ) ' - "
4 $ @#
Figure 9.2.6
( $/0 $/)0
3 ' %"# $ %! * $ & ' %" # $ * 1
$ "
61 - #
A ' ! $ ' . ' %"# ' %" # $ ' . ! ) * N $ : *
3
6
© 2004 by CRC Press LLC
896
Chapter 9
GRAPHICAL MEASUREMENT
3 ( * 1 ) * 1 * 1 ' %"# $ $ $
) "
61 - #
A 5 #" ;# #" # & 4 $ ;
Figure 9.2.7
1
FACTS
3 + = . B & & Æ "# 5 & % "# 5 & ' * 1 & % "#% B $& % 4$ & ! " # 5 " # 7 % & 5 & $ * 1
3
+ = . ( % ' & #" #
3 + = . B = Æ "# & % "#
!3
+ @. B Æ "# & % "# = * & $ "
61 #
EXAMPLES
&
3 ( '
' %"# $ ' %" # $ 4 $ = ) * ' ) * & $ * ) *
Figure 9.2.8
© 2004 by CRC Press LLC
( #
Section 9.2
897
Domination in Graphs
3 % $ 5 = " 4 $ # * $ 5 =
Figure 9.2.9 + $#
3 ' %
' $
'
$ 4 =
/$ ' A ¼ ' 4 * 1 ¼ & " ! # ' % $ 4 $
' ' * A $ ' $ "
4 $ -# 6
' $
%
Figure 9.2.10 ( #
More Bounds Involving Minimum Degree FACTS
%3 +E=& E -. 4 ' $
Æ & % "#
Æ
Æ
Æ7
&3 +( & (;& ;. 4 ' $
Æ & % "#
7 "Æ 7 # Æ7
3 +(;& ;. 4 $
Æ & % " #
© 2004 by CRC Press LLC
Æ 7
Æ
/
898
Chapter 9
GRAPHICAL MEASUREMENT
3 +C =. A 5 "¾ ¾ ¾ 7 ¾ ¾ # * ' & 7 % "# 7 Bounds in Terms of Size and Degree
$ FACTS
3 3
& % "# " 7 # + ;. B Æ "# & % "# " 7 # /$ ' ' ' " # B
DEFINITION
3
( 3 " # "
# "
#
¿ % 0
Æ "# & & % "# 0 &
EXAMPLE
( 1 ¿ % 4 $
3
Figure 9.2.11
( 2 + %"# 5 " 7 #
REMARK
3
( 2 ¿ % $ +
.
Bounds in terms of Order and Maximum Degree FACTS
3
+, ;& C( ; . 4 '
7P
© 2004 by CRC Press LLC
1 $
P&
% "# P
Section 9.2
899
Domination in Graphs
3
+4J -. 4 ' * 1& $
Æ 1 $
P&
% "#
7 "Æ #
P
Æ
/$ 4 @ 3 +;. 4 * 1 $
Æ &
% "#
" 7 Æ #
Bounds in Terms of Order and Size
J 2 +J @. $ 2 * * $%
B * $Æ
' ' & $
* 0 DEFINITION
3 ( $ $ /$ * * FACTS
!3 +J @. B 2 $ % & " % # " % 7 # 4$ & 1 $ 2 ' % 7 * & * $ * & % * %3
$ 4 =
* $ $ 4 <
& $ P"# 5 % "#
&3
+ . B 2 $ % P"# % & " % # " % 7 #
3
+, @&J @. 4 ' 2 &
% "# 7 7 4$ & % "# 5 ' * ' Bounds in Terms of Packing DEFINITIONS
3 ( 5 " $ # * & & & " #
!
3 1 $ ' )
B 1"#
© 2004 by CRC Press LLC
900
Chapter 9
GRAPHICAL MEASUREMENT
REMARK
3
> ) & * ( +. 5 & ) $ * $ % "#
& ( + .
FACTS
3 3
4 ' & 1"# % "# + ;. 4
& 1" # 5 % " #
9.2.4 Nordhaus-Gaddum-Type Results B @ +>@. ' >$ $ B ' * $ $ $ $ $ $ *
* * 4 0 $ $ DEFINITION
%3 4 & * 1 "# " # * !
' ' /$ ! FACTS
3
+?;. 4 ' &
" # " #
3
% "# 7 % "# 7 &
% "#% "#
+Q$=. A & % "#% " # 5 ' 3 & ! $ ' Æ ' &
3
+?( . B * & % "# 7 % "# " 7 #
$ *
A % !
3 + . A 5 & " # % " # 7 % " # 7 % " # 7 & " # 1 $ *$ $ % " #% " #% " # ; 7 R" # REMARK
3
4 4 ;& 1 & & $ 1 $ $ '
; 7 & ; 7 &
© 2004 by CRC Press LLC
Section 9.2
901
Domination in Graphs
9.2.5 Domination in Planar Graphs >% * 1 $
"
+?; .# $ $ $ B '
$ * ' $ /$ ,$ $ "
+4 .# FACTS
!3 + @. $ $ * ' & $
%3 + -. 6* ' $
1 4 $ & 4 $ $ /$ $
&3 + -. 6* ' $ $
3 + -. 6* ' $
3 + -. 6* ' $Æ
' $ @& $ 3 + -. 4
$ & 0 ' ' %
$
3 + -. 4
$ & 1 $ $
EXAMPLES
3 4 $ & $ ' *' 'N + @.& $ 4 =
Figure 9.2.12 ( #
© 2004 by CRC Press LLC
)
902
Chapter 9
GRAPHICAL MEASUREMENT
3
$ 4 ' 4 $ B ' ' $ ' *
4$ & ' ! *
& $ $ $
/$
Figure 9.2.13
( # + )
REMARKS
3 S 4 =& *' 'N + @. *
* $ $ B $&
$ $ ' : & ' * & & * $ $ $
3 C 4 0 ' ' $ @& $ )
9.2.6 Vizing’s Conjecture : $* ' ** $ B @ J 2 +J @. $ $ $ $ $ 4 * ' N ! $ & $ ** CONJECTURE
! +J @=.3
4 '
& % "#% " # % " #
DEFINITION
&
3 ( % "# 5 "#
$ $ $ $ + . $
© 2004 by CRC Press LLC
Section 9.2
903
Domination in Graphs
FACTS
3
+, ; . B $ % " # 5
% "#& ' & % " #% " # % " #
3
' 4 $
' & J 2 H E% ! $ $
" ' * ' ? L +?L =@.# ' " ' * ' +6 .#
$ $ E) $ +E$--. 3 +E$--. 4 '
& % "#% " # % " #
REMARK
!3
4 $* ' $ J 2 H ! $ &
+ .& + .& H E ; + = .
9.2.7 Domination Critical Graphs B $ * ' $ 4 & '
$ ' $
+,> $=. +C( ; . , & E & $ +,E $==. $
* 1 $ ' * 1 * & '
$ ' "
+$,=.# DEFINITION
3 ( * ' $"#& %" 7 # 5 % "# B % "# 5 & % $ %% % % "# 5 % " 7 # 5
$ "# FACTS
!3
%3 &3 3
% "#
%% % "* $$'#
'
%% % ' +$ -. ( %% % ' 5 2 ,
2 * , ' %% % 2 , +$,=. (
$ %
3 3 3
+$,=. %% %
+$,=. 6* ' %% % * %
+C -. 6* ' %% % 1 * %
© 2004 by CRC Press LLC
904
Chapter 9
GRAPHICAL MEASUREMENT
REMARKS
%3
' %% % %% % *
2 4 0 & $ $ %% % 1 ) $ ' %% %
&
3 B * ' %% % 1 *
3
4 $* ' $&
$ H E @
+ = .
3 $ $ * 1 & *
$
4 $* '&
E + =.
3
> 1 $ N
% 0 * $ & & $ $ 4 1 & $ ' ( ' $ ' ' ' + -. * 1 & $ J & 2
$ J
9.2.8 Domination Parameters ' ' ' C 0 ' ' ' + . 2 0 DEFINITION
3 4 * ' &
' + . 0 '
% " 3 #
$ $ $
EXAMPLE
3
1
+ . " +E ;;.# + . * " +E =-.# + . " +C; .# + . " /$ +L =.&+L E==.# + . " % + =.# @ + . ' " ' +A C ;;.#
© 2004 by CRC Press LLC
Section 9.2
905
Domination in Graphs
REMARKS
3 ,' 0 & % "#
% " 3 # ' ' C 1
& 1 * & * * % 3 $ 2 * 0 ' * ' N
3 (& ' 0 ' 4 1 & /$ * 1 $ % +4 ?=.
References +( . > ( ? & ! & ? C ' & +(;. J B ($*& 6 1 ' $ '
* & "$ # ! ' ($ "@# " ;#& I= +,E--. Q$ , & 6 ? E )' & C ' &
& F & 61 /$
** & ) @ "---#& I- +, ; . ( , ) A 4 & 1 ' $ E $ & &! % !'& "# " ; #& I= +,> =. ,$ & 4 '& ? >
& E A $N & & ; " =#& I@ +, @. E , & # ! " $ & A& @#& -I +, ;. E , & & >%& ( & ; +,E; . , , M 6 ? E )' & % %
& & $ & " ; #& I +,E $==. E , & F E & $& J 1 % & = " ==#& ;I; +E=. K E K '& : * 1% $ % & - " =#& @;I=- +E -. K E K '& ( % $ & * " -#& -I-@-
© 2004 by CRC Press LLC
906
Chapter 9
GRAPHICAL MEASUREMENT
+E$--. C 6 E) $ & ( /$ ' J 2 H ! $ & +!) ; "---#& & > & " # +E =-. 6 ? E )' & &
& & - " =-#& I +E4'$--. 6 ? E )' & : 4*& E '& ? $ & ( % 2 "% #%
& "# "---#& ;;I +E4=. 6 E )' & : 4*& E '& ( & E $ ' & $ & " =#& I= +E ;;. 6 ? E )'
& ' & ; " ;;#& ;I@ +E ;=. 6 ? E )' &
& ? &
' ' & &!! " ;=#& @%@= +6 . 6%F E
)& $ $ & " #& I; + -. O & C & ( & BB& + '-. O & C & ( & E '& ( % 2
/$ $ & +4 . 4 & & L 'N& A * %
1 $
& ! @ " #& I +4 ?=. ? 4 4 ) ? & % & B K (* (? )& & ! ! "L2& B =#& =& =I-- C ' +4 ?L =. ? 4 4 )& ? & A 4 L & ? & : * $ & @ " =#& =;I +4J -. 4 A J)& 6 $ & =- " -#& I +?; . ' ?& * !, # )!& C 4
& 4 " ; # + . C & ( & E & >$%$% ' $& @ " #& I + -. C ( & & - "--#& I + . 4 ' C ' & E ' BJ3 & -! - " # ; I
© 2004 by CRC Press LLC
Section 9.2
907
Domination in Graphs
+ . , 4 & : J 2 H ! $ & = " =;I @
#&
+ . , 4 & : J 2 H ! $ % $ & " #& -I@ + ;. C ' & 3 (
* *
& " ;#& I; + =. C ' &
& ? & .! # ) & )) & > K)& = + = . C ' &
& ? & , ' & )) & > K)& = + =. C ' ? & % & " =# I-@ + -. C ' ( & E $ 3 0 & + A -.
E A)& & & *$ = > & > K)& - + @. ( & 3 ( $* ' * ' " E ? #& @ " @#& I; + . ( & ( $
%
$ 1
2 & " #& I@ +?L =@. ? A 4 L & : $ BB3
& - " =@#& ;I-@ +?;. 4 ? E '& $ ' >$%$ $ H H$ & % ; " ;#& ;=I;- +?( . ? ? ($$& & * ) " #& ;;I= +L;. ? LO & & ? & : *
% & ( " ;#& I- +L =. A A L & ! & & > S *& =
!
+L E==. A A L , E22 & )& ! @ " ==# @;I; +A C ;;. A A )%4 ? 6 C : $
& &!! - " ;;# I-
© 2004 by CRC Press LLC
908
Chapter 9
GRAPHICAL MEASUREMENT
+A @=. E A A $& * ! & % & > K)& @= + @. *' L 'N& $ & " @#& I + = . C E$ , & $
& " = #& ; I;@ + ;. ( ? C &
) * $
& / @ " ;#& I +' . E '& J * ' $
& "# " #& @I;; +>@. 6 ( >$ ? C $& : ' & ! @ " @#& ;I;;
0 +;. E '& $ H H$ & + % 10 ; " ;#& -;I; +Q$=. E ' > Q$& % & @ " =#& I +:@. : : & # & * & B& @#& -@I
! = "( &
+J =. , A J)& E 2 /$ %
* $ & " =# I@ + @. , (
& & $
& " @#& ;;I +C; . 6 )$ , C )& $ & " ; #& @-;I@ + . A ( & 1 $ $ * $ & =; " #& @I; + ;. A ( & ,$ $
& " ;#& I +$ -. $ & E & =@ "
-#& I@
+$,=. $ , & & & " =#& @I;@ +J @. J J 2 & $ & ( !2
" @#& -I
+J @. J J 2 & ( $ 1 ' $ & ! @ " @#& ; I;
© 2004 by CRC Press LLC
Section 9.2
Domination in Graphs
909
+J @=. J J 2 & $* '& - "@# " @=#& ;I +C( ; . , C ) , ( '& & ! 3 " ; #& ;-%; +C( ; . , C )& , ( '& 6 )$& *
' & B $ & ( & B 3 & " ; # +C =. L C & $ * ' & % 4!!5& @ " =#& I +C -. 6 C! )&
% & " -#& -I
© 2004 by CRC Press LLC
910
9.3
Chapter 9
GRAPHICAL MEASUREMENT
TOLERANCE GRAPHS ! " " B
Introduction $ * 1 * ! 2 $Æ
' &
& 1
B & * * N ' $ * $
(
( $ $$' ' * '& $ ' !$1
9.3.1 Intersection Graphs ( ' ' * & * ! ' * ' Ordinary Intersection Graphs DEFINITIONS
3 A 5 ' & T"#& * * 1 ! ' 5 / 5 ( 1 ' $ 5 T"#& ' ' ' ' "# 5 $& $ "# ' 5 C 5 T"#&
3 & "#& $ % ' $ ' $
3 ( ' ' 5 $ $ * ' $ " # $ " # 4 $ $ $ 1 /$ * 5 ' 3"#
6 & /$ /$ 1 $ %
© 2004 by CRC Press LLC
Section 9.3
911
Tolerance Graphs
EXAMPLE
3
$ 5 5 & 5 & 5 & 5 & 5 5 T"# 4 $
Figure 9.3.1
( 1
FACTS
3 3 3 3
" 2 ) H # +. 6* '
& "# 5 3"# +LC;=. 3"# >% +6@@. 4 ' 5 "#& "# +6@@. 4 * '
REMARK
3
' $ $ +
.
Interval Graphs
B * 0 $
%
' +;. $ ' +, . ' $
* $ +4 =.& +=-.& + .& + =. :' )$ $ DEFINITIONS
3 ( '
*
3 ( * * *
3 ( * * ' 3 (
* $ & ' * & $
!
3 ( $ $ % 2"# 0 " # " # 2"# " # 2"# * "#
© 2004 by CRC Press LLC
912
Chapter 9
GRAPHICAL MEASUREMENT
EXAMPLE
3
4 4 $ & *
Figure 9.3.2 " #
# #
FACTS
3 +A ,@. ( * ' $ $
3
+ @. ( * ' $ $ *
3 +@ . A /$ * 3 "# * " # $ * " # * $ $ Chordal Graphs DEFINITIONS
%
3 (
$ $
'
&
3 ( ' $
3 3
( * 1
"% ' # 0 &
$ $
( * & * 1 $ $ * 1 $
&
REMARK
3
$ : $ +,A . + .& 1
FACTS
!3 %3
+,$;& ;& C;=. ( ' $
+4$@& ;-. ( '
© 2004 by CRC Press LLC
Section 9.3
913
Tolerance Graphs
Competition Graphs DEFINITION
3 A # * 1% % 2 4 2& ' 4" # 5 " # 2& 5 4" # 4" # " T"# ( 1 # $ 5 T"# ' $% * # EXAMPLE
3
4 $ #
Figure 9.3.3
( #
REMARK
3 E ' $ ' E +E;=. % $ '
' B 1& # $$' ' +;=. $Æ
$ * & $ % ' $ * /$
1 * ' $
"
A$= & L # $ * %
2
+ . ' FACTS
&
3 + $,=& A$=. ( '
' * 1% "# 5 $ /$ * & & 0 5 /
3
+ $,=. ( ' '
3"# "#
3 + $,=. ( '
* 1 "# 5 & /$ * $
5 /
3
+$ =. ( "# ' /$ * % & " & 1 & 5 & $ #
© 2004 by CRC Press LLC
914
Chapter 9
GRAPHICAL MEASUREMENT
9.3.2 Tolerance O$ & +=. +=.& $ 2 * B +? $ . 1 N ' $
, ) & $ 0 DEFINITIONS
3 A 5 ' $ 0 & 6 % * & %*$ $ $ & * $ (& 7 % * & %*$ & ' $ 0 * $ 7 ' 7& 6& H * 1% "# 5 $ "# ' 5 / 6" # 7" #
3
7 1 & 7& 6& * & $ 7% 7& 6& H (
H& 0
p-Intersection Graphs
' ' 7% 2 & 7 $
6 $
DEFINITIONS
3 4 & ' 5 $ 0 0 * "# 5 $ "# ' 5 / ( 1 ' %
3 ( ' ' $ "# $ & * ' $ & 5 ½ $ $ & $ /$ *
!3 $ ' $ % %3 ( %
' $% * FACTS
3
+? . 6* ' % & ' *
3 +BL . ( % '
' % /$ * ' "#
3
4 * ' & % $ ' % /$ *
© 2004 by CRC Press LLC
/$ $
Section 9.3
3 !3
915
Tolerance Graphs
+L . % $ /$ "#7
+BL . ¾ % 5 %3 +? . %
'
'
REMARKS
3
E ' 5 & % % /$ * ' /$ * & * '
3
% $ Æ $& * ?L C & 6 ;.#
5 "
+EC &
3
,' ' ' * $
&
$ % 4 1 & '
* ' & % ' $
' + .
3 4 $ ' ' 7
Tolerance and Intervals
$ +=& =.
C 5
' *
DEFINITIONS
&
3 ( 7% ' 5 * 6" # 5 & * & 7" # 5 " #
% * " # ' & : ' 7% * & & 7" # 5 1" #& & 7" # 5 7 &
3
( & $ $ & ' '
3 ( % *
'
EXAMPLE
3 E ' * ' * % * & $ *
* 4 $ % * & $ *
© 2004 by CRC Press LLC
916
Chapter 9
Figure 9.3.4
GRAPHICAL MEASUREMENT
$# #
FACTS
&3
+=. ( * ' % * 5 / ' $ % 5 /
3 3
+=. % * )' +=. % *
Some Special 7-Tolerance Interval Graphs DEFINITIONS
3 ( 7 *
7% * $ %
3 ( 7 7% * $
* $ * '
$ 7 # * ' & 0 -& 7" 5 7"& # 5 3 ( # 7 7% * * ' ( $ 7
3
FACTS
3
+,4 BA . 1 % * % $ *
3
+? . ( $% * ' $% $ *
3 3
+? . (
( 7% *
+?-. 4 * ' &
( 7% *
REMARKS
!3
$ $ 7% * 7% $
* $ * $ 7 % %
%3
4 7% & /$ ' $
7 5 * & ' ( & $ $ $ $&
© 2004 by CRC Press LLC
Section 9.3
917
Tolerance Graphs
1 $ ( B
& +=.&
% * EXAMPLE
3
4 $ % *
Figure 9.3.5
( $# #
Tolerance and Subtrees
4 ) ;& $ $
* $
U
REMARKS
&
3 B $
$$
$* $ ' & $ $ +, .
3 C
0
&
$ +?$--& ?$-- . DEFINITIONS
3 ( " # % ' $
& 1 $
1 $
!
3 ( " #% * ' & * B & $
' ' ! * &
FACTS
3 +?$--. B " #% & " #% 7 @
!3
+?$--. 4 & 1 " #% ' ) 1 " #%
%3
+?$--. 6* ' 1 " #% * ' 7 "#
© 2004 by CRC Press LLC
918
Chapter 9
GRAPHICAL MEASUREMENT
Tolerance and Competition graphs DEFINITIONS
%
3 A 7 ' $ % * % * ( 7 '
7% ' $% *
&
3 A 7 * 5 " # %$ ' % * ( 7$ ' $ $ "# ' 7" # FACTS
&3
+, J . ( 7% '
1 7%% /$ * "#
3
+, J . "# 6* ' % " # 1% " # $% $ $% %
3 +,EJ --. B 7" # 5 & 7%
' ; 5 REMARKS
3
B $ & * - 8 "
+, J @.#
3 B +,EJ --.& $ % N $ 7& % 7% 2
3
' % $ +(AA$ .& $ 0 %
3 $ * $ 7% $
+-.& 0 ) * 1 $ * ' B * ' $
' ' 3 *& $
& $
References +(AA$ . E ( ( & A A '& ? A$ & ( L L 2& > % 7% & -- " #& ;I-; +, . , 2 & : ' 0 $ $ & ! - " #& @-;I@-
© 2004 by CRC Press LLC
Section 9.3
Tolerance Graphs
919
+, . 6 ,
) & > $
& ! " #& I@ +,4 BA . L ,& E 4 $& B) A ? A '& $ & ! @- " #& I; +,A . ( ,V & J , A ? & !, '& B( ( & B(& & (& +,EJ --. E , & ? E J '& , $ N & "---#& I; +, J . E , & 4 J '& & 3 ! ! ; " #& I +, J @. E , & 4 J '& %7% % & ! @@ " @#& -I-= +,$;. ,$ & ( $ & -I
" ;#&
+EC . E$ , C & % $ % $ * /$ & " #& I@ +E;=. ? 6 E & . 6 & S * ' & & >?& ;= + $,=. $ E , & ( 2 & ! @ " =#& I; +6 ;. > 6& B $ & & ; " ;#& I +6@@. 6W& ( C A M& ' & = " @@#& -@I +4 =. E 4 $& * '! 1 * '! & C '& > K)& = +4$@. 4$) : ( & B * & / " @#& =I= +;. 4 * & $
1 ' & & @ " ;#& ;I@ + @. E ( ? N& ( 2 ' * & @ " @#& I= +=-. E $ & ! # & ( &
& =-
© 2004 by CRC Press LLC
920
Chapter 9
GRAPHICAL MEASUREMENT
+?-. E $ & 6 ? ( > )& ( 7% & $ & -- +=. E $ E A & ( 2 * & " =#& I +=. E $ & E A C & & ! " =#& ;I;- +-. E $ ( > )& ! & E S * ' & & -- +$ =. $ & E & * " =#& =I V ( * & * " ;#& +;. !M& S @ +BL . B)& %L L & ( L
& 4 4 & % & * " #& I= +? . ? & : % /$ * $ & * " #& I +?L C . ? & ( 6 LM 2' , C & % $ $ %
& " #& @I@ +? . ? 4 & $% * ' $% $ * & *# @ " #& I= +? $ . ? & 4 $ & ( $ & B $ ! "K (* & & 6# C ' B
& > K)& * " #& ;-I; +? . ? & 4 6 & $ & " #& ;I;; +?$--. 6 ? $ & E
& "---#& ;I +?$-- . 6 ? $ & '
& "---#& I +L . % L & $ * & B 7 ($ ) 8 "? & & 6#& + * .& >%& ( & & I@ +L . % L & ( L
& 4 4 & % & 3 ! ! ; " #& @;I;=
© 2004 by CRC Press LLC
Section 9.3
Tolerance Graphs
921
+LC;=. A L$& A ? ) ' E L C& E* ' /$ ) ' O & " ;=#& I +A ,@. E A )) ) ) ? E ,& 0 ' * & . " @#& I@ +A$= . ? A$ & 4 & & % ' & B ! # &! ! ! "4 & 6#& & > K)& = & I +A$=. ? A$ ? '
& ( 2 $ & ! @ " =#& I
+. 6 "2 !%# 2 ) & $ $1 M M H & . " #& -I-; + . ( L
4 & * & B( ( & B(& & (& + =. , ) > & & & , & = +@ . 4 & B N & B # 5 "4 '& 6#& ( & > K)& @ & I@ +;=. 4 & 4 & & 1 ' & B ! # "K (* X A )& 6# +3 * @.& & > K)& @=& ;;I - +;-. ? & $ & ! ! " ;-#& ;I@- +C;=. ? C & $
& " ;=#& @I@;
© 2004 by CRC Press LLC
922
9.4
Chapter 9
GRAPHICAL MEASUREMENT
BANDWIDTH !# $% 4$ 6 ' $ ,$ , : , E , B : B* @ E
Introduction +@. $ & * 1 % ' $ B / ! * & P 0
/ $ *$ P * B $ ) ' 8( & ' * & 3 $ * % $ P 2 9 ' ' $ & 0 )
+EE =. +AC .& 1 *
& * % * $* ' 4$ $ $ +E==. + . ( $ $ 0
9.4.1 Fundamentals The Bandwidth Concept EXAMPLE
3 4 $ N * 1
% ' $
9¿
! '
Figure 9.4.1 3 )
© 2004 by CRC Press LLC
9¿
+ #)# 4
Section 9.4
923
Bandwidth
Figure 9.4.2
( #)# 9¿ 4
4 4 $ & ! ' 1
* * 1 ' & $ $ $ 1 4 $ ' $ "8$ 9# $ $ $ & ) * 4 9¿ $ $ $ 4 $ '
$ 2 DEFINITIONS
( " * #
3 3
(
! ' 3
A ' $ ' & , "#& * ' , "# 5 ' " # ' "# 3 $
3 3
, "# 5 , "# 3 '
$
( $ ' $ , "# 5 , "# " & $
* , "##
Applications
$ ' +AC . $ $* '& & EFFICIENT MATRIX STORAGE
$ $ ! ' 1 * $ * & ' , "# *
B , "# & 0 * VLSI LAYOUT
$ JAB $ % $ $ $ $ ( 0 ' * ' * $
$ , "# 1 $
$ $
© 2004 by CRC Press LLC
924
Chapter 9
GRAPHICAL MEASUREMENT
INTERCONNECTION NETWORKS
(
)
'
*
) $ '
' 3 "# " #& $ ' ' " # & ) $ '
' " # ' " # B $ ) &
' " # ' " # B 5 & ' $ , "#
)
'
)
' %%
BINARY CONSTRAINT SATISFACTION PROBLEM (
** *
*$ &
&
* *$ $ 0
* *
&
* * * '
B
, "#
' *
&
' $ *
Algorithms DEFINITIONS
3
'
'
$
$ 8K69
, "#
8>:9
3
4 * 01 *
& $ 8K69 , "#
$ ' 8>:9 3
(
1 $
$
'
' & $ *
!
3
(
%&
* 8K69 8>:9
* ' ' & $
' $ '
$ ' Æ $
FACTS
3
+;@.
>%
3
+?L;=.
>%
1 $
3
+=-.
*
%
© 2004 by CRC Press LLC
* ' ' 01
Section 9.4
925
Bandwidth
REMARKS
3
% $ * % 01
$
3
B *
4 * & ' $ ) ' ' $ $ *
1 $
& $& >% & ' '& * '
& $ 4
3 ' 1 *
* & % 1 /$ * & * *
+AC . 4$ $* ' +6*; & ; & =. C ' $ * $ 1 '& 1 *$ $ $ & ' $ $ 2 ! ' 1 * 0
3
( ' 0 * 1
+(@.& N * $ 0 * $ +@=. +E$ @ . ) $ ;-H& * + ;@. ' * * $ +EE =.
3 ) 1 1 0 $ +: -& L @& ;& K =& ,LJ --& 4 --& $-& L-& E-& L-.
9.4.2 Elementary Results The Bandwidth of Some Common Families of Graphs DEFINITIONS
%
3 ½ ¾ * 1 2 * & & * ! '
'
&3
9 * * & %
% ' /$ & * ! '
N 1 ' FACTS
3 3 3
, " #
5 &
* *
, " #
5 &
' * *
, " #
5 &
© 2004 by CRC Press LLC
* *
926
Chapter 9
GRAPHICAL MEASUREMENT
3 +6 ; . A * , "½ ¾ # 5 "½ ¾ # " 7 # $& , "½ ¾ # 5 7 +E;-.
!3
+@@. , "9 # 5
EXAMPLE
3
4 $ $ 9 4 $ % $
Figure 9.4.3
5 + )
A Few Basic Relations
%%% %(%% * Æ "# Æ "#& * ' * $ $ Æ "# P"# FACTS
%3 +E L;. ,"# Æ "# &3 B $ & ," # ,"# 3 B & ,"# 5 ,"# ,"# , " #
3
+E L;. B & , "#
On the Bandwidth of Trees DEFINITIONS
3 ( " # 5 ' ' 5 0 * 1
(
' ' 0 $ $ *
3
* * * 1 ' & * * *
© 2004 by CRC Press LLC
Section 9.4
927
Bandwidth
FACTS
3
+E L;. 4 '
& , " #
" # *
3
+CK & (L @. A
" #
6/$ ' '
$ * * , " #
3
+ . A %'
, " # 5 " #"" ##
3 +E==. B
0 , " #
'
&
EXAMPLE
3
4 $
$
& , " # 5
/$ ' $
Figure 9.4.4
5 + ) +
Alternative Interpretations of Bandwidth
* : * +A --. DEFINITIONS
3
& & * * 1
* '
3 ' ' ' "# 5 7 ' "# * 1
' 0
FACTS
3 +EE =. 4 ' 1 ! & *$ " / # E 0 ' $ $ ! $ 1 $ / & ) * " / # 2 & 2 H /$ * ' 2 ' ! ' $ 1 ! ' 1
© 2004 by CRC Press LLC
928
Chapter 9
GRAPHICAL MEASUREMENT
!3
+EE =. ' $ *
%3
, "# 5 , "# ' $ $ $
9.4.3 Bounds on Bandwidth Two General Bounds FACTS
&3
+@@. 4 & : $ $ , "# 1 : 3 5
3
+E=-%. 4 & P $ 1 ' ½¾
, 1 3 5 Subdivisions, Mergers, Contractions, and Edge Additions DEFINITION
3 & & ' ' ' $
B 5 & FACTS
3
+E:=@. B ' $ * &
, " # ", "# # $
3
+E:=@. 4 ' * "#&
, "# , " # , "# $
3
+E=-%& E:=@. 4 ' $ "#&
, "# , " # +, "# . $
3
+CC K . A , "# 5
" "## 7 , " 7 # " "## 5 " "# #
© 2004 by CRC Press LLC
1 $ *$
"# 7
7 "# @
"# @
Section 9.4
929
Bandwidth
EXAMPLE
3
4 $ $ 4 ' * 7 * & $
Figure 9.4.5
( + ) + )# +
REMARK
3
4 * $ /$ ' ' 6V3
, " 7 # , "# & 7 ' ' 0 +E=-%. Nordhaus-Gaddum Types of Bounds DEFINITIONS
3 & '
& * 1
3 ( ' $ %* 1 * ' $ %* 1 0 '
FACTS
3 3
& "# , "# 7 , "# +E6E=. * & $ , "# 7 , "# "# & "# ' !3 +E6E=. * & $ "#& "# , "# 7 , "# %3 +4$C -. A ' "# 5 1 ,"# 7 ,"# 3 %* 1 " 7 # ' "# 7 ;" # +E6E=. 4 '
Other Bounds FACTS
&3 3 3
+E L;. A , " # , "#
& , "# "# ' +E=-%. A $ " # * ' * , "# 5 "# ' * ' * 1& & +E=-%. 4
© 2004 by CRC Press LLC
930
Chapter 9
GRAPHICAL MEASUREMENT
9.4.4 On the Bandwidth of Combinations of Graphs *
' ' & $ Cartesian Product DEFINITION
!
3 & & " # 5 "# " # " #" # $ " # ' " # 5 $ " # "
# 5 $ "# FACTS
3
+E;& E L;. 4 &
, " # " #, "# "#, " #
3 3
+E;. 4 & 1 & , " # 5 B & , " # 5
EXAMPLE
3
4 $ @ $ & ' 4 & @
Figure 9.4.6
( ) + )
Sum of Two Graphs DEFINITION
%3 & 7 & " 7 # 5 "# " # $ " 7 # 5 $ "# $ " # 3 "# " #
FACTS
3 +A C C . A $ "# " # , "# 5 "# , " 7 # 5 "# 7 " #
© 2004 by CRC Press LLC
Section 9.4
931
Bandwidth
3 +A C C . A $ "# " # , "# 0 "# "#7 " # , " 7 # , "#7 " # 1 , " # 7 "# " # 7 "#
!3 %3
+A C C . 4 & , " 7 # 5 7 +A C C . 4 ' &
, " 7 # 5
7 @
5
5 5
EXAMPLE
3
4 $ ; $ 7 & ' 4 &
Figure 9.4.7
( ) + ) 7
Corona and Composition DEFINITIONS
&
3 & Æ & $ ' "#
& * 1 B "# ' & * ' " #
3 & " #& "" ## 5 "# " # " #" # $ "" ## ' " # $ "# "
# 5 $ " # FACTS
&3
+E=-% . 4 & , " Æ # , "#" " # 7 #& $
3
+E=-% . 4 & , "" ## ", "#7# " #& $
© 2004 by CRC Press LLC
932
Chapter 9
GRAPHICAL MEASUREMENT
Strong Product and Tensor Product DEFINITIONS
3 & "# #& ""# # 5 "# " # " #" # $ ""# # ' $ "# $ " # 5 $ " # 5 $ "# 3 & "# #& ""# # 5 "# " # " #" # $ ""# # ' $ "# $ " # FACTS
3 " # " #
& , " " # # 5 7 7 7 B & , " " ## 5 7 B & , " " # # 5 7
3
+AC . "# B
+AC ;% .
7 , " " # # 5 7 7 7
* & *
9.4.5 Bandwidth and Its Relationship to Other Invariants ' $ * *
$ * * $' $* ' +, $=& , $ .
$$ $ & , 5 , "#& Æ 5 Æ "#& Æ 5 Æ "#
5
"#& $
5
$ "#&
Vertex Degree DEFINITION
3
& $$'
*
FACTS
3 +E;-. B
/$ & , 1 "/ # / 5 '
, Æ 3 +EE =. B
& , "Æ # © 2004 by CRC Press LLC
Section 9.4
933
Bandwidth
EXAMPLE
9¿ $ 4 $ = , 1 * ¿ & Æ 5 & , 5 ""# # 5
3 4 % ' $
Figure 9.4.8 5 + ) +
Æ 5 , 5
Number of Vertices and Edges for Arbitrary Graphs FACTS
3 + $,= . , "$ 7 #
3 +, $=. ,
" # =$
& , & $ " # " # $ & $
!3 +AC ;%. B
%3 + $,= . B , &
$ " #+" , #. &3 + $,= . B , & $ " # + " #. 3 +(A 6 . A , 5 " <# - 5 < 5 * % & " <# & $ & < " , # & " "<# < " , # $ $ * ,
Number of Vertices and Edges for Graphs with no
FACTS
3 +E=. A " , # 1 $ $ %* 1 * , * , " , # ,
2 & & , & " 7 #, " 7 #, $ , 7 " 7 #, 7 " 7 #, & $
3 +,E $4 J --. A
© 2004 by CRC Press LLC
934
Chapter 9
GRAPHICAL MEASUREMENT
3
+,E $4 J --. A 2 & 5 " 7 #, 7 =, = 01 $ - = 5 & , " 7 7 #" =# $ , " #& $
Radius and Diameter DEFINITIONS
3 & "#& $ $ * 1 * ' * 1
3 & "#& 1 $
' * FACTS
3 3
+EE =. 4 ' & , Æ "Æ #
+E;-& E L;. 4 ' & " # "# ,
"#
3 +E = . 4 ' & , 1 " "¼# # "¼ # 1 % $ ) * $ ¼ * * REMARK
3 '
* $ 4 @ 4 $ % $ * 5 & 5 & , 5 &
* $ $
Figure 9.4.9
5 + ) + 5 5 , 5
Vertex and Edge Chromatic Number DEFINITIONS
3 "* 1# & >"#& $ $ $ ' 3 "# ' &
& ' " # 5 ' "#
!3
& >¼ "#& $%
$ $ ' 3 $ "# ' &
* 1& ' " # 5 ' " #
© 2004 by CRC Press LLC
Section 9.4
935
Bandwidth
FACTS
!3 %3
& , >"# +, $=. 4 ' & , > "#
+E L;. 4 '
¼
Vertex Independence and Vertex Cover Numbers DEFINITIONS
%
3 & "#& ' * $
&
3 & ="#& % ' * $ * ' *
FACTS
&3
+E;-& E L;. 4 '
&
"# , "#
3
+ ;@. 4 '
& , ="#"#
Girth, Vertex Arboricity, and Thickness DEFINITIONS
3
& "#& 2 $ '
3 & ; "#& $ $ $ "# $ * $
$ ' $
3 & $ $
&"#& $
FACTS
3 3
& , " "# #" ; "# # 7 . B &
+, $ . B +, $
, +" "# # " "#. "# 7
3
+, $=. 4 '
© 2004 by CRC Press LLC
& &"# 1 ", #
936
Chapter 9
GRAPHICAL MEASUREMENT
9.4.6 Related Concepts $' * *
' Bandsize
, 2 $
O' +AC
.
DEFINITION
3 A ' $ ' & "#&
$ N $ ' ' * ' "# 5 "# 3 ' $ FACT
3
+6 C = . 4 ' & , "# "#
Edgesum (Bandwidth Sum)
$ 0 +@. 6 $ $ + ;-& B;& B;@& EE =& E==& KC & K$$ & K$$ @& AC . DEFINITION
' $ ' "# 5
¾3 A ' " # ' "# * ' "# 5 "# 3 '
$
FACTS
3 3
4 % ' $ 9& "9 # 5 " # A ) & $ >%
Cyclic Bandwidth
E' $ +A & A ;& L
& AE-.
DEFINITION
3 A ' $ ' , "# 5 1 ' " # ' "# 3 $ 5 * ' , "# 5 , "# 3 ' $ Edge-Bandwidth
6 % $ * $ +? $C
.
DEFINITIONS
3 (
'
© 2004 by CRC Press LLC
! $ "#
Section 9.4
937
Bandwidth
!3
A ' %$ 1 ' " # ' " # 3 ! * ' , ¼ "# 5 ,¼ "# 3 ' $
' , "# 5 ¼
%
3 -"# $ "-"## 5 $ "# * -"# ! ' ! FACTS
!3 %3
4 ' & , ¼ "# 5 , "-"## 4 ' & , "# , ¼ "# & & , ¼ "# , "#
EXAMPLE
!
3 4 $ - % $ $ -"# > % $
$ * 1 -"# B Æ $
, "-"## 5
Figure 9.4.10 , "-"## 5 , ¼ "# 5
Profile
&+ $ +A K$ & AC
.
DEFINITIONS
&3 A ' $ & * 1 "# ' "# 5 1 ¾ "' "# ' "## ( +. 3 A ' $ ' ' "# 5 ¾ "# ' & "#& * ' "# 5 "# 3 '
$ FACTS
&3 3 3
"# 5 "# 5
B & " # 5 7 " #
© 2004 by CRC Press LLC
938
Chapter 9
GRAPHICAL MEASUREMENT
Cutwidth
$ $ +$$=& A =& E=& $=& K=& E==. DEFINITION
3 A ' $ ' & "# 5 1 $ "# 3 ' "# 5 ' "# & "# 5 & "# 3 ' $ FACTS
3 3 3 3
& "# 5 & "# 5 & "# 5 ¾ & "# 5
3 & " # 5 " #" # 7
Topological Bandwidth
+E=-%& $=& E==. DEFINITION
3 & , "#& * ' , "# 5 , " # 3 0 FACTS
!3 %3 !&3 !3
4 ' & , "# & "# 4 '
& , " # & " # , " # 7 , " # 7 B & & & , "# 5 & "#
, " # 5 5 & "#
Additive Bandwidth
$ 9 * ! ' % 1 $ * & $ ' , "9 # 5 & $ * & "$ ! ' 1 $ # ( % * & 2 $ +,$ .&
' #, ! ' 1 & * 9 & '
/$ '
© 2004 by CRC Press LLC
Section 9.4
Bandwidth
939
DEFINITION
3 A ' $ ' , "# 5 ' " # 7 ' "# " 7 # 3 $ & , "#& * ' , "# 5 , "# 3 ' $ REMARKS
!3
1 ' " # 7 ' "# " 7 # & ! ' 1& $ " 2 # & $ ** * 8 * 9
%
3 ' * *
*
* &
* >% &
* * ' '
*
&3
, "9# 5 5 , "9 # 5 &
* 0 ' $ ' B & : & * ' " ' 4 4 =
#
3
B
$ * & *$ , "#
*
& * *
* %'
* Æ $& ' $ * C *
$ B & * +,EJ C K . ( * + & EE & J, & ,EJ @& E @& $, ;. FACTS
!3 !3 !3
+,$ . , " # 5 +,$ . B , "# & , "# , "# +,$,EJ . , " # 5 , " # 5
References +(A 6 . K (* & ? A $& ? E& 6V& : $ 2 * & &!! # * # ! @ " #& I +(@. (' C & ( $ 1 ' 0$ & ! = " @#& @I; +(L @. L (& ( L )& * &
* & - " @#& -I-@
© 2004 by CRC Press LLC
940
Chapter 9
GRAPHICAL MEASUREMENT
+,$,EJ . 6 , $Y M& $ 2& E , & E& ? & J '& : * & ! # ! ! = " #& I +,$ . 6 , $Y M & $ 2& ? & * & == " #& I +,LJ --. ( ,$& L! *& * & J & % 0 1% $ * 1% & ! "---#& I +,E $4 J --. E , & ? E & $& ? 4
& J '& ( 1 & ! # "---#& ;=I= +,EJ @. E , & ? E & & J '& : * %'
& = " @#& - I +,EJ C K . E , & ? E & J '& ? C & ? K & E * & +, $=. E , $& (
* & " =#& ;I-; +, $ . E , $& (
* I$ B& " #& I +E @. E& 4
* & " @#& I; +E-. ( E& 4 $ & & : % & ) ! ; "--#& I +E;-. J E*M & ( ) '& !' ! ! - " ;-#& - I +E;. ? E*M*M& : $ & " ;#& I +E=-%. ? E*M *M& : & & E : 2 & S * ' C & : " =-# +E=-% . F E & & & $ S * '& ( & E " =-# +E=. 4 L E$& : $
& * ! ! @ " =#& @=I;;
© 2004 by CRC Press LLC
Section 9.4
Bandwidth
941
+E==. 4 L E$& A & ! & ( % A &
& E( " ==#& I@= +EE =. F E & ? E*M *M& ( L '& > 6 & I $* '& ! # @ " =#& I +E L;. ? E*M *M & ( L '& > 6 & L & 3 $& & E$
& S * ' C : & A& : " ;# +E6E=. F E & 6V & 4 L E$& A & : & ! # & E& 6& C '& > K) " =#& I +E:=@. ? E*M*M ? :M '& & @ " =@#& I- +E = . 4 L E$ '$& $ & ; " = #& I +E=. 4 L E$ C & ?& %
& & ( & & : " =#& ;I - +E$ @ . 6 E$ ? L
& $ ' % & 9: ! # # " @ #& ;I; + ;@. ( L '& I $& ; " ;@#& ;I== + $,= . $ E , & : 2 * & ;@ " = #& I + $, ;. $ E , & B* ** * & ! # ! ! " ;#& ;;I= +6 ; . 6 & $ & ! ! # " ; # +6 C = . 6V& & C ) & , * $ 2 & ! # " = #& ;I +6*; . E 6* & (
/$ $ 1 0 * & * ! ! # ! + " ; #& =;I= +4 --. S 4 & (1 * *$ & ) ! # @- "---#& -I
© 2004 by CRC Press LLC
942
Chapter 9
GRAPHICAL MEASUREMENT
+4$C -. F 4V $ , C & ' ' & ; "--#& @I; +?L;=. '& A & ?& 6 L$& E 1%
' $ 2 & * ! ! " ;=#& ;;I + ;@. > 6 & C & ?& L ) ' & ( $ 0 1& * ! ! ! " ;@#& @I- +: -. E ) ? :M'& > ;@ " -#& ;;I==
$ &
+$-. ( $& B* 1
& ! # ! - "--#& I@ +$$=. 6 $ B $ $& B* ' % 2 $ & & 6 6
E$
& > S * '& 6*& BA " =# +@. A & : $ * & ! # * " @#& I +@@. A & : $ & ) ! # ! " @@#& =I + . 4 C ) & * $ & H & & S * ' E 4 " # +EE . 4 C ) & E& ? E & * $ & - " #& I@- +L . 4 '& E L & ( ) & 6* ' '
& &!! # * # ! ; " #& =I= + ;. ? 4 ) & (1 % 2
& # - " ;#& @;I - + ; . 6 & : $ 0 $ $ '& $ " ; #& I@ +B;. ( B) Z[& $ *
& ' ! " ;#& I +B;@. ( B) Z[& $ *
& ! 4 ) " ;@#& - I
© 2004 by CRC Press LLC
Section 9.4
Bandwidth
943
+? $C . ? & $ ' & ( & , C & 6 % & * ! " #& -;I@ +L @. L & & & /$ & * ! " @#& -I@ +L-. L) , & , H& ! " ;#& ;I +L-. L A & (1 ' 1 '$
* & * ! "--#& I +AE-. E , A& C E $& C E& E 2
/$ ' & "--#& =I= +AC . K A L C & , $ ' & - " #& I= +AC ;%. K A L C & $ & $& 0 & " ;#& I +AC ;% . K A L C & : $ ' & ! ; " ;#& I +AC . K A L C & ( $* ' * & $& 0 & ! # " #& ;I +A =. A $ & S $ 1 ' % $
& * ! ! " =#& I +A . K A & ' & ! ) ; " #& =I== +A ;. K A & $ ' & " ;#& I- +A --. K A & : 2 & 1% "---#& I@ +A C C . ? A $& L C & ? 4 C& , $ & = " #& ; I= +A K$ . K Q A ? ? K$& $ 0 )& ! ; " #& @I@@ +$=. 4 ) & E $& B $ $& & * ! ! @ " =#& =I + . F & '$& ! # & ? L "6 #& % & > K) " #& @I
© 2004 by CRC Press LLC
944
Chapter 9
GRAPHICAL MEASUREMENT
+;@. E $& >% 2 % & @ " ;@#& @I;- +@=. & 1 2 & 9; ! # # & , ' & & > ? ' " @=#& =I +=-. ? , 1 & ' % 2 % ' & * ! ! " =-#& @I@ + ;-. ( Z[* & $ *
& <= ! ; " ;-#& @I; +=. C 4 '& ( $ 1 0 & ! # ! ! % " =#& I@ + . A & , %'
& " #& -I +J, . J E , & : *
& - " #& I@- +CC K . ? 4 C& , C & , K& 1 $ $ & ! # - " #& =;I - +CK . ? 4 C , K& : $
$
&
! >+ ! ? " #& I
+K=. K)) & ( ' % $
& ! # # " =#& -I == +K =. ? K& ( % & 1@# ! # ! " =#& I= +KC . , K ? 4 C& : $ & ! >+ ! ? " #& @ I;= +K$$ . ? K$ G $& ( $ $ & ! # ! = " #& I +K$$ @. ? K$ G $& $ $ & ! " @#& @I=
© 2004 by CRC Press LLC
945
Chapter 9 Glossary
GLOSSARY FOR CHAPTER 9 , "# I 3 , "# 5 , "# '
) +
$
, "# ) ' I 3 , "# 5 ' " # 7 ' "# " 7 # $ "#
) +
# ## I '
*
3
$
' $
%* 1
0 '
3 $
7 & "
# 5
7 $
%* 1
* '
& 0 -&
7 & "
# 5
# #3
* $ & ' &
$
3 $ $
3
' 3 $ N ' < "# ) 2 I 3 "# 5 "# 3 ' $ ) + , "# I $ ' 3
) 2 I $ $
'
, "# 5 ' "
#
' " #
$ "#
) + )#3 8K69 , "# 8>:9 * * ) + ) I 3 $ ' $ , "# 5 , "# ) +$ )#3 01 & 8K69 , "# 8>:9 *
I 3 " # 5 "# " # " #" # $ " # ' " # 5 $ " # "
# 5 $ "# ) +
, "# I 3 , "# 5 , "# 3 '
I 3 $ $ &
$3
$ $
'
$
' *
% *
# I 3 * 1 ' /$ $ &
$3
* 1
% '
% $
# 3 $ '
>"# I 3 $ $ ' 3 "# ' & & ' " # 5 ' "#
) $
© 2004 by CRC Press LLC
946
Chapter 9
# # I
GRAPHICAL MEASUREMENT
* 3 *
* '
# # I 3
$ *
* '
*
# ) I * 1
< ( +.
# ) I
< ( + .
3 ( "# & ( "#
3 ¾ ( +.& ( +.
%
3 ' $ *
$3 % ' $ * & 7$# 3 7% ' &
$% *
5 " $ #3 "# 5 * ' ' ! < *%&%
# ) ' I $ ' 3 ' " # 5 7 ' " #
* 1
# $ 3
* * * 1 ' & * * *
# $ ½ ¾ 3 * 1% 2 * & & * ! ' '
# I !
" # I 3 "" ## 5 "# " # #" # $ "" ## ' " # $ "# "
# 5 $ " #
I 3 5
"
## I 3 * 1 *
3 * *
I
3 ' "# * 1 ! * ' * 1 '
+ I $
5 ' "#
'
3 & "# 5 1 $ "# 3 ' "#
3 & "# 5 & "# 3 ' $
# ) + , "# I $ ' 3 , "# 5 1 ' " # ' "# 3 $ & 5
# ) + , "# I 3 , "# 5 , "# 3 ' $ 3 $ ! ' ' ' * & ' & * 1 )# 3 * 1% % "# $ % $ $ $ + . $
+ I
© 2004 by CRC Press LLC
947
Chapter 9 Glossary 6 I
3
*
& $$'
3 1 $
' * < "# & $3 1 $ % ' * 3
I
I
* 3
*
I
$ 3
$
* 1
$ * 1 $
¾ '
I
&
"
#
3
$
' 3
-
$
3 $ * ' * 1 & I 3 $ + . & #6 I 3 $ + . /$ & # I 3 $ + .
I
! * 1
' & #3 $ & I
+ .
& # I * 1
3
$
$ $
3
$ * ' * 1
!
' ' $ $ $ & $% 3 $ ) I 3 $ ' & #6 I 3 $ ' /$ & I 3 $ ' & # I 3 $ ' ' & I 3 $ ' 1
# 3
"( 1 $
#
3 $ ' & # I 3 $ ' & I 3 1 $ '
I * 1 3 * 1 * 1 & $3 1 $ % * & I
* 1
© 2004 by CRC Press LLC
948
Chapter 9
$) + I %$
3 ,¼ "# 5 1 ' " # ' " # 3
¼ ¼ $) + I 3 , "# 5 , "# 3 ' $ ) > "# I 3 $ $
$ ' 3 $ "# ' & * 1& ' " # 5 ' " # #6 I 3 ' 5 $ $ * ' $ " # $ " # "6 &
'
GRAPHICAL MEASUREMENT
!
/$ /$
' $ "# $ & 5 ½
$ $ & $ /$ * & 7$$ I 3 ' $ $ "# ' 7" # I 3 * * $ ) ' I 3 ! ' 3 $ "# $ "# "# I ' $ ' 3 ' " # ' "# "# 5 &
$ I 3
1 $ #
'
$ & * '
¾
"# I 3 "# 5 "# 3 '
3
$
*
) 3 $ ' 3 * * * 1%
< "# ## ) I 3 $ ' $
I
3
2 $ '
## 3 * * 1 $ * 1% ) I
%
% 3 * * &
' /$ & * ! '
N
1 '
I * 3 * * ! I ' * 1%
!
5
'
3 5 / 5
*
$3 7% 7 $ /$ & 7$# I ' 5 3 * ' 5 / 6" # 7" #& 6 %*$ $ $ 6" # 5 & 7 % * & %*$ & &
' $ 0 * $
3
) I
$ &
2
$ I 3 2 $
© 2004 by CRC Press LLC
%
949
Chapter 9 Glossary # 3 ' *
7$# 3 7% * 7 7% ' *
& (
* ' ( $ &
7$# 3
7% * 7" # 5 1" # 7% * 7" # 5 " #
& $# 3 & $# 3
& 3 * $ * * '
& $# 3
7%
*
7" # 5 7
& 3 * $ *
) I $
& I
3
( +. ( + . 5
< - # -"# I
$ ' 1 %
1 $ ' $
I * 3
73
3
* $ * ' * 1
' ! * 1
3
&
%* 1
* 1% /$
* ! ' !
# 7 3 ! ) * # 7 I ' "# $ 3 %! * $ # 7 I ' " # $ 3 * 1
$
$ 3
&
"
#
0
3 " #
% "# 0
Æ "# &
"
#
3 * 1 $ *
) 3 $ $
' *
I * 3 ' ' ' $ $ # 3 %* 1 % '
3 " # Æ "# & "
# & "
# % "#
## ) 3 $ $ * 1 $ $ '
89$ # I 3 * 8K69 8>:9
* ' ' & $
'
) I * 1
( "#
3
* !
<
3 ¾ ( "#& ( "# < ( " # $ I * 1 3 * $ " #
) I * 1
© 2004 by CRC Press LLC
950
Chapter 9
GRAPHICAL MEASUREMENT
3 1 $ ' ) 7 I 3 * $ * # I 3 * $ & & * 1 $ $ * 1 $ 7 ) I
# 3 * 1 ' /$ %
3 $ $
' *
# # # 3 1 $
$
' '%
& $ *
3
:# "# I $ ' 3 "# 5 ¾ "# :# "# I 3 "# 5 "# 3 ' $ :# + " # I * 1 "# $ ' 3 "# 5 1 ¾ "' "# ' "## ( +. ) I 3 ! ' 3 "# "#
"# I 3 $ $ * 1 * ' * 1 < /$ * '& $ + I
* * 1%
* '
' *
% ' *
: I 3 ' 0 $ $ &
$3
$
*
# $ 3 # # 3 * 1 $ $ " I * 3 $ 2 $
I 3 1 $ ' *
I * 1 3 * 1 * 1
I 3
$ '
*
/" 0 I
* 3 $
2 $ *
I 3 $ $
'
*
# I 3 * 1 ' $
3 '' '
"# # I 3 ""# # 5 "# " # " #" # $ ""# # ' $ "# $ " # 5 $ " # 5 $ "#
© 2004 by CRC Press LLC
Section 9.4
951
Domination in Graphs
# 3
* '
*
# # $ 3
3
) I
'
5 0
* 1
) 3 ' $
7 I 3 " 7 # 5 "# " # $ " 7 # 5 $ "# $ " # 3 "# " # " # # I 3 "" # # 5 "# " # " #" # $ "" # # ' $ "# $ " # 7 & "# I 3 $ $ $
# # ) + , "# I 3 , "# 5 , " # 3 0
# 3 $ * 1 *
I $
3
$
' *
$" # 3 ' $" # 3 ) ' )
"#
; "# I 3
-
$ $ $
$ * $ $ '
$
)
="# I 3
' *
$ * ' *
)
"# I 3
'
* $
) I
3
1 $ ' 1
+7# #3 & $ $ & '
© 2004 by CRC Press LLC
'
Chapter
10
GRAPHS IN COMPUTER SCIENCE 10.1
SEARCHING
10.2
DYNAMIC GRAPH ALGORITHMS
! ! " # $ %& ! " ! $ %& ! 10.3
DRAWINGS OF GRAPHS
10.4
ALGORITHMS ON RECURSIVELY CONSTRUCTED GRAPHS
'& ! $ (
( ( ) '* & ! $# & ) $ & ! $# & GLOSSARY
© 2004 by CRC Press LLC
10.1
SEARCHING
!" # $ % & '( ) ' ) *
Introduction ' ) ( + )" " , )-. .
/ ) ")0
1 2 3 . " ")0 ") 0 4
() 3 ) ) ) (#+, # Æ 3 )" #+, # " " 5 ) 0 . 5 . 63 ) ' ) ) 0 ) 0 " ) ) ( / ) 78#. 9* . %. :*8;. . <88=1 ' ) /( Ü &1 " ) 5 ) >" . )
Æ
0 / , ) )-1
" " . ")0 ? / 1 . ) 0" ) " ) . . /1 !" . "Æ " . ) . ) + ) . 3
")
> + " . ) ( 0 0 !" 5 + . ( " 0
10.1.1 Breadth-First Search ) /00 1 4 ) ( + @ >5 A ). 3 3 ") / 1 " " . 0 "
© 2004 by CRC Press LLC
DEFINITIONS
B ' 4 ") 2
") . "
( "
B ) ( )
B B
( . / 1.
? ' ) ( . . 0 ) ) (
. . / 1 )( )") "
/ 1
EXAMPLES
B
" ) ( a e
s
b
s
g
f
c
Figure 10.1.1
d
a
b
c
e
d
f g
B + # 7$ #&. C= " 3 3 ) " 3 ) . "
& 3). 3 3 D ( 0 ) 3 ) 3 3 30 0
""
B . ) ) )" -. ) 4 ) ) " 2E . 3 > 3 ) ) 3 "
B
) / & 0 ( ) 3 ) 3 > 3 ) ) ) ) #
B
+ )" ))" 35 . )
0 ) 0
3 )
B "@@ 5 ) 9A , "@@- 78#=. 3 0 ( ' / 1 ( 3 ) ) <
5 ) 3
© 2004 by CRC Press LLC
Ordered Trees DEFINITIONS
B
+ . ( ( . ) 3 )
/. " ( 1
.
B F( ( / 1 ?
B ' 3 ( + 3 " . / ) 4 1
B F( ( ) ( .
. 3
B + . ) ( 0 ) + . + ( Æ . >
. 0" > / 1 (
Æ . ( Æ
FACTS
B B
' 0 4
' 0 ) 03 ' ) + " 0 4 + ) . 4 ) . .
Algorithm 10.1.1:
! B " 1B 0 4 )
?
? / 1. (
)
¼ ? )5 ? ? G " ·½ ·½ ? G ! ( , - ! / 1 ! Ë )5 ( ·½ ? H
© 2004 by CRC Press LLC
B ) 0 )) " ) / H 1 ) "" !"" 0 . 0" 3 0 )"
B
+ 3 ) 5 ) / H 1 0 5
) / . / 1 )1 (
B
I 0 4 /. " 1 " 0)
B B
) 0 " 0 0 4 ) (
>5 A ) )" ) 3 " + @ 0 4 9 5 0 4 ) . " '
"" )) ) ) / H 1 7;&. 9* =
10.1.2 Depth-First Search /00 1 3 8 "
( )@ 79";. 8= ") 4
3 0 : > 7:&. &= > ) Æ ) / Ü #1 4 ) ( " DEFINITIONS
"B B
3
+ " ? / 1. /00 1 ) ( "0 . . 0 )
/ 1
2
/
1
/ 1
.
2
" 3 05
B + " .
4 . ) 2 ( 0 (
B 9 ? / 1 0 3 ( 0 ) ( ' ) . 2 2 / 1 0
4 B
'
'
'
> 3 "
"
/ 1
© 2004 by CRC Press LLC
B 9 0 . 3 3
") ) ( '
( 0 (
4 4 3
0 B ' > J ) / . ) ")0 3 ")0 1 EXAMPLES
B
" " 4 " + 3 4 . 0 ) 4 3 ) / #1 " 0 0 / &1 1
1
2
3
2
3 5
4
6
5
4
6
7
7
Figure 10.1.2
B " " 4 . 05
1
3
1
2
3
2
4 3 5
6
4
5
6
Figure 10.1.3
FACTS
B
' ( " 4 ) ' ( 4 "0 " 0 0 ) ' ) 4 " 3
© 2004 by CRC Press LLC
Algorithm 10.1.2:
! B " 1B 4 )
)5 / 1
? / 1. (
# / 1 ( ! / 1 / 1
! 0 )5 ( /1 (
B
" " . . " / 1 ' ) " ). / H 1
"B + / 1 . / 1
) (
"
(
B
" " " 0 ' ) 0 4 . / 1 )" < K )) " 0 3 0 ) / 5 / 1 " 1 / 5 / 1 " 1
B " 0 4 . / 1 )" 0
0 < K
" 0 + 3 0 / 1 3 0 3 / 1 I( " ) + ) / 1 05 / 1
B
' ) 0 ( " " 4 B " 3 ? + ( . " / 1 3 4 ) .
B
' ) " ) / ( 0" . ( ) , - " " 3 "1 REMARKS
$B
< 3 " ). 0 " 4 4 )
$B
< 3 0 ) (
). 0 4 © 2004 by CRC Press LLC
Discovery Order DEFINITIONS
B ")0 )
B +
")0 ) )
0 4
FACTS
B
$ ) 0 4 " ) ( 3 ")0. 3 ) "
B
+ . ( ")0 " . 3 4 . 3 0 !" 5 3 ( ) ( B 9 ( 3 H ) 0 )) " / 1 / . 1 ) REMARKS
$B
3 4 ) ) ) 4 "" L 0
" . 0 4 ) 35 0 ) " 3 / 1
$B
$ ) 0 @ 3 " " " 3 4 ) 3 35 3 . 3 ) )
$B
' ) () *)5 3 " 3 " 3 ) )") Æ Æ B (" / 1 / 1.
4 ( 0) 4 " 0 " ) Æ A 0 )" 0 0 4
$B
M 3 ) 0 0 3 4 # 3 ) !" " 3 4 & 3 0 3 4
10.1.3 Topological Order ") +
>" 3 ) )) . Æ ) ) ") L I )
© 2004 by CRC Press LLC
DEFINITIONS
B B
' . .
' ( 3 . ( 3 "
B '
( ) 3 ")0 ")0 EXAMPLES
B " " 5 ' 0 + ) ")0 + 4"
0 a b c
d f
Figure 10.1.4
e
"B
' 3 0 3 33 . " ")0 " ) " " ) 3 / 1
B
!" " ) B " N !
" " O. 3 3 ) N O 0 . " "P " ")0 ")0 B !" " 3 3 ")0
B ' )0 " 3 . 3 05 05 )5
B
' ) /
") " 31 4 0 " 3 " 4A ) ) ) ) 4 " ) ) ) ")0
B
)" . < " . " "
B
+ . 3 ) ' 3 3 ) " ) ))
") 0 . 3
© 2004 by CRC Press LLC
FACTS
B 2 ) " ) 5 0 0 () )( ) 4 / 1 ( )" 0 " / 51.
3 " 0 ( 0 /1
B ' 3 ")0 0
")0 . " ( " ( B ' ")0 " " ")0 3 3 ")0 .
3 ")0 " " . " 3 ")0 "B ) " ")0 0 ")0
5
3 ")0. "
B 0 )) Æ 0 4 3 3 4 . 4 ( 0) 4 5 $ " . 3 3 4 " 5 3 ) Algorithm 10.1.3: % '( )* +, -
! B ? / 1 1B ")0
B (
")0 7 =
" B 3 " 5
7 = ? . 0 )
Q
)5 ) Æ . 3 " ( .
0
0 3
B ' 3 )) ' ) " ) " 7 = " B
7 = ?
0 0
")0
Algorithm 10.1.4: % '( )+ +, -
! B ? / 1 1B ")0
? R
B (
")0 7 =
7 = ? ! 7 = ? / 1 # / 1 ! / 1 ! 7= ? /1 3 5 ) 7 = ? R 0 3 ) ! ( ! (
© 2004 by CRC Press LLC
B ' ) " ) +
/ 1 ) (
EXAMPLE
B " " 3 ) ")0 " a
a
a
a
a
a I[a]=1
b
b
b
b
e
I[b]=3
c
c
I[e]=2
d
I[c]=5
I[d]=4
f I[f]=6
Figure 10.1.5 . # ! #'( ' FACTS
B 9 4 ) /4 #1
B >A ) 7&0. 9* = 0 ' ) >A ) " . " # 3 " 2 ( 0 0 ) 4 ")0 "0 4 ")0 ) & ")0 " a,6
b,4
c,2
e,5
d,3
f,1
Figure 10.1.6 % / #'( (/ '
B ' ) ")0 ) 7C&= 35 0 " ) ) !"" " . 3 ( + 0 ) ) 35 ' ) . )5 3
B ) ) ) ")0 3. / 1 )
0
© 2004 by CRC Press LLC
/ 1
B
' () " " 7= < 4 ) 7 = " 7 = 0 )" . " "
7 = ? )( 7 = H 7= B / 1
+ ) " "
) ) 7 = "
0 4
( "
9 " " " I )
B
) ) 0 " " ) . ) ( .
"
B $ ; " 3 !" ) )) 0 " 0) ) )) 0 ) " 79* = EXAMPLE
B
" & " 3 ) 4 2 0 3 . 0 3 7 = " 7 = ". 3 R " ) " 5 4
1 5
4 0
1 2
2 2
Figure 10.1.7
+ '
10.1.4 Connectivity Properties 4 ) " 3 ) " + 3
. () " ) " > 7&=
3 0 ) 7%=. 3 ) 4 ) ) 4 Strong Components of a Directed Graph
+ .
? / 1
DEFINITIONS
"B
3
© 2004 by CRC Press LLC
.
B ' ? / 1
3 .
B + . 3 0 " 0 05 . 4 B 3 Q ) . . 4 !"
B
. ( 1
/
B ' " > 0 ( ) " 0 "). 3 / 1 0 FACTS
B
9 0 ' ) ( 3 )
B B
3 3 )
' ")0 ") 5 3 . 3 3 ")0 . ") / 1 / / 11 " ")0 "!" L 0 ")0 L 0 ( .
B
' 0 ) + ) 0 . " )
B
' 5
(
+ A A
B
M >" 3 ) 4 + 5
B
I( 3 ) 4 ) 4 ) Algorithm 10.1.5:
0'
! B ? / 1 1B )
" B 3 " 5 "
5 B )5 Q ) Q B 9 5 ' ) . Æ 3 0 3 "
0
( .
B
) 3 )) 4 ) 7%= 5 ) ' ) "
© 2004 by CRC Press LLC
5
5 0"
B ) 5 A 0 ")0 0 ) ' )
"B 4 ) ) ) " > 7&=
+ )" " ! / 1 ( ! / 1 3
")0 ( / 1 A 0 ) 0 / )1 3 0 05
/ ! / 1 !" ) ")0 ( 0 1 3 ! / 1 ? , - )
B ' ) ) ) " 7 ; = C >" /""0 R 79* =1 + 4 . 3 0 4 )5 L 4
3 3 . 3 0 0 3 EXAMPLES
B " ; 3 . ) . 2 ) 1
1
2
3
3 {2,4,5,6}
4
5
6
Figure 10.1.8 ' !
' ) ) :) ) # " 3 "
B " 8 " ; / 0 " ) J ) " ; " 1 2 ( 0 0 ")0 3 0 3 " 1(1,1)
3(2,2)
2(3,3)
4(4,3)
5(5,3)
6(6,4)
Figure 10.1.9 . # ! ' '
© 2004 by CRC Press LLC
"B " 3 ")0 0 0
")0 . 4 ")0 . ")0 . > ) ( 3 3 ( ")0 " 05 " 0" ) ")0 3 ")0 " > ) ( + " " ( 05 " a b d e c
a 0 0 0 0 0
b 1 0 1 0 0
d 1 0 0 1 0
e 1 1 0 0 0
c 1 1 1 1 0
Figure 10.1.10 ( 1 # 2 / ' .
B 2() 3 3 " "
) 5 %"
) . ) ( . 4 " . ) ( # . 3 / 1 > ) ( 2() ". / 1 0 " " 05 " " ) (
4 %"
) ) ( 7:#8=
B " " ;
1
03 " (" )
1
1
1
1
1 {1} an SC
2
{2,4,5}
{2,4,5}
{2,4,5}
{2,4,5,6} {2,4,5,6} an SC
4
5
6
6
3 {3} an SC
Figure 10.1.11 . # ! ' '
B " 03 3 ")
"
.
4 .
B ' $5 /@1 00 REMARK
$B ) ) ) (05
+ 0 0 3 3 ) . 0" )5 3
)) !" )
© 2004 by CRC Press LLC
a
b
c {a}
d
{b,d,e}
{c}
e
%# ' 0
Figure 10.1.12
Bridges and Cutpoints of an Undirected Graph
+
? / 1 "
DEFINITIONS
B ' (
"
B B
'
'
)( ) "0 "
' ' 0 A ' 0
B 9 $ 0 0 ) $ 2!" " "0 )( ) . 3 3 "
0
B "B B
( . ' "
" !"
' " ( (
"0 3
TWO EXAMPLES
B " 3 3 0 . # " . & 0 ) + " 0 " "
:3. " 0 0 1
2
11
12
14
Figure 10.1.13
© 2004 by CRC Press LLC
3
5
4
13
15
7
6
8
9
10
( #
B + ))" 35 /. +1 0 . 5A " 0 ))" . . )
+ 35 " . A " 0 ))" FACTS
B ' ) + 0 ) 0
B ' ( A
( 0 + A
B >" 3 ) 4 0 0 + ) )) ) ' ) . ) ) < ( Algorithm 10.1.6:
! B " ? / 1 1B 0 ) 0 " B 3 " " B B )5 . )5 0 /
1
B ' ) ) ) 4 " 0 ) " 7%=
B ) ) : > " 0 ) 7&= 0 3 / 1
3 '
") ")0 ( 4 3 ")0 4
! / 1 ? ) B ) 05
: > / 1 (
)
0
( /3 )" 0 ( 1R
! /1 ? R / 1 ( ! /1 . 3
/ 1
" ) @
. ! / 1 ? ) ! /1 B B / 1 05
93 )" 0) "
MORE EXAMPLES
B " 03 " (" ) "
© 2004 by CRC Press LLC
1
1
{1,...,10}
{1,...,10}
{1,...,10}
{1,...,10} {1,...,10} a BC
2
2
{11,12,13}
{11,12,13}
{11,12,13} {11,12,13} a BC, (11,2) a bridge
3
3
4
4
{5,6,7}
{5,...,10}
14
15
{14} a BC, (14,12) a bridge
{15} a BC, (15,13) a bridge
8
Figure 10.1.14 . # ! ( '
B " 03 " $(( 3 % ' "
0
7*8= + @ . )5 0 .
Figure 10.1.15 /
B 4 5 3 % ' 7C&8= " !" ) )" 0 " # 3 3 " !" ) L ) 3 I 0 ) 3 " !" ) 0 " Æ 4 " !" ) 3 ( 7%C =
Figure 10.1.16 6 # 7# ! '
"B 8 /3 % '
0 ) 7< =
10.1.5 DFS as a Proof Technique + 0 3 " ) . 4 0 " ) ) /+A 3 ))0 ) P1 "0 ()
© 2004 by CRC Press LLC
DEFINITIONS
B B
'
0 "
3 / 0 !"
"
1 ' ) (
3
B ' ) ( " 0
3
B ' ) (
" !" " EXAMPLES
B
*00 A ) 0 " 0 ) /'
) #1 ) ) /' ) 1 < ) (" 0
. 3 ( " ) 3
(. " )5 (" ) ) ) (" ) ( " / )1 ) ) " " &. 3 3 3 4 (" " " 3 4" 2 3
Figure 10.1.17
! ! ! $(( 3 % '
B
) @ *00 A ) 0 7 ;= 0 0 + 0 " ' ) . 3 5 " 0 " ,
5-. . ( 3 "
B
C@ A ) 0 0 7%&8= < " 0 )
B 0 3 " !" ) ( 3 3 ). ") / 1 ) < 0 ( ( + 05 ) . 3 ) 3 " ; 03 ' ) ) ) " !" 7%C =
B ! " # 7*= ") :) . . ) " 0 B 4 ) :)
© 2004 by CRC Press LLC
Figure 10.1.18
! ! ! 4 5 3 % '
10.1.6 More Graph Properties 0 4 3 0 : >
Æ ) "0 0 " ) + " ) 0 0 Æ ) 4 ) Planarity Testing
4 ) ) ) 3 " : > 0 " 3 . " ". 4 DEFINITIONS
B 9 0 0 3 ) "0 3 B / 1 '
/ 1 0
> )
/ 1 ) ) ) " > )
/ 1.
B
3 ) % /% 1 / 1 " /
" 1 " %
/ 1 . EXAMPLE
B " 8 03 3 /1 3 ) ) % % . % 3 0 % % FACTS
B
< A ) /2() 1. 0 0 )
© 2004 by CRC Press LLC
a
S1
b c
d C
e S2
f S3
g
S4
S5
h
Figure 10.1.19 9 '
B " 0 : > 3 ) '" 7'"# =B 0 /1
%
) % R
/01 ) 0 3 ) " 3 ) ) )
0 /1 /01 ' " ) ) 72&8=
B : "" ) : > 7:&= 3 ) 3 2 0 )
' 4 ) " '
.
" 05
) "B
)R / 1 ) ) % ) 0 ( 3 % 3 ) / 4. )" > . " "0 . " 05 > 3 > 3 ( 1 )
) % " . 5 % % 0 )0 "0
/ / 1 05 > 3
" 1
"B ' ")0 " )
!
" / #1 " " " + , 3 - " ' 4 ) . 0"
© 2004 by CRC Press LLC
Triconnectivity
: > 3 3 4 ) ) 7:&0= 9 5 ) 0 ) DEFINITIONS
B ' "
) 3 3 3
B 3 0 ) ) " 4
EXAMPLE
B
& '
+ " 8 0 B
"R R R R
FACTS
B
3 @ 9 0 0 3 9 " 0 " 0 0 0 0 )) ) $. " " 0 0 /1 ) )
% /% 1 / 1 ? " /% 1R
/01 " 3 ) . ) ( 0 / )0 ,- )1
B ) @ " : >A ) ) 3
)
B
' " " 3 /4 1 Ear Decomposition and -numbering DEFINITIONS
"
B ' " ) ¼ ) ½ " . > " / 1 . . / 1 / 1 / . 0" ). " < 1
B 9 / 1 0 0 ' ")0 ) ")0 . ")0 . ( 0 ")0 0 3 ")0 0
© 2004 by CRC Press LLC
EXAMPLE
B
" 3 ) ) ")0 ")0 / ) 1 2
P1
3 4
P4 7
P0
P6 8 9 10
1
5
P5 6
P2 14
11 12
P3
15 13
Figure 10.1.20
' #'( ! (
FACTS
B < 7< 0= " 0 )
B
' ) 0 ! " 0 " 4 )
0 ) /#, 72=. " ) , ) - " 1
B
' ) 3 / 1 0 " ")0 ) 72=
REMARKS
$B
")0 0 ) ) 9). 2 0") 792#&= + " )0 0 ( $ 3 )0 ( ( (. " )0
$
B 2 ) 4 ' )
0 " Æ )" 3 ")0
R ) 0 4 2Æ ) 0 0 ) 7*8= Reducibility DEFINITIONS
B ' $ 3 " ( (. . (
© 2004 by CRC Press LLC
B ' 63 0 ) (
!" 3 B / 1 (
(
0
? (. / 1
/ 1
B < 4 0) "" ) ) / ( 1 ' " ) 0) ) " + ) ) " 0 $ 0 " ) $ ' )
/
) $
1. 3 3
)
/ 1 )" ) "
!"
) ( ,
EXAMPLE
B
" 3 " 0 63 + . 63 0 "0 @ " 0 B 63 " 0 "0 ( " /3 ( ) 0" 3 1 > 0 ( > ) ( . ". . " " r
a
b
Figure 10.1.21
c
:
# ( ;
REMARK
$"
B 3 ) "" )" ) ' ) 3 " A " 0 63 $ ) ) @ /. ) )) "0(
. 0 . 4 "
4 . 1 0 " 0 7' D;#= FACTS
) " 0 ) > 7&= 63 )" " 0 + " !" " ( ( 63 . 3 4 / 1 ? B ) 3 05 /
© 2004 by CRC Press LLC
1
B 7&= ' 63 " 0 /1
B
7&= '
") 63 ( 0 ")0 9 0 ( / 1 3 05 " /1 + 3 /1 ( . 3 " 0 3
B
; 4 !" "0 " 0 /1 0 )" ) 0 053 . + . " 0 Æ # "
"B
) 0 ) ( ' ) " ) ( ) " 0 , /4 1
B
0 53 ) ) 0 3 " )
" > 3 )
) 0) ) /*/ 11 : * '5)A " 3 3 7&. 9* =
B %03 > 7%;= 3 ) 0
) 0 ) D ) )5 " 0 ) " )
B
" ")0 + )) 7&= 0 " EXAMPLE
B
" 3 4 63 3 0 0 ")0 ' ) ( ( ;
" 0 )) ;. . 1 2
6
3 4
5
7 8
Figure 10.1.22
#'(
Two Directed Spanning Trees DEFINITIONS
B
+ 63 . ( ( (
© 2004 by CRC Press LLC
B 3 ( 2 / 1 63 ( " / 1 EXAMPLE
"
B + " /( 1 0 " 3 > ( / ( " ( "1 FACTS
3 ( (
4
/1 ? B ) 4 05 /"
? 1 I
) 3 &
B ' 63 3 > ( ( ? ( 3 > ( / 4 1 % " #. 3 ) ) @ ) + 72&=
B B
' 63 > ( 0
> ) ) 4 > ( ( 7&= $ 0 63 ) 4 ( 3
0 ")0 )) ) 0) 0 0 " ) 3 > ( / #1
B
+ ) . / 1 0 / 1 /1 >A ) 4 0 " !"
) " 0 ) )" )
B
) ) ) 5 5 . " 0 ) ' ) "" 7%;= " ) Dominators DEFINITIONS
B
+ 63 3 ( (. (
(
(
?
B . /1. ( " ) )
B
3 ( ( ( ? ( / 1
"B B
)
(
3 ( ( ? (. . /1. 4 0 /1 ? ) B )
© 2004 by CRC Press LLC
EXAMPLE
B
" 3 ) " I ( ) 0" # & ; ( ) ) ( ( 3B /&1 ? . /;1 ? & ' " ( )) ) & ) ) &
1
2
3
4
5
6
7 8
' ! # "
Figure 10.1.23
FACTS
B 0 ) " 93 $5 79$#8=B 2 ( ( ( " !" )) ) >" 4 ) ' ( ) )
"B
B
9" > 79&8= Æ ) 4 ) + 4) ) > 7&0= (
.
/ 1
3 ) #
FACTS ABOUT SEMIDOMINATORS
) ) " " 0" ( 3 0 9" >B
B 5 ( ? ( 9 0 ( 3 ) )") " /1 ) ) /1 . (" /1 / 1?
B
/ 1 / 1
/1 ?
3
/ 1
) ) 0 )" 0 " 4 B / 1 ? ) B / 1 /1 B ) )
/I ) 3
B
!
#1
) 9" > 79&8= )" ) ) "
& 053
/ . 1 )" )) ) " & 3
B
) ) /*/ 11 ' )) ) ) 7':9 88=
© 2004 by CRC Press LLC
10.1.7 Approximation Algorithms ) "0 3 4 " "
Æ" /I 1 0) (). 4 0
"0 3 3
0 ")0 I / "0 :) 1 4 0 " ( ) ) " Æ" 0) : 4 "0 ( 3
0 ")0 . 3 ) " " 4 (
) ) ( ) )
" 7C 8&= DEFINITIONS
B
) @ 0) 5 4 ) 0 "
' * ) ) ) "
4 " @ ) * 79* = 0) . @ " ")0
B
0
"
0
"0 3 ) )")
0 ")0
B ' " +
) 3 3 + )5 )" ' + % + "0 R
") 0 + 0
"0 2 ' + % 3
0 ")0 ) 3 , ) 0
"0 -. 3 " !" . , )
2- ALGORITHM
'( ) ) ) 2 " 4 ' (
) 0 ) ' ) # 3 3 C " F 5 7C F 8= 3 4 0 ) 0 , - " 3 ) 4 ' ) # 0 ) Algorithm 10.1.7:
' 0 < . '
! B 0
" ? / 1 1B . ( ) ) 2
?
" (B 3 " 0 0 0 0 0 ) 0 / 1 Q
© 2004 by CRC Press LLC
EXAMPLE
B " 03 ) (" ) :) . ) 2 ) 3 4 3 ) .
) ( + ' " 0) . 3 3 (
' . )A " B ()
r
r
Figure 10.1.24 ' 0 . ' '
FACTS
% ( ) ) !" 3 0" @ )")
" < @ ) " 3 0"
B & 2 " ) ( )" B & ' ) & . 2 7C F 8= 0 ) ' 2
3 ") . 3 0"
B ' ) & ( ) 3 0" ) " + 2. / 93 "1 / 93 "1 " B F) F 7FF= ( ) )
) 2 ) 0 4 0
> . 4 + " ' & B ' 2 ) ) "0 3 ( F) F ) ( ) ) ) 0 "0 0
© 2004 by CRC Press LLC
"B S . * Q F> 7S*F= " $ 93 " ) )
) 2 F 7F = " $ 93 " ) ( ) ) "0 3 B 93 " ( + 2B + ' ) &
+ 2 + 7C F 8= 0 0 ) ,-A +A &&
B %03 7%= ) ( ) ) 2 )" + " 0 7C F 8= 2. 93 ". )
B C " * 7C *8#= 4 ( ) ) ) + 2 )" + 0
" 2 0 ) 7C F 8= 0 4) 93 " %03 7%= ) 3 # ( )
References 7' D;#= ' F ' . * . S D). . ' < . 8;#
7':9 88= ' ". :. < 9" . $ ". ) ). ; / 8881. &M 7'"# = 9 '" F . )0 . / 8# 1. &M 7 ;= * . *00 A ) ) ( )" . ;& / 8;1. & #M& 8
78#= %
. . :. 88# 79* = : ). 2 9 . * 9 * . . . 2 . $%3 : . 72&= S 2) . 2 > 0 . 8 M8# 0 * *" . ' )
. I3 O5 / 8&1 72&8= 2.
.
. )"
. ).
72= 2 * 2 >. )" ")0 . / 8. 8M
8&8
7;&= $ 9 ) * 2 >. 0 " ) 35 ) @ ) . / 8;&1. 8#M#
© 2004 by CRC Press LLC
7%&8= : I %03. ' ) 3 03
. ! # / 8&81. M 7%= : I %03. 0 4 0 )
. " & /1. &M 7%= : I %03. ' ) ( ) )
"0 )" . #$ % ! /1. ;M8 7%= : I %03. ) 0" 4 ) +
"0 )" . #& % ! /1. #M#8 7%;= : I %03 * 2 >. ' ) ) > " . / 8;1. 8M 7%C = : I %03. : C * 2 >. D !" )( )") ) ) . / 1. 8M ; 7%= $ % * )
. '(. S < Q . 7:#8= :.
!
. ' < . * $'.
8#8
7:&= S : * 2 >. 2Æ ) ) " . # / 8&1. &M&; 7:&0= S 2 : * 2 >. )
. / 8&1. M ; 7:&= S : * >. 2Æ . 8M#; 7:*8;= 2 :3 @. *> 5.
. ). 88;
/ 8&1.
. )"
7S*F= * S . * F>. ' ( )
) ) )") . #& % ! /1 &M& 7C 8&= C ". '( ) ) 4 "0 . ( ) % . 0 : 0"). < "0 . 88& 7C *8#= C " * . +) ( ) ) "
) 0) . / 88#1. M 7C F 8= C " D F 5 . ( ) . / 881. M 7C= S C 0. ) 3 )B ' ) . $* /1. #M &
© 2004 by CRC Press LLC
7C&= 2 C" . . 2 . ' < . 8&
+ # %
T 7C8= ' C@ . 4 3 +. %, -. . + 8 / 881. &M8 792#&= ' 9). 2 + 0"). ' ) . M . 0 * . % . 8#& 79&8= 9" * 2 >. ' ) 4 ) 63 . " / 8&81. M 79$#8= 2 93 < $5. 0> ) @ . M 79"B ;;= 2 9" .
/0 0 .
7$ #&= $ ). ) 3 0).
/ 8#81.
;;
/ 8#&1. #M#&
7*8= F *) . ) 3 0 . . 0 S : * . $ C" ). 88 7*= 9 *U . 2 5)0 @.
" , & /
81. 8M
7*8= : 2 *00 . ' ) . 3 0) Æ . # / 881. ; M; 7= * 3 5.
11 2 . ' < .
7 ; = $ . ' ) 63
. 3 & / 8; 1. #&M& 78#= + 3. ,3 )@-. 88#
#
; $ ) * .
7&= * 2 >. 4 ) . / 8&1. #M # 7&= * 2 >. 63 " 0 . M#
7&0= * 2 >. ) . / 8&1. #M;8
8 / 8&1.
7&= * 2 >. 2Æ 0" " ). / 8&1. M 7= * 2 >. 2 > 4 . / 8. & M ;
© 2004 by CRC Press LLC
#
7B ;8= % . 9 0U) 0 . )- ;&
/ ;81.
7FF= F) ' F. ( ) ) )")
"0 . #M& ( 4,% . 0 C S C ". 9" I )" 8 . F. 7F = ' F. '( ) ) )") "0 )
3 0". #* % ! / 1. &M# 7<88= $ ' <
. ! ' < . 888
11. 2 .
7< = : < . I
0 . / 81. 8M#
7< 0= : < . " . / 81. M #;
© 2004 by CRC Press LLC
10.2
DYNAMIC GRAPH ALGORITHMS
!
! " # $ % & %
Introduction
& ! ! ' ! ( )' *+ & !' ! ' !' ! , !' ! & ( ! ( ! ! ! !' ( ! !
( . DEFINITIONS
/ 0 ! ! !
( ! ' /
0 ! ! !
REMARKS
/
& ! ' ( ) ( !' ' ( ! ' (
( (
/
! ! ! Æ !' ! ( ' ! ! Æ ! 1
© 2004 by CRC Press LLC
986
Chapter 10
GRAPHS IN COMPUTER SCIENCE
DEFINITIONS
2 ! ! (
/ 0 !
!
/ /
0 ! (
/ 0 ! ' ' (
0 ! (
REMARKS
/
& . ( ) ( ( ! " " ! ' ( ( !
/
& ( ) ( ( ( " " !' ( ( ! !
/
& ! !' ! !' 3
PART 1: DYNAMIC PROBLEMS ON UNDIRECTED GRAPHS ! ! ! Æ ! ! ! ! . !' 4 ! ) ! ! ' !
( ! Æ EXAMPLES
/
! ! ! ! !' !' ! !
/
0 ! !' !' ( ( ! ' ( (
REMARKS
/ ! ! 1
/ 0 ! (
! 5 6 ( ! . ! !
© 2004 by CRC Press LLC
Section 10.2
987
Dynamic Graph Algorithms
& ' . ( ! ! ! ! ! 5Ü6' ( ! ! ( ! / 5Ü6 ! 5Ü6
10.2.1 General Techniques for Undirected Graphs ! ! ' ( !
! 0 ' ! ' ! ! ' ! ! ! ) ! ! ! ! ! ! EXAMPLES
/
/ ( ! !' ( ( ) ) ( ( ! 7' ( ( !' Ü Ü ( ( ! ! !
/
8 / 7' ( ' 90: ;<' 0: ' => 2 !' ) ( 7 ! & ( (' ( . 3 ! ! / ! ' ? ' @7' ( ! !/ !' . ' 1 & ' ( ! ! ( 4 ! ' ( (
Topology Trees
! A ) 9A=#> ! DEFINITIONS
/
/ /
Ì '
! Ì
!
© 2004 by CRC Press LLC
988
Chapter 10
GRAPHS IN COMPUTER SCIENCE
/ 0 Ì / ! Ì 7 ¼ ) ! ! 7 ! 5 ! 6 ' ! ! ' !
! ( , ASSUMPTION
& A ) 9A=#'A;<>' ( 7 7 ! / ( ! ' 9:$;> DEFINITION
/ 0 7 7 ! / 56 ? 7 ! 56 ? 7 ! 56 @ ( , 0 7 ! ' ! ( ' ! A ! REMARKS
/
!
' 3
/
B 56' - ! ! ! ' ( ( ' ( ! ! , ! APPROACH
2 ) ( ( ! A ' ! ( ' ½ ¾ ' ( '
( ( ! 7
& ' ! 0 ' ( ) ( ( ! , ! ' ( , ! & ' ( ( 56 & ( ( ' : (' ! ! ' ( ) ( , ' ! 56
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
Figure 10.2.1
989
Ì
56 56 . !
!
! !
? ! Ì ! ( ! ,
& ' 5 ! ! 6 7 / ! ! '
! 7 ! 3 (
© 2004 by CRC Press LLC
990
Chapter 10
GRAPHS IN COMPUTER SCIENCE
FACTS
!/
! ' 5 ! 6 5 9A=#'A;<>6
( ) 5 ! 6 ! !
!/
5A ) C 6 9A=#> ! !
5 ! 6 ET Trees
? :1 ! D ! 9:D ;;> ( ) ( ( ( ! ( ! ) (
!' ! ) ! 3 ' ( ! ) 7 ( !/
5 6/ ( 5 6/
5 6/ ) ( ! E ) ( !' )
DEFINITIONS
/ 0 7 () !
! ! ( ! ( () ! 7 E ' ' ? ! 5 A ! 6
/ 0 # " # 5 ! 3 6 ? @ ' ? ' ( 5 A ! 6
Figure 10.2.2
© 2004 by CRC Press LLC
" " "
Section 10.2
991
Dynamic Graph Algorithms
REMARK
/
0 ! 7 Ì ? 5 ) 76' ? 56
APPROACH
& ) ' ( ( ? 56E ? 56 3 ! 5 ! 6
# $
5 6 5 ! 6 . ! ? ! ) !
%& '( $ '
? ( / 5 6 ( ( ! ) 5 6 ( 5 ! 6 ( ( 5 6 5 6 5 ! 6 7 / ? ! 5 6 5 6 ' 9:D ;;> FACT
!
/ B 5 ! 6 ! ? 5 9:D ;;>6 Top Trees
0 90: ;<> Æ
' ' !' 7 ( ! ( ) A ) C ! ' ! ' ( ) ! !/ 7 DEFINITIONS
/
9A=#'A;<>' ' ( ( ' ' !
/ ( 7
/
0
7
/
!
'
( ' ( !
! 5 ! 6
2 A ! 7
© 2004 by CRC Press LLC
992
Chapter 10
GRAPHS IN COMPUTER SCIENCE
APPROACH
! Ì ) ! (
Figure 10.2.3
"
' & ) ( ( ! ,
% ' ! ! ! 4
( ! ( ! . ( - !
7 ! ' ! 4 !
( !' 7 ! ! ! 4
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
993
FACT
!/ 90: ;<> A ( ! 5 ! 6
! ! ( 5 ! 6 . 5 ! 6 REMARKS
/ ! 7 0
7 )
' 7 ( ! ! ( ( 90: ;<'0: ': >
/ ! 1
' (
! & ! '
, Clustering
! 9A=#> ! ! ' REMARKS
/ ' . ' ! ( !
/ 0 . ! # " 9A;<>' ( ! ! ! ' ( ! ! ! ! EXAMPLE
/ 2 F
! !
! 9A=#> + G 5 6 ! ( ! ! ! ! 7 ' , ( 0 ! ! A ' ! 1 ! ' $%" ' ! ( ! 9A=#>
FACTS
!/ A ! ! !
5¾ ¿6 5 9&;'%;#>6
' 5½ ¾6
2 ! - ! 5' ' 9A=#'A;<>6
!/ 5A ) C 6 9A=#> ! ! ! !
© 2004 by CRC Press LLC
5½ ¾6 ' (
994
Chapter 10
GRAPHS IN COMPUTER SCIENCE
REMARKS
/
9A=#'A;<> A ) C ! 2 ' 5½ ¾6 -! 9A=#'A;<>
/ ! -' (' ( ) Æ ) 7 Sparsification
. ! ? ' 9?&@ ;<> ) 7 5( ! ) ( 6' ! 1 ! ! & -- ( ! !' ! ! ! ! ' ( ' 5 6
! ( ! 5 566' '
! ( A ' 5 6 G 5½ ¾6' ( ! 5½ ¾6 0 ) . DEFINITIONS
/
A ! ! ' ! ¼ ¼
/ /
0 !
56 !
0 56 ' ' 56 56 2- ! ( F ( ( A ' (- APPROACH
+ ! ( ! 2 ! 56 ! !
1 . . ! ' ! ! ! ( ! ! .
( . ? 5 !566 ! ( 56 ! ' ! ( ! NOTATION
& 7' ! 75 !¾ 6' !56 ' REMARKS
7 ( .
/ . ( !
) ( 0 ! ! .
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
995
3 ! & . 5 H 6' ! 56
/ & ' . ! A ( )' # . ' ! ! ! ! . 52 9?&@ ;<> . 6 5 6 5 6 FACTS
! / 9?&@ ;<> + ( ( . .
5 6 (- ' ( ! 5 6 ( ( 5 6
! ( ! ' ( ! 5 5 5666 H 5 566' ( 5 566 ! / 9?&@ ;<> + ( . 5 6 ' ( (- ' (
( 5 6 5 6 5 5 5666 H 5 566 ' ( 5 566
REMARKS
/ B ' . . 5A <6 1 ! ' ( ( Æ .' ( 5A =6 7 ! ! ' ( ( Æ # .
/
. ( ! ' ! ! ' !- ' 7- 0 7 ' ! ' 5½ ¾ 6 9A=#'A;<> 5½ ¾6 9?&@ ;<>
/
. ( ) ! ! ' ( ) (
! ' ! ! / ! ! . Æ ! ! Randomization
! . ( ! Æ ! ( :1 ! D ! 9:D ;;>E 7 ! ( 1 APPROACH
2 ) ( 1 ( )' ) ! 7 & ! G 5 6 ' ! ! " ' ! % "
© 2004 by CRC Press LLC
996
Chapter 10
GRAPHS IN COMPUTER SCIENCE
' ! !
? 5? 6
' ( ( ! (
) ) 0 ) :1 ! D ! ( !/ ( ' ! ! - ! ' . ) ! ' * ) ) 1 ( ! 2 ! !
5 ! 6 ! , ! G 5 6 ! ( !- 5 ' ! 6' ( ! - 5 ' 6 A ' ! ! . ! (
REMARKS
/ @ !/ ' ! ! ! ' ! - ! !
/ ! 5 !¿ 6/ ! ' !' ( 3 ! 5 !¾ 6 : (' ! - ! ( , ' ) . ! ! & (
! !' ( ) 7 - ! , 0 ! !' ( ) 7 ' ( ( ( ! (
/ ! ! , ' 7 ) 7 ' ( 1 ! ! ' (' ! ! ' ! ' ! ! ' ( / !
& ! ! ' !
) . & ! ' & ! ' !
( ! ! H H FACT
!/ 5:1 ! D !C 6 9:D ;;> + ! ( ¼ !' , ! 0 ! 5 !¿ 6 7 1 ' I5¼ 6 5 ! 6
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
997
10.2.2 Connectivity 2 ( ! ! ! ! 9: >/ ! ( 5 ! ! ! 6 ( - ! ( ! ! 5 !¾6 1 + ) 1 ! 9:D ;;>' ! 9: > ! ! ! ! FACTS
! / + ! ' ! 2 ' ( ½ ¾ - ! ( ½ ¾ 2 ! " & ( '
! ' !E ( ' ( !/ !' ! ! 56 ' ! ' - ! / ' - ! !/ G ¼ ½ ¾ ' ( 7 !
!/ & ' ! E ! '
! ! ( !
' ( ! ! INVARIANTS
+# ,-/ 7 ! ! ! ( !
+# ,-/ REMARKS
/ & 56 ( + 5 6 - ! 5 6' ( 5 7 ! 6 + ! 56 56' 56 5 6 ! '
´µ ! 5 6' ´µ' ' ´µ / & 56 7 !¾ FACTS
!/ 2 ( ! ' ! & !¾ !
© 2004 by CRC Press LLC
998
Chapter 10
GRAPHS IN COMPUTER SCIENCE
!/ 2 ! G 5 6 56 ' ! ) -
! !
' 56' ! 56 :' 5 656
( 56 2 ( )
!/ 5 6 . ! ! ' & 7 ' ( ( / ' ( E ( ' G ' ( 5 6 ! / ! ' - ! ! ( + ! 5 6 ' ( !' ' 5 6 ( 56 ' ! H ! @ - ! . / ! ' ! ' (
! / 2 ?-'
'
' ! 5 ! 6
!/ 9: > 0 ! ( ! ! 5 ! 6 1 ( ! 5 ! ! ! 6 ( - ! REMARKS
/ & ! ! ! ' ?- . ! ! 7' ! 1 ' ' ' . ! ! - ! ! ! ?- ( / 9: >
/ ! 1 ! !' 5 ! 6
. @ ' ! ! 5 ! 6' ( ! 5 ! 6 ' 1 ' ' 5 ! 6 2 ! ' ! ) ! 5 ! 6 5 ! 6E ' 5 ! 6 ' 5 ! 6 1 ?- G ( ( 5 ! 6 ( - 0 ( 9: >' 5 ! ! ! 6 ! J5 ! 6- ?-
10.2.3 Minimum Spanning Trees 0 ( ! ! . ! ( ! !
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
999
! 9: > 0 ! 9:D ;<> ) - ! Decremental Minimum Spanning Tree APPROACH
& ! ! ' ! ' ( ! ! ( !' ' ?- Ü ! ( ! - ! ? ! ( 0 5 ! 6 ' ! 2 ( ! & ' ! ( ! !
/
! ( ! ! . ( ! ( ! ' 9: >'
! INVARIANT
+# ,-/ ?
- ! 7 ( !
! !
FACTS
! / & 56 ' ! !'
! ! 7 + ½ ¾ ( ! ( ' G ! ' 7 ( ! ! ! & '
5½ 6 5¾ 6' ¾ ! G 5 ½
¾6 5 ½ ¾6 ) & 56' ¾ ' ! 5¾ 6 5½ 6 ' ! - ! ! ( 5½ 6 5¾ 6'
!/ 9: > 7 - ! ! 1 ! ( ! ! 5 !¾ 6 Fully Dynamic Minimum Spanning Tree
! ! ! 1 :1 ! D ! 9:D ;<> ( ) ( FACTS
!/ 5:D ;<': 6 ( - !
! ' ' 1 ! ( ! I56 5 5 66' ( - ! 7 - ! ! ! ( ! ( !' ' !'
© 2004 by CRC Press LLC
1000
Chapter 10
! H
¾
GRAPHS IN COMPUTER SCIENCE
5 6
9:D ;<> 9: > A A A ( ! 5 6 G 5 ! 6 :' ! A A ' ( ! !/ 9: > 7 - ! ! ' ! ( ' ! ( !' ! 5 ! 6 1 ! PART 2: DYNAMIC PROBLEMS ON DIRECTED GRAPHS
& ( ( ! & ' ( ( / ' ! ( ) 1 !' Æ ' ' ' ! ! ' . ' ' F ( ' ! 2 . ! ! ! ! 5 "6' ( ( 5 # $' 6 & . ' ! ! , ! ) ( ! ! 5 - 6 9&'D ;;> & ' ( ( ! , !' ! ( ! ' - 9&>
10.2.4 General Techniques for Directed Graphs
& ( ! 2 . ! ' ( Æ ' ( ! )
! ! ! Path Problems and Kleene Closures
! 7 7 ! 5 9 +% > 6 B H '
© 2004 by CRC Press LLC
Section 10.2
1001
Dynamic Graph Algorithms
( - ! ' " G " 9 #> G 9 $ > H ! 9$ #> ' % G %9 #> G 9 #> ! 9 #> 2 ! !
7
! 7 ! 7
! ! 9 #> 5 #6
FACTS
!/
+ G 5 6 ! " 56 5F7 6 & & B , 7 ' B , 7 " 56 D & H B !/
& G
!/
&
+ G 5 6 ( ! ! ( ! -! & & ( ! 7 & 9 #> ( ! ! 5 #6 ' 7 D & !/
& G
&
7 ( ( (-) ( ! D & 7 &
.) ) 0 & '
!' 5 ! 6 ( - ' ( 5 6 ! ( !
!/
! & G & H & ' ( & G & & G & ¾
# )
0 ' 9<>' ! & 5 6 ( -
! /
' ( 7 & ' ! ' %' " 1 5 )( 6' &
' ' ' ' 1 ' & . ! ( ! /
G 5 H !% " 6 G !% G % " ' G % H % "!%
!' ! ! & ! & ! ( ! Uniform Paths
! & 9&> & ' ( 1 ( ! !' (
© 2004 by CRC Press LLC
1002
Chapter 10
GRAPHS IN COMPUTER SCIENCE
DEFINITIONS
/ /
0 ( ! (
0 ! ' ! ! ( .
/ 0 ( !
(
REMARKS
/ 0 . ' ( ! ! 5 6 ( . ) H H ) G 5( 6' ( ) ( 7 7 # !' ( ! ! 5 6' 5( 6 ( ! ( ! . /
& Æ 1 ! ! ( ! 5¾6 ' '
- -
FACTS
! /
5 & 9&>6 & ( ' * ' ' ' * ' ' ' !' ( ! / * * ' *
!/
5 & 9&>6 + ! , & ! 5$ 6 ( ' 1 5$¾ 6
REMARKS
/
7
! ! , 56 & '
! ! ( ! !
/ ) ! ' (
&'
! ! ! ( & ' 7 ! ' ! K ! ' 5K6 ! 5 ! 6 5 ! 6 ( ! 2 9&> ! ! 0 ! A ;' 5¾ ! 6 ! ! ( ! 5K6
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
1003
/ 0 9&>'
Æ A = ' ) ( ! Long Paths Property
& ( ) ! ' Æ ! ( ( ! . ! ! ! ) (!' ! ( . ! 9D=>' ! ! Æ ! 5 !' 9&'D ;;'L;'M(;=>6 FACT
! 5 ! 6 ' ( ' ' ' Æ ! ' + ! / 5 L)) 9L;>6 +
REMARK
/ 0 ( 9M(;=>'
! 9<;'+ <#> 0 9D ;;> Reachability Trees
0 ( ! . ) ;=' ( ? ( ( -. ! ! 9? =>E ) ! + ' :1 ! D ! 9:D ;;> ( ( ! D ! 9D ;;> ! 7 ( ! ! ! PROBLEM
& ( ! ' ! . 5BA 6 ! ! ! ! & '
7 ' ( ! BA )' ( ) ! G 5 6 7 ' ( ( ) 7 ( ! /
5 #6/ ! 5 #6 56/ 7 BA H ( )6
) 5
FACT
) ! 5)6 ( ! ! ! ( !
!/ 5D ! 9D ;;>6 ! BA
© 2004 by CRC Press LLC
1004
Chapter 10
GRAPHS IN COMPUTER SCIENCE
REMARKS
/
A ! BA ) ! ) ' ( 56 BA / 0 ( ( 9:D ;;'D ;;>'
7 BA ( ( ! ! & ' BA / ! ! ( !
' ) ! ,)C ! BA 9D ;;> Matrix Data Structures
2 ( 7 ) ! ! 0 ( 5 D 6' D ! & ! , ' ) 9&> PROBLEM
& B ' ( + B ( !' ' &½ & 2 ( , 7 ( ! ) / 5 N& &6/ - ( & ! - - ( 7 N& 5 N& &6/ - & ! - - 7 N& 5N& &6/ 1 & ! - 7 N& 56/ 2 ! ! / 5N& &6/ & ! - 7 N& : (' ! 3 REMARK
/
+ " ( ( ! ' , ( & ' ( , G " 8( ' , " ' ( ! ( ! () , / " 9 > F 4 & ' , 9 > F ( ( ( C '
) ! C !
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
1005
FACTS
!/ 5 & 9&>6 + ( ! B ! 0 ' ' ' 5¾6 1 ( !/ 5 & 9&>6 + ( !
H ! 0 ' ' ' 5% ¾6 1 ' ( %
7 3 ! (
10.2.5 Dynamic Transitive Closure
& ( ) ( ! ! ( !' ! 7 ( ! ) / 5 6/ ! 5 6 E 5 6/ ! 5 6 E 5 #6/ ( ! OP 7 7 # ' O P ( E FACTS
!/ 0 - ! !
' ! # 56 5 6' 56 ' ( ! ! !/ 0 - ( D
, 7 !' ! ! 9<> " 5 D 6 7 9 2 ;>' ) 5 6 ' ( - = 7 7
REMARKS
/ '
( ) ( ;;#' ( :1 ! D ! 9:D ;;> 1 ! ( - ! 5 ! 6 1 5Q ! 6' ( Q ! ! ! ! ( Q ! 56' 5 ! 6
/ D' ( 2 9D 2 ;$> ' ( ) J5 6 ' 5 6
© 2004 by CRC Press LLC
1006
Chapter 10
GRAPHS IN COMPUTER SCIENCE
/ D ! ! 9D ;;> ( ( 56 5¾¾6 ! ! 56
!E ! 1 ( - (
D ! 9D ;;>' ( 7
! ! ! ( 56 5 ! 6 1 ' ( ! 7 ! / ! 3 ( )' & 9&> ! 5 6 1 ! ! / 2 ! ! ! I5 6 ' 7 ( ( )' 56
/ & ( ! ' & 9&> ( ( ) 56 !- 7 / ! ! D ! ! 9D ;;>' 1 ! ( - ! 5 6 ( - 5 6 ( - / 8 9% M(> King’s /5¾ ! 6 Update Algorithm
D ! 9D ;;> . - ! !
Ü" 5% 6 ! Ü" 5 D 6 & 7 ! 5 ! 6 1 ' ! ! ! ! ( , & ! 7 ! ! !4 ! , ! APPROACH
! ! H / ' ! ' ! ( ! ! ! ! ' G FACTS
!/ ? ) ! ( 7 / - * 5 6 ! ! ( ! ' - ./ 5 6 ! ! ( ! 0 ! 5 #6 ( ./ 5 6 # * 5 6 ! / ! ./ 5 6 * 5 6 ( BA
" 5% 6
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
1007
! / ! 7 ' ! ./ 5 6 * 5 6 ' ! ' (
!
@' 4 7 ' ) ! D !C ! !/ 2 ! ' ./ 5 6 * 5 6 A ' 9D ;;>
Demetrescu and Italiano’s 5¾ 6 Update Algorithm
! & 9&> 7 " 5 7 6 " 5 D 6 & 7 ! 5¾6 1 ' ! ! 1 D !C ! ' ' !
7 ! ! ( , ) ( ( APPROACH
! D & , 7 & ! ( &½ &¾ NOTATION
+ ½ ! ! . & ' ¾ ! FACTS
! / B &½ &¾ . ! C "
5 D 6' ( ! ! 7 ½ &½ ' ( ! 7 ¾
&¾ ' &½ &¾ & ' !/ & ' ! & - ' ! ' " ' % 7 " 5 D 6' &½ ' &¾ - ½' ½ ' ½' '½ ¾ ' ¾' ¾' '¾' ! &½ &¾ ( ( ! = !
" 5 7 6/ 0 G H ! ¾ " ¾ G ½!'¾¾ "½ ½ G ½¾! ¾ G ½!'¾¾ ½ G "½¾ ¾ G '¾¾ "½ '½ G "½¾! 1 G % H "½¾! ( G % ' ½ G 0 ' '¾ G 1 D 1
© 2004 by CRC Press LLC
1008
Chapter 10
GRAPHS IN COMPUTER SCIENCE
½ ' 0' ½' ½' '½ ! ' ( ' ' ' 1 ( !/ ! 7
!/ & ' (
' ' ' (- 9&>
!/ A '
10.2.6 Dynamic Shortest Paths
& ( ) ( ! 5 0 6 ( ! ! ( !' ! 7 ( ! ) / 5 6/ ( ! ! 5 6 ( 5 G H ! 6E 5 #6/ 7 7 # ' H
( 7 E REMARKS
/ ) ! '
. ) # ! 9+ $<'$<'% $=> 0 ' ! 5' !' 9?=#'A@;='A@' %%;$'%%;$ '% =#>6' ! ( ( ! 0 / . ! ( -
! 0
' ( ) ! ( ! ( !
/ & ' 0 ' 90&@;> -
! ! ! ! ( ! " / 1 ! ! 5" ! 6 ! / :1 !' 9:D % ;<> ! ! 0
! ( ! ( !' ( ! 5 !5" 66 / A) % 9A%>' (
! ! !- ! ! ( ! 5 ! 6 1 ! / . ! ! ! ! ( ! ( D ! 9D ;;>'
( ! ! ! ( ! ( ! " / ! ! 5 " ! 6
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
1009
/ & 9&> ! . !
0 ! ! ( ( ! ! ! ( ! 3 ! & ' ! 5¾ ! 6 1 56 ( -
/ . !
! 9&> ! 7 ! ! ( ! 5 ! 6 1 ! ( -! ! ( ! ( ( )
/ 2 ! ! 7 ! I56 ' 7 7 ( ( )' 56
/ 8 - ! 0 !' 9B: >
' ( !
King’s 5 " ! 6 Update Algorithm
! D ! 9D ;;> ! " 5+ ! 6 " 5% 6 !
#' ! 1 ( ' ' 5 ( ! 6 ! 7' 5 ( !
6 ! ! ( , APPROACH
! )' !
! ! ! ) A ) ' ( ( ! !/ 7 ( ! ( ! "
9D ;;> FACTS
!/ )' ! D !
#' ! ) 4 ./ 5 6 * 5 6 ) 7 ./ 5 6 * 5 6 ( " 5% 6 & ' ) ( # )' ) ) H ) ./ 5 6 # * 5 6 ' ! 7 ! ./ 5 6 * 5 6' ( ! 1 5 )6
© 2004 by CRC Press LLC
1010
Chapter 10
GRAPHS IN COMPUTER SCIENCE
!/ ! )' ! 7 !
A / ' ! ' ' J55 ! 6)6 !' . ! ) ' ( ' ' ' ( ) ' O P' # ! ) ! ! ! ) . ! 7 ' ' , ( ' ' # 7
' . ! ( ' ! - - ! ' 7 ! ( ! ) ! 5¾ ' 6 G 55 ! 6)6
) G ! 5 ! 6 1 0 " 5+ ! 6' ' '
! / !
! 1 A ' 9D ;;> Demetrescu and Italiano’s 5 ! 6 Update Algorithm
& 9&> . - ! - ! . ! & ' ' ! , ' " 5 6 APPROACH
! A = ' ! ( FACTS
! / ! ( ! ' !
! ! " 5 6 ( ) ( & . !/ ' ( . '
0 ' ! - . ,)C ! 9 #;>' ( ( ( !
7 ( 7 ! ( 0 '
5$6 ( 5 A ;6 ! ! $ G 5 ! 6
! 5 ! 6 ' 5 ! 6 1 A ' 9&>
!/ !
© 2004 by CRC Press LLC
Section 10.2
Dynamic Graph Algorithms
1011
RESEARCH ISSUES
& ( ) ( ! ! ) ( ! ! ' ! ! ( & ' ( ! ( ! 1 ! 9: > ! & ! ( ( ! ( / ( ( - 5 6 '
( . 9?&@ ;<>
A !' ( ( ( - - ) I5¾6 ! - : (' , ( ( .7 ' ) ( A ' ( ! ' & 9&> ( ( ) 5¾6 !- 7 ! & ! ( ( 3 4 3 ! ! A ' ( Æ !- ! !R A ' ! ! F ( ! Further Information
% ! ! , '
! & ' ' & ( ' ' & ' ' " ' &( ' 2 ) ! ! ' & ( 5 86' ))) " 5A8 6 * & " + 5&0+ 6 1 7 ! & (,&( & 5 806' ) & 5? 06 Acknowledgments
( ) & ! ? & -;;;-"=$ 50+8-A6 & --### 58 &@6' & . % 5 , O0+&@2?B/ 0! & 2 P6
© 2004 by CRC Press LLC
1012
Chapter 10
GRAPHS IN COMPUTER SCIENCE
References
90: ;<> 0' S : ' D + !' ' 1 ! ' 5;;<6' +@ #$' <T= 90: > 0' S : ' ' ! ' ! "# $% "$ && 56' "$T#$ 90&@;> 0 ' A & ' 0 - ' @ ' & ! ! ' ' ( 5"6 5;;6' $#T$= 9B: > B(' % : ' ' & ! - ' ) * %# $% ( # $+,& 56' * U' 0 ! - ! ' +# - "56 5;<;6' T#
* (
9 2 ;> 2 !' 7 ! ' ' ( % # ; 5;;6 9 +% > : ' ? + ' % + % ' '
' ? ' & ' 9&> A & ' A / B) ! ! 5¾ 6 ' ( . /// %# 01
( # 0+ ,&& 56' =T=; 9&> A & ' A ( ! ( !' ( /// %# 0 ( # 0+ ,&. 2 3! 56' $T$< 9&> A & ' 0 ( ' )4 %# $% ( # $+,&) 5 56' #;T$$ 9 #;> ? 2 ,)' 0 ( ( !' 3 * 5;#;6' $;T< 9?&@ ;<> ? ' M ' A & ' 0 @ 1( !' . T 0 ! ! ! ' ' # * ' "" 5;;<6' $$;T$;$ 9?=#> ? : 1 ' ! !' +# - "; 5;=#6' <T=<
* (
9? => ? L ' 0 - ! ' ' #
* = 5;=6' T"
© 2004 by CRC Press LLC
Section 10.2
1013
Dynamic Graph Algorithms
9A%> S A) % ' !' ! ( ! !' ' ' ( /// %# 0 ( # 0+ ,&. 2 3! 56' T" 9A=#> @ A ) ' - ! ! ' * ' # " 5;=#6' <=T<;= 9A;<> @ A ) ' 0 -!- ! ' * ' # $56 5;;<6' "="T#= 9A@;=> A ! ' 0 - ' @ ' - ! ! ! ' 56 5;;=6' #T<" 9A@> A ! ' 0 - ' @ ' A ! ! ' ' ( " 56' #T= 9&;> M A & ' A- ! -! ' * ' # 5;;6' " : ? D' B )V' ;=
* ( % ( '
9:$;> A :' 6# $%' 0 -2' ;$; 9:D ;<> % :1 ! * D !' ! ! !' 1 5;;<6 #;"T$" 9:D ;;> % :1 ! * D !' % 1 ! ! ( ! ' ' # * "$5"6 5;;;6' #T#$ 9:D % ;<> % :1 !' D ' % ' ' A ! !' ' ( # % ##56 5;;<6' T 9: > S : ' D + ! ' - ! - ! ' ! ' -!'
' ' # * "=5"6 56' <T<$ 9D 2 ;$> D' % ( ' % : 2 ' 8 . ) ! ' 5"6 5;;=6' < * D !' A ! ! - !' &1 %# 0 ( # 0+ 5;;;6 9D ;;> * D ! !' 0 ! ! ' ).1 * %# $% ( # $+ 5;;;6' ";T";=
© 2004 by CRC Press LLC
1014
Chapter 10
GRAPHS IN COMPUTER SCIENCE
9+ $<> + ' 0 ( ) ' 7% - - &4 5;$<6' ;$T; 9+ <#> + + U1' 8 ! ' 5 * 1 5;<#6' =T; 9<> & ' ?Æ !' (
56 5;<6' #$T#= 9$<> S ' O 3 ! ! ! ! !P' ' +B -@-$' + B ' @( ) ' + ' D' ;$< 9%%;$> % ! %' 0 ! ! 1 ' ' ( 5;;$6' $ % ! %' 8 7 ! ' $ # #= 5;;$6' T<< 9%;#> %' A !' 5;;#6' #T #= 9% $=> * % ' ' 8 - # 1
* * % =5#6 5;$=6' $T" 9% =#> : % ' 0 1 - '
%# $ # ( # $ 94 3 .9
5;=#6' <;T=$
9 => % ? ,' 0 ' ' #
% " 5;=6' $T= 9L;> S L)) ' : !- - ! ' * ' # 56 5;;6' T# 9M(;=> M( )' 0 ( ! ! - 7 7 ! ' ( ) /// %# 0 ( # 0+ ,9 5;;=6' T;
© 2004 by CRC Press LLC
10.3
DRAWINGS OF GRAPHS
! " # $ % & ' ' ( ) ' * '
Introduction ' + + , . , , /, . , , , /,
- .+ ,
, + 0 / 1 , + + 2 3
+ + 4 +
10.3.1 Types of Graphs and Drawings , 5 , , +
, - - Types of Graphs
6 , 4 , + +, + ., / DEFINITIONS
3 3
# . / #
. /
3
#
© 2004 by CRC Press LLC
+
1016
3 3
Chapter 10
GRAPHS IN COMPUTER SCIENCE
+ # . / +
#
3 # . / 5, 7
3 #
- 8 , + 7 + -7
3 #
- 8 , + 7 . / + -7
3 # + , + .9 + + + /
3 #
+
3 # ./ + , # + +
3
#
./
Types of Drawings
1 , + . 4
/ + 4 4 + , 7 DEFINITIONS
3 3
, . 6 . //
, - . 6-
1
1 .//
3 1 , 0 + . 6 .//
3 # . 6 . //
3 # +
3 # . 6 .//
3 # + , , +
3
1
, . 6
© 2004 by CRC Press LLC
.//
Section 10.3
3 3
1017
Drawings of Graphs
./ # ./ 4 #
.,
/, +
3 1 , + . 6 .//
3 3
1 . /, #
+ 0
3 # , 3 #
-
+
3 # + 8 , + 0 , + +
3 # + + ./ ./ ./ ./, ./ ./ +
3 # - 0 + EXAMPLE
3
1 6 4 ¿ ¿
(a)
(b)
(c)
(d)
! " #"$
Figure 10.3.1
REMARKS
%3
+ : + ; + , Æ < = # , - ;,
, -
%3
1 + , +
© 2004 by CRC Press LLC
1018
Chapter 10
GRAPHS IN COMPUTER SCIENCE
10.3.2 Combinatorics of Geometric Graphs >)?, @)?A - * + -5 , , , + ,
-5 , : + , , , , 5, , , 1) 0 + % 0 + - , , + Æ # %
+ , + ., , >? , )?, B?, CC?$, CC, CC*9?(, C*, C)?A % 2 / 1 , : + -5
Delaunay Triangulations DEFINITIONS
3 # -
+
+ +
3 #
3
#
FACTS
&
3 >?A # - +
&3 &3
>? A # >)?A # -
-
REMARKS
%3
D >D?$A + 0 - % + +
%3
C *7 + D 1 , 0 D >C*A
© 2004 by CRC Press LLC
Section 10.3
1019
Drawings of Graphs
Minimum Weight Triangulations DEFINITIONS
3 # - +
3 0
-
3 # E E +
3
1
8 ,
FACTS
C 5
&3
1 5
F- . B >B&?A/ )+ + , + , + Æ # 5 *7 ' >'*?A, C >C(&A, G >G?A, 5 >**?&A, G 5 5 >G (A, # 0 >## ?$A, H >H A, 5 * >*?$A, C+ G 0 >CG?$, CG?(A
&3
>CC?$A #
. '#*/ + + 1 >CCA C C 3 , + 5 8 5 8 5 9 , , I >9IA 5
&
3 >CCA 4 0 . ,
/ 1 5 2 +
., , >G (, CG?$, *J&?A/, 5 2 -
© 2004 by CRC Press LLC
1020
Chapter 10
GRAPHS IN COMPUTER SCIENCE
Minimum Spanning Trees DEFINITIONS
3
#
, -
3
#
+
0
+ +
+
.
,
/
FACTS " + - +
&
3
>*)?A " +
4+
+
. '#*/
&
3
>*)?A F
&
3
>"9?$A 1 F- %
&
3
>C?!A F +
" - , +
Proximity Graphs 2 4 + 2
DEFINITIONS
3
#
+
3
3
-
/
.
, +
5
/
.
- +
© 2004 by CRC Press LLC
Section 10.3
Drawings of Graphs
1021
REMARK
%3 + 4
, + 5 + 6 , , + >B?A
FACTS
* , - + + , + % 7 + + 7 +
&3 1 5 , C , C >CC?$A, -
0 - +
&3 C ) >C)?A + +
&3 6 >CC?&A
: C , C, *7 , 9 >CC*9?(A , , *7 >*??A
Open Problems
'$ + 0
'$ C + + 1 "
- K 1 ,
'$ 4
6 ,
0 5
'$ 1+ #
K '$ 6 6 , 0
,
-
© 2004 by CRC Press LLC
1022
Chapter 10
GRAPHS IN COMPUTER SCIENCE
10.3.3 Properties of Drawings and Bounds 6 + , + L
4 + + ) 2 # + + # 4
9+ + , + ., % ,
+ / Properties of Drawings
1 , 5 5 + 6 , + 0 @ 1 , + + , 5 * + , 0 0 DEFINITIONS
3 3 3 3
-
+
3
3 , +
3 0 + + EXAMPLES
2 0 - 7+ 0 .,
/, 2 +
3
6 . M/ , + . / , ./ < 0 = 1 , , +
© 2004 by CRC Press LLC
Section 10.3
1023
Drawings of Graphs
(a)
(b)
(c)
(d)
Figure 10.3.2 (") * ++
!*" #"$
3 6 .M/, ./ , ./ 1 Bounds on the Area
0 + 1 , , 4 , + + <)C= <)C= < -= < - =, + 1 , 2 % @ , + 2 @ , FACTS
1 , 4
&3 C - + . M / &3 % . M (/ ; + ,
% - . /
&3 # + . (/, + & 3 N + 2
. ?M / 1, ./, - % . ?/
& 3 # % +
. / ) 2 Bounds on the Angular Resolution
0 + ; 4
© 2004 by CRC Press LLC
1024
Chapter 10
GRAPHS IN COMPUTER SCIENCE
( $$ , # " - #" $ C#)) @6 '#;)
'#91F I"
#'"#
)C
O. /
. /
)C
O. /
. /
-. /
O. /
. /
O. /
. /
!
+ )C
O. /
. ½· /
$
6
+ )C
O. /
. /
&
#DC
+ )C
O. /
. /
(
+ )C
O. /
. /
?
)C
O. /
. /
)C
O. /
. /
-. /
O. /
. /
-
O. /
O. ¾ /
. / . ¾ /
)C
O. /
!
)C
$
&
O. ¾ /
)C +
O. ¾ /
. ¾ / . ¾ /
O. ¾ /
(
-
O. /
. ¾ / . ¾ /
?
)C
O. /
-
)C
O. ¾ /
. / . ¾ /
O. ¾ /
. ¾ /
O. P /
© 2004 by CRC Press LLC
.. P /¾/
Section 10.3
1025
Drawings of Graphs
( $$ , #" " - # #" # #$ C#)) @6 '#;)
'#91F I" #FNC#' '")@CN1@F
-
O. ¾ /
-
O. /
-
O. /
. ¾ /
. /
.
¿
/
Bounds on the Number of Bends
0 + ) ! &
5 ,
( $$ . " # # #" " - #" #+ / "$ 0 & !$ C#)) @6 '#;) -
'#91F I"
@#C Q "F)
-
-
-
.
-
-
*#H Q "F)
P
P
P
P
/P P
P
P
Tradeoff Between Area and Aspect Ratio
-Æ + 0
, ; + , + 3 , + 5 , + ;, 5 1 , 5 + +
: 4 # + 2 + , FACTS
0 +
+ +
© 2004 by CRC Press LLC
1026
Chapter 10
GRAPHS IN COMPUTER SCIENCE
( $$ ( # # #" +## ! / " ! $ C#)) @6 '#;)
'#91F I"
#'"#
#)" '#1@
)C
. /
. /
)C
. /
. /
-. /
. /
. /
. /
. /
)C
. /
)C
. /
)C
. /
. /
-
. /
. /
-
, + +
. /
. /
>. / . /A . / ¾
1 , + <)C = < - ,= - 0 + - @
Æ
-4 + 6 + + REMARKS
%3 9 - + 0 , %
%
% 3 ' , + ; + ,
% 3 6 ,
, . / + + ., / ; + , , + 0 Tradeoff between Area and Angular Resolution
! 0 + + ; 4
© 2004 by CRC Press LLC
Section 10.3
1027
Drawings of Graphs
, N+ # ,
+
( $$ , # #" / " #" / # #1 +## ! $ C#)) @6 '#;)
'#91F I"
#'"#
#FNC#' '")@CN1@F
-
. /
O. ¾ /
-
. /
-
. /
-
./
. /
O. /
O. ¾ / O. / O. /
Open Problems
'$ % . / - . / 5 . / ' $ % + . /
' $ % . , , / . / 5 . / '$ O. ¾ / + . ¾ / - . /
' $ O. / + .
¿ / - . /
'$ + . / - . /
10.3.4 Complexity of Graph Drawing Problems $M ( 0
1 + 2 6 , , F- F , 6 .M/, Æ 9 Æ
+ -
© 2004 by CRC Press LLC
1028
Chapter 10
GRAPHS IN COMPUTER SCIENCE
( $$ (+ !+- / + /#"+ " + " " $ C#)) @6 '#;)
'@C"*
1*" @*C"H1I
0
F-
-
0
F-
F-
O. /
. /
O. P /
. P /
F-
O. /
. /
-
O. /
. /
5
F-
, 0 F- , +
Open Problems
'$
' . . //, + . /
'$
' 0 . . //, + . &/
'$
' 0 - . &/
10.3.5 Example of a Graph Drawing Algorithm 1 > ?&A ,
- , . / . &/
. $ 6 .// 3
2 3 +
,
4
#
© 2004 by CRC Press LLC
Section 10.3
1029
Drawings of Graphs
( $$ (+ !+- / + /#"+ " + " " $ C#)) @6 '#;)
'@C"*
-
F-
-
F-
-
+ +
F-
-
+ +
O. /
. /
- . / . /
O. /
. /
O. /
. /
- + . / . /
O. /
. /
- +
O. /
. /
-
-
O. /
. /
. / R . /
O. /
. /
-
F-
-
Q . /
O. /
.
-
Q . /
O. /
.
-
. / . /
O. /
F-
© 2004 by CRC Press LLC
. / , . / , . /
1*" @*C"H1I
/
/
. /
1030
Chapter 10
GRAPHS IN COMPUTER SCIENCE
( $$ (+ !+- / + /#"+ " + $ C#)) @6 '#;)
'@C"*
1*" @*C"H1I
"
F-
-
0
F-
-
0 L
F-
0 - S
F-
0 - S
O. /
. /,
0 +-
O. /
.
- . ¾/
O. /
. /
. /
O. /
. /
/
REMARKS
%3 5 : .6 . M/ /, : ;, + + ,
, +
% 3 6 : 5 5 +
C . /
" + ./ T : ,
. / : , . /
. / T . / P
" S ,
./ T
. /, , %
%3 F 5 3 . /,
+ 8 : . / +
, , ,
8
. /,
8 : . /
, , P ,
© 2004 by CRC Press LLC
Section 10.3
Drawings of Graphs
1031
%3 + : +
+ % + :
+
% .! /, ! 6
, + % .! P /
%3 1 + : " 5
, % : " ;, : : . ¾ / : - %3 + DC)1 ,
0 + 4
6 ./
10.3.6 Techniques for Drawing Graphs 1 % + + Planarization
0 + + Æ 0 . &/ 1 , 0 4 + 6 F- ;, 0 + >B*?$A , + # 0
-0 > (&A >((A .6 ./ / 1 + 0 Layering
#
3 # + , 0 1 4 + , + + . 4 + 4 / + 0 #7 + + 0
© 2004 by CRC Press LLC
1032
Chapter 10
GRAPHS IN COMPUTER SCIENCE
1
1
2
(a)
1
4
1
1
1
1
2 1
2
1 3
2 2
2 12
1
2
(c)
60 19
23
7
26
25
8
9
58
37 42
3
39 40
62
1
51
49
57 45
6 5 48
10
2
61
27 28
44
53 30
15
22
54
4
38
56
18 14
21
43
32
31
29 52
20
35
36
(d)
59
46 17
16
47
11
50
63
34
55
12
24
13
33
41
(b)
Figure 10.3.3 4+""" $ 5+#+ ! 6 7 6 - ! ! ! 8 6 +" ! # ! " !7 /! " - " . /$ ! ' " " / ++#+ #+ / "$ " . " " / "#!" " + " / " + / #!$
* + + + F- , ) >)( A + % >FD((, GFD?A 6 + BU *0 >B*?&A
© 2004 by CRC Press LLC
Section 10.3
Drawings of Graphs
1033
Physical Simulation
+ +
7 7 + ) 4 , + + 4 4 , ' + 2 % , + ., , + /
; + , >" (, G)(A ) + >;?$, ";, 6'? , G , C* A ' + 8 , >?!, C"?!, ?!A
10.3.7 Recent Research Trends + + + Compact 3D Drawings
+ 0 + 5 5 + 4 + + + 9 -0 - - , 7 FACTS
&3 5, , >?$A + + . / + -
& 3 , " , C '5 >"C'?&A + - - . ¿/ + , + &3 ) >)?&A -, -, - . / + . / + O. / + &3 6 #- , , V >?&A $. / +
&3 , , D >D?$A - . / . / + . / +
© 2004 by CRC Press LLC
1034
Chapter 10
GRAPHS IN COMPUTER SCIENCE
&
3 6 , C , 9 >69 A +
&3
7 +V, * , 9 >*9A . ¾ / +
- . / + -
&3
9 >9 A % + - . / +
& 3
# 7 +V 9 >9 A +
+ -8 - + , + -
& 3
, C , 9 >C9 , C9A
+ - . / + Graph Drawing Checkers
5 + + DEFINITIONS
3 # +
5 5 + 4 + + % 2 ., , >C?(, *)F)· ??A/ + < = 5 +3
3 5 @ , 5 5
3 3
!Æ + 5 Æ
3 " 5 4 2 : - 2
REMARKS
%3
5 + 1, 4, 4 # , , + + 6 , + 9 4
© 2004 by CRC Press LLC
Section 10.3
Drawings of Graphs
1035
%3 @ , 5 + , + Æ + 5 + + % 53 < K= < K= <
+ K= % 3 5 + * >*)F) ??A + >C?(A 1 + 5 + +
C >C?(A 5 + - +
Incremental Graph Drawing
1 + , , + , + N , 4 N , ) ,
%5 4 REMARKS
% 3 4 4 2
+ , + 1 , S >"C*)?!A, ,
, +, + 2 % + > A
+ + 2 S + + 2 , 0 , +
%3 )+ + 7 # 5 , , , >?!A 8
5 9 >9?&A8 4 + + 5 >?(A 5 , ) , >)?&A8 + G >G?&A, 9 >9?(A8 - , , B , 9 >B9A8 5 F 9 >F9A Experimentation
* + * , + ; + , + + 0 , + +
© 2004 by CRC Press LLC
1036
Chapter 10
GRAPHS IN COMPUTER SCIENCE
+ % + FACTS
&3
#
5 , # , >#A >A
&
3 4 -+ , ; >;?!A, + + +
&3
>C?&A + 0 ,!( , + , < - = # 0 >CA
&
3 ; + 5 G , G, *0 >GG* A > A
&
3 " % , , , 00 >A
&3
# + 4+ -
0 5 , ; , ' >;'?$A
&3
BU *0 >B*?&A - -
&3 # + + >DC A
Fixed Parameter Tractability
', 0 >6?&A Æ DEFINITION
3 # W 4 # , $%& , + W . ./ / , 0, 0, ,
FACTS
& 3
1 F- , + + ,
.
© 2004 by CRC Press LLC
Section 10.3
1037
Drawings of Graphs
+/ ; + , > A 4 % + 4 +
& 3 @ + F- + + 6 >6; , 6; , 9A8 0 ? 1 , % + 1 5, + , ? + + 6 , 0 . ./ ¾ / ./ > A , + 4 , 4 6
( $$ 9+ 0' " " + :-" + !$ C#)) @6 '#;)
F-;#' '@C"*
1*" @*C"H1I
-
- 3 +
. ./ P /
-
- 3 -
%-
3 +
%-+
%-
3
3
- %
-
. ./ ¾ /
. .% / / . .% / ¾/
. ./ ¾ /
10.3.8 Sources and Related Material 5 + >"??, G" , )A ) ) D ! " # .+ $!, ?(, & , !&, !, ?, &, (?/
© 2004 by CRC Press LLC
1038
Chapter 10
GRAPHS IN COMPUTER SCIENCE
REMARKS
% 3 ) + + >CC?!, ), ?!, ;**, B*?&, '+?, ) ??, ))D?!, ? , ?, ??, DC A ) + + $ .+ $, , ??$/, " % & $ .+ ?, -, ??(/, ' ( & " .+ $, ??!/, ' $ & $ .+ , , ???8 + , , 8 + $, , 8 + $, , / %3 ) 999 . / 999 . /
References >## ?$A @ # 0 , 6 # , )-9 , F G , * , ' , I-6 H, , $ . ??$/, ?M!? >*??A , # , ; *7 , ' :
4 -, !?M$( . S??/ . B G +/, + & , ) -D , ??? > A ) ) , , 9 , C , ' , C D , - ,
$ ./, !M? >;'?$A 6 , * ; , ' , # - 0 , &$M(& . S?!/ . 6 B /, + &, ) -D , ??$ >G?&A * G , # -Æ , &M! " ) # . ")# S?&/, , + (, ) -D , ??& >CC?$A , 9 C , C , 0 , $ . ??$/, (M . , ' / > ?!A 6 B , , $M& . S?/, + (?, ) -D , ??! > A ) ' , 2 + ,
./, &M& >A ) ' , # , ?M . /, + ?(, ) -D ,
© 2004 by CRC Press LLC
Section 10.3
1039
Drawings of Graphs
>9?&A N 9 , # , $M& . S?&/ . /, + !, ) -D , ??& >9?(A N 9 , , (?M?( # 1 ) # . 1)## S?(/, + !, ) -D , ??( >?!A ' 6 , , ' , 1 , 3 , - , - ,
. ??!/, ?&M >"C'?&A ' 6 , " , C, 6 '5, - , & . ??&/, ??M( >?!A 1 6 0 # , Æ3
, M ! !" #$%& . '
1 /, + (?, ) -D , ??! >B9A * , ) , B B , ) G 9 6 ,
! ./, M >?$A * 5, * , ' , + , ?M( # #* ) , ??$ >)?&A # ) , -, -, - &. ¾ / + , !M$ . S?$/ . ) F /, + ?, ) -D , ??& >H A )-9 I-6 H, @ -5 , $ . /, !?M& >A , 9 , * , * 00 , , '" () ./, $!M ?( >"??A , " , ' , 1 , -; , ??? >6?&A ' * ' 6 , " *
,
), ) ,
??&
>6;· A D 7 +V, * 6 , * ; , * G, C , * , F F , ' , 6 ' , ) , ) 9, ' 9 , @ 0 , ((M?? " ) , # . , ")# /, + $ , ) -D , >6;· A D 7 +V, * 6 , * ; , * G, C , * , F F , ' , 6 ' , * ) , ) 9, ' 9 , # 4 - 0 , M !
© 2004 by CRC Press LLC
1040
Chapter 10
GRAPHS IN COMPUTER SCIENCE
. / . *0, * BU , ) C /, + $!, ) -D , >C?&A , # , C , # , ' , " , 6 D , C D , #
,
& . ??&/, M! >CA , # , C , # , ' , " , 6 D , C D , 3 # ,
./, $M $( >;?$A ' + ; , , ! . ??$/, M >? A * , ' 0 , . ??/, (M(&
"
>?A * , ,
! . ??/, !&!M$
>C?(A C , N 5 <
=, . S?(/ . ); 9/, , ) -D , ??( >CC?!A , 9 C , C , 3 +, (M? . S?/ . ' 1 /, + (?, ) -D , ??! >C?(A @ + , C , 6 , ' , 5 + + ,
. ??(/, (&M( >C9 A " , C , )G 9 , - , @ . S/, >C9A " , C , )G 9 , 5- - , , , ), N+ C , >*?$A * 5 * ; * , # . K/
, M " +, , ??$ >*9A D 7 +V, * , ' 9 , - , M! . , S/ . * ) G +/, + !(, ) -D , >)A B 0, B , * ) , # + , - ./, M!$
© 2004 by CRC Press LLC
Section 10.3
1041
Drawings of Graphs
>)?A * 9 ), - 0 , (&M? " .
, ?? >D?$A C D , # , ? . ??$/, ?M!?
>9A D 7 +V ) 9, # Æ 4
- 0 , . /, !( ./, ) -D , (M ? >9 A D 7 +V ' 9 , - - , 9 5 ) . 9 S/, , ) -D , >9A D 7 +V ' 9 , F , ' '--, ) ), N+ , @ , >" (A " , # ,
.
?(/, ?M $
>";A " * C ; , F + - ,
./, !&M ( >"C*)?!A " , 9 C , G *, G ) , C 7 , / $ . ??!/, (M >"9?$A " ) 9, 0 " F- , $ . ??$/, $M( .) , ' / >69 A ) 6 , C , ) 9 , ) , (M !" ,00+& . *0, * BU , ) C /, + $!, ) -D , >6'? A 6 " ' , - , '" () . ?? /, ?M $ >G A 7 , * , ) G +, # - - , M . / . B * 5/, + ?(, ) -D , >B&?A * ' ) B , " , 9 ; 6 , ?&?
1
>GFD?A " ' , " G 4 , ) F , G D , # % , ((( ( ? . ??/, M >FD((A " ' , ) F , G D # M # , '" () ( . ?((/, &M $
© 2004 by CRC Press LLC
1042
Chapter 10
GRAPHS IN COMPUTER SCIENCE
> A * , % , M$
!" 2 ,00+&, >?!A # ' , N ,
2
. ??!/, ?M
>D?$A # , ' , D , , M$ # " ) # , + $, ) -D , ??$ >;?!A * ; , + ", / $ . ??!/, !!M& .) D 0 , 1 6 0 " / >;**A 1 ; , * , * ) * , + 0 + + 0 3 # +, ((( /* $ ./, M >B*?$A * BU *0, * 3 , $ . ??$/ . , ' / >B*?&A * BU *0, - 0 3 ,
. ??&/, M! >B?A B 9 B 05 , ' + +, " ((( ( . ??/, !M ! & >G" A * G 9 ."/, ) -D ,
,
>G?A * G, ,
. ??/, M$ >G (A G 5 5, # , " . ?(/, &M (
>GG* A G , G G, *0, # , &M! . / . B * 5/, + ?(, >G)(A B G 5 B ) , 5 , M! " 3 , N ) , ?( >C?!A C ,
- , ?M! 9 5 # ) , + ?!!, ) -D , ??! >C"?!A C " , 1 + , &$M(& . S?/ . '
1 /, + (?, ) -D , ??!
© 2004 by CRC Press LLC
Section 10.3
1043
Drawings of Graphs
>C(&A # C , # , 1 ( . ?(&/, $$M$!( >CG?$A C+ G 0 , , " !& . ??$/, ?M ! >CG?(A C+ G 0 , # - + , . ??(/, (!M >CC?$A 9 C C , , " $ . ??$/, !M$ >CC?&A 9 C C , , ($M . S?$/ . ) F /, + ?, ) -D , ??& >CCA 9 C C , , & ./, $ M($ >CC*9?(A C , # C, ; *7 , ) ; 9,
: ,
. ??(/, M >C*A C ; *7 , D ,
./, &M &(
>C* A F C , B * 5, * , 1 + , M$ . /, + ?(, ) D , >C)?A # C F ) , * + , ?(M !" #$4&, ?? >**?&A B G * 5 * * , # , ( . ??&/, (?M >*)?A * ) ) , , ( . ??/, $!M?
>*)F) ??A G * , )0, ) FU , ) ) , * ), ' ), N , 5 + 4 ,
. ???/, (!M >*J&?A G * # C J , F , " ? . ?&?/, M >F9A ) F 9 , @ , M$ . / . *0, * BU , ) C /, + $!, ) -D ,
© 2004 by CRC Press LLC
1044
Chapter 10
GRAPHS IN COMPUTER SCIENCE
>@)?A # @5 , , G ) ,
/ , B 9 R ) , ??
>#A ; , B # # , , # N*C 3 N ,
$ ./, !!M&? >)?A 6 * 1 ) , ) -D , , ??
,
>)?&A # 5 , B ) , 1 , " + , & M($ . S?$/ . ) F /, + ?, ) -D , ??& >?(A # 5 1 , 1 + , -&. / . ??(/, (M
(((
>?&A B , , V , - , &M! . S?&/ . /, + !, ) -D , ??& >'+?A 1 '+ , ' , , , !?M 1 2 .1 ' ) , /, G # , ?? >'*?A ' ; *7 ,
, " . ??/, !M( >) ??A ) , , & . ???/, &!M
>))D?!A 6 ) 5, C # )0V5, 1 D S , , % 3 +, M . S?/ . ' 1 /, + (?, ) -D , ??! >)( A G ) , ) , * , * +
, ((( 1 )*- ./ . ?( /, ?M ! >)A G ) , (, 9 )4,
5
> (&A ' , @
, $ . ?(&/, M > ? A ' , - , 1 . ??/, &M! > ?A ' , , , ??
" (((
> ??A ' , #+ , & . ???/, !M!
© 2004 by CRC Press LLC
Section 10.3
Drawings of Graphs
1045
>((A ' , , , # , ((( 1 )*- (. / . ?((/, $ M&? >DC A C D , , C , ' , 6 D , " , '" () ./, !M ( >9IA # 9 , 6 I , I , , $M & # . 1# /, + &$&, ) -D , >9 A ' 9 , X , -, - , (M!? 6 ) ) .6)) S/, + !!$, ) -D ,
© 2004 by CRC Press LLC
1046
Chapter 10
GRAPHS IN COMPUTER SCIENCE
10.4 ALGORITHMS ON RECURSIVELY CONSTRUCTED GRAPHS
) ) $ ) ") $) # # # # ! # $ # '
) - - %- -;
Introduction 1 + 4
, - , - , , %- , -; 6 +, 4 , . + /, @ * + + # , , 4 & & + .!/8 ,
+ 6
*, & ,
, , , , , > A DEFINITIONS
3 # 4 . 4/
+ , .
/ " + +
4 + 4 +
+ '
3 " + 3 6 , ' +
7 Algorithm Design Strategy
"Æ + & 3 4 + 4 + 8
© 2004 by CRC Press LLC
Section 10.4
Algorithms on Recursively Constructed Graphs
1047
4 + # - + 4 %+ S %+ 0 , ./
#
%+ % 0 # 5 S + Æ 1 , (
. / + 9 ( T + & + & & , ( 3 , * + , + +
( REMARK
%
3 F + . / + , + .+ + + , , 5, - , / + 6 , + +
10.4.1 Algorithms on Trees DEFINITION
3 + # . / # . / C . #/ # . ½ #½/ . ¾ #¾/
5 7 ½ ¾ .#½ #¾/ # T #½ , . #/ 4 & ; + , 4 + #½ #¾ . #/ + + + + . / , #&&> A Maximum-Cardinality Independent Set in a Tree FACTS
&
3 # + #&&> A 9 ½ ¾
½ ¾ # ( T - #&&> A ( T - #&&> A ( T -
© 2004 by CRC Press LLC
1048
Chapter 10
GRAPHS IN COMPUTER SCIENCE
&3 Æ ½ ¾ 1 , (
( , + + ., / ½ ¾
REMARK
%3 + (, (, ( 5 + M -
+ . / 6 , + + . / ( ( 8 ( 4 # (, , , Algorithm 10.4.1: 5-+#+ ;" 4"" 9 (
3 T .) * / ,3 ( . 0 / 1 ) T
(
( " 1 T ½ ¾
( ½( P ¾ (
( ½( P ¾ ( ½( P ¾(
( ( (
, Maximum-Weight Independent Set in a Tree
; + ) + # 3 ( T - #&&> A ( T - #&&> A ( T -
© 2004 by CRC Press LLC
Section 10.4
Algorithms on Recursively Constructed Graphs
1049
Algorithm 10.4.2: 5-+#+ < 4"" 9 (
3 T .) * / ,3 ( . - / 1 ) T
( .#&&> A/
( " 1 T ½ ¾
( ½( P ¾(
( ½( P ¾ ( ½( P ¾(
( ( ( EXAMPLE
3 6 D ( ( ( +
+ #
0 $- , , + > ( ( ( ( ( ( A ( T !
( T $, +8 ½¿ ) 5 5 , +
+ , +
Figure 10.4.1 5- !" " +- "" $ REMARKS
%3 * + + + , ,
, + . > ?A, > A/ F > B G&(A F-
© 2004 by CRC Press LLC
1050
Chapter 10
GRAPHS IN COMPUTER SCIENCE
%
3 # + 6 , + % 0 , # , ,
%3
4 %+ % + + + 2 % + ,
T .) * / - ) . ) ./ - , . , /+ & & ) + / 6 - /- % / P %+ ( (0 3 0 T ( ( ( /, 3 ( /- 8 (/ - /-
/ 8 (0 3 0 T ( ( ( / - /- 0 8 ½(0 ¾(1 T 0 1 P 0 P 1 / F / . /
10.4.2 Algorithms on Series-Parallel Graphs "+ - + 4 ! 6 , DEFINITION
3 # 2 # . 2 #/
4 + 3
. / .½ ¾ / - . 2 #/ 2 T ½ # T ¾
# . ½ 2½ #½/ . ¾ 2¾ #¾/ - #½ 2¾ 2½ #¾
# . ½ 2½ #½/ . ¾ 2¾ #¾/ - 2½ 2¾ #½ #¾ 2½ #½
# ' . ½ 2½ #½/ . ¾ 2¾ #¾/ - #½ 2¾ 8 2½ #½
REMARK
%3
) - 0 , . /
, -, 4 - Maximum-Cardinality Independent Set in a Series-Parallel Graph
1 , + + , + , + 8 - , + 2 > A #0%> A
© 2004 by CRC Press LLC
Section 10.4
1051
Algorithms on Recursively Constructed Graphs
# 3
( T 2 > A #0%> A
( T 2 > A #0%> A
( T #0%> A 2 > A
( T 2 > A #0%> A
( T
Multiplication Tables for Series, Parallel, and Jacknife Operations
! "
!
"
!
"
!
"
!
"
!
"
Algorithm 10.4.3: 5- ;"$ 4"" 9 9 ' 2
3 - T .) * / ,3 ( .0 - / 1 * T > ( ( ( (A > A " 1 T ½ ¾
( ½( P ¾ ( ½( P ¾ (
( ½( P ¾ ( ½( P ¾(
( ½( P ¾ ( ½( P ¾(
( ½( P ¾( ½( P ¾( " 1 T ½ ¾
( ½( P ¾ (
( ½( P ¾(
( ½( P ¾ (
( ½ ( P ¾( " 1 T ½ ¾
( ½( P ¾( ¾(
( ½( P ¾( ¾(
( ½( P ¾( ¾(
( ½ ( P ¾( ¾(
( ( ( ( ( ) + + +, + +
© 2004 by CRC Press LLC
1052
Chapter 10
GRAPHS IN COMPUTER SCIENCE
EXAMPLE
3 # - + 6 D , 0 - + ( ( ( ( 6 , ( ( 1 4 , + ,, , + ,
Figure 10.4.2 5- !" / "" $
FACTS
&3 @ + - + %, , , , 1,
- + . >)(A/ &3 # - 8 . / REMARKS
% 3 6 6 , +
. $/ -
% 3 6 6 , - -
-4
%3 1 , 7 55 6 , -+ & ., + / 7 55 , , 7 55 + @ , , 7 55 + % 3 ) - # 1 ' 5 , , , # , &+ , >'(!A
© 2004 by CRC Press LLC
Section 10.4
Algorithms on Recursively Constructed Graphs
1053
10.4.3 Algorithms on Treewidth- Graphs DEFINITIONS
T .)* / + .3 0 4 / 3 0 4
) + 4 ¾ 3 T ) ./ * 0 4 3
01 4 1 0 , + 3 3 3 3 + - ¾ 3
3 5 + 3 #
3 #
FACT
&3 "+ - - >)(?A 9 . 3 / T . ½3½ / . ¾3¾ / 3 ) +
#&&> A, ½ ¾ + - + -
- , 3 P 6 , - 3 ) + #&&> A # , >' A T - ' 3 3 ' ( T -
5- ;"$ 4"$ 9 (" 2 3 - T .)* / ,3 ( .0 - / 1 3 T ) 6 ' 3 1 ' 7 +
>'A "
>'A ' " 1 . 3 / T . ½ 3½/ . ¾3¾ / 6 ' 3 1 ' 7 +
>'A "
>'A ½>'½A P ¾>'¾A '½ ' '¾ ' P ' 3 '½ 3½'¾ 3¾'½ 3 T ' 3½'¾ 3 T ' 3¾
( >'A 3 ' 3 Algorithm 10.4.4:
© 2004 by CRC Press LLC
1054
Chapter 10
GRAPHS IN COMPUTER SCIENCE
EXAMPLE
3 # - 6 - , (- +
>' A ' 3 ; + , + (- 0 ,
Figure 10.4.3
5-+#+ !" "" " $
REMARK
%
3 * + , , %, -+ . , 4 /, , L + - . > ?A/
Monadic Second-Order Logic Expressions for a Graph DEFINITION
)
C + + , , + . /,
* )
3
)
*
( ( )* T .)* / &
+
T , ) , * 1 5 *)@C . /, . 5/, . 5/
*)@C 1. /
*)@C
1 *)@C + , ./. / ./. / *)@C
© 2004 by CRC Press LLC
Section 10.4
Algorithms on Recursively Constructed Graphs
1055
EXAMPLE
3 ) *)@C X X X . X/ .X / T .+ / .1.+ , / 1.+ , // #7 .+ , + / .+ T + / . / .1.+ , / 1.+ , // MSOL-Expressible Graph Problems
* *)@C . ># C )? A, > ? A, > ?A/ ; + 1).D / .+/ .+ / ..+ D + D / #7 .+ , + // %.D/ .+/ .+ / ..+ D + D / #7 .+ , + // ).D/ .+ / .+ D .+ / .+ D #7 .+ , + // D .D , ( ( (, D / .+/ .+ D ( ( ( + D / 1).D / ( ( ( 1).D /
* ." / . / . / .. " " . T // .+/ .1.+ , / 1.+ , /// ." / .D / .D / . .+ / .+ D / .+ / .+ D / .+ / . .+ D / .+ D // . / .+ / .+ / . " + D + D 1.+ , / 1.+ , /// ; ."/ ." / .+ / . / . / . " " . T / 1.+ , / 1.+ , / . / .. " 1.+ , // . T T /// ; ."/ ." / .+ / . / . / . " " 1.+ , / 1.+ , / . / .. " 1.+ , // . T T // .+ / . / . / .. " 1.+ , // T // FACTS
&3 "+ *)@C- + - ># C )? A, > ?A, > ?A * + , +
*)@C , , , , - - , 5 , & 3 @ *)@C, - > ?A
& 3 .! / - + , + - + P
© 2004 by CRC Press LLC
1056
Chapter 10
GRAPHS IN COMPUTER SCIENCE
&
3 6 , *)@C - 1 + -
+ *)@C > ?A, + - + -0 . ' 5 8 > ?!A
> A/ REMARK
%3
- , - , - , *
6 $ 6 , - + > A , - , -
Two Open Problems
- % 4 , 6 & $& Æ %+ - , + >G A , . Æ
+ *)@C
, - + *)@C
- REMARKS
%3
+ - , 5 + + -0 . > A/
%3
# - + ; , - , - , - , - , - . >9(&A, >9;((A/
10.4.4 Algorithms on Cographs @ - ; , - - , + DEFINITIONS
3
# + 7 + .!/
© 2004 by CRC Press LLC
Section 10.4
1057
Algorithms on Recursively Constructed Graphs
3 + 7 + .! /
3
# ' + + + ' 7 + ' .?/
3 #
3
#
+ 4 + 3
. / # + 1
½
¾
, 7
½
¾
1
½ ¾ , - ½ ¾ ,
5 ½ ¾ .½ ¾/, ½ ½ ¾ ¾
Algorithm 10.4.5:
5-+#+ ;" 4"" 9 ;
3 T .) * / 3 (0 . 0
,
/
1 ) T
(0
"
1
T ½ ¾
(0
"
1
½ (0
P ¾ (0
T ½ ¾
½(0 ¾(0
(0
Three More Algorithms for Cographs
# $ 5 Algorithm 10.4.6:
+*
5-+#+ ;=# ; +! 0#+ ;
3 T .) * / 3 ( . % > A
,
1 ) T
(
"
1
T ½ ¾
½( ¾(
(
"
1
T ½ ¾
(
© 2004 by CRC Press LLC
½ (
P ¾(
/
1058
Chapter 10
GRAPHS IN COMPUTER SCIENCE
5+#+ ;" + 9 ; 3 T .)* / ,3 ( . 0 / 1 ) T
( " 1 T
( ( P ( " 1 T
( ( ( Algorithm 10.4.7:
5-+#+ ;" 5! ; 3 T .)* / ,3 ( . 0 / 1 ) T
( " 1 T
( ( P ( " 1 T
( ( P ) ( P ) .) P )/ Algorithm 10.4.8:
REMARKS
%3
- 4 # ( + Æ ,
½ ¾
P ( .) / P ( .) /
%3
+ 9 + , %, + # ! & ; + , + + . + / 1+, , 2 EXAMPLE
3
# ! ( 6 , - +
0 ,
(0 ( (
© 2004 by CRC Press LLC
(
Section 10.4
1059
Algorithms on Recursively Constructed Graphs
%
%
% 0 !, + 0 , 0 , . / . / . / . /
4# 3 + $$ # $$ $
Figure 10.4.4
10.4.5 Algorithms on Cliquewidth-k Graphs DEFINITION
(((
3 C >5A 4 + 3
#
+
) . / T 2./ >A %-5 1 ½ ¾ %- 01 >A, . / 7 ½ ¾ %- ./ . ½/ %- , . ½/ ½ .½ ¾/ 2.½ / T 0 2.¾ / T 1 ./ . ½/ %- , . ½/ ½ + 0 1
. / #
7
Maximum-Cardinality Independent Set of a Cliquewidth- Graph
# ? 3
>'A T - ( T -
© 2004 by CRC Press LLC
' >A
1060
Chapter 10
GRAPHS IN COMPUTER SCIENCE
Algorithm 10.4.9: 5- ;"$ 4"$ 9 ;=#" 2
)*
3 %- T . / ,3 .0 - 1 T 6 > A 1 T . / > A " > A " 1 T ½ ¾ 6 > A > A ½> A P ¾> A " 1 T . ½/ 6 > A > A ½> A ½> A " 1 T . ½/ 6 > A 1 > A ½> A " > A ½> A
> A 3 > A
( )
' ' 2
'
'
'
' ' '
'
'
' 0 '
' 1 '
' ' 0
' ' 0
(
' '
/
1
EXAMPLE
3 # ? %- 6
! " (- >!A,
> A, >A, >A, > A, > A, > A, > A 0 , +
Figure 10.4.5 5-+#+ !" "" !=#" $
© 2004 by CRC Press LLC
Section 10.4
Algorithms on Recursively Constructed Graphs
1061
A Subset of the MSOL Expressions for a Graph
* + , , %, -+ . 4 / + %- , + 5 *)@C DEFINITION
3
( )* T .) * / *)@C + ) , * , ) *)@C + T , 1. , /, ) *)@C ., , / % 4 ., / , *)@C *)@C - + * + * - + FACT
& 3
"+ *)@C - +
%- > * ' A, + . / +
+ *)@C + + , , , @ *)@C , -
REMARKS
% 3
@ + *)@C + 1).)½ /, %.)½/, ).)½/, D .)½ , ( ( (, D /, *)@C ; + , *)@C + * .*½ /, .*½ /, ; .*½/, ; .*½/ *)@C
%
3 ) + *)@C , 5 + %- ; + , + , + + -0 . > A/
%
3 # %- + -FC >9 ?A
10.4.6 Algorithms on -HB Graphs DEFINITION
3 ,- . ·¾ /- - %-. P / .# > B ' )A/
© 2004 by CRC Press LLC
1062
Chapter 10
GRAPHS IN COMPUTER SCIENCE
FACTS
&3 "+ -; +
T ; , ) L ) , 6 T .) ,* / ) T 7 7 * 7 7 , 7 , 7 , %3 ) ) %.) / 7 , . / * 2 .%./ %.// *
) )
&3 -; - -; , . - / . -/ " S + . / , . / + # , . ) / , ) > B ' )A Maximum-Cardinality Independent Set in a -HB Graph
# 3
>' A T - + ' )
(0 ! T -
Algorithm 10.4.10: 5- ;" 4"" 9
>? 2
3 -; T .) * / ,3 (0 ! .0 - / 1 ) T
>' A ' " 1 T
>' A > A P >- A 3 3 %.) / 8 %.) /, .3 8 / * T ! T ' % .3 / - T ' % .8 /
(0 ! T >) A
EXAMPLE
3 9 # -; 6 $ F T , , , 6 , % -+ 0 0 ,
# , REMARK
% 3 - % -+ + -; ; + , , , 5 + -; * + -; ,
5 Æ
© 2004 by CRC Press LLC
Section 10.4
Algorithms on Recursively Constructed Graphs
Figure 10.4.6
1063
5-+#+ !" "" >? $
A Subset of the MSOL Expressions
* 5 + -; *)@C DEFINITION
3
*)@C T .) * / *)@C + ) , + ) *)@C + #7 . / ) *)@C ., , / % 4 ., / ; + , + 8 + *)@C
.) / ( ( ( .) / .. /9 .
) ( ( ( ) / . /. / .#7 . / 9 . ) ) // . /. /. #7 . / 9 . ) ) ///
REMARK
%3
1 4 ? +, 9, 9 , 9 + , , 1
,
© 2004 by CRC Press LLC
1064
Chapter 10
GRAPHS IN COMPUTER SCIENCE
EXAMPLE
3 *)@C 1), %, D %+ *)@C ; + , *)@C ) *)@C
.) /. /. / .#7 . / . ) ) // % .) /. /. /. #7 . / . ) ) // D .) / ( ( ( .) /.. /. ) ( ( ( ) / . /. / .#7 . / . ) ) /// 1)
FACT
&3 "+ *)@C - +
-; > B ' )A + %- , + + @ *)@C , - +
References ># (!A ) # , "Æ Y +, 6 ! . ?(!/, M ># )?A ) # , , # 5 5, ), # , . ??/, M $ ># C )? A ) # , B C , ), " - , . ?? /, (M ># (?A ) # , # 5 5, C F- 5- ,
. ?(?/, M >C 9 (&A * 9 , " C C , # C 9 , C , ( . ?(&/, $M! > (&A ; C , -, , * 1 , ?(&8 " " . ?((/ > ?!A ' , - 0 - , . ??!/, M & > B ' )A ' , B C B , D ' + , B ) , ' %- 5 , , > ? A ' , ' 5 , # +, # +
, 2 7 . ?? /, &M ?
© 2004 by CRC Press LLC
Section 10.4
1065
Algorithms on Recursively Constructed Graphs
> ?A ' , ' 5 , # +, # +
, & . ??/, !!!M!( > A ' , ' 5 , # +, ) + + , ' , ), N+ # , > C)??A # , D C, B ) , , ???
-, )1#*
> C( A , ; C , C ) , ,
. ?( /, $M & > )(!A , I , C G ) , # , . ?(!/, ?$M? > ?A , - 13 ' 0
4 , (! . ??/, M&! > * ' A , B # * 5 5, N ' , C + 0 % , ./, !M ! > * ?A , * * , * - + - , ? . ??/, ?M( > @A , ) @ , N %- ,
./, &&M
>?&A 6 , # , , N+ N , ??& >"$!- A B " , , , : , . ?$!/, ?M$&
>"$!-A B " , * , + , 6 $? . ?$!/, !M >" ((A " "-* , , 5- , $ . ?((/, !M ?
&
7
>"9 A 9 " , 6 5, " 9 5, ; + - %- , &M ( 8 ,00+9 . / > B G&(A * , ' , B , G, 0 ,
. ?&(/, &&M ?!
© 2004 by CRC Press LLC
1066
Chapter 10
GRAPHS IN COMPUTER SCIENCE
>; ;C 9(&A " ; , ) ;, ' C 5 , G , 9 , C 0 - , ) . ?(&/, &M!& >B @?!A B , ) @ , C 0 - ,
$ . ??!/, !!M &! >G A 1 G , - 5 - + , , >'(!A * ', 0 - 3
, , 1 , ?(! >)(&A )Z , C - F- 5- , '-*#;-L(&, :, , ?(& >)(?A )Z , + * U G 0
, , #5 9 ', ?(? >))($A )Z , ), - -
F- , " 6 ) 5 , ?($ >))((A )Z , ), # - , (;72 (&8 &?M( &( . ?((/ >)?&A B ) ,
7 , 5 .
??&/
>)(A * ) , F- ) - 3 +,
" $ 8< . ?(/, M!
> F) (A G 5 0 , F05, F ) , C - - , ? . ?(/, $M$ >9 ?A " 9 5, 5-FC ,
! ! M$$ . ??/8 + - 6 5
>9(&A D 9 , C 5- + , , N+ , ?(& >9;((A D 9 , ) ;, 5- +
, $ . ?((/, $ M &$
>9;C (!A D 9 , ) ;, ' C 5 , # , ! . ?(!/, M$
© 2004 by CRC Press LLC
1067
Chapter 10 Glossary
GLOSSARY FOR CHAPTER 10 !
M +
3 +
%
,
M +
# #
3 +
M 3 ,
, + :
-+ +
M 0 3 - -
4 0 :
/ "3
+
!# 3
! M
3
0 + +
!7 "½
M - 3
!7 "¾
M - 3 -
" "3
/3
+ &+/
!!" !+
M 3
!!" 3
" : ! /3 " : 3
4
+
+
+ -4
"½
M 3 , , +
"¾
M 3 + -
"¿
M : #3 . ,/ :
+ #,-
" 3
" !+ ?;
M 3
" 3
+
" # 1 +3
-
!:!
M 3
! +! "- M 3
+ 2
© 2004 by CRC Press LLC
1068
Chapter 10
GRAPHS IN COMPUTER SCIENCE
! +! #+ M 3 + 7 + + 2 3 + 7 8 % M 4 + . >A ( ( ( /3
!=#
!=#"
# ) . / T 2./ >A %-5 1 ½ ¾ %- 0 1 >A, . / 7 ½ ¾ %- ./ . ½/ %- , . ½/ ½ .½ ¾/ 2.½ / T 0 2.¾ / T 1 ./ . ½/ %- , . ½/ ½ + 0 1 M 3 , 7 + -4 M 3 % , + +
!#
!# ! =#
! M 4 +3
# + 1 ½ ¾ , 7 ½ ¾ 1 ½ ¾ , - ½ ¾ ,
5 ½ ¾ .½ ¾ / ½ ½ ¾ ¾ 3 -
+ M &+ 3 7 + 3 3 + 3 + + 3 < =, , . / 3 3 -
, +
+ + 3 + + + ½ M 3 -4 , ¾ M 3 -4 + + , 7 2
!- " ! " ! !#" !# "
# " # # " : ! "/
" : / " : /
© 2004 by CRC Press LLC
1069
Chapter 10 Glossary
" : "/ M 3
+ + + -4
"!" M + 3 + %
, M + 3 + "/3 + &+/ "+ M 3 + "! / -3 + 4 "! " M 3 +
) , + + , ,
"! M + + 3 - "+! "3 ,
+ + ./ ./ ./ +
./ ./
./,
"+ M 3 + + +
"
"+ / - M : 3 + + , T +
#,- "+ M : 3 "+! +3 Æ % 4 , !!3 % , + , "!+3 , /#3
+ , !+3 , ++#+ 3
, , - , 3 , , "+! 3 % 8 , + + "+! ++3 + + + ;993 -- -- , +3 -")) ( M 3 + % + " # # / 3 , 5 + , 5 +
© 2004 by CRC Press LLC
1070
Chapter 10
GRAPHS IN COMPUTER SCIENCE
/! / "3 4 : + -3 + + : + " M 3 +
) , 4 , ,
6 3 +
+
# +
/" " M - 3
" "3 + , , +
+ !! M 3 + +
+ M 3 + +
! M 3
% , +
"3 -
0 +
+""" " " +3 ./ 4
.,
/ +
0&.,/ M + , : 3 % + ,
++" "+
+
"" M 3 + - 7
; 3 ' ) .'/ ) . / ) .; / , + ,, ; , , '
! + M
- M 3 + 3 + + "#! 57 ! 3 * 5 +
-
/ ! M 3 +
+ +
" "3 +
0
M 3 + ,
/ / -
/#! M 3 ,
+
+! 1 /! +! M 3 +
+
+! M 3 +-" 3
© 2004 by CRC Press LLC
1071
Chapter 10 Glossary
+"! !" " ! 59.@3 +
+ .+ / .+ /8 4
, 59.@ M T .) * /3 *)@C + ) , * , ) "!+ M 3
( ( ( 0 , 7 + . /
"" 3 + M 3 % "3 0 +
3
+
# 3 + +
3 +
+
"3 "3 " M 3 4- 4
#/+ M
3 +
"! !!##3 +
+ ., , /, % 4 ., /
" M 3 + 4
-+ "3 !# !#!" !3 4 . 4/ +
,
8 + + 4 + 4 +
#
% 8 , + , "T #, . / +
"#! 6 3 : +
" ! M 3 +
! "3 5 +
! 3 . -/ +
; 3 ./ ; ., ; 7 + ; /8 ./
) .; /, 7 ;
+ M
© 2004 by CRC Press LLC
1072
Chapter 10
GRAPHS IN COMPUTER SCIENCE
+"+3 , 4
-4
3 + +
M + 4 3 4 ! + +3 + +
7 %
/ &
M 3
+
#
#
-
7 M 3 + #! M 3 + 3
.) /
:! ! =#3 % ,
,
.) * /
. .) ) //
-3 + : "3 - !+ 9; M 3
+
!+ 9; M 3 -
+ + 8
&
!!" " 3 + + +
+
M 3
,
! #+ ! "1 ! M -
3 +
3 ,
#+3 + 7
+-" 3 + + +
3
+
, " ++#+ 3 ¾ . ¿/ . " /
Ê
Ê
, "1 !# ":"3 + # . /8 7 7 "3 " M
3 5 + -
8
© 2004 by CRC Press LLC
1073
Chapter 10 Glossary
" 3
!!" 3
+
+
#/+
M
3
+
#" 3
+
+ ,
#" "3
-
+
#" " 3 - ! M +
3 + +
"3
+ 8 ,
+ 0 , + +
A "+3
© 2004 by CRC Press LLC
Chapter
11
NETWORKS and FLOWS 11.1
MAXIMUM FLOWS
11.2
MINIMUM COST FLOWS
11.3
MATCHINGS and ASSIGNMENTS
11.4
COMMUNICATION NETWORK DESIGN MODELS
!" # ! $ # % GLOSSARY
© 2004 by CRC Press LLC
11.1
MAXIMUM FLOWS
! " # $ % " &"
Introduction & ' ! " ' '
( ) ! * " ' * " '' ! + ! !
,- ' + ! ! ,- . + ! ! ' ' ' + ! ! " ) * '' ' ! !- " '" / " + + ! ( , 0- ! 1 2 134 " ! " ''
1 * ! / *! " + 25 364- 2%*734- 28794- 2564- 264- 2:3;4
11.1.1 The Basic Maximum Flow Problem )" - + ' - < ' " ' , - ! " < ! ' " DEFINITIONS
=
> ? @ !' * - ! * - - ! * =
A ' * - " ! " ? @ * ? @ ?5 @
=
' " = ? @ ? @- " ? @
? @ > ? @ " * ? @ ;- " ? @
© 2004 by CRC Press LLC
" =
= -
-
? @ ? @- + ,-
? @ >
? @
=
) - ! * + , > ? @ / + " * EXAMPLE
=
' " + , '' ! + " , '' ! ' - + '' ' ) !" * " '' " + /
Figure 11.1.1
Figure 11.1.2 FACTS
=
+ * '' ' * " + . + " - -
? @ >
? @ >
? @
= ! + / * " - !* + ? ' " !*@
11.1.2 Minimum Cuts and Duality '
© 2004 by CRC Press LLC
( + "
Cuts in a Network
' " " ! ? @
( $ ? 9@ ? @
DEFINITIONS
=
8 > ? @ ,- " ' " , " * ' ' " , ? @ " " - ? @ "
=
- - " ' " " " " - -
>
=
? @
+ , " *-
=
EXAMPLES
=
> ? @ ? @ '' !
' " > ? @ B ? @ > C ? @ , ' ' "
Figure 11.1.3
=
! > ? @ ? @ " !#!$
" ' ; '' !
Figure 11.1.4
© 2004 by CRC Press LLC
! !#!$
Weak Duality DEFINITION
%
= : * + - - " + " " + , - > ? @ ? @
FACTS
=
* ' " ! * +
= ?) "
@ 8
- ? @ >
+ , -
= 8 + , - '' ? @ > + + , - ? @
?
. " , 2 4@ EXAMPLE
=
+ ? '@ ! # ) ' - ? @ > 9- + - - . ? @ B ? @ ? @ > B # > 9
Figure 11.1.5 ? @ > > 9
11.1.3 Max-Flow Min-Cut Theorem ' + ' -
' - ' " &$
' ( ' ' DE !F ?5 @- ( " * * ' !' . ( " !- !F ?5 @-
© 2004 by CRC Press LLC
* * " !' " G 0 ' The Residual Network and Flow-Augmenting Paths
! * + , * *'$ ( " !'- '"- " / ! ' DEFINITIONS
&=
8 + , > ? @ ? @ " ? @ ? @ " ? @ ;
8
" - " ?1" - !- > @
=
: * + , > ? @- > ? @ * - " , "= " ? @ - " ? @ - ? @ - ? @ > ? @ ? @H " ? @ -
? @ - ? @ > ? @
=
: * + , > ? @- " , ' , - I - ! * I >
? @
REMARK
'=
) " " / ' I ' *
FACTS
= 2 ! 4 8 + , > ? @- +! ! ' ' I 8 / "=
? @ B I
? @ > ? @ I
? @
" ? @ ? @ " ? @ ? @ ? @
" + , ? @ > ? @ B I
= 2 ( " 4 8 + ,
+ " " ! ! '
% ( ( )
= 2##- %5#9- #94 ! * ,- * " + . ' "
© 2004 by CRC Press LLC
EXAMPLES
=
+ , ' ! 9 * 3 ' ! ,
Figure 11.1.6
* " "*
' " ,- ' ! < +! ! ' " ! + 1 " '
, ? @ ' ' ? @ , C I >
=
)" + ! * ! 9 * ! +! ! ' % ' #- ! + ! 7 1* - ? @- " +! ! ' +
Figure 11.1.7
+! ", # -$
' '' " # + !" " +! ! ' ' !
11.1.4 Algorithms for Maximum Flow ) ' ' + ' '' '' / +! ! '- ( $ - ( A / +
© 2004 by CRC Press LLC
Ford-Fulkerson Algorithm
/ ' + ! - , 294-
= * ' + ! +! ! ' " , Algorithm 11.1.1:
* " ,
( = + , > ? @ + ( = +
) ( ? @ > ; " ? @ , A ! ! ' 8 ! ! ' ' I
1 + ! +! ! ' ? 9@ =>
J' ,
Æ " , ! '
! ! ' - "
' )" ! ! ' - ! ' 2K74 L*- " ' ' ! / ! - % D' 2%D74- ( 2 7;4- ! ! '- ! " ' / " ' ! ? @ " ' % . / ' " + * - ? @ - ! ? @ " '* ' 2564 ! ! + * ' 2D74 ? , , ! +@ " ! ! '' :! & 2:&364
Preflow-Push Algorithms
* '' ' ! +- ( *'$( ! :! 2:674 :! 0 2:664 ) ( $ !- ' + * * - ' + M
N * - ! & * ( ' " * * ' ! + ! M N , ' ' ,' , " ! DEFINITIONS
=
* " +- " = ' " =
? @
? @- " ? @
? @ ? @ ; " * ? @ ;- " ? @
© 2004 by CRC Press LLC
=
8 '+ , > ? @ * - ? @- ! * ? @ > * ? @ ? @ ? @ ; *
: * '+ - " - - - / " + ?/ 3@ 5 - , > ? @ / " ?/ ;@
=
8 '+ , > ? @
/= ?@ > -
=
?@ > ;? @
? @ B " ? @ !'
=
! * '+ " - ? @ , " ? @ > ? @ B Algorithm 11.1.2:
. ." ,
( = + , > ? @ + ( = +
) (
? @ => ; " ? @ ? @ => ; " ?@ => ? @ => ? @ " ? @ ' ,
A * * 5 * * )" ? @ + ? @ I => ? @ ? @ ? @ => ? @ I ? @ => ? @ B I )" ? @ ? @ => ? @ B I % ? @ => ? @ I % & ? @ => ? @ = ? @ ? @ ; J' ,
@ ! ' " " ' " " ! ! " ? @ ? !? @@ '+' !
?
2:664 " '+' ! ! " D !- & 0 2D &34
© 2004 by CRC Press LLC
) ' ! ' " '+' !
" ! ' " ! ! ' ! ! ' ! ' ! - , / " !' '" ' ' 5 - (
- . , / * , " - ' 2:374
11.1.5 Variants and Extensions of Maximum Flow A + * " + ' * *!- - !- 2 13- %* 34 FACTS
&
= * " ? @ * ? @ " ! + !
*- ? @ * ? @ ? @
' ? @- ? @ * ? @ ? @ ' ? @
= 2 ' ' ,4 5'' * + , ' ' ,- A / + , " ! " A ' ' , - ? @ ? @ > " - ? @ ? @ > " , + , ' + " ' ' , '
=
+ / ! ' !' ? ! 5 @
=
@
)" - $ *' ( ? 5
=
2+ !4 , ! ! ? @ ' ? @ ! ' ? @ " + ) +- + - + '' ! '- ! + ? @ > ? @ > . * ! ? @ > + ? @ A " * ! '' ' ? @
=
2 +4 , + * ) ' / + !'- '* ! ?- !- 2 13- %* 34@ Multicommodity Flow
' ' " + "
'
© 2004 by CRC Press LLC
DEFINITIONS
=
-
=
' ? @ - ,- " +
> ? @ !' * -
- ! * " =
A ' * " ? @ *
? @
! !
%=
" ! >
+ , > ? " ! " ! =
" =
? @
@
? @- " ? @
? @ > ? @ " > ! ? @ ? @ > " > ! ? @ ;- " ? @ >
!
Variants of Multicommodity Flow Problems DEFINITIONS
&=
) - ! *
+ , - , "
+ A +
=
)
- ! *
+ , - ' * " " "
+ , ' "
=
) - ! *
+ ,- ' "
- ! * A /- "
- + " * ? @ ? @ ? @ (
)" . + ! ?* !
' !@- *
+ '
* ' * '!
! Æ ! ' '' ' 2853O3#- :D364
)" . + !- *
' C ! '' * " ' ' ?5 2$334 " *@ C !
+ ! ( , $( (
=
) - *
' * " ' C-
" '' ! " ! ' , * 2D39- D537- ::364
© 2004 by CRC Press LLC
References 2 134 & D
0- 8 ! - P 1 -
- L- 33
25 364 AP ,- AL ! - A& ,- - P A 5- C O,- 336
5 0*-
2:374 $ ,, $ :!- 1 ' ! '
" + ' - 3?@ ?337@- 3;G; 2 7;4 % - ! " " ' " + , ' - !" #" ?37;@- 77G6; 2 ::364 O (- C :!- : - 1 ! ' + ' - ) $ % &' ( ( ( % ( ?336@- 3;G33 2%D74 P % & D'- '* !
Æ " , + ' - )( % ! 3 ?37@- 6G9 2%5#94 % - - % 5- C + ! ,- *+, *% *-. 3 ?3#9@- 7G3 2%*734 5 %*- / - ' 5 - 373 2%* 34 % / - P & %* % ,- ,,- 33 2#94 8 & - P & ,- + ! ,- )" % !" 6 ?3#9@- 33G; 294 8 & - P & ,- - J * - 39 2##4 & , : ( !- ' " + ,- + 0 1( ?3##@- 77G6 2:D364 C :! P D - ' ! "
+ " ' , ! ' - ) $ % &' ( ( ( % ( ?336@- ;;G;3 Q - & % 0- C, + ! 2:3;4 $ :!- % ) D- 8Q 8*Q (- L P E - 5 0*- - $ 20 *-0(- '' ;G9- 5' !$!- 33; 2:674 $ :!- ,Æ % 3( ( - )- !- - P 367 2:&364 $ :! 5 &- + ' )( % ! # ?336@- 76G737
© 2004 by CRC Press LLC
2:664 $ :! & % 0- '' + ' - )( % ! # ?366@- 3G3; 2D74 $ D(*- ! + , " '+- !" #" # ?37@- G7 2D &34 $ D !- 5 &- & % 0- " + ! - )( % 7 ?33@- 7G7 2D394 P D !- 5 ! ' +- ) $ % &4 ( ( ( % ( ?339@- 96G77 2D5374 5 : D ' 5 - ) '* '' ! " ' + ' - ) $ % &5 ( ( ( % ( ?337@- 9G9 28794 % 8 8- ! - L- & A - 379 Q - 2853#4 8 !- ,- 5 , - 5 - % 5 !- '' ! "
+ ' )( % ( #; ?33#@- 6G 2564 L ' D 5 ! (- - L- 36 2564 5 & % 0- " - )( % ( 9 ?36@- 9G3 2$;4 $ $( - - 5' !$!- ;; 2O3#4 C O!- & ( ! * ! '! ) $ % 6 !- *! ( # ?33#@- 7;G76 2K74 C K- %Æ " % D' ! " ' !
+- )( % ! 3 ?37@- 6G3
© 2004 by CRC Press LLC
11.2
MINIMUM COST FLOWS
/ 1' ! " # % " &"
Introduction + '" " , + ! '' - - + ! " , ' '
! ' ' - " !-
- !' !- - !- ' - ! ! '
+ ! ( , ' " ' ' = Æ ! / ! +- ! ( " !
+ ' C , MC, N 0- ! - 1 '* !
*! " +- '' - ' 2 134 1 * ! / *! " + 2 5 36-:3;-) 5;;-5 ;4
11.2.1 The Basic Model and Definitions DEFINITIONS
=
> ? # $@ !' * - #- ! * ' " = #
- " =# % - ! '' * $ = % / $? @ > ;
=
? @ + , > ? # $@ ! * $? @ > ; " $?@ > $?@ ;
=
> ? # @ " > ? # $@ , * > - # > # ? @ $? @ ; ? @ $? @ ; ' " /
© 2004 by CRC Press LLC
? @ ? @ > $? @ $? @
" ? @ " > " >
#
=
=
' #
% /
+ , * /
?
@
" =
? @ " ? @ # = ? @ ; " ? @ #2 ? @ ? @4 > $? @ " 7
= = ? @
=
+ + , > ? # $@ * $?@
= %=
+ * ! +
+ " '' * $ * !
5 - ' - ?& @- ?& @- ?& @- $? @- ' *
$ "
REMARK
'=
) / *- / " ' " ' / ! ? @ > ; " ? @ # < " ! + " ' * " ' + " * " ' ! ' , + * ! * * " * ' '' !
EXAMPLE
=
' " + , '' " ! '' , ) ' " ' " + , /! ! (1,2)
c
2
(2,3)
[2] a
e [−4] (2,1)
c
2
[2] a
e [−4] 2
(3,2) (1,2)
(4,3) (2,4)
d
(1,3)
(2,3)
2 f [−3]
[5] b
d 3
[5] b
# * "-
Figure 11.2.1
" ! ! =
f [−3]
?@ ' > ( > # ? " * - ' *- ,@ ?@ ) > ?@ ?! @ ? @ * > ?@ ?@ ?! / ' @ ?@ + > $? @ ?! ! " '' 2 4@
© 2004 by CRC Press LLC
?@ , ?"@ - >
?@ ?@
#- ?, @ > ?@
?!@ ?' ( ) @ ' " ' ! ! ' " / * , ' * ( ! ? @ ) ASSUMPTIONS
= =
' '' ' "
C ! *
FACTS
= =
. - '' " +
' " ! " * *- * ' '' ? @ ! " ' ! ? @ ? " @ ?" @ ? " @
' ? @ ?" @ ; / '
=
' " ! )" ? @ # ! * * = " " - $ ! ? @ > ? @- ? @ > ? @- $? @ > $? @ ? @- $? @ > $? @ B ? @ )" ! ' + * " ? @ ? @ * " ? @ > ? @ ? @
=
+ / !' ' ! '' " ' - ' * !' )" + !'- + !' "= " ' ? @- ? @ > ; ? @ ? @
=
?" @ + + , " / ! + + , ?5 ' ' , #@
= + ' . * ' , ! / ' ? @ ()
= " ! !' ' ( ' ' " + * - * =
" $ > . > $ $ > ; " - / +
( . J ! $ - - # # ? @ - > - > -
> ? # $@ + ! , ?5 5 @ =
" ! * * - / ' !
! " * J ! $ > - $ > - - -
+ !' ' , ! ' * + ?5 5 ;@
© 2004 by CRC Press LLC
! = ! * * - " - ! !- / ! ' " J ! $ > ! > $$ > ; - - ! *- +
' , ! ' * + ?5 5 - !F @ =
! * ' !' > ? #@ ! - / ! " ' J ! $ > - $ > - > - -
+ ! ! , ! ' * + ?5 5 @
=
+ ' ,
Residual Networks DEFINITIONS
&=
: * + , - , > # + > # ; C , + " ? ' @ - - , " > ? @ , ? @ - " > ? @ + ? @ ' " #
=
'
=
# " " ' * ' " ! !
+ , ! & # "= " " ? @ - ? @ > ? @ B &- " , ? @ ? @ > ? @ &
= #
' "
" ! . .
FACT
%=
8 + B / ? B @? @ > ? @ B ? @ ? @ +
EXAMPLE
=
! , " + '' ! ! (−1,2)
c
a
(−2,2) (2,1)
(2,1)
e
(−3,2)
(4,3)
(1,2) (2,2)
d
(1,3)
(−2,2) b
Figure 11.2.2
© 2004 by CRC Press LLC
(−2,3)
f
"* ,
11.2.2 Optimality Conditions DEFINITION
=
: * ! / = B / /
% -
* / =>
FACTS
&= )" +- ! * = )" +- " ,
=
+ " "
)" ! * - / = % ' " * '' ! 0,F ! ? 5 ;@ / ; " ? @
=
+ ! /- *
? @ ? @ > ? @ "
? @ ? @ > ? @ B / / " ' ? @ > B / $ ( " " (
= ?& ' @ )" ! / = % ; " ? @ - + = ? ' 5 ,@ )" ! / = % ; > ; > ; > ; ; + ) - /
REMARKS
'=
' " ' = "
? @ " '' ! " / ' " - " ? @ ! '' ! - ! )" ! *- !-
)" ' *- !- +
' " - * / "
'=
"
EXAMPLE
=
! ! ! ! * , '' ! ! 1 " " ! + !
© 2004 by CRC Press LLC
- ! !' , ! + "
+ , ! e (−3,2) (1,2) d
(1,3) f
, ! " !$!
Figure 11.2.3 2
c
2
[2] a
0
(−1,2)
3 c
a
e [−4]
(2,1) (2,1)
2 2
d
[5] b
Figure 11.2.4
(4,3) (2,2)
2
3
0
b
5 e
(3,2) 2 d
(−2,2) f [−3]
(−2,2)
(−1,2) (−1,2) (1,1)
(−2,3)
f
3
! " / "* / * * - "
A Basic Cycle-Canceling Algorithm
" " ! ' ! " / ! + 3- - Algorithm 11.2.1:
0"! )$! )! ,
( = + , + ( = +
" + ' , A ! * ! * ! + ! " ) '
FACTS
=
)" !- " + !- ! / ! + ! )" !- ! " +
=
C! * " ! ! " 2#6-#94 ?5 " !! @
=
+ " " ! * / ' ) - ! ! / !
+ " - !
© 2004 by CRC Press LLC
?@ K 2K74 " " '
! ! . ?* @ ! ?@ / ! ! ! " 0 " + - / + " ?( !?')* @@ ! 2634 ? @
/ ! ! $ ?
( ? @ @ ' / + " ?(' !?') @@ ! 2:634
REMARK
'=
" " - ' ! '' " 2) 5;;4
11.2.3 The Dual Problem .- ' * ! + . * + '
* - ! ( ! ' ' ( "
+ ' ' " ' DEFINITIONS
=
" + ' ?@ / + , (
" B
50 B /
=
/ B " ; " ;
' " * " /
FACTS
/ $
" ? @ " ? @
# #
" " "
Ê- ' ?/ " @ " " " Ê " B / $ B > ;
%=
: * > ; / "
* /
&= " + = " / ' " " " + * R " B R > ; =
)" + R " ! ; - " / ! R - R$ > $ ? @ > ; R > R B R - !
R > ? #R@ R ! * " " + " R $ , R # > ? @ > ;
© 2004 by CRC Press LLC
11.2.4 Algorithms for Minimum Cost Flow * " ! ! * + ' 5 ! - , '" ( &- '!
!
! ! " ' ' ! = " +- '* ' ? " @ " ) - ! = ?' @ ! !' ! ' " ' , , , " H ( $ ! ( *'$( + ! 5 ) ' '" ' ! * ' = ( / ! ' " ' / ( !' ? ' " '' @ - ! ! ' ' + ' A Transshipment Problem Associated with a Minimum Cost Flow Problem DEFINITIONS
=
8 > ? # $@ + , ! * , ' ! > ? @ ? @- ? @- ? @ * ! / ' - ; ;- ' * - '' / $? @ > $? @ >
=
" ' , > ? # $@ ' ' , ! ! ! * ! " / ' - B
FACTS
=
R ' , 8 + , R " + R "
" + " " R R > ? @- > - > - R > *- " R . " = 8 + , ' "
' , )" ' - B ! + ' " = 8 + , ' " '
, ! / '
+ ' " A Primal-Dual Algorithm
% D' !* / ' ! / + 2%D74 ! " ' ! * ! ' ' / * ! " ' ' ' ' ,
© 2004 by CRC Press LLC
DEFINITION
%=
: * + * - - ? @- '' + " - - ? @ > $? @ 2 ? @ ? @4
! ? @ " - + - * /- ? @ ? @ ! ! ' " ! ? @ ! ! ' ! Algorithm 11.2.2:
)#!$ 1!, ,
( = ' ' , > ? # $ @ + ( = ' ' ' /
) ( /? @ > ; " H ? @ > ; " ? @ #H I > ¾ A I A ?@ I ?@ I 5 ?@ I ?@ I ' ? @ " ! + I ! ! ' J' ' /? @ > /? @ B ? @ " I => I
I " ! ' I > I
FACTS
=
! ! - ! * '- / '
" !
=
A ! - " - / '
-
=
" ! I' '
' ! ! /
' ?'?! + @ ?' ( ) @@ *- " + , ' * ( !- " * ' "
' , ? / 9 7@ . ' B ( " ! / + ' ' , ? - - / ! , @ . ( B ' - ?(@ 5 ' " ' ' " " * " ! ? " / 9@- " ' " ' ! ! " * !
+ ' ?(?! + @ ?' ( ) @@
! / , , / ' / / ' ? / ' @- " ! ! ! = ? @ ; " ' " ? @ I ) / ! - " ! ! ' I' ' I ' ,-
" I - ! * ' I
© 2004 by CRC Press LLC
A Push-Relabel Algorithm
' " + ? '+ ' ! 5 @ A / " + ' ) ! :! 0 2:634 DEFINITIONS
&=
' ? /@ / # 0 " ! * ? @ 0 " ' * '
= =
? @
" ' * ' ? @ ;
: * + , - ' " ? @ ? @ B ? @ ?& @
=
? @
! +
' '? @ " ! + ? @ . ? @H Algorithm 11.2.3:
." ' - ,
( = + , > ? # & $ @ + ( = + - ' ' /
) ( /? @ > ; " H ? @ > ; " ? @ #H 0 > ) A 0 5 ? @ " ! ? @ ; A ? @ ; 5 ? @ ; )" ? @ '? @ ? @ => ? @ ? @ B ? @ % ? @ /? @ => /? @ 0 0 => 0
0 " ! ' 0 > 0 FACTS
%=
)" ! * /? @ > ; " - ? /@ ) ' )" + ? /@ 0' " 0 - +
&=
" " 0'- ' ? /@ 0' - 0' ! ' " 0'- + " '- +
= = = =
, " ! ! / ! ! !
' ' * 0' ?'@ ! ' ' 0'
© 2004 by CRC Press LLC
' " ! '
- " ! * - :! 0 2:674- ' , % , 2% 664 !! ! / * '! ' !' " - !
! ! 0 " ! ' - " ! ' ?' @ ' 0' J ! ' :! 0 2:674 ' " ! ?'( !?' (@ !?') @@ ' '* - - ( " - *' -&- ( "$ - ! ' ' * 2:374 Strongly Polynomial Algorithms
! * + ' - ' ' 2 13-) 5;;-5 ;4 ! ' * ' ' ( " ' / ( ? ! ' ' ( " ' @ * + 26#4 " / ! + . ! ' ! / + * ! ! " :! 0
! ' 2:634 " ! ' ! 1 21664-
' ! + / !- ' ?( ! ' ?' ( ) @@
11.2.5 Extensions to Minimum Cost Flow Convex Cost Flows
5' * + ' '
- " ' Æ + ! DEFINITIONS
=
Ê Ê
: * ' * " = " - + ( +
+ , #-? @ * "
=
* / ' * * / ! !
* / " " FACT
=
) - ,' " * ! ' * ' " ! * + ' + '
© 2004 by CRC Press LLC
) - "
'' " * " " ! " ' + ! ' +- ! ' -
" " " ) - ' * ! . " '!
!- ! * ! " + ?!- ' ! ! !' ! 2 694H
! ! 2D 374H ! ! 2374@
Flows Over Time
* ' ' - '
*' DEFINITIONS
=
+ , > ? # 1 $@ ? @ # 1 1 ' " ' + ? @ + *
=
( " 8!
" = 2; @ ?2@ " + ?' @ ! 2 * - / ?2@ > ; " 2 * 2; @ + * / " ! =
Ê
= ?2@
-
; " ? @ # 2 2; 4
7
= + ! ? @ 2 * 2 B 1 -
" 3
?2@ ?2 1 @ 2
2; @- $ > ;
> ;
= + " = ?2@ > ; " 2 - + ,- -
?2@ ?2 1 @ 2
87 9 = ?2@
=
> $ "
- " 2 2; @ #
) ! - " + * / ?@ =>
%=
2 1 @H
?2@ 2
$ > ; " (
( + * "
$ ! + *
© 2004 by CRC Press LLC
&=
? @ + , + " " ' ? @ ?@ > 4 ?@ > ; )
- " ' + ? +@ 4
=
8 + , > ? # $@- S " ' + + S " + " " ? @ #- " 5 S- 5 ? @ ; " ? @ ;- + ? @ > 5 ? @
! * +* , - + , ! ! 1
' + 5
S- 4 ?5 @ * " 5 - ?5 @ ' " ' ! 5 )" S + ' " + + , " - 1 ?5 @ " " ?5 @
FACTS
=
+ > ? # $@- + ' S " + ' ' - S (
=
R ! , 2#64 8 + , ! / ' ? @ ? @ > 5'' R S + ' " 1 ?5 @ " ' + 5 S / + * "= " ' + 5 S- + ! ?5 @ ! + / ?5 @ 4 ?5 @ " ; 1 ?5 @ + * " ?5 @ * 21 ?5 @ @ , 2#64 + *
+ * (
=
J , ' ' ,- + ' ? #@- ' " " ' ' , +* ' +* ' L*- ! * ' ' 2L;;4
%=
! +* ( C 2DA3#4- " / 0 ;- ! ( ? B 0@
" +* ( " ' ? ' ' 0@ 25,;4
Flows with Losses and Gains
! + ' ,!
5 ' " / - '' !- * " ' - ! + ! . *' DEFINITIONS
=
T
> ? # 5 @ , > ? # $@ ' ** ! " 5 = '' " $ > ; " 5 ?@ ; " " " " +
© 2004 by CRC Press LLC
Ê
- 5 ?@ )" 5 ?@ - H " 5 ?@ - ) !- ! ! " " ! , +- ! " " *
Ê /= = ? @ ? @ " ? @ # = ? @ ; " ? @ #7
= 2 ? @ ? @5? @4 > ; "
=
" = #
=
+ ! ( " + ! ! * ''
=
?@6?@
(
+ !
FACT
&=
' " + ! ! ( ' " + 2197774
+ ! *
'!
! * ! C - ' ! " + ! ( ' ?' ,@ 2:34- ! ! ' 2:P 1374
- ' ! " + ! ! ( " ! ! "
+ 2A;4 ) ! ' . " ! ' ! " '
References 2 134 & D
0- 8 ! - P 1 - " L- %! <- CP- 33
Q - C A F 2634 % ! - *! )" (" 6 ?363@- #73G#6 2#64 & % - 1 ! ' - 1( " " !" 9 ?3#6@- 67G3; 2% 664 , P % , - ' " , + ' - !" $ ?5 @ ?366@- ;G 2374 ,- 8 ,- !- 0 " ' * , + ' - *! )" " 7- ?337@6#G67;
© 2004 by CRC Press LLC
25 364 A P ,- A L ! - A & ,- - P A 5- C O,- 336
5 0*-
2%D7;4 P % & D'- '* ! Æ
" , + ' - )" ! 3 ?37@- 6G9 25,;4 8 5,- + * ! $ % :; ( !- *! ( # ?;;@ 99G7# 2#94 8 & - P C, + - & '- 3-
! 3#9
2#64 8 & & ,- ! + " +- + " 9 ?3#6@- 3G 2:374 $ :!- Æ ' " ! + ! - )" - ?337@- G3 Q - ! " 2:34 $ :!- 5 , - % ! ( ' - !" " + " 9- ?33@- #G6 2:634 $ :! & % 0- !
! ! * - )" " (" !" 9- ?363@- 67G669 2:674 $ :! & % 0- !
* '' - !" " + " #- ?33;@- ;G99 2:664
Q - & % 0- C, + ! $ :!- %
$ 20 *-( ?- 366@- ;G9
2:P 1374 :"- K O P - P 1 - !! !
! ' ! " ! ( ' - !" " + " - ?337@- 73G6; Q - U , ' - !" " 2L;;4 L'' % + " #- ?;;;@- 9G9 2) 5;;4 5 )- 5 ,- 5 !- & ! * ' * ! ! " +- !" " + " #- ?;;;@- 79G; 2D 374 $ D(* 5 ,- " '
* ' ( ' '' - *! )" (" 9- ?337@- #G7# 2DA3#4 D ( : P A! !- += ' - * 8 :''<9 3G- 8 C ' 5 - 3;- 5' !- - 33# 2 694 - 5* ! ! + ' * 0 * ' C+ ? - 36@- !" $ (" C 9 ?369@- 7G3
© 2004 by CRC Press LLC
21974 D 1!- 1' + !
,- )" * " 6 ?397@ ;6G7 21664 P 1 " ! ' + ! - " + " ?33@ 6G#; 25 ;4
5 0* - 5' !$!- - ;;
Q - ! ' ! - 26#4 % #- ?36#@- 7G## 2774 D '- 1 + ! ' +- *! )" " !" - ?377@- #;G#9 2A;4 D A- ' ! " ! (
+- !" " + " 7- ?;;@- #G#3 2K74 C K- , ' " '
+ ! - !" $ " # ?37@- ##G99
© 2004 by CRC Press LLC
11.3
MATCHINGS AND ASSIGNMENTS
! ! ' :' ! C ' :' &"
Introduction ) !'- ! ' . / ! " 0 ! * ! ! ( ! ! !' ' ( ' " '' - " ** ! ' ' ! " " 0
11.3.1 Matchings ! / !'- ! ! ! " * " '' - * !- - ' ! - ! ' - ! DEFINITIONS
=
8 > ? @ !' * ! %
!
= =
> ? @ -
" ' 0 !
) " * * ! * )
=
> ? @ ! - * " ! " -
=
-
= =
?- @
%=
'" ! "
" H #
? @ " ! - " ! - - " ! - ?- @ >
" ! - * ! ! ( -
"
! - * ! ! !
& * ! - > ? @- ! - !- ! - ! $ " !H * ? @
&=
%* *
© 2004 by CRC Press LLC
-
' " !
=
A ' ! - - ? @ " ' " ! " " ! " ! " !
=
" *
' ! " ! ' " *
'
! - ! ' ' " * ! !- ' ' !
EXAMPLES
=
! !' ! ! - > ? @ ? #@ " ( H ! ! ! " * * - " * # * & * ! - - * 9 " * - ! ! ' " 9 ! * > ? @ ? @ ? @ ? #@ ?# 9@
! - ( !H ! - > ? @ ? @ ?# 9@ " ( ( !- " '" !
2
3
1
4
6
5
Figure 11.3.1
! , ,#
=
! !' 9 * ! - > ? @ ? #@ ' ( !- " ( !' * '"
! 1
2
3
4
5
Figure 11.3.2
6
"2 ! , " # !
=
) ! !' " ! - ! ! ! " ! - > ? @ ? #@ ?- @ > 7 & * !- ' > ? @ ? #@ ? #@ ? 9@ ! '
? @ > 7 B # > ' ? @ ? @ ? @ ? #@ ?# 9@ ! ! '- 0 ! " * 9
1 1
2
2
Figure 11.3.3
5
5
3
4 7
6 4
© 2004 by CRC Press LLC
1
5 3
6
! , , * ,#
Some Fundamental Results FACTS
= )" - ! " > ? @- " * " " * -
= )" - ! - -
= ?A, @ ( " * * " '' ( " !
= =
%* ! ! ' " !
)" - ! ! ! ' ' - -
< - I ! " ( - B
< - I , ' / ! -
= ? ! ! @ - ( ! " " ! ! ' ' - ?5 2634- 2#74- 2C"@
= )" - ! ! ! ' ' - -
?- I @ > ?- @ B ? @
%
= 5'' - ! * ! ! ! ! " / ( ! )" ! ! ' " ! ' - - - I ! ! ! ! " ( ! B
&=
8 - ! ! ! ! " / ( > !- ! ! ! ' ' - ? @ ?@
? @
=
. " 6 3 ! ! ! ! ! =
! - " ! " " ! " * ! ! ' * - ' * EXAMPLES
=
) ! - ' > ? @ ? @ ? @ ? #@ ?# 9@ ! ! ' ! - > ? @ ? #@ ! - ' " ! ! - > - I > ? @ ? @ ?# 9@ ( ! - - ( ! ( !- ? @ ? 9@ ? #@ ? #@ ? 9@ ? @
=
) ! - > * * " - - ( " ! - / > 1 - > # ? @ * * " !' ! - (
! - " !' / - >
=
! ?@ ! - " ( - ?- @ > 7 5 ! ? #@ ! ! !- - ! ! " ( & * - - ! ! ' > ? #@ ? #@ ? @ !
?@ > 9 B 7 > - ! ! ' > ? 9@ ! ) * / ! ! ! ' * - ) !
© 2004 by CRC Press LLC
6- - > - I > ? #@ ? @ ! ! " ( -
?- @ > ?- @ B ?@ > ; ? ! ?@@ & * - * ! ! ' " * 9= 7 > ? @ ? #@ ?# 9@ > ? #@ ? #@ ? @ ? @ ? 9@
7 > ? @ ? #@ ? #@ ? @ ? 9@ 7
9 > 9 >
?7 @ > # B B 9 >
?7@ > B
?7@ > B 7 B
7 ! ! ! ' ? 6@ - > - I7 > ? @ ? #@ ? 9@ ! ! " ( - ?- @ > 3 ! ! ' * - * ! * !- ? ;@ -
! !
1 1
2
2
7
6 4
5
3
4
1
5 3
5
1 1
6
(a)
Figure 11.3.4
2
2 7
6 4
5
3
4
5
1
5 3
6
(b)
( , ! ," "2 " *
REMARKS
'=
9 ' ! 2#74 & K C 1 & 2C" ! ( 63 '' " P 2634
'= '=
'' * " ! '* 234
234 " * ! ' - ! ' '
11.3.2 Matchings in Bipartite Graphs ' !' " '' ? ! ! ' 0 , ! 0 * @ 5 * 2 134- 2 1&3#4 2:3#4 28694 " '' '' ! " ( ! ! ' !' DEFINITIONS
=
8 > ?8 !
=
9 @ ' !' ' * - ( !- !
? @ " " *
)" 8 S? @ > 9 9 0 * "
=
? 8 @ " > ?8 9 @ ! * " 8 ! " - 5 ! " 8 9
© 2004 by CRC Press LLC
APPLICATIONS
=
! ' ! ' ' * ' ' 5 ' * , ! " " " ! " ' < ' < ' ' !' > ?8 9 @- 8 " 9 " ' ! ? : @ ' : !
' ! " !
=
' '' ! ' 0- 0 ! / '' !
! ? ' * @ " '' " 0 : ! * ! ? !@ * ! * ! ! ' ' !' > ?8 9 @- 8 " '' 9 " 0
=
* " ' 0 ? @ " * " !' " 0 , ! / " * 0 5'' 8 > 9 > ' ' " 0 B I )" I Æ - % ! * 0 F ' * " ! 0 ? * " *@- ' ! 8 9 ( * " %
" ! ! ' ' ' !' > ?8 9 @- ! ? : @ ' ! ' ' ! ! " ! ! * " % !
! ! " ( ' '* ' ? @ ' ! " * B I
FACTS
=
?DE !F @ ' !' - ( " ! " * * " ' !' ! . / . ?5 23;4@ ?LF @ > ?8 9 @ ' ! " " S? @ " * 8 ) - ' ! ' *
=
" * 8 0 . " * 9 ?5 23;:334@ 5'' ! 6?@ ! 6?@ > 9 @ " 8 9 ' ! ?5 2:334@
= ?8
EXAMPLES
=
) ' !' " ! # - > $ * * "
- - > ? @ ? @ ? $@ ?# @ ( ! ! DE !F - - > - ! # > # * S?#@ > $ 5 S?#@ # - LF
' ! ' 8 > # ) " -
! - * ( #
© 2004 by CRC Press LLC
Figure 11.3.5
1
a
2
b
3
c
4
d
5
e
) " * ! ," -# ,#
%=
) " ! 9- ' , ! , ' - , V '- ' , ( ' ? @ ? @ ? @= ' ) " , ' ! ' V - - - ! V H " - " " Æ L " , ! , ! V . " ! V " " DE !F - ! ' !' > ?8 9 @ 8 9 # H ! ? : @ V : ) - ' ' ' ! * ! ' * *
1
2
3
4
5
1 2 3 4 Figure 11.3.6
! ""- * - 3 "
REMARKS
'=
DE !F LF * " "
'=
( ! ' ' !' "
+ ' ' , * ! + ! ? @
'=
! ! ' ' !' "
+ ' + , * !
+ ! ? @
Bipartite Maximum-Size Matching Algorithm
! - 9- ' ( ! " ' !' > ?8 9 @ % ** / / " -
© 2004 by CRC Press LLC
! " * 8 * " * " ! ! ! ' ?'(@ ? 2564@ Algorithm 11.3.1:
0# ( 12 (! ,
( = ' !' > ?8 9 @ + ( = ( ! -
- => ; => 85% A C1 ; 8 , " " * " " => 8 , => << < => &J% A << < " ! ! ' # => ? @ " )" # , > ! ! ' ! ! ' 2W4 - => - I << < => 85%
% , ! " ! ! ' => # " => ? @ - # )" " > << < => 85% ; => &J%
REMARK
'=
! ! ' ' 2W4 *- ! "
9 * * " ?0 @ / " # * # - $ " 8 9 " " - " *
EXAMPLE
&=
! / ( ! ' !' " ! 7 A ! ! - > ? @ ? $@ " ( - ! 7?@ - " > # > $ 5 * " # - ! " > # > 5 # "- ! ! ' > ? @ ? @ ? @ -
! ' - > ? @ ? $@ ? @ H ! 7?@ ' " > - # > $ H " > - # > H / " > - # > " > C " ! ! ' "- ! ( ! - > ? @ ? $@ ? @
© 2004 by CRC Press LLC
a
1
a
1
2
2 b
b
3
3 c
4
c
4
(a)
(b)
( "2 ! , -# ,#
Figure 11.3.7
Bipartite Maximum-Weight Matching Algorithm
! - 6- 3- ;- ' ! ! " > ?8 9 @ % / ! ! ! ' * ! - ! ' ' * ! !" ' " ! ?' (@
* ! ! " ! ' " " * 8 * : ! ?: @
Algorithm 11.3.2:
0# ( 4 , (! ,
( = ' !' > ?8 9 @ + ( = ! ! -
- => ; => 85% A C1 ; 8 " " " * " 8 8 ?: @ => ; " : " ?: @ => A " > # => ! ? @ - " )" ?@ B ?@ ?@ => ?@ B # => # " => ! ? @ - # )" ?@ ?@ ?@ => ?@ " => " 8 " * ?@ ' )" ?@ ; - => - I
%
; => &J%
© 2004 by CRC Press LLC
EXAMPLE
=
! / ! ! ' !' " ! 6 )" ! ' !- / ! ! ' > ? @ - ?@ > 9- !
! ?" ( @ - > ? @ - ?- @ > 9H ! 6?@ " > * $ ' ?@ > - ?$@ > - ?@ > #- # > $ J ! ! ? @- * ' ?@ > " > C " '
- " * ?@ > # ' !
! ' > ? @ - ? @ > # ! - > ? @ ? @ ?- @ > H ! 6?@ - " > * $ * ' ?@ > - ?$@ > 5. ' ' ?@ > - ?@ > - ?@ > - ?$@ > - " * $ ?$@ > - ' ! ! ! ' > ? @ ? @ ? @ ? @ ? $@ ? @ > ! * ! ! - > ? @ ? $@ ? @ ?- @ > - ! 6? @ ' 3- ! " ! ! ' != ? @ ?@ ?@
4
1 2 3
1 4
a
1
b
2
5
6 5
c
3
(a)
Figure 11.3.8
4 1 4
a
1
b
2
5
6 5
c
(b)
3
4
a
1 4
b 5
6 5
c
(c)
( , ! ," "2 " / / *
11.3.3 Matchings in Nonbipartite Graphs ! ! ? ' @ !' ! " ! ( ! ! " ' !' ' ' " M N DEFINITIONS
=
5'' ! ' " " * !' > ? @ * " ' " 0 ! * !H " !
=
5'' ! ' " " * * * ! ? @ 0 * * ? @ . -
=
$- ! ? @
+ ' ! *
+ + " ! ? $@
* " ' ! *
© 2004 by CRC Press LLC
FACTS
= !
= =
+ ! ! B ! !- " ' !'
?% F @ 2%9#4 5'' !' " " ' ! + ! ! ' " "
=
?: 5 ( !@ ! - 9- ' ( ! " - " " !- " * " - " ! ! ' + ,- ! !' Algorithm 11.3.3:
5 ( 12 (! ,
( = :' > ?8 9 @ + ( = ( ! -
- => ; => 85% A C1 ;
, " * * , * , " ! A ! ! ! ' " 8 ? @ ! , ? @
/
)" * , " * % " ! ? @ ! ? " @
0
)" * ! < ! ! ' "
1
)" * ! + " 5 , + * * $ )" ! ! ' " - => - I % ; => &J%
%=
! '' % 2%9#4 " ?'@ '* ' " ! ?'(@ H 264 2:3#4
&=
( ! ' !' " ! ! " : 2:794- ?' @ - ! " $( 2 $6;4- ?( '@
=
' ! . " * ! ! ! '
© 2004 by CRC Press LLC
! !' / ! - ** ! - *' % 2%9#4 " ?'@
=
) '* ! " ! ! ' - ! ?'@ ?'( ! '@ ' *H 2 134 2:3#4 ?'( B ' ! '@ ! ! * : 2:3;4 EXAMPLES
=
) ! 3?@- > ? @ ? @ ? @ ? #@ ! ! ! '- ' ! - > ? @ ? #@ & * ' - * # * * 5 ?# @ ! 0 ! * * - + > ? @ ? #@ ?# @ " 1 - 7 > ? @ ? @ ? #@ ?# @ ? 9@ ! ! ' * - - I > ? @ ? #@ ? 9@ ! " ! (X " ! "
( C * ' 7- * * * # 9
=
5 , ! + * ' ! 3?@ ' !' ! 3?@ ' > ? @ ? $@ ?$ 9@ !
! ' ! ? @ ? 9@ "- ! ! ' 7 > ? @ ? @ ? #@ ?# @ ? 9@
4 1
2
6
3
1
2
b
6
B
5
(a) Figure 11.3.9
=
(b)
1 , - "" +
! '' ' !' ! ;?@ 5'' ! - > ? @ ?9 6@ " ( *
* : = " * # 7 , *- *
9 6 , " " * # 7
)" " ! ? @ '' - * , * *H " ! ? @ ! ? @ " )" " ! ?7 @ '' - ! ! ' > ? @ ? @ ? 7@ " J ! ! - > ? @ ? 7@ ?9 6@ " ( H ! ;?@
* . = " ( " ?*@ * #
)" " ! ? @ '' - * , * *H ! ? @ ? @ " % ! " ! ? @ ?7 9@ , 9 * 7 6 * %! ? @ ? 7@ ?7 9@ ?9 6@
© 2004 by CRC Press LLC
)" ! ?6 7@ - '' - + > ?7 9@ ?9 6@ ?6 7@ ,H ! ;? @ ! ? @ ? @ ? @ ? $@
)" " ! ?$ #@ - '' ! ! ' ? @ ? @ ? @ ? $@ ?$ #@ " ' ! ! ! ' > ? @ ? @ ? @ ? 7@ ?7 6@ ?6 9@ ?9 #@ ! - I ' ! ? @ ? @ ?# 9@ ?7 6@- ( !H ! ;?@
1
2
3
4
1
2
3
6 5
6 7
5
7
8
8
(a)
(b)
1 1
2
4
3
2
3
4
4 6 5
5
7
b 8
(c)
Figure 11.3.10
(d)
+", ,
APPLICATIONS
=
" ' ! " * !
: ' " +
!! *
' + ! ! !' * ' '
! ' ' ' " ' ' " + ! ! " " ' ' ( ! '
=
* , " " J . " " * , ' ! * ! " / " ! " " ' " '
! ' " " " !
" ! ! ' C - / !' * ' ! " * ! ' "
' " ? " ! ! @ ! " ! ? : @ ! * " " ! ! ! * " : ) * ! ? @ ' ' " ! ' * * ! "H ! ? @ ! * Æ ! ! * ! ! ! " !
! '" ! '* ' ! " " " *
© 2004 by CRC Press LLC
References 2 134 & D
0- 8 ! - P 1 -
- L- 33
2 1&3#4 & D 0- 8 ! - P 1 - & &- '' " , ' ( - '! G6 - ! - - : C ?%@- ! - CL- 33# 2#74 !- !' - $ " " " ?3#7@- 6G6
" ?J5 @
23;4 D !- * ( - L P** - 33; 2%9#4 P % - - - +- )( % ! 7 ?39#@- 3G97 2%9#4 P % - ! ' ; * - )( % + % =( ( % 93 ?39#@- #G; 2:794 L C :- Æ ' " % F ! "
! !'- )( % ! ?379@- G 2:3;4 L C :- " ! !
, !- $ % : ( !- *! ( # - 33;- G 2:3#4 L :- !- '! #G - ! - : C ?%@- ! - CL- 33# 2:334 & : - # ! 8! - 33;
A
28694 8 8*Q(
- ! - CL- 369
@ ! " / ! 2 $6;4 5 $ $ $( - ? ! ! !'- $ % .: ( ( ( % ( - 36;- 7G7
2C" & K C 1 & - ! " * " !'- $ % ! ; ?3#3@- #G3 2564 L ' D 5 ! (- - L- 36 2634 P - !E !'- ! # ?63@3G; 234
- ! X '= " Q DE ! '# ! ;; ?33@- 77G3
© 2004 by CRC Press LLC
234
- ! * ' , != MN Y- '! 7#G P : - P A D- 8 $ U ?%@- 1( 2 / >- % # ! ##- CL- 33 264 & % 0- # (( - 5) - 36
© 2004 by CRC Press LLC
11.4
COMMUNICATION NETWORK DESIGN MODELS !" # ! $ # %
: C, ! J ' C, ! 5* * C, ! ' C, ! &"
Introduction
, ! ' 0 '' " !' ! , ! ' < +* ' <
'' -
' " ?" '- - '- -
@ ! , ? ' @ " ? ! " * - * - Æ @ ' " A ' - , ! ' ! ! " !- ! - ' '' *- * ' , ! ' ! " C ' !' ' - " '- 5 - * ! 5 - ' - '
" ! , ! ' ) '- / ' ! , ! " ' 5 * ' " , ! '* " ! ' *- 0 * , ! ! ' '' !
11.4.1 General Network Design Model Preliminaries DEFINITIONS
=
!' > ? @- " ? * @ " ! !!'
! - ! " ! ' , ! > ' > (
© 2004 by CRC Press LLC
=
-
?
!- "
" * ?!@ ;?!@ 8 "
>
@
=
- ' - ?! '' - /' - @ , ! ) - " - " " " ' ) !- ' + " ) !
=
)" " + "
- ' ( " " "
-
8 H
)$
> < " ' " " * ) - > <- )
)
?! *@ ! " ! " " ' )% ! : % ! " > <- % ! % ! ?! *@ " ! "
! " : ! : $ !
=
' ! % ' - " - -
=
' - -
=
"# ' ! "
* " ( ( 0 . ** ! * - " * ! * "# * ! *- $# * ! ? - * @
' * " '! / * ?8- ) )@ " SUMMARY OF NOTATION
C, > ? @- ' ( ! 5 "
- ! > %
! ! ?!@- ;?!@- '- * $ ! " ! " : ! : 5 " " *- > < % " * ' )% / % ! ! : % -
© 2004 by CRC Press LLC
General Edge-Based Flow Model
, ! ' / * ! '!
* - '' - , '! / "=
* ! "
! ! : " : ! * &% ! " " " * % % ! : - & ! = ! - '' * . " ; " * - * % ' " ! '!
! ?" '- * ! ' " ! ! * & ! / @ ( ' * " & ! F &%
General Model: Edge-flow [GM:EF]
( 0 =
! & !
!
! %
% ! &% ! B
!
B $ ! !
" > ?!@ ! > " > ;?!@ ! ! & ! ; ) &% : % !
! %
) &% : % ! ! %
-
?@
! & ! &% * %
; : ! ; &% ! =% ! ! : > ; !
!
?%@ ?%@ ?%@ ?%#@ ?%9@ ?%7@ ?%6@
REMARKS
'=
?@ *' "
?%@ ?%@ + "
" ! ' - ?%@ + ! - ?%#@ '! " ! ?%9@ ! ?%6@ / ! * ! .
© 2004 by CRC Press LLC
'=
" ' " ! ( " ! ! " ?%@ ?%@- ! * ' * * " '
'=
?%@ ?%@ + "
!H - " ' ) - '' + "
! ! : - " ) ! + "
! ! " : - ' " " =
!
) ! ! :
'=
2:=%4 " + ! '' . ! + "
+ * ' ! '- + 5 '' ! . +
. + ! '
'=
! !' " < ! - " '- '' - /' -
'=
) . * + * - ' M * ?@N " ! General Path-Flow Model
) " ! ! + * / " 2:=%4 * '' " ! , ! ' ( $ + * A ' ! : ! , '' ? : @ ?: @ * ! ! :
* " ! * "=
! > - " ' "
! ?!@ ;?!@ + ? '@ "
! ' 6 " ! " +"
! " ! ?!@ ;?!@ ' > $ !
!
5 ( * 6 . 75(6.8 ( 0 =
! %
% ! &% ! B
6 B
6 > !
6 ) &%
!
© 2004 by CRC Press LLC
%
% !
!
6
)%&% ! : %
6
&% * %
-
6 ; : ! ; &% ! =% ! ! : > ; EXAMPLE
=
5'' * ?' > 7@- " * ?8>@ ' ) > ) > ;- * > * > - "
#
9
7
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
#
;
;
;
;
;
;
9
;
;
;
;
;
;
7
;
;
;
;
;
;
) ! - ! * " " - , ' " ' ' " ' 2
3
1
4
5
6
Figure 11.4.1
© 2004 by CRC Press LLC
7
# " , !#! *
REMARKS
'=
C - - ! *- ' .- ' ! ! ' " " "
'" C #- 9- 7- ' - $Æ % Æ . ! % " Æ ! " -
'%=
/! !
, ' Æ - " ' ! " ' , ,
, ! '
11.4.2 Uncapacitated Network Design ) '' - ! " ' =
?@ )" )- ! ' " ! ' ' + ?@ )
!- /' * !
' - ' ' " '' ?@ A ! ! '! " , ? - " - ! ' + @ DEFINITIONS
%=
%&' , !
" ' ! " '
&=
8& " ! ! '! '! " ! ! .
=
8 ) ) ( ! ! '! " ' ( ' )" 8 8- ' *- '!
! - 8 8 " "$ "$
=
" ( ! ? !@ '! ) . ?"' "$ ( @"$ (
Uncapacitated Network Design [UND]
" *- , ' ! ' " ' , " '' " ' ASSUMPTIONS
! ? @ " A
- ' !- * + $ ! $ ! ! : - ) >
© 2004 by CRC Press LLC
A * % > " - '' " $ ( & B !
0 =
! !
!
! !
* ?@
&
!
! & :
! !
?JC@ ?JC@
; : ! & ! > ; :
!
?JC@ ?JC@
FACTS
A + (> ' ?!@ > !- ;?!@ > ' " - * " ?' *@ ' !
=
!
'
= )" * " ! * & ! ,- * ! ' JC / ! '- "
! ! $ ! !' ? #@- # " ? : @ ?: @ " & ! > :
= &' ! !!! M N ?JC@ ?JC@ !!! & ! ! ?JC#@
!
& !
: !
?JC9@
. * ! '! - 2JC54 L*- '!
! ! ! & ! * " 2JC54 ! '!
! " 2JC4
=
5'' " + =
" ! : H
?@ $ ! > $! > $ ! " ! ?@ $ ! B $! ; " :
) 2A634- "
! ! ! - ' 2JC4 ! ! + * !- -
½ B ¾ ! !
& ! ! ! ?! @ > ?! @ ;?! @ > ;?! @ :
?JC7@
= , 2A634 *' * < * '' * " " 2JC54 ?JC7@ J ! ?2(@ '*
© 2004 by CRC Press LLC
'" !' ! - ! '
= 2A634 ! !' " " 2JC 54 ?JC7@ - *!- " ! ' 2 364 " ' , ! *' ! !' "
EXAMPLES
=
' !'
/ ?@ > ?@ > ?@ > ;?@ > ;?@ > ;?@ > 8 / . + . ( " !- - > > > $ > $ > $ > ; 5 ! & > & > & > > > > ! * " " '!
! " " 2JC4 L*- " '!
! " " 2JC54 ' '!
! " " 2JC54 ?& > & > & > > > > > > > > > > @- - - 2JC4 ! " 2JC4
=
?JC7@ ! '!
! " " 2JC54 -
, ?@ > ?@ > ;?@ > ;?@ > % ' %- > > > - $ > $ > $ > ; '!
! " JC5 ! * H " ! ?JC7@- '!
! ' ! & > & > Multi-Level Network Design
' , !
' ! / " !' ' - < ! " " * ! ! ! ?*@ " $ & ' $&' '! , ! '' ! DEFINITIONS
=
)
$&'
' - " *
> <- ' $ ' *
?!'@- ! !' " * ! " ! ? '@ 0 * ! " * ! ! 0 * ' " %¼ : %¼¼
! ' " * ? @ A + " '
) ! * " ! ! ! $
!
=
: " , % ! -
8C '
" ?% ! % ! @ > <- " !
© 2004 by CRC Press LLC
=
= : * ! !' " * / - / ! !' ) ' -
Multi-Level Network Design Model [MLND]
) " " 8C ' 2 34- * &% ! . " * " ! : ; A /
! > ' "
!- ?!@ > ' ;?!@ > ! > !
( 0 =
$ % &%
! %
! !
* ?@
&% ! % % $ &% ! : ! = ;?!@ %
! % % $ ; ! : ! &% ! > ; : > < !
¼
¼
¼
¼
FACTS
=
5 ! ! *- ! ' 8C /
%=
> <- ' / " * ?@ / " *
&=
A < > ! > ;- 8C ' . * 5 ' / ! / ! 5
=
5 8C ' ! ( 5 ' - 8C ' C ' C < > - > ? @
'' ? @ ! > ! > ; " : 2134
MLND Composite Heuristic
" ! ' 2 34 " < > , " * *' '" " * * ' *
( / 5' ! ?@ = * * - / ' ! ? @ ! ! 5 & ! > ! " ! "
( 0
5 1* ? ,@ = 5' ! ! "
$&) ' ! ! ! J ! !
© 2004 by CRC Press LLC
! ' ! - ! - * 5 ' 5 ) * " ! " 5 * " ! ! " $&) "
)"
> '" " 5 ( 0- '" " 8C ' * " '' > B " !
!- " ' - * "
< > - ! ( ' * " ! 8C ' ? ' ?$ @ @ < > > > '' - ! ( * '*
'" " # 2 394 REMARKS
'&=
' , ! ' - M (N ! " 8C ? - ' ! '' @ '' " ( " * ! ! ' ! ;3 ' " ' " < > 9 ' " ' " < > #
'=
8C ! ( ' ! * * . '- . !' / * " !% " '' / ! !% ! ( * < > - ! > - ! >
11.4.3 Survivable Network Design (SND)
, ! ' " ( '' * "
'- ! ?' ! " @ ?' !
@ " '
* "- , ! '* !
' ,- ,
"
* " " ! " , ' < , ' "
! ' " 5 ' "
" " ?! @ * - ! " , ' ! '' "
Uncapacitated Survivable Network Design [SNDUnc]
'! ! * ' " $ - " ! " , %! * 0 ' ?!F @ 7 ! ! " !' ' 9- / ! + , ;
© 2004 by CRC Press LLC
DEFINITIONS
=
, " " * " ! "
=
( : > : - ! * ! ! - " ! 0 ' :
=
A * . - ' )$*+ , ! '
%=
8 > ? @ , '' ' " / - - " ! /
> : :
# + - 2# + 4 " ' ! *
# : +
2# + 4 > : REMARKS
'=
, * . / 9 * ' * ' " : " ! - *
: "
'=
5 !' - * .
- - ! > !
'=
A : , - ! - "
- ! ' ) - ! > ; " : ' ?5 @ , - . - Cut-Based Formulation of SND [SND-CUT]
)" - " " * * , ! ?5C@ ' ! * (
! &
!
! & !
0 = & !
! & !
& ! > ;
© 2004 by CRC Press LLC
" '' '
" :
FACTS
=
)" ! > ? ! @- ' 5C '
=
! ! * . " - ! ($ '' - 2A : $3#4 *' '" " & * *H 2::5A 34 '* ? B B B B ( @ EXAMPLE
=
! ' " * * , > ' 4
1
5
2
3
6
8
9
7
11
10
Figure 11.4.2
12
Connectivity requirement between pairs of
nodes = 3
pairs of
nodes = 2
pairs of
nodes = 1
1 19 # -
SND Iterative Rounding Heuristic
2P;4 *' '!
! * ! - ' - ? !@ '" " * ' !
! * " " 25CJ4 ' ! ' / " ! 5C
( /
' & ! : '!
! " 25CJ4 ?
= % ' " / - " & ! * * 5' @
( 0
! : & !
- / & !
REMARK
'=
J ! !" ! - P ' " 25CJ4- & ! * & ! ! * P ' " ! * '! " ! * * " * ! '! - / M*N !
© 2004 by CRC Press LLC
- '* / , 5C '"
8 > ? @ , . ! / *- # +
8 2# + 4+ " ' : * . - 2# + 4+ > : # : + !
FACTS
=
" ! . ,
0 ' * ' " : " !
"
=
! ! & " '
& !
" = 2 ? "@4+ >
2:53;4 2:534 " " - *' '' ! - *'
" ! ' '' " 85 , ! ' ! " '
Flow-Based Formulation of SND [SND-FLOW]
! + * - 5C ' ' " ! , !
* ' " ! > ! - ?!@ > - ;?!@ > : - < > ( 0 =
;- /
!
!
! & !
* ?@
!
& ! ! & ! ; ! & ! > ;
: ! : ! :
REMARK
'=
2 ;4 / * * . ! + " ' < * " 5C ' Survivable Network Design: Bounded Cycles
" 5C " * !
- - 85 , ! ' ! L ! ) -
© 2004 by CRC Press LLC
! " . ! " < ! ! ' '* ! - ' * ! ! ! ' /
A " ! ' . = ! : - 9 ! "
: " ! ! : ) 9 ! - !, * "
) ( " ! ? ' (@ " '
, & :
!
! , # , & : : :
!
! , # ! , , > ; : ) 9 ! !
¼ ¼
¼
¼
REMARKS
'=
( 28;;4 ! $$ '' " ! "
, 0 ' * ' "
'=
" , ! , " " ! ? " (@ ' " "
?!- ?2 34- 2:364@
11.4.4 Capacitated Network Design ) "- * ' '' ! ! " ' '' . * "
H ' * ' ( ' * ' ! ' * "
! ?- " '- 2 64@ A " ' * *
Network Loading Problem [NLP]
)
!- " * < < ' " " * ' - - ' " *? B@ " ' " ' " *?@ " - > < *- ?@ " " ! A " ' & $ # &$# " < ' " " " ? /*@ ' '-
!- %/ %1 " * " " 6 ' " - 6 " " / " ! ! ' * *
© 2004 by CRC Press LLC
" ' " ! * " ' " * " C - '- ,* ' !
) " 1! 9 : *, . -
Figure 11.4.3
Network Loading Model [NLP]
" ! " C, 8 ! < > ) > ) > )
(
!
? ! & ! B ! & ! @ B
!
$ ! !
0 = * ?@
& B )&
!
!
! & B )& : !
!
! ; ! : ! & ! & ! > ; :
EXAMPLE
=
!
? - > @ < > ) > ) )"
- !! '= ! ? ) @) " +- ! ? ) @) " + " ! ' ?2 634@ ? ! @ ) '-
! -
- > ) >
! "
© 2004 by CRC Press LLC
! "
Figure 11.4.4
# "
# "
FACTS
=
2 $3#4 2 :E 3#4 *' ' ' '' " * ! , ! ' - 2 $34 '* ' ' ' " " '
=
!
, ! ' " ' +
- " ' ( + C ?2: 5364@ Capacitated Concentrator Location [CCL]
! "
, ?
, ". @ . ! ? @
' - ' ! , ,
DEFINITION
&=
) ' ?**$@- ! *
? @ ! - - " ' " ! - ! ! " ' : - - ! " ! : A " ! ! * ' -
= " ! : - . ' - ! - " : ! :
8 ! . " : - ; & ! . " * : -
Capacitated Concentrator Location Model [CCL]
?8@ ' " " ! ; ! '! = (
© 2004 by CRC Press LLC
& !
! & ! B
!
! !
&
!
! >
?8@
: ! !
?8@
&
! : & ! & ! ! & ! > ; : ! > ; : -
?8@
& !
?8@
¼
?8#@ ?89@
REMARKS
'%=
) " 284- / " - 8-
- 8
' 8 !
" 8 ! .
'&=
' ! ( " ' , ! ' " , ! !
!
'=
'
, ( :664- 2:34@ ) ' - '
" " ? @- '- "
! "
! !- ! > '
" ! ! : ! + . ( A
" ? @ ! " ' ! " ? @- ? @ " " " ! ! ' '' / ' " ' ( '' * *' " '
(
' ?
Survivable Network Design (Capacitated)
A ! ! ' ,- " '* ! * * * ! 0 '- , ! ' ,' ' " ?!@ ;?!@- ' " " ! "
! A '' - , ' # # - '* * * - ! ' ? ,' ' ' ! , ! '@ , ", ! * * " " ' ! * *
' , A " '' / #$ ?5L&@ ? '* ' ' ! " @ " ' + ! - !
© 2004 by CRC Press LLC
DEFINITIONS
=
%-? + ?5L&@ , " !' " < 5L& ! ?
@H ! 5L& * ! * ? ' ' @ ' 5L& ! " 5L& % ! 5L& ' ! + L - ' " 5L& ! 0 ' "- ! + ! ! ! ' ! ! ! ! " ! " < ! ' 5L& ?- " '- 25A5Q8:364@
=
# @ +
' ! ' + "
! " Æ + ! ! ? ' ?!@ ;?!@@ - * ! ' ' , " " > "
! " ! "
EXAMPLE
=
2P :A394 ! # < * / * '- > ?@ > ;?@ > - >
Figure 11.4.5
© 2004 by CRC Press LLC
$" !, "-$
Diversification and Reservation Model [DR]
) ! * - + (
" ! =
2 Z ' ! " ,- 2 > ; ' ! ? ! ' @ - - , 2 > - 2 > : : - ! : , ?2@ > ? ?2@ ?2@@- ?2@ ?2@ " !- ' *- ' ! 2 ?2@ " " ' " ?!@ ;?!@ ' ! 2 $ % &% ( ! %
0 =
- !
-
6 ?2@
)%&% !
6 ?;@
: 2 Z
%
6 ?;@ >
6 ?2@ > >
Æ
! !
?&@
!
?&@
! 2 Z ;
?&@
! ?!@ ;?!@
Æ ! > ?!@ ;?!@ 6 ?2@ ; : ! 2 Z &% ! ; ! :
6 ?;@
?&@ ?@ ?&9@ ?&7@
REMARK
'=
) " *- ?&@ ' ?&@ " "
' ! ? " @- ?&@ " > "
! ' ! " ?&@ ? ! ! ?!@ ;?!@ @ + " Æ ?@ * / " ! ! ! * ! 5 2534 2 :PA364 " " ! ' '' " * !
© 2004 by CRC Press LLC
References 2 :664 D , :* - L % : " '! ! " 8
C,- ! - ?366@G 2 :PA364 *- :E - P- J & AE- 5* * C, = 5 - *,,, ( ! - 9 ?336@- 66G3 2 :A364 *- :E - & AE- %Æ C, 5 " 8 8 - % + - 79 ?336@-G; 2 L3;4 : P & .- 8 L ! - ' - ' & ! - ""+"," # ( $ - 33; 2 34 , - D , - J ! L' : *
C, !- *+! )( (- - ?33@- 3G;# 2 34 , - 8 ! ! " * C, !- ! - ; ?33@- #97G #6 2 34 , - 8 ! - ! L A " " 8* C, ! - ! - ; ?33@- 69G697 2 374 , - 8 ! - C, !- ) = - F - Æ - 5 ? @- P A 5- C O, ?337@ G 2 364 , - 8 ! - ! ! L
5* * C,- + - 9 ?336@- 9G9 2A634 , - 8 ! & A!- " 8!5 J ' C, !- + - 7 ?363@79G7; 2 :E 394 ,- 5 '- 1 :E E , - ' ) "
C, - ! $ 6 ?339@- 77G33 2 5 34 ,- U ! 5 8* - ' 5' ! - 33
! "
2 :E 3#4 , 1 :E E ,- ' % ' Æ !
- ! $ - 96 ?33#@- G7
© 2004 by CRC Press LLC
2: 5364 5 '- ) : 5- 5 5 , ' ) - # ! - 6# ?336@- 9#G3 2%A 994 8 & % D A - 1 ' ! 5 !- *=! )( - # ?399@- G7 28;;4 (- 8Q Æ - 5* ! C, - + - 6 ?;;;@- 699G677 2:6#4 :* - ! 8!! ! " ( C, !- *,,, " ("- 1 ?36#@- 7G#7 2:34 :* - '! ! "
C, X 8 ! - % + - ?33@- 7G7
2:364 8 :* - J ! $ &/ " ' ! 8 " 5' ! 5 L' - *+! )( (- ; ?336@- 6;G66 2:34 V : P - 5* * C,- 8 !
! & '- ! $ - 9; ?33@- #G99 2::5A 34 V : - :!- 5 , - 5 - % A - '' ! " C, ! #- ?33@- G 2:53;4 :E - 8 5- )! ! " ! * - *! )( # ! - ?33;@- #;G# 2:534 :E - 8 5- ' & ! ! " ! !
C, 8 * - + - ; ?33@- ;3G; 2:5394 :E - 8 5- ! " 5* * C, ) $ ! " ? + ! - 1 - 8 ! - 8 : 8 C ? @%* 5 - C- ?33#@- 97G97 2P;4 D P - '' ! " : ( 5 C , - - ?;;@- 3G9; 2 $34 8 ! - & $ - * L " ' C, ! - ! $ - 9; ?33#@- G#; 2 $3#4 8 ! - & $ - ! 5* ! " ' C, 8 ! - + - ?33#@- G#7
© 2004 by CRC Press LLC
2 64 - 1' 5 " C, C
&. ) ( % / # $ L ? @- CL- 93G77- ?36@- 93G77 2 ;;4 - 0 " C, 8 ! - ,( )( % + - ?;;;@- #G#9; 2 634 - 5 " ' C, ! ''
)- J' - )- !- - 363 2 394 - - *+! )( (- 6 ?339@- ;G6 2CA664 : 8 C 8 5- C O,- 366
A- * $ - P A [
2134 P 1
- 33 2P :A394 J - P- *- :E - & AE- 5* * C, = 5 - ' 5 396- DK "E )" ,- - 339 2&374 5 &!* 8 ! - C, * - ) = - F - Æ - 5 ? @- P A 5- C O, ?337@ #G# 25A5Q8:364 5 - A & 5Q! - 8Q- : (- ! ! ! " 5* * 5L\51C% C,- ) ( $- 5] 5 ? @- D
- C- ?336@- 7G96 2534 5 : - ''
5* * C, !- ( ! - 96 ?33@-3G97 2A : $3#4 A - V : - - $ $ $( '' ! " : ( 5 C, - # ?33#@- #G# 2A64 & A!- '' " 5 :'- ! $ - 6 ?36@- 7G67
© 2004 by CRC Press LLC
GLOSSARY FOR CHAPTER 11
, #
G * != ' ! "
, , #
G * != ! ' " * " *
, , # , -
G + ,= ' "
!#!$ G , > ? & @= I ! * I > ? @
-! * ! ? @ G = -* * G "
" = ' "
" ' ?'@
- "" =
! " 0 ! * * " ! '- " *
!! G + , > ? # $@= + " '' * $ ! *$ ! G
, > ? @=
" * ? ( ;?!@
3(4@ ?!@
! ! !$ ? ' # @= ?!- ''
- /' - @ , !
! ! =
!' > ? @- " ? * @ " ! !!'
! - ! " ! ' ,
-!- = , ! ! ' ! - ! !! ""= ,- - " ! ! " -
, ,
-
"- = , Æ ' ! " ! ' '
! " > ? # $@= !' * - #-
! * ' " = #
- " = # ! '' * $ = % / $? @ > ;
% -
- = + , > ? # $@ ! * $? @ > ; " $?@ > $?@ ; > ? # @ " > ? # $@ , * > - # > # ? @ $? @ ; ? @ $? @ ; ' " /
* *
? @ ? @ > $? @ $? @
© 2004 by CRC Press LLC
" ? @ " > " >
#
! G ' ! ' ? @ "
= " * ' " ' H -
!#!$ = " ' " ! "
- - >
? @
= " *- - =
* G " + ' = - /
G * ! '= * * ?
! "" ? @ G * = ? @ > ? @ ? @ !$= ?!- /' @ ! " " !@ " " '
! - * * !
G + , > ? @= " = ' " =
Æ
? @ ? @- " ? @
? @ > ? @ " *
? @
;- " ? @
G + , > ? # $@= " = #
% /
? @ " ? @ #7
= 2 ? @ ? @4 > $? @ " = ? @ ; " ? @ # - = + * ! + ? @ - = + ,- - ? @ > ! "" ! = + ! " +
! , - - > ? @ ? @ = ? @
> ? @ = !' * - ! * - " ! * ( " = Æ ," G ! , T > ? # 5 @= " = # Ê
/=
? @ " ? @ # = ? @ ; " ? @ #7
= 2 ? @ ? @5? @4 > ; " = ? @
-
= + ! ( " + ! ! *
-
! " = + ! (
''
© 2004 by CRC Press LLC
?@6?@
= + , > ? # 1 $@- ? @
1 1 ' " ' + ? @ + * #
= - / 9 * ! ? @ G =
*, " G " ! - = ! " !' -
! " G " !' = * " ! , T > ? # 5 @= , > ? # $@ ' * * # 5 = Ê '' " $ > ; " H
# 5 ?@ ; " " " " + - 5 ?@ , +- ! " " *
! "- ! ? @ G , " ! * += ? @ ? @ ! * *, " G " ! - = ! " - ! * ! " G " !' = * " ! ! , G !' = " ' 0 ! - ! # G " ' !' > ?8 9 @= ! * " 8 H 8 $
"2 = ! - * ! ! ( - - , = ! - * ! ! ! ?- @ - # ! G " !' = ! * " - "2 = " ! ! - , = " ! " ! ! # - = ! * + , > ? @- / + " -
*
! *$ # - = "
- / + " * ? @ ? @
? @ (
! *$ G
+ , > ? " ! > " = Ê " ! " ! =
&@ =
? @ ? @- " ? @ ? @ > ? @ " *
> !- ? @ ? @ > " > ! ? @ ;- " ? @
> !
! *$ > ?
&@ = !' * - ! * ( " & =
A ' * " ? @ * ? @
! ! -
** G * ! '= * ? " !@ " " '
© 2004 by CRC Press LLC
# = * " +- " = % " =
? @
'
? @- " ? @
? @ ? @ ; " * ? @ ;- " ? @
*!- ! ? @ , " ! * += ? @ ; "* !#!$ ? @ G " ? @ , " ! * +
'+ = ;- / ;
"* G " + ,= ;- / ; "* G " + ,= ;- / 3 ! G ' ! ' ? @ " =
" * ' " ' H -
!#!$ = " ' " ! "
- - >
? @
= " *- - = > ? @ = !' * - ! * - " ! * ( " = Æ " * - "" = ' ! ! * 1
# - = ! * ! !' " * -
/ - / ! !'
" !
G
,= . ' " ! ' !
Æ
"" # = + , > ? # $@ * / ' -
-
"" ! *= ' , ' ! > ? @
? @- ? @- ? @ * ! / ' - ;- ;- ' *H '' / $? @ > $? @ >
! # =
' ' , !
! ! * ! " / ' - B - - > ?@ ?@
"#- # - =
+ '
'
! G " !' = " * ! " , # G * ! - = " ! " "
! " ! " ! - ? @
© 2004 by CRC Press LLC