This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
0
0 < . . . < A q2 < A q < A
A<0
A < A q < A q2 < . . . < 0
A>0
0 < A < A q < A q2 < . . .
A<0
. . . < A q2 < A q < A < 0
q>1
Table 10.3 sign of A qn−1 , n = 1, 2, 3, . . .
By using (10.4.1), (10.4.2), (10.4.7), table 10.1 and table 10.2 we conclude that in (2) order to have dn > 0 for all n = 1, 2, 3, . . . we must have that the sign of Dn for n = 1, 2, 3, . . . should be as in table 10.4. (2)
q
extra conditions
Dn
q < −1
eq > 1
(−1)n
e=0
+
e>1
(−1)n+1
−1 < q < 0
q < eq < 1
(−1)n+1
0
e<1
+
q>1
e≤0
−
e>1
+
(2)
Table 10.4 sign of Dn needed for dn > 0 for all n = 1, 2, 3, . . .
In the case q < −1 and e = 0 we have 2 f n−1 2 f n−1 n+1 n 2 q , dn = q (1 − q )β 1 − q β β
n = 1, 2, 3, . . . .
274
10 Orthogonal Polynomial Solutions of q-Difference Equations
2f 2f 2f > 0 it follows from d1 > 0 that 1 − > 0 or equivalently < 1. Hence β β β 2f 2f 2f 0< < 1. However, d2 > 0 then requires that 1− q < 0 or equivalently q > 1, β β β which cannot be true. For
2f 2f 2f < 0 it follows from d1 > 0 that 1 − < 0 or equivalently > 1, which β β β cannot be true.
For
By using (10.4.7) and table 10.4 we conclude that for all other cases the product 2f 2f 1 − qn−1 − eqn−1 β β should be either positive or negative for all n = 1, 2, 3, . . .. Now we first consider the sign of the factor 1 −
2 f n−1 q for n = 1, 2, 3, . . . with the β
aid of table 10.3. 2f 2f > 0 we cannot have that 1− qn−1 > 0 for all n = 1, 2, 3, . . . β β since q2n → ∞ for n → ∞.
1. For q < −1 and
2f 2f < 0 we cannot have that 1− qn−1 > 0 for all n = 1, 2, 3, . . . β β since q2n+1 → −∞ for n → ∞.
2. For q < −1 and
2f 2f > 0 we cannot have that 1− qn−1 < 0 for all n = 1, 2, 3, . . . β β since q2n+1 → −∞ for n → ∞.
3. For q < −1 and
2f 2f < 0 we cannot have that 1− qn−1 < 0 for all n = 1, 2, 3, . . . β β since q2n → ∞ for n → ∞.
4. For q < −1 and
2f 2f > 0 it is possible to have 1 − qn−1 > 0 for all n = β β 2f 1, 2, 3, . . . provided that < 1 since qn → 0 for n → ∞. Hence we need that β 2f < 1 in this case. 0< β
5. For −1 < q < 0 and
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
275
2f 2f < 0 it is possible to have 1 − qn−1 > 0 for all n = β β 2f 1, 2, 3, . . . provided that q < 1 since qn → 0 for n → ∞. Hence we need that β 2f < 0 in this case. q−1 < β
6. For −1 < q < 0 and
2f 2f > 0 we cannot have that 1 − qn−1 < 0 for all n = β β 1, 2, 3, . . . since qn → 0 for n → ∞.
7. For −1 < q < 0 and
2f 2f < 0 we cannot have that 1 − qn−1 < 0 for all n = β β 1, 2, 3, . . . since qn → 0 for n → ∞.
8. For −1 < q < 0 and
2f 2f > 0 it is possible to have 1 − qn−1 > 0 for all n = β β 2f 1, 2, 3, . . . provided that < 1 since qn → 0 for n → ∞. Hence we need that β 2f < 1 in this case. 0< β
9. For 0 < q < 1 and
2f 2f < 0 it is possible to have 1 − qn−1 > 0 for all n = β β 2f 1, 2, 3, . . .. In fact, for < 0 this is always true since qn → 0 for n → ∞. β
10. For 0 < q < 1 and
2f 2f > 0 we cannot have that 1 − qn−1 < 0 for all n = β β 1, 2, 3, . . . since qn → 0 for n → ∞.
11. For 0 < q < 1 and
2f 2f < 0 we cannot have that 1 − qn−1 < 0 for all n = β β 1, 2, 3, . . . since qn → 0 for n → ∞.
12. For 0 < q < 1 and
2f 2f > 0 we cannot have that 1 − qn−1 > 0 for all n = 1, 2, 3, . . . β β since qn → ∞ for n → ∞.
13. For q > 1 and
14. For q > 1 and In fact, for
2f 2f < 0 it is possible to have 1 − qn−1 > 0 for all n = 1, 2, 3, . . .. β β
2f < 0 this is always true since qn → ∞ for n → ∞. β
276
10 Orthogonal Polynomial Solutions of q-Difference Equations
2f 2f > 0 it is possible to have 1 − qn−1 < 0 for all n = 1, 2, 3, . . . β β 2f 2f provided that > 1 since qn → ∞ for n → ∞. Hence we need that > 1 in this β β case.
15. For q > 1 and
2f 2f < 0 we cannot have that 1 − qn−1 < 0 for all n = 1, 2, 3, . . . β β since qn → ∞ for n → ∞.
16. For q > 1 and
2f − eqn−1 we only need to consider the six possible cases 5, 6, 9, 10, β 14 and 15 above. Again we use table 10.3. For the factor
2f 2f < 1 and e > 0 we must have − eqn−1 > 0 for all β β 2f > e. Hence we need that 0 < n = 1, 2, 3, . . . which is possible provided that β 2f e< < 1 in this case. β
1. For −1 < q < 0, 0 <
2f 2f < 1 and e ≤ 0 we must have − eqn−1 > 0 for all β β 2f > eq. Hence we need that 0 ≤ n = 1, 2, 3, . . . which is possible provided that β 2f eq < < 1 in this case. β
2. For −1 < q < 0, 0 <
2f 2f < 0 and e > 0 we must have − eqn−1 > 0 for all β β n = 1, 2, 3, . . . which is not possible since qn → 0 for n → ∞.
3. For −1 < q < 0, q−1 <
2f 2f < 0 and e ≤ 0 we must have − eqn−1 > 0 for all β β n = 1, 2, 3, . . . which is not possible since qn → 0 for n → ∞.
4. For −1 < q < 0, q−1 <
2f 2f < 1 and e > 0 we must have − eqn−1 > 0 for all β β 2f n = 1, 2, 3, . . . which is possible provided that > e. Hence we need that 0 < β 2f < 1 in this case. e< β
5. For 0 < q < 1, 0 <
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
277
2f 2f < 1 and e ≤ 0 we must have − eqn−1 > 0 for all β β 2f n = 1, 2, 3, . . . which is possible. In fact, for 0 < < 1 and e ≤ 0 this is always β true.
6. For 0 < q < 1, 0 <
2f 2f < 0 and e > 0 we must have − eqn−1 > 0 for all n = β β 1, 2, 3, . . . which is not possible since qn → 0 for n → ∞.
7. For 0 < q < 1,
2f 2f < 0 and e ≤ 0 we must have − eqn−1 > 0 for all n = β β 1, 2, 3, . . . which is not possible since qn → 0 for n → ∞.
8. For 0 < q < 1,
2f 2f < 0 and e > 0 we must have − eqn−1 > 0 for all n = 1, 2, 3, . . . β β which is not possible since qn → ∞ for n → ∞.
9. For q > 1,
2f 2f < 0 and e ≤ 0 we must have − eqn−1 < 0 for all n = 1, 2, 3, . . . β β which is not possible since qn → ∞ for n → ∞.
10. For q > 1,
2f 2f > 1 and e > 0 we must have − eqn−1 < 0 for all n = 1, 2, 3, . . . β β 2f 2f which is possible provided that < e. Hence we need that 1 < < e in this β β case.
11. For q > 1,
2f 2f > 1 and e ≤ 0 we must have − eqn−1 > 0 for all n = 1, 2, 3, . . . β β 2f which is possible. In fact, for > 1 and e ≤ 0 this is always true. β
12. For q > 1,
Hence, we conclude that we have positive-definite orthogonality in the following seven infinite cases: Case IVa1. −1 < q < 0 and 0 < e <
2f < 1. β
Case IVa2. −1 < q < 0 and 0 ≤ eq <
Case IVa3. 0 < q < 1 and 0 < e <
2f < 1. β
2f < 1. β
278
10 Orthogonal Polynomial Solutions of q-Difference Equations
2f < 1. β
Case IVa4. 0 < q < 1, e ≤ 0 and 0 <
Case IVa5. 0 < q < 1, e < 0 and f = 0. Case IVa6. q > 1 and 1 <
2f < e. β
Case IVa7. q > 1, e ≤ 0 and
2f > 1. β
It is also possible to have positive-definite orthogonality for finite systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .}. By using (10.4.1), (10.4.2), (10.4.7), table 10.1 and table 10.2 we conclude that in (2) order to have dn > 0 we must have that the sign of Dn should be as in table 10.5.
q q < −1
0 < eq < 1 with q 0<e<1
=1
< eq2N
< q2
for
+
n = 1, 2, 3, . . . , N
+
n = 1, 2, 3, . . . , N
+ n = 1, 2, 3, . . . , 2N + 1 −
n = 1, 2, 3, . . . , N
with eq2N
+
n = 1, 2, 3, . . . , N
e>1
q>1
≤ q−1
Dn
eq > 1 with q−1 ≤ eq2N < q e>1
0
< eq2N
with eq2N
0 < e < 1 with 1 −1 < q < 0
(2)
extra conditions
with q2
<
e > 1 with q < 0<e<1
Table 10.5 sign of
eq2N
with q−1 (2) Dn
=1
eq2N
<1
≤ q−1
≤ eq2N
+ n = 1, 2, 3, . . . , 2N + 1 −
n = 1, 2, 3, . . . , N
−
n = 1, 2, 3, . . . , N
needed for dn > 0 with N ∈ {1, 2, 3, . . .}
By using (10.4.7) and table 10.5 we conclude that the sign of the product 2f 2 f n−1 n−1 1− q − eq β β should alternate in the cases that q < −1 or −1 < q < 0 and should be negative in the cases that 0 < q < 1 or q > 1. First of all we note that for q < −1 and for −1 < q < 0 it is possible that the factor 2f 1 − qn−1 keeps the same sign for n = 1, 2, 3, . . . , N for certain N ∈ {1, 2, 3, . . .} β
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
and that the factor
279
2f − eqn−1 alternates for these values of n (in the case that f = 0 β
for instance). As before, for f = 0 we must have e = 0 and (2)
Dn = −eβ 2 q2n−2 ,
n = 1, 2, 3, . . . .
By using table 10.5 we conclude that we only have dn > 0 for n = 1, 2, 3, . . . , N in the cases that q < −1 and 0 < eq < 1 with q < eq2N ≤ q−1 , or 0 < q < 1 and e > 1 with q < eq2N ≤ q−1 , or q > 1 and 0 < e < 1 with q−1 ≤ eq2N < q. Now we assume that f = 0 and we consider the sign of the factor 1 −
2 f n−1 q for β
n = 1, 2, 3, . . . , N or n = 1, 2, 3, . . . , 2N + 1 with the aid of table 10.3. 2 f n−1 2f > 0 it is possible to have 1 − q > 0 for all n = β β 2 f N−2 1, 2, 3, . . . , N provided that q < 1 and N even. β
1. For q < −1 and
2f 2 f n−1 < 0 it is possible to have 1 − q > 0 for all n = β β 2 f N−2 q < 1 and N odd. 1, 2, 3, . . . , N provided that β
2. For q < −1 and
2f 2 f n−1 > 0 we cannot have that 1 − q < 0 for all n = β β 2f 2f 1, 2, 3, . . . , N with N ≥ 2 since 1 − q < 0 then implies that < q−1 < 0. β β
3. For q < −1 and
2 f n−1 2f < 0 we cannot have that 1 − q < 0 for all n = β β 2f 1, 2, 3, . . . , N since then we have 1 − > 1 > 0. β
4. For q < −1 and
5. For −1 < q < 0 and implies that 0 <
2f 2f > 0 we have: if 1 − qn−1 > 0 is true for n = 1, which β β
2f < 1, then it holds for all n = 1, 2, 3, . . .. β
280
10 Orthogonal Polynomial Solutions of q-Difference Equations
2f 2f < 0 we have: if 1 − qn−1 > 0 is true for n = 1 and β β 2 f n = 2, which implies that q−1 < < 0, then it holds for all n = 1, 2, 3, . . .. β
6. For −1 < q < 0 and
2f 2f > 0 we cannot have that 1 − qn−1 < 0 for all n = β β 2f 2f 1, 2, 3, . . . , N with N ≥ 2 since 1 − q < 0 then implies that < q−1 < 0. β β
7. For −1 < q < 0 and
2f 2f < 0 we cannot have that 1 − qn−1 < 0 for all n = β β 2f > 1 > 0. 1, 2, 3, . . . , N since then we have 1 − β
8. For −1 < q < 0 and
2f 2f > 0 we have: if 1 − qn−1 > 0 is true for n = 1, which β β
9. For 0 < q < 1 and implies that 0 <
2f < 1, then it holds for all n = 1, 2, 3, . . .. β
10. For 0 < q < 1 and
2f 2f < 0 we have: 1 − qn−1 > 0 is true for all n = 1, 2, 3, . . .. β β
2f 2f > 0 it is possible to have 1 − qn−1 < 0 for all n = β β 2 f N−1 1, 2, 3, . . . , N provided that q > 1. β
11. For 0 < q < 1 and
12. For 0 < q < 1 and
2f 2f < 0 we have: 1 − qn−1 < 0 is false for all n = 1, 2, 3, . . .. β β
2f 2f > 0 it is possible to have 1− qn−1 > 0 for all n = 1, 2, 3, . . . , N β β 2 f N−1 q < 1. provided that β
13. For q > 1 and
14. For q > 1 and
2f 2f < 0 we have: 1 − qn−1 > 0 is true for all n = 1, 2, 3, . . .. β β
15. For q > 1 and
2f 2f > 0 we have: if 1− qn−1 < 0 is true for n = 1, which implies β β
that
2f > 1, then it holds for all n = 1, 2, 3, . . .. β
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
16. For q > 1 and
281
2f 2f < 0 we have: 1 − qn−1 < 0 is false for all n = 1, 2, 3, . . .. β β
2f − eqn−1 we only need to consider the ten possible cases 1, 2, 5, 6, β 9, 10, 11, 13, 14 and 15 above. Again we use table 10.3.
For the factor
1. For q < −1, of
2f 2 f N−2 > 0 and q < 1 with N even, we conclude that the sign β β
2f − eqn−1 equals (−1)n for all n = 1, 2, 3, . . . , N provided that e > 0 and β
2f < e and that it equals (−1)n+1 for all n = 1, 2, 3, . . . , N provided that e < 0 β 2f and < eq. β 2 f N−2 2f < 0 and q < 1 with N odd, we conclude that the sign of β β 2f 2f − eqn−1 equals (−1)n for all n = 1, 2, 3, . . . , N provided that e > 0 and > eq β β 2f > e. and that it equals (−1)n+1 for all n = 1, 2, 3, . . . , N provided that e < 0 and β
2. For q < −1,
2f 2f < 1, we conclude that the sign of − eqn−1 equals β β 2f (−1)n for n = 1 provided that e > > 0. Then we use table 10.3 to conclude β 2f − eqn−1 > 0 for all n = 1, 2, 3, . . . , N we must have that for (−1)n β
3. For −1 < q < 0 and 0 <
eq < eq3 < eq5 < . . . < 0 < . . . <
2f < eqN−1 < . . . < eq4 < eq2 < e β
with N odd. 2f 2f < 0, we conclude that the sign of − eqn−1 β β 2f equals (−1)n+1 for n = 1 provided that e < < 0. Then we use table 10.3 to β 2f − eqn−1 > 0 for all n = 1, 2, 3, . . . , N we must conclude that for (−1)n+1 β have
4. For −1 < q < 0 and q−1 <
e < eq2 < eq4 < . . . < eqN−1 <
2f < . . . < 0 < . . . < eq5 < eq3 < eq β
282
10 Orthogonal Polynomial Solutions of q-Difference Equations
with N even. 2f 2f < 1, we conclude that − eqn−1 < 0 for all n = β β 2f < eqN−1 . 1, 2, 3, . . . , N provided that β
5. For 0 < q < 1 and 0 <
2f 2f < 0, we conclude that − eqn−1 < 0 for all n = β β 2f 2f 1, 2, 3, . . . , N provided that < e. In fact, then we have that − eqn−1 < 0 β β for all n = 1, 2, 3, . . ..
6. For 0 < q < 1 and
2f 2 f N−1 2f > 0 and q > 1, we conclude that − eqn−1 > 0 for all β β β 2f 2f > e. In fact, then we have that −eqn−1 > 0 n = 1, 2, 3, . . . , N provided that β β for all n = 1, 2, 3, . . ..
7. For 0 < q < 1,
2 f N−1 2f 2f > 0 and q < 1, we conclude that − eqn−1 < 0 for all β β β 2f 2f n = 1, 2, 3, . . . , N provided that < e. In fact, then we have that −eqn−1 < 0 β β for all n = 1, 2, 3, . . ..
8. For q > 1,
2f 2f < 0, we conclude that − eqn−1 < 0 for n = 1 provided that β β 2f 2f 2f < e. If e > 0, which implies that < 0 < e, then we have that −eqn−1 < 0 β β β 2f for all n = 1, 2, 3, . . .. If e < 0, which implies that < e < 0, then we have that β 2f 2f − eqn−1 < 0 for all n = 1, 2, 3, . . . , N provided that < eqN−1 . β β
9. For q > 1 and
2f 2f > 1, we conclude that − eqn−1 > 0 for all n = 1, 2, 3, . . . , N β β 2f provided that > eqN−1 . β
10. For q > 1 and
Hence, we conclude that we have positive-definite orthogonality in the following eight finite cases: 2 f N−2 2f < eq < 1 with q < eq2N ≤ q−1 and 0 < q <1 β β with N even. In that case we have a finite system of N + 1 polynomials.
Case IVb1. q < −1, 0 <
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
283
2f 2 f N−2 < 0 with q < eq2N ≤ q−1 and 0 < q <1 β β with N odd. In that case we have a finite system of N + 1 polynomials.
Case IVb2. q < −1, q−1 < e <
Case IVb3. 0 < q < 1, e > 1 with q < eq2N ≤ q−1 , 0 <
2f 2f < 1 and < eqN−1 . In β β
that case we have a finite system of N + 1 polynomials. Case IVb4. 0 < q < 1, e > 1 with q < eq2N ≤ q−1 and
2f < 0. In that case we have β
a finite system of N + 1 polynomials. Case IVb5. 0 < q < 1, e > 1 with q < eq2N ≤ q−1 ,
2f 2 f N−1 > e and q > 1. In that β β
case we have a finite system of N + 1 polynomials. Case IVb6. q > 1, 0 < e < 1 with q−1 ≤ eq2N < q, 0 <
2f 2 f N−1 < e and q < 1. In β β
that case we have a finite system of N + 1 polynomials. Case IVb7. q > 1, 0 < e < 1 with q−1 ≤ eq2N < q and
2f < 0. In that case we have β
a finite system of N + 1 polynomials. Case IVb8. q > 1, 0 < e < 1 with q−1 ≤ eq2N < q,
2f 2f > 1 and > eqN−1 . In that β β
case we have a finite system of N + 1 polynomials. Case V. g = 0, α = 0 and β = 0. In this case we have e = 0 and g qn+1 (1 − qn ) , e q3n−2
dn =
n = 1, 2, 3, . . . .
By using table 10.1 we conclude that we have positive-definite orthogonality in the following three cases: Case Va1. −1 < q < 0 and Case Va2. 0 < q < 1 and Case Va3. q > 1 and
g < 0. e
g > 0. e
g < 0. e
284
10 Orthogonal Polynomial Solutions of q-Difference Equations
We also conclude that it is impossible to have positive-definite orthogonality for finite systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .}. Case VI. g = 0, α = 0 and β = 0. In this case we have e = 0 and g 2n−2 qn+1 (1 − qn ) β β 2 f n−1 − q q dn = + q5n−4 e e e e 2 n+1 n q (1 − q ) β 2 f n−1 eg 2n−2 = 1− q + 2q q5n−4 e β β 2 n+1 n γ1 g n−1 γ2 g n−1 q (1 − q ) β = 1 + 1 + , n = 1, 2, 3, . . . , q q q5n−4 e β β with γ1 + γ2 = −2 f /g and γ1 γ2 = e/g. We remark that for f 2 < eg we have 1−
2 2 f n−1 eg 2n−2 f eg − f 2 2n−2 q + 2q = 1 − qn−1 + q >0 β β β β2
for all n = 1, 2, 3, . . .. In that case γ1 and γ2 are complex conjugates. In the case that f 2 ≥ eg they are real: − f − f 2 − eg − f + f 2 − eg and γ2 = . γ1 = g g By using table 10.1 we conclude that for q < −1 we must have 2f eg (−1)n 1 − qn−1 + 2 q2n−2 > 0, β β which cannot be true for all n = 1, 2, 3, . . ., since (−1)n q2n−2 → −∞ for odd n → ∞ and (−1)n q2n−2 → ∞ for even n → ∞. Moreover, the constant eg is either positive or negative. For −1 < q < 0 we must have 1−
2 f n−1 eg 2n−2 q + 2q < 0, β β
which cannot be true for all n = 1, 2, 3, . . ., since qn−1 → 0 for n → ∞. For 0 < q < 1 we must have 1−
2 f n−1 eg 2n−2 q + 2q > 0, β β
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
285
which is true for all n = 1, 2, 3, . . . in the case that f 2 < eg. In the case that f 2 ≥ eg we must have γ1 g n−1 γ2 g n−1 eg 2f 1+ > 0. q q 1 − qn−1 + 2 q2n−2 = 1 + β β β β Since qn → 0 for n → ∞ this can only be true for all n = 1, 2, 3, . . . if both factors are positive, which implies that we must have
γ1 g > −1 and β
γ2 g > −1. β
For q > 1 we must have 1−
2 f n−1 eg 2n−2 q + 2q < 0, β β
which is false in the case f 2 < eg. In the case that f 2 ≥ eg we must have 2 f n−1 eg 2n−2 γ1 g n−1 γ2 g n−1 1+ < 0. + 2q = 1+ q q 1− q β β β β Since qn → ∞ for n → ∞ this can only be true for all n = 1, 2, 3, . . . if γ1 γ2 =
e < 0. g
We conclude that we must have either
γ1 g < −1 and β or
γ1 g > 0 and β
γ2 g > 0, β γ2 g < −1. β
Hence, we conclude that we have positive-definite orthogonality in the following four infinite cases: Case VIa1. 0 < q < 1 and f 2 < eg. Case VIa2. 0 < q < 1, f 2 ≥ eg,
γ1 g γ2 g > −1 and > −1. β β
Case VIa3. q > 1,
γ1 g γ2 g < −1 and > 0. β β
Case VIa4. q > 1,
γ1 g γ2 g > 0 and < −1. β β
286
10 Orthogonal Polynomial Solutions of q-Difference Equations
It is also possible to have positive-definite orthogonality for finite systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .}. For q < −1 we must have that 2f eg (−1)n 1 − qn−1 + 2 q2n−2 > 0 β β is true for all n ≤ N and false for n = N + 1. For −1 < q < 0 we must have that 1−
2 f n−1 eg 2n−2 q + 2q <0 β β
is true for all n ≤ N and false for n = N + 1. We recall that both are impossible in the case that f 2 < eg. In the case that f 2 ≥ eg we have 2 f n−1 eg 2n−2 γ1 g n−1 γ2 g n−1 1− q 1+ + 2q = 1+ q q β β β β with
γ1 =
−f −
f 2 − eg
g
and γ2 =
Without loss of generality we will assume that
γ2 g < 0 we must have β γ1 g γ2 g 1+ >0 − 1+ β β
−f +
f 2 − eg
g
.
γ1 g γ2 g ≤ (since γ1 and γ2 are real). β β
For q < −1 and
=⇒
γ1 g γ2 g < −1 < < 0. β β
Now we use table 10.3 to conclude that ... < −
γ2 g 5 γ2 g 3 γ2 g γ2 g γ2 g 2 γ2 g 4 q <− q <− q<0<− <− q <− q < ..., β β β β β β
which implies that ... < 1+ and 1 < 1+
γ2 g 4 γ2 g 2 γ2 g q < 1+ q < 1+ <1 β β β
γ2 g γ2 g 3 γ2 g 5 q < 1+ q < 1+ q < .... β β β
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
287
γ2 g n−1 n > 0 for all n = 1, 2, 3, . . .. Now we have Hence we have that (−1) 1 + q β γ1 g n−1 γ1 g N γ1 g N q > 0 for n = 1, 2, 3, . . . , N and 1 + q ≤ 0 provided that q ≤ 1+ β β β γ1 g N−2 q and N even. −1 < β
γ2 g γ2 g n−1 > 0 it is possible to have 1 + q > 0 for n = 1, 2, 3, . . . , N β β γ2 g N γ2 g N γ2 g N−2 q ≤ 0 provided that q ≤ −1 < q with N odd. Combined and 1 + β β β γ1 g n−1 > 0 for all n = 1, 2, 3, . . . as above this leads to another q with (−1)n 1 + β γ1 g γ2 g <0< . finite case with −1 < β β
For q < −1 and
γ2 g < 0 we must have β γ1 g γ2 g 1+ < 0 =⇒ 1+ β β
For −1 < q < 0 and
γ1 g γ2 g < −1 < < 0. β β
Now we use table 10.3 to conclude that −
γ2 g γ2 g 3 γ2 g 5 γ2 g 4 γ2 g 2 γ2 g q<− q <− q < ... < 0 < ... < − q <− q <− < 1, β β β β β β
γ2 g n−1 q > 0 for all n = 1, 2, 3, . . .. However, then we cannot β γ1 g n−1 q < 0 for n = 1, 2, 3, . . . , N. have that 1 + β which implies that 1 +
γ2 g > 0 we must have β γ1 g γ2 g 1+ < 0 =⇒ 1+ β β
For −1 < q < 0 and
γ1 g γ2 g < −1 < 0 < . β β
Now we use table 10.3 to conclude that −
γ2 g γ2 g 2 γ2 g 4 γ2 g 5 γ2 g 3 γ2 g <− q <− q < ... < 0 < ... < − q <− q <− q, β β β β β β
which implies that 1+ and
γ2 g γ2 g 3 γ2 g 5 q < 1+ q < 1+ q < ... < 1 β β β
288
10 Orthogonal Polynomial Solutions of q-Difference Equations
1 < ... < 1+
γ2 g 4 γ2 g 2 γ2 g q < 1+ q < 1+ . β β β
Furthermore we have −
γ1 g γ1 g 3 γ1 g 5 γ1 g 4 γ1 g 2 γ1 g q<− q <− q < ... < 0 < ... < − q <− q <− , β β β β β β
which implies that
γ1 g γ1 g 2 γ1 g 4 < 1+ q < 1+ q < ... < 1 β β β
1+ and
1 < ... < 1+
γ1 g 5 γ1 g 3 γ1 g q < 1+ q < 1+ q. β β β
Now we want that γ1 g n−1 γ2 g n−1 2f eg 1+ = 1 − qn−1 + 2 q2n−2 < 0, q q 1+ β β β β and 1 −
n = 1, 2, 3, . . . , N
2 f N eg 2N q + 2 q ≥ 0. This implies that we must have β β 1+
γ1 g N−2 γ1 g N q < 0 ≤ 1+ q β β
with N even
or
γ2 g N γ2 g N−2 q ≤ 0 < 1+ q with N odd. β β γ1 g N−2 γ1 g N γ2 g N Hence, we must have either q < −1 ≤ q with N even, or q ≤ −1 < β β β γ2 g N−2 q with N odd. β 1+
For 0 < q < 1 we must have γ1 g n−1 γ2 g n−1 1+ > 0, q q 1+ β β with both
n = 1, 2, 3, . . . , N
γ1 g γ2 g γ1 g γ2 g < −1 and < −1. With the assumption that ≤ we must β β β β
have that 1+
γ2 g N−1 γ2 g N q < 0 ≤ 1+ q β β
For q > 1 we must have
=⇒
γ2 g N−1 γ2 g N q < −1 ≤ q . β β
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
289
γ1 g n−1 γ2 g n−1 1+ 1+ < 0, n = 1, 2, 3, . . . , N q q β β γ1 g N γ2 g N γ1 g γ1 g n−1 1+ > 0. If q q < −1, then we have 1 + q <0 and 1 + β β β β for all n = 1, 2, 3, . . .. Hence, then we must have that −1 <
γ2 g < 0 with β
γ2 g N γ2 g N−1 q ≤ −1 < q . β β
γ2 g γ2 g n−1 > 0, then we have 1 + q > 0 for all n = 1, 2, 3, . . .. Then it is impossible β β γ1 g n−1 γ1 g N q < 0 for n = 1, 2, 3, . . . , N and 1 + q > 0. to have 1 + β β
If
Hence, we conclude that we have positive-definite orthogonality in the following six finite cases:
γ1 g γ2 g γ1 g N γ1 g N−2 < −1 < < 0 with q ≤ −1 < q and N Case VIb1. q < −1 and β β β β even. Case VIb2. q < −1 and −1 <
γ1 g γ2 g γ2 g N γ2 g N−2 <0< with q ≤ −1 < q and N β β β β
odd.
γ1 g γ2 g γ1 g N−2 γ1 g N < −1 < 0 < with q < −1 ≤ q and N Case VIb3. −1 < q < 0, β β β β even. Case VIb4. −1 < q < 0,
γ1 g γ2 g γ2 g N γ2 g N−2 < −1 < 0 < with q ≤ −1 < q and N β β β β
odd. Case VIb5. 0 < q < 1 and
Case VIb6. q > 1 and
γ1 g γ2 g γ2 g N−1 γ2 g N ≤ < −1 with q < −1 ≤ q . β β β β
γ1 g γ2 g γ2 g N γ2 g N−1 < −1 < < 0 with q ≤ −1 < q . β β β β
290
10 Orthogonal Polynomial Solutions of q-Difference Equations
Case VII. g = 0 and α = 0. In this case we set α = 1 and by using (10.4.4) we have (2) Dn = − 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 ,
n = 1, 2, 3, . . . .
In the case that β 2 < 4g we have δ2 = δ1 which implies that (2) Dn = − 2 f qn−1 + δ1 eq2n−2 + δ1 2 f qn−1 + δ1 + δ1 eq2n−2 = − 2 f qn−1 + δ1 eq2n−2 + δ1 2 f qn−1 + δ1 + δ1 eq2n−2 2 = − 2 f qn−1 + δ1 eq2n−2 + δ1 < 0, n = 1, 2, 3, . . . . By using γ1 γ2 = e/g, γ1 + γ2 = −2 f /g and δ1 δ2 = g, we obtain that e = γ1 γ2 δ1 δ2
and 2 f = −(γ1 + γ2 )δ1 δ2 ,
which implies that (2) Dn = −δ1 δ2 1 − γ1 δ1 qn−1 1 − γ1 δ2 qn−1 1 − γ2 δ1 qn−1 1 − γ2 δ2 qn−1 for n = 1, 2, 3, . . .. In the case that β 2 ≥ 4g both δ1 and δ2 are real. Moreover, in the case that f 2 < eg we have γ2 = γ1 which implies that (2) Dn = −δ1 δ2 1 − γ1 δ1 qn−1 1 − γ1 δ2 qn−1 1 − γ1 δ1 qn−1 1 − γ1 δ2 qn−1 = −δ1 δ2 1 − γ1 δ1 qn−1 1 − γ1 δ2 qn−1 (1 − γ1 δ1 qn−1 ) (1 − γ1 δ2 qn−1 ) 2 2 = −δ1 δ2 1 − γ1 δ1 qn−1 1 − γ1 δ2 qn−1 , n = 1, 2, 3, . . . . (2)
This implies that Dn has the same sign as −δ1 δ2 = −g in that case. Finally, we consider the case that γ1 , γ2 , δ1 , δ2 ∈ R. Again we use table 10.1 and (2) table 10.2 to conclude that for q < −1 we must have either eq > 1 and (−1)n Dn > 0, (2) (2) or e = 0 and Dn > 0, or e > 1 and (−1)n Dn < 0, in order to have dn > 0 for all (2) (2) n = 1, 2, 3, . . .. However, note that (−1)n Dn > 0 or (−1)n Dn < 0 cannot be true (2) for all n = 1, 2, 3, . . .. Hence we must have e = 0 and Dn > 0 or 2 f qn−1 + δ2 2 f qn−1 + δ1 < 0, which is also impossible for all n = 1, 2, 3, . . .. (2)
For −1 < q < 0 we must have q < eq < 1 and (−1)n+1 Dn > 0. Also in this case (2) (2) (−1)n+1 Dn > 0 cannot be true for all n = 1, 2, 3, . . ., since Dn → −δ1 δ2 = −g for n → ∞.
10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions
291
(2)
For 0 < q < 1 we must have e < 1 and Dn > 0, which implies that 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 < 0, n = 1, 2, 3, . . . . For n = 1 this reads (2 f + δ1 e + δ2 ) (2 f + δ1 + δ2 e) < 0, which implies that
δ1 e + δ2 < −2 f < δ1 + δ2 e or δ1 + δ2 e < −2 f < δ1 e + δ2 . The first inequality implies that (1 − e)δ2 < (1 − e)δ1
=⇒
δ2 < δ1 ,
since 1 − e > 0. This contradicts the fact that δ1 < δ2 . So we must have
δ1 + δ2 e < −2 f < δ1 e + δ2 . Further we must have that g = δ1 δ2 < 0, which implies that δ1 < 0 < δ2 . We conclude that it is possible to have orthogonality for an infinite system of polynomials in that case. (2)
(2)
For q > 1 we must have either e ≤ 0 and Dn < 0, or e > 1 and Dn > 0. So, for e ≤ 0 we must have 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 > 0,
n = 1, 2, 3, . . . .
For n = 1 this reads (2 f + δ1 e + δ2 ) (2 f + δ1 + δ2 e) > 0, which implies that both factors are either positive or negative. Further we must have that g = δ1 δ2 > 0, which implies that either δ1 ≤ δ2 < 0 or 0 < δ1 ≤ δ2 . We conclude that it is possible to have orthogonality for an infinite system of polynomials in this case too. For e > 1 we must have 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 < 0,
n = 1, 2, 3, . . . .
In this case we must have
δ1 e + δ2 < −2 f < δ1 + δ2 e and g = δ1 δ2 < 0.
292
10 Orthogonal Polynomial Solutions of q-Difference Equations
Hence, we have δ1 < 0 < δ2 , which implies that δ1 e < 0 and δ2 e > 0. Also in this case it is possible to have orthogonality for an infinite system of polynomials. Hence, we conclude that we have positive-definite orthogonality in the following three infinite cases: Case VIIa1. 0 < q < 1, e < 1, δ1 < 0 < δ2 and 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 < 0,
n = 1, 2, 3, . . . .
Case VIIa2. q > 1, e ≤ 0, δ1 δ2 > 0 with δ1 , δ2 ∈ R or δ2 = δ1 , and 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 > 0, n = 1, 2, 3, . . . . Case VIIa3. q > 1, e > 1, δ1 < 0 < δ2 and 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 < 0,
n = 1, 2, 3, . . . .
It is also possible to have positive-definite orthogonality for a finite system of N + 1 or 2N + 2 polynomials with N ∈ {1, 2, 3, . . .}. We only consider the cases where (1) Dn has opposite sign for n = N and n = N + 1 according to table 10.5. Skipping further details, we conclude that we have positive-definite orthogonality, at least in the following eight finite cases: Case VIIb1. q < −1, 0 < eq < 1 with q < eq2N ≤ q−1 and Dn > 0 for n = 1, 2, 3, . . . , N. In that case we have a finite system of N + 1 polynomials. (2)
(2)
Case VIIb2. q < −1, 0 < e < 1 with eq2N = 1 and Dn > 0 for n = 1, 2, 3, . . . , N. In that case we have a finite system of N + 1 polynomials. (2)
Case VIIb3. q < −1, 0 < e < 1 with 1 < eq2N < q2 and Dn > 0 for n = 1, 2, 3, . . . , 2N + 1. In that case we have a finite system of 2N + 2 polynomials. Case VIIb4. −1 < q < 0, eq > 1 with q−1 ≤ eq2N < q and Dn < 0 for n = 1, 2, 3, . . . , N. In that case we have a finite system of N + 1 polynomials. (2)
(2)
Case VIIb5. −1 < q < 0, e > 1 with eq2N = 1 and Dn > 0 for n = 1, 2, 3, . . . , N. In that case we have a finite system of N + 1 polynomials.
10.5 Solutions of the q-Pearson Equation
293 (2)
Case VIIb6. −1 < q < 0, e > 1 with q2 < eq2N < 1 and Dn > 0 for n = 1, 2, 3, . . . , 2N + 1. In that case we have a finite system of 2N + 2 polynomials. Case VIIb7. 0 < q < 1, e > 1 with q < eq2N ≤ q−1 and Dn < 0 for n = 1, 2, 3, . . . , N. In that case we have a finite system of N + 1 polynomials. (2)
Case VIIb8. q > 1, 0 < e < 1 with q−1 ≤ eq2N < q and Dn < 0 for n = 1, 2, 3, . . . , N. In that case we have a finite system of N + 1 polynomials. (2)
We remark that it is also possible to have positive-definite orthogonality for finite (2) systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .} in cases where Dn has opposite sign for n = N and n = N + 1.
10.5 Solutions of the q-Pearson Equation We look for solutions of the q-Pearson equation (cf. (3.2.8)) w(x)C(x) = qw(qx)D(qx), with C(x) =
0 < |q| < 1
ex2 + 2 f qx + gq2 q(q − 1)2 x2
and D(x) =
{e + 2ε (1 − q)} x2 + {2 f + γ (1 − q)} qx + gq2 α x2 + β qx + gq2 = . 2 2 (q − 1) x (q − 1)2 x2
Hence we have by using (10.1.3) q2 {e + 2ε (1 − q)} x2 + {2 f + γ (1 − q)} x + g w(x) = w(qx) ex2 + 2 f qx + gq2 =
q2 (α x2 + β x + g) . ex2 + 2 f qx + gq2
(10.5.1)
We consider two types of solutions: A. Continuous solutions for x ∈ R in terms of (convergent) infinite products. For the convergence of these infinite products we refer to the book [471] by L.J. Slater. ν B. Discrete solutions for {xν }Nν =0 with N → ∞ or {xν }∞ ν =−∞ , id est xν = Aq with A ∈ C and ν = 0, ±1, ±2, . . ., in terms of finite products. Note that xν +1 = qxν . Without loss of generality we can choose A = 1 in each case.
294
10 Orthogonal Polynomial Solutions of q-Difference Equations
In order to find solutions of the q-Pearson equation (10.5.1), we distinguish between 0 < |q| < 1 and |q| > 1. For 0 < |q| < 1 we make the following observations. For ∞
w(x) = (−rx; q)∞ = ∏ (1 + rxqk ),
r∈C
(10.5.2)
k=0
we have
∞
w(qx) = (−rqx; q)∞ = ∏ (1 + rxqk+1 ), k=0
which implies that w(x) = 1 + rx. w(qx)
(10.5.3)
For ∞ q qk+1 , w(x) = −rx, − ; q = ∏ 1 + rxqk 1+ rx rx ∞ k=0 we have
∞
w(qx) = ∏ 1 + rxq k=0
k+1
r ∈ C,
r = 0 (10.5.4)
qk , 1+ rx
which implies that 1 + rx w(x) = = rx. 1 w(qx) 1 + rx
(10.5.5)
Finally, for ∞ qk+1 q k , 1+ w(x) = −sx, − ; q = ∏ 1 + sxq tx tx ∞ k=0
we have
s,t ∈ C,
t = 0 (10.5.6)
∞ qk w(qx) = ∏ 1 + sxqk+1 1 + , tx k=0
which implies that w(x) 1 + sx 1 + sx = · tx. = w(qx) 1 + tx1 1 + tx Combining the latter two results, we conclude that −sx, − txq ; q ∞ , r, s,t ∈ C, r = 0, w(x) = −rx, − rxq ; q ∞ implies that
(10.5.7)
t = 0
(10.5.8)
10.5 Solutions of the q-Pearson Equation
295
1 + sx tx 1 + sx t w(x) = · = · . w(qx) 1 + tx rx 1 + tx r
(10.5.9)
For |q| > 1 we rewrite the q-Pearson equation (10.5.1) in the following way. If we set q = p−1 , then we have p−2 e + 2ε (1 − p−1 ) x2 + 2 f + γ (1 − p−1 ) x + g w(x) = w(p−1 x) ex2 + 2 f p−1 x + gp−2
α x2 + β x + g p−2 (α x2 + β x + g) , = ex2 + 2 f p−1 x + gp−2 ep2 x2 + 2 f px + g
(10.5.10)
α := e + 2ε (1 − p−1 ) and β := 2 f + γ (1 − p−1 ).
(10.5.11)
= where
For |q| > 1 this implies that 0 < |p| < 1. Now we replace x by px to obtain ep4 x2 + 2 f p2 x + g w(x) = 2 2 , w(px) α p x + β px + g
0 < |p| < 1.
(10.5.12)
Note that if α = e + 2ε (1 − q) does not depend on q, for instance in the case that α = 0 or α = 1, then α = α . The same holds for β . Case II-A. g = 0, β = 0 = β , α = 0 respectively α = 0 and f = 0. From (10.5.1) we have 1 w(x) α q2 x 2 α qx = 2 = ex · w(qx) ex + 2 f qx 1 + 2 f q 2 f and by using (10.5.2) and (10.5.3) with r = e/2 f q and by using (10.5.4) and (10.5.5) with r = α q/2 f , we obtain the solution 2f , − ; q − α2qx f αx ∞ , 0 < |q| < 1. w(II) (x; q) = ex −2fq;q ∞
From (10.5.12) we have ep4 x2 + 2 f p2 x 2f ep2 x w(x) = · = 1+ w(px) α p2 x 2 2f αx and by using (10.5.2) and (10.5.3) with r = ep2 /2 f and by using (10.5.4) and (10.5.5) with r = α /2 f , we obtain the solution
296
10 Orthogonal Polynomial Solutions of q-Difference Equations
w(II) (x; p) =
2 − ep2 f x ; p
∞
− α2 fx , − 2αf xp ; p
,
0 < |p| < 1.
∞
The special case 0 < p < 1, e = 0 and α = 2 f leads to the weight function w(x; p) =
1 −x, − xp ; p ∞
for the Stieltjes-Wigert polynomials. Case II-B. g = 0, β = 0 = β , α = 0 respectively α = 0 and f = 0. Then we have from (10.5.1) with xν = qν w(xν ) αq ν 1 = ·q · w(xν +1 ) 1 + eqν 2 f 2fq with possible solution ν ν 2f e ;q q− ( 2 ) . w(II) (xν ; q) = − 2fq α q ν From (10.5.10) we have with xν = p−ν w(xν ) α 1 = · p−ν · w(xν +1 ) 1 + ep1−ν 2 f p 2f with possible solution 2 f p ν (ν ) ep2−ν ;p p 2 . w(II) (xν ; p) = − 2f α ν Case III-A. g = 0, β = 0 respectively β = 0, α = 0 = α and e = 0. From (10.5.1) we have for f = 0 w(x) β q2 x βq 1 = 2 = · w(qx) ex + 2 f qx 1 + 2exf q 2 f and by using (10.5.8) and (10.5.9) with r = e/β q2 , s = 0 and t = e/2 f q, we obtain the solution f q2 − 2 ex ;q ∞ , 0 < |q| < 1. w(III) (x; q) = β q3 ex − β q2 , − ex ; q ∞
10.5 Solutions of the q-Pearson Equation
For f = 0 we have
297
w(x) β q2 = w(qx) ex
and by using (10.5.4) and (10.5.5) with r = e/β q2 , we obtain the solution w(III) (x; q)
f =0
1 , = 3 ex − β q2 , − βexq ; q
0 < |q| < 1,
∞
which implies that the solution above is also valid for f = 0. The special case 0 < q < 1, f = 0 and e = β q2 leads to the weight function w(x; q) =
1 −x, − qx ; q ∞
for the Stieltjes-Wigert polynomials. ln 2βf 2f 2f ∈ R. Then we > 0 we may write = qv with q > 0, q = 1 and v = β β ln q have q1−v w(x) = w(qx) 1 + 2exf q
For
with possible solution w(III) (x; q) =
xv−1
,
− 2exf q ; q
0 < |q| < 1.
∞
The special case e = 2 f q leads to the weight function w(x; q) =
xv−1 (−x; q)∞
for the q-Laguerre polynomials. From (10.5.12) we have for f = 0 w(x) ep4 x2 + 2 f p2 x ep2 x 2f p = = 1+ · w(px) β px 2f β and by using (10.5.8) and (10.5.9) with r = ep3 /β , s = 0 and t = ep2 /2 f , we obtain the solution
298
10 Orthogonal Polynomial Solutions of q-Difference Equations
3 − epβ x , − epβ2 x ; p ∞ w(III) (x; p) = , 2f − epx ;p
0 < |p| < 1.
∞
For f = 0 we have w(x) ep4 x2 ep3 x = = . w(px) β px β By using (10.5.4) and (10.5.5) with r = ep3 /β , we obtain the solution β ep3 x (III) w (x; p) = − , − 2 ; p , 0 < |p| < 1, f =0 β ep x ∞ which implies that the solution above is also valid for f = 0. Case III-B. g = 0, β = 0 respectively β = 0, α = 0 = α and e = 0. For f = 0 we have from (10.5.1) with xν = qν 1 w(xν ) βq = · w(xν +1 ) 1 + eqν 2 f 2fq with possible solution ν 2f e ;q . w(III) (xν ; q) = − 2fq β q ν For f = 0 we have
w(xν ) β q2 − ν = ·q w(xν +1 ) e
with possible solution w(III) (xν ; q)
f =0
=
e β q2
ν
ν
q( 2 ) .
For f = 0 we have from (10.5.10) with xν = p−ν w(xν ) β 1 = · 1− ν w(xν +1 ) 1 + ep 2f p 2f with possible solution (III)
w
2f p ν ep2−ν ;p (xν ; p) = − . 2f β ν
10.5 Solutions of the q-Pearson Equation
For f = 0 we have
299
β w(xν ) = 2 · pν w(xν +1 ) ep
with possible solution w(III) (xν ; p)
f =0
=
ep2 β
ν
ν
p− ( 2 ) .
Case IV-A. g = 0, β = 0 respectively β = 0 and α = 0 respectively α = 0. From (10.5.1) we have for f = 0 1 + αβx β q w(x) α q2 x 2 + β q2 x = = · w(qx) ex2 + 2 f qx 1 + 2exf q 2 f and by using (10.5.8) and (10.5.9) with r = e/β q2 , s = α /β and t = e/2 f q, we obtain the solution f q2 − αβx , − 2 ex ;q ∞ , e = 0, 0 < |q| < 1. w(IV ) (x; q) = β q3 ex − β q2 , − ex ; q ∞
For f = 0 we have e = 0 and w(x) α q2 x 2 + β q2 x αx β q2 = . · = 1 + w(qx) ex2 β ex By using (10.5.2) and (10.5.3) with r = α /β and (10.5.4) and (10.5.5) with r = e/β q2 , we obtain the solution − αβx ; q ∞ w(IV ) (x; q) = , 0 < |q| < 1, 3 f =0 − βexq2 , − βexq ; q ∞
which implies that the solution above is also valid for f = 0. For e = 0 we have f = 0 and w(x) αx βq = 1+ · w(qx) β 2f By using (10.5.8) and (10.5.9) with r = α q/2 f , s = 0 and t = α /β , we obtain the solution
300
10 Orthogonal Polynomial Solutions of q-Difference Equations
2f − α2qx , − ; q f αx ∞, = βq e=0 − αx ; q
w(IV ) (x; q)
0 < |q| < 1.
∞
From (10.5.12) we have for f = 0 2
ep x ep4 x2 + 2 f p2 x 1 + 2 f 2 f p w(x) = 2 2 = · w(px) α p x + β px 1 + α px β β
and by using (10.5.8) and (10.5.9) with r = α /2 f , s = ep2 /2 f and t = α p/β , we obtain the solution 2 − ep2 f x , − αβ x ; p ∞ , 0 < |p| < 1. w(IV ) (x; p) = 2f p αx − 2 f , − αx ; p ∞
For f = 0 we have e = 0 and w(x) ep3 x 1 ep3 x = = · . w(px) α px + β β 1 + αβpx By using (10.5.2) and (10.5.3) with r = α p/β and by using (10.5.4) and (10.5.5) with r = ep3 /β , we obtain the solution 3 − epβ x , − epβ2 x ; p ∞ , 0 < |p| < 1. w(IV ) (x; p) = f =0 − αβpx ; p ∞
Case IV-B. g = 0, β = 0 respectively β = 0 and α = 0 respectively α = 0. For f = 0 we have from (10.5.1) with xν = qν ν
1 + αβq β q w(xν ) = ν · w(xν +1 ) 1 + 2eqf q 2 f with possible solution − 2 ef q ; q 2 f ν ν . w(IV ) (xν ; q) = βq − αβ ; q ν
10.5 Solutions of the q-Pearson Equation
301
The special case e = abq2 , 2 f = −a, α = 1 and β = −q−1 leads to the weight function (bq; q)ν ν w(xν ; q) = a (q; q)ν for the little q-Jacobi polynomials. The special case e = 0, 2 f = −a, α = 1 and β = −q−1 leads to the weight function w(xν ; q) =
1 aν (q; q)ν
for the little q-Laguerre polynomials. For f = 0 we have e = 0 and w(xν ) α qν β q2 − ν = 1+ ·q · w(xν +1 ) β e with possible solution (IV )
w
(xν ; q)
1
= f =0 − αβ ; q
ν
e β q2
ν
ν
q( 2 ) .
The special case e = −aq, α = 1 and β = −q−1 leads to the weight function w(xν ; q) =
ν 1 aν q( 2 ) (q; q)ν
for the q-Bessel polynomials. For f = 0 we have from (10.5.10) with xν = p−ν −ν
1 + α βp w(xν ) β = · 1− ν w(xν +1 ) 2f p 1 + ep2 f with possible solution (IV )
w
2−ν
− ep2 f ; p
(xν ; p) = 1−ν − α pβ ; p
ν
For f = 0 we have e = 0 and
ν
2f p β
ν .
302
10 Orthogonal Polynomial Solutions of q-Difference Equations
w(xν ) α p− ν β = 1+ · · pν w(xν +1 ) β ep2 with possible solution (IV )
w
(xν ; p)
f =0
=
1
1−ν − α pβ ; p ν
ep2 β
ν
ν
p− ( 2 ) .
Case V-A. g = 0, α = 0 = α and β = 0 = β . From (10.5.1) we have 1 gq2 w(x) 1 = , = 2 = γ1 x 2fx ex2 w(qx) ex + 2 f qx + gq2 1 + gq + gq2 1− q 1 − γ2qx where γ1 γ2 = e/g and γ1 + γ2 = −2 f /g, which implies that for f 2 ≥ eg − f − f 2 − eg − f + f 2 − eg and γ2 = . γ1 = g g In the case that f 2 < eg we have γ2 = γ1 . By using (10.5.2) and (10.5.3), once with r = −γ1 /q and once with r = −γ2 /q, we obtain the solution w(V ) (x; q) =
1
,
γ1 x γ2 x q , q ;q ∞
0 < |q| < 1.
The special case e = q2 , f = 0 and g = 1, which implies that γ1 = iq and γ2 = −iq, leads to the weight function w(xν ; q) =
1 1 = 2 2 (ix, −ix; q)∞ (x ; q )∞
for the discrete q-Hermite II polynomials. Note that γ1 and γ2 are non-real in this case. From (10.5.12) we have ep4 x2 + 2 f p2 x + g 2 f p2 x ep4 x2 w(x) = = 1+ + = 1 − γ1 p2 x 1 − γ2 p2 x . w(px) g g g By using (10.5.2) and (10.5.3), once with r = −γ1 p2 and once with r = −γ2 p2 , we obtain the solution w(V ) (x; p) = γ1 p2 x, γ2 p2 x; p ∞ , 0 < |p| < 1.
10.5 Solutions of the q-Pearson Equation
303
Case V-B. g = 0, α = 0 = α and β = 0 = β . Then we have from (10.5.1) with xν = qν w(xν ) 1 = ν −1 w(xν +1 ) (1 − γ1 q ) (1 − γ2 qν −1 ) with possible solution
w(V ) (xν ; q) =
γ1 γ2 , ;q q q
. ν
From (10.5.10) we have with xν = p−ν 1 w(xν ) = w(xν +1 ) (1 − γ1 p1−ν )(1 − γ2 p1−ν ) with possible solution w(V ) (xν ; p) = γ1 p2−ν , γ2 p2−ν ; p ν . Case VI-A. g = 0, α = 0 = α and β = 0 respectively β = 0. From (10.5.1) we have 2 1 + βx gq 2 1 + βgx g w(x) q (β x + g) = , = = ex2 w(qx) ex2 + 2 f qx + gq2 1 − γ1qx 1 − γ2qx gq2 1 + 2gqf x + gq 2 where, as before, γ1 γ2 = e/g and γ1 + γ2 = −2 f /g, which implies that for f 2 ≥ eg − f − f 2 − eg − f + f 2 − eg and γ2 = . γ1 = g g In the case that f 2 < eg we have γ2 = γ1 . By using (10.5.2) and (10.5.3), once with r = β /g, once with r = −γ1 /q and once with r = −γ2 /q, we obtain the solution − βgx ; q ∞ , 0 < |q| < 1. w(V I) (x; q) = γ1 x γ2 x q , q ;q ∞
From (10.5.12) we have 2 f p2 x ep4 x2 1 − γ1 p2 x 1 − γ2 p2 x ep4 x2 + 2 f p2 x + g 1 + g + g w(x) = = = . w(px) β px + g 1 + β px 1 + β px g
g
By using (10.5.2) and (10.5.3), once with r = −γ1 p2 , once with r = −γ2 p2 and once with r = β p/g, we obtain the solution
304
10 Orthogonal Polynomial Solutions of q-Difference Equations
(V I)
w
γ1 p2 x, γ2 p2 x; p (x; p) = − β gpx ; p
∞
0 < |p| < 1.
,
∞
Case VI-B. g = 0, α = 0 = α and β = 0 respectively β = 0. Then we have from (10.5.1) with xν = qν ν
1 + β gq w(xν ) = w(xν +1 ) (1 − γ1 qν −1 ) (1 − γ2 qν −1 ) with possible solution
w(V I) (xν ; q) =
γ1 γ2 q , q ;q ν − βg ; q ν
.
From (10.5.10) we have with xν = p−ν −ν
1 + β pg w(xν ) = w(xν +1 ) (1 − γ1 p1−ν )(1 − γ2 p1−ν ) with possible solution (V I)
w
2−ν γ1 p , γ2 p2−ν ; p ν 1−ν (xν ; p) = . − β pg ; p ν
Case VII-A. g = 0 and α = 0 respectively α = 0. From (10.5.1) we have 2 1 − δx 1 − δx 1 + βgx + αgx w(x) q2 (α x2 + β x + g) 1 2 , = 2 = = ex2 γ1 x γ2 x w(qx) ex + 2 f qx + gq2 1 + 2gqf x + gq 1− q 1− q 2 where, as before, in the case that f 2 ≥ eg − f − f 2 − eg − f + f 2 − eg and γ2 = γ1 = g g and δ1 δ2 = g/α and δ1 + δ2 = −β /α , which implies that for β 2 ≥ 4gα −β − β 2 − 4gα −β + β 2 − 4gα δ1 = and δ2 = . 2α 2α
10.5 Solutions of the q-Pearson Equation
305
In the case that f 2 < eg we have γ2 = γ1 and in the case that β 2 < 4gα we have δ2 = δ1 . By using (10.5.2) and (10.5.3), we obtain the solution x x , ; q δ1 δ2 ∞ , 0 < |q| < 1. w(V II) (x; q) = γ1 x γ2 x , ; q q q ∞
The special case e = abq2 , 2 f = −a(b + c)q, g = ac, α = 1 and β = −(a + c) leads to γ1 = q, γ2 = bq/c, δ1 = c and δ2 = a. Then we obtain the weight function x x , ;q w(x; q) = a bxc ∞ x, c ; q ∞ for the big q-Jacobi polynomials. The special case e = 0, 2 f = −abq, g = ab, α = 1 and β = −(a + b) leads to γ1 = q, γ2 = 0, δ1 = b and δ2 = a. Then we obtain the weight function x x , ;q w(x; q) = a b ∞ (x; q)∞ for the big q-Laguerre polynomials. The special case e = f = 0, g = a/q2 , α = 1 and β = −(a+1)/q leads to γ1 = γ2 = 0, δ1 = a/q and δ2 = 1/q. Then we obtain the weight function qx w(x; q) = qx, ; q a ∞ for the Al-Salam-Carlitz I polynomials. The special case e = f = 0, g = −1/q2 , α = 1 and β = 0 leads to γ1 = γ2 = 0, δ1 = −1/q and δ2 = 1/q. Then we obtain by using (1.8.24) the weight function w(x; q) = (qx, −qx; q)∞ = q2 x2 ; q2 ∞ for the discrete q-Hermite I polynomials. From (10.5.12) we have 2
4 2
2f p x ep x ep4 x2 + 2 f p2 x + g 1 + g + g (1 − γ1 p2 x)(1 − γ2 p2 x) w(x) , = 2 2 = = w(px) α p x + β px + g 1 + β px + α p2 x2 1 − δpx 1 − δpx g g 1
2
where δ1 δ2 = g/α and δ1 + δ2 = −β /α , which implies that for (β )2 ≥ 4gα
306
10 Orthogonal Polynomial Solutions of q-Difference Equations
δ1
=
−β −
(β )2 − 4gα 2α
δ2
and
=
−β +
(β )2 − 4gα . 2α
In the case that (β )2 < 4gα we have δ2 = δ1 . By using (10.5.2) and (10.5.3), we obtain the solution 2 γ1 p x, γ2 p2 x; p ∞ (V II) (x; p) = , 0 < |p| < 1. w px px , ;p δ δ 1
∞
2
The special case e = f = 0, g = p2 , α ∗ = 1 and β ∗ = 0 leads to γ1 = γ2 = 0, δ1 = −ip and δ2 = ip. Then we obtain by using (1.8.24) the weight function w(x; p) =
1 1 = 2 2 (ix, −ix; p)∞ (x ; p )∞
for the discrete q-Hermite II polynomials. Note that δ1 and δ2 are non-real in this case. Case VII-B. g = 0 and α = 0. Then we have from (10.5.1) with xν = qν qν qν 1 − 1 − δ1 δ2 w(xν ) = w(xν +1 ) (1 − γ1 qν −1 ) (1 − γ2 qν −1 ) with possible solution
w(V II) (xν ; q) =
γ1 γ2 q , q ;q ν 1 1 δ1 , δ2 ; q ν
.
From (10.5.10) we obtain with xν = p−ν −ν −ν 1 − pδ 1 − pδ w(xν ) 1 2 = w(xν +1 ) (1 − γ1 p1−ν )(1 − γ2 p1−ν ) with possible solution w(V II) (xν ; p) =
(γ1 p2−ν , γ2 p2−ν ; p)ν 1−ν 1−ν . p , pδ ; p δ 1
2
ν
The special case e = f = 0, g = ap2 , α = 1 and β = −(a + 1)p leads to γ1 = γ2 = 0, δ1 = ap and δ2 = p. Then we obtain by using (1.8.14) the weight function
10.6 Orthogonality Relations
w(xν ; p) =
307
1 p− ν ,
p−ν a
= ;p
ν
ν 1 aν pν (ν +1) aν p2ν +2(2 ) = (p, ap; p)ν (p, ap; p)ν
for the Al-Salam-Carlitz II polynomials.
10.6 Orthogonality Relations In the preceding section we have obtained both continuous and discrete solutions of the q-Pearson equation (10.5.1) and the p−1 -Pearson equation (10.5.10) or (10.5.12). In this section we will derive orthogonality relations for several cases obtained in section 10.4. We will not give explicit orthogonality relations for each different case, but we will restrict to the most important cases (either continuous or discrete). We remark that for each different case the appropriate boundary conditions (3.2.12) or (3.2.19) should be satisfied. Therefore we have to consider w(q−1 x; q)ϕ (q−2 x) with ϕ (x) = ex2 + 2 f x + g and w(x; q) the involving weight function which satisfies the q-Pearson equation. This product should vanish at both ends of the interval of orthogonality. Case II. In this case we have g = 0, β = 0 = β and α = 0. In section 10.4 we have seen that it is only possible to have positive-definite orthogonality for an infinite system of polynomials in the case that q > 1, f = 0 and e ≤ 0. Further we have seen that it is possible to have positive-definite orthogonality for a finite system of polynomials in three different cases. Here we will only treat the infinite case. Case IIa1. q > 1, f = 0 and e ≤ 0. If we write q = p−1 , then we have ⇐⇒
q>1
0 < p < 1.
Now we use the weight function w(II) (x; p) =
2 − ep2 f x ; p
∞
− α2 fx , − 2αf xp ; p
Since α = 0 we set α = 1. Then we have
, ∞
0 < |p| < 1.
308
10 Orthogonal Polynomial Solutions of q-Difference Equations
3
− ep2 f x ; p
∞ w(II) (px; p)ϕ (p2 x) = · (ep4 x2 + 2 f p2 x) − 2pxf , − 2xf ; p ∞ ep2 x − 2f ; p ∞ · 2 f p2 x, = − 2pxf , − 2xf ; p ∞
which vanishes for x → 0. It also vanishes for x → ∞ in the case that e = 0. Then we have orthogonality on the interval (0, ∞) and by using (1.12.3) we have for f > 0 ∞
d0 :=
0
dx = 2f − 2xf , − 2 xf p ; p
∞
∞
0
dt = −2 f ln p (p; p)∞ > 0. −t, − pt ; p ∞
Further we find by using (10.4.1), (10.4.2) and (10.4.3) with e = 0 and q = p−1 dn = −4 f 2 q3n−1 (1 − qn ) = 4 f 2 p−4n+1 (1 − pn ),
n = 1, 2, 3, . . .
which implies that n
∏ dk = (4 f 2 )n p−n(2n+1) (p; p)n ,
n = 1, 2, 3, . . . .
k=1
This leads to the orthogonality relation ∞ (II) (II) ym (x; p)yn (x; p) 0
− 2xf , − 2 xf p ; p
dx = −2 f ln p (p; p)∞ (4 f 2 )n p−n(2n+1) (p; p)n δmn
∞
for f > 0 and m, n = 0, 1, 2, . . .. The special case 2 f = 1 leads to the orthogonality relation ∞ ym (x; p)yn (x; p) 0
dx = − ln p (p; p)∞ p−n(2n+1) (p; p)n δmn , −x, − xp ; p ∞
m, n = 0, 1, 2, . . .
for the Stieltjes-Wigert polynomials. Case III. In this case we have g = 0, β = 0 respectively β = 0 and α = 0 = α . In section 10.4 we have seen that it is possible to have positive-definite orthogonality for an infinite system of polynomials in three different cases and that it is impossible to have positive-definite orthogonality for a finite system of polynomials. Here we will only treat one case.
10.6 Orthogonality Relations
309
2f < 1. We use the weight function β f q2 ;q − 2 ex ∞ , 0 < |q| < 1. w(III) (x; q) = β q3 ex − β q2 , − ex ; q
Case IIIa2. 0 < q < 1 and
∞
Then we have
w(III) (q−1 x; q)ϕ (q−2 x) =
=
3
fq − 2 ex ;q
β q4
· eq−4 x2 + 2 f q−2 x
∞
− βexq3 , − ex ; q f q2 ;q − 2 ex
∞
∞ β q4 ex − β q3 , − ex ; q ∞
· eq−4 x2 ,
which vanishes for x → 0 if f = 0. Then it also vanishes for x → ∞. Hence we have orthogonality on the interval (0, ∞) if f = 0 and by using (1.12.3) we obtain for β >0 e ∞
d0 :=
0
1 β q2 dx = 3 e − βexq2 , − βexq ; q
∞ 0
∞
1 dt −t, − qt ; q ∞
β q2 ln q (q; q)∞ > 0. = − e In this case we have for f = 0 dn =
qn+1 (1 − qn ) β 2 −4n+5 n−1 β ( β − 2 f q ) = q (1 − qn ), e2 q5n−4 e2
n = 1, 2, 3, . . . ,
which implies that 2n β ∏ dk = e q−n(2n−3) (q; q)n , k=1 n
n = 1, 2, 3, . . . .
This leads to the orthogonality relation ∞ 0
=− for
β > 0. e
1
(III) y(III) m (x; q)yn (x; q) dx
3 − βexq2 , − βexq ; q ∞ 2 βq β
e
ln q (q; q)∞
e
2n
q−n(2n−3) (q; q)n δmn ,
m, n = 0, 1, 2, . . .
310
10 Orthogonal Polynomial Solutions of q-Difference Equations
The special case e = β q2 leads to the orthogonality relation ∞ ym (x; q)yn (x; q) 0
dx = − ln q (q; q)∞ q−n(2n+1) (q; q)n δmn , −x, − qx ; q ∞
m, n = 0, 1, 2, . . .
for the Stieltjes-Wigert polynomials. For 0 <
2f < 1 we may use the weight function β w(III) (x; q) =
xv−1 − 2exf q ; q
,
v=
ln 2βf ln q
> 0.
∞
Then we have q−v+1 xv−1 −4 2 2 f q−v−1 xv · eq x + 2 f q−2 x = , w(III) (q−1 x; q)ϕ (q−2 x) = ex − 2 ex − ; q ; q 2fq f q2 ∞
∞
which vanishes for x = 0, since v > 0, and also for x → ∞. Hence we have orthogof nality on the interval (0, ∞) and by using (1.12.2) we obtain for > 0 e 1−v ∞ q ;q ∞ 2 f q v ∞ t v−1 2fq v π xv−1 dx = d0 := dt = . e e sin π v (q; q)∞ 0 0 (−t; q)∞ − ex ; q 2fq
In this case we have n
∏ dk =
k=1
∞
2f = qv , which implies that β
2f eqv
2n
q−n(2n−3) (q; q)n (qv ; q)n ,
n = 1, 2, 3, . . . .
This leads to the orthogonality relation ∞
xv−1 (III) y(III) m (x; q)yn (x; q) dx 0 − 2exf q ; q ∞ 1−v v q ; q ∞ 2 f 2n −n(2n−3) π 2fq = q (q; q)n (qv ; q)n δmn e sin π v (q; q)∞ eqv
for v > 0,
f > 0 and m, n = 0, 1, 2, . . .. e
The special case e = 2 f q leads to the orthogonality relation (for v > 0)
10.6 Orthogonality Relations
311
∞
xv−1 ym (x; q)yn (x; q) dx 0 (−x; q)∞ 1−v q ; q ∞ −n(2n+2v−1) π = q (q; q)n (qv ; q)n δmn , sin π v (q; q)∞
m, n = 0, 1, 2, . . .
for the q-Laguerre polynomials. Case IV. g = 0, β = 0 respectively β = 0 and α = 0 respectively α = 0. In section 10.4 we have seen that it is possible to have positive-definite orthogonality for an infinite system of polynomials in seven different cases and for a finite system of polynomials in eight different cases. Here we will only treat three infinite cases. 2f < 1. We use the weight function β − 2 ef q ; q 2 f ν ν . w(IV ) (xν ; q) = α βq −β ;q
Case IVa3. 0 < q < 1 and 0 < e <
ν
Since α = 0 we set α = 1. Then we have by using xν = qν ν −1 − 2 ef q ; q 2f ν −1 (IV ) −1 −2 w (q xν ; q)ϕ (q xν ) = · eq2ν −4 + 2 f qν −2 1 βq − ;q
=
β
ν −1
− 2 ef q ; q ν − β1 ; q ν −1
2f β
ν
β , q
which should vanish for ν = 0. Since β = 0 this implies by using (1.8.6) that 1 1 1 = − ;q = 1+ = 0 =⇒ β = −q−1 . 1 βq βq 1 − ;q β
−1
Note that it also vanishes for ν → ∞ since 0 <
2f < 1. Then we have by using β
(1.11.1) for xν = qν , 0 < e < 1 and 0 < −2 f q < 1 − 2 ef q ; q ∞ ∞ (e; q)∞ ν (−2 f q)ν = > 0. d0 := ∑ w(IV ) (xν ; q)xν = ∑ (q; q) (−2 f q; q)∞ ν ν =0 ν =0 Further we have by using (10.4.1), (10.4.2) and (10.4.3) with β = −q−1
312
10 Orthogonal Polynomial Solutions of q-Difference Equations
dn = qn+1 (1 − qn )
1 − eqn−2 (1 − eq2n−3 )(1 − eq2n−2 )2 (1 − eq2n−1 )
× qn−1 (β − 2 f qn−1 )(2 f − eβ qn−1 ) = −2 f q2n−1
(1 − qn )(1 − eqn−2 ) e n−2 n (1 + 2 f q q ) 1 + (1 − eq2n−3 )(1 − eq2n−2 )2 (1 − eq2n−1 ) 2f
for n = 1, 2, 3, . . ., which implies that (q, eq−1 ; q)n ∏ dk = (−2 f ) q (eq−1 , e; q)2n k=1 n
n n2
e ;q , −2 f q, − 2fq n
n = 1, 2, 3, . . . .
This leads to the orthogonality relation − 2 ef q ; q ∞ (IV ) (IV ) ∑ (q; q)ν ν (−2 f q)ν ym (qν ; q)yn (qν ; q) ν =0 −1 e (e; q)∞ n n2 (q, eq ; q)n ; q δmn −2 f q, − (−2 f ) q = (−2 f q; q)∞ (eq−1 , e; q)2n 2fq n for 0 < e < 1 and 0 < −2 f q < 1 and m, n = 0, 1, 2, . . .. 2f < 1. In this case we can use the same β weight function as above leading to the same orthogonality relation for e ≤ 0 and 0 < −2 f q < 1. This implies that this orthogonality relation holds for e < 1 and 0 < −2 f q < 1. Case IVa4. 0 < q < 1, e ≤ 0 and 0 <
Then the special case e = abq2 and 2 f = −a leads to the orthogonality relation (for 0 < aq < 1 and bq < 1) ∞
(bq; q)ν (aq)ν ym (qν ; q)yn (qν ; q) (q; q) ν ν =0
∑ =
(abq2 ; q)∞ n n2 (q, abq; q)n a q (aq, bq; q)n δmn , (aq; q)∞ (abq, abq2 ; q)2n
m, n = 0, 1, 2, . . .
for the little q-Jacobi polynomials. The special case e = 0 and 2 f = −a now leads to the orthogonality relation (for 0 < aq < 1) ∞
(aq)ν an q n ∑ (q; q)ν ym (qν ; q)yn (qν ; q) = (aq; q)∞ (q; q)n (aq; q)n δmn , ν =0 for the little q-Laguerre polynomials.
2
m, n = 0, 1, 2, . . .
10.6 Orthogonality Relations
313
Case IVa5. 0 < q < 1, e < 0 and f = 0. Now we use the weight function e ν (ν ) 1 (IV ) w (xν ; q) = q 2 . β q2 f =0 −α ;q β
ν
Since α = 0 we set α = 1. Then we have (IV )
w
(q xν ; q) −1
1
−2
f =0
ϕ (q xν ) =
− β1 ; q ν −1
e β q2
ν −1
which vanishes for ν = 0 if as before by using (1.8.6) 1 1 1 = − ;q = 1+ = 0 =⇒ 1 β q β q 1 −β ;q
ν −1 2
q(
) · eq2ν −4 ,
β = −q−1 .
−1
Then we have by using (1.14.2) since e < 0
∞
d0 :=
∞
(−e)ν
ν
∑ w(IV ) (xν ; q) f =0 xν = ∑ (q; q)ν q(2) = (e; q)∞ > 0.
ν =0
ν =0
Further we have by using (10.4.1), (10.4.2) and (10.4.3) with f = 0 and β = −q−1 dn = qn+1 (1 − qn )
1 − eqn−2 (1 − eq2n−3 )(1 − eq2n−2 )2 (1 − eq2n−1 )
× qn−1 (β − 2 f qn−1 )(2 f − eβ qn−1 ) = −eq3n−3
(1 − qn )(1 − eqn−2 ) (1 − eq2n−3 )(1 − eq2n−2 )2 (1 − eq2n−1 )
,
n = 0, 1, 2, . . . ,
which implies that (q, eq−1 ; q)n
n
∏ dk = (−e)n q3n(n−1)/2 (eq−1 , e; q)2n ,
n = 1, 2, 3, . . . .
k=1
This leads to the orthogonality relation ∞
(−e)ν
ν
∑ (q; q)ν q(2) ym
ν =0
(IV )
(qν ; q)yn
(IV )
(qν ; q) = (e; q)∞ (−e)n q3n(n−1)/2
(q, eq−1 ; q)n δmn (eq−1 , e; q)2n
for e < 0 and m, n = 0, 1, 2, . . .. The special case e = −aq leads to the orthogonality relation (for a > 0)
314
10 Orthogonal Polynomial Solutions of q-Difference Equations ∞
(aq)ν
ν
∑ (q; q)ν q(2) ym (qν ; q)yn (qν ; q)
ν =0
= (−aq; q)∞ an qn(3n−1)/2
(q, −a; q)n δmn , (−a, −aq; q)2n
m, n = 0, 1, 2, . . .
for the q-Bessel polynomials. Case V. g = 0, α = 0 = α and β = 0 = β . In section 10.4 we have seen that it is possible to have positive-definite orthogonality for an infinite system of polynomials in three different cases and that it is impossible to have positive-definite orthogonality for a finite system of polynomials. Here we will only treat one case. Case Va2. 0 < q < 1 and
g > 0. We use the weight function e
w(V ) (x; q) =
1
,
0 < |q| < 1.
γ1 x γ2 x q , q ;q ∞
Then we have w(V ) (q−1 x; q)ϕ (q−2 x) =
eq−4 x2 + 2 f q−2 x + g
=
γ1 x γ2 x , ;q q2 q2 ∞
g
g 1 − γq12x 1 − γq22x = γ1 x γ2 x , ; q q2 q2 ∞
,
γ1 x γ2 x q , q ;q ∞
which clearly vanishes for x → ±∞ since γ1 γ2 = 0. Hence we have for q2 < |γ1 | < q, / R) by using q2 < |γ2 | < q and γ1 γ2 > 0 (if γ1 , γ2 ∈ R), or for γ2 = γ1 (if γ1 , γ2 ∈ (1.15.13) γ1 γ2 q3 ∞ , − ; q q, −q, −1, − 2 γ1 γ2 1 q ∞ dq x = (1 − q) > 0. d0 := γ1 γ1 q2 γ2 q2 q2 γ2 q2 −∞ γ1 x , γ2 x ; q , − , , − , , − , , − ; q q q q q γ1 γ1 q q γ2 γ2 ∞
∞
Further we have by using e = γ1 γ2 g dn =
1 −2n+3 q (1 − qn ), γ1 γ2
n = 1, 2, 3, . . . ,
which implies that n
∏ dk =
k=1
1 γ1 γ2
n
q−n(n−2) (q; q)n ,
This leads to the orthogonality relation
n = 1, 2, 3, . . . .
10.6 Orthogonality Relations
∞ −∞
1
315
(V ) (V ) ym (x; q)yn (x; q) dq x
γ1 x γ2 x q , q ;q ∞
= (1 − q)
q, −q, −1, − γq1 γ22 , − γq1 γ2 ; q 3
∞ γ1 γ1 q2 γ2 q2 q2 γ2 q2 q , − q , γ1 , − γ1 , q , − q , γ2 , − γ2 ; q ∞
1 γ1 γ2
n
q−n(n−2) (q; q)n δmn
for q2 < |γ1 | < q, q2 < |γ2 | < q, γ1 γ2 > 0 (if γ1 , γ2 ∈ R), or for γ2 = γ1 (if γ1 , γ2 ∈ / R) and m, n = 0, 1, 2, . . .. The special case e = q2 , f = 0 and g = 1, which implies that γ1 = iq and γ2 = −iq, leads to the orthogonality relation ∞
1 ym (x; q)yn (x; q) dq x (ix, −ix; q)∞ −∞ 2 (q, −q, −1, −1, −q; q)∞ q−n (q; q)n δmn , = (1 − q) (i, −i, −iq, iq, −i, i, iq, −iq; q)∞
m, n = 0, 1, 2, . . .
for the discrete q-Hermite II polynomials. Case VI. g = 0, α = 0 = α and β = 0 respectively β = 0. In section 10.4 we have seen that it is possible to have positive-definite orthogonality for an infinite system of polynomials in four different cases and for a finite system of polynomials in six different cases. Here we will only treat one infinite and one finite case. Case VIa1/2. 0 < q < 1, f 2 < eg or f 2 ≥ eg with
γ1 g γ2 g > −1 and > −1. We use β β
the weight function − βgx ; q ∞ , w(V I) (x; q) = γ1 x γ2 x q , q ;q
0 < |q| < 1.
∞
Then we have
w(V I) (q−1 x; q)ϕ (q−2 x) =
− βgqx ; q
∞ · eq−4 x2 + 2 f q−2 x + g
γ1 x γ2 x , ;q q2 q2 ∞ − βgqx ; q ∞
γ x γ2 x · g 1 − 12 1− 2 γ1 x γ2 x q q , ;q q2 q2 ∞ − βgqx ; q ∞ · g, = γ1 x γ2 x , ; q q q
=
∞
316
10 Orthogonal Polynomial Solutions of q-Difference Equations
which vanishes for x → ∞ since γ1 γ2 = 0. Since β = 0 it also vanishes for x = −gq/β . g Hence we have for > 0, q2 < |γ1 | < q, q2 < |γ2 | < q and γ1 γ2 > 0 (if γ1 γ2 ∈ R), or β g / R) by using (1.15.12) for > 0 and γ2 = γ1 (if γ1 , γ2 ∈ β 2 ∞ − βgx ; q q, − gq , − βg , − γ1βγq2 g , − γβ1 γq2 g ; q β ∞ dq x = (1 − q) ∞ > 0. d0 := gq γ1 x γ2 x γ1 g γ2 g γ1 q2 γ2 q2 −β − β , − β , q , γ1 , q , γ2 ; q q , q ;q ∞
∞
Further we have by using e = γ1 γ2 g dn =
β γ1 γ2 g
2
γ1 gqn−1 γ2 gqn−1 1+ , q−4n+5 (1 − qn ) 1 + β β
n = 1, 2, 3, . . . ,
which implies that n
∏ dk =
k=1
β γ1 γ2 g
2n q
−n(2n−3)
γ1 g γ2 g q, − ,− ;q β β
,
n = 1, 2, 3, . . . .
n
This leads to the orthogonality relation ∞ − βgx ; q (V I) (V I) ∞ ym (x; q)yn (x; q) dq x gq γ x γ x 1 2 −β q , q ;q ∞ β γ1 γ2 g β q2 q, − gq , − , − , − ; q g γ1 γ2 g β βq ∞ = (1 − q) γ1 g γ2 g γ1 q2 γ2 q2 − β , − β , q , γ1 , q , γ2 ; q ∞ 2n β γ g γ2 g 1 −n(2n−3) q, − × q ,− ; q δmn , γ1 γ2 g β β n
m, n = 0, 1, 2, . . .
g g > 0, q2 < |γ1 | < q, q2 < |γ2 | < q and γ1 γ2 > 0 (if γ1 , γ2 ∈ R), or for > 0 and β β γ2 = γ1 (if γ1 , γ2 ∈ / R).
for
Case VIb5. 0 < q < 1 and the weight function
γ1 g γ2 g γ2 g N−1 γ2 g N ≤ < −1 with q < −1 ≤ q . We use β β β β γ1 γ2 , q ;q q ν. w(V I) (xν ; q) = β − g ;q ν
Then we have
10.6 Orthogonality Relations
317
−1
−2
(q xν ; q)ϕ (q xν ) =
(V I)
w
=
γ1 γ2 q , q ; q ν −1 − βg ; q ν
· eq2ν −4 + 2 f qν −2 + g
γ1 γ2 q , q ; q ν −1 − βg ; q ν −1
=
· g 1 − γ1 qν −2 1 − γ2 qν −2
γ1 γ2 q , q ;q ν − βg ; q ν −1
· g,
which vanishes for ν = 0 if we have by using (1.8.6) 1 β β = − ;q = 1+ =0 β g q g q 1 − g ;q
β = −g q.
=⇒
−1
γ2 = q−N . Hence we take γ2 = q−N+1 and obtain by q using (1.11.5) with xν = qν for γ1 > 0 γ1 −N N ,q ;q N N q γ1 ν ν q = > 0. d0 := ∑ w(V I) (xν ; q)xν = ∑ (q; q)ν q ν =0 ν =0
It also vanishes for ν = N + 1 if
Further we have N 2 q q−4n+5 (1 − qn ) 1 − γ1 qn−2 1 − qn−N−1 , dn = γ1
n = 1, 2, 3, . . . ,
which implies that n
∏ dk =
k=1
qN γ1
2n q
−n(2n−3)
γ1 −N q, , q ; q , q n
This leads to the orthogonality relation γ1 −N , q ; q N q (V I) (V I) ∑ (q; q)ν ν qν ym (qν ; q)yn (qν ; q) ν =0 N N 2n q γ1 γ1 q−n(2n−3) q, , q−N ; q δmn , = q γ1 q n for γ1 > 0.
n = 1, 2, 3, . . . .
m, n = 0, 1, 2, . . . , N
318
10 Orthogonal Polynomial Solutions of q-Difference Equations
Case VII. g = 0 and α = 0 respectively α = 0. In section 10.4 we have seen that it is possible to have positive-definite orthogonality for an infinite system of polynomials in three different cases and for a finite system of polynomials in eight different cases. Here we will only treat two infinite cases. Case VIIa1. 0 < q < 1, e < 1, δ1 , δ2 ∈ R and 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 < 0,
n = 1, 2, 3, . . . .
We use the weight function
w(V II) (x; q) =
Then we have
x x δ1 , δ2 ; q ∞ , γ1 x γ2 x q , q ;q ∞
w(V II) (q−1 x; q)ϕ (q−2 x) =
0 < |q| < 1.
x x δ1 q , δ2 q ; q ∞ γ1 x γ2 x , ; q 2 2 q q ∞
· eq−4 x2 + 2 f q−2 x + g
x , ; q δ1 q δ2 q γ1 x γ2 x ∞ ·g 1− 2 1− 2 = γ1 x γ2 x q q , ; q 2 2 q q ∞ x x δ1 q , δ2 q ; q ∞ · g, = γ1 x γ2 x q , q ;q
x
∞
which clearly vanishes for both x = δ1 q and x = δ2 q. Hence we have for δ1 < δ2 , δ2 q δ1 q < 1, < 1, γ1 δ1 < 1, γ1 δ2 < 1, γ2 δ1 < 1 and γ2 δ2 < 1 by using (1.15.11) δ1 δ2 δ2 q δ1 q x x δ2 q q, , ; q , , γ γ δ δ ; q 1 2 1 2 δ δ δ1 δ2 ∞ 1 2 ∞ dq x = (δ2 − δ1 )q(1 − q) > 0. d0 := γ1 x γ2 x ( γ δ , γ δ , γ δ , γ δ ; q) δ1 q 1 1 1 2 2 1 2 2 ∞ , ; q q q ∞
Further we have for δ1 δ2 = g < 0 by using e = γ1 γ2 δ1 δ2 , (10.4.1), (10.4.2) and (10.4.3) dn = −δ1 δ2 qn+1 (1 − qn ) ×
1 − γ1 γ2 δ1 δ2 qn−2 2n−3 (1 − γ1 γ2 δ1 δ2 q )(1 − γ1 γ2 δ1 δ2 q2n−2 )2 (1 − γ1 γ2 δ1 δ2 q2n−1 ) × 1 − γ1 δ1 qn−1 1 − γ1 δ2 qn−1 1 − γ2 δ1 qn−1 1 − γ2 δ2 qn−1
for n = 1, 2, 3, . . ., which implies that
10.6 Orthogonality Relations n
∏ dk = (−δ1 δ2 )n qn(n+3)/2
k=1
319
(q, γ1 γ2 δ1 δ2 q−1 ; q)n (γ1 δ1 , γ1 δ2 , γ2 δ1 , γ2 δ2 ; q)n (γ1 γ2 δ1 δ2 q−1 , γ1 γ2 δ1 δ2 ; q)2n
for n = 1, 2, 3, . . .. This leads to the orthogonality relation x x δ2 q δ1 , δ2 ; q ∞ (V II) ym (x; q)yn(V II) (x; q) dq x γ1 x γ2 x δ1 q q , q ;q ∞ q, δδ2 q , δδ1 q , γ1 γ2 δ1 δ2 ; q 1 2 ∞ = (δ2 − δ1 )q(1 − q) (−δ1 δ2 )n qn(n+3)/2 (γ1 δ1 , γ1 δ2 , γ2 δ1 , γ2 δ2 ; q)∞ × for δ1 < 0 < δ2 , m, n = 0, 1, 2, . . ..
(q, γ1 γ2 δ1 δ2 q−1 ; q)n (γ1 δ1 , γ1 δ2 , γ2 δ1 , γ2 δ2 ; q)n δmn (γ1 γ2 δ1 δ2 q−1 , γ1 γ2 δ1 δ2 ; q)2n
δ2 q δ1 q < 1, < 1, γ1 δ1 < 1, γ1 δ2 < 1, γ2 δ1 < 1, γ2 δ2 < 1 and δ1 δ2
The special case γ1 = q, γ2 = bq/c, δ1 = c and δ2 = a leads to the orthogonality relation (for 0 < aq < 1, 0 ≤ bq < 1 and c < 0) aq x x , ;q a bxc ∞ ym (x; q)yn (x; q) dq x cq x, c ; q ∞ q, ac−1 q, a−1 cq, abq2 ; q ∞ (−ac)n qn(n+3)/2 = (a − c)q(1 − q) (aq, bq, cq, abc−1 q; q)∞ (q, abq; q)n aq, bq, cq, abc−1 q; q n δmn , m, n = 0, 1, 2, . . . × (abq, abq2 ; q)2n for the big q-Jacobi polynomials. The special case γ1 = q, γ2 = 0, δ1 = b and δ2 = a leads to the orthogonality relation (for 0 < aq < 1 and b < 0) aq x x a, b;q ∞ ym (x; q)yn (x; q) dq x (x; q)∞ bq q, ab−1 q, a−1 bq; q ∞ = (a − b)q(1 − q) (aq, bq; q)∞ × (−ab)n qn(n+3)/2 (q; q)n (aq, bq; q)n δmn ,
m, n = 0, 1, 2, . . .
for the big q-Laguerre polynomials. The special case γ1 = γ2 = 0, δ1 = a/q and δ2 = 1/q leads to the orthogonality relation (for a < 0)
320
10 Orthogonal Polynomial Solutions of q-Difference Equations
1
qx, a
qx ; q ym (x; q)yn (x; q) dq x a ∞ n
= (1 − a)(1 − q)(q, aq, a−1 q; q)∞ (−a)n q(2) (q; q)n δmn ,
m, n = 0, 1, 2, . . .
for the Al-Salam-Carlitz I polynomials. The special case γ1 = γ2 = 0, δ1 = −1/q and δ2 = 1/q leads to the orthogonality relation 1 −1
(qx, −qx; q)∞ ym (x; q)yn (x; q) dq x n
= 2(1 − q)(q, −q, −q; q)∞ q(2) (q; q)n δmn ,
m, n = 0, 1, 2, . . .
for the discrete q-Hermite I polynomials. Case VIIa2. q > 1, e ≤ 0, δ1 , δ2 ∈ R or δ2 = δ1 and 2 f qn−1 + δ1 eq2n−2 + δ2 2 f qn−1 + δ1 + δ2 eq2n−2 > 0,
n = 1, 2, 3, . . . .
We write q = p−1 , which implies that 0 < p < 1, and use the weight function 2 γ1 p x, γ2 p2 x; p ∞ (V II) w (x; p) = , 0 < |p| < 1. px px , ; p δ δ 1
2
∞
Then we have (V II)
w
3 γ1 p x, γ2 p3 x; p ∞ (px; p)ϕ (p x) = 2 2 p x p x , ;p δ δ 31 2 3 ∞ γ1 p x, γ2 p x; p = 2 2 ∞ p x p x , ;p δ δ 21 2 2 ∞ γ1 p x, γ2 p x; p = 2 2 ∞ p x p x , ;p δ δ 2
1
2
· ep4 x2 + 2 f p2 x + g · g 1 − γ1 p2 x 1 − γ2 p2 x · g,
∞
which clearly vanishes for x → ±∞ if γ1 = γ2 = 0, which implies that e = f = 0. Then we have for p < |δ1 | < 1, p < |δ2 | < 1 and δ1 δ2 = g > 0 by using (1.15.13) δ1 δ2 p2 ∞ , − ; p p, −p, −1, − p δ1 δ2 1 ∞ d p x = (1 − p) d0 := > 0. px px p p p p , −δ ; p −∞ , ; p , − , δ , − δ , , − , δ 1 δ 2 δ δ δ δ 1 δ 2 1
2
∞
1
Further we have for γ1 = γ2 = 0 and q = p−1
1
2
2
∞
10.6 Orthogonality Relations
321
dn = −δ1 δ2 qn+1 (1 − qn ) = δ1 δ2 p−2n−1 (1 − pn ),
n = 1, 2, 3, . . . ,
which implies that n
∏ dk = (δ1 δ2 )n p−n(n+2) (p; p)n ,
n = 1, 2, 3, . . . .
k=1
This leads to the orthogonality relation ∞ −∞
1
II) (V II) y(V (x; p)yn (x; p) d p x m
px px , ;p δ1 δ2 ∞
δ1 δ2 p ;p ∞ 1 2 (δ1 δ2 )n p−n(n+2) (p; p)n δmn = (1 − p) p p p p , − δ , δ1 , −δ1 , δ , − δ , δ2 , −δ2 ; p δ1 1 2 2 ∞ 2
p, −p, −1, − δp δ , −
for p < |δ1 | < 1, p < |δ2 | < 1, δ1 δ2 = g > 0 and m, n = 0, 1, 2, . . .. The special case δ1 = −ip and δ2 = ip, which implies that δ1 δ2 = p2 > 0, leads to the orthogonality relation ∞
1 ym (x; p)yn (x; p) d p x −∞ (ix, −ix; p)∞ 2 (p, −p, −1, −1, −p; p)∞ p−n (p; p)n δmn , = (1 − p) (i, −i, −ip, ip, −i, i, ip, −ip; p)∞
m, n = 0, 1, 2, . . .
for the discrete q-Hermite II polynomials. Alternatively, we use the weight function w(V II) (xν ; p) =
(γ1 p2−ν , γ2 p2−ν ; p)ν 1−ν 1−ν . p , pδ ; p δ 1
2
ν
For γ1 = γ2 = 0, which implies that e = f = 0, we have by using (1.8.14) w
(V II)
ν (δ1 δ2 )ν p2( 2 ) (xν ; p) = 1−ν 1−ν = . p δ1 , δ2 ; p ν , pδ ; p δ
1
1
2
ν
Then we have w(V II) (pxν ; p)ϕ (p2 xν ) =
ν −1 (δ1 δ2 )ν −1 p2( 2 ) · g, δ1 , δ2 ; p ν −1
322
10 Orthogonal Polynomial Solutions of q-Difference Equations
which vanishes for ν = 0 if δ1 = p or δ2 = p. Hence we have by using (1.11.8) with δ2 = p and xν = p−ν for 0 < δ1 < 1 ∞
d0 :=
∑w
(V II)
ν =0
ν (δ1 )ν p2(2 ) 1 (xν ; p)xν = ∑ = > 0. , p; p ( δ ; δ 1 p)∞ ν =0 1 ν
∞
Further we have for γ1 = γ2 = 0, δ2 = p, q = p−1 dn = −δ1 δ2 qn+1 (1 − qn ) = δ1 p−2n (1 − pn ),
n = 1, 2, 3, . . . ,
which implies that n
∏ dk = (δ1 )n p−n(n+1) (p; p)n ,
n = 1, 2, 3, . . . .
k=1
This leads to the orthogonality relation ν (δ1 )ν p2(2 ) (V II) −ν 1 (V II) ∑ δ , p; p ym (p ; p)yn (p−ν ; p) = (δ ; p)∞ (δ1 )n p−n(n+1)(p; p)n δmn 1 ν =0 1 ν
∞
for 0 < δ1 < 1 and m, n = 0, 1, 2, . . .. The special case δ1 = ap leads to the orthogonality relation (for 0 < ap < 1) ∞
ν
2 1 (ap)ν p2(2 ) ∑ (p, ap; p) ym (p−ν ; p)yn (p−ν ; p) = (ap; p)∞ an p−n (p; p)n δmn ν ν =0
with m, n = 0, 1, 2, . . ., for the Al-Salam-Carlitz II polynomials. We remark that we cannot take δ1 = −p in order to obtain an orthogonality relation for the discrete q-Hermite II polynomials, since then we have δ1 δ2 = −p2 < 0.
Chapter 11
Orthogonal Polynomial Solutions in q−x of q-Difference Equations Classical q-Orthogonal Polynomials II
11.1 Polynomial Solutions in q−x of q-Difference Equations In the case that ω = 0, q > 0 and q = 1 we might replace q by q−1 in (3.2.1) and then replace x by q−x . Then we have f (q−x−1 ) − f (q−x ) f (q−x−1 ) − f (q−x ) , = D1/q f (q−x ) = −x−1 −x q −q q−x−1 (1 − q)
q > 0,
q = 1.
In this case the eigenvalue problem reads (cf. (10.1.1)) 2 (eq−2x + 2 f q−x + g) D1/q yn (q−x ) + (2ε q−x + γ ) D1/q yn (q−x ) =
q(qn − 1) eq(1 − q−n+1 ) − 2ε (1 − q) yn (q−x−1 ) 2 (q − 1)
(11.1.1)
for n = 0, 1, 2, . . .. This can also be written in the symmetric form A∗ (x)yn (q−x−1 ) − {A∗ (x) + B∗ (x)} yn (q−x ) + B∗ (x)yn (q−x+1 ) = (qn − 1) eq(1 − q−n+1 ) − 2ε (1 − q) yn (q−x )
(11.1.2)
for n = 0, 1, 2, . . ., with A∗ (x) = eq2 + 2 f qx+1 + gq2x and
B∗ (x) = eq − 2ε (1 − q) + {2 f q − γ (1 − q)} qx−1 + gq2x−1 .
The regularity condition (2.3.3) implies that ε = 0.
R. Koekoek et al., Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monographs in Mathematics, DOI 10.1007/978-3-642-05014-5 11, © Springer-Verlag Berlin Heidelberg 2010
323
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
324
It will turn out to be convenient to introduce (cf. (10.1.3))
α ∗ := eq − 2ε (1 − q) and β ∗ := 2 f q − γ (1 − q).
(11.1.3)
Then we have A∗ (x) = eq2 + 2 f qx+1 + gq2x
B∗ (x) = α ∗ + β ∗ qx−1 + gq2x−1 ,
and
(11.1.4)
where e, f , g, α ∗ , β ∗ ∈ C. In view of the homogeneity, one of the coefficients can be chosen arbitrarily. In this chapter, without loss of generality we may assume that α ∗ ∈ R. In section 11.6 we will see that this implies that all coefficients e, f , g, α ∗ and β ∗ must be real.
11.2 The Basic Hypergeometric Representation We try to find solutions of the form yn (q−x ) =
n
∑ an,k
k=0
(−c−1 q−x ; q)k k c (1 − q)k , (q; q)k
an,n = 0,
n = 0, 1, 2, . . . (11.2.1)
for (11.1.2) with c = 0. Substitution of (11.2.1) into (11.1.2) leads to a three-term recurrence relation (cf. (2.4.4)) for the coefficients {an,k }nk=0 . If c satisfies the relation (cf. (2.4.5)) α ∗ qc2 − β ∗ c + g = 0 (11.2.2) the recurrence relation reduces to the two-term recurrence relation (cf. (2.4.7)) [n − k] α ∗ − eq−n−k+2 can,k = q−k ec2 q−k+1 − 2 f c + gqk−1 an,k+1 (11.2.3) for k = n − 1, n − 2, n − 3, . . . , 0 and n = 1, 2, 3, . . . for an,k . In this case the regularity condition (2.3.3) implies that
α ∗ − eq−n+1 = 0,
n = 0, 1, 2, . . . .
(11.2.4)
This implies that all coefficients an,k are uniquely determined in terms of an,n (= 0) provided that c = 0. In fact we have
n−k ec2 q−n+i+1 − 2 f c + gqn−i−1 an,n . an,k = ∏ [i] (α ∗ qn−i − eq−n+2 ) c i=1 In order to have monic polynomials we choose n
an,n = [n]! q−(2) =
(q; q)n −(n) q 2 . (1 − q)n
11.2 The Basic Hypergeometric Representation
325
Hence, by using (10.2.5) we obtain
n−k n k (q−n ; q)k ec2 q−n+i+1 − 2 f c + gqn−i−1 an,k = ∏ (−1)k q−(2)−(2)+nk . ∗ n−i −n+2 k n−k α q − eq (1 − q) c i=1 If e = 0 we have α ∗ = −2ε (1 − q) = 0 and n−k
∏
α ∗ qn−i − eq−n+2 = (α ∗ )n−k q(n−k)(n+k−1)/2 .
i=1
If e = 0 we have n−k
∏
α ∗ qn−2 k q ;q e n−k ∗ α n−2 n−k e q ; q n α∗ . = −eq−n+2 n−2 ; q e q k
n−k α ∗ qn−i − eq−n+2 = −eq−n+2
i=1
Case I. If e = f = 0 and g = 0 we have α ∗ = −2ε (1 − q) = 0 and n−k
∏
ec2 q−n+i+1 − 2 f c + gqn−i−1 = gn−k q(n−k)(n+k−3)/2 .
i=1
Hence for e = f = 0 and g = 0 the monic polynomials can be written as
k (q−n ; q)k (−c−1 q−x ; q)k −(k) α ∗ c2 qn+1 2 q − ∑ (q; q)k g k=0
n
−n −1 −x ∗ 2 n+1 n q , −c q g α c q ; q, = q−(2) 2 φ0 ∗ α cq − g
yn (q−x ; q) = (I)
g α ∗ cq
n
n
q−(2)
n
for n = 0, 1, 2, . . .. The q-polynomials in this class have, besides q, one free parameter α ∗ /g (g = 0) or g/α ∗ (α ∗ = 0). Special cases of q-polynomials in this class are the Al-Salam-Carlitz I and II polynomials with one free parameter and the discrete q-Hermite I and II polynomials with no free parameters. Case II. If e = 0 and f = 0 we have α ∗ = −2ε (1 − q) = 0 and by using (1.8.12)
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
326 n−k
∏ i=1
n−k g n−i−1 ec2 q−n+i+1 − 2 f c + gqn−i−1 = (−2 f c)n−k ∏ 1 − q 2fc i=1
g k n−k q ;q = (−2 f c) 2 f cq n−k g 2 f cq ; q n . = (−2 f c)n−k g 2 f cq ; q k
Hence for e = 0 and f = 0 the monic polynomials can be written as
n g 2f n (II) −x yn (q ; q) = − ∗ ; q q−2(2) α 2 f cq n
n −n (q ; q)k (−c−1 q−x ; q)k α ∗ cqn k ×∑ g 2f k=0 2 f cq ; q k (q; q)k
n g α ∗ cqn 2f q−n , −c−1 q−x ; q 2 φ1 = − ∗ n−1 ; q, g α q 2 f cq 2f n 2 f cq for n = 0, 1, 2, . . .. The q-polynomials in this class have, besides q, two free parameters α ∗ / f and g/ f ( f = 0) or f /α ∗ and g/α ∗ (α ∗ = 0). Special cases of q-polynomials in this class are the q-Meixner polynomials and the quantum qKrawtchouk polynomials with two free parameters each and the q-Charlier polynomials with only one free parameter. Case III. If e = 0 we have n−k
∏
ec2 q−n+i+1 − 2 f c + gqn−i−1
i=1
n−k 2f g = ∏ ec2 q−n+i+1 1 − qn−i−1 + 2 q2n−2i−2 ec ec i=1 n−k −(n−k)(n+k−3)/2 n−k = ec2 q ∏ 1 + c−1 ξ1 qn−i−1 1 + c−1 ξ2 qn−i−1 , i=1
where ξ1 ξ2 = g/e and ξ1 + ξ2 = −2 f /e. This implies that for f 2 ≥ eg − f − f 2 − eg − f + f 2 − eg and ξ2 = . ξ1 = e e Note that for g = 0 we have that ξ1 = γ2−1 and ξ2 = γ1−1 with γ1 γ2 = e/g and γ1 + γ2 = −2 f /g and therefore for f 2 ≥ eg
11.2 The Basic Hypergeometric Representation
γ1 =
−f −
f 2 − eg
g
and γ2 =
327
−f +
f 2 − eg
g
as in the previous chapter. In the case that f 2 < eg we have both γ2 = γ1 and ξ2 = ξ1 . Hence for e = 0 the monic polynomials can be written as (III)
yn
n (−c)n (q−x ; q) = α ∗ n−2 ∑ −c−1 ξ1 qk−1 , −c−1 ξ2 qk−1 ; q n−k ; q n k=0 e q ∗
−n −1 −x α n−2 (q ; q)k (−c q ; q)k k q ;q × q e (q; q)k k −1 −1 −c ξ1 q , −c−1 ξ2 q−1 ; q n α∗ = (−c)n qn−2 ; q n
e ∗ q−n , −c−1 q−x , αe qn−2 × 3 φ2 ; q, q −c−1 ξ1 q−1 , −c−1 ξ2 q−1
for n = 0, 1, 2, . . .. The q-polynomials in this class have, besides q, three free parameters ξ1 , ξ2 and α ∗ /e (e = 0). Special cases of q-polynomials in this class are the q-Hahn polynomials with three free parameters and the q-Krawtchouk and the affine q-Krawtchouk polynomials with two free parameters each. Now we have:
Theorem 11.1. All orthogonal polynomial solutions yn (q−x ) of the qdifference equation (11.1.2) 2 eq + 2 f qx+1 + gq2x yn (q−x−1 ) − eq2 + 2 f qx+1 + gq2x + α ∗ + β ∗ qx−1 + gq2x−1 yn (q−x ) + α ∗ + β ∗ qx−1 + gq2x−1 yn (q−x+1 ) = (qn − 1) α ∗ − eq−n+2 yn (q−x ), n = 0, 1, 2, . . . , where α ∗ := eq − 2ε (1 − q) and β ∗ := 2 f q − γ (1 − q), can be divided into three different cases: Case I. e = f = 0 and g = 0 Case II. e = 0 and f = 0 Case III. e = 0.
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
328
11.3 The Three-Term Recurrence Relation Analogous to section 10.3 we obtain for the monic polynomial solutions of (11.1.1) the three-term recurrence relation yn+1 (q−x ) = (q−x − cn )yn (q−x ) − dn yn−1 (q−x ),
n = 1, 2, 3, . . .
(11.3.1)
with initial values y0 (q−x ) = 1 and y1 (q−x ) = q−x − c0 where c0 = −γ /2ε q. If we replace q by q−1 we find by using (10.1.3) and (11.1.3) that
α = e + 2ε (1 − q)
−→
e + 2ε (1 − q−1 ) = (eq − 2ε (1 − q))q−1 = α ∗ q−1
−→
2 f + γ (1 − q−1 ) = (2 f q − γ (1 − q))q−1 = β ∗ q−1 .
and
β = 2 f + γ (1 − q)
Further we obtain from (10.3.2) and (10.3.3) that c0 = −(2 f q − β ∗ )/(eq − α ∗ )q, 2 f α ∗ q−1 − α ∗ q−1 (1 + q−1 )q−n + eq−2n+1 cn = − qn (α ∗ q−1 − eq−2n+2 ) (α ∗ q−1 − eq−2n ) β ∗ q−2 α ∗ q−1 − e(1 + q−1 )q−n+2 + eq−2n+1 − qn (α ∗ q−1 − eq−2n+2 ) (α ∗ q−1 − eq−2n ) ∗ 2 f q α q − α ∗ (1 + q)q−n + eq−2n+3 = − n+1 ∗ q (α − eq−2n+3 ) (α ∗ − eq−2n+1 ) β ∗ α ∗ − e(1 + q)q−n+2 + eq−2n+2 (11.3.2) − n+1 ∗ q (α − eq−2n+3 ) (α ∗ − eq−2n+1 ) for n = 1, 2, 3, . . . and dn =
=
q−n−1 (1 − q−n ) α ∗ q−1 − eq−n+2 (α ∗ q−1 − eq−2n+3 ) (α ∗ q−1 − eq−2n+2 )2 (α ∗ q−1 − eq−2n+1 ) × q−n+1 (β ∗ q−1 − 2 f q−n+1 )(2 f α ∗ q−1 − eβ ∗ q−1 q−n+1 ) −g(α ∗ q−1 − eq−2n+2 )2 q−n (1 − q−n ) α ∗ − eq−n+3 (α ∗ − eq−2n+4 ) (α ∗ − eq−2n+3 )2 (α ∗ − eq−2n+2 ) × q−n+1 β ∗ − 2 f q−n+2 2 f α ∗ − eβ ∗ q−n+1 2 −g α ∗ − eq−2n+3
for n = 1, 2, 3, . . ..
(11.3.3)
11.4 Orthogonality and the Self-Adjoint Operator Equation
329
11.4 Orthogonality and the Self-Adjoint Operator Equation In this section we will use the following form of Hahn’s q-operator (cf. (3.2.1)) D1/q f (q−x ) := A1/q,0 f (q−x ) =
f (q−x−1 ) − f (q−x ) , q−x−1 − q−x
q > 0,
q = 1,
(11.4.1)
where f is a complex-valued function in q−x whose domain contains both q−x and q−x−1 for each x ∈ R. For two such functions f1 and f2 , the product rule (3.2.2) reads D1/q ( f1 f2 ) (q−x ) = D1/q f1 (q−x ) f2 (q−x ) + f1 (q−x−1 ) D1/q f2 (q−x ). (11.4.2) Analogous to (3.2.3) and (3.2.4) we now define S1/q f (q−x ) = f (q−x−1 ) −1 and f(q−x ) = S1/q f (q−x ) = f (q−x+1 ).
(11.4.3)
As in section 3.2 2 S1/q w (q−x )ϕ (q−x ) D1/q yn (q−x ) + S1/q w (q−x )ψ (q−x ) D1/q yn (q−x ) = λn S1/q w (q−x ) S1/q yn (q−x ) where λn = q(qn − 1) eq(1 − q−n+1 ) − 2ε (1 − q) /(q − 1)2 ,
ϕ (q−x ) = eq−2x + 2 f q−x + g and ψ (q−x ) = 2ε q−x + γ leads to the self-adjoint form D1/q wϕD1/q yn (q−x ) = λn S1/q w (q−x ) S1/q yn (q−x )
(11.4.4)
if the Pearson operator equation D1/q (wϕ) (q−x ) = S1/q w (q−x )ψ (q−x )
(11.4.5)
holds. By using the product rule (11.4.2), we find that w(q−x−1 ) − w(q−x ) D1/q (wϕ) (q−x ) = ϕ(q−x ) q−x−1 − q−x ϕ(q−x−1 ) − ϕ(q−x ) + w(q−x−1 ) q−x−1 − q−x −x−1 −x w(q )ϕ (q ) − w(q−x )ϕ(q−x ) = . q−x−1 − q−x
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
330
Note that the right-hand side of (11.4.5) can be written in the form w(q−x−1 )ψ (q−x ). Hence (11.4.5) becomes (11.4.6) w(q−x )ϕ(q−x ) = w(q−x−1 ) ϕ (q−x ) − ψ (q−x )(q−x−1 − q−x ) . Further we have from (2.2.13) with ω = 0 q ex2 /q2 + 2 f x/q + g ex2 + 2 f qx + gq2 qϕ (x/q) A(x) C(x) = = = = , q(q − 1)2 x2 (q − 1)2 x2 (q − 1)2 x2 q(q − 1)2 x2 where A(x) = ex2 + 2 f qx + gq2 . If we replace q by q−1 and then x by q−x , we obtain that q2x+1 q q 2 x+1 2x (eq + 2 f q + gq ) = ϕ (q−x+1 ) = A∗ (x). (1 − q)2 (1 − q)2 (1 − q)2 Moreover, we also find from (2.2.13) with ω = 0 that D(qx) = qC(qx) −
1 ψ (x) {ϕ (x) + (1 − q)xψ (x)} . = (q − 1)x (q − 1)2 x2
If we replace q by q−1 and then x by q−x , the latter becomes q2x+2 ϕ (q−x ) + (1 − q−1 )q−x ψ (q−x ) 2 (1 − q) q2x+2 ϕ (q−x ) − (1 − q)q−x−1 ψ (q−x ) . = (1 − q)2 Note that B∗ (x) = eq + 2 f qx + gq2x−1 − (1 − q)(2ε + γ qx−1 ) = q2x−1 ϕ (q−x+1 ) − (1 − q)qx−1 ψ (q−x+1 ). Hence
qB∗ (x + 1) = q2x+2 ϕ (q−x ) − (1 − q)q−x−1 ψ (q−x ) .
This implies that q q2x+2 ϕ (q−x ) − (1 − q)q−x−1 ψ (q−x ) = B∗ (x + 1). (1 − q)2 (1 − q)2 Hence the Pearson equation (11.4.5) is equivalent to (11.4.7) qw(q−x )A∗ (x) = w(q−x−1 )B∗ (x + 1). −x Now we multiply (11.4.4) by S1/q ym (q ) and subtract from the resulting −1 to the equation the same equation with m and n exchanged. Then we apply S1/q
11.4 Orthogonality and the Self-Adjoint Operator Equation
331
result and use the commutation relation (cf. (2.5.3)) −1 −1 D1/q = q−1 D1/q S1/q S1/q
(11.4.8)
to find that (λn − λm )w(q−x )ym (q−x )yn (q−x ) −1 wϕD1/q yn (q−x )ym (q−x ) = q−1 D1/q S1/q −1 wϕD1/q ym (q−x )yn (q−x ). − q−1 D1/q S1/q As before this leads to two kinds of orthogonality. A. Consider the interval (a, b) on the real line and the q-integration by parts formula (cf. (3.2.10)) b
a
D1/q f1 (q−x ) f2 (q−x ) dq x b
= f1 (q−x ) f2 (q−x )
a
−
b a
S1/q f1 (q−x ) D1/q f2 (q−x ) dq x
(11.4.9)
for arbitrary complex-valued functions f1 and f2 which are q-integrable on the interval (a, b). Then we have b
w(q−x )ym (q−x )yn (q−x ) dq x ( λn − λm ) a −1 −1 D1/q yn (q−x )ym (q−x ) = q−1 S1/q (wϕ) (q−x ) S1/q b −1 D1/q ym (q−x )yn (q−x ) . − S1/q a
In view of the regularity condition (11.2.4), we have λm = λn for m = n. So we have Theorem 11.2. Let {yn }∞ n=0 denote the polynomial solutions of the eigenvalue problem (11.1.1), let the regularity condition (11.2.4) hold for n = 0, 1, 2, . . . and let w denote a complex valued function which is q-integrable on the interval (a, b) on the real line and which satisfies the Pearson operator equation (11.4.5). Then we have the orthogonality relation b a
w(q−x )ym (q−x )yn (q−x ) dq x = 0,
m = n,
m, n ∈ {0, 1, 2, . . .}
with weight function w if the boundary conditions −1 −1 S1/q (wϕ) (q−a ) = 0 and S1/q (wϕ) (q−b ) = 0 hold. Here a continuous extension of wϕ might be necessary.
(11.4.10)
(11.4.11)
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
332
If the necessary convergence conditions hold, the integral in (11.4.10) can also be taken over (a, ∞), (−∞, b) or (−∞, ∞) with appropriate boundary conditions. B. For N ∈ {1, 2, 3, . . .} we consider the set of points xν := Aq−ν ,
A ∈ C,
ν = 0, 1, 2, . . . , N + 1.
(11.4.12)
Then we have the summation by parts formula N
∑
ν =0
D1/q f1 (xν ) f2 (xν ) q−1 (1 − q)xν
N+1 = f1 (xν ) f2 (xν ) ν =0
−
N
∑
ν =0
S1/q f1 (xν ) D1/q f2 (xν ) q−1 (1 − q)xν
(11.4.13)
for arbitrary complex-valued functions f1 and f2 in q−x whose domain contains the set of points {xν }Nν =0 . Hence we have N (λn − λm ) ∑ w(xν )ym (xν )yn (xν ) q−1 (1 − q)xν
ν =0
−1 −1 =q D1/q yn (xν )ym (xν ) S1/q (wϕ) (xν ) S1/q N+1 −1 D1/q ym (xν )yn (xν ) − S1/q . −1
ν =0
In view of the regularity condition (11.2.4), we have λm = λn for m = n. So we have Theorem 11.3. Let {yn }∞ n=0 denote the polynomial solutions of the eigenvalue problem (11.1.1), let the regularity condition (11.2.4) hold for n = 0, 1, 2, . . . and let w denote a function whose domain contains the set of points {xν }N+1 ν =0 and that satisfies the Pearson operator equation (11.4.5). Then we have the orthogonality relation N
∑ w(xν )ym (xν )yn (xν )xν = 0,
ν =0
if the boundary conditions −1 S1/q (wϕ) (x0 ) = 0
m = n,
and
m, n ∈ {0, 1, 2, . . . , N}
−1 S1/q (wϕ) (xN+1 ) = 0
hold. Here a continuous extension of wϕ might be necessary.
(11.4.14)
(11.4.15)
11.5 Rodrigues Formulas
333
11.5 Rodrigues Formulas We start with the self-adjoint operator equation (cf. (11.4.4)) −x −1 (q ) D1/q w S1/q ϕ D1/q yn −x −x = λn S1/q w (q ) S1/q yn (q ).
(11.5.1)
−1 We apply the operator S1/q on both sides of (11.5.1) and use (11.4.8) and the fact that λ0 = 0 to obtain −x −1 −2 −1 D1/q yn (q ) D1/q S1/q w S1/q ϕ S1/q
= q(λn − λ0 )w(q−x )yn (q−x ). This formula can be generalized to
k −k −i−1 −k k (q−x ) S1/q w D1/q ∏ S1/q ϕ S1/q D1/q yn i=1
= q(λn − λk−1 )
k−1 −k+1 −i−1 −k+1 k−1 × S1/q S1/q D1/q (q−x ) w ϕ yn ∏ S1/q i=1
for k = 1, 2, 3, . . .. This can be proved by using induction similar to the situation in section 3.4. n −x If we assume that the polynomials {yn }∞ n=0 are monic, id est D1/q yn (q ) = n q−(2) [n]!, and the regularity condition (11.2.4) holds, then we have the Rodrigues formula
n Kn n −n −k−1 D1/q (q−x ) S1/q w ∏ S1/q ϕ yn (q ) = w(q−x ) k=1 −x
(11.5.2)
for n = 1, 2, 3, . . ., where Kn =
1 q(
n
[k]
, ) ∏ λn − λn−k
n+1 2
k=1
n = 1, 2, 3, . . . .
(11.5.3)
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
334
11.6 Classification of the Positive-Definite Orthogonal Polynomial Solutions Again we will use Favard’s theorem (theorem 3.1) to conclude that there exist positive definite orthogonal polynomial solutions iff cn ∈ R for n = 0, 1, 2, . . . and dn > 0 for all n = 1, 2, 3, . . .. In section 11.3 we have obtained 2 f q α ∗ q − α ∗ (1 + q)q−n + eq−2n+3 cn = − n+1 ∗ q (α − eq−2n+3 ) (α ∗ − eq−2n+1 ) β ∗ α ∗ − e(1 + q)q−n+2 + eq−2n+2 − n+1 ∗ q (α − eq−2n+3 ) (α ∗ − eq−2n+1 ) for n = 0, 1, 2, . . . and dn =
q−n (1 − q−n ) α ∗ − eq−n+3 (α ∗ − eq−2n+4 ) (α ∗ − eq−2n+3 )2 (α ∗ − eq−2n+2 ) 2 × q−n+1 β ∗ − 2 f q−n+2 2 f α ∗ − eβ ∗ q−n+1 − g α ∗ − eq−2n+3
for n = 1, 2, 3, . . .. Now we write (1) (2) (1) (2) dn = q−n 1 − q−n Dn Dn = −q−2n (1 − qn )Dn Dn ,
n = 1, 2, 3, . . . (11.6.1)
with
α ∗ − eq−n+3
(1)
Dn =
(α ∗ − eq−2n+4 ) (α ∗ − eq−2n+3 )2 (α ∗ − eq−2n+2 )
,
n = 1, 2, 3, . . . (11.6.2)
and 2 (2) (11.6.3) Dn = q−n+1 β ∗ − 2 f q−n+2 2 f α ∗ − eβ ∗ q−n+1 − g α ∗ − eq−2n+3 for n = 1, 2, 3, . . .. Case I. e = f = 0 and g = 0. Then we have α ∗ = −2ε (1 − q) = 0 and cn = − Further we have
β∗ , α ∗ qn+1
n = 0, 1, 2, . . . .
g , n = 1, 2, 3, . . . . (11.6.4) α∗ Note that cn ∈ R for n = 0, 1, 2, . . . implies that we must have β ∗ /α ∗ ∈ R and that positive-definite orthogonality for an infinite system of polynomials occurs for g(1 − qn )/α ∗ > 0. Since α ∗ ∈ R this implies that β ∗ ∈ R and g ∈ R. Now we have: dn = q−2n (1 − qn )
11.6 Classification of the Positive-Definite Orthogonal Polynomial Solutions
Case Ia1. 0 < q < 1, e = f = 0, g = 0 and Case Ia2. q > 1, e = f = 0, g = 0 and
335
g > 0. α∗
g < 0. α∗
In this case we have no finite systems of positive-definite orthogonal polynomials. Case II. e = 0 and f = 0. Then we have α ∗ = −2ε (1 − q) = 0 and cn =
2 f (1 + q − qn+1 ) − β ∗ qn−1 , α ∗ q2n
n = 0, 1, 2, . . .
and for n = 1, 2, 3, . . . q−2n (1 − qn ) 2 f q−n+1 (β ∗ − 2 f q−n+2 ) − gα ∗ ∗ 2 (α ) β ∗ n−2 gα ∗ 2n−3 4 f 2 −4n+3 n q = q (1 − q ) 1 − + q (α ∗ )2 2f 4f2 2
2f η1 n−1 η2 g n−2 −4n+3 n q = 1− , q (1 − q ) 1 − q α∗ 2f 2f
dn = −
where
η1 η2 = α ∗
Note that we have c0 = and c1 =
(11.6.5)
and η1 q + η2 g = β ∗ .
2 f − β ∗ q−1 2fq−β∗ = α∗ α ∗q
2 f (1 + q − q2 ) − β ∗ 2 f q − β ∗ 2 f (1 − q2 ) = + . α ∗ q2 α ∗ q2 α ∗ q2
It can be shown that cn =
2 f q − β ∗ 2 f (1 + q)(1 − qn ) + , α ∗ qn+1 α ∗ q2n
n = 0, 1, 2, . . . .
Now c0 ∈ R and c1 ∈ R implies that 2 f /α ∗ ∈ R and also β ∗ /α ∗ ∈ R. Since α ∗ ∈ R this implies that we also have f ∈ R and β ∗ ∈ R. Then we must also have g ∈ R since dn ∈ R. In the case that (β ∗ )2 < 4gα ∗ q we have
β ∗ n−2 gα ∗ 2n−3 β ∗ n−2 2 4gα ∗ q − (β ∗ )2 2n−4 1− q + 2q = 1− q + q >0 2f 4f 4f 16 f 2
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
336
for all n = 1, 2, 3, . . .. This implies that dn > 0 for all n = 1, 2, 3, . . . in the case that 0 < q < 1 and (β ∗ )2 < 4gα ∗ q and that dn < 0 for all n = 1, 2, 3, . . . in the case that q > 1 and (β ∗ )2 < 4gα ∗ q. In the case that (β ∗ )2 ≥ 4gα ∗ q we have β ∗ ± (β ∗ )2 − 4gα ∗ q β ∗ ∓ (β ∗ )2 − 4gα ∗ q and η2 = . η1 = 2q 2g Note that for 0 < q < 1 we have q−4n+3 (1 − qn ) > 0 for n = 1, 2, 3, . . . and for q > 1 we have q−4n+3 (1 − qn ) < 0 for n = 1, 2, 3, . . .. For 0 < q < 1 we must have
η1 n−1 η2 g n−2 q 1− > 0, 1− q 2f 2f
n = 1, 2, 3, . . . ,
which implies that both 1−
η1 n−1 η2 g n−2 q q > 0 and 1 − > 0, 2f 2f
n = 1, 2, 3, . . . ,
η1 η2 g < 1 and < 1. And, as before, 2f 2fq
η1 η2 g n−2 q 1 − qn−1 1− >0 2f 2f
since qn → 0 for n → ∞. For n = 1 this reads this implies that
holds for all n = 1, 2, 3, . . .. For q > 1 we must have
η1 η2 g n−2 q 1 − qn−1 1− < 0, 2f 2f
n = 1, 2, 3, . . . ,
which implies that either 1− or
η1 n−1 η2 g n−2 q q < 0 and 1 − > 0, 2f 2f
n = 1, 2, 3, . . . ,
η1 n−1 η2 g n−2 q q > 0 and 1 − < 0, n = 1, 2, 3, . . . . 2f 2f η1 η2 g η1 η2 g > 1 and < 0, or < 0 and > 1. This implies that we must either have 2f 2fq 2f 2fq 1−
11.6 Classification of the Positive-Definite Orthogonal Polynomial Solutions
337
Hence we have positive-definite orthogonality for an infinite system of polynomials in the following four cases: Case IIa1. 0 < q < 1, e = 0, f = 0, (β ∗ )2 < 4gα ∗ q. Case IIa2. 0 < q < 1, e = 0, f = 0, (β ∗ )2 ≥ 4gα ∗ q,
η1 η2 g < 1 and < 1. 2f 2fq
Case IIa3. q > 1, e = 0, f = 0, (β ∗ )2 ≥ 4gα ∗ q,
η1 η2 g > 1 and < 0. 2f 2f
Case IIa4. q > 1, e = 0, f = 0, (β ∗ )2 ≥ 4gα ∗ q,
η1 η2 g < 0 and > 1. 2f 2fq
In an analogous way we can show that it is also possible to have positive-definite orthogonality for finite systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .} in the following three cases:
η1 η1 N1 η1 N1 −1 η2 g > 1 with q ≤1< q >1 , 2f 2f 2f 2fq η2 g N2 −1 η2 g N2 −2 q q with ≤1< and N = min(N1 , N2 ). 2f 2f
Case IIb1. 0 < q < 1, e = 0, f = 0,
Case IIb2. q > 1, e = 0, f = 0, 0 <
η1 η1 N−1 η1 N η2 g < 1 with q q and > 1. <1≤ 2f 2f 2f 2fq
Case IIb3. q > 1, e = 0, f = 0, 0 <
η1 > 1. 2f
η2 g η2 g N−2 η2 g N−1 < 1 with q q <1≤ and 2fq 2f 2f
Case III. e = 0. Note that we have c0 =
2fq−β∗ , q(α ∗ − eq)
and c2 =
c1 =
2fq−β∗
q2 (α ∗ − eq−1 )
+
(1 − q2 )(2 f α ∗ − eβ ∗ )
q2 (α ∗ − eq) (α ∗ − eq−1 )
(1 + q)(1 − q2 )(2 f qα ∗ − eβ ∗ ) 2fq−β∗ + . q3 (α ∗ − eq−3 ) q5 (α ∗ − eq−1 ) (α ∗ − eq−3 )
In fact, in general we have (1 + q)(1 − qn ) 2 f qn−1 α ∗ − eβ ∗ 2fq−β∗ cn = n+1 ∗ + q (α − eq−2n+1 ) q3n−1 (α ∗ − eq−2n+1 ) (α ∗ − eq−2n+3 ) for n = 0, 1, 2, . . .. Further we have
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
338
dn = −q−2n (1 − qn )Dn Dn , (1)
(2)
n = 1, 2, 3, . . .
(11.6.6)
with
α ∗ − eq−n+3
(1)
Dn =
(α ∗ − eq−2n+4 ) (α ∗ − eq−2n+3 )2 (α ∗ − eq−2n+2 ) ∗
1 − αe qn−3 q7n−9 =− 3 · 2 ∗ ∗ ∗ e 1 − αe q2n−4 1 − αe q2n−3 1 − αe q2n−2
(11.6.7)
for n = 1, 2, 3, . . ., and 2 (2) Dn = q−n+1 β ∗ − 2 f q−n+2 2 f α ∗ − eβ ∗ q−n+1 − g α ∗ − eq−2n+3 (11.6.8) for n = 1, 2, 3, . . .. For g = 0 we have for n = 1, 2, 3, . . . (2) Dn = q−n+1 β ∗ − 2 f q−n+2 2 f α ∗ − eβ ∗ q−n+1
∗ 2 f α ∗ n−1 −2n+2 −n+2 ∗ q = −eq β −2fq β − e
(11.6.9)
and for g = 0 we have for n = 1, 2, 3, . . . 2 (2) Dn = q−n+1 β ∗ − 2 f q−n+2 2 f α ∗ − eβ ∗ q−n+1 − g α ∗ − eq−2n+3 = −eq−2n+2 β ∗ − 2 f q−n+2 + ξ1 qn−1 α ∗ − eq−2n+3 × β ∗ − 2 f q−n+2 + ξ2 qn−1 α ∗ − eq−2n+3 = −eq−2n+2 β ∗ + ξ2 eq−n+2 + ξ1 α ∗ qn−1 × β ∗ + ξ1 eq−n+2 + ξ2 α ∗ qn−1 = −eq−2n+2 1 + ξ1 η2 qn−2 η1 q + ξ2 eq−n+2 (11.6.10) × 1 + ξ2 η2 qn−2 η1 q + ξ1 eq−n+2 , where as before η1 η2 = α ∗ , η1 q + η2 g = β ∗ , ξ1 ξ2 = g/e and ξ1 + ξ2 = −2 f /e, which implies that for f 2 ≥ eg − f − f 2 − eg − f + f 2 − eg and ξ2 = . ξ1 = e e In the case that f 2 < eg we have ξ1 , ξ2 ∈ C with ξ2 = ξ1 . Finally, we remark that for g = 0 and α ∗ = 0 we have 2 (2) Dn = −eq−4n+6 β ∗ qn−2 − f + eg − f 2 , n = 1, 2, 3, . . . . Hence, for g = 0 and α ∗ = 0 we obtain that
11.6 Classification of the Positive-Definite Orthogonal Polynomial Solutions
dn = −
2 qn−3 n ∗ n−2 2 , (1 − q ) β q − f + eg − f e2
339
n = 1, 2, 3, . . . .
This implies that in the case that f 2 < eg we have dn < 0 for all n = 1, 2, 3, . . . for 0 < q < 1 and dn > 0 for all n = 1, 2, 3, . . . for q > 1. In the case that f 2 ≥ eg we have ξ1 , ξ2 ∈ R and
β ∗ n−2 β ∗ n−2 n−3 n q q dn = −ξ1 ξ2 q (1 − q ) 1 + 1+ ξ1 e ξ2 e
g ξ1 β ∗ n−2 ξ2 β ∗ n−2 q q 1+ , n = 1, 2, 3, . . . . = − qn−3 (1 − qn ) 1 + e g g This eventually leads to some finite systems of orthogonal polynomials in the case that 0 < q < 1, g = 0 and α ∗ = 0. Note that for 0 < q < 1 we have q−2n (1 − qn ) > 0 for n = 1, 2, 3, . . . and for q > 1 we have q−2n (1 − qn ) < 0 for n = 1, 2, 3, . . .. Analogous to the situation in the previous chapter (cf. table 10.2 on page 270) the (1) sign of Dn is given in table 11.1. (1)
q
extra conditions
Dn
for
0
e < 0 and α ∗ > eq
+
n = 1, 2, 3, . . .
e > 0 and α ∗ < eq
−
n = 1, 2, 3, . . .
α∗ 0 q>1
< eq < 0
< eq < α ∗
with e ≤ α ∗ q2N with eq2
< eq2
< α ∗ q2N
− n = 1, 2, 3, . . . , N
≤ e + n = 1, 2, 3, . . . , N
0 ≤ α∗
+
n = 1, 2, 3, . . .
α∗ ≤ 0 < e
−
n = 1, 2, 3, . . .
e<
eq < α ∗ < 0 with eq2 < α ∗ q2N ≤ e + n = 1, 2, 3, . . . , N 0 < α ∗ < eq with e ≤ α ∗ q2N < eq2 − n = 1, 2, 3, . . . , N
α ∗ < eq < 0
−
n = 1, 2, 3, . . .
0 < eq < α ∗
+
n = 1, 2, 3, . . .
(1)
Table 11.1 sign of Dn , N ∈ {1, 2, 3, . . .}
Hence, for 0 < q < 1, e < 0 and α ∗ > eq we must have Dn < 0. In the case that g = 0 this implies that we must have
∗ 2 f α ∗ n−1 −n+2 ∗ q < 0, β −2fq β − e (2)
340
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
which is true for β ∗ = 0 provided that α ∗ > 0, and for β ∗ = 0 if
2 f −n+2 2 f α ∗ n−1 1− ∗q 1− < 0, q β eβ ∗ which is true for all n = 1, 2, 3, . . . if and only if 2fq > 1 and β∗
2 f α∗ < 1. eβ ∗
And for 0 < q < 1, e > 0 and α ∗ < eq we must have Dn > 0. In the case that g = 0 this implies that we must have
∗ 2 f α ∗ n−1 −n+2 ∗ q < 0, β −2fq β − e (2)
which is true for β ∗ = 0 provided that α ∗ < 0, and for β ∗ = 0 if
2 f −n+2 2 f α ∗ n−1 1− ∗q 1− < 0, q β eβ ∗ which is true for all n = 1, 2, 3, . . . if and only if 2fq > 1 and β∗
2 f α∗ < 1. eβ ∗
Similarly, for q > 1, e < 0 ≤ α ∗ we must have Dn > 0. In the case that g = 0 this implies that we must have
∗ 2 f α ∗ n−1 q > 0, β − 2 f q−n+2 β ∗ − e (2)
which is false for β ∗ = 0. For β ∗ = 0 we must have
2f 2 f α ∗ n−1 1 − ∗ q−n+2 1− > 0, q β eβ ∗ which is true for all n = 1, 2, 3 . . . if and only if 2fq < 1 and β∗
2 f α∗ ≤ 0. eβ ∗
For q > 1, 0 < eq < α ∗ we must have Dn > 0. In the case that g = 0 this implies that we must have
∗ 2 f α ∗ n−1 −n+2 ∗ q < 0, β −2fq β − e (2)
11.6 Classification of the Positive-Definite Orthogonal Polynomial Solutions
341
which is false for β ∗ = 0. For β ∗ = 0 we must have
2 f −n+2 2 f α ∗ n−1 1− ∗q 1− < 0, q β eβ ∗ which is true for all n = 1, 2, 3 . . . if and only if 2 f α∗ > 1. eβ ∗
2fq < 1 and β∗
And for q > 1, α ∗ < eq < 0 we must have Dn < 0. In the case that g = 0 this implies that we must have
∗ 2 f α ∗ n−1 −n+2 ∗ q < 0, β −2fq β − e (2)
which is false for β ∗ = 0. For β ∗ = 0 we must have
2 f −n+2 2 f α ∗ n−1 1− ∗q 1− < 0, q β eβ ∗ which is true for all n = 1, 2, 3 . . . if and only if 2fq < 1 and β∗
2 f α∗ > 1. eβ ∗
For q > 1, α ∗ ≤ 0 < e we must have Dn < 0. In the case that g = 0 this implies that we must have
∗ 2 f α ∗ n−1 −n+2 ∗ q > 0, β −2fq β − e (2)
which is false for β ∗ = 0. For β ∗ = 0 we must have
2 f −n+2 2 f α ∗ n−1 1− ∗q 1− > 0, q β eβ ∗ which is true for all n = 1, 2, 3 . . . if and only if 2fq < 1 and β∗
2 f α∗ ≤ 0. eβ ∗
Finally, we remark that in the case that 0 < q < 1 and g = 0 we have Dn ∼ −ge2 q−4n+6 (2)
for
n → ∞,
342
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations (2)
which implies that Dn > 0 for all n = 1, 2, 3, . . . can only be true if g < 0 and that (2) Dn < 0 for all n = 1, 2, 3, . . . can only be true if g > 0. Similarly, in the case that q > 1 and g = 0 we have Dn ∼ −g (α ∗ )2 (2)
for n → ∞,
(2)
which implies that Dn > 0 for all n = 1, 2, 3, . . . can only be true if g < 0 and that (2) Dn < 0 for all n = 1, 2, 3, . . . can only be true if g > 0. Hence we conclude that we have positive-definite orthogonality for an infinite system of polynomials, at least in the following nine cases: Case IIIa1. 0 < q < 1, g = 0, β ∗ = 0 and e < 0 < α ∗ . Case IIIa2. 0 < q < 1, g = 0, β ∗ = 0 and α ∗ < 0 < e. Case IIIa3. 0 < q < 1, g = 0, β ∗ = 0, e < 0, α ∗ > eq,
2fq 2 f α∗ > 1 and < 1. ∗ β eβ ∗
Case IIIa4. 0 < q < 1, g = 0, β ∗ = 0, e > 0, α ∗ < eq,
2fq 2 f α∗ > 1 and < 1. β∗ eβ ∗
Case IIIa5. q > 1, g = 0, β ∗ = 0, e < 0 ≤ α ∗ ,
2fq 2 f α∗ < 1 and ≤ 0. ∗ β eβ ∗
Case IIIa6. q > 1, g = 0, β ∗ = 0, 0 < eq < α ∗ ,
2fq 2 f α∗ < 1 and > 1. β∗ eβ ∗
Case IIIa7. q > 1, g = 0, β ∗ = 0, α ∗ < eq < 0,
2fq 2 f α∗ < 1 and > 1. ∗ β eβ ∗
Case IIIa8. q > 1, g = 0, β ∗ = 0, α ∗ ≤ 0 < e, Case IIIa9. q > 1, g = 0, α ∗ = 0 and f 2 < eg.
2fq 2 f α∗ < 1 and ≤ 0. β∗ eβ ∗
11.6 Classification of the Positive-Definite Orthogonal Polynomial Solutions
343
It is also possible to have positive-definite orthogonality for finite systems of polynomials. We only consider the cases where g = 0 and α ∗ = 0, and, for α ∗ = 0, the cases (1) where Dn has opposite sign for n = N and n = N + 1 according to table 11.1. Skipping the details, we conclude that we have positive-definite orthogonality, at least in the following finite cases:
ξ1 β ∗ ξ1 β ∗ N1 −2 g < 0, α ∗ = 0, < −1 with q < −1 ≤ e gq g ξ1 β ∗ N1 −1 ξ2 β ∗ ξ2 β ∗ N2 −2 ξ2 β ∗ N2 −1 q < −1 with q q , < −1 ≤ and N = min(N1 , N2 ), g gq g g
Case IIIb1. 0 < q < 1,
Case IIIb2. 0 < q < 1,
ξ1 β ∗ ξ1 β ∗ N−2 g > 0, α ∗ = 0, < −1 with q < −1 ≤ e gq g
ξ1 β ∗ N−1 ξ2 β ∗ q > −1. and g gq Case IIIb3. 0 < q < 1,
g ξ2 β ∗ ξ2 β ∗ N−2 > 0, α ∗ = 0, < −1 with q < −1 ≤ e gq g
ξ2 β ∗ N−1 ξ1 β ∗ q > −1. and g gq
Case IIIb4. 0 < q < 1, α ∗ < eq < 0 with e ≤ α ∗ q2N < eq2 and Dn > 0. (2)
Case IIIb5. 0 < q < 1, 0 < eq < α ∗ with eq2 < α ∗ q2N ≤ e and Dn < 0. (2)
Case IIIb6. q > 1, eq < α ∗ < 0 with eq2 < α ∗ q2N ≤ e and Dn > 0. (2)
Case IIIb7. q > 1, 0 < α ∗ < eq with e ≤ α ∗ q2N < eq2 and Dn < 0. (2)
We remark that it is also possible to have positive-definite orthogonality for finite (2) systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .} in cases where Dn has opposite sign for n = N and n = N + 1. As an example we mention Case IIIb8. q > 1, g = 0, β ∗ = 0, α ∗ ≤ 0 < e, 2 f α∗ N 2 f α ∗ N−1 q ≤ 1 < q . eβ ∗ eβ ∗
2fq 2 f α∗ < 1 and 0 < < 1 with β∗ eβ ∗
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
344
11.7 Solutions of the q−1 -Pearson Equation We look for solutions of the q−1 -Pearson equation (11.4.7) qw(q−x )A∗ (x) = w(q−x−1 )B∗ (x + 1) with A∗ (x) = eq2 + 2 f qx+1 + gq2x
and B∗ (x + 1) = α ∗ + β ∗ qx + gq2x+1 .
Hence we have B∗ (x + 1) α ∗ + β ∗ qx + gq2x+1 w(q−x ) = = . −x−1 ∗ w(q ) qA (x) q (eq2 + 2 f qx+1 + gq2x ) For simplicity we set y = q−x , which leads to w(y) α ∗ + β ∗ y−1 + gqy−2 α ∗ y2 + β ∗ y + gq = = . −1 2 −1 −2 w(q y) q (eq + 2 f qy + gy ) q (eq2 y2 + 2 f qy + g)
(11.7.1)
In order to find solutions of the q−1 -Pearson equation (11.7.1), we distinguish between 0 < q < 1 and q > 1. For q > 1 we set q = p−1 , which implies that 0 < p < 1. Then we have p α ∗ + β ∗ p−x + gp−2x−1 w(px ) α ∗ p2x+1 + β ∗ px+1 + g = . = w(px+1 ) ep−2 + 2 f p−x−1 + gp−2x ep2x−2 + 2 f px−1 + g Now we set z = px for simplicity, which leads to w(z) α ∗ pz2 + β ∗ pz + g = −2 2 . w(pz) ep z + 2 f p−1 z + g
(11.7.2)
We consider two types of solutions: A. Continuous solutions for y ∈ R in terms of (convergent) infinite products. For the convergence of these infinite products we refer to the book [471] by L.J. Slater. −ν with B. Discrete solutions for {yν }Nν =0 with N → ∞ or {yν }∞ ν =−∞ , id est yν = Aq A ∈ C and ν = 0, ±1, ±2, . . ., in terms of finite products. Note that yν +1 = q−1 yν . Without loss of generality we can choose A = 1 in each case.
The solutions are obtained in a similar way as in the previous chapter. In this chapter some of the details (analogous to the previous chapter) are left for the reader. Case I-A. e = f = 0 and g = 0. From (11.7.1) we have
11.7 Solutions of the q−1 -Pearson Equation
345
w(y) α ∗ y2 + β ∗ y + gq β ∗ y α ∗ y2 η1 y η2 y = = 1 + + = 1 + 1 + , w(q−1 y) gq gq gq g q where η1 η2 = α ∗ and η1 q + η2 g = β ∗ as before, which implies that β ∗ ± (β ∗ )2 − 4gα ∗ q β ∗ ∓ (β ∗ )2 − 4gα ∗ q and η2 = , η1 = 2q 2g provided that (β ∗ )2 ≥ 4gα ∗ q. Then we easily find the solution w(I) (y; q−1 ) =
1 − η1gqy , −η2 y; q
. ∞
The special case e = f = 0, g = q, α ∗ = 1 and β ∗ = 0, which implies that η1 = −i and η2 = i, leads by using (1.8.24) to the weight function w(y; q) =
1 1 = 2 2 (iy, −iy; q)∞ (y ; q )∞
for the discrete q-Hermite II polynomials. Note that η1 and η2 are non-real in this case. From (11.7.2) we have
α ∗ pz2 + β ∗ pz + g β ∗ pz α ∗ pz2 ε1 z w(z) = = 1+ + = 1+ (1 + ε2 pz) , w(pz) g g g g where ε1 ε2 = α ∗ and ε1 p−1 + ε2 g = β ∗ , which implies that β ∗ ± (β ∗ )2 − 4gα ∗ p−1 β ∗ ∓ (β ∗ )2 − 4gα ∗ p−1 , ε1 = and ε2 = 2p−1 2g provided that (β ∗ )2 ≥ 4gα ∗ p−1 . Then we easily find the solution
ε1 z w(I) (z; p) = − , −ε2 pz; p . g ∞ The special case e = f = 0, g = a/p, α ∗ = 1 and β ∗ = −(a + 1)/p, which implies that ε1 = ε2 = −1, leads to the weight function pz , pz; p w(z; p) = a ∞ for the Al-Salam-Carlitz I polynomials.
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
346
The special case e = f = 0, g = −1/p, α ∗ = 1 and β ∗ = 0, which implies that ε1 = ε2 = −1, leads to the weight function w(z; p) = (−pz, pz; p)∞ for the discrete q-Hermite I polynomials. Note that for q → p−1 we have that η1 → ε1 and η2 → ε2 . Case I-B. e = f = 0 and g = 0. Note that e = 0 implies that η1 η2 = α ∗ = −2ε (1 − q) = 0. Then we have from (11.7.1) with yν = q−ν
w(yν ) α ∗ q−2ν + β ∗ q−ν + gq η1 η2 −2ν gqν qν +1 = = 1+ ·q 1+ · w(yν +1 ) gq η1 η2 gq with possible solution −1
1
w (yν ; q ) = − ηg1 , − ηq2 ; q (I)
ν
gq η1 η2
ν
ν
q2( 2 ) .
The special case e = f = 0, g = aq, α ∗ = 1 and β ∗ = −(a + 1)q, which implies that η1 = η2 = −1, leads to the weight function w(yν ; q−1 ) =
1 aν qν (ν +1) (aq, q; q)ν
for the Al-Salam-Carlitz II polynomials. From (11.7.2) we have with zν = pν
w(zν ) α ∗ p2ν +1 + β ∗ pν +1 + g ε1 p ν = = 1+ 1 + ε2 pν +1 w(zν +1 ) g g with possible solution 1 . w(I) (zν ; p) = ε1 − g , −ε2 p; p ν
Case II-A. e = 0 and f = 0. From (11.7.1) we have for g = 0 η1 y η2 y 1 + 1 + ∗ 2 ∗ g q α y + β y + gq w(y) = = 2 f qy w(q−1 y) q(2 f qy + g) 1+ g
11.7 Solutions of the q−1 -Pearson Equation
347
with possible solution 2 − 2 f gq y ; q
∞ w(II) (y; q−1 ) = . − η1gqy , −η2 y; q ∞
For g = 0 we use the fact that α ∗ = −2ε (1 − q) = 0 to obtain
α ∗ y2 + β ∗ y β∗ α ∗y w(y) = = 1 + · −1 2 ∗ w(q y) 2fq y α y 2 f q2 with possible solution w(II) (y; q−1 )
g=0
∗ − αβ∗ y ; q
∞ = ∗ . 2 − α2 f qy , − 2αf∗qy ; q ∞
From (11.7.2) we have for g = 0 w(z) = w(pz)
α ∗ pz2 + β ∗ pz + g 2 f p−1 z + g
=
1 + εg1 z (1 + ε2 pz) 1 + 2gpf z
with possible solution − εg1 z , −ε2 pz; p ∞. w(II) (z; p) = 2fz − gp ; p ∞
For g = 0 we use the fact that α ∗ = −2ε (1 − q) = 0 to obtain
∗ 2 α ∗ pz2 + β ∗ pz β∗ α p z w(z) = = 1 + · −1 ∗ w(pz) 2f p z α z 2f with possible solution ∗ 2 − α 2pf z , − α2∗ fpz ; p ∞ ∗ = . g=0 − βα ∗pz ; p
w(II) (z; p)
∞
Case II-B. e = 0 and f = 0. Note that e = 0 implies that η1 η2 = α ∗ = −2ε (1 − q) = 0. Then we have from (11.7.1) with yν = q−ν
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
348
1 + η1−1 gqν 1 + η2−1 qν +1 η1 η2 −ν w(yν ) α ∗ q−2ν + β ∗ q−ν + gq = = · ·q ν −1 w(yν +1 ) 2 f q−ν +2 + gq 2 f q2 1 + gq 2f
with possible solution − 2gf q ; q
ν w(II) (yν ; q−1 ) = −1 −η1 g, −η2−1 q; q ν
2 f q2 η1 η2
ν
ν
q( 2 ) .
The special case e = 0, 2 f = cq−1 , g = −bcq, α ∗ = 1 and β ∗ = −q(1 − bc), which implies that η1 = η2 = −1, leads to the weight function w(yν ; q−1 ) =
ν +1 (bq; q)ν cν q( 2 ) (−bcq, q; q)ν
for the q-Meixner polynomials. The special case e = 0, 2 f = −b−1 q−1 , g = b−1 q−N , α ∗ = 1 and β ∗ = −q − b−1 q−N , which also implies that η1 = η2 = −1, leads to the weight function −1 ν (ν +1) (q−N ; q)ν −b q 2 . −1 −N (b q , q; q)ν
w(yν ; q−1 ) =
Then we use (1.8.17) to obtain the weight function w(yν ; q−1 ) =
(q; q)N (bq; q)N−ν (−1)ν (ν +1) q 2 , (bq; q)N (q; q)N−ν (q; q)ν
for the quantum q-Krawtchouk polynomials. The special case e = 0, 2 f = aq−1 , g = 0, α ∗ = 1 and β ∗ = −q, which again implies that η1 = η2 = −1, leads to the weight function w(yν ; q−1 ) =
ν +1 aν q( 2 ) (q; q)ν
for the q-Charlier polynomials. From (11.7.2) we have with zν = pν for g = 0 w(zν ) = w(zν +1 ) with possible solution
α ∗ p2ν +1 + β ∗ pν +1 + g 2 f pν −1 + g
=
ν 1 + ε1gp 1 + ε2 pν +1 ν −1
1 + 2 f pg
11.7 Solutions of the q−1 -Pearson Equation
349
w(II) (zν ; p) =
2f − gp ;p
ν
− εg1 , −ε2 p; p
. ν
For g = 0 we use the fact that α ∗ = −2ε (1 − q) = 0 to obtain
∗ 2 α ∗ p2ν +1 + β ∗ pν +1 β ∗ p− ν α p w(zν ) = · pν · = 1 + w(zν +1 ) 2 f pν −1 α∗ 2f with possible solution w(II) (zν ; p)
g=0
=
1 −
β ∗ p−ν +1 α∗
;p
ν
2f α ∗ p2
ν
ν
p− ( 2 ) .
Case III-A. e = 0. From (11.7.1) we have for g = 0 β ∗y α ∗ y2 η1 y η2 y ∗ 2 ∗ 1 + gq 1 + 1 + + gq gq g q w(y) α y + β y + gq = , = = qy qy w(q−1 y) q (eq2 y2 + 2 f qy + g) gq 1 + 2 f qy + eq2 y2 1 − 1 − g g ξ ξ 1
2
where as before η1 η2 = α ∗ , η1 q + η2 g = β ∗ , ξ1 ξ2 = g/e and ξ1 + ξ2 = −2 f /e, which implies that for (β ∗ )2 ≥ 4gα ∗ q β ∗ ± (β ∗ )2 − 4gα ∗ q β ∗ ∓ (β ∗ )2 − 4gα ∗ q and η2 = , η1 = 2q 2g and for f 2 ≥ eg
ξ1 =
−f −
f 2 − eg
e
and
ξ2 =
−f +
f 2 − eg
e
As before we easily find the solution
w(III) (y; q−1 ) =
q2 y q2 y ξ1 , ξ2 ; q ∞ . − η1gqy , −η2 y; q ∞
In the case that g = 0 we distinguish between β ∗ = 0 and β ∗ = 0. For g = 0 and β ∗ = 0 we obtain
.
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
350
∗
1 + αβ ∗y β ∗ w(y) α ∗ y2 + β ∗ y = = · 3 2f w(q−1 y) q (eq2 y2 + 2 f qy) eq y 1 + eqy with possible solution ∗ 4 − eqβ3 y , − eqβ ∗y ; q ∞ . = ∗ 2f g=0,β ∗ =0 − eqy , − αβ ∗qy ; q
w(III) (y; q−1 )
∞
For g = 0 and β ∗ = 0 we must have α ∗ = 0. Assuming that f = 0 we obtain
α ∗ y2 α ∗y 1 w(y) = = eqy · −1 2 2 w(q y) q (eq y + 2 f qy) 1 + 2 f 2 f q2 with possible solution w(III) (y; q−1 )
g=0,β ∗ =0
=
2 − eq2 f y ; q
∞ . 2 f q2 α∗y − 2 f q , − α∗y ; q ∞
For f = g = 0, β ∗ = 0 and α ∗ = 0 we obtain
α∗ w(y) = w(q−1 y) eq3 with possible solution w(III) (y; q−1 )
−eq3 y, − eq12 y ; q ∞. = q f =g=0,β ∗ =0 ∗ −α y, − α ∗ y ; q
∞
From (11.7.2) we have for g = 0 ε1 z 1 + (1 + ε2 pz) g w(z) = −2 2 = −1 w(pz) ep z + 2 f p z + g 1 − ξzp 1 − ξzp
α ∗ pz2 + β ∗ pz + g
1
with possible solution − εg1 z , −ε2 pz; p ∞. w(III) (z; p) = z z , ; p ξ p ξ p 1
2
∞
2
11.7 Solutions of the q−1 -Pearson Equation
351
In the case that g = 0 we distinguish between β ∗ = 0 and β ∗ = 0. For g = 0 and β ∗ = 0 we obtain ∗
1 + αβ ∗z β ∗ p3 α ∗ pz2 + β ∗ pz w(z) = −2 2 = · w(pz) ep z + 2 f p−1 z 1 + 2 f p ez ez with possible solution w(III) (z; p)
g=0,β ∗ =0
∗
2
fp − αβ ∗z , − 2 ez ;p
∞ . = ∗ 4 − β ∗ezp3 , − β ezp ; p ∞
For g = 0 and β ∗ = 0 we must have α ∗ = 0. Assuming that f = 0 we obtain 1 w(z) α ∗ pz2 α ∗ p2 z = −2 2 = ez · −1 w(pz) ep z + 2 f p z 1 + 2 f p 2f with possible solution ∗ 2 − α 2pf z , − α2∗ fpz ; p ∞ = . ez g=0,β ∗ =0 −2f p; p
w(III) (z; p)
∞
For f = g = 0, β ∗ = 0 and α ∗ = 0 we obtain w(z) α ∗ p3 = w(pz) e with possible solution (III)
w
(z; p)
∗ −α z, − αp∗ z ; p ∞ . = 4 f =g=0,β ∗ =0 − pez3 , − pez ; p ∞
Case III-B. e = 0. From (11.7.1) we have with yν = q−ν for α ∗ = 0 and g = 0 gqν qν +1 1 + 1 + ∗ −2 ν ∗ − ν η1 η2 w(yν ) α q + β q + gq η 1 η 2 ξ1 ξ2 = = · w(yν +1 ) q(eq−2ν +2 + 2 f q−ν +1 + g) (1 − ξ1 qν −1 )(1 − ξ2 qν −1 ) gq3 with possible solution
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
352
(III)
w
−1
(yν ; q ) =
ξ1 ξ2 q , q ;q ν − ηg1 , − ηq2 ; q ν
gq3 η 1 η 2 ξ1 ξ2
ν .
The special case e = q−2 , 2 f = −α − q−N−1 , g = α q−N+1 , α ∗ = αβ q and β ∗ = −αβ q2 − α q−N+1 , which implies that ξ1 = α q2 , ξ2 = q−N+1 , η1 = −αβ q and η2 = −1, leads to the weight function
1 ν (α q, q−N ; q)ν −1 w(yν ; q ) = −1 −N (β q , q; q)ν αβ for the q-Hahn polynomials. For α ∗ = 0 and g = 0 we obtain ∗ ν
1 + βαq∗ α ∗ q−2ν + β ∗ q−ν α∗ w(yν ) = = · ν −1 w(yν +1 ) q(eq−2ν +2 + 2 f q−ν +1 ) 1 + 2 f q eq3 e with possible solution − 2eqf ; q eq3 ν = ∗ ν . g=0 α∗ − αβ ∗ ; q
w(III) (yν ; q−1 )
ν
For α ∗ = 0 we distinguish between β ∗ = 0 and β ∗ = 0. For α ∗ = 0 and β ∗ = 0 we obtain ν +1
1 + gqβ ∗ w(yν ) β ∗ q−ν + gq β ∗ ξ1 ξ2 ν = = · ·q w(yν +1 ) q (eq−2ν +2 + 2 f q−ν +1 + g) (1 − ξ1 qν −1 )(1 − ξ2 qν −1 ) gq3 with possible solution w(III) (yν ; q−1 )
α ∗ =0,β ∗ =0
=
ξ1 ξ2 q , q ;q ν − βgq∗ ; q ν
gq3 ∗ β ξ1 ξ2
ν
ν
q− ( 2 ) .
The special case e = q−2 , 2 f = −b − q−N−1 , g = bq−N+1 , α ∗ = 0 and β ∗ = −bq−N+1 , which implies that ξ1 = bq2 and ξ2 = q−N+1 , leads by using (1.8.18) to the weight function
11.7 Solutions of the q−1 -Pearson Equation
w(yν ; q−1 ) =
353
ν (bq, q−N ; q)ν (bq; q)ν (q; q)N −ν (−b−1 qN )ν q−(2 ) = b (q; q)ν (q; q)ν (q; q)N−ν
for the affine q-Krawtchouk polynomials. For α ∗ = 0 and β ∗ = 0 we must have g = 0 and we obtain gq 1 w(yν ) = = · ξ1 ξ2 q−2 · q2ν −2 ν +2 − ν +1 ν −1 w(yν +1 ) q (eq +2fq + g) (1 − ξ1 q )(1 − ξ2 qν −1 ) with possible solution w
(III)
(yν ; q ) −1
α ∗ =0,β ∗ =0
=
ξ1 ξ2 , ;q q q
ν
−ν −2(ν ) ξ1 ξ2 q−2 q 2 .
From (11.7.2) we have with zν = pν for g = 0 ν 1 + ε1gp 1 + ε2 pν +1 α ∗ p2ν +1 + β ∗ pν +1 + g w(zν ) = = ν −1 ν −1 w(zν +1 ) ep2ν −2 + 2 f pν −1 + g 1 − pξ 1 − pξ 1
2
with possible solution ξ
1
, 1 ;p p ξ p
1 2 ν . w(III) (zν ; p) = ε1 − g , −ε2 p; p
ν
For g = 0 we distinguish between β ∗ = 0 and β ∗ = 0. For g = 0 and β ∗ = 0 we obtain ∗
1 + αβ ∗ pν α ∗ p2ν +1 + β ∗ pν +1 β ∗ p3 − ν w(zν ) = ·p = · w(zν +1 ) ep2ν −2 + 2 f pν −1 e 1 + 2ef p−ν +1 with possible solution w(III) (zν ; p)
− 2ef p−ν +2 ; p = ∗ g=0,β ∗ =0 − αβ ∗ ; p ν
Note that for f = 0 we have by using (1.8.14)
ν
e ∗ β p3
ν
ν
p( 2 ) .
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
354
2 f p ν −(ν ) 2f e ;p − p−ν +2 ; p = − p 2 . e 2f p e ν ν Then the special case 2 f = −epN−1 , g = 0, α ∗ = −p−1 and β ∗ = 1 leads to the weight function (p−N ; p)ν w(zν ; p) = (−b−1 q)ν (p; p)ν for the q-Krawtchouk polynomials. For g = 0 and β ∗ = 0 we must have α ∗ = 0 and we obtain
α ∗ p3 1 w(zν ) = · 2 f w(zν +1 ) 1 + p−ν +1 e e with possible solution (III)
w
ν
e 2 f −ν +2 = − p ;p . ∗ 3 e g=0,β ∗ =0 ν α p
(zν ; p)
11.8 Orthogonality Relations In the preceding section we have obtained both continuous and discrete solutions of the q−1 -Pearson equation (11.7.1) and the p-Pearson equation (11.7.2). In this section we will derive orthogonality relations for several cases obtained in section 11.6. We will not give explicit orthogonality relations for each different case, but we will restrict to the most important cases (either continuous or discrete). In each different case the boundary conditions (11.4.11) or (11.4.15) should be satisfied. Therefore we have to consider w(qy; q−1 )ϕ (q2 y) with ϕ (y) = ey2 + 2 f y + g and w(y; q−1 ) the involving weight function which satisfies the q−1 -Pearson equation (11.7.1) or equivalently w(p−1 z; p)ϕ (p−2 z)
with ϕ (z) = ez2 + 2 f z + g
and w(z; p) the involving weight function which satisfies the p-Pearson equation (11.7.2). These products should vanish at both ends of the interval of orthogonality. Case I. In this case we have e = f = 0 and g = 0. In section 11.6 we have seen that we have positive-definite orthogonality for an infinite system of polynomials in two different cases and that it is impossible to have positive-definite orthogonality for a finite system of polynomials. We will treat both cases here.
11.8 Orthogonality Relations
355
Case Ia1. 0 < q < 1, e = f = 0 and
g > 0. We use the weight function α∗
w(I) (y; q−1 ) =
1
,
− η1gqy , −η2 y; q ∞
where η1 η2 = α ∗ and η1 q + η2 g = β ∗ . Then we have w(I) (qy; q−1 )ϕ (q2 y) =
g
,
2 − η1gq y , −η2 qy; q ∞
g which vanishes for y → ±∞. Now we use (1.15.13) to obtain for q < < 1, η1 g g = >0 q < |η2 | < 1 and η1 η2 α ∗ ∞
1 dq y −∞ − η1 qy , −η y; q 2 g ∞ q, −q, −1, − η1 ηg 2 q , − η1gη2 ; q ∞ > 0. = (1 − q) η1 q η1 q q q g g − g , g , − η1 , η1 , −η2 , η2 , − η2 , η2 ; q
d0 :=
∞
Further we have by using (11.6.4) dn = q−2n (1 − qn )
g , η1 η2
n = 1, 2, 3, . . . ,
which implies that n
∏ dk =
k=1
g η1 η2
n
q−n(n+1) (q; q)n ,
n = 1, 2, 3, . . . .
This leads to the orthogonality relation ∞
1 (I) y(I) m (y; q)yn (y; q) dq y η1 qy − g , −η2 y; q ∞ q, −q, −1, − η1 ηg 2 q , − η1gη2 ; q ∞ = (1 − q) η1 q η1 q q q g g − g , g , − η1 , η1 , −η2 , η2 , − η2 , η2 ; q ∞
n g × q−n(n+1) (q; q)n δmn , m, n = 0, 1, 2, . . . , η1 η2 −∞
g g > 0. for q < < 1, q < |η2 | < 1 and η1 η1 η2
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
356
The special case e = f = 0, g = q, α ∗ = 1 and β ∗ = 0, which implies that η1 = −i and η2 = i, leads to the orthogonality relation ∞
1 ym (y; q)yn (y; q) dq y (iy, −iy; q)∞ 2 (q, −q, −1, −1, −q; q)∞ q−n (q; q)n δmn , = (1 − q) (i, −i, −iq, iq, −i, i, iq, −iq; q)∞ −∞
m, n = 0, 1, 2, . . .
for the discrete q-Hermite II polynomials. Alternatively, we use the weight function
1
−1
w (yν ; q ) = − ηg1 , − ηq2 ; q (I)
ν
gq η1 η2
ν
ν
q2( 2 ) ,
where η1 η2 = α ∗ and η1 q + η2 g = β ∗ . Then we have with yν = q−ν w(I) (qyν ; q−1 )ϕ (q2 yν ) =
g
− ηg1 , − ηq2 ; q
ν −1
g η1 η2
ν −1
q(ν −1) , 2
which vanishes for ν = 0 if we have by using (1.8.6)
q −1 1 1 = − q ;q = 1+ = 0. q η2 η2 1 − η2 ; q −1
This implies that η2 = −1 and therefore η1 = −α ∗ . Then we use (1.11.8) to obtain g with yν = q−ν for 0 < ∗ < 1 α d0 :=
∞
∞
ν =0
ν =0
1 qν (ν −1) g ν = g > 0. ∗ α α α∗ ; q ∞ ν
∑ w(I) (yν ; q−1 )yν = ∑ g∗ , q; q
Further we have by using (11.6.4) dn = q−2n (1 − qn )
g , α∗
n = 1, 2, 3, . . . ,
which implies that n
∏ dk =
k=1
g n q−n(n+1) (q; q)n , α∗
This leads to the orthogonality relation
n = 1, 2, 3, . . . .
11.8 Orthogonality Relations
357
qν (ν −1) g ν (I) −ν (I) ∑ g∗ , q; q α ∗ ym (q ; q)yn (q−ν ; q) ν =0 α ν g n 1 q−n(n+1) (q; q)n δmn , m, n = 0, 1, 2, . . . =g ∗ α ; q α∗ ∞ ∞
for 0 <
g < 1. α∗
The special case 0 < q < 1, e = f = 0, g = aq, α ∗ = 1 and β ∗ = −(a + 1)q, which implies that η1 = η2 = −1, leads to the orthogonality relation (for 0 < aq < 1) ∞
2 1 aν qν ∑ (aq, q; q)ν ym (q−ν ; q)yn (q−ν ; q) = (aq; q)∞ an q−n (q; q)n δmn ν =0 2
with m, n = 0, 1, 2, . . . for the Al-Salam-Carlitz II polynomials. We remark that the special case 0 < q < 1, e = f = 0, g = −q, α ∗ = 1 and β ∗ = 0, which implies that η1 = η2 = −1, cannot be used here in order to obtain an orthogonality relation for the discrete q-Hermite II polynomials, since then we have g = −q < 0. α∗ g Case Ia2. q > 1, e = f = 0 and ∗ < 0. Since q > 1 we set q = p−1 with 0 < p < 1 α and we use the weight function
ε1 z (I) w (z; p) = − , −ε2 pz; p , g ∞ where ε1 ε2 = α ∗ and ε1 p−1 + ε2 g = β ∗ . Then we have
ε1 z w(I) (p−1 z; p)ϕ (p−2 z) = − , −ε2 z; p · g, gp ∞ which vanishes for z = −gp/ε1 and for z = −1/ε2 . By using (1.15.11) we obtain for gp ε1 gp2 ε2 1 < , < 1 and <1 ε2 ε 1 g ε2 ε1 d0 :=
−1 ε2 ε1 z − gp ε
=
−
1
gp 1 − ε1 ε2
g
, −ε2 pz; p dpz
∞
ε1 gp2 ε2 (1 − p) p, , ;p g ε2 ε 1
Further we have by using (11.6.4) with q = p−1
> 0. ∞
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
358
dn = q−2n (1 − qn )
g g = −pn (1 − pn ) , ε1 ε2 ε1 ε2
n = 1, 2, 3, . . . ,
which implies that
g n (n+1) d = − p 2 (p; p)n , ∏ k ε1 ε2 k=1 n
n = 1, 2, 3, . . . .
This leads to the orthogonality relation −1 ε2 ε1 z
−
− gp ε
1
=
for
g
gp 1 − ε1 ε2
(I) (I) , −ε2 pz; p ym (z; p−1 )yn (z; p−1 ) d p z
∞
(1 − p) p,
g 1 gp ε1 < 0, < , < 1, ε1 ε2 ε2 ε 1 g ε2
ε1 gp2 ε2 , ;p g ε2 ε 1 gp2 ε
2
ε1
∞
−
g ε1 ε2
n
n+1 2
p(
) (p; p) δ n mn
< 1 and m, n = 0, 1, 2, . . ..
The special case 0 < p < 1, e = f = 0, g = a/p, α ∗ = 1 and β ∗ = −(a + 1)/p, which implies that ε1 = ε2 = −1, leads to the orthogonality relation (for a < 0) 1 pz
ym (z; p−1 )yn (z; p−1 ) d p z p n = (1 − a)(1 − p) p, , ap; p (−a)n p(2) (p; p)n δmn , a ∞ a
a
, pz; p
∞
m, n = 0, 1, 2, . . .
for the Al-Salam-Carlitz I polynomials. The special case 0 < q < 1, e = f = 0, g = −1/p, α ∗ = 1 and β ∗ = 0, which implies that ε1 = ε2 = −1, leads to the orthogonality relation 1 −1
(−pz, pz; p)∞ ym (z; p−1 )yn (z; p−1 ) d p z n
= 2(1 − p) (p, −p, −p; p)∞ p(2) (p; p)n δmn ,
m, n = 0, 1, 2, . . .
for the discrete q-Hermite I polynomials. Case II. In this case we have e = 0 and f = 0. In section 11.6 we have seen that it is possible to have positive-definite orthogonality for an infinite system of polynomials in four different cases and for a finite system of polynomials in three different cases. We will only treat two infinite cases here and also one finite case. Case IIa2. 0 < q < 1, e = 0, f = 0, (β ∗ )2 ≥ 4gα ∗ q, the weight function
η1 η2 g < 1 and < 1. We use 2f 2fq
11.8 Orthogonality Relations
(II)
w
359
−1
− 2gf q ; q
ν
(yν ; q ) = − ηg1 , − ηq2 ; q
ν
2 f q2 η1 η2
ν
ν
q( 2 ) .
Then we have with yν = q−ν (II)
w
ν (qyν ; q )ϕ (q yν ) = − ηg1 , − ηq2 ; q −1
2
− 2gf q ; q
ν −1
2f η1 η2
ν −1
ν −1 2
· 2 f q ν +(
),
which vanishes for ν = 0 if we have by using (1.8.6)
1 q 1 = − q−1 ; q = 1 + = 0. q η η 2 2 1 − η2 ; q −1
This implies that η2 = −1 and η1 = −α ∗ . Then we have by using (1.11.6) with 2f g yν = q−ν for ∗ > 0 and ∗ < 1 α α − 2gf q ; q 2 f q ν ν − 2αf∗q ; q ∞ ∞ ν q(2 ) = g ∞ > 0. d0 := ∑ w(II) (yν ; q−1 )yν = ∑ g α∗ ν =0 ν =0 α ∗ , q; q ν α∗ ; q ∞ Further we have by using (11.6.5) dn =
2f α∗
2
g α ∗ n−1 q 1 + qn−2 , q−4n+3 (1 − qn ) 1 + 2f 2f
n = 1, 2, 3, . . . ,
which implies that n
∏ dk =
k=1
2f α∗
2n q
−n(2n−1)
g α∗ ;q , q, − , − 2f 2fq n
n = 1, 2, 3, . . . .
This leads to the orthogonality relation − 2gf q ; q 2 f q ν ν ∞ (II) (II) ∑ g∗ , q; q ν α ∗ q(2) ym (q−ν ; q)yn (q−ν ; q) ν =0 α ν 2fq
− α ∗ ; q 2 f 2n g α∗ −n(2n−1) , − ; q q, − q δmn , = g ∞ α∗ 2f 2fq n α∗ ; q ∞ for −
2f g g < 1, ∗ > 0 and ∗ < 1. 2fq α α
m, n = 0, 1, 2, . . . ,
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
360
The special case 2 f = cq−1 , g = −bcq, α ∗ = 1 and β ∗ = −q + bcq, which implies that η1 = η2 = −1, leads to the orthogonality relation (for 0 ≤ bq < 1 and c > 0) ∞
(bq; q)ν
ν
∑ (−bcq, q; q)ν cν q(2) ym (q−ν ; q)yn (q−ν ; q)
ν =0
=
(−c; q)∞ 2n −n(2n+1) c q (q, −c−1 q, bq; q)n δmn , (−bcq; q)∞
m, n = 0, 1, 2, . . .
for the q-Meixner polynomials. The special case 2 f = aq−1 , g = 0, α ∗ = 1 and β ∗ = −q, which implies that η1 = η2 = −1, leads to the orthogonality relation (for a > 0) ∞
aν
ν
∑ (q; q)ν q(2) ym (q−ν ; q)yn (q−ν ; q)
ν =0
= (−a; q)∞ a2n q−n(2n+1) (q, −a−1 q; q)n δmn ,
m, n = 0, 1, 2, . . .
for the q-Charlier polynomials.
η1 η2 g > 1 and < 0. Since q > 1 2f 2f ε1 ε2 g > 1 and < 0. This implies we set q = p−1 with 0 < p < 1. Then we have 2f 2f that g = 0 and we might use the weight function − εg1 z , −ε2 pz; p ∞, w(II) (z; p) = − 2gpf z ; p Case IIa3. q > 1, e = 0, f = 0, (β ∗ )2 ≥ 4gα ∗ q,
∞
where ε1 ε2 = α ∗ = 0 and ε1 p−1 + ε2 g = β ∗ . Then we have ε1 z 1z − εgp − , −ε2 z; p , − ε z; p 2 gp ∞ · 2 f p−2 z + g = ∞ · g, w(II) (p−1 z; p)ϕ (p−2 z) = 2fz − gp2 ; p − 2gpf z ; p ∞
∞
which vanishes for z = −gp/ε1 and for z = −1/ε2 . Now we use (1.15.11) to obtain gp ε1 gp2 ε2 1 for < , < 1 and <1 ε2 ε 1 g ε2 ε1 ε1 ε2 gp2
− 1 − ε1 z , −ε2 pz; p p, , ; p g ε2 g ε1 ε2 gp 1 ∞ dpz = ∞ > 0. (1 − p) d0 := gp − 2 f z 2 f 2 f ε1 ε2 −ε − ; p , ; p 1 gp ε1 ε2 gp ∞
Further we have by using (11.6.5) with q = p−1
∞
11.8 Orthogonality Relations
361
4 f 2 −4n+3 β ∗ n−2 gα ∗ 2n−3 n q q (1 − q ) 1 − + q (α ∗ )2 2f 4f2
2 f n−2 2 f n−1 g n n p 1− , p (1 − p ) 1 − p =− ε1 ε2 ε1 ε2 g
dn =
which implies that
n 2f 2f g n n(n+1)/2 ;p , p, , ∏ d k = − ε1 ε2 p ε1 ε2 gp n k=1
n = 1, 2, 3, . . . .
This leads to the orthogonality relation − 1 − ε1 z , −ε2 pz; p g ε2 (II) ∞ y(II) m (z; p)yn (z; p) d p z gp 2fz −ε − ; p 1 gp ∞ ε1 ε2 gp2
p, , ; p ε2 g ε1 gp 1 ∞ = (1 − p) − 2f 2f ε1 ε2 , ; p ε1 ε2 gp ∞
n 2 f g 2f n(n+1)/2 ; p δmn , p, , × − p ε1 ε2 ε1 ε2 gp n for
n = 1, 2, 3, . . . ,
m, n = 0, 1, 2, . . .
1 gp ε1 gp2 ε2 ε1 ε2 g > 1, < 0, < , < 1 and < 1. 2f 2f ε2 ε 1 g ε2 ε1
η1 η1 N1 η1 N1 −1 η2 g > 1 with q ≤1< q >1 , 2f 2f 2f 2fq and N = min(N1 , N2 ). Again we use the weight
Case IIb1. 0 < q < 1, e = 0, f = 0,
η2 g N2 −1 η2 g N2 −2 q q ≤1< 2f 2f function
with
− 2gf q ; q
ν w(II) (yν ; q−1 ) = q g − η1 , − η2 ; q
Then we have as before with yν
ν
2 f q2 η1 η2
ν
ν
q( 2 ) .
= q−ν
− 2gf q ; q
ν w(II) (qyν ; q−1 )ϕ (q2 yν ) = q g − η1 , − η2 ; q
ν −1
2f η1 η2
ν −1
ν −1 2
· 2 f q ν +(
),
which vanishes for ν = 0 if η2 = −1, which implies that η1 = −α ∗ . It also vanishes g = q−N . Then we have by using (1.11.6) with yν = q−ν and for ν = N + 1 if − 2fq 2fq g = −2 f q−N+1 for − ∗ < qN α
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
362 N
d0 :=
∑ w(II) (yν ; q−1 )yν =
ν =0
N
∑
ν =0
(q−N ; q)ν −
2 f q−N+1 α∗
, q; q
ν
2fq α∗
ν
ν
q(2 )
1
> 0. = −N+1 − 2 f qα ∗ ; q N
Now we have by using (11.6.5) dn =
2f α∗
2
α ∗ n−1 q 1 − qn−N−1 , q−4n+3 (1 − qn ) 1 + 2f
n = 1, 2, 3, . . . ,
which implies that n
∏ dk =
k=1
2f α∗
2n
α∗ q−n(2n−1) q, − , q−N ; q , 2f n
n = 1, 2, 3, . . . .
This leads to the orthogonality relation
2 f q ν (ν ) (II) −ν (q−N ; q)ν (II) q 2 ym (q ; q)yn (q−ν ; q) ∑ 2 f q−N+1 ∗ α ν =0 − α ∗ , q; q ν 2n
2f α ∗ −N 1 −n(2n−1) q, − , q ; q δmn q = −N+1 α∗ 2f n − 2 f qα ∗ ; q N
N
for −
2fq < qN and m, n = 0, 1, 2, . . . , N. α∗
Since we have w(yν ; q−1 ) =
−1 ν (ν ) (q−N ; q)ν (q; q)N (bq; q)N−ν (−1)ν (ν ) 2 = −b q q 2 , (b−1 q−N , q; q)ν (bq; q)N (q; q)N−ν (q; q)ν
the special case 2 f = −b−1 q−1 , g = b−1 q−N , α ∗ = 1 and β ∗ = −q − b−1 q−N , which implies that η1 = η2 = −1, leads to the orthogonality relation (for b > q−N ) (q; q)N (bq; q)N−ν (−1)ν (ν ) q 2 ym (q−ν ; q)yn (q−ν ; q) (q; q) (q; q) N− ν ν ν =0 1 = −1 −N b−2n q−n(2n+1) q, bq, q−N ; q n δmn , m, n = 0, 1, 2, . . . , N (b q ; q)N N
∑ (bq; q)N
for the quantum q-Krawtchouk polynomials. Case III. In this case we have e = 0. In section 11.6 we have seen that it is possible to have positive-definite orthogonality for an infinite system of polynomials in at
11.8 Orthogonality Relations
363
least nine different cases. It is also possible to have positive-definite orthogonality for finite systems of polynomials. We will only treat three finite cases here. g ξ2 β ∗ ξ2 β ∗ N−2 > 0, α ∗ = 0, < −1 with q Case IIIb3. 0 < q < 1, < −1 ≤ e gq g ξ2 β ∗ N−1 ξ1 β ∗ q > −1. We use the weight function and g gq ξ1 ξ2
ν , ; q ν q q gq3 (III) −1 ν w (yν ; q ) ∗ = q− ( 2 ) . ∗ξ ξ gq α =0,β ∗ =0 β 1 2 − β∗ ;q ν
Then we have by using e = g/ξ1 ξ2 with yν = q−ν w(III) (qyν ; q−1 ) ∗ ϕ (q2 yν ) α =0,β ∗ =0 ξ1 ξ2
ν −1 , ; q q q ν −1 gq3 ν −1 = q−( 2 ) · eq−2ν +4 + 2 f q−ν +2 + g ∗ξ ξ gq β 1 2 − β∗ ;q ν −1 ξ1 ξ2
ν −1 q , q ; q ν −1 ν −1 gq3 q−( 2 ) · eq−2ν +4 1 − ξ1 qν −2 1 − ξ2 qν −2 = ∗ gq β ξ1 ξ2 − ;q
=
β∗
ν −1
ξ1 ξ2 q , q ;q ν − βgq∗ ; q ν −1
g ξ1 ξ2
ν
q β∗
ν −1
ν −1 2
q2−(
),
which vanishes for ν = 0 if we have by using (1.8.6)
1 gq −1 g = − ∗ q ; q = 1 + ∗ = 0. gq β β 1 − β∗ ;q −1
This implies that g = −β ∗ . It also vanishes for ν = N + 1 if ξ2 = q−N+1 . Then we have by using (1.11.7) with yν = q−ν ξ1 −N N+1 ν , q ; q N N q q qN −(ν2 ) (III) −1 ν − d0 := ∑ w (yν ; q ) ∗ y = q . = ν ∑ α =0,β ∗ =0 (q; q)ν ξ1 ξ1N ν =0 ν =0 Note that this is positive for ξ1 > 0. Further we have by using (11.6.6), (11.6.7) and (11.6.8) dn = −ξ1 ξ2 qn−3 (1 − qn ) 1 − ξ1 qn−2 1 − ξ2 qn−2 , n = 1, 2, 3, . . . with ξ2 = q−N+1 , which implies that
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
364 n
∏ dk =
−ξ1 q
−N n n(n−3)/2
k=1
q
ξ1 −N q, , q ; q , q n
n = 1, 2, 3, . . . .
This leads to the orthogonality relation ξ1 −N ; q qN+1 ν N ν q ,q (III) (III) ∑ (q; q)ν ν − ξ1 q−(2) ym (q−ν ; q)yn (q−ν ; q) ν =0
qN ξ1 −N −N n n(n−3)/2 = N −ξ1 q q, , q ; q δmn , m, n = 0, 1, 2, . . . , N q q ξ1 n for ξ1 > 0. The special case e = q−2 , 2 f = −b − q−N−1 , g = bq−N+1 , α ∗ = 0 and β ∗ = −bq−N+1 , which implies that ξ1 = bq2 and ξ2 = q−N+1 , leads by using (1.8.18) and ν (bq; q)ν (q; q)N −ν (bq, q−N ; q)ν (−b−1 qN )ν q−( 2 ) = b (q; q)ν (q; q)ν (q; q)N−ν to the orthogonality relation (for 0 < bq < 1) N
(bq; q)ν (q; q)N
∑ (q; q)ν (q; q)N−ν (bq)−ν ym (q−ν ; q)yn (q−ν ; q)
ν =0
= (−1)n bn−N q−N(n+1) qn(n+1)/2 (q, bq, q−N ; q)n δmn ,
m, n = 0, 1, 2, . . .
for the affine q-Krawtchouk polynomials. Case IIIb8. q > 1, g = 0, β ∗ = 0, α ∗ ≤ 0 < e,
2fq 2 f α∗ < 1 and 0 < < 1 with ∗ β eβ ∗
2 f α ∗ N−1 2 f α∗ N q ≤1< q . We use the weight function ∗ eβ eβ ∗ − 2ef p−ν +2 ; p e ν ν ν w(III) (zν ; p) = p( 2 ) . ∗ β ∗ p3 g=0,β ∗ =0 − αβ ∗ ; p ν
Then we have with zν = pν
11.8 Orthogonality Relations
365
ν −1 − 2ef p−ν +3 ; p ν −1 e ν −1 (III) −1 −2 w (p zν ; p) ϕ (p zν ) = p( 2 ) ∗ 3 ∗ ∗ α β p g=0,β =0 − β∗ ; p ν −1 × ep2ν −4 + 2 f pν −2 − 2ef p−ν +2 ; p e ν −1 ν −1 ν · ep−ν −1+( 2 ) , = ∗ ∗ β − αβ ∗ ; p ν −1
which vanishes for ν = 0 if we have by using (1.8.6)
α ∗ −1 α∗ 1 = − ∗ p ; p = 1 + ∗ = 0. ∗ β β p 1 −α ; p β∗
−1
This implies that β ∗ = −α ∗ p−1 . Hence α ∗ = 0, so that we must have α ∗ < 0 < e. Note that for f = 0 we have by using (1.8.14)
2f 2 f p ν −(ν ) e ;p − p−ν +2 ; p = − p 2 , e 2f p e ν ν e = p−N . Therefore we take 2 f = −epN−1 and 2f p use (1.11.2) with zν = pν to obtain −N
N N p ; p ν epN−1 ν e (III) ;p d0 := ∑ w (zν ; p) zν = ∑ = > 0, α∗ α∗ p g=0,α ∗ =0 N ν =0 ν =0 (p; p)ν
which vanishes for ν = N + 1 if −
since α ∗ < 0 < e. Further we have by using (11.6.6), (11.6.7) and (11.6.9) for 2 f = −epN−1 ∗ ∗ 2 1 − αe p−n+3 1 − αe∗ pn+N−2 1 − p−n+N+1 α dn = − p−3n+5 (1 − p−n ) 2 ∗ ∗ ∗ e 1 − αe p−2n+4 1 − αe p−2n+3 1 − αe p−2n+2 1 − αe∗ pn−3 1 − αe∗ pn+N−2 1 − pn−N−1 e 2n+N−3 n (1 − p ) = ∗p 2 α 1 − e∗ p2n−4 1 − e∗ p2n−3 1 − e p2n−2 α
α
α∗
for n = 1, 2, 3, . . ., which implies that epN−1 e −N ; p N−1 n , , p p, n ∗ n α ep α ∗ p2 n p2(2) , ∏ dk = α ∗ e k=1 , e∗ ; p α ∗ p2 α p
This leads to the orthogonality relation
2n
n = 1, 2, 3, . . . .
11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations
366
p−N ; p ν epN−1 ν (III) ν (III) ym (p ; p)yn (pν ; p) ∑ (p; p) ∗ α ν ν =0 epN−1 e −N ; p
N−1 n p, , , p ∗ α ep e α ∗ p2 n ;p pn(n−1) δmn , = ∗ e e α∗ p α N , ; p α ∗ p2 α ∗ p N
n = 1, 2, 3, . . .
2n
for α ∗ < 0 < e. The special case e > 0, 2 f = −epN−1 , g = 0, α ∗ = −p−1 and β ∗ = 1 leads to the orthogonality relation (for e > 0) ν (p−N ; p)ν −epN ym (pν ; p)yn (pν ; p) ν =0 (p; p)ν p, −epN , p−N ; p n N n n(n−1) = (−e; p)N −ep p δmn , (−ep−1 , −e; p)2n N
∑
m, n = 0, 1, 2, . . . , N
for the q-Krawtchouk polynomials. Case IIIb9. For 0 < q < 1, e = 0, α ∗ = 0 and g = 0 we use the weight function ξ1 ξ2
ν , ; q q q gq3 (III) −1 ν . w (yν ; q ) = η 1 η 2 ξ1 ξ2 − ηg1 , − ηq2 ; q ν
Then we have as before with yν = q−ν (III)
w
−1
(qyν ; q )ϕ (q yν ) = 2
ξ1 ξ2 q , q ; q ν −1 − ηg1 , − ηq2 ; q ν −1
g ξ1 ξ2
ν
qν +1 , (η1 η2 )ν −1
which vanishes for ν = 0 if η2 = −1, which implies that η1 = −α ∗ . It also vanishes ξ2 for ν = N + 1 if = q−N . Then we have by using (1.11.3) with yν = q−ν and q ξ2 = q−N+1 ξ1 −N eξ1 q eq−N+1 2 ν , q ; q , ; q N N ∗ ∗ q α α eq ν ∞ . d0 := ∑ w(III) (yν ; q−1 )yν = ∑ = ∗ eξ1 q−N+1 eξ1 q−N+1 eq2 α ν =0 ν =0 , q; q , α∗ ; q α∗ α∗ ν
The parameters e, ξ1 and have as before
α∗
∞
should be chosen in such a way that d0 > 0. Now we
11.8 Orthogonality Relations
367 ∗
1 − αe qn−3
dn = −ξ1 qn−N−2 (1 − qn )
2 ∗ ∗ ∗ 1 − αe q2n−4 1 − αe q2n−3 1 − αe q2n−2
α ∗ n−1 α ∗ n+N−2 q 1− q × 1 − ξ1 qn−2 1 − qn−N−1 1 − e ξ1 e
for n = 1, 2, 3, . . ., which implies that α ∗ ξ1 −N α ∗ α ∗ qN−1 q, eq , eξ , e ; q n 2 , q ,q n 1 n , ∏ dk = −ξ1 q−N+1 qn(n−5)/2 α∗ α∗ k=1 , ; q 2 eq eq
n = 1, 2, 3, . . . .
2n
This leads to the orthogonality relation ξ1 −N 2 ν , q ; q N q eq (III) (III) ν ym (q−ν ; q)yn (q−ν ; q) ∑ eξ1 q−N+1 ∗ α ν =0 , q; q α∗ ν eξ1 q eq−N+2 n α∗ , α∗ ; q ∞ −ξ1 q−N+1 qn(n−5)/2 = −N+1 2 e ξ1 q , eq α∗ α∗ ; q ∞ α ∗ ξ1 −N α ∗ α ∗ qN−1 q, eq , eξ , e ; q 2 , q ,q 2 n × δmn , m, n = 0, 1, 2, . . . , N α∗ α∗ , ; q 2 eq eq 2n
for suitable conditions on the parameters e, ξ1 and α ∗ . The special case e = q−2 , 2 f = −α − q−N−1 , g = α q−N+1 , α ∗ = αβ q and β ∗ = −αβ q2 − α q−N+1 , which implies that ξ1 = α q2 , ξ2 = q−N+1 , η1 = −αβ q and η2 = −1, leads to the orthogonality relation (for 0 < α q < 1 and 0 < β q < 1)
ν 1 (α q, q−N ; q)ν ∑ (β −1 q−N , q; q)ν αβ q ym (q−ν ; q)yn (q−ν ; q) ν =0 −1 −1 −1 −N−1 β ,α β q ;q = −1 −N −1 −1 −1 ∞ (−α q−N )n qn(n+1)/2 (β q , α β q ; q)∞ q, αβ q, α q, q−N , β q, αβ qN+2 ; q n × δmn , m, n = 0, 1, 2, . . . , N (αβ q, αβ q2 ; q)2n N
for the q-Hahn polynomials.
Chapter 12
Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations Classical q-Orthogonal Polynomials III
12.1 Motivation for Polynomials in q−x + uqx Through Duality As in chapter 7 we have the concept of duality introduced in definition 3.1. In chapter 11 we obtained a q-difference equation of the form (cf. (11.1.2)) A∗ (x)yn (q−x−1 ) − {A∗ (x) + B∗ (x)} yn (q−x ) + B∗ (x)yn (q−x+1 ) = λn∗ yn (q−x ), n = 0, 1, 2, . . . , N − 1 with N ∈ {1, 2, 3, . . .} or N → ∞, where λn∗ = (qn − 1) eq(1 − q1−n ) − 2ε (1 − q) , A∗ (x) = eq2 + 2 f qx+1 + gq2x with
and
(12.1.1)
n = 0, 1, 2, . . . , N − 1,
B∗ (x) = α ∗ + β ∗ qx−1 + gq2x−1
α ∗ := eq − 2ε (1 − q) and β ∗ := 2 f q − γ (1 − q),
where e, f , g, α ∗ , β ∗ ∈ R, q > 0, q = 1 and ε = 0. If the regularity condition (11.2.4) holds all eigenvalues λn∗ are different. This implies by using theorem 3.7 that there exists a sequence of dual polynomials. In this case we have λn∗ = (qn − 1) eq(1 − q1−n ) − 2ε (1 − q) and κn = q−n with ω = 0 and x0 = 1 = q−0 . Furthermore we have by using (11.2.2) B∗ (0) = α ∗ + β ∗ q−1 + gq−1 = 0 if we choose c = −1 in (11.2.1). Hence if
R. Koekoek et al., Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monographs in Mathematics, DOI 10.1007/978-3-642-05014-5 12, © Springer-Verlag Berlin Heidelberg 2010
369
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
370
(A∗ (n) =) eq2 + 2 f qn+1 + gq2n = 0,
n = 0, 1, 2, . . . , N − 1
hold, the dual polynomials {zm }Nm=0 satisfy the three-term recurrence relation A∗ (m)zm+1 (q−x ) − {A∗ (m) + B∗ (m)} zm (q−x ) + B∗ (m)zm−1 (q−x ) = q−x zm (q−x ),
m = 0, 1, 2, . . . , N − 1
(12.1.2)
with the convention that z−1 (q−x ) := 0. If we restrict x in (12.1.1) to x = m for m = 0, 1, 2, . . ., then we have A∗ (m)yn (q−m−1 ) − {A∗ (m) + B∗ (m)} yn (q−m ) + B∗ (m)yn (q−m+1 ) (12.1.3) = λn∗ yn (q−m ), n = 0, 1, 2, . . . , N − 1. Since yn (κm ) = yn (q−m ) = zm (λn ) for all m, n = 0, 1, 2, . . ., this implies that there exist dual polynomials with argument λn∗ = (qn − 1) eq(1 − q1−n ) − 2ε (1 − q) = (qn − 1) α ∗ − eq2−n . This motivates the study of orthogonal polynomials in q−x + uqx with q > 0 and q = 1, x a real variable and u ∈ R \ {0} a constant.
12.2 Difference Equations Having Real Polynomial Solutions with Argument q−x + uqx We start with eigenvalue problems of the form (qz) (Dq yn ) (z) = λn ρ(qz) ϕ(qz) Dq2 yn (z) + ψ yn (qz),
n = 0, 1, 2, . . .
(12.2.1)
with Dq := Aq,0 (cf. (3.2.1)), z ∈ C, q > 0 and q = 1. By using (Dq yn ) (z) =
yn (qz) − yn (z) (q − 1)z
and
yn (qz) + q yn (z) yn (q2 z) − (1 + q) Dq2 yn (z) = q(q − 1)2 z2
this can be written in the symmetric form yn (qz) − C(z) + D(z) yn (q−1 z) = λn ρ(z) C(z) yn (z), yn (z) + D(z) where = C(z)
qϕ(z) (q − 1)2 z2
(12.2.2)
2 = q ϕ (z) + q(1 − q)zψ (z) . and D(z) (q − 1)2 z2
For z ∈ R with z > 0 we may write z = qx with x ∈ R, q > 0 and q = 1. By setting
12.2 Difference Equations Having Real Polynomial Solutions with Argument q−x + uqx
371
yn (z) = yn (qx ) = yn (x), yn (qz) = yn (qx+1 ) = yn (x + 1), yn (q−1 z) = yn (qx−1 ) = yn (x − 1) and = C(q x ) = C(x), C(z)
= D(q x ) = D(x) and ρ(z) = ρ(qx ) = ρ (x), D(z)
we conclude that (12.2.1) can be written in the form (cf. (2.2.12)) C(x)yn (x + 1) − {C(x) + D(x)} yn (x) + D(x)yn (x − 1) = λn ρ (x)yn (x)
(12.2.3)
for n = 0, 1, 2, . . .. Now we look for eigenvalues λn and coefficients C(x), D(x) and ρ (x) so that for each eigenvalue λn there exists exactly one real polynomial solution yn with degree[yn ] = n in q−x + uqx up to a constant factor. Since (q−x + uqx )n can be expressed as a linear combination of (q−x ; q)k (uqx ; q)k for k = 0, 1, 2, . . . , n, we set yn (q−x + uqx ) =
n
∑ an,k
k=0
(q−x ; q)k (uqx ; q)k , (q; q)k
an,n = 0,
n = 0, 1, 2, . . . . (12.2.4)
Now we have (q−x−1 ; q)k (uqx+1 ; q)k − (q−x ; q)k (uqx ; q)k = q−x−1 (1 − qk )(uq2x+1 − 1)(q−x ; q)k−1 (uqx+1 ; q)k−1 . This leads to the first simplification C(x) = q(uq2x−1 − 1)C∗ (x),
D(x) = (uq2x+1 − 1)D∗ (x)
and ρ (x) = q−x (uq2x−1 − 1)(uq2x+1 − 1)ρ ∗ (x).
(12.2.5)
For the moment we assume that uq2x±1 = 1. Then we have n
C∗ (x) ∑ an,k k=1
(q−x ; q)k−1 (uqx+1 ; q)k−1 (q; q)k−1 n
− D∗ (x) ∑ an,k k=1
(q−x+1 ; q)k−1 (uqx ; q)k−1 = λn ρ ∗ (x)yn (x). (q; q)k−1
For a second simplification we note that (q−x ; q)k−1 (uqx+1 ; q)k−1 − (q−x+1 ; q)k−1 (uqx ; q)k−1 = q−x (1 − qk−1 )(uq2x − 1)(q−x+1 ; q)k−2 (uqx+1 ; q)k−2 ,
k = 2, 3, 4, . . . .
Now we define C∗ (x) − D∗ (x) = q−x (uq2x − 1)B(x) and ρ ∗ (x) = q−x (uq2x − 1)ρ ∗∗ (x) (12.2.6)
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
372
with the assumption that uq2x = 1. Without loss of generality we may choose ρ ∗∗ (x) = q so that we have n
B(x) ∑ an,k k=1
n (q−x+1 ; q)k−1 (uqx ; q)k−1 (q−x+1 ; q)k−2 (uqx+1 ; q)k−2 +C∗ (x) ∑ an,k (q; q)k−1 (q; q)k−2 k=2
n
= λn q ∑ an,k k=0
(q−x ; q)k (uqx ; q)k , (q; q)k
n = 2, 3, 4, . . . .
(12.2.7)
For n = 0 we have y0 (q−x + uqx ) = a0,0 (= 0) which leads by using (12.2.3) to λ0 = 0 (except for the trivial situation that ρ ∗∗ (x) = 0). For n = 1 we have y1 (q−x + uqx ) = a1,0 + a1,1 (1 − q−x )(1 − uqx )/(1 − q) with a1,1 = 0, which leads to
(1 − q−x )(1 − uqx ) . B(x)a1,1 = λ1 q a1,0 + a1,1 1−q Since all eigenvalues must be different, we conclude that λ1 = 0 (= λ0 ). Hence B(x) = v + w(1 − q−x )(1 − uqx ) with
v, w ∈ R,
w = 0.
(12.2.8)
This form can be used as a third simplification. For the first term on the left-hand side of (12.2.7) we obtain n
∑
vqk−1 + w (1 − u)(1 − qk−1 ) + (1 − q−x )(1 − uqx )
k=1
(q−x ; q)k−1 (uqx ; q)k−1 (q; q)k−1 n + ∑ v − w(1 − q−x )2 (1 − uqx ) × an,k
k=2
× an,k
(q−x+1 ; q)k−2 (uqx+1 ; q)k−2 . (q; q)k−2
(12.2.9)
This implies that C∗ (x) must be of the form C∗ (x) = (1 − uqx ) −v + w(1 − q−x )2 + σ (1 − q−x )
+ τ (1 − q−x )(1 − q−x+1 )(1 − uqx+1 ) ,
σ , τ ∈ R. (12.2.10)
This leads to the following theorem. Theorem 12.1. The q-difference equation (12.2.3) only has real polynomial solutions yn (x∗ ) with degree[yn ] = n in x∗ := q−x +uqx for n = 0, 1, 2, . . . if the coefficients C(x), D(x) and ρ (x) have the form
12.3 The Basic Hypergeometric Representation
373
C(x) = q(1 − uqx )(1 − uq2x−1 ) × v − w(1 − q−x )2 − σ (1 − q−x )
− τ (1 − q−x )(1 − q−x+1 )(1 − uqx+1 ) ,
D(x) = (1 − q−x )(1 − uq2x+1 ) × v − w(1 − uqx )2 − σ (1 − uqx )
− τ (1 − q−x+1 )(1 − uqx )(1 − uqx+1 ) and
ρ (x) = −q−2x+1 (1 − uq2x−1 )(1 − uq2x )(1 − uq2x+1 )
with u, v, w, σ , τ ∈ R, w = 0, q > 0 and q = 1. Note that the assumptions that uq2x±1 = 1 and uq2x = 1 can be dropped.
12.3 The Basic Hypergeometric Representation In order to find the hypergeometric representation of the polynomials in the form (12.2.4), we use (12.2.8), (12.2.10) and (12.2.9) to obtain from (12.2.7) n
∑
vqk−1 + w (1 − u)(1 − qk−1 ) + (1 − q−x )(1 − uqx )
k=1
× an,k
(q−x ; q)k−1 (uqx ; q)k−1 (q; q)k−1
n + ∑ σ + τ (1 − q−x+1 )(1 − uqx+1 ) (1 − q−x )(1 − uqx ) k=2
(q−x+1 ; q)k−2 (uqx+1 ; q)k−2 (q; q)k−2 n (q−x ; q)k (uqx ; q)k = λn q ∑ an,k , n = 1, 2, 3, . . . . (q; q)k k=0 × an,k
Note that this can also be written as
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
374 n
∑
k=0
(q−x ; q)k (uqx ; q)k q−k+1 (1 − qk ) w + τ q(1 − qk−1 ) − λn q an,k (q; q)k n + ∑ vqk − wq−k (1 − qk )2 + σ (1 − qk ) k=0
−τ q−k+1 (1 − qk−1 )(1 − qk )(1 − uqk+1 ) × an,k+1
(q−x ; q)k (uqx ; q)k =0 (q; q)k
for n = 1, 2, 3, . . . with an,n+1 := 0. By comparing the coefficients of (q−x ; q)k (uqx ; q)k on both sides, we find that λn q − q−k+1 (1 − qk ) w + τ q(1 − qk−1 ) an,k = vqk − wq−k (1 − qk )2 + σ (1 − qk ) − τ q−k+1 (1 − qk−1 )(1 − qk )(1 − uqk+1 ) an,k+1 , which holds for k = 0, 1, 2, . . . , n with an,n+1 = 0. This leads to eigenvalues of the form λn = (q−n − 1) w + τ q(1 − qn−1 ) , n = 0, 1, 2, . . . (12.3.1) and the two-term recurrence relation qk+1 w(q−k − q−n ) + τ q q−k (1 + q2k−1 ) − q−n (1 + q2n−1 ) an,k = −vq2k + (1 − qk ) (12.3.2) × w(1 − qk ) − σ qk + τ q(1 − qk−1 )(1 − uqk+1 ) an,k+1 for k = n − 1, n − 2, n − 3, . . . , 0. Hence the coefficients {an,k }nk=0 in (12.2.4) are uniquely determined in terms of an,n = 0 if (q−k − q−n )(w + τ q) + τ (qk − qn ) = 0
(12.3.3)
for k = n − 1, n − 2, n − 3, . . . , 0 and n ∈ {1, 2, 3, . . .}. This condition holds if the eigenvalues in (12.3.1) are all different, since (q−k − q−n )(w + τ q) + τ (qk − qn ) = λk − λn . In the sequel we will always assume that this holds. Note that the coefficients C(x) and D(x) can also be written as
12.3 The Basic Hypergeometric Representation
375
q2xC(x) = q(1 − uqx )(1 − uq2x−1 )
× −w − τ q + 2w + σ + τ (1 + q + uq2 ) qx
+ v − w − σ − τ (1 + uq + uq2 ) q2x + τ uq3x+1
(12.3.4)
q2x D(x) = (1 − qx )(1 − uq2x+1 )
× −τ q − v − w − σ − τ (1 + uq + uq2 ) qx
− 2w + σ + τ (1 + q + uq2 ) uq2x + (w + τ q)u2 q3x
(12.3.5)
and
respectively. Then we have for u = 0 q2xC(x) = −q(1 − uqx )(1 − uq2x−1 )(1 − x1 qx )(1 − x2 qx )(1 − x3 qx ) and q2x D(x) = −u−1 (1 − qx )(1 − uq2x+1 )(x1 − uqx )(x2 − uqx )(x3 − uqx ), where
τ=
x 1 x2 x3 , uq
w = 1−
x1 x2 x3 , u
σ = x1 + x2 + x3 − 2 −
x1 x 2 x 3 1 − q + uq2 uq
and v = −(1 − x1 )(1 − x2 )(1 − x3 ), which leads to the following theorem: Theorem 12.2. The q-difference equation q2xC(x)yn (q−x−1 + uqx+1 ) − q2x {C(x) + D(x)} yn (q−x + uqx ) + q2x D(x)yn (q−x+1 + uqx−1 ) = −q(1 − uq2x−1 )(1 − uq2x )(1 − uq2x+1 )λn yn (q−x + uqx )
(12.3.6)
only has real polynomial solutions yn (x∗ ) with degree[yn ] = n in x∗ = q−x + uqx for n = 0, 1, 2, . . . if the coefficients q2xC(x) and q2x D(x) and the eigenvalues λn have the form
and
q2xC(x) = −q(1 − uqx )(1 − uq2x−1 )(1 − x1 qx )(1 − x2 qx )(1 − x3 qx ),
(12.3.7)
q2x D(x) = −u−1 (1 − qx )(1 − uq2x+1 )(x1 − uqx )(x2 − uqx )(x3 − uqx )
(12.3.8)
x1 x2 x3 n−1 q , λn = (q−n − 1) 1 − u
n = 0, 1, 2, . . . ,
(12.3.9)
376
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
where u ∈ R \ {0}, q > 0, q = 1 and x1 , x2 , x3 ∈ R or one is real and the other two are complex conjugates. For the two-term recurrence relation (12.3.2) we obtain for u = 0 x1 x2 x3 n+k−1 q an,k = (1 − x1 qk )(1 − x2 qk )(1 − x3 qk )an,k+1 q(1 − qk−n ) 1 − u for k = n − 1, n − 2, n − 3, . . . , 0. This implies that we have (x1 qk ; q)n−k (x2 qk ; q)n−k (x3 qk ; q)n−k an,n (qk−n ; q)n−k x1 xu2 x3 qn+k−1 ; q n−k qn−k (q−n ; q)k x1 xu2 x3 qn−1 ; q k k (x1 ; q)n (x2 ; q)n (x3 ; q)n = −n an,n q (x1 ; q)k (x2 ; q)k (x3 ; q)k (q ; q)n x1 xu2 x3 qn−1 ; q n qn
an,k =
for k = 0, 1, 2, . . . , n. By using (12.2.4) this leads to the representation yn (q−x + uqx ) =
(x1 ; q)n (x2 ; q)n (x3 ; q)n an,n −n (q ; q)n x1 xu2 x3 qn−1 ; q n qn n (q−n ; q) x1 x2 x3 qn−1 ; q (q−x ; q) (uqx ; q) k k k k u k ×∑
k=0
=
(x1 ; q)k (x2 ; q)k (x3 ; q)k (q; q)k
(x1 ; q)n (x2 ; q)n (x3 ; q)n an,n (q−n ; q)n x1 xu2 x3 qn−1 ; q n qn −n x1 x2 x3 n−1 −x x q , u q , q , uq × 4 φ3 ; q, q x1 , x2 , x3
q
(12.3.10)
for the q-Racah polynomials with n = 0, 1, 2, . . .. Special cases are the dual q-Hahn polynomials (for x3 = 0) and the dual qKrawtchouk polynomials (for x2 = x3 = 0). Another special case is the family of dual q-Charlier polynomials (for x1 = x2 = x3 = 0) (see [386]). We remark that we have to choose an,n = (q−n ; q)n qn in order to get monic polynomials. Remark. Note that the q-Racah, the dual q-Hahn and the dual q-Krawtchouk polynomials not only appear as finite systems of orthogonal polynomials. Usually one gets finite systems by setting x1 = q−N , for instance. However, this is not necessary. The q-Racah polynomials have a certain symmetry in n and x which leads to duality. The (not normalized) q-Racah polynomials given by (12.3.10) can be written as −n x1 x2 x3 n−1 −x x q , u q , q , uq ∗ −x x (yn (κx ) =) yn (q + uq ) = 4 φ3 ; q, q (12.3.11) x1 , x2 , x3
12.4 The Three-Term Recurrence Relation
377
for n = 0, 1, 2, . . . with κx = (q−x − 1)(1 − uqx ). If we replace u by x1 x2 x3 /uq, then we have −n n −x x1 x2 x3 x−1 q , uq , q , u q x 1 x2 x3 x q ) = 4 φ3 ; q, q (12.3.12) (z∗n (λx ) =) zn (q−x + uq x1 , x2 , x3 for n = 0, 1, 2, 3, . . . with λx = (q−x − 1)(1 − x1 x2 x3 qx−1 /u). Now we have y∗n (κm ) = z∗m (λn ) for m, n = 0, 1, 2, . . .. In view of definition 3.1, {yn (q−x + uqx )} and {zn (q−x + x1 x2 x3 x uq q )} are dual polynomial systems with respect to the sequences of eigenvalues {κn } and {λn }. Note that we also have y∗n (κ0 ) = z∗0 (λn ). The polynomials zn (q−x + x1 x2 x3 x uq q ) can be considered as dual q-Racah polynomials. This fact will be used in the next section.
12.4 The Three-Term Recurrence Relation In order to obtain the three-term recurrence relation, we use the concept of duality. For the q-Racah polynomials we start with the difference equation (cf. (12.2.3)) for the (not normalized) q-Racah polynomials yn (q−x + uqx ) given by (12.3.11): C(x)y∗n (κx+1 ) − {C(x) + D(x)} y∗n (κx ) + D(x)y∗n (κx−1 ) = λn ρ (x)y∗n (κx ). Now we have y∗n (κx ) = z∗x (λn ) with κx = (q−x − 1)(1 − uqx ) and λn = (q−n − 1)(1 − x1 x2 x3 qn−1 /u) which implies that the difference equation for the dual q-Racah polynomials z∗x (λn ) given by (12.3.12) can be written as C(x)z∗x+1 (λn ) − {C(x) + D(x)} z∗x (λn ) + D(x)z∗x−1 (λn ) = λn ρ (x)z∗x (λn ). For the coefficients we have (cf. (12.3.7)) q2xC(x) = −q(1 − uqx )(1 − uq2x−1 )(1 − x1 qx )(1 − x2 qx )(1 − x3 qx ) and (cf. (12.3.8)) q2x D(x) = −u−1 (1 − qx )(1 − uq2x+1 )(x1 − uqx )(x2 − uqx )(x3 − uqx ) which leads to the three-term recurrence relation q(1 − uqn )(1 − uq2n−1 )(1 − x1 qn )(1 − x2 qn )(1 − x3 qn )z∗n+1 (λx ) − q(1 − uqn )(1 − uq2n−1 )(1 − x1 qn )(1 − x2 qn )(1 − x3 qn )
+ u−1 (1 − qn )(1 − uq2n+1 )(x1 − uqn )(x2 − uqn )(x3 − uqn ) z∗n (λx )
+ u−1 (1 − qn )(1 − uq2n+1 )(x1 − uqn )(x2 − uqn )(x3 − uqn )z∗n−1 (λx ) = q(1 − uq2n−1 )(1 − uq2n )(1 − uq2n+1 )λx z∗n (λx ),
n = 1, 2, 3, . . .
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
378
with z∗0 (λx ) = 1 and z∗1 (λx ) = 1 + (1 − uq)λx /(1 − x1 )(1 − x2 )(1 − x3 ). By replacing u by x1 x2 x3 /uq (= τ ) the polynomials z∗n (λn ) given by (12.3.12) change into the polynomials y∗n (κx ) given by (12.3.11). This implies that the threeterm recurrence relation for the polynomials y∗n (κx ) can be written as u(u − x1 x2 x3 qn−1 )(u − x1 x2 x3 q2n−2 )(1 − x1 qn )(1 − x2 qn )(1 − x3 qn )y∗n+1 (κx ) − u(u − x1 x2 x3 qn−1 )(u − x1 x2 x3 q2n−2 )(1 − x1 qn )(1 − x2 qn )(1 − x3 qn ) + (1 − qn )(u − x1 x2 qn−1 )(u − x1 x3 qn−1 )(u − x2 x3 qn−1 ) ×(u − x1 x2 x3 q2n ) y∗n (κx ) + (1 − qn )(u − x1 x2 qn−1 )(u − x1 x3 qn−1 )(u − x2 x3 qn−1 ) × (u − x1 x2 x3 q2n )y∗n−1 (κx ) = (u − x1 x2 x3 q2n−2 )(u − x1 x2 x3 q2n−1 )(u − x1 x2 x3 q2n )κx y∗n (κx ),
n = 1, 2, 3, . . .
with y∗0 (κx ) = 1, y∗1 (κx ) = 1 + (u − x1 x2 x3 )κx /u(1 − x1 )(1 − x2 )(1 − x3 ) and κx = (q−x − 1)(1 − uqx ). The connection with the monic q-Racah polynomials yn (κx ) is given by x1 x2 x3 n−1 ;q n u q ∗ yn (κx ), n = 0, 1, 2, . . . . yn (κx ) = (x1 ; q)n (x2 ; q)n (x3 ; q)n Hence the three-term recurrence relation for the monic q-Racah polynomials yn (κx ) can be written in the form (1) (2) (1) (2) yn+1 (κx ) = κx + cn + cn yn (κx ) − cn−1 cn yn−1 (κx ), n = 1, 2, 3, . . . (12.4.1) with y0 (κx ) = 1 and y1 (x) = κx + u(1 − x1 )(1 − x2 )(1 − x3 )/(u − x1 x2 x3 ), where (1)
cn =
u(u − x1 x2 x3 qn−1 )(1 − x1 qn )(1 − x2 qn )(1 − x3 qn ) , (u − x1 x2 x3 q2n−1 )(u − x1 x2 x3 q2n )
n = 0, 1, 2, . . . (12.4.2)
and (2)
cn =
(1 − qn )(u − x1 x2 qn−1 )(u − x1 x3 qn−1 )(u − x2 x3 qn−1 ) (u − x1 x2 x3 q2n−2 )(u − x1 x2 x3 q2n−1 )
for n = 1, 2, 3, . . ..
(12.4.3)
12.5 Classification of the Positive-Definite Orthogonal Polynomial Solutions
379
12.5 Classification of the Positive-Definite Orthogonal Polynomial Solutions Favard’s theorem (theorem 3.1) can be extended for monic polynomials yn (q−x + uqx ) in q−x + uqx of degree n ∈ {0, 1, 2, . . .} with u ∈ R \ {0}. The polynomials given by yn+1 (q−x + uqx ) = (q−x − 1)(1 − uqx ) − cn yn (q−x + uqx ) (12.5.1) − dn yn−1 (q−x + uqx ) for n = 1, 2, 3, . . . with y0 (q−x +uqx ) = 1 and y1 (q−x +uqx ) = (q−x −1)(1−uqx )−c0 are orthogonal with respect to a positive-definite linear functional Λ , id est n
−x x −x x Λ ym (q + uq )yn (q + uq ) = ∏ dk δmn , m, n = 0, 1, 2, . . . , (12.5.2) k=0
where Λ [y0 (q−x + uqx )] = d0 ∈ R and Λ [yn (q−x + uqx )] = 0 for n = 1, 2, 3, . . . iff cn ∈ R for all n = 0, 1, 2, . . . and d0 , d1 , d2 , . . . , dn are positive. The proof is similar to the proof of theorem 3.1. For the monic q-Racah polynomials given by (12.3.10) we have the three-term recurrence relation (12.4.1) with (1)
c0 = −c0 , (1)
(2)
dn = cn−1 cn =
(1)
(2)
cn = −cn − cn ,
n = 1, 2, 3, . . . ,
u(1 − qn )(u − x1 x2 x3 qn−2 ) Dn 2n−3 (u − x1 x2 x3 q )(u − x1 x2 x3 q2n−2 )2 (u − x1 x2 x3 q2n−1 )
for n = 1, 2, 3, . . ., and Dn = (1 − x1 qn−1 )(1 − x2 qn−1 )(1 − x3 qn−1 ) × (u − x1 x2 qn−1 )(u − x1 x3 qn−1 )(u − x2 x3 qn−1 )
(12.5.3)
for n = 1, 2, 3, . . ., where u ∈ R \ {0}. Hence we have cn ∈ R for all n = 0, 1, 2, . . . if x1 x2 x3 ∈ R, x1 + x2 + x3 ∈ R and x1 x2 + x1 x3 + x2 x3 ∈ R. This implies that x1 , x2 , x3 ∈ R or one is real and the other two are complex conjugates. To study the positivity of dn for n = 1, 2, 3, . . ., we only need to consider the cases 0 < q < 1 and q > 1 in view of the argument q−x + uqx . Further we have u ∈ R \ {0}. In all cases where x1 x2 x3 = 0 we have dn =
u(1 − qn )(u − x1 x2 x3 qn−2 ) 1 − qn D = Dn n (u − x1 x2 x3 q2n−3 )(u − x1 x2 x3 q2n−2 )2 (u − x1 x2 x3 q2n−1 ) u2
for n = 1, 2, 3, . . .. Case I. x1 = x2 = x3 = 0. Then we have
380
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
dn = u(1 − qn ),
n = 1, 2, 3, . . . .
This implies that we have positive-definite orthogonality in the following two infinite cases: Case Ia1. x1 = x2 = x3 = 0, 0 < q < 1 and u > 0. Case Ia2. x1 = x2 = x3 = 0, q > 1 and u < 0. In this case we have no finite systems of positive-definite orthogonal polynomials. Case II. x1 = 0 and x2 = x3 = 0. Then we have dn = u(1 − qn )(1 − x1 qn−1 ),
n = 1, 2, 3, . . . .
This leads to positive-definite orthogonality in the following three infinite cases: Case IIa1. x1 = 0, x2 = x3 = 0, 0 < q < 1, u > 0 and x1 < 1. Case IIa2. x1 = 0, x2 = x3 = 0, q > 1, u > 0 and x1 > 1. Case IIa3. x1 = 0, x2 = x3 = 0, q > 1, u < 0 and x1 < 0. It is also possible to have positive-definite orthogonality for finite systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .} in the following two cases: Case IIb1. x1 = 0, x2 = x3 = 0, 0 < q < 1, u < 0 and x1 > 1 with x1 qN ≤ 1 < x1 qN−1 . Case IIb2. x1 = 0, x2 = x3 = 0, q > 1, u < 0 and 0 < x1 < 1 with x1 qN−1 < 1 ≤ x1 qN . Case III. x1 x2 = 0 and x3 = 0. Then we have dn = (1 − qn )(1 − x1 qn−1 )(1 − x2 qn−1 )(u − x1 x2 qn−1 ),
n = 1, 2, 3, . . . .
Without loss of generality we assume that x1 ≤ x2 . Then we have positive-definite orthogonality in the following six infinite cases: Case IIIa1. x1 x2 = 0, x3 = 0, 0 < q < 1, u > 0, x1 < x2 < 1 and u > x1 x2 . Case IIIa2. x1 x2 = 0, x3 = 0, 0 < q < 1, x1 = x2 and u > x1 x2 . Case IIIa3. x1 x2 = 0, x3 = 0, q > 1, x1 < x2 < 0 and u < x1 x2 .
12.5 Classification of the Positive-Definite Orthogonal Polynomial Solutions
381
Case IIIa4. x1 x2 = 0, x3 = 0, q > 1, x1 < 0, x2 > 1 and u > x1 x2 . Case IIIa5. x1 x2 = 0, x3 = 0, q > 1, 1 < x1 < x2 and u < x1 x2 . Case IIIa6. x1 x2 = 0, x3 = 0, q > 1, x1 = x2 and u < x1 x2 . It is also possible to have positive-definite orthogonality for finite systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .} in the following seven cases: Case IIIb1. x1 x2 = 0, x3 = 0, 0 < q < 1, x1 < 0 < x2 < 1 and x1 x2 qN−1 < u ≤ x1 x2 qN . Case IIIb2. x1 x2 = 0, x3 = 0, 0 < q < 1, x1 < 0, x2 > 1 with x2 qN ≤ 1 < x2 qN−1 and u < x1 x2 . Case IIIb3. x1 x2 = 0, x3 = 0, 0 < q < 1, 0 < x1 < 1 < x2 with x2 qN1 ≤ 1 < x2 qN1 −1 and x1 x2 qN2 ≤ u < x1 x2 qN2 −1 and N = min(N1 , N2 ). Case IIIb4. x1 x2 = 0, x3 = 0, 0 < q < 1, 1 < x1 ≤ x2 with x1 qN1 ≤ 1 < x1 qN1 −1 , x2 qN2 ≤ 1 < x2 qN2 −1 , N = min(N1 , N2 ) and u > x1 x2 . Since x1 ≤ x2 we have N = N1 in this case. Case IIIb5. x1 x2 = 0, x3 = 0, q > 1, x1 < 0 < x2 < 1 with x2 qN1 −1 < 1 ≤ x2 qN1 , x1 x2 qN2 ≤ u < x1 x2 qN2 and N = min(N1 , N2 ). Case IIIb6. x1 x2 = 0, x3 = 0, q > 1, 0 < x1 ≤ x2 < 1 with x1 qN1 −1 < 1 ≤ x1 qN1 , x2 qN2 −1 < 1 ≤ x2 qN2 , N = min(N1 , N2 ) and u < x1 x2 . Since x1 ≤ x2 we have N = N2 in this case. Case IIIb7. x1 x2 = 0, x3 = 0, q > 1, 0 < x1 < 1 < x2 with x1 qN1 −1 < 1 ≤ x1 qN1 , x1 x2 qN2 −1 < u ≤ x1 x2 qN2 and N = min(N1 , N2 ). Case IV. x1 x2 x3 = 0. Now we write (1)
(2)
dn = u(1 − qn )Dn Dn ,
n = 1, 2, 3, . . .
(12.5.4)
with (1)
Dn = and
1 − τ qn−1
(1 − τ q2n−2 )(1 − τ q2n−1 )2 (1 − τ q2n )
,
n = 1, 2, 3, . . .
(12.5.5)
382
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations (2)
Dn = (1 − x1 qn−1 )(1 − x2 qn−1 )(1 − x3 qn−1 ) τ τ τ × 1 − qn 1 − qn 1 − qn x1 x2 x3 for n = 1, 2, 3, . . ., where
τ=
(12.5.6)
x 1 x2 x3 . uq
Note that dn ∼ u for n → ∞ both for 0 < q < 1 and q > 1. This implies that dn > 0 can only be true for all n = 1, 2, 3, . . . if u > 0. (1)
q
extra conditions
Dn
for
0
τ <0
+
n = 1, 2, 3, . . .
0 < τq < 1
+
n = 1, 2, 3, . . .
τ q > 1 with 1 < τ q2N ≤ q−2
− n = 1, 2, 3, . . . , N
τ <0
q>1 0 < τq < 1
with q−2
n = 1, 2, 3, . . .
+ ≤ τ q2N
< 1 + n = 1, 2, 3, . . . , N
τq > 1
−
n = 1, 2, 3, . . .
(1)
Table 12.1 sign of Dn , q > 0 and N ∈ {1, 2, 3, . . .}
(1)
Without loss of generality we assume that x1 ≤ x2 ≤ x3 . The sign of Dn for n = 1, 2, 3, . . . is given by table 12.1 (cf. table 10.2). By using (12.5.4), (12.5.6) and table 12.1, we conclude that we have positive-definite orthogonality in the following four infinite cases: (2)
Case IVa1. x1 x2 x3 = 0, 0 < q < 1, u > 0, τ < 0 and Dn > 0. (2)
Case IVa2. x1 x2 x3 = 0, 0 < q < 1, u > 0, 0 < τ q < 1 and Dn > 0. (2)
Case IVa3. x1 x2 x3 = 0, q > 1, u > 0, τ < 0 and Dn < 0. (2)
Case IVa4. x1 x2 x3 = 0, q > 1, u > 0, τ q > 1 and Dn > 0. It is also possible to have positive-definite orthogonality for finite systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .} in the following four cases: Case IVb1. x1 x2 x3 = 0, 0 < q < 1, u > 0, τ q > 1 with 1 < τ q2N ≤ q−2 and Dn < 0. (2)
Case IVb2. x1 x2 x3 = 0, 0 < q < 1, u < 0, τ q > 1 with 1 < τ q2N ≤ q−2 and Dn > 0. (2)
12.6 Solutions of the q-Pearson Equation
383
Case IVb3. x1 x2 x3 = 0, q > 1, u > 0, 0 < τ q < 1 with q−2 ≤ τ q2N < 1 and Dn < 0. (2)
Case IVb4. x1 x2 x3 = 0, q > 1, u < 0, 0 < τ q < 1 with q−2 ≤ τ q2N < 1 and Dn > 0. (2)
We remark that it is also possible to have positive-definite orthogonality for finite (2) systems of N + 1 polynomials with N ∈ {1, 2, 3, . . .} in cases where Dn has opposite sign for n = N and n = N + 1.
12.6 Solutions of the q-Pearson Equation In this section we use the following operator1 (cf. (2.1.1) with ω = 0) (A f ) (q−x + uqx ) =
f (q−x−1 + uqx+1 ) − f (q−x + uqx ) , q−x−1 + uqx+1 − q−x − uqx
q > 0,
q = 1, (12.6.1)
where f is a complex-valued function in q−x + uqx whose domain contains both q−x + uqx and q−x−1 + uqx+1 for each x ∈ R. For two such functions f1 and f2 , a product rule similar to (11.4.2) applies. In fact we have (A ( f1 f2 )) (q−x + uqx ) = (A f1 ) (q−x + uqx ) f2 (q−x + uqx ) + (S f1 ) (q−x + uqx ) (A f2 ) (q−x + uqx ), (12.6.2) where, analogous to (11.4.3), we now define (S f ) (q−x + uqx ) = f (q−x−1 + uqx+1 ) −1 −x and S f (q + uqx ) = f (q−x+1 + uqx−1 ).
(12.6.3)
We start with a general second-order operator equation of the form ϕ (q−x + uqx ) A 2 yn (q−x + uqx ) + ψ (q−x + uqx ) (A yn ) (q−x + uqx ) = λn (S yn ) (q−x + uqx ) in terms of the operator (12.6.1) and later we will compare this to the q-difference equation (12.3.6) in theorem 12.2. If we multiply both sides of this equation by (S w) (q−x + uqx ) we obtain (S w) (q−x + uqx )ϕ (q−x + uqx ) A 2 yn (q−x + uqx ) + (S w) (q−x + uqx )ψ (q−x + uqx ) (A yn ) (q−x + uqx ) (12.6.4) = λn (S w) (q−x + uqx ) (S yn ) (q−x + uqx ), 1 It turns out that this form makes sense. However, this form no longer has the property that its action on a polynomial in q−x + uqx of degree n leads to a polynomial in q−x + uqx of degree n − 1 for n = 1, 2, 3, . . ..
384
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
which leads to the self-adjoint form −1 A w S ϕ (A yn ) (q−x + uqx ) = λn (S w) (q−x + uqx ) (S yn ) (q−x + uqx )
(12.6.5)
if the Pearson operator equation −1 −x A w S ϕ (q + uqx ) = (S w) (q−x + uqx )ψ (q−x + uqx ) holds. Furthermore, the productrule (12.6.2) leads to −1 −x A w S ϕ (q + uqx ) w(q−x−1 + uqx+1 ) − w(q−x + uqx ) = S −1 ϕ (q−x + uqx ) q−x−1 + uqx+1 − q−x − uqx −1 −x −x x ϕ (q + uqx ) −x−1 x+1 ϕ (q + uq ) − S + w(q + uq ) . q−x−1 + uqx+1 − q−x − uqx Combining the latter two equations we obtain (cf. (3.2.7) and (11.4.6)) w(q−x + uqx )ϕ (q−x+1 + uqx−1 ) = w(q−x−1 + uqx+1 ) × ϕ (q−x + uqx ) − q−x−1 + uqx+1 − q−x − uqx ψ (q−x + uqx ) . (12.6.6) Note that the q-difference equation (12.3.6) in theorem 12.2 can be written in the form −x−1 −x+1 + D(x) C(x)y + uqx+1 ) − C(x) yn (q−x + uqx ) + D(x)y + uqx−1 ) n (q n (q = λn yn (q−x + uqx ),
(12.6.7)
where, by using (12.3.7), (12.3.8) and (12.3.9), q2xC(x) q(1 − uq2x−1 )(1 − uq2x )(1 − uq2x+1 ) (1 − uqx )(1 − x1 qx )(1 − x2 qx )(1 − x3 qx ) , = (1 − uq2x )(1 − uq2x+1 )
=− C(x)
q2x D(x) q(1 − uq2x−1 )(1 − uq2x )(1 − uq2x+1 ) (1 − qx )(x1 − uqx )(x2 − uqx )(x3 − uqx ) . = uq(1 − uq2x−1 )(1 − uq2x )
(12.6.8)
D(x) =−
and
x1 x2 x3 n−1 q , λn = (q−n − 1) 1 − u
n = 0, 1, 2, . . . .
(12.6.9)
12.6 Solutions of the q-Pearson Equation
385
Now we have by using (12.6.1) (A yn ) (q−x + uqx ) =
yn (q−x−1 + uqx+1 ) − yn (q−x + uqx ) q−x−1 + uqx+1 − q−x − uqx
(12.6.10)
and 2 −x A yn (q + uqx ) 1 = −x−1 x+1 q + uq − q−x − uqx yn (q−x−2 + uqx+2 ) − yn (q−x−1 + uqx+1 ) × q−x−2 + uqx+2 − q−x−1 − uqx+1 −
yn (q−x−1 + uqx+1 ) − yn (q−x + uqx ) . q−x−1 + uqx+1 − q−x − uqx
(12.6.11)
If we apply the operator S −1 to the left of (12.6.4) we obtain w(q−x + uqx )ϕ (q−x+1 + uqx−1 ) A 2 yn (q−x+1 + uqx−1 ) + w(q−x + uqx )ψ (q−x+1 + uqx−1 ) (A yn ) (q−x+1 + uqx−1 ) = λn w(q−x + uqx )yn (q−x + uqx ). Now we divide by w(q−x + uqx ) and use (12.6.10) and (12.6.11) to find yn (q−x−1 + uqx+1 )ϕ (q−x+1 + uqx−1 ) (q−x + uqx − q−x+1 − uqx−1 )(q−x−1 + uqx+1 − q−x − uqx ) yn (q−x + uqx ) − −x q + uqx − q−x+1 − uqx−1 ϕ (q−x+1 + uqx−1 ) × q−x−1 + uqx+1 − q−x − uqx
ϕ (q−x+1 + uqx−1 ) + −x − ψ (q−x+1 + uqx−1 ) q + uqx − q−x+1 − uqx−1 +
yn (q−x+1 + uqx−1 ) q−x + uqx − q−x+1 − uqx−1
ϕ (q−x+1 + uqx−1 ) −x+1 x−1 × − ψ (q + uq ) q−x + uqx − q−x+1 − uqx−1
= λn yn (q−x + uqx ). If we compare this with the q-difference equation (12.6.7) we conclude that
ϕ (q−x+1 + uqx−1 ) (12.6.12) = q−x + uqx − q−x+1 − uqx−1 q−x−1 + uqx+1 − q−x − uqx C(x)
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
386
and
ψ (q−x+1 + uqx−1 ) ϕ (q−x+1 + uqx−1 ) + = − q−x + uqx − q−x+1 − uqx−1 D(x) q−x + uqx − q−x+1 − uqx−1 −x x −x+1 x−1 D(x) = − q + uq − q − uq −x−1 x+1 −x (12.6.13) + q + uq − q − uqx C(x). This implies that the q-Pearson equation (12.6.6) can be written in the form w(q−x + uqx ) q−x + uqx − q−x+1 − uqx−1 C(x) + 1). = w(q−x−1 + uqx+1 ) q−x−1 + uqx+1 − q−x − uqx D(x Hence we have the q-Pearson equation = w(q + 1), −x−1 + uqx+1 )D(x −x + uqx )C(x) w(q
(12.6.14)
−x + uqx ) := q−x + uqx − q−x+1 − uqx−1 w(q−x + uqx ). w(q
(12.6.15)
where
Finally we use (12.6.8) and (12.6.9) to conclude that we look for solutions of the q-Pearson equation + 1) −x + uqx ) D(x w(q = −x−1 x+1 + uq ) w(q C(x) =
(1 − qx+1 )(1 − uq2x )(x1 − uqx+1 )(x2 − uqx+1 )(x3 − uqx+1 ) . (12.6.16) uq(1 − uqx )(1 − uq2x+2 )(1 − x1 qx )(1 − x2 qx )(1 − x3 qx )
As before, for q > 1 we set q = p−1 . Then we obtain x + up−x ) w(p x+1 + up−x−1 ) w(p =
(1 − p−x−1 )(1 − up−2x )(x1 − up−x−1 )(x2 − up−x−1 )(x3 − up−x−1 ) . (12.6.17) up−1 (1 − up−x )(1 − up−2x−2 )(1 − x1 p−x )(1 − x2 p−x )(1 − x3 p−x )
Case I. x1 = x2 = x3 = 0. From (12.6.16) we have −x + uqx ) (1 − qx+1 )(1 − uq2x ) w(q = −u2 q3x+2 −x−1 x+1 + uq ) (1 − uqx )(1 − uq2x+2 ) w(q with possible solution
12.6 Solutions of the q-Pearson Equation
w(I) (q−x + uqx ) = −
1 u2
x
387
q−x(3x+1)/2 (1 − uq2x )
(u; q)x , (q; q)x
0 < q < 1.
From (12.6.17) we have x + up−x ) u(1 − px+1 )(1 − u−1 p2x ) w(p = − 3x+1 x+1 −x−1 + up ) p (1 − u−1 px )(1 − u−1 p2x+2 ) w(p with possible solution 1 x x(3x−1)/2 (u−1 ; p)x p (1 − u−1 p2x ) , w(I) (px + up−x ) = − u (p; p)x
0 < p < 1.
Case II. x1 = 0 and x2 = x3 = 0. From (12.6.16) we have x+1 )(1 − uq2x )(x − uqx+1 ) −x + uqx ) w(q 1 2x+1 (1 − q = uq −x−1 + uqx+1 ) (1 − uqx )(1 − uq2x+2 )(1 − x1 qx ) w(q
with possible solution
w(II) (q−x + uqx ) =
1 x1 uq
x
x
q−2(2) (1 − uq2x )
(u, x1 ; q)x , (q, x1−1 uq; q)x
0 < q < 1.
From (12.6.17) we have x + up−x ) (1 − px+1 )(1 − u−1 p2x )(1 − x1 u−1 px+1 ) u w(p = x+1 + up−x−1 ) x1 p2x+1 (1 − u−1 px )(1 − u−1 p2x+2 )(1 − x1−1 px ) w(p with possible solution w(II) (px + up−x ) =
x p x x (u−1 , x1−1 ; p)x 1 p2(2) (1 − u−1 p2x ) , u (p, x1 u−1 p; p)x
0 < p < 1.
Case III. x1 x2 = 0 and x3 = 0. From (12.6.16) we have x+1 )(1 − uq2x )(x − uqx+1 )(x − uqx+1 ) −x + uqx ) w(q 1 2 x (1 − q = −q −x−1 + uqx+1 ) (1 − uqx )(1 − uq2x+2 )(1 − x1 qx )(1 − x2 qx ) w(q
with possible solution 1 x −( x ) (u, x1 , x2 ; q)x (III) −x x q 2 (1 − uq2x ) , w (q + uq ) = − x1 x2 (q, x1−1 uq, x2−1 uq; q)x
0 < q < 1.
388
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
From (12.6.17) we have x + up−x ) (1 − px+1 )(1 − u−1 p2x ) u w(p = − x+1 + up−x−1 ) x1 x2 px+1 (1 − u−1 px )(1 − u−1 p2x+2 ) w(p ×
(1 − x1 u−1 px+1 )(1 − x2 u−1 px+1 ) (1 − x1−1 px )(1 − x2−1 px )
with possible solution w(III) (px + up−x ) x x p x x (u−1 , x1−1 , x2−1 ; p)x 1 2 = − p(2) (1 − u−1 p2x ) , u (p, x1 u−1 p, x2 u−1 p; p)x
0 < p < 1.
Case IV. x1 x2 x3 = 0. From (12.6.16) we have −x + uqx ) x1 x2 x3 (1 − qx+1 )(1 − uq2x ) w(q = −x−1 x+1 + uq ) uq (1 − uqx )(1 − uq2x+2 ) w(q ×
(1 − x1−1 uqx+1 )(1 − x2−1 uqx+1 )(1 − x3−1 uqx+1 ) (1 − x1 qx )(1 − x2 qx )(1 − x3 qx )
with possible solution x uq (u, x1 , x2 , x3 ; q)x (IV ) −x x (1 − uq2x ) , w (q + uq ) = −1 x1 x2 x3 (q, x1 uq, x2−1 uq, x3−1 uq; q)x
0 < q < 1.
From (12.6.17) we have x + up−x ) w(p u (1 − px+1 )(1 − u−1 p2x ) = x+1 −x−1 + up ) x1 x2 x3 p (1 − u−1 px )(1 − u−1 p2x+2 ) w(p ×
(1 − x1 u−1 px+1 )(1 − x2 u−1 px+1 )(1 − x3 u−1 px+1 ) (1 − x1−1 px )(1 − x2−1 px )(1 − x3−1 px )
with possible solution w(IV ) (px + up−x ) =
x x x p x 1 2 3 (1 − u−1 p2x ) u (u−1 , x1−1 , x2−1 , x3−1 ; p)x × , (p, x1 u−1 p, x2 u−1 p, x3 u−1 p; p)x
0 < p < 1.
12.7 Orthogonality Relations
389
12.7 Orthogonality Relations In the preceding section we have obtained solutions of the q-Pearson equation (12.6.16) and the p-Pearson equation (12.6.17). In this section we will derive orthogonality relations for several cases obtained in section 12.5. We will not give explicit orthogonality relations for each different case, but we will restrict to the most important cases. As in section 3.2 we now multiply (12.6.5) by (S ym ) (q−x + uqx ) and subtract the same equation with m and n interchanged to obtain (λn − λm ) (S w) (q−x + uqx ) (S yn ) (q−x + uqx ) (S ym ) (q−x + uqx ) = A w S −1 ϕ (A yn ) (q−x + uqx ) (S ym ) (q−x + uqx ) − A w S −1 ϕ (A ym ) (q−x + uqx ) (S yn ) (q−x + uqx ). Now we apply the operator S −1 and use the commutation rule (cf. (2.5.3) and (11.4.8)) −x q + uqx − q−x+1 − uqx−1 S −1 A = q−x−1 + uqx+1 − q−x − uqx A S −1 , which easily follows from (12.6.1) and (12.6.3), to obtain (cf. (3.2.9)) −x + uqx )ym (q−x + uqx )yn (q−x + uqx ) (λn − λm )w(q −x−1 = q + uqx+1 − q−x − uqx × A S −1 w S −1 ϕ (A yn ) (q−x + uqx )ym (q−x + uqx ) − A S −1 w S −1 ϕ (A ym ) (q−x + uqx )yn (q−x + uqx ) , (12.7.1) −x + uqx ) is given by (12.6.15). Now the product rule (12.6.2) leads to the where w(q summations by parts formula (cf. (3.2.17)) N
∑
q−x−1 + uqx+1 − q−x − uqx (A f1 ) (q−x + uqx ) f2 (q−x + uqx )
x=0
N+1 = f1 (q−x + uqx ) f2 (q−x + uqx ) x=0
− ∑ q−x−1 + uqx+1 − q−x − uqx (S f1 ) (q−x + uqx ) (A f2 ) (q−x + uqx ). N
x=0
Applying this to (12.7.1) we obtain
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
390
N
−x + uqx )ym (q−x + uqx )yn (q−x + uqx ) (λn − λm ) ∑ w(q x=0
−x (q + uqx ) = S −1 w S −1 ϕ × S −1 (A yn ) (q−x + uqx )ym (q−x + uqx ) N+1 . − S −1 (A ym ) (q−x + uqx )yn (q−x + uqx ) x=0
As in theorem 3.8 we now obtain orthogonality relations of the form N
−x + uqx )ym (q−x + uqx )yn (q−x + uqx ) = σn δmn , ∑ w(q
m, n = 0, 1, 2, . . . , N
x=0
with
n
σn = ∏ dk ,
n = 1, 2, 3, . . . , N
k=1
and N ∈ {1, 2, 3, . . .} or possibly N → ∞. In each different case the appropriate boundary conditions (cf. (3.2.19)) should be satisfied, id est: −1 −1 0 S w S ϕ (q + uq0 ) = 0 (12.7.2) and
−1 −1 −N−1 w S ϕ (q S + uqN+1 ) = 0,
(12.7.3)
is given by (12.6.15). where the relation between w and w (2)
Case IVa1. x1 x2 x3 = 0, 0 < q < 1, u > 0, τ < 0 and Dn > 0. We use the weight function x uq (u, x1 , x2 , x3 ; q)x w(IV ) (q−x + uqx ) = (1 − uq2x ) , 0 < q < 1. x1 x2 x3 (q, x1−1 uq, x2−1 uq, x3−1 uq; q)x Then we have by using (1.8.25) and Jackson’s summation formula (1.11.10) x ∞ uq (u, x1 , x2 , x3 ; q)x (1 − uq2x ) d0 := ∑ −1 −1 −1 x x x (q, x 1 2 3 x=0 1 uq, x2 uq, x3 uq; q)x √ √ q u, −q u, u, x1 , x2 , x3 uq = (1 − u) 6 φ5 √ √ −1 ; q, x1 x2 x3 u, − u, x1 uq, x2−1 uq, x3−1 uq −1 −1 −1 −1 −1 −1 uq (uq, x1 x2 uq, x x3 uq, x2 x3 uq; q)∞ < 1. , = (1 − u) −1 x1 x2 x3 (x1 uq, x2−1 uq, x3−1 uq, x1−1 x2−1 x3−1 uq; q)∞ Further we have
12.7 Orthogonality Relations
dn =
391
u(1 − qn )(1 − x1 x2 x3 u−1 qn−2 )(1 − x1 qn−1 )(1 − x2 qn−1 )(1 − x3 qn−1 ) (1 − x1 x2 x3 u−1 q2n−3 )(1 − x1 x2 x3 u−1 q2n−2 )2 (1 − x1 x2 x3 u−1 q2n−1 ) × (1 − x1 x2 u−1 qn−1 )(1 − x1 x3 u−1 qn−1 )(1 − x2 x3 u−1 qn−1 )
for n = 1, 2, 3, . . ., which implies that n q, x1 x2 x3 u−1 q−1 , x1 , x2 , x3 , x1 x2 u−1 , x1 x3 u−1 , x2 x3 u−1 ; q n n σn = ∏ dk = u (x1 x2 x3 u−1 q−1 , x1 x2 x3 u−1 ; q)2n k=1 for n = 1, 2, 3, . . .. This leads to the orthogonality relation x ∞ uq (u, x1 , x2 , x3 ; q)x ∑ x1 x2 x3 (1 − uq2x ) (q, x−1 uq, x−1 uq, x−1 uq; q) ym (q−x + uqx )yn (q−x + uqx ) x x=0 1 2 3 = (1 − u)
(uq, x1−1 x2−1 uq, x−1 x3−1 uq, x2−1 x3−1 uq; q)∞
(x−1 uq, x2−1 uq, x3−1 uq, x1−1 x2−1 x3−1 uq; q)∞ 1 q, x1 x2 x3 u−1 q−1 , x1 , x2 , x3 , x1 x2 u−1 , x1 x3 u−1 , x2 x3 u−1 ; q n n ×u δmn (x1 x2 x3 u−1 q−1 , x1 x2 x3 u−1 ; q)2n
for m, n = 0, 1, 2, . . .. Note that this is an orthogonality relation for an infinite system of q-Racah polynomials given by (12.3.10). However, note that we have by using (12.6.12) and (12.6.15) −1 −1 −x −x+1 + uqx−1 )ϕ (q−x+2 + uqx−2 ) w(q S w S ϕ (q + uqx ) = q−x+1 + uqx−1 − q−x+2 − uqx−2 x−1 u (u, x1 , x2 , x3 ; q)x = q−1 (1 − q) . −1 x1 x2 x3 (q, x1 uq, x2−1 uq, x3−1 uq; q)x−1 Now we use (1.8.5) to obtain 1 = (1; q)1 = 0 and (q; q)−1
1 u = (xi−1 u; q)1 = 1 − , xi (xi−1 uq; q)−1
xi = 0.
This implies that the boundary condition (12.7.2) holds. If we choose x1 , x2 or x3 equal to q−N , then the other boundary condition (12.7.3) also holds. So, in order to find an orthogonality relation for a finite system of q-Racah polynomials, one of the parameters x1 , x2 or x3 should be set equal to q−N . For instance, if we set x3 = q−N , then we obtain N+1 x uq (u, x1 , x2 , q−N ; q)x (1 − uq2x ) , 0 < q < 1. w(IV ) (q−x + uqx ) = −1 x1 x2 (q, x1 uq, x2−1 uq, uqN+1 ; q)x Then we have by using (1.8.25) and Jackson’s summation formula (1.11.11)
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
392
x uqN+1 (u, x1 , x2 , q−N ; q)x ∑ x1 x2 (1 − uq2x ) (q, x−1 uq, x−1 uq, uqN+1 ; q) x x=0 1 2 √ √ q u, −q u, u, x1 , x2 , q−N uqN+1 √ = (1 − u) 6 φ5 √ ; q, x1 x2 u, − u, x1−1 uq, x2−1 uq, uqN+1 N
d0 :=
= (1 − u)
(uq, x1−1 x2−1 uq; q)N . (x1−1 uq, x2−1 uq; q)N
Further we have
q, x1 x2 u−1 q−N−1 , q−N , x1 , x2 , x1 x2 u−1 , x1 u−1 q−N , x2 u−1 q−N ; q n σn = ∏ dk = u (x1 x2 u−1 q−N−1 , x1 x2 u−1 q−N ; q)2n k=1 n
n
for n = 1, 2, 3, . . . , N. This leads to the orthogonality relation N
∑
x=0
uqN+1 x1 x2
x (1 − uq2x )
(u, x1 , x2 , q−N ; q)x ym (q−x + uqx )yn (q−x + uqx ) −1 (q, x1 uq, x2−1 uq, uqN+1 ; q)x
(uq, x1−1 x2−1 uq; q)N (x−1 uq, x2−1 uq; q)N 1 q, x1 x2 u−1 q−N−1 , q−N , x1 , x2 , x1 x2 u−1 , x1 u−1 q−N , x2 u−1 q−N ; q n n ×u δmn (x1 x2 u−1 q−N−1 , x1 x2 u−1 q−N ; q)2n
= (1 − u)
for m, n = 0, 1, 2, . . . , N. Note that this is an orthogonality relation for a finite system of q-Racah polynomials. From this general case involving the q-Racah polynomials we obtain orthogonality relations for the dual q-Hahn polynomials by taking the limit x2 → 0. By using k+1 2
x2k (x2−1 uq; q)k = (x2 − uq)(x2 − uq2 ) · · · (x2 − uqk ) → (−1)k uk q(
),
x2 → 0
for k ∈ {0, 1, 2, . . .}, we find that lim w(IV ) (q−x + uqx ) = w(III) (q−x + uqx ).
x2 →0
We remark that this limit can only be used in the finite case. Now we have for instance Case IIIb3. x1 x2 = 0, x3 = 0, 0 < q < 1, 0 < x1 < 1 < x2 with x2 qN1 ≤ 1 < x2 qN1 −1 and x1 x2 qN2 ≤ u < x1 x2 qN2 −1 and N = min(N1 , N2 ). We use the weight function 1 x −( x ) (u, x1 , x2 ; q)x q 2 (1 − uq2x ) , 0 < q < 1. w(III) (q−x + uqx ) = − x1 x2 (q, x1−1 uq, x2−1 uq; q)x Choosing x2 = q−N we have by using (1.8.25) and the summation formula (1.11.12)
12.7 Orthogonality Relations
393
N x x q (u, x1 , q−N ; q)x ∑ − x1 q−(2) (1 − uq2x ) (q, x−1 uq, uqN+1 ; q) x x=0 1 √ √ q u, −q u, u, x1 , 0, q−N (uq; q)N qN √ −1 = (1 − u) N −1 = (1 − u) 6 φ4 √ ; q, . N+1 x1 u, − u, x1 uq, uq x1 (x1 uq; q)N N
d0 :=
Further we have n σn = ∏ dk = un q, q−N , x1 , x1 u−1 q−N ; q n ,
n = 1, 2, 3, . . . , N.
k=1
This leads to the orthogonality relation N
∑
x=0
−
qN x1
= (1 − u)
x
x
(u, x1 , q−N ; q)x ym (q−x + uqx )yn (q−x + uqx ) (q, x1−1 uq, uqN+1 ; q)x un q, q−N , x1 , x1 u−1 q−N ; q n δmn , m, n = 0, 1, 2, . . . , N
q−(2) (1 − uq2x )
(uq; q)N N x1 (x1−1 uq; q)N
for a finite system of dual q-Hahn polynomials. In the same way as above this orthogonality relation for the dual q-Hahn polynomials leads to an orthogonality relation for the dual q-Krawtchouk polynomials by taking the limit x1 → 0. Now we have lim w(III) (q−x + uqx ) = w(II) (q−x + uqx ).
x1 →0
Then we have for instance Case IIb1. x1 = 0, x2 = x3 = 0, 0 < q < 1, u < 0 and x1 > 1 with x1 qN ≤ 1 < x1 qN−1 . We use the weight function x x 1 (u, x1 ; q)x q−2(2) (1 − uq2x ) , 0 < q < 1. w(II) (q−x + uqx ) = x1 uq (q, x1−1 uq; q)x Choosing x1 = q−N we have by using (1.8.25) and the summation formula (1.11.13) N
d0 :=
∑
x=0
qN−1 u
x
x
q−2(2) (1 − uq2x )
(u, q−N ; q)x (q, uqN+1 ; q)x
√ √ q u, −q u, u, 0, 0, q−N qN−1 √ √ = (1 − u) 6 φ3 ; q, u, − u, uqN+1 u N+1 = (1 − u) (−1)N u−N q−( 2 ) (uq; q)N . Further we have
12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations
394
n σn = ∏ dk = un q, q−N ; q n ,
n = 1, 2, 3, . . . , N.
k=1
This leads to the orthogonality relation
x
(u, q−N ; q)x ym (q−x + uqx )yn (q−x + uqx ) (q, uqN+1 ; q)x x=0 N+1 = (1 − u) (−1)N un−N q−( 2 ) (uq; q)N q, q−N ; q n δmn , m, n = 0, 1, 2, . . . , N N
∑
qN−1 u
x
q−2(2) (1 − uq2x )
for a finite system of dual q-Krawtchouk polynomials. This process cannot be continued in order to obtain an orthogonality relation for the dual q-Charlier polynomials. In that case we only have orthogonality in the case of an infinite family of polynomials. However, we don’t know how to derive an orthogonality relation for such an infinite family of dual q-Charlier polynomials.
Chapter 13
Orthogonal Polynomial Solutions in az + uz a of Complex q-Difference Equations Classical q-Orthogonal Polynomials IV
13.1 Real Polynomial Solutions in az + uz a with u ∈ R \ {0} and a, z ∈ C \ {0} It is also possible to obtain real polynomial solutions of the (complex) q-difference equation (12.2.1) (qz∗ ) (Dq yn ) (z∗ ) = λn ρ(qz∗ ) ϕ(qz∗ ) Dq2 yn (z∗ ) + ψ yn (qz∗ ),
n = 0, 1, 2, . . .
with argument z∗ := az + uz a where u ∈ R \ {0} and a, z ∈ C \ {0}. By using z = x + iy, a = α + iβ with x, y, α , β ∈ R, we find that the imaginary part of a uz α + iβ u(x + iy) (α + iβ )(x − iy) u(x + iy)(α − iβ ) + = + = + z a x + iy α + iβ x 2 + y2 α2 + β 2 equals (β x − α y)(α 2 + β 2 ) + u(α y − β x)(x2 + y2 ) (β x − α y) α 2 + β 2 − u(x2 + y2 ) = . (x2 + y2 )(α 2 + β 2 ) (x2 + y2 )(α 2 + β 2 ) This is equal to zero for all x ∈ R and y ∈ R if x 2 + y2 = r 2
and
ur2 = α 2 + β 2 (= aa).
Without loss of generality we set r = 1, which implies that z is on the unit circle. So if we define z = e iθ ,
a = |a|e−iφ ,
θ , φ ∈ R,
|a| > 0
and u = aa = |a|2 ,
R. Koekoek et al., Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monographs in Mathematics, DOI 10.1007/978-3-642-05014-5 13, © Springer-Verlag Berlin Heidelberg 2010
395
396
13 Orthogonal Polynomial Solutions in
a z
+ uz a of Complex q-Difference Equations
then we find that a uz a + = + az = |a|e−i(θ +φ ) + |a|ei(θ +φ ) = 2|a| cos(θ + φ ). z a z a uz a by q−x , then we have + −→ q−x + uqx . So, similar z z a to the situation in the previous chapter we now look for polynomial solutions of the form Note that if we replace
yn (z∗ ) =
n
∑ bn,k
k=0
( az ; q)k ( uz a ; q)k , (q; q)k
in
z∗ =
bn,n = 0,
n = 0, 1, 2, . . .
(13.1.1)
a uz + , z a
of the q-difference equation (12.2.2) ∗ ) ∗ ) + D(z ∗ ) yn (z∗ ) + D(z ∗ ) C(z yn (qz∗ ) − C(z yn (q−1 z∗ ) = λn ρ(z∗ ) yn (z∗ ), with q ∈ R \ {−1, 0, 1}. Note that yn (z∗ ) is a polynomial with degree[yn ] = n in z∗ = az + uz a = 2|a| cos(θ + φ ). In a similar way as in the previous chapter (cf. theorem 12.2) we now have the following theorem:
Theorem 13.1. The q-difference equation
z2 z2 z2 a uqz a uz aq uz + − 2 {C(z) + D(z)} yn + + 2 D(z)yn + C(z)yn a2 qz a a z a a z aq
a uz a 2 a 2 aq 2 + (13.1.2) 1− z 1 − z λn y n = −q 1 − z aq a a z a only has polynomial solutions yn (z∗ ) with degree[yn ] = n in z∗ =
a uz + (= 2|a| cos(θ + φ )) z a 2
2
for n = 0, 1, 2, . . . if the coefficients az 2 C(z) and az 2 D(z) and the eigenvalues λn have the form
z2 z3 z1 a 2 z2 z (13.1.3) 1− z 1− z 1− z , C(z) = −q (1 − az) 1 − 2 a aq a a a
z z2 1 aq 2 1 − 1 − z (z1 − az) (z2 − az) (z3 − az) D(z) = − (13.1.4) a2 aa a a and
z1 z2 z3 n−1 q , λn = (q−n − 1) 1 − aa
n = 0, 1, 2, . . . ,
(13.1.5)
13.1 Real Polynomial Solutions in
a z
+ uz a with u ∈ R \ {0} and a, z ∈ C \ {0}
397
where a, z1 , z2 , z3 ∈ C, a = 0 and q ∈ R \ {−1, 0, 1}. By using az = |a|e−i(θ +φ ) and representation (cf. (12.3.10)) yn (z∗ ) =
uz a
= az = |a|ei(θ +φ ) , we obtain for n = 0, 1, 2, . . . the
(z1 ; q)n (z2 ; q)n (z3 ; q)n z2 z3 bn,n (q−n ; q)n z1aa qn−1 ; q n qn
z2 z3 n−1 q−n , z1aa q , |a|e−i(θ +φ ) , |a|ei(θ +φ ) × 4 φ3 ; q, q (13.1.6) z1 , z2 , z3
with
a uz a + = + az = 2|a| cos(θ + φ ) (13.1.7) z a z for the Askey-Wilson polynomials, the continuous q-Hahn polynomials or the continuous q-Jacobi polynomials. Special cases are the continuous dual q-Hahn polynomials (z3 = 0), the qMeixner-Pollaczek polynomials, the Al-Salam-Chihara polynomials or the continuous q-Laguerre polynomials (z2 = z3 = 0) and the continuous big q-Hermite polynomials (z1 = z2 = z3 = 0). We remark that we have to choose bn,n = (q−n ; q)n qn in order to get monic polynomials. z∗ =
In view of (12.4.1), (12.4.2) and (12.4.3), we conclude that the monic Askey-Wilson, continuous q-Hahn or continuous q-Jacobi polynomials satisfy the three-term recurrence relation (1) (2) yn+1 (z∗ ) = 2|a| cos(θ + φ ) − |a|2 − 1 + cn + cn yn (z∗ ) − cn−1 cn yn−1 (z∗ ), (1)
(2)
n = 1, 2, 3, . . .
(13.1.8)
with y0 (z∗ ) = 1 and y1 (z∗ ) = 2|a| cos(θ + φ ) − |a|2 − 1 + |a|2 (1 − z1 )(1 − z2 )(1 − z3 )/(|a|2 − z1 z2 z3 ), where (1)
cn =
|a|2 (|a|2 − z1 z2 z3 qn−1 )(1 − z1 qn )(1 − z2 qn )(1 − z3 qn ) (|a|2 − z1 z2 z3 q2n−1 )(|a|2 − z1 z2 z3 q2n )
(13.1.9)
for n = 0, 1, 2, . . ., and (2)
cn =
(1 − qn )(|a|2 − z1 z2 qn−1 )(|a|2 − z1 z3 qn−1 )(|a|2 − z2 z3 qn−1 ) (|a|2 − z1 z2 z3 q2n−2 )(|a|2 − z1 z2 z3 q2n−1 )
for n = 1, 2, 3, . . ..
(13.1.10)
398
13 Orthogonal Polynomial Solutions in
a z
+ uz a of Complex q-Difference Equations
13.2 Classification of the Positive-Definite Orthogonal Polynomial Solutions The classification of positive-definite orthogonal polynomial solutions can be done as in chapter 12. However, in this case we have q ∈ R \ {−1, 0, 1} and u = aa = |a|2 > 0. Now we have (1)
c0 = −c0 , (1)
(2)
dn = cn−1 cn =
(1)
(2)
cn = −cn − cn ,
n = 1, 2, 3, . . . ,
|a|2 (1 − qn )(|a|2 − z1 z2 z3 qn−2 ) Dn (|a|2 − z1 z2 z3 q2n−3 )(|a|2 − z1 z2 z3 q2n−2 )2 (|a|2 − z1 z2 z3 q2n−1 )
for n = 1, 2, 3, . . . and Dn = (1 − z1 qn−1 )(1 − z2 qn−1 )(1 − z3 qn−1 ) × (|a|2 − z1 z2 qn−1 )(|a|2 − z1 z3 qn−1 )(|a|2 − z2 z3 qn−1 ) (13.2.1) for n = 1, 2, 3, . . ., where q ∈ R \ {−1, 0, 1} and a ∈ C \ {0}. Hence we have cn ∈ R for all n = 0, 1, 2, . . . if z1 z2 z3 ∈ R, z1 + z2 + z3 ∈ R and z1 z2 + z1 z3 + z2 z3 ∈ R. This implies that z1 , z2 , z3 ∈ R or one is real and the other two are complex conjugates. As before, we start the study of the positivity of dn for n = 1, 2, 3, . . . with the cases where z1 z2 z3 = 0. Then we have dn =
|a|2 (1 − qn )(|a|2 − z1 z2 z3 qn−2 ) 1 − qn D = Dn . n (|a|2 − z1 z2 z3 q2n−3 )(|a|2 − z1 z2 z3 q2n−2 )2 (|a|2 − z1 z2 z3 q2n−1 ) |a|4
The sign of 1 − qn is given in table 13.1. q 1 − qn
q < −1 −1 < q < 0 0 < q < 1 q > 1 (−1)n+1
+
+
−
Table 13.1 sign of 1 − qn , n = 1, 2, 3, . . .
Case I. z1 = z2 = z3 = 0. Then we have dn = |a|2 (1 − qn ),
n = 1, 2, 3, . . . .
This implies that we have positive-definite orthogonality in the following two infinite cases: Case Ia1. z1 = z2 = z3 = 0 and −1 < q < 0. Case Ia2. z1 = z2 = z3 = 0 and 0 < q < 1.
13.2 Classification of the Positive-Definite Orthogonal Polynomial Solutions
399
In this case we have no finite systems of positive-definite orthogonal polynomials. Case II. z1 = 0 and z2 = z3 = 0. Then we have dn = |a|2 (1 − qn )(1 − z1 qn−1 ),
n = 1, 2, 3, . . . .
In this case we must have z1 ∈ R. This leads to positive-definite orthogonality in the following four infinite cases: Case IIa1. z1 ∈ R \ {0}, z2 = z3 = 0, q < −1 and the sign of 1 − z1 qn−1 equal to (−1)n+1 . This implies that z1 < q−1 . Case IIa2. z1 ∈ R \ {0}, z2 = z3 = 0, −1 < q < 0 and 1 − z1 qn−1 > 0. This implies that q−1 < z1 < 1. Case IIa3. z1 ∈ R \ {0}, z2 = z3 = 0, 0 < q < 1 and 1 − z1 qn−1 > 0. This implies that z1 < 1. Case IIa4. z1 ∈ R \ {0}, z2 = z3 = 0, q > 1 and 1 − z1 qn−1 < 0. This implies that z1 > 1. Also in this case we have no finite systems of positive-definite orthogonal polynomials. Case III. z1 z2 = 0 and z3 = 0. Then we have dn = (1 − qn )(1 − z1 qn−1 )(1 − z2 qn−1 )(|a|2 − z1 z2 qn−1 ),
n = 1, 2, 3, . . . .
This leads to positive-definite orthogonality in the following four infinite cases: Case IIIa1. z1 z2 = 0, z3 = 0, q < −1 and the sign of (1 − z1 qn−1 )(1 − z2 qn−1 )(|a|2 − z1 z2 qn−1 ) equal to (−1)n+1 . Case IIIa2. z1 z2 = 0, z3 = 0, −1 < q < 0 and (1 − z1 qn−1 )(1 − z2 qn−1 )(|a|2 − z1 z2 qn−1 ) > 0. Case IIIa3. z1 z2 = 0, z3 = 0, 0 < q < 1 and (1 − z1 qn−1 )(1 − z2 qn−1 )(|a|2 − z1 z2 qn−1 ) > 0. Case IIIa4. z1 z2 = 0, z3 = 0, q > 1 and (1 − z1 qn−1 )(1 − z2 qn−1 )(|a|2 − z1 z2 qn−1 ) < 0.
400
13 Orthogonal Polynomial Solutions in
a z
+ uz a of Complex q-Difference Equations
It is also possible to have positive-definite orthogonality for finite systems of polynomials. However, we will not treat these finite cases. Case IV. z1 z2 z3 = 0. Now we write (cf. (12.5.4)) (1)
(2)
dn = |a|2 (1 − qn )Dn Dn ,
n = 1, 2, 3, . . .
(13.2.2)
with (cf. (12.5.5)) (1)
Dn =
1 − τ qn−1 , (1 − τ q2n−2 )(1 − τ q2n−1 )2 (1 − τ q2n )
n = 1, 2, 3, . . .
(13.2.3)
and (cf. (12.5.6)) (2)
Dn = (1 − z1 qn−1 )(1 − z2 qn−1 )(1 − z3 qn−1 )
τ τ τ × 1 − qn 1 − qn 1 − qn z1 z2 z3 for n = 1, 2, 3, . . ., where
τ=
(13.2.4)
z1 z2 z3 . |a|2 q (1)
The sign of 1 − qn for n = 1, 2, 3, . . . is given in table 13.1. The sign of Dn n = 1, 2, 3, . . . is given in table 12.1 (for q > 0) and in table 13.2 (for q < 0).
q
(1)
extra conditions
τ q2 > 1
q < −1 0
< τ q2
< 1 with 1
0 < τq < 1
≤ τ q2N
with τ q2N+1
0 < τ q < 1 with q
< τ q2N
−1 < q < 0
> 1 with 1
< τ q2N
0 < τ q2
for
(−1)n
n = 1, 2, 3, . . .
< q−2
+
n = 1, 2, 3, . . . , N
=1
+
n = 1, 2, 3, . . . , N
< q−1
τq > 1 τ q2
Dn
≤ q−2
<1
+
n = 1, 2, 3, . . . , 2N + 1
(−1)n+1
n = 1, 2, 3, . . .
(−1)n
n = 1, 2, 3, . . . , N
+
n = 1, 2, 3, . . .
0 < τq < 1
+
n = 1, 2, 3, . . .
τ q > 1 with τ q2N+1 = 1
(−1)n+1
n = 1, 2, 3, . . . , N
τ q > 1 with q−1 < τ q2N < q
for
(−1)n+1 n = 1, 2, 3, . . . , 2N + 1
(1)
Table 13.2 sign of Dn , q < 0 and N ∈ {1, 2, 3, . . .}
By using table 12.1, table 13.1 and table 13.2, we conclude that we have positivedefinite orthogonality in the following eight infinite cases:
13.3 Solutions of the q-Pearson Equation
401 (2)
Case IVa1. z1 z2 z3 = 0, q < −1, τ q2 > 1 and Dn < 0. (2)
Case IVa2. z1 z2 z3 = 0, q < −1, τ q > 1 and Dn > 0. (2)
Case IVa3. z1 z2 z3 = 0, −1 < q < 0, 0 < τ q2 < 1 and Dn > 0. (2)
Case IVa4. z1 z2 z3 = 0, −1 < q < 0, 0 < τ q < 1 and Dn > 0. (2)
Case IVa5. z1 z2 z3 = 0, 0 < q < 1, τ < 0 and Dn > 0. (2)
Case IVa6. z1 z2 z3 = 0, 0 < q < 1, 0 < τ q < 1 and Dn > 0. (2)
Case IVa7. z1 z2 z3 = 0, q > 1, τ < 0 and Dn < 0. (2)
Case IVa8. z1 z2 z3 = 0, q > 1, τ q > 1 and Dn > 0. It is also possible to have positive-definite orthogonality for finite systems of polynomials. However, we will not treat these finite cases.
13.3 Solutions of the q-Pearson Equation In this section we use the following operator1 (cf. (12.6.1))
f a + uqz − f a + uz qz a z a a uz + = , q ∈ R \ {−1, 0, 1}, (A f ) uqz a a uz z a qz + a − z − a
(13.3.1)
a uz where f is a complex-valued function in az + uz a whose domain contains both z + a uqz a and qz + a for each z ∈ C. For two such functions f1 and f2 , a product rule similar to (12.6.2) applies. In fact we have
a uz a uz a uz + = (A f1 ) + f2 + (A ( f1 f2 )) z a z a z a
a uz a uz + (A f2 ) + , (13.3.2) + (S f1 ) z a z a
where, analogous to (12.6.3), we now define 1 It turns out that this form makes sense. However, this form no longer has the property that its a uz action on a polynomial in az + uz a of degree n leads to a polynomial in z + a of degree n − 1 for n = 1, 2, 3, . . ..
402
13 Orthogonal Polynomial Solutions in
a z
+ uz a of Complex q-Difference Equations
a uqz a uz + =f + (S f ) z a qz a
−1 a uz aq uz + =f + . and S f z a z aq
(13.3.3)
Now we start with a general second-order operator equation of the form
a uz 2 a uz + A yn + ϕ z a z a
a uz a uz a uz + (A yn ) + = λn (S yn ) + +ψ z a z a z a in terms of the operator (13.3.1) and later we will compare this to the q-difference equation
in theorem 13.1. If we multiply both sides of this equation by (13.1.2) a uz + we obtain (S w) z a
a uz a uz 2 a uz + + A yn + (S w) ϕ z a z a z a
a uz a uz a uz + + (A yn ) + + (S w) ψ z a z a z a
a uz a uz + (S yn ) + , (13.3.4) = λn (S w) z a z a which leads to the self-adjoint form
−1 a uz + A w S ϕ (A yn ) z a
a uz a uz + (S yn ) + = λn (S w) z a z a if the Pearson operator equation
−1 a uz a uz a uz + = (S w) + + A w S ϕ ψ z a z a z a holds. Furthermore, the productrule (13.3.2) leads to
(13.3.5)
13.3 Solutions of the q-Pearson Equation
403
−1 a uz + A w S ϕ z a
w a + uqz − w a + uz a uz qz a z a = S −1 ϕ + uqz a a uz z a + − − qz a z a a uz a uqz ϕ z + a − S −1 ϕ az + uz a + +w . uqz a a uz qz a qz + a − z − a Combining the latter two equations we obtain (cf. (3.2.7) and (11.4.6))
aq uz a uz + + ϕ w z a z aq
a uqz + =w qz a
a uqz a uz a uz a uz + − + − − + . × ϕ ψ z a qz a z a z a
(13.3.6)
The q-difference equation (13.1.2) in theorem 13.1 can now be written in the form
a uz
a uqz aq uz + − C(z) + D(z) yn + + D(z)yn + C(z)yn qz a z a z aq
a uz + , (13.3.7) = λn y n z a where, by using (13.1.3), (13.1.4) and (13.1.5), z2C(z) a 2 2 1 − aa z2 1 − aq a2 q 1 − aq z a z (1 − az) 1 − za1 z 1 − za2 z 1 − za3 z = , 2 1 − aa z2 1 − aq a z
=− C(z)
z2 D(z) a 2 2 1 − aa z2 1 − aq a2 q 1 − aq z z a z 1 − a (z1 − az) (z2 − az) (z3 − az) = a 2 1 − aa z2 aa q 1 − aq z
=− D(z)
(13.3.8)
z1 z2 z3 n−1 q , λn = (q−n − 1) 1 − aa Note that we have by using (13.3.1) and
n = 0, 1, 2, . . . .
(13.3.9)
404
13 Orthogonal Polynomial Solutions in
(A yn )
a uz + z a
and
a uz A 2 yn + = z a
yn =
a qz
a z
+ uz a of Complex q-Difference Equations
a uz − y + uqz + n a z a
a qz
a uz + uqz a − z − a
⎧ ⎨ yn
a qz
a q2 z
(13.3.10)
2 a + uqa z − yn qz + uqz a
1 a uz ⎩ 2 a a + uqz + uqa z − qz − uqz a − z − a a q2 z ⎫ uqz a a uz ⎬ yn qz + a − yn z + a − . (13.3.11) uqz a a uz ⎭ qz + a − z − a
If we apply the operator S −1 to the left of (13.3.4) we obtain
aq uz 2 aq uz a uz + + A yn + w ϕ z a z aq z aq
aq uz aq uz a uz + + (A yn ) + ψ +w z a z aq z aq
a uz a uz + yn + . = λn w z a z a
a uz + and use (13.3.10) and (13.3.11) to find Now we divide by w z a aq a uz yn qz + uqz ϕ + a z aq aq uqz a uz uz a a uz + − − + − − z a z aq qz a z a ⎧ aq uz ⎨ ϕ z + aq yn az + uz a − a uz aq uz a a uz ⎩ qz + uqz z + a − z − aq a − z − a ⎫ uz
⎬ ϕ aq + z aq aq uz + + a uz aq uz − ψ + − − z aq ⎭ z a z aq ⎧ ⎫ uz uz
⎨ ϕ aq yn aq z + aq z + aq aq uz ⎬ + + a uz aq uz aq uz − ψ ⎩ az + uz z aq ⎭ z + a − z − aq a − z − aq
a uz = λn y n + . z a If we compare this with the q-difference equation (13.3.7) we conclude that
13.3 Solutions of the q-Pearson Equation
405
aq uz + z aq
a uqz a uz a uz aq uz + − − + − − C(z) = z a z aq qz a z a
ϕ
and
(13.3.12)
aq uz + ψ z aq aq uz
ϕ + z aq a uz aq uz + − − =− D(z) + a uz aq uz z a z aq + − z a z − aq
a uqz a uz a uz aq uz + − − D(z) + + − − C(z). (13.3.13) =− z a z aq qz a z a
This implies that the q-Pearson equation (13.3.6) can be written in the form
a uz aq uz a uz + + − − C(z) w z a z a z aq
a uqz a uz a uqz + + − − D(qz). =w qz a qz a z a Hence we have the q-Pearson equation
a uqz a uz + C(z) = w + D(qz), w z a qz a where
a uz + w z a
:=
(13.3.14)
a uz aq uz a uz + − − w + . z a z aq z a
(13.3.15)
Finally we use (13.3.8) and (13.3.9) to conclude that we look for solutions of the q-Pearson equation az + uz w 1 − aa z2 1 − qz a D(qz) a (z1 − aqz)(z2 − aqz)(z3 − aqz) = = 2 C(z) a + uqz aa q 1 − aq z2 (1 − az) 1 − z1 z 1 − z2 z 1 − z3 z w qz
where
a
a
2 1 − aq 1− 1− a z = a (1 − az) 1 − aqa2 z2 1 − aqz 2 z3 z1 z2 1 − aqz 1 − aqz 1 − aqz , × 1 − za1 z 1 − za2 z 1 − za3 z
a qz
a
a
a
a 2 az
(13.3.16)
406
z = eiθ ,
13 Orthogonal Polynomial Solutions in
a = |a|e−iφ ,
θ , φ ∈ R,
a z
+ uz a of Complex q-Difference Equations
a uz + = 2|a| cos(θ + φ ). z a
|a| > 0 and
Note that this is equivalent to (12.6.16) with u = |a|2 = aa, qx replaced by z/a and xi replaced by zi for i = 1, 2, 3. Now we make the following observations: 2
az a w(z) = , 2 ;q a az ∞ 2 aq 2 az a a 2 , ; q 1 − 1 − z z 2 a az a a w(z) ∞ , = = 22 =⇒ aq z a a a w(qz) 1 − 1 − , ; q 2 2 2 2 2 a aq z aq z aqz ∞
1 w(z) = a az, z ; q ∞
=⇒
a a aqz, qz ;q 1 − qz w(z) = a ∞= w(qz) 1 − az az, z ; q ∞
and
w(z) = zi z a
1
zi , az ;q
zi qz a , zi z a ,
w(z) = w(qz)
=⇒ ∞
zi aqz ; q ∞ zi az ; q ∞
=
zi 1 − aqz
1 − zai z
,
i = 1, 2, 3.
Case I. z1 = z2 = z3 = 0. From (13.3.16) we have a 1 − qz 1 − aa z2 1 − aq z2 az + uz ) w( a a = a a qz + uqz w( a ) (1 − az) 1 − aqa2 z2 1 − aqz 2 with possible solution w(I)
a uz + z a
=
az2 a a , az2 ; q a ∞, az, z ; q ∞
z = eiθ ,
a = |a|e−iφ .
Case II. z1 ∈ R \ {0} and z2 = z3 = 0. From (13.3.16) we have aq 2 z1 a a 2 a uz 1 − 1 − 1 − 1 − z z z+ a) w( qz a a aqz = a a a qz + uqz ) w( a 1− 1 − z1 z (1 − az) 1 − aq2 z2
with possible solution
aqz2
a
13.4 Orthogonality Relations
w(II)
a uz + z a
407
=
az2 a a , az2 ; q a z z z ∞ , az, z , a1 , az1 ; q ∞
z = eiθ ,
a = |a|e−iφ .
Case III. z1 z2 = 0 and z3 = 0. From (13.3.16) we have z1 z2 a 2 1 − qz 1 − aa z2 1 − aq 1 − 1 − z az + uz ) w( a aqz aqz a = a z1 z2 a a qz + uqz ) w( a (1 − az) 1 − aq2 z2 1 − aqz2 1 − a z 1 − a z with possible solution w(III)
a uz + z a
= az,
az2 a a , az2 ; q ∞ , a z1 z z1 z2 z z2 z , a , az , a , az ; q ∞
z = eiθ ,
a = |a|e−iφ .
Case IV. z1 z2 z3 = 0. From (13.3.16) we have z3 aq 2 z1 z2 a a 2 a uz 1 − 1 − 1 − 1 − 1 − 1 − z z w( z + a ) qz a a aqz aqz aqz = a z3 z1 z2 a a qz + uqz ) w( a 1− 1− z 1− z 1− z (1 − az) 1 − aq2 z2
aqz2
a
a
a
with possible solution w(IV )
a uz + z a
= az,
az2 a a , az2 ; q ∞ , a z1 z z1 z2 z z2 z3 z z3 z , a , az , a , az , a , az ; q ∞
z = eiθ ,
a = |a|e−iφ .
13.4 Orthogonality Relations In the preceding section we have obtained solutions of the q-Pearson equation (13.3.16). In this section we will derive orthogonality relations for several cases obtained in section 13.2. We will not give explicit orthogonality relations for each different case, but we will restrict to the most important cases. In order to find orthogonality relations we cannot use a similar method as in the previous chapter. However, as in theorem 3.8 we now obtain orthogonality relations of the form
β a uz a uz a uz + ym + yn + dz = σn δmn , m, n = 0, 1, 2, . . . , w z a z a z a α with
408
13 Orthogonal Polynomial Solutions in
a z
+ uz a of Complex q-Difference Equations
n
σn = ∏ dk ,
n = 1, 2, 3, . . . .
k=1
In each different case the appropriate boundary conditions should be satisfied. This implies (cf. (12.7.2) and (12.7.3)) that 2 aq uz uz aq w z + aq ϕ z + aq2 aq z
2
uz uz + aq − aqz − aq 2
should vanish for both z = α and z = β , the ends of the interval of orthogonality (α , β ) with possibly α → −∞ and/or β → ∞. Case Ia2. z1 = z2 = z3 = 0 and 0 < q < 1. We use the weight function 2 az a
, ; q a az2 a uz + = a ∞ , z = eiθ , a = |a|e−iφ . w(I) z a az, z ; q ∞ For the boundary conditions we should have that 2 aq uz uz aq + ϕ + w z aq z aq2 aq z
2
uz uz + aq − aqz − aq 2 2 2 aq az az
, ; q 1 − 2 2 q a uz aq uz aq az ∞ + − − = az aq az2 az2 z a z aq 1 − 1 − , ; q 2 q z aq aq 2 2 ∞ az aq aq , az2 ; q a = aq ∞ (1 − q) az, z ; q ∞ z
vanishes at both ends of the interval of orthogonality. Note that this is true for z=±
a |a|
=⇒
cos(θ + φ ) = ±1.
This implies that we should have 0 ≤ θ + φ ≤ π . Note that, since θ ∈ R and φ ∈ R, the weight function can be written in the form e2i(θ +φ ) , e−2i(θ +φ ) ; q
e2i(θ +φ ) ; q 2 ∞ = ∞ . w(I) (2|a| cos(θ + φ )) = i(θ +φ ) |a|e , |a|e−i(θ +φ ) ; q ∞ |a|ei(θ +φ ) ; q ∞ Further we have
13.4 Orthogonality Relations
409
2 2 1 π (e2iθ ; q)∞ ∞ d θ = dθ . |a|ei(θ +φ ) ; q 2π 0 (|a|eiθ ; q)∞ ∞
d0 :=
1 −φ +π
2π
−φ
e2i(θ +φ ) ; q
Hence we have by using the Askey-Wilson q-beta integral (1.12.4) that d0 =
1 2π
=
1 2π
2 π 2iθ (e ; q)∞ 0
(|a|eiθ ; q)∞ d θ
0
1 (e2iθ , e−2iθ ; q)∞ dθ = , (q; q)∞ (|a|eiθ , |a|e−iθ ; q)∞
π
|a| < 1.
Further we have dn = |a|2 (1 − qn ) which implies that n
σn = ∏ dk = |a|2n (q; q)n ,
n = 1, 2, 3, . . . .
k=1
This leads, for 0 < |a| < 1, to the orthogonality relation 1 2π
π 2iθ (e ; q)∞ 0
2 2n ym (2|a| cos θ )yn (2|a| cos θ ) d θ = |a| (q; q)n δmn (|a|eiθ ; q)∞ (q; q)∞
with m, n = 0, 1, 2, . . . for the continuous big q-Hermite polynomials. Since |a| > 0 this orthogonality relation can be normalized to read 1 2π
2 π 2iθ (e ; q)∞
(q; q)n yn (cos θ ) d θ = δmn , (|a|eiθ ; q)∞ ym (cos θ ) (q; q)∞
0
m, n = 0, 1, 2, . . . .
Then the limit case a → 0 leads to the orthogonality relation 1 2π
π 2 (q; q)n 2iθ δmn , (e ; q)∞ ym (cos θ )yn (cos θ ) d θ =
(q; q)∞
0
m, n = 0, 1, 2, . . .
for the continuous q-Hermite polynomials. (2)
Case IVa5. z1 z2 z3 = 0, 0 < q < 1, τ < 0 and Dn > 0. We use the weight function 2 az a
, ; q a az2 a uz + = a z1 z z1 z2 z z2 z∞3 z z3 , z = eiθ , a = |a|e−iφ . w(IV ) z a az, z , a , az , a , az , a , az ; q ∞ Also in this case the boundary conditions hold for z=±
a |a|
=⇒
cos(θ + φ ) = ±1,
which implies that we should have 0 ≤ θ + φ ≤ π .
410
13 Orthogonal Polynomial Solutions in
a z
+ uz a of Complex q-Difference Equations
Note that, since θ ∈ R and φ ∈ R, the weight function can be written in the form e2i(θ +φ ) ; q ∞ w(IV ) (2|a| cos(θ + φ )) = z1 i(θ +φ ) z2 i(θ +φ ) z3 i(θ +φ ) |a|ei(θ +φ ) , |a| e , |a| e , |a| e ;q
∞
2 .
Further we have e2i(θ +φ ) ; q
d0 :=
2 ∞ dθ . z3 i(θ +φ ) z z 1 2 i( θ + φ ) i( θ + φ ) i( θ + φ ) |a|e , |a| e , |a| e , |a| e ;q
1 −φ +π
2π
−φ
∞
Hence we have as before by using the Askey-Wilson q-beta integral (1.12.4) that
2 ∞ dθ d0 = 2π 0 |a|eiθ , z1 eiθ , z2 eiθ , z3 eiθ ; q |a| |a| |a| ∞ z1 z2 z3 ; q |a|2 ∞ . = z1 z2 z1 z3 z2 z3 z1 , z2 , z3 , |a|2 , |a|2 , |a|2 , q; q
1 π
e2iθ ; q
∞
Further we have dn =
|a|2 (1 − qn )(1 − τ qn−1 )(1 − z1 qn−1 )(1 − z2 qn−1 )(1 − z3 qn−1 ) (1 − τ q2n−2 )(1 − τ q2n−1 )2 (1 − τ q2n )
z1 z2 z3 τ τ τ × 1 − qn 1 − qn 1 − qn , τ = z1 z2 z3 |a|2 q
for n = 1, 2, 3, . . ., which implies that q, τ , z1 , z2 , z3 , τz1q , τz2q , τz3q ; q n n σn = ∏ dk = |a|2n , ( τ , τ q; q) 2n k=1
τ=
z1 z2 z3 , |a|2 q
n = 1, 2, 3, . . . .
This leads to the orthogonality relation
2 ym (2|a| cos θ )yn (2|a| cos θ ) d θ 2π 0 |a|eiθ , z1 eiθ , z2 eiθ , z3 eiθ ; q |a| |a| |a| ∞ z1 z2 z3 z1 z2 z1 z3 z2 z3 1 z2 z3 q, z|a| ; q 2 q , z1 , z2 , z3 , |a|2 , |a|2 , |a|2 ; q |a|2 n ∞ |a|2n = δmn z1 z2 z3 z1 z2 z3 z1 z2 z1 z3 z2 z3 z1 , z2 , z3 , |a|2 , |a|2 , |a|2 , q; q , ; q 2 2 |a| q |a| 1 π
2iθ e ;q ∞
∞
2n
for m, n = 0, 1, 2, . . .. This is an orthogonality relation for the Askey-Wilson polynomials.
13.4 Orthogonality Relations
411
Similar to the situation in the preceding chapter this orthogonality relation for the Askey-Wilson polynomials leads to orthogonality relations for the special cases of continuous dual q-Hahn polynomials (z3 = 0), the q-Meixner-Pollaczek polynomials, the Al-Salam-Chihara polynomials or the continuous q-Laguerre polynomials (z2 = z3 = 0) and the continuous big q-Hermite polynomials (z1 = z2 = z3 = 0).
Chapter 14
Basic Hypergeometric Orthogonal Polynomials
In this chapter we deal with all families of basic hypergeometric orthogonal polynomials appearing in the q-analogue of the Askey scheme on the page 413. For each family of orthogonal polynomials we state the most important properties such as a representation as a basic hypergeometric function, orthogonality relation(s), the three-term recurrence relation, the second-order q-difference equation, the forward shift (or degree lowering) and backward shift (or degree raising) operator, a Rodrigues-type formula and some generating functions. Throughout this chapter we assume that 0 < q < 1. In each case we use the notation which seems to be most common in the literature. Moreover, in each case we also state the limit relations between various families of q-orthogonal polynomials and the limit relations (q → 1) to the classical hypergeometric orthogonal polynomials belonging to the Askey scheme on page 183. For notations the reader is referred to chapter 1.
14.1 Askey-Wilson Basic Hypergeometric Representation an pn (x; a, b, c, d|q) (ab, ac, ad; q)n −n q , abcdqn−1 , aeiθ , ae−iθ ; q, q , = 4 φ3 ab, ac, ad
x = cos θ .
(14.1.1)
The Askey-Wilson polynomials are q-analogues of the Wilson polynomials given by (9.1.1).
R. Koekoek et al., Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monographs in Mathematics, DOI 10.1007/978-3-642-05014-5 14, © Springer-Verlag Berlin Heidelberg 2010
415
416
14 Basic Hypergeometric Orthogonal Polynomials
Orthogonality Relation If a, b, c, d are real, or occur in complex conjugate pairs if complex, and max(|a|, |b|, |c|, |d|) < 1, then we have the following orthogonality relation 1 2π
1
w(x) √ pm (x; a, b, c, d|q)pn (x; a, b, c, d|q) dx = hn δmn , −1 1 − x2
(14.1.2)
where 2 (e2iθ ; q)∞ w(x) := w(x; a, b, c, d|q) = iθ iθ iθ (ae , be , ce , deiθ ; q)∞ 1
=
1
h(x, 1)h(x, −1)h(x, q 2 )h(x, −q 2 ) , h(x, a)h(x, b)h(x, c)h(x, d)
with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , ∞
k=0
and hn =
x = cos θ
(abcdqn−1 ; q)n (abcdq2n ; q)∞ . (qn+1 , abqn , acqn , adqn , bcqn , bdqn , cdqn ; q)∞
If a > 1 and b, c, d are real or one is real and the other two are complex conjugates, max(|b|, |c|, |d|) < 1 and the pairwise products of a, b, c and d have absolute value less than 1, then we have another orthogonality relation given by: 1 2π
1
w(x) √ pm (x; a, b, c, d|q)pn (x; a, b, c, d|q) dx 1 − x2 + ∑ wk pm (xk ; a, b, c, d|q)pn (xk ; a, b, c, d|q) = hn δmn , (14.1.3)
−1
k 1
where w(x) and hn are as before, −1 aqk + aqk xk = 2 and wk =
(a−2 ; q)∞ (q, ab, ac, ad, a−1 b, a−1 c, a−1 d; q)∞ ×
q k (1 − a2 q2k )(a2 , ab, ac, ad; q)k . (1 − a2 )(q, ab−1 q, ac−1 q, ad −1 q; q)k abcd
14.1 Askey-Wilson
417
Recurrence Relation
2x p˜n (x) = An p˜n+1 (x) + a + a−1 − (An +Cn ) p˜n (x) +Cn p˜n−1 (x), where p˜n (x) := p˜n (x; a, b, c, d|q) =
(14.1.4)
an pn (x; a, b, c, d|q) (ab, ac, ad; q)n
⎧ (1 − abqn )(1 − acqn )(1 − adqn )(1 − abcdqn−1 ) ⎪ ⎪ = A ⎪ n ⎪ ⎨ a(1 − abcdq2n−1 )(1 − abcdq2n )
and
⎪ ⎪ a(1 − qn )(1 − bcqn−1 )(1 − bdqn−1 )(1 − cdqn−1 ) ⎪ ⎪ ⎩ Cn = . (1 − abcdq2n−2 )(1 − abcdq2n−1 )
Normalized Recurrence Relation xpn (x) = pn+1 (x) +
1
1 a + a−1 − (An +Cn ) pn (x) + An−1Cn pn−1 (x), 2 4
(14.1.5)
where pn (x; a, b, c, d|q) = 2n (abcdqn−1 ; q)n pn (x).
q-Difference Equation 1 1 1 1 ˜ aq 2 , bq 2 , cq 2 , dq 2 |q)Dq y(x) (1 − q)2 Dq w(x; ˜ a, b, c, d|q)y(x) = 0, + λn w(x; where w(x; ˜ a, b, c, d|q) := and
y(x) = pn (x; a, b, c, d|q), (14.1.6)
w(x; a, b, c, d|q) √ 1 − x2
λn = 4q−n+1 (1 − qn )(1 − abcdqn−1 ).
If we define (ab, ac, ad; q)n Pn (z) := 4 φ3 an
q−n , abcdqn−1 , az, az−1 ; q, q ab, ac, ad
then the q-difference equation can also be written in the form
418
14 Basic Hypergeometric Orthogonal Polynomials
q−n (1 − qn )(1 − abcdqn−1 )Pn (z)
= A(z)Pn (qz) − A(z) + A(z−1 ) Pn (z) + A(z−1 )Pn (q−1 z), where A(z) =
(14.1.7)
(1 − az)(1 − bz)(1 − cz)(1 − dz) . (1 − z2 )(1 − qz2 )
Forward Shift Operator δq pn (x; a, b, c, d|q) = −q− 2 n (1 − qn )(1 − abcdqn−1 )(eiθ − e−iθ ) 1
1
1
1
1
× pn−1 (x; aq 2 , bq 2 , cq 2 , dq 2 |q),
(14.1.8)
where x = cos θ , or equivalently 1
Dq pn (x; a, b, c, d|q) = 2q− 2 (n−1)
(1 − qn )(1 − abcdqn−1 ) 1−q 1
1
1
1
× pn−1 (x; aq 2 , bq 2 , cq 2 , dq 2 |q).
(14.1.9)
Backward Shift Operator δq [w(x; ˜ a, b, c, d|q)pn (x; a, b, c, d|q)] = q− 2 (n+1) (eiθ − e−iθ )w(x; ˜ aq− 2 , bq− 2 , cq− 2 , dq− 2 |q) 1
1
1
1
1
1
1
1
× pn+1 (x; aq− 2 , bq− 2 , cq− 2 , dq− 2 |q),
1
x = cos θ
(14.1.10)
or equivalently ˜ a, b, c, d|q)pn (x; a, b, c, d|q)] Dq [w(x; 1
=−
1 1 1 1 2q− 2 n w(x; ˜ aq− 2 , bq− 2 , cq− 2 , dq− 2 |q) 1−q 1
1
1
1
× pn+1 (x; aq− 2 , bq− 2 , cq− 2 , dq− 2 |q).
(14.1.11)
14.1 Askey-Wilson
419
Rodrigues-Type Formula w(x; ˜ a, b, c, d|q)pn (x; a, b, c, d|q) 1 1 1 1 q − 1 n 1 n(n−1) ˜ aq 2 n , bq 2 n , cq 2 n , dq 2 n |q) . (14.1.12) q4 (Dq )n w(x; = 2
Generating Functions
−iθ aeiθ , beiθ ce , de−iθ −iθ iθ ; q, e t 2 φ1 ; q, e t 2 φ1 ab cd ∞ pn (x; a, b, c, d|q) n t , x = cos θ . =∑ n=0 (ab, cd, q; q)n −iθ aeiθ , ceiθ be , de−iθ −iθ iθ ; q, e t 2 φ1 ; q, e t 2 φ1 ac bd ∞ pn (x; a, b, c, d|q) n t , x = cos θ . =∑ n=0 (ac, bd, q; q)n
(14.1.13)
−iθ −iθ aeiθ , deiθ be , ce −iθ iθ ; q, e t 2 φ1 ; q, e t 2 φ1 ad bc ∞ pn (x; a, b, c, d|q) n t , x = cos θ . =∑ n=0 (ad, bc, q; q)n
(14.1.14)
(14.1.15)
Limit Relations Askey-Wilson → Continuous Dual q-Hahn The continuous dual q-Hahn polynomials given by (14.3.1) simply follow from the Askey-Wilson polynomials given by (14.1.1) by setting d = 0 in (14.1.1): pn (x; a, b, c, 0|q) = pn (x; a, b, c|q).
(14.1.16)
420
14 Basic Hypergeometric Orthogonal Polynomials
Askey-Wilson → Continuous q-Hahn The continuous q-Hahn polynomials given by (14.4.1) can be obtained from the Askey-Wilson polynomials given by (14.1.1) by the substitutions θ → θ + φ , a → aeiφ , b → beiφ , c → ce−iφ and d → de−iφ : pn (cos(θ + φ ); aeiφ , beiφ , ce−iφ , de−iφ |q) = pn (cos(θ + φ ); a, b, c, d; q). (14.1.17) Askey-Wilson → Big q-Jacobi The big q-Jacobi polynomials given by (14.5.1) can be obtained from the AskeyWilson polynomials by setting x → 12 a−1 x, b = a−1 α q, c = a−1 γ q and d = aβ γ −1 in an pn (x; a, b, c, d|q) p˜n (x; a, b, c, d|q) = (ab, ac, ad; q)n given by (14.1.1) and then taking the limit a → 0: lim p˜n ( 12 a−1 x; a, a−1 α q, a−1 γ q, aβ γ −1 |q) = Pn (x; α , β , γ ; q).
a→0
(14.1.18)
Askey-Wilson → Continuous q-Jacobi If we take a = q 2 α + 4 , b = q 2 α + 4 , c = −q 2 β + 4 and d = −q 2 β + 4 in the definition (14.1.1) of the Askey-Wilson polynomials and change the normalization we find the continuous q-Jacobi polynomials given by (14.10.1): 1
1
1
3
1
1
1
q( 2 α + 4 )n pn (x; q 2 α + 4 , q 2 α + 4 , −q 2 β + 4 , −q 2 β + 4 |q) 1
1
1
1
1
3
1
1
1
3
(q, −q 2 (α +β +1) , −q 2 (α +β +2) ; q)n 1
1
(α ,β )
= Pn
3
(x|q).
(14.1.19)
Askey-Wilson → Continuous q-ultraspherical / Rogers 1
1
1
1
1
1
If we set a = β 2 , b = β 2 q 2 , c = −β 2 and d = −β 2 q 2 in the definition (14.1.1) of the Askey-Wilson polynomials and change the normalization we obtain the continuous q-ultraspherical (or Rogers) polynomials given by (14.10.17). In fact we have: 1
1
1
1
1
1
(β 2 ; q)n pn (x; β 2 , β 2 q 2 , −β 2 , −β 2 q 2 |q) 1
1
(β q 2 , −β , −β q 2 , q; q)n
= Cn (x; β |q).
(14.1.20)
14.1 Askey-Wilson
421
Askey-Wilson → Wilson To find the Wilson polynomials given by (9.1.1) from the Askey-Wilson polynomials we set a → qa , b → qb , c → qc , d → qd and eiθ = qix (or θ = ln qx ) in the definition (14.1.1) and take the limit q → 1: pn ( 12 qix + q−ix ; qa , qb , qc , qd |q) = Wn (x2 ; a, b, c, d). (14.1.21) lim q→1 (1 − q)3n
Remarks The q-Racah polynomials given by (14.2.1) and the Askey-Wilson polynomials given by (14.1.1) are related in the following way. If we substitute a2 = γδ q, b2 = α 2 γ −1 δ −1 q, c2 = β 2 γ −1 δ q, d 2 = γδ −1 q and e2iθ = γδ q2x+1 in the definition (14.1.1) of the Askey-Wilson polynomials we find: Rn (μ (x); α , β , γ , δ |q) 1
=
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(γδ q) 2 n pn (ν (x); γ 2 δ 2 q 2 , αγ − 2 δ − 2 q 2 , β γ − 2 δ 2 q 2 , γ 2 δ − 2 q 2 |q) , (α q, β δ q, γ q; q)n
where
1
1
1
1
ν (x) = 12 γ 2 δ 2 qx+ 2 + 12 γ − 2 δ − 2 q−x− 2 .
If we replace q by q−1 we find p˜n (x; a, b, c, d|q−1 ) = p˜n (x; a−1 , b−1 , c−1 , d −1 |q).
References [3], [16], [34], [51], [72], [73], [77], [80], [82], [83], [92], [115], [116], [236], [238], [256], [257], [271], [275], [278], [282], [286], [287], [290], [294], [298], [306], [323], [326], [347], [348], [351], [371], [408], [409], [414], [416], [418], [422], [442], [443], [445], [446], [448], [449], [451], [455], [474], [495], [507], [513].
422
14 Basic Hypergeometric Orthogonal Polynomials
14.2 q-Racah Basic Hypergeometric Representation Rn (μ (x); α , β , γ , δ |q) −n q , αβ qn+1 , q−x , γδ qx+1 ; q, q , = 4 φ3 α q, β δ q, γ q where
n = 0, 1, 2, . . . , N, (14.2.1)
μ (x) := q−x + γδ qx+1
and
α q = q−N
or
β δ q = q−N
or γ q = q−N ,
with N a nonnegative integer. Since k−1 (q−x , γδ qx+1 ; q)k = ∏ 1 − μ (x)q j + γδ q2 j+1 , j=0
it is clear that Rn (μ (x); α , β , γ , δ |q) is a polynomial of degree n in μ (x).
Orthogonality Relation (α q, β δ q, γ q, γδ q; q)x
N
∑ (q, α −1 γδ q, β −1 γ q, δ q; q)x
x=0
× where
(1 − γδ q2x+1 ) Rm (μ (x))Rn (μ (x)) = hn δmn , (αβ q)x (1 − γδ q) Rn (μ (x)) := Rn (μ (x); α , β , γ , δ |q)
and hn =
(α −1 β −1 γ , α −1 δ , β −1 , γδ q2 ; q)∞ (α −1 β −1 q−1 , α −1 γδ q, β −1 γ q, δ q; q)∞ ×
This implies
(1 − αβ q)(γδ q)n (q, αβ γ −1 q, αδ −1 q, β q; q)n . (1 − αβ q2n+1 ) (α q, αβ q, β δ q, γ q; q)n
(14.2.2)
14.2 q-Racah
423
⎧ −1 (β , γδ q2 ; q)N (1 − β q−N )(γδ q)n ⎪ ⎪ ⎪ ⎪ (β −1 γ q, δ q; q)N (1 − β q2n−N ) ⎪ ⎪ ⎪ ⎪ (q, β q, β γ −1 q−N , δ −1 q−N ; q)n ⎪ ⎪ × ⎪ ⎪ (β q−N , β δ q, γ q, q−N ; q)n ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ (αβ q2 , β γ −1 ; q)N (1 − αβ q)(β −1 γ q−N )n ⎪ ⎪ ⎨ (αβ γ −1 q, β q; q)N (1 − αβ q2n+1 ) hn = N+2 (q, αβ q , αβ γ −1 q, β q; q)n ⎪ ⎪ ⎪ × ⎪ ⎪ (α q, αβ q, γ q, q−N ; q)n ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ (αβ q2 , δ −1 ; q)N (1 − αβ q)(δ q−N )n ⎪ ⎪ ⎪ ⎪ (αδ −1 q, β q; q)N (1 − αβ q2n+1 ) ⎪ ⎪ ⎪ ⎪ (q, αβ qN+2 , αδ −1 q, β q; q)n ⎪ ⎩ × (α q, αβ q, β δ q, q−N ; q)n
if α q = q−N
if β δ q = q−N
if γ q = q−N .
Recurrence Relation − 1 − q−x 1 − γδ qx+1 Rn (μ (x)) = An Rn+1 (μ (x)) − (An +Cn ) Rn (μ (x)) +Cn Rn−1 (μ (x)), where
(14.2.3)
⎧ (1 − α qn+1 )(1 − αβ qn+1 )(1 − β δ qn+1 )(1 − γ qn+1 ) ⎪ ⎪ ⎪ An = ⎪ ⎨ (1 − αβ q2n+1 )(1 − αβ q2n+2 ) ⎪ ⎪ q(1 − qn )(1 − β qn )(γ − αβ qn )(δ − α qn ) ⎪ ⎪ . ⎩ Cn = (1 − αβ q2n )(1 − αβ q2n+1 )
Normalized Recurrence Relation xpn (x) = pn+1 (x) + [1 + γδ q − (An +Cn )] pn (x) + An−1Cn pn−1 (x), where Rn (μ (x); α , β , γ , δ |q) =
(αβ qn+1 ; q)n pn (μ (x)). (α q, β δ q, γ q; q)n
(14.2.4)
424
14 Basic Hypergeometric Orthogonal Polynomials
q-Difference Equation Δ [w(x − 1)B(x − 1)Δ y(x − 1)] − q−n (1 − qn )(1 − αβ qn+1 )w(x)y(x) = 0, where
(14.2.5)
y(x) = Rn (μ (x); α , β , γ , δ |q)
and w(x) := w(x; α , β , γ , δ |q) =
(α q, β δ q, γ q, γδ q; q)x (1 − γδ q2x+1 ) −1 −1 (q, α γδ q, β γ q, δ q; q)x (αβ q)x (1 − γδ q)
and B(x) as below. This q-difference equation can also be written in the form q−n (1 − qn )(1 − αβ qn+1 )y(x) = B(x)y(x + 1) − [B(x) + D(x)] y(x) + D(x)y(x − 1), where and
(14.2.6)
y(x) = Rn (μ (x); α , β , γ , δ |q) ⎧ (1 − α qx+1 )(1 − β δ qx+1 )(1 − γ qx+1 )(1 − γδ qx+1 ) ⎪ ⎪ ⎪ B(x) = ⎪ ⎨ (1 − γδ q2x+1 )(1 − γδ q2x+2 ) ⎪ ⎪ q(1 − qx )(1 − δ qx )(β − γ qx )(α − γδ qx ) ⎪ ⎪ . ⎩ D(x) = (1 − γδ q2x )(1 − γδ q2x+1 )
Forward Shift Operator Rn (μ (x + 1); α , β , γ , δ |q) − Rn (μ (x); α , β , γ , δ |q) =
q−n−x (1 − qn )(1 − αβ qn+1 )(1 − γδ q2x+2 ) (1 − α q)(1 − β δ q)(1 − γ q) × Rn−1 (μ (x); α q, β q, γ q, δ |q)
(14.2.7)
Δ Rn (μ (x); α , β , γ , δ |q) Δ μ (x) −n+1 (1 − qn )(1 − αβ qn+1 ) q = (1 − q)(1 − α q)(1 − β δ q)(1 − γ q) × Rn−1 (μ (x); α q, β q, γ q, δ |q).
(14.2.8)
or equivalently
14.2 q-Racah
425
Backward Shift Operator (1 − α qx )(1 − β δ qx )(1 − γ qx )(1 − γδ qx )Rn (μ (x); α , β , γ , δ |q) − (1 − qx )(1 − δ qx )(α − γδ qx )(β − γ qx )Rn (μ (x − 1); α , β , γ , δ |q) = qx (1 − α )(1 − β δ )(1 − γ )(1 − γδ q2x ) × Rn+1 (μ (x); α q−1 , β q−1 , γ q−1 , δ |q)
(14.2.9)
or equivalently ∇ [w(x; ˜ α , β , γ , δ |q)Rn (μ (x); α , β , γ , δ |q)] ∇μ (x) 1 w(x; ˜ α q−1 , β q−1 , γ q−1 , δ |q) = (1 − q)(1 − γδ ) × Rn+1 (μ (x); α q−1 , β q−1 , γ q−1 , δ |q), where w(x; ˜ α , β , γ , δ |q) =
(14.2.10)
(α q, β δ q, γ q, γδ q; q)x . (q, α −1 γδ q, β −1 γ q, δ q; q)x (αβ )x
Rodrigues-Type Formula w(x; ˜ α , β , γ , δ |q)Rn (μ (x); α , β , γ , δ |q) n ˜ α qn , β qn , γ qn , δ |q)] , = (1 − q)n (γδ q; q)n ∇μ [w(x; where ∇μ :=
(14.2.11)
∇ . ∇μ (x)
Generating Functions For x = 0, 1, 2, . . . , N we have −x q , αγ −1 δ −1 q−x β δ qx+1 , γ qx+1 x+1 −x ; q, γδ q t 2 φ1 ; q, q t 2 φ1 αq βq (β δ q, γ q; q)n Rn (μ (x); α , β , γ , δ |q)t n , ( β q, q; q) n n=0 N
=
∑
if
β δ q = q−N
or γ q = q−N .
(14.2.12)
426
14 Basic Hypergeometric Orthogonal Polynomials
2 φ1
q−x , β γ −1 q−x ; q, γδ qx+1t βδq
2 φ1
α qx+1 , γ qx+1 ; q, q−xt αδ −1 q
(α q, γ q; q)n
N
∑ (αδ −1 q, q; q)n Rn (μ (x); α , β , γ , δ |q)t n ,
=
n=0
if 2 φ1
q−x , δ −1 q−x ; q, γδ qx+1t γq
N
=
α q = q−N
or
2 φ1
γ q = q−N .
α qx+1 , β δ qx+1 ; q, q−xt αβ γ −1 q
(14.2.13)
(α q, β δ q; q)n
∑ (αβ γ −1 q, q; q)n Rn (μ (x); α , β , γ , δ |q)t n ,
n=0
if
α q = q−N
or
β δ q = q−N .
(14.2.14)
Limit Relations q-Racah → Big q-Jacobi The big q-Jacobi polynomials given by (14.5.1) can be obtained from the q-Racah polynomials by setting δ = 0 in the definition (14.2.1): Rn (μ (x); a, b, c, 0|q) = Pn (q−x ; a, b, c; q).
(14.2.15)
q-Racah → q-Hahn The q-Hahn polynomials follow from the q-Racah polynomials by the substitution δ = 0 and γ q = q−N in the definition (14.2.1) of the q-Racah polynomials: Rn (μ (x); α , β , q−N−1 , 0|q) = Qn (q−x ; α , β , N|q).
(14.2.16)
Another way to obtain the q-Hahn polynomials from the q-Racah polynomials is by setting γ = 0 and δ = β −1 q−N−1 in the definition (14.2.1): Rn (μ (x); α , β , 0, β −1 q−N−1 |q) = Qn (q−x ; α , β , N|q).
(14.2.17)
And if we take α q = q−N , β → β γ qN+1 and δ = 0 in the definition (14.2.1) of the q-Racah polynomials we find the q-Hahn polynomials given by (14.6.1) in the following way: Rn (μ (x); q−N−1 , β γ qN+1 , γ , 0|q) = Qn (q−x ; γ , β , N|q).
(14.2.18)
14.2 q-Racah
427
Note that μ (x) = q−x in each case. q-Racah → Dual q-Hahn To obtain the dual q-Hahn polynomials from the q-Racah polynomials we have to take β = 0 and α q = q−N in (14.2.1): Rn (μ (x); q−N−1 , 0, γ , δ |q) = Rn (μ (x); γ , δ , N|q), with
(14.2.19)
μ (x) = q−x + γδ qx+1 .
We may also take α = 0 and β = δ −1 q−N−1 in (14.2.1) to obtain the dual q-Hahn polynomials from the q-Racah polynomials: Rn (μ (x); 0, δ −1 q−N−1 , γ , δ |q) = Rn (μ (x); γ , δ , N|q), with
(14.2.20)
μ (x) = q−x + γδ qx+1 .
And if we take γ q = q−N , δ → αδ qN+1 and β = 0 in the definition (14.2.1) of the q-Racah polynomials we find the dual q-Hahn polynomials given by (14.7.1) in the following way: Rn (μ (x); α , 0, q−N−1 , αδ qN+1 |q) = Rn (μ (x); α , δ , N|q), with
(14.2.21)
μ (x) = q−x + αδ qx+1 .
q-Racah → q-Krawtchouk The q-Krawtchouk polynomials given by (14.15.1) can be obtained from the q-Racah polynomials by setting α q = q−N , β = −pqN and γ = δ = 0 in the definition (14.2.1) of the q-Racah polynomials: Rn (q−x ; q−N−1 , −pqN , 0, 0|q) = Kn (q−x ; p, N; q).
(14.2.22)
Note that μ (x) = q−x in this case. q-Racah → Dual q-Krawtchouk The dual q-Krawtchouk polynomials given by (14.17.1) easily follow from the qRacah polynomials given by (14.2.1) by using the substitutions α = β = 0, γ q = q−N and δ = c:
428
14 Basic Hypergeometric Orthogonal Polynomials
Rn (μ (x); 0, 0, q−N−1 , c|q) = Kn (λ (x); c, N|q). Note that
(14.2.23)
μ (x) = λ (x) = q−x + cqx−N .
q-Racah → Racah If we set α → qα , β → qβ , γ → qγ , δ → qδ in the definition (14.2.1) of the q-Racah polynomials and let q → 1 we easily obtain the Racah polynomials given by (9.2.1): lim Rn (μ (x); qα , qβ , qγ , qδ |q) = Rn (λ (x); α , β , γ , δ ),
q→1
where
(14.2.24)
⎧ −x x+γ +δ +1 ⎨ μ (x) = q + q ⎩
λ (x) = x(x + γ + δ + 1).
Remarks The Askey-Wilson polynomials given by (14.1.1) and the q-Racah polynomials given by (14.2.1) are related in the following way. If we substitute α = abq−1 , β = cdq−1 , γ = adq−1 , δ = ad −1 and qx = a−1 e−iθ in the definition (14.2.1) of the q-Racah polynomials we find:
μ (x) = 2a cos θ and Rn (2a cos θ ; abq−1 , cdq−1 , adq−1 , ad −1 |q) =
an pn (x; a, b, c, d|q) . (ab, ac, ad; q)n
If we replace q by q−1 we find Rn (μ (x); α , β , γ , δ |q−1 ) = Rn (μ˜ (x); α −1 , β −1 , γ −1 , δ −1 |q), where
μ˜ (x) := q−x + γ −1 δ −1 qx+1 .
References [16], [27], [34], [70], [72], [80], [140], [142], [204], [233], [235], [238], [271], [301], [345], [416], [426], [442].
14.3 Continuous Dual q-Hahn
429
14.3 Continuous Dual q-Hahn Basic Hypergeometric Representation an pn (x; a, b, c|q) = 3 φ2 (ab, ac; q)n
q−n , aeiθ , ae−iθ ; q, q , ab, ac
x = cos θ .
(14.3.1)
Orthogonality Relation If a, b, c are real, or one is real and the other two are complex conjugates, and max(|a|, |b|, |c|) < 1, then we have the following orthogonality relation 1 2π
1
w(x) √ pm (x; a, b, c|q)pn (x; a, b, c|q) dx = hn δmn , −1 1 − x2
(14.3.2)
where 2 1 1 2 2 (e2iθ ; q)∞ = h(x, 1)h(x, −1)h(x, q )h(x, −q ) , w(x) := w(x; a, b, c|q) = iθ iθ iθ h(x, a)h(x, b)h(x, c) (ae , be , ce ; q)∞ with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , ∞
k=0
and hn =
1 (qn+1 , abqn , acqn , bcqn ; q)∞
x = cos θ
.
If a > 1 and b and c are real or complex conjugates, max(|b|, |c|) < 1 and the pairwise products of a, b and c have absolute value less than 1, then we have another orthogonality relation given by: 1 2π
1
w(x) √ pm (x; a, b, c|q)pn (x; a, b, c|q) dx −1 1 − x2 + ∑ wk pm (xk ; a, b, c|q)pn (xk ; a, b, c|q) = hn δmn , k 1
where w(x) and hn are as before, xk =
−1 aqk + aqk 2
(14.3.3)
430
14 Basic Hypergeometric Orthogonal Polynomials
and k (a−2 ; q)∞ (1 − a2 q2k )(a2 , ab, ac; q)k wk = (−1)k q−(2) (q, ab, ac, a−1 b, a−1 c; q)∞ (1 − a2 )(q, ab−1 q, ac−1 q; q)k
1 a2 bc
k .
Recurrence Relation
2x p˜n (x) = An p˜n+1 (x) + a + a−1 − (An +Cn ) p˜n (x) +Cn p˜n−1 (x), where p˜n (x) := and
(14.3.4)
an pn (x; a, b, c|q) (ab, ac; q)n
⎧ ⎨ An = a−1 (1 − abqn )(1 − acqn ) ⎩
Cn = a(1 − qn )(1 − bcqn−1 ).
Normalized Recurrence Relation
xpn (x) = pn+1 (x) +
1
a + a−1 − (An +Cn ) pn (x) 2
1 + (1 − qn )(1 − abqn−1 ) 4 × (1 − acqn−1 )(1 − bcqn−1 )pn−1 (x),
(14.3.5)
where pn (x; a, b, c|q) = 2n pn (x).
q-Difference Equation 1 1 1 ˜ aq 2 , bq 2 , cq 2 |q)Dq y(x) (1 − q)2 Dq w(x; ˜ a, b, c|q)y(x) = 0, + 4q−n+1 (1 − qn )w(x; where y(x) = pn (x; a, b, c|q) and
(14.3.6)
14.3 Continuous Dual q-Hahn
431
w(x; ˜ a, b, c|q) := If we define (ab, ac; q)n Pn (z) := 3 φ2 an
w(x; a, b, c|q) √ . 1 − x2
q−n , az, az−1 ; q, q ab, ac
then the q-difference equation can also be written in the form
q−n (1−qn )Pn (z) = A(z)Pn (qz)− A(z) + A(z−1 ) Pn (z)+A(z−1 )Pn (q−1 z), (14.3.7) where A(z) =
(1 − az)(1 − bz)(1 − cz) . (1 − z2 )(1 − qz2 )
Forward Shift Operator δq pn (x; a, b, c|q) = −q− 2 n (1 − qn )(eiθ − e−iθ ) 1
1
1
1
x = cos θ (14.3.8)
× pn−1 (x; aq 2 , bq 2 , cq 2 |q), or equivalently 1
Dq pn (x; a, b, c|q) = 2q− 2 (n−1)
1 1 1 1 − qn pn−1 (x; aq 2 , bq 2 , cq 2 |q). 1−q
(14.3.9)
Backward Shift Operator δq [w(x; ˜ a, b, c|q)pn (x; a, b, c|q)] = q− 2 (n+1) (eiθ − e−iθ )w(x; ˜ aq− 2 , bq− 2 , cq− 2 |q) 1
1
1
1
1
× pn+1 (x; aq− 2 , bq− 2 , cq− 2 |q),
1
1
x = cos θ
(14.3.10)
or equivalently ˜ a, b, c|q)pn (x; a, b, c|q)] Dq [w(x; 1
1 1 1 1 1 1 2q− 2 n w(x; ˜ aq− 2 , bq− 2 , cq− 2 |q)pn+1 (x; aq− 2 , bq− 2 , cq− 2 |q). (14.3.11) =− 1−q
432
14 Basic Hypergeometric Orthogonal Polynomials
Rodrigues-Type Formula w(x; ˜ a, b, c|q)pn (x; a, b, c|q) 1 1 1 q − 1 n 1 n(n−1) ˜ aq 2 n , bq 2 n , cq 2 n |q) . q4 (Dq )n w(x; = 2
(14.3.12)
Generating Functions iθ iθ ae , be (ct; q)∞ −iθ ; q, e t 2 φ1 ab (eiθ t; q)∞ ∞ pn (x; a, b, c|q) n t , x = cos θ . =∑ n=0 (ab, q; q)n iθ iθ ae , ce (bt; q)∞ −iθ ; q, e t 2 φ1 ac (eiθ t; q)∞ ∞ pn (x; a, b, c|q) n t , x = cos θ . =∑ n=0 (ac, q; q)n iθ iθ be , ce (at; q)∞ −iθ ; q, e t 2 φ1 bc (eiθ t; q)∞ ∞ pn (x; a, b, c|q) n t , x = cos θ . =∑ n=0 (bc, q; q)n aeiθ , ae−iθ , 0 ; q, t ab, ac n ∞ n n ( (−1) a q 2) =∑ pn (x; a, b, c|q)t n , n=0 (ab, ac, q; q)n
(14.3.13)
(14.3.14)
(14.3.15)
(t; q)∞ · 3 φ2
x = cos θ .
(14.3.16)
Limit Relations Askey-Wilson → Continuous Dual q-Hahn The continuous dual q-Hahn polynomials given by (14.3.1) simply follow from the Askey-Wilson polynomials given by (14.1.1) by setting d = 0 in (14.1.1):
14.4 Continuous q-Hahn
433
pn (x; a, b, c, 0|q) = pn (x; a, b, c|q). Continuous Dual q-Hahn → Al-Salam-Chihara The Al-Salam-Chihara polynomials given by (14.8.1) simply follow from the continuous dual q-Hahn polynomials by taking c = 0 in the definition (14.3.1) of the continuous dual q-Hahn polynomials: pn (x; a, b, 0|q) = Qn (x; a, b|q).
(14.3.17)
Continuous Dual q-Hahn → Continuous Dual Hahn To find the continuous dual Hahn polynomials given by (9.3.1) from the continuous dual q-Hahn polynomials we set a → qa , b → qb , c → qc and eiθ = qix (or θ = ln qx ) in the definition (14.3.1) and take the limit q → 1: pn ( 12 qix + q−ix ; qa , qb , qc |q) = Sn (x2 ; a, b, c). (14.3.18) lim q→1 (1 − q)2n
References [73], [260].
14.4 Continuous q-Hahn Basic Hypergeometric Representation (aeiφ )n pn (x; a, b, c, d; q) (abe2iφ , ac, ad; q)n q−n , abcdqn−1 , aei(θ +2φ ) , ae−iθ ; q, q , = 4 φ3 abe2iφ , ac, ad
x = cos(θ + φ ). (14.4.1)
434
14 Basic Hypergeometric Orthogonal Polynomials
Orthogonality Relation If c = a and d = b then we have, if a and b are real and max(|a|, |b|) < 1, or if b = a and |a| < 1: 1 4π =
π −π
w(cos(θ + φ ))pm (cos(θ + φ ); a, b, c, d; q)pn (cos(θ + φ ); a, b, c, d; q) d θ
(abcdqn−1 ; q)n (abcdq2n ; q)∞ n+1 n 2i (q , abq e φ , acqn , adqn , bcqn , bdqn , cdqn e−2iφ ; q)∞
δmn ,
(14.4.2)
where 2 (e2i(θ +φ ) ; q)∞ w(x) := w(x; a, b, c, d; q) = i(θ +2φ ) i(θ +2φ ) iθ i θ (ae , be , ce , de ; q)∞ 1
=
1
h(x, 1)h(x, −1)h(x, q 2 )h(x, −q 2 ) , h(x, aeiφ )h(x, beiφ )h(x, ce−iφ )h(x, de−iφ )
with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α ei(θ +φ ) , α e−i(θ +φ ) ; q , ∞
k=0
x = cos(θ + φ ).
Recurrence Relation
2x p˜n (x) = An p˜n+1 (x) + aeiφ + a−1 e−iφ − (An +Cn ) p˜n (x) +Cn p˜n−1 (x), (14.4.3) where p˜n (x) := p˜n (x; a, b, c, d; q) = and
(aeiφ )n pn (x; a, b, c, d; q) (abe2iφ , ac, ad; q)n
⎧ (1 − abe2iφ qn )(1 − acqn )(1 − adqn )(1 − abcdqn−1 ) ⎪ ⎪ ⎪ An = ⎪ ⎨ aeiφ (1 − abcdq2n−1 )(1 − abcdq2n ) ⎪ ⎪ aeiφ (1 − qn )(1 − bcqn−1 )(1 − bdqn−1 )(1 − cde−2iφ qn−1 ) ⎪ ⎪ ⎩ Cn = . (1 − abcdq2n−2 )(1 − abcdq2n−1 )
14.4 Continuous q-Hahn
435
Normalized Recurrence Relation
xpn (x) = pn+1 (x) +
1 iφ ae + a−1 e−iφ − (An +Cn ) pn (x) 2
1 + An−1Cn pn−1 (x), 4
(14.4.4)
where pn (x; a, b, c, d; q) = 2n (abcdqn−1 ; q)n pn (x).
q-Difference Equation 1 1 1 1 ˜ aq 2 , bq 2 , cq 2 , dq 2 ; q)Dq y(x) (1 − q)2 Dq w(x; ˜ a, b, c, d; q)y(x) = 0, + λn w(x; where w(x; ˜ a, b, c, d; q) := and
y(x) = pn (x; a, b, c, d; q), (14.4.5)
w(x; a, b, c, d; q) √ 1 − x2
λn = 4q−n+1 (1 − qn )(1 − abcdqn−1 ).
Forward Shift Operator δq pn (x; a, b, c, d; q) = −q− 2 n (1 − qn )(1 − abcdqn−1 )(ei(θ +φ ) − e−i(θ +φ ) ) 1
1
1
1
1
× pn−1 (x; aq 2 , bq 2 , cq 2 , dq 2 ; q),
x = cos(θ + φ )
(14.4.6)
or equivalently 1
Dq pn (x; a, b, c, d; q) = 2q− 2 (n−1)
(1 − qn )(1 − abcdqn−1 ) 1−q 1
1
1
1
× pn−1 (x; aq 2 , bq 2 , cq 2 , dq 2 ; q).
(14.4.7)
436
14 Basic Hypergeometric Orthogonal Polynomials
Backward Shift Operator δq [w(x; ˜ a, b, c, d; q)pn (x; a, b, c, d; q)] = q− 2 (n+1) (ei(θ +φ ) − e−i(θ +φ ) )w(x; ˜ aq− 2 , bq− 2 , cq− 2 , dq− 2 ; q) 1
1
1
1
1
1
1
× pn+1 (x; aq− 2 , bq− 2 , cq− 2 , dq− 2 ; q),
1
1
x = cos(θ + φ )
(14.4.8)
or equivalently ˜ a, b, c, d; q)pn (x; a, b, c, d; q)] Dq [w(x; 1
=−
1 1 1 1 2q− 2 n w(x; ˜ aq− 2 , bq− 2 , cq− 2 , dq− 2 ; q) 1−q 1
1
1
1
× pn+1 (x; aq− 2 , bq− 2 , cq− 2 , dq− 2 ; q).
(14.4.9)
Rodrigues-Type Formula w(x; ˜ a, b, c, d; q)pn (x; a, b, c, d; q) 1 1 1 1 q − 1 n 1 n(n−1) ˜ aq 2 n , bq 2 n , cq 2 n , dq 2 n ; q) . (14.4.10) q4 (Dq )n w(x; = 2
Generating Functions 2 φ1
aei(θ +2φ ) , bei(θ +2φ ) ; q, e−i(θ +φ )t abe2iφ ce−i(θ +2φ ) , de−i(θ +2φ ) i(θ +φ ) × 2 φ1 ; q, e t cde−2iφ
∞
=
pn (x; a, b, c, d; q)t n
∑ (abe2iφ , cde−2iφ , q; q)n ,
x = cos(θ + φ ).
(14.4.11)
n=0
2 φ1
aei(θ +2φ ) , ceiθ ; q, e−i(θ +φ )t ac
∞
=
∑
n=0
pn (x; a, b, c, d; q) n t , (ac, bd, q; q)n
2 φ1
be−iθ , de−i(θ +2φ ) ; q, ei(θ +φ )t bd
x = cos(θ + φ ).
(14.4.12)
14.4 Continuous q-Hahn
2 φ1
aei(θ +2φ ) , deiθ ; q, e−i(θ +φ )t ad
∞
=
437
∑
n=0
pn (x; a, b, c, d; q) n t , (ad, bc, q; q)n
2 φ1
be−iθ , ce−i(θ +2φ ) ; q, ei(θ +φ )t bc
x = cos(θ + φ ).
(14.4.13)
Limit Relations Askey-Wilson → Continuous q-Hahn The continuous q-Hahn polynomials given by (14.4.1) can be obtained from the Askey-Wilson polynomials given by (14.1.1) by the substitutions θ → θ + φ , a → aeiφ , b → beiφ , c → ce−iφ and d → de−iφ : pn (cos(θ + φ ); aeiφ , beiφ , ce−iφ , de−iφ |q) = pn (cos(θ + φ ); a, b, c, d; q). Continuous q-Hahn → q-Meixner-Pollaczek The q-Meixner-Pollaczek polynomials given by (14.9.1) simply follow from the continuous q-Hahn polynomials if we set d = a and b = c = 0 in the definition (14.4.1) of the continuous q-Hahn polynomials: pn (cos(θ + φ ); a, 0, 0, a; q) = Pn (cos(θ + φ ); a|q). (q; q)n
(14.4.14)
Continuous q-Hahn → Continuous Hahn If we set a → qa , b → qb , c → qc , d → qd and e−iθ = qix (or θ = ln q−x ) in the definition (14.4.1) of the continuous q-Hahn polynomials and take the limit q → 1 we find the continuous Hahn polynomials given by (9.4.1) in the following way: lim
q→1
pn (cos(ln q−x + φ ); qa , qb , qc , qd ; q) = (−2 sin φ )n pn (x; a, b, c, d). (1 − q)n (q; q)n
(14.4.15)
438
14 Basic Hypergeometric Orthogonal Polynomials
Remark If we replace q by q−1 we find p˜n (x; a, b, c, d; q−1 ) = p˜n (x; a−1 , b−1 , c−1 , d −1 ; q).
References [34], [72], [238].
14.5 Big q-Jacobi Basic Hypergeometric Representation Pn (x; a, b, c; q) = 3 φ2
q−n , abqn+1 , x ; q, q . aq, cq
(14.5.1)
Orthogonality Relation For 0 < aq < 1, 0 ≤ bq < 1 and c < 0 we have aq −1 −1 (a x, c x; q)∞ cq
(x, bc−1 x; q)∞
= aq(1 − q) ×
Pm (x; a, b, c; q)Pn (x; a, b, c; q) dq x
(q, abq2 , a−1 c, ac−1 q; q)∞ (aq, bq, cq, abc−1 q; q)∞
n (1 − abq) (q, bq, abc−1 q; q)n (−acq2 )n q(2) δmn . (1 − abq2n+1 ) (aq, abq, cq; q)n
(14.5.2)
Recurrence Relation (x − 1)Pn (x; a, b, c; q) = An Pn+1 (x; a, b, c; q) − (An +Cn ) Pn (x; a, b, c; q) (14.5.3) +Cn Pn−1 (x; a, b, c; q), where
14.5 Big q-Jacobi
439
⎧ (1 − aqn+1 )(1 − abqn+1 )(1 − cqn+1 ) ⎪ ⎪ = A ⎪ n ⎪ ⎨ (1 − abq2n+1 )(1 − abq2n+2 ) ⎪ ⎪ (1 − qn )(1 − abc−1 qn )(1 − bqn ) ⎪ ⎪ ⎩ Cn = −acqn+1 . (1 − abq2n )(1 − abq2n+1 )
Normalized Recurrence Relation xpn (x) = pn+1 (x) + [1 − (An +Cn )] pn (x) + An−1Cn pn−1 (x), where Pn (x; a, b, c; q) =
(14.5.4)
(abqn+1 ; q)n pn (x). (aq, cq; q)n
q-Difference Equation q−n (1 − qn )(1 − abqn+1 )x2 y(x) = B(x)y(qx) − [B(x) + D(x)] y(x) + D(x)y(q−1 x),
(14.5.5)
where y(x) = Pn (x; a, b, c; q) ⎧ ⎨ B(x) = aq(x − 1)(bx − c)
and
⎩
D(x) = (x − aq)(x − cq).
Forward Shift Operator Pn (x; a, b, c; q) − Pn (qx; a, b, c; q) =
q−n+1 (1 − qn )(1 − abqn+1 ) xPn−1 (qx; aq, bq, cq; q) (1 − aq)(1 − cq)
(14.5.6)
or equivalently Dq Pn (x; a, b, c; q) =
q−n+1 (1 − qn )(1 − abqn+1 ) Pn−1 (qx; aq, bq, cq; q). (1 − q)(1 − aq)(1 − cq)
(14.5.7)
440
14 Basic Hypergeometric Orthogonal Polynomials
Backward Shift Operator (x − a)(x − c)Pn (x; a, b, c; q) − a(x − 1)(bx − c)Pn (qx; a, b, c; q) (14.5.8) = (1 − a)(1 − c)xPn+1 (x; aq−1 , bq−1 , cq−1 ; q) or equivalently Dq [w(x; a, b, c; q)Pn (x; a, b, c; q)] (1 − a)(1 − c) w(x; aq−1 , bq−1 , cq−1 ; q) = ac(1 − q) × Pn+1 (x; aq−1 , bq−1 , cq−1 ; q), where w(x; a, b, c; q) =
(14.5.9)
(a−1 x, c−1 x; q)∞ . (x, bc−1 x; q)∞
Rodrigues-Type Formula w(x; a, b, c; q)Pn (x; a, b, c; q) =
an cn qn(n+1) (1 − q)n (Dq )n [w(x; aqn , bqn , cqn ; q)] . (aq, cq; q)n
(14.5.10)
Generating Functions −1 aqx−1 , 0 bc x ; q, xt 1 φ1 ; q, cqt 2 φ1 aq bq ∞ (cq; q)n =∑ Pn (x; a, b, c; q)t n . (bq, q; q)n n=0
−1 cqx−1 , 0 bc x ; q, xt 1 φ1 ; q, aqt 2 φ1 cq abc−1 q ∞ (aq; q)n =∑ Pn (x; a, b, c; q)t n . −1 n=0 (abc q, q; q)n
(14.5.11)
(14.5.12)
14.5 Big q-Jacobi
441
Limit Relations Askey-Wilson → Big q-Jacobi The big q-Jacobi polynomials given by (14.5.1) can be obtained from the AskeyWilson polynomials by setting x → 12 a−1 x, b = a−1 α q, c = a−1 γ q and d = aβ γ −1 in an pn (x; a, b, c, d|q) p˜n (x; a, b, c, d|q) = (ab, ac, ad; q)n given by (14.1.1) and then taking the limit a → 0: lim p˜n ( 12 a−1 x; a, a−1 α q, a−1 γ q, aβ γ −1 |q) = Pn (x; α , β , γ ; q).
a→0
q-Racah → Big q-Jacobi The big q-Jacobi polynomials given by (14.5.1) can be obtained from the q-Racah polynomials by setting δ = 0 in the definition (14.2.1): Rn (μ (x); a, b, c, 0|q) = Pn (q−x ; a, b, c; q). Big q-Jacobi → Big q-Laguerre If we set b = 0 in the definition (14.5.1) of the big q-Jacobi polynomials we obtain the big q-Laguerre polynomials given by (14.11.1): Pn (x; a, 0, c; q) = Pn (x; a, c; q).
(14.5.13)
Big q-Jacobi → Little q-Jacobi The little q-Jacobi polynomials given by (14.12.1) can be obtained from the big qJacobi polynomials by the substitution x → cqx in the definition (14.5.1) and then by the limit c → −∞: lim Pn (cqx; a, b, c; q) = pn (x; a, b|q).
c→−∞
(14.5.14)
Big q-Jacobi → q-Meixner If we set b = −a−1 cd −1 (with d > 0) in the definition (14.5.1) of the big q-Jacobi polynomials and take the limit c → −∞ we obtain the q-Meixner polynomials given by (14.13.1):
442
14 Basic Hypergeometric Orthogonal Polynomials
lim Pn (q−x ; a, −a−1 cd −1 , c; q) = Mn (q−x ; a, d; q).
c→−∞
(14.5.15)
Big q-Jacobi → Jacobi If we set c = 0, a = qα and b = qβ in the definition (14.5.1) of the big q-Jacobi polynomials and let q → 1 we find the Jacobi polynomials given by (9.8.1): lim Pn (x; qα , qβ , 0; q) =
q→1
(α ,β )
Pn
(2x − 1)
(α ,β ) Pn (1)
.
(14.5.16)
If we take c = −qγ for arbitrary real γ instead of c = 0 we find lim Pn (x; qα , qβ , −qγ ; q) =
q→1
(α ,β )
Pn
(x)
(α ,β ) Pn (1)
.
(14.5.17)
Remarks The big q-Jacobi polynomials with c = 0 and the little q-Jacobi polynomials given by (14.12.1) are related in the following way: Pn (x; a, b, 0; q) =
n (bq; q)n (−1)n an qn+(2) pn (a−1 q−1 x; b, a|q). (aq; q)n
Sometimes the big q-Jacobi polynomials are defined in terms of four parameters instead of three. In fact the polynomials given by the definition −n q , abqn+1 , ac−1 qx ; q, q Pn (x; a, b, c, d; q) = 3 φ2 aq, −ac−1 dq are orthogonal on the interval [−d, c] with respect to the weight function (c−1 qx, −d −1 qx; q)∞ dq x. (ac−1 qx, −bd −1 qx; q)∞ These polynomials are not really different from those given by (14.5.1) since we have Pn (x; a, b, c, d; q) = Pn (ac−1 qx; a, b, −ac−1 d; q) and Pn (x; a, b, c; q) = Pn (x; a, b, aq, −cq; q).
14.5 Big q-Jacobi
443
References [12], [16], [34], [79], [80], [157], [211], [238], [256], [259], [261], [271], [295], [298], [305], [320], [345], [348], [351], [408], [416], [419], [420], [421], [474], [482].
Special Case 14.5.1 Big q-Legendre Basic Hypergeometric Representation The big q-Legendre polynomials are big q-Jacobi polynomials with a = b = 1: −n n+1 q ,q ,x ; q, q . (14.5.18) Pn (x; c; q) = 3 φ2 q, cq
Orthogonality Relation q cq
Pm (x; c; q)Pn (x; c; q) dq x
= q(1 − c)
n (1 − q) (c−1 q; q)n (−cq2 )n q(2) δmn , (1 − q2n+1 ) (cq; q)n
c < 0. (14.5.19)
Recurrence Relation (x − 1)Pn (x; c; q) = An Pn+1 (x; c; q) − (An +Cn ) Pn (x; c; q) +Cn Pn−1 (x; c; q), where
⎧ (1 − qn+1 )(1 − cqn+1 ) ⎪ ⎪ An = ⎪ ⎪ ⎨ (1 + qn+1 )(1 − q2n+1 ) ⎪ ⎪ (1 − qn )(1 − c−1 qn ) ⎪ ⎪ ⎩ Cn = −cqn+1 . (1 + qn )(1 − q2n+1 )
(14.5.20)
444
14 Basic Hypergeometric Orthogonal Polynomials
Normalized Recurrence Relation xpn (x) = pn+1 (x) + [1 − (An +Cn )] pn (x) + An−1Cn pn−1 (x), where Pn (x; c; q) =
(14.5.21)
(qn+1 ; q)n pn (x). (q, cq; q)n
q-Difference Equation q−n (1 − qn )(1 − qn+1 )x2 y(x) = B(x)y(qx) − [B(x) + D(x)] y(x) + D(x)y(q−1 x),
(14.5.22)
where y(x) = Pn (x; c; q) ⎧ ⎨ B(x) = q(x − 1)(x − c)
and
⎩
D(x) = (x − q)(x − cq).
Rodrigues-Type Formula
cn qn(n+1) (1 − q)n (Dq )n (q−n x, c−1 q−n x; q)n (q, cq; q)n
(1 − q)n (Dq )n (qx−1 , cqx−1 ; q)n x2n . = (q, cq; q)n
Pn (x; c; q) =
(14.5.23)
Generating Functions 2 φ1
qx−1 , 0 ; q, xt q
2 φ1
1 φ1
cqx−1 , 0 ; q, xt cq
c−1 x ; q, cqt q
1 φ1
∞
=
c−1 x ; q, qt c−1 q
(cq; q)n
∑ (q, q; q)n Pn (x; c; q)t n .
(14.5.24)
n=0
∞
=
Pn (x; c; q)
∑ (c−1 q; q)n t n .
n=0
(14.5.25)
14.6 q-Hahn
445
Limit Relations Big q-Legendre → Legendre / Spherical If we set c = 0 in the definition (14.5.18) of the big q-Legendre polynomials and let q → 1 we simply obtain the Legendre (or spherical) polynomials given by (9.8.62): lim Pn (x; 0; q) = Pn (2x − 1).
(14.5.26)
q→1
If we take c = −qγ for arbitrary real γ instead of c = 0 we find lim Pn (x; −qγ ; q) = Pn (x).
(14.5.27)
q→1
References [324], [345].
14.6 q-Hahn Basic Hypergeometric Representation
−x
Qn (q ; α , β , N|q) = 3 φ2
q−n , αβ qn+1 , q−x ; q, q , α q, q−N
n = 0, 1, 2, . . . , N. (14.6.1)
Orthogonality Relation For 0 < α q < 1 and 0 < β q < 1, or for α > q−N and β > q−N , we have N
(α q, q−N ; q)x
∑ (q, β −1 q−N ; q)x (αβ q)−x Qm (q−x ; α , β , N|q)Qn (q−x ; α , β , N|q)
x=0
=
(αβ q2 ; q)N (q, αβ qN+2 , β q; q)n (1 − αβ q)(−α q)n (n)−Nn q2 δmn . (14.6.2) (β q; q)N (α q)N (α q, αβ q, q−N ; q)n (1 − αβ q2n+1 )
446
14 Basic Hypergeometric Orthogonal Polynomials
Recurrence Relation − 1 − q−x Qn (q−x ) = An Qn+1 (q−x ) − (An +Cn ) Qn (q−x ) +Cn Qn−1 (q−x ), where and
(14.6.3)
Qn (q−x ) := Qn (q−x ; α , β , N|q) ⎧ (1 − qn−N )(1 − α qn+1 )(1 − αβ qn+1 ) ⎪ ⎪ = A ⎪ n ⎪ ⎨ (1 − αβ q2n+1 )(1 − αβ q2n+2 ) ⎪ ⎪ α qn−N (1 − qn )(1 − αβ qn+N+1 )(1 − β qn ) ⎪ ⎪ ⎩ Cn = − . (1 − αβ q2n )(1 − αβ q2n+1 )
Normalized Recurrence Relation xpn (x) = pn+1 (x) + [1 − (An +Cn )] pn (x) + An−1Cn pn−1 (x), where Qn (q−x ; α , β , N|q) =
(14.6.4)
(αβ qn+1 ; q)n pn (q−x ). (α q, q−N ; q)n
q-Difference Equation q−n (1 − qn )(1 − αβ qn+1 )y(x) = B(x)y(x + 1) − [B(x) + D(x)] y(x) + D(x)y(x − 1), where and
y(x) = Qn (q−x ; α , β , N|q) ⎧ ⎨ B(x) = (1 − qx−N )(1 − α qx+1 ) ⎩
D(x) = α q(1 − qx )(β − qx−N−1 ).
(14.6.5)
14.6 q-Hahn
447
Forward Shift Operator Qn (q−x−1 ; α , β , N|q) − Qn (q−x ; α , β , N|q) =
q−n−x (1 − qn )(1 − αβ qn+1 ) Qn−1 (q−x ; α q, β q, N − 1|q) (1 − α q)(1 − q−N )
(14.6.6)
or equivalently
Δ Qn (q−x ; α , β , N|q) q−n+1 (1 − qn )(1 − αβ qn+1 ) = −x Δq (1 − q)(1 − α q)(1 − q−N ) × Qn−1 (q−x ; α q, β q, N − 1|q).
(14.6.7)
Backward Shift Operator (1 − α qx )(1 − qx−N−1 )Qn (q−x ; α , β , N|q) − α (1 − qx )(β − qx−N−1 )Qn (q−x+1 ; α , β , N|q) = qx (1 − α )(1 − q−N−1 )Qn+1 (q−x ; α q−1 , β q−1 , N + 1|q)
(14.6.8)
or equivalently ∇ [w(x; α , β , N|q)Qn (q−x ; α , β , N|q)] ∇q−x 1 w(x; α q−1 , β q−1 , N + 1|q)Qn+1 (q−x ; α q−1 , β q−1 , N + 1|q), (14.6.9) = 1−q where w(x; α , β , N|q) =
(α q, q−N ; q)x (αβ )−x . (q, β −1 q−N ; q)x
Rodrigues-Type Formula w(x; α , β , N|q)Qn (q−x ; α , β , N|q) = (1 − q)n (∇q )n [w(x; α qn , β qn , N − n|q)] , where ∇q :=
∇ . ∇q−x
(14.6.10)
448
14 Basic Hypergeometric Orthogonal Polynomials
Generating Functions For x = 0, 1, 2, . . . , N we have −x x−N q q ,0 −x ; q, α qt 2 φ1 ; q, q t 1 φ1 αq βq N
=
(q−N ; q)n
∑ (β q, q; q)n Qn (q−x ; α , β , N|q)t n .
(14.6.11)
n=0
2 φ1
q−x , β qN+1−x ; q, −α qx−N+1t 0
2 φ0
qx−N , α qx+1 ; q, −q−xt −
(α q, q−N ; q)n −(n) q 2 Qn (q−x ; α , β , N|q)t n . (q; q)n n=0
N
=
∑
(14.6.12)
Limit Relations q-Racah → q-Hahn The q-Hahn polynomials follow from the q-Racah polynomials by the substitution δ = 0 and γ q = q−N in the definition (14.2.1) of the q-Racah polynomials: Rn (μ (x); α , β , q−N−1 , 0|q) = Qn (q−x ; α , β , N|q). Another way to obtain the q-Hahn polynomials from the q-Racah polynomials is by setting γ = 0 and δ = β −1 q−N−1 in the definition (14.2.1): Rn (μ (x); α , β , 0, β −1 q−N−1 |q) = Qn (q−x ; α , β , N|q). And if we take α q = q−N , β → β γ qN+1 and δ = 0 in the definition (14.2.1) of the q-Racah polynomials we find the q-Hahn polynomials given by (14.6.1) in the following way: Rn (μ (x); q−N−1 , β γ qN+1 , γ , 0|q) = Qn (q−x ; γ , β , N|q). Note that μ (x) = q−x in each case. q-Hahn → Little q-Jacobi If we set x → N − x in the definition (14.6.1) of the q-Hahn polynomials and take the limit N → ∞ we find the little q-Jacobi polynomials:
14.6 q-Hahn
449
lim Qn (qx−N ; α , β , N|q) = pn (qx ; α , β |q),
N→∞
(14.6.13)
where pn (qx ; α , β |q) is given by (14.12.1). q-Hahn → q-Meixner The q-Meixner polynomials given by (14.13.1) can be obtained from the q-Hahn polynomials by setting α = b and β = −b−1 c−1 q−N−1 in the definition (14.6.1) of the q-Hahn polynomials and letting N → ∞: lim Qn (q−x ; b, −b−1 c−1 q−N−1 , N|q) = Mn (q−x ; b, c; q).
N→∞
(14.6.14)
q-Hahn → Quantum q-Krawtchouk The quantum q-Krawtchouk polynomials given by (14.14.1) simply follow from the q-Hahn polynomials by setting β = p in the definition (14.6.1) of the q-Hahn polynomials and taking the limit α → ∞: lim Qn (q−x ; α , p, N|q) = Knqtm (q−x ; p, N; q).
α →∞
(14.6.15)
q-Hahn → q-Krawtchouk If we set β = −α −1 q−1 p in the definition (14.6.1) of the q-Hahn polynomials and then let α → 0 we obtain the q-Krawtchouk polynomials given by (14.15.1): lim Qn (q−x ; α , −α −1 q−1 p, N|q) = Kn (q−x ; p, N; q).
α →0
(14.6.16)
q-Hahn → Affine q-Krawtchouk The affine q-Krawtchouk polynomials given by (14.16.1) can be obtained from the q-Hahn polynomials by the substitution α = p and β = 0 in (14.6.1): Qn (q−x ; p, 0, N|q) = KnA f f (q−x ; p, N; q).
(14.6.17)
q-Hahn → Hahn The Hahn polynomials given by (9.5.1) simply follow from the q-Hahn polynomials given by (14.6.1), after setting α → qα and β → qβ , in the following way:
450
14 Basic Hypergeometric Orthogonal Polynomials
lim Qn (q−x ; qα , qβ , N|q) = Qn (x; α , β , N).
q→1
(14.6.18)
Remark The q-Hahn polynomials given by (14.6.1) and the dual q-Hahn polynomials given by (14.7.1) are related in the following way: Qn (q−x ; α , β , N|q) = Rx (μ (n); α , β , N|q), with or
μ (n) = q−n + αβ qn+1 Rn (μ (x); γ , δ , N|q) = Qx (q−n ; γ , δ , N|q),
where
μ (x) = q−x + γδ qx+1 .
References [16], [30], [34], [70], [72], [80], [186], [205], [235], [238], [261], [305], [326], [329], [343], [345], [416], [419], [442], [486], [488], [489].
14.7 Dual q-Hahn Basic Hypergeometric Representation Rn (μ (x); γ , δ , N|q) = 3 φ2 where
q−n , q−x , γδ qx+1 ; q, q , γ q, q−N
μ (x) := q−x + γδ qx+1 .
n = 0, 1, 2, . . . , N, (14.7.1)
14.7 Dual q-Hahn
451
Orthogonality Relation For 0 < γ q < 1 and 0 < δ q < 1, or for γ > q−N and δ > q−N , we have (γ q, γδ q, q−N ; q)x (1 − γδ q2x+1 ) Nx−(x) 2 q ∑ N+2 , δ q; q) (1 − γδ q)(−γ q)x x x=0 (q, γδ q N
× Rm (μ (x); γ , δ , N|q)Rn (μ (x); γ , δ , N|q) =
(q, δ −1 q−N ; q)n (γδ q2 ; q)N (γ q)−N (γδ q)n δmn . (δ q; q)N (γ q, q−N ; q)n
(14.7.2)
Recurrence Relation − 1 − q−x 1 − γδ qx+1 Rn (μ (x)) = An Rn+1 (μ (x)) − (An +Cn ) Rn (μ (x)) +Cn Rn−1 (μ (x)), where
(14.7.3)
Rn (μ (x)) := Rn (μ (x); γ , δ , N|q) ⎧ ⎨ An = 1 − qn−N 1 − γ qn+1
and
⎩
Cn = γ q (1 − qn ) δ − qn−N−1 .
Normalized Recurrence Relation xpn (x) = pn+1 (x) + [1 + γδ q − (An +Cn )] pn (x) + γ q(1 − qn )(1 − γ qn ) × (1 − qn−N−1 )(δ − qn−N−1 )pn−1 (x), where Rn (μ (x); γ , δ , N|q) =
1 (γ q, q−N ; q)n
(14.7.4)
pn (μ (x)).
q-Difference Equation q−n (1 − qn )y(x) = B(x)y(x + 1) − [B(x) + D(x)] y(x) + D(x)y(x − 1), where
(14.7.5)
452
14 Basic Hypergeometric Orthogonal Polynomials
y(x) = Rn (μ (x); γ , δ , N|q) and
⎧ (1 − qx−N )(1 − γ qx+1 )(1 − γδ qx+1 ) ⎪ ⎪ B(x) = ⎪ ⎪ ⎨ (1 − γδ q2x+1 )(1 − γδ q2x+2 ) ⎪ ⎪ γ qx−N (1 − qx )(1 − γδ qx+N+1 )(1 − δ qx ) ⎪ ⎪ ⎩ D(x) = − . (1 − γδ q2x )(1 − γδ q2x+1 )
Forward Shift Operator Rn (μ (x + 1); γ , δ , N|q) − Rn (μ (x); γ , δ , N|q) =
q−n−x (1 − qn )(1 − γδ q2x+2 ) Rn−1 (μ (x); γ q, δ , N − 1|q) (1 − γ q)(1 − q−N )
(14.7.6)
or equivalently
Δ Rn (μ (x); γ , δ , N|q) Δ μ (x) q−n+1 (1 − qn ) Rn−1 (μ (x); γ q, δ , N − 1|q). = (1 − q)(1 − γ q)(1 − q−N )
(14.7.7)
Backward Shift Operator (1 − γ qx )(1 − γδ qx )(1 − qx−N−1 )Rn (μ (x); γ , δ , N|q) + γ qx−N−1 (1 − qx )(1 − γδ qx+N+1 )(1 − δ qx )Rn (μ (x − 1); γ , δ , N|q) x (14.7.8) = q (1 − γ )(1 − q−N−1 )(1 − γδ q2x )Rn+1 (μ (x); γ q−1 , δ , N + 1|q) or equivalently ∇ [w(x; γ , δ , N|q)Rn (μ (x); γ , δ , N|q)] ∇μ (x) 1 = w(x; γ q−1 , δ , N + 1|q) (1 − q)(1 − γδ ) × Rn+1 (μ (x); γ q−1 , δ , N + 1|q), where w(x; γ , δ , N|q) =
x (γ q, γδ q, q−N ; q)x (−γ −1 )x qNx−(2) . (q, γδ qN+2 , δ q; q)x
(14.7.9)
14.7 Dual q-Hahn
453
Rodrigues-Type Formula w(x; γ , δ , N|q)Rn (μ (x); γ , δ , N|q) n = (1 − q)n (γδ q; q)n ∇μ [w(x; γ qn , δ , N − n|q)] , where ∇μ :=
(14.7.10)
∇ . ∇μ (x)
Generating Functions For x = 0, 1, 2, . . . , N we have (q−N t; q)N−x · 2 φ1
q−x , δ −1 q−x ; q, γδ qx+1t γq
(q−N ; q)n Rn (μ (x); γ , δ , N|q)t n . n=0 (q; q)n N
=
∑
(γδ qt; q)x · 2 φ1 N
=
qx−N , γ qx+1 ; q, q−xt δ −1 q−N
(14.7.11)
(q−N , γ q; q)n
∑ (δ −1 q−N , q; q)n Rn (μ (x); γ , δ , N|q)t n .
(14.7.12)
n=0
Limit Relations q-Racah → Dual q-Hahn To obtain the dual q-Hahn polynomials from the q-Racah polynomials we have to take β = 0 and α q = q−N in (14.2.1): Rn (μ (x); q−N−1 , 0, γ , δ |q) = Rn (μ (x); γ , δ , N|q), with
μ (x) = q−x + γδ qx+1 .
We may also take α = 0 and β = δ −1 q−N−1 in (14.2.1) to obtain the dual q-Hahn polynomials from the q-Racah polynomials: Rn (μ (x); 0, δ −1 q−N−1 , γ , δ |q) = Rn (μ (x); γ , δ , N|q),
454
14 Basic Hypergeometric Orthogonal Polynomials
with
μ (x) = q−x + γδ qx+1 .
And if we take γ q = q−N , δ → αδ qN+1 and β = 0 in the definition (14.2.1) of the q-Racah polynomials we find the dual q-Hahn polynomials given by (14.7.1) in the following way: Rn (μ (x); α , 0, q−N−1 , αδ qN+1 |q) = Rn (μ (x); α , δ , N|q), with
μ (x) = q−x + αδ qx+1 .
Dual q-Hahn → Affine q-Krawtchouk The affine q-Krawtchouk polynomials given by (14.16.1) can be obtained from the dual q-Hahn polynomials by the substitution γ = p and δ = 0 in (14.7.1): Rn (μ (x); p, 0, N|q) = KnA f f (q−x ; p, N; q).
(14.7.13)
Note that μ (x) = q−x in this case. Dual q-Hahn → Dual q-Krawtchouk The dual q-Krawtchouk polynomials given by (14.17.1) can be obtained from the dual q-Hahn polynomials by setting δ = cγ −1 q−N−1 in (14.7.1) and letting γ → 0: lim Rn (μ (x); γ , cγ −1 q−N−1 , N|q) = Kn (λ (x); c, N|q).
γ →0
(14.7.14)
Dual q-Hahn → Dual Hahn The dual Hahn polynomials given by (9.6.1) follow from the dual q-Hahn polynomials by simply taking the limit q → 1 in the definition (14.7.1) of the dual q-Hahn polynomials after applying the substitution γ → qγ and δ → qδ : lim Rn (μ (x); qγ , qδ , N|q) = Rn (λ (x); γ , δ , N),
q→1
where
⎧ −x x+γ +δ +1 ⎨ μ (x) = q + q ⎩
λ (x) = x(x + γ + δ + 1).
(14.7.15)
14.8 Al-Salam-Chihara
455
Remark The dual q-Hahn polynomials given by (14.7.1) and the q-Hahn polynomials given by (14.6.1) are related in the following way: Qn (q−x ; α , β , N|q) = Rx (μ (n); α , β , N|q), with
μ (n) = q−n + αβ qn+1
or
Rn (μ (x); γ , δ , N|q) = Qx (q−n ; γ , δ , N|q),
where
μ (x) = q−x + γδ qx+1 .
References [31], [34], [70], [72], [80], [238], [329], [416], [488].
14.8 Al-Salam-Chihara Basic Hypergeometric Representation q−n , aeiθ , ae−iθ ; q, q ab, 0 −n −iθ q , be −1 iθ = (aeiθ ; q)n e−inθ 2 φ1 ; q, a qe a−1 q−n+1 e−iθ −n iθ q , ae −iθ inθ −1 −iθ , ; q, b qe = (be ; q)n e 2 φ1 b−1 q−n+1 eiθ
Qn (x; a, b|q) =
(ab; q)n 3 φ2 an
(14.8.1)
x = cos θ .
Orthogonality Relation If a and b are real or complex conjugates and max(|a|, |b|) < 1, then we have the following orthogonality relation 1 2π
1
w(x) δmn √ Qm (x; a, b|q)Qn (x; a, b|q) dx = n+1 , 2 (q , abqn ; q)∞ −1 1−x
(14.8.2)
456
14 Basic Hypergeometric Orthogonal Polynomials
where (e2iθ ; q)∞ 2 h(x, 1)h(x, −1)h(x, q 21 )h(x, −q 21 ) = , w(x) := w(x; a, b|q) = iθ iθ h(x, a)h(x, b) (ae , be ; q)∞ with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , ∞
k=0
x = cos θ .
If a > 1 and |ab| < 1, then we have another orthogonality relation given by: 1 2π
1 −1
+
w(x) √ Qm (x; a, b|q)Qn (x; a, b|q) dx 1 − x2
∑
wk Qm (xk ; a, b|q)Qn (xk ; a, b|q) =
k
δmn , (14.8.3) (qn+1 , abqn ; q)∞
1
where w(x) is as before,
and
−1 aqk + aqk xk = 2
(1 − a2 q2k )(a2 , ab; q)k −k2 (a−2 ; q)∞ wk = q (q, ab, a−1 b; q)∞ (1 − a2 )(q, ab−1 q; q)k
1 a3 b
k .
Recurrence Relation 2xQn (x) = Qn+1 (x) + (a + b)qn Qn (x) + (1 − qn )(1 − abqn−1 )Qn−1 (x).
(14.8.4)
Normalized Recurrence Relation 1 1 xpn (x) = pn+1 (x) + (a + b)qn pn (x) + (1 − qn )(1 − abqn−1 )pn−1 (x), (14.8.5) 2 4 where Qn (x; a, b|q) = 2n pn (x).
14.8 Al-Salam-Chihara
457
q-Difference Equation 1 1 ˜ aq 2 , bq 2 |q)Dq y(x) (1 − q)2 Dq w(x; ˜ a, b|q)y(x) = 0, + 4q−n+1 (1 − qn )w(x;
(14.8.6)
where y(x) = Qn (x; a, b|q) and
w(x; a, b|q) . w(x; ˜ a, b|q) := √ 1 − x2
If we define (ab; q)n 3 φ2 an
Pn (z) :=
q−n , az, az−1 ; q, q ab, 0
then the q-difference equation can also be written in the form
q−n (1−qn )Pn (z) = A(z)Pn (qz)− A(z) + A(z−1 ) Pn (z)+A(z−1 )Pn (q−1 z), (14.8.7) where A(z) =
(1 − az)(1 − bz) . (1 − z2 )(1 − qz2 )
Forward Shift Operator δq Qn (x; a, b|q) = −q− 2 n (1 − qn )(eiθ − e−iθ )Qn−1 (x; aq 2 , bq 2 |q), 1
1
1
x = cos θ (14.8.8)
or equivalently 1
Dq Qn (x; a, b|q) = 2q− 2 (n−1)
1 1 1 − qn Qn−1 (x; aq 2 , bq 2 |q). 1−q
(14.8.9)
Backward Shift Operator δq [w(x; ˜ a, b|q)Qn (x; a, b|q)] = q− 2 (n+1) (eiθ − e−iθ )w(x; ˜ aq− 2 , bq− 2 |q) 1
1
1
1
× Qn+1 (x; aq− 2 , bq− 2 |q),
1
x = cos θ
(14.8.10)
458
14 Basic Hypergeometric Orthogonal Polynomials
or equivalently ˜ a, b|q)Qn (x; a, b|q)] Dq [w(x; 1
=−
1 1 1 1 2q− 2 n w(x; ˜ aq− 2 , bq− 2 |q)Qn+1 (x; aq− 2 , bq− 2 |q). 1−q
(14.8.11)
Rodrigues-Type Formula w(x; ˜ a, b|q)Qn (x; a, b|q) 1 1 q − 1 n 1 n(n−1) ˜ aq 2 n , bq 2 n |q) . q4 (Dq )n w(x; = 2
(14.8.12)
Generating Functions ∞ (at, bt; q)∞ Qn (x; a, b|q) n = t , ∑ (eiθ t, e−iθ t; q)∞ n=0 (q; q)n
1 2 φ1 (eiθ t; q)∞
aeiθ , beiθ ; q, e−iθ t ab
x = cos θ .
∞
=
Qn (x; a, b|q) n t , n=0 (ab, q; q)n
∑
aeiθ , ae−iθ ; q, t (t; q)∞ · 2 φ1 ab n ∞ (−1)n an q(2) =∑ Qn (x; a, b|q)t n , n=0 (ab, q; q)n
(14.8.13)
x = cos θ . (14.8.14)
x = cos θ .
γ , aeiθ , beiθ (γ eiθ t; q)∞ −iθ ; q, e t 3 φ2 ab, γ eiθ t (eiθ t; q)∞ ∞ (γ ; q)n Qn (x; a, b|q)t n , x = cos θ , =∑ (ab, q; q)n n=0
γ arbitrary.
(14.8.15)
(14.8.16)
14.8 Al-Salam-Chihara
459
Limit Relations Continuous Dual q-Hahn → Al-Salam-Chihara The Al-Salam-Chihara polynomials given by (14.8.1) simply follow from the continuous dual q-Hahn polynomials by taking c = 0 in the definition (14.3.1) of the continuous dual q-Hahn polynomials: pn (x; a, b, 0|q) = Qn (x; a, b|q). Al-Salam-Chihara → Continuous Big q-Hermite If we take b = 0 in the definition (14.8.1) of the Al-Salam-Chihara polynomials we simply obtain the continuous big q-Hermite polynomials given by (14.18.1): Qn (x; a, 0|q) = Hn (x; a|q).
(14.8.17)
Al-Salam-Chihara → Continuous q-Laguerre The continuous q-Laguerre polynomials given by (14.19.1) can be obtained from 1 1 the Al-Salam-Chihara polynomials given by (14.8.1) by taking a = q 2 α + 4 and b = 1 3 q 2 α+ 4 : 1 1 1 3 (q; q)n (α ) Qn (x; q 2 α + 4 , q 2 α + 4 |q) = 1 1 Pn (x|q). (14.8.18) ( q 2 α + 4 )n Al-Salam-Chihara → Meixner-Pollaczek If we set a = qλ e−iφ , b = qλ eiφ and eiθ = qix eiφ in the definition (14.8.1) of the Al-Salam-Chihara polynomials and take the limit q → 1 we obtain the MeixnerPollaczek polynomials given by (9.7.1) in the following way: Qn (cos(ln qx + φ ); qλ eiφ , qλ e−iφ |q) (λ ) = Pn (x; φ ). q→1 (q; q)n lim
(14.8.19)
References [16], [20], [21], [64], [73], [86], [118], [148], [151], [160], [209], [292], [295], [320], [328].
460
14 Basic Hypergeometric Orthogonal Polynomials
14.9 q-Meixner-Pollaczek Basic Hypergeometric Representation q−n , aei(θ +2φ ) , ae−iθ ; q, q (14.9.1) Pn (x; a|q) = a e a2 , 0 −n iθ q , ae (ae−iθ ; q)n in(θ +φ ) −1 −i(θ +2φ ) = e ; q, qa e 2 φ1 (q; q)n a−1 q−n+1 eiθ −n −inφ
(a2 ; q)n 3 φ2 (q; q)n
with x = cos(θ + φ ).
Orthogonality Relation 1 2π =
π −π
w(cos(θ + φ ); a|q)Pm (cos(θ + φ ); a|q)Pn (cos(θ + φ ); a|q) d θ
δmn , (q; q)n (q, a2 qn ; q)∞
0 < a < 1,
(14.9.2)
where 2 1 1 (e2i(θ +φ ) ; q) h(x, 1)h(x, −1)h(x, q 2 )h(x, −q 2 ) ∞ w(x; a|q) = i(θ +2φ ) iθ , = (ae h(x, aeiφ )h(x, ae−iφ ) , ae ; q)∞ with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α ei(θ +φ ) , α e−i(θ +φ ) ; q , k=0
∞
x = cos(θ + φ ).
Recurrence Relation 2xPn (x; a|q) = (1 − qn+1 )Pn+1 (x; a|q) + 2aqn cos φ Pn (x; a|q) + (1 − a2 qn−1 )Pn−1 (x; a|q).
(14.9.3)
14.9 q-Meixner-Pollaczek
461
Normalized Recurrence Relation 1 xpn (x) = pn+1 (x) + aqn cos φ pn (x) + (1 − qn )(1 − a2 qn−1 )pn−1 (x), 4 where 2n Pn (x; a|q) = pn (x). (q; q)n
(14.9.4)
q-Difference Equation 1 ˜ aq 2 |q)Dq y(x) + 4q−n+1 (1 − qn )w(x; (1 − q)2 Dq w(x; ˜ a|q)y(x) = 0,
(14.9.5)
where y(x) = Pn (x; a|q) and
w(x; a|q) . w(x; ˜ a|q) := √ 1 − x2
Forward Shift Operator δq Pn (x; a|q) = −q− 2 n (ei(θ +φ ) − e−i(θ +φ ) )Pn−1 (x; aq 2 |q), 1
1
x = cos θ
(14.9.6)
or equivalently 1
Dq Pn (x; a|q) =
1 2q− 2 (n−1) Pn−1 (x; aq 2 |q). 1−q
(14.9.7)
Backward Shift Operator δq [w(x; ˜ a|q)Pn (x; a|q)] = q− 2 (n+1) (1 − qn+1 )(eiθ − e−iθ ) 1
1
1
× w(x; ˜ aq− 2 |q)Pn+1 (x; aq− 2 |q),
x = cos θ
(14.9.8)
or equivalently 1
˜ a|q)Pn (x; a|q)] = −2q− 2 n Dq [w(x;
1 1 1 − qn+1 w(x; ˜ aq− 2 |q)Pn+1 (x; aq− 2 |q). (14.9.9) 1−q
462
14 Basic Hypergeometric Orthogonal Polynomials
Rodrigues-Type Formula w(x; ˜ a|q)Pn (x; a|q) =
q−1 2
n
1
q 4 n(n−1)
1 1 ˜ aq 2 n |q) . (14.9.10) (Dq )n w(x; (q; q)n
Generating Functions (aeiφ t; q)∞ (ei(θ +φ )t; q) =
2
∞ i φ (ae t, ae−iφ t; q)∞ i( (e θ +φ )t, e−i(θ +φ )t; q)∞
1 (ei(θ +φ )t; q)∞ ∞
=
2 φ1
Pn (x; a|q) n t , 2 n=0 (a ; q)n
∑
∞
=
∑ Pn (x; a|q)t n ,
x = cos(θ + φ ). (14.9.11)
n=0
aei(θ +2φ ) , aeiθ ; q, e−i(θ +φ )t a2
x = cos(θ + φ ).
(14.9.12)
Limit Relations Continuous q-Hahn → q-Meixner-Pollaczek The q-Meixner-Pollaczek polynomials given by (14.9.1) simply follow from the continuous q-Hahn polynomials if we set d = a and b = c = 0 in the definition (14.4.1) of the continuous q-Hahn polynomials: pn (cos(θ + φ ); a, 0, 0, a; q) = Pn (cos(θ + φ ); a|q). (q; q)n q-Meixner-Pollaczek → Continuous q-ultraspherical / Rogers If we take θ = 0 and a = β in the definition (14.9.1) of the q-Meixner-Pollaczek polynomials we obtain the continuous q-ultraspherical (or Rogers) polynomials given by (14.10.17): (14.9.13) Pn (cos φ ; β |q) = Cn (cos φ ; β |q).
14.10 Continuous q-Jacobi
463
q-Meixner-Pollaczek → Continuous q-Laguerre If we take eiφ = q− 4 , a = q 2 α + 2 and eiθ → q 4 eiθ in the definition (14.9.1) of the q-Meixner-Pollaczek polynomials we obtain the continuous q-Laguerre polynomials given by (14.19.1): 1
1
1
1
(α )
Pn (cos(θ + φ ); q 2 α + 2 |q) = q−( 2 α + 4 )n Pn (cos θ |q). 1
1
1
1
(14.9.14)
q-Meixner-Pollaczek → Meixner-Pollaczek To find the Meixner-Pollaczek polynomials given by (9.7.1) from the q-MeixnerPollaczek polynomials we substitute a = qλ and eiθ = q−ix (or θ = ln q−x ) in the definition (14.9.1) of the q-Meixner-Pollaczek polynomials and take the limit q → 1 to find: (λ ) (14.9.15) lim Pn (cos(ln q−x + φ ); qλ |q) = Pn (x; −φ ). q→1
References [16], [21], [64], [72], [135], [270].
14.10 Continuous q-Jacobi Basic Hypergeometric Representation If we take a = q 2 α + 4 , b = q 2 α + 4 , c = −q 2 β + 4 and d = −q 2 β + 4 in the definition (14.1.1) of the Askey-Wilson polynomials we find after renormalizing 1
(α ,β )
Pn
1
(x|q)
(qα +1 ; q)n = 4 φ3 (q; q)n with x = cos θ .
1
3
1
1
1
3
q−n , qn+α +β +1 , q 2 α + 4 eiθ , q 2 α + 4 e−iθ 1
1
1
qα +1 , −q 2 (α +β +1) , −q 2 (α +β +2) 1
1
1
; q, q
(14.10.1)
464
14 Basic Hypergeometric Orthogonal Polynomials
Orthogonality Relation For α ≥ − 12 and β ≥ − 12 we have 1 2π
1
w(x) (α ,β ) (α ,β ) √ Pm (x|q)Pn (x|q) dx −1 1 − x2 (q 2 (α +β +2) , q 2 (α +β +3) ; q)∞ 1
=
1
(q, qα +1 , qβ +1 , −q ×
1 (α +β +1) 2
, −q
1 (α +β +2) 2
1 − qα +β +1 2n+α +β +1 ; q)∞ 1 − q
1 (qα +1 , qβ +1 , −q 2 (α +β +3) ; q)n (α + 1 )n 2 q δmn , 1 (q, qα +β +1 , −q 2 (α +β +1) ; q)n
(14.10.2)
where 2 (e2iθ ; q)∞ w(x) := w(x; q , q |q) = 1 1 (q 2 α + 4 eiθ , q 12 α + 34 eiθ , −q 12 β + 14 eiθ , −q 12 β + 34 eiθ ; q)∞ 2 1 (eiθ , −eiθ ; q 2 )∞ = 1 1 (q 2 α + 4 eiθ , −q 12 β + 14 eiθ ; q 12 )∞ α
β
1
=
1
h(x, 1)h(x, −1)h(x, q 2 )h(x, −q 2 ) h(x, q 2 α + 4 )h(x, q 2 α + 4 )h(x, −q 2 β + 4 )h(x, −q 2 β + 4 ) 1
1
1
3
1
1
1
3
,
with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , ∞
k=0
x = cos θ .
Recurrence Relation 1 1 1 1 2xP˜n (x|q) = An P˜n+1 (x|q) + q 2 α + 4 + q− 2 α − 4 − (An +Cn ) P˜n (x|q) +Cn P˜n−1 (x|q), where P˜n (x|q) := and
(q; q)n (α ,β ) Pn (x|q) (qα +1 ; q)n
(14.10.3)
14.10 Continuous q-Jacobi
465
⎧ 1 1 ⎪ (1 − qn+α +1 )(1 − qn+α +β +1 )(1 + qn+ 2 (α +β +1) )(1 + qn+ 2 (α +β +2) ) ⎪ ⎪ An = ⎪ 1 1 ⎪ ⎨ q 2 α + 4 (1 − q2n+α +β +1 )(1 − q2n+α +β +2 ) ⎪ 1 1 1 1 ⎪ ⎪ q 2 α + 4 (1 − qn )(1 − qn+β )(1 + qn+ 2 (α +β ) )(1 + qn+ 2 (α +β +1) ) ⎪ ⎪ ⎩ Cn = . (1 − q2n+α +β )(1 − q2n+α +β +1 )
Normalized Recurrence Relation
xpn (x) = pn+1 (x) +
1 1 1 1 α+ 1 q 2 4 + q− 2 α − 4 − (An +Cn ) pn (x) 2
1 + An−1Cn pn−1 (x), 4 where (α ,β )
Pn
2n q( 2 α + 4 )n (qn+α +β +1 ; q)n 1
(x|q) =
(14.10.4)
1
(q, −q 2 (α +β +1) , −q 2 (α +β +2) ; q)n 1
1
pn (x).
q-Difference Equation ˜ qα +1 , qβ +1 |q)Dq y(x) + λn w(x; (1 − q)2 Dq w(x; ˜ qα , qβ |q)y(x) = 0, where
(α ,β )
y(x) = Pn and
w(x; ˜ qα , qβ |q) :=
(14.10.5)
(x|q)
w(x; qα , qβ |q) √ , 1 − x2
λn = 4q−n+1 (1 − qn )(1 − qn+α +β +1 ).
Forward Shift Operator
(α ,β ) δq Pn (x|q)
q−n+ 2 α + 4 (1 − qn+α +β +1 )(eiθ − e−iθ ) 1
=−
3
(1 + q 2 (α +β +1) )(1 + q 2 (α +β +2) ) 1
(α +1,β +1)
× Pn−1 or equivalently
1
(x|q),
x = cos θ
(14.10.6)
466
14 Basic Hypergeometric Orthogonal Polynomials (α ,β ) Dq Pn (x|q)
2q−n+ 2 α + 4 (1 − qn+α +β +1 ) 1
=
5
(1 − q)(1 + q 2 (α +β +1) )(1 + q 2 (α +β +2) ) 1
1
(α +1,β +1)
× Pn−1
(14.10.7)
(x|q).
Backward Shift Operator (α ,β ) ˜ qα , qβ |q)Pn δq w(x; (x|q) = q− 2 α − 4 (1 − qn+1 )(1 + q 2 (α +β −1) )(1 + q 2 (α +β ) )(eiθ − e−iθ ) 1
1
1
1
(α −1,β −1)
× w(x; ˜ qα −1 , qβ −1 |q)Pn+1
(x|q),
x = cos θ
(14.10.8)
or equivalently (α ,β ) ˜ qα , qβ |q)Pn Dq w(x; (x|q) (1 − qn+1 )(1 + q 2 (α +β −1) )(1 + q 2 (α +β ) ) 1−q 1
= −2q
− 21 α + 14
1
(α −1,β −1)
× w(x; ˜ qα −1 , qβ −1 |q)Pn+1
(14.10.9)
(x|q).
Rodrigues-Type Formula (α ,β )
w(x; ˜ qα , qβ |q)Pn (x|q) n 1 2 1 q 4 n + 2 nα q−1 = 1 1 2 (q, −q 2 (α +β +1) , −q 2 (α +β +2) ; q)n ˜ qα +n , qβ +n |q) . × (Dq )n w(x;
(14.10.10)
Generating Functions 2 φ1 ∞
=
q 2 α + 4 eiθ , q 2 α + 4 eiθ ; q, e−iθ t qα +1 1
1
1
3
2 φ1
−q 2 β + 4 e−iθ , −q 2 β + 4 e−iθ ; q, eiθ t qβ +1
(α ,β )
1
1
(−q 2 (α +β +1) , −q 2 (α +β +2) ; q)n Pn (x|q) n 1 α + 1 )n t , α +1 β +1 ( (q , q ; q)n q 2 4 n=0
∑
1
1
1
x = cos θ .
3
(14.10.11)
14.10 Continuous q-Jacobi
2 φ1
q 2 α + 4 eiθ , −q 2 β + 4 eiθ 1
1
∑
2 φ1
(α ,β )
1 (α +β +3) 2
; q)n q
1
1
1
1
n=0
; q, e
(α ,β )
(−q
1 (α +β +2) 2
; q)n
−iθ
(x|q)
t
1
3
1
1
2 φ1
; q, eiθ t (14.10.12)
q 2 α + 4 e−iθ , −q 2 β + 4 e−iθ 1
3
−q 2 (α +β +3)
3
1
1
−q 2 (α +β +2) 1
x = cos θ .
t n,
1 1 q( 2 α + 4 )n
q 2 α + 4 e−iθ , −q 2 β + 4 e−iθ
x = cos θ .
(−q 2 (α +β +1) ; q)n Pn 1
2 φ1
t n,
3
−q 2 (α +β +2)
∑
(x|q)
( 12 α + 14 )n
q 2 α + 4 eiθ , −q 2 β + 4 eiθ
∞
; q, e−iθ t
(−q 2 (α +β +2) ; q)n Pn 1
1
1
n=0 (−q
=
1
−q 2 (α +β +1) ∞
=
467
iθ
; q, e t (14.10.13)
Limit Relations Askey-Wilson → Continuous q-Jacobi If we take a = q 2 α + 4 , b = q 2 α + 4 , c = −q 2 β + 4 and d = −q 2 β + 4 in the definition (14.1.1) of the Askey-Wilson polynomials and change the normalization we find the continuous q-Jacobi polynomials given by (14.10.1): 1
1
1
3
1
1
1
q( 2 α + 4 )n pn (x; q 2 α + 4 , q 2 α + 4 , −q 2 β + 4 , −q 2 β + 4 |q) 1
1
1
(q, −q
1
1
1 2 (α +β +1)
3
, −q
1
1
1 (α +β +2) 2
1
3
; q)n
3
(α ,β )
= Pn
(x|q).
Continuous q-Jacobi → Continuous q-Laguerre The continuous q-Laguerre polynomials given by (14.19.1) follow simply from the continuous q-Jacobi polynomials given by (14.10.1) by taking the limit β → ∞: (α ,β )
lim Pn
β →∞
(α )
(x|q) = Pn (x|q).
(14.10.14)
Continuous q-Jacobi → Jacobi If we take the limit q → 1 in the definitions (14.10.1) of the continuous q-Jacobi polynomials we simply find the Jacobi polynomials given by (9.8.1): (α ,β )
lim Pn
q→1
(α ,β )
(x|q) = Pn
(x).
(14.10.15)
468
14 Basic Hypergeometric Orthogonal Polynomials
Remarks In [441] M. Rahman takes a = q 2 , b = qα + 2 , c = −qβ + 2 and d = −q 2 in the definition (14.1.1) of the Askey-Wilson polynomials to obtain after renormalizing 1
(α ,β )
Pn
(x; q) =
1
1
1
(qα +1 , −qβ +1 ; q)n (q, −q; q)n 1 1 q−n , qn+α +β +1 , q 2 eiθ , q 2 e−iθ ; q, q (14.10.16) × 4 φ3 qα +1 , −qβ +1 , −q
with x = cos θ . These two q-analogues of the Jacobi polynomials are not really different, since they are connected by the quadratic transformation: (α ,β )
Pn
(x|q2 ) =
(−q; q)n (α ,β ) qnα Pn (x; q). (−qα +β +1 ; q)n
The continuous q-Jacobi polynomials given by (14.10.16) and the continuous qultraspherical (or Rogers) polynomials given by (14.10.17) are connected by the quadratic transformations: C2n (x; qλ |q) = and C2n+1 (x; qλ |q) =
(qλ , −q; q)n 1 2
1 2
(q , −q ; q)n
(qλ , −1; q)n+1 1 2
1 2
(λ − 12 ,− 21 )
1
q− 2 n Pn
(q , −q ; q)n+1
1
(2x2 − 1; q)
(λ − 21 , 12 )
q− 2 n xPn
(2x2 − 1; q).
If we replace q by q−1 we find (α ,β )
Pn
(α ,β )
(x|q−1 ) = q−nα Pn
(α ,β )
(x|q) and Pn
(α ,β )
(x; q−1 ) = q−n(α +β ) Pn
(x; q).
References [72], [208], [236], [238], [288], [290], [293], [351], [414], [416], [441], [443], [444], [446], [474], [495].
14.10 Continuous q-Jacobi
469
Special Cases 14.10.1 Continuous q-Ultraspherical / Rogers Basic Hypergeometric Representation 1
1
1
1
1
1
If we set a = β 2 , b = β 2 q 2 , c = −β 2 and d = −β 2 q 2 in the definition (14.1.1) of the Askey-Wilson polynomials and change the normalization we obtain the continuous q-ultraspherical (or Rogers) polynomials: 1 1 q−n , β 2 qn , β 2 eiθ , β 2 e−iθ (β 2 ; q)n − 1 n β 2 4 φ3 ; q, q (14.10.17) Cn (x; β |q) = 1 1 (q; q)n β q 2 , −β , −β q 2 −n q , β , β e2iθ (β 2 ; q)n −n −inθ ; q, q β e = 3 φ2 (q; q)n β 2, 0 −n q ,β (β ; q)n inθ −1 −2iθ = , x = cos θ . e 2 φ1 ; q, β qe β −1 q−n+1 (q; q)n
Orthogonality Relation 1 2π
1
w(x) √ Cm (x; β |q)Cn (x; β |q) dx −1 1 − x2 (β , β q; q)∞ (β 2 ; q)n (1 − β ) δmn , |β | < 1, = (β 2 , q; q)∞ (q; q)n (1 − β qn )
(14.10.18)
where 2 (e2iθ ; q)∞ w(x) := w(x; β |q) = 1 1 1 1 1 1 (β 2 eiθ , β 2 q 2 eiθ , −β 2 eiθ , −β 2 q 2 eiθ ; q)∞ 2iθ 1 1 (e ; q)∞ 2 h(x, 1)h(x, −1)h(x, q 2 )h(x, −q 2 ) = = 1 1 1 1 1 1 , (β e2iθ ; q)∞ h(x, β 2 )h(x, β 2 q 2 )h(x, −β 2 )h(x, −β 2 q 2 ) with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , k=0
∞
x = cos θ .
470
14 Basic Hypergeometric Orthogonal Polynomials
Recurrence Relation 2(1 − β qn )xCn (x; β |q) = (1 − qn+1 )Cn+1 (x; β |q) + (1 − β 2 qn−1 )Cn−1 (x; β |q). (14.10.19)
Normalized Recurrence Relation xpn (x) = pn+1 (x) +
(1 − qn )(1 − β 2 qn−1 ) pn−1 (x), 4(1 − β qn−1 )(1 − β qn )
where Cn (x; β |q) =
(14.10.20)
2n (β ; q)n pn (x). (q; q)n
q-Difference Equation (1 − q)2 Dq [w(x; ˜ β q|q)Dq y(x)] + λn w(x; ˜ β |q)y(x) = 0, where
(14.10.21)
y(x) = Cn (x; β |q), w(x; β |q) w(x; ˜ β |q) := √ 1 − x2
and
λn = 4q−n+1 (1 − qn )(1 − β 2 qn ).
Forward Shift Operator δqCn (x; β |q) = −q− 2 n (1 − β )(eiθ − e−iθ )Cn−1 (x; β q|q), 1
x = cos θ
(14.10.22)
or equivalently 1
DqCn (x; β |q) = 2q− 2 (n−1)
1−β Cn−1 (x; β q|q). 1−q
(14.10.23)
14.10 Continuous q-Jacobi
471
Backward Shift Operator δq [w(x; ˜ β |q)Cn (x; β |q)] 1
= q− 2 (n+1)
(1 − qn+1 )(1 − β 2 qn−1 ) iθ (e − e−iθ ) (1 − β q−1 )
× w(x; ˜ β q−1 |q)Cn+1 (x; β q−1 |q),
x = cos θ
(14.10.24)
or equivalently ˜ β |q)Cn (x; β |q)] Dq [w(x; 1
=−
2q− 2 n (1 − qn+1 )(1 − β 2 qn−1 ) (1 − q)(1 − β q−1 ) × w(x; ˜ β q−1 |q)Cn+1 (x; β q−1 |q).
(14.10.25)
Rodrigues-Type Formula w(x; ˜ β |q)Cn (x; β |q) q − 1 n 1 n(n−1) (β ; q)n q4 (Dq )n [w(x; ˜ β qn |q)] . = 2 (q, β 2 qn ; q)n
(14.10.26)
Generating Functions ∞ (β eiθ t; q)∞ 2 (β eiθ t, β e−iθ t; q)∞ = = ∑ Cn (x; β |q)t n , (eiθ t; q)∞ (eiθ t, e−iθ t; q)∞ n=0 1 2 φ1 i θ (e t; q)∞
β , β e2iθ ; q, e−iθ t β2
∞
=
Cn (x; β |q) n t , 2 n=0 (β ; q)n
∑
x = cos θ . (14.10.27)
x = cos θ .
β , β e2iθ −iθ ; q, e t β2 n ∞ (−1)n β n q(2) Cn (x; β |q)t n , x = cos θ . =∑ 2 ; q) ( β n n=0
(e−iθ t; q)∞ · 2 φ1
(14.10.28)
(14.10.29)
472
14 Basic Hypergeometric Orthogonal Polynomials
2 φ1
β 2 e iθ , β 2 q 2 e iθ 1
1
1
βq2
(−β , −β q 2 ; q)n
n=0
(β 2 , β q 2 ; q)n
∑
2 φ1
−iθ
2 φ1
t
2 φ1
1
1
1
1
Cn (x; β |q)t n ,
β 2 eiθ , −β 2 eiθ ; q, e−iθ t −β 1
1
1
iθ
; q, e t
x = cos θ .
2 φ1
1
(14.10.30)
β 2 q 2 e−iθ , −β 2 q 2 e−iθ ; q, eiθ t −β q 1
1
1
1
1
1
1
; q, e
1
−β q 2 ∞
(−β , β q 2 ; q)n
n=0
(β 2 , −β q 2 ; q)n
x = cos θ .
β 2 eiθ , −β 2 q 2 eiθ
∑
1
βq2
(β q 2 , −β q 2 ; q)n ∑ (β 2 , −β q; q)n Cn (x; β |q)t n , n=0
−β 2 e−iθ , −β 2 q 2 e−iθ
1
∞
=
; q, e
∞
=
=
1
−iθ
t
2 φ1
(14.10.31)
β 2 q 2 e−iθ , −β 2 e−iθ 1
1
1
1
−β q 2
iθ
; q, e t
1
1
Cn (x; β |q)t n ,
x = cos θ .
(14.10.32)
γ , β , β e2iθ (γ eiθ t; q)∞ −iθ ; q, e φ t 3 2 β 2 , γ e iθ t (eiθ t; q)∞ ∞ (γ ; q)n Cn (x; β |q)t n , x = cos θ , =∑ 2 ( β ; q) n n=0
γ arbitrary.
(14.10.33)
Limit Relations Askey-Wilson → Continuous q-ultraspherical / Rogers 1
1
1
1
1
1
If we set a = β 2 , b = β 2 q 2 , c = −β 2 and d = −β 2 q 2 in the definition (14.1.1) of the Askey-Wilson polynomials and change the normalization we obtain the continuous q-ultraspherical (or Rogers) polynomials given by (14.10.17). In fact we have: 1
1
1
1
1
1
(β 2 ; q)n pn (x; β 2 , β 2 q 2 , −β 2 , −β 2 q 2 |q) 1
1
(β q 2 , −β , −β q 2 , q; q)n
= Cn (x; β |q).
q-Meixner-Pollaczek → Continuous q-ultraspherical / Rogers If we take θ = 0 and a = β in the definition (14.9.1) of the q-Meixner-Pollaczek polynomials we obtain the continuous q-ultraspherical (or Rogers) polynomials given by
14.10 Continuous q-Jacobi
(14.10.17):
473
Pn (cos φ ; β |q) = Cn (cos φ ; β |q).
Continuous q-ultraspherical / Rogers → Continuous q-Hermite The continuous q-Hermite polynomials given by (14.26.1) can be obtained from the continuous q-ultraspherical (or Rogers) polynomials given by (14.10.17) by taking the limit β → 0. In fact we have lim Cn (x; β |q) =
β →0
Hn (x|q) . (q; q)n
(14.10.34)
Continuous q-ultraspherical / Rogers → Gegenbauer / Ultraspherical If we set β = qλ in the definition (14.10.17) of the continuous q-ultraspherical (or Rogers) polynomials and let q tend to 1 we obtain the Gegenbauer (or ultraspherical) polynomials given by (9.8.19): (λ )
lim Cn (x; qλ |q) = Cn (x).
(14.10.35)
q→1
Remarks The continuous q-ultraspherical (or Rogers) polynomials can also be written as: Cn (x; β |q) =
(β ; q)k (β ; q)n−k i(n−2k)θ e , k=0 (q; q)k (q; q)n−k n
∑
x = cos θ .
They can be obtained from the continuous q-Jacobi polynomials given by (14.10.1) 1 in the following way. Set β = α in the definition (14.10.1) and replace qα + 2 by β and we find the continuous q-ultraspherical (or Rogers) polynomials with a different normalization. We have q (α ,α ) (x|q) Pn
α + 21
→β
−→
1
(β q 2 ; q)n 1 n β 2 Cn (x; β |q). (β 2 ; q)n
If we set β = qα + 2 in the definition (14.10.17) of the q-ultraspherical (or Rogers) polynomials we find the continuous q-Jacobi polynomials given by (14.10.1) with β = α . In fact we have 1
Cn (x; qα + 2 |q) = 1
(q2α +1 ; q)n 1 1 (qα +1 ; q)n q( 2 α + 4 )n
(α ,α )
Pn
(x|q).
474
14 Basic Hypergeometric Orthogonal Polynomials
If we replace q by q−1 we find Cn (x; β |q−1 ) = (β q)nCn (x; β −1 |q). The special case β = q of the continuous q-ultraspherical (or Rogers) polynomials equals the Chebyshev polynomials of the second kind given by (9.8.36). In fact we have sin(n + 1)θ Cn (x; q|q) = = Un (x), x = cos θ . sin θ The limit case β → 1 leads to the Chebyshev polynomials of the first kind given by (9.8.35) in the following way: 1 − qn Cn (x; β |q) = cos nθ = Tn (x), β →1 2(1 − β )
x = cos θ ,
lim
n = 1, 2, 3, . . . .
The continuous q-Jacobi polynomials given by (14.10.16) and the continuous qultraspherical (or Rogers) polynomials given by (14.10.17) are connected by the quadratic transformations: C2n (x; qλ |q) = and C2n+1 (x; qλ |q) =
(qλ , −q; q)n 1 2
1 2
(q , −q ; q)n
(qλ , −1; q)n+1 1 2
1 2
(λ − 12 ,− 21 )
1
q− 2 n Pn
(q , −q ; q)n+1
1
(2x2 − 1; q)
(λ − 21 , 12 )
q− 2 n xPn
(2x2 − 1; q).
Finally we remark that the continuous q-ultraspherical (or Rogers) polynomials are related to the continuous q-Legendre polynomials given by (14.10.36) in the following way: 1 1 Cn (x; q 2 |q) = q− 4 n Pn (x|q).
References [13], [14], [16], [34], [51], [52], [53], [62], [63], [64], [66], [72], [80], [114], [119], [120], [210], [230], [231], [232], [234], [236], [237], [238], [271], [288], [294], [295], [299], [325], [326], [344], [350], [351], [395], [414], [416], [421], [446], [448], [452], [453], [454], [460], [461], [462], [473].
14.10 Continuous q-Jacobi
475
14.10.2 Continuous q-Legendre Basic Hypergeometric Representation The continuous q-Legendre polynomials are continuous q-Jacobi polynomials with α = β = 0: 1 1 q−n , qn+1 , q 4 eiθ , q 4 e−iθ ; q, q , x = cos θ . Pn (x|q) = 4 φ3 (14.10.36) 1 q, −q 2 , −q
Orthogonality Relation 1 2π
1 w(x; 1|q) −1
√
1 − x2 1
=
(q 2 ; q)∞
Pm (x|q)Pn (x|q) dx 1
q2n
1
1
(q, q, −q 2 , −q; q)∞ 1 − qn+ 2
δmn ,
(14.10.37)
where 2 (e2iθ ; q)∞ w(x; a|q) = 1 3 1 3 (aq 4 eiθ , aq 4 eiθ , −aq 4 eiθ , −aq 4 eiθ ; q)∞ 2 2 1 (e2iθ ; q) (eiθ , −eiθ ; q 2 )∞ ∞ = = 1 1 1 1 (aq 4 eiθ , −aq 4 eiθ ; q 2 )∞ (a2 q 2 e2iθ ; q)∞ 1
=
1
h(x, 1)h(x, −1)h(x, q 2 )h(x, −q 2 ) 1
3
1
3
h(x, aq 4 )h(x, aq 4 )h(x, −aq 4 )h(x, −aq 4 )
,
with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , ∞
k=0
x = cos θ .
Recurrence Relation 1
1
1
2(1 − qn+ 2 )xPn (x|q) = q− 4 (1 − qn+1 )Pn+1 (x|q) + q 4 (1 − qn )Pn−1 (x|q). (14.10.38)
476
14 Basic Hypergeometric Orthogonal Polynomials
Normalized Recurrence Relation xpn (x) = pn+1 (x) +
(1 − qn )2 1
pn−1 (x),
1
4(1 − qn− 2 )(1 − qn+ 2 )
where
1
Pn (x|q) =
(14.10.39)
1
2n q 4 n (q 2 ; q)n pn (x). (q; q)n
q-Difference Equation 1 ˜ q 2 |q)Dq y(x) + λn w(x; (1−q)2 Dq w(x; ˜ 1|q)y(x) = 0, where
y(x) = Pn (x|q), (14.10.40)
λn = 4q−n+1 (1 − qn )(1 − qn+1 )
and
w(x; a|q) . w(x; ˜ a|q) := √ 1 − x2
Rodrigues-Type Formula w(x; ˜ 1|q)Pn (x|q) =
q−1 2
n
1 2
q4n 1 2
(q, −q , −q; q)n
1 ˜ q 2 n |q) . (Dq )n w(x;
(14.10.41)
Generating Functions 1 (q 2 eiθ t; q) 2 (q 12 eiθ t, q 12 e−iθ t; q) ∞ Pn (x|q) n ∞ ∞ = iθ = ∑ 1n t , i θ −i θ (e t; q)∞ (e t, e t; q)∞ n=0 q 4 1 2 φ1 i θ (e t; q)∞
q 2 , q 2 e2iθ ; q, e−iθ t q 1
1
∞
=
∑
Pn (x|q) 1
n n=0 (q; q)n q 4
t n,
x = cos θ . (14.10.42)
x = cos θ . (14.10.43)
14.10 Continuous q-Jacobi
477
−iθ
(e
t; q)∞ · 2 φ1
∞
= 2 φ1 ∞
=
1
n
1
3
2 φ1
2 φ1
q 4 eiθ , −q 4 eiθ 1
1
∞
n=0
2 φ1
(14.10.44)
−q 4 e−iθ , −q 4 e−iθ ; q, eiθ t q 1
3
; q, e
(−q; q)n Pn (x|q) 3
(−q 2 ; q)n
1
q4n
−iθ
∞
2 φ1
t
(14.10.45)
q 4 e−iθ , −q 4 e−iθ 3
3
3
−q 2
iθ
; q, e t
x = cos θ .
t n,
q 4 eiθ , −q 4 eiθ ; q, e−iθ t −q 1
x = cos θ .
1
−q 2
∑
=
x = cos θ .
1
(−q 2 , −q; q)n Pn (x|q) n t , ∑ (q, q; q)n 1 q4n n=0
=
1
(−1)n q 4 n+(2) ∑ (q; q)n Pn (x|q)t n , n=0
q 4 e iθ , q 4 e iθ ; q, e−iθ t q 1
q 2 , q 2 e2iθ ; q, e−iθ t q
3
2 φ1
(14.10.46)
q 4 e−iθ , −q 4 e−iθ ; q, eiθ t −q 3
1
1
(−q 2 ; q)n Pn (x|q) n t , 1 q4n n=0 (−q; q)n
∑
(γ eiθ t; q)∞ 3 φ2 (eiθ t; q)∞ ∞
=
γ , q 2 , q 2 e2iθ ; q, e−iθ t q, γ eiθ t 1
(γ ; q)n Pn (x|q)
∑ (q; q)n
n=0
x = cos θ .
q
1n 4
t n,
1
x = cos θ ,
(14.10.47)
γ arbitrary.
(14.10.48)
Limit Relations Continuous q-Legendre → Legendre / Spherical The Legendre (or spherical) polynomials given by (9.8.62) easily follow from the continuous q-Legendre polynomials given by (14.10.36) by taking the limit q → 1: lim Pn (x|q) = Pn (x).
q→1
(14.10.49)
478
14 Basic Hypergeometric Orthogonal Polynomials
Remarks The continuous q-Legendre polynomials can also be written as: 1
n
1
1
(q 2 ; q)k (q 2 ; q)n−k i(n−2k)θ e , k=0 (q; q)k (q; q)n−k
Pn (x|q) = q 4 n ∑
If we set α = β = 0 in (14.10.16) we find 1 1 q−n , qn+1 , q 2 eiθ , q 2 e−iθ ; q, q , Pn (x; q) = 4 φ3 q, −q, −q
x = cos θ .
x = cos θ ,
but these are not really different from those given by (14.10.36) in view of the quadratic transformation Pn (x|q2 ) = Pn (x; q). If we replace q by q−1 we find Pn (x|q−1 ) = Pn (x|q). The continuous q-Legendre polynomials are related to the continuous q-ultraspherical (or Rogers) polynomials given by (14.10.17) in the following way: 1
1
Pn (x|q) = q 4 nCn (x; q 2 |q).
References [320], [323], [341], [345], [348].
14.11 Big q-Laguerre Basic Hypergeometric Representation q−n , 0, x ; q, q Pn (x; a, b; q) = 3 φ2 aq, bq −n 1 x q , aqx−1 = −1 −n ; q, . 2 φ1 (b q ; q)n aq b
(14.11.1)
14.11 Big q-Laguerre
479
Orthogonality Relation For 0 < aq < 1 and b < 0 we have aq −1 (a x, b−1 x; q)∞ bq
(x; q)∞
= aq(1 − q)
Pm (x; a, b; q)Pn (x; a, b; q) dq x
n (q, a−1 b, ab−1 q; q)∞ (q; q)n (−abq2 )n q(2) δmn . (14.11.2) (aq, bq; q)∞ (aq, bq; q)n
Recurrence Relation (x − 1)Pn (x; a, b; q) = An Pn+1 (x; a, b; q) − (An +Cn ) Pn (x; a, b; q) (14.11.3) +Cn Pn−1 (x; a, b; q), where
⎧ ⎨ An = (1 − aqn+1 )(1 − bqn+1 ) ⎩
Cn = −abqn+1 (1 − qn ).
Normalized Recurrence Relation xpn (x) = pn+1 (x) + [1 − (An +Cn )] pn (x) − abqn+1 (1 − qn )(1 − aqn )(1 − bqn )pn−1 (x), (14.11.4) where Pn (x; a, b; q) =
1 pn (x). (aq, bq; q)n
q-Difference Equation q−n (1 − qn )x2 y(x) = B(x)y(qx) − [B(x) + D(x)] y(x) + D(x)y(q−1 x), where y(x) = Pn (x; a, b; q) and
⎧ ⎨ B(x) = abq(1 − x) ⎩
D(x) = (x − aq)(x − bq).
(14.11.5)
480
14 Basic Hypergeometric Orthogonal Polynomials
Forward Shift Operator Pn (x; a, b; q) − Pn (qx; a, b; q) =
q−n+1 (1 − qn ) xPn−1 (qx; aq, bq; q) (1 − aq)(1 − bq)
(14.11.6)
or equivalently Dq Pn (x; a, b; q) =
q−n+1 (1 − qn ) Pn−1 (qx; aq, bq; q). (1 − q)(1 − aq)(1 − bq)
(14.11.7)
Backward Shift Operator (x − a)(x − b)Pn (x; a, b; q) − ab(1 − x)Pn (qx; a, b; q) = (1 − a)(1 − b)xPn+1 (x; aq−1 , bq−1 ; q)
(14.11.8)
or equivalently Dq [w(x; a, b; q)Pn (x; a, b; q)] (1 − a)(1 − b) w(x; aq−1 , bq−1 ; q)Pn+1 (x; aq−1 , bq−1 ; q), (14.11.9) = ab(1 − q) where w(x; a, b; q) =
(a−1 x, b−1 x; q)∞ . (x; q)∞
Rodrigues-Type Formula w(x; a, b; q)Pn (x; a, b; q) =
an bn qn(n+1) (1 − q)n (Dq )n [w(x; aqn , bqn ; q)] . (aq, bq; q)n
(14.11.10)
Generating Functions (bqt; q)∞ · 2 φ1
aqx−1 , 0 ; q, xt aq
∞
=
(bq; q)n Pn (x; a, b; q)t n . n=0 (q; q)n
∑
(14.11.11)
14.11 Big q-Laguerre
481
(aqt; q)∞ · 2 φ1 (t; q)∞ · 3 φ2
bqx−1 , 0 ; q, xt bq
0, 0, x ; q, t aq, bq
∞
=
(aq; q)n Pn (x; a, b; q)t n . (q; q) n n=0
∑
∞
(14.11.12)
n
(−1)n q(2) =∑ Pn (x; a, b; q)t n . n=0 (q; q)n
(14.11.13)
Limit Relations Big q-Jacobi → Big q-Laguerre If we set b = 0 in the definition (14.5.1) of the big q-Jacobi polynomials we obtain the big q-Laguerre polynomials given by (14.11.1): Pn (x; a, 0, c; q) = Pn (x; a, c; q). Big q-Laguerre → Little q-Laguerre / Wall The little q-Laguerre (or Wall) polynomials given by (14.20.1) can be obtained from the big q-Laguerre polynomials by taking x → bqx in (14.11.1) and letting b → −∞: lim Pn (bqx; a, b; q) = pn (x; a|q).
b→−∞
(14.11.14)
Big q-Laguerre → Al-Salam-Carlitz I If we set x → aqx and b → ab in the definition (14.11.1) of the big q-Laguerre polynomials and take the limit a → 0 we obtain the Al-Salam-Carlitz I polynomials given by (14.24.1): Pn (aqx; a, ab; q) (b) lim = qnUn (x; q). (14.11.15) a→0 an Big q-Laguerre → Laguerre The Laguerre polynomials given by (9.12.1) can be obtained from the big q-Laguerre polynomials by the substitution a = qα and b = (1 − q)−1 qβ in the definition (14.11.1) of the big q-Laguerre polynomials and the limit q → 1: lim Pn (x; qα , (1 − q)−1 qβ ; q) =
q→1
(α )
Ln (x − 1) (α )
Ln (0)
.
(14.11.16)
482
14 Basic Hypergeometric Orthogonal Polynomials
Remark The big q-Laguerre polynomials given by (14.11.1) and the affine q-Krawtchouk polynomials given by (14.16.1) are related in the following way: KnA f f (q−x ; p, N; q) = Pn (q−x ; p, q−N−1 ; q).
References [16], [28], [74], [157], [284].
14.12 Little q-Jacobi Basic Hypergeometric Representation pn (x; a, b|q) = 2 φ1
q−n , abqn+1 ; q, qx . aq
(14.12.1)
Orthogonality Relation For 0 < aq < 1 and bq < 1 we have ∞
(bq; q)k (aq)k pm (qk ; a, b|q)pn (qk ; a, b|q) (q; q) k k=0
∑ =
(abq2 ; q)∞ (1 − abq)(aq)n (q, bq; q)n δmn . (aq; q)∞ (1 − abq2n+1 ) (aq, abq; q)n
(14.12.2)
Recurrence Relation − xpn (x; a, b|q) = An pn+1 (x; a, b|q) − (An +Cn ) pn (x; a, b|q) +Cn pn−1 (x; a, b|q), where
(14.12.3)
14.12 Little q-Jacobi
483
⎧ n+1 )(1 − abqn+1 ) ⎪ n (1 − aq ⎪ ⎪ = q A n ⎪ ⎨ (1 − abq2n+1 )(1 − abq2n+2 ) ⎪ ⎪ ⎪ ⎪ ⎩ Cn = aqn
(1 − qn )(1 − bqn ) . (1 − abq2n )(1 − abq2n+1 )
Normalized Recurrence Relation xpn (x) = pn+1 (x) + (An +Cn )pn (x) + An−1Cn pn−1 (x), where
(14.12.4)
n
pn (x; a, b|q) =
(−1)n q−(2) (abqn+1 ; q)n pn (x). (aq; q)n
q-Difference Equation q−n (1 − qn )(1 − abqn+1 )xy(x) = B(x)y(qx) − [B(x) + D(x)] y(x) + D(x)y(q−1 x),
(14.12.5)
where y(x) = pn (x; a, b|q) ⎧ ⎨ B(x) = a(bqx − 1)
and
⎩
D(x) = x − 1.
Forward Shift Operator pn (x; a, b|q) − pn (qx; a, b|q) =−
q−n+1 (1 − qn )(1 − abqn+1 ) xpn−1 (x; aq, bq|q) (1 − aq)
(14.12.6)
or equivalently Dq pn (x; a, b|q) = −
q−n+1 (1 − qn )(1 − abqn+1 ) pn−1 (x; aq, bq|q). (1 − q)(1 − aq)
(14.12.7)
484
14 Basic Hypergeometric Orthogonal Polynomials
Backward Shift Operator a(bx − 1)pn (x; a, b|q) − (x − 1)pn (q−1 x; a, b|q) = (1 − a)pn+1 (x; aq−1 , bq−1 |q)
(14.12.8)
or equivalently Dq−1 w(x; α , β |q)pn (x; qα , qβ |q) =
1 − qα w(x; α − 1, β − 1|q)pn+1 (x; qα −1 , qβ −1 |q), qα −1 (1 − q)
where w(x; α , β |q) =
(14.12.9)
(qx; q)∞ α x . (qβ +1 x; q)∞
Rodrigues-Type Formula w(x; α , β |q)pn (x; qα , qβ |q) n n qnα +(2) (1 − q)n Dq−1 [w(x; α + n, β + n|q)] . = α +1 (q ; q)n
(14.12.10)
Generating Function 0 φ1
− ; q, aqxt aq
2 φ1
x−1 , 0 ; q, xt bq
n (−1)n q(2) =∑ pn (x; a, b|q)t n . (14.12.11) n=0 (bq, q; q)n
∞
Limit Relations Big q-Jacobi → Little q-Jacobi The little q-Jacobi polynomials given by (14.12.1) can be obtained from the big qJacobi polynomials by the substitution x → cqx in the definition (14.5.1) and then by the limit c → −∞: lim Pn (cqx; a, b, c; q) = pn (x; a, b|q).
c→−∞
14.12 Little q-Jacobi
485
q-Hahn → Little q-Jacobi If we set x → N − x in the definition (14.6.1) of the q-Hahn polynomials and take the limit N → ∞ we find the little q-Jacobi polynomials: lim Qn (qx−N ; α , β , N|q) = pn (qx ; α , β |q),
N→∞
where pn (qx ; α , β |q) is given by (14.12.1). Little q-Jacobi → Little q-Laguerre / Wall The little q-Laguerre (or Wall) polynomials given by (14.20.1) are little q-Jacobi polynomials with b = 0. So if we set b = 0 in the definition (14.12.1) of the little q-Jacobi polynomials we obtain the little q-Laguerre (or Wall) polynomials: pn (x; a, 0|q) = pn (x; a|q).
(14.12.12)
Little q-Jacobi → q-Laguerre If we substitute a = qα and x → −b−1 q−1 x in the definition (14.12.1) of the little q-Jacobi polynomials and then take the limit b → −∞ we find the q-Laguerre polynomials given by (14.21.1): lim pn (−b−1 q−1 x; qα , b|q) =
b→−∞
(q; q)n (α ) Ln (x; q). (qα +1 ; q)n
(14.12.13)
Little q-Jacobi → q-Bessel If we set b → −a−1 q−1 b in the definition (14.12.1) of the little q-Jacobi polynomials and then take the limit a → 0 we obtain the q-Bessel polynomials given by (14.22.1): lim pn (x; a, −a−1 q−1 b|q) = yn (x; b; q).
a→0
(14.12.14)
Little q-Jacobi → Jacobi / Laguerre The Jacobi polynomials given by (9.8.1) simply follow from the little q-Jacobi polynomials given by (14.12.1) in the following way: lim pn (x; qα , qβ |q) =
q→1
(α ,β )
Pn
(1 − 2x)
(α ,β ) Pn (1)
.
(14.12.15)
486
14 Basic Hypergeometric Orthogonal Polynomials
If we take a = qα , b = −qβ for arbitrary real β and x → 12 (1 − q)x in the definition (14.12.1) of the little q-Jacobi polynomials and then take the limit q → 1 we obtain the Laguerre polynomials given by (9.12.1): lim pn ( 12 (1 − q)x; qα , −qβ |q) =
q→1
(α )
Ln (x)
(α ) Ln (0)
.
(14.12.16)
Remarks The little q-Jacobi polynomials given by (14.12.1) and the big q-Jacobi polynomials given by (14.5.1) are related in the following way: pn (x; a, b|q) =
n (bq; q)n (−1)n b−n q−n−(2) Pn (bqx; b, a, 0; q). (aq; q)n
The little q-Jacobi polynomials and the q-Meixner polynomials given by (14.13.1) are related in the following way: Mn (q−x ; b, c; q) = pn (−c−1 qn ; b, b−1 q−n−x−1 |q).
References [12], [16], [23], [24], [33], [34], [51], [79], [80], [157], [212], [213], [214], [235], [238], [256], [261], [271], [287], [298], [304], [326], [329], [343], [345], [346], [348], [402], [408], [416], [442], [480], [482], [485].
Special Case 14.12.1 Little q-Legendre Basic Hypergeometric Representation The little q-Legendre polynomials are little q-Jacobi polynomials with a = b = 1: −n n+1 q ,q ; q, qx . (14.12.17) pn (x|q) = 2 φ1 q
14.12 Little q-Jacobi
487
Orthogonality Relation 1 0
∞
pm (x|q)pn (x|q) dq x = (1 − q) ∑ qk pm (qk |q)pn (qk |q) k=0
(1 − q)qn δmn . = (1 − q2n+1 )
(14.12.18)
Recurrence Relation − xpn (x|q) = An pn+1 (x|q) − (An +Cn ) pn (x|q) +Cn pn−1 (x|q), where
(14.12.19)
⎧ (1 − qn+1 ) ⎪ n ⎪ ⎪ = q A n ⎪ ⎨ (1 + qn+1 )(1 − q2n+1 ) ⎪ ⎪ ⎪ ⎪ ⎩ Cn = qn
(1 − qn ) . (1 + qn )(1 − q2n+1 )
Normalized Recurrence Relation xpn (x) = pn+1 (x) + (An +Cn )pn (x) + An−1Cn pn−1 (x), where
(14.12.20)
n
(−1)n q−(2) (qn+1 ; q)n pn (x|q) = pn (x). (q; q)n
q-Difference Equation q−n (1 − qn )(1 − qn+1 )xy(x) = B(x)y(qx) − [B(x) + D(x)] y(x) + D(x)y(q−1 x), where y(x) = pn (x|q) and
⎧ ⎨ B(x) = qx − 1 ⎩
D(x) = x − 1.
(14.12.21)
488
14 Basic Hypergeometric Orthogonal Polynomials
Rodrigues-Type Formula n n q(2) (1 − q)n Dq−1 [(qx; q)n xn ] . pn (x|q) = (q; q)n
(14.12.22)
Generating Function 0 φ1
− ; q, qxt q
2 φ1
x−1 , 0 ; q, xt q
n (−1)n q(2) ∑ (q, q; q)n pn (x|q)t n . n=0
∞
=
(14.12.23)
Limit Relation Little q-Legendre → Legendre / Spherical If we take the limit q → 1 in the definition (14.12.17) of the little q-Legendre polynomials we simply find the Legendre (or spherical) polynomials given by (9.8.62): lim pn (x|q) = Pn (1 − 2x).
(14.12.24)
q→1
References [345], [346], [447], [504].
14.13 q-Meixner Basic Hypergeometric Representation −x
Mn (q ; b, c; q) = 2 φ1
qn+1 q−n , q−x ; q, − bq c
.
(14.13.1)
14.13 q-Meixner
489
Orthogonality Relation ∞
(bq; q)x
∑ (q, −bcq; q)x cx q(2) Mm (q−x ; b, c; q)Mn (q−x ; b, c; q) x
x=0
=
(−c; q)∞ (q, −c−1 q; q)n −n q δmn , (−bcq; q)∞ (bq; q)n
0 ≤ bq < 1,
c > 0. (14.13.2)
Recurrence Relation q2n+1 (1 − q−x )Mn (q−x ) = c(1 − bqn+1 )Mn+1 (q−x )
− c(1 − bqn+1 ) + q(1 − qn )(c + qn ) Mn (q−x ) + q(1 − qn )(c + qn )Mn−1 (q−x ), where
(14.13.3)
Mn (q−x ) := Mn (q−x ; b, c; q).
Normalized Recurrence Relation
xpn (x) = pn+1 (x) + 1 + q−2n−1 c(1 − bqn+1 ) + q(1 − qn )(c + qn ) pn (x) + cq−4n+1 (1 − qn )(1 − bqn )(c + qn )pn−1 (x), where
(14.13.4)
2
Mn (q−x ; b, c; q) =
(−1)n qn pn (q−x ). (bq; q)n cn
q-Difference Equation − (1 − qn )y(x) = B(x)y(x + 1) − [B(x) + D(x)] y(x) + D(x)y(x − 1), where and
y(x) = Mn (q−x ; b, c; q)
(14.13.5)
490
14 Basic Hypergeometric Orthogonal Polynomials
⎧ ⎨ B(x) = cqx (1 − bqx+1 ) ⎩
D(x) = (1 − qx )(1 + bcqx ).
Forward Shift Operator Mn (q−x−1 ; b, c; q) − Mn (q−x ; b, c; q) q−x (1 − qn ) Mn−1 (q−x ; bq, cq−1 ; q) =− c(1 − bq)
(14.13.6)
or equivalently
Δ Mn (q−x ; b, c; q) q(1 − qn ) Mn−1 (q−x ; bq, cq−1 ; q). = − Δ q−x c(1 − q)(1 − bq)
(14.13.7)
Backward Shift Operator cqx (1 − bqx )Mn (q−x ; b, c; q) − (1 − qx )(1 + bcqx )Mn (q−x+1 ; b, c; q) (14.13.8) = cqx (1 − b)Mn+1 (q−x ; bq−1 , cq; q) or equivalently ∇ [w(x; b, c; q)Mn (q−x ; b, c; q)] ∇q−x 1 w(x; bq−1 , cq; q)Mn+1 (q−x ; bq−1 , cq; q), = 1−q where w(x; b, c; q) =
(14.13.9)
x+1 (bq; q)x cx q( 2 ) . (q, −bcq; q)x
Rodrigues-Type Formula
w(x; b, c; q)Mn (q−x ; b, c; q) = (1 − q)n (∇q )n w(x; bqn , cq−n ; q) , where ∇q :=
∇ . ∇q−x
(14.13.10)
14.13 q-Meixner
491
Generating Functions 1 1 φ1 (t; q)∞
q−x ; q, −c−1 qt bq
∞
=
Mn (q−x ; b, c; q) n t . (q; q)n n=0
∑
−1 −1 −x −b c q 1 ; q, bqt φ 1 1 (t; q)∞ −c−1 q ∞ (bq; q)n Mn (q−x ; b, c; q)t n . =∑ −1 q, q; q) (−c n n=0
(14.13.11)
(14.13.12)
Limit Relations Big q-Jacobi → q-Meixner If we set b = −a−1 cd −1 (with d > 0) in the definition (14.5.1) of the big q-Jacobi polynomials and take the limit c → −∞ we obtain the q-Meixner polynomials given by (14.13.1): lim Pn (q−x ; a, −a−1 cd −1 , c; q) = Mn (q−x ; a, d; q).
c→−∞
(14.13.13)
q-Hahn → q-Meixner The q-Meixner polynomials given by (14.13.1) can be obtained from the q-Hahn polynomials by setting α = b and β = −b−1 c−1 q−N−1 in the definition (14.6.1) of the q-Hahn polynomials and letting N → ∞: lim Qn (q−x ; b, −b−1 c−1 q−N−1 , N|q) = Mn (q−x ; b, c; q).
N→∞
q-Meixner → q-Laguerre The q-Laguerre polynomials given by (14.21.1) can be obtained from the q-Meixner polynomials given by (14.13.1) by setting b = qα and q−x → cqα x in the definition (14.13.1) of the q-Meixner polynomials and then taking the limit c → ∞: lim Mn (cqα x; qα , c; q) =
c→∞
(q; q)n (α ) Ln (x; q). (qα +1 ; q)n
(14.13.14)
492
14 Basic Hypergeometric Orthogonal Polynomials
q-Meixner → q-Charlier The q-Charlier polynomials given by (14.23.1) can easily be obtained from the qMeixner given by (14.13.1) by setting b = 0 in the definition (14.13.1) of the qMeixner polynomials: Mn (x; 0, c; q) = Cn (x; c; q). (14.13.15) q-Meixner → Al-Salam-Carlitz II The Al-Salam-Carlitz II polynomials given by (14.25.1) can be obtained from the q-Meixner polynomials given by (14.13.1) by setting b = −ac−1 in the definition (14.13.1) of the q-Meixner polynomials and then taking the limit c → 0: 1 n (n) (a) −1 q 2 Vn (x; q). (14.13.16) lim Mn (x; −ac , c; q) = − c→0 a q-Meixner → Meixner To find the Meixner polynomials given by (9.10.1) from the q-Meixner polynomials given by (14.13.1) we set b = qβ −1 and c → (1 − c)−1 c and let q → 1: lim Mn (q−x ; qβ −1 , (1 − c)−1 c; q) = Mn (x; β , c).
q→1
(14.13.17)
Remarks The q-Meixner polynomials given by (14.13.1) and the little q-Jacobi polynomials given by (14.12.1) are related in the following way: Mn (q−x ; b, c; q) = pn (−c−1 qn ; b, b−1 q−n−x−1 |q). The q-Meixner polynomials and the quantum q-Krawtchouk polynomials given by (14.14.1) are related in the following way: Knqtm (q−x ; p, N; q) = Mn (q−x ; q−N−1 , −p−1 ; q).
References [16], [27], [28], [30], [74], [80], [125], [238], [261], [276], [416], [472].
14.14 Quantum q-Krawtchouk
493
14.14 Quantum q-Krawtchouk Basic Hypergeometric Representation Knqtm (q−x ; p, N; q) = 2 φ1
q−n , q−x n+1 , ; q, pq q−N
n = 0, 1, 2, . . . , N.
(14.14.1)
Orthogonality Relation N
(pq; q)N−x
∑ (q; q)x (q; q)N−x (−1)N−x q(2) Kmqtm (q−x ; p, N; q)Knqtm (q−x ; p, N; q) x
x=0
=
(−1)n pN (q; q)N−n (q, pq; q)n (N+1)−(n+1)+Nn 2 q 2 δmn , (q, q; q)N
p > q−N . (14.14.2)
Recurrence Relation −pq2n+1 (1 − q−x )Knqtm (q−x ) qtm −x (q ) = (1 − qn−N )Kn+1
n−N − (1 − q ) + q(1 − qn )(1 − pqn ) Knqtm (q−x ) qtm −x (q ), + q(1 − qn )(1 − pqn )Kn−1
where
(14.14.3)
Knqtm (q−x ) := Knqtm (q−x ; p, N; q).
Normalized Recurrence Relation
xpn (x) = pn+1 (x) + 1 − p−1 q−2n−1 (1 − qn−N ) + q(1 − qn )(1 − pqn ) pn (x) + p−2 q−4n+1 (1 − qn )(1 − pqn )(1 − qn−N−1 )pn−1 (x), where
2
Knqtm (q−x ; p, N; q) =
pn qn pn (q−x ). (q−N ; q)n
(14.14.4)
494
14 Basic Hypergeometric Orthogonal Polynomials
q-Difference Equation − p(1 − qn )y(x) = B(x)y(x + 1) − [B(x) + D(x)] y(x) + D(x)y(x − 1), where
(14.14.5)
y(x) = Knqtm (q−x ; p, N; q) ⎧ ⎨ B(x) = −qx (1 − qx−N )
and
⎩
D(x) = (1 − qx )(p − qx−N−1 ).
Forward Shift Operator Knqtm (q−x−1 ; p, N; q) − Knqtm (q−x ; p, N; q) pq−x (1 − qn ) qtm −x Kn−1 (q ; pq, N − 1; q) = 1 − q−N
(14.14.6)
or equivalently
Δ Knqtm (q−x ; p, N; q) pq(1 − qn ) K qtm (q−x ; pq, N − 1; q). = Δ q−x (1 − q)(1 − q−N ) n−1
(14.14.7)
Backward Shift Operator (1 − qx−N−1 )Knqtm (q−x ; p, N; q) + q−x (1 − qx )(p − qx−N−1 )Knqtm (q−x+1 ; p, N; q) qtm −x (q ; pq−1 , N + 1; q) = (1 − q−N−1 )Kn+1
(14.14.8)
or equivalently
∇ w(x; p, N; q)Knqtm (q−x ; p, N; q) ∇q−x 1 qtm −x w(x; pq−1 , N + 1; q)Kn+1 = (q ; pq−1 , N + 1; q), 1−q where w(x; p, N; q) =
x+1 (q−N ; q)x (−p)−x q( 2 ) . −1 −N (q, p q ; q)x
(14.14.9)
14.14 Quantum q-Krawtchouk
495
Rodrigues-Type Formula w(x; p, N; q)Knqtm (q−x ; p, N; q) = (1 − q)n (∇q )n [w(x; pqn , N − n; q)] , where ∇q :=
(14.14.10)
∇ . ∇q−x
Generating Functions For x = 0, 1, 2, . . . , N we have (q
x−N
t; q)N−x · 2 φ1
q−x , pqN+1−x ; q, qx−N t 0
(q−N ; q)n qtm −x Kn (q ; p, N; q)t n . (q; q) n n=0 N
=
∑
(q−xt; q)x · 2 φ1 N
=
qx−N , 0 ; q, q−xt pq
(14.14.11)
(q−N ; q)n
∑ (pq, q; q)n Knqtm (q−x ; p, N; q)t n .
(14.14.12)
n=0
Limit Relations q-Hahn → Quantum q-Krawtchouk The quantum q-Krawtchouk polynomials given by (14.14.1) simply follow from the q-Hahn polynomials by setting β = p in the definition (14.6.1) of the q-Hahn polynomials and taking the limit α → ∞: lim Qn (q−x ; α , p, N|q) = Knqtm (q−x ; p, N; q).
α →∞
Quantum q-Krawtchouk → Al-Salam-Carlitz II If we set p = a−1 q−N−1 in the definition (14.14.1) of the quantum q-Krawtchouk polynomials and let N → ∞ we obtain the Al-Salam-Carlitz II polynomials given by (14.25.1). In fact we have
496
14 Basic Hypergeometric Orthogonal Polynomials
lim
N→∞
Knqtm (x; a−1 q−N−1 , N; q) =
1 n (n) (a) − q 2 Vn (x; q). a
(14.14.13)
Quantum q-Krawtchouk → Krawtchouk The Krawtchouk polynomials given by (9.11.1) easily follow from the quantum qKrawtchouk polynomials given by (14.14.1) in the following way: lim Knqtm (q−x ; p, N; q) = Kn (x; p−1 , N).
q→1
(14.14.14)
Remarks The quantum q-Krawtchouk polynomials given by (14.14.1) and the q-Meixner polynomials given by (14.13.1) are related in the following way: Knqtm (q−x ; p, N; q) = Mn (q−x ; q−N−1 , −p−1 ; q). The quantum q-Krawtchouk polynomials are related to the affine q-Krawtchouk polynomials given by (14.16.1) by the transformation q ↔ q−1 in the following way: p n −(n) A f f x−N −1 qtm x −1 −1 Kn (q ; p, N; q ) = (p q; q)n − q 2 Kn (q ; p , N; q). q
References [238], [343], [345], [472].
14.15 q-Krawtchouk Basic Hypergeometric Representation For n = 0, 1, 2, . . . , N we have q−n , q−x , −pqn ; q, q (14.15.1) q−N , 0 −n −x (qx−N ; q)n q ,q n+N+1 = −N . φ ; q, −pq 2 1 (q ; q)n qnx qN−x−n+1
Kn (q−x ; p, N; q) = 3 φ2
14.15 q-Krawtchouk
497
Orthogonality Relation (q−N ; q)x (−p)−x Km (q−x ; p, N; q)Kn (q−x ; p, N; q) (q; q) x x=0 N
∑ =
(q, −pqN+1 ; q)n (1 + p) (−p, q−N ; q)n (1 + pq2n ) n 2 N+1 × (−pq; q)N p−N q−( 2 ) −pq−N qn δmn ,
p > 0.
(14.15.2)
Recurrence Relation − 1 − q−x Kn (q−x ) = An Kn+1 (q−x ) − (An +Cn ) Kn (q−x ) +Cn Kn−1 (q−x ), where and
(14.15.3)
Kn (q−x ) := Kn (q−x ; p, N; q) ⎧ (1 − qn−N )(1 + pqn ) ⎪ ⎪ An = ⎪ ⎪ ⎨ (1 + pq2n )(1 + pq2n+1 ) ⎪ ⎪ (1 + pqn+N )(1 − qn ) ⎪ ⎪ ⎩ Cn = −pq2n−N−1 . (1 + pq2n−1 )(1 + pq2n )
Normalized Recurrence Relation xpn (x) = pn+1 (x) + [1 − (An +Cn )] pn (x) + An−1Cn pn−1 (x), where Kn (q−x ; p, N; q) =
(14.15.4)
(−pqn ; q)n pn (q−x ). (q−N ; q)n
q-Difference Equation q−n (1 − qn )(1 + pqn )y(x)
= (1 − qx−N )y(x + 1) − (1 − qx−N ) − p(1 − qx ) y(x) − p(1 − qx )y(x − 1),
(14.15.5)
498
14 Basic Hypergeometric Orthogonal Polynomials
where
y(x) = Kn (q−x ; p, N; q).
Forward Shift Operator Kn (q−x−1 ; p, N; q) − Kn (q−x ; p, N; q) q−n−x (1 − qn )(1 + pqn ) = Kn−1 (q−x ; pq2 , N − 1; q) 1 − q−N
(14.15.6)
or equivalently
Δ Kn (q−x ; p, N; q) q−n+1 (1 − qn )(1 + pqn ) Kn−1 (q−x ; pq2 , N − 1; q). (14.15.7) = Δ q−x (1 − q)(1 − q−N )
Backward Shift Operator (1 − qx−N−1 )Kn (q−x ; p, N; q) + pq−1 (1 − qx )Kn (q−x+1 ; p, N; q) (14.15.8) = qx (1 − q−N−1 )Kn+1 (q−x ; pq−2 , N + 1; q) or equivalently ∇ [w(x; p, N; q)Kn (q−x ; p, N; q)] ∇q−x 1 w(x; pq−2 , N + 1; q)Kn+1 (q−x ; pq−2 , N + 1; q), = 1−q where w(x; p, N; q) =
(q−N ; q)x (q; q)x
(14.15.9)
q x − . p
Rodrigues-Type Formula
w(x; p, N; q)Kn (q−x ; p, N; q) = (1 − q)n (∇q )n w(x; pq2n , N − n; q) , where ∇q :=
∇ . ∇q−x
(14.15.10)
14.15 q-Krawtchouk
499
Generating Function For x = 0, 1, 2, . . . , N we have −x x−N q q ,0 −x ; q, −q t ; q, pqt 2 φ0 1 φ1 − 0 (q−N ; q)n −(n) q 2 Kn (q−x ; p, N; q)t n . (q; q) n n=0 N
=
∑
(14.15.11)
Limit Relations q-Racah → q-Krawtchouk The q-Krawtchouk polynomials given by (14.15.1) can be obtained from the q-Racah polynomials by setting α q = q−N , β = −pqN and γ = δ = 0 in the definition (14.2.1) of the q-Racah polynomials: Rn (q−x ; q−N−1 , −pqN , 0, 0|q) = Kn (q−x ; p, N; q). Note that μ (x) = q−x in this case. q-Hahn → q-Krawtchouk If we set β = −α −1 q−1 p in the definition (14.6.1) of the q-Hahn polynomials and then let α → 0 we obtain the q-Krawtchouk polynomials given by (14.15.1): lim Qn (q−x ; α , −α −1 q−1 p, N|q) = Kn (q−x ; p, N; q).
α →0
q-Krawtchouk → q-Bessel If we set x → N − x in the definition (14.15.1) of the q-Krawtchouk polynomials and then take the limit N → ∞ we obtain the q-Bessel polynomials given by (14.22.1): lim Kn (qx−N ; p, N; q) = yn (qx ; p; q).
N→∞
(14.15.12)
q-Krawtchouk → q-Charlier By setting p = a−1 q−N in the definition (14.15.1) of the q-Krawtchouk polynomials and then taking the limit N → ∞ we obtain the q-Charlier polynomials given by
500
(14.23.1):
14 Basic Hypergeometric Orthogonal Polynomials
lim Kn (q−x ; a−1 q−N , N; q) = Cn (q−x ; a; q).
N→∞
(14.15.13)
q-Krawtchouk → Krawtchouk If we take the limit q → 1 in the definition (14.15.1) of the q-Krawtchouk polynomials we simply find the Krawtchouk polynomials given by (9.11.1) in the following way: (14.15.14) lim Kn (q−x ; p, N; q) = Kn (x; (p + 1)−1 , N). q→1
Remark The q-Krawtchouk polynomials given by (14.15.1) and the dual q-Krawtchouk polynomials given by (14.17.1) are related in the following way: Kn (q−x ; p, N; q) = Kx (λ (n); −pqN , N|q) with or with
λ (n) = q−n − pqn Kn (λ (x); c, N|q) = Kx (q−n ; −cq−N , N; q)
λ (x) = q−x + cqx−N .
References [30], [70], [80], [125], [238], [416], [421], [487], [488].
14.16 Affine q-Krawtchouk
501
14.16 Affine q-Krawtchouk Basic Hypergeometric Representation
q−n , 0, q−x ; q, q pq, q−N n −n x−N q ,q q−x (−pq)n q(2) , ; q, = 2 φ1 (pq; q)n q−N p
KnA f f (q−x ; p, N; q) = 3 φ2
(14.16.1) n = 0, 1, 2, . . . , N.
Orthogonality Relation N
(pq; q)x (q; q)N
∑ (q; q)x (q; q)N−x (pq)−x KmA f f (q−x ; p, N; q)KnA f f (q−x ; p, N; q)
x=0
= (pq)n−N
(q; q)n (q; q)N−n δmn , (pq; q)n (q; q)N
0 < pq < 1.
(14.16.2)
Recurrence Relation −(1 − q−x )KnA f f (q−x ) A f f −x = (1 − qn−N )(1 − pqn+1 )Kn+1 (q )
n−N n+1 − (1 − q )(1 − pq ) − pqn−N (1 − qn ) KnA f f (q−x ) A f f −x − pqn−N (1 − qn )Kn−1 (q ),
where
(14.16.3)
KnA f f (q−x ) := KnA f f (q−x ; p, N; q).
Normalized Recurrence Relation
xpn (x) = pn+1 (x) + 1 − (1 − qn−N )(1 − pqn+1 ) − pqn−N (1 − qn ) pn (x) − pqn−N (1 − qn )(1 − pqn )(1 − qn−N−1 )pn−1 (x), where
(14.16.4)
502
14 Basic Hypergeometric Orthogonal Polynomials
KnA f f (q−x ; p, N; q) =
1 pn (q−x ). (pq, q−N ; q)n
q-Difference Equation q−n (1 − qn )y(x) = B(x)y(x + 1) − [B(x) + D(x)] y(x) + D(x)y(x − 1), where
(14.16.5)
y(x) = KnA f f (q−x ; p, N; q) ⎧ ⎨ B(x) = (1 − qx−N )(1 − pqx+1 )
and
⎩
D(x) = −p(1 − qx )qx−N .
Forward Shift Operator KnA f f (q−x−1 ; p, N; q) − KnA f f (q−x ; p, N; q) q−n−x (1 − qn ) K A f f (q−x ; pq, N − 1; q) = (1 − pq)(1 − q−N ) n−1
(14.16.6)
or equivalently
Δ KnA f f (q−x ; p, N; q) Δ q−x q−n+1 (1 − qn ) K A f f (q−x ; pq, N − 1; q). = (1 − q)(1 − pq)(1 − q−N ) n−1
(14.16.7)
Backward Shift Operator (1 − pqx )(1 − q−x+N+1 )KnA f f (q−x ; p, N; q) − p(1 − qx )KnA f f (q−x+1 ; p, N; q) A f f −x = (1 − p)(1 − qN+1 )Kn+1 (q ; pq−1 , N + 1; q)
or equivalently
(14.16.8)
14.16 Affine q-Krawtchouk
503
∇ w(x; p, N; q)KnA f f (q−x ; p, N; q) ∇q−x =
1 − qN+1 1−q
A f f −x w(x; pq−1 , N + 1; q)Kn+1 (q ; pq−1 , N + 1; q),
where
(14.16.9)
(pq; q)x p−x . (q; q)x (q; q)N−x
w(x; p, N; q) =
Rodrigues-Type Formula w(x; p, N; q)KnA f f (q−x ; p, N; q) n (−1)n q−Nn+(2) (1 − q)n = (∇q )n [w(x; pqn , N − n; q)] , (q−N ; q)n where ∇q :=
(14.16.10)
∇ . ∇q−x
Generating Functions For x = 0, 1, 2, . . . , N we have (q
−N
t; q)N−x · 1 φ1
q−x ; q, pqt pq
(−pq
−N+1
(q−N ; q)n A f f −x Kn (q ; p, N; q)t n . (14.16.11) n=0 (q; q)n N
=
∑
t; q)x · 2 φ0
qx−N , pqx+1 ; q, −q−xt −
(pq, q−N ; q)n −(n) A f f −x q 2 Kn (q ; p, N; q)t n . (q; q) n n=0 N
=
∑
(14.16.12)
504
14 Basic Hypergeometric Orthogonal Polynomials
Limit Relations q-Hahn → Affine q-Krawtchouk The affine q-Krawtchouk polynomials given by (14.16.1) can be obtained from the q-Hahn polynomials by the substitution α = p and β = 0 in (14.6.1): Qn (q−x ; p, 0, N|q) = KnA f f (q−x ; p, N; q). Dual q-Hahn → Affine q-Krawtchouk The affine q-Krawtchouk polynomials given by (14.16.1) can be obtained from the dual q-Hahn polynomials by the substitution γ = p and δ = 0 in (14.7.1): Rn (μ (x); p, 0, N|q) = KnA f f (q−x ; p, N; q). Note that μ (x) = q−x in this case. Affine q-Krawtchouk → Little q-Laguerre / Wall If we set x → N − x in the definition (14.16.1) of the affine q-Krawtchouk polynomials and take the limit N → ∞ we simply obtain the little q-Laguerre (or Wall) polynomials given by (14.20.1): lim KnA f f (qx−N ; p, N; q) = pn (qx ; p; q).
N→∞
(14.16.13)
Affine q-Krawtchouk → Krawtchouk If we let q → 1 in the definition (14.16.1) of the affine q-Krawtchouk polynomials we obtain: (14.16.14) lim KnA f f (q−x ; p, N|q) = Kn (x; 1 − p, N), q→1
where Kn (x; 1 − p, N) is the Krawtchouk polynomial given by (9.11.1).
Remarks The affine q-Krawtchouk polynomials given by (14.16.1) and the big q-Laguerre polynomials given by (14.11.1) are related in the following way: KnA f f (q−x ; p, N; q) = Pn (q−x ; p, q−N−1 ; q).
14.17 Dual q-Krawtchouk
505
The affine q-Krawtchouk polynomials are related to the quantum q-Krawtchouk polynomials given by (14.14.1) by the transformation q ↔ q−1 in the following way: KnA f f (qx ; p, N; q−1 ) =
1 K qtm (qx−N ; p−1 , N; q). (p−1 q; q)n n
References [80], [141], [161], [162], [186], [214], [238], [488].
14.17 Dual q-Krawtchouk Basic Hypergeometric Representation q−n , q−x , cqx−N ; q, q Kn (λ (x); c, N|q) = 3 φ2 q−N , 0 −n −x (qx−N ; q)n q ,q x+1 = −N , φ ; q, cq 2 1 (q ; q)n qnx qN−x−n+1
where
(14.17.1) n = 0, 1, 2, . . . , N,
λ (x) := q−x + cqx−N .
Orthogonality Relation (cq−N , q−N ; q)x (1 − cq2x−N ) −x x(2N−x) c q Km (λ (x))Kn (λ (x)) (q, cq; q)x (1 − cq−N ) x=0 N
∑
= (c−1 ; q)N where
(q; q)n (cq−N )n δmn , (q−N ; q)n
c < 0,
Kn (λ (x)) := Kn (λ (x); c, N|q).
(14.17.2)
506
14 Basic Hypergeometric Orthogonal Polynomials
Recurrence Relation −(1 − q−x )(1 − cqx−N )Kn (λ (x)) = (1 − qn−N )Kn+1 (λ (x))
− (1 − qn−N ) + cq−N (1 − qn ) Kn (λ (x)) + cq−N (1 − qn )Kn−1 (λ (x)), where
(14.17.3)
Kn (λ (x)) := Kn (λ (x); c, N|q).
Normalized Recurrence Relation xpn (x) = pn+1 (x) + (1 + c)qn−N pn (x) + cq−N (1 − qn )(1 − qn−N−1 )pn−1 (x), where Kn (λ (x); c, N|q) =
(14.17.4)
1 pn (λ (x)). (q−N ; q)n
q-Difference Equation q−n (1 − qn )y(x) = B(x)y(x + 1) − [B(x) + D(x)] y(x) + D(x)y(x − 1), where and
y(x) = Kn (λ (x); c, N|q) ⎧ (1 − qx−N )(1 − cqx−N ) ⎪ ⎪ ⎪ B(x) = ⎪ ⎨ (1 − cq2x−N )(1 − cq2x−N+1 ) ⎪ ⎪ ⎪ ⎪ ⎩ D(x) = cq2x−2N−1
(1 − qx )(1 − cqx ) . (1 − cq2x−N−1 )(1 − cq2x−N )
(14.17.5)
14.17 Dual q-Krawtchouk
507
Forward Shift Operator Kn (λ (x + 1); c, N|q) − Kn (λ (x); c, N|q) =
q−n−x (1 − qn )(1 − cq2x−N+1 ) Kn−1 (λ (x); c, N − 1|q) 1 − q−N
(14.17.6)
or equivalently
Δ Kn (λ (x); c, N|q) q−n+1 (1 − qn ) = Kn−1 (λ (x); c, N − 1|q). Δ λ (x) (1 − q)(1 − q−N )
(14.17.7)
Backward Shift Operator (1 − qx−N−1 )(1 − cqx−N−1 )Kn (λ (x); c, N|q) − cq2(x−N−1) (1 − qx )(1 − cqx )Kn (λ (x − 1); c, N|q) = qx (1 − q−N−1 )(1 − cq2x−N−1 )Kn+1 (λ (x); c, N + 1|q)
(14.17.8)
or equivalently ∇ [w(x; c, N|q)Kn (λ (x); c, N|q)] ∇λ (x) 1 = w(x; c, N + 1|q)Kn+1 (λ (x); c, N + 1|q), (14.17.9) (1 − q)(1 − cq−N−1 ) where w(x; c, N|q) =
(q−N , cq−N ; q)x −x 2Nx−x(x−1) c q . (q, cq; q)x
Rodrigues-Type Formula w(x; c, N|q)Kn (λ (x); c, N|q) = (1 − q)n (cq−N ; q)n (∇λ )n [w(x; c, N − n|q)] , where ∇λ :=
∇ . ∇λ (x)
(14.17.10)
508
14 Basic Hypergeometric Orthogonal Polynomials
Generating Function For x = 0, 1, 2, . . . , N we have (cq−N t; q)x · (q−N t; q)N−x =
(q−N ; q)n ∑ (q; q)n Kn (λ (x); c, N|q)t n . n=0 N
(14.17.11)
Limit Relations q-Racah → Dual q-Krawtchouk The dual q-Krawtchouk polynomials given by (14.17.1) easily follow from the qRacah polynomials given by (14.2.1) by using the substitutions α = β = 0, γ q = q−N and δ = c: Rn (μ (x); 0, 0, q−N−1 , c|q) = Kn (λ (x); c, N|q). Note that
μ (x) = λ (x) = q−x + cqx−N .
Dual q-Hahn → Dual q-Krawtchouk The dual q-Krawtchouk polynomials given by (14.17.1) can be obtained from the dual q-Hahn polynomials by setting δ = cγ −1 q−N−1 in (14.7.1) and letting γ → 0: lim Rn (μ (x); γ , cγ −1 q−N−1 , N|q) = Kn (λ (x); c, N|q).
γ →0
Dual q-Krawtchouk → Al-Salam-Carlitz I If we set c = a−1 in the definition (14.17.1) of the dual q-Krawtchouk polynomials and take the limit N → ∞ we simply obtain the Al-Salam-Carlitz I polynomials given by (14.24.1): 1 n −(n) (a) x −1 q 2 Un (q ; q). (14.17.12) lim Kn (λ (x); a , N|q) = − N→∞ a Note that λ (x) = q−x + a−1 qx−N .
14.18 Continuous Big q-Hermite
509
Dual q-Krawtchouk → Krawtchouk If we set c = 1 − p−1 in the definition (14.17.1) of the dual q-Krawtchouk polynomials and take the limit q → 1 we simply find the Krawtchouk polynomials given by (9.11.1): (14.17.13) lim Kn (λ (x); 1 − p−1 , N|q) = Kn (x; p, N). q→1
Remark The dual q-Krawtchouk polynomials given by (14.17.1) and the q-Krawtchouk polynomials given by (14.15.1) are related in the following way: Kn (q−x ; p, N; q) = Kx (λ (n); −pqN , N|q) with
λ (n) = q−n − pqn
or
Kn (λ (x); c, N|q) = Kx (q−n ; −cq−N , N; q)
with
λ (x) = q−x + cqx−N .
References [141], [326], [345], [348].
14.18 Continuous Big q-Hermite Basic Hypergeometric Representation q−n , aeiθ , ae−iθ ; q, q 0, 0 −n iθ q , ae ; q, qn e−2iθ , = einθ 2 φ0 −
Hn (x; a|q) = a−n 3 φ2
(14.18.1) x = cos θ .
510
14 Basic Hypergeometric Orthogonal Polynomials
Orthogonality Relation If a is real and |a| < 1, then we have the following orthogonality relation 1 2π
1
w(x) δmn √ Hm (x; a|q)Hn (x; a|q) dx = n+1 , 2 (q ; q)∞ −1 1−x
(14.18.2)
where 2iθ (e ; q)∞ 2 h(x, 1)h(x, −1)h(x, q 21 )h(x, −q 21 ) = , w(x) := w(x; a|q) = iθ h(x, a) (ae ; q)∞ with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , ∞
k=0
x = cos θ .
If a > 1, then we have another orthogonality relation given by: 1 2π
1
w(x) √ Hm (x; a|q)Hn (x; a|q) dx −1 1 − x2
∑
+
wk Hm (xk ; a|q)Hn (xk ; a|q) =
k
δmn , n+1 (q ; q)∞
(14.18.3)
1
where w(x) is as before, xk = and wk =
−1 aqk + aqk 2
1 k (a−2 ; q)∞ (1 − a2 q2k )(a2 ; q)k − 3 k2 − 1 k 2 2 − q . (q; q)∞ (1 − a2 )(q; q)k a4
Recurrence Relation 2xHn (x; a|q) = Hn+1 (x; a|q) + aqn Hn (x; a|q) + (1 − qn )Hn−1 (x; a|q).
(14.18.4)
Normalized Recurrence Relation 1 1 xpn (x) = pn+1 (x) + aqn pn (x) + (1 − qn )pn−1 (x), 2 4 where
(14.18.5)
14.18 Continuous Big q-Hermite
511
Hn (x; a|q) = 2n pn (x).
q-Difference Equations 1 ˜ aq 2 |q)Dq y(x) + 4q−n+1 (1 − qn )w(x; (1 − q)2 Dq w(x; ˜ a|q)y(x) = 0,
(14.18.6)
where y(x) = Hn (x; a|q) and
w(x; a|q) . w(x; ˜ a|q) := √ 1 − x2
If we define −n
Pn (z) := a
3 φ2
q−n , az, az−1 ; q, q 0, 0
then the q-difference equation can also be written in the form
q−n (1 − qn )Pn (z) = A(z)Pn (qz) − A(z) + A(z−1 ) Pn (z) + A(z−1 )Pn (q−1 z), where A(z) =
(14.18.7)
(1 − az) . (1 − z2 )(1 − qz2 )
Forward Shift Operator δq Hn (x; a|q) = −q− 2 n (1 − qn )(eiθ − e−iθ )Hn−1 (x; aq 2 |q), 1
1
x = cos θ
(14.18.8)
or equivalently 1
Dq Hn (x; a|q) =
1 2q− 2 (n−1) (1 − qn ) Hn−1 (x; aq 2 |q). 1−q
(14.18.9)
Backward Shift Operator δq [w(x; ˜ a|q)Hn (x; a|q)] = q− 2 (n+1) (eiθ − e−iθ ) 1
1
1
× w(x; ˜ aq− 2 |q)Hn+1 (x; aq− 2 |q),
x = cos θ
(14.18.10)
512
14 Basic Hypergeometric Orthogonal Polynomials
or equivalently 1
Dq [w(x; ˜ a|q)Hn (x; a|q)] = −
1 1 2q− 2 n w(x; ˜ aq− 2 |q)Hn+1 (x; aq− 2 |q). 1−q
(14.18.11)
Rodrigues-Type Formula w(x; a|q)Hn (x; a|q) =
q−1 2
n
1 1 q 4 n(n−1) (Dq )n w(x; aq 2 n |q) .
(14.18.12)
Generating Functions (at; q)∞ (eiθ t, e−iθ t; q)∞
∞
=
Hn (x; a|q) n t , n=0 (q; q)n
∑
x = cos θ .
aeiθ ; q, e−iθ t (e t; q)∞ · 1 φ1 e iθ t n ∞ (−1)n q(2) Hn (x; a|q)t n , =∑ (q; q) n n=0 iθ
(14.18.13)
x = cos θ .
γ , aeiθ (γ eiθ t; q)∞ −iθ ; q, e φ t 2 1 γ e iθ t (eiθ t; q)∞ ∞ (γ ; q)n Hn (x; a|q)t n , x = cos θ , =∑ (q; q) n n=0
γ arbitrary.
(14.18.14)
(14.18.15)
Limit Relations Al-Salam-Chihara → Continuous Big q-Hermite If we take b = 0 in the definition (14.8.1) of the Al-Salam-Chihara polynomials we simply obtain the continuous big q-Hermite polynomials given by (14.18.1): Qn (x; a, 0|q) = Hn (x; a|q).
14.18 Continuous Big q-Hermite
513
Continuous Big q-Hermite → Continuous q-Hermite The continuous q-Hermite polynomials given by (14.26.1) can easily be obtained from the continuous big q-Hermite polynomials given by (14.18.1) by taking a = 0: Hn (x; 0|q) = Hn (x|q).
(14.18.16)
Continuous Big q-Hermite → Hermite If we set a = 0 and x → x 12 (1 − q) in the definition (14.18.1) of the continuous big q-Hermite polynomials and let q tend to 1, we obtain the Hermite polynomials given by (9.15.1) in the following way: Hn (x 12 (1 − q); 0|q) = Hn (x). (14.18.17) lim n q→1 1−q 2
2
If we take a → a 2(1 − q) and x → x 12 (1 − q) in the definition (14.18.1) of the continuous big q-Hermite polynomials and take the limit q → 1 we find the Hermite polynomials given by (9.15.1) with shifted argument: Hn (x 12 (1 − q); a 2(1 − q)|q) = Hn (x − a). (14.18.18) lim n q→1 1−q 2
References [73], [85], [86], [207].
2
514
14 Basic Hypergeometric Orthogonal Polynomials
14.19 Continuous q-Laguerre Basic Hypergeometric Representation The continuous q-Laguerre polynomials can be obtained from the continuous qJacobi polynomials given by (14.10.1) by taking the limit β → ∞: 1 1 1 1 (qα +1 ; q)n q−n , q 2 α + 4 eiθ , q 2 α + 4 e−iθ (α ) ; q, q (14.19.1) Pn (x|q) = 3 φ2 (q; q)n qα +1 , 0 (q 2 α + 4 e−iθ ; q)n ( 1 α + 1 )n inθ q 2 4 e (q; q)n 1 1 q−n , q 2 α + 4 eiθ − 12 α + 14 −iθ × 2 φ1 ; q, q e , 1 1 q− 2 α + 4 −n eiθ 1
=
3
x = cos θ .
Orthogonality Relation For α ≥ − 12 we have 1
w(x) (α ) (α ) √ Pm (x|q)Pn (x|q) dx 1 − x2 (qα +1 ; q)n (α + 1 )n 1 2 q δmn , = α +1 (q, q ; q)∞ (q; q)n
1 2π
−1
(14.19.2)
where 2 (eiθ , −eiθ ; q 12 ) 2 2iθ ; q) (e ∞ ∞ w(x) := w(x; qα |q) = 1 1 = 1 1 (q 2 α + 4 eiθ , q 12 α + 34 eiθ ; q)∞ (q 2 α + 4 eiθ ; q 12 )∞ 1
=
1
h(x, 1)h(x, −1)h(x, q 2 )h(x, −q 2 ) h(x, q 2 α + 4 )h(x, q 2 α + 4 ) 1
1
1
3
,
with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , k=0
∞
x = cos θ .
14.19 Continuous q-Laguerre
515
Recurrence Relation (α )
(α )
2xPn (x|q) = q− 2 α − 4 (1 − qn+1 )Pn+1 (x|q) 1
1
(α )
+ qn+ 2 α + 4 (1 + q 2 )Pn (x|q) 1
1
+q
1
1 α+ 1 2 4
(α )
(1 − qn+α )Pn−1 (x|q).
(14.19.3)
Normalized Recurrence Relation 1 1 1 1 xpn (x) = pn+1 (x) + qn+ 2 α + 4 (1 + q 2 )pn (x) 2 1 + (1 − qn )(1 − qn+α )pn−1 (x), 4
where
2n q( 2 α + 4 )n pn (x). (q; q)n 1
(α )
Pn (x|q) =
(14.19.4)
1
q-Difference Equations
˜ qα +1 |q)Dq y(x) + 4q−n+1 (1 − qn )w(x; (1 − q)2 Dq w(x; ˜ qα |q)y(x) = 0, (14.19.5) where
(α )
y(x) = Pn (x|q) and
w(x; qα |q) . w(x; ˜ qα |q) := √ 1 − x2
Forward Shift Operator (α )
(α +1)
δq Pn (x|q) = −q−n+ 2 α + 4 (eiθ − e−iθ )Pn−1 (x|q), 1
3
x = cos θ
(14.19.6)
or equivalently (α ) Dq Pn (x|q) =
2q−n+ 2 α + 4 (α +1) Pn−1 (x|q). 1−q 1
5
(14.19.7)
516
14 Basic Hypergeometric Orthogonal Polynomials
Backward Shift Operator (α ) ˜ qα |q)Pn (x|q) δq w(x; = q− 2 α − 4 (1 − qn+1 )(eiθ − e−iθ ) 1
1
(α −1)
× w(x; ˜ qα −1 |q)Pn+1 (x|q),
x = cos θ
(14.19.8)
or equivalently (α ) ˜ qα |q)Pn (x|q) Dq w(x; = −2q− 2 α + 4 1
1
1 − qn+1 (α −1) w(x; ˜ qα −1 |q)Pn+1 (x|q). 1−q
(14.19.9)
Rodrigues-Type Formula α
w(x; ˜ q
(α ) |q)Pn (x|q) =
q−1 2
n
q 4 n + 2 nα ˜ qα +n |q) . (Dq )n w(x; (q; q)n 1 2
1
(14.19.10)
Generating Functions ∞
(qα + 2 t, qα +1t; q)∞ 1
(q 2 α + 4 eiθ t, q 2 α + 4 e−iθ t; q)∞ 1
1
1
1
1 2 φ1 i θ (e t; q)∞ =
=
(α )
∑ Pn
q 2 α + 4 eiθ , q 2 α + 4 eiθ ; q, e−iθ t qα +1 1
1
1
(α )
Pn (x|q)t n
n=0
(qα +1 ; q)n q( 2 α + 4 )n 1
(t; q)∞ · 2 φ1
1
3
x = cos θ .
,
q 2 α + 4 eiθ , q 2 α + 4 e−iθ ; q, t qα +1 1
1
1
n (−1)n q(2) (α ) Pn (x|q)t n , = ∑ α +1 ; q)n n=0 (q
∞
x = cos θ .
(14.19.11)
n=0
∞
∑
(x|q)t n ,
1
(14.19.12)
x = cos θ .
(14.19.13)
14.19 Continuous q-Laguerre
517
(γ eiθ t; q)∞ 3 φ2 (eiθ t; q)∞ ∞
=
γ , q 2 α + 4 e iθ , q 2 α + 4 e iθ ; q, e−iθ t qα +1 , γ eiθ t 1
(γ ; q)n
∑ (qα +1 ; q)n
n=0
1
Pn (x|q) 1 1 q( 2 α + 4 )n
1
t n,
3
x = cos θ ,
γ arbitrary. (14.19.14)
Limit Relations Al-Salam-Chihara → Continuous q-Laguerre The continuous q-Laguerre polynomials given by (14.19.1) can be obtained from 1 1 the Al-Salam-Chihara polynomials given by (14.8.1) by taking a = q 2 α + 4 and b = 1 α+ 3 q2 4 : 1 1 1 3 (q; q)n (α ) Qn (x; q 2 α + 4 , q 2 α + 4 |q) = 1 1 Pn (x|q). q( 2 α + 4 )n q-Meixner-Pollaczek → Continuous q-Laguerre If we take eiφ = q− 4 , a = q 2 α + 2 and eiθ → q 4 eiθ in the definition (14.9.1) of the q-Meixner-Pollaczek polynomials we obtain the continuous q-Laguerre polynomials given by (14.19.1): 1
1
1
1
(α )
Pn (cos(θ + φ ); q 2 α + 2 |q) = q−( 2 α + 4 )n Pn (cos θ |q). 1
1
1
1
Continuous q-Jacobi → Continuous q-Laguerre The continuous q-Laguerre polynomials given by (14.19.1) follow simply from the continuous q-Jacobi polynomials given by (14.10.1) by taking the limit β → ∞: (α ,β )
lim Pn
β →∞
(α )
(x|q) = Pn (x|q).
Continuous q-Laguerre → Continuous q-Hermite The continuous q-Hermite polynomials given by (14.26.1) can be obtained from the continuous q-Laguerre polynomials given by (14.19.1) by taking the limit α → ∞ in the following way: (α ) Pn (x|q) Hn (x|q) . (14.19.15) lim 1 1 = α →∞ q( 2 α + 4 )n (q; q)n
518
14 Basic Hypergeometric Orthogonal Polynomials
Continuous q-Laguerre → Laguerre If we set x → qx in the definitions (14.19.1) of the continuous q-Laguerre polynomials and take the limit q → 1 we find the Laguerre polynomials given by (9.12.1). In fact we have: (α ) (α ) (14.19.16) lim Pn (qx |q) = Ln (2x). q→1
Remark If we let β tend to infinity in (14.10.16) and renormalize we obtain 1 1 (qα +1 ; q)n q−n , q 2 eiθ , q 2 e−iθ (α ) ; q, q , x = cos θ . (14.19.17) Pn (x; q) = 3 φ2 (q; q)n qα +1 , −q These two q-analogues of the Laguerre polynomials are connected by the following quadratic transformation: (α )
(α )
Pn (x|q2 ) = qnα Pn (x; q).
Reference [72].
14.20 Little q-Laguerre / Wall Basic Hypergeometric Representation q−n , 0 ; q, qx aq −n −1 1 x q ,x = −1 −n ; q, . φ 2 0 (a q ; q)n − a
pn (x; a|q) = 2 φ1
(14.20.1)
14.20 Little q-Laguerre / Wall
519
Orthogonality Relation ∞
(aq)k
(aq)n
(q; q)n
∑ (q; q)k pm (qk ; a|q)pn (qk ; a|q) = (aq; q)∞ (aq; q)n δmn ,
0 < aq < 1. (14.20.2)
k=0
Recurrence Relation − xpn (x; a|q) = An pn+1 (x; a|q) − (An +Cn ) pn (x; a|q) +Cn pn−1 (x; a|q), (14.20.3) ⎧ ⎨ An = qn (1 − aqn+1 )
where
⎩
Cn = aqn (1 − qn ).
Normalized Recurrence Relation xpn (x) = pn+1 (x) + (An +Cn )pn (x) + aq2n−1 (1 − qn )(1 − aqn )pn−1 (x), (14.20.4) where
n (−1)n q−(2) pn (x). pn (x; a|q) = (aq; q)n
q-Difference Equation − q−n (1 − qn )xy(x) = ay(qx) + (x − a − 1)y(x) + (1 − x)y(q−1 x),
(14.20.5)
where y(x) = pn (x; a|q).
Forward Shift Operator pn (x; a|q) − pn (qx; a|q) = −
q−n+1 (1 − qn ) xpn−1 (x; aq|q) 1 − aq
(14.20.6)
or equivalently Dq pn (x; a|q) = −
q−n+1 (1 − qn ) pn−1 (x; aq|q). (1 − q)(1 − aq)
(14.20.7)
520
14 Basic Hypergeometric Orthogonal Polynomials
Backward Shift Operator apn (x; a|q) − (1 − x)pn (q−1 x; a|q) = (a − 1)pn+1 (x; q−1 a|q)
(14.20.8)
or equivalently Dq−1 [w(x; α |q)pn (x; qα |q)] =
1 − qα
qα −1 (1 − q)
where
w(x; α − 1|q)pn+1 (x; qα −1 |q),
(14.20.9)
w(x; α |q) = (qx; q)∞ xα .
Rodrigues-Type Formula n qnα +(2) (1 − q)n D [w(x; α + n|q)] . −1 q (qα +1 ; q)n n
w(x; α |q)pn (x; qα |q) =
(14.20.10)
Generating Function (t; q)∞ 0 φ1 (xt; q)∞
− ; q, aqxt aq
∞
n
(−1)n q(2) =∑ pn (x; a|q)t n . n=0 (q; q)n
(14.20.11)
Limit Relations Big q-Laguerre → Little q-Laguerre / Wall The little q-Laguerre (or Wall) polynomials given by (14.20.1) can be obtained from the big q-Laguerre polynomials by taking x → bqx in (14.11.1) and letting b → −∞: lim Pn (bqx; a, b; q) = pn (x; a|q).
b→−∞
Little q-Jacobi → Little q-Laguerre / Wall The little q-Laguerre (or Wall) polynomials given by (14.20.1) are little q-Jacobi polynomials with b = 0. So if we set b = 0 in the definition (14.12.1) of the little q-Jacobi polynomials we obtain the little q-Laguerre (or Wall) polynomials:
14.20 Little q-Laguerre / Wall
521
pn (x; a, 0|q) = pn (x; a|q). Affine q-Krawtchouk → Little q-Laguerre / Wall If we set x → N − x in the definition (14.16.1) of the affine q-Krawtchouk polynomials and take the limit N → ∞ we simply obtain the little q-Laguerre (or Wall) polynomials given by (14.20.1): lim KnA f f (qx−N ; p, N; q) = pn (qx ; p; q).
N→∞
Little q-Laguerre / Wall → Laguerre / Charlier If we set a = qα and x → (1 − q)x in the definition (14.20.1) of the little q-Laguerre (or Wall) polynomials and let q tend to 1, we obtain the Laguerre polynomials given by (9.12.1): (α ) Ln (x) (14.20.12) lim pn ((1 − q)x; qα |q) = (α ) . q→1 Ln (0) If we set a → (q − 1)a and x → qx in the definition (14.20.1) of the little qLaguerre (or Wall) polynomials and take the limit q → 1 we obtain the Charlier polynomials given by (9.14.1) in the following way: lim
q→1
pn (qx ; (q − 1)a|q) Cn (x; a) = . (1 − q)n an
(14.20.13)
Remark If we set a = qα and replace q by q−1 we find the q-Laguerre polynomials given by (14.21.1) in the following way: pn (x; q−α |q−1 ) =
(q; q)n (α ) Ln (−x; q). (qα +1 ; q)n
References [16], [26], [84], [144], [146], [147], [157], [214], [238], [345], [346], [416], [504], [509].
522
14 Basic Hypergeometric Orthogonal Polynomials
14.21 q-Laguerre Basic Hypergeometric Representation (α )
−n q (qα +1 ; q)n n+α +1 φ ; q, −q x 1 1 (q; q)n qα +1 −n 1 q , −x n+α +1 ; q, q = . φ 2 1 0 (q; q)n
Ln (x; q) =
(14.21.1)
Orthogonality Relation The q-Laguerre polynomials satisfy two kinds of orthogonality relations, an absolutely continuous one and a discrete one. These orthogonality relations are given by, respectively: ∞ 0
=
xα (α ) (α ) Lm (x; q)Ln (x; q) dx (−x; q)∞
(q−α ; q)∞ (qα +1 ; q)n Γ(−α )Γ(α + 1) δmn , (q; q)∞ (q; q)n qn
α > −1
(14.21.2)
and ∞
qkα +k (α ) (α ) Lm (cqk ; q)Ln (cqk ; q) k ; q) (−cq ∞ k=−∞
∑
=
(q, −cqα +1 , −c−1 q−α ; q)∞ (qα +1 ; q)n δmn , (qα +1 , −c, −c−1 q; q)∞ (q; q)n qn
α > −1,
c > 0. (14.21.3)
For c = 1 the latter orthogonality relation can also be written as ∞ 0
=
xα (α ) (α ) Lm (x; q)Ln (x; q) dq x (−x; q)∞
1 − q (q, −qα +1 , −q−α ; q)∞ (qα +1 ; q)n δmn , 2 (qα +1 , −q, −q; q)∞ (q; q)n qn
α > −1.
(14.21.4)
14.21 q-Laguerre
523
Recurrence Relation (α )
(α )
− q2n+α +1 xLn (x; q) = (1 − qn+1 )Ln+1 (x; q)
(α ) − (1 − qn+1 ) + q(1 − qn+α ) Ln (x; q) (α )
+ q(1 − qn+α )Ln−1 (x; q).
(14.21.5)
Normalized Recurrence Relation
xpn (x) = pn+1 (x) + q−2n−α −1 (1 − qn+1 ) + q(1 − qn+α ) pn (x) + q−4n−2α +1 (1 − qn )(1 − qn+α )pn−1 (x), where (α )
Ln (x; q) =
(14.21.6)
(−1)n qn(n+α ) pn (x). (q; q)n
q-Difference Equation − qα (1 − qn )xy(x) = qα (1 + x)y(qx) − [1 + qα (1 + x)] y(x) + y(q−1 x), (14.21.7) where
(α )
y(x) = Ln (x; q).
Forward Shift Operator (α )
(α )
(α +1)
Ln (x; q) − Ln (qx; q) = −qα +1 xLn−1 (qx; q) or equivalently (α )
Dq Ln (x; q) = −
qα +1 (α +1) L (qx; q). 1 − q n−1
(14.21.8)
(14.21.9)
Backward Shift Operator (α )
(α )
(α −1)
Ln (x; q) − qα (1 + x)Ln (qx; q) = (1 − qn+1 )Ln+1 (x; q) or equivalently
(14.21.10)
524
14 Basic Hypergeometric Orthogonal Polynomials
1 − qn+1 (α ) (α −1) w(x; α − 1; q)Ln+1 (x; q), Dq w(x; α ; q)Ln (x; q) = 1−q where w(x; α ; q) =
(14.21.11)
xα . (−x; q)∞
Rodrigues-Type Formula (α )
w(x; α ; q)Ln (x; q) =
(1 − q)n (Dq )n [w(x; α + n; q)] . (q; q)n
(14.21.12)
Generating Functions 1 1 φ1 (t; q)∞ 1 0 φ1 (t; q)∞ (t; q)∞ · 0 φ2
−x ; q, qα +1t 0
−
; q, −q qα +1
−
qα +1 ,t
α +1
; q, −qα +1 xt
∞
=
(α )
∑ Ln
(x; q)t n .
(14.21.13)
n=0
xt
∞
=
(α )
Ln (x; q)
∑ (qα +1 ; q)n t n .
(14.21.14)
n=0
n (−1)n q(2) (α ) ∑ (qα +1 ; q)n Ln (x; q)t n . n=0
∞
=
(γ t; q)∞ γ α +1 ; q, −q φ xt 1 2 (t; q)∞ qα +1 , γ t ∞ (γ ; q)n (α ) Ln (x; q)t n , γ arbitrary. = ∑ α +1 (q ; q) n n=0
(14.21.15)
(14.21.16)
Limit Relations Little q-Jacobi → q-Laguerre If we substitute a = qα and x → −b−1 q−1 x in the definition (14.12.1) of the little q-Jacobi polynomials and then take the limit b → −∞ we find the q-Laguerre polynomials given by (14.21.1): lim pn (−b−1 q−1 x; qα , b|q) =
b→−∞
(q; q)n (α ) Ln (x; q). (qα +1 ; q)n
14.21 q-Laguerre
525
q-Meixner → q-Laguerre The q-Laguerre polynomials given by (14.21.1) can be obtained from the q-Meixner polynomials given by (14.13.1) by setting b = qα and q−x → cqα x in the definition (14.13.1) of the q-Meixner polynomials and then taking the limit c → ∞: lim Mn (cqα x; qα , c; q) =
c→∞
(q; q)n (α ) Ln (x; q). (qα +1 ; q)n
q-Laguerre → Stieltjes-Wigert If we set x → xq−α in the definition (14.21.1) of the q-Laguerre polynomials and take the limit α → ∞ we simply obtain the Stieltjes-Wigert polynomials given by (14.27.1): (α ) (14.21.17) lim Ln xq−α ; q = Sn (x; q). α →∞
q-Laguerre → Laguerre / Charlier If we set x → (1 − q)x in the definition (14.21.1) of the q-Laguerre polynomials and take the limit q → 1 we obtain the Laguerre polynomials given by (9.12.1): (α )
(α )
lim Ln ((1 − q)x; q) = Ln (x).
q→1
(14.21.18)
If we set x → −q−x and qα = a−1 (q − 1)−1 (or α = −(ln q)−1 ln(q − 1)a) in the definition (14.21.1) of the q-Laguerre polynomials, multiply by (q; q)n , and take the limit q → 1 we obtain the Charlier polynomials given by (9.14.1): (α )
lim (q; q)n Ln (−q−x ; q) = Cn (x; a),
q→1
where qα =
1 a(q − 1)
or
α =−
(14.21.19)
ln(q − 1)a . ln q
Remarks The q-Laguerre polynomials are sometimes called the generalized Stieltjes-Wigert polynomials. If we replace q by q−1 we obtain the little q-Laguerre (or Wall) polynomials given by (14.20.1) in the following way:
526
14 Basic Hypergeometric Orthogonal Polynomials (α )
Ln (x; q−1 ) =
(qα +1 ; q)n pn (−x; qα |q). (q; q)n qnα
The q-Laguerre polynomials given by (14.21.1) and the q-Bessel polynomials given by (14.22.1) are related in the following way: yn (qx ; a; q) (x−n) = Ln (aqn ; q). (q; q)n The q-Laguerre polynomials given by (14.21.1) and the q-Charlier polynomials given by (14.23.1) are related in the following way: Cn (−x; −q−α ; q) (α ) = Ln (x; q). (q; q)n Since the Stieltjes and Hamburger moment problems corresponding to the q-Laguerre polynomials are indeterminate there exist many different weight functions.
References [12], [16], [49], [51], [72], [84], [139], [144], [146], [147], [150], [199], [238], [256], [276], [291], [302], [411].
14.22 q-Bessel Basic Hypergeometric Representation q−n , −aqn ; q, qx 0 −n q n+1 = (q−n+1 x; q)n · 1 φ1 ; q, −aq x q−n+1 x −n −1 q−n+1 q ,x n n ; q, − . = (−aq x) · 2 φ1 0 a
yn (x; a; q) = 2 φ1
(14.22.1)
14.22 q-Bessel
527
Orthogonality Relation ∞
ak
∑ (q; q)k q( 2 ) ym (qk ; a; q)yn (qk ; a; q) k+1
k=0
= (q; q)n (−aqn ; q)∞
n+1 an q( 2 ) δmn , (1 + aq2n )
a > 0.
(14.22.2)
Recurrence Relation − xyn (x; a; q) = An yn+1 (x; a; q) − (An +Cn )yn (x; a; q) +Cn yn−1 (x; a; q), (14.22.3) where
⎧ (1 + aqn ) ⎪ n ⎪ = q A ⎪ n ⎪ ⎨ (1 + aq2n )(1 + aq2n+1 ) ⎪ ⎪ ⎪ ⎪ ⎩ Cn = aq2n−1
(1 − qn ) . (1 + aq2n−1 )(1 + aq2n )
Normalized Recurrence Relation xpn (x) = pn+1 (x) + (An +Cn )pn (x) + An−1Cn pn−1 (x), where
(14.22.4)
n
yn (x; a; q) = (−1)n q−(2) (−aqn ; q)n pn (x).
q-Difference Equation −q−n (1 − qn )(1 + aqn )xy(x) = axy(qx) − (ax + 1 − x)y(x) + (1 − x)y(q−1 x), where y(x) = yn (x; a; q).
(14.22.5)
528
14 Basic Hypergeometric Orthogonal Polynomials
Forward Shift Operator yn (x; a; q) − yn (qx; a; q) = −q−n+1 (1 − qn )(1 + aqn )xyn−1 (x; aq2 ; q)
(14.22.6)
or equivalently Dq yn (x; a; q) = −
q−n+1 (1 − qn )(1 + aqn ) yn−1 (x; aq2 ; q). 1−q
(14.22.7)
Backward Shift Operator aqx−1 yn (qx ; a; q) − (1 − qx )yn (qx−1 x; a; q) = −yn+1 (qx ; aq−2 ; q)
(14.22.8)
or equivalently ∇ [w(x; a; q)yn (qx ; a; q)] q2 w(x; aq−2 ; q)yn+1 (qx ; aq−2 ; q), = ∇qx a(1 − q) where
(14.22.9)
x
w(x; a; q) =
ax q(2) . (q; q)x
Rodrigues-Type Formula
w(x; a; q)yn (qx ; a; q) = an (1 − q)n qn(n−1) (∇q )n w(x; aq2n ; q) , where ∇q :=
(14.22.10)
∇ . ∇qx
Generating Functions
− ; q, −aqx+1t 0 φ1 0 ∞ yn (qx ; a; q) n t , =∑ n=0 (q; q)n
(t; q)∞ 1 φ3 (xt; q)∞
xt ; q, −aqxt 0, 0,t
2 φ0
q−x , 0 ; q, qxt −
x = 0, 1, 2, . . . .
∞
(14.22.11)
n
(−1)n q(2) =∑ yn (x; a; q)t n . n=0 (q; q)n
(14.22.12)
14.22 q-Bessel
529
Limit Relations Little q-Jacobi → q-Bessel If we set b → −a−1 q−1 b in the definition (14.12.1) of the little q-Jacobi polynomials and then take the limit a → 0 we obtain the q-Bessel polynomials given by (14.22.1): lim pn (x; a, −a−1 q−1 b|q) = yn (x; b; q).
a→0
q-Krawtchouk → q-Bessel If we set x → N − x in the definition (14.15.1) of the q-Krawtchouk polynomials and then take the limit N → ∞ we obtain the q-Bessel polynomials given by (14.22.1): lim Kn (qx−N ; p, N; q) = yn (qx ; p; q).
N→∞
q-Bessel → Stieltjes-Wigert The Stieltjes-Wigert polynomials given by (14.27.1) can be obtained from the qBessel polynomials by setting x → a−1 x in the definition (14.22.1) of the q-Bessel polynomials and then taking the limit a → ∞. In fact we have lim yn (a−1 x; a; q) = (q; q)n Sn (x; q).
a→∞
(14.22.13)
q-Bessel → Bessel If we set x → − 12 (1 − q)−1 x and a → −qa+1 in the definition (14.22.1) of the qBessel polynomials and take the limit q → 1 we find the Bessel polynomials given by (9.13.1): lim yn (− 12 (1 − q)−1 x; −qa+1 ; q) = yn (x; a).
q→1
(14.22.14)
q-Bessel → Charlier If we set x → qx and a → a(1 − q) in the definition (14.22.1) of the q-Bessel polynomials and take the limit q → 1 we find the Charlier polynomials given by (9.14.1): yn (qx ; a(1 − q); q) = anCn (x; a). q→1 (q − 1)n lim
(14.22.15)
530
14 Basic Hypergeometric Orthogonal Polynomials
Remark In [318] and [319] these q-Bessel polynomials were called alternative q-Charlier polynomials. The q-Bessel polynomials given by (14.22.1) and the q-Laguerre polynomials given by (14.21.1) are related in the following way: yn (qx ; a; q) (x−n) = Ln (aqn ; q). (q; q)n
Reference [157].
14.23 q-Charlier Basic Hypergeometric Representation qn+1 q−n , q−x ; q, − 0 a −n qn+1−x q = (−a−1 q; q)n · 1 φ1 ; q, − . −a−1 q a
Cn (q−x ; a; q) = 2 φ1
(14.23.1)
Orthogonality Relation ∞
ax
∑ (q; q)x q(2)Cm (q−x ; a; q)Cn (q−x ; a; q) x
x=0
= q−n (−a; q)∞ (−a−1 q, q; q)n δmn ,
a > 0.
(14.23.2)
14.23 q-Charlier
531
Recurrence Relation q2n+1 (1 − q−x )Cn (q−x ) = aCn+1 (q−x ) − [a + q(1 − qn )(a + qn )]Cn (q−x ) + q(1 − qn )(a + qn )Cn−1 (q−x ), where
(14.23.3)
Cn (q−x ) := Cn (q−x ; a; q).
Normalized Recurrence Relation
xpn (x) = pn+1 (x) + 1 + q−2n−1 {a + q(1 − qn )(a + qn )} pn (x) + aq−4n+1 (1 − qn )(a + qn )pn−1 (x), where
(14.23.4)
2
(−1)n qn pn (q−x ). Cn (q ; a; q) = an −x
q-Difference Equation qn y(x) = aqx y(x + 1) − qx (a − 1)y(x) + (1 − qx )y(x − 1), where
(14.23.5)
y(x) = Cn (q−x ; a; q).
Forward Shift Operator Cn (q−x−1 ; a; q) −Cn (q−x ; a; q) = −a−1 q−x (1 − qn )Cn−1 (q−x ; aq−1 ; q)
(14.23.6)
or equivalently
Δ Cn (q−x ; a; q) q(1 − qn ) Cn−1 (q−x ; aq−1 ; q). = − Δ q−x a(1 − q)
(14.23.7)
532
14 Basic Hypergeometric Orthogonal Polynomials
Backward Shift Operator Cn (q−x ; a; q) − a−1 q−x (1 − qx )Cn (q−x+1 ; a; q) = Cn+1 (q−x ; aq; q)
(14.23.8)
or equivalently ∇ [w(x; a; q)Cn (q−x ; a; q)] 1 w(x; aq; q)Cn+1 (q−x ; aq; q), = −x ∇q 1−q where
(14.23.9)
x+1 ax q( 2 ) . w(x; a; q) = (q; q)x
Rodrigues-Type Formula
w(x; a; q)Cn (q−x ; a; q) = (1 − q)n (∇q )n w(x; aq−n ; q) , where
(14.23.10)
∇ . ∇q−x
∇q :=
Generating Functions 1 1 φ1 (t; q)∞ 1 0 φ1 (t; q)∞
q−x ; q, −a−1 qt 0
∞
=
− ; q, −a−1 q−x+1t −a−1 q
Cn (q−x ; a; q) n t . (q; q)n n=0
∑
∞
=
Cn (q−x ; a; q)
∑ (−a−1 q, q; q)n t n .
(14.23.11)
(14.23.12)
n=0
Limit Relations q-Meixner → q-Charlier The q-Charlier polynomials given by (14.23.1) can easily be obtained from the qMeixner given by (14.13.1) by setting b = 0 in the definition (14.13.1) of the qMeixner polynomials: (14.23.13) Mn (x; 0, c; q) = Cn (x; c; q).
14.23 q-Charlier
533
q-Krawtchouk → q-Charlier By setting p = a−1 q−N in the definition (14.15.1) of the q-Krawtchouk polynomials and then taking the limit N → ∞ we obtain the q-Charlier polynomials given by (14.23.1): lim Kn (q−x ; a−1 q−N , N; q) = Cn (q−x ; a; q). N→∞
q-Charlier → Stieltjes-Wigert If we set q−x → ax in the definition (14.23.1) of the q-Charlier polynomials and take the limit a → ∞ we obtain the Stieltjes-Wigert polynomials given by (14.27.1) in the following way: (14.23.14) lim Cn (ax; a; q) = (q; q)n Sn (x; q). a→∞
q-Charlier → Charlier If we set a → a(1 − q) in the definition (14.23.1) of the q-Charlier polynomials and take the limit q → 1 we obtain the Charlier polynomials given by (9.14.1): lim Cn (q−x ; a(1 − q); q) = Cn (x; a).
q→1
(14.23.15)
Remark The q-Charlier polynomials given by (14.23.1) and the q-Laguerre polynomials given by (14.21.1) are related in the following way: Cn (−x; −q−α ; q) (α ) = Ln (x; q). (q; q)n
References [30], [80], [238], [261], [328], [416], [524].
534
14 Basic Hypergeometric Orthogonal Polynomials
14.24 Al-Salam-Carlitz I Basic Hypergeometric Representation n (a) Un (x; q) = (−a)n q(2) 2 φ1
qx q−n , x−1 ; q, . 0 a
(14.24.1)
Orthogonality Relation 1 a
(qx, a−1 qx; q)∞Um (x; q)Un (x; q) dq x (a)
(a)
n
= (−a)n (1 − q)(q; q)n (q, a, a−1 q; q)∞ q(2) δmn ,
a < 0.
(14.24.2)
Recurrence Relation (a)
(a)
(a)
(a)
xUn (x; q) = Un+1 (x; q)+(a+1)qnUn (x; q)−aqn−1 (1−qn )Un−1 (x; q). (14.24.3)
Normalized Recurrence Relation xpn (x) = pn+1 (x) + (a + 1)qn pn (x) − aqn−1 (1 − qn )pn−1 (x), where
(14.24.4)
(a)
Un (x; q) = pn (x).
q-Difference Equation
(1 − qn )x2 y(x) = aqn−1 y(qx) − aqn−1 + qn (1 − x)(a − x) y(x) + qn (1 − x)(a − x)y(q−1 x), where
(a)
y(x) = Un (x; q).
(14.24.5)
14.24 Al-Salam-Carlitz I
535
Forward Shift Operator (a)
(a)
(a)
Un (x; q) −Un (qx; q) = (1 − qn )xUn−1 (x; q) or equivalently (a)
DqUn (x; q) =
1 − qn (a) U (x; q). 1 − q n−1
(14.24.6)
(14.24.7)
Backward Shift Operator aUn (x; q) − (1 − x)(a − x)Un (q−1 x; q) = −q−n xUn+1 (x; q) (a)
(a)
(a)
(14.24.8)
or equivalently q−n+1 (a) (a) w(x; a; q)Un+1 (x; q), Dq−1 w(x; a; q)Un (x; q) = a(1 − q) where
(14.24.9)
w(x; a; q) = (qx, a−1 qx; q)∞ .
Rodrigues-Type Formula n 1 (a) w(x; a; q)Un (x; q) = an q 2 n(n−3) (1 − q)n Dq−1 [w(x; a; q)] .
(14.24.10)
Generating Function ∞ (t, at; q)∞ Un (x; q) n =∑ t . (xt; q)∞ n=0 (q; q)n (a)
(14.24.11)
Limit Relations Big q-Laguerre → Al-Salam-Carlitz I If we set x → aqx and b → ab in the definition (14.11.1) of the big q-Laguerre polynomials and take the limit a → 0 we obtain the Al-Salam-Carlitz I polynomials given by (14.24.1):
536
14 Basic Hypergeometric Orthogonal Polynomials
lim
a→0
Pn (aqx; a, ab; q) (b) = qnUn (x; q). an
Dual q-Krawtchouk → Al-Salam-Carlitz I If we set c = a−1 in the definition (14.17.1) of the dual q-Krawtchouk polynomials and take the limit N → ∞ we simply obtain the Al-Salam-Carlitz I polynomials given by (14.24.1): 1 n −(n) (a) x −1 q 2 Un (q ; q). lim Kn (λ (x); a , N|q) = − N→∞ a Note that λ (x) = q−x + a−1 qx−N . Al-Salam-Carlitz I → Discrete q-Hermite I The discrete q-Hermite I polynomials given by (14.28.1) can easily be obtained from the Al-Salam-Carlitz I polynomials given by (14.24.1) by the substitution a = −1: (−1)
Un
(x; q) = hn (x; q).
(14.24.12)
Al-Salam-Carlitz I → Charlier / Hermite If we set a → a(q−1) and x → qx in the definition (14.24.1) of the Al-Salam-Carlitz I polynomials and take the limit q → 1 after dividing by an (1 − q)n we obtain the Charlier polynomials given by (9.14.1): (a(q−1))
(qx ; q) = anCn (x; a). (14.24.13) q→1 (1 − q)n If we set x → x 1 − q2 and a → a 1 − q2 − 1 in the definition (14.24.1) of the n Al-Salam-Carlitz I polynomials, divide by (1 − q2 ) 2 , and let q tend to 1 we obtain the Hermite polynomials given by (9.15.1) with shifted argument. In fact we have √ (a 1−q2 −1) Un (x 1 − q2 ; q) Hn (x − a) = . (14.24.14) lim n q→1 2n (1 − q2 ) 2 lim
Un
14.25 Al-Salam-Carlitz II
537
Remark The Al-Salam-Carlitz I polynomials are related to the Al-Salam-Carlitz II polynomials given by (14.25.1) in the following way: Un (x; q−1 ) = Vn (x; q). (a)
(a)
References [16], [18], [20], [68], [80], [144], [146], [157], [160], [180], [238], [269], [289], [312], [524].
14.25 Al-Salam-Carlitz II Basic Hypergeometric Representation n
Vn (x; q) = (−a)n q−(2) 2 φ0 (a)
qn q−n , x ; q, − a
.
(14.25.1)
Orthogonality Relation ∞
2
qk ak (a) (a) ∑ (q; q)k (aq; q)k Vm (q−k ; q)Vn (q−k ; q) k=0 =
(q; q)n an 2 δmn , (aq; q)∞ qn
0 < aq < 1.
(14.25.2)
Recurrence Relation xVn (x; q) = Vn+1 (x; q) + (a + 1)q−nVn (x; q) (a)
(a)
(a)
+ aq−2n+1 (1 − qn )Vn−1 (x; q). (a)
(14.25.3)
538
14 Basic Hypergeometric Orthogonal Polynomials
Normalized Recurrence Relation xpn (x) = pn+1 (x) + (a + 1)q−n pn (x) + aq−2n+1 (1 − qn )pn−1 (x), where
(14.25.4)
(a)
Vn (x; q) = pn (x).
q-Difference Equation −(1 − qn )x2 y(x) = (1 − x)(a − x)y(qx) − [(1 − x)(a − x) + aq] y(x) + aqy(q−1 x), (14.25.5) where
(a)
y(x) = Vn (x; q).
Forward Shift Operator Vn (x; q) −Vn (qx; q) = q−n+1 (1 − qn )xVn−1 (qx; q) (a)
(a)
(a)
or equivalently (a)
DqVn (x; q) =
q−n+1 (1 − qn ) (a) Vn−1 (qx; q). 1−q
(14.25.6)
(14.25.7)
Backward Shift Operator (a)
(a)
(a)
aVn (x; q) − (1 − x)(a − x)Vn (qx; q) = −qn xVn+1 (x; q)
(14.25.8)
or equivalently (a) Dq w(x; a; q)Vn (x; q) = −
qn (a) w(x; a; q)Vn+1 (x; q), a(1 − q)
where w(x; a; q) =
1 . (x, a−1 x; q)∞
(14.25.9)
14.25 Al-Salam-Carlitz II
539
Rodrigues-Type Formula n
w(x; a; q)Vn (x; q) = an (q − 1)n q−(2) (Dq )n [w(x; a; q)] . (a)
(14.25.10)
Generating Functions n ∞ (xt; q)∞ (−1)n q(2) (a) =∑ Vn (x; q)t n . (t, at; q)∞ n=0 (q; q)n
(14.25.11)
x ∞ qn(n−1) (a) ; q, t = ∑ Vn (x; q)t n . (q; q) at n n=0
(14.25.12)
(at; q)∞ · 1 φ1
Limit Relations q-Meixner → Al-Salam-Carlitz II The Al-Salam-Carlitz II polynomials given by (14.25.1) can be obtained from the q-Meixner polynomials given by (14.13.1) by setting b = −ac−1 in the definition (14.13.1) of the q-Meixner polynomials and then taking the limit c → 0: 1 n (n) (a) −1 q 2 Vn (x; q). lim Mn (x; −ac , c; q) = − c→0 a Quantum q-Krawtchouk → Al-Salam-Carlitz II If we set p = a−1 q−N−1 in the definition (14.14.1) of the quantum q-Krawtchouk polynomials and let N → ∞ we obtain the Al-Salam-Carlitz II polynomials given by (14.25.1). In fact we have 1 n (n) (a) qtm −1 −N−1 , N; q) = − q 2 Vn (x; q). lim Kn (x; a q N→∞ a Al-Salam-Carlitz II → Discrete q-Hermite II The discrete q-Hermite II polynomials given by (14.29.1) follow from the Al-SalamCarlitz II polynomials given by (14.25.1) by the substitution a = −1 in the following way: (−1) i−nVn (ix; q) = h˜ n (x; q). (14.25.13)
540
14 Basic Hypergeometric Orthogonal Polynomials
Al-Salam-Carlitz II → Charlier / Hermite If we set a → a(1 − q) and x → q−x in the definition (14.25.1) of the Al-SalamCarlitz II polynomials and taking the limit q → 1 we find (q−x ; q) = anCn (x; a). (14.25.14) q→1 (q − 1)n If we set x → ix 1 − q2 and a → ia 1 − q2 − 1 in the definition (14.25.1) of the n Al-Salam-Carlitz II polynomials, divide by in (1 − q2 ) 2 , and let q tend to 1 we obtain the Hermite polynomials given by (9.15.1) with shifted argument. In fact we have √ (ia 1−q2 −1) Vn (ix 1 − q2 ; q) Hn (x − a) = . (14.25.15) lim n q→1 2n in (1 − q2 ) 2 (a(1−q))
lim
Vn
Remark The Al-Salam-Carlitz II polynomials are related to the Al-Salam-Carlitz I polynomials given by (14.24.1) in the following way: Vn (x; q−1 ) = Un (x; q). (a)
(a)
References [16], [18], [20], [67], [101], [143], [144], [146], [160], [214], [269], [276].
14.26 Continuous q-Hermite Basic Hypergeometric Representation Hn (x|q) = einθ 2 φ0
q−n , 0 ; q, qn e−2iθ , −
x = cos θ .
(14.26.1)
14.26 Continuous q-Hermite
541
Orthogonality Relation 1 2π where
1 w(x|q)
δmn √ Hm (x|q)Hn (x|q) dx = n+1 , 2 (q ; q)∞ −1 1−x
(14.26.2)
2 1 1 w(x|q) = e2iθ ; q = h(x, 1)h(x, −1)h(x, q 2 )h(x, −q 2 ), ∞
with ∞ h(x, α ) := ∏ 1 − 2α xqk + α 2 q2k = α eiθ , α e−iθ ; q , ∞
k=0
x = cos θ .
Recurrence Relation 2xHn (x|q) = Hn+1 (x|q) + (1 − qn )Hn−1 (x|q).
(14.26.3)
Normalized Recurrence Relation 1 xpn (x) = pn+1 (x) + (1 − qn )pn−1 (x), 4
(14.26.4)
where Hn (x|q) = 2n pn (x).
q-Difference Equation −n+1 (1 − q)2 Dq [w(x|q)D ˜ (1 − qn )w(x|q)y(x) ˜ = 0, q y(x)] + 4q
(14.26.5)
where y(x) = Hn (x|q) and
w(x|q) . w(x|q) ˜ := √ 1 − x2
Forward Shift Operator δq Hn (x|q) = −q− 2 n (1 − qn )(eiθ − e−iθ )Hn−1 (x|q), 1
x = cos θ
(14.26.6)
542
14 Basic Hypergeometric Orthogonal Polynomials
or equivalently 1
2q− 2 (n−1) (1 − qn ) Hn−1 (x|q). Dq Hn (x|q) = 1−q
(14.26.7)
Backward Shift Operator − (n+1) iθ δq [w(x|q)H ˜ (e − e−iθ )w(x|q)H ˜ n (x|q)] = q 2 n+1 (x|q), 1
x = cos θ (14.26.8)
or equivalently 1
2q− 2 n w(x|q)H ˜ ˜ Dq [w(x|q)H n (x|q)] = − n+1 (x|q). 1−q
(14.26.9)
Rodrigues-Type Formula w(x|q)H ˜ n (x|q) =
q−1 2
n
1
q 4 n(n−1) (Dq )n [w(x|q)] ˜ .
(14.26.10)
Generating Functions 1 2 |(eiθ t; q)∞ |
=
∞
1 (eiθ t, e−iθ t; q)∞ iθ
(e t; q)∞ · 1 φ1
=
Hn (x|q) n t , n=0 (q; q)n
∑
0
−iθ
x = cos θ .
(14.26.11)
; q, e t e iθ t n ∞ (−1)n q(2) Hn (x|q)t n , x = cos θ . =∑ (q; q) n n=0
γ, 0 (γ eiθ t; q)∞ −iθ ; q, e φ t 2 1 γ e iθ t (eiθ t; q)∞ ∞ (γ ; q)n Hn (x|q)t n , x = cos θ , =∑ (q; q) n n=0
γ arbitrary.
(14.26.12)
(14.26.13)
14.26 Continuous q-Hermite
543
Limit Relations Continuous Big q-Hermite → Continuous q-Hermite The continuous q-Hermite polynomials given by (14.26.1) can easily be obtained from the continuous big q-Hermite polynomials given by (14.18.1) by taking a = 0: Hn (x; 0|q) = Hn (x|q). Continuous q-Laguerre → Continuous q-Hermite The continuous q-Hermite polynomials given by (14.26.1) can be obtained from the continuous q-Laguerre polynomials given by (14.19.1) by taking the limit α → ∞ in the following way: (α ) Pn (x|q) Hn (x|q) . lim 1 1 = α →∞ q( 2 α + 4 )n (q; q)n Continuous q-Hermite → Hermite The Hermite polynomials given by (9.15.1) can be obtained from the continuous q-Hermite polynomials given by (14.26.1) by setting x → x 12 (1 − q). In fact we have Hn (x 12 (1 − q)|q) = Hn (x). (14.26.14) lim n q→1 1−q 2
2
Remark The continuous q-Hermite polynomials can also be written as: n
Hn (x|q) =
(q; q)n
∑ (q; q)k (q; q)n−k ei(n−2k)θ ,
x = cos θ .
k=0
References [8], [16], [17], [25], [34], [51], [52], [62], [63], [72], [73], [75], [76], [78], [80], [86], [87], [100], [113], [119], [122], [210], [234], [238], [272], [276], [285], [294], [296], [416], [460], [461], [462], [481].
544
14 Basic Hypergeometric Orthogonal Polynomials
14.27 Stieltjes-Wigert Basic Hypergeometric Representation 1 Sn (x; q) = 1 φ1 (q; q)n
q−n n+1 ; q, −q x . 0
(14.27.1)
Orthogonality Relation ∞ Sm (x; q)Sn (x; q) 0
(−x, −qx−1 ; q)∞
dx = −
ln q (q; q)∞ δmn . qn (q; q)n
(14.27.2)
Recurrence Relation −q2n+1 xSn (x; q) = (1 − qn+1 )Sn+1 (x; q) − [1 + q − qn+1 ]Sn (x; q) + qSn−1 (x; q). (14.27.3)
Normalized Recurrence Relation
xpn (x) = pn+1 (x) + q−2n−1 1 + q − qn+1 pn (x) + q−4n+1 (1 − qn )pn−1 (x), where
(14.27.4)
2
Sn (x; q) =
(−1)n qn pn (x). (q; q)n
q-Difference Equation − x(1 − qn )y(x) = xy(qx) − (x + 1)y(x) + y(q−1 x),
y(x) = Sn (x; q).
(14.27.5)
14.27 Stieltjes-Wigert
545
Forward Shift Operator Sn (x; q) − Sn (qx; q) = −qxSn−1 (q2 x; q) or equivalently Dq Sn (x; q) = −
q Sn−1 (q2 x; q). 1−q
(14.27.6) (14.27.7)
Backward Shift Operator Sn (x; q) − xSn (qx; q) = (1 − qn+1 )Sn+1 (q−1 x; q),
(14.27.8)
or equivalently Dq [w(x; q)Sn (x; q)] =
1 − qn+1 −1 q w(q−1 x; q)Sn+1 (q−1 x; q), 1−q
where w(x; q) =
(14.27.9)
1 . (−x, −qx−1 ; q)∞
Rodrigues-Type Formula w(x; q)Sn (x; q) =
qn (1 − q)n ((Dq )n w) (qn x; q). (q; q)n
(14.27.10)
Generating Functions ∞ − 1 ; q, −qxt = ∑ Sn (x; q)t n . 0 φ1 0 (t; q)∞ n=0 ∞ n − ; q, −qxt = ∑ (−1)n q(2) Sn (x; q)t n . (t; q)∞ · 0 φ2 0,t n=0 (γ t; q)∞ 1 φ2 (t; q)∞
γ ; q, −qxt 0, γ t
∞
=
∑ (γ ; q)n Sn (x; q)t n ,
n=0
γ arbitrary.
(14.27.11) (14.27.12)
(14.27.13)
546
14 Basic Hypergeometric Orthogonal Polynomials
Limit Relations q-Laguerre → Stieltjes-Wigert If we set x → xq−α in the definition (14.21.1) of the q-Laguerre polynomials and take the limit α → ∞ we simply obtain the Stieltjes-Wigert polynomials given by (14.27.1): (α ) lim Ln xq−α ; q = Sn (x; q). α →∞
q-Bessel → Stieltjes-Wigert The Stieltjes-Wigert polynomials given by (14.27.1) can be obtained from the qBessel polynomials by setting x → a−1 x in the definition (14.22.1) of the q-Bessel polynomials and then taking the limit a → ∞. In fact we have lim yn (a−1 x; a; q) = (q; q)n Sn (x; q).
a→∞
q-Charlier → Stieltjes-Wigert If we set q−x → ax in the definition (14.23.1) of the q-Charlier polynomials and take the limit a → ∞ we obtain the Stieltjes-Wigert polynomials given by (14.27.1) in the following way: lim Cn (ax; a; q) = (q; q)n Sn (x; q). a→∞
Stieltjes-Wigert → Hermite The Hermite polynomials given by (9.15.1) can be obtained from the Stieltjes-Wigert polynomials given by (14.27.1) by setting x → q−1 x 2(1 − q) + 1 and taking the limit q → 1 in the following way: (q; q)n Sn (q−1 x 2(1 − q) + 1; q) = (−1)n Hn (x). (14.27.14) lim n q→1
1−q 2
2
Remark Since the Stieltjes and Hamburger moment problems corresponding to the StieltjesWigert polynomials are indeterminate there exist many different weight functions. For instance, they are also orthogonal with respect to the weight function
14.28 Discrete q-Hermite I
547
γ w(x) = √ exp −γ 2 ln2 x , π
x > 0,
with γ 2 = −
1 . 2 ln q
References [49], [51], [86], [145], [146], [160], [276], [416], [490], [493], [503], [511].
14.28 Discrete q-Hermite I Basic Hypergeometric Representation The discrete q-Hermite I polynomials are Al-Salam-Carlitz I polynomials with a = −1: −n −1 n q ,x (−1) ( ) 2 ; q, −qx (14.28.1) hn (x; q) = Un (x; q) = q 2 φ1 0 −n −n+1 2 q2n−1 q ,q q ; . = xn 2 φ0 − x2
Orthogonality Relation 1 −1
(qx, −qx; q)∞ hm (x; q)hn (x; q) dq x n
= (1 − q)(q; q)n (q, −1, −q; q)∞ q(2) δmn .
(14.28.2)
Recurrence Relation xhn (x; q) = hn+1 (x; q) + qn−1 (1 − qn )hn−1 (x; q).
(14.28.3)
Normalized Recurrence Relation xpn (x) = pn+1 (x) + qn−1 (1 − qn )pn−1 (x), where
(14.28.4)
548
14 Basic Hypergeometric Orthogonal Polynomials
hn (x; q) = pn (x).
q-Difference Equation − q−n+1 x2 y(x) = y(qx) − (1 + q)y(x) + q(1 − x2 )y(q−1 x),
(14.28.5)
where y(x) = hn (x; q).
Forward Shift Operator hn (x; q) − hn (qx; q) = (1 − qn )xhn−1 (x; q) or equivalently Dq hn (x; q) =
1 − qn hn−1 (x; q). 1−q
(14.28.6)
(14.28.7)
Backward Shift Operator hn (x; q) − (1 − x2 )hn (q−1 x; q) = q−n xhn+1 (x; q)
(14.28.8)
or equivalently Dq−1 [w(x; q)hn (x; q)] = −
q−n+1 w(x; q)hn+1 (x; q), 1−q
(14.28.9)
where w(x; q) = (qx, −qx; q)∞ .
Rodrigues-Type Formula n 1 w(x; q)hn (x; q) = (q − 1)n q 2 n(n−3) Dq−1 [w(x; q)] .
(14.28.10)
Generating function ∞ (t 2 ; q2 )∞ hn (x; q) n =∑ t . (xt; q)∞ n=0 (q; q)n
(14.28.11)
14.28 Discrete q-Hermite I
549
Limit Relations Al-Salam-Carlitz I → Discrete q-Hermite I The discrete q-Hermite I polynomials given by (14.28.1) can easily be obtained from the Al-Salam-Carlitz I polynomials given by (14.24.1) by the substitution a = −1: (−1)
Un
(x; q) = hn (x; q).
Discrete q-Hermite I → Hermite The Hermite polynomials given by (9.15.1) can be found from the discrete qHermite I polynomials given by (14.28.1) in the following way: hn (x 1 − q2 ; q) Hn (x) lim = . (14.28.12) n q→1 2n (1 − q2 ) 2
Remark The discrete q-Hermite I polynomials are related to the discrete q-Hermite II polynomials given by (14.29.1) in the following way: hn (ix; q−1 ) = in h˜ n (x; q).
References [16], [18], [80], [100], [119], [238], [261], [349].
550
14 Basic Hypergeometric Orthogonal Polynomials
14.29 Discrete q-Hermite II Basic Hypergeometric Representation The discrete q-Hermite II polynomials are Al-Salam-Carlitz II polynomials with a = −1: −n n ˜hn (x; q) = i−nVn(−1) (ix; q) = i−n q−(2) 2 φ0 q , ix ; q, −qn (14.29.1) − −n −n+1 2 q2 q ,q q ;− = xn 2 φ1 . 0 x2
Orthogonality Relation
∞
∑
h˜ m (cqk ; q)h˜ n (cqk ; q) + h˜ m (−cqk ; q)h˜ n (−cqk ; q) w(cqk ; q)qk
k=−∞
=2
(q2 , −c2 q, −c−2 q; q2 )∞ (q; q)n δmn , (q, −c2 , −c−2 q2 ; q2 )∞ qn2
where w(x; q) =
c > 0,
(14.29.2)
1 1 = . (ix, −ix; q)∞ (−x2 ; q2 )∞
For c = 1 this orthogonality relation can also be written as 2 ∞ ˜ q , −q, −q; q2 ∞ (q; q)n hm (x; q)h˜ n (x; q) dq x = 3 δmn . (−x2 ; q2 )∞ (q , −q2 , −q2 ; q2 )∞ qn2 −∞
(14.29.3)
Recurrence Relation xh˜ n (x; q) = h˜ n+1 (x; q) + q−2n+1 (1 − qn )h˜ n−1 (x; q).
(14.29.4)
Normalized Recurrence Relation xpn (x) = pn+1 (x) + q−2n+1 (1 − qn )pn−1 (x), where h˜ n (x; q) = pn (x).
(14.29.5)
14.29 Discrete q-Hermite II
551
q-Difference Equation −(1 − qn )x2 h˜ n (x; q) = (1 + x2 )h˜ n (qx; q) − (1 + x2 + q)h˜ n (x; q) + qh˜ n (q−1 x; q).
(14.29.6)
Forward Shift Operator h˜ n (x; q) − h˜ n (qx; q) = q−n+1 (1 − qn )xh˜ n−1 (qx; q) or equivalently
q−n+1 (1 − qn ) ˜ Dq h˜ n (x; q) = hn−1 (qx; q). 1−q
(14.29.7)
(14.29.8)
Backward Shift Operator h˜ n (x; q) − (1 + x2 )h˜ n (qx; q) = −qn xh˜ n+1 (x; q)
(14.29.9)
or equivalently
qn w(x; q)h˜ n+1 (x; q). Dq w(x; q)h˜ n (x; q) = − 1−q
(14.29.10)
Rodrigues-Type Formula n
w(x; q)h˜ n (x; q) = (q − 1)n q−(2) (Dq )n [w(x; q)] .
(14.29.11)
Generating Functions n ∞ (−xt; q)∞ q(2) ˜ hn (x; q)t n . =∑ (−t 2 ; q2 )∞ n=0 (q; q)n
(−it; q)∞ · 1 φ1
ix ; q, it −it
(14.29.12)
∞
=
(−1)n qn(n−1) ˜ hn (x; q)t n . (q; q) n n=0
∑
(14.29.13)
552
14 Basic Hypergeometric Orthogonal Polynomials
Limit Relations Al-Salam-Carlitz II → Discrete q-Hermite II The discrete q-Hermite II polynomials given by (14.29.1) follow from the Al-SalamCarlitz II polynomials given by (14.25.1) by the substitution a = −1 in the following way: (−1) i−nVn (ix; q) = h˜ n (x; q). Discrete q-Hermite II → Hermite The Hermite polynomials given by (9.15.1) can be found from the discrete qHermite II polynomials given by (14.29.1) in the following way: h˜ n (x 1 − q2 ; q) Hn (x) = . (14.29.14) lim n q→1 2n (1 − q2 ) 2
Remark The discrete q-Hermite II polynomials are related to the discrete q-Hermite I polynomials given by (14.28.1) in the following way: h˜ n (x; q−1 ) = i−n hn (ix; q).
References [100], [349].
Bibliography
1. N. A BDUL -H ALIM and W.A. A L -S ALAM, A characterization of the Laguerre polynomials. Rendiconti del Seminario Matematico della Universit`a di Padova 34, 1964, 176–179. 2. M. A BRAMOWITZ and I.A. S TEGUN (eds.), Handbook of mathematical functions (with formulas, graphs, and mathematical tables). Dover Publications, New York, 1970. 3. L.D. A BREU and J. B USTOZ, Tur´an inequalities for symmetric Askey-Wilson polynomials. The Rocky Mountain Journal of Mathematics 30, 2000, 401–409. 4. S. A HMED, A. L AFORGIA and M.E. M ULDOON, On the spacing of the zeros of some classical orthogonal polynomials. Journal of the London Mathematical Society (2) 25, 1982, 246– 252. 5. S. A HMED, M.E. M ULDOON and R. S PIGLER, Inequalities and numerical bounds for zeros of ultraspherical polynomials. SIAM Journal on Mathematical Analysis 17, 1986, 1000– 1007. 6. K. A LLADI and M.L. ROBINSON, Legendre polynomials and irrationality. Journal f¨ur die Reine und Angewandte Mathematik 318, 1980, 137–155. 7. W M .R. A LLAWAY, The representation of orthogonal polynomials in terms of a differential operator. Journal of Mathematical Analysis and Applications 56, 1976, 288–293. 8. W M .R. A LLAWAY, Some properties of the q-Hermite polynomials. Canadian Journal of Mathematics 32, 1980, 686–694. 9. W M .R. A LLAWAY, Convolution orthogonality and the Jacobi polynomials. Canadian Mathematical Bulletin 32, 1989, 298–308. 10. W M .R. A LLAWAY, Convolution shift, c-orthogonality preserving maps, and the Laguerre polynomials. Journal of Mathematical Analysis and Applications 157, 1991, 284–299. 11. N.A. A L -S ALAM, Orthogonal polynomials of hypergeometric type. Duke Mathematical Journal 33, 1966, 109–121. 12. N.A. A L -S ALAM, On some q-operators with applications. Indagationes Mathematicae 51, 1989, 1–13. 13. W. A L -S ALAM, W M .R. A LLAWAY and R. A SKEY, A characterization of the continuous q-ultraspherical polynomials. Canadian Mathematical Bulletin 27, 1984, 329–336. 14. W. A L -S ALAM, W.R. A LLAWAY and R. A SKEY, Sieved ultraspherical polynomials. Transactions of the American Mathematical Society 284, 1984, 39–55. 15. W.A. A L -S ALAM, Operational representations for the Laguerre and other polynomials. Duke Mathematical Journal 31, 1964, 127–142. 16. W.A. A L -S ALAM, Characterization theorems for orthogonal polynomials. In: Orthogonal Polynomials: Theory and Practice (ed. P. Nevai), Kluwer Academic Publishers, Dordrecht, 1990, 1–24. 17. W.A. A L -S ALAM, A characterization of the Rogers q-Hermite polynomials. International Journal of Mathematics and Mathematical Sciences 18, 1995, 641–647.
R. Koekoek et al., Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monographs in Mathematics, DOI 10.1007/978-3-642-05014-5, © Springer-Verlag Berlin Heidelberg 2010
553
554
Bibliography
18. W.A. A L -S ALAM and L. C ARLITZ, Some orthogonal q-polynomials. Mathematische Nachrichten 30, 1965, 47–61. 19. W.A. A L -S ALAM and T.S. C HIHARA, Another characterization of the classical orthogonal polynomials. SIAM Journal of Mathematical Analysis 3, 1972, 65–70. 20. W.A. A L -S ALAM and T.S. C HIHARA, Convolutions of orthonormal polynomials. SIAM Journal of Mathematical Analysis 7, 1976, 16–28. 21. W.A. A L -S ALAM and T.S. C HIHARA, q-Pollaczek polynomials and a conjecture of Andrews and Askey. SIAM Journal of Mathematical Analysis 18, 1987, 228–242. 22. W.A. A L -S ALAM and M.E.H. I SMAIL, Polynomials orthogonal with respect to discrete convolution. Journal of Mathematical Analysis and Applications 55, 1976, 125–139. 23. W.A. A L -S ALAM and M.E.H. I SMAIL, Reproducing kernels for q-Jacobi polynomials. Proceedings of the American Mathematical Society 67, 1977, 105–110. 24. W.A. A L -S ALAM and M.E.H. I SMAIL, Orthogonal polynomials associated with the RogersRamanujan continued fraction. Pacific Journal of Mathematics 104, 1983, 269–283. 25. W.A. A L -S ALAM and M.E.H. I SMAIL, q-Beta integrals and the q-Hermite polynomials. Pacific Journal of Mathematics 135, 1988, 209–221. 26. W.A. A L -S ALAM and A. V ERMA, On an orthogonal polynomial set. Indagationes Mathematicae 44, 1982, 335–340. 27. W.A. A L -S ALAM and A. V ERMA, Some remarks on q-beta integral. Proceedings of the American Mathematical Society 85, 1982, 360–362. 28. W.A. A L -S ALAM and A. V ERMA, On the Geronimus polynomial sets. In: Orthogonal Polynomials and Their Applications (eds. M. Alfaro et al.). Lecture Notes in Mathematics 1329, Springer-Verlag, New York, 1988, 193–202. ´ LVAREZ DE M ORALES, T.E. P E´ REZ, M.A. P I NAR ˜ 29. M. A and A. RONVEAUX, Non-standard orthogonality for Meixner polynomials. Orthogonal polynomials: numerical and symbolic algorithms, Legan´es 1998, Electronic Transactions on Numerical Analysis 9, 1999, 1–25. ´ LVAREZ -N ODARSE and A. RONVEAUX, Recurrence relations for connection coeffi30. R. A cients between Q-orthogonal polynomials of discrete variables in the non-uniform lattice x(s) = q2s . Journal of Physics A. Mathematical and General 29, 1996, 7165–7175. ´ LVAREZ -N ODARSE and Y U .F. S MIRNOV, The dual Hahn q-polynomials in the lattice 31. R. A x(s) = [s]q [s + 1]q and the q-algebras SUq (2) and SUq (1, 1). Journal of Physics A. Mathematical and General 29, 1996, 1435–1451. 32. E.X.L. DE A NDRADE, D.K. D IMITROV and A. S RI R ANGA, Characterization of generalized Bessel polynomials in terms of polynomial inequalities. Journal of Mathematical Analysis and Applications 221, 1998, 538–543. 33. G.E. A NDREWS and R. A SKEY, Enumeration of partitions: the role of Eulerian series and q-orthogonal polynomials. In: Higher Combinatorics (ed. M. Aigner), Reidel Publicatons, Boston, 1977, 3–26. 34. G.E. A NDREWS and R. A SKEY, Classical orthogonal polynomials. In: Polynˆomes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, SpringerVerlag, New York, 1985, 36–62. 35. G.E. A NDREWS, R. A SKEY and R. ROY, Special Functions. Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge, 1999. 36. T.K. A RAAYA, Linearization and connection problems for the symmetric Meixner-Pollaczek polynomials. International Journal of Pure and Applied Mathematics 17, 2004, 409–422. 37. T.K. A RAAYA, The symmetric Meixner-Pollaczek polynomials with real parameter. Journal of Mathematical Analysis and Applications 305, 2005, 411–423. 38. I. A REA, D.K. D IMITROV, E. G ODOY and A. RONVEAUX, Zeros of Gegenbauer and Hermite polynomials and connection coefficients. Mathematics of Computation 73, 2004, 1937– 1951. 39. I. A REA, E. G ODOY, A. RONVEAUX and A. Z ARZO, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: discrete case. Journal of Computational and Applied Mathematics 87, 1997, 321–337. 40. R. A SKEY, Product of ultraspherical polynomials. The American Mathematical Monthly 74, 1967, 1221–1222.
Bibliography
555
41. R. A SKEY, Dual equations and classical orthogonal polynomials. Journal of Mathematical Analysis and Applications 24, 1968, 677–685. 42. R. A SKEY, An inequality for the classical polynomials. Indagationes Mathematicae 32, 1970, 22–25. 43. R. A SKEY, Positive Jacobi polynomial sums. The Tˆohoku Mathematical Journal (2) 24, 1972, 109–119. 44. R. A SKEY, Summability of Jacobi series. Transactions of the American Mathematical Society 179, 1973, 71–84. 45. R. A SKEY, Jacobi polynomials I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM Journal on Mathematical Analysis 5, 1974, 119–124. 46. R. A SKEY, Orthogonal polynomials and special functions. CBMS Regional Conference Series, Volume 21. Society for Industrial and Applied Mathematics, Philadelphia, 1975. 47. R. A SKEY, Jacobi’s generating function for Jacobi polynomials. Proceedings of the American Mathematical Society 71, 1978, 243–246. 48. R. A SKEY, Continuous Hahn polynomials. Journal of Physics A. Mathematical and General 18, 1985, L1017–L1019. 49. R. A SKEY, Limits of some q-Laguerre polynomials. Journal of Approximation Theory 46, 1986, 213–216. 50. R. A SKEY, An integral of Ramanujan and orthogonal polynomials. Journal of the Indian Mathematical Society 51, 1987, 27–36. 51. R. A SKEY, Beta integrals and the associated orthogonal polynomials. In: Number Theory (ed. K. Alladi). Lecture Notes in Mathematics 1395, Springer-Verlag, New York, 1989, 84– 121. 52. R. A SKEY, Continuous q-Hermite polynomials when q > 1. In: q-Series and Partitions (ed. D. Stanton). The IMA Volumes in Mathematics and Its Applications 18, Springer-Verlag, New York, 1989, 151–158. 53. R. A SKEY, Divided difference operators and classical orthogonal polynomials. The Rocky Mountain Journal of Mathematics 19, 1989, 33–37. 54. R. A SKEY, Duality for classical orthogonal polynomials. Journal of Computational and Applied Mathematics 178, 2005, 37–43. 55. R. A SKEY and J. F ITCH, Integral representations for Jacobi polynomials and some applications. Journal of Mathematical Analysis and Applications 26, 1969, 411–437. 56. R. A SKEY and G. G ASPER, Jacobi polynomial expansions of Jacobi polynomials with nonnegative coefficients. Proceedings of the Cambridge Philosophical Society 70, 1971, 243– 255. 57. R. A SKEY and G. G ASPER, Linearization of the product of Jacobi polynomials III. Canadian Journal of Mathematics 23, 1971, 332–338. 58. R. A SKEY and G. G ASPER, Positive Jacobi polynomial sums II. American Journal of Mathematics 98, 1976, 709–737. 59. R. A SKEY and G. G ASPER, Convolution structures for Laguerre polynomials. Journal d’Analyse Math´ematique 31, 1977, 48–68. 60. R. A SKEY, G. G ASPER and L.A. H ARRIS, An inequality for Tchebycheff polynomials and extensions. Journal of Approximation Theory 14, 1975, 1–11. 61. R. A SKEY and M.E.H. I SMAIL, Permutation problems and special functions. Canadian Journal of Mathematics 28, 1976, 853–874. 62. R. A SKEY and M.E.H. I SMAIL, The Rogers q-ultraspherical polynomials. In: Approximation Theory III, Academic Press, New York, 1980, 175–182. 63. R. A SKEY and M.E.H. I SMAIL, A generalization of ultraspherical polynomials. In: Studies in Pure Mathematics (ed. P. Erd˝os), Birkh¨auser Verlag, Basel, 1983, 55–78. 64. R. A SKEY and M.E.H. I SMAIL, Recurrence relations, continued fractions and orthogonal polynomials. Memoirs of the American Mathematical Society 300, Providence, Rhode Island, 1984. 65. R. A SKEY, M.E.H. I SMAIL and T. KOORNWINDER, Weighted permutation problems and Laguerre polynomials. Journal of Combinatorial Theory A 25, 1978, 277–287.
556
Bibliography
66. R. A SKEY, T.H. KOORNWINDER and M. R AHMAN, An integral of products of ultraspherical functions and a q-extension. Journal of the London Mathematical Society (2) 33, 1986, 133– 148. 67. R. A SKEY and S.K. S USLOV, The q-harmonic oscillator and an analogue of the Charlier polynomials. Journal of Physics A. Mathematical and General 26, 1993, L693–L698. 68. R. A SKEY and S.K. S USLOV, The q-harmonic oscillator and the Al-Salam and Carlitz polynomials. Letters in Mathematical Physics 29, 1993, 123–132. 69. R. A SKEY and S. WAINGER, A convolution structure for Jacobi series. American Journal of Mathematics 91, 1969, 463–485. 70. R. A SKEY and J. W ILSON, A set of orthogonal polynomials that generalize the Racah coefficients or 6 − j symbols. SIAM Journal on Mathematical Analysis 10, 1979, 1008–1016. 71. R. A SKEY and J. W ILSON, A set of hypergeometric orthogonal polynomials. SIAM Journal on Mathematical Analysis 13, 1982, 651–655. 72. R. A SKEY and J.A. W ILSON, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Memoirs of the American Mathematical Society 319, Providence, Rhode Island, 1985. 73. R.A. A SKEY, M. R AHMAN and S.K. S USLOV, On a general q-Fourier transformation with nonsymmetric kernels. Journal of Computational and Applied Mathematics 68, 1996, 25–55. 74. M.N. ATAKISHIYEV, N.M. ATAKISHIYEV and A.U. K LIMYK, Big q-Laguerre and qMeixner polynomials and representations of the quantum algebra Uq (su1,1 ). Journal of Physics. A. Mathematical and General 36, 2003, 10335–10347. 75. M.N. ATAKISHIYEV and A.U. K LIMYK, The factorization of a q-difference equation for continuous q-Hermite polynomials. Journal of Physics. A. Mathematical and Theoretical 40, 2007, 9311–9317. 76. N.M. ATAKISHIYEV, On the Fourier-Gauss transforms of some q-exponential and qtrigonometric functions. Journal of Physics A. Mathematical and General 29, 1996, 7177– 7181. 77. N.M. ATAKISHIYEV, Fourier-Gauss transforms of the Askey-Wilson polynomials. Journal of Physics A. Mathematical and General 30, 1997, L815–L820. 78. N.M. ATAKISHIYEV and P. F EINSILVER, On the coherent states for the q-Hermite polynomials and related Fourier transformation. Journal of Physics A. Mathematical and General 29, 1996, 1659–1664. 79. N.M. ATAKISHIYEV and A.U. K LIMYK, On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials. Journal of Mathematical Analysis and Applications 294, 2004, 246– 257. 80. N.M. ATAKISHIYEV, M. R AHMAN and S.K. S USLOV, On classical orthogonal polynomials. Constructive Approximation 11, 1995, 181–226. 81. N.M. ATAKISHIYEV and S.K. S USLOV, The Hahn and Meixner polynomials of an imaginary argument and some of their applications. Journal of Physics A. Mathematical and General 18, 1985, 1583–1596. 82. N.M. ATAKISHIYEV and S.K. S USLOV, Continuous orthogonality property for some classical polynomials of a discrete variable. Revista Mexicana de Fisica 34, 1988, 541–563. 83. N.M. ATAKISHIYEV and S.K. S USLOV, On the Askey-Wilson polynomials. Constructive Approximation 8, 1992, 363–369. 84. M.K. ATAKISHIYEVA and N.M. ATAKISHIYEV, q-Laguerre and Wall polynomials are related by the Fourier-Gauss transform. Journal of Physics A. Mathematical and General 30, 1997, L429–L432. 85. M.K. ATAKISHIYEVA and N.M. ATAKISHIYEV, Fourier-Gauss transforms of the continuous big q-Hermite polynomials. Journal of Physics A. Mathematical and General 30, 1997, L559– L565. 86. M.K. ATAKISHIYEVA and N.M. ATAKISHIYEV, Fourier-Gauss transforms of the Al-SalamChihara polynomials. Journal of Physics A. Mathematical and General 30, 1997, L655–L661. 87. M.K. ATAKISHIYEVA and N.M. ATAKISHIYEV, On continuous q-Hermite polynomials and the classical Fourier transform. Journal of Physics A. Mathematical and Theoretical 41, 2008, 125201.
Bibliography
557
88. R. A ZOR, J. G ILLIS and J.D. V ICTOR, Combinatorial applications of Hermite polynomials. SIAM Journal on Mathematical Analysis 13, 1982, 879–890. 89. E. BADERTSCHER and T.H. KOORNWINDER, Continuous Hahn polynomials of differential operator argument and analysis on Riemannian symmetric spaces of constant curvature. Canadian Journal of Mathematics 44, 1992, 750–773. 90. W.N. BAILEY, Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics 32, Cambridge University Press, 1935. 91. W.N. BAILEY, The generating function of Jacobi polynomials. Journal of the London Mathematical Society 13, 1938, 8–12. 92. G. BANGEREZAKO, The factorization method for the Askey-Wilson polynomials. Journal of Computational and Applied Mathematics 107, 1999, 219–232. 93. W.W. BARRETT, An alternative approach to Laguerre polynomial identities in combinatorics. Canadian Journal of Mathematics 31, 1979, 312–319. 94. H. BAVINCK, On the zeros of certain linear combinations of Chebyshev polynomials. Journal of Computational and Applied Mathematics 65, 1995, 19–26. 95. H. BAVINCK, A new result for Laguerre polynomials. Journal of Physics A. Mathematical and General 29, 1996, L277–L279. 96. H. BAVINCK, Some new results for Charlier and Meixner polynomials. Journal of Computational and Applied Mathematics 90, 1998, 51–56. 97. H. BAVINCK and H. VAN H AERINGEN, Difference equations for generalized Meixner polynomials. Journal of Mathematical Analysis and Applications 184, 1994, 453–463. 98. H. BAVINCK and R. KOEKOEK, On a difference equation for generalizations of Charlier polynomials. Journal of Approximation Theory 81, 1995, 195–206. 99. C. B ERG, Integrals involving Gegenbauer and Hermite polynomials on the imaginary axis. Aequationes Mathematicae 40, 1990, 83–88. 100. C. B ERG and M.E.H. I SMAIL, q-Hermite polynomials and classical orthogonal polynomials. Canadian Journal of Mathematics 48, 1996, 43–63. 101. C. B ERG and G. VALENT, Nevanlinna extremal measures for some orthogonal polynomials related to birth and death processes. Journal of Computational and Applied Mathematics 57, 1995, 29–43. 102. C. B ERG and C. V IGNAT, Linearization coefficients of Bessel polynomials and properties of student t-distributions. Constructive Approximation 27, 2008, 15–32. 103. B.R. B HONSLE, On a series of Rainville involving Legendre polynomials. Proceedings of the American Mathematical Society 8, 1957, 10–14. 104. G.G. B ILODEAU, Gegenbauer polynomials and fractional derivatives. The American Mathematical Monthly 71, 1964, 1026–1028. 105. G.G. B ILODEAU, On the summability of series of Hermite polynomials. Journal of Mathematical Analysis and Applications 8, 1964, 406–422. ¨ 106. S. B OCHNER, Uber Sturm-Liouvillesche Polynomsysteme. Mathematische Zeitschrift 29, 1929, 730–736. 107. B. B OJANOV and G. N IKOLOV, Duffin and Schaeffer type inequality for ultraspherical polynomials. Journal of Approximation Theory 84, 1996, 129–138. 108. A. B ORODIN and G. O LSHANSKI, Infinite random matrices and ergodic measures. Communications in Mathematical Physics 223, 2001, 87–123. 109. F. B RAFMAN, Generating functions of Jacobi and related polynomials. Proceedings of the American Mathematical Society 2, 1951, 942–949. 110. F. B RAFMAN, An ultraspherical generating function. Pacific Journal of Mathematics 7, 1957, 1319–1323. 111. F. B RAFMAN, Some generating functions for Laguerre and Hermite polynomials. Canadian Journal of Mathematics 9, 1957, 180–187. 112. W.C. B RENKE, On generating functions of polynomial systems. The American Mathematical Monthly 52, 1945, 297–301. 113. D.M. B RESSOUD, A simple proof of Mehler’s formula for q-Hermite polynomials. Indiana University Mathematics Journal 29, 1980, 577–580.
558
Bibliography
114. D.M. B RESSOUD, Linearization and related formulas for q-ultraspherical polynomials. SIAM Journal on Mathematical Analysis 12, 1981, 161–168. 115. B.M. B ROWN, W.D. E VANS and M.E.H. I SMAIL, The Askey-Wilson polynomials and qSturm-Liouville problems. Mathematical Proceedings of the Cambridge Philosophical Society 119, 1996, 1–16. 116. B.M. B ROWN and M.E.H. I SMAIL, A right inverse of the Askey-Wilson operator. Proceedings of the American Mathematical Society 123, 1995, 2071–2079. 117. J.W. B ROWN, New generating functions for classical polynomials. Proceedings of the American Mathematical Society 21, 1969, 263–268. 118. W. B RYC, W. M ATYSIAK and P.J. S ZABŁOWSKI, Probabilistic aspects of Al-Salam-Chihara polynomials. Proceedings of the American Mathematical Society 133, 2005, 1127–1134. 119. J. B USTOZ and M.E.H. I SMAIL, The associated ultraspherical polynomials and their qanalogues. Canadian Journal of Mathematics 34, 1982, 718–736. 120. J. B USTOZ and M.E.H. I SMAIL, Tur´an inequalities for ultraspherical and continuous qultraspherical polynomials. SIAM Journal on Mathematical Analysis 14, 1983, 807–818. 121. J. B USTOZ and M.E.H. I SMAIL, A positive trigonometric sum. SIAM Journal on Mathematical Analysis 20, 1989, 176–181. 122. J. B USTOZ and M.E.H. I SMAIL, Tur´an inequalities for symmetric orthogonal polynomials. International Journal of Mathematics and Mathematical Sciences 20, 1997, 1–7. 123. J. B USTOZ and N. S AVAGE, Inequalities for ultraspherical and Laguerre polynomials. SIAM Journal on Mathematical Analysis 10, 1979, 902–912. 124. J. B USTOZ and N. S AVAGE, Inequalities for ultraspherical and Laguerre polynomials II. SIAM Journal on Mathematical Analysis 11, 1980, 876–884. 125. C. C AMPIGOTTO, Y U .F. S MIRNOV and S.G. E NIKEEV, q-Analogue of the Krawtchouk and Meixner orthogonal polynomials. Journal of Computational and Applied Mathematics 57, 1995, 87–97. 126. L. C ARLITZ, A note on the Bessel polynomials. Duke Mathematical Journal 24, 1957, 151– 162. 127. L. C ARLITZ, Some arithmetic properties of the Legendre polynomials. Proceedings of the Cambridge Philosophical Society 53, 1957, 265–268. 128. L. C ARLITZ, A note on the Laguerre polynomials. The Michigan Mathematical Journal 7, 1960, 219–223. 129. L. C ARLITZ, On the product of two Laguerre polynomials. Journal of the London Mathematical Society 36, 1961, 399–402. 130. L. C ARLITZ, Some generating functions of Weisner. Duke Mathematical Journal 28, 1961, 523–529. 131. L. C ARLITZ, A characterization of the Laguerre polynomials. Monatshefte f¨ur Mathematik 66, 1962, 389–392. 132. L. C ARLITZ, The generating function for the Jacobi polynomial. Rendiconti del Seminario Matematico della Universit`a di Padova 38, 1967, 86–88. 133. L. C ARLITZ, Some generating functions for Laguerre polynomials. Duke Mathematical Journal 35, 1968, 825–827. 134. L. C ARLITZ and H.M. S RIVASTAVA, Some new generating functions for the Hermite polynomials. Journal of Mathematical Analysis and Applications 149, 1990, 513–520. 135. J.A. C HARRIS and M.E.H. I SMAIL, On sieved orthogonal polynomials. V: sieved Pollaczek polynomials. SIAM Journal on Mathematical Analysis 18, 1987, 1177–1218. 136. K.-Y. C HEN and H.M. S RIVASTAVA, A limit relationship between Laguerre and Hermite polynomials. Integral Transforms and Special Functions 16, 2005, 75–80. 137. L.-C. C HEN and M.E.H. I SMAIL, On asymptotics of Jacobi polynomials. SIAM Journal on Mathematical Analysis 22, 1991, 1442–1449. 138. Y. C HEN and M.E.H. I SMAIL, Asymptotics of extreme zeros of the Meixner-Pollaczek polynomials. Journal of Computational and Applied Mathematics 82, 1997, 59–78. 139. Y. C HEN, M.E.H. I SMAIL and K.A. M UTTALIB, Asymptotics of basic Bessel functions and q-Laguerre polynomials. Journal of Computational and Applied Mathematics 54, 1994, 263– 272.
Bibliography
559
140. L. C HIHARA, On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM Journal on Mathematical Analysis 18, 1987, 191–207. 141. L. C HIHARA and D. S TANTON, Zeros of generalized Krawtchouk polynomials. Journal of Approximation Theory 60, 1990, 43–57. 142. L.M. C HIHARA, Askey-Wilson polynomials, kernel polynomials and association schemes. Graphs and Combinatorics 9, 1993, 213–223. 143. T.S. C HIHARA, On indeterminate Hamburger moment problems. Pacific Journal of Mathematics 27, 1968, 475–484. 144. T.S. C HIHARA, Orthogonal polynomials with Brenke type generating functions. Duke Mathematical Journal 35, 1968, 505–517. 145. T.S. C HIHARA, A characterization and a class of distribution functions for the StieltjesWigert polynomials. Canadian Mathematical Bulletin 13, 1970, 529–532. 146. T.S. C HIHARA, An introduction to orthogonal polynomials. Gordon and Breach, New York, 1978. 147. T.S. C HIHARA, On generalized Stieltjes-Wigert and related orthogonal polynomials. Journal of Computational and Applied Mathematics 5, 1979, 291–297. 148. T.S. C HIHARA and M.E.H. I SMAIL, Extremal measures for a system of orthogonal polynomials. Constructive Approximation 9, 1993, 111–119. 149. Y. C HOW, L. G ATTESCHI and R. W ONG, A Bernstein-type inequality for the Jacobi polynomial. Proceedings of the American Mathematical Society 121, 1994, 703–709. 150. J.S. C HRISTIANSEN, The moment problem associated with the q-Laguerre polynomials. Constructive Approximation 19, 2003, 1–22. 151. J.S. C HRISTIANSEN and M.E.H. I SMAIL, A moment problem and a family of integral evaluations. Transactions of the American Mathematical Society 358, 2006, 4071–4097. 152. Z. C IESIELSKI, Explicit formula relating the Jacobi, Hahn and Bernstein polynomials. SIAM Journal on Mathematical Analysis 18, 1987, 1573–1575. 153. M.E. C OHEN, Some classes of generating functions for the Laguerre and Hermite polynomials. Mathematics of Computation 31, 1977, 511–518. 154. A.K. C OMMON, Uniform inequalities for ultraspherical polynomials and Bessel functions of fractional order. Journal of Approximation Theory 49, 1987, 331–339. 155. R.D. C OOPER, M.R. H OARE and M. R AHMAN, Stochastic processes and special functions: On the probabilistic origin of some positive kernels associated with classical orthogonal polynomials. Journal of Mathematical Analysis and Applications 61, 1977, 262–291. 156. A.E. DANESE, Some identities and inequalities involving ultraspherical polynomials. Duke Mathematical Journal 26, 1959, 349–359. 157. S. DATTA and J. G RIFFIN, A characterization of some q-orthogonal polynomials. Ramanujan Journal 12, 2006, 425–437. 158. G. DATTOLI, H.M. S RIVASTAVA and C. C ESARANO, The Laguerre and Legendre polynomials from an operational point of view. Applied Mathematics and Computation 124, 2001, 117–127. 159. G. DATTOLI, H.M. S RIVASTAVA and D. S ACCHETTI, A note on the Bessel polynomials. Mathematica Macedonica 1, 2003, 1–7. 160. J.S. D EHESA, On a general system of orthogonal q-polynomials. Journal of Computational and Applied Mathematics 5, 1979, 37–45. 161. P. D ELSARTE, Association schemes and t-designs in regular semilattices. Journal of Combinatorial Theory A 20, 1976, 230–243. 162. P. D ELSARTE and J.M. G OETHALS, Alternating bilinear forms over GF(q). Journal of Combinatorial Theory A 19, 1975, 26–50. 163. H. D ETTE, Extremal properties of ultraspherical polynomials. Journal of Approximation Theory 76, 1994, 246–273. 164. H. D ETTE, New bounds for Hahn and Krawtchouk polynomials. SIAM Journal on Mathematical Analysis 26, 1995, 1647–1659. 165. H. D ETTE and W.J. S TUDDEN, On a new characterization of the classical orthogonal polynomials. Journal of Approximation Theory 71, 1992, 3–17.
560
Bibliography
166. H. D ETTE and W.J. S TUDDEN, Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials. Constructive Approximation 11, 1995, 227–238. 167. A. D IJKSMA and T.H. KOORNWINDER, Spherical harmonics and the product of two Jacobi polynomials. Indagationes Mathematicae 33, 1971, 191–196. 168. K. D ILCHER and K.B. S TOLARSKY, Zeros of the Wronskian of Chebyshev and ultraspherical polynomials. The Rocky Mountain Journal of Mathematics 23, 1993, 49–65. 169. D.K. D IMITROV, On a conjecture concerning monotonicity of zeros of ultraspherical polynomials. Journal of Approximation Theory 85, 1996, 88–97. 170. D.K. D IMITROV, Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials. Journal of Computational and Applied Mathematics 153, 2003, 171–180. 171. D.K. D IMITROV and F.R. R AFAELI, Monotonicity of zeros of Jacobi polynomials. Journal of Approximation Theory 149, 2007, 15–29. 172. D.K. D IMITROV and R.O. RODRIGUES, On the behaviour of zeros of Jacobi polynomials. Journal of Approximation Theory 116, 2002, 224–239. 173. E.H. D OHA, On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. Journal of Physics. A. Mathematical and General 35, 2002, 3467–3478. 174. E.H. D OHA, On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. Journal of Computational and Applied Mathematics 139, 2002, 275–298. 175. E.H. D OHA, Explicit formulae for the coefficients of integrated expansions of Jacobi polynomials and their integrals. Integral Transforms and Special Functions 14, 2003, 69–86. 176. E.H. D OHA, On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials. Journal of Physics. A. Mathematical and General 36, 2003, 5449–5462. 177. E.H. D OHA, On the connection coefficients and recurrence relations arising from expansions in series of Hermite polynomials. Integral Transforms and Special Functions 15, 2004, 13–29. 178. E.H. D OHA, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. Journal of Physics. A. Mathematical and General 37, 2004, 657–675. 179. E.H. D OHA and H.M. A HMED, Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials. Journal of Physics. A. Mathematical and General 37, 2004, 8045–8063. 180. E.H. D OHA and H.M. A HMED, Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of Al-Salam-Carlitz I polynomials. Journal of Physics. A. Mathematical and General 38, 2005, 10107–10121. 181. E.H. D OHA and H.M. A HMED, On the coefficients of integrated expansions of Bessel polynomials. Journal of Computational and Applied Mathematics 187, 2006, 58–71. 182. D. D OMINICI, Asymptotic analysis of the Krawtchouk polynomials by the WKB method. Ramanujan Journal 15, 2008, 303–338. 183. K. D RIVER and P. D UREN, Zeros of ultraspherical polynomials and the Hilbert-Klein formulas. Journal of Computational and Applied Mathematics 135, 2001, 293–301. 184. C.F. D UNKL, A Krawtchouk polynomial addition theorem and wreath products of symmetric groups. Indiana University Mathematics Journal 25, 1976, 335–358. 185. C.F. D UNKL, An addition theorem for Hahn polynomials: the spherical functions. SIAM Journal on Mathematical Analysis 9, 1978, 627–637. 186. C.F. D UNKL, An addition theorem for some q-Hahn polynomials. Monatshefte f¨ur Mathematik 85, 1978, 5–37. 187. C.F. D UNKL, Orthogonal polynomials with symmetry of order three. Canadian Journal of Mathematics 36, 1984, 685–717. 188. C.F. D UNKL and D.E. R AMIREZ, Krawtchouk polynomials and the symmetrization of hypergroups. SIAM Journal on Mathematical Analysis 5, 1974, 351–366. 189. G.K. E AGLESON, A duality relation for discrete orthogonal systems. Studia Scientiarum Mathematicarum Hungarica 3, 1968, 127–136. 190. A. E LBERT and A. L AFORGIA, A note to the paper of Ahmed, Muldoon and Spigler. SIAM Journal on Mathematical Analysis 17, 1986, 1008–1009.
Bibliography
561
191. A. E LBERT and A. L AFORGIA, Some monotonicity properties of the zeros of ultraspherical polynomials. Acta Mathematica Hungarica 48, 1986, 155–159. 192. A. E LBERT and A. L AFORGIA, Monotonicity results on the zeros of generalized Laguerre polynomials. Journal of Approximation Theory 51, 1987, 168–174. 193. A. E LBERT and A. L AFORGIA, New properties of the zeros of a Jacobi polynomial in relation to their centroid. SIAM Journal on Mathematical Analysis 18, 1987, 1563–1572. 194. A. E LBERT and A. L AFORGIA, Upper bounds for the zeros of ultraspherical polynomials. Journal of Approximation Theory 61, 1990, 88–97. 195. A. E LBERT and A. L AFORGIA, An inequality for Legendre polynomials. Journal of Mathematical Physics 35, 1994, 1348–1360. 196. A. E LBERT, A. L AFORGIA and L.G. RODON O` , On the zeros of Jacobi polynomials. Acta Mathematica Hungarica 64, 1994, 351–359. 197. A. E RD E´ LYI, Asymptotic forms for Laguerre polynomials. Journal of the Indian Mathematical Society 24, 1960, 235–250. 198. A. E RD E´ LYI ET AL ., Higher Transcendental Functions. Volume II of the Bateman Manuscript Project. McGraw-Hill Book Company, New York, 1953. 199. H. E XTON, Basic Laguerre polynomials. Pure and Applied Mathematika Sciences 5, 1977, 19–24. 200. H. E XTON, New generating functions for Gegenbauer polynomials. Journal of Computational and Applied Mathematics 67, 1996, 191–193. 201. H. E XTON, Summation formulae involving the Laguerre polynomial. Journal of Computational and Applied Mathematics 100, 1998, 225–227. 202. J. FALDEY and W. G AWRONSKI, On the limit distributions of the zeros of Jonqui`ere polynomials and generalized classical orthogonal polynomials. Journal of Approximation Theory 81, 1995, 231–249. 203. P. F EINSILVER and R. S CHOTT, Operator calculus approach to orthogonal polynomial expansions. Journal of Computational and Applied Mathematics 66, 1996, 185–199. 204. I. F ISCHER, A Rodrigues-type formula for the q-Racah polynomials and some related results. Contemporary Mathematics 169, 1994, 253–259. 205. I. F ISCHER, Discrete orthogonal polynomial expansions of averaged functions. Journal of Mathematical Analysis and Applications 194, 1995, 934–947. 206. M. F LENSTED -J ENSEN, Spherical functions on a simply connected semisimple Lie group. II. The Paley-Wiener theorem for the rank one case. Mathematische Annalen 228, 1977, 65–92. 207. R. F LOREANINI, J. L E T OURNEUX and L. V INET, An algebraic interpretation of the continuous big q-Hermite polynomials. Journal of Mathematical Physics 36, 1995, 5091–5097. 208. R. F LOREANINI, J. L E T OURNEUX and L. V INET, A q-deformed e(4) and continuous qJacobi polynomials. Journal of Mathematical Physics 37, 1996, 4135–4149. 209. R. F LOREANINI, J. L E T OURNEUX and L. V INET, Symmetry techniques for the Al-SalamChihara polynomials. Journal of Physics A. Mathematical and General 30, 1997, 3107–3114. 210. R. F LOREANINI and L. V INET, A model for the continuous q-ultraspherical polynomials. Journal of Mathematical Physics 36, 1995, 3800–3813. 211. R. F LOREANINI and L. V INET, Quantum algebra approach to q-Gegenbauer polynomials. Journal of Computational and Applied Mathematics 57, 1995, 123–133. 212. P.G.A. F LORIS, A noncommutative discrete hypergroup associated with q-disk polynomials. Journal of Computational and Applied Mathematics 68, 1996, 69–78. 213. P.G.A. F LORIS, Addition formula for q-disk polynomials. Compositio Mathematica 108, 1997, 123–149. 214. P.G.A. F LORIS and H.T. KOELINK, A commuting q-analogue of the addition formula for disk polynomials. Constructive Approximation 13, 1997, 511–535. 215. D. F OATA and J. L ABELLE, Mod`eles combinatoires pour les polynˆomes de Meixner. European Journal of Combinatorics 4, 1983, 305–311. 216. D. F OATA and P. L EROUX, Polynˆomes de Jacobi, interpr´etation combinatoire et fonction g´en´eratrice. Proceedings of the American Mathematical Society 87, 1983, 47–53. 217. B. G ABUTTI, Some characteristic property of the Meixner polynomials. Journal of Mathematical Analysis and Applications 95, 1983, 265–277.
562
Bibliography
218. B. G ABUTTI and M.L. M ATHIS, A characterization of the Meixner polynomials. Annals of Numerical Mathematics 2, 1995, 247–253. 219. G. G ASPER, Nonnegative sums of cosine, ultraspherical and Jacobi polynomials. Journal of Mathematical Analysis and Applications 26, 1969, 60–68. 220. G. G ASPER, Linearization of the product of Jacobi polynomials I. Canadian Journal of Mathematics 22, 1970, 171–175. 221. G. G ASPER, Linearization of the product of Jacobi polynomials II. Canadian Journal of Mathematics 22, 1970, 582–593. 222. G. G ASPER, On the extension of Turan’s inequality to Jacobi polynomials. Duke Mathematical Journal 38, 1971, 415–428. 223. G. G ASPER, Positivity and the convolution structure for Jacobi series. Annals of Mathematics 93, 1971, 112–118. 224. G. G ASPER, An inequality of Turan type for Jacobi polynomials. Proceedings of the American Mathematical Society 32, 1972, 435–439. 225. G. G ASPER, Banach algebras for Jacobi series and positivity of a kernel. Annals of Mathematics 95, 1972, 261–280. 226. G. G ASPER, Nonnegativity of a discrete Poisson kernel for the Hahn polynomials. Journal of Mathematical Analysis and Applications 42, 1973, 438–451. 227. G. G ASPER, On two conjectures of Askey concerning normalized Hankel determinants for the classical polynomials. SIAM Journal on Mathematical Analysis 4, 1973, 508–513. 228. G. G ASPER, Projection formulas for orthogonal polynomials of a discrete variable. Journal of Mathematical Analysis and Applications 45, 1974, 176–198. 229. G. G ASPER, Positive sums of the classical orthogonal polynomials. SIAM Journal on Mathematical Analysis 8, 1977, 423–447. 230. G. G ASPER, Orthogonality of certain functions with respect to complex valued weights. Canadian Journal of Mathematics 33, 1981, 1261–1270. 231. G. G ASPER, Rogers’ linearization formula for the continuous q-ultraspherical polynomials and quadratic transformation formulas. SIAM Journal on Mathematical Analysis 16, 1985, 1061–1071. 232. G. G ASPER, q-Extensions of Clausen’s formula and of the inequalities used by De Branges in his proof of the Bieberbach, Robertson, and Milin conjectures. SIAM Journal on Mathematical Analysis 20, 1989, 1019–1034. 233. G. G ASPER and M. R AHMAN, Nonnegative kernels in product formulas for q-Racah polynomials I. Journal of Mathematical Analysis and Applications 95, 1983, 304–318. 234. G. G ASPER and M. R AHMAN, Positivity of the Poisson kernel for the continuous qultraspherical polynomials. SIAM Journal on Mathematical Analysis 14, 1983, 409–420. 235. G. G ASPER and M. R AHMAN, Product formulas of Watson, Bailey and Bateman types and positivity of the Poisson kernel for q-Racah polynomials. SIAM Journal on Mathematical Analysis 15, 1984, 768–789. 236. G. G ASPER and M. R AHMAN, Positivity of the Poisson kernel for the continuous q-Jacobi polynomials and some quadratic transformation formulas for basic hypergeometric series. SIAM Journal on Mathematical Analysis 17, 1986, 970–999. 237. G. G ASPER and M. R AHMAN, A nonterminating q-Clausen formula and some related product formulas. SIAM Journal on Mathematical Analysis 20, 1989, 1270–1282. 238. G. G ASPER and M. R AHMAN, Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 35, Cambridge University Press, Cambridge, 1990. 239. L. G ATTESCHI, New inequalities for the zeros of Jacobi polynomials. SIAM Journal on Mathematical Analysis 18, 1987, 1549–1562. 240. L. G ATTESCHI, Asymptotics and bounds for the zeros of Laguerre polynomials: a survey. Journal of Computational and Applied Mathematics 144, 2002, 7–27. 241. W. G AUTSCHI, On a conjectured inequality for the largest zero of Jacobi polynomials. Numerical Algorithms 49, 2008, 195–198. 242. W. G AUTSCHI, On conjectured inequalities for zeros of Jacobi polynomials. Numerical Algorithms 50, 2009, 93–96.
Bibliography
563
243. W. G AUTSCHI, New conjectured inequalities for zeros of Jacobi polynomials. Numerical Algorithms 50, 2009, 293–296. 244. W. G AUTSCHI and P. L EOPARDI, Conjectured inequalities for Jacobi polynomials and their largest zeros. Numerical Algorithms 45, 2007, 217–230. 245. W. G AWRONSKI, On the asymptotic distribution of the zeros of Hermite, Laguerre, and Jonqui`ere polynomials. Journal of Approximation Theory 50, 1987, 214–231. 246. W. G AWRONSKI, Strong asymptotics and the asymptotic zero distributions of Laguerre poly(an+α ) (an+α ) nomials Ln and Hermite polynomials Hn . Analysis 13, 1993, 29–67. 247. W. G AWRONSKI and B. S HAWYER, Strong asymptotics and the limit distribution of the zeros (an+α ,bn+β ) of Jacobi polynomials Pn . In: Progress in Approximation Theory, Academic Press, Boston, 1991, 379–404. 248. J. G ILLIS, Integrals of products of Laguerre polynomials. SIAM Journal on Mathematical Analysis 6, 1975, 318–339. 249. J. G ILLIS, M.E.H. I SMAIL and T. O FFER, An asymptotic problem in derangement theory. SIAM Journal on Mathematical Analysis 21, 1990, 262–269. 250. J. G ILLIS, J. J EDWAB and D. Z EILBERGER, A combinatorial interpretation of the integral of the products of Legendre polynomials. SIAM Journal on Mathematical Analysis 19, 1988, 1455–1461. 251. E. G ODOY, A. RONVEAUX, A. Z ARZO and I. A REA, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: continuous case. Journal of Computational and Applied Mathematics 84, 1997, 257–275. 252. W.M.Y. G OH, Plancherel-Rotach asymptotics for the Charlier polynomials. Constructive Approximation 14, 1998, 151–168. 253. I.S. G RADSHTEYN and I.M. RYZHIK, Table of integrals, series, and products. Corrected and enlarged edition. Academic Press, Orlando, Florida, 1980. 254. YA .I. G RANOVSKII, I.M. L UTZENKO and A.S. Z HEDANOV, Mutual integrability, quadratic algebras, and dynamical symmetry. Annales of Physics 217, 1992, 1–20. 255. E. G ROSSWALD, The Bessel Polynomials. Lecture Notes in Mathematics 698, SpringerVerlag, New York, 1978. ¨ 256. F.A. G R UNBAUM and L. H AINE, The q-version of a theorem of Bochner. Journal of Computational and Applied Mathematics 68, 1996, 103–114. ¨ 257. F.A. G R UNBAUM and L. H AINE, Some functions that generalize the Askey-Wilson polynomials. Communications in Mathematical Physics 184, 1997, 173–202. 258. D.P. G UPTA, M.E.H. I SMAIL and D.R. M ASSON, Associated continuous Hahn polynomials. Canadian Journal of Mathematics 43, 1991, 1263–1280. 259. D.P. G UPTA, M.E.H. I SMAIL and D.R. M ASSON, Contiguous relations, basic hypergeometric functions, and orthogonal polynomials II. Associated big q-Jacobi polynomials. Journal of Mathematical Analysis and Applications 171, 1992, 477–497. 260. D.P. G UPTA, M.E.H. I SMAIL and D.R. M ASSON, Contiguous relations, basic hypergeometric functions, and orthogonal polynomials III. Associated continuous dual q-Hahn polynomials. Journal of Computational and Applied Mathematics 68, 1996, 115–149. ¨ 261. W. H AHN, Uber Orthogonalpolynome, die q-Differenzengleichungen gen¨ugen. Mathematische Nachrichten 2, 1949, 4–34. 262. M. H AJMIRZAAHMAD, Jacobi polynomial expansions. Journal of Mathematical Analysis and Applications 181, 1994, 35–61. 263. M. H AJMIRZAAHMAD, Laguerre polynomial expansions. Journal of Computational and Applied Mathematics 59, 1995, 25–37. 264. T. H ARTMANN and E.P. S TEPHAN, Rates of convergence for collocation with Jacobi polynomials for the airfoil equation. Journal of Computational and Applied Mathematics 51, 1994, 179–191. 265. M.R. H OARE and M. R AHMAN, Cumulative Bernoulli trials and Krawtchouk processes. Stochastic Processes and their Applications 16, 1984, 113–139. 266. R. H ORTON, Jacobi polynomials IV. A family of variation diminishing kernels. SIAM Journal on Mathematical Analysis 6, 1975, 544–550.
564
Bibliography
267. M.E.H. I SMAIL, On obtaining generating functions of Boas and Buck type for orthogonal polynomials. SIAM Journal on Mathematical Analysis 5, 1974, 202–208. 268. M.E.H. I SMAIL, Connection relations and bilinear formulas for the classical orthogonal polynomials. Journal of Mathematical Analysis and Applications 57, 1977, 487–496. 269. M.E.H. I SMAIL, A queueing model and a set of orthogonal polynomials. Journal of Mathematical Analysis and Applications 108, 1985, 575–594. 270. M.E.H. I SMAIL, On sieved orthogonal polynomials, I: Symmetric Pollaczek analogues. SIAM Journal on Mathematical Analysis 16, 1985, 1093–1113. 271. M.E.H. I SMAIL, Asymptotics of the Askey-Wilson and q-Jacobi polynomials. SIAM Journal on Mathematical Analysis 17, 1986, 1475–1482. 272. M.E.H. I SMAIL, On sieved orthogonal polynomials, IV: Generating functions. Journal of Approximation Theory 46, 1986, 284–296. 273. M.E.H. I SMAIL, Asymptotics of Pollaczek polynomials and their zeros. SIAM Journal on Mathematical Analysis 25, 1994, 462–473. 274. M.E.H. I SMAIL, Relativistic orthogonal polynomials are Jacobi polynomials. Journal of Physics A. Mathematical and General 29, 1996, 3199–3202. 275. M.E.H. I SMAIL, A generalization of a theorem of Bochner. Journal of Computational and Applied Mathematics 159, 2003, 319–324. 276. M.E.H. I SMAIL, Asymptotics of q-orthogonal polynomials and a q-Airy function. International Mathematics Research Notices 18, 2005, 1063–1088. 277. M.E.H. I SMAIL, Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications 98, Cambridge University Press, Cambridge, 2005. 278. M.E.H. I SMAIL, J. L ETESSIER, D.R. M ASSON and G. VALENT, Birth and death processes and orthogonal polynomials. In: Orthogonal Polynomials: Theory and Practice (ed. P. Nevai), Kluwer Academic Publishers, Dordrecht, 1990, 229–255. 279. M.E.H. I SMAIL, J. L ETESSIER and G. VALENT, Linear birth and death models and associated Laguerre and Meixner polynomials. Journal of Approximation Theory 55, 1988, 337–348. 280. M.E.H. I SMAIL, J. L ETESSIER and G. VALENT, Quadratic birth and death processes and associated continuous dual Hahn polynomials. SIAM Journal on Mathematical Analysis 20, 1989, 727–737. 281. M.E.H. I SMAIL, J. L ETESSIER, G. VALENT and J. W IMP, Two families of associated Wilson polynomials. Canadian Journal of Mathematics 42, 1990, 659–695. 282. M.E.H. I SMAIL, J. L ETESSIER, G. VALENT and J. W IMP, Some results on associated Wilson polynomials. In: Orthogonal Polynomials and their Applications (eds. C. Brezinski, L. Gori and A. Ronveaux). IMACS Annals on Computing and Applied Mathematics 9, J.C. Baltzer Scientific Publishing Company, Basel, 1991, 293–298. 283. M.E.H. I SMAIL and X. L I, Bound on the extreme zeros of orthogonal polynomials. Proceedings of the American Mathematical Society 115, 1992, 131–140. 284. M.E.H. I SMAIL and C.A. L IBIS, Contiguous relations, basic hypergeometric functions, and orthogonal polynomials I. Journal of Mathematical Analysis and Applications 141, 1989, 349–372. 285. M.E.H. I SMAIL and D.R. M ASSON, q-Hermite polynomials, biorthogonal rational functions, and q-beta integrals. Transactions of the American Mathematical Society 346, 1994, 63–116. 286. M.E.H. I SMAIL and D.R. M ASSON, Generalized orthogonality and continued fractions. Journal of Approximation Theory 83, 1995, 1–40. 287. M.E.H. I SMAIL, D.R. M ASSON and M. R AHMAN, Complex weight functions for classical orthogonal polynomials. Canadian Journal of Mathematics 43, 1991, 1294–1308. 288. M.E.H. I SMAIL, D.R. M ASSON and S.K. S USLOV, Some generating functions for qpolynomials. In: Special Functions, q-Series and Related Topics (eds. M.E.H. Ismail, D.R. Masson and M. Rahman). Fields Institute Communications 14, 1997, 91–108. 289. M.E.H. I SMAIL and M.E. M ULDOON, A discrete approach to monotonicity of zeros of orthogonal polynomials. Transactions of the American Mathematical Society 323, 1991, 65–78.
Bibliography
565
290. M.E.H. I SMAIL and M. R AHMAN, The associated Askey-Wilson polynomials. Transactions of the American Mathematical Society 328, 1991, 201–237. 291. M.E.H. I SMAIL and M. R AHMAN, The q-Laguerre polynomials and related moment problems. Journal of Mathematical Analysis and Applications 218, 1998, 155–174. 292. M.E.H. I SMAIL, M. R AHMAN and S.K. S USLOV, Some summation theorems and transformations for q-series. Canadian Journal of Mathematics 49, 1997, 543–567. 293. M.E.H. I SMAIL, M. R AHMAN and R. Z HANG, Diagonalization of certain integral operators II. Journal of Computational and Applied Mathematics 68, 1996, 163–196. 294. M.E.H. I SMAIL and D. S TANTON, On the Askey-Wilson and Rogers polynomials. Canadian Journal of Mathematics 40, 1988, 1025–1045. 295. M.E.H. I SMAIL and D. S TANTON, Classical orthogonal polynomials as moments. Canadian Journal of Mathematics 49, 1997, 520–542. 296. M.E.H. I SMAIL, D. S TANTON and G. V IENNOT, The combinatorics of q-Hermite polynomials and the Askey-Wilson integral. European Journal of Combinatorics 8, 1987, 379–392. 297. M.E.H. I SMAIL and M.V. TAMHANKAR, A combinatorial approach to some positivity problems. SIAM Journal on Mathematical Analysis 10, 1979, 478–485. 298. M.E.H. I SMAIL and J.A. W ILSON, Asymptotic and generating relations for the q-Jacobi and 4 φ3 polynomials. Journal of Approximation Theory 36, 1982, 43–54. 299. M.E.H. I SMAIL and R. Z HANG, Diagonalization of certain integral operators. Advances in Mathematics 109, 1994, 1–33. 300. D.M. JACKSON, Laguerre polynomials and derangements. Mathematical Proceedings of the Cambridge Philosophical Society 80, 1976, 213–214. 301. V.K. JAIN and H.M. S RIVISTAVA, New results involving a certain class of q-orthogonal polynomials. Journal of Mathematical Analysis and Applications 166, 1992, 331–344. 302. V.K. JAIN and H.M. S RIVISTAVA, Some families of multilinear q-generating functions and combinatorial q-series identities. Journal of Mathematical Analysis and Applications 192, 1995, 413–438. 303. X.-S. J IN and R. W ONG, Uniform asymptotic expansions for Meixner polynomials. Constructive Approximation 14, 1998, 113–150. 304. K.W.J. K ADELL, The little q-Jacobi functions of complex order. In: Theory and Applications of Special Functions. Developments in Mathematics 13, Springer, New York, 2005, 301–338. 305. E.G. K ALNINS and W. M ILLER J R ., q-Series and orthogonal polynomials associated with Barnes’ first lemma. SIAM Journal on Mathematical Analysis 19, 1988, 1216–1231. 306. E.G. K ALNINS and W. M ILLER J R ., Symmetry techniques for q-series: Askey-Wilson polynomials. The Rocky Mountain Journal of Mathematics 19, 1989, 223–230. 307. S. K ARLIN and J. M C G REGOR, Linear growth; birth and death processes. Journal of Mathematics and Mechanics 7, 1958, 643–662. 308. S. K ARLIN and J.L. M C G REGOR, The Hahn polynomials, formulas and an application. Scripta Mathematicae 26, 1961, 33–46. 309. A.W. K EMP, Heine-Euler extensions of the Poisson distribution. Communications in Statistics, Theory and Methods 21, 1992, 571–588. 310. A.W. K EMP, Steady-state Markov chain models for the Heine and Euler distributions. Journal of Applied Probability 29, 1992, 869–876. 311. A.W. K EMP, Characterizations involving U|(U + V = m) for certain discrete distributions. Journal of Statistical Planning and Inference 109, 2003, 31–41. 312. D. K IM, On combinatorics of Al-Salam Carlitz polynomials. European Journal of Combinatorics 18, 1997, 295–302. 313. E. KOCHNEFF, Expansions in Laguerre polynomials of negative order. Journal of Approximation Theory 81, 1995, 332–346. 314. E. KOCHNEFF, Expansions in Jacobi polynomials of negative order. Constructive Approximation 13, 1997, 435–446. 315. E. KOCHNEFF, Weighted norm inequalities for fractional integrals with an application to mean convergence of Laguerre series. Journal of Approximation Theory 91, 1997, 84–102. 316. J. KOEKOEK and R. KOEKOEK, The Jacobi inversion formula. Complex Variables. Theory and Application 39, 1999, 1–18.
566
Bibliography
317. R. KOEKOEK, Inversion formulas involving orthogonal polynomials and some of their applications. In: Special functions, Proceedings of the International Workshop, Hong Kong 1999, World Scientific Publishing, Singapore, 2000, 166–180. 318. R. KOEKOEK and R.F. S WARTTOUW, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Delft University of Technology, Report no. 94-05, 1994. 319. R. KOEKOEK and R.F. S WARTTOUW, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Delft University of Technology, Report no. 98-17, 1998. 320. E. KOELINK, Addition formulas for q-special functions. In: Special Functions, q-Series and Related Topics (eds. M.E.H. Ismail, D.R. Masson and M. Rahman). Fields Institute Communications 14, 1997, 109–129. 321. E. KOELINK and J.V. S TOKMAN, The Askey-Wilson function transform. International Mathematics Research Notices 22, 2001, 1203–1227. 322. E. KOELINK and J.V. S TOKMAN, The Askey-Wilson function transform scheme. In: Special Functions 2000: Current Perspective and Future Directions (eds. J. Bustoz, M.E.H. Ismail and S.K. Suslov). NATO Science Series II 30, Kluwer, Dordrecht, 2001, 221–241. 323. H.T. KOELINK, The addition formula for continuous q-Legendre polynomials and associated spherical elements on the SU(2) quantum group related to Askey-Wilson polynomials. SIAM Journal on Mathematical Analysis 25, 1994, 197–217. 324. H.T. KOELINK, Addition formula for big q-Legendre polynomials from the quantum SU(2) group. Canadian Journal of Mathematics 47, 1995, 436–448. 325. H.T. KOELINK, Identities for q-ultraspherical polynomials and Jacobi functions. Proceedings of the American Mathematical Society 123, 1995, 2479–2487. 326. H.T. KOELINK, Askey-Wilson polynomials and the quantum SU(2) group: survey and applications. Acta Applicandae Mathematicae 44, 1996, 295–352. 327. H.T. KOELINK, On Jacobi and continuous Hahn polynomials. Proceedings of the American Mathematical Society 124, 1996, 887–898. 328. H.T. KOELINK, Yet another basic analogue of Graf’s addition formula. Journal of Computational and Applied Mathematics 68, 1996, 209–220. 329. H.T. KOELINK and T.H. KOORNWINDER, The Clebsch-Gordan coefficients for the quantum group Sμ U(2) and q-Hahn polynomials. Indagationes Mathematicae 51, 1989, 443–456. 330. T. KOORNWINDER, The addition formula for Jacobi polynomials and spherical harmonics. SIAM Journal on Applied Mathematics 25, 1973, 236–246. 331. T. KOORNWINDER, Jacobi polynomials II. An analytic proof of the product formula. SIAM Journal on Mathematical Analysis 5, 1974, 125–137. 332. T. KOORNWINDER, Jacobi polynomials III. An analytic proof of the addition formula. SIAM Journal on Mathematical Analysis 6, 1975, 533–543. 333. T. KOORNWINDER, The addition formula for Laguerre polynomials. SIAM Journal on Mathematical Analysis 8, 1977, 535–540. 334. T. KOORNWINDER, Yet another proof of the addition formula for Jacobi polynomials. Journal of Mathematical Analysis and Applications 61, 1977, 136–141. 335. T. KOORNWINDER, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula. Journal of the London Mathematical Society (2) 18, 1978, 101–114. 336. T.H. KOORNWINDER, The addition formula for Jacobi polynomials I. Summary of results. Indagationes Mathematicae 34, 1972, 188–191. 337. T.H. KOORNWINDER, Clebsch-Gordan coefficients for SU(2) and Hahn polynomials. Nieuw Archief voor Wiskunde 29, 1981, 140–155. 338. T.H. KOORNWINDER, Krawtchouk polynomials, a unification of two different group theoretic interpretations. SIAM Journal on Mathematical Analysis 13, 1982, 1011–1023. 339. T.H. KOORNWINDER, Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform. In: Polynˆomes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, Springer-Verlag, New York, 1985, 174–183. 340. T.H. KOORNWINDER, Group theoretic interpretations of Askey’s scheme of hypergeometric orthogonal polynomials. In: Orthogonal Polynomials and Their Applications (eds. M. Alfaro et al.). Lecture Notes in Mathematics 1329, Springer-Verlag, New York, 1988, 46–72.
Bibliography
567
341. T.H. KOORNWINDER, Continuous q-Legendre polynomials as spherical matrix elements of irreducible representations of the quantum SU(2) group. C.W.I. Quarterly 2, 1989, 171–173. 342. T.H. KOORNWINDER, Meixner-Pollaczek polynomials and the Heisenberg algebra. Journal of Mathematical Physics 30, 1989, 767–769. 343. T.H. KOORNWINDER, Representations of the twisted SU(2) quantum group and some qhypergeometric orthogonal polynomials. Indagationes Mathematicae 51, 1989, 97–117. 344. T.H. KOORNWINDER, Jacobi functions as limit cases of q-ultraspherical polynomials. Journal of Mathematical Analysis and Applications 148, 1990, 44–54. 345. T.H. KOORNWINDER, Orthogonal polynomials in connection with quantum groups. In: Orthogonal Polynomials: Theory and Practice (ed. P. Nevai), Kluwer, Dordrecht, 1990, 257– 292. 346. T.H. KOORNWINDER, The addition formula for little q-Legendre polynomials and the SU(2) quantum group. SIAM Journal on Mathematical Analysis 22, 1991, 295–301. 347. T.H. KOORNWINDER, Askey-Wilson polynomials for root systems of type BC. Contemporary Mathematics 138, 1992, 189–204. 348. T.H. KOORNWINDER, Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group. SIAM Journal on Mathematical Analysis 24, 1993, 795–813. 349. T.H. KOORNWINDER, Special functions and q-commuting variables. In: Special Functions, q-Series and Related Topics (eds. M.E.H. Ismail, D.R. Masson and M. Rahman). Fields Institute Communications 14, 1997, 131–166. 350. T.H. KOORNWINDER, A second addition formula for continuous q-ultraspherical polynomials. In: Theory and Applications of Special Functions. Developments in Mathematics 13, Springer, New York, 2005, 339–360. 351. T.H. KOORNWINDER, The structure relation for Askey-Wilson polynomials. Journal of Computational and Applied Mathematics 207, 2007, 214–226. 352. H.L. K RALL and O. F RINK, A new class of orthogonal polynomials: The Bessel polynomials. Transactions of the American Mathematical Society 65, 1949, 100–115. 353. I. K RASIKOV, Bounds for zeros of the Charlier polynomials. Methods and Applications of Analysis 9, 2002, 599–610. 354. I. K RASIKOV, Bounds for zeros of the Laguerre polynomials. Journal of Approximation Theory 121, 2003, 287–291. 355. I. K RASIKOV, New bounds on the Hermite polynomials. East Journal on Approximations 10, 2004, 355–362. 356. I. K RASIKOV, Inequalities for Laguerre polynomials. East Journal on Approximations 11, 2005, 257–268. 357. A.B.J. K UIJLAARS and A. M ART´I NEZ -F INKELSHTEIN, Strong asymptotics for Jacobi polynomials with varying nonstandard parameters. Journal d’Analyse Math´ematique 94, 2004, 195–234. 358. A.B.J. K UIJLAARS, A. M ART´I NEZ -F INKELSHTEIN and R. O RIVE, Orthogonality of Jacobi polynomials with general parameters. Electronic Transactions on Numerical Analysis 19, 2005, 1–17. 359. A.B.J. K UIJLAARS and K.T.-R. M C L AUGHLIN, Asymptotic zero behavior of Laguerre polynomials with negative parameter. Constructive Approximation 20, 2004, 497–523. 360. K.H. K WON and L.L. L ITTLEJOHN, The orthogonality of the Laguerre polynomials (−k) {Ln (x)} for positive integers k. Annals of Numerical Mathematics 2, 1995, 289–303. 361. K.H. K WON, B.H. YOO and G.J. YOON, A characterization of Hermite polynomials. Journal of Computational and Applied Mathematics 78, 1997, 295–299. 362. J. L ABELLE, Tableau d’Askey. In: Polynˆomes Orthogonaux et Applications, (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, Springer-Verlag, New York, 1985, xxxvi– xxxvii. 363. J. L ABELLE and Y.N. Y EH, Combinatorial proofs of some limit formulas involving orthogonal polynomials. Discrete Mathematics 79, 1989, 77–93. 364. J. L ABELLE and Y.N. Y EH, Combinatorial proofs of symmetry formulas for the generalized hypergeometric series. Journal of Mathematical Analysis and Applications 139, 1989, 36–48.
568
Bibliography
365. J. L ABELLE and Y.N. Y EH, The combinatorics of Laguerre, Charlier, and Hermite polynomials. Studies in Applied Mathematics 80, 1989, 25–36. 366. A. L AFORGIA, A monotonic property for the zeros of ultraspherical polynomials. Proceedings of the American Mathematical Society 83, 1981, 757–758. 367. T.P. L AINE, Projection formulas and a new proof of the addition formula for the Jacobi polynomials. SIAM Journal on Mathematical Analysis 13, 1982, 324–330. 368. P.A. L EE, Explicit formula for the multiple generating function of product of generalized Laguerre polynomials. Journal of Physics A. Mathematical and General 30, 1997, L183– L186. 369. P.A. L EE, Markov processes and a multiple generating function of product of generalized Laguerre polynomials. Journal of Physics A. Mathematical and General 30, 1997, L373– L377. 370. P.A. L EE, On an integral of product of Laguerre polynomials. International Journal of Computer Mathematics 64, 1997, 303–307. 371. D.A. L EONARD, Orthogonal polynomials, duality and association schemes. SIAM Journal on Mathematical Analysis 13, 1982, 656–663. ¨ 372. P. L ESKY, Uber Polynomsysteme, die Sturm-Liouvilleschen Differenzengleichungen gen¨ugen. Mathematische Zeitschrift 78, 1962, 439–445. ¨ 373. P. L ESKY, Der Satz von Favard f¨ur Endliche Orthogonalsysteme. Osterreichische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Anzeiger 123, 1986, 45– 49. ¨ 374. P. L ESKY, Eine Vervollst¨andigung der Hahnpolynome. Osterreichische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte. Abteilung II. Mathematische, Physikalische und Technische Wissenschaften 197, 1988, 379–389. ¨ 375. P. L ESKY, Die Vervollst¨andigung der diskreten klassischen Orthogonalpolynome. Osterreichische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte. Abteilung II. Mathematische, Physikalische und Technische Wissenschaften 198, 1989, 295–315. 376. P.A. L ESKY, Racahpolynome und duale Hahnpolynome als L¨osungen von Eigenwertprob¨ lemen. Osterreichische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte. Abteilung II. Mathematische, Physikalische und Technische Wissenschaften 202, 1993, 163–172. 377. P.A. L ESKY, Dualit¨at bei Polynoml¨osungen von reellen Differenzengleichungen zweiter Ord¨ nung. Osterreichische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte. Abteilung II. Mathematische, Physikalische und Technische Wissenschaften 203, 1994, 63–80. 378. P.A. L ESKY, Dualit¨at bei Polynoml¨osungen von komplexen Differenzengleichungen zweiter ¨ Ordnung. Osterreichische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte. Abteilung II. Mathematische, Physikalische und Technische Wissenschaften 203, 1994, 81–100. 379. P.A. L ESKY, Zweigliedrige Rekursionen f¨ur die Koeffizienten von Polynoml¨osungen Sturm-Liouvillescher q-Differenzengleichungen. Zeitschrift f¨ur Angewandte Mathematik und Mechanik 74, 1994, 497–500. 380. P.A. L ESKY, Orthogonalit¨at von dualen Hahnpolynomen und continuous dualen Hahnpoly¨ nomen. Osterreichische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte. Abteilung II. Mathematische, Physikalische und Technische Wissenschaften 204, 1995, 81–95. 381. P.A. L ESKY, Vervollst¨andigung der klassischen Orthogonalpolynome durch Erg¨anzungen ¨ zum Askey-Schema der hypergeometrischen orthogonalen Polynome. Osterreichische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte. Abteilung II. Mathematische, Physikalische und Technische Wissenschaften 204, 1995, 151– 166. 382. P.A. L ESKY, Endliche und undendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen. Zeitschrift f¨ur Angewandte Mathematik und Mechanik 76, 1996, 181–184.
Bibliography
569
383. P.A. L ESKY, Unendliche und endliche Orthogonalsysteme von continuous Hahnpolynomen. Results in Mathematics 31, 1997, 127–135. 384. P.A. L ESKY, Einordnung der Polynome von Romanovski-Bessel in das Askey-Tableau. Zeitschrift f¨ur Angewandte Mathematik und Mechanik 78, 1998, 646–648. 385. P.A. L ESKY, Orthogonalpolynome in x and q−x als L¨osungen von reellen q-Operatorgleichungen zweiter Ordnung. Monatshefte f¨ur Mathematik 132, 2001, 123–140. 386. P.A. L ESKY, Reelle Polynome in az + uz osungen von q-Operatora (a, z ∈ C, u ∈ R) als L¨ ¨ gleichungen zweiter Ordnung. Osterreichische Akademie der Wissenschaften MathematischNaturwissenschaftliche Klasse. Sitzungsberichte. Abteilung II. Mathematische, Physikalische und Technische Wissenschaften 210, 2001, 33–59. 387. P.A. L ESKY and B.M. WAIBEL, Orthogonalit¨at von Racahpolynomen und Wilsonpolynomen. Results in Mathematics 35, 1999, 119–133. 388. J. L ETESSIER and G. VALENT, The generating function method for quadratic asymptotically symmetric birth and death processes. SIAM Journal on Applied Mathematics 44, 1984, 773– 783. 389. J. L ETESSIER and G. VALENT, Dual birth and death processes and orthogonal polynomials. SIAM Journal on Applied Mathematics 46, 1986, 393–405. 390. S. L EWANOWICZ, Second-order recurrence relation for the linearization coefficients of the classical orthogonal polynomials. Journal of Computational and Applied Mathematics 69, 1996, 159–170. 391. S. L EWANOWICZ, Recurrence relations for the connection coefficients of orthogonal polynomials of a discrete variable. Journal of Computational and Applied Mathematics 76, 1996, 213–229. 392. X. L I and R. W ONG, On the asymptotics of the Meixner-Pollaczek polynomials and their zeros. Constructive Approximation 17, 2001, 59–90. 393. Z. L I, Conjugate Jacobi series and conjugate functions. Journal of Approximation Theory 86, 1996, 179–196. 394. Z. L I, On the Ces`aro means of conjugate Jacobi series. Journal of Approximation Theory 91, 1997, 103–116. 395. Z. L IU, The q-ultraspherical polynomials and some identities of the Rogers-Ramanujan type. Chinese Quarterly Journal of Mathematics 15, 2000, 1–5. ´ 396. J.L. L OPEZ and N.M. T EMME, Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. Journal of Mathematical Analysis and Applications 239, 1999, 457–477. ´ and N.M. T EMME, Convergent asymptotic expansions of Charlier, Laguerre and 397. J.L. L OPEZ Jacobi polynomials. Proceedings of the Royal Society of Edinburgh 134, 2004, 537–555. 398. L. L ORCH, Inequalities for ultraspherical polynomials and the gamma function. Journal of Approximation Theory 40, 1984, 115–120. 399. Y.L. L UKE, The special functions and their approximations. Volume 1. Mathematics in Science and Engineering, Volume 53. Academic Press, New York, 1969. ´ 400. A. M ART´I NEZ -F INKELSHTEIN, P. M ART´I NEZ -G ONZ ALEZ and R. O RIVE, Zeros of Jacobi polynomials with varying non-classical parameters. In: Special functions, Proceedings of the International Workshop, Hong Kong 1999, World Scientific Publishing, Singapore, 2000, 98– 113. 401. D.R. M ASSON, Associated Wilson polynomials. Constructive Approximation 7, 1991, 521– 534. 402. T. M ASUDA, K. M IMACHI, Y. NAKAGAMI, M. N OUMI and K. U ENO, Representations of the quantum group SUq (2) and the little q-Jacobi polynomials. Journal of Functional Analysis 99, 1991, 357–386. 403. A.M. M ATHAI, A Handbook of Generalized Special Functions for Statistical and Physical Sciences. Clarendon Press, Oxford, 1993. 404. P. M EER and I. W EISS, Smoothed differentiation filters for images. Journal of Visual Communication and Image Representation 3, 1992, 58–72.
570
Bibliography
405. H.G. M EIJER, Asymptotic expansion of Jacobi polynomials. In: Polynˆomes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, Springer-Verlag, New York, 1985, 380–389. 406. J. M EIXNER, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. Journal of the London Mathematical Society 9, 1934, 6–13. 407. W. M ILLER J R ., A note on Wilson polynomials. SIAM Journal on Mathematical Analysis 18, 1987, 1221–1226. 408. W. M ILLER J R ., Symmetry techniques and orthogonality for q-series. In: q-Series and Partitions (ed. D. Stanton). The IMA Volumes in Mathematics and Its Applications 18, SpringerVerlag, New York, 1989, 191–212. 409. K. M IMACHI, Askey-Wilson polynomials by means of a q-Selberg type integral. Advances in Mathematics 147, 1999, 315–327. 410. K. M IMACHI, Integral representations of the Wilson polynomials and the continuous dual Hahn polynomials. Advances in Applied Mathematics 23, 1999, 340–359. 411. D.S. M OAK, The q-analogue of the Laguerre polynomials. Journal of Mathematical Analysis and Applications 81, 1981, 20–47. (α ,β ) 412. D.S. M OAK, E.B. S AFF and R.S. VARGA, On the zeros of Jacobi polynomials Pn n n (x). Transactions of the American Mathematical Society 249, 1979, 159–162. 413. B. NAGEL, The relativistic Hermite polynomial is a Gegenbauer polynomial. Journal of Mathematical Physics 35, 1994, 1549–1554. 414. B. NASSRALLAH and M. R AHMAN, Projection formulas, a reproducing kernel and a generating function for q-Wilson polynomials. SIAM Journal on Mathematical Analysis 16, 1985, 186–197. 415. E. N EUMAN, On Hahn polynomials and continuous dual Hahn polynomials. Journal of Computational and Applied Mathematics 8, 2006, 229–248. 416. A.F. N IKIFOROV, S.K. S USLOV and V.B. U VAROV, Classical orthogonal polynomials of a discrete variable. Springer Series in Computational Physics, Springer-Verlag, New York, 1991. 417. A.F. N IKIFOROV and V.B. U VAROV, Special Functions of Mathematical Physics. Birkh¨auser Verlag, Basel, 1988. 418. M. N OUMI and K. M IMACHI, Askey-Wilson polynomials and the quantum group SUq (2). Proceedings of the Japan Academy, Series A. Mathematical Sciences 66, 1990, 146–149. 419. M. N OUMI and K. M IMACHI, Big q-Jacobi polynomials, q-Hahn polynomials, and a family of quantum 3-spheres. Letters in Mathematical Physics 19, 1990, 299–305. 420. M. N OUMI and K. M IMACHI, Quantum 2-spheres and big q-Jacobi polynomials. Communications in Mathematical Physics 128, 1990, 521–531. 421. M. N OUMI and K. M IMACHI, Roger’s q-ultraspherical polynomials on a quantum 2-sphere. Duke Mathematical Journal 63, 1991, 65–80. 422. M. N OUMI and K. M IMACHI, Askey-Wilson polynomials as spherical functions on SUq (2). In: Quantum groups (Leningrad, 1990). Lecture Notes in Mathematics 1510, Springer-Verlag, New York, 1992, 98–103. 423. M. N OUMI and J.V. S TOKMAN, Askey-Wilson polynomials: an affine Hecke algebraic approach. In: Laredo Lectures on Orthogonal Polynomials and Special Functions (eds. R. ´ Alvarez-Nodarse, F. Marcell´an and W. Van Assche). Nova Science Publishers, New York, 2004, 111–144. 424. F.W.J. O LVER, Asymptotics and special functions. Computer Science and Applied Mathematics, Academic Press, New York, 1974. ˜ , On Sobolev orthogonality for the generalized Laguerre poly425. T.E. P E´ REZ and M.A. P I NAR nomials. Journal of Approximation Theory 86, 1996, 278–285. 426. M. P ERLSTADT, A property of orthogonal polynomial families with polynomial duals. SIAM Journal on Mathematical Analysis 15, 1984, 1043–1054. 427. G. P ITTALUGA and L. S ACRIPANTE, Bounds for the zeros of Hermite polynomials. Annals of Numerical Mathematics 2, 1995, 371–379. 428. J. P RASAD and H. H AYASHI, On the uniform approximation of smooth functions by Jacobi polynomials. Canadian Journal of Mathematics 25, 1973, 216–223.
Bibliography
571
429. W.-Y. Q IU and R. W ONG, Asymptotic expansion of the Krawtchouk polynomials and their zeros. Computational Methods and Function Theory 4, 2004, 189–226. 430. M. R AHMAN, Construction of a family of positive kernels from Jacobi polynomials. SIAM Journal on Mathematical Analysis 7, 1976, 92–116. 431. M. R AHMAN, A five-parameter family of positive kernels from Jacobi polynomials. SIAM Journal on Mathematical Analysis 7, 1976, 386–413. 432. M. R AHMAN, Some positive kernels and bilinear sums for Hahn polynomials. SIAM Journal on Mathematical Analysis 7, 1976, 414–435. 433. M. R AHMAN, On a generalization of the Poisson kernel for Jacobi polynomials. SIAM Journal on Mathematical Analysis 8, 1977, 1014–1031. 434. M. R AHMAN, A generalization of Gasper’s kernel for Hahn polynomials: application to Pollaczek polynomials. Canadian Journal of Mathematics 30, 1978, 133–146. 435. M. R AHMAN, A positive kernel for Hahn-Eberlein polynomials. SIAM Journal on Mathematical Analysis 9, 1978, 891–905. 436. M. R AHMAN, An elementary proof of Dunkl’s addition theorem for Krawtchouk polynomials. SIAM Journal on Mathematical Analysis 10, 1979, 438–445. 437. M. R AHMAN, A product formula and a non-negative Poisson kernel for Racah-Wilson polynomials. Canadian Journal of Mathematics 32, 1980, 1501–1517. 438. M. R AHMAN, A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canadian Journal of Mathematics 33, 1981, 915–928. 439. M. R AHMAN, A stochastic matrix and bilinear sums for Racah-Wilson polynomials. SIAM Journal on Mathematical Analysis 12, 1981, 145–160. 440. M. R AHMAN, Families of biorthogonal rational functions in a discrete variable. SIAM Journal on Mathematical Analysis 12, 1981, 355–367. 441. M. R AHMAN, The linearization of the product of continuous q-Jacobi polynomials. Canadian Journal of Mathematics 33, 1981, 961–987. 442. M. R AHMAN, Reproducing kernels and bilinear sums for q-Racah and q-Wilson polynomials. Transactions of the American Mathematical Society 273, 1982, 483–508. 443. M. R AHMAN, A q-extension of Feldheim’s bilinear sum for Jacobi polynomials and some applications. Canadian Journal of Mathematics 37, 1985, 551–578. 444. M. R AHMAN, A product formula for the continuous q-Jacobi polynomials. Journal of Mathematical Analysis and Applications 118, 1986, 309–322. 445. M. R AHMAN, q-Wilson functions of the second kind. SIAM Journal on Mathematical Analysis 17, 1986, 1280–1286. 446. M. R AHMAN, A projection formula for the Askey-Wilson polynomials and an application. Proceedings of the American Mathematical Society 103, 1988, 1099–1107. 447. M. R AHMAN, A simple proof of Koornwinder’s addition formula for the little q-Legendre polynomials. Proceedings of the American Mathematical Society 107, 1989, 373–381. 448. M. R AHMAN, Askey-Wilson functions of the first and second kinds: series and integral representations of Cn2 (x; β |q) + D2n (x; β |q). Journal of Mathematical Analysis and Applications 164, 1992, 263–284. 449. M. R AHMAN, Some generating functions for the associated Askey-Wilson polynomials. Journal of Computational and Applied Mathematics 68, 1996, 287–296. 450. M. R AHMAN and M.J. S HAH, An infinite series with products of Jacobi polynomials and Jacobi functions of the second kind. SIAM Journal on Mathematical Analysis 16, 1985, 859– 875. 451. M. R AHMAN and S.K. S USLOV, Singular analogue of the Fourier transformation for the Askey-Wilson polynomials. In: Symmetries and integrability of difference equations (Est´erel, PQ, 1994). Centre de Recherches Math´ematiques. CRM Proceedings and Lecture Notes 9, 1996, 289–302. 452. M. R AHMAN and A. V ERMA, A q-integral representation of Rogers’ q-ultraspherical polynomials and some applications. Constructive Approximation 2, 1986, 1–10. 453. M. R AHMAN and A. V ERMA, Product and addition formulas for the continuous q-ultraspherical polynomials. SIAM Journal on Mathematical Analysis 17, 1986, 1461–1474.
572
Bibliography
454. M. R AHMAN and A. V ERMA, Infinite sums of product of continuous q-ultraspherical functions. The Rocky Mountain Journal of Mathematics 17, 1987, 371–384. 455. M. R AHMAN and A. V ERMA, Positivity of the Poisson kernel for the Askey-Wilson polynomials. Indian Journal of Mathematics 33, 1991, 287–306. 456. E.D. R AINVILLE, Special functions. The Macmillan Company, New York, 1960. 457. M.O. R AYES, V. T REVISAN and P.S. WANG, Factorization properties of Chebyshev polynomials. Computers and Mathematics with Applications 50, 2005, 1231–1240. 458. M. R EIMER, Uniform inequalities for Gegenbauer polynomials. Acta Mathematica Hungarica 70, 1996, 13–26. 459. T.J. R IVLIN, The Chebyshev polynomials. Pure and Applied Mathematics. A Wiley Interscience series of Texts, Monographs and Tracts. John Wiley and Sons, New York, 1974. 460. L.J. ROGERS, On the expansion of some infinite products. Proceedings of the London Mathematical Society 24, 1893, 337–352. 461. L.J. ROGERS, Second memoir on the expansion of certain infinite products. Proceedings of the London Mathematical Society 25, 1894, 318–343. 462. L.J. ROGERS, Third memoir on the expansion of certain infinite products. Proceedings of the London Mathematical Society 26, 1895, 15–32. 463. V. ROMANOVSKI, Sur quelques classes nouvelles de polynˆomes orthogonaux. Comptes Rendus de l’Acad´emie des Sciences de Paris 188, 1929, 1023–1025. 464. P. RUSEV, A note on classical generating function for the Jacobi polynomials. Fractional Calculus and Applied Analysis 8, 2005, 63–66. 465. P. S ABLONNI E` RE, Discrete Bernstein bases and Hahn polynomials. Journal of Computational and Applied Mathematics 49, 1993, 233–241. 466. M. DE S AINTE -C ATHERINE and G. V IENNOT, Combinatorial interpretation of integrals of products of Hermite, Laguerre and Tchebycheff polynomials. In: Polynˆomes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, Springer-Verlag, New York, 1985, 120–128. 467. F. S ARTORETTO and R. S PIGLER, Computing expansion coefficients in orthogonal bases of ultraspherical polynomials. Journal of Computational and Applied Mathematics 56, 1994, 295–303. 468. A. S AVITZKY and M.J.E. G OLAY, Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36, 1964, 1627–1639. 469. W. S CHOUTENS, Stochastic Processes and Orthogonal Polynomials. Lecture Notes in Stochastics 146, Springer-Verlag, New York, 2000. 470. Y.G. S HI, Regularity and explicit representation of (0, 1, . . . , m − 2, m)-interpolation on the zeros of the Jacobi polynomials. Journal of Approximation Theory 76, 1994, 274–285. 471. L.J. S LATER, Generalized Hypergeometric Functions. Cambridge University Press, 1966. 472. Y.F. S MIRNOV and C. C AMPIGOTTO, The quantum q-Krawtchouk and q-Meixner polynomials and their related D-functions for the quantum groups SUq (2) and SUq (1, 1). Proceedings of the 10th International Congress on Computational and Applied Mathematics, ICCAM2002. Journal of Computational and Applied Mathematics 164/165, 2004, 643–660. 473. V. S PIRIDONOV and A. Z HEDANOV, q-Ultraspherical polynomials for q a root of unity. Letters in Mathematical Physics 37, 1996, 173–180. 474. V. S PIRIDONOV and A. Z HEDANOV, Zeros and orthogonality of the Askey-Wilson polynomials for q a root of unity. Duke Mathematical Journal 89, 1997, 283–305. 475. H.M. S RIVASTAVA, Note on generalized Laguerre polynomials. Bulletin of the Calcutta Mathematical Society 58, 1966, 81–82. 476. H.M. S RIVASTAVA, A note on certain dual series equations involving Laguerre polynomials. Pacific Journal of Mathematics 30, 1969, 525–527. 477. H.M. S RIVASTAVA, Generating functions for Jacobi and Laguerre polynomials. Proceedings of the American Mathematical Society 23, 1969, 590–595. 478. H.M. S RIVASTAVA, Dual series relations involving generalized Laguerre polynomials. Journal of Mathematical Analysis and Applications 31, 1970, 587–594. 479. H.M. S RIVASTAVA, A class of generating functions for generalized hypergeometric polynomials. Journal of Mathematical Analysis and Applications 35, 1971, 230–235.
Bibliography
573
480. H.M. S RIVASTAVA, An elementary proof of Bailey’s bilinear generating function for Jacobi polynomials. IMA Journal of Applied Mathematics 29, 1982, 275–280. 481. H.M. S RIVASTAVA and V.K. JAIN, Some multilinear generating functions for q-Hermite polynomials. Journal of Mathematical Analysis and Applications 144, 1989, 147–157. 482. H.M. S RIVASTAVA and V.K. JAIN, Some formulas involving q-Jacobi and related polynomials. Annali di Matematica Pura ed Applicata (4) 157, 1990, 63–75. 483. H.M. S RIVASTAVA and J.P. S INGHAL, New generating functions for Jacobi and related polynomials. Journal of Mathematical Analysis and Applications 41, 1973, 748–752. 484. R. S RIVASTAVA and K.K. M ATHUR, Weighted (0; 0, 2)-interpolation on the roots of Hermite polynomials. Acta Mathematica Hungarica 70, 1996, 57–73. 485. D. S TANTON, A short proof of a generating function for Jacobi polynomials. Proceedings of the American Mathematical Society 80, 1980, 398–400. 486. D. S TANTON, Product formulas for q-Hahn polynomials. SIAM Journal on Mathematical Analysis 11, 1980, 100–107. 487. D. S TANTON, Some q-Krawtchouk polynomials on Chevalley groups. American Journal of Mathematics 102, 1980, 625–662. 488. D. S TANTON, Orthogonal polynomials and Chevalley groups. In: Special Functions: Group Theoretical Aspects and Applications (eds. R.A. Askey et al.), D. Reidel Publishing Company, Dordrecht, 1984, 87–128. 489. D. S TANTON, An introduction to group representations and orthogonal polynomials. In: Orthogonal Polynomials: Theory and Practice (ed. P. Nevai), Kluwer Academic Publishers, Dordrecht, 1990, 419–433. 490. T.J. S TIELTJES, Recherches sur les fractions continues. Annales de la Facult´e des Sciences de Toulouse 8, 1894, J1-122; 9, 1895, A5-47; Œuvres Compl`etes, Volume 2, 398–566. 491. J.V. S TOKMAN, On BC type basic hypergeometric orthogonal polynomials. Transactions of the American Mathematical Society 352, 2000, 1527–1579. 492. F.H. S ZAFRANIEC, Charlier polynomials and translational invariance in the quantum harmonic oscillator. Mathematische Nachrichten 241, 2002, 163–169. 493. G. S ZEG O˝ , Orthogonal polynomials. American Mathematical Society, Colloquium Publications 23, Providence, Rhode Island, Fourth edition, 1975. 494. G. S ZEG O˝ , An outline of the history of orthogonal polynomials. With four pages of comments and references by the editor. In: Collected Papers, Volume 3 (ed. R. Askey). Contemporary Mathematicians, Birkh¨auser, Boston, 1982, 855–869. 495. R. S ZWARC, Nonnegative linearization and quadratic transformation of Askey-Wilson polynomials. Canadian Mathematical Bulletin 39, 1996, 241–249. 496. N.M. T EMME, Special Functions: An Introduction to the Classical Functions of Mathematical Physics. John Wiley and Sons, New York, 1996. ´ 497. N.M. T EMME and J.L. L OPEZ , The role of Hermite polynomials in asymptotic analysis. In: Special functions, Proceedings of the International Workshop, Hong Kong 1999, World Scientific Publishing, Singapore, 2000, 339–350. ´ 498. N.M. T EMME and J.L. L OPEZ , The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis. In: Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999). Journal of Computational and Applied Mathematics 133, 2001, 623–633. 499. P. T ERWILLIGER, Two linear transformations each tridiagonal with respect to an eigenbasis of the other: comments on the split decomposition. Journal of Computational and Applied Mathematics 178, 2005, 437–452. 500. P. T ERWILLIGER, An algebraic approach to the Askey scheme of orthogonal polynomials. In: Orthogonal Polynomials and Special Functions. Lecture Notes in Mathematics 1883, 2006, 255–330. 501. S.B. T RI Cˇ KOVI C´ and M.S. S TANKOVI C´ , A new approach to the orthogonality of the Laguerre and Hermite polynomials. Integral Transforms and Special Functions 17, 2006, 661– 672. 502. T.N. T RIVEDI and P.N. PATHAK, A note on an integral involving Laguerre polynomials. International Journal of Mathematical Sciences 3, 2004, 369–373.
574
Bibliography
503. G. VALENT and W. VAN A SSCHE, The impact of Stieltjes’ work on continued fractions and orthogonal polynomials: additional material. Journal of Computational and Applied Mathematics 65, 1995, 419–447. 504. W. VAN A SSCHE and T.H. KOORNWINDER, Asymptotic behaviour for Wall polynomials and the addition formula for little q-Legendre polynomials. SIAM Journal on Mathematical Analysis 22, 1991, 302–311. 505. P. V E´ RTESI, On the zeros of generalized Jacobi polynomials. Annals of Numerical Mathematics 4, 1997, 561–577. 506. G. V IENNOT, A combinatorial theory for general orthogonal polynomials with extensions and applications. In: Polynˆomes Orthogonaux et Applications (eds. C. Brezinski et al.). Lecture Notes in Mathematics 1171, Springer-Verlag, New York, 1985, 139–157. 507. L. V INET and A. Z HEDANOV, Generalized Bochner theorem: characterization of the AskeyWilson polynomials. Journal of Computational and Applied Mathematics 211, 2008, 45–56. 508. B. V ISWANATHAN, Generating functions for ultraspherical functions. Canadian Journal of Mathematics 20, 1968, 120–134. 509. H.S. WALL, A continued fraction related to some partition formulas of Euler. The American Mathematical Monthly 48, 1941, 102–108. 510. L. W EISNER, Generating functions for Hermite functions. Canadian Journal of Mathematics 11, 1959, 141–147. 511. S. W IGERT, Sur les polynomes orthogonaux et l’approximation des fonctions continues. Arkiv f¨or Matematik, Astronomi och Fysik 17, 1923, 1–15. 512. J.A. W ILSON, Some hypergeometric orthogonal polynomials. SIAM Journal on Mathematical Analysis 11, 1980, 690–701. 513. J.A. W ILSON, Asymptotics for the 4 F3 polynomials. Journal of Approximation Theory 66, 1991, 58–71. 514. M.W. W ILSON, Nonnegative expansions of polynomials. Proceedings of the American Mathematical Society 24, 1970, 100–102. 515. M.W. W ILSON, On the Hahn polynomials. SIAM Journal on Mathematical Analysis 1, 1970, 131–139. 516. J. W IMP, Explicit formulas for the associated Jacobi polynomials and some applications. Canadian Journal of Mathematics 39, 1987, 983–1000. 517. J. W IMP, Pollaczek polynomials and Pad´e approximants: some closed-form expressions. Journal of Computational and Applied Mathematics 32, 1990, 301–310. 518. R. W ONG and J.-M. Z HANG, Asymptotic monotonicity of the relative extrema of Jacobi polynomials. Canadian Journal of Mathematics 46, 1994, 1318–1337. 519. R. W ONG and W. Z HANG, Uniform asymptotics for Jacobi polynomials with varying large negative parameters – a Riemann-Hilbert approach. Transactions of the American Mathematical Society 358, 2006, 2663–2694. 520. M. W YMAN, The asymptotic behaviour of the Hermite polynomials. Canadian Journal of Mathematics 15, 1963, 332–349. 521. A. Z ARZO, I. A REA, E. G ODOY and A. RONVEAUX, Results for some inversion problems for classical continuous and discrete orthogonal polynomials. Journal of Physics A. Mathematical and General 30, 1997, L35–L40. 522. A.I. Z AYED, Jacobi polynomials as generalized Faber polynomials. Transactions of the American Mathematical Society 321, 1990, 363–378. 523. J. Z ENG, Lin´earisation de produits de polynˆomes de Meixner, Krawtchouk, et Charlier. SIAM Journal on Mathematical Analysis 21, 1990, 1349–1368. 524. J. Z ENG, The q-Stirling numbers, continued fractions and the q-Charlier and q-Laguerre polynomials. Journal of Computational and Applied Mathematics 57, 1995, 413–424. 525. W. Z HANG, On Chebyshev polynomials and Fibonacci numbers. The Fibonacci Quarterly 40, 2002, 424–428. 526. Z. Z HANG and J. WANG, On some identities involving the Chebyshev polynomials. The Fibonacci Quarterly 42, 2004, 245–249.
Index
A Affine q-Krawtchouk polynomials, 327, 353, 364, 501 Al-Salam-Carlitz I polynomials, 265, 305, 320, 325, 345, 358, 534 Al-Salam-Carlitz II polynomials, 265, 307, 322, 325, 346, 357, 537 Al-Salam-Chihara polynomials, 397, 455 Alternative q-Charlier polynomials, see q-Bessel polynomials Askey scheme, 183 q-analogue of, 413 Askey-Wilson integral, 18 Askey-Wilson polynomials, 397, 410, 415 Askey-Wilson q-beta integral, 18
B Bailey’s integral, 9 Barnes’ first lemma, 8 Barnes’ integral representation, 8 Barnes’ second lemma, 8 Basic hypergeometric function, 15 Balanced, 15 Saalsch¨utzian, 15 Bessel function, 6 Bessel polynomials, 89, 244 Beta distribution, 86 Beta function, 3 Big q-Hermite polynomials Continuous, 397, 409, 509 Big q-Jacobi polynomials, 265, 305, 319, 438 Big q-Laguerre polynomials, 265, 305, 319, 478 Big q-Legendre polynomials, 443 Binomial coefficient, 4
Binomial distribution, 108 Negative, 103 Binomial theorem, 7 C Charlier polynomials, 101, 106, 247 Chebyshev polynomials, 225 Chu-Vandermonde summation formula, 7 Classical orthogonal polynomials Continuous, 79 Discrete, 95, 123, 141, 171 Classical q-orthogonal polynomials, 257, 323, 369, 395 Continuous big q-Hermite polynomials, 397, 409, 509 Continuous classical orthogonal polynomials, 79 Continuous dual Hahn polynomials, 171, 196 Orthogonality relations for, 173 Continuous dual q-Hahn polynomials, 397, 429 Continuous Hahn polynomials, 136, 200 Continuous q-Hahn polynomials, 397, 433 Continuous q-Hermite polynomials, 409, 540 Continuous q-Jacobi polynomials, 397, 463 Continuous q-Laguerre polynomials, 397, 514 Continuous q-Legendre polynomials, 475 Continuous q-ultraspherical polynomials, 469 D Difference equations Polynomial solutions of, 95, 123, 142, 171 Differential equations Polynomial solutions of, 79 Discrete classical orthogonal polynomials, 95, 123, 141, 171 Discrete q-Hermite I polynomials, 265, 305, 320, 325, 346, 358, 547
R. Koekoek et al., Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monographs in Mathematics, DOI 10.1007/978-3-642-05014-5, © Springer-Verlag Berlin Heidelberg 2010
575
576 Discrete q-Hermite II polynomials, 263, 265, 302, 306, 315, 321, 322, 325, 345, 356, 357, 550 Distribution Beta, 86 Binomial, 108 Euler, 265 Gamma, 85 Heine, 265 Hypergeometric, 113 Kemp, 265 Negative binomial, 103 Normal, 84 Poisson, 101 P´olya, 113 Student’s t-, 90 Dougall’s bilateral sum, 7 Dual Hahn polynomials, 146, 208 Continuous, 171, 196 Orthogonality relations for, 158 Dual q-Charlier polynomials, 376, 394 Dual q-Hahn polynomials, 376, 393, 450 Continuous, 397, 429 Dual q-Krawtchouk polynomials, 376, 394, 505 Dual q-Racah polynomials, 377 Duality, 71, 141, 369 E Eigenvalue problems, 30 Euler distribution, 265 Euler’s integral representation for a 2 F1 , 8 Euler’s transformation formula, 10 F Favard’s theorem, 53 G Gamma distribution, 85 Gamma function, 3 Gauss summation formula, 7 Gegenbauer polynomials, 222 H Hahn polynomials, 111, 204 Continuous, 136, 200 Continuous dual, 171, 196 Dual, 146, 208 Hahn’s q-operator, 29 Hahn-Exton q-Bessel function, 24 Heine distribution, 265 Heine’s series, 15 Heine’s transformation formula, 19 Hermite polynomials, 84, 250
Index Hypergeometric distribution, 113 Hypergeometric function, 5 Balanced, 5 Barnes’ integral representation, 8 Euler’s integral representation, 8 Saalsch¨utzian, 5 J Jackson’s q-Bessel function, 23 Jackson’s summation formula, 17 Jackson’s transformation formula, 21 Jackson-Thomae q-integral, 25, 59 Jacobi polynomials, 86, 88, 216 Pseudo, 90, 231 K Kemp distribution, 265 Kravchuk polynomials, see Krawtchouk polynomials Krawtchouk polynomials, 108, 109, 237 Kummer’s transformation formula, 10 L Laguerre polynomials, 85, 241 Legendre polynomials, 229 Little q-Jacobi polynomials, 261, 301, 312, 482 Little q-Laguerre polynomials, 261, 301, 312, 518 Little q-Legendre polynomials, 486 M Meixner polynomials, 103, 104, 234 Meixner-Pollaczek polynomials, 132, 213 Mellin-Barnes integral, 8 N Negative binomial distribution, 103 Normal distribution, 84 O Orthogonal polynomials, 1 Continuous classical, 79 Discrete classical, 95, 123, 141, 171 Orthogonality, 53 Orthogonality relations for continuous dual Hahn polynomials, 173 for dual Hahn polynomials, 158 for Racah polynomials, 162 for Wilson polynomials, 177 P Pfaff-Kummer transformation formula, 10 Pfaff-Saalsch¨utz summation formula, 7 Pochhammer symbol, see Shifted factorial
Index Poisson distribution, 101 P´olya distribution, 113 Polynomial solutions of complex difference equations, 123, 171 of complex q-difference equations, 395 of differential equations, 79 of q-difference equations, 257, 323 of real difference equations, 95, 142 of real q-difference equations, 370 Pseudo Jacobi polynomials, 90, 231 Q q-Askey scheme, 413 q-Bessel function, 23 q-Bessel polynomials, 261, 301, 314, 526 q-Beta integral, 18 q-Binomial coefficient, 14 q-Binomial theorem, 16 q-Charlier polynomials, 326, 348, 360, 530 Alternative, see q-Bessel polynomials Dual, 376, 394 q-Chu-Vandermonde summation formula, 17 q-Derivative operator, 24 q-Difference equations Polynomial solutions of, 257, 323, 370, 395 q-Distribution, 265 q-Euler transformation formula, 19 q-Exponential function, 22 q-Gamma function, 13 q-Gauss summation formula, 17 q-Hahn polynomials, 327, 352, 367, 445 Continuous, 397, 433 Continuous dual, 397, 429 Dual, 376, 393, 450 q-Hermite polynomials Continuous, 409, 540 Continuous big, 397, 409, 509 q-Hermite I polynomials Discrete, 265, 305, 320, 325, 346, 358, 547 q-Hermite II polynomials Discrete, 263, 265, 302, 306, 315, 321, 322, 325, 345, 356, 357, 550 q-Hypergeometric function, see Basic hypergeometric function q-Integral, 25 q-Jacobi polynomials Big, 265, 305, 319, 438 Continuous, 397, 463 Little, 261, 301, 312, 482 q-Kravchuk polynomials, see q-Krawtchouk polynomials q-Krawtchouk polynomials, 327, 354, 366, 496 Affine, 327, 353, 364, 501 Dual, 376, 394, 505
577 Quantum, 326, 348, 362, 493 q-Laguerre polynomials, 260, 297, 311, 522 Big, 265, 305, 319, 478 Continuous, 397, 514 Little, 261, 301, 312, 518 q-Legendre polynomials Big, 443 Continuous, 475 Little, 486 q-Meixner polynomials, 326, 348, 360, 488 q-Meixner-Pollaczek polynomials, 397, 460 q-Orthogonal polynomials Classical, 257, 323, 369, 395 q-Pfaff-Kummer transformation formula, 19 q-Pfaff-Saalsch¨utz summation formula, 17 q-Pochhammer symbol, see q-Shifted factorial q-Racah polynomials, 376, 391, 392, 422 Dual, 377 q-Saalsch¨utz summation formula, 17 q-Shifted factorial, 11 q-Ultraspherical polynomials Continuous, 469 q-Vandermonde summation formula, 17 Quantum q-Krawtchouk polynomials, 326, 348, 362, 493 R Racah polynomials, 148, 190 Orthogonality relations for, 162 Recurrence relation, 40 Regularity condition, 33 Rodrigues formulas, 62 Rogers polynomials, 469 S Saalsch¨utz summation formula, 7 Sears’ transformation formula, 22 Self-adjoint operator equation, 55 Shifted factorial, 4 Singh’s transformation formula, 22 Spherical polynomials, 229 Stieltjes-Wigert polynomials, 260, 261, 296, 297, 308, 310, 544 Stochastic distribution, see Distribution Student’s t-distribution, 90 Summation formula Binomial theorem, 7 Chu-Vandermonde, 7 Dougall, 7 for a 0 φ1 , 17 for a 1 φ1 , 17 for a terminating 2 φ0 , 17 for a very-well-poised 5 F4 , 7 for a very-well-poised 6 φ5 , 17
578 Gauss, 7 Jackson, 17 Pfaff-Saalsch¨utz, 7 q-Binomial theorem, 16 q-Chu-Vandermonde, 17 q-Gauss, 17 q-Pfaff-Saalsch¨utz, 17 q-Saalsch¨utz, 17 q-Vandermonde, 17 Saalsch¨utz, 7 Vandermonde, 7 T Tchebichef/Tchebycheff polynomials, see Chebyshev polynomials Three-term recurrence relation, 40 Transformation formula Euler, 10 Heine, 19 Jackson, 21
Index Kummer, 10 Pfaff-Kummer, 10 q-Euler, 19 q-Pfaff-Kummer, 19 Sears, 22 Singh, 22 Whipple, 11 U Ultraspherical polynomials, 222 V Vandermonde summation formula, 7 W Wall polynomials, 518 Whipple’s transformation formula, 11 Wilson polynomials, 172, 185 Orthogonality relations for, 177 Wilson’s integral, 10