+@ (TXDWLRQ EHFRPHV KLJKO\ DFFXUDWH IRU ODUJH YDOXHV RI Z ZKLOH IRU Z N WKH DSSUR[LPDWLRQ GHWHULRUDWH...
79 downloads
615 Views
5MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
+<3(563+(5,&$/+$5021,&6$1'*(1(5$/,=('67850,$16
Progress in Theoretical Chemistry and Physics 92/80(
Editor-in- Chief:
- 0DUXDQL (Laboratoire de Chimie Physique, Paris, France) 6 :LOVRQ (Rutherford Appleton Laboratory Oxfordshire, United Kingdom)
Editorial Board: ' $YQLU (Hewbrew University of Jerusalem, Israel) - &LRVORZVNL (Florida State University, Tallahassee, FL, U.S.A.) 5 'DXGHO (European Academy of Sciences, Paris, France) (.8 *URVV (Universität Würburg Am Hubland, Würzburg, Germany) :) 9DQ *XQVWHUHQ (ETH-Zentrum, Zurich, Switzerland) . +LUDR (University of Tokyo, Japan) , +XEDF (Komensky University, Bratislava, Slovakia 03 /HY\ (Tulane University, New Orleans, LA, U.S.A.) :1 /LSVFRPE (Harvard University, Cambridge, MA, U.S.A.) */0DOOL(Simon Fraser University, Burnaby, BC, Canada) -0DQ](Universität Würzburg, Germany) 50F:HHQ\(Università di Pisa, Italy) 3* 0H]H\ (University of Saskatchewan, Saskatoon, SK, Canada) ,3ULJRJLQH(Université Libre de Bruxelles, Belgium) 3 3\\NN| (University of Helsinki, Finland) - 5\FKOHZVNL (Polish Academy of Sciences, Poznan, Poland) '5 6DODKXE (Université de Montreal, Quebec, Canada) 6' 6FKZDUW] (Yeshiva University, Bronx, NY, U.S.A.) <* 6PH\HUV (Institute de Estructura de la Materia, Madrid, Spain) 6 6XKDL (Cancer Research Center, Heidellberg, Germany) 2 7DSLD (Uppsala University, Sweden) 35 7D\ORU (University of California, La Jolla, CA, U.S.A.) 5* :RROOH\ (Nottingham Trent University United Kingdom)
Hyperspherical Harmonics and Generalized Sturmians by John Avery HC ø UVWHG Institute, University RI Copenhagen. Copenhagen, Denmark
KLUWER ACADEMIC PUBLISHERS NEW YORK / BOSTON / DORDRECHT / LONDON / MOSCOW
H%RRN ,6%1 3ULQW,6%1
6944-8 792-36087-7
.OXZHU$FDGHPLF3XEOLVKHUV 1HZ
KWWSZZZNOXZHURQOLQHFRP KWWSZZZHERRNVNOXZHURQOLQHFRP
'HGLFDWHG WR 3URIHVVRUV 'XGOH\ 5 +HUVFKEDFK &DUO ( :XOIPDQ DQG 9LQFHQ]R $TXLODQWL ZLWK DGPLUDWLRQ IRU WKHLU SLRQHHULQJ UHVHDUFK
&RQWHQWV ,QWURGXFWLRQ
$FNQRZOHGJHPHQWV
0$1<3$57,&/( 67850,$16
020(178063$&( :$9( )81&7,216
+<3(563+(5,&$/ +$5021,&6
7+(020(178063$&(:$9((48$7,21
0$1<&(17(5 327(17,$/6
,7(5$7,21 2) 7+( :$9( (48$7,21
02/(&8/$5 67850,$16
5(/$7,9,67,& ())(&76
$ *HQHUDOL]HG 6ODWHU&RQGRQ 5XOHV
% &RXORPEDQGH[FKDQJHLQWHJUDOVIRU DWRPV
6ROXWLRQVWRWKHH[HUFLVHV
%LEOLRJUDSK\
,QGH[
Introduction 7KLV ERRN H[SORUHV WKH FRQQHFWLRQV EHWZHHQ WKH WKHRU\ RI K\SHUVSKHUL FDO KDUPRQLFV PRPHQWXPVSDFH TXDQWXP WKHRU\ DQG JHQHUDOL]HG 6WXU PLDQ EDVLV IXQFWLRQV DQG LW LQWURGXFHV PHWKRGV ZKLFK PD\ EH XVHG WR VROYH PDQ\HOHFWURQ SUREOHPV GLUHFWO\ ZLWKRXW WKH XVH RI WKH VHOI FRQVLVWHQWILHOG DSSUR[LPDWLRQ $PRQJ WKH SLRQHHUV RI PRPHQWXPVSDFH TXDQWXP WKHRU\ WKH QDPHV RI 3RGROVNL 3DXOLQJ )RFN &RXOVRQ 0F:HHQ\ 'XQFDQVRQ 6KLEX\D :XOIPDQ -XGG .RJD DQG $TXLODQWL DUH RXWVWDQGLQJ )RXULHU WUDQV IRUPHG K\GURJHQOLNH ZDYH IXQFWLRQV ZHUH REWDLQHG LQ E\ 3RGROVNL DQG 3DXOLQJ > @ /DWHU )RFN > @ ZDV DEOH WR VROYH WKH 6FKU|GLQJHU HTXDWLRQ IRU K\GURJHQOLNH DWRPV GLUHFWO\ LQ PRPHQWXP VSDFH ,Q D UHPDUNDEO\ EULOOLDQW SDSHU )RFN LQWURGXFHG D WUDQVIRU PDWLRQ ZKLFK PDSV GLPHQVLRQDO PRPHQWXP VSDFH RQWR WKH VXUIDFH RI D GLPHQVLRQDO XQLW K\SHUVSKHUH DQG KH ZDV DEOH WR VKRZ WKDW ZKHQ WKLV WUDQVIRUPDWLRQ LV PDGH WKH PRPHQWXPVSDFH K\GURJHQOLNH RUELWDOV FDQ EH YHU\ VLPSO\ H[SUHVVHG LQ WHUPV RI GLPHQVLRQDO K\ SHUVSKHULFDO KDUPRQLFV )RFN DOVR GHPRQVWUDWHG WKDW WKH XQH[SHFWHG nðIROG GHJHQHUDF\ RI K\GURJHQOLNH ZDYH IXQFWLRQV FRUUHVSRQGV WR WKH QXPEHU RI OLQHDUO\ LQGHSHQGHQW K\SHUVSKHULFDO KDUPRQLFV EHORQJLQJ WR D SDUWLFXODU YDOXH RI WKH JUDQG DQJXODU PRPHQWXP TXDQWXP QXPEHU ,QWKHHDUO\¶V&RXOVRQ0F:HHQ\DQG'XQFDQVRQ> @ H[SORUHG WKH SRVVLELOLWLHV IRU VROYLQJ WKH PRPHQWXP VSDFH 6FKU|GLQJHU HTXDWLRQ IRU PRUH FRPSOLFDWHG DWRPV DQG PROHFXOHV 7KH\ IRXQG WKDW DOWKRXJK LQWHUHVWLQJ LQVLJKWV FRXOG EH JDLQHG WKURXJK WKH PRPHQWXPVSDFH DSSURDFK VRPH RI WKH QHFHVVDU\ LQWHJUDOV ZHUH YHU\ GLIILFXOW DQG DW WKH WLPH WKHVH GLIILFXOW LQWHJUDOV SUHVHQWHG D EDUULHU WR IXUWKHU SURJUHVV ,Q 6KLEX\D DQG :XOIPDQ >@ SXEOLVKHG D SLRQHHULQJ SDSHU LQ ZKLFK WKH\ H[WHQGHG )RFN¶V PRPHQWXPVSDFH PHWKRG WR WKH SURE OHP RI D VLQJOH SDUWLFOH PRYLQJ LQ D PDQ\FHQWHU &RXORPE SRWHQWLDO 6KLEX\D DQG :XOIPDQ HYDOXDWHG WKH LQWHJUDOV QHHGHG IRU WKH FDOFXOD WLRQ E\ XVLQJ WKH :LJQHU FRHIILFLHQWV RI GLPHQVLRQDO K\SHUVSKHULFDO KDUPRQLFV :XOIPDQ >@ ZDV DEOH WR VKRZ KRZ WKLV QHZ PHWKRG ZDV FRQQHFWHG ZLWK G\QDPLFDOV\PPHWU\ DQG ZLWK /LH JURXSV
,Q WKH ILUVW ERRN RQ WKH PRPHQWXPVSDFH PHWKRGV RI )RFN 6KLEX\D DQG :XOIPDQ ZDV SXEOLVKHG E\ -XGG >@ 7KLV ERRN HQWL WOHG Angular Momentum Theory for Diatomic Molecules, GHYHORSV LQ D V\VWHPDWLF ZD\ WKH WKHRU\ RI GLPHQVLRQDO K\SHUVSKHULFDO KDUPRQLFV DQG WKHLU DSSOLFDWLRQ WR WKH SUREOHP RI DQ HOHFWURQ PRYLQJ LQ D PDQ\ FHQWHU &RXORPE SRWHQWLDO 7KH DSSOLFDWLRQ RI WKH PHWKRG WR GLDWRPLF PROHFXOHVLVGLVFXVVHG LQ GHWDLO LQ -XGG¶V H[FHOOHQW ERRN )XUWKHU SURJUHVV LQ WKH GHYHORSPHQW RI WKH 6KLEX\D:XOIPDQ PHWKRG ZDV PDGH E\ 0RQNKRVW DQG -H]LRUVNL >@ E\ 'DFKRQ 'XPRQW/HSDJH DQG*D]HDX>@E\1RYRVDGRY > @DQGHVSHFLDOO\E\.RJD DQG KLV FRZRUNHUV LQ -DSDQ >@ %\ XVLQJ D VHFXODU HTXDWLRQ EDVHG RQ WKH VHFRQGLWHUDWHG PRPHQWXPVSDFH 6FKU|GLQJHU HTXDWLRQ .RJD DQG 0DWVXKDVKL >@ ZHUH DEOH WR REWDLQ WKH HOHFWURQLF HQ HUJ\ RI ZLWKILJXUHDFFXUDF\DVDIXQFWLRQRIWKHLQWHUQXFOHDU VHSDUDWLRQ R 7KHLU PRPHQWXPVSDFH UHVXOWV DJUHH ZLWK WKH EHVW DYDLO DEOH GLUHFWVSDFH FDOFXODWLRQV EXW DUH RI KLJKHU SUHFLVLRQ IRU ORZ YDOXHV RI R 2WKHU LPSRUWDQW FRQWULEXWLRQV WR WKH GHYHORSPHQW RI WKH 6KLEX\D :XOIPDQ PHWKRG ZHUH PDGH E\ $TXLODQWL DQG KLV FRZRUNHUV DW WKH 8QLYHUVLW\ RI 3HUXJLD LQ ,WDO\ > @ 7KHVH DXWKRUV GHPRQVWUDWHG WKDW DOWHUQDWLYH VHWV RI K\SHUVSKHULFDO KDUPRQLFV PD\ EH EHWWHU DGDSWHG WR SDUWLFXODU SK\VLFDO SUREOHPV VXFK DV FDOFXODWLRQV RI WKH 6WDUN HIIHFW RU WKH TXDGUDWLF =HHPDQ HIIHFW RU FDOFXODWLRQV RQ GLDWRPLF PROHFXOHV 7KH method of trees, ZKLFK KDG EHHQ LQWURGXFHG LQWR QXFOHDU SK\VLFV E\ D QXPEHU RI 5XVVLDQ DXWKRUV > @ ZDV IXUWKHU GHYHORSHG E\ $TXLODQWL DQG KLV JURXS DQG ZDV DSSOLHG E\ WKHP WR WKH JHQHUDWLRQ RI DOWHUQDWLYH RUWKRQRUPDO VHWV RI K\SHUVSKHULFDO KDUPRQLFV 7KHVH DXWKRUV GLVFXVVHG LQ GHWDLO DQ DOWHU QDWLYH VHW RI K\SHUVSKHULFDO KDUPRQLFV ZKLFK XQGHU )RFN¶V PDSSLQJ UHSUHVHQW WKH PRPHQWXPVSDFH FRXQWHUSDUW RI GLUHFWVSDFH VROXWLRQV LQ SDUDEROLF FRRUGLQDWHV DQG WKH\ ZHUH DEOH WR ILQG H[SOLFLW H[SUHVVLRQV IRU WKH JHQHUDOL]HG &OHEVFK*RUGDQ FRHIILFLHQWV UHODWLQJ WKLV DOWHUQDWLYH VHW WR VWDQGDUG K\SHUVSKHULFDO KDUPRQLFV 6WXUPLDQ EDVLV IXQFWLRQV KDYH DQ LQGHSHQGHQW KLVWRU\ DOWKRXJK WKH\ DUH FORVHO\ UHODWHG WR WKH WRSLFV ZKLFK ZH KDYH MXVW EHHQ GLV FXVVLQJ 9HU\ HDUO\ LQ WKH KLVWRU\ RI TXDQWXP WKHRU\ LW ZDV WKRXJKW WKDW K\GURJHQOLNH ZDYH IXQFWLRQV FRXOG EH XVHG DV EXLOGLQJ EORFNV WR
3 construct the wave functions of more complicated systems for example manyelectron atoms or molecules. However, it was soon realized that unless the continuum is included, a set of hydrogenlike orbitals is not complete. To remedy this defect, Shull and Löwdin [273] introduced sets of radial functions which could be expressed in terms of Laguerre polynomials multiplied by exponential factors. The sets were constructed in such a way as to be complete, i.e. any radial function obeying the appropriate boundary conditions could be expanded in terms of the Shull-Löwdin basis sets. Later Rotenberg [256, 257] gave the name “Sturmian” to basis sets of this type in order to emphasize their connection with Sturm-Liouville theory. There is a large and rapidly-growing literature on Sturmian basis functions; and selections from this literature are cited in the bibliography. In 1968, Goscinski [138] completed a study of the properties of Sturrnian basis sets, formulating the problem in such a way as t o make generalization of the concept very easy. In the present text, we shall follow Goscinski’s easily generalizable definition of Sturmians. Generalized Sturmian basis sets can be understood from the following simple argument: Suppose that we are able to find a set of solutions to the wave equation
Here
is the generalized Laplacian operator and [ = ^x x xG` are the mass-weighted Cartesian coordinates of the particles in a system. If we are discussing a single particle, then d = 3, while if we are discussing an NSDUWLFOH system, d = N. We let ßv be a set of constants chosen in such a way that the functions all correspond to the same value of energy, ( regardless of their quantum numbers. Then it is easy t o show, using the Hermiticity of the operator
WKDW WKH IXQFWLRQV LQ WKH VHW REH\ D SRWHQWLDOZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ 7KH QRUPDOL]DWLRQ RI WKH IXQFWLRQV LQ WKH JHQHUDOL]HG 6WXUPLDQ EDVLV VHW FDQRIFRXUVHEHFKRVHQDFFRUGLQJWRFRQYHQLHQFH:HVKDOOVHHWKDWWKH FKRLFH RI QRUPDOL]DWLRQ VKRZQ DERYH LV D QDWXUDO DQG FRQYHQLHQW RQH DQG WKDW LW LV FORVHO\ UHODWHG WR WKH RUWKRQRUPDOLW\ RI WKH K\SHUVSKHULFDO KDUPRQLFV 1RZ VXSSRVH WKDW ZH ZLVK WR VROYH D 6FKU|GLQJHU HTXDWLRQ RI WKH IRUP ,I ZH H[SDQGWKHZDYHIXQFWLRQ PLDQ EDVLV VHW ZH KDYH
LQWHUPVRIRXU JHQHUDOL]HG 6WXU
:H QH[W PXOWLSO\ IURP WKH OHIW E\ DQ DGMRLQW IXQFWLRQ LQ WKH VHW DQG LQWHJUDWH RYHU FRRUGLQDWHV PDNLQJ XVH RI WKH SRWHQWLDOZHLJKWHG RU WKRQRUPDOLW\ UHODWLRQ 7KLV OHDGV W R WKH VHFXODU HTXDWLRQ
1RWLFH WKDW WKH NLQHWLF HQHUJ\ WHUP KDV GLVDSSHDUHG IURP WKH VHFXODU HTXDWLRQ 7KLV UHPDUNDEOH UHVXOW DOZD\V RFFXUV ZKHQ 6WXUPLDQ EDVLV IXQFWLRQV DUH XVHG PD\ 7KH PHWKRG MXVW GHVFULEHGLV D YHU\ JHQHUDO RQH VLQFH EH FKRVHQ DV D PDWWHU RI FRQYHQLHQFH *D]HDX DQG 0DTXHW > @ LQWURGXFHG HOHFWURQ 6WXUPLDQV WR VWXG\ ERXQGVWDWH SUREOHPV ZKLOH %DQJ 9DDJHQ DQG WKHLU FRZRUNHUV > @ SLRQHHUHG WKH DSSOLFDWLRQ RI JHQHUDOL]HG 6WXUPLDQV WR SUREOHPV LQ QXFOHDU SK\VLFV +HUVFKEDFK $YHU\ DQG $QWRQVHQ > @ LQWURGXFHG DQG VWXGLHG PDQ\ SDUWLFOH 6WXUPLDQ EDVLV VHWVZKHUHWKH³EDVLVSRWHQWLDO´ ZDVWDNHQ WR EH WKH SRWHQWLDO RI D dGLPHQVLRQDO K\GURJHQOLNH DWRP EXW LQ PRVW DSSOLFDWLRQV FRQYHUJHQFH ZLWK WKLV EDVLV SURYHG WR EH VORZ 0RUH UH FHQWO\ $TXLODQWL DQG $YHU\ > @ LQWURGXFHG PDQ\HOHFWURQ
6WXUPLDQ EDVLV VHWV ZKHUH ZDV WDNHQ WR EH WKH DFWXDO H[WHUQDO SRWHQWLDO H[SHULHQFHG E\ WKH N HOHFWURQV LQ DQ DWRP LH WKH DWWUDFWLYH &RXORPE SRWHQWLDO RI WKH QXFOHXV DQG FRQYHUJHQFH SURYHG WR EH YHU\ UDSLG 7KH PHWKRG ZDV H[WHQGHG WR PROHFXOHV E\ $YHU\ DQG 6DXHU > @ ZLWK WKH KHOS RI )HUQiQGH] 5LFR DQG /ySH] > @ XVLQJ WKH 6KLEX\D:XOIPDQ WHFKQLTXH IRU FRQVWUXFWLQJ PDQ\HOHFWURQ PROHFXODU 6WXUPLDQV ,KRSHWKDW \RX ZLOO HQMR\ UHDGLQJ WKLV ERRN DQG WKDW \RX ZLOOILQG WKDW WKH PHWKRG RI PDQ\HOHFWURQ 6WXUPLDQV RIIHUV DQ LQWHUHVWLQJ DQG IUHVK DOWHUQDWLYH WR WKH XVXDO 6&)&, PHWKRGV IRU FDOFXODWLQJ DWRPLF DQG PROHFXODU VWUXFWXUH :KHQ PDQ\HOHFWURQ 6WXUPLDQVDUHXVHG DQG ZKHQ WKH EDVLV SRWHQWLDO LVFKRVHQ WR EH WKH DWWUDFWLYH SRWHQWLDO RI WKH QXFOHL LQ WKH V\VWHP WKH IROORZLQJ DGYDQWDJHV DUH RIIHUHG 7KH PDWUL[ UHSUHVHQWDWLRQ RI WKH QXFOHDU DWWUDFWLRQ SRWHQWLDO LV GLDJRQDO 7KH NLQHWLF HQHUJ\WHUP YDQLVKHV IURP WKH VHFXODU HTXDWLRQ
7KH 6ODWHU H[SRQHQWV RI WKH DWRPLF RUELWDOV DUH DXWRPDWLFDOO\ RSWLPL]HG
&RQYHUJHQFH LV UDSLG $ FRUUHODWHG VROXWLRQ WR WKH PDQ\HOHFWURQ SUREOHP FDQ EH RE WDLQHG GLUHFWO\ ZLWKRXW WKH XVH RI WKH 6&) DSSUR[LPDWLRQ ([FLWHG VWDWHV FDQ EH REWDLQHG ZLWK JRRG DFFXUDF\
6
Acknowledgements I am extremely grateful to the Carlsberg Foundation for travel grants which allowed me to make several visits to the laboratory of Prof. Dudley Herschbach at Harvard University. I would also like to thank the Danish Science Research Council which made possible two periods of research at the laboratory of Prof. Vincenzo Aquilanti at the University of Perugia, Italy, and also a short visit to the laboratory of Prof. Jamie Fernández Rico in Madrid. Prof. Fernández Rico and Dr. Rafael López have generously allowed me to use their computer program for evaluating many-center two-electron integrals over Slater-type orbitals. It has been an extremely great pleasure for me to receive encouragement from two of the most important pioneers of momentum-space quantum theory Prof. Roy McWeeny and Prof. Carl Wulfman. I am also grateful to Professors Mario Raimondi, Robert Nesbet, Luis Tel, Jens Bang and Jan Vaagen for encouragement and for stimulating discussions. Finally, I would like to thank my co-workers, Dr. Frank Antonsen, Dr. Wensheng Bian, Prof. John Loeser, Cand. Scient. Tom Børsen Hansen, Stud. Scient. Rune Shim, Dr. Cecilia Coletti, and Assist. Prof. Stephan Sauer for their important contributions.
Chapter 1
MANY-PARTICLE STURMIANS Suppose that we are able to find a set of functions øv[ which are solutions to the many-electron equation: (1.1) In equation (1.1),
is the generalized Laplacian operator (1.2)
while [ represents the set of coordinate vectors for all the electrons in the system: [ = {;1, [2, ..., ;1} (1.3) and [^xJ, yJ, zJ` j = 1,2, ..., N (1.4) The potential, V [ , is chosen to be the Coulomb attraction potential due to the nuclei in the system. The simplest case is that of an Nelectron atom or ion, where
(1.5) 7
C H A P T E R 1. MANY-PARTICLE STURMIANS
UHSUHVHQWV WKH DWWUDFWLYH SRWHQWLDO RI D VLQJOH QXFOHXV /HW XV EHJLQ ZLWK WKLV VLPSOH FDVH DQG ODWHU FRQVLGHU PROHFXOHVZKHUH [ UHSUHVHQWV WKH DWWUDFWLYH SRWHQWLDO RI DOO WKH QXFOHL LQ WKH V\VWHP ,I WKH FRQVWDQWV LQ HTXDWLRQ DUH HVSHFLDOO\ FKRVHQ VR WKDW DOO WKH VROXWLRQV WR WKH ]HURWKRUGHU PDQ\HOHFWURQ ZDYH HTXDWLRQ FRUUHVSRQGW R WKH VDPH YDOXH RI WKH HQHUJ\ E, UHJDUGOHVV RI WKH TXDQWXP QXPEHUV v, WKHQ WKH PD\EHUHJDUGHG DV D VHW RI JHQHUDOL]HG 6WXUPLDQ VHW RI IXQFWLRQV EDVLV IXQFWLRQV
,V LW UHDOO\ SRVVLEOH WR REWDLQ D VHW RI VROXWLRQV WR HTXDWLRQ " $QG LV LW SRVVLEOH WR ILQG D VXLWDEOH VHW RI ZHLJKWLQJ IDFWRUV IRU WKH SRWHQWLDO VR WKDW DOO WKHVH VROXWLRQV FRUUHVSRQG WR WKH VDPH HQHUJ\" :H VKDOO QRZ WU\WRGHPRQVWUDWH WKDW VXFK D VHW RI VROXWLRQV FDQ LQGHHGEH FRQVWUXFWHG /HW ZKHUH
DQG
7KH IXQFWLRQV DUH MXVW WKH IDPLOLDU K\GURJHQOLNH DWRPLF VSLQ RUELWDOV H[FHSW WKDW WKH RUELWDO H[SRQHQWV DUH OHIW DV IUHH SDUDPHWHUV ZKLFK ZH VKDOO GHWHUPLQHODWHU E\ PHDQV RI VXEVLGLDU\ FRQGLWLRQV )RU H[DPSOH
9 and so on. In equation (1.6), µ represents the set of quantum numbers ^n, O, m, s`. The functions satisfy the relationships: (1.11) (1.12) and (1.13) We now introduce the subsidiary conditions (1.14) and (1.15) Provided that the subsidiary conditions are satisfied, the product shown in equation (1.6) will be a solution to (1.1), since
(1.16) It can easily be seen that an antisymmetrized function of the form
(1.17)
will also satisfy (1.1), since the antisyrnmetrized function can be expressed as a sum of terms, each of which has the form shown in equation
CHAPTER 1. MANY- PARTICLE STURMIANS
:KHQ ZH XVH WKH VHW RI IXQFWLRQV DV D EDVLV VHW WR EXLOG XS WKH ZDYH IXQFWLRQ RI DQ NHOHFWURQ DWRP RU LRQ ZH VKDOO RI FRXUVH XVH WKH DQWLV\PPHWUL]HG IXQFWLRQV VKRZQ LQ HTXDWLRQ VLQFH ZH ZLVK WKH ZDYH IXQFWLRQ WR VDWLVI\ WKH 3DXOL SULQFLSOH 6WXUPLDQ EDVLV VHWV VDWLVI\ SRWHQWLDOZHLJKWHG RUWKRQRUPDOLW\ UH ODWLRQV DQG VLPLODUO\ RXU JHQHUDOL]HG PDQ\HOHFWURQ 6WXUPLDQ EDVLV IXQFWLRQV VDWLVI\ DQ RUWKRQRUPDOLW\ UHODWLRQ ZKHUH WKH ZHLJKWLQJ IDFWRU LV WKH SRWHQWLDO 7R VHH WKLV ZH FRQVLGHU WZR GLIIHUHQW VROXWLRQV WR HTXDWLRQ )URP LW IROORZV WKDW WKH\ VDWLVI\
DQG ,I ZH WDNH WKH FRPSOH[ FRQMXJDWH RI VXEWUDFW LW IURP DQG PDNH XVH RI WKH +HUPLWLFLW\ RI WKH RSHUDWRU ( ZH REWDLQ ZKHUH WKH FRQVWDQWV LW IROORZV WKDW LI
–
DUH DVVXPHG WR EH UHDO )URP HTXDWLRQ WKHQ
:KHQ v = v¹ ZH KDYH IURP DQG
11 Combining (1.21) and (1.22), and making use of the orthonormality of the spin functions and the spherical harmonics, we obtain the potentialweighted orthonormality relations: (1.23) where v stands for the set of quantum numbers {µ, µ', µ'', ...}.
The secular equation Having constructed a set of many-electron Sturmian basis functions by the method just described, we would like t o use this basis set t o solve the Schrodinger equation for an NHOHFWURQ atom. Using atomic units, we can write the Schrodinger equation in the form: (1.24) where (1.25) Here V [ is the nuclear attraction potential shown in equation (1.5), while (1.26) is the interelectron repulsion potential. Expanding the wave function as series of generalized Sturmian basis functions, and making use of equation (1.1), we obtain:
(1.27) Multiplying (1.27) from the left by a conjugate basis function, integrating over the coordinates, and making use of the potential-weighted orthonormality relation, (1.23), we obtain: (1.28)
CHAPTER 1. MANY-PARTICLE STURMIANS
:H QRZ LQWURGXFH D SDUDPHWHU p, ZKLFK LV UHODWHG W R WKH HOHFWURQLF RI WKH V\VWHP E\ HQHUJ\
DQG ZH DOVR LQWURGXFH WKH GHILQLWLRQ :H VKDOO VHH EHORZ W K D W LI V[ LV D SRWHQWLDO SURGXFHG E\ &RXORPE LQWHUDFWLRQV WKHQ WKH PDWUL[ GHILQHG LQ WKLV ZD\ LV LQGHSHQGHQW RI p 0. ,Q WHUPV RI WKHVH QHZ SDUDPHWHUV WKH VHFXODU HTXDWLRQ FDQEHZULWWHQ LQ WKH IRUP
7KH WRWDO SRWHQWLDO V , FRQVLVWV RI D QXFOHDU DWWUDFWLRQ SDUW V , DQG DQ LQWHUHOHFWURQ UHSXOVLRQ SDUW V1. 7KH PDWUL[ FDQ DOVR EH GLYLGHG LQWR WZR SDUWV FRUUHVSRQGLQJ UHVSHFWLYHO\ WR QXFOHDU DWWUDFWLRQ DQG LQWHUHOHFWURQ UH SXOVLRQ )URP WKH SRWHQWLDOZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ DQG WKH VXEVLGLDU\ FRQGLWLRQV DQG LW IROORZV WKDW
7KXV LV LQGHSHQGHQW RI p DV ZH PHQWLRQHG DERYH ,I LQWHUHOHFWURQ UHSXOVLRQ LV QHJOHFWHG WKH PDWUL[ LV GLDJRQDO DQG WKH 6WXUPLDQ VHFXODU HTXDWLRQ , VLPSO\ UHTXLUHV W K D W
7KH ]HURWKRUGHU HQHUJ\ RI WKH V\VWHP LV WKHQ JLYHQ E\ ZKLFK LV WKH FRUUHFW HQHUJ\ RI D V\VWHP RI N QRQLQWHUDFWLQJ HOHFWURQV LQ WKH DWWUDFWLYH ILHOG RI WKH DWRP¶V QXFOHXV )RUVLPSOLFLW\ZH XVH WKH DSSUR[LPDWLRQ ZKHUH WKH PRWLRQ RI WKH QXFOHXV LV QHJOHFWHG
The interelectron repulsion matrix /HW XV QRZ WXUQ W R WKH HYDOXDWLRQ RI WKH LQWHUHOHFWURQ UHSXOVLRQ PDWUL[ :H VKDOO VHH W K D W WKLV PDWUL[ LV DOVR LQGHSHQGHQW RI p0. ,Q RUGHU W R HYDOXDWH ZH QHHG W R FDOFXODWH HOHFWURQ LQWHJUDOV RI WKH IRUP
ZKHUH W H[SDQG
DQG W DUH SURGXFWV RI VSKHULFDO KDUPRQLFV :H FDQ LQ D VHULHV RI /HJHQGUH SRO\QRPLDOV
7KHQ ZKHUH
C H A P T E R 1. M A N Y - P A R T I C L E STURMIANS
DQG 8VXDOO\ YHU\ IHZ RI WKH DQJXODU FRHIILFLHQWV al DUH QRQ]HUR VR WKH VXP LQ HTXDWLRQ LQYROYHV RQO\ D IHZ WHUPV 7KH UDGLDO LQWHJUDOV Il FDQ EH HYDOXDWHG E\ PHDQV RI WKH UHODWLRQVKLS $SSHQGL[ %
ZKHUH LV D K\SHUJHRPHWULF IXQFWLRQ )RU H[DPSOH VXSSRVH WKDW ZH DUH FRQ VLGHULQJ D HOHFWURQ DWRP RU LRQ DQG WKDW ZKHUH
VR WKDW 7KHQ WKH GLDJRQDO HOHPHQW RI WKH LQWHUHOHFWURQ UHSXOVLRQ PDWUL[ LQYROY LQJ WKH FRQILJXUDWLRQ = LV JLYHQ E\
7KH UDGLDO LQWHJUDO FDQ EH HYDOXDWHG E\ PHDQV RI HTXDWLRQ DQG WKH UHVXOW LV ZKLFK LV D SXUH QXPEHU LQGHSHQGHQW RI p . 7KH PDWUL[ HOHPHQWV RI WKH LQWHUHOHFWURQ UHSXOVLRQ SRWHQWLDO DOZD\V SURYH W R EH SXUH QXPEHUV DQG WKH\ DUH DOZD\V LQGHSHQGHQW RI p. 7 K H UHDVRQ IRU WKLV LV WKDW WKH VXEVLGLDU\ FRQGLWLRQV DQG UHTXLUH WKDW 7KXV WKH UDWLRV kµ /p0 DUH DOZD\V D SXUH QXPEHUV DQG IURP HTXDWLRQV DQG LW IROORZV WKDW FDQ DOZD\V EH H[SUHVVHG LQ WHUPV RI WKHVH UDWLRV 7KH VLPSOH H[DPSOH ZKLFK ZH KDYH FRQVLGHUHG KHUH DOUHDG\ DOORZV XV W R ILQG WKH HQHUJLHV RI WKH HOHFWURQLVRHOHFWURQLF VHULHV RI DWRPV DQG LRQV LQ WKH URXJK DSSUR[LPDWLRQ ZKHUH RXU EDVLV VHW FRQVLVWV RQO\ RI D VLQJOH HOHFWURQ 6WXUPLDQ EDVLV IXQFWLRQ ± WKDW VKRZQ LQ HTXDWLRQ ,Q WKDW FDVH WKH VHFXODU HTXDWLRQ UHGXFHV W R WKH UHTXLUHPHQW W K D W ZKHUH ZH KDYH PDGH XVH RI HTXDWLRQV DQG ,Q WKLV URXJK DSSUR[LPDWLRQ WKH HQHUJLHV RI WKH DWRPV DQG LRQV LQ WKH HOHFWURQ LVRHOHFWURQLFVHULHVDUH JLYHQ E\ D ZHOONQRZQ UHVXOW ZKLFK FDQ EH REWDLQHG E\ RWKHUPHWKRGV 6LPLODUO\ WKH JURXQG VWDWHV RI WKH HOHFWURQ DQG HOHFWURQ LVRHOHFWURQLF VHULHV
C H A P T E R 1 . MANY-PARTICLE STURMIANS
FDQEHURXJKO\ DSSUR[LPDWHG E\ DQG DQG VR RQ ZKHUH WKH EDU LQGLFDWHV D VSLQGRZQ DWRPLF RUELWDO (YDO XDWLQJ WKH &RXORPE DQG H[FKDQJH LQWHJUDOV E\ WKH PHWKRG GLVFXVVHG YDOXHV IRU WKH ILUVW IHZ 1 DERYH ZH REWDLQ JURXQGVWDWH p0 HOHFWURQ LVRHOHFWURQLF VHULHV
7KH VTXDUH URRW PXOWLSO\LQJ Z LQ HTXDWLRQ FDQ EH UHFRJQL]HG DV WKH VTXDUH URRW ZKLFK DSSHDUV LQ HTXDWLRQ DULG ZH FDQ VHH WKH ZD\ LQ ZKLFK WKLV UDGLFDO UHIOHFWV WKH ILOOLQJ RI WKH DWRPLF VKHOOV )RU DOO WKH FDVHV VKRZQ LQ WKH LQQHUPRVW VKHOO FRQWDLQV HOHFWURQV ZKLOH IRU N DQG WKHUH DUH UHVSHFWLYHO\ DQG HOHFWURQV LQ WKH n VKHOO *UHDWHU DFFXUDF\ FDQ RI FRXUVH EH REWDLQHG E\ DGGLQJ PRUH FRQILJXUDWLRQVEXW HYHQ WKH FUXGH RQHFRQILJXUDWLRQ DSSUR[LPD WLRQ VKRZQ LQ HTXDWLRQ LV LQ JRRG DJUHHPHQW ZLWK &OHPHQWL¶V +DUWUHH)RFN UHVXOWV DV LV LOOXVWUDWHG LQ )LJXUH 7DEOH VKRZV VRPH H[FLWHG VWDWHV RI WKH HOHFWURQ LVRHOHFWURQLF VHULHV FDOFXODWHG XVLQJ D VOLJKWO\ ODUJHU EDVLV FRQVLVWLQJ RI JHQHUDOL]HG 6WXUPLDQ FRQILJXUDWLRQV $V FDQ EH VHHQ IURP WKH WDEOH JRRG DFFXUDF\ FDQ DOVR EH REWDLQHG IRU
Figure 1.1: *URXQGVWDWH HQHUJLHV LQ +DUWUHHV IRU WKH HOHFWURQ LVR HOHFWURQLF VHULHV C , N + O F + Ne HWF DV D IXQFWLRQ RI QX FOHDU FKDUJH Z . 7KH VPRRWK FXUYH ZDV FDOFXODWHG IURP HTXDWLRQ ZKLOH WKH GRWV VKRZ &OHPHQWL¶V WKURXJK WKH UHODWLRQVKLS +DUWUHH)RFN YDOXHV >@ (TXDWLRQ EHFRPHV KLJKO\ DFFXUDWH IRU ODUJH YDOXHV RI Z ZKLOH IRU Z N WKH DSSUR[LPDWLRQ GHWHULRUDWHV DQG VKRXOG QRW EH XVHG
18
&+$37(50$1<3$57,&/(67850,$16
excited states. The accuracy of both the ground-state and excitedstates increases when the number of configurations included in the basis set is increased. The evaluation of off-diagonal interconfigurational matrix elements requires the use of the generalized Slater-Condon rules, which are discussed in an appendix.
The many-center problem Let us end this chapter by looking briefly a t the many-center problem, although we shall postpone a detailed treatment of this problem until a later chapter. In the case of molecules, we need to solve the one-electron wave equation (1.55) where Y[ is the many-center nuclear attraction potential: (1.56) The weighting factor bµ kµ is introduced into (1.55) in order to give the one-electron orbitals flexibility, so that they may be used to build up a solution to the many-electron equation, (1.1). Equation (1.55) is the many-center analog of (1.11), while the many-center analog of (1.6) is (1.57)
In order that this product should be a solution to (1.1), with (1.58) we require that the subsidiary conditions (1.59) and (1.60)
19 be satisfied. Then
(1.61) Just as in the case of atoms, we of course use Slater determinant basis functions of the form in order that the Pauli principle shall be fulfilled. To solve (1.55), we can expand the orbital in terms of hydrogenlike basis functions located on the various atomic centers ;D (1.62) where
stands for the set of indices {D, Q, OP, V} (1.63)
Substituting the expansion (1.62) into the wave equation (1.55) we obtain (1.64) Next we make use of equation (1.11), which allows us t o rewrite (1.64) in the form: (1.65) where we have also multiplied from the left by a complex conjugate function from the basis set and integrated over the electron’s coordinates. The integrals needed for the solution of the many-center oneelectron secular equation can most easily be calculated in momentum space, making use of the properties of hyperspherical harmonics; and therefore we shall discuss these topics in the following chapters.
&+$37(5 0$1<3$57,&/( 67850,$16 7DEOH ([FLWHG ð6VWDWHV RI DQG ) LQ+DUWUHHV
7KH EDVLV VHW XVHG FRQVLVWHG RI WKH FRQILJXUDWLRQV Q = ..., ¡QV = ([SHULPHQWDO YDOXHV DUH WDNHQ IURP 0RRUH V WDEOHV >@
7DEOH 2QHHOHFWURQ K\GURJHQOLNH UDGLDO IXQFWLRQV HT
CHAPTER 1. MANY-PARTICLE STURMIANS
22
Exercises 1. Use Table 1.2 to show that the one-electron hydrogenlike Sturmian x1, , obeys equations (1.11)-(1.13). 2. Show that if k1 = and k 2 = then (x j )obey the orthogonality relation
3. Show that if k 1 = k 2 = kµ , then and the potential-weighted orthonormality relation
x 1 ,0 ,0
and
obey
4. Use equations (1.7) and (1.8) to evaluate the direct-space hydrogenlike orbitals χ1s, χ2s, χ2pj, χ3s and χ3pj.
&KDSWHU
020(178063$&( :$9( )81&7,216 )RXULHUWUDQVIRUPHG K\GURJHQOLNH RUELWDOV ,W LV LQWHUHVWLQJ WR ORRN D W WKH )RXULHU WUDQVIRUPV RI WKH K\GURJHQOLNH RUELWDOV 'URSSLQJ WKH HOHFWURQ LQGH[ M ZH OHW
,I ZH PDNH XVH RI WKH H[SDQVLRQ
WRJHWKHU ZLWK WKH RUWKRQRUPDOLW\ RI WKH VSKHULFDO KDUPRQLFV ZH REWDLQ
ZKHUH
24
CHAPTER 2.
MOMENTUM-SPACE WAVE FUNCTIONS
where jlSU is a spherical Bessel function. The integrals needed for the evaluation of the radial transform are of the form: (2.5) T h e most simple of these integrals is (2.6) which can be evaluated by elementary integration, yielding (2.7) By differentiating J with respect to kµ we obtain (2.8)
(2.9) and so on. The integrals corresponding t o other values of l can then be generated using the recursion relations [30, 146]: (2.10) and (2.11) In general the integrals Jl+,l have the form: (2.12) The first few integrals of this type are shown in Table 2.1; and using them we can derive the Fourier-transformed hydrogenlike orbitals shown in Table 2.2.
25
)RFN¶V WUHDWPHQW RI K\GURJHQOLNH DWRPV V. Fock [124, 125] introduced the following projection, which maps 3-dimensional S-space onto the surface of a 4-dimensional hypersphere:
(2.13)
He was then able to show (using a method which we will discuss in a later section) that the Fourier-transformed hydrogenlike orbitals are given by a universal factor, (2.14)
which is independent of' the quantum numbers, niultiplicd by a 4dimensional hyperspherical harmonic whose argument is the unit vector defined by equation (2.13):
The first few 4-dimensional hyperspherical harmonics are shown in Table 2.3 as functions of the unit vector X u , X u , u These functions ai e a generalization of the familiar 3-dimensional spherical harmonics; and ZH will discuss their properties in detail in Chapter 3. The 4-dimensional hyperspherical harmonics are given by > 38] (2.16) where
DQG ZKHUH
C H A P T E R 2. MOMENTUM-SPACE W A V E FUNCTIONS LV D *HJHQEDXHU SRO\QRPLDO
7KH UHDGHU PD\ YHULI\ XVLQJ WKH K\SHUVSKHULFDO KDUPRQLFV LQ 7DEOH WKDW )RFN V H[SUHVVLRQ LQGHHG JLYHV WKH PRPHQWXPVSDFH K\GUR JHQOLNH RUELWDOV RI 7DEOH ZKLFK ZH IRXQG E\ ODERULRXVO\ WDNLQJ WKH )RXULHU WUDQVIRUPV RI WKH GLUHFWVSDFH RUELWDOV 7 K H QXPEHU RI OLQHDUO\ LQGHSHQGHQW GLPHQVLRQDO K\SHUVSKHULFDO KDUPRQLFV FRUUHVSRQGLQJ WR D SDUWLFXODU YDOXH RI WKH SULQFLSOH TXDQWXP QXPEHU LV JLYHQ E\ DQG LI ZH OHW n WKLV FRUUHVSRQGV H[DFWO\ WR WKH GHJHQ HUDF\ R I W K H K\GURJHQOLNH RUELWDOV 7KLV JLYHV XV DQ H[SODQDWLRQ RI WKH n GHJHQHUDF\ RI WKH K\GURJHQOLNH RUELWDOV ZKLFK ZH ZRXOG H[SHFW WR EH RQO\ l IROG GHJHQHUDWH RQ WKH EDVLV RI WKH VSKHULFDO V\PPHWU\ RI WKH SRWHQWLDO ,W LV VWULNLQJ W R VHH WKDW DSDUW IURP WKH XQLYHUVDO IDFWRU M p DQG D QRUPDOL]DWLRQ IDFWRU WKH K\GURJHQOLNH ZDYH IXQFWLRQV DUH U UHSUHVHQWHG LQ PRPHQWXP VSDFH E\ H[WUHPHO\ VLPSOH IXQFWLRQV RI WKH RUV VKRZQ LQ HTXDWLRQ 7KH s RUELWDO FRUUHVSRQGV WR WKH p p, p 3 DQG s RUELWDOV FRUHVSRQG W R u u , u DQG u ZKLOH WKH p p DQG p RUELWDOV FRUUHVSRQG UHVSHFWLYHO\ WR u u u u DQG uu :H ZLOO VHH LQ ODWHU FKDSWHUV W K D W PRPHQWXUQVSDFH K\GURJHQ OLNH RUELWDOV FDQ EH XVHG DV FRQYHQLHQWEDVLVIXQFWLRQV IRU VROYLQJ PDQ\ SUREOHPV LQ TXDQWXP FKHPLVWU\ 7KXV K\SHUVSKHULFDO KDUPRQLFV SOD\ DQ LPSRUWDQW UROH LQ PRUQHQWXUQVSDFH TXDQWXP FKHPLVWU\ DQG IRU WKLV UHDVRQ ZH VKDOO H[SORUH VRPH RI WKHLU SURSHUWLHV LQ &KDSWHU ,QWHU HVWLQJO\ LW WXUQV RXW WKDW WKHUH LV D dGLPHQVLRQDO JHQHUDOL]DWLRQ IRU HDFK RI WKH WKHRUHPV ZKLFK FDQ EH GHULYHG IRU GLPHQVLRQDO VSKHULFDO KDUPRQLFV
27 7DEOH
28
&+$37(5020(178063$&(:$9()81&7,216
Table 2.2 Hydrogenlike atomic orbitals and their Fourier transforms W N[, W N U
7DEOH GLPHQVLRQDO K\SHUVSKHULFDO KDUPRQLFV
30
CHAPTER 2. MOMENTUM-SPACE WAVE FUNCTIONS
31 Table 2.4 Alternative 4-dimensional hyperspherical harmonics
32
CHAPTER 2. MOMENTUM-SPACE WAVE FUNCTIONS
([HUFLVHV 1. Calculate the integral in equation (2.6) and show that it yields the result shown (2.7). 2. Starting with J calculate the integrals J and J by differentiating with respect t o kµ , as shown in equations (2.8) and (2.9). 3. Starting with J, use the recursion relation of equation (2.11) t o generate J, J and J. 4. Use the integrals JVO, in Table 2.1 to evaluate the Fourier transform of' the direct-space hydrogenlike orbitals and Show that the transforms correspond to the solutions of Fock, equation (2.15).
&KDSWHU +<3(563+(5,&$/ +$5021,&6 +DUPRQLF SRO\QRPLDOV In the previous chapter, we saw that when 3-dimensional momentum space is mapped onto the surface of a 4-dimensional hypersphere by Fock’s projection, the Fourier-transformed hydrogenlike atomic orbitals are represented by 4-dimensional hyperspherical harmonics, multiplied by a universal factor, 0 ( S ) which is independent of the quantum num bers. We mentioned also that our aim will be to use the momentumspace hydrogenlike functions as basis sets for constructing atomic and molecular orbitals, as well as crystal orbitals. Thus, hyperspherical harmonics play a n important role in momentum-space quantum chemistry; and for this reason, we shall devote the present chapter t o discussing some of their properties. T h e simplest approach t o hyperspherical harmonics is through the theory of harmonic polynomials [30, 38, 296, 300]: If we consider a G-dimensional space, with Cartesian coordinates [1 , [ 2 , ..., [ G , then a KDUPRQLF polynomial is, by definition, a homogeneous polynomial which satisfies the generalized Laplace equation:
(3.1) where is defined by equation (1.2). A KRPRJHQHRXV polynomial of order Q is defined as a polynomial which is built up from a linear 33
34
&+$37(5 +<3(563+(5,&/$/ +$5021,&6
superposition of monomial terms of the form (3.2) where (3.3) Thus, for example, + [ 1 [ 2 is a homogeneous polynomial of order 2, but it is not harmonic; whereas is a harmonic polynomial of order 2. Harmonic polynomials in a G-dimensional space are related t o hyperspherical harmonics by –
(3.4) where U is the K\SHUUDGLXV defined by (3.5) Thus, for example, apart from a normalization factor, (3.6) is a hyperspherical harmonic with principal quantum number = 2 in our G -dimensional space. Any homogeneous polynomial IQ can be decomposed into a series of harmonic polynomials multiplied by powers of the hyperradius:
(3.7)
In order to carry out this decomposition, we first notice that if we differentiate the monomial PQ of equation (3.2) with respect to one of the coordinates, we obtain: (3.8)
0XOWLSO\LQJ ERWK VLGHV RI E\ [M DQG VXPPLQJ RYHU M ZH KDYH ZKHUH Q Q Q QG 6LQFH WKLV UHVXOW KROGV IRU HDFK RI WKH PRQRPLDOV LQ D KRPRJHQHRXV SRO\QRPLDO RI RUGHU Q LW PXVW KROG IRU WKH HQWLUH SRO\QRPLDO 7KXV ZKHUH I Q UHSUHVHQWV DQ\ KRPRJHQHRXV SRO\QRPLDO RI RUGHU Q )URP LW IROORZV WKDW LI LV WKH K\SHUUDGLXV UDLVHG WR VRPH SRZHU WKHQ
,I
LV D KDUPRQLF SRO\QRPLDO RIµ RUGHU
LW IROORZV IURP WKDW
VLQFH (TXDWLRQ LV MXVW ZKDW ZH QHHG LQ RUGHU WR GHFRPSRVH D KRPR JHQHRXV SRO\QRPLDO IQ LQWR LWV KDUPRQLF FRPSRQHQWV ,I ZH DSSO\ WKH JHQHUDOL]HG /DSODFLDQ RSHUDWRU UHSHDWHGO\ WR ERWK VLGHV RI ZH REWDLQ
DQG LQ JHQHUDO ZKHUH >Q@ PHDQV ³WKH ODUJHVW LQWHJHU LQ > Q @´ DQG Q ... ZKHQ Q LV HYHQ RU Q Q Q± Q ± ZKHQ Q LV RGG DQG
& + $ 3 7 ( 5 +<3(563+(5,&/$/ +$5021,&6
ZKHUH 7KLV JLYHV XV D VHW RI VLPXOWDQHRXV HTXDWLRQV ZKLFK FDQ EH VROYHG WR \LHOG H[SUHVVLRQV IRU WKH KDUPRQLF SRO\QRPLDOV LQ WKH VHULHV )RU H[DPSOH WKH UHODWLRQVKLS FDQ EH VROYHG WR JLYH DQ H[SUHVVLRQ IRU WKH FRQVWDQW K 6ROYLQJ IRU WKH ILUVW IHZ YDOXHV RI Q ZH REWDLQ
,I ZH ZLVK DQG VR RQ 7KXV IRU H[DPSOH VXSSRVH WKDW I = WR GHFRPSRVH WKLV KRPRJHQHRXV SRO\QRPLDO LQWR LWV KDUPRQLF FRPSR QHQWV ZH ILUVW QRWH WKDW 7KHQ IURP ZH KDYH
)URP WKHVH H[DPSOHV DQG DOVR IURP ZH FDQ VHH WKDW WKH KDU PRQLF SRO\QRPLDO RI KLJKHVW RUGHU LQ WKH GHFRPSRVLWLRQ RI In KDV WKH
IRUP ,I ZH DSSO\ WKH JHQHUDOL]HG /DSODFLDQ RSHUDWRU $ WR ERWK VLGHV RI PDNLQJ XVH RI WKH IDFW WKDW $K = ZH REWDLQ :H QRZ PDNH XVH RI DQG FROOHFW WHUPV LQ ,Q RUGHU IRU W R KROG IRU DOO YDOXHV RI [ WKH VXP RI WKH WHUPV FRUUHVSRQGLQJ WR HDFK YDOXH RI Y PXVW YDQLVK 7KLV FRQGLWLRQ JLYHV XV D VHULHV RI HTXDWLRQV IRU WKH FRQVWDQWV DM
ZKLFK FDQ EH VROYHG WR \LHOG
7KLV JLYHV XV DQ H[SOLFLW H[SUHVVLRQ IRU WKH KDUPRQLF SRO\QRPLDO RI KLJKHVW RUGHU LQ WKH GHFRPSRVLWLRQ RI I Q ,Q D VLPLODU ZD\ RQH FDQ VKRZ WKDW WKH KDUPRQLF SRO\QRPLDOV RI ORZHU RUGHU LQ WKH GHFRPSRVLWLRQ DUH JLYHQ E\
7DEOH VKRZV WKH GHFRPSRVLWLRQ RI SRO\QRPLDOV LQWR WKHLU KDUPRQLF FRPSRQHQWV IRU WKH ILUVW IHZ YDOXHV RI Q
& + $ 3 7 ( 5 +<3(563+(5,&$/ +$5021,&6
*UDQG DQJXODU PRPHQWXP 7KH JUDQG DQJXODU PRPHQWXP RSHUDWRU GHILQHG E\ WKH UHODWLRQ
LQ D GGLPHQVLRQDO VSDFH LV
$OWHUQDWLYHO\ ZH FDQ H[SUHVV
LQ WKH IRUP
ZKHUH
LV WKH JHQHUDOL]HG /DSODFH RSHUDWRU
,Q WKH SUHYLRXV VHFWLRQ ZH SURYHG WKDW IRU DQ\ KRPRJHQHRXV SRO\QRPLDO IQ RI RUGHU Q 2QH FDQ VKRZ LQ D VLPLODU ZD\ WKDW )URP HTXDWLRQV LW IROORZV WKDW LI ZH DSSO\ WKH JUDQG DQ JXODU PRPHQWXP RSHUDWRU WR DQ\ KRPRJHQHRXV SRO\QRPLDO ZH REWDLQ )XUWKHUPRUH LI GXFHV WR
LV DSSOLHG WR D KDUPRQLF SRO\QRPLDO
UH
7KXV DQ\ KDUPRQLF SRO\QRPLDO RI RUGHU LQ D GGLPHQVLRQDO VSDFH LV DQ HLJHQIXQFWLRQ RI FRUUHVSRQGLQJ WR WKH HLJHQYDOXH G ±
DQG WKH GHFRPSRVLWLRQ RI D KRPRJHQHRXV SRO\QRPLDO IQ LQWR KDUPRQLF SRO\QRPLDOV LV LQ IDFW D UHVROXWLRQ RI I Q LQWR HLJHQIXQFWLRQV RI JUDQG DQJXODU PRPHQWXP 1RWLFH WKDW LQ WKH FDVH ZKHUH G G ± UHGXFHV WR WKH IDPLOLDU RUELWDO DQJXODU PRPHQWXP HLJHQYDOXH OO SURYLGHG WKDW ZH PDNH WKH LGHQWLILFDWLRQ λ O )URP WKH GHILQLWLRQ RI WKH K\SHUUDGLXV LW IROORZV WKDW
DQG 7KHVH WZR UHODWLRQV FDQ EH FRPELQHG ZLWK HTXDWLRQ WR \LHOG DQ H[SUHVVLRQ IRU WKH JHQHUDOL]HG /DSODFLDQ RSHUDWRU LQ WHUPV DQ RSHUDWRU LQYROYLQJ WKH K\SHUUDGLXV DQG
)RU H[DPSOH ZKHQ G = WKLV UHGXFHV WR WKH IDPLOLDU UHODWLRQVKLS
$QJXODU LQWHJUDWLRQV ,Q D GGLPHQVLRQDO VSDFH WKH YROXPH HOHPHQW LV JLYHQ E\ ZKHUH LV WKH JHQHUDOL]HG VROLG DQJOH HOHPHQW 7KH WRWDO VROLG DQJOH FDQ EH HYDOXDWHG LQ WKH IROORZLQJ ZD\ &RQVLGHU WKH LQWHJUDO RI WDNHQ RYHU DOO VSDFH
40
CHAPTER 3. HYPERSPHERICAL HARMONICS
On the left-hand side of equation (3.37), we express this integral in terms of the hyperradius and hyperangles, while on the right-hand side, we express it in terms of the individual Cartesian coordinates. The integral over the hyperradius can be evaluated in terms of the gamma function: (3.38) and similarly, for each of the integrals on the right, we have (3.39) Combining equations (3.37)-(3.39),we obtain an expression for the total solid angle: (3.40) For example, when d = 3, this expression yields the familiar result: (3.41) while when d = 4 it gives (3.42) It is interesting to consider the integral of the product of two harmonic polynomials and taken over the generalized solid angle. If A A’, i.e. if the orders of the two harmonic polynomials are different, then (as we saw in the previous section) they are eigenfunctions of the grand angular momentum operator belonging to different eigenvalues. In that case, it follows from the Hermiticity of the operator with respect to integration over that
(3.43) For the case where A’ = 0, (3.43) reduces to (3.44)
VLQFH K LV MXVW D FRQVWDQW (TXDWLRQV DQG DOORZ XV WR FDOFX ODWH WKH LQWHJUDO RI DQ\ KRPRJHQHRXV SRO\QRPLDO I Q RYHU WKH JHQHUDOL]HG VROLG DQJOH VLQFH ZH FDQ ZULWH %HFDXVH RI DOO RI WKH WHUPV LQ WKLV LQWHJUDO YDQLVK H[FHSW WKH ODVW RQH DQG ZH REWDLQ > @ RU IURP DQG 7KLV SRZHUIXO IRUPXOD DOORZV XV WR LQWHJUDWH E\ GLIIHUHQWLDWLRQ ,I IQ = PQ =
M
WKHQ LI DOO WKH Q M¶V DUH HYHQ ZH REWDLQ ZKLOH LI DQ\ RI WKH Q-¶V DUH XQHYHQ WKH LQWHJUDO YDQLVKHV ,W LV SRVVLEOH WR JHQHUDOLVH HTXDWLRQ DQG WR GHULYH DQ H[SUHVVLRQ IRU WKH DQJXODU LQWHJUDO RI DQ DUELWUDU\ IXQFWLRQ SURYLGHG WKDW LW LV SRVVLEOH WR H[SDQG WKH IXQFWLRQ DERXW WKH RULJLQ LQ WHUPV RI SRO\QRPLDOV LQ WKH &DUWHVLDQ FRRUGLQDWHV [ [ [ G >@ ,I VXFK DQ H[SDQVLRQ LV SRVVLEOH WKHQ ZH FDQ ZULWH ZKHUH WKH IXQFWLRQV IQ [ DUH KRPRJHQHRXV SRO\QRPLDOV 7KHQ IURP ZH KDYH
& + $ 3 7 ( 5 +<3(563+(5,&$/ +$5021,&6
ZKHUH WKH RGG WHUPV KDYH EHHQ RPLWWHG EHFDXVH WKH\ FDQQRW FRQWULEXWH WR WKH DQJXODU LQWHJUDO )URP LW IROORZV WKDW VLQFH WKH RSHUDWLRQ RI VHWWLQJ [ HOLPLQDWHV DOO SDUWV RI D SRO\QRPLDO LQ [ [ [G H[FHSW WKH FRQVWDQW WHUP )LQDOO\ LI ZH OHW Q Y PDNLQJ XVH RI ZH FDQ VHH WKDW ZLOO WDNH RQ WKH IRUP
:KHQ G
WKLV IRUPXOD UHGXFHV WR >@
7R LOOXVWUDWH HTXDWLRQ ZH FDQ FRQVLGHU WKH FDVH ZKHUH ) [ LV D GGLPHQVLRQDO SODQH ZDYH 7KHQ VR WKDW \LHOGV
:KHQ G
WKLV UHGXFHV WR
ZKHUH MRNU LV D VSKHULFDO %HVVHO IXQFWLRQ RI RUGHU ]HUR 1RWLFH WKDW LQ WKLV H[DPSOH ZH GLG QRW DFWXDOO\ H[SDQG WKH IXQFWLRQ ) [ LQ WHUPV RI SRO\QRPLDOV LQ WKH FRRUGLQDWHV [ O [ [ G DOWKRXJK LW ZDV QHFHVVDU\ WR DVVXPH WKDW VXFK DQ H[SDQVLRQ FRXOG EH PDGH
Hyperspherical harmonics 6XSSRVH WKDW ZH KDYH VHYHUDO OLQHDUO\ LQGHSHQGHQW KDUPRQLF SRO\QR PLDOV RI RUGHU :H ZLOO WKHQ QHHG DGGLWLRQDO ODEHOV EHVLGHV WR GLVWLQJXLVK EHWZHHQ WKHP DQG ZH FDQ FDOO WKLV VHW RI LQGLFHV ^µ` $OO RI WKH KDUPRQLF SRO\QRPLDOV LQ VXFK D VHW ZLOO EH HLJHQIXQFWLRQV RI WKH JUDQG DQJXODU PRPHQWXP RSHUDWRU $² FRUUHVSRQGLQJ WR WKH VDPH HLJHQYDOXH :H FDQ FKRRVH WKH OLQHDUO\ LQGHSHQGHQW KDUPRQLF SRO\QRPLDOV LQ VXFK D ZD\ WKDW WKH\ ZLOO VDWLVI\ RUWKRQRUPDOLW\ UHODWLRQV RI WKH IRUP 7KHUH ZLOO WKHQ EH D VHW RI K\SHUVSKHULFDO KDUPRQLFV UHODWHG WR WKH KDUPRQLF SRO\QRPLDOV E\ HTXDWLRQ DQG WKH K\SHUVSKHULFDO KDUPRQLFV ZLOO REH\ WKH RUWKRQRUPDOLW\ UHOD WLRQV ,Q WKH FDVH RI WKH GLPHQVLRQDO K\SHUVSKHULFDO KDUPRQLFV VKRZQ LQ 7DEOH WKH VHW RI LQGLFHV ^µ` FRUUHVSRQGV WR ^l, m` 7KHVH LQGLFHV DUF ODEHOV IRU WKH LUUHGXFLEOH UHSUHVHQWDWLRQV RI D FKDLQ RI VXEJURXSV RI WKH GLPHQVLRQDO URWDWLRQ JURXS SO 7KH VWDQGDUG FKDLQ RI VXEJURXSV XVHG LQ FRQVWUXFWLQJ RUWKRQRUPDO VHWV RI K\SHUVSKHULFDO KDUPRQLFV LQ SXUH PDWKHPDWLFV LV >@ EXW WKLV FKRLFH LV QRW QHFHVVDULO\ WKH PRVW FRQYHQLHQW RQH LQ SK\VLFDO DSSOLFDWLRQV ,Q D ODWHU FKDSWHU ZH ZLOO GLVFXVV WKH FKDLQV RI VXEJURXSV RI S O ( d ) ZKLFK DUH DSSURSULDWH IRU FRQVWUXFWLQJ RUWKRQRUPDO VHWV RI K\SHUVSKHULFDO KDUPRQLFV DGDSWHG WR WKH V\PPHWU\ RI YDULRXV TXDQWXP PHFKDQLFDO SUREOHPV
44
& + $ 3 7 ( 5 +<3(563+(5,&$/ +$5021,&6
Gegenbauer polynomials Each of the familiar theorems which one can derive for 3-dimensional spherical harmonics has a G-dimensional generalization. In the theory of hyperspherical harmonics, Legendre polynomials are replaced by Gegenbauer polynomials, which are defined by the generating function:
(3.65) w here
(3.66) (3.67) and
(3.68) The polynomials defined by this generating function are given by [ 153]:
(3.69) Equation (3.65) is the G-dimensional generalization of the familiar expansion of the Green’s function of the Laplacian operator in terms of Legendre polynomials:
(3.70) and in fact, the function x –x is the Green’s function of the generalized Laplacian operator, (3.27). When G = 3 and = 1/2, the
45 Gegenbauer polynomials reduce to Legendre polynomials. Table 3.2 shows the first few Gegenbauer polynomials for the case where G and are general, and in the special case where G 4 and 1. The familiar 3-dimensional spherical harmonics obey a sum rule involving Legendre polynomials: (3.71) Similarly, one can show that hyperspherical harmonics obey a sum rule involving Gegenbauer polynomials: (3.72) The sum rule for hyperspherical harmonics can be established in the following way: If we let [ [ [B, and note that A then from (3.34) we have –
(3.73) We now replace the Green’s function of the generalized Laplacian operator by its expansion in terms of Gegenbauer polynomials, (3.65). Equation (3.73) then becomes: (3.74) For the expansion in equation (3.74) to hold for all values o f t h e coordinates, each term must vanish separately, and thus (3.75) The radial operator in A, acting on
gives (3.76)
& + $ 3 7 ( 5 3. +<3(563+(5,&$ / +$5021,&6
46 and therefore
(3.77) In other words, x’) is an eigenfunction of the grand angular momentum operator corresponding t o the eigenvalue, + G – 2). However, we know that the Hilbert space of all such functions is spanned by the hyperspherical harmonics belonging t o this eigenvalue. Therefore . X’) as a linear combination of this we must be able to express set of hyperspherical harmonics: (3.78) From the invariance of that
+
X’)
under coordinate rotations, it follows (3.79)
where
is some constant. Thus,
(3.80)
If is a function of the hyperangles in a G-dimensional space, then it follows from (3.71) that
(3.81) onto the part of Hilbert space spanned will be a projection of by eigenfunctions of corresponding to the eigenvalue + G – 2). Of course, if we perform the projection on a function which is entirely within this subspace, the function will be unchanged; and this condition can be used to show that the constant is given by: (3.82) where ,(0) is the total generalized solid angle.
7KH VXP UXOH WHOOV XV LPPHGLDWHO\ KRZ PDQ\ OLQHDUO\ LQGHSHQGHQW K\SHUVSKHULFDO KDUPRQLFV WKHUH DUH IRU HDFK YDOXH RI )RU WKH FDVH WKH H[SDQVLRQ VKRZQ LQ HTXDWLRQ \LHOGV ZKHUH [ = DQG UHGXFHV WR
,QWHJUDWLQJ RYHU WKH JHQHUDOL]HG VROLG DQJOH DQG PDNLQJ XVH RI WKH QRUPDOL]DWLRQ RI WKH K\SHUVSKHULFDO KDUPRQLFV ZH REWDLQ ZKHUH LV WKH GHJHQHUDF\ RI WKH K\SHUVSKHULFDO KDUPRQLFVLHWKH QXPEHU RI KDUPRQLFV FRUUHVSRQGLQJ WR WKH SULQFLSDO TXDQWXP QXPEHU &RP ELQLQJ WKHVH UHODWLRQVKLSVZH REWDLQ DQ H[SOLFLW H[SUHVVLRQ IRU WKH GH JHQHUDF\
)RU H[DPSOH ZKHQ d = ZKLOH ZKHQ d
The method of trees ,Q WKLV VHFWLRQ ZH VKDOO GLVFXVV WKH PHWKRG RI WUHHV D PHWKRG IRU FRQ VWUXFWLQJ RUWKRQRUPDO VHWV RI K\SHUVSKHULFDO KDUPRQLFV 7KH PHWKRG
48
&+$37(5 +<3(563+(5,&$/ +$5021,&6
was developed by a number of Russian authors [176, 177, 184, 202, 230, 277, 282, 296, 297] and by Prof. V. Aquilanti and his co-workers at the University of Perugia [12, 13, 70] . We said above that an orthonormal set of 4-dimensional hyperspherical harmonics can be constructed according t o the chain of subgroups 62 (4) 62 (3) 62 (2) or according t o the alternative chain, 62 (4) 62 (2) x 62 (2). These two alternative ways of constructing an orthonormal set can be symbolized by the two WUHHV shown in Figure 3.1.
Figure 3.1
The meaning of these two alternative trees is as follows: If we wish to construct a set of hyperspherical harmonics according t o the first tree (the VWDQGDUG WUHH we begin with the harmonic polynomials (3.90)
49 in the 2-dimensional space whose Cartesian coordinates are [ 1 and [ 2 Then (3.91) will be a set of homogeneous polynomials of order O in the 3-dimensional space whose coordinates are [1 , [ 2 and [ 3 . Equation (3.23) tells us that if we act on IO ([1 [ 2, [ 3 ) with the operator
(3.92) we will project out a set of harmonic polynomials KOP([1, [ 2, [ 3). (If we divide these harmonic polynomials by and normalize them, we will have obtained the familiar 3-dimensional spherical harmonics
+ +
(3.93) and we can once more use equation (3.23) to project out the harmonic polynomials of highest order contained in it, (x1, . . . ,x4) The standard tree can be used to construct an orthonormal set of hyperspherical harmonics in a space of arbitrarily high dimension: Suppose that we have already constructed an harmonic polynomial KO([ 1, ... , in a ( G – 1)-dimensional space. Then (3.94) will be a homogeneous polynomial of order in the G-dimensional space obtained by adding the final coordinate. Equation (3.23) tells us that if we act on this homogeneous polynomial with the operator (3.95)
50
&+$37(5 +<3(563+(5,&$/ +$5021,&6
we will project out from it an harmonic polynomial which will also be of order The action of on is easy to calculate because (3.96) from which it follows that (3.97) Combining (3.94) (3.95) and (3.97), we have
(3.98) Looking carefully at the series in equation (3.98), we can see that it can be expressed in terms of a Gegenbauer polynomial, since (from equation (3.69))
(3.99) Comparing this with the series in equation (3.98), we can see that we ought t o let Q = – O and G = G + 2 O . With these substitutions, (3.99) becomes:
(3.100) Combining equations (3.98) and (3.100), we obtain the relationship (3.101)
( G – 2)/2, and where is a constant. If KO ([ 1, ..., is where already normalized, then the harmonic polynomial ( [ ) will also be
51 properly normalized if the constant
is chosen to be (3.102)
rather than the constant which results from projection. Equation (3.101) allows us t o generate an orthonormal set of hyperspherical harmonics in a space of any dimension; and indeed this is the method which was used to construct the standard 4-dimensional hyperspherical harmonics shown in equation (2.16). However, in physical applications, the standard hyperspherical harmonics are not necessarily the most convenient ones to use. Therefore we shall now turn our attention to non-standard trees, an example of which is the second tree shown in Figure 2.1. To make the argument as general as possible, let us consider a general fork joining two subspaces whose dimensions are respectively G1 and G2, where G1 +G2 = G Suppose that we have constructed the harmonic polynomials hO1 (x1) and KO2 (x2) in the two subspaces. We would like to use them as building blocks for constructing an harmonic polynomial of order in the G-dimensional space whose position vector is (3.103) If we let
(3.104) then (3.105) will be a homogeneous polynomial of order in the coordinates [ 1 , ..., [G , provided that and are even and + O 1 + O2 = If we act on (x) with the projection operator shown in equation (3.95), we will obtain an harmonic polynomial of order The simplest case is that for which = = 0 and O +O = In this simple case, the homogeneous polynomial shown in equation (3.105) is already harmonic because
+
(3.106)
52
&+$37(5 +<3(563+(5,&$/ +$5021,&6
where
(3.107) The next simplest case is that for which so that
= 2,
= 0, and O1+ O2 +2 = (3.108)
Making use of equation (3.12), we have: (3.109) and (3.110) so that
(3.111) This can be rewritten in a more symmetrical form:
(3.112) from which we can see that no new linearly independent harmonic polynomial would have been generated if we had let = 0 and = 2. The reader might now be wondering why we do not also try a homogeneous polynomial of the form (3.113) since we could certainly project out from this an harmonic polynomial of order Our reason for not doing so is that we are considering the
general fork S O ( d ) 62(G1) [ 62G The indices O and O label irreducible representations of SO G and 62 G respectively, and this property would in general be lost if we multiplied by , but it is retained when we multiply by The powers of and must be even in order t h a t we should stay within the domain of polynomials in [ [ G unless G 1 or G 1. To illustrate our discussion of the general fork, let us consider the alternative 4-dimensional hyperspherical harmonics constructed by means of the second tree shown in Figure 2.1. When ; 0, the only possible harmonic polynomial is just a constant, and this fits with the predicted degeneracy, 1)2 12 1. When ; 1, there are two linearly independent harmonic polynomials with O 1 and 0, namely 0 and 1, namely [ L[ This and two with also checks with the predicted degeneracy 1) 2 2 2 4. When ; 2, there are two harmonic polynomials with 2 and O 0: [ L[ two with O1 0 and O 2: [ four withO 1 and O2 1: ([ L[ and one with l 0, O 0 and 2: This makes a total of 9 linearly independent harmonic 2 , which checks with the predicted degenerpolynomials of order 2 2 acy, 1) 3 9. We can find the corresponding hyperspherical harmonics by dividing by r and normalizing, as illustrated in Table 4.1. As we shall see, the alternative hyperspherical harmonics shown in this table correspond in Fock’s mapping to the Fourier transforms of the orbitals which result when the hydrogenlike Schrödinger equation is separated in paraboloidal coordinates, and the quantum numbers la beling the hyperspherical harmonics in Table 4.1 are those which are often used t o label the direct-space paraboloidal orbitals. –
–
One can show that for a general fork between subspaces of dimension d and G , a n harmonic polynomial of order can be written in the form: (3.114)
where
and where
is a Jacobi polynomial. When
54
&+$37(5 +<3(563+(5,&$/ +$5021,&6
(3.115) For example, when
= 3, O1 = 1 and O2
= 0, equation (3.115) becomes:
(3.116) which checks with equation (3.112). For more details concerning these relationships, the interested reader is referred t o the Russian literature and t o the papers of Aquilanti and his coworkers.
55 Table 3.1 Decomposition of monomials into harmonic polynomials The indices i j k are assumed to be all unequal. The terms in brackets are harmonic.
CHAPTER 3. HYPERSPHERICAL HARMONICS Table 3.2 Gegenbauer polynomials
7DEOH 3.3 7KLV WDEOH VKRZV WKH GHSHQGHQFH RI WKH WRWDO JHQHUDOL]HG VROLG DQJOH I(0), DQG WKH GHJHQHUDF\ RI WKH K\SHUVSKHULFDO KDUPRQLFV w , RQ WKH DUH FRQVWDQWV ZKLFK DSSHDU LQ WKH VXP UXOH IRU GLPHQVLRQ d . DQG K\SHUVSKHULFDO KDUPRQLFV HTXDWLRQ
CHAPTER 3. HYPERSPHERICAL HARMONICS
Exercises :KLFK RI WKH IROORZLQJ SRO\QRPLDOV LQ D dGLPHQVLRQDO VSDFH DUH KRPRJHQHRXV" :KLFK DUH KDUPRQLF" r LV WKH K\SHUUDGLXV
8VH HTXDWLRQ WR ILQG H[SUHVVLRQV DQDORJRXV WR IRU WKH KDUPRQLF GHFRPSRVLWLRQ RI D WKRUGHU SRO\QRPLDO f4. 8VH HTXDWLRQ WR FDOFXODWH WKH QRUPDOL]DWLRQ IDFWRU LQ D GLPHQVLRQDO VSDFH IRU WKH K\SHUVSKHULFDO KDUPRQLF VKRZQ LQ HTXDWLRQ &RPSDUH WKLV UHVXOW ZLWK 7DEOH
6KRZ WKDW WKH K\SHUVSKHULFDO KDUPRQLFV ZLWK LQ 7DEOH IXOILOO WKH VXP UXOH RI HTXDWLRQ 6KRZ WKDW WKH\ DUH SURSHU O\ QRUPDOL]HG .
8VH HTXDWLRQ WR VKRZ WKDW
Chapter 4
THE MOMENTUM-SPACE WAVE EQUATION The d-dimensional Schrödinger equation ,Q GLUHFW VSDFH WKH 6FKU|GLQJHU HTXDWLRQ LV D GLIIHUHQWLDO HTXDWLRQ EXW LQ PRPHQWXPVSDFH LW EHFRPHV DQ LQWHJUDO HTXDWLRQ :H ZLOO EHJLQ E\ GHULYLQJ WKLV LQWHJUDO HTXDWLRQ IRU D V\VWHP ZLWK d &DUWHVLDQ FRRUGL QDWHV )RU DQ NSDUWLFOH V\VWHP d 3 N ; ZKLOH IRU D VLQJOH SDUWLFOH PRYLQJ LQ DQ H[WHUQDO ILHOG d = ,I ZH OHW
UHSUHVHQW D dGLPHQVLRQDO SODQH ZDYHWKHQ WKH ZDYH IXQFWLRQ DQG LWV )RXULHU WUDQVIRUP DUH UHODWHG E\
7KH ZDYH IXQFWLRQ DQG LWV )RXULHU WUDQVIRUP DUH IXQFWLRQV RI d FR RUGLQDWHV LQ GLUHFW DQG UHFLSURFDO VSDFH UHVSHFWLYHO\ DQG WKH YROXPH HOHPHQWV LQ GLUHFW DQG UHFLSURFDO VSDFH DOVR LQYROYH d FRRUGLQDWHV :H UHSUHVHQW WKLV XVLQJ WKH IROORZLQJ QRWDWLRQ
CHAPTER 4. THE MOMENTUM-SPACE WAVE EQUATION
$V ZH PHQWLRQHG LQ &KDSWHU WKH GLUHFWVSDFH 6FKU|GLQJHU HTXDWLRQ FDQ WKHQ KH ZULWWHQ LQ WKH IRUP
ZKHUH ZH KDYH XVHG PDVVZHLJKWHG FRRUGLQDWHV DQG DWRPLF XQLWV ZLWK WKH QRWDWLRQ
DQG ,I we VXEVWLWXWH WKH H[SUHVVLRQ IRU LQWR ZH KDYH
LQ WHUPV RI LWV )RXULHU WUDQVIRUP
VLQFH DFWLQJ RQ WKH SODQH ZDYH EULQJV GRZQ D IDFWRU RI pð. ,I ZH PXOWLSO\ RQ WKH ,HIW E\ DQG LQWHJUDWH RYHU dx , ZH REWDLQ
+RZHYHU
VR WKDW EHFRPHV
8VLQJ WKH 'LUDF
WR LQWHJUDWH WKH ILUVW WHUP RYHU d p , ZH REWDLQ
ZKHUH
(TXDWLRQ LV WKH PRPHQWXPVSDFH 6FKU|GLQJHU HTXDWLRQ
Hydrogenlike orbitals in p-space +DYLQJ GLVFXVVHG WKH SURSHUWLHV RI *HJHQEDXHU SRO\QRPLDOV DQG KDYLQJ GHULYHG HTXDWLRQ ZH DUH QRZ LQ D SRVLWLRQ WR ORRN LQ PRUH GHWDLO DW )RFN¶V PRPHQWXPVSDFH WUHDWPHQW RI K\GURJHQOLNH DWRPVWKHUHVXOWV RI ZKLFK ZHUH VKRZQ LQ HTXDWLRQV :KHQ d p0 WKHQ
,I ZH VXEVWLWXWH LQWR OHWWLQJ d ZH REWDLQ WKH pVSDFH 6FKU|GLQJHU HTXDWLRQ IRU K\GURJHQOLNH DWRPV )ROORZLQJ )RFN¶V PHWKRG ZH QRZ SURMHFW pVSDFH RQWR WKH VXUIDFH RI D GLPHQVLRQDO K\SHUVSKHUH E\ PHDQV RI WKH WUDQVIRUPDWLRQ
C H A P T E R 4 . THE MOMENTUM-SPACE WAVE EQUATION
7KH FRPSRQHQWV RI WKH YHFWRU p DUH UHODWHG WR LWV PDJQLWXGH p , WKURXJK WKH DQJOHV DQG ¡S
DQG ZH FDQ GHILQH DQ DGGLWLRQDO DQJOH x , E\
7KHQ H[SUHVVHG LQ WHUPV RI WKHVH DQJOHV WKH XQLW YHFWRUV LQ u , ..., u EHFRPH
)URP HTXDWLRQV L W IROORZV WKDW WKH YROXPH HOHPHQW LQ pVSDFH LV UHODWHG WR WKH JHQHUDOL]HG VROLGDQJOHHOHPHQW RQWKH K\SHUVSKHUH E\ VLQFHIURP :LWK D OLWWOH ZRUN RQHFDQ DOVRGHULYH WKH UHODWLRQVKLS >@
,I ZH VXEVWLWXWH DQG LQWR WKH LQWHJUDO EHFRPHV
,I ZH QRZ OHW ZKHUH WKH LQWHJUDO HTXDWLRQ WDNHV RQ D VLPSOHUIRUP :H FDQ QRZ XVH HTXDWLRQ WR H[SDQG WKH NHUQHO RI WKH LQWHJUDO HTXDWLRQ LQ WHUPV RI *HJHQEDXHU SRO\QRPLDOV ,I ZH OHW DQG = VLQFH ZH KDYH D GLPHQVLRQDO K\SHUVSKHUH DQG LI ZH PDNH XVH RI WKH VXP UXOH W KHQ EHFRPHV
( ,I ZH VXEVWLWXWH WKLV H[SDQVLRQ LQWR ZH REWDLQ %HFDXVH RI WKH RUWKRQRUPDOLW\ RI WKH K\SHUVSKHULFDO KDUPRQLFV
ZLOO EH IXOILOOHG SURYLGHG WKDW
CHAPTER 4. THE MOMENTUM-SPACE WAVE EQUATION
DQG SURYLGHG WKDW n , WKHQ HTXDWLRQV DQG ,I ZH PDNH WKH LGHQWLILFDWLRQ JLYH XV )RFN¶V PRPHQWXPVSDFH K\GURJHQOLNH RUELWDOV
ZKLOH WHOOV XV WKH FRUUHVSRQGLQJ HQHUJLHV ,W LV LQWHUHVWLQJ WR QRWLFH WKDW ZH GR QRW QHHG WR PDNH WKH LGHQWLILFDWLRQ µ ^l,m `ZKLFK ZRXOG FRUUHVSRQG WR GLPHQVLRQDO K\SHUVSKHULFDO KDUPRQLFV FRQVWUXFWHG E\ PHDQV RI WKH VXEJURXS FKDLQ
$Q\ DOWHUQDWLYH ZD\ RI FRQVWUXFWLQJ DQ RUWKRQRUPDO VHW RI GLPHQVLRQDO K\SHUVSKHULFDOKDUPRQLFVZRXOG \LHOG DQ HTXDOO\ JRRG VHW RI PRPHQW XPVSDFH K\GURJHQOLNH RUELWDOV )RU H[DPSOH DV $TXLODQWL DQG KLV FRZRUNHUV KDYH VKRZQ > @ WKH GLPHQVLRQDO K\SHUVSKHULFDO KDU PRQLFV LQ 7DEOH FRUUHVSRQG WRWKHVHW RI PRPHQWXPVSDFH K\GURJHQ OLNH RUELWDOV ZKRVH GLUHFWVSDFH FRXQWHUSDUWVFDQEH IRXQG E\ VHSDUDWLQJ WKH 6FKU|GLQJHU HTXDWLRQLQSDUDEROLFFRRUGLQDWHV
7KH WKH GLUHFWVSDFH RUELWDOV KDYH WKH IRUP >@
ZKHUH n =n n m DQG m SOD\ WKHLU XVXDO UROHV DV WKH SULQFL SDO TXDQWXP QXPEHU DQG WKH PDJQHWLF TXDQWXP QXPEHU UHVSHFWLYHO\ DQG ZKHUH WKH IXQFWLRQV DUH WKH DVVRFLDWHG /DJXHUUHSRO\QRPLDOV 7DEOH 7KH ILUVW IHZ GLUHFWVSDFH RUELWDOV LQ SDUDEROLF FRRUGLQDWHV DUH VKRZQ LQ7DEOH ,W LV LQWHUHVWLQJ WR VHH WKDW WKH K\SHUVSKHULFDOKDUPRQLFV WR ZKLFK WKH\ FRUUHVSRQG 7DEOH DUH FRQVWUXFWHG DFFRUGLQJ WR WKH VXEJURXS FKDLQ
Momentum-space orthonormality of Sturmian basis functions 6LQFH ZH LQWHQG WR XVH PRPHQWXPVSDFH K\GURJHQOLNH RUELWDOV DV EDVLV IXQFWLRQV IRU VROYLQJ JHQHUDO SUREOHPV LQ TXDQWXP FKHPLVWU\ LW LV HV VHQWLDO WR LQYHVWLJDWHWKHLURUWKRQRUPDOLW\ UHODWLRQV /HW XV ILUVW ORRN DW WKH FDVH ZKHUH GLPHQVLRQDO pVSDFH LV SURMHFWHG RQWR WKH VXUIDFH RI D GLPHQVLRQDO K\SHUVSKHUHDVVKRZQ LQ HTXDWLRQV 7KH PRPHQWXPVSDFH K\GURJHQOLNH RUELWDOVDUHUHODWHG WR WKH KDUPRQLFV RQ WKLV GLPHQVLRQDO K\SHUVSKHUH E\ 6LQFH WKH K\SHUVSKHULFDOKDUPRQLFVREH\ WKH RUWKRQRUPDOLW\ UHODWLRQ LW IROORZV WKDW RU
C H A P T E R THE MOMENTUM-SPACE :$9( EQUATION
7KXV SURYLGHG WKDW ZH NHHSNu . FRQVWDQW IRU DOO LWV PHPEHUV WKH VHW RI PRPHQWXPVSDFH K\GURJHQOLNH RUELWDOV REH\ D ZHLJKWHG RUWKRQRUPDOLW\ $V ZH PHQWLRQHG UHODWLRQ WKH ZHLJKWLQJ IDFWRU EHLQJ LQ WKH LQWURGXFWLRQ RQHSDUWLFOH K\GURJHQOLNH 6WXUPLDQ EDVLV VHWV RI WKLV W\SH ZHUH LQWURGXFHG E\ 6KXOO DQG /|ZGLQ DQG WKH\ DUHZLGHO\ XVHG LQ DWRPLF SK\VLFV DQGTXDQWXPFKHPLVWU\ 7KH PHPEHUV RI VXFK D VHW FDQ EH WKRXJKW RI DVVROXWLRQVWR WKH 6FKU|GLQJHU HTXDWLRQ RI D K\GURJHQ DWRP ZLWK WKH QXFOHDUFKDUJHZHLJKWHG LQ VXFK D ZD\ WKDW DOO RI WKH PHPEHUV RI WKH VHW FRUUHVSRQG W R WKH VDPH YDOXH RI WKH HQHUJ\ UHJDUGOHVV RI WKHLU TXDQWXP QXPEHUV 7KH FRQVWDQF\ RI WKH HQHUJ\ ZLWKLQ WKH EDVLV VHW LV HVVHQWLDO IRU WKH YDOLGLW\ RI HTXDWLRQV DQG 1RW RQO\ GR WKH PHPEHUV RI D PRPHQWXPVSDFH 6WXUPLDQ EDVLV VHW REH\ D ZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ LQ pVSDFH - EXW DOVR WKHLU GLUHFWVSDFH FRXQWHUSDUWV REH\ D ZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ DQG ZH ZLOO QRZ VKRZ WKDW WKH ZHLJKWLQJ IDFWRU LQ GLUHFW VSDFH LV SURSRU WLRQDO WR WKH SRWHQWLDO ,Q RUGHU WR VKRZ WKLV ZH UHFDOO WZR WKHRUHPV RI )RXULHU DQDO\VLV 7KH ILUVW WKHRUHP VWDWHV WKDW LI LI I [ DQG J[ DUH DQ\ WZR IXQFWLRQV LQ GLUHFW VSDFH DQG LI f t S DQG g t S DUH WKHLU )RXULHU WUDQVIRUPV WKHQ
+
7KLV WKHRUHP IROORZV IURP VLQFH
:H VKDOO DOVR QHHG WKH )RXULHUFRQYROXWLRQ WKHRUHP >@
ZKLFK FDQ EH SURYHG LQ D VLPLODU ZD\ )URP WKH )RXULHU FRQYROXWLRQ WKHRUHP LW IROORZV WKDW WKH PRPHQWXPVSDFH 6FKU|GLQJHU HTXD WLRQ FDQ EH UHZULWWHQ LQ WKH IRUP
,I ZH OHW G 3, p0 WKLV EHFRPHV
kµ, 9[
DQG
l
(TXDWLRQ LV WKH PRPHQWXPVSDFH FRXQWHUSDUW RI WKH GLUHFWVSDFH HTXDWLRQ :
7DNLQJ WKH FRPSOH[ FRQMXJDWH RI ZH REWDLQ 7KH TXDQWLW\ LQ VTXDUH EUDFNHWV RQ WKH OHIWKDQG VLGHRI FDQ EH LGHQWLILHG ZLWK I W S LQ ,I ZH OHW WKHQ DQG \LHOG WKH GLUHFWVSDFH RUWKRQRUPDOLW\ UH ODWLRQ IRU WKH PHPEHUV RI RXU K\GURJHQOLNH 6WXUPLDQ EDVLV VHW /RRNLQJ DW HTXDWLRQ ZH FDQ VHH WKDW WKH GLUHFWVSDFH RU WKRQRUPDOLW\ UHODWLRQ KDV D ZHLJKWLQJ IDFWRU ZKLFK LV SURSRUWLRQDO WR WKH SRWHQWLDO :H VDZ HDUOLHU LQ HTXDWLRQV ZK\ WKLV PXVW EH WUXH LQ D JHQHUDO dGLPHQVLRQDO FDVH ZKHUH WKH SRWHQWLDO QHHG QRW EH
&+$37(5 7+( 020(1780 63$&( :$9( (48$7,21
D &RXORPE SRWHQWLDO 0HPEHUV RI DQ\ 6WXUPLDQ EDVLV VHW DUH RUWKRQRU PDO LQ GLUHFW VSDFH ZLWK D ZHLJKWLQJ IDFWRU ZKLFK LV SURSRUWLRQDO WR WKH SRWHQWLDO 7KLV VWLOO GRHV QRW WHOO XV KRZ W R QRUPDOL]H WKH EDVLV VHW +RZHYHU LI ZH QRUPDOL]H LW DFFRUGLQJ WR WKH FRQGLWLRQ WKHQ IURP (4.48), ZLWK 9[
DQG
ZH KDYH
&RPELQLQJ DQG WKHQ \LHOGV
VR WKDW WKH RUWKRQRUPDOLW\ UHODWLRQ LQ UHFLSURFDO VSDFH LV
7KH PHDQLQJ RI WKH RUWKRQRUPDOLW\ UHODWLRQV DQG UHTXLUHV D IXUWKHU FRPPHQW 6LQFH ZH DUH GHDOLQJ ZLWK D PDQ\GLPHQVLRQDO VSDFH Y UHSUHVHQWV D VHW RI TXDQWXP QXPEHUV UDWKHU WKDQ D VLQJOH TXDQWXP QXPEHU 2UWKRJRQDOLW\ ZLWK UHVSHFW W R WKH TXDQWXP QXPEHU RU QXPEHUV RQ ZKLFK GHSHQGV IROORZV DXWRPDWLFDOO\ IURP LH 6WXUPLDQ EDVLV IXQFWLRQV FRUUHVSRQGLQJ WR GLIIHUHQW YDOXHV RI DUH QHFHVVDULO\ RUWKRJRQDO EXW RUWKRJRQDOLW\ ZLWK UHVSHFW W R WKH PLQRU TXDQWXP QXPEHUV PXVW EH FRQVWUXFWHG RU SURYHG LQ VRPH RWKHU ZD\ IRU H[DPSOH E\ V\PPHWU\ DUJXPHQWV 7KH IXQFWLRQDO VSDFH VSDQQHG E\ D VHW RI 6WXUPLDQ EDVLV IXQFWLRQV LV D 6REROHY VSDFH DQG WKH LQWHUHVWHG UHDGHU LV UHIHUUHG WR DQ H[FHOOHQW DUWLFOH E\ ( :HQLJHU >@ ZKLFK FRQWDLQV D GLVFXVVLRQ RI WKH RUWKRQRUPDOLW\ DQG FRPSOHWHQHVV UHODWLRQV RI EDVLV VHWV LQ 6REROHY VSDFHV
6WXUPLDQ H[SDQVLRQV RI GGLPHQVLRQDO SODQH ZDYHV $V KDV EHHQ VKRZQ E\ $TXLODQWL HW DO > @ GGLPHQVLRQDO SODQH ZDYHV FDQ EH H[SDQGHG LQ WHUPV RI 6WXUPLDQ EDVLV VHWV ,I ZH H[SDQG WKH SODQH ZDYH LQ WHUPV RI WKH FRPSOHWH VHW RI PRPHQWXPVSDFH IXQFWLRQV 3 : WKHQ ZH FDQ XVH WKH ZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQV WR GH WHUPLQH WKH H[SDQVLRQ FRHIILFLHQWV 0XOWLSO\LQJ ERWK VLGHV RI E\ S DQG LQWHJUDWLQJ RYHU UHFLSURFDO VSDFH ZH REWDLQ VR WKDW
& + $ 3 7 ( 5 7+( 020(178063$&( :$9( (48$7,21 7DEOH +\SHUVSKHULFDO KDUPRQLFV FRUUHVSRQGLQJ W R VROXWLRQV IRU WKH K\GURJHQ DWRP LQ SDUDEROLF FRRUGLQDWHV
7DEOH FRQWLQXHG
& + $ 3 7 ( 5 7 + ( 020(178063$&( :$ 9 ( (48$7,21
7DEOH $VVRFLDWHG /DJXHUUH SRO\QRPLDOV
(TXDWLRQ
7DEOH +\GURJHQOLNH RUELWDOV LQ SDUDEROLF FRRUGLQDWHV (TXDWLRQ
73 Table 4.4 G-dimensional hydrogenlike Sturmians
& + $ 3 7 ( 5 7+( 020(178063$&( : $ 9 ( (48$7,21
([HUFLVHV 8VH HTXDWLRQV W R GHULYH HTXDWLRQ 8VH HTXDWLRQ W R JHQHUDWH WKH DVVRFLDWHG /DJXHUUH SRO\QR PLDOV RI 7DEOH )URP HTXDWLRQ DQG WKH DVVRFLDWHG /DJXHUUH SRO\QRPLDOV LQ 7DEOH FDOFXODWH WKH SDUDEROLF K\GURJHQOLNH RUELWDOV VKRZQ LQ 7DEOH ([SUHVV WKHVH IXQFWLRQV DV OLQHDU FRPELQDWLRQV RI ;QOP [
&KDSWHU
0$1<&(17(5 327(17,$/6 ([SDQVLRQ RI WKH NHUQHO ,Q &KDSWHU ZH YHU\ EULHIO\ GLVFXVVHG WKH PDQ\FHQWHU SUREOHP DQG ZH PHQWLRQHG WKDW LW LV FRQYHQLHQW WR VROYH WKH PDQ\FHQWHU RQHHOHFWURQ HTXDWLRQ LQ PRPHQWXP VSDFH PDNLQJ XVH RI WKH WKHRU\ RI K\ SHUVSKHULFDO KDUPRQLFV :H DUH QRZ LQ D SRVLWLRQ W R GLVFXVV LQ GHWDLO KRZ WKLV SUREOHP PD\ EH VROYHG 6KLEX\D DQG :XOIPDQ >@ ZHUH DEOH WR H[WHQG )RFN¶V PHWKRG RI WUHDWLQJ K\GURJHQOLNH DWRPV WR PDQ\FHQWHU
&RXORPE SRWHQWLDOV DQG WKHLU WUHDWPHQW KDV EHHQ IXUWKHU GHYHORSHG E\ D QXPEHU RI RWKHU DXWKRUV 7KH PHWKRG UHOLHV RQ D JHQHUDOL]DWLRQ RI )RFN¶V H[SDQVLRQ RI WKH NHUQHO RI WKH PRPHQWXPVSDFH 6FKU|GLQJHU HTXDWLRQ IRU K\GURJHQOLNH DWRPV 7KLV JHQHUDOL]DWLRQ LV PDGH LQ WKH IROORZLQJ ZD\ 6XSSRVH WKDW [ ^[ \ ]` DQG WKDW
7KHQ IURP HTXDWLRQ PH KDYH
& + $ 3 7 ( 5 0 $ 1 < & ( 1 7 ( 5 327(17,$/6
%\ FRPELQLQJ ZLWK DQG ZH REWDLQ
ZKHUH
,I ZH OHW ZKHUH VWDQGV IRU WKH LQGLFHV ^D Q P` WKHQ ZH FDQ ZULWH HTXDWLRQ LQ WKH IRUP )
:LWK WKH KHOS RI WKH PRPHQWXPVSDFH 6FKU|GLQJHU HTXDWLRQ FDQ EH UHZULWWHQ LQ WKH IRUP
7KHQ LI ZH OHW
HTXDWLRQ EHFRPHV
ZKHUH
(TXDWLRQ ZLOO EH VDWLVILHG SURYLGHG WKDW 7KH PDWUL[
FDQ EH UHZULWWHQ LQ WKH IRUP > @
RU
ZKHUH :H VKDOO FDOO WKH K\SHUDQJXODU LQWHJUDOV n 1 m 6KLEX\D :XOIPDQ LQWH JUDOV WR KRQRU WKHVH WZR SLRQHHUV RI PRPHQWXPVSDFH TXDQWXP WKHRU\
$V D VLPSOH H[DPSOH WR LOOXVWUDWH ZH FDQ WKLQN RI DQ HOHFWURQ PRYLQJ LQ WKH &RXORPE SRWHQWLDO RI WZR QXFOHL ZLWK QXFOHDU FKDUJHV =DQG= ORFDWHG UHVSHFWLYHO\ DW SRVLWLRQV ; DULG ; ,Q WKH FUXGH DSSUR[LPDWLRQ ZKHUH ZH XVH RQO\ D VLQJOH V RUELWDO RQ HDFK QXFOHXV ZH FDQ UHSUHVHQW WKH HOHFWURQLF ZDYH IXQFWLRQV RI WKLV V\VWHP E\ ZKHUH
& + $ 3 7 ( 5 0 $ 1 < & ( 1 7 ( 5 327(17,$/6
8VLQJ PHWKRGV ZKLFK ZLOO EH GLVFXVVHG LQ D ODWHU VHFWLRQ ZH FDQ HYDO XDWH WKH 6KLEX\D:XOIPDQ LQWHJUDOV 7KH UHVXOW LV ZKHUH
7KH VHFXODU HTXDWLRQ WKHQ UHTXLUHV WKDW RU :H FDQ XVH HTXDWLRQ WR JHQHUDWH D FXUYH UHSUHVHQWLQJ WKH JURXQG VWDWH HQHUJ\ RI WKH V\VWHP DV D IXQFWLRQ RI WKH LQWHUQXFOHDU GLVWDQFH 5 :H GR WKLV E\ SLFNLQJ D YDOXH RI V VXEVWLWXWLQJ LW LQWR WR ILQG WKH FRUUHVSRQGLQJ YDOXH RI N DQG WKHQ ILQGLQJ WKH LQWHUQXFOHDU VHSDUDWLRQ DQG HQHUJLHV E\ PHDQV RI WKH UHODWLRQVKLSV 5 VN DQG ,Q WKH XQLWHGDWRP OLPLW 5 WKH URRW RI WKH TXDGUDWLF HTXDWLRQ \LHOGV WKH H[DFW JURXQGVWDWH HQHUJ\ RI WKH V\VWHP ,Q WKH VHSDUDWHGDWRP OLPLW 5 = HQHUJLHV
HTXDWLRQ DOVR \LHOGV H[DFW
)RU LQWHUPHGLDWH YDOXHV RI 5 WKH JURXQGVW DWH HQHUJLHV SUHGLFWHG E\ DUH DSSUHFLDEO\ DERYH WKH EHVW DYDLODEOH YDOXHV IRXQG IURP GL UHFW VSDFH FDOFXODWLRQV EXW ZKHQ PRUH EDVLV IXQFWLRQV DUH DGGHG WKH O
6WXUPLDQ H[SDQVLRQ FRQYHUJHV UDSLGO\ WRZDUGV WKH EHVW DYDLODEOH ZDYH IXQFWLRQV DQG HQHUJLHV DV LOOXVWUDWHG LQ )LJXUH %\ XVLQJ PDQ\ EDVLV IXQFWLRQV LQ D FDOFXODWLRQ RI WKH W\SH VNHWFKHG DERYH EXW ZLWK D VHFXODU HTXDWLRQ EDVHG RQ D VHFRQGLWHUDWHG IRUP RI WKH ZDYH HTXD WLRQ .RJD DQG 0DWVXKDVKL >@ REWDLQHG HOHFWURQLF HQHUJLHV ZLWK LRQ 7KHLU HQHUJLHV DW YDULRXV LQWHUQX ILJXUH DFFXUDF\ IRU WKH FOHDU VHSDUDWLRQV DJUHHG ZLWK WKH EHVW DYDLODEOH YDOXHV IURP GLUHFWVSDFH FDOFXODWLRQV EXW WKH .RJD0DWVXKDVKL YDOXHV ZHUH RI KLJKHU SUHFLVLRQ 7KH VLPSOH H[DPSOH GLVFXVVHG DERYH LOOXVWUDWHV VHYHUDO LQWHUHVWLQJ IHDWXUHV RI 6WXUPLDQ EDVLV VHWV ,Q TXDQWXP WKHRU\ ZH DUH DFFXVWRPHG WR VROYLQJ VHFXODU HTXDWLRQV LQ ZKLFK D +DPLOWRQLDQ PDWUL[ LV GLDJRQDO L]HG \LHOGLQJ URRWV ZKLFK FRUUHVSRQG WR WKH HQHUJLHV RI WKH V\VWHP DQG WKH EDVLV IXQFWLRQV DUH HQWLUHO\ GHWHUPLQHG EHIRUH ZH EHJLQ WR FRQVWUXFW D PDWUL[ UHSUHVHQWDWLRQ RI WKH +DPLOWRQLDQ +RZHYHU WKH 6WXUPLDQ VHFXODU HTXDWLRQ LV RI D FRPSOHWHO\ GLIIHUHQW IRUP 7KH URRWV DUH QRW HQHUJLHV EXW YDOXHV UHODWHG WR WKH RQHHOHFWURQ HQHUJLHV E\ = 7KHVH N YDOXHV GHWHUPLQH WKH H[SRQHQWLDO GHFD\ RI WKH EDVLV IXQFWLRQV LQ GLUHFWVSDFH 7KH UDSLG FRQYHUJHQFH RI 6WXUPLDQ H[ SDQVLRQV LV GXH WR WKH IDFW WKDW DOO WKH EDVLV IXQFWLRQV XVHG W R UHSUHVHQW D VWDWH RI WKH V\VWHP KDYH WKH FRUUHFW H[SRQHQWLDO GHFD\ 7KH YDOXHV RI N IRU HDFK VWDWH DUH QRW NQRZQ EHIRUH WKH VHFXODU HTXDWLRQV DUH VROYHG DQG KHQFH WKH EDVLV IXQFWLRQV DUH QRW NQRZQ LQ DGYDQFH - WKH IRUP LV NQRZQ EXW QRW WKH VFDOH %\ VROYLQJ WKH 6WXUPLDQ VHFXODU HTXDWLRQV ZH REWDLQ LQ RQH VWURNH QRW RQO\ WKH VSHFWUXP RI HQHUJLHV EXW DOVR WKH RSWLPDO EDVLV VHW IRU HDFK VWDWH +RZHYHU WKLV GRXEOH YLFWRU\ LV ZRQ DW D SULFH :H GR QRW NQRZ WKH VL]H RI WKH V\VWHP LQ GLUHFW VSDFH XQWLO ZH KDYH ILQLVKHG WKH FDOFXODWLRQ ,Q WKH VLPSOH H[DPSOH GLVFXVVHG DERYH ZH FRXOG QRW VSHFLI\ WKH LQWHUQXFOHDU VHSDUDWLRQ LQ DGYDQFH EXW RI FRXUVH LW ZDV HDV\ WR JHQHUDWH WKH FXUYH VKRZQ LQ )LJXUH E\ OHWLQJ WKH SDUDPHWHU V UXQ RYHU D UDQJH RI YDOXHV 7KH IDFW WKDW HYHQ WKH FUXGH DSSUR[LPDWLRQ RI HTXDWLRQV DQG \LHOGHG H[DFW HQHUJLHV LQ WKH XQLWHGDWRP DQG VHSDUDWHGDWRP OLPLWV LV GXH WR WKH DXWRPDWLF EDVLVVHW RSWLPL]DWLRQ ZKLFK LV EXLOW LQWR WKH PHWKRG 7KH EDVLV VHW DGMXVWHG DXWRPDWLFDOO\ WR WKH HQRUPRXV FKDQJH LQ LQWHUQXFOHDU GLVWDQFH IURP 5 WR 5
&+$37(5 0$1< &(17(5 327(17,$/6
&RPELQHG &RXORPE DWWUDFWLRQ DQG UHSXO VLRQ 6LQFH HTXDWLRQ FDQ EH GHULYHG HQWLUHO\ IURP WKH SURSHUWLHV RI WKH *HJHQEDXHU SRO\QRPLDOV DQG WKH GLPHQVLRQDO K\SHUVSKHULFDO KDUPRQ LFV LW PXVW DOVR KROG LI VRPH RI WKH = D¶V DUH QHJDWLYH 7KXV HTXDWLRQ PD\ DOVR EH XVHG WR WUHDW WKH FDVH RI DQ HOHFWURQ PRYLQJ LQ WKH SR WHQWLDO RI D PDQ\FHQWHU FKDUJH GLVWULEXWLRQ ZKHUH VRPH RI WKH FKDUJHV DUH QHJDWLYH EXW ZKHUH WKH VXP RI WKH FKDUJHV LV SRVLWLYH VR WKDW ERXQG VWDWHV H[LVW ,I ZH OHW EH GHILQHG E\ ZKHUH
=
DQG LI ZH OHW
ZKHUH
VWDQGV IRU WKH VHW RI LQGLFHV ^D Q , P` WKHQ EHFRPHV
DQG WKH UHFLSURFDOVSDFH 6FKU|GLQJHU HTXDWLRQ FDQ EH ZULWWHQ LQ WKH IRUP 7KH 6FKU|GLQJHU HTXDWLRQ ZLOO KDYH D VROXWLRQ RI WKH IRUP LI N DQG WKH FRHIILFLHQWV VDWLVI\ WKH VHW RI VHFXODU HTXDWLRQV ZKHUH LV GHILQHG E\ HTXDWLRQV DQG 7R LOOXVWUDWH FRPELQHG &RXORPE DWWUDFWLRQ DQG UHSXOVLRQ ZH FDQ UHSHDW WKH VLPSOH H[DPSOH VKRZQ LQ HTXDWLRQV IRU WKH FDVH ZKHUH = LV SRVLWLYH ZKLOH = LV QHJDWLYH DQG > 7KHQ
DQG = DQG LI ZH OLPLW WKH EDVLV VHW WR D VLQJOH V RUELWDO RQ HDFK FHQWHU DV EHIRUH WKH VHFXODU HTXDWLRQV UHTXLUH WKDW RU )RU V ZH REWDLQ WKH H[DFW JURXQGVWDWH HQHUJ\ RI WKH V\VWHP DQG LQ WKH OLPLW V = ZH DJDLQ REWDLQ H[DFW VROXWLRQV EXW RQO\ WKH SRVLWLYH URRW RI WKH TXDGUDWLF HTXDWLRQ IRU N FRUUHVSRQGV WR D ERXQG VWDWH
6KLEX\D:XOIPDQ LQWHJUDOV )URP HTXDWLRQ ZH FDQ VHH WKDW WKH SUREOHP RI VROYLQJ WKH 6FKU|GLQJHU HTXDWLRQ IRU D SDUWLFOH PRYLQJ LQ D PDQ\FHQWHU &RXORPE SRWHQWLDO FDQ EH UHGXFHG WR WKH SUREOHP RI FDOFXODWLQJ LQWHJUDOV RI WKH IRUP > @ DIWHU ZKLFK WKH PDWUL[ RI K\SHUDQJXODU RYHUODS LQWHJUDOV FDQ EH GLDJR QDOL]HG XVLQJ VWDQGDUG SURJUDPV 7KH EDVLF LQIRUPDWLRQ QHHGHG IRU WKH HYDOXDWLRQ RI LQWHJUDOV RI WKLV W\SH LV JLYHQ WR XV E\ )RFN¶V UHODWLRQVKLS
&+$37(5 0$1<&(17(5 327(17,$/6
IURP ZKLFK LW IROORZV WKDW )URP DQG ZH KDYH DQG IURP VR WKDW EHFRPHV
%\ FRPSDULQJ ZLWK ZH FDQ VHH WKDW E\ ILQGLQJ WKH FRHIIL FLHQWV LQ WKH VHULHV ZH FDQ ZULWH WKH K\SHUDQJXODU RYHUODS LQWHJUDOV DV D VHULHV RI K\GUR JHQOLNH RUELWDOV ZKRVH DUJXPHQW LV WKH LQWHUQXFOHDU GLVWDQFH YHFWRU 5 ZKHUH ZH KDYH OHW VWDQG IRU WKH VHW RI LQGLFHV ^QOP` )URP WKH RUWKRQRUPDOLW\ RI WKH K\SHUVSKHULFDO KDUPRQLFV LW IROORZV WKDW WKH FR HIILFLHQWV DUH JLYHQ E\ 6KLEX\D DQG :XOIPDQ XVHG WKH :LJQHU FRHIILFLHQWV RI WKH K\SHUVSKHU LFDO KDUPRQLFV WR HYDOXDWH $OWHUQDWLYHO\ ZH FDQ XVH WKH DQJXODU
LQWHJUDWLRQ WKHRUHP VKRZQ LQ HTXDWLRQ ZKLFK LQ WKLV DSSOLFD WLRQ EHFRPHV )RU H[DPSOH VXSSRVH WKDW ZH ZLVK WR HYDOXDWH WKH K\SHUDQJXODU RYHUODS LQWHJUDO 7KHQ IURP DQG 7DEOH ZH REWDLQ
DOO RWKHU FRHIILFLHQWV EHLQJ ]HUR 7KHVH FRHIILFLHQWV FDQ QRZ EH VXEVWL WXWHG LQWR HTXDWLRQ DQG ZLWK WKH KHOS RI 7DEOH ZH REWDLQ WKH UHVXOW ZKLFK ZH XVHG LQ WKH SUHYLRXV VHFWLRQ
$ WKLUG PHWKRG >@ IRU HYDOXDWLQJ WKH K\SHUDQJXODU RYHUODS LQWH JUDOV EHJLQV OLNH WKH RWKHU WZR PHWKRGV ZLWK WKH UHODWLRQVKLS VKRZQ LQ HTXDWLRQ :H WKHQ XVH DQG WR ZULWH GRZQ H[SOLFLW H[SUHVVLRQV IRU DQG ;QOP 5 7KLV JLYHV XV WKH HTXDWLRQ
ZKHUH s
N5 ,I ZH OHW
WKHQ ZH FDQ GHILQH WKH OWKRUGHU KDUPRQLF SRO\QRPLDO K O WLRQVKLS
E\ WKH UHOD
& + $ 3 7 ( 5 0 $ 1 < & ( 1 7 ( 5 327(17,$/6
6LPLODUO\ XVLQJ DQG ZH FDQ ZULWH ZKHUH K OX XX LV WKH VDPH KDUPRQLF SRO\QRPLDO ZKLFK DSSHDUV LQ EXW ZLWK WKH VM¶V UHSODFHG E\ XM¶V 7KXV EHFRPHV
ZKHUH ZH KDYH DOVR DVVXPHG WKH KDUPRQLF SRO\QRPLDOV WR EH UHDO (TXD WLRQ LV VWLOO QRW YHU\ FRQYHQLHQW W R XVH EHFDXVH RI WKH *HJHQEDXHU SRO\QRPLDO RQ WKH OHIWKDQG VLGH DQG EHFDXVH RI WKH DZNZDUG IDFWRU X LQ WKH GHQRPLQDWRU %RWK GLIILFXOWLHV FDQ EH UHPRYHG E\ XVLQJ WKH UHODWLRQVKLS [ @ IURP ZKLFK ZH KDYH
$ VLPLODU UHODWLRQ RI FRXUVH H[LVWV IRU N DQG LI ZH DGG WKLV WR ZH FDQ FDQFHO RXW WKH IDFWRU X. 7KXV ZH REWDLQ WKH XVHIXO UHODWLRQVKLS ZKHUH
V LV WKH HDVLO\SURJUDPPHG IXQFWLRQ
)RU H[DPSOH ZKHQ K
EHFRPHV
:LWK D OLWWOH ZRUN RQH FDQ VKRZ WKDW ZKLFK FKHFNV ZLWK HTXDWLRQ +\SHUDQJXODU RYHUODS LQWHJUDOV GH ULYHG IURP HTXDWLRQ DUH VKRZQ LQ 7DEOH IRU WKH ILUVW IHZ DWRPLF RUELWDOV ,Q PRVW FDVHV WKH GHULYDWLRQ RI WKHVH LQWHJUDOV LV VWUDLJKWIRU ZDUG EXW WKH LQWHJUDOV OLQNLQJ S M ZLWK S RQ DQRWKHU FHQWHU UHTXLUH D IHZ DGGLWLRQDO ZRUGV RI H[SODQDWLRQ )URP 7DEOH ZH KDYH IRU H[DPSOH : -
&RPSDULQJ WKLV ZLWK HTXDWLRQ ZH FDQ VHH WKDW ZH DUH GHDOLQJ ZLWK D FDVH ZKHUH N VLQFH X GRHV QRW DSSHDU +RZHYHU WR DSSO\ ZH KDYH WR UHVROYH LQWR D VHULHV RI SRO\QRPLDOV ZKLFK DUH KDUPRQLF LQ X X DQG X 7KLV FDQ EH GRQH ZLWK WKH KHOS RI 7DEOH EXW ZH PXVW UHPHPEHU WKDW IURP HTXDWLRQ 7KXV WKH FRUUHFW UHVROXWLRQ RI IXQFWLRQV LV JLYHQ E\
LQWRRUELWDODQJXODU PRPHQWXP HLJHQ
DQG \LHOGV WKH UHVXOW
& + $ 3 7 ( 5 0 $1 < & ( 1 7 ( 5 327(17,$/6
6KLEX\D:XOIPDQ LQWHJUDOV DQG WUDQVODWLRQV 2QH FDQ WKLQN RI WKH 6KLEX\D:XOIPDQ LQWHJUDOV DV UHSUHVHQWDWLRQV RI WKH WUDQVODWLRQ JURXS EDVHG RQ RQHSDUWLFOH K\GURJHQOLNH 6WXUPLDQV :H FDQ XQGHUVWDQG WKLV LQWHUSUHWDWLRQ RI WKH 6KLEX\D:XOIPDQ LQWH JUDOV E\ PHDQV RI WKH IROORZLQJ DUJXPHQW )URP HTXDWLRQ ZH KDYH WKH UHODWLRQVKLS VR WKDW
:H FDQ PDNH D 6WXUPLDQ H[SDQVLRQ RI D GLPHQVLRQDO SODQH ZDYH DQDORJRXV WR WKH GGLPHQVLRQDO H[SDQVLRQ VKRZQ LQ HTXDWLRQV :H OHW ZKHUH DQOP DUH FRHIILFLHQWV ZKLFK DUH LQGHSHQGHQW RI S DQG ZKLFK ZH PXVW GHWHUPLQH 7R ILQG WKHVH FRHIILFLHQWV ZH PXOWLSO\ ERWK VLGHV RI E\ DQG LQWHJUDWH RYHU G S 7KLV JLYHV XV
7KHQ PDNLQJ XVH RI WKH PRPHQWXPVSDFH RUWKRQRUPDOLW\ UHODWLRQV DQG HTXDWLRQ ZH KDYH
VR WKDW
,I ZH VXEVWLWXWH WKLV H[SDQVLRQ LQWR ZH REWDLQ
6LQFH ZKHUH DQG VLQFH ZH FDQ LGHQWLI\ WKH PRPHQWXPVSDFH LQWHJUDO LQ DV D 6KLEX\D :XOIPDQ K\SHUDQJXODU LQWHJUDO
6XEVWLWXWLQJ LQWR ZH KDYH IURP ZKLFK LW IROORZV WKDW 7KXV WKH 6KLEX\D:XOIPDQ LQWHJUDOV FDQ EH WKRXJKW RI DV HOHPHQWV RI D FRQWLQXRXV JURXS UHSUHVHQWLQJ WUDQVODWLRQV ,I ZH PXOWLSO\ HTXDWLRQ RQ ERWK VLGHV E\ DQG LQWHJUDWH RYHU G [ PDNLQJ XVH RI WKH SRWHQWLDOZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ ZH REWDLQ WKH XVHIXO UHODWLRQVKLS
)URP ZH FDQ VHH WKDW WKH 6KLEX\D:XOIPDQ LQWHJUDOV PD\ DOVR EH LQWHUSUHWHG DV QXFOHDU DWWUDFWLRQ LQWHJUDOV LQYROYLQJ RQHHOHFWURQ K\ GURJHQOLNH 6WXUPLDQV
&+$37(5 0$1<&(17(5 327(17,$/6
7DEOH 6KLEX\D:XOIPDQ LQWHJUDOV
7DEOH FRQWLQXHG
&+$37(5 0$1<&(17(5327(17,$/6
7DEOH FRQWLQXHG
7DEOH VHH HTXDWLRQ
&+$37(5 0$1<&(17(5327(17,$/6 7DEOH FRQWLQXHG
7DEOH 6KLEX\D:XOIPDQ LQWHJUDOV
&+$37(5 0 $ 1 < & ( 1 7 ( 5 3 2 7 ( 1 7 , $ / 6
([HUFLVHV &DOFXODWH WKH 6KLEX\D:XOIPDQ LQWHJUDOV DQG LQ WHUPV RI WKH XQLYHUVDO IXQFWLRQ E\ PHDQV RI HTXDWLRQ &RPSDUH \RXU UHVXOWV ZLWK WKRVH VKRZQ LQ 7DEOH ,V WKH LQWHJUDO UHDO" &DOFXODWH E\ PHDQV RI HTXDWLRQV 6KRZ WKDW WKH UHVXOW DJUHHV ZLWK 7DEOH DQG ([HUFLVH
8VH WR ZULWH GRZQ DQ DQJXODU LQWHJUDWLRQ WKHRUHP DQDOR JRXV W R IRU WKH FDVH ZKHUH G
&KDSWHU
,7(5$7,21 2) 7+( :$9( (48$7,21 ,QWHJUDO IRUPV RI WKH PDQ\SDUWLFOH ZDYH HTXDWLRQ ,Q &KDSWHU ZH VDZ WKDW WKH PRPHQWXPVSDFH 6FKU|GLQJHU HTXDWLRQ IRU D PDQ\SDUWLFOH V\VWHP KDV WKH IRUP ,Q HTXDWLRQ G = 1 ZKHUH 1 LV WKH QXPEHU RI SDUWLFOHV LQ WKH V\VWHP $FFRUGLQJ WR WKH )RXULHU FRQYROXWLRQ WKHRUHP WKH )RXULHU WUDQVIRUP RI WKH SURGXFW RI WZR IXQFWLRQV LV WKH VFDODU SURGXFW RI WKHLU )RXULHU WUDQVIRUPV DQG WKLV WKHRUHP KDV WKH GGLPHQVLRQDO JHQHUDOL]D WLRQ
ZKHUH LV D GGLPHQVLRQDO SODQH ZDYH ,I ZH FRPSDUH ZLWK OHWWLQJ I[ 9 [ DQG J[ ZH FDQ VHH WKDW LW LV SRVVLEOH WR ZULWH WKH PDQ\SDUWLFOH 6FKU|GLQJHU HTXDWLRQ LQ WKH IRUP
& + $ 3 7 ( 5 ,7(5$7,21 2) 7 + ( : $ 9 ( (48$7,21
'LYLGLQJ ERWK VLGHV RI E\ Sð DQG WDNLQJ WKH )RXULHU WUDQVIRUP ZH REWDLQ DQRWKHU IRUP RI WKH 6FKU|GLQJHU HTXDWLRQ
ZKHUH
,I ZH H[SDQG WKH SODQH ZDYH LQ LQ WHUPV RI D 6WXUPLDQ EDVLV Sð VHW XVLQJ HTXDWLRQ DQG LI ZH FDQFHO WKH FRPPRQ IDFWRU IURP ERWK VLGHV ZH REWDLQ VWLOO DQRWKHU LQWHJUDO UHSUHVHQWDWLRQ RI WKH 6FKU|GLQJHU HTXDWLRQ DV ZHOO DV DQ DOWHUQDWLYH UHSUHVHQWDWLRQ RI WKH NL QHWLF *UHHQ¶V IXQFWLRQ 6XEVWLWXWLQJ RXU 6WXUPLDQ H[SDQVLRQ LQWR DQG FDQFHOLQJ WKH FRPPRQ IDFWRU Sð IURP ERWK VLGHV ZH REWDLQ DQ LQWHJUDO IRUP RI WKH PDQ\SDUWLFOH 6FKU|GLQJHU HTXDWLRQ IURP ZKLFK WKH NLQHWLF HQHUJ\ WHUP KDV YDQLVKHG EHFDXVH RI WKH VSHFLDO SURSHUWLHV RI 6WXUPLDQ EDVLV VHWV RU WDNLQJ WKH )RXULHU WUDQVIRUP RI
,I ZH QRZ FRPSDUH HTXDWLRQ ZLWK ZH FDQ PDNH WKH LGHQWLIL FDWLRQ ,Q WKLV H[SDQVLRQ RI WKH NLQHWLF *UHHQ¶V IXQFWLRQ WKH VHW RI IXQFWLRQV FDQEHDQ\ 6WXUPLDQ EDVLV VHW ZKDWHYHU LH DQ\ VHW RI IXQFWLRQV VDWLVI\LQJ ZKHUH LV FKRVHQ LQ VXFK D ZD\ DV WR JLYH DOO WKH PHPEHUV RI WKH VHW WKH VDPH HQHUJ\ UHJDUGOHVV RI WKHLU TXDQWXP QXPEHUV ,Q DGGLWLRQ WKH PHPEHUV RI WKH VHW PXVW EH QRUPDOL]HG DFFRUGLQJ WR HTXDWLRQ VR
WKDW WKH ZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQV ZLOO EH IXOILOOHG LQ UHFLSURFDO VSDFH $SDUW IURP WKHVH FRQGLWLRQV GHILQLQJ WKH VHW RI 6WXUPLDQ EDVLV IXQFWLRQV WKHUH DUH QR RWKHU UHVWULFWLRQV DQG 9 PD\ EH FKRVHQ LQ DQ\ ZD\ WKDW LV FRQYHQLHQW 7KXV WKH H[SDQVLRQ RI WKH NLQHWLF *UHHQ¶V IXQFWLRQ VKRZQ LQ HTXDWLRQ LV YHU\ IOH[LEOH DQG JHQHUDO ,I ZH OHW VWDQG IRU WKH LWKRUGHU LWHUDWHG VROXWLRQ RI HTXDWLRQ WKHQ WKH VXFFHVVLYH RUGHUV DUH OLQNHG E\ WKH VHW RI HTXDWLRQV
IURP ZKLFK LW IROORZV WKDW ZKHUH ,I ZH OHW WKHQ HTXDWLRQV DQG LPSO\ WKDW ,I LV DQ H[DFW VROXWLRQ RI WKHQ WKH VHW RI FRHIILFLHQWV ZLOO EH WKH VDPH LQ DOO RUGHUV DQG QRW RQO\ WKH XVXDO VHFXODU HTXDWLRQ
&+$37(5 ,7(5$7,21 2) 7+( :$9( (48$7,21
ZLOO KROG EXW DOVR WKH KLJKHU RUGHU HTXDWLRQV ZKHUH 7 L GHQRWHV WKH PDWUL[ 7 UDLVHG WR WKH L W K SRZHU ,I WKH IXQFWLRQ LQ LV QRW DQ H[DFW VROXWLRQ EHFDXVH RI WUXQFDWLRQ RI WKH EDVLV VHW WKHQ WKH UHTXLUHPHQWV RQ %Y LPSRVHG E\ WKH VHFXODU HTXDWLRQV ZLOO GLIIHU GHSHQGLQJ RQ WKH RUGHU
,WHUDWLRQ RI WKH PDQ\FHQWHU RQHHOHFWURQ ZDYH HTXDWLRQ 6XP UXOHV ,Q &KDSWHU ZH VDZ WKDW VROXWLRQV WR WKH RQHHOHFWURQ 6FKU|GLQJHU HTXDWLRQ IRU DQ HOHFWURQ PRYLQJ LQ D PDQ\FHQWHU &RXORPE SRWHQWLDO RI WKH IRUP FDQ EH EXLOW XS LQ PRPHQWXP VSDFH IURP EDVLV IXQFWLRQV RI WKH IRUP
ZKHUH ZH KDYH GURSSHG WKH HOHFWURQ LQGH[ j,DQG ZLWK 7KH PRPHQWXPVSDFH ZDYH IXQFWLRQV RI DQ HOHFWURQ LQ WKH PDQ\FHQWHU SRWHQWLDO VDWLVI\ WKH LQWHJUDO HTXDWLRQ ZKLFK ZLOO KDYH D VROXWLRQ RI WKH IRUP
SURYLGHG WKDW kµ DQG HTXDWLRQ
DUH WKH URRWV DQG HLJHQYHFWRUV RI WKH VHFXODU
ZKHUH :H DOVR VDZ WKDW WKH PDWUL[
FDQ EH UHZULWWHQ LQ WKH IRUP
-XVW DV LWHUDWLRQ RI OHDGV WR WKH KLJKHURUGHU VHFXODU HTXDWLRQV DQDORJRXVO\ WKH LWHUDWLRQ RI OHDGV WR WKH KLJKHURUGHU VHF XODU HTXDWLRQV
,I WKH EDVLV VHW LV WUXQFDWHG WKH UHTXLUHPHQWV LPSRVHG RQ WKH FRHIIL FLHQWV DQGWKHHLJHQYDOXHVN ZLOO GHSHQG RQWKH RUGHU L .RJD DQG 0DWVXKDVKL >@ KDYH VKRZQ WKDW WKH VHFRQGLWHUDWHG PDQ\FHQWHU VHFXODU HTXDWLRQ LV FDSDEOH RI JLYLQJ PRUH DFFXUDWH UHVXOWV WKDQ FDQ EH REWDLQHG ZLWK WKH ILUVWRUGHU VHFXODU HTXDWLRQ 7KLV KLJKHU DFFXUDF\ UHVXOWHG IURP WKH IDFW WKDW LQ HYDOXDWLQJ WKH PDWUL[ .ð .RJD DQG 0DW VXKDVKL PDGH XVH RI VXP UXOHV ZKLFK LPSOLFLWO\ LQYROYHG EDVLV IXQFWLRQV ZKLFK ZHUH QRW SUHVHQW LQ WKHLU WUXQFDWHG EDVLV VHW 7KH LPSUHVVLYHO\ DFFXUDWH UHVXOWV RI RI D FDOFXODWLRQ RQ E\ WKHVH DXWKRUV DUH VKRZQ LQ 7DEOH :KHQ i = EHFRPHV (TXDWLRQ FDQ DOVR EH H[SUHVVHG LQ WKH IRUP DQG DQDORJRXVO\ WKH L
VHFXODU HTXDWLRQ
&+$37(5 ,7(5$7,21 2) 7+( :$9( (48$7,21
FDQ EH H[SUHVVHG LQ WKH IRUP
&RPELQLQJ DQG ZH REWDLQ \HW DQRWKHU VHFXODU HTXDWLRQ $OO WKHVH DOWHUQDWLYH VHFXODU HTXDWLRQV FRQWDLQ WKH VDPH LQIRUPDWLRQ ZKHQ WKH EDVLV VHW LV FRPSOHWH EXW ZKHQ WKH EDVLV VHW LV WUXQFDWHG WKH\ GLIIHU IURP HDFK RWKHU DQG ZH FDQ DVN ZKLFK RI WKH SRVVLEOH VHFXODU HTXDWLRQV WKHQ JLYHV WKH EHVW DSSUR[LPDWH VROXWLRQV ,W WXUQV RXW WKDW HTXDWLRQ \LHOGV WKH PRVW DFFXUDWH VROXWLRQV ZKHQ WKH EDVLV VHW LV WUXQFDWHG 6RPH XQGHUVWDQGLQJ RI WKLV IDFW PD\ EH REWDLQHG E\ FRQVLGHULQJ WKH PDQ\FHQWHU RQHHOHFWURQ SUREOHP LQ GLUHFW VSDFH
7KH PDQ\FHQWHU SUREOHP LQ GLUHFW VSDFH :H ZRXOG OLNH WR VROYH WKH RQHHOHFWURQ ZDYH HTXDWLRQ ZKHUH Y[ LV WKH PDQ\FHQWHU QXFOHDU DWWUDFWLRQ SRWHQWLDO VKRZQ LQ HTXDWLRQ 7R GR WKLV ZH FDQ H[SDQG WKH ZDYH IXQFWLRQ LQ WHUPV RI K\GURJHQOLNH 6WXUPLDQ EDVLV IXQFWLRQV ORFDWHG RQ WKH YDULRXV FHQWHUV ZKHUH
VWDQGV IRU WKH VHW RI LQGLFHV ^D Q OP` DQG ZKHUH
7KH PRPHQWXPVSDFH EDVLV IXQFWLRQV VKRZQ LQ HTXDWLRQ DUH WKH )RXULHU WUDQVIRUPV RI WKH GLUHFWVSDFH EDVLV IXQFWLRQV VKRZQ LQ
6XEVWLWXWLQJ WKH H[SDQVLRQ LQWR WKH ZDYH HTXDWLRQ ZH REWDLQ 1H[W ZH PXOWLSO\ IURP WKH OHIW E\ D FRPSOH[ FRQMXJDWH IXQFWLRQ IURP WKH EDVLV VHW DQG LQWHJUDWH RYHU WKH HOHFWURQ¶V FRRUGLQDWHV 6LQFH LW IROORZV WKDW 7DNLQJ WKH )RXULHU WUDQVIRUP RI ZH REWDLQ
)LQDOO\ PDNLQJ XVH RI DQG ZH GHULYH WKH UHVXOW
/HW XV QH[W FRQVLGHU WKH UHPDLQLQJ PDWUL[ HOHPHQW LQ HTXDWLRQ
& + $ 3 7 ( 5 ,7(5$7,21 2) 7 + ( : $ 9 ( (48$7,21
/HWWLQJ VWDQG IRU WKH VHW RI LQGLFHV ^ Q O P ` DQG PDNLQJ XVH RI HTXDWLRQ ZH KDYH
,QVHUWLQJ WKHVH H[SDQVLRQV LQWR DQG PDNLQJ XVH RI WKH SRWHQWLDO ZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ ZH KDYH
)URP DQG ZH FDQ VHH WKDW WKH VHFXODU HTXDWLRQ FDQ EH ZULWWHQ LQ WKH IRUP ZKLFK LV LGHQWLFDO ZLWK )URP ZH FDQ DOVR VHH WKDW WKH PDWUL[ .ð FDQ EH LQWHUSUHWHG LQ WHUPV RI QXFOHDU DWWUDFWLRQ LQWHJUDOV :KHQHYHU PHWKRGV IRU FDOFXODWLQJ WKHVH QXFOHDU DWWUDFWLRQ LQWHJUDOV DUH DYDLODEOH LW LV SUHIHUDEOH WR XVH WKHP IRU HYDOXDWLQJ .ð UDWKHU WKDQ HYDOXDWLQJ .ð E\ VTXDULQJ . ZLWK D WUXQFDWHG EDVLV VHW
$Q LOOXVWUDWLYH H[DPSOH 7R LOOXVWUDWH WKH LQFUHDVHG DFFXUDF\ JLYHQ E\ HTXDWLRQ LQ WKH FDVH RI D WUXQFDWHG EDVLV VHW ZH FDQ FRQVLGHU WKH WKH WZRFHQWHU FDVH ZKHUH
Then from (6.44), (4.53), and (6.46) and we have: (6.47) where R
X2
–
X1, and similarly, (6.48)
With the help of (6.44) and (5.74), we can also obtain the terms which are off-diagonal in the indices a1 and a:
(6.49) while from (5.14) and (5.15),
(6.50)
A curve representing =
as a function of R = s/kµ can be generated by substituting these values of K² and K into equation (6.32). Such a curve, with 3 basis functions on each center, is shown in Figure 6.1, compared with the nearly exact, results of Koga and Matsuhashi [190-192]. Comparison shows that equation (6.32) yields a more accurate result with 3 basis functions on each center than could be obtained from (6.30) with 15 basis functions on each center. The numerical values of the ground-state energies for obtained using equation (6.32) with 3 basis functions on each center are shown in column a of Table 6.1, compared with the extremely high-precision results of Koga and Matsuhashi (column b ) and the best available direct-space results (column c).
& + $ 3 7 ( 5 ,7(5$7,21 2) 7 + ( : $ 9 ( (48$7,21
)LJXUH 7KLV ILJXUH VKRZV WKH JURXQGVWDWH HQHUJ\ RI LQ +DUWUHHV DV D IXQFWLRQ RI WKH LQWHUQXFOHDU VHSDUDWLRQ LQ %RKUV FRP SDUHG ZLWK WKH QHDUO\H[DFW UHVXOWV RI .RJD DQG 0DWVXKDVKL >@ GRWV 7KH ILUVW H[FLWHGVWDWH HQHUJLHV DUH VKRZQ LQ WKH XSSHU FXUYH 7KH WZR FXUYHV ZHUH JHQHUDWHG E\ XVLQJ HTXDWLRQ ZLWK EDVLV IXQFWLRQV RQ HDFK FHQWHU
7DEOH 1XFOHDU DWWUDFWLRQ LQWHJUDOV XVHG LQ HTXDWLRQV DQG 7KH ]D[LV LV WDNHQ WR EH LQ WKH GLUHFWLRQ RI 5 DQG WKXV V V
&+$37(5 ,7(5$7,212)7+(:$9((48$7,21
7DEOH *URXQGVWDWH HOHFWURQLF HQHUJLHV RI LQ +DUWUHHV 7KH UHVXOWV RE WDLQHG XVLQJ HTXDWLRQ ZLWK EDVLV IXQFWLRQV RQ HDFK FHQWHU DUH VKRZQ LQ FROXPQ D 7KH QHDUO\H[DFW PRPHQWXPVSDFH UHVXOWV RI .RJD DQG 0DWVXKDVKL >@ DUH VKRZQ LQ FROXPQ E FRPSDUHG ZLWK WKH EHVW SRVLWLRQVSDFH UHVXOWV FROXPQ F
([HUFLVHV 6WDUWLQJ ZLWK HTXDWLRQV DQG GHULYH HTXDWLRQV DQG 6KRZ WKDW
7DEOH ZKHUH V
N5 DQG ZKHUH
:KDW LV WKH OLPLW RI WKH LQWHJUDO DV V
"
&RQVLGHU WZR QXFOHL ZLWK FKDUJHV = DQG = :ULWH GRZQ WKH PDWULFHV DQG IRU WKH FDVH ZKHUH WKH EDVLV VHW FRQVLVWV RI D VLQJOH V DWRPLF RUELWDO ORFDOL]HG RQ HDFK FHQWHU :K\ LV WKH VTXDUH RI WKH ILUVW PDWUL[ QRW HTXDO WR WKH VHFRQG"
&KDSWHU
02/(&8/$5 67850,$16 &RQVWUXFWLRQ RI PDQ\HOHFWURQ 6WXUPLDQV IRU PROHFXOHV ,Q &KDSWHU ZH VDZ WKDW LI
LV WKH H[WHUQDO SRWHQWLDO H[SHULHQFHG E\ D FROOHFWLRQ RI 1 HOHFWURQV WKHQ LW LV SRVVLEOH WR FRQVWUXFW D VHW RI PDQ\HOHFWURQ 6WXUPLDQ EDVLV IXQFWLRQV > @ VDWLVI\LQJ
SURYLGHG WKDW ZH DUH DEOH W R VROYH WKH RQHHOHFWURQ HTXDWLRQ
7KH SURGXFW
& + $ 3 7 ( 5 0 2 / ( & 8 / $ 5 67850,$16
ZLOO WKHQ EH D VROXWLRQ RI SURYLGHG WKDW WKH VXEVLGLDU\ FRQGLWLRQV
DQG
DUH IXOILOOHG $Q DQWLV\PPHWUL]HG ZDYH IXQFWLRQ EXLOW XS RI SURGXFWV RI WKH IRUP VKRZQ LQ ZLOO DOVR EH D VROXWLRQ RI 7KH IRUPDOLVP GLVFXVVHG LQ &KDSWHUV DQG SURYLGHV XV ZLWK D PHWKRG IRU VROYLQJ LQ WKH FDVH ZKHUH
LH WKH FDVH ZKHUH 9 [ UHSUHVHQWV WKH PDQ\FHQWHU &RXORPE DWWUDF WLRQ SRWHQWLDO SURGXFHG E\ D VHW RI QXFOHL ZLWK FKDUJHV =D ORFDWHG DW WKH SRVLWLRQV ;D 1RWLFH WKDW ZH KDYH UHLQWURGXFHG WKH LQGH[ M WR ODEHO WKH HOHFWURQV RI DQ 1HOHFWURQ V\VWHP :H QHJOHFWHG WR ZULWH WKLV LQGH[ LQ &KDSWHUV DQG ZKHUH ZH FRQFHQWUDWHG RQ WKH RQHHOHFWURQ PDQ\ FHQWHU SUREOHP :H KDYH DOVR UHLQWURGXFHG WKH ZHLJKWLQJ IDFWRU EN LQWR WKH RQHHOHFWURQ ZDYH HTXDWLRQ VLQFH WKH RQHHOHFWURQ RUELWDOV ZLOO QRZ EH XVHG WR EXLOG XS D PDQ\HOHFWURQ JHQHUDOL]HG 6WXUPLDQ EDVLV VHW :H OHW ZKHUH
DQG ZKHUH UHSUHVHQWV WKH VHW RI LQGLFHV ^ DQ OP ` 6XEVWLWXWLQJ LQWR ZH REWDLQ 0XOWLSO\LQJ E\
DQG LQWHJUDWLQJ ZH REWDLQ
7KHQ IURP HTXDWLRQV DQG ZH REWDLQ WKH VHFXODU HTXDWLRQ ZKHUH DQG
(TXDWLRQ LV LGHQWLFDO ZLWK HTXDWLRQ H[FHSW WKDW N KDV EHHQ UHSODFHG E\ +DYLQJ FRQVWUXFWHG D VHW RI PDQ\HOHFWURQ PROHF FKRVHQ LQ XODU 6WXUPLDQ EDVLV IXQFWLRQV ¡Y [ ZLWK WKH SDUDPHWHUV VXFK D ZD\ WKDW DOO IXQFWLRQV LQ WKH VHW FRUUHVSRQG WR WKH VDPH YDOXH RI ZH FDQ QRUPDOL]H WKHP DFFRUGLQJ WR WKH UHTXLUHPHQW $OWHUQDWLYHO\ WKH PDQ\HOHFWURQ 6WXUPLDQ EDVLV VHW PD\ EH QRUPDOL]HG LQ PRPHQWXP VSDFH E\ UHTXLULQJ WKDW
,I WKH IXQFWLRQV ¡Y [ DUH H[DFW VROXWLRQV WR HTXDWLRQ WKHQ WKH UHTXLUHPHQWV DQG DUH LGHQWLFDO EXW LI WKH VROXWLRQV DUH RQO\ DSSUR[LPDWH WKH GLUHFWVSDFH DQG PRPHQWXPVSDFH QRUPDOL]DWLRQ UHTXLUHPHQWV DUH RQO\ DSSUR[LPDWHO\ LGHQWLFDO +DYLQJ FRQVWUXFWHG RXU EDVLV VHW ZH FDQ XVH LW WR VROYH WKH PDQ\HOHFWURQ 6FKU|GLQJHU HTXDWLRQ
& + $ 3 7 ( 5 02/(&8/$5 67 850O$16
ZKHUH
,Q HTXDWLRQ 9 [ LV WKH PDQ\FHQWHU QXFOHDU DWWUDFWLRQ SRWHQWLDO GHILQHG E\ HTXDWLRQV DQG ZKLOH LV WKH LQWHUHOHFWURQ UHSXOVLRQ SRWHQWLDO /HWWLQJ
ZH REWDLQ WKH VHFXODU HTXDWLRQ ZKHUH
7KH IDFWRU ZKLFK DSSHDUV LQ HTXDWLRQ FDQ EH UHZULWWHQ E\ PHDQV RI WKH VXEVLGLDU\ FRQGLWLRQV DQG 7KXV WKH VHFXODU HTXDWLRQ EHFRPHV 7KH WHUP UHSUHVHQWLQJ WKH QXFOHDU DWWUDFWLRQ SRWHQWLDO LV DOUHDG\ GLDJ RQDO LQ DQG RQO\ WKH LQWHUHOHFWURQ UHSXOVLRQ WHUP UHPDLQV WR EH GLDJRQDOL]HG
$Q LOOXVWUDWLYH H[DPSOH $V D VLPSOH H[DPSOH LOOXVWUDWLQJ WKH PHWKRG GLVFXVVHG DERYH ZH FDQ FRQVLGHU WKH PROHFXOH + LQ WKH DSSUR[LPDWLRQ ZKHUH RXU HOHFWURQ 6WXUPLDQ EDVLV VHW FRQVLVWV RI WKH GHWHUPLQHQWLDO ZDYH IXQFWLRQV
ZKHUH DQG ZKHUH LV WKH VROXWLRQ WR ZKLOH LV WKH VROXWLRQ :H EHJLQ E\ FRQVWUXFWLQJ WKH PDWULFHV .ð DQG . XVLQJ WKH PHWKRGV GLVFXVVHG LQ &KDSWHU $V ZH VDZ WKH PDWUL[ HOHPHQWV DUH IXQFWLRQV RI WKH SDUDPHWHU V = N5 ZKHUH 5 LV WKH LQWHUQXFOHDU VHSDUDWLRQ&KRRVLQJ D YDOXH RI V ZH WKHQ VROYH HTXDWLRQ DQG REWDLQ EJ DQG EX IRU WKH JHUXGH DQG XQJHUXGH VROXWLRQV DV ZHOO DV WKH FRHIILFLHQWV DQG ,I ZH FKRRVH WR QRUPDOL]H RXU EDVLV VHW LQ PRPHQWXP VSDFH WKHQ HTXDWLRQ UHTXLUHV WKDW )URP WKH VXEVLGLDU\ FRQGLWLRQ DQG IURP WKH IDFW WKDW E = N = ZH KDYH
DQG
8VLQJ DQG WKH IDFW WKDW ZH FDQ UHZULWH LQ WKH IRUP
& + $ 3 7 ( 5 02/(&8/$5 67850,$16
7KH ILUVW LQWHJUDO LQ LV HDV\ WR HYDOXDWH VLQFH &RPELQLQJ DQG ZH REWDLQ ZKHUH WKH PDWUL[ & LV DVVXPHG WR EH XQLWDU\ 6LPLODUO\ ZKHUH
,Q HTXDWLRQ ZH KDYH PDGH XVH RI WKH UHODWLRQVKLS /LNH WKH 6KLEX\D:XOIPDQ LQWHJUDOV WKH 6WXUPLDQ RYHUODS LQWHJUDOV VKRZQ LQ HTXDWLRQ FDQ EH HYDOXDWHG E\ PHDQV RI HTXDWLRQV DQG VLQFH ZKHUH 7KXV ZH DUH DEOH WR REWDLQ WKH HOHPHQWV RI WKH PDWUL[ 0 DV IXQFWLRQV RI WKH SDUDPHWHU V N5 DQG WKH QRUPDOL]DWLRQ FRQVWDQWV FDQ EH IRXQG E\ PHDQV RI WKH UHODWLRQ
.QRZLQJ WKH EDVLV IXQFWLRQV ZH FDQ VROYH WKH 6WXUPLDQ VHFXODU HTXD WLRQV
ZKHUH LV WKH PDWUL[ RI LQWHUHOHFWURQ UHSXOVLRQ LQWHJUDOV -XVW DV LQ WKH FDVH RI DWRPV WKLV PDWUL[ WXUQV RXW WR EH LQGHSHQGHQW RI 3 DQG LQ IDFW LW GHSHQGV RQO\ RQ V +DYLQJ FKRVHQ D YDOXH RI V ZH FDQ ILQG WKH FRUUHVSRQGLQJ YDOXH RI S E\ VROYLQJ 7KH YDOXHV RI HQHUJ\ DQG LQWHUQXFOHDU VHSDUDWLRQ FDQ EH IRXQG IURP WKH UHODWLRQVKLSV DQG 5 VN %\ UHSHDWLQJ WKLV SURFHGXUH IRU PDQ\ YDOXHV RI V ZH FDQ ILQG WKH HQHUJ\ DQG ZDYH IXQFWLRQ RI WKH PROHFXOH DV IXQFWLRQV RI 5
& + $ 3 7 ( 5 02/(&8/$5 67850,$16 7DEOH 6WXUPLDQ RYHUODS LQWHJUDOV
7DEOH
& + $ 3 7 ( 5 02/(&8/$5 67850,$16
Exercises &DOFXODWH GHILQLWLRQ
XVLQJ 7DEOH DQG WKH
DQG
8VH WKH UHVXOWV RI ([HUFLVH W R FDOFXODWH WKH 6WXUPLDQ RYHUODS LQWHJUDO
&DOFXODWH WKH LQWHJUDO , RI ([HUFLVH XVLQJ WKH HOOLSVRLGDO FRRU GLQDWHV U D DQG ¡ ZKHUH [M [M DQG [M R [M 5 DQG ZKHUH ¡ KDV LWV XVXDO PHDQLQJ ,Q HOOLSVRLGDO FRRUGLQDWHV WKH YROXPH HOHPHQW LV JLYHQ E\ –
&RPSDUH \RXU DQVZHU ZLWK WKH UHVXOWV RI ([HUFLVH &RXOG HOOLSVRLGDO FRRUGLQDWHV EH XVHG WR FDOFXODWH 6KLEX\D:XOIPDQ LQ WHJUDOV"
Chapter 8
RELATIVISTIC EFFECTS Relativistic hydrogenlike Sturmians 7KH 'LUDF HTXDWLRQ IRU DQ HOHFWURQ PRYLQJ LQ WKH &RXORPE ILHOG RI D QXFOHXV ZLWK FKDUJH E LV JLYHQ LQ WKH FODPSHG QXFOHXV DSSUR[LPDWLRQ E\ >@
ZKHUH DQG ,Q HTXDWLRQ PDWULFHV
LV D YHFWRU ZKRVH FRPSRQHQWV DUH WKH 3DXOL VSLQ
ZKLOH , LV D x XQLW PDWUL[ ,I ZH OHW ^E` EH D VHW RI SDUDPHWHUV HVSHFLDOO\ FKRVHQ VR WKDW DOO RI WKH IXQFWLRQV LQ WKH VHW FRUUHVSRQG WR WKH VDPH YDOXH RI WKH UHODWLYLVWLF HQHUJ\ >@ WKHQ WKH VHW RI IXQFWLRQV [[ PLJKW EH FDOOHG D UHODWLYLVWLF K\GURJHQOLNH 6WXUPLDQ EDVLV VHW
&+$37(5 5(/$7,9,67,& ())(&76
7KH FRPSRQHQW VROXWLRQV RI FDQ EH ZULWWHQ LQ WKH IRUP
ZKHUH
M
–
DQG ZKHUH WKH IXQFWLRQV >@
DUH VSKHULFDO VSLQRUV EXLOW XS IURP VSKHULFDO KDUPRQLFV DQG FRPSRQHQW VSLQRUV FRPELQHG ZLWK DSSURSULDWH &OHEVFK*RUGDQ FRHIILFLHQWV 7KH VSKHULFDO VSLQRUV DUH VLPXOWDQHRXV HLJHQIXQFWLRQV RI -ð /ð DQG -] ZKHUH
DQG ZKHUH M O DQG 0 DUH WKH TXDQWXP QXPEHUV ODEHOLQJ WKH HLJHQIXQF WLRQV RI WKH WKUHH RSHUDWRUV :KHQ M O
ZKLOH ZKHQ M = O
–
1
7KH UDGLDO IXQFWLRQV FRUUHVSRQGLQJ WR WKH ODUJH DQG VPDOO FRPSRQHQWV RI DUH
DQG
ZKHUH
DQG ZKHUH
LV D FRQIOXHQW K\SHUJHRPHWULF IXQFWLRQ
7KH HQHUJLHV RI WKH UHODWLYLVWLF K\GURJHQOLNH 6WXUPLDQV DUH UHODWHG WR WKH HIIHFWLYH QXFOHDU FKDUJHV E E\
&+$37(5 5(/$7,9,67,& ())(&76
/LNH WKH QRQUHODWLYLVWLF K\GURJHQOLNH 6WXUPLDQV WKH UHODWLYLVWLF IXQF WLRQV VKRZQ DERYH REH\ D SRWHQWLDOZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ :H FDQ VHH WKLV LQ WKH IROORZLQJ ZD\ 0DNLQJ XVH RI WKH VHOIDGMRLQWQHVV RI WKH RSHUDWRU ' HTXDWLRQ ZH FDQ ZULWH
ZKHUH [ [ DQG DUH WZR VROXWLRQV WR %\ PXOWLSO\LQJ E\ WKH DSSURSULDWH IXQFWLRQV LQWHJUDWLQJ RYHU FRRUGLQDWHV DQG VXEWUDFWLQJ WKH VHFRQG HTXDWLRQ LQ IURP WKH ILUVW ZH FDQ VKRZ WKDW >@ DQG WKHUHIRUH LI E
,I ZH FRPELQH WKLV ZHLJKWHG RUWKRJRQDOLW\ SURSHUW\ ZLWK UHVSHFW WR WKH SULQFLSDO TXDQWXP QXPEHUV ZLWK WKH RUWKRQRUPDOLW\ SURSHUWLHV RI WKH VSKHULFDO VSLQRUV ZH FDQ ZULWH
ZKHUH ZH KDYHQRUPDOL]HG RXU EDVLV VHW LQ VXFK D ZD\ WKDW 7KH UHODWLYLVWLF K\GURJHQOLNH 6WXUPLDQ EDVLV IXQFWLRQV FDQ EH XVHG WR EXLOG XS VROXWLRQV WR WKH 'LUDF HTXDWLRQ LQ D QRQ&RXORPE SRWHQWLDO ,I ZH ZLVK WR VROYH WKH HTXDWLRQ
ZH FDQ UHSUHVHQW WKH ZDYH IXQFWLRQ DV D OLQHDU FRPELQDWLRQ RI LVRHQHU JHWLF VROXWLRQV WR HTXDWLRQ
6XEVWLWXWLQJ LQWR ZH REWDLQ
,I ZH QRZ PDNH XVH RI ZH FDQ UHZULWH LQ WKH IRUP 7KH QH[W VWHS LV WR PXOWLSO\ IURP WKH OHIW E\ DQ DGMRLQW IXQFWLRQ IURP RXU UHODWLYLVWLF 6WXUPLDQ EDVLV VHW DQG WR LQWHJUDWH RYHU WKH FRRU GLQDWHV PDNLQJ XVH RI WKH SRWHQWLDOZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ 7KLV JLYHV XV D VHFXODU HTXDWLRQ RI WKH IRUP ZKHUH
:H FDQ VROYH WKH 6WXUPLDQ VHFXODU HTXDWLRQ LQ WKH IROORZLQJ ZD\ )LUVW ZH SLFN D YDOXH RI :H WKHQ FDOFXODWH YDOXHV RI E QRUPDOL]H WKH EDVLV IXQFWLRQV DQG ZH FDOFXODWH 7KH QH[W VWHS LV WR GLDJRQDOL]H WKH PDWUL[ 7KLV JLYHV XV D VSHFWUXP RI YDOXHV DQG KHQFH D VSHFWUXP RI YDOXHV IRU ZKLFK WKH FKRVHQ LV WKH UHODWLYLVWLF HQHUJ\ RI WKH V\VWHP 2QH RI WKHVH YDOXHV FRUUHVSRQGV WR WKH JURXQG VWDWH RI WKH V\VWHP DQRWKHU WR WKH ILUVW H[FLWHG VWDWH DQG VR RQ :H FDQ UHSHDW WKLV SURFHGXUH IRU RWKHU YDOXHV RI DQG ZH FDQ FRQVWUXFW E\ LQWHUSRODWLRQ D VHW RI FXUYHV VKRZLQJ IRU WKH JURXQG VWDWH WKH ILUVW H[FLWHG VWDWH DQG DOVR IRU KLJKHU VWDWHV 6XFK D VHW RI FXUYHV LV VKRZQ LQ )LJXUH IRU WKH FDVH ZKHUH = Hð= DQG
&+$37(5 5(/$7,9,67,& ())(&76
Figure 8.1:7KLV ILJXUH VKRZV WKH JURXQG VWDWH DQG WKH ILUVW IHZ H[FLWHG VWDWHV ZLWK O DQG M IRU DQ HOHFWURQ PRYLQJ LQ WKH VFUHHQHG &RXORPE SRWHQWLDO VKRZQ LQ HTXDWLRQ 7KH UHODWLYLVWLF HQHUJLHV IURP ZKLFK WKH HOHFWURQ¶V UHVW HQHUJ\ KDV EHHQ VXEWUDFWHG DUH H[SUHVVHG LQ +DUWUHHV DQG WKH\ DUH VKRZQ DV IXQFWLRQV RI = 7KH ILJXUH LV WDNHQ IURP $YHU\ DQG $QWRQVHQ UHIHUHQFH >@
Relativistic many-electron Sturmians ,I ZH ZLVK WR FRQVWUXFW UHODWLYLVWLF PDQ\HOHFWURQ 6WXUPLDQ EDVLV IXQF WLRQV ZH PXVW UHLQWURGXFH DQ LQGH[ M WR ODEHO WKH HOHFWURQV LQ DQ 1 HOHFWURQ V\VWHP 7KXV DQG EHFRPH UHVSHFWLYHO\ ZKHUH ZH KDYH OHW E
DQG
DQG ZKHUH
LV JLYHQ E\ ,I ZH OHW
DQG WKHQ WKH IXQFWLRQ ZLOO VDWLVI\ SURYLGHG WKDW EHFDXVH
&+$37(5 5(/$7,9,67,& ())(&76
$Q DQWLV\PPHWUL]HG IXQFWLRQ WR VDWLVI\ ,I ZH OHW
=
FDQ DOVR EH VHHQ
WKHQ WKH 'LUDF&RXORPE HTXDWLRQ IRU DQ 1HOHFWURQ DWRP ZLWK QXFOHDU FKDUJH = FDQ EH ZULWWHQ LQ WKH IRUP
,Q RUGHU WR VROYH ZH H[SDQG WKH ZDYH IXQFWLRQ LQ WHUPV RI RXU 1HOHFWURQ 6WXUPLDQ EDVLV VHW
6XEVWLWXWLQJ LQWR PDNLQJ XVH RI DQG WDNLQJ WKH VFDODU SURGXFW ZLWK DQ DGMRLQW IXQFWLRQ LQ RXU EDVLV VHW ZH REWDLQ
:H QRZ OHW
DQG ZH QRUPDOL]H RXU EDVLV VHW LQ VXFK D ZD\ WKDW
$ SRWHQWLDOZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ FDQ WKHQ EH HVWDEOLVKHG IURP WKH VHOIDGMRLQWQHVV RI WKH RSHUDWRU > ' ± ( @ LQ D PDQQHU VLPLODU WR HTXDWLRQV :
7KXV ZH REWDLQ WKH VHFXODU HTXDWLRQ
,Q RUGHU W R VROYH WKHVH HTXDWLRQV ZH EHJLQ E\ SLFNLQJ D YDOXH RI ( DQG D VHW RI FRQILJXUDWLRQV Y ^ï ïï` 7KHQ IRU HDFK FRQILJXUDWLRQ LQ RXU EDVLV VHW ZH ILQG WKH YDOXH RI IRU ZKLFK LV VDWLVILHG 7KLV FDQ EH GRQH E\ FRQVWUXFWLQJ D JUDSK RI DQG LQWHUSRODWLQJ XVLQJ IRU H[DPSOH 0DWKHPDWLFD :H WKHQ ILQG WKH VHW RI RQHHOHFWURQ DQG -Y DWRPLF RUELWDOV ZKLFK VDWLVI\ DQG ZH FRQVWUXFW 'LDJRQDOL]DWLRQ RI WKHQ \LHOGV D VHW RI = YDOXHV IRU ZKLFK WKH VHFXODU HTXDWLRQ LV VDWLVILHG DQG WKH VPDOOHVW RI WKHVH YDOXHV FRUUHVSRQGV WR WKH JURXQG VWDWH %\ UHSHDWLQJ WKLV SURFHGXUH IRU RWKHU YDOXHV RI ( ZH FDQ REWDLQ WKH HQHUJ\ DQG ZDYH IXQFWLRQ RI WKH DWRP DV IXQFWLRQV RI = DV LOOXVWUDWHG LQ 7DEOH
The relativistic many-center one-electron problem ,Q &KDSWHU ZH GLVFXVVHG WKH XVH RI PDQ\FHQWHU PDQ\HOHFWURQ 6WXU PLDQ EDVLV VHWV ,W LV LQWHUHVWLQJ WR DVN ZKHWKHU DQDORJRXV PHWKRGV FDQ EH XVHG IRU UHODWLYLVWLF FDOFXODWLRQV RQ PROHFXOHV 7R DQVZHU WKLV TXHV WLRQ OHW XV EHJLQ E\ FRQVLGHULQJ WKH PDQ\FHQWHU RQHHOHFWURQ 'LUDF HTXDWLRQ ZKHUH ' M LV GHILQHG E\ DQG :H FDQ WU\ WR EXLOG XS WKH PROHFXODU RUELWDO RI WKH IRUP
IURP EDVLV IXQFWLRQV
ZKHUH WLRQV
VWDQGV IRU WKH VHW RI LQGLFHV ^D Q M , 0` DQG ZKHUH WKH IXQF DUH VROXWLRQV WR
&+$37(5 5(/$7,9,67,& ())(&76
7KH FRQVWDQWV DUH FKRVHQ LQ VXFK D ZD\ WKDW DOO WKH IXQFWLRQV [Q M O 0 LQ WKH RQHHOHFWURQ EDVLV VHW FRUUHVSRQG WR WKH VDPH YDOXH RI )URP DQG LW IROORZV WKDW
,I ZH OHW
WKHQ ZLWK WKH KHOS RI HTXDWLRQ FDQ EH UHZULWWHQ LQ WKH IRUP
0XOWLSO\LQJ IURP WKH OHIW E\ DQ DGMRLQW IXQFWLRQ IURP WKH EDVLV VHW DQG LQWHJUDWLQJ ZH REWDLQ WKH VHFXODU HTXDWLRQ
,I ZH KDYH D PHDQV RI HYDOXDWLQJ WKH PDQ\FHQWHU QXFOHDU DWWUDFWLRQ LQWHJUDOV ZKLFK DSSHDU LQ WKHQ ZH FDQ SURFHHG DV IROORZV :H EHJLQ E\ FKRRVLQJ D YDOXH RI 7KH FRQVWDQWV EQMO DUH WKHQ GHWHUPLQHG E\ LQYHUVLRQ RI WKH UHODWLRQVKLS
6ROXWLRQ RI WKHQ GHWHUPLQHV WKH YDOXH RI ZKLFK FRUUHVSRQGV WR WKH FKRVHQ YDOXH RI IRU WKH JURXQG VWDWH 2WKHU YDOXHV RI FRUUHVSRQG WR WKH FKRVHQ IRU WKH H[FLWHG VWDWHV %\ UHSHDWLQJ WKLV SURFHGXUH ZH DUH DEOH WR REWDLQ DV D IXQFWLRQ RI DV ZHOO DV WKH FRUUHVSRQGLQJ PROHFXODU RUELWDOV ERWK IRU WKH JURXQG VWDWH DQG IRU WKH H[FLWHG VWDWHV
Relativistic many-electron molecular Sturmians 6LQFH ZH FDQ VROYH E\ WKH PHWKRG MXVW GHVFULEHG LW IROORZV WKDW LI ZH OHW DQG WKHQ IRU HDFK FRQILJXUDWLRQ Y ^ ï ïï ` ZH FDQ ILQG ( DV D IXQF WLRQ RI 7KH SURGXFW VKRZQ LQ LV D VROXWLRQ WR
ZKHUH ' LV GHILQHG E\ DQG :H FDQ VHH WKDW LW LV D VROXWLRQ EHFDXVH IURP DQG ZH KDYH
$Q DQWLV\PPHWUL]HG SURGXFW IXQFWLRQ ZLOO DOVR VDWLVI\ 7KXV ZH DUH DEOH WR FRQVWUXFW EDVLV VHWV ZKLFK DUH WKH UHODWLYLVWLF DQDORJV RI WKH PDQ\HOHFWURQ PROHFXODU 6WXUPLDQV GLVFXVVHG LQ &KDSWHU &KRRVLQJ D VHW RI IXQFWLRQV ^¡Yx `DOO RI ZKRVH PHPEHUV FRUUHVSRQG WR WKH VDPH YDOXH RI ( ZH FDQ XVH WKHP WR EXLOG XS VROXWLRQV WR WKH PDQ\FHQWHU 'LUDF&RXORPE HTXDWLRQ ZKHUH 9ï [ LV WKH LQWHUHOHFWURQ UHSXOVLRQ SRWHQWLDO VKRZQ LQ HTXDWLRQ :LWK WKH GHILQLWLRQV JLYHQ LQ HTXDWLRQV WKH VHFXODU HTXDWLRQ EHFRPHV
&+$37(5 5(/$7,9,67,& ())(&76
)RU HDFK YDOXH RI ( VROXWLRQ RI JLYHV XV YDOXHV RI EHORQJLQJ WR WKH JURXQG VWDWH DQG WR H[FLWHG VWDWHV RI WKH V\VWHP %\ UHSHDWLQJ WKH SURFHGXUH DQG E\ LQWHUSRODWLQJ ZH FDQ ILQG WKH VROXWLRQV FRUUHVSRQGLQJ ERWK IRU WKH JURXQG VWDWH RI WKH V\VWHP DQG IRU WKH H[FLWHG WR VWDWHV
Table 8.1: 7KLV WDEOH VKRZV UHODWLYLVWLF DQG QRQUHODWLYLVWLF YDOXHV RI WKH JURXQGVWDWH HQHUJLHV IRU WKH HOHFWURQ LVRHOHFWURQLF VHULHV RI LRQV IRU VHYHUDO YDOXHV RI WKH QXFOHDU FKDUJH = 9DOXHV REWDLQHG XVLQJ RQO\ RQH FRQILJXUDWLRQ DUH VKRZQ LQ WKH FROXPQ ODEHOHG (UHO O $ IXUWKHU LP SURYHPHQW FDQ EH REWDLQHG E\ DGGLQJ WKH FRQILJXUDWLRQ W R WKH EDVLV VHW DQG WKHVH WZRFRQILJXUDWLRQ HQHUJLHV DUH VKRZQ LQ WKH FROXPQ ODEHOHG (UHO 7KH FROXPQ ODEHOHG (UHO VKRZV WKH UHVXOWV RI D PXFK PRUH HODERUDWH FDOFXODWLRQ E\ 3ODQWH -RKQVRQ DQG 6DSLUVWHLQ >@ 7KH QRQUHODWLYLVWLF YDOXHV (QU DQG ( Q U FRUUHVSRQG UHVSHFWLYHO\ WR ZKHUH WKH RQHFRQILJXUDWLRQ 6WXUPLDQ DSSUR[LPDWLRQ (QU S = DQG WR &OHPHQWL¶V +DUWUHH)RFN YDOXHV >@ –
&+$37(5 5(/$7,9,67,& ())(&76
Exercises 6KRZ WKDW IRU M DQG 0 WKH FRPSRQHQW VROXWLRQ WR WKH K\GURJHQOLNH 'LUDF HTXDWLRQ FDQ EH ZULWWHQ LQ WKH IRUP
:KDW LV WKH IRUP RI WKH VROXWLRQ FRUUHVSRQGLQJ W R M DQG 0 ±O" /HWWLQJ E ILQG WKH YDOXHV RI N QU 1 DQG VROXWLRQV WR LQ WKH Q DQG Q VKHOOV
IRU WKH
7KH HQHUJLHV FDOFXODWHG LQ ([HUFLVH LQFOXGH WKH HOHFWURQ UHVW HQHUJ\ PFð DQG DUH H[SUHVVHG LQ XQLWV RI PFð 6XEWUDFW WKH UHVW HQHUJ\ IURP WKH FDOFXODWHG YDOXHV DQG H[SUHVV WKH UHVXOWV LQ +DUWUHHV
Appendix A: Generalized Slater-Condon rules $ VOLJKW FRPSOLFDWLRQ LQ WKH XVH RI PDQ\HOHFWURQ 6WXUPLDQ EDVLV IXQF WLRQV FRPHV IURP WKH IDFW WKDW RUWKRJRQDOLW\ EHWZHHQ RQHHOHFWURQ RU ELWDOV FDQQRW EH DVVXPHG ZKHQ RQH LV HYDOXDWLQJ PDWUL[ HOHPHQWV EH WZHHQ FRQILJXUDWLRQV FRUUHVSRQGLQJ WR GLIIHUHQW YDOXHV RI 2QH PXVW WKHQ XVH WKH JHQHUDOL]HG 6ODWHU&RQGRQ UXOHV /HW XV FRQVLGHU WZR IXQF WLRQV ¡Y DQG ¡Yï LQ RXU VHW RI PDQ\HOHFWURQ 6WXUPLDQ EDVLV IXQFWLRQV 7KHVH PLJKW IRU H[DPSOH EH WKH 6ODWHU GHWHUPLQDQWV
$ DQG
$ ,I WKHQ ZH FDQQRW DVVXPH WKDW WKH WZR 6ODWHU GHWHUPLQDQWV ¡Y DQG ¡Yï DUH EXLOW XS IURP PXWXDOO\ RUWKRQRUPDO RQHHOHFWURQ VSLQ RUELWDOV DQG ZH PXVW PDNH XVH RI WKH IRUPDOLVP RI JHQHUDOL]HG 6ODWHU &RQGRQ UXOHV LQ HYDOXDWLQJ LQWHUFRQILJXUDWLRQDO PDWUL[ HOHPHQWV 7KLV IRUPDOLVP ZDV GHYHORSHG E\ /|ZGLQ $PRV +DOO DQG RWKHUV >@ ZKR VKRZHG WKDW LW LV SRVVLEOH WR VLPSOLI\ WKH HYDOXDWLRQ RI LQWHU FRQILJXUDWLRQDO PDWUL[ HOHPHQWV E\ PHDQV RI WZR VHSDUDWH XQLWDU\ WUDQV IRUPDWLRQV RQH PL[LQJ WKH RUELWDOV RI WKH FRQILJXUDWLRQ Y DQG WKH RWKHU PL[LQJ WKH RUELWDOV RI WKH FRQILJXUDWLRQ Yï :KHQ WKH PDWUL[
$ LV LQ JHQHUDO QRW GLDJRQDO +RZHYHU ZH QRZ PDNH WKH XQLWDU\ WUDQV IRUPDWLRQV $ DQG
$ :H ZRXOG OLNH WR FKRRVH WKH WUDQVIRUPDWLRQ PDWULFHV 8 DQG : LQ VXFK D ZD\ WKDW
$
ZLOO EH GLDJRQDO 7KH DXWKRUV MXVW PHQWLRQHG >@ KDYH VKRZQ WKDW ZH FDQ GR WKLV E\ OHWWLQJ : EH WKH XQLWDU\ PDWUL[ ZKLFK GLDJR QDOL]HV LH WKH VROXWLRQ WR WKH VHFXODU HTXDWLRQ $ ,Q PDWUL[ QRWDWLRQ HTXDWLRQ $ FDQ EH UHZULWWHQ LQ WKH IRUP $ ZKHUH $ LV D GLDJRQDO PDWUL[ ZKRVH GLDJRQDO HOHPHQWV DUH FDQ DOVR ZULWH $ LQ WKH IRUP
$
6LQFH ZH
$
LW IROORZV WKDW WKH GLDJRQDO HOHPHQWV DUH SRVLWLYH GHILQLWH ,I WKH DUH DOVR QRQ]HUR ZH FDQ FRQVWUXFW WKH XQLWDU\ PDWUL[
8 6:$
$
,I VRPH RI WKH DUH ]HUR ZH FDQ UHRUGHU WKH FROXPQV LQ : VR WKDW WKH YDQLVKLQJ URRWV RFFXU LQ D EORFN D W WKH HQG 7KH XQLWDU\ WUDQVIRU PDWLRQ 8 FDQ WKHQ EH FRQVWUXFWHG VR WKDW LW FRQWDLQV D EORFN PL[LQJ DQG VDWLVI\LQJ $ WKH RUELWDOV FRUUHVSRQGLQJ WR QRQ]HUR YDOXHV RI 7KH UHPDLQGHU RI 8 FDQ WKHQ EH FRQVWUXFWHG LQ DQ\ ZD\ GHVLUHG SUR YLGHG WKDW WKH HQWLUH PDWUL[ LV XQLWDU\ 7KH XQLWDU\ WUDQVIRUPDWLRQV GHILQHG E\ $ DQG $ DUH MXVW ZKDW ZH QHHG WR PDNH 6 GLDJRQDO DQG ZH FDQ VHH WKDW WKLV LV WKH FDVH E\ WKH IROORZLQJ DUJXPHQW 7KH DGMRLQW RI $ LV $ ,I ZH VXEVWLWXWH $ DQG $ LQWR $ ZH REWDLQ
$ RU LQ PDWUL[ QRWDWLRQ $
6XEVWLWXWLQJ WKH DGMRLQW RI $ LQWR $ DQG PDNLQJ XVH RI $ ZH KDYH = = $ ZKLFK LV GLDJRQDO EHFDXVH $ LV GLDJRQDO 7KH DXWKRUV RI UHIHUHQFHV >@ DQG >@ ZHUH DEOH WR GHULYH JHQHUDOL]HG 6ODWHU&RQGRQ UXOHV LQ WKH WUDQVIRUPHG EDVLV ,Q RXU QRWDWLRQ WKHVH EHFRPH $
$
$
Appendix B: Coulomb and exchange integrals for atoms ,Q &KDSWHU HTXDWLRQV ZH PHQWLRQHG WKDW LQ RUGHU WR FRQVWUXFW WKH LQWHUHOHFWURQ UHSXOVLRQ PDWUL[ IRU DWRPV ZH PXVW EH DEOH WR HYDOXDWH LQWHJUDOV RI WKH IRUP
% ZKHUH
% DQG
%
,Q HTXDWLRQ % : DQG : DUH SURGXFWV RI VSKHULFDO KDUPRQLFV DQG DV ZH VKDOO VHH EHORZ RQO\ D IHZ RI WKH DQJXODU LQWHJUDOV DO DUH QRQ]HUR ,Q RUGHU WR HYDOXDWH WKH UDGLDO LQWHJUDOV ZH FDQ UHZULWH HTXDWLRQ % LQ WKH IRUP % (DFK RI WKH WZR WHUPV LQ % FDQ EH H[SUHVVHG LQ WHUPV RI DQ LQFRP SOHWH JDPPD IXQFWLRQ
% DQG
% ZKHUH
%
ZKLOH
% 7KH ILQDO LQWHJUDWLRQ RYHU GU FDQ EH SHUIRUPHG E\ PHDQV RI IRUPXODV IRU WKH LQWHJUDWLRQ RI LQFRPSOHWH JDPPD IXQFWLRQV ZKLFK FDQ EH IRXQG LQ WKH WDEOHV RI *UDGVKWH\Q DQG 5\VKLN >@ 7KH UHVXOW LV
% (TXDWLRQ % H[SUHVVHV WKH UDGLDO LQWHJUDO LQ WHUPV RI WKH K\SHUJH RPHWULF IXQFWLRQ GHILQHG E\ HTXDWLRQ DQG WKXV % JLYHV WKH LQWHJUDO LQ WHUPV RI DQ LQILQLWH VHULHV :H FDQ KRZHYHU WUDQVIRUP WKLV UHVXOW LQWR D SRO\QRPLDO E\ PHDQV RI WKH UHDOWLRQVKLS >@
% /HWWLQJ
% VR WKDW
% ZH FDQ WUDQVIRUP WKH ILUVW K\SHUJHRPHWULF IXQFWLRQ RI %
% DQG VLPLODUO\
% 7KXV ZH REWDLQ WKH UDGLDO LQWHJUDO LQ WHUPV RI D SRO\QRPLDO
% VLQFH LQ DOO FDVHV RI LQWHUHVW O ± M ± DQG O ± M ± DUH HLWKHU ]HUR RU HOVH QHJDWLYH LQWHJHUV 7KXV WKH VHULHV GHILQHG E\ HTXDWLRQ WHUPLQDWHV IRU ERWK WHUPV LQ % $ SDUWLFXODUO\ VLPSOH FDVH RFFXUV ZKHQ
%
,Q WKDW FDVH ERWK K\SHUJHRPHWULF IXQFWLRQV DUH HTXDO W R DQG WKH UDGLDO LQWHJUDO UHGXFHV W R % VR WKDW
%
7KH LQWHJUDOV IRU RWKHU YDOXHV RI M DQG M FDQ EH IRXQG E\ GLIIHUHQWLDWLQJ ERWK VLGHV RI % ZLWK UHVSHFW WR DQG
% DQG WKLV UHVXOW FDQ EH UHJDUGHG DV DQ DOWHUQDWLYH IRUP RI % :H PHQWLRQHG DERYH WKDW RQO\ D IHZ RI WKH DQJXODU LQWHJUDOV DO DUH QRQ ]HUR ,Q WKH FDVH RI &RXORPE LQWHJUDOV WKH\ WDNH RQ WKH IRUP % ZKLOH IRU H[FKDQJH LQWHJUDOV WKH\ KDYH WKH IRUP
6LQFH WKDW
.
=
% ZH FDQ VHH LPPHGLDWHO\ IURP % DQG % %
)RU RWKHU YDOXHV RI O LW LV KHOSIXO WR XVH WKH UHODWLRQVKLS % ZKLFK IROORZV IURP HTXDWLRQ ,Q HTXDWLRQ % WKH RSHUDWRU 2O LV D SURMHFWLRQ RSHUDWRU FRUUHVSRQGLQJ WR WKH DQJXODU PRPHQWXP TXDQWXP QXPEHU O )RU WKH SURMHFWLRQ WR EH QRQ]HUR 3O PXVW KDYH WKH VDPH SDULW\ DV : IURP ZKLFK LW IROORZV WKDW =
LI l = RGG
%
DQG WKDW %
)LQDOO\ WKH SURMHFWLRQ ZLOO EH ]HUR LI O H[FHHGV WKH RUGHU RI WKH KRPRJH QHRXV SRO\QRPLDO ZKLFK FDQ EH IRUPHG IURP :RU : E\ PXOWLSO\LQJ WKHVH DQJXODU IXQFWLRQV E\ WKH DSSURSULDWH SRZHU RI U 7KHUHIRUH
% DQG
% )RU QRQ]HUR FDVHV WKH KDUPRQLF SURMHFWLRQ IRUPDOLVP RI &KDSWHU PD\ EH XVHG WR HYDOXDWH WKH DQJXODU LQWHJUDOV DO $OWHUQDWLYHO\ WKHVH LQWHJUDOV PD\ EH HYDOXDWHG E\ PHDQV RI &OHEVFK*RUGDQ FRHIILFLHQWV XVLQJ WKH UHODWLRQVKLSV
% DQG
% ZKLFK IROORZ IURP HTXDWLRQ
Solutions to the exercises Exercise 1.1 8VH 7DEOH W R VKRZ WKDW WKH RQHHOHFWURQ K\GURJHQOLNH 6WXUPLDQ x- REH\V HTXDWLRQV
Solution
Exercise 1.2 6KRZ WKDW LI N = DQG N REH\ WKH RUWKRJRQDOLW\ UHODWLRQ
WKHQ
xM DQG
xM
Solution
)URP H[HUFLVH ,
ZKLOH
Exercise 1 . 3
6KRZ WKDW LI N N N WKHQ DQG SRWHQWLDOZHLJKWHG RUWKRQRUPDOLW\ UHODWLRQ
REH\ WKH
6ROXWLRQ
([HUFLVH 8VH HTXDWLRQV DQG WR HYDOXDWH WKH GLUHFWVSDFH K\GURJHQOLNH RUELWDOV X s Xs, Xs DQG
6ROXWLRQ
VR WKDW
)RU l
DQG
VR WKDW
([HUFLVH &DOFXODWH WKH LQWHJUDO LQ HTXDWLRQ DQG VKRZ WKDW LW \LHOGV WKH UHVXOW VKRZQ
Solution
Exercise 2.2 6WDUWLQJ ZLWK J FDOFXODWH WKH LQWHJUDOV J2 0 DQG J E\ GLIIHUHQWLDWLQJ ZLWK UHVSHFW WR kµ , DV VKRZQ LQ HTXDWLRQV DQG
Solution
Exercise 2.3 6WDUWLQJ ZLWK J XVH WKH UHFXUVLRQ UHODWLRQV RI HTXDWLRQ WR JHQ HUDWH J, J DQG J .
Solution
([HUFLVH 8VH WKH LQWHJUDOV LQ 7DEOH W R HYDOXDWH WKH )RXULHU WUDQVIRUPV RI 6KRZ WKDW WKH WKH GLUHFWVSDFH K\GURJHQOLNH RUELWDOV X s , Xs DQG WUDQVIRUPV FRUUHVSRQG WR WKH 6ROXWLRQV RI )RFN HTXDWLRQ
6ROXWLRQ
147
([HUFLVH Which of the following polynomials in a GGLPHQVLRQDO space are homogeneous? Which are harmonic? r is the hyperradius.) 1. [ ³ + [ ³ ¹ ² 2. [³ + [ ² ² ¹ 3. 2[ ¹³ + [³ ² 4. [³ – [ ³ ¹ ² 5. [ ³ B 3[ U ²/(G + 2) ¹ ¹ 6. [ ² [² [³ – U ²[ ² [ ³ /( G + 4) ¹
6ROXWLRQ KRPRJHQHRXV
KDUPRQLF
([HUFLVH 8VH HTXDWLRQ WR ILQG H[SUHVVLRQV DQDORJRXV WR IRU WKH KDU PRQLF GHFRPSRVLWLRQ RI D WKRUGHU SRO\QRPLDO
6ROXWLRQ :KHQ n
DQG v
EHFRPHV
:KHQ n DQG v EHFRPHV
:KHQ n
DQG v EHFRPHV
([HUFLVH 8VH HTXDWLRQ W R FDOFXODWH WKH QRUPDOL]DWLRQ IDFWRU LQ D GLPHQVLRQDO VSDFH IRU WKH K\SHUVSKHULFDO KDUPRQLF VKRZQ LQ HTXDWLRQ &RP SDUH WKLV UHVXOW ZLWK 7DEOH
6ROXWLRQ
)RU d
EHFRPHV
VR WKDW
([HUFLVH 6KRZ WKDW WKH K\SHUVSKHULFDO KDUPRQLFV ZLWK LQ 7DEOH IXOILOO WKH VXP UXOH RI HTXDWLRQ 6KRZ WKDW WKH\ DUH SURSHUO\ QRUPDO L]HG
Solution
From equation (3.49),
([HUFLVH Use equation (3.72) to show that
Solution
([HUFLVH 8VH HTXDWLRQV WR GHULYH HTXDWLRQ
6ROXWLRQ
([HUFLVH 8VH HTXDWLRQ W R JHQHUDWH WKH DVVRFLDWHG /DJXHUUH SRO\QRPLDOV RI 7DEOH
6ROXWLRQ
152
Exercise 4.3 From equation (4.38) and the associated Laguerre polynomials in Table 4.2, calculate the parabolic hydrogenlike orbitals shown in Table 4.3. Express these functions as linear combinations of
Solution Let t
kµ r. Then, since
= r + z and
= r–z
([HUFLVH &DOFXODWH WKH 6KLEX\D:XOIPDQ LQWHJUDOV DQG LQ WHUPV RI WKH XQLYHUVDO IXQFWLRQ E\ PHDQV RI HTXDWLRQ &RPSDUH \RXU UHVXOWV ZLWK WKRVH VKRZQ LQ 7DEOH ,V WKH LQWHJUDO UHDO"
6ROXWLRQ
7KH LQWHJUDO LV UHDO
([HUFLVH &DOFXODWH E\ PHDQV RI HTXDWLRQV 6KRZ WKDW WKH UHVXOW DJUHHV ZLWK 7DEOH DQG ([HUFLVH
6ROXWLRQ
([HUFLVH 8VH WR ZULWH GRZQ DQ DQJXODU LQWHJUDWLRQ WKHRUHP DQDORJRXV WR IRU WKH FDVH ZKHUH d
6ROXWLRQ
([HUFLVH 6WDUWLQJ ZLWK HTXDWLRQV DQG GHULYH HTXDWLRQV DQG
6ROXWLRQ
ZKHUH
^a, µ`
^a, n, l, m` DQG a
B ZKHUH 5 B ; ;
DQG VLPLODUO\
([HUFLVH 6KRZ WKDW
7DEOH ZKHUH V
DQG ZKHUH
:KDW LV WKH OLPLW RI WKH LQWHJUDO DV s
6ROXWLRQ /HW W
kµ [, V
kµ 5 DQG
"
7KHQ
([HUFLVH &RQVLGHU WZR QXFOHL ZLWK FKDUJHV Z DQG Z :ULWH GRZQ WKH PDWULFHV DQG IRU WKH FDVH ZKHUH WKH EDVLV VHW FRQVLVWV RI D VLQJOH s DWRPLF RUELWDO ORFDOL]HG RQ HDFK FHQWHU :K\ LV WKH VTXDUH RI WKH ILUVW PDWUL[ QRW HTXDO W R WKH VHFRQG"
6ROXWLRQ
158
The inequality K ² (K)² is due to the fact that the basis set is truncated, so that the sum
does not run over all possible values of
([HUFLVH Calculate
6ROXWLRQ
and
using Table 5.2 and the definition
159
([HUFLVH Use the results of Exercise 7.1 to calculate the Sturmian overlap integral
6ROXWLRQ
where s = kµ R.
([HUFLVH Calculate the integral I of Exercise 7.2 using the ellipsoidal coordinates = (ra + = (ra – rb) /R and ø where = [ j . [ j and = . (x j + 5) (x j + 5 ) and where ø has its usual meaning. In ellipsoidal coordinates, the volume element is given by
Compare your answer with the results of Exercise 7.2. Could ellipsoidal coordinates be used to calculate Shibuya-Wulfman integrals?
6ROXWLRQ
160
Ellipsoidal coordinates also offer an alternative method for evaluating Shibuya-Wulfman integrals.
Exercise 8.1 Show that for j = 1/2, l = 0, and M = 1/2, the 4-component solution to the hydrogenlike Dirac equation can be written in the form:
What is the form of the solution corresponding t o j = 1/2, l = 0, and M = –1/2?
Solution From (8.8) we have:
while from (8.9) with l = j – l = 1,
161 Therefore (8.5) yields
Similarly, when
= _ 1/2
Exercise 8.2 Letting bµ = 1, find the values of k , nr , to (8.1) in the n = 1 and n = 2 shells.
N , and
for the solutions
Solution From equations (8.12)-(8.15) and (8.19) we obtain:
Exercise 8.3 The energies calculated in Exercise 8.2 include the electron rest energy mc² and are expressed in units of mc². Subtract the rest energy from the calculated values, and express the results in Hartrees.
6ROXWLRQ ,Q RUGHU WR FRQYHUW IURP XQLWV RI mcð WR +DUWUHHV ZH PXVW PXOWLSO\ E\ ð 7KH UHVXOWLQJ HQHUJLHV
DUH
%LEOLRJUDSK\ $KOEHUJ 5 DQG /LQGQHU 3 The Fermi correlation for electrons in momentum space, - 3K\V % 9RO S $KOHQLXV7RUDQG/LQGQHU3HWHU Semiempirical MO wave functions in momentum space, - 3K\V % 9RO S $NKLH]HU $, DQG %HUHVWHWVNLL 9% 4XDQWXP (OHFWURG\ QDPLFV ,QWHUVFLHQFH 1HZ
$TXLODQWL9&DYDOOL6DQG*URVVL* Hyperspherical coordinates for molecular dynamics by the method of trees and the map ping of potential-energy surfaces for triatomic systems, - &KHP 3K\V9ROS $TXLODQWL 9 *URVVL * /DJDQi $ 3HOLNDQ ( DQG .ODU + A decoupling scheme for a 3-body problem treated by expansionns into hyperspherical harmonics. The hydrogen molecular ion,/HWW 1XRYR&LPHQWR9RO $TXLODQWL 9 *URVVL * DQG /DJDQi $ On hyperspherical mapping and harmonic expansions for potential energy surfaces- &KHP3K\V9ROS $TXLODQWL 9 /DJDQi $ DQG /HYLQH 5' &KHP 3K\V /HWW 9ROS $TXLODQWL 9 DQG &DYDOOL 6 &KHP 3K\V /HWW 9RO S $TXLODQWL 9 &DYDOOL 6 *URVVL * 5RVL 0 3HOOL]]DUL 9 6JDPHOORWWL $ DQG 7DUDQWHOOL ) &KHP 3K\V /HWW 9RO S $TXLODQWL 9 &DYDOOL 6 *URVVL * DQG $QGHUVRQ 5: - &KHP62& )DUDGD\7UDQV9ROS $TXLODQWL 9 %HQHYHQWH / *URVVL * DQG 9HFFKLRFDWWLYL ) Coupling schemes for atom-diatom interactions, and an adiabatic decoupling treatment of rotational temperature effects on glory VFDWWHULQJ-&KHP3K\V9RO $TXLODQWL9DQG*URVVL*Angular momentum coupling schemes in the quantum mechanical treatment of P-state atom collisions- &KHP3K\V9ROS $TXLODQWL9&DYDOOL6DQG*URVVL*7KHRU&KHP$FWD9RO S
$TXLODQWL 9 DQG &DYDOOL 6 )HZ %RG\ 6\VWHPV 6XSSO S $TXLODQWL9DQG*URVVL*/HWW1XRYR&LPHQWR9ROS $TXLODQWL 9 &DYDOOL 6 DQG 'H )D]LR ' Angular and hyperangular momentum coupling coefficients as Hahn polynomials,- 3K\V&KHP9ROS $TXLODQWL 9 &DYDOOL 6 &ROHWWL & DQG *URVVL * Alternative Sturmian bases and momentum space orbitals; an application to the hydrogen molecular ion, &KHP 3K\V 9RO S $TXLODQWL 9 &DYDOOL 6 DQG &ROHWWL & The d-dimensional hydrogen atom; hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets,&KHP3K\V9ROS $TXLODQWL 9 DQG $YHU\ - Generalized Potential Harmonics and Contracted Sturmians, &KHP 3K\V /HWWHUV 9RO S $YHU\ -RKQ DQG UPHQ 3HU-RKDQ ,QW - 4XDQWXP &KHP 9RO S $YHU\ -RKQ +\SHUVSKHULFDO +DUPRQLFV $SSOLFDWLRQV LQ 4XDQWXP 7KHRU\ .OXZHU $FDGHPLF 3XEOLVKHUV 'RUGUHFKW $YHU\ -RKQ Hyperspherical Sturmian Basis Functions an Reciprocal Space, LQ 1HZ 0HWKRGV LQ 4XDQWXP 7KHRU\ 7VLSLV &$ 3RSRY 96 +HUVFKEDFK '5 DQG $YHU\ -6 (GV .OXZHU 'RUGUHFKW $YHU\ -RKQ DQG $QWRQVHQ )UDQN A new approach to the quantum mechanics of atoms and small molecules, ,QW - 4XDQWXP &KHP6\PSRVLXPS $YHU\ -RKQ DQG $QWRQVHQ )UDQN Iteration of the Schrödinger equation, starting with Hartree-Fock wave functions, ,QW - 4XDQ WXP&KHP9ROS
$YHU\ -RKQ DQG $QWRQVHQ )UDQN 7KHRU &KLP $FWD 9RO S $YHU\-RKQDQG+HUVFKEDFK'XGOH\5Hyperspherical sturmian basis functions, ,QW - 4XDQWXP &KHP 9RO S $YHU\ -RKQ DQG :HQ =KHQ
%DOORW / DQG )DUEUH GH OD 5LSHOOH 0 Application of the hyperspherical formalism to trinucleon bound-state problems, $QQ 3K\V9RO S %DQGDU 0 DQG ,W]\NVHQ & Group theory and the H atom, Rev 0RG3K\V9ROSS %DQJ -0 DQG 9DDJHQ -6 The Sturmian expansion: a welldepth-method for orbitals in a deformed potential,=3K\V$9RO S %DQJ-0*DUHHY)*3LQNVWRQ:7DQG9DDJHQ-6 3K\V 5HS9ROS %DU\XGLQ / ( DQG 7HOQRY ' $ Sturmian expansion of the electron density deformation for 3d-metal ions in electric field, 9HVWQ/HQLQJU8QLY6HU )L] .KLP O S %DUHWW\ 5HLQDOGR ,VKLNDZD
168 56. Bransden, B.H.; Noble, C.J.; and Hewitt, R.N., On the reduction of momentum space scattering equations to Fredholm form, J Phys B: At, Mol Opt Phys, Vol 26 (16), p 2487-99, 1993. 57. Brion, C.E., Looking at orbitals in the laboratory: the experimental investigation of molecular wave functions and binding energies by electron momentum spectroscopy, Int J Quantum Chem, Vol 29 (5), p 1397-428, 1986. 58. Brink, D.M. and Satchler, G.R., Angular Momentum Oxford University Press, 1968. 59. Calais, J-L.; Defranceschi, M.; Fripiat, J.G. and Delhalle, J., Momentum space functions for polymers, J Phys: Condens Matter, Vol 4 (26), p 5675-91, 1992. 60. Calais, Jean-Louis, Fukutome classes in momentum space, Theor Chim Acta, Vol 86 (1-2), p 137-47, 1993. 61. Calais, Jean-Louis, Orthogonalizationin momentum space, Int J Quantum Chem, Vol 35 (6), p 735-43, 1989. 62. Calais, Jean-Louis, Pathology of the Hartree-Fock method in configuration and momentum space, J Chim Phys Phys-Chim Biol, Vol 84 (5), p 601-6, 1987. 63. Chen, Joseph Cheng Yih and Ishihara, Takeshi, Hydrogenic- and Sturrnian-functionexpansions in three-body atomic problems, Phys Rev, Vol 186 (1), p 25-38, 1969. 64. Chiu, T.W., Non-relativistic bound-state problems in momentum space, J Phys A: Math Gen, Vol 19 (13), p 2537-47, 1986. 65. Cinal, Marek, Energy functionals in momentum space: exchange energy, quantum corrections, and the Kohn-Sham scheme, Phys Rev A, Vol 48 (3), p 1893-902, 1993. 66. Clark, Charles W. and Taylor, K.T., The quadratic Zeeman effect in hydrogen Rydberg series: application of Sturmian functions, J Phys B, Vol 15 (8), p 1175-93, 1982.
169 67. Clementi, E., J. Chem. Phys. Vol 38, p 996, 1963. 68. Cohen, L., Generalized phase-space distribution functions, J Math Phys, Vol 7, 781-786, 1966. 69. Cohen, Leon and Lee, Chongmoon, Correlation hole and physical properties: a model calculation, Int J Quantum Chem, Vol 29 (3), p 407-24, 1986. 70. Coletti, Cecilia, Struttura Atomica e Moleculare Come Rottura, della Simmetria Ipersferica, Ph.D. thesis, Chemistry Department, University of Perugia, Italy, 1998. 71. Collins, L.A. and Merts, A.L., Atoms in strong, oscillating electric fields: momentum-space solutions of the time-dependent, three dimensional Schrödinger equation, J Opt Soc Am B: Opt Phys, Vol 7 (4), p 647-58, 1990. 72. Coulson, C.A., Momentum distribution in molecular systems. I. Single bond. III. Bonds of higher order, Proc Camb Phys Soc, Vol 37, p 55, p 74, 1941. 73. Coulson, C.A. and Duncanson, W.E., Momentum distribution in molecular systems. II. C and C-H bond, Proc Camb Phys Soc, Vol 37, p 67, 1941.
74. Dahl, Jens Peder, The Wigner function, Physica A, Vol 114, p 439, 1982. 75. Dahl, Jens Peder, On the group of translations and inversions of phase space and the Wigner function, Phys Scripta, Vol 25, 499-503, 1982. 76. Dahl, Jens Peder, Dynamical equations for the Wigner functions, in Energy Storage and Redistribution in Molecules, p 557571, Ed. J. Hinze, Plenum, New York, 1983. 77. Dahl, Jens Peder, The phase-space representation of quantum mechanics and the Bohr-Heisenberg correspondence principle, in
Semiclassical Description of Atomic and Nuclear Collisions, S (GV %DQJ - DQG 'H %RHU - 1RUWK +ROODQG $PVWHUGDP 'DKO-HQV3HGHU7KHGXDOQDWXUHRISKDVHVSDFHUHSUHVHQWDWLRQV LQ Classical and Quantum Systems, S (GV 'RHEQHU +' DQG6FKURHFN) -U:RUOG6FLHQWLILF 6LQJDSRUH 'DKO -HQV 3HGHU $ SKDVH VSDFH HVVD\ LQ &RQFHSWXDO 7UHQGV LQ Quantum Chemistry, S (GV .U\DFKNR (6 DQG &DODLV -/ .OXZHU $FDGHPLF 3XEOLVKHUV 'RUGUHFKW 1HWKHU ODQGV 'DKO -HQV 3HGHU DQG 6SULQJERUJ 0LFKDHO 7KH 0RUVH RVFLOOD WRULQSRVLWLRQVSDFHPRPHQWXPVSDFHDQGSKDVHVSDFH-&KHP 3K\V9RO S 'DKO-HQV3HGHUDQG6SULQJERUJ0LFKDHO:LJQHU¶VSKDVHVSDFH IXQFWLRQ DQG DWRPLF VWUXFWXUH , 7KH K\GURJHQ DWRP - 0RO 3K\V9ROS 'DV *3 *KRVK 6. DQG 6DKQL 9& 2Q WKH FRUUHODWLRQ HQ HUJ\GHQVLW\IXQFWLRQDOLQ PRPHQWXPVSDFH6ROLG6WDWH&RPPXQ 9RO S 'DYLHV 5: DQG 'DYLHV .75 2Q WKH :LJQHU GLVWULEXWLRQ IXQFWLRQIRUDQRVFLOODWRU$QQ3K\VLFV9ROS 'H3UXQHOH(2 FRKHUHQWVWDWHVDQGK\GURJHQLFDWRPV3K\V 5HY $ 9RO S 'H:LQGW/DXUHQW'HIUDQFHVFKL0LUHLOOHDQG'HOKDOOH-RVHSK 9DULDWLRQLWHUDWLRQPHWKRGLQPRPHQWXPVSDFHGHWHUPLQDWLRQRI +DUWUHH)RFN DWRPLF RUELWDOV ,QW - 4XDQWXP &KHP 9RO S 'HIUDQFHVFKL06XDUG0DQG%HUWKLHU*1XPHULFDOVROXWLRQ RI+DUWUHH)RFNHTXDWLRQVIRUDSRO\DWRPLFPROHFXOHOLQHDUWUL DWRPLFK\GURJHQLQPRPHQWXPVSDFH,QW-4XDQWXP&KHP9RO S
171 87. Defranceschi, M.; Suard, M.; and Berthier, G., Epitome of theoretical chemistry in momentum space, Folia Chim Theor Lat, Vol 18 (2), p 65-82, 1990. 88. Defranceschi, M., Theoretical investigations of the momentum densities for molecular hydrogen, Chem Phys, Vol 115 (3), p 34958, 1987. 89. Defranceschi, Mireille and Delhalle-Joseph., Numerical solution of the Hartree-Fock equations for quasi-one- dimensional systems: prototypical calculations on the (hydrogen atom) x chain, Phys Rev B: Condens Matter, Vol 34 (8, Pt. 2), p 5862-73, 1986. 90. Defranceschi, Mireille and Delhalle-Joseph, Momentum space calculations on the helium atom, Eur J Phys, Vol 11 (3), p 172-8, 1990. 91. Delande, D. and Gay, J.C., The hydrogen atom in a magnetic field. Spectrum from the Coulomb dynamical group approach, J Phys B: At Mol Phys, Vol 19 (6), p L173-L178, 1986. 92. Delhalle, Joseph and Defranceschi and Mireille, Toward fully numerical evaluation of momentum space Hartree-Fock wave functions. Numerical experiments on the helium atom, Int J Quantum Chem, Quantum Chem Symp, Vol 21, p 425-33, 1987. 93. Delhalle, Joseph; Fripiat, Joseph G.; and Defranceschi, Mireille, Improving the one-electron, states of ab initio GTO calculations in momentum space. Tests on two-electron systems: hydride, helium, and lithium,(1+), Bull Soc Chim Bclg, Vol 99 (3), p 135-45, 1990. 94. Delhalle, Joseph and Harris, Frank E., Fourier-representation method for electronic structure of chainlike systems: restricted Hartree-Fock equations and applications to the atomic hydrogen (H)x chain in a basis of Gaussian, functions, Phys Rev B: Condens Matter, Vol 31 (10), p 6755-65, 1985. 95. Deloff, A. and Law, J., Sturmian expansion, method for bound state problems, Phys Rev C, Vol 21 (5), p 2048-53, 1980.
172 96. Denteneer, P.J.H. and Van Haeringen, W., The pseudopotentialdensity-functional method in momentum space: details and test cases, J Phys C, Vol 18 (21), p 4127-42, 1985. 97. Desclaux, J.P., Comput. Phys. Commun., Vol 9, p 31, 1975. 98. Desclaux, J.P., Phys. Schripa, Vol 21, p 436, 1980. 99. Dirac, P.A.M., Note on exchange phenomena in the Thomas atom, Proc Camb Phil Soc, Vol 26, 376-385, 1930. 100. Dorr, Martin; Potvliege, R.M.; and Shakeshaft, Robin, Atomic hydrogen irradiated by a strong laser field: Sturmian basis calculations of rates for high-order multiphoton ionization, Raman scattering, and harmonic generation, J Opt Soc Am B: Opt Phys, Vol 7 (4), p 433-48, 1990. 101. Douglas, Marvin., Coulomb perturbation calculations in momentum space and application to quantum-electrodynamic hyperfinestructure corrections, Phys Rev A, Vol 11 (5), p 1527-38, 1975. 102. Drake, G.W.F. and Goldman, S.P., Relativistic Sturmian and finite basis set methods an atomic physics, Adv At Mol Phys, Vol 25, p 393-416, 1988. 103. Dube, L.J. and Broad, J.T., Sturmian discretization. II. The offshelf Coulomb wavefunction, J Phys B: At, Mol Opt Phys, Vol 23 (11), p 1711-32, 1990. 104. Dube, Louis J. and Broad, John T., Sturmian discretization: the off-shell Coulomb wave function, J Phys B: At, Mol Opt Phys, Vol 22 (18), p L503, 1989. 105. Duchon, C; Dumont-Lepage, M.C.; and Gazeau, J.P., On two Sturmian alternatives to the LCAO method for a many-center one-electron system, J Chem Phys, Vol 76 (1), p 445-7, 1982. 106. Duchon, C.; Dumont-Lepage, M.C.; and Gazeau, J.P., Sturmian methods for the many-fixed-centers Coulomb potential, J Phys A: Math Gen, Vol 15 (4), p 1227-41, 1982.
'XII\ 3DWULFN &DVLGD 0DUN ( %ULRQ &( DQG &KRQJ '3 $VVHVVPHQWRI*DXVVLDQZHLJKWHGDQJXODUUHVROXWLRQIXQFWLRQVLQ WKHFRPSDULVRQRITXDQWXPPHFKDQLFDOO\FDOFXODWHGHOHFWURQPR PHQWXPGLVWULEXWLRQVZLWKH[SHULPHQW&KHP3K\V9RO S 'XQFDQVRQ :( 0RPHQWXP GLVWULEXWLRQ LQ PROHFXODU V\VWHPV ,9 + PROHFXOH LRQ 3URF &DPE3KLO62&9RO S 'XQODS %, &KHP 3K\V /HWW 9RO S (GPRQGV $5 Angular Momentum in Quantum ChemLVWU\ 3ULQFHWRQ 8QLYHUVLW\ 3UHVV (GPRQGV $5 4XDGUDWLF =HHPDQ HIIHFW , $SSOLFDWLRQ RI WKH VWXUPLDQ IXQFWLRQV - 3K\V % 9RO S (QJOHILHOG 0- Group theory and the Coulomb problem, :LOH\,QWHUVFLHQFH1HZ
)DQR 8JR DQG 5DR $53 Atomic Collisions and Spectra, $FDGHPLF 3UHVV 2UODQGR )ORULGD )HUQiQGH]5LFR-5DPtUH]*/ySH]5DQG)HUQiQGH]$ORQVR -,&ROOHFW &]HFK &KHP &RPP9ROS )HUQiQGH]5LFR-/ySH]5(PD,DQG5DPtUH]*SUHSULQWV )ORUHV -& .LFNHG TXDQWXP URWDWRU ZLWK G\QDPLF GLVRUGHU D GLIIXVLYHEHKDYLRULQPRPHQWXPVSDFH3K\V5HY$9RO S )RFN 9$ = 3K\V 9RO S )RFN 9$ +\GURJHQ DWRPV DQG QRQ(XFOLGLDQ JHRPHWU\ .JO 1RUVNH9LGHQVNDE)RUK9ROS )RQVHFD $& DQG 3HQD 07 5RWDWLRQDOLQYDULDQW 6WXUPLDQ )DGGHHYDQVDW[IRUWKHVROXWLRQRIK\GURJHQPROHFXODULRQ + D JHQHUDO DSSURDFK WR PROHFXODU WKUHH ERG\ SUREOHPV 3K\V 5HY $*HQ3K\V9RO S )RQVHFD $& )RXUERG\ HTXDWLRQV LQ PRPHQWXP VSDFH /HFW 1RWHV3K\V 9RO 0RGHOV0HWKRGV )HZ%RG\3K\V S )ULSLDW -* 'HOKDOOH - DQG 'HIUDQFHVFKL 0 $ PRPHQWXP VSDFHDSSURDFKWRLPSURYHDELQLWLR+DUWUHH)RFNUHVXOWVEDVHGRQ WKH /&$2*7) DSSUR[LPDWLRQ 1$72 $6, 6HU 6HU & 9RO 1XPHU 'HWHUP (OHFWURQ 6WUXFW $W 'LDW 3RO\DW 0RO S *DGUH 6KULGKDU 5 DQG %HQGDOH 5DMHHY ' 0D[LPL]DWLRQ RI DWRPLF LQIRUPDWLRQHQWURS\ VXP LQ FRQILJXUDWLRQ DQG PRPHQWXP VSDFHV ,QW - 4XDQWXP &KHP 9RO S *DGUH6KULGKDU5DQG&KDNUDYRUW\6XEKDV 7KHVHOILQWHUDFWLRQ FRUUHFWLRQ WR WKH ORFDO VSLQ GHQVLW\ PRGHO HIIHFW RQ DWRPLF PR PHQWXPVSDFHSURSHUWLHV&KHP3K\V/HWW9RO S
175 131. Gallaher, D.F. and Wilets, L., Coupled-state calculations of protonhydrogen scattering in the Sturmian representation, Phys Rev, Vol 169 (1), p 139-49, 1968. 132. Gazeau, J.P. and Maquet, A., A new approach to the two-particle Schrödinger bound state problem, J Chern Phys, Vol 73 (10), p 5147-54, 1980. 133. Gazeau, J.P. and Maquet, A., Bound states in a Yukawa potential: a Sturmian group theoretical approach, Phys Rev A, Vol 20 (3), p 727-39, 1979. 134. Geller, M., Two-center Coulomb integrals, J Chem Phys, Vol 41, p 4006, 1964. 135. Gerry, Christopher C., Inner-shell bound-bound transitions from variationally scaled Sturmian functions, Phys Rev A: Gen Phys, Vol 38 (7), p 3764-5, 1988. 136. Ghosh, Swapan K., Quantum chemistry in phase space: some current trends, Proc – Indian Acad Sci, Chem Sci, Vol 99 (1-2) , p 21-8, 1987. 137. Gloeckle W., Few-body equations and their solutions in momentum space, Lect Notes Phys, Vol 273 (Models Methods Few-Body Phys.), p 3-52, 1987. 138. Goscinski, O., Preliminary Research Report No. 21 7, Quantum Chemistry Group, Uppsala University, 1968. 139. Gradshteyn, I.S. and Ryshik, I.M., Tables of Integrals, Series and Products Academic Press, New York, (1965). 140. Grant, I.P., in Relativistic Effects in Atoms and Molecules Wilson, S., Ed., Plenum Press, 1988. 141. Grant, I.P., in Atomic, Molecular and Optical Physics Handbook Drake, G.W.F. Ed., Chapt 22, p 287, AIP Press, Woodbury New York, 1996.
*UX]GHY 3) 6RORYHYD *6 DQG 6KHUVW\XN $, &DOFXODWLRQ RIQHRQDQGDUJRQVWHDG\VWDWHSRODUL]DELOLWLHVE\WKHPHWKRGRI +DUWUHH)RFN 6&) 6WXUPLDQ H[SDQVLRQ 2SW 6SHNWURVN 9RO S +DIWHO 0, DQG 0DQGHO]ZHLJ 9% $ IDVW FRQYHUJHQW K\SHU VSKHULFDO H[SDQVLRQ IRU WKH KHOLXP JURXQG VWDWH 3K\V /HWWHUV 9RO$S +DQ&6(OHFWURQDWRPVFDWWHULQJLQDQLQWHQVHUDGLDWLRQILHOG 3K\V5HY$$W0RO2SW3K\V9RO S +DQVHQ7%7KHPDQ\FHQWHURQHHOHFWURQSUREOHPLQPRPHQ WXPVSDFH7KHVLV&KHPLFDO,QVWLWXWH8QLYHUVLW\RI&RSHQKDJHQ +DUULV )( DQG 0LFKHOV ++ $GY &KHP 3K\V +DUWW . DQG
+HUULFN '5 1HZ V\PPHWU\ SURSHUWLHV RI DWRPV DQG PROHFXOHV $GY&KHP3K\V9ROS +HUVFKEDFK'XGOH\5'LPHQVLRQDOLQWHUSRODWLRQIRUWZRHOHFWURQ DWRPV - &KHP 3K\V 9RO S +HUVFKEDFK 'XGOH\ 5 $YHU\ -RKQ DQG *RVFLQVNL 2VYDOGR (GV Dimensional Scaling in Chemical Physics, .OXZHU 'RUGUHFKW +LHWVFKROG 0 :RQQ + DQG 5HQ] * +DUWUHH)RFN6ODWHU H[ FKDQJH IRU DQLVRWURSLF RFFXSDWLRQ LQ PRPHQWXP VSDFH &]HFK - 3K\V9RO% S +LOOHU\02¶&RQQHOO5)6FXOO\02DQG:LJQHU(3'LV WULEXWLRQ IXQFWLRQV LQ SK\VLFV )XQGHPHQWDOV 3K\VLFV 5HSRUWV 9RO +RORHLHQ ( DQG 0LGWGDO - 9DULDWLRQDO QRQUHODWLYLVWLF FDOFXOD WLRQV IRU WKH SQS 3H VWDWHV RI WZRHOHFWURQ DWRPLF V\VWHPV -3K\V%9RO S +RO]- 6HOIHQHUJ\RIHOHFWURQVLQD&RXORPEILHOGPRPHQWXP VSDFH PHWKRG = 3K\V ' $W 0RO &OXVWHUV 9RO S +RUDFHN-LULDQG=HMGD/DGLVODY6WXUPLDQIXQFWLRQVIRUQRQORFDO LQWHUDFWLRQV &]HFK - 3K\V 9RO S +XJKV-:%3URF3K\V6RF9ROS +XD /. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, $PHULFDQ 0DWKH PDWLFDO6RFLHW\3URYLGHQFH5, ,KP - =XQJHU $OH[ DQG &RKHQ 0DUYLQ / 0RPHQWXPVSDFH IRUPDOLVPIRUWKHWRWDOHQHUJ\RIVROLGV -3K\V&9RO S
,VKLNDZD
.DUXOH(DQG3UDWW5+7UDQVIRUPHG&RXORPE*UHHQIXQFWLRQ 6WXUPLDQ H[SDQVLRQ - 3K\V % $W 0RO 2SW 3K\V 9RO S .DW\XULQ69DQG*OLQNLQ2* 9DULDWLRQLWHUDWLRQPHWKRGIRU RQHGLPHQVLRQDOWZRHOHFWURQV\VWHPV,QW-4XDQWXP&KHP9RO S .HOOPDQ 0( DQG +HUULFN '5 5RYLEUDWLRQDO FROOHFWLYH LQ WHUSUHWDWLRQRIVXSHUPXOWLSOHWFODVVLILFDWLRQVRILQWUDVKHOOOHYHOVRI WZRHOHFWURQ DWRPV 3K\V 5HY $ 9RO S .LO¶G\XVKRY066RY-1XFO3K\V9ROS .LO¶G\XVKRY06DQG.X]QHWVRY*,6RY-1XFO3K\V9RO S .LQJ+)6WDQWRQ5(.LP+:\DWW5(DQG3DUU5* -&KHP 3K\V9ROS .ODU+-3K\V%9RO/ .ODU + DQG .ODU 0 $Q DFFXUDWH WUHDWPHQW RI WZRHOHFFWURQ V\VWHPV - 3K\V % 9RO S .ODU+([DFWDWRPLFZDYHIXQFWLRQVDJHQHUDOL]HGSRZHUVHULHV H[SDQVLRQXVLQJK\SHUVSKHULFDOFRRUGLQDWHV-3K\V$9ROS .ODUVIHOG 6 DQG 0DTXHW $ $QDO\WLF FRQWLQXDWLRQ RI VWXUPLDQ H[SDQVLRQVIRUWZRSKRWRQLRQL]DWLRQ3K\V/HWW$9RO$ S .ODUVIHOG6DQG0DTXHW$ 3DGH6WXUPLDQDSSURDFKWRPXOWL SKRWRQ LRQL]DWLRQ LQ K\GURJHQOLNH DWRPV 3K\V /HWW $ 9RO $ S .OHSLNRY136RY -1XFO 3K\V 9ROS .QLUN '/ $SSURDFK WR WKH GHVFULSWLRQ RI DWRPV XVLQJ K\SHU VSKHULFDO FRRUGLQDWHV - &KHP 3K\V 9RO S
.RJD 7RVKLNDWVX DQG 0XUDL 7DNHVKL (QHUJ\GHQVLW\ UHODWLRQV LQ PRPHQWXP VSDFH ,,, 9DULDWLRQDO DVSHFW 7KHRU &KLP $FWD 9RO S .RJD 7RVKLNDWVX 'LUHFW VROXWLRQ RI WKH +V ± ORQJUDQJH LQWHUDFWLRQSUREOHPLQPRPHQWXPVSDFH-&KHP3K\V9ROS .RJD 7RVKLNDWVX DQG 0DWVXPRWR 6 $Q H[DFW VROXWLRQ RI WKH LQWHUDFWLRQSUREOHPEHWZHHQWZRJURXQGVWDWHK\GURJHQDWRPV- &KHP3K\V9ROS .RJD7RVKLNDWVXDQG.DZDDL5\RXVHL2QHHOHFWURQGLDWRPLFVLQ PRPHQWXP VSDFH ,, 6HFRQG DQG WKLUG LWHUDWHG /&$2 VROXWLRQV -&KHP3K\V9RO S .RJD 7RVKLNDWVX DQG 0DWVXKDVKL 7RVKL\XNL 2QHHOHFWURQ GL DWRPLFVLQPRPHQWXPVSDFH,,,1RQYDULDWLRQDOPHWKRGIRUVLQJOH FHQWHU H[SDQVLRQ - &KHP 3K\V 9RO S .RJD 7RVKLNDWVX DQG 0DWVXKDVKL 7RVKL\XNL 6XP UXOHV IRU QX FOHDUDWWUDFWLRQLQWHJUDOVRYHUK\GURJHQLFRUELWDOV-&KHP3K\V 9RO S .RJD 7RVKLNDWVX DQG 0DWVXKDVKL 7RVKL\XNL 2QHHOHFWURQ GL DWRPLFVLQPRPHQWXPVSDFH91RQYDULDWLRQDO/&$2DSSURDDDFK -&KHP3K\V9ROS .RJD7RVKLNDWVX
.RORV : DQG :ROQLHZLF] / - &KHP 3K\V 9RO S .RORV : DQG :ROQLHZLF] / - &KHP 3K\V 9RO S .UDPHU 3DXO - DQG &KHQ -RVHSK &< )DGGHHY HTXDWLRQV IRU DWRPLF SUREOHPV ,9 &RQYHUJHQFH RI WKH VHSDUDEOHH[SDQVLRQ PHWKRGIRUORZHQHUJ\SRVLWURQK\GURJHQSUREOHPV3K\V5HY$ 9RO S .UDXVH-HIIUH\/DQG%HUU\56WHSKHQ(OHFWURQFRUUHODWLRQLQ DONDOLQH HDUWK DWRPV 3K\V 5HY $ 9RO S .ULVWRIIHO1LNRODL6WDWLVWLFVZLWKDUELWUDU\PD[LPDODOORZHGQXP EHU RI SDUWLFOHV LQ WKH FHOO RI WKH PRPHQWXP VSDFH PHWKRGLFDO QRWH (HVWL 7HDG $NDG 7RLP )XXV 0DW 9RO S .XSSHUPDQ $ DQG +\SHV 3* GLPHQVLRQDO TXDQWXP PH FKDQLFDOUHDFWLYHVFDWWHULQJXVLQJV\PPHWUL]HGK\SHUVSKHULFDOFR RUGLQDWHV - &KHP 3K\V 9RO .X]QHWVRY *, DQG 6PRURGLQVNLL
/LQ &' $QDO\WLFDO FKDQQHO IXQFWLRQV IRU HOHFWURQ DWRPV LQ K\SHUVSKHULFDO FRRUGLQDWHV3K\V 5HY $ 9RO S /LQGHUEHUJ - DQG gKUQ < .LQHWLF HQHUJ\ IXQFWLRQDO LQ K\SHU VSKHULFDO FRRUGLQDWHV ,QW - 4XDQW &KHP 9RO S /LX )4 +RX ;- DQG /LP 7. )DGGHHY
0DQDNRY 1/ 5DSRSRUW /3 DQG =DSU\DJDHY 6$ 6WXUPLDQ H[SDQVLRQVRIWKHUHODWLYLVWLF&RXORPE*UHHQIXQFWLRQ3K\V/HWW $9RO S 0DTXHW $OIUHG 0DUWLQ 3KLOLSSH DQG 9HQLDUG 9DOHULH 2Q WKH &RXORPE6WXUPLDQEDVLV1$72$6,6HU6HU&9RO1XPHU 'HWHUP (OHFWURQ 6WUXFW $W 'LDW 3RO\DW 0RO S 0DUXDQL -HDQ HGLWRU Molecules in Physics, Chemistry and %LRORJ\ 9RO .OXZHU $FDGHPLF 3XEOLVKHUV 'RUGUHFKW 0F&DUWK\,(DQG5RVVL$00RPHQWXPVSDFHFDOFXODWLRQRI HOHFWURQPROHFXOHVFDWWHULQJ3K\V5HY$$W0RO2SW3K\V9RO S 0F&DUWK\,(DQG6WHOERYLFV$77KHPRPHQWXPVSDFHFRXSOHG FKDQQHOVRSWLFDOPHWKRGIRUHOHFWURQDWRPVFDWWHULQJ)OLQGHUV8QLY 6RXWK $XVW ,QVW $W 6WXG 7HFK 5HS ),$65 ),$6 5 SSS 0LFKHOV0$-,QW - 4XDQWXP&KHP9ROS 0L]XQR - 8VH RI WKH 6WXUPLDQ IXQFWLRQ IRU WKH FDOFXODWLRQ RI WKHWKLUGKDUPRQLFJHQHUDWLRQFRHIILFLHQWRIWKHK\GURJHQDWRP- 3K\V%9RO S 0RQNKRUVW+HQGULN-DQG+DUULV)UDQN($FFXUDWHFDOFXODWLRQ RI )RXULHU WUDQVIRUP RI WZRFHQWHU 6ODWHU RUELWDO SURGXFWV ,QW - 4XDQWXP&KHP9ROS 0RQNKRUVW +HQGULN - DQG -H]LRUVNL %RJXPLO 1R OLQHDU GHSHQ GHQFHRUPDQ\FHQWHULQWHJUDOSUREOHPVLQPRPHQWXPVSDFHTXDQ WXP FKHPLVWU\ - &KHP 3K\V 9RO S 0RRUH &( Atomic Energy Levels; Circular of the National Bureau of Standards 467, 6XSHULQWHQGHQW RI 'RFX PHQWV 86 *RYHUQPHQW 3ULQWLQJ 2IILFH :DVKLQJWRQ '&
1DYDVD - DQG 7VRXFDULV * 0ROHFXODU ZDYH IXQFWLRQV DQ PR PHQWXP VSDFH 3K\V 5HY $ 9RO S 1LNLIRURY $) 6XVORY 6. DQG 8YDURY 9% Classical Orthogonal Polynomials of a Discrete Variable, 6SULQJHU9HUODJ %HUOLQ 1RUEXU\ -RKQ : 0DXQJ .KLQ 0DXQJ DQG .DKDQD 'DYLG ( ([DFWQXPHULFDOVROXWLRQRIWKHVSLQOHVV6DOSHWHUHTXDWLRQIRUWKH &RXORPE SRWHQWLDO LQ PRPHQWXP VSDFH 3K\V 5HY $ $W 0RO 2SW3K\V9RO S 1RYRVDGRY%.2SW6SHFWURVF9ROS 1RYRVDGRY%.,QW-4XDQWXP&KHP9ROS 2MKD 3& 7KH -DFRELPDWUL[ PHWKRG LQ SDUDEROLF FRRUGLQDWHV H[SDQVLRQ RI &RXORPE IXQFWLRQV LQ SDUDEROLF 6WXUPLDQV - 0DWK 3K\V1< 9RO S 3DUN , +XQJ .LP +RQJ -X DQG .DQJ -X 6DQJ &RPSXWHU VLPXODWLRQ RI TXDQWXP PHFKDQLFDO VFDWWHULQJ LQ FRRUGLQDWH DQG PRPHQWXP VSDFH 6DH 0XOOL9RO S 3DWKDN 5DMHHY . .XONDUQL 6XGKLU $ DQG *DGUH 6KULGKDU 5 0RPHQWXPVSDFHDWRPLFILUVWRUGHUGHQVLW\PDWUL[HVDQG³H[FKDQJH RQO\´FRUUHODWLRQIDFWRUV 3K\V5HY$9RO S 3DWKDN 5DMHHY . 3DQDW 3DGPDNDU 9 DQG *DGUH 6KULGKDU 5/RFDOGHQVLW\IXQFWLRQDOPRGHOIRUDWRPVLQPRPHQWXPVSDFH 3K\V5HY$9RO S 3DXOLQJ / DQG :LOVRQ (% Introduction to Quantum Mechanics, 0F*UDZ+LOO 3LVDQL / DQG &OHPHQWL ( LQ Methods and Techniques in Computational Chemistry, &OHPHQQWL ( DQG &RURQJLX * (GV 67() &DJOLDUL 3ODQWH '5 -RKQVRQ :5 DQG 6DSLUVWHLQ - 3K\V 5HY 9RO $S
3RGROVNL%3URF1DWO$FDG6FL86$ 9ROS 3RGROVNL%DQG3DXOLQJ/3K\V5HY9ROS 3RWYOLHJH 50 DQG 6KDNHVKDIW 5RELQ 'HWHUPLQDWLRQ RI WKH VFDWWHULQJ PDWUL[ E\ XVH RI WKH 6WXUPLDQ UHSUHVHQWDWLRQ RI WKH ZDYHIXQFWLRQFKRLFHRIEDVLVZDYHQXPEHU-3K\V%$W0RO 2SW3K\V9RO S/ 3RWYOLHJH 50 DQG 6PLWK 3KLOLS +* 6WDELOL]DWLRQ RI H[FLWHG VWDWHVDQGKDUPRQLFJHQHUDWLRQ5HFHQWWKHRUHWLFDOUHVXOWVLQWKH 6WXUPLDQ)ORTXHWDSSURDFK1$72$6,6HU6HU%9RO6XSHU ,QWHQVH/DVHU$WRP3K\VLFV S 3\\NN| 3 5HODWLYLVWLF 7KHRU\ RI $WRPV DQG 0ROHFXOHV $ %LE OLRJUDSK\/HFWXUH1RWHVLQ&KHPLVWU\9RO 3\\NN|3&KHP 5HY9RO S 5DKPDQ 1. 2Q WKH 6WXUPLDQ UHSUHVHQWDWLRQ RI WKH &RXORPE *UHHQ¶V IXQFWLRQ LQ SHUWXUEDWLRQ FDOFXODWLRQ - &KHP 3K\V 9RO S 5DZLWVFKHU *+ DQG 'HOLF * 6WXUPLDQ UHSUHVHQWDWLRQ RI WKH RSWLFDOPRGHOSRWHQWLDOGXHWRFRXSOLQJWRLQHODVWLFFKDQQHOV3K\V 5HY&9RO S 5DZLWVFKHU*HRUJH+DQG'HOLF*HRUJH6ROXWLRQRIWKHVFDWWHU LQJ7PDWUL[HTXDWLRQLQGLVFUHWHFRPSOH[PRPHQWXPVSDFH3K\V 5HY&9RO S 5HJLHU 3KLOLS ( )LVKHU -DFRE 6KDUPD %6 DQG 7KDNNDU $MLW - *DXVVLDQ XV 6ODWHU UHSUHVHQWDWLRQV RI G RUELWDOV $Q LQIRU PDWLRQWKHRUHWLFDSSUDLVDOEDVHGRQERWKSRVLWLRQDQGPRPHQWXP VSDFHSURSHUWLHV,QW-4XDQWXP&KHP9RO S 5LWFKLH%XUNH&RPPHQWRQµ(OHFWURQPROHFXOHVFDWWHULQJLQPR PHQWXPVSDFH´-&KHP3K\V YRO S 5LWFKLH%XUNH(OHFWURQPROHFXOHVFDWWHULQJLQPRPHQWXPVSDFH -&KHP3K\V9RO S
186 253. Rodriguez, Wilfredo and Ishikawa, Yasuyuki, Fully numerical solutions of the Hartree-Fock equation in momentum space: a numerical study of the helium atom and the hydrogen diatomic monopositive ion, Int J Quantum Chem, Quantum Chem Symp, Vol 22, p 445-56, 1988. 254. Rodriguez, Wilfredo and Ishikawa, Yasuyuki, Fully numerical solutions of the molecular Schrödinger equation in momentum space, Chem Phys Lett, Vol 146 (6), p 515-17, 1988. 255. Rohwedder, Bernd and Englert, Berthold Georg, Semiclassical quantization in momentum space, Phys Rev A: At, Mol, Opt Phys, Vol 49 (4), p 2340-6, 1994. 256. Rotenberg, Manuel, Ann. Phys. (New York), Vol 19, p 262, 1962. 257. Rotenberg, Manuel, Theory and application of Sturmian functions, Adv. At. Mol. Phys., Vol 6, p 233-68, 1970. 258. Royer, A., Wigner function as the expectation value of a parity operator, Phys Rev A, Vol 15, p 449-450, 1977. 259. Rudin, W., Fourier Analysis on Groups Interscience, New York, 1962. 260. Schmider, Hartmut; Smith, Vedene H. Jr. and Weyrich, Wolf, On the inference of the one-particle density matrix from position and momentum-space form factors, Z Naturforsch, A: Phys Sci, Vol 48 (1-2), p 211-20, 1993. 261. Schmidcr, Hartmut; Smith, Vedene H. Jr. and Weyrich, Wolf, Reconstruction of the one-particle density matrix from expectation values in position and momentum space, J Chem Phys, Vol 96 (12), p 8986-94, 1992. 262. Schuch, Dieter, On a form of nonlinear dissipative wave mechanics valid in position- and momentum-space, Int J Quantum Chem, Quantum Chem Symp, Vol 28 (Proceedings of the International Symposium on Atomic, Molecular, and Condensed Matter Theory and Computational Methods, 1994), p 251-9, 1994.
6KDEDHY 90 5HODWLYLVWLF &RXORPE *UHHQ IXQFWLRQ ZLWK UHJDUG WR ILQLWH VL]H RI WKH QXFOHXV 9HVWQ /HQLQJU 8QLY )L] .KLP S 6KDNHVKDIW 5RELQ DQG 7DQJ ; 'HWHUPLQDWLRQ RI WKH VFDWWHULQJ PDWUL[E\XVHRIWKH6WXUPLDQUHSUHVHQWDWLRQRIWKHZDYHIXQFWLRQ 3K\V5HY$ *HQ3K\V9RO S 6KDNHVKDIW 5RELQ $ QRWH RQ WKH 6WXUPLDQ H[SDQVLRQ RI WKH &RXORPE*UHHQ¶VIXQFWLRQ-3K\V%$W0RO3K\V9RO S// 6KDNHVKDIW5RELQ$SSOLFDWLRQRIWKH6WXUPLDQH[SDQVLRQWRPXO WLSKRWRQDEVRUSWLRQK\GURJHQDERYHWKHLRQL]DWLRQWKUHVKRG3K\V 5HY$*HQ3K\V9RO S 6KDNHVKDIW5RELQ&RXSOHGVWDWHFDOFXODWLRQVRISURWRQK\GURJHQ DWRPVFDWWHULQJZLWKD6WXUPLDQH[SDQVLRQ3K\V5HY$9RO S 6KDNHVKDIW 5RELQ 6WXUPLDQ H[SDQVLRQ RI *UHHQ¶V IXQFWLRQ DQG LWV DSSOLFDWLRQ WR PXOWLSKRWRQ LRQL]DWLRQ RI K\GURJHQ 3K\V 5HY $*HQ3K\V9RO S 6KDNHVKDIW 5RELQ 6WXUPLDQ EDVLV IXQFWLRQV LQ WKH FRXSOHG VWDWH LPSDFW SDUDPHWHU PHWKRG IRU K\GURJHQ DWRPLF K\GURJHQ VFDWWHULQJ - 3K\V % 9RO S 6KHOWRQ'3+\SHUSRODUL]DELOLW\RIWKHK\GURJHQDWRP3K\V5HY $*HQ3K\V9RO S 6KHUVW\XN $, 6WXUPLDQ H[SDQVLRQV LQ WKH PDQ\IHUPLRQ SURE OHP7HRU0DW)L]9RO S 6KLEX\D7DQG:XOIPDQ&(0ROHFXODURUELWDOVLQPRPHQWXP VSDFH 3URF 5R\ 6RF $ 9RO S 6KXOO+DQG/|ZGLQ32 6XSHUSRVLWLRQRIFRQILJXUDWLRQVDQG QDWXUDO VSLQRUELWDOV $SSOLFDWLRQV WR WKH +H SUREOHP - &KHP 3K\V9ROS
6LPDV $OIUHGR 0 7KDNNDU $MLW - DQG 6PLWK 9HGHQH + -U 0RPHQWXP VSDFH SURSHUWLHV RI YDULRXV RUELWDO EDVLV VHWV XVHG LQ TXDQWXPFKHPLFDOFDOFXODWLRQV,QW-4XDQWXP&KHP9RO S 6ORDQ ,+ DQG *UD\ -' 6HSDUDEOH H[SDQVLRQV RI WKH WPDWUL[ 3K\V/HWW%9RO S 6ORDQ,DQ+6WXUPLDQH[SDQVLRQRIWKH&RXORPEWPDWUL[ 3K\V 5HY$9RO S 6PLUQRY <X ) DQG 6KLWLNRYD .9 6RY - 3DUW 1XFO 9RO S 6PLWK )7 *HQHUDOL]HG DQJXODU PRPHQWXP LQ PDQ\ERG\ FROOL VLRQV 3K\V 5HY 9RO S 6PLWK)7 $V\PPHWULFUHSUHVHQWDWLRQIRUWKUHHERG\SUREOHPV , 0RWLRQLQ DSODQH - 0DWK3K\V 9RO S 6PLWK )7 3DUWLFLSDWLRQ RI YLEUDWLRQ LQ H[FKDQJH UHDFWLRQV &KHP3K\V9ROS 6PLWK 9HGHQH + -U 'HQVLW\ IXQFWLRQDO WKHRU\ DQG ORFDO SRWHQ WLDO DSSUR[LPDWLRQV IURP PRPHQWXP VSDFH FRQVLGHUDWLRQV /RFDO 'HQVLW\ $SSUR[LPDWLRQV 4XDQWXP &KHP 6ROLG 6WDWH 3K\V 3URF 6\PS 3OHQXP 1HZ
6]P\WNRZVNL57KH&RQWLQXXP6FKU|GLQJHU&RXORPEDQG'LUDF &RXORPE 6WXUPLDQ )XQFWLRQV - 3K\V $ 9RO S 6]P\WNRZVNL57KH&RQWLQXXP6FKU|GLQJHU&RXORPEDQG'LUDF &RXORPE6WXUPLDQ)XQFWLRQV- 3K\V $9ROS 7DLHE 5LFKDUG 9HQLDUG 9DOHULH 0DTXHW $OIUHG 9XFLF 6 DQG 3RWYOLHJH50/LJKWSRODUL]DWLRQHIIHFWVLQODVHUDVVLVWHGHOHFWURQ LPSDFWLRQL]DWLRQHH FROOLVLRQVD6WXUPLDQDSSURDFK-3K\V %$W0RO2SW3K\V9RO S 7DQJ ; DQG 6KDNHVKDIW 5 $ QRWH RQ WKH VROXWLRQ RI WKH 6FKU| GLQJHUHTXDWLRQLQPRPHQWXPVSDFH=3K\V'$W0RO&OXVWHUV 9ROD S 7DUWHU &% - 0DWK3K\V9ROS 7HOQRY '$ 7KH GF 6WDUN HIIHFW LQ D K\GURJHQ DWRP YLD 6WXU PLDQ H[SDQVLRQV - 3K\V % $W 0RO 2SW 3K\V 9RO S // 7KDNNDU $MLW - DQG .RJD 7RVKLNDWVX $QDO\WLF DSSUR[LPDWLRQV WR WKH PRPHQWXP PRPHQWV RI QHXWUDO DWRPV ,QW - 4XDQWXP &KHP 4XDQWXP &KHP 6\PS 9RO 3URF ,QW 6\PS $W 0RO &RQGHQV 0DWWHU 7KHRU\ &RPSXW 0HWKRGV S 7KDNNDU $MLW - DQG 7DWHZDNL +LURVKL 0RPHQWXPVSDFH SURSHU WLHV RI QLWURJHQ LPSURYHG FRQILJXUDWLRQLQWHUDFWLRQ FDOFXODWLRQV 3K\V5HY$9RO S 7]DUD & $ VWXG\ RI WKH UHODWLYLVWLF &RXORPE SUREOHP LQ PRPHQ WXP VSDFH 3K\V /HWW $ 9RO $ S 8JDOGH-HVXV0([FKDQJHFRUUHODWLRQHIIHFWVLQPRPHQWXPVSDFH IRUDWRPVDQDQDO\VLVRIWKHLVRHOHFWURQLFVHULHVRIOLWKLXP6DQG EHU\OOLXP 6 - 3K\V % $W 0RO 3K\V 9RO S 9DQ+DHULQJHQ+DQG.RN/3,QHTXDOLWLHVIRUDQG]HURVRIWKH &RXORPE 7 PDWUL[ LQ PRPHQWXP VSDFH )HZ %RG\ 3UREO 3K\V
3URF ,QW ,83$3 &RQI WK 1RUWK+ROODQG $PVWHUGDP 1HWK S (G =HLWQLW]%HUQKDUG 9LOHQNLQ 1. Special Functions and the Theory of Group Representations, $PHULFDQ 0DWKHPDWLFDO 6RFLHW\ 3URRYLGHQFH 5, 9LOHQNLQ1
:LQGW /DXUHQW GH )LVFKHU 3DWULFN 'HIUDQFHVFKL 0LUHLOOH 'HO KDOOH -RVHSK DQG )ULSLDW -RVHSK * $ FRPELQHG DQDO\WLFDO DQG QXPHULFDO VWUDWHJ\ WR VROYH WKH DWRPLF +DUWUHH)RFN HTXDWLRQV LQ PRPHQWXP VSDFH - &RPSXW 3K\V 9RO S :LQWHU 7KRPDV * DQG $OVWRQ 6WHYHQ * &RXSOHG6WXUPLDQ DQGSHUWXUEDWLYHWUHDWPHQWVRIHOHFWURQWUDQVIHUDQGLRQL]DWLRQLQ KLJKHQHUJ\ KHOLXP S+H FROOLVLRQV 3K\V 5HY $ 9RO S :LQWHU7KRPDV* (OHFWURQWUDQVIHUDQGLRQL]DWLRQLQFROOLVLRQV EHWZHHQSURWRQVDQGWKHLRQVOLWKLXP DQGKHOLXP VWXGLHG ZLWKWKHXVHRID6WXUPLDQEDVLV3K\V5HY$*HQ3K\V9RO S :LQWHU7KRPDV*&RXSOHG6WXUPLDQWUHDWPHQWRIHOHFWURQWUDQV IHUDQGLRQL]DWLRQLQSURWRQQHRQFROOLVLRQV3K\V5HY$9RO S :LQWHU7KRPDV* (OHFWURQWUDQVIHUDQGLRQL]DWLRQLQFROOLVLRQV EHWZHHQ SURWRQV DQG WKH LRQV KHOLXP OLWKLXP EHU\O OLXP ERURQ DQG FDUERQ VWXGLHG ZLWK WKH XVH RI D 6WXUPLDQ EDVLV 3K\V 5HY $ *HQ 3K\V 9RO S :LQWHU 7KRPDV * (OHFWURQ WUDQVIHU LQ SKHOLXP LRQ DQG KHOLXP LRQDWRPLF KHOLXP FROOLVLRQV XVLQJ D 6WXUPLDQ EDVLV 3K\V5HY$9RO D S :LQWHU 7KRPDV * 6WXUPLDQ WUHDWPHQW RI H[FLWDWLRQ DQG LRQ L]DWLRQLQKLJKHQHUJ\SURWRQKHOLXPFROOLVLRQV3K\V5HY$9RO S :LQWHU7KRPDV*&RXSOHG6WXUPLDQWUHDWPHQWRIHOHFWURQWUDQV IHU DQG LRQL]DWLRQ LQ SURWRQFDUERQ FROOLVLRQV 3K\V 5HY $ 9RO S :LQWHU 7KRPDV * (OHFWURQ WUDQVIHU DQG LRQL]DWLRQ LQ SURWRQ KHOLXPFROOLVLRQVVWXGLHGXVLQJD6WXUPLDQEDVLV3K\V5HY$9RO S
:XOIPDQ &DUO ( 6HPLTXDQWLWDWLYH XQLWHGDWRP WUHDWPHQW DQG WKH VKDSH RI WULDWRPLF PROHFXOHV - &KHP 3K\V 9RO S :XOIPDQ &DUO ( '\QDPLFDO JURXSV DQ DWRPLF DQG PROHFXODU SK\VLFV LQ Group Theory and its Applications, /RHEHO (0 (G$FDGHPLF3UHVV :XOIPDQ&DUO($SSUR[LPDWHG\QDPLFDOV\PPHWU\RIWZRHOHFWURQ DWRPV &KHP 3K\V /HWWHUV 9RO :XOIPDQ &DUO ( 2Q WKH VSDFH RI HLJHQYHFWRUV LQ PROHFXODU TXDQWXP PHFKDQLFV ,QW - 4XDQW &KHP 9RO S <XUWVHYHU (UVLQ
Index Amos, A.T., 135 Angular integrals, 135 Angular integration, 41, 42 Angular integration theorem, 85 Antisymmetry, 11, 112 Antonsen, Frank, 5, 7 Aquilanti, Vincenzo, 2, 3, 5, 7, 50, 71 Automatic optimization of basis set, 81 Bang, Jens, 5, 7 Basis potential, 10 Basis set truncation, 101 Bian, Wensheng, 7 Chain of subgroups, 45, 50, 66, 67 Clebsch-Gordan coefficients, 12 2, 142 Clementi, Enrico, 18, 133 Coletti, Cecilia, 7 Combined Coulomb attraction and repulsion, 82 Completeness relations, 70 Correlation, 6 Coulomb integrals, 18, 138 Coulson, Charles, 2 Duchon, C., 3 Decomposition of a homogeneous polynomial, 36
193
Decomposition of monomials, 57 Degeneracy of hydrogenlike orbitals, 2 Degeneracy of hyperspherical harmonics, 49 Diatomic molecules, 3, 104 Dirac equation, 121, 124 Dirac-Coulomb equation, 128 Dumont-Lepage, M.C., 3 Duncanson, W.E., 2 Dynamical symmetry, 2 Effective nuclear charges, 123 Exchange integrals, 18, 138 Excited states, 6, 18, 22 Expansion of the kernel, 77 Exponential decay, 81 ' Fernandez Rico, Jamie, 6, 7 Fock, V., 2, 77 Fock’s projection, 2, 27, 35, 63 Fock's treatment of hydrogenlike atoms, 27, 63 Forks, 53 Fourier convolution theorem, 68, 97 Fourier transform, d-dimensional, 61 Fourier transformed hydrogenlike orbitals, 2, 25, 30, 35 Fourier transforms, 97, 102
194 Gamma function, 41, 138 Gazeau, J.P., 3, 5 Gegenbauer polynomials, 46, 52, 58, 65, 82, 86 Generalized Laplace equation, 35 Generalized Laplacian operator, 4, 9, 37 Generalized Slater-Condon rules, 135 Generalized Sturmian basis functions, 2, 10 Generalized solid angle, 41, 64 Generating function, 46 Goscinski, Osvaldo, 4 Grand angular momentum, 2,40 Green’s function, 98 Green’s function of the generalized Laplacian, 46 Hall, G., 135 Hansen, Tom Børsen, 7 Harmonic polynomials, 35, 45, 85 Harmonic polynomials, orthogonality, 42 Hartree-Fock approximation, 18, 133 Hermiticity, 12 Herschbach, Dudley R., 5, 7 Homogeneous polynomials, 35, 142 Hydrogen molecule, 115 Hydrogen molecule ion, 106 Hydrogenlike Sturmian basis functions, 102 Hydrogenlike Sturmians in d dimensions, 75 Hydrogenlike atomic orbitals, 10,
INDEX
23, 30 Hydrogenlike orbitals in parabolic coordinates, 74 Hyperangles, 42 Hyperangular integration theorems, 43, 85 Hypergeometric function, 16, 138 Hyperradius, 36, 41 Hypersphere, 63 Hyperspherical harmonics, 2, 21, 27, 31, 35, 45, 72, 77 Incomplete gamma function, 138 Integral equation, 61, 100 Inter-configurational matrix elements, 135 Interelectron repulsion, 114 Interelectron repulsion matrix, 15, 138 Interelectron repulsion potential, 13 Irreducible representations, 55 Isoelectronic series, 17, 133 Iteration of one-electron equation, 100 Iteration of the many-electron wave equation, 97 Jacobi polynomials, 55 Jeziorski, B., 3 Johansen, W.R., 133 Judd, Brian, 2 Kernel of the momentum-space wave equation, 77 Kinetic energy term, vanishing of, 6, 98 Koga, Toshikatsu, 2, 3, 81, 101, 105, 106, 108 Löwdin, Per-Olov, 4, 68, 131, 135
INDEX López, Rafael 6, 7 Laguerre polynomials, 4 Laguerre polynomials, associated, 67, 74 Laplace equation, generalized, 35 Laplacian operator, generalized, 37 Legendre polynomials, 15, 46 Lie groups, 2 Loeser, John, 7 Many-center Coulomb potential, 2 Many-center one-electron equation, iteration, 100 Many-center problem, 20, 77 Many-center problem in direct space, 102 Many-electron Sturmians, 6, 111 Many-electron problems, 2, 9 Many-particle Sturmians, 9 Many-particle wave equation, 97 Maquet, Alfred, 5 Mass-weighted coordinates, 62 Matsuhashi, T., 3, 81, 101, 105, 106, 108 McWeeny, Roy, 2, 7 Method of trees, 3, 49 Molecular Sturmians, 6, 111 Momentum-space Schrödinger equation, 2 Momentum-space hydrogenlike orbitals, 28, 35 Momentum-space orthonormality of Sturmians, 67, 88 Momentum-space quantum theory, 2 Momentum-space wave equation,
195 61, 78 Momentum-space wave functions, 25 Monkhorst, Hendrik J., 3 Monomial, 36 Normalization, 5, 113, 116 Novosadov, B.K., 3 Nuclear attraction, 114 Nuclear attraction integrals, 89, 104, 107 Nuclear attraction potential, 10, 13 Nuclear physics, 5 Orthogonality of harmonic polynomials, 42 Orthonormality of Sturmians in Momentum space, 67 Orthonormality of hyperspherical harmonics, 45, 65, 84 Orthonormality relation, 12 Orthonormality, potential-weighted, 69, 124 Parabolic coordinates, 3, 55, 66, 72, 74 Pauli principle, 12 Pauli spin matrices, 121 Pauling, Linus, 2 Plane waves, Sturmian expansion of, 71, 88, 98 Plante, D.R., 133 Podolski, B., 2 Potential-weighted orthonormality relation, 5, 12, 14, 69, 104, 124, 128 Relativistic effects, 121 Relativistic energy, 121, 125, 133 Relativistic hydrogenlike Sturmi-
196 ans, 121 Relativistic many-electron Sturmians, 127 Relativistic radial functions, 123 Rotenberg, Manuel, 4 SCF method, 6 Sapirstein, J., 133 Sauer, Stephan, 6, 7 Schrödinger equation, 5 Second- iterated equation, 3, 81, 101 Secular equation, 5, 13, 14, 80 Secular equation, ith order 99, 102 Secular equation, accurate 102, 104, 113 Secular equation, many-electron 114 Secular equation, many-electron, relativistic 128 Secular equation, relativistic 125 Self-adjointness, 128 Self-consistent-field approximation, 2 Shells, filling of, 18 Shibuya, Tai-ichi, 2, 77, 84 Shibuya-Wulfman integrals, 79, 83, 90, 94 Shibuya-Wulfman integrals and translations, 88 Shim, Rune, 7 Shull, H., 4, 68 Slater determinants, 21, 135 Slater exponents, 6 Slater-Condon rules, generalized, 135 Sobolev space, 70
INDEX Solid angle, generalized, 41, 64 Spherical Bessel functions, 26,44 Spherical spinors, 122, 124 Standard tree, 50 Stark effect, 3 Sturm-Liouville theory, 4 Sturmian basis functions, 3 Sturmian expansion of plane waves, 71, 88, 98 Sturmian overlap integrals, 118 Sturmian secular equation, 14, 81 Subgroups, chain of, 45, 49, 66, 67 Subsidiary conditions, 10, 11, 14, 17, 20, 112, 114, 115 Sum rule for hyperspherical harmonics, 47, 65 Total generalized solid angle, 48 Translation group, 89 Trees, method of, 49 Truncated basis set, 101 Unit hypersphere, 2 Unitary transformation, 135 Vaagen, Jan, 5, 7 Weighting factor, 20, 112 Weniger, E., 70 Wigner coefficients, 84 Wulfman, Carl E., 2, 7, 77, 84 Zeeman effect, 3