This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
0) I'roof: Obvio~islyH satisfies (5.28) with w,, = 0 . Then equations (5.28) are a special case of the more general equations
5' (x)= h [(Iz - xol - r ) / ( R - r ) ] ,vi = t 2 u j , U j = 5uj.
probleins Then v and UE %,
in
the calculus etc.
on B ( x o ,R). Snbstituting i n (4.13), we obtain
where 111 77 111 is the qo - D-norm % I I ~ (1 u 1 ) is the nonn. Since (4.24) holds for all R < a , the result follows. LEMMA4.6 : If u E bz 010 R (x, R), there is a 21, E %%,otc B ( s o 2R) , such that u, ( x )= 21 ( x ) 018 B (x,, ,R ) attd
,
zohere C4 is atc absolute constant. Proof: Define th2 (8)= 26 (0) on B (3, R ) and extellrl it b y reflection i n the circle B (x, R). Then 11 E 9, on B ( s o ,2 R ) and
,
,
Then, define 21,
(x)= 1~ [( I x - $0 1 - R)IR]*
( x ),
where h is filnction i~~troducedi n the proof o f Theorem 4.5. Then u , is easily seen t o have the desired properties. T H E O R E M4.6 (Dirichlet growth theorem): Suppose 0 < @
,
I
,
I e ( 2 d x < L z ( r / 8 ) 2 ~ ,O ~ r < d = a - 1 x , - s o l ,
B(Xl,).)
.for some ,u with 0 <,u < R/2 attd m,/2.!1, and every circle B (xi ,r ) c B (a,, a). l'heti 21 satisfies the cottditiou (4.1) attd (4.2) with G replaced by B (so, a ) , xo
CHARLESB. MORRIGYJR. : Multiple integral
'
,
replaced by xi, a by 8 = a - I x , - xo 1, R replaced by ,u and L replaced by Cg, where C5 depellds ouly on mi M i,M2 L 1,p ,a , asid Ill u 111 where
,
, ,
J B(xo,~)
,
Thus u satis$es a uttifornorw Holder condition on n7q B (x, R) with R < a which depends only 0% the qtbantities above and a - R. Proof: Let ,lJ?-- bb" ,X uk 6;, pj = b;j 2&+, cjr ZC' f,
,
+
+
, , , and f's
From our hypotheses on the b's c's e's 4.6, nnd 4.6, we see that
and from Lemmas 4.4,
Moreover u satisfies the equation
,
,
(4.26) I, [U v ;B (xi r)]= -
I
( B y v?
+ Fj vi) d x j
v E q2,ou B (gi ,v)
B(xI,~)
,
on any B ( x , r ) C B (x, ,a). As in the proof of Theorem 4.4, there is a unique solution U, of (4.25) which is in CM,, on B (xi r ) and
,
where 2, depeuds only on the quantities meutioned. Now V , = u - Ur satisfies the homoge~ieous equation (4.25) and so clearly lninimizes I, [V , V ; B (mi r ) ] among all V = V,.(= u ) ou d B (xi r ) . Since Ur E %20 on B (xl r ) me see that
,
, ,
, .
where B , = B (xi r) Using the fact that I,,( V, any u, = 2~
, V, ;B,.) 5 IQ(u, ,u, ;B,)
on d B (2,,r ) and using (4.16), we see that
for
problems in the calculus etc. where Z2 depends only on the quantities indicated. The results follow from Lemmas 4.2 and 4.1. We call now resume our discussion of a solution x, of a variational problem of the type beiug discussed here. THEOREM4.7: Suppose a, gives a stationary value to I ( a , G) and satisfies the continuity conclusions of Theorem 4.1. Then a, E C l + p on ecr.ch domain with F C 6 where 0 < lu < 1 and the derivatives E %if on domains inte. lior to 6 . Proof: Since y (0) = 0 we see that the right side of (4.11) holds for each Lipschitz 1' with compact support in G So, suppose B (so,a) c O Choose d > a so that B (8, A ) C (S Then, from Theorem 4.1, we have x la 2, (x) < Re, for some R ou 8 (x, A). Let b = (2a $ A)/3 c = (a 2A/3), h, = ( A - 413, let e, be the unit vector in the $7 direction for y = 1,2, let v be ail arbitrary Lipscl~itz function having support in B (GC) and define
r
,
,
,
I
,
+I +
[i,(x) = h-1
,
.
.
.
,
,
- d (x)],uj, (x) = h-I [z{ (x + he,) - z j (x)] ch has support in B (x, , A ) . Substituting Ch into
[vi ( x - We,)
for 0 < 18 I < h, Then equation ~ ' ( 0= ) 0 and usiug (4.11), we see that on R (x, ,c) with coefficients a;$, etc., where
.
zch
the satisfies equation (4.13)
for almost all .x. From the general assumptions or1 f and from the for~nnlaa (4.26) for the coefficients, we see that the bounds (4.14) arid (4.15) hold uniformly for 0 < I h < h, with
1
m,=m,(R),Y,=M,(R),M,=KMz(R),21=m/M, G = B(x,,c), where K is a constant depending on 1 and the distance of B (x,, A) from
,
8 0 . Clearly each uh E on B (xO c) and its L, norm is uniformly bounded there, and we also have
1
I e h l ~ ~ ~ o~ <; I P I <, ~ , .
B(ajr)
Accordingly, we see first from Theorem 4.5 that the 9, norms of the uh are uniformly bounded on B (x, b) and then from Theorem 4.6 that the uh satisfy e uniform Holder condition on B (ao a) independently of h Thus we ma.y let h 0 and we see that the derivatives ~;i,E %; and satisfy this
,
-
, .
Hiilder condition on B (8, a)
,
.
CHARI,ICS B. M O ~ ~ R ~JR. C Y: Multiple itltegral
CHAPTER V
A variational method
ill the theory of hrrmo~ticirrtegrals.
In this section, we apply our variatio~lalmethod to the study of armonic integrals aud, more generally, use it to obtain tlle Kodaira decolupositiou theorem [29] (see Theorem 5.10 below). This approach was origit~ally suggested by Eodge in his first paper on the subject 1251. The generality of the manifolds allowed and the methods and results obtaiued are closely related to those obtained by Friedrichs 1201 working intlependently. Of course correspot~dingresults have been obtained on smoother ma~lifoldsby a number of other authors using otlrer methods ([12], [23], [26], [29], [38]). I n this section, we sllall coufilte ourselves to compact mauifolds without bonndary. The variatio~talmethods a.re applied to compact manifolds with boundary in [SO] nnd [46]; boundary value problems for forms have been coltsidered by other writers using bther methods in [13], [66]. . We adopt the usual definition of a compact Riemannian manifold of dimension n (instead of v ) and of class C b r . Cf: (0 < ,u 5 1) ally two admissible coordinate systems are related by a transformatiou of class Ck or CF, respectively. If 0 <,u< 1 , the class C : is the same as what we have called C k f r ; If ,u = 1 , a function is of class C: if aaltd only if its derivatives of order sk satisfy Lipscllitz conditions; transformations of class C: are defined similarly. If a coordinate system is of class C i , the illduced gijare of class Ck-1. W e shall assume that our ~t~anijololdis of class at least C:. We shall be concerned with exterior differential forms of degree r on a mttiifold M ; we call these simply r-forms. I n the domaiu of a given coordinate system such a form o may be represented by
where mioi,...ir are the components of cv in that coordinate system and A denotes the exterior product. I n order to take care of the case of non-orientable manifolds, me allow both eoen and odd forms. If two coordinate systems (8) and (0') overlap, the components transform according to the law
+ 1 for even forms,
J/I J I form odd forms,
J=
a (g6,..gn)
8 ('xi, ,.. ,I$*) '
problents in the calculus stc.
Since the Jacobians involved in (5.2) are at least of class C; (Lipschite), we may say that a form w is of class 4 or q-its components in each coordinate system are. Given'an r-form w , we define its dual +w by
+
.where epl...,n is 0 if two indices pi are the same or otherwise is 1 according as pl ...p,, is an even or odd permutatio~~, ki < < kr .are chose11 so that k, k, jl j,-,. is a permutation, I'(k)(l) is the determinant of the
...
...
Ic 1.
,
6
..,
r
g i j aud I' = _+ chosen so that hiA ... A hlI = d B , tile positive volume element. I f two' fomls o and q of the #(,me lci?cd (both even or both odd) of the same degree are Q J2on M , we defiue their inner pvodtcct
we form inner products only under these conditions. If o is an v-form given in the x-system by (5.1) aud if g is an s-form of the same kind with a corresponding representa,tion, we define
Accordingly the inner product (a,, q) is also given by
...
where (i)= i1 i,', where il <
... < i, , etc. In case P corresponds to x,
a: system and gv(x,) = 6 i j , we see that
in the
CHARLESB. MORRICYJR.: ikultiple integral
The following theorem is well hoown and is evident. THEOREM5.1. For each r = 0,1, ... n the totality of r-fornzs of a $xed kind J2 on M (with epuivrrle~itforgns idesti$ed)ji)~aisa retrl Hi1bei.t space 2; with i n ~ t e rp~.oduct yioerl by (5.4) Iu order to introduce ~ L I Iinner yrotluct ill 3;j, on M me proceed as follows : DEFINITION:Let % = (Ui U Q ) be a finite ope11 covering of M by coordillate patches Uq = Qq (B,),where each Q, is a Lipscl~itzdomain in P . If w and 17 are in %, on M we defir~c
,
,
,...,
where w(q) and (6)
178; s.re the
compollents of
OJ
and 7 iu Q , . Then
is the expression for the norm in q2on M corresponding to the inner prodtlct (5.8). I t is char that convergence of wl, to w according to one of the norms (5.9) is equivalent to the strong convergence in %, of the cornpenelits wk in any coordirlrbte system to those of w . Thus we obtain the theorem : THEOREM5.2: For ench coordintste covev %! and each r = 0 , la the space of r-forms in 9, of a given kind on M forms a real Hilbert space 9;with i n ~ t e rproduct given by (5.8). A n y two sz~chinner prodttct sare topologically equivalent. Now, if w is an r form E q2, we define dw and Bw by
...,
6w = (-
l)l+M'-l)
+ d,r; w, and
+
We note that d o is an (r 1)-form (if r 5 la - 1) and 8w is an ( r - 1)form (if r 2 1 ) . Finally, me define the Dirichlet integral by
THEOREM5.3 : d i s a bounded operator frolit the whole of q,' into &;+I, and B is a boz'nded operalor jrom the while of %: into 2;-' j each of these operatola preserves suetmess or oddsess. .D (w) is a lower senti-continuous functios'with resped to weak convergence i j r %;. If ol, tends weakly to wo i n
9; on M
, then wk tends strougly
to w , i n
2; oa M .
problem in the calculus etc.
Proof. Tlle first statement in clear form (5.8) since the gii are at least Liyschitz and have bounded first derivatives. Ncw if wk tends weakly in 33;3 to w , dok and 6wk teud weakly in to dw and 6w, whence the last statemellt about D (w) follws from the lower~semicontinuity of the ~ i o r ~inn J8 with respect to weak couvergence. The last statement is an application of Theorem 1.13. From (5.6) and (5.7), we see that
I n the coordinate system of (5.57, we see that
where i, < ... < i,. and i, we see that (5.14)
... i,j, ...j,-, is a permutation. Trom the form (5.12), xx
w = (- l)W--r) (,j
.
From (5.5) and (5.10) it is easy to see that
where q is any s-form (and w is an r-form) in Prom the rules of exterior multiplication and (5.5), it is easy to see that (5.16)
q ~ w = ( - l ) ~ ~ w ~ q .
Prom (5.4), (5.12), (5.14), and (5.16), one derives
,
If M , w and 5 are a11 smooth and w and and degrees r and 1. - 1, respectively, we obtain
5 are
of the same kind
CHARLES B. MORREY JR. : Mtdtiple integmt
-
since the Brst integral vanishes by Stoke's theorem for (n 1)-forms, the bracket being just d [x w v 51 (see (5.15)). We emphasise the result: ( d o , 5) = (6, d5)
.
In the case of smooth manifolds and forms, we see from (5.10) and (5.14) that (5.19) Combining this with (5.18), we see that
The formulas (6.18) and (5.20) can be extended to 332 forms on manifolds only of class C : by using a proper partition of unity (recall Lemma 1.3), such that' if the supports of two of the hi intersect then their union lies in one coordinate pat&, to represent each form as a sum of forms whose supports have the same property. Then, for instance
,
(do 5) = 8 w
58)
and each term may be evaluated using one coordinate patch ; in that patch, the gij and the forms may be approximated by smooth forms. In the case of a coordinate system of the type in (5.7) where we also assume that all the dgij/dxk = 0 at q,, we see from (5.10) and (5.13) that the components of d o at x6 are
...
...
where il i,-l 11 l,-r+l is a permutation. From (.5.21), we see that Diri. chlet integral D (w) in (5.11) reduces to
for the case that o has support in a coordinate patch having domain (7 and the g,, = Bij throughout G ; the last integrals all vanish in this case.
problem in the calculus
stc.
We now prove the followiug important lemma, first proved for forms by Gaft'ney LEMMA 5.1 : Given E > 0 0 r 5 n and Po on M, there is an adwzissibile coordinate system mapping B ( 0 , e), for some e > 0 , onto a ~zeiglbborhood U of P o , and a constant 1 such that
,
,
J
2 D ( w ) ( 1 - E) (i)a B(o,e)
CO?~),,
,
dx - 1 (w w )
332
for any r-form E whose support is in U. Proof: We begin by choosing a fixed coordinate system mapping some BR = B (0, R) onto a neighborhood UR of Po,carryng the origin iuto Po, and satisfyng go ( 0 ) = d i j . From our formulas for dw and 6 0 , we see that (5.24)
+
J
D (o)= [a(W)aBoci),tz o(j , , ~ 2b@)( j l a o ( i ) , aO(j)
+ ~ (( f0l wci,w(
j)]
dx
Be
where the a's are combination of the gu only and so are Lipschitz and the b's and c's are combinations of the gij and their first derivatives and so are bounded aud measurable at least. Since the a's are Lipschitz and since
me see that we may choose
Q
so small that
The result follows from (5.22). The following important theorem corresponds to Garding's Inequality for differential equations : THEOREN5.4 : For each r = 0 , n and coordinate covering C2e of M , there exist constants K y > 0 and Lg such that 0
,...
for ever w E %. Proof: Prom Theorem 5.2 it is sufficient to prove this for some particular q.Let ?e = ( U i UQ)be an opeq covering of M by coordinate 1 patches such that ench ,c€ M is in some Uk satisfying (5.23) with 8 = 2
, ... ,
'
CHAR^.^^ B. MORREY
, ... ,
JR. : Multiple integral
say. Let Cf, U Q be the domi~in in E" such that Uk= Qk (Gk) for a11 k . There exists a finite sequence @, ,a,of Lipscbitz functions on ]I[, each of whioh has support interior to some Uq, nnd such that
, ... ,
for all x E M. Now if (5.25) aere false for the Q just described, there would exist a sequence (up)of $'-for~usill %; 811ch that D(up)aud (up, cop)mere uniforlnly bounded but 11 0.1, l r r - w Then, for some s p and some subsequence, still called u p ,me mould have
, ,
.
mhere @, has support in Uqt since
and
But it is easy to see that D (@, w,) and (as u p ,QS op)are uniformly bounded. From our choice of neighborhoods we have reached a contradiction with the fact that
We can now present the variational method. We begin with the following lemma : LEMMA6.2 : Let % be any closed linear manifold it, the space 2;of y;fovnts on N (of some one kind). Then eithev there is no f o m o of C)j7- which is in % or there is a form o, in %%; with ( m , , o,)= 1 which minimines D (o)among all such fornts. A ~ o f If : 972 contains no form in %;, there is nothing to prove. 0. thenvise let be a minimizing sequence, i. e., one such that ( a kmk) , =1 slid okE 9 ' 2Il9; for each ?c = 1, 2 and such that .D(ak)approaches its iufimulu for all u € % n %:. Prom Theore111 5.4 it folloms that the
,... ,
problenb in the calculus etc. ((wk,wk))ze are uniformly bounded. Accordingly, a snbseqnonce, still called (wk), exists which converges weakly in %' to some form w,. But from Theorem 5.3 wk tellds strongly in Pi to w, and 7) ( w ) is loaer-semicontin u o ~ ~with s respect to weak convergence in 93;. The proof of the lemma is now complete. DEFINITION:A harntonic yield w on d l is a form ill CM, on J4 for whicl~ dw = 6 0 = 0 almost everywl~ere..We mill let W denote the linear manifold of harmonic flelds on !I. of degree r . (Strinctly speaking we have %[ and for even and odd fonns, respectively). THEOREN5.5 : For each 1. = 0 n ( = din M) the littear lnaizifold W i s finite dimensional. Prooj. The 932 forms are dense ili E l , since the Lipschitz forms are. Let MI = 2;.There is a form wl in MI ll 93; which minimizes D (w) among all such forms with (ci, 6 ) = 1 Let $1, be the closed linear manifold in 2; orthogonal to w l , a l ~ dlet wz be the correspo~tdillg miliimizing form in M , . By continning this process, we may determine successive minimizing forms o, w,, w, , each satisfying (wk wk) = 1 and beillg orthogonal to $111the preceding ones. Now if ll (mi) > 0 , there are no harmonic fieltls 0 since D (w,) 5 ID (w,) 5 On tue other hand, suppose D (wk)= 0 for all values of K . Then by Theorem 5.4, ((wk wk))?( is uniformly boullded in k whence a subsequence [ a p )converges weakly ill 93; and hence strongly in 2; to some form wo in %;. This is impossible since the wk forrn an o~thonormal system in 2;. THEOREX 5.6: For each coordinate coveiing % of M there i s a oo?istntzt A, stwlb that
, ... ,
.
,
,
,
... ,
....
+
,
,
for any w in %; wich i s orthogolaal to %' . ProQf. For, let wo be that form in %; (there is one si~lceeach harmonic field is in q2) which minimizes D ( o ) among all o i l l 9; wit11 (w ,w)= 1 and o orthogolial to W . Then clearly D(w,) > 0 and by hol~iogeneity
for all o in %; and orthogonal to
from which (5.27) follows.
qr.By Theorem 5.4 we see that
CHARLESB. Mottss~Jlt.
:
Multiple kbteyral
TnEoREM 5.7: Suppose coo is any forwt in L?; crfrd ortlrogottal to 9[r Therb there is a uttigue form Qo in 9: and ort1bogollal to qr such thut
.
(a Qo, a 0 -t @Q0,dr) = ( 0 0 , 5) for every C in 93;. Moreover, the tratt.pformation front wo to Qo is a bou~tded linear tmnsformation from &; into Proof: From Tt~eorem5.5, we see that
.
,
since (w wo) is a bouilded linear fuactional on %; here 11 w =((w,s))qE. Hence I ( w ) is bounded below and is lower~semicontii~uo~~s with respect to weak convergence in %; if w is orthogonal (22-ser~se) to C3e". Accordingly there is id minimizing form Qo. If 5 is any form in orthogoultl to %I' we then see that
,
which shows that (5.28) hold's for all such 5 and Qo is nnique. But then (5.28) holils all 5 in since any such 5 is uniquely representttble in the form 9 = Il+ 5, where dH = 8H = 0 and to is in 9; a11d orthogorial to q v . Finally, if we set [=no in (5.28) aud use Theorem 5.7, we see that
from which the last statement follows. DEFINITION : The form Qo of Theorem 5.7 is called the potential of coo . We observe that if all forms in (5.28) and the mallifold M were sufficiently smooth, the equation (5.28), together with equation (5.18) would i ~ a ply that
I n any coordinate system, (5.30) reduces to a system of second order eqoations iu the components of the forlus; if r 2 1 , these equations involve the second derivatives of the gij as well as those of the components of Do. However, all the results stated so far hold for mauifolds of class 0;in which case the requisite second derivr~tivesof the gq certainly do not exist.
problem in
tH8
caleultrs etc.
,
DEFINITION: We say that o i s of olass 0 5 1< 1112 if for each coordinate system 0 with domain B R , there is a constant 1, = L (8,w ) such that
The olass 3321is defined si~nilarly. The importaucd of the spaces %Izn ariees from the fact that if w E ()32n with I = p - 1 n / 2 , O < p < 1 , then w E C; ; this follows from the stminghtforwand extension of Lemma 4.1, to n dimensions. We can now state the following results concerni~~g differentiability. THEOREM5.8 : 8uppose that w E &; @ %' and 9 i s its potential. (i) If M i s of class G: , the Q ,dQ , and 8Q ;2 E2 (ii)I f M ie of cla,ss o:, and m E g2,,then Q , dQ, and 8Q E q 2 n and hence in 0: i f 1 = 1112 - 1 p 0 < p < 1. (iii) I f 42 ie of class 0: and o E $32, then dQ a i ~ d8Q are the potentials of d o and 8 0 , respectively. (iv) I f 44 i s of class C; and uj E c:-' k 2,O < p < 1 then 9 ,dQ and 8 8 E I f 16 2 3 and w E O;-\ thetc Q E CE-l. (v) If M and m a l e of olass Cm OY analytic, then so i s P. I n all case, if we set a = d 9 and /3 = 8Q we have
+
.
+ ,
O F.
,
,
T~EoREM5.9: 8uppose that H i s a havi)&onicfield. (i) I f dZ ;2 C: , them HE CM2a with 1= n/2 - 1 p for any p 0
+
,
.
Using (5.24) and (5.22) we see that equations (5.32) are equivalent to equations of the form (4.13), if l has snpport on some one coordinate patch, where the a's are Liptschitz, the b's and 0's are bounded and measurable,
aud the e ' s and f ' s EEz. Such systems have bee11 studied extensively by the writer in [751 and [47]. Since Professor Nirenberg7s lectures are concerned with differentiability problems, tile resl~ltsand their proofs are omitted. The results c o n c e r ~ ~ i8~ ~and g H follow directly from the result just mentioned. To prove the differe~~titibilityof d 8 and 8 8 , we select a coordinate patch and find t l ~ a twe can approxitnate to 8 , 0 , aud the gij by smoot functions so That JZ is a potential of w with respect to the altered gij t ~ teach stage. Then, if 5 has support interior to this patch, we see thnt (5.31), (5.18), and (5.20) imply that a and 1 satisfy (da
,d l ) + (8%- o ,dt) = 0
The iuterior boundedness theorem (like Theorem 4.5) ttud an approximatioli theorem for such systems allow us to pass to the li~nitill (5.33). If we use (5.33) and (5.18) to see that u and g are the potentials of dw and 40, respectively. The following theorem complements the well-known orthogonal decomposition of Kodaira [29]. THEOREM 5.10 : I f w is ally for*), i ~ &, t the,, there exists a 8armolzic field H a d forms a f l , atid 8 i n q2such that
,
where 8 is the potential of w - H. I f the .first equation of (5.34) holds for a harvtonic field H, and forws a, a ~ db, i n 33,, thew Hi = H , da, = 8a at&d ag, = ag and (Lf of a11 for*)ts dB for The sets or all forms 6a for a i n B i n 9;-I are closed linear manvolds i n 2; and
.
,
e'
,
I f M E 0: altd 0 E J2,4or %2A , 0 I IZ < n/2 the,&6a atcd dB have the same properties. ~f d . l € $ and w ~ ~ with f , 1 ~ 2 2O, < p < l , O < o < l , a t ~ d e i t h e r l < k - 1 or 1 = k - 1 and asp, then 6~ and dB have the same d(Teretttiabi1ity properties as w . I f Y and 0 E 6'" or are altalitic, so are 8a and dB.
problems in the ealculua etc.
Proof: The first statement and the. differentiability res~ilts follow immediately from Tl~eorems 5.8 and 5.9 If H a , and fi all E % (ai~dhave properly related degrees), formulils (5.18) m d (6.20) and the defiuitioi~of harmonic field imply t11at H , da and d l are orthogo~~al in J2. To see that the sets e r and W are closed we see, by following the constructioil in the first paragraph of the theorem with o = da ;tud dB in turn, thirt if a and B E q2 there are forms a, and 1, ill q2~11dorthogonal to % such that
,
,
,
-
Then if Ba, o in J2,we see that the al,,- some a, in.W2 by Theore111 5.6. A corresponding result holds if dln -z in J2
.
BIBLIOGRAPHY
[ I ] N. A R O N ~ Z A Jand N K. T. S M I T H2runotional , spaces and functional completion, Ann. Inst. Fourier Grenuble 6 (1956), 125-185. [a] F. E. B~towulen,Stro1,gly elliptic systems of diffcrestial equatiore, Contribntions t o t h e theory o f partial differential equatio~ls,15-51. Ann. o f Math. Studies, No 33. Prinoeton University Press (1954). Numerous notes in Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 230-235 131 and 741-747 ; 39 (1953), 179-184 and 185-190 ; aud Inany others. [4] J . W . C A L K I NPu1106i0128 , of eeveral variables and absolute oontinuity, I, Duke Math. J. 6 (1 940), 170-185. [5] L. C E ~ A I A~ nI ,e i s t m e theorem of the calculee of variations for i~ltegrale on parametric surfaces, Amer. J. Math. 74 (1952); 265-295. [6] S. C I N Q U I N Sopra I, l'eetrtmo aseoluto degli integrali doppi it, forma ordinaria, Ann. Math. Pura Appl, ( 4 ) 30 (1949) 249-260. [ I ] R. C O U ~ ~ A NPlateau's T, problelir and Dirichletle principle, Ann. o f Math. ( 2 ) 38 (1937) 679-724. Dirichlet's principle, co*lformal mappiag, and minimal eurfaoes, 181 Iutersoienoe Press, New York (1950). [9] J. M. DANSKIN,On the existence of minimizing surfaoes in parametric double integral problcms in the calculus of variations, Rev. Math. Univ. Parma 3 (1952) 43-63. [ l o ] E. DE Gro~tor,Sull'aralitidtd delle eztremali degli integrali multipli, Atti Aooad. Nnz. dei Linoei Retld. C1. Soi. Fia. Mat. Nat. ( 8 ) 20 (1956), 438-441. [ l l ] J,. DENY, Lea potentiels d'e'nergie $nil Aota Math. 82 (1950), 107-183. rla] G. DE &HAM and K. KODAIRA, Harmonic Integrals (mimeographed notes), Institute for Advauoed Study, Pdnoetou, N. J. (1950). [I31 G. F. D. DUFF and D. C. SPENCER,Harmonic tensors on lliemasnian manijolde with boundary, Ann. o f Math. 56 (1952), 128-156. [I41 G. C. EVANS, Fundamental points of potential theory, Rioe Inat. Pa~nphlets7 (1920), a52-359. , Note oa a theorem of Bhher, Amer. J. Math. 50 (19%8),123-126. [I51 , Potentials of positive ma88 I. Trans. Amer. Math. Soo. 37 (1935), C161 226-253. [17] G. FICEERA,Esistenza del miaimo i n un ctassico problema en caloul delle variazioni, Atti Aooad. Naz. Linoei Reud. C1. Soi. Fis. Mat. Naz. ( 8 ) 11 (1951), 34-39. 1181 K. 0. FRIEDRICH,On the identity of weak and strong mtsnsione of differential operators, Trana. Amer. Math. Soo. 55 (1944), 132-151. , On the differentiability of the solutions of linear elliptic diferential r191 equations, Comm. Pure Appl. Math. 6 (1963), 299-326. , On differential forms on Biemannian manifolds, Comm. Pure Appl. POI Math. 8 (1955), 551-558. [ a l l G. FUNINI, I1 prinoipio di minimo e i teoremi di esietenza per i problemi di contorno relativi alle equazioni alle derivate parziali di ordine pari, Rend. Ciro. Mat. Palermo 23 (1907)) 58-84.
,
,
problems in the calculus etc.
151
-221 M. P. CAFFNEY,The harmonic operator for ezterior differential forms, Proo. Nat. Aoad. Soi. U.S.A. 37 (1951), 48-50. , The heat equation method of Milgram and Rosenbloom for open 1231 Riemannian& manifolde, Ann. O f Math. 60 (1954)) 458-466. '241 L. OARDING,DiriChletle problem for linear elliptic partial differential quatione, Math. Scad. 1 (1953), 55-72. [25] W. V. D. HODGE,A Dirichlet problem for harmonic functionale with applications to analytic varietiee, Proo. 1,ondon Math. Soo. ( 2 ) 36 (1935), 257-303. The 1 heoly and Applications of Harmonic Integrale, Second Edi1261 tion, Cambridge University Press 1952. [27] E. HOPF, Zum analytischen Charakter der Loeungen regularer oweidiniensionaler Variatiosgrobleme, Math. Zeit. 30 (1929), 404-413. [28].'b J O H N ,Derivatives of continuoue weak eolutioue of linear elliptic equatione, Comm. Pnre Appl. Math. 6 (1953) 317-336. [29] K , ICODAIRA, Harmonic jielde i a . Riemannian maaifolde, A m . o f Math. 50 (1949), 587-665. [ S O ] P. D. I,Ax, On Cauchy'a problem for hyperbolic eqnatione and the differentiabilily of the solutiona o j elliptic equatiot~s,Conim. Pure Appl. Math. 8 (1955), 615-633. [31] H. LEBESGUE,Sur le probldme de Db.iclilet, Rend. Circ. Mat. Palerum 24 (1907), 371-402. [32] B. L R V I , Sul principio di Diriohlet, Rend. Ciro. Mat. Palermo 22 (1906). 293-359. [33] H . LEWY, On minimal snrjacee with partially free boundaty, Cumm. Pnre Appl. Math. 4 (1952), 1-13. [34] L. L I C H T E N S T E I N Uber , den analyticcol~enCharakter dev Liiaungen oweidirereionaler Varicrtioaprobleme, Ball. Acad. Soi. Cracovia, C1. Soi. Mat. Net. (A) (1912), 915-941. , Zur Theorie der Konforme Abbildung. Eot~forme Abbildung nichtana[351 lylioher ehgularitatenfreier Plaoltenetiicke auf eb61ie Oebiete, Bull. Int. Aoad. Soi. Craoovia, Mat. Nat. C1. ( A ) (1916), 192,217. [Y6] E. J. MCSHAXIC, Integral8 over surface8 in paralltetric form, Ann. of Math. 34 (1933), 815-838.
,
- , Parametrizatione of eaddle eur.face8 with application to the problena of Plateau, Trans. Amer. Math. Soc. 35 (1934), 718-733. [38] A. MILGHAMand P. ROSENBLOOM, Harmottic forms a d heat conduction, Proo. Nat. Aoad. Soi. U.S.A. 37 (1951), 180-184 and 435-438. [39] C. B. MOILPEY,Jr. 01~the solution8 of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soo. 43 (1938)' 126-166. , Functions of several variables and abeolute continuity I l l Duke Math. J . 6 1401 (1940), 187-215. , A correotiou to a previous paper, Duke Math. J. 9 (1942), 120-124. 1411 , Multiple integral problems in the oalculue of variations and related topioa, ia21 U u i v . o f Calif. Publications i n Math. new ser. 1 (1943), 1-130. , The problem of Plateau on a Riemannian manifold, Ann. o f Math. 49 [431 (1948), 807-851. , Quaei-convezity and the lower-~emioontinuity of multiple integrale, Pao. J . [44l Math. 2 (1952), 25-53. , Seoond order elliptic system8 of differestial eqaatiora, Ann. o f Math. Studies 1451 No. 33 Priuceton University Preas, 1954, 101-159. A variatio~ial method iu the theory of harmonic iategrals, I1 Amer. J . [461 Math. 78 (1956), 137-170. [371
-
,
[47] C. B. M o n n l c ~and J. Es1.r.8 Jr., A variational method i n the theoq of harmo~lic integrals I , Ann. o f Matli. 63 (19a6), 91-128. [48] M. NAGUMO,U b ~ rdie gleichmiiseige Suntierbarkeit und ihr6 An~uesdung auf eia Varia/ioiigroblem, Ja.1). J . Math. 6 (1929), 173-188. [A?] J. NASI?,Continuity of solr~tions oJ pat*abolic and elliytio equatioae, Amer. J. Math. 80 (1958), 931-954. [80] 0. N I K O D Y MSur , nne clasee de foactions considerden danlrs l'titnde du probldme d s Diricldet, Fund. Math. 21 (1933), 129-150. [ 5 l ] G. N B B E I ~ I N G Uber , die erete Randzoerla~~fgabe bei regffilarm Fariatioitsprobletnen I. Math. Zeit. 51 (1949), 712-751. [52] H. R A D ~ M A C H PUber I ~ , partielle and totale Differeszierbarkeil vo11 Fffinlctionen mehrever Variabeln, nnd uber die l'ra~sformatios der Doppelintegrale, Math. Ann. 79 (1918), 340-359. [53] F. ~ Z E L L I C H , Ein Satz Uber mittlere Konvergence, Qottingen Nach. (Math.-Phys. IC1.) (1930), 40-38. [54] H. SAKS, Theory of the latsgral, Seo. Ed., Warsw-Lwow, 1937; English tr.anelation b y L , c. Yollng. , Oa the surfaces ruitho,ut tangent planes, Ann. o f Math. 34 (1933), [551 11 4-134. [56] L. S C H W A I ~ TTheori, Z, den disti~ibutioaeI st 11, Aotnalites Soi. Ittd. 1091 e t 1132, Pnbl. Inst. Mato. Univ. Strasbonrg 9 e t 10, Paris 1950 ot, 1961. [57] M. S H I F R M A ND~ferertiability , and aealyticity of eolutiolce of double iategral variational probleme, Ann. o f Math. 48 (1947), 274-284. [58] A. G. S ~ G A L O VConditione , for the ezistei~oeof a minimum of double integrals in u r nnbounded 1-egiou, Doklady Akad. Nank SSSR.(N.S.) 8 (1951), 741-744 (Rassian). PI , Regular double integrals of the calcultu of varialione i n non-parametric form, Doklady Akad. Nauk SSSR (W.S.) 7 3 (1950)) 891-894 (Rnaeian). Tiuo dimensional probleme of the cabulus of variations i n floa-parav~ietrio Po] form. transformed into parametric form, Mat. Sbornik NS 94 (76) (1954), 385-406. On conditions 01 differentiability and arialiticity of solutions of two dimenL6l1 sional probleme of variations, Doltlady Akad. Nank SSSR ( N S ) 85 (1952), 273-275. [62] G. I. SILOVA,Existence of an abeolute minimum of multiple integrals i n the calculus of variatioas, Doklady Akad. Nank S S S R (N.S.) 102 (1955), 699-703. ~631 , 2'wo dimessional problems of the oaloulus of variations, Uspehi Matem. Nank (N.S.) 6 (1951)) 16-101 (Russian). 1641 S. SOBOLRV,Sur quelques svi~luationsconoemast les famillee L s /oncfions ayant dee deriveee a aarrd integrable, Comptee Rend. Aod. Sci. SSSR. N.S.I. 1936, 279-282.
,
, On a theorem of functional' analysis, Mat. Sbornik N.S. 4 (1938). 471-497. [66] D. C. S P E N C E IDiriohlet's ~, principle on manifolde. Studies i n Mathematics and Meohanios presented t o Richard v a n Misee, Aoademio Press (1954), 127-134. [67] G. STAMPACCHIA, Sopra una clasee di funzioni i n due variabili. Applioazioni agli integrali doppi del calcolo delle variazioni, Giorn. Mat. Battaglini ( 4 ) 3 (79) (1950), 169-208.. Gli integrali doppi del calcolo delle variazioni iii fornla ordinaria, A t t i PSI Aooad. Naz. Linoei Rend. C1. Soi. Fie. Mat. Net. (8) 8 (1950), 21-16. Siatemi di equazioai di tipo ellitttco a derivate pattziali del primo ordine [69] e proprieth degli eslremi degli integrali mnltipli, Ricerche Mat. 1 (1952)) 200-226. Problemi a1 conlorno per equazioni di tipo ellittioo e derivate parsiali e quePOI stioni di calcolo delle variazioni coanesae) Ann. Mat. Pnrii Appl. ( 4 ) 33 (1953), 211-238. 1651
,
,
-
problems in the calculus etc. [71] L. T O N E L L I Sulla , quadratutr delle aupergcie, Atti Aoond. Naz. Linoei Rend. C1. Soi. Fie. Mat. Nat. (6) 3 (lS26), 633-638. , Sui massimi e miltimi assoluti del calcolo delh variazioae, Rend. Ciro. C721 Mat. Palermo 32 (1911), 297-337. Sul caso regolare nel calcolo dells variazioni, Rend. Ciro. Mat. Palernlo P I 35 (1913), 49-73. Sur une ntdthode direcfe du calcul des variations, Rend. Ciro. Mat, Pa[741 lermo 39 (1915)) 233-264. La semicotttinuit& nu1 calcolo delle variazioni, Rend. Ciro. Mat. Palermo [75] 44 (1920), 167-249. , Fondamenti del calcolo delle variazioni, Bologna, Zaniahelli, 3 vole. [761
-
, ,
,
,
Sur la semi-costiattild den inftfgrales doubles du oalcul den sai.iaUon8, Aota Math. 53 (1929). 325-346. [781 L'eslre~uo aesoluto degli integrali doppi, Ann. So. Norm. l'iea (2) 3 (1933), 89-130. [79] L. VAN HOVE, Sur l'extenaion de la condition de Legetdre du calcul des variations aux integrals multiples a ylusieulr fonctions ittconttues, Nederl. Akad. Wetensoh. 50 (1947), 18-23.
[771
,
CtUBBIO
-
S O Q . !l'Il'O~RAFIClA
~ O D E R I S L1~9 6 0
k~tl.tbi1~0 diagli dtnmii dslln 8o~ol~olnNornbnis &?peviove di Pisa Revie TIT. Vnl. XIV. Fmc. IV (1960)
UNIPORMIZZAZIONE E MODULI (3 di L. BERS (New Pork)
Le equazioni di Beltrami a coefficienti discontinui furono considerate per la prima volta da Morrey (cfr. [3] anche per i riferimenti bibliografici); ease si sono dimostrate utili nello studio dell~uniformizzazionee dei moduli delle superficie di Riemann. Nella teoria dei moduli che se ne deduce, ci si B limitati naturalmente a1 B caso classico B ; tuttavia alcuni teoremi posso110 essere dimostl.ati a~ichepel caso di superficie di Riemann aperte. Una presentazione completa delllargomento B ovviamente impossibile in poche pagine. Ci lin~iteremo percib solo ad enunciare il risultato ceutrale per le superficie di Riemann chiuse ($ I), risult~toche commenteremo a1 $ 2 ; quiudi a1 § 3 daremo un teoremtl di uniforn~izzazioneche B essenziale per la dimostrazione e che B di per sB interessaute. Le dimostrtlzioni saranno date per somlni capi uei $ 6, 7, 8. Una esposizione completa sarh pubblicata in seguito.
4
1.
- Enunciato del teorelna fondamentale.
I1 teorema che enunceremo assicura in sostanza la possibilith del17uniformizzazione silnultanea di tlitte le curve algebriche di dato genere g 1. Esso B dtl ritvvici~iarsia1 teore~nacorrispondente per le funzioni di Weierstrass p (#,I,z) e p' (z,l, z), 1 x 1 w, 3111 r 0 che dil l'uniformizztlzione delle cnrve di genere 1.
>
<
>
(*) Lavoro esegnito a01 oontratto No. DA - 30 - 069 - ORd - 2153 dell1#Ofice of Ordonance Research dell'Eaorcito degli Stati Uniti. Qnesto lavoro usair$ in inglese nei Rendiconti del (( Symposium on function theory r del u Tala International Institute B. I1 contennto di queato lavoro B stato esposto in nn ciolo di oonferenze tennte Eresso l a Souola Normale Superiore di Pisa dal 1a1 10 settembre 1988 in ocoasione del corso internazionale organieeato dal CIME e tennto sotto gli iluspioi della Sonola Normale Snperiore e delllIs t i t ~ ~ tM~tternatico o delllUaiversith di Pis*.
TEOREMA: Sia g > 1 un intero fissato. Esiste : 1) un dominio livzitato T nello spaxio numeric0 complesso a3g-3 (ove
z,
,...,z3g-3 sono le coordinate) omeomorfo ad tlna cells 2) ull domiuio M C (ove 2, r, , ... ,z3g-3 so110 le coordiuate) onleo-
morfo ad una oella e olomorficame~~teequivalente ad nu dominio limittlto. 3) una fuuzione continua a ( t ,r) a valori complessi, - w t m, z E T tale che a (t, z) B olomorfa in z per ogni fissato t, a (t, z) oo per z fissato e I t I m , a ( t i z) f a ( t 2 ,z) se t , t , 4 ) un gruppo 8 di antomorfisnli analitici complessi di M che opera su M senxa pnnti fissi e in modo propriamente disco~ttinuo. 5) u n groppo I' di automorfismi annlitici contplessi di T,propriaw2ente discontinuo (ma non privo di pnnti fissi). 6) nlra applicszione olomorfa z- Z(z) di P nello spnzio di Siege1 delle coppie Z = X i Y di matrici g x g simmetriche X, Y con Y > 0. ed infine 7) u n numero finito di fuazioni meromorfe FJ (2, z) definite su M automorfe rispetto a G. tali che le seguenti conclosioni siano verificate: 8) per ogui z E T le curva y (z): z = a (t,z), - w t m B 121 curve frontiera di un dominio semplicentente cow)ttnssoD (z) 11el p i a ~ ~drlla o variabile Z. 9) UII ptinto (a, z, z3g-3) = ( x , z) B in M se e solo se t E T e z E D (z). 10) ogui elellleuto di G B dell;^ forma
< <+
-
< .
,
-
+
< <+
...
ove a, b, c, 1, sono funxioui olou~ol.fein T e ad - bc = 1. 8 B generato da 29 elementi Ai A g , B, ... Bg tali c l ~ el I [ A j ,Bj] = 1 ove [ A , B] = = A B A-1 B-1 . 11) G (z), Is 6 restriziolie di G per z fissato, B 1111 gruppo di trasformazioni di Miibius del domiuio D ( z ) i n sB. La superficie di Riemauli L7 (z) = D (z)/G (z) B uua superficie clbiusa di genere g. 12) Ogni superficie di Riernauu chiusa di geuere g i! ool~formemente equivxlente ad una S(z), S(z') e S(z") sotlo conformemcute eqnivalenti se e solo se z' e r" sono equivaleuti rispetto a 13) LRmatrice Z(z) B una matrice di Rie+)tann di periodi per R(r), corrispolrde~ltead una base ilell~omologiadefinits da A i , Bi, e finirlme~~te
,... ,
, ,
r.
14) Le restrisioai delle frinzioni Fj per z fissato geuerauo il corpo delle funzioui autori~orfedi D (z) risyetto a G (z) ciob il corpo delle funxioni n~erornorfesu S (z). Osserviamo il srgnente COROLLARIO I. Lo,spazio T/I'B uuo spazio atlalitioo complesso normale. Quento Yegoe da 5) e (la 1111 teoreliit~di H. Oarttlu [9]. Diit~ostrazioui esserlzialrlre~~te diverse sollo clovute a Itiihrl [12] e Baily [4]. Baily ha ituclre dir~lostri~tocl~eqr B un aperto di Zariski di una varietil algebrica. Lo spa,zio T/I' a, com7B ovvio, lo spr~zio delle cli~ssidi superficie di Riemanu di geuere g conforriieineiib eqeivalenti (efr. -12)). COROLL ARIO 11. LO 8piczi0 M/G B uua varietil complessa., 17applicazioue ~l;ctnr'~le M / G T B olomorh, l'imnragit~eiuversa di z E T B unrb sottovitrieth regolarnietlte ininrtlrsa in M!G e coufor~iielne~~te equivalente a S(z). In modo atlalogo si possouo costrnire dei fissati comples8i su T per i qnali 1s fibra su z B S (z) x x S (z) ovvero la varietil di Jacobi di S (z).
.
...
Descrivererno in quest0 4 gli ele~tretitiuecessarii alla dimostrazioue. A) Not,azioni. La lettera, S deuoter8 IIUib superficie di Riemaun astratta. Si d i d che S ecceziouale se S animette automorfismi uon ideutici conformi ornotopi al17automorfismoideutico. Uua S non eccezionale si pub rappreseutare come U / G ove U B il setnipiano di PoiucarB e G B un grnppo Fuchsiano privo di trasformazioui ellittiche; diremo che S B di prifwa specie se i punti fissi di O souo deusi sulllasse reale. In particolare sia S di tip0 (g, n), ciob ottetiuta da uua superficie di Rie~nauuchiusa di geuere g 2 0 sopprimertdovi n 2 0 puuti (listinti. Allora 8 non B ecceziour~le(e di prima specie) se 3g - 3 n 0. Sia un differelrziale di tip0 (- 1,l)su rS, Localmeute m = p (5) dzldf ove p B uria fnazioae miearabile e 5 uua ~itliforrnizzazioue locale. PoiclrB 1 p 1 B ~ i u o soalere possinlr~o defiuire /( 9th 11 = estremo superiore essenziale di ( p 1. Se 11 1 1 ~11 1 scriveretr~o m E B (SO)e diremo che m B un d(ferenxia1e di Beltrami. In t ~ caso l ST deuote la superficie Sorn~itlitltdells strnttnw coriforme definita dalla coudizio~~e : ogui soluzione dell'equazione di Beltranui 5: = ,uf[ B tuia fuuzioue olomorfa su ST (Si richiede che la solozioue sia coutiuua ed abbia derivate geueralizzate localmeute a quadrat0 itrtegrabile). L~~rpplict~zioue uaturale S r SOsi uoterA con 1.
.
+ >
<
-
Un omeornor6smo S& So si dice quasi-cotlforme se pub essere httorizb
1
zato 11e1modo segueute h'+ S r + S O ,W esseudo conforme. Slippouiamo f qussicouforme e sia [ f j la classe d70motopia di f. Diremo ohe (S, [ f ] ,SO)B
una coppia pari. Due tali coppie (S, [f 1, So) ed (S',[f ' ] , 8;) si dirallno equih
valenti se esistouo applicazioni cor~formiS' -+ S, +So tali che [hb'f h] = = [f'] ; forte~nente equivaleu ti se Sh = $ me11tro h, p ub essere assullta eguale all'ideutittl. Oggi coppia pltri B equivalellte tld lll1a del tip0 (Sr,[l], So). Per nbuso di linguaggio iilentificlrererno spevso coppie con le corrispondenti classi di equivalenza. B) Sia So non eccezionale. L7insieme delle classi di equivale~lzeforte di coppie pari (S, [f 1, So)B lo spazio di Teichmiiller T(So). I,:I distauza di Teichmiiller tra (S,[f],No) ed (St, [gl, SO)B data (la log ((1 k)/(l - lc)) ove
,
+
k = iuf )I m 11
per
m E B (S),
(Sns,111, S) fortemeute eqnivi~le~ite a (S', [f-'g], S). Qaestn distauztl definisce una topologin su T(So). Una funzione continui~ di a valori complessi su T(So) ear& chialnnta analitica-comnplessa o oldl,aot:fa se, per ogui insieme (mi m,) c B (S), ove (8, If], So)E 2' (So),la rappresentazione di un iutorno di 0 E Cr ia C espressa d:dla (5, ,f , , )- p (f$i"'i+-.+€rn1r 7 [fI, So) @ (PI
,...,
,...
-
B olomorfa. In inodo analogo defitliremo l'analiticitd reale. U I I ~rappresentazione quasi conforme Si-$ So induce unit tazione lecita >> g* di T (S,) au 4 (So):
rappreeen-
g* dipelide soltanto da [g] e conserva la distanza di Teichmiiller e l'aualiticittl reale e complessa. I1 gruppo delle rappreser~tazio~~i lecite di T (4) in sB sltrtl denotato con r ( S O ) . Ricorrendo all'uniforlnizzazione mediante gruppi Fuchsiaui si dimostra che : T(8,) B uno spazio mnetrico conlpleto; se il gruppo fondamentale di So B generato in mod0 finito, r ( S o ) Bpropriafnente discontinuo; le funziorli aualitiche reali su T(S,,) separano i puntl. I n base 111 nuovo teorema di uniformizzazione enunciato nel $ 3 si dimostra che : ye So B di prima specie, le funzioni olomorfe su T (So) separano i punti. o) Se So B di tip0 (g, n) scriveremo T(&) = Tg,,, r ( S o )= T',, Questa notazione B giustificata dal fatto che clue qualnnque ~uperficiedi tipo (g, n) so110 quasi-conformemente equivalenti. Porremo Q = 39 - 3 n, ed assumeremo @ 0. La teoria di Teichmiiller [I, 5,13, 141 delle rappresentazioni quasi conformi estremali implica che Tg,,, sia una 2~-cella.'Iuoltre B noto che TgPnB
.
>
+
e Moduli
una varietic analitica con8plessa (cib B stato dimostrato per la prima volta da Ahlfors [a] ; cfr. anche [6, 1 0 , l l , 151). Nel nostro teorema fontl~mer~ti~le, T, I' e M tengono il I~iogo, rispettivamente, di Tg,, , Tsjoe T,,, Le osservltzior~iprecedenti giustifioaoo alouni dei nostri euiiaciati. L1esister~zadelllt rappresentazione descritt,s in (6), (13) segue, ad esempio, dalla formula variaziollale di Rauch [Ill. a) nelllenunciato del nostro teorelna,, T = Tg I I O ~ ltppare come U I I ~ variet8 a~~alitica cornplessa astmtta lntb come un dominie limitato. Questo b un caso pwrticolare di nl1 risultrcto pih generale: Tg.,,8 (olornorficamente equivalente ad) un dominie limitato in Ce. L n dimostrltzione (indicati~sommariamente in [7] b pinttosto complicata. Essa B basata sulla possibilitA di u~iiformizzareogni superficie di Rielna~iliol~iusamediuite grnppi di Schottky, ed involge unc~ltualisi geometrica dettagliata dello spazia di Schottky * di cui Tg b il ricoprimento ~u~iversale. La di~nostrltziorieprocede per induzione su g e su n ; iu tale iuduzione le superficie iperellittiche rivestono un ruolo particolare. e) la rsppresentazione di T,,, nelle forma M, ciob liella forma descritta negli enunciati 8) e 9) e lu, costruzioue del gruppo G avente le proprieth 4), lo), 11) 8 basata sul teorema di uniformiaazione del 5 3. Suppone~ldodi aver compiuto le tappe precedel~ti, IIOII 6 difficile coucludere la dirnostri~zione, ciob eostruire le fuuziorii Fj aver~tila proprieth 7), 14). Fissiamo un insierne di gelreratori Ai, Bj di G (cfr. lo)), e definiamo su ogni #(z) una base di omologia, ehe denotiamo con le stesse lettere. Sia wj il differeuzirble abeliano di prima specie avente periodo ajk su Ak (sicchb, fra I1altro, il periodo di wj su Bkb l'ele~neatoZjk di Z(z)). Sia Qjk il differenziale abeliarro di terza specie su S (z) avente periodi 0 silgli dj e tale che in ogni puuto di S(z) il residiio di Qjk eguagli I'ordiue di wj/wk. L7insieme delle funzioni [w,/wk Qjk/@1j, k, e = 1, 2, g), considerate come fnnzioni 9(z) ha le proprieta ricl~ieste. OS~ERVAZIONX. I1 teorernlt del 5 1 B sfortnuatamente di carattere piuttosto <( esiste~~ziale >>.Sarebbe utile ltvere espressioni esplicite per i domini e le funzioni ctescritte. 10 esito ad ltffermare che vi sia molta speranzlt di ottenere tali for mule^
.
,
,
...,
g 3. - Un lluovo teorelna d i nniformizzazione. Un gruppo G di trasforr~iazioliidi M6bius sarA chiltmltto quasi Fuchsiano se esiste sulla sferlt iii Riemann una curvlt di Jordan orieiitata y~ tale che y~ sia invaria~iterispetto a G, e questlultimo silt privo di puuti fissi e pro. priamente discontinuo nei domini I ( y G )e E ( y G )rispettivamente interno ed esterno a YG
.
TEOBEMAI. Siritlo 8 , e X2 due superficie di Riemanu. Supponismo che S , e 8%abbiano superficie di ricopri~neuto uuiversitle iperboliclle, e che 8, sia quasi conformemente eqaivalente i~ll'iinmagiue spec~llarej, di S2 In queste ipotesi, esiste un grappo quasi.fuchsiano G t d e c l ~ eI ( y G ) / Gsia conformemente equivalente a 8 , e E (yG)/Ga 8,. OSSI~:RVAZIONE. SB defiuita sostitue~ldociascnaa uniformizzazioue locale 5 sn 8 colt lib suil complessa coiliiigiktii $ Le ipotesi per il teorema 1 Son0 soddisfatte se S , e IE, sono chiese e dello stesso geuere 1. DIMOST~~AZIO Pol~iilluo NE. So = S z . Ne segue che El = SF per un opport,u~lom E B (So).Per ipotesi So = V/Cf0, ove Q B il semipiano soperiore e 6 , B an gruppo fucllsiauo yrivo di p ~ u ~ ~initi. ti P e r t i ~ t ~ tL/GO= o A$,,L esseutlo il sen~ipiauoinferiore. P o l ~ i a ~ lp~(z) o = 0 per 3111z < 0, e definiamo p(x)per 3115 x>O ~nedialltela cotldizione : p(x)&/dz=m. Bisults Ip(z) I ( k < l , e
.
>
Esiste uuo ed nno solo omeomorfismo o, del piano in sB che lascia 0 e 1 illvariituti ed B p-oouforme, ossia B une solozione dell'equazione di Beltrami.
,
Se AE CS, 17equaziotle fuuzioni~leper iinplici~c l ~ ecop ( A (x))B uu automorfismo p-confonne dells sfera di Rieiuana, di guisa che
B uns trasforrnazione di Mobius. Si verifics olie G = w@ Go (or)-' B il groppo quasi-fuchsiaeo richiesto. Indicheremo con I la ra,ppreseiltaziolle natu1:tle di So sn go. Un omeoh morfismo S +So B detto allti-q~~asicoilfor~~ie se pub essere fattorizzato nel h modo segnente : 8 +-S:
induce uu elemento 1(@) di A, e I ( @ )= l (y) se, e soltanto se, [@I = [y], Se I (@) = 1 e se @ B anti-quasiconforme, tliremo che G rappresenta la coppia (I(yG)lG,[@I,E (yG)/G)ed ogui coppia equiville~~te iL q~~est'ultima. Riesa~rliualldola ~li~uostrazio~re del Teorelrla 1 si vede ohe di fatto abbiamo dimostrato la prima parte del TEOREVA11. Ogni coppis dispari (S, f 1, &) pub essere rappresentata da un grnppo qutlsi fiichsiarro 6, l)~lrcb& 4 ibbia I I I I ~superticie di ricoprimento universale iperbolica. Se So B di prima specie, ogni gruppo quasifuohsirt~loC, rwppr~se~lti~~lte qnesta cop~)ii~ & della forlna G, = QGQ-' Q essendo una tl~~sfor~nazione di Mobius. Per dimostri~rela secotidib p;irte dell'ellunciato possiiuno supporre che sia A!? = Sr f = 1, e d ~ ff e sia il gruppo costr~~ito diatlzi. 1,'ipotesi fatta su G, implicit l'esistenza di omeoalortismi couforn~i
,
,
con
L7ultitna relszione ilrlylica che @ = y ~ in tutti i p l ~ l ~ tflssi i di G e quindi, per colltinuittl, i l l oglri p1111todi yc; . Polliwnlo Q (x) = @(.a) per z E T(yG)UrG, Q (x) = y (x) per x E E (yc;). Q B utl automorfismo del pit~uoe G , = QCQ-1 Resta da dimostmre che Q (z) B olomorfo. Questo sarebbe iu~luediatose yc fosse rettiflcsbile. Nelle attni~licircostauze, tuttavia, dobbiamo considerare Q(z) come fuuzione di 6 = wp ( 2 ) ed utilizeitre le proprieth di w r date, ad esempio, in 131. Dw queste proprieth si trae che ntis YG = 0 e che Q(z)
.
.
a Q = 0 fuori di ha derivate generalizzate in L, iu un il~toruodi yc Poichb , at
y ~ la, analicitii di Q ovuuque segue da ben note cousiderazioni. Siamo ora in grado di costrnire il clornitrio 111 descritto nel $ 1. Neil$ dimostraziol~edel Teoretna I, sia &, I I U ~superficie prefissata, chirlsa e di genere g 1. Suppouiamo ohe per ogni
>
a5 AP 0 G abbiano lo stesao sigtriticeto di prima. Se scegliamo 8, in guisa che 0, 1, co siwuo pullti tissi, la pwrte del Teorema I1 relativa al17uuicit8 mostrs che A e G dipendono soltiinto (la r 0 uon dalla scelta particolare di m. Possialno porre G=C(r), yc =y(r), I(ya)=D(z). Vale k 11), e o(t,z)=ofi(t). I1 fatto che Ar e a dipendano olomorficamente da r segue da un risultato
provato in [3]: se u , dipende olomorficame~~te da parametri complessi, altrettanto tlccade per wr (z). Ooncludiamo enullciando due probleoii : Oglii gruppo quasi-funchsial~o poesibile dimostrsre i l Teorelntt I I( c~assiharnel~rappreseattl U I I ~coppiit ?' te $, ciob usando solbulto tribsformazioai confornii l
1. I,. V. AHLAORB, Journ. d'Ana1yae Math., 3 (194.5), pp. 1-58. 2. L. V. AHI.ROIIS,Annlytic fu~~otions, Princeton Univ. Press (1959), 45-66. 3. L. V. A H L F O Ie~ ~I.. BERN,In corso di atampn. 4. W. I,. BAILY.I n corso di stampa. 5. L. BERB, A+~alytic funolioas, Prinoeton Univ. Press, (1959), pp. 89-119. 6. L. BERS, Pmo. Int. Congr. Math. E11iobul.g 1958, pp. 309-361. 7. L. UERS, Bull. Amer. Rlath. Soc., 66 (1960), pp. 98-103. 8. L. BERS, ibiii., pp. 94-97. 9. H. CARTAN,~.efschet?z Volume, Princeton Univ. Press (1967), pp. 90-108. 10. K. KODAIRAe D. C. SPENCER,Ann. of Math., 70 (1989), pp. 14.5-166. 11. R. H. RAUCH,Proo. Nat. Aoad. 8ci. U. S. A., 41 (1955), pp. 42-49. 12. It. R ~ H R ~I .n, corso di stampa. 13. 0.TEtC1t~tft.l.E~~ Preussiscbe Akad., 22 (1940). 14. 0. TEICBMULLIER, Ibid. 4 (1943). 15. A. WELL,Sel~linnireBotlrb&ki 1958 (No. 168).