Lecture Notes in Mathematics An informal series of special lectures, seminars and reports on mathematical topics Edited ...
47 downloads
644 Views
5MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Mathematics An informal series of special lectures, seminars and reports on mathematical topics Edited by A. Dold, Heidelberg and B. Eckmann, ZUrich
8
[_!
Gaetano Fichera University of Rome
Linear elliptic differential systems and eigenvalue problems 1965
The Johns Hopkins University, Baltimore Md, March- May 1965
S p r i n g e r - V e r l a g . Berlin 9 H e i d e l b e r g 9 N e w York
All rights, especially that oftranalafion into foreign languages, reserved. It is also forbidden to reproduce this book, either whole or in part, by photomechanical rues.us (photostat, microfilm and/or microcard)or by other procedure without written permission from Springer Verlag. @ by Springer-Verlag Berlin 9 Heidelberg 1965. Library of Congress Catalog Card Number 65--27796. Printed in Germany. Title No. 7328
These N ot e s c o n t a i n t h e l e c t u r e s of delivering
as V i s i t i n g
P r o f e s s o r at the Department of ~echanics
of The J o h n s Hopkins U n i v e r s i t y Clifford
I had t h e p l e a s u r e
on t h e i n v i t a t i o n
of P r o f e s s o r
Truesdell.
They a r e i n t e n d e d t o be an i n t r o d u c t i o n approach to higher order elliptic
t o t h e modern
b o u n d a r y v a l u e p r o b l e m s and r e l a t e d
eigenvalue problems.
I am d e e p l y g r a t e f u l kind collaboration
t o D r. Warren E d e l s t e i n
for his
i n c h e c k i n g b o t h t h e E n g l i s h and t h e M a t h e m a t i c s
of t h e s e N o t e s .
G. F i c h e r a
B a l t i m o r e s Md. - L i a y 1965.
CONTENTS
Lecture
1.
"Well posed"
Lectnre
29
Existenc e principle
boundar 7 value
problems
.......................
1
~.....................................
~9
11
O
Lecture
3~
The f u n c t i o n
Lecture
4~
The trace
Lecture
6.
Elliptic
Lecture
6.
Existence
Lecture
7o
Semiveak solutions
Lecture
8.
Regularity
at
the
boundary:
Lecture
9.
Regularity
at
the
b oundar]v: tangential
Lecture
10.
Re~ularit~
at
the
boundary:
Lecture
11.
The c l a s s i c a l
12.
linear
Lecture
18~
14~
StronKly
Interior f oi r
elliptic
plates
operators.
problems....... Problems.
Lecture
16~
T h e Wei na.t.ei n-Aron8, s a . j n , m e t h o d
Lecture
IT.
Construction
Lecture
18.
0rtho~onal
Lecture
19.
Upper approxinmtion
elliptic
system
results
...
44
..............
deriv.atives
The R a y l e i K h - R i t z
......
62
.......... 9.......
61
. ....
69
Physics: 80
P.hysics: 9.........
88
Ph]rsics:
method
~ 0. o . o . 9 . . . . .
intermediate of pomitiTe
operators
~
96
of the
O O O O O . . . . . o e e o o e e e .
~
112
0...0 ............
120
o ~~~9 9~~~. . . . . . . . .
130
9 9 9 9 9 9 9 9 9 9 139
of a I~0.
invariants. Green's
. 101
9............
compeer operator8
of .the ei~envalues
of ortho~onal
construction
...........
39
...................................
EiKenvalue
Explicit
...........
G~rdin K inequality.
16.
20.
systems
30
o.ooo.~ .........................
Lecture
Lecture
systems
BVP o f M a t h e m a t i c a l
Ei~envalue
Representation
24
~...............
preliminar 7 le.m~s
final
17
9.............
~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 .6. . . . . . . . . . . . .
elliptic
i nvariants
elliptic
BVP o f M a t h e ~ t i c a l
i
of the
regularity
...
.......................................
elliptic
elliptic
lethal.
BVP o f M a t h e m a t i c a l
PDE
of thin
...o .....................
and Ehrling
o f BVP f o r
elliptic
The c l a s s i c a l
Hm
solutions
Elastostatics 9
Equilibrium Lecture
systems~
linear
and
Sobolev
of local
The classical Linear
Hm
operator.
2nd order Lecture
spaces
Btrix
.........
~. . . .
99~....
162
~or an
e . o . . e . o . . o o o . . e
e m o . o . m . o .
164
-1-
L e c t u r e
"Well
posed"
The c l a s s i c a l equations
properly
those
expressed
of it.
theory
solutions
conditions. equations
of partial
with
reason~
these
number
a PDE c o n s i s t s
a particular
one ~ich
These conditions
of findsatisfies
are generally
which the unknown functions
b o u n d a r y o f t h e d o m a i n ~ w h e r e t h e PDE i s
For this
differential
a d m i t %o a n i n f i n i t e
problem connected
as complementary on t h e
p r o b l e . ~ s' .
such equations
possible
given auxiliary
value
of view in the
The t y p i c a l
ing amongst all
satisfy
boundary
(PDE) a s s u m e s t h a t
of solutions.
part
point
1
conditions
must
considered,
o r on
a r e known as " b o u n d a r y
c o n d i %i o n s " 9 In spite with
of the fact
applications
m u s t be p o i n t e d
that
o f PDE i n v a r i o u s out that
the
with very
smooth coefficients,
be false,
since
respect
let
a few years
the
where
equation
us consider
point
of view is
branches
assump%ion that possesses might fail
a very
the one that
of applied
mathematics,
a PDE, e v e n a l i n e a r
infinitely
~ the
~ ~ ~ ~'
in the real
cartesian
the Wirtinger
may
In this
e x a m p l e g i v e n b y Hans Lewy [ 4 ]
3-space
with coordinates
PDE
. By u s i n g
i%
one
many s o l u t i o n s
to have any solution.
interesting
agrees
ago.
Let us consider~ X ,'/',t
this
differential
operator
-2-
L.~
~-~ ) , we can write @y
I(X y,~ )
We a s s u m e t h a t
s u p p o s e t o be r e a l as a d e r i v a t i v e
is
valued.
of a real
a function We w r i t e ,
function
in a more compact form
d e p e n d i n g o n l y on
for convenience, ~(t)
t
, w h i c h we
such a function
. The a b o v e e q u a t i o n
can then
be ~ r i t t e n
(1.1)
We s h a l l
prove that
differentiable real
analytic
)~
0"~
"~.
a necessary
solution
=
~
condition
for
~
function
of
seen
real
is
that
~
be a
~ 9 :t
be a p o s i t i v e
t o have. a c o n t i n u o u s l ~
in a neighborhood of the origin
'"
Let
(1.1)
number and s e t
~
{,e
=
e.
. It
is
easily
that -
z
+
rD~
Z
~
oe
Since
0
0
Te o b t a i n
)
(1.2)
~
0
dS. 0
.s From
(1.1) and (1.2),
~
by assuming
~9 and i n t e g r a t i n g
t)ao
~t o
d~
dt
ve get
-3-
Now set ~ ~ ~ti" ~,t
and
Z~
l
s
,:,,~
f
~,g
o Equation
(1.3)
gives
This means that of
~
for
the
O~ ~
function
~ ~
and -~
The f u n c t i o n
~/(~)
is
From this
follows
that
it
and vanishes
for
across
the
on t h e
t-axis
If
real
the
equation the
for
real
with
an holomorphic ~
0~- ~ ~ &
part
of ~r
~/
is
conveniently and vanishes continuous
c a n be c o n t i n u e d
(~>~)-plane.
function
Hence ~
chosen. for
for
~ :0. 0 _~ ~ ~
analitically
- as the trace
o f ~r
function
~
is
a s s m o o t h as we w a n t ,
h a s no s o l u t i o n
in any arbitrarily
but not analytic, fixed
neighborhood
of
origin.
order
which possesses
closed
and l e t
square
another
example of a linear
only one solution
of the
b4(x,y ] and b ~ ( x , y )
b4 (.-4, Y)
(z,y)
first
in a given domain. Let
be two r e a l
,
->0 _>o
C_
PDE o f t h e
~
be
(zj~)-plane,
a s s m o o t h a s we w i s h a n d s a t i s ~ y S n g
Let
~
is
analytic.
L e t u s now c o n s i d e r
the
(
9 Therefore
of the
- is
(1.1)
the
+ b~Tr~
~ t
continuous
~ : 0
~-axis
= ~
~/
be a n a r b i t r a r i l y
the
functions
following
b.~(4,,y)
on
conditions
~ O.
,
smooth real
defined
o.
function
defined
on
Q
and
-4-
negative
at every point
differentiable
of
solution
~
solution
~
solution of (1.4)
i n an i n t e r i o r
point
over of
Let us assume that instance
~ - 0 Q
(X~ - 4 )
~(~oj-~)~y(Xo)-~)~O. Xo:-~
Since it
~
is
cannot
be n e g a t i v e .
if
be p o s i t i v e .
0
) ~O
and
1928. ~ore sophisticated
o r d e r whose o n l y s o l u t i o n these
simple
is
and t h e r e f o r e
~ ~ O
can also
e x a m p l e s show t h a t ,
besides
what a "well posed boundary value
space
~
consider
when we s a y t h a t values space.
of
vector-valued
of By
~
are ~-:
ua
shas b e e n known
like
the above considered
of higher
(see [2],[3]). point
of view,
o n e s , when
problem" is
for
a
PDE.
be a d o m a i n ( i . e .
X ~ . The p o i n t
.~(xQ)-r
t h e maximum o f
the classical
aiming to describe
Let
b4 ( X o ) - 4 ~ x ( ~ o - 4 ) ~O,
be c o n s t r u c t e d
also
system of linear
connected
X ~ will
functions
~ (x)
is
n~-vectors (~4 ,'",
~
an
open set)
be d e n o t e d by uu(x )
defined
Oh-vector
of the ) ) ~
~O;
t~ _: 0 .
one h a s t o i n c l u d e
general
(xo)-4)
examples of homogeneous equations
situations
for
~
follows
T h i s e x a m p l e ~ w h i c h was g i v e n by ~lauro P i c o n e [ 5 ] since
t a k e n on
and t h e r e f o r e
. In any case
of (1.4) Then
is 9
for-t~•
X~:~
of the real
on t h e b o u n d a r y ,
C(X~)-4)t~(xo;~)~_O,it
a solution
~
If f~
f~:
minimum ~ t
b~x(~o -4) = 0
(Xo - ~ ) ~ 0
-b~
t h e minimum
. Then ~ ( X o - I
m u s t be t h e c a s e t h a t
The f u n c t i o n over
~
and
on i t s
PDE
u, ~ o
, then~ obviously~
takes
in the point
In fact,
cannot
Q
~
.
the only continuous
of the linear
+ b~ (.x~y.) Q---~ + c. ( x , y ) ,gy
the trivial
if
9 ~Te ~ a n t t o p r o v e t h a t
in the square
(l.4)
is
~
of the real
g ~ (x4 ,-.-, x~).~%e s h a l l on ~
function,
oh-dimensional = ~-~;
cartesian
9 ~ore precisely, we mean t h a t
the
complex cartesian
we d e n o t e t h e d i f f e r e n t i a t i o n
-5-
p~q ,,~...
~ e c t o r ~ The l e t t e r s integral
components e . g . ,
~ ~ (~
O t h e r w i s e f o r any v e c t o r len~ht
1~1 ~:
If
~
p,~
Dr:
,
i s any p o i n t - s e t
C ~ (~the
clems o f a l l
derivative
of ~
and c o i n c i d e j ~
sub-class By'
up t o t h e o r d e r
of
~
(A)
§ K
~
exists
We w r i t e
Cartesian
[ ~:. ~...~)].
ve shall
functions ~.
denote
9 0
.
that
any
p o i n t of
apt ~
C ~ ~A) ~
b7
b~ p o s s e s s i n g
T h i s means
, we d e n o t e by
of f u n c t i o n s
denote the class
~.
(support of ~ )
will
such that
denote the spt ~ c A.
o f f u n ~ t i o n 8 d e f i n e d i n t h e w h o le s p a c e ~ ~ up t o t h e o r d e r
denote the sub-class The symbols
of
c-
~
, i e.
C ~ consisting (A)
C~176
,
C ~ :
of f u n c t i o n s ,
C
,
6~
explanatory. be an k~
~•
- m a t r i x d e f i n e d on
the matrix differential
L~
--- d~
D ~
We u s e h e r e t h e s u m n a t i o n c o n v e n t i o n , i . e .
) , We
A
operator
. when a v e c t o r - i n d e x
r e p e a t e d t w i c e , a summation must be u n d e r s t o o d T h i c h i s T h o l e d o m ~ n of v a r i a b i l i t y Let
its
o).
points,
in
Pc
~.
represent
a t ~ver 7 i n t e r i o r
A
J~(x)j
consisting
w i t h a bounded s u p p o r t .
d e n o t e by
will
Jpl--
p: -
P,,
X ~ with interior
o f t h e s e t w he r e
: C ~ (~),&Zwill
~(•
J~l
~L~ : ~, ~ . ~ . .
and p o s s e s s i n g c o n t i n u o u s d e r i v a t i v e s
Let
and Te s e t
the (vector-valued-)
of o r d e r
with non-negative
with a f u n c t i o n which i s c o n t i n u o u s i n t h e whole s e t
C, K ve s h a l l
are self
~-~ectors
.... ) p ~ ) ,
i s a ny f u n c t i o n d e f i n e d on
the closure
denote
~..,~),
Dh
of
continuous derivatives
If
~ -: ( ~
I~I-;, I ~" and
~
n,
_-
will
~ ~ k t be a d i s c r e t e
of
is
extended to the
~ 9
s e t o f complex v e c t o r
mean t h e s e t t o be empty, f i n i t e ,
~
or countableo
s p a c e s . By d i s c r e t e Let
Mk
ve
be a l i n e a r
-6-
C ~(A)and with
t r a n s f o r n ~ t i o n defined on
range i n the
vector space S ~ .
~e s h a l l c o n s i d e r t h e f o l l o w i n g problem
(1.~)
L ~, :
0.6)
,
The symbol~ denotes a giTen ~ - v e c t o r a given Tector of the space
H
=
~,
v a l u e d f u n c t i o n d e f i n e d on ~ , ~
5}1.
I n s p i t e of t h e i r e x t r e m e l y a b s t r a c t d e f i n i t i o n ve s h a l l r e f e r to c o n d i t i o n s (1.6) (when
I n the case t h a t a solution
Ix,
~ S~]is
not empty) as bo,un,dar ~ con.,d,.iti,ons,.
~ S~ ] i s empty, t h e problem consists merely i n f i n d i n g of the e q u a t i o n ( 1 . 5 ) .
Let us furthermore suppose t h a t (i.e.
~
i s a bounded r e g u l a r domain of X ~
t h e Green-Gauss i d e n t i t y holds f o r i t )
belongs to
cl~l(A)
the adjoint matrix, i.e. matrix-differential
o~ _~ ((o~ ~K ))
. If
the
,u- :
(~:,(...~]K:1..'~)we denote
by ~
re.x-rim, m a t r i x ( ( ~
a~l
(,-~)
K ~ ) ) . The f o l l o w i n g
D ~,~.
and ~Y both belong to
~
C~ ( x )
o p e r a t o r w i l l be c a l l e d the a.djoint o p e r a t o r of L Li~ -
Suppose t h a t
and t h a t t h e m a t r i x
C ~ ( A ) then t h e f o l l o w i n g
G r e e n ' s formula h o l d s :
A where
~ (~jlr)is a bilinear
~A (4)differential
o p e r a t o r of order '~ -4
(4)Since ~j~r)is d e f i n e d f o r complex v e c t o r Talued f u n c t i o n s t h e term " b i l i n e a r " means t h a t H(%~)is l J n e a e w i t h r e s p e c t to It, , i . e . H (~t~ + bu'~ ~) -:~(%~)+~H( i ) end a n t i l i n e a r with r e s p e c t to ~ , i . e . H(~)~.~ b~') = --o-H (u.,~)~-b H (I~.,~')[Z,~ a r e the complex c o n j u g a t e s of ~ and b ~ .
-7-
in
~
and i n
matrices fJA of
~
, whose c o e f f i c i e n t s
CL and o f t h e f i r s t
a r e e x p r e s s e d i n terms of t h e
order differential
e l e m e n t s of t h e boundary
. I t i s somewhat t e d i o u s t o w r i t e down e x p l i c i t l y ~ ( ~ W)o lloTever, t h i s ~'e s h a l l
the full
expression
i s n o t n e e d e d f o r our p u r p o s e s 9
c o n s i d e r , i n s t e a d of the general problem (1.5) , ( 1 . 6 )
the
f o l l o w i n g one w i t h "homogeneous b o u n d a r y c o n d i t i o n s "
(1.5)
L~ : ~ ~
When a f u n c t i o n
(1.6.)
,
admissible solutions)
MI~ ~ ~
o.
( b e l o n g i n g t o t h e s p a c e of what we s h a l l d e f i n e as exists
such t h a t
M~. ~ ~ ~ ~
, t h e n , and o n l y t h e n ,
p r o b l e m ( 1 . 5 ) , (I .6) i s e q u i v a l e n t t o p r o b l e m ( 1 . 5 ) , ( 1 . 6 o ) . L e t us d e n o t e by V
the linear variety
valued functions belonging to
C ~ (AI
" H (~,,~,-)d~= "aA f o r any
~
satisfying
If a solution then
~
~
conditions
the integral
of a l l
~-vector
such t h a t 0
(1.6~
of problem ( 1 . 5 ) ,
must s a t i s f y
consisting
belonging to C ~ ( A
(1.6o) exists belonging to
),
C ~'(/~)
equation
(1.7)
for
eve17
9 This i s t h e s t a r t i n g
~s
p o i n t o f t h e c o n c e p t of weak
solution for the boundary problem ( 1 . 5 ) , ( 1 . % ) 9 substituting
the integral
the equations
(1.5),(1.6o).
equations (1.7),
I t consists merely in
written
f o r any
~y~r
In order to make t h e e q u a t i a n s
(1.7)
, for
consistent
Te assume t h e f o l l o ~ r i n g h y p o t h e s i s 9 1~ the
zero-vector
The l i n e a r v a r i e t y 9
"Vr
c o n . r a i n s some v e c t o r i d i f f e r e . n t f r o m
-8-
It is co~enient
to e n l a r g e our problem i n order to i n c l u d e t h e p o s s i b i l i t y
t h a t t h e given f u n c t i o n
~
and t h e unknown f u n c t i o n ~ be g e n e r a l i s e d
f u n c t i o n s . We do t h i s i n a q u i t e a b s t r a c t Tay.
Let
5~
be a complex •anaoh sp~ce ( B - s p a c e ) .
~e ~s~ume that
c o n t a i n s a l i n e a r s u b v a r i e t y t h a t i s l i n e a r - i s o m o r p h i c to w i l l be the
S~
space of t h e a d m i s s i b l e unImolms. Let
We assume t h a t
S{
C ~
S~
(,~), S~
be a second ~ - s ~ a c e .
c o n t a i n s a l i n e a r s u b v a r i e t y l i n e a r - i s o m o r p h i c to
C~
In a d d i t i o n to the h y p o t h e s i s 1 ~ we make the f o l l o l r i n g ones: 2~
There e x i s t too complex ~ - s p a c e s
~
and
I'~.
such t h a t
c o n s i s t s of measurable (complex l ~ - v e c t o r v a l u e d ) f u n c t i o n s and
{~
measurable (~omplex ~ - v e c t o r valued) functions. ~oreover S ~ : ~
S~r~ b~'~* ( ,~*~ and
I~,
of
and
_are . . the. topolol~i-cal . . . dual spaces of I ~ and [ ~
i~;.
respectiTely) 9 3") ~ varies in V
contains
an_~d I ~
c ont_ains the range o_f L ~
S~
~-space
[~
] c o n t a i n s a. l i n e a r s u b v a r i e t ~ Banach-iso,morphic
of m e a s u r a b l e f u n c t i o n s ~ t h e n ! i f
~
[ ~ ] denotes any
f u n c t i o n of t h i s su ,bvari,et~ an.d "~ i s any f u n c t i o n .o_f the scalar function
( (
)
The____nn
9
4") I f to. a
V
~~
[ ~ ~/3
denotes the dua,lit~ b e t . e e n
i~
i s Lebesgue i n t e g r a b l e on
,a
~-space
L I~ ~ ~
and
and i t s topologica,l dual
space) 9
We s h a l l c o n s i d e r t h e f o l l o T i n g problem: A vector
~
of the ~ - s p ~ e
$~ |
vector
of t h e
(1 ~ fo.r any
%~ s V .
~-space
St ~ such t h a t
i s g i v e n . We . ~ t
to find a
),
-9-
Because of h y p o t h e s i s 4 ~
(1.8)
s e n s e , t h e n the s y s t e m The v e c t o r
~
when
w i l l be c a l l e d
(1.5) ,(1.%) , with space
.~
and ~ a r e f u n c t i o n s i n t h e c l a s s i c a l
i
r e d u c e s to t h e system ( 1 . 7 ) . a weak s o l u t i o n
S~
o f t h e boundary v a l u e p r o b l e m
as t h e s p a c e o f " d a t a " and s ~ e
6
as t h e
space of a d m i s s i b l e s o l u t i o n s . Assume t h a t in the variety all
theveexists
"~ 9 L e t
some n o n t r i v i a l
~r~
the linear
solution
of t h e e q u a t i o n ~ ' ~
s u b v a r i e t y o f ~/
consisting
of
t h e s e s o l u t i o n s ~ t h e n a n e c e s s a r y c o n d i t i o n f o r t h e e x i s t e n c e of a
solution
of o u r p r o b l e m i s t h a t
(..~, 'b~~
(1.9)
We s h a l l s a y
:
for
0
~jo
Vo
t h a t t h e b o u n d a r y v a l u e p r o b l e m (B.V.]7.) ( 1 . 5 ) , ( 1 . 6 o )
.well p o s e d b o u n d a r y v a l u e p r o b l e m i n t h e s p a c _ e s -~ ~.. 5 ~ vector
satisfying ~ e ~
the compatibility
satisfying
5~ '
condition
~a
is a
, ~dlen f o r any
( 1 . 9 ) t h e r e e x i s t s some
equations (1.8).
We want now t o g i v e a n e c e s s a r y and s u f f i c i e n t
c o n d i t i o n f o r a B.V.~. Q
t o be w e l l p o s e d .
~ r o be t h e c l o s u r e o f t h e v a r i e t y
space
~
If
i s any f u n c t i o n i n
~/
.
Let
Let us denote by ~
c l a s s - as an e l e m e n t o f ~
~
the factor
, we s h a l l -
-~r
~-space
in the
~
d e n o t e by [~v~ t h e
d e t e r m i n e d by ~ v .
/
~-
V~
equivalence
Set
II L~(~ iiB~ ~,V-~
I n t h e n e x t l e c t u r e we s h a l l 1.I. (1.6.)
Ji E~ l ji
~
prove the following theorem:
A n e c e s s a r y and s u f f i c i e n t
t o be w e l l posed i n t h e s p a c e s
c_o_n_dition f o r t h e B . V . P . S~ ,
S
is that
~
(1.5),
be g r e a t e r
than zero. w i l l be c a l l e d t h e d i s c r i m i n a t o r spaces
S t ,
5~.
of t h e B.V.I:'. ( 1 . 5 ) , ( 1 . 6 o )
in the
-10-
Bibliography,
F_x]
G. FICItERA - L e z i o n i
sulle
Trieste,
[2J
[3]
o f L e.et,ur,e 1
trasformazioni
le
Ediz.
- Roma,1958.
Veschi
G. F I C H ~ A - S u l c o n c e r t o differenziale
equaz.ioni
Ediz.
di problema -
without
proble.mi
"ben posto"
Rendiconti
solution
dei
differenziali
Veschi
-
par~ia.1
- Annals
al
- Corsi
per
di Matematica
- An e x a m p l . e .o,f a s m o o t h l i n e a r equation
M. PICONE
~enerale
c o.ntorno per
66 -
-
1954.
Go FICHI~IA - P r e m e s s , e a d u n a , t e o r i a
I t . LI~#Y
lineari
una -
INAM
e~uazione
19 -
1960.
d i f f , e,r e n t i a l
of Mathematics
-
195"/.
-Ma~iorazi.one
degli
mente paraboliche ordine
-
inte~rali alle
derivate
Ani~ali di M a t e m a t i c a
dell.e .e~uazioni parzialt
del
pura eapplicata
totalsecondo - 1929.
-11-
Lecture
Existence
Let Let
~f
Lhi~
9
~'e d e n o t e by ~
~Ye s h a l l A
principle.
be a complex v e c t o r s p a c e and ~
~1 h ( ~ : 4,~ ) be a l i n e a r
space
2
vector
and ~
two complex ~ - s p a c e s .
t r a n s f o r m a t i o n ~ i t h domain ~r and r a n g e i n t h e the topological
dual space of
~h "
c o n s i d e r t h e f o l l o w i n g problem: ~
of
the
,space ~: is
given;
find a
vector
~/
_of ' ~ :
such t h a t
(2.1) ~'e s h a l l 2.I.
prove the following theorem:
it n e c e s s a r y , and s u f f i c i e n t
. . s o l u t i o n . of problem
. (~.i) , f o r any r
c o n d i t i o n f o r t h e , e x i s t e n c e of a ~
~ ' ~ ~ ~ i s t h a t .a p o. s i t i. v e . c o n s t a n t
e x i s t such t h a t t h e f o l l o w i n g i n e q u a l i t y
S~.fficiency. Let ~Z be any vector in end s e t ~V:
the
h o l d f o r any %~e ~r
range M ( V ) o f M . L e t % - M ~
~/~ = M4~r. 'I~e v e c t o r ~X/4 i s u n i q u e l y d e t e r m i n e d by ~,'~ , s i n c e Iv~'~ ' ' ~'z
implies,
because of ( 2 , 2 ) ,
that
~ M 4-v - M4%v' II -~
V~ il ~ z ~y- M ]Y'l] = O. L e t us d e f i n e on M2. ( V ) t h e f u n c t i o n a l
-12-
Obviously
depends linearly on ~ z 9 On the other hand, l ~ (.~)i ~ i i ~ j t l l M ~ l l
~
il~llllM~rii tional
of ~
-" V~ t t ~ l l [ I ~ II 9
i n such a way t h a t functional
(2.3)
still
in the whole space
M t (V)
and
spaces
holds for the continued functional.
w i l l be a s o l u t i o n
N . e c e s s i t y . We can r e s t r i c t
~4
Mz~V)
and ~ .
there exists
ourselves to c o n s i d e r a t i o n
of
~,
~
and ~
T h i s a l l o w s us t o s a y t h a t
the solution
~--~
such t h a t
is a solution
[M~(V)]
M~ ~ V ) functional I~enceforth the range
, l e t us consider the f ~ o t i o n a l is linear ~i~ w M~(V)
and It ~rv'~r Ii z il ~
M~(V)
and i t
~ 9 T
~ and T ~ - - ~
" V~ ilc~li 9
i s bounded s i n c e
il ~- V, ~ i ~
II .
, the linear
, i.e.
of a n y
con~t~t).
~et us define on ~
is linear.
I t i s bounded s i n c e
has
such t h a t
L e t us is a
a closed Then we
"I.~ : ' l ' . ~ . .
By t h e
A constant ~,
t~
in the range
This
I ~ Q r ~ z ( ~ ) l - ' t ~ v c z ~ l ~ t~ II~[IJl~z[~,
L e t us now c o n s i d e r f o r a n y
functional
~
9 I
(~)- <~ #, ~, ) ,
~(~):.It
H * A l s o l e t us c o n s i d e r t h e l i n e a r
consisting
~
~,
For a n y f i x e d
V~
c~ ~ [ M 4 ( V ) I ~
of ( 2 . 1 ) .
i s a bo~mded t r a n s f o r m a t i o n .
itS{ [I : i l T ~ i
of t h e whole
f or any given
:<'r~,~,M~.), t h e n :
instead
of ( 2 . 1 ) c o r r e s p o n d i n g t o
I n f a c t ~ l e t us s u p p o s e t h a t
" c l o s e d graph theorem"~
Such a
of t h e s u b s p a c e s
respectively,
linear transformation of [ M t ( ~ r ) . l " i n t o graph.
~
of ( 2 . 2 ) .
o n l y one ~ ~ [ M z ( V ) ] ~ t h a t
d e n o t e by ~ -
of
is a bounded func-
I1~ It ~ v, ilq H.
the Hahn-Banach theorem we may continue ~
exists
~
and
(~.3)
~y
Therefore
t~ ,- t ~x~
the f ~ c t i o n a l
~
in
i s bounded subvariety (
t
~ (~) 9 t ,~,
i s a complex
~.
-13-
I .~(~) I
I~
li~ ii and Ii ~ i{- ]i ~V~ {i.
{/~ W ~ ,
"%4(~)
.
defined
on ~ t ( ~ r ) s u c h
exists
that
ii F i} : {i ~/4 i[ j
W~, i{ II F it - II~,
, '~-~: M z b "
~ 6 [~4 (~r)]~
It
ii : Ii~, ~i 9 IIM, ~ II
iiW
there
We have proved so f a r t h a t
~/~ -- ~14~r
for any
Since
(2.2)
~
, F ) { ~ II
IIW,~4..i1 .>~ ii ~z4 II us now assume
It i ii ~4 Ii
By t h e I i a h n - B a n a c h t h e o r e m ,
bounded f u n c t i o n a l
and a l s o :
{i ~ {,
II II w{l o {l~/~
that
follows
that
From t h e p r o o f
a solution
same c o n s t a n t
W~/
(4):
{{*VVvr~/4tt = II'~Vr~/ It .
IIW ~ . II _z K ii~ Ii : K
and
V.
that
of the first
exists
satisfying
appears
in (2.2).
of (2.1)is
obviously
orthogonal
to the range of
part
iiM ~ ~ ii,
the inequality
of
. This space is a closed
shall
equivalence
~]
the
space - determined is
defined
as
following
.1 {{ ~
of (2.3)
inequality
~/
9
with the
are
subspace
~
of
/ Y~
~,&
We
- as an e l e m e n t o f t h i s
S i n c e t h e norm {i [~/-1 i~ i n t h e f a c t o r
follows
{{E ~ as a c o n s e q u e n c e
by
class
that
~'~"
and c o n s i d e r the f a c t o r space
denote by
(2.3)
it
The s p a c e o f t h e e i g e n s o l u t i o n s
composed o f t h e f u n c t i o n a l s M~
of the theorem,
Let us denote i t by Y ~
space
by ( 2 . 1 ) ,
Let
follows. Remark.
factor
Therefore
i[ : i[ v~4 l} .
9 Then we h a v e , follows
a linear
holds
~.
{{~ , ~~ {{
we h a v e t h a t ,
for any solution
of (2.1),
the
-14-
(2 ~
II C',Y]II _-- i< Ii~il.
Inequality
(2.4) rill
be c a l l e d
the dual i n e q u a l i t y
of ( 2 . 2 ) .
It is evident that in order for the existence principle t o be u s a b l e i t i s n e c e s s a r y t h a t tile k e r n e l
V'!
be c o n t a i n e d i n t h e k e r n e l ~ 4 ~v~= 0
(2.5)
of ~ ~,
~
f o r any
~
~
M~r
~
V 4
-0
M~
must i m p l y t h a t
, the given vector
and t h e f o l l o w i n g n e c e s s a r y c o n d i t i o n
~o
for the
must be s a t i s f i e d
M 4 IX~ )
'= 0
for every
We w i s h now t o g e n e r a l i z e and s u f f i c i e n t
of t h e t r a n s f o r m a t i o n
M 4 , i.e.
. In the opposite case, i~
c a n n o t be c h o s e n a r b i t r a r i l y existence
of
j u s t proven
condition satisfying
theorem 9 . I .
for the existence the condition
~X, ~ ~f~.
and t o g i v e t h e n e c e s s a r y of a s o l u t i o n
(2.5).
L e t us c o n s i d e r t h e c l o s u r e of t h e l i n e a r Banach f a c t o r
space ~
= ~
class~W]of ~
i s g i v e n by
of e q u a t i o n ( 2 . 1 )
/M~,.
variety
As u s u a l ,
M4 ( ~ r )
and t h e
t h e norm of an e q u i v a l e n c e
II [ ~] II M~
L e t us d e n o t e by
thst
range in the space of the space
2.II. solution cons t a u t
(2.8)
the linear brings
transformation ~
T i t h domain ~ r
into the equivalence class
and [ M4~r ~
The f o l l o T i n g theorem h o l d s :
~t"
A n e c e s s a r y and s u f f i c i e n t of ( 2 . 1 ) , exist
f o r any
condition
satisfying
such t h a t
II M 4
Ii
v, II
ii ~
for the existence (2.5),
is that
of a
a positive
-15-
This theorem, be c o n s i d e r e d known t h a t ,
which appears
as a p a r t i c u l a r if
i s an
as a g e n e r a l i s a t i o n
case of that
element of
~~
of theorem 2.I.,can
theorem (l). then it
)
In fact;
it
is
admits the following
r e p r e s e n t a t i on:
(2.7) where if
is
~
.~.
an e l e m e n t o f
~4
is such a functional,
vanishing
then (2.7)
identically
defines
on
M (K~Conversely,
an e l e m e n t o f
Q~
9Bec
ause
of the condition (2.5), we may write (2.1) as follows
where
~
is
defined
by ( 2 . 7 ) .
we c a n a p p l y t h e o r e m 2 . 1 .
m~,t,"
Since
=0
is
In fact,
evident
let
introduced ~ 0
then there
exists
(a.8)
(1.5),(1.8o)
a constant
equivalence
considered
in the spaces
Inequality
(2.8)
equivalence
class
6t:
the fact
K
{} { ~ ] {I ~ is the
expresses
= 0
I
of (2.6)
a particular space ~
that
and (2.6)
~
is still
case of theorem 2.II.
is the linear 6
(2.4).
9 6~
variety
"Vr
. Then t h e c o n d i t i o n
holds.
i s well posed in the spaces
S~ , 5 ,
such that
holds:
the dual inequality
~ li.~il.
class ~
is
the vector
1 and that
simply expresses
I f the S . V . ~ .
[~
how t h e o r e m 1 . I
us assume that
in lecture
~qY
T h u s , we g e t t h e p r o o f .
S i n c e i i ~ II : {{~{{ , t h e d u a l i n e q u a l i t y It
implies
o f (weak) s o l u t i o n s
, S
the fact
of the solutions
o f t h e B.V.P., when
9 that,
when a B . V . ~ . i s w e l l p o s e d , t h e
depends continuously
on t h e
given data
of the problem. The c l a s s i c
Hadamard p o i n t
of view in defining
a well posed B.V.P.
-16-
assumes
existence
data
From o u r
.
consequence
and continuous approach
of the
it
dependence
follows
of Lecture
N.lYJNDFORD-J.SCH~kttTZ - L i n e a r New Y o r k - L o n d o n ,
C 2 .]
G.FXCHHtA - s e e [ ' I ]
, /'2]
G.FIC!t~;~A - 0 p e r a t o . r i Istituto
[4]
Cell.
condition
is
a
, [3]
, in Lecture
di Riesz-Fr_edholm, Batematico
Pabl.
Publ.
Inc.
I.
operatori
Guido Castelnuovo
riduci_b.i.li,
etc
-
-Roma,1964.
A.n.a l T s . i s ' .and S e m i - G r o u p s
- Amer.Math 9
31 - P r o v i d e n c e , 1 9 5 7 .
1953 - English
A.C.ZAAI~t~ - L i n e a . r . J U l a l y s i s
- Interscience
1958.
F . I ~ I E S Z - B . S z NAGY - L e m o n s d ' A n a l y s e Budapest~
[6 ]
second
on the g i v e n
2.
operators
E.tIILLE-R.I~IILLIPS - Functional Soc.
[5]
the
solution
first.
Bibliography
[1]
that
of the
-
North
fonctionelle
- Akademiai
Translation,
Ungr,a
Holland
Publ.
Kiado,
Nev York,1955.
Co. Amsterdam,1953.
-17-
Lecture
3
0
The
Let
~
function
spaces
~
and
be a bounded domain of the real cartesian space X ~. Without
any loss in generality, we may assume that square
Q
H~.
: {x
I~ H
~
is contained in the open
9 Otherwise9 we may use a proper change of coordinates
in order to reduce to this case. Let us consider the vector space C "~(A)
[ C ~ (A) ] of co~ple~
~-vector valued functions, ~ d
for ~ y p~ir ~
of vectors of this space let us define the following scalar product
(~ ~ )
(S.l)
We d e f i n e s p a c e s
m~ ( ~ )
{H
(A) ,t or s i m p l y (when any confusion can
t o be t h e H i l b e r t f u n c t i o n a l c o m p l e t i o n of
~(~)
f u n c t i o n s p a c e s o b t a i n e d by
iC~(~)]Tith
r e s p e c t to t h e s c a l a r p r o d u c t
(a.l) o
I t i s obvious t h a t f o r ~ = 0
H (A): Ho(A)--J-.:2(A).
we h a ~ o
In general, a function
~
will belong to
H,~
(l"l~,)
i f and o n l y i f
o
such t h a t
"~
The f u n c t i o n ~
~
JAI~(~)-~(x)I
~ ~(x)
dx =0
and, m o r e o v e r , t h e r e e x i s t f u n c t i o n s
- which o b v i o u s l y does n o t depend on t h e sequence
- is called the strong derivative
~
of t h e f u n c t i o n
~
0
H.~
( i-1~ ) , o r , s i m p l y , t h e It
is
integration
easy t o s e e t h a t
~-derivative
f o r any
by p a r t s f o r m u l a h o l d s :
~
gl.~
of
~
and any
. ~/~ ~
(A) the
of
-18-
(3.~) In
fact (3.2)
and
~~
then,
holds
when we r e p l a c e
~
by
~
and
~ are the above mentioned sequences with
making
t< t e n d t o i n f i n i t y ,
ve obtain
v~
%
by
~"K ( t'lPCK
6 ~'w'(~)
) and
(3.2).
0
Any f u n c t i o n trigonometrical
~
of
~J
(~)
4
~
c a n be d e v e l o p e d i n a F o u r i e r
series L~x
(3o3)
~(X)
-
C
,< ,<
~
e.
(2~,T>" "'~ where CK :
the development being convergent
~ (x)
D
:
(, ~ .
IA ~
4 in
fi~ >" - -
~ -bwx ~
~
(A)
~
X For J~ I ~ h~t we h a v e a l s o :
.
~.),~
(
dx
A
and then, using ( 3 . 2 ) : (3.4)
D
..(x)
,>".,~
:
(6)
K
c
e
.
o
T h i s means t h a t differentiated
t~ 6 H ~
, the Fourier
t e r m by t e r m p r o v i d e d
does not exceed
There exist
for any
~
the order
series
(3~
c a n be
of the differentiation
9 We h a v e "
tTo p o s i t i v e
numbers
Po
and
~4
such that
~
~ )
-19-
Therefore,
(3.5)
p~ ~
e. I~1
_"
IC~l
9t" ~ a
JAID~'" I*dx
)""
<- p,l) ~. IKI
I CKI.
0
Let us denote The f o l l o v i n g
II t,l, ll~
by
the norm of an element
,leLma o f t h e t ' o i n c a r b
inequality"
H~
of
(or
bl,l~' )-
holds=
0
3.I.
For any
(3.6)
t~ t~ H
II i,,i, II
~
'w%
(.A)
C 7
ID
I
x.
I '~ I =,vii, The
constant It
is
evident
by i n d u c t i o n ,
ICoi :
/
depends onl~ on
C
the
that
general
follows
suffices case
IJ ~ . d * ,~
(~r,) "" 4
:
9
to prove
follows.
(:2.ar ) 't
(3.6)
for
:~
, and t h e ~ ,
We h a v e :
ca.
A
IA I bu.I ~d~ IAI #'12dx
9
v. a-
that:
2.
II t,. II
~
(4i
4
( 2 . ~ ) "~
It
it
~
:
x
.+
I D I'l' I ~ d
t
/v.
+"
IC K I
Pt )-""i< IKI
-c:~
"l
ICol'
+ (4i'1~)
-~
Keo
IKl~'lCv
I" ~ r~
f-
t~.j; ),..
,,a.
I X I z d x .I-
A
-
P<,
A
rD I,t,,< (~) D t b d e n o t e s
the
~•
matrix
9
/'Dx h
,.,
) -
=
-20-
From ( 3 . 6 ) and ( 3 ~ 3.Iio
The norms
it
f o l l o w s that-"
[l ~ ] l ~' and
~
va
the space
H ~
'et
9 f o r any
o,
dom~n
with
t~
are isomorphic in
IC~I
o
us now c o n s i d e r ,
~th
IK I K
~
~
H~ ( ~
C ),
the operators
o
PI ~
and range in
/t,,~
Hr.
(~th
~, < ~
) tha~ a s s o c i a t e s 0
t h e same
~ , b u t c o n s i d e r e d as a v e c t o r o f
H~
. I% i s o b v i o u s
O
that
~
i s a bounded l i n e a r
transformation of
O
~
into
O
t r a n s f o r m a t i o n w i l l be c a l l e d t h e embeddin~ o f
~
. This
O
a~
int____oo H~
9
O
3.1n. ~h~ embeddin~ U ~
o~
H~ into
~t ( ~
< ~
) i~
c ompac t 9 0
Let
U
such t h a t 9,- ~
~
~ I ~ i
I C K I
I
and t h a t
~
[-,
9 Then a p o s i t i v e f o r any
~ If
<
varies ~
is reKular
L~
in
~
.
the last
It
~
exists
follows that
series
is uniforwly convergent (~) This p r o v e s c o m p a c t n e s s o f ~ 6 .
i s a bounded c l o s e d domain of i f t h e Gauss-Green i d e n t i t y
; (~
The f u n c t i o n
~
belongs to
T
f o r any
~
T
6 C~(T)
V,
Q = (Vt, "~ 9z ) i s t h e e x t e r i o r point of Q T
X ~ ~ we s h a l l s a y t h a t
holds in
"T
finite
w 6 ~,
constant
~
-~"
when
H~
be a bounded s e t o f
u n i t normal v e c t o r t o
~T
i n any r e g u l a r
i s t h e measure o f t h e h y p e r s u r f a c e e l e m e n t on / ~ .
i s s a i d %o b e l o n g t o
~ ~-4 (.[)
D ~ ~T )
and t h e r e e x i s t s
(.~
>o ) whenever it
a decomposition of
number o f n o n - o v e r l a p p i n g r e g u l a r domains
~
, ....
~
, T4~
into a (3)
(%)We h a v e been u s i n g t h e f o l l o w i n g lemma- I f 5 i s a s e p a r a b l e H i l b e r t s p a c e and ~%r~,~ a c o m p l e t e o r t h o n o r m a l s y s t e m i n i t ~ t h e s u b s e t l / o f 5 i s compact i f and o n l y i f t h e s e r i e s ~ I(~ %~)12is u n i f o r m l y bounded and u n i f o r m l y convergent in i; 9 (Se~ [ ~ ] ). (~)By "decomposition of T in a finite number o f non-overlapping domains Tt, . .... T,~ " we mean t h a t 7 : 7 4 4 ..... uT.~ and (.T;.-"bTL)n (Ti-~T,~) for L ~ i
-
-21-
~ e C ~ ( T C ) ( : : 4,..., ~ 1. When t~ 6. ~ ( T )
such that say that
~
has piece-wise
to prove that the subset
~pt ~
~ T
of
c
T-~T
set
~A
@1
for any
the closed
" ~ A
, and ~
c ~A
Xo
there
functions
b~
D ~ (T)
such that
regu, l , a r d o m a i n i f
a neighborhood
the following
, IW I ~- d
fJA n ~
~y
follows
matrix
that
has properties
H ~
If
A
( ~
I~ , . . . , Iq
in the condition
I: 14 u....u I~
) is
is homeomorphic to
~ = y (x)
be a n y o p e n s u b s e t
function
to those
be a f i n i t e
which maps .T
set
f o r m an o p e n c o v e r i n g with non-negative
y =
~/ ~ 9
~g = 0 )
homeomorphically
y(x>~ D'C Y ) ]
which is
bounded
set
9
boundary
Let
A-I
~-I
~
.~
o_~f
H~
principle). like
OA
of
those mentioned A
*
Let
be n o n e m p t y ( o t h e r w i s e is contaized
.
onto
y(X)o
selection
A-I
+
w h i c h maps
the embedding
the set
containing of
determinant
of neighborhoods,
cover the
The c l o s e d
of
[ i.e.
• : X (y),
of
regular,
and s u p p o s e t h a t
the proof is simpler1.
space
i s mapped o n t o t h e s e t :
compact (Rellich
), that
Xo ( o p e n
9
is properly
> ~
of
of the cartesian
has a positive
the inverse
analogous
~
~ -- ~ ~ ~
B + has piece-wise continuous f i r s t derivatives
3.IV,
unity
exists
the vecto~-val~ed f u n c t i o n
It
Let
we d e n o t e by
regular;
the set
C~§ " Ym >- 0
~ Qx away f r o m z e r o i n t h e w h o l e J
into
is
), such that
semiball
and t h e j a c o b i a n
,
o
if
c H ~ ( T - ~ T 1,
properly
~
homeomorphism t h e s e t
~1
of those
~ ~(T)
, then
It is not difficult
derivatives,
are satisfied:
contaihing
onto
consisting
A i s s a i d t o be a
d,)
In this
,~h
(T-~T), M o r e o v e r
) c i~
~ ~ (T)
A domain hypotheses
continuous
we shall
The s e t s
So /
in
I4
A.
Let
) "~ ~
I
i ~ (x) r ~ be a p a r t i t i o n of ~:4 h C ~ functions such that ~t ~hLx) (h=~...;~)
~
-22-
i s c o n t a i n e d i n one of t h e s e t s of t h e above c o n s i d e r e d c o v e r i n g . L e t ~ ~ ~ ) ~'e have
~ : 2_- ~. ~
and ,~ •
Let .$~o~ ~9h C i $(~)o Then i f ~f i s a bounded s e t i n of functions
~b ~
( ~ ~ (/)
. e have p r o v e d t h a t , we can e ~ r a c t
for
i s bounded i n
~/~
a subsequence
Ht ( ~ ) , the se~ ~/h
ki 4 ( I ~ ( h ) n
~ )o
bounded, from any sequence i~w
t such t h a t t ~
~v.
Suppose
~ ~
t
I r
~-
is convergent
~o (~ ~{h)r~ /~ ). Then we can o b v i o u s l y suppose~ t h a t ~d~h b~.~ i i s 7. ~ h b~~ v i i i be c o n v e r g e n t c o n v e r g e n t f o r any ~ Hence t ~ ~ ~.~ in
:
9
in
~i~ ( / ~ ) .
to general
,~
This p r o v e s t h e t h e o r e m f o r alad ~ ( ~ w ~ )
Compactness of f o l l o w s from 3 . I I I
is trivial.
~fh
in the space
since in this case
greater than zero 9 Set, for simplicity, set
~ (~)
~ k x (y)]
~l~
~f~ C ~(h)
when ~1~ ~ ~ o ) ~ L e t : ~ " For any
~e have a l m o s t everywhere on
Fa~
It
~*~ = d ~ ~ : O. The e x t e n s i o n
~
"
~ax h
follows that:
x +
l
ly J
L h
1i4 II
/~
be
~ ~ ~1, ~
~)
-23-
where
II
]1
has an obvious meaning.
L e t us no~ assume ~ (y) : ~ , define in the closed ball
The f u n c t i o n
b~
C~)
"
Then
iI Lj z4
-
subsequenc e
~bs
(theorem 3.III). and t h e r e f o r e
~
[x(y)]~ [x(~)iI
= l yi ~- ~
b e l o n g s to we
t~ ~
This means t h a t
~~
~
~
. We have
from any sequence
t such t h a t
that
the folloving
~1 ( ~ )
can e x t r a c t
t
function.
il~ e t t ~
is convergent in t is convergent in
~ is convergent in
B,iblio~raphy
~ i t h ~ ~ ~T L e t us
of
Lecture
=~ ! ~
II~ lt~,~,
-
a
~I~ L ~ ) Ho ( ~ * )
~o (I~j.
3
R.COURANT-D.HILB~RT - Methoden d.er. _Ma.themati.s.chen P h y s i k - v o l . I I Springer, G.FICtI]~AG~
C~
-
Berlin.
see
~1]
in
lecture
1.
see
~2]
in
lecture
2.
~iultipl.e i n t e g r a l .and r e l a t e d
problems i n t h e c a l c u l u s
topics
S.L.SOBOLEV - A p p l i c a t i o n s
- U n i v . of C a l i f .
of v a r i a t i o n s
P u b l . i n Math.neT e e r . 1 9 4 3 .
of Func.tional A n a l y s i s to M a t h e m a t i c a l
Physics - Leningrad,
1950.
-24-
Lecture
The
Let linear
trace
~
4
operator.
Sob..o.lev
U~
N~rl.in~
be a p r o p e r l y r e g u l a r domain o f
t r a n s f o r m a t i o n which t o any
values
and
on / ~
~ Set for ~
le~as.
~ ~9 L e t ~ d e n o t e t h e
~ e C ~ (/~)
associates
its
boundary
~ t :
we want t o p r o v e t h a t :
II ~: ~- il
(4.1)
_L
c Ii u. II ~
w h e r e C i s a c o n s t a n t d e p e n d i n g o n l y on ~ 9 in the case
/u~= ~ . For t h i s ,
l e t us c o n s i d e r t h e open c o v e r i n g ~o~ l ~ , - . . ,
a l r e a d y i n t r o d u c e d i n t h e p r o o f of t h e o r . 3 . I V , partition with
of u n i t y
~(~)
(4.2)
> 0
I
~. ~ ( x ) =
I t i s enough t o p r o v e ( 4 . 1 )
A. Let~esuch
and t h e c o r r e s p o n d i n g that
~t
~_
A
As i n l e c t u r e
~
:
cartesian Let
~
image o f
~n
~(~
./"~ X
R:a
/aA
maps
C
, t h e n (4.1) w i l l f o l l o w from t h e i n e q u a l i t i e s :
( % ~ I~ d~
-g--
~
3 we set,
: ~ ~(~)
and c o n s i d e r t h e homeomorphism t h a t
--
A
onto
(y t ) - s p a c e
be t h e ~ ~ ~A
~~.
We s u p p o s e t h a t
d e f i n e d by
(~-4)-balls
t =0
t 30
'
..~+ i s t h e s e m i b a l l o f t h e
~ +t z ~4. 7 / ~ ' ' " f Y~.~
, i~l 2 -= ~4 V~z L ~
u n d e r t h e homeomorphism o f
~
onto
, ioeo the o Let
-25-
be t h e f u n c t i o n c~ (x)~(;~)
when c o n s i d e r e d i n
~
, by means o f t h e
above m e n t i o n e d homeomorphism. We assume ~ (ty)=- 0 f o r t ~ O ,~+ lyl >4.We have f o r any
t;,O: t Henc e ,
JDIJCv,o) i~01~ D It, f o l l o w s t h a t
From t h i s ,
returning to the
•
~---,~
coordinates,
(4.2) follows;
(4.1)
i s proven.
From ( 4 . 1 )
it
follows that the operator
e x t e n d e d t o t h e whole s p a c e ~
=- ~ ' ~
H ~ (A)~ Then f o r any
( 0 a t ~ i ! /Wt- A
t if
U
~b ~ C ~ ( ~ ) .
t~
~ F-bf~
and
"~ F ~rill be c o n s i d e r e d t h e boundary v a l u e s o f ~ P ~
t i o n of
~]~ C A ) v ~ i s h e s
any d e r i v a t i v e
4.l. ( 0 ~_ ] ~ l
of o r d e r
If
~ ~ ~
be c o n t i n u o u s l y a set of vectors
) i s determined such t h a t
and
sense. It is obvious that
Z
call
~,) implies
in a generalised
T~ : 0
, i.e.
(in a generalised sense) on rM
a
~ ~ C ~ ~ ) ~ H ~ CA
and ~
any f u n c -
together ~ t h
~_ ~ - ~ ,
-~ ~ ' ~ ) i n t h e c l a s s i c a l
.,~)
w i l l be c a l l e d t h e t r a c e - o p e r a t o r
f~
then
~ p~A. : 0
sense.
The p r o o f i s o b v i o u s .
If
@ P ~ ~'{
a r e two f u n c t i o n s o f
t h e Gauss-Green f o r m u l a h o l d s :
A
one'
-26-
where in
~
~ ('~,~") and ~
is a b i l i n e a r
respectively.
From ( 4 . 1 ) i t
and ~r a r e f u n c t i o n s ~
and
~r
generalised Let
o p e r a t o r of o r d e r
folloTs that
(4.3)
still
holds if
~1~ (A) ~ p r o v i d e d t h e b o u n d a r y v a l u e s o f ~ a r e u n d e r s t o o d i n t h e above i n t r o d u c e d
sense. ~ ~ be any p o i n t of
n u m b e r . The s e t
~ )
every point
X~ o f
~
(~ F
a " c o n e s*.
The domain ~
of a l l
sphere
s p h e r e i xi : ~ . L e t
~
and ~
a positive
such t h a t
o z
~o
~
there A
ix-x~
is the vertex
is said to satisfy
Thich is contained in
exists
of the cone.
a cone
C•
, and i s s u c h t h a t
the reader prove that
~
t h e "cone h y p o t h e s i s " i f
~o is congruent to a fixed set We l e t
the unit
X ~
-----Ix-x~l
be c a l l e d
~ ~ and ~
m e a s u r e on t h e u n i t
Cxo ( ~ X-
and
of
~ 0 -~ ~I z ~
be a s e t of p o s i t i v e
will
differential
~
('IxO , R ) o f ~
for
vertex
~.o
i s i n d e p e n d e n t o f X~
on ~ .
a p r o p e r l y r e g u l a r domain s a t i s f i e s
t h e cone h y p o t h e s i s . 4.II.
( S o b o l e v 1emma.). I f
f y i n g t h e cone h y p o t h e s i s , _
,
continuous
(4.4) Ti t h
~a~ G
i s a bounded domaim o f X
the functions
in
(i.e.
I ~-I
d e p e n d i n g o n l y on
It is
/~
z
c
o f an y s p a c e
H
satis-
H , ~ (/~) ) w i t h
(A)c
il ~ Ii
~ .
enough t o p r o v e t h e i n e q u a l i t y
(4.4) i n order to have t h e
proof of t h e e n t i r e lemma. Let satisfying
X ~ be any p o i n t
of
A . We d e n o t e by
@(x)
the following conditions. : ~t
for
I X - X ~ I /-- Z
-
for
i x-
q~(X) o
a
C ~
function
-27-
We have= R
o
/ag
.-.,"1
Integrating
over
I•
on t h e u n i t s p h e r e , we o b t a i n :
d• A.*
~
O
L
._
x
C,~-4 )!
The l a s t
~
o
-- ,~,)
integral
is finite
.
C~o(U, g,) since ~
~ ~ . Thens
/
9
(~,,-a)!~,,~sF Thus,
dx
\ Jc o(i" a)
( 4 . 4 ) h a s been p r o v e d . Let
as v e c t o r
~
'
spaces,
-~2 '
~ 3 be t h r e e complex Banach s p a c e s and assume t h a t ,
they satisfy
the following inclusion
conditions:
b~ c b~ c B3 L e t us assume t h a t t h e embedding
~,~ea~ing ~ ~ exists
a positive
~a z
of 8 4 i n t o ~ a i s compact and t h e
of ~ i ~ o ~ i , oo~ti~uou,, t o , ~ y ~ , ~ conltant
C(s
such t h a t
for any
~ ~ ~4
~ "0 ~ ~ :
-28-
L e t us suppose t h a t ( 4 . 5 ) i s n o t t r u e f o r some ~ >0. Then f o r any positive integer
~
Set
~e haTe~
~
: . . . .
II~ll
(4.0)
, t h e r e must e x i s t some
> ~ 9 .~ I I ~ l I B ~
)
I t f o l l o T s from ( 4 . 7 ) t h a t I I ~ l] L~I
a subsequence
~
c o n t i n u i t y of
~s
But t h i s c o n t r a d i c t s 4.III. For an_y
o~
~~
~s
[I ~
II~. > ~
[I L%~ ~
to some ~
t converges to ~r i n
: ~
~3
0
On t h e
, we can e x t r a c t 9 Because of t h e Then
~ = O,
~hat follows from ( 4 . 6 ) . d o m a i n
t h.ere e x i s t s a p o s i t i v e
,~,d ~
iI ~
~
~ i s compact i n
( F i r s t Ehrling le~na). Let
~ >0
~ , A
~ r
il~ll.~
i s u n i f o r m l y bounded w i t h r e s p e c t
I converging in ,
such t h a t :
(4.7)
to ,'~ . Then, from ( 4 . 6 ) , i t follows t h a t o t h e r hand, s i n c e t h e sequence
~
) such t h a t for ~
~
be any ..bgunded
constant
~ ~
j~
c (~)
of ~
(depending only
CA)the
follo~ng
i nequal.i.ty h o l d s :
(4.s)
11 ~ II
L
~
II ~ l l
~.
~he lemma f o l l o T s as a p a r t i c u l a r
c(.~) il~IIo 9 c a s e of ( 4 . 5 ) , by u s i n g t h e o r .
3.111.
4.IV. domain of
(Second l~lrling l e n ~ a ) . Le~t A ~g,
For any
(depending o n l y on the inequality
E>C
~ ~ /1 and
be an~ p r o p e r l y r e g u l a r
there exists a positive constant
) such t h a t f o r ~ y
c (s
~ ~ H~(A)
(4.8) holds.
The lemma follows as a p a r t i c u l a r
c a s e of ( 4 . 5 ) , b y u s i n g t h e o r . 3 . I V .
-29-
Bibliography
[lj
G. HtRLING - On a t y p e o f di f f e r e n t i a l
of
ei~envalue operators
6 . FICIH~%A- S u l l ' e s i s t e n z a problemi
e sul
al contor~o)
c orpo elastico vol.IV)
Lecture
4
problem for certain - ~ath.
calcolo relativi
elliptic
Scandinavica ,vol .2,1954.
delle
soluzioni
all'equilibrio
dei d i un
- Annali Scuola Norm.Sup.Pisa,s.III
1950.
C 3 ]
ft. F I C H ~ A - s e e L 2 ] o f l e c t u r e
[4]
L . NIR~B~I~G - Remarks on S t r o n g l y Equations
1.
Elliptic
Partial
Differential
- C o m m . on p u r e and a p p l 9 m a t h . v o l . 8 ,
NeT Y o r k , 1 9 5 5 .
S . L . SOBOLLV - On a t h e o r e m o f f u n c t i o n a l
N.S. 4) 1938.
analysis
- Mat.Sbornik
-
-30-
L e c t u r e
Elliptic.
Let
,,syste.ms.
Interior
A be a domain of X m9 Suppose t h a t t h e
~(•
~ i ~ [ _~ ~
differential elliptic
1.inear.
5
) are defined in
~
.
, regularity.
~X.~
complex m a t r i c e s
Consider the linear matrix
operator
J . ~ -: ~ ( X ) ~ , This o p e r a t o r i s s a i d t o be an 4 i n /~ i f ~ f o r any r e a l non z e r o ~ - v e c t o r ~ ~the
operator
following condition is satisfied:
i'~i- v
xeA
at every point
Examples: i )
If
~=
A
. . . .
Q• elliptic
i f and o n l y i f
the operator
L
~ ~ (• 4
of the interval
L
A
and
~ = A
,
-I- ~ ( •
have t h e l i n e a r In this case
~ _~ .~. I n t h e c a s e ~-~- ~ 0%(•
dx
of t h e r e a l a x i s .
O,,.(X)@X,- +G,z(x/"#X.z+(:t~
For i n s t a n c e ,
, we
I.
may be
~= A , e l l i p t i c i t y
means ~4(X) ~ 0 In the case
is elliptic
operator
a t any p o i n t
~ : ~,
onlyThen
for
~
t h e Cauchy-Rieme~n ( o r W i r t i n g e r ) o p e r a t o r
the operator
O,,(X)~(X'#~'O, x +~ y
~x-~/~
is elliptic 9
( t ) A more g e n e r a l d e f i n i t i o n of e l l i p t i c D o u g l i s & N i r e n b e r g (see ~'4 ] , [ 1 0 ] ) 9
o p e r a t o r has been g i v e n by
)
-31-
ii) :
~= ~
If
.,
,
~:Z
, t h e l i n e a r o p e r a t o r i s as f o l l o w s :
~ b.
.+ c
~ <2• '9 • are real,
.
If the coefficients
~,,~')
QX"
L~ i s
elliptic
i f and o n l y i f t h e q u a d r a t i c
O~Lj
form
(x')/~; ~'K
is definite (positive or negative), iii)
Assume ~ : 5
classical
elastostatics:
this
and c o n s i d e r t h e d i f f e r e n t i a l L : bu&/kk + ~ a / & k .
operator is elliptic In lecture
f o r any
o p e r a t o r of
It is easily seen that
~ @ -4.
1 we c o n s i d e r e d t h e weak f o r m u l a t i o n of a g e n e r a l BVP.
The p r o b l e m c o n s i s t e d i n p r o v i n g t h e e x i s t e n c e o f a v e c t o r
~3
-space
~
satisfying
the system of i n t e g r a l
L ~'
(5.1) f o r any
17 6 V
~
9
or i n t e g r a l ) ,
equations:
L e t us s u p p o s e t h a t
B~," B~ " ~ ~CA )" Then ( 5 . 1 ) can be , , ' i t t e n
I f the "boundary o p e r a t o r s "
of the
~>
:
and f o r a g i v e n
~
as f o l l o w s :
a r e a c t u a l boundary o p e r a t o r s ( d i f f e r e n t i a l h ov contains the linear variety ~ ( A ) . No m a t t e r
then ~/
M
what t h e boundary c o n d i t i o n s a r e , a weo/~ s o l u t i o n o f any L"r and unkno~m f u n c t i o n i n
I~(A))
must s a t i s f y
(~ith datlm
t h e s y s t e ~ of i n t e g r a l
equations (5.2). We have t h e f o l l o w i n g i n t e r i o r 5.I
i~
A
If
"
and
satisfying
A
~(.)
regularity
i s i any domain o f
~ C~~
( 5 . 2 ) f o r any
,
~r 6 ~oo
theorem for elliptic
X~
~x)
'
L
i s an e l l i p t i c
~ C~(/~)
with
@r~ %Y6 A
Lo(.,~
.~)
:
belion~s %o CC~
Z a.~(~)D ~ I.~1: v
operator
, then ant f.~ction ~2
Set
systems:
I~i:o
-32-
L ~o ' Cx,~) : (-~)~Z: g~ (• D I~1:~ emy l o s s
We c ~ n s u p p o s e - w i t h o u t
(G:
I•
hall,
with center
be t h e
~).
Let
h&ll
function
th&t is
equal
outside
i~
: ~(•
9 Let ~ ~•
components.
•176be ~ n y p o i n t of
• ~
concentric
~
and radius of re~ius to
~ ;
in generality
i
~ ~ ~
~ Tector
of
r, o
~
different
by
~(X)
complex
: ~(x) L" (• ,O
The %X ~
matrices
From (5.2)
ve obtain,
~
A
e.~P_,
c~)e
X
a
C ~
real
identically Set
from zero with integer
'2-4
dx
~
g + Z-., ~ (x)~; e
.~
d•
.--Z
K
in :
~.e
CI X +
"~
L o ( x ~ C~ )- L Cx, ;.K )]'-f' ,. e--:KXclx .
A
LoCx~
V'.
- ,..K X
I'sl: o
+
' uK X
l'~i : O
- L,Ig, x
Lo(x ~ C,<) 4 . , e
A
Let
~-Tector.
(x) h~ve their supports contained s because of the arbitrariness of ~
I
a~t
9
We h a v e :
L" (•
Since
be a c l o s e d
&nd T a n i s h e s
conste~t
' r
~-
Let
We d e n o t e
~t any point
is
.
, contemned in
,
be an a r b i t r a r y K
A
~cQ
- that
o ( L is ellipticl),
i'~I : o
ve hate-
A
A
~'
-33-
§
(,x~, ~")
Lo
I
Lo (x ~> ~K)- Lo
-~,Kx
' (x,~K)
q)~,e
dx.
Set=
Lo(X~
K) : Z
.
, x ~ ( x ) K "~
q~....TJ.
)
I~,I = ~
C,
Let
be a non v a n i s h i n g
e
-,I I~.1
constant
real
-vector,
We h a v e :
I D" c- Z,Kx dx : A t
-uKX
K~
:-Z~ Ic, i -o
L o (x ,~,~
(x) ~ e [~I
dx +
A
(5.3)
L~K
4-
Lo(X , OK)
q~
e.
I~.I
4-
ILl
Let
Z K 1~1,~,
be l e s s
e,
- 4
than
Lo (x'~ ~K)
J
o ( (x.) U" Cx) e."~K'
-~ Ikl
the distance
betveen
A
and ~ ,
z~
J o((x) IJ'(x) ~- ~xd,( : Jl o~ (x §
We have=
U (x+k)-%(,()U(x)
|
-i~K%
e,
ILl
,x:
A
x+k) Q
T.)'(x+k)-U(x)
-;Kx
e.,
c~x+
I
o(,~ (x+ k )- (%(x)
Q
ikl
-~x
U'(x) e,
clx .
-34Let us denote by
(r~),
~ HI,
CK
t h e F o u r i e r c o e f f i c i e n t of ~ f
I~1~r I r ~o,,,~
+,T_.
Te
r
{
0 ( i t % (~+~.)
Since the
0
Fro~ (5oa), Te o b t a i n ( u s i n g t h e
(~f~)-th
-~
0
and suppose t h a t Landau symbol):
ii u~ Ii
+
If-.!
;) ~0 (iJ
rJ(x,k)-vo,) Ii
d e r i v a t i v e s of
o~ (~, r
a r e bounded, (c~ (X) ~ C ~
d~(x)
!)
have:
o(ll Let
G~
~ (~+~)-~ I~,1
be such t h a t ( f o r any
and a s s u m e
~$ z ~
and
E(~ II ~e ) " 0 ( il~(~)lie, I~i-
;
- s(z~f_|
~oo?, ~t-~ I (V(~,).u(~). + c__.c I~l jQ _~
)-"
It l "(G"
I~1 (5.4)
~'
Ikl
I
F ~J
,(
~
is
chosen
thatx
JQ{U(x+(X)l_~ ~,)-u e"~KxdXl~'+{
_;~ e
such
)
-35-
where C i s a p o s i t i T e c o n s t a n t . This c h o i c e i s p o s s i b l e s i n c e we h a v e :
Ii,x~(•247 T,,r(.,~,)-r.)'(,~) II z c~ L I~1
?" -
dx
IKI:, ~, Q
(Ix,
.-i- C z ,,~ IKI~ {,
where
CI
t
jkl
and
C~ a r e p o s i t i v e
hounded f u n c t i o n s .
c o n s t a n t s and
Then, by u s i n g ( 3 . 5 ) ,
i~,$~: ( X + ~ ) I
the inequality
are
(5.4) follows.
From ( 5 . 4 ) , we get: ~oO
I~1
u(.,~)-u(~) lit, ,. Then, from ( 5 . 3 ) i t
-~ - o o k
+9
i~
l,(
ic,i
:~ §
0( i1~.11
r )
:~0r
el'
e.
dx
By c o n s i d e r i n g t h e f o l l o w i n g s u c c e s s i T e c h o i c e s o f
~ (O)t)-.-,
I
follows ~hat:
ikl
7.
-4
e..
0 ),
.oo ~ -: ( 0 0
...~ ~ )
.
~
,
~ =" ( t ) O ) . . .
end meLking t - > O
we o b t a i n :
,0) j
-36-
-~:~
1.~
We have so f a r p r o v e n t h a t i f and c o n s e q u e n t l y proved t h a t circular
~
for any
~ H
•
neighborhood
t§ A
~
is a solution classical
(['~).
)
then
~
Since ~ s ~ A ~ )
and any p o s i t i v e of
From t h e S o b o l e v lennna, i t
H L (l" 2 ;
~ 6
X~ s u c h t h a t
follows that
of t h e d i f f e r e n t i a l
~
~ ~+~
([~)
Ho (A) s we h a v e
:
integee ~ there exists
H~(Z),
~ belongs to is
~
equation
a
in
, and t h e r e f o r e
~ ~ =
in the
sense.
I f we l o o k back c a r e f u l l y
a t t h e p r o o f of t h e t h e o r e m , we s e e t h a t
t h e arguments we u s e d h a v e p r o v e n t h e f o l l o w i n g more g e n e r a l theoreml 5.II.
A
i s .any domain i n ,the s p a c e
i s an e l l i p t i c
matrix-dif.ferential
(
,~,
~ ~ 0 -~
);
~ ~ ~ O }.
libt il "~ for ant G
L
•
depends o n l y on From t h i s
the interior
~
L
theorem i t
regularity
+
C ~(A),
({)Now
in the sclueI
and
follows,
l[
~
FJo ( ~ )
)
L b~ = ~
~A-.eak
Ii ~ i n s t e a d 0
C~ ( ~ )
of
~
.
(I)
The const..ent
C ~ (A)
solution
II
II
if
such t h a t
by u s i n g t h e S o b o l e v lemma, t h a t
t h e o r e m h o l d s ~llen
read
~ C s247
• o
means t h a t u n d e r t h e s e h y p o t h e s e s a n y belongs to
a
II t, Ii ~"
~ .of t h e e q u a t i o n and on
~(X)
D 5
~4-~ # s (A) (to
there exists
c., ( il ~ II ~-
4 A -weak s o l u t i o n
L = (~(•
o p e r a t o r ,such t h a t
a f u n c t i o n belonging to For any
X~ ;
if
of
, with
L ~=
~r~ ~ o .
,~
-37-
Bibliography
C1]
of
Lecture
5.
F . E . BR0WDI~t- The D i . r i c h l e t probl.em f o r l i : n e a r e l l i p t i c o f a r b . i . t r a r ~ .even o r d e r with v a r i a b l e
e,~u,a t i o n s
coefficients
-
Proc . N a t .Acad . S c i .U .S ~ 9 ~vo1.38, 1952. F~
BR0WDHt- A s s u m p t i o n o f .boundar~ v a l u e s and t h e G r e e n ' s function
in the Dirichlet
elliptic
[3]
equation -
problem for the general
Proc.Nat.Acad.Sci .USA,vol,39,1953.
R. CACCIOPPOLI - Sui t e o r e m i d i e s i s t e n z a
d i Riemann - A n n . S c u o l a
N o r m . S u p . l ~ s a ~ 1939.
[4]
A. DOUGLIS-L. NIRI~BERG- I n t e r i o r _ _e_s_timates f o r e l l i p t i c of partial
differential
Mathem. , v o l . 8 ,
[5]
syst.ems
e~ua~i.ons - Comm. P u r e A p p l .
1955.
K . 0 . FRIEDRICI-L~ - On t h e d i f f e r e n t i a b i l i t y li.near elliptic
.differential,
of the solutions
of
. e ~ u a t i o n s - Comm. P u r e
Appl ~ M a t h e m . , v o l . 6 , 1 9 5 3 .
F . JOHN - The f u n d a m e n t a l s o l u t i o n
of .linear elliptic . .differential
equat.ions w i t h a n a l y t i c
coeffi.cients
- Comm. P u r e
Appl . M a t h e m . , v o l . 3 , 1950.
[7]
F . JOHN - G e n e r a l p r o p e r t i e s partial
o f . s o l u t i o n s o f lin.ear, e l l i p t i c
differential
Theory and D i f f .
e~uations-
Proc.Sump.Spectral
P r o b l e m s , Oklahoma C o l l e g e , 1951.
-38-
F . JOHN - D e r i T a t i v e s o f c o n t i n u o u s weak s o l u t i o n s elliptic
[9]
equations -
Po LAX - On C ~ u c h ~ p r o b l e m differentiabili~y
of linear
Co~n. Pure A p p l . Math. , v o l .6 ,1953.
for hyperbolic
e q u a t i o n s and t h e
of s o l u t i o n s , o f elli~_ti__c e q u a t i o n . s -
Conml. P u r e A p p l . M a t h . , T o l o S , 1 9 5 5 .
10 ]
L . N I R H q B ~ G - s e e [4 1 o f l e c t u r e
4.
H. IrEYL - The m e t h o d o f o r t h o g o n a l p r o ~ e c t i o n i n p o t e n t i a l Duke Math. J o u r n a l ,
v o l o7, 1940.
theory-
-39-
Lecture
Exi.'stence
of
local
The aim o f t h i s t h e domain
A
there
9 he d i f f e r e n t i a l
L
exists
system
elliptic
is to prove that operator
A0 C A 9
and on
inequality
for any point
L ~ - ~
5,
ix, of
exists. (4)
(L (x)
s_tated i n t h e o r .
There e x i s t s
Ao , such t h a t ,
of t h e e l l i p t i c
5~
Let
a positive
operator
L
A o be a bounded domain
constant
co , d e p e n d i n g o n l y
~- ~ ~ oo (Ao) the f o l l o w i . g
for any
holds:
~.~,Ao
We can c o v e r
( ~ . 4)..~9 ) , t h e
5.II).
t-~.t
A~ by a f i n i t e
II ~7 il (theor.
x ~ of
L , introduced in lecture
+
any
systems.
some n e i g h b o r h o o d i n which a s o l u t i o n
Let the coefficients
the conditions
such t h a t .on
lecture
for
p r o v e some lemmas. 6.I.
satisf~
solutions
, where t h e e l l i p t i c
is considered,
We f i r s t
6
Ao
s e t of c l o s e d b a l l s ~
following inequality
"~ c ;
II
L~
II ~" II
II ~"
~,A o
~..
~
such t h a t , f o r
h o l d s (we assume I)'_: 0 i n
x\
+ I1~11
Since: q
(
I ) P l e a s e n o t e t h a t t h e example o f H~ t o an o p e r a t o r which i s n o t e l l i p t i c .
considered in Lecture 1 refers
A ):
-40-
Ii L ",," II ~-r
li L v" II z
~:
I" k
II ~" ii
,
~-v+ ~,, Ao
~ ~-
II ~ II
cl
(6ol) follovs with
Co : ~
C.
L e t us assume - f o r t h e s a k e of s i m p l i c i t y We l e a v e i t potheses,
- from nov on~ ~ ( ~ ) ~ C ~ ( A ) .
as an e x e r c i s e t o t h e r e a d e r t o r e c o g n i z e t h e more g e n e r a l hy ~
u n d e r which what we a r e g o i n g t o s a y h o l d s .
6~
There e x i s t s
only a finite
number of l i n e a r l y
independent 0
solutions Let
[
of t h e homogeneous e q u a t i o n
L tr -- 0
belonging to
be a n y n o n - n e g a t i v e i n t e g e r ~ For a ~ y s o l u t i o n
C ~(/~o)"
~r o f
L ~r - o>
o
belonging to
~oo (A.)
(8.2)
. the following inequality
I1 " II 2"
_-
Co IIv" II z
~,+~, Ao
holds:
.
e, A o 0
Let
~/
be t h e l i n e a r
variety
of s o l u t i o n s
of
L~
-" 0
belonging to C ~ (/~o).
0
From ( 6 . 2 ) i t
f o l l o w s t h a t i f we c o n s i d e r
"~/o as a 8 u b v a r i e t y of
a n y bounded s u b s e t of V o i s compact ( t h e o r .
3.III).
~
(Ao)>
Then V o i s f i n i t e -
d i m e n s i onal 9 6oili.
0
F o r an~" • ~ A .a p o s i t i v e
t h e open b a l l L~y -- 0 h a s Let ).
~
~
, of c e n t e r
only the trivial
be such t h a t
~
L e t us d e n o t e by
number
X ~ and r a d i u s
solution
'U" -" 0
.
~o e'~:ists such t h a t i n ~o ~ ~he homo~eneous~ e q u a t i o n
belonging to
~ o~ ( ~ . ) ~
C A ( ~
i s t h e open b a l l o f c e n t e r
x~
~Y4 )"" . ~ r
a complete system of l i n e a r l y
radius independent
0
solutions
of
d e n o t e by ~ ) ~
L~- o.
belonging to
t h e open s e t ~
~oo(~
Ix-x~
d e t e rmi n a n t :
Jr'z,Ilr, lZdx ~C~)
). For any p o s i t i v e
~(
~ , we
us c o n s i d e r t h e Grmnian
-41-
~e c a n c h o o s e
such t~at
~o
and is a solution of combination of
Lty : 0
independent in
Then ~Y ~_0
in
o-
belongs
~f ~
, it is expressed in
~Y~ ) "--) ~4~
are linearly
~ i.e.
0
to
C ~
as a linear
~
4)" = ~,
o~f,~o ~ t h i s
K
implies
(~,,)
K
~i~,., ~/,v,
Ct : . . , ~ ~
-" 0
~"
Assign to
6.IV.
y (t,~)"
X ~ and
I n the open ha,l,1 [ " w i t h
t h e same m e a n i n g as i n t h e o r o 6 . I I I .
0 L ~ L ~o
Ii ~ II
(~.3)
~o
{
, the following ine~ualit~
holds:
It L ~'il
c
0
f o r an~
~r ~
~,oo([-, ), 0
In fact, such
suppose
(6.3)
were not
true.
Then there
is
a sequence
that~
L
(6.4)
By theor. 3.1II
Ii L % II :
- ~
II 'o'K II
~
~- 9
there is a subsequence, which we still denote by
[4Yz I >
'.2
which converges i n
H ~ C rE )
furthermore
L ~
c o n v e r g e s to zero
0
in the space
Hl.~,~(r~ ~) From the inequality ( 6 . 1 ) ,
considered for Ao " r,
0
it
follows that
have f o r any
For
~/~
N--) O0 ~ i t
~y~ ~
C~176
converges in
)
H~.~(C~)
"
follows that
I
~
L ~ ~dx
=0
and, c o n s e q u e n t l y ,
-42-
Then
e C~(~,
V
) and s i n c e i t v a n i s h e s i d e n t i c a l l y
in
~
0
is a solution
of t h e e q u a t i o n
t h e p r e c e d i n g lemma, we have the fact that
I[~ll~f~C~
~r =_ 0
s o l u t i o n of t h e d i f f e r e n t i a l
number
~
~ ~
)
and
L
But t h i s
result
),
By contradicts
L ~ = .~.
system
x~
For any
such t h a t i n t h e b a l l
~ - ?-~
with
"
~
which f o l l o w s from ( 6 . 4 ) .
Cv~ (~) .
be such t h a t f o r any
~o
C~
t o prove t h e e x i s t e n c e theorem f o r t h e l o c a l
some s o l u t i o n of t h e e q u a t i o n Let
belonging to in
~- ~
We a r e now i n p o s i t i o n
6.V. L e t
~L~-_ 0
~ ~ I)9
~
Ix~
there exists
I'~ ~
there
>
a positive exists
I ~ -_ ~ . ~ E C o~ (. F'~ )
r e p l a c e d by
L ~',
inequality
(6.3) holds
Then we deduce t h e f o l l o ~ n g
i nequal i ty-
II ~" Iio, I"~ ~
c
II L*~" II ~
I t f o l l o w s , from t h e e x i s t e n c e p r i n c i p l e an
~ ~ L ~( ~ )
f o r any
'U" e
which s a t i s f i e s
C ~o ( r ' ~ ) ,
In general, if of
L~,-_ ~
the integral
equations
proves t h e theorem.
Ao i s any bounded subdomain of
exists in
(o.5)
sis
of l e c t u r e 2, t h a t t h e r e e x i s t s
il ~ li ~
A
, a solution
~o i f and o n l y i f t h e i n e q u a l i t y
O) Ao
_~ c II L'~ IJ
0 A~
0
h o l d s f o r any principle
r
C ~ (A o ) .
This i s a c o n s e q u e n c e of t h e e x i s t e n c e
of l e c t u r e 2. Of c o u r s e , t h e s o l u t i o n i s supposed t o b e l o n g t o .
0.9
o
-43-
The i n e q u a l i t y
( 6 . 5 ) may f a i l
examples c o n s t r u c t e d by P l i s
t o be t r u e f o r some
[ ~]
~o
, as t h e
p r o v e . When ( 6 . 5 ) h o l d s , we have t h e
following "dual inequality":
%eUo
where
~ 6 s
~A)~ O
~
C ~176
o~A~
and
s o l u t i o n s of the homogeneous ~ u a t i o n
.B.ibliography
Eli
of
-
~o
O, Ao
'
is the linear variety
L~o
Lecture
J.PEETRE - A n o t h e r a p p r o a c h ,to e l l i p t i c
: o
b e l o n ~ n g to
of a l l
~ ~ (Ao).
6
b o u n d a r y problems - Comm.
Pure and A p p l . Math. v o l . 1 4 ~ 1961.
J.PEETRE - E l l i p t i c
P a r t i a l _ D i f f e r e n t i a l E q u a t i o n s of H.i.~her Order -
UniT. of ~ a r y l a n d , I n s t . N~ 4 0 ,
[3]
A.
PLIS
-
F l u i d Dyn. A p p l . ~lath. s e r i e s
1962.
No,n-uni~uenes,s i n Cauch~r's. Probl.em .for D i f f e r e n t i a l E ~ u a t i o n s of E l . l i p t i c t y p e . - J o u r n a l vol.9,
1960.
of Math. and ~;ech.
-44-
Lecture
Semiveak
7
solutions
BYP _ f o r
of
L e t us c o n s i d e r an % X ~ (~>-4)
with
elliptic
L
matrix operator
C ~ complex c o e f f i c i e n t s .
systems.
of order ~
For c o n v e n i e n c e we v r i t e
the
o p e r a t o r as f o l l o w s =
L =
~
o. (x)SD
q
oell,,I-'=~,
, o~lcll*-=-,'~.
The a d j o i n t o p e r a t o r i s : Ipi+iql
L ~ : (-4) If
L
i s s u p p o s e d t o be e l l i p t i c ,
Dq~ D P. the ellipticity
condition is then
wri t t en
(.~.l)
d.,~t Z
o..,~q.(x)'~ P~" q ~. o
( ~ = r e a l non z e r o ~ - T e c t o r ) .
We s u p p o s e , f o r s ~ m p l i c i t y , t h a t t h e c o e f f i c i e n t s d e f i n e d i n t h e w h o l e s p a c e (and b e l o n g t o Let
A be a bounded domain o f
the following bilinear
A
X ~.
O,.pq(X)
of L
C ~ ).
To t h e o p e r a t o r L we u s o c i a t e
form
A
are
-45-
which i s d e f i n e d f o r every p a i r of v e c t o r s
~ ; ~r
b e l o n g i n g to
~(A).
Suppose we c o n s i d e r t h e f o l l o w i n g BVP:
(7.2)
[-t~ - ~
in
This i s t h e c l a s s i c a l first
~
(7.3) ~P ~ - 0
,
"Dirichlet: problem".
want t o f i n d a s o l u t i o n
( 7 . 3 ) w i l l be s a t i s f i e d
We assume
~ ~ H~ (A) 9
~ ~ C ~ 1 7 6sand
we
The boundary c o n d i t i o n s
in a generalised sense~if
~
is properly
0
r e g u l a r and we r e q u i r e t h a t ~ belong t o bb ~ ~
(A)~C~176
and
L~: ~ then
H ~ (A) (see l e c t u r e 4 ) . I f f o r any
~Y s
~.~
(~)
the
f o l l o w i n g i d e n t i t y w i l l be s a t i s f i e d :
(7.4) A
o
I t follows t h a t (7,4) i s s a t i s f i e d
by any
~r e
H
(~),
We a r e now l e d to t h e f o l l o w i n g g e n e r a l i s e d f o r m u l a t i o n of t h e Di r i c h l e t p r o b l era: 0
I ) Find a f u n c t i o n ~ belongin,g ,to is satisfied
f o r an]r
~
6
~
~
(~)
such t h a t ( 7 . 4 )
(~),
O
If
lY ~ C oo ( A ) ,
For t h i s r e a s o n we say t h a t problem.
from (7.4) i t f o l l o w s t h a t (5~ ~
i s a semiweak s o l u t i o n
Theorem 5 . I a s s u r e s us t h a t
bb
sakisfies
~
of t h e D i r i c h l e t
(7.2) in the c l a s s i c a l
s e n s e . We have a l r e a d y observed t h a t ( 7 . 3 ) i s s a t i s f i e d sense i f
in a generalised
i s p r o p e r l y r e g u l a r . Under f u r t h e r assumption on
s h a l l prove t h a t t h e boundary c o n d i t i o n s ( 7 . 3 ) a r e s a t i s f i e d classical
is satisfied.
/~
we
in the
sense by a semiweak s o l u t i o n .
We want now t o g e n e r a l i s e problem I ) i n o r d e r t o i n c l u d e BVP~s different
from t h e D i r i c h l e t problem.
-46-
Let
V
lI)
Find a solution ~ 6 V
If
subvariety)
of t he space
H
A
belonging to
V
such t h a t
(7.4) is satisfied
. is properly regular,
we may c o n s i d e r a s t i l l
more g e n e r a l
problem 9 L e t us d e n o t e by by f u n c t i o n a l
~j~
Let
~
~
C~)
]~.~
~,4(~A),
in
V x V. III)
9A
II~ ~, II
the scalar
~ L~
[ ~ 6 H
(defined in lecture
transformation
The f o l l o w i n g b i l i n e a r
of
~
form
[ ~>
~r
for any
~y s ~
4 ) . We d e n o t e
and r a n g e ] is continuous
,"IRo #
such t h a t t h e f o l l o w i n g
_Find a f u_n__ction b e l o n g i n ~ t o
e q u a t i o n _is s a t i s f i e d
( A ) .l
.~ ( ~ A ) .
w i t h domain -~
,:t,(u,,,~)- E~C~,~)*- [ ~ ' ~ , ~ ]
Set
(7.5)
function space obtained
p r o d u c t o f two v e c t o r s
be a bounded l i n e a r
in
the Hilbert
c o m p l e t i o n from t h e v e c t o r s
by means of t h e norm by
:
~ C~,,~) : f t~~ dx. A
As an example, we want t o s h o t b o y some c l a s s i c a l f o r a 2nd o r d e r e l l i p t i c problem I I I ) o
boundary v a l u e problems
e q u a t i o n can be i n c l u d e d as p a r t i c u l a r
L e t us c o n s i d e r t h e s c a l a r
differential
L~
:
,---
Qx,
t•
r'ax.
+ B. (x; q~ " ~x;
example we c o n s i d e r o n l y r e a l f u n c t i o n s .
A
,gx. ,,"ax. ~
.i
We h a v e :
t cu,~]dx.
+ ~b;
-o.;~ . . . .
9x.
i,
c a s e s of
operator with real
coefficients:
In this
(A)
~ ~ ( A ) c V c H,~ ( A ) . R
such that
f o r any
be a s u b s p a c e ( c l o s e d l i n e a r
-47-
Let
~A
- 9~A u ~ A
the possibility ~K ~
that
,
~KA
~4 ~ ~ ( g~4
on ~ 4 A
Let on
or g - ~
i s n o t empty, we suppose t h a t
of smooth h y p e r s u r f a c e s o Assume t h a t
if
A =~
A ~ ~,.~ .
for
~
) may be empty. However~ i f
/~ ~
~
. We do n o t exclude
i s made up of a f i n i t e
number
i s d e f i n e d by t h e c o n d i t i o n ~
~/.We aJsume ~/=H4 (~) i f
/~A
~O
i s empty, and ~/~ H4 (A)
i , empty. -- ~ ( •
~(X)
where
is a c o n t i n u o u s scalar f u n c t i o n d e f i n e d
Equation ( 7 . 5 ) becomesz
A
Assume t h a t a s o l u t i o n Then we h a t e ~
~ ~(A)
of e q u a t i o n s ( 7 , 6 ) e x i s t s b e l o n g i n g t o ~ 4~A) .
~
,
~
--~
in
A
,
~--o
on / ~
and
moreover
A where ~ - ( ~ ... ~.~) i s t h e i n t e r i o r u n i t normal v e c t o r t o follows that
~
/~ A .
It
i s a s o l u t i o n o f t h e BVP
This BVP i n c l u d e s , by p r o p e r c h o i c e s o f c l a s s i c a l BVP f o r a second o r d e r e l l i p t i c
~
, ~A
, ~
many of t h e
equation.
(l) This h y p o t h e s i s i s assumed now o n l y f o r t h e sake of s i m p l i c i t y , but i n g e n e r a l i t i s n o t s a t i s f i e d ,
(z)
-48-
We w i s h now t o g i v e n e c e s s a r 7 and s u f f i c i e n t existence
and u n i q u e n e s s o f s o l u t i o n s
of problem I I I ) .
w i l l i n c l u d e t h e c a s e of p r o b l e m I I )
] . However,
~
~/ = ~
(A) ~w we need n o t impose on merely that it
linear
are in
~
the condition
)
Of c o u r s e t h i s
and problem I )
[ ~ -= O j
of b e i n g p r o p e r l y r e g u l a r ,
ce~es, but
X ~.
form i s c o n t i n u o u s i n
~/
for the
when we a r e c o n c e r n e d w i t h t h e s e p a r t i c u l a r
continuous transformation
and ~
[ ~ ~ 0 ]
be a bounded domain o f
Since the bilinear
conditions
~/x'V"
,
o f ~/ i n t o i t s e l f
there exists
such t h a t ,
a
whenever
one h a s :
Hence ( 7 . 5 ) may be w r i t t e n :
(~.5)
(. T~)~
From t h e e x i s t e n c e p r i n c i p l e 7.1. arbitrar~ for any
= IA ~ v of l e c t u r e
A n e c e s s a r ~ and s u f f i c i e n t ~ ~ ~ ~ (A) .there exist ~ EV
) is that
1.)
II'~'II ~ c IiT~II o
2e)
The r a n g e
T (V)
I f 1 e) and 2 ~
of
follows that:
a unique
~ ~V
satisfying
g i v e n an (7.5)
one have~
(c >o) T
f o r any
is dense in
hold then the solution
II ~ II Now d e f i n e :
2, i t
condition in order that,
the dual i n e q u a l i t y :
(7.8)
ax.
L_ c IIPr II o
~V*.
V. t~ of t h e problem s a t i s f i e s
-49-
and c o n s i d e r t h e r e a l q u a d r a t i c s a y t h a t t h e q u a d r a t i c form ~11)'i~ ~
in
V
I "Y" ( % ~ ) I
~
( ~ j ~)oWe s h a l l
~ ( ~ 1 ) ' ) i s c o e r c i v e on t h e q u a d r a t i c form
C o II 't," II
TM
C~ > 0
such t h a t :
,
~ ~ ~.
7.11. solution
:~
~ (~/, ~)
, when t h e r e e x i s t s a c o n s t a n t
(7.":)
f o r any
form
A sufficient
of problem I I I )
Let T *
condition in order that there exist a unique i s t h ai
denote the adjoint
llt,"h ~"
"~/(~,~r) be c o e r c i v e on
T
of t h e t r ~ u s f o r m a t i o n
i n V,
which
was i n t r o d u c e d a b o v e , and d e f i n e :
T.i -._ 4 ( T + T * )
~"
T~
,! ( T _ T *
.
__
~.
9
One o b v i o u s l y h a s :
And h e n c e i f
( 7 . 7 ) h o l d s , one o b t a i n s :
I i ~ 1 t 2" 'm
~
•
Co
Thens
(7.8)
li v Ii
_~ L tl T~ Co
II ~
II
II
lIT
~11
9
-50-
which o b v i o u s l y Condition 2~
i m p l i e s c o n d i t i o n 1 e) o f t h e p r e c e d i n g t h e o r e m .
is also satisfied,
because, if
b~6~ r
and s a t i s f i e s J
Since
]-4 and ~
are hermitian operators,
j
one g e t s (T~ ~. ~ )
-- O, w h i c h , A~
i n view of ( 7 . 7 ) ,
means t h a t
~ = O.
L e t us now p r o v e , by means of an e x a m p l e , t h a t
the condition (7.7)
used i n theorem 7.1I i s not n e c e s s a r y , but i s only s u f f i c i e n t . end we s h a l l c o n s i d e r a v e r y s i m p l e p a r t i c u l a r and 2 ~ Let
of t h e o r e m 7 . I h o l d ,
~-_ ~
of t h e
~,"4
X-axis,
and ~
{
--
c a s e i n w h i c h , w h i l e 1 e)
( 7 . 7 ) does n o t .
A
and s u p p o s e t h a t
To t h i s
coincides with the interval is
(-,l, ~1)
L e t us p u t :
~I(A).
Ixt
J
dx
-'1
dx
E q u a t i o n ( 7 . 5 ) i n t h e p r e s e n t c a s e becomes:
(7.9)
I xl -,I
It is readily verified one
~ ~ ~/
(•
~
~
dx
dx
that,
, satisfying
-4
given
~ ~ Z z
, t h e r e e x i s t s one and o n l y
( 7 . 9 ) f o r any ~r ~ ~/
and t h a t i t i s d e f i n e d
by t h e e q u a t i o n :
X
t
-4 T h e r e we have p u t :
X
I -4
-f
4
X
-51-
Therefore,
the
above-mentioned
satisfied.
However (7.7)
is
conditions
not.
In the
1")
and 2*) are certainly
present
case,
(7.7)
may be
written:
(7.1o) Indeed
/ i,I
_
from (7.10)
(-~,-6)and
it
(,,~,4)
folloTs
, where E
f
~-'~,
that
any
t.<
O~
,I
%
L~
which vanishes
and
d~r
d•
+lv'l
on t h e i n t e r v a l s
< Co ~ must satisfy:
z
_>0~
-&
and this
is
absurd
if
~
is
not identically
Bibliography
[I]
G. FICtlERA - A l c u n i
recenti
contorno Atti
per
G. F I C H ~ -
[a]
J.L.
see
sviluppi
J.L.
Trieste
[2]
LIONS - S u r l e s
~I.I. VISIK-
della
1954-
of lecture
te.0ria
alle
derivate Equazioni
Ediz.
94,
(in russian)
alle
-
Derivate
des distributions
-
1955.
of ~athem. v.
BY]? f o r
parziali
al
C r e m o n e s e , Roma 1 9 5 5 .
en t h e o r i e
problSmes, aux limites,
On g e n e r a l
dei problemi
1.
LIONS - P r o b l ~ m e s atLx l i m i t e s
Annals
[53
7
le e~uazioni
Acta ~athem. v.
[4]
Lecture
Convegno Internazionale
Parziali,
[2]
of
zero.
64,
elliptic
du t~pe d~riv~e
oblique
1956.
differential
Trudy ~oscov liar.
0bsc.
equations
1952.
-
-52-
Lecture
Regularity
a~
In the for
8
the
s p a c e we s h a l l
K : 4,,.., -~-4
and by
of
X ~
Let
~
by
(~
~-t ),
if
(~)
(
is ~y i)
. We s h a l l
by
of
fixed positive
~ s ~ ~
following conditions The c l o s u r e
9
X ~ d e f i n e d by:
of
0 ~ t ~ )T
~
and o n l y i f :
Z~
the coordinate
X~
The p o i n t ( ~ t J - - , Y ~ - ~ ) and t h e p o i n t X
t),
(as u s u a l we c o n s i d e r complex ~ - v e c t o r
g ~
~K
s p a c e w i l l be d e n o t e d by ~
be t h e open i n t e r v a l
(K, : 4 , - . .
d e n o t e by
~; t h e c o o r d i n a t e
(~-4 )-dimensional
of t h e
boundary..:, p r e l i m i n a r T lemmaso
;
is satisfied:
~6
(~)
ii)
,~ ~'~ x ~.jj
say that the function
valued functions)
belongs to
n~ber
0 ~ ~ ~ ~T )
such t h a t
~)~- 0
I~/I > ~
in the space
-~
)
when a t l e a s t t
one of t h e
>~,
~(~)will
be d e n o t e d
H ~ Let
~ (X)
following function
he a f u n c t i o n of ~Y~(~) defined in
C ~m ( ~ ) , We c o n s i d e r t h e X ~ by:
~- ,~ ( ~ t )
I L
The s c a l a r s
)~' J
: L
~ . ~r(y - i Z )
are the solutions
for
t ~_ o
for
t~o.
of t h e f o l l o w i n g a l b e g r a i c
system:
-53-
(8.,)
2:
j:~
It is easily that its
J
seen t h a t t h e f u n c t i o n
(8.3)
II ~ *
V ~Y~ ~)
il
it
(~ :
i s e a s y to v e r i f y
z_
LQ
c I l v II
~,
FI ~ ( ~ )
e
( 8 . 2 ) , belongs to H~(~)
and c o n v e r g e s i n
(~)
and
that:
L : o,...~
~.
~
~ d e f i n e d by means of
. In fact if
t o bL , t h e n
C
[ X~ [ ~ )~.
~R
~ the function
1~
,
belongs to
C i s a c o n s t a n t which does not depend on If
(8.1),
,--,
support is contained in the square
By v e r y s i m p l e c o m p u t a t i o n s
where
=4
tLr
{ V~ } 6 C ,v~
} converges
in the space
0
~-~ (Q)
towards
(s.4)
t~ ~ o
I1~ ~ II
We d e n o t e by Dy
--
_~ c l l ~ l l
~Q
t h e symbolic
~,g
y-differentiation
t&
( A
(A)
has t h e
being a bounded domain of
~-strong
derivative
. h e n e v e r a sequence of C~^'('A ) - f u n c t i o n s
converges i n
~2(A)
t o some f u n c t i o n vative
(8.5)
vector
,"',
Let t~e ~ say that
Dy
Moreover ~e h a v e :
DP~
towards
~f F
DPt~
(l~l
{~YK ~ e x i s t s
which Te d e f i n e t o be t h e
i
A
d~ = (-4)
iptl
~
~-strong
dx
: ~
)
such t h a t
t converges i n
|A, and { ~ P ~
of ~ 9 Hence:
~ ~
X ~ ) . We
~R(A) deri-
-54o
for any
C
~
( A ) . I t follows t h s t
i s 9 c l o s e d s u b s e t of ~ the
o~-strong
In th,t
and ~ v a n i s h e s i n
deriTative
come (8~
~
~ - ~
, then, if
, this deriT~tiTe ~nishes
h o l d s f o r a n y ~7 ~ C ~ ( A ) .
F o u r i e r development o f I ~ P ~ ~
~ P does n o t depend on t lY~
Assuming t h a t
i s o b t a i n e d from t h e
by f o r m a l l y d i f f e r e n t i a t i n g
~
~.If r hem
in A-r'.
A C Q , the
F o u r i e r development of
i t by mea~l o f ~ P
From t h i s
remark i t
follows th~t8.1.
l_ff
~ E I"l o ( ~ ) and v~ h~s e v e r y
~ 2-strong derivstive
of
|
order ~
~ then
In f~ct,
~
~ ~ ~'(R)for
has t h e ~
~n~ ~
such t h a t
-strong derivatives
h~s t h e f o l l o w i n g F o u r i e r development i n _
(8.6)
~P~
~
~' < ~'
( IpI --~
) snd i f ~
,
~oO
0
~KX
l
:*
~<
Z
K
cK e
thenz
..i-~o P
,
'i
~.
Ipi L
p K
,~Kx c
e
.
( It follows thst l yJ<
~ ,
I tJ
~
~ H
< ~
(Q).Since
, t h e r e e x i s t s s sequence of C ~ f u n c t i o n s
h~Ting t h e i r s u p p o r t i n t h e c y l i n d e r towsrd
~ ~ i n t h e sp~ce
8.II. h~s t h e
~-strong
deri,~tiTe
~q ~P ~
and
The p r o o f i s s t r i v i s l
~ ~
hss the
deriT&tiwe
~
t 17~ 1
I ~ l < G * , I t J ~ ~ ' snd c o n v e r g i n g
~(~).Then
I_f ~ E H o ( ~ ) 0
~ Ta~ishes outside of the cylinder
~1 ~' ( 1 ~ * ) .
o~-strong =~
d e r i v s t i T e ~Pt~ : @ s n d
, t h e n Lt h s s t h e ~ - s t r o n g
) q DP: ~ . c o n s e q u e n c e o f ( 8 . 6 ) and ( 8 . 7 ) .
-55Whenever a f u n c t i o n simply write 8.III.
for
Dy ~ E
~
has some
~-strong derivative
~PL~
we
~P~ ~ ~er
~
~ E
H~
( R ) ( ' ) ,is
(~, ,.. ,~.~ o ) ....~h t h a t
(~),
K, n,e,cessar~, and s u f f i c i e n t
~-vector ~-
t h a t f o r any n o n - z e r o r e a l
J~.l,: ~ - ~
condition
, t h e f o l l o w i n g inequal,it~r be
s a t i s f i edz
(8.8)
wit h
~
C4
independent of
~
.
Then
I~1 Let
US
c
~R
consider the function
t~
~,R
'
(8.8)
i n t r o d u c e d above 9 From ( 8 ~
it
folloTs that:
.Z (8.1o)
11
>I1
z
CC 4
.
Let
(8.11)
L,I,'x" ( X ) -
Z~ K CK e
be t h e F o u r i e r d e v e l o p m e n t of
"(4')If 44)..;~ r
t~ ~
in
(~
9 From
a r e t h e components o f t h e v e c t o r -vector
~
'~YW
~L K
(~=4j..~-~
(8.10)
and
(8.11)
t~ , t h e n by ~)y tr ; t
K=
4j..~),
we mean
-56-
it
follows that ~,Kh
'4" OO
18.1,]
7',
Z
Ipl :o
-~
k
IC
I
J z constaRt..
Hence t h e p r o o f of s u f f i c i e n c y
f o l l o w s by t h e same argument which was
u s e d a t t h e bottom of p a g ~ The p r o o f of ( 8 . 9 )
f o l l o w s from t h e i n e q u a l i t y
I
I
{,K,t + - - . +
L e t us now assume t h a t Since of
~ e
that
Dy~ ~
vanishes in a strip
b~ ~ ( I pI ~ ~
differentiating
t
K
).
H (IR).Tnen 1)TIz.~ c H,~ (Q). near
~(~
, any d e r i v a t i v e
~i)p ~ y j e
) i s g i v e n by t h e development o b t a i n e d by m e r e l y
, with
~P~y~
, b o t h s i d e s of ( 8 ~
It follows
the series
K
Ic
I
K
+.,-,K
)
IpI--o i s c o n v e r g e n t ~ Hence ( 8 ~ 8olY.
Let
h =-(o~..,h;~..o),
t,t, ~
-
i~176 (8.10) - holda~
H~(R)
0 ~ ih~,iz~
and
])ytt~H
(~,).Set
9 Then:
~Vw The p r o o f i s e a s i l y
o b t a i n e d by u s i n g t h e
F o u r i e r development ( 8 . 1 1 ) .
~
e x t e n s i o n of
and
-57-
8.Y,
Let
Assume that
N/ ~
])y ~
G" H o (R)
I
(y
R
zg'v,,
"~
~+lPl~
~t
tg vr
'
o,g
)
~r~
w/ p
~_ ~ ~
~ §
Let
and
be a n y i n t e g e r
(
not less
K,I,
-
th~n
x K
T~Pv')dx y
II~,'~pIIo,p + IID,/,I-II,R )"
~ + 4
: ~r ( y ) t )
and p u t s
s
for
)
O)
(y,t) ,~+4
Z
for
j.-a
~ p (y,t )
~ ~ O.
for
~
> 0
for
~ ~ O.
Kp ~)+4-g
,w~+.l
L
The
are chosen
~3 (J)
w
(y, -jr )
so thatz
(~ = 0,'I,..,~§ i=4
1
o
Let
E C co(Q),
We c l a i m that=
-- O.
-58-
I::_ ( V ) -
(8o]L3)
~ * "~ v d z ,
,%~,
~K
,at K
DPV)d~,
- o.
y
I n f ~ c t we have:
"~
,in~ ~. 4
E (v): E(v)+ Z )"J ~f4
~+lpI ~ ~
fRv(y,j,) V
f, ~ , 4 (y,
- t ) ax +
V+4-K
P ~p (Y' ]{) ]), < ~ ( y , - t ] r
,1:4
:
R
: E (V)+
I
~ii
j~4
IRV(S,t) V
t~,+4
(y -t] "~)dx )
~+4
+/~
Z
),.j" a
~P
"v, (y,-tj "')a•
fl Se%: - ' n ~ "F 4
J:4
~.J c'i ;" V ( y * _t j-' )
We haves
E(V)= [(V+Vo): r- (,~)
0
"
-59-
and
/~t W
v (y,t)
" 0 t=o
Set~
I
tr (y,t)
where
~ (~)
,.~t~'y,-~-~
= 0
C~
is a
for
~ -~ •
for
scalar
t ~
f u n c t i o n which e q u a l s
and which v ~ n l s h e s i d e n t i c a l l y
in a left
~
an
n e i g h b o r h o o d of
"~
(~0G)
. Since
0
~
~
C ~*' (R)
= ~ ~
.e ha.e
so t h a t
IK -
~/:
Itl
(P~4 ,""
~ ~
~
C ~ ((~)
i s an ~ r b i t r a r y
~tL-4) T ) i s d i f f e r e n t
~I"
dx
~
~
t h e o t h e r hand
L P*4 (-~(X)~
function belonging to
lYl ~ ,
- O.
~
E ~
-
~rr where
which e q u a l s constant
~
is a
~ in the cylinder
~-veetor,
and
from zero. From equation (8.13) we get
2"_
W
(x~ ~
~
dx
o_~Iwl.~ p
There the
T~W~(X)
Let
~nd
C~
respectively.
~K
:
(8.13) is proved.
We now ~ssume t h a t scalar
E ~
are f u n c t i o n s b e l o n g i n g to be t h e F o u r i e r c o e f f i c i e n t s
We hate=
O~ of
~ ~ ~nd ~v/~ (x~
-60-
I~c~l
_~
/c
I + s
Ic~l
I K I :z,v.~-~
I K I .9.v+%
(8.14) IKI ~
])y~'~ ~ %
Since
, it
o<
follows
from the
above inequality
that
the
series ,Y.
i s convergent. From (8~
it
Thus follows
~'~lC
I~
~t thats
z c llW IJ + IIDy *l
Bibliograph~
[ 1]
G. F I C H ] ~ A -
of
S e e [2 ] o f l e c t u r e
K . 0 ~ FRIEDRICHS - T h e i d e n t i t y differential vol.559
L'a]
J.L.
LIONS - Some q u e s t i o n s
L . NIRENBERG - On E l l i p t i c Annali
8
1. o f weak a n d s t r o n g
operators
extensions
- Trans~ Amer. ~athem.
of Society
1944o
of ~ndamental
/4]
Lecture
on e l l i p t i c Research, partial
equations
- Tara Inst.
Bombay~ 1 9 5 7 .
Diff.e.rential
S c u o l a Norm. S u p . P i s a ,
Equations
1959.
-
-61 -
Regularity
at
Lecture
9
the
tangential
derivatives.
X ~ such t h a t
/~A-/~A
boundary:
L e t A be a bounded domain o f that
A is
C~-smooth at the point
x ~ of ~A
.
We s a y
if a!neighborhood [
of
•
exists with the following properties: i)
There e x i s t s a C
onto t h e c l o s e d semiball space
homeomorphism, which maps t h e s e t
/v, + , t > 0
, I~' ~ % z ~ i
of t h e
J:
[ n
Z - d i m e n s i o n a l (y~%)
9
ii)
%:o
9
The s e t
I ~ 9A
i s mapped onto t h e
(~ - 4 ) - d i m e n s i o n a l b a l l
, lyi--, t .
A is c a l l e d C -smooth i f i t Suppose t h a t
is
C ~- s m o o t h a t e v e r y p o i n t of i t s
~ is a solution
boundary.
o f e q u a t i o n (7o4) b e l o n g i n g t o ~/
( s e e p r o b l e m I I of l e c t u r e 7 ) . Under p r o p e r a s s u m p t i o n s f o r ~r , a s s u m i n g is
C~-smooth in
X ~, we s h a l l p r o v e t h a t
any o r d e r we wish i n Of c o u r s e
~
N~ A
has c o n t i n u o u s d e r i v a t i v e s
, where N i s a s u i t a b l e
depends on t h e o r d e r of d e r i v a t i v e s
As i n t h e c a s e of t h e c o e f f i c i e n t s s h a l l s u p p o s e , f o r t h e s a k e of b r e v i t y , r e a d e r as an e x e r c i s e , which t h e r e s u l t same method.
~
n e i g h b o r h o o d o f X ~.
we w i s h t o p r o v e e x i s t .
o f L and t h e f u n c t i o n ~ , we that
~=oo
of
. We l e a v e i t t o t h e
t o d e t e r m i n e t h e more g e n e r a l h y p o t h e s e s u n d e r
which we a r e g o i n g t o p r o v e , can be o b t a i n e d w i t h t h e
-62-
Under s u i t a b l e the results
h y p o t h e s e s on t h e o p e r a t o r
~
introduced in lecture 7,
which we s h a l l o b t a i n f o r e q u a t i o n ( 7 . 4 ) can be e a s i l y e x t e n d e d
to equation (7.5).
However, we s h a l l n o t d i s c u s s t h i s c a s e .
The r e a d e r T i l l of t h i s l e c t u r e ,
be a b l e t o s e e , a f t e r
s t u d y i n g t h e p r o o f of t h e o r .
what h y p o t h e s e s a r e needed on
~
9.I
in order to extend this
p r o o f t o t h e more g e n e r a l c a s e o f e q u a t i a n ( 7 . 5 ) .
On t h e o t h e r h a n d , t h e
p r o o f o f t h e o r e m 1 0 . I o f t h e n e ~ t l e c t u r e works e x a c t l y t h e same way i n t h e c a s e o f e q u a t i o n ( 7 . 5 ) and r e q u i r e s no a d d i t i o n a l It is convenient to collect I e)
The c o e f f i c i e n t s
and t h e f u n c t i o n .~ ~•
here all
(~pq ( •
belong to
h y p o t h e s e s on ~
our hypotheses.
of t h e e l l i p t i c
operator L ~ Dq~q~
~
~ oo. &
i s a subspace of ~
(/~) c o n t a i n i n g
(9.1)
(A) and such t h a t f o r
r O Jt Jl
3.)
A is
~'~-smooth at the point
L e t us d e n o t e by ~ :~(• its
~
the
-- ( ~ ) t h e
• o of its
p o i n t of t h e ( y ~ ) s p a c e
~C~
t h a t maps
i n T e r s e . For any ~
and ~
b0~un.da_ry.
such t h a t
J
o n t o ~ ~ and •
0 < ~ (
~ ~ ~ let
C ~ s c a l a r r e a l f u n c t i o n , which v~n~shes o u t s i d e o f t h e b a l l and which e q u a l s function
4.)
~
in the ball
~
z [~ [ ~ ~ .
~x/ ( ~ ) : ~ ( ' ~ ) ~ y L ~ ( ~ ) ] . W e
Let
The f u n c t i o n s z
.-
and l e t
Let ~ / .
•
)
~ o ( ~ ) be a r ' g .* Consider the
make t h e f o l l o w ~ n g h y p o t h e s i s on ~ / s
O) be a r e a l
- v e c t o r such t h a t
O~ I hl < 4-~.
-63-
xeJ :
belong to
0
x e A-,I"
•
~-: 0
in
such that ~ ~ H
~-'~ (z ~
s p a n n e d by ~ F a(~ )1 w h e n ' ~ b e l o n g s t o V . It is evident that
(t)
, then
5 ~ ) ~K/ = ~ / N C ~ ( Z * )
if
a
C ~
function
(The c l o s u r e must be u n d e r s t o o d i n are satisfied
By c o n s i d e r i n g o n l y f u n c t i o n s
~
is possible
~o(~)is
to write inequality
and i s
~/~ ~ "~/o
The h y p o t h e s e s assumed on ~/
if
I"I~,~ (~)).
"~/ ~ N (A)or V _= H~ (A),
~/ such t h a t ~ ( x ) _9 0 i n
(9.1) i n terms of the ~
e l e m e n t a r y c o m p u t a t i o n s we s e e t h a t
( 9 . 1 ) c a n be w r i t t e n
~-~
, it
coordinates.After as f o l l o w s i n t h e
new c o o r d i n a t e s :
j
2
Z'
where t h e
( ~ ) b e l o n g t o C C ~ r'~) and t h e symbols D ~ bct JI Ii eq ' , must be r e f e r r e d t o t h e new c o o r d i n a t e s . The f u n c t i o n ~ i s nov a n y f u n c t i o n of ~
~,~,
4 - ]"
V.
L e t -y~r be t h e v a r i e t y such t h a t
- o
~
~.
exists
From ( 9 . 2 ) , in the space
by theorem 7 . I I , ~
it
m a i n t a i n e d t h e symbol ~
( ( ) ~ c o r d i n g t o our d e f i n i t i o n , of t h e s p a c e s i n s t e a d of ~ i
o n l y one s o l u t i o n
of t h e s y s t e m
F (~)-~ ['~('~)]1~ I. w, h,,o
~[~(~+.~y+)
follows that
(~"),
But t h i s
to denote
H~ ~ we s h o u l d w r i t e would be q u i t e a p e d a n t r y .
-64-
the
new b i l i n e a r
9.1.
Let
form.
Let
r'~~
such t h a t
be any p o s i t i v e
~
Dy
g
~J ~
y
C4
~
-
The theorem i s t r u e f o r I~I
-- IK@ 4
~o(X )
(II F Ii ~"
-I- II u. II
l~l-,~,,,Z:*
~
' ~ 2:
- onl]r depending on t h e
]~ [ -- 0
(~-) be
We s h a l l
9
of o r d e r Set
~F K
~(X)=
such t h a t
"P) I U'(x§
is
the
C
K
)
c~
p q .' s and ~ 9
l"3J -/-- k .
~o s c a l a r
( s e e lemma 8 o l Y ) | D y
+
prove t h e theorem f o r
f u n c t i o n i n t r o d u c e d above~
Because of h y p o t h e s i s 4*) and t h e i n d u c t i o n h y p o t h e s i s , belongs to
)
~ - (~,,,~r
o,Z (~.s)
, The s o l u t i o n
s u p p o s i n g i t t o be t r u e f o r
Let
0 ~ ~ ,C 4 ,
( ~ ~+ ) , Moreover
.i
- f o r any g i v e n
C oo ( ~. +.).
to
t >_ 0 , l y l 2' + t ~ _z c~ ~. L e t
,: c r,+
belongs
number such t h a t
(~-4)-vector-index.
II D~' ~, II ~"
(9.4) with
~
be the. s e m i b s l l ;
be an a r b i t r a . r ~
F("~.~
The f u n c t i o n
is ant
the function
y-partial
~Lr
differentiation
~ Dy~
O ~
I~[ ~
9 We have f o r ~ / n C
(~nd
any r e a l ~ ( ~ 4 ) - - ) ~
4)0)
4-6
s
,v :(-~) I Dq(f(x+k)=(x+~)-~~
y(~r~-D%)dx = (-4)~I ~PsD 'b'< Z*
u'(x)
~.+
)-r
r
(~) From now on we s h a l l u s e t h e l e t t e r
D,
I~I
X i n p l a c e of ~
9
-65-
(x+ L, ) ~, ( x-t- I,, ) - ~ ( •
X
Ikl
.
O{Ij
~(.xJ
I -~ ~<-~ )..+ i
The m e a n i n g
of
the
symbol
Due t o t h e i n d u c t i o n
9
hypothesis
~,11 I~I~K
Y
~
is self-explanatory.
~ J P':I
Ilwll r~+ e-,
and l ~ a
(~) ~
8.111,
~'tB
6'
the last
integral
,1~-~"
,
:
_ _2.
.
We hayer
(-,)
~
~
Dq
D Ikt
D% ax : Y
Z+ q
q(x+k) D ~.(x+k)-~(x)D ~(x) P~
I
PD~
Ill
i
Y
Gt) ~
il
D~ctx
'D K +
+
y
Ikl |
+
D
I M 9',~"
I~,1
19"1 ~ ' ~
S
pcl
7. +
(3) By s i m p l y v r i t i n g
J]
Jl
we mean t h e norm o v e r ~- +.
D ~D - v~<
•
-66-
J_..9~
ps (' x ' h ) - ~ F'~ ( "J
qo (x+k.) D q
J
+
Ikl
2.-*
4
o( T.. IID
V
(-4)
(x)
l ~ l "; K
o(
II
II 'u-Ii ~
r'+
; .~.
D q ~.(x)
),
Pq
§ I~J ~ K
IIDY~ ','., II ~m,j r + Pq
"~'(•
~(x) ])PD '<
Ikl
clx
4*
):
!1'~ II
(x)D q ~(x) D s
~(,,)
[@(• D ,~
,v'(x-(.)- ~(x) J Y Ikl
\ II D ~. II
+
II ~ II
J/ 9
I~I ~_
Then we h a v e :
~(x-~,)-~'(x))
( fJ"(x+k)-ikl U(x) CO( Z__., lid ~' i61 ~ K
Y
y
r ~ ilv~l~).
II,l
-6?-
It is
~) (~' ~'(•
"u-(x-k)-'b'-(x)). f II~I
'
: o(,,F,, For any
)
I~.1
Y
Z_*
}l ~(~"'-~(~> II
'1)'s
q~F I)K '~-(x-~,)-'u-(x)d•
(
= CO I1 F il
get
,v
: CO
Z
ilD ~II
-t ,Fil )
~
=
)
lhl
we o b t a i n from
c~ ( F. IiD ~
l~l~w
,~-Ii
6'
U' (• ~.~,)-I.)"(,() By assuming
).
,1>",
(9.2}=
+ ii F II
U
Y
~,['+
K-~
~
-I" 4
.5'Vt
From t h i s e s t i m a t e t h e p r o o f f o l l o w s -
Biblio~raph~
of i Lecture
9
i
[i]
F . E . BR0WD]~- s e e [1]p[2]of l e c t u r e 5~ F . E . BR0WD]~- .,A p r i o r i
estimates for solutions
of e l l i p t i c
v a l u e p r o b l e m s , I & I I - I n d a g ~ Math~ T01~
boundary 1960o
-68-
F . E . BROWD~t - E s t i m a t e s and exi,s.tence t h e o r e m s f o r e l l i p t i c .boundary v a l u e p r o b l e m s U ~176
Proc~176176
v o l . 4 5 9 1959.
G~ FICHI~tA- L i n e a r e l l i p t i c
e ~ u a t . i o n s of h i g h e r o r d e r i n two
independen_t v a r i a b l e s equations,
and s i n g u l a r
integral
with application_s to anisotropic
i nhom oge neo u s e l a s t i c i t 7 - P r o c e e d i n g s o f t h e Int.
C o n f e r e n c e on PDE and Continuum M e c h a n i c s ,
M a d i s o n , Wis. 1960 - R . E . L a n g e r E d i t o r . I!
CsJ
L . tlORMXNDE~ - On t h e r e g u l a r i t y
o f t h e solu.t.ions o f b.oundar]v
p r o b l e m s - a c t a Mathem. v o l . L . NIRI~BI~G A.Jo u
s e e ~4J o f l e c t u r e
9 9 , 1958.
4 and [ 4 ] o f l e c t u r e
- Boundary v a l u e problems f o r e l l i p t i c of d i f f e r e n t i a l
systems
equations of higher order in
t h e p l a n e - Dokl~ Akad. Nauk SSSR v . 1 2 7 , (in Russian).
8.
1959
-69-
Lecture
Regularity
In lecture Z~" -strong
result
derivative
])~, x)P~I~
results~
t~ of ( 9 . 3 ) h a s any
in the semiball
We wish now t o c o m p l e t e t h i s
result
of a r b i t r a r y
Given an a r b i t r a r y
a4ny 4
and prove t h a t t~
order in
~)y ~
in F / .
o( pq.., Is and on
~
< ~
positive
and any
~ ,0
A constant
~;.
This
, the
, the solution c~2-strong
C~ exists, depending ,onl]v on
_~
IP
c~
F
I
(j-O,
~t~§ Dy t,L and any
~<
~.
+11~1 i~1+~.~,~§
0 F +
L e t us s u p p o s e t h a t :
f o r any
derivat_ive
such t h a t :
'
i+)
r5 § for
i s g i v e n by t h e f o l l o w i n g t h e o r e m .
of (9.3) has, for an~r ~
t h,.e
boundar~ s f i n a l
~ A-strong derivative
lOoI.
~,~
the
9 we p r o v e d t h a t t h e s o l u t i o n
and a n y IPI - ~ . h a s any
at
10
.,
,~+
"
-70-
e
This i s t r u e f o r
9
~: {
9
Set
~(x) :~(X)~(X)
, where
~~
Is the
0
sc&lar function
used in the preTious lecture.
we haTe~ w i t h an o b v i o u s m e a n i n g f o r PP~I
B (u,
ot~-,
~ )
z~ Jz :~Pq
~-~>
:
~
J
~ Dq~ D
~ C =o(R,)
DqU DP~rdx
~ t ~-'
Dqt/DP
dx --c-4)
-
p _= (0). 9 ,, O)aa~).
~ II
j,~ jl
.
,,~ (~) a summRtion e x t e n d e d Pq ( 0 ~ I p l -~ ~ 0 L I q l _~ ~ )
We d e n o t e by
of Tector-indeces
excluding the pLir
pjq
p~ p.
We h a T e , u s i n g s y m b o l s whose m e ~ n l n g i s s e l f - e r p l a n a t o r T :
B('I/,
~t~. '
~):
~ r~ D ~ D
3t~-4
+
+
~dx ipl~_~ Igl /
~
~ t ~'4 ~-.+
+
Z+
L
t o ~n 7 p a i r
~
"
4-
Let
For
+
~)ax
+
d, ,
-?l-
+ IKI < ~'~
i
Dq~ ~'~
.~t ;'~
I o~r~
~
17 ~x
)
i
(F)q~
D
I)"
II
9 o
.1)qu DP~ d X
=
Z~
et~ D ~ II oIP t
dx
U
PP
9
II ~ II
9
+
~t ~
DqU DP~ dx Z+ @
dx
U
.
Z+ We deduce t h a t 8 I
~t,n,,4- ~ - 4
ra
U 2: t
dX
Fat ~
-
.
Y
o~rj
"~'
-72-
From lemma 8 . V and s i n c e
~e~
~
~ 0
(the operator is ellipticl)
PP
it
follows
~
~
and m o r e o v e r t h a t l
t
2
* IIF II=~_~.1 ' Osp 4t~
L e t us s u p p o s e t h a t we h a v e , t o g e t h e r w i t h i F ) , t h e f o l l o w i n g i n d u c t i on h y p o t h e s i s z
5
i) ~
K
We h a v e p r o v e n t h a t
i~)
f,o,r
I~1
~<4.
and an 7
is
true
for
K =0
. We s h a l l
prove that:
+
/jr ~'+" for
I~ ]
=
V
~§
We have f o r any
D
Y
such t h a t
I/~
I :
I
B(u)
~Pq gt;
])q
K -~
~;-4
c~ Pq ~t;-4
DP
D ~ D~U"DPv dx
Y
+
-73-
,~ ~-"
D~D~
D~ d~, o
z..,~,: - , , , ~
By u s i n g t h e same arguments as b e f o r e
II ;~
~
o.r.
,
~-4 v
9
9 t ~ -~
F
:
Y
~ ~
+
v
~t~-~
§ i"
~.+~-4
f 9~"4 +
(
i JI oi DL
IJ~ II
~t-4
Then we deduce t h a t t h e exists
and moreover t h a t z
~ s
derivatiTe
1" Dy ~C
-74-
oft
~+lr, I _~,~t~+;,
~:i
y
9
(lO.a)
+
fl ~
L
D ~
II
j-i-Itl "~a.t ~, 4-,l-l-J, j _-- ,~+ L-,I
o~r ''t" ~r
Suppose we h a v e a l r e a d y p r o v e n t h a t
.
+ n F H~ i.~1 .-t- ~, -~.
(lO.1) holds for the derivatives
c o n s i d e r e d i n t h e i n d u c t i o n h y p o t h e s i s i 4 ) . Then, by u s i n g prove,
by i n d u c t i o n ,
that
(10~
in the induction hypothesis i~).
( 1 0 . 2 ) we
is true for the derivatives
considered
From ( 1 0 . 3 ) i t
(10.1) is
follow~ that
t r u e i n any c a s e . 10.II.
For an7
I-I~, (I";)
wi.'t.h
~ < ~ ~
Co
C
~
of ( 9 . 3 ) b e l . o n p t o
g i v e n a r b i ~ r , r i . 1 7 and
II~ II~,r+ The c o n s t a n t
the solution
z_. c IJFII
depends o n l y on ~ p q ' S
,~,~
, and on t h e c o n s t a n t
of (9.2).
The p r o o f i s a t r i v i a l
c o n s e q u e n c e of theorems 9 . 1 ,
1 0 . I and o f ( 9 . 2 )
and (9.3). L e t us now c o n s i d e r a g a i n t h e domain C~176
a t a n y p o i n t of i t s
of l e c t u r e holds. it
9 for any
X~s
/~A
A
boundary and ~/" s a t i s f i e s . Suppose t h a t
Then as a c o n s e q u e n c e o f t h e o r e m 9 . 1 ,
folloTs that:
and assume t h a t
inequality
theorem 1 0 . I I
i~ is
conditions (9.1) and o f ( 9 . 1 ) ,
-75-
Q
10olii. inequality
For any
L~ ~ C
~)
.and, f o r a n y g~ven
holds:
II ~ II~,
(10.4)
C
.the c.on.stant
z
c II L.~, II ~"
depends o n l y on
may be e x p l i c i t l ~
s t a t e m e n t of t h i s
theorem, the reader is
r e q u e s t e d t o n o t i c e t h a t i n t h e p r o o f of a n y i n e q u a l i t y for the constants
given~
O.r, ~ i s | i t
~ , ~ , C~ , and on t h e
cal~ulatedo
Concerning the last
ered,
the following
Hence an e x p l i c i t
C 4 ~ G~ ) ....
explicit
e x p r e s s i o n s can be
e x p r e s s i o n c o u l d be g i v e n f o r
T h i s v o u l d be e x t r e m e l y t e d i o u s
Te h a v e c o n s i d -
C
of ( 1 0 . 4 ) .
but c o m p l e t e l y f e a s i b l e .
By t h e Sobolev lemma~ t h e s o l u t i o n o f problem I I ( s e e l e c t u r e 7) belongs to C'~A)p For a n y
provided
~ ~ C ~o(/~)
~ ~ C~176 and a n y
1~ ~
~
(A) the following
Green's formula holds:
A
/~A
where
I~ ( ~ v )
vatives
of ~r of o r d e r n o t e x c e e d i n g
(V)
M
manifold
and o n l y i f : f o r any
~
i)
form i n
~
~-~.
as f o l l o T s . A function
and
1~ c o n t a i n i n g d e r i -
We d e f i n e t h e l i n e a r
~
belongs to
M (V)
u.e Vr~ C~ (/i) ; ii) .[~.AH(~,~.Ia~
if
=o
~ V.
10.1T. func t i on
is a bilinear
I n t h e as.sumed h y p o t h e s e s , f o r
~
,
[
, ~
and
, .the
LL ,is a s o l u t i o n of problem l I of l e c t u r e 7, .i f and o n l y i f
-76-
i t i s a s o l u t i o n of t h e f o l l o w i n ~ problem-
The p r o o f i s obvious b O
I n t h e case where ~ r : ~l
(A)the variety
M ( V ) i s composed of a l l
t h e f u n c t i o n s which b e l o n g t o C ~ (A) and a r e such t h a t
(Ipl
-~ ~ - ~
DP~ -- 0 on /~A
).
L e t us d e n o t e by G ~
t h e s o l u t i o n of problem I I .
GreenOs t r a n s f o r m a t i o n o f t h e problem~ For any ~ ~ ~ , l i n e a r t r a n s f o r m a t i o n from
~t-~
(A)into
~
If G
L
Moreover ~
is formally 8elf-adjoint
maps any (4) 9 i . e .
i s a bounded
H~,(A). Assuming
see t h a t we may r e g a r d G as a compact t r a n s f o r m a t i o n of (see t h e o r ~ 3 ~
G is called the
,~: ~'m , we
H o into itself
~oo f u n c t i o n i n t o a C ~ f u n c t i o n . L ~=
L
, t h e n , as i s e a s i l y s e e n ,
is hermitian, i~
L e t us n o t c o n s i d e r t h e f o l l o w i n g problems
00.5) where ~ i s any complex c o n s t a n t . The h y p o t h e s e s on
A
,
L
, ~ ,
V
are
t h e above s p e c i f i e d ones. The f o l l o w i n g problem i s p e r f e c t l y e q u i T a l e n t t o problem (10o5)Z
(lO.8)
~ + ),G,.P ;
q e C~176 ipJ ~-i91
(~ )When we say t h a t
L i 8 f o r m a l l y 8 e l f - a d j o i n t we mean
eq
( x) ~
(-~)
~, C~,).
-77-
in the sense that is
a solution
there
if
of (10,5)
corresponds If
f
.,,
a solution
~
c~-
C t~
C ~ ~ (~),then a n y belongs to
~ ~ ~- ~ G ~ and so o n .
of (10,6)
and c o n v e r s e l y ~
a solution
(10o6) necessarily
then
c~ i s
o~ ~
C ~ (~).
belongs to
H~
Thus we c a n c o n s i d e r
following
~
of (10.5)
of (10.6) o solution
QO o f t h e
In fact~
(A)
theory.
if
equation
c~ ~' ~ ~ ( A )
and hence to H~,~ (A)... (10,6)
in the space
We a r e t h e r e b y
~(A)
led to the
theorem:
IO.V. whenever
We have one and only one solution of problem (10.5)
~
is not an eigenvalu e for this pr.obl.e.m, i.e. whenever
is suc.h..thatt assuming 9 0
t~ -- G c~
to any solution
equation
w h e r e we c a n a p p l y t h e R i e s z - F r e d h o l m
then
.
f -= 0
~ (10.5) has only the t_rivial solution
The set of these eigenvalue,s is a set with no ,limit-points
in ,any bounded set of the complex plane. We w i s h now t o showy as a f u r t h e r to give an existence equations
connected with elliptic
d u c e d by V o l t e r r a theory
and u n i q u e n e s s
by some a u t h o r s
A
These equations
C~176 O~
on t h e c o e f f i c i e n t s
Pq
(X)
and t h a t
possible
were intro-
ago~ i n t h e f o u n d a t i o n
for instance 9 with linear
is
is
integro-differential
and h a v e b e e n r e c o n s i d e r e d
in connection~
L e t us a s s u m e t h a t hypotheses
years
elasticity~
how i t
theorem for linear
operators,
more t h a n f i f t y
of hereditary
application9
of his
also
recently
visco-elasticity, the above mentioned
of the elliptic
operator
L
(OjT)
let
and on ~/" h o l d o For any us consider
X E ~
and any
t
the integro-differential
in the closed
interval
equation
t
(x0.7) L ~ (~,~) ~
Z
~ Ct,..~:)D~u.(x,~ldv 0
-78-
The d e r i v a t i v e s
~d
must be u n d e r s t o o d t o be t a k e n w i t h r e s p e c t t o
the space-like coordinates a r e complex ~ ~ ~ (O~T) •
(OjT).
a f u n c t i o n of of i t s
g~ j . . . ) g ~ 9
matrices,
f o r any
f~X,t)
t ~ (O~T)
space-like derivatives
~d
in
i s s u p p o s e d t o be
C ~
as
and c o n t i n u o u s t o g e t h e r w i t h a l l
A
)<
(o~-r),
Of c o u r s e ~ what
we a r e g o i n g t o s a y h o l d s u n d e r more g e n e r a l h y p o t h e s e s f o r and
(~/~ )
continuous over the c l o s e d square
The f u n c t i o n
•
The m a t r i c e s
~
~
~ o The p r o b l e m c o n s i s t s
one s o l u t i o n
t~ ( x ~ ' t )
in proving that there exists
one and o n l y
of ( 1 0 . 7 ) w h i c h , f o r any given
~ > 0
when r e g a r d e d as a f u n c t i o n o f ~ i s a c o n t i n u o u s f u n c t i o n of Set ~tegral
L ~(x)t)=
~
with values in the space
Those v a l u e s b e l o n g t o
~o(x,~).It
H ~ (/~) j
M (V).
is readily seen that the following
e q u a t i on i n t h e new unknown f u n c t i o n
C~ ( X ) ~; )
t
(lO.8)
t•
I)
) 9 7-.
:
d~ 0
i s e q u i v a l e n t to (10.7) with the "boundary c o n d i t i o n " f o r any
t
~
Co, T ) ,
This means t h a t t o any
s o l u t i o n of ( 1 0 . 8 ) , t h e r e c o r r e s p o n d s a s o l u t i o n g i v e n by
G~(~,t)
~(X,~) ~(x,~)
~,(g)~:)
of ( 1 0 . 7 )
there corresponds a solution
of ( 1 0 . 8 ) b e l o n g i n g t o
H~_~
L e t us w r i t e ( 1 0 . 8 ) as f o l l o w s .
t
(10.9) J
o
f o r any
M(V)
Thich i s a
and b e l o n g i n g - as a f u n c t i o n o f )( - t o
C o n v e r s e l y , t o such a : Lt~(x,t)
~()(~t )~
M (V). c~(•
~ ~ ~ .
-79-
.here
~ ~)
with values in
and
~= ( ~
must be u n d e r s t o o d t o be f u n c t i o n s of
~
(A) (K-~-~), N(t,~) i s , f o r any ( t , ~ ) E k E (o~T) :~ ( O ~ T ) , a l i n e a r bounded o p e r a t o r from H K ( A ) in itself, such t h a t [I ~ ( ~ j ~ ) [ I The c l a s s i c a l
-~ C
( C
constant).
s u c c e s s i v e a p p r o x i m a t i o n s method~ used f o r t h e
" s c a l a r " V o l t e r r a i n t e g r a l e q u a t i o n works i n e x a c t l y t h e same way f o r e q u a t i o n (10.9) and proves t h e e x i s t e n c e of one and o n l y one s o l u t i o n f o r (10.8)~ i . e .
f o r our i n t e g r o - d i f f e r e n t i a l
Bibliography
See b i b l i o g r a p h y of l e c t u r e 9.
of
Lecture
10
problem.
80
Lecture
The
classical
11
elliptic
2nd
order
BVP
of
linear
Mathematical
Physics:
]?DE.
L e t us c o n s i d e r a 2nd o r d e r l i n e a r
elliptic
equation with real
coefficients:
L u.
(11.1)
'a
The unknown f u n c t i o n ~i'
b~ , C ~ ~
o. j (x) - .
~ i s now a r e a l - v a l u e d
lecture.
We assume t h a t
L
is elliptic
form
~
~X)
The f u n c t i o n s
C ~ , The bounded demain A i s
These h y p o t h e s e s w i l l
means t h a t t h e r e a l q u a d r a t i c for every
+ c(x)u, = ~(x).
function.
are supposed to belong to
s u p p o s e d t o be C ~ - s m o o t h . this
, b., cx)
be m a i n t a i n e d t h r o u g h o u t
and p o s i t i v e ~
in ~
is positive
consider the Dirichlet
problem for
( 1 1 . 1 ) . As a
c o n s e q u e n c e of t h e t h e o r y d e v e l o p e d i n t h e p r e v i o u s l e c t u r e s , the following existence
and u n i q u e n e s s t h e o r e m f o r t h i s
Under t h e a b o v e - m e n t i o n e d h y p o t h e s e s on
under the further exists
definite
X ~ A0
L e t us f i r s t
ll.I.
. This
assumption that
one and o n l y one
C ( X ) ~_ 0
C co f u n c t i o n
~(X)
f o r an y
we h a v e
problem.
~
and x E A
such t h a t :
A
and
, there
-81 -
(11.2)
L u, .-..~
Let us first
*hA
suppose that
(n .4)
for
C
(11.3)
,
on 9 A
~,--0
X ~ ~
~> O.
9•
s 0
We h a v e f o r
-
~ H.~ (A)"
any
]~ ("" " ' ) :
~
"ax.
0~:
,~. i ~ Ox;
dx
v
c
Coll~ll
>
4'
-
A as f o l l o w s
from the
theorem is
proven under the assumption
C (X)
~ 0
ellipticity
follows
from theor.
] t ~ ( X ) l ~- ~ • l~(X)] • 9A smooth solution (see,
for
Let
instance~
[7]
on
~
9
for
the
operator
(11.5) Let
)
another
IO.V a n d f r o m t h e
The f o l l o w i n g
L~,-
"~-: ( ~ 4 J ' " , ~
in the
case
inequality
knoTn - holds L~t -- 0
when
classical
BVP f o r
the
r,egula r oblique
be a r e a l
when c o n s i d e r e d
L
The p r o o f
Thus t h e
for
any
C { x ) -~ 0
~ p. 4-5).
the so called
~ ~ ( ~ls,..~ G ~
(11.4).
of the homogeneous equation
(11.1)~
which is
a n d f r o m lemma 3 . I .
which - as is well
L e t u s now c o n s i d e r equation
of
unit
vector
as a f u n c t i o n
derivative defined
for
of the point
BVP i s known as t h e
elliptic
oblique
problem. any X
•
varying
derivative
problem
:
in
A
,
) be t h e i n t e r i o r
(11~ unit
--:0 O~
normal to
on
/~A
9A,
9 Under the
-82-
further
assumption
~
>0
C~•
~ 0
, the problem ( 1 1 . 5 )
( 1 1 . 6 ) i s said to
be r e ~ u l a r . 11oli. and o n l y one
I__f
for
X~ ~
~ then there exists
~ ~
s o l u t i o n of t h e r e g u l a r q b l i q u e d e r i y a t i v e
~i
be a r b i t r a r y
one
problem
Ol.~) (l~.~). Let such t h a t
~i
(ll.l')
functions belonging to
~i $ . The o p e r a t o r
Lu.
L
can be w r i t t e n as f o l l o w s :
~;i
:
C~A)
""
+c~
,
where*
I t is p o s s i b l e to choose the f u n c t i o n s
where ~
is a positive
Q ~
scalzr
~i
i n such a way t h a t :
f u n c t i o n d e f i n e d on
o r d e r t o p r o v e t h i s ~ l e t us f i x a r b i t r a r i l y Let
~
~...~ ~
the point
~A.
•
In
on ~ A .
he an o r t h o n o r m a l s y s t e m of v e c t o r s such t h a t
coincides vdth the interior
normal v e c t o r
may s u p p o s e t h a t t h e f u n c t i o n s and b e l o n g t o
~
(~).
~lj..
,~
~
at
~ ~
~A
in
X.
We
are defined throughout
There i s no l o s s i n g e n e r a l i t y i n
a s s u m i n g t h i s ~ s i n c e we can always c h o o s e
~
to
t h e above ~ f ~ f u n c t i o n s
~ ~ (~)
throu~ou~
since,
and t h e r e a f t e r A
.
continue all
We can a l s o s ~ p ~ o s e t h ~
by t h e r e g u l a r i t y
consider the functions
condition~ it ~hk
)...~ ~
~'
is positive
d e f i n e d as f o l l o w s i n
belonging
is positive
on ~ A . A
:
i~
L e t us
-83-
4
CL--
~).
I
,.~ --,) ~
~).
- o,,.. v'.
( fo~
R k~
I - 0 -
:
~ : ~ ~.a.
4
( fo~"
Rkh
I
K
~).
~ ,~ k )
~- k )
( fo~ ~>k).
The f u n c t i o n s = h #
.
k
,
9
J
satisfy
equations
(11o7) w i t h
given by~ 4
I
J
#
~v 4
L e t us c o n s i d e r f o r
~)~
E ~t ( ~ ) the bilinear
form=
/Jx;
Let
p o ) P, ) ra~
be p o s i t i v e
n u m b e r , such t h a t
for
every
X ~
we have=
(~ : %2,...,=) It follows thats
, -c
_> e~
-84-
-Ov-
+
Ivl )ax.
A Then f o r
PZ l a r g e
enough,
-!5(v-,v,) >_ Co iIwll~ for any
~" ~
of a unique
for ~y
]'-]t ( A ) 9
function
From t h i s
Lt ~
V r H~(A)
inequality
~ 4 (A)
satisfying
Since
=- ~ / .
is a solution of ( l l . 5 ) , ( 1 1 . S ) . in the present
case,
the boundary conditi?n o n l y show t h a t unique if using results Since of
C K O
on
theor,10oV, on l i n e a r C~ 0
L~ : o
(11,6),
A .
elliptic
in the
follows
(11.9) that
In other words, the class C c~ f u n c t i o n s
M (V)
which satisfy
In order to prove our theorem,
of the regular In fact)
The d e s i r e d
, it
, i t follows from ( I I . S ) ,
composed of the
the solution
by ( 1 1 . 7 ) ,
have,
OA
B e to the arbitrariness of ~
is)
existence
the equation:
~ C~(A)we
~
A
follows the
the
oblique existence
uniqueness
is
derivative will
we ~ e e d BVP i s
f o l l o w by
a consequence of well-known
PDE's o f s e c o n d o r d e r , that
(connected)
f o r a n y s m o o t h non v a n i s h i n g domain
A
:
[ ~ (~) I (
solution
~6tX xr ')A
[ t~ [
-85-
for any
• E ~ .
such a solution
On t h e
o~her hand, if
ut
~A
on
mentioned uniqueness
If direction
~i
direction
~
i n s u c h a way t h a t g i v e n by ( 1 1 . 7 )
and t h e r e s u l t i n g
of
/~
BVP i s c a l l e d
such that,
the neighborhood
~
/~4 A
if
vector defined on
/~
~
The f o l l o w i n g
(11.10)
L ~
= ~-
~ ~.
the regularity
of
=
(K = ~,g
stated
~ ~ /~/~
Let ~
condition
in
A
,
~:
0
We u s e t h e r e p r e s e n t a t i o n (11.7).
on / ' ~ A
in the space
composed of the functions
satisfying
/~K ~
at the beginning
~K~,
C
be the
C ~ unit
~)
> O
,
/~
on / J A .
H~ ( A )
which vanish
(11.1')
of
L C0
on
-0
on
/~4(A).
with the coefficients
By t h e same a r g u m e n t u s e d i n t h e o b l i q u e
p r o b l e m , we s e e t h a t : 2
%r ~ ~/
, when
have a unique solution of ~
9
-C
~ ~
of (11.8),
with
p~
corresponding
~,zA.
of the subclass
c o Ii ll for any
) )
BVP i s known as t h e m i x e d BVP:
As s p a c e ~/~ we t a k e now t h e c l o s u r e C I (~)
a r e two d i s j o i n t
(already introduced i n the oblique d e r i v a t i v e
problem) which satisfies
derivative
~
X~ i s any p o i n t
~
) then
t h e Neumann BVP.
of x ~ e n j o y i n g t h e p r o p e r t i e s
~oreover, we assume t h a t
o~ ~
and
: c~j~
~]
i s known as t h e c o n o r m a l
8, c a n be c h o s e n i n s u c h a way t h a t
of l e c t u r e
of
a maximum (minimum) f o r
) by a t h e o r e m o f G i r a u d ) we m u s t h a v e
L e t u s now s u p p o s e t h a t subsets
is
follows.
we c h o o s e t h e
the oblique
•
large
enough.
to the present
Then we choice
-86-
The c l a s s lectures
V satisfies
the conditions for the regularisation
9 and 10 i n t h e n e i g h b o r h o o d of any p o i n t o f /~4A
t h e o r y of and o f ~ A ,
Hence, t h e s o l u t i o n of t h e mixed BVP has t h e f o l l o w i n g r e g u l a r i t y properties =
If
i)
belongs to
C ~ ( A ) n H~(A).
ii)
belongs to
c
~A
-- ~)t A u ~ A
, then ~
,).
( A is
o t h e r w i s e t h e o n l y p o i n t s where ~
~ ~ i n the c l o s e d domain
A,
c o u l d n o t be C c~ a r e i n t h e s e t
I t has been p r o v e n t h a t ~ i s c o n t i n u o u s i n t h e c l o s e d domain
(see ~3 ]
)*
B i b l i o g r a p h y of L e c t u r e
Eli
G.BOULIGAND-G.GIRAUD-P~
-Le
en t h ~ o r i e du p o t e n t i e l
11.
probl~me .de l a d ~ r i v 6 e o b l i q u e -
Actual. Scient.
Industr.
Hermann~ P a r i s ~ 1935.
E2]
G~
- . S u l p r o b l e m a d e l l a d e r i v a t a obl.igua e s u l p r o b l e m a m i s t o p e r l ' e q u a z i o n e di L a p l a c e - B o l l e t t ~ U n i o n e btat. Ital.
Is]
1952.
GoFICtlERA- A l c u n i r e c e n t i
sviluppi della teqria
contorno, etc -Atti 1954-
Cony~ I n t e r n .
Cremonese~ Roma~ 1955.
dei Pr0blemi al
sulle
l~q. Der~ P a r z ~
-87-
[4]
G.FICIIEI~- Analisi
esistenzial.e
contorno misti
E53
G.GIP~UD
-
S c u o l a Norm~ Sup~ P i s a ,
principales
-Ann.
1947.
E c . Norm.
51, 1934.
-Ann~
closes
s o c . P o l o n . Mathem., 1932.
C.~IP~NDA- E~uazioni a l l e
deriva.t.e p a r z i a l i
Ergeb~ S p r i n g e r ,
[8]
dei problemi al
Probl~mes m i x t e s eL p r o b l ~ m e s s u r des v a r i e t ~ s etc.
LT]
etc~ -Annali
- E~uations a int~rales Sup. t .
GoGIP~UD
pe.r l e s o l u z i o n i
di t i p o e l l i t t i c o
-
1955.
C.~IItA~DA- Sul pro, blema m i s t o p e r l e e~uaz.i.oni l i n e a r i
ellittiche-
Ann. d i Matem. , 1955~ G.STAJ~PACCHIA- P r o b l e m i a l c o n t o r n o e l l i t t i c i
c,on ,dati d i s c o n t i n u i ,
I!
dotati
di s o l u z i o n i
holderiane-
Ann. di b~atem~ 1960o
-88-
Lecture
12
The cl.as.s.ical e . l l i ~ t i c ~ P
of ~ a t h e m a t i c a l P h [ s i c s :
9i n e a r E l a s t o s t a t i c s .
We s h a l l now c o n s i d e r t h e c l a s s i c a l t h e c a s e o f an
lnhomogene~us a n i s o t r o p i c
BVP of l i n e a r elastic
elasticity
in
body. I t i s c o n v e n i e n t
t o s t u d y t h e BVP c o n n e c t e d w i t h t h e e q u i l i b r i u m problems i n t h e s p a c e X ~ i n o r d e r t o i n c l u d e b o t h t h e c a s e s of p l a n e and 3 - d i m e n s i o n a l e l a s t i c i t y . Set-
'~x k L e t us c o n s i d e r t h e e l a s t i c 41~
The ( r e a l - v a l u e d )
~(~§
potential 4,,~
f u n c t i o n s ~ ~k.i~(X) a r e s u p p o s e d %o b e l o n g t o
and t h e q u a d r a t i c form ~ r in the
'gx;
variables
(X,6) s
We can s u p p o s e t h a t ~
(x)
i s s u p p o s e d t o be p o s i t i v e (4~L~
~ ~ ) f o r any
~g~
C
definite ~
-89-
L e t us now d e f i n e f o r
arbitrary
v a l u e s of t h e
i n d e c e s 4 ...) 9 :
: (X)
CL
~h~,,jK ( g )
for
~ > i~)
-. ~ h , K i (X)
for
~ ~_ k s J > K
._ O~h~,Ki (X)
for
~ > i~ ,
i >~
"ZO~;h,j ~ ( X )
s
i,= ~ ,
i " K.
We have f o r t h e e l a s t i c
potentialz
4_ C~ c ~,i
(12.1) V q ( •
j "- K
6. ~
~
f. ~
=_ zct~,J
~ ~x~ ~ x
I t must be p o i n t e d o u t t h a t t h e q u a d r a t i c form
~;h,j~
i s .not p o s i t i v e
definite,
as a f u n c t i o n of t h e
real variables
~ ~h
(~ j h 9 4 j . . - ~ ~ ) .
i n t h e s u b s p a c e of t h e the conditions Let
A
~
but o n l y s e m i d e f i n i t e
"-
be t h e
~-dimensional ~h~
~Lh ~ K
It is positive s p a c e of t h e
definite ~h~s
only
d e f i n e d by
d
C ~ - s m o o t h domain c o n s i d e r e d i n l e c t u r e
11.
The e q u a t i o n s o f e q u i l i b r i u m i n A a r e t h e f o l l o w i n g :
(12.2)
~
~
-
in
.
We have t h r e e k i n d s o f b o u n d a r y c o n d i t i o n s c o r r e s p o n d i n g t o t h e t h r e e main p r o b l e m s o f e l a s t i c i t y . boundary c o n d i t i o n s .
We c o n s i d e r h e r e o n l y homogeneous
-90-
1st
BVP
(12.3)
L~ = 0
2nd
(12.4)
( ~
(body f i x e d a l o n g i t s
BVP
on
/~/~.
(body f r e e a l o n g i t s
"~,~ (u.) - v k
is the unit innrd
boundary)
boundary)
W ' (x, c ) -- o on
normal t o /~A
)
ard 8VP (.dxedBVP) (12~
where
t~:O
/~4A
in lecture
on /~4 ~
and
/~zA
,
(12,,6)
"~ (1~,)= 0
a r e t h e s u b s e t s of ~
on f~DA,
a~ready introduced
11.
Other BVP's c o u l d be c o n s i d e r e d , components o f
~
shall
o u r s e l T e s t o t h e t h r e e aboYe c o n s i d e r e d c a s e s and leaYe
it
restrict
and
~-~
f o r i n s t a n c e t h e ones a s s i g n i n g p
components of
t(~)
on / ~ A .
HoweTer Te
as an e x e r c i s e t o t h e r e a d e r t o s t u d y o t h e r BVP's f o r ( 1 2 . 2 ) .
Equations
(12.Z) c a n be w r i t t e n :
(12.2')
Cl,~k,i x (X)
~X k
In order to prove t h e e x i s t e n c e BVP ( 1 2 . 2 )
(12.3),
"F ~;,
: O,
~x~
and t h e u n i q u e n e s s of t h e s o l u t i o n
Te need t o p r o v e i n e q u a l i t y
case is the follo~ng:
(9.1),
of
which i n t h e p r e s e n t
-91 -
f
(1~.7)
~'A
~
J i,~
~c gxk
(x)
~nxj ,9 xK
dx >_ c
Ilu'llt o
0
f o r any
%r s
H 4 ( A ) , B e c a u s e of ( 1 2 . 1 ) i n e q u a l i t y
as t h e 1 s t Korn~s i n e q u a l i t y
J"'(
(12.s)
~
( 1 2 . 7 ) - which i s known
- i s e q u i v a l e n t t o t h e f o l l o w i n g onel
~'~ + ~ ~"
d•
> C,I IIv II
(c, > 0 )
T h i s i s i m m e d i a t e l y o b t a i n e d by u s i n g t h e F o u r i e r d e v e l o p m e n t s o f t h e functions
~r. and P a r s e v a l ' s
theorem.
I t must be o b s e r v e d t h a t , t h a t f o r any
• ~ A
as a c o n s e q u e n c e of ( 1 2 . 7 ) , i t
and any n o n - z e r o r e a l
~
follows
I
>0
for every non-zero real t h e o r e m which w i l l particular,
~-vector
be p r o v e d l a t e r
the ellipticity
~
.
T h i s i s a c o n s e q u e n c e of a g e n e r a l
(see theor.
1 4 . I I of l e c t u r e
of system (12.2) follows.
14).
In
We h a v e t h u s t h e
following theorem.
12.I.
Given
~ ~ C oo ( ~ ) , t h e r e e x i s . t s one and o n l y one s o l u t i o n
of the BVP (12,,2), (12.8) ,_ _wh_ich belonE~ t._.__o C " ~ ( A ), I n o r d e r t o p r o v e t h e e x i s t e n c e t h e o r e m f o r ( 1 2 . 2 ) ~ ( 1 9 . 4 ) ~ l e t us c o n s i d e r t h e systems
(12.9)
~ rbx~
cL~, j, ~ ( ' ~
/~;,(,r
- po-.
, ~
:
o
-92-
where
~o
(12o4).
is any positive constant~ We wish first solve problem (12.9)
I t i s e a s i l y seen t h a t the i n e q u a l i t y to be proven i n t h i s
case is the folloxing
~-.
+
x +
dx
~
C~.ll,~ I1~
A
q~ E H 4 ( A ) . S e v e r a l
the original
proofs
of ( 1 2 . 1 0 ) have been g i v e n a f t e r
one due t o Korn [ 5 ] ( s e e [ 2 ] ~ [ 6 ] ~ [ 3 ] ) .
one c a n be o b t a i n e d ( s e e [6]) i f We r e f e r
)
I~
A for any
(IJ.
(2nd K o r n ' s i n e q u a l i t y
A is
A rather
~-homeomorphic
simple
to a closed ball.
the reader to the quoted papers.
From (12o10) i t which i s
~
adjoint,
it
in
follows that
(12,9)
( 1 2 . 4 ) has o n l y one s o l u t i o n
A o S i n c e our d i f f e r e n t i a l
follows that
a
C~
solution
system is formally self-
of t h e f o l l o w i n g d i f f e r e n t i a l
system:
(12o11)
w i t h t h e boundary c o n d i t i o n s
(1 .12)
,
~
(12.4),
fA
;
exists
when and o n l y when:
o
, m ,
(4) A c t u a l l y t h e 2nd K o r n ' s i n e q u a l i t y
is the following:
(% ",o) f o r any qY such t h a t :
, However i t
is easily
seen that this
;0
inequality
i m p l i e s and i s i m p l s
by ( 1 2 . 1 0 ) .
-93-
~Z i s a n y
C ~ solution
the only
C ~ solution
There
and B~i
~,
12.II. if rith
~
(12.4) Tith
: 0.
I n t h e c a s e ~ ~ Po
constants
such t h a t
b~j = - ~'.
~ P (12.2) (12.4) has solutions belon~in~ to C ~ C ~ ) C~
function
.~
satisfies
c.onditi,ons
(12.12)
g i v e n by (12.1.3).
For g e t t i n g BVP ( 1 2 . 2 ) ,
t h e e x i s t e n c e and u n i q u e n e s s of t h e s o l u t i o n
(12.5),
(12~
r e assume t h a t
composed of t h e f u n c t i o n s v a n i s h i n g on inequality any
~
of t h e homogeneous s y s t e m i s :
are arbitrary
and on,ly i f t h e ~
of ( 1 9 . 1 1 )
(considered
~ ~ ~/
for any
~ inequality
V
/~
~r~ V
of t h e
i s the subspace of H 4 ( A ) . From the second Kornts
) it
is easy to derive~ for
( 1 2 o 8 ) . A r g u i n g as i n t h e p r e v i o u s l e c t u r e
f o r t h e c a s e of t h e mixed BYP f o r a 2nd o r d e r e l l i p t i c
equation~ re
deduce t h e f o l l o w i n g t h e o r e m : 12~
For
~ ~ C ~ 1 7 6 ) t h e r e exist.s one and o n l y one . s o l u t i o n
of t h e BYP (1.2.2). (12..5) It
is rorthrhile
(12o6)tT.hich b e l o n g s t o C ~ (A u g 4 A u ~ A ) n
t o remar~ t h a t
the obtained solutions
l s t ~ 2nd and 3rd BVPts a r e t h e ones r e q u i r e d of e l a s t i c i t y 9
s i n c e t h e y m i n i m i z e t h e ener~T i n t e g r a l
H 4(A) ,
H4(A)
and "v"
of t h e
by t h e m a t h e m a t i c a l t h e o r y
O
in the classes
~4(A).
respectively.
-94-
Bibliography
[1]
G. F I C I I E R A - s e e [ 2 ]
of
of lecture
Lecture
12.
4.
K.O.FRIEDRICttS - .On t h e . B o u n d a r T - v a l u e ' P r o b l e m s o f t h e T h e o r y o f El a s t i c i t ~
v.
[3]
J.
GOBERT - U n e
48,
A. KORN
-Annals
of Math.
1947.
in~alitd
Bull.
[4]
.and K o r n ' s i n e q u a l i t y
f o n d a m e n t a l e de l a t h ~ o r i e
Soc. Roy. des Sci.
- Solution ~enerale du
de l ' ~ l a s t i c i t ~
de L i b g e - 3-4 - 1962.
pro bleme .d'e~uilibre dan.s, la
theorie de l'~lasticitd dans le cas ou les efforts sont donnds & la surface - A n n .
A. K01~
Toulose Univ. 1908.
- U.eber einige UnMleiclmngen welche in der Theorie der
elastischen un_d_ele~trischen Schwin~un~en ein.e.Rolle spielen - Bull. Inst. Cracovie Akad. Umiejet, Classe des sci.
math. et nat.
, 1909.
L.E.PAYNF~-H.F.WEINBERGER - On. I{o..rn's Inequality - Arch. for Rat. Mech. & A n a l .
8,
1961.
-
-95-
Lecture
The
classical
elliptic
Equilibri~
The c l a s s i c a l the solution two v a r i a b l e s
13
BVP of
of
~athematical
thin
Physics:
~lates.
t h e o r y of t h e e q u i l i b r i u m of t h i n p l a t e s
of c e r t a i n x,y
BVP's f o r t h e i t e r a t e d
Laplace operator in
:
~4
4 ~ xZ,~y z
9 x~
w i t h s e v e r a l k i n d s of boundary c o n d i t i o n s . bounded ( c o n n e c t e d ) p l a n e
,9 y~
Let, us
is a
C~176
plates
c o n s i d e r s t h e f o l l o w i n g boundary c o n d i t i o n s
suppose t h a t
domain.
~ : o,
(ta.3)
(13.~)
~ ~
~,~
(13.4)
on ~ A
-- o ,
: o,
9~ ~
A
~
~ + (4- e )
~
ov
0
A
The t h e o r y of t h i n
f'j~
(13.1)
requires
-96-
Here
~
i s t h e u n i t innward norma~ t o ~
denotes differentiation
w i t h r e s p e c t t o t h e arc ( i n c r e a s i n g c o u n t e r - c l o c ~ l s e ) c u r v a t u r e of
~A
~
i s a c o n s t a n t such t h a t
~
is the
- t < 6-~ 4
is the Laplace operator, The d i f f e r e n t i a l and
~ /
e q u a t i o n t o be c o n s i d e r e d i s t h e f o l l o T i n g (
real valued functions).
A4
(13.5)
The BVP ( 1 3 . 5 ) ,
(13.1),
:
(13.2) corresponds to the e q u i l i b r i u m p r o b l e m
f o r a p l a t e clamped a l o n g i t s
b o u n d a r y . The boundary c o n d i t i o n s
(13.3) express the f a c t t h a t the p l a t e is supported along i t s boundary c o n d i t i o n s
is free.
to the consideration
ourself
( 1 3 . 2 ) and t h e mixedBVP f o r a p a r t i a l l y and ( 1 3 . 2 ) a r e s a t i s f i e d the remaining part. i n l e c ~ a r e 11.
e d g e . The
( 1 3 . 3 ) and ( 1 3 . 4 ) mean t h a t t h e p a r t o f t h e b o u n d a r y
There t h e s e c o n d i t i o n s a r e s a t i s f i e d We r e s t r i c t
(13.1),
on a p a r t
~4~
and
~
of t h e BVP ( 1 3 . 5 ) , ( 1 3 . 1 ) ,
clamped p l a t e ,
~4 A
o f HA
i oeo when ( 1 3 . 1 )
and ( 1 3 . 3 ) ,
a r e the s u b s e t s of ~A
( 1 3 . 4 ) on considered
The r e a d e r i s r e q u e s t e d t o c a r r y out t h e p r o o f s of t h e
e x i s t e n c e and u n i q u e n e s s t h e o r e m s i n t h e o t h e r c a s e s , f o r i n s t a n c e i n t h e BVP c o r r e s p o n d i n g t o a p l a t e p a r t i a l l y s u p p o r t e d and p a r t i a l l y
As b i l i n e a r (13.2)
form
clamped on ~
, partially
free. b(~,~r)
c o r r e s p o n d i n g t o t h e H~P ( 1 3 . 5 ) , ( 1 3 . 1 ) ,
we a s s u m e "
(
§
~x ~.
)oixol
-97-
The s u b s p a c e imequality
V
H~IA)
of
0
(9.1) reduces to inequlity
6(,,,,,-)
FI~ (A).
t o be c o n s i d e r e d i s (3.6)
for
: 2
~
ii~-, &~
~ ~o
In this
case
Thus Te h a v e
[,,,- ~ H,(A)~ ]
Then-
13.i.I.G.r
~ ~ C ~ C~,) , ~ r
(13.5), (18.1), (!3.a)
I n o r d e r t o c o n s i d e r t h e above m e n t i o n e d mixed BVP ( i . e . on
07 A
and c o n d i t i o n s
convenient to observe that~ for
o.e
C ~ ( ,~ ) ,
and, on,l~r one s,o l u t i o n b e l o n g i n g t o
(13.1) , (13.2)
has
~
(13.3),(13.4)
and ~
on ~
belonging to
conditions ) it
C ~ (A)~
Te h a v e :
0 9'~
.
io [ 9~
2
+~"
'g,7 :~
(
tabu"
ma:~u, Ov '3r
]
al~
-
I ~u. )]ol~
:
OA
A
~gx ~ tax=
Ou. +
~x 2 Oy ~
9,/:~ Oys
qlx 9 y "ax~y
,9 ,,/z '3x :L
u. d x d y .
dxdy A
is
-98-
L e t us now assume as s p a c e of t h e f u n c t i o n s which s a t i s f y
V t h e s u b s p a c e of
conditions
H~ ( A )
( 1 3 o l ) , ( 1 3 o 2 ) on
+ (~- ~
+
~z
t~
~2t~
i
Because o f t h e a s s u m p t i o n
C (~)
9xgy
~ztt
@7:L + 9 yz Qx z
-4
~• ~7-
"~ ~ 9 ~] ~ "are h a v e :
Ipl:~ The c o n s t a n t
~4/~, S e t
+
~•
A
composed
IAIDr~I~ c~x dy.
depends o n l y on ~ .
I n o r d e r t o p r o v e ( 9 . 1 ) ve n e e d o n l y t o show t h a t t h e r e e x i s t s C4> 0 such t h a t ~ f o r any ~ - E ~ r
(z3~)
~
I I D%I =axdv
~- e~
I1~,~.
I A Suppose ( 1 3 . 7 ) t o be f a l s e .
(13.8)
]j ~
Jl~. = '{
)
Then t h e r e e x i s t s
(13o9)
Z~ Ipl= ~-
such t h a t =
I ID~ l=olx oly ~t
A
-99-
We can suppose t h a t
for (13.9),
t qY~ ~ converges in
converges in
(A) and the li
has strong second derivatives vanishing on
that in
~ ~
i s a p o l y n o m i a l of d e g r e e .
This contradicts
(theor.
~ 4(A)
3 . I V ) . Then ,
t function
A . It follows readily
~ . Because
tr
belongs to
%r
~r-O
(13~
Since (9.1) has been proved~ there exists one and only one
solution
~
of t h e e q u a t i o n s :
belon~ng
to
V.
By u s i n g
(13.6),
The f u n c t i o n it
folloTs that
~
belongs to ~
C co ( A u Q ~ A u Q ~ A ) .
is the solution
of our mixed
p r obl em. 13.II. ~
The mixed ~ P ,
(13.5);
~ E C~176
(13.1),(13.2)
on ~ A
~
(18.3),
, has..one..and o n l y one s o l u t i o n
b e l o n g i n ~ ~,0 C ~ 1 7 (6A t~ ~4A t) ~#.A) t~ H I (~). From len,na 4 . 1 I i t
follows also that
Bibliography
[13
Lecture
G. FICHERA - Teorema d'e_sisten.za p e r i l Rend. Acc.
[23
of
~t
G. FICHERA -
Naz. Lincei~
belongs to C~
),
13
p_roblema b i - i p e r a r m o n i c o -
1948.
On some g e n e r a l i n t e ~ r a t i . o n methods employed i n connection with linear Jour.
differential
e~uations -
of Math. and Phy~ voI.XXIX ~ 1950.
-100-
G.
FICHERA
-
Esistenza calcolo
[4]
d e l minimo i n u n c l a s s i c o delle
variazioni
problema di
- Rend. Acc. Naz. Lincei~
1951.
K.0.FRIEDRICIIS - Rie RandTert- und Ei~enwert Probleme aus der Theorie der elastischen Platten - b~th. Annalen,
G. ~ D I N I
- I1 p r i n c i D i o
d i minimo e i t e o r e m i
per i problemi alle
derivate
al contorno parziali
di
relativi
di
esistenza
alle
ordine pari
1928.
e~uazioni
- Rend. Circ.
Matem. P a l e r m o ~ 1 9 0 7 .
A.E.H~LOVE - A
Treatise
on t h e ~ [ a t h e m a t i c a l T h e o r 7 o f E l a s t i c . i t y
Cambridge at the UniT. Press
-vol.I~
1893.
-
-101-
Lecture
Strongly
elliptic
14
o
operatorso
.Garding
inequality.
Eigenvalue . problems.
The e x i s t e n c e t h e o r y d e v e l o p e d i n t h e p r e v i o u s l e c t u r e s on i n e q u a l i t y
(9.1).
We p r o v e d t h i s i n e q u a l i t y
lar cases considered in lectures a general operator.
11, 12, and 13.
Of c o u r s e t h e p o s s i b i l i t y
on t h e c h o i c e of t h e s u b v a r i e t y
for all
~r
any c a s e , b e c a u s e o f t h e a s s u m p t i o n
(A)r
of the p a r t i c u -
We wish n o t c o n s i d e r
o f p r o v i n g ( 9 . 1 ) depends
of t h e s p a c e H
i s founded
H
~
(A) . HoTever, i n
, inequality
(9.1)
consider here only this
case,
O
must be t r u e Then H
(A)-V.
We s h a l l
which c o r r e s p o n d s t o t h e D i r i c h l e t The m a t r i x d i f f e r e n t i a l
operator
i s s a i d t o be a s t r o n g l y e l l i p t i c any r e a l n o n - z e r o vector
~
Te
~-vector
problem.
~
~ ~ (~5(x)~
~
operator at the point
X , if
for
and f o r e v e r y n o n - z e r o complex ~ -
have:
.~
i~I:v
It is evident that strong ellipticity converse is not true,
'9• 4
implies ellipticity.
as t h e example o f t h e W i r t i n g e r o p e r a t o r
'~ x~.
( 4 ) F o r a more g e n e r a l d e f i n i t i o n of s t r o n g e l l i p t i c i t y , From n o t on . e s h a l l o ~ t parentheses Then ~iting ( Z
s e e ~4 ] .
~ (~)?.
The
-102-
For t h e o p e r a t o r we s h a l l point
L =
assume t h a t t h e s t r o n g e l l i p t i c i t y
x~
~
('o
])Po.,P<~(.x) I)q
~IPl_~~ ,
o ~l"Ile ~ )
c o n d i t i o n holds a t any
, where ~ i s a bounded domain of
c o n n e c t e d , we can suppose t h a t t h e q u a d r a t i c
X~. S i n c e
~
is
form i n t h e complex v e c t o r
P Ipl,l
is definite,
for instance positive,
I -- '~
for
L e t us s u p p o s e t h e c o e f f i c i e n t s operator
k
function
~
~ ~ O~
(Ipl=lql=~)
A.
If
eu ~ 0
of the i s t h e minimum
t h e compact s e t s X~ A , I~1
Q(X,~, ~)on
we have f o r a n y
and a n y
~p~(X)
t o be c o n t i n u o u s f u n c t i o n s i n
of t h e p o s i t i v e I'~ I : 4 ~
• ~ ~
and a n y
~
•- ~j
-"
IpI j l q l -,m.
We c a n n o t e x p e c t t h a t strongly
elliptic,
( 9 . 1 ) h o l d s f o r any k
since this
would i m p l y - f o r
and u n i q u e n e s s f o r t h e D i r i c h l e t What we want t o prove i s t h a t , for the operator We s h a l l
C '~ ~ i
~ even one t h a t
~r = H ~
(A)
problem f o r t h e e q u a t i o n f o r some
~
, inequality
is
- existence
~-~ = ~ . (9.1) is true
( I = identity)~ O
9
p r o v e t h e f o l l o ~ r i n g theorem c o n c e r n i n g G a r d z n g t s i n e q u a l i t y
14.1..There
e x i s t two p o s i . t i v e .cons.rants
~
an_dd ~ o
such that
Q
.fp,r any
Lr ~ ~ ] ~ ( A ) t h e f o l l o w i n g i n e q u a l i t y
?o II
(-4)
The c o e f f i c i e n t s
C~
ll
holds-
~t
- loilvli
(X) a r e supposed c o n t i n u o u s i n
A
o
for
9
Ip~ = I~1 = ~v~
-103-
and m e a s u r a b l e and bounded i n
~
IpI
for
+ ICll <
~ .
Set
=
I~, I ~ ~. (- 4 ) O~
e~
for
t~
Then ve can w r i t e :
D
In the first to
integral
IpJ : J q J = ~ t ~ i n
t h e summation must be u n d e r s t o o d t o be r e s t r i c t e d the second to
From now on, i n t h e c o u r s e of t h i s c a s e where
J ~ l t" J ~ J ~ 2 ~ j
O -~ J ~ J ~ _ ~ t ) O ~ J ~ J ~ t .
p r o o f , we w r i t e
~pq
1 s t case=
CLpq
three cases.
- constant,
~
-= O .
We s u p p o s e , w i t h o u t any l o s s i n g e n e r a l i t y ,
that
A c ~
9 ). 0
By u s i n g ( 8 . 3 ) and ( 3 o 4 ) , Te h a v e f o r
~) ~'IY
_
"J"
-I'~
Z,
i,
IpI
,~ ~ H
P
cKe
~w
(A)
~.Kx
~KX
0.,
only in the
J~J:J~J=~Tt.
The p r o o f i s o b t a i n e d by c o n s i d e r i n g
~.:,~,...
dx.
lY :
K
0.,
C
( (~ ' I X ~ l ~ ~
-i04-
Then, by P a r s e v a l 0 s t h e o r e m , ( 1 4 . 1 ) , and t h e o r o 3 . 1 1 ,
b~.~ Q. - oo
§ ~o
In this
particular
X~
~ o II ~ Ii
z
P
K
q
C
C
I~/
2~
~.
ceme ( 1 4 . 2 ) h o l d s w i t h
2nd case8 Let
K
I I ~ II
~o : ~'o
,
and
~ o : O.
d i e m e t e r s p t ~ ~ o9 o (where ~ o i s a p r o p e r p o s t t i T e n u m b e r ) . spt ~
e,
. We havez
o..
A
I?
~ ~A~
+r215176
(~)D~D~ •
,,~
c~]
Dq~ D~ a~
Pq
-~ IA~-~ e,9
x~
e~l
P~
,~
sp~
i
i
9
(2) D u r i n g t h i s p r o o f and t h e p r o o f o f t h e nex~ t h e o r e m , denote positive constants"
~4 J ~
, ~3 J"
_
-105-
Let
diam. s p t ~ r ~
~o
,'~.a.x ~ x ~= ~ , u "
where
~
i s so s m a l l t h a t :
I ccM(• ~
r,s
Then we haves
-z
From t h i s
~~ ij .u- Ii ~ it
"_ (-~ )
B (%
~e,
"o- )
+~
II 't,-' I1,~ II 't,,- I1,~_.~
follows that:
~
)
:~ls, - 4
From lemma 4 . I I I , 3rd c a s e :
inequality
(14.2)
folloTs.
general case.
L e t us c o n s i d e r t h e f o l l o w i n g p a r t i t i o n
with for
4 h (•
Ix'-x~'l-~ g
Z P~l
~,,o and 0
of u n i t y i n
diem spt ~P (X)~ ~o , where
A : ~
~o
~2(~)-
6=I 6 is such that
one has-"
Io., ~.x~.~.-o,
-~o"
~
Pq
~e hate,-
-- T.
-
Z
c~
I/~h
P~
"
IA
~ D~
-106-
From the 2nd case considered above we have:
A Thus,
,~From t h i s
inequality,
we s e e t h a t
(14.2)
~lltYll
-~911"v'li Iluil
by u s i n g t h e same argument as i n t h e 2nd c a s e ,
follows.
Remark~ R e t r a c i n g t h e s t e p s of t h e p r o o f of ( 1 4 . 2 ) Te s e e t h a t and
~ o depend on Po ~ on t h e modulus of c o n t i n u i t y
u p p e r bound f o r
I(Zpq j
and I ~ t ~ i
possible to express explicitly 14o1Io and on
and on t h e domain A 9 and ~
U,nde,r t h e ,s,ame h ~ p o t h e s e s on
~ ~
~ ~(A),
~
of Cbpq ~ on an It is
i n t e r m s of t h e s e o b j e c t s . c~pq
( IpI =IcJl ~- ~ )
as in the previous theorem~ if (14.2) holds for an~r
then the operator
I
~.
is stron~lr elliptic in
Suppose the theorem is not true. 'l~en (14o2) holds and there exists a real
~
~ 0
and a complex
has
Ipl.,Iql : m~. <)
For
~ ~ N
~vt
(A)
~ ~ 0
such that for some X~
/A
one
~
-107-
~o I1~ I i z_ (.~) J~ ~ (14.4)
"4
Let
~o
be such t h a t for [•
~ ~o :
0
Pq Let
Ix-•176
I o be the ball
(14.5)
(14.6) Let ~ ( •
and lemma 4 . I I I ,
spt~rc
Anl o
)
then from (14.4)~
we deduce t h a t ;
I1~1i be a
P~
f C oo
r e a l v a l u e d f u n c t i o n v h i c h i s not i d e n t i c a l l y
zero and which has i t s support in
~
-- q C x )
e
A ~
Set:
?
~cith ~ r e a l . We have:
q'C~) i~"dx lpl --'~
A
x +
A
-108-
Because of ( 1 4 . 3 ) , disproves
(14.6).
t h e r i g h t hand s i d e of ( 1 4 . 6 ) i s
, such t h a t
Q
From ( 1 4 . 2 ) i t
~r
( 1 4 . 2 ) h o l d s f o r any
Lo = ~ § ( - 4 ) ~ o
the operator
This
Thus we have r e a c h e d an a b s u r d i t y .
L e t us now c o n s i d e r a n y s u b s p a c e ~1~ (~)
~ ( ~ ' ~ .
(~,~)
of H ~ ( A ) ~ ~ E ~.
L e t us c o n s i d e r
~ 9 The c o r r e s p o n d i n g b i l i n e a r
= B(~,~)+{-~)
folloTs that
containing
for
%r~
r
form i s :
~o C ~ , ~ ) o ,
J
II 11 Then t h e r e e x i s t s
one and o n l y one ~ E ~
such t h a t :
A f or any ~ G
~(A).
the solution
L e t us d e n o t e by ~ - - ~
is the Greenls transformation
introduced earlier.
do n o t want n o t t o c o n s i d e r any r e s u l t
arising
of ( 1 4 . 8 ) .
However we
from t h e r e g u l a r i s a t i o n
theory'. From (706) i t from
~(A)
from ~
into
follows that ~
G
i s a bounded l i n e a r
. Then, i f c o n s i d e r e d as a l i n e a r
(A) into i t s e l f ,
transformation operator
G is compact due to Rellich's l e n a .
We w i s h t o g i v e some more i n f o r m a t i o n c o n c e r n i n g t h e f u n c t i o n a l structure
of t h e o p e r a t o r
G
.
L e t us i n t r o d u c e t h e bounded l i n e a r T h i c h was a l r e a d y c o n s i d e r e d i n l e c t u r e
operator
T
of t h e s p a c e
7 , and f o r which Bo C ~ r ~ _ -
-109-
: (~Ttr)
.For any
V~
@w
i s c l o s e d and T o t h e r hand~ i f follows t h a t of
T
maps V w
We have f o r any ~ E V
be t h e embedding of adjoint operator, i.e.
~14o
~
H.
(A) into
an o p e r a t o r from
,~
~o
~
, and
~o
o
~ ~
into
o:
~o 9
is formally self-adjoint,
and so a r e
~o ( A )
Let
H~
and ~
.
i.e.
i n t h e d e f i n i t i o n of
denote i t s
-~,
twto
, is given by,
(3)
L ~ L ~
, then
"7 i s h e r m i t i a n
I t i s worthwhile t o remark t h a t
a k i n d of Greents o p e r a t o r f o r a d i f f e r e n t i a l
constant coefficients,
~o
such t h a t f o r
, t h o u g h t as an o p e r a t o r of ~ ' ( A )
G-
itself
~ ' ~ be t h e i n v e r s e o p e r a t o r
: (~-17)--(~t,%r)..
~14,~,(
and
the operator
L
Thus T ( ~ / ~ ) : ~ . Let
, t h e n , from (14o7)~ i t
i s bounded because of ( 7 . 8 ) . So i s t h e a d j o i n t o p e r a t o r
of ~ .
If
i n a o n e - t o - o n e f ~ h i o n o n t o T ( V ) . On t h e
is orthogonal to T(V)
"~g/~O.
;
W , inequality (7.8) is satisfied. Hence T ( V )
~ ~n o
is
o p e r a t o r with
whose l e a d i n g p a r t , a f t e r i n e s s e n t i a l changes ( ) )~
, i s t h e i t e r a t e d Laplace o p e r a t o r
A ~.
We want now to consider the eigenvalue problem:
(14.9)
5 ~ ( ~ , ~ ) - (-4)
~
~
dx-
o
When t h e r e s u l t s of t h e r e g u l a r i s a t i o n t h e o r y can be a p p l i e d , t h e n (14.9) c o r r e s p o n d s t o t h e e i g e n v a l u e problems f o r t h e d i f f e r e n t i a l operator
L. ~
- (-4)"")~
~.
- o
~. ~. M ( v ; ,
o
( ~ ) I t , ~ s t be pointed out t h a t when ~'e ,,,'rite L "- L ~) we mean i , e . ~(~,~r) i s h e r m i t i a n (see a l s o p a g . 7 6 ) .
:(-i) P~
Ipl+lql
~,
-ii0-
I n any c a s e ,
(14.9) i s e q u i v a l e n t to the f o l l o w i n g e i g e n v a l u e problem
in the space
~ ~(A):
(14.10)
(-4)
Suppose t h a t
L
X
: o,
is self-adjoint.
Then from t h e H i l b e r t s p a c e t h e o r y
of e i g e n v a l u e p r o b l e m s f o r compact h e r m i t i a n o p e r a t o r s i t there exists
follows that
a c o u n t a b l e s e t of r e a l e i g e n v a l u e s f o r problem ( 1 4 . 9 ) .
These e i g e n v a l u e s a r e p o s i t i v e o p e r a t o r ~ The c o n s t a n t
~o
since the operator
G
is a positive
i s a l o w e r bound f o r t h e e i g e n v a l u e s of
problem ( 1 4 . 9 ) . In the ne~
l e c t u r e we s k a l l d e v e l o p a t h e o r y f o r c o m p u t i n g lower
and u p p e r bounds f o r t h e e i g e n v a l u e s of problems which i n c l u d e , particular
as a
case, problem (14.10)~
Remark.
The way as 'we d e r i v e d t h e s t r u c t u r e
transformation
G
problems~ In f a c t ,
s u g g e s t s a more a b s t r a c t the differential
structure
of t h e Green's
approach to e l l i p t i c of t h e o p e r a t o r
only needed in order to consider the integro-differential
~-
form
is
Bo ( ~ r ) .
]1owever, what i s o n l y n e e d e d i n t h e e x i s t e n c e t h e o r y i s t h a t
~o(~r)
be c o n t i n u o u s o v e r
w i t h 7"
linear
V X ~r , i . e .
that
~D ( ~ , ~ r ) : ( t ~ T ~ r )
and b o u n d e d . The q u e s t i o n n a t u r a l l y
general bilinear larisation
forms such t h a t
t h e o r y can s t i l l
arises
of c o n s i d e r i n g more
( 1 4 . 7 ) h o l d s and s u c h t h a t t h e r e g u -
be c a r r i e d o u t .
For a s i m i l a r a p p r o a c h i n t h e t h e o r y of harmonic d i f f e r e n t i a l forms on a R i e m a n n i a n compact m a n i f o l d , s e e [ 2 J ~
-11i-
Bibliography
[i]
of
I~. ~ 0 ~ S Z A J ~ - On c o e r c i v e
Lecture
14.
integro-differential
Conference
on PDE, U n i v .
quadrat.ic
of Kansas 1954,
forms -
Techo
Rep. No 14. G. FICHL~A - T e o r i a
assiomatica
delle
forme differenziali
armo-
niche~ Rend. di ~latem.~ Roma vol.20~ 1961.
[3]
Lo G~EDING- D i r i c h l e t t s differential
problem for equation~
[4]
L . NIR~,~-I~]~G- s e e
[4] of lecture
4.
[5 ]
L . NIRENBL~tG- s e e [ 4 ] o f l e c t u r e
8.
linear Bath.
elliptic
partial
Scand. vol.I~
1953.
-112-
Lecture
15
Problems . The
Raylei~h-Ritz
Eigenv_alue
method_.
We assume t h a t t h e r e a d e r i s a c q u a i n t e d w i t h t h e e l e m e n t a r y t h e o r y of h e r m i t i a n compact ( i . e . space.
completely continuous) operators in a Hilbert
HoTever we s h a l l l i s t
we s h a l l n e e d i n t h e s e q u e l .
h e r e some d e f i n i t i o n s
and t h e o r e m s which
For t h e p r o o f s of t h e t h e o r e m s we r e f e r t o
[2], [3], [4]. We s h a l l always c o n s i d e r o p e r a t o r s which a r e l i n e a r i n t h e whole o f t h e complex H i l b e r t s p a c e 5 t o be h e r m i t i a n of
S
if (T~,~):
.
and a r e d e f i n e d
An o p e r a t o r
T
( ~ , T l r ) f o r any p a i r o f v e c t o r s
is said
~t
and %r
.
15.I.An~ h e r m i t i a n o p e r a t o r i s bounded. The o p e r a t o r 15.II.
is positive
A (linear)
We w r i t e
f o r any
~
S,
posi.tive if it is positive
and ( T ~ ) - - 0
~ = Oo 1~0
sequence of p o s i t i v e
f o r any p o s i t i v e
tive eigenvalue for
compact o p e r a t o r .
A
e i g e n v a l u e s c o n v e r g i n g towards z e r o .
e i g e n v a l u e has f i n i t e
(geometric) multiplicity~ T
~ the subspace of
of t h e homogeneous e q u a t i o n
dimensional 9
(T~j ~)~0
compact ope_r_at_or i s bounded.
i s s a i d t o be s t r i c t l y
only holds for
solutions
if
A (linear_)_posi_tive operator is hermitian.
15.III. T
T
~
i.e.~
if
PC0 has a Each p o s i t i v e
~
is a posi-
composed o f a l l t h e
T~4, - ~ ~ : 0
is finite
-113-
15.IV.
A
tCO
T
is strictly
pos.i.tive i f
and o n l y ,if
~ : 0
,is n o t an , e i g e n v a l u e f o r T . Let:
be t h e s e q u e n c e o f a l l many t i m e s as i t s
t h e e i g e n v a l u e s of t h e 1~0
multiplicity.
of e i g e n v a l u e s o f a 1~0, i t
each r e p e a t e d as
From now on when we m e n t i o n t h e s e q u e n c e
shall
be u n d e r s t o o d t h a t t h i s
ordered according to the criterion
bt'.i
~-
,. ~ . 1 , }
j u s t now s p e c i f i e d .
9 " ,
t'Ck
~ ""
sequence
is
Let:
"
be a corresponding sequence of eigenvectors, i.e. T ~ K- ~ K ~K : o . ~'e may assume t h a t 15.V.
~~
~
The o p e r a ~ o r
i s an o r t h o n o r m a l s y s t e m . ~
admits t h e followi'n~ " s p e c t r a l
decompo-
si ti on""
(15.1)
Tu. - 7 , F,, ( ~ " ~ ' )
~'K "
K
15.vl. if
and o n l y i f t h e tCO It
S
T
} is
i s a c o m p l e t e system in t h e sp ce
strictly
positive.
f o l l o w s t h a t a s t r i c U y p o s i t i v e compact o p e r a t o r can e x i s t
o n l y when S on
he. system
is separable.
and~ moreover~ t h a t 15.VII.
Is
~K~
~.eal n ~ b e r s c o n ~ e . ~
From now on we s h a l l S
has i n f i n i t e
assume t h i s h y p o t h e s i s
dimension.
i s any n o n - i n c r e a s i n g s e q u e n c e of n o n - n e g a t i v e
towards -ero and t ~K } is any o r t h o ~ o ~ l system,
then the operator, .defined by 4.15.,I) is .a ICO. having ~he values and the
L~K
as ei.~envectors.
The value
~ =0
~z
as ellen-
.i.s an ellen-
-114-
v a l u e f o r T - even though i t
i s not i n c l u d e d i n the sequence { ~ l - i f
and o n l y i f t h e System of e i g e n v a l u e s c o r r e s p o n d i n g t o a l l p o s i t i v e
eigen-
values is not complete. The f o l l o w i n g 1 ~
i s of f u n d a m e n t a l i n t e r e s t
in the theory of
e i g e n v a l u e s . I t e x p r e s s e s t h e s o - c a l l e d mini-max p r o p e r t y f o r e i g e n v a l u e s . 15~
Let
( ~ ~_ ~ ) be
~ ,---
( T ~ , ~ ) on t h e u n i t s p h e r e
~ e ~-4
(~)
~
.vary a r b i t r a r i l y If
~
:~
be t h e above c o n s i d e r e d 1~0.
~ - 4 v e c t o r s of t h e H i l b e r t s p a c e
t h e maximum of complement
T
o_ff ~v~, 4 , where
.
The m i n i ~
i n t h e space
,
~ "
~ ~-4
~
Let
~...~ ~rK. 4
~ . Denote by M ( ~ , . . . ,
~.~ )
II ~ II : 4 of t h e o r t h o g o n a l
~-4
is the linear variety
of N ( ~
~
spanned
)when ~ , - . - ,
is the eigenvalue
, then
~
~
of T
.
H(~,
t<-4
"'"
9
K-4
K
The sequence of operators ~T~ t is said to converge weakly (strongly, u n i f o r m l y ) t o t h e o p e r a t o r T whenever-
/ W. - - ~
oO
-~
II T
,~,~
ilT-T
a - T~
11 : o
f o r -.-y
~ ~ S
il : o ] .
~ t - - ~ OO
In the latter
case~ t h e norm must be u n d e r s t o o d t o be t h e norm i n t h e
space of operators. Therefore :
T
and
i
a r e nov supposed bounded.
z
(~) I n t h e c a s e
(~)
K = 4 , ve assume
~ O~r
~ 5. K-4
C h a r a c t e r i z a t i o n of a l l p o s s i b l e c h o i c e s of ~r~ ~ . . . ,~.-4 such t h a t M (~4)-'- , ~ _ 4 ) : ~K has been done by W e i n s t e i n [ 5 ] .
-115-
For Y e a ~ s t r o n g ~ u n i f o r m c o n v e r g e n c e of o p e r a t o r s we s h a l l respectively
t h e symbols:
T~ 15olX. to t h e PCO
use
-T
Le....~_~ ~ "
T
;T
T~,
~T
be a s e q u e n c e of PC0ts. c.onvergin~ uniforml~r
T
be t h e s e q u e n c e of e i g e n v a l u e s of
I
Y~e have:
uniforml~ with respect to
k 9
The p r o o f i s a c o n s e q u e n c e of t h e i n t e r e s t i n g
I!~ K-pK I -'- I I T - T which i s proven If
t h e n f o r any g i v e n v e c t o r of t h e s u b s p a c e
~r
is called
the
there exists
~
~rojector~
A projector
onto i t s
is hermitian Suppose
subvariety
for every
V
o Let ~ ~k]
projection
from
ii)
is finite
p
M.
V~ ~ V
S
)7
(projection
as t h e one s a t i s f y i n g o
The v e c t o r 9
on ~/r i s c a l l e d
is characterised ;
of
one and o n l y one v e c t o r
( o r t h o g o n a l ) p r o , ~ e c t i o n of t~ on ~ r
which maps
for V
t~ E 5
closed linear
This v e c t o r i s c h a r a c t e r i s e d (~r~ ~x/) : ( t ~ V g )
P
(i.e.
which has minimum d i s t a n c e
equations
i)
II,
as a c o n s e q u e n c e of t h e mini-max p r i n c i p l e .
~/~ i s a s u b s p a c e
theorem).
inequality:
the qY-= P t ~
The o p e r a t o r
P
an ( o r t h o g o n a l )
by t h e f o l l o w i n g two p r o p e r t i e s - "
is idempotent, i.e~
d i m e n s i o n a l and ~
)....~
P ~ - "~, is a basis
be t h e i n v e r s e m a t r i x o f t h e Gramian m a t r i x t ~ r ~ j lY~
( ~,~- ~,.-.,~ ), i . . . ~
(~,u~):
g~. Since ( ~ , ~ k ) = ( ~
,~ )
-116-
~,~
: ~~
or 5
The projector
"
onto V
has t h e f o l l o w i n g
r e p r es e n t a t i on:
p~
(15.2)
- ~
( ~, v~ ) ~ .
If the basis is orthonormal, then (15.3) If
~
5
projector (which projects will be called the If
, and P
i s any s u b s p a c e of
T
is
onto ~r ), t h e n t h e operator
~r:c.ompen.ent o.f T
a 1~0~ t h e n
is the corresponding
PTP
PT P
*
is also a I~0.
The f o l l o w i n g theorem h o l d s : 15.X.
Let
to the operator linear to
p
(which i s n e c e s s a r i l y
a projector).
Let
]-
.be a
compac, t o p e r a t o r . . T h , en t h e sequence t P ~ ' T ? w t c o n v e r g e s u n i f o r m l ~
PT P, If
if
} be a sequence of project,ors, c o n v e r g i n g s t r o n g l y
~ ~
I4
T.~- T~
and
T~
a r e l i n e a r h e r m i t i a n o p e r a t o r we s a y t h a t T 4 > T~
is positive . I_~f TI
15.~.
an.d T &
are PCO and
L" ~
values
of
[--~
and
T, ~ ~-~
, then we have:
K
I~ 9
This t h e o r e m i s a c o n s e q u e n c e of t h e mini-max p r i n c i p l e . 15.XIIo
Let
T
be a 1~0 w i t h . e i g e n v a l u e s
t~k
t
' and l e t
~r
-117-
be a subspace o f V-component
S
of
.
T
If
{ ~K } i s t h e sequence of ei,~envalues o f t h e
, then
~
~ ~K
( K: 4,2,-.. ) .
This t h e o r e m a l s o f o l l o w s from t h e m i n i - m a x p r i n c i p l e . Note t h a t t h e o r e m 15.XI1 i s n o t a p a r t i c u l a r in general~ it
c a s e of 15.XI s i n e e ~
"T > ~ [ P ~
is not true that
We a r e n o t i n a p o s i t i o n t o f o r m u l a t e t h e R a y l e i g h - P d t z method f o r t h e a p p r o x i m a t i o n o f e i g e n v a l u e s o f a 1~0 Let
~%r~ ~
in the space
~r
.
.
~
L e t us d e n o t e by
..., lY
o
-~r
We d e n o t e by
the ~m
The R a y l e i g h - R i t z method c o n s i s t s 9
.
t~)
~4t~) , -- ,~K , " - of
~4 , ' " ,
.
be a c o m p l e t e s y s t e m o f l i n e a r l y
~
. p a n n e d by
~-
~K)'-
of
~ T
~ ~ .
independent vectors
~t-dimensional the pro~eetor of
subspace S
onto
in considering the eigenvalues
as a p p r o x i m a t i o n s o f t h e e i g e n v a l u e s We s h a l l p r o v e t h a t :
15oXIII 1)The e i K e n v a l u e s o f
P,,~ T" ~,,A, a r e t h e r o o t s o f t h e
f o l . l o w i n g de t e r m i n a n t a l e ~ u a t i o n :
(15.4) p l u s t h e ei~envalu,e
~ = 0 ;
ii) The sequence ~ i.eo ~K
Z
~(
(~)
f o r any
does n o t d e c r e a s e when ~
~,
inc reases
;
uni,f,ormly T i t h r e s p e c t %o ~< 9 I% i s i m m e d i a t e l y s e e n t h a t t h e o p e r a t o r ~ - [
~)~ has t h e e i g e n v a l u e
-118-
I.=
and t h a t t h e c o r r e s p o n d i n g e i g e n s e t
0
of t h e homogeneous e q u a t i o n t h e subspace
~ ~ ~
.
P
TP
U,-pU, = 0
(subspace of t h e s o l u t i o n s for
p- 0
) contains
The remaining e i g e n v a l u e s and e i g e n v e c t o r s are
o b t a i n e d tteough t h e e q u a t i o n s :
(15.5)
P~ T P,,,, u. - p, P,, u. : o
, u.: 'p.,, u..
Due to ( 1 5 . 9 ) , e q u a t i o n ( 1 5 . 5 I} can
be w r i t t e n i n t h e form-
(15.8)
, '~'~, )- F d i, K (u"V"I~):
ol
o~ . (~., ",,'% ) (T'~j
0
(k: 4,...,~). Since
d e , t t (~ h~
(15,7)
J~
0
, setting
(IA,'I.~) "-. C~
K~,j ( T ~ j ,'t,"~ )c;, - p c k : 0
~uation
, we o b t a i n ,
( k: ,(,...,,~.).
(15.7) ana (,15.5) a r e e q u i v a l e n t .
PUt
~"i
.=c~jG~.Then C~-(~ ,~)~i.Equation ( 1 5 o 7 ) i s equiTalen~
to t h e following=
(15.8)
(Tv-] ~v"k )~j - ~ (v-j ,~)~j
I t follows t h a t
~
:
O.
i s an e i g e n v a l u e f o r (15.5) i f and only i f i s a
r o o t of e q u a t i o n ( 1 5 . 4 ) .
If
~4 ) ' " ~
~
i s an e i g a n s o l u t i o n f o r
t h e a l g e b r a i c system (15.8) c o r r e s p o n d i n g t o t h e e i g e n v a l u e
p
,
-119-
then
t~ = ~ J l/~J
of t h e e i g e n v a l u e -~(~ of
) ~rj)~olf ~
as a n
~
i s an e i g e n s o l u t i o n ~
for (15.5).
of ( 1 5 . 5 ) i s t h e n u l l i t y
~ ~ O
, then this
e i g e n v a l u e of
The m u l t i p l i c i t y
of t h e m a t r i x
nullity
is also the multiplicity
P TP~ In fact, P~ r ~
S t a t . e n t i i ) follo.~ fro. theore~ 1 ~ . ~ I .
is the
V-component of
~
P
T P
converges strongly to the identity
Biblio~raph~
[1"]
,ince
to the oo~pleteness of the s y s t e .
15.X and 1 5 . I X , s t a t e m e n t i i i )
~T~v) ~i )-
operator.
P P ~ ~}
- P.
p.-
lm
,the projector p ~
Therefore,
from t h e o r e m s
follows.
of
Lecture
15
N. ARONSZAJN - The R a y l e ~ h - R i t z and t h e W e i n s t e i n Methods f o r a p p r o x i m a t i o n of E i g e n v a l u e s -
(1. Operators in Hilbert
Space) - D e p t . of Math. Oklahoma A g r i c u l t u r a l Mechanical College, Stillwater
and
O k l a h o m a - T e c h . Rep.
Ne 1~ 1949. [2]
G~ FICII~tA -
see [ 1 ] of
[31
S . t t . GOULD- V a r i a t i o n a l
lecture
Methods i n Ei.~envalu%
of Toronto P r e s s , - B. S z . NAGY -
1.
[4]
F. RItZ
[51
A. ~I~INSTKIN - The i n t e r m e d i a t e
Toronto,
see [5]
1957.
of l e c t u r e
2.
Problems and t h e biaximum-Minimum
T h e o r ~ of E i ~ e n v a l u e s - J o u r . I n d i a n a UniT. v o l .
Problems - U n i T .
12, 1963.
of Math. and Mech.
-120-
Lectur_e
The
16
Weins.tein .- Aronsza~n
method.
The R a y l e g h - K i t z method p r o v i d e s a s t r o n g t o o l f o r t h e l o w e r a p p r o x i m a t i o n of t h e e i g e n v a l u e s o f a 1~0.
Much more & i f f i c u l t
is the
problem c o n s i s t i n g i n t h e u p p e r a p p r o x i m a t i o n of t h e s e e i g e n v a l u e s , i . e. the construction eigenvalue
~K
of a s e q u e n c e c o n v e r g i n g by d e c r e a s i n g t o e v e r y g i v e n of
T
.
A method f o r s o l v i n g t h i s problem was p r o p o s e d by A . W e i n s t e i n . His t h e o r y ha~ by d i f f e r e n t
been e x t e n d e d by A r o n s z a j n and a p p l i e d t o s e v e r a l problems
authors.
Weinsteints idea is the following. To
, whose e i g e n v a l u e s
~ ~K t
a r e known, and which i s such t h a t constructs i)
ii)
a sequence If
to
he c o n s i d e r a ~CO o p e r a t o r
and c o r r e s p o n d i n g e i g e n s o l u t i o n s ~
> ~
f o r any
~
t~X/K
. Then he
of Pc01s such t h a t z
~ a r e t h e e i g e n v a l u e s of
The e i g e ~ r a l u e s o f
e i g e n v a l u e s of
If
~~
T.~
First
~
T~
, t h e n ~-~ ~ ~-~
>.
can be computed i n terms o f t h e
TO 9
~ T~ t c o n v e r g e s u n i f o r m l y t o
K ( t h e o r . 1 5 . I X ) by d e c r e a s i n g .
T
,
then
~-(z)
c onverges
(4)
We u s e t h e name " d e c r e a s i n g s e q u e n c e " f o r a s e q u e n c e
6
(~)
such t h a t
-121-
The o r i g i n a l
method of W e i n s t e i n , which was c o n c e r n e d w i t h t h e
e i g e n v a l u e s problems a r i s i n g
T
as o p e r a t o r V
in the
a I~CO which was
the
b e i n g a g i v e n s u b s p a c e of
which p r o j e c t s 5 E9 V where
~
onto
t h e o r y of t h i n p l a t e s ,
5
V ~
~0-~
P~t
is the projector
The above s t a t e d 15.XII.
-component of a n o t h e r PC0 ~-~ /
and by
t Lr~ T~
for
T~
the projector
a complete system in
a r e g i v e n by ( I - P . ~ ) T o ( I - P ~ ) ,
on t h e s u b s p a c e spanned by
condition i)
P
Then, d e n o t i n g by
, the "intermediate ~ operators
considered
~r4 ) " "
)~r
.
i s t h e n a c o n s e q u e n c e of t h e o r o
Convergence f o l l o w s from 15~
Condition ii)
w i l l he proved
later. A r o n s z a j n p r o p o s e s t o c o n s i d e r as To > ~- ( f o l l o w i n g i n t h i s he c o n s t r u c t s which s a t i s f i e s
a sequence
respect {
T,,t~,}
To
any o p e r a t o r such t h a t
a s u g g e s t i o n of H~ W e y l ) , and t h e n such t h a t
To >
T,,w
> -~+4
) ~-
condition ii).
I n o r d e r t o i n c l u d e i n our t r e a t m e n t b o t h t h e methods of W e i n s t e i n and of A r o n s z a j n , i t However
we must f i r s t
i s c o n v e n i e n t t o g i v e some g e n e r a l t h e o r e m s .
consider the resolvent
operator for the following
e q u a t i on--
(16.1) where
Tu.- F~, T 1)
: v"
i s a I ~ 0 . L e t us d i s t i n g u i s h F
i:s n o t an e i g e n v a l u e f o r
(1G.1) h a s one and o n l y one s o l u t i o n
(16. z)
(:F ~ o )
u. ~. R v : -
Y',
two c a s e s . T
9
In this
case equation
g i v e n by:
( ~ , ~.,, ) u.. - v
.
-122-
This r e s u l t
follows easily
2)
~
and o n l y i f
i s an e i ~ e n v a l u e f o r (~r/~)
to the eigenvalue of ( | ~ . ~ )
from ( 1 5 . 1 ) ~
_- ~) , where ~
9 If this
T
~
9
Then ( ] 6 . 1 ) h a s s o l u t i o n s
if
i s any e i g e n v e c t o r c or r e s pondi ng
condition
is satisfied,
then every solution
i s ~ ' T e n by
(:G.3)
where
~/~ (~)
means t h a t
all
t h e terms c o r r e s p o n d i n g t o i n d e c e s
which
~K : ~ were s u p p r e s s e d from t h e summation.
The
a r e a c o m p l e t e s y s t e m of e i g e m r e c t o r s i n t h e e i g e ~ e t the eigenvalue also easily
~
.
The
C~
are arbitrary
k
t~ (4) ~ . , . ~
for
t4,(~)
corresponding to
constants.
This result
is
o b t a i n e d by u s i n g ( 1 5 . 1 ) .
The f o l l o w i n g t h e o r e m c o n s t i t u t e s
the theoretical
f o u n d a t i o n of
W e i n s t e i n t s method. 16.1.
Let
of PCO's s u c h t h a t :
ii)
~ T. ~
v,,alue
To
..and T
i) :
= T o - D ~ where
oonTerges ~ i f o ~ X ~
(~) -o-f ~ K
~-
be two I ~ 0 ' s .
Let ~-~
D~
be .a s e q u e n c e
is a degenerate operator, )
_to the operator T
9 Then ~ y ei~en-
can be computed i n t e r m s of t h e eig~enTalues
and of t h e e i g e n s o l u ~ i o n s o f
~o
and
e~ _~ oo
f ~21W e say that ~ dimensi onal 9
is a degenerate operator if its
range is finite
-123-
The o n l y t h i n g . e h a v e t o p r o v e i s t h a t
if
T~
i s ~n h e r m i t i a n d e g e n e r a t e o p e r a t o r ~ t h e n ~ g i v e n t h a t
i s a 1~0 and the eigenvalues
{ ~ ~ ~ of To and the corresponding eigenso~utions ~ ~ it
is possible
t o compute t h e e i g e n v a l u e s of
L e t us s u p p o s e t h a t ~4 ~ . . . /
~
t h e r a n g e of ~
be a b a s i s i n t h i s
e~ists a n o n - ~ i n ~ l a r ~ •
~o
i s ~v~ - d i m e n s i o n a l .
range. It
he~tian
~-
} are ~ o ~ , Let
i s easy to prove t h a t
matri~ ~ d ~
there
such that
admits the following representation:
(~)
We ~dsh t o f i n d t h e n o n - z e r o e i g e n v a l u e s of t h e f o l l o w i n g homogeneous e q u a t i on-"
(i~.4) L e t us f i r s t
suppose that
~
Then , by u s i n g ( 1 ~ . ~ ) , . e s e e t h a t
O
i s n o t an e i g e n v a l u e f o r
e q u a t i o n (1G.4) i s
To 9
equivalent to
the following equations:
(l~.s)
(16.e.,)
cl,,.: ( ~ , v ~
1.
(~s) Let ~)~ ~C~(~)~'j. Wehave(D~v~)=cjCu~)(~Yd~r~).ThenC)~)-O(~](D~%V~)= It
f o l l o w s t h a t Dt~
is hermitian,
so i s
:dLj
(t~,~)~)
t d~i 1.
.here
dLj :o(~j
fh~
9 Since D
-124-
By i n s e r t i n g
(16.5)
into
(16.6)
(R "o-. v'k ) ol
(16:)
It
is
obvious that
~
t h e n we c a n T r i t e
eigenvalue
(16.7)
6
that for
To-D
lar
by t h a t
to the spectrum of
~-o )
i s the i n v e r s e
it
of {4
is
7 0
a solution
) is an
of the equation.-
~r (~)
author
is the Weinstein
in connection
determinant,~hich
was
with the above mentioned particu-
case. L e t us now s u p p o s e t h a t
d e n o t e by
t~
corresponding defined
(16.9)
j -to
j 6-.
by ( 1 6 . 6 )
,JjJ
form:
to the spectrum of
and o n l y i f
n~tri,
ol~t { ( R
-
The d e t e r m i n a n t introduced
if
: o.
only i f the algebraic system ( l ~ n )
in the equivalent
(not belonging
W (~)
(16.8)
if :d
solutions. If {C~i~ I
has non t r i v i a l
follows
c,- c
(not belonging
is a. eigenvalue for T o - D
It
we g e t
6-~
0
is
an e i g e n v a l u e
for
a complete system of eigenvectors I f b~ s a t i s f i e s
must satisfy
(16.4),
the constants
T o 9 We of C~
the equations:
d ~i (~j ' ~ (Pj) c~ = o
p: ~)-..,~.
To
,
-125-
t~oreover
U+ m u s t be g i v e n by
(1(;.lO)
~ :
see
(16.3)]
:
d. ~i c ; R~. ~; + Y_., o. u, p.4
P
Inserting (16.1o) i r t o (IS.S) we get-
(
It
follows
)
that
if
the
:o
eigenvalue
of To
tl, en t h e i,omogeneous s y s t e m ( 1 6 . 1 1 ) , C4 )
. .),
Conversely, easily
(16.11),
if
seen-
It
follows
if
and o n l y i f
(16.12)
~) 0,~
C
the
that
~...
~ O. 4
06.9)
(16.9)
is
an e i g e n v a l u e
h a s non t r i v i a l
for
solutions
,
has non t r i v i a l
solutions,
t h e n - as i s
eigenvalue
~
of
T o is
an e i g e n v a l u e
for
an e i g e n v a l u e
~
of
T o is
~n e i g e n v a l u e
of To-~
it
is
d~t
a solution
(16.4))
"1-~-2,
of the equation:
,
:0.
0 J
The m e a n i n g o f t h e } is obvious.
(~
6)
~ (.Tvt+5)
matrix
between the brackets
-126-
In conclusion, first
i n o r d e r t o compute t h e e i g e n v a l u e s o f
to solve equation (16.8).
Ro o ts o f t h i s
spectrum of T o a r e e i g e n y a l u e s f o r To- D
9 Then we s o l v e e q u a t i o n ( 1 6 . 1 2 ) .
e q u a t i o n which a r e e i g e n y a l u e s f o r
for
It
9
is easily
seen that
T o - ~ i s g i v e n by t h e n u l l i t y
immediate that the original
T=
operator
this
of the eigenvalue of
proved,it
T~ i s s a t i s f i e d
follows that
if
condition i8 satisfied
To-T~ i s
condition ii)
degenerate.
for the intermediate
It
for is
operators
of
Weinstein method. Sinces
( I - P ~ ) T o (I-P~.) : To - (P~,To+ ToP~- P,,.~ToR~),
The a b i l i t y
t o a p p l y t h e o r e m 16.1 r e s t s
i m a t i n g t h e compact o p e r a t o r i s known t h a t
I f we f u r t h e r
this
To-T by a
degenerate. on t h e p o s s i b i l i t y
many ways i n a H i l b e r t
t h a t t h e a p p r o x i m a t i n g ~ e q u e n c e be s u c h t h a t
is satisfied,
w h i c h h a v e b e e n p r o p o s e d by d i f f e r e n t
a g e n e r a l p r o c e d u r e which i s p a r t i c u l a r l y c o n n e c t e d w i t h BVPIs f o r e l l i p t i c
the intermediate
authors.
for
T~
suitable
operators
L a t e r we s h a l l
give
for eigenvalue problems
systenm.
t o show how t o overcome one d i f f i c u l t y
applying Weinstein's
space.
t h e n we c a n a p p l y W e i n s t e i n t s m e t h o d .
T h e r e a r e s e v e r a l methods f o r c o n s t r u c t i n g
We w i s h f i r s t
of approx-
sequence of d e g e n e r a t e o p e r a t o r s .
c a n be done i n i n f i n i t e l y
require
the condition i)
T~
, are also eigenyalues
the multiplicity
the operator ~ t : P-~ To § To P~-PTo P~is
It
To
o f t h e m ~ t r i x ( 1 6 . 8 ) o r (16018) r e s p e c t i v e l y .
From t h e t h e o r e m we h a v e j u s t the intermediate
, ve h a v e
e q u a t i o n w h ich a r e n o t i n t h e
Root s o f t h i s To-D
To-D
which a r i s e s
in
method.
We have s e e n t h a t
the eigenvaluee
c a n be found by s o l v i n g e q u a t i o n s
(16.8)
of the and
intermediate (16.12).
operators
This p r o b l e m
-127-
a p p e a r s t o be a v e r y d i f f i c u l t consists
one, in the general case, since it
i n d e t e r m i n i n g t h e z e r o s o f meromorphic f u n c t i o n s .
TTo p r o c e d u r e s have been p r o p o s e d i n o r d e r t o overcome t h i s The f i r s t
difficulty.
of t h e s e was d e v e l o p e d by W e i n s t e i n h i m s e l f and, l a t e r ,
Bazley [3].
by
I t i s c a l l e d t h e method of s p e c i a l c h o i c e s . The s e c o n d i s
due t o W e i n b e r g e r [ 7 ] and i s known as t h e method of t r u n c a t i o n . The s p e c i a l c h o i c e s c o n s i s t operators
To-~
( r e omit t h e i n d e x ~
t h a t t h e r a n g e "V" o f f o r any
j
simply in constructing the intermediate
D
from ~
i s s p a n n e d by v e c t o r s
) i n such a way
~r~ ,..., ~
, t h e s c a l a r p r o d u c t (~/K, ~ri ) i s d i f f e r e n t
for a finite
s e t o f v a l u e s of t h e i n d e x
instance,
satisfied
operator
To (Ba~ey),
~ . (4)
when ~V" has as a b a s i s o r Then ~/
has
~
from z e r o o n l y
This c o n d i t i o n i s ,
cm a
such t h a t
for
e i g e n v e c t o r s of t h e
basis
~
vectors belonging
t o a s y s t e m which t o g e t h e r w i t h t h e s y s t e m o f e i g e n v e c t o r s
t ~
} of To
forms a p a i r of b i o r t h o g o n a l s N s t e m s . I f t h e above c o n d i t i o n i s s a t i s f i e d , it
t h e n , from ( 1 6 . 2 ) and ( 1 6 . 3 )
f o l l o w s r e a d i l y t h a t s o l v i n g e q u a t i o n s ( 1 6 . 8 ) and ( 1 6 . 1 2 ) c o n s i s t s
i n f i n d i n g z e r o s of p o l y n o m i a l s . The method of t r u n c a t i o n c o n s i s t s
in replacing the operator
~-o
by t h e t r u n c a t e d o p e r a t o r
T
(4)
{~
,,,,,
Z. %
K"4
t is the system of eigenvectors
,~1,.t. 4
[ ,.-f.
of T O .
K.-,I
].
-128-
We d e n o t e - as u s u a l - by ~ ~ o p e r a t o r s we t a k e
~ the e i ge nva l ue s of
7 - ( ~ ) : T C~) D
The s o l u t i o n
-@'~
: "L/ i s
if
does n o t b e l o n g t o t h e s p e c t r u m of
~
]-o ~ As i n t e r m e d i a t e
of t h e e q u a t i o n
i
(~)
g i v e n by-
In the case
(~ " ~K ( ~ : ~ ~J " ' , ~ )
~(~).
t h e most g e n e r a l s o l u t i o n
of the
above e q u a t i o n i s : .4-
J
where
7.
h a s t h e u s u a l meaning and t ~
system of e i g e n v e c t o r s
( ~- ~ / ' ' ' ' ~ ) i s a c o m p l e t e
of ~-~ c o r r e s p o n d i n g t o t h e e i g e n v a l u e
(~ .
By u s i n g t h e same arguments as i n t h e p r o o f of t h e o r e m 1 6 . 1 , i t e a s y t o s e e t h a t t h e e i g e n T a l u e s of ~-, t ~ )
~
satisfying
is
the condition
~t
~ (%If -~ ii)
a r e o b t a i n e d b~ 8 o l T i n g a l g e b r a i c .~-~(~'~) greater
of t h e o r .
_~ ( ~ g ( ~ " ~ ) ~ ' " than
~4
16.I is satisfied,
e (~ p
, it
equations
a r e t h e e i g e n v a l u e s of
i8 easy to prove that
~-~)-
if condition
-129-
Bibliography
of
Lecture
16
[11
N~ARONSZAJN - see [I] of lecture 15.
[2]
N~Alt0NSZAJN - Approximation me tho.ds for ei~envalues continuous
symmetric
of completely
operators - Prec. Symp. Spectral
Theory and Diff. Problems - Stillwater,
[3]
N.W.BAZLLq/
- Lower Bounds vol.10,
[4]
N.W.BAZLL~L-D.W.FOXProblems
for Eigenvalues
0kla. 1951.
- Journ. ~lath.& Mech.
1961.
Truncations
in the Eethod of Intermediate
for Lower Bounds to F~igenvalues - Journ.
of Research of the N.B.S. - Math. and Math.Phy. vol.
[5]
G.FICtiEP~
-
[6]
S.tI.GOULD
-
[7]
H.F.WEIN~ERGER
see
see
56 B, 1 9 6 1 . [1]
[3]
of lecture
1.
of lecture
15.
- A theor~ of lower bounds for e i~envalues
Tech. Note BN-183
-
(Inst. Fluid Dynam. & Appl. Math.
Univ. of Maryland) 91959.
Is]
A.WEINSTEIN - E t u d e s ~artielles
des spectres - M4morial
des d~uations aux d~riv~es des Sci.
Mathem. N0.88~
1937.
-130-
Lecture
Construction_
of
17
t_he
intermediate
o~erators.
The W e i n s t e i n - A r o n s z a j n method d e s c r i b e d i n t h e p r e v i o u s l e c t u r e requires
the construction
Hbase o p e r a t o r " operators
of " i n t e r m e d i a t e
T O and t h e g i v e n o p e r a t o r
are required to satisfy
( ~ - k l "= eigenvalues of
iii)
( I - P ) To ( I - P ) : d prove t h a t ,
conditions:
).
T ,
if
To
> T
>T
~.~4
>T.
W e i n s t e i n method, where ( s e e p r e v i o u s l e c t u r e )
this monotonicity condition, shall
The i n t e r m e d i a t e
is d e g e n e r a t e .
Condition i) is satisfied
T:
between t h e
(~,~ ~ )
converges uniformly to
The o r i g i n a l
9
~-
T o , ~ 6"z("~')~ e i g e n v a l u e s o f T ~
{ F ~ t =" eigenvalues of T
To-T~
T
the follo~ng
(,w.)
ii)
operators"
T~ : ( I - P,~ ) To (I - ~)do~s not sat,,,~ b u t does s a t i s f y
even i n W e i n s t e i n t s c a s e ,
condition i).
However, we
one can always r e d u c e t o t h e
above m o n o t o n i c i t y s i t u a t i o n . Set
Q = I- P
,~d
_G , ~ : ~ - P
. L e t us f i r s t
prove t h a t :
-131-
Any n o n - z e r o
17.I.
ei~env,~lue of the
operator
Q
is an
To Q
eigenvalue for the follo,win~ problem:
L,* -
(17.1)
P~-
= p~,
and, conversel~., an~ non-zero, ei~envalue for .(17.1) is an ei~envalue
ToQ.
Q
for
F i 0
Let
a n d L~ be an eigenvalue and eigenvector f o r
QT O Q.
From t
QToQ~, : p Q - .
Oz.,2) it
follows
Q TO a
satisfy
that
t~ = ~ I,~ 9 T h e r e f o r e ,
(17.1),
Of c o u r s e ,
(17.1).
, i.e.
: p a
then
L~ : L I~
ve can Trite
Conversely,
(17.2)
~ ~
if
as f o l l o w s : and
0
(~Tot~ and hence, t~--(~.Thus
the theorem still
holds
L e t u s now s u p p o s e t h a t 17.1I.
+ p P~.
Any e i g e n v a l u e
if
TO
we r e p l a c e
is
strictly
P
by
~
positive.
for the problem (17.i)
is
C4~ ~
O
~T o(~=
~-
. Then we h a t e =
an e i g e n v a l u e
for: L
(i~.3)
T ou-
Conversely,
To~ P T o ~z - ~ ' u "
any non-zero ei~env.a.lue for (17o3). is an ei~envalue for (1.7.1), I
If we let qY : Tox a
, then equation (17 .I) becomes:
T ~~- - PTo ~- : p u . . Operating
('T/ >0).
on b o t h s i d e s
by
L TO~
, we g e t :
4
T o~ -
T/PT
4
~ qY O
=
p qr
-132-
Conversely~ (17.3)
let
we d e d u c e t h a t
17e c a n ~ r i t e
~ ~ 0
us a s s u m e t h a t there
exists
and
tr
a vector
satisfy(17
bC s u c h t h a t
. 3 J . From s qY = __To~
( 1 7 , 8 ) as f o l l o w s : •
[ "l"~u, _ PTo ,. -
]_- o
I
Since
T~ ~
is strictly
positive~
From t h e a b o v e t h e o r e m s i t m e t h o d we c a n s o l v e
a)
To~
P~
-
P
To~
1
"I- u, - T o ~ p T o ~ u .
Actually 9 in his
m u s t be s a t i s f i e d . that
in Weinstein's
original
problem any of the following:
)u, -p.u.
=o
- p ,.,. - o
•
c)
follows
as i n t e r m e d i a t e
( i- P.~, ) To ( I-
b)
(17.1)
work~ W e i n s t e i n
-~-0.
considered
p r o b l e m s b) as i n t e r m e d i a t e
p r o b l eros.
I
I f we c o n s i d e r
~ d replace
r
problem c),
by T o - Toz r To ~
theorems 17.1 andlV.II)~ is clearly
and she, l l
T
the operator
To-ToAP
T ~
(this is feasible because of
then the above mentioned monotonicity
condition
satisfied.
In considering operators~
assume as
we s h a l l replace
a general assume t h a t
condition
i)
Our c o n s t r ~ z c t i o n i n c l u d e s
methed for constructing the base operator
the intermediate
To i s
greater
than
T
by t h e f o l l o w i n g :
as p a r t i c u l a r
cases the procedures
given
)
-188-
by W e i n s t e i n and A r o n s z a j n and some of t h e methods c o n s i d e r e d by B a z l e y ~nd B a z l e y & Fox.
(;)
L T o- T and u s u m e t h a t
Set
L e t us ~ s s o c i ~ t e w i t h strictly
L.~ a l i n e a r
p o s i t i v e *~We d e n o t e by
by t h e c o m p l e t i o n o f
The o p e r a t o r its S
S
(,t~)~
for ~
.We hate
M~
S~ t h e H i l b e r t
positive S
[ (~t~')~
in
and ~
~ 9 ~r 6 ~ .
On t h e o t h e r hand
u s e t h e same symbol
which i s s u p p o s e d t o be
spe~e which i s o b t a i n e d
~
and i t s
~
For
{~'1~
~
i n such a M y t h a t range still
S
, where
(~).
, there
exists
I
!
belongs to
( I
(Lt,'~)~ i s a l i n e a r
M~
such t h a t ( g , ~ r ) ~ -
M . ~r
i s t h e d e s i r e d e x t e n s i o n of
M~ t o d e n o t e t h e
extension
I~, ) denotes
Since
~ r ~ ~ we h a v e o b v i o u s l y
~Y)~. : ( N . ~~Y , ~ L ~ r ) a n d
~ ML ~
follows that
S~
~ ~ C/, ~
bounded f u n c t i o n a l i n t h e s p a c e and
L~ i s a 1~0.
S~ , l e t us c o n s i d e r t h e s c a l a r p r o d u c t
t h e l e n g t h of a v e c t o r i n t h e space
qY- 0 . I t
operator
M~ can be e x t e n d e d i n t h e s p ~ c e
In fact,
: (t ~ r )
~ ~, x h e r e each
w i t h r e s p e c t t o t h e f o l l o w i n g new s c a l a r p r o d u c t :
extension is strictly .
~ : ~,
:
~
M,
= 0
implies
M-~ .
We s h a l l
M ~ of the operator
under considerationL e t us nov i n t r o d u c e a new H i l b e r t s p ~ c e in
H~
viii
be d e n o t e d by
[
~ ~
,
.
By
~.
HL . The s c a l a r p r o d u c t we d e n o t e a
compact
(4) I t must be o b s e r v e d t h a t t h e s e a u t h o r s c o n s i d e r e x g e n v a l u e p r o b l e m s f o r more g e n e r a l o p e r a t o r s t h a n ~CO~ However t h e main i d e a s do n o t d i f f e r s u b s t a n t i a l l y from t h e PC0 ceme,
-134-
linear
S~ and r a n g e i n t h e s p a c e
o p e r a t o r w i t h domain
i s bounded s t h e r e e x i s t s i t s linear
adjoint
bounded t r a n s f o r m a t i o n of
and any
lr~
HL
H; into
]
, ~'tr
suppose t h a t
.
:
spaces
such t h a t f o r any t~ ~ ~
%r
x-
P(;J
S;
.
.
L ~ admits the following decompositionz
9 : where
~ ~ ~ that is to say, a
:
[R We s h a l l
operator
9 Since ~
~
(;)
M. R~. P
i s any g i v e n p r o j e c t o r
R~,
of t h e s p a c e H~ o n t o one of i t s
~ F . . The d e c o m p o s i t i o n ( 1 7 . 4 ) i s a d m i s s i b l e s i n c e
r e p r e s e n t e d by ( 1 7 o 4 ) , i s an o p e r a t o r which maps
S
L~
into
, if ~
as
f o l l o w s from t h e d i a g r a m :
S. (
Rt
V~ c FI.
On t h e o t h e r hand we hate*.
(M.~ P,"~. P~R~, u . , ~ )
P(:~R~ u, , R~ v
= ( R ~ p(~ IR:~, ' 'u')~ :
=
PC~)R ~,
R v
=
sub-
-135-
From t h e s e e q u a t i o n s i t
L e t us now s u p p o s e t h a t of l i n e a r l y
a complete system of
~"
9 Let
variety
.~
17.Ill.
V~,
r
i s a 1~0.
i s s e p a r a b l e and d e n o t e by t~O ( / ) }
independent vectors
be t h e p r o j e c t o r
spanned by
L ~,
follows that
of
i n t h e s u b s p a c e ~r~
H ~ onto t h e
.~ - d i m e n s i o n a l
(~) ~ ... ~ 6~ .
(4)
The s e q u e n c e :
T
R:
: T o - ~'. M~,R~, P
i s a se~uenc e of i n t e r m e d i a t e
operators~ i.e.
conditions
i)~ii)~iii)
are satisfied. We h a v e f o r a ny
t~ E S j
[ "'
(To..~) ~_ ( T o . , - ) >_. (T
-,~,1
This proves t h a t
P'~'R..].
[ P ...-k ; u , ,
> (ToU,,u,)- Y'.
c o n d i t i o n i I) i s s a t i s f i e d .
The o p e r a t o r :
T o- T
J~,
:
L L=4
M .bR .
b
P
(~)
R~
p..
: (\.,.)> ]
R~ u, ~,
:
,
.).
-136-
P (~) p r o j e c t s
is degenerate since
I n order to prove i i i ) ,
'~,~
(1T.5)
The u n i t s p h e r e ~'~
such t h a t
P c~)~ = ~
if
to shov that~
---
~ of
~
i s mapped by
R.
i n t o a compact
. L e t i%Yt~)l~, be an o r t h o r m a l c o m p l e t e s e t i n t h e s p a c e
" ~--" I [ R~ ~13" ~
suffices
dimensional subspace.
II P o:~R, - P ~'~ R. Ii o.
i~['~
s u b s e t of
to
it
onto a f i n i t e
(1~ 1~
).~
. Then
(~I] % I tends to zero, f o r
I~l~: ~
).
From t h i s ,
II P
R . ~ - P~
V..
R. ~ II
.-
.~f~-, c~ , m~iformly ~ i t h respect
(1~.5)
follows,
and t h e p r o o f of t h e
t h e o r e m i s c o m p l e t e . (~) I f we assume t h a t
L~ , R
M 4 :
"~-
~
is strictly
positive,
~ = 4 , ~ = H
-- pt~)= ~ , t h e n ve h a v e ;
T - T - L P where
P
projects
S
i n t o t h e s p a c e s p a n n e d by
i s any complete system i n the space operators constructed
space
~--4 ~
and
/~
intermediate i
i
T
and i ~ )
are the intermediate
]- ~
I
P T ~z
~ where
P
, t h e n t h e above g e n e r a l p r o c e d u r e s
case the intermediate
i
These
~ cJ
by A r o n s z a j n [1 ] . 4
If
S~ o
~)~ ,
i s any p r o j e c t o r
of t h e
g i v e us as a p a r t i c u l a r
problems c) which a r e t o be e q u i v a l e n t t o W e i n s t e i n ' s
problems.
ml
( ~ ) See f o o t n o t e
(~)
of pag.20.
We have d e n o t e d by I[
II; t h e norm i n t h e s p a c e
[4. 9
(~) The p r o o f of i i i ) c a n be c a r r i e d out by a s i m i l a r p r o c e d u r e i f ve r e p l a c e t h e h y p o t h e s e s of compactness o f R~ by c o m p a c t n e s s of M~ .
t
-137-
s If we assume
~tt)
~
C~ : ,4
s P'R4 : ~
and
5= .~t: Ht s
~4
s
= ~-2'
( L . "z > 0 ) ,
~ we have t h e f o l l o w i n g k i n d o f i n t e r m e d i a t e o p e r a t o r s :
~-~ --
4
~" % -
~ ~ ~ ~-i ~ h e r e 2
by t h e f i r s t
~
q~
is the projection
onto t h e s u b s p a c e s p a n n e d
% v e c t o r s of any c o m p l e t e s y s t e m i n t h e s p a c e
S
*
It is now evident how to construct as many examples as we wish,
starting
from t h e g e n e r a l p r o c e d u r e .
Bibliography
of
Lecture
17
[1 ]
N~kRONSZAJN - s e e [2 ] of l e c t u r e
16.
Is]
N . W . B A Z L E Y - D . W . F O X - Lower Bounds to ~.~genvalues. using operator Decompositions of the form B*B -
Arch. for Rat. Mech.
and A n a l . v o l 10, 1962. N.W.BAZLEY-D.W.FOX-
Improvement of Bounds to Eigenvalues of
Operators of the form T*T - The Johns Hopkins Univ.
A p p l . Phy. Lab. ( R e p o r t ) 1964.
~4.]
N.W.BAZLEY-D.W.FOX - Comparison Operators for Lower Bounds to Ei~envalu.e.s - Battelle Centre de recherche de Geneve-
( R e p o r t ) 1963.
~5]
N.W. BAZLLY-D.W.FOX - ~ e t h o d s f o r Lower Bounds t o F r e q u e n c i e s of Continuous E l a s t i c
S~stems - The J o h n s Hopkins U n i v .
A p p l . Phy. Lab. ( R e p o r t ) ,
1964o
-138-
C61
G.FICUERk - S u l c a l c o l o sulle
degli
applicazioni
Cagliari-Sassari
E71
G,FICHI~t~ - A p p r o x i m a t i o n s Proc,
S.T~URODA-
dell lAnalisi
alla
del Convegno Fisica
Matem. -
1964. a n d Es.t.imat.es f o r E i ~ e n v a l u e s
of ~aryland
On a G e n e r a l i z a t i o n
o f BVP, -
Papers
of Tokyo-
(to appear).
Determinant
of the College vol.
of
of the Weinstein-Aronsza.jn
Formula and the Infinite Sci.
-Atti
o f t h e S y m p o s i u m on t h e N u m e r i c a l S o l u t i o n
PDE - U n i v .
C83
autovalori
- R e p . from
o f Gen. E d u c a t i o n ,
11 - N ~ 1 , 1 0 6 1 .
Univ.
-139-
Lecture
18
Orthogonal . .invariants
of . p o s i t i v e
The method d e v e l o p e d i n l e c t u r e s after
the essential
contributions
B a z l e y , as a v e r y e f f i c i e n t v~lues of a I~0.
Hoverer
the requirement that the entire
s e t of i t s
a serious
by A r o n s z a j n , W e i n b e r g e r and
limitation
to its
applicability
this
Tu, - I
T O must be known t o g e t h e r w i t h
p o i n t ~ l e t us suppose t h a t
K
sp~ce
T
i s an
Z ~ (Oj 4 ) g i v e n by :
(x,y) ~,(y)dy.
i s supposed t o b e l o n g t o
K(x,y)
to be hermitian, i . e .
~
[ (0,4)X (0,4)J
i
f
4
/
K (X~y)l,l,(x)IA,(.y)dx ~ y
> 0
o g ~ E Z ~ ( 0 ~ t ) , I f we w i s h t o a p p l y t h e a b o v e - m e n t i o n e d
method f o r t h e u p p e r a p p r o x i m a t i o n o f t h e e i g e n v a l u e s of t h e k e r n e l (•
Y)
,
K (x,y) : IK (y,~') and to be of "positive t ~ e " ,
iee.-
f o r every/
is
e i g e n v a l u e s and e i g e n v e c t o r s ~
operator in the Hilbert
The k e r n e l
16 and 17 must be c o n s i d e r e d ,
t o o l f o r t h e u p p e r a p p r o x i m a t i o n of e i g e n -
a "base operator"
In order to clarify integral
to it
. .compact . . o p e r a t o r s .
, we have t o know a h e r m i t i a n k e r n e l
K
(x~Y) O
such t h a t
-140-
any of its
eigenvalues
(•
~oreover
of the kernel kernel
is
greater
corresponding
we m u s t know e v e r y e i g e n v a l u e
"-o (Xj y) -
In general~
eigenvalue
of
and every eigenvector
we do n o t know %o c o n s t r u c t
the
k o (• We w i s h now %o d e v e l o p
as an a l t e r n a t i v e requires
a further
condition ~
method will
no~ r e q u i r e
ator
TO .
On t h e
under
special
the second
a different
on t h e
the
other
conditions
one to these
while
more general a 1~0
T
we s h a l l
f r o m now on t h a t
by h i m s e l f
a strictly
positive
the
modifications
slight
be made i n o r d e r
%o i n c l u d e
is
5
-
ex%ension of
(which is
operators
and that
The r e a d e r
following
a separable
sake of simplicity,
positive
compact operator.
positive
the
For the
strictly
of the
of a base oper-
i% n o t y e t k n o w n .
Hilber% space). T
h o w e v e r t h e new
m e t h o d c a n be a p p l i e d
operators,
cases
must belong to
existence
in the space
dimensional
("~
applicability
later),
first
- to non-compact
complex infinite suppose
of the
the
Its
T
be d e f i n e d
assumption
hand,
one.
operator
, which will
Let us consider
for
m e t h o d , w h i c h m u s t be c o n s i d e r e d
to the Weinstein-Aronszajn
one of the classes
stands
than the
will
results
PCO
notice
which must
which are not strictly
positive. We s h a l l the
where
6
vectors
~
is
denote ~
by
~(~)('~,..%,"~
, "'" , ~4
a positive
integer.
)the
with respect
In other
Gramian determinant to the scalar
words,
we s e t ,
of
product
by d e f i n i t i o n ,
-141-
(T ~,,~.,) ...... ( r G
~,,~,~)
('~)
(T ~ , ~ , ) ..... (1" ~,- ~,-~)
Let
~ ~Yk ~ ( k = 4 .9 ...
) be a c o m p l e t e o r t h o n o r m a l s y s t e m i n t h e s p a c e
We p u t : A%
(is .1)
~
( T ) -- ,J. O
and f o r any p o s i t i v e
08.2)
'~
~
The s u m m a t i o n Since
the
integer
4
('r)-
is
terms
of
the
Y'. _
9
extended
~
to
G `') ( ~
any set
multiple
series
how t h e summation i s c a r r i e d o u t . be f i n i t e
or i n f i n i t e .
system
The v a l u e of
~y~ }
operator T
~ i..,e.
~ are
positive
).
integers
non-negative,
Of c o u r s e
t h e v a l u e of
K~ j . . .
it
does
~
not
(T)
~ ~
,~
matter
could
(T) (T)
(T). doe,s, n o t depend ' on, ,ghe o r t h o n o r m a l
i s an orthon~r~nal i n v a r i a n t
of t h e
9
In order t o prove this important theorem we need first the
f o l l o w i n g 1 emma.
, K~ .
It is evident that-
~ (T'~): 18 ~
of
,...,~
-142-
18.II.
If
) . . . , ~ ,~. ) i s
G(,I~ 4
v e c t,,o r s , i n a H i l b e r t
s~,,ace
following
holds:
inequalit~
G,. ( i),,, 4
The p r o o f
) --.
is
~
trivial
if
~4 ),
~
subspace
~)...,
s p a n n e d by ~
K
~ and
with
respect
co-(~.,,..., ~.~ )
where
~
(-4)
= 4 +---§
t
)...
,I
.......
X
.......
X
bells
.-. / 1-~',1~ )-
dtpendent by
X in
vectors.
S~t
the
be t h e c o o r d i ~
.We h a v e :
'1
:
.....
K~4~-..~
4
X
~
~
and
the determinant:
X ........
,1~
X.
J4
4
. . . . . . .
Jr,
•
o f q~
, .t.h. e. .n. t h e
and denote
to an orthonormal
~ X 4~''''~
X
0
. Let
"X
f_,
are linearly
~)>
~
X
=
0 ~-- t,< z: ~
C7" (I~L'K4.4)
G (~,...,
of
Gram~an de t b r m i n a n t
,
Let us suppose thtt
nates
the
~C.
Jr,
~~
'
. . ...... .
~" -,,.
denotes
-143-
The s u m m a t i o n i s rots
e x t e n d e d t o any s u b d e t e r m i n a n t
of the matrix
determinant).
It
t •
contained
t ( ~ J : q~"'~ ~ ) (Laplace development of a
follows that:
~ ( ~ , . . . , ~
:
)
s
Z
X
~ ....
o(~,,.-.,~,)
z (x
~
o
( , . +, , . . . ,
We go n o t t o t h e p r o o f o f t h e o r e m 1 8 . 1 . spectral
in the first
decomposition of the operator
2 .,,
.....
,~
~,
).
L e t us c o n s i d e r
the
T ~ :
O0
We h a v e
-~
( '~ > 0
):
4,q
~lq
4jq
41~
4~,-~oo K4j-,,K, ~ c~->~o
S
k4 ~ kt
h4
h~
~
~ h
-144-
L e t us d e n o t e by spanned by
9
the projection
%r4,... , ~rn~
d e t e r m i n a n t of (~,~)
~ /
~4}...
;
G
~/~
on t h e v a r i e t y
of
(~4,...~/~
i s t h e Crramian
Tith respect to the scalar
product
We h a v e :
A~.--~q
-~! ~ 0"): ~,"~ ~ ' ~
"
L e t us now suppose t h a t t h e m u l t i p l e v h e r e the, s - ~ y y t i o n i s e x t e n d e d t o a n y s e t indices
is
convergent.
Let
~
denote its
(P9, m ~,h4
There
is a positive S i n c e , by lemma
~4 J " - , ~B
~---p~
we h a v e :
,,,).
of d i s t i n e t
sum and a s s u m e
r e a l number g i v e n a r b i t r a r i l y . 18 . I I ,
Pn,~
series
i s such t h a t :
~- Z
J"'/
~
-145-
G
it
)
follows
"
.
.
)
"P ','-
)~-IP,,,.,.,,i
~"
IP.,,,~,
thatz
z~ t"j,,
P'h,
h 4 ,.., h s
.
.
.
)~
.
h~ ,.., I~
4j., cJr
~'h- ['I.-G(P
,r
~,
) ] +.2.,6..
P ~
Thus~
(z8.3)
~ L
(r)
Fh,
Suppos e t h e r i g h t - h a n d s e r i es i n ( 1 ~ . 3 ) let
~i.i
I ~"
be s u c h t h a t
9 fie,,
is
divergent.
I"h '
t~,
Given
H '> 0
--
%"'~H ~t
pN.,, > H
,,
Sincez
,...,
P
,.,.
)>_
-146-
> /;,~ it
~
p~-..l~ '~
follows that
in this
: ..I-~ .
~,
,.-.,P ~ ) > H
This means t h a t
(18.3) also holds
case.
The i n d e x ~
(T)
G(P
(T)
~
w i l l be c a l l e d t h e o r d e r o f t h e o r t h o g o n a l i n v a r i a n t
and ~he i n d e x
Ig . I I Z .
~
We have
t h e degree of t h i s T ) < + 0o
invariant.
i f .and, o,nl E i f
~t
The p r o o f i s a c o n s e q u e n c e of t h e f o l l o w i n g i n e q u a l i t i e s ~
~
(Igo4)
(T)
~
5!
~
(. T)
5
~:4
S i n c e (lemma 18 . I I ) :
G (18.4)
~(~
foiloTs
from
,--., "~'.~) ~ (iX.2).
P,--P~-4 From t h i s
i
inequality
1~0
G(~)
)
(~,)
(~'~) . . . G~
Zn o r d e r t o p r o v e
(18.5)
Te o b s e r v e
tha~:
P~+F,~,, + .... ) ~ "~ ~ - s ( T ) ' (18.5) folloTs readily.
is said t o belon~ t o t h e class ~ ~ ,i,f ~ 4
It is evident that
C '~.~
if
~ n , ~ m,.
(T)z+~,
-147-
18
,IV,
The s e q u e n c e of p o s i t i v e
.i,s a c o m p l e t e s y s t e m of i n v a r i a n t s of two ~ O ' s
of t h e c l a s s
numbers
{ ~'(T)
} (~:4,~,..
)
T i t h r e s p e c t t o t h e unitary., . e ~ u i v a l e n c e
~
We must p r o v e t h a t i f
and ~
a r e tTo o p e r a t o r s of ~ z
such that.*
~(T then a unitary
) - ~(
operator
(18.8)
T -
of t h e s p a c e
U-'R
e x i s t s such t h a t :
equivalent.
Let us denote - as usual - by T
~
(~: ,I,.~, ... )
br
i . e . t h e tTo o p e r a t o r s a r e u n i t a r y
of
R)
{ ~ ~ }
( e a c h r e p e a t e d as many t i m e s as i t s
the s~uence
of e * g e ~ a l u ~ s
multiplicity).
The i n f i n i t e
product: ~t
c o n v e r g e s u n i f o r m l y on any compact s e t of t h e complex ~ - p l a n e d e f i n e s an e n t i r e
function
~(~)
of t h e complex v a r i a b l e
and
~,
Let
us d e f i n e :
Let
T
t t ~ } be a c o m p l e t e o r t h o n o r m a l s e t o f e i g e n v e c t o r s of t h e o p e r a t o r
, ~th
T a
= ~,%.Venote
by
~
the projector ~ich
o n t o t h e ~ - d i m e n m i o n a l m a n i f o l d s p a n n e d by
L~4 j . - - ~ ~
.
projects We have.*
5
-148-
(~X)= Z (-~) J~ ('P,~T) 'xs.
For any
~
, let
us consider
the power seriess
(4)
It
converges
follows
in the
entire
~-plane
with respect
t o rn~. T h i s
from the inequalities:
9+~
9 +~
~
I ?"
(-'
(PT)
;~
I z s
:~=9+.t
J~ (P~T)I:Xl ~ ~-
,~-. 9+4
,~ C --
U
(T)I),I
z_ ?.
-~!
,t
(T)
I),I.
~=9+ ~
,s=9,4
On t h e
uniformly
other
hand,
for
any given
~
we h a v e s
cl
(P T)), ~: ~ (-.4)~(T)), ~. /vw --~ cQ
Thus,
for
any complex
.,~',~ 7. C-4 4 ~ --, oo
"$:O
,,$:O
"$=O
(~)The operator P~ T in the ~t -dimensional
~
~'('P
T )
Z.. "&"O
i s c o n s i d e r e d as a s t r i c t l y positive s p a c e s p a n n e d by ~t4 j "'" ~ ~ ~ '
operator
-149-
Sets
(,~) = Z.
(-~)',~"(r)),',
~'"(t). 7'. (-,)~,, ('P,,,.T)),'.
"S:O
Given
F.. > 0
, let
~&(~)
s!
We &ssume t h a t
such t h a t f o r
~ "~ ( T )
~ > C~(~)
I>,l ~
~ ( ~ ) i s l a r g e enough t h a t f o r
One has:
Thus, f o r
~
> q8 ( I )
,
I t f o l l o w s that=
oo
(18.~)
5
(T)~.
E.,.
c ~ > ~&
)
-149-
Sets
(,~) = Z.
(-~)',~"(r)),',
~'"(t). 7'. (-,)~,, ('P,,,.T)),'.
"S:O
Given
F.. > 0
, let
~&(~)
s!
We &ssume t h a t
such t h a t f o r
~ "~ ( T )
~ > C~(~)
I>,l ~
~ ( ~ ) i s l a r g e enough t h a t f o r
One has:
Thus, f o r
~
> q8 ( I )
,
I t f o l l o w s that=
oo
(18.~)
5
(T)~.
E.,.
c ~ > ~&
)
-151-
Bib_liofra~hy
C1]
G. FICHER& - F g n z i o n i
of
Lecture
analitiehe
18
di una Tariabile
com~lesea -
E d i z . V e s c h i - Roma~ 1 9 5 9 .
[2]
E . GOUBXkT - C.ours d*Anal]vse ~M~.t h 6 m & t i q u e - v o l ~ Villars
- Paris~
- Gauthier-
199-4~
- U_eber d i e I n t e g r a l e
d e s H e r r n H.e!.linKer und d i e
O r t h o g o n a l i n v a r i .an~en d e r q u a d r a t . i s c h e n T..on u n e n d l . i c h v i e l e n
I!
Varandlichen
Formen
- tionat~
P h y . Bd~ 2 3 , 1 9 1 2 .
[4j
E. H~LLINGER - Di 9 0 r t h o g o n a l i n v a r i a n t e n
quadratiaehen
yen undendlich Tielen Yariablen vl
Gottingen,
1907.
Formen
- Dissertation
-152-
Lecture
Upper
approximation Representation
19
of
the
of
eigenvalues
orth.ogona 1
L e t us c o n s i d e r an a r b i t r a r y
of
_a PC0.
invariants o
c o m p l e t e s y s t e m { ~v4K} of l i n e a r l y
independent vectors in the space
~.
Let and
~r
be t h e
P -dimensional
m a n i f o l d spanned by
~/4 ~-.- , ~/~
Pe the projector
As we saw i n l e c t u r e
15 9 t h e a p p r o x i m a t i n g e i g e n v a l u e s g i v e n by t h e
R a y l e i g h - R i t z method c o i n c i d e w i t h t h e p o s i t i v e operator
on ~ ) ~ r
eigenvalues of the
V~ "1" V~ . I f "1" - as we have assumed - i s s t r i c t l y
then the determinantal
positive,
equation:
c~et I(-]-W'.,w'i)-~(W'~ ~W/j)I = 0 (v) has ~ p o s i t i v e
roots
~4
(v) -~ ~ z -~
"'" ~
(~) ~V "
to Deno~,e hy ~ v~(t<)
L e t us c o n s i d e r t h e e i g e n v e c t o r s of P ~ T P~ t h e above e i g e n v a l u e s 9 s a y the
(~-4)-dimensional
~/(~)
(v}
~/d (w) ~ . .. , ~ )
s u b s p a c e of r ~ Let
corresponding
~(~
spaan~ed by
be t h e p r o j e c t o r
of
The f o l l o w i n g t h e o r e m h o l d s :
19.I.
Suppose ~ G ~ o
Fixed
t~>O
and
~ >0
, s e t f o r V~>~:
-153(') 4
m
~t
(IOn) 6-~(~): t ~-4
~,
~,
We have:
(v) K
where
~
--
}
K
- as ,usual - de,notes ,the se~uenc,e
of
)
,.the eigenvalues o f -/'.
~e have for ( 1 8 . 3 ) : 4j.~ 1%2 "1%
(1~ .5)
~-~
P~"'T P v~ ~
:
z~ ~"'
h~.., h
p~ ' ! ~ . ,
,
tj .-)
where
~ 9(~) k ~ . . ~ h~.~
set of ~-4 I% f o l l o w s
meA.-A t h a t t h e summation i s e ~ e n d e d t o any
increasing
integers
chosen amongst
~j...
K-4 ) K+4; . - - ; ~ .
that-
c~)
~
[ , k~--~-~
~'" - ~ ' ~ 1
~4< --'c h~. 4 (t)
E~ (~} a l s o d e p e n d s on ~ and on ~ , b u t we do n o t n e e d t o p u t i n t o e v i d e n c e t h i s d e p e n d e n c e s i n c e we c o n s i d e r ~ a n d % %o be f i x e d . For the definition of the orthogonal invariants o f P~-r P~ and PvIK) T p(~l see footnote (4) o f lecture 18.
-154-
4 ) .. ,v*~
+
I~,I~:--~' h~s
_.
_
~"
15,,
- - 9 ~,,
Since (see le~na IS~
4,..,1,0
L~)
4).. ) ~-)r4
L~)
~'~' [~,,..i~,~., ] ~,4<.-z h
Z
In.14-- ,~ Inr
,t
(].~ .6) (~)
(:v)
J
L
,'it
I~ ~-.!
.~
4) . . , ~ §
Y----'"' [ I*~,"" I',,~ ]
J
(19.2) f o l l o v s . From i n e q u a l i t y (19 ~
we hate for ~
TM
,~,,,, (pC,,) T pO,)) > ~'- ( P'")T P'")). On the other h~nd, one has (see len~a 15.X and 18. VI)s
Hence, by ~heorem 15.XIII, (19.3) f o l l o v s .
~heorem l ~ . I pro.ides a sequence { ~ ~ ) ~ K
decreasing to
~K
~ich
c o ~ e r g e s by
, provided some orthogonal i n , a r i a n t ~ ( T ) o f
T
-155-
~t
i s known.
In fact,
is expressible
on t h e r i g h t
hand s i d e of ( 1 9 . 1 )
i n t e r m s of t h e R a y l e i g h - R i t z
e v e r y t h i n g but ~
4
(T)
approximating eigenvalues
(see (19.4) and ( 1 9 . 5 ) ) . Theoretically,
(18.2) gives
the invariant
the v a l u e of
can be computed~ However, i t series
(T)
~
g i v e a l o w e r bound t o
c o u l d be c o n s i d e r e d as known s i n c e as t h e sum of a s e r i e s
must be p o i n t e d o u t t h a t ~
whose t e r m s
partial
sums o f t h i s
~ T ) , w h i l e form-dla ( 1 9 . 1 ) r e q u i r e s
an u p p e r bound f o r s u c h an o r t h o g o n a l i n v a r i a n t ~
In c o n c l u s i o n ,
(18*2) c a n be u s e d o n l y when one knows how t o
e s t i m a t e t h e r e m a i n d e r of t h e s e r i e s
on t h e r i g h t
hand s i d e of t h i s
formula 9
In any c a s e ,
theorem ( 1 9 . I ) c a n
be c o n s i d e r e d as a remarkable
advance i n t h e problem of t h e upper a p p r o x i m a t i o n of T p~
e.
, s i n c e t h e upper a p p r o x i m a t i o n
of t h e e i g e n v a l u e s
of a s e q u e n c e o f numbers - t h e
ts - i s r e d u c e d t o t h e u p p e r a p p r o x i m a t i o n of a s i n g l e number, i .
~ ~ (T)
(with ~ and ~
In numerical applications,
chosen a r b i t r a r i l y . t h e u p p e r bound
c a n be i m p r o v e d i f we know an o p e r a t o r for any
K
, ~ne,e
t~
~
such t h a t
for
~g
'~k's
~ ~h ] the corresponding eigenvectors.
for
Let
P
~P
-~ ~ K
h-"'l,...,p
and c o n s i d e r t h e f o l l o w i n g o p e r a t o r s :
R(K) v~
~
~ i s t h e s e q u e n c e of e i g e n v a l u e s o f ~ .
Suppose we know t h e n u m e r i c a l v a l u e s of t h e
We d e n o t e by
Cr( ~ )
(~J
J
~
K"
K ~- ~ ~
(p.~-i-oo).
-156-
w
t
" The v a l u e
"
1
~ ~
t
(R v p )
,&-.~
furnishes a better
u p p e r bound t o
~,~
than
6 (~) K
~
We w i s h noT, by r e p r e s e n t i n g t h e s p a c e S as a H i l b e r t f u n c t i o n space, to establish if
T
some f o r m u l a s which p r o v i d e t h e c a l c u l a t i o n
i s e x p r e s s e d as an i n t e g r a l Let
~
is the Itilbert space Since i.e.
~ the
p
s p a c e where a
has been i n t r o d u c e d . Suppose t h a t
~ ~ (A,~)
o f complex v a l u e d f u n c t i o n s on t h e s e t A .
i s s e p a r a b l e , ~e must s u p p o s e t h a t t h e measure ~ -ring
"~(r)
operator.
be a m e a s u r a b l e s e t o f a g i v e n measure
r e a l n o n - n e g a t i v e measure
of ~
~
is also j
of t h e m e a s u r a b l e s e t s i s g e n e r a t e d by a c o u n t a b l e s
s e m i - r i n g o f s u b s e t s of t h e s p a c e . O f c o u r s e t h e a s s u m p t i o n t h a t t h e space
j~ ~ ( A , ~ )
is the space
separable infinite space
S
is not restrictive,
s i n c e any a b s t r a c t
d i m e n s i o n a l H i l b e r t s p a c e i s H i l b e r t - i s o m o r p h i c t o some
~ Z (A, ~).
The s c a l a r p r o d u c t i s n o t g i v e n by:
A L e t us s u p p o s e t h a t
T ~t
t h e s e q u e n c e of e i g e n v a l u e s o f T following integral
T
representation:
u.
: A
, then the operator T ~
admits the
-157-
where the kernel
K
(X,'y')
is
the
function
Z
if,,
,~]
of ,~2., [ A •
d e f i n e d by t h e d e v e l o p m e n t :
(~) :
(x,y)
K
~
,~ ( x ) ~
(y).
K=4
Here,
{ I.,t,K (X) j
of t h e o p e r a t o r
i s an o r t h o n o r m a l c o m p l e t e s e q u e n c e of e i g e n f u n c t i o n s T.
Then m ~t~
u, =
where
has t h e i n t e g r a l
k
(x,y)
representation:
u,(y)a~y
:
(zg.~)
F~
(x, y) :
P'K u.~ ( x ) u. K K-4
L e t us c o n s i d e r t h e f u n c t i o n : (~)
cx,,x~ ) . . . . (x, , . . . ,
It
is
summable
x~ ) :
on the
~
(x,,x)
9
9
=
9
9
9
9
9
9
t
9
9
9
9
e
$
9
9
~*
r
set
A
x
A
)r
9 - " xA,
In
fact
we have:
-158-
Rr(X' ,... x ). ~ ~'"~" q~- .q,,
(X4, X q~ )...~
k
Cx 'I) x
q~
).
Then:
...fl K
I ~ (x,,..., x, )1 -~ -~! I I
~{p~
A
A /Yt
19.II.
(•
The .ortho~on~l, i n v a r i ~ n t
( T ) has r
following
integral representation:
..., x, ) ~l~x ... C~ PX,& " By u s i n g (19 .'/) one hms;
~(x 4 ) u,~,(k~)
u.. (x 4 ) ~, (x~) ,,$
I.,4
'{j..;.~ J
9
4
) .... u~(x~) u~C(x ~) 4
{.4~~,4 9 .-
~.#, (x,)...ut,{, (x 4
'{
uc, (x,)...u~. (x~)
-159-
Integrating
A x A X--" x A
over
the ~
(this Remark~
previously
and e m p l o y i n g t h e r e s u l t s
p.
my
Then by d e n o t i n g by (~)
~
which we s h a l l
i n t h e c a s e where t h e
and
~ :
t h e v a l u e of
and, a c c o r d i n g l y ,
4
.2', 4..,p
k". . ~ ( •
R:,~, Cx, , • )
~Xt...~ X.
A I~ (~}
Assuming i n ( 1 9 . 1 ) t h a t in the particular [4 ] 9
case
fr~.-~ p = ~
I~)
,
,
t•
,
~= ~
X ) ....
t~
(X
and i n s e r t i n g
&l
into it
, one g e t s a f o r m u l a a l r e a d y
He, however, even i n t h i s
n o t p r o v e t h e c o n v e r g e n c e of Theorems
by
I".., I A
known t o T r e f f t z
t~(X~)
Y Jj ) , f o r m u l a (19o8) becomes:
K,~, ~,' (x,, x,, ) .....
(19.9),
~
u n i t masses on t h e i n t e g e r s
~,~X)
~,2,..,p
~
.
(•
(i~.9)
in
Fredholm
i s t h e p r o d u c t of t h e o r d i n a r y Lebesgue measure i n
x ~ A c X ~
the kernel
(]9.8)
formula
and of an atomic measure composed of
for
of t h e c l a s s i c a l
i n v i e w of t h e a p p l i c a t i o n s
t o w r i t e down e x p l i c i t y
~j s ~ - . - j
~ (~)
equations.
It is wor~b~ile,
~
~ith
c o u l d be o b t a i n e d by u s i n g t h e
c o n s i d e r e d d e v e l o p m e n t of t h e Fredholm f u n c t i o n
t h e o r y of i n t e g r a l
measure
(19~
the integral
we get (19o8)o
is obviously possible),
Representation
a peter series,
consider,
and i n t e r c h a n g i n g
particular
case, did
~ 6- K
l ~ . I and 19.II s o l v e c o m p l e t e l y t h e problem
of t h e u p p e r
-160-
approximation
o f a 1~0
representation problems
for
arising
boundary value matrix
is
belonging
we a r e n o t
in the classical
the
theory
~ case
~
of integral
able to compute the 19 . I I ,
since
of the
elliptic
corresponding
the'kernel"
eigenvalue
equations Green's
e v e n i f we know t h a t
- as i n t h e c a s e
, when an i n t e g r a l
for the
problems in which the corresponding
exists
theorem
t o some
known. This is
is known. Unfortunately,
formation
using
T
T
this
or for
function Green's
boundary value
orthogonal
transproblems,-
invariants
of the transformation
or
is
by not,
in
general ~ known. The f o l l o w i n g this
theorem will
be u s e f u l
in attempting
to overcome
difficulty. be a , d e c r e a s i n g
uniformly
T
to
.
o f ,I~O's , converging
Set:
(P T P.)
(q) ~)
(19.1o)
sequence
K
We h a v e :
and:
(19,12) The p r o o f
of (19.11)
follows
easily
if
we o b s e r v e
that
~
k
> -
tt
-161-
(lemma Ig.V ) and t h a t ,
(19.~),
by t h e same arguments u s e d i n t h e p r o o f of
~K {~'~j > ~K (~'~) "
(le=a
~8.V~
(zg.12) folto~s from ~
~ K (~'~J ~ Kc ~
~
"-
(~.~).
) and from
Remark. I f we r e p l a c e i n t h e f o r m u l a ( 1 9 . 1 0 ) t h e o p e r a t o r
by T~ and . ~ the space
~
~K(
(i.e. tl, e ~ y l e i ~ - m t - approximation, in
, of t h e e i g e n v a l u e
an u p p e r bound by
by p ~ CYK
for
Hoverer,
T
~g
~ (~)
of
~-~
) we s t i l l
obtain
, which i s b e t t e r t h a n t h e one g i v e n
i n o r d e r t o compute ~ ( ~ ' ~ )
Te m u s t , f o r an../ ~
,
compute t h e R a y l e i ~ l - R o t z a p p r o x i m a t i o n s o f t h e e i g e n v a l u e s of T ~ . I f a "base operatbv"
To
i s known, t h e n as o p e r a t o r
may u s e t h e ones c o n s t r u c t e d i n l e c t u r e that,
17.
T~
we
However i t must be remarked
now we do n o t n e e d t o know t h e e i g e n v a l u e s and t h e e i g e n v e c t o r s
f o r To
, but the orthogonal i n v a r i a n t
~
(T~)
j which e n t e r s i n t h e
formula (19.10). We wish t o remark t h a t
orthogonal invariants
can
be u s e d i n
several other topics connected with eigenvalue problems, for instance in the still
partially
of t h e m u l t i p l i c i t y
o f each
orthogonal invariants, to the multiplicity
u n s o l v e d problem c o n s i s t i n g eigenvalue
~ K of
of each
I n f a c t ~ by u s i n g
~ K " I t i s h n T e v e r n o t y e t known h o t t o
This would d e t e r m i n e t h e m u l t i p l i c i t y For an i n t e r e s t i n g
this
T.
it is possible to construct sequences converging
g i v e u p p e r and l o T e r bounds t o t h e m u l t i p l i c i t y , than 1.
in the computation
application
w i t h an e r r o r l e s s completely.
of o r t h o g o n a l i n v a r i a n t s
to
problem see [ 1 ] . A n o t h e r a p p l i c a t i o n T h i c h can be madej c o n c e r n s t h e mini-max
principle
(see IS.VIII).
-162-
We l e a v e t o t h e r e a d e r t h e p r o o f of t h e f o l l o w i n g t h e o r e m (where t h e same n o t a t i o n as i n t h e o r e m 1 5 . V I I I 19 oIV.
Let,
T
15 u s e d ) :
b e l o n g ,to
~.
A n e c e s s a r y and s u f f i c i e n t
condition for the e~uality sign to hold in the following relation:
is t h a t =
I~, ~'~
(R)]
where t h e ol~_er,a t o r
~
-
: t~,,,
is the following= K-4
K-4
R~-- T.
~"
h=,2"(T~,~-h)v.
_ ~~,
( ~ , , ' v ' ~ , ) T vW
4,..j~-4
9+
T__.,
(Tp u ,p~)(~.,p~,)p~.
Another approach t o t h e t w o - s i d e d approximation of t h e e i g e n v a l u e s of a I~0 i n i n t e g r a l highly interesting
form i s due t o L . De V i t o [ 2 ~ . His method i s from a t h e o r e t i c a l
p o i n t of v i e w and does n o t r e q u i r e (2) t h e u s e of t h e R a y l e i g h - R i t z a p p r o x i m a t i o n s . However t h e i t e r a t i v e
( ~ ~' U n f o r t u n a t e l y t h e m a t h e m a t i c a l i n t e r e s t o f De V i t o ' s r e s u l t s has escaped researchers working in this area, probably because of a quite incompetent review of De Vito's paper published in Mathematical Reviews.
-163-
technique rather
needed for
impractical
the
application
procedure
point
of view.
from the numerical
Bibliography
[i]
of his
of
MoP. COLAUTTI - S u l c a l c o l o
Lecture
dei humeri
differenziabile~ atlante
[ 2 ]
L . DE VIT0
-
Sul calcolo
G. FICIIEP~
[4 ]
v.. TREFFTZ -
-
out to be
19
di Betti
di una varlet&
n o t a p e r mezzo d i u n s u o
R e n d . d i M a t e m . - Roma~ 1 9 6 3 .
approssimato
trasformazioni
[3]
turns
compatte
plicit&
- Nota I & II
see [1]
of lecture
Ueber Fehlersh~tzun~
degli, autoya, lori e delle
relative
de,lie molte-
- Rend. Accad. Naz. Lintel,1961.
1.
b e i B e r e c h n u n g y o n F.igenwe.rt, en -
M a t h . JLnnalen B d . 108~ 1 9 3 3 .
-164-
Lecture
~plicit
construction .for
an
20
of
elliptic
~x,'~,
L e t us c o n s i d e r t h e
L (•
the
Greents
matrix
s~stem.
matrix differential
o p e r a t o r of o r d e r ~ u
- D~p cx~ D '~
(o'Ipl',,~_ _ )~
Suppose t h e c o e f f i c i e n t s in the entire
(~ ( x ) t o be complex ~ x ~ Pq X ~ c a r t e s i a n s p a c e and b e l o n g i n g t o
matrices defined ~ oo.
We make t h e f o l l o w i n g h y p o t h e s e s ; i)
The o p e r a t o r
L (x)~) is elliptic
for every
• E X ~ , i.e.
(~ real ~0);
(Ipl:lql: '~) ii)
L (x~D)
is
formally
O.pq(X) : (-4) iii)
self-adjoint,
tpt-t-lCl t
Consider the bilinear
(u,,~)
:
connected with the operator
i.e.,
O..qp(X) ;
form:
(-4)PfAO.p, ~D#u. D~'~ fix, L (•
in
the properly/~dom~in
A
~egulae (4)for the definition
of p r o p e r l y r e g u l a r
domain s e e
lecture
3.
-165-
The c o r r e s p o n d i n g q u a d r a t i c form
~ ( ~ , ~ ) i s such t h a t :
(-~)- ~ (~,~) _> c
/ ID~'u, l~dx
~ Ipl--~
f o r any
~ 6 ~ ~
J
where
A
C i s a p o s i t i v e c o n s t a n t i n d e p e n d e n t of
o
A further hypothesis will require that:
iiii)
A fundamental 'matrix in the large for the operator L (• D)
e~sts.
This m t r i x -
say F(X,F) - is defined as follows: F(x,y) is a ~ x ~
matrix defined for (X , y)E (X ~x X )-~,where ~ cartesian
~(x,y)
2)
F(•
3)
I) '~ F ( x , y ) x
is
and i s such t h a t :
C ~" i n t h e s e t
;
~
: 0
I•165
~o~ I •
belonging to
,,
Z 2,CX ~) and v a n i s h i n g o u t s i d e of
the function:
u(x) = #x~~(y; F(x,y)dy
(zo.1)
Z ~ - w e a ~ s o l u t i o n of t h e d i f f e r e n t i a l From t h e t h e o r y of e l l i p t i c
follows that the function
(~)
(X~xX~)-~
: F (y,x)
For any
bounded s e t ,
i s an
X ~ • X ~
1)
4) a
product
is t h e diagonal of t h e
See l e c t u r e
5.
bb(X)
equation
linear differential has
~
strong partial
L b~ : ~ 9 operators
,
{2)
derivatives
it up
-166-
to the order
~m~
i n any bounded domain of t h e p l a n e .
D e r i v a t i v e s of order not exceeding ~m~-~ can be computed by differentiating h y p o t h e s i s 3) If
(20.1) under t h e i n t e g r a l
9
~ s C ~ ~ then
differential
equation
~(g)
F(•
~pq
Let
Ca~
i s a s o l u t i o n of t h e
in the c l a s s i c a l
operators Tith constant c o e f f i c i e n t s 9 the
CLpq(X) ~ 0
for
Ipl§
c o n s t a n t m a t r i c e s such t h a t
L (~) : ~ ~qI ) F D q ~ . By L ( ~ )
and denote ( f o r IpI = Iql = ~ )
z~
we
~ (~> : ~et
Let us denote by
dimensional c a r t e s i a n s u r f a c e element on ~
5(•
~
t h e u n i t sphere
apace and by d ~ . Define (
:
(~T~,)~-' (~.4)! for
S
/~
:
(A y)
~ O.
q
and t r a n s p o s i n g
J~J , ~ i n t h e
;O -
t h e measure of t h e h y p e r i s t h e Laplace o p e r a t o r )
( ay)
~ odd~ and
O~pq~ P ~
s h a l l denote the matrix obtained
by t a k i n g t h e m a t r i ~ of t h e c o f a c t o r s of (L q ~ ~ it.
sense.
can be given i n c l o s e d form. For i n s t a n c e p l e t us
suppose t h a t by
is
L t~ ~- f
In t h e case of e l l i p t i c matrix
s i g n . This f o l l o T s from
I G~('~)
-167-
for
~ even (see [ ( ~ ]
).
F (x,y)
Then
i s d e f i n e d as f o l l o w s :
(3)
F (x,y)
L (:D) 5 ( •
In t h e g e n e r a l case of v a r i a b l e fundamental solution - Aj that
~=
~.
.
coefficients
the existence
i n t h e l a r g e h as been p r o v e n by G i r a u d
F or ~a
arbitrary,
see
[ 3 ~ .
of a
~ 4 ] for
The method d e s c r i b e d i n
p a p e r ca n be e x t e n d e d t o t h e c a s e of s y s t e m s , L e t us c o n s i d e r i n t h e s p a c e
functions with scalar
~
H~
strong derivatives
( A ) ( s p a c e of v e c t o r v a l u e d
up t o t h e o r d e r
~
) the net
product:
The s p a c e o b t a i n e d from
~
(~)by
functional
to this
net scalar
product Till
by
the finite
dimensional vector
~
of degree functions
_~ ~ - ~ of
~
belonging to
~.
, such t h a t
(A)
completion with respect
be d e n o t e d by ~
(A),
If .e denote
s p a c e composed of p o l y n o m i a l s ~ /
B (~/p~/) : 0
, Te must c o n s i d e r tTo
as c o i n c i d i n g when t h e y d i f f e r
The s p a c e
~ ( A ) i s none o t h e r s e x c e p t
isomorphism, than the quotient L e t us d e n o t e by ( ~ )
by a p o l y n o m i a l
space
H~
the scalar
(A)
for a Hilbert
/ r.
product in
~
(A)and consider
the operator
IA ~ (y~ I:"(x,y) ay. (3)
~
~
I f L~i (.~') is t h e e l e m e n t o f L.('~'), t h e n by m a t r i x Those e l e m e n t s a r e ~ . .~j ( ] ) ) S ,
/~
L('D)5
.e
mean
the
-168-
Since for
~
~ Z ~
(A),
R U.
I--i~
belongs to
as an o p e r a t o r w i t h domain
~ ~ (A)
It is eanil 7 seen that
i s a compact o p e r a t o r .
has
~ (A)
~
R
, we can c o n s i d e r
(A)
and r a n g e i n t h e s p a c e
a dom~n and range in
~ (A).
The a d j o i n t
Z ~ ( A ) . For
~ ~ H
operator
~ ~
(A) i t i s
e x p r e s s e d as f o l l o w s
R 'u-- (-~)
DP v(,)) x
p (x)
F(v,x)ax
Dq x
A and r e p r e s e n t s
a function belonging to
H
i n a n y compact s e t o f t h e
plane. L e t u s nov c o n s i d e r t h e f o l l o w i n g BVPs
L (•
(20.2)
: (-J)~
A ,.
in
(~o.8)
DP~ --0
on
@A
o_~ I p I -~ m r
Suppose we w i s h t o r e p r e s e n t -- R ~13
containing t h e spa~e
b7 a p r o p e r c h o i c e of A ~z
in its (Ao-A
interior.
~ 9 Let
Lot
t~
~/' F_ A o- ~
is
H~
(A)
i n t h e f o l l o w i n g wayz
A o be a bounded domain
( x ) j be a c o m p l e t e s y s t e m i n
) . The b o u n d a r y c o n d i t i o n s
(in the sense of functions of ered for
the solution
( 2 0 . 8 ) w i l l be s a t i s f i e d
) if the f~nction
R x~r
consid-
such t h a t l
/
0,0.4)
~
@,~ (,/) R * ~ d y
= o
Ao-A
Sets /
(x) : |
co
q~K (Y)F(X'y)cly'
K
o-,6,
C o n d i t i o n s ( 2 0 . 4 ) can be w r i t t e n :
( K: ~,:~,- )
-169-
(.-0.5)
(K=
V
L e t us c o n s i d e r t h e m a n i f o l d equation
L (x , ~ ) ~ = o
A
in
of solutions
Let
H~
P
,
('A).
~
since it
This
is a closed sub-
(A). be t h e p r o j e c t o r
PIz - O
is satisfied
if
the function
~--
For
(A) ~
1~ ~ kl
(A)
J .
o f t h e homogeneous
, ~hieh belong to
manifold i s a c l o s e d subspace of space of
~,2,.-.
4%
of
9 It
(A)
onto ~ /
follovs that
, Condition (20,5)
f o r any
~- ~
FI~ (A),
R * (17-PIT;satisfies t h e boundary c o n d i t i o n s ( 2 0 , 3 ) . FI
2~
( A' ) ( f o r every A'
such t h a t A' C A
) we havel
b~
as c a n y p r o v e d e a s i l y .
It
follows that the function:
i s t h e s o l u t i o n o f t h e BYP ( 2 0 . 2 ) ,
(20~
We have t h u s c o n s t r u c t e d e x p l i c i t l y
G--
R R-
This construction is perfectly by u s i n g r e s u l t s In fact,
of lecture
the Green's transformation:
R*P R . iJ
suitable
f o r a p p l y i n g t h e o r e m 19.111
17.
l e t us t a k e a b a s i s i n t h e s u b s p a c e
~/
, say
~ ~
~ ,
-170-
~Q
and d e n o t e by
by
~4
, ..~j~
- Iq ~ P~ ~ (5
,
the
projector of
~ (~)
From theorem 17.]II
converges unifermly to
and t h e o p e r a t o r s
~
the subspace spanned
it follows that
G.
~
: ~
~ -
On the o t h e r hand~ the o p e r a t o r ~n,
belong to
onto
f o r any
~t
such t h a t :
>
This f o l l o w s from p r o p e r t y S) o f The o r t h o g o n a l i n v a r i a n t s be c a l c u l a t e d
by u s i n g t h e r e s u l t s
e x p r e s s e d as an i n t e g r a l
F(X,~/)o of
G~
corresponding
of l e c t u r e
19~ s i n c e
t,o such ~t R* R
o p e r a t o r and t h e same i s t r u e f o r
can
can be
~ ~ ~
~ ]
which i s a d e g e n e r a t e o p e r a t o r . I t f o l l o w s t h a t we may c o n s i d e r as s o l v e d t h e e i g e n v a l u e p r o b l e m s c o n n e c t e d w i t h t h e boundary v a l u e p r o b l e m ( 2 0 . 2 ) ,
C-V-p
(20o3), i.e.
=o.
L e t us c o n s i d e r some p a r t i c u l a r
cases corresponding to classical
e i g e n v a l u e problems of m a t h e m a t i c a l P h y s i c s . For t h e s e p r o b l e m s we s h a l l construct explicitly L e t us f i r s t f o r an i s o t r o p i c space
~
I
or
the approximating sequences for the eigenvalues. consider the classical
o p e r a t o r of l i n e a r
elasticity
homogeneous body~ which we w r i t e as f o l l o w s i n t h e
X 3 :
-171-
with
the
boundary
assume the
condition
L~ = 0
on ~ A
.
As b i l i n e a r
f o r m we may
following:
1~ (' u,,~')
,:/l, 'v':/~,,, ~;/~ %,/~, ) a• A
(we c o n s i d e r
f r o m now on o n l y r e a l
vector-valued
functions).
Let us assume that: -4
(--~(t) I The f u n d a m e n t a l
F,:j (x-y)
:: ),x:)~tt "4 matrix
~.:2,~ =.5 .
for
- as given
by Somigliana
- is
the
following:
9z (x_y i zcp(,Ix_ y j )
g~ (4+,~)
,"~x; '3x i
Set.
"f~j (x,y) ---
IIF:,,/h
j,~/h
~,,(/,<
~/h
A Consider
a complete
system
[ ~ PJ
equation Lbl.-0 , suchthat - [~) (r
(4)For
the
L~ = 0
construction of complete s e e [ ~ ] chap. |I~,
of solutions
of the
coq) = c~pc I .
systems
(4)
of solutions
homogeneous
Set,
of the
equation
-172-
./~
(t)+~ F
(x-t)~P
~I~
)
(~)~dt,
l~li~
A For t h e e i g e n v a l u e s
~ ~K ~
L~+~X~ =o
of the f o l l o T i n g problem:
in
A)
OA
bl,=O
,
we h a v e =
~---,~-> oo
-- ~:~ ~ ~t (K')
:~X~.
~ -~, oo
(,;)
The
where
are t h e roots of t h e f o l l o w i n g d e t e r m i n a n t a l e q u a t i o n :
~ ~v/~ t is
any complete system of f u n c t i o n s v a n i s h i n g on / ~ .
The 17K(v~ are given by the f o l l o w i n g formula:
,.
p~
~
'
A
~j(~,y~ (,)~(y~d~dY -E~ [r~ ]
- ~
AA
'
-173-
It
is
easy for
~
and
- 2
~ : ~
t o d e r i T e from t h e aboTe f o r m u l e ~
the approximations for the eigenT~lues for
a membrane f i x e d a l o n g i t s
boundary. As a s e c o n d e x a m p l e , l e t u s c o n m i d e r t h e T i b r a t i o n s clamped along i t s
boundary, ioeo the two-dimennion~l eigenTalue problem
A s A s ~. -
In this
.),~
: o
in
A
c ~ s e , t h e l o w e r bounds
"~
u.:
o
on
ere e x p r e s s e d , by means o f t h e
I .,i
l•
12'
1
h
A
,,--4
~ G3~ t is an orthonormal symtela of harmonic polynolaials i n A
/'aA.
follows:
:
"iIl
h:4
,
K
Rayleigh-Ritz approximations, ~
4~ ~
of a plate
~ z )!/A,
is supposed simply connected. As a l ~ s t
e x a m p l e , l e t us c o n s i d e r t h e e i g e n v a l u e p r o b l e m c o n n e c t e d
w i t h t h e b u c k l i n g o f a c l a m pe d p l a t e :
~.A
u. 'r ~ / ~ u .
- 0 in
A
U,-
~
9~
:
0
on
9A,
A f t e r c o m p u t i n g t h e R ~ y l e i g h - R i t z a p p r o x i m & t i o n , we h a t e f o r t h e l o w e r approximation of
~ ~ :
-174-
~)
~.(t) A
J
J:4
A
4j~
+7. h
j
;.:4
AA
The
~
h
h a v e t h e same meeming a s i n t h e p r e v i o u s
example.
Ix-t l dr
dx §