Bock · Kostina · Phu · Rannacher (Eds.) Modeling, Simulation and Optimization of Complex Processes
Hans Georg Bock · Ekaterina Kostina Hoang Xuan Phu · Rolf Rannacher Editors
Modeling, Simulation and Optimization of Complex Processes Proceedings of the International Conference on High Performance Scientific Computing, March 10–14, 2003, Hanoi, Vietnam
With 231 Figures, and 34 Tables
123
Editors Hans Georg Bock Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) Im Neuenheimer Feld 368 69120 Heidelberg, Germany e-mail:
[email protected]
Hoang Xuan Phu Institute of Mathematics Vietnamese Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Road 10307 Hanoi,Vietnam e-mail:
[email protected]
Ekaterina Kostina Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) Im Neuenheimer Feld 368 69120 Heidelberg, Germany e-mail:
[email protected]
Rolf Rannacher Universität Heidelberg Institut für Angewandte Mathematik Im Neuenheimer Feld 294 68120 Heidelberg, Germany e-mail:
[email protected]
Library of Congress Control Number: 2004115281
Mathematics Subject Classification: 49-06, 60-06, 68-06, 70-06, 76-06, 85-06, 90-06, 93-06, 94-06
ISBN 3-540-23027-0 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting by the authors Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig Cover design: design & production GmbH, Heidelberg Printed on acid-free paper 46/3142YL – 5 4 3 2 1 0
!" # $!!%& ' ( ' )* %+, -.
)/
012 ' 3 4. ' &
'
& 5 6 ( / 6 &
( &
5 6 7 ' & ' $!! /& !! 5 ! 5 ' 8 & /
6 ( ' / 6
'
'
/5
' & ' '
/ #$
' ' '
& 4 / 5 5 ' & 4 / 5 5 /
'
9 :
ÎÁ
! " #$ % &$ ' ! ()# $
( ((! (" # * + '
,-
*+,! . * ' / #
! 0 # ( #- '
- 0(! 1 +
' 1
' 0 #! %- ,2 ,"# ' 3 # &
4 +# ! / $ & 0 # . + / + -5 . " 6 - 7889
. ) :) % . ; , '
................................................
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
! . . . . . . . . . . . . . . . . . . . . . . . . .
" # $% $ . . . . . . . . . . . . . . . .
& '( & ) . . . . . . . . . . . . . . . . . . . . . .
! ! " # $% &
& ' " ! & * +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
( '
,- . & . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
,- . & . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
/ &0 + 1 / . .
) $)
*( +' ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ! " # $ ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . !
% & $ ' ( $ " # " $ % . . . . . . . . $ $) * * & ' " " & ' ! ( ) ( . . . . . . . . . . . . . . % * ( * + $ $
"* % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * +, * # ( ! " + " , . . . . . . . . . . . . . . . . . . . + $ % - +
) " ! ! " " ! " - ! ! & ' ! " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
$ . /+
. % +,
+ / % & ' ( " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $ 0 + + #
( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * + * ' ## * # " / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 / 1 * 2 )# * - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
" # $ % & ' " ! (
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
" )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
& &! !
!
" # $
% & . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
& ! *
& % ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
" + ",
'" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
( "( $
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
&- . /&
& # ) & . . . . . . . . . . .
0 $ & &" * + & ,
. . . . . . . . . . .
%! $ , (
#" & - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 & * !
) . & ) . # #. ) . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!" #
. . . .
$ !
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % $ &
" # $ % & $ . . . . . . . . . . . . . . . . . . . . . . . &
'
' #
..................................................
(
$
) $ )( !*
& %& () () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
$
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
! " # $! %&'( !! ( ( ) $ ' ! ! * $ +'
! %& ( ! ( (
( +
"" ( " " !
! %&
,
* - !. ! " ! # / %! # ! 0% ( + " " ! * # ! ( ! ! %& !.
+ ! ! )
! !. # ) # 1 " !
! ! "
# " $ # $ %
&'℄ " $
)# ! $ # # % *
#
# # + ,
!"℄
$
% & ' ( )
* + !,-℄ .
(
.
( %
/
0
. 1 .
(
"
2
2 2
. 3
(P = (V, D, S)) V1 , . . . , Vn 4 D1 , . . . , Dn C1 , . . . , Cm 2 ℜ
2
X1 ← I1 , X2 ← I2 , . . . , Xi ← Ii , . . . Ii Xi′ s
! DX = [1, 10], DY = [3, 8], DZ = [2, 7], DT = [−1000, 1000], DU = [0, 15] DV = [−20, 20] x + y = z(c1), y ≤ x(c2), u =
2 ∗ v(c3), x = 2 ∗ t(c4) " var(c)
c # < X, c > X ∈ var(c)
$
< X, c > % & ! %' ( ) * < X, c > < Y, c > < Z, c >
X = Z − Y, Y = Z − X Z = X + Y $
< X, c > < Y, c′ >
! < Y, c′ > < X, c > " X ∈ var(c′ ) \ {Y } c′ = c
" DH(X, c, S) S < < X, c > % < X, c > + DH(X, c, S), X, c >
# ! ! $ $ %
" c - ha(c) DH(c) ha(c) DH(c) .
ha(c) ! DH ∗ (c) ha(c)
Π var(c)
ΠX (c) ℄ ! " # $ $ !
′ A1 = A2′ ,′ A1 ≤ A2′ ,′ A1 + A2 = A3′ ,′ A1.A2 = A3′ ,′ A1 = sin(A2)′ % & ' $ ( ′ a1 X1 + a2 X2 + ... + an Xn = b′
)* ( + , + " , )* + - , . X1 ← I1 , X2 ← I2 , . . . Xi ← Ii , . . . Ii Xi / < I1 , ..., In > )* )* 0 1 )* " $ 2
)*
3
!
c ( S 4 % 0 / )* '℄ )* 0 + ,
$ Q 5
0
$ 6 ! c/ 0 ! ( ! 7 8 9 DT
0 7 :
; 6
N ARROW (T, c) DT Q < T, c > Q
S DH (c) ∪ ha(c)
∗
DH ∗ (c) ∪ ha(c)
Q
! "
c S DH (c) ∗
#
S
ha(S)
"
% "
S \ {c}
"
$
ha(S) \ DH ∗ (c)
S \ {c} "
DH ∗ (c)
"
"
Q DH ∗ (c) ha(S) \ DH ∗ (c) Q ha(S) \ DH ∗ (c) DH ∗ (c)
DH ∗ (c)
ha(S) \ DH ∗ (c)
ha(S) \ DH ∗ (c)
c
c
ha(S)\DH ∗ (c)
DH ∗ (c)
!
"#
# # # $# %% &
DH ∗ (c)
% #
DH ∗ (c)
'&( )
c
S
*% + ,
DH ∗ (c)
Q ha(c) ! -#, DH ∗ (c) .
*
+ &/#&0 #
DH ∗ (c) Q
&-#&0
DH ∗ (c)
+ &/#&%
ha(c)
!
.
!
"
# 1 $
1 .
(c1, c2, c3, c4) ! " #
$ z = x + y% DX = [1, 10], DY = [3, 8], DZ = [2, 7], DT = [1.5, 5], DU = [0, 15] DV = [0, 7.5] & % '% ( % % DX = [3, 10], DY = [3, 8], DZ = [2, 7], DU = [0, 15] DV = [0, 7.5] ) % (
u = 2 ∗ v & #
& #
z = x + y z =x+y
DZ = ([1, 10] + [3, 8]) ∩ [2, 7] = [4, 7]
y =z−x x=z−y
DY = ([4, 7] − [1, 10]) ∩ [3, 8] = [3, 6] DX = ([4, 7] − [3, 6]) ∩ [1, 10] = [1, 4]
y ≤ x y≤x x≥y z =x+y
u = 2v u = 2v v = u/2
x = 2t x = 2t t = x/2
DY ≤ [1, 4] ⇒ DY = [3, 4] DX ≥ [3, 4] ⇒ DX = [3, 4] DZ = ([3, 4] + [3, 4]) ∩ [4, 7] = [6, 7]
DU = (2 ∗ [20, 20) ∩ [0, 15] = [0, 15] DV = (0.5 ∗ [0, 15]) ∩ [20, 20] = [0, 7.5]
= [3, 8], DZ = 2, 7] DT = [−1000, 1000]
x≥y x = 2t
z = x + y, y = z−x x=z−y y = z − x, x=z−y x=z−y
y ≤ x, x ≥ y x ≥ y, z = x + y z =x+y
u = 2v, v = u/2 v = u/2
x = 2t, t = x/2 DX = (2 ∗ [−1000, 1000) ∩ [3, 4] = [3, 4] t = x/2 DT = (0.5 ∗ [3, 4]) ∩ [−1000, 1000] = [1.5, 2]
z = x + y DX = [1, 10], DY y≤x
y ≤ x, x ≥ y t = x/2, x = 2t
DY ≤ [1, 10] ⇒ DY = [3, 8]
x ≥ y, t = x/2 x = 2t DX ≥ [3, 8] ⇒ DX = [3, 10] t = x/2, x = 2t DT = (0.5 ∗ [3, 10]) ∩ [−1000, 1000] = [1.5, 5] x = 2t DX = (2 ∗ [1.5, 5]) ∩ [3, 10] = [3, 10]
℄ " ℄ #
$ %℄
& ' ( ) *
y ≤ x y≤x x≥y
DY ≤ [1, 10] ⇒ DY = [3, 8] DX ≥ [3, 8] ⇒ DX = [3, 10]
u = 2v u = 2v v = u/2
DU = (2 ∗ [−20, 20) ∩ [0, 15] = [0, 15] DV = (0.5 ∗ [0, 15]) ∩ [−20, 20] = [0, 7.5]
x = 2t x = 2t t = x/2
DX = (2 ∗ [−1000, 1000) ∩ [3, 10] = [3, 10] DT = (0.5 ∗ [3, 10]) ∩ [−1000, 1000] = [1.5, 5]
y ≤ x, x≥y x≥y
u = 2v, v = u/2 v = u/2
x = 2t, t = x/2 t = x/2
DX X min(DX ) max(DX ) DX ! " #$
$ % X = Y /Z 0 ∈ Z & '
( $
% X 2 = Y X X ∈ [1, 2] X ∈ [−2, −1] Y ∈ [1, 4] ) # #
% DX = [1, 10], DY = [3, 8] X ≥ Y + 3 ∨ Y ≥ X + 3 $ X ′ s DX = [1, 5] ∪ [6, 10]
℄
!" # $%℄ &
!"
' (
(
( !"
) D X ∆ X D X
X
X
DX (k, s)(0 ≤ k ≤ m, 1 ≤ s ≤ 2k )
( (k, s) k
s k $ D (0, 1) D * 0 ≤ k ≤ m (k, s) (k + 1, 2s − 1) (k + 1, 2s) ( + X
X
DX (k, s) = DX (k + 1, 2s − 1) ∪ DX (k + 1, 2s)
DX(k + 1, 2s − 1) ∩ D (k + 1, 2s) = ∅ , ( ( ( ( ' [x, y] ( [x, mid(x, y)) [mid(x, y), y] (
* X ( ∆ D - markM (k, s) (k, s) . + $ /0/ D (k, s) ⊆ ∆ 1 /2/ D (k, s) ⊆ ∆ D (k, s) ∩ ∆ = ∅ 3 /×/ D (k, s) ∩ ∆ = ∅ X
X
X
X
X
X
X
X
X
X
X
X
∆X X
∆X = {DX (k, s) | MX (k, s) =′ +′ }
!
!"# $ ΠT (c) % ΠT (c) & '
MT (k, s)
( DX (k, s) ⊆ ΠT (c) ) * DX (k, s) ⊆ ΠT (c) DX (k, s) ∩ ΠT (c) = ∅ × DX (k, s) ∩ ΠT (c) = ∅
DX (k, s) DT + ,&!
P X &-$ P %
∆X MX (k, s)
DX (k, s)
(k, s)
(k = P )
MX (k, s)
!"
P
2P
#
P
!"
w
$%& '(℄
#
!"
* * +
DT , {T MT (k, s) | 0 ≤ k ≤ P, 1 ≤ s ≤ 2k }
#
!"
'-.℄ /
2P
# !"
P
!0$ 1 # 2
,
3 - # 4 ""5 " !" &
2 #
+
X
+
+ × 6
2
3
X
+ + #
6 7
!0$ 1
5
1
! " #
!
$%℄ ' ( ) *( *+,% --%--. /%,,%0 $-℄ )1 ) 2 ( 2 3) *( %. 3 4 * ) %.5%6, /%,,.0
℄ !! "!# $% &℄ '( )
( (* + *
, -
"-.#/%
##0/ "!##/% 1℄ 2 3
4
3
3
)
5
)
"5% 5 * 5* 6 3 , * )' 7 ' &"!%1& "!###% /℄ 8(
)
3
*
- - 1 $!!! "!##% $℄ 7'
9
'(
)
3
: ;'*'
<
( (* : 6 6 3
, ** 000 9 ! #& ' 9 * ' + += /! "000%
℄ ** > ( - ?' , 9'* +
7 .#
"!##%
#℄ <
) (
3 @ 9 7( 8 "!#//% !0℄ +3 * 2 8 A + 8 ( , B ) **
,
, A 6 ** +(* 3 A C+ 9 !0!10 "!##%
1 2 1 ⋆ 2 ! "! #$#%% !
& & ' () *+ ! , - . (++ *+ /. . / / , 0 1 & ' 20 ., . , - + 3 . , + , ) 1 / 4..+ . 1 ., 0 + 3 . # ' + . ,0 1 1 . . . '+ 5 1 - 0 67 1 + & & . / / 1+
!"# !# !# !$# %# !&℄# (
) ( ⋆ 8 9 9 " :#$
! ! !
" #
$
% &
'()
! *
+
&( #
#
, % $
% -./ 0
. " "
! - #0
" " # '()
div (σ∇u) = q. u(x) ! '() q = q(x) σ = σ(x)
1
. !
(2 3,℄ 31℄ " 35℄ 36℄ 37℄ # 311℄ 8 9 /
#
∇ × (µ−1 ∇ × E) − ıω σ E = ıωs. 315 17 1,℄
Ω
&(
'() ! : 1 '()
1
" # " $
A(m)u = q
m(x) σ σ(x) = em(x) , x ∈ Ω.
! ℄
u q m # $ % A(m)u = q. &!' ( A $ u m ( $ u &!' m & q ' $ m b u &) * + u '
&!' , -. - # m u b
m
℄ 1 Qu − b2 + βR(m) m,u 2 subject to A(m)u − q = 0, min ϕ =
!"
Q #
$ R(m) β > 0
$ % · & '
R(m) =
Ω
ρ(|∇m|) + α ˆ(m − mref )
("
αˆ
" mref
" ) #
ρ
* ( • &
1 2 τ , 2 R′ (m) ← div ∇m. ρ(τ ) =
•
+
&
R′ (m) ← div a∇m
•
a
℄
ρ(τ ) = τ, R′ (m) ← div ( •
∇m ) |∇m|
!"#$ %
τ, τ ≥ γ, τ 2 /(2γ) + γ/2, τ < γ 1 1 R′ (m) ← div min{ , } ∇m γ |∇m| ρ(τ ) =
&
ρ
' ( )
(# * (# + ' ,
"#$
β
# - (
(#
*
. , # . / '0
1
('
, ( .
2# 3 ' (( ' ' ( ( )
*
( 456 ,
( #, ( ( 7
# + ( * . #' '
+
u
, (# , #
) (#
min ϕ(m) = m
1 QA(m)−1 q − b2 + βR(m). 2
8
( ) (# 9, : 9, , . , - ( + '
(J T J + βR′′ ) δm = −p
p J R′′ m m ← m + α˜ δm
0 < α˜ ≤ 1 J Hred = J T J + βR′′
!"# L(m, u, λ) =
1 Qu − b2 + βR(m) + λT (A(m)u − q) 2
λ ! u# !
#
$ Lλ = Au − q = 0, Lu = QT (Qu − b) + AT λ = 0, Lm = βR′ (m) + GT λ = 0;
where G =
∂A(m)u . ∂m
!%# !%# !% #
& !%# G ' !%# & ( ! & )*+ ,
& - ./0℄# 2 ,
&
⎛
⎞⎛ ⎞ ⎛ ⎞ A 0 G δu Lλ ⎝QT Q AT 0 ⎠ ⎝ δλ ⎠ = − ⎝ Lu ⎠ . Lm 0 GT βR′′ δm
!3#
!3# $ 4 55 ! # ' β
! β # 2 !3#
$ (u, λ, m) 6
! " # #$ % & λ ' # ( )*℄ ! , " ( --
. δu # %/' % #' δλ # %/' % $ #' # δm Hred δm ≡ (J T J + βR′′ ) δm = −p
%0'
J = −QA−1 G
% *'
" !
" %0' 1 $ % )℄' $ M −1 (J T J + βR′′ )δm = −M −1 p,
M M = R′′ " $ 2 !- Hred Hred v v ! 33 4 Jv J T v , # G Q $ A−1 % *' " $ # #
" %0' , 5 ) 6 6 7℄
" - ( , # 8 #
" #
" ! -& 9 )*℄
δu δλ δm ! "#$ "#$ %& '
( ) β "#$ * +,-℄ /)0
! 1
2 3
4 +5 -℄ * ' * +6℄ , ! )' 7 8 - 7 ( /)0
7 ∇m ! R m(x) = ln σ(x).
9 σ '
7 R
"#$
∇ × E + αµH = sH
in Ω,
∇× H−σ ˆ E = sE in Ω, n × H = 0 on ∂Ω,
σˆ = σ + αǫ α = −ıω µ(x) σ(x) 0 ≤ ǫ ≪ 1
ω ∇×
℄ " # $ % & E = A + ∇ϕ div A = 0.
& A ' (& ∇ϕ
)& * "+ %,- ./℄ $&
∇ × (µ−1 ∇ × A) − ∇(µ−1 div A) + α σ (A + ∇ϕ) = αs div σ (A + ∇ϕ) = div s.
, σ = σ > 0
&
−(∇ × A) × n = 0, ∂Ω
∂ϕ
A · n =
= 0, ∂n ∂Ω ∂Ω ϕdV = 0. Ω
0 1℄ 2 ' $ & 1℄
$ , 1 A αs Lµ + αMσb αMσb ∇h = ∇h · Mσb ∇h · Mσb ∇h ϕ ∇h · s
3 & Ak (m)uk
= qk
⎛
⎜ ⎜ ⎜ A(m)u = ⎜ ⎜ ⎜ ⎝
A1 (m) A2 (m)
⎞⎛ ⎞ ⎛ ⎞ u1 q1 ⎟ ⎜u2 ⎟ ⎜q2 ⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ = ⎜ ⎟ = q. ⎟⎜ ⎟ ⎜ ⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎠ ⎝ ⎠ ⎝ ⎠ As (m) us qs
A, ∇ϕ s E ϕ div A m σ ˆ ! µ ! H
℄
! " # $# %% %
&
%' %
( ) ) ( ) * % ) % %
5 16, 64 512 Hz 28 50m
% 11 ) % 100m % 308 4620 % + , % )
% + ,# )% %
2% 2 % 3350m × 3000m × 2000m ' 64 × 50 × 30 = 96, 000
% - # %
β
β
# )% )
) %
%
. ) /
% + ,
%
b/b# # % l2
Qu−
%
% %
00 % % 1 %
℄ ) %) 2 3# )% % )
4
β = 100 0.06 ! ||Au − q||/||q|| "# $ % 3e − 2 #$ % 2e − 4 # 2e − 6 #% β = 1e0 0.03 ! ||Au − q||/||q|| "# $ & 1e − 6 # ' 8e − 7 (#%
!
Ex , Hy $ )* + , + !
+ + + , , !
-$ , ..
℄ ∂H = 0 in Ω, ∂t ∂E ∇ × H − σE − ǫ = sr (t) in Ω, ∂t n × H = 0 on ∂Ω.
∇× E+µ
! " # $
%
αn = (tn − tn−1 )−1 σ ˆn = σ + αn ǫ
∇ × En + αn µHn = αn Hn−1 ≡ sH ∇ × Hn − σ ˆn En = snr − αn ǫEn−1 ≡ sE
in Ω in Ω
n × Hn = 0 on ∂Ω.
& $
' ( ⎛
Lµ + αn Mσb αn Mσb ∇h ⎝ ∇h · Mσb ∇h · Mσb ∇h −1 0 α−1 n Mµ ∇h ×
⎞⎛ ⎞ ⎛ ⎞ 0 An αn s 0⎠ ⎝ ϕn ⎠ = ⎝∇h · s⎠ . I Hn Hn−1
n Bn un−1 + An (m)un = qn ' s ⎛
A1 (m) ⎜ B2 A2 (m) ⎜ ⎜ A(m)u = ⎜ ⎜ ⎜ ⎝
⎞⎛
⎞ ⎛ ⎞ u1 q1 ⎟ ⎜u2 ⎟ ⎜q2 ⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ = ⎜ ⎟ = q. ⎟⎜ ⎟ ⎜ ⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎠ ⎝ ⎠ ⎝ ⎠ Bs As (m) us qs
)*
+),℄ $
50m × 50m " .
/
$ 20
4 18
10−4 − 10−1 sec ' 0 1 15m
' 32 $
10−7 − 10−1 sec '
40 × 40 × 32 '
$
2
' * '
33'
β = 1e − 1 0.1 ||Au − q||/||q|| ! 3e − 3 ! 2e − 4 " 7e − 6 ! " 9e − 7 " β = 1e − 2 0.04 ||Au − q||/||q|| ! 4e − 6 # 6e − 7 " β = 1e − 3 0.02 ||Au − q||/||q|| ! $ 2e − 6 8e − 7 % "
! R(m) =
Ω
ρ(|∇m|) + α ˆ(m − mref )
h
h " #
$ R(m) % u = m &'( ')℄ +
, • % |∇m| → ∞ |∇m| |∇m|2 .
/ / • % | grad m| → 0 |∇m| " |∇m|2
℄
τ, τ ≥ γ, 2 τ /(2γ) + γ/2, τ < γ 1 1 ′ } ∇m . R (m) ← div min{ , γ |∇m| ρ(τ ) =
!
"# $ % "
& ' ( " ) & * |∇m|h = (D+,x m)2 + (D+,y m)2 |∇m|h =
(D+,x m)2 + (D+,y m)2 + ǫ,
" 0 < ǫ ≪ 1 |∇m|−1 h ' ! ' ' + ℄' ,& ǫ #- & . ' / "& * " γ "" ' , γ " . $ 0 "%1
'' 2 * & |∇m| ǫ
" m & ' " ""
' ( & γ & " &
3 |∇m| 0 "
& " ' / & & "
& "
' / γ=
h |Ω|h
Ω
|∇m| . h
4
γ " 0
& ' 5 " 2" &
& |∇m|6 ℄ & ' ( " & " * ' ' 7 & #
' 2 &
2 "2 2 & " " ' 8 . & "" 9 R 3 )' ,& QA(m)−1 q = m
R′′ δm ≈ div
1 1 } ∇δm , min{ , γ |∇m|
!" # $ %&'℄ γ ) * +* & # , - #
. / R′′ # ' 0 0
1 "234 %&℄ ,
/
- 56 4 7 8 9 / 6 2+3 : ;
< 0
/ / = >
- %?℄ - m / + )
)
5 @
,
2D Ω = [−1, 1]2
- div (m−1 ∇u) = q,
σ m 0
u 0 )
! "! # ! $%& q = exp(−10((x + 0.6)2 + (y + 0.6)2 )) − exp(−10((x − 0.6)2 + (y − 0.6)2 )),
129 × 129
1% b ! m−1 "
# ! $%&℄" ( ) ! " * m
+ , -
+ & . β = 10−5 ) 1.66 × 10−2
1% β β = 3 × 10−6 / 1.50 × 10−2 0 β 10−6 β 1 23 β = 10−5 γ = 4.6 1.01 × 10−2 4
!
" # β = 10−5
$ %
β = 3 × 10−6 ! " !#$
% β = 10−5
& " !'(
!"#
!
" # $ !
% 1% 1.5% " # " #
! & " # $
&
! ' ( $ ! !
!
!
) & *
! [mmin , mmax ]
5 + ! m
5 ! ! " #$
2.2 × 10−2
!
" #
" $ % & '
# $
( ) *
&
+ ℄ - . / )
0
121 345 655
℄
℄
! " # $% &' !($
) * ,℄
+++
! %%- &
' .# *
" +++ 3℄
/& $0 1 2
! 4 $" # $% &'$5 $
!($ ) ! ***
0℄ 4
6
& 7 ! &
++0
$
8℄ - 9 7 ! / $ ' $
:+0,;+88 +++
!
<℄ 6 ( ' & - $' # = &
+℄
3:3;3 +<+ > # ? @ # #
"
5*/
! +< ℄ 7 9 A (
" $ '
B
$#%
&
,:;
8 ++< ℄ 5 ) ! ) > ' ) / ) A
# ' ( ) *& + ++<
#
B # & *
℄
!( ' & 7 ++8 ℄ 9 B ' ( $ # & C
& :+,;+0
,℄
& &
! $$
8:<,8;<0,
3℄ ( ( (
9
& & #% & 0:3;8
0℄ (
* ' (
A & D $$ / 8℄ ! 6
>
& 3:8; +0,
<℄ " # (
- $ ' &
' ; & <:,3;3, ++8
& #&
$#%
,
℄
! "
#$%&''&() )
#*℄ + , -
#℄ 0 1 2 / 2 + ##℄ . ,
./% ,
2 3 2
4
2-, 2
5 ( #&℄ , 5
! "
#4℄ , / 3
!
/ 6 !
" $ $ %&"#'
4%#&'
#'℄ 5 , 7 89: ! ; ##%##$
5
$ ! !
$4 ,
#(℄ / 8. + - ,
<
!
( )(
))
#)℄ 3 5 = , #** #$℄ 5 8
!
# )
#**#
#$
'
#**
2
,<>
2
1 1 1 2 2 2 1
!"#$% &
2
' ( )'(* +!, !- .
!/$"
&
0
1
- 2
- 3 4 4
-- 5 ! , ' ( )'(* - (
l1
4 6
7 8 - ' 9 ! : l1 1 2 0 '(; ( -
! " # " $ %& ' " $ () )**( + , $ - $ " + (.*** /0*** 1 2(*℄ 4 " " " "
℄
!
"
# #
"
$
v(t) r(t) ˙ y(t) ˙ = = ⊕ − GM v(t) ˙ r3 r(t) + (r(t), v(t), t) y(t0 ) = y0 = r0 v0 = p.
%
y(t)
!
&
(r(t), v(t), t)
p
'
#
(
)
*℄ ) ' + +
p
+
p
bj , j = 1, ..., mi ,
ti , i = 1, ..., k, ηij mi ' y(t)
ηij = bj (y(ti ), ptrue ) + εij ,
j = 1, ..., mi ,
εij
i = 1, ..., k,
)
*℄
bj (y(t), p)
(N (0, σij2 )) min
2 (ηij − bj (y(ti ), p))2 /σij
|ηij − bj (y(ti ), p)|/|σij |
i,j
! " # l1
$ min
i,j
% & l1
l1 '(℄
% * + ,
l1
l1
- l1 & $ - b(y(t), p) η $
min y,p
mj l j=1 i=1
y(t) ˙ =
|ηij − bj (y(ti ), p)|/|σij |
r(t) ˙ v(t) ˙
=
v(t) ⊕ − GM r3 r(t) +
(r(t), v(t), t)
:= f (t, y(t), p)
y(t0 ) = p.
!
" # $
"#$
%℄ ' (
)
! % *℄ "#$
+
' , τj
t0 = τ0 < τ1 < . . . < τm = tl
y(t;s0,p) ▼
s0 ❋
h0
τ1 τ0=t0
s2 ❋
h1
s3 ❋
h2 hm−2
s1❋
sm❋ hm−1
❋
s m−1
τ2
τ3
τm−1
●
y(τ m; sm−1, p)
τm=tl
sj m y˙ = f (t, y, p),
y(τj ) = sj
Ij := [τj , τj+1 ] y(t; sj , p) t ∈ Ij τj
y(t, sj , p), τj ≤ t ≤ τj+1 ,
!" # (s, p) := (s0 , . . . , sm , p)
$"
min ||r0 (s, p)||1 , (s,p)
hj (sj , sj+1 , p) := y(τj+1 ; sj , p) − sj+1 = 0, j = 1, ..., m − 1, s0 = p.
%
$" # s & ' ( ) * sj y(t; sj , p) + ! &
,- & " $ . / 012 & * # l1
2# 012 /
* $" min ||F1 (x)||1 =
m1 i=1
|F1i (x)|, s.t. F2 (x) = 0.
."
F2 (x) = 0 Fi : D ⊂ Rn → Rm , i = 1, 2
!
xk+1 = xk + tk ∆xk , 0 < tk ≤ 1. " ∆x l1 i
x = xk
min n ||F1 (x) + J1 (x)∆x||1 =
∆x∈R
m1
|F1i (x) + J1i (x)∆x|,
m2
αi |F2i (x)|
i=1
#
F2 (x) + J2 (x)∆x = 0. $ J1 (x) J2 (x) % F1 (x) F2 (x) J1i i− J1 (x) & tk
' T1 (x) := ||F1 (x)||1 +
i=1
( αi > 0 i = 1, ..., m2 , $ ) ! ( *
+ ,-℄ ,℄
! " / # ! 0 1 2 3 012
! 4 012 ! 5 $ ! 6
! ! #
! ! ! 0 l2 ! ,-℄ 6 072! l1 ' $
l1 tk ≡ 1
! "
l1 # l1 $
J(x) =
J1 (x) J2 (x)
l1
" %&' (
)
⎞ D10 D11 . . . . . . D1m ⎟ ⎜ Gl0 Gr0 ⎟ ⎜ ⎟ ⎜ l ⎜ ⎟ G1 0 ⎟ J(x) = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎠ ⎝ 0 Glm−1 Grm−1 ⎛
* " ( "
" +
F1 (x) , - ./℄ .1℄ l1 l1
2 3 4 5+* 3 $
6
M1
min f (Y ) =
i=1
|ATi Y + ci |,
ATi Y + ci = 0, i = M1 + 1, ..., M1 + M2 M1
m1
l1 M1 2 × M1
min fLP (Y ) =
M1
ξi ,
i=1
ξi − ATi Y ≥ ci , i = 1, ..., M1 , ξi + ATi Y ≥ −ci , i = 1, ..., M1 ,
ATi Y + ci = 0, i = M1 + 1, ..., M1 + M2 , ξ ≥ 0,
!
"
#
$ %
ϕ(λ) = cT λ,
min
λ∈ RM1 +M2
&
Aλ = 0, |λi | ≤ 1, i = 1, ..., M1 .
' " $ %
(℄ '
#
A
'
*
min f (Y ) =
M1 i=1
|ATi Y + ci |,
+,
ATi Y + ci = 0, i = M1 + 1, ..., M1 + M2 , L ≤ Y ≤ U,
L
U
Y
-
+, . $ % (/℄ "
# 0 .
!"# !$ %# $! & '(℄ *+,& l1 # # - *+,&- . *+,&- , !" # *+,&- / l2 l1
1 2 3 4 5 6 7 8 9 10 !"
-
/0
-/
-
-1
(
2
2
3
2
-
-
4
-/
4
*+,&-
l2 l1 p1 [km] l2 l1
p2 [km]
p3 [km] p4 [km/s] p5 [km/s] p6 [km/s]
0-1(- 4/0/0 /31-/
42(/13
/124 /23
0-1(( 4/0/2 /31 (
42(//3
/ 2 / 1
1
l1 l2
℄ ! " # $ % &
'
()
* + ,- ./++/0 /℄
1 23 ( .0 #
4 % ' ) )4 ) % 5 4 .,60 7℄
1 ! # ) .,680 9℄
1 ( : ; 5 ) < ' *
&
% 4 = * # " # " $ % # 5
.(0 : >89 ./+++0 >℄ ' & # :
( : 4 l1 ? " " $ 76 , 9++ 9 .,,60 -℄ 5 ; $ ; @ ) .,60 8℄ ( :
4 ? 3 ? " " # >> 7 ./++/0 6℄ # 1 (
)
)4 4 * A 1 ./+++0 ,℄ * & # # 1 /+ * 4 +℄ ) B4 & / ./++/0
!"#$%
& ' (
) *
'
+ , &* - * + - '. , ( ( ) * ) *( ,
) * /
, &
)
, - * , '"
!" # ! $%& ' %(℄ # * ! $+ , %% %'℄ # - . - / - 0 " -
℄
!
"
# # $ %# & ' (
& ) $ *# !
+ S ⊂ Êd d = 2, 3
L D := Êd\S S
C VC Ω F
S t
S(t) R(t) $ F
L ρ ∂∂t + ρ( · ∇) = ρg + ∇ · T (, ) (x, t) ∈ [Êd \S(t)] × {t}, ∇·=0 t>0 ρ L# ,
L# T -
ρg
! +
.(& -
T ( , ) := −1 + µ(∇ + (∇ )T ),
µ
(x, 0) = 0,
lim
|x|→∞
(x, t) = 0
x ∈ Êd \S(t)
(x, t) = VC (t) + Ω(t) × (x − xC (t)) x ∈ ∂S(t).
! ˙ mS VC = mS g − T ( , ) · N dσ, ∂S(t) ⎪ d(J ·Ω) ⎪ ⎩ S(t) (x − xC ) × [T ( , ) · N ] dσ, =− dt ⎧ ⎪ ⎪ ⎨
"
∂S(t)
mS
# N ∂S(t) JS
C $
VC (0) = 0# Ω(0) = 0 %&"
L & R y P R x F # x = Q(t) · y + xC (t), Q(0) = 1, xC (0) = 0, ' ( ) ' % ρ{ ∂v ∂t + ((v − V ) · ∇)v + ω × v} = ∇ · T (v, p) + ρG(t)
(y, t) ∈ [Êd \S(0)] × (0, ∞)#
∇·v =0
*
v(y, t) := QT · (Q · y + xC , t), p(y, t) := (Q · y + xC , t), G := QT · g + V (y, t) := QT (VC +Ω×(Q·y)), T (v, p) := QT ·T (Q·v, p)·Q, ω := QT ·Ω. ,
ω × v (*)1 ' )
"
⎧ ⎪ ˙ ⎪ m V + m (ω × V ) = m G(t) − T (v, p) · n dσ, ⎪ S C S C S ⎪ ⎪ ∂S ⎨ IS · ω˙ + ω × (IS · ω) = − y × [T (v, p) · n] dσ, ⎪ ⎪ ⎪ ∂S ⎪ ⎪ ⎩ dG dt = G × ω,
%-
VC := QT · VC , n := QT · N, IS := QT · JS · Q, ∂S := ∂S(0).
d = 2 ω := (0, 0, ω) y × [T · n] = (0, 0, −y2 (T · n)1 + y1 (T · n)2 ) d = 2 ()2
R G t
! "# " $%℄
S
VC ω L R(t) '
( $%℄ v p VC ω G )
* ( ρ{((v − V ) · ∇)v + ω × v} = ∇ · T (v, p) + ρG ∇·v =0
Êd \S],
y∈[
+
lim v(y) = 0
|y|→∞
v(y) = V (y) := VC + ω × y y ∈ ∂S T (v, p) · n dσ, mS (ω × VC ) = ms G − ∂S y × [T (v, p) · n] dσ, ω × (IS · ω) = −
, -
% G × ω = 0. ! ! .
' $/℄ . ω = 0 0 ! '
d = 3 G
ω
∂S
d = 3 ρ T = T (v, p) |G| = |g| IS mS G = |g||ω|−1 ω ω = 0
v p VC ω G
Ω ⊂ Êd L2 (Ω) Ω (f, g)Ω :=
1 ||f ||Ω := ( |f |2 dx) 2 .
f g dx,
Ω
Ω
! L2 (∂Ω) ! ∂Ω " L2 #
L2(Ω) $ H 1 1 1 H0 = v ∈ H (Ω), v|∂Ω = 0
" % & ω = 0 " %! % ! ' ! ! ! % ( " ! ) * ! + 1 H1 (D) := (v, V, ω) : v ∈ [Hloc (D)]d , V ∈ Êd , ω ∈ Êd , v = V + ω × y ∂S , D := Êd\S " p L20 (D) :=
q ∈ L2 (D) :
q=0 .
D′
-
D′ ⊂ D u := {(v, VC , ω), p} ∈ H1 (D) × L20 (D) ϕ := {(ϕ, ϕ1 , ϕ2 ), q} ∈ H1 (D) × L20 (D)
A1 (u; ϕ) := ρ(((v − (VC + ω × y)) · ∇)v, ϕ)D + (ω × v, ϕ)D −(p, ∇ · ϕ)D + 2µ D(v) : D(ϕ) − (ρ|g||ω|−1 ω, ϕ)D D −1
−ϕ1 · [mS (|g||ω|
ω − ω × VC )] + ϕ2 · [ω × (IS · ω)] −(∇ · v, q)D ,
.
ϕ ∈ H1 (D) ×
()1 D(v) D(v) := 12 (∇v + (∇v)T ) u := {(v, VC , ω), p} ∈ H1 (D) × L20 (D) A1 (u; ϕ) = 0 ∀ϕ ∈ H1 (D) × L20 (D). !" #
!"
{(0, ϕ1 , 0), 0} {(0, 0, ϕ2), 0} # !"
$ %
&'( !℄ L20 (D)
( D := Êd\S * L Ω ⊂ Êd\S + * ∂Ω\∂S
, ( v(y) = 0 y ∈ ∂Ω\∂S. - * . ( Ω
&!( /℄ # . * W1h ⊂ H1 (Ω) × 2 L0 (Ω) * Th = {K} $ K Ω 0 {Th }h h → 0 W1h ⊂ H1 (Ω) × L20 (Ω) 1# * &"℄ W1h := ((v, V, ω), p) ∈ [C(Ω)]d ×
Êd × Êd × C(Ω),
v|K ∈ [Q2 ]d , p|K ∈ Q1 , v|∂S = V + ω × y ,
Qr
r
&2℄ #
$
*
&℄ 3
( .
( * ( * .
′ uh := W1h
A1 (uh ; ϕh ) = 0 ∀ϕh ∈ W1h .
S
! " #$℄ ! !
& ' u := {(v, VC , ω), p} ∈ H1 (D) × L20 (D) Jψ (u) :=
∂S
[T (v, p) · n] · ψ dσ,
ψ := ψ1 + ψ2 × y ∈ Ê3 ψ1 , ψ2 ∈ Ê3 ψ = ψ1 ψ = ψ2 × y Jψ (u)
Jψ1 (u) = ψ1 · Jψ2 ×y (u) = ψ2 ·
∂S
∂S
[T (v, p) · n] dσ
y × [T (v, p) · n] dσ.
(
) & A(u; ϕ) := ρ(((v − (VC + ω × y)) · ∇)v, ϕ)D + (ω × v, ϕ)D D(v) : D(ϕ) −(p, ∇ · ϕ)D + 2µ D
*
−(ρ|g||ω|−1 ω, ϕ)D − (∇ · v, q)D ,
ϕ1 ϕ2 & A1 (u; ϕ) H1ψ (D) := H1 (D) ∩ {(v, V, ω) : ∇ · v = 0 Ω, V = ψ1 , ω = ψ2 } .
#,℄-
+
u Jψ (u) = A(u; w) ∀w ∈ H1ψ (D) × L20 (D).
H1ψ (D) × L20 (D) W1ψ,h := W1h ∩ {((v, V, ω), p) : V = ψ1 , ω = ψ2 } .
uh ∈ W1h
′ J˜ψ (uh ) := A(uh ; w) ∀w ∈ W1ψ,h ,
A(uh ; w) ψ w !
" J˜ψ (uh ) = Jψ (uh ).
# $℄& J˜ψ (uh )& Jψ (uh ) ' Jψ (u) ( &
Jψ (uh ) − J˜ψ (uh ) !
Jψ (uh ) − J˜ψ (uh) & " ) ( z := (z v , z V , z ω ), z p ∈ H1ψ (D) × L20(D) L(u, uh; z, ϕ) = 0 ∀ϕ ∈ H1ψ=0 (D) × L20 (D). * + & L(u, uh; z, ϕ) z ϕ " L(u, uh ; z, u − uh ) = A(u; z) − A(uh , z) ∀z ∈ H1 (D) × L20 (D), ,- ′ u uh
. A(·; ·)& L(u, uh; ·, ·) '
$*℄ / "
Jψ (uh ) − J˜ψ (uh ) z 0 Π : H1ψ (D) × L20 (D) → W1ψ,h Jψ (uh ) − J˜ψ (uh ) = A(uh , z − Πz). , 1 $*℄ !
,
" " ψ1 ψ2 ψ = ψ1 + ψ2 × y & z ψ ' "
.
z v |∂S = ψ C
l = 6.10 m L = 1.10 µ = 0.1 ρ = 1
∂Ω\∂S Ω !℄ #
$
% & −2
−2
ν = 0.1 D = 800 ! " # ! $! %&!
℄
℄
! " #$
( ) *$ % 0! 1 % 2 ,
! %
& '
+
,' - ,./
,℄ 3 4
2 ' % 2'5$ 6 //7
7℄ - 88 - %& ( 2 ' '+ &
!! 9:,;<.9./ //
.℄ =" =
% ( > -
>
- ? @ @! A℄ =" = & + & ( ( & % 5 ! ' B
"
$
,<9,
C℄ > = > 4 > 4! @ D ! ( ) ( ( 2 E !'
*$
+
5'/CFA G)( 0! & 3 2
4 % & //C 9℄ =$ +# " + ?? H H " ) ' %
4 2 2 F
( *$
!2 2 % <
"
/℄ 5
!
+ & ( ( % <
2 !
℄ " 3 + &
*$
,<7,AA ///
! !
( ! ' B
2
B
# ! "
? ( *$ ( 'B
! "
℄
!
?? H >H 3
Ú !I *
38
,<9.,A //
& ( & ( ( % & +
7/F & ( (
% >
! !!
*
!B
) %
3
( '*
*$
A
A℄ " #$ G B
7:;/ /9C
.℄ G 0! = + &22!
% $
? ( *
# ! " $
7℄ ? 3 % J )
<,,.,. //A
,℄ 5
)
'
/C, ℄
( &
# %
( 5 ! '
A<7..7C7
!" #
$ %&'()' &) * + ' ) %&' *
,+ & + )- &) ' & . ' * &
&) ++ ++
()' ++ &) '
+
/ + )- ' & ) ,+' )
+ ' )& 0 ++
+ + + ) * ' ' ' + ) ) + +
' ' ' + ' . .' + '
+ ' * $+ + ' ' 1 ++ ++' + ' '
!
" !
# $ %
# $ " & ' " & ( )
* +, - .
! / )
+- / +
! " # $ % &'
# " &' ' !
# "
"'
( )* (+,℄ +.℄ +/0℄*
& 1 # " $ $ $ & " ' ! $ ' 2 ! ! 3 4
' ' & ' 2 ! ! ' (+/℄ +5℄ +/6℄* 7
8 '
( +9℄* "' '
$ $ ' "' ) $ ' " '
'
' ' ! (!* $ & ' ' 34:
) ( +;℄* 8 5 8
< $ '
! ; '
$ : ' ,
$
( * $
$
!
" ! ! # $
# %
&
' (
℄) ) )) ℄) ) )) ℄
%
℄ ℄
℄
"
℄
℄ "
℄
* *
"
t1
t2 t2
t1
+ x t2 #
+ x t1 # , t1 ≤ι t2 t2
t1 ≤ι -
" " ≤ι
'
' ' i ≤ι i
'
(t1 , m1 )
(t2 , m2 )
t2 ≤ι t1 m2 ≤ι m1 t1 t2 t2 ≤ι t1
r2 t2 n r1 t1 i 1 n
r2 i
r1 i G H
! G H F G H H F G F
" " G H H !
G # G H H G $ ! " %&'℄
) ") *" ") %&+℄ ,
℄
! "#℄ $ % & & % '
& & ( &
) & & * + , % & & - ) - &
& ) * ) ' % & % & .℄ #℄ ℄ "℄ ""℄
/℄ 0 & + & & 0 & % & 1 23 ""℄ 4 % *
+
& 5 * 6
5 ℄
& & & &
& 6 5 * & &% 7
8 9 %
)
" 0 5 ) : & & ) ! & ""℄ % &
! "
# $
% &'
&
(
$ )
* "++
,
+ ! &' - . / 0 !11 ,
&' % $- ,
&
1 * 2 ℄
4
'
'
) & 5
$-"
℄
℄
℄ ℄ ℄ ℄ ℄ ℄
℄ ℄ ℄
!
℄ " #
$ %
& '
(
℄ ℄
℄ '
℄ ) ' **
" % # ! "##℄ $
℄
+ ,
%
℄ ℄ $
! "##℄
% &&℄ & ℄ $
'& ℄ & ℄ $
! "##℄ ! "##℄
℄
℄ & '& ℄ ( ℄
℄ ℄
℄ ℄ !" ℄
! "#$$ % & "
' &
( )
! ! * ! + , )
( ) ! !
' !
' ! % - ) ( ) ! ) !
'
( )
, ! ! ' !
% !
) % $ ! ) ) !
) - ! .
% !
/ 012℄
- ! ! / 045℄
! !
! "! #$%&℄() *
) +
) *
)
$,℄ - . ) /&0123&,3" .4- 5 - #,33&() $%℄ - . ) /&*%23,3%
#,33() $&℄ 67 .) . )8 . ) + #,333() $1℄ 9 *)8 5 : - + ) ; #%,() $℄ 5 *)0)8 ; 66 5 :8 9 5
0 < .) 8 - = >) ) # )(8 * - 5
) > ? #%( ,,1,%) $"℄ 5 *)0)8 ; 66 5 : - + )
= - 5
+= ; 66 9 #%,() $@℄ 5 ) )9)8 5 : :) . . ) 3& 9 A . B
#,33() $C℄ ;D 69E6 )8 F F ) > G5A33 += F > - 8 9 9 ;
* ) 5
#,333() $3℄ ;D 69E6 ) :E6>E6 ) G )8 8 F F <) > A3@ += F < - - - - H- #,33@() $,℄ :E6>B6 ) ;D 6 ) ? )G)8 * 5 6 4 F ) > <5A3" += F < #,33"( 1,,) $,,℄ :I ) ; )-)8 4 < F ) > G5A3 += F J - 5 #,33() $,%℄ G 4) 5 *) ? >)8 F 4 ) > *KJF+- 5 , ;> + 5
5) 50 #,33C( %&)
℄
!
" #$$$%
&℄ ' ( ) * +,- . " - )/ 0- 1
2 3 #$$4% 546&&
4℄ ' "
" - )-
: ; 2.
7 8 96
#$$5% <46&=<
<℄ 8> 7 8 9- 96 : 0- ,
1
8
? :>
@ 2 #$$3% 3℄ 8 ) 7 ( > ,> 7(,;$! 1 > #$$!% !℄ , / 7 " - , 6 2 6> $℄ , / 7 " - ) 1-
"- > #$!&%
- 2 8 , 6
"> # % " - , , 6
' 8 2. A <&= ,- 6A #$$$% 6<4 5=℄ , / 7 9- ' - 7 @ "
-
5℄ ? @ ( ? .
<
2 "
"6
" #5===%
@
> 6
"- , >
,- )- 0- ,> #$$<% 55℄ ? B )C ( - - 9: 5℄ A D B E> 9
#$$<%
2-6
1 8 2 " - 1>- 0 2
- @ 1
E "
"> ? :> 1 6
> #5==% 5&℄ F
' B G G ' ) ") ,- .
, E , , ) # % " - , @
@ ' 8 2. A 55=
,- 6A #5==% &&643
1 2 1
2
⋆
!"
!
" # $%%℄' $(℄) * ' ! N −1/2 N −1 ' N ' * ' * + * * ! * * * , - . / * 0 * $1℄ $%2℄ * # $%%℄' $(℄) 3456" $%1℄ 7 * * ⋆
#
$ %& *+++!""
"'" $ ()
µ
e−iωt
∇ × E − iωµH = 0, ∇ × H + iωεE = 0.
E H ! ε(x), x = (x1 , x2 , x3 ) " # $ # x2 " ! ε(x) = ε(x1 , x3 ) x1 L > 0 ε(x1 + nL, x3 ) = ε(x1 , x3 ) ∀ x1 , x3 ∈
Ê,
n .
! ε(x) " ℑε(x) ≥ 0 ℜε(x) > 0 ℑε(x) = 0 % ε {(x1 , x3 ) : b2 < x3 < b1 }
ε1 ε2 ε(x1 , x3 ) = ε1 Ω1 = {(x1 , x3 ) : x3 ≥ b1 }, ε(x1 , x3 ) = ε2 Ω2 = {(x1 , x3 ) : x3 ≤ b2 }.
% ε1 > 0 ε2
# Ω2 $ &
# & ' ( & & % (
E x2 ' E = (0, u, 0)T ∈ 3 u = u(x1 , x3 ) &
Ê
∆u + k 2 (x)u = 0
Ê2.
)
k 2 (x) = ω 2 ε(x)µ * H x2 ' H = (0, u, 0)T ∈ 3 u = u(x1 , x3 ) ' 1 2 . ∇u + u = 0
div + k 2 (x)
Ê
Ê
, ! $ # ( ) + & % !
Ω x1 #
ε(x)
! ! "
# $
% #
&'( )℄
+ &'( ,
$
)-℄ .
&'(
$ &'( '
#
/
$
$ &'(
(
Ω
R2 u ∈ H01 (Ω)
0
A(u, v) = F (v) ∀v ∈ H01 (Ω),
1
F ∈ H −1 (Ω) H01 (Ω) [p(x)∇u · ∇v + r(x)uv] dx ∀u, v ∈ H01 (Ω). A(u, v) =
Ω
.
p ∈ C 1 (Ω), r ∈ C 0 (Ω), p(x) > 0
Ω
'
r(x) ≥ 0
Ω
Mj , 0 ≤ j ≤ J Xj ⊂ H01 (Ω) nj
/ (
Mj
Ω
Mj
#
j
#
O(n2j ) ℄ ℄ ℄ ℄ ℄ ! " ! ! ! " # $ ! ! " ! ! " ! " % ! &! ! '℄ '℄ ! ( ) "
! ! * ! " ℄ '℄ '℄ " + & ! , -℄ ! ! . " / 0 ! " (" ) 1℄ ℄ ! ! ! 2 ! 3 ! ' $ ( ) ! ! ! ! ! " ! 1 ! N 3 ! " O(N ) 4 Nj ! ! Mj 5 z ∈ Nj " ϕzj ! ! Xj " 6 1 z 0 !j ! " / 0 7 N 8 !j = z ∈ Nj : z " z ∈ Nj−1 ϕz = ϕz N j j−1 . xk !j = xk , k = 1, · · · , n 5 " N ˜ j ϕkj = ϕj j j ! xkj 5 0 ≤ j ≤ J " Aj : Xj → Xj (Aj w, v) = A(w, v),
∀w, v ∈ Xj ,
" (·, ·) L2 (Ω) 9 & Qj , Pj : XJ → Xj (Qj w, v) = (w, v),
A(Pj w, v) = A(w, v),
∀v ∈ Xj , ∀w ∈ XJ .
@ @ 1 @ @ @
C @ C @ 4 C4 @ @ 1 C 1 @ @ @ @C
C @ C @ 2 C 3 @ @ C @ C
C @ 2 C 3@ C @ C 3 2C 2 @ 3 C 2 C 3@ @C C @ CC @
AJ uJ (m+1)
uJ
(m)
= uJ
= fJ
(m)
+ BJ (fJ − AJ uJ ).
Bj : Xj → Xj , 0 ≤ j ≤ J
B0 = A−1 0 . j > 0 g ∈ Xj 3
v1 = Rj g ! v2 = v1 + Bj−1 Qj−1 (g − Aj v1 ), " v3 = v2 + Rjt (g − Aj v2 ).
Bj g = v
Pjk : XJ → Xjk := span
k ϕj
A(Pjk w, ϕkj ) = A(w, ϕkj ) ∀w ∈ XJ .
Rj # $ % n ˜j $ " # (I − Pjk ) A−1 Rj = I − j . k=1
& '
( % ) * + ℄ +-℄ + ℄ ( % ) ./ 0 % . % % / . /
( ) % 1 0
2
+3℄
Mj , 0 ≤ j ≤ J
K ∈
Mj
hK ′ ≤ ChK Mj J
K ′ ∈ Mj−1
δ < 1
I − BJ AJ A < δ.
℄ xkj ∈ N!j ϕkj ! Xj Ejk Mj ϕkj hkj Mj
xkj !
" " J
i=j+1 xl ∈N ei ,xl ∈E k i−1
i
i
j
j=1 xk ∈N ej ,xl ∈E k j
i
j
"
$3/2 " ≤C hli /hkj hli /hkj
$1/2
≤C
xkj ∈ N!j ,
xli ∈ N!i.
# $ Πj : XJ → Xj J
j=1 z∈N ej
|(Πj v − Πj−1 v)(z)|2 ≤ CA(v, v)
∀v ∈ XJ .
!
℄ %℄ %℄ &
' ()* + uI = eiαx −iβx
α = k1 sin θ, β = k1 cos θ −π/2 < θ < π/2 , - u u ()* uα = ue−iαx x1 L > 0 . Γj = {(x1 , x3 ) : 0 < x1 < L, x3 = bj }, j = 1, 2 , Ω = {(x1 , x3 ) : 0 < x1 < L b2 < x3 < b1 }. 1
1
3
u Ω1 Ω2 uI Ω1 n αn = 2πn/L n ∈ Z j = 1, 2 βjn
=
βjn (α)
1/2 k 2 − (αn + α)2 = j 1/2 i (αn + α)2 − kj2
kj2 ≥ (αn + α)2
kj2 < (αn + α)2 .
kj2 = (αn + α)2 n ∈ Z, j = 1, 2 uI Ω1 Ω1 u = uI +
n∈Z
!
n
An1 ei(αn +α)x1 +iβ1 x3 , x ∈ Ω1 .
" Ω2 u=
n∈Z
#!
n
An2 ei(αn +α)x1 −iβ2 x3 , x ∈ Ω2 . %
$% f f = n∈Z f (n) ei(α +α)x & ' ( Tj )*℄ n
1
(Tj f )(x1 ) =
iβjn f (n) ei(αn +α)x1 , 0 < x1 < L , j = 1, 2.
,!
n∈Z
% u Ωj , j = 1, 2 ! #! ∂(u − uI ) − T1 (u − uI ) = 0 ∂ν
Γ1 ,
∂u − T2 u = 0 ∂ν
Γ2 ,
-.!
ν ∂Ω )*℄ / -& % *! -.! $ $ $ ωj |ωj | → +∞ $ $ ω 0 ε(x) %1
Ω 2 *! -.! $ ' 345 Ω 345 6 δ1 δ2 Ω1 Ω2 345
Ω s(x3 ) = s1 (x3 ) + is2 (x3 )
Ê
s1 , s2 ∈ C( ), s1 ≥ 1, s2 ≥ 0, s(x3 ) = 1 b2 ≤ x3 ≤ b1 .
s1 ≡ 1
s1
! " #
Ω1PML = {(x1 , x3 ) : 0 < x1 < L b1 < x3 < b1 + δ1 }, Ω2PML = {(x1 , x3 ) : 0 < x1 < L b2 − δ2 < x3 < b2 },
$ ∂ L := ∂x1
1 ∂ ∂ ∂ s(x3 ) + + k 2 (x)s(x3 ). ∂x1 ∂x3 s(x3 ) ∂x3
! %
L(ˆ u − uI ) = 0 Lˆ u=0
Ω1PML , Ω2PML .
& '
! % uˆ Ω
( % ∆ˆ u+k 2 (x)ˆ u = 0 D = {(x1 , x3 ) : 0 < x1 < L, b2 −δ2 < x3 < b1 + δ1 } )
Lˆ u = −g D
*
%+ uˆ(0, x3 ) = e−iαL uˆ(L, x3 ) b2 − δ2 < x3 < b1 +δ1 ) uˆ = uI Γ1PML = {(x1 , x3 ) : 0 < x1 < L, x3 = b1 + δ1 } uˆ = 0 Γ2PML = {(x1 , x3 ) : 0 < x1 < L, x3 = b2 − δ2 } g=
−LuI Ω1PML , 0
.
! " %
uˆ u % Ω ,
- " & u ˆ = uI +
$ R R " n x3 n x3 An1 eiβ1 b1 s(τ )dτ + B1n e−iβ1 b1 s(τ )dτ ei(αn +α)x1 Ω1PML .
n∈Z
%
(n)
ˆα (b1 )ei(αn +α)x1 Γ1 uˆ(x1 , b1 ) = uI (x1 , b1 ) + n∈Z u n n
A1 , B1
ˆ = uI Γ1PML
u
An1 + B1n = uˆnα (b1 ) An1 e
R b1 +δ1
iβ1n
b1
s(τ )dτ
+ B1n e
−iβ1n
R b1 +δ1 b1
s(τ )dτ
= 0.
uˆ = uI +
ζ n (x3 ) 1 u ˆ(n) (b1 )ei(αn +α)x1 ζ1n (b1 ) α
Ω1PML ,
n∈Z n ζ1 (x3 )
=e
−iβ1n
Rb
1 +δ1 x3
s(τ )dτ
u ˆ=
−e
iβ1n
Rb
1 +δ1 x3
s(τ )dτ
ζ n (x3 ) 2 u ˆ(n) (b2 )ei(αn +α)x1 ζ2n (b2 ) α
Ω2PML ,
n∈Z
ζ2n (x3 ) = e
−iβ2n
R x3
s(τ )dτ
−e
iβ2n
R x3
s(τ )dτ
% (n) i(αn +α)x1 e n∈Z f PML & # $ % ! Tj !
b2 −δ2
f
b2 −δ2
"!
f =
PML iβjn coth(−iβjn σj )f (n) ei(αn +α)x1 , f (x1 ) = Tj
'
n∈Z
coth(τ ) =
eτ +e−τ eτ −e−τ
σ1 =
b1 +δ1
s(τ )dτ,
σ2 =
b2
s(τ )dτ.
(
b2 −δ2
b1
)
∂(ˆ u − uI ) − T1PML(ˆ u − uI ) = 0 ∂ν 2 * ∆n j = |kj n
+ βj
Γ1 ,
∂u ˆ − T2PML u ˆ=0 ∂ν
Γ2 .
− (αn + α)2 |1/2 Uj = {n : kj2 > (αn + α)2 } j = 1, 2 = ∆nj n ∈ Uj βjn = i∆nj n ∈ / Uj *
n ∆− j = min{∆j : n ∈ Uj },
n ∆+ / Uj }. j = min{∆j : n ∈
!
,(℄ ! )
ϕ, ψ ϕα = ϕe−iαx
x1
1
, ψα = ψe−iαx1
PML ¯ ϕ)ψdx1 ≤ Mj xϕL2 (Γj )xψL2 (Γj ),
(Tj ϕ − Tj
Γj
Mj = max e
σj
2∆− j
− 2σI ∆ j j −1
2∆+ j
,
+ 2σR ∆ j j −1
e
σjR , σjI
, σjR , σjI
σj = σjR + iσjI
σjR , σjI
Mj
s(x3 )
!
⎧ $m " ⎨ 1 + σ m x3 −b1 1 " δ1 $m s(x3 ) = ⎩ 1 + σ m b2 −x3 2 δ2
!
x3 ≥ b1
!
x3 ≤ b2
,
m ≥ 1.
" #
σjR
ℜσjm = 1+ δj , m+1
σjI =
ℑσjm δj . m+1
$%
& # ' δj ! ' ℜσjm ℑσjm
" !' '# !
( # !
M1, M2 uˆ |u − uˆ|Ω :=
|b(u − u ˆ, ψ)| 1 0=ψ∈H 1 (Ω) xψH (Ω) sup
ˆ 1 u ˆ 2 u ≤ CM ˆ − uI L2 (Γ1 ) + CM ˆ L2 (Γ2 )
Cˆ =
1 + (b2 − b1 )−1
)
X(D) = {w ∈ H 1 (D) : wα = we−iαx1
x1
L}
aD : X(D) × X(D) → C ∂ϕ ∂ ψ¯ 1 ∂ϕ ∂ ψ¯ 2 ¯ aD (ϕ, ψ) = + − k (x)s(x3 )ϕψ dx. s(x3 ) ∂x1 ∂x1 s(x3 ) ∂x3 ∂x3 G
* !
X0 (D) = {w ∈ X(D), w = 0 Γ1PML ∪ Γ2PML}
uˆ ∈ X(D) uˆ = uI Γ1PML, uˆ = 0 Γ2PML aD (ˆ u, ψ) =
¯ g ψdx
D
∀ ψ ∈ X0 (D).
Mh D ! T ∈ Mh " T # Ω1PML $ Ω2PML Ω % % #
&'# x1 $ & (0, z) $ (L, z) $ ( ( Vh (D)&⊂ X(D) % ¯ → Vh (D) # Vh0 (D) = Vh (D) X0 (D) Ih : C(D) % # # % ##) # ' uˆh ∈ Vh (D) uˆh = Ih uI Γ1PML, uˆh = 0 Γ2PML aD (ˆ uh , ψh ) =
g ψ¯h dx
D
A(x) =
A11 0 0 A22
=
∀ ψh ∈ Vh0 (D).
0 s(x3 ) 0 1/s(x3 )
,
B(x) = k 2 (x)s(x3 ).
% L a D
L = div (A(x)∇) + B(x), aD (ϕ, ψ) = D A(x)∇ϕ∇ψ¯ − B(x)ϕψ¯ dx.
T ∈ Mh $ hT Bh ΓjPML$ j = 1, 2 e ∈ Bh$ he T ∈ Mh $ RT := Lˆ uh |T + g|T =
L(ˆ uh |T − uI |T ) T ⊂ Ω1PML , Lˆ uh |T .
e ∈ Bh T1 T2 ∈ Mh $
% *# e Je = (A∇ˆ uh |T2 ) · νe , uh |T1 − A∇ˆ
( ( νe e # T2 T1 Γleft = {(x1 , x3 ) : x1 = 0, b2 − δ2 < x3 < b1 + δ1 } Γright = {(x1 , x3 ) : x1 = L, b2 − δ2 < x3 < b1 + δ1 } + e = Γleft ∩ ∂T
T ∈ Mh e′ Γright T ′ ( ' ∂ ∂ −iαL ′) , (ˆ u | ) − e · (ˆ u | Je = A11 ∂x h T h T ∂x 1 ' 1 ( ∂ ∂ ′) . Je′ = A11 eiαL · ∂x (ˆ u | ) − (ˆ u | h T h T ∂x1 1
T ∈ Mh ηT $1/2 ( ' "1 , ηT = max ρ(x3 ) · hT RT L2 (T ) + he Je 2L2 (e) 2 x∈T˜ e⊂T
T˜ T |s(x3 )|e−Rj (x3 ) x ∈ ΩjPML , ρ(x3 ) = 1 x ∈ Ω.
Rj (x3 ) (j = 1, 2) x3 x3 + − s1 (τ )dτ , s2 (τ )dτ, ∆1 R1 (x3 ) = min ∆1 b1 b1 R2 (x3 ) = min ∆− 2
b2
x3
s2 (τ )dτ, ∆+ 2
x3 ≥ b1 ,
b2
s1 (τ )dτ
x3 ≤ b2 .
,
x3
C > 0 Mh ˆ 1 ˆ ˆ 2 ˆ |u − uˆh |Ω ≤ CM uh − uI L2 (Γ1 ) + CM uh L2 (Γ2 ) 1/2 2 ˆ +CM3 Ih uI − uI L2 (Γ1PML ) + C ηT , T ∈Mh
Cˆ M3 = max
Mj (j = 1, 2) −
I
−
I
−∆1 σ1 2∆− 1e
1 − e−2∆1 σ1
,
+
R
+
R
−∆1 σ1 2∆+ 1e
1 − e−2∆1 σ1
.
℄ ! "#$ σjR σjI Mj % % e−Rj (x3 ) "#$ ΩjPML & & "#$ ' & "#$ "#$
!
" ! ! " " # δj " σjm $ $%&'' ( ! ) EPML * + EFEM ! EPML = M1 u ˆh − uI L2 (Γ1 ) + M2 u ˆh L2 (Γ2 ) , $1/2 " EFEM = M3 u ˆh − uI L2 (Γ1PML ) + ηT2 .
$%' $%,'
T ∈Mh
EFEM
" - . ! *
δj σjm Mj L1/2 ≤ 10−8 ! # ! * + . / " * ! * " "
$%,' 0 " T ∈ Mh ! *
!) EPML
η˜T = ηT + M3 Ih uI − uI L2 (Γ1PML ∩∂T ) .
1 ! ! !
2 TOL > 0 m = 2, δ1 = δ2 = δ • • •
3
δ σjm Mj L1/2 ≤ 10−8 j = 1, 24 D = Ω2PML ∪ Γ2 ∪ Ω ∪ Γ1 ∪ Ω1PML Mh
D4 EFEM > TOL
5 * Mh
! " η˜
T
>
1 2
maxT ∈Mh η˜T
* T ∈ Mh
5 $%%' Mh 5 Mh ! 1 ! ! "
δ # " σjm
" Mj L1/2 ≤ 10−8 j = 1, 2 +
3
2.25
x3
ε1
0 ε2 −1
0
0.3
1.2 x
1.6
2
1
1 total efficiency
Efficiency
0.8
th efficiency of 0 order reflected mode
0.6
0.4 st
efficiency of −1 order reflected mode 0.2
0
0
2000
4000 6000 8000 Number of nodal points
10000
µ = 1
" " # $
θ = π/6% ω = π
"
L = 2
!
ε1 = 1, ε2 = (0.22 + 6.71i)2 %
! & " ' !(
) & " !( ! ) " " # * # + ! " "
" , "( ! )
" *- " " ! ,+,
(
*+.
! " "
" %
"
/℄ % % "% 1 2 ( 3 45 6 4 4 7 % % -8*+ 9-:,; /$℄ < % 1 2 $ " * " 5 7 4 " %
% :8- 9--;
℄ '℄ +
"#$%&"#'$ ("%%)*
, ,
./ )℄ 1
!
+ 2 3 -
!
4 5 ("%%*
6℄ 1 + 7 5
3. ,
8-
''9&'9" ("%%*
9℄ : ! ; ,
, -
"0)&$## ("%%'*
+
/ < ,
. ; != !
''&'6$ ($##$*
0℄ : > 1
/ < .
, ./ != 3 ( %℄ ? 7 + "#℄ >?
"'6&"69 ("%%$*
""℄ + 3 21 ! A ,
, -
")9&"9" ("%%0*
/ / ,
/
/-
/ ?5 != 3
"$℄ ! ! A
,
*
@
5
!= ! !
'66&'00 ($###*
452B
/ <
= C / , ? ($###*
"℄ ! 42 : ! ?
, , -
,
'0&'% ("%%#*
"'℄ > 1 : C , / , 8- / < < ,
-
")℄ D / 4 3 , > ! =/ ! <
"'&$# ("%%)*
"6℄ D :7 / 4
B ,
E
, 1 !
)9&%9 ($##$*
!"#$
% &
' ' '
(
)
) * ' + *
,
' ' -
* '
*
. *
/ ,
0 .
& 1 .
&
2 *
3 1 .
! " ! ! ! ! # "
$
%
& '
("$ ) !
! * ! ' ! "$
+,-. /+0.℄
!"℄
!$%&'℄ (
)
* +
, - . - . -
.
/ / * - . /0 !&%1 &&%&1℄ 2
3
4 /
-5*). , &678 !&%8℄ 5*) 5*)
- &. -& 9.
+ :
-1.
; &
9 9
& 9 ; &
< &
9
! ! " # $% & % '( )* ! !
+
& ( $
)$,
! - '( )*
&
!
"
# $
$
# % % n & '( ) $ Oxyz $
z ≥ 0 * ri (xi , yi , 0) Fi (Xi , Yi , Ni )
Φi = (p − pi )S i = 1, . . . , n p
pi S R(Rx , Ry , Rz ) M(Mx , My , Mz )
(Xi2 + Yi2 )1/2 ≤ f Ni ,
i = 1, . . . , n,
f !
Ni ≥ 0 " Rz +
Rx +
%
Xi = 0,
% (Ni − Φi ) = 0, Mx + yi (Ni − Φi ) = 0, % My − xi (Ni − Φi ) = 0, Ry +
Yi = 0,
Mz +
(xi Yi − yi Xi ) = 0.
# $
% i = 1, . . . , n Xi , Yi Ni # $ i = 1, . . . , n & # ' ( & Ni ≥ 0 z = 0 $ ' ) Xi Yi $ i = 1, . . . , n z = 0 * & K Oxy % xi Φi + My , x∗ = % Φi − Rz
% yi Φi − Mx y∗ = % . Φi − Rz
+
℄
coD
Φi > Rz ,
K ∈ coD,
"
Q=
x,y
sup
x, y !
Oxy !
Mz −xR P y +yRx , ρi Ni
) *1/2 ρi = (x − xi )2 + (y − yi )2 ,
&
# ℄
sup Q ≤ f,
%
D = {r1 , . . . , rn },
$
i = 1, . . . , n.
" '(
Ni > 0 !
( ' (
$ ( ) (
n > 3!
Ni
" ( (
! " ! *! " &
( ! + + ( ( (! " , - , . ( ! /' ( ( (
Ni (! 0! " ℄
' ( (
( ! 1 ' $ (
Ni
! " (
sup Q ≤ f,
2
x,y,Ni
sup
x, y Ni ! (
&
3 ( '(! ! 3
(
(Rx , Ry , Rz ) O!
( (
(Mx , My , Mz )
Φi = (p − pi )S, i = 1, . . . , n! #! 4
! 4
K!
! 4 & ! ! (! !
&
(
Ni
*! "
$ ! 3 0 ((( (
2 2 ( &! $ 2 * 0 (
pi !
"
" # ! "
a
b
!
h r m (n = 4) p0 !
$ % $
$
% & & " '
m ≤ 2π(p − p0 )ar2 (gh)−1 , (
m ≤ 4πf (p − p0 )r2 g −1 .
a = 0.344m, b = 0.151m, h = 0.095m,
r = 0.034m, p0 = 0.1p, f = 0.5
67kg
" 48kg
"
!
30kg
) & *+ ,℄ ! " " ./0 $ ( 1 ! " )2 *3℄ ! " & & & 4
$
4 ! "
( !
"
" " 5 " "
( " " 6
" " 5 " ! " *3℄ 7 8 "
9
℄ !
"
# $ ! " ω % # ! α
#
"& ' " (
"
℄ v1 = Lω L ! " # !
$ α → π/2 "
% v2 = 2(21/2 + 1)π−1 Lω = 1.54Lω α = π/4
" #& # # ' # &
" ( ) *℄ " # # $ # & + ! " # # , ! # -
" # # # " # # - . & # " # # #
# /
# # # #
℄
! !
" # $
! %&℄
'
O1 O2
() *+ !
( + #
# #
O1
O2
F
O1
O2 " M1
P
O1 O2
"
M2
"
N
F = f1 M 1 + f2 M 2 + f0 ,
fi
ni , i = 0, 1, 2
N = n1 M 1 + n2 M 2 + n0 ,
℄!
" M1 M2
|M1 | ≤ M10 , |M2 | ≤ M20 F ∗ # $ % |F | ≤ f N & F = max F = F ! ' ( & )
&
O1
±M10
±M20
M2 =
F = F∗
!!
! ) ℄!
M10 , M20
M1 =
F∗
x
P
ℓ1 = O1 O2
&
ℓ2 = O2 P
*
"! +! ,
x
/
! '
#
x0
x0 − s/2
O1
M10 , M20
s
.
F∗
.
0 ! 1
#&
s
ℓ1
h
!
2&0
min
x∈[x0 −s/2,x0 ]
! -
x0 ℓ2
F∗
+
#& !
2&0 +
x0
ℓ2 !
)
& ! 4
℄! 3
M10 = 68N m, M20 = 27N m, f =
1, s = 0.28m, h = 0.24m, ℓ1 = 0.15m! ) ( ℓ2 = 0.15m, x = s/2 = 0.14m F ∗ = 642N ! ) ( . ∗ 5 0 x0 x0 = 0.105m, F = 786N ! ' ( 6 0 x0 ℓ2 x0 = 0.02m, ℓ2 = 0.21m, F ∗ = 1047N ! ) 0 .
! 7
! )
f
ℓ2
M10
&
M20
F∗
h
℄!
ℓ2
F ∗ x M10 = 45N m, M20 = 8.6N m, f = 0.2, h = 0.24m
F ∗ x ℓ2 = ℓ1 + 0.01(i − 1)m i = 1, . . . , 8
i
! " # " # $%℄ '
v
(
T ) T /2 ) * ) ) + ) , " # - ) )
T /2
℄ ∆t ! " # $ % v #$ x O1 & ' s % ℓ2 ( % (# ) ℓ1 = 0.15m $
s x ›
s x
0.14 0.11 0.08 0.05 0.02 −0.01 −0.04 −0.07 −0.1 −0.13
0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46
0.003 0.004 0.004 0.020 0.026 0.030 0.048 0.053 0.069 0.070 0.081 0.078 0.085 0.080 0.085 0.078 0.082 0.076 0.080 0.077
0.005 0.032 0.055 0.070 0.075 0.074 0.073
0.005 0.034 0.057 0.069 0.071 0.070
0.006 0.036 0.059 0.068 0.067
0.006 0.005 0.005 0.004 0.034 0.032 0.026 0.057 0.048 0.065
l2 s x l2 s x v
0.13 0.24 0.06 0.076
0.15 0.30 0.12 0.087
0.17 0.30 0.15 0.103
0.19 0.30 0.18 0.129
0.21 0.24 0.18 0.156
0.23 0.24 0.18 0.196
0.25 0.12 0.15 0.245
* + , - . ℓ2 (# ) ℓ2 = ℓ1 = 0.15m / # 0
v = 0.085m/s s = 0.26m x = 0.11m ℓ2, s x ℓ2 = 0.25m
! "#℄ %
&
'
( )
"#℄
)
"*℄ !
' "℄ "+,*℄
(
) ' -
&!
. ! !
"+ / #℄ .
"0℄
(
! 1 !
"℄ ) ! O1 C1 C2 O2 ( ! Oxy . .
O1 C1 , C1 C2 C2 O2
- C1 C2
' m1 O1 O2
' m0 m = 2(m0 + m1 ) C1 C2 2a
' ℓ 2 x, y
θ x! αi Oi Ci , i = 1, 2 .
O , C , i = 1, 2 Oxy m m f f M M C C
α α ! α (t) = ±α (t) ! " ω ε #
$ ω = max |α˙ (t)|, ε = max |¨ α (t)|, i = 1, 2. %&'( ) # i = 1, 2 # *+℄$ , + ≤ m gf . m ℓ [ω + (ε + gf ℓ ) ] + (ε + gf ℓ )ℓa %&&( ω ε %&&( m f (a + ℓ) < m f a !
τ T $ τ ≪ T M M $ |M | ≫ m gf ℓ , i = 1, 2, m = max(m , m ), %&-( f = max(f , f ), a = max(a, ℓ). i
i
0
1
0
1
2
1
1
2
1
1
2
2
0
0
0
4 0
0
i
0
0
0
−1 2 1/2
i
0
0
−1
−1
1
0
0 0
1
1 1
2
∗
1
∗
∗ ∗
∗
0
1
∗
0
1
1
0
x S F αi α0i → α1i , i = 1, 2
! S, α1 : 0 → γ, α2 (t) ≡ 0 γ ∈ (−π, π) " #! $%& 1. F, α1 : 2. S, α1 : 3. F, α1 : 4. S, α1 :
γ → 0, α2 0 → −γ, α2 −γ → 0, α2 0 → γ, α2
: 0 → γ; : γ → 0; : 0 → −γ; : −γ → 0.
' ( " " $ $)(
" α1 = α2 = 0 S : α1 : γ → 0, α2 (t) ≡ 0
x
* +,℄ x $)( ∆x = 8m0 m−1 ℓ sin2 (γ/2). m = 2(m0 + m1 ). #$.& y $)( ∆y = 0, ∆θ = 0
v1 = ∆x(2T )−1 .
℄ ! "! ! #! ! $ % ! ! %
!
!
&' ( '% )℄ ! ! *
ω(t) = |α˙ i (t)| = ε0 t, ω(t) = ε0 (T − t),
t ∈ [0, T /2], t ∈ [T /2, T ],
ω0 = ε0 T /2 = 2γT −1,
+
ε = 4γT −2 .
, ! ! + #!
m0 ℓ{[(2γT −1)4 + P 2 ]1/2 + P ℓa−1 } ≤ m1 gf1 , - !
ℓ
m1 . 2a γ $ m0 ! T
&
P = 4γT −2 + gf0 ℓ−1 .
/
f0
f1
&' v1 0 $ !. f − ≤ f0 ≤ f + , f − ≤ f1 ≤ f + 1 ! / *
f − , f1 = f +
f0 =
℄ V1 = v1 (gaf + )−1/2
γ χ = f − /f + λ = ℓ/a
λ = ℓ/a ! " γ χ
λ
# #$
%&'$
( |Mi| ∼ 10m1gf + ℓ ) $ * a = 0.2m, m1 = 1kg + ,
γ $ # # 40f + N m f − /f + γ,deg l, m m0 , kg m = 2(m0 + m1 ), kg T1 , s v1 , m/s
0.2/0.2 0.1/0.5 0.2/1 0.5/1 0/1 60 0.32 0.17 2.34 0.77 0.030
60 0.57 0.40 2.80 1.10 0.075
90 60 90 0.64 0.4 ∞ 0.39 0.26 1 2.78 2.52 4 1.08 0.49 ∞ 0.167 0.084 0.28
- . / 0 ) " 1 1 "
!
" # $ " $ % $
%&' '
( '
# &) ( ' * * + , , , + - " - %&'
.
. & / 010200102
32℄ + " 5 6 " " 7 2708291 2:;: 31℄ , + , . ' < "$ < , ( " + 6 = ' 5 6 " " % 2 21>8 291 2::7 37℄ 6 = * * , + , ' . ?
6 @ $ 6.6 &
. 2::9 39℄ 6 = , + , * * + + ' % & A6&? % 6 .
% , 2::B 3B℄ .
&) 6 % & 27 C 6
6 "
2::>
℄
!"# $%"$
!&'''# (℄ )*+
!,# ,-(%$'. !&'''# .℄ / +0
!"# "$%&'
!&''"# -℄ 0 )+0 +
!,# $$%$(( !&''"#
"'℄
1+
20
!"% &3$%&$ !&''3#
""℄ 4 5 1 1 6 1 / 7 8* 0 9 : " 9 1 9 ;0 <
!"-.# "&℄ = 1 6 0 * 0 9 : 91+9 1 ;/71>+. ) !"-.# "3℄ 1 1 7 1 1 / 7 6 1 6 * ) * 9 : " 9 1 9 ;0 <
!"-.# ",℄ / 0 0 1 ?
&"-%&&, !"--'#
"$℄ ?@ 0 1
!# "%"& !"-..#
"℄ < 7 7 1 1 / *+
) 0 1 1
9
!,# &%3( !"--(#
"(℄ < 7 7 5 * 1 :A 1 )+0 ) * + *
!(# ,&-%,,& !"---#
".℄ :A ;
< 7 7 5 B 2 1 0+ ) 0 0 1 8
! "$-%"., !&''"#
"-℄ < 7 7 5 B 2 :A ; 0+ ) 0 * 0 1 +
!,# ,3"%,& !&''
&'℄ B 6 C 7 !"-.# &"℄ = 1 < 9 ;0 1+ + /D E* :
/D !"--3# &&℄ + 9 *
!"#$
%
&
& '
'
% ( %
) ) % *
+
, ( -
℄ " #
$
%℄ & # '
( )
℄ !
"#℄ $
%&℄ ' ( ) * * )
'
+,-℄ ) ,,.,#℄
/ 0
1 (
) 2
' ,%℄ 3 ( ( 2
4
' Oxy *
5
( * ' ( ' * 4
F 16 7 F = −f |N|v −1 v, |F| ≤ f |N|,
if
if
v = 0,
v = 0.
/,0
8 N f 9
v v = |v| :
;
O∗ /2 ,0 ' , <
m1 m2
C1 C2 Oxy
a1 = O∗ C1 a2 = O∗ C2 C1 C2 J1 J2 m0 m = m0 + m1 + m2 f1 , f2 f0 !
"#$
x0 y0 O∗ θ x% O∗ C1 α C2 O∗ O∗ C1
xc , yc C & xc = x0 + m1 m−1 a1 cos θ − m2 m−1 a2 cos(θ + α), yc = y0 + m1 m−1 a1 sin θ − m2 m−1 a2 sin(θ + α).
"'$
ωi i = 1, 2 & O ˙ 0 cos θ + y0 sin θ) K = m(x0 y˙ 0 − y0 x˙ 0 ) + m1 a1 θ(x −m2 a2 (θ˙ + α)[x ˙ 0 cos(θ + α) + y0 sin(θ + α)] −m1 a1 (x˙ 0 sin θ − y˙ 0 cos θ) + m2 a2 [x˙ 0 sin(θ + α) −y˙ 0 cos(θ + α)] + J1 θ˙ + J2 (θ˙ + α). ˙
"($
M
−M
N
a
m !
Pi , i = 0, 1, . . . , N
"
Pi f
Pi i = 1, 2, . . . , N − 1 Mi
Pi Pi Pi+1 # Pi−1 Pi
−Mi $ % $
!
&
ω0 ε0 ' !
!
g !
$
( ω02 a ≪ gf, ε0 a ≪ gf )
* $
+
x$ ' , 0 - ! θ = 0, α = 0
α !
) ! ( ˙
ε0 = maxt |ω|˙ '
! ω0 = maxt |α(t)|
. '
" /
J2 ε0 + m2 gf2 a2 ≤ m1 gf1 a1 ,
J2 ε0 + m2 gf2 a2 + m2 a1 a2 [ω04 + (ε0 + gf2 a−1 )2 ]1/2 ≤ m0 gf0 a1 . ω0 ε0 m2 f2 a2 < m1 f1 a1 , m2 f2 (a1 + a2 ) < m0 f0 a1
|M | ≫ m∗ gf ∗ ℓ∗ ,
m∗ = max(m0 , m1 , m2 ),
ℓ∗ = max(a1 , a2 ),
f ∗ = max(f0 , f1 , f2 ).
!
K
"
#
C
$
xc = const, &
S
F
yc = const,
!
K = 0.
%
" !
' $
1) S, 3) S, 5) S, 7) S,
α : 0 → β, 2) F, α : 0 → −β, 4) F, α : 0 → −β, 6) F, α : 0 → β, 8) F,
α : β → 0, α : −β → 0, α : −β → 0, α : β → 0.
)
β
*
β ∈ (−π, π)
α
(
+ !
C x C C x ℄"
∆xc = 8m−1 m2 a2 sin(β/2) cos(γ/2) sin[(β − γ)/2]
#
$
γ = β/2 + A0 (A+ A− )−1 arctan[A+ A−1 − tan(β/2)], A0 = m(J2 − J1 ) + m21 a21 − m22 a22 ,
%
A± = [m(J1 + J2 ) − (m1 a1 ± m2 a2 )2 ]1/2 . C y &
' & ℄ yc θ (" ∆yc = 0, ∆θ = 0 ' & v = ∆xc [4(T + τ )]−1 xc & # T τ τ ≪ T ) & ℄ & & ( * & + & & m1 m2 , m0 & a1 a2 J1 = m1 a21 , J2 = m2 a22 - # % . " m0 = 0.6kg, m1 = 0.3kg, m2 = 0.3kg, m = 1.2kg, a1 = 1m, a2 = 0.2m, f0 = f1 = f2 = 0.2 / " T = 1s, ω0 = 2s−1 , ε0 = 4s−2 , β = 1rad *
0 0 & - # % & ∆xc = 0.085m v = 0.021ms−1 - -
1 8N m ρ ℓ1 ℓ2 2 f , & & & & & & & " mi = ρℓi , ai = ℓi /2, Ji = ρℓ3i /3, m0 = 0, m = m1 + m2 , i = 1, 2 - % / m0 = 0 ℄ . & ω0 ε0 ℓ2 /ℓ1 < 0.255
℄
! " # Oxy $
x % &
' ( )
$ ' ! (" P0 x % Pi i ≥ 2 '% * α x % P0 P1
# α0 a b c ( $ % P0 P1 P1 P2 P2 P3 * α
α0 # β P2 P3 x % 0 α0 d ( $
e P1 P2 P2 P3 P0 P1 P2 c % +
% P2 x % ,% P1 P2 P2 P3 P3 P4 x % - %
. % x % . % α0 *
PN −1
f PN x PN −2 PN −1 PN
α0 g x L = 2a(1 − cos α0 ). !
" # $ a%c &! P0 P1 P1 P2 P2 P3 P3 P4 P2 x α P0 P1 P2
α0 # β P2 P3 P4 # α0 d & '
P3 x e & ( # $ # ) N f %i & ! ( # # # # # *# + # # α L ,-℄ # #
# + ,-℄ /
!"℄ $
%
M
!"℄ (
$
M ≤ 2mgf a f
)
N ≥ 6
(N ≥ 5) &
'
& *
* %
+ ,
%
- . /
0 /
1 & +
!℄ 2 / & 2 // 3 & /
0 4 567 !75" "℄ 8 3 & 2 9
: ; 2 !75< =℄ , &
9 , ; / !7<>
℄
! ! "
# $ %&
' ( ) * + , - ./ # ! 0 % ( # ($ 1 * $ (21* 3444 !
5637568 .3444/
6℄
0 -! ! %& ) ' 0 ./
# ! 9! % ( # ($ 1
* $ (21* :;;; )
:;37:;< .:;;;/
8℄ , 0 ) ! + # $ $ -! $ % = # * $ * !
.:/
44733 .344;/ <℄ , 0 %
* $ & 0 2 )
>?# @ >?# .344A/
5℄ (!" ' 0 = 1 B # ! $ -!
%& # !
%CCC % ( # * $
0
<:;7<:6 .3443/
4℄ = 1 *# = (!" ' 0 D- D
# !
$ %& # ! %CCC
% ( # * $
3;373;8 .344A/ 3;℄ > - = = ' #
$
% # ! %CCC % ( # * $
)
3:473A;; .3448/
33℄ (! 2 9! # !
= #
)! ) !
.3/
6736
.:;;;/ 3:℄ (! 2 9! - # !
= #
)! ) !
./
4<76;5 .:;;;/ 3A℄ (! 2 > ! # !$ = #
)! ) !
.3/ 3A735
.:;;3/ 3℄ (! 2 ( $ # - !
!
= #
)! ) !
./ 68676<< .:;;3/ 36℄ (! 2 0 # ! = # $ (
:A67:68 .:;;A/
38℄ (! 2 0 !
# - $ %
1 1 1 2 1
2
!"# $%"&'() *
+ ,
+, - . /-- ')!!) 0
1 1% 2 + 1%
33 3 $ 1% 2
3 0 3
2
2
2 1% 3 0 - 1% % 3 4 1% 3 0 5 3 0 2 5 2 2 3
! "
#
$ %&℄ ( )*
! * * )* ! * )* + )* %,℄! * )*
! )* -
℄ ℄ ℄
!" !"
# $
%
& $
! '!" ( ) +&,
$ * ! "
&℄
-
!"
$ . &℄ / "
0 1 2
3
αx , αy , αz
)
0 1 2
δ x , δy , δz
4
5 $ $ 012 $ 6 $ '012αx , αy , αz ( *" 7$
δ x , δy , δz
012
$
Rx , Ry , Rz
8
⎡
⎡ ⎤ ⎤ 1 0 0 cos(θ) 0 − sin(θ) ⎦ 0 Rx (θ) = ⎣ 0 cos(θ) − sin(θ) ⎦ Ry (θ) = ⎣ 0 1 0 sin(θ) cos(θ) sin(θ) 0 cos(θ)
⎡
⎤ cos(θ) sin(θ) 0 Rz (θ) = ⎣ − sin(θ) cos(θ) 0 ⎦ 0 0 1
$
'(
"
℄ $
$
7 \ 9 : ; " | $ $
* !" "
$ 'δx <
= δy = δz = 45o , αx = αy = αz = 0(
= I[−IL][+IL]I[+IL]I[−IL]I[+IL]I[−IL][+IL]IF = I[+I]I[−I]I[+I]I[−I]I[+I]I[−I]I[+I]I
I i P p A L F +(δz ) −(δz ) &(δy ) (δy ) \(δx ) /(δx ) | [ ]
δz Rz (δz ) δz Rz (−δz ) δy Ry (δy ) δy Ry (−δy ) δx Rx (δx ) δx Rx (−δx ) Ry (180)
! " #$ % & & % ! " #' % & ! ( & )
" ! #!
*% & ! ( ! Pred = (Prob1 )Succ1 , (Prob2 )Succ2 , . . . , (Probn )Succn
Succi & Probi i = 1, 2, 3, . . . , n! (
+ #! " I = (0.40)I[+iL]I, (0.30)I[−iL]I, (0.30)I[−iL][+iL]I. (
% & ,!-, ,!$, ,!$, &! (
" ! .!
$ "% & ' (
+ ,
! " #
)* " +, ℄ +$,
- $$ ./ .0 % .0 !
℄
%
℄℄
! " ! ! #
$
#
% &
G(t) = L +
U −L 1 + em1 (T1 −t)
G(t) = U G(t) = L1 +
U − L1 1 + e−m2 (T4 −t)
; 0 ≤ t < T2
; T2 ≤ t < T3
; T3 ≤ t < T5
G(t) = L1 G(t) = L +
; T5 ≤ t < T6
; T6 ≤ t ≤ T8
L1 − L 1 + e−m3 (T7 −t)
L L1
U m1 m2 m3 T1 T2
G(t) = (U + L)/2 G(t) = U
T3
G(t) = U
T4 T5
G(t) = (U + L1 )/2 G(t) = L1
T6
G(t) = L1
T7 T8 t
G(t) = (L1 + L)/2 G(t) = L
Yi = c(a)ni
Yi
!
"
ni
# $
" %
$
Bi = βni + b
Bi
β
&
Bi ni
' (
!" "δ #"# $"ω &&& ' ' ' &&& ' (
(
!" "δ #"# $"ω &&& ' ' ' &&& ' (
δ ω
!
!"
# "
$
% $
$ !& $ $' ( $ $ ) ' * *
* $
$% $ % $
% + $% #, + - .
$ $%
! " !"#
!" #
# $ %
&# '#( )*#
IL[+IL]IL[−IL[+IL]IL]IL[+IL]IL
[−IL[+IL]IL[−IL[+IL]IL]IL[+IL] IL]IL[+IL]IL[−IL[+IL]IL]IL[+IL]IL i
! " # $ !% &'
! "
45 45 0.7 ℄℄ ℄ !℄ "# $ %
& '& & # ) & # $$ #*& + & # # )' &
+$ ') )# ) ,# %' #
%' - & ,' . # ### %' # & * ') #/# + & #/ -) 0 - # $ $ & # )' %' - $ $ ) # )' $ - $ /#
- * $ 1 2$ , & ,
# * ' & ) # )'
+$ - /* + . +$ .# & & ) #$ # 1 ## + & # + - #*& + & . ) # $ - & '& ) $#
# + & - $ &#
& . + '& + & . $ ' + * 3$ + +$ . , * . . #$
+ $ *$ - $ $&, . )
$# & 0℄ 4 $ & %$ & 45 & . %' )' &
+$ ') # + 4+ - ' 6 070! 6 6℄ 4 $ 5 + $ # * $ 1 + & . 8 - 4 $, 9 * ' :,, 6
℄ ! "# $ %&''' ' ! ( %##
) #
* +,-.+/-
0+11+2 3℄ ) #! 4 *# 4 '5
### &6 7 # # '# # 8 9/: +3:.+-, 0;//:2 -℄ ) < #! 4 *#
' # # !
5 '# # 0 8< 9/:2 /=.3;1 0;//:2 :℄ #! 4 >'6 $ 6 #
* ?! @ 0;//12 =℄ #! 4 ) A B6 $ )B ### %
'5
'#
#
8
< 9/ -;.:1 0;//2 ,℄ #! 4 # ) ) < 6 6 '# 8< 9 /3 -;.-, 0;//32
! ! "
# $ %&'( ! ) $"
* ( % " ! +& "
$ " (
"
$ ( , -
! $( ! "
. ( ) # $
" ( ! ! . ! / ( "
" ) ) " (
!
" # $
% &
℄
!℄
" # $℄ "
"
" "
% & $℄ ' (")
# %℄ " *
k−ǫ
+
" "
) "
10000
1400
3000
℄
℄ ,
) "
) " "
" "
" "
) "
*
1m/s
- "
*
.*/
"
'
/
.*/ 1
2
0 /
3
US
" 4 5 3 6
* 7 1
x, y, z 2
" 6+
*
0 "
" '
" 8 *
8 5 8
6
9 *
y Us ∇·u=0
!
∂u 1 ∂ + (u · ∇)u = − ∇p + ν∇2 u + S + (Us u) ∂t ρ ∂y
"!
u # $ p S S=
ν 1 (J × B) + χu + gβ(T − Tref ) ρ H(χ)
%!
J × B & ' J B # ( )(* + # & '
χ
χ 0 1 H(χ) ℄ H(χ) 10−8
u Sz ! " " # gβ(T − Tref ) " $ %
β
% &
"
g
" Tref 288K '
"
℄ ∂χ 1 = (T − Tliq ) ∂t κ
(
" "
χ " # ) χ 1 " 0 " χ * 1 0 T " Tliq "
χ = 0 χ = 1
κ T Tliq T Tliq % "# ∂(Us T ) L∗ ∂T + (u · ∇)T − = α∆T + ∂t ∂y ρCp
∂χ ∂(Us χ) − ∂t ∂y
+
" α Cp
L∗ " Us
,
" * %
"
u, v, w, T ' "
- % " . % "
qgauss
3(x2 + y 2 ) 3Q exp − = πa2 a2
Q = EIη E I
η a
℄
qevap = W · hf g
W
hf g
qrad
qconv
qrad = σb ǫ(T 4 − Ta4 )
σb
qconv = hc (T − Ta )
# $% &
ǫ
"
hc
Ta
$
−k
∂T = −qgauss − qevap − qrad − qconv ∂z
'
k
%
()
$
−µ
∂u ∂γ ∂T = ∂z ∂T ∂x
−µ
∂v ∂γ ∂T = ∂z ∂T ∂y
*+
∂γ µ ∂T
w &
,
-
.
-
&
k∆T = −α2 (T − Ta )
α2
u=v=w=0
**
$
*℄
/ 0 $
)
1
χ ! "
# $ % &
' $
( '())
) *
' + , %
,-./0 1 1
2 %
+ dt Co = umax % dx
umax 3 3 dx
)
+
2.5 4 0.02 mm 3
1 ms−1 4 3 5 × 10−5 s
5
$ 2 67℄
-*1
' 3
3 9 3 2 3 A b
4 3 A
x y ← Ax yi
p1 Aij = 0 xj
p2 p2 xj p1
x
!
!" # !" # $%&&'( '&&&& &&'&&) *++&' '&&&& &&'&&) ,&&&'%% '$,$( $('$$) (*+' '$$,+ $$'(%) * %+'% '*($% %+'$$) %*%'+ '%&$ $,') % +'&& ('$$ $$') $,,'$ ('*$, $'+$) $('&$ &'*,% %(',) *(' $'$,%, %'$$) , %*',& '%%+* ($'*) "
#!$%& % '
(#!$%&)
%
*+, (-%") (0.0005%) 100- 10.6. &/ ( 0"&℄ (C), (D) (E)) ' ' ' */ 1s ( & (A), (B)) */ 2.3 mm 0.6 mm &/ 2.07 0.58 2.25 0.52 - */ 2 2
∂γ ) 3 ( ∂T
1800K − 2000K
"#"$# % ℄ '( ) ( * + ,-
(0.0139%) ℄ ℄ ! " "
# " $$
% $ &' (
) y = 1.25* + Us = 0mm · s−1 )(*, 3mm · s−1 )!*, 6mm · s−1 )-* 9mm · s−1 )* $
$ 304 )(./* 0.0139% ' ( + I = 100A U = 10.6V
!" 3mm · s #!" 6mm · s $! 9mm · s ! % % & ' ( )( Us = 0mm · s−1
−1
−1
−1
2300K
!
"
304
#
*
+ ,
%
U T % % (m s ) (K) (mm) (mm) --( .- -)) ) -.( ./ /)0 -.( 0 -00 . 0 )( -) .-- .-//) )
(mm s−1 )
max −1
max
0.0139%
! z
"
1 s # 50 K $ % 25 K $ %
2300K & ∂γ ) & ' ( ∂T (
! ) t = 1.0 s& t = 1.06 s& t = 1, 12 s t = 1.18 s
#
! * ( &
( 4 mm& #
1 ms−1 + ν = 6.81 × 10−7 m2 s−1 , & - Re ≈ 5800
&
& #
( ≈ 1 ms−1 #
#
* T > 2000 K
+ +
" ) . ! & /& 0& 1 &
& x = 0
! " "#$
! " #$ % ! " #$ &$ ' ! " (
"
℄ ℄
!" #$ %&% '' ℄ ( )*+ , , -. / !'$ !'& 01 ''' !℄ () + , 2 34. )+ 5, + 6 %"#$1& ''! 1℄ ) ( + , 7 , 75 , + 5, ! 1$ & 88 0℄ 9 : - . ; 3 , - <+ , +7 , 75 5, %"#$ 1& 0 88 %℄ 3 9 )++ ) + = '%1 ℄ 9 ,
2 ;
. , ) ( , + , , 5, 5 "!#$ %!& ! ''% '℄ 9 ,
) ( , 9 9. , 7 , 75
, + 5, 5+ 6 + " # '"#$ 1& ' / ''0 8℄ ) > , ) ( , + , , , 5 $ ;$ % & 1 888 ℄ ?+ , 3 - + , +, +
, 7 , 75 6 5, $ ;$18'&1 0 2 ''% ℄ -. : @ , ) 9. , A 6 B 6 ,C 5, + ! % %&0' '' ℄ ) D
+
: E 9 , , 3 6, )+, , 5, $ 8;$0!1&01' '' !℄ < F , ) ( ,
, 5,, + 88 $ 8"#$!&!' 2 ''' 1℄ < F 2- E 2 - , ) ( E6 5,
, , , + %'"!#$'%3& 3 888 0℄ D: F , D + )+, , + , 7 , 75 5, ! & ' # ! & 1$ 8!0& 810 88 %℄ ) <
+
3 6, 2 G. , )$ -, ,6 , , 5, 8! A
( 0$1 8&1 ' '' ℄ : <+ , ) ( -, + , , , 5, 1 $ " #$ 0& % / 88
⋆
! " # $ &'( ! # $ # ! )*& + $ $ $ ! , #
! " ! ##$$$ ! %& ' ()# * +
%$$% %$$$ * ,,) )#$- * +
"
. /++0 ! +
! ! 1 %2 2( 3
"
+ 3 . " 4
" 54 / 60 ⋆
! - . $ ( ) .- /0).
!
"
# $
!
"
%&'℄ %)℄ * ! " %&+℄ ! %&,℄
%&℄ - " !
%&.℄ %/℄
0
1
%&2℄ # "
%2℄ -
%&)℄ %'℄ # ##3 " $
%4℄ 5
$
%,℄
6 1
##3
#
! ! 78
5 9
':++
!
"
5 !
#
); ;/
6
!
t ∈ [0, te ]
D
L 6
x ∈ [0, L]
t0 ρ v = q = ρv p T x t # x h(x) # %&& &;℄ <
8
T (x, t)! " #$%℄! ∂t ρ + ∂x q = 0 , $ λ(q) ρv|v| , ∂t q + ∂x p + ∂x (ρv 2 ) + gρ∂x h = − ' 2D p = γ(T )z(p, T )ρ . ( ) γ T ! z(p, T ) z = 1 * +, !
- . - -.-! z(p, T ) = 1 + 0.257(p/pc) − 0.533
(p/pc ) , (T /Tc)
%
pc Tc / "! * ! 0 λ(q) ' 12! 1 = −2 log10 λ(q)
k 2.51 + Re(q) λ(q) 3.71D
.
3
) k
! η ! Re(q) 4 ! Re(q) =
D q ≈ 106 . η
5
6 $1( / ! A = π4 D2 ! 1/A 7 ! ! ρ ← Aρ 28! ! q ← Aq 28! γ ← γ/A! $ (
' 2 ∂t q ∂x (ρv2 ) 9 #$%℄ v = q/ρ
! A∂x p + gρ∂x h = −
λ(q) q|q| . 2D ρ
+
q pin pout
Operating Range of a Turbo-Compressor 50
eta_ad = 0.60 0.65 0.70 0.75 0.80 0.85
45 40
n = 6500 5850 5200 4550 3900 3250 measurement
35 Adiabatic Head
30 25 20 15 10 5 0 2
4
6
8
10
12
Volumetric Flowrate
! " Nth = c1 qHad
κ = c1 q c2 z(pin , Tin )Tin κ−1
1
pout pin
κ−1 κ
c1 , c2 Had
−1 κ
2
.
n
!
ηad
"
q
Had
#
B = c3 N b(n, N )
b
N
$
#
&'
0.5(
B
N = Nth /ηad
%
# ! )
*
!
#
B = c˜3 Nth
c˜3 = c3 b/ηad
+ %
c ∈ (0, 1]
pout = cpin ,
qout = qin .
pout = pin ,
qout = qin
(open) ,
qin = qout = 0
(closed) .
∆p ∈ [∆pmin , ∆pmax ]
pout = pin − ∆p ,
qout = qin
(open) ,
qin = qout = 0
(closed) .
G = (N , A)
N+ N− N0 N = N+ ∪ N− ∪ N0 .
A = Api ∪ Acn ∪ Acs ∪ Avl ∪ Arg . 45 6 3 45 6 3
"
! Api
Acn Acs Avl Arg passive
active (controlled)
# a ∈ A i, j ∈ N ij ∈ A$ % & i j $
' te costcs = ( Ba (t) dt . ca 0
a∈Acs
) * ' + & t > te $ ,+ ' t = te $ - ' + La mmin ≤ . ρa (x, te ) dx . a∈Api
0
! "
Γa = {0, La} a ∈ Api
a ∈ Api # I = [0, te] $ ΓI = {0, 1, 2, . . . , te }
∆t = 1 # x = (x0 , . . . , xt ) with xt = (pt , qt , st , ut ) , t = 0, . . . , te . %& ' t
pt = (pit )i∈N ( qt = (qit , qjt )ij∈A
st = (sat )a∈A
(t−1, t)
ut = (uat )a∈A
) e
sijt = ρjt , ij ∈ Api , uat = ∆pat , a ∈ Acs , sat = Nat , a ∈ Acs , uat = ∆pat , a ∈ Arg .
%*
ρjt − ρjt− qjt − qit + =0, ∆t La 2 pjt − pit hj − hi λ(qjt ) qjt Aa + gρjt + =0, La La 2Da ρjt pjt − γ(Tjt )z(pjt , Tjt )ρjt = 0 .
%/
+ sat uat # ,-. $ . a = ij ∈ Api t ∈ {1, . . . , te} t− = t − 1) 01 0% # 2
a = ij ∈ Acs Bat = c˜3a Nat
κ = c1a c2a c˜3a qjt z(pit , Tit )Tit κ−1
1
pjt pit
κ−1 κ
−1
2
.
00
# 3
4 Γa ΓI costcs =
a∈Acs
ca
te Bat− + Bat ∆t , 2 t=1
mmin ≤
ij∈Api
Lij
ρite + ρjte . 2
05
#
$
( $ j ∈ N0 t ∈ {1, . . . , te}
P2 P1
CsA
Vl1
CsB
CsC
C3
Rg1 C1
C2
qijt =
i: ij∈A
qjkt .
k: jk∈A
x0 = x ˆ0
i ∈ N+ ∪ N− ij ∈ A : i ∈ N+ j ∈ N−
!
"# $% & ' () * !
+ , -"$
!,
.℄ .1℄
, ! 0 ,
* &
$ 23455 324
52 & 62 & $ 147
12 8
*
! 7
a ∈ Api La = 10 km * -"$ 5597 56
55:2
*
;
,
& 5:46 < 452
3
10−6
8 0 + &
= 0 ,
0 27>2245>22 +
Cs A Cs B Cs C Rg 1
20
Cs A Cs B Cs C Rg 1
20
15
15
10
10
5
5
0
0 0
6
12
18
24
30
36
42
48
6
12
18
24
30
Cs A Cs B Cs C Rg 1
20
0
15
10
10
5
5
0
42
48
42
48
42
48
Cs A Cs B Cs C Rg 1
20
15
36
0 0
6
12
18
24
30
36
42
48
6
12
18
24
30
Cs A Cs B Cs C Rg 1
20
0
Cs A Cs B Cs C Rg 1
20
15
15
10
10
5
5
0
36
0 0
6
12
18
24
30
36
42
48
0
6
12
18
24
30
36
! "
!! "
# $ % &
!" # $ %
& ' % " ! $ ! " ( % % % % %
% ) $
* + , % ( - ( . % # %
/ %
% % (% % %
" % 0 #
$ % % % % % % 1 %
2 % % % ( ( 3
& $ # % % ( & %
' %* % *# % %%#
& / % 245 % %
' & (
& 6 ,7 8 523 ,7 9 ) 6 % % : ' 5 8 7 8 1 7* % & $ % -
℄ ℄ %℄ ℄ +℄
1℄ #℄ ℄ ℄ $℄ ℄ ℄ %℄
℄ +℄ 1℄ #℄
!
" # #$ %$ ! " $% ! & '() *& *+ ' (! , $$
! " # $
, - .$$/ #0 $$1
! % & ' &
( ) ) - - 2 3 ( 4! ! "5 ! - 6 , 7 ! 8 $$ + 0#$ "
# * + ' , 9 2 :!!! 3 !; $$ $ " - , <;! = >! $$ % & ' ( &%) " ) &! 4! 4 * . / +#01$1 * . $ ) +% ? 6 & ! <;! = >* ! $$ + $ &! ! 3 ! 3 ! 1 . / 1 01 , , 8 1 - %/ '$ 9 !!6 '?-7 *
- & ' ( ! ' *
! 3 :6! -' ; ; !
- 3 ( ' @6! % +%01 + , ' " " " ! 0 ) , ! "! !! * 1 , , . / ! ! ' '
/ / 1 .$$$/ +0 1+
$ $ ) , . 1/ 1 %011
! , . %$ ! " $+
! " # $ % & ! " ' ' ( ) *! $
" # # + $ ! , $
y = F (x)
vi−n = xi vi
= ϕi (vj )j≺i
ym−i = vl−i
i = 1...n
i = 1...l
i = m − 1...0
F
ϕ
v
i ∈ V ≡ {1 − n, 2 − n, . . . , l − 1, l}
G = (V , E )
j i
(j, i) v v ∂ i
i
i
(j, i) ∈ E
⇐⇒
∂vj
ϕi ≡ 0
j
⇐⇒
j≺i .
j≺i
=⇒
j
G
n m
v = x j = 1 . . . n v = y i = 0 . . . m − 1 x = (x , . . . , x ) y = (y , . . . , y )
j−n
1
j≺i
=⇒
j
l−i
n
j ∈ 1 − n, . . . , l − m
1
∧
m−i
m
i ∈ 1, . . . , l
ni ≡ j : j ≺ i
1 2 ϕ
n i !
F (x) "
# $ ϕ : Ê → Ê i
i
i
ni
Ê
Di ⊂ ni
cij ≡
∂ ϕi (ui ) j ≺ i ∂vj
ui ≡ vj j≺i ∈ Di F ϕi (i, j) cij = cij (x) x ∈ n
! "
Ê
v1 v−1 ∗ v0 v2 exp(v1 ) v3 sin(v2 ) v4 sqrt(v2 ) v5 atan(v2 ) v6 v1 − v2 = (v−1 , v0 ) (v3 , v4 , v5 , v6 ) = c1−1 v0 c10 v−1 c21 v2 c32 cos(v2 )
−1 c1
c21
−1
1 c 10
2
c61
c 32 c42 c52 c6 2
3 4 5
0 6 c42 c52 c62 c61
0.5/v4 1/(1 + v22 ) −1 +1
! "#
cij ! " # $ cij ϕi $ % cij ≡ 0 j ≺ i l × (l − m + n)
i=1,...,l C ≡ cij j=1−n,...,l−m
(
&"'
⎡
c1−1 ⎢ 0 ⎢ ⎢ 0 C =⎢ ⎢ 0 ⎢ ⎣ 0 0
c10 0 0 0 0 0
0 c21 0 0 0 1
⎤ 0 0 ⎥ ⎥ c32 ⎥ ⎥ c42 ⎥ ⎥ c52 ⎦ −1
.
C ∈ Ê6×4 8
c62 = −1 c61 = 1 6
(x1 , x2 ) ≡ (v−1 , v0 ) C = C(x) Ê6×4 6 C 6
cij
F : Ên → Êm x ∈ Ên Ên Êm Êm×n F ′ (x) ∈ Êm×n F x
ej j = 1 . . . n
Ên ei i = 1 . . . m Êm F
F ′ (x) aij ≡ eTi F ′ (x)ej ≡
∂ T e F (x) ∂xj i
c˜ıj˜ P ≡ (i1 , i2 , . . . ik¯ ) (ik , ik+1 ) ∈ E cP ≡
#
cij =
cik+1 ik
!"#
k=1
(j,i)⊂P
$% &'℄ am−i,j ≡
¯ k−1 #
cP
.
!)#
P ∈[j−n → l−i]
* [j − n → l − i]
0 < j ≤ n 0 ≤ i < m $
aij
4 × 2 8
! " F ′ (x) 1 # " ! F ′ (x) $ %&℄ ( $ " 1 4×2 ! c1−1 c10 c21 c32 c42 c52 c62 c61 ) $ ! * c21 = 1 c62 = 0 5 ) X ⊂ n D = dom(F ) $ # C
Ê
Ê
C:X
−→
Ê l×(l−m+n)
.
C * {cij (x) : x ∈ X } X ⊂ n ( x # + , *
ϕi cij # cij
Ê
C ∈C≡
" $i=1...l cij (x) x∈X
j=1−n...l−m
⊃ C(X ) .
- C C(X ) .$ C X
# C dim(C) dim(C(X )) ≤ dim(C) ≤ l (l − m + n) .
#
ϕi (vj ) = γi ∗ vi γi / 0 γi
γi
G n m C ∈ C
B C= R
L ∈ S
Ê((l−m)+m)×(n+(l−m))
.
!"#
L det(I − L) ≡ 1
C m × n $
% & '(℄ $ * + !,# !(#
i=1...m A = aij j=1...n
−1 A ≡ A(C) ≡ R + S I − L B
.
$ ',℄ - A
A:C
−→
Êm×n
det(I − L) ≡ 1
L $ A(C) C ∈ C
A=
"
$i=1...m aij (C) C∈ C ⊃ A(C)
.
j=1...n
$ dim(A) A(C) C ∈ C
. / % 0
F
dim(A(C)) C
G
A(C) G
scarce(G) ≡ dim(A) − dim(A(C))
C
.
dim(A(C)) = dim(C)
1
C ∈ C
A ⊂ m×n 12 A(C) 3 C
Ê
℄
dim(A(C)) = 5 < 6 = dim(C) " # A(C)
!
C
$
% &
#
' ( y˙ = F ′ (x) x˙ ∈ m ! x ¯ = y¯ F ′ (x) ∈ n x˙ ∈ n y ¯ ∈ m % $ )
Ê
Ê
Ê
Ê
Ê
¯ $ x ∈ n y˙ x ( x ˙ ∈ n y¯ ∈ m * + , ,℄
y˙
Ê
Ê
x ¯
#
' - .
1
−1 y˙
&
x ¯
$ (
"
6
$&
#
"
$
/ -
v˙ i−n v˙ i y˙ m−i
= x˙ i
i = 1 . . . n P cij v˙ j i = 1 . . . l = j≺i = v˙ l−i
i = 0 . . . m − 1
v¯l−i v¯j x ¯i
= y¯m−i
i = 0 . . . m − 1 P v¯i cij j = l − m . . . 1 − n = i≻j = v¯i−n
i = 1 . . . n
'
˜ G
G
/ 0
/ -
$
2 (−1, 1) 1 %
( ! / ,℄ 1℄ . 2 3
3 c˜31
−1 1
c˜10 = c10 /c1−1
c˜41
1
4
c˜31 = c32 · c21 · c1−1
c˜51
c˜10
c˜41 = c42 · c21 · c1−1 5
c˜61
c˜51 = c52 · c21 · c1−1
0
c˜61 = (c61 + c62 · c21 ) · c1−1
6
G˜
C˜ = T (C) ∈
Ê
5×3
T : C → C˜
Ê6×4
˜ = A(T (C)) A(C) = A(C)
C ∈
.
T ˜ dim(C)
dim(A(C))
C˜ = T (C)
!
"
x˙
y˙
y¯
x ¯
C˜
l−m
#
dim(C)
$
i
(n + i)
"
"
l − m ≤ 2 ∗ dim(C) %
"
G C ˜ C˜ C
C ∈ C # A
C ∈ C C˜ = T (C)
A
l = m
C˜ T C ′ ⊂ C A(C) = A(T (C)) C ∈ C ′ . C ′ C T C˜ = T (C)
C ! C˜ ≡ T (C) ˜ . dim(A(C)) = dim(A(T (C)) = dim(T (C)) ≤ dim(C)
C˜ " #
" F ′ (x)
$ y˙ = F ′ (x)x˙ x¯ = y¯F ′ (x)
T
dim(T (C)) = dim(A(C)) %
A : C → Êm×n
" r ≤ dim(A) ≤ m n & X C '(℄
Ê
A(C) ⊂ m×n r T : C → C T (C) = C
r T (C)
dim(A(C)) = dim(A(T (C)) = dim(T (C))
C∈C
.
! " A(C) r * +
!
A , +
C dim(A(C))
+
%+
C ∈ C T : C → C˜ C˜ dim(A(C)) A(C) = A(T (C))
T
T (C) F ′ (x)
T
A(C)
A(C)
A(T (C)
m n = 8 dim(A(C)) = 5
T (C) ≡ A(C) dim(C) = 6
! "
(j, i) ∈ E
#
(j, i) E chj += chi · cij h ≻ i
(j, i) E cik += cij · cjk k ≺ j
γ = cij = 0 chi ∗= γ h ≻ i cik /= γ k ≺ i
γ = cij = 0 cjk ∗= γ k ≺ j chj /= γ h ≻ i
(j, i) E (k, i) cik = 0 ckj += γ ≡ cij /cik chj −= chk · γ h ≻ k, h = i
(j, i) E (j, h) chi = 0 cih += γ ≡ cij /chj cik −= chk · γ k ≺ h, k = j
h′ j
j
i
h′
+ i
+ h k
k j
+ j +
i
k′
h i h
k
k′ d iv 1 j
i
v di
′
k
k
k j
∗
i
′
∗
k′
h
∗
∗ h′
h′
k
i
k′
k′
j
h
j
h′
v di 1
i
div
h
h
i j
j
k j
h′ i
+
h
k
h′
j
−
i
−
+ h
h ′
h
k
k
k
−
i
−
k′
(j, i)
G
˜
C G˜ C˜ A(C) = A(C) {−1, 0, 1}
G˜
G + − cij ∗ div (j, i) ∈ E (i, k) ∈ E !
"
#$℄ & #'℄
( ) * + (j, i) ∈ E (k, i) ,
* ) m = n
F ′ (x)x˙ = y˙
x˙ ∈ Ên y˙ ∈ Ên & -
" #.℄ &
"
"
/ " 0 1 2 3 × 3 3 4 6 + 5
9 2 × 2
(j, i2 ) (k2 , j) i0
k0
i0
k0
j
j
k1
i1
k2
i2
=⇒
k1
i1
k2
i2
(j, i2 ) (k2 , j)
G G˜ ! 2 " # (−1, 1) # G˜ $
% −2
3
−2
1 −1
1 4
−1 −
2 0
3
4 2
5
0 −
5
(−2, 2) (−2, 1) (1, 2)
% (−2, 2) c1−2 = 0 & ' (1, 2)
1 " ( ( (2, 3) (1, 3) ' ) * (−2, 1)
−2
+ 1 + +
−1
3
−2
3 1
4
−1
2
2 5
0
4
− −
5
0
(2, 3) (1, 4) (2, 1)
10 8 (−2, 1) (2, 4) 1 Ê3×3 8 ! " ! ! −2
3 + +
−2
1
1 div
−1
4
−1
∗
0
5
0
∗
1 ∗
v di
2
3
∗
1
4
2
∗
div
5
(−2, 1) (2, 4)
# v(t, u, w) (u, w) $ t % t u w h = 1/˜n n˜ > 0 tk = k h ,
uj = j h ,
wi = i h
0 ≤ i, j, k ≤ n ˜ .
" v(t, un , w) = v(t, 1, w) = v(t, 0, w) = v(t, u0 , w)
v(t, u, wn ) = v(t, u, 1) = v(t, u, 0) = v(t, u, w0 ) .
& $ !
vk,j,i ≈ v(tk , uj , wi )
uk+1,j,i = fh (tk , uj , wi , vk,j,i , vk,j−1,i , vk,j,i−1 ) vk−1,i ≡ vk,˜n−1,i vk+1,j,i
vk,j−1 = vk,j,˜n−1 v
.
!
n ˜ = 3
"
v0,j,i j=1...˜n,i=1...˜n
p = (i − 1) ∗ 3 + j
˜ vn˜ −1,j,i j=1...˜n,i=1...˜n # m = n n ˜ 3 dim(C) = 4˜ n2 (˜ n − 1) 2
$
$ n ˜ 4 % &
dim(A) = n ˜ 4
dim(C) ≥ dim(A(C))
1 2 ˜ /(˜ n 4n
− 1)
) ˜ − 2]2 scarce(G) ≥ n ˜ 4 − 4˜ n2 (˜ n − 1) = n ˜2 n
%
n ˜ ≥ 3
.
' $
#
7
8
9
4
5
6
1
2
3
(
) $ & *
$
v
(uj , wi ) 3˜ n2 (˜ n − 1)
n ˜ 2
n ˜ /3 ≈
√ n/3
F
!
"#℄ %& ' (
( )* +
½½ ,#-./0( 1.2-3
* '7 )* #--3( #/3 2 #/- 9 (
( + #- % * )*(
"4℄ % 5 6(
"8℄
( 4:::
"/℄ 9 (
! "# (
* ( 4::8
$ % ( 5=>:4( 3 5
";℄ 9 < +
(
= 5 )
( 4::4
"3℄
& $
(
".℄ * (
( ? @ A ( (
, 9 9 % 5 ( 0( )*( (
( #--#( #2#3
% '# ( ? ( ) 5 (
"1℄ < (
? < ( 9 ( #--3
1 2 3
1 1
2
3
! "# $ % &' ( ) *+, --. / 0 1 .2 3 0 "# $ &10 % &' ( ) 4 .5 &10
" 6 0 0 0 6 7 8 9 0 6 & ( 7 04 ( 7 0 7
7 0 7 & 7 0 04
! !
" #
# $ %
%
% & '
(
% %
# % )*℄ , -.
# % )/℄ # % %
Tc
† † † bi bi . ! (bi +bi )niσ +ω0 ni↑ ni↓ +gω0 ciσ cjσ +U HHHM = −t i,j ,σ
i
i,σ
i
" t # U $ c†iσ σ % i niσ = c†iσ ciσ & '
g = εp /ω0 εp (†] ! ω0 bi ! ( )*℄ , -!
& ).℄ )/℄ 0 " 1
#'%! '%! U ! )2℄
0 3 ! " 4 5'! 4 '-67! - #
4 '
"
5'
{|Φi } Hi,j = !Φi |HHHM |Φj .
Hi,j
! !
"
! #$℄ & '() * +,+ HHHM !
! ! -
! N = 8 16 *
& !
! .
% % i ni↑ +ni↓ z
12 i ni↑ −ni↓ !
{|Φu,v = |u
el
⊗ |v
ph ;
u = 1, . . . , Del ; v = 1, . . . , Dph },
/
Dtot = Del ×Dph |v
ph
=
" $mi,v 1 |0 b†i m ! i,v i=1 N #
ph ,
mi,v ∈ [0, ∞]
% M
i mi,v ≤ M M Dph = (M + N )!/M !N ! ! M ω0 "! # $ HHHM E ≪ M ω0 M % {t, U, g, ω0} & % "' N = 8 M M = Del × Dph ∼ 1010 ! ( Dtot
"' $ "' % ) ) *+* ) *+* "! ,
-. /℄
'*12 -#3 ## #4℄ "' H 56 7 % '*12 '*12 8 4
! " # $ % & !'!
ρii′ =
∗ ψij ψi′ j ,
j
i j ⏐ : ⏐ψ ⏐ :⏐ : ⏐ : ⏐ψ = ψij ⏐i ⏐j .
ij
!℄ ρ # $$ % • & ' & l ' m • % & l + 1
' • % & l − 1 % ( $ ) & $ * +,+ $
#$ $ $
- ' $
& . /0 !℄$ ¯ l+1 H
|
|
¯ R′ H l −1
!" H¯ l+1 # H¯ lR−1 $ % # & $ % ' # # # ( $" ′
m ' $ m $ 1 m m
$ 2 m
m = 500 !! "#
$ %
& '( ℄ !
!" # $ # $% # &
&% '# (") '% % & *# '# +,-! # ,--. %% / '#
0 % !0 / % '% 12 &%3 % !0
4"- % %' /* 5 # ' % 6 1
℄
0+" 78/ 9 : ; $<
61
;1
4"-
670%'1 : $<
9
9
"-
0% = ( :19 $<
92
1
"-
!' ;2 :8 "$<
2
19
4"-
!0 ;9 :6 "$<
12 :6 1<
4"-
! * + , , '-℄ . /0
1 1 * '2℄ . /0 $ "3 4 -1- ! U = 4 m = 2000# $ - $5 6 4
/ * 7 68 * +
& . "#
Performance [MFlop/s]
2500
2000
1500
1000
500
0
90
M
IB
p6
(
HP
0
67
G (1
el
Int
P
Xe
D on
G 2.4
(
ir
nF
Su
00
8 e3
I SG
)
Hz
Hz
Hz
rx5
)
)
)
)
Hz
G 1.3
(9
M 00
00
Hz
M 00
(5
4 n3
igi
Or
!" ℄
!
" # $
!
$ %&
' ( ( )*
($ " +
, -
%. /.
, &
)0 1* , U = 0 & )*
gc (ω0 ) $ ω0 → 0 2 " 3 P = +1 4℄ #
3
%. 5 g = 0
P = −1
℄
!"
##
!
Peierls Insulator
Mott Insulator
u/λ >> 1
∆c = ∆s > 0; P = +1
∆c > ∆s = 0; P = −1 u/λ << 1
CDW
SDW
u = U/4t λ = εp /2t = 2αg 2 α = ω0 /t $ %
&
'( )(* )℄ + # *
# , & # # - .
+ , # , . ℄ / , # # , , // , # & % † , . Ekin = −t! i,j σ ciσ cjσ 0 #
U
+ 1
0!"
. *
#
Ekin
!"
###
, # & # $
#
#
u/λ*
* , #
$ #
2
# , 3! 4 * * 5 " # 5 # . 5 , Ekin + , & , 6
Sc (π) =
1 1 1 (−1)|i−j| !(niσ − )(njσ′ − ) 2 N i,j 2 2
7
,
σσ′
1 (−1)|i−j| !Siz Sjz Ss (π) = 2 N i,j 8 ,
Sc (π) Ss (π)
,
Siz =
1 (ni↑ − ni↓ ) . 2
+ 7 , /
4, * , 0!" .
&
U
g
!"
ω0 *
&
ED (M=24) DMRG (np=7;m=600)
0.5
-5.0
Ekin(ep=2,U)
ED: U/t=2 ED: U/t=4 ED: U/t=6
-6.0
DMRG
Ekin(εp=2,U/t)/Ekin(0,0)
1.0
-7.0 -8.0 4
0.0 0.0
2.0
8
12
16
4.0 U/t
M
20
24
6.0
8.0
U/t g 2 = 2 ω0 /t = 1 ! "# #$%& Ekin ' U g2 = 2 ω0 /t = 1( ) "# * ' ! M ! #$%& np = 6 ! * m = 1000 ! ) + ,- ! ./.
℄
! "# # $ "# Sc(π)
% Sc (π) N → ∞ & #
# % % %
' (
) * % ' N = 128( * +
* ,- . ,- "/% !
0 % + + $ 1 0 "/ 0 # # 2 -& . ,- * %
$ 3 4 5 -& "/
0.04
1
U/t=6
U/t=2 0.8
0.03
0.6
Sc(π)
Sc(π)
-2
1.0×10
0.1
0.02
0.08
Ss(π)
Ss(π)
-3
0.4
7.5×10
-3
5.0×10
-3
2.5×10
0.0 0
0.2
0.05 0.03
0.01 0.1
0.05
0
-1
N
0 0
0.05
0.1
N
-1
0.15
0
0.1
0.05 -1
N
0.2
0 0
0.05
0.1
N
-1
0.15
0.2
!" # $ %& ! " & ! " m = 1000 5 ' (
( ) N = 128 ( m = 800 ' ( *#
T = 0 σ reg (ω) =
π |!ψ0 |ˆj|ψm |2 δ(ω −Em +E0 ) . N Em − E0
m=0
|ψ0 |ψm % † E0 Em ˆj = −iet iσ (ciσ ci+1 σ − c†i+1 σ ciσ ) ! " # $% σreg (ω) %
&$'( &&$'( )*+ &&$'( , - η ! η . η &&$'( /& η /& 0 % &&$'( " , - &$'(
122℄ 4 5 ω ω0 &&$'( " #
η ! "# $ %%$& ' (( $) &'$
reg
σ (ω) [arbitrary units]
3 ED DDMRG η=1 DDMRG η=0.2 DDMRG η=0.1
2
1
0 0
1
2
3
4 ω
5
6
7
8
N = 8 U/t = 6 g 2 = 2 ω0 = 1 ! " m = 200 # $ % # η = 1 η = 0.2 η = 0.1 & η " "
" &'() $ % *# % # + # ,
* + , -. %! -%# / . 0# %$& / / / !
1
0 -% 2 %$& 3 / 4$ + -% % %$& %%$&#/ /
! ! " # $
" #
% &&' &'( )* * ( + ,&' ), - + !.&$ )! " * * $ + / &&'0 )& & 0 + '12 )' 1 2 + !.&0 / 2 * 0 ! " * )( !+ )! 3+
℄ ! " #$%%%& $℄ ' ( ) ) * ! + , - ,. / ' ! 00 # 110& 0℄ 233 4 + ) 5 ( ! / $067$8 # 10&9 : 4 ; < , 5 < 5 $87$61 # 10& =℄ < !2 5 , < , 2 4 , ' 5 #+>& 0$870=$ # 181&9 !2 5 , $ < ! 5 ' 5 #+>& 0=07061 # 181& 8℄ !; 3 ? 5 ( ) $%67$ 6 # 116& ℄ , ' @ / A 5 ; ' ! ! 5 $08;$=1 #$%%%& ℄ ) )B2 C 3 ; ? ; ; 5 ( ) 00; 0 # 116&
℄ ! " #$ % & % ' (" " ) # *+++(*+, -**+. *℄ ! / $ ( $ $ 0 '1 % 2 % ($ & ' 3 45% -'.0 % " 6 $ % '%% *** 7(7* $%(8% # 9% -7:::. :℄ ; < 1 2 $ " ) =
7+>(7++ -**7. ℄ ; < 1 ?% 2 $ " ) # :>@,(:>,+ -**>. 7℄ < ! ; < 1 2 $ & & " A % < 3! 3 9% -'.0 ; (< 1 2 0 ? / < " = / ! $ <1(" !(& B " ! 3 $1 ; ** = " 8 ,7 $% # 9% -***. >℄ ' 4 ! ; (< 1 2 $ " " 9 < " ) # +>+(+>, -**. @℄ % ' 4 ! ! "2 ( % ; < 1 2 $ ?% (< ,℄ ! ? " C$ 2 & ( ) 6 &?< " $ -7::. +℄ ' 4 ! ; ( 1 2 (% $ " ) # :@,@ -7::7. ℄ ! ? D #B
? # $ " <
( ; " # >7(>> ,+7(,+> -7::7. ℄ ! ? " 3$ < ! "( <
( ; ' " 4 # (+ -7::>. *℄ ! ? " 3$ < ! % ? D #B (
? # $ C( ($ 0 <
( )( "( & % -'.0 % " 6 $ % '%% < 7::7 >>*(>@* $%(8% # ( 9% -7::>. 7:℄ < 92 ? C % ? ? # & <
& C ; " ) =
7:@(7: -***. 7℄ " # & 4$2 ? " 3$ < ! ( % $ (E 99 -7::>. 77℄ 3 9% ; ( 1 % $ $( /( " ) # *7(*>: -**,.
1 1 2 1 2
λn · T (X, t) = qn (X, t)) ! "# $ "$ !
%" ! & ! '(') *(*+ ,(,-! ,(% !
!
"
# "
" $ %&' #
$ (
) * ) " "+
C0 ρ0
∂T (X, t) ∂T (X, t) ∂T (X, t) ∂T (X, t) ∂ ∂ +u = λ0 + λ0 ∂t ∂z ∂x ∂x ∂y ∂y
∂ ∂T (X, t) + λ0 ∂z ∂z
X = {x, y, z} u
z
nd rd
!
Ω0
!
" qn # $
%
%
&
'
% !
(
%
( ! %
!
!
)
(
&
!
!
X ∈ Ω0
TL
TS
!
" #
C0 ρ0
$
∂T (X, t) ∂T (X, t) ( ∂T (X, t) ∂T (X, t) ∂ ∂ +u = λ0 + λ0 ∂t ∂z ∂x ∂x ∂y ∂y
!
%
u
(λ T )
&
! ' (
q = qI (z)
'
$
)
α = αII (z) Tp > Tcr
$
X ∈ Γ0 : T (r, z) = Tr ∂T (r, z) =0 X ∈ Γ∞ : ∂r ∂T2 (r, z) X ∈ Γ1 : −λ2 = q1 ∂z ∂T (r, z) − αn (z)[T (r, z) − Tmt ] X ∈ Γ2 : −λ2 ∂r ∂T (r, z) =0 X ∈ Γs : ∂r F m=1,2 ∂T2 (r, z) ∂T1 (r, z) X ∈ Γ1,2 : λ1 − λ2 = U · ρ2 · L · ∂r ∂r ∂z
∂T (r, z) 1 ∂ ∂T (r, z) = Ωm : Cm ρm · U · r · λm ∂z z ∂z ∂z m=1,2
' (
∂y∂ λ0 ∂T∂y(Y ) ' ( ∂T (Z) ∂
λ 0 ∂z ∂z C0 ρ0
∂T (X, t) ∂T (X, t) ∂T (X, t) ∂ +u = λ0 ∂t ∂z ∂x ∂x
X∈ X∈
Γ0 : T (X, t) = Tp ∂T (X, t) = qk (X, t) Γk : −λ0 ∂n
k = I, II, . . . , n = x
n = y
Γ0
Γk
k k = I, II, . . . , qk !"
k Co ρo
# " $%
∂T ∂T +w ∂t ∂z
T f +1 − T0f +1 T0f +1 − T0f +w 4 ∆t ∆z
=
0
z e = 4 ∆z = u∆t
z +
∆
∂T ∂T +w ∂t ∂z
Φe
0
T f +1 − T0f +1 T f +1 − T0f T0f +1 − T0f + 4 = 4 ∆t ∆t ∆t
2 2 T0f +1 − T0f Tef − T0f Φ Ψ + qof Φe (Ψe − 1) = e e f ∆t R oe e=1 e=1
∈ Ω0
$ $ %0
=
=
T0f
+
∆t C0f ρf0
1 2 Tf − Tf e 0 e=1
f R0e
Φe Ψe +
2 e=1
2
f
q Φe (Ψe − 1)
(
Ψe = 1, e = 1, 2 $ Ψe = 1 $
$
$
Ψe
) * $
$
(z = 0)
$ $ $
Tp
'
&
$
!" # $ %0 $ $ &
C0f ρf0
T4f +1
T (X0 , 0) = Tp
+ $ #
( $ $
$
Γ 1
Γ1
! " # $
% & ' ( Γ1
% $ )℄ q= r1
"
1 λ1
t1 − t2
ln dd12 +
1 λ2
ln dd32
$
+
% T1 $
'$ 2 $
$ 1 1
1 2 3 T2 λ1 λ2
Ì1 Ì2 Ì1 Ì2 Ì1 Ì2
& # % $
!! #! #" #&$ # % ## # #%
" ! % % %& % %# %
#$ #$! #"" #!% # &&
%% %$ %" %! $ $
# #! " %% $ "#
' (
) %% * ) +, * & - ℄
# $ $% ' % #(% )%
λ
# ρ
L S
&
&
& & &
!" !" !"3 0 0
*'+ % , $ %- $ ./ $ $ & % %0 $ ./ " %
$ 1% %$ %
- & 2 % "
% $ 3
% $ % % $ %/%- 2 '/- % - " " % 2 4.) .# %% % - , $ %- ,% " %
5% %0 6 2 (%/ %% % *" %2% % $ % %7 ,%
2 " & % 5 2 % %6 % 2 " 8& % 5 %6 % $ $ %- - -! 2 2 " "
%%/%
$ %" 2 "" $
%0 Scrit % %%$ $2" 7 Scr = Pp /σT ,
P σT σT = 1, 2 1, 5
!" #$ %&℄(
)crit = 163.636 × 10−4 m2 ( Sliq ( * Sliq = Scast − Scrit ( Scast ( 176.625 × 10−4 m2 ( Sliq = 12.989×10−4 m2
( Rliq ( 2.03.10×−2 m. $ + # ( Lcrit ( * Lcrit = Rcast − Rliq = 75 − 20, 3 = 54, 7mm.
,( + # ( Lsol ( !(&, - ,. +
(
( + # /
0 (
1 2
!"#$ %
&"℄ (
)* + + , - "$$# ./ 0 &1℄ 2 - - 2 3 % &4℄ 5 + , 2 , 0 . "$67 &7℄ (8
( 22 . 9
: 1" ( "$$; ℄ 0
5 8 0
5 "$$6
1
1
2
2
! " #
$ % & '( ) *! !* $ " #
+ , , + , , ,,+ - , , ,
+ % , # ( - , ++ ,. # , , ,+ / , + ,- , # # ( 0# , +, , , , , , , # , +( -/ + ,+ , , , 1 1 ,2 -# (
⎧ y − ν∆y + (y · ∇)y + ∇p = Bu (0, T ) × Ω, ⎪ ⎪ ⎨ − y = 0 (0, T ) × Ω, ! (0, T ) × ∂Ω, y = 0 ⎪ ⎪ ⎩ y(0) = ϕ Ω. z L " Bu # $ B $ Ω ⊂ R # % %
% t
2
2
Bu = K(y)
% %
%
$ %
!℄
# $ %
z
&
' & &
K
A
'
& '
b(y)
yt + Ay + b(y) = K(y). ( & ) *
κ
K z
&
|y(t) − z(t)|H 1 ≤ ce−κt
c
+ ,,℄ &
- & & , . / 0 ,1 ,! ,2 ,+℄ &
+ ,,℄ -
& & 2℄ & &
& & &
& ,3 ,4℄ ' & .
* /
- 4 )
'
c
C
' '
T > 0 Q = (0, T ) × Ω Ω ⊂ R2 V = {v ∈ H01 (Ω)2 , v = 0} H = L2 (Ω)2 {v ∈ C0∞ (Ω)2 , v = 0} & 5 H H ′ & V ) ' $& V ֒→ H ֒→ V ′ 6 H V
- '
(ϕ, ψ)V = (ϕ′ , ψ ′ )H
&
ϕ, ψ ∈ V.
Lp (Z) (1 ≤ p ≤ ∞) & & ϕ : (0, T ) → Z p ' (1 ≤ p < ∞) (0, T ) (p = ∞) 7
Z
' 5
L2 (U) U U
B : U → V′
Uad ⊆ U
! " #$ W := W (V ) = {ϕ ∈ L2 (V ) : ϕt ∈ L2 (V ′ )}
H 2,1 (Q) := {ϕ ∈ L2 (V ∩ H 2 (Ω)), ϕt ∈ L2 (H)}.
# b(u, v, w) :=
(u · ∇)v w dx.
Ω
" y ∈ L2 (V ) b(y) !b(y), v V ,V := −b(y, y, v) v ∈ V % V ′ t ∈ (0, T ) b(y) ∈ L1 (V ) &' ( )℄ ! y ∈ L∞ (H) b(y) L2 (V ′ )
y ∈ W W L∞ (H) &+℄ u ∈ L2 (U) " #$ , y ∈ W ′
d (y(t), ϕ)H + ν(y(t), ϕ)V dt = !b(y) + Bu(t), ϕ
V ′ ,V
ϕ ∈ V t ∈ [0, T ]
)
χ ∈ H. ) - . / . 0. =: ν > 0 #
/ # &'℄ Ì ϕ ∈ H u ∈ L2(U) ) (y(0), χ)H = (ϕ, χ)H
y ∈ W
A : V !Ay, v
V ′ ,V
→ V ′
:= ν(y, v)V .
u = 0 V ′ ! yt + Ay = b(y), y(0) = ϕ,
b(y) "# m ∈ N
$ (0, T ) h = mT tk = kh! k = 0, 1, . . . , m# z ∈ W ֒→ C([0, T ], H) # % J k : V × U → R,
(y, u) →
1 z = h k
tk + h 2
tk − h 2
1 γ 2 2 |y − z k |H + |u|U , 2 2
&
z(s, ·) ds
z(t, ·) = 0 t > T # ! k = 1, . . . , m i = 1, 2 ek : V × U → V ′ ek (y, u) = (I + hA)y − hb(y k−1 ) − y k−1 − Bu,
y k−1 # ' $ J k (y, u) ( ek (y, u) = 0 V ′ ,
u ∈ Uad ,
Pk
y 0 = ϕ# ' ϕ V # y k−1 (y k , uk )
ek (y, u) = 0 V ′ (y k , v)H + νh (y k , v)V = (y k−1 , v)H + !Buk + hb(y k−1 ), v )V ′ ,V
∀ v ∈ V.
)
ϕ ∈ V ! V # ' ! uk ∈ U *# ) y k ∈ V
|y k |V ≤
C k−1 |y |H + h|y k−1 |2 V + |uk |U . νh
J k ! ek Uad + (Pk )! k = 1, . . . , m! (y∗k , uk∗ ) ∈ V × U # !
λk∗ ∈ V
A
(y∗k , uk∗ )
(I + hA)y = Bu + y k−1 + hb(y k−1 ), (I + hA)λ = −(y − z k ), ⋆
(γu − B λ, v − u) ≥ 0
(y∗k , uk∗ )
!
(Pk )
v ∈ Uad ,
(y, u, λ) = (y∗k , uk∗ , λk∗ )
(Pk )
V ×U ×V
"
#
Jˆk (u) = J k (y(u), u)
Uad
u∈U
$
y(u) ∈ V Jˆk u
% "
!
∇Jˆk (u) = γu − B ⋆ λ,
u
λ
y λ B := (I + hA)−1 ek (y, u) = 0 y = B(y k−1 + hb(y k−1 ) +
& '
Bu)
(
yk − z k
!
Jˆk
# ) *
'
! '
! '
+
, &
y 0 = ϕ k = 0
t0
+ -
= 0 uk0
uk+1 = RECIP E(uk0 , y k , z k , tk )
RECIP E
(I + hA)y k+1 = y k + hb(y k ) + Buk+1 .
tk+1 = tk + h k = k + 1 tk < T
RECIP E ! ! ˆ k) " uk0 −∇J(u 0
# $ % &'℄
% )*+,* # &'℄ ! # u = RECIP E(v, y k , z, t) . (I + hA)y = y k + hb(y k ) + Bv
(I + hA)λ = −(y − z)
d = γv − B ⋆ λ ρ > 0
/ RECIP E = v − ρd
% # U = L2 (Ω)2 B ! # 0 !Bu, v
V ′ ,V
= (u, v),
Bu = u.
1
&'℄ )*+,* .
uk0 = 0 .
h
(I + hA)y k+1 = y k + hb(y k ) − ρBB(y k − z k ) − hρBB(b(y k ) − Az k ),
y˙ + Ay = b(y) −
ρ BB(y − z) − ρBB(b(y) − Az), h
y(0) = ϕ.
y 0 = ϕ, '
.2
3 % ρ K(y) = − BB(y − z) − ρBB(b(y) − Az) h
..
.2 4 4 # 4 5 6 4 6 h ρ )*+,* . .2 # ! uk0 = 0 γ ' % K y z 5 .2 # z #
zt + Az − b(z) = −ρBB(b(z) − Az),
z(0) = ϕ.
ρ K(y) = − BB(y − z) − ρBB(b(y) − b(z)) + zt + Az − b(z). h
yt + Ay − b(y) = K(y) L2 (V ′ ) y(0) = ϕ. ! ! "#$ %&$%&℄ ρ
|w(t)|2H,V ≤ Ce− h t
∀t ∈ [0, T ],
C ( w := y − z & ) ! ( uk0 * $ "#$ ℄ +& ) ! (I + hA)wj+1 = wj + h b(y j ) − b(z j ) − ρBBwj − ρhBB b(y j ) − b(z j ) , w0 = ϕ − z(0).
+ ) ! , -. )/. u ∈ Uad
& * ( ! uk+1 ∈ Uad ( 0 ( Uad & ) 1 ! -. )/. 2 -. )/. , ( ( ! ′ RECIP E = PU (v − ρd)& ( (( * ( ( ( (Pk )& uk (Pk ) $ && Uad = U & uk ( ! !$ ( %$ ad
) ! &
(I + hA)y k+1 = y k + hb(y k ) + uk (I + hA)λk = z k − y k+1 γuk − λk = 0.
3
uk = −(BB + γI)−1 B(B(y k + hb(y k )) − z k )
% 2 ( L(H, H)& 1 ( ( S "℄& .,( Bz k = BB(z k + hAz k ) S = γ(BB + γI)−1 BB,
(I + hA)y k+1 = y k + hb(y k ) −
1 S(y k − z k + hb(y k ) − hAz k ), γ
h
y
y 0 = ϕ,
yt + Ay − b(y) = −
1 S(y − z + hb(y) − hAz), γh
y(0) = ϕ.
yt +Ay−b(y) = −
1 S(y−z +hb(y)−hb(z))+zt +Az −b(z), γh
(I + hA)y k+1 = y k + hb(y k ) −
h 1 S(y k − z k ) − S(b(y k ) − b(z k )) γ γ +z k+1 − z k + hAz k − hb(z k ).
"
u = K(y) = −
y(0) = ϕ,
K
!
1 S(y − z + hb(y) − hb(z)) + zt + Az − b(z) γh
# $
%℄
|w(t)|2H ≤ C e−
α(γ) h t
|w(0)|2H
∀t ∈ [0, T ],
α(γ) =
γ (1+γ)2 .
"
K
min J(v k ) =
1 2
Ω
|wk+1 | +
γ k2 |v | , 2
˜k P
'
(I + hA)wk+1 = wk + hb(wk + z k ) − hb(z k ) + v k .
(Pk )#
(
w = y−z
)
# *
(h, 1) u = RECIP E(v, y k , z k , z k+1 , t)
u
(I + hA)y = y k − z k + hb(y k ) − hb(z k ) + (I + hA)z k+1 + u (I + hA)λ = z k+1 − y γu − λ = 0. RECIP E = u
(h, l)
l ∈N
! !
lh" # h" $ %
! !
&'(℄"
%
!
# *
' % ' ( +" $ '
&,℄" ' ( %
ρ BB uk0 = 1 − ργ k+1 1 − z k + Az k+1 − b(z k ) + ρBB(b(z k ) − Az k ) . z 1 − ργ
I−
'( &,℄" % -
z
L2 *
""
1 J(y, u) = 2 %
t
γ |y(x, t)) − z(x, t)| dx + 2 Ωo
2
Ωo
Ωc
|u(x, t)|2 dx,
Ωc
% % -
Ω " / U = L2 (Ω)"
. 0 *- % B 1" / !
Bu = K(y) - % # '
.
% ' ( +"
1
1
0.9
0.9
0.8
0.8
0.7
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
T = 1 T = 2 Ω = [0, 1]2 y(x, 0) = ϕ(x) = e
(cos 2πx1 − 1) sin 2πx2 −(cos 2πx2 − 1) sin 2πx1
,
e z(t, x) =
ψx2 (t, x1 , x2 ) −ψx1 (t, x1 , x2 )
,
ψ
ψ(t, x1 , x2 ) = θ(t, x1 )θ(t, x2 )
θ(t, y) = (1 − y)2 (1 − cos 2πyt).
10 ν = 1/10 T = 2 ! ! h = 0.01 ! " #$%& %##' (&( ) *+, # % ! ρ = 0.1 % - |u(x, t)| ≤ 103 ) . - |y(t) − z(t)|H %
−3
2
10
10
|u(x)|<=1e−3 unconstraint
|u(x)|<=1e−3 unconstraint
0
10
−4
10
−2
10
−4
10
−5
10 −6
10
−6
−8
10
10
−10
10
−7
10
−12
10
−14
10
−8
10 −16
10
−9
0
0.2
0.4
0.6
0.8
1
1.2
1.4
|y(t) −
1.6
1.8
z(t)|2H
2
10
0
1.2
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.4
|u(t)|2L2 (Ω)
1.2
−0.2
0.2
−0.2
0
0.1
0.2
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
T = 2
t ≥ 1.4
!"# " $ L2 ! |y(t) − z(t)|H % γ & '
"
!"# ' " ( ' 104 108 ) *
2
2
10
10
0
γ=0 −4 γ=10 −2 γ=10 0 γ=10
0
10
γ=10 1 γ=10 2 γ=10 4 γ=10
0
10
−2
10
−2
10
−4
10
−4
10 −6
10
−6
10 −8
10
−8
10 −10
10
−10
10
−12
10
−12
−14
10
−16
10
10
−14
10
−18
10
−16
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
|y(t) − y¯(t)|2H γ
℄
℄ ! "# $ ! %$ & ' ! % (# )
( * *
%$ & % + ,--. ℄ ! " "/ * 0
0# ( $ 1 2 *
#3345 ,---. 3℄ ! " % 6 * ) 0 +# &
$ 1 7 + & *
#-483 ,--3. 8℄ ! ) & !#
9 % ' ! )
,-55. ℄ : 6 ; + ;# 9 $ ( *
7 ,--. <℄ = > !9 ) :* * *# * # % 2 #334385 ,-5-. ?℄ =/$ *: * # 2 @
$
1 ! * 2 *
9 #53453 ,. 5℄ " :!# :
!%6 2 6
7 ! %$ 6
' A22 2
6
! 38 ,--3.
℄
!" #$##$ %
" & ' ( ) *$##$+ ,#℄ - - . / 0 01 2 )3 4& !" 5 / 67,8679 : ; / *,5+ ,,℄ <1 3/ =
./ ! " !
,8$> *$##$+
,$℄ : ( . /
. ? ? ,,$##6 %
" & ' 3 *$##6+ ,6℄ : ( . /
2 !
,@℄ A B B ( C / 2 01 1 1 2 ! D . E
,9@58,,97 *,5+
,7℄ A B B ( 1 2 ! D . E
>7@8>55 *,5+
,>℄ A . - D . 2 2 01 /
D F
$@78$79 *,9+
,5℄ . . 2 2 C / 1 ? 2 D F
,$6 8 ,7> *,+
,9℄ " ? 4= *,5+ ,℄ "G F &/ ! F 2
/ H!
@@58@7> *$##,+
1 2 3 1
!"# $
2
!"# $
3
!"# $
%
&& %'( ) & * % ( & ( ) &
+ %
(
% +
% (
℄! "
! # $% & ' ! # & ()* ! +
& !! , - .℄ k /℄ 0 10℄! 2 1,℄! 3
k
k
!
"# $%% & %'℄
)
* + ) , - . '
. / 0
, . &
.
1
2
2
min cT x
Ax = 1 x ∈ {0, 1}n. 3
A
2 2 i
xj
aij = 0
aij = 1 j
j cj
cj
4 - * + * + 5 6 0
3 6 0
/77 2
! "
# $ % &
$
' #
$
$ (
$ ) %
*
+
$ %
! $
,"" $ $ $ .
# $ "
!" #"$ !! "### ""#$ # !!$ !
) $ /#
$ /# $ ' $ '
!"#
$
& '(#)
%
* * * * *
'
*
'(#) &
+*
&
, - & * ) ./℄ & '(#)
&
-
min cT x
Ax = 1 x≥0
(P )
max uT 1 T
A u ≤ c.
(D)
)
& & & 1 & &
2 * 3
- &
- *
-
) /4 + ) 54 )&
A0
3 &
)
k := 0
k
(P ) T
min ck xk k k
A x = 1 k x ≥ 0, &
xk
uk uk (Dk )
T
rk := min cj − uk A.j j∈J
J (P )
rk < 0
Ak Ak+1 k = k + 1
(P k )
! "
# $ ! V % & ! ! fi fj
fi fj '( fj ! fi )
(fi , fj ) cij − uki " * ) % cij ) +
',
%
%
' )
" * ' -
fi 0
super source
cij − uki
fj −ukj
super sink
℄ ! " # ! ! uk+1
! uk $ ! % ! & ' !( $ ! c1 u1 u0 c2 c3 ! ) c1 ! * ! ! " u3 u0 u1 11 u0 00 00 11 c2 1
c
u1
2
u
1 0 0 1
11 00 00 11 3
11 00
Optimal
u
c3
+ ! & ! ! ! " !) ' ℄( ! $ ! , ! -./
% ! ! ! P˜ ! D˜
0℄1 (P˜ )
T T y+ y − + δ+ min cT x ˜ − δ− A˜ x − y− + y+ y− y+ x ˜ , y− , y +
=1 ≤ ε− ≤ ε+ ≥ 0,
˜ (D)
max u ˜ − εT− v− − εT+ v+ AT u˜ −˜ u − v− u˜ − v+ v− , v+
≤c ≤ −δ− ≤ δ+ ≥ 0.
[δ− , δ+ ]
∗
x
ε− = ε+ = 0 δ− < u ˜∗ < δ+
,u
∗
∗
ε− ≥ 0, ε+ ≥ 0
(P, D)
˜ (P˜ , D)
˜ ε− ε+ P
˜ D
∗
˜ u ˜ x
! k
(P˜ )
T
k k y+ y − + δ+ min ck xk − δ− k k A x − y− + y+ = 1 xk , y− , y+ ≥ 0,
k
˜ ) (D
max uk 1 uk Ak ≤ ck k k δ− ≤ u k ≤ δ+ .
"
#
$ %
&'(℄
δ+ δ−
#
* &+℄
,
δ+
δ−
δ % k+1 k+1 k k δ− = δ− − ∆δ− , δ+ = δ+ + ∆δ+ .
δ+
δ−
% ∆δ
#
-
,
T
cj −uk A.j uk
!
" !
#
!
$% $% $%* $%' $%, $%& $%( $%+
& )& *' ) + ( &
'(() ')* *(++ ''*& '('& ',(& ''& * '
)(' )&) )&, )(' )&' )&) ) )+ )&'
(('& * ,& * ,&+ )+'( +')) ,+& *(*
-
((
' *'
),
&,
! ||u − u∗||2 u u∗ "# #
||u − u∗ ||2
Standard method
2.5e+06
2e+06
1.5e+06
1e+06
500000
0
0
20
40
60
80
100
120
140
160
180
20
(iters)
- -
%
√ ni=1 ui ≤ cj
cj / n ! %& %' % %) %( %. %, %+
∆δ = 700 " " # $ &'( &)(* +*), &( &)*++.&. &+& +**' &*&),( *).&.. &),& *).& &), &(.. *)-. &. &,) *).* &( &)+ *),* &(& &))( *'
')&) ()( )(( (*.) )*-& ','+ )'*) )& *'*
/0
1 ! 0 )
2
!
0 ! / 3!
!
1 0 4℄
6 &----- ! .(---
3 ! ∆δ / 0
( % ∆δ 7 0
∆δ 1 6 ! /
7
||u − u∗ ||2
Stationary BoxStep method
80000 70000 60000 50000 40000 30000 20000 10000 0
0
20
40
60
80
100
120
14
(iters)
#Var(s) 5000 FS 1 FS 2 FS 3 FS 4 FS 5 FS 6 FS 7 FS 8
4500 4000 3500 3000 2500 2000 1500 1000 500
128
256
512
∆δ
1024
2048
4096
819
#LP(s) 400 FS 1 FS 2 FS 3 FS 4 FS 5 FS 6 FS 7 FS 8
350
300
250
200
150
100
128
256
512
∆δ
1024
2048
4096
819
! " # $ ∆δ
∆δ
√ 10080/ 2 ≃ 7128
∆δ
! " [31, 7128] [512, 1024℄
$ % & ' $
∆δ
$
Time (secs) 20000 FS 1 FS 2 FS 3 FS 4 FS 5 FS 6 FS 7 FS 8
18000 16000 14000 12000 10000 8000 6000 4000 2000 0
128
256
512
∆δ
1024
2048
4096
819
∆δ ( $
) *
+
, - " )
" - $
.℄ / 0 1 2 3 / 4 ( " / 1 4 /05+4
66
℄
""#$ % $ & $
'
()%*+),*- +--.
*℄ /$ 0 / 1 $
. # 2$
$ 3 $ $ # *4,+*-
"
+--* (℄ 5 /
$ /$
$ 4℄ $$8
$$6
+-(%-,*7 +---
$ 9 $ :
$ $ '
# (.+,(-. +--4
)℄ 2 &
/ $ ;$$ : & 2 : +---
7℄ ' ' $ <$ 1 $ /$
= /:$ "
$ & 9$ 2$ $9 $
*+ +--7
.℄ 1 2
= 29" 3 "
$ =$ & = : $ # 2 $ #
$ 3=/ +--- -℄ >:
2
$ & $ ?
! "
.%7@*,7+ +-)@
+@℄ / > A > 9 =$$ 9 $$ $ $ 2 $ # 2 $ $ ' $ $ $ $ & 2 " : +--- ++℄ 3 8 $# & " 5# $$6 $ (@4 +-74 +℄
2 ? #
*B*C%*.-,
"
/
$ 2 ;$$ : & +--- +*℄
= = D8
= >$ / $ 3 3 = $ $ ""$ =## & =$$ 9 $$ +--7 +(℄ 3 $
()
#$ % & ' #
E' +--7
+4℄ 2 0 =
(
6
* (
+74* &
# = :$ =## & $ 9 "
$ # -*,*@7 #$ @@@
1 2 1 1 1 1
2
! " # $ % &
' '( 104 4.105 " # #
)*%*+ ,nm3 )-%./ ,nm3 % "
# /%///.'/%//0* '( # %
℄! "
#
$ % ! & "
' # % (
"
! '
! ) *℄
" ' # ' " % " $ ! #
" % + & +
,-℄! ) ' ,℄ + &
'
.!/ %! 0 '
℄ ℄
! "℄ # " $℄ # % #
# & # "' "(℄ ) * "+ ",℄ -# # # . / ! 0 #
1 104 2.104 4.104 4.105
1 2.104 4.105 * ! 1 2 ,++ 3nm3 4 56 7( 8) 9 * 2:914
,℄ ; ϕ(r) = −0.18892(r − 1.82709)4 + 1.70192(r − 2.50849)2 − 0.79829
2"4
< ϕ(r) A0 8 # = >((A0 < # 6 ? 9 ,++ 3nm3 = 6 9 # ; 0 # ''"A0
# ? 6 * ''+A0 ''"A0 5 2''+A0 4 # &
& *
''"A0 2.104 ,>$ 3nm3 # "
ith ith
A0 ith
ith
A0 ! ith " ### A0 $ Nv
ith
(2000 − Nv )4πR3 Vf = %& 3×2000 '
Nv &(###
Vf
%###'
!"℄ $ !%℄ & ' ()% & 1st
! " ! # $ & 1 ! # $ % A 1st ! # $ % 2st ! # $ % A0 2st ! # $ % st
0
A0
%
& & & &
'(!)*℄
, ./ 1/ ,1
, ./ 1/ ,,
,.0.1 1 ,.,
, .0 1 1 ,0
,.,1 1 ,-1
* + ,
+ , - ' '
- * (- A0 (. A0 !℄ (%/ A0 ' ' & 0 '1
!" # $
∼ %% # & ' # ( (
$ )
# * +
,
- - - -
. / 5 6 A0 7 8nm3 , * + A0 * + , % * + A0 % * + 7 ≥ A0 , *)+ *)+ # , *)+ *)+ , *Vc + *Vc + , *Vf + *Vf +
01!% 02 0202 034 33 33 3% 31"1 2.104
243 0% 003 4% 032 %1 % """ % 42 ! !00 !% ! 4 0% %1 202
2.104
243 0% 0!04 4% 02 " % "31 % 3%!" ! !%1! !%%24 4 0%4 %1 "3
2.104
20" 0! 00! 4% !!4 !" % % ! % %%" ! !%01 ! 0 4 0 " %2 201
4.105
243 0% 0% 4% 013 14 % "%4 % 02! ! ! 20 !"% 4 %"3% %1 10!
! " A0
Vf
A0 !"#$ !"#% !"&'$ !"#% ( ) *
"#+"$ ( ( (
A0 (
Vf ! " Vf " #$ $ " %$ &$ ' ($ ! ") ! " Vf * +$ $ * " %$ &$ ' ($ ! ") ,!")$ " ! " Vf
- -$ ) , ")$ "" ! " Vf
" - . -
" ) - . - - - Vc " " Vc =
Vt Va
/ Vt " !" "" !
$ Va !" ∼ π×1.263 A0 % " " !)
" A0 ! ! " !)
$ ! ") !)
fc (z) fa (z)$ fc (z) * ! 0 "1 2 " " " " 3 4 104 4.104 $ ! ") 5 ) " ! " " % ( " " 0 " % ($ 3 "")$ ! )"6 "
7
8 " 3 8 " % 8 " 4 8 " (
3 ) $ 9 : " ( )$ ;nm3 7 6 $A0 < 6 : ! ≥ A0 ! ! '
** 104 *# # * *
2.104 *# # *
#* 4.104 *# + #
# 4.105 *# * +
1
! A "#$ %
" A & "'$!
(
( $)! *nm
+"+,,
++,, & ( -
st
0
0
3
! " # !
4.10 . &
(/
""""0/""" )
( (/
1 1 1 1 (
104
5
℄ ℄
! " # $
! %
&' ((( )*
℄ + ,& - . + . /%
( ℄ 0 - ' ' 0
- + 1%" 2 # 3
((( 3 )℄ 0 - ' ' ' 4 0
- + ""5 # %"
"% 6 3 )) 3℄ 0 - ' ' ' 4 + " # %" "% (( 6 ) ℄ 0
- -
.76 8#
9
" 3 )) *℄ &" 6 # &" 6# ' 3( 3*) (3 ℄ 0 - ''-
00-
048 + ""5 # %
" "%' * (( (℄ 9 1& 4 + " 1 &
"% 1 && " *
((( ) ℄ 8 % : " .::: 1 &
"" 2
#
: - % - ) * 3* ℄ '" 9 " 1 &
"" "% 2
*( ℄ 8 9 '" 1 & "% 1 && " ( ℄ 9 8 ;% < , '" # , < 2 = 2
% &
"% ) >
)℄ '" % : " % -% ! 4 %" 2
& " * ((( )
3℄ '" 9 8 1 &
" - 2
# : -
% - 3 )3 ℄ '" 8 9 :55?@ . "% 2
# : - % - 3 )3 *℄ '" 9 " 1
%% " @ 2 # 2"" # "%
2
3 *) ℄ A, %" " ! " # $
! %
&' ((( *)(*3(
(℄ . < 4 2""2 8 (
! " # $ % &
!
" ' ( % ) " * + % * %
! "#$%& '
(
! ' ) ( * ( ( "#$+ "#$,& -. '
/ 0 1 ( 2
"#3#&
' ( 2
"#$4& "#$3& - ' . (
-
ut + u.ux + v.uy + ϕx − f.v + T x = 0 vt + u.vx + v.vy + ϕy + f.u + T y = 0 ϕt + (ϕu)x + (ϕu)y − r = 0
!"#
$ u v x y f % r ϕ = gh h g
T x = (τbx − τsx )/ρh , T y = (τby − τsy )/ρh
!#
c=
1 1/6 nR
, τby = ρgv
u2 + v 2 /c2 , τbx = ρgu u2 + v 2 /c2
τsx = ρa Cz Wz2 cosϕx , τsy = ρa Cz Wz2 cosϕy ,
τbx τby x y & n '
R τsx τsy
x y ρ
ρa
Cz ( Wz ϕx ϕy x, y
) *+ !"#
!f (x, y), Vi = =
m
elements
f (x, y) · Vi dxdy
f (x, y) · Vi dxdy , i = i, j, k
global
ue =
j=i,j,k
uj
uj (t) · Vj (x, y)
Vj
u
Vi =
A
1 (ai y + bi x + ci ) 2A
bi = yj − yk , ai = xk − xj , ci = xj · yk − xk · yj (6) i, j, k
! " # $ %
&i
bi ∂Vi ai ∂Vi = ; = , (i = 1, 2, 3) ∂x 2A ∂y 2A
'
( ) "*+ , , - . " -
+., [M ] ϕ + [K1 ] {ϕ} = [M ] {r}
[M ] =
m 1
[M e ] ; [K1 ] =
m 1
[K1e ] ;
/
m m + . , +., ϕ = {ϕe } ϕe ; {ϕ} = 1
1
0
M e = ⎡ ⎤ Vi Vk dxdy Vi Vj dxdy Vi Vi dxdy ⎡ ⎤ A A A 211 ⎢ ⎥ A ⎢ ⎥ e Vj Vk dxdy ⎥ = Vj Vj dxdy Vj Vi dxdy ⎣1 2 1⎦ [M ] = ⎢ A A A ⎣ ⎦ 12 1 1 2 Vk Vk dxdy Vk Vj dxdy Vk Vi dxdy A
A
A
[K1e ] = ⎞ ⎛ ∂Vj ⎝Vi · ϕj ⎠dxdy (Vj · u∗j ) · [K1e ] = ∂x j=i,j,k j=i,j,k A ⎛ ⎞ ∂Vj ⎝Vi · Vj · vj∗ · ϕj ⎠dxdy + ∂y
[K1e ]
=
A e [K11 ]
e [K11 ]=
1 24
e [K12 ]=
1 24
j=i,j,k
e + [K12 ] ⎡ (2u∗i + u∗j + u∗k )bi ⎣ (u∗i + 2u∗j + u∗k )bi (u∗i + u∗j + 2u∗k )bi ⎡ (2vi∗ + vj∗ + vk∗ )ai ⎣ (vi∗ + 2vj∗ + vk∗ )ai (vi∗ + vj∗ + 2vk∗ )ai
j=i,j,k
⎤ (2u∗i + u∗j + u∗k )bj (2u∗i + u∗j + u∗k )bk (u∗i + 2u∗j + u∗k )bj (u∗i + 2u∗j + u∗k )bk ⎦ (u∗i + u∗j + 2u∗k )bj (u∗i + u∗j + 2u∗k )bk ⎤ (2vi∗ + vj∗ + vk∗ )aj (2vi∗ + vj∗ + vk∗ )ak (vi∗ + 2vj∗ + vk∗ )aj (vi∗ + 2vj∗ + vk∗ )ak ⎦ (vi∗ + vj∗ + 2vk∗ )aj (vi∗ + vj∗ + 2vk∗ )ak
u∗ v ∗
u∗ = un+1/2 = 3un /2 − un−1 /2 v ∗ = v n+1/2 = 3v n /2 − v n−1 /2
! n+1
n
n+1
n
+ {ϕ} − {ϕ} {ϕ} n+1/2 + [K1 ] = [M ] {r } ∆t 2 # n n + 1 tn+1 = tn + ∆t, tn = n∆t [M ]
{ϕ}
" $ " $ 2 [M ] + [K1 ] {ϕ}n+1 − {ϕ}n = 2 [M ]{r}n+1/2 − [K1 ] {ϕ}n ∆t
"
$
% & ' ( ) *+ ∂v u ∂x . L(u, v) = u∂v/∂x
, ( ) *+ ! & ' & ' -
ξ = kh η = lh h u(∂v/∂x) u = exp(ikx) , v = exp(ilx)
|T.E.|
∼
[4η 4 +8η 2 +7η 2 ξ 2 −2ηξ3 ] 720
ξ = η || ∼ 17η 720 4
!" # Z :=
∂v/∂x)
⎧ ⎫ ⎤⎧ 2 1 Z1 ⎪ v2 − v1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢1 4 1 ⎪ ⎪ ⎥⎪ ⎪ v Z ⎪ ⎪ ⎪ 3 − v1 2 ⎪ ⎢ ⎪ ⎥⎪ ⎪ ⎪ ⎢ ... ... ⎪ ⎪ ⎥⎪ ⎪ ... ... ⎨ ⎨ ⎬ ⎥ h⎢ 1 ⎢ 1 4 1 ⎥ v Z = j+1 − vj−1 j ⎥⎪ ⎪ 6⎢ 2⎪ ⎢ ⎥⎪ ⎪ ⎪ ... ... ... ... ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎣ 1 4 2⎦⎪ v Z ⎪ ⎪ ⎪ m+1 − vm−1 m ⎪ ⎪ ⎪ ⎩ ⎩ ⎭ 21 vm+1 − vm Zm+1 ⎡
⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬
$
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭
% & '!" w = u∂v/∂x ⎧ 3u1 Z1 + u1 Z2 + u2 Z2 + u2 Z2 ⎪ ⎪ ⎪ ⎪ u 1 Z1 + u 1 Z2 + u 2 Z1 + u 2 Z3 ⎪ ⎪ ⎪ ⎪ +u3 Z2 + u3 Z3 + 6u2 Z2 ⎪ ⎪ ⎧ ⎫ ⎪ ⎪ ⎡ ⎤ ⎪ w1 ⎪ M ⎪ ⎪ ⎪ ⎪ 2 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ w u Z + u ⎪ ⎪ ⎪ 2 j−1 j−1 j Zj−1 + uj−1 Zj ⎪ ⎪ ⎢1 4 1 ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎪ +u Z + uj Zj+1 ⎪ ⎪ ⎪ j+1 j ⎢ ... ... ⎥⎪ ⎪ ⎪ ⎨ ⎢ ⎥⎨ ⎬ 1 +u Z + 6uj Zj j+1 j+1 ⎢ 1 4 1 ⎥ ⎥ ⎪ wj ⎪ = 12 ⎪ ⎢ M ⎢ ⎥⎪ ⎪ ⎪ ... ... ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ um−1 Zm−1 + um Zm−1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎣ 1 4 1⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ +um−1 Zm + um+1 Zm ⎪ ⎪ ⎪ w m ⎪ ⎪ 12 ⎪ ⎩ ⎪ ⎭ ⎪ +u wm+1 ⎪ m Zm+1 + um+1 Zm+1 ⎪ ⎪ ⎪ +6um Zm ⎪ ⎪ ⎪ ⎪ u Z ⎪ m m + um Zm+1 ⎪ ⎩ +um+1 Zm + 3um+1 Zm+1
⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭
(
|T.E.|
∼
[2ξ 3 η+3η 2 ξ 2 +2η 3 ξ−4η 4 ] 720
)*
3 4 η
ξ = η | | ∼ 720
u v !
"
∂u/∂x = Zxu , ∂v/∂x = Zxv
## # ∂u/∂x ∂v/∂x # Zyu Zyv y
# $ $ u 1
{u}n+1 − {u}n + {(u.Zxu )} + {(v.Zyu )} − {f.v} + {T x} [M ] . ∆t
2
+ [K2 ] . {ϕ} = 0
""
$ % v
[M ] .
1
{v}
n+1
n
− {v} + {(u.Zxv )} + {(v.Zyv )} + {f.u} + {T y } ∆t
2
+ [K3 ] . {ϕ} = 0
$ [K2 ] =
m
[K2e ] ; [K3 ] =
1
$ ⎡
bi
Vi dxdy bj
m
"&
"'
[K3e ]
1
Vi dxdy bk
Vi dxdy
⎤
⎡ ⎤ A A A bi bj bk ⎢ ⎥ 1 1 ⎢ bi Vj dxdy ⎥ Vj dxdy bk Vj dxdy bj [K2e ] = ⎥ = ⎣ bi bj bk ⎦ ⎢ A A A 2A ⎣ ⎦ 6 bi bj bk Vk dxdy Vk dxdy bk Vk dxdy bj bi ⎡
ai
A
A
A
Vi dxdy aj
Vi dxdy ak
"(
Vi dxdy
⎤
⎤ ⎡ A A A ai aj ak ⎢ ⎥ 1 1 ⎢ ai Vj dxdy ⎥ Vj dxdy ak Vj dxdy aj [K3e ] = ⎢ ⎥ = ⎣ ai aj ak ⎦ A A A ⎦ 2A ⎣ 6 ai aj ak Vk dxdy Vk dxdy ak Vk dxdy aj ai A
A
A
")
∆x = 100 m , ∆y = 50 m , ∆t = 60 sec ,
f = 2w sin ϕ
w
= 7.29x10−5 sec−1 ϕ = 150 τsx = τsy = 0
n = 0.035
g = 10 ms−2
r = 0
u = u(0, y, t) = 0.500 − 1.000 m/s v = v(0, y, t) = 0.0 m/s, h = 4.00 + 0.5 sin(πt/21600) m, v = v(x, 100, t) = 0.0 m/s, v = v(x, 300, t) = 0.0 m/s
!
" # " # $
(k) − hi |) = 0.001 m % εh = max(|h(k+1) i &
εv = max(|vi(k+1) − vi(k) |) = 0.003 m
n∆t = 4320 ! "h#
∆
u !! !" #
$
M
%
& $
'
$&
(℄ * & +& ,& -& -& . /% 0 %
1 +& *& , % & 2&"3 & !34'!5& (!℄
& & ! / '
$ 0 ' - % 6& & 7 8 % 1 9& 6% , 6% & 4'5& ("℄
& & " / '
0
0
1 +& *& , % & 2&4! &! & ""'""& (3℄ & & /
% 7 0 1 * :
2&" & " & !44'!4&
℄ !"# $%%& '℄ ( ) * + , -. !℄ 01 ) 2
$ (
,
/$./# $%% , $%!% 3 4
5 . 1 5 6 4 ( (( 7 ,(
3((
-
$!8$# (
'!9.'##
#℄ 01 ) 2 , * 1) $%#/ + : ((: 7 3 :. ( ( ; -
( 7 +
- <( ,8<8/#%8#/ = > ?& (
! "# $%
& ' ! # % %( '!
' ( $ % '!
' ! $ ) ' '!
( * $
+ ! (
B div B = 0 B
! " #$ % & '
!
#! #$
! ()℄
& ! & #$ ! (+,℄ (+-℄ ! ! ! . / 0+12 !
3
℄
! " ! # $ % ! $ ! $ & '() $ * +
, - ./ 0 '() - # - 1
! $ + $ - 2 !
! / - 3
, ! ρ/ ρv/ E B + , ∂t ρ ∂t ρv ∂t E ∂t B
+ div ρv 2 I − BB + div ρvv + p + 21 B + div E + p + 12 B2 v − BB · v + div (B v − v B)
=0 =0 =0 =0
45
/ /
, , E=
1 1 p + ρv2 + 21 B2 γ−1 2
4.5
γ 6 45 4 7℄ 5 '()
4 curl ∂t B+ curl (B × v) = 0 ⇒ div B = const
! " ## ## $%℄ # " ## '
( ) ( $*℄
' # # #
# ˜ Ω div grad ψ = div B + ψ=0 ∂Ω
' ψ #
' B˜
˜ i,j − grad ψ| ' Bi,j = B i,j
, # # - # # . # #
# ## #
/ B 0
1 , $2℄ # ( # $℄ 3 ! $℄ 4 # #
' # b(x) b(y)
i+ ,j i,j+
#
1 2
div
(0)
b
(x)
i,j
:=
(y)
(x)
bi+ 1 ,j − bi− 1 ,j 2
2
∆x
+
1 2
(y)
bi,j+ 1 − bi,j− 1 2
2
∆y
%
1 # # #
℄
!" # ℄
$ ℄
div B = 0
%&!
'℄ ! (℄ %) $ %&!
ψ
%&!
∂t B+ curl (B × v) + ∇ψ = 0 D(ψ) + ∇ · B = 0
D
!+
*
D
$, +
&, ℄
$ # %&! - .
/
& / ,
,
,
, )
0 , / 1℄ 0 '℄ #
,
) %&! 2
, '℄ /
B (x)
B (y)
/
& ,
B (z)
℄ IRD D
∂t u + F (u) = 0
F
u∈Ω⊆
Ω
!
" #
C
C (F (u)) ≡ 0
$
# %
C (u) = const
&
% # % # '() ( # % % ( # "%
u=B ˆ #
C (u) = ˆ div B
! "%
Ω "% (xi , yj ) * ∆x × ∆y
% h = max (∆x, ∆y) + ˜ n : T → IRD * "% ∆t
B
, B n "%
-
B n "% Bni,j .
% 4 !
T
"%
K = (i, j)
" # /℄
! %
01, "0 1, "
V = g : T → IRD ΦK : V → V (i, j) ˜ B " $
Φi,j B˜ (i, j)
˜ : T → IRD . Φi,j (B) k,l
2
B˜ (k, l)
B˜
B˜ ˜ Φi,j (B)
B˜
n Bn+1 i,j = Bi,j +
(k,l) (i,j)
" $
˜ n
Φk,l B
i,j
.
!""#
B˜ (i, j)
$ !""# % > i,j · B ˜ + O (hm ) div B|i,j = div !"
> i,j
B˜ ' div ( !""# ) *"+℄
ˆ (g) Φ i,j
> k,l · Φ ˆ (g) = 0 div i,j
∀ (i, j), (k, l)
!"+#
""
!"+#
{Φˆ (g) i,j } g = 1, 2, ... (g) " $ (g) ˆ ˜ Φ B ϕ Φi,j (˜ u) = !"-# i,j g i,j
. ) ϕ(g) i,j $ ϕ(g) i,j /
Φi,j (g)
ϕi,j > k,l div
!
"
# $ ! %℄ (x)
(0) ˜ := divi,j B
(x)
(y)
(y)
Bi,j+1 − Bi,j−1 Bi+1,j − Bi−1,j + . 2∆x 2∆y
'
# (⋆) ( div (x)
(x)
(⋆) ˜ := divi,j B
(y)
(y)
{Bi,j+1 }x − {Bi,j−1 }x {Bi+1,j }y − {Bi−1,j }y + 2∆x 2∆y
)
( *
{ψi,j }y = {ψi,j }x =
1 4 1 4
(ψi,j+1 + 2ψi,j + ψi,j−1 ) (ψi+1,j + 2ψi,j + ψi−1,j )
+
! ,*
(⋆) ˜ divi,j B
(i, j) × -
.
( O(h2 ) #
* / . - - O(1) ( $
0 O(1) * . O(1)
K = (i, j) div(⋆) B B
! div(⋆) " #! (i, j)
(i, j) $"℄ & ! # !
ˆ (1)
ˆ (1)
Φ = (−∆x, ∆y), Φ = (−∆x, −∆y), i,j i,j
i,j+1
i+1,j+1 ˆ (1)
= (∆x, −∆y), ˆ (1)
Φ = (∆x, ∆y) Φ i,j i,j i,j
'
i+1,j
( ( !
!
( ! ) ! K ! ! *
ˆ (g) ' ! Φ i,j + div(⋆) !
,- # $.℄ /01
n Bn+1 i,j = Bi,j +
∆t ∆t 1 − G (F 1 − Fi+ 21 ,j ) + (G i,j+ 12 ) ∆x i− 2 ,j ∆y i,j− 2
F G !!"# # $#
% & ' # ( )# ) ) * ) Φ( ) ) & + , - F + + G . f # x+ y + , # Fi+ 12 ,j
1 = −fi+ 21 ,j 0
Gi,j+ 12 = fi,j+ 21
0 . 1
/0
) )+
( )
Φi+ 1 ,j
2 i,j
( )
Φi,j+ 1
2
i,j
= fi+ 12 ,j = fi,j+ 12
0 ∆y
−∆x 0
( )
Φi+ 1 ,j
2 i+1,j
( )
Φi,j+ 1
2
= fi+ 21 ,j
i,j+1
= fi,j+ 12
, n+1 Bi,j = Bni,j +
0 −∆y ∆x 0
$
∆t " ( ) ( ) ( ) ( )
Φi+ 1 ,j + Φi− 1 ,j + Φi,j+ 1 + Φi,j− 1
2 2 2 2 ∆x∆y i,j
/ //
/-
( ) * . / 1 div(0) div(⋆) # # * (g) Φi,j
2 $ " (2) (1) () Φi,j+ 1 = − 18 fi,j+ 12 Φi,j + Φi,j 2
/3
! " # ( ) Φi+ 1 ,j 2
Bn+1 i,j $
∆t " ( ) ( ) ( ) ( )
n Φi+ 1 ,j + Φi− 1 ,j + Φi,j+ 1 + Φi,j− 1
Bn+1 i,j = Bi,j + 2 2 2 2 ∆x∆y i,j $
∆t " ( )
( ) ( ) ( ) + Φi+ 1 ,j+1 + Φi− 1 ,j+1 + Φi+1,j+ 1 + Φi+1,j− 1
! 2 2 2 2 ∆x∆y i,j $
∆t " ( )
( ) ( ) ( ) Φi+ 1 ,j−1 + Φi− 1 ,j−1 + Φi−1,j+ 1 + Φi−1,j− 1 . + 2 2 2 2 ∆x∆y i,j
" # $ % &
! & 1 1 1 n+1 n ∆y (!fi,j− 2 − !fi,j+ 2 ) Bi,j = Bi,j + ∆t '! 1 1 1 ∆x (!fi+ 2 ,j − !fi− 2 ,j ) ()*℄ , fi+ 12 ,j
1 1 ∆y (!fi,j− 2 1 1 (!f i+ 2 ,j ∆x
− !fi,j+ 12 ) −∂y f + O(h2 ) = ∂x f i,j − !fi− 12 ,j )
f
(v × B)(z)
! "
# $ %
div B = 0
& '(
" )%
*+
$
%
#
%
%
,
-
B
"
v = v0
B"
sin ϕ cos ϕ
.
ϕ %
*+
B (x, t = 0) =
B0 B1
x < −y tan ϕ x > −y tan ϕ
/
B0,1
!
( ϕ, sin ϕ)T
! +
T
R(ϕ)(1, 2)
"
B0 = R(ϕ)(1, 1)T
B1 =
+
R (ϕ) =
cos ϕ − sin ϕ sin ϕ cos ϕ
0
$ % #
(
B2 div(⋆) B tan ϕ = 1 div(⋆) B ±∞ 2
ϕ = 0 ϕ = π4
(⋆)
div
1 2
ϕ
tan ϕ
=
! " 1 2
B # tan ϕ = 2 $
B % #
div(⋆)
! "
&
! ' '('( [−1, 1]2 )( * 2
B B
+&
tan ϕ = 12
! " # $ %& ' " $ ( "
℄
!" # ψ B˜ Bi,j = B˜ i,j − grad ψ|i,j $ div grad % # &'"
# ( )
) div(⋆) ψ
) div(⋆)
( ( % !" %
% %
&*℄ #
+ %
, (
%%
- # ." %
% % (x) (y) bi+ ,j bi,j+ 1 2
1 2
div(0) b
i,j
=0
∀ i, j
Bi,j
⎞ ⎛ (x) (x) 1 ⎝ bi+ 12 ,j + bi− 21 ,j ⎠ = 2 b(y) 1 + b(y) 1 i,j+ i,j− 2
∀ i, j
⇒
(x)
div(⋆) B = 0
2
bi+ 1 ,j 2
(y)
bi,j+ 1 2 Bi,j
!
B (x, y) =
ϕ(x, y)
∂y ϕ (x, y) −∂x ϕ (x, y)
#
"
div B = 0
!
(x)
bi+ 1 ,j =
ϕi+ 21 ,j+ 12 − ϕi+ 12 ,j− 12
2
∆y
,
(y)
bi,j+ 1 =
ϕi+ 12 ,j+ 12 − ϕi− 21 ,j+ 21
Bi,j
∆x
2
$
ϕ(x, y)
ϕ
# $ % "&
ϕ (x, y) = B (x) y − B (y) x
'
B ϕ(x, y)
B
(
) $ '
#
*
+ , # $ - .
/
Ms
x = −0.6 # = 8
8 x = −0.6 ! r0 = 0.4 "
!
r0
" # $
B
eϕ = (−y/r, x/r)T
B
ϕ
p⋆
!
1 p = p − B2 2
*
"
%&'(
B
r = Bmax eϕ r0
%&)(
+
B
"
ϕ (x, y) =
Bmax 0
r02 −(x2 +y 2 ) 2r0
%&'( !
Bmax = 1.3
r0 = 0.4
x2 + y 2 < r02
%&,(
t = 0.3
! "# $ ! % & '() )* t = 0.5
y t = 0.5
x = 4.4
[−0.8, 4.2] × [0, 2]
1000 × 2500 0.9
! " #$$% &
" '()℄ '(+℄ ,%-. '/℄ # 1
0
"
"
" 234 + 3 ) 56#
371
1
588
9 4 + :
t = 0.3
0
:
B
!
:
4
2
"
"
" 4
B
! t = 0.5
B
t = 0.5 ! " # $ $ 3.5 " 6.5 % $ # & '( )*
"
# $ " %& " ' # $
( %&
" %& &
B
div(⋆)
'
B
)*+, )**,
div(⋆) B = 0
!"#℄ !"%℄
!"℄ &' ( ( ' (' ' ) * + ½ ' ,"---. /01 !/℄ & ' )2 &' *' ∇ · B
' ) * + ' ,"-31. %/4 !#℄ '
' +5' ' 6 ) ' ,"--3. #"0 !%℄ ' 6' 7 ' 8' 79' ' ' *' ( ' ' ' ' ! " #! $ ' ) * + ,/.' ,/11/. 4%: !:℄ ( ' ' # ! % " %
&
' # ' 6;66 + /11"/4/#' ,/11". !4℄ <' *5 ' )8' & # ( ) " # ' 6 ) ' ,"-33. 4:!0℄ = ' < 5' +6' * & " +' (' > ? ,"--4. !3℄ )@' 6 ' ' * ' , ' 6 +' > ? ,"-4%. !-℄ )' =( ( ' * ' $- . $* ' )* + ' ,"--4. /1/ !"1℄ ' *' A ' +' ( ' 5' ( B ' <' C ' 2' ! " #
& / # ' )* + ,/.' ,/111.' %3%
℄
℄
! "#$ % ! & &'(
" )*$
½ + ,
-℄ )
. %
! /* .
$(#"! . ("
%
00-
! " # ∇ · B " $ %! " " # &
℄ )
.
$(#"! . " 00-
2℄ )
" )*$
000
3℄ . 4$ #5
%$ 4$ (" .%)
$$ 00
!"#$% &
⋆
'
(!
)
* + !
)
*
' ! !
' ' (
!
" # $
%
& ! # '
! ⋆
+ ), ) & - . & 0 1 - .202/*
&/
½
! "
# $ %&&℄( ) %&℄ %**℄ + ,
! , - %&.℄( / - 0 %*1℄ )2( / ) %&3℄ /( + 4 ( +( + 5 6 %*.℄( 7 ( ! 8 %*9℄ : ( -%*&℄ 6 ,
( + 5 0 %&;℄ 6 , " ( < + ( 5
( 5 / %;℄ < = (
(
x
Ω τ ∈ Ω τ = t z (t, z) x : Ω → Ênx : τ → x(τ ) F [x, p, q] = 0
! "! # !
• •
p ∈ Ênp
q : Ω → Ênq $
%
&
' D[x, p, q] = 0 (
D[x, p, q] ∈ ÊnD ' p q x )( $
" $
) ' $
N1 $
q j j = 1, . . . , N1 & $) * $ j ∈ {1, . . . , N1 } $) ηij τij ∈ Ω
σij i = 1, . . . , M j
F j [xj , p, q j ] = 0,
Dj [xj , p, q j ] = 0
+
xj : Ω j → Ên qj : Ω j → Ên j = 1, . . . , N1
p j x
j q
,
$
+ , $ j ∈ {1, . . . , N1 } xj * xji := x(τij ) τij i = 1, . . . , M j
xji hji (xji , p, qj )
ηij = hji (xji , p, q j ) + ǫji ,
i = 1, . . . , M j
ǫji 2
ǫji ∼ N (0, σij ),
i = 1, . . . , M j .
(ηij − hji (xji , p, qj ))/σij 2
j
min x,p
N1 M (ηij − hji (xji , p, q j ))2 j=1 i=1
F j [xj , p, q j ] = 0, j
j
j
D [x , p, q ] = 0,
σij
!"#
2
!$# !%#
j = 1, . . . , N1 j = 1, . . . , N1
& x N1 x = xj , j = 1, . . . , N1 .
!"#!%# j F j [xj , p, qj ] = 0 '
sj ∈ Ên
ξ j xj F j [xj , p, q j ] = 0 xj = ξ j (p, q j , sj ) xj = xj (p, q j , sj ) xj (τ ) = xj (τ, p, q j , sj ) ( !"#!%# sj
j
M (ηij − hji (xj (τij , p, q j , sj ), p, q j ))2
σij
i=1
2
Dj [xj (p, q j , sj ), p, q j ] = 0
ˆ j [xj (p, q j , sj ), p, q j ] = 0 D
v = s1 , . . . , sN1 , p ∈ n r1j (v)22 r2j (v) = 0 r1 : n → n1 r2 : n → n2 n2 < n ≤ n1 + n2
Ê
Ê
Ê
Ê
Ê
min v
N1 j=1
r2j (v)
r1j (v)22
= 0,
j = 1, . . . , N1
" " $ $ r1 = r11 , . . . , r1N1 r2 = r21 , . . . , r2N1 ! r1 J1 J= = J2 v r2
J1 J2
v " #
J1 J2 $ ⎛ r1 ⎞ ⎞ ⎛ r1 r11 r21 1 2 0 0 s1 0 · · · p s1 0 · · · p ⎜ ⎜ ⎟ ⎟ ⎜ J1 = ⎜ ⎟ ⎟ ⎝ ⎠ , J2 = ⎝ ⎠ N1 N1 N1 N r1 r1 r2 r2 1 0 · · · 0 sN1 0 · · · 0 sN1 p p
J2 % n2 &' J % n () % * % +,℄ . $/
J1T J1 J2T −1 J1T 0 + . J = I0 J2 0 0 I
/
vˆ . $/ *
vˆ ∼ N (v∗ , C) v∗
C
C= I0
vˆ
(100 · α)%
J1 T J1 J2 T J2 0
−1
J1 T J1 0 0 0
℄
G(α, v ∗ ) := {v ∈
Ên :
α ∈ [0; 1]
J1 T J1 J2 T J2 0
−T I , 0
v∗
F2 (v) = 0, F1 (v)22 − F1 (v ∗ )22 ≤ γ 2 (α)}
γ 2 (α) := χ2n−n2 (1 − α) χ2 α n − n2 v ∗ v ˆ ! G(α, vˆ)
GL (α, vˆ) := {v ∈
Ên :
F2 (ˆ v ) + J2 (ˆ v )(v − vˆ) = 0,
F1 (ˆ v ) + J1 (ˆ v )(v − vˆ)22 − F1 (ˆ v )22 ≤ γ 2 (α)}.
"
GL (α, vˆ) = {v ∈
Ê
n
+
: v − vˆ = −J (ˆ v)
δω 0
, δω ∈
Ên , δω2 ≤ γ(α)}. 1
N2 ! j = N1 + 1, . . . N1 + N2 " • •
q j τij i = 1, . . . , M j wij ∈ {0; 1} i = 1, . . . , M j #
$ " ! 2
ǫji ∼ N (0, σij /wij ),
i = 1, . . . , M j
a≤
i∈Ikj
wij ≤ b
i∈Jkj
cji wij ≤ cmax
Ikj , Jkj ⊆ 1, . . . , M j k = 1, . . . , K j wij ∈ {0; 1}
wij ∈ [0; 1] i = 1, . . . , M j
0 < wij < 1 wij
σij 2 /wij
cji wij
N1 + N2 • N1 η j j = 1, . . . , N1
• N2 η j j = N1 + 1, . . . , N1 + N2 ! "
" # min x,p
⎛
j
N1 M (ηij − hji (xji , p, q j ))2 ⎝ j=1 i=1
F j [xj , p, q j ] = 0, j
j
2 σij
j
D [x , p, q ] = 0, F j [xj , p, q j ] = 0, Dj [xj , p, q j ] = 0,
+
N Mj 1 +N2
j=N1 +1 i=1
wij ·
j = 1, . . . , N1
⎞ (ηij − hji (xji , p, q j ))2 ⎠ σij
2
j = 1, . . . , N1 j = N1 + 1, . . . , N1 + N2 j = N1 + 1, . . . , N1 + N2 x = xj , j = 1, . . . , N1 + N2
min v
N1 j=1
r1j (v)22 +
N 1 +N2
j=N1 +1
r1j (v)22
r2j (v) = 0,
j = 1, . . . , N1
r2j (v)
j = N1 + 1, . . . , N1 + N2
= 0,
$%& $'& $&
v = (s1 , . . . , sN +N , p)
J1 J2
J1 J2 J1 J2
1
2
!
"
# •
j j ψL ≤ ψ j (xj (t), p, q j (t)) ≤ ψU ,
•
•
ϑjL ≤ ϑj (q j ) ≤ ϑjU ,
a≤
•
i∈Ikj
wij ≤ b,
i∈Jkj
Ikj , Jkj ⊆ 1, . . . , M j ,
cji wij ≤ cmax , k = 1, . . . , K j ,
wij ∈ {0; 1},
i = 1, . . . , M j ,
wij ∈ [0; 1],
i = 1, . . . , M j ,
j = N1 + 1, . . . , N1 + N2
$
j = N1 + 1, . . . , N1 + N2
qj wj %
& '(
C ⎧1 · (C) ⎪ ⎪ ⎨ n T det(K CK) ϕ(C) = ⎪ max{λ : λ
C} ⎪ √ ⎩ max{ Cii , i = 1, . . . , n} K K T CK ξ = (q j , wj , j = N1 + 1, . . . , N1 + N2 ) ! x = xj , j = 1, . . . , N1 + N2 " min ϕ(C) #$$% ξ,x −T T J1 T J1 J2 T −1 J1 T J1 0 I J1 J1 J2 T C= I0 #$&% 0 J2 0 0 0 J2 0 #'%#$(% j = 1, . . . , N1 + N2 #$)% F j [xj , p, q j ] = 0 j j j D [x , p, q ] = 0 #$*% j = N1 + 1, . . . , N1 + N2 j j #$+% ψL ≤ ψ j (xj (t), p, q j (t)) ≤ ψU j j j j ϑL ≤ ϑ (q ) ≤ ϑU #$,% 1 n
a≤
i∈Ikj
wij ≤ b,
i∈Jkj
Ikj , Jkj ⊆ 1, . . . , M j ,
wij
∈ {0; 1},
cji wij ≤ cmax ,
k = 1, . . . , K j
i = 1, . . . , M j
#$-% #$'%
!"℄
" . " /
℄
!
ξ v " C = C(ξ, v) #
# # , +
$ v : v − v0 22,Σ −1 := (v − v0 )T Σ −1 (v − v0 ) ≤ γ 2 % & ! ' min ξ,x
max
v−v0 2,Σ −1 ≤γ
ϕ(C(ξ, v))
" !$ !
(℄ ) ' min ξ,x
max
v−v0 2,Σ −1 ≤γ
ϕ(C(ξ, v0 )) +
ϕ(C(ξ, v0 ))(v − v0 ), v
$ * ? ? ? ? ? min ϕ(C(ξ, v0 )) + γ ? ϕ(C(ξ, v0 ))? +,. ? ξ,x v 2,Σ
γ ? ? ϕ(C(ξ, v0 )) ? v ϕ(C(ξ, v0 ))?2,Σ
. /℄
" 0 # 1℄ 2 3 4℄ "
! ! " # $%℄
! ' ()*+
" ,--.,-/. , ! 0 1
,-2..
w " 1
0
1
' 3 "
! 0
3 45( $-6℄ 1
! " ξ ! ϕ ! C $67℄ C ! J $-/℄ + ! ! J ! ξ J1 i ∈ {1, . . . , M j }
" j ∈ {N1 + 1, . . . , N1 + N2 } ! p j $ j wi " j j j j j j j r1i = · η − h (x (τ , p, q , s ), p, q ) i i i p p σij wij ∂hj ∂xj ∂hji i i =− j + ∂x ∂p ∂p σi ! hji := hji (xj (τij , p, q j , sj ), p, q j ) xji := xj (τij , p, q j , sj ) * ! q j !
j $ j wi " j j j j j j j r · η − h (x (τ , p, q , s ), p, q ) = i i i q j p 1i q j p σij
wij ∂ 2 hj ∂xj ∂xj ∂hji ∂ 2 xji ∂ 2 hji ∂xji i i i + =− j + ∂x∂x ∂p ∂q j ∂q j ∂x ∂p ∂x ∂q j ∂p σi +
∂ 2 hji ∂xji ∂ 2 hji + . ∂x∂p ∂q j ∂q j ∂p j i
j i j
∂x ∂x ∂p ∂q ∂q∂ x∂p ℄ ! "#℄ $ % &'( )℄ #℄ *℄ + , ,
- . / -
0, % , "1℄ *℄ , % , % w {0; 1} % / "℄ % % ' -% 23( "℄ 2
j
j i
w
! "
#$%℄ 4 -% 23( "℄ , %
4 % % $& 5 ( % 1℄ 4 % /%
A+B → C A+C ⇋ D 3A → E
A B C D
E
L
!
n˙ C (t) = V (t) · (r1 (t) − r2 (t) + r3 (t))
n˙ D (t) = V (t) · (r2 (t) − r3 (t)) n˙ E (t) = V (t) · r4 (t)
nA (t) = nA,0 + nA,e (t) − nC (t) − 2 · nD (t) − 3 · nE (t) nB (t) = nB,0 + nB,e (t) − nC (t) − nD (t) nL (t) = nL,0 + nL,e (t)
nC (t0 ) = nD (t0 ) = nE (t0 ) = 0
! Ea,1 k1 = kref 1 · exp − n1 n2 R · r1 = k1 · V V Ea,2 n1 n3 k2 = kref 2 · exp − · r2 = k2 · R V V n4 Ea,4 r3 = k3 · k4 = kref 4 · exp − V R " n $2 1 r4 = k4 · ∆H2 V KC = KC2 · exp − R k3 = nA,e = nA,e1,0 · f eed1
1 · T 1 · T 1 · T 1 · T
−
Tref 1 1 − Tref 2 1 − Tref 4 1 − . TC2
k2 , KC
nB,e = nB,e2,0 · f eed2
nL,e = nL,e1,0 · f eed1 + nL,e2,0 · f eed2 ,
1
V =
nB · M B nC · M C nD · M D nE · M E nL · M L nA · M A + + + + + ρA ρB ρC ρD ρE ρL
t ∈ [t0 ; tend ] = [0 h, 80 h] nA nB nC nD nE nL
Ea,1 KC2
Ea,2 Ea,4
kref 1 kref 2 kref 4
∆H2 nA,0 nB,0 nL,0 nA,e1,0 nL,e1,0 nB,e2,0 nL,e2,0 f eed1 (t) f eed2 (t) T (t) •
! " # •
$
! "&'( #
"&'(
! %
•
!
# ) *
+ , % - * * * .%+/ & ! * 0
* - * 1 % *
23℄
* 5
kref 1 Ea,1 kref 2 Ea,2 kref 4 Ea,4 ∆H2 KC2
2.50 ± 0.02 0.835 ± 0.007 91.3 ± 0.7 0.834 ± 0.002 57.991 ± 0.009 0.65725 ± 0.00007 0.9 ± 0.3 1.1 ± 0.3
2.504 ± 0.006 0.836 ± 0.001 91.25 ± 0.02 0.83537 ± 0.00008 58.004 ± 0.006 0.6574 ± 0.0002 1.082 ± 0.006 1.29 ± 0.01
% * 6 27℄ /
nonrobust design
robust design
0.007 0.006 0.005 0.004 0.003 0.002 0.001 0
0.2
0.007 0.006 0.005 0.004 0.003 0.002 0.001 0
0.4
0.6 0.8 Parameter 2
1
1.2
1.8
1.4
1.6
1.4
0.6 0.8 1 1.2 Parameter 1
0.4
0.2
0.4
0.6 0.8 Parameter 2
1
1.2
1.4
1.6
1.8
1.4
0.6 0.8 1 1.2 Parameter 1
0.4
Ea,1 Ea,2 ! " # # $ $
℄ ! "
#$ % $ $ " " &
"$
& " '( # !
ηkij (k
! &
1, . . . , m2 )
= ψ, θ, c) (i = 1, . . . , m1 ) (j = ψ, θ, c
ηkij = hk (ti , k(ti , zj ; p), p) + ǫkij ,
2 ǫkij ∼ N (0, σkij )
" )
min
m1 m2
k=ψ,θ,c i=1 j=1
∂ψ = ∂t ∂θ = ∂t ∂(θc) −= ∂t +
C(ψ; p)
p
" 2
−2 σkij (ηkij − hk (ti , k(ti , zj , p), p))
∂ ∂ K(ψ; p) (ψ − z) + S(ψ; p) ∂z ∂z ∂θ ∂ ¯ ¯ p) + S(θ; ¯ p) D(θ; p) − K(θ; ∂z ∂z ∂(ρs) ∂ ∂c θDh (θ; p) − qc − + Q(c; p) ∂z ∂z ∂t
"$
% " "$ )) * ) # + # "
c
θ
Q(c; p)
% !
¯ p) K(θ; ¯ p) K(ψ; p) C(ψ; p) D(θ; ¯ S(ψ; p) S(θ; p) (
! , -
Dh (θ; p)
ψ
#
! "
!
" "
p1 p2 p3 p4 p5 p6
!
± ± ± ± ± ±
! ! ! !
± ± ± ± ± ±
± ± ± ± ± ±
! !
" # $ %
& '
( &#
"
#
" $
"
%
"
& ℄ ( ) (% ( * " + "
,,!
&!℄ ( ( - . / 0 1 2 % 3
456
78 !77!
&4℄ 2 0 1 2 % . 9/% - . / * "
" " (
! " #$ %&℄
(
# ) * # ) +
, - ./0 1
%4℄
(
"23"4 222
* # ) ./0#56 7
. ,
, 8$! 9 * : ;< ! # %>℄
=4 +! "
# ) / / 1 5 )? $
*$ ; "& "2
" %@℄ (
0 * # ) 5 ,
, ! , A
! "# $ % & !!! ' () "@& , "# # 4"@& A 222
. *A # #
%℄ (
:A! ? *B?
#1 .8
+,
%℄
*
"@
: # C # : 5 0-$
. , * 0 ; (A
*
- # - "23&2& "&
%"2℄ ( .D / * :! 6 / $. +A * , 5 . , #9 0-
%""℄
- - .- ==3>> "& /
-
*!!1 / $
# / * 6 "@ %"℄ * 0 ( 1 / # #+5*E3 / #F* , $ ?
- -
"3@"22>
22
0 100- #
2 13 / # / 222 6 5 . + : - - - G>H3">"=">@ "=
%"=℄ / (A %"&℄
%"4℄ : 5 %">℄ # )
(
#$B 3 E1
.04 =4G=H3=2& "=
* # ) / 9 $
, - ./0 1
===&4
! " #$ %"@℄ # ) 0 (
* # ) + $
, ! , ! -
℄
! "#
$% $ &''((()$)#$%' '* *℄ + , - " . / 0 1) 2 3 4 35 % 6
!
"
#
#$ % &
7
8&9:9; **
℄ + , -
7 < =% > **8 ℄ 4 < +)) " " 35 % , # > 2 4 2) 7
;?8'@&8A*:8A*A **
℄ B )
'
0 , C
< 1( D **8 8℄ E " F) + 1% . 6 .( 4 ) 5 #
%
G
$)
(
8?@&:* * ℄ 2 7 7 /H . 3 /) 7 / 2 , )I .) 4 % 35 3 B 4 2
) (
99&A *;;
9℄ 3 7) . "
4 35 %
>
) 3 1 7%
2
" (
" % & -%#
8;?@&8:* **9
A℄ 0
" 2#
#1)(
B)! 7
B # ,
# ! J) / *;
1 2 1
2
!" # #$ %
& " $
$ '
!" # #$ %
! () ) ! *!( !+, - . / " ) 0 )/ - " " -
!!) * ! ) - !, !/ -"
) / / " ) -" " ) / // " / "" " "
" /
/) 1 ) " / -
/ 1
" !( ! //
" 0 " / !( ! //
"
/ - " " 2 ) " // / " )
/ " / .
" 3 " " " "
/ " .
0 " " !( ! //
" - " ) "
- " " " " 3- "
" ) 4" / " " " - " "/
5/ -" " ) )/ 0 - / " !( ! - " / / !( ! 0 - "- " " )
!( ! "-) " "
-" " / " 1 "
0 -" " " // " . " / " !( !
!" #" $$
% % % &
%
' ()*" +(,℄ .
/ 0
'
1 2
0 2 '
% +(3℄ +(4℄ +(!℄
' ' 1 0
2 5% 2 5%
.
2 &
6 0 2 . 5%
% 5% 2
% 5% 7 57 8 57 %
9
s, s = 1, . . . , n z, z = 1, . . . , m T
T (s, s ) := ρ(s = s |s = s) ρ(z = z|s = s) z s O (s, s ) := ρ(z = z|s = s)δ , z = 1, ..., m
1 s = s = δ 0 . b (s) = ρ(s = s) t s ! " % b(s) = 1 0 ≤ b(s) ≤ 1 # $ % & $ $%&$ " a t ' ρ(s |s, a) ( a T (s, s ) ) * a z + 1 b (s) = , b (s ) T (s , s ) O (s , s)
N ′
t
t
t
′
z
′
t+1
t
s,s′
t
′
s,s′
t
t
s
′
a
′
′
t+1
t
′
a
′
z′
′′
′′
s′ ,s′′
N :=
′
bt (s′ ) T a (s′ , s′′ ) Oz (s′′ , s) .
s,s′ ,s′′
$%&$ a = π(b ) *
* " $%&$ a = π(z ) * * & - . a r(s, a) γ r(b , a ) r(b , a ) = V (b ) := E / r(s, a )b (s) t
t
t
t
T
π
i
t
i=0
t+i
t+i
t
t
t
s
t
π γ ∈ [0, 1]
bt
Qπ (bt , at ) := r(bt , at ) + γ
zt+1
π
ρ(zt+1 |bt , at ) V π (bt+1 ) ,
π
b a ! ρ(zt+1 |bt , at ) = bt (s)T at (s, s′ )Ozt+1 (s′ , s′′ )
" #
s,s′ ,s′′
π∗
zt+1
!
bt
at bt+1
$ %
& ' &
()℄ ∗
Qπ (bt , at ) := r(bt , at ) + γ
zt+1
∗
ρ(zt+1 |bt , at ) V π (bt+1 )
+
∗
∗
V π (bt ) = arg max Qπ (bt , at ).
,
at
- & .
($℄ (//℄ - 0 1 1 (/2℄ 1 1 (3℄ 1 1 (+℄ % 1
1
4
/,,# (/℄
4 '
& & 5
!
!
(6℄
7 .0 0 4 ! 4 ' &
8
(/2℄ "
5
9
. &
π
1
! "
# $
% & '(℄
* * +
*
$
T
a=1
:=
0.5 ct 1 − 0.5 ct 10 a=3 := := , T , T 01 1 − 0.5 ct 0.5 ct 1 − co 0 co 0 z=2 := := , , O 0 co 0 1 − co −100 cr 10 −1 r(s, a) := . 10 −100 cr −1
ct 1 − ct 1 − ct ct Oz=1
a=2
'(℄ co = 0.85 cr = 1 ct = 0.5
γ = 0.75
,
$
2 π1 (z) = 1
z = 1
π2 (z) = 3 ∀z .
z = 2
,
#
# " , &$
T
a=1
:=
0.995 0.005 0.02 0.98
, T
a=2
:=
0.97 0.03 0.005 0.995
0.9 0 0.1 0 , Oz=2 := , 0 0.1 0 0.9 −1 −1 −1 −2 r(s, a) := 20 + . 0 0 −1 −2
Oz=1 :=
-. s = 1
s = 2 /
℄ !℄ " # $
%
& '℄ ℄
( )*#+) ,
%
&
)*#+) ,$ ,
,
- ,
, . /
,
$ 0 1 & 1
2 . , , 1 ,
- 3 , , , 2 (
! " # # $ % ! ! # $ % " " & " # ' ( ) *
! ! ! ! "! " # cr $ " cr " !$ ! !% !
% # " "! !& !$ ' cr % 0.2# " ! # $
V π (s) ρ(s|π)
π !V π !Rπ := % t tγ
!V π =
γ t rt0 +t ,
t
t0
ρ(s|π) !" # $
%
!R co & '
π1 (z) π2 (z) = 3 & ( & ) *
$ +
! "c0 = 1 # "c0 = 0.5 # $
% % & & % " cr # %
% ! ct % ' & ( & T a=1,2 1
| det(T a)| 0 ≤ | det(T a )| ≤ 1 T =
0.5 0.5 0.5 0.5
,
det(T ) | det(T a)| a | det(T )| 1 ! " # $%&% ' ( ( %)*%
+ , $%&%, $%&% $ % & % , " # , - *" " ' . / 0
a = 1 a = 2 a = 3 1 & s = 1 s = 2-
( 23) , , s = 3, 4 )- z = 1, 2, 3 4 5 67℄ ( " 9 + ' ( 1
TSa=1
a=1 TH
T a=2
T a=3
⎛
⎞ 1.0000 0 0 0 ⎜ 0.0500 0.9492 0.0008 0 ⎟ ⎟ := ⎜ ⎝ 0.0333 0.0333 0.9308 0.0025 ⎠ 0.0033 0.0033 0.0025 0.9908 ⎛ ⎞ 1.0000 0 0 0 ⎜ 0.0500 0.9492 0.0008 0 ⎟ ⎟ := ⎜ ⎝ 1.0000 0 0 0 ⎠ 0.1000 0 0 0.9000 ⎛ ⎞ 1.0000 0 0 0 ⎜ 0.0250 0.9733 0.0017 0 ⎟ ⎟ := ⎜ ⎝ 0.0017 0.0017 0.9942 0.0025 ⎠ 0.0002 0.0002 0.0025 0.9972 ⎛ ⎞ 0 0 1.0000 0 ⎜ 0 0 1.0000 0 ⎟ ⎟ := ⎜ ⎝ 0.0008 0.0008 0.9958 0.0025 ⎠ 0.0033 0.0001 0.0025 0.9941
d a=1 Tda=1 := d TH + (1 − d) TSa=1 , d ∈ [0, 1] .
Oz=1
⎛
⎛ ⎞ ⎞ 0.9 0 0 0 0.08 0 0 0 ⎜ 0 0.1 0 0 ⎟ z=2 ⎜ 0 0.6 0 0 ⎟ ⎟ ⎟ := ⎜ := ⎜ ⎝ 0 0 0.1 0 ⎠ O ⎝ 0 0 0.2 0 ⎠ 0 0 0 0.1 0 0 0 0.2 ⎛ ⎞ 0.02 0 0 0 ⎜ 0 0.3 0 0 ⎟ ⎟ Oz=3 := ⎜ ⎝ 0 0 0.7 0 ⎠ . 0 0 0 0.7
r(s, a) r(s) r(a) r(s, a) = r(s) + r(a) . !"# a $ % !& r(s) 5 r(s, a) = r(a) + 5 r(s)
⎛
⎞ ⎛ ⎞ ⎛ ⎞ −6 −8 −10 −1 −1 −1 −11 −13 −15 ⎜ −6 −8 −10 ⎟ ⎜ 0 0 0 ⎟ ⎜ −6 −8 −10 ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ r(a) := ⎜ ⎝ −6 −8 −10 ⎠ , r(s) := ⎝ 0 0 0 ⎠ , r(s, a) = ⎝ −6 −8 −10 ⎠ −6 −8 −10 0 0 0 −6 −8 −10
T → ∞ γ = 0.9 γ = 1 γ < 1
! " #$% & & '( ) * + ! " # $" "% &'"
, ⎧ ⎪ ⎨3 z π(z ) = 1 z ⎪ ⎩ 1 z t
t t t
=1 =2 =3
-& , ⎧ ⎪ ⎨3 z π(z ) = 2 z ⎪ ⎩ 2 z t
t t t
=1 =2 =3
( , " . #& a = 1 a = 3 & , ( & , " & ,
( & , a = 1
% t |at − at−1 | !"#$!
d ! R
" #$# π(b) P t |at − at−1 | π(z)
% !"#$! 0.2 !"#$!
& ' ( %
!"#$!
) !"#$!
!"#$! !"#$! *
+ & , - . /
!
" " #$℄ & & '& ( ) * +
,-./$ $001 #2℄ 34 $.15 $0,1 #6℄ 4 + $007 #-℄ & & $526.$527 $00- #,℄ 89 +
! $077 #/℄ : : + !
2552 #1℄ 34 ; "#$% $ 72*6,.-, $0/5 #7℄ & & 9 * < + 9 3 <0--5 $00- #0℄ &3 3 +
$$$ 11*2,1.27, $070 #$5℄ 4 <+ 9 + &' ( $01$ #$$℄ 4 <+ 9 +
! =* &' ( 2/>2?*272.65- $017 #$2℄ 3 < 8 < @ A : 8 A 9 A @
!
( ' % $7*25, 2552 #$6℄ 8 < ( ' # B C $D255$
℄
!!
℄ " # $# # # % ℄ ' ( )
&! & &
* # +
, -! ! .
!" #$ $ %
& ' ( () (( *( * * + ( * *
(* (( , ( ( + ( * ( -( . +) * (/ + * - '*-( (*
( (* & ( . ( ( ( + (* ! %0( *( '*-( +
!" # $
%&'()
* +,'% +, '-)
% ./℄) 1 1 ,&2 %, & 2
) 3
3 " 3 # #
* 4 +,'- / 1$
!"#$ # " % ! # &%!#'
(
)
* #+* , ( - .
+
, %!#
.
( /0 )
&' , #
- 0 12℄ +
ri
vi mi
-
ρi ρi =
N j=1
mj W (ri − rj , hij ).
&4'
h
!v" !P " # ai visc #
1 dvi = − ∇Pi + ai visc dt ρi
!"
$ dvi =− mj dt j
Pj Pi + 2 + Πij 2 ρi ρj
∇i W (|rij | , hij ) .
!%"
Πij # $ & ' % (
& '$ ) xk ) * +
& ,
$
& $ ,
$
. /
! " # " $
% $ &' (
" )* '+ , '+ - # '& , . /0℄- # 22 3% 24 '& " & 5*. ,6'.57888- 72 77 3% 9 3 77 3% :9 3 3 6* 5* " ; ; 4772
$ 9 < , 7- #
!
" # ! ! " ! " # $
%
&&& '($ ) &*+ ,- + ,.$/
! * %&*/ % / "
0 ! #
1 " ! !
f=
+1 −1
=
bias = 2
0 = 1
× 1 + F ract × 2−(Signif Bits−1) × 2Exp−bias
(ExpBits−1)
%$/
− 1.
( ! ! ! 2
*
!
"
*
1
!"#
N × log N $ % & &
$ % ' &
$() * & $() + ,
%
+- ,. * + & /
!
"
!
! "###$ %&'( ) * + *
1 * 2 1 *
,,0 # $
,,, ,, ,,/ ,.
,, ,# ,#, ,## ,#-
,,0 # $
,. -# #
/ -0 /$ 0.
,- , / ,0 $- - # 0/ /
,,0 # $
# -, -/ /0
/-, ---
3 4 ! "###$ %&'( $ 4 4 $ 4 4
,,0 # $
$ - 0 0 $.
.# .# .# $$ $$
,,0 # $
- # 0$ $.$ .#
/ /# -, /# -,
,,0 # $
, ,. ,00 ,..
.$ ., . .# .#
,,0 # $
,$$ ,/. # $0-
00//0
# # $ F (xi1 ..xin , xj1 ..xjn ) $ % & '
(
! "# $ % &
' !% ( $%
) " ) & c& ρ = & p& h * f !
&
) " (" '+ , - . -.###%' )/01 "2 345 !
6 "# $ %
+ 0) 7 $ %
% (2### 3) &
8/4 9% % ! )/01
$ % )/01 ! % 5 $ %
: ;%% )/01
+ 0$ 0<1/=% %
9%
! "#$ ! % & '(# ) ! "#$
*+℄ - #. /!- 0 . ! 1 # ! # 2 +334 5637589 :+334; *5℄ <$# !. ## (% # (
( ( ( #= # # ### & >) 2# & # ? $ :+333; *4℄ ! < "( @ @. " !
# >(% # /# )-56A8 B/! B % # ?$# $ C57D4 :+33D; *C℄ " B $ < ! 2. 1/!-(+. ! $# #( (% # # ! # 2 3C473DC :5AAA; *D℄ % &. # " . ! 2% #:; > # ## $ > # ## # <# ! ( # 5637599 :+33A; *6℄ % % !. # E # " # # #($ > ! +A6A7+A85 :+338; *8℄ < <$# ! $ # " <# . !"!(/!-. ! " ! ( /! - ) # ### $ E !
# ++937++3D :+333; *9℄ <$# !. !- 7 ! )(6C "$ B/! ( .FF(#D ( F $F= F :5AA4; *3℄ @ / <$# ! . $ B# $( ! B/! !
# ? >(% # BGA5 +957+3+ :5AA5; *+A℄ % . ! !#$ " ( $ 1' :5AAA;
! " # ! "
$ %&' ! " ! ( ) !! # !
! * + , -
! . / 0 0 !
!"#$℄ & # !"℄
$' (
) *
&
&
! !
p
"
G(z) z
! u(k) U (z) y0 (k) Y0 (z) #
! $
d(k)
D(z)
G(z) y(k) = y0 (k) + d(k) &! !
%
#
#
yd (k)
e(k) = yd (k)−y(k) # u(k)
!
#
#
!
!
' ! ! !
ϕ
!
!
!
u(k) = u(k − p) + ϕe(k − p + 1)
(
#
z
G(z)
#
!
!
U (z) = z −p [U (z) + ϕF (z)E(z)]
)
! ! ! ( # !
!
! *
)
!
z
F (z)
#
+ !
$
,-℄ !
F (z) #
1 − z −p [1 − ϕG(z)F (z)] E(z) = 1 − z −p [yd (z) − D(z)]
!
p
!
"
# $
%
&
P (z) = 1 − z −p [1 − ϕG(z)F (z)] = 0
%
'
P (z) 2π 2π &
G(z) F (z) 2π '
P ∗ (z) = z −p [1 − ϕG(z)F (z)] z () ' F (z) z −p G(z)F (z) ! p
! * +
P ∗ (z)
z
()
|1 − ϕG(eiωT )F (eiωT )| < 1
ω
#
T
,
' -.℄
0
,
1
%
ϕG(eiωT )F (eiωT ) ω
() " #
[1 − ϕG(z)F (z)]
F (z) z p E(z) = [1 − ϕG(z)F (z)] E(z)
% ,
ω ϕG(eiωT )F (eiωT )
G−1 (z) F (z) = G−1 (z) ϕ = 1
z p = 0 !
0 < ϕ < 1 1−ϕ ϕF (z)G(z)/(z p −1) = −1 p F (z)G(z) = 1 ϕ p F (z) = G−1 (z) "
# G(z)
$
% & % ' ( %
' )*℄ % ,
% % - -.-, /,01 % 2 *1** // /// % ' ,-,/2 ,-,, /2- //2- 3 4
,-,/2 /// 5 & (−23.204)1000 % &
' 6 ' % G−1 (z) % 7
℄
G(z)
(z − z1 ) z1
(z −1 − z1 ) z
ϕG(eiωT )F (eiω T )
!
" +ϕ ϕ ) *
#
G(s) = aω02 / (s + a)(s2 + 2ζω0 s + ω02 ) $%% #
& ' ' ( )℄ a = 8.8 ω0 = 37 #
* ϕG(z)F (z) = ϕ∗ (z − z1 )(z −1 − z1 ) ϕ∗ + ϕ & ,( # +
-
-
. +
- .
+
p
$ ℄ p = 10
&
' +
-
0
4
2
−4
Imaginary Axis
Magnitude (dB)
−2
−6
−8
−2
−10
−12 0 10
0
1
2
10 10 Frequency (rad/sec)
3
10
3rd
−4
−4
−2
0 Real Axis
2
4
3rd
y0 (k +3)+a2 y0 (k +2)+a1 y0 (k +1)+a0 y0 (k) = b2 u(k +2)+b1 u(k +1)+b0 u(k)
u(k)
G(z) !
"#$ % &
d(k)
u(k) y0 (k) = −d(k) & d(100) = 1
& k = 1, 2, 3, . . . , 198 %
⎡ ⎤ ⎤⎡ ⎡ ⎤ ⎡ ⎤ s(1) a0 a1 a2 1 0 . . . 0 ⎢ ⎥ b0 b1 b2 0 . . . 0 0⎥ ⎢ 0 b0 b1 b2 . . . 0 ⎥ ⎢ s(2) ⎥ ⎢ 0 a0 a1 a2 1 . . . 0 ⎥ ⎢ ⎥ ⎥⎢ ⎢ ⎥ ⎢ ⎥⎢ ⎢ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ 1 ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎥ ⎣0⎦ 0 . . . 0 b0 b1 b2 s(200) 0 . . . 0 a0 a1 a2 1
'
u(k)
! s(k) k ( )** % ( 100th (+, ! % 198 × 200 200 × 1 % 198 × 201 201 × 1 & -. /.0 s(1) = s(200) = 0 1 -!2 " 3
# % " 4 5* ,* ! ,* +* !*() 6**4 . ((* ()* ! 7 !(* 64 10−3 "
−7
5000
2
x 10
4000 3000
1
2000 0
0
s(k)
s(k)
1000
−1
−1000 −2000
−2
−3000 −3
−4000 −5000 0
20
40
60
80 100 120 Time step k
140
160
180
200
s(k)
−4 70
71
72
73
74 75 76 Time step k
77
78
79
80
!
" #
a−99 = s(1), . . . , a0 = s(100), . . . , a100 = s(200) 100th a−1 , a0 , a+1
!! ! "!! # $!! !! ϕ % a0 e(100)
& a+1 e(99)
a−1 e(101)
! ' ( & a−n2 , . . . , a0 , . . . , a+n1 ) F (z) * G−1 (z)% u(k + p) = u(k) + ϕ [a+n1 e(k − n1 ) + . . . + a0 e(k) + . . . + a−n2 e(k + n2 )] + F (z) = an1 z −n1 + . . . + a0 z 0 + . . . + a−n2 z n2 ) * = an1 z 0 + . . . + a0 z n1 + . . . + a−n2 z n1 +n2 /z n1 ,
- ) # ( n1 + n2 & . n1 z −p [1 − ϕG(z)F (z)] * ( # &
ϕ & n1 n2 # & ) ϕG(z)F (z) z
/ # (
ϕ ϕG(z)F (z) z = 1 n1 n2 ϕ
! " #$% &' #
%$&( s(k) ")( *
+ , , *&& - && - *
. &/ & G(s) 0 *&& - / 1
*
$
2
/
)
'
!
#$% &$ #2% &2 #$% &2 #2% &/ #$% &/ #2% &) #*% &/ #$% &) #2% &' # % &/ #*% &) #$% &' #2% &! #&% &/ # % &) #*% &' #$% &! #2% !#% &/ #&% &) # % &' #*% &! #$% #2%
& !!% &/ !#% &) #&% &' # % &! #*% #
%$& #2%
#/% &/ #/% &) #/% &' #/% &! #/% #/%
& #/%
#/%
*
k = 100, 300, . . . p = 200 !! " # !! $ % G(z) &!! ' ! ()! !)* +, & 8 × 10−4- " % . ) /!0 +, 1'- " " ! 2- " . )/!3 p = 10 4" " - - " ϕG(z)F (z) n1 n2 - (
* $ 3 )!/!0 0 3 3 - )'/ % " $-
−4
2
x 10
4
0
3 2 Imaginary Axis
Output
−2
−4
−6
1 0 −1 −2
−8 −3
−10 200
220
240
260
280 300 320 Time step k
340
360
380
400
−4 −5
−4
−3
−2
−1
0 1 Real Axis
2
3
4
5
!
1
1
0.8
0.8
0.6
0.6
0.4
0.4
Imaginary Axis
Imaginary Axis
0.2 0 −0.2 −0.4
0.2 0 −0.2 −0.4
−0.6
−0.6
−0.8
−0.8
−1 −0.5
−1 0
0.5
1 Real Axis
1.5
2
2.5
ϕF (z)G(z)
−0.5
0
0.5
1 Real Axis
1.5
2
2.5
ϕF (z)G(z) !
"℄ $ % & ' ( ) %* +, -
/ )
& * ) + ( 0 ( / %1-/ 2 ! 0 !!! "!℄ , &(( 3 / 3(* ( +- &( % 4 5 -
6 4 $' + % 7 6 8 2 0 0 9 - :4 * * - 5 ; ; $ ;;0 9 0 " ℄ ) , ( < < +) 4 / ) ( - + ( !9 %;;; / 5 ( / 0 ! ! "9℄ ) , $ = ( & ' +)6 4 / ) + ( !9 %;;; / 5 ( / 0 0 ! " ℄ $ >' & $ $/ ( /* ?? +- ( ) 5 4 / + 7 5 ) &
( / 2 0 0 "℄ +%4 / ( 4 / ; + % 7 / ) % %4 / 2 7 ! 9 "℄ ) 7 = ( +&( $ @ * 1 6 4 / + ( -%--A--) - ( ) / & /- - !! "0℄ ) ) ( +/ )6 ( ( 1 /( ( 4 / + % 7 -( & ( / ) "℄ ? - , ( ( 7 )6 +@ ) ( ) +
( %;;; / 5 ( / 0 0
! "
# "$% & '
#
( % ) # * + , +
+ " - .
!
" !
#
$
$ !
%
$
G = (V, E) E
V
! " qe , e ∈ E "
# pv , v ∈ V
$ pin
pout !
%
& '
( % % % % %
)
%
* p2out = p2in − ( q |q|,
( = ((pout , pin )
!
pout = pout (pin , q) pout pin q " * f * f = f (pin , pout , q) + f pin
pout
q
out
in
p1out 2 pipe ! pin pipe2 ! " p1out
1
#$
Λpipe Y pipe
2− pout (pin , q) %
&
P∆ =
λ1 λ2
∈
Ê|Λ |+|Λ | | 1
2
λ1j
j∈Λ1
j∈Λ1
1
λ2j
=
1
p2,j λ2j
=
0
λ2j
≥
0
j∈Λ2
p1,j λ1j −
j∈Λ2
λ1j ,
λ1 , λ2
=
λ−
#
,
P∆ & p1out,j
!
j ∈ Λ1
!
p2in,i
i ∈ Λ2
' (! )
p1out,1 = 10 p1out,2 2 pin,1 = p2in,2 = p2in,3 =
= 8 p1out,3 = 4 10, . . . *
50.98
60.98
51.01
42.53
51.18
56.97
61.01
51.01
61.01
51.01
61.01
=
70.99
67.87
63.02
61.52 71.01
71.01
71.01
71.01
λ11 =
1 1 1 1 , λ2 = 0, λ13 = 0, λ14 = , λ15 = , λ16 = 0 4 2 4
13 2 7 2 , λ = 0, λ23 = 0, λ24 = 0, λ25 = , λ = 0. 20 2 20 6 λ−
λ21 =
λ11 =
1 1 1 1 , λ = 0, λ13 = 0, λ14 = , λ15 = , λ16 = 0 4 2 2 4
13 7 2 , λ2 = 0, λ23 = 0, λ24 = 0, λ25 = 0, λ26 = , 20 20 λ21 λ26 ! in out " # $ %
% &
' ! ( ! λ21 =
1 λ1
1 λ2
10
8
2 λ1 10
4
20
16
1 λ 4
1
λ
1 λ3
5
20
12 1 λ6
2 λ4
2 λ2
2 λ3
10
10
20 2 λ5
2 λ6
20
℄" #℄$ % &
Ú
Ú
Ú
Ú
Ú
Ú
Ú
Ú
' P∆ ( ' ) *
λ−) % P△ λ−)
λ− ℄ ! " #
" " $ in ∈ N out ∈ N %
"
& " ' ( # N i i ∈ {1, 2, . . . , in + out} ( " 1, 2, . . . , in in + 1, in + 2, . . . , in + out ) " (
Ni ∩ Nj = ∅
∀i = j.
N = {N i | i = 1, 2, . . . , in + out}
ÊN i |N i |− " N ÊN # i
Ê
N
=
in+out @
ÊN . i
i=1
( ' λ ∈ ÊN " " ⎛
⎜ ⎜ λ=⎜ ⎝
λ1 λ2
λin+out
⎞ ⎟ ⎟ ⎟ ⎠
" λi ∈ ÊN i ∈ {1, 2, . . . , in + out} ) S i
S = {S 1 , S 2 , . . . , S in+out }
" j ∈
in+out A i=1
Ni
j∈S
∃ i ∈ {1, 2, . . . , in + out}
j ∈ Si.
S ⊆N
⇔ S
∅ = S i ⊆ N i
|S| =
S
in+out i=1
|S i |.
XjS =
∀i ∈ {1, 2, . . . , in + out}.
ni
Nki
k=1
ÊN
j∈S
N i , i ∈ {1, 2, . . . , in + out} ni Ni =
XS ∈
Nki , k ∈ {1, 2, . . . , ni }
|Nki | ≥ 2.
n1 = 8 n2 = 9 |Nki | = 3 i, k λ ∈ , λ ≥ 0 i = 1, 2, . . . , in + out ki ∈ {1, 2, . . . , ni }
! "
Ê
N
{j ∈ N i |λij > 0} ⊆ Nki i . !
S
λ−
$
P
P = {λ ∈
A ∈
ÊM×N , b ∈ ÊM
X
S
A∈
ÊM×N
ÊN |Aλ = b, λ ≥ 0},
M A
M
%
Nki
#
A = (aij )
J ⊆ {1, 2, . . . , n} AJ = (aij ) i ∈ M j∈J
m = |M | n = |N | λ ∈ J ⊆ {1, 2, . . . , n} λJ = (λj )j∈J . x ∈
ÊS S ⊆ N x0 (S) =
xi
ÊN
x0 (S) ∈
ÊN x
i ∈ S, i ∈ N \ S.
N \ S N \ S :⇔ N i \ S i ∀i ∈ {1, 2, . . . , in + out}
S S¯ S = {S 1 , S 2 , . . . , S in+out }
S¯ = {S¯1 , S¯2 , . . . , S¯in+out }
! "
S ⊆ S¯ :⇔ S 1 ⊆ S¯1 S 2 ⊆ S¯2 S in+out ⊆ S¯in+out .
# $ % $ % % & in out ' % P P = {λ ∈
ÊN |Aλ = b, λ ≥ 0 , λ
}.
% % $
A
b ⎛
⎞
(11 )T
⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ 1 T ⎜ (p ) ⎜ 1 T ⎜ (p ) ⎜ ⎜ ⎜ ⎜ A = ⎜ (p1 )T ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ (q 1 )T
(12 )T
(1in )T (1in+1 )T (1in+2 )T
−(p
2 T
−(p
(p ) (p2 )T
(p2 )T
(1in+out )T
in+1 T
)
−(pin+2 )T
in+1 T
)
−(pin+2 )T
(pin )T −(pin+1 )T (pin )T −(pin+2 )T
−(pin+out )T
−(pin+out )T
(pin )T −(pin+out )T i T in+1 T in+2 T (q ) . . . (q n) −(q ) −(q ) . . . −(q in+out )T 2 T
⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
pi ∈ ÊN+ , i ∈ {1, 2, . . . , in + out}
qi ∈ ÊN+ , i ∈ {1, 2, . . . , in + out}
b i
i
b=
1in+out 0in · out+1
ÊN
1m
Êm 0m
Êm 1i ∈
i
A ! in λ− out λ−
in + out + 1 in + 2out
in + 2out + 1 (in+ 1)(out+ 1)− 1
−1 A λ b
!
" # p q 1 ! # $ %&
$ "
%& λ−
'
( $ Aλ = b ) A ' |M | = in + (in + 1)out + 1 = (in + 1)(out + 1) *
Ê
P ⊆ [0, 1]N
λ ≥ 0 in + out A b P
% P∆ + !pipe1 " !pipe2 " # λ− , λ− P∆ pipe1 pipe2 -
λ−
P∆ λ− pipe1 λ− pipe2 1
λ−
λ−
P∆ P
rg(A)
A • •
S ⊆ N
|S| ≤ rg(A) S
! L = ∅ P " # S ⊆ N $ AS λS = b ¯ S λ ¯ S ≥ 0 & ' % λ ¯ λS L % P ( P ) ) * A +!, # , b 1in+out b= 0in+out #
in + out ≤ rg(A) ≤ 2(in + out)
P
* ) ' P = {x | Ax = b, x ≥ 0} A ' P
' * P )
%
0
(11 )T
B B B B B B B B B B B B B B B B B B B B B B B B 1 T B (p ) B 1 T B (p ) B B B B B B B B 1 T B (p ) B 1 T B (p ) B B B B B B B B B B @ (q 1 )T
1
(12 )T
C C C C C C C C C C (1in )T C in+1 T C ) (1 C in+2 T C ) (1 C C C C C C C C in+out T C ) C (1 C −(pin+1 )T C in+2 T C −(p ) C C C C C C C C in+out T C −(p ) C 2 T C −(p ) C C (p2 )T −(p3 )T C C C C C C C C in−1 T in T A (p ) −(p ) (q 2 )T ... ... (q in )T −(q in+1 )T −(q in+2 )T . . . . . . −(q in+out )T
A
Ì
P
S
0|N | AS λS = b
AS λS =
¯ S AS λS = b AS λ ¯S = b λ ¯ ¯ ¯ λS > 0|S| . λ λS
λ¯ P ǫ− ǫ > 0 λ¯ λ¯ S ǫ ∈ S S ⊆ N
Ê
AS λ¯S = b AS (λ¯ S + ǫ) = b AS ǫ = 0|N |
ǫ¯ = 0|S|
AS ǫ = 0|N |
AS ǫ = 0|N | ¯ǫ = 0|S| AS (λ¯S + ǫ¯) = b λ¯S + ǫ¯ > 0|S| λ¯S − ǫ¯ > 0|S| !" (λ¯S + ǫ¯)0 (S) λ¯S + ǫ¯ #
¯ (λS + ǫ¯)0 (S) ∈ P S λ− $ "
% AS (λ¯S − ¯ǫ) = AS λ¯S − AS ǫ¯ = AS λ¯S − 0|N | = b A(λ¯S − ǫ¯)0 (S) = b (λ¯S − ǫ¯)0 (S) ∈ P &
1 ¯ 1 ¯ ¯S . (λS + ǫ¯) + (λ ǫ) = λ S −¯ 2 2
1 ¯ 1 ¯ ¯ S )0 (S) = λ. ¯ (λS + ǫ¯)0 (S) + (λ ǫ)0 (S) = (λ S −¯ 2 2
% λ¯
P ⊓⊔
# ' ( $ P P ½
P
& $ in + out A #
# ! $ S ⊆ N X S # ) * (X S )T λ ≤ in + out.
& $ P ) P λ− P ) in + out λ¯ = λ0 (S) ∈ P ! λS
# # # S #* ¯ = P ∩ {(X S )T λ = in + out}. {λ}
% λ¯ ∈ P (X S )T λ¯ = in + out $ X S ¯ ⊆ P ∩ {(X S )T λ = in + out} $ {λ} ¯ ⊇ P ∩ {(X S )T λ = in + out} % {λ}
˜ ∈ (P ∩ {(X S )T λ = in + out}) \ {λ} ¯ λ
λ˜i = 0 i ∈/ S λ˜ ¯ AS λS = b λ
P
P P ¯ S λ A λ = b A λ = 0 λ¯ ∈ P λ¯ ! λ¯ ∈ P ⊓⊔ P ! " P # λ ! P λ
P $ % P $ & '
" n = n = 1 |N | = |N | = 3 A " S
S S
S S
|N |
S
∆
∆
∆
1
1 1
2
1 λ1 p1 1
2 1
2 λ1
pipe1
1 λ2 p1 2
1 λ3 p1 3
p2 1
2 λ 2 p2 2
2 pipe
2 λ3 p2 3
P∆
⎛
⎞
1 1 1 0 0 0 ⎜ 0 0 0 1 1 1 ⎟ ⎟ A=⎜ ⎝ 15 10 10 −10 −10 −20 ⎠ 0 0 0 0 0 0
⎛
⎞ 15 p1 = ⎝ 10 ⎠ , 10 ⎛ ⎞ 10 p2 = ⎝ 10 ⎠ . 20
⎛ ⎞ 0 q1 = q2 = ⎝ 0 ⎠ . 0
b
⎛ ⎞ 1 ⎜1⎟ ⎟ b=⎜ ⎝0⎠ 0
A rg(A) = 3 S1 = {S 1 , S 2 } S 1 = {1} S 2 = {4, 6} AS 1
⎛
⎞
1 0 0 1 ⎠ AS1 = ⎝ 0 1 15 −10 −20
AS1 λS1
⎛
⎞⎛ 1⎞ ⎛ ⎞ 1 0 0 λ1 1 1 ⎠ ⎝ λ21 ⎠ = ⎝ 1 ⎠ =⎝ 0 1 λ23 15 −10 −20 0
! " λS1
# $ λS
1
⎛ ⎞ 1 =⎝1⎠ 2 1 2
⎛ ⎞ 1 ⎜0⎟ ⎜ ⎟ ⎜0⎟ ⎜1⎟ ⎜ ⎟ ⎜2⎟ ⎝0⎠ 1 2
P∆ S2 = {S 1 , S 2 } S 1 = {2} S = {4, 5} ⎛ ⎞⎛ 1 ⎞ ⎛ ⎞ 1 0 0 λ2 1 AS2 λS2 = ⎝ 0 1 1 ⎠ ⎝ λ21 ⎠ = ⎝ 1 ⎠ . 10 −10 −10 λ22 0
2
rg(AS2 ) = 2 S2 |S2 | > 2 S2 S3 = {S 1 , S 2 } S 1 = {2} 2 S = {4} ⎛ ⎞ ⎛ ⎞ 1 1 0 1 λ 2 AS3 λS3 = ⎝ 0 1 ⎠ = ⎝1⎠, 2 λ1 10 −10 0
1 , 1
!
"#
$
P∆
⎛ ⎞ 0 ⎜1⎟ ⎜ ⎟ ⎜0⎟ ⎜ ⎟ ⎜1⎟ ⎜ ⎟ ⎝0⎠ 0 %
P∆
$
& & & '( ) $ &
P
$ $ * &
$
& &
P∆ λ−
! "#℄ ∆ λ % 8 16 24 32
12 18 24 32
16 49 73 142
18 47 90 10492
25 42 670 50640
& P∆ ' %
!
( ) ) P * +
P
l, c
P
clin+out , l∗ ∗
l :=
in+out #
nj
-
j=1
nj , j = 1, 2, . . . , in + out λ− + l∗ Nki
. - / & / P∆ nj
λ− m ≤ rg(A)
λ−
j ∈ {1, 2, . . . , in j Nmax j Nmax := max{|N1j |, |N2j |, . . . , |Nnj j |} !
j ∈ {1, 2, . . . , in + out}
Pin+out j=1
"
c c
in+out #
c :=
xj ≤m
%in+out j=1
xj c
j Nmax xj
j=1
+ out}
xj ≥ in + out !
# !
λ− λ−
m
S
$ %in+out xj λ− λ− j=1
" ∗ cl %
l := max{n1 , n2 , . . . , nin+out } & ' clin+out ⊓ ⊔
(
c=2 )
c
c
Pin+out j=1
j Nmax
.
*
+ ,-
P∆ ' j
Nmax m ! "
m = 3 P
. . /
c=
l = 40
3 3 3 3 3 3 + + = 27 1 1 1 2 2 1
27 ∗ 41+1 = 432
1 λ1 20
1 λ2
ingoing pipe
2 λ1 20
10
1 λ3
1 λ4 30
40
1 λ5
1 λ6
2 λ5
60
2 λ2
outgoing pipe
20
2 λ3
40
42
2 λ4 40
2 λ6 60
60
S, S¯ λ−
S ⊆ S¯
P
S
P
AS λS = b ! ¯ AS λS = b " S λ− S¯i \ S i i ∈ {1, 2, . . . , in + out}
AS¯λS¯
#
AS¯λS¯ = b
= b
S
S¯
$ % &
S
!
λ− "
S i λ− |S | = 1 ∀i ∈
'
{1, 2, . . . , in + out}
' () ! "
λ−
*
S
|S| = rg(A)
() * ( )
!
" *
rg(A) = rg(AS ) S P∆
P∆ 9 n1 n2 .
P∆ 9 λ− λ− ! ! |S 1 | = |S 2 | = 1 "
λ− ! # " $ % 27 n1 n2 ! 3 3 3 3 3 3 c= + + = 27. 1 1 1 2 2 1
& P v1 , . . . , vk P '
( ¯ ) * λ
aT x ≤ α ¯−α z ∗ = max aT λ T s.t. a vi ≤ α i = 1, . . . , k
α ∈ {0, 1, −1} ¯−α ¯ = z ∗ ¯ a ¯T λ (¯a, α)
¯ P '( a¯T λ ≤ α
P
v1 , v2 , . . . , vk ' P ( + ∗ %k λ ∈ P β1 , β2 , . . . , βk i=1 βi = 1 ∗
λ =
k i=1
βi vi
a ¯T λ∗ = a ¯T
k i=1
βi vi =
k i=1
βi (¯ aT vi ) ≤
k
βi α ¯=α ¯
k
βi = α. ¯
i=1
i=1
a¯T λ ≤ α¯ P
z ∗ > 0 z ∗ > 0 a¯T λ ≤ α ¯ α a˜T λ ≤ α˜ λ¯ z ∗ ≥ a˜T λ− ¯ > 0
P△ ! " source
Compressor Valve sink
control valve
i ∈ Λ yi
λ− y
# # pin,C pout,C qC $ pin,P qP
10 ! "
# !
2, y △
pin,C pout,C qC pin,P qP 3 3 3 3
3 3 3 3
7 7 7 7
4 4∗ 8 8∗
10 10∗ 20 20∗
29 6 28 7
0 10 0 204
9.39 9.36 9.16 9.15
3.07 0.79 295.9 23.09
$ % &
'
$ () * $ () '
& P∆ * P + ,
- + P P , - . source
Compressor Valve sink
control valve
! "
#$ ! % !
source
Compressor Valve sink
control valve
!"#$% $ & % & " ''( )℄ *
# +% ,& # , -℄ ! " # $ % + ! . " # & *
+
& //0/1/ /℄ ! "# &'( & ' ) % *+ 2 33 4
℄
& 5
1 2
! "
# $%$ & '
# ( ) * #+, - ./ " / " / . 0 ) - - " "& ( / " " / .) ! & 1 2)3 4 " / / & #+, . . . ( " / . & 2)3 4
. & " " / " & 2 +
!
"#$%&%$ ' ½ ()*℄ ,)--.-/0 1
1 5367631 70 / . 5" " 5" " &
!"
# $ %
& % '()!*+,-( . /0℄ 233# 345
2 6)(!5
'()!*+,-(
7
% % ) *+89 ' . /:℄ 2330 5 % ) )' ' . 2;; &5 -
< = $ <
$ 3◦ >
>- 8(%69T M T M
>- 8(%69T M
8 '%! 8(%69
>- 8(%69 ?
? '%! 8(%69
? 2 ;5 6
>- 8(%69 >- 8(%69 2
3
4
! " ## " " " $##
% &' ! (# )&&*+,
% - ! (# )&&*+,
% ! " !# $ % &
' # #!! ( )*+#
•
•
•
,"'' (( ( ( (#
℄ ! "#$%&'( ) & * # +
!!
X(p, t, s)
p
X(p, t) = {X(p, t, s)|s ∈ (1 · · · S)} Mij (p, t) =
t S
X(p, t, i) − X(p, t, j) max(X(p, t, l) − X(p, t, k))
k,l
!
sim(X1, X2)
" #
bsim
"
(p1, t1)
)*#+,
(p2, t2)
(pref , tref )
#
bsim
-...
(p, t) '( sim(X(p, t) X(pref , tref ))
$%℄
$%℄
!
sim
(p, t)
!
" # $ %
&'''''
(&' ) *' ) + , % - . /0℄ #
2 " 3 ( 4
$ 5 3 · Cluster(N ) · + · Cluster(N ) . · 4 $
6 + · Cluster(N )
7 # 2
2 ,
tref 2 )
2 $ Scluster
Ci (tref )
M (C) =
1 M (p, tref ), size(C)
p∈C
size(C) C
! "
" N
A N ◦ P N C P ◦
P A ◦ A ⋄ Q A ⋄ sim(M (C), X(Q, tref )) ≥ bsim ⋆
Q C ⋆ # Q N ⋆
P A ⋄ ◦ • N • •
sim(M (C), X(p, tref )) ≥ sim(M (C), X(q, tref )) ∀q ∈ C, P (C) = p ∈ C
and p is the first such node in C
N
Scluster T (C) (p, t)
T (C)
C
tref
t sim(M (C), X(p, t)) ≥ bsim C
p T (C)
(p, t)
simcluster
(p, t)
!
simcluster(p, t) =
index of C in the list of clusters, 0,
if(p, t) ∈ T (C) else
"
" #$
% &
'' (
$ ) * +
" ,
- . . "' -' / #
& 0# , &
& ) 1 )
! "# $ %
& $
'( ) % #* ! "% $ %
% ' * " '* $ ! ") $ %+
! " # $% &
!
"
!
#$%℄ !
'
'
( ' ( ( !
) *+, - . /0*-1 2
*+,
'
*+,
#$℄ * ( +,3 ( 3 4
-5 +
(
+ ( 6$7%8599:59;% 7$<<<8 #%℄ * ( +,3 ( 3 0=* ( .5 / ( + ( 9>7685:>9:<: 7$<<:8
℄
! " # $ %& %!
'())$* +℄ , - . & / &
& % 0 '())(*
1℄ 2 3 0 3
. 4 3
2& '()))* 5℄ 2 0 6
&
0 "
'$788* 9℄ 2. , 2 #
3!-!:;
.(5891 '$777*
8℄ 3 <= " . & . >3 " '$777* 7℄ 3 <=
. .
..
& ; 3 !
'$779* $)℄ 3? % 2 : !/6:":6$ " . < %<< , ' * "&
. ;@= - ;
. % ; 7$7 %. '$771* $$℄ "<<
0 / %#0 & &
( @= . A " $(℄
3 -
6
'()))*
. & & &
& %
6. > ,%
%= '())(* $℄ 6 % ; ; B : &@ % # '$77+* $+℄
2 % B& 2 /:!;
# .. &
0 3 :@ 6 '* $5 3 ())) " 3 '()))*
% B
% 6 / ;@ @ =
1,2 1
! "
2
# " " $ " %
&' ( ) ! "
α α α ! α
"#$℄ "#&℄ α ! ' > 3 × 1015 ( ! ! ! ' ( ) > 1000 −1 ( α * ! + ! , + α - ( - "#.℄ ! ! "#℄ "/℄ 0
1 ! ! ".℄ "2℄ 3 ) ( ! ! ) '
℄! " #
$
% & ' "
$ 10% (α $ ) * $ & " +
, &
$ - .℄
/ $ 0 *
1
' & Ω ⊂ R3 $ I
$ n · ∇x I(x, n) + κ(x)I(x, n) $ " 1 +s(x) I(x, n) − P (n′ , n)I(x, n′ ) dt′ = f (x), 4π S 2
!
f (x) = κ(x)B(T (x)) + ǫ(x)
#!
x ∈ Ω n dt S 2 κ(x)
s(x) P
% 1 P (n′ , n) dt′ = 1
4π
T (x)
ǫ(x) 2 B 3 )4 ! I(x,
n) = g(x, n) 56 7 Γ− = {(x, n) ∈ Γ nΓ · n < 0} nΓ
Γ nΓ ·n
56 7
' g %
A I
AI(x, n) = f (x).
!
I " h = 1/1000 1000 1012 # $ %
&
'(" )
*#
+,℄
W = I ∈ L2 (Ω × S 2 ) n · ∇x I ∈ L2 (Ω × S 2 ) ,
.
L2 / ! g(x, n) = 0
W0 = I ∈ W I = 0 Γ− . , ! # ϕ(x, n) Ω × S 2 0 1 L2 (I, ϕ) = (I, ϕ)Ω×S 2 =
2
Iϕ dt d3 x.
Ω S2
# 3 ) I ∈ W0 (AI, ϕ) = (f, ϕ)
∀ ϕ ∈ W0 .
∀ ϕ ∈ W0
4
! s(x) = 0 Ω Ω
!
# 5 6 3
(AI, ϕ + δn · ∇x ϕ) = (f, ϕ + δ n · ∇x ϕ)
κ
s
δ
∀ ϕ ∈ W0 .
!
"
#$
% %
Wh
W
h
%
K h|K = hK = K
Th
Ω × S2
%
(AIh , ϕh ) = (f, ϕh )
Wh
Ih ∈ Wh
∀ ϕh ∈ Wh .
&
'℄
! ) *
Ω
+
%
%
t
S2
Kx
Ω × S 2
x
R
3
Kt
"
!
,
Ω
% -
h
.
Ω
- *
* /
%
/
S
%
T
T + D + S + χ(x, ν) I(x, n, ν) = f (x, ν).
Ω
23 4
D
T I(x, n, ν) = n · ∇x I(x, n, ν), ∂ DI(x, n, ν) = w(x, n) ν I(x, n, ν), ∂ν σ(x) ∞ ˆ , νˆ) dˆ R(ˆ n, νˆ; n, ν)I(x, n ω dˆ ν. SI(x, n, ν) = − 4π 0 S2
01
I
x n dω S 2 ν χ(x, ν) = κ(x, ν) + σ(x, ν) κ(x, ν) = κ(x)ϕ(ν)
σ(x, ν) = σ(x)ϕ(ν) ϕ ∈ L1(R+ ) ! " 1 2 2 ν − ν0 1 , exp − ϕ(ν) = √ ∆νD π ∆νD
##
! ν0 " ! ∆νD " vD vtherm
!
vturb ∆νD =
ν0 ν0 vD = c c
2 2 vtherm + vturb .
#$
c % ! vturb ≫ vtherm " ! & ! ' " % f (x, ν) = κ(x, ν)B(T (x), ν) + ǫ(x, ν),
#(
!
)
f
T (x) ! B(T, ν) * + ," - D " . v/c < 0.1
/#0℄ ) /##℄ ! 2 v(x) w(x, n) = −n · ∇x n · #3 c v(x) n 4
w
v
S R(ˆ n, νˆ; n, ν)
(ˆ n, νˆ) (n, ν) ) ! !
s(x) SI = − 4π
∞ 0
R(ˆ ν , ν)
S2
ˆ , νˆ) dˆ I(x, n ω dˆ ν,
! R(ˆν , ν)
#5
R(ˆ ν , ν) =
1 (4π)2
S2
ˆ , νˆ; n, ν) dˆ R(x, n ω dω.
S2
∞ ∞
R(ˆ ν , ν) dˆ ν dν = 1.
0
0
℄
!
" # $ "
R(ˆ ν , ν) = ϕ(ˆ ν )δ(ν − νˆ)
R(ˆ ν , ν) = ϕ(ˆ ν )ϕ(ν).
%
$
$
S coh I(x, n, ν) = −
σ(x, ν) 4π
$
S2
ˆ , ν) dˆ I(x, n ω
&'
$ "
# $ !
S crd I(x, n, ν) = −
σ(x, ν) 4π
0
∞
ϕ(ˆ ν)
S2
ˆ , νˆ) dˆ I(x, n ω dˆ ν.
&
$ (
$
)
( *α '℄#
+
$
, "
*α$ Λ := [ν0 , νN +1 ]$ ν0
νN +1
# ! w(x, n) -,# . / w < 0 w > 0 ,
" # ! $
I(x, n, ν) = Icont (x, n, ν)
, "
!
Σ = Ω × S 2 × Λ# + $ " -,# '$
I(x, n, ν) = Iin (x, n, ν) 0 1 2 Γ − × Λ = {(x, n, ν) ∈ Γ | nΓ · n < 0}$ nΓ " Γ Ω # nΓ · n 01 2 #
Icont = 0
Iin = 0 Σ, Γ − × Λ.
I(x, n, ν) = 0 I(x, n, ν) = 0
! " # #$% &'(" ) N
νi ∈ ν1 , ν2 , ..., νN ⊂ Λ" ) * ! + ! * , N -.℄" # S crd ," " 0 N νi ∈ ν1 , ν2 , ..., νN ⊂ Λ N q1 , q2 , ..., qN * Q(νi ) :=
N
qj ξ(νj )
.
j=1
Λ
ξ(ν ′ )dν ′ " 1 ξ(νj ) =
ϕ(νj ) 4π
S2
ˆ , νj )dˆ I(x, n ω.
2
0 Ii Ij ! σi ϕi qi 4π
N σi ˆ , νj )dˆ Ii dˆ ω+ ϕj qj I(x, n ω. 4π S2 S2
3
j =i
% , " |w|νi $ + Ii Acrd i ∆ν N σi ˜ ˆ , νj )dˆ = fi + ϕj qj I(x, n ω, 4π S2 j =i
4
˜ crd Ii = fˆi . A i Acrd = T + χi + ϕi qi S coh . i
!
Acrd u = f .
" #
$ %
& ⎛
Acrd
˜ crd A 1
⎜ ⎜ B2 + Q 1 ⎜ ⎜ = ⎜ Q1 ⎜ ⎜ ⎝ Q1
R1 + Q2
Q3
˜ crd A 2
R2 + Q3
...
...
. . . QN
˜ crd ... A N
⎞
⎟ ⎟ ⎟ ⎟ ⎟. ⎟ ⎟ ⎠
%
'
w(x, n)
& Ri Bi ( w(x, n)νi/∆ν # $
& Qj ( ) #
$ * # N +
, $
˜ crd ui = ˆfi , A i
ˆfi = fi + Ri ui+1 + Bi ui−1 +
Qj uj .
j =i
$ # # - . $
/# # ℄ 1 # 2 # 3 % . I = 0
i = 1, .., N ! ! " " [ν1 , νN ] # " ! $ % & ! nout '
! " & ! ( # "
) ! ηK = max(ηK (νi ))|νi & ηK ηK (νi )
K νi *+ , ℄
# ! !! % " $ & . χ(x) = χ(x, y, z) ! ⎧ r ≤ rc ⎨ χ0 /(1 + αrc2 ) χ(x) = χ0 /(1 + αr2 ) rc < r ≤ rh , ⎩ χ0 /(1 + αrh2 )/103 r > rh
r2 = x2 + y 2 + z 2 ' & .
rc rh χ0 ! ! rh χ(x)ϕ(ν0 ) n dx τ= / rc
$ rc rh n 0 " $ χ ! $ ! ( rc rh ! ! α τ 1 rc rh α #$ 2 ! " 3 4α ! σ(x) = χ(x) κ(x) = 0 # " !
" 0
rs xi = 0( ϕ(ν) |x − xi | ≤ rs f (x, ν) = 5 . |x − xi | > rs 0
rh
rc
α
rs 3
10
vD
−3
10
v0 −3
c
−10
c
r0
R0
ϕ(ν)
n
! " "
w
# " v0 < 0 # " v0 > 0 vio = v0
" r $l x 0 , r r
$%
" r = |x| v0
r0 w
" r $l 1 |nx| 0 − (l + 1) 3 w(x, n) = v0 $& . r r r "
z '
vrot = v0
R0 R
l
⎛
⎞ y R−1 ⎝ −x ⎠ , 0
$(
" R2 = x2 + y2 ' v0
R0 n = (nx , ny , nz ) w
w = v0
R0 R
l
(l + 1)
xy(n2y − n2x ) + nx ny (x2 − y 2 ) R3
.
)*
" + , )
(ν − ν0 )/∆νD = [−4, 6] &* - " 43
" $./ "
+ τ 0 ' #' Fν τ "
τ = 0.1 τ = 1
" " " " 1 τ = 100
a)
b)
0.1 1 10 100
0 0.5 2
0.034 0.032
0.02
0.02 Fν
Fν
0.030 −0.5
0.00 −4
−2
c)
0
(ν−ν0)/νD
0.0
2
0.5
4
0.00 −6
6
−4
d)
0.1 1 10 100
0 (ν−ν0)/νD
2
4
6
−2
0 (ν−ν0)/νD
2
4
6
0 0.5 2
Fν
0.02
Fν
0.02
−2
0.00 −6
−4
−2
0 (ν−ν0)/νD
2
4
6
0.00 −6
−4
α ! " # !$ # % ! !$ # $ # % ! & # # ' τ & # ! ( & ( & )! # τ = 1 * # τ = 10 * ( # # τ = 10& +$ , l ) &
! # $
"
!
l
% &'()
τ =1&
vio
) *
+
"
l
#
τ = 10
,
& )
l = 2
-
!
τ
"
τ ≥ 1
#$
τ
$
' ()*
%&
τ = 100
! % τ
= 10
& l l
= 0 l = 0.5
%
#$ + % $ ,
l = 2
$
% ' & '
&
# '
- ' ' ' #
#
103−4
.α $
τ
≤ 102
' &
' /
•
-
τ ≥1
$
&
0!1℄
3
'
•
4 ' 4 $ % $ % ,
'
&
5 $
& #
$
! " #℄
%
& ' (
( ) * + , - .-*/ '0 !1# 2( - , 3
℄ ,4 , 5 6 78 8!# . #79/ 9℄ ': ; :) ; : 4 ;α <
: < 6 118 =>8= 8 .9>> / !℄ ': ; :) ; : 4 ;α << %
: < 6 1=7 #99#!> .9>>9/ 8℄ 0& +4 '
* ? @ &
-
- A B : . ##=/ 1℄ - ( ; 6;4
C
'
, ? = '
0 : C D .9>>>/ =℄ : -* + E F04 % 6 9!= =>#= " . #">/ 7℄ + *4 F * F- , A : . ##=/ 4GG G!1#GF
##= "℄ & % (
'4 ( << ;α H !#9 "97"!# .9>>9/ #℄ & %4 A F- , A : .9>>9/ 4GG G!1#GF
9>>9 >℄ -4' '
. #7"/ ℄ - ) 04 ( :
I A F C D . #"8/ 9℄ C -4 ,
6 !1> 9 =98 . ##>/ !℄ (
' & % + E C + *4 ( < 0
H !"> 77=7"" .9>> /
℄
!" # $ %"&'( ) " * + ,
α
= 3.6
",
!" - .. /0, 12234
0℄ (5) 6 $ 7! ( "' ! * 5 ! *)) 5 "' ! ! )5! ' ) " * 5 - .8 .09,.9 12284 3℄ 6!5 5 ! " 6)'5 6 $ 7! ) :(5 " "' ) " " ) $ ; 5 55(% "5 ) '"( - .02 89<,898 1/<<<4
!
℄ ! " # ! $ #
% & ' (℄ &
& % ) * %
+
% % *
% , &
" %
J(x), x ∈ Oad x Oad
! ! "#$%
& '
M (ζ)xζ = −d(x(ζ)) x(ζ = 0) = x0
"(%
) ! ' • * d = ∇J M = Id • * d = ∇J M = ∇2 J " ! % + " , + % * ' • -(' J ∈ C 1 (Ωad , Ê) • -.' / Jm • -0' ' / ' ∃xm ∈ Ωad , s.t.J(xm ) = Jm • -1' J " J(x) → ∞ |x| → ∞% 2 "(% x0 ∈ Ωad / / Zx J(x(Zx )) = Jm ' 0
0
⎧ ⎨ M (ζ)xζ = −d(x(ζ)) x(0) = x0 ⎩ J(x(Zx0 )) = Jm
".%
345 " / 6 % 3
!
Zx0
⎧ ⎨ ηxζζ + M (ζ)xζ = −d(x(ζ)), ˙ = x˙ 0 , x(0) = x0 , x(0) ⎩ J(x(Zx0 )) = Jm
|η| << 1
!"
ζ
x0 = v
x(0) ˙ = v !"" h(v) = J(xv (Zv )) − Jm xv (Zv ) ζ = Zv v A1 (v1 , v2 )
#"
#" !""
• • •
(v1 , v2 ) v ∈ argminw∈O(v2) h(w) h(w) = J(xw (Zw ))−Jm xw (Zw ) # ζ = Zw
w O(v2 ) = → } ∩ Ωad {t− v− 1 v2 , t ∈
Ê
$
A1 % v1 % v2 h2 h2 (v22 ) = minv22 h(v22 ) A1 (v1 , v22 ) A2 (v1 , v22 )
• • •
(v1 , v22 ) v2 ∈ argminw∈O(v22 ) h2 (w) h2 (w) = h(A1 (v1 , w)) O(v22 ) = −−→ {tv1 v22 , t ∈ } ∩ Ωad
v2
Ê
i
hi (v2i ) = minv2i hi−1 (v2i )
Ai−1 (v1 , v2i )
h1 (v) = h(v)
Bε (xm )
ε
&
" h
h(v) =
T
T1
(J(xv (τ )) − Jm )2 dτ,
0 < T1 < τ < T
xv (τ ) T1 = T /2
xw (Zw )
[0, Zw ] Jm Jm = −∞
!
"
# $
%
#
$ h(v) = J(xv ) − Jm
v h
! dn = ∇J n !
% 1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
-1
-0.5
0
0.5
1
1.5
2
J(x) = x sin(20x) cos(x) + |x|0.1
Jm = 0 h(v) = J(xv ) v ([−1, 2]) !
" " ! !
h(v) #
J(xv ) − Jm & h(v)
= x sin(20x) cos(x)+|x|0.1 Jm = 0
h(v) [−1, 2]
J(x)
!
"
4
4
3.5
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1 4.5-20
-10
0
10
20
30
40
1 4.5 -20
4
4
3.5
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0 -20
-10
0
10
20
30
40
0 -20
-10
0
10
20
30
40
-10
0
10
20
30
40
!
" # ! $ % & ' " ' (
) ) * + & ) ' " '
) )
! ' " (
) ) *
! " ) #
" # " ! " $ !
"
! " "
# # $ ! %&' J(x) = 74 + 100(x2 − x21 )2 + (1 − x1 )2 − 400 exp(−10((x1 + 1)2 + (x2 + 1)2 )).
( $ # (1, 1) J(1, 1) = 74& (−0.90, −0.95) J = 34 $ ! )& Jm = 0 J(x)
% I J(x) = 1 − Πi=1 cos(xi − 100) + 10−6 Ii=1 (xi − 100)2 , x ∈ [−600, 600]I I = 5, 10 20 *
4000 3500 3000 2500 2000 1500 1000 500 0 2 1.5 1 -2
0.5 -1.5
-1
-0.5
0 -0.5 0
0.5
1
-1 -1.5
1.5
2 -2
J(x) = 74 + 100(x2 − x21)2 + (1 −
x1 )2 − 400 exp(−10((x1 + 1)2 + (x2 + 1)2 )).
400
RECURSIVE 2 Layers Conjugate Gradient (Recursive 1 layer)
350
300
250
200
150
100
50
0 0
1
2
3
4
5
6
7
! " !
# $ $ ! " %#!
2 1.5 1 0.5 0 600 400 200 -600
I P
-400
0 -200
0
-200 200
400
-400 600 -600
I J(x) = 1 − Πi=1 cos(xi − 100) + 2 I ρ i=1 (xi −100) , x ∈ [−600, 600]
I = 5, 10 20
N=5 N=10 N=20
100000
1
1e-005
1e-010
1e-015
1e-020
1e-025
1e-030 0
200
400
600
800
1000
1200
1400
1600
!
!" #℄ %
&
&'
(
)
*
+ • )
•
•
•
•
, #' &-'
&'' µm
&' µm
./0 % .
1
2) !#℄
)
Γ Γ
+ ds ds − ) . J(x) = ( 345 V.τ V.τ i
o
2
Γi
Γo
67/8 !-℄
V.τ
J(x) : x → q(x) → U (q(x)) → J(x, q(x), U (q(x))).
J
∂J ∂J ∂q ∂J ∂U ∂q dJ = + + . dx ∂x ∂q ∂x ∂U ∂q ∂x "
!
#$℄
• •
J
J
x
J(x) =
f (x, q)g(u)dγ,
•
&
! '
J = an ux (a)
(
&
) &*
−uxx = 1,
u(x) = −x /2 + (ǫ + 1)/2 − ǫ/2
'
•
• •
n
]ǫ, 1[, u(ǫ) = 0, u(1) = 0, 2
&
(
J
ǫ
Jǫ (ǫ) = ǫn−1 (nux (ǫ) + ǫuxǫ(ǫ)) =
ǫn−1 (−n(ǫ + 1) − ǫ). 2
' (
n
˜ ˜ ∼ U (q(x))
U U(x) ! " J x # $ U˜ ˜ /∂x % U
∂ U
& #
˜ (x)( U (q(x)) ). x → q(x) → U ' ˜ U (x)
# U (q(x))/U˜ (x) ˜ U (q(x)) ∂J(U ) ∂J(U ) ∂q ∂J(U ) ∂ U dJ . ≈ + + ˜ (x) dx ∂x ∂q ∂x ∂U ∂x U
(
) ' * U = log(1 + x) J = U 2 dJ/dx = ˜ = x 2U U ′ = 2 log(1 + x)/(1 + x) ∼ 2 log(1 + x)(1 − x + x2 ...) U x = 0 " J ′ ∼ 2U U˜ ′ = 2 log(1 + x) J ′ ∼ 2U U˜ ′(U/U˜ ) = 2 log(1 + x)(log(1 + x)/x) ∼ 2 log(1 + x)(1 − x/2 + x2 /3...).
)
+ E " J(x) = (
Γi
ds − τ µek |E|
Γo
ds )2 . τ µek |E|
,
" - .+ ℄ " ( " ! 0 1 ! ,2 3(2 ,4 32 " # ,2 3(2 33435
0.012
0.005
USING THE EXACT GRADIENT USING THE INCOMPLETE GRADIENT
EXACT GRADIENT INCOMPLETE GRADIENT
0.01 0
0.008
0.006
-0.005
0.004 -0.01
0.002
0 -0.015
-0.002
-0.02
-0.004 0
10
20
30
40
50
60
70
80
90
100
0
10
20
30
40
50
60
70
80
90
100
!
"
" # !
"
$
%
& %
!" # $ %
!" $ %
!
" # ! $ # " " % "
&'℄ % ) *+ $ , ½ -'./-01 2'..34 &5℄ ) ) $ # ) * $ 6+ # ) 7 6 ) 89:'/ 89:. 2'..:4 &8℄ ; )6 ; $+ < ) '/'3 2'..-4 &0℄ ; = 7 =>+ 6 % = 2'...4 &-℄ 7 + 7 ? @" 2'.:.4 &3℄ % ; 6 A+ 6 # * B ; -C511' -9-/-.- 251114 &9℄ 6 A # $%+ = , D, = 251154 &:℄ 6 A = + ! E = 251114 &.℄ = *;+ = % 2'..-4
1 1 1 2 1
2
!" #$ % ' (# ) *# + ,,- * ./
#!0##! #$ ! #
)
# ! ! #$ ##" '1! $#
)+ ## ## # "
!! )
$# # 0+ ## # #$ + )#
$"
! #$ #!0##! ! # ## )#
$ + # # !# #" #!!# # )+ # 2 ! ) + ! 3
" 4 # ! #$ #!0##! ! # ! ! # # 5 # $# ! $ + # # ! ## $ # $" 4 # #$ # ! # ! # ## 3 + # #
#! ) #! #!6# # "
!" "# ! $ ! % $ ! # ! $ &' ( && ! ' ! % ) $ $ % ) $ ) *! %+ # , & ' ! - !! ' & ! . $ ' ! % "! $ / - , &% ' &% $ - ! $ '& !$ # ! && 0
!" !
#$ % &""'())$$$*!" *)!" +
!
! "
# $
"
%
!
& ' ( )
*% + + , -
.)℄ % !
* 0 .1℄
2 !
' .33℄ !
!
" #
$% &'℄)
$% &*℄) % &+℄ ,
- . / 0
(x , y ) b
b
k tors u tors b
btors
d l
l
y k
u x
b
SEA
x
℄
! " #
$ % & mb Θb # ml Θl # d# l0 #
ktors btors#
∆ϕ#
k b ' #
! ( ! # $ q = (xb , yb , ϕb , ϕl , ϕl )T #
q˙# xb yb # ϕb ϕl # ϕl xl yl d xl = xb + d sin ϕl ) yl = yb − d cos ϕl . % l l0 + u0 !
i * yb ⇒ li = + cos ϕ 1
1
2
2
i
i
i
i
i
i
li
sin ϕli y˙ b + yb ϕ˙ l . l˙i = cos ϕli cos2 ϕli i
,
- * ) uSEA,1# uSEA,2 . /0$
*
& )1℄#
k b %
uSEA,i ≥ 0 ∆li =
yb − r + r − uSEA,i − l0 cos ϕli
uSEA,i i
uSEA,i ! i " # utors,1 $ utors,2 % ! ktors $ btors $ & # !
'() ⎛ ⎞⎛ ⎞ m 0 0 ml d cos ϕl1 ml d cos ϕl2 x ¨b ⎜ ⎜ ⎟ 0 m 0 ml d sin ϕl1 ml d sin ϕl2 ⎟ ⎜ ⎟ ⎜ y¨b ⎟ ⎜ ⎜ ⎟ ⎟ 0 0 θb 0 0 ⎜ ⎟ ⎜ ϕ¨b ⎟ = ⎝ ml d cos ϕl1 ml d sin ϕl1 0 θl + ml d2 ⎝ ⎠ 0 ϕ¨l1 ⎠ 2 0 θl + m l d ml d cos ϕl2 ml d sin ϕl2 0 ϕ¨l2 ⎛ ⎞ 2 2 ml d(sin ϕl1 ϕ˙ l1 + sin ϕl2 ϕ˙ l2 ) ⎜ ⎟ −ml d(cos ϕl1 ϕ˙ 2l1 + cos ϕl2 ϕ˙ 2l2 ) − mg ⎜ ⎟ %2 ⎜ ⎟ * ˙ b − ϕ˙ li )) ⎜ ⎟ i=1 (utors,i − ktors (ϕb − ϕli − ∆ϕ) − btors (ϕ ⎝ −utors,1 − ml gd sin ϕl + ktors (ϕb − ϕl − ∆ϕ) + btors (ϕ˙ b − ϕ˙ l ) ⎠ 1 1 1 −utors,2 − ml gd sin ϕl2 + ktors (ϕb − ϕl2 − ∆ϕ) + btors (ϕ˙ b − ϕ˙ l2 )
m m = mb + 2ml utors,1 utors,2 ! + #$ ( &, $ &, -).
('/
x˙ b + (yb + yb tan2 ϕl1 ) ϕ˙ l1 + tan ϕl1 y˙ b = 0.
0
.
! !
(.) 0
m 0 B 0 m B B 0 0 B B ml d cos ϕl ml d sin ϕl 1 1 B @ ml d cos ϕl2 ml d sin ϕl2 1 tan ϕl1
10 1 ml d cos ϕl2 1 0 ml d cos ϕl1 x ¨b C B y¨b C ml d sin ϕl2 tanϕl1 0 ml d sin ϕl1 CB C CB ϕ θb 0 0 0 ¨b C C C B Bϕ 0 θl + m l d 2 0 yb (1 + tan2 ϕl1 ) C ¨l1 C C C B A@ϕ 0 0 θl + m l d 2 0 ¨l2 A 0 yb (1 + tan2 ϕl1 ) 0 0 λ
⎛
⎞ ml d(sin ϕl1 ϕ˙ 2l1 + sin ϕl2 ϕ˙ 2l2 ) + (Fk + Fd ) sin ϕl1 ⎜ ⎟ −ml d(cos ϕl1 ϕ˙ 2l1 + cos ϕl2 ϕ˙ 2l2 ) − mg − (Fk + Fd ) cos ϕl1 ⎜ ⎟ %2 ⎟ ⎜ ˙ b − ϕ˙ li )) ⎟ i=1 (utors,i − ktors (ϕb − ϕli − ∆ϕ) − btors (ϕ =⎜ ⎜ −utors,1 − ml gd sin ϕl + ktors (ϕb − ϕl − ∆ϕ) + btors (ϕ˙ b − ϕ˙ l ) ⎟ 1 ⎟ 1 1 ⎜ ⎝ −utors,2 − ml gd sin ϕl + ktors (ϕb − ϕl − ∆ϕ) + btors (ϕ˙ b − ϕ˙ l ) ⎠ 2 2 2 −2 · cos−2 ϕl1 ϕ˙ l1 (y˙ b + yb tan ϕl1 ϕ˙ l1 ) Fk
Fd yb Fk = k ( − l0 − uSEA,1 ) cos ϕl1 tan ϕl1 y˙ b + yb ϕ˙ l ). Fd = b ( cos ϕl1 cos ϕl1 1
slif tof f = l0 + uSEA,1 −
yb =0 cos ϕl1
clif tof f = y˙ b > 0.
!
" !
#
stouchdown = yb − l0 cos ϕl2 = 0. "
$
% &
ctouchdown = y˙ b + l0 sin ϕl2 ϕ˙ l2 < 0. " ( % (
'
%
% (
( )
# "
%
( )
)
ϕli
ϕl1 ↔ ϕl2
"
) ( %(
&
•
)
% ) &
x˙ contact = x˙ b + l0 cos ϕl,2 ϕ˙ l2 + y˙ b tan ϕl2 + yb ϕ˙ l2 tan2 ϕl2 = 0 •
% &
Htrunk,hip = Θb ϕ˙ b = const. •
*
+
%
Hswingleg,hip = (Θl + ml d2 )ϕ˙ l1 = const.
•
Hrobot,contact = Θb ϕ˙ b − mb (yb − yc )x˙ b + mb (xb − xc )y˙ b +Θl,1 ϕ˙ l,1 − ml (yl,1 − yc )x˙ l,1 + ml (xl,1 − xc )y˙l,1
+Θl ϕ˙ l,2 − ml (yl,2 − yc )x˙ l,2 + ml (xl,2 − xc )y˙l,2 = const.
xli yli
xc = xb + l0 sin ϕl2 yc = yb − l0 cos ϕl2 . •
m(x˙ b sin ϕl − y˙ b cos ϕl ) − Fkd = const.
! xb ! "
˙ ) = q(0) ˙ T qred (T ) = qred (0) q(T # !
$ # ! " % &'℄ % ! &℄! ) # ! " ) *+ # !
, # +
! - ) . C / 0 ! $
% ! &℄! ,
+
+ + ! ,
+ 1
Outer optimization loop
Inner optimization loop Stability optimization min φstab modify model parameters (mass, inertia, geometry ...)
Solution of periodic optimal control problem minimize energy for given parameters modify initial values, actuator inputs, cycle time
! " ## $ % ##& # %
min |λmax (C(p))|, p • ! " C " # ! • C $ %" ! & " " ' " " ( ' " ! ) " " $ *+ ! " n + 1 n %
!
" ! , ! ' ! ' ' " " " -! , ' " ! " '
! !
"
# u$ %
&
' min
x,u,T
T 0
||u||22 dt
x(t) ˙ = fj (t, x(t), u(t), p) x(τj+ ) = h(x(τj− ))
gj (t, x(t), u(t), p) ≥ 0
*+,
t ∈ [τj−1 , τj ], j = 1, ..., nph , τ0 = 0, τnph = T
#()$ #(-$ #(.$ #(/$
#(0$ #(1$ % 234* #5 6 7 8(℄ : 8-℄$ ; • • %
' • < 3=7 # : 8-℄$ • "
#5 8>℄$ req (x(0), .., x(T ), p) = 0 rineq (x(0), .., x(T ), p) ≥ 0.
• • •
l0 mb
!
! "#" ! $ !$
!" # $
% &
mb = 2.0 Θb = 0.3465 ml = 0.2622 Θl = 0.182 d = 0.11 l0 = 0.5 ktors = 11.08 ∆ϕl = 0.5
btors = 9.989 k = 606.8 b = 42.48 % '( &
T = 0.5476s Tcontact = 0.2533s Tf light = 0.2943s
xT0 = (0.0, 0.4777, −0.1, 0.3, −0.7, 1.240, −2.490, −0.3941, −0.8908, 2.032) xb (0) xb (T ) 0.4637m
)
'
"
uSEA2
xb |λ1 | = 0.6228 |λ2,3 | = 0.8168 |λ4 | = 0.8168 |λ5 | = 0.5373
|λ6 | = 0.0515
|λ7 | = 0.0001 |λ8,9 | = 0.0
! " "
# !
$ $ yb ϕl1 % & %'() ) " * x˙ b +'. - '. y˙ b +(. - . ϕ˙ b +'. '. ϕ˙ l1 +/. - '. ϕ˙ l2 +- . . 0 xb ϕb yb ϕl1 ϕl2
+,--. (. −0.046% +0.05% +0.184% −2% +(. - '.
!"! # !"$ ! " !
% " " !& "!
ϕb
! "
Θb ml Θl d ktors
# $#
∆ϕ btors k b
% $% % $# %
$#
% $%
%
$%
& $# #
$&
& $'
6 5
x_b
4 3 2 base solution perturbed solution
1 0 0
1
2
3
4
5
t
0.3
0.65
0.2 0.1
0.55
phi_b
y_b
0.6
base solution perturbed solution
0.5
0 -0.1 -0.2 base solution perturbed solution
-0.3
0.45
-0.4 0.4
-0.5 0
1
2
3
4
5
0
1
2
t
3
4
5
t
0.4 0.2 0.2 0 phi_l2
phi_l1
0 -0.2 -0.4
-0.2 base solution perturbed solution
-0.4 base solution perturbed solution
-0.6 0
1
2
3 t
4
-0.6 5
0
1
2
3
4
5
t
ϕb
#$%$ &%' $%#(# !)*
!℄
℄ + %## , #%- $#% %# . % # $#% . -#% # - $ / ! " # - $ 0102 /# #% 3 #% . ,# #% 4# !)0 ℄ /5 #$
$%%&& &% ' % % % & 66 0℄ %7 () * + ,
- ( + #$%$ &%+ ' $%#8 . % !))) 9/+3 #$ %## % # % : ;! *℄ 5 $$%' %- % - 06
# # 7 % # # %$ $8-##% 8 $# 7%## .
/ (((
8 66! ℄ >-+$# $#% . - %% -#% # - $ % #% $ /
0 + . +
. 1/++2 66 )℄ # + --% 7%## .
7%# -%# .# / ((( $%# &, 8 66 !6℄ , ## %% $ %$ ? $#% , # # $ / , %##$ !))* !!℄ % $ .+$# %%@% % 5 % - # $$
$##$ /+ $#%## . 5 8
! "# ! $ % & ' ! ! ( ! ) *% % & & & ! % % % % % ) "# % & % % + ! ' ! % , & ) *% "# % ! % %!% "# % % %
& & % ) " % & % % %!% % % & ) " % % & - . & ! / . & ! %!% & % % ) 0 % % !
& ) *% % % !
% & - & / + % ! & %!% )
! " #$ % "
# " #$ # ! & ! ! # " $ !# ' ! & # # ' ' # ' ! $ ( ! &
!"℄ $ %
& '( $)( *
(
'( $)( +$)(, +'(, - $)(
$)( !.℄ !".℄ ' !"/℄ $)( ' %
$)( !"0℄ !"1℄ $
$)( 2 '( !.3℄ $ 4
$
'( 2 5 6 4 '( $
6 '(
V (z) Y D(z )
E(z )
+
R (z )
U (z)
G(z )
+
+
Y (z)
-
YD (z), R(z), U (z), G(z), V (z) Y (z)
u(k) = u(k − p) + ϕe(k − p + γ)
!"
ϕ ! " γ # $ ! " $ % z p U (z) = F (z)[U (z) + z γ Φ(z)E(z)] !$" & !" ϕ Φ(z) F (z) & ' ( # ( R(z) =
F (z)z γ Φ(z) U (z) = p E(z) z − F (z)
!)"
p
[1 + G(z)R(z)]E(z) = YD (z) − V (z)
{z − F (z)[1 − z γ Φ(z)G(z)]}E(z) = [z p − F (z)][YD (z) − V (z)]
F (z)
! !
z p − F (z)[1 − z γ Φ(z)G(z)] = 0
#
F (z)
"
!
! ! # !
!
$
"
!
F (z)
% &$ '
( !
u(k) = α1 u(k − p) + α2 u(k − 2p) + ϕ[α1 e(k − p + γ) + α2 e(k − 2p + γ)]
!
αi
)
*
+ ! %
, +
R(z) =
-
U (z) F (z)z γ Φ(z)(α1 z p + α2 ) = 2p E(z) z − F (z)(α1 z p + α2 )
.
{z 2p − F (z)[1 − z γ Φ(z)G(z)](α1 z p + α2 )}E(z) = [z 2p − F (z)(α1 z p + α2 )][YD (z) − V (z)]
/
F (z)
z − F (z)[1 − z Φ(z)G(z)](α z + α ) = 0
! 2p
γ
1
p
2
" # ! $ % & ' ( u(k) = α1 u(k − p) + α2 u(k − 2p) + · · · + αN u(k − N p)
$)
+ ϕ[α1 e(k − p + γ) + α2 e(k − 2p + γ) + · · · + αN e(k − N p + γ)]
R(z) =
U (z) F (z)z γ Φ(z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ] = Np E(z) z − F (z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]
$$
{z N p − F (z)[1 − z γ Φ(z)G(z)][α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]}E(z) = {z N p − F (z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]}[YD (z) − V (z)]
$*
z N p − F (z)[1 − z γ Φ(z)G(z)][α1 z (N −1)p + α2 z (N −2)p + · · · + αN ] = 0
%$
+ # ,
-*)℄ /, & 0 F (z) z E(z) = [1 − z Φ(z)G(z)]E(z) 0
1
2
E (z) p
γ
h
z p Eh (z) = F (z)[1 − z γ Φ(z)G(z)]Eh (z)
M (z) ≡ F (z)[1 − z γ Φ(z)G(z)]
zp
M (eiωT ) = F (eiωT )[1 − (eiωT )γ Φ(eiωT )G(eiωT )] < 1
ω
Ì
Eh (z)
M (eiωT )
! "
Eh (z)
# # $ "
$ ! %&
Æ %&
'
z N p Eh (z) = M (z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ]Eh (z)
(
M (z)[α1 z (N −1)p + α2 z (N −2)p + · · · + αN ] $
Æ
) $
Æ
*
*
+
Þ
α1 z (N −1)p + α2 z (N −2)p + · · · + αN
≤ α1 |z|(N −1)p + α2 |z|(N −2)p + · · · + αN
α1 (eiωT )(N −1)p + α2 (eiωT )(N −2)p + · · · + αN
≤ α1 + α2 + · · · + αN = 1
,
-
$
Eh (z)
Æ
Æ
R(z)G(z) = −1 Ô
!"℄ $ %
& '
& F (z)
& ( ) * +,- z p P (z) ≡ 1 − z −p F (z)[1 − z γ Φ(z)G(z)] = 0 +./
0 Þ 1
& 2 &
3 F (z), Φ(z) G(z) P (z)
4 G(z) & Ô 0 & 0 &
2 P (z) = P (−1) + - P (z) Þ
4
P (z) +.- P (z) = 1 − P ∗ (z) +5P ∗ (z) = z −p M (z)
∗ iωT iωT −p
P (e ) = e M (eiωT ) = M (eiωT )
+!" +,- & P (z) Þ '
! z N p P (z) = 1 − M (z)(α1 z −p + α2 z −2p + · · · + αN z −N p ) = 0
"
P ∗ (z) = M (z)(α1 z −p + α2 z −2p + · · · + αN z −N p )
""
P (z) ∗
#
|P ∗ (z)| = |M (z)| α1 z −p + α2 z −2p + · · · + αN z −N p
≤ |M (z)| (α1 |z|−p + α2 |z|−2p + · · · + αN |z|−N p ) = |M (z)|
"!
$ % $ P ∗ (eiωT ) & & $ P (z)
' $ $ % $ ( )"℄ % $ $ ( $ + % $ ,$ --- .$ --- / M (z) % & ∆ω
∆ωT - $ % 0 &
& P ∗ (z) 1
∆ωT p 2 !3
& # $ P ∗ (z)
$ z −N p ∆ωT N p$ ' $ % #
$ %
4 & 2 5
!" #
$%℄ ' !( ) * + ' , - ! . ./0 ' "
1 %%2
3445
1 %59 %4:
$3℄ - 6 , +70 , 8 " %%3 %;<;
$5℄ = .= , ' / ,0 ! ' "
!
" <<;5 %;;5
> ! 7
$2℄ = .= ( =( ' ,0 "
# $ 1 9 233%233: %;;:
' " > " " ? $:℄ " * = .= ' ,0 "
@
, 8 ' " A B / > %;;C
%
$9℄ " ".0 A ' " /
# 1 5 54:9549% %;;9
1 >
$C℄ " ".0 A '" " / 1 >
$ 1 25 / : %;;<
$<℄ + .@ 6 7-0 ' " > - 3A > 1 5< %;;5
$
$;℄ ' *. 'D A)0 ) ! ' "
%
1 5 %;;4%;;: %;;5
$%4℄ 8 A, / ! @0 ' " E 8 ! " $ $ 1 : / 5 23:25< %;;:
℄ ! "" #$$%#$# &''#(
)℄ * + , -. + / -! % "
!
*! ) "" 01%02$ &)$$)(
0℄ +3 4 5 , 4 6 78 - ! /
!
*! $# "" '0% &)$$$( 1℄ 4 6
3 9 4
/ 3%
7"
: ! " &)$$)(
#℄ !/ 4 ; < " / 3 % ! : ! " &)$$)(
2℄ !%= = + 3 ""!
3
!%
: ! " &)$$)( >℄ ?@
4
+
! 3 ! 3 =!
: ! "
&)$$)( A℄ B C %B = 9 3 < " !
: ! " &)$$)( " ! /
! "" 3
'℄ +3 4 5 , 3% ! < +! +! -!
%
: ! " &)$$)( )$℄ , +
! "
! /
*! >0 $
"" '0$%'#1 &)$$$( )℄ 3 = , 3 -. "
" / 3 <! :% "
! !! " ! ""
! " # $ " $ $
$ ! "# % $ $ #
$ "
& $ # " !
$
' ( $
) # $ $ $ $ ) $$ ( * + ( , ' ( $ #
!
!
" • #
$ • #
%
O n−1/2
O n−2
! "
dx = w(t, x, β) dt x, w ∈ Rm , β ∈ Rp $
x w = M (t, β)x + f (t).
#
! "
%
&
'
(
!
)
yi = ϕT x(ti ) + εi , i = 1, 2, · · · , n,
ϕ
"
εi
*
& '
!
!
)
) + ,
! ) # -
β
b
x(t, β, b) % . , β b β x(t, β, b) / "
F (β, b) =
n
ri (ti , β, b)2 ,
0
i=1
ri = yi − ϕT x(ti , β, b).
1
! "
B1 , B2 b !
B1 x(0) + B2 x(1) = b, dx = M (t, β)x + f (t). dt B1 , B2 ℄
! " #
$ " $ "
t = 0
t=1
% #
B1 = I, B2 = 0.
"
! " &
min b,β
n i=1
(yi − ϕT x(ti , β, b))2 .
β, b
'()
#
* % # +℄ " # ! " &
d∆β dt = M ∆β + ∇β M x, B1 ∆β (0) + B2 ∆β (1) = 0, d∆b dt
= M ∆b , B1 ∆b (0) + B2 ∆b (1) = I,
∆β =
∂x ∂x , ∆b = . ∂β ∂b
& $ " , '() -℄ # " # ! ! " " # # . $ " #
min β
n i=1
(yi − ϕT x(ti , β))2 ,
'/)
0 "
xi+1 − Xi (ti+1 , ti )xi = vi , i = 1, 2, · · · , n − 1, Xi (t, ti ) # " '+) #!
vi (t)
'1)
dXi = M Xi , Xi (ti , ti ) = I, dt ti+1 Xi (ti+1 , u)f (u)du. vi =
ti
n
! " #
" " $ "
m
!
% " ! & %
B1 , B2 %
' #
#
! ( )
" ' &
* # +
% ! ( )
""
, ""
" & %
- ./℄ &
A0i xi+1 + Bi0 xi = c0i
+
" 1
0 A0i−1 0 c0i−1 Bi−1 0 Bi0 A0i c0i
1 Bi/2 0 A1i/2 c1i/2 . → Vi1 −I Wi1 wi1
2
!
" "
xt = Vt x(0) + Wt x(1) + wt ,
3
Gk1 x(0) + Gk2 x(1) = ck1 .
n = 2k
℄
!
B1 , B2
B1 B2 Gk1 Gk2
" #
x(0), x(1)
$
Gk1 , Gk2
% &'( ) * ) *
+
min β
n 2 yt − ϕT (Vt x(0) + Wt x(1) + wt )
t=ti ,i=1
,
Gk1 x(0) + Gk2 x(1) = ck1 .
-
. / $0
m
1
+
•
2 * +
V (0) = I, V (1) = 0, W (0) = 0, W (1) = I, w(0) = 0, w(1) = 0. •
3
Vt , Wt , wt G1 , G2 , c $ ) Ct , 4 *
.
+
Ct ←
R1 (t) 0 Ct R21 (t) R2 (t)
5
6 7
R2−1 R21 .
7
R1
•
−1 k k −1 k c1 = v1 . G1 = X(1, 0), Gk2 G2
I X(ti+1 , ti ) C= . I −X(t , t ) i+1
i
δ = ti+1 − ti !
! " # δ $ % & ' d2 dt2
V = 0, ⇒ V = X(t, 0)(1 − t), W = X(t, 1)t. X −1 W
( "
)* V W
R2−1 R21 = S1 = δS + O(δ 2 ).
C ← RC
d2 V dV dM 2 + M + 2 (S − M ) − 2SM − V = 0. dt2 dt dt
)
# +# # " ( C T RT RC = I
" # δ S=
M + MT 2
))
)
d + MT dt
d −M dt
V =0 W
) # Y V, W
d Y Y M I =N , N= . Z −(2S − M ) dt Z
),
d w w f =N + . z 0 dt z x 2m × 2m V W w
dx − Mx − f, dt dV dw dW = − M V x(t1 ) + − M W x(tn ) + − Mw − f, dt dt dt = ZV (t)x(t1 ) + ZW (t)x(tn ) + z(t).
0=
! " t
ZV , ZW , z t = t2 t = t1 Z(t2 , t1 ) Z dZ = − (2S − M ) Z. dt
# $ %
&' ( & $ ) * +, -.℄ 0 ( -!℄ %
&' 1
m
1 • 1 yt ∈ R , t ∈ T • 1 f (yt , η(x, t)) • 1 η(x, t) : Rp × T → Rq x 0 $ xT = arg min KT (x), !2 KT (x) = − !. Lt , t∈T
Lt = log f (yt , η(x, t)).
!3
• • n = |T | ≫ m = dim x • J = ∇2 K(x), h = −J
−1
T
(x)∇K(x) ,
x → x + h.
!
" # xˆ ∋ ∇K(ˆx) = 0 J (ˆ x) # " $ % & ∇2 K(x) # ' () * ∇2 K(x) +
1 2 E ∇ K(x) , n 1 h = −I(x)−1 ∇K(x)T , n x → x + h.
"
E{∇2 K(x)} = E{∇K(x)T ∇K(x)}
.
I=
# ,℄ xˆn x∗ • • I
+
& # ,℄ limn→∞ In
/ 0 In +
I 1 1 E{∇2 Kn } = E{∇LTi ∇Li } n n i 1 1 = − ∇LTi ∇Li ∇LTi ∇Li − E{∇LTi ∇Li } + n i n i 1 ∇LTi ∇Li , n → ∞. → n i
In ∇Kn h < (=)0 Kn In Kn ∇Kh 1 < − ! ∇Kh I " # K $
n
%
& xi+1 = F(xi );
1 F(x) = x − In (x)−1 ∇Kn (x)T n
' xˆ n ̟(∇F(ˆ xn )) < 1
∇Kn (ˆxn ) = 0 1 xn ) ∇F(ˆ xn ) = I − In (ˆ xn )−1 ∇2 Kn (ˆ n 1 2 −1 = (In (ˆ xn )) xn )) (In (ˆ xn ) − ∇ Kn (ˆ n = ∇F(x∗ ) + O(ˆ xn − x∗ ), , n → ∞
( ∇F(x∗ ) = o(1), n → ∞ x∗ ⇒ ̟(∇F(ˆ xn )) → 0, n → ∞
) * + &
℄ min Kn ; Cx = d, C : Rp → Rm , x
(C) = m.
∇Kn = λT C
λ
! " n → ∞ 1 1 {∇Kn − E{∇Kn }} + E{∇Kn } = (λ/n)T C n n
−
1
E{∇L(y, x, t)}dω(t),
0
ω # $
" −
0
1
E{∇L(y, x, t)}dω(t) = λ∗T C Cx = d
%
λ∗ = limn→∞ λ/n" x = x∗ , λ∗ = 0.
&' & !$ # " ( )
*) * # " + , , ,
" $ " -
# ) " ! min K(x); c(x) = 0. x
.
! l(x, λ) = K(x) + λT c(x).
! Bk ' ∇2x l(xk , λk )
1 min∇K(xk )d + dT Bk d, S = {d; c(xk ) + A(xk )d = 0} d∈S 2
xk+1 := xk + γdk . ℄ "
λ
T λk+1 = −A+ k (∇Kk + Bk dk ))
#$ %
Bk
"
& )
%n
∂ 2 ri i=1 ri ∂xj ∂xk ' (
%n−1 i=1
2
ci λTi ∂x∂j ∂x k
$ %
#$ % * + "
λi → 0'
"
, " " " '
- , &
dλ = −∇x w(t, x, β)T λdt + σϕdω. * " (
. " " " (% ( " " % /℄ #$
" , 0 1℄ " $ %
#$ . "
⎤ 1 − β1 cos(β2 t) 0 1 + β1 sin(β2 t) ⎦ 0 β1 0 M (t, β) = ⎣ 1 + β1 sin(β2 t) 0 1 + β1 cos(β2 t) ⎡ ⎤ −1 + 19(cos(2t) − sin(2t)) ⎦ −18 f (t) = et ⎣ 1 − 19(cos(2t) + sin(2t)) ⎡
x(t) = et e
x(t) + σrnd rnd σ = 5., 1., .01 234 [19, 2]
.
" ' " " "
σ
2 + 1 27 + 1 210 + 1 5
!
"
#
$ %
η
τ
&
n (yi − η(ti ))2 + τ
min
η(t)
i=1
1 0
dk η dtk
2
dt.
'(
"
) *(℄&
η(t) = E {y(t)|y1 , y2 , · · · , yn , λ} , √ dω dk η λ . = σ dtk dt
∞
λ = 1/τ % λ
,-
η(t) → E{y(t)}, n →
.
#
min η
"
τ
n i=1
2
(yi − η(ti )) + τ
1
2
(Mk η) dt.
,/
0
η Mk %
Mk
" ) " 0 */-℄ *//℄ 1 %
Mk
dx = Mk x dt
,-
b = ek
η(t) = E {x1 (t)|y1 , y2 , · · · , yn , λ} , √ dx = Mk xdt + σ λbdω.
yi = M (t, β) b
ϕT x(ti )
℄ ℄
X(t, ξ)
!
"!
#
√ xi+1 = X(ti+1 , ti )xi + σ λui , ti+1 X(ti+1 , s)bdω(s), ui =
ti
∼ N (0, σ 2 R(ti+1 , ti )), ti+1 X(ti+1 , s)bbT X(ti+1 , s)T ds. R(ti+1 , ti ) = λ
$ %
ti
& ! #! # '
x(t|n)
! ( ) # )
& !
xi|i = E {x(ti )|y1 , y2 , · · · , yi , λ}
σ 2 Si|i
'
# # #
*
ti ≤ t ≤ ti+1
x( t|n) = X(t, ti )xi|i + A(t, ti ) xi+1|n − xi+1|i , −1 A(t, ti ) = X(t, ti )Si|i Xi + Γ (t, ti ) Si+1|i ,
Γ (t, ti ) = R(t, ti )X(ti+1 , t)T . &
+ , -
x1|0 # . x1|0 = 0, S1|0 ↑ ∞ 0 #
! /! #
#! # )
! # # ! # 1&
# 2
! & 3 "! * 4! # 5 & # /! # ℄
min rT1 V −1 r1 + rT2 R−1 r2 , x ⎡ T ⎤ ϕ1 ⎢ ⎥ ϕT2 ⎢ ⎥ ⎢ ⎥ · · · · · · ⎥
⎢ T ⎥ ⎢ y r1 ϕ n ⎥ ⎢ x− , =⎢ ⎥ 0 r2 −X I 1 ⎥ ⎢ ⎥ ⎢ −X2 I ⎥ ⎢ ⎦ ⎣ ··· ··· Xn−1 I
$6
$
V = σ2 I R = σ2 {R1, R2 , · · · , Rn−1 } Ri = R(ti+1 , ti )
R ϕ, b
x(t|n)
dx(t|n) = M x(t|n) + bbT X(ti+1 , t)T v, dt −1 v = Si+1|i (xi+1|n − xi+1|i ).
dj X(ti , t) = X(ti , t)Pj (M ), dtj dPj−1 − M Pj−1 , j = 1, 2, · · · . P0 = I, Pj = dt
#
ti ! bbT X(ti+1 , t)T !
X(ti, t)"
$
ti %℄
dj x(t|n) dtj
( )
Pj−1 (M )T ϕ j < k * +
ϕT Pj−1 (M )b = 0, j = 1, 2, · · · .
ϕ = e1 , b = ek ,
⎡
⎢ ⎢ M =⎢ ⎢ ⎣
0
1 0
−mk −mk−1
⎤
⎥ 1 ⎥ ⎥ ··· ··· ⎥ 0 1 ⎦ · · · · · · −m1
!
R(ti+1 , ti) , R(ti+1 , ti ) + δ ! + R(t + δ, t) =
t
t+δ
(s − (t + δ))i+j i,j
i!j!
Pi (M )bbT Pj (M )T ds
- δ → 0 & ) R(ti+1 , ti)" πk = λδbT b + O(δ 2 ).
!
→ b
R(ti+1 , ti )
bT Pj−1 (M )T ϕ = 0, j = 1, 2, · · · , k − 1,
→ ϕ
π1 =
λ (bT Pk−1 (M )T ϕ)2 δ 2k−1 + O(δ 2k ). ((k − 1)!)2 ϕT ϕ 2k − 1
!"# $%&℄( ) *
+,# $%-℄($%%℄ .*
/ * 0
ζi = yi −ϕT xi|i−1 0 (
σ 2 Vi Vi = (1+ϕT Si|i−1 ϕ) 1 ′ ζ2 log σ 2 + log Vi + 2i . σ Vi i + 1 σ 2 N ≤ n
# σ ˆ2 =
1 ′ ζi2 . N i Vi
*
*
′ ′ ζ 2 i log Vi + N log GM L = . Vi i i
2
2 %n T /n i=1 yi − ϕ xi|n GCV = , 2 { {I − T }/n}
T 3
) yi ϕT xi|n 4 λ 5 O(n2 )
( +, O(n)
$%℄ 4 ( 6( +2( ( ( 7 8 " 5 9 :; < 4+( 5 %==
℄
!"#$ %℄ &' ( ) *
+) + )+ ,- .
, / ).) 0 1 2
%!$"%#3
4℄ 20 ) + 0 / .
!
) 5+ 6 2, 7,,)
!"#$
3℄ 8 ) 9,.+ , ) : . ) ) 0 7 6 ;+ 7)
#
%!% " %#%
$℄ * < = 1 0 >/ ) 15+ => ) ) 7+) ;) ? 0 @@@ !℄ A 7;<7 6 #℄ *) ; ) 6 =) &
@@@
) ) . ) 5+)0 ,- ,
#
7 6
$# " !@$
℄ 2 = 9 B ;+
"3
,)
!
0 A ,) + %!!"4@%
@℄ 9 : 9 7) 0 2 & ) C ,, ) ,)
6 7 7
#%
#"# ℄ 7) 0 2 D
1 E)
, ) A ,) )0 , E ) & 7)
#3
#$"%$
℄ = &
) )
,) 6 7+) (
##
%"%4
%℄ = & ) ,) ) +) 6 7+) (
##
4%"3$
4℄ = 2 2 + 7 * 5+ ) 0 0 + ) 7)
!!
7 6 ;+
#@"%
3℄ 9 B 7 , B2F B* , ) ,) ,) 7 #3
%!#"4@
1
2 1 !" ## $
2 % & ' ( ) !*) #+ & $
' ,
- - %
. % , / - '012 '
. '0, 3 4 , 5 % .4
' , 5 - -. -
- . , 3 4 ' 6& 03' 6 $0 . -
- 7 - , 2 - . 4
8 7 - ., 5 .- 4 -
. .4 , 3 - .
- 4 , 2 ' '0 -
5 '0
!"
# $ % &'( )℄ +
# ,
#( ( # %
+
℄
!
" "# $℄ # # " % "
& ' (
" ! # ) * )" * )+(* , - # " ( . " ) * # - / 0 ℄ ( " 1 # ( 2 " " # 3 ( $ # " & 4 - 5 " ( 6 " ( 7
) " * 8 9# 9 # % )* " : " 3 % -
& & &
,
! " # ! $ % ' () # # ! $
• • * + + * + ! # * )# - + +
* ! + #
#
+ • ' ) . / /& • .* / !
# 0* + 0*
+ 1
!
" #$ % &'( ')℄ + % # &' ( , '' ', '- ./℄ ! #
&.'℄ &.℄ 01 2 "
3
1 #
• 4 #$ 5
6
• # #$ #
• % #$7% #
• 4 • 8#9 8#9 #
8#9 • 4 % # :
5 5
% • !
• % # • 1 2
!"# $#%
! " #!$
#!$ %
! !
#!$ % # & ! ' ( ! )*#!$ ℄, -
. -
/ #!$ ' !
# &, #!$ 0
."# &1 # & #!$ !# 234 ¿
3
& ' ( ( ( )( "$* +,- . "∗"# +,-/ " +,- 0 12 "# +,-
!" #"$
%$ #"$ ! ! " !! ! ! " $ %&℄ ! ( ! ! ) !
! "# $%
!
" #$ " " "
" " "
"
% & '
! ( "
) "
)
"
" "
$ ( ) " " "
*
" " +% & "
+
, ) - % " . + % "* /0% '.+ 1! .' 6
2345 6 7 "*
'48999 + 6:4' ' 7 "* ,
' ; /04'% &'<* '7 $ ;999 !99 6
=1 % & /<'<>< 4
% /<' &'<* '7 $ ;899 +99 6
'7* '&/ +899 ' : ) 4?6
< 7 "* 60:%' " 1 7, > ) 1=+ < 2 < ! 76 % ?4 & " 6
!
"
#
!$
$ $ %&' ()* + $ ,! $
$ $ ,- . / (! 0
$ 1 " /
2 $$ 2×2* 3 2* '4 ! 2*56$,- 3 78 '4
9 '4
9 '4
--$: .! 2,
956$--: 3 9$7 '4 $
(
$
; $
$
;
#
$ 4 0 ;
#
#
$ ; ; +<4(=
$
; 5
# $ 4 "
>$ ?2*℄ + $ 7
0" # '
<,
#
#
$ ;
#
! " #$%&
! !
' ! ( )
! ( *
! +
* , •
+
-
! +
+ !
12000 Problem size fits into aggregate L2 cache 2
10000
Dmat=128 * 128
2
Dmat=128 * 512
MFlop/s
8000 6000 4000 2
pure MPI:D mat=128 * 128 2
masteronly:Dmat=128 * 128
2000
2
pure MPI:D mat=128 * 512 2
0 0
masteronly:Dmat=128 * 512
32
64
96
128 CPUs
160
192
224
256
!" #$%& ' () ) * ) )
+, ) ) ) ) '
!" # % & '% % ( ) *+
,,%
, - , % ,, # % & '% % ( *+
. /// # % & '% % ( *+
" # $ %& &'
( ) * + " # $ % &'
( *, " ( , " # $ %- &'
•
! "
# $ %&
'( $ ! & " $ ' %
)
*
+ , , - . '
! /
"
.
% 0
1 $2 0333 ! 0 4 ! 56%% 7 $8&
8$ ! %3 %% 8%
%& 9 $ - $ + , 9 $ - $$ + , : $ $ $ +;$, + , < +;
,
: $$ $ %&
+;$$, $$
%& # $ $ )
: < + $ =, 4 >
$ ? 4
4 4
!
!
"
# $ % & '
( $% & '
( $ %
)
*+,℄
& .+ /
01& /., & '
" # 01& /., & ' & .+
/ 2 // $3& '% / 2 // 4 &
56789 :
/ $ // % ;
! <
= / ! =
! ) >
$?< % $?< %
$
%
!" # ! $ %& !' ( )* !'
∗
!"℄ !"℄ $℄ !"℄ !"℄ !%&' ℄ "%&' ℄ () * +,- ../ ).0 1 2 3 () 34, )+4 ).0 1 2 3 56 (0 3+1 -1- ,40
3 2 1 7 +.-89 56 (4" ,,- .4) 4),
, 2)0
9 9 1 : ;1/// /34 3+ $ 4/ .,8., 1 2 1
" .8 /)0 ,1 $ ,/ )0 1 2)0 ! '.1// 0// :< /3,-89 ,4 $ )-.89 ., )0 23 =, " 79
! '.1// 0// :< /)40 .+ $ /41/ ., )0 23 =)0 " 79
! './// 3// :< /)/ .. $ /.+89 ., )0 23 = 9 4 5 % 01// /)4 )1 $ )01 3 2,3 = 9 :6& > /),-89 /)1089
., 2 ,
:6& > //+) /)+, ., 2 ,
:6& > /))189 /)/389 ),1 2 ,
:6& > //1, /)/) ),1 2 ,
:6& > //-- //3 ,.+ 2 ,
0 ) , . 3 4 0 1
! "# $ %%
%
&'()* + ,
-
%%
% .
-
-
%
% /0
5
6
!" + % + , + % - + . - & /0 + & /1 0 23".44
5% ℄ + 7 + % - &
!
"# !$ %&' ' ( ! ( ) ) ( ) % * ( ! % % + , % %
- ( ( ,
) )
( .
) ( , ( %
/ 012 3
( 4 ( 5( 3 6) ) ( 3 -
%10(
1 ( 1 '( 7 038( 2 - "#( 0 9 7%( 7 : "33( 2 "#0 . 240 ( 40; ( 012 3
( ,) 2 ( % ( "#( 7%( "33<3#( " # 0 ( '= , # 6'"1%20 /
℄
!"## $%& '
( !!"
#℄ % ) * + ,
1 #///
- .// +0
"℄ -
* ##67 - !!7 89!69#9
2℄ 3 40) +00 & ( -)5
:℄ -
;, 0
" #
<))3
-
$3)
!
* 0 = + > ? 22
#//" -
00 ; * 7℄ ;0
"$ %
0 -
)0 @ @ #///
#
#
- .//
8℄ + - ; (
+0 1 #///
!"
"$ & ' ( ' & & @&#//#A )0 @ & 0
9℄ 0 ; 00 , 0 0 ' '
0 & - * B > 0( &0) %, )0 & :68 #//#
$
!℄ $(0 ? $
+0, * 29CDA 86!: !!9
∼
#
!
#
/℄ + 4 - 0 + 0
0 -* #// > #// + > B-&
#
' ) "$ &
0 -
)0 @
℄
@ #///
#℄ 00 00 %
!!:
)
℄
℄
! " "
%
& '
# $
(℄ )* +*
!"#
,℄ - -. & +& /
0* 1**
2 3 455 ** 6,4
℄ - -.
. ) # 7℄
!"#
#
* & ( 0#+ 0 455 0$
1 46, 455
89 8 & : '!
$
* &
* /!* )* ;/) <= >& * ** 46 ℄ 1
?&
> ' + & / @?*
&'
%
*
% 0
* &
; <= ** ,65, 45℄ /
% "
/ ? & @ '
( "
'
* 3 7555( 0
0*
0* ' 0 1 &
7 4℄ >
&
!
A
$ % )
* & /!* )* 1** $
& ' ;/) 1' 4555=
" 4555
44℄ +& / + 1 A & !
* % * )
* & 20 1-<4554 ( < 0 0* & 0* 4554 * ** (65
4,647
! "#$% &$ % $
' ( (
'
)
!
# (
% $ "#$% %*#+ "" %"$
! " # $ % & &
' (' ) & $ *
!"℄ $ % & '()*+ !,℄ '()* '()*+ -* !.℄ +&* !"℄ /) 0 1 +&* 2 0 / 3 0 )
0 !"℄ 4 5
) %
4 %
5
4 6% 6 + * 66 +* % 4 66 +* + 7 %
+ 8 66 +* . + , & + 9 66 +* %
!" #$℄ &' #(℄ )!!* !" )!!* &' + &' ,-" * * . / 0 1 !"
' !" * 0 * 2 && && " + && 2 3 * ," 4" - && && && && &&
&&
! "
" "
# $ $ % " #
& ' ( ) !* + + $
+ $ + $ % !* !*, -
! . .
// ' ! //
! "
# $
% % & " & # "
" & '
" &
" & '
!"# $%℄ ''( ''( " ) * ''( ''( ) ( ''( '+ ) ,- ) , ''( ( * !"# ' * ''(
!"# ( ( ''( ( * . " /,# ( 0 ( 0
( 0 (
* . * 0 % 1
2 3
. * -- 4
/,#
5 6 *
!" ! # # " # # $ %
# & '# ( ) )* ) +# # & # % ),* # $ & )* #
! "
# $% $
$ & '
( ) * + , $ -$ +
$ * % ' & ' $ . $
! " " # $ % $ #&
' $ " ( # $ ( ' ' ) ) ( ) * + , -*+,. * -*!. / 0 *+, *
1
( ) $ ) ( 0 $ " # 2 # 2
! ! " # $%
! & ' () * $% $%
#
+ ! , -
! '
& ' * , . , / 0 1 $% " 2 1 3 2 # 4
2
2 # #
! " #$ %&" '() * * %+* * %+* *
2 5 2 , # . !" 2 - !
! !
! "# $ % !
"# & '
& () % * + & , & &
! &* & & - . !
&
& &
! "#
!"# $%℄
#'
((
!# (()
* ((
!#
((
!#
(() (( ,
((
!+#
!# )
!"#
!# (()
((
!#
((
!# - ./#
) - (() ((
!#
' (() , ' '
- (() 0
((
!# (()
((
, - (()
!# - (()
! " # $ %&℄ ( "
$ $ ! $ )
*
+ * , -.# ,
" !
(
" !
#
"
, " #*/ $ " ! $ 0 ! $ ! 0 1
$
!"℄
!$℄
% &'( % )% *
$+ ),++$* !,℄ - . /
)/ $,* 0- 1
),++,* !0℄ ' / 2
3
)3 $$* 0- 1
),+++* !4℄ % / 56 7( 3 8
-
' &... -
-
/ . !9℄ /( : /
),++,* !"℄ ; / ' . '. < - ( - = ),++0*
1 1 2 2 1
2
! "#$
%
&'
( ) ! %
% ( !% ' % *+
% ! ' (
! " # $ " " " ! % % & " $ " " " " '! # " # ($
" # % " & # # # #
)*℄ , ./0 # ! $ % # " /$ 1 " " " $ 2 $ " $ .0 ..304/0
℄
!
"
# $%
#
#
& # ' & # (℄
) # & #
#
& *+%,- )
.#
'
/ # +%, 0
# 0 #
& /
#
&
& )
' +%,
& #
+%,
0 0
0
! "# " " $
" ! $ " " " "
% &" ' $ ( " )*'#+', - ! .
" " " $
/ 0
" )"''1, 0
/ 2 "
3
1st
nd 2
0
1
2
3
4
5
6
℄
7
8
9
10
!" #
$ %&!'"()
z = minx,yω cT x +
Ω
πω qT ω yω
%*(
ω=1
Tω x + Wω yω ≤ hω , x ∈ X, yω ∈ Y, ω = 1 . . . Ω .
s.t.
1st 2nd x yω Y $ + Ω ω πω + Tω Wω hω + , x yω , c qω + +
X
$
+ %*( -
. +
!
%
Tω
Wω (
Tω
#
T1 W1
W1
T1
T?
T?
W?
W?
H
z = minxω ,yω
Ω
ω=1
s.t.
πω cT xω + qT ω yω
Tω xω + Wω yω ≤ hω ,
xω=1 = . . . = xω=Ω , xω ∈ X, yω ∈ Y, ω = 1 . . . Ω .
! "
#
# H $ % λ % z LD = maxλ minxω ,yω
Ω
ω=1
s.t.
T πω cT xω + qT ω y ω + λ Hω x ω
"
Tω xω + Wω yω ≤ hω , xω ∈ X, yω ∈ Y, ω = 1 . . . Ω .
% # &&'(
" ! # λ " Ω ) " Ω * xω
+ ,"℄ & . ' $ & / z ∗ ∞ P & . ' P = ∅ z ∗ & " . 0 & & P ∈ P % ' P z LD(P ) ∞ ' z LD (P ) z ∗ &
xR (P )
x = xR z ∗ (P ) z ∗ z ∗ z ∗ (P ) P ′ ∈ P z ∗ (P ′ ) ! z ∗ " x(k) x
P # P
x(k) ≤ ⌊x(k) ⌋ x(k) ≥ ⌊x(k) ⌋+1 x(k) ω $ %
x & ' 1st (%℄
* + , % ! - , * , '
* % #. (/℄ * 0 #0
πω
ω
1
"%
lifp
αlifp ω Mlifp ω − −
%
k j=i p,rp
min k=I zkpω Cpω min yk+1,pω Cpω
irp
%
ifp
+ α+ ifp ω Mifp ω −
βirp ω Nirp ω −
max Njrp ω ≤ Nikω
%
ip
ifp
γipω wipω
− α− ifp ω Bifp ω
+
+
$
"
∀ i ≤ k, ω ,
0 i=1 Cpω max yipω Cpω %k % ≤ j=i rp Njrp ω ≤ 0 max zkpω Cpω k=I Cpω i = 1 − max min yk+1,pω Cpω yipω Cpω ∀ i ≤ k, p, ω ,
−
%
%k
j=i
min zjpω Fpω
2
%k
max j=i zjpω Fpω
zi−1,pω ≥ yipω , zipω ≥ yipω , zi−1,pω + zipω − 1 ≤ yipω
∀ i ≥ 2, p, ω , 3
0 zpω i = 1 − zi,pω ≤ 1 − zjpω ∀ i + 1 ≤ j ≤ i + Ipoff − 1 ≤ I, p, ω , zi−1,pω 0 zpω i = 1 − + zi,pω ≤ zjpω ∀ i + 1 ≤ j ≤ i + Ipon − 1 ≤ I, p, ω , zi−1,pω − soll Ml(i+l−1)fp ω = Bif − Bif ∀ i, fp , p, ω , pω pω l|i+l−1≤I
%i
j=1
=
%
l
%i
Mljfp ω +
j=1
%
rp
+ Mif pω
+
Mf0p ω 0
ρ¯fp rp ω Njrp ω
i=1
∀ i, fp , p, ω ,
0 i = 1 zpω − zi,pω ≤ wipω ∀ i, p, ω , zi−1,pω 0 zpω i = 1 − + zi,pω ≤ wipω ∀ i, p, ω , zi−1,pω
Nifp ,ω=1 = Nifp ,ω=2 = . . . = Nifp ,ω=Ω
∀ i, fp , p | i ≤ 3 ,
+ − Nifp ,ω ∈ N; zi,p,ω ∈ {0; 1}; Mlifp ω , Mif , Bif , wipω , yipω ∈ R+ . pω pω
! " # $ #!
# # # % % & '$
(
% ! # # ! )* +$ ! , -. #$
# # %
$ # #
max Nikω
& ' & $ soll Bif ! pω
# %%%
&& $ $ '& $ ! % (
%!
/ . ! # % (
!
0($ * # ( $ ( $ ( 1%% $ ( $ !
% % # #
% % # % * 2 ! $ 3 % # !
!
" #$ %&'
( ! " "
) * " #%&' + ,&%-. /0℄ $ %&
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1
1 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1
1
1
1
1
1 1 1 1 1
1
1 1
1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1 1
1 1 1
1 1
1
1
1
1 1
1
1 1 1 1 1
1
1
1
1
1
1
1
1 1 1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1 1 1
1 1 1 1
1 1 1
1 1
1
1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 1
1
1
1
1
1
1
1
1 1 1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1 1
1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1 1
1 1
1
1
1
1
1
1
1
1 1 1 1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 1
1
1
1
1 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1 1 1 1
1 1 1 1 1 1
1
1 1
1
1
1
1
1
1
1 1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1 1 1 1 1
1
1 1
1 1 1
1 1
1
1
1
1
1 1
1
1
1 1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1 1 1
1 1 1 1
1 1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1 1
1
1
1 1 1 1
1 1 1
1
1
1
1
1
1
1
1 1
1
1
1
1
1 1
1 1 1
1
1 1
1
1
1
1 1
1
1
1 1
1 1 1
1
1 1
1
1 1 1
1 1 1
1 1
1 1 1
1 1 1
1 1
1
1
1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1 1
1
1 1 1
1 1
1 1
1 1
1 1 1
1 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1
1
1
1 1
1 1
1
1 1
1
1 1 1
1 1
1
1
1
1
1 1 1
1
1
1
1
1 1
1 1
1 1
1
1
1
1 1 1 1
1
1 1
1 1
1
1 1
1
1 1
1
1
1
1 1
1
1 1
1
1 1 1
1
1 1
1
1 1
1
1
1
1 1
1 1
1 1
1
1 1
1
1
1
1
1
1 1
1
1
1
1 1
1
1
1
1
1
1 1
1
1
1 1
1
1
1
1
1
1 1
1
1
1 1
1 1 1 1
1
1 1
1
1
1 1
1 1 1 1 1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1
1 1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 1
1 1
1 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 1
1 1
1
1 1
1 1
1 1
1 1
1
1 1
1
1
1
1
1 1
1 1
1
1
1
1
1
1
1
1
1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1 1 1
1 1 1
1 1 1
1
1
1 1
1 1 1
1 1
1 1
1 1
1 1
1
1
1 1
1
1
1
1
1 1
1 1
1 1
1
1 1
1 1
1 1
1
1 1
1 1
1
1 1
1
1 1
1
1 1
1 1
1 1
1
1
1
1 1
1
1 1
1 1
1 1
1
1 1
1
1 1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1 1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1 1
1 1
1 1
1
1 1
1
1 1
1 1
1
1 1
1
1
1
1
1
1
1
1
1 1
1 1
1
1
1
1 1
1
1
1
1
1
1 1
1
1
1 1
1
1 1
1
1 1
1 1
1
1
1
1 1
1
1 1
1 1
1
1
1 1
1
1
1
1 1
1
1 1
1
1
1
1
1 1
1
1
1
1
1 1
1
1
1 1
1
1
1 1
1
1 1
1
1
1 1
1
1 1
1 1
1
1 1
1
1 1 1 1
1 1
1 1 1
1 1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1
"
" 23 2
4 ,&%-.
56 07
8 !7 ,&2
97: 97: 8 7; < !777 7777
!5: !0: =
! " ! #
$%%&' %() ( * +,- . /'0*1 2- 3,℄ 0 % /'($ 5 " # 6 7 2 $ 28 -+ 2 2 9 0 0 : " "9## " "9## & $
" 0 # ; $ xR 1st % < =/ 1st ! "L1 $ # 1st " πω #>
& 5 = > $ $
106
105
!"#$%"%& '
(℄ * + , % - . '% / 0 '% * 1 ' 2 % % &3456"% 77$ ("℄ / 8 9
. % :'% 77$ (&℄ ;; ; < 1 . =
% ">4&$6>!% 777 (>℄ ;09? 29-* 2 % @ A % ;+% "" (!℄ ; B
! B % C 8 D281 D1&>% E D D % 8 % " (3℄ . / B' % . 9
% - 1 % / 0 ' F
% ">4&"&6&"5% " ($℄ / 0 ' * 1 ' 4 # 2 " # " $ ! % 76 % @ % 775 ;+;B 0 (5℄ * . . @
! % "& (7℄ * . . 1' 2 % 5 . 0 . % "& (℄ . . 4 2 " # " $ ! % $!67% @ % 775 ;+;B 0
!" #! ! ! $%
Pm 2 F (x)2 = 21 i=1 [Fi (x)] ! ' ( H = G + S ! f # G = (F ′ )T F ′ S = F ◦ F ′′ T T !" ) ARN = G + B # B = Z2 Z2 SZ2 Z2 ! ! ! ! S ! ) im Z2 ) % ! ! #! " G #
) !% ! q % ! G' *! !
! &
f (x) =
1 2
! !" ! %! ! !
! ! ! ! '
! ! ! & !"
#! ! #! ! ! !
f (x) :=
m 1 1 2 2 [Fi (x)] −→ Minn F (x) = x∈Ê 2 2 i=1
F : Ên → Êm m ≥ n
m ≫ n %m . 2 y = i=1 yi ! " y = r(t, x), r : Êdim × Ên → Êdim # t ∈ Êdim y ∈ Êdim x ∈ Ên $ % x t
t
y
y
(tl , yl ) ≈ (tl , yl∗ ),
(l = 1, . . . , L)
(tl , yl∗ ) yl∗ = r(tl , x∗ )
x∗
x∗ f (x) :=
L 1 2 yl − r(tl , x) −→ Minn . x∈Ê 2
l=1
m := L × dimy !
F ⎛ ⎞ y1 − r(t1 , x) ⎟ ⎜ F (x) := ⎝ ⎠. yL − r(tL , x)
" # $ % %& ' x ( ) y˙ = Φ(t, y, x)
t ∈ [ t0 , te ],
y(t0 ) = y0 (x)
*
y = y(t, x) t + x
Φ(t, y, x) ( y0 (x)
)
r(t, x) := y(t, x) , y = y(t, x) * t + x dimt = 1 t0 ≤ t1 < · · · < ti < ti+1 < · · · < tL ≤ te y : [ t0 , te ] × n → dimy , y0 :
Ê
n
→
Ê
Φ : [ t0 , te ] ×
Ê
Ê
dimy
Ê
,
dimy
×
Ên → Êdim . y
- Φ y0 . y . x / 0/1 + x+ = x + s,
s f (x+ ) ≤ f (x)
.
x = xk s = sk x+ = xk+1 s & ϕ(s) := f + g T s + 21 sT As ≈ f (x + s)
2
f x = xk f := f (x) g := g(x) := ∇f (x) = F ′ (x)T F (x) A = AT H := H(x) := ∇2 f (x)
H = H(x) = ∇2 f (x) = F ′ (x)T F ′ (x) + F (x) ◦ F ′′ (x) =: G + S
G := G(x) := F ′ (x)T F ′ (x), S := S(x) := F (x) ◦ F ′′ (x) := ′
F (x)
′′
F (x)
m i=1
Fi (x) · ∇2 Fi (x)
F
x
! "
s
! #$
%$&
AGN := G
&
AN := G + S = H
' &
B ≈ S
G
G
ARN = G + B
q
!
"
q = qk
( )
λmax (G)
qk qk = 0
$
(
qk > 0
%$&
%$&
%$& $ # !
G
)
s
! "*
sfull
! (
Min{ ϕ(s) : s ∈
Ên}
+
A α > 0 s s := α · sfull f s Min{ ϕ(s) : s ∈
Ên, s ≤ ∆}
s ∆ > 0 A ! "#$℄
"&℄ '
( A H ) (
( AGN := G = (F ′ )T F ′ F *
ϕGN (s) := f + g T s + 12 sT (F ′ )T F ′ s =
1 2
F + F ′ s
2
+
F := F (x) F ′ := F ′ (x) , - 2
Min{ 12 F + F ′ s : s ∈
Ên}.
.
sfull = sGN = −(F ′ )† F / 0 sGN , J † 1
2 ( J * F ′ 3 n G = (F ′ )T F ′ sGN = −G−1 g . 4 sGN + ker F ′ sGN F ′ * 3 / 0 F ′ = F ′ (xk ) 3 n ′ cond(F ) = (cond(G)) F = F (xk ) 5 6 7 / 0 x+ = x + sGN
8 ̺GN xopt f rank(F ′ (xopt )) = n ̺GN := ̺(G(xopt )−1 S(xopt )) = max h=0
|hT S(xopt )h| <1 hT G(xopt )h
#$
̺(M ) M * #$ H(xopt ) xopt
, F ′ (xk ) σj (F ′ ) λj (G) = [σj (F ′ )]2 G
λj (G)
F ′ (xk )
G
F (xopt )
AN := H
ϕN (s) := f + g T s + 12 sTHs H
"#
%
$
!!
f
sfull = sN = −H −1 g g(x) = ∇f (x) = 0
%
Hs = −g
&'
()℄
xk
H
"
x∞
H
#
" %
S = F ◦ F ′′ H = G + S F % +
($℄
%#
f
H
f H
S
,-./
%
0
(1℄
(℄
(2℄
(!2℄
(0℄
(!)℄
" .#
S S q Z2 = [zn−q+1 , . . . , zn ] G
3
im Z2
G
q
λ1 ≥ · · · ≥ λn−q ≥ λn−q+1 ≥ · · · ≥ λn ≥ 0 3 45 6 45 6 3 q p=n−q
/
!2
1
Λ1 0 ˆ := Z T GZ = [ Z1 | Z2 ]T G [ Z1 | Z2 ] = G 0 Λ2
Z = [ Z1 | Z2 ]
G
Λ1 = diag(λ1 , . . . , λn−q ) ∈ Rp×p Λ2 = diag(λn−q+1 , . . . , λn ) ∈ Rq×q
2
1
Sˆ11 Sˆ := Z T SZ = [ Z1 | Z2 ]T S [ Z1 | Z2 ] = Sˆ21
Sˆ12 Sˆ22
2
ˆ + S)Z ˆ T H = G + S = Z(G ˆ T " ! " S = Z SZ B := Z
1
2 0 Z T = Z2 Sˆ22 Z2T = Z2 Z2T SZ2 Z2T , 0 Sˆ22 0
#
S
im Z2 !
"$
ARN := G + B = Z
&
H − AGN 2F
1
0
Λ1
0 Λ2 + Sˆ22
? ?2 ? ? 2 = H − ARN F + ?Sˆ22 ?
2
ZT
%
F
H − ARN F < H − AGN F
Sˆ22 = 0
'
ARN "
H AGN ( ! ' ) . 2 " * 1 0.5 ˆ n = 2 q = 1 S = 0.5 −0.1 ) H − ARN 2 = 1.2071 H − AGN 2 = 1.1933 * " B + # Min BF : uT Bv = uT Sv
∀u, v ∈ im Z2 .
)
B S im Z2 G
B = Z2Sˆ22 Z2T ARN = G + B T Sˆ22 = Sˆ22 = Z2T SZ2 = F (x)T F ′′ (x)[Z2 , Z2 ] ∈ Rq×q
Sˆ22 S im Z2 q2 T (Sˆ22 )ij = zp+i Szp+j = F (x)T F ′′ (x)[zp+i , zp+j ] (i, j = 1, . . . , q)
q(q − 1)/2
2 Dij := F ′′ (x)[zp+i , zp+j ] =
∂ 2 F (x + αzp+i + βzp+j ) ∂α∂β α=β=0
F span{zp+i , zp+j } q n Z2 !" # ! $%℄ '() * + (q2 + 3q)/2 F ⎧ 1 2 ⎪ ⎨ δ2 [F (x − δzp+i ) − 2F (x) + F (x + δzp+i )] + O(δ ) 2 1 Dij = δ2 [F (x + δzp+i + δzp+j ) − F (x + δzp+i ) ⎪ ⎩ −F (x + δzp+j ) + F (x)] + O(δ)
i = j i < j
, , δ > 0 x = xk - xopt f .
H(xopt ) / 0 / ARN
g(xopt ) = 0 G(xopt )
1 ARN (xopt ) = G(xopt ) + B(xopt )
2 .30 .40 h {zi } G h = Zu u = Z T h = [ uu12 ] ˆ = uT1 Λ1 u1 + uT2 Λ2 u2 , hT Gh = uT Gu ˆ = uT1 Sˆ11 u1 + 2uT1 Sˆ12 u2 + uT2 Sˆ22 u2 , hT Sh = uT Su ˆ = uT Sˆ22 u2 . hT Bh = uT Bu 2
.10
|uT1 Sˆ11 u1 + 2uT1 Sˆ12 u2 + uT2 Sˆ22 u2 | = |hT Sh|
≤ ̺GN (hT Gh) = ̺GN (uT1 Λ1 u1 + uT2 Λ2 u2 )
u1 = 0
∀ u1 , u2 .
|hT Bh| = |uT2 Sˆ22 u2 | ≤ ̺GN (uT2 Λ2 u2 ).
hT ARN h = hT (G + B)h = uT1 Λ1 u1 + uT2 Λ2 u2 + uT2 Sˆ22 u2 ≥ uT1 Λ1 u1 + uT2 Λ2 u2 − ̺GN (uT2 Λ2 u2 )
= uT1 Λ1 u1 + (1 − ̺GN ) uT2 Λ2 u2 ≥ (1 − ̺GN )(hT Gh)
0 ≤ ̺GN < 1
λi (ARN ) ≥ (1 − ̺GN )λmin (G) > 0 ⊓ ⊔
sRN = −A−1 RN g xopt !
"
#
̺RN = ̺(MRN ) < ̺(MGN ) = ̺GN
B = 0
MRN := −(G + B)−1 (S − B),
MGN := −G−1 S
M := T ′ (xopt ) = −A(xopt )−1 (H(xopt ) − A(xopt ))
T
x+ = T (x) := x − A(x)−1 g(x) $
̺(M ) %
&℄
)
q
G(xopt )
B(x) ( q
℄ λmax (G(xk )) λ = λ(G(xk )) Λ2 λ ≤ tol × λmax (G(xk )) tol ℄ !
"# $ $ %&'(% ℄ n ! ) * +," ,- .℄ ℄
/ 0 qk qk = 0 B ! "# & 0 B(xk ) # G(xk ) # / F (xopt ) # S ' B
1 ( H 2 B 3 • , / 3 # G
#
! 4 5 6℄ • 7 $ 8! / G 8! / )9 * Lp p ! # $ im Z2 ! Z2 = [er(p+1) , . . . , er(n) ] ej :# r(p + 1), . . . , r(n) q = n − p 8! / p# q = qk
℄
; 0 < ! 7 ; " ==> &℄
? ( @ . )=.>* 1A=B166
℄
!
℄
!" !#$!
%℄
"# !
" $ % " # &&& # $
% & ' $ ' ' ( % )" * & (
& ' ( ) $ ! " % #$
$℄
℄
* +, %-$
!℄
!" !#
!"
#
℄
$ % + & ) (
./ !" #
℄
0 12 ℄
+
,+ ) * &
+ $
(
0 12 *
.4, ,) ℄
%! -!
& '
&
& '5
( ) % !!" #
℄
.) +
$
' ( 6
#
"
! "! # ! $ ! ! " " " %" "
& &% ' " ( "
"
! "
# $ %&&℄ (
) %*℄ + %,℄ - %&℄ %&.℄ %/℄ )
0
! " # $ %&'℄ ) * + , - . - $ %/℄ * # 0- 1 # #
# # 2 +
+ 3
# * # 0- 4
0 5 # 0 * #
4 0 6 7 8 # # # # 2 #
9 2 : # 8 # # # * ; 7
7 0 / #
<
# =
S(V, E) ! vS eS # w(vS ) w(eS ) # # 0 # 0
#
T
! vT eT # T w(vT ) w(eT ) # # 0 # M : S → R M (i) i 8 > M 2
7 #
. 0 # >
0 0 > 0>0 7 # >
! "#℄ &
%
%&! "#℄! '
(
")℄ * + ",℄ '
+ "-℄ ",.℄
/ + k /
01 k
k
log2 k (A, B)
G %
a∈A
b ∈ B
v
= (V, E)
A ∪ B = V A ∩ B = ϕ g(a, b) a b 2 gv
0
g(a, b) = ga + gb − 2δ(a, b)
δ(a, b) =
1, (a, b) ∈ E 0, .
(a, b) / g(a, b)
( 3 (a1 , b1 ), . . . , (an/2−1 , bn/2−1 )
%n (X, Y ) X = a1 , . . . , ak Y = b1 , . . . , bk i=1 g(ai , bi )
/ 4 5
! 6 Ga, Gb a ∈ A, b ∈ B 7 QA = ∅; QB = ∅7 i = 1 n/2 − 1 6 ai ∈ A − QA bi ∈ B − QB QA = QA − {ai }; QB = QB − {bi }7 a ∈ A − QA Ga = Ga + 2δ(a, ai ) − 2δ(a, bi )7
b ∈ B − QB
Gb = Gb + 2d(b, bi ) − 2d(b, ai )7
G(ai , bi )
7
%
k ∈ {1, . . . , n/2 − 1} G = ki=1 g(ai , bi) {a1 , a2 , . . . , ak } {b1, b2 , . . . , bk }
O(|E| · |V |3 ) ℄ ! " ! # ! $ % % & ' ( ) % *+ % % % % % % , ! % % %% %
% ! # O(|E|) *+ ' % ( % ) $ & # % % ! *+
! " %
-
. % / *+ + % $ +0) & % . % , ! ) % 1 , P (P1 , P2 , . . . , Pn ) k, ! S = (V, E) P1 ∪ P2 ∪ . . . ∪ Pn = V Pi ∩ Pj = ∅ i = j , Pi
i !, i W Li !
i2 W Li = $& w(j) j∈Pi
) i P Pi W Iij i j % 2
W Li W Lj
W Iij =
− P Pi P Pj
i
j
CCij
(i, j)
CCij = Dij × (i, j)
Dij
i
j
i
j
!
"
#
$
%
" &
&
!
'
FC =
N
CCij =
i,j=1
N
i,j=1
FC
Dij × (i, j)
(
)
ε = maxi,j∈N
W Li W Lj
−
P Pi P Pj
*
+
FC
,
'
-.
/0"1 2 ' , $ , &
)/ &
, 3
)/
"
4,
-. )/ +
N
P0 , P1 , . . . , Pn
W L(P0 ) < W L(P1 ) < · · · < W L(PN ) Pi
W L(Pi )
N
!
N W L(PN −1 )
#
i = 0
N
≥ ε N/2 %$ (Pn−i−1 , Pi )" & N
$
a∈A ga a B (ai , bi ) (ai , bi )
(P1 , P2 , . . . , PN )" W L(P0 ) < W L(P1 ) < · · · <
"
"
%$
' "
$
$
$
(
"
"
g(ai , bi ) ≥ 0
' "
(
Pi
Pn−1−i
) *
+ ,-
FC
%+
.
%+ /
ε
$
*
$
)
+
,-
$
O(|E|)
O(|V |3 )
,-
01℄ (
|E| O(|V |) O(|V |2 ) ! Comparison of run−time of BA, MKL and SA 200 180
BA SA MKL
160
CPU time (seconds)
140 120 100 80 60 40 20 0
Task graphs (ranges from 1,000 to 50,000 vertices)
" ε0 = 0.01 #! ! $%& '( )* + '( ,*'(- *'( '( . *'( / ! 0 1 ,01- "
#! 21 ! 1 + % 345
6*2 ! ( 7 4 8 )
! " " #" $ $ % " & a) Comparision of edge−cut of BA, MKL and SA
Edge−cut Ratio
BA/MKL BA/SA 1
0 Task graph (range from 1,000 to 50,0000 vertices)
b) Comparision of load imbalance of BA, MKL and SA
Load−Imbalance Ratio
1 BA/MKL BA/SA
0.8 0.6 0.4 0.2 0 Task graph (range from 1,000 to 50,0000 vertices)
! " "# $% & $&% " "# "
&! '(
" '( # ) " & ' " *+++ ,++++ ( & "!
-
& ) " & & % " "! &
" - "! " "! .
& &!
/ 0
1 2 " # ) " & && & " & - 1 '" & &( & &
" *+3!$+3
Edge−cut Ratio (by sparse/dense)
0.8
a) Comparison of mapping sparse vs. dense graphs
0.6 0.4 0.2 0
0.5 Load Imbalance (%)
Task graph (ranges from 1,000 to 50,000 vertices)
b) Comparison of mapping sparse vs. dense graphs
0.4 0.3 0.2 0.1 0 Task graph (ranges from 1,000 to 50,000 vertices)
0.01 ! "#
$% !& ' (
( ) $% !& * + &,* -./℄ 1 -2℄ $%
℄ ! "# $ $ % &''' ( 1℄ 2
( !
)*+),, -../0
"# 3 3
4 " )1("567 $ ' ( (3 " 5 ( 8
9 -.)10
6℄ : (( ( 8# & $
3
4 &''' % 5 ; 8
.7)+.1, -..<0
*℄ : "# " 8 5.6367 8
; -..60
,℄ : "# ( = 7 3 " 8 5.63166. 8 /℄ 8 $
; -..60
(5 >
!%# ? @ ; 8
8 > 117
*,.) /<3/)7 -.)60
<℄ $ ># 2
: A ! 8
% & $ " " .,376,5 ( 8 B ! ! !
-..,0
)℄ $ ># C " " .,376, 5 ( 8 B ! -..,0 .℄ $ ># % ! 34 % 8 & $ " ./76/ B ! -../0 7℄ $ ># !'&8 *7# B
D 5 ( 8 ' B ! -..)0 ℄ 8# 8 E 1.+67) -.<70 1℄ (: 8 $# ?
3
4 &''' % 5 ; 8
.+
1. -..<0 6℄ > %E! ' : # 8 # 5 " % ; ( 5 : -.)<0
!
"" "# ! " $ " %&' &( )℄+ ! ! , , " , ! ! " "+ " ! " " - ," + " " - #- " . # " " # ! " +
!"" # $
% % &'( )(*
+ % $ % ,
!"℄
$ % & ' " (
$ % $ ) ) * !+℄
% $, - - ' " -$ % .
) & ) * '"
℄ " #$% &"#$%'
( ) *℄ + , + ) ) - . / # &-./#' 0
1 #$%
2
2 #$%3
4 1 "#$%
. 5 6 # 5 *7 &8 #93 . ' 5
) *7
2 ) + /" 157/ # & 8 8 2 % '
&36/' 3/# #9$98# # 477 &/3: # 44
! "# $% &' (
) * + " ( , ) -) . !,-. )" / 0
"
1&2 && &3℄
!
!¿ "
$ 5
6 7 8 " -." 6 0
8 / "
8
" " )
!
" " #$% & '($)*+
!
, -
-
& 90
. /-0- # " " !
12℄ ! & 4 2
- " 15 6℄ 7 .
-
"
8 ' Rp r+ ǫp
i cb,i qi ǫb eq
Dax ci kl,i Dp,i cp,i u
rkin,i !
" " # ! " # $%℄ X
" u ci '
(1 − ǫb ) 3 kl,i ∂cb,i liq + X (cb,i − cp,i |r=Rp ) + (1 − X)rkin,i ∂t ǫb Rp = Dax
(1 − ǫp )
∂ 2 cb,i ∂cb,i , +u 2 ∂x ∂x
∂qi ∂cp,i 1 ∂ ∂cp,i sol = 0, + ǫp − ǫp Dp,i 2 r2 − rkin,i ∂t ∂t r ∂r ∂r
!(#
!)#
$(*℄
qi cp,i " + , - ./ 012, + , !( )#
$3℄
"
+
" "
,
/ 4 2 $(%℄
Φ f (x, u) ! xk+1 = Φ(xk ) ⇔
τ x∗k+1 = xk + t=0 f (x(t), u(t))dt, xk+1 = Px∗k+1 .
"
# P $
# $ % # xk k & ! Φ(xk ) − xk ≤ ǫsteady . ' ()
! min
QDe ,QFe ,QIII ,τ
Costspec (k)
*
Φ(xk ) − xk ≤ ǫsteady , PurEx,k ≥ PurEx,min , QI ≤ Qmax .
$
! PurEx,k = τ 0
τ 0
cEx,k (t)QkEx (t) dt A
(cEx,k (t) A
, + cEx,k (t))QkEx (t) dt B
+
A B , - % #
. - QDe QFe QRe = QIII τ % & β /'℄
- QS ! Q1 (1 − ǫb )A L 1 1 , β1 = QS = − τ HA Q S F 1 1 1 1 Q2 Q3 1 − = − , . β2 = HB Q S F β3 HA Q S F
1
HA HB ! " # $%# &&$% '()℄
+ ',-℄ # . . " # #
%/ 0 0 1 1 0 0 0 . 2 " %/ 0
2
0 # . 3 1. 0 4 # 1 Hr 4
k+Hp
min
Γ =
[βk ,...,βk+Hr ]
⎧ ⎨
Cost(j) + ∆βjT Rj ∆βj j=k
x˙ j = f (xj , βj ), xj+1,0 = Pxj (τ (j)), ⎩ j = k, · · · , k + Hp .
PurEx,Hr ,k + ∆PurEx,k ≥ PurEx,min,k ,
PurEx,Hp ,k + ∆PurEx,k ≥ PurEx,min,k , QI,j ≤ Qmax ,
g(βj ) ≥ 0, j = k, · · · , k + Hp .
Γ
P
Hp
!
" # $
g(βj )
%
PurEx,Hr ,k =
k+H 1 r PurEx,j , Hr
&
j=k
∆PurEx
' (
' %
∆PurEx,k = PurEx,(k−1),meas − PurEx,(k−1) .
)*
+ (
#
!,- ./*℄
!
( (
" 1
Jest (p) =
nspecies
0
i=1
(ci,meas (t) − ci,Re (t))2 dt
! $
Ncol
Jest (p)
p
!"# $ %&℄
Ncol
nspecies
$ (
( ) ( * +
Hi
kl,i km , -./0
( $ $ 1 (
2 (
) 0 "
( "
) (
$ $ -./0 $ !/34 ( 2 ) ( ( $ $ 2 -./0 ( 1 $
$ ( ( 5 ( ( %6℄
(
./0 ( ( $ ( 1
( (
( 7 ( / $ ( (
$
2
(
(
( $ ( $
$ $ (
∆PurEx =
min
j=(k−1,··· ,k−1−Ncol )
(PurEx,j − PurEx,j,meas ).
) $
60th
" ( )
8
55.0% Rj = 0.02 I(3,3)
! " # $" %& " '(
Hr = 1
Hp = 60
55.0% !
" #
$%&
55 %
P !
⎛
0 ··· ··· 0 I
⎜ ⎜I ⎜ ⎜ P = ⎜0 I ⎜ ⎜ ⎝ 0 ···
⎞
⎟ 0 · · · 0⎟ ⎟ ⎟ ⎟ ⎟ ⎟ 0⎠ I 0 I 0
I (n, n) n
Ncol
℄
L D ǫp ǫb dp kl,i ρ η Dp νi Hi
!"
ki kij X
($
"" *℄ "# *℄
#$%&&℄ 3 ' ()"%)&"(℄ 3 ' ") ℄
Qmax " ' $( µ
km #!"& ' &" %(" ℄ ' keq "!) *℄ " ' 3 Qf & ' & '+ , ǫsteady " *℄ "& 2 ' Ni ( ( (℄ ( &℄ -%℄ *℄ cgl &"" ' "( # %") ℄ *℄ cfr " ' 2 qi = Hi cb,i + ki cb,i + kij cb,i cb,j , i, j = 1, 2 i = j. c liq rkin,i = νi km ( kb,i − cb,j ), i, j = 1, 2 i = j eq
℄ . % / 0 1 0 2
+)), $"*$)
(℄ % 3 4
5
6 7 &()!($ +)$$,
&℄ 4
8% 97 4
8 25 : : $ 97 4
8 +(""&, #℄ 3;% <% / = > ?6 ? @
A B 4
0
(()"*(&"# +(""",
℄ = >% / 9 A
3
9% < 5% "&")"(
$℄ <% 6 C8 4
5 % 1 D > +)) , !℄ < % <
5 2
7 8 5
+(""(, ()*$
/ 4
℄ 9 % < 75 5 & #
2A4B /
+))$, #*$"
℄
!""#!$" !%%!
"%℄ & ' ( )* ( ,
,
- .
+
,
/
+ 0 !%%! ""℄ & ' ( ( ) 1 2 3
$#""4 !%%!
"!℄ & 5 55
"%6#""6 !%%%
"$℄ & 5 3 , 7 7 +
9 0
+
":℄ ;
8 55
$$$#$:4 "6
< .5
8
= <5
2 ;'
, ,
- . = ' > ' 8, > $ ? @$6 8, 8 ? $"6$@$6%$! ,=
"6 "@℄ ?(7 2 ?(7 ' "@ 2 > ""% ?(7 A 3* "" "B℄ C & 8 ( >' 25
5 ' 7 D
, + ) - . ,
!%%" "4℄ '0 5 ( >
E (
"$4#"::
!%%$ "6℄ 2 ( ) 35
5
!%%$
"℄ 2 ( ) !%%: 3
!
" # $ %&&'( )* + !!, - .(/0 !122 3
4 5 6 "
7
!%%:
!%℄ F & A ( A 2
+ 2 A0
- "4
! ! "
# ! $ #% & #!
! ! $ ! " ! ! !#
% ' !
! % # !(
$%
) #! "
# ! ! ! !%
! ! "
# f : Ên+ → Ê f (x′ ) ≥ f (x) x′i ≥ xi (i = 1, . . . , n), f (x′ ) ≤ f (x) x′i ≥ xi (i = 1, . . . , n); $ % &'(℄ &'*℄ &(℄ &++℄ &,℄ #
- "
min{F (x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m), x ∈ C, y ∈ D}
(P)
C X ⊂ Rn +, D p Y ⊂ R+ , F (x, y) : X × Y → R, Gi (x, y) : X × Y → R y x x y. n ! P (x), x ∈ Rn + , R+ ,
P+ (x) + P− (x), P+ (x) (P− (x), "
P (x) # " $
#%"
min{!c, y : A(x)y ≤ b, y ≥ 0, x ∈ X}
& '(℄ * #%" + F (x, y), Gi (x, y), i = 1, . . . , m, y x #%"
& ,- . / 0 F (x, y) Gi (x, y), i = 1, . . . , m.
x ∈ Rn + x # " 1
#
" M ⊂ Rn + β(M )
γ(M ) := inf{F (x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m, x ∈ M, y ∈ D}. (P(M))
{Mk } {Mk } Mk+1 Mk ) limk→+∞ Mk = 0, ∗ ∩∞ k=1 Mk = {x }.
!! " #
$ % & ' !!
& ( & ) !!
* +
,
%
& & - $
. $ / % $ 0 & 1
!! * 2 % & 3 +
.
!!
x, y
x "#$℄ "#&℄ ' x n (x, y) n + p) "#(℄ ) X * + G(x, y) = (G1 (x, y), . . . , Gm (x, y)), G(x, y) ≤ 0 Gi (x, y) ≤ 0 i = 1, . . . , m.
α
, '
α ≥ sup{F (x, y)| x ∈ C, y ∈ D}. - α ∈ α = +∞. - .!,/(¯ x0 , y¯0 ) , M1 = X, P1 = S1 = {M1 }, k = 1. # M ∈ Pk β(M )
Ê
γ(M ) := inf{F (x, y)| G(x, y) ≤ 0, x ∈ M ∩ C, y ∈ D}.
#
xk , y¯k ) 2 0 1
.!, (¯ 3 * M ∈ Sk β(M ) ≥ min{α, F (¯ xk , y¯k )} k k k k x , y¯ ) = +∞ (¯ x , y¯ ) + 4 Rk
F (¯ Sk . 5 - Rk = ∅ 6 .!, = (¯ xk , y¯k ) .!,= ∅). & . Mk ∈ argmin{β(M )|M ∈ Rk }. , Mk
4 Pk+1 Mk . $ 4 Sk+1 = (Rk \ {Mk }) ∪ Pk+1 . , k ← k + 1 , #
' ! β(M ) 6 (a) M ′ ⊂ M ⇒ β(M ′ ) ≥ β(M );
(b)
β(M ) < +∞ ⇒ M ∩ C = ∅. 0
1 β(M ) # '
F (x, y) Gi (x, y), i = 1, . . . ,
C, D ! γ(M ); " β(M ) = sup inf{F (x, y) + !λ, G(x, y) | x ∈ M ∩ C, y ∈ D}. λ∈
Ê
m +
"
# ! ! " ! $ % & ! {(x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m), x ∈ M ∩ C, y ∈ D} β(M ) < +∞. ' !
β(M ) < +∞ (℄$
Ì
α
{Mkν } ⊂ {Mk }
∗
∗
x∗ ∈ C.
lim β(Mk ) = inf{F (x , y)| G(x , y) ≤ 0, y ∈ D},
k→∞
*
β ∗ := limk→∞ β(Mk ) y * (x∗ , y ∗ ) α < +∞ *
∗
$ + ! {Mkν } ⊂ {Mk } ! ! ! $$ ( ,℄$ -
x∗ . M β(M ) ≥ α β(Mk ) < +∞ ! Mk ∩ C = ∅ ∀k. + Mk ∩ C ! & !
+∞ ∗ . ∩+∞ k=1 (Mk ∩ C) = (∩k=1 (Mk ) ∩ C = ∅. +! x ∈ C. ∗ ' ! & β(Mk ) β = limk→+∞ β(Mk ) β ∗ ≤ α. /
γ := inf{F (x, y)| G(x, y) ≤ 0, x ∈ C, y ∈ D}.
+ β ≤ γ. - ∗
∗
0
! *
∗
β = inf{F (x , y)| G(x∗ , y) ≤ 0, y ∈ D} ≥ ≥ inf{F (x, y)| G(x, y) ≤ 0, x ∈ C, y ∈ D} = γ,
β = γ. '! α < +∞, β ∗ ≤ α < +∞ ! $ ⊓ ⊔ . * $ +
! * β ∗ = +∞$ 1 ! α < +∞. ∗
α
β(M )
! α
Ì C Ên , D
Êp , F (x, y), Gi(x, y), i = 1, . . . , m,
y x. α
Mk , ν = 1, 2, . . . , x∗ ∈ C ν
min{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D}
y (x∗ , y ∗ )
∗
∈D
"
"
# $ lim β(Mk ) = inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D}
k→∞
sup{F (x, y)| x ∈ C, y ∈ D} ≤ α < +∞.
%
& '
β(Mk ) ≤ inf{F (x, y)| G(x, y) ≤ 0, x ∈ Mk ∩ C, y ∈ D} ≤ inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D}
β(Mk ) ր β ∗ ≤ inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D} ≤ α < +∞. %
inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D} > β ∗ .
(
) ∗
∗
sup {F (x , y) + !λ, G(x , y) } =
λ∈
Ê
m +
F (x∗, y) if G(x∗ , y) ≤ 0 +∞ otherwise
inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D} = inf sup {F (x∗ , y) + !λ, G(x∗ , y) }. y∈D λ∈
Ê
m +
*
D, inf sup {F (x∗ , y) + !λ, G(x∗ , y) } = sup inf {F (x∗ , y) + !λ, G(x∗ , y) }.
y∈D λ∈
Ê
m +
λ∈
Ê
m +
y∈D
sup inf {F (x∗ , y) + !λ, G(x∗ , y) } > β ∗ .
y∈D λ∈Rm +
λ˜ ˜ G(x∗ , y) > β ∗ . min{F (x∗ , y) + !λ, y∈D
˜ (x, y) → {F (x, y)+ !λ, G(x, y) } ! ! y ∈ D, " Uy Ên x∗ " Vy Êp y ˜ G(x′ , y ′ ) > β ∗ F (x′ , y ′ ) + !λ,
∀x′ ∈ Uy ∩ C, ∀y ′ ∈ Vy .
# " Vy , y ∈ D D ! S ⊂ D " Vy , y ∈ S, D. $
U = ∩y∈S Uy y ∈ D y ∈ Vy y ′ ∈ S, x ∈ U ⊂ Uy ′
′
˜ G(x, y) > β ∗ F (x, y) + !λ,
∀x ∈ U ∩ C, ∀y ∈ D.
Mk ⊂ U % k, " ∩k Mk = {x∗ }. & " ' sup inf{F (x, y) + !λ, G(x, y)| x ∈ Mk ∩ C, y ∈ D} > β ∗ .
λ∈
Ê
m +
β(Mk ) > β ∗ , ( ) *( " α < +∞ inf{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D} ≤ max{F (x, y)| x ∈ C, y ∈ D} < +∞.
$ D " " " ( " Ì
+
D , D {y ∈ D| (∃x ∈ C) G(x, y) ≤ 0} ⊂ D ⊂ D.
D D β(M ) = sup inf{F (x, y) + !λ, G(x, y) | x ∈ M ∩ C, y ∈ D}. λ∈
Ê
m +
min{F (x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m), x ∈ C, y ∈ D}
(P)
⊓ ⊔
sup{F (x, y)| x ∈ C, y ∈ D} ≤ α.
∗ ! λ∗ ∈ Êm + inf x∈C {F (x, y)+!λ , G(x, y) } → +∞ y ∈ D, y → +∞. ! D D∗ := {y ∈ D| ϕ(y) ≤ α}, ϕ(y) := inf {F (x, y) + !λ∗ , G(x, y) } x∈C
" # D∗ $
#
{yν } ⊂ D∗
y ν → +∞ # ϕ(y) → +∞ # ! % # y ∈ D G(x, y) ≤ 0 x ∈ C inf x∈C {F (x, y) + !λ∗ , G(x, y) } ≤ inf x∈C {F (x, y)| G(x, y) ≤ 0, y ∈ D} ≤ α, ϕ(y) ≤ α, ⊔
$ y ∈ D∗ . $ D & ⊓
C Rn , D Êp F (x, y), Gi (x, y), i = 1, . . . , m
x y x. ! "
# x∗ ∈ C y ∗ ∈ D Gi (x∗ , y ∗ ) < 0, i = 1, . . . , m.
# '
( x∗ ∩k Mk = {x∗ }.
! {F (x∗ , y) + !λ∗ , G(x∗ , y) ≥ inf x∈C {F (x, y) + !λ , G(x, y) } → +∞ y ∈ D, y → +∞. ) $ F (x∗ , y ∗ ) + !λ, G(x∗ , y ∗ ) → −∞ λ → +∞. $ & (y, λ) → F (x∗ , y) + !λ, G(x∗ , y)
&$ ∗
inf y∈D supλ∈Êm {F (x∗ , y) + !λ, G(x∗ , y) } + = supλ∈Êm inf y∈D {F (x∗ , y) + !λ, G(x∗ , y) }. + ˜∈ $ ( & λ
Êm+
˜ G(x∗ , y) } > β ∗ . inf {F (x∗ , y) + !λ,
y∈D
(D)
˜ G(x , y) !λ, ∗
D.
y → F (x∗ , y) +
˜ G(x∗ , y) } > β ∗ . min {F (x∗ , y) + !λ,
y∈vert(D)
y ∈ vert(D), ˜ G(x∗ , y) x∗ U (y) n y → F (x∗ , y)+!λ, ∗ x
˜ G(x, y) > β ∗ ∀x ∈ U (y). F (x, y) + !λ,
Ê
U = ∩y∈vert(D) U (y)
˜ G(x, y) > β ∗ F (x, y) + !λ, !
k
∀x ∈ U, ∀y ∈ D.
Mk ⊂ U :
˜ G(x, y) > β ∗ F (x, y) + !λ,
∀x ∈ Mk ∩ C, ∀y ∈ D,
˜ G(x, y) | x ∈ Mk ∩ C, y ∈ D} > β ∗ , β(Mk ) = sup inf{F (x, y) + !λ, λ∈
"
Ê
m +
β(Mk ) ր β ∗ . ⊓ ⊔
# $ %&&
α
'
( )
min{f (x)| gi (x) ≤ 0 (i = 1, . . . , m), x ∈ C}
(SP )
C Rn , f, gi : Rn → R, i = 1, . . . , m. D = {y ∗ } ⊂ Rm F (x, y) ≡ f (x), Gi (x, y) ≡ gi (x) ∀y ∈ Rm * * D. $ %&& α + M1 ⊃ C, M ⊂ M1
β(M ) = sup inf{f (x) + λ∈
Ê
m +
m i=1
λi gi (x)| x ∈ M ∩ C}.
$ ! ,
f (x), gi(x), i = 1, . . . , m, Mk ⊂ Mk x∗ Mk ν
ν
x∗ x∗ ∈ C lim β(Mk ) = inf{f (x)| gi (x) ≤ 0 (i = 1, . . . , m), x ∈ C}. lim β(Mk ) < +∞, x∗ ∗
x ∈ C x∗ ∗ gi (x ) ≤ 0, i = 1, . . . , m. gi0 (x∗ ) > 0 i0 ∈ {1, . . . , m}, gi0 (x), 1 ∗ ∗ W x gi0 (x) > ρ := 2 gi0 (x ) ∀x ∈ W. k Mk ⊂ W β(Mk ) = supλ∈Êm inf x∈Mk ∩C {f (x) + + %m i=1 λi gi (x)} ≥ supλi0 ≥0 inf x∈Mk ∩C {f (x) + λi0 ρ} = +∞, ! β(Mk ) < +∞. ⊓ ⊔
" # $℄
& '()
F (x, y), Gi (x, y)
'
∗ f[r,s] = min{!c(x), y | A(x)y − b(x) ≤ 0, r ≤ x ≤ s, y ≥ 0}
Ê
Ê
x ∈ Rn , y ∈ Rp , c : Rn → Rp , A : n → m×p , b : {x| r ≤ x ≤ s} ⊂ Rn . " '()
F (x, y) = !c(x), y ,
G(x, y) = A(x)y − b(x),
y
$#℄)*
(PL)
Êm → Rp, [r, s] :=
p C = [r, s], D = R+ .
M ⊂ [r, s]
β(M ) = sup inf inf {!c(x), y + !u, A(x)y − b(x) } u≥0 x∈M y≥0
'#+)
= sup{−!b(x), u + inf inf {!c(x) + (A(x))T u, y }} x∈M y≥0
u≥0
= sup{−!b(x), u + h(u)} u≥0
h(u) =
0 if (A(x))T u + c(x) ≥ 0 ∀x ∈ M −∞ otherwise
,
β(M ) = sup{−!b(x), u | (A(x))T u + c(x) ≥ 0 ∀x ∈ M }. u≥0
'#-)
A(x) = [aij (x)] ∈ Êm×p, aij (x), cj (x), bi (x) α := sup{!c(x), y | x ∈ [r, s], y ≥ 0} < +∞
Ê Ê
∗ T ∗ ∗ (∀x∗ ∈ [r, s]) (∃u∗ ∈ m + ) (A(x )) u + c(x ) > 0; p ∗ ∗ ∗ ∗ ∗ (∀x ∈ [r, s]) (∃y ∈ + ) A(x )y − b(x ) < 0; α {Mkν }
x∗ ∈ C
inf{!c, y | A(x∗ )y ≤ b(x∗ ), y ≥ 0}
y ∗ ∈ Êp+ (x∗ , y ∗ ) ! !
T
∗
minx∈U∩C (A(x)) u + c(x) > 0.
U
x∗
inf x∈U∩C [!c(x), y + !u∗ , A(x)y − b(x) ] = inf x∈U∩C [!c(x) + (A(x))T u∗ , y − !u∗ , b(x) ] → +∞ y ≥ 0, y → +∞,
⊓ ⊔
aij (x), c(x) ≡ c, b(x) ≡ b,
!℄ # $ % $ &
$ !'℄ ( )
* # *
a1 (x), . . . , am (x)
U x∗
A(x), 0 ∈ intconv{a1 (x), . . . , am (x), c(x)} ∀x ∈ U $ u∗ # (A(x∗ ))T u∗ + c(x∗ ) > 0 u∗ > 0, (A(x))T u∗ + c(x) > 0
x + x∗ ).
W, r > 0, , W ⊂ conv{a1 (x), . . . , am (x), c(x)} ∀x ∈ U. - x
{a1 (x), . . . , am (x), c(x)} {y| A(x)y ≤ e, !c(x), y ≤ 1} e = (1, . . . , 1) ∈ m ),
x ∈ U
1/r ,
x ∈ U {y| A(x) ≤ b(x), !c(x), y ≤ α}
. {y| A(x) ≤ b(x), !c(x), y ≤ α, x ∈ U }
Ê
$ #
$ !1℄2
/0
min!c, x + !d, y m yj Gj 1 0 G0 + L0 +
j=1 n
xi Li0 +
m
yj L0j +
i=1 j=1
j=1 n
i=1
x ∈ X = [p, q] ⊂ R , y ∈ Rm +
x, y
n m
xj yj Lij ≺ 0
G0 , Gj , L0 , L0i , Lj0 , Lij G 1 0, L ≺ 0
G
L
A B
d
A 0 0 B
⎡
A00 (x) = ⎣ L0 +
%Gn0
i=1
!x, c
⎡
⎤
xi Li0 ⎦ , Aj0 (x) = ⎣ L0j + d
Q00
⎡ ⎤ 0 = ⎣0⎦ . 1 d
Gj % n
i=1
dj
⎤
xi Lij ⎦ , d
! "#℄
min{t| A0 (x, p, q) +
m j=1
yj Aj (x, p, q) 1 tQ, y ≥ 0, x ∈ X}
Aj0 (x) Q00 , Q= , Q01 = 0 Aj1 (x, p, q) d Q01 d ⎤ ⎡ (x1 − p1 )Gj ⎢ (q1 − x1 )Gj ⎥ ⎥ ⎢ ⎥ , j = 0, 1, . . . , n. ··· Aj1 (x, p, q) = ⎢ ⎥ ⎢ ⎣ (xn − pn )Gj ⎦ (qn − xn )Gj d
Aj (x, p, q) =
%
&'%
! ( ) ( * ! * "#℄ +* , -&&
α
* * * ! * ) ( * *
(∀x ∈ X)(∃Z1 2 0)
Tr(Z1 Q00 ) = 1, Tr(Z1 Aj0 (x) > 0, j = 1, . . . , m
⎧ ⎤⎫ ⎡ m ⎬ ⎨ yj Aj (x, p, q) − tQ)⎦ t + Tr ⎣Z(A0 (x, p, q) + max min ⎭ Z0 t∈R,y≥0,x∈M ⎩ j=1
℄ !"
max {t| Tr(ZA0 (x, p, q)) ≥ t, Tr(ZAj (x, p, q)) ≥ 0 ∀x ∈ vertX, j = 1, . . . , m, Tr(ZQ) = 1, Z 2 0}
X # X. $ #
$ % &
' ( % # # ) * & + ) # #
" # ,
#& # # # - . / ∗ f[r,s] = min{!c(x), y + c0 (x)| A(x)y + B(x) ≤ b, r ≤ x ≤ s, y ≥ 0}
. (GPL) x ∈ Rn , y ∈ Rp , c : Rn → Rp , c0 : Rn → R, A := Rn → Rm×p , B : n R → Rm×n , b ∈ Rm , [r, s] ⊂ Rn+ . A(x) = [aij (x)], i& B(x) Bi (x), # min s.t.
p
j=1 p j=1
yj cj (x) + c0 (x) yj aij (x) + Bi (x) ≤ bi (i = 1, . . . , m)
y ≥ 0,
r ≤ x ≤ s.
- # )
(GPL)
F (x, y) = !c(x), y +c0 (x), G(x, y) = A(x)y+B(x)−b, C = [r, s], D = {y ≥ 0}.
(P L)
B(x) c0 (x) = !c0 , x , c0 ∈ Rn , B(x) = Bx B = [bik ] ∈ Rm×n . j, cj (x), aij (x), i = 1, . . . , m,
[r, s], [r, s]. j, cj (x), aij (x), i = 1, . . . , m x c0 (x)
(GP L)
ϕ∗[r,s] = sup inf{!y, c(x) +!c0 , x +!λ, A(x)y+Bx−b | x ∈ [r, s], y ≥ 0}.
!
λ≥0
"
λ≥0
inf{!y, c(x) + !c0 , x + !λ, A(x)y + Bx − b | x ∈ [r, s], y ≥ 0} = −!b, λ + inf inf {!Bx, λ + !c0 , x + !c(x) + (A(x))T λ, y } x∈[r,s] y≥0
= −!b, λ + h(λ)
h(λ) =
inf x∈[r,s] [!Bx, λ + !c0 , x ] −∞ .
q ∈
c(x) + (A(x))T λ ≥ 0 ∀x ∈ [r, s], #
Ên :
inf !q, x = !q, r + max{!r − s, t | t ≥ 0, t ≥ −q}.
r≤x≤s
$ min{!q, % x | r ≤ x ≤ s} = min{!q, r + !q, x − r | 0 ≤ x − r ≤ s − r} = !q, r + qi <0 qi (si − ri ) = !q, r + max{!r − s, t | t ≥ 0, t ≥ −q}. ⊓ ⊔ %
inf r≤x≤s {!Bx, λ + !c0 , x } = !B T λ + c0 , r + max{!r − s, t | t ≥ 0, t ≥ −B T λ − c0 }. &
∀x ∈ [r, s]
j ' A Aj , !A(x), λ + c(x) ≥ 0
!Aj (x), λ + cj (x) ≥ 0
∀x ∈ [r, s], ∀j = 1, . . . , p.
( J+
j
cj (x), aij (x), i = 1, . . . , m J−
j
cj (x), aij (x), i = 1, . . . , m
J + ∪ J − = {1, . . . , p}. j = 1, . . . , p, !Aj (x), λ + cj (x) ≥ 0 ∀x ∈ [r, s] m ⇔ λi aij (x) + cj (x) ≥ 0 ∀x ∈ [r, s] i=1
%m i=1 λi aij (r) + cj (r) ≥ 0 if j ∈ J+ ⇔ %m i=1 λi aij (s) + cj (s) ≥ 0 if j ∈ J−
ϕ∗[r,s] = sup{−!b, λ + inf {!Bx, λ + !c0 , x | x∈[r,s]
!Aj (r), λ + cj (r) ≥ 0 (j ∈ J+ );
!Aj (s), λ + cj (s) ≥ 0 (j ∈ J− ), λ ≥ 0}
i B Bi . ! " " " " !c0 , r + max{!r − s, t +
i=1
λi [!Bi , r − bi ]}
%m
− λi Bi − t ≤ c0
%i=1
− m λi aij (r) ≤ cj (r) (j ∈ J+ )
%i=1 m −
− i=1 λi aij (s) ≤ cj (s) (j ∈ J )
λ ≥ 0, t ≥ 0
"
!c0 , r + min{
m
cj (r)yj +
j∈J+
aij (r)yj +
j∈J+
j∈J−
j∈J−
cj (s)yj + !c0 , z }|
aij (s)yj + !Bi , r + z ≤ bi (i = 1, . . . , m),
y ≥ 0, 0 ≤ z ≤ s − r.
x = r + z, " min {
cj (r)yj +
j∈J +
j∈J+
aij (r)yj +
cj (s)yj + !c0 , x }
#
aij (s)yj + !Bi , x ≤ bi (i = 1, . . . , m),
$
j∈J −
j∈J−
y ≥ 0, r ≤ x ≤ s.
" (GP L)
%
aij (x) ← aij (r),
cj (x) ← cj (r)
aij (x) ← aij (s),
j ∈ J+ )
cj (x) ← cj (s) j ∈ J− ). % % j (s)yj j (r)yj + j∈J− c% j∈J+ c% !y, c(x) j∈J− aij (s)yj j∈J+ aij (r)yj +
!A(x), y ,
Ì
(GP L) (GP L).
!" #
$%℄ ' ' " (
)) ' *
!
'
'" +'
$%℄
"" $,℄"
-
⋆ !λ, B(x) + c0 (x)
x,
.
x.
j = 1, . . . , n
!Aj (x), λ
+ cj (x)
⋆
(
*
'
[r, s]
inf {!B(x), λ + c0 (x)} = min{!λ, B(wi ) + c0 (wi )| i = 1, . . . , 2n }
x∈[r,s]
n
w1 , . . . , w2
'
[r, s],
,
!/
max{−!b, λ + t
−!B(wi ), λ + t ≤ c0 (wi ), i = 1, . . . , 2n
%m
− %i=1 λi aij (r) ≤ cj (r) (j ∈ J+ ) ""
− m λi aij (s) ≤ cj (s) (j ∈ J − ) i=1
λ≥0
.
!Aj (x), λ + cj (x) ≥ 0 ⇔ !Aj (wk ), λ + cj (wk ) ≥ 0
j = 1, . . . , n :
k = 1, . . . , 2n ,
!c0 , r + max{!r − s, t + !Br − b, λ } s.t. !Aj (wk ), λ + cj (wk ) ≥ 0 λ ≥ 0, t ≥ 0
j = 1, . . . , n, k = 1, . . . , 2n
℄
c(x) ≡ c ∈ Êp , c0 (x) ≡ 0, B(x) ≡ 0
! "
# $ % # "
& ' # (
) *℄
# #
+ xil # i
l, ylj # l j, zij # i j, plk , # k , # , l, Cik , # k i. # ,
ci , dj # i j, , xil , ylj , zij , plk & ) −
i
ν
ci xiν +
ν
j
dj yνj +
i
j
(dj − ci )zij .
% % z ≤ Ai x + %ν il % j ij y x − il j lj = 0 i % % %i xiν ≤ Sν (p − P )y %ν νk %jk νj + i (Cij − Pjk )zij ≤ 0 ν yνj + i zij ≤ Dj xiν , yνj , zij , pνk ≥ 0
Ai , Sν , Pjk , Dj , # ,
& , Cik , # k i. - "
& , , plk . ! , # " # -
% ) , ' .α
/ ,"
min f1 (x, y) + f2 (x, y) + u(x) s.t. gi (x, y) + hi (x, y) + vi (x) ≤ 0 (i = 1, . . . , m) x ∈ C, y ∈ D.
(PC)
C ⊂ [a, b] ⊂ Rn+ , D Rp , u(x), vi (x) f1 (x, y), f2 (x, y), gi (x, y), hi (x, y) (i = 1, . . . , m) y x, x y. f1 (x, y), gi (x, y) x f2 (x, y), hi (x, y) M = [r, s] ⊂ [a, b] (M )) x ∈ C x ∈ C ∩ [r, s]. Ì (M )) β(M ) := min f1 (s, y) + f2 (r, y) + u(x) s.t. gi (s, y) + hi (r, y) + vi (x) ≤ 0 (i = 1, . . . , m) r ≤ x ≤ s, y ∈ D.
(RC(M ))
α f1 (s, y), f2(r, y), gi (s, y), hi(r, y) f1 (x, y), f2 (x, y), gi (x, y), hi (x, y), !(M ) (M ) " β(M ) # "
" $ % {Mk = [rk , sk ]}
x∗ lim β(Mk ) = β ∗ ,
k→∞
where
β ∗ = min{f1 (x∗ , y) + f2 (x∗ , y) + u(x∗ )| gi (x∗ , y) + hi (x∗ , y) + vi (x∗ ) ≤ 0 (i = 1, . . . , m), y ∈ D}.
#&
k (xk , yk ) !(Mk )), f1 (sk , y k ) + f2 (rk , y k ) + u(xk ) = β(Mk ), gi (s , y k ) + hi (rk , y k ) + vi (xk ) ≤ 0 (i = 1, . . . , m), k
rk ≤ xk ≤ sk , y k ∈ D.
∗ k ∗ k ∗ ' ∩+∞ k=1 Mk = {x }, r → x , s → x k → +∞. ( D % yk → y∗ ∈ D. "
f1 (x∗ , y ∗ ) + f2 (x∗ , y ∗ ) + u(x∗ ) ≤ lim β(Mk ), k→+∞
gi (x∗ , y ∗ ) + hi (x∗ , y ∗ ) + vi (x∗ ) ≤ 0 (i = 1, . . . , m).
* !(Mk )) (Mk )),
β(Mk ) ≤ min{f1 (x, y) + f2 (x, y) + u(x)| gi (x, y) + hi (x, y) + vi (x) ≤ 0 (i = 1, . . . , m), rk ≤ x ≤ sk , y ∈ D},
#)
+∞ Mk
k : x∗ ∈ ∩k=1
β(Mk ) ≤ min{f1 (x∗ , y) + f2 (x∗ , y) + u(x∗ )| . gi (x∗ , y) + hi (x∗ , y) + vi (x∗ ) ≤ 0 (i = 1, . . . , m), y ∈ D} = β ∗ .
k : β(Mk ) ≤ β ∗ ≤ f1 (x∗ , y ∗ ) + f2 (x∗ , y ∗ ) + u(x∗ ).
lim β(Mk ) = f1 (x∗ , y ∗ ) + f2 (x∗ , y ∗ ) + u(x∗ ) = β ∗ ,
k→+∞
⊓ ⊔ (M )) ! ! " (M )) # !
$ # % # &'℄ ! !) # *
# H, + qi Ji
i = 1, . . . , s, , Li (KLi /Ji )β/α (qi /c)βλ/α + b2 |a1 |e1 H e2 + b3 |a1 |H f (q, H, J) := b1 i
% % q − i∈out(k) qi = ak k = 1, . . . , n + # %i∈in(k) i ±Ji = 0 p = 1, . . . , m # %i∈loop p min ±J p = 1, . . . , m . i ≤ H + h1 − hk i∈r(k) qimax ≥ qi ≥ qimin ≥ 0 i = 1, . . . , s H max ≥ H ≥ H min ≥ 0 KLi (qi /c)λ /dα max ≤ Ji Ji ≤ KLi (qi /c)λ /dα min
#
i = 1, . . . , s ,)/
.
Li
i, K c ,)/
0 −a1
b1 , b2 , b3 , e1 , e2 , β 0 < e1 , e2 < 1 1 < β < 2.5, λ = 1.85 α = 4.87). * #1 f (q, H, J) #
! J ! (q, H), KLi (qi /c)λ , q !) M = M {(q, H)| q M ≤ q ≤ q M , H M ≤ H ≤ H } KLi (q M /c)λ i
f (q M , H M , J) ≤ f (q, H, J) λ
≤ KLi (qi /c) ≤
λ KLi (q M i /c) ,
23 i = 1, . . . , s
24
(q, H) ∈ M.
(q, H, J) (q, H) ∈ M
KLi (q M /c)λ i !!"α# (q, H)
KLi (qi /c)λ M KLi (q i /c)λ
"$%#"$
! '
(' )*℄ , )&&℄
-
. )&/℄ 0
)&/℄ 1 "2# ! )&℄
3 " # )&℄ " "21## "
c(x), aij (x),
#
)&4℄
5
)&$℄ )&$℄
)6%℄
min{F (x, y)| Gi (x, y) ≤ 0 (i = 1, . . . , m), x ∈ C, y ∈ D}
D→
C, D
Ê
Ên, Êp,
(GP ) F, Gi : C ×
x ∈ C y, !"#$ F (x, y), Gi (x, y)
x
m
∗
inf sup{F (x , y) +
y∈D λ≥0
i=1
∗
∗
λi Gi (x , y)} = sup inf {F (x , y) + λ≥0 y∈D
m
λi Gi (x∗ , y)},
i=1
D
D.
!% '
Ì C D
F (x, y), Gi (x, y), i = 1, . . . , m, x∗ ∈ C
W x∗ D ⊂ D inf{F (x, y)| G(x, y) ≤ 0, x ∈ W ∩ C, y ∈ D}
= inf{F (x, y)| G(x, y) ≤ 0, x ∈ W ∩ C, y ∈ D}. !(# inf sup{F (x∗ , y) + !λ, G(x∗ , y) } = sup inf {F (x∗ , y) + !λ, G(x∗ , y) }.!((# λ≥0 y∈D
y∈D λ≥0
!!α ( " #
" # $
Mk , ν = 1, 2, . . . ,
x∗ ∈ C ν
min{F (x∗ , y)| G(x∗ , y) ≤ 0, y ∈ D}
y∗ ∈ D ((
(x∗ , y ∗ ) " ) *+℄ !% ! - ..#
/ - %..!α# ' β(M )
M %..!α# !(# .. β(M ) = sup inf{F (x, y) + !λ, G(x, y) | x ∈ M, y ∈ D}. λ≥0
0 .. !# !# - .. 1 Q(M ) := M ∩ C
M M M ∩ C = ∅.
β(M ) =
sup inf{F (x, y) + !λ, G(x, y) | x ∈ M, y ∈ D} M ∩ C = ∅ λ≥0
+∞
otherwise
β(M )
M ∩ C
!" # $ % & ''
''α" % "( ") *(℄ ! F, Gi "
*(℄
" , "( *(℄
-
"
. . -
- "" *)/℄ *)(℄" &
min{
n #
i=1
ci (y)| y ∈ D}
0
D
Êp , ci (y)
ci (y) > 0 ∀D. #B 0 *(℄
n i=1 xi − !λ, x -
1 f (x) = x1 x2 − (x1 + x2 )
-
Ê2+ ).
0 min{
n i=1
log xi | Cy − x ≤ c, Ay ≤ b, x ∈ [r, s], y ≥ 0}
!2
⋆ 3 )"
max{−!c, λ1 − !b, λ2 + t
%
!w, λ1 + t ≤ n log(wi ), ∀w ∈ W i=1
""
−C T λ1 − AT λ2 ≤ 0
(λ1 , λ2 ) ≥ 0
W
[r, s].
℄ ! "! #
Ê Ê
C, D n , m f (x, y) : C × D →
x,
y,
Ê
$% C $% y¯ ∈ D f (x, y¯) → +∞ x ∈ D, x → +∞. minx∈C supy∈D f (x, y) = supy∈D inf x∈C f (x, y), C C=
j
C {x ∈ C| f (x, y¯) ≤ γ}
" $% " $% .
γ := inf x∈C supy∈D f (x, y).
Ê Ê
C, D n , m f (x, y) : C × D →
x,
y,
Ê
$% D $% x¯ ∈ C f (¯x, y) → −∞ y ∈ D, y → +∞. inf x∈C supy∈D f (x, y) = maxy∈D inf x∈C f (x, y), D D=
j
D {y ∈ D| f (¯ x, y) ≥ β}
" $% " $% .
β := supy∈D inf x∈C f (x, y).
℄ ! "# $%& ' ()*++,-+).. .℄ / 01 $ %0 ' 2 ! +*.33-4.33
℄
℄ ! " " #$%$
'( %" )
*+ ,-,, ,℄ . #/$0 12 3 "
0-% %$$ 4
%$ $" 4 % 0 $$5#$ 0)
6*7+-86
℄ 9 # "" 0
%$$ ": 4 "5 %$-
# $ %$ " %5)
6*+
7 ℄ " $ ;# " #:
# $< $ %% " -
$= $ 4 $ %" $ ") 6776 %% 8℄ #:
! "
! " #
$$ >%$ " ℄ #5$ '
! "
3#0 6777
7℄ 1 > $ ; >$ $$5#$ 0 %5) 7-6 ℄ ? > > >
"
"5 %$$= $ %% 0
! "
*+
$ %
#' 1# 3$' 8 * #$ +
6℄ @ $
1# $: 2# A 4 B C# $ ;-
" $ " ;5 0$ C# $ 9 $ )
&
℄ @ $
"
7 *6777+ -,
. # $: 5# $ % : '( %" $ ")
! "
66*6776+ 6-67
℄ @ $ 9 '"
%%$ $ 4 1 %$$ A
D$ " 1# $: 2# 4
'( B5 .%$$= $ )
" &
*6776+ ,-
,℄ 1 # ; % $ E $
0 ! " "$ #
"5 %$$= $ "$ 4 '$ " 5$$ $( $ F# $$)
'
*6777+G
℄ #:
½¼ ,-,8
.
'( .%$$= $ ;5 0$ >%
-
! "( ! "
'( @ $ 5) ℄ #:
6*6+ - 3#0 8
8℄ #: > ;:5 A $ .%$$= $ )
>%$ " @ " 6*+ 6-77
℄ #:
A $ %$$= $ ;5 #$ %% )
67℄ #:
9# -( % > # 19 .%$$= $ )
" ½½
*6777+ -
;%$ $# 4 A $ $ @$ 6776 >#5$ 6℄ #: 0 B A$ $ ( ) ;%$ $# 4 A $ $ @$ 677 >#5$ 66℄ #: ! !#
$ )
0 %% %$$= $ # $
! "
8*6777+ -,
1 2
3 1 1
2
3
!"1−bit # "
$ $ $ %
!"# %
$ $ " & " $ ' % ( & )
$ $ ( $ % ( $
& " % $ $ ( " $( *
' * $ ( + $ ( $ % % $ $
, % $ *
% ) "1−bit ) *
{2n | n = 1, 2, 3, ...} - *
$ ( "1−bit % ./ 0
$ ( % $( ' * $ ( + %$ "1−bit %$ "1−bit % ( + ( n × n * $ m × n
( 2n − 1 $ m + n + max(m, n)
( $$ % + $ ( + %$
( % $ ( ( & ) ' % $ $ % $ !# $ %
( $ % ) 1 "1−bit
( $
! "
! " # $%℄
' $ ( ) % * ( " $ $(℄
* + # ! $*℄ , - . / . - / . -
- .
/ 0 / /1−bit 1 / 1
1 / - / $
/1−bit - - / /1−bit *
/1−bit - - /1−bit ! ' ' - $ - 2
- -
/ * + $%℄
- 3
/ i i ≥ 1 3
i 1
- , , 4 - 3
,
. 1 /
1−bit A = (Q, δ, F ) δ δ Q × {0, 1} × {0, 1} → Q × {0, 1} × {0, 1} δ(p, x, y) = (q, x′ , y ′ ) p q ∈ Q x, x′ , y, y ′ ∈ {0, 1} ! i p x y
" # $ i q x′ y′
" % i i−1 i+1 & q ∈ Q δ(q, 0, 0) = (q, 0, 0) ' F (⊆ Q) ( # 1 & # 1−bit ) N ( δ : Q3 → Q # N #
*(1) + ( & ⌈log2 |Q|⌉ & &
" ( 1−bit N ⌈log2 |Q|⌉ #
1−bit N
T (n) 1−bit N kT (n) k k = ⌈log2 |Q|⌉ N
1−bit
% & 1−bit ) M 1−bit {tn | n = 1, 2, 3, ...} & tn ≥ n n ≥ 1 ! , 1 & -
" t = 0 #
1
Q
" t = 0 & ! M & {tn | n = 1, 2, 3...} k M
℄℄
!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
0
P0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
1
P1
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
2
P2
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
3
So
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
4
dd
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
5
So
B
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
6
N0
U2
B
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
7
So
U3
P
WV A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
8
N0
C
Z
WT
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
9
N1
Z
Z
WT A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
10
N0
C
Z
WT A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
11
So
Z
C
WT
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
12
N0
Z
Z
WX
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
13
So
Z
C
wx
R
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
14
N0
C
Z
J0
R
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
15
N1
Z
Z
J1
B
R
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
16
N0
C
Z
WZ
S
C
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
17
So
Z
C
WZ U0
Z
B
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
18
N0
Z
Z
WC U1
C
P
B
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
19
So
Z
C
WZ U2
Z
D1
S
WV A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
20
N0
C
Z
WZ U3
Z
D2
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
21
N1
Z
Z
WZ
C
Z
Z
Z
WT
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
22
N0
C
Z
WC
Z
Z
Z
Z
WT A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
23
So
Z
H0
WZ
C
Z
Z
Z
WT A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
24
N0
C
H1
WC
Z
C
Z
Z
WT
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
25
N1
H1
C
WZ
Z
Z
C
Z
WT
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
26
N0
C
Z
WZ
Z
Z
Z
C
WT
R
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
27
N1
Z
Z
WZ
Z
Z
Z
Z
WX
R
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
28
N0
C
Z
WZ
Z
Z
Z
C
wx
R
R
R
A0
Q
Q
Q
Q
Q
Q
Q
29
So
Z
C
WZ
Z
Z
C
Z
J0
R
R
R
A1
Q
Q
Q
Q
Q
Q
Q
30
N0
Z
Z
WC
Z
C
Z
Z
J1
B
R
R
R
A0
Q
Q
Q
Q
Q
Q
31
So
Z
C
WZ
C
Z
Z
Z
WZ
S
B
R
R
A1
Q
Q
Q
Q
Q
Q
32
N0
C
Z
WC
Z
Z
Z
Z
WZ D0
S
B
R
R
A0
Q
Q
Q
Q
Q
33
N1
Z
C
WZ
C
Z
Z
Z
WZ D1
S
S
C
R
A1
Q
Q
Q
Q
Q
34
N0
H0
Z
WZ
Z
C
Z
Z
WZ D2
S
C
Z
B
R
A0
Q
Q
Q
Q
35
N1
H1
C
WZ
Z
Z
C
Z
WZ
Z
U0
Z
Z
P
B
A1
Q
Q
Q
Q
36
N0
Z
Z
WC
Z
Z
Z
C
WZ
Z
U1
C
Z
P
S
WV A0
Q
Q
Q
37
So
Z
C
WZ
Z
Z
Z
Z
WC
Z
U2
Z
C
P
C
WY
Q
Q
Q
Q
38
N0
C
Z
WZ
Z
Z
Z
C
WZ
Z
U3
Z
Z
C
Z
WY
Q
Q
Q
Q
39
N1
Z
Z
WZ
Z
Z
C
Z
WZ
Z
C
Z
Z
Z
C
WY
Q
Q
Q
Q
40
N0
C
Z
WZ
Z
C
Z
Z
WZ
C
Z
Z
Z
Z
Z
WT
Q
Q
Q
Q
U0 WY
" # $ $ % &"1−bit '( ) $ # ! $ * "'+ % ,' F (⊆ Q)
t = ktn k
M k = 1
1−bit
!" 1−bit Ì [19] 1−bit {n2| n = 1, 2, 3, ...} [19] 1−bit
[20] 1−bit 1−bit 1−bit #
1−bit
${2n| n = 1, 2, 3, ...} ! 1−bit {2n | n = 1, 2, 3, ...} 1 a i %i ≥ 2& ' q Current state
Input from right link
Input from left link
(next state, left output, right output)
1
2
a
R =0
R= 1
q
R =0
R= 1
L =0
(a,0,0)
(a,1,0)
L =0
(q,0,0)
(q,1,1)
L =1
--
--
L =1
(q,1,1)
(q,0,0)
{2n | n = 1, 2, 3, ...}
1−bit
" ( ' ◮ ◭ )
{2n| n = 1, 2, 3, ...} 1−bit
1−bit
) * )
*
+ , *
1
2
3
4
5
6
7
0
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
1
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
2
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
3
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
4
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
5
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
6
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
7
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
8
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
9
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
10
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
11
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
12
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
13
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
14
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
15
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
16
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
17
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
18
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
19
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
20
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
21
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
22
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
23
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
24
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
25
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
26
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
27
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
28
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
29
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
30
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
31
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
32
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
33
a
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
1−bit
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
{2n | n = 1, 2, 3, ...}
℄ ! " # " $ " ℄ % & "' " " " () * + +"
& m × n ) (i, j) (i,j , - . /" + & - " . + & + ) + & + & & 0 & m× n (1,1 + t = 0 + + - " & . & + & & m n /
1
2
3
4
n
1
C11
C12
C13
C14
C1n
2
C21
C22
C23
C24
C2n
m
Cm1
Cm2
Cm3
Cm4
Cmn
m n !"℄ !$℄ %&!'
( )*1−bit ! )*1−bit + , !-℄
)*1−bit 2n − 2 n ! . +, /
Ì [13] 1−bit
n
2n − 2 1−bit . $ . "
[22] 1−bit
n k 1 ≤ k ≤ n k
1−bit
n+(k, n − k + 1)
0 (2n − 1) n × n % !"℄ %&!'
( n 1 ! i 1 2n − 2i + 1 (1 ≤ i ≤ n) n ! % i 1 Ci,i t = 2i − 1
step 0
step 1 1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
PWLT
AR’
xPWLT
Q
Q
Q
Q
QW
1
PWLT
BR01
AR’
xPWLT
Q
Q
Q
QW
2
aR’
xPWLT
Q
Q
Q
Q
Q
QW
2
bR01
PWLT xPWLT
Q
Q
Q
Q
QW
3
xPWLT
Q
Q
Q
Q
Q
Q
QW
3
aR’
xPWLT
Q
Q
Q
Q
Q
QW
QW
4
Q
Q
Q
Q
Q
Q
Q
QW
4
xPWLT
Q
Q
Q
Q
Q
Q
QW
QW
5
Q
Q
Q
Q
Q
Q
Q
QW
5
Q
Q
Q
Q
Q
Q
Q
QW
Q
Q
Q
Q
Q
Q
Q
QW
5
6
7
8
PWLT xPWLT
Q
Q
Q
Q
Q
QW
1
2
xPWLT
Q
Q
Q
Q
Q
Q
QW
3
Q
Q
Q
Q
Q
Q
Q
QW
QW
4
Q
Q
Q
Q
Q
Q
Q
QW
5
Q
Q
Q
Q
Q
Q
Q
3
4
5
6
7
8
1
PWLT
Q
Q
Q
Q
Q
Q
QW
1
2
Q
Q
Q
Q
Q
Q
Q
QW
3
Q
Q
Q
Q
Q
Q
Q
QW
4
Q
Q
Q
Q
Q
Q
Q
5
Q
Q
Q
Q
Q
Q
Q
2
1
4
2
step 3
step 2 3
1
6
Q
Q
Q
Q
Q
Q
Q
QW
6
Q
Q
Q
Q
Q
Q
Q
QW
6
Q
Q
Q
Q
Q
Q
Q
QW
6
7
Q
Q
Q
Q
Q
Q
Q
QW
7
Q
Q
Q
Q
Q
Q
Q
QW
7
Q
Q
Q
Q
Q
Q
Q
QW
7
Q
Q
Q
Q
Q
Q
Q
QW
8
QW
QW
QW
QW
QW
QW
QW
QW
8
QW
QW
QW
QW
QW
QW
QW
QW
8
QW
QW
QW
QW
QW
QW
QW
QW
8
QW
QW
QW
QW
QW
QW
QW
QW
step 5
step 4 1
2
3
4
5
6
7
8
1
PWLT
BR00
subH
AR’
xPWLT
Q
Q
QW
2
bR00
PWLT
AR’
xPWLT
Q
Q
Q
QW
3
subV
aR’
xPWLT
Q
Q
Q
Q
QW
4
aR’
xPWLT
Q
Q
Q
Q
Q
QW
xPWLT
5
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QW
7
Q
Q
Q
Q
Q
Q
Q
QW
8
QW
QW
QW
QW
QW
QW
QW
QW
2
3
4
5
6
7
8
PWLT
BR0u0
BR1S
QRD
QRC
QRB
subH
PWRB
bR0u0
PWLT
QR0S
BR11
QRB
subH
AR’
xPWRB
3
bR1S
QR0S
PWLT
BR00
subH
AR’
xPWLT
QW
QRD
bR11
bR00
PWLT
AR’
xPWLT
Q
QW
5
QRC
QRB
subV
aR’
xPWLT
Q
Q
QW
7
8
QRB
subV
aR’
Q
QW
subV
aR’
xPWLT
Q
Q
Q
Q
QW
QW
QW
QW
QW
QW
QW
PWRB xPWRB
xPWLT
Q
3
4
5
6
7
8
BR0u1
BR10
QRC
odd
subH
AR’
xPWRB
QW
2
bR0u1
PWLT
BR0S
odd
subH
AR’
xPWLT
QW
QW
3
bR10
bR0S
PWLT
BR01
AR’
xPWLT
Q
QW
Q
QW
4
QRC
odd
bR01
PWLT xPWLT
Q
Q
QW
Q
QW
5
odd
subV
aR’
xPWLT
Q
Q
Q
QW
Q
Q
QW
6
subV
aR’
xPWLT
Q
Q
Q
Q
QW
Q
Q
Q
QW
7
aR’
xPWLT
Q
Q
Q
Q
Q
QW
QW
QW
QW
QW
QW
8
xPWRB
QW
QW
QW
QW
QW
QW
QW
3
4
5
6
7
8
1
2
3
4
5
6
7
8
BR0S
odd
subH
AR’
xPWLT
Q
QW
1
PWLT
QR0S
BR11
QRB
subH
AR’
xPWLT
QW
2
bR0S
PWLT
BR01
AR’
xPWLT
Q
Q
QW
2
QR0S
PWLT
BR00
subH
AR’
xPWLT
Q
3
odd
bR01
PWLT xPWLT
Q
Q
Q
QW
3
bR11
bR00
PWLT
AR’
xPWLT
Q
Q
4
subV
aR’
xPWLT
Q
Q
Q
Q
QW
4
QRB
subV
aR’
xPWLT
Q
Q
5
aR’
xPWLT
Q
Q
Q
Q
Q
QW
5
subV
aR’
xPWLT
Q
Q
Q
6
xPWLT
Q
Q
Q
Q
Q
Q
QW
6
aR’
xPWLT
Q
Q
Q
7
Q
Q
Q
Q
Q
Q
Q
QW
7
xPWLT
Q
Q
Q
8
QW
QW
QW
QW
QW
QW
QW
QW
8
QW
QW
QW
step 9
1
4
6
2
PWLT
2
PWLT
step 8
2
1
1
1
1
QW
6
1
step 7
step 6
Q
step 12
2
3
4
5
6
7
8
1
PWLT
BR0uS
QR10
BR01
QRD
QRC
AL1
PWRB
2
bR0uS
PWLT
BR0u1
BR10
QRC
odd
subH
PWRB
3
QR10
bR0u1
PWLT
BR0S
odd
subH
AR’
xPWRB
4
bR01
bR10
bR0S
PWLT
BR01
AR’
xPWLT
QW
5
QRD
QRC
odd
bR01
PWLT xPWLT
Q
QW
6
QRC
odd
subV
aR’
xPWLT
Q
QW
subV
aR’
xPWLT
Q
Q
Q
QW
QW
QW
QW
QW
QW
7
AL1
8
PWRB
PWRB xPWRB
Q
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
PWLT
BR0v0
QR11
BR00
QRA
AL
QLA
PWRB
1
PWLT
BR0v1
QR10
BR0S
AL
QLA
BL01
PWRB
2
bR0v0
PWLT
BR0u0
BR1S
QRD
QRC
AL0
PWRB
2
bR0v1
PWLT
BR0uS
QR10
BR01
AL
BL01
PWRB
3
QR11
bR0u0
PWLT
QR0S
BR11
QRB
subH
PWRB
3
QR10
bR0uS
PWLT
BR0u1
BR10
QRC
AL1
PWRB
4
bR00
bR1S
QR0S
PWLT
BR00
subH
AR’
xPWRB
4
bR0S
QR10
bR0u1
PWLT
BR0S
odd
subH
PWRB
5
QRA
QRD
bR11
bR00
PWLT
AR’
xPWLT
QW
5
AL
bR01
bR10
bR0S
PWLT
BR01
AR’
xPWRB
QRB
subV
aR’
xPWLT
Q
QW
6
odd
bR01
subV
aR’
xPWLT
Q
Q
QW
7
bL01
bL01
AL1
subV
aR’
QW
QW
QW
QW
8
PWRB
PWRB
PWRB
6
step 13
AL
QLA
AL0
8
PWRB
PWRB
3
4
5
6
7
8
1
PWLT
BR0vS
AL
P1
P1
AR
BL0S
PWRB
1
PWRB
2
bR0vS
PWLT
BR0v1
AL
P1
AR
BL0S
PWRB
PWRB
3
AL
bR0v1
PWLT
BR0uS
P0d
PA
BL01
PWRB
3
4
5
6
7
8
1
PWLT
BR0v0
RL1
P1d
PA
QLB
BL00
PWRB
2
bR0v0
PWLT
BR0v0
QR11
P1s
QLA
BL00
3
RL1
bR0v0
PWLT
BR0u0
BR1S
AL
QLA
PWRB xPWRB
1
2
3
4
5
6
7
8
PWLT
P1
PA
P1
P1
PA
P1
PWRB
2
p1
PWLT
P1
PA
P1
PA
P1
PWRB
3
pA
p1
PWLT
P0
P0
P0
P0
PWRB
4
p1d
QR11
bR0u0
PWLT
QR0S
BR11
AL0
PWRB
4
p1
AL
bR0uS
PWLT
BR0u1
P0s
BL01
PWRB
4
p1
pA
p0
PWLT
P0
P0
P0
PWRB
5
pA
p1s
bR1S
QR0S
PWLT
BR00
subH
PWRB
5
p1
p1
p0d
bR0u1
PWLT
BR0S
AL1
PWRB
5
p1
p1
p0
p0
PWLT
P1
P1
PWRB
6
QLB
QLA
AL
bR11
bR00
PWLT
AR’
xPWRB
6
AR
AR
pA
p0s
bR0S
PWLT
BR01
PWRB
6
pA
pA
p0
p0
p1
PWLT
P0
PWRB
7
8
bL00
PWRB
bL00
PWRB
QLA
PWRB
AL0
subV
aR’
PWRB PWRB xPWRB
xPWLT
QW
QW
QW
7
8
bL0S
PWRB
bL0S
PWRB
bL01
PWRB
bL01
AL1
PWRB PWRB
bR01
PWLT xPWRB
PWRB xPWRB
QW
7
8
p1
PWRB
p1
PWRB
QLA
AL
QRC
PWRB xPWRB
PWLT xPWLT
QW
xPWLT
Q
QW
QW
QW
QW
step 15
step 14
2
2
QRC
7
1
1
step 11
step 10
1
p0
PWRB
p0
PWRB
p1
PWRB
p0
PWRB
PWLT
1
2
3
4
5
6
7
8
1
T
T
T
T
T
T
T
T
2
T
T
T
T
T
T
T
T
3
T
T
T
T
T
T
T
T
4
T
T
T
T
T
T
T
T
5
T
T
T
T
T
T
T
T
6
T
T
T
T
T
T
T
T
7
T
T
T
T
T
T
T
T
8
T
T
T
T
T
T
T
T
PWRB
PWRB xPWRB
(2n−1) ! " # # $ # % & ' ()* *+
℄
t = 2i − 1 + 2(n − i + 1) − 2 = 2n − 1 ! " 2 × 2 1000 × 1000 # $%1−bit "
&' ()* + ,
&'- " ! " 8 × 8 .
Ì 1−bit n × n 2n − 1
step 0
step 1
1
2
3
4
5
6
7
8
1
JD1
HS
xH
Q
Q
Q
Q
CQX
HQX
2
VL
xJ2
Q
Q
Q
Q
Q
HQX
HQX
3
xV
Q
Q
Q
Q
Q
Q
HQX
Q
HQX
4
Q
Q
Q
Q
Q
Q
Q
HQX
VQX
JQX
5
CQX
VQX
VQX
VQX
VQX
VQX
VQX
JQX
2
3
4
5
6
7
8
1
JP
xH
Q
Q
Q
Q
Q
CQX
HQX
2
xV
Q
Q
Q
Q
Q
Q
HQX
3
Q
Q
Q
Q
Q
Q
Q
Q
HQX
4
Q
Q
Q
Q
Q
Q
VQX
JQX
5
CQX
VQX
VQX
VQX
VQX
VQX
2
3
4
5
6
7
8
1
xJ
Q
Q
Q
Q
Q
Q
CQX
2
Q
Q
Q
Q
Q
Q
Q
3
Q
Q
Q
Q
Q
Q
Q
4
Q
Q
Q
Q
Q
Q
5
CQX
VQX
VQX
VQX
VQX
VQX
step 4
step 3
step 2
1
1
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
JD1
HQR2
HQRS
HS
xH
Q
Q
CQX
1
JD2
HQR1
HQR2
HQRS
HS
xH
Q
CQX
1
JD1
HQR2
HQR1
HQR2
HQRS
HS
xH
CQX
2
VQL2
JP
xH
xJ2
Q
Q
Q
HQX
2
VQL1
JD1
HS
xH
xJ2
Q
Q
HQX
2
VQL2
JD2
HQRS
HS
xH
xJ2
Q
3
VQLS
xV
xJ2
Q
Q
Q
Q
HQX
3
VQL2
VL
xJ2
xJ2
Q
Q
Q
HQX
3
VQL1
VQLS
xJ
xJ2
xJ2
Q
Q
4
VL
xJ2
Q
Q
Q
Q
Q
HQX
4
VQLS
xV
xJ2
Q
Q
Q
Q
HQX
4
VIX
VL
xJ2
xJ2
Q
Q
5
xCQX
VQX
VQX
VQX
VQX
VQX
VQX
JQX
5
VKXs
xVQX1
VQX
VQX
VQX
VQX
VQX
JQX
5
VKX
xCQX
xVQX1
VQX
VQX
VQX
1
1
1
2
3
4
5
6
7
8
JD1
HQR2
HQR1
HQR2
HQR1
HQR2
HQRS
HKXs
HQR2
1
1
2
3
4
5
6
7
8
JX
HQR1
HQR2
HQR1
HQR2
HQR1
HGX
HKX
JD1
HQR2
1
2
3
4
5
6
7
8
JD2
HQRS
HS
xH
Q
Q
Q
CQX
2
VQLS
xJ
xJ2
Q
Q
Q
Q
HQX
3
VL
xJ2
Q
Q
Q
Q
Q
HQX
4
xV
Q
Q
Q
Q
Q
Q
HQX
5
CQX
VQX
VQX
VQX
VQX
VQX
VQX
JQX
1
2
3
4
5
6
7
8
1
JD2
HQR1
HQR2
HQR1
HQR2
HQRS
HS
xCQX
HQX
2
VQL1
JD1
HQR2
HQRS
HS
xH
xJ2
HQX
HQX
3
VI0
VQL2
JP
xH
xJ2
xJ2
Q
HQX
Q
HQX
4
VAR1
VQLS
xV
xJ2
xJ2
Q
Q
HQX
VQX
JQX
5
VKX
VKXs
VQX
VQX
VQX
JQX
step 10
step 9
step 8
1
1
step 7
step 6
step 5
xVQX1 xVQX1
step 11
1
2
3
4
5
6
7
8
JFXB
HW
HQR1
HQR2
HQR1
HG0
HAL1
HKX
HQR2
1
1
2
3
4
5
6
7
8
JBr2
HFW
HW
HQR1
HG0
HQLA
HAL2
HKX
HGX
2
VI0
JD2
HQR1
HQRS
HS
xH
xHQX1
2
V<S
HQR2
HQR1
HQRS
HS
xCQX
V
JX
HQR1
HQR2
HQR1
HQRS
HKXs
2
VQRe2
JFXA
HW
HQR1
HQR2
HQR1
3
VQRA
VQL1
JD1
HS
xH
xJ2
xJ2
HQX
3
VQRB
VI0
JD2
HQRS
HS
xH
xJ2
xHQX1
3
VsBRA
V<S
JD1
HQR2
HQRS
HS
xH
xHQX1
3
VSBRA
V
JX
HQR1
HQR2
HQRS
HS
xCQX
4
VAR2
VIX
VL
xJ2
xJ2
xJ2
Q
HQX
4
VAR3
VAR1
VQLS
xJ
xJ2
xJ2
xJ2
HQX
4
VQRE0 VAR2
VIX
JP
xH
xJ2
xJ2
xHQX1
4
JD1
HS
xH
xJ2
xHQX1
5
VKX
VKX
xCQX
xVQX1 xVQX1
VQX
VQX
JQX
5
VKX
VKX
VKXs
VQX
JQX
5
VKX
xCQX
JQX
5
step 13
step 12
1
xVQX1 xVQX1 xVQX1
1
2
3
4
5
6
7
8
JBr3
HQRd
HFW
HGW
HQLA
HQLB
HAL3
HKX
1
2
VKX
VKX
xVQX1 xVQX1 xVQX1
2
3
4
5
6
7
8
JQRo1
HAr1
HQRd
HFGW
HB>
HBL1
HQLE0
HKX
1
VARA VsARD VsARA
VKX
VKX
VKX
VKXs
xVQX1 xVQX1 xVQX1
HKX
JQX
step 15
step 14
1
1
2
3
4
5
6
7
8
1
2
JQRo2
HAr2
HQRa
HG
HFB>
HfBL1
HALA
HKX
1
JQRo1
HAr3
VQRe2 JQRe2
4
5
HG
HQLa
HQLb
HFBL1 HfALA
HKX
HBr2
3
HQRc
HG
HFB>
6
HfAL3
7
HKX
8
HKX
VQRe1
JAr2
HFW
HW
HQR1
HG0
HAL1
HKX
2
VRe
JAr3
HFW
HGW
HQLA
HAL2
HKX
2
HBr1
HQRb
HFGW
HB>
HKX
2
3
VBRa
VQRo2
JFXB
HW
HQR1
HQR2
HQRS
HKXs
3
VBRb
VQRo1
JBr2
HFW
HW
HQR1
HGX
HKX
3
VBRc
VRo
JBr3
HQRd
HFW
HGW
HAL1
HKX
3
VBRe
HAr1
HQRd
HFGW
HfAL1
4
VfARA VSARD VSARA
JX
HQRS
HS
xH
xHQX1
4
VARa
VARd
VARa
JFXA
HW
HQRS
HS
xCQX
4
VARb
VARe
VARb
JAr2
HFW
HW
HQRS
HKXs
4
VARa
VARf
VARc
JAr3
HQRb
HFW
HGXX
HKX
VKX
xH
JQX
5
VKX
VKX
VKX
VKX
HPX
xH
xVQX1
JQX
5
VKX
VKX
VKX
VKX
HfPX
HS
xH
JQX
5
VKX
VKX
VKX
VKX
HFPX
HtSX
HS
xJQX
2
5
VKX
VKX
VKX
xVQX1 xVQX1
step 16
1
HQRb
2
3
4
5
6
7
8
JRo
HK1d
HKA
HQLb
HQLc
HBl1
HFALA
HKX
1
HQLb
HFAL3
HG
VQRe0 JQRe1
HAL3
1
2
3
4
5
6
7
8
JG
HK1
HK1
HI
HQLd
HBl2
HALa
HKX
1
HKA
HQLb
VQRo0 JQRo1
step 19
step 18
step 17
1
1
2
3
4
5
6
7
8
JQLa
HK1
HK1
HQRa
HI
HBl3
HALb
HKX
1
1
2
3
4
5
6
7
8
JAl1
HK1
HK1
HAr1
HKA
HK0d
HALc
HKX
HAr1
HG
HQLa
HKX
2
VRe
JRe
HK0d
HAl3
HKX
2
HK0
HK0
HI
HBl1
HQLe0
HKX
2
HK0s
HALa
HKX
3
VBRd
VBRa
JQRo2
HAr2
HQRa
HFAL1
HKX
3
VBRe
VBRb
JQRo1
HAr3
HG
HQLa
HAl1
HKX
3
VBRf
VBRc
JRo
HK1d
HKA
HQLb
HAl2
HKX
3
VK0d
VK0s
JG
HK1
HK1
HI
HAl3
HKX
4
VARb
VQRe0
VARe
JQRe0
HBr1
HQRb HFGOX
HKX
4
VARa
VARa
VARd
JARa
HBr2
HQRc
HGOx
HKX
4
VARb
VARb
VARe
JARb
HBr3
HG
HQLa
HKX
4
VARc
VARa
VARf
JARc
HK0d
HKA
HAl1
HKX
5
VKX
VKX
VKX
VKX
HKX
HTSX
HKXs
5
VKX
VKX
VKX
VKX
HKX
HAr1
HTSX
HKX
5
VKX
VKX
VKX
VKX
HKX
HAr2
Hsubr
HKX
5
VKX
VKX
VKX
VKX
HKX
HAr3
HGOx
HKX
2
VQRe1 JQRe1
HBr3
HtSX
HQLc
VG
JG
VKA
JAl1
HK0
HK0
step 21
step 20 1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
JK0
HK1
HK1
HK0
HK0
HK0
HK0
HKX
1
T
T
T
T
T
T
T
T
2
VK0
JK0
HK0
HK0
HK0
HK0
HK0
HKX
2
T
T
T
T
T
T
T
T
3
VK0
VK0
JKA
HK1
HK1
HKA
HK1
HKX
3
T
T
T
T
T
T
T
T
4
VK0
VK0
VK1
JK0
HK0
HK0
HK0
HKX
4
T
T
T
T
T
T
T
T
5
VKX
VKX
VKX
VKX
HKX
HK1
HKA
HKX
5
T
T
T
T
T
T
T
T
! " # $ %& '
℄ (m, n) !
" # $ % &! 5 × 8
1−bit
Ì 1−bit m × n
m + n+ (m, n)
! " r, s 1 ≤ r ≤ m 1 ≤ s ≤ n
t = 0 Cr,s # $ % &'($ $ $ )℄ + $, m×n - mn m+n−1 gk 1 ≤ k ≤ m + n − 1 . / gk = {Ci,j |(i − 1) + (j − 1) = k − 1}.
g1 = {C1,1 }, g2 = {C1,2 , C2,1 }, g3 = {C1,3 , C2,2 , C3,1 }, . . . , gm+n−1 = {Cm,n }.
" M $ 1−bit . ℓ T (ℓ, k) k k 1 ≤ k ≤ ℓ - M m+n−1 - $ $ i gi i Ci M gi ↔ Ci 1 ≤ i ≤ m + n − 1 - $, 1−bit N gi i Ci $ N . m × n r,s t = T (m + n − 1, r + s − 1) M . $, m + n − 1 r+s−1 t = T (m + n − 1, r + s − 1) # $, ) ℄ $, . T (m, n, r, s) 1−bit 011 000 ! 2 011$ 5 × 8 3,4
1−bit
m × n T (m, n, r, s) (r, s) T (m, n, r, s) T (m, n, r, s) = m + n − 2 + max(r + s, m + n − r − s + 2) ± O(1)
step 0
step 1
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
QX
QXT
QXT
ctrl
QXT
QXT
QXT
QXX
1
QX
QXT
L
QLS
D2
QXT
QXT
QXX
QXR
2
QXL
Q
L
QLS
D2
Q
Q
QXR
2
QXL
L
QLS
QL2
D1
D2
Q
QXR
QXR
3
QXL
ctrl
QLS
D2
QRS
ctrl
Q
QXR
3
ctrl
QLS
QL2
D1
QR2
QRS
ctrl
QXR
QXR
4
QXL
Q
D2
QRS
S
Q
Q
QXR
4
QXL
D2
D1
QR2
QRS
S
Q
QXR
QX
5
QXX
QXB
D2
QRS
S
QXB
QXB
QX
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
QX
QXT
QXT
QXT
QXT
QXT
QXT
QXX
1
QX
QXT
QXT
QXT
QXT
QXT
QXT
QXX
2
QXL
Q
Q
Q
Q
Q
Q
QXR
2
QXL
Q
Q
ctrl
Q
Q
Q
3
QXL
Q
Q
P
Q
Q
Q
QXR
3
QXL
Q
ctrl
D1
ctrl
Q
Q
4
QXL
Q
Q
Q
Q
Q
Q
QXR
4
QXL
Q
Q
ctrl
Q
Q
Q
5
QXX
QXB
QXB
QXB
QXB
QXB
QXB
QX
step 4
QXB
QXB
QXB
QX
5
6
7
8
1
KXs
QLS
QL2
QL1
QL2
D1
D2
QXX
QXR
2
QLS
QL2
QL1
QL2
D1
QR2
QR1
D2
ctrl
3
QL2
QL1
QL2
D1
QR2
QR1
QR2
QRS
S
QXR
4
QL1
QL2
D1
QR2
QR1
QR2
QRS
S
QXB
QX
5
D2
D1
QR2
QR1
QR2
QRS
S
QX
6
7
8
QX
L
QLS
QL2
QL1
D2
QXT
QXX
2
L
QLS
QL2
QL1
D2
QR1
D2
3
QLS
QL2
QL1
D2
QR1
QR2
QRS
4
D2
QL1
D2
QR1
QR2
QRS
5
QXX
D2
QR1
QR2
QRS
S
step 8 1
2
3
4
5
6
7
8
1
KX
AR2
QRA
I0
QL1
D2
QR1
QR2
2
AR2
QRA
I0
QL1
D2
QR1
QR2
QR1
3
QRA
I0
QL1
D2
QR1
QR2
QR1
G0
4
I0
QL1
D2
QR1
QR2
QR1
G0
AL1
D2
QR1
QR2
QR1
G0
AL1
1
3
QXB
QXB
QXB
step 7 2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
KX
IX
QL1
QL2
QL1
D2
QR1
D2
1
KX
AR1
I0
QL1
QL2
D1
QR2
QR1
2
IX
QL1
QL2
QL1
D2
QR1
QR2
QR1
2
AR1
I0
QL1
QL2
D1
QR2
QR1
QR2
3
QL1
QL2
QL1
D2
QR1
QR2
QR1
QR2
3
I0
QL1
QL2
D1
QR2
QR1
QR2
QR1
4
QL2
QL1
D2
QR1
QR2
QR1
QR2
QRS
4
QL1
QL2
D1
QR2
QR1
QR2
QR1
GX
5
QL1
D2
QR1
QR2
QR1
QR2
QRS
KXs
5
QL2
D1
QR2
QR1
QR2
QR1
GX
KX
1
step 10
1
2
3
4
5
6
7
8
KX
AR3
QRB
QRA
I0
D1
QR2
QR1
2
QRA
1
1
step 11
2
KX
3
QRE0 BR1
QRE0 BR1
4
5
6
7
8
1
2
3
4
5
6
7
8
QRB
<S
X
QR1
G0
1
KX
ARA
BR2
<S
FXA
GW
QLA
BR2
AR3
QRB
I0
D1
QR2
QR1
G0
2
<S
X
QR1
G0
QLA
2
ARA
<S
FXA
GW
QLA
3
QRB
QRA
I0
D1
QR2
QR1
G0
QLA
3
BR1
QRB
<S
X
QR1
G0
QLA
QLB
3
BR2
<S
FXA
GW
QLA
QLB
BL1
4
QRA
I0
D1
QR2
QR1
G0
QLA
AL2
4
QRB
<S
X
QR1
G0
QLA
QLB
AL3
4
<S
FXA
GW
QLA
QLB
BL1
QLE0
5
I0
D1
QR2
QR1
G0
QLA
AL2
KX
5
<S
X
QR1
G0
QLA
QLB
AL3
KX
5
FXA
GW
QLA
QLB
BL1
QLE0
KX
3
4
step 13
2
1
QRB
step 14
2
QLB
7
8
1
2
3
4
5
6
7
8
G
FB>
1
KX
fARA
BRd
QRe1
Ro
K1d
KA
QLb
Ar3
G
FB>
D>
2
fARA
BRd
QRe1
Ro
K1d
KA
QLb
FD>
Ar3
G
FB>
D>
BL3
3
BRd
QRe1
Ro
K1d
KA
QLb
FD>
fBL3
Ar3
G
FB>
D>
BL3
ALB
4
QRe1
Ro
K1d
KA
QLb
FD>
fBL3
ALC
G
FB>
D>
BL3
ALB
KX
5
Ro
K1d
KA
QLb
FD>
fBL3
ALC
KX
5
6
7
8
QRo2
Ar2
FGW
B>
1
QRo2
Ar2
FGW
B>
QLC
2
QRo2
Ar2
FGW
B>
QLC
BL2
3
SBRD QRe2 QRo1
KX
ARA SBRD QRe2 QRo1
2
ARB sBRD
3
sBRD
4
QRo2
Ar2
FGW
B>
QLC
BL2
ALA
4
QRe2 QRo1
5
QRo2
Ar2
FGW
B>
QLC
BL2
ALA
KX
5
QRo1
step 16
5
step 15
6
Ar3
4
ARB sBRD
ctrl
KX
step 12 KX
QXB
1
step 9 1
QXB
step 6 4
5
QXX
5
3
4
1
QXB
2
3
QL1
QXB
1
2
5
QXB
step 5
1
1
QXX
5
step 3
step 2
1
1
ARA SBRD QRe2 QRo1
Ar3
step 17
step 18
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
KX
ARb
BRf
G
QLa
K1
K1
QRa
1
KX
ARc
K0d
KA
Al1
K1
K1
Ar1
2
ARb
BRf
G
QLa
K1
K1
QRa
I
2
ARc
K0d
KA
Al1
K1
K1
Ar1
3
BRf
G
QLa
K1
K1
QRa
I
Bl3
3
K0d
KA
Al1
K1
K1
Ar1
KA
4
G
QLa
K1
K1
QRa
I
Bl3
FALC
4
KA
Al1
K1
K1
Ar1
KA
K0d
5
QLa
K1
K1
QRa
I
Bl3
FALC
KX
5
Al1
K1
K1
Ar1
KA
K0d
ALc
1
2
3
4
5
6
7
1
KX
ARa
BRe
Re
G
K1
K1
I
2
ARa
BRe
Re
G
K1
K1
I
QLd
8
3
BRe
Re
G
K1
K1
I
QLd
FBL3
4
Re
G
K1
K1
I
QLd
FBL3
fALC
5
G
K1
K1
I
QLd
FBL3
fALC
KX
step 19
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
KX
K0
K0
K0
K0
K1
K1
K0
1
T
T
T
T
T
T
T
T
KA
2
K0
K0
K0
K0
K1
K1
K0
K0
2
T
T
T
T
T
T
T
T
K0d
3
K0
K0
K0
K1
K1
K0
K0
K0
3
T
T
T
T
T
T
T
T
ALc
4
K0
K0
K1
K1
K0
K0
K0
K0
4
T
T
T
T
T
T
T
T
KX
5
K0
K1
K1
K0
K0
K0
K0
KX
5
T
T
T
T
T
T
T
T
5 × 8 3,4 ! " # $ % & ℄ m × n m + n+(m, n)− (r, m − r + 1)−(s, n − s + 1) − 1 " # ℄$ "$ # % & %
1−bit ' # # ()1−bit ( () % & # % * # " + % , %
!"℄ $ %& '℄ ( ) * +℄ ,! - !. /01−bit 1,!
/01−bit 2 n 3 4 !.
! " ! #$1−bit % & ' ! " ( $) *+
Ì
1−bit
0 5 $ 5 2 ,! 3 6 /01−bit 3 5 ! /01−bit -
2 /01−bit 7 ,! - 2 "8 0 !. /01−bit
℄
!"#$ % &'($ )#$ !&*!++$ *!
,℄ - . / # 0 10
/
$ 2*+! $ ,,',
3℄ 4 5 .6 7 0
0 '
$ +*#3 $ ,33
'℄ 8 ( 9 :
$ %$ ,$ )3$ 3##3*'$ *+&
&℄ ; : 0 10 <
0 ,*#$ 4 = $ *+, $ &,&* +℄ 4 > $ 4 ? $ $ 7 @ $ 4 = 10
/ 0
!!
,223 $ 232#
!℄ A 5 - 0
" # " $%& ' ' " 0
$
$ ,*&$ 33+!$ **!
#℄ 7 B ; 5 & 0 0
$ %&$ ),$
!3!*$ *# *℄ 7 B ; 5 0
0
$ %!$ )$ ##!$
*#' 2℄ / C 0 10
/
' "
$ &2*#! $
#3,3# ℄ / 0 10
/
' "
$ +#**+ $ 3+!'2'
,℄ ; 9 7 10
/
) "
"('
; 9 $ @$ -
$ *+' $ ,3,' 3℄ )0 $ 7 D 4 = < 07 9 D10 D
/
. (0 0
* " ' +
$ 3#3#+$ ,223
'℄ 8 - $ - 9>$ 4 A ) > 0
'-
,
- ( - $ *!, $ 8$ ) ?>$
,*,+& &℄ A D 7 10
/
$ ,'*!' $ +3#2
℄
!
n !
" # $%$&'(" )*+)'*
,℄ -
" . / . 0 1
" )2 %'***( +2$+2
&℄ 3 - # ! !
"
'," +&,+$$" %'**( $℄
3
/
4
1
!
"
+' %'**'( '++',+ '*℄ 3 / 4 1 !
! !
" 3 # 4 "%'**'(" ),')&'
'℄ 3 " . . / 56 1 7
!
" -/8 '2$)"
9 " $&%'***( ''℄ 3 " . " 4 . " 4 / . .
! "
%8 8 " .
: ; 5 0 < (" '**'" ','& ')℄ = 9 > !
#
" 9)" /2" '$))**" %$,&(
'2℄ = 9 1 ? ! " $'" " %$,$( '+℄ 1 @ 1 !
" # $%$(" ,&
!"#$% & '
( * +* * *
* * + ,"
- *. / +* * + 0
* +* 0 * * +
*
, *+ *
* ' **. / 0 1 * * *
' 0 +' *
* * * *+* * - ' * 2*" +3 * - *. +** * * * * * * .
* - * **
+* *
' ' ++*+ 0.
4 + * * *.
! " # $
"
%
$ &
! $ ' " ! $
! " !
! " # #
$
$
% &
' () *+℄
' - *. /℄ $ ! ' () *+℄" ! ' - *.℄" $ &
$
$ $
# ! " a(u, q)(ϕ) = f (ϕ)
∀ϕ ∈ V.
!0"
1 q ∈ Q = Rnp u ∈ g(q) + V ˆ
2 g : Q → V ˆ V V 1 V ⊂ Vˆ $ a(·, ·)(·) 1 Vˆ × Q × V 3 $
a(·, ·)(·) a′u (·, ·)(·, ·) a′q (·, ·)(·, ·) C : Vˆ → Z u Z = Rnm
nm ≥ np # !·, · Z
Z ·Z 3
Q $ C¯ ∈ Z 4
? 1? ?C(u) − C¯ ?2 Z 2
Rm (u) := C¯ − C(u).
Th Vh ⊂ V Vˆh ⊂ Vˆ Vh ⊂ Vˆh ! uh ∈ gh (qh ) + Vh qh ∈ Q
? 1? ?C(uh ) − C¯ ?2 Z 2
a(uh , qh )(ϕh ) = f (ϕh )
∀ϕh ∈ Vh ,
"
#
gh : Q → Vˆh $ g $ gh = ih ◦ g ih : Vˆ → Vˆh % &'℄ ) E : Vˆ × Q → R ) E(u, q) * )
E(u, q) − E(uh , qh ) = ηh + R,
+
ηh R
, ! " -
ηh . ) !
) T OL E
/
) 0 ) ) $
0 ηh
- ) $ 1 ) )
)
- $
Th0 k = 0
Vhk
uhk ∈ Vhk , qhk ∈ Q ηhk
ηhk ≤ T OL !
" # Thk → Thk+1 ηhk $ k
% & & ' & ( ) ( & * ' & E(u, q)
& *
& % & & + & )
( * &
, & ) ! - &
) a(·, ·)(·) g(·) C(·) . % & a′u (·, ·)(·, ·)/ ˆ × Q (u, q) B(u, q) ⊂ V ′ au (·, ·)(·, ·) γ > 0
2
a′u (v, p)(w, w) ≥ γ wV
∀(v, p) ∈ B(u, q),
∀w ∈ V.
$
0 1 0 2 3 ℄ * .
S
Q0 ⊂ Q S(q) ∈ g(q) + V
q ∈ Q0
a(S(q), q)(ϕ) = f (ϕ) ∀ϕ ∈ V.
c : Q0 → Z
S
!
c(q) := C(S(q))
" #" %
J = c′ (q)
'
? 1? ?c(q) − C¯ ?2 . Z 2
$
&
c
$
¯ J ∗ c(q) = J ∗ C.
( &
J
c ! ∂ci (q) = Jij = Ci′ (u)(wj ), ∂qj
i = 1 . . . n m , j = 1 . . . np ,
u = S(q) Ci ci Jij
J = c′ (q) wj ∈ gq′ (q) + V
j
a′u (u, q)(wj , ϕ) = −a′qj (u, q)(1, ϕ)
!
∀ϕ ∈ V.
)
*
+
'
J
c
" np
K
Ω=
K.
∂Ω T
h h| = h h K
∂K K T ! "#℄ %
&
'
V ! "#℄ ' ( ! ) ' "*℄ ( V (u , q ) ∈ V × Q +,-. / 0 S Q ⊂ Q
q ∈ Q S (q) ∈ g (q) + V a(S (q), q)(ϕ ) = f (ϕ ) ∀ϕ ∈ V . +/,. +,-. 1 21 12 ??c (q ) − C¯?? . +/-. J = c (q ) 3 +/-. ¯ J c (q ) = J C. +/*. (u , q ) +-. +/*. h
K
K
K
h
h
h
h
h
h
h
0,h
0,h
h
h
h
h
h
h
h
h
′ h
h
h
∗ h h
h
h
h
∗ h
h
2 Z
Jh
ch
Th ! qh0
qhk+1 = qhk + δqh , " δqh (Jh∗ Jh )δqh = Jh∗ (C¯ − ch (qhk )). # $%&' (
? 1? ?ch (qhk ) + Jh δqh − C¯ ?2 . 2
)
* + & , + -)+ .+ /℄
* , + & E(u, q) 1 + E(u, q) − E(uh , qh ) = ηh + R, /. ηh R + +
2 * E(u, q) − E(uh, qh ) = E(u, q) − E(S(qh ), qh ) + E(S(qh ), qh ) − E(uh , qh ). / 1 u! = S(qh ) ∈ g(qh ) + V , qh + a(! u, qh )(ϕ) = f (ϕ) ∀ϕ ∈ V. // (+ + E (1) : Q → R E (2) : Vˆ → R E (1) (r) = E(S(r), r) /3
E (2) (v) = E(v, qh ),
E(u, q) − E(uh , qh ) = E (1) (q) − E (1) (qh ) + E (2) (! u) − E (2) (uh ).
E
(2)
E (1)
! " # $ %℄
Ì E (1) (q) − E (1) (qh ) =
1 1 ρ(uh )(y − ih y) + ρ∗ (uh , yh )(u − ih u) + P + R1 , 2 2
'
y ∈ V a′u (u, q)(ϕ, y) = −!J(J ∗ J)−1 ∇E (1) (q), C ′ (u)(ϕ)
ρ(·)(·)
ρ∗ (·)(·)
∀ϕ ∈ V
(
ρ(uh )(ϕ) := f (ϕ) − a(uh , qh )(ϕ) ρ∗ (uh , yh )(ϕ) := −!Jh (Jh∗ Jh )−1 ∇E (1) (qh ), C ′ (uh )(ϕ) − a′u (uh , qh )(ϕ, yh ).
)
R1
P ! eu + eq + δh v + δh z¯ Rm (u) , |P | ≤ C V V V Z Q
*
eu := u − uh eq := q − qh δh ϕ := ϕ − ihϕ Vˆ
Rm (u) +
v ∈ Vˆ np ∗ −1 (J J) ∇E (1) (q) j wj v=−
+,
j=1
z¯ ∈ V a′u (u, q)(ϕ, z¯) = !−
Rm (u) , C ′ (u)(ϕ) Rm (u)
Z
∀ϕ ∈ V,
+-
Rm (u) z¯ = 0
C!
h C¯
∇E (1) (q)
∂ (1) E (q) = Eu′ (u, q)(wj ) + Eq′ j (u, q)(1), ∂qj
wj ∇E (1) (qh )
! " # $ %
&℄ Ì E (2) (! u) − E (2) (uh ) =
1 1 ! ρ(uh )(! y − ih y!) + ρ!∗ (uh , yh )(! u − ih u !) + R, 2 2
y! ∈ V
ρ(·)(·)
a′u (! u, qh )(ϕ, y!) = Eu′ (! u, qh )(ϕ)
(
∀ϕ ∈ V,
ρ!∗ (·)(·)
ρ(uh )(ϕ) := f (ϕ) − a(uh , qh )(ϕ) ρ!∗ (uh , y!h )(ϕ) := Eu′ (uh , qh )(ϕ) − a′u (uh , qh )(ϕ, y!h ).
R!
) y − ih y *
u! − ihu! + , ! + *
! , " # $ %
&℄ - * u − ih u + uh ) u − ih u* y! − ih y!
.
δu := u − ih u ≈ u ! − ih u !.
- ) , / 0 ( * / * ) / 0 ( / y ∈ V a′u (u, q)(ϕ, y) = −!J(J ∗ J)−1 ∇E (1) (q), C ′ (u)(ϕ) + Eu′ (! u, qh )(ϕ)
∀ϕ ∈ V.
E(u, q) − E(uh , qh ) ≈ ηh =
1 1 ρ(uh )(y − ih y) + ρ∗ (uh , y h )(δu), 2 2
0 1
ρ(·)(·) ρ∗ (·)(·) ρ(uh )(ϕ) := f (ϕ) − a(uh , qh )(ϕ) ρ (uh , yh )(ϕ) := −!Jh (Jh∗ Jh )−1 ∇E (1) (qh ), C ′ (uh )(ϕ) + Eu′ (uh , qh )(ϕ) − a′u (uh , qh )(ϕ, y h ). ∗
! "
#! $ !! % & ' ( )*℄!
" ! , - ! . / $
! . 0 1
! , / & O(N )/ N ! 2
3 4/ )℄!
, 5 & (q1 , q2 ) Ω = (0, 1)2 −∆u + q1 ux + q2 uy = 2 u=0
Ω, ∂Ω.
67
. E(u) =
u dx
6
Ω0
Ω0 Ω0 = (
1 15 , 1) × (0, ). 16 16
. 5
ξ1 = (0.25, 0.5), ξ3 = (0.75, 0.5),
ξ2 = (0.5, 0.25), ξ4 = (0.5, 0.75),
ξ5 = (0.5, 0.5).
C
Ci (v) = v(ξi ),
(u, q) ∈ V × Q
V = H01 (Ω)
Q = R2
5
1 (u(ξi ) − C¯i )2 2 i=1
C¯i 5 ¯ C ∈ Z = R " ¯i = u(ξi )$ # q = (8, 8)! $$ C
!
u
$ " !
Es (q) = q1 + q2
Ec (u) =
1 2
2
C(u)
$
! % & ' ( )℄ % &! +
' ( )℄$
" " ,$
E(u) - , " . $ !
E(u)
Ief f := (E(q) − E(qh ))/η
1
E(u)
N
E(u) − E(uh )
η
Ief f
!
E(u)
" #
!" ! # E(u) $% ! " Ec (u) $ &%
Ω = (0, 1) Ω ∂Ω = Γ ∪ Γ ∪ Γ 2
1
2
3
Γ3
Γ1
Γ2
Γ3
−∆u + q yu = 2 Ω, u = 0 Γ , u = q Γ , ∂u/∂n = 0 Γ . # 1
!"
1
2
2
3
E(u, q) = q2
$"
∂u/∂n ds.
Γ1
" ξ = (0.25, 0.75), ξ = (0.5, 0.75), ξ = (0.75, 0.75). %" C
C (v) = v(ξ ), &" #
(u, q) ∈ (g(q) + V ) × Q V = {v ∈ H (Ω) | v = 0 Γ ∪ Γ } 1
2
3
i
i
1
Q=R
2
1
2
3
12 (u(ξ ) − C¯ )
g i
i
2
i=1
C¯
C¯ ∈ Z = R u
q = (50, 1) !! C¯ = u(ξ )! " ! # $ % & % %
E (q) = q + q ' ' ' ' % ! % ( ! )
% " ! g(q) = q2 x,
3
i
i
i
s
1
2
E(u, q)
) E(u, q) ) *! ) +
% $ ! ) , % " !
E(u, q) N
E(u, q) − E(uh , qh )
# $$ $
!" !% ! !" %!"" !# !$%
η
Ief f
! #!$ !% !# !% #!$ !$" #!$ %! !# ! #!$ !"% !#"
& E(u, q) '() ' ( * * + ',(
℄
!"#
$ %&''(
&℄
) #
) ) * + , #- . /0 )
%1(
&23&41 %554(
℄
)
) ) 6 /0 &'' % 6
(
7 89 * :
7
3'& %&''(
1℄ $ ;
) 9 ) < =0 !6
%(
. 7 >
3& %&'''(
?℄ @+ A /0 ) )#
0) %&''(
4℄ 7" 7 * .B > " , @ 666
70
/ . * : #$ %5C1(
2℄ : 7 B) " , ) , : / )# $ :0) 7 * %52C(
℄
! "
#$%& ''()
#*+',% +℄
& - ./ / 0 1 1 /& 2! 3& 32& /& $444 *4℄ 56 7
/ 8 2 - /
/ / 9 - *: / 3 2! 3& 2 ! / / / 3 & / #*++:% **℄ 5 7/
;
/ 3/
/ & -< =>
#*+:4% *$℄ 5 - / / 25 ? - " 2 2
" & 2 -< => #*+++%
1 1 2 1
2
! " " # # " $ % & ' ( & ("
)" " "
"* # " " "
+, )" +,
" " *
)" "
" + , ) ,- !. ./0#. /# 1* !. " ) " ./
2 "+ 3 ) " " " + + * " "
!. , " , " ) " " +,
*
"
#. /# 1*
)" "
" ) + + 4 0 + * )" "
+ ) "
!. ,
+ #. /# 1*
!℄ #℄ $ % % & ' (℄ )℄ *
℄ ℄
! "
#$%$& '℄ ()#*%)+, #$%$& - ()#*%)+,
#$%$&
)
-
/$0 1
.
2
'0 $+(3( ( 4
$0$#( 1
$0$#(
2 #
5℄ 67℄ "
$0$#( #$8)9 !$(3 #$%$&
$0$#( #$%$&:()#*%)+, $
$ 4 $
0 .
$0$#(
0 . -
! ! !
0 9.8m/s2 $
"#
% &
•
! ! !
#'(
)
•
)
!
* +
,
250kg !
1.85m ∗ 1.21m ∗ 0.06m
14cm
6cm!
!
.
* - &
15kg
.
/
'0/
10kN/mm! 200N s/mm 2cm . /
)
1 23 245
•
) ,
* - &
%
& . &
!"
τdriving =
•
Iud + Ff riction r
I 0.227kgm2 ud
Ff riction r 20cm
! DesAcc " # $ $ %
# $ &
' ±20
DesF Steer
( ) *
+
! "#
&
, '
l
#
!
℄
"#$
Pr ! l
Pf ! " ! Pf Pr p γ
Pr = z =
x + a cos θ + l cos(θ + pγ) y + a sin θ + l sin(θ + pγ)
x, y
θ a l, p
Pd
Pd = zd = d
1
x + a cos θ + d cos(θ + ϕ) y + a sin θ + d sin(θ + ϕ)
2
Pf Pd
Pf Pd
Pr
ϕ
Pd
l
p
!"℄
" $ ˙ d, ¨ ϕ, ϕ, ¯ −1 (γ)F v, um , γ, ω, d, d, u=E ˙ ϕ¨
E(γ)
γ
!"℄ %
$
u
F
E(γ) F
&'&()
*
&'&()
(&+&,
(&+&,-
)(.+/0 (&+&, 1
2 3 4 & )(.+/0
5 1
. )(.+/0 2
2
&'&()
&'&()
&'&()
6 7
•
&'&() )(.+/0
8
&'&()
!
"
#$#%&
'
(
˙ d, ¨ ϕ, ϕ˙ d, d,
ϕ¨
( )
$* " +
" $* ,
#$#%&
)
#$#%&
•
)
)
• •
! "#$"%&
' (
) * "#$"%& ! * + , +- . / * * * -
! " # $ %
&
l, p, λ ξ (l, p, λ, ξ) = (2.5, 1, 1, 1) %
'
l ( '
l = 2.5m.
% ) *+ % 2.5m ,
& - %
& # $
! ! " # $
% & ''
℄
( ) ) * '' *+,*- -℄ . / % & ''0 ( ) ) ''0 *+'1*++ *℄ 2 3
$ . . $ 4 5 & /6667/667$(/ / ) / $ ''' 1+01+ 8℄ $ 2 9 $
!
& '': /666 / ) $ ! ) " 8 '': *0'1 *1+ 0℄ ; < ! = !
" # & ( ) ) " * -++ -***-**: 1℄ < 2 > !
$ % & '( #( & ( ) ) -+++ *-,8*-,, ,℄ < 2 > ! & $ )( $ & -++ ; !
) $ -++ ++1 :℄ ! & < !
$ $ '( #( & , / ) )
) ( ; " ?/)(;)"@ -++- $
-++- ,0-,01 '℄ 5 4= !" 5 $ $ '
' & / ) $ A': '': 8+ 88 +℄ 5 ) ! $ ! 2 ' ( '
) B ) 6
" * # 9 -++- 0
!
" # $ "! ! % ! & '( )
!
! "# ! "# !"# $ $ %&' $ () ()3 # ()3 ()9 # * + * + ,
+ - &
! " # $ "
! % ! !
&' ! !
(
! ) ! ! * ! + " , % -
% ! - " !
Ei i = 0 . . . Nl ! Ci→j
i
j
Ri→j . ℄ .(℄ % 0 " "
Ri→j
+ - ! ! !
i x t ni (x, t)
Nl Nl dni (x, t) =− ni (x, t) (Ci→j + Ri→j ) + nj (x, t) (Cj→i + Rj→i ) . dt j=1,i=j
j=1,i=j
1
!
dni (x, t)/dt = 0
1 2 ! ! ! 3 - !
ν ξ = − ln ν + const. t x n !℄ # $℄ %& β = v/c '℄ ( )* +
∂I(ξ, t, x, n) ∂ξ = −χ(t, x, ξ)(I(ξ, t, x, n) − S(t, x, ξ)) n ·∇x I(ξ, t, x, n) + w(x, n)
w(x, n) = n
∂β(x) ∂x
$ %
n
)
χ , - B B ϕ(ξ,ˆ ϑ, ξ) ξˆ ϑ
j→i
χ(t, x, ξ) =
i→j
ˆ h exp(−ξ) ˆ ϑ, ξ). (ni (x, t)Bi→j − nj (x, t)Bj→i ) ϕ(ξ, 4π
/
.
! n
A , - , ! 0 1 !℄ 2
S(t, x, ξ) =
ni (x, t)Ai→j nj (x, t)Bj→i − ni (x, t)Bi→j i→j
2 3& 4 $℄ 5
dni /dt = 0 !
"
#! !
$ % & ! '
ni (xk , t) ( ( ) * ! & ! ! + # ! ! % ,-#
! . ! /
! * /
! 0 * !
%
$
! "#$ ! #$ ! " "#$ % & '(℄ 1! * !
- - 23 45℄ &
* *
& ,)
!
7
1! 89&
! (
!
J = 0 → 1 ! "
# $ % & ' #( ! " # ! # )℄
! " #
#
$
% &''℄) # # #
* #
S
#
+ #
# ,
χ
#
S
χ
w
"
# % )
s
I(s, ξ; w) = S(s, ξ) − S(0, ξ − ws) exp −
ξ
exp − w1
ξ−ws
ξ
χ(ζ)dζ
η
− w1
" dS s −
ξ
χ(ζ)dζ
ξ−ws
ξ−η w ,η
dη
$
%-)
dη.
$ %
# #
I(s, ξ; w)
I(s, ¯ξ; w)
)
ξ # ξ . . . ξ + ∆ξ $ C D
*
ξ
I(s, ξ; w)
.
- #
E C D I(s, ξ; w) = S(s, ξ) − S(0, ξ − ws) exp − w1 −
ξ
E
ξ−ws
exp − w1
η
ξ
χ(ζ)dζ
F
" dS s −
ξ
χ(ζ)dζ
ξ−ws
ξ−η w ,η
dη
$
F
dη.
0
* #
ξˆl %l = 1 . . . )
%/)
#
# &'1℄ &2℄
E
exp − w1
exp
Θ
ξ
χ(ζ)dζ
ξ−ws
∞
F
=
ˆ ϑ) exp − 1 ̺(ξ, |w| −∞
ξ+|w|s/2
ξ−|w|s/2
ˆ ϑ, ζ − ξ)dζ ˆ χ(ξ,
−1
ˆ dξdϑ
Θ
ϑ
P (χ)
P (χ)
℄" ℄ # $ %
P (χ) P (χ)
&
℄"
℄ &
' (
% %
w
w ! ! " " # $%℄# $'℄
) * + #
xy
z xy κ ∝ T 5 κ ∝ T −5
!
!
" ! ! # $ ! $ %
℄
! " # "
κ(T (x)) (B(T (x)) − J(x))) = H(T (x))
$
κ % T B & ' J H H
$ " 5 H(T (x)) = q ∗ T (x) × 1 + (R(x) − 1/2)
()
0 < R < 1 " 1/2 q
* () "
" "
* % +
" " " κ ∝ T ±5 , J " B * $ * " " - " ." /℄ # , . 0 '12 3 " ! / 4 5 # 5 . . " + "
" 6 " " # " . ' " !
+ " 78 9,*
!"
"# $%& ' "
(
%
) # * * # +, & & - #. + / 0 0 0 # 1 " 2 / 34 1# 5
℄
! "# $%"" & %℄ ' ( ) * ) * $ +,& -℄ '. / /( 0 -(12304 3 5 6 '.6 7 8 )1 9 ) : $%"" &
#℄ ) '; 4 <8 2= < > ! ,", %""
℄ 9 ? < 0 / / ) $ +@& @℄ 0 5 A ! ," $%"""& ,℄ 0 5 AA 3 ! , $%"""& ℄ 0 5 AAA ) !
#
$%""%& +℄ 0 5 A= *9 5
9
! #- $%""-& "℄ (5 6 B
?C)0 +@- $ ++&
℄ B '
/ ) 0 D 2 (E F? ?G 'D ) %+ $%""%&
⋆ 1
2 1
2
!" # " #
# $ # %&' (
# ) * ) ( # ) + %&' # )
! " # $%&' %(' )(' %*' %)' %+℄ - . /0' # ! # /0 1 /0' $%&' %(' )(' %*' %)' )*' %2℄ #'
. - # ' 345 0 # 6 # -
# ⋆
, ! )
!" #
! #
$
%
" &
∇· B
'
'
(
)(
'
! #
! #
* ∇· B +
* & &
∇· B
+
,
! # -
$
'
( ,
'
! #
.!
! #
⎛
⎞ ρ ⎜ ρu ⎟ ⎜ ⎟ ⎞ ⎛ ⎜ ρv ⎟ ρu ⎜ ⎟ T 2 T⎟ ⎜ρw ⎟ ⎜ ⎜ ⎟ + div ⎜ρuu + (p +2B /2)I − BB ⎟ ⎜ e ⎟ ⎝ u(e + p + B /2) − B(uT B) ⎠ = 0 ⎜ ⎟ ⎜Bx ⎟ uBT − BuT ⎜ ⎟ ⎝By ⎠ Bz t
/"
⎛
⎞
⎛
⎞
ρ 0 ⎜ ρu ⎟ ⎜ Bx ⎟ ⎜ ⎟ ⎜ ⎟ ⎞ ⎛ ⎜ ρv ⎟ ⎜ By ⎟ ρu ⎜ ⎟ ⎜ ⎟ T 2 T⎟ ⎜ρw ⎟ ⎜ ⎜ Bz ⎟ ⎜ ⎟ + div ⎜ρuu + (p +2B /2)I − BB ⎟ ⎜ ⎟ = −(∇· B) ⎜ e ⎟ ⎜uT B⎟ ⎝ u(e + p + B /2) − B(uT B) ⎠ ⎜ ⎟ ⎜ ⎟ ⎜Bx ⎟ ⎜ u ⎟ uBT − BuT ⎜ ⎟ ⎜ ⎟ ⎝By ⎠ ⎝ v ⎠ Bz t w
(Bx , By , Bz )T ρ B 2 = Bx2 + By2 + Bz2
u = (u, v, w)T e
B =
1 1 p = (γ − 1)(e − ρ(u2 + v 2 + w2 ) − (Bx2 + By2 + Bz2 )). 2 2
γ
5/3
!
"#$ #% &℄
( )
∇· B = 0
∇· B
*
Ut + ∇ · F = 0, Ut + ∇ · F = S,
U
F
+,
S
% S S = 3i=1 Ni (U )Uxi (x1 , x2 , x3 ) = (x, y, z)
"-℄
∇· B = 0
!
! . /
0 1 2 / . , !
∇· B = 0
)
∇· B
)
3 , , ! ( ! 4 ) "#5 #$ #%℄ !
/ .
∇· B
∇· B
℄
! " #$ % & '℄ (
#℄ ) * )
* + *
, - + $*. / +
,
0 #1℄ +
* + 23
4 +
x*, 5 + ℄ 6 A(U ) / + ∂F/∂U F S x* #* + 4 * S x* N (U )Ux 7 8℄ 9 7 $℄ + : ; / +
:* ; / +
(A − N )
-
A A
* .
+ + < 23 => = * / +
(A − N )
+
+ + 8 $℄ 5 = 8 $℄ ? 7 23 => = + * 23 ) ? *
* +
+ $$ %℄
+ *
-
A(U ).
@
ǫ
+
*
*
+ + -
+ . A
: ; + B *
!
"#$% &'(℄
* + ,'- ! "#$% .
*
+ ,(-
% / "/0
, 1 2 - , 1 2 -
3
4
+
/
4 .
L
, 1 25
U
n
-
U ∗ = L(U n ),
,6-
n
"
7 1 1
1
F (U )x
∂F ≈ D06 Fj + d∆x7 (D+ D− )4 Uj , ∂x D06 D+ D−
,8-
1
9
1
d
0.00001 0.01
℄
! " # $! ! % &' ' & #
( ) (*+ , )
& , $- ! Ujn+1 = Uj∗ −
∆t f f [H − Hj−1/2 ]. ∆x j+1/2
.!
f / Hj+1/2 = Rj+1/2 H j+1/2 . 0 Rj+1/2 / 1 +0∗ / Aj+1/2 − Nj+1/2 ! 2 Uj+1/2 H j+1/2 3 2 U ∗ 4! - / 5
! l - H j+1/2 hj+1/2 , l = 1, 2, ..., 8
l
hj+1/2 = (ω)lj+1/2 (ϕlj+1/2 ).
6!
0 (ω)lj+1/2 & 7 / (ω)lj+1/2 8
!"# "$ %$ "& "%℄
(
l ϕlj+1/2 = gj+1/2 − blj+1/2
!"&℄ (
)
l
*
l gj+1/2
blj+1/2
+ ,
l
-
ϕlj+1/2
blj+1/2
ϕlj+1/2
.
, !"# "$ %$ "& "%℄
. , * / (0
blj+1/2 l ϕ j+1/2
1
)
-
ϕlj+1/2
2
, + 3
*0 4
5 6
- 4
5
4
5
(
7 !89℄
. , , 6
( , 33
33:0$
33
33:0$ (
;
d
<
*/
.
,
0.25
( =2> !%"℄ =2>? */
@7A
B C
,
!"#" $ % & '& ( ( ( )' ' ''' * ' ∇· B " ' %%$ % ' ( ( $ + ),,& ),, & * % ∇· B " '
+ - . L2 ∇· B % "' %" / 0" " ( 0" '' % ' 1 ∇· B '' %
γ = 1.4
#'(''1 ' ( " %(" ( 23& 45& 6℄ ( " "% 23℄ * * 8 4 % ('" x(' ' * 8 4 ,,9) 6 -$ ' * ' % ( -d = 0.001. '" *" :' % ) %% T = 0.5& %' " '( '
" T = 0.5 * 5; 0" " '(' * ;< 43 " 8( '(' : & '& 51 × 101& 101 × 201& 201 × 401& 401 × 801 801 × 1601 = : ' + * ' % - 669) 4;& d = 0.001. " '" %" " d = 0 - 66. ' :( ) 0.5 %' " > ( / %" *(& ?* ('( ' & / %" 0" & %"% $ ∇· B " ' * ?* '' " / %" 8" 3 * -'. ∇· B -'. " T = 0.5& L2 ∇· B " -. -% *. - *. %" ),, ),, * 8 5 ∇· B " * 30 0" " '(' * −150 150 " > " * ' ' - " 3 . & $ '' '' " ( : @ %' '' "' ' % :$ % 23,℄ " " ),,& ),,9) 6& ),, ),,9) 6 '' ' $
" ' 669) 6 -:" *. '( ( ( ( ( ( * :' *(& ∇· B " ' ( + * " A :' B % ( A:' ''B
x !"#$% & '('×)('
*+ ∇· B *
+ T = 0.5, L2 ∇· B
*+ -.!/ * 0+ 1"# * 0+
" # $ %& '
( )** )+**
, &' -( ∇· B &
∇· B T = 0.5 L2 ∇· B
! "# $ % &"' ! %
γ = 5/3 - ./ 0 (
1.℄ 3 &
4
5 "' 6 7 ' &
' 8 9 8( 9 (
5 "' & T = 0.2 5 6: & %&
(5 :; .<
&
& 0 (
5
& = & (
'
) ' & & & ( 5
& # & , 5 .6 ' & , &' ∇· B & L2 ∇· B & ∇· B 5 5 '
'# )** )**>)/? )+** )+**>)/?
! "#$ ! % &% '( &' '( )%
L2 ∇· B ∇· B T
= 0.2 !" #$ $ %& '& ((& $ '& )&* #$ ((& && ( ) $* 201 × 201 401 × 401 801 × 801 (
γ = 5/3
℄
! " #" $ " % " % & ' (' $ # $ )*+,,-*. T = 3.14 # /0 1 " / 0 1 % 0# ' " $ # " ' % 2 " # %
" 3% ' # 4 ' 5≈ π6 %
! ! !
!""# $ %& 801 × 801 T = 3.14' " #
$%&'( ) * $+,#
$+,# - ! . /0,# 1
$+,# 1 -! . $+,# T < 0.7 /0,#
$+ )d = 0* /0 )d = 0*
2 ! 3 ! /02! $+2! 101 × 101 045/6 3
27 $%&'(
L2 ∇· B ∇· B
# $$ % # & $$ #
!"
'())*'+, L2 ∇· B - ∇· B T = 3.14 - ! &% .% % &% .% %%
#
∇· B
! " # !# $%&' ( )* # +,-. ) ! ! ∇· B /01℄ !
3 ) ! ! !
/4℄ 5 & 6 6 # # 7 & 5 !# ½ 8499:;# <<=<== /℄ # ># >?# & # ) % # + # # 7 & 5 !# 811;# =<@=:0 /0℄ AB 7 5 # !" #$ % % & ' ( 5 ! B# 849C9;# 4@04:4 /<℄ + 5 A +# & ' ) 7 & 5 !# 8499C;# 0040=9 /@℄ + 5A +# !' ! * ! ' ( ! 7# 8499C;# 04:00@ /=℄ % "# ! + " +! ,
- # D 5 114=0# 8114; /:℄ &A , 7 !# ' . & " # ! 7 849CC;# =@9=:: /C℄ "# )+ 7# A! 7B 6# " ! / ! . & "! ( ! 7 8499=;# ::::90 /9℄ 6 6 # 0 1 !2 ( 0 ! # 5 ) # 'E$F BG D# 499:
½
℄
!"#$
! "# ' ) *( +# #,"! " '- ". $ % &' ' ) *( ! "+ % - / 0 0 ' & ! (! ) % * %)( ' ! +"! % 12- 3 +# , 3 4 ' 5 "$# ' * 0/ 64 - ! ')+ - . / %%/ # *( 5 /
℄ % & ' &(
℄
#℄
$℄
,℄
"$$
. 0 ! 1+ # ' , 2 8%9"0) $"$
!℄ *7
%% :-( 0 %) $
! 3# % ' ) *( +$"# / <=- & > ! 4 ! & , + 08%
℄ *7 *: 0 3' : 38 4 6: 6 ; 7
+℄
3 0) 30 %% % 1 )) ' ) -
! '
. 3 - # 08%
℄ / <=- & >
3 0) 30! %) %% % ? %8%% ", * - , %8%% 56 '
# "! " # ,! ' & 0 ! # 08% 0) 30"
"$ % % ' ) *( ℄ /
<=-
&
>
%% % 0 ( ? * - 91" % ) 5 6( 7 . @ )4 $"
' ,5 . # * - 8"
℄ / <=- & >
&()4 *4 ," * %
$ " # ,! '
, # %6 4 + %8%% #"$+ * "
℄ / <=- & >
- ! %8%%A56 ' #"! # 1 5
+ ! 478 ' ) *( !,"!,
#℄ 3B
℄
∇· B
" # $% & '
!℄ " #
$ % &!'
( &&&
& %( ) # *% &
℄
#
)* $ ',&
,& '
$ %,&&'' -. '
" # *%& + &
%
/℄ # $"0 " ( 1 0
0 2
(
½ 34 ,5'
'℄ # " ( 1 0
,
( 0 2
#
3&&&4 55,'
"% # %- )
℄ # " 6 $17
% . - 8 0
39" : 6 ; 4 )8 "0 . 3&&4< =*$ % = %=&,' &&
" #
)). / ∇· B ,
5&℄ # " 6 $17
=*$ = %=&5& (2 &&5
, 0 0
5℄ )$#
3
*999 %
4 5&>5&/
%" ' )
5℄ ? 2
0
"
$* ( $
34 5,'
℄
Ex , Hy
℄
℄
℄ β = 10−5
℄ β = 3 × 10−6
℄ β = 10−5
℄
! " # $ % ##
!
℄
5
! " ℄ #"!
℄
℄ ! ν = 0.1"
" # ! $% & D = 800
' !
℄
! ℄ "##$$ % & '
# ' ()(*) #&℄
℄ " # $ Us = 0mm · s−1 %&' 3mm · s−1 %(&' 6mm · s−1 %& 9mm · s−1 %&
℄ ) *
+ , "
ED (M=24) DMRG (np=7;m=600)
0.5
-5.0
Ekin(ep=2,U)
ED: U/t=2 ED: U/t=4 ED: U/t=6
-6.0
DMRG
Ekin(εp=2,U/t)/Ekin(0,0)
1.0
-7.0 -8.0 4
0.0 0.0
2.0
8
12
16
M
20
4.0 U/t
24
8.0
6.0
℄ g2 = 2 ω0 /t = 1 !" "#$
Ekin % U g2 = 2 ω0 /t = 1& ' !"
(% M ) "#$ np = 6 ( m = 1000 U/t
reg
σ (ω) [arbitrary units]
3 ED DDMRG η=1 DDMRG η=0.2 DDMRG η=0.1
2
1
0 0
1
2
3
4 ω
5
6
7
8
℄ * ' N = 8 # ω0 = 1 ) ""#$ m = 200 % η = 1+ η = 0.2 η = 0.1+ ' ' η ,-( % U/t = 6+ g 2 = 2
℄ t = 0.3 ! "
# $
%& " " "
"
t = 0.5 " " + +
℄ ' !
$ ( ' ! ) * " 3.5 ( 6.5
℄ ! " # ! "$ # #
℄ %# & & ' ! " ( ' !"
) * ℄ *+ # ,-% ' & *./ 01 ' # 23 4 * 0&3
℄
℄
℄
& '
! "# $ % $ $
℄
℄ ! " # $ # % & '
( () ℄ #
& # &
℄
℄
℄
!
℄ !" #
℄ %% % & %
%%
℄ ' ()))
℄
!"
℄ # $% ! &! '
℄ # $ ! &( *
# + +(
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
0
P0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
1
P1
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
2
P2
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
3
So
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
4
dd
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
5
So
B
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
6
N0
U2
B
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
7
So
U3
P
WV A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
8
N0
C
Z
WT
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
9
N1
Z
Z
WT A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
10
N0
C
Z
WT A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
11
So
Z
C
WT
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
12
N0
Z
Z
WX
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
13
So
Z
C
wx
R
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
14
N0
C
Z
J0
R
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
15
N1
Z
Z
J1
B
R
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
16
N0
C
Z
WZ
S
C
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
17
So
Z
C
WZ U0
Z
B
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
18
N0
Z
Z
WC U1
C
P
B
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
19
So
Z
C
WZ U2
Z
D1
S
WV A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
20
N0
C
Z
WZ U3
Z
D2
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
21
N1
Z
Z
WZ
C
Z
Z
Z
WT
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
22
N0
C
Z
WC
Z
Z
Z
Z
WT A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
23
So
Z
H0
WZ
C
Z
Z
Z
WT A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
24
N0
C
H1
WC
Z
C
Z
Z
WT
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
Q
25
N1
H1
C
WZ
Z
Z
C
Z
WT
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
Q
26
N0
C
Z
WZ
Z
Z
Z
C
WT
R
R
A0
Q
Q
Q
Q
Q
Q
Q
Q
27
N1
Z
Z
WZ
Z
Z
Z
Z
WX
R
R
A1
Q
Q
Q
Q
Q
Q
Q
Q
28
N0
C
Z
WZ
Z
Z
Z
C
wx
R
R
R
A0
Q
Q
Q
Q
Q
Q
Q
29
So
Z
C
WZ
Z
Z
C
Z
J0
R
R
R
A1
Q
Q
Q
Q
Q
Q
Q
30
N0
Z
Z
WC
Z
C
Z
Z
J1
B
R
R
R
A0
Q
Q
Q
Q
Q
Q
31
So
Z
C
WZ
C
Z
Z
Z
WZ
S
B
R
R
A1
Q
Q
Q
Q
Q
Q
32
N0
C
Z
WC
Z
Z
Z
Z
WZ D0
S
B
R
R
A0
Q
Q
Q
Q
Q
33
N1
Z
C
WZ
C
Z
Z
Z
WZ D1
S
S
C
R
A1
Q
Q
Q
Q
Q
34
N0
H0
Z
WZ
Z
C
Z
Z
WZ D2
S
C
Z
B
R
A0
Q
Q
Q
Q
35
N1
H1
C
WZ
Z
Z
C
Z
WZ
Z
U0
Z
Z
P
B
A1
Q
Q
Q
Q
36
N0
Z
Z
WC
Z
Z
Z
C
WZ
Z
U1
C
Z
P
S
WV A0
Q
Q
Q
37
So
Z
C
WZ
Z
Z
Z
Z
WC
Z
U2
Z
C
P
C
WY
Q
Q
Q
Q
38
N0
C
Z
WZ
Z
Z
Z
C
WZ
Z
U3
Z
Z
C
Z
WY
Q
Q
Q
Q
39
N1
Z
Z
WZ
Z
Z
C
Z
WZ
Z
C
Z
Z
Z
C
WY
Q
Q
Q
Q
40
N0
C
Z
WZ
Z
C
Z
Z
WZ
C
Z
Z
Z
Z
Z
WT
Q
Q
Q
Q
℄ 1−bit
U0 WY
step 0
step 1
1
2
3
4
5
6
7
8
1
1
PWLT
Q
Q
Q
Q
Q
Q
QW
1
2
Q
Q
Q
Q
Q
Q
Q
QW
3
Q
Q
Q
Q
Q
Q
Q
QW
4
Q
Q
Q
Q
Q
Q
Q
5
Q
Q
Q
Q
Q
Q
6
Q
Q
Q
Q
Q
7
Q
Q
Q
Q
8
QW
QW
QW
2
3
1
7
8
1
2
3
4
5
6
7
8
PWLT
AR’
xPWLT
Q
Q
Q
Q
QW
1
PWLT
BR01
AR’
xPWLT
Q
Q
Q
QW
2
aR’
xPWLT
Q
Q
Q
Q
Q
QW
2
bR01
PWLT xPWLT
Q
Q
Q
Q
QW
3
xPWLT
Q
Q
Q
Q
Q
Q
QW
3
aR’
xPWLT
Q
Q
Q
Q
Q
QW
QW
4
Q
Q
Q
Q
Q
Q
Q
QW
4
xPWLT
Q
Q
Q
Q
Q
Q
QW
Q
QW
5
Q
Q
Q
Q
Q
Q
Q
QW
5
Q
Q
Q
Q
Q
Q
Q
QW
Q
Q
QW
6
Q
Q
Q
Q
Q
Q
Q
QW
6
Q
Q
Q
Q
Q
Q
Q
QW
Q
Q
Q
QW
7
Q
Q
Q
Q
Q
Q
Q
QW
7
Q
Q
Q
Q
Q
Q
Q
QW
QW
QW
QW
QW
8
QW
QW
QW
QW
QW
QW
QW
QW
8
QW
QW
QW
QW
QW
QW
QW
QW
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
BR11
QRB
subH
AR’
xPWLT
QW
1
PWLT
BR0u1
BR10
QRC
odd
subH
AR’
xPWRB
PWLT xPWLT
Q
Q
Q
Q
Q
QW
1
2
xPWLT
Q
Q
Q
Q
Q
Q
QW
3
Q
Q
Q
Q
Q
Q
Q
QW
QW
4
Q
Q
Q
Q
Q
Q
Q
Q
QW
5
Q
Q
Q
Q
Q
Q
Q
Q
QW
6
Q
Q
Q
Q
Q
Q
Q
Q
QW
7
Q
Q
Q
Q
QW
QW
QW
QW
QW
8
QW
QW
QW
QW
4
5
6
7
8
subH
AR’
xPWLT
Q
Q
QW
AR’
xPWLT
Q
Q
Q
QW
3
subV
aR’
xPWLT
Q
Q
Q
Q
QW
4
aR’
xPWLT
Q
Q
Q
Q
Q
QW
5
xPWLT
Q
Q
Q
Q
Q
Q
QW
6
Q
Q
Q
Q
Q
Q
Q
QW
Q
Q
QW
Q
QW
Q
QW
Q
QW
Q
QW
1
2
3
4
5
6
7
8
1
PWLT
BR0S
odd
subH
AR’
xPWLT
Q
QW
1
PWLT
QR0S
2
bR0S
PWLT
BR01
AR’
xPWLT
Q
Q
QW
2
QR0S
PWLT
BR00
subH
AR’
xPWLT
Q
QW
2
bR0u1
PWLT
BR0S
odd
subH
AR’
xPWLT
QW
3
odd
bR01
PWLT xPWLT
Q
Q
Q
QW
3
bR11
bR00
PWLT
AR’
xPWLT
Q
Q
QW
3
bR10
bR0S
PWLT
BR01
AR’
xPWLT
Q
QW
4
subV
aR’
xPWLT
Q
Q
Q
Q
QW
4
QRB
subV
aR’
xPWLT
Q
Q
Q
QW
4
QRC
odd
bR01
PWLT xPWLT
Q
Q
QW
5
aR’
xPWLT
Q
Q
Q
Q
Q
QW
5
subV
aR’
xPWLT
Q
Q
Q
Q
QW
5
odd
subV
aR’
xPWLT
Q
Q
Q
QW
6
xPWLT
Q
Q
Q
Q
Q
Q
QW
6
aR’
xPWLT
Q
Q
Q
Q
Q
QW
6
subV
aR’
xPWLT
Q
Q
Q
Q
QW
xPWLT
Q
Q
Q
Q
Q
Q
QW
7
aR’
xPWLT
Q
Q
Q
Q
Q
QW
QW
QW
QW
QW
QW
QW
QW
QW
8
xPWRB
QW
QW
QW
QW
QW
QW
QW
7
Q
Q
Q
Q
Q
Q
Q
QW
7
8
QW
QW
QW
QW
QW
QW
QW
QW
8
QW
QW
QW
step 9
step 8 1
2
3
4
5
6
7
8
1
PWLT
BR0u0
BR1S
QRD
QRC
QRB
subH
PWRB
2
bR0u0
PWLT
QR0S
BR11
QRB
subH
AR’
xPWRB
3
bR1S
QR0S
PWLT
BR00
subH
AR’
xPWLT
QW
4
QRD
bR11
bR00
PWLT
AR’
xPWLT
Q
QW
5
QRC
QRB
subV
aR’
xPWLT
Q
Q
QW
6
QRB
subV
aR’
xPWLT
Q
Q
Q
QW
7
subV
aR’
xPWLT
Q
Q
Q
Q
QW
QW
QW
QW
QW
QW
QW
PWRB xPWRB
step 7
step 6
step 5
BR00
2
3
4
5
6
7
8
1
PWLT
BR0uS
QR10
BR01
QRD
QRC
AL1
PWRB
2
bR0uS
PWLT
BR0u1
BR10
QRC
odd
subH
PWRB
3
QR10
bR0u1
PWLT
BR0S
odd
subH
AR’
xPWRB
4
bR01
bR10
bR0S
PWLT
BR01
AR’
xPWLT
QW
5
QRD
QRC
odd
bR01
PWLT xPWLT
Q
QW
6
QRC
odd
subV
aR’
xPWLT
Q
Q
QW
7
AL1
subV
aR’
xPWLT
Q
Q
Q
QW
QW
QW
QW
QW
QW
PWRB PWRB xPWRB
2
3
4
5
6
7
8
1
PWLT
BR0v0
RL1
P1d
PA
QLB
BL00
PWRB
2
bR0v0
PWLT
BR0v0
QR11
P1s
QLA
BL00
3
RL1
bR0v0
PWLT
BR0u0
BR1S
AL
QLA
4
p1d
QR11
bR0u0
PWLT
QR0S
BR11
5
pA
p1s
bR1S
QR0S
PWLT
6
QLB
QLA
AL
bR11
7
bL00
bL00
QLA
AL0
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
PWLT
BR0v0
QR11
BR00
QRA
AL
QLA
PWRB
1
PWLT
BR0v1
QR10
BR0S
AL
QLA
BL01
PWRB
2
bR0v0
PWLT
BR0u0
BR1S
QRD
QRC
AL0
PWRB
2
bR0v1
PWLT
BR0uS
QR10
BR01
AL
BL01
PWRB
3
QR11
bR0u0
PWLT
QR0S
BR11
QRB
subH
PWRB
3
QR10
bR0uS
PWLT
BR0u1
BR10
QRC
AL1
PWRB
4
bR00
bR1S
QR0S
PWLT
BR00
subH
AR’
xPWRB
4
bR0S
QR10
bR0u1
PWLT
BR0S
odd
subH
PWRB
5
QRA
QRD
bR11
bR00
PWLT
AR’
xPWLT
QW
5
AL
bR01
bR10
bR0S
PWLT
BR01
AR’
xPWRB
6
AL
QRC
QRB
subV
aR’
xPWLT
Q
QW
6
QLA
AL
QRC
odd
bR01
7
QLA
AL0
subV
aR’
xPWLT
Q
Q
QW
7
bL01
bL01
AL1
subV
aR’
QW
QW
QW
QW
8
8
step 13
1
PWRB PWRB PWRB xPWRB
2
3
4
5
6
7
8
1
PWLT
BR0vS
AL
P1
P1
AR
BL0S
PWRB
1
PWRB
2
bR0vS
PWLT
BR0v1
AL
P1
AR
BL0S
PWRB
PWRB
3
AL
bR0v1
PWLT
BR0uS
P0d
PA
BL01
PWRB
AL0
PWRB
4
p1
AL
bR0uS
PWLT
BR0u1
P0s
BL01
BR00
subH
PWRB
5
p1
p1
p0d
bR0u1
PWLT
BR0S
bR00
PWLT
AR’
xPWRB
6
AR
AR
pA
p0s
bR0S
subV
aR’
xPWLT
QW
7
bL0S
bL0S
bL01
bL01
AL1
QW
QW
8
PWRB PWRB PWRB PWRB PWRB
1
2
3
4
5
6
7
8
PWLT
P1
PA
P1
P1
PA
P1
PWRB
2
p1
PWLT
P1
PA
P1
PA
P1
PWRB
3
pA
p1
PWLT
P0
P0
P0
P0
PWRB
PWRB
4
p1
pA
p0
PWLT
P0
P0
P0
PWRB
AL1
PWRB
5
p1
p1
p0
p0
PWLT
P1
P1
PWRB
PWLT
BR01
PWRB
6
pA
pA
p0
p0
p1
PWLT
P0
PWRB
bR01
PWLT xPWRB
7
p1
p1
p0
p0
p1
p0
PWLT
PWRB
PWRB xPWRB
QW
8
PWRB PWRB PWRB PWRB xPWRB
PWLT xPWLT
QW
xPWLT
Q
QW
QW
QW
QW
step 15
step 14
1
PWRB PWRB PWRB PWRB PWRB xPWRB
step 11
step 10
1
8
step 12
8
6
8
PWLT
8
5
7
bR00
QW
4
6
PWLT
8
3
5
1
Q
2
4
2
7
1
3
step 4
step 3
step 2 2
PWRB PWRB PWRB PWRB PWRB PWRB
1
2
3
4
5
6
7
8
1
T
T
T
T
T
T
T
T
2
T
T
T
T
T
T
T
T
3
T
T
T
T
T
T
T
T
4
T
T
T
T
T
T
T
T
5
T
T
T
T
T
T
T
T
6
T
T
T
T
T
T
T
T
7
T
T
T
T
T
T
T
T
8
T
T
T
T
T
T
T
T
PWRB xPWRB
℄ (2n − 1)
! " "
step 0
step 1
1
2
3
4
5
6
7
8
1
xJ
Q
Q
Q
Q
Q
Q
CQX
2
Q
Q
Q
Q
Q
Q
Q
3
Q
Q
Q
Q
Q
Q
Q
4
Q
Q
Q
Q
Q
Q
5
CQX
VQX
VQX
VQX
VQX
VQX
2
3
4
5
6
7
8
1
JP
xH
Q
Q
Q
Q
Q
CQX
HQX
2
xV
Q
Q
Q
Q
Q
Q
HQX
3
Q
Q
Q
Q
Q
Q
Q
Q
HQX
4
Q
Q
Q
Q
Q
Q
VQX
JQX
5
CQX
VQX
VQX
VQX
VQX
VQX
step 4
step 3
step 2
1
1
2
3
4
5
6
7
8
1
JD1
HS
xH
Q
Q
Q
Q
CQX
HQX
2
VL
xJ2
Q
Q
Q
Q
Q
HQX
HQX
3
xV
Q
Q
Q
Q
Q
Q
HQX
Q
HQX
4
Q
Q
Q
Q
Q
Q
Q
HQX
VQX
JQX
5
CQX
VQX
VQX
VQX
VQX
VQX
VQX
JQX
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
JD1
HQR2
HQRS
HS
xH
Q
Q
CQX
1
JD2
HQR1
HQR2
HQRS
HS
xH
Q
CQX
1
JD1
HQR2
HQR1
HQR2
HQRS
HS
xH
CQX
2
VQL2
JP
xH
xJ2
Q
Q
Q
HQX
2
VQL1
JD1
HS
xH
xJ2
Q
Q
HQX
2
VQL2
JD2
HQRS
HS
xH
xJ2
Q
3
VQLS
xV
xJ2
Q
Q
Q
Q
HQX
3
VQL2
VL
xJ2
xJ2
Q
Q
Q
HQX
3
VQL1
VQLS
xJ
xJ2
xJ2
Q
Q
4
VL
xJ2
Q
Q
Q
Q
Q
HQX
4
VQLS
xV
xJ2
Q
Q
Q
Q
HQX
4
VIX
VL
xJ2
xJ2
Q
Q
5
xCQX
VQX
VQX
VQX
VQX
VQX
VQX
JQX
5
VKXs
xVQX1
VQX
VQX
VQX
VQX
VQX
JQX
5
VKX
xCQX
xVQX1
VQX
VQX
VQX
1
1
1
2
3
4
5
6
7
8
JD1
HQR2
HQR1
HQR2
HQR1
HQR2
HQRS
HKXs
1
1
2
3
4
5
6
7
8
JX
HQR1
HQR2
HQR1
HQR2
HQR1
HGX
HKX
1
2
3
4
5
6
7
8
JD2
HQRS
HS
xH
Q
Q
Q
CQX
2
VQLS
xJ
xJ2
Q
Q
Q
Q
HQX
3
VL
xJ2
Q
Q
Q
Q
Q
HQX
4
xV
Q
Q
Q
Q
Q
Q
HQX
5
CQX
VQX
VQX
VQX
VQX
VQX
VQX
JQX
1
2
3
4
5
6
7
8
1
JD2
HQR1
HQR2
HQR1
HQR2
HQRS
HS
xCQX
HQX
2
VQL1
JD1
HQR2
HQRS
HS
xH
xJ2
HQX
HQX
3
VI0
VQL2
JP
xH
xJ2
xJ2
Q
HQX
Q
HQX
4
VAR1
VQLS
xV
xJ2
xJ2
Q
Q
HQX
VQX
JQX
5
VKX
VKXs
VQX
VQX
VQX
JQX
step 10
step 9
step 8
1
1
step 7
step 6
step 5
xVQX1 xVQX1
step 11
1
2
3
4
5
6
7
8
JFXB
HW
HQR1
HQR2
HQR1
HG0
HAL1
HKX
1
1
2
3
4
5
6
7
8
JBr2
HFW
HW
HQR1
HG0
HQLA
HAL2
HKX
2
VI0
JD2
HQR1
HQR2
HQRS
HS
xH
xHQX1
2
V<S
JD1
HQR2
HQR1
HQR2
HQRS
HS
xCQX
2
V
JX
HQR1
HQR2
HQR1
HQR2
HQRS
HKXs
2
VQRe2
JFXA
HW
HQR1
HQR2
HQR1
HGX
HKX
3
VQRA
VQL1
JD1
HS
xH
xJ2
xJ2
HQX
3
VQRB
VI0
JD2
HQRS
HS
xH
xJ2
xHQX1
3
VsBRA
V<S
JD1
HQR2
HQRS
HS
xH
xHQX1
3
VSBRA
V
JX
HQR1
HQR2
HQRS
HS
xCQX
4
VAR2
VIX
VL
xJ2
xJ2
xJ2
Q
HQX
4
VAR3
VAR1
VQLS
xJ
xJ2
xJ2
xJ2
HQX
4
VQRE0 VAR2
xH
xJ2
xJ2
xHQX1
4
HS
xH
xJ2
xHQX1
5
VKX
VKX
xCQX
xVQX1 xVQX1
VQX
VQX
JQX
5
VKX
VKX
VKXs
VQX
JQX
5
JQX
5
step 13
step 12 1
2
3
4
5
6
7
8
1
JBr3
HQRd
HFW
HGW
HQLA
HQLB
HAL3
HKX
1
2
VQRe1
JAr2
HFW
HW
HQR1
HG0
HAL1
HKX
2
3
VBRa
VQRo2
JFXB
HW
HQR1
HQR2
HQRS
HKXs
3
4
VfARA VSARD VSARA
JX
HQRS
HS
xH
xHQX1
4
VKX
xH
JQX
5
5
VKX
VKX
VKX
xVQX1 xVQX1
step 16
1
xVQX1 xVQX1 xVQX1
2
3
4
5
6
7
8
JRo
HK1d
HKA
HQLb
HQLc
HBl1
HFALA
HKX
1
VKX
VIX
JP
VKX
xCQX
xVQX1 xVQX1 xVQX1
VARA VsARD VsARA
VKX
VKX
VKX
JD1
VKXs
xVQX1 xVQX1 xVQX1
1
2
3
4
5
6
7
8
1
2
3
4
5
1
JQRo2
HAr2
HQRa
HG
HFB>
HfBL1
HALA
HKX
1
JQRo1
HAr3
HG
HQLa
HQLb
HKX
2
VQRe0 JQRe1
HBr1
HQRb
HFGW
HB>
HAL3
HKX
2
VQRe2 JQRe2
HBr2
HQRc
HKX
3
VBRc
VRo
JBr3
HQRd
HFW
HGW
HAL1
HKX
3
VBRe
HAr1
HS
xCQX
4
VARb
VARe
VARb
JAr2
HFW
HW
HQRS
HKXs
4
VARa
VARf
VARc
JAr3
xVQX1
JQX
5
VKX
VKX
VKX
VKX
HfPX
HS
xH
JQX
5
VKX
VKX
VKX
VKX
2
3
4
5
6
7
8
JQRo1
HAr1
HQRd
HFGW
HB>
HBL1
HQLE0
HKX
VRe
JAr3
HQRb
HFW
HGW
HQLA
HAL2
VBRb
VQRo1
JBr2
HFW
HW
HQR1
HGX
VARa
VARd
VARa
JFXA
HW
HQRS
VKX
VKX
VKX
VKX
HPX
xH
2
3
4
5
6
7
8
JG
HK1
HK1
HI
HQLd
HBl2
HALa
HKX
1
VQRo0 JQRo1
6
7
8
HFBL1 HfALA
HKX
HG
HFB>
HfAL3
HKX
HQRd
HFGW
HfAL1
HKX
HQRb
HFW
HGXX
HKX
HFPX
HtSX
HS
xJQX
step 19
step 18
1
JQX
step 15
step 14
1
step 17
1
VKX
1
2
3
4
5
6
7
8
JQLa
HK1
HK1
HQRa
HI
HBl3
HALb
HKX
1
1
2
3
4
5
6
7
8
JAl1
HK1
HK1
HAr1
HKA
HK0d
HALc
HKX
HBr3
HG
HQLa
HQLb
HFAL3
HKX
2
VRe
JRe
HK0d
HKA
HQLb
HQLc
HAl3
HKX
2
VG
JG
HK0
HK0
HI
HBl1
HQLe0
HKX
2
VKA
JAl1
HK0
HK0
HAr1
HK0s
HALa
HKX
3
VBRd
VBRa
JQRo2
HAr2
HQRa
HG
HFAL1
HKX
3
VBRe
VBRb
JQRo1
HAr3
HG
HQLa
HAl1
HKX
3
VBRf
VBRc
JRo
HK1d
HKA
HQLb
HAl2
HKX
3
VK0d
VK0s
JG
HK1
HK1
HI
HAl3
HKX
4
VARb
VQRe0
VARe
JQRe0
HBr1
HQRb HFGOX
HKX
4
VARa
VARa
VARd
JARa
HBr2
HQRc
HGOx
HKX
4
VARb
VARb
VARe
JARb
HBr3
HG
HQLa
HKX
4
VARc
VARa
VARf
JARc
HK0d
HKA
HAl1
HKX
5
VKX
VKX
VKX
VKX
HKX
HTSX
HKXs
5
VKX
VKX
VKX
VKX
HKX
HAr1
HTSX
HKX
5
VKX
VKX
VKX
VKX
HKX
HAr2
Hsubr
HKX
5
VKX
VKX
VKX
VKX
HKX
HAr3
HGOx
HKX
2
VQRe1 JQRe1
HtSX
step 21
step 20 1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
JK0
HK1
HK1
HK0
HK0
HK0
HK0
HKX
1
T
T
T
T
T
T
T
T
2
VK0
JK0
HK0
HK0
HK0
HK0
HK0
HKX
2
T
T
T
T
T
T
T
T
3
VK0
VK0
JKA
HK1
HK1
HKA
HK1
HKX
3
T
T
T
T
T
T
T
T
4
VK0
VK0
VK1
JK0
HK0
HK0
HK0
HKX
4
T
T
T
T
T
T
T
T
5
VKX
VKX
VKX
VKX
HKX
HK1
HKA
HKX
5
T
T
T
T
T
T
T
T
℄ !
step 0
step 1
step 3
step 2
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
QX
QXT
QXT
QXT
QXT
QXT
QXT
QXX
1
QX
QXT
QXT
QXT
QXT
QXT
QXT
QXX
1
QX
QXT
QXT
ctrl
QXT
QXT
QXT
QXX
1
QX
QXT
L
QLS
D2
QXT
QXT
QXX
2
QXL
Q
Q
Q
Q
Q
Q
QXR
2
QXL
Q
Q
ctrl
Q
Q
Q
QXR
2
QXL
Q
L
QLS
D2
Q
Q
QXR
2
QXL
L
QLS
QL2
D1
D2
Q
QXR
3
QXL
Q
Q
P
Q
Q
Q
QXR
3
QXL
Q
ctrl
D1
ctrl
Q
Q
QXR
3
QXL
ctrl
QLS
D2
QRS
ctrl
Q
QXR
3
ctrl
QLS
QL2
D1
QR2
QRS
ctrl
QXR
4
QXL
Q
Q
Q
Q
Q
Q
QXR
4
QXL
Q
Q
ctrl
Q
Q
Q
QXR
4
QXL
Q
D2
QRS
S
Q
Q
QXR
4
QXL
D2
D1
QR2
QRS
S
Q
QXR
QX
5
QXX
QXB
D2
QRS
S
QXB
QXB
QX
5
QXX
QXB
QXB
QXB
QXB
QXB
QXB
QX
step 4
QXB
QXB
QXB
QX
5
6
7
8
1
KXs
QLS
QL2
QL1
QL2
D1
D2
QXX
1
QXR
2
QLS
QL2
QL1
QL2
D1
QR2
QR1
D2
ctrl
3
QL2
QL1
QL2
D1
QR2
QR1
QR2
QRS
S
QXR
4
QL1
QL2
D1
QR2
QR1
QR2
QRS
QXB
QX
5
D2
D1
QR2
QR1
QR2
QRS
S
6
7
8
QX
L
QLS
QL2
QL1
D2
QXT
QXX
2
L
QLS
QL2
QL1
D2
QR1
D2
3
QLS
QL2
QL1
D2
QR1
QR2
QRS
4
D2
QL1
D2
QR1
QR2
QRS
5
QXX
D2
QR1
QR2
QRS
S
step 8 1
2
3
4
5
6
7
8
1
KX
AR2
QRA
I0
QL1
D2
QR1
QR2
2
AR2
QRA
I0
QL1
D2
QR1
QR2
QR1
3
QRA
I0
QL1
D2
QR1
QR2
QR1
G0
4
I0
QL1
D2
QR1
QR2
QR1
G0
AL1
QR1
QR2
QR1
G0
AL1
1
3
QXB
QXB
QXB
step 7 2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
KX
IX
QL1
QL2
QL1
D2
QR1
D2
1
KX
AR1
I0
QL1
QL2
D1
QR2
QR1
2
IX
QL1
QL2
QL1
D2
QR1
QR2
QR1
2
AR1
I0
QL1
QL2
D1
QR2
QR1
QR2
3
QL1
QL2
QL1
D2
QR1
QR2
QR1
QR2
3
I0
QL1
QL2
D1
QR2
QR1
QR2
QR1
S
4
QL2
QL1
D2
QR1
QR2
QR1
QR2
QRS
4
QL1
QL2
D1
QR2
QR1
QR2
QR1
GX
QX
5
QL1
D2
QR1
QR2
QR1
QR2
QRS
KXs
5
QL2
D1
QR2
QR1
QR2
QR1
GX
KX
step 10
1
2
3
4
5
6
7
8
KX
AR3
QRB
QRA
I0
D1
QR2
QR1
2
QRA
1
1
step 11
2
KX
3
QRE0 BR1
QRE0 BR1
4
5
6
7
8
QRB
<S
X
QR1
G0
QRB
1
2
3
4
5
6
7
8
1
KX
ARA
BR2
<S
FXA
GW
QLA
BR2
AR3
QRB
I0
D1
QR2
QR1
G0
2
<S
X
QR1
G0
QLA
2
ARA
<S
FXA
GW
QLA
3
QRB
QRA
I0
D1
QR2
QR1
G0
QLA
3
BR1
QRB
<S
X
QR1
G0
QLA
QLB
3
BR2
<S
FXA
GW
QLA
QLB
BL1
4
QRA
I0
D1
QR2
QR1
G0
QLA
AL2
4
QRB
<S
X
QR1
G0
QLA
QLB
AL3
4
<S
FXA
GW
QLA
QLB
BL1
QLE0
5
I0
D1
QR2
QR1
G0
QLA
AL2
KX
5
<S
X
QR1
G0
QLA
QLB
AL3
KX
5
FXA
GW
QLA
QLB
BL1
QLE0
KX
3
4
step 13
2
1
step 14
2
QLB
7
8
1
2
3
4
5
6
7
8
G
FB>
1
KX
fARA
BRd
QRe1
Ro
K1d
KA
QLb
Ar3
G
FB>
D>
2
fARA
BRd
QRe1
Ro
K1d
KA
QLb
FD>
Ar3
G
FB>
D>
BL3
3
BRd
QRe1
Ro
K1d
KA
QLb
FD>
fBL3
Ar3
G
FB>
D>
BL3
ALB
4
QRe1
Ro
K1d
KA
QLb
FD>
fBL3
ALC
G
FB>
D>
BL3
ALB
KX
5
Ro
K1d
KA
QLb
FD>
fBL3
ALC
KX
5
6
7
8
QRo2
Ar2
FGW
B>
1
QRo2
Ar2
FGW
B>
QLC
2
QRo2
Ar2
FGW
B>
QLC
BL2
3
SBRD QRe2 QRo1
KX
ARA SBRD QRe2 QRo1
2
ARB sBRD
3
sBRD
4
QRo2
Ar2
FGW
B>
QLC
BL2
ALA
4
QRe2 QRo1
5
QRo2
Ar2
FGW
B>
QLC
BL2
ALA
KX
5
QRo1
step 16
5
ARA SBRD QRe2 QRo1
Ar3
step 17
step 18
1
2
3
4
5
6
7
8
1
KX
ARc
K0d
KA
Al1
K1
K1
Ar1
I
2
ARc
K0d
KA
Al1
K1
K1
Ar1
Bl3
3
K0d
KA
Al1
K1
K1
Ar1
KA
FALC
4
KA
Al1
K1
K1
Ar1
KA
K0d
KX
5
Al1
K1
K1
Ar1
KA
K0d
ALc
1
2
3
4
5
6
7
8
1
KX
ARb
BRf
G
QLa
K1
K1
QRa
2
ARb
BRf
G
QLa
K1
K1
QRa
3
BRf
G
QLa
K1
K1
QRa
I
4
G
QLa
K1
K1
QRa
I
Bl3
5
QLa
K1
K1
QRa
I
Bl3
FALC
step 15
6
Ar3
4
ARB sBRD
ctrl
KX
step 12 KX
QXB
1
step 9 1
QXB
step 6 4
5
D2
QXX
5
3
4
1
QXB
2
3
QL1
QXB
1
2
5
QXB
step 5
1
1
QXX
5
1
2
3
4
5
6
7
1
KX
ARa
BRe
Re
G
K1
K1
I
2
ARa
BRe
Re
G
K1
K1
I
QLd
8
3
BRe
Re
G
K1
K1
I
QLd
FBL3
4
Re
G
K1
K1
I
QLd
FBL3
fALC
5
G
K1
K1
I
QLd
FBL3
fALC
KX
step 19
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
KX
K0
K0
K0
K0
K1
K1
K0
1
T
T
T
T
T
T
T
T
KA
2
K0
K0
K0
K0
K1
K1
K0
K0
2
T
T
T
T
T
T
T
T
K0d
3
K0
K0
K0
K1
K1
K0
K0
K0
3
T
T
T
T
T
T
T
T
ALc
4
K0
K0
K1
K1
K0
K0
K0
K0
4
T
T
T
T
T
T
T
T
KX
5
K0
K1
K1
K0
K0
K0
K0
KX
5
T
T
T
T
T
T
T
T
℄
5 × 8 ! 3,4
℄ "#$ % % 1−bit
℄
℄
℄
Printing: Mercedes-Druck, Berlin Binding: Stein + Lehmann, Berlin