This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
hence
= P(D)Y
+
<s,*>
E.E.
2 42
P ( D ) t = u(P(D)") for a certain v
+
Rosinger
s + v
Vm. Then, i n view o f (89) we o b t a i n t h a t
E
since obviously
(91)
urn c s;
Now, t h e f o l l o w i n g two cases a r e p o s s i b l e . Case 1 : P ( D ) t $ Q. Then (90) w i l l y i e l d
which c o n t r a d i c t s t h e h y p o t h e s i s . Case 2 : P ( D ) t
E
Q
Then P(D)
= 0
E
D'(R1)
t h e r e fo r e
E
C"(R')
hence, i n view of (91)
i n which case
and t h e h y p o t h e s i s i s a g a i n c o n t r a d i c t e d .
0
5. The E x i s t e n c e o f t h e Sequences o f Functions i n Z When c o n s t r u c t i n g sequences o f f u n c t i o n s s E Zg i t i s obvious t h a t t h e con= d i t i o n s (10) and (11) can e a s i l y be s a t i s f i e d . T h e r e f o r e , t h e o n l y d i f f i = c u l t y i n t h e general n 2 1 dimensional case i s t o s a t i s f y t h e c o n d i t i o n (12) i n t h e d e f i n i t i o n o f Zg . We s h a l l now c o n s t r u c t sequences o f f u n c t i o n s s E Zg which a r e a g e n e r a l i = z a t i o n t o t h e n > 1 dimensional case o f t h e one dimensional example g i v e n i n S e c t i o n 1, where t h e e s s e n t i a l p r o p e r t y was expressed i n ( 1 3 ) which i s t h e one dimensional e q u i v a l e n t o f t h e c o n d i t i o n ( 1 2 ) i n t h e d e f i n i t i o n o f zg. Suppose t h e r e f o r e g i v e n Y
E
D(Rn), such t h a t
243
PRODUCTS
(92)
l n y(x)dx = and d e f i n e t h e sequence o f f u n c t i o n s s E ( c " ( R ' ) ) ~ by
...
)X~ sv(X) = p 1 ( ~ ) P ( v ) Y ( ~ ~ ( v ,...,p(v)xn),Y n n where t h e mapping (93)
N
(94)
3
v
+
,...,
v E N,x=(xl
~ ( v ) E) Nn
p(v) = ( P ~ ( v )
n i s c o n s t r u c t e d a c c o r d i n g t o t h e f o l 1owing r e 1 a t i o n s (95-98) F i r s t , we d e f i n e a mapping N (95)
v
3
-+
-+
.
k ( v ) E N g i v e n b y (see S e c t i o n 1)
k ( 0 ) = 0 and k ( v t 1 ) = k ( v )
Then we d e f i n e a mapping N 3 v
,..., xn)E
t
n(vtl),V v E N
h ( v ) E N by
h(O)=O and h ( v t 1 ) = h ( v ) t v t 1, Y v E N
(96)
F u r t h e r , we d e f i n e a mapping N3 v e(v) = (h(v),
(97)
...,h ( v ) ) ,
-+
e ( v ) E Nn by
V v E N
F i n a l l y , we d e f i n e t h e mapping (94) by t h e r e l a t i o n s (see S e c t i o n 1 ) .
...,1)
(98.1)
p ( 0 ) = (1,
(98.2)
{p(k(v)tl),...,p(k(vtl))l
E
Nn = P(n,v+l)
t
e(vtl), Y v E N
A f i r s t p r o p e r t y o f t h e sequence o f f u n c t i o n s s d e f i n e d i n ( 9 3 ) i s presen= t e d now. Lemma 3
s
E
S" and s s a t i s f i e s t h e c o n d i t i o n s (10) and (11).
Proof I t f o l l o w s from (92) and t h e f a c t t h a t t h e mapping i n ( 9 4 ) has t h e p r o p e r t y
l i m p (v) = v+m i
my
Y i E
{l, ...,n }
which f o l l o w s e a s i l y from (95-98).
0
The e s s e n t i a l p r o p e r t y o f t h e sequence o f f u n c t i o n s s d e f i n e d i n (93) can be p r e s e n t e d now. Proposition 2 The f o l l o w i n g t h r e e c o n d i t i o n s a r e e q u i v a l e n t : (99)
s
(100)
Ws(0) i s column w i s e n o n s i n g u l a r
E
Z6
R
n I
2 44
E.E.
DPy(O) # 0,
(101)
V p
Rosinger
EN^
Proof I n view o f t h e d e f i n i t i o n o f z6 i n S e c t i o n 1, as w e l l as o f Lemma 3, t h e c o n d i t i o n s (99) and (100) a r e o b v i o u s l y e q u i v a l e n t . We s h a l l now e s t a b l i s h t h e equivalence between t h e c o n d i t i o n s (100) and (101). F i r s t , we s h a l l compute t h e Wronskian t y p e m a t r i x W,(O). i t follows easily t h a t
I n view o f (93),
Dps "( 0 = ( ~ ( V ) ) ~ ~ ~ D V~ ~u (E O N , ) ,p € N n Y where we denoted e = (1 . . . , l )
E
N
n
Therefore (102)
w,
(0
where (see Sect A = w h i l e B i s a diagonal m a t r i x , w i t h t h e diagonal elements
(103)
DP(')
~ ( 0 v) E~ N
Now, according t o Theorem 8 below, A i s column w i s e n o n s i n g u l a r . Indeed, i n view o f Lemma 4 below, i t s u f f i c e ? t o show t h a t A s a t i s f i e s t h e condi= t i o n (104). Assume t h e r e f o r e g i v e n u, u E N . Then we choose m E N such that
u = n(mt1) - 1
>a
and k(m)
>;
Now we choose vo = k(m)
t
l , , . . , vu = k(mt1)
Then t h e c o n d i t i o n s *) and **) i n (104) a r e o b v i o u s l y s a t i s f i e d . Moreover, i n view o f (98.2) as w e l l as Theorem 8 below, i t f o l l o w s t h a t t h e c o n d i t i o n **? i n (104) i s a l s o s a t i s f i e d . T h e r e f o r e A i s indeed column w i s e nonsingu= lar. I n t h i s case, t h e r e l a t i o n s (102) and (103) t o g e t h e r w i t h Lemma 4 below im= p l y t h a t W,(O) i s column wise n o n s i n g u l a r o n l y i f t h e c o n d i t i o n (101) i s satisfied. 0 The main r e s u l t i n t h i s s e c t i o n i s presented now. Theorem 7 The s e t Z6 o f sequences o f f u n c t i o n s i s n o t v o i d .
245
PRODUCTS
Proof I n view of P r o p o s i t i o n 2 , i t s u f f i c e s t o show t h e e x i s t e n c e o f Y which s a t i s f y t h e c o n d i t i o n s ( 9 2 ) and (101). I n t h i s connection, we d e f i n e a E Cm(Rn) by xl+. . .+xn , V x = (x1,...,xn) a(x) = e and assume
qRn)
E
E
E
aRn)
Rn
such t h a t
f3 2 0 on Rn and f o r a c e r t a i n neighbourhood V o f 0
E
Rn
B = l o n V Then o b v i o u s l y
I
K =
I f we d e f i n e now \y
a(x)B(x)dx > 0
Rn
=
\y
clf3
E
D(Rn) b y
/K
t h e n t h e c o n d i t i o n ( 9 2 ) w i l l o b v i o u s l y be s a t i s f i e d , w h i l e t h e r e l a t i o n s Dp\y(0) = 1/K > 0, Y p EN’,
w i l l imply (101).
0
I n case a r b i t r a r y p o s i t i v e powers o f t h e D i r a c 6 d i s t r i b u t i o n a r e t o be d e f i n e d w i t h i n t h e chains o f q u o t i e n t a l g e b r a s c o n t a i n i n g t h e d i s t r i b u t i o n s , the following r e s u l t i s useful. Corollary 1
Proof I f we choose i n t h e p r o o f o f Theorem 7,
B
E
CY(Rn)
then i t follows t h a t \y E
CY(Rn)
therefore
s
E
zg “(CY(R
n N
1)
Lemma 4 The i n f i n i t e m a t r i x o f complex numbers A = (aVu
I
v,u
E
N ) i s column wise
E.E.
246
Rosinger
nonsingular, o n l y i f Y;,a€N:
..............a vO‘
I :
Ii
# O
Proof I t f o l l o w s e a s i l y from t h e d e f i n i t i o n i n S e c t i o n 1.
0
And now, t h e theorem on general ized Vandermonde determinants ( f o r n o t a t i o n s see S e c t i o n 1) whose p r e s e n t form, as w e l l as p r o o f was o f f e r e d by R.C.King. Theorem 8 Suppose g i v e n n E N
a
n 2 1.
Then f o r each a E Nn, a 2 e = (1, holds
I
:
...*1) E Nn
and II E N,R 21, t h e r e l a t i o n
I
where p ( j ) = (pl(j) ¶...,pn( j ) ) , f o r 1 G j Q R. Remark 1 The value o f t h e d e t e r m i n a n t depends o n l y on n,a,p( 1) depend on a. Proof
L e t s consider the determinant
.... ,p(R)
and does not
PRODUCTS
Al = d e t ( ( a + p ( o ) ) P ( T ) ) ,
247
where 1 Q o r T Q II
F o r 1 < T < R y t h e -c-th column i n Al i s
... x
(altpl(l))P1(T)x
C,(d
=
x i f a = ( a ly...,
( a n t p n ( l ) ) Pn
an)
...
'
x (antpn(a)) Pn
.
c o n s i d e r t h e column
p(
R)P(T) where 0' = 1 whenever i t occurs. We o b t a i n t h e n (105)
c
C2(T) = C i ( T )
A
where t h e sum C i s taken f o r a l l 1 Q A Q R s u c h t h a t I p ( X ) I A
Introducing t h e determinant A2 = d e t ( p ( ~ ) ' ( ~ , where 1 < u y T < 1,
i t f o l l o w s from (105) t h a t A2 = Al, s i n c e C ~ ( T )i s t h e r - t h column i n A 2 . We s h a l l now s i m p l i f y A2 w i t h t h e h e l p o f t h e f u n c t i o n F : N x N -+ N d e f i n e d by
1
i f k = O
F(h,k) = h(h-1) ...(h - k t l )
if k 2 1
which o b v i o u s l y s a t i s f i e s t h e c o n d i t i o n s
( 106 1
F(h,k)
= 0 * h
- k + 1<0 * h
< k
E.E.
248
(107)
F(h,k) = h !
Now, f o r 1
< T < a, we
Rosinger
d e f i n e t h e column
I. Then i t f o l l o w s t h a t
where
(108.1)
t h e sum w i t h Ji
(108.2)
c
i s taken f o r a l l J = J 1 u
... u J n
# 0
c ~1,2,...,pi(~)-1}, f o r 1 < iQ n ,
p ( ~ ) - ( ~ J 1 ~ , . . . , ~ J n ~ )w, i t h IJi o f elements i n Ji.
q(T) =
I
denoting t h e number
The r e l a t i o n (108) can o b v i o u s l y be w r i t t e n under t h e form
( 109)
C,(T)
=
C,(T) +
c
(~(-j))C2(i(~,J1,...,Jn)), Y 1 Q T G R , jeJ
where (108.1) and (108.2) a r e s t i l l v a l i d and X(T,J~,...,J~) E N i s uniquely d e f i n e d by
p(i(r,J1,...,Jn))= therefore 1
P(T)
-
(lJ1ly...ylJn~)
.
X(-r,J1,... ,Jn) G R and Ii(.r,J1,.. ,Jn) I < Ip(-c)I .
Denoting by A t h e determinant w i t h t h e columns C3( 1), t i o n (109) i m 8 l i e s A3 = A2 and thus
(110)
. ..,C3(a) , t h e
A3 = A1
Now, t h e r e l a t i o n (106) g i v e s f o r any 1 Q
U,T
< 11
t h e equivalences
rela=
2 49
PRODUCTS
T h e r e f o r e , t a k i n g i n t o account (107) and t h e form o f t h e columns C 3 ( ~ ) , w i t h 1 < T G R , t h e r e l a t i o n (110) w i l l end t h e proof.
6.
0
Remark on N i l p o t e n t Elements i n t h e Q u o t i e n t Algebras
We s h a l l g i v e n an example i l l u s t r a t i n g t h a t (111)
Sm = 0 EA'(V,S
/dT) PS
T)
= 0 EAR(V,S@
~ I , m E N , m > 2 , II E N , R 2 1 and ( v , s @ for s E A ' ( V , S ~ T w i t h s E Z6. I n o t h e r words, t h e chains o f q u o t i e n t a l g e b r a s
Q.
T)E
RG,,
T ) , with R EN,
A (V,S
0 -\
c o r r e s p o n d i n g t o C"-regularizations ( V , S T) g i v e n i n ( 3 3 ) , admit non= t r i v i a l n i l p o t e n t elements. F o r t h e sake o f L i m p l i c i t y we s h a l l d e a l w i t h TfG-GG dimensional case n = l and choose t h e C - r e g u l a r i z a t i o n (v,s T) so t h a t (see (29-32))
e,
v = Irn6 n v" s ' L e t us d e f i n e a sequence o f f u n c t i o n s t E ( c m ( R 1 ) )N b y (112)
7 =
(113)
t,(x)
03
7&,T=T
=
xSJX),
V w
x
EN,
E
R'
then obviously t = U ( i d R i ) . S E UCm(Rl).T
@ T),
AR(V,S
C
V R E
t h e r e fo r e
(114)
s
= t t
r'l(v,s @ T )
E A~(V,S
@ TI, v
R
E N
We s h a l l show t h a t
(115)
S # 0
E AR(V,S
@ T),
Y R E
8, R 2 1
Indeed, o t h e r w i s e (114) w i l l y i e l d
t h e r e f o r e , i n view o f ( 2 0 ) , Chapter 3, we o b t a i n t h a t
@ T).
f o r c e r t a i n v . E VQ. and w . E A'l(V,S (see (18) , Chapter 3) i t )allows t h a t DPvi E
But by the d e f i n i t i o n o f VL
V , Y 0 Q i G h , p E N , p
Then, t h e e x p r e s s i o n o f V g i v e n i n (112) y i e l d s DPvi
E
7,;
Y 0 < iG h , p
E
N , p GII
250
Rosinger
E.E.
hence, i n view o f c o n d i t i o n ( 2 ) , we o b t a i n (117)
Dpvi ( 0 ) = 0, U 0 G i
E
N, p G R , V E
N, v 2 p
V
,,
for a suitable E N. B u t , i n view o f t h e L e i b n i t z r u l e f o r p r o d u c t d e r i = v a t i v e , t h e r e l a t i o n s (116) and (117) w i l l o b v i o u s l y i m p l y
< R,v
D P t (0) = 0, Y p E N, p (118) V On t h e o t h e r hand (113) y i e l d s
E
N,
2p
D P t ( x ) = p D p - l s v ( x ) t xDpsv(x), V p V
E
N,p > l , v E
N, x E R'
hence (119)
DPtV(0) = p Dp-lsv(0),
Therefore,
i n case R 21, t h e r e l a t i o n s (118) and (119) w i l l i m p l y
V p
Dqs (0) = 0, Y g E N , q V
E
N, p 2 1, v E N
4 R -1, v
EN,
v 2p
which o b v i o u s l y c o n t r a d i c t s (12) and thus ends t h e p r o o f o f (115).
Now, we s h a l l show t h a t (120)
sm = o
EA~(v,s@
TI, Y m,RE
N, m > R
Indeed, i n view o f (114) we o b t a i n
sm=
tmt
I~(v,s@ T)
v
E A ~ ( V , S @ T), m
EN,
m
RE II
hence, according t o (113) and (10) i t f o l l o w s t h a t
sm=
xm(61m E A ~ ( V , S @ T),V
But t h e m u l t i p l i c a t i o n i n A'(
sm =
V,S@
m E N , m 2 1 , R~ ~
T) i s a s s o c i a t i v e , thus
xm 6 ( 6 p - 1
and i n view o f 3) i n Theorem 1, S e c t i o n 2 xm6 =
o
E A ~ v , s @
T),U m
EN,
m
>I,
m >R
which means t h a t t h e p r o o f o f (120) i s completed. F i n a l l y , t h e r e l a t i o n s (115) and (120) w i l l o b v i o u s l y y i e l d (111).
CHAPTER 9 LINEAR INDEPENDENT FAMILIES OF D I R A C 6 DISTRIBUTIONS AT A POINT
0.
Introduction
The r e p r e s e n t a t i o n s o f t h e D i r a c 6 d i s t r i b u t i o n c o n s t r u c t e d andmused i n Chapter 7 and 8, were g i v e n b y weakly convergent sequences o f C -smooth f u n c t i o n s which s a t i s f y t h e c o n d i t i o n o f s t r o n g presence on t h e s u p p o r t (see (100) i n Chapter 7 and ( 1 2 ) i n Chapter 8 ) . An immediate consequence o f t h i s c o n d i t i o n was t h e nonsymmetr o f t h e mentioned r e p r e s e n t a t i o n s , which means t h a t t h e D i r a c 6 i s t r i u t i o n and i t s p a r t i a l d e r i v a t i v e s a r e n o t i n v a r i a n t under t h e independent v a r i a b l e t r a n s f o r m (see S e c t i o n 10, Chapter 1).
+
(1)
Rn3 x
+
a x E Rn, w i t h a = -1,
w i t h i n the chains o f q u o t i e n t algebras containing t h e d i s t r i b u t i o n s
.
The aim o f t h i s c h a p t e r i s t o p r e s e n t t h e f o l l o w i n g s t r o n g e r r e s u l t : Apply= i n g t o any g i v e n p a r t i a l d e r i v a t i v e DP6, w i t h p E N", o f t h e D i r a c 6 d i s = t r i b u t i o n t h e f o l l o w i n g independent v a r i a b l e t r a n s f o r m s w
(2)
Rn3 x
-+a a x E Rn
, with
a E R1 \ { O )
we o b t a i n l i n e a r independent elements (3)
Dp6( aox) ,. .. ,Dp6( a,x)
w i t h i n t h e chains o f q u o t i e n t a l g e b r a s c o n t a i n i n g t h e d i s t r i b u t i o n s , pro= v i ded t h a t (4)
ao,.
. . ,a m E R'
\
{Ol a r e p a i r w i s e d i f f e r e n t
I n S e c t i o n 3, t h i s r e s u l t i s extended i n o r d e r t o i n c l u d e a l s o g e n e r a l i z e d D i r a c 6 d i s t r i b u t i o n s which have t h e f o r m (5)
lim a+m
an
s(ax)
1. Compatible Q u o t i e n t Algebras and Independent V a r i a b l e Transforms W i t h i n t h i s Chapter, i t w i l l be c o n v e n i e n t t o c o n s i d e r t h e independent v a r i a b l e t r a n s f o r m d e f i n e d i n S e c t i o n 10, Chapter 1, under an a l t e r n a t i v e form p r e s e n t e d now. Suppose g i v e n an independent v a r i a b l e t r a n s f o r m
251
E.E. Rosinger
252
(6)
0:
* Rn,
Rn
w
E
cm
then we can o b v i o u s l y d e f i n e t h e a l g e b r a homomorphism w : ( CTRn)IN *
(7)
( C"pn))N
by ( W ( S ) ) ~ ( X=) s V ( w ( x ) ) , V
(7.1)
S
E ( C TRn))N, v EN,
XE
Rn
We s h a l l say t h a t t h e independent v a r i a b l e t r a n s f o r m w i s i n v e r t i b l e , o n l y if (8)
: Rn
w
-+
Rn e x i s t s and w - l E Cm
Suppose now g i v e n a q u o t i e n t a l g e b r a (see S e c t i o n 2 , Chapter 1)
A = A / I E AL cTRn)
(9)
We s h a l l say t h a t t h e q u o t i e n t a l g e b r a A and t h e independent v a r i a b l e t r a n s = form w a r e compatible, o n l y i f (see (100.2) and (100.3), Chapter 1) w(A) c A and w ( I )
(10) where
c 7
i s t h e mapping d e f i n e d i n ( 7 ) .
Proposition 1 I f t h e q u o t i e n t algebra A i n ( 9 ) and t h e independent t r a n s f o r m w i n ( 6 ) a r e compatible, t h e n t h e mapping
d e f i n e d by
i n an a l g e b r a homomorphism. Proof U
I t i s obvious.
W i t h i n t h i s chapter, we s h a l l o n l y deal w i t h chains o f q u o t i e n t algebras o f t y p e (24), Chapter 1, g i v e n i n
(11)
where (see (33)
(11.1)
(3r),a E N ,
A'(v,s
(v,S
, (34)
0
T ) E RGs and
while
(11.2)
s
E
and (44) , Chapter 8)
zg
v
=
11n
v"
D I RAC
253
D ISTRI BUT I ONS
A u s e f u l c h a r a c t e r i z a t i o n o f c o m p a t i b i l i t y between t h e q u o t i e n t algebras (11) and independent v a r i a b l e t r a n s f o r m s i s presented now. Proposition 2
A q u o t i e n t a l g e b r a i n (11) A'( V,S
@ T)
= A'( V,S
e)
G)
T ) / I R ( V,S
T)
and an i n v e r t i b l e independent v a r i a b l e t r a n s f o r m w i n ( 6 ) a r e compatible, only i f (12)
(9T ) i s an i n v a r i a n t o f
A'(V,S
w i n (7)
Proof The c o n d i t i o n (12) i s by d e f i n i t i o n necessary. We s h a l l show now t h a t i t i s a l s o s u f f i c i e n t . I n t h i s r e s p e c t we o n l y need t o prove t h a t
rR(v,s(5T ) \
(13)
i s an i n v a r i a n t o f w i n ( 7 )
B u t , i n view o f (20), i n Chapter 3, IR(V,S generated by "R
I
= {V E V
DPv
c)
T ) i s t h e i d e a l i n AR(V@T)
V , Y p E Nn,
E
IpI < a } 0
Therefore, i n view o f Lemma 1 below, (13) i s v a l i d . Lemma 1
I f w i s an i n v e r t i b l e independent v a r i a b l e t r a n s f o r m and V = I: then, f o r each R E N , VQ =
V
(V E
I
D'v
E
V
,Y
p
E
Nn,
IpI
n V"
El
i s an i n v a r i a n t o f t h e mapping w i n ( 7 ) . Proof Since w i s i n v e r t i b l e , t h e r e l a t i o n f o l l o w s e a s i l y (14)
w(vm )c
V"
Moreover, t h e r e l a t i o n i s a l s o v a l i d
(15)
w( q c
1;
Indeed, assume t h a t w E I: and denote w ' = w(w). F i r s t we show t h a t w ' s a t i s f i e s t h e c o n d i t i o n ( 2 ) i n Chapter 8. Assume t h e r e f o r e t h a t x E Rn and denote x ' = w(x ) . Then w and x; s a t i s f y t h e Hence mentioned conditpon, s i n c e w E 1; aRd x; €ORn.
(16)
w,(x;)
= 0,
f o r a certain u E N.
4 v
E
N, v 2 p
E.E.
254
Rosinger
so s a t i s f i e s t h e c o n d i t i o n ( 3 ) i n Chapter 8. L e t us denote But w F ' = w . ( F ) , then o b v i o u s l y F ' c Rn i s a f i n i t e subset. Assume now g i v e n an open subset G ' c Rn, such t h a t F ' c G ' , then o b v i o u s l y G = w ( G ' ) c Rn i s open and F c G. T h e r e f o r e (17)
supp wv c G, V v
for a certain plies (18)
E N.
N,v
E
> P I ,
B u t , i t i s easy t o see t h a t t h e r e l a t i o n (17) i m =
supp w; c G I , V v
N, v
E
Now, t h e r e l a t i o n s (16) and (18) w i l l i m p l y ( 1 5 ) . F i n a l l y , t h e r e l a t i o n s (14) and (15) y i e l d (19)
w ( v ) = ~ ( 1 :n
v") c
Assume now g i v e n R E \ and v
~ ( 1 : )n w ( v " ) c
E
11 n v"
=
v
VR and denote v ' = w ( v ) .
I n view o f (19) i t f o l l o w s t h a t E
v
c
DpvI
E
V",
v'
v"
therefore (20)
V p E Nn
B u t (19) w i l l a l s o i m p l y t h a t v'
E
v c
1;
t h e r e f o r e , i t i s easy t o n o t i c e t h a t (21)
Dpv' s a t i s f i e s t h e c o n d i t on ( 3 ) i n Chapter 8, Y p E Nn
F u r t h e r , by d e f i n i t i o n , t h e r e l a t i o n v Dpv E V c li, V p
E
Nn,
E
VR y i e l d s
PI G R
therefore (22)
Dpv s a t i s f i e s t h e c o n d i t i o n ( 2 ) i n Chapter 8, V p
E
N, I p I
E
Nn,lpl
But, b y d e f i n t i i o n (23)
((x)
= vV(w(x)),
V v
E
N,
X E
Rn
Now, t h e r e l a t i o n s (22) and (23) w i l l i m p l y t h a t (24)
DpvI s a t i s f i e s t h e c o n d i t i o n ( 2 ) i n Chapter 8,V p
F i n a l l y , (21) and (24) y i e l d m
(25)
Dpvl
E
16, Y
pE
Nn,
IpI
D I R A C DISTRIBUTIONS
255
The r e l a t i o n s ( 2 0 ) and ( 2 5 ) o b v i o u s l y i m p l y t h a t Dpvl
E
IJ, Y P E Nn,
IpI G g
which means t h a t
d v , ) c VR,
Y
i? E
m
CI
The r e s u l t i n P r o p o s i t i o n 2 o f f e r s a c o n v e n i e n t way f o r c o n s t r u c t i n g chains o f q u o t i e n t a l g e b r a s (11) c o m p a t i b l e w i t h i n v e r t i b l e independent v a r i a b l e t r a n s f o r m s and which w i l l be needed i n t h e sequel. Indeed, t h e mentioned r e s u l t makes i t p o s s i b l e t o use t h e method presented i n S e c t i o n 7, Chapter 3. Suppose g i v e n a s e t M o f i n v e r t i b l e independent v a r i a b l e t r a n s f o r m s . we s h a l l say t h a t , f o r a c e r t a i n g i v e n R E N, t h e i n c l u s i o n
Then
R n N H c(c (R 1)
(26)
has t h e p r o p e r t y PM, o n l y i f f o r e v e r y w E M we have (26.1)
H i s an i n v a r i a n t o f w i n ( 7 )
I t i s easy t o see t h a t PM i s an a d m i s s i b l e p r o p e r t y .
A c h a i n of q u o t i e n t algebras (11) w i l l be c a l l e d M t r a n s f o r m a l g e b r a s , o n l y i f t h e y a r e o f t y p e (165) i n Chapter 3, where P i s an a d m i s s i b l e p r o p e r t y s t r o n g e r t h a n PM. Corollary 1 Any q u o t i e n t a l g e b r a
A'~(v,s
@Tj
= A'(V,S
@T)/I'(IJ,s
T)
o f a c h a i n o f M t r a n s f o r m a l g e b r a s and any i n v e r t i b l e t r a n s f o r m w E M a r e compatible.
with R E
R,
ndependen t va r i ab 1e
Proof
@
By t h e d e f i n i t i o n o f M t r a n s f o r m a l g e b r a s A R ( V , s T . Therefore, t h e p r o o f f o l l o w s from P r o p o s i t i o n 2.
i s an i n v a r i a n t o f
w
2.
L i n e a r Independent F a m i l i e s o f D i r a c 6 D i s t r i b u t i o n s a t a P o i n t
We denote b y M t h e s e t o f a l l i n v e r t i b l e independent v a r i a b l e t r a n s f o r m s wa : Rn -+ Rn? w i t h a E R ' \ { O I , d e f i n e d by a a ( x ) = ax
Y x E R~
I n view o f P r o p o s i t i o n 1 and C o r o l l a r y 1 i n S e c t i o n 1, if
AR(v,s are
Mo
@T),
with R E
transform algebras, then
w,
0
E.E.
256
Dp6(ax) E A'( V,S
@
Rosinger
8, a
T ) ,V II E
E R'\
(01, p E Nn
since DP6 E U'(Rn) c A'(
V,S
& T), Y
II E 8 , p E Nn,
and wa :
A'(v,s(I) T) .+
A'(V,S
0T I , v R
E
8, a
E R]\
toi
The main r e s u l t i n t h i s c h a p t e r i s presented now. Theorem 1 The transforms o f t h e p a r t i a l d e r i v a t i v e s o f any g i v e n o r d e r p E Nn o f t h e Dirac 6 d i s t r i b u t i o n
. . . ,Dp6( amx) ,
Dp6( aox) ,
(+I
a r e l i n e a r independent w i t h i n t h e Mo t r a n s f o r m algebras AR(V,S T ) , with L E N , p r o v i d e d t h a t m G R and ao, ..., am E R ' \ I O ) a r e p a i r w i s e x f f e r e n t . Proof
...,?,,, E R '
Assume t h a t i t i s f a l s e and l o , (27)
Xo DP6(aox) +
(28)
3 ioE {O,
. .. t
...,m l
a r e such t h a t
Am DP6(amx) = 0 E AR(V,S
6) T ) b
# 0
: Ai 0
But, i n view o f (11) above, as w e l l as Theorem 3, S e c t i o n 3, Chapter 3, i t follows t h a t D P =~
DPS
+ rR(v,sQ T )
E
A ~ ( V , S@ T )
t h e r e f o r e , according t o (7), we o b t a i n t h e r e l a t i o n (29)
AiDP6(aix)
L e t us d e f i n e v (30)
E
Dps t lR(V,S i (Cm(Rn))N by
v =
= hiwa
1
<m
O < i
0T )
E AR(V,S
Xi wa (D'S)
i
then (27) and ( 2 9 ) w i l l i m p l y
(31)
v
E
rR(v,s@ T )
t h e r e f o r e , i n view of ( 2 0 ) i n Chapter 3 , we o b t a i n (32)
v =
c
O<j
v w j ' j
f o r s u i t a b l e v . E VR and w . E AR(V,S J J
@T).
0
T),V i d.0,
...,m)
DIRAC DISTRIBUTIONS
25 7
Now, in view of (11.1) above, as well as ( 2 ) in Chapter 8, the relation (32) will obviously imply V q E Nn,
(33)
191 G L :
3uEN: V v c N , v > p :
DqvV(O)
0
=
B u t m d II by the hypothesis, hence, the relations (30) and (33) will y i e l d
v >p
Further, in view o f (11.2) we obtain t h a t
(35)
4 q
E Nn,
3 v
E
U E
N :
N, v > a :
D4Sv(O)
# 0
since the matrix Ws(0) i s column wise nonsingular (see (12) in Chapter 8). Then the relations (34) and (35) will y i e l d
c
Xi ( a i ) k = 0 , V k
E
N, k
0 < i
< R and a ,..., a, E R ' \ I O ) are p a i r wise d i f f e r = e n t , together with a we1 1 known propgrty of the Vandermonde determinants will imply t h a t Now, the hypothesis t h a t rn
A
0
=
... =
Am = 0
which contradicting (28) completes the proof.
0
Corollary 2 The family (DP6(ax)
(36)
1
a
E
R ' \IOl)
of transforms of the p a r t i a l derivatives of any given order p E Nn o f the Dirac 6 distribution i s l i n e a r independent within the Mo transform algebras Am(V,S T)
0
3.
Generalized Dirac 6 Distributions
The following simple interpretation can be attached t o the p a r t i a l deriva= tives of the Dirac 6 distribution (37)
DP ( a x )
,p
E
N", a
E
R ' \(OI
258
E.E. Rosinger
i n p a r t i c u l a r t o the Dirac 6 d i s t r i b u t i o n s (38)
, a € R'
&(ax)
\
Suppose g i v e n a d i s t r i b u t i o n fine (39)
SE
D ' ( R n ) and a € R'
i f S E Sm and S =
w S = <w s ,
a
COI
a
s i n c e t h e d e f i n i t i o n w i l l n o t depend on s .
\ { d , then
we can de=
< s , .>
I n t h i s case, we o b t a i n
Then, i t i s easy t o see t h a t t h e a f o l l o w i n g analog o f t h e r e s u l t s i n Theorem 1 and C o r o l l a r y 2, S e c t i o n 2 i s v a l i d :
If (41)
i n t supp S #
0
then
.,, w
S a r e l i n e a r independent am R' \{Ol, i n o t h e r words, t h e f a = f o r any p a i r wise d i f f e r e n t ao,...,amE mily o f d i s t r i b u t i o n s
(42)
(43)
w
S,.
(ua s
1
a € R' \ I o l )
i s l i n e a r independent. However, i n o r d e r t o secure t h e r e l a t i o n s (42) and (43) w i t h i n t h e d i s t r i = b u t i o n a l framework, t h e c o n d i t i o n 4 1 i s e s s e n t i a l . Indeed, suppoFFEFZt - DP6, f o r a c e r t a i n g i v e n p E NA, !.hen t h e r e l a t i o n (40) w i l l i m p l y
t h e r e f o r e (42) and thus (43) a r e n o t v a l i d . I n t h i s connection, t h e r e s u l t s i n Theorem 1 and C o r o l l a r y 2, S e c t i o n 2, show t h a t w i t h i n t h e framework o f t h e Mo t r a n s f o r m algebras p r o p e r t i e s o f t y p e (42) and (43) can be v a l i d even i f t h e c o n d i t i o n (41) f a i l s t o be sa= t i s f i ed. An a l t e r n a t i v e i n t e r p r e t a t i o n o f t h e r e s u l t s i n Theorem 1 and C o r o l l a r y 2, S e c t i o n 2 can be o b t a i n e d as f o l l o w s . Suppose, t h e D i r a c 6 d i s t r i b u t i o n i s g i v e n by t h e Cm-smooth r e p r e s e n t a t i o n (44)
6 = < s
Y'
'>
where s E Sm i s d e f i n e d i n (93), Chapter 8, w i t h t h e h e l p o f a f u n c t i o n Y E D ( h ) which s a t i s f i e s t h e c o n d i t i o n s (92) and (101) i n Chapter 8. I n t h i s case i t f o l l o w s t h a t (45)
DIRAC DISTRIBUTIONS
259
w h i l e obviously (46)
supp y
SUPP wa
,v
a
E
R ' \ (0)
. I t f o l l o w s t h a t whenever a, b E R ' \ to} and la1 < I b l , t h e d i s t r i b u t i o n 6(bx) = i s 'more c o n c e n t r a t e d ' a t x = 0 E Rn t h a n t h e d i s t r i b u t i o n & ( a x ) = wa6.
I n t h i s connection, t h e r e s u l t s i n Theorem 1 and C o r o l l a r y 2, S e c t i o n 2, show t h a t , n o t u n l i k e i n Nonstandard A n a l y s i s , t h e Mo transfor! a l g e b r a s can d i s t i n g u i s h between elements c o n c e n t r a t e d a t a p o i n t x E R . I n t h e above c o n t e x t , t h e r e s u l t i n C o r o l l a r y 2, S e c t i o n 2, leads t o t h e f o l lowing question: Since t h e d i s t r i b u t i o n s 6 ( a x ) a r e a l l d i s t i n c t and more and more concentra= t e d a t x = 0 E Rn, as a R'\ {OI and la1 i n c r e a s e s , what happens a t t h e l i m i t , when l a ] + m? B e f o r e f o r m u l a t i n g t h i s q u e s t i o n i n a more e x a c t manler, we n o t i c e t h e f o l = l o w i n g f a c t . Suppose g ven a d i s t r i b u t i o n S E D ' ( R ) d e f i n e d by f(x)Y(x)dx, V Y where f E L'(Rn).
E
D(Rn),
i n view o f ( 4 0 ) , we o b t a i n
TKen
n < l a 1 wa S, Y >=
I
1 f(x)Y(;i.x)dx,
V a
E
R'\
w
{O),
Y E D(Rn)
Rn
therefore (48)
lain wa s = K
lim lal+
6
where (48.1)
K
f(x)dx
=
Rn I n view o f (48), t h e p r o p e r way t o f o r m u l a t e t h e above q u e s t i o n i s
lim l a i n 6(ax) = lal+ The aim o f t h i s s e c t i o n i s t o which t h e g e n e r a l i z e d D i r a c 6 o f t h e i r b a s i c p r o p e r t i e s can t r a n s f o r m a l g e b r a s have t o be (49)
?
Oi)
Suppose g i v e n b = (bv phism (50)
v
E
c o n s t r u c t c h a i n s o f q u o t i e n t a l g e b r a s (11) i n d i s t r i b u t i o n s i n (49) can be d e f i n e d and some be e s t a b l i s h e d . I n t h i s connection, t h e Mo r e s t r i c t e d as f o l l o w s .
N)E(R'\t03)N,
t h e n we have t h e a l g e b r a hornomor=
wb : (Cm(Rn
by
(50*1)
(wbs)v(x) =
u
E
N, x E Rn
260
E.E.
Rosinger
i n (50) i s d e f i n e d d i = I t should be noted t h a t t h e a l g e b r a homomorphism r e c t l y , w i t h o u t any recourse t o an independent v a r i a b l e t r a n s f o r m , u n l i k e t h e a l g e b r a homomorphisms ( 7 ) , which correspond t o t h e independent v a r i a b l e t r a n s f o r m s ( 6 ) . Nevertheless, t h e d e f i n i t i o n o f con a t i b i l i t between q u o t i e n t algebras ( 9 ) and independent v a r i a b l e t r m a n naturally be extended t o compactabihity betweeR q i o t i e n t a l g e b r a s ( 9 ) and a l g e b r a -, (Cm(R ) ) , s i n c e i n (10) o n l y t h e a l g e b r a homomorphism w : (Cm(R ) ) homomorphisms ( 7 ) were used. I n t h i s case, a r e s u l t s i m i l a r t o t h e one i n P r o p o s i t i o n 1, S e c t i o n 1, can be o b t a i n e d . F o r t h e a l g e b r a homomorphisms o f t y p e ( 5 0 ) , t h e corresponding v e r s i o n o f P r o p o s i t i o n 2 , S e c t i o n 1 i s o b t a i n e d as f o l l o w s , p r o v i d e d t h a t (51)
v l -+i mm b V =
?
m
a c o n d i t i o n which w i l l be assumed i n t h e sequel. Proposition 3 A q u o t i e n t a l g e b r a i n (11) AR(V,S
@ T)
= AR(V,S
and an a l g e b r a homomorphism (52)
@ T)
A'(V,S
%
@ T)/lR(V,S 4 T )
i n (50) a r e compatible, o n l y i f
i s an i n v a r i a n t o f
%
Proof See t h e p r o o f o f P r o p o s i t i o n 2 , S e c t i o n 1 and Lemma 2 below.
0
Lemma 2 Given t h e a l g e b r a homomorphism Ilea VI1 =
{V E
V
I
DPv
E
%
i n (50) and V =
V , Y p E Nn,
1: n V",
then, f o r each
IpI G k }
i s an i n v a r i a n t o f ub. Proof Assume f i r s t t h a t
We s h a l l prove t h a t (54)
g1:)
= 1;
Indeed, assume t h a t
w E 1; and denote w ' = wb(w).
F i r s t , we prove t h a t w ' s a t i s f i e s t h e c o n d i t i o n ( 2 ) i n Chapter 8.
Assume
D I R A C DISTRIBUTIONS
t h e r e f o r e t h a t xo (55)
Rn\{OI, t h e n i n view o f (50.1),
E
wL(x0) = Ib,l
n
26 1
we o b t a i n
N
wu(buXo), V u E
Now, i n view o f ( 3 ) i n Chapter 8 and ( 5 3 ) , t h e r e l a t i o n (55) i m p l i e s t h a t (56)
w;(x~)
= 0, V u E N, u > p '
f o r a c e r t a i n u' E N, s i n c e V T+i m" II bu x o 1 I = 03, where I1 1I i s any g i v e n norm on Rn. I n case x = 0 E Rn, t h e r e l a t i o n (56) f o l l o w s d i r e c t l y from t h e f a c t t h a t w s a t i s ? i e s t h e c o n d i t i o n ( 2 ) i n Chapter 8.
w,
We prove now t h a t w ' s a t i s f i e s t h e c o n d i t i o n ( 3 ) i n Chapter 8. Since s a t i s f i e s t h e mentioned c o n d i t i o n , t h e r e e x i s t s a bounded s u b s e t B c R a neighbourhood V c B o f x = 0 E Rn, and p " E N, such t h a t (57)
SUPP
(58)
v
wU c 6, Y u
E
n SUPP w V c (01
N, v > p "
c R ~ Y,
EN,
Now, t h e r e l a t i o n s ( 5 3 ) , ( 5 5 ) , (57) and (58) w i l l i m p l y t h a t (59)
SUPP W;
c {O}, Y u
f o r a s u i t a b l e p " ' E N. i s completed.
E N,u > p " '
And i n view o f ( 5 6 ) and ( 5 9 ) , t h e p r o o f o f (54)
F u r t h e r , we s h a l l prove t h e r e l a t i o n (60)
(v)
ab
Assume t h a t v E V . f i c e s t o show t h a t
Then v
(61)
v"
qJV) E
B u t i n view o f (50.1), (62)
E
:I n V",
t h e r e f o r e i n view o f ( 5 4 ) , i t s u f =
t h e r e l a t i o n (61) i s e q u i v a l e n t t o
1 l i m In v v ( x ) Y (6 x ) d x = 0, V Y v+mR V
E
U(Rn)
Now, i n o r d e r t o p r o v e ( 6 2 ) , f i r s t we n o t i c e t h a t v E 1; and t h e condi t i on ( 3 ) i n Chapter 8, i m p l y t h e e x i s t e n c e o f a bounded subset B c Rn and U ' E N, such t h a t (63)
supp
vV c
6, Y v E
N,
v >p'
L e t us t a k e x E D(Rn) such t h a t X = 1 on B . r e l a t i o n (62) i s e q u i v a l e n t t o
(64)
lim
1
V + m $
For given Y E
D
1 v ( X ) X ( X ) Y ( ~x ) d x = 0, Y Y
Then i n view o f (63), t h e E
D(Rn)
V
(Rn).we d e f i n e t h e sequence o f f u n c t i o n s s
E
n N (D(R ) ) by
1 s V ( x ) = X ( X ) \ ~ ( x ) , Y v E N, x E Rn LV Then i t i s easy t o see t h a t t h e f o l l o w i n g r e l a t i o n h o l d s i n U(Rn)
E.E.
262
(65)
l i m sv
Rosinger
Y(0)x
=
v'm
NOW, i n view o f a w e l l known p r o p e r t y o f b i l i n e a r forms on V ( R n ) x D(Rn)), t h e r e l a t i o n VE v" and (65) w i l l i m p l y ( 6 4 ) . I n t h i s way, t h e p r o o f o f (60) i s completed. F i n a l l y , we can prove t h e r e l a t i o n (66 1
%(VJ
c VR
y
Y R E
a
Indeed, assume g i v e n R E and v E V and denote v ' = % ( v ) . and t h e obvious i n c l u s i o n VQ c V w i l e y i e l d
Then (60)
v"
v' E V c therefore (67)
Dpv' E
V",
Y p E Nn
But s i m i l a r l y t o (59) we o b t a i n t h a t (68)
c{O}, Y v E N, v 2 p '
SUPP V;
therefore (69)
DpvI s a t i s f i e s t h e c o n d i t i o n ( 3 ) i n Chapter 8, Y p E Nn
Further, by the d e f i n i t i o n o f (70)
DPV E
v
Suppose now g i v e n x
c 0
r: , v E
Rn.
$ we
obtain
p E N ~ ,
GR
I f xo # 0 E Rn t h e n (68) w i l l y i e l d
DpvI s a t i s f i e s t h e c o n d i t i o n ( 2 ) i n Chapter 8, a t xo (71)
E
Rn\\O},
Yp€Nn
If xo = 0 E Rn then (50.1) and t h e f a c t t h a t i n view o f ( 7 0 ) , Dpv w i t h I p I G R , s a t i s f i e s t h e c o n d i t i o n ( 2 ) i n Chapter 8, a t xo = 0 E Rn, w i l l imply t h a t P + E NnY
Dpv' s a t i s f i e s t h e c o n d i t i o n ( 2 ) i n Chapter 8 a t xo = 0 E Rn, (72)
V p
E
Nn,
IpI < R
But t h e r e l a t i o n s ( 6 9 ) , (71) and (72) o b v i o u s l y i m p l y (66). I n casevlimm bv
=
-
m,
t h e p r o o f o f (66) i s s i m i l a r .
I n view o f P r o p o s i t i o n 3, i t f o l l o w s t h a t t h e d e f i n i t i o n o f M t r a n s f o r m algebras i n S e c t i o n 1, can n a t u r a l l y be extended t o t h e case when M con= t a i n s n o t o n l y independent v a r i a b l e transforms b u t a l s o a l g e b r a hornomor= phism o f t y p e ( 5 0 ) . I n o r d e r t o d e f i n e t h e g e n e r a l i z e d D i r a c 6 d i s t r i b u t i o n s i n (49), l e t us denote
0
D I R A C DISTRIBUTIONS
Mb = Mo
263
U {Wb)
I t f o l l o w s t h a t i n case A'( V 9 - S (J + I T ) , with LEB, a r e Mb t r a n s f o r m a l g e b r a s , t h e n cob DP6 E AR(V,S
( + T) , Y R E
N,
C+, T),V
L
p E Nn,
since DP6
and
E
D'(Rn) C A'(V,S
E
W,
p E Nn,
W b : AL(V,St.+: J) -+ AE(V,S (tj T),V II E 1 The e x t e n s i o n o f Theorem 1 i n S e c t i o n 2 i s p r e s e n t e d now.
Theorem 2 The t r a n s f o r m s o f t h e p a r t i a l d e r i v a t i v e s o f any g i v e n o r d e r p E Nn o f t h e Dirac 6 d i s t r i b u t i o n DP6(aox) ,.. . ,DP6(amx) and t h e g e n e r a l i z e d D i r a c 6 d i s t r i b u t i o n p a r t i a l d e r i v a t i v e
a r e l i n e a r independent w i t h i n t h e Mb t r a n s f o r m a l g e b r a s A L E N , p r o v i d e d t h a t m G J ? and ao,...,am E R1\{O) are Proof Assume t h a t i t i s f a l s e and X o , . . . , ~ , X (73) (74)
A,
D P6(aox) t
X= 0
=r
.. . +
( 3 io E {O,
A,
E R ' a r e such t h a t
DP6(amx) + hob DP6 = 0 E A'( V,S
...,m l
: Xi
@ T)
# 0) 0
B u t i n view o f (11) above, as w e l l as Theorem 3, S e c t i o n 3, Chapter 3, i t follows that
t h e r e f o r e , a c c o r d i n g t o ( 7 ) and (50) we o b t a i n t h e r e l a t i o n s (75)
Xi
DP6(aix) = A1. w ai DPs
Y i
E
-+ IR(V,S @
T ) E AR(V,S
...,m l
{O,
and (76)
Awb DP6 = A w ~DpS
+
IR(VyS
@ T) E
We d e f i n e now v E (Cm(Rn))N by (77)
c
v = O < i
A1 . w ai DPs Gm
t h e n (73), (75) and (76) w i l l y i e l d
+
Xub D's
A'(VyS
@ T)
@
T),
264
E.E.
Rosinger
t h e r e f o r e , as i n t h e p o o f o f Theorem 1, S e c t i o n 2 , i t f o l l o w s t h a t v sa= t i s f i e s t h e c o n d i t i o n 33), which t o g e t h e r w i t h (77) w i l l y i e l d (79) (
c
Qm
OGi
Ai(ai)
ql+
hlbvln+lql)Dp+qs V (O)=O,V
q
E
Nn, 191 G R,v
E
N,
v>p
But (35) and (79) w i l l y i e l d
where f o r any g i v e n u E N i t i s p o s s i b l e t o choose vo,...,vk (81)
vO,...,vR
E N, such t h a t
>a
...,
As ho, h , A , a o , ..., am a r e g i v e n f i x e d constants, t h e r e l a t i o n s (80) and (81) t o g e t h b w i t h ( 5 1 ) w i l l i m p l y t h a t
x =o
(82) since u
E
N i n (81) i s a r b i t r a r y .
Now (80) and (82) w i l l y i e l d C OGi
+(ai)
Qm
k
= 0, V k E N, k Q t
which as i n t h e p r o o f o f Theorem 1, S e c t i o n 2, w i l l f i n a l l y i m p l y (83)
x0
=
... =
Am
0
Since (82) and (83) c o n t r a d i c t ( 7 4 ) , t h e p r o o f i s completed.
0
Corollary 3 The f a m i l y (DP6(ax)
I
a E R'\(01)
o f t r a n s f o r m s o f t h e p a r t i a l d e r i v a t i v e s o f any g i v e n o r d e r p E Nn o f t h e Dirac 6 d i s t r i b u t i o n , together w i t h the generalized Dirac 6 d i s t r i b u t i o n p a r t i a1 d e r i v a t i v e w
DP6
a r e l i n e a r independent w i t h i n t h e M,, t r a n s f o r m a l g e b r a s Am(V,S
@ T).
CHAPTER 10 SUPPORT AND LOCAL PROPERTIES
0.
Introduction
An e s s e n t i a l p r o p e r t y o f t h e p r o d u c t w i t h i n t h e q u o t i e n t a l g e b r a s encoun= t e r e d so f a r , i s i t s l o c a l c h a r a c t e r . T h i s p r o p e r t y extends t h e known p r o p e r t 4 o f those p r o m which can be d e f i n e d w i t h i n t h e d i s t r i b u t i o n s i n U'(R ) , f o r i n s t a n c e
Y S
(1)
E
U'(Rn)), Y E Cm(Rn)
:
supp (yc.S) c supp Y n supp S
o r more general (see [ 17,76,82-85,101])
Y S,S',T,T'
E
U'(Rn)), G c Rn non-void, open : =*
S.T = SIT on G
I n order t o present the l o c a l properties o f the product w i t h i n the quotient algebras i t i s useful t o e x t e n d t h e n o t i o n o f s u p p o r t o f a d i s t r i b u t i o n t o t h e case o f elements o f these q u o t i e n t algebras. W i t h t h e h e l p o f t h e mentioned extended n o t i o n o f s u p p o r t s e v e r a l o t h e r l o c a l p r o p e r t i e s o f elements i n q u o t i e n t a l g e b r a s w i l l be presented.
1.
Support o f Elements i n Q u o t i e n t Algebras
Suppose f o r a c e r t a i n f i x e d 11 S e c t i o n 2, Chapter 1)
A = A/Z
(3) If S
E
E
AL R
c
E
8,
we a r e g i v e n a q u o t i e n t a l g e b r a (see
(0)
A and E c R , we s h a l l say t h a t S vanishes on E, o n l y i f
3 s €A:
(4)
* ) S = s + Z
**) s v = 0 on E, Y v
E
N, v 2 p
f o r a c e r t a i n ~.rE N. The s u p p o r t o f S w i l l be c a l l e d t h e c l o s e d subset
265
266
Rosinger
E.E.
supp S = R
(5)
\ {x E
n
I
S vanishes on a neighbourhood o f x }
Proposition 1
R (n) t h e above n o t i o n o f s u p p o r t i s i d e n t i c a l w i t h t h e
For functions i n C usual one. Proof
I t f o l l o w s from (23) i n Chapter 1.
0
The l o c a l c h a r a c t e r o f t h e m u l t i p l i c a t i o n and a d d i t i o n i n t h e q u o t i e n t a l = g e b r n presented i n t h e n e x t two theorems , w h i c h e extensions o f t h e p r o p e r t i e s i n (1) and ( 2 ) Theorem 1 I f S,T E A t h e n T ) c supp S u supp T
1)
supp ( S
2)
supp (S.T) c supp S n supp T
t
Proof I t f o l l o w s from a d i r e c t v e r i f i c a t i o n .
0
Before p r e s e n t i n g Theorem 2, we s h a l l i n t r o d u c e t h e f o l l o w i n g d e f i n i t i o n . Given S,S' E A and E c R, we say t h a t S = S ' on E
(6) only i f S
-
S ' vanishes on E.
Theorem 2 Suppose S,S',T,T'
E
A and E c
1)
S t T = S ' t T ' o n E
2)
S.T = S ' . T ' on E
n. I f
S = S ' and T = T ' on
E, then
Proof I t f o l l o w s from a d i r e c t v e r i f i c a t i o n .
0
Corollary 1 The e q u a l i t y on E o f elements i n A i s an equivalence r e l a t i o n on A which i s compatible w i t h i t s a l g e b r a s t r u c t u r e .
A u s e f u l e x p l i c i t e x p r e s s i o n o f t h e s u p p o r t i s presented now. Theorem 3 If S E A =
(7)
A / l , then
-
supp S = w €n7 c l v l ~ m msupp (sv t wv)
26 7
SUPPORT
f o r any
SE
A , such t h a t S = s
t
I
E
A.
Proof F i r s t , we prove t h e i n c l u s i o n t o t h e r i g h t hand t e r m o f ( 7 ) .
v
(8)
n supp ( s , + w),
C
=
.
Assume g i v e n X E Q which does n o t b e l o n g Then, t h e r e e x i s t s w E 1 , such t h a t
8, YV
E
N, v > i ~ ,
where V i s a c e r t a i n neighbourhood o f x and
i~
E N i s s u i t a b l y chosen.
B u t t h e r e l a t i o n ( 8 ) o b v i o u s l y i m p l i e s t h a t S vanishes on V , t h e r e f o r e x g supp s. supp S . Then The converse i n c l u s i o n 3 r e s u l t s as f o l l o w s . Assume t h a t x by d e f i n i t i o n t h e r e e x i s t s a neighbourhood V o f x and a sequence o f func= t i o n s s E A, such t h a t (see ( 4 ) ) S = s + I and s v = O o n V , Y v ~ N ,v>p,
(9)
for a certain p
E
N.
But the r e l a t i o n ( 9 ) obviously implies t h a t x
+
-
cl lim v+m
supp s v
t h e r e f o r e x cannot b e l o n g t o t h e r i g h t hand t e r m o f ( 7 ) .
0
I n t h e case o f t h e chains o f q u o t i e n t a l g e b r a s used i n Chapter 7, 8 and 9, some a d d i t i o n a l p r o p e r t i e s o f t h e s u p p o r t a r e presented now. F i r s t , an i m p o r t a n t f e a t u r e o f t h e s u p p o r t o f t h e D i r a c 6 d i s t r i b u t i o n and i t s p a r t i a i d e r i v a t i v e s w i l l r e s u l t i n case t h i s d i s t r i b u t i o n i s represen= t e d b y a c -smooth 6 -sequence which s a t i s f i e s t h e c o n d i t i o n o f s t r o n g sence on t h e s u p p o r t (see ( 1 2 ) i n Chapter 8 ) . T h i s f e a t u r e - p=*r e s e n t e n e x t i n Theorem 4 - g i v e s an a l t e r n a t i v e i n s i g h t i n t o t h e meaning o f t h e mentioned c o n d i t i o n of s t r o n g presence on t h e s u p p o r t . Theorem 4 Within t h e chains o f q u o t i e n t algebras
A'(
v,s
@ T),
witha
E
R,
@
c o r r e s p o n d i n g t o C m - r e g u l a r i z a t i o n ( v,s T ) d e f i n e d i n ( 3 3 ) , Chapter 8, t h e p a r t i a l d e r i v a t i v e s Dp6, o f any g i v e n o r d e r p E Nn, of t h e D i r a c 6 d i s = t r i b u t i o n have t h e f o l l o w i n g p r o p e r t i e s :
1)
supp DP6 = ( O I E Rn
2) 3)
DP6 vanishes on any Ec Rny such t h a t 0
(10)
v c 1; n vm DP6 does n o t v a n i s h on f O I C Rn, i n case t h a t t h e f o l l o w i n g c o n d i t i o n i s s a t i s f i e d (see (44) i n Chapter 8):
4)
4
cl E
Dp6 does n o t v a n i s h on Rn\ EO3, i n case t h a t t h e f o l l o w i n g c o n d i t i o n i s s a t i s f i e d (see (34) i n Chapter 8):
268
Rosinger
E.E.
vcI;n!r
(11) Proof
Assume t h a t (see S e c t i o n 1, Chapter 8) (V,S
6;J ) E
RG,
. Then, i n view o f (10) and (29) i n Chapter 8, f o r a c e r t a i n given s E as w e l l as Theorem 3, S e c t i o n 3, Chapter 3, we o b t a i n t h e r e l a t i o n
@ T) E
DPg = Dps t IR(V,s
(12)
AR(V,s
(5J ) , V R
E
Now, 1) and 2) w i l l r e s u l t e a s i l y from (12) above, as w e l l as (11) i n Chapter 8. 3)
Assume t h a t i t i s f a l s e and DPg vanishes on Rn tion, there e x i s t s a representation DPg = t t
(13)
IR(v,s @ T ) ,
with t
E
\@I. Then, by d e f i n i =
AR(V,s
&?J )
such t h a t t
(14)
=
o
on R~ \ l o } ,
v
R E N, v 2
u
f o r a c e r t a i n P E N. B u t t i s a sequence o f continuous f u n c t i o n s on Rn, t h e r e f o r e (14) y i e l d s = 0 on R
t,
n
Then o b v i o u s l y t E 11 n
(15)
t
vc
E
, V R E N, v > u v",
I%,S
hence i n view o f ( l o ) , we o b t a i n t h a t
@T)
But t h e r e l a t i o n s (13) and ( 1 5 ) w i l l c o n t r a d i c t 1 ) i n Theorem 1, S e c t i o n 2, Chapter 8. 4) (16)
Assume t h a t i t i s f a l s e and t h e r e e x i s t s a r e p r e s e n t a t i o n (13) such that t,(O)
f o r a suitable
(17)
u
w = t
= 0,
V R E N, v > 1.I
E N.
L e t us denote
-
,
DPs
then (12) and (13) w i l l y i e l d
w
E
IR(V.S
@ J)
t h e r e f o r e , i n view o f (20) i n Chapter 3, we o b t a i n v . .w i i R f o r c e r t a i n vi E VL and wi E A (V,S
(18)
W =
C
O < i < h
B u t i n view o f ( l l ) , i t f o l l o w s t h a t
@ J).
SUPPORT
269
m
vi
E VR
c v c 76
therefore, the condition ( 2 ) in Chapter 8, applied t o vO,...,vh viV(O) = 0, Y
(19)
V E
N,
V
E
N.
f o r a certain suitably chosen U'
will yield
>, 1-I'
NOW, the relations (17-19) will imply t h a t
DpsV(O)= 0 , V v
N, v
E
> u' 0
which will obviously contradict (12) in Chapter 8.
We present now in the framework of the chains of quotient algebras in Theorem 4 , an additional information on the general e x p l i c i t expression of the support obtained in Theorem 3. Theorem 5 Suppose the chains of quotient algebras in Theorem 4 s a t i s f y the condition (11). Suppose given for a certain I? E R , an element s = s + 7 R (V,S (
(q
Th
supp sv and
v + w
l%
supp ( s v
t
wv)
v - t m
d i f f e r by a t most a fi n i t e number of points. Proof
I n view of (20) in Chapter 3, we have t h a t
c
w =
OGiGh for certain vi 1 ows t h a t
E
Vil and
wi
v i, .w i R
E A (V,S
GI T ) .
B u t , in view of ( l l ) , i t f o l =
W
v i E VR c v c Z6 the ref ore
w
E
7s
m
since l 6 i s an ideal in ( C " ( R n ) ) N .
I t follows t h a t w s a t i s f i e s the condition ( 3 ) in Chapter 8 and t h u s the proof i s completed.
0
An interesting property of nilpotent elements (see Section 6 , Chapter 8) within the chains of quotient algebras used in Theorem 5 , i s presented now.
270
E.E. Rosinger
Theorem 6 Suppose g i v e n under t h e c o n d i t i o n s i n Theorem 5 , an element S If for a certain m
R A ( V , S (JT).
N \*Qlwe have
E
Sm = 0
E
E
A'( V,S (t)
T)
then supp S i s a f i n i t e subset i n R". Proof Assume g i v e n a r e p r e s e n t a t i o n S = s t lR(V,S
with s
E
AR(V,S
6)T ) .
@ J) E AR(V,S
(,gT )
Then by t h e hypothesis, i t f o l l o w s t h a t
I
Sm = sm t l ' ( V , S
(;j
T ) = 0 E AR(V,S (t, T )
t h e r e f o r e d e n o t i n g w = sm, we o b t a i n
w E lR(V,S (t) T ) Then an argument s i m i l a r t o t h e one i n t h e p r o o f o f Theorem 5 w i l l y i e l d
w E 1; t h e r e f o r e v v m supp wv i s a f i n i t e subset i n Rn. SUPP
wV = supp sV , V v
E
But obviously
N.
thus i n view o f ( 7 ) t h e p r o o f i s completed. 2.
0
L o c a l i z a t i o n w i t h i n t h e Q u o t i e n t Algebras
Given an element S E A = A/l
we s h a l l denote by
t h e s e t o f a l l t h e open subsets G t o see t h a t
G
C
i? on which S vanishes.
Then i t i s easy
= i? \ supp S
GS
I n t h e case o f a d i s t r i b u t i o n S E U ' ( 0 ) and w i t h t h e usual n o t i o n s o f va= n i s h i n g and s u p p o r t f o r d i s t r i b u t i o n s , t h e corresponding s e t GS has t h e w e l l known p r o p e r t y t h a t any u n i o n o f s e t s i n GS i s a g a i n a s e t i n GS. I n particular
SUPPORT
\ supp S =
(21)
U
271
G E Gs
G E Gs
The aim o f t h i s s e c t i o n i s t o p r e s e n t s e v e r a l p a r t i a l e x t e n s i o n s o f ( 2 1 ) t o t h e case o f q u o t i e n t a l g e b r a s ( 3 ) . Theorem 7 Suppose g i v e n S
E
A = A/1 and G1,G2
E Gs.
If
where d denotes t h e E u c l i d i a n d i s t a n c e on Rn,
then
Proof
In view o f t h e h y p o t h e s i s , we can assume s l , s 2 E A s u c h t h a t
(24)
S = S ~ + I = +S I E A = A / I 2 s l v = 0 on G1 , V v E N , v 2 p ,
(25)
s2v = 0 on G2
(23)
f o r a c e r t a i n LI
E
,Y v
EN,
v
>u,
N.
L e t us denote w = s 1 - s2 then (23) y i e l d s
(26)
W E 7
But, i n view of (24) and ( 2 5 ) we o b t a i n f o r v E N, v 2 p
slv(x) - sZv(x)
if x
E
SlV(X)
if x
E
Now, i f we t a k e E = G1 \ G 2 and F = tain d(E,
a \F)
= d(G1\G2,
a \(G2\G1)
\(G1
, the U
relation
G2)
G2\ G1
then i n view o f ( 2 2 ) we ob=
G2\G1) > 0
t h e r e f o r e a c c o r d i n g t o Lemma 1 below, t h e r e e x i s t s Y E Cm(Q) such t h a t
E.E.
272
-4
if x
E
Rosinger
G2\ GI
Y(x) =
(28)
i f x E G1 \ G2
.$ Then we denote
w ' = U(Y).W
(29)
and i n view o f (26), as w e l l as (23) i n Chapter 1, we o b t a i n 1
W'E
Therefore s = (sl t s 2 ) / 2 t
(30)
w'E
A
and i n view o f (24) and (25) s = s t 7 E A = A / 1
(31)
B u t t h e r e l a t i o n s (27-30) y i e l d
(32)
s,,
= 0 on G1 U
G2, V v
E
N,
>
v
and (31) t o g e t h e r w i t h (32) w i l l i m p l y t h a t
G1
U
G2
Gs
E
Lemma 1 Suppose g i v e n t h e subsets E C F
C
R such t h a t
d(E, Q \ F) > 0 then there e x i s t s Y
E
C"(R) w i t h t h e f o l l o w i n g p r o p e r t i e s
1)
O Q Y G l o n a
2)
Y = l o n E
3) 4)
Y = O o n R \ F Y E D(Q) i f E i s bounded
Proof L e t us d e f i n e
x
: Rn
x
(0,m)
-+
R ' by
KE exp(E2/(llxl12
X(X,E)
E'))
i f IIxII <
E
=
0
where
-
if IIxII
2
E
SUPPORT
We s h a l l choose E E
(O,m),
273
such t h a t
d(E, R \ F ) / 2
E
and d e f i n e Y :
Rn
+
X(x-Y,E)dy
=
'+'(XI
R 1 by
E
where E E =
E R n / d(y,E)
GE}
Then i t i s easy t o see t h a t t h e r e s t r i c t i o n o f Y t o R i s t h e r e q u i r e d function.
n
Corollary 2 Suppose g i v e n S E A = A / 7 and G1,G2
(33)
c i G~ n c i G~ =
(34)
c l G1 i s compact
E GS
which s a t i s f y t h e c o n d i t i o n s
0
then
Proof I t i s easy t o see t h a t G1 and G2 s a t i s f y t h e c o n d i t i o n ( 2 2 )
0
Theorem 8 Suppose g i v e n S E A = such t h a t
(35)
A/I
and G1,G2
E
GS.
I f g i v e n a subset G i c
d ( G i , R \ G1) > 0
then
G i u G2
E
GS
Proof We s h a l l use t h e n o t a t i o n s i n t h e p r o o f o f Theorem 7 I n view o f Lemma 1, t h e r e e x i s t s
-j
if x
E
\y E
G2 \ G1
Y(x) =
4
C"(Q)
if x E Gi
such t h a t
GI
2 74
E.E.
Rosinger
I n t h i s case, t h e r e l a t i o n (32) i n t h e p r o o f o f Theorem 7 w i l l y i e l d sV
= 0 on G i
U
G2, Y v E N , v 2~ a
which completes t h e proof. Theorem 9 Suppose g i v e n S E A = f ies t h e c o n d i t i o n s
and an open subset G c R \ supp S which s a t i s =
A/7
(36)
cl G n supp S = fl
(37)
c l G i s compact
then
G
E
GS
Proof I n view o f (36) i t f o l l o w s t h a t Y x E c l G : (38)
]EX
:
E(0,m)
B ( x , E ~ )n R
E
Gs
where we denote B ( x , p ) = {y E Rn
for x
E
Rn,
I
Ily-xll < p }
p E ( O , m ) and II II t h e E u c l i d e a n norm on Rn.
But i n view o f (37) we o b t a i n
f o r c e r t a i n xO,
...,xh
E c l G, which can be assumed p a i r wise d i f f e r e n t .
Now, i f h=O t h e n t h e p r o o f i s completed, s i n c e (38) and (39) w i l l y i e l d G
C
cl G
C
B ( x ~ , E /2) ~ nR 0
Assume then h = l .
E
Gs
We s h a l l denote
G I = B ( x ~ , E ~n~R, ) Gi = B ( x ~ , E ~ ~n/ R~ )
) nR
G2 = B(xo,cx 0
I n view o f (38) t h e s e t s G1,Gi and G2 s a t i s f y t h e c o n d i t i o n s i n Theorem 8, t h e r e fo r e
275
SUPPORT
i f (39) i s taken i n t o account, thus t h e p r o o f i s a g a i n completed.
1 denote
Assume f u r t h e r t h a t h=2.
= B ( x ~ , E /~2 ) 2
G2 = ( B ( x
fli?
/2)) n n 1 follows that
,E
EX
xo Then, i n view o f (38) and O
Thus, t h e s e t s G , G j and G2 s a t i s f y t h e c o n d i t i o n s i n Theorem 8. T h e r e f o r e t h e r e l a t i o n ( 4 0 j w i l l f o l l o w again, i f (39) i s t a k e n i n t o account. I n t h i s way, t h e p r o o f i s a g a i n completed. I t i s easy t o see t h a t t h e above procedure can b e used f o r any h E N, h >D3 i n (39).
Corollarv 3 Suppose g i v e n S E A = A / l perties are equivalent:
(41)
and a s u b s e t H c R, t h e n t h e f o l l o w i n g two p r o =
supp S c H
and
Y
(42)
K
R \H, K compact:
c
3GEGS: K C G
Proof Assume t h a t ( 4 2 ) i s v a l i d and x E R \ H. Then o b v i o u s l y x E G, f o r a c e r = supp S, s i n c e G i s open b y d e f i n i t i o n . I t f a l = tain G E G Therefore x lows i n th?s way t h a t ( 4 1 ) h o l d s .
.
The converse r e s u l t s from Theorem 9, n o t i c i n g t h a t R
\ supp S i s open.
Corollary 4 Suppose g i v e n S E A = lent:
(43)
supp
s
=
A/l
, then
t h e f o l l o w i n g two c o n d i t i o n s a r e equiva=
g
and
Y G c R , G open, bounded :
(44)
G
E
GS
E.E. Rosinger
2 76 Proof I t f o l l o w s from C o r o l l a r y 3.
0
Theorem 10 Suppose g i v e n S E A =
v
Y E
4 / 1 and a c l o s e d subset F c R.
Then, t h e c o n d i t i o n
D(R) :
(45) C R \F * Y . S
supp Y
= 0 € A
implies the condition (46)
supp S C F
Moreover, i n case I i s c o f i n a l i n v a r i a n t (see (61) i n Chapter 2 ) , t h e con= d i t i o n s (45) and (46) a r e e q u i v a l e n t . Proof Assume t h a t (45) i s v a l i d and x E R \F. Since F i s closed, i t f o l l o w s t h a t t h e r e e x i s t s Y E D(Q), w i t h supp Y c R \ F and a neighbourhood V o f x, such t h a t (47)
Y = l o n V
But, i n view o f t h e h y p o t h e s i s \y.S = 0
E
A
t h e r e f o r e , g i v e n any r e p r e s e n t a t i o n (48)
S = s t l
E
A =
A/I,withsEA
we o b t a i n (49)
u(Y).s
E
A
Now, t h e r e l a t i o n s (48) and (49) y i e l d
(50)
s
= u(i-i)s t
r
E
A
L e t us denote t = u(1-Y)s
t h e n (47) y i e l d s tv=OonV,VvEN which t o g e t h e r w i t h (50) i m p l i e s t h a t x p a r t i s completed.
$ supp
S and t h e p r o o f o f t h e f i r s t
Assume now t h a t (46) i s v a l i d and 7 i s c o f i n a l i n v a r i a n t . Then l e t us t a k e Y E D(Q) such t h a t supp Y C il \F. B u t supp Y i s compact, t h e r e f o r e C o r o l =
SUPPORT
277
l a r y 3 i m p l i e s t h e e x i s t e n c e o f G E Gs such t h a t supp Y c G
(51)
S i n c e b y d e f i n i t i o n S vanishes on G t i s f i e s the condition
sv
(52)
= 0 on G, V
for a certain p sume t h a t
(53)
E
N.
v
% we
E
can assume t h a t s i n (48) sa=
N, v > p
E
Moreover, s i n c e 7 i s c o f i n a l i n v a r i a n t , we can as=
p = o
Then, t h e r e l a t i o n s (51-53) w i l l y i e l d = u(0) E
U(Y).S
Q
hence (48) w i l l imply Y . S = 0
E
A.
Corollary 5 Suppose g i v e n S
v
Y
E
E
A =
u(n)
supp Y n
I f 7 i s c o f i n a l i n v a r i a n t then
A/7. : SUPP
S =
0
=*
\y.S =
0 E A
Proof 0
I t f o l l o w s from t h e second p a r t o f Theorem 10.
An i m p o r t a n t decomposition p r o p e r t y f o r t h e elements o f q u o t i e n t a l g e b r a s i s presented now. Theorem 11 Suppose g i v e n S
(54)
E
A = A/7
and I i s c o f i n a l i n v a r i a n t .
If
supp S = F U K w i t h F closed, K compact and F n K =
0
then t h e f o l l o w i n g decomposition h o l d s
s
=
SF
SK
where SF, SK
E
A =
A/I
(55)
and
(55.1)
supp SF n supp SK =
(55.2)
K nsupp
sF
0, w i t h
= F n supp
supp SK compact
sK= 0
Proof Assume t h e open subsets G1,G2,G3,G4
(56)
K c Gl,cl pact
G1
C
C
R such t h a t
G2, c l G2 C G3, c l G3
C
G4, F n c l G4 = 0, c l G4 conp
278
E.E.
Rosinger
L e t us denote K1 = ( c l G4)\G1 then obviously K1 n supp S =
0 and K1 i s compact
t h e r e f o r e , i n view o f C o r o l l a r y 3, t h e r e e x i s t s G Then b y d e f i n i t i o n , t h e r e e x i s t s a r e p r e s e n t a t i o n
+ I€ A
S = s
E
Gs such t h a t
K1
c G.
W l , with s E A
=
such t h a t = 0 on G,
sv
for a certain p t h a t p = 0.
N.
E
V
V E
N, v
>p,
But 7 i s c o f i n a l i n v a r i a n t , t h e r e f o r e we can assume
Now i n view o f ( 5 6 ) , Lemma 1 g r a n t s t h e e x i s t e n c e o f YF YK E D(n) such t h a t
YF = 1 on n \G4,
YF = 0 on c l G3
YK = 1 on c l G1,
YK = 0 on
E
C"(n)
and
R \G2
Then o b v i o u s l y
s = U(YF).S +
U(YK).S
t h e r e f o r e , i f we d e f i n e SF = u(YF)s
+ 1
SK
+
= u(YK)s
E A
7 E A
t h e r e l a t i o n s ( 5 5 ) , (55.1) and (55.2) w i l l obvious h o l d . 3.
Equivalence between S=O and supp S=0
Given S E A = A l l , t h e i m p l i c a t i o n S = 0 E
A =. supp
S = 0
i s obvious. The converse i m p l i c a t i o n i s proved t o h o l d under t h e f o l l o w i n g c o n d i t i o n s . Theorem 12 Suppose g i v e n S E (57)
A
= A l l and 7 i s c o f i n a l i n v a r i a n t . Then t h e c o n d i t i o n
S = O E A =
A/I
i s e q u i v a l e n t t o t h e f o l l o w i n g two ones (58)
supp
s
=
0
SUPPORT
(59)
2 79
S vanishes o u t s i d e o f a compact subset o f
R
Proof Assume t h a t (58) and (59) a r e v a l i d .
Then t h e r e e x i s t s a r e p r e s e n t a t i o n
I E A = A / l , w i t h s ~A ,
S = s +
such t h a t
su
R \K, Y u
= 0 on
E
N, v > p ,
f o r c e r t a i n p E N and compact subset K c R. since I i s cofinal invariant.
B u t one can assume t h a t 1-1 = 0,
L e t us now t a k e Y E o(R), such t h a t Y = l o n K then obviously
s =
U(Y).S
therefore '4.S = S E
(60)
A
0
B u t supp Y n supp S = 2, w i l l i m p l y t h a t
lJ.S = 0
E
= A/I
i n view o f ( 5 8 ) .
Therefore Corollary 5 i n Section
A
which t o g e t h e r w i t h (60) completes t h e p r o o f o f ( 5 7 ) . The converse i s obvious.
4.
0
Domains o f S o l v a b i l i t y f o r Polynomial N o n l i n e a r PDEs
The n o t i o n o f s u p p o r t d e f i n e d f o r t h e elements o f q u o t i e n t a l g e b r a s ( 3 ) o f = f e r s a n a t u r a l way f o r d e f i n i v g domains of s o l v a b i l i t y f o r p o l y n o m i a l non= l i n e a r PDEs. Suppose g i v e n t h e m-th o r d e r polynomial n o n l i n e a r PDE i n (1) , Chapter 1, which we s h a l l c o n s i d e r w i t h i n t h e f o l l o w i n g framework (see S e c t i o n 3, Chap= t e r 1 and S e c t i o n s 0 and 5, Chapter 2 ) : (61)
T(D) :
E * A
where
,A
E
= S/V E VSF
(61.2)
E
m QA
(61.3)
F
v e c t o r subspace i n M ( R ) , G subalgebra i n M(R) and G 3
(61.1)
Then, t h e c l o s e d s u b s e t i n
= A / l E ALG
R given by
C"(n)
zao
E.E. Rosinger
rE+ A
(62)
supp (T(D)S-f)
n
=
S E E
will be c a l l e d the s i n g u l a r i t y i n E
+
A of t h e mentioned PDE.
Obviously, in case t h e mentioned PDE has a sequential s o l u t i o n i n E + A , then rE A = 0. +
The open subset in (63)
given by
n E + A = n \
rE
+ A
w i l l be c a l l e d the domain of s o l v a b i l i t y i n E
-+
A of t h e mentioned PDE.
The r e s u l t s on support obtained i n Sections 1-3 lead t o the following ex= l i c i t expressions f o r t h e subsets o f s i n g u l a r i t y and domain of s o l v a b n i t y h o l y n o m i a l nonlinear PDE, expressions which a r e p a r t i c u l a r l y conve= n i e n t in order t o study t h e v a r i a t i o n of t h e mentioned subsets when t h e i r dependence on E and A i s considered. Theorem 13 The following r e l a t i o n s hold (64)
rE
+
A
E + A
(65)
n
= s Q s w Q 7 cl v - +SUPP ~ (T(D)sV
=
-
f
-
wV)
u u int lim (n \ s u p p ( T ( D ) s V - f SESWE'I v - f m
- wv)
Proof The r e l a t i o n (64) follows e a s i l y from ( 6 2 ) , as well as Theorem 3 in Section 1. The r e l a t i o n (65) follows e a s i l y from (63) and ( 6 4 ) .
0
In view of Theorem 13, i t i s obvious t h a t the domain of s o v a b i l i t y w i l l increase and correspondingly the s i n g u l a r i t y w i l l decrease , whenever S and l i n ( 6 1 . 1 ) increase.
F I N A L REMARKS
The quotient algebras of the chains ( 2 4 ) or (93) in Chapter 3, used within the Chapters 3-9, are particular cases o f the quotient algebras (1)
A = A/I
defined in Section 2 , Chapter 1, by the inclusion diagrams
(2)
i-iP-
+
> G
N
.rnuG=q UG
Indeed, besides the f a c t t h a t in the case of the quotient algebras of the mentioned chains we have (3)
G =
c"(n) or G
c'(n)
the essential particularity i s t h a t the ideals I in A s a t i s f y also the con= di t i on (4)
I i s an ideal in G
N
As seen in Sections 4 and 5 , Chapter 3, as well as in Chapter 6 , t h i s par= t i c u l a r feature of the ideals 1 in (1) and ( 2 ) proves t o be specially con= venient in establishing basic properties of the quotient algebras of the mentioned chains, properties which depend c r i t i c a l ly on the structure of the ideals I . However, as seen in Proposition 2 , Appendix 4 , the rather simple case of the Cauchy-Bolzano quotient algebra (1,2) defining the real numbers, leads t o an ideal 1 in A which does not s a t i s f y the above condition ( 4 ) , f o r G = Q. In other words, the sequential completion of Q i n the usual metric topology requires the f u l l generality of the quotient algebras ( 1 . 2 ) . I t i s therefore natural t o assume that a deeper study of the sequentia1,in particular weak solutions of polynomial nonlinear PDEs will also require quotient algebras (1-3) o f a general form, not necessarily satisfying the condition ( 4 ) . The d i f f i c u l t problem arising here i s the lack of s u f f i c i e n t knowledge concerning the structure of ideals in subalgebras of the algebra of continuous functions on a completely regular topological space.
Even in the case of general quotient algebras (1-3) a further objection 283
E.E. Rosinger
282
m i g h t be r a i s e d . o f functions
(5)
Indeed, as seen i n S e c t i o n 4, Chapter 1, t h e sequences
W E 1
a r e ' e r r o r sequences o r ' n e g l i g i b l e ' sequences o f f u n c t i o n s see S e c t i o n 2, Chapter 1 , as we 1 as Appendix l ) , w h i l e t h e sequences o f f u n c t i o n s (6)
Z G A
a r e t h e ' a d m i s s i b l e ' sequences o f f u n c t i o n s i n t h e q u o t i e n t a gebra ( 1 , 2 ) . Therefore, t h e c o n d i t i o n r e q u i r e d i n (1,2) t h a t (7)
7
i s an i d e a l i n A
m i g h t i n c e r t a i n cases prove t o be t o o s t r o n g , s i n c e i t means t h a t t h e pro= d u c t between a ' n e g i g i b l e ' sequence o f f u n c t i o n s ( 5 ) and an ' a d m i s s i b l e ' sequence o f f u n c t i o n s ( 6 ) i s always a ' n e g l i g i b l e ' sequence o f f u n c t i o n s . However, t h e l i k e l i h o o d o f t h e above o b j e c t i o n seems t o be r a t h e r s m a l l , s i n c e n a t u r a l and minimal assumptions on Iw i l l i m p l y t h a t I s a t i s f i e s t h e c o n d i t i o n ( 7 ) . Indeed, l e t us suppose t h a t (8)
G i s a subalgebra i n
M(n)
and (9)
N 7 i s a subalgebra i n G
which s a t i s f i e s t h e c o n d i t i o n s
(10)
inuG=2
(11)
7 . UG c 7
Then, w i t h t h e n o t a t i o n s i n S e c t i o n 6, Chapter 1, i t f o l l o w s t h a t
(12)
1 i s an i d e a l i n AG(T)
and t h e i n c l u s i o n diagram i s v a l i d
t h e r e f o r e , we o b t a i n t h e q u o t i e n t a l g e b r a
Moreover, i n t h e sense s p e c i f i e d i n (50-52), Chapter 1, each q u o t i e n t a l = gebra (1,2) i s o f t h e f o r m (14). I t i s w o r t h n o t i c i n g t h a t t h e v a r i a n t i n (12) o f t h e c o n d i t i o n ( 7 ) was i m = p l i e d b y t h e assumptions on 7 g i v e n i n (9-11), assumptions w h i c h a r e natu=
FINAL REMARKS
283
r a l and m i n i m a l . Indeed, (10) i s t h e ' n e u t r i x ' c o n d i t i o n (see Appendix 4) which i s anyhow assumed i n ( 2 ) . F u r t h e r , t h e c o n d i t i o n (11) means t h a t t h e p r o d u c t between a ' n e g l i g i b l e ' sequence o f f u n c t i o n s and an ' a d m i s s i b l e ' f u n c t i o n i s always a ' n e g l i g i b l e ' sequence o f f u n c t i o n s . F i n a l l y , t h e con= d i t i o n ( 9 ) which m i g h t seem t o be t h e s t r o n g e s t and thus t h e most q u e s t i o n = a b l e , means t h a t t h e p r o d u c t o f two ' n e g l i g i b l e ' sequences o f f u n c t i o n s i s always a ' n e g l i g i b l e ' sequence o f f u n c t i o n s . I n case t h e c o n d i t i o n s (9-11) a r e a c c e p t a b l e , an o b j e c t i o n m i g h t y e t a r i s e of t h e subalgebra AG ( I ) . Indeed, i n s p i t e o f t h e connected w i t h t h e
size
f a c t t h a t & ( ? ) i s t h e l a r g e s t subalgebra i n GN f o r which t h e i n c l u s i o n diagram (13) i s v a l i d , i t s s i z e m i g h t prove t o be t o o small from some p o i n t s of view, such as f o r i n s t a n c e t h e g e n e r a l i t y p r o p e m s e c t i o n 5, Chap= t e r 1) o f t h e s e q u e n t i a l , i n p a r t i c u l a r weak s o l u t i o n s f o r polynomial non= l i n e a r PDEs
.
This Page Intentionally Left Blank
APPENDIX 1 NEUTRIX CALCULUS AND NEGLIGIBLE SEQUENCES OF FUNCTIONS
Connected w i t h t h e s t u d y o f v a r i o u s a s y m p t o t i c expansions, J.G. Van d e r Corput, 12161, developed a ' n e u t r i x c a l c u l u s ' meant t o deal i n a general and u n i f i e d way w i t h ' n e g l i g i b l e ' q u a n t i t i e s . The b a s i c i d e a o f h i s method presented i n t h e sequel proved t o be o f a w i d e r i n t e r e s t , b e i n g f o r i n = stance u s e f u l i n t h e t h e o r y o f d i s t r i b u t i o n s [53,541.
-
I n t h e c o n d i t i o n s (20.1) and (21.1) i n S e c t i o n 2, Chapter 1, d e f i n i n g t h e q u o t i e n t spaces r e s p e c t i v e l y algebras o f c l a s s e s o f sequences o f f u n c t i o n s on domains i n t u c l i d i a n spaces, we have a l s o made use o f t h e n o t i o n o f ' n e g l i g i b l e ' sequences o f f u n c t i o n s . An o t h e r example can be seen i n Ap= pendix 4, where R ' i s d e f i n e d as a q u o t i e n t a l g e b r a o f c l a s s e s o f sequences o f r a t i o n a l numbers, a c c o r d i n g t o t h e Cauchy-Bolzano method. I n t h a t case t h e ' n e g l i g i b l e ' sequences o f r a t i o n a l numbers w i l l c o i n c i d e w i t h t h e se= quences o f r a t i o n a l numbers convergent t o zero. And now, t h e d e f i n i t i o n o f n e u t r i x . Suppose g i v e n an a r b i t r a r y non-void s e t X and an A b e l i a n group G. j e c t of o u r s t u d y w i l l be t h e f u n c t i o n s
f : X
+
The ob=
G
i n o t h e r words, t h e elements o f t h e C a r t e s i a n p r o d u c t
which i s i n a n a t u r a l way a l s o an A b e l i a n group. The problem i s t o d e f i n e i n a s u i t a b l e and general way t h e n o t i o n o f ' n e g l i = g i b l e ' f u n c t i o n f E Gx.
A g i v e n subgroup (2)
N C Gx
w i l l be c a l l e d a n e u t r i x , only i f YfEN,yEG:
(3)
i'
;(I)x=:J
=+
Y
=
0
i n which case t h e f u n c t i o n s f E N w i l l be c a l l e d N - n e g l i g i b l e .
285
-
2 86
E.E.
Rosinger
The i n t e r e s t i n t h e above n o t i o n comes from t h e f a c t t h a t i n case X has a d i r e c t e d p a r t i a 1 o r d e r < , one can d e f i n e a n e u t r i x l i m i t f o r f u n c t i o n s i n GX as f o l l o w s . Suppose g i v e n a n e u t r i x N c GX, a functi'on f E Gx and y E G. Then we d e f i n e N-
l i m f(x) = y v + w X o n l y i f t h e f u n c t i o n g E G d e f i n e d by
(4)
-
g(x) = f ( x )
yt x E
x,
i s knegligible. I n view o f ( 3 ) i t i s easy t o see t h a t t h e l i m i t ( 4 ) i s unique, whenever i t exists. The c o n d i t i o n ( 3 ) d e f i n i n g a n e u t r i x can be g i v e n t h e f o l l o w i n g a l g e b r a i c c h a r a c t e r i z a t i on. L e t us d e f i n e t h e group monomorphi sm: u : G
+
Gx
and denote UG = u(G) Then UG i s t h e subgroup o f -_constant functions i n G
X
.
L e t us denote by
2 t h e n u l l subgroup i n G
X
Proposition 1
A subgroup N c GX i s a n e u t r i x o n l y i f t h e i n c l u s i o n diagram NL
G
T
x
s a t i s f i e s the condition
o r e q u i v a l e n t l y t h e mapping
d e f i n e d by
NEUTRIX CALCULUS
287
i s a group monomorphism, where 8 i s t h e canon c a l q u o t i e n t epimorph sm. Proof It follows easily.
0
I t i s w o r t h n o t i c i n g t h a t t h e c o n d i t i o n ( 7 ) i s t h e o p p o s i t e o f t h e condi= t i o n t h a t t h e c h a i n o f group homomorphisms U
---+G
X
e
x /N-0
(8)
0 +G
-+G
i s exact.
Indeed, ( 7 ) i s e q u i v a l e n t t o ( 6 ) , w h i l e ( 8 ) i s e q u i v a l e n t t o
(9)
UG = N
X I n view o f ( 7 ) and ( 4 ) , we can i n t e r p r e t G / N as t h e s e q u e n t i a l c o m p l e t i o n o f G o b t a i n e d by u s i n g sequences i n G w i t h i n d i c e s i n t h e d i r e c t e d s e t X . I f we t a k e now
X = N and G = M(R)
then t h e i n c l u s i o n diagrams (20) and (21) i n Chapter 1 a r e p a r t i c u l a r cases o f ( 5 ) above, w h i l e t h e c o n d i t i o n s (20.1) and (21.1) i n Chapter 1 a r e iden= t i c a l w i t h ( 6 ) above. Moreover t h e s e q u e n t i a l s o l u t i o n s of polynomial n o n l i n e a r PDEs d e f i n e d i n S e c t i o n 3, Chapter 1, can be seen as n e u t r i x l i m i t s i n t h e sense o f ( 4 ) above. Indeed, suppose g i v e n t h e m-th o r d e r polynomial n o n l i n e a r PDE (see (1) i n Chapter 1) (10)
T(D)u(x) = f ( x ) , x E R,
w i t h continuous c o e f f i c i e n t s and r i g h t hand t e r m and l e t us c o n s i d e r T(D) : E
-+
A
where
m E
S/V
E
VSmm
c (Q)
,A
= A / 7 E AL e(n) and
E
<
A
Obviously, we can a l s o c o n s i d e r t h e mapping (11)
T(D) : Cm(R)
-f
C"(R)
i n which case f o r each g i v e n sequence o f f u n c t i o n s s E (Cm(R))N i t makes sense t o ask whether o r n o t t h e n e u t r i x l i m i t e x i s t s
And i n case t h e n e u t r i x l i m i t i n (12) e x i s t s , i t w i l l o b v i o u s l y be a func= t i o n i n c" (a). Proposition 2 Suppose g i v e n a sequence o f funct'ons s E S.
Then s i s a s e q u e n t i a l s o l u =
E.E.
288
tion i n E
-+
(13)
I -
Rosinger
A o f t h e PDE i n ( l o ) , o n l y i f
lim
T(D)sV = f
v + m
Proof By d e f i n i t i o n , t h e r e l a t i o n (13) i s e q u i v a l e n t t o T(D)s
-
u(f) E I
which i n view o f (36) i n Chapter 1, completes t h e p r o o f
APPENDIX 2 THE EMBEDDING IMPOSSIBILITY RESULT OF L.SCHWARTZ
Two i m p o s s i b i l i t y r e s u l t s d i s c o v e r e d e a r l y i n t h e development o f t h e t h e o r y o f d i s t r i b u t i o n s came t o have a s i g n i f i c a n t r o l e i n shaping t h a t t h e o r y . H i s t o r i c a l l y t h e second one, i n 1957, due t o H.Lewy, [ 1201 , showed t h a t t h e d i s t r i b u t i o n a l framework i s n o t s u f f i c i e n t f o r t h e s t u d y o f l i n e a r PDEs w i t h v a r i a b l e c o e f f i c i e n t s . Indeed, H.Lewy proved t h a t t h e r a t h e r simple, f i r s t o r d e r l i n e a r PDE:
a u(x) axl
+
a u(x) iax2
-
2i(xl+ix2)
a u(x) -
= f(x),x
3x3
= (x
1' x 2 ,x 3 )
E
R3,
dges n o t possess even l o c a l d i s t r i b u t i o n s o l u t i o n s u, f o r a l a r g e c l a s s o f C -smooth r i g h t hand terms f. The c a r e f u l s t u d y o f t h a t i m p o s s i b i l i t y r e s u l t l e a d t o i n t e r e s t i n g necessary and/or s u f f i c i e n t c o n d i t i o n s f o r t h e e x i s t e n c e o f d i s t r i b u t i o n s o l u t i o n s f o r l a r g e classes o f l i n e a r PDEs w i t h v a r i a b l e c o e f f i c i e n t s , 80,2141. However, t h e message o f H.Lewy's impos= s i b i l i t y r e s u l t remained t h e same: t h e inadequacy o f t h e d i s t r i b u t i o n a l framework, even f o r t h e s t u d y o f l i n e a r PDEs. On t h e o t h e r hand, t h e f i r s t i m p o s s i b i l i t y r e s u l t i n 1954, due t o L.Schwartz, [ 1811 , p o i n t e d o u t t h e d i f f i c u l t i e s i n t r y i n g t o e x t e n d i n s i m p l e ways t h e d i s t r i b u t i o n a l framework, by showing t h a t t h e v e c t o r space o f d i s t r i b u = t i o n s D'(Q) cannot be embedded i n t o a s i n g l e d i f f e r e n t i a l a l g e b r a w i t h convenient properties
.
The d e t a i l s o f t h a t r e s u l t a r e presented now i n t h e one dimensional case n = l and R = R ' , as considered a l s o i n t h e o r i g i n a l v e r s i o n . Theorem 1 Suppose g i v e n an a s s o c i a t i v e a l g e b r a A and a l i n e a r mapping c a l l e d d e r i v a = + A s a t i s f y i n g the L e i b n i t z r u l e f o r product d e r i v a t i v e .
tive D : A
Suppose f u r t h e r t h a t - l ) * ) and x 2 ( L n l x l -1) * I
(1)
the functions l,x,x(LnIxI belong t o A
(2)
t h e c o n s t a n t f u n c t i o n 1 i s t h e u n i t element i n t h e a l g e b r a A
(3)
the multiplication i n A i s such t h a t (X(LMlXl - l ) ) . x = x 2 ( L n l x l -1)
.
* ) f o r x=O,both o f t h e f u n c t i o n s have b y d e f i n i t i o n t h e v a l u e z e r o .
289
E . E . Rosinger
290
(4)
t h e mapping 0 : A -t A a p p l i e d t o t h e f u n c t i o n s 1 , X , X 2 ( l ~ I X J -1) E C ' ( R ' ) i s t h e usual d e r i v a t i v e on C'(R*)
Then, t h e r e i s no 6 E A,
(5)
6
# 0. such t h a t
X.6 = 0
Remark 1 The meaning o f t h e i m p o s s i b i l i t y r e s u l t i n Theorem 1 i s t h a t a d i f f e r e n t i a l a l g e b r a which s a t i s f i e s t h e c o n d i t i o n s (1-4), cannot c o n t a i n t h e D i r a c 6 d i s t r i b u t i o n , known t o possess t h e i m p o r t a n t p r o p e r t y ( 5 ) , g i v i n g an upper bound on t h e s i n g u l a r i t y e x h i b i t e d a t x=O by t h a t d i s t r i b u t i o n . I t i s i n t e r e s t i n g t o mention t h a t t h e above i m p o s s i b i l i t y r e s u l t has q u i t e o f t e n been misunderstood, b e i n g i n t e r p r e t e d as t h e " i m p o s s i b i l i t y o f mul= ti p 1y in g d is t r ib ut ion s " .
As shown i n chapters 1 and 3, t h e way o u t o f t h i s impasse i s t o embed 0' i n t o a c h a i n o f algebras, w i t h t h e d e r i v a t i v e a c t i n g between p o s s i b l y dif= f e r e n t W r a s o f t h e chain. P r o o f o f Theorem 1 The i d e a i s very simple, namely t o c o n s t r u c t i n A a " l e f t i n v e r s e " x-' the function x
(6)
x
for
-1 . x = l
and then, assuming ( 5 ) v a l i d f o r c e r t a i n 6 ~ A , 6 # 0, t o use t h e a s s o c i a t i = v i t y o f t h e product, i n o r d e r t o o b t a i n t h e c o n t r a d i c t i o n
(7)
0 = x-!(x.6)
= (x-l.x).S
= 6
Now ( 6 ) can o b v i o u s l y b e o b t a i n e d b y t a k i n g
However, i n o r d e r n o t t o d i m i n i s h t h e power o f Theorem 1, one should a v o i d demanding t h a t A c o n t a i n s s i n g u l a r f u n c t i o n s o f t y p e ( 8 ) . Here, t h e pre= sence o f t h e d e r i v a t i v e mapping D : A -t A w i l l h e l p a v o i d i n g such a de= mand, by n o t i c i n g t h a t i n t h e sense o f t h e usual d e r i v a t i v e D*(x(LPI~xJ
-1)) = l / x , Y x E R ' ,
x # 0,
and X ( ~ P Z / -1) X ] E f ( R ' ) , assuming t h e f u n c t i o n vanishes f o r x=O. I n t h i s way, i t w i l l be s u f f i c i e n t t o demand t h a t A c o n t a i n s s e v e r a l continuous f u n c t i o n s , as seen i n ( 1 ) . And now, back t o t h e r i g o r o u s c o n s t r u c t i o n o f x - l i n ( 6 ) . we s h a l l show t h a t one can t a k e
(9) and o b t a i n
x
-1
= D 2 ( x ( L ~ l x l- 1 ) ) E A
I n t h i s respect,
29 1
EMBEDDING IMPOSSIBILITY
(10)
( D 2 ( ~ ( L l t I x -l l ) ) . ~= 1
Indeed, i n view o f t h e L e i b n i t z r u l e and t h e l i n e a r i t y o f D, one o b t a i n s
( D 2 ( ~ ( L ~- Il ~) )I ) . ~= D ’ ( ( X ( ~ M ~- X l ) ~) . ~ ) - ~ ( D ( x ( L ? M ~-1)).DX x~
- ( x ( L M ~ x -I 1 ) ) . D 2 x Hence, i n view o f ( 3 ) and ( 4 ) , i t f o l l o w s t h a t
(11)
(D2(X(&kLlXI - l ) ) ) . ~= D 2 ( ~ 2 ( & I -~1 /) ) - 2 D ( x ( & l x l
-1))
But, ( 4 ) w i l l a l s o g i v e
D ( x 2 ( L ~ l x l- 1 ) ) = ~ X ( L P I ~- 1X) I t x therefore
D * ( x ‘ ( L M I x I - 1 ) ) = ZD(X(LII~X~ - 1 ) )
+
1
I n t h a t way, (11) w i l l g i v e ( 1 0 ) .
0
Corollarv 1
I f , under t h e c o n d i t i o n s i n Theorem 1, t h e f o l l o w i n g a d d i t i o n a l p r o p e r t i e s o f A a r e assumed: (12)
the functions 1x1 and x l x l a l s o belong t o A
(13)
the m u l t i p l i c a t i o n
.
i n A i s such t h a t
x.IxI = x l x l (14)
A
+
A applied t o the function
xlxl
E
C’(R’)
t h e mapping D :
i s t h e usual d e r i v a t i v e on C ’ ( R ’ ) then
(15)
D21x1 = 0
Proof I n view o f t h e L e i b n i t z r u l e and t h e l i n e a r i t y o f D, o b v i o u s l y x.D21xl = D 2 ( ~ . I ~ -I ) 2Dx.Dlxl
- D’x.IxI
Thus, i n view o f (13) and ( 1 4 ) , one o b t a i n s
(16)
x . D ~ ~ x =I D 2 ( x l x l )
But, (14) w i l l g i v e D(xlxl) =
21x1
-
2Dlxl
-
E.E.
292
Rosinger
therefore D 2 ( x l x l ) = 201x1 Now, ( 1 6 ) w i l l i m p l y x.D21xl = 0 and i n view o f Theorem 1, t h e p r o o f o f ( 1 5 ) i s completed.
0
Remark 2
1)
(17)
I f D i s t h e d i s t r i b u t i o n a l d e r i v a t i v e on P ’ ( R ‘ ) then D ’ I X I = 26
where 6 i s t h e D i r a c d i s t r i b u t i o n . T h e r e f o r e , t h e r e l a t i o n ( 1 5 ) i n Corol= l a r y 1, shows once more t h e t r i v i a l i t y o f t h e d i f f e r e n t i a l a l g e b r a A con= s idered .
2)
I t i s i m p o r t a n t t o n o t i c e t h a t t h e above embedding i m p o s s i b i l i t y r e s u l t s do n o t suppose t h e c o m m u t a t i v i t y o f t h e d i f f e r e n t i a l a l g e b r a A , b u t o n l y t s a s s o c i a t i v i t y . I n t h i s r e s p e c t , t h e embeddings o f t h e d i s = t r i b u t i o n s i n t o chains o f commutative and a s s o c i a t i v e algebras pre= sented i n chapter 3, p o i n t o u t t h e u t i l i t y o f d e a l i n g w i t h chains instead o f s i n g l e d i f f e r e n t i a l algebras.
APPENDIX 3 A NONLINEAR EXTENSION OF THE LAX-RICHTMYER EQUIVALENCE BETWEEN STABILITY AND CONVERGENCE OF DIFFERENCE SCHEMES
+
The converegence o f a d i f f e r e n c e scheme t o an e x i s t i n g s o l u t i o n o f a PDE i s o b v i o u s l y an ap r o x i m a t i o n p r o p e r t y which does not n e c e s s a r i l y r e q u i r e t h e completeness o t e t o p 0 o g i c a l s t r u c t u r e on t h e space o f n u m e r i c a l and e x a c t s o l u t i o n s . T h e r e f o r e , i t makes sense t o l o o k f o r a c h a r a c t e r i z a t i o n f o r i n s t a n c e , o f s t a b i l i t y t y p e - of t h e convergence o f a d i f f e r e n c e scheme, c h a r a c t e r i z a t i o n w h i c h does n o t i n v o l v e completeness , u n l i k e i t happens i n t h e Lax-Richtmyer p r o o f o f t h e i m p l i c a t i o n ' c o n v e r g e n t * s t a b l e ' i n t h e p a r t i c u l a r l i n e a r case, where e s s e n t i a l use i s made o f t h e u n i f o r m bounded= ness p r i n c i p l e o f l i n e a r o p e r a t o r s i n Banach spaces. I t t u r n s o u t t h a t such a s t a b i l i t y t y p e c h a r a c t e r i z a t i o n o f t h e convergence o f a d i f f e r e n c e scheme can be o b t a i n e d i n a simple, r a t h e r d i r e c t way w h i c h o n l y i n v o l v e s p r o p e r t i e s r e l a t e d t o c o n t i n u i t y , compactness and bounded= ness i n normed v e c t o r spaces. Moreover, due t o i t s s i m p l i c i t y t h e p r o o f o f t h e e q u i v a l e n c e between s t a b i l i t y and convergence w i l l be v a l i d i n t h e general n o n l i n e a r case and under assumptions which a r e weaker t h a n t h o s e i n t h e Lax-Richtmyer l i n e a r v e r s i o n .
Suppose g i v e n a normed v e c t o r space (X,II I I ) and t h e e v o l u t i o n e q u a t i o n
(1.1) (1.2)
U(t) = A(U(t)), t
U(0)
[O,T]
= u
where A: X1 + X,X1 C X , U ( t ) , u E XI. U s u a l l y , t v a r i a b l e , w h i l e t h e elements o f X a r e f u n c t i o n s We s h a l l assume v a r i a b l e x E Rm, t h a t i s , u = f ( x ) , U ( t ) = F ( t , x ) . a c e r t a i n non-void subset XoC X1 d e f i n e d b y i n i t i a l and p o s s i b l y boundary c o n d i t i o n s , t h e f o l l o w i n g "unique s o l u t i o n " p r o p e r t y h o l d s (2)
VuEX0: 31 U : [O,T]
Xo :
1 (u(t+At)-u(t))-A(u(t))ll
(2.1)
lim A*
(2.2)
U(0) = u.
llE
-+
= 0, f o r t
I n t h a t case, one can d e f i n e t h e e v o l u t i o n o p e r a t o r (3)
E: [ 0,T ]
-+
(Xo
+
Xo)
given by 293
[O,Tl
29 4
(3.1)
E.E. Rosinger
E(t)u
=
for t
U(t),
E
[O,Tl, u
E
Xo
which will have t h e semigroup property
(3.2)
E(0) = i d X 0
(3.3)
E(t+s) = E ( t ) E ( s ) , for t,s
E
[O,T], t + s GT.
The problem ( 1 ) with t h e s o l u t i o n ( 2 ) , respectively ( 3 ) , i s c a l l e d -____ properly
posed, only i f the mapping (4)
[ O , T l x Xo
3
(t,u) + E(t)u
E
Xo
i s continuous. As known [116,165], i n the l i n e a r case, the problem (1) i s properly posed, only i f t h e family of l i n e a r operators (5)
E ( t ) , with t
i s uniformly bounded. a1 so hold.
E
[O,Tl
Then, in view of ( 2 ) , i t i s easy t o see t h a t ( 4 ) w i l l
A d i f f e r e n c e scheme i s c a l l e d any family of mappings : Xo + X o y with
t
having t h e fol lowing two properties (6.1)
[ O , T ] x Xo
3
(At,u)
-+
(0,TI
E
.
CAtu
The mapping E
Xo
, f o r At = 0. i s continuous, where Cat = i d xO B c X o y t h e r e e x i s t s M ( B ) > 0 , such t h a t Vu,v
E
B, A t
E
Further, f o r each bounded
(0,TI:
An important c l a s s of e x p l i c i t d i f f e r e n c e schemes s a t i s f y i n g t h e conditions ( 6 . 1 ) and ( 6 . 2 ) a r e those of the form (7)
CAtu = u
+ Atf(At,u), f o r
U E
x,
where f : [ O , T l x X + X i s continuous and s a t i s f i e s the local Lipschitz con= dition
VB c X bounded :
IIf( & , u )
-
f(At,v)ll
< M(B)llu-vll.
Usually, C u represents a function of d i s c r e t i z e d space v a r i a b l e , associa= ted t o t h e A h n c t i o n u E Xo of continuous space v a r i a b l e . In t h a t case,Cat
295
NONLINEAR STABILITY AND CONVERGENCE
w i l l a l s o depend on t h e f i n i t e space increments
and t h e aim o f t h e s t a b i l i t y a n a l y s i s i s t o e s t a b l i s h a r e l a t i o n between Ax and A t , which w i l l g r a n t t h e convergence o f t h e d i f f e r e n c e scheme ( 6 ) t o t h e s o l u t i o n o f ( l ) , p r o v i d e d t h a t A t -+ 0. The d i f f e r e n c e scheme ( 6 ) i s c a l l e d c o n s i s t e n t w i t h t h e problem ( l ) , o n l y i f f o r any compact K c Xo and E > 0, t h e r e e x i s t s ~ ( K , E ) > 0, such t h a t Yu E K, t E [O,T],
A t E (O,T]
:
(8) At
<6(K,E)
* IICAtE(t)u
- E(At)E(t)UY <
€.At
The above c o n d i t i o n o f c o n s i s t e n c y appears t o be somewhat more r e s t r i c t i v e t h a n t h e usual one i n t h e l i n e a r case [165, p.44 c o n d i t i o n ( 3 . 6 ~ ) , i n t h a t i t asks f o r u n i f o r m i t y a l s o i n r e s p e c t t o u E K, f o r each g i v e n corn= p a c t K C Xo. I t i s easy t o see t h a t t h e c o n s i s t e n c y c o n d i t i o n (8) w i l l be s a t i s f i e d , whenever ( 2 ) and t h e f o l l o w i n g c o n d i t i o n l i m 11A t 4
1
At
(CAtE(t)u
h o l d u n i f o r m l y i n t E[O,T]
-
E(t)u)
-
A(E(t)ull = 0
and u E K, f o r each g i v e n compact K
C
Xo.
We s h a l l say t h a t t h e d i f f e r e n c e scheme ( 6 ) i s convergent t o t h e s o l u t i o n of ( l ) , o n l y i f f o r any compact K C Xo and E > D, t h e r e e x i s t s ~ ( K , E ) > 0, such t h a t Yu E K, t (10)
n where Cat
At,
[O,T],
N,
A t E (O,T],
n
E
1 t - n . A t l < q ( k , ~ ) * IIC:t~
-
E ( t ) u l l <E
E
m o a t
denotes t h e n - t h successive i t e r a t i o n o f CAt:
GT :
Xo
-+
Xo.
The above d e f i n i t i o n o f convergence c o i n c i d e s i n t h e l i n e a r case w i t h t h e usual one [ 116,1651. Indeed, i n t h a t case, a convergent d i f f e r e n c e scheme w i l l under t h e c o n d i t i o n s o f Lax-Richtmyer's theorem b e s t a b l e and, as seen i n t h e p r o o f of t h a t theorem, s t a b i l i t y w i l l g r a n t u n i f o r m convergence on [ 0,Tl and bounded B C Xo. The p r a c t i c a l importance o f t h e e q u i v a l e n c e between t h e convergence and s t a b i l i t y of a d i f f e r e n c e scheme i s i n t h e f a c t t h a t t h e s t a b i l i t y o f a d i f f e r e n c e scheme o n l y depends on t h e d i f f e r e n c e scheme i t s e l f and, u n l i k e convergence. i t i s n o t r e l a t e d to t h e p n s s i h l y unknown s o l u t i o n ( 2 ) o r ( 3 ) o f problem (1). I n t h e l i n e a r case 116,165 , t h e s t a b i l i t y o f t h e d i f f e r = ence scheme (6) means t h e uniform boundedness o f t h e family o f l i n e a r opera= tors C,t: w i t h A t E (O,T], n E N, n.At G T . (11) The way t h e e x t e n s i o n i s done i n t h e n o n l i n e a r case i s g i v e n i n t h e f o l l o w = i n g d e f i n i t i o n . The d i f f e r e n c e scheme ( 6 ) i s c a l l e d s t a b l e , o n l y i f f o r
296
E.E.
any compact K c Xo,
Rosinger
0, such t h a t
there e x i s t s L(K)
The e x t e n s i o n o f t h e Lax-Richtmyer equivalence [ 116,1651 between convergence and s t a b i l i t y i s o b t a i n e d as f o l l o w s : Theorem 1 Suppose t h e problem (1) i s p r o p e r l y posed and t h e d i f f e r e n c e scheme ( 6 ) i s c o n s i s t e n t w i t h i t . Then, t h e d i f f e r e n c e scheme ( 6 ) i s convergent t o t h e s o l u t i o n ( 2 ) o r ( 3 ) o f problem ( l ) , o n l y i f i t i s s t a b l e . Proof The i m p l i c a t i o n " c o n v e r g e n t * s t a b l e " . Assume K C Xo compact and denote
B = titu
I
UE
K,At
E ( O , T l , n E N, n A t < T I .
We s h a l l prove t h a t
(13)
BC
Xo bounded.
Indeed, o t h e r w i s e one o b t a i n s u . E K, J such t h a t n A . t g T, j J
(14)
with
j E
A. t E ( O , T l ,
J
N,
n . E N, f o r j, J
N
Since K i s compact and i n view o f ( 1 4 ) , one can e v e n t u a l l y by passing t o subsequences, assume t h a t t h e r e l a t i o n s h o l d
lim
(16)
j+
u ;u E K j
l i m n.A.t = t J J
(17)
j + m
Assume now, t h a t a l s o
then ( 1 5 ) g i v e s n. IICA;,U~ Since u j
E
K, w i t h j
E
-
E ( t ) u . l l t IIE(t)u.lI, w i t h j J J
E
N.
N, t h e r e l a t i o n s ( 1 7 ) and ( 1 8 ) , t o g e t h e r w i t h ( l o ) ,
NONLINEAR STABILITY AND CONVERGENCE
29 7
w i l l give n, j
Jim
+ rn
-
IIC J u . A j t J
E(t)u.ll = J
o
F u r t h e r , (16) and ( 4 ) r e s u l t i n (21)
l i m eE(t)ujll
=
IIE(t)ull
j,,
B u t , ( 2 0 ) and ( 2 1 ) c o n t r a d i c t ( 1 9 ) , thus, t h e assumption ( 1 8 ) i s n o t c o r = r e c t . Then, e v e n t u a l l y b y p a s s i n g t o a subsequence, one can assume (22)
ajt
' 6 > 0,
w i t h j E N.
NOW, ( 1 4 ) and (22) i m p l y nj
' T/6,
N
with j E
hence, b y p a s s i n g e v e n t u a l l y t o a subsequence, one can assume t h a t = n = c o n s t a n t , w i t h j E N. j I n t h a t case, ( 1 5 ) i m p l i e s
(23)
n
(24)
j < IIC,.~U~II n G J n
llC:.tuj - CA.t~II n , w i t h j E N. J J hence (24) i s absurd, s i n c e t h e compact s e t IIC,.tn
UII
I f n=O, t h e n Ca.t = i d X , J 0 w i l l a l s o be bounded. Otherwise, n
w i l l give
t l i m A . t = T~ @,TI,
+
J
> 1 together
K
w i t h ( 1 7 ) , ( 2 2 ) , and (23)
hence, i n view o f (16) and ( 6 . 1 ) one o b t a i n s
j + m J
Iim
IIC,.~UII n
=
IICtn uII -
J
j + c u
n
l i m I I Cn A . ~ U -~ C:.~UII J J
= 0.
j + m
NOW, (25) and (26) w i l l c o n t r a d i c t (24) and t h e p r o o f o f (13) i s completed. I n o r d e r t o p r o v e t h a t t h e a r b i t r a r y compact K c Xo s a t i s f i e s ( 1 2 ) , we s h a l l a p p l y (6.2) t o B g i v e n i n ( 1 3 ) . Assume t h e r e f o r e , u,v E K, A t E (O,T] , n E N, n.At < T. Then, (6.2) a p p l i e d s u c c e s s i v e l y , w i l l g i v e
-
IICitu
<
C!tvII
( l t M ( B ) A t ) l I C~~lu-Cn~*vll~...
u-vII
one o b t a i n s (12) by t a k i n g L ( K ) = e M(B)T* The imp1 i c a t i o n " s t a b l e
=)
Assume K c Xo compact and then (27)
C:t~
-
convergent". E
> 0.
E ( t ) u = (Citu
If u E
-
K,
t E [ O,T]
E(n A t ) u )
t
,A t
(E(n A t ) ,
(O,T] and n E N,
E
-
E(t)u).
298
E.E.
Rosinger
But, o b v i o u s l y
and i n view o f ( 4 ) , t h e s e t
I
K ' = {E(s)v
i n compact, hence, i n view o f (6.1),
I
K" = {CAsE(s)v
AS,S
i s a l s o compact. NOW, i n case n A t scheme ( 6 ) w i l l g i v e (29)
llCiiPCAtE( ( p - 1 ) A t ) u Q
,v
s E [O,T]
K } c Xo
E
the set E
Q
Q
E
K}
Xo
C
T, t h e s t a b i l i t y o f t h e d i f f e r e n c e
- C!EPE(p
At)ull
-
L ( K ' u K") llCAtE((p-1)At)u
But, i n view o f ( 8 ) , i f A t
v
[O,T],
Q
E(p At)Ull
, with
1Q p
Q
n
~ ( K , E ) , then
lICAtE((P-l)At)U
-
E(p At)ull
Q
&.At
hence, (28) and ( 2 9 ) w i l l g i v e
(30)
-
IIC:t~
E ( n At)ull
Q
nL(K'
U K")E.At
Q
L(K'
U
K").T.E.
F u r t h e r , ( 4 ) i m p l i e s t h e e x i s t e n c e o f ~ ' ( K , E ) z 0, such t h a t It
-
n.Atl
<
~ ' ( K , E ) * llE(n A t ) u
-
E(t)ull
Q E
t h e r e f o r e , (27) and (30) r e s u l t f i n a l l y i n llCitu
-
E(t)ull
Q
( 1 t L ( K ' u K").T)E
and t h e convergence o f t h e d i f f e r e n c e scheme ( 6 ) i s proved. Remark 1 The convergence o f a d i f f e r e n c e scheme b e i n g an a p p r o x i m a t i o n p r o p e r t y , i t i s n a t u r a l t h a t t h e above equivalence r e s u l t between convergence and s t a = b i l i t y does n o t r e q u i r e t h a t t h e normed v e c t o r space (X,II 1 1 ) i s complete, t h a t i s a Banach space, n e i t h e r r e q u i r e s t o p o l o g i c a l p r o p e r t i e s f o r t h e sub= s e t Xo C X o f " i n i t i a l c o n d i t i o n s " . S i m i l a r l y t o t h e l i n e a r case, [ 116,1651 , t h e convergence and c o n s i s t e n c y o f t h e d i f f e r e n c e scheme ( 6 ) i s i n f a c t o n l y r e l a t e d t o t h e e v o l u t i o n o p e r a t o r ( 3 ) , t h e r e f o r e , t h e r e s u l t i n t h e above theorem i s v a l i d f o r any semigroup o f o p e r a t o r s ( 3 ) s a t i s f y i n g t h e c o n d i t i o n ( 4 ) . I n t h i s r e s p e c t , t h e connec= t i o n w i t h problem (1) and i t s s o l u t i o n ( 2 ) can be weakened, a s k i n g f o r i n = stance, t h a t ( 2 ) and thus (3.1), o n l y h o l d f o r u E X i , where X; i s a con= v e n i e n t subset i n Xo.
299
NONLINEAR STABILITY AND CONVERGENCE
As shown i n t h e f o l l o w i n g s i m p l e example, t h e p r i n c i p l e u n i f o r m boundedness o f l i n e a r o p e r a t o r s considered w i t h i n t h e framework o f normed v e c t o r spaces i s e s s e n t i a l l y connected w i t h completeness. Example 1 Suppose t h e normed v e c t o r space ( X , II II ) i s d e f i n e d as f o l l o w s
and l e t us d e f i n e t h e f a m i l y o f l i n e a r o p e r a t o r s T : X x by
x
xA
if v =
-+
X, w i t h A
E
N,
x
yv = 0
i f v # x
Then o b v i o u s l y
V
IIT II = A ,
x
E
N,
therefore, the family o f l i n e a r operators T : X u n i f o r m l y bounded. A
-+
X, w i t h
xE
N, i s
not
However , suppose g i v e n x = (x0,x1, then, f o r a c e r t a i n
x
...,xV ......) E x y
E
N , t h e r e l a t i o n holds
= 0, V v E N, v
V
> 11
therefore
T
x = O , V A E N , A > ~
x
I t f o l l o w s i n t h i s way t h a t f o r any g i v e n x
IIT xII
A
,with A
E
X, t h e f a m i l y o f numbers
E N,
i s bounded b y max {IIT xi11 A where
,,
E
x
E
N, 1
,,I
N depends o n l y on x E X.
As t h e normed v e c t o r space (X,II II) i s o b v i o u s l y n o t complete, we can see t h a t t h e r e s u l t i n g framework i s not s u f f i c i e n t f o r g r Z X i n g t h e v a l i d i t y o f t h e
300
E.E.
Rosinger
principle o f uniform boundedness o f linear operators.
APPENDIX 4 THE CAUCHY-BOLZANO QUOTIENT ALGEBRA CONSTRUCTION OF THE REAL NUMBERS
A c l a s s i c a l example o f q u o t i e n t a l g e b r a c o n s t r u c t i o n i s g i v e n b y t h e w e l l known Cauchy-Bolzano method, [218] , f o r c o n s t r u c t i n g t h e s e t o f r e a l num= b e r s R 1 f r o m t h e s e t o f r a t i o n a l numbers Q. L e t us denote A N t h e subalgebra i n Q o f a l l t h e Cauch sequences r = (ro,rl,. r a t i o n a l numbers and l e t us denote b y
. . ,rv,.. . ..)
r t h e i d e a l i n A o f a l l t h e sequences z = numbers which converge t o zero.
(Z~,Z~,...,Z~,
....)
o f rational
We s h a l l denote b y UQ
t h e subalgebra i n A o
Q t h e null i d e a l i n Q
if .a l l
t h e c o n s t a n t sequences.
F i n a l l y , we denote b y
Then t h e f o l l o w i n g i n c l u s i o n diagram i s v a l i d
(1)
+-I Q
i
> QN
’ 0‘
and i t s a t i s f i e s t h e c o n d i t i o n
(2)
rnuQ=Q
Moreover, a c c o r d i n g t o Cauchy-Bolzano
(3)
R’ and A = A / l a r e i s o m o r p h i c f i e l d s .
As s en i n Appendix 1, t h e c o n d i t i o n ( 2 ) above means t h a t 1 i s a n e u t r i x i n Qg and t h e c o r r e s p o n d i n g n e u t r i x l i m i t i s i d e n t i c a l w i t h t h e u s u a l l i m i t f o r r a t i o n a l numbers, i . e . , t h e r e l a t i o n h o l d s
301
of
302
Rosinger
E.E.
I
(4)
-
lim
r
W
V
= lim
r
W
.
whenever r = ( royrl ,.. ,rv , . . . . )
E
v N Q and one o f t h e l i m i t s i n ( 4 ) e x i s t s .
The i d e a l I has s e v e r a l i m p o r t a n t p r o p e r t i e s p r e s e n t e d now. F i r s t we n o t i c e t h a t
(5)
7 i s a maximal i d e a l i n A
since A = A / 7 i s a f i e l d . L e t us now denote by
B t h e subalgebra i n Q obviously
N
o f a l l t h e bounded sequences o f r a t i o n a l numbers. Then
A i s a subalgebra i n B
(6)
The s p e c i a l r e l a t i o n between 7 and B i s presented i n t h e n e x t two p r o p o s i = tions. Proposition 1 7 i s a maximal subsequent i n v a r i a n t i d e a l i n B (see (28) i n Chapter 2 )
Proof I _
Assume t h a t i t i s f a l s e and J i s a subsequence i n v a r i a n t i d e a l i n 8, such that
(71
# L e t us t a k e
(8)
B
7C.3 C
#
then
..., V Y "
z =(zoyzl,
...)E J \ I
Since J c 8, t h e r e l a t i o n (8) g i v e s a p o i n t 5 ) i n t = (zoyzl, zv VY""'
(9)
lim w
z'
v
E
R'\COI
..., ,...... ),
2' = ( t ~ , 2 ~ , . . . , Z '
=
and a subsequence such t h a t
5
But
s i n c e 3 i s subsequence assume t h a t
nvariant.
Moreover, i n view o f ( 9 ) we can o b v i o u s l y
I z ' l 2 I 5 1'2 > 0, V V E N . ....) Therefore d e f i n i n g z " = ( z ~ , ~ ~ ,..J;,.
E
QN b y
CAUCHY-BALZANO QUOTIENT ALGEBRA
30 3
Now, t h e r e l a t i o n s (10-12) w i l l y i e l d
1
z'.z" E J . B
=
C
J
hence (13)
J = B
s i n c e J i s an i d e a l B . Since ( 7 ) and (13) c o n t r a d i c t each o t h e r , t h e p r o o f i s completed. Proposition 2
B i s a maximal subalgebra i n Q
N
i n which 7 i s an i d e a l .
Proof Assume t h a t i t i s f a l s e and C i s a subalgebra i n Q
(14)
B
C
N
such t h a t
C
# (15)
I i s an i d e a l i n C
L e t us t a k e t h e n
z
,..., zV,......)
= (z0,z1
E
C \ B
I t f o l l o w s t h a t t h e r e e x i s t s a subsequence z ' (zo,zl ,..., zv ,.... ) , such t h a t
z
(16)
lim lJ-
I
Izv
=
= (zv 0
,..., zv
,z vl
,.....) i n lJ
m
lJ
Obviously, we can assume t h a t (17)
v 0 < v1 <
...
< lJv <
.....
and (18)
zv
# O , V l J € N
lJ
Then, i n view of (17) and ( 1 8 ) , we can d e f i n e r = (ro,rl ,..., rv,.... )E Q N by (19)
rv = l / z v
if v P
lJ
G
v
i
But, t h e r e l a t i o n s ( 1 9 ) and (16) y i e l d
v
P +1
E . E . Rosinger
304
(20)
r = (ro,rl,
...,r v , . . . . . . )
E
I
therefore, i n view of (15) we obtain (21)
r.z
1.C c I
E
However, in view of (19) we obtain
and the relations ( 2 1 ) and ( 2 2 ) obviously contradict each other.
There=
fore (14) cannot hold.
0
Corollary 1 B i s the largest subalgebra in QN in which 2 i s an ideal.
Proof With the notations in Section 6 , Chapter 1, i t follows from Proposition 2 that B = A (I)
Q
0
REFERENCES 1.
Acker A., W a l t e r W . : The quenching problem f o r n o n l i n e a r p a r a b o l i c d i f f e r e n t i a l e q u a t i o n s . S p r i n g e r L e c t u r e Notes i n Mathematics, V O ~ . 564, 1-12
2.
Alexandrov A.D.: D i r i c h l e t ' s problem f o r t h e e q u a t i o n d e t ( z i )=@(zl , . . . ~ n ) V e s t i n i k L e n i n g r a d Univ.Ser.Mat .Mek . A s t r . 13,1,1958 j
3.
Ames W.F.: D i s c o n t i n u i t y f o r m a t i o n i n s o l u t i o n s o f homogeneous hyper= b o l i c equations possessing smooth i n i t i a l d a t a . I n t . J. N o n l i n . Mech., 5, 1970, 605-615
4.
Amrein W.O., Georgescu V.: S t r o n g a s y m p t o t i c completeness o f wave o p e r a t o r s f o r h i g h l y s i n g u l a r p o t e n t i a l s . H e l v . Phys. Acta, 47, 1974, 517-533
5.
Anderson D.F.: The Chinese Remainder Theorem and t h e I n v a r i a n t Bases P r o p e r t y . Canad. Math.Bul1. 21,3, 1978, 361-362
6.
Ansorge R.: Survey o f e q u i v a l e n c e theorems i n t h e t h e o r y o f d i f f e r e n c e approximations f o r p a r t i a l i n i t i a l v a l u e problems. Topics i n Numerical A n a l y s i s 111, ed. J.J.H. M i l l e r , Acad.Press, 1977, 1- 16
7.
A n t o s i k P., M i k u s i n s k i J., S i k o r s k i R.: v i e r , 1973
8.
B a l l J .M. : On t h e Asymptotic B e h a v i o r o f General ized Processes , w i t h A p p l i c a t i o n s t o N o n l i n e a r E v o l u t i o n Equations. J. D i f f . Eq. 27, 1978, 224-265
9.
B a l l o u D.P.: S o l u t i o n s t o N o n l i n e a r H y p e r b o l i c Cauchy Problems With= o u t C o n v e x i t y C o n d i t i o n s . Trans.A.M.S. , 159, 1970, 441-460
Theory o f d i s t r i b u t i o n s . E l s e =
10.
Baumgarten D., Braunss G., Wagner 0.: An e x t e n s i o n o f t h e G e l ' f a n d S h i l o v r e g u l a r i z a t i o n method and i t s a p p l i c a t i o n t o t h e construe= t i o n o f causal s o l u t i o n s f o r n o n l i n e a r wave e q u a t i o n s . P r e p r i n t , 1975
11.
B e d f o r d E . , Fornaess J.E.: Counterexamples t o R e g u l a r i t y f o r t h e Com= p l e x Mange-Ampere Equation. I n v . Math 50, 1979, 129-134
12.
Bogoliubov N.N., P a r a s i u k O.S.: Ueber d i e M u l t i p l i k a t i o n d e r Kausal= f u n k t i o n e n i n d e r Q u a n t e n t h e o r i e d e r F e l d e r . Acta Math., 97, 1957, 227-266
13.
B o l l i n i C.G. , Giambiaggi J.J. , Gonzales Dominguez A.: A n a l y t i c r e g u l a r i = z a t i o n and t h e d i v e r g e n c i e s o f quantum f i e l d t h e o r i e s . Nuovo C i m . , 31,3,1964, 550-561
14.
Braunss G.: On t h e r e g u l a r i z a t i o n o f f u n c t i o n a l e q u a t i o n s . Math. Ann. 186, 1970, 70-80
15.
Braunss G.: Causal f u n c t i o n s o f n o n l i n e a r wave e q u a t i o n s . J . D i f f . E q . ,9,1 1971, 86-92 30 5
,
306
E .E .Rosi nger
16.
Braunss G.: Weak s o l u t i o n s and j u n c t i o n c o n d i t i o n s o f a c e r t a i n c l a s s o f n o n l i n e a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s . Methoden und Ver= f a h r e n d e r mathematischen P h y s i k , Band 4, Jan.1971, B i b l i o g r a = phisches I n s t i t u t AG, Mannheim-Wien-Zirich
17.
Braunss G., L i e s e R.: Canonical products o f d i s t r i b u t i o n s and causal s o l u t i o n s o f n o n l i n e a r wave equations. J. D i f f . Eq., 16, 1974, 399-412.
18.
Bredimas A.: Sur une t h e o r i e electromagnetique non l i n e a i r e . L e t t . Nuovo C i m . , 6,14,1973, 569-572
19.
Bredimas A.: Generalized c o n v o l u t i o n p r o d u c t and canonical p r o d u c t between d i s t r i b u t i o n s . Some s i m p l e a p p l i c a t i o n s t o p h y s i c s . L e t t . Nuovo Cim., 13,16, 1975, 601-604
20.
Bredimas A.: La d i f f e r e n t i a t i o n d ' o r d r e complexe, l e p r o d u i t de convo= l u t i o n g e n e r a l i s e e t l e p r o d u i t canonique pour l e s d i s t r i b u t i o n s . C.R. Acad. Sc. P a r i s , 282, 1976, A, 37-40
21.
Bredimas A.: A p p l i c a t i o n s en Physique du theoreme d ' i n v e r s i o n de l a t r a n s f o r m a t i o n spherique de Radon dans Rn. C.R.Acad. Sc.Paris, 282, 1976, A, 1175-1178
22.
Bredimas A.: Extensions, p r o p r i e t e s complementaires e t a p p l i c a t i o n s des o p e r a t e u r s de d i f f e r e n t i a t i o n a gauche e t a d r o i t e d ' o r d r e complexe. C.R. Acad. Sc. P a r i s , 283, 1976, A, 3-6
23.
Bredimas A.: A p p l i c a t i o n s a c e r t a i n e s equations d i f f e r e n t i e l l e s des p r e m i e r e t second o r d r e a c o e f f i c i e n t s polynomiaux des o p e r a t e u r s de d i f f e r e n t i a t i o n d ' o r d r e complexe a gauche e t a d r o i t e . C.R. Acad. Sc. P a r i s , 283, 1976, A, 337-340
24.
Bredimas A,: La d i f f e r e n t i a t i o n d ' o r d r e complexe e t l e s p r o d u i t s ca= noniques e t l a c o n v o l u t i o n g e n e r a l i s e . C.R. Acad. Sc. P a r i s , 283, 1976, A, 1095-1098
25.
Bremermann H.J. , Durand L.: On a n a l y t i c c o n t i n u a t i o n , m u l t i p l i c a t i o n and F o u r i e r t r a n s f o r m o f Schwartz d i s t r i b u t i o n s . J.Math.Phys. , 2,2,1961, 240-258
26.
Bremermann H.J.: On f i n i t e r e n o r m a l i z a t i o n c o n s t a n t s and t h e m u l t i p l i = c a t i o n o f causal f u n c t i o n s i n p e r t u r b a t i o n t h e o r y . P r e p r i n t , 1962
27.
Bremermann H.J. : Some remarks on a n a l y t i c r e p r e s e n t a t i o n s and p r o d u c t s o f d i s t r i b u t i o n s . S I A M J. Appl. Math. , 15,4,1967, 929-943
28.
B u r r i l l C.W.:
29.
Chadan K. , Sabatier P.C.: I n v e r s e Problems i n Quantum S c a t t e r i n g Theory, S p r i n g e r V e r l a g , 1977
30.
Carmignani R. , Schrader K.: Subfunctions and d i s t r i b u t i o n a l i n e q u a l i t i e s . S I A M J.Math.Anal., 8,1,1977, 52-68
Foundations o f Real Numbers.
Mc Graw-Hill,
1967
30 7
REFERENCES
31.
Colombini F.: On t h e r e g u l a r i t y o f s o l u t i o n s o f h y p e r b o l i c e q u a t i o n s w i t h d i s c o n t i n u o u s c o e f f i c i e n t s v a r i a b l e i n t i m e . Comm. P a r t . D i f f . E q . , 2,6, 1977, 653-677
32.
Conley C.C., S m o l l e r J.A.: Shock waves as l i m i t s o f p r o g r e s s i v e wave s o l u t i o n s o f h i g h e r o r d e r e q u a t i o n s . Comm. Pure Appl. Math., 24, 1971, 459-472
33.
Conway E.D.: The f o r m a t i o n and decay o f shocks f o r a c o n s e r v a t i o n law i n s e v e r a l dimensions. Arch.Rat.Mech.Anal., 64, 1, 1977, 47-57
34.
Cumberbatch E . : N o n l i n e a r e f f e c t s i n t r a n s m i s s i o n l i n e s . S I A M J. Appl. Math., 15,2,1967, 450-463
35.
Dafermos C.M.: Q u a s i l i n e a r h y p e r b o l i c systems t h a t r e s u l t from c o m e r = v a t i o n laws. L e i b o v i c h S., Seebass A.R. ( e d . ) : N o n l i n e a r Waves, C o r n e l l U n i v . Press, 1974, 82-102
36.
Davies E.B. : E i g e n f u n c t i o n expansions f o r s i n g u l a r Schroedinger opera= 261-272 t o r s . Arch. Rat. Mech. Anal., 63,3,1977,
37.
D e i f t P., Simon 6.: On t h e d e c o u p l i n g o f f i n i t e s i n g u l a r i t i e s from t h e q u e s t i o n o f a s y m p t o t i c completeness i n two body quantum systems. P r e p r i n t , 1975
38.
D e i m l i n g K., Lakshmikantham : Quasi S o l u t i o n s and t h e i r Role i n t h e Q u a l i t a t i v e Theory o f D i f f e r e n t i a l Equations. P r e p r i n t , 1979
39.
De Jager E.M.: D i v e r g e n t c o n v o l u t i o n i n t e g r a l s i n e l e c t r o d y n a m i c s . ONR, Tech. Rep. Dept. Math. U n i v . C a l i f . Berkeley, 1963
40.
De M o t t o n i P., T e x i A.: On d i s t r i b u t i o n s o l u t i o n s f o r n o n l i n e a r d i f f e r = e n t i a l e q u a t i o n s : n o n t r i v i a l i t y c o n d i t i o n s . J. D i f f . Eq. , 24, 1977, 355-364
41.
D i e t r i c h W.E.: On t h e i d e a l s t r u c t u r e o f C ( X ) . 152, 1970, 61-77
42.
D i Perna R.J.: S i n g u l a r i t i e s o f s o l u t i o n s o f n o n l i n e a r h y p e r b o l i c sys= tems o f c o n s e r v a t i o n laws. Arch.Rat.Mech.Ana1. , 60, 1976, 75-100
43.
Doug1i.s A , : An o r d e r i n g p r i n c i p l e and g e n e r a l i z e d s o l u t i o n s o f c e r t a i n quasi l i n e a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s . Comm.Pure Appl .Math., 12, 1959, 87-112
44.
Dreyer T.P.: E x i s t e n c e o f weak s o l u t i o n s o f a n o n l i n e a r p a r a b o l i c equa= t i o n i n a n o n c y l i n d r i c a l domain. J o u r n a l o f Mathematical A n a l y s i s and A p p l i c a t i o n s 58, 1977, 63-82
45.
Edwards R.E.:
46.
Ehrenpreis L.: S o l u t i o n s o f some problems o f d i v i s i o n . Amer. J. Math. 76, 1954, 883-903
47.
F i n k J.P., Hausrath A.R.: Discontinuous p e r i o d i c s o l u t i o n s f o r an auto= nomous n o n l i n e a r wave equation.Proc.RIA, 75, 1975, 195-226
Trans. Amer. Math. SOC.,
F u n c t i o n a l A n a l y s i s . H o l t , 1965
E .E .Rosi nger
308
48.
F i s h e r B.: The p r o d u c t o f d i s t r i b u t i o n s . Quart.J.Math.Oxford, 2,1971, 291-298
49.
F i s h e r 6.: The p r o d u c t o f t h e d i s t r i b u t i o n s xir-' Camb.Phil.Soc. 71, 1972, 123-130
50.
F i s h e r B.: The p r o d u c t of t h e d i s t r i b u t i o n s xmr and 6 ( r - 1 ) ( x ) . Camb. P h i l . SOC. 72, 1972, 201-204
51.
F i s h e r B.: Some r e s u l t s on t h e p r o d u c t o f d i s t r i b u t i o n s . Proc. Camb. P h i l SOC. 73, 1973, 317-325
52.
F i s h e r B.: S i n g u l a r products o f d i s t r i b u t i o n s . Math. Ann., 203, 1973, 103- 116 -r (r-1) ( x ) . Stud. S c i . F i s h e r B.: The n e u t r i x d i s t r i b u t i o n p r o d u c t x+ 6 Math. Hung,, 9, 1974, 439-441
53.
and x-- ~ - '
22,
.
Proc. Proc.
54.
F i s h e r B.: D i s t r i b u t i o n s and t h e change o f v a r i a b l e . B u l l . Math. SOC. S c i . Math. Rom., 19, 1975, 11-20
55.
Fleishman B.A., Mahar T.J.: Boundary v a l u e problems f o r a n o n l i n e a r d i f f e r e n t i a l e q u a t i o n w i t h d i s c o n t i n u o u s n o n l i n e a r i t i e s . Math. Balkanica, 3, 1973, 98-108
56.
Fleishman B.A., Mahar T.J.: A p e r t u r b a t i o n method f o r f r e e boundary problems o f e l l i p t i c t y p e . P r e p r i n t , 1976
57.
Flugge S.: P r a c t i c a l quantum mechanics I . D i e Grundlehren d e r Mathe= matischen Wissenschaften. Band 177, S p r i n g e r , 1971
58.
F o u n t a i n L., Jackson L.: A g e n e r a l i z e d s o l u t i o n value problem. P a c i f . J.Math., 12, 1962, 1251-1272
59.
Friedman A.: P a r t i a l D i f f e r e n t i a l Equation o f P a r a b o l i c Type.Prentice H a l l , 1964.
60.
F u c h s s t e i n e r B.: E i n e a s s o z i a t i v e Algebra ueber einem Unterraum der D i s t r i b u t i o n e n . Math. Ann., 178, 1968, 302-314
61.
Galambos J . : Representation o f r e a l numbers by i n f i n i t e s e r i e s . S p r i n g e r L e c t u r e Notes i n Mathematics, v o l 502, 1976
62.
Garabedian P.R.:
63.
G a r n i r H.G.: Solovay's axiom and f u n c t i o n a l a n a l y s i s . S p r i n g e r Lec= t u r e Notes i n Mathematics, v o l . 399, 1974, 189-204
64.
Gel ' f a n d J.M.: Some problems i n t h e t h e o r y o f q u a s i l i n e a r equations. Uspehi Mat. Nauk., 14, 1959, 87-158
65.
G l i m m J., Lax P.D.: Decay o f s o l u t i o n s o f systems o f n o n l i n e a r hyper= b o l i c c o n s e r v a t i o n laws. Memoirs o f AMS, n r 101, 1970
66.
Goldston J.W.: Topologies determined b y a c l a s s o f nets. Appl , 10, 1979, 49-65
.
.
An u n s o l v a b l e equation. Proc. AMS, 25, 1970, 207-208
Gen. Top.
REFERENCES
309
67.
G o l u b i t s k y M., S c h a e f f e r D.G.: S t a b i l i t y o f shock waves f o r a s i n g l e c o n s e r v a t i o n law. Adv. Math., 15, 1975, 65-71
68.
Gonzales Dominguez A., S c a r f i e l l o R . : Nota sobre l a f o r m u l a v.p.-.6=-$' 1 1 X Rev. Union Mat. Argen., 1, 53-67, 1956
69.
G u e t t i n g e r W . : Quantum f i e l d t h e o r y i n t h e l i g h t o f d i s t r i b u t i o n ana= l y s i s . Phys. Rev., 89, 5, 1953, 1004-1019
70.
G u e t t i n g e r W.: Products o f improper o p e r a t o r s and t h e r e n o r m a l i z a t i o n problem o f quantum f i e l d t h e o r y . P r o g r . Theor. Phys., 13,6,1955, 612-626
71.
G u e t t i n g e r W . : G e n e r a l i z e d f u n c t i o n s and d i s p e r s i o n r e l a t i o n s i n phy= s i c s . F o r t s c h r . Phys., 14, 1966, 483-602
72.
G u e t t i n g e r W.: G e n e r a l i z e d f u n c t i o n s i n elementary p a r t i c l e p h y s i c s and p a s s i v e system t h e o r y : r e c e n t t r e n d s and problems. S I A M J.App1. Math., 15,4, 1967, 964-1000
73.
Guckenheimer J . : S o l v i n g a s i n g l e c o n s e r v a t i o n law. P r e p r i n t , 1973
74.
H a r t e n A., Hyman J.M., Lax P.O., K e y f i t z 6.: On f i n i t e d i f f e r e n c e ap= p r o x i m a t i o n s and e n t r o p y c o n d i t i o n s f o r shocks. Comm. Pure Appl. Math., 29, 1976, 297-322
75.
Hepp K.: P r o o f o f t h e Bogoliubov-Parasiuk theorem on r e n o r m a l i z a t i o n . Comm. Math. Phys., 2, 1966, 301-326
76.
H i r a t a Y . , Ogata H . : On t h e exchange f o r m u l a f o r d i s t r i b u t i o n s . J. Sc. H i r o s h . Univ., 22, 1958, 147-152
77.
Hopf E.: The p a r t i a l d i f f e r e n t i a l e q u a t i o n ut Appl. Math., 3, 1950, 201-230
78.
H o r v a t h J.: T o p o l o g i c a l V e c t o r Spaces and D i s t r i b u t i o n s , v o l . 1, Addi son-Wesley , 1966
79.
H o r v a t J.: An i n t r o d u c t i o n t o d i s t r i b u t i o n s . Amer. Math. Month. ,March 1970, 227-240
80.
Hoermander L.: L i n e a r P a r t i a l D i f f e r e n t i a l Operators. S p r i n g e r , 1963
81.
Hoermander L . : An i n t r o d u c t i o n t o complex a n a l y s i s i n s e v e r a l v a r i a b l e s . Van Nostrand, 1966
82.
I t a n o , M.: On t h e m u l t i p l i c a t i v e p r o d u c t o f d i s t r i b u t i o n s . J.Sc. Univ., 29, 1965, 51-74
83.
I t a n o M . : On t h e m u l t i p l i c a t i v e p r o d u c t s o f x: Univ. 29, 1965, 225-241
84.
I t a n o M.: On t h e t h e o r y o f t h e m u l t i p l i c a t i v e p r o d u c t s o f d i s t r i b u t i o n s . J.Sc. H i r o s h . Univ., 30, 1966, 151-181
+ uux
= puxx. Comm. Pure
Hirosh.
B
and x+. J.Sc.Hirosh.
E.E.Rosinger
310 85.
I t a n o M.: Remarks on the m u l t i p l i c a t i v e p r o d u c t o f d i s t r i b u t i o n s . H i r o s h Math. J., 6, 1976, 365-375
86.
Ivanov V.K.: The Algebra o f a Class o f Generalized F u n c t i o n s Dokl. Akad. Nauk. SSSR, 1977, S o v i e t Math. D o k l . ,18,1977, 1489-1492
87.
J e f f r e y A.: The development o f jump d i s c o n t i n u i t i e s i n n o n l i n e a r hy= p e r b o l i c systems o f equations i n two independent v a r i a b l e s . Arch.Rat.Mech. Anal 14, 1963, 27-37
.,
88.
J e f f r e y A.: The o r o o a q a t i o n o f weak d i s c o n t i n u i t i e s i n q u a s i l i n e a r symmetric h y p e r i o l i c systems. J.Appl. Math. Phys.; 14, 1963, 301-314
89.
J e f f r e y A.: The development o f s i n g u l a r i t i e s o f s o l u t i o n s o f n o n l i n e a r h y p e r b o l i c equations o f o r d e r g r e a t e r t h a n u n i t y . J.Math.Mech. , 15, 1966, 585-598
90.
J e f f r e y A.:
91.
J e l i n e k J.: Sur l e p r o d u i t s i m p l e de deux d i s t r i b u t i o n s . Comm.Math. Univ. Carol., 5,4, 1964, 209-214
92.
John F.: Delayed s i n g u l a r i t y f o r m a t i o n i n s o l u t i o n s o f n o n l i n e a r wave equations i n h i g h e r dimensions. Comm. Pure Appl. Math., 29, 1976 , 649-682
93.
Kang H., Richards J.: A general d e f i n i t i o n o f c o n v o l u t i o n f o r d i s t r i = b u t i o n s . P r e p r i n t , 1975
94.
Kang H.: A general d e f i n i t i o n o f c o n v o l u t i o n f o r s e v e r a l d i s t r i b u t i o n s . P r e p r i n t , 1975
95.
Kapl an I.: Commutative Rings , A1 l v n & Bacon. 1970
96.
Karacay T.: On t h e E x i s t e n c e o f Weak S o l u t i o n s f o r Q u a s i l i n e a r Equa= t i o n s . Proc. Royal I r i s h Acad., 72, 8, 1972, 109-112
97.
Karpman V . I . : 19 75
98.
K e i s l e r H.J.: Elementary C a l c u l u s . P r i n d l e , 1976
99.
Q u a s i l i n e a r h y p e r b o l i c systems and waves.
Pitman, 1976
N o n l i n e a r Waves i n D i s p e r s i v e Media.Pergamon Press,
4 Kelemen P.J., Robinson A.: The nonstandard A : @ ( x ) : model. I.The technique o f nonstandard a n a l y s i s i n t h e o r i t i c a l p h y s i c s . I 1 .The standard model from a nonstandard p o i n t o f view. J.Math. Phys., 13, 12, 1972, 1870-1878
100.
Kelemen P.J.: Quantum mechanics, quantum f i e l d t h e o r y and hyper quantum mechanics. S p r i n g e r L e c t u r e Notes i n Mathematics, v o l , 369, 1974, 116-121
101.
K e l l e r K.: I r r e g u l a r o p e r a t i o n s i n quantum f i e l d t h e o r y I, 11, 111, I V Y V . P r e p r i n t , 1977
102.
K e y f i t z Q u i n n B.: S o l u t i o n s w i t h shocks: an example o f an L 1 c o n t r a c t i v e semigroup. Comm.Pure Appl. Math. , 24, 1971, 125-132
3 11
REFERENCES 103.
K e y f i t z B.L., Kranzer H.C.: E x i s t e n c e and Uniquesness o f E n t r o p y Solu= t i o n s t o t h e Riemann Problem f o r H y p e r b o l i c Systems o f Two Non= l i n e a r Conservation Laws. J . D i f f . Eq., 27, 1978, 444-476
104.
Knops R.J.: Comments on n o n l i n e a r e l a s t i c i t y and s t a b i l i t y . S p r i n g e r L e c t u r e Notes i n Mathematics, v o l . 564, 1976, 271-290
105.
Knoshang C . : G e n e r a l i z e d Sequences. SIAPI J. Appl. Math., 560-565
19,3,
1970,
106.
Koenig H.: M u l t i p l i k a t i o n von D i s t r i b u t i o n e n . Math. Ann. 420-452
, 128,
1955,
107.
Koenig H.: M u l t i p l i k a t i o n und V a r i a b l e n t r a n s f o r m a t i o n i n d e r T h e o r i e d e r D i s t r i b u t i o n e n . Arch. Math., 6, 1955, 391-396
108.
Koenig H.: Mu1 t i p l i k a t i o n s t h e o r i e d e r v e r a l l g e m e i n e r t e n D i s t r i b u t i o n e n . Bayer. Akad. Wiss. Math. Nat. K1. Abh. (N.F.),82, 1957
109.
K o s i n s k i W.: G r a d i e n t c a t a s t r o p h e i n t h e s o l u t i o n o f n o n c o n s e r v a t i v e h y p e r b o l i c systems. 3.Math.Anal. Appl., 61, 1977, 672-688
110.
L a r r a C a r r e r o L.: S t a b i l i t y o f shock waves. S p r i n g e r L e c t u r e Notes i n Mathematics, v o l . 564, 316-328
111.
L a u g w i t z 0.: E i n e Einfuehrung d e r 6 Funktionen. Math. Naturw. K1. 1959, 41-59
112.
Laugwitz D.: Anwendungen u n e n d l i c h k l e i n e r Zahlen. I . Z u r T h e o r i e d e r D i s t r i b u t i o n e n . 11. E i n Zugang z u r Operatorenrechnung von Miku= s i n s k i . J . f . d . r e i n e und angew. Math., 207, 1961, 53-60, 208, 1961, 22-34
113.
Laugwitz 0.: Bemerkungen zu Bolzano Groessenlehren. 2, 1965, 398-409
114.
Laugwi t z D. : E i n e n i c h t a r c h h i m e d i s c h e Erwei t e r u n g angeordneter Koerper. Math. Nacht., 37, 1968, 225-236
115.
Lax P.D.: Weak s o l u t i o n s o f n o n l i n e a r h y p e r b o l i c e q u a t i o n s and t h e i r numerical computation. Comm. Pure Appl. Math., 7, 1954, 159-193
116.
Lax P.D., Richtmyer R.D.: Survey o f t h e s t a b i l i t y o f l i n e a r f i n i t e d i f f e r e n c e e q u a t i o n s . Comm. Pure Appl Math., 9, 1956, 267-293
117.
Lax P.D.: H y p e r b o l i c systems o f c o n s e r v a t i o n laws and t h e mathematica t h e o r y o f shock waves. S I A M Regional Conference S e r i e s i n Appl Math., nr.11, 1973
118.
L e i b o v i c h S., 1974
119.
L e v i n e H.A., Payne L.E.: Nonexistence o f g l o b a l weak s o l u t i o n s f o r c l a s s e s o f n o n l i n e a r wave and p a r a b o l i c e q u a t i o n s . J . Math.Ana1. Appl., 55, 1976, 329-334
Bayer. Akad. Wiss.
Arch. Hist.Ex.Sc.,
.
Seebass A.R.(ed.):
N o n l i n e a r Waves. C o r n e l l U n i v . Press,
312
E.E.Rosinger
120,
Lewy H.: An example o f a smooth l i n e a r p a r t i a l d i f f e r e n t i a l e q u a t i o n w i t h o u t s o l u t i o n . Ann. Math., 66, 2, 1957, 155-158
121.
L i g e z a J.: On g e n e r a l i z e d s o l u t i o n s o f some d i f f e r e n t i a l n o n l i n e a r equations o f o r d e r n . Ann. P o l , Math., 31, 1975, 115-120
122.
L i g h t s t o n e A.H.: 242-251
123.
L i g h t s t o n e A.H., Kam Wong: D i r a c d e l t a f u n c t i o n s v i a nonstandard ana= l y s i s . Canad. Math. B u l l . , 81, 5, 1975, 759-762
124.
L i g h t s t o n e A.H., Robinson A , : Non Archimedean f i e l d s and a s y m p t o t i c expansions, N o r t h Holland, 1975
125.
L i o n s J.L.: Une remarque s u r l e s problemes d ' e v o l u t i o n n o n l i n 6 a r e s dans l e s domaines n o n c y l i n d r i q u e s . Rev. Romaine Math. Pures Appl., 9, 1964, 11-18
126.
L i o n s J.L.: Quelques methodes de r e s o l u t i o n des problemes aux l i n i i t e s nonl iniiai r e s . Dunod , P a r i s 1969
127.
L i n T a i Ping: The e n t r o p y c o n d i t i o n and t h e a d m i s s i b i l i t y o f shocks. J.Math. Anal. Appl., 53, 1976, 78-88
128.
Liverman T.P.G.: Physically motivated d e f i n i t i o n o f d i s t r i b u t i o n s . SIAM J. Appl Math. , 15, 1967, 1048-1076
129.
L o j a s i e w i c z S.: Sur l a v a l e u r d ' u n e d i s t r i b u t i o n dans un p o i n t . Acad. Polon. Sc., 4, 1956, 239-242
130.
L o j a s i e w i c z S.: Sur l a v a l e u r e t l a l i m i t e d'une d i s t r i b u t i o n dans un p o i n t . Stud. Math., 16, 1957, 1-36
131.
L o j a s i e w i e c z S.: Sur l a f i x a t i o n des v a r i a b l e s dans une d i s t r i b u t i o n . Stud. Math., 17, 1958, 1-64
132.
Luxemburg W.A.J.: What i s Nonstandard A n a l y s i s ? Amer. Math. Month., 80, 6, p a r t 11, 38-67
133.
Malgrange B.: E x i s t e n c e e t approximation des s o l u t i o n s des equations aux d e r i v e e s p a r t i e l l e s e t des equations de c o n v o l u t i o n . Ann. I n s t . F o u r i e r Grenoble, 6, 1955-56, 271-375
134.
Manin Yu.: A l g e b r a i c Aspects o f N o n l i n e a r D i f f e r e n t i a l Equati0ns.J. Sov. Math., 11, 1, 1979, 1-122
135.
Medeiros L.A.: S e m i l i n e a r wave equations PDEs and r e l a t e d t o p i c s . L e c t u r e Notes i n Mathematics, v o l . 446, 1975, S p r i n g e r , 327-354
136.
M e i s t e r s G.H.: T r a n s l a t i o n i n v a r i a n t l i n e a r forms and a f o r m u l a f o r t h e D i r a c measure. J.Funct. Anal. , 8, 1971, 173-188
137.
M i k u s i n s k i J.: S u r l a methode de g e n e r a l i s a t i o n de L a u r e n t Scwartz e t s u r l a convergence f a i b l e . Fund. Math., 35, 1948, 235-239
I n f i n i t e s i m a l s . Amer. Math. Month.
, March
1972,
.
Bull.
REFERENCES
313
138.
M i k u s i n s k i J.: I r r e g u l a r o p e r a t i o n s on d i s t r i b u t i o n s . Stud. Math. ,20, 1961, 163- 169
139.
M i k u s i n s k i J.: C r i t e r i a o f t h e e x i s t e n c e and o f t h e a s s o c i a t i v i t y o f t h e p r o d u c t o f d i s t r i b u t i o n s . Stud. Math., 21, 1962, 253-259
140.
M i k u s i n s k i J . : On t h e square o f t h e D i r a c d e l t a d i s t r i b u t i o n . B u l l . Acad. P o l . Sc., 14, 9, 1966, 511-513
141.
M i k u s i n s k i J. : Germs and t h e i r o p e r a t i o n a l c a l c u l us. 1966 , 315-325
142,
M i k u s i n s k i J., S i k o r s k i R.: The elementary t h e o r y o f d i s t r i b u t i o n s I , 11. Rozprawy Matematyczne, 12, 1957 and 25, 1961
143.
Moore D.H.: A D i v i s i o n Algebra f o r Sequences D e f i n e d on A l l t h e I n t e = gers. Math. Comp., 20, 1966, 311-317
144.
Moss W.F.: A remark on convergence o f t e s t f u n c t i o n s . J.Austral.Math. SOC. 20, A, 1975, 73-76
145.
Nohel J.A.: A Forced Q u a s i l i n e a r Wave E q u a t i o n W i t h D i s s i p a t i o n S p r i n g e r L e c t u r e Notes i n Mathematics, v o l . 703, 1979, 318-327
146.
Nokanishi N.: Complex dimensional i n v a r i a n t d e l t a f u n c t i o n s and l i g h t = cone s i n g u l a r i t i e s . Comm. Math. Phys., 48, 1976, 97-118
147.
Okamoto S.: A d i f f e r e n c e approach t o M i k u s i n s k i ' s o p e r a t i o n a l c a l c u l u s . Proc. Jap. Acad., 54, A, 1978, 303-308
148.
Okamoto S.: A s i m p l i f i e d d e r i v a t i o n o f M i k u s i n s k i ' s o p e r a t i o n a l c a l = c u l u s . Proc. Jap. Acad., 55, A, 1979, 1-5
149.
O l e i n i k O.A.: On t h e uniqueness o f t h e g e n e r a l i z e d s o l u t i o n o f t h e Cauchy problem f o r a n o n l i n e a r system o f e q u a t i o n s o c c u r i n g i n mechanics. Uspehi Mat. Nauk., 78, 1957, 169-176
150.
Palamodov V.P.: L i n e a r D i f f e r e n t i a l Operators w i t h Constant C o e f f i = c i e n t s . S p r i n g e r , 1970
151.
Pearson D.B.: An example i n p o t e n t i a l s c a t t e r i n g i l l u s t r a t i n g t h e breakdown i n a s y m p t o t i c completeness. Comm. Math. Phys., 40, 1975 , 125- 146
152.
Pearson D.B.: General t h e o r y o f p o t e n t i a l s c a t t e r i n g w i t h a b s o r p t i o n a t l o c a l s i n g u l a r i t i e s . P r e p r i n t , 1975
153.
P l e s s e t , M.S. , P r o s p e r e t t i A.: Bubble dynamics and c a v i t a t i o n . Ann. Rev. F l u i d Mech., 9, 1977, 145-185
154.
Pogorelov A.V.: Monge Ampere e q u a t i o n o f e l l i p t i c t y p e . Groni ngen , 1964
155.
Pogorelov A.V.: On a r e g u l a r s o l u t i o n o f t h e n dimensional Minkowski problem. S o v i e t Math. Dokl. , 12, 1971, 1192-1196
Stud. Math. ,26
Noordhoff,
,
314
156
E.E.Rosinger
Pogorelov A.V.: The D i r i c h l e t problem f o r t h e n dimensional analogue o f t h e Monge Ampere e q u a t i o n . S o v i e t Math. Dokl., 12, 1971,
1727-1731 157.
Portnoy S.L.: On s o l u t i o n s t o u = A u t u2 i n two dimensions. Anal. Appl., 55, 1976, 29f-294
158.
Rauch J.: Discontinuous s e m i l i n e a r d i f f e r e n t i a l equations and m u l t i p l e valued maps. Proc AMS, 6 4 , 2, 1977, 277-282
159.
Reed M.C.: H i g h e r o r d e r estimates and smoothness o f n o n l i n e a r wave equations. Proc AMS, 51,1, 1975, 79-85
160,
Reed M.C.: A b s t r a c t N o n l i n e a r Wave Equations. S p r i n g e r L e c t u r e Notes i n Mathematics, v o l . 507, 1976
161.
Reed M.C.: Propagation o f s i n g u l a r i t i e s f o r n o n l i n e a r wave equations i n one dimension. Comm. P a r t . D i f f . Eq., 3, 1978, 153-199
162.
Reed M.C.: S i n g u l a r i t i e s i n n o n l i n e a r waves o f Klein-Gordon t y p e . S p r i n g e r L e c t u r e Notes i n Mathematics, v o l . 648, 1978, 145-161
163.
Reed M.C., B e r n i n g J.A.: R e f l e c t i o n o f s i n g u l a r i t i e s o f one dimensional s e m i l i n e a r wave equations a t boundaries. J.Math.Ana1. Appl.,
J . Math.
72, 1979, 635-653 164.
Rektorys K.: The method o f l e a s t squares on t h e boundary and very weak s o l u t i o n s o f t h e f i r s t biharmonic problem. E q u a d i f f I V , Lec= t u r e Notes i n Mathematics, v o l . 703, S p r i n g e r , 1979, 348-355
165
Richtmyer R.D., Morton K.W.: D i f f e r e n c e methods f o r i n i t i a l value problems. (second e d i t i o n ) I n t e r s c i e n c e , 1967
166
Richtmyer R.D.: On t h e s t r u c t u r e o f some d i s t r i b u t i o n s d i s c o v e r e d by M e i s t e r s . J. Funct. Anal., 9 , 1972, 336-348
167.
Robinson A.:
168.
Rogak E.D., K a z a r i n o f f N.D.: E x t e r i o r i n i t i a l value problem f o r quasi l i n e a r h y p e r b o l i c equations i n t i m e dependent domains. J . Math. Anal. Appl., 27, 1969, 116-126
169.
Rosinger E.E.: Embedding t h e D'(Rn) d i s t r i b u t i o n s i n t o pseudotopologi= c a l a l g e b r a s . Stud. Cerc. Mat., 18,5, 1966, 687-729
170.
Rosinger E.E.: Pseudotopological spaces. Embedding t h e D' (Rn) d i s t r i = b u t i o n s i n t o algebras. Stud. Cerc. Mat., 20, 4 , 1968, 553-582
171.
Rosinger E.E.:
A d i s t r i b u t i o n m u l t i p l i c a t i o n t h e o r y . P r e p r i n t , 1974
172.
Rosinger E.E.:
D i v i s i o n o f d i s t r i b u t i o n s . P a c i f . J. Math., 66, 1, 1976,
Nonstandard A n a l y s i s . N o r t h H o l l a n d , 1966
257-263 173.
Rosi n g e r E .E. : An a s s o c i a t i v e , commutative d i s t r i b u t i o n mu1 ti p l ic a t i o n 1,II. P r e p r i n t , 1976
315
REFERENCES
174. Rosinger E . E . : Nonsymmetric D i r a c d i s t r i b u t i o n s i n s c a t t e r i n g t h e o r y . S p r i n g e r L e c t u r e Notes i n Mathematics, v o l . 564, 1976, 391-399 175. Rosinger E . E . : N o n l i n e a r shock waves and d i s t r i b u t i o n m u l t i p l i c a t i o n . P r e p r i n t , 1977 176. Rosinger E.E.: D i s t r i b u t i o n s and n o n l i n e a r p a r t i a l d i f f e r e n t i a l equa= t i o n s . S p r i n g e r L e c t u r e Notes i n Mathematics, v o l . 684, 1978 177. Sabharwal C.L.: M u l t i p l i c a t i o n o f s i n g u l a r i t y f u n c t i o n s by d i s c o n t i n u = ous f u n c t i o n s i n Schwartz d i s t r i b u t i o n t h e o r y . S I A M J . Appl. Math., 18, 2, 1970, 503-510 178. Schaeffer D.G.: A r e g u l a r i t y theorem f o r c o n s e r v a t i o n laws. 11, 3, 1973, 368-386
Adv. Math.
179. Schmieden C., Laugwitz D.: E i n e E r w e i t e r u n g d e r I n f i n i t e s i m a l r e c h n u n g Math. Z e i t s c h r . , 69, 1958, 1-39 180. Schwartz CH.: Almost S i n g u l a r P o t e n t i a l s . J.Math. Phys., 86 3- 86 7
17, 6 , 1976,
181. Schwartz L.: Sur l ' i m p o s s i b i l i t e de l a m u l t i p l i c a t i o n des d i s t r i b u = t i o n s . C.R. Acad. S c i . P a r i s , 239, 1954, 847-848 182. Segal I . E . : The Global Cauchy Problem f o r a R e l a t i v i s t i c S c a l a r F i e l d W i t h Power I n t e r a c t i o n . B u l l . S O C . Math. France, 91, 1963, 129- 135 183. Shaw R.P., C o z z a r e l l i F.A.: S t r e s s r e l a x a t i o n a t wave f r o n t s i n one dimensional media d e s c r i b e d by n o n l i n e a r v i s c o e l a s t i c models. 1 n t . J . N o n l i n . Mech., 5, 1970, 171-182 184. S h i r a i s h i R., I t a n o M.: On t h e m u l t i p l i c a t i v e products o f d i s t r i b u = t i o n s . J. Sc. H i r o s h . Univ., 28, 1964, 223-235 185. S h i r a i s h i R.: On t h e v a l u e o f d i s t r i b u t i o n s a t a p o i n t and t h e m u l t i = p l i c a t i v e p r o d u c t s . J.Sc. H i r o s h . Univ., 31, 1967, 89-104 186. S h i u Yuen Cheng, Shing Tung Yau: On t h e r e g u l a r i t y o f t h e Monge Ampere e q u a t i o n . Com.. Pure Appl. Math., 30, 1977, 41-68 187. S i k o r s k y R.: A d e f i n i t i o n o f t h e n o t i o n o f d i s t r i b u t i o n . B u l l . Acad. P o l . SC. 2, 5, 1954, 209-211 188. Simon €3.: Quantum mechanics f o r H a m i l t o n i a n d e f i n e d as q u a d r a t i c forms. P r i n c e t o n Uni v. Press , 1971 189. Sloan A.: A n o t e on e x p o n e n t i a l s o f d i s t r i b u t i o n s . P a c i f . J . Math., 79, 1, 1978, 207-224 190. Slowikowski W.: A g e n e r a l i z a t i o n o f t h e t h e o r y o f d i s t r i b u t i o n s . Acad. P o l . Sc., 3, 1, 1955, 3-6 191. Slowikowski W.: SC., 3,3,
On t h e t h e o r y o f o p e r a t o r systems. 1955, 137-142
Bull.
B u l l . Acad. P o l .
316
E.E.
Rosinger
192.
Smentek Z.: An i n t r o d u c t i o n t o cohomology groups i n t h e o p e r a t i o n a l c a l c u l u s . Demonstratio Math., 12, 1, 1979, 5-21
193.
Sokolowski M.: On C e r t a i n Mathematical Problems Occuring i n t h e A n a l y s i s o f F r a c t u r e Phenomena, i n "Trends i n A p p l i c a t i o n s o f Pure Mathe= m a t i c s t o Mechanics" (ed. G. F i c h e r a ) Pitman 1976, 385-400
194.
Speer E.R.: A n a l y t i c r e n o r m a l i z a t i o n . 1404-1410
195.
Stroyan K.D., Luxemburg W.A.J.: I n t r o d u c t i o n t o t h e t h e o r y o f i n f i n i t e = s i m a l s . Acad. Press, 1976
196.
S t r u b e R.A.: On o p e r a t o r s and d i s t r i b u t i o n s , Canad. Math. B u l l . , l l 1968, 61-64.
197.
S t r u b e R.A.: An a l g e b r a i c view o f d i s t r i b u t i o n s and o p e r a t o r s . Stud Math., 37, 1971, 103-109
198.
S t r u b l e R.A.:
199.
S t r u b l e R.A.: Numerical valued F o u r i e r transforms. 20, 1977, 125-127
200.
S t r u b l e R.A.: culus.
A n a l y t i c a l and a l g e b r a i c aspects o f t h e o p e r a t i o n a l c a l = S I A M Review, 19, 3, 1977, 403-436
201.
S t r u b l e R.A.: 6 3- 76
The F o u r i e r theorem.
202.
S t u a r t C.A.: D i f f e r e n t i a l equations w i t h d i s c o n t i n u o u s n o n l i n e a r i t i e s . Arch. Rat. Mech. Anal., 63, 1, 1976, 59-75
203.
S t u a r t C . A . : Boundary value problems w i t h d i s c o n t i n u o u s n o n l i n e a r i t i e s . S p r i n g e r L e c t u r e Notes i n Mathematics, v o l . 564, 1976, 472-484
204.
Szaz A.: C o n v o l u t i o n m u l t i p l i e r s and d i s t r i b u t i o n s . P a c i f . J . Math. 60, 2, 1975, 267-275
205.
Tavera G., Burnage H.: Sur l e s ondes de choc dans l e s ecoulements i n s t a t i o n n a i r e s . C.R. Acad. Sc. P a r i s , 284, 1977, A, 571-573
206.
T a y l o r M.E.: Grazing rays and r e f l e c t i o n o f s i n g u l a r i t i e s o f s o l u t i o n s t o wave equations. Comm. Pure Appl. Math., 29, 1, 1976, 1-38 and 29, 5, 1976, 463-482
207.
Temple G.: Theories and a p p l i c a t i o n s o f g e n e r a l i z e d f u n c t i o n s . London Math. SOC., 28, 1953, 134-148
208.
Thurber J.K. , Katz.: A p p l i c a t i o n s o f f r a c t i o n a powers o f d e l t a func= t i o n s . S p r i n g e r L e c t u r e Notes i n Mathema i c s , v o l 369, 1974, 272-302
209.
T i l l m a n H.G.: D a r s t e l l u n g der Schwartz'schen D s t r i b u t i o n e n durch ana= l y t i s c h e Funktionen. Math. Z., 77, 1961, 106-124
Operator homomorphism.
J . Math. Phys., 9,9,
Math. Z.,
1968,
130, 1973, 275-285
Canad. Math. B u l l .,
J. F r a n k l i n I n s t . , 306, 1978,
3.
.
317
REFERENCES
210.
T o l s t o y I.:Remarks on t h e l i n e a r i z a t i o n o f d i f f e r e n t i a l e q u a t i o n s . J . I n s t . Math. Appl., 20, 1977, 53-60
211.
Traub J.F.: G e n e r a l i z e d Sequences w i t h A p p l i c a t i o n t o D i s c r e t e Cal= c u l u s . Math. Comp. 19, 1965, 177-200
212.
Treves F.: L o c a l l y Convex Spaces and L i n e a r P a r t i a l D i f f e r e n t i a l Equations. S p r i n g e r , 1967
213.
Treves F.: A p p l i c a t i o n s o f d i s t r i b u t i o n s t o PDE t h e o r y . Month, , March 1970, 241-248
214.
Treves F.: L i n e a r P a r t i a l D i f f e r e n t i a l Equations. Gordon, Breach, 19 70
215.
Treves F.: B a s i c L i n e a r P a r t i a l D i f f e r e n t i a l Equations. Acad. Press, 19 75
216.
Van d e r Corput J.G.: I n t r o d u c t i o n t o t h e n e u t r i x c a l c u l u s . l y s e Math. , 7, 1959 , 281-398
217,
Van Osdol D.H.: T r u t h w i t h r e s p e c t t o an u n l t r a f i l t e r o r how t o make i n t u i t i o n r i g o r o u s . Amer. Math. Month. , A p r i l 1972, 355-363
218.
Van R o o t s e l a a r B.: Bolzano's t h e o r y o f r e a l numbers. Exact Sc., 2, 1964, 168-180
2 19
V o l ' p e r t A.J.: On d i f f e r e n t i a t i o n and q u a s i l i n e a r o p e r a t o r s i n t h e space o f f u n c t i o n s whose g e n e r a l i z e d d e r i v a t i v e s a r e measures. S o v i e t Math. Dokl. 7, 6, 1966, 1586-1589
2 20
V o l ' p e r t A.J.: The spaces BV and q u a s i l i n e a r equations. S b o r n i k , v o l . 2, 2, 1967, 225-267
22 1
Zel I d o v i ch Ja .B : Hydrodynami cs o f t h e u n i v e r s e . Mech. , 9, 1977, 215-228
222.
Wahl W . : R e g u l a r i t y o f weak s o l u t i o n s t o p a r a b o l i c e q u a t i o n s o f a r = b i t r a r y o r d e r . J.London Math. SOC., 2, 15, 1977, 297-304
223.
W a l t e r H.F. : Ueber d i e M u l t i p l i k a t i o n von D i s t r i b u t i o n e n i n einem Folgenmodell Math. Ann., 189, 1970, 211-221
224.
Warmus M.: A new t h e o r y o f o p e r a t i o n a l c a l c u l u s . D i s s e r t . Math., 1971, 5-76
225.
Whitham G.B.:
.
Amer. Math.
J.D'Ana=
Arch. H i s t .
Math. USSR
Ann. Rev. F1 u i d
L i n e a r and N o n l i n e a r Waves. Wiley, 1974
LXXX,
This Page Intentionally Left Blank