Lecture Notes in Control and Information Sciences Edited by M.Thoma
73 III
IIII
IIIIIIIIII
IIIII
J. Zarzycki
Nonlinear Prediction
Ladder-Filters for Higher-Order Stochastic Sequences I
IIIIIII
II
IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIII
Springer-Verlag Berlin Heidelberg New York Tokyo
Series Editor M.Thoma Advisory Board A.V. Balakrishnan • L. D. Davisson • A. G. J. MacFarlane H. Kwakernaak • J. L. Massey • Ya Z. Tsypkin • A. J. Viterbi Author Jan Zarzycki Institute of Telecommunication and Acoustics The Technical University of Wroclaw ul. B. Prusa 5 3 / 5 5 50-317 Wroclaw - Poland
ISBN 3-540-15635-6
Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-38?-15635-6
Springer-Verlag New York Heidelberg Berlin Tokyo
Library of Congress Cataloging in Publication Data Zarzycki, J. (Jan) Nonlinear prediction ladder-filters for higher-order stochastic sequences. (Lecture notes in control and information sciences; 73) Bibliography: p. 1. Stochastic sequences. 2. Prediction theory. 3. Filters (Mathematics) I. Title. I1. Series. QA274.225.Z37 1985 519.2 85-12668 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under c:354 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich. © Springer-Verlag Berlin, Heidelberg 1985 Printed in Germany Offsetprinting: Mercedes-Druck, Berlin Binding: LiJderitz und Bauer, Berlin 2161/3020-543910
PREFACE
In t h i s w o r k w e s h a l l b e c o n c e r n e d with t h e p r o b l e m of n o n l i n e a r
least-squares linear
prediction of h i g h e r - o r d e r stochastic s e q u e n c e s
orihogonal
digital
filters. The
nonlinear
problem
as a generalization of the lineaLr least-squares The cond-order
linear l e a s t - s q u a r e s
will be
prediction problem.
for w h i c h
white noise
when
ven sequence)
or s h a p i n g
filters ( w h o s e
modeling
statistically equivalent to the given s e q u e n c e ,
when
sire p r o c e d u r e s ,
in w h i c h
one
will not h a v e
e a c h time the permitted complexity derlies both the ladder-structures ry, a n d
the theory of orthogonal
the gi-
output is
driven b y white noise)
remarkable
implemented
Hence,
expa~sions
means
plemented
using
(namely CORDICS
of a n
any
orthogonal filter w h o s e
via recur-
the w h o l e
the s a m e
in m o d e r n
inherent numerica/
result of this theory is t h a t
alized b y
The
assures
computed
to r e c o m p u t e
is increased.
(Fourier)
be
of the m o s t importa~nt proper~y of the orthogonal
vat[on of 'energy' w h i c h A
driven b y
established° In practice, the linear or£hogonal filters c a n
One
with s e -
the orthogonal prediction or
innovations linear filters ( p r o d u c i n g
can be
considered
estimation theory is a s s o c i a t e d
stochastic s e q u e n c e s ,
as well a s
using non-
filter
idea u n -
digital filters theo-
in Hilber~
spaces.
digital filter is p r e s e t stability of the filter.
transfer function c a n modular
structure c a n
sophisticated 'building-blocks' with V L S I
be be
reim-
integrated circuits
processors).
linear theory results in the o p t i m u m
approximation of s e c o n d - o r d e r
sequences.
(least-squares)
Therefore,
stochastic
the linear estimation
IV filter b e c o m e s properties
the best possible
are completely c h a r a c t e r i z e d
If the undertyin~ s e q u e n c e may
be
In this w o r k least-squares
we
wish
sequence
the s e c o n d - o r d e r
(whose
statistics).
the linear estimation a c c u r a c y
a norz[inear a p p r o a c h
in order to i m p r o v e
to the p r o b l e m
the a c c u r a c y .
to p r e s e n t efficient algorithms of nonlinear
prediction filters for higher-order stochastic s e q u e n c e s ,
sulting in the o p t i m u m
approximate
re-
nonlinear digital filters of the Volterra-
class, ri~hese nonlinear ladder-filters will generalize the linear fil-
ters, p r e s e r v i n g zations, a m o n g order
by
is non-Gaussio.n,
not satisfactory. In that c ~ e ,
shot~Id b e introduced
Wiener
filter for ~ Gatlssi~n
m o s t of their properties
will mention h e r e
reali-
for higher-
stocha.stic s e q u e n c e s .
only t h o s e p a p e r s
ted to the subject of this work, the p a p e r s
modular
others), a n d yielding better estimation a c c u r a c y
(o.nd non-CTaussi~.n)
We
(orthogonality a n d
which
reffering for m o r e
citied ( a n d the r e f e r e n c e s
are closely c o n n e c -
complete
bibliography to
therein),
ACKNOWLEDGMENTS
I am p a r t i c u l a r l y indebted to Professor Patrick DewZlde of the D e l f t University of Technology for ~is helpful suggestions and h i n ~ introduced in many stim~at~ng and f r u i t f ~
disc~sio~,
~ p e c i a ~ l y d~ring my o n e - y e n s t a y
in Delft, which h ~ undoubtedly inspired t h i s work. I am ~ o
g r a t e f u l to P r o f ~ s o r M~ian S. P i e k ~ s k i of the Technical
Unive~Zty of Wro~aw for his valuable commen~ and d ~ c ~ s i o n s
concerning
t h ~ work. I wish to thank ~ . manuscript.
Zdzislawa Zabska for her c ~ e f u l typing of t h i s
CONTENTS
CHAPTER
i, I N T R O D U C T I O N
CHAPTER
2. N O N L I N E A R A UNIFIED
.......,........................................... ............... PREDICTION APPROACH
I
FILTER PROBLEM: .................................................... 1 3
2.1 H i g h e r - o r d e r stochastic sequences ........................................... 1 3 2.2 N o n l i n e a r lea~st-squares prediction: Algebraic a p p r o a c h ......... 20 2.3 N o n l i n e a r least-squares prediction: Geometric a p p r o a c h ........ 24: 2.3.1 S p a c e of t h e r e g u l a r V o l t e r r a f u n c t i o n a l p o l y n o m i a l s .......................... ............................................ 2 4 2.3.2 S p a c e of g e n e r a l i z e d c o e f f i c i e n t - m a t r i c e s .................. 26 2.3.3 S p a c e of g e n e r a l i z e d z - p o l y n o m i a l s ........................... 2 9 2.3.4 I s o m e t r i e s ........................................................................ 3 2 2.3.5 S t o c h a s t i c n o n l i n e a r e s t i m a t i o n .................................... 3 5 2.3.6 O p t i m u m generalized matrix approximaUon ................. 36 2.3.7 O p t i m u m generalized polynomial a p p r o x i m a t i o n .......... 3 8 CHAPTER
3.
GENERALIZED
NONLINEAR
LA/DDER-F'ILTERS
.............
4O
3.1 I n d e x - s e t s a n d their o r d e r i n g ...................................................... 4 1 3.2 N o n l i n e a r filter algorithm: t i m e - d o m a i n a p p r o a c h ....................... 4 8 3.2.1 'Local' e s t / m a t e s a n d errors..• ......................... ............. 5 1 of s u b s p a c e s ......................................... 5 5 3.2.2 D e c o m p o s i t i o n b a s e s .......................................................... 5 7 3.2.3 O r t h o n o r m a l Cholesky factorizat.[ons ............................ 6 0 3.2.4 G e n e r a l i z e d F o u r i e r s e r i e s e x p a / n s i o n ..................................... 6 1 3.2.5 M - D r e c u r s i o n s ................................................ 6 2 3.2.6 O r d e r - u p d a t e approxim~ion of t h e M - D impulse 3.2.7 O p t i m u m responses•..•••....•.••••.•••••....••.•.•.•...•......•..•.....••••...•.••.•.•.....7 0 3.2.8 E s t i m a t i o n a c c u r a c y ........................................................ 7 1 3.3 N o n l i n e a r filter algorithm: t r a n s f o r m - d o m a i n a p p r o a c h .............. 7 4 3.3.1 'Local' e s t i m a t e s a n d e r r o r s ......................................... 7 6 3.3.2 D e c o m p o s i t i o n of s u b s p a c e s , ON bases and M-D ~'~ourier e x p a n s i o n ................................................. 7 9 3.3.3 0 r d e r - u p d a t e r e c u r s i o n s ................................................ 8 3 3.3.4 Optimum ON approximation of t h e s e t of M - D t r a n s f e r f u n c t i o n s ............................................................ 8 5 3.4 N o n l i n e a r time-variax:t ladder~-filter.............................................. 8 6 CHAPTER
4.1
4. T I M E - I N V A R I A N T LADDER-FILTERS Shift-invariance
AND 'QUASI-LINEAR' ................................................................ 9 1
of inner--produc~......... ........................... ...........
91
6.2 T i m e - i n v a r i a n t n o n l i n e a r ladder-filter ~Igorithm......................... 4.3 ' Q u a s i - l i n e a r ' l a d d e r - f i l t e r s............................................................ 4.4 E x p e r i m e n t a l e x a m p l e.....................................................................
93 98 106
CONCLUDING
REMARKS
REFERENCES
..........................................................................
109
............................................................................................. II0
APPENDIX
i .................................................................................... 116 • , * • t • • •,,• •
APPENDIX
2
.................................................................. ........... ....•........ ..... .
127
i. I N T R O D U C T I O N
(a,B,u)
Let
tract set w h o s e sets of
elements
a, a n d
will u n d e r s t a n d which
~s
denote
U
are
12du
<
oo. W e
inner-product
the metric
will b e
d(.~v,v) =
a Hilbert s p a c e .
t + Yt = wt(u) ce if for all {y}. T h e ence
will b e
and
I.q-th o r d e r
w:~
sense
~ + ]lq
on
we
for
IL2(n,B,~ )
llwll 2 = ]E { Iwl 2}
some
index-set.
sequence a
K-th
will b e
order
A
map sequen-
denoted
stochastic
the joint probability
assumed will b e
so
called
k=l,...)I~
known,
by
sequ-
distribu-
that the fiFst
to b e
,
lu2(c,B,u)
a Hilbert stochastic
by
if for
of s u b -
IL2(~ ,B,•)
completeness,
bein~
called
{x}
abs-
I.~ a-
Two
sto-
statistically e q u i v a we
will h a v e
the fol-
]E{ ytl...Ytk } = ~ {xtl...Xtk}
problem
variable
maps
inner-product
called
are
a-algebra
B. B y
the n o r m
described
in a n
bar s t ~ d i n g for complex con-
, T
will b e
f~
on
{Ytl,...,ytk } , k=l,...,K
{y}
equalities
The random
tET
IE {ytl...ytk } , k=l,...,K
lent in a w e a k lowing
introduce
llw-v]I . A s s u m i n g
will b e
tions of the subfamilies
sequences
is a
measure
will i n d u c e
Let
{y }
if its properties
chastic
u, B
]E{ ly t 12 } < co . T h a t
collection
verages
where
by
- ~{~%},
~ IL2(%B,~) t aT,
space
of C - m e a s u r a b l e
(w,v) ~ fa w 0 ) : ~ ( u ) d ~
a~d
denoted
is a probability
a collection
5n~ w ( u )
jugation. T h i s
me
a probabilit~
of prediction
being
'past' subfamily
A Yt = Ytl t-l,t-2,...
is to c o m p u t e
a fixed function
from
{y}
conditional
{yt_l,Yt_2,... } . Statin~ the p r o b l e m
within the Hilbert s p a c e
framework,
the estimate
will b e
upon
, a so-
~eome£rically, optimal
if
A y%
will b e the orthogona]
projectior~
b y %hat 'pas%'. In that case, A ^ et = Yt - Yt
error spanned
by
upon
the closed
the length
will b e
sp~ned
H et]}2 = ]E {] etl 2}
minimized.
{yt_l,Yt_2,...}
subspace
Denoting
, a~nd b y
P
by
~
of the
the s u b s p a c e
the or~hogona/
projection o-
perator taking projection o n the s u b s p a c e ~f , the o p t i m u m estimate ^ _t of Yt will b e Yt = p Yt since the coprojection et = P Yt will be orthogonal
to
~f . Consequent/y,
the p r o b l e m
of prediction
is to corn-
pure t h a t p r o j e c t i o n .
Projection
of
Yt
on
~f
determines
ting o n the 'past' of the s e q u e n c e the least-squares
sense)
a prediction
{y}, a n d yielding the 'best' (in
approximation
of that r a n d o m
notion of 'best' approximation
relies n~turally o n
between
filter
the 'ideal' prediction
a/nd the o p t i m u m The
distance
squares
approximate
between
discrepa/qcy
input collection; ver~ the p r o b l e m able
yt)
'ideal' filter
F)
into the s p a c e e.g., Victor a n d
notion
where
~
indicates
(producing fo b e
a~sser~ed
yt) , ~t ) .
the lea~t-
o v e r the entire
permits
approximation
form
mapping
a vector
one
to c o n -
(of the r a n d o m
approximation
the s p a c e
space
vari-
~f the
choice
the
multiplication
the a v e r a g e
over
a/'e taken)
see
is equivalent
corresponds
of input s e q u e n c e
filters
of excitations
in a natural way,
Addition in %hat s p a c e
of filters, a scalar
between
Fa
observation
from ~Nhich the excitations
o~ ' d i s t ~ c e '
The
of filters.
(1979).
of the filter gain. T h e
babili~ s p a c e
This
as d e v i c e s
of r e s p o n s e s Knight
be
output is just
of 'best' deterministic
in a s p a c e
parallel connection ch~ge
12 }.
of 'best' stochastic
Pilters, c o n s i d e r e d
filter
variable.
a notion of 'distance'
their ou%tputs, a v e r a g e d
]~ ~yt-y t
into the p r o b l e m
(whose
filters c a n
between
i.e.,
F
prediction
the two
filter, o p e r a -
to
to a
(i.e., of the pro-
yields naturally a
il FI-F2112 = E{IFI(') - F2(')I 2} the input probability space.
The
3
inner-product (FI,F2) We
the s p a c e
notice that w e
however, Such
on
A - E{FI(.)~52(-
might h a v e
tion s c h e m e
by
tive to the e n s e m b l e be
completed
ximation p r o b l e m ted a s
~'
to form
= 15"/F °
non-zero
filters,
of excitations.
subspace
will contain
Consequently,
excitations). T h e Hence,
problem
in the s p a c e
of the s p a c e
eus t i m e - i n d e x e d
will c o n s i -
filters (rela-
space
K~'
the stochastic
variables
c~
all
identifica-
we
of the distinguishable
of the r a n d o m
Considering the e l e m e n t s
II FII 2 = ] E { I F ] 2 } .
in the e n s e m b l e
a Hilber~ s p a c e .
in the s p a c e
ats follows
from the zero-filter in a n
of the u n d e r l y i n g
tors or, equivalently,
for s o m e
. That
o
introduced
the n o r m
0
the input e n s e m b l e .
the filter a p p r o x i m a t i o n
(1910)
K~
not distinguishable
implied
=
a~e. z e r o
a subspaee
der the quotient s p a c e
now
will i n d u c e (F,F)
will b e
filters will f o r m are
of filters will b e
) } , and
their outputs
filters w h i c h
~'
now
may
approbe
trea-
of fitters.
of filters
K~'
functionals, it follows
as
opera-
from F r e c h e t
that the r e g u l a r Volterra functional p o l y n o m i a l s
M
GM; t =
Z m=l
Vm; t
(1.1)
where
Vm; t
with
am;jl...j m
0
=
for
2
Jl
...
~
Jm
subspace
ble, a n d
the Volterra functionals
theorem,
in the s p a c e
nomials
will f o r m
is a natural genera/ization
(sufficiently regular) form
functions
a complete
(see
Volterra
of filters. H e n c e ,
stating that p o l y n o m i a l s
span
so
countable
(,.2)
m;Jl'"Jm YJ l'"YJm
Jr >t , r = l ..... m
a dense
sis). T h l s
a
(to functionals)
that the s p a c e set.
that s p a c e
a countable
a dense
(1959))
span
is sepe~ra-
complete
set
(ba-
of the W e i e r s t r ~ s
subspace
in the s p a c e
is s e p a r a b l e ,
and
of
poly-
4 Consequently, exists) c a n
e~ch
filter
be approximated
5'
(for -vvhich s u c h
representation
arbitrarily %yell b y the Vol£erra series
oo 5` =
wT h i s
means
subspaces
~
t h a t the given filter
v {V
}
whose
v
F
(i.3)
m
is a p p r o x i m a t e d in the s u b s e q u e n t
elements
are nonlinear Volterra-type filters
m
of the s u b s e q u e n t be the s u b s p a c e
degrees
of nonlinearity. W e
of linear filters; v {V2}
notice that
v {V 1 }
will
will consists of the s e c o n d -
degree
nonlinear filters, etc. C o m p u t a t i o n
series
(1.3) will therefore consist in determination of the set of multi-di-
mensional
(M-D)
impulse r e s p o n s e s ,
•
,
of the subsequer~t terms in the
see
e.g., S e h e t z e n
(1980),
rn=l,2,...}
(1.4a)
{ at;jl..4m
of the approximate
nonline~.r filter
ly, of the set of M - D
(in time-dom(~/n)
(in f r e q u e n c y - d o m ~ d n ) ,
i@ m)
, m--l,2 .... }
t
is station~y, the approximate
is r e m o v e d
remark
means
f i l t e r will r e s t r i c t
v { v 1}
o n l y . In t h a t c a s e ,
b y the I - D
caSe. If the
nonlinear filter will b e time(1.4)
provided the varia-
(following the shift-invariance of inner-product in sta-
tionary c6use). W e of a l i n e a r
(l.4b)
in the time-variant (nonsfationary)
invaria-nt, a n d will b e r e p r e s e n t e d b y the sets ble
or, equiva/ent-
transfer functions
{ At( eiSl
input s e q u e n c e
F a
members
that approximation of the 'idea/' filter
the
the
considerations
approximate
of the sets
(1.4).
linear
9"
by
to t h e s u b s p a c e
f i l t e r will b e
described
5 The sense
series-expansion
is valid only for the analytic
or Gateatax) elements
of F r e c h e t
5-'or non-analytic
F
filters, the W i e n e r - t y p e
sort of e x p a n s i o n
This
(1.3)
can
be
of the s p a c e
expansion
introduced
via
lization of the Volterra functional polynomials inner-product
considered.
(Gram-Schmidt)
orthogona-
(i.I)
relative to the
Orthogonalization
complete
implying the orthogonal
of
set
orthonormal
{WM , M=I,2,... } , being actually a n ON basis of the s p a c e and
]5"
be
G M
will yield a countable
basis
of filters
should
implied b y the input probability- space.
the Volterra-type
(in the
of filters,
decomposition
(Do
~'
=
Z
•
v
{w M}
(i.s)
M=I
where
(WM'WN)
W M
= 6M,N
of that
ON
basis
being
the
M-th
ments Wiener
cla~s. H e n c e ,
represented
F
will b e
orthogonal
=
co • M=I
M-D
filters, m u c h
class
F
orthogonal
Fourier
=
Z (F,Wm) m= 1
< co , will
series, with
of orthogonal
series
series
That
be
of nonlinear
series ks c o n v e r -
is c o n v e r g e n t
(1.6)
(F,WM)
the 'ideal' fil-
than the cl~ss
expressible
expansion
Volterra-
(1.6)
input s e q u e n c e ) .
of analylic
for a wider
in terms of c o n v e r g e n t can
b e partitioned into
(relative tO the rvl-th term)
components
M
F
2
ele-
series-expansion
of filters (functionals)
the two, mutually orthogonal,
I] F{J
kernel. In other words,
in terms
orthogonal
the
filters of the
functional Fourier
than the functions
series. T h e
with
W M
like the 'usual' Fourier
cleuss of functions
orthogonal
member
delta. E a c h
subspaee
, for w h i c h
(F,WM)
filters (for a given
Kronecker
or£hogona/
nonlinear
auny filter
represented
gent for a wider
Taylor
degree
being the
is actually the stochastic
being the genera/ized ter
will span
b y the W i e n e r - t y p e
F
which
~M,N
'
co
W m
+
Z re=M+ 1
(F,Wm)
W m
(1.7)
6 :l~he first c o m p o n e n t lhogonal
esf/mate
F~
a~ the orthogonal subset
will e x p r e s s
the o p t i m u m
of the 'idea/' filter
projection of
{WI,,.,V~M}°
The
F
second
component
the first R H S
mad M - t h
approximate
nonlinear
F
degree
, and
can
o n the s u b s p a c e
fion error. In other words, desree
M-th
nonlinear
b e interpreted
spanned
will e x p r e s s
term in (i.7)
or-
b y the
the a p p r o x i m a -
will b e the opti-
filter; i.e.,
M
F
Observing optimum
~
FM =
~ m=l
(F',Wm)
Wm
that the output of the 'idea/' filter
M-th
ximate filter
degree F~
nonlinear
estimate
ar filter will yield the o p t i m u m
M-th
de~ree
cha.stic approximation
since
the n o r m
spondin~
to the s e c o n d
computation 2M-th
of (I.8)
order
(i.e.,
It s h o u l d will c o r r e s p o n d F
by
means
RHS
sequence,
Yt
of that approximate
of the error will b e
eM; t
minimized.
will b e
that the linear p r o b l e m
the first
approximation
-
F ,~
Hence,
2M
covariances ~iven.
prediction p r o b l e m
prediction filter
to
M=I
F a In that c a s e i "
v{ W l }
with the c o v a r i a n c e
(1.9)
will b e data
only, so
in (i.7), a n d
= ( m , w I) w I
the linear estimation p r o b l e m
of
of the 'idea/" prediction filter
restricted to the s u b s p a c e
will c o r r e s p o n d
(corre-
of the o p t i m u m prediction of the
provided
of the linear a p p r o x i m a t e
nonline-
solution to the sto-
~{yjl...yjmYkl...yku } , m,u=l,...,IV[) are
to the o p t i m u m
while the
is the output of the appro-
be noted that the linear least-squares
the considerations
Consequently,
equa/s
nonlinear
term in (1.7))
solves the p r o b l e m
stochastic
that sequence
B"
A YM;t
, %re notice that computation
problem
(1,8)
associated
cond-order
sequences
cond-order
statisf/cS are sufficient in order to characterize
with s e -
IE{yJlYkl}.~ . If the sethe underly-
7 ing s e q u e n c e fi/ter F ~
completely
will b e c o m e
and non-C~aussian saHsfactory.
(the G a u s s i a n
case),
the best possible
sequences,
In that c ~ e ,
the linear approximate
filter. In c a s e
the linear estimation
estimation a c c u r a c y
of higher-order
accuracy
may
may
be improved
cing the linear estimation s c h e m e
b y the nonlinear procedure,
higher-order
to
terms
corresponding
fact that in the linear case, Fourier
kernel
M=2,3, .... T h i s
the n o r m
degree
lleM;til2 .
Orthogonal who
i(~. wl)
nonlinea/~ c a s e
llytii2 _
Gram-Schmidt
expansion
Hermi%e polynomials,
and s h o w e d
by Cameron
of the IO2-funcdono/
Ito (1951)
and
~A~a~ c o n s i d e r e d who
introduced
process.
(194:7)
using C O N
following K a c z m a r z
problem
I(F,WM ) 12
Martin. Introducing the Volterra functiona/ polynomials ries, W i e n e r
(1958)
presented
orthogono/ ON
nonlinear
development
of C O N
sys£ems
Bomret
mathemcLtical representation,
The
orthogonal
and
into the latter s e approximation
the theory
(1963)
for a functional of a stationary s e q u e n c e ,
polynomial-functiona/s.
the
and Wie-
of C a m e r o n
form, underlying
with m e m o r y .
of
proposed
his theory of the orthogonal
of a IL2-functional in the W i e n e r - s e r i e s
work
(1935),
a deeper
series
for
set of multi-variate
direct orthogona/
its relation to the Pourier-Hermite
process
The
who
Steinhaus
from
(1.10b)
to W i e n e r
or%hogono/ization
o/nd Martin
preceded
viewpoint b y
the first
(1.1oa)
of a IL2-functional is d u e
Wiener
The
by
wile h a v e
I(F,Wl) I 2 _ ... _
representation introduced
we
of the W i e n e r
ner (1938).
introducing
i 2.
the Volterra functional polynomials
orthogonal
repla-
only; i.e.,
while in the M - t h
was
by
follows from the
of the error is r e d u c e d
[[ el;tl[ 2 ,~ ii ytll2
(194:2,1958)
b e not
proposed
of the the
using £he set
'gate-functions'
approach
8 was
introduced
pansion
by Bose
(1958).
for a functional of P o i s s o n
"l~he orthogonal
development
processes
introduced
was
functional Fourier was
discussed
were
Ogura
series
by Yasui
also c o n s i d e r e d
Knight
(1979).
The
developed
systems
with m e m o r y , class
b y 5egall
the O N
ex-
using Charlier polynomials.
a/qd I<[0/lath (1976).
Stochast/c
for a functional of 'orthogonalizable' (1979).
Or£hogono/
Hida and
in m a n y
(see
process
considered
for a functional of independen£-itlcrement
Volterra a n d
ted a n d
Wiener
by
(1972)
Wiener
works,
later t e r m e d
Schetzen
Ikeda
expansions
(1965),
and
processes
of that sort
b y Victor a n d
theories h a v e
been
investiga-
yieldin~ the theory of the nonlineau ~ the nonlinear
(1980),
and
systems
of the Volterra-
the references
therein).
In t h i s work we w i s h to i n t r o d u c e efficient adgorithms for c o m p u tation of t h e n o n l i n e a r o r t h o g o n a l approximate prediction filters (1.8)
the Volterra-Wiener ved
on
class, for higher-order
a finite time-interval. W e
stochastic
will derive
recursive
sequences
of
obser-
algorithms
of the
n o n l i n e a r digital ladder-filters, in which estimation a c c u r a c y c a n be improved succesively
nonlinear
via updating
the order of the filter. W e
prediction filters with or£hogonal
sections
are introduced
updated,
without aitering the existin~ structure
sequen£1y,
we
wish
to present
filters, yielding better for higher-order -
obeying
to the filter e a c h
structures,
and
a closs
and
only 'new'
its parameters.
of nonlinear
sequences
the attractive properties
where
consider
time the order of the filter is
(tharL in the linear treatment) non-Gaussian
will
of m o d e r n
on
o~hogonal
Con-
prediction
estimation a c c u r a c y
one
hand,
o n the other
linear orthogona/
digital
filters.
The me The
orthogonal
linear ladder-filter
and~or in f r e q u e n c y - d o m a l n s , Levinson
(1947)
using
algorithms
algebraic
algorithm cox~ s e r v e
o.s a n
can
be
derived
o~nd~or geometric example
in ti-
methods.
of time-domain
9 algebraic solution in the autoregressive ( A R )
stationary- case, s e e also
Kailath (1974), If the underlying s e q u e n c e
is
(1982)), the S c h u r pa~ametrization m e t h o d
(see Lev-Ari (1982); Kailath
(1982);
L e v - A r i and Kedlath
efficient realizations generalized salve,
mials,
~chur~Levinson
Genin
Levinson
of the
and
method
and
Kamp
(1983)
to the
cetn be applied in o r d e r to obtoin
innovations/modeling
linear
methods
is closely
related
(1982))
of Deprettere
can
be
connected
Schur
Kailath (1978); Delsax~e, G e n i n
s-statlonary (see Kailath
used
theory
algorithm
and K a m p
and
Lie
of ON
(see
(1979a)).
The
(1980);
in nonstationar~
to the
(1917)
ladder-filters.
case.
Szeg~l
Dewilde, The
DelThe polyno-
Vieira
and
linear filter
problem can be equivalently considered in the s p a c e of functions squareintegrable w.r. to the spectral m e a s u r e
of the underlying s e c o n d - o r d e r sta-
tionary stochastic sequence, u n d e r the I
filters
(see
Deprettere
and
(1981); Deprettere (1981)1 Dewilde
Dewilde
(1979),
(1982)), T h e
realizations of
Dewilde
and
Dym
problems of Darlington
and c a s c a d e synthesis, a n d interpolation with positive real matrices, considered
in
Piekarski (1971,197~=); Piekarski and S a e e d
(1980; Piekarski
and Uruski (1984), are closely c o n n e c t e d to those topics, T h e S z e g ~ theor%& resulting in the approximate rea/izations of the A N ving a v e r a g e
(MR)
Levinson~d
mo-
filters a n d equivalent to the S c h u r method, can be ge-
neralized to the rational ( A R M A ) (1978); De%vilde a n d D y m
case
(see Dewilde, Vieira a n d I
(1981)), This approach, introducing the S c h u r
algorithm in geometric context, underlies the theory/ of the linear A R M A
innovations~modeling
orthogoned filters, which c a n be applied in order to
solve the lossless inverse scattering problem; the Neva/nlinna-Pick interpolation problem; the optimum stochastic modeling problem; the m a x i m u m entropy spectral approximation problem, in discrete- and/or in continuoustime c a s e s
(see Dewilde and O y m
(1981,1984), Dewilde
(1982,1984);
Deprettere (1981); Mort, Vieira, L e e a n d Kailath (1978); I-
I0 Delsarte, G e n i n
and Kemp
theel a n d D e w i l d e (1982),
(1979b); Deprettere a n d D e w i l d e
(1979); P r a b h a k a r a
Rao
a n d the references therein). T h e
and Helmond
(1979), Bul-
(1983); W i d y a
linear ladder-filter algorithms can
b e equivalently derived using projection m e t h o d in time/or in frequencydomains The
(see Delosme
and Morf
(1982);
adaptive properties of the filters c a n
M o r f a n d F'riedlander (1981); Deprettere
(1982)). T h e
Kailath (1982); D e w i l d e also be c o n s i d e r e d
Kallath (1982); Deprettere
(1982)).
( s e e Lee,
a n d Lie (1980);
orthogonal linear ladder-filters c a n b e efficiently
i m p l e m e n t e d using V L S I technology, if the standard filter sections are interpreted in terms of hyperbolic or circular rotations, a n d then realized using C O R D I C S Ahmed
processors
and Morf
Depre£tere
(see Wolder
(1982); Lev-Ari
(1959); T u s z y n s k i
(1983); D e w i l d e
(1983); Deprettere, D e w i l d e
and Udo
(1980);
(1982,1983,1984b);
(1984); Deprettere a n d
~alnand~nsing (1984)). Generalizing the linear ladder-filter algorithms, the nonlinear prediction filter p r o b l e m c a n b e stated a n d solved algebraically ( s e e a~d Dewilde method
(1983); Z a r z y c k i
(Zarzycki
(1983))
(1984a-e,1985a))
Zarzycki
or, equivalent/y, using p r o j e c • o n
yielding or£hogona/ representations
of the nonlinear prediction filters of the Volterra-VJiener class
(see
Za-
rzyck] ( 1 9 8 5 5 ) ) .
T h i s work c a n be outlined a~ follows: In c h a p t e r 2 we introduce the nonlinear least-squa/~es prediction problem algebra/caJ/y, and geometrically in the t h r e e following isomorphic v e c t o r s p a c e s : of the r e g u l a r Volterra functional polynomials; of g e n e r a l i z e d (block, multi-indexed) matrices; ~nd of g e n e r a l i z e d (block, multi-vari-
ate)
z-polynomials. W e
lem in the first s p a c e p r o b l e m of o p t i m u m
can be
that the nonlinear stochastic estimation probequivo/ently c o n s i d e r e d
as a deterministic
approximation of the set of I~-D impulse r e s p o n s e s
the filter in the s e c o n d terministic p r o b l e m
show
space. In the latter space, this will b e c o m e
of polynomial approximation of the set of M - D
of
a de-
transfer
11 functions of that filter, In chapter
3 we
present
recursive
stationary nonlinear prediction spaces
of the generalized
V~e derive nonlinear
solutions to the n o n -
usin s projection m e t h o d
mettrices~ a n d
a nonstationary (Levinson)
problem,
geometric
of the genera/ized
nonlinear ladder-filter
time-variar, t prediction
in
the
z-polynomla/s.
algorithm, yielding the
filter with the orthogonal
stru-
cture°
Chapter
tO the p r o b l e m
4 is d e v o t e d
nonlinear ladder-filter. W e
introduce
following the shif£-inva/~iance ry case. Further
complexity
quence
stocha~stic
reduction
is l o w
(in a s e n s e
In A p p e n d i x
nonlinear
b y introducin s a cl~ss
with the o p t i m u m
whose
of
'dlstance' from the G a u s s i a n
matrix
(mu/ti-indexed)
2 the 'loca/' order-update
filter sections
prediction
se-
defined).
i the generalized
lined while in A p p e n d i x ponding
to b e
in the
in the higher--order stationa-
is a c h i e v e d
associated
sequences
reduction
a time-variant nonlinear filter algorithm,
of inner-products
of 'quasi-linear' ladder-filters, higher-order
of complexity
theory
recursions
i s out-
a/nd corres-
are presented,
USAGE: Capitals
~f,Z,... will usually denote
multi-indexed used
(multi-dimensional)
for their entries, m A
spaces;
matrices
-~viU denote
2A
a 'domain'
will denote
be matrix;
of the
a rect~/ngular
etc, T h e n ,
(ro'vv) matrix %vhose
. Thus,
a m-indexed
block-entries block
]lq . T h e
IA
... M A
ore
(square)
"~ will indicate the unit-circle
will indicate
matrix with entries
mA : DmA
(or 'usual')
{ M }A ,ffi [ I A
stand for a generalized entries.
mA
A,H,...
while lo%ver cause letters will b e
a. , a n d will b e interpreted as at m a p JlO0O]m m-variate index-set DmA into the reals termed
caplta/s
DmA
wil/ b e matrix;
-~ ]R , m a p p i n g
will therefore
a row-matrix 3A
] ~vill b e
(or vector);
a generalized { M×M
matrix with multi-indexed { z:
Iz I =
be
will stand for a cu-
m - i n d e x e d matrices.
'~-
the
i }
while
block }A
will
blockm,,~
12 will b e
the
unit m-tor,ls
integrals a r e gration
are
collection
taken
m.~. =
over
sequences
gular
of the H e r g l o t z
assumed
to b e
are
absent.
will sta~nd for 'lhe s p a n will d e n o t e
will indicate index-sets, dex-set
mL
Hermi%io/% 'outer' and =
ring. ~f'he s y m b o l
yj
and,
j
eJ
(relative
-
tro2%spose;
purely
used
will be
s
product.
will d e n o t e (m-copies),
sequence;
for c o m p l e x (or
Capital
L
a 'symmetric obtained
will sto.nd for expectat/on.
i.e., a All
measure) operators;
is v
conjugation;
orthogonal) will b e
part' of the
due
of inte-
i.e., the sin-
Lebesque
projection
all
index-set).
stochastic;
direct
noted
the limits
some
to the
will indicate
will b e
hence,
(J b e i n g
mea~sure P
othe~ise
a stochastic
to b e
or K r o n e c k e r
IE
~K~
assumed
of';
... x L
. Unless
will d e n o t e
C~pi%al
symmL L×
{ y}
variables
stocha~tlc p~
® ... ® ~
the unit-circle
not indicated.
of r a n d o m
~
~
sum; ®
reserved m-varia%e
to l e x i c o g r a p h i c
for in-
orde-
2. N O N L I N E A R
PREDICTION
In this chapter filter p r o b l e m
me- and
We
responses
the M - t h
can
be
sequences
APPROACH
nonlinear observed
and
predict/on on
a finite
~eometrica~/ly,
in ti-
that the nonlinear lee~st-squa/es
equivalently
approximation
considered
ms:
of the set of M - D
impulse
of gene~'a//zed
(block,
matrices;
of deterministic
approximation
functions of th~£ filter, in %he s p a c e
of the set of M - D
of genera/ized
transfer
(block, multi-varia-
z-polyno mio/s.
2.1 Hi~her-order
Let
[y}
stochastic
denote
sequence
will b e
sequences
a scalar,
cond--oFder Silbert s e q u e n c e This
UNI~'IED
degree
of the nonlinear filter, in the s p a c e
the p r o b l e m
re)
A
adgebr~dcally
showing
of deterministic
multi-indexed) -
state the p r o b l e m
estlmatLon p r o b l e m
the p r o b l e m
PROBLEM:
order stochastic
in frequency-domal/ns,
stoch~£ic -
%re introduce
for 2 M - t h
Ume-inteFvaL
FILTER
zero-mean
observed
represented
on
and
purely
stochastic,
the time-interva/
b y the ra~ndom variables
L = [0,oo) y_j
col
[y_~ ]j E b
.
contai-
n e d in the followin~ column-matrix
Y =
se-
(2.1)
14 The
following t w o - i n d e x e d
H -- I E { Y
whose
(second-order)
® "}}
covariance
meLtrLx is
(2.2)
,,, [ h j , k ] j , k ¢ L
entries are given b y
h j , k = ]E{ Y-j'Y-k }
Given
the c o v a r i a n c e
d~tet (2.3), w e
(2.3)
c a n introduce the following 2-D tq'ou-
tier transform pair
W ( e i O, e i ~ ) =
1
hi, k =
where
W ( e i8 ,eI ~J)
co E j=-oo
5 d 8 [d~
is the 2-D
n=0,...,N
axed let
the finite time-interva/ (offset) a n d then
X
n
hj,k
e - i J O eik~
we
(Z.4b)
{y}, satisfying
. - '/V(e*" ,e'. e)
(2.4c)
x=0,...,N-n . If the s e q u e n c e
L x _A_ { x,...,x+n } , w h e r e n
x
is o b s e r v e d
is ~ reference
will b e repleced b y the submattrix
will associate
covariaz~c e
with
{y}
the
following
(2.5a)
Hermitian,
positive-definite
matrix
Hx E{yX n = n
~ ~x} n
(2.5b) =
[hj,k]
(],k) £ b x x L x n n
on
point
indicates the rax~ge (or 'order' of past observ~ttions),
y X = col [ y_j]
and
(2.4a)
e ije W ( e i e , e i ~) e-ik a
spectral function of
W ( e i e,e i ~)
Let
oo E k=--oo
15 Assuming we
that the s e q u e n c e
will obtain for
is stationary
{r
}
second-order
sense),
j,k~...,-l,0,1,...
hi,k = hj+l,k+ 1 - h k _ j = r
where
(in a w e a k
is t h e
cova~ciance
,
P
sequence.
p=k-j
From
(2.6a)
(2.6a)
it follows tha£
P
Hx = H x+l~ n n
regardless
rely stochastic)
Now
can
noHce
consider
j EL
and
introduce
of %he rat*don v ~ i ~ b l e s
(j,k) c
LO
block-entries
display the Toeplitz proper-
m~trix of the s e c o n d - o r d e r (2.4)
~sociate
stationary
will b e replaced (since
se-
b y %he I-D
the s e q u e n c e
is p u -
sequence.
a 2M-th
order stochastic
sequence
{y}, sa-
m=l,0..,M
ly_jl 2m }
<
(2.7)
oo
the following M - b l o c k a n d £heir products
[my]
(column),
(see
m = 1 .....M
e/~e the followin~ m - i n d e x e d
with t h a t s e q u e n c e
m-indexed
also A p p e n d i x
matrix
i)
(2.8a)
matrices
my = [y_ji...y_j m ] Jl ..... Jm E We con
(2.6b)
×L O n n
%/qat (2.6)
the rela£ions
{ M }y ~. col
whose
]
rela~in~ the spectra/ d e n s i ~
~{
we
hk-j
£o the covariaunce
let u s
#/sfying foF
- [
cova~i~ce
{y}. In tha£ c ~ e ,
Fourier transforms,
Then
n
of the x-shift. W e
ty of £he t w o - i n d e x e d quence
T
the generalized,
(2.8b)
(MxM)-block
(squ-
16 are), ( m + u ) - i n d e x e d c o v a r i a n c e
matrix
N
iB{{M}y ® {M}y}
{MXM} H .
(where
®
Appendix
m~u H
=
=
[meuH]
(2.9a)
m,u=l,...,M
indicates 'outer' product of generm/ized matrices, s e e also I), w h o s e
~{r~®
(m+u)-indexed
block-entries are e x p r e s s e d
u.2} =
. [hj1""Jmkl"'ku]
as
(2.9b)
.
]l,...,]m,kl,...,k6 b
with
h
Each
-
submatrix
(2.9b)
c a n therefore b e interpreted as the (m+u)-th or-
der c o v a r i a n c e
matrix of the 2 M - t h order s e q u e n c e
that
will r e d u c e
{MXM}H
second-order
(2.9c)
-
JI'""jm k i' '"ku ~ ~D { y_j 1 "".y-jm y-k 1"""Y-ku }
sequence
quent p a r a g r a p h s
to the t w o - i n d e x e d
we
if
assume
M-I.
[ y }. Let u s
matrix
We
will
H
prediction problem, m u c h
like the t w o - i n d e x e d
the linear problem. W e then f o r
--
~ll
=
stands for the s u m m a t i o n
pariitioning the (re+u) pairs, s e e
e.g., W i e n e r
the G a u s s i a n
i 0'iH of the
least-squares
matrix (2.2) is associated
sequence
random
}
-k ?
0
symbol
matrix
is
m,u=l,...M
{Y-J1"" " y - j Z - k l " ' ' y - k )
where
the s u b s e -
notice that if the hitcher-order s e q u e n c e
I~llE{y_j --
in
of this chapter that the generedized c o v a r i a n c e
with the M-th d e g r e e nonlinear
Gaussian,
(2.2) of the
show
(2.9) will b e associated
with
observe
, (re+u)
even
, (re+u)
odd
S
{ 2.1o)
o v e r a H distinct w a y s
variables into products
(1958). tl~his m e a n s
of a v e r a g e s
of of
that the 'information' about
is contoined only the t w o - i n d e x e d
submatrix
{MxM}I-I , as the entries of all higher-order (i.e., even-
17 order)
covariance
matrices
meuH
are expressible in terms of the
entries of the left-upper submatrix
101H
Consequently,
to the p r o b l e m of o p t i m u m pr.ediction
a nonlinear a p p r o a c h
of a 2 M - t h order stochastic s e q u e n c e cy if the s e q u e n c e
is n o n - G a u s s i ~ n .
(in the s e n s e
of (2.10)).
will yield better estimation a c c u r a Otherv¢ise, ~he higher-order covari-
a n c e matrices will not cont~dn o.ny 'new' information about the s e q u e n c e , and the linear prediction filter (associated with
l e IH)
will b e c o m e
best possible filter (in the least-squares s e n s e )
for a O a u s s i a n
the
sequence.
Introducing a s h o r t h a n d notation
e
we
can
tom
m
(e
tel ....,eiota )
consider for
[email protected](eiOm
m,ual,...,M
i u ,e
;
co )
=
~
the M - D
co E
j m,= - o o
kl=.-oo
-ij 1 01
1
}l'"Jmkl"'ku
(2z) m + u
IdOl...
i~ I
(e
E
e
h.
.~-
co ..-
j1=-CO
• u
e *~
(2.11)
co ...
E
h.
ku~--oo
-iJn~ m ...e
Id8 m /d%...
.
Jl"'Jmkl'"ku
ikl~ 1 e
• u
•
iWu)
P'ourier transform pair
m e U % v ( e ] em,e ~(~ ) e
The
.....e
iku~ u ,..e
Id~u
-ikl~
e
(2.12a)
iJlSl
i o..e
...e
-ku~ u
~Jmem
(2.12b)
U
m @UVV( e i Om , e 1 0 J )
c a n be interpreted as the ( m + u ) - d i m e n s i o n a /
s p e c t r a / function of the 2M-th o r d e r s e q u e n c e , satisfying
m ~ ) U W ( e i e m , e i u ) ,,~ m® u~V(e i ~u , e ibm)
(2,13)
18 "Dhen w e
c~n
introduce
the f o | / o ~ n g
MxMIN =
[
containing precisely as the generalized second-order
being
Let u s
.
m
information
covaria.nce
matrix
=
for
. We
to M--i)
[ielw(eiei
.....M
(2.3.4)
about the 2 M - t h
we
order s e q u e n c e
notice that for a would
have
' ,e~i)]
actue]/y the two-dimensiona/
introduce
m,u=l
{MxM}H
(corresponding
i×l~v
1 elM/
u'VV(elO "ei~U)]
m ~
the s a m e
sequence
spectral matrix
(2.15)
spectral function
n=0,...,N , x=0...,N-n
and
(2.4a).
m=l,...,M
the
following multi-varia~e index-sets
mLx
n
where
Lx =
=h
{x,...,x+n} . B y
m}
n xn
{(Jl .....Jm )1 ire
the 'symmetric
part'
symmL x
n
set
(2.i6a)
r = 1 .....
of the index-
n
mLx
we
will u n d e r s t a n d
n
•
~ x
,
.
symmLXn "~ { ( J l " ' " J m ) : J1 E ~ n ; J r " J r - 1 ..... x + n , r = 2 ..... m }
We
notice that aunti-lexicographic
ordering
can
be
(2.i~b)
equivadently introduced
in (2.16b). If the 2 M - t h terval
Lx n
me
order s e q u e n c e
{ M }y
(2.8)
will b e
{y}
is o b s e r v e d
replaced
on
a finite time-in-
by
~
(M},~
n
.
c o l [ my:~] n
m=l,...,M
(2.ira)
19 whose
block-entries
n~n
where
x
ance
matrix
=" [ Y_jI.*oY_jm ]
is s o m e
(M~M
are e x p r e s s e d
{MxM]
H
(2.9)
n
m~uHx = E(myX ® n n
will h a v e
for
{y}
= [ m®%:. ]
® (M}~}
n
(2.za~) m,u,,l,...,M
U[/X} .. n
]
(Jl ..... Jm'kl ..... % ) ( symmLX × s y m m L X
is stationary
(in a w e a k
2M-th
order
(2.zab)
sense),
we
jl,...,Jm,kl,...,k u ,= ...,-1,0,1,...
hjl+l...jm+l,kl+i...ku+ I = h.jI "'']'mkl'''ku
so
covari-
given b y
] I.-4 mkl-.-ku
that
the generalized
will b e c o m e
n
with the block-entries
Assuming
(2.17b) (Jl .....Jm ) ¢ s y m m L X
reference point. Consequent/y,
}H* = E{ { M } x x
-[h
as
(2.19a)
that {IVIxM}HX = { M X M } H X + I n n
regardless
of the x-shift. T h u s ,
(2.19)
__A { M × M } T
(2.19b) n
display the Toeplitz structure of
the generetlized cov~rit).nce matrix of the stationary 2M-th order s e q u e n c e . In that case, the block-Hankel, matrix
{MxMJ'H
w i n b e replaced
plitz, positive-definite matrix (2.*9) will r e d u c e
multi-indexed Hermitian, positive-definite
to (2.6).
{M×M
b y the block-Har~kel, }T. W e
multi-indexed "Doe-
a/so notice that a s s u m i n g
M=I,
20
2.2 N o n l i n e a r l e a s t - s q u a r e s
Let u s observed random way,
o~sume
prediction:
approach
that the 2 M - t h o r d e r stochastic s e q u e n c e
o n the time-interval
variables
Algebro#c
L~
and, h e n c e ,
y_i,...,y N M^
YN;o
nonlinear, N-th o r d e r predictor
, we
of
YO
is
is r e p r e s e n t e d b y the
yo,y_l,...,y_N . In o r d e r to predict
given its N-th o r d e r post
{y}
YO
in a nonlineo.r
define the M-t/q d e g r e e a s the M - t h
d e g r e e Vol-
terra functional polynomial
M^
We
notice
assume
M
N
N
~
~
~
that
(2.20)
will
A =
YN;o
N
m-1 J l - 1 j2=,jl
M=I
""
~
e
jm=Jm_l
reduce
to
(2.20)
"" " N d f " J m Y-Jl"'Y'Jm
the
linear
s o that the linear a p p r o a c h
nonlinear treatment of the problem. T h e
N-th
order
estimate
if we
will b e the first step in the
M-th
degree
nonlinear, N-th o r d e r
prediction e r r o r w i l l then b e
M~
A
M^
N;o = Y o
a n d the m e a n - s q u a r e
M
error
(2.21)
IMsN;o
con be
M
eN; o = aN;oY o +
(2.21)
YN;o
error, a s s o c i a t e d
e;N
The
-
~ m=1
}
r e w r i t t e n in a
with
(2.21), will b e
>
expressed
0
(2.22)
r e n o r m a l i z e d form a s
N N N Z ~ ... ~ aN;il...j m y_jl...y_j m J l = l j2---jl jm=~Jm_l
(2.23a)
where
aN; o =
Md~ql
;
aN;Jl.,,jm
In o r d e r to solve the M - t h
= -
degree
as
N;JI...j m
nonlinear, N - t h o r d e r leo.st-squ~res
21 prediction problem, w e
wish to c h o o s e
the coefficients
such w a y that the m e a n - s q u a r e
error (2.22)
achieved if for
u i (kl,...,ku) ¢ s y m L N _ 1
u=i,...,M
and
aN;Jl...j m
in a
is minimized. This will
be
OIVIR c~N
=
(2.24~)
o
8 aN;kf..ku
Conditions
will imply
(2.24a) M
aN;oho,kl...k u +
Moreover,
E m=l jl=l
N ""
j m=Jm_i
aN;jl...j m h.Jl...Jmkl..*k . u
-
0
(2.2,~b)
get
we
M
5q;ohoo +
N
E
N
N
X E ... E h. Md N m = l jl=l jmmJm_l aN;Jl'"Jm Jl""Jm '° =
G e n e r a l i z i n g t h e notion of 'matrix', we c a n i n t r o d u c e t h e following M-block ( r o w ) ,
m - i n d e x e d coefficient-matrix
{M}AN = [ m A N
whoso
each m-indexed
block-entry
from the m-variate index-set
m%
DmAN
con be considered
D mA N
=
numbers
(2.2~b)
can talk e~bout the 'doma/n' of the m-indexed
that m - v a r i a t e index-set, and
~s a m a p
into the real (or complex)
m%. D m%, -~
Hence, w e
(2.25a)
] m = l .....M
matrix es being
we will have
symmLNI-I
if
m=l
if
m=2,...,M
(2.25c)
22 Consequently,
we write
for
m-2,,,,,M
mAN .. [ °N;Jl""Jm ] and for
m
(Jl .....jm)
e
(2.25d)
i
sym LN_1
m=l
1AN -', [ aN;ill JlC LN Thus,
the M-block,
considered
m-indexed
as a m a p
(2.25e)
coefficient-matrix
{M ~AN
(2.25a)
can be
from the vector of simple d o m a i n s
D{M} %
[DmAN] m~,l,00,,M
=
(2.26a)
into the reat (or complex) numbers
{ M}AN. D{M }AN + ~
see
a/so
Appendix
Using
where
1_yo N
1 mYN_ 1 can
i.
(2.25),(2.26)
{M}YN
=
a n d introducing
M
col [ 1 Y No
is e x p r e s s e d
( m - 2 .....M )
(2.26b)
by
(2.17b)
are given b y
rewrite the error (2.23)
with
(2.17b)
re=l, x = 0 with
in a generalized
MeN; ° = {M }AN. {M}YN
where
•
l
YN-1 ]
"'"
x=l
(2.~T~)
and and
n=N
while
n=N-:i , w e
matrix form a.s follows
(2.27b)
indicates product of generalized matrices ( s e e Appendix 1),
23
Introducing the following matrix [ M~ N
where
Md N
i
(2.28a)
ON_ 1 ] { M}~I
is e x p r e s s e d b y ( 2 . 2 2 ) , and
M-block ( r o w ) ,
1
ON-1
u
block-entries
u
=
1 ON_ I
[Uol_1 ]
are u-indexed
(see also A p p e n d i x
mad equat/ons'
in a generalized
rzycki and Dewilde
denotes the
(2.28b)
u=i,...,M
i i D ON_ l - symuLN_l (2.24)
UN-I
zero-matrix
u-indexed
{M}
whose
{M}
zero-mafrices i), w e
with domains
can rewrite the 'nor-
mafrix form a~s follows (see Za-
(1983a))
t =N where {M}Y N
{ M×M}H N
is e x p r e s s e d b y (2.18)
( 2 . 2 7 a ) , Rewriting
{ M x M }HN
(2.29)
with
{M}YXn r e p l a c e d b y
in a generalized
block-column
form
{MXM}HN.,
[{M}x%
] U-1 .....M
(2,30a)
where for u-2,...,M
{M}xUHN .
[ {M} 1 1 HN;kl"'ku] (kl...,ku)¢ myrau LN_
(2.30b)
and {M}×XHN = [ {M}HN;k 1 ]
0 kI ¢ LN
(2,30C)
with { M}H N;kl...ku - [ h.]l...Jmkl...ku . ] (Jl ..... Jm ) ~ D{M}YN
(2.30d)
24 we
c a n express the 'normal equations' (2.29), for
u=l,...,M
and
for
i
( k 1 ..... ku) ~ s y m u L N _ l , a s follows
(M}^
~'4"
{M) H
{M }AN.( M }HN;o
These
(2.31a)
N;kl..,k u = 0
=
MdN
(2.31b)
are the 'normal equations' associated with the M-th degree nonli-
near, N-th order prediction problem. W e
can observe
that they will reduce
to the 'normal equations' corresponding to the linear problem, if Equations
(2.31)
M~I.
can be recurslvely solved via the nonlinear Le-
vinson algorithm, presented in Zarzycki and Dewilde (1983). q)his algorithm computes
(1983a); Z~vzycki
the coefficients of the optimum nonlinear
approximate prediction ladder-filter, a n d implies the generalized C h o l e s k y factoriza~on of the block, multi-lndexed covariance matrix
{ M×M
}HN ,
generalizing the linear case, considered in meprettere a n d Lie (1980).
2.3 Nonlinear ! e ~ t - s q u a r e s
prediction: Geometric
approach
In the s u b s e q u e n t sections of this paragraph w e
will introduce the
nonlinear prediction problem in the following spaces: of the regular Volterra function~/ poIy/qomials; of the generalized coefficient-matrices;
~nd of
generalized z-polynomials.
2.3.1 S p a c e
o f tlae r e q u l a r V o l t e r r a f u n c t i o n a l . p o l y n o m i a l s
G i v e n the M - b l o c k , m - i n d e x e d matrix of the r a n d o m veu~iables [M} YNI-I
(expressed
by
(2.17) with
x=l
and
n=N-l) , ea~d a s s u m i n g
25 that the entries are linearly independent,
{ M}__I
A
Each
wil/
element from that s p a c e
M
where
<0N
...
{
M
be
the s p a c e
(2.32)
expressed
as
i {M}FN'{M} YN-I
(2.33a)
coefficient-matrix
. [mFN]
}PN
consider
--N-1 }
M-block (row), m - i n d e x e d
the
can
M}yI
{
X N _ 1 =" V {
we
is given b y
(2.33b)
m = l .....M
with
m F N = [ fN;Jl""Jm ] (Jl ..... ]m )
From
Appendix
i it follows that (2.33)
M~
.=
observe
that
M
m
Z; m=,1 M
can
be
(2.33c)
m 1
¢ sym
LN_ 1
rewritten as
:I. • FN " Y N - I
Thus, w e
can
functional
p o l y n o m i a l o f t h e form ( 1 . 2 ) . W e a l s o n o t i c e t h a t a s s u m i n g
we
obtain the s p a c e
diction problem.
M~ N f
(where
replaced
duct o n
{i}~_
Given
G
[ M }yiN_ I
is the regular M - t h
1 , associated
degree
and
Will
be
VoIterra
wihh the lineeuc N-th
two Volterra functional polynomials
the l a t t e r element by
0N
(2.33d)
expressed
g , respectively), w e
by
can
M
(2.33)
introduce
order pre-
~N
and
with
F" a n d
inner-pro-
~s
(M~oN,
M~N)~f
=A IE{M~ N
M-
~N }
M:I
(2.34a)
26 inducing the n o r m
ii M
2.3.2 S p a c e
1,,,jl 2
lowing M-block,
jl...j m
where
m-indexed
=A [ 10N_ll "'"
U O Ni_ I
each
m-indexed
(2.34b)
of .qenera/ized coefficient-matrices
Let u s introduce for
{M}I.
IM ~PNj 2}
E {
=
m=l,...,M
(jl,...,jm) ¢ s y m
m
i
LN_ I
m-l_l UN_ I
.
ml.
M ON_ll ]
m+l_lON_l
jl...jm
is the u-indexed
(2.35a)
"'"
zero-matrix of the form
(2.28b); the
is given b y
J1-0OJm
mi.
(2.35b)
Jf"Jm
with
6
t h e fol-
matrices
ml.
matrix
and
- [ 6 ]'l " 4 m' ; k l ' " k m
] (kl,...,km)
1 1 E s y m m LN_
denoting the m-dimensional
Kronecker
delta
Jl...Jm;kf..km .I 1
if
kl=Jl ,..., km=J m
(2,,35c) Jl"4m;kl'"km
This
means
thai
0
ml.
Jl""Jm
unit-entry with coordinates le ~II remaining
otherwise
~ad, hence,
{ M}I.
contains only o n e
J1"" "jm
(jl,...,jm) , placed in the m - l n d e x e d
entries ore equat[ to zero. Now let for
=
[ { M )l.
] Jl""Jm
block, whi-
m=l,...,M
m 1
(2.36a)
(,i 1 ..... jm ) ~ sym L~_ 1
and, fina/ly, let {M} i = [ m 1 ] IN-I I N - I m=l,...,M
(2.36b)
27 We
can observe
that the entries
{ M }I.jl...jm
ly independent, a n d they C a n b e c o n s i d e r e d
of the
{IV[}_ i_ I IN
are linear-
~s the 'natural' b ~ i s
of
the
space
{M}_I | N - I a v {.{M}IX N-X} whose
{M
elements will b e e x p r e s s e d
}5,N
where space
M
N
=
[mFN] m = l . . . , M
E
Given
by
m-indexed
(2.33c). T h i s
and
means
the generalized c o v a r i a n c e matrix
with
x=l
and
n=N-l)
N
is e x p r e s s e d
that
{M} i
IIN - I
by
{ MxM
}HN_II
{M}I_IN _ I
(expressed
as
A {M}5,N.{MXM}HI N-I .{I~@GN (2.381
with
5'
and
f
Hermitian a n d posltive-definite,
we
can check
({M}FN'{M }GN)Ir = ({M}GN'{M}FN)~~
(2.39a)
replaced by
g , respectively. Recalling that the genera/ized c o v a r i a n c e
multi-indexed
is the
of the 2 M - t h order stochastic s e q u e n c e
define the w e i g h t e d inner-product o n
{M}G
jl...jm
coefficient-matrices.
( {M}FN' {M) GN) ][ where
{M} I
(2.38)
is e x p r e s s e d
of M-block,
{y}, w e
N
E ... ~ fNijl...j m m = l J1=1 j 2 = J l jm,,,,,Jm_l
mF N
by (2.18)
N
a.s
=
E
(2.37)
G
matrix is
that
(2.39b)
(a.{M}AN + b.{M}BN,{M}I~N)I = a({M}AN,{M}FN)II+ b({M}BN,{M}FN) (2.39c)
28
({M}FN {M}FN)Ir = {M}FN"{NIXM}H.NI_I {M}FN z 0 with equality in (2.39d)
If{M}
We
con
II
observe
]if
{M}PN
=
{M} ONi -I " T h e
norm
(2.agd) is then
2 = ({M {M} FNII I }FN, FN)]I
(2.39e)
that
{M}I
Ii 2 J J.'"Jm R
{M}1.
{MxM}. 1 .{M}~ ji...j m" I-IN-i jl...jm
,.,
=
h..
0
>
(2.~0a)
JiJi...JmJm We
also notice that the 'natural' basis
amd
m
(jl,...,Jm,kl,..,,ku) c s y m
{M}I
({M}I
]l...Jm' if the underlying accordance
as we h a v e
basis of t h a t space,
general, an orthogonal
2M-th
{M halN _ 1
of the s p a c e
for
is not, in
m,u=l,...,M
I m i LN_ 1 x sym LN_ 1
.
kl,,,k u) l
h.
.
(2.40b)
]l...]mkl--.ku
order s e q u e n c e
was
Gaussian,
we
would
have
(in
with (2.10) )
m eUHl~-i
Consequently, f o r
(re+u)
({M}I
= m eu~i~N_i
'
(m+u)
odd
(2.41)
odd,
{M}I
]l-..Jm'
kl...k u
)~
0
(2.~2~)
=
and we would have the 'block' orthogonality of the 'natura/' basis in the Gaussian ca~e. Moreover, if the sequence was white, we would write ({M}I']I...jm,{M}Ikl...km)]l = EFI~ . Jr,ks
(2.42b)
29 in
accordance with (2.10). In genera/,
if
({M) FN,{M}GN)I[ = 0
we
shall s a y
that two M - b l o c k
(2.43)
(row), m - i n d e x e d
or£hogonal with respect to the genero/ized matrix of the underlying quence
was
stationary
coefficient-matrices
block, multi-indexed covariance
2M-th order stochastic s e q u e n c e (in a w e a k
2M-th
are
sense),
order
indexed Toeplitz covarlance matrix {MxM}TN_I
{ y }. If the sethe block, multi-
would replace
{ MxM }H
in ( 2 . 3 9 ) , in ~ccordance with (2.Z9).
2.3.3 S p a c e
of
.qenerallzed z-polynomials
Let u s introduce for
m..l .....M
and
(jl,...,jm) e s y m
rn 1~
LN_ 1
the
following row-matrices
Jl [6m,p'Zl""Zm
M zjf..jm
"
=
and
...
[0
0
Jm ] p=l, .... M
Jl Jm zl ...zm
0
...
0]
(2.43a)
let
mXM_l
=
ZN-I
[~.~" o.A~.~ ~'-''/
M
[
zJf"Jm]
(Jl .....Jm ) ¢ s y m
m
1
LN_ 1
so Lhat we c a n introduce
{M)
Then
we
can
1 m×M 1 ZN-1 = [ ZN-1]
consider
the
following
{M}_I A LN_ I =
m=l,...,M
space
{M}_I v {
(2.43c)
~N-I
)
(2.4~)
3O
whose
elements
M#
will be
N
M
.
N
E
j
m-.1
"
expressed
~
M E [0 m-1
as
N N z. . ~ "'" E, fN;jl..j m M 1 12 Jl Jm='Jm-1 ll"'Jm
... 0
¢N(Zi,..0,Zm)
0
=
... 0 ]
(2.4:5a)
= [~N(Zl ..... Zm)] m=:l.,...,M where
~N(Zl, ....Zm)
Given
is the s p a c e
{M}_I ZN_ 1 two elements
is given b y
the foUowing
M ~N
(2.45)
with
of the M-block,
arld F
MS N
and
f
vely), a n d using the spectra/ matrix sequence
m-variate
z-polynomial
N N N Jl Jm E E "' Z z i...z j l = : l j2=1 jm,~Jm.1 fN;jl...j m m
~N(Z"l ..... Zm) "
Thus,
denotes
{y}, w e
(M NMVN)~.. =
introduce
(2.14)
inner-product
.[d0{M} :d~{M} M~
A
M
M
m=l
u=l
E
=
E
m-variale
from that s p a c e
replaced
N
(2.45b)
by
G
z-polynomials. (where
and
g , respecti-
of the underlying on
{M}zI_I
the latter
2M-th
order
as follows
M x M w . M" "~N
.l'dOm [ d ~ u ~ N ( z l ..... z m)
i
(2~) m + u
m ®'~'W(e 'e ,e" ~ ) ~'N (wl ..... w )
1
(2o46a)
iSr , r~--l,...jm zr=e i ~s Ws=e
where
we
~dOm
used
=
the following shorthand
fd81
... f d O m
;
, s=l,...,u
notation
~d~ u =
~d~j....
;doJu
(2.46b)
31
Using
(2.13),
(M¢ N,
M
~N)Z
we
can
.
M ~
show
,hal
M ~ u=l
m-1
1 (2 7) m + u U
:dO m f d u
~ N ( W l ..... W u)
171
m®'~V(e"~ 'eie )~ ~N(=I ..... ~m)
ie Z
r
~e
$ r~it...tm
r W
s
=~e
, Sm1~...tu
(2.46C)
- (M~N ,M ¢N)~.
We
a/so
have
(a-M FN + b,MAN,M~N) Z - a(Mr N , M ~ N ) X + b(MAN,M¢ N) Z
(2.46d)
and, finally,
(M~ N , M ¢ N ) Z, " II M ~ N 112
If
(M
riate) MXMw
REMARK:
¢N,M ,N)Z
= 0 , we
z-polynomials (2.14)
aye
of the
shall s a y
or,hog.hal
2M-th
Let
"~D: {e io }
mnJD
we
m~
.~ ~ e
order
denote
sequence,
(M-block,
to the spectral
on
matrix
the unit ( m + u ) - t o r u s .
will h a v e ... e~jD : {e i8 )® ... ®
{ e ie}
= { e
meu~
we
ie 1
iOm
...e
m
for the unit ( m + u ) - t o r u s
= mT
®u~/D:
m-va-
the unit-circle. "/}hen for the unit m - t o r u s
i OI m @u T
(2.,~6e)
generalized
with r e s p e c t
In
while
that t w o
>-- 0
{e
i 8m ...e } ® ie I
•. { e
i 8i {e
i0 m ...e
i~ 1 e
get
i Ou ...e } =
i~tt ...e
}
}
32
2.3.4 Isometries
We isomorphic
observe
can
spaces;
{M }[i {M "}.y1 N-I N-1 '
thai:
i.e., w e
and
{M
}zl N-1
i~.re
have
y
.
i~.y
-Jl
.
-3m
d {M} 1.
%
(2.47~)
Mz.
~
Jl,,,Jm
Jl.,4m
so that M
q0
N
(2.47b) { M}F N
We
wish to s h o w
4-~
M@ N
that the following isometries hold
(Y_jI'°°Y.jm'Y-kl""Y-ku ) Y z/
( {M}I.
%
~ M}
jl...jm
(2.47c)
(M ikl...k u) II
]3 ...jm
Mzkl...k u) Z
s o that ( M //
(~M} FN( M} GN)~
~N' M ~ N) Y
(2.eva)
%
(M ~N'
M~,~)Z
33 |n o r d e r to do that, let u s o b s e r v e
(following ( 2 . 9 c ) , ( 2 . 3 4 a )
and (2.40b))
that
(Y-jI"'Y-jm ' Y - k l " ' Y - k u
)y
: ~{ Y_jl-..Y_jmY_kl...Y_ku
}
:
= hjl...Jmkl...ku "
= ({M}I.
. ,{M}i
)
(2.48a)
k l , . . k u 1/
]1...$m F r o m (2.lib) and (2.46a) we obtain
Mz (
M
ji...jm'
1
z k l . . . k u) Z :
I dO m
(2 7) m+u
Jl
id u
Jm
zl ""Zm
-k × m®%v(~i ~'ei~) ~I-k I ""~u uI
IZl~:eiOr |ws=e
,
r=1,...,m
• sl: ll...|u
Jl...Jmkl...ku
= ({M} :
{M}
(y_jl...y_jm, y _ k i . . . Y _ k u ) y
s o that ( 2 . 4 7 c )
(Mq°N'M~N)~"
ij1"" j m'
is valid. F r o m ( 2 . 3 ~ a ) , ( a . 3 9 a )
M ]E{ M (PN
~N } =
M
E Z m=l u = l
zk z...k u) ~
and (2.48a)
m_
re@u_ ~'N"
2.
(2.~ 8b)
it follows that
m ~_
MN-I" ~'*N "
" { M }FN'{M×M} t41--N-t'{M }GN~ "~
( {M} F N , {M} GN);I
(2.49a)
34
Finedly, using
(2.12b),(2.3~a),(2.~Sb),(2.46eL)
M (MeN
Z ~ViVN) -
.
×
~
mml
M
$
U-i
(2~) m + u
fdO m
"®~w(Je~,j~)
(2.48b), we o b t a i n
and
/d~u C N ( Z l .....z m) ×
,F-N(~I,...,,%) z]c=e
~ M
M
N
T
T ... ~
m - I u-I
1
x
N
Jl-i
I d8 m
=
M
~
~
m - i u=l
N
kl=l
-iku~ u ...e
N
~
j1=l
...
~
m e U w ( e i e m ,e
u)
;kl...ku
N
jm=Jm_l
~ s=i~...tu
~ .~f~r;jl...jm x ku=ku_ 1
eX]XSl...e iJm e m
-ikl~ I
s
i r ~ ip.••pm
N
~ ...
Id u
e M
---e
N
j m-Jm_i
i8r
N
~
kl--i
...
~
ku=ku_ 1
~.f~,;jl...jm
h.Jl...Jmkl---ku . &;ki...k u M M 2 r m = l u=1
mF. N"
(M}F,N {M×M} •
-,
This proves
m • u.. _i
~-i"
_i
H N _ I,
(M~N,M~N)~f
=
U~
GN
{M}~N
-
=
({M}FN,{M}GN)I
(2.49b)
( 2°~7d).
Prom
(2.47) it follows t h ~ the M-th degree nonlinear, N-th o r d e r {M }_.I stochastic estlma£ion problem considered in the space X N _ l , c ~ be equivalently interpreted ~s the deterministic
problem in the space
{ M } KI~-_
35 of ~eneralized matrices, or as the de£ermlrdst/c p r o b l e m in the s p a c e {M}_IzN_I
of generaJ/zed z-polynomieds. "l~he i s o m o r p h i s m
nera/ization of the i s o m o r p h i s m tima~on p r o b l e m ruing
M=I), Now
c o n s i d e r e d in the linear least-squares es-
the K o l m o s o r o v
isomorphism
are in a position to s h o w
~/m~t[on p r o b l e m minist/c)
is a ge-
( w h i c h c a n b e immediately obtained from (2,47), a~ssu-
and becomes we
(2.47)
optimum
in stationoA-y c~se.
that the nonlinear s t o c h ~ U c
c o n b e eqtdvo/ently c o n s i d e r e d
es-
a s the p r o b l e m of (deter--
approximation of the set of M - D
impulse r e s p o n s e s
and~
or tra/qsfer functions of the nonlinear prediction filter.
2.3.5 StochaStic nonlinear . e s t i m a U o n
Given
{M}_X N1 _ 1
the space
(2.32),
let us
introduce
{ M } ~ N - v{ Yo . {M}yN_,I }
nonlinear, N-t/~ order lea.st-squares predictor
The
M-th degree
Yo
will b e e x p r e s s e d
{ M }p
l Y;N-I
o n the s u b s p a c e
Yo
(W0 Y N*- I
E
{ M ) _X Ni- I
" We
notice t h ~
N-th order prediction error, c o r r e s p o n d i n g
A {M}_l 1 N;o = ~Y;N-I
and can
of
(2.5,a)
is the ortho~onml projection operator, ta/~n~ projection M AY N ; o
linear estimate (2.20), introduced alsebralcallyo T h e
M E
M^ YN;o
as
MgN~o "A {M} P Y ; NI- I
where
(2.50)
be expressed
Yo
-- Y o -
to
M^ YN;o
is precisely the n o n M-hh desree
nonlinear,
M^ Y N ; o ' is given b y
{M}yl ±
in ~ renorma/ized form ~s
N-I
(2.51b)
36
M eN;o '= M C N ; o where
{M}AN
vely. W e
and
It M ¢N;o I1~
{M}YN
{ M}AN'{M }YN
=
(2.51o)
a r e given by (2.25) and (2.27a), r e s p e c t i -
notice that this is precisely fhe nonlinear normalized
prediction
error, introduced algebralca/ly in ( 2.27b). The
orthogonality conditions
(2.51b)
imply for
u=l,...,M
and
(kl,...,ku) ~ s y m U L l _ l
(MeN;o , y_kl...y_ku) Y
Moreover,
the n o r m
Volterra functional polynomials. W e precisely the 'normal equations'
(2.52b)
%vith the M - t h
introduced in the s p a c e can
observe
degree
nonline-
of the regular
that conditions
(2.52)
are
(2.31), derived algebralca//y. M o r e o v e r ,
rema/~k that the 'normal equations' for the linear N-th order predictor
are given b y
(2.52)
2.3.60pfimum
generalized
Considering
with
i%4=i .
matrix approximation
the s p a c e
{ M}_I~N_I
M}~q = v {{M} l o ,
The
as
= ]] Me N;o[I y
are the 'norm~l eque~tions', associated
ar lea~st-squares prediction p r o b l e m
we
(2.52a)
of the error will be e x p r e s s e d
(MEN; O , yo) Y
These
-- 0
N-th order estimate
{ M } ^iN; °
(2.37) , w e
define
iN_l }
of the element
{M} 1 °
will be introdu-
37 ced a.s follows
{M}^
A
{M}_
IN;o =
where
;%'M'P 1 lI;N-3.
space
-"IM)|l -N-I
{M}AN
{M} 1
~
o
(2,54a)
{M}.I
a N-I
indicates the orthogona,1 projection operator on the sub-
°
=~ { M } ~
1
z-'U;N-I
The
N-th order approximation
1 {M}I I;N-1 0 =
{M}I
0
[0
-
error is then given by
{M}IAN| o ]
± {M} 1
KN- I
(e.54b) and can be rewritten in a r.enorma/ized form as
{M}AN = {M}A N II { M } A ~ [ ~ I
Let us observe tatives of the phism
(2.s~c)
that
{M}^IN; O , {M}A N {M} A N and are the represenM ^ M M YN;o ' eN ~nd eN; ° , respectively, in the isomor-
(2.47). Prom
and
w [ m A N ] m = l ..... M
t h e orthogonality conditions l
(k I .....k u ) ~ y m % ~ _
(2.54b), w e obtain f o r
I
( { M } A N ' { M } I k l . . , k u)]I
w h i t e t h e n o r m of t h e e r r o r
(2.54b)
({M}AN'{M}
under
the isomorphism
-, 0
(2.55a)
iS g i v e n by
io) ~ =
We n o t i c e f.hat ~he 'normal equations' (2.52),
U.-I,..,,M
(2.47).
{{{M}A~ I I
(2..55)
are
(2,55b)
actually equivalent to
38 2.3.7 O p t i m u m ~qeneralized p o l y n o m i a l
Given
the space
(2.44), l e t u s c o n s i d e r
{M} ZN_II
{M}ZN
The
a~pproximation
v{ M z
=
°
M^
N-th order estimate
{M}Z Ni_ I }
,
of t h e
ZN; °
element
(2.26)
M
z O -- [I 0 ... 0 ]
will
b e obtained as
M^
{M}p
A
ZN;o =
where
{M}p
1
I
M
Z;N-I
{M}zI
error will then b e e x p r e s s e d
as
A {M}~
N;o =
(2.57a)
-1
d e n o t e s the orthogonal projection operator, taking
z ;N-1
projection o n the subspa~ze
MA
{qVI} z l
e
Zo
1
Z;N-I
M
Zo
N-i
M
=
"
The
Zo "
N-th order approximation
M^
ZN;o
.t
{ M}Z1N_ 1
(2.57b)
or, in o. renormalized form,
M A N A MA :
Let u s o b s e r v e of the
M
-1
N;o II AN;oll Z
that
M^ZN;o ' MA N;o
M^ Y N ; o ' M eN;o ' MeN;o
respectively, in the i s o m o r p h i s m The
(a.~Tc) ** [ ~ ( Z
l .....Z m )
and
~d~or
MA N
of the
] m - - X .....M
are
the representatives
{M}iN;o ^ ' {'M}AN , {M]AN
(2.47).
orthogonality conditions
(2057b)
will imply for
u=l,...,M
and
1
( k i ..... k u ) ¢ s y m U L N _ i
(MAN
' M Zk .... k ) Z
= 0
(2.~8a)
39 Moreover,
we
obtadn
(MA'N' Let u s
observe
=
liMa N;o lI:z
the~ the 'normal equations'
clitlons (2.55),(2,52)
Finally, w e filter p r o b l e m
MZo) Z
and
can
(2.31), u n d e r
conclude
(2.58b)
(2.58)
e q u i v a l e n t to the
are
the i s o m o r p h i s m
that the n o n H n e ~ "
con-
(2.47).
lea.st-squares
prediction
ca/n b e equiva/ent/y stated in the s p a c e s :
- of the r e g u l o / "
Volterra functioned polynomiads;
- o~ the genere~tized coefficient-matrices; - of the gener0dized 'l~his f o l l o w s seen
from
z-polynomieds.
from the fact that the three s p a c e s (2,47). Therefore,
(Le., the p r o b l e m
of o p t i m u m
the nonlinear
}Ylq
can
be
- the o p t i m u m
equivalent/y
deterministic
stochastic
stocha.sfic approximation
'ideal' prediction filter) in the s p a c e
{M
considered
approximation
~
mat/ices
- the o p t i m u m
deterministic
the hi~her-order are
gher-order
sequence
are
of:
{M}K N
covariance
impulse
respon-
of the generali-
dat~ of the underly-
given);
approximation
tions of that filter, in the s p a c e mia/s - in the Alq co.se
of the output of the
of the set of M - D
zed
sequence
estimation p r o b l e m
the p r o b l e m
of the 'ideal' prediction filter in the s p ~ c e
ing stochastic
as it is
of the Volterra functional polynomials
ses
(provided
are isomorphic,
(provided known).
of the set of M - D
{M} Z N the M - D
trarzsfer func-
of the generalized
z-polyno-
spectral flxnctions of the hi-
3. G E N E R A L I Z E D
NONLINEAR
In flue previous prediction
problem
tly introduced
LADDER-FILTERS
chapter
we
for higher-order
algebraically a n d
mains. Algebraic
showed
solution of the problem, algorithh~, w a s
(i983a, b); Z a r z y c k i
(1983);
in Z a r z y c k i
in the s p a c e s :
can
in time- a n d
be
in Z a r z y c k i
derivation
equivalen-
in frequency-dogenera/iza-
o/qd D e w i l d e
of the nonlinear predicti-
of the Volterra functional polynomials
(1984~a-e).
lutions of the nonlinear
sequences
yielding the nonlineom
proposed
geometric
o n filter algorithm in the s p a c e
method
stochastic
geometrically,
f/on of the L e v i n s o n
introduced
that the nonlinear lea.st-squares
Here
least-squares
we
wish
to present
prediction problem,
of the generalized
matrices,
was
recursive
so-
using projection
o2ud of the generalized
z-polynomials. The
nonlinea/" p r o b l e m
will b e p r e s e n t e d This
approach
in c a s e
will s h o w
as
a straightforward
the m o s t i m p o ~ a n t complexity
We riant)
M
while its solution
of the filter nonlinearity.
fealures
of the nonlinear treat-
of the derivations
of the s e c o n d - d e g r e e
estimates
will b e of the s e c o n d - d e g r e e perscript
cO~e
on one
ho.nd, o n
nonlinear prediction filter algorithm will b e
extension
tities (i.e., s u b s p e c e s ,
stated in ~eneral
of the s e c o n d - d e g r e e
menf~ avoiding u n n e c e s s a / ' y the other - the general
was
and
(R4=2)
errors) , we
case.
considered
shall drop
Since
obtained all q u a n -
in this chapter
from n o w
o n hhe su-
in order to simplify notations.
will s h o w
nonlinear
that the solution will result in a generalized
ladder-filter
algorithm, being
o r ~ h o g o n o / linear ladder-filters.
(time-va-
a natural generalization
of the
41 3.1 Index-sets
Let u s
(see
sets
euad their ordering
consider
a J s o (2.16)
for
n=0,...,N
with
rn=l,2)
ILx= n
2Lxn
and
{Jl} xX+n = {x .....x+n}
x+n
A)
can
for
introduce
the two types
u Lx÷ i n-I
U {x+n+l}
where rence
x
of the index-sets:
point 0),
ber of elements v--0~...,n
Lx,v A=
u s y m 2.~ nx + 1i -
U { ( x + n + l , x + n + l ) .....( x + n + 3 - m , x + n + l ) }
will denote
usly c o m p l e t e d
for
J2ffiJl
m.=O,...,n+2
= Lx A {x} n~m
B)
(3,b)
x+n
J l •X
we
(3.1a)
- Lx~ × Lxn " { q'J2 }jl,ja=~. +n
s y m 2 L x = { jl,j2}
Then
the following index-
x=0,...,N-n
n
a 'globa/' offset ( b a c k w a r d
while
in the l~t, o/ud
set, a n d
of previo-
%%~iliindicate the 'local' order
being completed,
{x} U {(x,x) ....,(x,x+v)}
(num-
column);
u
LX+ I
u
n-i
U {x+n+l}
x
and
m
(number
m = v + l,...,v+n+3
n,m
where
shift from the refe-
will stoJnd for the 'global' order
columns)
(3.2a)
will ago/n
U { ( x + n + l , x + n + l ) , ....( x + n + 4 - m , x + n + l ) }
denote
in the top-row
the 'globa/' offset
(3.2b)
(in the 'uni-v~riate'
of the 'bi-variate' part of the
x~v Ln,m),
v
subwill
42 indicate the last element der while tow
m
~nd
will ind/cate the s u m
C~a~ o b s e r v e
3"LX n
Considering
forward'
will b e
of the n u m b e r
a~edn the '.q/obal' or-
of elements
in the top-
th~
u
s y m 2 L nx
a n d f/nat the ordering is m o d u l o
introduce
n
the last column.
in
We
in the top-row,
x,n
(3.2c)
Ln,n+ 1
(n+2)
as w e
have
LXn,m+n+2
= LX+l,m
(3.3a)
L x'v n,m+n+2
- L x'v n+l,m
(303b)
the element
for fur'£her u s e (B-forward)
~
{ x}
a n d the elements
of the top-row,
the 'linear- for~va/'d' (L-for-ward),
index-sets
and
we
'bilinear -
of the n-th 'global' order, as follows
L-forward
L* - {x} n,o
B-forward
LX+l,n-1 n-i,n
(3.4a)
(for v---0....,n)
{x,x } u
Lx
{x,x+v }
u
njo
Lxl v _ <[ n,v+ i
These
u
index-sets
cal' forward
v=0
if
v=l,...,n
(3.4b)
will b e
approximation
Considering
if
Lx,v_l n~v
applied later, in order to introduce
sets
of 'lo-
errors.
the element
{ x÷n+1 }
and
the elements
of the last
43 column
of the index-sets
ckward
(l,-backward),
L x'v n,m
' we
define
for further u s e
a.~d 'bilinear - b a c k w a r d '
of the n-th 'global' order,
as
the 'lineew - b a -
(B-backward)
index-sets
follows
L-backward
Lx, n - i n,o
B-backward
"
Lx, n
. LX, n-I n,n
The
Lx, n-1 n,m-1
backward
Using
will b e
will b e
(3.4:), w e
can
used
,
m.~l,°..,n
(3.5b)
,
m..n+ 1
(3.5c)
later, w h e n
sets
of 'local' b a c k w a r d
considered.
consider
the following
collection
of the 'local'
[ Lx n,o
Lx, O n,l
collection
Lx,n-1 n,n
""
Lx, n n,n+1 ]
of the 'local' b a % c k w m r d
(3"6'~)
index-sets
results
(3.5)
L x m b;n
ceun o b s e r v e
[ b x'n-I n,o
L x,n-I n,l
cursive
way,
and
°'"
L x,n'1 n,n
that the 'globe/' f o r w a r d
of the (n+1) order (i.e., Lf~+ Ix
L~;n
(3.5a)
index-sets
while the folIowin~
We
{x,x+h }
U
index-sets
ILx ,, f;n
from
{x+n}
u { x+n+l-m,x+n}
a p p r o x i m a t i o n errors
forward
U
(for m--1 .....n + l )
Lx, n - i n,m
n,n+1
.~ LX, n-i n-l,n
~iven
~d
the n-th o r d e r
ILx . The b;n
hlgher-order
and
L x'n n,n+l ]
backwetrd
L~;n+ I) c ~
(3,6b)
index-sets (3.6)
be obtained in a re-
'~lobal' for-ccard a/ad b a c k w a r d '~[obal' i n d e x - s e t s
will b e
index-sets derived
via
44 a 'global' order-update step (3.4) a n d
n
(3.5) of the sets
-+ n + l
, executed
o n the 'local' entries
(3.6), a n d d e s c r i b e d sehemaf/c~l/y in FiS,3.1,
x ]Lb;n+ J_
l,-ba c k w a r d L nl,oX'n +
B-b ackward Lx, n n+ i,m
Lx, n+ 1 n+ l,n+ 2
m = l|...In+1
Lx,n+ Jn+ l,n+ 2
XiV
Ln,v+ 1
LXl v n+ l,v+ 1
v=0~...In ]Lx f;n+l
~[jx f;n
L-forward
L-forward Lx n~o
L:+1,o
B -b ackwo/'d
L-backward LX+1,n -I n~o
LX+l,n-i n,m
Lx+l,n n,n+l
m=lj...tn ILX+ 1 b;n
F i g . 3 . 1 0 r d e r - u p d a £ e step n-+ n + l o~nd L-backwo.rd index-sets.
for the 'global' L-for"ward
45 The
four types
Fig. 3.1 , c a n
be
of the 'local' recursions,
L-forweurd ~ n d -
recursions:
the 'local'
for the 'uni-variate' parts of the
L-backward
index-sets;
order-updates for the 'bi-variate' part of the
L - f o r ~ v ~ d index-set, ~ n d
the 'local' o r d e r - u P d a t e
'uni-vari~te t p~rt of the B - b a c k v c a r d BIu - recursions: the 'loco/' o r d e r - u p d a t e B-forward
recursions:
index-sets, a n d
the 'local' o r d e r - u p d a t e s B-forward
For
example,
from (3.~a)
lows that the L L
'local' o r d e r - u p d a t e
for the
index-set;
for the 'bi-variate' parts of the index-sets.
(with
(3.5a)
index-sets;
the 'loca/' o r d e r - u p d a t e s
eund B - b a c k w a r d
and
for the
for the ~uni--v'ariate' part of the
'bi-voriate' part of the L - b a c k w a r d RB-
of
interpreted m.s follows:
L L - r e c u r s i o n : the 'local' o r d e r - u p d a t e
LIB
indicated in the d i a g r a m
x
replaced
index-set recursion
by can
x+l), be
it
fol-
expressed
LX+l,n-i nwo = Lx Lx nil n,o
u
L x + l'n-I n,o
=
{x} %
u L X + l , n-I u n-l,n ; ..g.......
{x+n*l}
(3.7)
Lx n~o
and
can
be
schematically d e s c r i b e d
a s the following L L
index-set section
Lnxl Lx
n,o
3
~~
(3.8)
r- Lx
n~ 1
!
LX+ 1 , n - 1 n,o
q?he r e m a i n i n g 'local' index-set r e c u r s i o n s
can
be
obtained in a similar w a y .
46
T h e s e recursLons, together with the corresponding index-set section are presented in Appendix I. W e '~ob~9/' order Lndex-sets
notice that the number of entries of the (n+l)
~U~n+l
and
ILb;n+l x
comparison with the n-th order sets
]LXf;n and
B-fozwea'd and B-backweurd index-set
x,n+l 2 Ln+l,n+
'ri.qht-upper' element
is augmented by one i n ~UXb;n ' since the 'new' (a.ssociated with the
{x,x+n+l} ) is arriving to the s c h e m e of Fig. 3.1 al:
the 'global' order-updaLe step
n + n+l. T h e 'local' structure of this order-
update step is presented in 5"[g. 3.Z. Lx,n+ 1 n+ i,n+ 2 >
I2nX~flto Lx-,n ~ - ~ n,n+l T
x~n
xtnl,n Ln+
LnX,fl,o
".__> Lx~n _ ~ .... n+l,n-i ~
Lx,n÷l n+l,n+2
Ln+ I,n+ l
Lx,n + n+l,n
Lnx'+~,n+1
Lx,n-I n,n+ I
Lx,n-I n+ l,n-I
Lx, n-i n+ l,n
LXP 0 n,2
LX, O n+l,o
LX, O n,n+l
f X~O
f
-
. .
-'~ Ln,n+l--~
n,2
Lx n,n+ i Lx
--~
n,o " t Lx+ l,n-i n~o
Lx
nsl
>
--~ L x sin
~
LX~O n+l,l
X~O
1'n+l,o +
Lx n,n+l
Lx+ l,n-i ntn
Lx n+ I,o ~
LX+iio
LX+ l,n n~n+l
Fig. 3.2 'Local' structure of the 'global' order-update index-set step.
n + n+l
47
o
0
t-" ILb;0"% k
•
..
ILb; 1
T[ •
f A
lb ° b ; 2 .............. % A
Lo
b| 3
f
•
A
,%
'
•
~
l
x=l
Ibm3
1
lLf; 2
-J
! x=2
x=3
3 ) Lf; 0
.J Initi~zations:
IL _
'I~Iew" elements:
T'
~
LX oeo
>
(x=O .....3)
5"i~.
3.3
n,n+l
(n=i,2,3 ~ x=O,.,.,3-n)
'Local' structure The symbols 0
cursions
a
of the third-order (N-3) indicate corresponding
of l~'ig. 3.2.
index-set recursions. 'local' index-set re-
48 From
Fig.
the L-forward
3.2 it f o l l o w s t h a t t h e will work
index-set
a)
initialization: L x n)o
b)
'uni-variate ) step: L x + n)o
C) )bi--vaLrlate' steps: L x
n)l
d) For
o)
)bi-variate'
d)
termination: L x)v n+l)v+l*
The
L- ~und B - b ~ c k w a r d
d)
for
follows:
-~ L x n)2 -~ "'"-~ nLX)n+l ~" L xn+l,o
we
steps:
i~U~za~ons:
x)v Ln)v+2-~
Lx)v n,v+2 x,v Ln,v+3
index-sets
L x+1'n-* ntm L x+l'n n,n+l
'uni-varla[e'
get:
(v=0) ....n)
x)v + step: Ln)v÷ 1
'uni-vari~te'
c)
recursion
Lx n) l
the B-for~vard index-sets
b)
b)
order-update
termination: L x n+l)o °
initializat[on: L x'v n,v+l
a)
~s
'global'
+ "'"
Lx,V x)v -~ Lx,v n)n+l ÷ n+1,o ÷ ...-~ L n + l , v + 1
are u p d a t e d
o.s follows:
( m = 0 .....n) (m=n+l)
stepS: L x+l'n-I ~. L x nim n)m+l L x+l'n -~ L x n)n+ l n+ l,o
'bi-variate' steps: L x + n,m+l
L x)O n)m+2
( m = 0 .....n) ( re=n+ i)
-~ L x'l n,m+3
+
"'"
-~ L x'n-I L x)n n + l ) m - i "~ n + l , m
termination: L x)n n+l)m"
We notice that e a c h is associated (N=3)
'local' order-update
with 'label-update'
index-set recursions The
index-set
n e a r ladder-filter
step. T h e
is p r e s e n t e d
recursions,
6dgorithms
step for the b a c k w a r d
of the third-order
in Fig. 3.3.
derived
presented
'Iota/' structure
index-sets
in this section, will underly
in the s u b s e q u e n t
paragraphs
nonliof
this chapter.
3.2 Nonlinear
filter a/~orithm: time-domain
In this p a r a g r a p h degree
we
will derive
nonlinear prediction problem,
of generalized
coefficient-matrices,
approach
a recursive
using projection
introduced
solution to the s e c o n d method
in p a r a g r a p h
in the s p a c e 2.3.2.
49 Let
{y}
denote a fourth-order ( M = 2 )
v e d o n the time-interval riables
[ 0,-l,...,-N ]
stochastic s e q u e n c e ,
and represented
yo,Y_l,...,y_N . C o n s i d e r i n g the index-sets
(3.2b), w e
define for
of the r a n d o m
n-0,...N
and
b y the r a n d o m
Lx n,m
(3.23)
va-
a n d L x'v ntm
the following submatrices
vorlatbles o.nd their products
Y-Jl
nmm yX
=~
(3.9)
=
n,m
2yx
n,m a n d the s u b m ~ t r i c e s L x'v . T h e n n,m
x=0,...,N-n
obser-
we
ly_j~
yX,V ntm
, expressed
(jl,J2) ,xnt m
by
(3.9) with
c o n consider the following ( 2
variance submatrices
Hx n,m
and
H x'v n,m
the former is given b y
le2HX n,m
H xn~m = E { ~ n , m
replaced b y
2)-block, multi-indexed co-
, where
lelHX
Lx nsm
] n,m
@ ~n,m } "
2 • 1HX
2 • 2HX n,mJ
ntm
Ik kk21 J12kl hJlJ2klk2
(Jl,J2,kl,k2)
a n d the latter is e x p r e s s e d
by
(3.10)
with
Lx n,m
replaced b y
(3.1o) ~ ~,m×L xn,m L x'v . n~m
Now let Ix
=
n~m
where
ljl
for
"~
[
(ki,k2)
~kl;j. I
[llX n,m
21x
] =
[i.
n,m
Jl
1..
(3.11~)
] ( j l , J 2 ) • L xn0m
JlJ2
• L xn~rtl
2o ]
~jlj2
[ lo
~
kzk2;jlj2 ]
(3.11b)
50 with
I0
and
20
ctively, w h o s e
being the o n e -
domains
Lx respectively. n,m |
Let us
and
~wo-indexed
are hhe uni- a n d
In a similar w a y
introduce
the
respe-
bi-variate parts of the index-set
we
following,
zero-malrices,
con
introduce
x-labeled
and
the mah-i~
Ix'v n~m
(x,v)-labeled,
sub-
spaces
I nx , m =
We
notice
{IX, mn
11'N-I -N-I,N
thai
by (2.37) with element
v
M.-2)
Fx nmm
}
will b e
se
n,m
domain
Ix'v ntm
is
Ix n~m
will b e
a two-block
F x'v nsm
(row),
with d o m a i n
x
expressed
multi-indexed
Gx
= Fx
n,m) ~x n,m
element
o n the s u b s p a c e s
.H x
n,m
n,m
x=0,...,N-n
the
to
(3.4~)
subsequent
and
(3.5),
subspaces
we
EMh
as
(3.12b)
coefficient-matrix w h o of the s u b s p a c e (2.39a),
(3.12a)
.%x
we
as
(3.13~)
n,m
X,V G X , V ~ --b~X'V°HX'V-G x'v Fn, m ' n,m j ]~x,v n,m n,m n,m ntm
According
(expressed
_o,N KN,N+ 1 °
will b e
D b ~ % v .. b x'v . Following n~m n0m
a family of inner-products
(Fn,m '
{ 2} K ~ _ I
fx ] n'm;jl-x'J2-x (Jl'J2) ¢ LXn,m
DF x - .Lx . Similarly, e a c h n~m nsm
will b e
introduce
v
precisely the s p a c e
of the s u b s p a c e
will b e
F x
.
n~m
while the 'biggest' s p a c e
b"Xn,m m [ f~n,m;Jl_ x
i.e.,
,xv
;
can
of the
(3.13b)
introduce
for
n=0,...,N
and
~o,N
-N,N+I
L-for-Nard
I~n~o = ~ (I~o) i
(3.14~)
51 B-forward
(for
v = O .... , n )
IX, v n,v+l
=
IX'v v { n,v+l }
(3.14b)
itx,n-i n,o
x,n-i = v { In, O }
(3.14c)
L-backward
(for
B-backward
m - i ....,n+l)
N x'n-I n,m
,, v { Ix'n-i } n,m
1[x'n n,n+l
3.2.1 'Local'
v
estimates
Denoting ta/dng projection subsequent
=
by on
,
xln {In,n+1}
and
,
m-.l .....n
(3.14d)
m=n+l
(3.14e)
errors
P l ; nx , m
("--I;n,m" p x,vj
the s u b s p a c e s
'local' estimates
and
the o r £ h o g o n a / ]ix n,m
errors
as
(Ix'vJ " n,m-
'
projection
we
operators,
will introduce
the
follows:
L-forward Following
(3.~a),(3.11),(3.12)
Itx n,o =
v
and
(3.14a),
we
{ix
x+l,n-i ' In-i,n }
can
rewrite
a~
Itx
n~o
(3.i5a)
A
We
define
the L - f o r w a r d
n-th o r d e r
p
estimate
x÷i,n-i i 11;n-l,n
x
'ix
n,o
of the
ix+l,n-1 n-l,n
i
x
as
(3.15b)
52 Let
0jl
denote the zero-entry with 'coordinate'
the L-forward ^ n-lh order approximation error, c o r r e s p o n d i n g to the estimate ix , will n,o
be expressed
as
x =A p l x+i,n-I i - I - [0 An,o --~ ;n-l,n x x o
(since the estimate x ~n,o). This
pace
Jl " T h e n
'%1 x nto
~x I ± n,o ~
is c o n s i d e r e d h e r e ~
~x+l,n-I n-l,n
(3.16a)
etn element of the s u b s -
error caxl b e rewritten in a renormalized form
AX n,o "
x An,o
x
C:
1{ An,o [
=
n,O =
[x
ax ] n,OlJl-X,J2-x (jl,J2) • L x n~o
n,o;Jl-X
in accordance
the errors
with
(3.16)
respec~vely, if
B-forward Using
(3.12b).
can
observe
are precisely the
M~2
( for
We
, x=0
and
that the
estimate
{M) IN;o , { M }A N
~d
c a n rewrite the s u b s p a c e s
I
v { Ix, x
'
Ix } n,o
n,v+l
Let
'
X x'v n,v+ 1
if
Ix'v-I } n,v
car* introduce the B - f o r w a r d
0jl,j2
A
i
(2.54)
(3.14b)
as
v=0 (3.17a)
{v { iX,x+v [
ix, v
{M)A N
and
v=0,...,n)
(3.4b), w e
we
(3,15b)
n=N.
Xx'v s < n,v4-I I
Then
(3.16b)
p I;n,o x Ix,x
c
if
v--l,...,n
estimates
Itxn,o
if
v=0
IIX'V-i n,v
if
v--l,...,n
(3.17b)
p
x,v-i 11;n,v
i
X,X+V
E
stand for the zero-entry- with 'coordinates'
(jl,j2) . T h e n
53 the B-forward
approximation
will be e x p r e s s e d
j
A =
n,'%r%'- ~
to the estimates
(3.17b),
a~
. p±
ax,v
errors, c o r r e s p o n d i n g
x
a
Xx
I[ ;n,o Ix,x
if
v=O
if
v=l,...,n
n,o
(a.18a)
/
[ p l x,v-i
i
1
ITX'V-I n)v
x)x+v
H ;n)v
i.e., Ax ' v
nsv+ 1
as the estimates B-forward
-
Ix,x+v
~x,v n,v+l
(3.18)
errors
AX'V = n,v+ 1
=
[0
~X)V ] n,v+ 1
O)V
are treated here
can
be e x p r e s s e d
(3.18b)
as elements
of
x,v I[n,v+i). The
in the renorma/ized
form as
ax'v llAX'Vl[l-lnv+ n,v+ 1 , llx,v n,v+ 1 x,v
(3.1So)
x,v
= [ an,v+l;Jl-x
an,v+l;Jl-x,J2-xl
(jl,J2)
x,v £ Ln,v+ 1
(3.14c), using
(3.5a), as
L-backward Let us
K~;n-i nuo
rewrite
n" x , n - 1
~' V {In~.q:nl -- )
lq)O
so
that
we
will define
-1 ~x,n n,o
The
n,o
A
x,n-1
= P~;n-l,n
L-backward
k p x,n-i = R;n-l,n i x + n
L-backward
B x,n-1
the
approximation
lx+n
=
-
ix+n}
estimate
(3,19a)
as
l[x,n-i n-l,n
e
error
:1. x+n
!
will then
Vx'n-1
[ln,o
(3.19b)
be
On]
i
I x'n-1
n-l,n
(3,20a)
54 or, in a renormalized
B x'n-I n,o
form,
B x'n-1 IIB x'n-1 -i n,o n,o ]l~x,n-i n,o
=
-- [b x'n-1 n'°;x+n-Jl
(for
B-backward
F'ollowing (3.5)
Hx'n-I
m = l ....,n+l)
and
V
(3.14), w e
{ Ix'n-I
c a n write
'
i x + n + l-m,x+n}
'
mml"°°tn
(3.21a)
x~n . ..xln--I Kntn+l , v [in~ n
,
ix,x+n }
,
m=n+l
(3 21b)
"
the B - b a c k w a r d
~x,n-1 n,m
~= _ x,n-I P~;n,m-i
ix, n A= P x,n-i n, n+ 1 ]I;n,n
Consequently,
estimates will be e x p r e s s e d
C
B x,n nmn+l
IIx'n-I n,m-i
,
ix, x+ n
Nx'n-1 n, n
'
the B - b a c k w a r d
c
approxima£ion
;n,m-I i x + n + l-m,x+n
A= Pli x,n-1 ;n,n
as
i x + n + l-m,x+n
i
x,x+n
±
!
~[x, n-i n,m-1
ix, n-i n,n
i
m=l,...n
(3.21c)
m=n+l
(3.21d)
errors will be defined as
,n-1 n,m
so
(3.20b)
n,m-i
n,m
Hence,
bY.n-1 ] n'°;x+n-Jl'x+n-J2 (jl,J2) E L x'n-I nlo
'
m=ii...,n
(3.22a)
m=n+l
(3.22b)
that Bx,n-1 n,m
~,n
~n,n+l
-
[~x,n-1
= i x + n + l-m,x+n
=" lx,x+n
-
r~ ~ ' n
~ n,n+l
n,m
0
o,n
On+ i-m,n ]
(3.22c)
]
(3.22d)
55 "Dhe B - b a c k w a r d
errors c a n b e e x p r e s s e d
in a renormalized
illx, n_l-i
Bx'n-ln, m I1 Bx'n-ln,m
Sx'n-ln,m "
form
,
m n l .....n
(3.22e)
,
m-n+ l
(3.22f)
n~m Bx,n
x,n n n,n+1 .. Bn, n+ I U 5~n,n+111 -* ~x~n n~n+l
similarly as the L - b a c k w a r d
3.2.2 D e c o m p o s i t i o n
PoUowing
error
of s u b s p a c e s
B x'n-I nmo
(3.20b).
'
the considerations
consider the 'local' decomposlf/ons
o f the previous
paragraph,
we
can
of s u b s p a c e s :
L-for~rard Since
Ax n,o
is in
from (3.16), w e
Ix n,o
'
but is or%hogonal to
n,o
=
fix+ 1,n-I
n-l,n
•
x
v { An, o}
w h i c h implies the 'local' decomposition
x . p x+1,n-1 PII;n,o K;n-l,n
x
P~n,o
denotes of
B-forward
v=O,...,n)
Since
+
(3.23a)
of projectlon operators
x PA;n,o
(3.23b)
the om£hogone/ projection operator, taking projec-
£ion o n the s p a n
(for
, as it follows
c a n write
Kx
where
~x+l,n-i n-l,n
Ax n~o
AX'Vn,v+l belongs
to
~n,v+X'V1
but is orthogonal to:
]iXn, o
(if
v=O),
56 and to
I x'v-I n~v
Ix'v
(if
v--1 ..... n ) ,
I IIx n,o
=
in accordax,c e witkl ( 3 . 1 8 ) , we o b t a i n
o
Ax, o v{ n,l }
v~O
~
x,v v { An,v+ I}
v=l,...In
(3.24a) n,v+ I
This
11x'v- 1 n,v
implies
p
xtv Pl;n,v+ 1
p
where
< l
xtv A;n,v+l
X l[;n,o
+
,
V~0
,
v=l,---,n
(3.24b) X,V--I ][;n,v
p
+
is the projection
operator
on
the s u b s p a c e
spanned
by
Ax, v n,v+ i " L-b ac k w a r d Observing
h a l to
that
I xn-l,n 'n-1
B x'n-I , see
(3.20),
I x'n-I n,o
resulting
PB;n,o
IB-backwvi~rd From
we
to the s u b s p e t c e
]Ix'n-I
n~O
but is o r t h o ~ o -
car* write
= ITx'n-1 n-l,n
(9
v
{B x'n-I n,o }
(3.25a)
in lhe d e c o m p o s i t i o n
p
v~here
belongs
n~o
x,n-i ~;n,o
_ x,n-i = ~]l;n-l,n
is the projection
( for
(3.25b)
+
opereltor o n
the s p a n
of
Bx'n-ln,o "
m=l,...,n+l)
(3.22)
it follows
that
]ix,n-1 n,m
= ~x,n-1 n,m-i
•
v {Bx~n-1 } n~rfl
,
m=l,...,n
(3.26a)
57 ix, n = I x'n-I n,n+ I
This
•
V {B x'n . }
m=n+l
(3.26b)
imp)/es
p
x,n-1 ]I|n,m
p
x,n
= o x,n-1 --~;n,m-i
+
x~n-i I[;n,n
+
~
p
W;n,n+l
p B ; nx,n-i ,m
where spanned
by
We
can
x,n PB;n,n+l
n +i ) ( P B ; n~tn
B n x'n-I .m
3.2.30rthonormal
(Bx:nn+ I )
that the L - a n d
In o r d e r
to s h o w
A x'u n,u+l
'
that, let u s
a/qd let u s
m=n+l
~sume
belongs
£o
we
can
that •x,v n,v+l
show
A x'v nlv÷1
B-forward
set in the s p a c e
consider
A x'v n,v+ 1
Consequen~y,
,
operator
(3.Z6c)
(3.26d)
on
the s u b s p a c e
ba~es
observe
In a similar w a y
m = l,...,n
"
(v--0,...,n) f o r m the O N
A xn ', vv + l
,
is the projection
A x'v n,v+ I
and
,
two
~
errors
A x'u ± n,u+l
a2ud the matrices.
A Xn,,Vv + l Ix'u-I n,u
and
D N x'v n,v+l'
v=0,..,n
A x'u n,u+ I
that for
±
obtain for
A x n~o
of g e n e r a l i z e d
B-foFwca'd
v < u. S i n c e ' we
errors
( 3.27 a)
v:O,...,n
A x n~o
(3.27b)
the entries of
A x = n will f o r m the O N
[A x
n~o set.
AX, o n~o
"'"
An,n x • n - 1 A nx:n ,n+
11
(3.28)
58 If w e
introduce, a c c o r d i n g to (3.15a)
[Ix
iX, x
...
and
(3.1?a), the following set
Ix,x+n_ 1
ix, x+n]
(3.29)
J/~en (3.28) wiU be the orf/,1onormalized version of that set. Using (3.28) we cain write the following 'global' orthogona/ decomposition of subspaces
x,n
~n,n+ i
:
f<+i,n-i n-l,n
{A~}
•
(3.30~)
v
where v{A x}
= v {A x n,o }
~l~he d e c o m p o s i t i o n
(3.30)
•
n ~ v=O
will r e s u l t
x,v V {An,v+l}
•
in t h e
'global'
(3.30b)
decomposition
of p r o j e c -
t / o n operators
p
x,n _ - p x+l,n-I II;n,n+l X;n-l,n
+
x PA;n
(3.30c)
with n p
x p x A|n : A;n,o
+
x,v ~ PA;n,v+ 1 v:0
(3.30d)
T h i s result implies the f o U o w i n g 'global' or£hogonal d e c o m p o s i t i o n of the 'biggest' s u b s p a c e
~,N
N
,N+i =
Z
®
{ x
v ~_~}
(3.31)
x,=,0
Consequent/y, the s p a c e of (3.28) We
(3.28)
ca~% b e interpreted eu~ the 'global' O N
of the two-block, multi-indexed coefficient-m~trices. T h e c a n therefore b e treated a s the 'local' O N
shall call
matrices.
A x n
A x n
the 'forwe~d' O N
b~is
b~sis of entries
basis of that space.
of the s p a c e
of generalized
59 In a s i m U ~ r B x'n-I n, m
(m=0,...,n)
the g e n e r a l i z e d B x'n-I n~w B x'n-1 nlw
way
we
matrices.
± Zx, n-I nlw-1
=
%hat
can
and
w
, we
1
c~n
errors
set in %he s p a c e errors
B x'n-1 npm
observe
ge% for
and
£ha£
m,w..l,...,n
B x'n-1 ntw
that (3.32a)
of
(3.32a)
holds
for
m,w,=0,1,...,n
, and
moreover,
m=0,...,n
for
Therefore,
]Bx n
the entries
=
I
B x'n n,n+l
Bx, n-i n,l
set. C o n s i d e r i n g
[ Ix+ n
notice that (3.33)
(3.32b)
of
[ Bx, n-I n,o
will f o r m the O N
f/y, w e
m
B-baokwaFd
ON
B-backward
Bx, n-I q~hus, w e n~m "
a
B x'n-I n,m
we
WiU form a n o t h e r
assumin 8
~[x,n-1 npm
show
%h~t the L - a n d
C o n s i d e r i n s two
B x'n-I n~m
Similarly, w e
show
BX, n n,n+ I
~nd
(m,w=l,...,n),
can
Ix+n,x+ n
""
Bx, n-I n,n
(due
to (3.19)
...
nmn+l
version
'global' or+~hogonal
n-l,n
~
and
Ix+l,x+ n
is the o r t h o n o r m a l l z e d
obt~dn the following
x,n . Bn~n+l ]
(3.33)
(3.21))
the set
ix, x + n ]
(3.34)
of (3.34).
decomposition
Consequen-
of s u b s p a c e s
v
where
%' { B x } n
=
n ~ m--O
x,n-i ~) V{ Bn, m }
~)
x,n V{Bn,n+l}
(3.35b)
6O The
(3.35)
decompositions
i m p l y the 'g/ob~l' d e c o m p o s i t i o n
of the projection
opera~ors p
x,n = p x,n-i l[{n,n+l ll;n-l,n
p +
x B;n
(3.35c)
where n X
=
PBIn
Hence,
we
~ m=0
obtain the s e c o n d
'biggest' s u b s p a c e ,
shadl call
neralized
B x n
ON
3.2.4 G e n e r a / i z e d
Let u s
kind
=
N Z n=O
entries
basis
x,n B;n,n+l
(3.35d)
of the 'global' d e c o m p o s i t i o n
of the
~
V {B:}
Cholesks/
introduce
(3.33)
of
(3.36)
ON B x n
basis
of the s p a c e
will therefore
be
of the g e termed
the
of that s p a c e .
factorizations
%he following multi-indexed
= c o 1 [ ~ _ x ] x = o .....~ =
and
p +
the global ' b a c k w a r d '
matrices. T h e
'local' b a c k w a r d
x,n-i B;n,m
in the f o r m
]i°,N N,N+I
We
p
coI [ ~
'upper-triangular'
matrLx
...
Axn "'" ANo ]
(3.374
"'"
B ° n
(3.37b)
let
B N -- COl [ B ° ] n n=O,...,N
=
COl
[B:
"'"
o ] BN
be the corresponding multi-indexed 'lower-tri~ungula~' matrix. Recalling the inner-product,
introduced
in
the 'biggest' s u b s p a c e
of g e n e r a l i z e d
matrices
61 and expressed
by
(3.13b)
with
x--0 , v - N
, n=N
, reraN+l), w e
can
obser-
v e that
(AN'
AN)_o,N ~N,N+l
o,N " AN*HN,N+I
.T ~N
-
"
~
-
•
(3.38a)
"N,N+I
where
~
is the unit (2x2)-block, multi-indexed matrix (i.e., the unit-ent-
ries of the
I[
will h a v e
L N°'N ,N+I
madn equals
writing the matrices ving that the L H S
x
coordinates
L NO'N ,N+I
A N
" The
I[ . E q u a t i o n
ConsequenUy,
(3.38b)
the O N
can be shown
matrix while the R H S
s o that the R H S
caJn b e s h o w n
conditions
'backward' generalized C h o l e s k y
(jl,Jl,J2,J2)) w h o s e
(3.38)
of s e c o n d - o r d e r b l o c k - e n t ~ of
is u p p e r -
in a similar w a y . express
the 'forward', resp.
factorization of the block, multi-indexed co-
c a n b e generalized to the 2 M - t h order s e q u e n c e s
forward w a y . W e
obser-
is the unit multl-inde-
variance matrix of the fourth-order stochm.stic s e q u e n c e . W e thai (3.38)
do-
by
'on the paper' a n d then,
is a s y m m e t r i c
h'iangulam (with unit diagonal-entries) x e d matrix
and
relations (3.38a)
HO, N ,NN + I
~ud
of (3.38a)
(jl,jl)
also r e m a r k that, a s s u m i n g
c~n
observe
in a straight-
thai the underlying s e q u e n c e
is
(and, hence, is r e p r e s e n t e d b y the t w o - i n d e x e d left-upper
o~N
H N , N + I ) , conditions
(3.38)
wiU reduce
to the C h o l e s k y
fac-
£orizat[on of the t w o - i n d e x e d covaria/qce m~trix associated with the linear least-squares prediction p r o b l e m
3.2.5 M - D
We
Fourier series e x p a n s i o n
can observe
that the 'biggest' s u b s p a c e
to the biggest 'estimation space' The
( s e e Deprettere a n d Lie (1980)).
latter s p a c e
has been
_ I,N-I YN-I,N
considered
_I,N-I RN_I, N
will c o r r e s p o n d
, u n d e r the i s o m o r p h i s m
(2.47).
in order to obtain the generalized O N
62 expansion
(in the form of the stochastic
for the r a n d o m
variable
Yo
functional M - D
, in the s p a c e
lynomials, yielding the o p t i m u m predicUon
that the
is actually the represento.£ive
(2.47) above
i°
problem
(see
s o that the s u b s p a c e
of
development
of the element
Yo
nonlinear
(1984b)).
We
not/ce
in the i s o m o r p h i s m
will play the role of the m e n t i o n e d
'estimation space'; i.e., it will b e u s e d
red O N
(second-de.~ee)
e.g., Z a r z y c k i
_I,N-I ~N-I,N
series)
of the Volterra functional p o -
solu1~on to the
least-squares
Fourier
i
in order to o b ~ n
. B'ollowln~
o
(3.35), w e
the desiget
N-I
~I,N-I
-i,N
"
~ ~ v { B nI } nmO
(3.39a)
s o that p
This
decomposi~don
ties e x p a n s i o n
i,N-i I[;N-I,N =
c~n
N-I ~ n=0
be used
for the
1
PB;n
1
(3.39b)
in order to obtain the M - D
Fourier
, in the form
o
N-i
i
We
shall s e e
~
O
later that (3.39)
for the set of M - D
impulse
filter, yielding the o p t i m u m tion problem. solved
once
is obtedned,
and
w i U imply a generalized
responses
we ON
that the basis
will s h o w basis can
sulting in the nonlinear ladder-filter
3.2.6 O r d e r - u p d a t e
We
wish
of the
be
Fourier
(second-de~ree)
solution to the non)/near
In other words, the 'backward'
(3.39c)
B i~) ~ in
(io'
~'
n=0
se-
expansion nonlinear
least-squares
predic-
that the nonlinear p r o b l e m
of the s p a c e computed
of generalized
in a recursive
is
matrices
way,
re-
algorithm.
recursions
to s h o w
Lhat the 'glob~[' forward
as well as b a c k w a r d
ON
63 bases
be
can
recursively, via a set of appropriately defined
introduced
'Ioc~Ll' e~nd '.~oba1' o r d e r - u p d a t e show
how
the
(n+l)
and
of
A x n+l
xtn (In,n+1) A x n+1
'glob~l' o r d e r t f o r w a r d
A x n+l
B x+l n
. Let u s
( B nx+ l )
observe
should
be
that the
B x n÷l
can
'local' o r d e r - u p d a t e backward
w i s h to
eund b a c k w a r d
(mutually orthonorma/)
all oi~hogoned to the s u b s p a c e
. Using the decompositions (3,35)
and
we
]~.x n+l
b e obtained recursively f r o m the n-th 'global' o r d e r solutions
solutions c a n A x n
recuLrsions. In other w o r d s ,
the index-set
and ( 3 . 3 0 ) , we will s h o w
executed
A x n
and
on
the L - a n d
]~x+l • These n
recursions, c o n s i d e r e d in p a r a g r a p h
errors A nx+ I
entries of the
that
B-, f o r w a r d a n d
recursions 3.3)
after e a c h
'local' o r d e r - u p d a t e
]~x n+l
and
(based
will p r e s e r v e
ed orthonormality of the 'local' entries of the 'globe/' f o r w a r d approximation
Kx + i ' n n,n+l
b e obtained via a set of appropriately introduced
recursions,
entries of the
entries
and
on mutu-
backward
step. C o n s e q u e n t l y ,
the
' obtained that w a y , wi]/ form the O N
seLs age/n. Reinterpreting the index-set s c h e m e order-update
step c a n
be
described
as
of Fig. 3.1, the d e s i r e d 'globe/'
follows
~x n+1
'new'---).
A x n
x
(3.40)
An+l
Bx+l n
Considering (3.28)
and (3.33)
that the number of entries of one,
during
the
order-update
with Ax n
step
n
replaced by
and of
Bx n
n -~ n + l
, yielding
n+l
, we notice
will be augmented b y Ax n+1
and
Bx n+l
'
64 ( m u c h like in the index-set s c h e m e
of Fig. 3.1). Thus,
e a c h '~lobal' order-
update step will introduce the following 'new' B-for%yard a n d B - b a c k w a r d approximation error
A x'n+l n+ l,n+ 2
whose
=
B x'n+l n+ l,n+ 2
unnorma/dzed version will be e x p r e s s e d
Ax,n+l n+1,n+2 =
as
Bx,n+1 = pl x,n n+l,n+2 If;n+l,n+l ix,x+n+l
(~s i£ follows from (3.18a) from (3022b)
The
(3.41a)
with
n
with
n
replaced b y
I
x,n In+l,n+ 1
replaced b y
n+l , a n d
(3.41b)
v=n+l; a n d
n+l).
four types of the 'local' order-update recursions, indicated in
the diasram
(3.zi0), car* be interpreted as follows:
LL-recursion: 'local' order-update for the submatrices
LB-recursions:
iAx
and
~x+l,n-I
'locai' order--updates for the submatrices 2AX and nlm 2ix n,n+l a n d
1Bx+l'n-i ntm iBx+l'n n,n+ ~i
(m=l,,00,n) (m=n+l)
BL-recursions: 'local' order-updates for the submatrices iAx'° n,1
arid
IAX'V n~v+1 and
2 B Xn,l
(v,-0)
2BX'V'l n,v÷l
(v=$, ....n)
BB-recursions: 'local' order-updates for the submatrices 2AX'° n,m 2AX'V n,m
As
and and
an example, w e
2BX n,m 2BX'V-i n,m
(v=0
(v=l,...,n a/nd
shall discuss in s o m e
update recursion while the remainin~ LB, B L ted in A p p e n d i x
2.
and
m = 2 .....n+2) m = v + 2,...,v+n+2)
detail the LL 'local' order-
and BB
recursions are presen-
65 PROPOSITION
Given we
3.1
(q)he L L
the L - [ o z w a r d
have
and
=
Sx = n,l
x
{i-
[ Pn,1
]2
}
-~
x ]2 - ½ {I- [Pn, l }
{[
recursion)
L-backward
the following r e c u r r e n c e
Ax
n,1
(3.16)
normalized
(3.20)
approximation
errors,
BX+l,n-i ] } n,o
(3.42a)
relat/ons
A x n,o
x
0n+l]
x A x {-P n,1 [ n,o
- Pn,1 [ 0 o
0n+l
] - [0
BX+l'n-l]} n,o
o
(3.42b)
where
x l = Pn,
([
A xn,o
0n+l ] ' [ 0o
(3.42c)
Bx+l'n-l]) n~o - ix n,l
PROOF. LL-fo~vard Let u s
recursion
consider
]TX
n,l
This
subspace
Ix n,l =
~
x
{ In,l }
v
caJn b e rewritten, in a c c o r d a n c e
v {i x
,
[x+l'n-3"} n,o
=
v {i x
'
with (3.7), a.s
Ix + l ' n ' l n-i,n
SO that it contains the 'new' uni-variate e l e m e n t with
Kx n~o
(3.15). T h e
variate' submatrix;
i.e.,
L-forward
estimate of the
AX In, 1 , wi~l b e e x p r e s s e d
^ = p x+l,n-1 IX, l H;n,o
IX
E
v{I x+l'n-I } n,o
' ix+n+1}
ix+n+ 1 I as
x
, in c o m p a r i s o n
with u p d a t e d
'uni-
The
error
~,A~I , a s s o c i a t e d
Ax s pl x+i,n-i n,l K ; n,o
and
D Ax
n,1
(3,25b)
=
m,
Ix
1
66 A i~, I~
with
x
-[ 0
, will b e
^x ] in, l
o
Lx ,= L x U {x+n+l} n~i m,O
, in
expressed
as
Ex+l,!d-I n,o
l
accordance
with
(3.7).
Prom
~ve o b t ~ n
Ax
=
(I-
P
n,1
=
- P
(I
x+l,n-1 ~|n-l,n
"
x+l,n-l% i x _ p x+i,n-i ix K;n-l,n " B;n,o ,% ix n,o
_
= ix
_ x+l,n-l~ - • B ; n,o ] ix
[0o
=
x+l,n-i - PB;n,o
0n+l ]
1
x
Therefore,
ax = n,l
~o
DI
= Lx : n,l
x
Since
p 0n+i]
by
-
x + l,n-i B;n,o
(3.16a). S i n c e
{x} u L x + l ' n - i n,o
, we
x
=
x+l,n--i
Rx + l , n - I n-l,n
but
L x+l'n-1 nlo
but
have
X
AX £ in, o
1
DB x+l'n-i n~o
[G,o % + i ] - (Ix'[°o B ,o
a ,l "
we
expressed
Ax
with
[A x n,o
BX+l,n-$]
rlsll
IB x+l'n-i n,o
(in & c c o r d a n c e
%vith (3.20)),
obtedn
ax
n)l
= [ax
n,o
According
([a~, °
on+ i]
-
( Ax
to (3.16), w e
o+ 1],[o o
[ n)o
' [0o
x+l,n-i Bn,o ] )lx [0o n,l
get
x+lm-i ] ) I x
Sn, o
0n+l]
=
x
IIA n,o
llo xn,1
Bx+l,n-i] n,o
67 where
we
defined
x Pn,1 "A ( [ A ~ , o
B Xn,o + 1,n-l] ) 11x
On+l]'[Oo
nll and we
can observe
Ax,1 =
x [p n,1 ~ -< i. C o n s e q u e n t l y ,
that
flAX n,o II {[A xn,o
Renormalizing
A xn,l ' w e
observing
B x+l'n-I ] } n)o
0n,x [0 o
get
Ax x -I x A x n,l = ]IAn,II] [IAn,o H {[ n,o
Finally,
x
On+ 1] -
0n+l]
B x+l'n-I ] } n)o
x - p n,l [ 0 o
that
x 1 , A:,l)llX (An,
x lll-2 IIAXn,o llAn,
= I =
II2 (i-[ Pn, lX ]2)
n,l we
obtc~dn t h e
LL-backward
normalized L L forwox'd recursion
recursion
Let u s r e w r i t e
In)l x
=
v
ITx ) in accordance n)3.
{I x
,
n,o
ix+n+l
} =
v {
with (3.7)i as
+l'n-I i x ' 1xn-l,n
so that it contains the 'new' element (3.1Q). T h e
L-backward
estimate
1
x
~:,i
Vx ~ p x ln, l X;n,o i x + n + l
The
(3.42a).
, in c o m p a r i s o n of the
~
' Ix+n+l )
ix+n+ I
with
is given b y
v{ lXn,o }
approximation error, c o r r e s p o n d i n g to that estimate, is then
X I x 8n, 1 = P W ;n,o l x + n + l
=
Ix+n+l
Vx - [In,l
0n+l ]
Kx+l'n-3" nlo
±
ix n,o
68 and
]9 Bx = Lx = n,1 n,l
From
(3.23b)
5~n,l
(I - P
(I-
=
=
U L x+l'n-I n,o
in a c c o r d a n c e
'
with
(3.7)°
get
we
=
{X}
x+l,n-i x ~;n-l,n - PA;n,o ) ix÷n÷l
P
x+l,n-l~
K;n-l,n
ix+n+l
"
-
p
" Ix+n+l
--=
x
A|n,o I x + n + l
[x+l,n-i
[0o
=
0n+l ]
n,o
_ p
x
A;n,o
ix+n+l
ConsequenUy,
~n,l =
where
B x+l'n-I
=
=
BX+l,n-I n,o
Lx
:
n,l
"
nlo
p
x A;n,o
ix+n+l
(3.20). S i n c e
Lx n,o u { x + n + l }
BX+l'n-l]
[0 °
n, i
] -
is g i v e n b y
rlsO
Dlx+n÷l
Bx
[ 0o
(lx+n+
, we
1
'[ A
= Lx n~o
DA x
n~o
but
h~ve
xn,o
0n+l])~x n,1
Since
~x+l,n-I n~o
(3,20)),
Bx
n,l
=
we
[0°
but
i A x nto
(~cco[ding
to (3.16)
.a/qd
obtain
[ Ax
B x+1'n-1 ] - ([0 ° B x+1,n-l] nso
nio
!
n~o
°~+1])
x [AX,o n,l
:
II~ +I'n-I il { [ 0 n,o
Renormalizing
o
sx+1,n-1 ] n,o
-
B xn,l ' 6und o b s e r v i n ~
x x (Bn, 1 , Sn, l)]Tx
1
=
IIB x
x
Pn,l [ A X , o
0n+l] }
that
x+l,n-i 2
n,1 II-2 llBn, o
II
n~l we
obtain the n o r m a l i z e d
LL
backward
recursion
x
(l_[pn,1
(3.4~2b).
]2)
0 n + l ]=
69 rl~he remaining 'local' order-updette recursions c~.n be obtained in a similar m a n n e r , We
can observe
(1983a);
a n d o/~e s u m m a r i z e d
in A p p e n d i x
2.
that these recurslons will constitute the generalized
nonlinear L e v l n s o n Dewilde
LIB, IBL a n d BIB ,
ed~orithm, introduced a/~ebraicaJ/y in Z a r z y c k ~ Zarzycki
vinson algorithm h a ~
been
and
(1983). Here, the generalized nonlinea/" L e introduced geometrica/ly, using projection m e -
thod, a n d c a n therefore b e interpreted e~ a m e t h o d for ( ~ r a m - S c h m i d t ) orthogonalization of the ba.sis of the s p a c e ent-matrices. W e
of the generalized coeffici-
notice that, neglecting all 'bi-variate' terms
entries of the t w o - i n d e x e d
submatrices
quently, reducing the s c h e m e obtain the generalized
and
to the L L recursions
(nonstationary)
ciated with s e c o n d - o r d e r
2A...
sequences),
(i.e., the
2B...) and, only, w e
linear L e v i n s o n
conse-
immediately
algorithm ( a s s o -
reported in Deprettere
a n d Lie
(1980).
'I'he p a r a m e t e r s
p, c o m p u t e d
as the reflection coefficients. F o r
b y the algorithm, c o n b e interpreted
example, the
x P n,1
calty equal to the L L reflection coefficient c o m p u t e d sented in Ze~rzycki a n d D e w i l d e
(1983a)
This follows from the i s o m o r p h i s m
b y the algorithm pre-
(1984:b), a n d similarly
b y the L B , B L
and BB
'global' order-update
x-labeled 'level' ( w h e r e
x=0,...,N-n
step and
of the reflection coefficients is c o m p u t e d gorithm:
recursions.
(2.47).
C o n s i d e r i n g the 'local' order-update recursions, w e that during e a c h
is numeri-
and/or b y the time-variant n o n -
linear ladder-filter algorithm p r e s e n t e d in Z a r z y c k i for the reflection coefficients c o m p u t e d
(3.420)
n
+ n+l
can observe
, executed
at the
nf0,...,N), the following set b y the nonlinear L e v i n s o n
al-
70 x~n
/~n n+l,n
pX, n
...
P
xln-1 P n,n+ 1
x,n-1 On+ i,o
""
x,n-I P n+ 1,n-I
°
"
P n+l,o
BL
n+1,1
BB
P
xsn n+1,n+3.
x,n-i Pn+ 1,n
:
(3.43)
i
X~O
xlo
P n,2
Pn,3
x Pn,1
P n,2
xlo
P
"'"
P n,n+l
x
xto P n+1~1
n+1,o
"'"
x
LL
x P n÷l,o
LB
3.2.7 O p t i m u m
approx/maH0n
Considering
'O f ~ h e M - D
impulse
responses
'we obtain the following oz'£hogonal e x p a n -
(3.39b),
sion for the N-lh 'global' o r d e r L-forward approximation e r r o r A o N,o Ao ( a s s o c i a t e d with the d e s i r e d N-th order estimate IN, ° of the I o )
o
_±
I,N-I
A N,o " lJI[;N-I,N
1o =
o B 1 -- l o - Po,1 o,o N-1 -
Interpreting f/mum
Z n=l
A °N,o
-
N-I ~ o _ l,n-1 n,=l Pn, l ~:~n,o
n o Bl,n-I ~ Pn,m+l n,m m=1
nonlinear
io
(equiv~lenf/y - b y
o 1,n Pn+l,o B n , n + l
impulse
approximate
~hat (3.4:4) is ach/ally the genera/ized
(3.4&a)
(3.&&b)
n=O
~s the set of the M - D
(second-degree)
element
N -i ~ -
+
prediction
Fourier
the r a n d o m
responses
of the op-
filter, .Are notice
series, g e n e r a t e d
variable
Yo
, under
by the
the
71 isomorphism words,
(2.47)),
in t h e s p a c e
this is the desired
reflactlon coefficientS, rithm, a r e (3.39c)
actually
ana/or We
gorithm,
of t h e
expansion
computed
@eneralized
(3.39c).
We
also
by the nonlinear
the generalized
Fourier
matrices. remark
prediction
coefficients
In other that the
filter algo-
in t h e
expansion
(3.44).
can
therefore
introduced
nonlinear L e v i n s o n
conclude
in this chapter algorithm, c a n
that the nonlinear ~nd be
prediction tilter al-
equivalent to the generalized
interpreted
~s the m e t h o d
cursive (actually Grarn-Schrnidt)
o~ho~ona/iz~/on
ce of the generalized
resulting in the o r t h o n o r m a l
matrices,
for re-
of the ba~sis in the s p a exparlsion
for the desired
estimate. In other %,vords, the n o n l i n e ~
le~t-squ~ires
diction p r o b l e m
for higher.-order stochastic
ca/n b e
fly c o n s i d e r e d M-D
impulse
as the p r o b l e m responses
of o p t i m u m
of the desired
nonlinear filter a/gorithm, p r e s e n t e d method for computation the Volterra-Wiener
Let u s
class, since the ON
for the I-D
observe
impulse
'bi-variate' terms
response
(3.44~b) in the O N
of P r o p o s i t i o n
prediction
of the o p t i m u m
by
an
a4oproximate
expansion if
of the set of
treated as
o~hogonal
(1.8)
(3.~)
Uqe
effective filter of
is actually a n
M=2.
to the Fourier line~
expansion
pcedictlon filter, if
in the nonlinear
the existence
equiva/en-
filter. M o r e o v e r ,
be
will r e d u c e
will be improved
son with the linear a p p r o a c h )
Recalling
approximation
are ne~_/ected. In the next p a r a S r a p h
estimation a c c u r a c y
3.2.8 Estimation
expansion
that (3.4~)
ON
here, c a n
of the nonlinear
explicite form of the Fourier
sequences,
pre-
we
wiJ/ s e e
case
that
(in c o m p a r i -
of the s e c o n d
component
expaJnsion.
accuracy
(3.42a))
and
3.1) w e n o t i c e
comparing
with equation
that the norms
(i)
in t h e p r o o f
of t h e L - f o r w a r d
approxima-
72 tion errors in the L L 'local' order-update
recursion
can
be related as
follov~s
(3.-[p x
IIA x I1 --11A x II n,1 n,o
Considerin~
the L B
similar w a y
that
flAx, roll =
'local' recursions
Combining
II
(3.45&)-(3.45c),
'global' order-update
step
llA~+1,oll =
where
= ]1Anx , n + l
x lqLL:n+l
we n
(3.45a)
of A p p e n d i x
(J_- [Pn,m ] 2 ) ½
IIAnX, m_111
x I]An,n+ 2 II ,~ IIA xn + l , o
]2)½
n,l
,
2, w e
m=2 .....
n+1
]2) ½
,
11( 1 - [ p x + l , o
obtain the error-norm + n+l
can show
(3.,~5b)
re=n+2
(3.45c)
relation in the
as
IIA~n,o IIR LxL ; n + I R xLI3~n+l
is the factor associated
(3.4~a)
with the L L 'local' recursion
~L~n+x ~ ~ (i- [~,i]2) ½
while
RLB;n+IX
RLB;n+I
order-update
{3,46)
express
case,
]fAn+iX II =
'local' recursions
the
(l-[pX+l,o]2) ½
error-norm
step, in the ( s e c o n d - d e g r e e )
In the linear L e v i n s o n
to the L B
as
Lm=a (1- [pnXm]2) ½
"£'hus, e q u a t i o n s
(3.¢6b)
is the faLctor c o r r e s p o n d i n g
(3.45b,c), a n d is e x p r e s s e d
in a
(3.4=6) w o u l d
reduction
(3.46e) in t h e
nonlinear L e v i n s o n be replaced
II A xn H (i- [Pn+iX ]2)½
'global'
scheme.
by
(3.4=7)
73 see a/so Deprettere a n d Lie (1980). Therefore, better estimation a c c u racy is a c h i e v e d
d u e to the factor (3.4~6c), associated with the L B 'lo-
cal' recursions. Considering
(3.~6)
for
x II AN_x, o II =
where
R LxL
x~0,...,N-x , w e
obtain
x x x II A o,o III~LL lqLs
(3.383)
is the factor associated with all L L recursions
at the x-labeled 'level' in the N-th order s c h e m e ,
x
RLL
while the
N-x-1 n Rx = n=0 LL;n+ 1
R LxB
=
N-X-1 II n=0
a n d is given b y
x
2
( 1 - [Pn,1 ] )
f~ctor is associated with all L B
executed
(3.48b)
"
'local' steps, e x e e u -
ted at that 'level', a n d c a n b e w r R t e n as
x RLB
"
N-x-i H n=0 N-x-i
11
[ n+1
n=0
Equations
(3.48)
x
(1-[Pn,m])
2 ½ ]
]2)½
(3.48c)
in the
N-th order, s e c o n d - d e g -
at the x-labeled 'level'. Interpreting the p a r a m e -
as a backward
b=0, the relalions (3.~8)
shift (i.e., time-delay) from the reference point will c o r r e s p o n d
Since the desired estimate
I
o
to the time-instant
corresponds
racy for that estimate will b e e x p r e s s e d In the linear N-th order s c h e m e ,
c o n s i d e r e d for
x
( 1 - [Pn+l,o
m=2
relate the error-norms
ree nonlinear s c h e m e , ter
x
II
by we
to
t=x .
t=0 , estimation a c c u -
(3.48)
with
x=0
.
get (accordin~ to (3.47)
n=.0,...,N-x)
N-x-1
o [I IIAN- xll = IIAX
n
( 1 - [%+,]2) x
(3.~9)
n~o so that better es~dmation a c c u r a c y
in the nonlinear s c h e m e
will b e achie-
74 d u e to the factor (3.4=8c)
ved
recursions
(since the n o r m s
associated with the L B
(i.e,, nonlinear)
of ~l/ reflection coefficients c o m p u % e d
by
the nonlinear filter algorithm are less than l).
algorithm, introduced here
*l~he generoli~ed nonlinear L e v i n s o n
geome£ric~lly using projection m e t h o d in the s p a c e matrices, ~ d
of the generalized
interpreted in terms of the o p t i m u m o ~ h o n o r m ~ l
malion of the set of M - D
impulse r e s p o n s e s ,
will imply the time-variant
orthogonad nonlinea/~ digital prediction filter. Its s t r u c ~ r e ties will b e d i s c u s s e d
in p a r a g r a p h
n=0,...,N
zx n,m
[izX n,m
o~nd
a n d proper-
3.4.
3.3 Nonlinear filter o/~orithm: t r a n s f o r m - d o m a i n
Let for
approxi-
approach
x=0,...,N-n
2zX ] n,m
[z
z
Jl
]
.
(3.50a)
(jl,j2)¢ L x
JlJ2
him where
r ]I -x = Lz I
z. J1
;
z..
z x
=
n,m
= [0
Z x'v . "ghen w e n0m
v {z x } n,m
sho/l denote b y
_I,N-I ~N-I,N
Pz;n,m
;
zx, v . v {zX, v} n,m n,m
"~-~Z;n,m )
_o,N raN,N+ I .
the
(3.51)
orthogonal projec%ion o p e -
Z xn,m
will b e the 'estimation s u b s p a c e '
u n d e r %he i s o m o r p h i s m be
(3.50b)
c a n consider the following s u b s p a c e s
rator, t~xking projection o n the s u b s p a c e that
zJ#-XzJ22-x]
Jl]2
exnd simil~rly for
We
0 ]
'
( Z nx,v , m). W e (see
notice
(2.44) wi%h
(2.47), while the 'biggest' s u b s p a c e
M=2),
will actually
75
Each element
cx n,m
~:,m(Z )
from the s u b s p a c e
[ }:,m(Zl)
=
Z x n, rn
wiU be expressed
%:,m(Zl.Z2) ]
as
(3.52a)
where
(>X'm(Zl)
-- Jl ~,
(3.52b)
f~n,m;Jl_x zJll-x
and
~x
(~I,=2)-
n,m
E
Jl
w h e r e the summations
E
O
J2
.
zi
zJ~-x
(a.52c)
n'm;]l-X'J2-x
a r e over the uni-variate, respectively,
in (3.52b,c)
over the bi-variate parts of the index-set introduce inner~-product on
jl_x •
.
~x n,m
Lx . Pollowing ntm
(2.46a), w e
as
( ~,.(z), ~x.,. (z))
. ~
(2") 2
;d@l
fd~l Cx
n,m(Zl)
i
e~V(e
iel
-x
"
,eI°~I) ~n,m(Wl)
+
1 x 2 e l W ( ie 1 i8 iw~ + --(2.)3 ~d81 Sd@ 2 [ d ~ 1 ~n,m(Zl,Z2) e ,e 2,e u.) -:,re(w1 ) + •
fde i fd~ I Sd~ 2 ~nX,m ( Z l ) l e 2 w ( e * 8 1 , e
i~
1
i~
,e
2
-x
) ~n,m(Wl,W2)
+
(2-) ~
(2.) 4
m e I f de 2 Sd~ 1 m ~ 2 ~ , m ( = l , z2) 2 ~ 2 W ( e i ~ l , e
i@2
,e
i~ 1 i~2) ×
× "~Xn,m(Wl,W2)
where
..m . i~ m e U w ( e ' 8 ,elm ) , re,u=1,2
(3.53)
a r e the entries of the ( 2 × 2 )
ral matrLx (2.14) of the fourth-order stochastic s e q u e n c e relations can be written for the s u b s p a c e s
~x,v nlm
,e
spect-
{y}. Similar
76 Pollowing
the o r d e r i n g
scheme
of p a r a g r a p h
3.1, let u s
introduce
the 'loc~l' s u b s p a c e s :
L-forward
z xn,o B-forward
(for
v {z
X
'
Z x + l,n-1 } n-~i~n
(3.54a)
v-0,...,n)
Iv Z x'V n,v+ i
=
{ z
Zx X,X '
l
v { zx,x+ v
}
v=0
n,o x,v-1 , Zn, v }
'
(3.5~b)
,
v=l,...,n
L-backward
X x,n-I v { Z x'n-I n,o --" n-l,n ' Z x + n + l
B-backward
(for
m = l,...,n+l)
Z x'n-I V { Z x'n-1 n,m = n,m-1
' Zx+n+l-m,x+n)
Z x,n n,n+l
' Zx,x+n }
= v { Z x'n-I n,n
3,3.1 'Local' estimates
Following forward
and
}
(3.54)
and
,
m=l
.... ,n
,
m=n+l
(3,55b)
(3.55c)
errors
and
(3.55), w e
back~v~J:'d estimates
and
can
errors
introduce
the L - a n d
IB-,
of the n-th '~lobad' order:
J_,-fo r v v a x ' d A
"]~he L-for-~ard estimate
zx n,o
of %he e l e m e n t
^x A P x + l,n-I Zn,o = Z;n-l~n Zx
£
z
x
~ x + 1,n-i n-l,n
will b e
defined
as
(3.56a)
77
while the corresponding
L-forward
Ax h _ i x+l,n-1 n,o = ~'~Z;n-l,n
Its normalized
version
AX, o ( Z ) = ix
I]Ax
njo
We
can observe
n=N
B-for~vomd The
]]-1
F~m°
n,v+l
(for
Ax n,o
Zn, °
(z_,z.) ] .L
a n d the errors
and
(3.56c)
-"
n,o '
(2.57), if
MAN; °
,o
1.-2 , x=.0
v=0,..0,n)
=A
^x,v Zn,v+ I
I p_ X z x~;n,o x,x p
x,v-1 Z;n~v
approximation
h
of the elements
C
~x n,o
z x~x+v
errors
Z
Pz;n,o
£
are
X~X
will be
V==0 (3.57a) v=l,...,n
by
Zx
v=O
nso
(3.57b)
l
Z x'v-1 nsv
'
v=l,...,n
form,
o
,
z x,x+v
'
Z x'v-I n~v
given
l
p ± x,v-I Z;n~v Zx~x+v
or, in a r e n o r m a l i z e d
n,v+ 1
as
[AXo(Zl)
M AZN; ° , M AN; °
± x
A X,V
(3.56b)
.
n,v+l
while the
expressed
=
error will be
zx+l,n-i n-l,n
±
Z
B-for-ward estimates
zAX,V
Zx
that the estimate
are precisely the and
will be
approximation
n,v+ 1 I[Z
cA
:L1(z1
x v
An,v+l(zl,z2)]
(3.57c)
78 L-backward The
L-backward
zVX,n-i n,o
estimate of
~= p
z
x,n-i Z;n-lpn Z x + n
a n d flee c o r r e s p o n d i n g
(for
"l~he B - b a c k w a r d
( 3.5 sa)
Z x , n-i n-l,n
±
(3.58b)
version
[~.Xln--it
= r x,n-I IF x'n-iI -i njo npo Z
B-backward
a~
error is given b y
£x,n-I =A p i x,n-1 z n,o 2;n-i,n x+n
B x'n-I (Z) nto
expressed
z x , n-i n-l,n
e
L-backward
EogeEher with its normalized
will b e
x+n
= ~n,o
s:,o (zi,~2)] (3.58~)
~Zl)
m = l .....n+l) estimates of the elements
zx+n,x+ n ~...i Zx~x÷ n
a/~e
given b y
zVX,n-I ~ _ x,n-i n,m l"Z;n,m-i Z x + n + l - m , x + n
VzX,n & p x,n-I n,n+l Z;n,n Zx,x+n
"l~he c o r r e s p o n d i n g
F x,n-i n~
B-backward
~ _ I x,n-i P Z;n,m-i
F x,n A= p ± x,n-i n,n+l Z;n~n
T h e i r normalized v e r s i o n s a n d are e x p r e s s e d
are
Z x'n-I n,m-i
m=l,...,n
(3,59a)
m=n+l
(3.59b)
'
Z x'm-I n,n
~
errors are
Zx+n+ l-m,x+n
Zx~x+n
(
l
1
Z x'n-I nlm- I
,
Z x'n-I n,n
'
Bx'n-~z) n|m
similarly ~s in ( 3 . 5 8 ) .
a/ad
m=$,...,n
(3.59c)
mmn+l
(3.59d)
B x'n _ ( Z ) n,n+l
respectively,
79
Let us o b s e r v e tes
that the L-- a n d B-, forward
z~n,m ' zAx'Vn, m ' vX,Vn,m a n d
Ax A x'v B x'v njm ~ nlm * njm
) ' A nx,v .m(Z)
AXm(Z
of the estimates
the representatives errors
errors
-I X m
of p a r a g r a p h
s
~ n d b~ck%vard
~_x,v n#m
'
~ xn,m ,v
3.2, u n d e r
estima-
, B xn,m 'v(z)
and
are
of the
the isomorphism
¢2.~v).
3,3,2 Decompositio n of s u b s p a c e s !
x x,v ' l--I_ x,v I-IA; ,m ' l-'I~ ~;n,m ~:~;n,m
Let
opera~r~ o~ ~
a n d NI-D Fourier
denote
~ub~p~es span~.a by
respectively. T h e (3.59c,d)
uON b a s e s
the ort/nogon~l projection
A~,m(Z)
orthosonalit'y conditions
expansion
'
A ~n , m (Z)
B~'V(z) n,m '
'
(3.56b) ,(3.57b),(3.58b)
will imply the following ort/nogonal decompositions
and
of s u b s p a c e s
and of projection operators:
L-forward
z x
n,o
= z ~+I,n-I n-l,n
X Pz;n,o
S-forward
~x,v
(for
v
X+ l,n-i Z;n-l,n
x z)} {An,o (
(3.~0a)
l-I x A;n,o
(3.60b)
+
v=0,...,n)
---
n,o
n,v+1
| z x'v-I
~.
I =
(3.61a) e
v ( A x'v
n~v
p
x,v PZ;n,v+I
= p
®
p
(Z) }
n~v+ 1
v = l .....n
'
x Z;n,o
+
I-I x,o A;n,1
'
v=0
x,v-I g;n,v
+
r-I x,v A;n,v+l
'
(3.61b) v=l,...,n
8O L-backward
Z x , n-I ~x,n-I n,o = n-l,n
p
x,n-1 ~ p x,n-I Z;n,o Z;n-l,n
(for
B-b~ekward
• V {
(3.62a)
I-I x,n-i B;n,o
(3.62b)
+
re=l, .... n+l)
2x,n-i Zx,n-I n,m = n,m-i
~
x,n-i V{Bn,m (Z)}
Z x'n = Z x'n-I n,n÷1 n,n
$
V {B:::
p
Bx, n-l( Z ) } n,o
,
+l(Z)}
m=1,..n
(3.63a)
m--n+l
(3,63b)
x,n-i p x,n-i Z;n,m = Z;n,m-i
+
x,n-i lqB;n,m
,
m=l,...,n
(3.63c)
p.. x~n _ = p x~n-I Z;n,n+l Z;n,n
+
x,n I-IB•,n+ 1
,
m=n+l
(3.63d)
We
can observe
A~(Z) - [ A~,o(Z)
that the entries of
Ax'o(Z) n,~
"'"
A x'n
(3.64a)
n,n+i (z) ]
as well as of
~(z)
- [B
x,n-I n, o
will form the O N much
Bx, n-1 (z)
(z)
n,n
sets in the s p a c e
s~.n
n~n+1
lized v e r s i o n s
(3.64b)
of the generalized z-polynomials,
like their time-domain counterparts form the O N
of the generalized matrices. T h e
(z)]
sets (3.64)
sets in the s p a c e
are actually the o r ~ h o n o r m a -
of
[zx
Zx, x
...
Zx, x + n ]
(3.64c)
81 and of
[z
z,
x+n
respectively. Therefore, backward
...
x+ntx+n
o~hogonal
we
z
x~x÷n
]
(3.64d)
c a n write the following '~Iobal' forward
decomposi£ions
and
of s u b s p ~ c e s
zxn',nn+l m zx+l'n-ln-l,n •
v {AnX(Z)}
(3.65a)
z~, n
v {B~(z)}
(3.65b)
. zx, n-i
n,n+ 1
®
n-l,n
where n
~{A~(z)}-
~ {A:,o(Z)}
•
Z
• ~ { A X'~ .(Z)}
(3.~Sc)
~ {B X'n _(z)}
(3.65a)
n
~{B<(z)}.-
~
•
~ {B~'~-i(z)}
m=0
These
n,n+l
orthogonal decomposition
decomposi£ions
•
n,m
of s u b s p a c e s
imply the following 'global'
of projec£ion operators
= p
x+i,n-i
p
x,n Z;n,n+l
p
x,n = ID x,n-i Z;n,n+l --Z;n-l,n
Z;n-l,n
+
+
x
l-IA;n
x 1-1B;n
(3.65e)
(3.65f)
where n
x
x
I-IA;n ~
r-IA;n,o
x I-'IB;n =
n ~ m=0
Consequently, ~,N ,N+I =
we
+
~ v-,O
l'q x,n-i B;n,m
+
m
x,v
A;n,v+ 1
l-I x,n B;n,n+l
ge£ the following orthogonal
N x ~ • v {~_x(Z) x~O
}
=
(3.65g)
(3.65h)
decomposifion
N o ~. @ v { B N _ n ( Z ) } n,,,O
(3°66)
82
,~
Hence,
se~
A~(Z)
and
bal' forward, resp. b a c k w a r d
ON
mbdti-variate z-polynomia/s, Ms
B~(Z)
o~
b~sis
be in~erp~te~ as
of the s p a c e
square-integrable
We
stocha~/c
sequence
'~lo-
of the generalized,
o n the generalized
with respect to the spectral matrix of the underlying
(Le., four~-order)
the
unit-to-
hi,her-order
{y}.
also obtain the following or£hogonal
decomposiL%on
of the 'es-
t/matio n space'
N-I
zI,N-I
Z ® v {B~(Z)}
N-l,N
which
=
(3.6w)
n~0
implies
p
Let u s
observe
representative
that h e r e of the
"l~hus, the Fourier
the element
Yo
Following
z
and~or of the
series for the
terpart of Lhe o p t i m u m problem.
N-1 Z i = I-IB; n n=,0
I,X-I Z;N-I,N
z
(3.67b)
o
~
[i
10
0]
will actually b e the
in t h e i s o m o r p h i s m
will b e the tra/nsform-domadn
o
solution to the nonlinear least-squares
(3.67b),
that O N
expansion
will b e
(2.47). coun-
prediction
expressed
as
N-1
%
~
z
(%.~,~(z))
z ~(z)
(3.67c)
rx=O
We
will s e e
of o p t i m u m
later that the a b o v e approximation
ON
series
can
be
interpreted in terms
of the set of transfer functions
of the nonlinear
predication f/Iter. We (3.67a)
notice that the O N
shoudd
be
derived
In the next p a r a g r a p h the tra/asform-domaln
we
backward
polynomial
basis
in order to get the Fourier will s h o w
version
that the desired
of the nonlinear
of the s p a c e
expaJnsion
basis
(3.67c).
is c o m p u t e d
prediction filter a/gorithm.
by
83 3.3.3 O r d e r - u p d a t e
recursions
In this poragrexph w e ce of the generalized
w i s h to s h o w
polynomials
c~
that the O N
basis of the spa-
b e recursively
computed
b y the
transform--domain counterpart of the nonlineo.r filter algorithm, derived in paragraph
3.2.6. In order to do that, it is sufficient to s h o w
higher-order sets of the generalized
polynomials
~:+I(Z)
can be derived recurslvely from the lower-order B:+I(z), be d o n e
preserving
that the
ON
and
sets
~x+l(Z
A:(Z)
and
the mutual orthonormolity of their entries. This
can
b y introducing a set of appropriately derived 'local' ordeF-upda-
te recursions,
executed
sets
and
~k:(Z)
the L L , L B ,
BL
o n the multi-variate z-polynomial
IBx+l(Z)
and BB
much
'local'
entries of the
(3.40)
l i k e in t h e s c h e m e
recursions
of that scheme,
will
Here,
be inter-
p r e t e d as follows:
LL-recursion: order-update x An, ° ( z I) LB-recursions:
step for the polynomials _x+l,n-l, ~ n,o [ zl )
and
orders-update steps for the polynomials x An, m(Zl,Z2)
x+1,n-i 8.r'~d Br],m (Zl)
BL-recursions: order-update x~o
An, l ( % ) A
X$V
BB-recursions: order-update
m = l .....n
,
m=n+l
steps for the polynomials 2£
and
.i(~ ~)
~x+l,nz ~ ~n,n+lkZl)
and
A : , n + l (Zl,Z2)
,
Bn, a(zl,~ 2)
~d
,
~-0
B~;+~(~IZa)n
v l .....n
steps for the polynomials
An, m(Zl,z 2)
and
B~,m(z1,~ 2)
X,V An, m(Zl,Z2)
and
B X'v-I (Zl,Z2) n,m
, v=0 ,
and
V= l,...,n
m= 2,...,n+ 2 and
re=v+ l,...,v+n+ 2.
"I'hese 'local'
recursions
can
be introduced
by considering
the
)
84
orthogona/ decompositions
of the sub.paces
and of projection operators,
m u c h like in the tlme-domaRn solution considered
in the previous para-
graph. For example, the LL 'local' recur.ion is introduced via
PROPOSITION Gi~
m~
3.2
>fo~=d
error
A~
(Z)
(~.~6c), ~ d
the L - b a c ~ d
~O (3.58c), w e have the following recurrence
Bx+I'n-I(z) nmo
~r~o~
relations
(3.68a)
where
@n,1
2 )-~ A (i-[0 x n,1 ]
1IX :I
(3.68b)
Pn,1
,
x ~n,i : (AX,o(Z) ' Z'BX+I'n-i(Z))zn,o
(in accordance
and
(3.68C)
with (3.53)), with
Z'BX'v(Z)n,m
XtV
=A [ zl.Bn,m(Zl )
•
X)V t
\
ZlZ2 Bn,miZl,Z2 ) ]
PROOF. Pm-a/lels the proof of Proposition 3.1, and is omitted.
(3.68d)
85 We
can observe
ly equal t O
that the reflection coefficient (3.68c)
(3.4~2C), u n d e r the i s o m o r p h i s m
(2.47), a n d t h a t
transform-domain counterpart of the L L L e v i n s o n mo/ning transform-domadn versions be obtained in a similar way,
recursion
of the LB, B L
in numerical(3.68)
iS the
(3.42). "i~he re-
a n d BIB recursions
a n d are p r e s e n t e d in A p p e n d i x
can
2. C o n s i d e -
red accordingly together, they w i l . t constitute the transform-domain version of the generalized nonlinear L e v i n s o n
algorithm, w h i c h
c a n b e interpreted
in the tro.nsform-domadn context, o~ the m e t h o d for recursive or£ho~onalizaUon of the basis in the s p a c e
3.3.4 O p t i m u m
ON
Recalling
of the genera/ized z-polynomials.
approximation of the set of M - D
tro.nsfer functions
(3.67b), o~nd considering the 'local' fro.helots-domain re-
cursions of A p p e n d i x
2, w e
ca/n write the following O N
expo/nsion for the
AN,o(Z )
error
~,o(Z)
_ ! I,N-I = I'JZ;N_I, N
zo N-:l.
ffi Z o - pOo,1 Bo,o( 1 Z)
+
N-I •
n ~
n--i m = l
I'n-I (Z) • P no, 1 B n,o n= i
-
o B i'n-I (Z) Pn,m+1 n,m
+
+
(3.69a)
N-l ~ po i,n n+l,o B n , n + 1 (Z) n-0
(3.69b) which is the genero/ized z
o
=
[1
0 ]
(M-D)
Fourier series, g e n e r a t e d b y the element
with respect to the O N
backward
polynomial basis of the
' e s U m a U o n space' in the transform-doma/n. In other words, this is the expi[cite version of the e x p a n s i o n va/ent to the Fourier e x p a n s i o n
(3.67c). W e
notice that (3°69)
(3.44), and~or to the stochastic functional
Fourier serles for the nonlinear estimate in the s p a c e ctional polynomials
(see
is equi-
e.g., Z a r z y c k i
of the Volterra fun-
(1984:b)), u n d e r the i s o m o r p h i s m
86 (2.&7). W e
can
therefore
nonlinear lea~t-squares sequences,
lea~st-squares
lc~th ( 1 9 7 8 ) ,
can
be
approximaf/on
the time- a n d
of
stochoistic
filter.
transform-domain considered
version
of the set of M - D
all bi-vari~te terms, this result will r e d u c e
predict/on problem,
to the c o n -
solutions to the linear
in Dewilde,
D e w i l d e a n d D y m (1983-), D e w i l d e
3.4 Nonlinear
We
ON
for higher-order
of the nonlinear prediction
Ne~lectin~ between
that the transform-domain
prediction p r o b l e m
is actually the o p t i m u m
transfer functions
nection
conclude
Vieira a n d
I~ai-
(1982)o
time-variant ladder-filter
can
observe
interpreted
that the L L
'local' order-update
a.s the following L L
recursion
(3.68)
section
B ~n,l (z)
Ax
(z)
n,~J
~- A~,I(Z)
(3.70)
B x + l,n-1 (Z) nlo
of the nonlinear
digital prediction filter. T h e
date recursions
can
a/qd B B
sections
b e interpreted
of that filter ( s e e
remaining
in a similar way, also A p p e n d i x
'local' order-upyielding the LIB, B L
2). C o n n e c t e d
dingly together, they will constitute the 'global' section nonlinear
filter (at the x-labeled
'~lobal' filter section
is p r e s e n t e d
n ÷
accor-
n+l
'level'). q~his 'local' structure
of the
of the
in Fig. 3.4 while the 'local' structure
87 of the t/~ird-order (N=3)
nonlinear prediction ladder-filter is s h o w n
in
Fig. 3.5. IBx,n+ 1 n÷l,n+2 Bx,n n+ 1,o n,n+l -f
x,n B n + 1,n n+l,o -)""'" -'~
n+l,n-l- ~
Bx,n n+ l,n+ 3_
An+l,n'~'~" An+3-,n+l
Bx, n-1 n+l,n-i
Bx,n-i n,n+ 1
~_ -- Ax, n+l n+ l,n+ 2
Hx, n-i n+l,n
:
f Ax,o n~2
Ax,o n,l
I
BXIO n+l,o
Bx, O n,2
x° + A x ° n+l,o ~% Bx n n+l
A~.~
nto
-~...-
.~ a~. n
..........×... ~
ax
Bx, v n,m+l ;
Ax n+l,o
,n+l
Bx+l,n n,n+l
Bx,v A x,v n,m+l
Bx,v_ 1 n~m
An+l,l
Bx n+l,o
Bx+l,n-I n,n
B X + l,n-Â nto
Ax, v n,m
x°
--'~"" ' > An,n+l
Bx Ax
xiO Bn+l,l
. AX, v n,m
AX,V n,m+l B x,v-I n,m
Fig. 3.~ 'Local' structure of the 'global' section of the timevariant nonlinear ladder-filter.
88
"l
,--Bo°(Z)-~
¢---
B
(
'(z)-m
[I
~~(z)
--J
u ---.~ ~a(z)
I
x--1
J ~(z) x=2
J ~3(z) o
x=3
> Initia/izations:
lu
~=
T
.)
'New' elements:
B2;2(z)
'
ao~,o(Z)
u
Bx'n _ (z)
'
n ~ n-l- 3
>
x=O,...,3)
Fig. 3.5 'Local' structure of the third-order (N=3) time-variant prediction filter. T h e symbols ponding 'local' 8-recursions of Fig. 3,4.
(n---i,2,3 ~ x=0,.,.,3-n)
nonlinear (Levinson) O indicate corres-
89 Let u s nested
observe
'local' 8-transformations
the s u b s e q u e n t m6dn
that the filter structure consists
sets of the forward
mutually orthonorma/
hal' order-update solutions
(actually - ~ i v e n ' s
step
in Figs,
a.s we]/ ~
after e a c h
(see
3,4: a n d
3.5). T h i s
means
of the 'local" ol~hogonal
Vieira a n d
De~vilde
(1982)).
cients
is associated
Kailath
These
(with n o r m s
(1978),
matrices
being
will re-
after e a c h
'~lo-
resp. horizontal
orthogon~9/it'y requirements, a/nd norma/ized
aJnd D y m
are specified b y
less than one),
errors
with the J-lossless
Dewilde
s o that
that the structure of this
as the filter consists
Dewilde,
backward
the subsequent-vertical,
will satisfy the desired
section
rotations)
'local' a/qd, hence,
nonlinear ladder-filter
sections. E a c h
of a cluster of
'local'
8-matrix
(see
(1981,1984),
the reflection coeffi-
actually the Fourier
coeffici-
enhS. Since the p a r a m e t e r observation, ar prediction
the reflection coefficients x , being the b a c k w a r d which
We
can
input s e q u e n c e
notice t h a t ON
ar prediction p r o b l e m
that
interpreted
(not Toeplltz)
well a~ back~vard
obtained
be
to the generalized
in meprettere
and
Lie
be solved
of the generalized the s p a c e
is reflected in the H e r m i cova/'iar*ce matrix. computes
the forward
~s
the solution to the N-th order nonlinein the innovations
context)
is
@/so r e m a r k
terms, the filter of B~i~. 3.5 Will immediately
(time--vari~/nt) linear L e v i n s o n
filter c o n s i d e r e d
(1980).
~Ve car, c o n c l u d e lem c a n
, and
'level' in the filter structure. W e
ne.qlectin~ all nonlinear
reduce
{y}
(actually c o n s i d e r e d
at the 0-1abeled
point of
is implied b y the nonstationarity
the nonlinear ladder-filter and
on
~s the 'current' time, this nonline-
of the genera/ized
b~es,
)galns )) d e p e n d
shift from the reference
filter is time-variant. T h i s
of the higher-order tian propet~y
(i.e.)the f i l t e r
Uqat the nonlinear
geometrically, (block,
using
multi-indexed)
of the genera/ized
least-squares
projection
method,
prediction
in the s p a c e
coefficient-matrlces,
(block, multi-variate)
prob-
and#or
z-polynomials
in
(provi-
9O d e d the higher-order c o v a r i a n c e
dmt~ or, equdva/ent|y, the higher-order
spectral functions of the underlyln~ s £ o c h ~ t i c former a p p r o a c h fine M - D
results in the o p t i m u m O N
impulse r e s p o n s e s
sequence
approximation of the set of
of the nonlinear prediction filter of the Volte-
rra-Wiener class. In the latter case, the o p t i m u m O N mation of the set of M - D
polynomial approxi-
transfer functions is obta/ned. W e
the results p r e s e n t e d he~'e ~ e s e n t e d in Z a r z y c k i
are given). "imhe
and Dewilde
equlv~/ent to [he algebraic solution pre(1983a),
a n d to the ~eometric solution
of the stochasf/c esf/mation problem, d i s c u s s e d in Z a r z y c k i
The
non]/near a p p r o a c h
(1984a, b)o
to the lea.st-squares prediction p r o b l e m
(for higher-order stoch~.~tic s e q u e n c e s ) the linear treatment)
r e m a r k that
may
estimation a c c u r a c y
result in better (than in
(if the s e q u e n c e
is n o n - G a u s -
sign), ho'vvever, complexity of the genera]/zed nonlinear filter p r e s e n t e d here [ n c r e ~ e s
rapidly ( s y n c h r o n o u s l y
step), a n d b e c o m e s
rather big e v e n
with e a c h
'global' order-update
in re~tively low-order nonlinear
filters ( c o m p a r i n g to the complexity of the linear filter), as it c a n b e seen
in Fig. 3.5. "l~herefore, the complexity reduction p r o b l e m will b e
the subject of the next chapter, w h e r e
time-invariant as well as 'quasi-
linear' ladder-filter algorithms will b e presented.
4. T I R I E - I R V A R I A N T
We
AND
noticed in the
'QUASI-LINEAR'
~DER-F'ILTERS
previous chapter that complexity of the ~enerali-
z e d nonline~gx' ladder-filter i n c r e a s e s
rapidly ( s y n c h r o n o u s l y
'global' order-update step), a n d b e c o m e s nonlinear filters. Consequently,
with e a c h
rel;~tively 'big' e v e n
in this chapter w e
in low-order
w i s h to c o n s i d e r the
problem of complexity reduction in nonlinear ladder-filters. In order t o obtadn efficient nonlinear filter algorithms, w e
w i n first d i s c u s s the nonlinear
least-squares prediction problem for stationary (in the higher-order s e n s e ) stochastic s e q u e n c e s . W e
~Nill s h o w
near Ume-invariant filter w h o s e
that the solution results in the nonli-
complexity is m u c h
reduced
(comparing
to
the genera/ized algorithm). Purther complexity reduction will b e a c h i e v e d by introducing simplified nonlinear estimation s c h e m e s ,
ca/led 'quasi-linear'
filters a n d associated with the o p t i m u m prediction of higher-order stochastic s e q u e n c e s
whose
'distar,ce' from the G a u s s i a n
s e n s e to b e defined). T h a t Zarzyckl and DewJ/de
problem
(1983b),
has been
is l o w
(in a
introduced algebraically in
and considered
ce of the Volterra functional polynomials)
sequence
geometrically
in Z a r z y c k i
(in the s p a -
(1984c,e).
4.1 Shift-invaria~nce of inner-products
Let u s
a~sume
stationary (in a w e a k
Ulat the underlying stochastic s e q u e n c e four~h-order s e n s e ) ,
Then,
{ y }
is
following (2.19), w e
92 will
obtain
I-Ix n,m
H x'v n,m
regardless
of t h e x - s h i R
with d o m a i n s
respectively.
- H e = "9 n,m n,m
-- H x + l ' v , , n,m.
are the g e n e r e d i z e d ces
= H x+l n,m
nom
Applying
T v n,m
(4.1b)
(i.e., the time-shift), where
(block, DT
H O'v ~ n,m
(4.la)
multi-indexed)
= L° x LO n~m n~m
(4.1a)
x x (b-~n,m ' G n , m ) xx
Toeplltz and
in (3.13),
we
"1"
n,m
covariance
DT v n,m can
and
= L °'v nlm
T v n,m
subma%rix L O'v nlm
,
write
= (_x+l _x+i~ - b ' n , m ' ('Zn,m) E x + l ~"
n,m
n,m
=
(FOn, m ,
A
F
G°m)
.T n,m
=
o
.~_T nmm
n,m
= ( F ~ , m ' Sn,~)~o
(~.2~)
n~m where
F
[fn,m;jl
=
f . . ] L° n'm;Jl'J2 (Jl'J2) ~ n,m
n,m
Applying
(4.1b),
we obtain similar relations
for t h e
(x,v)-labeled
(4.2b)
quanti-
ties
.,v
x,v
~ Fv
(Fn,m'Gn,m)ix,v
.~ v
n,m
.Sv
n,m
n,m
v
n.m "
(Fn, m ' G n ,
v
(4.z~) m)i[o,v n,m
wiLh
F v = l-l,m
[ fv . • n'm;Jl
fV . . ] L O'v n'm;JlJ2 (Jl']2) ¢ n , m
(~.2d)
93 Equations product next
(4~.2) e x p r e s s
the x-shift (i.e., time-shift)
in the h i g h e r - o r d e r
paragraph
simplifications
we
(i.e., fourth-order)
will show
of the nonlinear
4.2 "l~ime-lnvarlan% n o n l i n e a r
Following
Ao
n,m
A A
~__-
a
significant
inner-product
(4.2), w e
will satisfy the following
=
.
]
.
n'm;J1]2
notice
relations
[a v n'm;Jl
(¢.3a) (jl,J2) c L °
n,m
(v=O,...,n), w e
: A °,v n~m
Similarly, for the L- a n d
obtain
=
a
] n'm;]lJ2
B-backward
(jl,j2) E
errors,
we
L O'v n,m
can
write
= B x + I , n-I = B°, n-I = n~m n~m
A Bn-1 n,m
m=0~...,n , a n d
~':,~ n,n+l
in
=
errors
A x,v = A X + l , v n,m n,m
if
Of the
errors
n'mlJl
the B - f o ~ a r d
Bx, n-I njm
will result
In the
ladder-filter e d ~ o r i t h m
[a
==
A A v : n,m
property
case.
n,m
n,m
For
stationary
of inner-
ladder-filter algorilhm.
approximation
~ Ax+I=
n,m
this
the shift-invariance
that the L-forwc~rd
Ax
that
invariance
[bn-I n,m;n-Jl
for
~ Bn n,n+l
bn-1 n,m;n-Jl,n-J2
(4.40.)
] (jl,J2) ( Lo,n-i n,m
m-n+l
-_ [ b n , ~ + l ; n _ q ~
bn . . 1 n,n+ l;n-] l,n-] 2
(jl,ja)
e Lo, n n,n+l
94 Consequently,
the forward a n d b a c k w a r d
'global' O N
bases
will
satisfy
A x = Ax+£= n n
A ° £ A n n
(4.5a)
B *n - ~ +n * =
B ° ~: B
(4.5b)
n
n
wihh
A
B
We
n
-
n "
[A
A ° n,l
n,o
[ 13 n - I
n,o
"'"
"""
A n ntn+l ]
B n-I n,n
B n n n +.I]
notice that in stationary case, the entries of
initializations in the 'g/obal' order-update step higher-order forward a n d b ~ c k w a r d
solutions
(4.5c)
(4.5d)
B n
n ~ Z~n+ l
will be u s e d
n+l
as
, yielding the
and
l~n+ 1 . C o n -
sequentiy, in the stationoxy case: a)
there
is n o 'nesting' b e t w e e n
the x-labeled 'levels' in the structure of
the nonlinear ladder-filter; b) the nonlinear filter atgorithm c a n b e e x e c u t e d
at e a c h
x-labeled 'level'
s ep arately; c)
it is sufficient to run the a/gorithm at the (x::0)-labeled 'level' only,
following (4.5). Hence,
the stationary version of the generalized nonlinear ladder-filter
algorithm -#vil/b e obta/ned if w e
c o n s i d e r the 'loca/' LL, LB, B L
recurslons ~t the (x=0)-labeled 'level'. F o r sion of the L L "local' ordeP--updatte recursion
An,1 = ( 1 - [ P n , 1 1 2 ) - ½
Bn, I
( l - [ p n,1] 2) -P~
([An, o 0n+l]
(-Pn,l[An,o
and BB
example, the st~ttionary ver(3.42) will take the form
- Pn,1 [ 0o Bn-1])n,o
0n+l ] +[0o
B nn,o -l])
(4.6a)
(4.6b)
95 with
P~,I" ([A,,,o o . i] . [0o Bn-:t])Io~,o
(4.6~)
n,1 The ssed
transform-domain as
counterpart of the L L recurSion
(4.6) will b e expre-
(following (3.68))
InlzI 0. Fnozl
(4,7~)
with
69 n,l =" (I- [Pn, l]2) -½
(4.7b) -P n,l
and ~,i
The
remaining LB, B L
tionary c a s e
"
(A~,o(Z)'z'~.oi(z))z
and BB
'local' order-update
will be the 'local' recursions
(4.7=) recursions
of A p p e n d i x
in the sta-
2, provided the
x-label is r e m o v e d . The
L L 'local' recursion
[ion of the corresponding
(4.7)
cart b e interpreted a~ the L L - s e c -
nonlinear ladder-filter
B~,I(Z) A o(Z)
~
-- A i(Z)
B~-i(z) n
(~.Td)
g6 "l~he remaining
'local' LL, L B
and
filter will again b e
expressed
v i d e d the x-labels
~/'e r e m o v e d .
BB
sections
of the stationary nonlinear
a s the 'local' sections These
of A p p e n d i x
sections, c o n n e c t e d
together, w i U constitute the 'global' section
accord[n~y
n÷l
of the filter. W e
notice that the "set o f reflection coefficient~ c o m p u t e d
b y the alsorithm
the 'global' step x-labels Pn,m
n -~ n + l
are again
removed.
P vn,m
~qd
paraJneter
x
, will b e
(being
Observing
me
(N=3)
rithm c ~ n
can
observe
~s
lying stochastic On
sequence
(block,
mu/ti-indexed)
moving
all nonlinea~r terms, w e
sequences,
~
Toeplitz
considered
Comparing (Fig. 4,1)
in the time-variant
of the generalized
Kailath
(in a w e a k
higher-order
Levinson
matrix. W e
(1982),
Vieira a n d
Deprettere
ladder-filters, has
been
be con-
also notice that re-
a~nd Lie
we
achieved
ase
with e a c h achieved
sense).
the classical linear stationary
i~[ai%ath (1978),
of the time-variant
of the quaint[ties p r o c e s s e d
WiLl b e
the u n d e r -
algorithm c a n
will immediately o b t a i n
in Dewllde,
algo-
factorization of the generalized
Uqough, the n u m b e r
ty reduction
ca~e.
a/qd/or of the
prediction filter for s e c o n d - o r d e r
nonlinear
synchronously
matrices
provided
covari~nce
the structures
tion of the filter complexity
is
or%hogonaliza-
z-polynomials,
for C h o l e s k y
(Levinson)
(1981),
'local'
nonlinear ladder-filter
for ( G r a m - S c h m i d t )
the stationa/q~" nonlinear
a~ the fast m e t h o d
variant
considered
is stationa/'y
sidered
time-invariant A R
o n the
conclude
is time-invariant. T h e
t[me-invariant
of the generalized
the other hamd,
a.nd D y m
o n 'current' time), w e
b e treated as the fast m e t h o d
in the s p ~ c e
do not d e p e n d
that the time-invariant nonlinear ladder-filter
tlon of the ba.sis in the s p a c e basis
the
notice that the filter satisfies precisely the sa-
or£hogonality requirements, We
(3.43), p r o v i d e d
at
that the reflection coefficients
prediction ladder-filter
in Fig, zi.l. W e
by
actual/y the filter gains)
structure of the third-order presented
expressed
(i.e., they d o not d e p e n d
that the nonlinear
n +
2, pro-
Dewilde
(1980).
(Fig. 3.5)
and
time-in-
notice that significant reducin the stationary case,
al-
in the filter ~ill still incre-
'global' order-update
step. Further
in 'quasi-linear' prediction filters.
complexi-
have
structure
All s y m b o l s
F i g . 4.1 ' L o c a l '
III
IL]I the s a m e
meaning
of t h e t h i r d - o r d e r
time-invarlant nonlinear a s in Fig. 3.5.
(N=3)
ladder-filter.
(D
98 4.3 'quasi-linear' ladder-fiite[s
In this p ~ r ~ g r ~ p h ladder-filter
algorithms
we
w J ~ consider
which
we
ters will yields better estimation le their complexity considered
nonllneam
Let u s ce
{y }
riables
will b e
a~sume
accuracy
(than in the linemr cruse)
in c o m p a r i s o n
filwhi-
with the previously
algorithms.
that
is r e p r e s e n t e d
of simplified nonlinear
w J ~ c~i[ 'qu~si-lhqear' filters. T h e s e
reduced
filter
a class
the underlying
fourth-order
b y the following s u b m a t r i c e s
stochastic
sequen-
of the r a n d o m
va-
( a n d their productS)
yl,n n,n+l
.
__
_
n=0,...,N-i
Y-JlY-J2J
(4.8a)
(Jl,J2) ¢ L n,n+ l,n 1
where L l'n = LI 2Ll,n n,n+ 3. n u n,n+l
with
LI = n
{ 3,...,n+l }
2Ll'n n,n+l
Now win~
let u s
(4.Sb)
and
= sym2L I n
introduce
for
× sym2Ln1
n=0,...,N-1
(4.8c)
and
~ =0,...,n+l
the foUo-
index-sets
~(~) n
& L I u 2L(~) n
n
(4.9~)
99
where
the bi-varia~e part of the i n d e x - s e t
2L(n~)
"l~hen w e
if ~ = n + l
- i f
If w e
0
<
n
eL(~)
-
by
(4.9b)
~}
then
(~));
(since
2L(n+l)
n
n,n+l
L(°) n
c
L (~) n
c
n
L (n+l) n
="
2_ 1,n
,
D n , n + l );
.
the i n d e x - s e t
=
=
-
j 2 - j l , ....
2L(°)-
=. L l ' n
n
A 2L~,n
n
-
L (n+l)
B < n+l
L n1 i
(since
n
then
Jle
is g i v e n
that:
L ( ° ) - L1
introduce
then w e
{(jl,j2):
observe
then
~='0
-if -
can
~
(4.9a)
2L(~)
n,n+l
\
n
=
((kl,k2) : k l = B + i .....n , k 2 = k 1 ....,n }
(4.10)
notice that:
if
B =0
if
15 = n + l
if
0 < B < n+l
Following
then
eL(°) n
then
=
2Ll'n n,n+l
eL(n+1) n
= ~ ;
then
(4.9), w e
eL(B) n
can
c
consider
;
2Ll'n n,n+l for
"
n.=0,...,N-i
and
~ =0,...,n+l
the
s u b m a t r i ce s
y(n~)
A
(4.il)
~
[~-~-~
J
(~.J~) ~ 4 ~
a~nd we mention that:
- if -
if
~-0 ~mn+l
Following
then then
y(O)
-[
n
y(n+l) n
(4.10), w e
]
=
L1;
Jl E
n
_- y l , n n,n+1
will i n t r o d u c e
ey(8) n
Y-J1
"
the s u b m a t r i c e s
[Y-JlY-J2 ] (Jl'J2) ~ eL(B)n
(4.12)
I00 If the fourth-order (2.10)
with
M=2
for the submatrix
stochastic
would
hold. N o w
sy(5)
sequence let u s
only; i.e., w e
{y }
suppose
was
Gaussian,
that (2.10)
then
applies
nave
n
IF.{ y o Y _ k l Y _ k 2 }
This
means
ssian', a n d
.
~o~
0
that t h e s e q u e n c e its G a u s s i a n
(kJ.'k2) ~ %(~)n
{y}
(4.13)
is 'partially' G a u s s i a n ,
port is determined
or, ' 5-C~au-
b y the submatrix
ey(~)
•
n
From (4.9) -
and
(4.10)
it f o l l o w s that:
the s e q u e n c e
is just G a u s s i a n
if
B=0
(since
the s e q u e n c e
is n o n - C T a u s s i a n
if
B--n+l
eyn(e)
(since
=
% 2 I~ n Yn, n + l ) ;
D ' Y (n+x)
= (~);
n
-the
sequence
is ' 5-Gaussi~-u'
indicating the n o n - G a u s s i a . n
if
0
<
B < n+l
, with
part of that s e q u e n c e ,
and
with
O Y (B) n
being its G a u s s i a n If the value
part.
of the p a r a m e t e r
3
is low, w e
will s a y
that the s e q u e n c e
is 'qua~i-G a u s sian'.
PoUowing (2.~7))
(4.8)-(&.1~),
the s u b s p a c e s
(for
we
con
consider
n = 0 .....N - 1
and
(under
the i s o m o r p h i s m
~ = 0 .....n+l)
n,n+ 1
,,(B) =~ v {i(B)} n
(4.15b)
o~(B) =A v (el(B)} n n
(¢.isc)
where
~(~) n
~ h. J1
1.. ] J1J2 (jv.i2) ~ L(~)
(4.15o)
101
%(~) £ Then
we
can
[iklk2
observe
= ~(~)
n,n+l
n
(4.15),(4.16),
(4.13)
be
can
and
rewritten
define
the
An,o (~) and let
A (~) nee
(4.16)
n
according
no'~ orthogono/)
P
(~) H;n
]I(~)). Then ~q
we
±
%(B) n
following
approximation
J
its normalized
is the o r [ h o g o n a l show
i n(#)
version;
projection
-
% (n~ )
let
i n,o (~)
error
(4.18~)
i.e.,
(4.~8~) operator o n the s u b s p a c e
that
A(~) n,o Indeed,
conditions
(4.17)
~ p~ ;n(~) i o
denote
can
o£ s u b s p a c e s .
to (2.47), the o ~ h o g o n ~ U ~
~(~) ~ A n(~), A (n,~o),-1 n~o io ]I (where
sum
as
i0 let us
(4.i5e)
n
• %(~)
q) sto~nds for direct (o/though
Usin~
Now
(kl'k2)
that
?.n
where
~ %(~)
]
n
=~ P ]l';n(~)
1o
(4.19)
102 b-'Pom (4.3.7) it follows tha~
(•)
i
~(~) n~o
" PX|
O
An,o (B)
- I o _ ¢(~) n,O
1,n P~[;n,n÷l 1 o
"
T h i s implies
•
~i,~ n,n+l
~nd, consequently,
A(~)
•
e~(~)
n,o
as
e=(S) ~
,i,n
n
n~n+l "
n
Hence,
A( ~ ) n,o
This
means
tha% the u s e
estima~don accuracy,
iklk 2
of the s u b s p a c e
the o p U m u m
in the G a u s s i a n slan part
e~ O )
estimation s c h e m e
S. = pe~'t ~ N - I This
means
~)
case
into the
(corresponding
2_l,N-i RN_I, N )
for that s e q u e n c e
will be
( e x p r e s s i n g the n o n - G a u s s i a n
u n d e r the i s o m o r p h i s m
=
will not imply better
fop the underlying ' ~-Graussian' s e q u e n c e .
~ssocia~ed with the s u b s p a c e of the s e q u e n c e ,
e~B,(% n
a n d it is u s e l e s s to include that s u b s p a c e
nonlinear estimation s c h e m e Consequently,
for' (k1.,k2) ¢ eL(~ ) n
(2,47)). W e
to
~ m0
can observe
part that
and, hence, to the G a u s -
it is sufficient to c o n s i d e r the 'uni-variate'
v {i , jS=I,.,.,N} Jl
in
the o p t i m u m
that the best filter fop a G a u s s i ~ n
estimation s c h e m e .
sequence
is the linear
ladder-filter (being actually the 'most simple nonlinear filter'). ThePefore) it c ~
b e e x p e c t e d that% the o p t i m u m nonlinear ladder-filter, associated
with a ' ~-Cvaussia.n' s e q u e n c e complex
(where
0
< S < n+l)
s h o u l d b e less
than the general nonlinear filter, while estimation a c c u r a c y
s h o u l d b e still betteP than in the linear tPeatment.
103 In o r d e r to s h o w
thai, it is c o n v e n i e n t to introduce a notion of the 'nonli-
n e a r ro.nk' of the filter, a ~ the n u m b e r ling in the filter structure after observe
(see
Zarzycki
' 6-Gaussi~.n' s e q u e n c e T h i s filter will b e S
is low, w e
N
(1984~c))
of the v-labeled
'levels'
'.global' o r d e r - u p d a t e that the o p t i m u m
iS the filter w h o s e
, exis-
steps. W e
cam
nonlinear filter for a
nonlinear r a n k
equals
~ .
called the ' B-linear' filter, If the v a l u e of the p a r a m e t e r
shall s a y
that the filter is 'quasi-linear'. T h e n
we
c~
ob-
s e r v e that: - if
S =0
then w e
obto/n the linear ladder-filter a/gorithm
(of the smallest
complexity) ; -
if
~ =lq
then w e
get the g e n e r a l t~me-invariant nonlinear ladder-filter al-
gorithm, introduced in the p r e v i o u s - if
0
< ~
< 1"4
paragraph
(of biggest complexity);
then the filter complexity will b e
algorithm but smaller than in the g e n e r a l
bigger than in the linear
nonlinear case, s i n c e the o r d e -
ring in the ' ~-]/near' filter algorithm is
modulo
(n+2)
if
n-0,..., ~-i
modulo
(8 +i)
if
n-s ....N
(~.2o)
This
means
is g r o w i n g date step
that the n u m b e r from (for
1
up
to
~
n--0,...,B-l)
and B-backward
of the v-labeled 'levels' in the f i l t e r structure synchronously
s i n c e at e a c h
v-labeled 'levels' is kept constant 'length' of the filter. T h u s ,
for
starting with (and
equals
n = ~ ,.,,,N
much
n-B
'global' o r d e r - u p 'new' B - f o r w a r d like in the g e n e -
, the n u m b e r
scheme.
This
ters (S-0,1,Z,S) Now
let u s
reduced,
of the
S ), regeLrdless of the
the filter algorithm c o m p u t e s
reflection coefficients p e r 'global' order-update. Therefore,
filter c o m p l e x i t y is c o n s i d e r a b l y (8=N)
step the o n e
error is introduced to the s c h e m e ,
ral nonlinear filter algorithm. T h e n ,
(~+I) 2
with e a c h
in c o m p a r i s o n
is illustrated in Fig. 4.2 w h e r e
the
the
with the g e n e r a /
the 'qu~i-linear' fil-
are presented, evaluate estimation a c c u r a c y
l:~ollowing (3.48), w e
can
observe
in the 'S-llnear' filters.
th;~t the e r r o r - n o r m
relations in the g e -
104
D)
C)
B)
A)
F i g . 4.2 ' Q u ~ i - t i n e ~ c '
A) ~ - o B) ~ - 1 t3=
3
l~dder-filters.
105
neral time-invariant nonlinear ladder-filter are given by
tl ,4 N,o II
=
II A o,olI RI.,I.,RLB
(4.21,~)
where
IqLL
= N-1 n [n~l
Then
we
(1- [Pn,:l.]2) ½
can observe
(4:.21b)
]2) ½ 1 ( i - [ P
( i - [P
n,m0 L m = 2
RLB
N-I I] n=O
=
n,m
n+l,o
tha.t in t h e
' ~-linear' s c h e m e
]2~ "
(~.21c)
II A(~)N,oIt = llAo,oll RLL "'LB'C'(B)
(4-.22a.)
where
with
RI(B) = BI~I F n ~ 1 (l-[p (B)]2)½] (l-[p (~) ]2-~% n=0 Lm=2 n,m n÷l~o"
(4.22c)
"
(13) R2
We
N~I F ~ = n=~ Lm --2
(1_ [_(~)]2 ) %1 (1-[p (B) Pn,m
~]
n+l,o
]2)%
(4:.22d)
notice that the norm of the error in the '~-linear' case is reduced
(with respect to the linear case) can observe
by the factor
R L(~) B
(4.22b), and w e
that:
- if
~=0
then
R/uLR
-if
~=N
then
RLLR(~)
Consequently,
we
) = lqL = = RLLRLB
N-I If n=0
(1-[p n+ 1 (with
RLB
can associexte with each
j2) % given by
(4.21c)).
' B-Cxaussia/a' s e q u e n c e
the optimum ) B-linear' filter and) working with not too complex nonlinear orthogon~d structures
(whose
complexity m a y
be successively
incre~used
106 until
the
desired
accuracy
estimation
than in
accuracy
the linear
is
achieved),
we
will
obtain
better
treatment.
4.4 Experimented example
The sian a n d
' P-linear' ladder-filters h a v e non-Gaussian
20 m s
1.0 0.9 0.8
(MSE)
t)
k:
of the input G a u s s i a n
|
0.9 0.8
t
0.7
0.6
0.6
0.5 0.4 0.3
0.5 0.4 0.3
0.2
0.2
0.1 0.0 0
0.i 0.0 i0
A)
(N=8),
non-C, a u s s i a n
' S-linear'
a s s o c i a t e d with time-series.
1.0
beta=@
--4--
0.7
a~d
present compu-
in the adaptive
innovations filters of the eight-order
samples
H5£(@
tested u s i n g p s e u d o - G a u s -
excitations. In Figs. 4.3 - 4.6 w e
ter plots of the m e a n - s q u a r e - e r r o r s (~=0,i,2,3)
been
20 m s
0
I0
20
ms
B)
Fig. 4.3 M e a n - s q u a r e e r r o r in the 'O-linear', 8-th o r d e r ladder-filter, inputted with: A ) O aussia~n B) non-G aussian excitations.
107 bCta:l
t)
1.0
o.9
~
0.8
....
1.0 ]
mmmmmm-mmmm m I mmmmmmmmmmm • mmmmmmmmmum wmmmmmmmmm 11! , m m m m m m m m m 1 ,~ , m - , m m m m m m m
0.9 0.8
o7
07
0.6
0.6
o.~ [ 0.4 i J 0.3-'L,i
~
0.5 o.~ 0.3
L f
0.2 0.I
mmmlmm,---
0.2 0.i
0.0
Q.0
0
i0
20
~ 0
ms
A)
i0
20
ms
B)
5'ig. 4.4 M e a n - s q u a r e - e r r o r in the 'l-linear', 8-th o r d e r ladder-filter, inputted with: A) G aussian B ) non-Gaussia/n excitation.
1.0
t)
beta=~
1.0 0.9
0.9 ~ 0.8
0.8
0.7
-
0.6
~ ~
-
A
.
.... , . . . . .
;
,,
0.7 0.6
,.
]
o.5)
_
o.4Ji ) 0.3 0.2 0.1 0°0 0
10
A)
20 ms
0.5 0.4 0.3 0.2 0.1 0.0 0
I0
20
ms
B)
Fig. 4.5 M e a n - s q u a r e - e r r o r in the '2-I/near', 8-th o r d e r ladde~-fJ/ter, inp u ~ e d with: A) Gaussian B) non-G aussian excitations.
108 1.0
,MS~ (8
t)
beta =3
1.0
0.9
0.9 I
O.8 0.7
i1 i
0.5
O.8 0.7 ....
00
I
0.4
I
0.5
0.~ k
0.3 i_ 0.2 0.I
0.3 O.2 0.i
0.0
0.0 0
i0
20
ms
i0
0
A)
20
ms
B)
Fig. 4.6 M e a n - s q u a r e - e r r o r putted with: A) Gaussian B) non-Gaussian excitations.
in the '3-1inear', 8-th o r d e r
ladder-filter, in-
Comparing Fi~s. 4.3a and 4.3b, we c a n o b s e r v e that the linee~C esti-
mat[on
accuracy
the G a u s s i a / ~
in the non--Gaussi~Ln
excitation. T h i s
filter o p e r a t e s
on
Comparing schemes This
do
Figs.
is m u c h
to c h a r a c t e r i z e
not i m p l y better estimation
non-Gaussian
the m o s t vement
simple)
Figs.
It s h o u l d ally d e p e n d s
on
be
filter is u s e d .
4.3b - 4.6b, w e
accuracy
which
signa/s. estimation
in the G a u s s i ~
noted
con
observe
estimation p r o c e d u r e s
accuracy
case.
filter is the b e s t p o s s i -
that the i m p r o v e m e n t
ca/q b e
that the u s e
introduce
in cause of n o n - G a u s s i a / q
the h i g h e r - o r d e r
ever, that i m p r o v e m e n t
of
signal.
nonlinear
of estimation
in c a s e
notice that the n o n l i n e a r
resttlts f r o m the fact that the linear estimation
Comparing
th~n
statistics of the input time-series:
4 . 3 a - 4.6a, w e
ble filter for a G a u s s i a n
worse
follows from the fact that the linear l a d d e r -
the s e c o n d - o r d e r
a r e not sufficient in o r d e r
case
significant impro-
excitation.
of estimation
accuracy
statistics of the u n d e r l y i n g
achieved
if a
of ( e v e n
(suitably c h o s e n )
sequence,
actuhow-
nonlinear
5. C O N G L U D I N G
The can
be
REMARKS
nonlinear
prediction filter a/gorithms,
directly i m p l e m e n t e d
modular
memory.
A
in this work,
in a soft- a/nd/or in a h a r d - w a r e
structure of the nonlinear
w@/'e reetlizations,
presented
way.
orthogonetl laddeP-filters implies soft-
requiring relatively small capacity of the operational
hard-ware
realization follows from the fact that the basic
thogonetl 'building-block'
of the nonlinear
a s in the linear ladder-filters.
That
block' c a n
using V L S I
(namely
DICS
implemented
processors),
introduced
hal filters ( s e e
e.g., A h m e d
ret£ere, D e w i l d e
and
nonlinear cessors
Udo
(1984);
a s well, taking a d v ~ t a g e
versions
of those
troduced
(see
having
Zarzycki
like in the linear c a s e
(1981).
Consequent/y,
in this work,
(1983b);
Consequently,
of the para/lel computations. orthogonat
by
the
adaptive
directly o n
capability, c a n
q'he nonlinear
considered
Dep-
It s h o u l d
filters. M o r e o v e r ,
filters, operating
least-squares'
COR-
'building-blocks' a s s u -
adaptive
a
also b e
in-
filter algorithms
solution at e a c h
time-ins£artt,
Lee, M o r f a/nd FriedlaJnder
the nonlinear prediction filter algorithms,
are a/so suitable for on-line nonlinear
order time-series.
'building-
b e realized with those pro-
parameter-tracking
result in the 'exact nonlinear much
here, c a n
ro-
of the linear orthogo-
(1983)).
Dewilde
prediction
(1984d)).
circuits
Deprettere
stability of the nonlinear
nonlinear
of data, a n d
(1982);
of the norma/ized
res inherent numerical
stream
Morf
digital filters, c o n s i d e r e d
b e noted that the u s e
integrated
in the rea/izettions
and
or-
filter (actually the G i v e n ' s
tor) is precisely the s a m e be
The
processing
introduced of higher-
110 REFERENCES
AHMED
H.M.
1982
BARRET
M.
VLSI a r r a y architectures f o r m a t r i x factorization, in Outils e t m o d , e l e s m a t h e m ~ i q u e s pour l'automatique, l'analyse d e syst e m e s e t le fr0/£ement ' du s i q n a l , E d . C N R S , Paris, VOI.2, p p . 691-704. J.F.
1963
BOSE
and M O l q F
"/~he u s e Of functionals in the ~nalysis o f nonlinear physical systems, J.Electr.Contr, vol.15, pp.567-615.
A.G.
1958
theor~ of nonlinear systems, "l~echn.Rept., IVIlq?.
A
R.H. a n d
CAMERON
1947
MAR"I~IN W . ' I '
T h e or~ho~onal development of nonlinear functionods in series of Pourier-Hermite functionals, Ann.Math., voi.48, pp. 385-392.
DELSARTE
P., @ E N I N
Y. and R A M P
y.
1979 a
S c h u r parametrization of positive definite block-Toeplitz matrices, SlAIVI J.Appl.Math., voi.36, pp.33-~6.
1979 b
"l~he Nevanlinna-Pick problem for matrix-valued functions, S I A M J.Appl.NIath., voi.36, pp.4~7-61.
1983
CTeneralized S c h u r positlvity test and Levinson recursion, P roc.ECC'i~D' 83, Stuttgar%. J.M. and M O R F
DELOSME 1982
M.
Fa~t algorithms for finite shift-rank p r o c e s s e s : geometric approach, in Outils et modeles mathematiques pour l ' a u t o matique, I S ~ a l y s e de s y s t e m e s et le tr~dtement du siena/! E d . C N R S , Patois, voL2, pp.4:99-529.
D EPlq E'IVI~ER E EQ 1981
Orthogonal filters, Ph.D. Thesis, De]/t Univ. ~i~echn.
1982
Mixed
form
time-va~vi~t
lattice
recursions,
in Outils
et
mo-
deles ma~thema~ques pour l'automat/que! l'analyse de systemes et le tro/tement du si~n6d, E d . C N R S , Paris, vol.2, pp.5~5-562. 1983
a
Synthesis and fixed-point implementation of pipelined true or~hogona/ fJ/ters, Proc.ICASSP'83, Boston.
1983
b
C O R D I C - 1 0 : A n expoJndable VLSI implementaJ01e or~hogonal filter module, P r o c . E U S I P C O ' 8 3 , Erlangen.
111 DEPRETTERE
E. a n d D E ; W I L D E
P.
Genere/ized ort4hogonal fJ/ters for stochastic prediction a n d modeling, in Digital signo/ processing, Ed.V.CapeUlnL~ A c a d . Press, N.Y.
1979
DEPRETTERE
E., D E W I L D E
P., a n d U D O
R.
Pipelined C O R D I C architectuz'es for fast VLSI filtering m~nd array pz'ocesslnS, P r o c . I C A S S P ' 8 4 .
198&
DEPRETTERE
E. and J A I N A N D U N S I N G
K.
1984
D e s i g n and VLSI implementation of a concurrent solver for N coupled systems of linear equations, Techn.Rept., Delft Univ, T e c h n .
DEPRETTERE 1980
E. a n d LIE S.C. Generalized Schur-Darllngton algorithms for lattice-structured matrix inversion end stochastic modeling, ~echn.Rept., Delft Univ. T e c h n .
DEWILDE
P.
1982
Stochastic modeling with orthogone/ filters, in Outils et toodeles mathematiques pour l'automatiquem l'anedyse de s y s tames et le tra/tement du si~ne/j E d . C N R S , Paris, vol.2, pp.331-398.
1983
O ~ h o g o n e d filters: Pipelining a n d VLSI implementation, Proc. E C C T D ' 83, Stuttgart.
1984a
Spectral approximation a n d estimation with scattering functions, in Mathematice/ T h e o r y of Ne£v~orks a n d Systems, Lecture Notes in Control a~nd Information Sciences, vol.ziS, Ed.P.A.Fuhrma~n, Springer-Verlag, pp.234-252.
1984b
O£thogone/ filters: A Ibid., pp.253-267.
DEWILDE 1979
DEWILDE 1984
DEWILDE 1981a
P. a n d B U L T H E E L
numerJce/ a p p r o a c h to filtering theory,
A.
Orthogonal functions related to the Nevanlinna-Pick problem, h Mathematical "l~heor~ of N e t w o r k s a n d Systems, Ed.P.Dewilde, vol.3, Delft~ pp.207-212.
P., DEplqE'I~TEIqE E. a n d N O U T A
R.
ParaJ/el ~ d pipelined VLSl implementations of signa/ processing algorithms, in V L S I e n d signal p r o c e s s i n ~ Ed.S.Y. Kung.
P. and D Y M
I-I.
S c h u r recursions, error formulcms e n d c o n v e r g e n c e of railone/ e s t i m a t o r for stationaz'y stochastic processes, I E E E Trans. on IT-27, pp.44=6-461.
112 1981b
L o s s l e s s chain s c a ~ e r i n g matrices a n d o p t i m u m linear prediction: T h e vector case, Circuit T h e o r y a n d Appl., vol.9, pp.135-175.
1984
L o s s l e s s inverse scaltering with rational networks: ~l~heory a n d applications, I E E E T r a n s . o n I'f'-30.
DEWILDE
P., V I E I R A
1978
A.C. a n d K A I L A T H
T.
O n a generalized S z e g b - L e v i n s o n realization algorithm for optimal linear predictors b a s e d o n a n e t w o r k synthesis approach, I E E E T r a n s . o n C A S - 2 5 . pp.663-675.
I~'RECHET
M,
S u r l e s fonctione~es c o n ~ n u e s , Sup. 3-me, S e n V . 2 7 .
1910
Ann. de ~Ecole
Norm.
ITO K.
Multiple W i e n e r pp.157-169.
1951
KAILATH
Integral, J . M ~ h . S o c . , Japan, vol.13, nr i,
T.
1974
A v i e w of three d e c a d e s in linear filtering theory, I E E E T r a n s . o n IT-20, pp.146-181.
1982
Time-variant a n d time-invariant lattice filters for nonsta~io n a r y p r o c e s s e s , in Outils et m o d e l e s m ~ h e m a t i q u e s pour l'aut0matique , l'analyse d e s y s t e m e s et le traitement d u si.@nal, E d . C N R S , Paris, vol.2, pp.4~17-464:.
LEE
D.T.L., M O R F
3.981
LEV-ARI
M. and FRIEDLANDER
B.
R e c u r s i v e lea~st-squares ladder-estimation algorithms, I E E E T r a n s . o n C A S - 2 8 , pp.467-481.
H.
1982
Parametrization a n d modeling of nonstationary p r o c e s s e s , Ph.D.Thesis, S t ~ f o r d Univ.
1983
M o d u l a r architectures for adaptive mulfichannel lattice a/gorithms, P r o c . I C A S S P ' 8 3 .
LEV-ARI
H. a n d K A I L A T H
1982
LEVIN SON 1947
T.
Lattice filter parametrization a n d modeling of nonstationary p r o c e s s e s , T e c h n . R e p L , Stanford Univ.
N. T h e W i e n e r l q M S error criterium in filter design a n d prediction, J.Math.Phys., voi.25, pp.261-278.
113 MORF
M., VIIi;IRA A.C., L E E
1978
0GURA
Recursive tion, I E E E
D.T.L. a n d
KAILATI4
T.
mu/tichannel m a x i m u m entropy spectra/ Trans. o n O E - 1 6 , pp.85-94.
estima-
H.
1972
Orthogon~II functionals for the P o i s s o n Tra/ns. o n IT-18, pp.4:73-481.
PIEKARSKI
process,
IEEE
M.S.
1971
R e c i p r o c a l D~rlington section suitable for a~n integrated circuit, IDlectron.Let%., vol,7, pp.475-4:77.
1974
A minimal ~ r o u n d e d c a s c a d e synthesis cuits, P r o c . E C C T D ' 7 4 ~ , L o n d o n .
PIEKARSKI
M.S., S A E E D
1980
A
PlEKARSKI
M.S.
1984:
1983
Warsaw.
and
URUSKI
M.
RAO
C.V.K.
and
HELMOND
J.
O n the theory of All spectra/ approximation for p r o c e s s e s containing deterministic signals, P r o c . E C C T D ' 8 3 , Stuttgar[.
SEGALL
A.
and
KAILATH
T.
Orthogoned functionals of independent-increment p r o c e s s e s , I E E E T r a n s . o n IT-22, pp.287-298.
1976
SCHETZEN
M.
1980
Volterra-Wiener
theories
of nonlinear
systems,
Wiley, N.Y.
J. U b e r potenzreichen, die in innern d e s einheitskreises beschralakt sind, J.Reine Ang.Math., voi.147, pp.205-2320
1917
STEINHAUS
H. a n d
1935
TUSZYNSKI 1980
K.
test for positive real function, P r o c , E C C T D ' 8 0 ,
Interpolation with positive real matrices, P r o c . I S Y N T ' 8 4 , S araj evo.
PRABI-LZkKA/~A
SCHUR
for in%esra£ed cir--
KACZMARZ
Theorie
S.
d e r or%ho~onedreihen,
Warsaw.
A.A. A COIqDIC pp.68-79.
~ithme%ic
processor
chip, I E E E
Trans.
o n C-29,
114 VICTOR
J.
and
1979
VOLTERRA
Nonlinear ~nalysis with arbitrary stimulus Quar%.AppLMath., vol.XXXVIl, pp.115-136.
ensemble,
'l~heo~ of functiona~s a n d of integra/ a n d %~al equations, D o v e r Publ.
integro-differen-
V.
1959
WIDYA
KNIGHT B .
I. Continuous-time stochastic modelin~ with lossless lures, Ph.D.']~hesis, Delft U n i v . T e c h n .
1982
N.
WIENER 1938
"l~he h o m o g e o u s
1958
Nonlinear ley N.Y.
WOLDER
chaos,
problems
A m e r . J.Math., vol.60, pp.897-936.
in r a n d o m
theory, M I T
Press
- Wi-
P.
1959
YASUI
stm/c-
rl~he C O R D I C trlgonometric o n E C - 8 , pp.330-334,
computing
technique,
IRE
Trans.
S.
1979
ZAIqZYCKI
Stochastic functional Fourier series, Volterra series a n d nonlinear s y s t e m a~qalysis, IEIDE Tra/qs. o n A C - 2 1 , pp. 230-242.
J.
1983
Nonlinear L e v i n s o n prediction filter for higher-order dos sequences, Proc.ECCTD'83, Stuttgart.
1984a
N o n l i n e a r prediction of higher-order submitted for publication.
1984b
G e n e r a l i z e d ladder-filters for nonlinear prediction of higher-order r a n d o m s e q u e n c e s , submitted for publication.
1984c
F a s t algorithms for £he least-squares submitted for publication°
198~d
A d a p t i v e proper1~ies of nonlinear for publication
1984e
Nonlinear ladder-filters for the least-squares A R prediction of hi~her-order r a n d o m s e q u e n c e s , P r o c . I S C A S ' 8 4 , Montreal.
1985a
Nonlinear L e v i n s o n algorithm: A g e o m e t r i c Proc.ECCTD'85, Prague.
1985b
O ~ / ~ o g o n a l ladder-form representations of nonlinear prediction filters of the Volterra-Wiener class, in Mathematica/ Theorsf of N e t w o r k s a n d S y s t e m s , to b e published.
random
r~n-
sequences,
nonlinear prediction,
ladder-filters,
submitted
approach,
115 ZARZYCKI
J. a n d D E W I L D E
P.
1983a
Nonlinear least-squares predichion of higher-order d o m s e q u e n c e s , submitted for publication.
1983b
"l~he L e v i n s o n - t y p e filters for fast nonlinear A R tion, Techn.lqept., W r o c l a w Univ, T e c h n .
ran-
predic-
APPENDIX
i
MUI/~I-INDEXED
Let
I
MATRICES
denote
a
real n u m b e r s .
AND
contiguous
We
define
GENERALIZED
subset
of integers,
a m-indexed
m A : ml ~
where ml
mI = I × . . . × I
can
will b e
be
c~/led
denoted
domain
DmA.
Lo£ n
mL°n =A LOn x . . . .
matrix
let
mA
THEORY
~ as
be a
the set of
map
(A.1)
~
( m - c o p i e s ) . A c c o r d i n g to ( A . 1 ) , the i n d e x - s e t
the
~s
MATRIX
of the
Let u s
(j } n . o
m-indexed
introduce
matrix
the
mA,
This
index-sets
{0,I .....n }
L On = { ( J l ..... Jm ) :
domain
(A.2)
Jk E L :
, k = l ..... m }
(A.3)
m A m-indexed
matrix
mR ~n
DmA
This
matrix
entries
as
ca/n b e
W e will c o n s i d e r operations and
type
(A.4),
n-th order
m a t r i x if
(A,4a)
expressed
in t e r m s
of its m - i n d e x e d
follows
[ a.
=
-n
order
the
rnL° n
~
--n
equivalently
mA
duce
will be called
here
some
on those
domain unless
]
~l""Jm
of t h e
(A.4b) ( J l . . . . . 4 . ) ~ m~o
n
properties
matrices. matrices,
otherwise
of m u l t i - i n d e x e d
W e will u s u a l l y assuming
stated.
matrices,
drop,
and
intro-
for simplicity, the
that all matrices
are
of t h e
117
matrix
Symmetric
A
m-indexed
matrix will b e
co/led s y m m e t r i c
if for a n y
permutation
ul,..., m
of integers
l,...,m w e
shadl h a v e
a.
_51...jm
sm
--J nl...j m
Consequently, symmetric ~jl...jm
matrix instead denote
corresponding
n m
o
Ln
a,
-ll...jm
of equai
elements
(jl,...,jm) . W e
matrix
= [ a, . )l...]m
- m -
'different' entries of the
%n
by
mA
of the s y m m e t r i c shall denote
let
matrix,
the
'symmet-
, where
]
(A.Sb) (j:l,...,jm)
to lexicographic
~ symmbno
port' of the m-varlate
or anti-lexicographic
a
of m A c a n then b e e x p r e s s e d Jl...jm n of the s y m m e t r i c matrix mA as --n
ajl...jm
matrix. N o w
entries of n o n - s y m m e t r i c
denoting the 'symmetric
obtained a c c o r d i n g entries
n
t o the s e q u e n c e
mA
sym
of
the n u m b e r
ric part' of a m - i n d e x e d
with
(re+n)
it is sufficient to consider m
(A.Sa)
= 7jl...jm
a. , -Jl...Jm
index-set,
ordering. T h e
in terms
of the entries
(A.5c)
"!~ranspose matrix
Let
r~ b e
represented
a permutaf/on
of the index-set
{ (Jl'""Jm) ¢ m L °n }. u
may
by a map
1 , a ,..., ~ ) ( ~ l ' ~ 2 .... ' ~ m
(A.6~)
be
118 where xed
( nl' ~2 .....nm)
matrix
n
tion
mA~
is a permutation
A
{1,2 .....m } . T h e n ,
will b e co/led the transpose
a m-inde-
matrix due to the permuta-
if
( mAn )jl...jm
Z
of
:
( mA )rt (jl,...,jm)
(A.6b)
ero-m~trix
m-indexed
indices
matrix
will be called a zero-matrix if for e a c h s e q u e n c e
(jl,...,jm) c D m A
we
have
ajf..jm
0 . This
of
matrix will be de-
noted b y
mo
=
[0jl...jm ]
where
O.
.
J1..,Jm
(A.7)
(Jl .....jm) c D m O n
n
will b e the z e r o - e n t r y
wlth 'coordinates'
(jl,...,jm) .
Unit-matrix
A
2m-indexed
and
matrix will be called the unit-matrix if for e a c h
(k1'""km)
¢ D2mAn
~.
(Jl .....Jm )
we have
.
=
]1.,,]mkl,,,km
~
(A.Sa)
Jl,0.Jm;kl---k m
where X
5
.
]f " ] m ; k l " ' k m
=
I
0
if
Jl=kl
,..., J m = k m (A.Sb)
otherwise
119 This matrix will b e d e n o t e d
as
2m I
n
=
[
.
.
6 ]l...3m;kl...km
]
(jl,...,Jm,kl,...,km)
D2mi[n
(A.8c)
Block-matrices
A block-matrix w h o s e
block-entries are m-indexed, n-th orde• mmtrices
{ M } A n = [ m a n ] m = l ..... M
will b e called a M - b l o c k
row d o m ~ d n
D {1%4}A
n
(A.9a)
(row), m-indexed, n-th order matrix. Its block-
will b e a vector of simple d o m a i n s
D{M}An
"
[DmAn]
(A.gb)
m=l,...,M
Similarly, a block-matrix
{M}Bn
= col [ m B
will b e called a M - b l o c k block-column
(column),
n
]
(A.10a)
m = 1,...raM
m-indexed,
n-th order matrix with the
domain
D {M} B n
= col [ D m B n
] m=l,...,M
(A.10b)
Finally, a block-mc~trlx
{M×M }H
= [ meu H n
whose
block-entries are
] n
(m+u)-indexed
m,u= I,°..,M
matrices
(A,11a)
120
meuI-I
will b e c a l l e d
[h.
=
n
" k
Jl'"Jm
k ]
i"' U
a (MxM)-block
Its b l o c k - s q u a r e
(jl,...,Jm,kl ....,ku) ¢
(square),
D{M×M}H
domain
=
[DmeUH
observe
'block-column'
that the matrix form. T o
DUll n , w h e r e
(A.11)
can
order
matrix.
(A.:lc)
be described
d o that, l e t u s s u p p o s e
( J l ..... Jm ) ¢ D m H n
n-th
(m+u)-indexed,
n ] m,u=l,...,M
n
Let us
(A,1lb)
is g i v e n b y
n
D { M x M }H
DmeUHn
and
that
in a generalized
DmSuH ~ DmI-I x
( k l ..... k u ) E D u l l
n
n
. ~hen
n
we can
write {MXM) H
=
[{M}xu
H
n
] n
u=I,.o0~M
(A.laa)
where
{M}x UHn -
col [meuH n]
m = l ..... M
(A.12b)
or, equivalently,
{M} xu H
-
[{M} H
n
] n;ki...k u
(A.12~) (kl,...,ku) ~ DUll n
with
(M} Hn;kl.o.k u = [ 51***Jmkl,..ku ]
(A.12d) (jl,..,,jm) ¢ DmH n
Equal. matrices
Two
m-indexed
mA = [a.
matrices
] Jl""Jm
; (Jl ..... Jm ) ~ DmA
ms = [b.
] (A.13) "~l""Jm (Jl ..... Jm) ~ Drab
121 will b e called e q u a l matrices if of indices
..(Jl,*-*,Jm] ¢
DmA
=
Given the matrices
if for e a c h
sequence
(A.14)
b.
ll...Jm
ll...Jm
of multi-indexed
, and
DmA
a.
Sum
= DraB
matrices
we shall s a y that the m - i n d e x e d
(A.13),
.
mG
[gjl...j m
matrix
(A.15a)
]
(Jl
.....jm ) c D m G
is the s u m mG
Drag
,= D m A
- Dn~
=
mA
, and
mB
+
(A.15b)
if for e a c h
(jl,...,jm) ¢ D m A
A
gjl...j m = ajl...j m
Sum
of bl.ock, ' multi-indexed
Given two M-block (row),
matri.ce.s
m-indexed m a t r i c e s
{M}A = [ mA] m=l ..... M
we
sh~U
say
;
that the M - b l o c k
{M} G
{M }m = [ m B ] m=l ..... M
(row),
=
m-indexed
[raG] m=$,..,M
where
mG
is given by
(A.15c)
b.Jl...Jm
+
( A . 1 5 a ) , is the sum
(A.16a)
matrix
(A°16b)
122 {M} G .
if for ce
m~l,...,M
of indices
we
have
{M} A
DmA
+ {M} B
= Drab
(jl,...,jm) E D m A
(A.16d)
= DmG-,
the entries
and
gjl...jm
if for e a c h are
sequen-
expresed
by
(A.1~o).
Product
Given say
of a s c a l a r
a scalar
and
c ~ ]~q
and
that the m - i n d e x e d
lar ~ n d
the m - i n d e x e d
a m-indexed
a m-indexed
matrix
mG
matrix
(A,15a)
mA
(A.13),
is the p r o d u c t
we
shall
of the s c a -
m~£rix
mG
if for e a c h
matrix
= c-mA
(Jl .....Jm ) ¢ D r a g
(A.17a)
(where
Drag
= DmA)
we
have
A
gjl...j m = C.ajl...j m
Product
Let
of mul#/-indexed
mA
replaced
be
given
by
by
s , where
(A.iYb)
matrices
(A.13), m
and
let
< s . Let
sB
be
u, ~ , 9
given be
(A.13)
by
some
given
with
m
integers,
satisfying u
and
moreover
and
the
s
+
~
let indices
= m
r ;
;
(u + ~))
of the
sB
~
*
+
Partitioning
9
= s
the
in accordance
(A.18a)
m with
indices (A.18a),
of the
mA
and
assu-
t
123 rning that
mA
DmA
=
= DUA
×D~A
and
DSB
= D~tB x D 9 B
We
c a n write
[~ki...k~l...j ]
(A.18b) (kl)...,ku) ~ D U A
SB =
, we
[b ] Jl'"J~ii'"i9 (Ji ..... J~) ~ D ~ B
shall s a y that the
r =
; (jl)...,j~) E D ~ A
; ( i i ..... i~) ~ D9B
(u + 9) -indexed
matrix
] r'(u+ whose
(~ lSd)
9) G = [ g k l . . . k u i l . . . i 9 domain
is
DrG
= DUA
(A.18c)
(k 1 .....k u ) ~ D U A x DqB
; (i i ..... i 9) ~ D g B
, is the
~t-product of the matrices
ue~ A" ~ e g B
(A.18e)
(,aL,18b,c)
rG
if
Dt~A = D ~ B
= UD
= mA.s B
=
, a n d if for e a c h
(kl,...,ku) ¢ D U A
, a n d for e a c h
(iI,....i 9 ) ~ D g B
gki'"k uil "''i9
where
the s u m
(jl,...,jt~)
Product
Given
=
~~D
in (A.i8f)
over the
~i...ku Jl...J ~
denotes
square-matrix u-indexed
(row)
{ M x M }H
matrix
~-fold s u m m a t i o n
~-variate index-set
of block) multi-indexed
the M - b l o c k
the
matrix
b. . il...i~ J1 '''J p.
(A.i8f)
with respect
~D .
matrices
{M }A
(A.il), w e
(A.9),
shall s a y
a n d the
(MxM)-block
that the M - b l o c k
(row),
to
124 {M}
G
=
(where
[uG]
for
u..1 , . , M
u=l,...,M
UG
we
have
: [ g k l .....k u]
DUG
= Dull
is the block m - p r o d u c t of the matrices
{M}G
for
:
{ M }A
(k 1 .....k u)(
(A.19a)
DUG
, with
D m~u H
and
{MXM} H
= DmH,DUH)
{M}A'{MXM}H
(A.19b)
u=l,...,M
uG
M )-] m A ' m S UH
A
(A.19C)
m=l with
"
denoting
9 =u , we
the
product
.(A.18e).
t e n rewrite (A.19)
Using
(A.18)
with
u :0
,
k =m and
e~
M
gkl...k u =
where
=
mD
(A.12d), w e
DmA
~
:
mD
mffil
- DmH
'Outer' or K r o n e c k e r
m
mA
(kl,...,ku) ~ D U G
{M} A {M} •
, Equiva/ently, using
(A.19e)
Hk1,..k u
SB
be expressed
by
shall s a y that the
(m+s)-indexed
matrix
(A. 13), a n d let
s . We
=
domain
is
DmesG
(A.13)
with
(A 20~)
]
[gJl'"Jmkl"'ks (whose
~nd
(A.19d)
h j .... l j m k .... i ku
product of mudti-indexed matrices
b e given b y
replaced b y
m *s G
jl...jm
c a n write
gkl...k u =
Let
a.
(Jl ..... jm ) c DmA ; (k 1 ..... ks) ~ DSB :. D m A ×
DSB)
is the 'outer' (or lqronecker)
125
product of the matrices
mA
m • s G
if for e a c h
and
mA ®
.
( J l ..... jm ) c D m A
SB
and
(A.2Ob)
sB
( k 1 ..... k s ) ¢ D S B
we have
A g j l . . . J m k l o . . k s = %l...jm b k l * . ) k s
From
(A.20)
(A.20¢)
it f o l l o w s t h a t if
iy
= [yj]
(A.21a)
J CDIY
then m
my=
,~ i y
=[yjl...yjm ]
(A.21b) ( J l .....jm ) E D m y
where
Dmy
= DIy
(A.21C)
×...× D I y m
'Outer'
product of b l o c k ,
multi-indexed
matrices
Let
{M}y = [my]
(A.22~)
m=l,..o)M
where
my
is given
by
(A.21),
and
{M×M} G = [ m ~ u G ]
moreover
m)u=l,.oo)M
let
(A,22b)
126 with
m ~ u G = [gJl°"]mkl"'ku]
We
(Jl ..... jm ) c D m y ; (k 1 ..... ku) ¢ DUy
shall say that the matrix
{MxM} G
if for
{MxM}G
(A.22c)
is the block, outer-product
=
{M}y
(~ { M } y
m@u G
} my
~ Uy
(A.22d)
re,u= 1,...,M
or, equivalently, if for each
gji...Jmkl°..ku
(]i.....Jm ) ¢ D m y
=
(A.22e)
and
yjl..°yjmYkl.--Yku
(k i .....ku) E D u y
(A.22f)
APPENDIX
2
MULTI-VARIATE
INDEX-SET
LB-recursions:
RECURSIONS
'loc~' o r d e r - u p d a t e s
l,-for-vvard index-set, a n d index-sets; i.e., for
for the 'bi-variate' part of the
for the 'uni-va~iate' part of the B - b a c k w a r d
m=2,...,n+l
Lx+l,n-I n,m-I Lx . Lx n,m n,m-I
u
L x + I'n-I n,m-i
=
u LX+l, n-I nsm-2 2 T
(x} k
u {x+n+ 3-re,x+ n + I}
(A.2a~)
Lx n,m-I and
for
m=n+2
LX+l,n n,n+l
Lx . Lx n+l,o n,n+l
L x+l'n U n~ n'~l-- m
f U L x+l'n-I n,n
{x}
• U {x+l,x+n+l}
(A.23b)
Lx
n,n+l
These
recursions
can
b e schematically d e s c r i b e d
a s the L B
index-set
sections
Lx
x
n,m
nmm_ 1
~
LX+l,n-i n,m-i
Ln+ljo
>
Lx
n=m
Lx
~
nln+l
f
LX+l,n n,n+l
Lx
n+ljo
(A.23~)
128 BL-recursions:
'loco/' order-upda£es
for the 'uni-variate' part of the
B-fo~va/~d index-se£s, a n d for the 'bi-varia£e' part of %he L - b a c k w o 2 d index-se~
i.e., for
v=0
n~l L x'O nt2
=
L x'O n~l
u
Lx n,l
.
{x,x} %,....
u Lx U {x+n+l} n,o ~, 2
( A . 2Zia)
LX~ O n,l
a n d for
v=l,...,n
Lx,v-I n,v+ 1 LXt v
n,V+2
= L x'v L x'v-I ~ { x , x + v } n,v+l U n~V+1
u Lx, v-I ntv
u {x+n+1}
(A,2a~b)
T LX, v *%~V+ i
These
recurs[ons will b e in£erpre£ed as the B L
Lx, o n, 2
Lx~° n,l
~I .~
LX, v n,v+ 2
~ r
LX'° n,2
Lx'v n,v+l
'"
Lx n, 1
BB-recursions:
index-set sec%ions
~ "~
"2
(A.2~c)
LX, v 2 n,V+
Lx, v-I rl,v+1
'local'
order-updates
B-foF%va~d a n d B - b a c k w a r d
for
the
Jbi-v~iate
index-sets; i.e., for
v=0
~ parts
and
of
the
m=3,...,n+3
129 LX
n,m-1 Lx. ° _- Lx, ° n,m n,m-I
u
A
f
Lx n,m-I"
{x,x} k
...............
u L=,m_ 2 U {x+n+4-m,x+n+l} J
%
(A.25a.)
Lxs O
n,m-i
arld for
v~.l,...,n e ~ n d m m v + 3,...,v+n+ 3
ijxlv'l n,m--i [ L x'v n,m
m
L x'v n,m-I
u L xn ,' vm--12
- { x,x+v}
U
•
u {x + n + 4 + v - m , x + n + 1 }
Y LXl v
n,m-1
These
recursions will result in the B B
index-set sections
L~,o
LXi v r'isi-n
ntm
Lx, O n,m-1
~ ~
(A.e5b)
>
L x'° n,m
Lx ' v n Im - 1
-~ "~ |
Lx n,m-i
Lx,v-I n,m-I
~
Lx'v n~m
(A.25c)
130
'LOCAL' 0 R D E R - U P D A T E
LB-recursions:
for
RECUI~SIONS
m=2,...,n+l
A~,m_z(z) ]
AX, re(Z)
lB~,m(Z)J =
X
n,m
and for
,.
@
x n,,m
(A~,m(Z)
(A.26a) z.Bx+I,n-L(Z) [ n, m-i ~ j
x+i,n-l.
, Z'Bn,m_ l
(Z))Z
(A.26b)
re=n+2
(A. 26C:)
Sn,n+i(z) (A.26d)
x P
BL-recursions-
for
n+l,o
v=O
~"~(~)] . 0~.o XsO = Pn,2
( A X~, , I (O z)
-A::~(=~I
, B~,I(Zl) z
(A.2Va)
(A.27b)
131 for
v=l,...,n
[]:::+~(~1 .o.,v [ n,v+2
px,o ~ n,m
BB-recursions:
for
v=0
(AX, O (Z) n,v+l
and
(A.27c) B x'v-I ( Z ] I n,v+ 1 ~
"J
B x'v-I (Z~) n,v+l ~ " Z
'
(A.27d)
m=3,...,n+3
Ax'O ~ (Z)l n,m-I | =
<::(~)J p~,o . n,m
for
~-- l~...,n
and
n~,m
CAX,O ~
(A.20,,)
0x, °
~:.,,,_l(=)J
~z~
n,m-i ~
B:,~_1(z))
(Ao28b)
Z
" '
re=v+ 3,...,v+n+3
A:::,(~) 0x~v ntm
i
IB ~'v (z' m
n, rn
~,v n,m
'
CA~,V (Z)
"- -n,m-i
(A.28~)
L<: v=.t(~)-'J '
B ~ ' v - I ~z Z,~,
(A.28d)
n,m-i
where
e~n , m
= (i_[o~
n,m
12)-½ -
(A.29a)
x n,m
o~''
nsIT).
= (1-[p
gl~lffl
12) X~g Pn, m
1
(A.29b)
132
'LOCAL' FILTER
SECTIONS
LB-sec[ions: BX n~rn AX ~ n,m-i
+
AX n~m
AM n+l,o
Ax
n,n+l
BX+l,n n,n+l
BX+l,n-1 n~m
for re=n+2
for m-=2,...,n+ 1 BL-s ections:
Bx~v n,v+2
n,2 AX, O
n,l
_
~
A x,o ~ n,2
Ax'v
~
AXsV
n,n+ 1
n,v+
BX,V-I n,V+1
Bx n,1
for v=l,...,n
for v=0 BB-sections: BX~O rl~lll A x'° ~ n,m-i
B x~v nmln
A x'° n,m
~ Bx n,m-I
for v=0
and
m=3,...,n+3
AX'V ~ nsrn-i
AX'V n,m BX,V-i n,m-1
for v=l,..,n and m=v+3,...,v+n+3
2