Organic Reactions, Volume 56 Larry E. Overman (Editor-in-Chief) ISBN: 978-0-471-39568-3 696 pages October 2000 Organic Reactions is a comprehensive series of volumes devoted to important synthetic reactions. For each volume, the authors are world-renowned experts with extensive hands-on experience in the field. The subjects are presented from the preparative viewpoint, and particular attention is given to limitations, interfering influences, effects of structure, and the selection of experimental techniques. Each chapter includes detailed procedures illustrating the significant modifications of the chemical reaction, as well as tables listing all the pertinent examples of the reaction. The topics discussed in Volume 56 are the Hydroformylation reaction and the Vilsmeier reactions of non-aromatic compounds. Each reaction is presented with information about the reaction conditions, products, and yields where available, and is fully referenced to the primary literature.
Table of Contents THE HYDROFORMYLATION REACTION ............................................................................................................ 1 CONTENTS ................................................................................................................................. 1 ACKNOWLEDGMENTS .............................................................................................................. 2 INTRODUCTION ......................................................................................................................... 2 MECHANISM ............................................................................................................................... 4 SCOPE AND LIMITATIONS ........................................................................................................ 13 COMPARISON WITH OTHER METHODS.................................................................................. 27 EXPERIMENTAL CONDITIONS.................................................................................................. 34 EXPERIMENTAL PROCEDURES ............................................................................................... 35 TABULAR SURVEY..................................................................................................................... 40 REFERENCES ............................................................................................................................332 THE VILSMEIER REACTION OF NON-AROMATIC COMPOUNDS ....................................................................355 CONTENTS .................................................................................................................................355 INTRODUCTION .........................................................................................................................356 SCOPE AND LIMITATIONS ........................................................................................................357 COMPARISON WITH OTHER METHODS..................................................................................402 EXPERIMENTAL CONDITIONS..................................................................................................402 EXPERIMENTAL PROCEDURES ...............................................................................................403 TABULAR SURVEY.....................................................................................................................407 REFERENCES ............................................................................................................................645 CUMULATIVE CHAPTER TITLES BY VOLUME ..................................................................................................661
CHAPTER 1
THE HYDROFORMYLATION REACTION IWAO OJIMA, CHUNG-YING TSAI, MARIA TZAMARIOUDAKI, and DOMINIQUE BONAFOUX
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York
CONTENTS PAGE ACKNOWLEDGMENTS INTRODUCTION MECHANISM
Cobalt-Catalyzed Hydroformylation Rhodium-Catalyzed Hydroformylation Asymmetric Hydroformylation SCOPE AND LIMITATIONS
.
Simple Olefins . Dienes and Polyenes . Functionalized Olefins Functionalized Alkenes Functional Group-Directed Hydroformylation Alkenyl and Alkynyl Alcohols . Alkenyl Esters . . . . a,b-Unsaturated Esters, Vinyl Ethers Halogenated Alkenes . Alkenylamines and Alkenylamides Miscellaneous . . . . Asymmetric Hydroformylation COMPARISON WITH OTHER METHODS .
Hydrocarbohydroxylation and Hydrocarbalkoxylation Asymmetric Hydrocarbohydroxylation and Hydrocarbalkoxylation Formylation of Halides and Trif lates Silylformylation of Alkynes EXPERIMENTAL CONDITIONS
Organic Reactions, Vol. 56, Edited by Larry E. Overman et al. ISBN 0-471-39568-4 © 2000 Organic Reactions, Inc. Published by John Wiley & Sons, Inc. 1
2 2 4 4 7 10 13 13 15 16 16 16 18 19 19 20 20 21 23 24 27 28 30 31 33 34
9
ORGANIC REACTIONS
EXPERIMENTAL PROCEDURES
35
Cyelohexanecarboxaldehyde fHydroformylation of an Alkene under Classical Homogeneous Conditions] (7,7-Dimethylnorborn-2R-yl)acetaldehyde [Hydroformylalion of an Alkene under Homogeneous Conditions] 6-Oxoheptanal (S)-2-(6-Methoxy-2-naphthyl)propanal [Asymmetric Hydroformylation of a Vinylarene under Homogeneous Conditions] (S)-2-(4-Isobuty1phenyl)propanal [Asymmetric Hydroformylation of a Vinylarene under Homogeneous Conditions] (,S)-2-Acetoxypropanal [Asymmetric Hydroformylation of a Vinyl Ester under Homogeneous Conditions] exo-Norbornanecarboxaldehyde (Asymmetric Hydroformylation of an Alkene using a Cross-Linked Polymer-Supported Catalyst under Heterogeneous Conditions] . n-Heptanal and 2-Methylhexanal [Hydroformylation of an Alkene using WaterSoluble Complexes as Catalytic Precursors in a Two-Phase System] . . . . n-Nonanal and 2-Methyloctanal [Fluorous Biphase Hydroformylation of an Alkene using Recycle Catalyst] (E,Z)-3-Pentenal and 4-Pentenal [Hydroformylation of an Alkene Catalyzed by Mesitylene-Solvated Rhodium Atoms] TABULAR SURVLY
Table Table Table Table Table Table Table Table Table Table Table
35 36 36 36 37 38 .
38 39 39 40 40
I. Hydroformylation of Unfunctionalized Alkenes •, * II. Hydroformylation of Dienes and Polyenes : III. Hydroformylation of Unsaturated Alcohols IV. Hydroformylation of Unsaturated Aldehydes and Ketones V. Hydroformylation of Unsaturated Esters VI. Hydroformylation of Unsaturated Ethers and Acetals VII. Hydroformylation of Unsaturated Halogen Compounds VIII. Hydroformylation of Unsaturated Nitrogen Compounds IX. Hydroformylation of Other Functionalized Alkenes X. Asymmetric Hydroformylation XI. Hydroformylation of Alkynes
46 138 151 160 162 179 194 198 222 240 327
REFERENCES
332
ACKNOWLEDGMENTS
The authors would like to thank National Science Foundation, National Institutes of Health (NIGMS), and Mitsubishi Chemical Corporation for generous support of their research in this area.
INTRODUCTION
The reaction of 1-alkenes with carbon monoxide and hydrogen in the presence of a catalyst gives the corresponding homologous aldehydes (Eq. 1). The discov-
_
R ^
metal catalyst
+ H2
+
CO
run V
nur\
R
/^/
C H O
I
+
R
(Eq. 1) ^
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS Product(s) and Yield(s) (%j
Conditions
Reactant
Refs.
CHO
c3
6
CO/l+ (47/67, 114 bar), THF, 120”, 16 h
OHC-I
+ Turnovef
Catalyst
30 CRh(CpCo(P(o)(oMe>2)312(C0)3 SO [Rh(CpCo(P(o)(oMe>2),12(CO)B/PPh3 ~(CpCo[P(~)t~Me>(~[CH213CH=CH2)13)(C0)2280 Rh(CpCo(P(O)(OMe)(OC,H6CH=CH,>>,>(CO)#Ph3 ~(CpCotP(o>toMe>(oC,H6CN>>,)o, ~(CpCo(P(O)(OMe>(~,H6CN)),)o,/PPh, CO/H2 (l/l, 7.4 bar), di-n-butyl phthalate, 90”, 5 h L/[Rh] Ligand Catalyst precursor
~ WW’Pbh ~WCWWtPPh3h RWCW’Ph3)3 ~WCWGdW’h&
0
PPh3 Cd’ PPh3 PPh3 PPh3
m WWGoW’bh ~WW’W3 ~WCWGoWPhd2
0 13 13 13 40 40
390 340 690
A
454
H
I/II 0.7 1.7 0.6 2.6 0.7 2.2 455
Turnovef 68.8 57.3 64.6 44.8 55.3 64.8 49.5
I/II 1.63 1.38 2.91 1.19 3.00 4.23 4.25
Ru(saloph)(CO), CO/H;?(l/l, 27 atm), 120”, 4 h
IKQ
456
NW [HRu3(COh 1I, CO(3.3 bar),
I + II (-), III = 98.6:1.4
457, 458
H2 (1.7 bar), diglyme, 75”, 66 h
’ (--> + 11t-) + ,,,-OH
Fe$h2(CO)& on SiO2, CO/I-I;!(l/l), 162”
+
III 6) +A v (3
A/
OH
IVe--->
(I + II):@ + IV):V = 17:28:55, (I + III):(II f IV) = 70:30
HRuCo3(CO) 12on carbon, co/H2(l/l), 194”
I(-)+II(-)+III(-)+IV(-)+V(-) (I + II):@ + IV):V = 1:4:95, (I + III):(II + IV) = 96:4
460
Co(OAc)2/P(Bu-n)3,hv, 80”, MeOH, CO/H2 (l/l, 85 bar), 24 h
I + II (16), III = 99:l
461, 462
RhNaY (Rh 3.4%), CO/H2 (l/3, 1 atm), 150”
I + II (-), I:11 = 1.9:1, V/(1 + II) = 3.4
463-465
I (87) + II (-), III = 96.9:3.1; III + IV (1)
466
S03Na
n=O,l
R~(OAC)~,P/Rh = 6.7, pH = 5, 125”, CO/H2 (l/l, 725 psi), Hz0
c9(c0)8,CO/H2 (l/l, Pressure(psi) 2400 2400 2400 2400 1350 1650 2100 2700
467
192 psi), scCO$ Temp 78” 88” 98” 108” 88” 88” 88” 88”
[Rh(COD)OAc12,PPh3,LJRh = 10, CO/H2 (l/l, 20 atm), CbH6,90 O
III 4.2 4.1 3.1 2.7 2.7 3.0 4.2 4.3
1 (61)
1+11 468
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Reactant
Refs.
Product(s) and Yield(s) (%) 469
Ru3(CO)12,ligand, L/Rh=& MeCONMe?, CO/I+ (l/l, 80 atm), 120”, 20 h Ligand None 1,10-phenanthroline 2,9-Mez-1, 10-phenanthroline
I+II (25) (73) (76)
1:II
MezN(CH2)2NMe2 MezN(CH&NMez Me2N(CH&NMe2 Me$J(CH&NMe2 2,2’-bipyridyl
(31) (33)
(62)
95:5 9614 9614 96:4
(24) (79)
93:7 91:9
(0)
-
(57)
PY PPh3
84:16 95:5 92:8
Chloro(q4-1,5cyclooctadiene)( 1,3-dimethylimidazolin-2-ylidine)rhodium, PhMe, CO/I-I2
I + II (-), 1:II = 1
470
Rh(acac)(CO)2,PPh3,P/Rh = 10, PhMe, CO/I-I2(l/l, 50 atm), 100”, c5 min
I + II (>96), 1:II = 2
471
Rh(acac)(CO)z,TPPTS, P/Rh = 10,
I+II(-),I:II=5
471
Rh(acac)(CO)$TPPIS on 60 8, silica gel, P/Rh = 10, PhMe, 24% wt H20, loo”, CO/I-I2(l/l, 50 atm), 90 min
I + II (-), I:11 = 2.8
471
[Rh], P/Rh = 10-50, 1lo-130”, CO/I-I2( l/ 1,20-60 atm)
I+II(-),I:II=99
241
I (73) + II (-) + V (l), 1:II = 20.3
472
1(62) + II (37)
473
I (55) + II (43)
474
90 min, PhMe/H20 = 413, CO/H2 (l/l, 50 atm), 100”
NaS03
m
P(C&I&03Na-mh_,Ph,
NaSd, RUG 12,1, 10-phenanthroline, AcNMe2, 120”, 20 h HRh(COhL, CO/I-I2 ( 10kg/cm2), lOO”,50 min t-Bu WRh t-Bu
(ROhp/’
B,,-t
Rh-catalyst, CO/H2 ( 10 kg/cm2G), 100”
oc HCO ‘&y RO, lp/OR I’OR RONr’
OV
0
t-Bu
\
B,,-t
TABLE
I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
(Continued)
MONOOLEFINS
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
1:II = 49
475
I (62) + II (37)
473
[Rh(OAc)(C0)J2, P/Rh = 8, CO/I-I2(l/l), N2
I (87) + III (1)
476
Rh(CO)(PPh&, P(OC6H4B~-t-2)3,DPPB, diphosphite/DPPB/Rh = 56/2/l, N(CH2CH20H)3, i-F’rOH, CO/H2 (40 atm), 55”, 2 h
I + II (87)
477
PtQ(CO)(PPh$, SnC12,CH2C12, CO/I-I;!(l/l, 140 atm), 80”, 1.5 h
-CHO
[Rh(OAc)(COD)j2, PhMe, Hz/CO (9 kg/cm2 G) 70”, 1 h Bu-t
t-Bu
R2P
PR2
CO/H;! (10 kg/cm2),
HRh(COhL,
loo”, 50 min t-Bu
(W2P
/O
r-Bu R= ’
\
/
\
Bu-t
-
-a-
+ /\f
CHO II 6-J
1 t-4
Cl IV(-) PQ(PPh&, SnC12,CH2C12, CO/H2 (l/l, 140 atm), 80”, 1.5 h
I(-)+II(-)+III(-)+V(-)
HPtCl(PPh&, SnC12,CH2C12, CO/H2 (I/l, 140 atm), 80”, 1.5 h
I(-)+II(-)+III(-)+V(-)
+-
478 III (-->
1:II = 87: 13
v c-4
478
1:II = 92:8
I:II=95:5
478
Rh(acac)(CO)p,phosphine ligand, P/Rh = 12, CO/H2 (l/5, 1500 kPa), 2-ethylhexyl acetate, 110” Phowhine ligand Me$iCH2CH2PPh2 Me2Si(CHzCH2PPh& MeSi(CH$H2PPh& Si(CH2CHzPPh& PPh3
Rate (M-‘min-*) 330 123 77 41 430
479
Conv. (%) 50 50 50 50 50
1:II:III:v 67: 19:6: 78: 12:4: 82: 9:3: 83: 10:2: 59: 18 : 5 :
PtC12(COD)/SnC12/P(OPh)~(PPN)Cl (1/5/2/l), 80”, CH2C12,0.5 h, CO/H2 (l/2, 140 atm)
I(-)+II(-)+III(-)+IV(-)+V(-)
PQ(CO)(PPh3), SnC12,CHzCl2, CO/H;! (l/l, 140 atm), 80”, 2 h
I(-)+II(-)+III(-)+Iv(-)+ 1:II = 18:82
PtQ(PPh3)2, SnC12,CH2C12, CO/H2 (l/l, 140 atm), 80°, 2 h
I(-)+II(-)+III(-)+IV(-)+VI(-)
HPtCl(PPh&, SnC12,CH&, CO/H2 (l/l, 140 atm), 80”, 2 h
I(-)+II(-)+III(-)+VI(-)
8 6 6 6 19 I:II=93:7
480
VI(-)
478
I:II=16:84
478
N
1:I.I = 9:Yl
478
TABLE I. HYDROFORMYLATION
/=l
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
481
1:II = 8:92
PQ(COD), PPh3,(PPN)Cl, SnC12, CO/I-I2 (l/l, 140 atm), CH$$, 80”, 2 h
I(-)+II(-)+III(-)+IV(-)
PQ(COD), SnC12,P(OC&OMe-4)3, CO/I-I2 (l/l, 140 atm), CH2C12,120”, 2 h
I (-) + II (-) + III (-) + IV (-) + VI (-)
1:II = 68:32
482
PtCIz(COD)/SnC12/P(OPh)3/(PPN)Cl (1/5/1/l), 80”, CH2C12,0.5 h, CO/H;?( l/2, 140 atm)
I(-)+II(-)+III(-)+IV(-)+M(--)
I:II=8:92
480
1. Pt(SnCl$l(DIOP), CO (90 atm), D2 (35 atm), 80”, 3 h, PhEt
CH3CHl.lgD.82CH.9Dl.lCH1.92D.o8C02Me I(--> 2.95D.o5)C02Me II (-) + CH3CHl.+&H(CH
483, 1:II = 20:80
484
2. Ag20, NaOH, Hz0 3. CH2N2, Et20
1.Rh4(COh, CO(90am),D2(90at.@, lOO”, 17 h, PhEt 2. Ag20, NaOH, Hz0 3. CH2N2, Et20
2. Ag20, NaOH, H20 3. CH2N2, Et20 Rh(acac)(CO)z,ligand, PhMe, 100”, H&O (8.0 kg/cm2), 5 h
483
dC02Me II (-) 1:II = 14:86
+ CH~C&~‘I .o&H.&.odCbd?
1. Co2(CO)g,CO (430 atm), D2 (70 atrn), lOO”, 6.5 h, PhEt
(ROhP-0
1C-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 c-1 CH@l .d?5CH I .8I D.l&H1 .d’.&‘2Me + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ II (-1 1:II = 65:35
483
1 (81)
485
/52 -\
0 -P(OR)2
CHO
RhCl(CO)(DPPB), C6H6,55”, 12 h, CO/H;! (l/l, 90 atm)
+
486
P-
CHO
1 WI
Ru3(C0)12, C&i, 150”, co (50at.m),
I+II+
-CHO
H2 (45 atm)
II (44 III
+n-CSH12(11)
487
I + II + III (30), 1:II:III = 24:3.4:72.6
co2(co)g/DIPHos (l/l), C6H6, 140”, 24 h, CO/H;! (l/l, 1100-l 150 psi)
I + II + III (98), III/(1 + II) = 1.8
488
Co2(C0)g/DIPHOS (l/3),C6H6, l40”,
I + II + III (24), III/(1 + II) = 3.4
488
Polystyrene resin-C6H&H2PPh2Co(CO)3Co(C0)3Ph$CH2C&-polystyrene resin, P/Co = 0.67, CO/Hz (l/l, 1100-l 150 psi), C6H6, 140”, 24 h
I+II+III(98),IW(I+II)=
1.94
488
Polystyrene resin-C6H4CH2PPh2Co(C0)3Co(C0)3Ph2PCH&6b-polystyrene resin, DIPHOS, P/Co = 2.67, C6H6, 140”, 24 h,
I + II + III (50), III/(1 + II) = 4.61
488
CO4(C0)g(C12-C0)2(CI4-PPh)2, 150”, 22.5 h, CO/H2 (l/l, 77.1-68.2 bar)
I + II + III (95), III/(1 + II) = 0.6
489
~WCWPPhd3, PPh2(CH2)2PPh2,
I + II (90)
490
I + II + III (91), III/(1 + II) = 0.72
490
24 n,
CO/H2 (l/l, 1100-l 150 psi)
CO/H2 (l/l, 1100-l 150 psi)
P/Rh = 21, CO/H2 (l/l, 800 psi), 120”, C6H6,21 h Styrene-divinylbenzene ( 1%) resin(C,~PPh(CH2),PPh,)RhH(CO)o, P/Rh = 21, CO/Hz (l/l, 100 psi), C6H6, 140”, 21 h
0\
HCO(CO)~,CO (0.1 bar), H2 (100 bar), n-heptane,25”
CHO
u-) + 0
II(4
491
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
cis-PtCl~(PPh~)~/SnC1~~2H20 ( 1:S),
Refs.
Product(s) and Yield(s) (%)
Conditions 1(79) + II (3)
492
1 (low
393
CHC13,CO/l-I;!(l/l, 100 bar), 90”, 4 h Rh(acac)[P(OPh)&, P(OPh)3,80”, CO/H;! (10 atm), 1 h RU3(COh
P(Cd-6
1)3,
SCOW,
II (47) + CH20H
H20, 180”, 10 h Polystyryl-(CH2)4P(Bu-n)2-C*(CO)s, n-CsHtg, CO/H;! (l/2,480-510 psi), 180”, 14 h
OHC-
493
(43)
1(13)
CHO
+
An
Iw3) OH
+
HOw
+
M
W33)
+
f
494
JY (21)
V(7)
[Rh(COD)OAc12,PPh3,L/Rb = 10, CO/H2 (l/l, 20 atm), PhH, 90 O
I(78)
468
Rh(acac)3(CO)z,1-butyl- 1-methylimidazolium hexafluorophosphate, PPh3,CO/H2, CTHl@hMe, 82”, 2 h
I(75) + II (24)
495
cisPtC12(PPh3)2/SnC12~2H20 (1:5), C6H6, CO/H2 (l/l, 100 bar), 90”, 4 h
I + II (86), 1:II = 93:7, V (7); 2-pentenes(5)
492
Rh(OAc)3, TPPTS, polyethylene glycol, H/CO (l/l, 30 bar), 125”,3h
I + II (70), 1:II = 96 : 4
496
RhCl(CO)(DPPB), C,&, 55”, 12 h, CO/H2 (l/l, 90 atm)
I (57) + II (43)
486
Rb(C0)12/PPh3 (l/5), C6H6,25”, 6 h, CO/H2 (l/l, 1 atm)
I + II (99), I:II = 3.7
497
RhdCO),,/P(OPh), (l/4), C6H6,25”, 24 h, CO/I+ (l/l, 1 atm)
I + II (28), 1:II = 16.3
497
498
[Rh(CO)$1]2, CO/H2 (l/l, 600 psi), C6H6, 100-l lo”, 16-18 h Phosphineligand none
P/Rh -
PPh3 DIPHOS
2 2 2
1,2-(PPh2)2C&kj
H-
Ph2P
1:n 0.76
Conv. (%) 100 99 82 73
0.88 0.86 1.55
94
3.20
100
0.91
PPh2
499
PPN[HRu(C0)4], CO/H2 (l/l, 300 atm), DMF, 150”, 16.5 h
I + II (56), I:11 = 90.1:9.9; III + IV (3),
Fe4Rh&(CO)t6, CO/H2 (l/l, 60 atm), lOO”, 6 h
I + II (-), I:11 = 1:1; pentane(traces)
500
Fe3RW(CO)dPP~], CO/H;! (l/l, 60 atm)
I + II (-), I:Il = 1:1; pentane(traces)
500
FWo2(COh dp.4-PPhh C6H6, 130”, CO/H2 (l/l, 400 psi), 168 h
I + II (50), 1:II = 3.2
501
FeOAW 11(pd’phh, C6H6, 130”, CO/H2 (l/l, 800 psi), 150 h
I + II (89), 1:II = 1.7
501
loO”, 5 h,
1II:lV = 93.9:6.1; V (3); 2pentenes (14)
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
502
PQ(PhCN)2, Ligand, SnC12.2H20, Pt/P/Sn = l/2/5, CO/Hz (l/l, 100 kg/cm2),
c&i,
100” Ligand Time (h) PPh3 24 Ph2P(CH2)4PPh2 10 truns1,2-(Ph$‘CH&-c-C6H 10 18 truns- 1,2-(PhzPCH&-c-CSHs 4 4 DIOP
truns- 1,2-(Ph2CH&-c-C4H6 3 truns-2,3-bis(diphenyl2 phosphinomethyl)norbornane truns- 1,2-(Ph2P0)2-c-C5Hs
5 10
1,2-(Phd’CH2)2Cd-b
Conv. (%) 4 100 100 100
I : II : pentane : 2pentenes 72.7 : 6.3 : 8 : 13 64.6 : 6.4 : 14 : 15 68.4 : 7.6 : 13 : 10 70.1 : 2.9 : 9 : 18
100 100 100
67.2 : 2.8 : 10 : 20 78.2 : 0.8 : 6 : 13 71.3 : 0.7 : 8 : 20
99 95
51.7 : 3.3 : 12 : 33 61.9 : 6.1 : 10 : 22 I + II (78), III = 8.7
497
Pt2Co;?(Cr-C0>3(CO)502, PhMe, lo”, CO/H2 (l/l, 800 psi), 17 h
I (64) + II (15) + III (7)
503
MeCC%(CO)6NiCp, THF, 130”, 24 h, CO/H2 (l/l, 600 psi)
I + II (88), III = 0.6; III + IV (11)
504
PhPFeC%(CO)g,THF, 130”, 24 h,
I + II (89), III = 1.4; III + IV (1)
504
Coq(C0)8(u2-C0)2(lq-PPh)2, 130”, 23 h, CO/H2 (l/l, 62-O-55.4bar)
I+II+III+IV+
489
Co4(C0)6(C12-CO)2(PPh3)2(Clq-PPh)2, PPh3,150”, 72.3 h, CO/H2 (l/l, 41.4 bar)
I + II + VI (52), I/(II + VI) = 3.8: III + IV (5)
489
Pt(PhCN)2C12/1 ,2-(Ph2PCH2)2-c-C&j/ SnC12(l/1/5), CO/l-l2 (l/l, 100 atm), 70”,
I + II + 2pentene (8) + n-pentane(4) I + II (89), III = 99: 1
505
Ru(C0)3(PPh3)2,PPh3,P/Ru = 20, C6H6, CO/H2 (l/l, 1000 psi), 140”
I + II (-), III = 3.4
506
Ru(C0)3(Ph2Ppolystyrene1% divinylbenzene resin)2,P/Ru = 3.1,
I + II (-), III = 3.7
506
WdW n~PfWWOPh)3 ( l/2/4), 25”, 4 h, CO/Hz (l/l, 1 atm)
C6H6,
CO/H2 (l/l, 600 psi) CHO
I + II + VI (95), I@ + VI) = 2.7; III + IV (3)
cd-k,2h
c&j, co/H2(l/l,
loo0 psi),
140” 507
Co2(CO)s,Phosphine,P/Co = 2.2, C6H6, CO/H2 (4/5,45 atm), 160” Phosnhine DBP-Ph PPh3 DBP-Et PPh2Et P(Bu-n)3
Relative rate 1.3 1.0 0.9 0.7 0.6
(I+III):(II+IV+VI) 72 : 28 66 : 34 77 : 23 79 : 21 87: 13 490
RbH(CO)(PPh&, phosphine, P/Rb = 2 1, CO/H2 (l/l, 100 psi), C6H6,80° Phosphine None PPh3
Styrene-divinylbenzene (1%) resin-
Conversion (%) 99 98 92 89 93
I@I+VI) 3.5 6.7 1.1 0.9 1.2
I + II (89), III = 2.7
490
I + II (-), III = 32.3
508
(C,~PPh(CH,),PPh,)~hHo(PPh3), P/Rb = 2.1, CO/H2 (l/l, 200 psi), C6H6,60”, 21 h Ru3(CO)12,KOH (3.05 N), MeOH, 135”, CO (800 psi), 0.5 h
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
509
I + II (91), III = 2.06
Rh(CO)&p-20% divinylbenzenepolystyrene copolymer, PPh3,P/Rb = 20, ChH6, 1lo”, CO/l-l;! (l/l, 1500 psi), 5 h
484
Pt(PPh&C12, SnC12.2H20,CO/H;! CHO +
L\ x//
I + II + IJII (erythro:threo = 32:68) 1:II:III = 32:57: 11
Pt(PPh&C12, SnC12.2H20,CO/H2
~WWPPhh
1:II:III = 33:58:9
III t-1 + erythrozthreo = 2 I ~79
484
375
c&45, go”,
CO/I-l;!(l/l, 80 kg/cm2)
&j(c0)16,c&j, co/H;!(l/l,
80 kg/cm2), 80”
[R~(COD)(OAC)]~,CO/H2, 25” Rh(acac)(CO)2,P(~&I3Me+Bu-f-2)3, URh = lo, co/H2(l/l, 20atm), c&j,
I + II (91), III = 96:4
375
I (57-80)
316
1w
468
70”
[Pt(C2&)(DPPB)]/CH3S03H (l/l), lOO”, CH&, CO/I-I2(l/l, 100 atm), 19 h
259 I+=+
(17:cII(65)
LoH
. .. . , III.- = 97624
CHO Ru3(CO)t2-2,2’-bipyridine, PhMe, CO/H2 (l/l, 50 bar), lOO”, 66 h
OHC-
I(21) + h
Wl3)
fHO/\/\j
II (30)
+ h
510
W9)
Ru3(CO)I2-2,2’-bipyridine, PhMe, Et3N, CO/H2 (l/l, 50 bar), lOO”, 17 h
[I + II] (2) + III (47) + IV (20)
510
Ru3(CO)12-2,2’-bipyridineon silica f22, CO/l-l2 (l/l, 50 bar), lOO”, 17 h, PhMe
[I + IQ (0) + III (36) + IV (17)
510
RuB(CO)r2-2,2’-bipyridine on magnesium silicate x-104/2, CO/H2 (l/l, 50 bar), loo”, 17 h, PhMe
I (29) + II (13) + III (13) + IV (3)
510
Rh(SOX)(COD), PPh3,L/Rh = 5, PhMe.
I + II (-), III = 83.9:16.1
511
Rh(SOX)(COD), DPPE, L/Rh = 5, PhMe, CO/Hz (l/l, 0.1 MPa), 60”, 10 h
I + II (-), III = 45.3:54.7
511
Rh(SOX)(CO)2, CO/H2 (l/l, 1.OMPa, PhMe, 60”
Ligand P(OPh)3 PPh3 DPPE DPPP
ERh(sBu-t>(Co)l2(C,H,)Zr(CH2PPh2)2, CO/l& (l/l, 20 bar), THF, 80”, 2 h
I + II (99), III = 1.9:1
513
[RhCl(C0)2]2, PPh3,L/Rh = 5, Et3N,
I + II (6), III = 7 1:29
514
[R~,ICI(CO)~]~, DMTPPN, L/Rh = 5, Et3N, PhMe, CO/H2 (l/l, 20 bar), 80”, 20 min
I + II (27), III = 68:32
514
[RhCl(CO)2]2, PPPN, L/Rh = 5, Et3N, PhMe, CO/l-l2 (l/l, 20 bar), 80”, 20 min
I + II (62), III = 68:32
514
Rh2(l.t-SBu-tj2(C0)2(TPPTS)2,TPPTS, 80°, LJRh = 6, CO/H2 (l/l, 10 bar), H20, 18 h
I+II(lOO),I:II=36:1
515, 23
RhH(C2H4)[CH3C(CH2PPh2)3],THF, CO/l-l2 (l/l, 30 atm), 100°, 3 h
I + II (-), III = 80:20
516
CO/l-l2 (l/l, 0.1 MPa), 60”, 10 h
P/Rh 2 2 2 2
Conv. (%) 12 29 37 94
III 73:27 81:19 51:49 48:52
512
PhMe, CO/H2 (l/l, 20 bar), 80”, 20 min
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Refs.
Product(s) and Yield(s) (%) III = 1.9:1
Pt(DIOP)Cl$SnC12,propylene carbonate, C6H6,CO/I-I* (l/l, 100 atm), 90°, 2 h
1(52) + II (-) + n-hexaneIII (20)
Pt(DIOP)Cl#&r/e-, propylene carbonate,
1(87) + II (-) + III (7) + 2-hexene(5)
III = 57: 1
245
245
C6H6,CO/H2 (l/l, 100 atm), 90”, 4 h CO/H2 (l/l, 5 atm), ClCH&H&l, Catalvst
517
80” P/Rh Time (h) 5 5 10 19
Conv. (%) 3 22
5
3
5 5 5 10
3 3 3 3
36 18 53 82 78
III 3.4: 1 4.8: 1 5.3: 1 4.6: 1 1.5:1 2.8: 1 5.3: 1 518
C2,6-(CH20(CH2)3PPh2)2CSH3Nl[ZnCl@t-Cl)Rh(CO)]BF4, CO/H2
I+II(-)
m(COD)(spiro(4-terbutylcyclohexane) diaziridine)]ClO~, PPh3,80”, 5.5 h, CO/I-I;!(l/l, 5 atm)
I+II(26),I:II=
519
1.7:1
133, 520
Rh(acac)(CO)2,diphosphine, C&j, 34”, CO/H2 (l/l, 6 atm) Diphosphine BISBI T-BDCP DIOP DIPHOS 2,5-bis(diphenylphosphinomethyl)bicyclo[2.2. llheptane
[RuH(Co)(NCMe),(PPh,)21 [BE& Pme,
III
Yield (%)
66.5: 1 12.1:1 8.5: 1 2.1:1 2.9:1
6) (4 c-1 (-) (-)
1+11(lo), III = 0.9, III+IV (60), hexane+hex-2-ene(30)
521
CO/H2 (2/l, 100 bar), 150”, 20 h m4(co)
I + II + 7
12, co/H2
CO/H2 (l/l, 1000 psi), PhMe, lOO”, 3 h Catalyst
[Rh(CO)(PPh3)214SiW12040
CHO
1:II:V = 54:38:8 (-)
367 522
Yield (%)
1:II:v
ERh(CO)(PPh~)21~PMo12040
57 : 36 : 7 (95) 51 : 39 : 10 (95) 54 : 38 : 8 (92)
ERh(CO)(PPh3)214SiMo12040 C~(CWPPh3Md’VMo1 I040
60 : 34 : 5 64:33:3
ERh(CO)(PPh3)21;PWI204o
V
(93) (96) 523
&(0Ac)4,PEt3,LJRh = 11.4, scC02 (250 bar), 100”
20
20
Time (h) C7aldehydes(%) 38 1 35 1 82 1
20
20
2
PcoWO
h-u@‘@
10 5
10 20
89
CRh(Hdmg)2(PPh&, CO/H2 (l/l, lMPa), THF, 80” [Rh] (x 10m6 mol) Additive 7.0 -
Time @in) 440
7.8 7.6 11.6 4.8 9.5 5.3
205 250 130 280 245 105
PPh3 PPh3
I/II 2.5 2.6
heptanol (%) -
2.4
2.3
2.5
8.1
&A I+n+v + ()HC V(%) 3 3 1 -
VI(%) 29 26 26 25 27 28 23
VII (%) I+II(%) 4 65 16 55 4 68 75 3 68 6 65 5 72
+/+&, I./II 2.0 1.9 2.5 3.4 2.4 2.3 3.1
VII 524
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Product(s) and Yield(s) (%)
Refs.
Rh(R’COCHCOR’)(CO)z, Ligand, CO/H2 (2/l, 1 atm), PhMe, 50”, 6 h R’ Me 4-(3-h
7m6H4
Ligand P(OCH2)$Et P(OCH2)3CEt
(21)
Me
P(~bhCC8H
‘+C8&7~6b
P(~H2)3%3Hl
Me
P(~Hd3CCH202CCd-b 3 P(ocH2)3ccH202cc6H13
4-C8%7~6&
Me 4-C8H17m6& 4-C8H17~6&
Me 4-C8H170C6b
Me 4-C8%7~6&
6.3 6.7 6.4 8.8
(29) I7 7
PWH2hCWO2CC I 1H23 V~W3CWWC I 1H23 WE% WPhh WPh)3 P(O&H3Me4-Bu-t-2)3 PPh3
CO/H2 (l/l, 30 atm), n-C7Hr6, 120”, 24 h Catalyst Conversion (%) 18.6 RU2(C0)4(0AC)2(PBU3)2 59.8 WWdPBu3) Ru~(C~)~(~AC)~(PBU~)~ 71.7 86.5 RWO)5 Ru(CO)~(OAC)~(PBU~~ 0.1 2.7 RWOM’BW2 ~o4~~~)8~~2~~~)2(c6~~~5)2~~i~2~
(26) (20)
(8) (11)
(16) (7) (15) (13)
9.8 9.5 8.0
(25)
(21) (17)
(22) (2)
(13)
(12)
8.2 5.0 5.9 7.3 1.2 6.3
(17)
(21) (23) (5)
(3) (25) (25) (75) (4)
I + II + VI + EtCH=CHEt (VII) I II VI VII (3)
(1)
(13)
(1)
(2)
(1) (2)
(55) (60) (69) (0) 0-d
(2) (3) (5) (0) (1)
(7) (11) (2) or) (0) w w I+II+III+IV
(loo)
526
527
PhMe, CO/H2 (l/l, 40 kg/cm2), 130”, 6 h
Rh2(CI-SBu-t2(C0)2[P(OMe)312, go”,
I+11
(loo)
528-531
CO/H2 (5 bar)
I (70) + II (30)
532
1(82)+II(18)
532
CpzZr(CH2PPh@hH(PPh3), 3 PPh3, THF, CO/H;! (l/l, 20 bar), 80”, 160 min
I (72) + II (28)
533
Cp2Zr(CH2PPh2)2,RhH(PPh3)4,THF, CO/H2 (l/l, 20 bar), 80”, 140 min
1(73) + II (26)
533
Cation-exchangedRh zeolite A (2% Rh),
I (42) + II (42) + V (13)
534
Rh(acac)[P(OPh)&, P(OPh)3,L/Rh = 4, CO/H2 (l/l, 11 atm), CA, 40°, 5 h
I (73) + II (16) + VI (7)
535
Rh(acac)p(OPh)&, P(OPh)3,URh = 2, Co/H2 (l/l, 1 atm), C&j, a”, 5 h
I(61) + II (3) + VI (27)
535
C@(CO)$RU~(CO)~~,Ru/Co = 0.99, 1lo”, CO/H2 (l/l, 80 kg/cm2), C6H6, 1.5 h
I + II (50), III = 3.1
536
Q-WWW’@Ph) 1.dGW’Pb)o.31n~ P/Co = 4, CO/H2 (1:2,2000 psi), 190-195”, 7 h
I(3) + III (85)
537
C~(C0)8/PPh2-linked polystyrene, P/Co = 2.7, CO/H2 (1:2,2000 psi), NO-195”, 7 h
I (33) + III (52)
537
K[Ru(EDTA-H)C1].2H,O, 130”, 12 h, CO/H2 (l/l, 50 atm), EtOIUH20 (80/20)
1ww
538
[~WM’Ph3M
I(73)
539
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ onmacroreticular resin,c&j, lc)o”, CO/H2 (2J3,80 atm), 24 h
[WW3(PMePb)h, c6& lo”, CO/I-I2Q/3,80 atm), 24 h
PhMe, 50”, 22 h, CO/H2 (l/l, 20 atm)
UWSWW21,
CO/H2 (l/l, 1000 psi), PhMe, 20 h
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFLNS (Continued)
Conditions
W%,
Cp,~(~-PPh,),~H(CO)o, CO/H;! (l/l, 1 atm), 50”, 60 h
540
I (80) + II (5)
541
CO/H2 ( l/l, 5 bar), PhMe, 80” Catalyst Time (h) R~J~(~-SBU-~)~(CO)~(DPPB)8 Rh2(CI-SBu-t)2(C0)2(DPPP) 6
1+11
Rh2(u-SBu-r),(CO),(DPPF) 5 Rh2(p-SB~-t)2(C0)2(DPPR) 5 [Rh(COD)(DPPF)]C104 8 [Rh(COD)(DPPR)]C104 10 RhH[MeC(CH,PPh&](C&), CO/H2 (l/l, 30 atm), 3 h
Refs.
Product(s) and Yield(s) (%)
I:11
Conversion (%)
6) c---j
70.5:29.5 64.3:35.7
96 97
(4 (4 e-3 c-4
83.1:16.9 73.0:27.0 78.3:21.7 88.1:11.9
95 98 98 75 542
I + II (69), III = 83.9: 16.1
THF, lOO”,
543
CO/H2 (l/l, 5 bar), PhMe, 80” Catalyst
III 1.56 1.27
Time (min) I + II (98) Rh2(~-pz)(r.r-sBu-t)(C0)2CP(OMe),l, 104 (98) 110 Rh2(CI-pz)(CI-SBu-t)(C0)2[P(OPh)312
Rh2(CI-pz)(CI-SBu-t)(C0)202 Rh&-btz)(p-SBu-t)(C0)2[P(OMe)& Rh2(p-btz)(p-SBu-t)(CO)2[P(OPh)3]2
125 184 200
Rh(acac)[P(OPh)&, P(OR)3, P/Rh = 1.1, PhMe, CO/I-I2 (1 atm), 40” P(OR)3, R = 2-MeCbHd 3-MeCeH4 3,5-Me$ZeH3 2,4,6-Me3CeH2 2,6-Me&hHs 2-ClC(jH4 2-02NC6H4
G30)
1.38 1.5 1.08
(W (96)
544 1+11 (70) (80) (75) (66) (67) (71) (63)
III 10.0 5.4 7.4 5.2 5.0 2.6 2.9
VI (30) (20) (25) (33) (33) (29) (37)
545-548
PtC12(PPh&, SnC12,CH2C12, CO/H2 (l/l, 100 atm), 80”, 3 h
I + II + n-hexane(5) + hexenes(28)
[~(~-SW5)K@212, PPh m = 2, CO/H2 (l/l, 5 bar), ClCH2CH2Cl, 80”, 20h
I + II (82), III = 3.5
549
[~(~-sc,H,F)(co),l2, PPb, m
I + II (94), III = 3.2
549
I + II (90), VI (10)
550
I + II (63), III = 93:7
= 2,
CO/I& (l/l, 5 bar), ClCH2CH2Cl, 80”, 20 h Rh(acac)p(OPh)&/3-picoline (1. l), CO/H2 (l/l, 1 atm), 40”, 3-4 h I + II (80), III = 1.58; III + IV (27), IIIIV
RhH(PEt3)3,EtOH, 120”, 16 h, CO/H2 (65 atm)
III + IV (lOO), IIIW
RhH(PEt3)3,MeOH, 144”, 16 h, CO (20 atm)
III + IV (85), 1II:IV = 1.4
552
K~u(sa.loph)C12], EtOH, 130”, CO/H2 (l/l, 21 atm)
I + II (-), III = 75:25
553
~2(Cr-SBu-~)2(C0)2~P(C6H4S03Na-m)312, CO (8 x 105Pa), H20, pH 4.8, 80”, 15 h
I + II (75), III = 23: 1
554-557
HRh(CO)(PPh3)3,PPh3,URh = 20, 50”, CO/H2 (l/l, 300 psi), 22 h
I (73) + II (27)
558-560
I + II (95), III = 2.6: 1
561
~WOXPPW3, KpDW-WW12Q CO/H2 (l/l, 5 bar), 80”, PhMe, 0.5 h
I + II (95), III = 2.7: 1
561
RhNaY, PEt3,CO/H2 (l/l, 300 psi), PhMe, lOO”, 14 h
I + II (90), III = 2.3: 1
562
~WW’~3)3,
QSW-bPPh2)2,
= 2.07
= 5.08
551
RhH(PEt3)3,PEt3,THF, 120”, 16 h, CO/H2 (55 atm)
551
CO/H2 (l/l, 5 bar), 80”, PhMe, 1 h
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Product(s) and Yield(s) (%)
CO/H2 (l/l, 5 bar), 80” Catalyst Drecursor
Solvent PhMe PhMe PhMe PhMe PhMe
~2WzkU%O’Ph3 Rh2(CI-Tz)2(CO)~2P(oMe)3 Rh2(CI-Tz)2(CO)~2P(oPhj3 Rh2(p-Tz)2(COD)2/2PPh3 Rh2(p-Tz)2(COD)2/2P(OMe)3 Rh2(p-Tz)2(COD)2/2P(OPh)3
PhMe PhMe PhMe
~Ap-‘W2WWPPh3 Rh2(11-Ttz)2(CO)~2P(oMe)3
PhMe PhMe
~2(cc-T~)2(CO)~2P(Oph)3 Rh2(CI-PZ)2(C0)2[P(OPh)312
~2(~-Pz)2(CO)4/2P(OPh)3 n-C7H16 Rh2(p-MePz)2(CO)4/2P(OPh)3 n-CTH16 Rh2(CI-Pz)2(COD)2/2P(OPh)3
n-C7h
6
Rh2CCI-S(CH2)3NMe212(COD)2, PPb, LlRh = 40, CO/H2 (l/l, 5x105 Pa), 80”, CICH2CH2Cl Co2Rh2(C0)12On SUppOrt, ca6,80”, CO/H2 (l/1.2,55 kg/cm2), 8 h support None Poly(ZV-vinyl-2-pyrrolidone) Poly(styrene-co-maleic anhydride) Aminated copolymer of styrene-maleic anhydride (NH3) Aminated copolymer of styrene-maleic anhydride W-WWh1 Poly(2-vinylpyridine)
[Rhz(COD)(44hio- 1-methylpiperidinek]
Turnover @in-‘)” 3.37 1.75 1.10 3.07
I/II 1.7 1.6 2.1 1.5 2.4 1.3 2.4
5.18 3.30 0.70 1.50
Refs. 563, 564
1.3 1.5 2.77 3.07 2.93 2.32
6.28 6.00 7.90 7.70 20.6 I + II (87), 1:II = 93:7
565
566
1.0 0.75 0.86 0.63
Conversion (%) 96.4 95.9 97.1 95.1
0.58
95.3
1.05
88.1
I + II (40), 1:II = 3.4
567
@F&P(OMe)3 (l/2), CO/H2 (l/l, 5 bar), ClCH2CH2Cl, 80”, 5 h Pt(DIOP)$l#n/e-,
CO/H2
[Rh(C0)#]2, phosphine, P/Rh = 1, E@N, PhMe, CO/I-I2 (l/l, 20 bar), 80”, 30 min Phosphine TPP pa3
PPP t-BDMP DMPP n-BDMP
I + II (-), 1:II = 98:2
244 568, 569
1+11 (95) (91) (50) (25) (13) (5)
1:II 80:20 71:29 73127 68~32 67~33 65:35
I + II (83) + VI (17)
570
I (30) + II (tr) + III (3) + hexane(14)
571
PtCl(TPPTS)2(SnC13)on glass, P/Pt = 2, CO& (l/l, 1000 psi), PhMe, lOO”, 120 h
I+II(26),I:II=
572
HRh[P(OPh)3]&@r(CH2PPh2~ (l/2.6), CO/H2 (l/l, 5 bar), C&, 55”, 70 min
I + II (85), 1:II = 5.5
PhCCo3(CO)9,CO/H;! (l/l, 900-1015 psi), PhMe, lOO”, 26 h
1(64)+II+V
II + v (20)
574
(OC)&03CC02CH2CH2COMe=CH2derived polymer, CO/H;! (l/l, 1000 psi), PhMe, lOO”, 23 h
1(64)+II+V
II+V(19)
574
Rh(anthranilate)(CO)2,P(OPh)3, P/Rh = 2.7, CO/H2 (l/l, 1 atm), PhMe, 40” HCo(CO)2(PBu&, PBu3,hv, MeOH, CO (1.5 atm), H2 (40 atm), 30°, 6 h
11.5
573
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
576
RKWP(OPh)312,WPh, Gjhj, 85”, CO/H2 (l/l, 12.6-12.7atm), 1 h I : II : (2+3-hexenes) : n-hexane 62.5 : 13.5 : 18.0 : 11.0 54.0 : 21.O: 0.0 : 24.0
8-hydroxyquinoline benzoylacetone acetylacetone trifluoroacetylacetone naphthoyltrifluoroacetone
55.0 : 17.3 : 5.0 : 28.0 75.0 : 18.0 : 4.0 : 8.0 42.0 : 13.0 : 25.0 : 14.0 54.0 : 19.0 : 15.0 : 23.0
benzoyltrifluoroacetone RhH2(02COH)[P(Pr-i)&, CO (15 atm), H20, THF, 115”, 20 h [Rh(NBD)Cl]z, Ph$CH$H2NMe3+N03-, AMPHOWRh = 3, CO/H2 (l/l, 40 atm), pH = 6.8, H20, 90”, 24 h
1(42) + II (35)
577
I + II + III + IV + hexenes(5) + hexane(3) I + II (86), III = 4.6; III + IV (1)
578
579
trans-[R~CI(CO)IJJ, C6H6,80”, 4 h, co/I-I2(l/l) I
II
v
(15) (14)
(3) (3)
Ligand PPh3
Pressure(atm) 100
(26)
PtC&=‘% P(C&$Bu-n-4)3 P(c&c5H11 -n-4)3
100
(27)
100 100
(28) (11) w w (5) (0)
100 80 80 80
1-hexene 2-hexene hexane (0) w (34) (79)
(20) (21) (8) (2) (9) (7) (2) (0) (4)
tw w
tw
w
(0)
@I
(82)
(82) (12)
(1) (0)
(94)
(5)
(0) 580
I
PRq
(47) (45) (37) (34)
P(Bu-~)~ PEt3 PPh3
(34) (27)
W&We-% Wd-h)3
RhH(CO)(PPh3)[P(py)312/P(py)3 WW
(0) (4) (0) tw
(51)
Pt(PR3)(CO)Cl$SnC12.2H20(l/2), 80”, acetone,CO/H2 (l/l, 600 psi), 2 h
Wd-I4W3
(57) (52) (27) (5)
Lntemalaldehvde (3) (4) (3)
(2) (2) (4)
I + II (-), III = 13:1
581
PhCOMe, CO/I-I2(l/l, 2 atm), 60” 582
RhH(CO)(PPh&, PhosphineLigand, CO/H2 (l/l, 793 kPa), PhMe Phosphineligand PEtPh2 DPPE DPPP DPPB (+)-DIOP t-BDCB c-BDCB t-BDCH
LJRh 20 5 5 5 2
Temp 100”
2 5
105” 105” 105” 106” 106” 100”
5
103”
I:II:(VI+VII):hexane 73.0 : 23.0 : 4.0 : 0.0 54.6 : 45.2 : 0.2 : 0.0 57.7 : 47.3 : 0.0 : 0.0 75.0 : 24.0 : 0.0 : 0.4 83.0 : 17.0 : 0.2 : 0.1 87.0 : 11.0 : 1.0 : 0.6 78.0 : 21.0 : 0.6 : 0.6 52.0 : 46.0 : 1.O: 0.0
[Rh(CoD)(PPh,)(py)]PF6, PPh3,P/Rh = 4, Et3N, Co/H2 (1.05/l, 50 crdg), 25”, C&j
I + II (-), III = 89.5: 10.5
583
RhCl(CO)[PPh2poly(methylsiloxanes)]2,
1(47) + II (50) + 2-hexene (2)
584
CO/H2 (l/l, 1000 psi), C6H6, lOO”, 3 h
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Product(s) and Yield(s) (%)
Conditions
Reactant
Catalyst, amine, CO/Hz (l/l, 50 bar), lOO”, 17 h Catalyst Amine Solvent EtOH EtOH JW acetone acetone Et3N acetone/PhMe Et3N
Et3N
Et3N Ru3(C0)12
-
os3(coh2 co2(co)8
Et3N
c??(c0)8 co,(co)
-
12
EW
co4(coh2 m2(co)4c12
-
~2(co)4c12
Et3N
-
Rh4Wh2 Rh4w>
Et3N
12
Rh4(co),[p(ophhh Rh4(cohdp(ophhl4 em2(CO)
12
Et3N
Et3N
Co2~2(COh2
PPNI [RuQKO) mw l3~~5coh6l
-
I 61
Et3N
NaY zeolites entrappedrhodium carbonyl clusters, CeH14,CO/H;! (l/l, 80 atm), 80”, 3 h Rh(acac)(CO)(PPh3)/PPh3(l/13.4), amine, CO/I-I2(l/l, 1 MPa), PhMe, 353 K Amine Amine/Rh None Ph3N (PhCH2)3N PhNH2
585 I+II+V
(0) (0)
(6) (16)
(97) acetone/PhMe (75) EtOH (41) PbMe (1) PhMe (18) PhMe PbMe PbMe CH2C12 PbMe PbMe PbMe PhMe PhMe PhMe PhMe PhMe PhMe PhMe PhMe PbMe PbMe/CH2C12 PbMe/CH&12
10 10 10
Refs.
(12) (7) (96) (14) (84) (85) (74)
(82) (99) (0) (95) (0) (96) (94) (95) (0) (98) (77)
Y(II+V)
0.7 2.4 0.2 -
III+Iv
III/Iv
(0) (0) (0) (0) (0) (0) (0)
-
(98)
0.2
(1)
1.0 -
(2)
1.0 2.2 2.0 1.7 2.8 2.2 0.8 -
(2)
(0) (0) (1) (0) (1) (0) (0) (97) (0) ww (1) (1) (0) (98)
0.6 1.6 1.2 0.3 0.7 0.7
0.7 0.7 1.0 -
(0)
0.8 -
(16)
1.5
586
I+II+V(-),I:II:V=51:41:8
587 I+II+V
Im+V)
(6%
5.5 5.8 5.8 3.7
(85) (71) (73)
2-hexene
(12) (4
(8) (4)
Co$U~(C0)r2 on Dowex MWA-1 resin, CO/H2 (l/l, 50 bar), PbMe, lOO”, 17 h
II (2) + III (39) + IV (56)
588
CwRh2(CO)l2 on Dowex MSC- 1 (-S03Na) resin, CO/H2 (l/l, 50 bar), PhMe, lOO”, 17 h
I + II (90), III = 0.9
588
Rh4(CO)l2/C04(CO)t2(2.6) on Dowex MWA-1 resin, CO/H2 (l/l, 50 bar), PhMe, lOO”, 17 h
III+IV(99),III:IV=
R~(OAC)~,P/Rh = 6.7, pH = 5.2, 155”, CO/H2 (l/l, 725 psi), Hz0
I (30) + II (-), III = 94.6:5.4
466
I (12) + II (11) + III (38) + IV + V (6) +
589
588
1.1
SOqNa
S03Na
n=O.l
(Polymer-N=C)2Rh(acac)(CO),PhMe, CO/H2 (l/l, 12 MPa), 120”, 5 h
OH T
Iv + VIII (33) VIII
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Reactant
Refs.
Product(s) and Yield(s) (%)
Conditions [Pt(C,H,)(DPPB)]/CH$O3H (l/l), PhMe, CO/H;! (l/l, 100 atm), lOO”,24 h
I + II (58), 1:II = 94.95.1; III + IV (5)
C~(C0)6[P(C6H$03Na+z)&/glass (CPG 340), CO/H2 (l/l, 800 psi), H20, PhMe, 190”, 8 h
I+II(-),I:II=2.2;III+Iv(-),III:Iv=
RhCl(CO)(DPPB), Cd-Is, 55”, 12 h, CO/H2 (l/l, 90 atm)
I (53) + II (46)
[Rhz(COD)(4-thio- 1-methylpiperidine)2]
I+II(82),I:II=
259
590
1.12
486
567
1.7
[BF4]2/P(OPh)3(l/2), CO/H2 (l/l, 5 bar), ClCH2CH2Cl, 80”, 5 h
W-W),,
~H,(O,COW(Pf’W,, THF, 120”, 20 h
591
I:n-hexane = 35:65
I (-) + n-hexane (-)
RuC12[N(CH2CH2PPh&], PhMe, 150”, CO/H2 (l/l, 100 atm), 10 h
I + II (85)
592
I+II+III+Iv+
593
I + II (67), 1:II = 41:59; III + IV (4), IIIW IX + X (13), IX:X = 80:20, n-hexane (3)
= 61:39;
594 Me02C Temp 100”
Time (h) 3.5
P (bar) 70
CO/H2 l/l
1:II:v 44x44:12
I+II+V
0
5 5
80” 60”
3.0 12.0
42 56
416 416
75:25:0 75:25:0
(91) (75)
PPh3/Rh
Catalyst (Me02CCp)Rh(COh (CP)Rh(COh (MeO&Cp)Rh(C0)2/5 PPh3 (Cp)Rh(COh/5 PPh3
Temp 100” loo” 80” 80”
Catalyst
PR3
~2WWW,S)(CODk
-
~&WH,kS)(CODk
-
RMcL-WW,WCODk RMWCW,S)(CODk RM.MCH,kS)(CODk ~2(WCH,kWCOW, ~dWKW,WCODk IWW(CH,kS)(CODk
Pm3
RMP-WW~WCW~ Rh2(p-S(CH,),S)(COD), ~2WKHd4WCOW;!
Time (h) P (bar) CO/H2
Solvent
1:II:v
I+II+V
3.5 5.0 3.0 6.0
PhMe PhMe PhMe PhMe
51:44:5 55:38:7 74:26:0 75:25:0
(85) (87) (W (29)
Pn3 Pm3 Pm3
PPh3 P(OC&Bu-t-2)3 WPhh PPh3 PPh3
WacacXCOk, WGfbh, W-k,, 90 e, CO/H2 (l/l, 10 atm) P/Rh Temp Conversion (%) 1.8 60” 100 60” 2.8 100 4.1 30” 53.5 4.1 40” 90.5 4.1 60” 100 4.1 70” 100 4.1 80” 100 60” 5.4 100 7.1 60” 100 Rh(acac)(CO)z,xantharn, LJRh = 10, PhMe, CO/H2 (l/l, 20 atm), 80 ‘, 24 h
(90)
70 70 42 42
l/l l/l 416 416
P/Rh Solvent PhMe PhMe 2 PhMe PhMe 2 4 PhMe 4 PhMe 2 WWk 2 U42CO2 2 (CWlk 1 (CH2CU2 2 (CH2W2
-
CO/H2 (l/l, bar) 30 70 30
Conv. (%) 76 56
70 30 70 30 30 30 5 5
97 94 98 94 36
96
90 84
96
594
1:II 52:48 56~44 73~26 74:27 75~25 73:27 74:26 65:35 77~26 68:3 1 72~28
595
5% I (69)
II (17) (15)
1:II 3.1 4.1
(44
(2)
(78) (70)
(3) (7) (10) (14)
27.7 31.0 9.9 5.5 4.0 19.8 29.9
(61)
W) w (71) (85)
(4) (3)
I + II + 2-hexene+ 3-hexene
VI (19) (14)
(3)
(8)
(0)
(10)
(0)
(23) (24)
(0)
(2)
(20)
(2) (2)
(25) (21)
(0) (0)
I+II(96.2), 1:II = 48
225
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Reactant
Refs.
Product(s) and Yield(s) (%)
Conditions
596
Rh(acac)(CO)z,P(NCaH&, P/Rh = 2.8, CO/Hz (l/l, 10 atm), C6H6,60°, 90 min IRh]/[ 1-hexene] 2.5 4.1 5.1
TON 4800 2900 2300
6.7 8.2 19.0
1800 1500 632
I
(68) (65) (65)
(66) U33) (69)
II
1:II
VI
(11) (12) (15) (14) (15) (15)
6.1 4.9 3.7 4.1 4.0 4.1
(20) (22) (18)
(0) (1) (3)
(18) (15) (14)
(2) (2) (2) 596
WacacKOh, PPhtNWLd2,Cd-k CO/I-I;!(l/l, 10 atm), 60 O P/Rh Time (hl 1.7 1.5 2.6 1.5 4.7 1.5 6.0 1.5 8.0 1.5 13.0 3
Rhtacac)tCOh, PPMNC&d, Hz/CO (l/l, 10 atm), 60 O P/Rh Temp Time (tin) 2.3 60” 90 4.7 60” 90 6.4 60” 90 9.2 60” 120 9.2 70” 90 13.6 60” 190
I w
(66) (75) (83) (85) (81)
Cd-k, Conversion (%) 88.9 92.4 94.5 91.5 92.8 87.1
Rh(acac)(CO)2,P(~6H3Me-4-Bu-t-2)3, URh = 10, CO/I-I2 (l/l, 20 atm), C6H6,70 o
Co#o),(L),, H2/C0 (8/l, 45 at@, dioxane, 150”, 3 h Ligand
II
1:II
VI
(18) (21) (11) (7)
3.4 2.1 6.1 11.5 14.8 14.5
(15) (10)
(4)
(12)
(1)
W) (9) (4)
(0) (0) (0)
(6) (6)
(2)
596
I+II+vI 1 (65) (71) (73) (73) (75) (74)
II
1:II
VI
(22) (20) (19) (15) (16) (9)
6.0 3.6 3.8 4.9 4.8 8.6
(3)
(2) (2) (3) (3) (4) 468
1(66) + alkenes(9)
597 II
v
III
Iv
VIII
hexane
hexenes
co
(30)
(13)
(6)
(25)
(15)
(2)
P(Bu+Q3
(42) (41) (38)
(19) w (17) (17)
(7) (8) (7) (7)
(11) (12) (15)
(6) (7) (8) (5)
(2)
(8) (10) (9)
(1) (4) (4
(9) WV
(4) (29)
P(C$-k~Hd3 WfWWWH3)3 P(CH2CH2CN)3
I
(26)
(6)
(2) (3) 06
Rh(acac)(CO)z,ligand, LJRh = 10, PhMe, CO/I-I2 (l/l, 20 atm), 80”, 20 h
I(90) + II (2) + internal isomers (8), 1:II = 49
224
[Rh(CO)2Cl]2, ligand, I&h = 1,80”, CO/H2 (l/l, 20 atm), HzO/PhMe (l/l)
I + II (89), 1:II = 0.88
598
I + II (66), I:11 = 1
598
I + II + v (-), I:(II+V) = 3.75
599
Co3(CO)9CSi[O(CH2)2(OCH2CH2)nOH13, I + II + v (-), I:(II+V) = 0.73
599
Ph [Rh(CO)$l]2, ligand, LJRh = 1, 80”, CO/H;! (l/l, 20 atm), HzO/PhMe (l/l)
Ph Co3(CO)&Si(OH)3, CO/H2 (l/l, 126 atm), PhMe, 120”, 12 h
CO/H2 (l/l, 70 atm), PhMe, 120”, 8 h
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
600
CO/H;! (70 bar), 1ZO”, 18 h, toluene
(CO)3
internal hexenes
TON
I+Il
1:II
86.9
4633
(96)
2
(3)
Ga
87.5
3525
(91)
1.6
(7)
In
46.0
2186
(52)
0.8
(37)
E
Conversion
Al
PtQ(phosphineh,
(%)
601
SnC12, P/Rh = 2, PhMe,
1000 psi), lOO”, 8 h
CO/H;! (l/l, Ligand
TOF
1+11
P(CH2Ph)3
71
(17)
3.5
p(c2Hfl)S
62
(49)
5.6
W3W’U3
53
(42)
7.2
PtC12 (phosphineh
CO/H2 (l/l,
1:II
601
on glass, SnC12, P/Rh = 2,
1000 psi), PhMe&O,
lOO”, 8 h
Ligand
TOF
I+II
TPPTS
5.7
(5)
10.3
TBeTS
4.5
(4)
3.7
TEtPTS
3.0 2.6
(2) (2)
5.8
TPSTS
~l?W’W4~ CO/H2 (l/l,
1:I.I
8.7 602
QW-WWW, 10 atm), PhMe, 80
2-hexenes
[Zr]:[Rh]
Time (min)
Conv. (%)
I + II
I:11
v
0
160
100
(77)
3.0
63) (26)
1
95
100
(40)
4.0
(1)
(45)
2
345
100
(71)
3.4
c-4
(35)
4
280
loo
(45)
2.8
e-4
(35)
8
515
47
(18)
2.1
e-4
(4
HWCO)D’(OPW3,
602
C@WCWPh2),
CO/H2 (l/l,
10 atm), PhMe, 80”
m1:lw
Time (min)
Conv. (%)
I + II
I:11
v
2-hexenes
0
135
100
(71)
0.5
(24)
(4)
1
200
100
(73)
4.2
(2) (28)
1.7
100
97
(59)
3.2
c-4
3
235
100
(58)
3.2
c-4
(44
9.2
505
66
(15)
2.0
t-1
(43)
C%(C0)6(phosphine)2,
(17)
597
phosphine,
dioxane, HE/CO (8/l, 45 atm), 3 h Phosphine
Temp.
P/Rh
I
II
III
IV
v
VIII
hexane
P(Cd%oMeh
150”
0
(41)
(18)
(12)
(7)
(8)
(2)
(9)
P(Cd%0Meh
150”
1.3
(10)
(2)
(1)
(0) (0) (1) (0)
P(C3H@Me)3
150”
6.5
(7)
(1)
(1)
P(Cd%oMe)3
180”
6.5
WV
(1)
(11)
P(C3boMeh
150”
10
(2)
(W
w
(1) w (0) (2) (1) (0) (0)
P[(CH2)2CN]3
150”
0
(26)
(17)
(6)
(5)
(7)
PWHMNl3
150”
10
@I
m-J
(0)
(0)
P[(CH2)2CO$fel3
150”
0
(38)
(17)
(15)
PW-&C02M&
150”
10
(W
w
(0)
K$WWW5h, H2/C0 (l/l,
PPh3, L/Rh = 3,80”,
(4)
(5)
(81) (86)
(15)
(59)
(5)
(92)
@I
(10)
(29)
(0)
(0)
00
(9%
(8)
(7)
(4)
(9)
(4)
(0)
(t-0
(0)
(5)
(95)
(W
(4)
I:II=75:25,
I + II (55)
603
I:II=73:27,
I + II (78)
603
30 bar), 24 h
(CSMe5)Rh(HC&-p)2, H2/C0 (l/l,
hexenes
PPh3, URh = 3, 80”,
30 bar), 24 h
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
I + II (-), I:II=7.2
Rh(acac)(CO)z,ligand, 100”, CO/H;! (l/l, 110 psi) F
604
F
605
Rh(CO)z-zeolite X, phosphine, P/Rh = 10, H2/C0, 120”, 17 h PR3 PPh3 PPh3 PEt3 PEt3
Hz/CO (atm) 50 50 50 20
P(Pr-n)3
50
PEt2Ph PEt2Ph
50 20
Solvent PhMe EtOH EtOH EtOH EtOH EtOH EtOH
1+11
III
III+IV
(79) (38) (-3
3.3 2.9
(21) (52)
-
(80)
(4 (4 (-4
-
WV (32) (40)
c-1
-
(60)
III:IV 3.5 100:o 2.5 2.4 3.5 21 10.1
Diethyl acetals
F-9 (10) C-1 t-1 c-4 (30) (30) 605
Rh(CO)z-zeolite Y, phosphine, P/Rh = 10, Hz/CO (50 atm), 120”, 17 h PR3
PPh3 PPh3 PEt3 P(Pwz)~ PEt2Ph
Refs.
Product(s) and Yield(s) (%)
Conditions
Solvent PhMe EtOH EtOH EtOH EtOH
Diethvl acetals
1+11
III
III+Iv
III:Iv
(60)
(3.8) (5) c-1 e-3 (4
(15) (36) (70) Gw (30)
(3.9) e-1 (100:O) (30)
(35) (-4 (4 c-4
(5.1) (5.3) (24)
(---) (-4 (30)
Rh(sulphos)(C0)2, CO/H2 (l/l, 30 barj, H20kMeOWisooctane (l/l/l), 80”, 5 h
I (37) + II (17) + III (trace) + hexane(1) + 2-hexenes(33) + 3-hexenes(2)
606
[(CpFe(~5-C~H~PPh2))2Co(CO),l [Co(CO)4], CO/H2 (l/2, 2000 psi), PhMe, 170”, 3 h
I + II (7); III + IV (61), 1I:IV = 1.9
607
c0#0)8,ligand, UC0 WW’h)3 PhMe W2W’h)3 PhMe Wd-4J’hh PhMe P(C$-kiPh)3PhMe WY-M’h)3 PhMe TPrPTS TPrPTS TPrPTS TPrPTS TPrPTS l-PI-P-I%
601
= 5, 190 ‘,
Hz/CO (800 psi) Ligand Medium
PhMe/HzO (2/l) PhMe&O (2/ 1) PhMe&O (2/l) glass (PhMe/H20) glass (PhMe/HzO) glass (PhMe/H20)
HKO l/l l/l l/l 9/l
Time (h) 4 4 4 4
l/9 l/l
4 8
9/l l/9
8 8
l/l 9/l l/9
8 8 8
1+11
III
III + IV
IIIW
hexane
(39) (24)
(13) (9) (30)
-
(-4 (4
(21)
3.1 5.3 9.4
(0) (25)
(53) 10.6 (13)
(19) (13)
(35) (11) (38) (15) (9) (27)
1.3 0.7 2.3 3.6 3.6 3.7
31 8.8 50 1.2
(1) (0) (0) (0)
-
(0) (0)
-
(16) (18) (48) (14) (31) w
Gw 608
Rh(acac)(CO)z,Cp$rH(CH2PPh2), PhMe, Hz/CO (l/l, 10 atm), 80”, 3.5 h zrnth
Conv. (%)
1+11
2-hexene
III
1.4 2.7
56 84
(35) (69)
(21)
1.8-2 1.8-2
(15)
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS
Conditions
(Continued)
Product(s) and Yield(s) (%)
Refs. 608
Rh(acac)(CO)z,Cp$r(CH2PPh&, PhMe, Hz/CO (l/l, 10 atm), 80”, 3.5 h zr/Rh
Conv. (%) 86 99
0.9 1.2
RhC13,phosphine, P/Rh = 13, lOO”,7 h, PhMe&O (2/3), pH = 6, CO/H2 (l/l, 5 MPa)
(~&C&h R Cd& w-h3
Conv. (%I 93.6 97.9
Cd421
96.0
2-hexene
1:II
(52) (85)
(34) (13)
1.8-2 1.8-2
CHO
RW
1
8OH
I+II
I
+
II R
243
CHO
3
1+11 (91)
(86) (83)
Ru3(CO)I2-2,2’-bipyridine on silica f22, CO/H2 (l/l, 50 bar), 150”, 17 h, PhMe
I+II(O),III+IV(33-97),III:IV=
I~(CO)(PPh3)214SiW~20~ PhMe, CO/H2 (l/l, 1000 psi), lOO”, 3 h
I + II + V (96), 1:II:V = 13:57:30
Pt(acac)z,TfOH, DPPF, Hz/CO (700 psi), loo”, 20 min
I + II + V + III (-), 1:II:V:III = 20.7: 1.7:0.3:0.7
HRh[P(OPh)&, CO/H;! (l/l, 10 atm), PhMe, 80”, 260 min
I (13) + II (48) + V (34)
602
HRh(CO)[P(OPh)&, CO/H;! (l/l, 10 atm), PhMe, 80”
I (16) + II (53) + V (32)
602
HWCQ[PU’h)313, CpzfiH(CH$‘Phd,
I(lO)+II(51)+V(43)
602
510
1.1-0.9
522
ZdRh = i.5, CO/H;! (l/l, 10 atmj, PhMe, 80°
IRh(CO)(PPh3)214SiW120~, PhMe,
I + II + V (92), 1:II:V = 10:40:50
522
II + v (-), v:II = 90:4
223
CO/H2 (l/l, 1000 psi), lOO”, 3 h mh(COD)(diphosphine)]BF4, 60”, 70 h, FN, S H20 (30% DMF), < nc CO/H2 (l/l, 100 atm)
Bu*
Bu
/--PPh2 -PPh2
Rh(acac)(CO)z,P(C6H4S03Na-m)3,H20, per@cyclodextrin-(Me-oh-2,6), P/Rh=5, CO/H2 (l/l, 50 atm), 80”, 6 h Rh(acac)(CO)z,P(C6H4S03Na-m)3,H20, P/Rh=5, CO/I& (l/l, 50 atm), 80”, 6 h
L T
IRh(COD)OAc12, PPh3,L/Rh = 10, CO/H2 (l/l, 20 atm), CeH6,90”
a 0I
610
I(2)
CHO
I(2)
610
LCHO
Rh(acac)(CO)z,P(OC6H3Me-4-Bu-t-2)3, IJRh = 10, CO/H2 (l/l, 20 atm), C6H6,70”
1 W)
m(COD)OAcJ2, PPh3,LJRh = 10, co/H2(i/i, 20at@, cd&,90’
OH’7
PPh3,C&j, Co/D2 (l/l, 70 atm), IOO”,20 h
Bu
Bu
Rh203,
ODC+
=WW’Ph3)3, C6H6,fl, 4 4 CO/H2 ( l/2, 1 atm)
(r/CHO
468
’ (78j
468
I(91)
(89)
468
+
D+
(11)
611
(34)
368
1 (-1
517
CHO [R~(OAC)(COD)]~, P(OPh)3,L&h = 2.5, CO/H2 (l/l, 5 bar), CICH2CH2Cl, 80” Rh203, C6H6,CO/l-I;!(l/l, 150 atm), lOO”, 2 h
I (82-84)
452
TABLE I. HYDROFORMYLATION Reactant
0I
OF ALKYL-SUBSTITUTED
MONOOLEFINS
Conditions
(Continued)
Product(s) and Yield(s) (%)
Refs.
Rh(acac)(CO)z,P(C&S03Na-m)3, H20, per@cyclodextrin-(Me-o)2-2,6), P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 2 h
I(5)
610
Rb(acac)(CO)p,P(C&SOsNa-m)3, H20, P/Rh = 5, CO& (l/l, 50 atm), 80”, 2 h
I(4)
610
Co(acac)2,n-C7Ht6, CO/H2 (l/l, 150 atm), 1lo”, 12 h
I(74)
452
c0#0)8,c&j, co/H2(l/l, 150atm),
1 (80)
452
I(78)
612
1 (80)
612
120”, 8 h
-/\ \ / \ - owm2 3 /\I - /\-I/\- /\/\/\ 1- -
Rh(acac)(COh, P/Rh=2, PhMe, CO/H;! (l/l, 20 atm), 80”, 23 h
-
-
/
-
OP(OPhh
\/
Rh(acac)(CO)2,P/Rh=2, PhMe, CO/H2 (l/l, 20 atm), 80”, 23 h
oww2
OP(OPhh
CO/H2 (l/l, 56 atm), toluene, 90” C02H I
R
Conversion after 1 h (%)
1w
H Me
37 40
37 40
613
C02H CO/H2 (l/l, 56 atm), toluene, 90”
R
Rh(COD)(OAc), P(OC&14Bu-t-2)3, LiRh = 10, C&, 90”, 0.5-2 h,
R
Conversion after 1 h (%)
H
11 31
Me
I (%)
613
9 31
614
I(--)
CO/H2 ( l/2, 18 bar) CO/H2 (l/l, 80 atm), C,H& l20”, 8 h Catalyst l&2@-Cl)@-SCHZ-polystyreneresin)(C0)2(PBu-t3)2 Rh&kCl)[p-S(Cg&Me-4)](CO)2(PPh2-polystyrene resin)2 Rh2(p-CI)[CI-S(C6H&l-4)](C0)2(PPh2-polystyreneresin)2 I&&t-Cl)[p-S(CH2)3Si03-silica 60](C0)2(PBu-t& Rh~(~-C1)[p-S(CH~)$i0+lumina 90](CO)2(PBu-f3)2
[(r15-C,Hs)~2(c1-CO)(cI-Ph2PpY)(CO)C~l, I (-93) CO/H;! (l/l, 80 atm), C6H6,80”, 24 h
615 I Cl C-1 (-) (-3 t-3 616
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Reactant
cis-[Rh { P(Bu-t)J} (CO)]2(p-Cl){ p-P(Bu-t)~}, CO/H2 (l/l, 80 atm), PhMe, 120”, 20 h
I (94) + cyclohexane (6)
Poly(N-vinyl-2-pyrrolidone)-
I+
OH II
Co2Rh2(CO)r1,CO/H2 (l/l .2,55 kg/cm2), C&, 80”, 8 h W&hd39 Hawk H20, 180”, 10 h
RU3(C0h29
[Pt(C,l$)(DPPB)]/CF$O3H (l/l), PhMe, CO/l-I2 (l/l, 100 atm), lOO”, 48 h
Refs.
Product(s) and Yield(s) (%) 617
I + II (-), III = 64.1:35.9
566
0”
II (60) + cyclohexane (9)
493
I (24) + II (2) + cyclohexane(1)
259
618
~~(CO~[P(B~-~)~I~(CI-C~)(CI-SBU-~), CO/H2 (l/l, 80 atm), 120”, 23 h
618
Rh2(CO)2IP(Bu-t)312(CI-Cl)CCI-S(CH2)2Si03I(75) silica gel], CO/H2 (l/l, 80 atm), 120”, 20 h
618
I(85) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ silica gel], CO/H2 (l/l, 80 atm), 120”, 20 h
c7
Rh4(CO)12,CO/H2 (l/l, 34 atm), 125”, n-hexane
I(--)
619
K[Ru(saloph)C12],EtOH, 130”, CO/H2 (l/l, 21 atm)
1 c--1
553
cis-PtQ(PPh~)2/SnCl~~2H20(1:5), CO/H2 (l/l, 100 bar), CHC13,90”, 6 h
I (53) + Cyclohexane (3)
492
~(CO)&P(OPh)3 (l/6), PhMe, 50”, 48 h, CO/H2 (l/l, 1 atm)
I(90)
620
Co2Rh2(CO)#(OPh)3 (l/6), PhMe, 50”, 48 h, CO/H2 (l/l, 1 atm)
I(51)
620
Ce(CO)s, RuB(C0)t2, Ru/Co = 9.9, THF, CO/l& (l/l, 80 kg/cm2), 1lo”, 4 h
I(lO0)
621,536, 622
Wacad[P(OPh)h WPh)3,80”, CO/H2 (10 atm), 4.5 h
1w
260
Co(acac)2(H20)2,CbH6,353 K, 4 h, CO/H2 (l/l, 9.4~10” KN/m2)
I (20) + II (19) + cyclohexane (13)
623
C%Rh2(CO)12on Dowex MWA-1 resin, CO/H;! (l/l, 50 bar), PhMe, lOO”, 16-19 h
II (77)
588
(56) + A/ CHO t-Bu A/
624
t-Bu
Na$Ur~2(C0)30J, Hz/CO (l/l, 120 atm), lOO”,90 min
t-Bu
7P
[Rh (COD)OAc12,PPh3,L/Rh = 10, CO/H2 (l/l, 20 atm), C&&j, 90”
3(“““”
(77)
468
L
Rh(acac)(CO)2,P(OCeHjMe-4-Bu-t-2)3, lJRh = 10, CO/H2 (l/l, 20 atm), C,l&, 70”
LcHo
I (79) + alkenes (15)
468
m(COD)OAc12, PPh3,LJRh = 10, CO/H;! (l/l, 20 atm), ChH6,90 O
I(85)
468
Pt(C&)(DPPB)/MeS03H, PhMe, CO/H2 (l/l, 100 atm), lOO”, 5 h
1 (98)
625
CHO I(93)
625
625
HRh(CO)(PPh&, PhMe, 1 h CO/l-I2 (l/l, 100 atmj, 100” Pt(DPPB)Cl#nC12, PhMe, CO/H2 (l/l, 100 atm), loo”, 1 h
(tr)
468
[Rh(COD)OAc12,PPh3,LJRh = 10, CO/H;! (l/l, 20 atm), C&j, 90 O
Pt(C2&)(DPPB)/MeS03H, PhMe, CO/H2 (l/l, 50 atm), lOO”, 5 h
CH20H
I(98)
625
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Product(s) and Yield(s) (%)
Conditions CD0
Pt(C2H4)(DPPB)/MeS03H,PhMe, CO/D2 (l/l, 50 atm), 1OO”,5 h
1. Cq(CO)8-Ru3(CO)12,C&, CO/H2 (l/l, 80 kg/cm2) 2. NaBb
(81)
625
+
+
go”, 4 h, I
II
I:0
0:l 1:l 1:5 1:lO
Wd-h
R%(co)12~
1)3,
HCQNe,
III
I
II
III
(1% w
(1) (0)
83
(9) (1) (2%
93 99
(38) (55)
(21) (12)
(4) (3) w
(15)
I (86) +
493
(9)
J5
H20, 180”, 10 h CO/H2 (l/l, 100 atm), THF, 70”, 16 h
626
OH
Conv. (%) 41 3
Catalyst Co:Ru
Refs.
&
I +
OHcs
II
248
i-Pro& .CO$r-i
I + II (-); 1:I.I = 60:40
9 h,
p-y-0 (cv2)3
,m+(CW BK CO@-i
i-PrO2C
Rh(COD)BPb, CO/I-I;!(l/2,200 psi), CHC13,47”, 20 h
251
I (-) + II (-) + starting material (11) 1:II = 4852
[Rh(COD)(PPh3h]C10flPh3, URh = 10, CO/I-I2 (l/l, 5 atm), (ClCH&, 80”, 5 h
I + II (-), 1% = 1:3.7
Pt(CODh, Ph$OH, phosphines,CeH6, CO/I-I2(l/2,50 bar), lOO”, 1 h
I+II+
h
Catalyst
1+11
1:Il
III + IV
III:IV
heptane heptenes
Pt(COD)2/PPh2OH/PPh3(l/l/l) Pt(COD)2/PPh20H/PPh3( l/ l/2) Pt(COD)2/PPh20H (l/2) Pt(COD)2/PPh20H/DPPE(l/l/l)
(10) (3) (4) (24)
1090 1090 1090 1090
(9) (6) (2) (3)
1090 1090 1090 1090
(1) (tr) (2) (1)
[RhCl(COD)]2, PPh3,P/Rh = 1, C&Is, CO/H2 (l/l, 30 bar), 45”
I
517
OH III
n-C5HI IbCHo
’ + n-C5H1,
n-Buw
III +
n-I+-
n-Bum
v + nehR
1:II:III:IV:V:VI
627-630
(30) (10)
(80) (33)
CHO
* +
631
IV +
VI
= 69:31:34:13:4:3
[RhCl(COD)]2, PPh2-polystrene,P/Rh = 1, Cd&, Co/H;! (l/l, 30 bar), 45”
1:II:III:IV:V:VI
Rh(anthranilate)(COh, P(OPhh, P/Rh = 3.1, CO/I& (l/l, 1 atm), PhMe, 40”
I + II (78) + hept-2-ene (22)
= 51:49:31:16:7:4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [PF&, 2 PR3,Co/H2 (l/l, 5 bar), 80”, ClCH2CH2Cl Time (min) PR3 PPh3 330 570 WPhh P(OMe)3 420
+
631
570
632
Conv. (%)
I/II
93 40 8
0.70 3.44
2.57
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ pF6]2, 10 Pph3, Co/H2 (l/l, 5 bar), 80”, ClCH2CH2Cl,
Refs.
Product(s) and Yield(s) (%)
Conditions I + II (78), III
= 3.33
632
I + II (-),
= 69:22
633
5h
Rh4C~(Co),(o,~(PPh,oBu-i)2,
PPhzOBu-i, CO/H2 (l/l,
III
1000 psi), DMA,
90”, 24 h IRhWW
W3bR-%
R
}2lC104,
I + II + n-BuCH(Et)CHO
co/H2
Time (miu) for 50% conversion
I:(II+vII)
Me0
29
68 : 32
Me
27
68 : 32
F
18
64 : 36
Cl
21
47 : 53
Catalyst., CO/H2 (l/l,
50 atm), Me&O,
634
t-1
635
80” Selectivity
catalvst
www1wm3
VII
n-octanal (I/Products)
58
I212
43
[~(pz)(~~)~(~~)3]2
37
IRhWWOD)12
[Rh(Pz)(COD)J2
74
+ 16 PPh3
~(MePz)(COD)]2
73
+ 16 PPh3
DWMe2~)(COD)h
37
[Rh(Pz)(CO)PPh3]2
63
+ 2 PPh3
m(MePz)(CO)PPh&
64
+ 2 PPh3
@h(Pz)(CS)PPh3]2
68
+ 2 PPh3
[Rh(Me$z)(CS)PPh&
70
+ 2 PPh3
64
imm4e;?~)csw~3hlC~04
1(45) + II (10) + n-CgHl&HO
HRh(CO)(PPh&PPh2polystyrene, polystyrene-PPh#H2, CO/H2 (l/l,
+ n-C1 tH&HO
THF,
(12)
(2) + n-C13H27CHO
636 (tr)
120 lb/in2), 60”, 16 h
[Rh(NBD)C1]2/PPh3
(l/10),
MezCO, lOO”,
I + II (-),
III
= 83.5: 16.5
637
CO/H;! (3/l 1,38 atm)
IJU$COD)OAC]~,PPh3,IJRh = 10, co/H2(l/l, 20at@, cd&,90 o
I(77)
[Rh(COD)OAc12,
TCHO
PPh3, IJRh = 10,
co/H:!(l/l, 20at@, c&j, 90 ’
468
(77)
+C * W (9%
468
D
Rh4(co)I2, c&j, co/D2(l/l, zoo),100”
CD0
H2.50D0.50
C%(CO)s,
c&,
CO/D2 (l/l,
200), 100”
(99)
638
HOa3D0,17
638
.67DO*33cm
493
I (50) + II (6)
Rh(COD)(OAc), URh = 10, C&j,
P(C&OBu-t-2)3,
493
TCHO
(-4
614
70”, 30-60 tin,
CO/H2 ( l/2, 18 bar)
0” 0\
Rh(COD)(OAc), C&j,
P(C&OBu-t-2)3,
75”, Co/H2 (l/2,20
614
bar)
Wacac)lp(OPh)312, WW3, go”, CO/H2 (10 atm), 3 h
Ru3(C0h9
Wd-6
H20, 180”, 10 h
d3, Hawk
CHo
(24)
260
0 493
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Product(s) and Yield(s) (%)
c8
Refs.
CHO CO/H2 (l/l), THF, 70”, 16 h
248, 639
i-PIQC xo#r-i
,~+(COD) Bh-
p-P,-0 U-f213
O-P-O
dA
CO#r-i
i-Pro&
Pressure(atm)
I : II
Yield (%)
10 24
50 : 50 75 : 25
(-3 c---j
56 100
98 : 2 97.5 : 2.5
(4 (--->
IRh(CO)&1]2, PPhMez,ChH6,CO/Hz, 60”
I + II (-), III = 96:4
640
WCOD)BPb, CO/H2 (112,200 psi), CHQ, 47”, 22 h
I (-) + II (-) + starting material (11)
251
[RhCl(CO)2]2, lJRh = 5, Et3N/Rh = 10, CO/H2 (l/l, 20 bar), PhMe, 40”, 6 h Ligand TPP
III = 97.3:2.7 6% 642 Conv. (%)
III
1+11
PPh3 PPPN 0-TDPP
100 87
84: 16 94:6
82 75
91:9 80:20
PPP DMTPPN t-BDMP
49 32 0
87:13 94:6
WV (9% (W w w-v (1W (0)
m(NBD)(2,5-bis(diphenylphosphinomethyl)bicyclo[2.2. l]heptane)C104, CO/H2 (l/l, 40 atm), C&&j, 25”, 72 h
[Rh(COD)C&, CO/H2 (l/l, 600 psi), CH@, 80” Time (h) Ligand Ph2P(CH2hPPh2 4 Ph2P(CH&CS&N-2 1 1.5 Ph#CH#Me2 Ph$(CH&NMe2 Ph2P(CH2)3NMe2 Ph2PC&N-2
1.5 1.5 1.5
(C13-MeC)Co3(C0)7(~-Ph2PCH2PMe2),
247
I + II (-), III = 97:3
643 Yield (%) (32) (76) (59) (87) (85)
III 92:8 91:9 94:6 91:9 97:3
(W
98:2
I+ II (23)
PhMe, CO/I-I;!(l/l, 80 bar). 105”, 67 h III = 1:4
245
I(-)
PtiDIOP)Cl$Fe/e-, propylene carbonate, CA, CO/H2 (l/l, 100 atm), 90”, 7 h
I(-)+II@),I:II=1:9
245
PQ(PPh& SnC12.2H20,MEK, 70°, CO/H;! (l/l, 100 atm), 4 h
I + II (-), III = 65:35
645
1. Pt(DIOP)zCl#e/e-, propylene carbonate/ C&I6 (40/60) 2. CO/H2 (4/l, 100 bar), 90”, 24 h
I + II + III (-), 1:II:III = 990: 1
244
R(c2&)((+)-DIoP)/3 MeSOjH, PbMe,
I+II+III(5)+
CO/H2 (l/l,
100 atm), lOO”,4 h
+ II (74) +
03)
Pt(DIOP)Cl$Sn/e-, propylene carbonate, C&Is, CO/l-l;! (l/l, 100 atm), 90”, 7 h
III
r
OH
o^
Iv+
02,:
646
I + II (58), III = 15.6:84.4; IV + V (7), IV:V = 4.4:95.6 Pt(Czb)((+)-DIOP)/SnC12, PhMe, CO/H2 (l/l, 100 atm), 100°, 4 h
I + II (85), III = 41.3:58.7; III ( 12);
R(C2H4)( 1,2-(CH2PPh2)2~~)/snC12,
I + II (84), III = 44.8:55.2; III (15)
PhMe,CO& (l/l, 100 atm), lOO”, 4 h
IV + V (3), 1V:V = 32.3:67.8
646
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Product(s) and Yield(s)
F%c12((+)-DIoP)/3 SnCl2, PhMe, CO/H2 (l/l,
(%)
Refs.
I + II (77), III
= 49.8:50.2; III (14)
646
I + II (43), III
= 95.9:4.1; III (3);
499
100 atm), lOO”, 4 h
PPN[HRu(C0)4], CO& (l/l, 300 atm), DMF, 150”, 16.5 h PQ(bisphospbine),
IV + V (52), IV:V
= 93.2:6.8
SnC12, PhMe, 100”,
131
CO/H2 (l/l, 80 bar), 4 h Biphosphine
Conv. (%)
1+11
III
Pb2PCH2PPh2
2
WV
55:45
Ph2P(CH2hPPh2
9
(72)
72128
WW-W’Pb
76
&2P(CH2)4Pm2
71
(86) 030)
43:57
cis-PtCl2(PPh3hlSnC12.2H20
CO/H;! (l/l,
( 1:5),
I + II + III (4)
27173
I + II (50), III
= 46:54
492
100 bar), CHC13, 90”, 4 h
HRhKO)(PPh3)3,
PPh3, LlRh = 5, PhMe,
I + II (NO), III
= 58:42
647
I + II ( lOO), III
= 89.2: 10.6
647
I + II (loo), III
= 33.566.5
647
CO/H2 (5 bar), 80”, 2 h Rh2Q.t~SBu-t)2(PPb3h,
PPh3, LJRh = 10,
CO/H2 (5 bar), ClCH2CH2Cl,
80”, 2 h
~2(~-SBu-~hcP(OPh)312, Pme, CO/H2 (5 bar), 80”, 2 h IRh(COD)(TPPTS)$104,
H20, 80”,
I + II (86), III
= 70:30
647
CO/H;! (l/l, 5 bar), 18 h R~~(~-SBU-~~(CO),CS~, CO/H2 (l/l, 5 bar), 18 h
H20, 80”,
co (15 am),
~2@2coH)[P(~-1?3h9
I + II (lOO), III
= 78.8:21.2
I (23) + II (57) + III (16)
647
577
H20, THF, 115”, 20 h
Rh$l2(CO)4,
507
Phosphine, P/Rh = 4, PhMe,
CO/H2 (l/l, Phosphine
100 atm), 140” Relative Rate
I : II
1.1
77 : 23
pfi3
1.0
74 : 26
DBP-Et
0.9
86: 14
PPh2Et
0.7
77 : 23
P(Bu-~)~
0.2
83 : 17
DBP-Ph
~H(CW’Ph3)3,
Pm39
W-h
648
co/H2(l/l) PfRb
Pressure (psi)
Temp.
I+II
III
3
100
60”
wm
11.0
3
400
60”
ww
13.9
3
800
60”
(97)
15.0
3
800
80”
W)
10.6
3
800
120”
WV
4.6
5.3
800
60”
WB
14.7
14.3
800
60”
WV
13.0
Polystyrene- 1% divinylbenzene
resins-
I + II (98), 1:II = 12.9
648
(C6H4P~2),~H(CO)(PPh3)3-x, P/Rb = 3.3, C&le, CO/l-l;! (l/l,
800 psi), 60” 648
RhH(CO)IPh2P(CH2hPPh21(PPh3), Ph2P(CH2)2PPh2, C&ls, CO/H2 (l/l) III
P/Rb
Pressure (psi)
Temp.
1+11
3
100
60”
(24)
1.4
60”
WV
9.0
3 3
800
60”
w9
11.9
16.7
400
60”
(55)
26.5
16.7
400
80”
(72)
21.8
16.7
400
120”
wm
12.3
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions C%(CO)g/pyridine CO/Hz (l/l,
(l/2), C6H6,60°,
Refs.
I + II (35), 1:II = 87: 13
649
80 atm), 20.5 h
[Rh(COD)C1]2, CO/H2 (l/l, Ligand
Product(s) and Yield(s) (%)
ligand, CHC13, 80”, 1.5 h,
650
600 psi) Conv. (%)
1:II
none
7
95:5
2-PPh*-CSH4N
66
98:2
2-P(0)Ph2-CSH4N
61
92:8
Ph$CHzNMez
59
94:6
fidYOPb~e2
100
91:9
Ph2P(O)CH$H2NMe2
74
91:9
2-CH2P(0)Ph2-C&N
63
87:13
2-CH2CH2P(0)Ph2-C&N
23
91:9
Rh4(CO)n, C&j, CO/H;! (l/l,
170 atm),
I + II (-),
1:II = 98:2
651
170 am),
I + II (-),
1:II = 64:36
651
I + II (-),
1:II = 14.5
620
I + II (-),
1:II = 8.6
620
20°, 15 h Rh4KOJ12, C6H6, CO/H2 (l/l, 130”, 0.2 h w(CO)#Ph3
(l/5), PhMe, 25’,
CO/H2 (l/l,
1 atm)
C%Rh2(CO)#Ph3 CO/H2 (l/l,
(l/3), PhMe, 25”,
1 atm)
IPt(C$Q)(DPPB)]/CH,S03H (l/l), CO/H2 (l/l,
PhMe,
~WCWPPW@W’pY (2/l), c&45, CO/H2 (l/l,
259
I + II (>99), 1:Il = 16.0
616
I + II (89), 1:I.I = 7.6
504
70 atm), 40”, 8 h
MeCC%(CO)&iCp, CO/H;! (l/l,
I + II (79), 1:II = 10.8:89.2; III (3); IV + V (6)
100 atm), lOO”, 22 h
THF, 60”, 141 h,
800 psi)
RhH2(02COH)[P(PT-i)&,
593
(Cl-l@),,
THF, 120”, 20 h C02Me
VII
I + II (26), 1,II = 37:63; III (23); IV + V (14), V:VI = 25:75; VI + VII (12), VI:VII
[MCOWOMeh
CO&
Rh/C (5%), DPPB, HC&H, DME, loo-105”,
CO (8.5 atm),
316
I+II(67),I:II=87:13
374
I + II (50), 1:II = 58:42
374
18-24 h
RhK (5%), DPPB, HCOzH, CO (8.5 atm), DME, 1 lo-120°,
24 h
Catalyst
P (atm)
Temp.
Conv. (%)
(I+II)/(I+II+III)
IRW’W’PYWI PWOhW DW’WPy)~CU[RhKOhChl
40
45”
17.50
97.15
17.98
40
75”
92.58
99.36
6.96
DW’h2PW~Cl1 [WCO);?W
40
100”
97.31
98.88
2.33
IRWbPpY)3CUBWQ2CI21 FW’WPy)sC~lPWCOhCl,l
60
45”
34.78
98.77
20.55
60
75”
98.68
99.62
20.06
~u(bP~)$11[m(C%CliJ
60
100”
99.54
99.62
11.49
DW’W’PyhC11B-KOW,l FWW’W3CWCohClil
50
75”
1.76
99.99
-
60
75”
3.40
88.27
-
[Ru(Ph2PPy)3C1]C1
60
75”
1.18
63.93
IRh(CWQ21 W'U
50
75”
12.61
71.42
(%)
652
I/II
-9.00
Catalyst
Temp.
Time (h)
CO/H2 (bar)
Solvent
I+II
1:II
(MeWCpVWCOk
100”
3
40/60 (70)
PhMe
(94)
73~27 58~42
~Q)~(coh (MeO&Cp)Rh(C0)2/5
(Cp)Rh(Co)#
= 17:83
I + II (79), 1:II = 95:5
PPh3
PPh3
(MeO$Cp)Rh(C0)2/5
PPh3
100”
3
40/60 (70)
PhMe
(92)
80”
3
40/60 (56)
PhMe
(99)
99:l
80”
3
40/60 (56)
PhMe
(25)
99:l
60”
1
40160 (56)
PhMe/MeOH
(85)
99:l
(l/4)
594
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Product(s) and Yield(s) (%)
(C~~,W~hH(co)o,
W6,
Refs. 371
I + II (>99), III = 98:2
CO/I+ (I/l, 380 psi), 50”, 20 h CO/Hz (l/l), PhMe Catalyst
653
Rh2(0Ac)3[(C6H4jPPh2](AcOH)2
Rh/PPhJ
P (atm)
Temp.
Time (h)
Conv. (%)
-
5 30 5
80” 80” 80”
20 2 20
95 100 79
(51) (74) (47)
1.0 2.8 0.9
30 30 5
80" 60"
2
100 100 97 99 100
(75) (92) (69) (89) (93)
3.0 11.5 2.2 8.1 13.3
-
Rh2(OAch[(C6H4)PPh212(AcOH)2 -
I
(head-to-tail)
-
tt
l/l
I,
l/l
80” 80” 60”
30 30
~~~~~~~~~~~~~~~~~~~~~~~~~~~~(head-to-head) II l/l l/l W@Ach 1, l/2 HRh(CO)(PPh3)3 II HRh(CO)(PPh3)3/AcOH
6 20 3 6
80" 80” 80” 80” 80”
20 20 20 20 2
96 100 99 100
(71) (85) (76) (58)
2.5 5.7 3.2 1.4
36
(87)
6.7
80”
2
40
(87)
6.8
594 Me02C PPh$Rh 0 5 5 5
Temp.
Time (h) CO/H2 (40/60, ba.rj
100” 80” 60” 60”
3 3 10 1
Solvent PhMe PhMe PhMe PhMe/MeOH (l/4)
70 56 56 56
cis+RhCl(NBD){ (R$)-5,11,17,23-tetratert-butyl-25,27-bis[( 1-phenylethyl) carbamoylmethoxyl-26,2&bis(diphenylphosphinomethoxy)calix[4]arene)]BF4,
I+II
III
(99) (98) uw
58~42 94:6 97:3 95:5
(94)
I + II (-), III = 95:5
654
I+II(56),I:II=6:1
655-657
CO/I-$ (l/l, 40 atm), CH$l$C&, 40°, 48 h RhCl(CO)(DPM)2-poly(vinylbenzyltriethylammonium chloride on silica, 85”, c-C6Htz, H20, EtOH, CO/H2 (l/l, 750 psi), 15 h
511
Rh(SOX)(COD), PhMe, 60”, CO/H2 (l/l, 0.1 MPa)
WPh)3
P/Rh 2
Turnover 43
Yield (%) t-3
III 39.8 : 60.2
DPPM DPPE
2 2
0 267
DPPE DPPP DPPP DPPP
5 1 2 5
90 74 194 213
t-1 (3 (4 (4 (4 C-1
96.0 : 4.0 97.4 : 2.6 93.8 : 6.2 95.4 : 4.6
Phosphineor Phosphite
94.5 : 5.5
SiO2-PAMAM-PPh2, [Rh(COhCl]2, CH2C12, Hz/CO (l/l, 1000 psi), 25’, 22 h
PAMAM generation conversiolj%)
Rh(acac)(CO)2,ligand, PhMe, CO/H2 (l/l, 20 bar) P/Rh Ligand PPh3 5 PPh3 20
I+II(-)
P(OC&(h-?)2-2,4)3
P(~6H@kt)&i)3
5 10
98 99
1 2
I : II
658
21: 1 30 : 1 659
Temp. 25” 90”
Time (h) 3 73
Conv. (%) 8 28.1
TOF (h-l) 7.5 2.9
III 24: 1 -
25” 90”
3 1
17.6 28.8
16.4 214
20: 1 -
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
I+II(-)
Rh(acac)(CO)z,ligand, PhMe, CO/H2 (l/l, 20 bar)
659
Ph Ph
R’ Ph
P/Rh Temp. Time (h) 5 25” 3
Ph Me
10 4
90” 90”
1 1
Conv. (%) 30.8 28.6 12.2
TOF (h-l) 28.7 214 92
1:II 20: 1 -
Rh(acac)(CO);?,P(C6H4S03Na-m)3,H20, P/Rh=5, CO& (l/l, 50 atm), 80”, 2 h
I + II (65), I:II=8
610
[Rh(CO)$l]2, PPhMe2,C&is, CO/Hz, 60”
I + II (-), 1:11= 96:4
640
660
Rh(acac)(CO)2,ligand, CO/H2 (l/l, 20 bar), PhMe (RO)2P-O-(cH2)n-O-P(OR)2 P(OR)2 = t-Bu
0’ p--o 1’
n 2 3
Bu-t
4
P-Q Bu-t t-Bu IJRh Temp. Conv. (%) 20 80” 25 2.5 40” 31
1:II 88:12 84:16
TOF 3710 1890 661
Pt(BDT)(P-P)2, SnC12,Sn/Rh = 20, HP/CO (l/2, 100 atm), THF, 125” P-P
Time (h)
1+11
1:II
W’hh DPPB
60
(50) (11)
19:81 (6) 37:63 (4)
24
PQ(DPPP), SnX2, AgY, H2/C0 (l/l), PhMe, 100” x Cl Cl Cl Cl F
Y TfO TfO TfO F
Sn/Ag/Pt UO/l 2/0.5/l 2/1/l 2ml 2/2/l
Time(h) 4 25 20 35 loo
PhEt
Alcohol (11) (1)
60
I+II+III Conv. (%) 76 86 94 98 60
I +II
1:II
(86) (73) (75) (70)
27~73 54:46 52:48 67:33
(72)
54:46
Rh(acac)(CO)z,ligand, LJRh = 5, PhMe,
662
H2/C0 (20 bar)
R H Bu-t Bu-t
Temp. 40” 80” 40”
Time (II) 4.0 3.5
Conv. (%) 2 68
23
20
cis-mCl(NBD){ (R&-5,1 1,17,23-tetratert-butyl-25,27-bis[( 1-phenylethyl) carbamoylmethoxyl-26,28-bis(diphenylphosphinomethoxy)calix[4]arene)]BFd,
1:II 80:20 75125 89:ll
TOF 10 480 25
I + II (-), 1:II = 95:5
654
I + II (56), 1:II = 6:l
655-657
I (-) + II (-) + starting material (11) 1:II = 97.3:2.7
251
CO/H2 (l/l, 40 atm), CH$&/C,&, 40”, 48 h RhCl(CO)@PM)2-poly(vinylbenzyltriethylammonium chloride on silica, 85”, c-CgH12, H20, EtOH, CO/H2 (l/l, 750 psi), 15 h Rh(COD)Bh, CO/H2 (l/2,200 psi), CHC13,47”, 22 h
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Product(s) and Yield(s) (%)
Refs. 660
Rh(acac)(CO)z,ligand, L/Rh = 20, CO/l&, PhMe t-Bu Bu-t
t-B; R H H Me0 Ph
HP/CO(bar) Temp. 1 (20) 40” 6 (35) 120” 1 (20) 80” 80” 1 (20)
Conv. (%) 13 13 25 18
Rh(acac)(CO)z,BIPHEPHOS, URh = 20, CO/I-I;!(l/l, 20 bar), PhMe, 40”
1:II 84:16 16:84 63:37 51:49
III (-)
TOF 47
(16)
6175 320 320
(-) (-)
660
HI = 77:23, I + II (27)
EtoYoEt
OEt
Rh#-OMe)z(CODh, 10 PPh3,HC(OEt)3, PPTS, CO/H2 (l/l, 50 bar), 60”, 24 h
(p
Rh(acac)(COh, phosphine, P/Rh = 2, CO/H;! (l/l, 50 atm), 20 O,22 h
I (77) + II (3), 1:II = 26.6
Rh(acac)(CO)z,phosphine, P/Rh = 20, CO/H;! (l/l, 50 atm), 20 O,22 h
I (7) + II (l), I,II=6
664
Rh(acac)(CO)z,phosphine, P/Rh = 20, CO/l-l2 (l/l, 50 atm), 20 O,22 h
I (7) + II (l), I:lI=6
664
Rh(acac)(CO)2,phosphine,P/Rh = 2, CO/H2 (l/l, 50 atm), 20 O,22 h
I(4) + II (-), I:II=lOO:O
664
I + II (loo), I:II=l 1
610
(93) +
fpOEt
(7)
Et2N,
,F’+-0Tf Et2N Rh(acac)(CO)z,P(C&$03Na-m)3, H20, per@cyclodextrinMe2+2,6), P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 2 h
662
Rh(acac)(CO)a,ligand, URh = 5, PhMe, CO/H2 (20 bar), 80”
Bu-t t-B; Isomer dl meso
Time (h) 23.0 20.2
Conv. (%) 3 11
I:II 84:16 79:21
TOF 3 15
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions Rh(acac)(CO)z,ligand, LJRh = 5, PhMe,
I + II (-), 1:II = 74:26
662
I + II (-), I:II=92:8
662
CO/H2 (20 bar), 40”, 21.5 h
Rh(acac)(CO)z,ligand, LJRh = 10, PhMe, CO/H2 (20 bar), 80°, 20.3 h
662
Rh(acac)(CO)z,ligand, CO/H2 (20 bar), PhMe, 80 O
R’ Bu-t H
R2 Me0 H
LARh 100 50
Temp. Time(h) 40” 42.3 80” 3.0
Conv. (%) 66 97
I:II 93:7 85:5
TOF 90 1860 512
Rh(sox)(CO)2,toluene, CO/H;?(l/l), 60 O Ligand PPh3 PPh3 DPPE DPPE
I//1 \ 13^ X
P/Rh 2 2 2 2
P (MPa) 0.1 1 0.1 1
Time (h) 7 5 7 4
Conv. (%) 3.0 98.0 29.9 91.0
I:II 70:30 100:o 93:7 100:o CHO
A. C%(CO)s, CO/H2 (l/l, 160 atm), 105”, 4-5 h B. Rh-Al2O3, CO/H2 (l/l, 160 atm), 85”, 2-5 h
665 x&
I+
xrcHon+
TABLE
I. HYDROFORMYLATION
Reactant
OF ALKYL-SUBSTITUTED
(Continued)
MONOOLEFINS
Product(s) and Yield(s)
Conditions
Refs.
(%)
A f
X
Ir 1\
HRh(PPh&,
CO/H2 (l/l,
I
II
III’
I
II
III
H
WV
(31)
(25)
uw
(19)
(1)
2-Me
(27)
(46)
(27)
(69)
(30)
(1)
3-Me
(41)
(30)
(29)
(76)
4-Me
(40)
(23)
(37)
(78)
(20) (4) (20) (2)
2,6-W&
(11)
(59)
(30)
(72)
(19)
2-OMe
(37)
(40)
(23)
(78)
(20) (2)
(9)
3-OMe
(42)
(31)
(27)
(80)
(19)
4-OMe
(45)
(24)
(31)
(72)
(20)
(8)
2-Cl
(24)
(56)
Gw
(15)
(1)
(83)
(15)
(79)
(19)
3-Cl
(40)
(36)
WV (20)
4-Cl
(38)
(33)
(29)
U-W2
(11)
(79)
(10)
3,4-(Cl)2
(36)
(34)
(29)
CHO I
.-o”
62 kg/cm2), 70”
/
[Rh(NBD)(ligand)]BF4,
X
I+ xJyHo
X
1+11
NO2
(75)
96.2 : 3.8
Br
ww
94.7 : 5.3
Cl
WV
95.4 : 4.6
H
WV
92.8 : 7.2
(1)
(2) (2) (2) (97) (1) (86) (12) (2)
II
666
1:II
OPh
(93)
93.0 : 7.0
Me
(W
91.4 : 8.6
OMe
(97)
91.8 : 8.2
667
PhH, 55”,
CO/H2 ( l/l, 200 psi), 24 h Lieand
X
1:II
DPPE
H
3.5
KGFd2~H212
H
13.3
DPPE
Me
3.2
E(W5)2~H212
Me
19
DPPE
Me0
4
IGW2~H212
Me0
16
DPPE
Cl
3.2
KW5)2~H212
Cl
10
DPPE
NO2
24
E(W5)2~H212
NO2
loo:0
Rh-PEVV,
CO/J& (l/l,
X
Ligand
41.4 atm), Hz0
Temp.
242
Time (h)
Conv. (%)
I + II
III
H
-
40”
22
13
(13)
17.3
H
10 PPh3
40”
24
12
Cl
-
40”
24
12
(12) (12)
15.3
Me
-
40”
22
14
(14)
9
Me
-
28”
24
4
(4)
36.7
CO/H2 (2/l, 500 psi),hexane, H20, 40”, 22 h
17.9
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Product(s) and Yield(s)
Conditions
lRb(COD)(OAc)12, CO/H2 (l/l,
CH2C12, 25”, 16 h,
800-1000 psi)
Rb&.-SBu-t)2(CO)2(Res-PPh&, CO/H2 (l/l,
8O”,
R
1+11
III
H
100
95:5
F
100
91:9
Cl
100
93:7
Br
100
93:7
Me
100
92:8
Me0
90
9o:lO
X
1+11
III
H
(94)
96 : 4
316
OMe
(98)
95 : 5
Me
(98)
95 : 5
Cl
(98)
97 : 3
NO2
(92)
96 : 4 1(76)
OHC-
0.37 MPa), 15 h
Refs.
(%)
+
669
CHO II (8)
Rh(acac)(CO)2,CO/I& (210 psi),
I+II(83),
III
(91:9)
+ internal octenes (4) 670
MeOH, H20,25”
Rh(SOX)(COD),
PPh3, L/Rh = 5, toluene,
COEl~ (l/1,0.1 Rh(SOX)(CUD), CO/H2 (l/l,
I + II (---), III
= 84.6:15.4
511
I i- II (--), III
= 54.5:45.5
511
I + II (---), III
= 3.2: 1
671
&lPa), 6O*, 10 h DPPE, L/Rh = 5, toluene,
0.1 MPa), 60”, 10 h
~~acac~~CO~~, DPPETS, L&h
= 3, 15 h,
CO/H2 (111,200 psi), Mexico,
120”
~ta~a~)(CO~2,
TPPTS, L/Rh = 10, 15 h,
CO/H~ (111,200 psi), MeOFl/HzO, ~~acac~~C~~2,
P(CH2C~~SO3Na-~~~,
I..&& = 2.5, CO/H2 (l/l,
671,
I+II(---),I:II=4:1
672
120” I-t-IQ--),I:II=
15 h
1.6:1
672
200 psi), H20, 120”
~(acac)(CO)2, Pt(CH2)2C~4S03Na-~l3, LRh = 2, CO/H2 (111,200 psi), HzO, 120”, 15 h
I -#-II (---)$ HI = 2:l
672
Rhiz[E,1-S(CH2)3Si(OMe~~]z condensed with SiOz,
I + II (57), I/II = 12, octenes (28)
673
P(OCH3)3, P/Rb = 7.8, toluene, Hz/CO (l/l,
latnr), 60”, 1 lh
~(a~ac~(CO~~, CO/H2 (l/1,20 Ligand
674
Ligand, L/Rh = 20, bar), PhMe, SO” Time (rnin)
Conv. (‘%)
I : II : internal octenes
120
81.2
72.6 : 25.9 : 1.5 73.1 : 26.1 : 0.8
120
76.6
70
1.1
73.6 : 26.4 : -
120
76.2
73.3 : 26.0 : 0.3
120
72.6
73.0 : 26.1 : 0.8
120
83.3
73.1 : 26.5 : 0.3
120
85.0
72,8 I 26.0 : 1,2
120
92.9
72.0 : 25.0 : 3.2
120
86.3
71.7 : 25.6 : 2.7
120
94.9
71.3 : 25.3 : 3.3
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUF3STITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions [Rh(NBD)(2,5bis(diphenylphosphinomethyl)bicyclo[2.2.l]heptane)ClO~, CO/l-l;! ( l/l, 40 atm), ChH6,50”, 6 h
I + II (-), III = 59:41
247
KCOh(PPh3)Co(p-PB~-t2)~(~0)(~~~~-tz)], Co/H2 (513, ‘to bar), c-C(jH,& 70”, 24 h
I + II (-), III = 64:36
675
Ru02-2,2’-bipyridine, BuPBr, 180”, 4 h, CO/H2 (l/2, 1200 psi)
I (tr) + II (tr) +
CR~~(CL-SBU-~)~(C~)~(TPPTS)~I, PmS, CO/H2 (l/l, 0.5 MPa), H20, cosolvent, 80”, 15 h Cosolvent (22% w/w) none EtOH MeOH MeCN Me$O
HO/\
m (69)
676
677
Conv. (%)
I/(1 + II)
18
95.5
92
82.7
83
89.6
80
83.6
90
86.2
Rh(acac)(CO)2,Ligand, H20, MeOH, CO/H2 (19.5 atm), 120”
678
Ligand 2 TPPTS P(C6H4[(CH2)3CdI4S03Na-pl-P)3 2 P(C6~E(CH2)6C6~S03Na-~]-P)s 2 TPPTS 10 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10
1+11
I/II
(47)
2.4
(85)
8.0
P(C6~[(CH2)6C6~SO3Na-~l-~)3
(88)
9.5
10
(88)
3.0
(84)
3.3
(78)
3.6
DW=VP-W12,
CO/H2
I + II (57-80), III = 52:48
316
lNWOD)(OWl2,
CO/H2
I + II (-), III = 55:45
316
[Rh(COD)(OCOCPh3)12,CO/H2
I + II (-), III = 55:45
316
Rh(acac)(CO)z,Ph2P(4-HO$C6H4), CO/H2 (l/l, 20 bar), 80”, THF, 250 min
I + II (-), III = 72.9:25.9
674
Et3N, H20, PhMe, 80°, CO/l-l;! (l/l, 3 MPa) Catalyst Time (h) 20 RU2(CI-O2CMe)2(C0)4(PPh3)2 Ru2(~--O2CMeh(CO)4[P(OPh)312 17 16 RU2(CL-O2CPh)2(C0)4(PPh3)2 RU2(C1-02CCF3)2(C0)4(PPh3)2 16 RU2(CL-O2CCMe3h(CO)4(PPh3)2 18 RU2(~-02CCMe3)2(CO)4[P(OPh)J2 22 Ru2(CL-O2CMeh(C0)4[P(OMe)312 20 20 Ru2(CI-O2CMe)2(C0)4(PBu3~
679
I
II
Octane Oct-Zene
(72)
(24)
(0)
(0)
(65)
(25)
(6)
(63)
(19)
(0) (0) (0)
(0) (0) (0) (0)
(45)
(14)
(11) W
(4)
(73)
(24)
(3)
(1)
W3) (16) (0) (0)
(2) (0) (0)
I (69) + II (29) + octane (2)
679
[Ru2(CI-OAc)2(C0)4(PPh3)21, P/RU= 5, H20, THF, CO/H2 ( l/l, 3 MPa), 85O,20 h
1(12)+II(4)
680
C~~Y~(T~-OC)CO(CO)~, Et20/THF = 4/l, CO/H2 (3/2,6.5 MPa), 135”, 5 h
I + II (75), III = 1.10-1.15
681
[(~5-C,H,)~2(cI-CO)(~-Ph2P~)(CO)Cll, CO/H2 (l/l, 80 atm), C6H6,80°, 14 h
I (48) + II (35) +
RU2(CI-O2CPh)2(C0)4(PPh3)2, Et& PhMe, 80”, CO/H;! (l/l, 3 MPa)
616
ACHO
-JCHO,,,
(7)+
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Co(OAc)#(Bu-n)3
(l/10),
26 h, CO/H2 (l/l,
hv, MeOH, 85”,
I + II (-),
1:II = 90: 10
461.462, 682
80 bar)
~(aCaC)(coh,P[(CH2)6C6~S03Na-~l3, LlRh = 2.5, CO/H2 (l/l,
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
I + II (-),
1:I.I = 2.2: 1
672
I + II (-),
1:II = 2: 1
683
200 psi), H20,
120”, 15 h Rh(acac)(Co)z,
P(oC6H@le-4-Bu-t-2)3,
URh = 50, CO/I-I2 (l/7,80 bar), PhMe, 80”
RhX (5%), P(OPhh, CO/H2 (l/l), PhMe, 90” Time (min) Pressure(psi)
1:II 86: 14
80-100
50
280-300
20
80:20
560-600
25
74:26
2500
25
69:3 1
RhK (5%), PR3, PhMe, CO/H2 (l/l, 80-100 psi) R Temp. Time (min)
1:II
90”
225
71:29
Ph
90”
35
82:18
n-BuO
110”
60
81:19
PhO
90”
50
86: 14
2-b&$,@
w”
52
78~22 52:48
2-Phc&I40
90”
95
4-Phc&L$o
90”
70
85:15
4-ClCfjI-L$O
90”
55
93:7
4-MeOC&O
90.
270
83:17
PKCW~Cd33-nl3,lo”,
CO/H2 (l/l,
684
I + II (72-84)
n-Bu
W-W%,
684
I + II (72-84)
I + II (85), 1:II = 2.9
150 psi), c-C&F~,CF~, PhMe
Rh(acac)(COh,
CO/H2 (10 atm),
1U3Oh rr (20)
685
NMP, AcOH, 70”, 1.5 h, Ph2P
S03Na
co/H2(l/l,
1500 psi), C&j,
135”, 12 h
I + II (-),
1:II = 2.4
686
co/H:!(l/l,
1500 psi), C&j,
135’, 12 h
I + II (-),
1:II = 1.3
686
I+II(-),I:II=
1.2
686
Ph
co oc’ ‘CO
CO/H2 (l/l,
1000 psi), 24 h, n-C6H14, 50” Ph
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
CO/H2 (l/l, 1000 psi), CbH6,50°, 24 h
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
686
I + II (-), III = 0.6
687
RhH(CO)(PPh&/PPh3 (l/200), diphosphine, CO& (l/l, 1 atm), PhMe, 85” I : II : 2-octene
Diphosphine None Ph2P(CH2)2PPh2 Ph2P(CH2)sPPh2 Ph2P(CH2)4PPh2 NBD, hv, CO/H2 (l/l, 75 bar), MeOH, 20”, 21 h
mc13,
77 : 7 : 14 82: 12 : 5 81:13: 86:lO:
5 3 (40) +
I(l)+II(3)+
688
MeO*OMe /VVVyOMe
(30) + OMe
-COzMe
(3) +
T
(13) C02Me
Rh(COD)BFa, ligand, 60”, PhMe, 18 h, L/Rh = 1.2, CO/I-l2 (l/l, 100 atm) Ligand PhN(CH2PPh2)2 p-CF3C6H4N(CH2PPh2)2 p-Me2NCe&N(CH2PPh2)2 DPPP
I+II(-)
689
III 62:38 6030 65:35 63~37 I (89) + II (4) + internal isomers (7), III = 24
224
Rh(acac)(CO)2,ligand, LJRh = 10, PhMe, CO/H2 (l/l, 20 atm), 80”, 20 h
I (90) + II (2) + internal isomers (8), III = 51
224
Rh(acac)(CO)z,ligand, URh = 10, PhMe, CO/H2 (l/l, 20 atm), 80”, 21 h
I (89) + II (3) + internal isomers (8), III = 30
224
Rh(acac)(CO)z,ligand, L/Rh = 10, PhMe, CO/H2 (l/l, 20 atm), 80”, 21 h
” ,-1 TP N-
Ph2P’
N
‘PPh2
~(hfacac)KOW, Pfm-F(CF2)6(CH2)2C6H413,III = 4.6: 1, I + II (-) LiRh = 6, CO/H2 (l/l, 60 atm), 60 O, scC&d(160atm), 19h
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
Rh(acac)(COh, ligand, MeOH/I$O (1 CO/H2 (210 psi), 120 O,5 h
A
B
lb = m-C6H4(CH2)3C6H4S03Na-p A A A A B B B B B B TPPTS TPPTS TPPTS TPPTS TPPTS
2 3 5 7 2 3 5 7 9 14 2 3 5 7 9
I+II
1:II
(29)
74126 74126 75125 70/30 68132
(31) (14) (5) (45) (57) (69) (73) (67) (30) (30) (37) (52) (54) (69)
2, 1, 10-phananthroline, LJRh = 4, CH3CONMe2,CO/H2 (l/l: 100 atm), 120”, 20 h
RUDE
76124 88112 9416 9713 98/2 68132 70/30 75125 76i2.4 76i24
I + II (55) + internal octenes(25) + octane (3) I:II=95:5
469
Rh(acacj(CO)2, ligand, CO/H2 (l/l, 20 bar), PhMe, LJRh=20,80”
R
R Bu-t Bu-t Bu-t Bu-t Me0
R’ H Me0 Ph Cl H
Cow. (%) 26 29 19 21 35
1:II:intema.l alkenes 73~4~23 %:4:0 95:5:0 95:5:0 82.3: 1.7:16
TOF 2450 2700 2275 3375 1750
Rh(acacXCOh, ligand, CO/H2 (l/l, 20 bar), PhMe, 80” R3
R’ R’ Me0 Bu-t H
R2 Bu-t Bu-t H
R3 H H Bu-t
Conv. (%) 31 37 21
I
(82) (72) (48)
II
Internal alkenes
C-1 (1) (39)
(18) (27) (13)
TOF 3600 6120 520
Rh(acac)(CO)2,BISBI, URh = 1 CO/H2 (l/l, 20 atmj, 80 ‘, 21 h
I (90) + II (2) + internal isomers (8), I:II = 41
Rh(COD)2BF4,L/Rh = 0.55, DAB-dendr-m(CH2PPh2)2]
I + II (-), I:II = 60:40
224
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Product(s) and Yield(s) (%)
Refs. 223
[Rh(COD)(diphosphine)]BFb, 18 h, Hz0 (30% DMF), CO/H2 (l/l, 100 atm) PPh2 I---PPh2 x;NC
@ X
80” 60”
TON 3179 3172 3170
1:II 75:25 76~24 69131
60”
3170
67133
CH2
Temp. 60”
CH2S(CH2)2 CH2S(CH2)3 CH2S(CH2)4
Rh(acac)(CO)z,ligand, LJRh = 10, PhMe, CO/H;! (l/l, 20 atm), 80”, 2 1 h
I(91) + II (3) + internal alkenes(6) 1:II = 32
224
225
Rh (acac)(CO)z,diphosphine ligand, PhMe, LJRh = 10, CO/H2 (l/l, 20 atm), 80” Phosphineligand
Time (h)
POP POPPY POPam xanthos
20 20 21 24 24
XiUhlIll
Conv. (%) 67.0 88.0 71.5 61.6 67.9
I+II
HI
(loo) (99) (100) (96) (96)
7.5 8.9 7.3 46 49
isomers 0.0 0.7 0.0 3.9 4.0
660
Rh(acac)(CO)z,ligand, CO/H;! (l/l, 20 bar), PhMe, 80” WV$‘WHd,WW2 z-Bu
0
2.
0
Bu-t
n 2 3
L/Rh 20 2.5
Conv. (%) 21 27
1:II:intemal alkenes 61.5:38.5:0 55:25:20
662
Rh(acac)(CO)z,ligand, IJRh = 5, PhMe, CO/H2 (20 bar), 80”, 2 h R R
’-’ \/ m2
R
P 9
t-Bi
R H Bu-t
R
Conv. (%b) 1:II:intemal alkenes 49 68:31:1 72 71:16:13
Isomer meso
TOF 650 810
Au-t 662
Rh(acac)(COh, ligand, LJRh = 5, PhMe, CO/H2 (20 bar), 80” t-Bu Bu-t
dl
TOF 11100 1550
Time (h) 19.5 1.3
Conv. (%) 98 54
trans-RhC1(CO)(P(C6H4CF3-p)3)2, scC02$ Hz/CO (68 atm), 70”, 27 h
1:II:intemal octenes TOF 110 68:13:19 82:9:9 950 I + II f-), IA = 2.4
693
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions PhN(CH,PPh,),Rh(COD)BF4, Hz/CO
I + II (-), 1:II = 62:38
692
n?rN(CH,PPh,),Rh(COD)BF4, Hz/CO
I + II (-), I:11 = 61:39
692
Rh(acac)(CO)z,ligand, URh = 5, PhMe,
I + II (-), 1:II:intemal octenes= 91:4:5
662
CO/I-I2(20 bar), 80”, 3.5 h
662
Rh(acac)(COh, ligand, CO/I& (20 bar), PhMe, 80”
0. i-PC
R H Bu-t
R
,o Y N.
Pr-i
LJRh 50 100
Time (h) 3.5 0.3
1:II:intemal octenes 59:30: 11 48: 19:33
Conv. (%) 93 22
TOF 1200 1110 662
Rh(acac)(CO)z,ligand, PhMe, Hz/CO (20 bar) R2
R’ Bu-t Bu-t Bu-t H
R2
R2 Me0 Me0 Me0 H
LJRh 100 250 1000 100
Temp. 80” 40” 80” 80”
Time (h) Conv. (%) 3.2 98 21.8 24 42.6 77 2.1 93
Rh(acac)(CO)2,ligand, CO/H2 (l/l, 20 bar), PhMe, 80”
t-Bu
0’
P ‘0
1:II:intemal octenes TOF 54:34: 12 730 5613717 50 61:27:12 80 65:31:4 2160
n 2
LlRh 20
Conv. (%) 21
3
2.5
27
1:II:intemal alkenes TOF 62:38:0 11100 1550 55:25:20
660
Bu-t
P(W2
694
Rh(acac)(CO)2,ligand, CO/H2 (l/l, 10 bar), toluene, 16 h
PPh2
PPh2
Ligand
R
X
Sixantphos Thixanphos Xantphos BISBI Sixantphos Thixanphos Xantphos
H Me H
Si(Me2 S C(Me)2
H Me H
Si(Me2 S
BISBI
C(Me)2
Temp. 40”
I/II 35
I (96)
isomerization(%) cl
40” 40”
47.6 57.1 58.2
(97) (98) (96)
1 0 2.9
34 41 53.5
(94) (93) (98)
3 4.7 0.5
80.5
(90)
9.3
40” 80” 80” 80” 80”
TABLE
I. HYDROFORMYLATION
Reactant
OF ALKYL-SUBSTITUTED
Rh(acac)(COh,
(Continued)
MONOOLEFINS
Conditions
Product(s) and Yield(s) (%)
L (Rh : L = 1 : 2.04),
OHCr,
I(53)
Refs. 695
+
H2/CO (20 kg/cm2), heptane, 100°, 2 h, CHO
CHO
t-Bu n (27)
ww
t-Bu
Rh(acac)(COh,
I + II + III + IV (59),
Ph3P0, lOO”, 3 h,
1:II:III:IV
t-Bu ‘I/‘\( Bu-t MO,
6%
= 54:28: 10:8
WW2 I
Rh(acac)(CO)z,
P/Rh = 9, CbHr2, H20,
n-c6Hl3P(C&S03Na-m)2 CO/H2 (l/l,
n-C5HI ,w
I + R
A
III
C6H13
2.3
IO/l
i-4
CgH17
2.2
10/l
(4
C1oH21
2.3
10/l
6-J
(I+IWalkane
601
CO/H2 (l/l,
R
Temp.
I+II
4 1.4 atm), Hz0
Time (h)
242
Conv. (%)
I+II
III
2-alkene
w13
90”
22
89
(57)
2.45
cd421
60”
4
70
(49)
1.95
(22) (21)
n-BuO
loo”
5
5
(5)
0.35
(0)
CO/Hz (l/2,83
bar),
RuO2, ByPBr,
I(2) + II (3) +
180”, 4 h
III (32) +
HO-
RU3(CO)t2, l,lO-phananthroline, DMF, CO&
676
CH20H IV (34), I:II=89:11
A
0I
II CHO
54 atm), 75”, 5 h
R
Rh-PEVV,
CHO
R-
on glass,
(l/l,
LJRh=4,
I + II (20) + internal octenes (62) + octane (tr)
I:II=89:
11
469
100 atm), 120”, 20 h CHO
Rh2(Co)21P(Bu-t)312(CI-CI)[CI-S(CH2)nSi03silica gel], CO/H2 (l/l,
I
A2
(80)
3
80 atm), 120”,
618
uw
15 h
~H2(02COH)[P(~-i)312, P-W),,
I(59)
+
OH
593
II (12) +
THF, 120”, 20 h
~““‘m(rl)
K[Ru(saloph)C12J, CO/H2 (l/l, RU3(CO)
EtOH, 130”,
+
0
IV(5)
II t-1
553
II (15) + Iv (77)
493
Icm
697
I(54)
577
21 atm)
HCWh
12, p(c6Hl1)39
H20, 180°, 10 h
~WWWW~l~,
WPW3, go”,
CO/H2 (10 atm), 3 h RhH2(O&OH)[P(Pr-i)&, H20, THF, 115”, 20 h
CO (15 atm),
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions Rh(CODjBPh,+ CO& (l/2,200 psij, CHC&, 60”, 22 h Poly(N-vinyl-Zpyrrolidone)C%Rh2(CO)t 1,CO/H2 (l/l .2,55 kg/cm2), C&Is, 80”, 8 h
Product(s) and Yield(s) (%)
OHC7Y OH.2
(-)
Refs.
+ starting material (31)
251
566
(-j
Rh(acac)(COh, P(C&S03Na-m)3, H20, per@-cyclodextrinMe2-o-2,6), P/Rh = 5, CO/H;! (l/l, 50 atm), 80”, 2 h
c9
/ \ 1 I 01
I + II (lOO), I:II=3.8
Rh(acac)(CO)2,P(C&S03Na-m)3, H20, P/Rh = 5, CO/I-I2(l/l, 50 atm), 80”, 2 h
I + II (34), III=9
610
Rh(acac)(CO)2,P(OC&Me4Bu-r-2)3, LJRh = 10, CO/H2 (l/l, 20 atm), PhH, 70”
I (78) + alkenes( 16)
468
[Rh(OAc)lJ2, PPh3/Rh= 2, CO/H2 (l/l, 400 psi), 60°, 20 h
Q-(,,I+
QTHO II
313
I + II (-), III = 7:3 Rh(COD)Bb, CO/H2 (l/2,200 psi), CHC13,60”, 22 h
I + II (-), III = 44:56
cis-PQ(PPh&/SnC12-2H20 (1:5), CO/H2 (l/l, 100 bar), CHC13,4 h
I (70) + II (16) + 6
5% RhK, DPPP, HCOzH, CO (8.5 atm), DMJ3, MO-105”, 18-24 h
I + II (45), III = 44:56
368
Rh(acac)(CO)2,P(C&I$03Na-m)3, H20, per-(~cyclodextrinMe2-o-2,6), P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 2 h
I + II (99), I:II=1.9
610
Rh(acac)(CO)2,P(C&L@3Na-m)3, H20, P/Rh = 5, CO/H2 (l/l, 50 atm), 80°, 2 h
I + II (48), I:II=2.8
610
~WCOD)BP~J, CO& (112,200 psi), CHC13,47”, 22 h
p
CO/H2 (l/l, 100 atm), THF, 70”, 16 h
I + II (-), III = 97:3
251 CHO
1 I / iy-
\
I(--)
(I)+
+ bcHo
492
O/Rn(W
II(-)
251
III = 95:5 248
i-PrO2C 05
(0
.CO#r-i
O-P-O 3 ,Rh+(COD)BFaO-P-O
i-PrO2C
I’ \ CD 1\ &/
CHO / WCONP(C6H
11)3W,
1 zoo,
10 h,
CO/H2 (l/l, 300 atm) CHO
Rh(acac)(CO)z,P(C6H&SO3Na-m)3, H20, per@cyclodextrinMe~-o-2,6), P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 6 h P(c&$o3Na-m)3, H20, P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 6 h
Rh(aCac)(co)2,
I + II (lo), III = 14
610
I + II (2), III=11
610
TABLE
I. HYDROFORMYLA’T’ION
OF ALKYL-SUBSTITUTED
CO&
(l/l,
Refs.
Product(s) and Yield(s) (%)
100 atm), THF, 70”, 16 h
i-Pro& 05
(Continued)
MONOOLEFINS
Conditions
Reactant
I + II (-),
248
1:II = 93:7
XOzPr-i
0-‘9-0 ,Rh+(COD) BF4(0 O-P-O
3
CO&-i i-PrO2d
WW-UWW-2,
RWOWll2,
I + II (15), 1:II > 99:l
643
I (-)
251
CO& (l/l, 600 psi), CHC13, 80”, 19 h Rh(COD)Bm,
CO/H2 (l/2,200
psi),
+ starting material (25)
CHC13, 60°, 43 h ~2@2coH)~(pr-%~2,
I+n+PhjV\OHmt
W2%
phXoH
N+
593
THF, 120”, 20 h
Ph
A/
C02Me C02Me
’
+
VI+
VII (5) Ph A
Ph k
I + II (54), 1:II = 97:3; III + N (12), III:N
= 95:5;
V + VI (28), V:VI = 95:5
~I2[ph2RCH2),P~21,
PhMe,
S&12,
1(51)+
\ I d
CO/H2 (l/l, 80 bar), 4 h
I + II (-),
[(~s-~5~5)~2(~-~~>(CI-PhZPPy)(~~)~~l,
CO/H2 (l/l,
80 atm), C6H6,80°,
RhH2(02COH)[P(Pr-$312,
(13)
+ starting material (36)
131
/
1:II = 25: 1
616
4h
CO (15 atm),
I(80)
+ II (5)
577
H20, THF, 115”, 20 h RhK (5%), DPPB, HCOzH, CO (8.5 atm), DME, 1 lo-120°, lWCOD)BPha,
I + II (40), 1:II = loo:0
368
I + II (lOO), 1:I.I = 96:4
248
24 h
CO/H2 (l/2,200
psi),
CHC13, 47”, 22 h
CO/H2 (l/l,
110 atm), THF, 70”, 16 h
i-P&2$
o-p,-0 3 ,Rh+(COD) (0O-P-O
dA
BF4-
CO@-i
i-PrO2d Rh(acac)(COh,
P(C&I&03Na-m)3,
P/Rh=5, CO/Hz (l/l, Rh(acac)(CO)z,
H20,
I + II (48), 1:II = 6.7
610
I + II (loo), I:II=lO
610
50 atm), 80”, 1.5 h
P(C&$03Na-m)3,
per@cyclodextrinMe2-o-2,6),
H20, P/Rh = 5,
CO& (l/l, 50 atm), 80”, 1.5 h
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
511
Rh(SOX)(COD), PhMe, 60”, CO/Hz (l/l, 0.1 MPa) Phosphineor Phosphite
P/Rh
fWW3 WPh)3 PPh3 PPh3 DPPE DPPE DPPP DPPP
o-
Turnovef 28 0 10 43 10 48 19 76
Yield
III
(-)
37.5 : 62.5
(4 (-) (-) (-)
74.7 : 25.3 87.5 : 12.5 95.7 : 4.3
(-) (-) (-)
97.5 : 2.5 95.6 : 4.4 96.0 : 4.0
c1-10
Rh(acac)(CO)z,P(OChH3Me4-Bu-t-2)3, L&h = 10, CO/H2 (l/l, 20 atm), PhH, 70”
(66)+ a.lkenes( 17)
468
Cl0
1 1 tr
/
\
CO/H2 (l/l, 100 atm), THF, 70°, 16 h i-Pro& AXI@-i 0 xr 0-‘9-0 (0 3 ,Rh+(COD) BFdo-,P-0 0 CO#r-i + i-PrO& CHO 248
CHO R+(C0)12-2,2’-bipyridine on silica f22, CO/H2 (l/l, 50 bar), 150”, 17 h, PhMe
OHCT
I+
+
II+
510 I + II (5)
HO-
Iv
=I +
III (36) Iv(51)
RhH(CO)(PPh&, CO/Hz (l/l t 27.2 atm), 50”
700
Solvent
Yield
I/II
W6
(4
PhMe
(-4 C-1 (-1 H
1.56 1.22 1.13 2.92
EtOH n-BuOH n-C7HlsOH
4.54
Rh(acac)(CO)z,P(C61&S03Na+Q3, PkRh= 5, cyclodextrin, Hz/CO (l/l, 50 atm), H20,80”
Cyclodextrin a Y P P P . P P P P P
R
Me Me Me
701
Cyclodextrin/Decene 0.014 0.014 0.014 0.014 0.028
COMe COMe
0.014 0.014 0.014
CH$H(OH)Me S03Na
0.014 0.014
a 0 0 0
12.6 12.6 21 21 14 6.3 9
b 18
Time (h) 8
24 21 8.4 8.4
8 8 8 6
0 0 7 14.7 12
8 8 8 8 8
Conv. (%) 10 9 19 76 loo 30 6 46 32
I + II
III
(9) (6) (15) (69)
3.2 2.5 2.1 1.8
(95) (17)
1.9 2.5
(4) (26)
2.6 2.6
(27) (5)
2 2.8
TABLE I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
[Rh(COD)C112,Ph2P(CH2)2C5H4N-2, CO/H2 (l/l, 600 psi), CHC13, 80”, 2 h
I + II (loo), III
Rh2(CO)2[P(Bu-t)312(CI-Cl)[CI-S(CH2)3Si03-
I (46) + II (46)
silica gel], CO/H2 (l/l, Rh(acac)(COh,
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
248
= 41:59
618
80 atm), 120”, 15 h
P(mC&S03Na)3,
H20,
per@cyclodextrinMe2-o-2,6),
I + II (95), I:II=I
610
.9
P/Rh = 5,
CO/H;! (l/l, 50 atm), 80”, 6 h I + II (6), I:II=2.7
610
RhiC (5%), DPPB, HCOzH, CO (8.5 atm), DME, 1 lo-120”, 24 h
I+II(41),I:II=41:59
368
~(acac)(COh9
I + II (80), III
Rh(acac)(COh,
P(C&S03Na-m)3,
P/Rh = 5, CO/H2 (l/l,
H20,
50 atm), 80”, 6 h
P[(CH2)2(C6h3’d39
CO/H;! (l/l,
31
= 2.9
150 psi), c-C@1 tCF3,
PhMe, lOO”, 11 h Rh2(CO)$P(Bu-t)3]2(~-Cl)[~-S(CH2)2Si03-
\ 6
silica gel], CO/I-I;! (l/l,
&(CO)l6,
618
I (46) + II (45)
80 atm), 120”, 15 h
@;’
PhMe, 130”, 48 h,
I (12)+
@3)+
@r”’
702
CO/H;! ( l/l, 600 psi)
H Rh2(lt-SBu-th(COh(P(OPh)3h, CO/H2 (l/l,
85”, 4 d,
III
1.25 MPa), ClCH2CH2Cl
Rh catalyst, CO/H2 (l/l,
650 bar), 70”
699,704
/CHO (-)
@i’(b)+
17 h,
703
8
:b
Rh6(CO)M, CH&l2,60”,
1:III = 40:60
c--3
I+II+III(-),I:(II+III)=8:1
c%(CO)g, CO/H2 (l/l, 200-300 bar), 110-120”
, /-CHO
I(-->+
704
gcH;5)+
&‘;)+
702
CO/H;! (l/l, 600 psi)
d3 \
PtCl(CO)(PR3~C10.&iC12~H20, CH2Cl2, CO/H2 (l/l,
lOO”,
(26)
+ Starting material (55)
\CHO
I
705
2000 psi), 3 h + branched aldehydes II + decane III
PR3
COIN. (%I
II
III
P(Bu-nh
36.3
(5)
(28)
(1)
PPh3
37.6
(5)
(31)
(2)
pmw3
22.9
(2)
(20)
w
I
WPhh
72.5
(10)
(51)
(12)
P(OPKl)3
50.8
03)
(37)
(7)
AsPh3
36.2
(3)
(26)
(8)
Rh(acac)(CO)z,
P(m-C$-L$03Na)3,
per@cyclodextrinM~-o-2,6),
H20,
P/Rh = 5,
Bu
P(C&S03Na-m)3,
P/Rh = 5, CO/H2 (l/l,
I (2)
610
CHO
CO/H2 (l/l, 50 atm), 80”, 6 h Rh(acac)(COh,
Bu
H20,
50 atm), 80”, 6 h
1 (2)
610
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions
Refs.
Product(s) and Yield(s) (%)
[Rh(COD)Cl12, 2 PPh3,Et3N, CA, 90”, CO/H2 (l/l, 80 kg/cm2), 16 h 453
I+II(81),I:II=87:13
Rh6(CO)16,2 PPh3,Et& C&j, 70”, CO/H2 (l/l, 80 kg/cm2), 17 h
Rh-Co, CO/H2 (l/l, 60 atm)
Catalyst
Solvent PhMe Rh4(CO)12/2C@(CO)8 PhMe Rh4(CO)12/2(Ph3P)2NCl THF ~(CO)&OOPPh~ PhMe Rh4(CO)12/8OPCy3 PhMe
Co2~2(COh2
Temp. 100” 100” 125” 100” 125”
Time (h) 1 1 8 5 5
Cow. (%) 32 31 33 62 51
I
II
m+Iv+v
(2) (2)
(95) (92)
(11) W) (85)
(82) (2)
(3) (4) (3 (cl) (2)
(12)
707
WMp-SBu-WON PW’hh 1127 CO/H2 (l/l), toluene, 78” Ligand P(bar) P/Rh Conv. (%) P(OPh3) 13 4 45 PPh3 20 2.5 87 dnnh 2Q 3 14
I (T i\ \
IRhWBu-WON
VOW3
Isomerization (%) 3 1 c)
de (%) (cishuns) 82 (9119) 8 1 (90.5B.5) 89 (92.517.5)
GH2’”
112,
I (cis) +
QH20HD
707
(Wans)
CO/H:! (l/l), toluene, 78” Ligand P (bar) P/Rh Conv. (%) P(OPh3) 20 2 57
Isomerization (%) -
Rh(acac)(CO)z,P(CJ-L&03Na-m)3, H20, per@-cyclodextrinMe2+2,6), P/Rh = 5, CO/I-I2(l/l, 50 atm), 80”, 1.5 h
de (%)
&“-
+ 4
610
v
I + II (99), I:II=1.4 Wa-)(COh, RG.&SOfla-~)3, H20, P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 1.5 h
II
610
I + II (37), I:II=3 CHO
Rh(acac)(COh, P(C&+S03Na-m)3, H20, per@cyclcxlextrinMe~-o-2,6), P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 12 h
ECHOI+ JJ$
Rh(acac)(COh, P(C&$03Na-m)3, H20, P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 12 h
I + II (32), I:II=2.6
II
610
I + II (100), 1:IIA.g
\ -ii:l )Q-
A
Rh Catalyst, CO/H2 (600 bar), ~120”
610
/CHO (-)
+ isomeric aldehydes (-)
699
CHO MCOD)BF& CO/H2 (l/2,300 psi), CHa3, 47”, 22 h
e
I(--)
+ rcHoII-)
1:II = 97:3
251
TABLE I. HYDROFORMYLATION
MONOOLEFINS (Continued)
IRhCKWM’Ph3 (l/4), C&j, m”,
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
c11 PhL
OF ALKYL-SUBSTITUTED
PhLCH0(67)
CO/H2 (120 atm), 4 h
+
PhUCHO
708
(33)
diastereomersratio 1:1
Ph ‘dph (OC),Mn-M/n(CO),
HMn(CO)S, C&j, 50”, 1 h
(37) + phF
(5)
122
37 + OHC&
\ I/
ph (26) + Ho//l
ph (28)
CHO (-)
Rh(COD)BPb, CO/H;! (l/2,400 psi), CHC13,80”, 23 h
+ starting material (29)
251
#
/ I\/ \??I
Rh(COD)BPb, CO/H2, CHC13 [~CKW212, Pfi3, Wd~“, CO/H2 (l/l, 100 atm)
1 h,
[Rh(COD)C1]2,CO/H2 (l/l, 700 atm), loo”, c&j
n-w421
6
I+
Rh(SOX)(COD), PhMe, 75”, 10 h, CO/H;! (l/l, 0.1 MPa)
R&Oy5H2O, Ligand, m = 330, 90’, CO/H2 (l/l, 100 psi), 135 min
CHO 511
I(98)
251
I(79)
709
I(54)
710,699
n-c~oH2,~CHo Conv. (%) 5.8 86.9 85.8 8.5 0.0
Ligand Mh3
PPh3 AsPh3 SbPh3 BiPh3
1+
n-w+21
A
711 CHO
II
I/II 1.8 8.7 3.5 9.1 -
I (75) + II (7) + 2-dodecene(16) + dodecane(2)
712
Rh(acac)(COh, P(OC&Me4Bu-r-2)3, LlRh = 10, CO/H2 (l/l, 20 atm), C6H6,70”
I (63) + alkenes(19)
468
RhCl3, phosphine, P/Rh = 13, 100”,7 h, PhMe/H20 (2/3), pH = 6, CO/l-l;! (l/l, 5 MPa)
n 16 25
243
Rh(OAcb, H20, CO/H2 (50 bar), 125”, 90 mn,
I + II (93.4), I:II = 72/28
713
Rh (acac)(CO)2,xantham, LJRh = 10, PhMe, CO/H2 (l/l, 20 atm), 80 O,24 h
I + II + 2-undecene+ 3-undecene+4-undecene I+II(96),I:II=51
225
RhWWP~3)3,
n-C12H&&, 85”, 30 min
PPh3,Ph2POI-K CO/H2 (l/l, 1 atm),
Conv. (%) 95.5 96.5
I + II
(88) (85)
TABLE
I. HYDROFORMYLATION
OF ALKYL-SUBSTITUTED
MONOOLEFINS
Reactant Rh(acac)(CO)z, CO/Hz (l/l,
(Continued) Refs.
Product(s) and Yield(s) (%)
Conditions ligand, L/Rh = 10, PhMe,
I (90) + II (2) + internal isomers (8), III
224
= 54
20 atm), 80”, 20 h
Rh(acac)(CO)z,
P(C6lQ03Na-m)3,
per( P-cyclodextrinMe~-o-2,6), CO/H2 (l/l,
H20,
I + II (55), I:II=1.9
610
I + II (4), I:II=2.5
610
P/Rh = 5,
50 atm), 80”, 6 h
Rh(acac)(CO)z,
P(C&I&l03Na-m)3,
P/Rh = 5, CO/Hz (l/l,
H20,
50 atm), 80”, 6 h
CHO
COB-32 (l/l,
100 atm), THF, 70”, 16 h
i-Pro& III
.CO#r-i 0 hi o-‘p;o ,Rh+(COD) BF4 (0
= 98:2
3
CO@-i i-PrO2d Rh(COD)BFb,
ligand, 60”, PhMe, 18 h
L/Rh = 1.2, CO/H2 (l/l, Ligand
III
PhN(CH2PPh2)2
91r9
p-CF3C&N(CH2PPh2)
93:7
p-Me2NC&N(CH2PPh&
95:5
DPPP
93:7
Rh(COD)BPb,
CO/Hz (112,200 psi),
CHCl$47”, RhK
689
I+II(-)
100 atm)
I + II (--I,
III
= 96.k3.5
251
I i- II (56), III
= 82: 18
368
22 h
(S%), DPPP, HC02H,
CO (8.5 atm),
DME, lOO-105”, 18-24 h RhK
(5%), DPPP, HCOzH, CO (8.5 a&n),
DME,
1 lo-120”,
I + II (67), 1:II = 54.5~45.5
368
24 h CHO
~(COD~BP~~
CO/Hz (l/2,200
psi),
CHO II(-)
u-->+
CHC13, 47”, 23 h
251
i-Bu i-Bu
[~~~D)(2,5-bis(diphenylph~sp~o-
1:II = 9O:lO
I + II (--), III
= 92:8
247
me~yl)bi~yclo~2.2.l]hep~e~lO~, NVH~
(l/1,40
mCl(CO),],, CO/H2 (l/l, Ligand
atm), C&&j, 50*, 13 h LRh = 5, Et3N/Rb = 10,
641
20 bar), PhMe, Zf”, 6 h conv. (%)
I+ II
III
79
VW
83~17
PPh3
29
tW
94~6
PPPN
58
WQ
9o:lO
TPP
~~COD~BP~,
CO/H~ (112,ZOU psi),
251
CHC13, 47”, 22 h Cl4
Ph Rh(acac)(CO)z, F== Ph
CO/H, (l/f,
L&h
Ph
= 2.5, C&I6, Ph A/
80 atm), 80”, 18 h I + II (21), HI
Id=
= 199
II CHO
714
TABLE I. HYDROFORMYLATION Reactant
OF ALKYL-SUBSTITUTED
MONOOLEFINS (Continued)
Conditions Catalyst, Hz/CO (100 atm), PhH, 80” Catalyst
Hz/CO
HWCWPW3
l/l l/l l/l l/l l/l l/3 l/l
~WWPM HRWW4 HWPPhd4 Dww2C112 D3wO)2C~l2 Rh(acac)(CO)2
Refs.
Product(s) and Yield(s) (%)
Temp. 80” 120” 80” 90” 80” 80” 80”
I + II + PhCHMe (III) Time (h)
Conv. (%)
I+II
48
81.7
(81)
48
99
48 114
57.4 >99
(51) (53)
48
75.2
48 24
61.2 46.4
715 1:II 96:4
III (
(81)
99 99 98:2
(49) (4) (20)
(75) (57) (43)
99 >99 99
W) (4) (3) 714
I + II (61), HI = 199
Rh(acac)(CO)2, L/Rh = 2.5, CbH6, CO/I-I;!(l/l, 80 atm), 80”, 18 h
Rh(acac)(COh, P(C&S03Na-m)3, H20, per(/3-cyclodextrinMe2-o-2,6),P/Rh = 5, CO/H2 (l/l, 50 atm), 80°, 6 h
n-C12H25 -
n-W-b
/\/CHO
I +
CHO
n-C12H25
II
610
I + II (39), I:II=l.6
Rh(aCaC)(cO)2,
P(C(jH4SOjNa-m)3,H20, P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 6 h
I + II (4), I:II=2.5
610
Rh(acac)(CO)2,P(C&I&03Na-m)3, H20, per(P-cyclodextrinMe2-o-2,6), P/Rh = 5,
I + II (loo), III=11
610
fvw.a-
/I II
cn ohb
s2no 3 h
Ph Catalyst, Hz/CO (l/l, 100 atm), C&I6
Ph
Catalyst HRh(CO)(PPh3)3 HWPPbh HWPPbh [Rh(CO)2Cl]2 IRh(W2C112 Rh(acac)(CO)z
Temp. 90” 90”
Time (h) 48 72
Conv. (%) 72.1 40
120” 90” 100” 90”
66 24 24 24
99 95 99 70
Ph
I+II
III
III
Iv
w (35)
~9 >99 97:3 929 >99 98:2
(8)
t-1 (---1 (30) C-1 ( 1) (-)
(66) (88) (46) (67)
(5) (4) (7) (53) (3)
Cl7
Ph
Ph HMn(CO)S, CO (1 atm), hexane,55”, 5 h
‘“x’-” c&tram = 87113
u Turnover = Mol substratex conversion / mol catalyst bC@)= fullerene c The barrel-like structure is a /!&cyclodextrin = supercritical carbon dioxide. d scco2 e The barrel-like structure is a cyclodextrin.
(27) + phxph
(53)
cisztrans= 87: 13
716
TABLE II. HYDROFORMYLATION Reactant
OF DIENES AND POLYENES
Conditions [Rh(COD)(OAc)12, DPPE, L/Rh = 4, PhMe, CO/H2 ( l/2, 12 bar), 120”
Product(s) and Yield(s) (%)
Refs.
SaturatedC5 aldehydesI (-) + unsaturatedC5 aldehydesII (-) I:II > 90: 10; n:iso = 99: 1 CHO
Rh203, phosphine ligand, CcH6, 3 h, COM;! (l/l, 200 atm)
I +
-(-‘HO
CHO
III +
253
252
I1 + CHO
OHC
OH’
IV
CHO OHCd Phosphine ligand PMe2Ph PMez(C&hMe-2) PMez(C&I4Me-3) PMe&H4Me-4) PMe2(ChH4Pr-i-4) PMez(CH2Ph) PMeE(CbH40Me-4) PhP(Et)Me PEt2Ph Et2PPEt2 Bu2PPBu2 Ph2PPPh2 HPBu2 HPPh2
Temp. 130” 130” 130” 130” 130” 130” 130” 130” 130” 130” 130” 140” 130” 130”
Rh/mesitylene, DPPE, L/Rh = 1, 80”, CO/D2 (l/l, 120 atm)
IWmesitylene, DPPE, L/Rh = 1,80”, CO/H2 (l/l, 120 atm), 4 h
I+11 (41)
I:II 15 : 85 28:37 34 : 66 14 : 86 10: 90 8:92 6:89 16:83 6 : 94 8 : 91 5 : 93 18: 82 18 :81 23 : 76
(14) (59) (40) (46) (50) (43) (23) (45) (54) (W (44 W) (17)
III+Iv+v+vI (31) (1) (14) (38) (28) (14) (18) (40) (30) (22) (14) (19) (14) (46)
D-D
EtMezC \
/
CMezEt
III:Iv:V:VI 1 : 18 : 61 : 20 14 : 4 : 51 : 31 1: 8 : 65 : 26 1:24:62: 13 2:25:60: 14 0: 14:68: 8 2: 18:49:31 1 : 26 : 59 : 14 2 : 23 : 59 : 16 2155146: 2 2:51:43: 5 1:63:37: 0 2:45:53: 1 0:82:
17: 1
(4
227
0
-CHO
+ I (E/Z = 75125)
-CHO Rh(acac)(CO)2,L, IJRh = 12, CO/H2 (l/l, 500 psig), THF, 95”
VI
OHCwCHo
’ +
OHC
III (tr)
I(75)+
w
OHC
WCHO
I + II (76), I:II=96:4
OHC-
n(3)
III (5) + OHC-
+
OHC,y/-CHO
254
II +
+
Ivc7) +
V(9) +
branched dialdehyde (1)
Rh4(COh, CO& (l/l,
2MPa), L/Rb = 10, toluene, lOO”, 3 h
Rl@ac)(CO)2, Et3P, co/H;!(l/l) 600 psi), 80”
718
I+II+V Ligand
I loo PPh3 94 Ph2WH2)2 PW’(CW3 89 PW(CHd4 76 84 fi2PWH2)5 T-BDCP 74 T-BDCPn 68 CHDIOP 68 DIOP 65 BISBI 87
--$.&/-OH
II+v
6 11 24 16 26 32 32 35 13
I&?-$+ w
Conversion = 90 o/c,I+II(87)
OH
=
719
TABLE II. HYDROFORMYLATION Reactant
L/
OF DIENES AND POLYENES (Continued)
Conditions
Product(s) and Yield(s) (%)
OH.&
@h(COD)(OAc)12, DPPE, LJRh = 5, C6H6,CO/H;! (l/l, 12 bar), 120”
Refs. 253
I (-) + other products II (-) I:11 = 40:60
Wmesitylene, DPPE, URh = 1, 80°,
254
CO/l-l;! (l/l, 120 atm), 8 h E/Z = 38162 [Rh(COD)(OAc)12, DPPE, lJRh = 5, C6H6,CO/H2 (l/2, 12 bar), 120”
()HC -
Rh/mesitylene, DPPE, L/Rh = 1,80”, CO/l-l2 (l/l, 120 atm), 3 h
h
I + II (65), III = 90: 10
I (---) + OHC&
n (----) 253
III = 1060 CHO
I + LlI
CHO
E/Z = 18/82
+ other aldehydes(III)
I + II + III (68), 1:II:III = 90:6:4 CD0
Rh/mesitylene, DPPE, L/Rh = 1,80”,
D,/&,
CO/D2 (l/l, 120 atm) NaY zeolites entrappedrhodium carbonyl clusters, CO/H2
254
254
(-)
585
Dialdehydes (60) + monoaldehydes(40)
c6
OHCW
\-
I+
7
II+
697
CHO
CHO CHO OHC/k%-dCHo
’ + h/yw
Catalyst Rh(acac)(P(OPh)&/P(OPh)3 Rh(acac)(P(OPh)&/P(OPh)3
Hz/CO 1:l 1:l Rh(acac)(P(OPh)3)2/P(OPh)3 1:l Rh(acac)(P(OPh)&/P(OPh)3 1:l 3:7 ~(acac)(P(OPh)3)2~(0~)3 Rh(acac)(P(OPh)&/P(OPh)3 1:l Rh(acac)(P(OPh)&/P(OPh)3 1:l Rh(acac)(CO)(PPh3)/PPh3 1:l Rh(acac)(CO)(PPh$/PPh3 Rh(acac)(CO)(PPh3)/PPh3
1:l 1:l
Pressure(atm) 10 10 10 6 10 10 10 10 6 10
Temp.
1+11
III+Iv
v+vI
30” 40” 50” 50” 50” 60” 80”
(70) (38) (3) (5) (15) (0) u-0 (25)
(16)
(0)
(32) (25) (54) (0) (17) (0) (0) (0) (0)
(30) (70) (41) (59) (83) WV (75)
50” 50” 60”
Rh(acac)(COh, Cp$r(CH2PPh&, PhMe, Hz/CO (l/l, 10 atm), 80”, 2 h Zr/Rh Time (h) 1.1 2 1.8 3.9
5 4
tfW (0)
(20) wm 608
I+II
ISI
(26)
2
(30) (10)
1.6 1.5 608
Rh(acac)(CO)2,Cp$rH(CH2PPh2), PhMe, Hz/CO (l/l, 10 atm), 80”, 6 h WRh 1.0 3.5 5.5
0I I
Time (h) 4 6 8
CHO
1+11
III
(7) (40) (25)
1.2 1.7 CHO
Rh(acac)[P(OPh)&, P(OPh)3,80°, 3 h, CO/H2 (10 atm)
I(55)
Rh(acac)(CO)(PPh)3,PPh3,80”, 3 h, CO/l& (10 atm) Rhkubstrate (270), CO/H2 (l/l, 70 atm), PhMe, 50”, 48 h
260
260
1 t-J
720
TABLE II. HYDROFORMYLATION Reactant
0 \
/
c7
0I \
OF DIENES AND POLYENES (Continued)
Conditions
Product(s) and Yield(s) (%)
F&/substrate(270), CO/H;! (l/l, 70 atm), PhMe, 50”, 48 h
ocHo
1 + ocHo
Rh(acac)[P(OPh)&, P(OPh)j, 80°, 3 h, CO/H2 (10 atm)
ocHo
1(42) + @“’
Rh(acac)(CO)(PPh)3,PPh3,80”, 3 h, CO/H2 (10 atm)
I (30) + II (43)
II
Refs.
720
;::,9+;;,
II (31)
260
260
CHO Rh203, THF, CO/H2 (l/l, 210 bar), 190”, 2.5 h
Rh20$l’(B~-n)3 (l/40), THF, CO/H2 (l/l, 210 bar), 130”, 16 h
721
I(71)
I (35) +
721 CHO CHO
OHC C%(CO)s, THF, CO/H;! (l/l, 210 bar), 150°, 7.5 h
A’ /
721
I(69)
CO/l& (l/l, 100 atm), PhMe
‘&&HO
+ + II
I
Catalyst precursor Temp. Pt(C2H4)(DPPB)/‘MeS03H 100” Pt(C2H4)(DPPB)/MeS03H 100” Pt(C&)(DPPB)/MeS03H 70” Pt(C2H4)(DPPB)/MeSOjH 70” Pt(dppb)Cl#nC12 100” 100” ~(WPW3 50” ~(CW’PW3 Pt(DPPB)Cl#nQ 50” Pt(DPPB)Cl#nC12 50” Pt(DPPB)C12/SnC12 50”
RhCly3H20, hv, co/H2
CHO
Time (h) 4
1+11
III
III
(68)
89:ll
(11)
19 8 22
(13)
26174
(20)
96:4 86:14 95:5 95:5 99:l loo:0 loo:0
(86) (2)
0.5 0.5 6 4 7 22
(l/l, 80 bar),
(50) (4) (4)
(22) (39)
(22) (8)
96:4
625
+ OH&kcHO III
(10) (79) (95) (4)
(6) (2) (74) 682
I+II+III(-),(I+II):III=10:90
MeOH, 25”, 18 h c8
-
RWCO)U’Ph3)3, W-&i,CO& (10,
OHC-
I+
369
12h,rt CHO II
0I I
C%(C0)8, Co/H2 (l/l, 210 bar), THF, 160°, 14 h
o-‘“”
1(66) +
I+II(47),I:II=
mcHo
WCHO
12:l
11(3) +
722
III (7)
Rh2O3,CO/H;! (l/l, 210 bar), THF, 160”, 4 h
1(59) + 11(7) + III(l)
[Pt(C$&)(DPPB)J/CH,S03H (l/l), PhMe, CO/l-I;! (l/l, 100 atm), lOO”, 22 h
fyHO
+ -\-
CHO
/d\
(3)
722
II C-1
259
CHO
I(-)
+
III = 96.5:3.5
TABLE II. HYDROFORMYLATION Reactant
o^\ -
OF DIENES AND POLYENES (Continued)
Conditions
Refs.
Product(s) and Yield(s) (%)
Rh(acac)(CO)z,P(C6H4S03Na-m)3,H20, per@-cyclodextrinMe2-o-2,6), P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 1.5 h
I + II (lOO), I:II=3.3
610
Rh(acac)(CO)z,P(C6H4S03Na-m)3,H20, P/Rh = 5, CO/Hz (l/l, 50 atm), 80”, 1.5 h
I + II (40), III=10
610
Rh-PEVV, CO/H2 ( l/l, 4 1.4 atm), H20, lOO”,2 h
o”-c”’
Rh(acac)[P(OPh)&, P(OPh)3,40”, CO/H2 (1 atm), 6 h
1 ww
1 + y’“‘”
II
;:‘,sF;;
242 260
CHO oHc+p5
I++
697
II+ CHO
oHcw
III+h
Iv+ CHO CHO
OHCpCHO Catalyst Rh(acac)(P(OPh)&jP(OPh)3 Rh(acac)(CO)(PPh#PPh3 Rh(acac)(P(OPh)&/P(OPh)3 Rh(acac)(CO)(PPh3)/PPh3 Rh(acac)(P(OPh)&/P(OPh)3 Rh(acac)(CO)(PPh3)/PPh3
Temp. 50” 50” 50” 50” 60” 60”
Rh(acac)(P(OPh)&/P(OPh)3 Rh(acac)(CO)(PPh3)/PPh3
60” 60”
Rh(acac)(CO)z,Cp$ZrH(CH2PPh2),PhMe,
Pressure(atm) 6 6 10 10 6 6 10 10
v + +
VI
Time(h)
I+11
III+IV
V+VI
2.5
(0)
2 3 3 2 5
(28) (0) (0) (0) (0)
(37) (7) (27) (0) (48)
3 3
(0) (0)
(63) (65) (73) (W (52) (94) (47) w-8
I+II(59),I:II=
(6) (53) (0)
608
1.3
Hz/CO (l/l, 10 atm), 80”, 6 h
Rh(COD)BPb, CO/H;! (l/2,300 psi), CHC13,65O,23 h
0I I
oHc+cHo CHO
CO/I-I;!( 10 atm), 80”, 3 h
Catalyst
co/H2
1 (4
720
1 (-4
720
I+OcHon+ 0 m
l/l 3/Z Rh(acac)[P(oPh),l2/P(OPh)B Rh(acac)[P(OPh)&/P(OPh)3 Rh(acac)(CO)(PPh$PPh3 Rh(acac)(CO)(PPh,)/PPh3
428
720
1 (-3
Rh4(CO)t2,CO/I-I;!(l/l, 70 atm), PhMe, 20”, 48 h HRh(CO)(PPh&, CO/H;! (l/l, 70 atm), PhMe, 20”, 48 h RhA ,5-COD, CO/I-I2 (l/l, 70 atm), PhMe, 20”, 48 h
\/ 0
WV
l/l 312
I
II
III
(0)
(67)
(33)
(25) (16)
(50) (72)
(25) (12)
(33)
(63)
(1)
260
CHO Rh/COD-1,3, CO/H2 (l/l, 70 atm), PhMe, 20”, 48 h
c-3
720
CHO (20) + Starting material (80)
Rh(acac)(CO)(PPh3),PPh3,80”, 5 h, CO/H2 (l/l, 10 atm) c9
\ “clc
[Rh(COD)C112,CO/H2 (600 bar), 80”
\ kc
CHO (-)
260
699,723
TABLE II. HYDROFORMYLATION Reactant
OF DIENES AND POLYENES (Continued)
Conditions
Product(s) and Yield(s) (%)
Rh catalyst, CO/H2 (600 bar), 70”
Refs.
699
CHO (-)
Bu-t
I+II=55
R = t-Bu
0I \
Rh4(CO)l2, Co#Oj8, PPh3,1loo, 3 h, CO/H;! (l/l, 40 atm)
OHcm
I(--)
iHcm
oHcmcHo
II(-)
+
725
+
725
VW (I + II):(III + IV + V) = 5.5:94.5
~4(co)l2,
PPh3,90”. 3 h,
%dco)8,
I(-)+II(-)+ vlc-->
fl
CO/H2 ( 1/l , 1 atm) 3
vn(-)+ 0
0
(I + II):(VI + VII + VIII) = 32.4:67.6
[Rh(COD)(OAc)j2, DPPE, WRh = 5, C6H6,CO/H2 ( l/2, 18 bar), 95”
I+II(-)
253
Rh4(C0)12,Co2(CO)8,PPb, 70”, 3 h, CO/H2 ( l/ 1, 1 atm)
I+II+III+Iv+v+VI+vII+VIII(-) (I + II):(III + Iv + V):(VI + VII + VIII) = 97.7: 1.4:0.9
725
Wacac)[PtOWh CO/H2 (10 atm)
ROPhh, 60°, 3 h,
I + II (57)
260
Rh(acac)[P(OPh)&, P(OPh)j, 80”, 3 h, CO/H2 (10 atm)
1+11(81)
260
Rh(acac)(CO)(PPh)J,PPhJ,60”, 3 h,
I + II (69)
260
I + II (89)
260
CO/H2 (10 atm) Rh(acac)(CO)(PPh)3,PPh3,80”, 3 h, CO/H2 (10 atmj
cc c+ /.. \ s?
[RhC1(COD)12,CO/H2 (2/l, 30 bar), MeOH, 60”, 16 h
O cm
726
CHo (-)
614
ob
Rh(COD)(OAc), P(OC6H4B~-t-2)3, URh = 15, 90°, 0.5-3 h, CO/H2 ( I/2, 14 bar)
Rh(COD)BPh4,CO/H2, CHCIR
\ b
A/
1e-3 CHO
251
TABLE II. HYDROFORMYLATION Reactant
OF DIENES AND POLYENES (Continued) Product(s) and Yield(s) (%)
Conditions
Refs.
Rh2(~-SBu-t)2(C0)2(Po3)2, 16h, ClCH2CH2C1,CO/H2 (l/l, 0.5 MPa), 85”
Rh2(CL-SBu-t)2(C0)2(P(OPh)3)2, 16h, ClCH$H2Cl, CO/I& (l/l, 0.5 MPa), 85”
I (-) + III (-)
703
Rh2(CL-SBu-t)2(C0)2(PPh3)2, 16 h, ClCH2CH2C1,CO/H2 (l/l, 0.5 MPa), 85”
1 G-4
703
16h Rh2(CL-SPhh(C0)2(P(OPh)8)2, ClCH$H2Cl, CO/H2 (l/l, 0.5 MPa), 85”
1 e-3
703
707
[Rh(p-SBu-r)(CO){ P(OPh)3}J2,P/Rh = 2, CO/H2 (l/l, 12-13 bar), toluene, 78”, 18 h
(-)
[Rh(p-SBu-t)(CO){ P(OPh)3]]2, P/Rh = 6, CO/H2 (l/l, 5 bar), toluene, 78’, 18 h
de = 22%
707
I
LCHO
Rh(SOX)(COD), DPPE, LJRh = 1, PhMe, CO/H2 (l/l, 0.1 MPa), 60”
Rh Catalyst, CO/H2 (500 psi), 90”
Monoaldehyde
(-)
OH+
511
1+OH’+
‘HP
(---)+
“HP
(---) + OH’9
11 ::;;~U-$4265
OHcp(-)
265
(-->
No reaction
Rhd(CO)rz,CO/H;! (l/l, 200 atm), C6H6, 60°, 6 h
[Rh(NBD)C112,PPh3, loo’, 3 h, CO/l-l;! (l/l, 80 bar)
265
CHO phAPh
‘3
265
381
(68)
I+
~cHoII+o~
III
727
III = 75:25, (-) CHO Rh-catalyst, H&O (l/l), THF, 40” Styrene-Butadienecopolymer (SBR)
728
TABLE II. HYDROFORMYLATION Reactant Polymer Duradene707
Conditions Catalyst HWCW’Ph3h [Rh(COD)C112
UWCOWdBF4 [Rh(COD)dppb]BF4 [Rh(COD)]BPb Duradene709
OF DIENES AND POLYENES (Continued)
HWCOWPW3 [Rh(COD)C112
[WCOWdBh [Rh(COD)dppb]BF4
Hz-CO (psi) Time (h) 19 19 22 19 18 72 44 44 800 46 800 200 200 200 200 200 800 800
Product(s) and Yield(s) (%) Conv. (%)
Hydroformylation (%)
27 6 16 6 3 80 100 100 36
28 5 15 6 3 81 87 98 38
Refs.
TABLE
III. HYDROFORMYLATION
RWCOWPhd3,tP~PW&Fe,
-OH
ALCOHOLS
Conditions
Reactant
c3
OF UNSATURATED
Product(s) and Yield(s) (%) OHC.,,y,OH
I +
P/Rh = 20, CbH6,CO/l-l2 (l/l, 800 psi), 60”, 22 h
OH
Refs.
II + n-PrOH III
729
I + II + III (-), III:111 = 87.4: Il. 1:1.5
RhH(CO)(PPh3)3,PPhJ,P/Rh = 20, C6H6, CO/l-l2 (l/l, 100 psi), 60°, 5.7 h
I + II (-), III = 67.1:32.9
729
[Rh(PPh3)~]+/montmorillonite,EtOH, 70”, CO/H;! (l/l, 60 atm)
I (96) + II (4)
730
HRh(CO)(PPh3)3,PPhj, PhCOMe, CO/H2 (l/l, 55 bar), 60” Rh(acac)(CO)z,reDPMNr, URh = 4, toluene, CO/l-l;! (l/l, 9 atm), 55”, 6 h Co2(CO)s,TMEDA, PhCH2CN, 84”, CO/l-l2 ( l/2,69 bar), 18 h K[Ru(EDTA-H)Cl].2H20, H20, 90- 130”, CO/H2 (l/l, 50 atm)
I (96) + OH 1 (89) + 11 (11) +
a
RhhWtCOh, P(OC~H~[BU-~I~-~,~)B, BDPB, CO/l-l;! (100 atm), 1lo”, 4 h RhCI(CO)(PPh3)2,C6H6,E$N, 80”, CO/H2 (l/l, 80 atm)
A
CHO
/---CHO
731
II (4)
III (tr)
(90) + II (5) +
0
732
III (5)
731
O
OHC,/y,OH
u0
OH
CHO
(35) +
(25) +
733,734
HowoH
(1)
O
CHO OH
I+
oHcAoH
II OH
I+II(91) I:11 = 43:57
(80-90) R = Me; t-Bu; s-Bu
735
736
TABLEIII.HYDROFORMYLATIONOFUNSATURATEDALCOHOLS Reactant
OH
(Continued)
Conditions
Product(s) and Yield(s) (%)
Rh(acac)(CO)I, P[OC6H3(Bu-t)z-2,413,90”,
737
1 (78)
N(CH~CH~OH)R,Hz/CO (3/l, 90 kg/cm2), 2.5 h Rh(acacPW2, P[OC~HB(BU-~)~-~,~I~, Hz/CO (90 atm), toluene, N(CH2CH20H)3
Refs.
OH
I(63
738
90”,2h
v
Rh(acac)(CO)z,ligand, L/Rh = 3, PhMe, CO/H2 (l/l, 10 atm)
OH
Ligand DPPB P(Cd%0Me-h PPh3 P(Cd-bMe-Ph DPPE P(c6H&fe-m)3 P(~6H$ie@z,rn~3 P(oc&$fe-o)3 ROPW3
Hoe
Temp. 60" 60" 60"
I(--) + 312 OH
I:11 1oo:o loo:0 loo:0 loo:0 87:13 37:63 54% loo:0 loo:0
60" 80" 60" 60" 60" 60"
IIG-4
739
OH
c6
-OH
Rh(acac)(C0)2, ligand, LJRh = 3, CO/H2 (l/l, 10 atm), PhMe, 60” Ligand DPPB
OHCMOH 1 t-1
Rh(acac)(C’O)z,ligand, lJRh=3, PhMe,
HOQc5Hll
c8
+ OHC LO,
739 II (-4
1:n 82:18 68:32
u-4 + OHC-fHll
II
CO/H2 (l/l, 10 atm), 60 O Linand DPPB
1:I.I loo:0 loo:0 loo:0 loo:0
P(c&@Me-4)3 PPh3 P(oc&@hk-3)3
1oo:o 81:19
P(~&Me2-3,% ROPh)3 c9
R2 OH [R~(OAC)~]~,PPh3,L/Rh = 4, EtOAc, CO/H;! (l/l, 400 psi), 60”, 20 h
OH
[Rh(COD)Cl12,CO/H2 (l/l, 600 bar), lOO”, CtJ%,5h
% Cl0
/ I6\
I
OHC
OH
’
(70) (95) (91) f 80) (98) (83) ww
313
699,740
(W
CH20H I
OCH3
I
H
-c,
CH20H
OH
R'
R2 H H Me S-OMe H 5-Me Me 4-OMe Me H Ph 4-OMe Ph
OH
1. CoCO3,CO/H2 (l/l, 100 atm), C6H6, 170”, 24 h 2. H2 (100 atm), 150”, 3 h 3. HCl
Pr-n I 741
TABLE III. HYDROFORMYLATION Reactant
OF UNSATURATED
ALCOHOLS (Continued)
Conditions
Product(s) and Yield(s) (%)
Refs.
OR Rh(acac)(CO)z,CO/I-I* (l/l, 80 atm), PhMe, 80”, 48 h
gpHO
1 +ticHo
R
1+11
I:11
H AC Piv
(96) (84) (89)
52:48 78:22 82: 18
TBDMS (91)
75:25
TBDPS
69:3 1
(96)
11
742
H 1. [Rh(OAc)&, PPh3,EtOAc, lOO”,6 h, CO/H2 (l/l, 350 psi) 2. PCC, CH2C12,3 h
3
OH
(CH$l)z, CO/H2 (l/l, 0.5 MPa), 85’, 16 h
Catalyst
(81)
0 *
314
0
bA
703 OH CHO Yield
Conv. (%) 48.5 67.5 28 9
(4 (-4 (4 C-1
OH Rh(acac)(CO)z,phosphine ligand, PhMe, CO/H2 (l/l, 20 bar), 90”, 6-24 h
fi
I +
PPh WPh)3 PWPYmolY1).3
II
I+II(tU-95)
743
I:11 50:50 45:50 33:66
Phosphineligand ’
;+,
\ VW c CH20H
[Rh(p-SBu-t)(CO){ P(OPh)?}12,P/Rh = 2, CO/H2 (l/l, 12-13 bar), toluene, 78”, 18 h
707
S
CHO
OH
707
de 60%
[Rh(p-SBu-t)(CO){ P(OPh)3]]2, P/Rh = 2, CO/H2 (l/l, 13 bar), toluene, 78O,16 h
OH
[Rh(p-SBu-r)(CO){ P(OPh)3}]2, P/Rh = 2, CO/I-I2(l/l, 100 bar), toluene, 85”, 16 h
(82) + myrtanal(9)
707
n:iso > 40:1, (53)
135
Cl1 Rh(CO)z(acac),BIPHEPHOS, THF, CO/H2 ( l/l, 70 psi), 60”
HOpCHO
[Rh(OAc)2]2, PPhj, L/Rh = 4, EtOAc, CO/H;! (l/l, 400 psi), 60”, 20 h
Rh(acac)(CO)z,CO/H2 (l/l, 80 atm), PhMe, 40”, 45 h
CHo I +
t-Bu
II t-Bu
R H Piv
I + II (85) (95)
I:11 67:33 64:36
742
TABLE III. HYDROFORMYLATION Reactant
OF UNSATURATED
ALCOHOLS (Continued)
Conditions
Product(s) and Yield(s) (%)
Refs. CHO
Rh(acac)(CO);?,CO/H2 ( l/l, 80 atm), PhMe, 40”, 45 h
t-Bu
t-BUTCH0
I + t-Bu
II
742
OR
OR H
(84)
PiV
(9%
36:64 20:80
[Rh(COD)C1]2or Rh(acac)(CO)z, CO/H2 (30/20 bar), dioxane, 110”
OR C8H17 5-c
Rh(acac)(CO)z,CO/H2 (l/l, 60 atm), PhMe, 80”, 48 h
CsH&CHO I 1I R H PhCO Piv TBDPS
I +
I + II
C~H,+CHO
II
742
1:II
53:47 54:46 61:39 61:39
(9% (99) wo (99)
Rh(acac)(CO)z,CO/H2 ( l/ 1). toluene
745
\ R OTs OH OTBS
CHO
P (atm) 80
Temp. I 40” W) 60” (92) 60” (W
80 80
Ph OH [Rh(OAc)2]2, PPhB,LJRh = 4, CO/H2 60°, 29 h
Bno%
1. [Rh(OAc)*12,PPh3,EtOAc, lOO”, 6 h, CO/Hz ( 1/I, 350 psi) 2. PCC, CH2C12,3 h
BnO
1. [Rh(OAc)2]2, PPhj, EtOAc, WOO,6 h,
;;QoH
tg4)
313
314
I;ii -“a
BnO
,
(86)
314
0
CO/H2 (I/l, 350 psi) 2. PCC, CH2C12,3 h
0
cl6
TBDMSO 1. [R~(OAC)~]~,PPh3,EtOAc, loo”, 6 h, CO/H;! (l/l, 350 psi) 2. PCC, CH2C12,3 h
H
---*-13 (80)
0
314
0
Cl7
BnO B-+
VW
1. [Rh(OAch12, PPhR,EtOAc, loo”, 6 h, CO/H2 (l/I, 350 psi) 2. PCC, CH2C12,3 h
0
cl8
CHO HRh(CO)[P(PhS03Na-m)R]Ron CPG-240, CO/H2 (l/l, 5.1 MPa), cyclohexane, 75”, 5.5 h
314
n-C8H17
+
(-4
746.747
n-C8&7 (Cfbh@H
W-&OH
(4
CHO
TABLE III. HYDROFORMYLATION Reactant
OF UNSATURATED
ALCOHOLS (Continued)
Conditions
Product(s) and Yield(s) (%)
Refs.
OH
Cl9
[Rh(NBD)C112,PBuR,CO/H2
/
&HO
1 + \$CHO
293
\
HOJYP
(J$
III +
pJJH
JYP
IV
(-)
CHO
CHO
HO
II +
I + II + III + IV (97); 1:II:xrI:IV = 45:45:5:5
\
HO
A
- -CHO
dP
[Rh(NBD)C112,PBu3, CO/l-l2
(72) + Aldehyde isomer (28)
293
A
c21
OH \
PWNWC112,PBu3,
EW,
(80)
W&j,
293
CO/H2 ( 1OO-120 bar), 120” \
HO c
OH [Rh(NBD)C112,PBu3, R’R2NH, C&j, CO/H2 ( 120 bar), 120”
r
35
(47-82)
293
- -CH2NR’R2
L
-NuN-cHo ;-N 3
; -NEt2
HO
HO // [R~(OAC)~]~,PPh3,CO/H2 (12 bar)
H 0~
/
Ii
748
A
c23
HO [R~(OAC)~]~,PPh3,CO/H2 (l/l, 12 bar), EtOAc, 80”, 20 h
748
TABLE
IV. HYDROFORMYLATION
OF UNSATURATED
ALDEHYDES
AND
Rh(CO)z(acac),DIPHEPHOS, THF,
KETONES
/;\/-/-CH;
+ L
II
I
CO/Hz ( l/l, 70 psi), 60”, 18 h
Rh/C (5%), DPPP, CO (8.5 atm), HCOzH, DME, lOO-105”, 18-24 h 0
Rh,&-OMe)2(COD)2, PPTS, 10 P(OC~H~BU-?-~)~, (MeO)$ZMez, CO/H2 ( l/l, 50 bar), 60”, 24 h
‘:;^r
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
CHO
1+11(86) I:11 > 40: 1
135
368
I + II (27), I:11 = 36:63
+LMe +%TiMe663 (3)
(97)
c8
0
c9
Rh(CO)z(acac),BIPHEPHOS, THF, CO/H;! (l/l, 70 psi), 60”
-CHO
Rh(acac)(CO)z,TPPSNa,
0
Cl0
I(41) +
749
II (-)
OHC LCHO
750
I(97)
CO/I-l2 (l/l, 100 atm), THF, 70”, 16 h i-PrO2C
248
(51)
9xr
.co#r-i
OH
o--P,-0 3 ,Rh+(COD) BF4(0O-P-O 6 + i-PIQC
135
OHC,CHO
polyethylene glycol dimethyl ether, Hz/CO (90 kg/cm2G), 90”, 4 h
Rh(acac)(CO)z,TPPSNa, CO/H2 (90 kg/cm2G), loo”, 6 h
n:iso > 40: 1, (87)
hCHO
COzPr-i
0 Rh(COD)BPb,
CO/H2, CHC13
251
6-I CHO
/ 9
0
s
707
[Wp-SBu-WON PWhh 112, CO/H2 ( l/l, 12-13 bar),toluene, 78”, 18 h
OHC
Cl1
CHO AC ~WW’Phh C&&j, fi, 10 h, CO/H2 (l/2, 1 atm)
I+
OHCdAc
II+
369
AC
AC III+
OHC CHO
I + II + III + IV (84), 1:II:III:IV Cl2
AC AC
RhH(WG’W3,
Cd-b,
AC AC
369
I+
OHC
CO/H2 (l/2, 1 atm), rt, 4 d II
[RhCl(COD)]2, C6H6, lOO”, CO/H2 (l/l, 700 bar), 7 h
= 5:45: 1.5:29.5
C-1
I + II (63) 1:II = 2.5: 1
669,750
TABLE V. HYDROFORMYLATION
OF UNSATURATED
ESTERS
A. Esters of Unsaturated Alcohols Conditions
Reactant
Product(s) and Yield(s) (%)
Refs.
G @OAc
CHO
CO/H2 (l/l, 100 atm), THF, 70”, 16 h i-PrO*C
+
OHCmOAc
II (-)
I:11 > 99:l
248
OAc
.co*Pr-i 0 hl O-;P,-O (0 3 ,Rh+(COD) BF4O-P-O
d +
I (-)
COIPr-i
i-PrO&
Rh(COD)BPb, CO/H:! (l/2,300 psi), CHC13,55”, 22 h
I + II (-), 1:n = 94.5:5.5
251
Rh(acac)[P(OPh)&, P(OPh)j, URh = 2.6, CO/H2 ( l/l, 1atm), 40”, 6 h
I (63) + II (-)
751
RhH[P(OPh)&, CO/H2 ( l/l, 1atm), 40”, 4.5 h
I (67) + II (-)
751
Rh(acac)(CO)z,P(OPh)j, LJRh = 2.6, CO/l-l2 (l/l, latm), 40”, 3.5 h
I (81) + II (-)
751
Rh(anthranilate)(CO)2,P(OPh)3, P/Rh = 4.1, CO/H2 (l/l, 1 atm), PhMe, 40”
I(38)
570
[Rh(COD)(OAc)12,CO/l-l2
I + II (57-80), I:11 > 99: 1
316
5% Rh/C, DPPP, CO (8.5 atm), HCOzH, DME, lOO-105”, 18-24 h
I + II (30), I:11 = 82: 18
368
I + II (‘C0)4W(~-IjPh2)2RhH(CO)(PPh3), W-&j,
372
(72), I:11 = 75:25
CO/l-l2 (l/l, 380 psi), 50”, 22 h
eoAc
CO/H2 (40 atm), CH2C12,80°, 12 h Phosphine DPPB
CHO OHCaOAc
Catalyst, Rh(COD)($-PhBPh3) Rh(COD)($-PhBPh,) Rb(COD)($-PhBPh,) Rh(COD)($-PhBPh3) [Rh(COD)(PPh,),,]BPh
DPPB DPPB -
1:l 1:2 1:4 -
[Rh(COD)(PPh3)2]BPb Rh(COD)(+PhBPh,)
DPPB PPh3
1:2 1:l
R~(COD)(T$P~BP~,) Rh(COD)($-PhBPh,)
PPh3 P(C&NMez-4)3
1:4 1:4
I +
Catalyst:Phosphine -
I+II 01) (76) (56) (53)
1:II 36:64 40:60 955 91:9
(68) (5%
20:80 94:6
(67) (74)
56:44 42:58
(63)
37~63
OAc II
CO/H2 (l/l, 55 bar), 90”
731
Catalyst-Promoter Cq(C0)gPh@eH @(CO)g-Ph2s Co$O)s-2,2’-dipyridyl C~(Co)8-succinodde C0#0)8,
267
I+rI t-1
I:11 48:36 57:ll 66:14 61:19
6) t-1 C-1
Co/H;! (200 bar), 125”
1(64) + II(-)
+ To”
III (-)
I:II:III
= 70: 15:15 73 1
CHO (~W2~WN~~W~ CO/H2 (l/l, 380 psi), 50”, 22 h
c&j,
I+II(70),I:II=89:11
[Rh(COD)C1]2in mormorilonite, CH2C12, Hz/CO ( l/l, 600 psi) Temp. 145” 130” 100” 65” It
Time, (h) 36 36 48 60 216
Conv. (%) 100 100 100 100 0
372 752
I+II
I:rI
(56)
loo:0 86: 14 47:53 30:70
(82) (92) (92) (4
-
TABLE VT HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) A. Esters of Unsaturated Alcohols (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
752
[Rh(COD)C1]2/DPPBin mormorilonite, CH&12, Hz/CO Hz/CO (psi) Temp. Time (h) Conv. (%) 100 100” 36 1000/100 100 100” 45 7501250 100 100” 30 250/750 100/1ooo lOOO/lOO
C6
130”
24
55”
48
85 100
Rh(COD)($-PhBPh,), DPPB, CH2C12, CO/H2 (40 atm), 80”, 12 h
OAc
I + II
I:11 35:65
(90) (91)
38162 38:62 77:23 25175
(90)
(81) (93)
267
(0)
[Rh(COD)C1]2in mormorilonite, 150”,
/A/O
‘r-r 0
Et
752
(97) OAc
H2/C0, CH2C12,20 h
CHO Rh(COD)($-PhBPh,), DPPB, CH2C12, CO/H2 (40 atm), 80”, 12 h
OHC-O
7-r 0
Et
I +
Et
0
A/
ii
I + II (67), 1:II = 91:9 OAc
WOAc
WOAc
-0Ac
CHO 1 + ),,OAc
267
I+II(87) I:11 = 70:30
267
oHcToAc
Rh(COD)($-PhBPh,), DPPB, CH2C12, CO/H;! (40 atm), 80”, 12 h
OHCwOAcI
[Rh(COD)C1]2in mormorilonite, CH2C12, CO/H2, 50”, 30 h
I + II (66), I:11 = 39:61
752
Rh(COD)(+PhBPh,), DPPB, CH2C12, CO/H2 (40 atm), 80”, 12 h
Aldehydes (0)
267
[Rh(COD)C1]2in mormorilonite, CHzC12, CO/H2, 50”, 30 h
I + II (66), I:II = 39:61
752
[Rb(CO~)C1]2 in mormorilonite, 50”,
y\/OAc CHO
+ L
II
I + xoAc
II
752
I+11 (93) 1:II = 30:70
Rh catalyst, CO/H2 (600 bar), 80”
699
OAc CHO
60”, Hz/CO (l/l, 600 psi), 20 h
CHO
OAc
OAc
[Rh(COD)C1]2in mormorilonite, CH2C12,
II
;::,“F;
Rh(COD)($-PhBPh,), DPPB, CH2C12, CO/H2 (40 atm), 80”, 12 h
H2/C0, CH2C12,96 h
c7 L
267
I1
-If
A
(4
752
I +
OVCHO
CHO
I + II (93) I:11 = 30:70
II
CHO ‘*
VOAc
Rh catalyst, CO/H2 (600 bar), 80” OAc
c9
OAc u-1 +
0
RhK (5%), DPPP, CO (8.5 atm), HCOzH, DME, lOO-105”, 18-24 h OAc
OAc
+ OHCTOAc
699,753
II (-) OAc
1:II = 80:20
CHO 0
368
752
[Rh(COD)C1]2in mormorilonite, CH2C12, CO/H2, 130”, 120 h 0 [Rh(COD)C1]2in mormorilonite, CH2C12, CO/H2, rt, 264 h
PhK
0 I+ 0-CHO
PhK
0
CHO II
752
I + II (61), 1:II = 18:82 Rh@ac)KOh, P(Cd-bSO~Na-m)~,W, per@-cyclodextrinMe2-o-2,6), P/Rh = 5, CO/H2 (l/l, 50 atm), 80”, 0.75 h
p+ AcO-
I + AcOw
vCHO
II I + II (loo), I:II=l 1
610
TABLE V. HYDROFORMYLATION
OF UNSATURATED
ESTERS (Continued)
B. Esters of Unsaturated Acids (Continued) Conditions
Reactant
CO/H;! ( l/l, 600 psi)), CHzC12,80°, 18 h Catalyst L/Rh Ligand Rh(COD)(q6-PhBPh3) Rh(COD)($-PhBPh3) Rh(COD)(+PhBPh3)
-
0
756 Conv. (%) 71
DPPB
2
100
P(OPh)3 -
4 0
BWOW112
DPPB -
2 0
96 34 100 16
BWOWU2 [Rh(COD)C112
DPPB DPPB
1 2
BWOW112
DPPB
3
[Rh(COD)(DPPB)]BF4 [Rh(COD)(DPPB)]BF‘,
Yield (%) [ GC (Isolated)] 51 (35) 93 (68) 90 (57) 25 (18)
33
5 c-1 25 (16)
100 100
94 (7 1) 94 (70)
PC
4 4 4
2 2 2
50” 50”
8 21
50”
21
100 100 100
I:11 76:24 97: 3 98: 2 79:21 99: 1 75125
89 (63)
Rh(acac)(CO)z,ligand, Hz/CO (l/l, 50 bar), PhMe&O Time (h) Conv. (%) lJRh PhMe/l-lzO Temp. Ligand 4 100 80” PNS 2 4 6 100 PNS 2 2 80” 21 50” PNS 2 2 81 TPPMS PNS
Refs.
Product(s) and Yield(s) (%)
91: 9 98: 2 99: 1 757
I + II
III
III
(73) (77)
1.8 2.7
(27) (23)
(58) (83) (60) (76)
14 63 22 22
(23) (17) (40) (24)
Rh(acac)(C0)2, TPPMS, P/Rh = 4,50”, PhMe/l$O = 2, CO/l-l2 (l/l, 50 atm), 8 h
I + II (83) + III (17), III = 63
757
Rh(acac)(CO)z,PPh3,P/Rh = 10, PhMe, CO/H2 (l/l, 50 atm), 50”, 140 min
I + II (95), I:11 >200
471
Rh(acac)(CO)z,TPPTS, P/Rh = 10, 120 min, PhMe&O = 413, CO/l-l2 ( l/l, 50 atm), 50”
I + II (97), I:11 = 128
471
Rh(acac)(CO)#TPPTS on 6OA silica gel, P/Rh = 10, PhMe, 24% wt H20, SO”, CO& (l/l, 50 atm), 60 min
I + II (97), III = 177
471
CHO
Rh(COD)B%, DPPB, l.JRh = 2, CH2C12, CO/H2 (l/l, 600 psi), 80”, 12 h CO/H2 (l/l), m,
17 h
catalvst Rh(acac)(C0)2/PMe3 Rh(acac)(CO)$P(OPl& Rh(acac)(CO)2/P(OPh)3 Rh(acac)(CO)2/P(OPh)j ~(~~)(COh~(O~)3
Rh(acac)(CO)$P(OPh)s Rh(acac)(CO)2/P(~&LjMe4)3 Rh(acac)(CO~/P(OC&jCl-4)3 Rh(acac)(CO)2/P(OC&&le-2)s Rh(acac)(CO)2/P(OPr-i)s Rh(acac)(COh/P(OMe)3 Rh(acac)(P(OPh)&/P(OPh)s
I Temp. 40” 40” 60” 80” 40” 40” 40” 40” 40” 40” 40” 40”
I +
OHC
C02Et +
II
+
Pressure(atm) 1 1 1 1 10 30 1 1 1 1 1
I
(16)
1
(14)
“?02Et II III
(0) (21) (1) (0) (82) (%) (27) (17) (4) (8)
II
-C02Et
(0) (58) (52) (28) (7) (1) w) (37)
(2) w (@I (75)
III
I + II (79) III = 98:2
325
758
(7) (20) (47) (38) (3) (1) (23) (10) (4) Gw (11) (11)
Rh(acac)(CO)z,PPh3, P/Rh = 10, PhMe, CO/H2 (l/l, 50 atm), 50”, 165 min
I + II (94), III = 137
471
Rh(acac)(COh, TPPTS, P/Rh = 10, PhMe/l&O = 4/3, CO/H2 (l/l, 50 atm), 30 min, 50”
I + II (97), III = 121
471
[Rh(CO)2Cl]2, 10 Ligand, Et3N, PhMe, CO/H2 (l/l, 20 bar), 25”, 12 h Ligand DPPB o-TDPP PPPN DMTPPN
514,319 I (56) (57) (71) (70)
III loo:0 loo:0 loo:0 lo&O
TABLE
V. HYDROFORMYLATION
OF UNSATURATED
B. Esters of Unsaturated
ESTERS
(Continued)
Acids (Continued)
Rh(acac)(CO)2/TPPTS
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
on 6OA silica gel,
471
I + II (97), 1:II = 115
P/Rh = 10, PhMe, 37% wt H20,50”, CO/H2 (l/l,
50 atm), 25 min
[RhCl(CO)&, CO/H2 (l/l, Phosphine
A
I : II : III
Conv. (%)
none
36
6
28.6 : 66.7 : 4.8
PPh3
180
27
71.5 : 27.0 : 1.5
Ph2P(CH2)2PPh2
42
100
64.2 : 2.6
: 32.0
Ph2P(CH2)3PPh2
22
100
72.3 : 2.9
: 24.8
Ph2P(CH2)4PPh2
5
100
85.4 : 2.3
: 12.3
Ph2P(CH2)5PPh2
550
100
49.9 : 17.0 : 33.1
Cy2P(CH2)2~~2
7
100
79.9 : 3.8
Cy2P(CH2)4xy2
l2
100
67.2 : 1.1 : 31.7
DBP-(CH2)2-DBP
76
100
32.1 : 17.3 : 50.5
Rh(COD)BPh4, C02Me
759
P/Rh = 4, PhEt, 150”, 100 atm) Time @in)
CO/H2 (l/2,300
psi),
: 16.3
II
I + OHC
CO2Me
CHC13, 60”, 22 h Rh(COD)BPh4,
DPPB, L/Rh = 2, CH2C12,
CO/H2 (l/l,
CO/H2 (l/l,
(l/2/15),
C&,
(10, c6&
325
I + II (-),
760
1:I.I = 93:7
I + II (---I, 1:II = 18:82
760
I + II (65): 1:II = 95:5
761
15 bar), lOO”, 3 h
Styrene-divinylbenene
( 1%) resin-
(C$-14PPh2j3RhHfCO),
P/Rh = 20,80”,
CO/H2 (l/l,
I + II (75), 1:II = 96:4
80 bar), lOO”, 3 h
IRhWD)CW’Bu3
CO/H2 (l/l,
400 psi), C6H6, 21-24 h
600 psi)), CH&,
756
lOO”, 18 h
Catalyst
Ligand
L/Rh
Conv. (%)
Yield (%) [GC (Isolated)]
Rh(COD)($-PhBPh,)
-
0
98
96 (78)
20:80
Rh(COD)($-PhBPh3)
DPPB
2
72
72 (54)
91:9
[Rh(COD)(DPPB)]BF4
-
0
29
24 (22)
ERhKOD)(DPPB)lBF4
DPPB
2
no reaction
[Rh(COD)C112
-
0
100
CWCOD)C112
DPPB
2
no reaction
Rh(COD)(+PhBPh,), Pressure (psi)
CO/H2 (l/l), Temp.
I:II
16:84 -
0 (0)
16:84
53 (47)
-
0 (0)
756
CH2C12
Time (h)
Conv. (%)
Yield (%) [GC (Isolated)]
1:II
600
50”
66
83
76 (67)
70:30
600
60”
64
86
84 (71)
53:47
600
84”
18
93
90 (73)
25~75
600
100”
18
98
96 (78)
20: 80
600
130”
18
loo
94 (77)
6:90
200
130”
18
39
36 (18)
3:97
[RhCl(CO)&, CO/H2 (l/l,
P/Rh = 4, CfjH6, 150”,
I+II+
100 atm)
A
C02Me
III
Phosphine
Time (min)
Conv. (%)
none
16
100
7.2
PPh3
200
100
38.5 : 56.1 : 5.4
: 73.4 : 19.6
105
100
79.5 : 17.6 : 2.9
Ph2P(CH2)3PPh2
250
51
45.9 : 17.5 : 36.6
Ph2P(CH2)4PPh2
360
92
75.5 : 19.2 : 5.3
Ph2P(CH2)5PPh2
420
98
14.7 : 74.3 : 11.0
CY2WH2)2~Y2
450
98
50.2 : 44.7 : 5.1
Cy2P(CH2)4~y2
280
98
54.9 : 40.5 : 4.7
110 atm), PhMe,
I (97) + II (tr) + III (3)
Rh4(CO)12, CO&
(l/l,
759
1:II:III
Ph2P(CH2)2PPh2
120”, 78 h
251
600 psi), 130”, 24 h
[Rh(NBD)Cl]2/PPh3/Et3N
CO/H2 (l/l,
I+II(-) 1:I.I = 45:55
762
TABLE
V. HYDROFORMYLATION
OF UNSATURATED
B. Esters of Unsaturated Reactant
(Continued)
ESTERS
Acids (Continued)
Conditions RhH(CO)(PPh&,
Product(s) and Yield(s) (%)
PPh3, CO/l-I* (l/l),
P/Rh
Pressure (psi)
Temp.
Time (h)
Conv. (%)
III
3
50
80”
22
63
25 175
3
200
80”
18
82
57:43
3
800
80”
8
100
94:6
3
800
30”
91
86
99:l
3
800
150”
6
69
16:84
3
100
80”
5
57
31:69
6
100
80”
24
90
46:54
20
100
80”
23
87
70:30
100
80”
22
64
6634
200
150”
18
56
-40 20
2:98 C02Me
/\\/CO2Me
~C1(C0&,
CHO
I+
P/Rh = 4, C&Is, 150”,
CO/H2 (l/l,
Refs. 761
C&I6
OHCaCO2Me
III
+ mCO2Me
IV
1:II:III:IV
Conv. (%)
(min)
759
II+ C02Me
/L
CHO
100 atm)
Phosphine
Tie
none
160
100
0.0
pm3
210
100
17.2 : 52.6 : 12.6 : 17.6
: 51.7 : 30.0 : 18.0
fi2PKH2hP-2
150
100
22.9 : 2.0
: 0.0
: 75.1
PW’KWd’~2
210
93
8.8
: 4.6
: 0.0
: 86.6
WW-bM’b
240
92
80.1 : 5.2
: 0.0
: 14.7
bP(CW$‘~2
360
94
3.6
Cy2WH2h~Y2
360
71
43.5: 2.6
CY2P(cH2)4xY2
210
40
41.4 : 28.2 : 4.7
: 40.6 : 27.9 : 28.0 :O.l
: 53.8 : 25.7
COzMe I+II+IV+
~H,(O,COH)[P(~-i),12,W2%
VI +
v+
593
CH20H
THF, 120”, 20 h /
C02Me
-f
COTMe
VII+
C02Me
A/
C02Me
I + II (19), I:11 = 48:52; IV (49); V + VI (5); VII + VIII (17), V-II:VIII = 43:57 Rh(acac)(CO)T, CO/l&
(l/l,
PPh3, P/Rh = 10, PhMe,
Rh(acac)(CO)2,
TPPTS, P/Rh = 10,
720 min, PhMe&O CO/H2 (l/l,
I+II(44),I:II=77
471
I + II (81), 1:II >200
471
I + II (96), 1:II >200
471
50 atm), 50”, 360 min
= 4/3,
50 atm), 50”
Rh(acac)(CO)#TPPTS
on 6OA silica gel,
P/Rh = 10, PhMe, 24% wt H20,50”, CO/H2 (l/l,
cc 0O
CO/H2 ( l/l,
50 atm), 60 min
756
600 psi), CH2C12
I
1:II:III 0:94:6 92:5:3
Catalyst
Temp.
Time (h)
Conv. (%)
Rh(COD)@$PhBPh,)
60”
24
100
60”
24
90
100”
18
100
0: 89: 11
100”
18
100
82: 11:7 80 : 10 : 10
Rh(COD)($-PhBPh3)
+ DPPB (2)
Rh(COD)($-PhBPh,> Rh(COD)($-PhBPh3)
+ DPPB (2)
Rh(COD)($-PhBPh3)
+ DPPB (4)
Rh(COD)(+PhBPh,> Rh(COD)($-PhBPh3)
+ DPPB (4)
[Rh(COD)(DPPB)]BF4 m(COD)(DPPB)]BF4
+ DPPB (2)
[Rh(COD)C112 [Rh(COD)C1J2
+ DPPB (2)
100”
18
100
130”
24
100
0:61
130”
24
100
67 : 9 : 24
:39
14
(0) c-4 (0) (6% e-4 (0) (49) (0)
100”
18
100
0:86:
100”
18
100
81 : 13 : 6
100”
18
100
0:96:4
(0)
100”
18
100
81 : 14 : 5
(67)
(70)
TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B. Esters of Unsaturated Acids (Continued) Reactant Rh(COD)BPb,
1 (56)
DPPB, URh = 2, CHQ,
CO/H2 (l/l,
325
600 psi), 130”, 24 h
c6
CHO
\=/C02Et
Refs.
Product(s) and Yield(s) (%I
Conditions
Rh(COD)BPb, CO/H;! (l/l,
C02Et
I+
DPPB, IJRh = 2, CH2C12,
II
I+II(60)
CHO
C02Et
600 psi), 130”, 12 h
325
I:II=99:1
C02Et Rh(COD)BPb, Y
600 psi), 130”, 12 h
PQ(PPh&/SnC12
&+C02Et
CO/H;! (l/l, ,
C02Me
7
325
I + II (68), 1:II = 98:2
DPPB, J.&h = 2, CH2C12,
CO/H2 (l/l,
OHC,/,/C02Et
(US), MEK, 70”, 4 h,
CHO
I +
II
I + II (96)
C02Et
10 MPa)
763
1:I.I = 80:20
CHO [RhCl(CO)2]2,
major +
Ph2P(CH2)2PPh2, P/Rh = 4,
CO/H2 (l/l,
C02Me
(-)
759
+
100 atm), 150”, 24 h C02Me
C02Me
OHC
(19)
G-3 + CHO Rlq(CO)12,
wC02Me
TPPTSNa, P/Rh = 60,
H2/C0 (l/l, n
ISrr\\/\COzMe
oHCwC02Me
’ +
100 bar), 120”, pH = 7
Time (h)
cHo /COzMeII
1
27
22
(1%
(3)
85:15
(-)
2
21
99
(8%
(9)
91:9
(1)
6
13
92
(85)
(7)
93:7
(-)
7
3
86
(71)
(12)
86:14
(2)
10
4
82
(58)
(13)
82:18
(10)
OHc-C02Me
Rh(C0)2(t-BuCOCH=CHCOBu-t),
764
Internal alkenes
1:I.I
II
I
Conv. (%)
765
* (----)
L, L/Rh = 5, PhMe, CO/Hz, lOO”, 2 h R* = C02Me
I : (I + other aldehydes) = 0.97 I : (all products) = 0.64
HP/%
CF3
CHO PQ(sixantphos),
766
SnC12, Sn:Pt = 1, ’ +
CO/H2 ( 1: 1), CH2C12
&COzMe
II + CHO
CHO &C&Me I : (II+III+Iv)
III
Byproducts Hydrogenation (%)
P/Pt
P W.t-1
temp
1
50
100”
2.7
1
1
10
100”
10.5
10
(1)
10
80”
11.1
2
w
8.8
23
(1)
18.0
2
(1)
1
10
120”
10
80”
dCo2Me
(%)
CHO
c7
Rh(acac)(CO)2,
@C02Bu-n
CO/H2 (l/l, Rh(acac)(CO)z, PhMe&O
I +
PPh3, P/Rh = 10, PhMe,
TPPTS, P/Rh = lo,90
= 4/3, CO/H2 (l/l,
Rh(acac)(CO)2flPPTS
OK,,
C02Bu-n
50 atm), 50”, 150 min min,
Iv
(4)
1
8
+
II
C02Bu-n
I + II (96)
471
1:II = 140
I + II (98), 1:II = 123
471
I + II (98), 1:II = 121
471
50 atm), 50”
on 6OA silica gel,
P/Rh = 10, PhMe, 37% wt H20,50”, CO/H2 (l/l,
50 atm), 120 min CHO
‘OOEt 0
Rh(acac)(C0)2, CO/H;! (l/l,
471
PPh3, P/Rh = 10, PhMe, 50 atm), 50”, 240 min
‘\/OEt
+ 0
I + oHcY-fo-oEt~ I + II (87), 1:II = 62
0
TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B. Esters of Unsaturated Acids (Continued)
==c
Rh(acac)(C0)2, TPPTS, P/Rh = 10, 40 min, PhMe/l&O = 4/3, CO/H2 (l/I, 50 atm), 50”
I + II (94), 1:II = 72
471
Rh(acac)(CO)2flPPTS on 6OA silica gel, P/Rh = 10, PhMe, 37% wt H20, SO”, CO/H2 (l/l, 50 atm), 40 min
I + II (97), 1:II = 103
471
RhH(CO)(PPh&, PhMe, lOO”, 8 h, CO/H2 (l/l, 80 barj
C02Me 1(37) + OHCyzMe C02Me OHC C02Me
C02Me
C02Me
II@)
C02Me
III (41) +
+ TCOzMe C02Me
c8 WOzMe
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
\=/
767
Iv (9)
Me02C’
Rh4(C0)12, PhMe, lOO”, 17 h, CO/H2 (l/l, 80 bar)
I(8) + II (34) + III (58)
767
lU4(CO)12, PPh3,LJRh = 4, PhMe, 100”, 7 h, CO/H2 (l/l, 80 bar)
I (42) + II (9) + III (45) + IV (4)
767
Rh-PEW, CO/H2 (l/l, 41.4 atm), H20, lOO”,2 h
oHcTC02Me
242
(21)
CHO yC&Me C02Me
Rh(aca)(COh, PhMe, Hz/CO (100 atm), 8 h, bis(2,4-di-tert-butylphenyl) phosphite
-
+
Rb(C0)12, TPPTSNa, P/Rh = 60, Hz0 C7H,5S03Na, Hz/CO (l/l, 100 bar), 120”, pH = 7,10 h
WCOzMe
OHC
768
I(74j
C02Me C02Me
+
C02Me
WN
oHcAC9Me
764
I(80) +
WCOzMe 6
CHO kcozMe
II (6)
1:II = 93:7
+ internal alkenes(7) + C1&I21C02Me (2) Cl0
CO*Et dCOzEt
1. RhH(CO)(PPh3)3,C6H6,rt, 10 h, CO/H2 (l/2, 1 atm) 2. Silica
ph-C02Me
CO/H2 (l/l, 100 atm), C6H6
CHO C02Et uco2Et
CHO COzMe
Ph
Catalyst RhH(CO)(PPh3)3 @h(COD)C112 Rh(COD)(BPb) [Rh(CO)2Cl]2 ~W’Ph3h RhCl(CO)(PPh,)2
Temp. 120”
Time (h) 7
80” 80” 80” 80” 80”
7 7 22 16 7
100”
7
I+
C02Me
Ph?
C02Et
~WCWPPh3h
cd69
CO/H2 (l/2, 1 atm), rt, 4 d
1:II loo:0 72128
I+II
III
(69) (58)
(31)
loo:0 94:6 95:5 91:9 62:38
(40) (79) (52) (57) (32)
Bu-n 0
769
(11) (14)
OHC u
C02Et
(61)+
369
CHO
CHO Rh(acac)(CO)z,PPh3,P/Rh = 10, PhMe, CO/H2 (l/l, 50 atm), 50”, 150 min
II +
(12) (20) (16) (18)
C02Et Et
369
CHO
Cl1 -
I + II (87) 1:II = 28166
C02Me III
Ph-
m203
I +
+0&u-,
(-3 Et
Et
+ OH’,,“d,umn I + II (93), I:11 = 63
471
TABLE V. HYDROFORMYLATION OF UNSATURATED ESTERS (Continued) B . Esters of Unsaturated Acids (Continued) Reactant
Refs.
Product(s) and Yield(s) (%)
Conditions I + II (97), 1:n = 59
471
Rh(acac)(CO)#lPPTS on 6081silica gel, P/Rh = 10, PhMe, 37% wt H20, SO”, CO/H2 (l/l, 50 atm), 20 h
I + II (93), 1:II = 79
471
Rh(CO)z(acac),BIPHEPHOS, THF, CO/H2 (l/l, 70 psi), 60”
Meo2cw
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Eto2cwCHO
Rh(acac)(COh, TPPTS, P/Rh = lo,20 h, PhMe/H20 = 413,CO/H2 (l/l, 50 atm), 50”
Cl2 Meo2cm Cl3 Eto2cw3
poly(2-hydroxyethylmethacrylate) network coating on porous silica, c-CgHl2,
CHO
135
(91) n:iso > 40: 1
II
I + Et02C
770
I+II(42),I:II=2:1
CO& (l/l, 800 psi), SS”, 4 h RhCl(CO)(DPM~-poly(vinylbenzyhriethylammonium chloride) on silica, c-CgHt2, H20, EtOH, 85”, CO/H2 (l/l, 750 psi), 15 h
Ph
CO2Me
Cl7
A
HCo(CO)d, CO (1 atm), hexane,rt, 1.5 h
-
655
I+II(42),I:II=S:l
vcHo
Ph
(18-W
771,772
C&Me
Ph Cl9
n-G&7&
C&Me 7
C*(CO)g, COtH2 (3500-4500 psi), 100-150”
n-CsHt7m,CO2Me eH0
-.
773-775
I + I + II (50-90)
CHO n-C8HI
RhK, PPh3,PhMe, 100-l lo”, 4-6 h, CO& (l/l, 1000-2000 psi)
7
C02Me II + OHC
TABLE VI. HYDROFORMYLATION Reactant
OF UNSATURATED
Product(s) and Yield(s) (%)
c3 RO-
ETHERS AND ACETALS
Conditions
Rh4W912,
C6H6, CO&
CHO
(l/l, 100 am),
loo”
i-Pr
t-BU PhCH2 Ph
lXWO)2Cll,~Ph, (16 Cd4691m”, CO/H2 (l/l, 100 atm)
II C-2
332
I:II 78~22 76:24 76:24 72128 63:37 76124 95:s
w-)+w--) R Me Et n-Bu i-Pr
t-Bu PhCH2 Ph c4
CHO
Rh4(CO)12,CO/H2 (l/l, 100 atm)
332 1:II 54146 54146 53:47 52~48 53:47 67~33 95:5 I+
Et0 A Temp. 100” 80” 50” 20”
RO/\/CHO
RO R Me Et n-Bu
EtO*
w---> +
Refs.
Time (h) 0.5 0.8 4.0 15.0
I+II (97) (96) (90) (50)
1:II 76~24 77~23 78~22 82:18
&O-dCHo
=
332
TABLE VI. HYDROFORMYLATION Reactant
OF UNSATURATED
333
Rh;!(CL-S(CH2)3NMe2)2(COD)2, CI-Wh, P(OPh)3,L’Rh = 2, CO/H-, (l/l, 5 bar), 80”, 20 h
I + II (99), 1:II = 4951
333
CWb, Rh2(CL-S(CH2)3NMe2h(COD)2, P(OC6H4Bu-t-2)3,LJRh = 2, 80”,
I + II (98), 1:II = 69:31
333
Rh2(~-S(CH2)3NMe2)2(COD)2(1 mol%), PPh3,L/Rh = 10, CO/l-I;?(l/l, 30 bar), (CH2C1)2,80”, 8 h
I+II(99),I:II=
333,334
Rh#-OMe)2(COD)2, 10 PPh3, CO/H2 (l/l, 50 bar), HC(OEth, 60”, 48 h
II (96) +
Rh&OMe)2(COD)2, 10 PPh3,60”, CO/H2 (l/l, 50 bar), (MeO)&Me;! ,48 h
II mo
663
Rh&-OMe)2(COD)2, 10 PPh3,HC(OEt)3, PPTS, CO/H2 (l/l, 50 bar), 60”, 4 h
II (8) + III (92)
663
P(OC&14Bu-t-2)3,LJRh = 20,80”, CO/H2 (l/l, 5 bar), 20 h
0
Refs.
Product(s) and Yield(s) (%I
QCHO1 +(--JCHOa ,1,‘:;;:
Rh2(CL-S(CH2)3NMe2)2(COD)2, CW12,
0
ETHERS AND ACETALS (Continued)
Conditions
CO/H2 (l/l, 5 bar), 20 h 199
d
CH(OEt)2 663
III (4)
0
Rh&-OMe)2(COD)2, 10 PPh3,PITS, 60”, CO/H2 (l/l, 50 bar), (MeO)zCMez, 24 h
663
0I
Rh2(~-S(CH2)3NMe2)2(CODh, 120”,
333
\
120”, Rh2(CL-S(CH2)3NMe2)2(CODh, P(OC&14Bu-t-2)3,L/Rh = 10, 8 h, CO/H2 (l/2,75 bar)
I + II (81), 1:I.I = 68:32
RhH(CO)(PPh3)3,P(OPh)3,L/Rh = 50, CO/I-I;!(l/l, 3 bar), 100”
c()-
P(OC&J3u-t-2)3, LJRh = 10, 8 h, CO/H2 (l/l, 75 bar)
0
0
0
0
6x/ /
333
(85) + (;CHO
0
(10) +
776
CHO 316
I + II (57-80), 1:II = 81: 19
I\ / c6CL 0
Rh2(p-SBu-t)2(C0)2(PPh3)2,PPh3, L&h = 10, PhMe, CO/I-I2(5 bar), 80” CHO I + II (59), I:11 = 52:48
647
RhH(CO)(PPh&, PPh3,IJRh = 5, PhMe, CO/H2 (5 bar), 80”, 2 h
I + II (99), 1:I.I = 26:74
647
[Rh(COD)(TPPTS)2JClO4,H20,80”, CO/H2 (l/l, 5 bar), 18 h
I + II (99), 1:II = 36:64
647
Rh2(p-SBu-t)2(C0)2(TPPTS)2,H20, 80”, CO (5 bar), 18 h
I + II (62), 1:Il = 56:44
647
Rh2(C1-SBu-t);!iCOh[P(OMe)312, ClCH2CH2Cl, CO/H2 (5 bar), 80”
0 t
0
A/
WOMe)3, 1lo”, CO/H2 (l/l, 6.5 atm)
0
I+
Rh6(co)169
/
t
CHO
OL
RhH(CO)(PPh3)3,P(OPh)3,IJRh = 50, CO/H2 (l/l, 3 bar), 100”
I (85) + II (9) +
RhCI(CO)(PPh3)2,Et3N, C6H6,80”, CO/H2 (l/l, 100 atm), 3 h
cod
0
+
II
I+II(88) 1:II = 81:19
373,777
CHO
(6)
’ t
776
0 I+
/
t
+U
:;II;;o .. =
0 CHO
373 .
TABLE VI. HYDROFORMYLATION
OF UNSATURATED
ETHERS AND ACETALS (Continued)
RhH(CO)(PPh3)3, CO/H2 (l/l,
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
P(OPh)3, LJRh = 50,
(8% +
3 bar), 100”
(10) +
776
I + II (57-80)
316
CHO CHO
CHO
I+
n-BuO% n-BuO c7
Et0
BIPHEPHOS,
CO/H2 (l/l,
70 psi), 60”
Rh2O3, C&j,
CO/H;! (l/l,
THF,
II
1:II = 72:28 OEt
YEt
OEt Rh(CO)z(acac),
CHO n-BuO-
II I + Eto iu
EtO”CHO
CHO 200 atm),
135
I+II(80) I:II=
1O:l
I + II (63), 1:II = 1: 1.82
373,778
I + II (98), 1:II = 58:42
373,779
110”. 30 min RhCl(CO)(PPh3)2, CO/H2 (l/l,
3t
0
Et3N, C&j,
RhH(CO)(PPh3)3,
0 Jv
/
CO/H2 (l/l,
80°,
100 atm), 1.5 h P(OPhh,
03)+
(86)+
I.JRh = 50,
3 bar), 100”
776
CHO
0
(6)
)\/
T
0 0 A/
&i(cohj9WMe)3, /
CO/H2 (l/l,
CHO
ligaml, COM2
Rh(acac)(CO)z,
II
I+
1lo”,
7.1 atm)
I + II (92)
373,780,
1:II = 87: 13
781
782
1 (9%
PPh2 PPh2
0 r
0 A/
/
&dc%+j,WPb, CO/H2 (l/l,
373,783
m”,
2.7 atm) CHO
RhH(CO)(PPh3)3, CO/H2 (l/l, Rh(acac)(COh, CO/H2 (l/l,
P(OPhh, L/Rh = 50,
(6)
I (82) + II (12) +
776
3 bar), 100” 784
PR3, P/Rh = 50, lOO”, 1 MPa), 4 h
R
Conv. (%)
1:II
%%Cd-b 3,5-c&j&
32.6
85:15
31.8
83~17
4-CF3W4
25.6
81:19
3-CF3C6H4
29.4
80:20
3-C1C6H4
33.7
80:20
2-MeC&
3.3
78~22
3-FC(jH4
73.0
77~23
4-ClC6H4
81.9
74:26
3,4-hcd-b
23.0
73~27
2-MeAClC&
3.6
71129
2-cic6&
12.1
65:35
C6H5
23.7
62:38
4-FC&
35.4
62:38
3-MeC&I4
34.5
57:43
TABLE VI. HYDROFORMYLATION Reactant
OF UNSATURATED
ETHERS AND ACETALS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
CHO 784
Rh(acac)(CO)2,PR3, lOO”, CO/H2 (l/l, lMPa), 4 h
R’
R*
R3
R4
R5
H H H H H H
H H H H H H
H H H H Me Me
Me Me
H H
H Me
H H
Me H
Me Me Me Me Me
H H H Me Me
H H H H H
Me Me Me Me Me H H H H H
H H H H H H H H H H
Me Me Me Me Me
Me Me Me Me Me
H H H H H
H H H H H H
H H Me Me Me Me
III 56:44 68:32 79:21 83:17 5644 65:35 75:25 62:38
Conv. (%) 43.5 44.4 45.1 52.0 64.1 94.2 59.7 23.7 81.9 29.4 31.8 64.4 57.2 44.6
R C6H5 4-ClC6H4
3-CF3C&
3,5-ci&jH3 C6H5
4-ClC&4 3-CF3C6H4 C6H5
4-ClC(Jl4 3-CF3C6H4
3,5-c&j& Cd5
4-ClC&l4 3-CF3C&
74:26 80:20 83: 17 63~37 70:30 75:25 73~27 77123 85:15 89:ll
64.9 92.6 75.0 99.8
C6H5
4-ClC& 3-CF3C&4 3,5-Cl&H3
R2 785
Rh(acac)(CO)z,Ligand, P/Rh = 4, THF, Hz/CO (l/l, 800 psi)
0 ,fi
R’ H Me Me i-Pr
(CW2OBn (CH&CH=CMe2
R2 t-Bu t-Bu Me t-Bu Me
Ligand PPh3 PPh3 PPh3 PPh3
Me
PPh3
P(~6~h-t-2)3
Temp. 75” 75” 75” 85” 75” 75”
Time (h) 16 -
Conv. (%)
I
-
631)
-
(72) (W
100 -
(60) (71) (71)
III 12:l 13:l 14:l 12:l 9:l 11:l
Bu-t 0
Rh(acac)(CO)2,Ligand, CO& (l/l, 800 psi), THF, 120”
Rl& R2 R’ H H H Me
R,acHo
’+
R2 R2
Ligand PPh3
Me Me Bu Bu
R2 I (36)
(68)
KY3
(37) (73)
KY3 KY3
786
II (40) (20) (-) (4
I (diastereoisomerratio) 7:l 5:l 5:l 1O:l
c8
II( - )
‘-cHo
Rl$COD)BPha, CO/H;! (l/2,300 psi), CHC13,60”, 22 h
251
III = 97:3 [Rh(COD)C1]2,CO/H;! (l/l, 160 atm), c&j, loo”, 10 h
-Y 0
0L
787,699
II (83)
RhH(CO)(PPh3)3,P(OPh)3,L/Rh = 50, /
CO/H2 (l/l, 3 bar), 100”
(84) +
(8) +
CHO CHO
776
TABLE VI. HYDROFORMYLATION Reactant
Et0 OEt
OEt
OF UNSATURATED
ETHERS AND ACETALS (Continued)
Conditions
Product(s) and Yield(s) (%)
RhCl(CO)(PPh&, Et3N, C6H6,80”, CO/H2 (l/l, 100 atm), 2 h
Et+HO
I +
Rh(CO)z(acac),BIPHEPHOS, THF, CO/H2 (l/l, 70 psi), 60”
EtoTCHO OEt
Rh203, CO/H2 (l/l, 110 atm), 100”
I + II (70), 1:II = 4456
EtOq”
OEt
II
Refs.
;::,“= :‘8”:
373,779
OEt I + “,“n
II
OEt I + II (75), 1:II > 40: 1
135
CHO
Rh2[C1-S(CH2)3NMe212(COD)2, W-Nh P(OC&L,BU-~-~)~,120”, 24 h, CO/H2 (l/l, 75 x lo5 Pa)
CHO
c9 MeoJJ-
Me TBDMS
94 35
Bn
88
(-3 (14) (11)
C-1 (8) (-)
w (13) (63)
c-1 C-3 (4)
CHO Rh(COD)BPhd, CO/Hz (l/2,200 psi), CHC13,47”, 22 h
II c--j
I t---j
251
= 97:3 RhK (5%), DPPP, CO (8.5 atm), HCOzH, DME, 1OO-I 05”, 18-24 h
I + II (76), 1:II = 75:25
RhH,(O$JOH)Ip(Pr-i)&, H20, THF, 115”, 20 h
I (30) + II (44) +
CO ( 15 atm),
368
577 Meor
(18)
CHO Rh(COD)BPb, CO/Hz (l/2,200 psi), CHC13,47”, 21 h
I(--)
+
1:II = 62:38 BnO-
CHO
Rh+(CO)12,CO/H2 (l/l, 100 atm)
I+
Bn(/bCHo
BnO Temp. 100” 80” 50” 20”
Time (h) 0.7 1.0 4.5 15.0
1+11 (97) (97) (97) (50)
n
332
1:II 76~24 79:2 1 84:16 88:12
Cl0
RWOD)BPb, CO/H2 (l/2,300 psi), CHC13,80”, 22 h
,.,r
CHO
(-)
+ starting material (27)
251
Rh2(CL-SBu-t)2(C0)2[P(OPh)312, DMF, CO/H2 (l/l, 5 bar), 80”, 90 min
[FWCODWAc)l2,CO/H2
I + II (57-80), 1:II = 48:52
316
Rh2(~-SB~-t)2(C0)2(TPPTS)2,TPPTS, L&h = 4, CO/H2 (l/l, 5 bar), H20, 80”, 18 h
I + II (21), 1:II = 18:82
23
Rh2(~-SB~-t)2(C0)2(TPPTS)2,TPPTS, L/Rh = 4, CO/H2 (l/l, 5 bar), H20, 80”, 18 h
I + II (16),I:II = 4:96
TABLE VI. HYDROFORMYLATION Reactant
OF UNSATURATED
ETHERS AND ACETALS (Continued)
Conditions
Refs.
Product(s) and Yield(s) (%)
Rh2(p-SBu-t)2(C0)2[P(OPh)3]2,DMF, CO/H2 (l/l, 5 bar), 80”, 90 min
788
I (-) + II (88)
789
[Rh], CO/H (l/l, 5 atm), THF, 60” OHC
CHO
AcO
CHO
RhC1(PPh3)3
uracil
ca
-
(10)
Rh(acac)(C0)2/4PPh3 Rh(acac)(C0)2/4PPh3
(12) (27) (32)
1:l 3:l 3:l
t-1 (-)
Rh(acac)(C0)2/4PPh3
(32)
3:l
m203
cytocine N’-acetylcytosine
03
(-4 (-)
0
I
0
\ O--H I D/
RhH(CO)(TPP)3, CO/H2 (130 bar), lOO”,4 h
790
WCOD)BPb, CO/H2 (112,300 psi), CHC13,60”, 21 h
251
Pr-i Et0 +
OEt
RhCl(CO)(PPh3)2,Et3N, C6H6, 105”, CO/H2 (l/l, 100 atm), 5.5 h
RhK (5%), P(OPhb, Et3N, CA, CO/H2 (l/l, 20 atm), 73 h
1lo”,
EtO&HO
I +
EtOy’
I
II
373,779
1:II = 98:2
&Et
OEt
I + II (75)
I + II (60), I:II = 98:2
373,779
788
Rhz(p-SBu-QKOh[P(OMe)&, 80”, CO/H2 (l/l, 5 bar), ClCH2CH&l, 90 min CHO
699,791
[RhCl(COD)]2, CO/H2 (l/l, 600 bar) HO Temp. 70” 80” 100” 130” [RhCl(COD)]2, CO/H2 (l/l, 600 bar) Temp. 70” 80” 100” 130”
1:II:III 48:52:0 45:52:3 37~52:11 24:35:41 I+II+III
699,791
1:II:III 5: 0:95 10: 090 45: 5:50 50: 10:40 I
PhA
0%
[RhCKQM’Ph3 (l/4), Cd&, No, CO/H2 (120 atm), 4 h
PhJA
CHO
(46) +
(43) +
Ow
780
O&HO
ph
Rh2(p-SBu-t)2(C0)2(TPPTSh, TPPTS, IJRh = 4, CO/H2 (l/l, 5 bar), H20, 80”, 18 h
--m
1 +;;ImcHt I + II (26), I:II = 3:97
23
TABLE VI. HYDROFORMYLAT’ION Reactant
OF UNSATURATED
ETHERS AND ACETALS (Continued)
Conditions
Product(s) and Yield(s) (%)
Rh2(CL-SBu-t)2(C0)2[P(OPh)312, 80”,
I (-)
Refs. 788
+ II (86)
CO/H2 (l/l, 5 bar), ClCH$H2Cl, 90 min Bu-s
Bu-s
Et0
RhC1(CO)(PPh3)2,Et3N, C6H6,95”, CO/H2 (l/l, 100 atm), 5 h
OEt 0
+
Et0 +
Ph
OEt
k-i
t-Bu
1:II = 98:2
OEt
RhCl(CO)(PPh3)2,Et3N, C6H6,80”-100”, CO/H2 (l/l, 100 atm), 36 h
EtowCHO OEt Pr-i
II
I+
OEt
RhC1(CO)(PPh3h,Et3N, C&,, 80-100”, CO/H2 (l/l, 100 atm), 36 h
Bu-s
I+II
373,779
(80)
1:II = 98:2
Ph
347
(70)
374 t-Bu II (-)
“7-F
373,779
I + II (85)
CHO
‘y
Rh(COD)BPb, CO/H;! (l/2, 300 psi), CHC13,55”, 22 h
II
OEt
RhC1(CO)(PPh3)2,Et3N, C6H6,90”, CO/H2 (l/l, 100 atm), 5.5 h
0
I + Et0 +
0
0
s-Bu CHO CHO
EtowCHO OEt Bu-s
1:II = 90.2:9.8
(709
373,374, 792 CHO
[R~(OAC)~]~,2 PPh3,EtOAc, 100”, CO/H2 (500 psi), 22 h
phaJ
I +
ph+>
II
I+II
CHO
Temp. co/H;!(l/l) Pressure( 105Pa) 9 90” RhH(CO)(PPh3)3 100” 115 ~WXPW3 120” 75 Rh2[C1-S(CH2)3NMe2](COD)2/PPh3 120” 35 Rh2[~-s(CH2)3NMe2l(COD~~(~~~u-t-2)3 75 120” Rh2[~-S(CH2)3NMq](COD)2/P(OC&Bu-t-2)3 75 120” R~:![cL-S(CH~)~NM~~I(COD)~/P(OC~H~BU-~-~)~ Catalyst
(97)
367
1:II = 85: 15
0
CHO
Solvent
Conv. (%)
I
II
III
W2CO2
6
10
(4) (7) (-4
C-1 (4 C-1
(-3
(CH2C1)2
(7)
(8)
(26)
(14)
(-4 (-1 (11) (30)
(32)
(6)
(16)
(CH2C1)2 36 (CH2CQ2 82 71 PhMe KH2CO2
793
Catalyst
co/H2
Temp.
Solvent
Conv. (%)
I
(P. bar) 3/2 (75) 312(60) 312(60) l/l (55) l/l (70) l/l (55)
120” 130” 120” 100” 100” 100”
(CH2CU2 (CH2Cl)z PhMe
84 94 80
KH2CO2
90 91 94
(34) (34) (40) (22) (19) (37)
(CH2Cl)z PhMe
II
(6) (8) (3) (54) (58) (5)
III
Iv
(27)
(15)
(31) (W (-3 (-3 @I
‘-CHO
OEt
RhH(PPh3)4, CO&
C6H6, 80”, 3 h
(l/l, 100 atm),
C-9 U-9 (37) 251
Rh(COD)BPb, CO/H;! (l/2,300 psi), CHC13,55”, 22 h
OEt
(12) (10)
II (-)
1:II = 96:4
TABLE VI. HYDROFORMYLATION
OF UNSATURATED
ETHERS AND ACETALS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
RhH(CO)(PPh$T, CO/Hz (l/l, 100 atm), C6H6,80”, 1.5 h
I + II (95), I:11 = 98.4: 1.6
769
RhCl(CO)(PPh&, Et3N, C6H6,80”,
I + II (75), I:11 = 90: 10
373,794
CO/H2 (l/l,
10 atm)
CHO [Rh(NBD)(2,5-bis(diphenylphosphinomethyl)bicyclo[2.2.l]heptane)ClO~, CO/H;! (l/l, 40 atm), ChH6,50”, 13 h
,,,p
247 Meoyy
I(-->
+
,rcHo
Ph 0
A
0
Rh(acac)(CO)*, 4 P(OPh)3, CO/H2 (l/l, 20 bar), toluene, 70”, 48 h
0
Rh(acac)(CO)z,4 P(OPh)3, CO/Hz (l/l, 20 bar), toluene, 70°, 48 h
YY
II (-)
Ph 1 ohcHI
(26) +
1:II = 95:5
Ph I OhcHI
(74)
795
Ph 0
A
795
R
I
1:II
Me Et
(80) (79)
99:l 99: 1
CHO [RhCl(CO)&, L/Rh = 5, Et3N/Rh = 10, CO/H2 (l/l, 20 bar), PhMe, 25”, 6 h
phoyy
Ligand TPP PPPN PPh3
I +phopcHo Conv. (%)
1:II
I+II
95 64 9
91:9 93:7 93:7
uw wo (W
CHO 0 Ai5 Ph
I+ 0
--Ph
641
Ph
Ph [Rh(OAc)&, PPh3,EtOAc, 100°, CO/H:! (500 psi), 22 h
II
--Ph Ph +
I + II (74), 1:I.I = 85: 15
0 50 CHO
II
367
TABLE VII. HYDROFORMYLATION Reactant
OF UNSATURATED
Refs.
Product(s) and Yield(s) (%)
Conditions
c2
F/\\
HALOGEN COMPOUNDS
Rh4(CO)12,CO/H2 (l/l, 68 atm), 80”, PhMe, 18 h
F
357,796
1 (81) CHO
RhH(CO)(PPh&, CO/H2 (l/l, 68 atm), 80”, PhMe, 18 h
1(52)
357
Ru3(CO)12,CO/H2 (l/l, 68 atm), 80”, PhMe, 18 h
I(46)
357
c~(co)&co/H2(l/l,
I(30)
357
110 atm), lot)“,
PhMe, 18 h CHO
c3
CF3+
I +
I\
II
CF3/\/CH0
R&(C0)16, CO/H2 (l/l, 110 atm), PhMe, 80”, 5 h
I+II+
RhC/P(OPh)3, CO/H2 (l/l, 110 atm), PhMe, 80”, 5 h
I + II + III (2)
I + II (98) I:II = 4:96
357,354
HRh(CO)(PPh&, CO& (l/l, 110 atm), PhMe, 80”, 5 h
I + II + III (5)
I + II (95) 1:II = 5:95
357,354
PtC12(DIOP)/SnC12, CO/H2 (l/l, 130 atm), PhMe, lOO”, 4 h
I + II + III (25)
I + II (75) 1:I.I = 7 1:29
357,354
CF3
F3CA
c4
Rh4(CO)12,CO/H;! (l/l, 110 atm), 60”, PhMe, 6 h
G
Rh(CO)z(acac),BIPHEPHOS, THF, CO/H2 (l/l, 70 psi), 60”
X-
w--)
GFS A
CHO
+
Rh4(CO)t2,CO/H2 (l/l, 110 atm), 60”, PhMe, 6 h
X~cHO
C3F7
II (-)
1:II = 95:5
357,796
c2F5-
X Br I
n:iso >40:1 > 4O:l
CHO
C3F7A
357,354
I + II (98) I:II = 4:96
III (2)
CHO
C2Fs+
I+II (95) I:II = 93:7
796,354, 357
Cq(CO)s, CO/H2 (l/l, 130 atm), PhMe, lOO”, 20 h
u-3
A
135 (71) (64)
CHO II(-)
+
W-
I:II=91:9
357,796
CHO c8
Rh(COD)BPhd, CO/H2 (l/2,200 psi), CHC13,47”, 22 h
.-o^ w---) +xpcHow----> 251
I:rI 9812 98.6: 1.4 98:2
X F Cl Br
RhK (5%), DPPP, CO (8.5 atm), HCOzH, DME, lOO-105”, 18-24 h Rh/C (5%), DPPB, CO (8.5 atm), HCOzH, DME, llO-120”, 24 h
Iw\/ \ \
F *
/
I:II
(60)
Br Cl Br
(76) (67) (73)
9317 92:8 74:26 48:52
368 368
368
F I
I+II
Rh/C (5%), DPPP, CO (8.5 atm), HCOzH, DME, lo-105”, 18-24 h
Cl
F
X Cl
F \ F
&(c0),6, dioxane, CO/H2 (l/l,
1200 psi),
90”, 3 h
l?
F
CHO
I*
I(--) +yJJHO H(--)
359,796
6
I:II = 98:2
Co#O)g, dioxane, CO/H2 (l/l, 800 psi), 125”, 15 h
I + II + CBFSEt(22)
Rh6(CO)I& C6H6,CO/H2 (l/l, 80 atm), 90”, 3 h
I + II (loo), 1% = 97:3
F
I + II (60), 1:I-I = 15:85
359
354,357
TABLE VII. HYDROFORMYLATION Reactant
OF UNSATURATED
HALOGEN COMPOUNDS (Continued)
Conditions
Product(s) and Yield(s) (%)
Refs.
RhCl(PPh&, C&j, CO/H2 (l/l, 90 atm), 90”, 20 h
I + II (loo), III = 97:3
354,357
HWCW’Ph3)3, C&&j, 90”, 8 h, CO/H2 ( l/l, 80 atm)
I + II (10(l), III = 9812
354,357
c%(c0)8:, co/H2(l/l,
80 atm), 100°,
I +
CHO
C6bM
C6H6, 16 h
C6F5 /\7/
CHO
357,796
II+
CHO &/
III +
c6c-J
Iv
I+ II + III + IV (79), 1:II:III:IV
= 53:41:2:4
&dc%j,
I+II(loo),I:II=41:59
357
RhH(CO)(PPh&, CO/H2 (l/l, 80 atm), C6H6,95”, 3 h
I + II (94), III = 39:61
357
CO/H2 (l/l, 80 atm), 95”, C6H6, 13 h
CHO
Cl0
CO/H2 (l/l, 100 atIll), C&j, 80”
cl&co2MeI;~H~i
+
769
clpco2Me
cl/O/VC02Me Catalvst Rh(COD)(BPlq) Rh2030 PPh3 RhWW’Phd3 NWOW112
RWPPbh
C8F17-
Time (h) 22 22 7 7 6
Rh4(CO)12,CO/H2 (l/l, 110 atm), 60”, PhMe, 6 h
III
III
1+11
III
100 loo 100 -
(2)
(96) (93) (95) (5) (29)
(3) (1) (0) (45)
95:5
CHO C8F17
A
w---> + C8F1,/\/CH0
LI (--)
796,359
III = 92:8 c13
OEt
CHO OEt RhH(PPh3)4,CO/H2 (l/l, 100 atm), Cd&, 80”, 3 h
769 OEt
RhH(CO)(PPh&, CO/H;! (l/l, 100 atm), C&Is, 80”, 1.5 h
I + II (61), III = 98:2
I + II (98)
769
TABLE VIII. HYDROFORMYLATION Reactant c3
p-/NH2
OF UNSATURATED
NITROGEN COMPOUNDS
Conditions
Product(s) and Yield(s) (%)
HRh(CO)(PPh3)3,PPh3,75-80”, dimethyl phthalate, CO/H2 (l/l, 55 bar)
C-3 / N
HRh(CO)(PPh3)3,PPh3,PhMe,
U-J
I
Refs. 731
(92)
+
o
N H
CO/l-I;!(l/l, 55 bar), 75-80”
I:11 = 1:l
w--1
731
OMe Co2(CO)s,CO/H2 (l/l, 250 kg/cm2), MeOH, 130”
PCN
OK,/..CN
I (IO) +
M,olv\cN OMe
CHO III (8) +
IV w CN
CN [Pt(C21$)(DPPB)J/CH3S03H(l/l), CO/H2 (l/l, 100 atm), PhMe, lOO”, 22 h MeOH, CO/H2 (l/l, 720 psi), 90”, 7h
NH2
I + III + ‘-CN Me0
co2(co)8, CH(OCH&,
797
11c71) +
I + III (69), 1:III = 83: 17
(5)
259
OMe
HbCN
798
(82)
RhC1(PPh3)3,10 P(OPh)3,THF, 80°, CO/H2 (3/l, 1200psi), 40 h
799,800
I + II + III (90), 1:II:III = 3:3:94 RhCl(CO)(PPh3)2,THF, lOO”, CO/H2 (l/I, 1200 psi), 5 h
I + II (87), 1:I.I = 53:47
799
HRh(CO)(PPh3)3,2 DPPB, THF, 80”, CO/l-l2 (3/l, 1200 psi), 40 h
I + II (88), I:11 = 98:2
799
CHO 0
0 Jl
F-N
H
4 c5
CONH2
RhH(CO)(PPh3)3,40-45”, 40 h, CO/H2 (500 psi)
I (--) + OHC
h,k H
0
H
II
4
801
‘I(--)
1:II = 55:46
I+
pRh(CO)2C1]2,PPh3,Et3N, PhMe, CO/H2 (l/l, 50 atm), 120”, 17 h
-NK
762
1:II = 45:55
coNI& 0
0
363,802
I+
HRh(CO)(PPh3)3,THF, 80”, 18 h, CO/H2 (l/l, 1200 psi)
NWCHO H m + (NrCHO I COMe
rv
I COMe
II +
I+II+m+W(76) 1:II:III:IV = 63:11:13:13
[Rb(DPPB)(NBD)][C104], THF, 80°. 18 h, CO/H2 (l/l, 1200psi)
I + III + IV (78), I:III:IV
= 7 1:5:24
363,802
RhCl(PPh&, THF, CO/H2 (l/l, 1200 psi), 80”, 18 h
I + III + IV (80), I:III:IV
= 65:7:28
363
Rh4(CO)n,
THF, CO&
(l/l, 1200 psi),
I + II + III + IV (78), 1:II:III:IV
363
= 79:6:6:9
80”, 18 h Co2Rh2(CO)12,CO/H2 (l/l, 1200 psi), THF, 60”, 18 h
I + III (80), 1:III = 82:18
~WCO)(PPh3)3, C&j, No, 30 h, CO/H2 (l/l, 500 psi)
w--)
+ 0 N
\
v t-1
363
801
1:v = 54%
COMe CHO
@CONMe
I(-)
CO/H2 (l/l, 109 atm), THF, 70”, 16 h
i-Frog
h,
0 0+-o (0
3
OHC-
CONMe
w-3
.COzPr-i
,Rh+(COD) BF4o-,P-0 0 CO#r-i +
i-PrO26
+
CONMq
-CONMe
III e-1
1:lI:Iu = 49.5:0.5:50
+
248
TABLE VIII. HYDROFORMYLATION Reactant
OF UNSATURATED
MTROGEN COMPOUNDS (Continued)
Conditions
Product(s) and Yield(s) (%)
CO/H2 (l/l, 1200 psi), THF, 100°, 18 h
799,800
I
n
N H
Catalyst RhCl(PPh&
0
(91) (89)
RhCl(CO)(PPh3)2
(88)
HWCW’Pbh
(92)
RMW12
CHO
RhH(CO)(PPh3)3,50-60”, 72 h, pNHAc
I(-)
NHAc
CO/H2(500 psi)
(A) HRh(CO)(PPh&, CO (34.5 atm), Na.Bl$, i-PrOH, CH2C12,lOO”, 24 h
h,
R’ CH2=CHCH2 n-ChH9
I N
0
C6Hll
PhCH2 PhCH2 PW&h
0\ N
COMe
4 CON&
C8HlS
~H(WPPh3)3, C&j, m”, 3 4 CO/H2 (500 psi) Rh4(C0)12,PhMe, CO/H2 (l/l, 300 bar), 130°, 26 h
CHO
N
II(-)
I:II= 1:l
I(A)
1W
(20)
(25) (51) (5% (35) (17) (54)
R2 H H H Me H Me H H
GJ-bl
A1
(B) R~(COD)BP~-[RU(CO)~CI~]~,CH2C12, CO/H;! (l/l, 48 atm), lOO”, 24 h
NHAc
+
801
CHO
R2
c6
R’NH
Refs.
(W (78) W) (51) (67) (92) (7%
360
(25) (72) 801
(-)
&OMe
A
803
(29) +
(24) + CONEt2
Et2N
CONEt2
CL
(24)
0
I\\ ci’ N R
Rh4Wh2,
CO&
(14
120
atm), C6H6,
40",24 h
O
(y-
I(-)+
cCHO.,,
r:
I:II=94:6
0I N \
(l/l,
120am), c&&j,
40",44 h
$+HO
li
R H
I+II P-9 (92)
Ts
Y R
Rh4(cohco&
804,805
R III @>
Ql/ / A
+
1 + bcHo
’
1:II 94:6 94:6
804,805
II
B
1+11 (-)
R H Ts
(92)
1:II 94:6 94:6
III@) I+n(-)
Rh4(coh2, co& (l/l, 120at.@, c&k,
N
40",36 h
804
I:II= 94:6
PtCl(SnC13)(DIOP),CO/H2 (l/l, 80 bar), PhMe, lOO”, 10 h
+
(60)
m(NBD)C1]2, PPh3,PhMe, 100°, CO/H2 (l/l, 80 bar), 5 h
NC-
Rh(CO)z(acac),BIPHEPHOS, THF, CO/H2 (l/l, 70 psi), 60”
NC MCHO
(84)
(2%
n:iso > 40: 1
806
135
TABLE VIII. HYDROFORMYLATION Reactant
OF UNSATURATED
NITROGEN COMPOUNDS (Continued)
co/H2(l/l,
80 bar), lOO”,C&,
Refs.
Product(s) and Yield(s) (%)
Conditions 6h
Me’ Conv. (%) 64 64 60
[Rh(NBD)C112+ PPh3 [Rh(NBD)Cl12 + PBu3 [Rh(NBD)C112+ PBu3 + Et3N DWQ3WC112
+ VW
I 113
[Rh(NBD)C1]2 + P(neomenthyl)Ph;! [RhWW112
+ W6H&fe-%
RhH(CO)(PPh3)3,CA, 75125”, 48 h, CO/H2 (l/l, 200 psi) H /wNvYANH2
50
20:72:8 38:58:4 17:42:41
59 8 60 59
11:18:71 1:2:97
PPh3 BB’HEPHOS PPh3 P(tol-0)s P(tol-0)3 WPh)3 P(OC&IdMe-o)3 Row3
P(Bu-~)~ WY)3
808
II (42) + III (29) +
I+WNH2 II
[Rh (OAc)&, Ligand, CO/H2 Ligand PPh3
39:59:2 0:o: loo 41:56:3
0
co/H2 1:l 9:l 1:1 1:9 1:l 1:9 1:l 1:1 1:l 1:l 1;l
1:rI 4050 95:5 loo:0 1090
I+II (-) (-) (-) (-)
15:85 15:85 50:50 25:75 80:20 95:5 85:15
(-) (-) (-) (-) (-) (-) (-)
809,810
CHO n:iso = 18:1, (95)
Rh (C0)2(acac), BIPHEPHOS, THF, CO/H2 (l/l, 70 psi), 60”
H Nm c
NH2
WW4ch12, CO/H;!(400 psi),
135
810
C6H6
ij
ij Ligand BIPHEPHOS BIPHEPHOS
H2/C0 9: 1 1:1
WPh)3 PPh3 PPh3 P(C&Me-o)3 P(Bu+Q3
1:l 9:l 1:l 1:1 1:l 1:l
WY
)3
[Rh(OAc)&, Ligand, CO/H2 Ligand H2/C0 PPh3 1:l 9:l PPb P(Bu-nb 1:l 1:l WY?3 BIPHEPHOS 1:1 PPh3 1:9 P(C&Me-o)3 1:1 P(CeHdMe-u)3 1:9
(I+lI):(III+rv) loo:o loo:0 75~25 >95:<5 60:40 5:95 >95:6 >95:<5
1:II >95:<5 loo:0 85:15 70:30 85:15 95:5 75~25 65:35
(I+rI):(rII+rv) 60:40 >95:<5 >95:<5 >95:<5 loo:0 20:80 5:95 5:95
1:II 85:15 70:30 75:25 65:35 loo:o >95:<5 95:5 95:5
Iwlv
25:75 25l75 30:70 809 m/w 25:75 55:45 30:70 30:70
TABLE VIII. HYDROFORMYLATION
\ Ic>, ’ N
/
OF UNSATURATED
NITROGEN COMPOUNDS (Continued)
OHC,/,/NEt2
Rh complex, CO/H2
I
Me,
+
Et2NwNEt2 4
811
(-)
CHO CHO
/
c8
(-)
[Rh(CO)2Cl]2, PPhMe2,P/Rh = 2, C&&j, CO/H2 (l/l, 120 atm), 60°, 7 h
/
h\
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
NCO)2C~l2, PPme2, GjH6, CO/H2, 60”
N
CHO
\
I+
6
II
/
/
6\
I+II(-) I:II>99:1
I
640
N CHO
Me-N
N
RhH(CO)(PPh3)3,Cd&j, 125”, 24 h, CO/H2 (l/l, 200 psi)
I +
CHO
Me-N
F
808
II+ 6 CHO
IV +
VI I + II + III + IV (86), 1:II:III:IV
RhCl(PPh3)3,DPPB, L/Rh = 5, THF, lOO”, 18 h, CO/H2 (l/l, 1800 psi)
qp
0
R \ I =Y-/N
+ (&I (81)
0
0
(6)
= 2:2:9:87
+ q-p0
(3)
363
(91
@HO+ticHo +ti 812
HWCWPPhh CO/H2 (l/l, 100 atm), C6H6 Temp. 80” 120” 80”
R Me Bu-t 2-pyridyl
Time (h) 48 140 48
Conv. 81
1+11
(21)
1:II 10&O
III (60)
20
6-j
-
t-4
-
G-1 (3)
CHO RhH(CO)(PPh3)3,PPh3,LJRh = 3, c&j, CO/H2 (l/l, 200 psi), lOO”, 24 h
b
+
cyCHY
I? C02Et
C02Et
6”‘OH
&02Et
+
($
808 &02Et
&02Et
I + II (95), 1:II = 25:75 248
CO/H2 (l/l, 100 atm), THF, 70”, 16 h i-PrO2C
H ,CO$r-i
0 xi
(0
o-\p;O 3 ,Rh+(COD) BF4COzPr-i
i-PrO2C
N H
, Bu-t
HRh(CO)(PPh&, CO/H2 (l/l, 1200 psi), THF, lOO”, 18 h
b.
I+ Al-l
~oU++N,Bu-~ AU-t
III CHO
H
I + II + III (90), 1:II:III = 46:8:46
799
TABLE VIII. HYDROFORMYLATION
OF UNSATURATED
RhCI(CO)(PPh&, CO/H;! (l/l, 1200 psi), THF, 100”, 18 h
N
799
I + II + III (78), 1:n:III = 47: 13:40
363
(78)
N @
0
Refs.
Product(s) and Yield(s) (%)
Co$&(CO)12, CO/H2 (l/2, 1800 psi), THF, 125”
NH
f
NITROGEN COMPOUNDS (Continued)
Conditions
Reactant
0
J m(NBD)C112, URh = 3, C&j, loo”, CO/H2 (l/l, 80 bar), 6 h
“;I+
hcHoII+&
III
807
CHO Ligand
R
PPh3 PBu3 PPh3
Me Me i-Pr i-Pr CH2Ph CH2Ph
PBu3 PPh3 PBu3
1:n:m 87:ll:l 92:5:2 92:4:2
Conv. (%) 94 93 86 80 88 79
93:s: 1 95: 1:3 90: 1:8 CHO
CHO
1 \ ICT /
813
Rh/C, CA, 80”, l-2 h, CO/H2 (l/l, 160 atm)
NO2
0
eNe
Yo2Me
HCO(CO)~,CO& (l/l, 1 atm), hexane, rt, overnight
CO2(CO)g,CO& (l/l, 1300-1400psi), C&j, 120”
2
Ts’
NH
I
Rh(acac)(CO)z,BLPHEPHOS, CO/H;! (l/l, 4 atm), THF, 40”, 16 h
1(28)
?OzMe
OHC,,y,N,/y,,CHO
I+
fh I
814
(45) ? C02Me
OHC-N
LCHO
Me027
I + II (97) 1:x.I= 1:3
(‘98)
814
814
815
iS
Rh(acac)(CO)2,BIPHEPHOS, CO/H2 (l/l, 4 atm), THF, 40”, 16 h c9
PhNH e
(DPPB)Rh(COD)BFb, CO/I& (l/l, 48 atm), CH2C12,80”, 12 h
(>95)
0
815
360
1 (75)
N ;h
[Rh(COD)Q, CO/H2 (l/l, 48 atm), DPPB, CH2C12,80”, 12 h
360
I(69)
313
[Rh(OAch12, PPh3,L/Rh = 4, EtOAc, CO/H2, 60”, 20 h
Rh (CO)z(acac),BIPHEPHOS, THF, Et2NL
CO/H;! (l/l, 70 psi), 60”
Et2NL,,,
(93) n:iso > 40: 1
135
TABLE V111.HYDROFORMYLATTON Reactant
OF UNSATURATED
NITROGEN COMPOUNDS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
313,361
[R~(OAC)~]~,PPh3,lJRh = 4, EtOAc, CO/H;! (l/l, 400 psi), 60”, 20 h R’ H H H 5-Cl 4-Me H
III 75:25 88: 12
R2 H Me Ph Ph Ph CbbMe-4
91:9 91:9 87:13 83:17
I
II
(6%
(13)
(85) (12) (7%
(9) (7) (11) (15)
(W (70) (80)
R
AM-l7
Rh(COD)BPb, CO (34.5 atm), NaBb, i-PrOH, CH2C12,lOO”, 30 h
R
Ar
ii
2-C5H4N Ph 4-MeOChHb 2-MeOC& 2-MeC& 4-ClC6H4
Me Me Me Me Me Me
woH7
Me
Ph Ph
n-w 11 CH2S02Ph
I
(26) (84)
v39 (4% (45) + i-BuNHCh&Me (30)
n-w
1I
Me
Co$&(CO)12, CO/H2 (l/2, 1800 psi), 125”, THF
0
Ar R Me Me Me Me Me Me Me
R
360
I
N
(37) (57) (83) (87)
363
(77)
N w
364
Wh(OAc)212,PPh3,lJRh = 4, EtOAc, CO/H;! (l/l, 400 psi), 70”. 20 h
III I II III R H Me
\ I a ’
H N R’
R2
WV
(29)
(17)
(65)
(2%
(-4
R2
[R~(OAC)~]~,PPh3,IJRh = 4, EtOAc, CO/H;! (l/l, 400 psi), 70-lOO”, 20 h
816 5CHO
III+a
R2
\
Iv
I
’
R’
R’
R2
1:II:III:I-v
Yield
NO2 CN H CN
H H Me
20:80: 0: 0 0:40:30:30 0: 0:67:33 0: 0:67:33
(78)
Me
(75) (76) (72)
TABLE
VIII.
HYDROFORMYLATION
ArNHM
OF UNSATURATED
NITROGEN
Rh(COD)BPb,
0
CO (34.5 atm), NaBHa,
CO&
DPPB, CH&,
(l/l,
Refs.
Product(s) and Yield(s) (%)
i-PrOH, CH2C12, 100°, 30 h
Rh(COD)BPb,
(Continued)
COMPOUNDS
Conditions
Reactant
I +
OH
ArNH
II + ArNHC3H7
III
360
7 Ar I
II
(31)
(33)
(10)
4-MeOC6H4
(30)
(30)
(0) (14)
l-Cd7
(27)
(0)
2-MeOC&I4
(0)
(0)
(82)
2-MeC&&
(0)
(0)
(72)
Ar
48 atm),
80”, 12 h
III
Ar
Ph
I
360
Ph
(68)
2-MeOC&
(5%
2-MeC&t
(63)
l-w47
(59)
MeOzC,
CO/H2 (l/l,
Me02C
MeO&,
\
N+
III+ t-Bu- -
817
II+
I+
80 bar), PhMe
=CHO
CHO
MeOzC, V t-Bu- -
Temp.
Time (h)
1+11
III
III+N
III:N
v
100”
12
(48)
97:3
(31)
%:4
w
jRh(NBD)C1J2/DPPB
100”
20
98:2
(54)
991
(a
[Rh(NBD)C112/DPPP
100”
20
99:l
(71)
99:l
w
Catalyst ~(NBD)Clj2/2.2
PPh:,
[Rh(NBD)C112/DPPE PtC12((2SI,4S)-BDPP)/2
S&l2
100”
20
(28) (20) (22)
98:2
(43)
98:2
(a
100”
6
w
-
(36)
9713
(15)
PtQ(DPPB)/2
SnC12
100”
15
w
-
(30)
97:3
(22)
PtC12(DPPB)/2
S&l2
SO”
75
w
-
(76)
98:2
(3)
HfWWO3W3, PPb, CO/H2 (l/l,
818
me,
20 atm), 70”, 70 h I
R’
R2
R3
X
H
H
H
NHTs
(58)
H
H
H
NCs(JCk
(69)
Me
H
H
N(Bwk
(W
H
CF3
H
NO-k
(58)
H
Me0
H
N(Bwk
(32)
H
H
Br
N@=k
vm
Cl
H
Br
(54)
Cl
H
F
F
H
F
N(Bwk WBmk W-k
H
H
H
OH
(73)
Cl0
(56)
(62)
Et027
N
RhH(CO)(PPh3)3,
\
CO/H2 (l/l,
C6&,
75”, 24 h,
Em2cNN$
1 + Eo2cLNpcHo
n +
808
200 psi)
h Et02C,
Eto2C,
IV (1)
I + II (97), III
= 20:80
TABLE VIII. HYDROFORMYLATION Reactant
OF UNSATURATED
NITROGEN COMPOUNDS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
819
Rh2(0Ac)+ PPh3,P/Rh=2, AcOEt, CO/l-I:!(l/l, 27 atm), SO”,20 h
I + II + III (93), I:II:III=48:32:20 Rh2(0Ac)4, PCy3, P/l&=2, AcOEt, CO/I-l:!(l/l, 27 atm), X0”, 20 h
819
I + II (-), I:II=30:70
Me Rh(COD)BPhd, CO/Hz (l/2,200 psi), CHC13,60°, 22 h
Ph
,C02Et p: N
,C02Et r;J N ‘C02Et
CO/H2 (l/l, 50 atm), CbH6,20” ‘C02Et
I + OHCmN,ph
OHC
II
N
I+
lb
HO
,C02Et III+
C Catalyst mecursor Co2(COh HWCOWW3 [Rh(COD)Cl]$Bipy Ru3(C0)12
PtQ(PPh&/SnC12
C
,C02Et
CO/H2 ( l/l, 50 atm), C6H6 Catalyst precursor Temp. Time (h)
r;’
\N
‘CO*Et
R n
IV + ‘C02Et
,C02Et
,C02Et T N
v+ c
‘C02Et
VI+ ‘C02Et
I CH202CH
,C02Et VII ‘C02Et
III+IV
v+vI
VII
(3)
(4)
(2)
(5) (7)
(95) (10) (1)
0.e (0) (0) (0)
(0) (13) (0)
(0) (77) (0)
I+II
III
v+vI
VII
(75)
14:86 34:66 23:77 50:50 47:53 0:loo
III+IV (8) (0) (0) (0) (0) (0)
(4)
(13)
(0) (0) (0) (0) (0)
(0) (0) (0) (97) (0)
(48) (52)
820
100” 80” 80”
6 70 20
(11) (42)
[Rh(COD)Cl]$Bipy
120”
5
(68)
Ru3(C0)12
150” 100”
24 45
(3) (1)
JR.~(OAC)~]~, PPh3,LJRh = 4, EtOAc, CO/H2 (l/l, 400 psi), 70-lOO”, 20-60 h
c
III 53:47 99:l loo:0 loo:0 loo:0
1+11
C%(COh HRh(CO)(PPh3)3 @$COD)Cl]$Bipy
PQ(PPh&/SnC12
a;?
Temn. Time (h) 100” 6 80 O 27 80” 20 150” 24 80” 8
Y N
‘C02Et
lb
r: N
820
II+ ‘C02Et
CHO
N HC02
251
,C02Et
,C02Et r: N
I+II(-) III = 35:65
821,364 Q;>R
I+
qqR
II
2
n
R
1 1 2 2
H Me H Me
Yield
III 60:40 >97 : 60 : 40 >97 : -
(98) (78) (72) (87) 0
0
0 Ru3(CO)t2, CO/Hz, THF, 100” H
PhA
N H7
(40) + phA
H
CHO
0 PhA
NV H
NwCHO
(11)
(23) +
363
TABLE VIII. HYDROFORMYLATION Reactant
OF UNSATURATED
NITROGEN COMPOUNDS (Continued)
Conditions
[Rh(OAch12, PPh3,L/Rh = 4, EtOAc, CO/H2 (l/l, 400 psi), 80”, 20 h
Product(s) and Yield(s) (%) N 3
\ I a/ /
Refs.
(75)
822
(65)
822
NH
[Rh(OAch12, PPh3,LJRh = 4, EtOAc, CO/H2 (l/l, 400 psi), 80”, 20 h
H \
N+N
I
//
NH2
R &
0
I~~(OAC)~~, PPh3,P/Rh = 4, EtOAc, CO/H2 (l/l, 400 psi), 80°, 20 h
823
5-Me 4-Cl
aI'/ "VP R
loo:0 40:60
Ia\/ S
CHO
~VW-WPh3)3 or IRh(OAch12~Pb, CO/H2 (1200 psi), C6H6,40”, 65 h
I+
824
R
n 1 1 2
R CN CONH2 CN
I+II 100 88 91
2
CONH2
91
1:rI 70:30 72128 43:57 30:70
819
Rh~(oAc)~, PPh3,P/Rh=2, AcOEt, CO/H2 (l/l, 27 atm), 80”, 20 h R H Me
CONHBn
Rh4(CO)t2, PhMe, 120”, 72 h, CO/H;! (l/l, 80 atm)
Conv. (%) 100 80
OHC
I (78) (50)
CONHBn
II (0) (30)
U-J
o
+
w-->
+
762
Bn
A
CONHBn
III(-1
1:II:III = 30:25:45
0 PhK
[Rh(DPPB)(NBD)][C104], THF, lOO”, 71 h, CO/H2 (3413, 1850psi)
N H
CHO
363,802
(87)
COPh
\ C@h2(CO)t2, THF, lOO”, 18 h, CO/H2 (l/3, 1200 psi)
n
363,802
(85)
N
COPh
&(CO)12, THF, CO/H;! (2/l, 800 psi), lOO”, 18 h 0 \ I G
/
NJ=
RhCl(CO)(PPh3)2/PPh3(l/50), %I&, CO/H2 (l/l, 100 atm), 70”, 15-20 h
h
‘;’ COPh
0 OH (76) +
)( Ph
N H -f
CHO
(11)
fJj~/‘~r+ @N>cHoII
0 I + II (98), 1:n = 0.7
363,802
825
TABLE
VIII.
HYDROFORMYLATION
Reactant
OF UNSATURATED
NITROGEN
&2(c%39~d-kco/H2(l/l, 100am),
(Continued)
COMPOUNDS
Product(s) and Yield(s)
Conditions
Refs.
(%j
I+II(45j,I:II=4
825
120”, 43 h PtCl2(PPh&/SnC12
(l/5), MEK, 70°,
15-20 h, CO/H2 (l/l, CO/H2 (l/l,
100
100 atmj
atmj,C&,
I+
24 h
826
CHO
Temp.
m203
80”
H
>99:1
120”
H
>99: 1
(91) (14)
(COD)Rh+BPb-
120”
H
>99:1
(15)
HRWW(PPW3
80”
Cl
99:l
(91)
m203
120”
Cl
>99:1
(6)
(COD)Rh+BPb-
120”
Cl
>99:1
(7)
HRWWPPW3
80”
Br
>99: 1
(92)
m203
120”
Br
>99:1
(4)
(COD)Rh+BPb-
120”
Br
>99: 1
(8)
/ HRh(CO)(PPh&,
Ph-NW
CO (34.5 atmj, NaBl&,
i-PrOH, CH2C12, 100”, 24 h
H
360
W) 0
(NX I
L
= Ph
Rh(COD)Bb,
CO (34.5 atm), NaB&,
360
(48)
PhNH&
i-PrOH, CH2C12, lOO”, 30 h
N-Ph H
RhC1(PPh3)3, THF, lOO”, CO/H2 (l/l,
1200 psi), 18 h
L.Ph OHC Iv n
N l
RhC1(CO)(PPh3)2, CO/H;! (l/l,
THF, iOO”,
0
I+II+III+IV(88) 1:II:III:IV
= 28:53: 16:3
Ph
I + II + III + Iv (92), 1:II:III:Iv
799
= 35:49:14:2
1200 psi), 18 h
RhC1(CO)(PPh3)2,
20 PPh3, THF, lOO”,
799,800
I + II (98), 1:11 = 91:9
CO/H2 (111, 1200 psi), 40 h
W(OAC)~]~, CO&
(l/l,
PPh3, LJRh = 4, EtOAc,
[R~(OAC)~]~, PPh3, LJRh = 4, EtOAc, CO/H2 (l/l,
, :1 a/ NH2
~(OAC)~]~, CO/H2 (l/l,
(57) ratio 2:l
+ starting material (25)
822
(60) ratio 3:l
+ starting material (25)
822
400 psi), 90”, 20 h
400 psi), 80”, 20 h
822
PPh3, LJRh = 4, EtOAc, 400 psi), 80”, 20 h
1:II = 70:30
TABLE VIII. HYDROFORMYLATION Reactant
OF UNSATURATED
NITROGEN COMPOUNDS (Continued)
Conditions
[Rh(OAch12, PPh3,L/Rh = 4, EtOAc, CO/H;! (l/l, 400 psi), 80”, 20 h
Product(s) and Yield(s) (%)
q?
I+
qp
NH
/
R.hCl(PPh&, CO/l-l:! ( 1313,1600 psi), THF, lOO”, 40 h
&CHO Aoc ..,n;
(80) :“‘u; I
ii I; NHy cc N
c?b p: Ph
0
X'
814
(50)
H 819 I + II (-), I:II=85: 15
(cis:trans=75:25)
Rh2(0Ac)4, PCy3, P/Rh = 2, AcOEt, CO/H2 (l/l, 27 atm), 80”, 20 h
1 (-3
~(OAC)~]~, PPh3,L’Rh = 4, EtOAc, CO/H2 (l/l, 400 psi), 80”, 20 h
ET1 /
819
NH
+ ET**: /
I+II(75) NH
LcHo
822
1:n = 1:4
822
(69)
0-W
827
kc
827
L/Rh = 1.04, CO/H2 (l/l, 70 psi), 60”
I
799
Ph
Rh(acac)(CO)z,BIPHEPHOS, THF,
/JAI I
L
1:II = 87:13
Rh2(0Ac)4, PPh3,P/Rh = 2, AcOEt, CO/H2 (l/l, 27 atm), 90°, 20 h
Rh(acac)(CO)z,BIPHEPHOS, THF, IJRh = 1.04, CO/H2 (l/l, 70 psi), 60”
Cl3
(-)
Ph
[Rl1(0Ac)~]~, PPh3,LJRh = 4, EtOAc, CO/H;! (l/l, 400 psi), 80”, 20 h
.=qL Aoc
827
(77)
\Ph CO2(CO)8,CO/H2 ( l/l, 1300-1400 psi), C&16,90”, 4-5 h
822
0
0 Rh(acac)(C0)2, BIPHEPHOS, THF, LJRh = 1.04, CO/I+ (l/l, 70 psi), 60 O
E,b’:l, 1:II = 70:30
NH
/
Refs.
Boc /CHO
N \ /
HRh(CO)(PPh&, CO/H2 (l/l, 100 atm), C6H6,90”
826
X=HorBr +
/Jh I
x
’
I
N ’ /
1:II > 95:5 (I + II):III > 80:20
w---3
Bn RhH(CO)(PPh3)3,CO/H2
6,
(30) + --(-) Al
Cl
7” wNe
Co2(CO)8,CO/H2 (l/l, 1300-1400 psi), C6H6,90”, 4-5 h
cl
corn2(l/l, c@(c0)8,
I(30)
C6H6,90”, 4-5 h
1300-1400 psi),
(17) + b$ Iin
(6) An
I (45) + starting material (45) T Brl
814
814
O ?”
+ nNIAY/-
II (40)
814
TABLE VIII. HYDROFORMYLATION Reactant 7” N-Cl
Cl-
OF UNSATURATED
NITROGEN COMPOUNDS (Continued)
c@(c0)8, co/H;!
Refs.
Product(s) and Yield(s) (%)
Conditions (l/l, 13~-14~ psi),
I(35)
814
+ II (37)
C&Is, 90”, 4-5 h
[RhCl(CO)&, PPh3,PhMe, 120-130”, CO/H2 (l/l, 2000 psi)
828
CHo
R
[Rhl
Temp.
Time (h)
Conv. (%)
I+II
1:II
III
2-pyridy l
HWCWP~3)3
80”
96
41
(36)
32:68
(5)
2-pyridyl
Rh(acac)(COh
80”
144
92
(38)
25:75
(51)
3-pyridyl
HWCW’~3)3
100”
48
100
(20)
0:lOO
(80)
3-pyridyl
lmwN2c112
100”
90
62
-
-
(62)
3-pyridyl
[Rh(COhC1]2/4PPhMe2
100”
90
95
(15)
0:lOO
(80)
II +
812
Cl4
R
Rv
NHTs
RhH(CO)(PPh&/lOPPh3, CO/H;! (l/l,
PhMe, 70”,
20 atm), 70 h
829 cl*
OH
N iS
R 3-fury1 3-pyridyl Ph p-Mem&j
I (70)
(80) (83) (58)
(61)
P-wa4 P-CF3w4
(74)
o-NCC&, 3-indanyl
(52) (49)
c23
0
d
NHCPh3
’ I+oHcANHCph3 n
RhCl(CO)(PPh&, CO/H2 (l/l, 1200 psi), lOO”, 18 h kPh3 Solvent THF PhMe DMF dioxane
1:rI
Yield
47:53
(79)
17:83
(83)
12:88
030)
0:loo
(75)
799
TABLE IX. HYDROFORMYLATION
OF OTHER FUNCTIONALLY A. Phosphorus Compounds
SUBSTITUTED OLEFINS Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
CHO
G
0
Me-7 “A \
Co2(CO)g, CO/H;! (l/l,
GJ%,
O-Cl
I + Me-7
100 attn), 120”,
2h
R
II
I + II (42) III = 94:6
b*cl
O-c1
366
Rh(acac)[P(OPh)&, CO/H2 (l/l, 1 atm), 45”, C&Is, 2 h
I + II (53), 1:II = 97:3
366
HRh(CO)(PPh&, CO/H:! (l/l, 100 at.@, 100°, 5-19 h
I + II (80), III = 9:91
366
OMe Co$O)g,
CO/H2 (l/l,
100 atm), 120°,
Me-;AA I
OMe
(90) +
(4)
366
MeOH, 2 h c8
Rh4(CO)12, C6H6, CO/H2
wOP(OEt)2
(l/l, 500psi),
CHO
290
LOP(OE&
50”, 22 h BWAc)212,G&, 50”, 22 h
CO&(
1/1,5oOpsi),
I (loo)
1ww
290,291
CHO R 281,291
PWOAchl2, co/H2(l/l, 500psi),c&&j,
OP(OEt)2
50”, 5-22 h
W-b, [Rh(OAc)&, CO& (l/l, 500 psi), 90”, 22 h
/,/-OP(OW2
OHC
CHO AOP(OEt)2
II OP(OEt)2
I +
290,291
I + II (-), III = 87: 13 CHO
IRh(OAc)212, CO/H:! (l/l, OP(OEt)2
500 psi), C&,
lOO”, 44 h
CL
OP(OEt)2
290,291
(80)
Cl2
mP(OEt)2
I + I+II(8O),I:II=
CHO
Cl5 qnPPh2
[R~(OAC)~]~,PPh3,LJRh = 2, EtOAc, CO/H2 (l/l, 400 psi), lOO”, 20 h
4%
pph
II
moEt12
1:4 288,289
I + OHC 2
-bPPh2
n
290
II
+
PPh2 III + H”TPPh2
Iv +
?Xpph2 ’ Ratio of Products (%)
I
M w MO Cr w MO Cr w MO Cr
~
III
N
V
Yield_
I
1 2 3
0 0 0 0 2 l-26 2-9
30 20 loo 0 27-52 0
(68) 50 0 036) 13-50 (64-95)
60
0
8
4
q”pph2
II
n
32
0
(96)
CHO
I
830
tCO)4M(~-PPh2)2~H(CO)(PPh,),
I + oHc-t%pph2
CO/H2 (l/l, 400 psi), ChH6,80” n 1 1 1 2 2 2 3 3 3
111111
-
-
17 77 92 90
6 -
36 35 24 loo loo 83 17 8 10
N
Branched:Linear
Yield
18 21 10 -
67:33 62:38 71~29 loo:0 loo:0 loo:0 83:17 loo:0 loo:0
(54) (56) (34) (77) (98) wm ww (4 uw
-
PPh2 III +
HO~pPh2
II +
N
TABLE IX. HYDROFORMYLATION
Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant cl6
OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) A. Phosphorus Compounds (Continued)
CHO
0
[Rh(OAch12, PPh3,L/Rh = 2, EtOAc, CO/H2 (l/l, 400 psi), 1OO”,5 h
OHC\/V\FPh2
I +
II
288,289
I + II (55), III = 64:36
w
PPh2
(~O),W(~-~Ph,),~H(CO)(PPh3), c&j,
PPh2
372
(77) PPh2
CO/H2 (l/l, 380 psi), 80”, 22 h [Rh(OAc)212,PPh3,I.JRh = 4, EtOAc, 5 h, CO/l-I;!(l/l, 400 psi), 45”
II (-)
1 Pw + PPh2
III = 93:7
365.289
PPh2
ratio 3:2 CHO
TPPh2 w
PPh2
[Rh(OAcj212,PPh3,L/Rh = 4, EtOAc, CO/N2 (l/l, 400 psi), 50”, 17 h
PPh2
365.289
(CO),W(jkPPh2hRhH(CO)(PPh3), C6H6, CO/H;! (l/l, 380 psi), 80”, 22 h
(95)
Lpph2
I + cpph2 OHC,/y/,,
Cl9
\ 0% 0
!Ph2
[RhWW212, co& lOO”, 22 h
(500 Psi), Cd-k
PPh2 III
372
I+II+III(loo) 1:II:III = 77: 12:6 372
CHO ~(OAC)~]~, PPh3,L/Rh = 4, EtOAc, CO/H2 (l/l, 400 psi) trans:cis = 80:20
ratio 70:30
III = 70:30
289,365
[R~(OAC)~]~,PPh3,LJRh = 4, EtOAc, CO/H2 (l/l, 400 psi), 22 h
q;;12 Temp. 55” 90” 90” c25
II +
I + II + III (80), 1:II:III = 70: 19:11
n= l-2
PPh2
365.289
syrmnti = 1:1
‘I1 + &PPh2
n 1
I
II
III
c--->
c-1
1 2
(0)
(88)
(0) (0)
(0)
C-4
e-4
IV IV
Ratio 1:II:IV = 63:6:6 6-j (-----> II:IV = 88: 12 1I:III = 80:20 (0)
C&PPh2-o 0A
0
Rh(acac)(CO)z,P(OPh)s,P/Rh = 4, CO/H (l/l, 20 atm), PhMe, 70-90”, 24 h
743,831 R
CHO ’ +
RCCHOII II
R Et i-Pr
III 73127 96:4
(83) (97)
CY C02Me
95:5 9O:lO
(81) (80)
CHdCWC 1-Fury1 Ph Bn
96:4 93:7 92:8
(36) (63)
80:20
I
(99) (75)
TABLE IX. HYDROFORMYLATION
OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) A. Phosphorus Compounds (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant c26
832
Rh(acac)(CO)z,P(OPh)3,P/Rh = 4, Hz/CO (l/l, 20 bar), PhMe
R i-Pr C6H1 1 w13
Temp. 50” 50” 30”
30” 30” (E)-EtCH=CMe 30”
Ph o-MeOC&
Time (h) 72 72 168
1+11 (93) cw
1:II 91:9 91:9
(81)
120 240 168
(72) (78) (85)
9o:lO 9o:lO 9o:lO 90110
c28
PPh2
832
Rh(acac)(COh, P(OPh)J,P/Rh = 4, PhMe, H2/C0 (l/l, 20 bar), 50”, 7 d
I + II (91), I:II=96:4
(*I
Rh(acac)(CO);?,P(OPh)3,P/Rh = 4, PhMe, CO/H2 (l/l, 20 atm), 90”, 24 h
Et&C q 0 0 Y
E&),. CHO
0
I +
PPh2
II 0
831
Y
I+II(98),I:II=81:19
Et02C AA ,
PPh2
Rh(acac)(CO)z,P(OPh)3,P/Rh = 4, PhMe, CO/H;! (l/l, 20 atm), 90”, 24 h
I + II (82), 1:II = 94:6 c29
PPh2
PPh2
PPh2 743
Rh(acac)(CO)2,Ligand, LJRh = 4, PhMe, H#O (l/l, 20 atm), 90”, 24 h Ph
CHO
Ligand
Conv. (%)
1:II
-
35 100 100 70 62 100
81:19 88:12 92:2 80:20 86: 14 81:19
Ph v
PPh3 ROPhh P[oc&3(h-th-2,613 WEth P(PY~OlYl493
PPh2 Rh(acac)(CO)z,P(OPhh, P/Rh = 4, PhMe, CO/H2 (l/l, 20 atm), 90”, 24 h
PhL
I1 I
CHO
TABLE IX. HYDROFOFWIYLATION OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) A. Phosphorus Compounds (Continued) Reactant
Refs.
Product(s) and Yield(s) (5%)
Conditions
c33
NKOWOAc)l2, c&j, 85”,3 h,
(8) + starting material (84)
833,292
(49)
833,292
CO/H2 (l/l, 620 psi)
PPh;!
EWCOWOAch G4-ki, 85’3 3 h, CO/H2 (l/l, 640 psi)
WY’h2
+(0)Ph2
[Rh(COD)(OAc)12, C6H6,8S”, 3 h, CO/H2 (l/l, 660 psi)
,,,,,d}
ItHcd}
II + ($}=I H
H
OHC
+ H
Ph2P IV+ OHC’
HO
0 Y
1:II:III:Iv
= 7.7: 1: 1:0.3, (74)
833,292
TABLE IX. HYDROFORMYLATION
OF OTI-ER FUNCTIONALLY B. Sulfur Compounds
SUBSTITUTED OLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
CHO
c3
Rh(COD)BPb, DPPB, IJRh = 2, CH2C12, COM2 (l/l, 600 psi), 75”
@SO*R
A
I+
S02R
OS02R
R
I
II
Me Et Ph
(98)
(0) (0) (17) (17)
(98) (83) (83)
cd-b-2
371
I1
CHO
G W”, CO/H2 (l/l, 500 psi)
Rh4Wh
-SMe
W4i,
22
Wh(OAc)212,P&,70”, CO/H2 (l/l, 400 psi)
c6(-& /
h,
&SMe
II I+ II (82) 367 1:II = 76:24
’ + OHCOSMe
367
I + II (5 l), 1:II = 40:60
5 h,
370
HRh(CO)(PPh& PhMe, 35”, 48 h, CO/H2 (l/l, 80 bar) CHO
c7
c
\
SJ-
135
Rh(COh(acac), BIPHEPHOS, THF, CO& (l/l, 70 psi), 60” I+II(65),I:II=
Rh4(c0)12, co& (500psi), cf&,
1:1.8
I + II (lOO), 1:II = 84:16
367
[Rh(OAc)&, CO& (1000 psi), lOO”, 22 h
I + II (88): 1:II = 75:25
367
[Rh(OAc)2]2, PPh3, 100”, 5 h, CO/H2 (400 psi)
I + II (92), 1:II = 46:54
367
I + II (76), 1:II = 53:47
372
50”, 22 h
(W,W~~Wco)o, (l/l, 380 psi), 50”, 20 h CO/H2
C&j,
c8
@SPh
RhK (5%), DPPP, CO (8.5 atm), HCOzH, DME, 100-105°, 18-24 h
CHO A
I +
SPh
c“? S
II
I+II(71) 1:II = 97:3
0 Ph;
368
370 I +
oHc~sph
1+11 WV (75)
n 0 1 2 3 Rh(COD)BPb, DPPB, L/Rb = 4, CH2C12, CO/H;! (l/l, 600 psi), 75”, 2 h
SPh
CHO
HRh(CO)(PPh& PhMe, 35’, 48 h, CO/H2 (l/l, 80 bar)
0 +1\ \ PhS
OHC,,/,
SPh
II
1:II 17:l 2:l 2:3 1:2
WI (38) CHO
371
(50) CHO
Rh4KOh2,
CO/H2
(l/l,
500
psi),
C6H6,50”, 22 h
“m c
367 Cl-I:+
S ‘v c
&(CO)n,CO/H;? (l/l,
800 psi),
S
c+
III CHO
S
=+
I+II+III(96) 1:II:III = 41:48: 11 367
I + II + III (30), 1:II:III = 2:29:69
C6H6, 120”, 22 h ~WW’Ph3h Wk CO/H2 (l/2, 1 atm), rt, 4 d
369 w-0
’ +
5
II CHO
I + II (lOO), 1:II = 25:l
~WCW’Ph3h
W6,
II
CO/H2 (l/2, 1 atm), rt, 4-5 d I+II
1:II
i3HO
369
TABLE IX. HYDROFORMYLATION
OF OTHER FUNCTIONALLY
SUBSTITUTED OLEFINS (Continued)
C. Silicon Compounds (Continued) Reactant
Conditions CO/H2 (l/l, 500 psi), 75” Catalyst Rh-clay Rh-clay [Rh(COD)C112 [Rh(COD)C1]2Nat-clay Na+-clay Rh-clay calcined
Product(s) and Yield(s) (%) 377
Solvent
Time (h)
1:II: 1,3-Si shifted
Yield
C6H6
36
96:4:0
(95)
PhMe
C6H6
36 36 36 48
95:5:0 42%: 14 62:23:15 -
(76) (91) (0)
C6H6
48
loo:o:o
(11)
C6H6
C6H6
RhWW’Ph3)3, C&j, go’,6h, CO/I-I2 (l/l, 80 kdcm’)
(MeO)+ -A
c,bj, 120”, 6 h, CO/H2 (l/l, 100 kg/cm2)
(88)
CHO (MeO)+
.wCHO
I +
II I+ II (83) 1:II = 52:48
(MeO)$i A
375
co2(co)8,
I + II (63), 1:II = 62:38
375
Rh-clay, CO/H;! (l/l, 500 psi), C6H6, 75”, 24 h
I + II (89), 1:II = 8:92
377
Ir(COD)BPb, CHC13,100°, 9 h, CO/H2 (7/l, 800 psi)
Et3SiecHo
[WOWBF4, C&, 100”,3 h,
I + II + SiEta (III)
c8
Et$iA
Refs.
CHO I +
i\ Et3Si
I1
I + II (73) 1:II = 94:6
I + II (60), 1:II = 97:3; III (12)
118
118
CO/H2 (7/l, 800 psi)
OSiEt3 CO (65 psi), H2 (135 psi), 100”
I+II+
IV
/‘H
118
r
Catalyst Rh(COD)BPb Rh(COD)Bm Rh(COD)Bb Rh(COD)BPb Rh(COD)BPb Rh(COD)BPb Rh(COD)BPb BWOWdBh
IWCODhlBh DWCOD)23Bh
NCOWBh BWOWBh [RWOD)2lBF4
Additive (equiv) Solvent Time (h) none c&j 1.5 none cd6 4 none PhMe 1.5 none PhCF3 1.5 none CHC13 1.5 1.5 PPh3(1) C6H6 C&6 1.5 PPh3(2) none . c&j 1.5 none C6H6 3 none PhMe 1.5 none PhCF3 1.5 none CHC13 3 C&j 1.5 PPh3(1)
1:II 6535 65:35 66:34 72:28 95:5 80:20 93:7 67:33 65:35 71:29 81:19 NR 78:22
/--\
Bu
Cl1 rSiMe3
(20) (-)
(97) (40)
t-1 (6)
(50) (31) (17)
(3) (6) (-)
NV (93)
(0) (-)
I + II + III (-), 1:II:III = 59: 18:23
118
Rh-clay, co/H2 (l/l, 500 psi), c&&j, 75”, 36 h
I(98)
377
Rh-clay, CO/H2 (l/l, 500 psi), PhMe, 75”, 36 h
I(93)
377
HRh(CO)(PPh3)3,PPh3,LJRh = 50, C6H6, CO/H2 (l/l, 400 psi), 50”, 20 h
Me3Si
HRh(CO)(PPh3)3,PPh3,L/Rh = 50, C6H6, CO/H2 (l/l, 400 psi), 50”, 20 h
I + II (81), 1:II = 50:50
-C0)2]BPh4, lOO”, 3 h
c9
Me$i
(38) (91)
118
b3($-c6H,),(~,
Bu
Iv (6) (-) (8) (11)
I + II (59), 1:II = 98:2; III (16)
IrC13,AgBF4, ChH,j/CHC13,lOO”, 3 h, CO/H2 (7/l, 800 psi)
Me&w
I+II (34) (66) (53) (53)
Bu
I+
i3HO
pBu bSiMe3
II
I + II (79) 1:II = 50:50
376
376
CHO 315,376
HRh(CO)(PPh3)3,PPh3,L/Rh = 50, C6H6, CO/H2 (l/l, 400 psi), 50”, 20 h I + II (86), I:11 >98:2
TABLE IX. HYDROFORMYLATION
OF OTHER FUNCTIONALLY SUBSTITUTED OLEFINS (Continued) C. Silicon Compounds (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
HRh(CO)(PPh3)3,PPh3,L&h = 50, C6H6, CO/H2 (l/l, 400 psi), 50”, 20 h
I + II (80), I:11 >98:2
Rh(CO)2(acac),BIPHEPHOS, THF,
TBDMSOwCHO
376
Cl2
TBDMSOW
(86)
135
n:iso > 40: 1
CO/H:! (l/l, 70 psi), 60” HRh(CO)(PPh3)3,PPh3,L/Rh = 50, C&Is, CO/H2 (l/l, 400 psi)
R2
R’
CHO
I+
CHO
Time (h)
Temp.
90
TBDMS Ph3Si Ph$i
Bu Bu Me
90
TBDPS
Bu
90”
20
65”
90
65” 80”
(87)
70:30
(69)
90: 10
(82) (80)
90: 10 96:4
OTBDMS
OTBDMS
OTBDMS Rh(acac)(CO)z,P(OPhb, P/Rh = 4, PhMe, CO/H2 (l/l, 20 bar), 80”, 48 h
*
376
R2 II
R’ A/
CHO ’ + I+II(35),
Cl4
+CHO
743
II
II I
I:II= 1:l CHO
RhWCWPPW3, W-&i, No, CO/H2 (l/l, 80 kg/cm2)
n-B@+
n-Bu3Si/\/CHo ’ + n-Bu3SiA
II
I+II(loo)
375
1:II = 85:15
CHO
Cl5 RhH(CO)(PPh3)3,
Ph2MeSi6
C5H6s90”.
’ + Ph2MeSiI-
ph2M&i~VcHo
CO/H2 ( l/l, 80 kg/cm2)
c20
Rh(COD)BPb, C&, H2 (135 psi)
Ph3Si6
loO”, CO (65 psi),
Rh/C (5%), DPPP, CO (8.5 atm), HCOzH, DME, lOO-105”, 18-24 h Rh-clay, co/H2 (l/l, 75”, 18 h
500psi), c&j,
[Rh(COD)(OAc)]2, CO/H2 (l/l, 560 psi), C&, 76”, 3.25 h
Ph3Si/\/CH0 1 +
,
jJ
I:11 = 90: 10
A,,,
Ph$i
375
I+II(91)
rr I+ rr(55)
118
1:II = 955
I + II (92), I:11 = 83: 17
368
I(99)
377
oHc,&}
It21)
b.,&}
II (20) +
;3;,
292,
H
H H m (12) %I H OHC [Rh(COD)(OAc)12,P(OC~H~BU-?-~)~, L/Rh = 20,
r(5) + rr (15) + m (54)
833
CO/H2 (l/l, 660 psi), C6H6,77”, 75 min TBDPS-R
HRh(CO)(PPh3)3,PPh3,L/Rh = 50, C6H6, CO/H2 (l/l, 400 psi)
CHO TBDPS
I+
TBDPS
R
R
Time (h)
Temp.
1:II
CH(OH)Me CH(OMe)Me Bu
66
80”
>98:2 (83)
20
80”
CH20SiMe3 CH(OH)Pr
80” 70” 80”
>98:2 94:4 >98:2 >98:2
CH(OH)Ph
66
80”
>98:2 (33)
HRh(CO)(PPh3)3,PPh3,L/I& = 50,50”,
CO/H2 (l/l,
mDPS&oMe
CHO
II
315,375
1+11
94 20 90
TBDpsMOMe
R CHO
(17) (80) (70) (51)
I +
TBDPSyOMe
400 psi), Et3N, C&j, 20 h
II
315,375
CHO I + II (83), 1:II = 97:3
c21
TBDPsFsiMe 3
HWCW’Ph3)3, PPh3,C&k, CO/I-I2(l/l, 400 psi), 80°, 66 h
TBDPS w
OSiMe3 (60)
315
TABLE IX. HYDROFORMYLATION
Cr(CO),
SUBSTITUTED OLEFINS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Reactant
c’1
|
OF OTHER FUNCTIONALLY D. Other Compounds
387
HRh(CO)(PPh&, PPh3,L,/Rh = 50, CO/l-l* (400 psi), 40”, 20 h I + II (96), I:II > 98:2
Cl2
““‘“W phjl’()~
Rh(CO)z(acac),BlPHEPHOS, THF, CO/H2 (l/l, 70 psi), 60”
““‘“w
Rh(C0)2(acac), BlPHEPHOS, THF, CO/H2 (l/l, 70 psi), 60”
,a,L,,,
HRh(CO)(PPh3)3,PPh3,LJRh = 50, CO/H2 (400 psi), 50”
135
(68) n:iso > 40: I
CHO
135
(73) n:iso > 40: 1 CHO
387
(-100) Cr(C0)3 OH
/
388
1. HRh(CO)(PPh3)3,CO/l-l2 (l/l, 28 bar), 50”, PhMe, 72 h 2. LiAlb, rt, 1 h
Cr(CO), Catalyst, CO&,
100”
<macho
I +
<;>-+CHO
II
387
CrW)3
/ Rlq(CO)r2, hexane, 100”, 4.5 h, CO/H2 (l/l, 80 bar)
w\ /
(C0)3Cr
x
1. HRh(CO)(PPh3)3,CO/H2 (l/l, 28 bar), 50°, PhMe, 72 h 2. LiAlH4, rt, 1 h
rCH0
=+CHO be
(80) + e
(20)
i;e
qq-goH +
(CO)$r
(CO)$r
x
388
x
(RS + SR)
qY\
W+W
(W3Cr
OH II+
385
m
’
II m (8) (20) (8) (16) (8) (1%
I
X Me OMe OPr-i
(6% (72) (56)
Cl3
&
ljXh(NBD)C1J2,PPh3,IJRh = 2, CO/l-I;! (l/l, 160 bar), PhMe, 100”, 7 h
4 be
I(-)+
be
w-4+
386
I : II : III : IV = 1:32:6:62 CHO HRh(CO)(PPh3)3,PPh3,IJRh = 50, CO/H2 (400 psi), 50”
387
TABLE Reactant
X. ASYMMETRIC
HYDROFORMYLATION Conditions
Chiral Ligand
Product(s) and Yield(s) (%), %ee R’
Rh(acac)(C0)2. OH
(R,S)-BINAPHOS
CO/H2 (l/l,
R3
L/Rh = 4, HoRa
30 atm),
I +
“FH
OHC-OH
R’S4
(R,S)-BINAPHOS
836
II +
0
PhH, 60 O, 30 h
c4
Refs.
III 1:II:III
I (%ee)
>99
9O:lO:O
-
16
H
51
26:74:0
27 (R)
ND
R’
R2
R’
Cow.
H
H
H
Me
H
(%)
II (%ee)
H
Et
H
>99
56:18:12
11 (-,
ND
H
H
Me
54
>99:<1:0
12(s)
-
Rh(acac)(CO)z,
PhH,
CO/I-I2 (l/l,
100 atm),
CHO
R/s
RHSeCHO
I+
Y
II
837
L/Rh = 4-4.4 R
Temp.
Time (h)
Conv. (%)
1:II
I (%ee)
Et
50”
96
60
86: 14
w3,-
Pr-i
50”
48
>99
92:8
(72), -
Bu-t
40”
27
70
96:4
40”
36
32
91:9
Ph
40”
34
97
98:2
(8%(W,(W,-
p-MeC$14
40”
20
96
96:4
(74), -
C6h
1
s
CHO Rh(acac)(CO)z,
AcO-
I+
LJRh = 4,
AcO-cHo
AcO
CO/H2 ( I /l : 100 atm), C6H6 Temp.
Time (h)
Conv. (%)
1:II
I (%ee)
(R,S)-BINAPHOS
60”
36
>99
86:14
92 (S)
(R.RI-BINAPHOS
50”
37
46
92:8
73 (S)
(R,S)-3,5-Me*-BINAPHOS
60”
36
72
85:15
90 (S)
OP(OPhh OP(OPh)2
~(COh(acach
c&b
Hz/CO (l/l,
100 atm),
LlRh=
l.O,30”,48h
+ AcO
35 AcONCH
70 atm),
= 2.5,60”,
Hz/CO (l/l, LRh
100 atm),
I (27), 45 (R) + II (2)
35
I (86), 41 (R) + II (5)
35
I (75), 34 (R) + II (6)
35
I (80), 25 (R) + II (20)
663
I (61), 16 (S) + II (-)
838
I(-),
839
l.O,30”,4Oh
Hz/CO (l/l, L&h
II (3)
c6%
~(COh(acach L/Rb=
34,113
CHO
1(77), 12 UO
Hz/CO (l/l,
=
40 h
70 atm),
= 2.5,60”,
40 h
R&(p-OMeh(CODh CO/H2 (l/l,
(R,R)-(-)-DIOP
20 bar), 20 h
(MeO)zCMez,
70”
lXhCUW212,
cd69
CO/H2 (49/5 1,95.2 atm)
(R,R)-(-)-DIOP
120”, 18 h Rh($-Chiral (R)-CSPbO$CH(OMe)Ph
CO/H2 (l/l,
Ligand)(CO)z, 100 atm),
3
50”, 2 d
RWW2(aW, oP(oc&,&k-4)2
Hz/CO (l/l,
oP(~&&!e-d)2
L/Rh=
W6, 100 atm),
1.5,40”,4Oh
I (76), 45 (R) + II (6)
35
TABLE
Reactant
X. ASYMMETRIC
HYDROFORMYLATION
Conditions
Chiral Ligand
UCO)2(acac), C&i, H;?/CO(l/l, 100 atm), oP(oC6H$de2-3,5)2 L/Rh = 2.5, 30”, 40 h
oP( w6H@e2-3,5)2
(-)-BPPM
,m
(Continued) Refs.
Product(s) and Yield(s) (%), %ee
1(11),45(R)+II(l)
35
fi(COk(acac), cd& Hz/CO (l/l, 100 atm), LJRh = 2.5,60”, 40 h
I (ll), 14 (R) + II (1)
35
PQ(BPPM)/SnC12, CO/I& (l/l, 2700 psi), C6H6, 60”, 40 h
I (-), 82 (s) + II (-), 1:II = 3:7
406
I@%1(8 +rr C---) 1(46), 6 W) + II G--3
838 838
I (12), 6 (R) + II (-) I (58), 10 (s> + II G-->
838 838
t~CKC0)2121
C6H69
CO/H2 (49151,95.2 atm) 120”, 18 h
R=Ph R=DBP
[~C~CO)2129
C6H69
CO/H2 (49/5 1,95.2 atm) 120”, 18 h
R = Ph R=DBP 0.9-x / x
Pt(Chira1ligand)Clz, SnC12,C6H6,60”, CO/H2 (l/l, 2700 psi)
I
\
PR2 PR2= DBP
R2P
(-)-DBP-DIOP
Time 42h 100h
X 0 0.1
Pt(DBP-DIOP)C12, SnC12,C6H6,60”, 42 h, CO/H2 (l/l, 2700 psi)
I(-),58(s)+II(-),I:II=l:l I(-),57(s)+II(-),I:II=
411,412 1:l
I (-), 61 (s) + II (-), 1:II = 5.2: 1
411,412
I (12), 23 + II (1)
840
[RhCl(CO)&, L/Rh = 10, CO/I& (l/l, 9.6 MPa), C&j, 120”, 19 h
I (71), 6 + II (
841
Rh(COD)(acac), L/la = 4,70”, CO/H2 (44/56,250 psi)
1 c--4,40 (s) + 11C-1
842
[~CKCO)212, L/la = 2, (-)-DIOP
CO/H2 (l/l, 100 atm), 70”, 42 h
H 0, 0 3
: 0’ H
(R,R)-DIOP
PPh2 pa2
TABLE
Reactant
X. ASYMMETRIC
HYDROFORMYLATION
(Continued)
Rh(COD)(acac), L/Rh = 3,80”,
(R,R)-1-NA-DIOP
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
6(8
+ II G--->
842
1 c--4,39 (9 + II G-3
842
1 (-I,42
842
I(--->,
CO/H2 (44156,250 psi) (R,R)-2-NA-DIOP Rh(COD)(acac), L/Rh = 3, 50”, CO/I-I2(44156, 150 psi)
(R,R)-m-CF3DIOP
Rh(COD)(chiral ligand)BFb, CO/I-I;!(1600 psi), hexane
OPh
I (-),
(9 + n (-4
14 + II (-),
843
1:II = 92:8
& = 3,5-(CF&C&
[~(CO)(PPh,)(L*)lC~O~, CO/I-I2(l/l, 60 atm),
I(-), 12m
%I&, 50”, 16 h
Rh(acac)(COh,
,o 0.
(ROhP
L*/Rh = 4, PhMe, 50”,
CO/I-I2 (l/l,
ROW2
0 =
WW2
I(-),
38
50 (9
130 psi)
\I
P; 0
/ \ x.
t-Bu
0
0
X X
0
0
OMe
Wacad(C0)2, C&j, L*/Rh = 2.5, 80”, 6 h, CO/I-I2(l/l, 80 atm)
I + II (90), -,
1:I.I = 96:4
714
Rh(aW(COh, W-k L*/Rh = 2.5, 80”, 1 h, CO/I-I2 ( l/l, 80 atm)
I + II (95), -,
1:II = 97:3
714
Rh(COD)(acac), L/Rh = 6,80”, CO/I-I2(44/56,5OOpsi)
(R,R)-DIPHOL
I (-),
5 1 (R) + II (-)
842
(R,R)-DMPP-DIOP
Rh(COD)(acac), L/Rh = 6, 70”, CO/I-I2(44/56,250 psi)
I (-),
18 (R) + II (-)
842
(R,R)-DIPH-DIOP
Rh(COD)(acac), L./Rh = 4, 80”, CO/I-I2(44/56,250 psi)
I (4
29 653+ II w
842
CH2
1 e--9---I
845
0
I(-,
~(COh(acad9
b
X Ph,P’
x\PPh2
c&j9
Hz/CO (50 atm), 40°, 20 h
X
&@OMe)2(COD)2, (-)-DIOP
PITS, (MeO)zCMez, CO/H2 (l/l, 20 bar), 24 h, 70”
-4
CH(OMe)T AcO A
W), 29
+ AcO~CH(OMeh
(4)
663
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Product(s) and Yield(sj
Conditions
Chiral L&and
Refs.
(%j, %ee
PQ(BPPMjbnC12, (-j-BPPM
CO/H2 (l/l, HC(OEtj3,
Rh(acac)L
2700 psi), 60°, 240 h
copolymerized
divinylbenzenes, (l/l,
l (BF&
CO/H2 (l/l,
>98 S
406
CH(OEtj2
AcO-
1:II = 1S: 1
II c-1
with
CO/I-I;!
100 atm), C,&,
+
AcO I (-j,
I (-),
93 S. 1:II = 90: 10
416
I (-j
84,I:II=
846
60”, 12 h
6 atm), 90”
80:20, TOF = 125 h-’
847
C~(CO)(PPh,)(-)LlClO4, OMe
CHO OMe
CO/l-i2 ( l/l, 60 atm), CbH6, +
60”, 16 h
I +
OHC -IcOMe
0 I (-),
II
0
848
92 R, 1:II = 97:3
CHO Rh(acacj(COj2,
0
Hz/CO (l/l,
X
L/Rh = 4, 849
I
100 atm),
C6H6
X 0 0
Temp.
Time (h)
I
(R,Sj-BINAPHOS
40”
48
(63), 62 R
(R,Sj-3,3’-Me2-BINAPHOS
40”
41
(93), 63 R
NBoc
(R,S)-BINAPHOS
60”
72
(98j, 47 R
NBoc
(R,S)-3,3’-Me2-BINAPHOS
60”
72
(9% 73 R
NAc
(R,S)-BLNAPHOS
60”
71
(92), 66 -
NAc
(R,Sj-3,3’-Mez-BlNAPHOS
60”
72
(97), 65 -
Rh(acacj(COj2,
0\
Hz/CO (l/l,
c&j, 60”
X
CHO
L/Rh=4,
849
100 atm), 0
I +
PC,,
II
X 0
Time (h)
1+11
I:II
I (%ee)
II (%ee)
(R,S)-3,3’-MezBINAPHOS
60
(77)
50:50
38s
Ml
NBoc
(R,S)-BINAPHOS
72
(>99j
33:67
71 s
97 s
NBOC
(R,S)-3,3’-MezBINAPHOS
72
ww
37~63
22s
88 s
R’ lx/
R2
GjH6,
RWOh(acacj, H$CO (l/l,
(S, Rj-BIPHEMPHOS II
(S, Rj-BINAPHOS II
100 atm)
CHO R’Y
I +
RI
Ii2
R2
II
CHO II
R’
R2
I
60”, 40 h
H
OAc
(55), 90 R
60”, 40 h
Me
Me
30”, 40 h
H
n-Bu
(12), 85 S
(39)
60”, 42 h
H
Ph
(9Oj, 94 s
(10)
60”, 40 h
H
OAc
(56), 92 R
60”, 40 h
Me
Me
30’. 40 h
H
n-Bu
(12)* 75 s
(39)
60”, 42 h
H
Ph
(88), 94 s
(12)
6-h
t-),82
(10)
85R
(9) R
414
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
(Chiral Ligand)PtClz/ SnC12,C6H6,80”, CO/H2 (7115,220 atm) (RJ?)-BCO-DPP (R,ZZ)-BCO-DBP (R,@-DIOP-DBP
Time (h) 2.0 h 4.0 h 5.5 h
Refs.
CHO OHCe
+e
+ I
1:II:III 6:4: 1 43 : 7 : 8 17:3:20
Conv. (%) 85 34 95
407 III
II
%ee 7.7 s 67.1 S 39.0 s
(RJ?)-EtDIOP
Rh4(W12, m = 4,80”, CO/H2 (l/l, 80 atm), 22 h
I (-) + II (-), 3.1 R, 1:II = 71:29
850
(R,R)-CyDIOP
Rh4(CO)12,IJRh = 4, go”, CO/H2 (l/l, 80 atm), 4 h
I (-) + II (-), 3.5 R, 1:II = 59:41
850
(S,S)-CHIRAPHOS
[Rh(NBD)C112,lJRh = 4,6 h, CO/H2 (l/l, 80 atm), 100”
I + II (35), 7.1 R, 1:II = 54:46
130
(S,S)-CHIRAPHOS
Pt(CHTRAPHOS)(SnCl,)Cl, CO/& (l/l, 80 atm), 100”
I (-) + II (-), 40 s, 1:I.I = 91:9
130
(RJ?)-DIOP
~WW’Phd3, LJRh = 4,95”, 3 h, CO/H2 (l/l, 80 atm)
I + II (70), 5.9 R, 1:II = 92:8
130
(R,Z?)-DIOP
Pt(DIOP)(SnC13)Cl,lOO”, CO/H2 (l/l, 80 atm)
I (-) + II (-), 24.8 R, 1:I.I = 94:6
130
(R,Z?)-DIOP
Pt(DIOP)(SnCl3)Cl, 60”, CO/H;! (l/l, 80 atm), 6.5 h
I + II (32), 46.7 R, 1:II = %:4
130
(+)-DICOL
HRh(CO)(PPh3)$DICOL (l!?), C61&,60°, 16 h, CO/H;! (l/l, 80-90 atm)
I (54) + II (36), 1 S
851
I (79) + II (12), 3.8 R
851
I (43) + II (7), 2.8 R
852
1(33)+II(18),
852
(-)-DIOCOL
(-)-DIOP
BDP-DIOP
H~tCWPPbM-)DIOCOL (l/l .5), C6H6, CO/l-l2 (l/l, 80-90 atm), 60°, 65 h Pt[(-)-DIOP]C12, SnC12.2H20,PhEt, CO/H2 (l/l, 100 atm), 100°, 1 h Pt(BDP-DIOP)C12, SnC12.2H20,PhEt, CO/H2 (l/l, 100 atm), loo”, 3 h
12.1S
(Chiral Ligand)PQ/ SnC12,CeH6,80°,
/=l
407
CO/H2 (7/l 5,220 atm) (RJ?)-BCO-DPP (R,R)-BCO-DBP (R,@-DIOP-DBP (R,R)-EtDIOP
Time 5.3 h 21 h 22h
Rh4(CO)*2, L/Rh = 4,80”,
Conv. (%) 68 67 40
1:II:III 31 :69: 1 13:87:2 12: 88:-
% ee 3.7 R 30.4 R 12.2 R
I (-) + II (-), 0.1 s, 1:II = 5:95
850
I (-) + II (-), 1.4 s, 1:II = 29:7 1
850
II (55, 18.4 (S))
130
I (-) + II (-, 23.1 (R)), 1:II = 28:72
130
CO/H2 (l/l, 80 atm), 10 h (RJ?)-CyDIOP
(S,S)-CHIRAPHOS
(S,S)-CHIRAPHOS
Rh4(CO)12,m = 4, 80”, CO/H2 (l/l, 80 atm), 8 h [Rh(NBD)C112,L/Rh = 4, CO/l-i2 (l/l, 80 atm), loo”, 72 h Pt(CHIR.APHOS)(SnCl$Cl, CO/Hz (l/l, 80 atm), 100”
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(R,R)-DIOP
(Continued)
Conditions
Chiral Ligand
RWCW’Ph3h
Product(s) and Yield(sj (%j, %ee
Refs.
II (30), 8.0 s
130
I (-) + II (---), 7.7 s, III = 45:55
130
n (-I, 27
853
I (17) + II (43), 0.6 R
852
II (-), 82 S
36
L/Rh = 4,95”, 22 h, CO/I-I2 (l/l, 80 atm) (R,R)-DIOP
Pt(DIOP)(SnClT)Cl, 100”. CO/l-I:! (l/l, 80 atm)
DIOP
~WCWPPhh L&h = 4,20”, 30 d, CO/l-I2 (l/l, 16 psi) Pt(BDP-DIOP)C12, SnC12.2H20,PhEt,
BDP-DIOP
CO/H2 (l/l, 100 atm), lOO”, 8 h (R,S)-BINAPHOS
~(acac)tCOh9
cd6,
(R,S)-BINAPHOS, CO/I-I2 (l/l, 100 atm), 60”, 44 h PR2= DBP \
URh = 4, CO& (l/l, 100 atm), PhEt, 120”
nww314,
PR2
t/PR2
(+)-DICOL
~(CW’PhM(+)-
I (-) + II (-),
16.8 R
854
II (9lj, 0
851
ww,
851
DICOL (l/3), C,&, 80°, CO/I-I:!(l/l. 80-90 atm) (-)-DIOCOL
HWCWPPhM-I-
1s
DIOCOL (l/l .5), CO/H;! (Ul, 80-90 atm), !90”,mesitylene
Pt[(-)-DIOP]C12, SnC12.2H20,PhEt, CO/H2 (l/l, 100 atm), 100°, 3 h
(-)-DIOP
PPh2
I (18) + II (22), 9.9 S
852
II (-), 28.4
853
PPh2 407
(Chiral Ligand)PK&/ SnC12,CbH6,80”, CO/H2 (7/15,220 atmj Time (R,R)-BCO-DPP (RR)-BCO-DBP (R,R)-DIOP-DBP (R,R)-EtDIOP
9.8 h 30 h 21 h Fth4(CO),2, L/Rh = 4,80”,
Conv. (76) 50 65 80
I : II : III
5%ee
25 : 75 : 1 13:87:3 13:87: 11
1.6 S 28.9 R 3.6 R
I (-) + II (-), 2.4 S, III = 2:98
850
CO/H2 ( l/l, 80 atm), 46 h (R,R)-CyDIOP
Rh4(CO),?, L/Rh = 4, 80”, CO/H;! (l/l. 80 atm), 24 h
I (-) + II (--,, 2.3 S, III = 3:97
850
(S,S)-CHIRAPHOS
[Rh(NBD)Cl12, L/Rh = 4, CO/I-I2 (l/l, 80 atm), 100°, 97 h
I + II (40), 18.5 S, III = 1:99
130
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Lkand (S,S)-CHIRAPHOS
Pt(CHIRAPHOS)(SnCl~)Cl, CO/H2 (l/l, 80 atm), 100”
I (-) + II (-), 8.8 R, 1:II = 31:69
130
(R,R)-DIOP
~WCO)V’Ph3)3, I.&h = 4,95’, 22 h,
II (25), 3.2 S
130
I (-) + II (-), 13.4 s, 1:II = 49:5 1
130
II (-), 7.2
853
I(30) + II (35), 12.8 S
852
1(13) + II (32), 1.8 R
852
II (-), 48 S
36
CO/H2 (l/l, 80 atm) (R,R)-DIOP
Pt(DIOP)(SnCl$Cl, lOO”, CO/H;?(l/l, 80 atm)
HWWWh3)3,
c&j,
CO/H2 (l/l, 45 psi), 25’, 21 d
(-)-DIOP
Pt[(-)-DIOP]C12, SnC12.2H20,PhEt, CO/H2 (l/l, 100 atm), lOO”, 3.5 h Pt(BDP-DIOP)C12, SnC12.2H20,PhEt,
BDP-DIOP
CO/H2 (l/l, 100 at& , lOO”, 9 h (R,S)-BINAPHOS
cd%~ ~(acac)(c% (R,S)-BMAPHOS, CO/H2 (I/l, 100 atm), 60”, 45 h
(-)-DIOP
RhH(CO)(PPh3)3,80”, CO/H2 (l/l, 100 psi), 24 h
\
OMe
CHO
CHO
1:II = 68:32
+
I (-), 0.2 S
855
II (-4
PPh2
0’
3% N
4
[Rh(COD)(L*)]C104, CO/T-i2(l/l, 60 atm), C6H6,60”, 16 h
[Rh(CO)(PPh,)(L*)ICIO~,
CHO OMe +
+ OHC-OMe 0 I (-), 45 R
ij II C-J
1:I.I = 99: 1
I (-), 92 R + II (-), 1:II = 97:3
CO/I-I2 (l/l, 60 atm), Cd& 60”, 16 h C~(CO)(PPh3)(L*)IC10~, CO/H2 (l/l, 60 atm), C&j, loo”, 16 h
(S,S)-Chiraphos CN
[Rh(COj2C1]2/(S,QChiraphos/Et3N (l/4/20), 130”, 63 h,
762 “&N
+ I\,,
HWW(PPhM->DIOP (l/2), C6H6,95”, CO/I-I2 (l/l, 90 atm), 60 h
CHO
(R,S)-BINAPHOS
(4)
+ -CHO
+
856
(31)
(lo),
+ OH.‘,, (38)
(51)
CO/H2 (l/l, 160 atm), PhMe
(-)-DIOP
844
I (-), 53 R
other aldehydes(41)
-CHO
+
-CHO
857 II
I E/Z = 76124
I + II (-); 1:II = 94:6 (R,S)-BINAPHOS
W6, Rh WcXW2, HE/CO (l/l, 100 atm) L/m = 4,30”
“i \
CHo
(loo)
413
TABLE X. ASYMMETRIC Reactant
(R,S)-BINAPHOS
-OH
R’
HYDROFORMYLATION
R3 (R,S)-BINAPHOS
(Continued)
~(acac)(W2, C6k CO/l-l;! (l/l, 30 atm), 60 O Rh(acac)(CO)z,ligand, Hz/CO (l/l, 100 atm), m = 4, C,&, 60”
HRh(CO)(PPh3)@ICOL (l/3), C&j, 60”, 30 h, CO/H2 (l/l, 80-90 atm)
(+)-DICOL
0
OHC
CHO
R3 II
I+
R3
“ic
113
‘R2 R’ Et Et H H
0
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
d
R2 H Et Et Pr-i
R3 Et H H H
III 21:79 8:92
I (%ee) 79 s 69 s 83 R 83 R
CHO 851
1 MO,0
0
I-=WW’PhM(-I(-)-DIOCOL
c5 7
Y\
DIOCOL (l/l .5), CA, CO/H2 (l/l, 80-90 atm), 60”,44h
(-)-DIOP
1. HRh(CO)(PPh3)3/(-)DIOP (l/2), C,l&, 95”, CO/H2 (l/l, 90 atm), 24 h 2. A&O
(-)-DIOP
HWCW’Ph&4 - )DIOP (l/2), C,&, 95”, CO/I-I2(l/l, 90 atm), 160 h
851
I (93), 3.3 R
CO94 (40), cl
TcHo I (-), 32.3 s
856
R
+ LCHO II I + II (25)
856
+ other aldehydes(27)
HWCW’~3)34-)-
DIOCOL (l/l .5), C&l,, CO/H2 (l/l, 80-90 atm), 80”, 140 h
(-)-DIOCOL
L‘\
(R,S)-BINAPHOS
Rh (acac)(CO)z,PhH, Hz/CO (l/l. 100 atm) Lmh = 4,30”
(R,S)-BINAPHOS
Wacac)(CO)2, W-45, Hz/CO (l/l, 100 atm), 3O”,L/Rh=4 W=ac)(COh,
(R,S)-BINAPHOS
/ O
\‘I ’ 03
0 PPh2 OR =-O
CHO
(--I,24
413
I (75), 22 R
857
CHo
C6H6,
Hz/CO (l/l, 100 atm), 3o”,LJRh=4
CO/H;?(l/l, 40 atm), LlRh = 5,80”
Rh(acac)(CO)2,THF CO/H2 (l/l, 40 atm),
857
I (88), 20 R
Rh(acac)(CO)z,THF
eOAc
851
I (-), 34.2 S + II (-) + other aldehydes
AcO
CHO
I + AcO-CHO
II
858
I (-), 32 (+), III = 76:24
I (-), 44 (+), III = 64:36
858
I (-), 1 (+), III=
858
L/Rh = 5,80”
P p-0 PPh2 J’O’b
Rh(acac)(CO)z,THF, CO/H2 (l/l, 40 atm), LRh = 5,80”
1:l
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued)
Rh(acac)(CO)z, THF CO/H;! ( l/l, 40 atm),
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
I (-), 12 (-), 1:II = 72:28
858
I (-), 14 (+), 1:II = 60:40
858
URh = 5,230”
OR = -0
$0-b
PPh2
OR=-6
Rh(acac)(CO)z,THF CO/Hz (l/l, 40 atm), L/Rh = 5, 80”
CHO Rh(acac)(CO)z,LJRh = 4, Hz/CO (l/l, 100 atm), C6H6,48 h
0x 0 R R
(R,S)-BINAPHOS (R,S)-3,3’-Mez-BINAPHOS (R,S)-BINAPHOS (R,S)-3,3’-Mez-BINAPHOS
Y
R’
(R,R)-DIOP
R2
Temp. 40” 40” 60” 60”
R H H Me Me
PtCl(SnC13)(DIOP), CO/H2 (l/l, 80 barj, PhMe, 100”
Time (h) 45 24 21.5 18 27 15
(R,R)-DIOP
PtCl(SnC13)(DIOP), CO/H2 (l/5,240 bar), PhMe, 50” Time (h) 110 45 145
(S,S)-BDPP
(S,S)-DIOP 0-
(R,R)-2-NA-DIOP
OHC
a49
I
I (95), 73 (99), 56 (77), 73 R (98), 69 R
R’
R1 II
I+
859, 762
R’
R2
I
II
C02Me Me C02Me CO2Ph C02Me C02Ph
Me
(83), 37.2 S (85), 10 S (51), 45.2 R (56), 23.8 R (40), 16.3 R (55), 42.5 S
(15), (44), 33.7 R (44), (54), 27.2 S (45), 35.5 S
CH2C02Me CH2C02Me Me Ph CH2C02Ph
(16), -
859 R’ C02Me C02Me CO2Ph
R2 Me CH2C02Me Me
I (42), 55.5 S (28), 81.9 R (21), 49.5 R
II (58) (52), 52.8 R (65)
PtCl(SnCl$(DBPP), CO/H;! (l/l, 80 bar), PhMe Temp. 100” 50” 100” 50” 100” 50”
0
c-5 0 0 x R R
Time (h) 6.5 18 12 70 4.5 110
109 R’ Me Me CH2C02Me CH2C02Me Me Me
Rh(NBD)(DIOP).BPb, IJRh = 3, 80°, c&&j, CO/H;?(44/56,250 psi)
Jar
Rh(COD)(acac), URh = 3, C&j, 80”, CO/H2 (44/56,250 psi)
I(-),36S
R2 C02Me C02Me C02Me C02Me Ph Ph
Conv. 61% 21%
I (47), 8.2 s (17), 13.9 s
64% 36% 64% 35%
(49), 26.7 R (29), 39.1 R (51), 1.3 R (33), 9.2
II (14), (4), (15), 44 R (7), 58 R (13), -
m
+ JowCHO
I (-), 29 R +II(-)
-
842
II c-1 842
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
Chiral Ligand
(Continued)
Conditions
Product(s) and Yield(s) (%), %ee
Refs.
Rh(COD)(acacj, (R,R)-m-CF3DIOP
IJRh = 3, c&j, 60”, CO/H2 (44/M, 150 psi)
I(-),33S
+II(-)
842
+II(-)
842
18s +II(-)
842
(R,R)-DlPHOL
Rh(COD)(acac), LlRh = 4, C&Is, 80”, CO/H2 (44156,250 psi)
I(-),32R
(R&j-DlPH-DIOP
Rh(COD)(acac), LJRb = 3, C6H6,80”, CO/H2 (44/56,250 psi)
I(-),
(R,S)-BINAPHOS
Rh(acac)(CO)z,ligand, Hz/CO (l/l, 100 atm), L/Rh = 4, PhH, 60”, 78 h
I (-), 90 s + II (>99), I:11 = 85: 15
113
CHO CO/H2 ( l/l, 600 psi)
d0 O Chid Ligand (eq) (R)-BINAP (1) (R)-BMAP (2) (R)-BlNAP (2) (S,S)-CHIRAPHOS (2) (R)-BINAP (2) (R)-BINAP (2) (S,S)-CHIRAPHOS (2) (R)-BINAP (2) (R)-BlNAP (6) (R)-BlNAP (6) (R)-BINAP (15) (R)-BINAP (6)
4
756 ?L 0
(-)-BPPM C02Me
O
Catalyst
Solvent
Temp.
Time (h)
Conv. (%)
Yield (%) GC (Isolated)
%ee
Rh(COD)($-PhBPh,) Rh(COD)($-PhBPh,) Rh(COD)($-PhBPh,) Rh(COD)(@-PhBPh,)
CH2C12 CH2C12 CH2C12 CH2C12 CH2C12 CH2C12 CH2C12 CH2C12 THF THF THF THF
60” 60” 100” 100” 100” 100” 100” 100”
42 42 48 66 66 66 66 66
100 5 73 100
13 (9) 5 (4) 69 (58)
2 17
80” 100” 100” 105”
170 66 144 66
15 37 56 22
OHC
C02Me
[Rh(COD)(DPPB)]BF4 [Rh(COD)(DPPB)]BF4 BWOWU2
[Rh( 1,5-hd)(phen)]Cl [Rh( 1,5-hd)(phen)]Cl [Rh( 1,5-hd)(phen)]Cl [Rh( 1,5-hd)(phen)]Cl NCOW112
PtQ(BPPM)/SnC12, CO/H;! (l/3,2650 psi), C&, 60”, 50 h
95 92 9 37
6 (5) 32 (29) 15 (12) 36 (33) 56 (50) 22 (20)
CO/H2 (100 atm), 70 h (-)-DIOP
co/H2(l/10),
(-)-DIOCOL (-)-DIOP 9,
CO/H2 (l/l), 80” CO/H2 (l/l), 80” co/H2 (l/3), 80”
OHC
60” co/H2 (l/4), 60”
CO/H2 (l/l), 80”
406
C02R’ --NHCOR2 II H R3
C02R1 CsH69
37 35 36 35
t-1960s
c6 HWWV’~3)3,
18 0 4 4 20 21
10 (9) 80 (68) 65 (60)
R’
R2
R3
I
II
Me Bn Bn Me Me H
Me Me Me t-BuO
H H H H
WV, 50 R @O-90),36 R (80-90), 33 R (70-80), 32 R
t-1 (3-10) (3-10)
Me Me
Ph H
no reaction
860, 861
(243) t-1
e-0
KR,JO-Bco-dpplf’Q/ (R,R)-BCO-DPP
(R,R)-BCO-DBP
SnC12,C&j, 80”, 12.5 h, CO/H2 (7/15,220 atm) [(R,R>Bco-dbp]PtC121 SnC12,C6H6,80°, 17 h,
dy
I + I (-),
‘u
II
407
18.4 s + II (-), III = 9O:lO
I (-), 46.1 S + II (-), III = 86: 14
407
I (-), 36 R + II (-), III = 85: 15
407
CO/H2 (7/15,220 atm) (R,R)-DIOP-DBP
[(R,R)-Diop-dbp]PQ/ SnCl2,C&&j, 80”, 116 h, CO/H2 (7/15,220 atm)
(R,R)-EtDIOP
Rh$(CO)l& URh = 4, go09 CO/H2 (l/l, 80 atm), 22 h
I (-), 0.1 R
850
(R,R)-CyDIOP
Rh4(CO)l2, URh = 4,80”, CO/H2 (l/l, 80 atm), 23 h
I(-),O.l
850
(S,Sj-CHIRAPHOS
[Rh(NBDjC112,LJRh = 4, CO/H;! (l/l, 80 atm), lOO”, 168 h
I (43), 21.8 R
R
130
TABLE
Reactant
X. ASYMMETRIC
HYDROFORMYLATION
Chiral Ligand (S,S)-CHIRAPHOS
(Continued)
Conditions Pt(CHIRAPHOS)(SnCl$Cl, CO/H;! (l/l, 80 atm), 100”
Product(s) and Yield(s) (%), %ee
Refs.
I (-), 19.8 S
130
(R,R)-DIOP
RWCOW’h3)3, L/Rh = 4, lOO”, 96 h, CO/Hz (l/l, 80 atm)
I (82j, 3.5 S
130
(R,R)-DIOP
Pt(DIOP)(SnCl3)Cl, 80”,
I (-),
130
15.0 R
CO/Hz (l/l, 80 atm) 1. HRh(CO)(PPh3)3/(-)DIOP (l/2), C6H6,95”, CO/Hz (l/l, 90 atm), 160 h 2. Ag20
(-)-DIOP
(+)-DIOP
@Q2P
,o
0, QW2
t-Bu P(OR)2 =
\
856
CHO
Pt(C2H4)((+)-DIOP)/ PtC12((+)-DIOP)(3/7), CO/H2 (l/l, 50 atm), PhMe, lOO”, 72 h
OHC-
WaWCV2, L*/Rh = 4, MezCO, CO/H2 (l/l, 600 psi)
I(-)+II(-),2OS,I:II=
862
+ II (12), 10.4R
I(74)
38
1:2
OMe
’
0
C02H (IS), 5.7 R + aldehydes(22)
I
x
(R,R)-DIOP
@Q= 0
[Rh(NBD)Cl]z, PhMe, CO/H2 (l/l. 80 bar), 100°, 15 h
1(42), 2 + cl N
(S,S)-BDPP
BMNBWh me, CO/H2 (l/l, 80 bar), 40°, 425 h
1(20),5+II(l)+
16
~WWPPh3)3, c,&, L/Rh = 2, 6 d, 57’, CO/H2 (l/l, 500 psi)
o&)-o
L\
+ o&&
c&i, ~KOW’hsk, URh = 4, 7 d, 46”, CO/H2 (l/l, 500 psi)
)/, /
(+)-DICOL
HRh(CO)(PPh3)@ICOL (l/3), C,&, 60”, 24 h, CO/I+ (l/l, 80-90 atm)
L
(R,S)-BINAPHOS
Rfi (acacWOj2, W-&i, H$CO (l/l, 100 atm) LlRh = 4,30”, 96 h
(R,S)-BINAF’HOS
Rh(acac)(CO)z,URh = 4, Hz/CO (l/l, 100 atm), C6H6,50”
2
801
II F-3
I (-), 27.4 S
801
I (-), 41 R
801
LcHo (75) + 413 I(-),84R
Time (h) 49 87 68
1:II = 83:17
~6
GiH6,
LlRh = 4, 8 d, 54’, CO/H2 (l/l, 500 psi)
(-)-DIPHOL
t-Bum
806
I \/CHO
CHO
RWWtP~3)39
w13j
0 (1)
I (-), 19.8 R
(+)-DIPHOL
0
CHO
Conv. (%) 49 87 68
+II(-),I:II=81:19
f-BuwCHO 1:II loo:0 57:43 74~26
I + t-Bu II (%ee) 92 (4 77 G-)
863
TABLE X. ASYMMETRIC Reactant
Rh(acac)(C0)2, ligand, D2/C0 (l/l), C6H6, L/Rh=4 Temp. Hz/CO R Bu Bu Bu
‘\
P
CONEt2
/
’
100 20 1
I+ R
CD0
RW
CD0
II
Time (h)
Conv. (%)
I:II
I (% ee)
48 24 24
18 19 22
18:82 21:79 19:81
77 CR) 77 VO 77 V’O
51
(R,S)-BINAPHOS
Rlq(C0) t,/(-)-DIOP,
H p
L%‘; C02Bu-2 Re
30” 30” 30”
Refs.
Product(s) and Yield(s) (%), %ee
I
\ 8
(Continued)
Conditions
Chiral Ligand (R,S)-BINAPHOS
4
HYDROFORMYLATION
‘\
CO/I-I2 (l/l, 300 bar), PhMe, 130”, 32 h
+
A
803
OHC
CONEt2
CONEt2 w7 -
(33) Rb(acac)(CO)2,LJRh = 4, Hz/CO (l/l, 100 atm),
RwCHO
CHO
I + R
II
863
c&&j,50” R Pr-i Ph$ TMs3c
(R,S)-BINAPHOS
Temp. Time (h)
Conv. (%)
III
II (%ee)
50” 50” 60”
68 20 69
54 >99 51
74126 4060 93:7
33 (4 229 (+I -
Bh(acac)(C0)2, URh = 4, @CO (iii), C&&j
kcHo
Temp. 60” 30” 30”
(R,S)-BINAPHOS
RWxac)(CO)2, G&&i, CO/H2 (l/l, 100 atm), Lmh = 4-4.4,50” Time (h) 47 48
Bu-t Ph
Press.(atm.) 100 100 20
Conv. (%) 76 100
+ &,,, 1
i
857 II
Time (h)
Conv. (%)
III
I
18 96 76
92 67 79
78:22 81:19 83:17
t-),80 R t-h 84 R C-J, 84 R
R0S I
, S,/,/HO CHO + R II
III
I (%ee)
5644 67:33
W), VW,CHO
Rh(acac)(C0)2, ligand, t-BuCO;!/\\
(R,S)-BINAPHOS
Hz/CO (l/l, 100 atm), L/Rh=4, C&Is, 40 O,47 h
+
t-B~tC07/\/~~’
t-BuC02 A
113 II
I
III = 88:12, I (-), 98 S + II (38)
Jb/
(RR)-BCO-DPP
[(R,R)-BCO-DPP]PtC12/ SnC12,CbH6,80”, 0.5 h, CO/H2 (7/15,220 atm)
&HO
(RR)-BCO-DPP
[(RR)-BCO-DBP]PtC12/ SnC12,C&Is, 80”, 0.5 h, CO/H2 (7/15,220 atm)
I (63), 7.3 lR,2R,4S + II (-)
407
(R,R)-DIOP-DBP
[(RR)-DIOP-DBP]PtC12/ SnC12,C&e, 80”, 15 h, CO/I-I;?(7/15,220 atm)
I (-), 0.6 1R,2R,4S + II (2 1)
407
I (-), 2.3 lR,2R,4S
850
+
407
&
I (79), 29.8 lR,2R,4S
II e--4
(R,R)-EtDIOP
Rh4(CO)12,m= 4,80”, CO/H2 (l/l, 80 atm), 0.6 h
(R,R)-CyDIOP
mKm2,
I (-), 4.8 lR,2R,4S
850
(-)-BPPM
PQ(BPPM)/SnC12, CO/I-I2 (l/l, 2700 psi), C,I&, 30”, 20 h
I (-), 60 lS, 2S,4R
406
IJRh = 4, go”, CO/H2 (l/l, 80 atm), 0.75 h
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
Refs.
Pt(DBP-DIOP)C12, (-)-DBP-DIOP
SnC12, CbH6,60”, CO/I-I2 (l/l,
(R,R)-DIOP
3h
I (-),
26 lR,2R,4S + II (-),
1:I.I = 88: 12
411,
I (-),
29.2 lR,2R,4S
130
I (lOO), 3.3 lS,2S,4R
130
I (loo),
130
2650 psi)
Pt(DIOP)(SnC13)Cl, CO/H;! (l/l,
80°,
412
80 atm)
fiHWXPPh3)3, LRh = 4, lOO”, 1 h,
(R,R)-DIOP
CO/H2 (l/l,
80 atm)
[Rh(NBD)Cl]*, (S,S)-CHIRAPHOS
L/Rh = 4,
CO/I& (l/l,
80 atm),
16.4 lR,2R,4S
lOO”, 3 h (S,S)-CHIRAPHOS
Pt(CHIRAPHOS)(SnC13)Cl, CO/H2 (l/l,
TiT.Z 0A 0 -- H
H PR2 = DBP H R2P
I (-),
Pt(Chira1 ligand)Clz,
c&b fjo”,
SnCh
CO/H2 (l/l,
4-
411, 412
2650 psi)
Time 3h
X = 0, I (-),
4h
X = 0.1, I (-),
20 lR,2R,4S
PtCl~(BPPM)/SnCl~. CO/H2 (l/l, HC(OEt)3,
@0)2P
+ II (-),
20 lR,2R,4S
1:II = 86:14
+ II (-),
I:11 = 87: 13
PR2
(-)-BPPM
“‘r-f 0, /O
130
8.3 lR,2R,4S
80 atm), 100”
CH(OEt)2
2700 psi),
WaWW)2,
60 lS, 2S,4R
406
CHO(-),60 lRX4S
L*/Rh = 4, MezCO, 50”, WW2
(-),
30°, 140 h
CO/H2 (l/l,
38
130 psi)
ROW2
==c C02Me
(R,R)-DIOP
PtCl(SnC13)(DIOP),
PhMe
OHCyCO2Me
C02Me
I + yC02Me
C02Me
II
859
C02Me
CO/H2 (bar)
Temp.
Time(h)
Conv. (%)
I
II
40/40
100”
21.5
95
(5 l), 45.2
(44), 33.7
80/40
100”
67
97
(66), 34.5
(31), 17.7
40/80
100”
15
100
(40), 58.7
(60), 31.0 (74), 40.1
40/2OO
100”
15
100
(26), 64.0
1201120
100”
15
99
(55), 56.6
(45), 30.3
40/40
50”
174
86
(fiti), 70.6
(20), 45.0
Rh4W)1298 DIOR (R,R)-DIOP
PhMe, 100°, 6 h, CO/H2 (l/l,
I(3), -+II(40),
C02Me
1.1 s + OHC
80 bar)
+
767
C02Me
III (43), 8.3 S C02Me )z/
IV
U-5)
Me02C
~WN’W3, (R,R)-DIOP
2 DIOP, PhMe, 100°, CO/H2 (l/l, [Rh(CO)#],,
(R,R)-DIOP
+IV(6)
767
4 DIOP,
PhMe, lOO”, Et3N, 17 h, CO/H2 (l/l,
I(4), -+II(lO),O+III(73),9.1S
80 bar), 6 h
80 bar)
I(5), - + II (44), 0 + III (43), 7.2 S + IV (6)
767
TABLE
Reactant
X. ASYMMETRIC
(Continued)
HYDROFORMYLATION
Conditions
Chiral Ligand
HWWW’hM-IDIOCOL (l/l S), C6H6, CO/Hz (l/l, 80-90 atm). 100”
(-)-DIOCOL
851
(50), 1.1 R CHO CHO
Rh(acacKQ2, W-k, L*/Rh = 2.5. 80°, 3 h,
u’ /
Refs.
Product(s) and Yield(s) (%), %ee
(y
I+
rCHO
II
714
CO/H2 (l/l, 80 atmj I + II (95), -, 1:II = 99: 1
Wacac)tCO)2, C&, L*/Rh = 2.5, 80”, 16 h,
or
c8
0 +/\ \ PhS
Rh(COD)BPb, CO&
CH2C12,
371
PhS
(600 psi), 75”
Yield (27)
(R)-(+)-BINAP (S)-(-)-BINAP (S/R)-(+)-BINAP
\/ \ Io^
714
I + II (67), -, 1:II = 99: 1
CO/H2 ( l/l, 80 atm)
% de 40 50 46
(22) (43)
% ee 18 21 0
CHO
RlCO)2(aW,
W-45,
gy
I +
O”,CHUII
34 113
Hz/CO (l/lr 100 atm) CO/H2 (atm)
I, %ee
II
50/50 50/50 6318
(88), 94 s (92), 95 R (88), 92 R
w (8) (12)
(S,R)-BINAPHOS (R,S)-BMAPHOS (R, S)-BINAPHOS
60”, 43 h rt, 39 h 60”, 40 h
(R,S)-BINAPHOS + (R,R)-BLNAPHOS (l/l)
Rh(acac)(CO)z,ligand, Hz/CO (l/l, 100 atm), L/Rh = 4, C6H6,25”, 42 h
I (-), 85 R + II (-), 1:II = 90: 10
113
Rh(acac)L copolymerized with divinylbenzenes, CO/H2 (l/l, 100 atm), C6H6,60”, 12 h
1:II = 85: 15, I (-), 90 R
416
Rh(acac)(C0)2, L/Rh = 4, Hz/CO (l/l, 100 atm), C6H6,60”, 40 h
1:II = 89:11, I + II (>98), 69 S
113
Rh(acac)(C0)2, L/Rh = 4, HI/CO ( l/ 1, IO0 atm), C6H6,60”, 40 h
1:II = 92:8, I + II (95), 16 R
113
/\ /\ \/ 11 8-P OR
PPh2
nI’ PPh2 WOW;!
P(OR)2=
01 I /\ p: O/,’ / ZE
(R,R)-BIPHEMPHOS
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(+)-BDPP
(Continued)
865
[Wp-OMeXCODh ligand, Hz/CO, THF P/Rh 2 2 2 2 4 4 8 8
Temp. 65” 65” 65” 65” 65” 40” 65” 65”
H2/C0 (bar) l/l (5) l/l (10) l/l 4/l l/l l/l l/l l/l
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
(30) (10) (10) (30) (10) (30)
I(%ee)
Time (h) Conv. (%)I:II 77:23 7 88 84:16 12 100 100 9o:lO 12 90 84:16 1.5 94:6 7 92 12 %:4 24 7 24
76 92
~1 (RI
us) 5 (R) 17(s) 56 (3 fWs) 45 09
95:5 94:6
48 ts)
Rh(acac)(C0)2, IJRh = 4, Hz/CO (l/l, 100 atm), C&, 60”, 37 h
I:II=9O:lO, I (-), 85 R + II (>9!3)
113
Rh(acac)(CO)z,iJRh = 4,
IS = 913, I (-j,
. .m 113
Ar = 3,5-Me&&
WRh
=
0 Ar=Ph 0 0\pO
83 R + II (>XJ
Hz/CO (l/l, 100 atm), C&, 60”, 43 h
Pt(chira1ligand)(P-P)2, SnC12,Sn/Rh = 20, Hz/CO (l/2, 100 atm), 125”, 24 h, THF
661
Ligand (-)-DIOS
P-P
1+11
1:II
I (%ee)
PhEt
Alcohol
V’Phd2
(19)
54:46
2(S)
(R)-BINAS (-)-DIOS (R)-BINAS
W’bh DPPB
(58) (59) (79)
14:86 39:61 44:56 32:68 42~58
2 (9 7 (S) 4 (S) 7 (S? 14 (Sj
(4) (4)
(1) -
DPPB DPPB DPPB
(-)-DIOS (R)-BINAS
YY=
(80) (W
(17) (24)
III = 0.5 I + II (29), 0 + EtPh (3)
PtC12(ChiralLigand) , PhMe&O, 1OO”, CO/I-I2(l/l, 10 psi)
PAr2 PAr2
(22) (18)
601
&Me3 BFh601
PtClz(Chira1Ligand), SnC12on glass, PhMe, H20, CO/H2 (l/l, 1000 psi) Temp. 100” 60” (R,S)-BINAPHOS
Time (h) 24 48
Rl-hcac)(COh, CO/H2 ( 40 atm), CO2 ( d= 0.48 g/ml)
TOF 1.6 0.8
1+11
(28) (36)
I:11 I (%ee) 0.7 10.7 (R) 0.5 14.1 (s)
I + II; I (66), R
PhEt (12)
(28) 866
TABLE X. ASYMMETRIC
HYDROFORMYLATION
Reactant
(Continued) Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
CD0 (y
Rh(acac)(C0)2, ligand, D2/C0 (l/l), CA, L/Rh=4
(R,S)-BINAPHOS
I/\ \ o^
I+
(yDOu
51
I (% ee)
Temp.
H#O
Time (h)
Conv. (%) I:II
40” 40”
100 20
13 5
12 15
88:12 88:12
92 m 93 CR)
40”
1
5
6.4
82:18
90 W
CHO &
~WMacac), W-k CO/H2 (l/l, 50 bar)
I+
rcHo
II
867
I (89), 12 R + II (7), I:II = 93:7 I (-), 20 R + II (-), I:II = 95:5
60” 30” Rh(CO)2(acac),L/Rh = 10, CO/H2 (40 bar), CA, 40”, 4 h
No reaction
868
I (-), 7.3 R + II (-), I:II = 5.4:1
868
I(-),O+II(-),I:II=
868
0’ p,O P(OR)2=
0x 0
Rh(CO)z(acac),LkRh = 10, co/H;! (40 bar), c&i, 40”, 16 h
Rh(C0)2(acac), IJRh = 2.2, CO/H2 (40 bar), C6H6, 80”, 16 h
1.9:1
0’ p,O P(OR)2 = /\ d-b
/\
WW2(aW,
t-Bu
GjH6,
P(OR)* =
t-Bd
URh 2.2 10 10 20
CO/H2 (40 bar)
Bu-t
Rh(CH2CH=CH2)_3, 20”, CH2C12,CO/H2 (l/l)
Time (h) 15 23 5 16
Temp. Conv. (%) 80” 42.3 25” 19.7 40” 16.2 80” 99.7
I:11 1.6:1 26.1:1 17.8:1 10.2:1
I %ee) 1.4 R 19.3 R 19.9 R
868
6.6 R
I + II (loo), -, 1:II = 11.2:1
250
I + II (lOO), -, I:II = 61.5:l
869, 250
I + II (85), -, I:II = 15.9:1
250
I+II(71),-,I:II=4:1
250
Ph,P’
aa-TREDIP
[RWBDhlBh, Et& CH2C12,CO/H2 (l/l), 20”, 20 h
[WNBWBh, PPTREDIP (-)-DIOP
EW,
CH2C12,CO/H2 (l/2), 20”, 20 h Rh(CH2CHCH2)3,20”, CH2C12,CO/H2 (l/2)
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
Refs.
WCQ2(=@,
Hz/CO (l/l, 40 atm), C6H6,30”, 30 h
PPh2
ia
Ph2P
&
/O Ph2P
I (-),-
+ II (-), III = 97:3
845
1 C-h-
+ II (-), III = 97:3
845
WCOh(acac),
Hz/CO (l/l, 40 atm), O\
C6H6,30”, 30 h PPh2
Rh2(CODh(BINAS)/2 PPh3 [Rh(COD)(Me2BINAS)]BFd
Pressure(bar) 30 30 30
[Rh(COD)(Me2BINAS)]BFd/3 Me2BINAS [R~(COD)(MQBINAS)]BF~/~ Me2BINAS [R~(COD)(MQBINAS)JBF~/~ Me2BINAS
80 80 80
Catalyst Rh2(CODh(BINAS)
Temp. 80” 60” 80” 80” 40” 25”
Time (h) 24 4 24 24 24 24
Conv. (%) 77 100 98 100 100 81
III 56:44
I (%ee)
92~8 51:49 84:16 94:6
7 6 15 6
96:4
2
870
11
Pt(Chiral Ligand)Cl$ SnCl2,C6H6,60°, 4 h, CO/H;! (l/l, 2400 psi)
I (-), 77 + II (-), III = 1.1:2
Pt(Chiral Ligand)Clz/ SnCl2,C&j, 60”, 4 h, CO/H;! (l/l, 2400 psi)
I (-), 12 + II (-), III = 1.35:1
Pt(Chiral Ligand)Clz/ SnC12,C6H6,60”, 4 h, CO/l-I2 (l/l, 2400 psi)
I (-), 74 + II (-), III = l.O:l
409
Pt(Chiral Ligand)Cl$ SnC12,C6H6,60°, 4 h, CO/H2 (l/l, 2400 psi)
I (--), 40 + II (-), I:11 = 3.2:1
409
Rh4W312,
I (-), 0.2 s
850
(R,@-CyDIOP
Rh4(CO)t2, L/Rh = 4, 80”, CO/H2 (l/l, 80 atm), 4 h
I (-), 0.4 R + II (-), III = 90: 10
850
(S,S)-CHIRAPHOS
[Rh(NBD)C112,L/Rh = 4, CO/H2 (l/l, 80 atm), 100°, 3 h
I + II (80), 24.2 R, I:11 = 94:6
130
(S,S)-CHIRAPHOS
Pt(L*)(SnC13)Cl, lOO”, CO/l-I2 (l/l, 80 atm)
I (-), 45.0 R + II (-), III = 62:38
130
(RJ’?)-DIOP
~WWPPW3, L/Rh=4, IOO”, 1 h, CO/H2 (l/l, 80 atm)
I+II(94),
130
(R,@-DIOP
Pt(DIOP)(SnCl$Cl, lOO”, CO/H2 (l/l, 80 atm)
I (-), 4.4 S + II (-), III
(S,S)-BDPP
PtCl(SnC13)(BDPP), CO/H2 (l/l, 80 bar), PhMe, 40”, 55 h
I (31). 64.5 S + II (42) + PhEt (3)
(-)-BPPM
PPh2
871,
C02Bu-t
C02Bu-t
C02Bu-t
pR2= Q---&J (R,@-EtDIOP
IJRII = 4, 80”, CO/l-l2 (l/l, 80 atm), 2.5 h
lO.OR,I:II=71:29
= 38:62
130
109
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(S,S)-BDPP
(Continued) Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
Refs.
I (23), 75.5 S + II (32) + PhEt (1)
PtCl(SnC13)(BDPP), 2 SnC12,PhMe, 40”, CO/H2 (l/l, 80 bar), 115 h CO/I-i2 (l/l, 80 bar), PhMe
Catalyst PtC12(BDPP)+SnF2
Temp. 40”
Time (h) 240
PtC12(BDPP)+SnF2
140” 160” 20” 100”
5 50 72
PtC12(VALPHOS)+SnF2 PQ(BDPP)+SnC12 PtC12(BDPP)+SnC12 PtQ(BDPP)+2-PPh2C&N+2SnQ
40” 25”
10 160 240
(Chiral Ligand)PtCl#nC12, CO/H2 (7/15,220 atm), C&j (R,R)-BCO-DPP (R,R)-BCO-DBP (R,R)-BCO-DBP (R,R)-DIOP-DBP
Temp. 80”
Tie (h) 1.0
80” 40”
0.5 10
80”
5.5
407, 872
PtCl(SnCl~)(Chiral Ligand), CO/H;! (l/l, 70 bar), PhMe Temp. 30”
Time (h) 550
I+II
1:II
I(%ee)
I?
1-l a.-.-- c3
(KS)-BDPP-(pNMe& (W-DIOP-(pNMe& (S,S)-DIOP-(pNMe& (S,S)-CHIRAPHOS-(pNMe& (S,S)-CHIRAPHOS-(pNMe&
100” 25”
3 480
100” 25”
2 300
100”
12
32 20 18 12 20
1:3.32 1:1.3 1:1.84 1:0.62 1:1.46
m.6 4 41.4 R 20.0 R 6.4 S 46.0 R 12.4 R
(S)-PROLOPHOS
Pt(PROLOPHOS)Cl#nC12, SdPt = 2.5,40”, 40 h, CO/H2 (l/2, 130 atm), ChH6
(S,$-BDPP-(pNMe&
(-)-(2S,4S)-BDPP
PtC12(PPh3)2, BDPP, SnC12,Pt/L/Sn = 2/l/4, PhMe, 20°, 210 h, CO/H2 ( l/2, 120 bar)
1(50),29R+II(42)+III(5)
I:II=
III 0
4 0
5 cl 2
1.2:1
I (4), 88.8 s + II (10) + III (W + starting material (86)
874
PhMe, CO/I-I2( l/l, 80 bar) Catalyst Temp. PtQ(PPh& + l/2 (-)-DIOP + 2 SnC12 120” PtC12(PPh& + (-)-DIOP + 2 SnC12 120” PtCl(SnCl$((-)-DIOP) 120” PtQ(PPh& + l/2 (-)-BDPP + 2 SnC12 40” PQ(PPh& + (-)-BDPP + 2 SnC12 25” PtC12(PPh& + l/2 (-)-BDPP + 2 SnC12 125” PtC12((-)-BDPP) + 2 PPh3+ SnC12 125” PtCl(SnC13)((-)-BDPP) 40” PtC12((-)-BDPP) + 2 SnC4 80” PtC12((-)-BDPP) + 2 SnCl4 110” PtC12((-)-DIOP) + CuC12 100” PtC12((-)-DIOP) + CuCl 100” PtC12((-)-BDPP) + CuC12 100” PtC12((-)-BDPP) + CuCl 120” (-)-BDP-DIOP
1.5 2 2 88 168 3 6 55 6 1.5 6.5 3 10 8.5
Pt(DBP-DIOP)Cl#nC12,
Conv. (%) 70 76 82 37 14 34 63 76 59 76 32 22 17 14
I
II
(19), 5.1 s (24), 5.0 S
(31)
(20)
(42) (42)
(10) (15)
(25), 2.6 S (14), 79.4 s (4), 85.9 S (8), 9.0 R (14), 9.8 R (31), 64.5 s (17), 14.6 S (22), 13.5 R (1 l), 10.6 S (7), 8.9 S (4), 12.3 R (3), 14.5 R I(-),64S+II(-
a
. .0PPh2 OPPh2
IRhCKCOhl2, LJa = 2, CO/I-I2(l/l, 100 atm), C&, 1IO”
(1)
(10)
(0.2)
(22)
(4) (9) (3) (3)
(12) (12) (10)
-)+W--)
CO/H2 (l/l, 2600 psi), 60°, 16 h
I (-), 0.8 S + II (-)
III
(22) (40) (42) (39) (46) (17)
873
(8) (4) (3) (1) (1) 1:n = 3.4: 1
Reactant
Conditions
Chiral Ligand
[RhCl(CO)&, URll = 2, CO& (l/l, 100 atm),
Refs.
Product(s) and Yield(s) (%), %ee
1 G-7 15.1 (s))+II(-)
cd-&,90” [~C~KO)212,
PR2= dbp
JJRh = 2,
CO/l-I;! (l/l, 100 atm),
I (--), 0.6 R + II (--)
c&j, 80” PPh2 \
nwco)314,
x/PPh2
I (-), 4:2 R + II (-)
[Rh(CO)314, L/Rh = 29
PR2
PR2= dbp .
L/Rh = 29
CO/H2 (l/l, 100 atm), C6H(j,80”
t/PR2
CO/H2 (l/l, 100 atm), C6H(j,80”
I (-), 40.3 s + II (-)
WC2W((+WOW
PtC12((+)-DIOP)(l/l), CO/H2 (l/l, 50 atm), PhMe, lOO”, 72 h R’
R2
X
Ph2P0
N(Me)PPhz
R’
R2 Me Pr-i
Bu-i Ph Bn Me
I (40), 27.6 R + II (22) + PhEt (2)
PtL*2C12,SnC12sH20, CO/l-I;! (l/l, 130 bar), C6H6,80”, 4 h Conv. (%) 68 80 85 72 57 54
I (%ee)
24 S 14 s
PtL*#&, SnC12sH20, CO/H2 (l/l, 130 bar), C&j, 80”, 4 h PPh,
C02Et COBu-n COCH2CH20Et OPPh;! G
Ph
(S)-BINAP
(+) DICOL
(I + II):III 92 : 8
OPPh2
I/II 0.86 1.01 1.06
93 : 7 95 : 5
I (%eej 16.5 R 11.8 R 0.35 s
PtL*&12, SnC12.H20, CO/H2 (2/3, 162.5 bar), C&j, SO”,36 h
;Ph2
k Ph2PN\ Me
Conv. (%) 57 75 25
RhCl(CO)L*/2e-, L*/Rh=2,40”, 111 h, CO/H2 (l/l, 1 atm)
I + II (68), 48.1 S, 1:II = 0.7
I (-), 30.9 R + II (-);
875
53
I:Il = 9.1
PQ[(S)-BlNAP]/SnC12, CO/I-I2 (l/l, 80 bar), PhMe
54
Temp.
Time (h)
Conv. (%)
I
II
PhEt
50” 70” 90” 100” 115”
52 26 12 7 5
37 38 45 40 95
(12), 68.8 s (14), 11.2 s (17), 1.5 R (15), 11.3 R (28), 19.2 R
(24)
(1)
HRh(CO)(PPh&/DICOL (l/3), C6H6,80”, 4 h, CO/Hz ( l/l, 80-90 atm)
I (27), 1 R + II (3)
(22) (2) (25)
(22) (42)
(3) (3) (15)
TABLE X. ASYMMETRIC Reactant
Chiral Ligand
HYDROFORMYLATION
(Continued) Refs.
Product(s) and Yield(s) (%), %ee
Conditions
H~(WW’hM-,I (58), 6.3 R + II (27)
851
I (52), 79.8 S + II (12) + PhEt (36)
404, 405
I (34), 18.1 S + II (26)
852
I (39), 22.1 s + II (12)
852
I + II (94), 28, III = 0.57
404
1(14,70) + II (31)
871
Rh(COh(Chira1 Ligand), CO/H2 (65 bar), 85”, 4 h
I + II (-), -, I:11 = 4: 1
876
Rh(acac)(CO)2,CO/Hz, 50atm, ChH6,60”, 40 h
I (94), 82
877
I (-), 73 s + II (-) + III (-); III = 0.53: 1
412,
DIOCOL (l/l .5), C6H6, CO/H2 (l/l, 80-90 atm), 80”, 16 h
(-)-DIOCOL
(-)-DBP-DIOP-PtC12/ SnCl2sH20(l/2.5), CO/H2 (l/2.9,3 14 kg/cm2), C6H6,36”, 55 h
(-)-DBP-DIOP
Pt[(-)-DIOP]C12, SnC12.2H20,ChH6,
(-)-DIOP
CO/H2 (l/l, 250 atm), lOO”, 1 h Pt(BDP-DIOP)C12, SnC12.2H20,CeH6, CO/I-l;! (l/l, 235 atm), lOO”, 1 h
BDP-DIOP
Polystyrene-divinylbenzene (l%), 10.5% ring substitution with (-)-DIOP
Polymer-bound (-)-DIOPPQ-SnC12, snCl#t = 2.1,c&j, CO/Hz (l/l, 87 kg/cm2), 60”, 12 h
~c1Z9 snc12, c&j, CO/H;! (l/l, 2200 psi), 60°, 24 h
0 0 ? CF3
Polystyrene-divinylbenzene copolymerized with:
PPh2
Pt(Chiral ligand)C12, SnC12,60°, 90 h
871
CO/H2 (l/I, 2600 psi)
0
c&Q 00 -- H
H
PR2= DBP
6 R2P
PR2
Pt(Chira1ligand)Clz, SnC12,60’. 24 h CO/H2 ( l/l, 2600 psi)
X=0,1(-),65S+II(-)+III(-),I:II= X=0.1,1(-),56S+II(-)+III(-),1:1X=
1.6:1 1:l
411, 412
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
W-b,
HWCWPPh3h
CO/H2 (l/l,
I(-),11.4+II(-)+III(-),I:II=2:1
853
I (-),
24 + II (-),
843
I (-),
2.5 + II (-),
I (-),
14 + II (-),
I (-),
6 R + II (-),
1:I.I = 88: 12
I (-),
6 R + II (-),
1:II = 78:22
45 psi),
25”, 72 h
ph---FO
Rh(COD)(L*)BF4, CO/H2 ( 1600 psi),
hzp”+OPh
1:II = 96:4
P P&2
Ar = 3,5-(CF3&H3
DWCW(L*WF$Q, SMe
CO/H2 (l/l,
PPh2
Cd.&, 60”, 4 h
60 bar),
Rh(acac)(CO)z, SPf-i
L*,
L*/Rb = 4, C(jH6,40”,
PPh2
CO/H2 (l/l,
878
1:II = 88:12
878
1:II = 96:4
120 bar)
~~WD)o*HCQ, CO/H2 (l/l, 50 atm), Cd-&j, 70”, 4 h
[~(CO)(PPh3)(L*)IClO~, CO/I& (l/l, C&j, “ ‘ fY ,o WhP
P(OR
30 atm),
70”, 4 h 38
Rh(acac)(CO)2 0, WW2
.OMe
‘OMe
L*/Rh
Solvent
Temp.
Hz/CO
Pressure (psi)
1:II 12.4:1
%ee 60
411
PhMe
70”
1:l
130
4:l
PhMe
70”
I:1
75
4:l
PhMe
70”
2:l
130
13.2:1
61
4:l
PhMe
50”
1:l
200
18.5:l
71
8:l
PhMe
50”
1:l
130
27.0: 1
71
8:l
PhMe
50”
1:l
130
28.9: 1
72
8:l
PhMe
25”
1:l
130
45.3: 1
81
4:l
PM4e
25”
1:l
500
49.2: 1
90
4:l
EtOAc
70”
1:1
130
14.4: 1
61
4:l
Et2C0
70”
1: 1
130
14.2: 1
66
6.9: 1
45
4:l
Me&O
70”
1: 1
130
12.9:1
66
2:l
PhN02
25”
1~2.7
130
91.0:1
85
Rh(acac)(COh,
L*,
P/Rh = 2.5, PhMe,
I (-),
67 S + II (-),
1:II = 94:6
56
I (-),
54 s + II (-),
1:II = 17:1
38
CO/H2 (l/l, 9 bar), 40”,5h Ru(acach,
L*/Ru = 2,70”,
CO/H2 (l/l, 500 psi), Me&O
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued)
Conditions
Chiral Ligand
Refs.
Product(s) and Yield(s) (G/o),%ee
OMe
Rh(acac)(CO)z, L’/Rh = 2, PhMe, 45”,
I(-),
lOS+II(-),I:II=6:1
38
CO/H2 (l/l, 130 psi)
(W2P
=-fY ,o 0, VW2 0’ P, 0
t-Bu
38
Rh(acac)(CO)2
Bu-t
L*/Rh 4:1 4:l 8:l 8:1 2:l
Solvent PhMe PhMe PbMe PhMe Me2CO
Temp. 70” 50” 50” 40” 25”
H?/CO 1:l 1:l 1:l 1:l 4:l
1:II 21:l 55:1 54:l 58:l 19O:l
%ee 44 61 67 66 77
Conv. (%) 99 21 89 45 78 63
1:II 95:5 96:4 96~4 96~4 80:20 96:4
Pressure(psi) 130 130 130 130 130
56
Rh(acac)(CO)z,L*, PhMe P/Rh 8 8 2.5 2.5 2.5 2.5 WOW:!
H2/CO 1:l 1:l 1:l 1:3 3:1 1:l
Pressure(bar) 9 9 9 18 18 45
Time (h) 5 5 5 5 5 5
% ee 40s 68 s 50s 57 s 8S 63 S
Rh(acac)(CO)2,L”, P/Rh = 2.5, PhMe, 5 h,
+
56
corn2
WOW2
R’ Bu-t Bu-t OMe OMe
t-Bu P(OR)2=
,o Ph2P
Temp. 40” 25” 40” 40” 40” 40”
0.
PPh2
tris[(s)- 1,l’-bi-ZNaphthol] bisphosphite
TemD. 40” 25” 40” 25”
1:II 93:7 95:5 92:8 93:7
Conv. (%I 74 18 99 40
%ee 19 s 30s 25 S 34s
Rh(acac)(COh, L*/Rh = 4, PhMe, 70”, CO/H2 (l/l, 130 psi)
I (-), 5 s + II (-), 1:I.I = 3.4: 1
38
Macac)(CO)2, L*/Rh = 4, PhMe, 70”, CO/I-I;!(l/l, 130 psi)
I (-), 25 S + II (-), 1:II = 3:l
38
879
CO/H;! (l/l, 30 bar), TI-IF, 65” Catalyst
Time(h) 22 3 3 23 17
[R~~(cL-(-)-DIOS)(COD)~I~ ~2(~-(-)-DIOS)(COD)~2/4 PPh3 Rh2(p-(-)-DIOS)(COD)2/4 PPh3 [Rh2(p-(-)-DIOS)(COD)2]2/4 (+)-DIOP [Rh2(p-(-)-DIOS)(COD)2]2/4 (-)-DIOP
Conv. (%) 100 97 100 99 84
Me i-F%
P dw. 14 22
57 74
% ee 5S 4s 3s 17 s 3S
880
[Rh(COD)L]C104, CO/H2 (l/l, 30 bar), THF, 65” R
1:II W36 91:9 91:9 59:4 1 66:34
‘%) , 1:II 69:3 1 72~28
q,tee 3(S)
6(S)
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
Chiral L&and 0 , WW2 WW2
. TX-.
n0 v
P\n
Product(s) and Yield(s) (%), %ee
Refs.
Rh(acac)(C0)2,
0,
L-DU
(Continued)
Conditions
v
L*/Rh = 4, PhMe, 70”, CO/H2 ( l/l, 130 psi)
I (---), 4 S + II (-), 1:II = 8.8: 1
38
L*/Rh = 1, PhMe, 70”, CO/H2 (l/l, 130 psi)
I (-), 6 R + II (-), 1:II = 7.25:1
38
Rh(acac)(CO)z,70”, L*/Rh = 1.2, Me&O, CO/H2 (l/l, 130 psi)
I (-),
38
Rh (acac)(CO)z,L*, P/Rh = 2.5, PhMe, 40”, CO/H2 (l/l, 9 bar), 5 h
I (-, 11 (R)) + II (-), 1:II = 80:20
56
I + II (70), cl, I:II = 95:5
714
I + Ix (97),
714
3u-t 1
P(OR)2 = Me0
,o
WhP
OMe
0,
WOW2
Wacac)WOh,
14 R + II (-), 1:II = 4.6: 1
C6H6,
L*/Rh = 2.5, 30”, 20 h, CO/H;! (l/l, 90 atm)
~(acac)(C% c6H6, L*/Rb = 2.5,30”, 5 h, CO/H2 (l/l, 90 atm) RO
55
Rh(acac)(CO)2,L*, P/Rh = 2.5, PhMe
0’ P, 0
t-Bu
BLl-2
R= bMe
Med
R”p;y I /’ ’ \ 6-b R=
0’
P\
Temp. 40” 25” 40” 40” 40” 40” 40”
Pressure(bar) CO/H2 1 1 3 9 0.33
9 9 18 45 18 45 25
Rh(acac)(CO)2,L*, 40”, CO/H2 (4/l, 25 bar), PhMe, 5 h
1 4
Time (h) 5 5 5 70 5
Conv. (%) 51 3 23 99 98
&II 92:8 91:9 92:8 92:8 51:13
% ee 51 s 62 S 53 s 43 s 48 S
5 5
21 38
91:9 94:6
53 s 50 s
I (-), 3 s + II (-), 1:Il = 83:17
55
I (-), 40 s + II (-), 1:I.I = 95:5
55
0
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued)
Conditions
Chiral L&and
Product(s) and Yield(s) (%), %ee
Refs.
OMe 55
Rh(acac)(COh, L*, P/Rh = 2.5, PhMe
RO 6R
R’ Bu-t Bu-t Bu-t OMe OMe
I /\ P
R= t-Bu
0
I P\
R= 0’
t-Bu
0
0
Me0
Bu-t
Temp. 40” 25” 40”
P (bar) 40 40 25
CO/l& 1 1 4
40” 25”
25 25
4 4
Time (h) 5 5 5 5 110
Conv. (%) 67 3 38 42 14
1:I.I 97:3 97:3 9614
% ee 31 R 50 R 45 R
95:5 93:7
53 R 64 R
Bu-t
OMe
Chiral Lkand BzOl
Rh(acac)(CO)z,L*, P/Rh = 2.5, PhMe, 4O”, CO/H2 (l/l, 40 bar), 5 h
Conversion >99%, I (-), 0 + II (-), 1:I.I = 94:6
55
Conversion >99%, I (-), 7 S + II (-), 1:II = 93:7
55
Conversion 49%, I (-), 8 S + II (-), 1:II = 92:8
55
Conversion 94%, I (-), 2 S + II (-), 1:II = 93:7
55
OR
PQ(L*)/SnC12, PhMe, CO/H2 Q/3,130 atm),
X
R’
H2
Ph
R2 Ph
H2
C6Hll
Ph
H2
Ph
C6Hll
H2
w-h1
C6Hll
0 0 0
Ph
Ph
C6Hll
Wll
w9
C5H9
Time (h) 36 70 38 200 15
Conv. (%)
160 70
70 90
100 100 100 10 100
Rh (acac)(CO)z,L*, P/Rh = 2.5, PhMe, 40”,
~P(W2
CO/H2 (l/l,
&P(ORh
Bu-r
9 bar), 5 h
59
1:II:PllEt 39 : 59 : 2 40 : 52 : 8 37 : 62 : 1 38 ~54: 8 29 : 68 : 3 33 : 62 : 4 22 : 47 : 30
% ee 42 S 40 s 55 s not determined 40s 56s 47 s
R’ = t-Bu: I (-), 1 R + II (-), I:II = 93:7 R1 = OMe: I (-), 7 R + II (-), 1:II = 92:8
56
TABLE Reactant
X. ASYMMETRIC
HYDROFORMYLATION
(Continued) Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
Rh (acac)(C0)2,
P/Rh = 2.5, PhMe, CO/H2 (l/l,
0’ p, 0
t-Bu
Bu-t
P(OR)2 = Med
Refs.
L*, 56
9 bar), 5 h
Temp.
Conv. (%)
III
% ee
40”
99
9o:lO
47 s
25”
45
95:5
62 S
OMe Rh (acac)(CO)T, L*, P/Rh = 2.5, PhMe, CO/H2 (l/l,
Ph
I
0’ p, 0
t-Bu
Bu-t
56
9 bar), 5 h
Temp.
Conv. (%)
III
% ee
40”
81
92:8
3S
25”
27
95:5
10s
P(OR)2 = t-Bu
Lb +SH
\
/
Bu-z
[Rh,(c1-BCOS)(COD),l,,
808
PPh3, THF, CO/H2 (l/l) SH
P/Rh
P @a)
Temp.
Time (h)
Conv. (%)
III
0
30
80”
24
99
54:46
C--->
2
5
80”
24
47
66:34
C-1
1+11
2
10
80”
12
86
86:14
G-->
4
10
80’
8
86
86:14
t-3
8
10
80”
8
81
85:15
c--3
8
10
65”
24
81
9O:lO
c-1
[~,~P-BCWWW,,
881
ligand, THF, CO/I-I2 (l/l) Ligand
P/Rh
P (bar)
Temp.
Time (h)
Cow.
-
-
30
65”
24
81
49:51
8S
pfi3
4
5
80”
24
50
73~27
7S
PPh3
4
10
65”
24
93
9o:lO
5s
BPPP
2
10
65”
12
88
92:8
10s
(+)-DIOP
4
10
65”
23
98
60:40
16s
(->DIOP
4
10
65”
23
98
57:43
8R
(+)-BDPP
4
10
65”
23
99
95:5
55 s
(-)-BDPP
4
10
65”
23
99
94:6
43 R
(+)-BDPP
2
10
65”
12
94
94:6
52s
(-)-BDPP
2
10
65”
12
96
94:6
48R
(%)
III
U%=ee)
IRh(p-OMWOW29 CO/I-I;! (l/l,
(+)-DIOP
I (57), 12 S + II (37), III
10 atm),
= 61:39
865
P/Rh = 4, THF, 65”, 7 h Pt(CH3)Cl(chiral (S, S)-DIOP
Hz/CO (l/l,
\f\/
OR
Time (h)
Conv. (%)
I+II
III
I(%ee)
III
Polymer
30”
66
46.8
(67)
0.29
29.2 R
(4)
(29)
50”
22
52.6
(70)
0.41
27.2 R
(5)
(25)
80”
2
56.6
(67)
0.59
20.7 R
(9)
(24)
ligand.
toluene-ds, URh = 1.1, H2/C0 (l/l, 25”, 5 h
OR=
882
100 atm)
Temp.
Rh(acac)(COh, 6R
ligand),
SnC12, Pt/Sn = 1, PhMe,
20 bar),
1(20),40R+II(l)+PhEt(
883
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
Chiral B&and
(Continued) Product(s) and Yield(s)
Conditions Pt(PhCN)#&,
Refs.
(%j, %ee
SnC12, I (-j,
P/Pt = 2.05, Sn/Pt = 1, Hz/CO (l/l,
91 R + II (-)
+ PhEt (54); I:11 = 60:40
408
100 am-t),
CH2C12, 17”, 70 h Pt(CH$Cl(chiral (Rj-BINAP
ligand),
SnC12, Pt/Sn = 1, PhMe, Hz/CO (atrn) H&O
Temp.
Time (h)
Conv. (%)
I + II
I:II
I (% ee)
III
Polymer
50/50
30”
688
33.5
(63)
0.50
58.4 R
(3)
(34)
50/50
50”
118
79.8
VW
0.58
41.6 R
(4)
(12)
50/50
80”
40
93.4
(67)
0.64
3.9 R
(5)
(29)
50/20
50”
132
75.5
(80)
0.50
23.1 R
50/80
50”
104
81.9
(87)
0.63
55.2 R
(8) (12) (2) (11)
50/l 10
50”
88
77.7
(85)
0.72
66.8 R
(2)
(13)
110/50
50”
88
82.7
(75)
0.75
48.4 R
(12)
(13)
Pt(CH3)Cl(chiral (S)-MOBIPH
882
ligand),
SnC12, WSn = 1, PhMe,
882
Hz/CO (atm) H&O
Temp.
Time(h)
Conv. (%)
I + II
III
I(%ee)
III
50/50
30”
240
52.7
(85)
1.09
75.8 S
(3)
13
50/50
50”
164
86.7
(75)
0.73
56.3 S
(4)
22
Polymer
50/50
80”
17
97.8
(77)
0.77
0.1 S
(7)
17
50/20
50”
148
70.0
(68)
0.79
28.8 S
(9)
23
50180
50”
65
60.7
(70)
0.86
67.1 S
50/110
50”
74
74.5
(71)
0.96
72.1 S
(2) 28 (2) 28
110150
50”
87
100
(73)
0.92
58.5 S
(7)
20
DWWWKODh (+)-BINAP
CO/l-I;! (l/l,
10 atm),
I (57), 25 S + II (6), III
= 91:9
865
P/Rh = 4, THF, 65”, 7 h
M-I (aW(COj2,
III
x
I
II
ligand, L/Rh = 2,
P
(94), -
(4)
24.8
CO/H2 (l/l,
CH
(28), -
(
46.7
50 atm),
664
20”, 22 h
Rh(acacj(COj2, CO/H;! (l/l,
L/Rh = 1, I (-),
6 atm),
+ II (-j,
III
= 6.7
884
CH2C12, 35”
PQKS,S)BDPPj, SnX2, (S,S)-BDPP
H2/C0 (l/I,
60
80 bar),
AgY, PhMe x
Y
Sn/Ag/Pt
Temp.
Time(h)
Conv. (%)
I+ II
III
I (% ee)
Cl
-
2/O/l
100”
3
50
32168
9.9 R
Cl
TfO
2/2/l
100”
25
75
(88) w-3)
37:63
1.6R
Cl
-
2/O/l
60”
30
60
VW
38:62
63.0 S
Cl
TfO
2/2/l
60”
100
98
(69)
44:56
0.9 s
Cl
-
2/O/l
40”
115
58
(98)
42158
75.5 s
F
-
2/O/l
100”
5
26
(95)
31:69
15.1 s
F
-
2/O/l
40”
240
72
(98)
32:68
76.0 S
F
F
1/5/l
40”
180
65
(97)
33:67
71.3 s
TABLE
Reactant
X. ASYMMETRIC
HYDROFORMYLATION
(S,S)-BDBPP
(Continued)
Conditions
Chiral Ligand
Product(s) and Yield(s) (%), %ee
cis-PtCl((S,Sj-BDBPP)
Refs. 885
(SnC13),PhMe, Hz/CO ( l/l, 70 bar) Temp.
Time(h)
Conv. (%) 1:II
I (%ee)
III
70”
27
90
6.14
19 (S)
(27)
100”
8
27
3.84
12 (S)
(47)
~Cl#‘,WDPPj, H2/C0 (l/l,
(S,S)-BDPP
I (39), 29.3 S + II (57) + III (5)
80 bar),
60
Pt/SnC12/Sn(OTf)2= l/2/2, PhMe, lOO”,35 h
Rh(acac)(CO)z,
THF, 80”,
chiral ligand, URh = 4, CO/H2 (l/l,
Rh(acac)(CO)z,
+II(-),I:II=2
886
I (--k--
+II(-),I:II=4
886
1 C-h-
+ II (-), 1:I.I = 4-5
886
THF, 80”,
chiral ligand, URh = 4, CO/H2 (l/l,
8I P
1 (-k-
6 atm)
6 atm)
0
N
B’
H
k
Rh(acac)(CO)2,
THF, 80”,
chirai ligand, LiRh = 4, CO/Hz (l/l,
6 atm)
PtC12,SnC12, CO/H2 (l/l, 80 bar), PhMe
I+II+III
887
Additional Ligand
Time (hj
Conv. (%j
(I+II)/(I+II+III)
(I)/( I+II)
-
100
80”
89
74
58
30
80”
79
93
32
21(Sj
15
100”
90
83
60
7(S)
BDPP BDPP Ala-Xaal -Ala-ala-Xaa2-ValAla-Ala-Xaaz-Ala-Xaal -Ala x=1 = aminoisobutyric acid
Temp
I( %ee) -
I (85), 40 S
888
I (-, 1 (R)), I + II (70), I:11 = 95:5
889
I(-),28R,I+II(15),I:II=90:10
889
PtCl(ligand)(SnC13), C6H6,60 ‘=,18 h, CO/H2 (l/l, 90 atm)
I (-), 3 1 R, I + II (12), 1:II = 70:30
889
Wacac)(CO)2, W-&j, L’/Rh = 2.5, 30’, 5 h, CO/H2 ( l/l, 90 atm)
I + II (35), i R, 1:11= 95:5
^^^ UUY
Chiral Ligand/Rhcomplex, corn;!
= diphenylphosphinoserine
x=2
~@cac)(COh,
cd6,
L*/Rh = 2.5, 30”, 20 h, CO/H;! (l/l, 90 atm)
Rh(CO)(L*)Cl, C6H6, 30”, 21 h, CO/H2 ( l/l, 85 atm)
0
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Product(s) and Yield(s) (%), %ee
Conditions
Chid Ligand
Rh(acac)tCOk, c&6, L*/Rh = 2.5, 30 ‘, 1 h,
Refs
I + II (95), 1 R, 1:II = 97:3
889
I (lo), c5 + II (
664
I (3, -9 1:II = loo:0
664
CO/H;! (l/l, 90 atm)
Rh (acac)(CO)z,P/Rh = 2, CO/H2 (l/l, 50 atm), 20 ‘, 22 h
Rh (acac)(COh, P/Rh = 2, CO/H2 (l/l, 50 atm), 20 “, 22 h
,o
0.
Rh(acac)(CO)z,ligand, WRh = 1.1, toluene-dg, CO/H2 (l/l, 20 atm)
&OR)2
WhP
Temp. 50” 40” 25”
Conv. (%) 98 89 21
TOF 281 259 45
883
111111 (89) (91) (94)
I(%@
(10) (8) (5)
(1) (1) (1)
8R 18R MR
890
Rh(acac)(CO)z,ligand, H2/C0 (l/l) Ligaud (S)-NAPHOS (Q-NAPHOS
L/Rh 3 3
(S)-BINAS (R)-BDPAP (R)-BDPAP
4 3 3
(W2P
,o
0. R’
R’ Me$i Me3Si Me3Si Et3Si Et3Si TBDMS TBDMS ,t
Solvent toluene toluene MeOH-H2O/toluene toluene toluene
P/Rh 2.2 2.2 8.8 2.2 2.2 2.2 2.2
Temp. 50” 25” 25” SO” 25” 50” 25”
100 80 100
92
I (83) (96) (95)
I(%ee) 34 S 32 S 18s
98 52
(97) (98)
0 0
Cow. (%) 53 89
Rh(acac)(CO)2,ligand, toluene-dg, CO/H2 (l/l, 20 atm)
ROW2
OOpLO
Temp. Time(h) 24 40” 40 40” 2s 40” 50” 24 25” 18
P (at.@ 100 70
883
R’
Conv. (%) 38 20 26 94 51 47 36
Time(h) 15 23 15 15 24 15 24
TOF 104 14 11 256 17 163 16
I
II
III
(86)
(13) (7)
(1)
(6)
(0)
(9)
(1) (0) (1) (1)
(91) (94) (90) (94) (85) (93)
(6) (14)
(6)
(2)
I(%ee) 21 s 47 s 57 s 20s 28 S 7s 15 s
Rh(acac)(CO)z,ligand, URh
=
1.1,
883
tohene-dg,
CO/H2 (l/l, 20 atm) Temp. Conv. (%) SO” 99
TOF 386
I
II
III
(87) (92) 195)
(10)
(3)
(6)
(2)
(4)
(1)
I(%=) 12s 30s 38 S
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
Rh(acac)(CO)z,ligand, L/Rh = 1.1, toluene-dg, CO/H2 (l/l, 20 atm) Temp. 50” 25” 15”
WkP
Time (h) 5 24 24
883
Conv. (%) 43 38 12
TOF 133 17 11
I (83)
G38)
II (13) (8)
III (4) (4)
(92)
(6)
(2)
I(%ee) 58 S 69 S 86 S
,o 0.
WR92
Rh(acac)(CO)2,ligand, IJRh = 1.1, toluene-f&, CO/H2 (l/l, 20 atm) Temp. L 50” 40” 25”
(W2P
Refs.
“YY ,o 0. WR’h
P(OR)2=
Conv. (%) , 36 25 2
883 I (87) Gw (91)
TOF 12 6 4
03)
III
(2) (1) (1)
I(%ee) 16s 18s 23 S
Rh(acac)(CO)2,ligand, L/Rh = 1, toluene-dg,CO/H2 R’ Me3Si Me3Si Me3Si Me$i Et$i Et$i Et$i TBDMS TBDMS TBDMS TBDMS
H2/C0 (atm/atm) 1O:lO 10:10 10:10 10:20 1O:lO 10:10 1O:lO 10:10 10:20
Temp. 50” 40” 25” 25” 50” 40” 25” 50” 50”
5:lO 10:10
50” 25”
883 Time (h) 15 15 23 110 15 15 24 15 15 15 72
Rh (acac)(CO)z,P/Rh = 2, CO/H2 (l/l, 50 atm), 20 ‘, 22 h Pt/SnCl2 = l/2, PhMe CO/H2 (atm) Time (h) 40/40 24 PQ(DIOP-BNP)/SnClz 40/40 20 PtCl2(DIOP-BNP)/SnClz 40/40 20 PtQ(DIOP-BNP)/SnClz 40/40 40 PtS&(DIOP-BNP)/SnCl2 40/55 380 PtCl2(SKEWPHOS-BNP)/SnClz 40/40 22 PK&(SKEWPHOS-BNPVSnClz 40/40 22 lX&(SKEWPHOS-BNP)/SnCl;! 40/55 93 PQ(SKEWPHOS-BNP)/SnClz 40/80 70 PtCl$KEWPHOS-BNP)/SnClz 20000 70 Catalyst [PtCl,(DPE-BNP)]#nCl2
II (11) (11)
Conv. (%) I 52 (84) 21 (8% 26 (93) 69 (95) 14 (85) 7 (93) 7 (89) 30 (67) 53 (81) 72 (71) 8 (78)
II
III
(13)
(3) (3)
(8) (5) (4) (12) (3)
(2)
(29)
(1) (3) (4) (3) (4)
(17) (23) (20)
(2) (6) (2)
(8)
1(40,-)+II(2),I:II=21.4
I (% ee) 60 S 67 S 87 s 53 s 25 S 34 s 29 s 11 s 14s 20 s 4s
664
891 Temp. 90” 85” 58” 38” 32” 58” 34” 32” 32” 32”
Conv. (%) 6 97 50 22 77
Aldehydes:PhEt 48:52 64:36 74~26 73127 78122
1:II
%ee
76124 71:29 73~27 68:32
72128 63:37 68:32 66:34 63:37 68:32 65:35 78:22 80:20
20 (s) 44 (5’) 39 (S) 43 (S) 17 (s) 18 (S) 24 (S) 24 (5’)
45 10 97 89 95
55:45
85:15
20(S)
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued) Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
HRWWPPhd3,
G&9
I(-),6.1
+II(-)+I&-),I:II=
17:l
Refs.
853
CO/H2 (l/l, 1400 psi), 80”, 12 h
ljR2
ljR2 PR2= DBP Pt(Chiral Ligand)Clx/ SnC12,HC(OEt)3, CO/H2 (l/l, 2400 psi), w, 60”, 150 h
(-)-BPPM
I (-), >96 + II (-), 1:II = 1:2
Pt(Chiral Liga.nd)Cld SnC12, W-k
HC(OW3,
I (-), >96 + II (-), I:II = 1.2:1
CO/H2 (l/l, 2400 psi), 60O,114 h
pm2
C02Bu-2
Pt(Chiral Ligand)Clz/ SnC12,C&k, HC(O% CO/H2 (l/l, 2400 psi), 60”, 115 h
I (-), >% + II (-), I:II = 0.9: I
Pt(Chiral Ligand)Clz/ SnCb, c&5,HC(OW3, CO/H2 (l/l, 2400 psi), 60”, 95 h
o^\
I (-), >96 + II (-), 1:II = 3.3:1
409
CHO 853
0A
0
‘+-
40”, 96 h
-- H
H t-5 PPh2
&
+ 1 C-h -
mH0 II (-)
I:11 = 0.31
PPh,
DIOP
G5H6, HWCW’Phh CO/H2 (l/l, 16 psi), 50°, 168 h
I (-, -) + II (-), I:II = 0.025
853
(R,S)-BINAPHOS
C&j, Rh bcacKO)2, Hz/CO (l/l, 100 atm) L/Rh = 4,60”, 18 h
I (-, 96 (R)) + II (-), 1:II = 86:14
413
(R,S)-BINAPHOS
Rh(acac)(CO)z, ligand, Hz/CO (l/l, 100 atm), L/Rh = 4. CcH/; I+II = 72, I:11 = 96:4, I (98) R
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
Chiral L&and
(Continued)
Conditions
4 CONEt28,
Rh4(W
Product.(s) and Yield(s) (%), %ee
12/H-DIOR
CO/H2 (l/l,
300 bar),
PhMe, 130”, 32 h
A
+
CONEt2
Refs.
803
OHC
coNEt2 II w,
I(33)
-->
PtCl(SnCl$[(-)-DIOP], CO/H2 (l/l,
300 bar),
II (lo), -
803
+ starting material (90)
PhMe, 130”, 50 h Pt( (-)-DIOP)(
SnC13)Cl,
CO/H2 (l/l,
\ O4
+
OHC
762
A
C02Bu-t
PhMe, lOO”, 25 h
‘C02Bu-r
I 0 /
80 atm),
C02Bu-t
I (32), 20 S
0
fi2p
J N,
I
‘-0
c&j9
~(acac)(co)29
><
L*/Rh = 2.5, 80”, 5 h,
/
CO/H2 (l/l,
II (8)
(JOL +0-0”“” I
80 atm)
714
II
I + II (70), ca. 10,I:II
= 80:20
Wacac)(W2, W-k, L*/Rh = 2.5, 80”, 2 h, CO/Ii2 (l/l,
co/H2
I + II (97), -,
?14
1:II = 87: 13
80 atm)
(l/l),
892
c&j,
80”, 24 h
R’
\\ o^
R2
Conv. (%)
I + II
1:II
I (% ee)
III
H
H
95
(95)
80:20
8.7 S
0
i-Bu
H
98
(96)
60:40
18.8s
2
H
PhO
97
(70)
54:46
6.6 s
7
(R,S)-BENAPHOS
Rh(acac)(CO)z,
+
L/Rh = 4,
H2/C0 (l/l),
&HO
C6H6
256
III
+
I+
rcHo
CHO
III
II
857
II +
893
I(%ee)
Temp.
P (af@
Time (h)
Conv. (%)
1:II:III
60”
100
18
85
86: 14:o
96R
40”
100
96
78
88:12:0
96 R 97 R
30”
100
108
60
88: 12:o
40”
100
144
96
70:11:19
88 R
40”
40
48
84
88: 12:o
95 R
40”
40
96
95
84: 12:4
40”
20
49
94
87:13:0
96R %R
W&-BPNW(COho, BPNAP
CO/H2 (l/l,
7 atm),
WCHO
PhMe, 110”
CHO
I +
Et l”i;l,HO
pr III
+
I+II+III+Iv(-),I:II:III:Iv= Rh(acac)(COh, BPNAP
80”, overnight
IV
11.9:3.5:1.1:1
BPNAP,
L.&h = 1.1, C6H6, CO/H2 (l/l,
+CHO
13 atm),
I + II + III + IV (-),
1:II:III:IV
= 2.9:3.3: 1.4: 1
893
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued)
Rh(acac)(CO)2, Hz/CO (l/l,
(R,S)-BINAPHOS
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
L/Rh = 4, 100 atm),
c&i, 60”
X
rI1\
Time (h)
R
1+11
III
I(%ee)
20
Me
(97)
86:14
95 (+)
34
OMe
(>W
87:13
88 (+)
34
Cl
w%
87:13
93 (+)
66
Bu-i
ww
88:12
92 s
CHO
PtQ(BPPM)/SnC12, (-)-BPPM
CO&
/
(l/l,
c,&, a”,
2650 psi), J-p
8h
X
Conv. (%)
I/II
% ee
H
89
0.47
70
Br
49
0.53
75
AC
47
0.87
85
NO2
14
1.40
58
Me
77
0.57
72
OMe
65
0.60
73
‘:TCHO”
4o6
+rI\ III /
X
CHO ~WW’-3)3,95”,
Ph-
(-)-DIOP
CO/H2 (l/l,
85 psi),
CHO
Ph-
II
I + Ph A
28 h
855
II (-),
c-1
0.9 R , III
= 62:38
~WOXPfi3)3,95”,
CO/H;! (l/l,
(-)-DIOP
80 psi),
n-C8H1$ZH0
I + (-),
(4
\ I c/
Ph-0
c9
h2P
0 /O %L
Rh(COD)(L’)BF4,
0 OPh /
0
I%2
CO/H2 (1600 psi), hexane
II
A
n-C6H13
24h
855
CHO
0.2 S, III
= 74:26
YHO +)yCHO
843
II (-)
Ar = 3,5-(CF3)2GH3
III
= 94:6 CHO
Rh(acac)(COk,
02
(R,S)-BINAPHOS
p/m
CO/H;! (l/l,
PhH, 40”,
02
100 atm),
LlRh = 4-4.4,46
h I (-),
0\
(-)-DIPHOL
N
URh = 4, C&,
I’/ \ or>
a-IO
52”,
CO/H2 (500 psi), 8 d
C02Bu-t
65 (+) + II (-),
(-),
III
= 86:14
0.35 R
801
C02Bu-t CHO
(S, R)-BIPHEMPHOS
WCOk(aW,
C&i,
Hz/CO (l/l,
100 atm),
414
60”, 20 h II (5)
1(57), 88 (+I
414
I (57), 83 (+) + II (5)
(S, R)-BINAPHOS
I (-),
(R,S)-BINAPHOS
83 (-) + II (-),
III
= 92:8
36
Pt(BCO-DBP)C12/SnC12, (R,R)-BCO-DBP
CO/H2 (7/15,220
c&,800,7
atm),
I (21), 45 + starting material (78)
872
h CHO
Rh(CO)~(acaC), c6& (R,S)-BINAPHOS
Hz/CO (l/l,
36
100 atm),
60",50 h I i-j, r:Z
= 1: 1
(R,S)-BINAPHOS
Rh(acac)(CO)2,
ligand,
Hz/CO (l/l,
100 atm),
IJRh = 4, C&i!!, 60”
I (-),
II (-), 1:II = 97:3
92 R 79 R + II (-),
III
= 78:22
113
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued)
CO/H2 PhMe (l/l, 80 bar),
&
b
I+
II+&
OHC’ (S-endo)
(R-endo) “CHO
\ 1 LP
R
(R, R)-DIOP
/
Time (h) 8 8 8 15 8 4 60 10 10 115 20
Temp. 100” 100” 50” 50” 100” 100” 25” 100” 100” 25” 25”
I + II
I:II
III
Iv+v
(93) (96)
6 1.0:39.0
(0)
(7) (4)
(59) (98) (98) (96) (96) (55) (93) (89) (18)
48.3:5 1.7 48.5:5 1.5 46.2~53.8 41.9:58.1 40.7:59.3 50.6:49.4 49.650.4 -
(0) (0) (0) (0) (0) (0)
(2) (2) (2) (3)
(2) (2)
w (4)
(3)
(2) (2)
(2) (2)
[(R$)-DIOP]PtCl(SnCl3), C,&, hydroquinone, 80”, CO/H2 (180 bar)
R OMe H Cl CF3
NO2
(RJ?)-BCO-DPP
III 894
OHC (K-exe)
(S-em) CHO
Catalyst m(NBD)C112 + 6 PPh3 [Rh(NBD)C112+ 3 (2S, 3S)-CHIRAPHOS [Rh(NBD)C112+ 3 (2S, 3S)-CHIRAPHOS [Rh(NBD)Cl], + 3 (2S, 3S)-CHIRAF’HOS [Rh(NBD)C112+ 3 (4S, SS)-DIOP PtCl(SnCl$[(S, S)-BDPP] PtCl(SnC13)[(S,S)-BDPP] PQ[(S, S)-BPPM] + SnC12 PQ[(Z?)-PROPHOS] + SnC12 PtC12[(R)-PROPHOS]+ SnC12 PtCl$(R)-PROPHOS] + SnC12
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
[(RJZ)-BCO-DPP]PtCl, SnC12,CA, 80”, 8.5 h, CO/H2 (7115,220 atm)
1:II 9713 >99:1 >99:1 >99:1 -
% ee
(16) (62)
(17) (15) s
(30) (55) (0)
(13) (-3
(pHoI+
(12)
d (-), 12.5 S
(R,R)-BCO-DBP
[(R,R)-BCO-DBP]PtC12/ SnC12,C&j, 80”, 9 h, CO/H2 (7115,220 atm)
I (-), 15.9 R + II (74)
(R,R)-EtDIOP
Rh4(COh, URh = 4, CO& (l/l, 80 atm), ISO”,165 h
I (-), 0.9 s +
IfRh = 4, CO/H2 (l/l, 80 atm), 80”, 66 h
Yield
II
407
W)
407
III c-1
850
I:III = 86:14
Rh4Wh2,
(R,R)-CyDIOP
(S,S)-CHIRAPHOS
[Rh(NBD)C112,L&h = 4, CO/H2 (l/l, 80 atm), lOO”, 70 h Pt(CIiIRAPHOS)(SnCl~)Cl, CO/H2 (l/l, 80 atm), 100”
I(-),
1.5S+III(-),I:III=91:9
850
I + III (30), 2 1.4 R, 1:III = 99: 1
130
I (-), 3.0 s + III (-), 1:m = 99:l
130
I
(77)? 1 4 R
130
I (-), 7.2 S
130
~WWW’W3, (R,R;-3IOP
L!&=4
ltW” , 4.6h ., a-w _- --,
CO/H;! (l/l, 80 atm) Pt(DIOP)(SnC13)Cl,lOO”, CO/H2 (l/l, 80 atm)
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
HRh(CO)(PPh&/DICOL (l/3), C&16, 90”, 110 h, CO/H2 (l/l, 80-90 atm)
(+)-DICOL
I
I
(RO),ti’
(Continued)
L*/Rh = 4, MezCO, 50”,
‘A P(OR)2
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Chiral Ligand
I (49), 1 R + III (2.6)
851
I (-), 26 S
38
1(96), 0
893
1(48), 1 S+III(3)
851
CO/H2 (l/l, 600 psi)
P(OR)2 =
Med
(R)-BPNAP
6Me Wacac)(CO)2, (R)-BPNAP, L/Rh = 1.7, PhMe, CO/H;! (l/l, 7 atm), 1lo”, 20 h
HWCW’Ph&&-I(-)-DIOCOL
DIOCOL (l/l .5), C6H6, CO/H;?(l/l, 80-90 at@, 90”, 240 h
0
0
PhK
0%
(S,S)-DIOP
Rh(NBD)(DIOP)sBP&, LRh = 3, 80”, c&j, CO/H2 (44/56,250 psi)
0
CHO
I (-), 30 R
II (-)
(R,R)-DIPHOL
Rh(COD)(acac), LlRh = 4, c&j, 80”, CO/H;! (U/56, 1000 psi)
I(-),
(R,S)-BINAPHOS
Rh(acac)(COh, ligand, H2/CO (l/l, 100 atm), IJRh=4,C&,60°,71 h
I (-), 89 S + II (>99), I:II=91:9
842
12R+II(--)
CHO
Wac=MCO)2,Qwd, rJRh=4,C&, co/H2(l/l), 60”
Ph -OH Ligand pm3
(R,S)-BINAPHOS WBmm (R)-2-Nap-BIPNITE (R,S)-BINAPHOS (R,S)-BINAPHOS (R,S)-BINAPHOS (R,S)-BINAPHOS (R,S)-BINAPHOS (R,S)-BINAPHOS
\/ \ Ico
Hz/CO (atm/atm) 50150 15/15 15/15 15/15 50/50 50/50 25/25 2w20 5/5 0.5/0.5
Time (h) 72 30 30 30 57 20 30 30 30 30
\
I+
W&OH
I
I (% ee)
ww ww (0) ww ww
-
II
836
88(+I 5 (+I
6(+I 12(+I
(53) (65)
15 (+) 40 (+I 75 (+) 70 (+)
(73) w
(22) CHO
(R, S)-BIPHEMF’HOS
~(cok&cac), c&k Hz/CO (l/l, 100 atm), 60°, 12 h
(yJ
+
(JyCHO II (4), -
1(70), 96 c-1
(+)-BDPP
414
414, 36
1(71),97(-)+II(3),-
(R, S)-BINAPHOS
0
113
PtC$(BDPP)/SnC12, CO/H2 (l/l, 80 bar), PhMe, lOO”, 7 h
I (-),(5R,8R):(5R,S)
= 70:30
896
CHO
r:! (-)-BDPP
I (-),(5R,8R):(5R,83=44:56
896
TABLE X. ASYMMETRIC Reactant
I @
/
PN&(BPPM)/SnC12, CO/H2 (l/l, 2650 psi), C6H6,60”, 46 h
(-)-BPPM
N
(Continued)
-\\
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
0
\
HYDROFORMYLATION
Chiral Ligand
&NqHy
nacho
406 0
0
0
Pt(BDP-DIOP)(SnCl,)Cl, (-)-BDP-DIOP
N
C6H6,60”, 60 h, CO/H2 (l/l, 2700 psi)
III(-j
411
7 0
411, 412
oh, H PR2= DBP
-- H
--I-
Time (h) 70 100
X = 0, I (-), 62 S + II (-) + III (-), 1:I.I = 3.5: 1 X = 0.1, I (-), 60 S + II (-) + III (-), 1:I.I = 2.4: 1
t-5 R2P
PR2
RhH(CO)(PPhn)3,50-56”, LJRh=4,C6&,6d, CO/H2 (l/l, 500 psi)
I (-), 34.1 R
801
~WCW’Ph~)3,48”, L/F& = 3, MEK, 4 d, CO/H2 (l/l, 500 psi)
I (-), 38.3 R
801
(+)-DIPHOL
RhH(CO)(PPh3)3,40-50”, L/Rh = 4, C&, 12 d, CO/I-I2 (l/l, 500 psi)
I (-), 31.3 s
801
(-)-BPPM
PtC12(BPPM)/SnC12, CO/H2 (l/l, 2700 psi), HC(OEt)3, 60”, 240 h
(-)-DIPHOL
I(-),>%R
+
II(-4 CH(OEt)2 0 CHO Catalyst, CO/H2 (l/l, 80 atm), PhMe, 100 O
Catalyst Pt&((S,S)BDPP)/SnCl;!
Time (h) 21
Conv. (%) 44.5
I (22)
II (14)
III (6)
Iv (2)
v (1)
I(%e!e) 27.5
m(N13D)CI]2/4.4PPh3 m(NBD)CI]2/2.2(R,R)DIOP
7 14
84 51
(71) WV
(12) (7)
(0) (0)
(1) (0)
(1) (0)
7.4
MeOr
Catalyst.,CO/I-i;! (l/l, 80 atm), PhMe, 100 O Catalyst PQ((S,S)BDPP)/SnCl2 [Rh(NBD)C112/4.4PPh3 [Rh(NBD)C1]2/2.2(R,R)diop
Time (h) 27 7 7
I+II+III+Iv+
Meor
Conv. (%)
I
IIIIIIVVI
8.5 97 99.5
(2) (21) (23)
(3) (2) (1) (30) (35) (1) (32) (39) (1)
VI I(%ee) (1) (10) (5)
3.6
898
TABLE X. ASYMMETRIC Reactant
u\
HYDROFORMYLATION
(Continued)
Conditions
Chiral Ligand
Product(s) and Yield(s) (%), %ee
897
CO/I-I2 (l/l, 80 bar), PhMe, 100” Catalyst [Rh(NBD)C1]#Ph3 [Rh(NBD)C112/DPPE [Rh(NBD)Cl]#DPPB [Rh(NBD)Cl],/(S.S)-DIOP [Rh(NBD)Cl],/(Z?,R)-DIOP PtQ(DPPE)/SnC12
Time (h) 10 20 20 20 20 13
PtClz((+)-BDPP)/SnClz PtC12(DPPB)/SnC12
20 20
Conv. (%) > 99 85 91 90 91 2
I/(1 + II) (%) 93 87 88 90 91 -
I [( lR,3S,4S):(lR,3R,4S)] 60:40 65:35 6634 69:3 1 52:48 -
68 17
93 83
67133 62:38
0 C7H15
K
0%
(R,S)-BINAPHOS
.’(Y I
K
C7H15
+ C7H15A/i
OwCHo I (-), 80 S
0
113
II (>99), 1:II = 88: 12 897,
CO/I-I2 (l/l, 80 bar), PhMe, 100” Catalyst [Rh(NBD)C112/PPh3 [Rh(NBD)C112/DPPP [Rh(NBD)C112/DPPB [Rh(NBD)Cl12/(S,S)-DIOP [Rh(NBD)Cl]2/(RJ?)-DIOP PtC12(DPPP)/SnCl2 PtClz((+)-BDPP)/SnClz PtQ((-)-BDPP)/SnC12
, .*IP
Ph-
CHO
0
Rh(acac)(CO)z,ligand, Hz/CO (l/l, 100 atm), LJRh = 4, C&I,, 60”, 72 h
b
Refs.
Time (h) 22 20 38 20 16 35 35 25
896
Conv. (%) 98 91 96 96 87 20 28 27
I [(4&8S):(4R,8R)] 45:55 49:5 1 50:50 49:5 1 49:5 1 52:48 38:62 60:40
I./(1 + II) (%) 97.8 93.5 94.4 95.5 95.0 >99 >99 >99
.’
c
I
CO/H2 (l/l, 80 bar), PhMe, 100” Catalyst [Rh(NBD)C112/PPh3 [Rh(NBD)Cl12/DPPB
Time (h) 10 20
Conv. (%) 97 90
[Rh(NBD)Cl]21(R,R)-DIOP [Rh(NBD)Cl]2/(S,S)-DIOP PtC12(BDPP)/SnC12 PtQ(DPPB)/SnCl2 PtQ(DPPE)/SnC12
20 20 11
88 86 95
24 26
7 9
(R,S)-BINAPHOS
897
I [(3R,SR,Ss):(3Z?,SR,8R)1 4357 48:52 49:5 1 53:47 41:59 45:55 48:52
Rh(acac)(CO)z,I.JRh = 4, H2/C0 (l/l), PhH
CHO
I+
CHO II
Phm
FHO
I + Ph-&-IO TemD. 60” 30” 30” 30” 30”
Press.(atm) 100 100 100 40 20
Time (h) 18 48 72 24 12
m+
Phd
Conv. (%) 99 62
1:II:III:IV 57:2:28:13 91:5:2:2
I(%ee) 64 R 89R
90 88 47
42: 1:56:1 92:5:2: 1 94:6:0:0
56R 90R 92R
IV
Rh (acac)(COh, c&5 (Z?,S)-BINAPHOS
Hz/CO (l/l, 100 atm) URh = 4,30”
413 CHO I + PhdCHO
Phd
CHO
+ Pho Time (h) 72 48
Conv. (o/o) 90 62
857
1:II:III 42:57:1
I(%-) 56
9114:s
88
III
II
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(-)-DIOP
HRh(CO)(PPh3)flIOP (l/2), C6H6, lOO”, 24 h, CO/H;! (l/l, 100 atm)
(-)-DIOCOL
HRh(CO)(PPh,),/DIOCOL (l/2), C,K, lOO”, 24 h, CO/H2 (l/l, 100 atm)
(-)-DIOP
(Continued) Refs.
Product(s) and Yield(s) (%), %ee
conditions
Chiral Ligand
825
1 (98), 0
825
1(90), 0 CHO
0
HRh(CO)(PPh,)$.Zhiral Ligand (l/2), C&, 70”, CO/H2 (l/l, 100 atm), 15-20 h
825
I+ 0
I+II(95),
1 R,I:II=
1.3
0 CHO
\
1
Nt
II
/ 04 (-)-DIOCOL
q3
(-)-DIOP
[~UICI(CO)~]~,L&h = 2,
0
I + II (90), 1.5 R, 1:II = 1.7
825
387
CO/H2 (400 psi), SO”,66 h
CrtW3
WC@3
&w3
I + II (82), 20 R, 1:II = 90: 10 (-)-BPPM
I + II (70), 14 S, 1:II = 95:5
387
(-)-BINAP
I + II (89), 7 R, 1:II = 93:7
387
(-)-DIOP
Pt(DIOP)Cl#nC12,50”, CO/H2 (400 psi), 48 h
I + II (73), 46 R, 1:II = 73:27
387
(-)-BPPM
Pt(BPPM)Cl#nC12, 50°, CO/H2 (400 psi), 88 h
I + II (84). 40 S, 1:II = 24:76
387
(-)-BINAP
Pt(BINAP)Cl2/SnC12,65*, CO/H2 (400 psi), 66 h
I + II (36), 0,I:II = 32:68
387
(-)-CHLRAPHOS
Pt(CHIRAPHOS)C12/SnCl2, CO/H;! (400 psi), 80”, 20 h
I + II (19), 6 R, 1:II = 65:35
387
Cl2
CHO Rh(C0)2(ac=), Cd-b H2/C0 (l/l, 100 atm)
./o”
(SJ?)-BINAPHOS 1,
0
(R,S)-BINAPHOS
R 4-clC(jI-r4
60”,34h 60”, 20 h
4-M&6&
60”,34h 60°,66h Rh(acac)(CO)2,ligand, H2/C0 (l/l, 100 atm),
4-&w$b 4-(i-CdH$C& R
P-FW~
I
II
(87), 93 (+) (86), 95 (+I (871988(+) (88), 92 S
(13) (14) (13)
TemD. Time 39h
40”
I+II (43)
(12) I(%=) 1:II 89: 11 92 (-)
113
~=4,w6
Rh4WhrL.JRh= 2, (R,R)-DIOP
CO/H2 (l/l, 80 bar), hexane, 100”
II
W),-
(19)
385
TABLE
Reactant
X. ASYMMETRIC
(Continued)
HYDROFORMYLATION
Conditions
Chiral Lkand
Product(s) and Yield(s) (%), %ee
Refs.
(R,R)-DIOP
HRh(CO)(PPh&, 240 h, L/Rh = 4, t-t, PhMe, CO/H2 (l/l, 1 bar)
(R.R)-DIOP
PtCl(SnC13)(DIOP), CO/H2 (l/l, 80 bar), PhMe, 50”
(R,R)-BCO-DPP
Pt(BCO-DPP)Cl#nC12, CO/H2 (7115,220 atm), C6H6,50”, 48 h
AA I’ ’
(R,R)-BCO-DBP
Pt(BCO-DBP)Cl#nC12, CO/I-I2(7115,220 a&n), C6H6,50”, 7 h
I (31), 48 + Starting material (65)
872
BPPM
Pt(BPPM)Clz/SnC12, CO/H2 (7/15,220 atm), C6H6,50”, 70 h
I (32), 43 + Starting material (67)
872
(-)-B PPM
Pt(BPPM)Cl#nC12, CO/H2 (l/l, 2400 psi), C6H6,60”, 18 h
1(71), 11.9(-)+11(29)
385
,CHO
I/\ \/ 63
I (81), 20 + Starting Material ( 15)
872
CHO + WHO II (-)
I (22), 78 S \
0’
406 I/II = 0.53
PPh? [Rh(CO)(PPh,)(L*)jC!OG,
-5 I \ N
844
I (-), 78 R
CO/H2 (l/l, 80 atm), C6H6, lOO”, 16 h
PhTO
0 /O Ar2P k
0 OPh /0
h-2
Solvent
Ar = 3,5-(CF&C6H3
C6H6 C6H14 C6H14 C6H1-4
THF Cd-b4/HC(OEt)3 Et$iH
ph-TO 0
/O Ph2P %
0 OPh P Pph2
R2P
843
Rh(COD)(chiral ligand)BFh, CO/H2, rt, 18 h Pressure(psi) 1600 1600 500 2400 1600 1600 1600
Rh(COD)(chiral ligand)BFa, CO/I-I2(1600 psi), rt, C6H6, 18 h
II Conv. (%) I C---h38 (---) c-451 (-)
43 53 100 80 71 85 20
(-), 49 (--->, 31 (-), 12 (-), 17 (-), 72
(-) (-) (-) (-) (-)
III 97:3 96:4 95:5 96:4 97:3 95:5 95:5
I (-4
10 + II (-); III = 95:5
843
I (-),
39 s + II (-), III = 10:1
409
Pt(Chira1Ligand)Clz,
J-l
CNLPR2 I C02Bu-t
SnC12,PhCl, 60”, 38 h CO/H2 ( 1/ 1, 2400 psi)
PR2= Q---g Pt(Chiral Ligand)Clz, SnC12,PhCl, CH(OEt)3, CO/H2 (l/l, 2400 psi), 60°, 145 h
I(-),96S
+ I:11 = 3.4: 1
409
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
Chiral Ligand
(Cuntinued)
Conditions
corn;!(l/l),
Product(s) and Yield(s) (%), %ee
\ \ I Jd
c&l&
80”, 24 h
/
R
Refs.
CHo I+
/
892
Rm”‘HoII+ R H Me0
i-,./o”
Conv. (%6) I+II 98 m 93 (88)
III 72:28 78:22
I(%ee) 45 s 14 S
III 2 5
PtC12(BPPM)/SnC12, CO/H;! (l/l, 2400 psi),
(-)-BPPM
C&j, 6o”, 9 h I (-), 78 s
(RW’
=‘fY ,o 0. RORh
i-Bu
p\
0’
0
III=
II 6)
1:2
Wac=XW2, L*/Rh = 4, Me$O, CO/H2 (2/l, 200 psi)
I(-),82S+II(-),I:II=66:1
38
I(-),39S+II(-),I:II=2:1
409
BU-t
P(OR)2 = Med
i>Me
R2P
IL7 PR2= Q-p l-2
Pt(Chiral Ligand)Clz, SnC12,PhCl, 60”, 37 h, CO/l-l2 ( 1/l , 2400 psi)
C02Bu-t
Et0 Pt(Chiral Ligand)Clz, Sri&, PhCl, HC(OEt)3, CO/H;! ( l/l, 2400 psi), 60”, 215 h
OEt Y
I (-), 96 S (S,S)-BDBPP
Chiral Catalyst PtCl((S,S)-BDBPP)(SnC13) PtCl((S,S)-BDBPP)(SnC13) PtCl((S,S)-BDBPP)(SnCl3) cis-PtCl((S,S)-BDBPP)(SnC13) cis-PtCl((S,S)-BDBPP)(SnC13) [truns-PtCl((S,S)-BDBPP)(SnCl3)],,
I+II+ ieBup III
Chid Catalyst, H2/C0 (l/l, 70 bar) Solvent PhMe PhMe CH2C12 PhMe PhMe PhMe
Temp. 20” 100” 100” 20” 100” 100”
Time (h) 336 2 2 336 3 3
Cl3
Meow
(--I-BPPM
PQ(BPPM)/SnC12, CO/H;! (l/l, 2700 psi), cd-I& 60”, 9 h
II c-4
Conv. (%) I/II
I(%ee)
53.2 51.7 54.0 25.6
0.42 0.29 0.50 8.2
74.8 s 8.2 R 13.8 R 25.7 S
32.5 7.7
2.4 2.5
3.9 s 1.8 s
III W)
(2) WV
(6) (15) (4
III=
2:1 885
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
,o
WRh
t-Bu
0’ p\ 0
Product(s) and Yield(s) (%), %ee
L*/Rh = 4, Me&O, CO/H2 (4/l, 200 psi)
0,
(W2P
(Continued)
Conditions
Chiral L&and
I(-),
Refs.
38
85 S + II (-), III = 80: 1
But
P(OR)2 = Me0
OMe
Rh(COD)(chiral liga.nd)BF4, CO/H2,rt, 18h
OPh P’kt.2 Ar 3,5-Me&l-l3
Solvent Cd14
w-b 3,5-F&j&
w-h4
3S-(CF3hW3 35Me&W3
w-h4
w-b4
w-b4
w5
WI4
3,5-F&&
Gal4
3,5-(CF3)2C& 3,5-Me&H3
WI4
C6H5
w-h4
3,S-F2Cf;Hz
C&4
%5-(CF3hCd-b 3,5-Me&H3 @d5 3,5-F&& 3,5-(ChhC&
a,a-TREDlP
WI4
WI4
THF THF THF THF
Pressure(psi) 500 500 500 500 1600 1600 1600 1600 2400 2400 2400 2400 500 500 500 500
Rh(CH2CH=CH2)3,48 h, CH2C12,CO/H2 (l/l)
Conv. (%) <5 4 <5 73 c5 c5 <5 73 <5 4 <5 31 4 18
III
I
-
(4
II
(-3
G--)9e-4 (4 24 C-1 9O:lO (-), 12 6) (-194 C-1 Gh 10 C-1 (4 25 c-1 94:6 (-), 39 (4
38 35
-
(-I,< 1 (4
95:5
G--)97 (-4 (416 c-1 (-), 12 c-4
94:6 95:5 95:5
(4 (-), (-), (-),
<3 8 cl 24
(4 (4 (4 6)
250
I + II (95), 0, III = 95:5
Pt(Chiral Ligand)Clz, SnC12,PhCi, 60”, 40 h, CO/l& (l/l, 2400 psi)
I (-), 37 S + II (-), III = 3.3:1
Pt(Chira1Ligand)Clz, SnC12,PhCI, CH(OEt)3, CO/l-l;! (l/l, 2400 psi), 60”, 182 h
Me0
C02Bu-r
MeOmOEtII
z
= 3.4:l
PQ(BPPM)/SnC12, (-)-BPPM
Ph
CO& (l/l, 2700 psi), HC(OEt)3, 60°, 200 h
GjH6, ~@acWOh, L*/Rh = 2.5,80”, 21 h, CO/H2 (l/l, 80 atm)
I (-), >96 S + II (-), III = 7: 10
scHol
+ SCH:
714 Ph
I+II(13),-,I:II=99:1
L*/Rh = 2.5, 80°, 69 h, CO/l-I;!(l/l, 80 atm)
I + II (60), -10, III = 99: 1
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
(Continued)
Conditions
Chiral Ligand
Refs.
Product(s) and Yield(s) (%), %ee TBDMSO
TBDMSO Rh(acac)(COk, URh = 2, CO/l-I2 (l/l, 50 atm), w4229
CHo
418
I +
60”
I
TBDMSO ‘+&HO 0
II +
d-
NH
TBDMSO /I
III 0
Ligand
Time (h)
I+II+III
pm3
(86)
(I?)-BINAP (Z?,S)-BINAPHOS (R)-BIPPHOS
48 17 6 6
(I?)-BIPNITJZ (R)-2-Nap-BIFWITE (R)-2-NapBIPNITE-F-p
6 6 6
[Rh(COD)Cl12, CO/H2
(24) (95) (92) (58) (76) (95)
NH
P-
(I+II):III 51:46 52:48 55:45 71:29
1:II 4555 67~33 93:7 60:40
64:36 74~26 74~26
95:5 95:5 96:4
I + II (68), 1:II:III = 68:4:28
[Rh(NBD)C112,lOO”, CO/l-I2 (l/l, 150 bar), PhMe, 22 h
(-)-DIOP
CHO
-.
724
1+&n+
386
T&m+5?&cHo CHO I : II : III : IV = 1:26:4:70
L
(-)-CHIRAPH
[Rh(NBD)C112,lOO”, CO/H2 (l/l, 140 bar), PhMe, 22 h
(-)-BPPM
PQ(BPPM)/SnC12, CO/H2 (l/l, 2600 psi), C&, 60”, 9 h
1
Pt(Chira1Ligand)Clz, SnC12,PhCl, 60°, 64 h, CO/H2 ( l/l, 2400 psi)
I(-),9S+II(-),I:II=4:1
0
R2P
h,
PR2
N C02Bu-t
PR2= (=-J--g
II+III+VI(-,-),II:III:IV=8:9:83
386
CHO I I(-),78S
+
406
409
TABLE X. ASYMMETRIC Reactant
Chiral Ligand
HYDROFORMYLATION
(Continued)
Conditions
Product(s) and Yield(s) (%), %ee
Refs.
Pt(Chiral Ligand)Clz, SnC12,PhCl, HC(OEt)s, CO/H2 (l/l, 2400 psi), 60”, 143 h CH(OE@
\ I
]
II e-1
/
III = 3.4:1
0 Pt(Chiral Ligand)Q, SnC12,PhCl, 60°, 38 h, CO/H2 (l/l, 2400 psi)
PhcoA&
409
I(-),%S + CHO CHO
II (-)
III = 51
Pt(Chiral Ligand)C12, SnC12,PhCl, CH(OEt)3, CO/H2 (l/l, 2400 psi), 60°, 210 h
I(-),96S
PhCOA& CH(OEth
+ III = 2511
~co~CWWz
II C-1
Pt(Chiral Ligand)C12, SnC12,PhCl, 60°, 70 h, 2400 psi)
corn2(l/l,
I(-),
19s
Et0 Pt(Chiral Ligand)Clz, SnC12,PhCl, HC(OEt)3, 2400 psi), 60”, 138 h
corn2(l/l,
II H
III = 3.8:1
OEt ‘1’
,:)o^ +p:moEt409 I (-), 96 S
II c-9
III = 3.4: 1
CHO Pt(Chira1Ligaud)Clz, SnCl2, PhCl, 60”, 44 h, CO/H2 (l/l, 2400 psi) OPh
Pt(Chiral Ligand)Clz, SnC12,PhCl, HC(OEt)3, CO/H2 (l/l, 2400 psi), 60”, 163 h
@
+
q-0
409
OPh
6Ph
I (-), 25 S
II c-4
OPh I (-), 96 S
III = 0.8: 1
OPh II (4
PQ(DPPP)/SnC12, CO/I-I;!(l/l, 80 bar), PhMe, 100”, 21 h
1 C-h -
897
IRh(NBDKW’Ph3, CO/H2 (l/l, 80 bar), PhMe, lOO”, 19 h
1 c-4 (lR$LR,SS,7R,8R,9S):(lR,2R,5S,7R,8S,9S) = 20:80
897
TABLE X. ASYMMETRIC Reactant
HYDROFORMYLATION
Chiral Ligand
(Continued)
Conditions
Product(s) and Yield(s) (%), %ee
Refs.
CO/H2 (l/l, 80 bar), PhMe, 100”
897
Catalyst PQ((S,S)-BDPP)/SnQ
Time (h) 8
Conv. 1%) 32
PQ(DPPP)/SnC12 PQ((S,S)-DIOP)/SnC12
21 20 22
50
20:80 21:79
9 100
27~73
[Rh(NBD)C1]2/PPh3
I [( lS,2R,5S,?R,8R):(lS,2R,U,7R,8S)]
CHO Pt(Chiral Ligand)Clp, SnC12,PhCI, 60”, 48 h, CO/H2 (l/l, 2400 psi)
PhC,/o”
I (-), 37 S
II c--3
Et0 Pt(Chira1Ligand)Clz, SnC12,PhC!, HC(OEt)3, CO/H2 (l/l, 2400 psi), 60”, 170 h
1:II = 3.2:l
OEt Y
,,,/o^
Ph;aOEt I (-), 96 S
409 1:II = 3.0: 1
II c-1
CHO Pt(Chiral Ligand)Clz, SnC12,PhCl, 60”, 44 h, CO/H;! (l/l, 2400 psi) COPh
@
+
FCHO
COPh
kOPh
I (-), 27 S
Pt(Chiral Ligand)Clz, SnC12,PhCl, HC(OEt)3, CO/H2 (l/l, 2400 psi), 60”, 135 h
Pt(Chiral Ligand)Clz, SnC12,PhCl, 60”, 50 h, CO/H2 ( l/l, 2400 psi) Pt(Chiral Ligand)Clz, SnC12,PhCl, HC(OEt)3, CO/H;! ( 1/ 1,240O psi), 60”, 180 h 0
c20
CO/H2 (l/l, 80 bar), Toluene, 100”
\ I
/
409
II c-1
COPh I (--), 96 S
+
i30Ph 1:II = 3.3: 1
II (---)
@j&qHO
(-),O
o&oEt
(-), 60s
@ CHO
I
II
Catalystkigand
Time (h)
I, % de
II
[Rb(NBD)C1J2/PPh3 [Rh(NBD)C1]2/(R)-PROPHOS [Rh(NBD)C112/(2S,3S)-CHIRAPHOS PtCI(SnCl$[(R)-PROPHOS] PtCl(SnC13)[(2S,3S)-CHIRAPHOS]
10 12 10 20 20
UW,96 VW,80
(21)
(12)
(8) (10) (19) (14)
(7) (9) (15) (14)
W3), 96
409
:,/osz899
cI
(77), 96 (f+U, 96
409
III
TABLE X. ASYMMETRIC Reactant
Chiral Ligand
HYDROFORMYLATION Conditions
Rh(acac)(COh, CO/H2 (l/l, 80 at@, toluene, 80°, 48 h
(Continued) Product(s) and Yield(s) (%), %ee
I+II= 81,I:I.I = 83:17
Refs.
TABLE
Reactant
XI. HYDROFORMYLATION
OF ALKYNES
Conditions
Product(s) and Yield(s) (%), %ee
Refs.
G R’
Z
\ NH2
[R~(OAC)~]~,PPh3,LJRh = 4, EtOAc, CO/H;! (l/l, 400 psi), 90°, 20 h
‘b
I+R&oH+ H
oam
RI Me n-Bu t-Bu
380
I
II+III
(10) (31)
(23)
II:IIl 9:l
(23) (-4
-
(2)
100:o
c6
fiWW’W3,
/-=-i
PPh3,W-4,,
CO/H2 ( 1/l ,400 psi), 80°, 20 h
c7,-(
RWCW’Ph3)3, PPh3,C&6, CO/H2 (l/l, 400 psi), 80”, 20 h
R2 R’m( NH2
q.
I+J--$2 :::“z;o378
R’
[~WWh
PPh3,CO& (400 psi),
70”, 20 h
R’ n-Bu Ph Ph Ph
I N H
R2
d-MeC& [Ir(pyrazolate)(COD)]2,2PPh3, MezCO, CO/H2 (l/l, 50 atm), 140”
WCHO
m
VII
I
Ph
(96) (78)
Me H
PO)
(85)
+ .-Bu/-7\
1:II:III:IV:V:VI:VII
384, 380
(90) II+
I +
n-Bu/r\\/
R2 H H
n7 +
= 13:14:4:2:4:1:62
379
TABLE XI. HYDROFORMYLATION Reactant
OF ALKYNES (Continued)
Conditions
Refs.
Product(s) and Yield(s) (%), %ee CHO
c8
PhS
RhK (5%), DPPP, HCOzH, CO (8.5 atm), THF, 105”, 27 h
I+
PhA
ph/,,CHO
II
I+II(55) 1:I.I = 60:40
368
CHO RhK (5%), DPPP, HCOzH, CO (8.5 atm), THF, 130”, 26 h
W13---
R Catalyst, C&, Et3N, 150”, CO/H2 (l/l, 70 atm)
R-R
R
Y
R
R
Catalyst
Time (h)
II
III
1
Conv. (%) 96
I
pdc12(~Y3h-c~(co)8
(88)
(3)
(3)
C-4
pdcb(pcY3h-co2(co)g
1
97
(W
(2)
(5)
C-4
n-W-4 1 Ph Ph
pdc12t~Yd2-co2(coh
1
95
(95)
(2) (2)
(4
pdc12(~Y3h-c%(coh
1
99
(53)
(0)
(30)
(16)
PdC12(xy3)2
5
94
(77)
(0)
(15)
(2)
266
-2(c0)8 c0~[co)g-2~y~
1
12
(0)
1
2.5
(21)
%(c0)8-2~y3
6
89
(50)
(24)
PdC12(~J?h-C%(COh
100 92
(9%
(2)
76
(68)
(@I w
65
(46)
(16)
Time (h) 1
Conv. (%) 20
(16)
6
84
(83)
PdW~yd2-WW~
2
1 1 I
PdCbWy3h
12
1
PdC12(PCy3)$+V(C0)6 Rh4W>
+n-PrwPr-b CHO
CHO
II (a (cl) (
PdWW3h PdWW3h
266
IV
I YPr-Pr-n,
n-PrwFV-n
Catalyst, ChH6,Et3N, 150 O, CO/H2 (l/l, 70 atm)
*+
CHO
R
Catalyst
Ri4R
II+
Y
I+ CHO
Et n-Bu
n-l% -h-n
CHO II I +I1 (52) 368 1:II = 40:60
’ + C6Hr3-
A
W-h3
(85)
III
(151
(0) (a (1) (2) (3) (@) m-) (3)
CHO FWW’dCh co2(co)fJ, CO&, 150”
R’ OR2
A
901
(95)
902
Rh(COD)BPb, CO/H2 (l/l, 100 bar), dioxane, R3NH2, 100” R’
R2 Ph Ph Ph Pr
H H H Pr
Cl1
Rh4(CO)12,CfjHfj, CO/H2 (l/l, 200 atm), 60°, 6 h
dPh
RX\ HN-Bn
[Rh(OAc)2]2, PPh3,LJRh = 4, EtOAc, CO/H2 (l/l, 400 psi), 90”, 18-20 h
R” Bu
I
C6h3
(37) (25) (14)
(21)
Bn Bn
381 OHC
R.
CHO
Ph
I+
Rj--J
380
n+R&om
Bn
Bn
R = Me, I + II + III (-), 1:II:III = 1:3:3 R = Ph, I + II + III (-), 1:II:III = 70:20:5
[CO(C0)3(PBU&, I4209 co (100at@,
R
I
R
I
n-Bu
WV
CH=CHPh (@ (41)
220°, 4 h 0
382
TABLE XI. HYDROFORMYLATION
Cl4
OF ALKYNES (Continued)
CO/H2 (l/l,
Ph
Ph
RhWCO)(PPh&, PPh3,W-&j,
Ph+Ph
Refs.
Product(s) and Yield(s) (%), %ee
Conditions
Reactant
1(67)
+
378
II@)
Ph
CHO
400 psi), 80°, 20 h
CHO
Ph
Ph Rh4(C0)12, CO/H2, 60”
383,
w
381
[Co(C0)3(PBu3)]?,
‘OVPh
H20, CO (100 atm),
220°, 4 h
R
I+II
H
(77)
2-Me
(65)
4-Me
(74)
52:48
4-Cl
(63)
41:59
cl6
50:50
Ph
m4(co)1& Cd&co/H;!(l/l, 200atm),
RJPh
R
60”, 6 h
m
0
Ph Ph
X
’
/=’
/c-n\ RIt.14\~v/12,
CWH2 (l/l,
2% aim), C&l6, Ph+
60°, 6 h
n
II+
Ph
383, 381
0
CHO
Cl7
I 9
/AA\ + \4U)
4-Meoc6H4
(20)
4-NCCbH4
(23)
Ph ^ --
I”,..
(15)
(12)
/17\
/LA \UJ
\“I
(11)
Ph
+
707 JO3,
381 CHO
0
Ph
CHO /VPPh2
(CO),~(~-PPh2)2khH(CO)o, CO/H2 (l/l, [Rh(OAc)&,
c&6,
)\/\/
380 psi), 80”, 22 h CO/H;! (l/l,
I (39) + starting material (61)
372
I (55) + starting material (45)
500 psi),
372
PPh2
C6H6, lOO”, 22 h
[Rh(OAc)&,
CO/H2 (l/l,
C6H6, loo”, 48 h
500 psi), ’
.
’
+ LPPh,
II
::‘,“=
:“,‘:,
372
CHAPTER 2
THE VILSMEIER REACTION OF NON-AROMATIC COMPOUNDS GURNOS JONES
Department of Chemistry, University of Keele, Keele, England. STEPHEN P. STANFORTH
Department of Chemical and Life Sciences, University of Northumbria at Newcastle, Newcastle-upon-Tyne, England
CONTENTS PAGE INTRODUCTION SCOPE AND LIMITATIONS
Alkenes, Dienes, and Polyenes Alkenes with Heteroatom Substituents Enamines and Enamides Enol Ethers and Enol Thioethers: Acetals and Ketals as Precursors of Enol Ethers Alkynes Aldehydes and Ketones Imines, Hydrazones, Semicarbazones, and Oximes Carboxylic Acids, Anhydrides, and Acid Chlorides Esters and Lactones . Amides and Lactams. Imides Nitriles . . . . Methyl and Methylene Groups Activated by Adjacent Aromatic and Heteroaromatic Rings . COMPARISON WITH OTHER METHODS EXPERIMENTAL CONDITIONS EXPERIMENTAL PROCEDURES
4-Methoxy-a-(4-methoxyphenyl)cinnarnaldehyde (Formylation of an Alcohol Precursor of an Alkene) a-(rt-Propyl)-3,4-methylenedioxycinnamaldehyde (A) or 1-Dimethylamino5,6-methylenedioxy-2-(n-propyl)indene (B) (Reaction with a Styrene) .
356 357 357 362 362 367 373 373 384 386 389 390 394 395 398 402 402 403 403 403
Organic Reactions, Vol. 56, Edited by Larry E. Overman et al. ISBN 0-471-39568-4 © 2000 Organic Reactions, Inc. Published by John Wiley & Sons, Inc. 355
356
ORGANIC REACTIONS
Methyl 3-Amino-2-thioformyIcrotonate (Thioformylation of an Enamine) 2,4-Diphenyl-3-forrnyl~4//-chromene (Formylation of an Unsaturated Ether) . 2-Chlorocyclohex-l-ene-l-carboxaIdehyde (Reaction with a Cyclic Ketone) . 3-Dimethylamino-2-(4~methylphenyl)prop-2-en-l-dimethyliminiuiri Perchlorate (Diformylation of 4-Methylphenylacetic Acid; Isolation as Dimethyliminium Perchlorate) 2-Chloro-7-methoxyquinoline-3~carboxaldehyde (Formylation of an Amide with Cyclization to a Quinoline) 2-(6-Purinyl)malonaldehyde (Diformylation of a Reactive Methyl Group) 4-Oxo-4//-l-benzopyran-3-carboxaldehyde (Use of Pyrophosphoryl Chloride) 2-Bromocyclohex-l-ene-l-carboxaIdehyde (Use of PBr3 to Produce a 2-Bromoenal) TABULAR SURVEY
Table I. Alkenes Table II. Dienes, Trienes, and Tetraenes with Carbon Substituents . Table III. Alkenes with Nitrogen Substituents Table IV. Dienes, Trienes, and Tetraenes with Nitrogen Substituents . Table V. Alkenes with Oxygen Substituents Table VI. Dienes with Oxygen Substituents Table VII. Alkenes, Dienes, and Trienes with Sulfur Substituents Table VIII. Acetals, Ketals, and their Thio Analogs . . . . Table IX. Alkynes Table X. Aldehydes Table XI. Ketones " . Table XII. Imines, Hydrazones, Semicarbazones, and Oximes . Table XIII. Carboxylic Acids, Anhydrides, and Acid Chlorides . Table XIV. Esters and Lactones Table XV. Amides and Lactams Table XVI. Imides Table XVII. Nitriles Table XVIIIA. Methyl and Methylene Group: Activated by a Fully Conjugated Monocyclic Ring Table XVIIIB. Methyl and Methylene Groups Activated by a Fully Conjugated Polycyclic Ring REFERENCES
404 404 405
405 405 406 406 407 407
408 426 • 439 456 461
468 476
478 491 493 • 495 551 561
575 577 598 600
613 629 645
INTRODUCTION
In a previous chapter1 we described the reactions of the Vilsmeier-Haack reagent with conjugated cyclic systems. In this chapter we extend the discussion to reactions between the Vilsmeier-Haack reagent (subsequently referred to as the Viismeier reagent for brevity) and any other compounds in which a carboncarbon bond is formed. The discussion thus excludes reactions in which the Vilsmeier reagent acts as a chlorinating agent (for example in the preparation of acid chlorides), or in which it forms carbon-oxygen or carbon-nitrogen bonds, unless these are accompanied by formation of a carbon-carbon bond. For a discussion of the nature of the reagent and of the mechanism of the reaction, the earlier chapter should be consulted. There are also a number of reviews that deal at length with mechanisms of reactions involving the Vilsmeier reagent, notably those by Jutz2 and Marson,3 and hence this chapter will concentrate on applications, with brief mention of mechanisms when necessary. Smaller reviews of the Vilsmeier reaction have been published by Balbi3a and Seybold.3b
TABLE I. ALKENES Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
235,6
1. DMF, (COCl):! 2. NaC104 CHO
1. DMF, COCl;! 2. NaC104 3. NH&l G-C1
235
(49)
1
408
4
R3 DMF, POC13
\
CHO
Y
R2
R4
R’ H Me Me Et Et c-C3H5 c-C3H5
Me Me
R2
R3
H H Me H H
H Me Me Me Et
R4 H H Me Me H
H Me c-C3H5 i-Pr
C-C3HS c-C~HS Me i-Bu
H (80) Me (82) c-C3HS (25) H (70)
(65) (75) (75) and
(81)
c-C3H5 c-C3HS c-C3H5 CH2Bu-t H t-Bu H Ph H
c-C3H5
Me Ph
8
(30) (71) (92)
c6
t-Bu
t-Bu L
N-Formylmorpholine, POC13
(80)
236
(35)
236
CHO
0I
N-formylmorpholine, POC13
6
1. DMF, (COC1)2 2. NaC104
CHO
c7
(17)
IIIcl c104-
1. DMF, POC13 2. HC104
236
(85)
409
DMF, POC13
oHc~~~~Hc+J~~~Hc~cHo 237 CHO I
III
II R’ H H Me Et i-Pr
R2 H Me H H H
I
II
III
(3)
(9)
(0) (10)
(9) (0) (0) (0)
(0) (0) (0) (3) (0)
(6) (10)
TABLE I. ALKENES (Continued)
CHO N-formylmorpholine, POCl:,
t-BuTc*o
(57)
+
(57)
+
(28)
236
(28)
236
CHO IV-formylmorpholine, POC13
Ph
DMF, POC13
t-BTcHo
238, 11
(38-42)
ph&cHo
DMF, BC13
(70)
239
DMF, Ph3PsBrz MFA, POC13
(42) (48)
76
410
1. DMF, POC13 2. NH20H
ph&cN
240, 241 242
(42)
c8-c,
R’
I 62
R2
Dm,
ml3
R*
H Me H
H H Me
Ar
R
Ph 4-BrC& 4-MeOChH4 4-MeChH4 4-MeOChH4
MFA, POC13 Ar
R’
F=
OH
1. DMF, POC13 2. H2NOH
(15) (-4 (85) R Cl Cl Cl H
(46) (70)
H
242
Ar k-CN
Ph 4-MeCab 4-MeOC&
(30) (45) (46) 15
1. DMF, POCl3 2. HC104 4-Meoc& 4-Mesc6H4 DMF, POC13
243 243 243 238 241, 244
(39) (41) (67)
Ar 4-Meoc6H4
Ar*CHO
(53 (76)
(60) 14
(93)
c9
Ph
DMF, POC13
411
1. DMF, COCl2 2. NaC104 3. Hydrolysis 1. DMF, COC12 2. clod-
,f
245, 238
(75)
235,6
6 PhLIWe2+
C104-
(-->
2C104-
1. DMF, (COCl)2 2. NaC104 1. DMF, COC12 2. NaC104 3. NH&l
(74) Ph
(98)
235,6
Ph Ph 6,235
TABLE I. ALKENES (Continued)
/a\ I ’
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
[Me2N=CHCl]+Cl- (1 eq), rt
(20)
CHO
36
CHO [Me2N=CHCIJ+CI- (3 eq), 90”
36
1. ~e2N==CHCl]+Ci- (5 eq), 80” 2. HC104
36 \NMe2 R’
412
R4
R2
H H H H H H benzo
R3
R4
H H Me H btXlZ0
H
H
(41) (58)
246
(82) (62)
CHO DMF, POC13
(30)
8
(70)
8
CHO I DMF, POC13
1. DMF, POC13 2. NaC104
6
at (6% CHX
597
X = CH=NMez+ C104-
I
DMF, POC13
DMF, POC13
I
(56-74)
20,5,7
X=CHO
(41)
(37)
413
1. DMF, POC13(1 eq) 2. NaOH, Hz0
247
CHO
1. DMF, POC13( 10 eq) 2. NaOH, Hz0
Me2N-&
MFA, POC13
247
(35)
(-->
241
TABLE I. ALKENES (Continued)
R’
R’ DMF, POC13
(I&cHo
+
(OOR2
I
II R’ R2 H Me H Me H Me Me H H n-Pr H n-Pr Me H
MFA, POC13 414
Ar b-+
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
DMF, POC13
R’
4% xi\ \
DMF, POCl:,
100” 75-80” 100” 75-80” -
I
CHO
NMe2
II
(27)
(0)
(23) (48)
(47) (0)
(70) (0) (48)
(0) (71) (0)
(46)
(0)
Ar 4-MeCeHd
R2
DMF, POC13
Temp
238 11 11 245 11 11 245
R’ Me
R2 H
4-MeOC6H4 H 4-MeOChHJ Me Me 4-i-PrC6H4
Me H H
(62)
238
(54-68)
238 245 238
(62) (34)
(81)
8
uw
8
Cl
1. DMF, (COC1)2 2. NaC104
1. DMF, POC13 2. NaC104 NMe2 + I
1. DMF, POC13 2. NH&l
CHO
\ de I /N
415
Me2NHC Y
c-4
CHO
DMF, POC13
(18)
123
248
(4 Me0
DMF. POCl?. 100” NMe2
Me Et n-Pr
VW
n-Bu
(62)
(45) (62)
11
TABLE I. ALKENES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
R1 R2 R3 R4 OMe H -OCH20-OCH20-OCH20OMe OMe --OCH20OMe H OMe OMe
MFA, POC13
OMe OMe -OCH20OEt OEt
Cl2
(33) (52) (55) (58)
249 249
-OCH20(37) OMe (49) OMe -OCH20(32)
249 249 249
249 249, 250
OMe YMe
O \’ (0 I ’ Ic;^” 6Me
DMF, POC13,~50”
249
(56) OMe
416
OMe DMF, POC13,100”
249
(29)
OMe
OMe
CHO DMF, POC13,~50”
249
(46)
OMe
OMe
249
(10)
DMF, POC13,100”
OMe
OMe R1 Reagent,POCi3
(-)
R’ Reagent PhN(Me)CDO D PhN(CD3)CH0 H
R2 H D
250
OH I 251
DMF. POC13
OMe
OMe OH
252, 253
(92-95) OMe
417
OMe
I, R=H
OMe
OMe
DMF, POC13
I, R= H
PhzNCOMe, POC13,CHC13,boil
I, R=Me
253a
(90)
254
(10)
c12-cl3
R DMF, POC13
H OMe
(68) (60)
255 256
TABLE I. ALKENES
(Continued)
Conditions
Substrate
Refs.
Product(s) and Yield(s) (%)
ClTC18
R DMF, POC13
,yyHO
+ ,,dHO
Me0 II
I R Me n-Bu ‘t-Me~6~
I
II
(57) ww @+ lo(-))
(0) (0)
DMF, POC13
(2)
257 258 258, 259
260
(67)
C02Me 418
C02Me
DMF, POC13 Me0
/I \db
I+’
$Me2 ClO,-
I
1. DMF, POC13 2. c104-
R n-Bu Ph
DMF, POC13, 100”
11
(70) (25)
Cl4 ,$3-h
/ \ I’ 03 l’r-i
1-n
DMF, POC13
(36)
258
w
226
Pr-i
OH
DMF, POC13
/ \ s-y
\
CHo
I
DMF, POC13 419
(73) CHO
c14-c20
R’
R’
R2 DMF, POC13
Me2N
R2
R’ R2 n-Pr +CH2)3Ph Me
R3 H
262 (50) E (18) + 2 (27)
Me2N Ph
-+H2)3-
Ph
-+H2)4-
Ph Ph Ph H Me
(6%
H Ph (E)
(25) E (23) + 2 (67) E WI
(80)
TABLE I. ALKENES (Continued) Substrate
Conditions
Product(s) and Yield(s) (VU)
Refs.
c14-c22 Al-’
As
Ar’ 4-ClC& 4-HOC&Lt Ph
CHO
Ar’
MFA, POC&
k=
F A?
Ph Ph Ph Ph
DMF, POC13 DMF, Ph3PeBr2 MFA, POC13
As 4-ClC6H4 4-HOC6H4 Ph
(-3 t--J (50-60)
241 241 263, 240, 241
(70)
11 76 263
Ph Ph
(61)
420
4-MeOC& 4-MezNCeHJ
(90)
4-MeOCeH4 ‘t-Meoc& 4-Me2Nc6b 4-MezNC&I4
(90) (-)
4-Et2NC&14 4-Et2NC6H4
c--3
e-3
240, 263 263 240, 263, 241 241
Cl5
w
DMF, POC13
(-3
DMF, POC13
(31)
7
/3-cedrene
longifolene
DMF, POQ
264 CHO
II
/
excessPOCl3
DMF, POC13
9
(80)
(0)
(0)
(76)
(34)
/ CHO CHO
DMF, POC13
8
(90)
421
CHO I DMF, POC13
265
(57)
CHO
DMF, POC13,additional conditions (See table)
Me2NQJ(k
+ Me2Nkk
I Ar Ph Ph 4-02NC6H4
II Add. Cond.
I
II
pyridine, 60” POCl3 (2 eq)
(33) (40) (25)
(0) (35) (0)
9,1o
TABLE I. ALKENES (Continued) Substrate
Conditions
Meo
DMF, POC13
Product(s) and Yield(s)
(%)
MeoboM(98)
Refs.
232
Cl7
/\ I I/\ 0%
1. DMF, POC13
6,235
(74)
2. NaC104
C02Me
COzMe MFA, POC13
267
422 Me2N
Me2N
, \ %
I
/I \Q
MFA, POQ
268
(f-41)
DMF, PO@ Me0
259
Me0
Cl9
DMF, POC13 Me0
269
(94) Me0
Ph(Me)NCH=CHCHO, POC13
270
(97) CHO
Ar = 4-FCd&
Me02C
423
-
(80)
271
(40)
272
OMe
CHO I
DMF, POC13,24 h
AcO
AcO
c
\ OHC CHNMe2 \
DMF, PO&, 15 d
AcO
JYF \
CHO
(50)
272
TABLE I. ALKENES (Continued) Substrate c23
Conditions
Product(s) and Yield(s) (%)
Ph
Ph
CHO
MFA, POC13
241
(---1
he
Be OCOEt
c24
OCOEt DMF, POC13
0
273
(80)
\
OP 0
c
Refs.
CHO
424
AC ;OAc DW 0
c26
\
OP 0
c
I\I\ I\/ I c /
Et0
273
ml3
/
I
I
MFA, POC13
OEt
CHO
\
CHO, I
I
\ I
Et0
I
/
/
241
(-)
\ OEt
c30
CHO
274
DMF, POC13
HO
\
lupeol
,CHO
275
DMF, POC13,50’ Bn02C
‘C02Bn
BnO$’
C02Bn
c32
CHO 425
\
MFA, POC13
!
I
/ N
Me’
\ \
I Ph Ph
I
RI DMF, POC13 LN’
‘N-l
241
C-1
N ‘Me
R2
CHO H CHO H CHO CHO
(41) (15) (33)
276
TABLE
II. DIENES,
TRliENEs
AND TEZTIWZNES
WITH CARBON
SUBSTITUENTS
Conditions
Substrate
Product(s) and Yield(s) (%)
Refs.
1. DMF, POC13 2. NaOH (aq)
CHO
(26)
DMF, POQ CHO
0 \
I
+
CHO
OHC
DMF, COC12
278
(60)
18
CHO
or
426
OHC
(6)
OHC
CHO I
DMF, POC13 DMF, PO@,
rt
I
(40)
279
I
wo
280
me2
I DMF, POC13, -10”
280
(3 \ 4
I CHO
1. DMF, COC12 2. NaClOb
,NMe2
2ClO4
1. DMF, POC13
(69)
281, 282
2. HC104
1. DMF, POC13 2. HC104
282
1 (W
3. NaOH (aq)
c6
283
DMF, POC13
427
DMF, POC13 CHO DMF, POC13
DMF, POC13
DMF, POC13
DMF, POC13
,1
0
,t
0
(24)
(28) (22) (35)
TABLE II. DIENES, TRIENES AND TETRAENES WITH CARBON SUBSTJTUENTS (Continued) Substrate
Refs.
Product(s) and Yield(s) (%o)
Conditions
CH;?C1 -
(25)
WCHO
\
+ I
OHC J5 OHC
/
(25)
21
CHO
,
(12)
278
DMF, POC13
(20-22)
278
DMEm3
(14-18)
278
(20-22)
278
(15-18)
278
(15-18)
278
(14-18)
278
DMF, POC13
l c-
/ CHO
OHC
JJ/ 428
OHC OH
OHC DMF, POC5
Et \
DMF, POC13 I
/
OHC b DMF, POC13
CHO
11
DMF, POC13 OHC
R3yyY
H Me H *zz
H H Me
H H Me
21
(65) (70) (80)*
+Z&
C7’Cl3
0I \
CHo (18-30)
DMF, POC5
NC
429
7H2CN DMF, POC13
I b
(l-2.5)
(16)
\
23
23
OHC
CH20H (1.5)
DMF, POC13
+
CH20Ac (1)
23
i-Pr
i-Pr
CHO DMF, POC13 I
m
CHO
OHC
CH20Ac
+
(4)
\
0
Ph
0I \
CHO DMF, POC13
(40)
23
TABLE II. DIENES, TRIENES AND TETRAENES WlTH CARBON SUEWTI’UENTS (Continued) Substrate
Conditions
DMF, POC13
Product(s) and Yield(s) (%) CHO
c; I
Refs.
\
24
(70)
c8
/
DMF, POC13
CHO
(20)
cc CS-cl0
CHO DMF, POC13 II
4
(13) (22)
CHO 430
+CHO
1. Ai203,300” 2. DMF, POC13
H Me
(75) (85)
DMF, POC13
R H Me
(75) (85)
285
R
R
CHO
+CHO CHO
Ar
Ar OH
PhJR
1. DMF, POC13 2. HC104
kvNMe2
1. DMF, POC13 2. HC104
PhyJ-yNMe
+
+*
431
R DMF, POC13 CHO
Me,&
\\ Y
Cl04
c1o _ 4
ph 4-MeOC&
15
(35) (62)
16 Me (91)
Ar 4-ClC& 4-MeOC& 4-ClCfjI-LJ 4-MeC& 4-MeOCbHd
R H H Me Me
(68)
Me
(94)
14
(79) (92) (94)
15
1. DMF, POC13 2. HC104
and isomers
&CHO
(53)
,;,-,,,M,
(30)
21
TABLE II. DIENES. TRIENES AND TETRAENES WITH CARBON SUBSTITUENTS (Continued) Product(s) and Yield(s) (%)
Conditions
Substrate
CHO
CHO DMF, POC13
. ..$
+
.,o..,.,
286 R II
R I Ar Ph 4-Mec& 4-MeChH4 4-MeOCbI& G-C15
Refs.
R H H
(30) (35) (40) (30)
I
II
Me Me
(8) (10)
(55) (58)
R2
R2
CHO DMF,
Ar 6
287
F’OC13
R’
432
OH II R’
R2
I
II
Ph 4-MeChH4 4-Meoc&
H
H
(42)
(4
H H
H H
(51)
(-3
(55)
(-1
Ph 4-MeChH4 4-MeOChH4 4-EtOC6H4
H H H H
Me Me Me
2,5-(MeO)MeC6H3 Ph 2-MeO-5-Mec6H3
H Me H
(W (98) (97) (52) (30) (30)
e-4 C-4 (4 (-1 e-4 (25)
4-Mec&.j 2-naphthyl
Me H
(85) (35)
C--2 (20)
(40)
c-1
H H Me Me Me H
Cl2
,’
CHO
20
(85)
+Cl3
1. DMF, F’OC13 2. NaCl04 3. NaOH
W)
235
*
-GRMe 1. DMF, I’OCl3 2. NaC104
(92)
433
MFA,
Cl4
\/ Fr
FOC13
235
* I
1. MFA, POC13 2. NaC104
c104-
I, R=Ph
&x
R=Me 235
(-)
+ o+J-
25 235
(94)
1. DMF, POC13 2. NaC104
OH 1. DMF, POC13 2. HC104
ph/\\
’ ihe2 C104-
(45)
15
TABLE II. DIENES, TRIENES AND TETRAENES WITH CARBON SUBSTITUENTS (Continued) Substrate
DMF, POC13
DMF, POC13,28”
@A
CHO
434
+y
Refs.
Product(s) and Yield(s) (%)
Conditions
DMF, POC13,100”
1 (W
-
gCH0
+
1
(92)
19
&Lo
19
(21)
(39)
19
(86)
20
(16)
MFA, POC13
25
25
MFA, POC13
(trace)
CHO
R X R I X=H II X=CHO
DMF, POC13 Me0
Me0
I
Ii
I-I (43) (13 Me (80) G--)
287
c14-cl8
DMF, POC13
435
& \ ‘\
DMF, POC13
R2 R’ 4-MezNCh& H (-) Ph Ph C--3
280
(60)
288
sselinene
DMF, F’OC13
MFA, POC13
CHO
25
(42)
CHOH 1. DMF, POC13 2. HC104
PhT$Me2ClObPh
W
+
l5
Ph
(39)
Ph
TABLE II. DLENES, TRIENES AND TETRAENES WITH CARBON SUBSTITUENTS (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
c17-cl8
Refs.
CHOH A+ A? 4-MeOCbHd Ph 4-MeOC& 4-MeOC&
DMF, POC13
(14) (82)
cl8
DMF, POC13 Ph
c20 phc
Ph
1. DMF, POC13 2. HC104
(49)
436
Ph
OAc
OAc DMF, POC13
CHO DMF, PO@, ClCH2CH2C1,boil
17
DMF, POC13,C1CH2CH2C1,rt
17 OHC
R=Me
DMF, POC13,ClCH2CH2Cl, rt
17
(48) OHC&
c21-c26
OR
OR
DMF, POC13
R AC Bn
OHC
(66)
22
(29)
c22
ph
437
phJyc+
MFA, POC13
Ph
ph&CHO
289
(96) E:Z, 5:l
c23-c25
COMe ,-OAc -- R2
COMe
DMF, POC13 I Cl
&
/
/
R’
R2
H Me
Cl (43) Me (14)
22
R’
c25
OAc
OAc
DMF, POC13,ClCH2CH2Cl, rt
17 OHC
TmLE II. DYNES, TRIENESAND Substrate
TETRAENE~
WITH CARBON
SU~~TITUENT~
Conditions
DMF, POC13, ClCH2CH$Zl,
(confind)
Product(s) and Yield(s) (%)
boil
Refs.
17
(4
438
290
(12)
(13-26)
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
TABLE
IV. DIENES, TRIENES
Substrate
AND TETRAENES
WITH NITROGEN
SUBSTIT~IJENTS
Conditions
Product(s) and Yield(s) (%)
Refs.
c4
1. HNMe2 ACHO
CHO
2. DMF, POC13
37
(30)
3. NH4Cl c6
Me2NycHo
DMF, COC12
(35)
70
c-4
333
(69
70
CHO c8
CHO
CHO DMF, COC4 OHC&kme2
MeN/vNMe2
2clO4-
1. R1R2NCH0 , COCl 2 2. NaC104
2
456
R’
R2
Me
Me
1. DMF, COC12
(65)
40
(75)
--W2)5-
OHC
2. NaC104
(73)
40
e-4
40
3. K2CO3 1. N-forrnylmorphohne,
COC12
2. NaC104 3. KOH CS-cl0
Me2N
I\ PI
DMF, COC12, - 10”
I\ P-
CHO
278
m
I
Me2N
OHC
CHO
DMF, COC12, rt
WB
I MezNCOMe,
Bu2NCH=CHCH0,
CHO
I COMe
Me2N
Or
\
POC13 P
OHC
I
c-1
278,18
(me)
\ CHo
+
(-)
334
I Me2N P
(COC1)2
335
(77) Me2N
R2NCH=CHCH0,
COC4
1
334
C-1
457
(R not specified) R3
R2
R3
R2 RI
R2
R3
R4
1. DMF, POC13
D
H
H
D
(-)
2. NaC104
H
D
D
H
(-)
ClO4-
336
MqN’ OHC 1. DMF, POC13
OHC
CHO
(26) +
CHO
(37)
337
2. NaOH Me2N *
Me2N-6Me2
C104-
DMF, COC12
NMe2
MesN*NMez
Me2NTcHo
(85)
70
CHO 1. DMF, COC12 2. NH&l
167)
70
Substrate
TABLE IV. DIENES, TRIENES AND TETRAENES WITH NITROGEN SUBSTITUENTS (Continued) Product(s) and Yield(s) (%) Conditions
Refs.
CHO 2 cl0 4-
Me2Nba,
38
W)
DMF, POC13 NMe2
MezNA;Me
2
Cl0 4-
1. [ClCH=NMe$Cl-
39
2
2. NaC104 w2N
2
CHO 1. [CICH=NMe2]+Cl2. NaC104 3. NH4Cl
Go
39
(74)
DMF, POC13 458
NMe2
N WCOzBu-t 2
334
(4
334
(68)
338
me2
R2NCH=CHCH0, COCl2 (R not specified)
Me
C-3
OHC>
OHC-
NMe2
1. [ClCH=NMe$Cl2. NaC104 CHO
38
(40)
DMF, COC12
Me2N
CHO
OHC
339
1. DMF, POC13 2. NaC104
\ 1
Me2N y 1. MezNCH=CHCHO, POC13 2. NaC104
h4
Cl2
(75)
&4e2
339
2ClO4+ e2
/ I’ c;, /\ I ’ (-4 x, \ r-$IMe2
[ClCH=NMe$Cl-
Cl-
\
36
(61)
\
459
1. [ClCH=NMq]+Cl2. K2CO3, Hz0
36
c12-cl3
R Ph 4-ClC&I4 4-MeC&
1. DMF, POC13 2. NaC104
4-MeOCe&
R DMF, C02Ph
FOC13
,
W
CHO
I
Y kO;?Ph
R Cl Br H Me Me0 Ph c-C6H1t
w (57)
(81) (71) (71) (73) (65)
(65) (55)
(60) (62)
340
TABLE IV. DIENES, TRIENES AND TETRAENES WITH NITROGEN SUBSTITUENTS (Continued) Substrate
Conditions
Refs.
Product(s) and Yield(s) (%)
DMF, POC13
341
6)
I Me cl 9’c22
X
NHR
cd /
\
DMF, POC13
\
I /
I
0
X
N’ I
\ I
as? ’
0
0
0
460
R Bn 4-MeOBn 4-02NBn Bn
X C&Me C&Et C02Et CN
(85) (90) (90)
342
(74)
c22-c27
R2 R’ Me n-Bu Ph
Si(Pr-i)3 DMF, POC13 C@Ph
R2 Cl Cl H
(50)
343
VW (97)
c26’c27
R’ R2 R’ R2 OCOEt H w AC OAc (29)
DMF, POC13
CHO CHO
34,35 34
TAELE
v.
Substrate
ALKENES WITH
OXYGENSUBSTITUENTS
Conditions
Product(s) and Yield(s) (%)
Refs.
c4
“Vilsmeier reagent”
/= AcO
344
1. MFA, POC13 2. NI&+PFh-
300
(79) Me
OMe Me0
MFA, POC13
Y
OHC Me0
NMePh (35)
OHC 461
1. MFA, POC13 2. Hydrolysis Et0
345
>-’ OH
(20)
345
Med CHO
CHO
r
1. DMF, COC4 2. Hydrolysis
w HO
32
Me2N
CHO
c4-c6
R Et0
Et0
F
CHO
R
R
H Me Et
1. DMF, POC13 2. K2C03
MqN
1. DMF, POC13 2. PhNHz*HCl
PhHN T&HPh \ R
1. DMF, POQ 2. MeqSOd
/-c
Cl-
46
(57) (68) (77) & Me Et
46 (83) (62) (67)
292
TABLE
v.
ALKENES WITH OXYGEN SUI~STITUENTS (cktin~d)
Substrate
1. DMF, POC13 2. N-ethyl4methylquinolinium Et0
Product(s) and Yield(s) (%)
Conditions
Refs.
iodide,
Ac20, Et3N, pyridine 3. HClO‘, CHO DMF, POC13
346
(72)
c6
OEt Et0
MFA, POC13
Y
OHC
R
345
C-1
Etd I R=NMePh
462
F
n-BuO
Me0
1. MFA, POC13 2. Hydrolysis
I R=OH
(-)
345
DMF, POC13
I R = OEt
(36)
347
1. DMF, POC13 2. NaC104
MezN*&e
2+ ClO 4-
292
(70)
348
CHO
2
DMF, COC12
C648
R
R Me0
/===+
C7’ClO
F=c Me2N
1. DMF, POC13 2. PhNH2
R3R2NTGHPh \ R’
R’ /-’ TMSO
c7
1. DMF, (COC1)2or POC13 2. K2CO3
0\\
R c-C3HS (66-7 1) C-CqH7 (W c-C5H9 (54)
CHO
Cl-
;;
47
“,’
C5Hrl Me
;;
(55)
Me
(47)
55
Cl
OMe OHC DMF, POC13
W)
53
CHO
CT
OEt
I
(20)
DMF, POC13
349
c8
OMe DMF, POC13 463
(39)
53
(17)
53
(46)
53
(42)
53
CHO Cl
OMe DMF, POC13
CHO OMe
OH OHC
CHO
DMF, POC13
Cl
OMe
CHO DMF, POC13 Me0 CHO
TABLE V. ALKENES WITH OXYGEN SUBSTITUENTS (Continued) Substrate
Conditions
Refs.
Product(s) and Yield(s) (%)
OMe
OMe OMe
OHC DMF, POC13
(13)
i>Me
53
6Me OEt OHC
Et0
350
N-formylmorpholine, POC13 i3HO c8-cl0
R Et0
DMF, (COCl)z or POC13
+
Me2N
R c-CqH7 (50-60) c-CgH9 (50-60) c-C6H11 (50-60)
CHO
464
TMSO , ‘0
348
CHO
DMF, POC13
c1/ -0
(W
49
G-C10
R
R Me0
1. DMF, (COCl)z 2. K2CO3
F
R’
DMF, POC13
OHC
OTMS
+
+ Me0 II
c-w11
(57)
n-C7H13
(18)
(0) (43)
C02R3 R2
41
/==c
CHO
II I
R’
OR3
w R2
R
/==c Me2N CHO I R
R’ H Me Me H Et
R2 Et Me Et i-Pr
Et
--tCH2)4-FH2k-
R4
0 DMF, POC13
I
R3 A2
I
R3 b Ii2 R,
465
R’
R Me0
49
(53) (52) (52) (56)
(62) (51) (53)
R4 0
Q
R3 Et Et Me Et Et Me Me
‘CHO
F-c HO
R2 OMe H fOBn H H
R3 R4 H OMe OMe OMe H t H OBn OBn OBn OC(Ph)3 OMe -f R2,R4= --OC(Me)+-
R 1-adamantyl (20) 2-adamantyl (6)
R DMF, (COClh
P
R’ OMe OMe OMe OBn OBn OMe
CHO
(60) (80)
50
6) (55) (85) (72)
351
c15-G
R =I co\
R
R H
Ph
Ph 4-MeChb
DMF, POC13
I 0
CHO Ph
(56) (94) (77)
233
TABLE V. ALKENES WITH OXYGEN SUBSTITUENTS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
li
Me
DMF, POC13 CHO
Et n-Bu
51
W) (46)
c21
DMF, POC13
466
352
(45)
353
Ph
Ph G ti-
03.9
DMF, POC13
Ph 00
I0IPh coP
C22
DMF, COCI;!
OHC
52
e-1
\ P? CHO I
c23
DMF, POC13
0
(26)
354
OR
CHO i)Ac
\*
M%N13CH0, POC13
0 PG
(5% of 13Clabel incorporated)
354
(89)
354
OR CHO
DMF, POC13 OR
OR
R=asabove 467
c2342.4
Ph
-
DMF, POC13
DMF, POC13 AcO R=asabove
(78) +
phJJJLph
(10)
355, 352
352
WV
(63)
354, 356
TABLE VI. DrENEs WITH OXYGEN SUBSTITUENTS Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
C6 DMF, COCI;!
Et0 M
Me NmCHO
70
(35)
2
c6-c8
R’ DMF, POC13
CHO
Me*N+ R3
R2
R3
H H Me H H H
H (42) H (45) Me (50)
Me Me
H
54
(48)
c7
OEt AA OEt 468
DMF, POC13
ANM.,
DMF, POC13
ANMe
4
(--)
357
+ J&p%NMe2(-) lzl 357
C7’Cl3
R2 TMSO
1. DMF, POC13 2. PhNH;!
\
+
R’
55 Ph
R’, R2 = H, H; Me, H; H, Me; Me, Me; Ph, H
c12
OTMS I\ -br
(51)
@o-50!
1. DMF, POC13 2. PhNH2
Cl N-formylmorpholine, POC13
H
358
Cl
oHc&&
(87)
+
aHo
(8)
350
c14-cl8
R’ R’ R2 H H H H benzo
1. DMF, POC13 2. HC104
Ph lb
cl8
469
MeO
\
DMF, POC13
R3 H (28) OMe (49) H (39)
56
WY Me0
\
CHO
Cl9
0 H \ MeOAP
1. DMF, COC12 2. LiBb b
Me0
1. DMF, COC12 2. LiBHJ
RO
\
%)-c26
RO
c--3
R=Me,Et,Bn R=Me,Bn
59,57
X I, X = CH2NMe2 DMF, COC12
I, X=CHO
(-)
359, 360
TABLE
VI.
DIENES
Substrate
WITH OXYGEN
SUBSTITUENTS
(Continued)
Conditions
Product(s) and Yield(s) (%)
Refs.
c20-c28
OR5
DMF, COC12
(--)
CHO
R’
R2
R3
R4
R5
R6
Me
H
Me
H
H
H
Me
H
H
H
AC
H
Me
H
Me
H
AC
H
Me
H
Me
H
AC
Me
Et
H
Me
H
AC
H
Me
H
Me
OAc
AC
H
Et
Me
Me
H
AC
H
Bn
H
Me
H
AC
H
1. DMF, COC12 2. LiB&
359
59
b
470
Me, AC; Et, AC
kH2NMe2
1. N-formylpiperidine,
COClz
59
2. LiBb
1. MFA, COCl;! 2. LiBb
t-1
59
Et0
\
NMePh
361
6-I Me0
c22
OAc
DMF, POC13
(4
R’
R2
R3
I
Cl
H
H
II
Cl
CHO
H
H
CHO
H
CHO
IIICl AcO
IV
OAc
60
471
COMe --OH Br
(4
DMF, COC12
359
Me0 Me0 7
’
’
CHO
c22’c26
COCH2R2 -- R3 -- R4
\ R’O J@
\
DMF, COCl;!
C-1
R’
R2
Me
H
R3
R4
Me
OH
H
H
359
Me
F
OAc
H
359
Me
H
OAc
H
Me
H
-OCH20-
Me
H
OAc
Me
359
Et
F
OAc
H
362
Et
H
--Whew-
359
359 359
359
TABLE VI. DIENES WITH OXYGEN SUBSTIIVENTS (Continued) Substrate
Conditions
Product(s) and Yield(s) (%) R’ MeH
1. DMF, COC12 2. LiBHq, rt b
R4
-O-
(-3
Et H OH OH Me H OAc H Et H OAc H
(4
Me H OAc H
CH2NMe2
R’
DMF, POC13
Refs.
R2 R3
R2 R3
R’O
59
R4 360, 363
CHO c23
472
(-3
364
CHO
Eta+)
(95)
364a
CHO c23-c26
AC DMF, COC12
CHO
R’
R2
H AC
H H
AC
Me
359
c24
DMF, POC13
365 Me0 CHO
OAc 0
I
DMF, COC12
359 Me0
Me0 a ’
i3HO
’
473
0
DMF, COC12
359 CHO
c24’c25
DMF, COC12
Me, Me
359 i3HO
TABLE VI. DIENES WITH OXYGEN SUBSlTI’UENTS (Continued) Substrate
Conditions
Product(s) and Yield(s) (%‘o)
Refs.
c24-c26
359
DMF, COC12 R’, R2 = Me, OH; R’O
Et, OH; Me, OAc
CHO
1. DMF, COC12 2. LiBH4 b
(4
R = Me, Et, n-Pr
RO
59
RO CH$IMe2
1. DMF, COC4 2. LiBH4, rt b
59
474
CH2NMe2 C02Et I
Et0
2 \
DMF, COC12
G-3
359
(45)
73
Et0 \
CHO OCOEt OHC DMF, POC13 Et0
Et.0
CHCl
CHO
C-1
DMF, COC12 Et0
359
CHO
Et0
1. DMF, COCl;! 2. LiBH4, rt, b
(-3
59
(75)
58
CH2NMe2
c26
AC DMF, POC13 475
Et0 Et0
CHO
c28
DMF, POC13
36 367
DMF, COC12
359
Et0 a The yield is that of the correspondingenone. b Phenazoneis added to suppressreduction of the carbonyl group.
TABLE VII. ALKENES, DIENES AND TRIENES WITH SULFUR SUBSTlTUENTS Substrate
Conditions
Product(s) and Yield(s) (%J) S
DMF, POQ
(X
Refs.
CHO 368
k-1
I
S
Rl-
R’ Ph Me
OHC 1. DMF, POC13,0” 2.90”, 3 h
SR2
R’ Ph Me
1. DMF-d7, POC13,0” 2.90”, 3 h
R2 Me Ph R2 Me Ph
476
/C02Et
DMF, POC13
DMF, POC13
62a
(72) (64)
(75) (73)
62a
cw
62
(76)
62
CHO
-
msL#s~EorZ
369
PhS MFA, POC13
SPh 61
(74)
>-’ OHC
“Vilsmeier reagent”
(75)
370
(32)
61a
AC cl6
Ph
Ph DMF, POC13
Ph
477
DMF, (COCl)z
C02Me
(75)
benZ0
(74)
371
c24
s
R
,s
DMF, (COCl)z
R
’
R
x
I R
R C02Me
(86)
bt?nZO
(85)
371
TABLE VIII. ACETALS. KETALS AND THEIR THI0 ANALOGS Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate c5
Me0 Et*NCHO, POC13 CHO
OMe
372
(79)
c6
1. DMF, COC12 2. MezNHz+Cl3. NaC104
Et0 Y
OEt
G--L
Me2NANMez
X 0 S
DMF, COC12
1. DMF, COC12
69
w
Clod-
R Cl OH
67
w
(52) 67
(77)
2.4-MeC&@$-I c6-c8
RO 478
NMe2
1. DMF, POC13 2. CIO,
R
1. DMF, POC13
295
R F Cl Br
c6-cl2
Et0 OEt
Et 3. HC104
c6-cl3
R’O
R2
DMF, COC12
R2 CHO
C6’C16
Et0 7
R OEt
1. DMF, POC13 2. ArNH2
R’ Et Me Et Me Et Et Et Et Et Et Et
R2 H Et Me
H
(26) (26)
cc13
(45)
Me Et OEt i-Pi-
(84 (80) (65) (40)
Ph
w-3
n-Pr
(69) (89) (81) (31) (75) (70)
i-Pr
W3)
i-Pr
Et
(61)
373 372 373 372 373 373 373 373
n-Bu
(60) n-W-4 1 (89) Ph (87) Bn (70)
&HN&,&/ir cl- i1
479
Me Et Et Et Et Et Et n-Pr n-Pr
$ Ph Ph 4-BGH4
2-HOC& 2-MeC& 3-Mew 4-MeOC& Ph 4-ClqjH4
48
(58)
373 373 373
(48-8 1) (14) (66-8 1) (75) (31) (79) (1) (32) (51) (71)
WV
66 46 @i* 66,46 66 66 66 66 66 66 66 66 66
n-C8H17
3-MeC& 4-MeC&f4 4-hk~&j Ph Ph Ph
(50)
n-Cd21
Ph
!29
66 66
n-C1 d-I21
4-MeC&
(35)
66
n-I% n-Pr n-F% n-w13
n-W-h
(70)
(68) (2 1)
(61) (62)
66 66 66
TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued)
c7
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
1. DMF, POC13 2. Et0
clod-
AqO, Et3N, pyridine OEt
(73)
48
lit 3. HC104 375
(73)
DMF, POC13
CHO
Et0 Et0x
DMF, COC12
(56)
63,64
1. [ClHC=NMez 1’ Cl2. NaC104
(37)
33
480
c8
OEt Et0 ‘(‘
OEt
DMF, COC12
Et0 +
OEt
Me0
OEt OPr-n +
NMe2
1. DMF, 2. c104-
R2
DMF, POC13
bPr-n
376
(-4
CHOH
POC13
Me2N&,/Mez
(55)
Cl04
c8-cl0
378
R2 R’O
Et Me
CHO
6R’
Et Ph
(51)
67
c-1
c9
DMF, POC13
COEt
t-1
67
63,64
(48)
DMF, COCI;!
c9-Cl1
R = Me or Et
1. DMF, POC13 2. PhNH2 3. HC104
Cl0
OEt
OEt
EtOU
1. DMF, CO@ 2. NH40Ac
(W
/ 0I
70,37
(55)
‘N
OEt OEt
1. DMF, POC13 2. PhNH2
81
PhHN+$HPh
481
OEt ,
DMF, COCl2
CHO
C1-
NW
81
64
(59)
b OEt DMF, COCl;!
Et0
Bu-t OEt
1. [ClHC=NMe2 1’ Cl2. MQNH 3. NaC104
63,64
(82)
t-B
Me2Ny
b&de2+Clo4Bu-t
(71)
65
Go-Cl2
n DMF, POC13
68 Me2N
TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued) Substrate
Conditions
Refs.
Product(s) and Yield(s) (so)
ClO’%
OR
OR 1. DMF, POC13 2. PhNH2
OR R = Me or Et
3. I-IX
482 Cl2
R2
R3
X
H H H H H H H Me
H H H H H H Me H
H H H H H Me H Me
Cl Br I OTs CIOl Cl04 ClO, Cl04
(60) (75)
81
(31) (69) (61) (61) (50) (42)
OEt
OEt OEt
R’
1. [ClHC=NMe2]+ Cl2. NaCl04 1. [ClHC=NMe$ Cl2. NaClOd 3. Me2NH
(82)
33
(41)
33
yMe2 o/““NMe”
Clod-
OEt
1. [ClHC=NMe$ Cl2. NaCl04 3. NaOAc, Hz0
33
(32)
ye2
DMF, COCl;!
ecHo
DMF, COCl;?
q-
(6) +
o”“c”’
(26)
6364
OEt
OEt
OEt
483
1. [ClHC=NMe2]+ Cl2. Me2NH2+Cl-
Me2 N-NMe
DMF, POC13
Me NMcHo
1. DMF, POC13 2. PhNHMe
PhMeN
1. [ClHC=NMe2]+ Cl2. Me2NH2+Cl3. NaCl04
71
(55) OEt
Me2N
2+Cl-
(62)
2
Me 2N1
w
’ NMePh+ Cl-
(-)
’ NMe2+ClO,
(57)
69
TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued) Refs.
Product(s) and Yield(s) 1%)
Conditions
Substrate c12-Cl5
Et0 DMF, POC13
Tm OEt
CHO
x
Ar
S
4-ClC&I4 Ph 4-BrC6H4 4-FC&
S S 0 0 0 0
0 0
2-M&d34
0
0
3-MeQI& 4-MeC& 3-Mew 4-MeOC& 4-MeSC&& 2,4-Me2c&Ij 3,4-Me&& 3,5-MezChH3 3-EtC61&
0
4-EG8-b
0
4-i-PrCfjI$
0
0
484
0 0 0 0 0 0
CHO
DMF, COCl;!
SBu-n
n-Bus DMF, POC13
R’
1. [ClHC=NMe$ Cl2. Me2NH2+Cl3. NaC104
Et0 OEt
OEt
tw (53) (33)
(61) (22) (4)
(26) (15) (69) (48) WI w (15) (36)
63,64
R’ Me H
-(CH2)4-
Ph Me
Cl4
(81)
(92)
R’ Et 2-thienyl
R’
(36) (29) (59) (42) (48) (70)
3-ClC&i4 4-ClC&Lj 4-BGJ-b Ph 3’CF3C&I4 3,4-MeClC&
0
379
(23)
Me2NC
H Ph
E:Z
(67)
100
(72) (65) (69) (70)
80:20
380
95:5 30:70 (77)
’ NMe2+ C104-
ClS-c22
R2
R’ H
485
1. DMF, POC13 2. HC104
R2 Me Me
\me2
I-I H OMe OMe OMe NEt2 NEt2 NEt2
(16)
Me
(48)
---tCH2)3-
(60) (66)
-+CH2)4-
(63)
-tCH2h--
(60)
--WU-
clod-
R3 H
--iCH2)3-
(51) (45) (56) (41)
-+CH2)4-
(20)
+CH2)3-+CH2)4--GH2)2-
381
Cl7
OEt
c%
OEt
OEt
1. DMF, POC13 2. PhNH2*HI
(42)
81
TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued Substrate
Conditions
Product(s) and Yield(s) (%)
Y
Y
Temp It 50” 60-70"
DMF, POC13,heat OMe (4
I\/ I \ R’ \ ?n 0
R2
N
R1 OH OCHO OCHO
R2 OMe OMe OMe
R3 H H CHO
+ Cl OMe + OH Cl + thebaine
H CHO
R’ 1. DMF, POC13 2. HC104
486
Cl04
0
‘me2
51
R2
-(C&)3-
(56) (52)
+CH2)4-
(26)
-W2h-
R2
Refs.
381
c21 OH
DMF, POC13
72
0 c
&
0
I(4)+
II(67)+
III
III(22)
c23
DMF, POC13 AcO
273,35
(5) AcO
DMF, POC13 OHC”-0
oHcdP
Iid?
cm c24
72 (3)
OAc MI* DMF, COQ
OHC
G-2
52
487
Me0 Me0
CP Me0 c25
CUCH2)2
DMF, POC13
AcO
\
AcO
J@
CWH2)2
DMF, POC13
AcO’
x=
\ (4 CHCHO
35
\
L
CHCHO 35,382
TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
DMF, POQ
AcO I, R = Cl
DMF, POC13
488
Me0
I,R=H
(-)
OMe
OMe
Y CHO (78)
383
AcO AC
DMF, POC13
OHC
(53)
OMe
OHC
DMF, POC13
AcO
AcO 0 /OH
0
Me0
a
CHOMe 2 (64) + E (15)
A
OAc
dF
DMF, COCl;!
C-1
OHC Me0
Me0
AC
AC
489
R Cl H H Me
OHC
DMF, POC13,heat X-0
c27
?Et 0
AcO=
P
H
384
OHC
OEt
X Temp 60” Cl OCHO rt Cl 60” 60” Cl
(28) 73 (-) C-1 (33)
CHOEt
0 DMF, POQ
AcO=
a?@ H
e-)
385
TABLE VIII. ACETALS, KETALS AND THEIR THIO ANALOGS (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
c29 C8H17
490
OHC
DMF, FOC13 YHO
0 OP
c
0
O-0
VW
72
TABLE IX. ALKYNES Product(s) and Yield(s) (%)
Conditions
Substrate c4
EtO-
DMF, CO&
MezN
m
74
(66)
’ &Me2 Cl-
Refs.
c5 1. DMF, (COCl):! 2. (Seetable) 3. NaC104
X&NfMe
DMF, Ph3PeBr2
MeO&l;Mc
491
DMF, POC13,I2
2
MeO&&e
clo- 4
2
2
;;f); i; ;; Ee2 t PhS Cl PhSH (40) Me2NH Me2N MezN (5 1)
77
Brw (70) I-
(@)
MFA, COC12,SbC15 c&6
MeoLR
[MexN=CHCl]+ SbC&,-
77 MeO+$Me2
SbCk-
5
R c6
Meo\ -
DMF, Ph3Pe12
Me2N\ -
1. [Me2N=CHOMe]+ MeSOd-
77 MeO+l’$Mez
I-
(-)
2 Cl0 4-
@‘)
OMe 2. NaC104
Me2NA&vje
77
TABLE IX. ALKYNES (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
77
wezN=CHSMe 1’ HgI3-
Br
c8
Ph-
DMF, Ph3PeBrz
Ar-z
MFA, POC13
76
em
CS-cl0
492
Ar Ph 4-BlC& 4-MeOC&
Cl Ar
Cl DMF, MFA or N-formylmorpholine, POC13 Ar
A# \
CHO
Ar Ph 3-M4-M4-Ma6H4
4-E~ynyl-W%
(45) (24) (5 1)
(67) (70) (70) (70) C-1
243
75
TABLE X. ALDEHYDES
DMF, COC12
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
oO-F
/”
32
(4
c3
\I
0 I
1. DMF, POC13 2. ArNH2*HCl
46 66 66 66 66 66 66
2-HOC&
493
(42) 4-EM334 (3 1) 2-MeCad (30) 3-MeC& (30) 4-MeChH4 (29) 42MeOC& (29)
1. DMF, POC13 2. c104-
(30)
48
3. HC104 c4
I /Jo
1. DMF, POCIR 2. PhNH2*HCl
(18)
46
(40)
78,79
CHO DMF, POC13
TABLE X. ALDEHYDES (Continued) Substrate
Conditions
1. DMF, POQ 2. MeRNH, NaC104
Product(s) and Yield(s) (%)
n 1 2 3 4
MezN
R Me Me Me Ph
cw
Refs.
80
(11) w-u (33)
c8
1. DMF, POC13 2. PhRNH 3. HC104 OEt 494
&CHO
CHO
1. DMF, POC13 2. MqNH 3. HCI04
R H Me
(42) W
68
w9
MezN
68
1. DMF, POC13 2. PhNH;!
81 cl I
\ I 0” /
CHO
/ d\
Cl0
OEt A-
DMF, POC13
1. DMF, POC13 2. PhMeNH 3 Hx .
CHO I
94
(54)
X PhMeN
Cl Br Cl04
(15) (17) (15)
68
TABLE XI. KETONES Substrate
Refs.
Product(s) and Yield(s) (%)
Conditions
Cl
0
DMF, POC13
1. DMF, POC13 2. K&O3
sqNMe2
DMF, COC12
A# \
(39)
79,386, 83
(14)
299
6)
78
CHO Cl CHO
495
DMF, COC12
CHO ‘*-
299
(31)
NMe2
1. DMF, COC12 2. K2CO3
299
w
OHC me2
1. DMF, COCl;! 2. NaCl04 DMF, PBr3
(87)
299
Cl Br A# \
CHO
cw
92
CHO
(27)
92
Br
wrHC=NMe#BrA#
\
TABLE XI. KETONES (Continued) Product(s) and Yield(s) (%)
Conditions
Substrate
OH
1. DMF, WC12 2. NH3 3. Cu(OAch
Refs.
a
(66)
299
(39)
299
OH
1. DMF, COC12 2. NH3 3. HCl
1. DMF, COC12 2. K2CO3
299
3. NfiCl, H20, NH3 c3’cl2
R Me
496
1. [Me2N==CHCI]+Cl-, -10” 2. rt, lh
(14) (27)
i-Pr
i-Bu t-Bu 2-fury1 2-thienyl 1-Me-2-pyrrolyl 1-Me-3-pyrrolyl 3,5-Me2-3-fury1 2,5-Me2-3-fury1 4-MeC& 4-MeOC&
(21)
W-(MeOhC& 1-naphthyl 2 -naphthyl
(20)
112d
(44 (30)
(21) (12) (15) (19) (17)
(66) (49) (41) (35)
c4
0
CHO
Cl
DMF, POC13
71
W)
Q
L
Cl
Z:E
DMF, POC13
1. DMF, POC13 2. K2CO3
(77)
1:2
(18)
1:69 (18)
299
CHO
497
1. DMF, POC13 2. K2CO3
CHO “-
(31)
299
(67)
299
NMe2
1. DMF, POC13or WC12 2. NaC104
DMF, PBq
(31)
~-qNMe2
79,386, 83 387 82
-
ClO,
CHO Cl Br (36)
92
(30)
388, 389
c5
0 DMF, POC13 I b S
CHO
TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
k\ X
0
n
CHO
X DMF, POC13
c*
DMF, COC12 DMF, PBq mrHC=NMe$Bi
c* C-1 Br (45) Br (31)
126,79, 386 78 92 92
(82)
1. DMF, POC13 2. HNMe2 3. NaC104
498
1. DMF, COC12 2. K2CO3
390
(34) 2 Cl0 4-
71 MezN+&Me,
Cl-
(20)
Me2N
1. DMF, COC4 2. HC104 DMF, POC13
Cl04
71
e-4
48
Cl
0
X
CHO DMF, POC13 iul
uw
X
0
WV
S
(52)
388, 389
CHO DMF, POC13
YHO
CHO /
+
N-formylmorpholine, POCl3
c1 I
OHC
JL
88, 38, 123, 124, 391
(98)
P
(29)
123
’ Cl
Cl DMF, POC13
(77)
386.43, 48
t-1
78
(59)
83
(14)
83
Cl
499
DMF, COC12
Cl
L
DMF, POC13
0
DMF, POC13 9
1. DMF, COC12 2. NaCl04 3. NaOH
1. DMF, COC12 2. NaC104
\I\
CHO
0
68
CHNMq NMe2 ClO4-
(16)
48
TABLE XI. KETONES (Continued) Substrate
Conditions
L
Product(s) and Yield(s) (%)
DMF, POC13
li-‘-
(18)
DMF, POC13
1 WV
CHO
Refs.
+Ho
(10)
I
392
CHO 38
c5-c7
CHO
0 R2
R’
DMF, POC13
0
89a R5
3R3
R4
500
R’ Me
R” H
Me Me Me
Me H Me H H Me H Me Me
R2 R4 H Me
H H
--+H2)3+CH2)3-
R2 Cl
R” Cl
R4 R5 H H
Cl H H
Cl Cl CHO CHO H
Me Cl Cl H Me
Cl Cl
H Me
CS-CS
H Me Me H CHO
Cl DMF, POC13
C02Me
(18)
+
R2 H
R3 R4 CHO Cl
(45) (38) (29)
+
-
-
(24) (19)
+ +
Cl Cl
Cl Cl
-
(30) (0)
H Me
H H
(0) (0) (13) (11)
R
R CHO
393
CF3
(4
HCF2
e--) t-1 G-4 t-1
I-W32 C4F9
G 0 5
R5 Cl -
WCW4 NMe2 K
X
I
DMF, POC13
123
From X = Cl (43) From X = Br (59)
X = Cl, Br
CHO
(20)
DMF, POC13
83
CHO DMF, POC13
%HO
+&$+pCHO
ZV-formylmorpholine,POC13
$cHoS4b
123
(45) CHO
R4
0
501
R3
R’ Me Et Me
R2 H H H
R3 Et
R4 H
Me Me
H Me
Me
Me Me
R5
R5
DMF, POC13
Cl H H and H Cl and Cl
R6
H
DMF, POC13
(33)
R6
R7
R8
R9
CHO CHO Cl Cl CHO CHO
H Cl CHO CHO H H
CHO CHO H H CHO H
H H H CHO H H
(20)
392
(19) (11) (23) (42) (13
+
Cl CHO OMe OMe 0 DMF, POC13 /J&L
(42)
+
CHO Cl
(23)
38
TABLE XI. KETONES (Continued) Product(s) . and Yield(s) (c/c)
Conditions
Substrate
(63)
1. MFA, POC13
COMe
Refs.
300
2. N&+Pf$j-
DMF,
83
W)
=I3
Cl CHO 0
Cl N-formylmorpholine, POQ
m
123
(24)
123, 124
Cl CHO 502
DMF,
p0c13
DMF, POCl3, Cl+CHCl,
122
(20)
boil
122
(42)
N-formylpyrrolidine, PO@
N-formylmorpholine, POCl3
123, 122
MFA
122
0
(16)
N-formylmorpholine, POCl3
123
i) 0
Cl 0
503
8 6 +
I
CHO
(61)
DMF. POC13
121
/
2:1
CHO
0
DMF, POC13 4
CHO
0 0
391
DMF, POC13
KT CHO
NL
DMF, POC13
391
TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
CHO DMF, POC13
89
WV X
0
126,
DMF, POC13 6
79, 386,
I, X = Cl (80) DMF, COC12
I, X=Cl(-)
113 78
DMF, PBq
I, X = Br (54)
92 Br
Br 1. DMF, PBq 2. NaOAc 504
CHO
1. DMF, COCl;! 2. NaOAc
118,71
(>95)
Cl 1. DMF, COC12 2. NaOAc 3. HC104
71
I, X = Clod (69) DMF, POC13
48
I, x = PO2Cl2 (-)
CHO
1. DMF, POC13 2. NaOCH2CH20H
115
(36)
0
030)
DMF, POC13 fi
386, 78, 83
DMF, COC12
(80)
79
(75)
92
Br DMF, PBq
cl 1. DMF, POC13 2. NaC104
+=%Me2
ClO,-
33
(47)
W)
505
1. DMF, PBr3 2. NaC104
92
c6+0
Cl DMF, POC13
DMF, COC12
OHC
R
ZE
C02Et 3-thienyl
(76) (70)
4-ClC&j 4-BGiH4 Ph Ph Ph 3-CF3C6H4
(78) (77) (91) (50) (75) (79)
4-MeC6I-b ‘t-Me~&j
031)
C02Et
c-1
(75)
30:70 30:70 6Q:40 50:50 60:40 50:50 40:60 55:45
86,394 86 86 87 86 394 87 87
45:55
395 87
-
395
TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
DMF, POC13
R’
R2
Me H
Me (12) Et (8)
392
CHO Cl CHO
OHC Cl
0
0 I
/
7:3 c
121
CHo (63)
DMF, POC13
+
121
(60)
DMF, POC13
3
506
0 0 DMF, POC13
Kit
\/ c1 I a
391
(24)
Cl
CHO
JJL
391
(7.5)
DMF, POC13
Cl
Cl
0
DMF,
(5)
POC13
+
OHC
(47)
/
119
ti
tk 0
‘3”
117
1. DMF, POCl3 2. HCONH2
X
0
\
DMF, POC13
CHO 79,386
t”r
6
I, X=CI (65) DMF, COC12
I, x= Cl (88)
126
DMF, PBq
I, X = Br (45)
92
@rHC=NMe# Br-
I, X = Br (67)
92
Cl DMF,
F’OCl3
DMF,
POC13
6-d
48
0
507
/JL
0
1. DMF, POC13 2. NaOCH2CH20H
DMF, POC13
LOAC
48
n-Pr
0
CHO xc
115
(50)
Et
+c-oAc (30)
396
CHO
c7-c8
0
R I 5
ZV-forrnylmorpholine,POCl3
R -Me Et
(33)
(12)
397, 350
TABLE XI. KETONES (Continued)
0
R H Me
N-formylmorpholine, POC13 I
RJk
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
c7-cl8
DMF, POC13 R’O&
RIO&
R2
CHO
350
VW (73)
508
R’
R2
n
Et Et
Me n-C4H9
1 1
(4 (53)
Et Me Et Et Et Et Et Et Et
24hienyl
(77)
4-clW4
1 1 1 1
4-MeC6l-L.j 4-M3,4-(MeW2GH3 4-MeC6l-Q Ph 4-(i-Pr)C&
1 1 1 2 3 1
(77)
4-w6&
1
wo
Et Et
4-MPh
1)cd-b
90
(65) (80) (72)
(W (77) (83) (77) (67)
0
G
N-formylmorpholine, POCl3
350
(31)
I
b
OEt CHO DMF,
(30)
POC13
(33)
+
398
CHO
123
N-formylmorpholine, POC13
SMe
1. DMF, POC13,O-5” 2. rt, 20 h
OHC
SMe
399
(38)
Cl CHO
DMF, POC13
119
(40)
0 DMF, POC13
119
(24)
i; 509
0
X
CHO
DMF, POC13
126, 386
t, I, X=Cl (77) DMF, COCl;! DMF, PBr3
I, X=Cl (-) I, X=Br (37)
78 92
[BrHC=NMe$ Br-
I, X=Br (63)
92
1. MFA, POC13 2. NaOAc
‘OH’&
0
fD
I ’ S
(29) + ‘OHcm
( 19)
220
TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
F
0
0
0 1. DMF, POC13
(36)
w3
+
2. HCI04
(35
F
0 CHO
DMF, POC13
t-1
X
0 DMF, PBr3
\ PhA#
Ph @rHC=NMe# Br1. [IHC=NMe# I2. NaC104 3. NaOAc 510
1. [IHC=NMe$ 2. NaC104
I-
92
CHO
I, X= Br (45) I, X = Br (68)
92
I, X= I (72)
345
345
+ ‘NMe2 C104II, x=1 (90) II, X = Cl (98)
71
II, X = Cl (62)
345
1. DMF, PBq 2. NaC104
II, X = Br (50)
92
1. [BrHC=NMe$ Br2. NaC104
II, X=Br
92
[ClHC=NMe$ Cl-
Ph
1. DMF, COC12 2. NaC104 1. DMF, PhOP(0)C12
\
PhL
2. NaC104
0
0
Ph 3
(76)
CHO
3-f
I
WV
160
(29)
350
N2
N2
N-formylmorpholine, POC13
OHC
c8-cl0
R’ XCHO, POC13
R
511
R’ H H H Br Cl H Br Cl H H H H H H Br
R2 H H H H H Me Me Me Me Me Me Et Et Et Et
X Me2N PhMeN Morpholino Me2N Me2N Me2N Me2N Me2N PhMeN Morpholino Piperidino PhMeN Morpholino Piperidino Me2N
Y Me2N PhMeN Morpholino Me2N Me2N Me2N MezN Me2N PhMeN Morpholino Piperidino PhMeN Morpholino Pipcridino MezN
I
II
III
(35)
(50)
(0)
(0) (30)
(41) (12)
(0) (0) (0)
(28) (26) (44 (0)
w (53)
(0) (0) (0) (0) (0) (0) (0)
(78) (46) (53) (53) (29) (29)
(0) (0)
(19) (30)
(80)
*In thesecompounds Y = (4-OHCCbH4)MeN
(0) (19) (0) (0)
(2)’ (18) c3-o (3)* (33) (51) (36)
TABLE XI. KETONES (Cmtinued) Conditions
Substrate
Refs.
Product(s) and Yield(s) (%)
.-
c8-cl2
Ar
0
Ar
1. DMF, POC13
3-02NC6H4 (87)
2. HC104
4-ww-b 3-CF3W4 4-CF3W4
1. [ClHC=Niq]+ Cl-, CHC13,boiling point
4-ClC6H4
2. NaC104
4-MeC&t
402NC6H4
512
4-MeOW4 4-Me2NWh
401
(66) (74) (70)
(76) (64) (76) (82) (82)'
402 402 402 402 33
Ar Cl
1. DMF, POC13 2. NH20H
4-BrC&
(74) (54)
4-WGJ-b
051)
Ph
(50)
4-MeC6H4 4-MeOC&l4 2-naphthyl
w-2 (47)
4-ClCfjl-L$
CN
403
w
106 COCH2R4
1. DMF, POC13,0” 2.90",time
R’
R2
R3
Cl Br H
H H H
Cl Br H
H H H
H H H H HH Me H Me H
513
H AC Br H AC NO2 H NO2 AC H AC H H H H H AC Br H AC NO2 H H Br
H H
NO2 H H H CS-c14
a/ \
COMe DMF, (C12PO)20,0’
I OH
R4
Me H H H H Et Me Me
AC Me AC Et AC Et AC Et
CHO
Time 4.5 h 3-6 h 3-6 h 4-6h 4-6h
I (60) (66) (43)
II (0)
(0) (0)
(56) (68)
4-6h 3-6 h 3-6 h 3-6 h
(0) (74) (87) (24)
(36)
3-6 h
(60)
(14)
5h 4-6 h 4-6h
(0)
(38)
(0) (0) (0)
(90) (75) (89)
(0) (0) (0)
(79)
4h 3-6 h 3-6 h 3-6 h
(61)
(0) (0)
(8) (0) (17)
(86) (81)
112c 112c 112c 112b 112b 112b 112c 112c 112c 112c 112c 112b 112b 112b 112c 112c 112c
102
TABLE
XI.
KETONES
(Continued)
Substrate
Refs.
Product(s) and Yield(s) (%)
Conditions
R
0 CHO
COMe DMF, POQ OH
3,5-Br2
VW
103
3,5-c12
(77)
103
5-Cl
(53)
103
H
(71)
100
5-Cl-7-Me
(58)
103
4-Me
(86)
100
4,5-Me2
(55)
103
w
101,102
(73)
101,102
5-&N
(54)
101,102
5-Me
(65)
101,102
5-CN
(55)
101,102
4-Me0
101,102
6-Me0
(6) (62) (61)
5-HO&
(14)
101,102
514
3,5-Br2 5-Cl
5-Me0
101,102 101,102
3,5-Me2
(25)
101,102
5-Et
(76)
101,102
5-Me2N
(49)
101,102
43(MeOh
(4)
101,102
4-AcO
(67)
101,102
6AC0
(97)
101,102
5-n-Pf
(53)
101,102
5-i-l%
(421
101,102
5-n-Bu
(32)
101,102
4,5-(AcOh
VW
101,102
436(A&h
NO
101,102
5-n-G&3
WV
101,102
(43)
101,102
5-c-w
11
0 Ar J-L
R
DMF, POC13 Ar CHO
4-ClCjH4
H
(30)
127
4--BG@4
H
(24)
127
4-02NC6H4
H
(71)
387
Ph
H
(54)
91,79, 94, 386, 387,404 386
Ph
CF3
6)
394
2-MeOC&
H
WV
387
3-MeOCeH4
H
(71)
95
4-MeOC&
H
(70)
95, 127,
2-BrC&14
Me
(85)
94
4-BlC&
Me
(79)
94
2-02NC&
Me
(69)
94
%&NC&
Me
(58)
94
~Q2wa4
Me
(80)
94
Ph
Me
(98)
404
515
372,79, 94,386, 387
2-MeC&14
Me
(63)
94
3+(M~)zC&
H
w-u
404,83
2-(3-methylindolyl)
H
(50)
260
2-naphthyl
H
(56)
83,387
6-MeO-2-naphthyl
H
(30)
387
4-PhC&L,
H
(36)
127
Ph
Ph
(50)
127
Ph
Ph
(24)d
405
TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
Cl DMF, POC13(6 eq), rt
R’
R*
Me Cl Br Ph H
H (70) H (62) H (65) H WV Me W
R*
DMF, POC13,80-90” (X = N3); or 1. DMF, NaN3 2. POC13,heat (X=Br)
Me Cl Br Ph
c9
(X=N3)
(36)
93% 93b
(X=Br)
(36) (42)
(45) (48) (56)
(45)
(61)
93% 93b
Cl
0
+ I
CHCHO
516
b
II
I DMF, POC13 (3 eq) Dm, =I3 N-formylmorpholine, POC13
I (80) Z:E=2:1 1 e-1 I (87)
0
+ +
+
406
II (51)
406
II (-4
350
R
Cl R
II 6)
N-formylmorpholine, POC13
R
I
n-l%
(3)
i-Pr
(5)
397
5
Cl
0
OHC I 0
CHO
N-formylmorpholine, POC13
(31)
Pr-i
350
Pr-i
1. DMF, POC13 2. NaOAc, Hz0
Cl 94
(92) Ph X
79,78
DMF, COC12 I, X=Cl (60) DMF, PBq
I, X=Br
(71)
92
@rHC=NMe# Br-
I, X=Br
(11)
92
517
1. DMF, POC13 2. NaOCH2CH20H
CHO
115
(59)
Ar 1. MFA, POC13 2. Nb+ PF6-
(32)
300
Ar = 4-MeC&
Me Cl
Me0
1. DMF, PCls 2. NH20H
403 Me0 403
1. DMF, POC13 2. NH20H
0 Cl
DMF, POC13
(69)
103
TABLE XI. KETONES (Continued) Product(s) and Yield(s) (%)
Conditions
Substrate
407
(33)
1. DMF, POC13 2. clod-
Refs.
H Cl CHO
w-8
DMF, POC13
394, 409
(80) E:Z = 4:6
DMF, POC13
Ph
408
CF3
CHO 518
DMF, POC13
/coI
0
\
1. [ClHC=NMe$Cl2. NaC104
/ 0% 1
Cl
\
74
c-1
CHO
36
(92)
\
\
me2
0 /
Me#lN=CHCHO, POC13
1
\ 03
0
0
0
Cl -
DMF, POC13
/ I
di\
X
DME
ml3
(n q)
I
+
(42)
135
(36)
127
X 0 s
VW
388, 389
&c:Q&Hzcl III
II
519
X 0 0 S s
n 1.3 5 1.3 5
Temp. I II 65” (3 Ku 100” (0) (0) 20” (4 (0) 100” (40) (29)
III (0) (48) (0) (0)
0
G-1
/
128
I
di\
Se
Cl 0 /L
Ph
DMF, POC13
(67)
94,387
Ph I DMF, POC13
I
C-1
-
I
C-1
DMF,
=I39
(4 q)
Ph
E:Z=58:42
82 394
410
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
Br
0
DMF, PBr3
Ph
Br [BrHC=NMe$Br-
0 1. DMF, POC13 2. NaOCH&H20H
92
(56)
92
(32)
115
0 Ph
x,
CHO
520
HCONH2, POC13
(25)
w+-----(13) + N&i) (3)
411
0
6
DMF, POC13
119
(56)
An/-
(65)
83
(97)
412
CHO
DMF, POC13
Me0
CHO
c9-Cl0
0 Ar
+
Ar7
1. DMF, POC13 2. NaCl04 3. NaOH
0
Ar Ph 4-ClC& 4-HOC&g
(36) (28) ( 15)
4-MeOC&
(36)
Ph
(75) (77) (79) (75)
413
CHO CF3
0
1. DMF, POC13,rt 2.65’, 6 h
Ar
1 +
m3
4-BrC&$ 3-CF$& 4-MeOC&
Cl
521
63~37 50:50 46:54 55:45
87
c9-cl2
CHO
+
l.DMF, POC13,0” R’
2.60”, 3 h
R’
414 R’
R’ H H
R2
III
SMe (56) (30) S02Me (46) (0) C&Et SMe (61) (25) CO2Et S02Me (0) (0)
TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate Cl0
1. [CIHC=NMe$Cl-, 2. NaC104 3. NaHC03
Cl
rt
(66) Me2N CHCHO
Cl 1. [ClHC=NMe$Cl-, 2. Hz0 522
oL/
33
75”
1. [ClHC=NMe$Cl-
.,,tiHTo
(23) McN@C1
PhL&e
2
Cl0 4-
Ph%gMe
2
Cl0 4-
(25)
33
(65)
69
(29)
69
2. NaC104 1. [ClHC=NMe$Cl2. NaC104 3. Me2NH 1. [ClHC=NMe2]+Cl2. NaC104 3. Me2NI-l 4. NH3, NH&l
N-fomylmorpholine, POC13
/&’ 0 0
d/ \
a?
OHCHC
\0+ I 0’
69
‘Ph
2% ’
CHO
DMF, FOCI3
-BF2 0 DMF,
ml3
(4 q)
Ar
350
(95)
Cl
412
(7)
Ar 2-MeOC& 4-MeOC&
(63) (70)
410
(72)
410
OMe Ar 523
DMF, FOC13(4 eq)
3-MeOC&
0 /
DMF, POC13
\ cb
I X
0
127
0 \
"d‘
(70) (54)
I
/
DMF, POC13
415
, TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
Cl
0
391,
(55)
DMF, POC13
415
DMF,
POC13,50”
DMF,
poc13,80”
391
(18.5)
0
524
416
DMF, PBq
.H Ql
&
0
116
LDMF,poc13 2. HCONH:!
0
/\ I a5
DMF,
CHO
POC13
(88)
125, 126, 417, 418, 419
Br
(4
420
DMF, POC13,27”, 8 h
tw
418
1. DMF, POCI3, loO”, 5 min
(54)
421
(36)
115
DMF, PBr3
CHO
2. rt, overnight
CHO 1. DMF, POC13 2. NaOCH2CH20H 525
%-c11
0 \ ye
422
DMF, POC13
I, X = H; or II, X=CHO
I
R*
R2
R3
Temp
1
H
H
Cl
40”
(0)
(68)
Cl H
H H H
H H H
No 0” 90”
(65)
H H
H Me
90” 40”
(65)
(0) (0) tw (0)
(0)
(69)
OMe H
H OMe
H H
90” 90”
(62)
(0)
(0)
(65)
H
H
OMe
40”
(0)
(63
H Me H
(65)
(0)
n
TABLE XI. KETONES (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
OHC,
.J+
C02H
DMF, POC13
/ I I\ LP 0
X'
X
Cl
Cl H Me
(85)
OMe
(70)
R’ HCONH2, POC13
89
(75) @Oi
R2
--OCH20-
C-1
H
Me0 Me0
(6)
Me0 (-)
423 411 423
CIO-cl6
CN 526
HCONH2, POC13 (OOR
(-3
424
(4
425
R=H,Me,Ph
CN R R = H, Me, Et, Ph
HCONH2, POC13
Me0
Cl1
DMF, POC13 Me0
125, 417
Me0
0 NHNAr
OHC
0 CHO
Ar
OH
U96-(Br)3C& 4’02NC&j Ph
DMF, POC13
MeOC A
COMe
(61)
142
(63) (54)
0 / \ 05
DMF, POC13 I
DMF,
ml3
(I eq)
Dm,
ml3
(2 eq)
(75)
126, 426
(6)
131
527
Et
Cl l-cl2
/ 1x/ 0 \w S
131
DMF, PC13 CHO
NH 0 S CH2
(78) (89) (91) (93)
129
TABLE XI. KETONES (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
Cl1 -cl7
CN
HCONH2, POC13 R = H, Me, Ph
Me0
427
(-3
Me0
CN
R
CN
Me0
H
Me0 HCONH2, POC13 OMe
(28)
Me (35) Et (30) Ph (26)
OMe
428
Cl2
0
528
(“,
(82)
DMF, POQ
114
N
0A
Ph
Ph CHO
Me0
DMF, POC13
421
Me0
OH
/
0
CHO
DMF, POC13
429
CHO
0 Y
/ \ OH \ I/ 03
DMF, POQ
429
DMF, POC13(2 eq)
I\ 0 =I I B-Y
CHo
(25)
429, 105
(90
429
0
0
CHO DMF,
ml3
(2 q)
529
1. DMF, POC13
(55)
98
(4
403a
2. Na2C03 (aq)
-OS03H
DMF, POC13
0 “Vilsmeier complex”
96 Ph
TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
430
DMF, FQCl3
Et NMey HCl 0 C02Et
OHC
C02Et
MeOC
UG-@r)3W2 4-%-NC& Ph
DMF, POC13
-7-r NHNk
(63) w (5%
142
0 A
I
\
127, 431
(80)
DMF, POC13
63 /
/
530
DMF, POC13
(41)
323
(8%
432
OMe 0
OMe 0
CHO DMF, POC13
AC I
Cl R=
DMF, POC13
(41)
R
c12’cl3
391, 415
HCONH2, POC13
411
DMF, POC13
433
0
I
R
I
Br H Me0
531
\ I gc
-+R
1. DMF, POC13,0” 2.80”, 5-6 h
r:
-
Cl DMF, POC13
\/ I :;I::6 0
(2)
(98) R 6-Cl 6-Br H &Me 7-Me 8-Me
OHC
0
N ‘R2
(12) (88) (8) (92)
6
0
c12c14
II
II
“Vilsmeier reagent” R’ = H, Cl, Br, C02Et R2=H,Me
OHC
R Me0 Et0 PrO
(78) (79)
434
(77) (77) (71) (78)
(78) (80) (78)
(60-80)
434a
435
TABLE XI. KETONES (Continued)
DMF,
poC13
429
(1 q)
I
R H Me ph Bn
R /
\0+ I
&
532
\
I
I
II
II
(0) (8% (85) (0) (98) (0) (96) (0) R/ 4
0 DMF,
I
ml3
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
(1 q)
(pR Or
429
;“-““I”
O;BF2
/
I
R H
I
Me Ph Bn
II
II
(0) (91) (78) (0) (0) (81) (97) (0)
c12-Go
R2 H AcO
R’ DMF,
Cl
p0c13
Me n-w1
R’O
R’O
1
CH(CH$&H 11-n AcO
(62)
436
(78) (23)
85
NMePh, MeCOBr
n=lor2
(4
437
or PhCOBr Ar = 4-BrC6H4 Cl
0
CHO
\ I
-
(68)
/
438, 439
533
@
83
DMF, POC13
I\ ?a
0
/
DMF, POC13
w
440
(86)
440
I
’
0 0
Cl
DMF, POQ
/ ’ I @ /
’
0
I
,CHO
TABLE XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate 0
Z:E = 1:2
(25)
DMF, POC13
387
c13-Cl4
Cl
R DMF, POC13 EtO*C=
Et02C
Ph
R Me
(57)
Et
(71)
90
CHO 0
DMF, POC13 II
I
534
R’ Me0 H
I II R2 Me (29) (30) 4-MeCsH4 (19) (36)
DMF, P0C13
83
(75)
Br DMF, PBq
92
(75)
Ph
Ph 423,
H2NCH0, POC13
441
0
/ I/\ \59 Y
DMF, POC13
OHC
0
db
442
Cl
DMF, POC13
‘\
443
(52)
I\
s
’
0 /
\
535
\ 053
I
I
/
Me$WJ=CHCHO, POC13 or COCl2
135
(70)
Cl 1. MFA, POC13
242
(40)
2. NH20H CN
OH
0
OH
OH
0
OH
OH
0
OH
DMF, PhCOCl
134a
‘NMe2
k’OCOPh
TABLE XI. KETONES (Continued) Substrate
Conditions
Product(s) and Yield(s) (%) OH
0
/ R’MeNCHO, POCl3
/
R’ Me Ph 4-FC& 4-ClCfjH4
[R ’ R2N=CHCl+]C1-,
U
NMe, pyridine
Bn 2-MeOC& 4-MeOCeQ 2,d-(Meo)&H3
R2 H Me H H H H H H H H H H
U-WeOhW3
H
4-J3a34
4'02NC& Ph
3,4-~&%$-b 536
OMe 0
134b
NR’R2
I
MeN
R2 Me (25) Me (11)
I
:li)l-i:
0 A
R’ H Ph
\ I
I
\
Refs.
OH
0
OMe 0
m (11)
134b
(20) (28) (17)
(6) (33) (17) (10) (24)
(145) (8)
(5)
0
DMF, POC13
432
W)
* 6Me
OMe DMF, POC13,rt
(34)
260
(73)
260
C02Et C02Et Me2N
CHCHO Cl
DMF, POC13,70”
C02Et
DMF, POC13 HO
R2 Ph
(1W
OH H
Ph 4-MeOC&I4
(-4 (--)
HO
1
R’ = H; R2 = 4-FC6&0 or PhO
c-1 Cl
0
537
/ &
R’ H
X
R S02Ph Bn
DMF, POC13
\ T
R
445
x Y CHO H H CHO
131
(4% (50)
A
c14-cl6
Cl
R’
MFA, POC13
ii3
Me0 H
&HO
cl4420
Me0 H
H
Me0 H
Me0
Ph
R
R
li I YN -a,
DMF, POC13 OHC
0
R H Ph
(80) (67)
132
TABLE XI. KETONES (Continued) Substrate
Conditions
Product(s) and Yield(s) (%j
Refs.
Cl5
DMF, POC13
447
DMF, POC13
323
Ph
0
0
CHO cl6
DMF, POC13
(69)
Bn02C 538
DMF, POC13
DMF, P0C13
Ph
Ph
448
y)-+q
(68)
DMF, POC13 clHc
415
P
CHO
N I / ‘N
4A
132
(72)
0
DMF, POC13
LY
so2
(68)
CO
(69)
CH2
(73)
R DMF, POC13 Cl
Ph Bn
(73) (87)
449
c02R
C164G8
,OMe 539
OMe DMF, POC13,80- 100”
R’ H
R2 F
H H H Me0
Cl Br Me0 Me0
(37) (35)
Me0
Me0
(47)
(24)
cw (22)
450
DMF, POC13
cl8
DMF, POC13,O-60”
447
TABLE XI. KETONES (Continued) Substrate
Conditions
Product(s) and Yield(s) (so)
Refs.
DMF, POC13
OH
0
Ph
0’
DMF, POC13 &pm
09 /
/
\
\
c-1
0 I
DMF, POC13,AcCl, rt
452
(39)
540 cl 9’c22
OR’
OAc R2
R2
DMF, DMF, DMF, DMF,
c19-c25
R’ H AC EtCO AC
POC&, AcCl POC13 POC13,AcCl POC13
R2 H H H Me
452 12oa,35 453
(13) (55) (56) (27)
454
0
Br CHO
Me COPh
/
I
\ ROJXP
R
\
DMF, PBr3, CHCl3
/
I
\ ROJdP
(34) (38)
455
c20
0
0
-N \/
0
N-
Cl
-N
DMF, POC13
\/
N-
\/
c
CHO W)
130
\/
c
541
CN MeOboMe
Me0
R H + (CH2)&H40Me-4
HCONH2, POC13 OMe
(8)
456
(24)
6Me OAc DMF, POC13
cl&
(13)
;1#(15)
120
CHO
(18)
+ Cl
I R’ OAc
R2 H
I
II
(10 (6) COMe OAc ( 10) (7) COMe 542
DMF, POC13,AcCl 0 dP
(47)
452
iI 0
(0)
DMF, POC13
(6%
454, 458 35 120a
COMe
0
dP
(5)
DMF, POC13,AcCl, boiling point
H
453
OHC 1. DMF, POC13,rt 2. Boil
3.NaAc
(20 crude)
453
(aq), boiling point HOHC
OAc
0
LIP
OAc
DMF, POC13,AcCl
(22) X’
H
DMF, PBr3, C12C=CC12, reflux
453
@ H OHC
I, x = Cl I, X = Br (32crude)
543
DMF, POC13
I, x =a
DMF, POC13,AcCl
‘I&
453
(20)
120a, 35
OAc
(45) +clq(3) AcO
A Ph
0
452 A
Ph DMF, POC13
(45)
353
TABLE XI. I&TONES (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
c21-c27
R3 .R4 -- R2 DMF, POC13 0 J9
/
’
clJ3p +o:x$?
li’
II
li’
544
R’ H
R2 H
H H Cl H H Me Me H H
H H H H H H Me H H
R3
R4
OAc OAc COEt COMe
H
(25) (21)
t-1
Me H
(23) (10)
OAc OAc
(4 (4 t-4 (43)
(18)
t-1 (40) t-1 (-)
Ok OAc OAc OAc
t-J (-) (32) (-)
(8) (SO) (13) (28)
(14) (10) (-) (-)
H
(4%
(121
t-1
COMe COMe COMe COMe COCH20Ac W-47
I
II
(28)
III 22 22 73 22,73 22 73 73 22 22 22
c22
0
0
OHC DMF, POC13
\/
Cl
(=&pHO
(56)
459
(34)
454
\/
c OAc
OAc e*DMF, POC13
MqN
\ 50
A OAc cc-
DMF, POCl3, excess
OHC
545
Cl
JiJy”q/ 0
0
0 0 ) 0
0 d+
/
/
** OHC
DMF, POC13
454
: H
pb~ocL+Ho 0
c23
f 0
&
(12)
I ;
(29) Cl
460
TABLE
XI. KETONES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate 0 f 0 0
0d
/
0 0
)
DMF,
POC13
/
DMF, POC13
c---1
OHC
OAc
546
OAc DMF,
(62)
POC13
c23-c24
454
Ar Ph
(52) DMF,
353
(5% (53) (45)
POC13
4-MeC& 4-MeOC& R’ R2 DMF,
POC13
OHC
R’
R2
OAc OAc
H Me
(43) (37)
461
AcO
c24
C02H (92)
1. DMF, POC13 2. NaHC03 (aq)
462
0
,-OAc DMF, POC13,forcing conditions 547
OHC
&
461,73
W)
I
’
’
Cl
461
DMF, POC13,mild conditions
DMF, POC13
OHC
(52)
TABLE XI. KETONES (Continued)
C28
0
Cbd /
‘1
0’
Et
so2
/
I
I
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
\\ / I / I (4 cYl’ 0’ d so2
1. “Vilsmeier reagent” 2. KOH, EtOH, DMF
463
2
2
Et
I
I
464
(-4
DMF, POC13 548
C02Me
kO,Me
Et
Et
I
I
465
(-4
DMF, POC13,C1CH2CH2Cl, 50°, 1 h
C02Me
%c36
R’
I
R’ H AC c36
H (69) C(Cl)=CHCHO (30)
DMF, POC13 DMF, FOC13(16 eq)
Et
Et
549
CHO (67)
DMF, POC13
lit
Et
c42
((o~so2 ’ Cl
WV ,
466
TABLE XI. KETONES (Continued) Substrate c48
Conditions
Product(s) and Yield(s) (%)
Refs.
R-R
DMF, POC13,0”
RqR
DMF, ~13,O”
466
Dm,
467
R’+R’
(62)
467
550 C86
‘JR
ml39
0”
0
u The yield given is that of the product isolated as the cupric salt. ’ The authors repeatedthe work detailed in reference#83 where the yield was reported as 20%. They did not report a yield for this reaction in reference#84. ’ This reaction was carried out at r-t. d The ratio of E to 2 isomers in the crude mixture is 6:4. e Sixty percent of the starting ketone was recovered.
TABLE XII. IMINES, HYDRAZONES, SEMICARBAZONES, AND OXIMES Substrate
Conditions
product(s) and Yield(s) (%)
DMF, POC13
NNHMe
Refs.
468
(94) I Me I
DMF, COC12
1
(98)
DMF, SOC12
1
(7)
MFA, POC13
1
(11)
469, 470 469, 470 468
c4-Cl0
OHC R DMF, POC13
NNHCONH2
R
551
R Me 2-thienyl 2-(5-02N)-fury1 Pll
(4 (83) (21)
%&NC&
(85) (54)
4-02NC&L.+ 2-MeOC$&
(63) (95)
139 139 471 139 139 139 139
c5-c8
NHCOMe from
RA
DMF, F’OC13
R
(30-38)
472
(74)
473
C02H
R = Me, i-Pr, (CH&C02H, CH#r-i c7
1. DMF, POC13 2. NaClO.+ MeOH
TABLE
XII.
IMINES,
HYDRAZONES,
SEMICARBAZONES,
AND OXIMES
(Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
Me
OHCHC N’
s-
474
DMF, POC13
#Nx
(---)
I
R
R b=
1. DMF, POC13
NNHPh
ClO,
2. HC104
Me
(77)
Ph
(96)
475 475, 476
Ph c9-c20
R’ k
DMF, POCl3 or
CHO
0
1. DMF, POC13
NNR2R3
2. H20 (pH 8)
NNR2R3
R’
R’
II
552
I R’
R2
R3
I
II
~-&NC~HJ
Me
Me
(9%
(0)
140
4-02NC&I4
Me
Me
C-4
or (-4
477
4-02NC&
Me
Me
(0)
(67)
141
Ph
Me
Me
(0)
(57)
141
4-MeOC&I4
Me
Me
(61)
(0)
140,
4-MeOC&
Me
Me
io)
(72)
140
4-02NC6b
+CH2)4-
(73)
(0)
140
4-02NC&
i-Pr
(0)
C-3
140
4-02NC6&
es-h
Ph
c-C6Hll
4-MeOC&
c-w
141
i-Pr 1
11
4zJ-h
1
u-v
(76)
140
c-C6H
11
(0)
wo
140
60
(25)
140
c-G@11
OHC
Cl0
CHNMe2 DMF, POQ
(51)
I
478
+ k
, NHCONH2
N-CONH2
DMF, POC13
479
(18)
553 II,
X=CHO
R’
R2
R3
x
H
H
H
--
v
Temt,
II
III
w
t-1
(-4
H
H
H
5
3
H
H
H
5
5
80-90”
C-1
(55)
C-1
80-90”
C-1
(14)
-OCH20-
H
--
WI
rt
(14)
(4
(3
-OCH20-
H
5
-OCH20-
H
5
3
80-90”
t-1
(48)
(-3
5
80-90”
C-1
(37)
(31)
5
5
80-90”
t-1
(-4
(48)
rt
(25)
(-1
(-1 (4
rt
I
OMe
OMe
NO2
OMe
OMe
H
OMe
OMe
H
5
3
80-90”
C-1
(63)
OMe
OMe
H
5
5
80-90”
t-1
(31)
(24)
OMe
OMe
OMe
rt
w
(-3
h-1
--
-
-
OMe
OMe
OMe
5
3
80-90”
(4
(45)
C-1
OMe
OMe
OMe
5
5
80-90”
(4
(4)
(43)
TABLE XII. ~~INEB, HYDRAZONES, SEMICARBAZONES, AND 0x1~~s Substrate
Conditions
(chti~~ed)
Product(s) and Yield(s) (%)
Refs.
0 NNHAr t
DMF, POCID
142
0 -NMe2
S DMF, POC13
&..NgcHo (86)
bh
479a
6h 0
554
OHC NNHAr
Ar
C02Et
DMF, POC13 Ar
2,4,6-B&H2
(63)
4-N%C&b Ph
(64)
142
(59)
X OHC DMF, POC13
or kh II IIIIII
I XY 0 0 NH 0 NH S s 0
s s
III
(75) (0) 0-v (35) (0) (0) (0) (5% (0) (0) (53) (0) (0) (0) (55)
DMF, (COCl)z
(80)
143 143 144 144 144
140
c12-cl8
OHC DMF, POC13
I, R’ = NMe2 555
1. DMF, POC13 2. NaOH, Hz0
hh
02N
I, R = NMe2
DMF, POC13
02N4(-Jl-N,~y
R H H Ph Ph
(68)
(-)
480
(65) (68) (65)
X R 0 or S H (76) OorS Ph (73)
I, R’=OH
DMF, POC13
X 0 S 0 S
480
480
R=H,Ph
m
475
TABLE XII. IMINES, HYDRAZONES, SEMICARBAZONES, AND OXIMES (Cont&xf)
.
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate c14'c20
R 4-FC& 4-ClC6H4
R
OHC R DMF, POQ
NNHPh
Ah
(85)
138 138 138 475, 476 475, 138 138 138 138
(30)
479
(70) cv
4-BrC6H4
(88)
‘t-&NC&g
(72)
Ph
(W
(50)
4-M&&4
4-MeOCa4 4-PhC&
(92)
CIS-cl8
OH
f
R N-Ph
556
NNHPh
!!---Me Et n-Pf n-Bu
DMF, POCl3
(26) (20) (20)
CHO HN DMF, POC13
481
DMF, FOCl3
481
NEt2 NNHCONH2
$zp3
c16-cl8
Ar
1. DMF, POC13 2. HC104
kj=N-N<
4-02NC& Ph
ClO,
(40)
476
ww 4-MeC&14 (95) 4-MeOC6& (90)
Cl7
NNHPh
/ / I 5m 0 0\
481
cw
DMF, POC13
OHC CHNMe2 557
DMF, POC13
482
c-3
Ar = 4-ClC&I,+ Ph
(8)
DMF, POC13
479
c20
Ph Ph bNNHPh
Ph (45)
475
TABLE
XII.
IMINES,
HYDRAZONES,
SEMICARBAZONES,
Product(s) and Yield(s) (%)
Conditions
Substrate
(cbh~~ed)
AND 0x1~~~
DMF, POC13, 5-10”
Refs.
(72)
482a
(78)
482a
i’h
!‘h
DMF, POC13, 70”
558
c21
N-ph (98)
DMF, POC13
PNNHPh
481
OHC
y2
DMF, POCIJ
483
DMF, POC13
481
D’qNNHPh
NNHPh
OHC% c22
DMF, POC13
;h
g#-,.#-,--N~cHo6) I I
479a
Ph
c23
559
Ph
DMF, POC13
\
olEN&cl b
~NOH
AcO
dP
\
DMF, POC13 (10 eq), 0”
\
AcO dP
(93)
484
(82)
144a
(75)
144a
NOH
CHO
\ Cl
DMF, POC13 (10 eq), 65”
TABLE XII. IMINES, HYDRAZONES, SEMICARBAZONES, AND OXIMES (Continued) Substrate
~
Product(s) and Yield(s) (%,
conditions
~ ~ ~~~ Refs.
c24
560
“Vilsmeier reagent”
Ph
485
TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES Product(s) and Yield(s) (%)
Conditions
Substrate
Refs.
c2
CHO DMF, POC13
Cl
74
(13
ONa
I F 145, 486, 292
DMF, (COC1)2,Et3N
I
(40-50)
ONa
1. DMF, POC13 2. HC104
MezN y&e2 Cl II
1. DMF (2 eq), POC13 2. NaC104
II
OH
Clod-
(40)
292
146
(70)
561
(60)
1. DMF (3 eq), POC13 2. NaC104
146
CHO DMF, POC13
74
(8% Cl
Br
1. DMF, POC13 2. Brz, NaBr
OH
2Br3-
1. DMF, POC13 2. K2C03 3. H+/H20
OHC
DMF, POC13
H2N
(80)
146
CHO A
(65)
74
cm
487
CHO 0
OH
[as a Co(en)z complex]
OH CHO
[as a Co(en)2complex]
TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
0
0 H2N
DMF, POC13 OH
[as a Co(trien) complex]
488
[as a Co(trien) complex]
Me2N 1. DMF, POC13 2. HC104 3. Etfl
0 Cl- H,N+
(81)
OH
OH
149
149
1. DMF, POC13 2. HC104 562
l.DMF,POC13 2. HC104 3. Et@ 4. Ac20 5. KS03
CHO
(a@
1. DMF, POC5 2. HC104 3. Et$‘l 4. (PhCO)20 5. K2co3
149
(51) NHCOMe
CHO
149
(4)
1.DlW,FOCl3
CHO
2. HC104 3. NaOH 4. Seetable
6JHCOR
1. DMF, POC13 2. HC104 3. NaOH 4.4-MeC&i&&Cl
Cord.4 R Ac20 Me (CF,COhO CF3
W) (19)
Phcocl
(39)
F%
CHO 149
(13) NHTs
CN
CN
DMF, (COClh, Et3N
NC
#==J+
Cl
or
e--j
MqN-
OH
149
Me2N~&4e2 N\ Me’ -
1. DMF, POC13 2. HC104
NMe2
5-c Me2N
2ClO4-
145
c-j CHO
(56)
149
CHO 1. DMF, POC13 2. NaHC03
HOUOH
74 CHO
563 c3-CS
R2
0 R’ a
Cl
R’ = COpMe
1. MFA, POC13 2. NH,+PF,
1.3-Cl4F-N-ethylformanilide, 2. NH,+PF,
R’ CN C02Me Ph
I Me
POCl3
C02Me PF6--
R2 X CONHCHO OH (68) C02Me Ph
Cl Cl
489
(87) (75)
490
TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES (Continued) Substrate
Ar
Conditions
1. DMF, POC13 2. HC104
OH
(or carboxylic acid salt)
k .N N,\ ’ NRN$
564
/ t
NMMe N’1 ,d
Ar L
Refs.
CHNMt2 , NMe2 C104I
/lN N\\ Y N’N$
O2N
Product(s) and Yield(s) (%)
I
(60-70)
491
1
(76)
492
I
(60-70)
491
1
w
492
I
(60-70)
491
1
m
492, 491
I
(60-70) Counterion = 2ClO6
491, 492, 493
1
(4
492
1. DMF, (COCl)z 2. PhNH2, C5H5N 3. NaHC03 (aq)
(56)
494
C02Et DMF, POC13
Et02C
OK
3-c MQN’
74
(58) ‘CHO CHO
DMF, POC13(6 eq), 90” H02C*N-C02H H
149a kH0
G
CHO DMF, POC13
wC02H
(37) OHC
CHO
+
(5)
OHC
152
CHO Cl
c6-cl0
0
565
HO v
0 OH R
1. DMF, POC13 2. Seetable
CHO or R
3. Seetable I
R CH2CH=CH2 n-Bu n-Bu Bn Bn
DMF, POC13
c7-c8
DMF, POC13
Me2NykJMe2 R II
Cond. 2 OHMe2NH2+C104Me2NH2+C104OHMe$H2+C104-
Cl04
Cond. 3 I (50) OHc-4 (0) (47) -
148
II (0) (0) (31) (0)
(0) (41)
.,b,,,,(13) +oHc&:o(5J 152
TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND AClD CHLORIDES (Continued) Substrate
Conditions
DMF, POC13
Product(s) and Yield(s) (%)
)j,
(45)
+ $joH
Refs.
(6)
152
Ph Ph
OH
1. DMF, POC13 2. NH2NH2
495
t-1 N
DMF, POQ
153 OHC
566
DMF, PO@
CHO
OHC
153
(17)
CHO F C-e2
DMF, POQ F
F
(16)
4%
(-)
4%
F
1. DMF, PO@ 2. OHF
F
CS-cl2
0 Ar
OH
0 Ar -A
Ar
CHOH 1. DMF, POC13 2. OH-
Ar K
w5 CHO
1-naphthyl
(73) (56)
4% 497
CHNMe2 DMF, lWC13
OH (or carboxylic acid salt)
Ar K
CHO
w5
2&c&&o 3,4-c&& 4-ClCfjI& 2-&NC&I.4
‘!-02NC&j Ph
567
Pha 3-HOC&l4 4-HOC& 3-MeC& 4-MeC&$ 4-MeOC&
t-1 (52) (73) (72) (92)
(68) G-40)
496 379 147 147 147 498 147,499 74 151 151 147 147 147 147
3,4,5-(Me0&&
(37) (40) (4 t-1 t-1 (53) (75)
1-naphthyl
(66)
147,500, 501 497
3,4-tMeWGJ-b
t-3
501
3,4-~H2%& 4-MeSC& 4-MeSOC& 4-MeS02Cd-Q W-(MeO)2W3
MFA, POC13
(36) (3) (91) (65) (58)
498 498 498 147, 500,501
TABLE xm. Substrate 0
OH (or carboxylic acid salt)
C~RBoxvLrc
Acm,
ANHYDRIDES, AND Am
CHLORIDES (c0ntinued)
Conditions 1. DMF, POC13 2. Seetable
Product(s) and Yield(s) (o/o)
Ar Ar
4-02NC&
Cond. 2 NaC104 HC104 HC104
Ph
NaClOd or HClO4 (92)
3-HOc6H4 4-HOC& 4-HOC&
HC104 HC104 N&‘&j b
(47) (W
4-NE&, 2-MGH4 4-MeC&
HC104 HC104 HC104
(-4 (4s) (91)
4-MeC& 4-MeOC& 4-MeOC&t
(70) (70)
4-Et4-Et3-indolyl 4-n-Prc& 4-n-PrOc(jH4 4-n-BuCsH4 4-n-BuOC&
NaC104 HCI04 NaC104 NaC104 HC104 HC104 NaC104 HC104 HC104 HC104 HC104
4-n-BuSC&
HC104
4-C&H4 4-BG3-b
568
W-(MeO)2Cd3
1-naphthyl 2-naphthyl 4-n-CsH1
lc6H4
ew cw
(86)
llm6H4
4-n-C8
13c6H4
Mg(ClQh ’ HC104 HC104 HC104 HC104 HClO, HC104 HClO,,
~+z-C~H,~OC& 569
4-n-CsHl7c6H4
~+z-C~H,~C~H~ 4-rK)3H~7oQH4
4-n-C,H && 4-n-Cd-hg~&t 4+Clti2lw4 4-~-C10H21wa-b
CHO
234
(85)
4-n-W 4Phc&
4-n-C&I *3sqjH4
(81)
(39)
’
Mg(ClO& HC104 HC104 HC104 HC104 HC104
(75) (4 (79) (-3 (4
u38) 035) WI (95) (7s) (83) t-1 (96)
(81) (81) (76) (95)
X Cl Br
(75) (61)
H
(75)
74,493, 502 74, 151, 292,493, 502 151 234, !51 503 502 493 234,493,
(84)
(94) WO (75) (83) (69)
NaC104 HC104 HC104
402 493
502 402 234,493 402 74 234 234 74 234 234 234 234
WV (69) (78)
Mg(CQh HC104
4-n-C7H15W4
DMF, POC13,(6 eq), 90”
(77)
4-n-CsH, &&& 4-n-C5H1,OC6H4
4-~-W13~6b
OH
Refs.
74 493 234 504,505 234 506 493 234 234 234 234 234,154 234 507 234 234 234 234 234
149a
TABLE XIII. CARBOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES (Continued)
Ia,/ cw Ia/,
149a
DMF, POC13,(6 eq), O”-rt
N-C02H H
C02H
Refs.
Product(s) and Yield(s) (o/o)
Conditions
Substrate
\
CHO
DMF, PO@, (6 eq), 90”
149a
1. DMF, POCI:, 2. HC104
74
1. DMF, POQ 2. HC104
74
ONa
OH
1. DMF, POC13 2. HC104
X-C02H
570
Me2NThe2 NY Bn’ -
NMe2
2ClO4-
149
(62)
0 Ph
OH
135
Me$W=CHCHO, POC13or CO&
0
508
(93)
.
E
Ph K
OH
DMF, POC13
(30)
+
(35)
508
S CHO
C02H DMF, POCl:, I
153
(45)
I
n
/a/
0
C02H
\
I
MFA, POC13
C02H
\
0
I ‘/
571
(W
489
(80)
150
(4
509, 150
\ I
\+
%3
N
/
0
Me DMF, POC13 C02H 0 DMF, POC13 0 CHNMe2
C02H
1. DMF, POC13 2. EtOH 3. NaC104
Eto2c~;Y;,,,,-
(-->
402
Substrate
TABLE XIII. CAREOXYLIC ACIDS, ANHYDRIDES, AND ACID CHLORIDES (Cmtinued) -Product(s) and Yield(s) (%) Conditions
0
0
SfA
,X ‘~1
Amide, POCl3
‘0
Amide N-forrnylpyrrolidine N-formylmorpholine N-formylpiperidine
0
C02H
572
w2H
N-C02H H
DMF, POQ, (6 cq), 90”
510
X (CH& (70) (CH&O(CH2)2 ( 100) (CH& (60)
149a
(45)
CHO
C02I-I / \ I @
Refs.
c-4
CHO 1. DMF, FQC13
36
CHNMQ
C02H
Ho2cxr@
1. DMF, POC13 2. NaC104
H02CnC02H
1. DMF, POC13 2. NaC104
MqY/NM”2 w //
me2
2c104
1
\
I
36
me2
(82)
1. DMF, POC13 2. NaC104 3. K2co3
(65)
36
36
(a@
152
DMF, POC13 Q&CO9 CHO
Cl1
CHO
y02H
573
DMF, POC13
DMF, POC13 aC02H
CHO CHOH
DMF, POC13
153
(91)
(87)
511
TABLE XIII. CARBOXYLIC ACIDS, ANHYDRiDES, AND ACID CHLORIDES (Continue& Conditions
Substrate
Product(s) and Yield(s) (%)
Refs.
512
1. DMF, POC13 2. NaHC03 (aq)
Cl5
C02H
DMF, POC13
(70)
511
574 Cl7
OH 1. DMF, POC13 2. NaHCOj (aq)
’ In this example, reaction with DMF, POC13was followed by treatment with K2C03. b The counterion in this reaction was PFe-. ’ The first condition was not reported.
512
TABLE XIV. ESTERS AND LACTONES Substrate
Conditions
Et02C
Et02C we2N=CHCI]+ Cl-
-7I
CHO (48)
-If
N2
I CL 0
Refs.
Product(s) and Yield(s) (%)
+
Et02C -cl
(55)
160
N2
and/or 0
(-x 0
O
1. DMF, POC13,0” 2.60-70”, 3 h 3. HC104
(80-84)
Et02C Et02C -CN
DMF, COCl;!
Et02C -C02Et
DMF, COC12
Et02C
513, 514
575
CN -If CHNMe2
(75)
156
C02Et -Y CHNMe2
(81)
156
c8
CHO DMF, POC13
151 CHNMe2
CHNMe2 (41)
C02Et
DMF, POC13
C&Et
157
(50)
hNMe2
515
DMF, POC13
NH
(W
TABLE XIV. ESTERS AND LACTONES (Continue&) Conditions
Substrate
--~-
Product(s) and Yield(s) (%)
DMF, POQ
DMF, POCIR -C,,,,
C02Et
Refs.
(59)
158
U-W
157
CHNMe2 Cl7
576
DMF, POC13
(32)
516, 517,
c22
/ 0 /\ I \ I c\ I00
518
DMF, POC13
’ The starting material is as shown, however, the author statesthat it reacts as the cyclic lactone.
159
TABLE XV. AMIDES AND LACTAMS Product(s) and Yield(s) (%)
Conditions
Substrate
0 H
519, 520
(40-50)
ml3
K
Refs.
NH2
c2
0 H
K
HCONH2, POC13 NHMe
c4
577
N-C02H H
(82)
DMF, POC13
472
H 0 DMF, POC13
Me2N
1. DMF, COC12 2. NaC104
Me2N
CHO 5-f
Me2GL I, x
1. [MeN=CHCl]+ Cl-
74
(76)
CHNMe2
NMe2
X-
(86)
74
=c104-
(54)
I, x = clo4-
521
2. HC104 [MezN=CHCl]+ Cl-
I, x = Cl-
(-)
522
TABLE Substrate
.- -
XV.
AMIDES
AND LACTAMS
(Continued)
_
FM-K.
Product(s) and Yield(s) (SC)
Cor?ditions
c4-c6
n HCONH2,
POC13
162
1
(9)
2
(15)
3
(7)
R DMF, POC13
H
(9)
523
Me
(55)
175
n-Bu
(-)
175
Ph
(35)
523
578 c4-cl2
0 POq
Me2N
MezN
v-5
0
R
R
R
H
(74)
524
Me
(52)
524,
Et
(61) (60) (61) (57)
525
i-Pr n-Pr n-Cd-67
524 524 525 524
c4-cl8 NH2
H2NCH0,
POC13
R2
N’ I \ i-
1 N
R’
R2
Me
H
(32)
Me
Me
H
Et
cm (16)
H
n-Pr
(17)
H
n-Bu
(17)
Me
n-R
(lf9
H
n-C8H17
(16)
H
n-G&g
(27)
H
n-C16H33
(21)
162
G-C7
1. [MezN=CHCl
0 R
Me2N J-L
2. Me2NH
R
J’ Clme2
Me2;
3. NaC104
c104-
R
CN
(86)
C02Et
(40)
521
G-C13
579
CL>
R
n
r;’
R
coc12
O
Poc13
ll
Me
1
(90)
Et
3
(61)
Ph
1
633)
c-C6Hll
1
(83)
161
(-pNHR +&-JJ I Ii
II
I R
n
I
II
Me
2 2 2
F-1
(4
c-3
c--->
C-4
C-1
Bn (CHM’h
R
:;;, X=ClorI
TABLE XV. AMIDES AND LACTAMS (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
Cl PF6-
1. MFA, POC13 2. NaPF6
R’, R’
R2
Me, Me
Me
-CHd2WWk-
(76)
Cl
-(CH2)4-
Me
(60) WI
--WbhWH2h-
Me
(79)
--U-bhW&)2-
U-UOH
(W*
-WbhWHh--
Et
-(CH&O(CH&-
i-Pr t-Bu
(73) (78) (30) (93)
--4CHd2WCW2tie
/-I?‘\ \‘A/
CH2C1
-(CH2)20(CH2)2-
--WbhO(CW2Bn *R2 = (CH&Cl in product
163
c6
161
580
DMF, COC12
Et2N
Et2NL
NMe2
(23)
cOC12
.
161
(83) Et2Nu NH2
I
HCONH2, POC13
H2NbNH2
0
N’ \ cm N OHC
NHCOMe DMF, POC13
DMF:POC13 R 1:3 H (77) 3:7 CHO (72)
DMF, POC13
\
472
(W
NHCOMe / d
162
(14)
S
164 165
c6-cl0
RkL,i 0
R’ Br Me Me
DMF, POC13(1:3)
S
R2
(79)
-(CH2)4-
DMF, POC13(3:7)
164 165
I-l (66) H (79) Me (72)
R’ Br
H
R*
Me Me
H Me (73)
-(CH2)4-
164 165
(66) (62)
(88)
581
c7
r-N
Bu-n
1. POC13,toluene or C1C6Hs,O-20” 2.80”, then DMF 3. lOO”, 2-3 h 4. NaOH
Cl Bu-n
OHC
(55)
528
(80)
161
0 NA
coc12
G
Ph
1. R’R2NCH0 , POCl3 2. HC104
R2R1;yNR’R2 Ph
C104-
X
R’
;
;:
R2 Me Me
S
--W2)4-
S
----PbhWHh-
(36) (61) (96)
(82)
529
TABLE XV. AMIDES AND LACTAMS (Continuedj Conditions
Substrate
Product(s) and Yield(s) (%I)
-R
C! DMF:POQ 1:3 3:7
NHCOMe DMF, POC13
582
1. DMF, POC13 2. H2NOH
NOH
Refs.
\ CN QQ ’
R H (52) CHO (39)
4C1 ltw, 165
530, 531
(70)
Cl
DMF, POC13
532
DMF, POC13
533
R = H, Cl, NO2
CHO
DMF, POC13
Qcsx N H
178, 179, 533
(48)
Cl
CS-c9
‘N
1-Me-2-pyrrolidone, POCl3 /
;I$&)
R*=H,R2=OMe
583
Qc% N R
DMF, POC13
DMF, POC13
0
(20)
/
11
Qcox +/ N I:
181
Cl 533
(4
cme2 c1
R H (90) Me (85)
PO2C12>--
180
R
NOH
DMF, POC13
169
TABLE Substrate G-C
XV.
AMIDES
AND LACTAMS
(Continued)
Conditions
Product(s) and Yield(s) (%)
Refs.
iI
R4 DMF, POC13
584
R’
R*
R3
R4
H
H
H
H
(78)
166,167
H
Cl
H
H
(25)
166, 167
H
H
Cl
H
(2)
166
H
H
Br
H
(23)
166, 167
Me
H
H
H
(67)
166, 167
H
Me
H
H
(66)
166, 167
H
H
Me
H
(70)
166,167
OMe
H
H
H
(5)
166
H
OMe
H
H
(89)
166,167, 534
H
(56)
H
(92)
167
H
H
C-1
535
H
Me
H
(32)
167
OMe
OMe
H
(72)
H
H
H
SMeH
H
N3
Me H
OMe
166,167
166, 167, 534
OMe
H
H
OMe
(50)
H
OMe
OMe
OMe
(92)
536 166, 167, 544
R’
c8-cl2
0
R*
R3
DMF, POC13, 80-90”
H
(45)
Cl
(48)
OMe
(58)
H
(39)
H
H
Me
(62)
Et
H
H
(36)
H
-(CH=CH)*-
Me
H
93a
(51) H
(41)
c9
X 174a
1. DMF, POC13
“-/;-,A
NH2
2. NaC104
585
MezNCOPh,
POC13
4-O*NC&I4
0
(76)
Ph
S
(85)
4-02&j& s
(69) 536a
(89)
Ph
Cl
n
OHC DMF, POC13, 80-90”
1
N-(CH2),Ph
(11)
93a
2 cw
Me
Me
N’
1. DMF, POC13, 0”
A
N
Me
A
N X
Me
X R
N’
2. 70”, 3 h R=H,Me
R
OH
(60-64)
Cl
(-4
537
TABLE Substrate
XV.
AMIDES
AND LACTAMS
(Continued)
Conditions
R5
Product(s) and Yield(sj
(%)
R&S.
Rq&R:
Ee; ; ; ; (62j171
R3TN/hCI
;
;
E;e
;
Me
H
Me
H
H
OMe
H
H
H
H
DMF, POC13
G&2
J .
:;;
;;
H
H
(78)
171
OMe
H
(69)
164
OMe
H
OMe
(55)
165
OMe
OMe
OMe
(71)
164,
R4
165 DMF, POC13
586
R*
R3
R4
Cl
H
Me
H
(28)
171
CN
H
Me
H
(13)
171
CN
H
OMe
H
WV
538
CH2C1
H
OMe
H
(76)
171
(CH2)3CI
H
N3
H
t-1
535 171
(CH2)2Cl
H
Me
H
tw
(CH2)2Ci
H
OMe
H
(76)
171
CH2Cl
OMe
H
OMe
(22)
536
Me
H*
H
NMe2
(76)
539
Me
OMe
H
OMe
(70)
536
Et
OMe
H
OMe
(75)
536
n-Bu
H
H
H
(75)
171
CH2C02Me
H
OMe
H
(56)
171
C02Et
OMe
H
OMe
(64)
536
*R* = CHO in the product.
c9-Cl4
168
or
DMF, POC13
II
I
587 H
R’
R2
R”
I
II
Cl
Me
H
(43)
(0)
H
Me
H
(43)
(0)
H
(CH*)*OEt
H
(43)
(0)
H
Ph
H
(43)
(0)
Me
Me
H
(0)
(19)
Me
Me
Me
(0)
WI
R’
R*
[(R*),N=CHCl]+Cl-
H
tCW2WH2h
(77)
173a
[(R2)2N=CHC1]+Cl-
Me Ph
WWV-hh Me
(75)
173a
(95)
173a
Ph
Me
(50)
173,
[(R*),N=CHCl]+ClCOC12, DMF
173a, 174
DMF, POC13 k3
Cl
(46)
168
Cl
(67)
168
H
H
Et
Cl
(55)
168
Me
H
Me
Cl
168
OMe
H
Me
Cl
(28) (22)
H
Me
Me
Cl
(43)
168
H
H
Me
OMe
(6)
168
H
H
Me
SMe
(23)
168
H
H
Ph
Cl
e-3
540
(40)
168
(2)
168
H
H
Me
Ph
H
H
Me
PhN(Me)SOz
168
TABLE XV. AMIDES AND LACTAMS (Continuea?
R2
R’ H
R’
R3 H H F H Cl H Cl H
H
2,bC12C& H
1. DMF, POC13 2. KMnO4
0
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
588
2-FC& 2-FCa4 Ph Ph 2-MeC&
H H H H
2-MeC#4 Ph Ph Ph 4-ClC& Ph
H H H OMe
H
R4 H H
(72) (32)
I-I I-I I-I H H H
(30) (58) (48) (54) (32) (37)
182
H (37) Me (36) H OMe H (33) OMe H (27)
Me
OMe -(CH2)3-
H
(15)
Br
Cl0
/ON&
171
(13)
DMF, POBq
H
Ph 536a
Gw
MezNCOPh, POCl3
Me
0
541
(56)
1. DMF, POC13 2. 105”, 2 h
Me
a
UN+ \
~)Ico2H
DMF,
POC13
N,
H
210
(68)
P
CHNMe2
0
CHO DMF, POCl3 (3: 1), reflux, 1 h NHCOMe
ctl
I
(8)
\ S 1
589
I
(76)
+
II
165
(12)
CHNMe2
DMF, -
NEt2
NEt2
CoCl;!
(80) 165
II
-
DMF, POCl3 (3: 1), reflux, 15 min
Et2N&
+ (-&)-cl
NHCOMe
542
(-4
161
(75)
0 144a DMF, NOH
F’OC13
%&Cl
4-Mec& 4-ClC6H4 4-MeOCbH4
c-4 (4 (--)
TABLE XV. AMIDES AND LACTAMS (Continued) Conditions
Substrate
?roduct(s)
H
R2
178, 179
(84) 4-MeOC,&t (4 1)
DMF, Poclj
HCONH2, POC13
Refs.
and Yield(s) (%)
t$-pp lb
R2
R’ H H
R2 Cl H
(42) (29)
Me2NU-U Me2NV-b)~
H Cl
(18)
R’
(5)
R2
H c1
178
(23)
DMF, POC13
162
590
DMF, POC13 NHCOMe
R;&J-cl +R;s
170
A2
Ii2
II
I RL H H H Me Ph
I
R2
II
4-cG8-b (13) 4-02NC6H.4 (8) Ph (14) Ph (23) Ph (25)
(53) (35) (53) (47) (49)
CHO
uw
1. DMF, POC13 2. NaOH
-J I Y& S
DMF, POCi3 Q,n H
176
i--i
0 CHO
Cl3
c1 k
+ NMe2 Cl-
173, 173a
(90)
OHC 591
Ar
NCOAr I Me
i. DMF,
m.:3
Md-!X~N~~
3
2. H2NNHCd-&N02-4
n
4-M&Q&
1 (68)
3-M-
3 (51)
543
b-m-4
c14-cl6
Ar DMF, POC13 H
Ar Ph 2-Clc6H.4
3-&Nc&..j 4-NCC& 4-MeO&C&
(80) (82) (75) (73) (75)
544
TABLE XV. AMIDES AND LACTAMS (Continueit) Substrate
Conditions
c14-Cl7
Ar
sxNL H
DMF, POCIB
0
.Refs.
Product(s) and Yield(s) (%)
\Ar a / (-4
172
Cl
Ar = 2-FCsH4,3-FCsH4,4-FCsH4, 2-C1CsH4, 4-cw4, 4-hc6H4, 4-HoC6~4, 4-NCCsH4, 4-CF3C6b9
2-MeC&,
d-Mecb&,
3-MeOC6H4,4-h”koc6& 2,5-(Meo&j&
2-hieoc&,
4-Mesc6H4, 4-i-Pr0C6H4,
592
DMF, POC13
OMe H H OMe H SMe H H H H OMe H H NMe2 H H
R3 H
R4 H
H H H H OMe SMe H H n-P10
H H H H H H OMe H H
(42)
c-4 c-4
536 172 172
iSi
i -Me-2-pyrroiidone, POCi3
Ph
Ph
~NH
(95) t--> 6) (4 (-4 (4 (61)
171, 172 171 172 172 172 172 172
DMF, POC13
LLSo
Cl CHNMe2 Me, 1-Me-2-pyrrolidone, POC13
Ph
R’ Me
R’R2NCH0 , POCl3 593
-KH2)5-WhWWr-
R2 Me WO
545
m PO)
Ph
Ph 1. DMF, POC13 2. Klan04
(80) CHO
DMF, POC13
182
TABLE Substrate
XV.
AMIDES
AND LACTAMS
(Continued)
Conditions
Product(s) and Yield(s) (o/o)
Refs.
%-cl6
R,aNple
DMF, POC13
H
R’
R2
Cl
H
CF3
H
(66) (60)
Cl
OMe
(66)
173
cl6
CHO
DMF, POC13
(50)
547
594
0 Ph
(25)
1. DMF, POC13
182
2. KMn04 CHO C16G8
qJ& \
R 1, DMF, POC13
H
(80)
2. NaC104
Me0
(80)
548
0
Cl7
(60)
549
43
NR’R2 R2R’N
ph,N A
1. FQc13
0
&2h
+
549
&+
2. N-&+ PFePF6-
A3
ii3
A3
n
R’
R2
R3
I
If
1
H
Ph
H
(0)
(55)
595
2H
1. Pocl3,
PF6-
II
I
PhH
(0)
W)
1
Ph
Me
Me
(74)
(18)
2
Ph
Me
Me
(90)
(0)
1
Ph
Ph
Ph
(98)
(0)
2
Ph
Ph
Ph
(39)
2
Me
Ph
Ph
(6)
(30)
PC15
2. NH4+ PF6A3
PF6-
n
R1
2
-(CH&-
R2
R3 Me
(-) (trace)
549
TABLE XV. AMIDES AND LACTAMS (C’nnrinued) Substrate
Conditions
Product(s) and Yield(s) (%)
DMF, POC13
Refs.
177
596
DMF, POC13,CHUB, reflux AcO
(18)
550
C-1 (90) (95)
545 545
AcO
R’R2NCH0 , POCl3 AcO R’ Me
R2 Me -+H2k-
--4CMz)2WWr-
550
c22
DMF, POC13
(94)
Cl CHNMe2 c23
Pi12NUNEt2
PF6-
1. Poc13 2. N&+PF6-
(48)
549
c27
597
550
DMF, POC13
H ’ a The acid cyclizes to the lactam before reacting with the Vilsmeier reagent.
TABLE XVI. IMIDES Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
CYCIO
DMF, POC13
598
DMF, POC13 R
R Me Et i-Pr Ph
(40) (41) (74)
R H Me Et n-Pr Ph
(1) (21) (53) (85) (41)
(72)
R’ H Me 4-ClC&
DMF, POC13
3-&NC& Ph 4-MeCeHa R 3-clcbH4 3-02NC6H4 Ph 3-CF3C6H4 H
R DMF, POC13 0A
0 r:
DMF, (COC1)2
183
185
R2 R3 H H Me Me H H H H H H H H
(66) (-) (30) WV
(61) (10)
184 551 184 184 184 184
(80) (61)
186
(72) (75) (65)
C6 Cl
Cl 0 cr G-Cl0
Pi
599
/ 07 \
DMF, POC13or COC12
0
1
N.
0
OIxcl
0
R
0
DMF, POC13 DMF, POC13 PhNHCHO, POC13 MYA, POC’‘3
187
(66)
R 0
R H Me Me
X OH OH NHPh
?Ae
LN$P\Dh up 11
(96) (75) m (8%
I88
TABLE XVII. Substrate
NITRILES
Conditions
Product(s) and Yield(s) (%)
Refs.
c2
Me-CN
Me2NyCH0
DMF, POCl_:
c3
(32)
CN
(-4
552
(17)
553
CN
Me2N4+cN
DMF, POC13
NC-CN
lA< * I...
Cl CN
631)
600
1. DMF, POC13,COC12,or (COC1)2 2. HC104 1. [Me2N=CHCl]+ Cl2. HC104 1. DMF, POC13or [Me2N=CHCl]+ Cl2. HC104
Cl
1
189
I
(81)
189
NC
189
3. NH3 (4 II 1. DMF, POC13or [Me2N=CHCl]+ Cl2. HClO‘, 3. aniline
R’, R2= Me (60)
II
R*=H,R2=Ph
II
R’=Me,R2=Ph
(90)
189
4. NH3 taq)
1. DMF, POCI3 or we~N=CHfCll+ Cl2. HIclOd 3. IV-methylaniline 4. *NE!3 (aq)
(90)
189
:10>
190
CN DMF, Pocl3
or CIco~Et
CN R’ R2 Me Me (33) Me Ph (42)
R1R2NCH03POCl3
554
CHO CN
Cl
DMF, POC13
145
C-1 CN
601
R Me
=13
i-F%
c-C& G9-h n-w-h n-CBH17
(80)
(39) (r;?) (57) 3 (75) (75)
G
191, 555 191, 555 191 191 191 191 191, 555
C02Et
0 CN
DMF, POC13or CIC02Et
(31)
190
CN
R’R2NCH0 , POCl3
R’ R2 Me Me (48) Me Ph (71)
554
TABLE XVII. Substrate
NITRILES (Continued)
Conditions
Product(s) and Yield(s) (%) R’ Me Me Et Et i-Pr
R2
CN
“I--r;-^ii”’ N\ N
POC13
YCHR2CN
0
POClj
(26) (23) (37) (40) (44)
192
R’ Me Et
NR’R2
R1lN/JI/CN
R’ Me Et Me Et Me
CN
R’ Me (84) Et (76)’
-W-bhOWbhMe
NR’R2
556, 191
(86) (81)
-dCH2)4-
Ii2
Refs.
Ph (76)
c&16
R2 0
602
R1’N
R2
Cl CN
Me2NCOR3,POCl?
N\
H
0
Cl
YR3
+
N
R”
\ 7% N /N
YR3
I
II
R’ Me Me
R2 Me s-Bu i-F% Et c-Cd-Ill Et c-C& 1 n-Pr c-C&l1 1 n-Pr c-C&Jt 1 n-Pr C-C6HII Ph c-C~H~1 2-MeC&
c6
c1
R3 Ph Ph
I II (21) (14) (52) (21)
Ph Ph I-I Me Ph Ph Ph
(53) (0) (55) (0) (37) (19) (25) (0) (60) (0) V-40)(0) (69) (0)
193 193 193 193 193 193 193 536a 536a
FHO
CN DMF, POC13
558
(34)
194
c6-c7
X
R
Me-&y
me2 C104R
cy” ’
0
r;
X
0
0 S S S
&N
I YN or
R H OMe Bn H OMe
I
(81) (93)
(83 (98) (83)
(88)
603
NH*
;
NH*
OMe Bn H Me
(0)
(0) NH* (0) NMe (94) NMe (85) NMe OMe (91) NMe Bn (95) *X = N in products II c6-cS
R’ H
R’ R2
DMF, POC13
CN
CN DMF, POC13
Me2N,#
H Me Et CN CN
Cl
R2
R3
Et
Me Et Me
(15) (19) (22)
Me
(23)
n-Pr
Et Et
X N CH C(W
(71) (87) (95)
II (0)
194
(0) (0) (0) (0) (0)
030) (83) (79) (0) (0) (0) (0)
196
553
TABLE Substrate G-C12
XVII.
NITRILES
(Continued)
Conditions
Product(s) and Yield(s) (%) NR1R2
0 MezNCOCHzPh,
R2
R3
Me
Me
(16)
Me
Et
j17j
+CH2)4-
Me
(35)
+CH2)4-
Et
(40)
R’
R2
R3
Time
I
II
Me
Me
i-Pr
2h
(9)
(10)
Me
Me
(75)
i-Pr
16 h
(0)
-(CH2+
i-l+
2h
(31)
(23)
--(CH2)4-
i-Pr
16 h
(0)
(88)
604
Et
Et
i-Pr
16 h
(62)
(0)
Me
Me
CH#h
16 h
(0)
(60)
CN
DMF, POC13
CN
R’
PO&
Refs.
559
157
(69)
R R=H
DMF, POC13
195
W)
S-CN Me2N’
OHC,/CHO I R=Me
R=CF3
DMF, POC13
DMF, POC13
OHC
(67:
195
OHC
(93)
195
CHO I, R =CF3
605
R = Ph
DMF, POC13
I, R=Ph
R = 4MeOC&
DMF, POC13
I, R=4-MeOC&
(75)
195 (51)
/\ -0;:
195
NO2
DMF, POC13
CN
F
(81)
218
I
hIMe.
0 CN
1. DhIF, POC13, 10-12”
Ph
A
NH2
+
2. 60-70”
phGNI.j2
+
CHO
(8) +
aq~Omo CHO
(3)
ph$Nyph CHO
m&me2
CONH2 (1)
H (13)
+ H
560
(1)
TABLE XVII.
f-2”
NITRILES (Continued)
naac YlVll‘,
CN
CL/
nnri L UL13
Refs.
Product(s) and Yield(s) (%j
Conditions
Substrate
/n\
1fIL I7U
\7)
Cl
DMF, POC13
218
(87)
Me0
Me0
CN
Me0
561
DMF, POC13,1lo- 120”, 2 h Me0 CHO
606
OMe 1. DMF, POC13,10-12” 2.60-70”
/ / CN
+
hdNH
(10)
NMe2
/ \
NH2
/
I
0
ff
560
OMe I
I
?
1. DMF, POC13,10-12” 2. 60-70”
OMe
+
(2)
I
\ b
OMe
CN
425
(4
H2NCH0, POC13
r:
(7)
fi\‘I
’
NA
NMe2
(11)
(1.5)
+
560
2
Ar = 4-MeOC6H4
DMF, POC13,100-l lo”, 3 h
(6)
561
Cl &HO
a\
*--i,N ,/I \ Q&
CN
/
DMF, POC13
I
0
0-CN
607
NH2
\ PhA#
CN
562
(5)
Cl
MezNCOPh, POC13
536a
(85)
Ph MqNCOC&.Me-2,
POCi3
(50)
+
N\
YAr
NMe2
(13)
536a
Ar = 2-MeC&
R
\ ov
CN
CN
DMF, POC13
/ I ;;lr \ N
CN
R H Me
Cl
(11) (10)
196
TABLE XVII.
DMF, POC13
R’
NITRILES (Conrimed) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
b,A I
R2 Me (65)
R’ Me
COzMe Cl
-(CH2)3-
(35)
-(CH2)4-
(50)
197
--CH2ChH4(20) Me (35) Ph -+CH2)2Cd4-
(40)
c9-Cl7
608
0 NC
H2NCH0, POC13
R \r
Ar
(6) (10) t-1 (4 (-3 C-1 (-3 c-1 (0) (4 H
(23)
W-(MeOhC& 3,5-Me&& 3-ClC6H4 3-MeC& 3,5-Me&&
H Me H Me H H Me Me Ph Ph Ph
(-4 C-1 t-1 6-J C-1 6) (30) (4 C-1
198 198 563 563 427 563 427 563 198 563 563
3,h(MeO)&jH3
Ph
(4
c-1
427
3-ClC& 3-ClC(jH4 3-M&6b 3-M&& W-(Me0hW3 3,5-Me&&
DMF, POC13,I lo-120”, 4 h
(16)
561
@I
CN I CHO 1. DMF, POC13 2. HCl
Cl -
(59)
529
3. HC104
609
OMe 561
DMF, POCl~, 1W-120”, 4 h
e1 OMe NH&HO, POC13
427
TABLE XVII. Substrate
NITRILES (Continued)
Conditions
Refs.
Product(s) and Yield(s) (so)
OMe
OMe
OMe DMF, POC13,90-95” CN
Me0
Me0 CHO
I OMe 1. DMF, POC13,10-12” 2.60-70”
(4) + I Me0
(52) +
560
NH2
OMe
610
H2NCH0, POC13
(4
425
(8)
561
(81)
157
Me0
OMe
OMe DMF, POC13,1lo-120”, 4 h
Cl
CN CHO
DMF, POC13
/ I\ \ N’ CN I (+ me2
DMF, poC3
564
DME
218
m3
611
R H (41) Ph (79) . ,
214
NCc12+3
OMe
OMe
CN
HzNCOMe, POC13
198 MeO+x
+ Meo&CN
COR
R
N
I
II R
I
II
Me (58) (6) Et (45) (9)
TABLE XVH. NITRILES (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
Refs.
OMe
DMF, POC13
196
612
CN CWC16
CN Ar ’ This entry is from reference 191 only.
Ar Ph (80) 2-MeCeHd (69)
PhCONMez, POC13,lOO”, 16-18 h Cl
557
TABLE
XVIIIA.
METHYL
AND METHYLENE
GROUPS ACTIVATED
BY A FULLY
CONJUGATED
MOIWCYCIX
RING Refs.
Product(s) and Yield(s) (%)
conditions
SUbStrate
\__
!-?
1. “Vilsmeier-Haack” 2. H2NOH
200
O-N OHC,
-
613
MqNCHS,
POCl3
(5%
/ I\ 63 S’%
201
(-)
DMF, 4-MeC&$02CI
A
N’ PhCONR2, F’OC13
220
X N
R R
4-ClC&
Me
(63)
~CGa?
-cH2)5-
(21)
Ph
Me
(58)
Ph
+CHNW-bh-
(45)
202
TABLE XVIIIA.
METHYL AND METHYLENE GROUPS ACTIVATED BY A___. FULLY CONJUGATED MONOCYCLIC RING (Continued) ..__ .__.._ - _ ._.._._-.-Product(s) and Yield(s) (%) Conditions
Substrate
Refs.
C4N2
Pyridazines G
Y I
P‘I\ N .N
199
DMF, POC13
I X=CHO,Y=NMez I X=CHO,Y=OH
1. DMF, POC13 2. HO-
(91) 199
(-)
Pyrimidines OH
G
565
DMF, (COClh 614
AN r\ I ’ N
204,
1. DMF, COC12
AN c\ I ’ N I X = H, Y = NMep2HCl
2. HCl
1. [ClCH=NMe2]+
Cl-
I X= H, Y =NMe2
566
(80) 567
(56)
2. HODm,
(CO(32
1. DMF, COC12
I X=CHO,Y=NMez
568
(-)
I X=CHO,Y=OH
(-)
566
I X =CHO, Y =OH
(47)
567
2. H20
[ClCH=NMe# Cl- (excess)
OH
1. D,MF, POC13 2. HO-
R’
R’ H
R2
Ph H
H Ph
/IfI\ \‘“I
H
569
(62) (48)
228
1. DMF, POC13 (aq)
570
2. NaHC03
X I, X=CHO I, R = Ph; X = CH=NMe2+ Cl-
(63)
228
615
N-N HCONH2,
F’OC13
1. DMF, FQC13
R’
R2
H
Me
(6)
Me
H
(12)
569
(43)
OHC
571
2. Na2C03 (aq) HO
0 NH
1. DMF, POC13 2. K2C03
OHC
(a@
HO’
-R
Me Et
(10)
(28)
569
TABLE
XVIIIA.
METHYL
AND METHYLENE
GROUPS
Substrate
ACTIVATED
BY A FULLY
CONJUGATED
Conditions
MONOCYCLIC
Product(s) and Yield(s) (%)
RING (Continued) Refs.
c8
(6)
1. DMF, POC13
616
OT 'N
'
N
//J
2.N&O3
(aq)
H2NCH0,
POC13
569
(23)
+ CHNHCHO
c9
H
OH 1 ‘N
:q
/
OH 1. DMF, POQ 2. H20
K
(65)
572
N
OHC
G-C15 R4 R4 573
DMF, POC13
R’
R2
R?
R4
Term
R’
R”
CHO
(70)
H
H
Me
H
95”
H
OMe
H
H
H
-
Cl
CHO
(73)
617
H
CONH2
Me
H
-
H
CN
(98)
Me
H
Me
H
-
Me
CHO
(36)
H
CONHMe
Me
H
15”
H
CONHMe
(72)
H
CONHMe
Me
H
95”
H
CON(CHO)Me
(85)
H
CONHNH;!
Me
H
25”
H
CONHN=CHNMe2
(70)
H
CO-2
Me
H
60”
H
C02H
(45)
H
CONH2
Me
Me
-
H
CN
(78)
ph
H
Me
H
-
F%
CHO
(8%
TABLE XVIITA. METHYL AND METHYLENE GROUPS ACTIVATED BY A FWLLY CONJUGATED MONOCYCLIC RING (Continued) Substrate
Conditions
Product(s) and Yield(s) (%)
cyc, 7
Refs.
COR” R5
R6R7NCOR89POC13, rt-95”
R’ H H H
R2 H Me Me
R3 R4 Me Me Me H Me H Me Me H Me H H
-+H2)4-
618
H H Me
C02Et CH2C02Et Et
+CH2)4--+H2)4-
H H H H H
CH2C02Et CH2C02Et CH2C02Et
2,4-(02N)2C6H3 H Me U-bhCWt 1-piperidyl H Me H Ph Me H Ph Me H Ph H Me
Bn
MeH
R5 H H H H H H H H H H H Me H H H H H H H H H H C02Et H H H H H H H H H Me H Me H
H
R6 Me
R7 Me
Me Me Et Me Me Me Me Me Me Me Me Me Me Et Me Me
Me Me Et Me Me Me Me Me Me Me Me Me Me Et Me Me
R8 H H H H Ph H H H H H H H H H H Ph H H
Me
Me
H
+CH2)5-
(73P
573
(53)
574
W)
573
(63)
575
(38)
574
(72)
573
(73)
573
(74)
575
(52)
575
(88)
573
(85)
573
(71)
573
(84)
573
(79)
573
(43)
573
(35)
574
w-3) 6-31)
573
(70)
573
573
%-Cl3
or
576
Et@C I
619
n Et&C
II
n
I
II
1
(76)
(0)
2
(0)
(56)
3
(0)
(4%
4
(0)
(35)
DMF, POC13
576
or
Et02C
Et02C
II
I
R H Me H H H
n
I
II
1
(75)
(0)
1 (88) (0) 2
(45)
(0)
3
(42)
(0)
4
(0)
(68)
TABLE
XVIIIA.
METHYL
AND METHYLENE
GROUPS
ACTIVATED
BY A FULLY
CONJUGATED
MONOCYCLIC
RING (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate clo-cl5
R’
R*
R3
R4
R5
R6
R7
R8
CN
Me
H
H
Me
Ph
H
574
COzH
Me
H
H
Me
Me
H
573
CN
Me
H
H
Me
-W42)3-
CN
Me
H
H
Me
Me
H
(97)
573
C02Et
H
H
H
Me
Me
H
(65)
576,
H
C02Me
Me
H
H
Me
Me
H
(70)
573
H
C02Et
Me
H
H
Me
Me
H
(76)
576,
H
C02Et
Me
H
H
-+H2)5-
(95)
574 574
574
573
573
620
H
C02Et
Me
H
H
Me
Ph
(88)
H
C02Et
H
Me
H
Me
Me
(72)
573
H
C02Et
H
H
Me
Me
Me
(68)
573
H
C02Et
Me
H
Me
Me
Me
(79)
573
H
CH2C02Et
Me
H
H
Me
Ph
(51)
574
H
Ph
Me
H
H
Me
Ph
(75)
574
Cl1 Ph
Ph 1. DMF, POC13
AN t\
NA
2. Na2C03 (aq)
’
(8)
569
(62)
569
CHOH CHO
OHC
CHOH
1. DMF, POQ 2. Na2C03 (aq)
R
R
AN f
T \
NA
1. D-MF, POC13
I-BI-C&
(38)
2. N&IO4
4-n-BuC&
(-4
4-n-BuOC6H4
(37)
203
Cl2
7
H2NCH0,
POC13
C02Et
Et O;C$g 0
(15)
574
’
621 c12-cl3
Me
Me
CHO R
Eto2cfxl II I MeS040
(53)
221
.Me (-->
576
H
R
N
U /
DMF, POC13
1
\
(61)
DMF, POC13
205
N
c5-c6
CHO R 1. DMF, POC13
H
(56)
2. H20
Me
(20)
229
TABLE XWIA.
METHYL AND METHYLENE GROl-JPS-ACTIVATED BY -4 FLJLLY C.ON,iLJG-4TED -MONOCYCLIC
Substrate
cloy
Conditions
RING (CC)~~~~/~CE)
Product(s) and Yield(s) ($6)
Refs.
DMF, POC13
222
DMF, POC13
206
CSN c6
DMF, COCi2
I 1 (51) OH
206
622
(68)
1. DMF, (COC1)2 2. OH-
577
II
(80)
1. DMF, POC13 2. OH-
II
DMF, (COClh
0 /
206
(82)
2cr
577
\+ I N H
I / 0\\N
NH2
1. DMF, POC13 2. KOH (aq)
578
(19)
I C02H DMF, POC&
DMF, POC13
(SS)
231
(47)
231
,Me
623
c9-Cl4
OH
Cl
Cl R’
DMF, POC13 HO
R2 CN
he II R’
R2
n
H H H Me H
H H H H Me
0 1 2 1 1
Et
H
1
t-Bu
H
1
he
m I
II
III
(20) (18) (10) (33) (36) (34) (36) (34) (31)
(13 (11) (13) (15) (15) (12)
(8)
(6) (7) (7) (6) (6)
TABLE XVIIIA.
METHYL AND METHYLENE GROUPS ACTXVATED BY A FULLY CONJUGATED MONOCYCLIC RING (Continued) Product(s) and Yield(s) (%) Conditions
Substrate
?
7
I?
Me,
,Me
DMF, POCl3 CHO
CHO
R (18) H Ph (27) 4-MeOCeH4 (1%
Refs.
231
w cl8
n/\+1
Ph
0
219
(94)
DMF, POC13
ClO4Ph
624
MezNCOMe, POC13
WV
219
(84)
219
Ph
MezNCOPh, POC13 Ph
219
1-Me-2-pyrrolidone, POC13
Ph
Ph (33)
DMF, POCI3
219
Ph 219
-MelNCOMe, POC13
Ph (66)
MezNCOPh, POC13
219
625
219
1-Me-2-pyrrolidone, POC13
c19-c20
Ph DMF, POC13
DMF, P0C13 Ar = 4-MeOC&
(67)
219
219
TABLE XVIIIA.
METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED MONOCYCLIC RING (Continued) Product(s) and Yield(s) (%) Conditions
Substrate
Refs.
@19-c25
DMF, Ac20 Ph 1. DMF, Ac20 2. HC104, AcOH, H20 3. hydrolysis
R Me Ph COPh
(95) (73) (70)
579
R Me
(95)
579
Ph COPh
Ph
(80) (80)
c6 c7
OH 1. DMF, PGC13,80”, O-5 h 2. HN03 3. HO-
NO2
626
(42)
207
(47)
207
rjo, Me2NHC+/HO 1. DMF, PGC13,reflux, 2 h 2. HN03 3. HO-
1. DMF, 2. HNo3
NO2
207
poCl3
NO2
580
(76)
1. DMF, POC13 2. HC104 NO2
i NO2
1. DMF, F’OC13 2. HC104
OH
580
I, X = OH (33) 1 NO2
1. DMF, POC13 2. HC104
. I, x= +-5-r ‘ILIe
ClO,
627
(50)
580
(75)
580
CHNMe2
MeNHC v+ NO2
NMe2 ClO4NO2
1. DMF, POC13 2. HC104 C02H Cl4
Pr-i /
,Pr-i
1. DMF, SOCI;! 2. Pd, H2
(63)
581
DMF, POC13
(72-91)
218
TABLE
XVIIIA.
!VlETHYL
,4ND ?/IETHYLENE
Substrate
GROUPS
ACTIVATED
BY 14 FULLY
CONJUGATED
!VlONOCYCLIC
Product(s) and Yield
Conditions
RING (Coiitiiiu~iij
(56)
ReSs.
NO2 HY
N-methylpyrrolidonet
POCl3
Ci
A..
c-1
218
Cl5 DMF, POC13
Me0
218
(-->
Me0 c7 c8
1. Ph(Me)NCHO,
(81)
POC13
223
628
2. NaC104 c8-cl4
\ I P
R’ c104-
+
1. R2R3N(CH=CH),CH0, 2. NaC104
PCls
R’
R2
R3
n
H
Me
Me
0
(96)
H
Me
Ph
0
(74)
H
Me
Ph
1
c-1
Me
Me
Me
Me
-W2)5-
Me
Me
Ph
0
(63)
Ph
Me
Me
0
(62)
Ph
---m2)5-
Ph
Me
Ph
0
(93)
0
e-4
0
c--->
0
(63)
223
c9
I G
MFA, POCl:,
+
c104-
’ This reaction was carried out at 25”.
(91)
223
TABLE XVIIIB.
METHYL AND IMETHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED POLYCYCLIC RING
Substrste
MQNCHS, F’OC13
R-(-T! s
Productis) arid Yield(s) (96)
Conditions
s’
R~~~-NMe2 ‘s’s.s
h Me
Refs.
208 (2.5)
OHC.+CHOH N’ I \5
’ N
N \ > N H
629
DMF, POC13
(82)
209
1. DMF, POC13 2. PhNHz
(42)
209
N-X 1. DMF, P0C13 2. RNH;!
R
X
OH
0 NH NPh
NJ32
(93
036)
209
NHPh (80) NHC(S)NH2 N(CS)NH2 (94)
wsQN2 c14-c20
Ar
Clod- or Br-
DMF, POQ
Ar Ph Ph Ph 4-MeOC&
R Me co2Et Ph Ph
(47) (71) (57) (W
224
TABLE XVIIIB. Substrate
METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED POLYCYCLIC RING (Con~inrred) Product(s) and Yield(s) (%) Conditions
1. DMF, POC13 2. NazC03 (aq)
1. DMF, POC13 2. K2C03
(a@
c18-c21
DMF, POC13
Refs.
uw
210, 582
c-4
210
H
a=1$,,, Ok
630
H
2-naphthyl 3-PhCONHC&
210
(70) (67)
+ ClCH=NMez+ Cl-, DMF, 60”, 6 h
(82)
DMF, POC13
-
1. DMF, POC13 2. KOH (aq)
H”a-
a-toH
(30)
584
(80)
211
(76)
1. ClCH=NMe+Cl-, DMF, 6W, 6 h
583
584
(75)
1. DMF, PUCl3 2. KOH (aq)
2. Hz0
211
Et R H (41) CHO (23)
1. ClCH=NMe2+Cl-, CHCl3, 60*,6h
I-
211
2. K2CO3, Hz0 631
DMF, P0C13
:H?
:
C-1
04212
Ph
WV
0
2-naphthyl
c-1
CHz (CH2)2 (CH2)2 0
2-naphthyl
(4 t-1 (4 (-1
l-naphthyl 2-naphthyl 3-PhcoNHc&I4
585 586 587 585 586 586 587
cl8
DMF,
POC13
497
Benzo[djthiazoles P,. -5 = a
I
ClCH=NMe2+Cl-, DMF, 60”, 6 h
yF S
Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
o)-(=f:::
“-
1. DMF, POC13 2. KOH (aq)
(63)
211
(70)
212
212
1. MFA, POC13 2. NazC03 (aq)
Cl0
Et
Et
211
1. ClCH=NM%+Cl-, DMF, 60”, 6 h 632
2. H20
211
1. ClCH=NMe2+Cl-, CHC13,60”, 6 h 2. K2CO3, Hz0 DMF, POCl3
I, R = H (23) + I, R = CHO (43) 29
I, R = H (87) Et
29
HzNCOMe, POC13
II, R= Me (52)
c10-c16
R \
H2NCOEt, POCi3
II, R = Et (40)
29
H2NCOBu-r, POC13
II, R=t-Bu
29
H2NCOPh, POC13
II, R = Ph (42)
(44)
29
Y/
or
DMF, POCl-,
CHO II
I
633
R CN C02Me Ph 4-B&H&O Phco
Benzo[dJisotI&uoles
225
I
II
(52) (61) 631) (0) (0) (0)
(0)
(78)
(0)
(53)
c8
1. DMF, F’OC13 2. Na2C03 (aq)
a=IyE Se
CHO
212
(85)
(71)
CICH=NMQ+CI-, DMF, 60*, 6 h
211
Et
Et 1. CICH=NMQ+CIDMF, 60*, 6 h 2. H20
(70)
211
TABLE
XVIIIB.
METHYL
AND METHYLENE
GROUPS
ACTIVATED
BY A FULLY
CONJUGATED
POLYCYCLIC
RING (Continued)
213
DMF, POC13
634
ifle
ii4e
Cl3
DMF, POC13 (1.3 eq), 100”
I
o&=+-J
227
(2) +73-&L Me
Me
Me
CL
+ &f-J I
I OHC Me
opI\
\ NI Hd Me
227 CHO
CHO
227
Et,2NCHO,POQ I Me CHO
I Me
Me
b
635 c13-Cl4
R
DMF, POC13 Me
Cl
Me
G-3
H (55) Me I-)
588 588 588, 227
TmLE
XVIIIB.
METHYL
AND METHYLENE
GROUPS
ACTIVATED
BY A FuLLy
Powcyc~~c
CONJUGATED
R' R’R*NCHO
, POCl 3
Refs.
R2
-tCH2)4-
POCl3
589
(81)
Et
Ph(Me)NCHO,
RING (Continued)
Product(s) and Yield(s) (%)
Conditions
Substrate
Et (57)
+ OHcLw
(4)
(79)
589
An
5:6:7 (formyl position) = 6:21:57 Me2iy
NW R
ClO,-
636
R H
(74)
OMe
@3)
Et
(97)
Ph
(71)
Bn
(79)
214
214
Me 2GANMe2 c104Cl2 m””
clo4-
(--)
223
DMF, PC15
03i04cl6
Pr-i
Fr-i DMF, POC13
226
(76)
Me2N
CHO N
1. DMF. POC13 2. Na2C03 (aq)
@----A \
’
(77)
215
(631
215
A.\?
ij !i
0
1. DMF, POC13 2. NaSH (aq) c9-Cl9
P
R
QcNx X
637
DMF, POC&
/
/\ , Nvx ahu/
CHNMe2
N
N
CHO
R
1. DMF, POC13 CHOH
2. NaOH (aq)
X S
(72)
216
H
0
(72)
590
Me Me R H
S 0 X S
(78) (75)
216
(51)
216
?J *a
0
(46)
590
(59) (51)
216
Me S Me 0
kH0
R= 1. DMF, POC13 2. NaOH (aq)
R H
CHOH kH0
216
216
Ar
X
2-thiazoyl
S
(78)
591
2-thiazoyl
0
(70)
592 591
2-pyrimidyl
S
(72)
2-pyrimidyl
0
(71)
592
2-pyridyl
s
(68)
591
TABLE XVIIIB.
METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED POLYCYCLIC RING (Continued)
\‘f / I+N (&f \
I-
Product(s) and Yieid(s)
Conditions
Substrate
R&
(%j
215
DMF, POQ
N,
NH2
0
c10-c11
0
R H (48) OMe (56)
Me DMF, POC13
231
593
(73)
638
ZV-formylpiperidine,POC13
(39)
510
c13-c20
,NMe2 R Me 4-MeOCH&H4 Bn
ClCH=NMez+ Cl-
(96)
321
(95) 6)
232
(68)
1. DMF, POC13
215
CHOH
2. NaOH (aq), heat
CHO
215
(75j
1. DMF, POQ 2. Na$ZO; (aq) cl6
0 ,R 594
DMF, POC13
595
0 1. DMF, POQ
639
2. NaOH CHO
Dh I II
DMF, POC13
z,pPh
(--)
594
CH20H
C5N/C6 CICH=NMQ+C~-,
211
DMF, 60*, 6 h
498
DMF, POC13 CHO
TABLE
XVIIIB.
METHYL
AND METHYLENE
GROUPS
ACTIVATED
BY A FULLY
CONJUGATED
ClCH=NMe2+CI-,
POLYCYCLIC
RING (Continued) Refs.
Product(s) and Yield(s) (%)
Conditions
Substrate
DMF, 60”, 6 h
498
DMF, POCl;
1. DMF, POC13
(35)
578
(97)
596
2. KOH (aq) CHO Cl
640
DMF, POC13 CHO
H Cl l-cl2
\ +/ QQ R I-
\ +/ QQ etI-
R=Me
DMF, POC13
R = Et
CICH=NMe2+CI-,
597
211
DMF, 60”, 6 h
DMF, POCl?
29
At I1. ClCH=NMe2+Cl-,
CHC13,
II
II
At 211
(32)
60”, 6 h 2. K2C03, H20
CHNMe2
/ I\ 00
ClCH=NMe2+Cl-,
I I-
\
DMF, 60”, 6 h
21211
(92)
;/
At
Et
ErEt
DMF, POC13
641
1. ClCH=NMe2+Cl-, ho”, 6 h
(45)
29
211
CHC13, E]Et
(41)
2. K2CO3, Hz0
DMA,
217
POC13
COCH3 cl6
I I U
MezN
DMF, POC13
NMe2
(73)
Ph
219
TABLE XVIIIB.
METHYL AND METHYLENE GROUPS ACTIVATED BY A FULLY CONJUGATED POLYCYCLIC RING (Continued)
Substrate
clod
Refs.
Product(s) and Yield(s) (%j
Conditions
Ph
MezNCOPh, POC13
w
219
(95)
218
(78)
219
Ph Ph
1-Me-2-pyrrolidone, POC13
642
DMF, POCl3
2ClO4-
Ph Ph
OHC OH
CHOH
NOH DMF, POC13
598
(90)
NO2 NOz
OHC CHOH 584
(50)
DMF, POC13
OHC CHOH NOH
584
DMF, POC13
c12-cl9
OHC, CHOH
NHCOMe 643
DMF, POC13
R’
R2
H
H
NO2 CN H
H (85) H (4 CONHPh (95)
(83
584, 599 599 599 599
OHC\ )=cHOH
NHCOMe
Ts
DMF, POC13
(92)
599
DMF, POC13
(62)
218
TABLE
XVIIIB.
METHYL
AND METHYLENE
GROUPS
ACTIVATED
BY A FULLY
POLYCYCLTC
Product(s) and Yield(s) (551
Conditions
Substrate
CONJUGATED
RING (Continued) Refs.
\ /
\
DMF, POC13 \
c1oj-
(70)
219
0’ + \N Me2
644
%
CdCdG cl6
+\, \I Q?P
&Me2 ClodII DMF, PC15 ClOa-
(96)
223