This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
X,~t = Z'0-) ~"(~t) - Z'(~) Z"O-)
(2' = DR(q)'), Z" = DR(q)")) a non-degenerate (Thm. 4.6 l) alternating pairing on HDR(~,C). The dependence on (X,l.t) is described by (7.12)
< >~V,~ = (det "/) < >Z4t
(Y ~ GL(A ~A K) acting from the right).
7.13. R E M A R K : These pairings are a substitute for the cup-product (or the Legendre determinant) in the case of complex elliptic curves. Let e.g. Y = A 2 and x = (1,0), y = (0,1). If DR('q (z)) = Z (z) E HomA(Yz,C), then )~(Z)(z) and z(z)(1) are the quasi-periods of O(z). The case of A = F q IT] is studied in detail in [7]. Up to a constant, the function z " z(z)(1) agrees with E(z) ! Back now to our general situation. We let x = (Xl,X2) , y = (yl,Y2)
be K-linearly
independent elements of Y , and deffme the perfect alternating R-pairing < >x,y on HDR(~,R) by (7.14)
<
'
q)'q)
,,>
x,y (z) =
z(q)) , rz(q) ) iz(X),iz(y) .
Then <¢o,'q>x,y = <¢o,(V 0- E) ¢O>x,y <m, V0m>x,y evaluated at z gives =
(7.15)
d . d <~,rl>x,y (z) = iz(X) ~ - iz(y) - lz(y) ~ - iz(X) = x2Y 1 - xlY 2 = const. ~ 0 .
{ab) Let y = c d be an element of GL(Y) and u = (cz + d) "1 . Multiplication by u yields an isomorphism Yz -'~ Y'~z) • By (2.6), u defines an isomorphism, also denoted by u : ~(z) ~_~
250
• ('¢z) , i.e., for each a ~ A , u * ¢~> = O(Yz> * u . Let u * : HDR(O('Cz)) ---) HDR(O(z)) be the a induced arrow on HDR. Then from (3. I I ) , (7.16)
u*(to(~tz)) = u. to(z) = (cz + d) "I to(z).
We will show at once the transformation formula for rl : (7.17)
u*(rl (Yz)) = (det y) -I (cz + d) rl (z) .
If we def'me a C-linear operation q) )-) (p[y] of F on Dr(O,R) by
(7.18)
rz((p[~t]) u*(r~z ((P)), =
these formulae say that to (resp. "q) transform like modular forms of weight -1 , type 0 (resp. weight 1, type 1). PROOF OF (7.17) : u*(rl (~)) and rl (z) are proportional since H~(~ (z)) is one-dimensional. Let z' = Tz. An elementary calculation yields u iz(X) = iz,(X) T-1 , so iz(x),iz(y) =uiz(X),Uiz(y)
(by definition of < > and (4.5))
= (det y)-Iiz,(X),iz,(y) = (det y)-i x,y (z') = (det y)-I x,y
(by (7.12) and (7.15)). Comparing with (7.16), we obtain the
stated proportionality factor. Next, we consider the action of 0 on t-expansions. Recall that t(z) = e'l(z), where e = e¢ de(z) as in (7.2). Since y = 1, (7.19)
d 2d e=~=-t ~.
The next theorem is proved, in the special case A = IFq [T], in ([6], 6.10, 3.10). The proof given there generalizes without complications to arbitrary A. 7.20. THEOREM : Let the t-expansion of the Eisenstein series E (k) be given by E (k) (z) = 5".ait i . I f k = q J - l , a i ¢ 0 implies i=-O or q - l m o d q ( q - 1 ) . In view of (7.19), this implies
251
7.21. COROLLARY : 02 annihilates E oK) (z). 7.22. COROLLARY : 02 annihilates all the coefficient forms ,ei(a,z ) . PROOF : Define the Eisenstein series E (°) (z) as the constant -1. Then for k > 0 , the relation a E (qk-1) =
Y. E (qi'l) i i+j=k 2J(a'z)q
holds (DMC, p. 15), which together with (7.21) implies the assertion. 7.23. COROLLARY : 0 ~ ) = - E 2 . PROOF : Let a ~ A be non-constant, so E = 0(Aa)/Aa and 003) = -(0(Aa)/Aa) 2 = - E 2 since
o2( )
= o.
We can now completely describe the Gauss-Manin connection with respect to the basis {c0,rl} of HDR(~,R ) . By definition of 1"1,
V 0 (m) = Ec0 + il. 7.24. C O R O L L A R Y :
V 0 (1"1)= - E'q.
P R O O F : V 0 ( r 1) = V o ( V 0- E) (m) = V~(m) - 0(E) co- E V 0 ( m ) . The term V2(co) vanishes by (7.22), and due to (7.23), the rest gives - Erl We use these results to construct a "Serre derivation" ~ on M(F). Let (7.25)
S'e(R) = Symm 2 (HDR(@,R))
be the 2-th symmetric power. Since HDR = H 1 (~ H 2 , it decomposes
(7.26)
S'e(R) =
(3 S'e-v'v(R), 0
where SU'V(R) = H]@u(@,R) ® H *2~ v (@,R) with basis m@u ® rl@V The same type of isomorphism holds over any ring R' containing the coefficients of @ and stable under o=d= t 2 d~ , -
252
ff i,j _> 0 , k = i - j , j = -m (q - 1), condition (i) of Definition 7.2 is equivalent with (7.27)
fco~i ® r l ~
is F-invatiant.
Correspondingly, we may express the "cusp condition" (iii) using HDR . As in (7.2), we explain this only for the cusp "oo". Let R t be the subring of R consisting of functions f on invariant under transformations z " z + a (a e c = a "119) and possessing a finite-tailed Laurent expansion with respect to t , i.e., R t = {functions "meromorphic at o~"} . Let further Boo = C[[t]] and Loo = C((t)). Then R t embeds into Loo. As stated in (7.3) (i), the genetic Dmod qb is already defined over R t . In HDR(O,Loo), consider the Boo-lattice W = span of {c0,q} . Its 2-th symmetric power is a lattice in
S2(L~,
direct sum of lattices W u'v =
Boo co~u ® rl ~v (u + v = 2 ) . The holomorphy of f at the cusp oo (condition (iii) of (7.2)) is now equivalent with (7.28)
fco®i ®q®j e W i'j .
Since the module Diffc(R ) of C-differentials of R is free with basis d z , the Gauss-Martin connection defines an arrow (7.29)
V : HDR(O,R) --->HDR(O,R) ® Diffc(R)
~o~ VO (~o) ® d z which is equivariant for the action of F (see (7.18)). The transpose of the R-isomorphism given by (7.7)
Derc(R ) --~ HomR(HI,H2) 0 ~' (V 0- E)IH 1 is =
HomR(H2,H 1) --~ D i f f c ( R ) ,
where
"dz"
corresponds to
(rl ~ co) . Thus, taking (7.26) into account, V
connection, also denoted by V V : S2 =
@ S 2"v'v --) S 2 ® HomR(H2,H~) = ~ S 2-v+l'v'1 0
defines a
253
on S "~ = S y m m ' ~ ( H ; R ( O , R ) ) . Let now f e M~n(F), i,j e I~ satisfy k = i - j , j -= -m ( q - 1). Then f to~i ® 1"1~ is r-invariant and contained in W iJ , as is its image under V . The latter is
(7.30)
V ( f co~i ® 1"1~j) = 0(f) o~~(i+1) ® .q~c.j-1) + if o~i(Et.o + 1"1)® .qtl~j- 1) + jf ~ ( i + l ) ® rI~j-2)(_Erl ) = (0(f) + kfE) o~(i+l) ® .qc~(j-1) + if o~i ® rl~j.
(Note that "®dz" simply amounts to replacing a factor co by rl ). Thus the s i + l j ' l - c o m p o n e n t (7.31)
0k(f) = 0(f) + kfE
satisfies conditions (i), (ii), (iii) "at ~*" of (7.2) with (k,m) replaced by (k + 2, m + 1). The h o l o m o r p h y of 0k(f) at cusps other than %0" follows the same lines. Therefore, 0k(f) e Mkm+21(F). Direct calculation shows : m.
(7.32) If fi e MkiX (i = 1,2), f = flf2 , and k = k 1 + k 2 then
0k(f) = 0k 1 (fl) f2 + fl 0k 2 (f2)" Hence the 7.33. P R O P O S I T I O N : The C-linear map 0 : M(]?) -~ M(F) given on M km by 0 k = 0 + kE is a derivation. It maps Mkm(r) to /~fm+l¢l""k+2 '," ~-' "
There exists a very simple proof avoiding HDR. Writing E = 0(Aa)/A a , and applying 0 to the transformation equation Aa('yz) = (cz + d) q2
deg a_ 1
Aa(Z )
yields the transformation law for E : (7.34)
E('yz) = (det T) "1 (cz + d) 2 E(z) + c(cz + d)/det T
which, together with the law for Off) and some considerations at the cusps, implies that Ok
254 m
l~m+ 1
maps M k to "'k+2 " Nevertheless, it is important to have the "de Rham" interpretation of modular forms, and of 0 (see below). W e finish with some concluding remarks. 7.35. R E M A R K S : (i) From the product expansion of A (DMC, p. 76), it is easy to see that the t-expansion of E is t + 0(t 2) . Since 0 = - t2 ~d- , Ok increases the order of f at ~ by at least 1. The same holds for the other cusps. (ii) The uniformizer t at the cusp ",,o" does not properly correspond to q(z) = exp(2xiz). All the results presented so far remain true if we replace t(z) by c - t(z) and 0 by c • 0
with
some c e C* . Choosing c carefully (i.e., c some analogue of (2xi) "1 ), the normalized Eisenstein series c k E (k) and the c ( q l l ) 2i(a,z)
will have t-expansions with algebraic
coefficients (in fact, with bounded denominators). For the case A = IFq[T] , see [6]. For general A , there are some still unsolved questions of "best choice" of c to get "canonical" texpansions (DMC, p. 38-39). The operator 0 should then act on the A-module of
algebraic
modular forms [11]. The definition given there has to be generalized to include non-trivial "types". (iii) Having chosen the "correct" uniformizer
t , the coefficients will have interesting
arithmetical properties. One may apply the "de Rham" description of modular forms, together with the formalism of vanishing cycles and of the Gauss-Martin connection, to investigate their congruence properties. I hope to come back later to that problem.
255
REFERENCES
[I]
P. Deligne - D. Husem611er : Survey of Drinfeld modules. Contemp. Math. 67, 25-91, 1987
[2]
V.G. Drinfeld : Elliptic modules (Russian). Math. Sbornik 94, 594-627, 1974. English translation : Math. USSR-Sbornik 23, 561-592, 1974
[3]
Y. Flicker - D. Kazdan : Drinfeld moduli schemes and automorphic forms. To appear
[4]
E. - U. Gekeler : Zur Arithmetik von Drinfeld-Moduln. Math. Ann. 2I}2, 167-182, 1983
[5]
E. - U. Gekeler : Drinfeld modular curves. Lecture Notes in Mathematics 1231. Springer-Verlag. Berlin - Heidelberg - New York 1986
[6]
E. - U. Gekeler : On the coefficients of Drinfeld modular forms. Inv. Math. 93, 667700, 1988
[7]
E. - U. Gekeler : Quasi-periodic functions and Drinfeld modular forms. Comp. Math. 69, 277-293, 1989
[8]
E. - U. Gekeler : On the de Rham isomorphism for Drinfeld modules. J. reine angew. Math. 401,188-208, 1989
[9]
E. - U. Gekeler : De Rham cohomology for Drinfeld modules. To appear in Sem. Th. des Nombres Paris, vol. 1988/89
[10]
L. Gerritzen - M. van der Put : Schottky groups and Mumford curves. Lecture Notes in Mathematics 817. Springer-Verlag. Berlin - Heidelberg - New York 1980
[ l 1]
D. Goss : rc-adic Eisenstein series for function fields. Comp. Math 411, 3-38, 1980
[12]
D. Goss : The algebraist's upper half-plane. Bull. AMS 2, 391-415, 1980
[ 13]
N. Katz : P-adic properties of modular schemes and modular forms. Lecture Notes in Mathematics 350. Springer-Verlag. Berlin - Heidelberg - New York 1973.
[14]
B. Mazur - W. Messing : Universal extensions and one dimensional crystalline cohomology. Lecture Notes in Mathematics 370. Springer-Verlag. Berlin - Heidelberg - New York 1974
THE NONARCHIMEDEAN EXTENDED TEICHM~LLER SPACE
Frank Herrlich Fak. u. Inst. Postfach
Let k be an algebraically to a nonarchimedean moduli
scheme~_
f. Math.,
Ruhr-Universit~t
1o2148, D-463o Bochum
closed field which is complete with respect
valuation.
For an integer g ~ 2 consider the
of stable curves of genus g and denote by M
g
analytification open subset of M
of ~
g
× k. Finally
let~
g
curves of genus g over k. In other words: ~g(k)
if and only if the canonical
curve C
(k) the
(k) be the k-analytically
(k) whose points correspond
g
g
to the stable Mumford
a point x • M
g
~k) is in
stable reduction of the stable
represented by x, is totally degenerate,
i.e. has only
x
rational
irreducible components.
In this note we present a "Teichm~ller means Out F
g
theory" f o r ~
that we construct a k-analytic manifold S of outer automorphisms
g
(k): this
(k) on which the group
of a free group of rank g acts
discontinuously with orbit space analytically points of S
g
g
isomorphic
tOng(k).
The
(k) are stable Mumford curves of genus g together with a
basis of the uniformizing the construction
Schottky group.
includes,
in contrast
The advantage here is that
to classical
complex Teich-
muller theory, not only smooth Mumford curves but also those with nodes. On the other hand,
of course,
the s p a C e ~ g ( k )
is only a part of the
whole moduli space M (k). A similar construction has been carried out g over the complex numbers Mg(~),
in [I]. Here S g ~ )
maps surjectively onto
but the map is not the quotient map for the action of Out Fg .
The result of this paper has been obtained by M. Piwek [5]
in a
257
slightly different
form:
for totally d e g e n e r a t e d
he c o n s t r u c t s stable curves
n e i g h b o u r h o o d of this space analytifies
this formal
§ I. U n i f o r m i z a t i o n
an a l g e b r a i c T e i c h m 0 l l e r over k, then considers
in a suitable
larger scheme,
[3]:
PGL2(k)
the k - a n a l y t i c u n i v e r s a l
of a S c h o t t k y group,
covering
p1(k);
As m e n t i o n e d
~ is the set of o r d i n a r y
i.e. a free h y p e r b o l i c
in the introduction,
The k - a n a l y t i c u n i v e r s a l
covering
each i r r e d u c i b l e
domain in a p r o j e c t i v e F L = ~y ~ F :y(L)
lines,
line
component ~l
given a tree of p r o j e c t i v e
(of some rank ~ g) F
to C.
lines X and a d i s c o n t i n u o u s
F of rank g on X such t]~at the r e g i o n of
d i s c o n t i n u i t y ~ of r is connected, arithmetic
genus of C. More
of F L. In particular,
on ~, and ~/F is isomorphic
action of a free group
together w i t h the
and the subgroup
= L} acts as a S c h o t t k y group
acts d i s c o n t i n u o u s l y
stable reduction.
L of ~ is an u n b o u n d e d Stein
with L the set of o r d i n a r y points
Conversely,
is k-analyti-
of such a curve C is an open dense
action of a free group F of rank g = a r i t h m e t i c
P1(k),
F of
by a stable M u m f o r d curve we
c o n n e c t e d part ~ of a tree of p r o j e c t i v e
on
subgroup
to C.
m e a n a stable curve over k w i t h totally d e g e n e r a t e
precisely:
is well known,
of a, M u m f o r d curve C
of rank g = genus of C, and the orbit :space ~/F
cally isomorphic
and finally
of stable M u m f o r d curves
is an u n b o u n d e d S t e i n domain g in points
a formal
scheme.
The u n i f o r m i z a t i o n of M u m f o r d curw~s by S c h o t t k y groups see e.g.
space
genus g w h i c h becomes
the orbit space ~/F is a curve of
stable
if all i r r e d u c i b l e c o m p o n e n t s
258
are c o n t r a c t e d
that are isomorphic
i n t e r s e c t i o n points with other
These c o n s i d e r a t i o n s correspond
~pl(k) and have only one or two
i r r e d u c i b l e components.
show that stable M u m f o r d curves
in a unique way to "stable"
free group on a tree of p r o j e c t i v e projective
to
discontinuous
lines.
over k
actions of a
The notions
of "tree of
lines" and " s t a b i l i t y " will be made precise
in the next
sections.
§ 2. Trees of p r o j e c t i v e
lines
In this s e c t i o n k may be an a r b i t r a r y stand for "tree of p r o j e c t i v e
field.
The l e t t e r s T P L
lines".
In the f o l l o w i n g we give some d e f i n i t i o n s a n d p r o p e r t i e s and sketch their classification. in the f o r t h c o m i n g
shall
More details
and proofs
of TPLs
can be found
article [4].
A finite TPL over k is, as in [2],
§ I, a p r o j e c t i v e
k - v a r i e t y C,
such that (i) all i r r e d u c i b l e (ii) i r r e d u c i b l e
components
components
of C are isomorphic
intersect,
if at all,
to
1 ~k
in k - r a t i o n a l
o r d i n a r y double points (iii) the i n t e r s e c t i o n graph of C is a tree A morphism
f: C ~ C' of finite TPLs
(i) for each i r r e d u c i b l e
component
map or an i s o m o r p h i s m onto (ii) for each i r r e d u c i b l e component
over k is called a c o n t r a c t i o n
L of C w i t h f(L)
L of C, flL is either a c o n s t a n t
f(L)
component = L'
if
L' of C' there is at most one
259
Obviously Hence
the c o m p o s i t i o n of c o n t r a c t i o n s
the finite TPLs
TPLf(k)
is again a contraction.
over k w i t h c o n t r a c t i o n s
of the k - v a r i e t i e s .
A projective
form a s u b c a t e g o r y
system in this c a t e g o r y has
a limit in the c a t e g o r y of locally r i n g e d spaces over k, and any locally ringed space w h i c h
is the p r o j e c t i v e
limit of finite TPLs over
k will be called a TPL over k. It turns out that TPLs over k can be ¢,haracterizedas
Proposition
follows:
I: A c o n n e c t e d
locally ringed
space
(C,60) over k is a TPL
over k if and only if (i) each i r r e d u c i b l e
component
of C is either
or is a single point x w i t h ~
isomorphic
to
p1 k'
~ k x
(ii) the i r r e d u c i b l e
components
of C that are isomorphic
to
1 P k are
a dense subset of C (iii) for any closed point x ~ C, the local ring ~9
is i s o m o r p h i c
to
X
k or to
,0 or to o v ,(0,0)' where V = V(tlt2)
(iv) for any x e C, C - {x} has at most (v) if LI, L2, L 3 are i r r e d u c i b l e L 1 n L 2 and L 1 n L 3 is (vi) For any two i r r e d u c i b l e unique m i n i m a l
two c o n n e c t e d components
components
nonempty,
c A k2
of C such that
then L 2 n L 3 = ~.
components
L I , L 2 of C there is a
closed c o n n e c t e d subset S(LI,L2)
containing
LI
and L 2 . A c o n t r a c t i o n of TPLs over k is d e f i n e d TPLs.
in the same way as for finite
In p a r t i c u l a r we have the f o l l o w i n g observation:
P ropo:sition 2: Let f: C ~ C' be a c o n t r a c t i o n of TPLs over k, and let (Ci)i~i and
(C~)j~j be p r o j e c t i v e
that C = l ~ m C f
systems of finite TPLs over k such
C' = l l m C ~ . Then there exists J
i(j) ~ I and a c o n t r a c t i o n
fj:
Ci(j)
for each j E J an index
C~] such that
260 f
C
~ C'
+
is
+
commutative.
fj
C i (j~ If L is an i r r e d u c i b l e (unique)
contraction
x l , x 2 , x 3 of C there
) C!]
component ~L:
of a TPL C over k, there is a
C ~ L. For any three distinct
is a unique
called the m e d i a n c o m p o n e n t
irreducible
of xl,x2,x3,
and =n(X3)
are three different points
for finite
TPLs,
in p a r t i c u l a r
is obvious
limits of finite TPLs.
of three points
(iv) of Prop.
C a TPL over k. A stable M - m a r k i n g 9: M ÷ C(k)
of L. This p r o p e r t y
that the m e d i a n c o m p o n e n t (see also
L = L(Xl,X2,X3),
such that = L ( X I ) , ~ L ( X 2 )
hence also for p r o j e c t i v e
a one-point-component
component
closed points
Note
can never be
]). Let M be a set and
of C is an injective map
satisfying
(i) for any i r r e d u c i b l e
component
L of C there are ~i,~2,~3
in M
such that L = L ( ~ ( v l ) , $ ( v 2 ) , ~ ( v 3 ) ) . (ii) for each v • M, ~Llv(~(v)) = {~(v)}, where irreducible
component
The second c o n d i t i o n ensures marked.
It is possible,
that for finite TPLs
denotes
the
of C w i t h ¢(v) • L v. in p a r t i c u l a r
however,
that no double points
that end points of C are marked.
this d e f i n i t i o n agrees w i t h the one in [2],
Let F be a group and M a set on w h i c h of a TPL C over k is called F - e q u i v a r i a n t p: F + Aut C
L
are Note § ].
F acts. A stable M - m a r k i n g if there is a h o m o m o r p h i s m
such that
p(y)(~(v))
:
~(yv)
for all v e M, y e F.
We shall apply this concept
in the following
situation:
free group of rank g, and M = ~ is the set of p r i m i t i v e on w h i c h
F acts by conjugation.
If then 9: ~ ÷ C(k)
F is a
elements of F,
is a stable
261
F-equivariant fixed point
marking
of p(y)
of
for each y • F. Since y-1
y is; we see that each
§ 3. Classification
p(y)
has at least
of stable marked
In [2] we classified approach
TPL C ow~r k, it is clear
a
stable
can be extended
that O(y)
is
a
is in ~ if and only if
two fixed points
on C.
TPLs
n-pointed
TPLs by cross
to stable M-marked
TPLs
ratios.
This
for arbitrary
M as
follows: Let q = (C,~) be a stable
M-marked
TPL over a field
~) = (~)l,V2,v3,~4)
e Q(M):=
Here we normalize
~L(X)l,~)2,~)3) by an isomorphism
~L(~,(Vi))
cross
{(v i ''" . ' v4) e M4: ~ i • v j for i * j} let
to 0, °° and J for i = ],2,3~
AS for finite M (see [ 2], ration
k. For any
1.3)
these
L -~ ]Pkz that sends
resp. l~ = Xv(q)
satisfy
the following
relations: =
(i) I )I ,~)2,~)3,v4
l-i
~)2'~)I,v3,v4
(ii) ~vl,x)2,~)3,~)4 = ] - I~)2,~)3,x)4,~)1 (iii) I l = X ~)i ,~)2,~3,~ 4 ~)i ,~)2,v4,v5 ~)l ,x)2,v3,v5 for all distinct ~i'''''v5 in M. If ¢, is F-equivariant in addition
for a group
the .F-invariance ..........
F that acts on M the Xv(q)
satisfy
equations__
Ov) for all
I~{(V l) ,~((V2) ,Y(V 3) ,Y(V 4) = I~ I.,D2,g3,D 4 (Vl,...,v4) e Q(M) and y • F.
The moduli
spaces
the following
B n in [ 2] are in the general
"provarieties"
situation
replaced
by
B : M
For Q := Q (M) let of locally all finite
ringed subsets
~Q
=
spaces)
~ Q he the projective of the proiiective
Q' of Q. Thus
limit
schemes
(in the category ~Q,:__ 7z.
H
~i. for
'6Q '
for any ~ e Q(M) we have a well
262
defined p r o j e c t i o n
Iv
: ~Q ~ .
P Q defined by all equations the p r o j e c t i v e • zg Q'
hence
locally
(i)
(iii).
limit of Zariski-closed,
carries
ringed
Now let B M be the closed
a natural
space
It is clear that B M is itself
i.e. projective
structure
subset of
of provariety
that is limit of a projective
subsets
over
~
system of
of the
(i.e ~-
varieties). In the s i t u a t i o n where equations
(i) - (iv).
Proposition
F acts on M we define B F in the same way using M
In particular,
B~ is a s u b p r o v a r i e t y
3: For any field k, the k-valued
are in I-I c o r r e s p o n d e n c e
with
TPLs over k (resp.
F-equivariantly
The c o n s t r u c t i o n
stable
the isomorphy
of the universal
points of B M (resp. classes
M-marked
natural
projection
B~, ~ BM,
PM
:= M u {m'}.
: B~ ~ B M. Since PM factors
B~)
of stable M-marked
TPLs over k).
family of stable M - m a r k e d
over B M is carried out in the same way as in [2], choose an element m' e M, and let M
of B M.
TPLs
§ 3 for finite M: Now consider through
the
the
for finite M' C M it is easy to see that for q e B M the
fibre p~1(q)is
exactly
with q by Prop. is universal
the stable M - m a r k e d
3. It is also possible
for a suitable
If F acts on M we extend
definition
this action
TPL over k(q)
associated
to show that this family PM of the notion of family of TPLs.
to M by y(m')
= m'
for all
y e F. Then F acts on B M and on B~, and PM is F-equivariant. Thus F over BM, which is the fixed point set of the F-action on BM, F acts on the fibres. stable
This
shows
F-equivariantly
F MF = p M- 1 (B~)
c B~.
that PM
: FFM + BFM is the universal
marked TPLs, where we denote by
family of
263
§ 4. The p-adic,,,,,,,,extended Te,,,,ichmOller_~ace
To come back to the situation of stable M u m f o r d
of § l, i.e.
curves we have
to consider
for 17 and M as at the end of § 2, i.e. and M = ~. To simplify
of B g defined
uniformization
several
F of B M
subspaces
F = F , free group of rank g, g
notation we write
Let U g be the subset
Schottky
B g for B[g. Fg
by the inequalities
iy,y_l,~,y~y_ I # l for all y,~ E F. U g is not open for thie p r o j e c t i v e - l i m i t - t o p o l o g y but there
is a reasonable
topology
if U g and B g are c o n s i d e r e d is open in the k - a n a l y t i c
Also,
over a field k as in the introduction,
Ug
topology.
For q ~ B g, l¥,y-l,~,y~y-l(q) m e d i a n component
on B g for which U g is open.
on B g,
is the m u l t i p l i e r
of ~(y),qS(y-l),~(~).
of p(¥)
on the
That it should not be equal
to
one means
that p(y) may not act as a ]parabolic t r a n s f o r m a t i o n
on any
component
of the TPL C a s s o c i a t e d with q. In particular,
is not
the identity on any component. two fixed points
that are not singular points
F-action on C we have exactly ¢(y)
and ~(y-1)
elements
c F-orbit C
a projective vv
)
•
(gecmetrlc") Obviously
variety, quotient
c on ~, i.e.
for any conjugacy
of ~. Then clearly
Zg
~
as a lim:Lt of p r o j e c t i v e
a finite quotient
Z (n). Thus
varieties
of B g by Z g. and the above remarks
B (n),
B(n)/z (n) is again
and the limit of the B(n)/z (n) is the
U g is zg-invariant,
of F given
= y if y ~ c. Let Z g be the group of
permutations of F g e n e r a t e d by all o
Z g acts on B (n) through
to put the markings
of F, let Oc be the b i j e c t i o n
for y e c, oc(y)
acts on B g. If B g is w r i t t e n
p(y) has exactly
of C. Thus given the
two p o s s i b i l i t i e s
on C. For any F-orbit
class c of p r i m i t i v e by Oc:(y) = y-i
As a consequence,
p(y)
yield
264
Proposition conjugacy
4: The points
classes
"stable" means to
~i
:= ug/z g c o r r e s p o n d
g
of stable n o n p a r a b o l i c
that any irreducible
is m e d i a n
classes"
in U
refers
component
F-actions
component
of fixed points
to c o n j u g a t i o n
let S
g
(k) be the subset
ponding Note
respect
g
TPL is discontinuous
section points
(k) where
implies
of irreducible
components
point
of C.
stable M u m f o r d
curve over k. M o r e o v e r
(in fact Out Fg acts on B g product,
,
g
closed
valuation,
region of discontinuity. that all
inter-
are ordinary points
of C that are reduced
that for q = (C,~) e ~
and E g is a s e m i d i r e c t
nonarchimedean
in particular
It is clear
on ~g(k)
of C that is isomorphic
the F-action on the corres-
components
that all irreducible are end points
(here
of F, and "conjugacy
with c o n n e c t e d
that the last condition
on TPLs
i.e. a l g e b r a i c a l l y
to a n o n t r i v i a l
of U
to
in Aut C ).
For a field k as in the introduction, and complete with
one-one
(k) the orbit Out F
g
of F, and
to a single
space C/F is a
acts in an obvious
and the group generated
as ~ o ~c o ~-I = O~(c)
manner
by Out F g
for ~ e Out F g
O
and a c o n j u g a c y
class
analytic u n i v e r s a l
c in Fg). As for each q =(C,~) e Sg(k),
covering
of the stable M u m f o r d
we conclude
that C/F and C'/F are isomorphic
and
are in the same Out F
(C',~')
g
-orbit.
curve C/F
C is the
(see § I),
if and only if (C,~)
In other words we have set
theoretically (*) If
S
g
(k)/Out F
q = (C , ~) • S g (k)
fixed point
an arbitrary
=~
and y •
C, o n e o f t h e m a t t r a c t i n g attracting
g
(k).
F,
t h a n y has
and t h e
other
exactly
repelling.
of y, the m u l t i p l i e r
a • ~, ~ ~ y ~)
if c(y) denotes
g
the conjugacy
has absolute
two f i x e d If
~(y)
points is
on
the
ty = ~T,T_l,~,y~y_ I (for
value < I. On the other hand,
class of y, we have c¢(y)(ty)
= ty I. This
265
shows
that the inverse
copies
of Sg(k).
family of TPLs
image of Sg(k)
As a c o n s e q u e n c e
over B q to Sq(k),
we can restrict and forming
F-action we obtain
a family of stable
Hence once we have
shown
can conclude canonical
quotient
map Sg(k)
isomorphism.
Teichm@ller
P r o p o s i t i o .n.........5: Sg(k) . dimension
3g - 3.
The proof
is m o d e l l e d
space
for totally
corresponding
Therefore
is an analytic
structure we
of Mg(k) i.e.
we call Sg(k)
submanifold
on M. Piweks proof [5]
degenerated
curves
that the
that
(~) is
the k-analytic
These
subspaces
of U g (k) of
that the Teichm~ller
is a locally n o e t h e r i a n
E = (EI,...,~g)
E is a "geometric" TPL.
over S (k). g
an analytic
is analytic,
for the
space.
he first fixes a basis U gc of U g where
curves
space property
~q(k)
union of
the universal
the quotient
(Mumford)
(k) carries
g
from the coarse moduli
also an analytic extended
that S
in U g is a disjoint
of F and considers
basis
scheme:
subspaces
for the F-action on the
are given by inequalities
of the
form k v , ~ for certain v. Thus U q is open in U q in the same sense as U q itself
is open in B q. He then restricts
multipliers
are O, and proves
But following to see that has
his arguments
the same holds
that U q is an affine n o e t h e r i a n
(in p a r t i c u l a r for U q itself:
to show that the m u l t i p l i e r
expressed one glues, result.
by the m u l t i p l i e r s
to the subset U q where
lemma
in addition
of an arbitrary
of the E
i
1.8)
and the k
as in [ S] ' the spaces U Cg for various
scheme.
it is not hard to [5]
element £i'~J
all
one only
of F can be
'~k'~l
Finally
e and obtains
the
266
References
[I]
Gerritzen,
L. and Herrlich,
J. r. angew. [2]
Gerritzen,
Math. "389 (1988),
L., Herrlicb,
trees of projective [3]
Gerritzen,
Herrlich,
Piwek,
M.:
LNM 817, Springer
F.: Moduli
lines. IS]
lines.
space.
19o-2o8.
F. and van der Put) M.: Indag. math.
L. and van der Put, M.:
curve, [4]
F.: The extended Schottky
Schottky
Stable n-pointed
5o(1988),
groups
131-163.
and Mumford
198o.
for group actions
on trees of projective
To appear.
The formal
Teichm~ller
space.
Preprint
Bochum,
1989.
SUR LES COEFFICIENTS DE DE RHAM-GROTHENDIECK DES VARIETES ALGEBRIQUES Mebkhout Z.,
Narvaez-Macarro L.
M.Z., UFR de MathEmatiques LA 212, UniversitE de Paris 7, 2 Place Jussieu 25175 Paris. N.L. Departamento de Algebra C/Tarfia s/n Universidat de SeviUa, 41012 Sevilla 03spagne). Sommaire § 0. Introduction. § 1. I_~ formalisme des faisceaux d'opErateurs diffErentiels. 1.I. Les operations sur les categories de modules sur les faisceaux d'opErateurs diffErentiels. 1.2. t~opriEtEs de f'mitude. § 2. Le thEor~me des coefficients de de Rham-Grothendieck en caractEristique zero. 2.1. Le thEor~me de finitude. 2.2. Le thEor~me de comparaison. § 3. Le thEorEme des coefficients holonomes complexes d'ordre infini. 3.1. Le faisceau des opErateurs diffErentiels d'ordre infini. 3.2. Le thEor~me de bidualit& 3.3. Le thEor~me de finitude. § 4. Sur les coefficients p-adiques d'ordre infini. REfErences.
§ O. Introduction. Dans son article fondamentaI qui date de rannEe 1966 [G2] Grothendieck a propose de construire une thEorie des coefficients de type de de Rham pour les variEtEs algEbriques dEfinies sur un corps de caractEristique p. On se propose dans cet expose de faire le point sur les rEsultats de la thEorie des coefficients de Rham-Grothendieck et sur les mEthodes de demonstrations. Grothendieck a montrE que la cohomologie de de Rham d'une variEtE algEbrique non singuli~re sur un corps de caractEristique nulle fournissait les bons nombres de Betti [G1], il a dEfini la notion de connexion de Gauss-Manin d'un morphisme lisse sur un schema de base quelconque [G2] et enfin il a soulignE la nEcessitE d'avoir des coefficients gEnEraux qui "joueraient le rEte de C-vectoriels transcendants alggbriquement constructibles, et seraient stables par les operations habituelles (telles que
les Rif.(®x/s)) ~ ([G3], p. 105). I1 s'agit, bien entendu, du cristal unite et de l'image directe cristalline.
268
Deligne [D1] a defini sur une variEtE algEbrique non singuliEre sur un corps de caractEristique nulle une catEgorie de coefficients lisses, les fibres h connexion intEgrable ii singularitEs rEguli~res, qui quand le corps de base est C est Equivalente h la catEgorie des syst~mes locaux transcendants d'espaces vectoriels de dimension finie par le foncteur de de Rham transcendant. Darts [D2] Deligne ~ defini une catEgorie de coefficients sur une variEtE alg6brique complexe, les cristaux discontinus, qui est 6quivalente ~ la catEgorie des faisceaux d'espaces vectoriels complexes algEbriquement constructibles. La thEorie des dgx-modules a complEtE les rEsultats de Grothendieck-Deligne. Sur toute varlet6 X non singuli~re sur un corps k de caractEristique nulle on dispose de la catEgorie D~(lgX/k) des complexes holonomes stable par les six operations de Grothendieck f*, f., f., f!, ®, hom et par la dualit& De plus D~(dgx/k) contient comme sous-catEgorie pleine la catEgorie des complexes holonomes rEguliers D~r(dgx/k) qui est aussi stable par les six operations de Grothendieck et qui est Equivalente quand le corps de base est C par le foncteur de de Rham transcendant ~ la categories des coefficients algEbriquement constructibles D~(Cx). Ceci remplit le programme de Grothendieck en caractEristique nulle. Ce rEsultat de la thEorie des dgx-modules est indEpendant du rEsultat de Deligne sur les cristaux discontinus. Le manuscrit de Deligne [D2] n'a malheureusement pas EtE publi6. Du point de vue des demonstrations la stabilitE de la categories D~(dgX/k) par les operations cohomologiques, en particulier le thEor~me de finitude de la cohomologie de de Rham, n'utilise que rEquation fonctionnelle de Bernstein-Sato et est purement algEbrique alors que la stabilitE de la catEgorie D~r(~x/c) par les operations cohomologiques et de leur comportement par le foncteur de de Rham transcendant, en particulier le thEor~me de comparaison, fait intervenir la thEorie des &tuafions diffErentielles complexes et reposaient de fa~on essentielle sur le thEor~me de resolution des singularitEs de Hironaka [HI. Si en caractEristique nulle on avait depuis longtemps une thEorie satisfaisante il ne va pas de rhyme en caractEristique p > 0. La cohomologie cristalline ([G2], [BI]) fournit une bonne thEorie pour les variEtES propres et lisses mais prEsente des pathologies pour les autres variEtEs. Grothendieck avait signalE [Gz] que la cohomologie de Dwork-Monsky-Washnitzer devraient fitre considErEe comme la base d'une thdorie des coefficients de type de Rham en caractEristique p > 0. En effet Berthelot a dEfini une catEgorie de coefficients lisses les F-isocristaux surconvergents sur une variEtd ddfini sur un corps de caract6ristique p > 0 qui donnent naissance/~ la cohomologie rigide qui est de dimension finie pour le crystal unite si l'on dispose de la resolution des singularitEs en caractEristique p > 0 [B2]. Si la th6orie des dgx/c-modules est une th6orie de coefficients au sens de Grothendieck,/~ plus d'un titre, elle introduit deux nouvelles theories cohomologiques qui n'Etaient pas prEvues dans le programme de Grothendieck et permettent d'aller de l'avant. D'une part elle donne naissance ~ la thEorie des faisceaux pervers complexes et de la cohomologie perverse. Cette thEorie garde un sens pour les
269
faisceaux l-adiques pour I diff6rent de la caract6rique p du corps de base (cf. [B-B-D]). D'autre part elle donne naissance A la th6orie des coefficients complexes holonomes d'ordre infini. La cat6gorie des complexes holonomes d'orcLre infini qui est aussi 6quivalente h la cat6gorie des complexes alg6briquement constructibles rend compte des ph6nom6nes qui sont de nature transcendante tout en gardant un sens dans le cas p-adique. En particulier cette cat6gorie est stable par immersion ouverte. Ce r6sultat est le demier pas dans la th6orie des dgx/c-modules et peut ~tre consid6r6 comme le r6sultat le plus profond. Grace ~t la th6orie des faisceaux pervers et ~ la th6orie de la ramification sur le corps des complexes on a pu montrer que le th6or~me de la r6solution des singularit6s n'6tait pas ~ au fond du probl~rne ~ dans la th6orie complexe [Me7]. Le thdor~me de r6solution des singularit6s 6tait consid6d6 jusqu'~t alors comrr~ le th6or6me de base dans l'6tude de la cohomologie des vari6t6s alg6briques et on a toujours pas de d6monstration en caract6ristique p > 0. Ceci encourage, au moins spychologiquement, ~ chercher ddmontrer directement si les r6sultats de la th6orie complexe ont des analogues dans le cas p-adique. C'est ce que nous avons essay6 de falre depuis quelques temps.Cependant il nous semble qu'on se heurte ~ un probl~me de fond : alors que darts te cas complexe le prolongement analytique, c'est ~tdire la monodromie, est au coeur du probl~me en derni6re analyse, c'est prdcisemment son analogue qui pose probl~me dans le cas p-adique. Darts ce but nous avons r6dig6 cet expos6 h l'intention du lecteurchercheur en analyse p-adique pour contribuer au d6bat qui ne sera clos que le jour o~ on aura une th6orie des 29x-modules en caract6dstique p > 0 qui a toute la souplesse de la th6orie en caract6ristique z6ro. Voici le contenu de cet expos6. Dans le § 1 nous avons rassembl6 quelques propri6t6s alg6briques des faisceaux op6rateurs difffrentiels. En partant de la d6finition de ([E.G.A.IV], §16) du faisceau •tgiffx/s(®x) des op6rateurs diff6rentiels sur un S-sch6ma X nous avons rappel6 les op6rations cohomologiques que l'on peut faire sur les catdgories de modules sur le mod61e de la caract6ristique nulle. La diff6rence avec la situation en caract6ristique nulle est que d9/ffx/s(@x) est un faisceau de @x-alg6bres qui ne sont pas de type fini m~me dans le cas d'un S-sch6ma lisse. Pour rem6dier it cet inconv6niant Chase [Ch] et Smith [Sm] ont utilis6 dans le cas d'un corps de base k alg6briquement clos de caract6ristique p > 0 ce qu'ils appellent la p-filtration du falsceau 29/ffx/x(@X) pour une vari6t6 non singuli6re X. C'est une filtration par des sous-faisceaux d'anneaux qui sont na~th6riens. Its ont montr6 que la dimension homologique de dg/ffx/k(@X) est 6gale ~ dim(X) et on peut d6duire de leur r6sultats que le faisceau d~tffx/k(Gx) est cohdrent, t. Haastert [Ha] a 6tudi6 les op6rations cohomologiques sur les dgx/k-modules par passage ~t la limite h partir de la p-filtration. De m~me dans le cas d'un Zpsch6ma de base S, Berthelot [B3] a d6fini la filtration de ,19 iffxls(@x) par les sous-faisceaux d'op6rateurs diff6rentiels d'6chelon m. En fait la reduction modulo p de la filtration par les 6chelons est la p-filtration d6cal6e d'une unit6. Dans le cas d'ordre fini les extensions d'un 6chelon au suivant n'6tant pas plates on ne peut pas en d6duire que le faisceau dO~ffx/s(@x) est coh6rent. Mais d'apr6s Berthelot [B3] ceci est vrai pour la limite inductive des compl6t6s p-adiques des faisceaux d'op6rateurs d'6chelon fixe tensoris6e par Q. I1 y a tout Iieu de croire que tout se passe bien du point de vue de la dimension homologique. Tout semble indiquer que ron a de point de vue alg6brique une th6orie coh6rente de
270
29x/s-modules. Dans le § 2 nous rappelons la th6orie des 29x/k-modules en caract6ristique nulle sans th6or6me de r6solution des singularit6s, ce qui se fait surtout grace & une bonne g6n6ralisation en dimension supErieure du nombre de Fuchs attach6 ~t un point singulier d'une 6quation diff6rentielle. Dans le § 3 nous rappelons la th6orie des 29 x-modules complexes ~ partir du § 2. Enfin clans le § 4 nous d6crivons la th6ofie des 29xt/w®zQ-modules et ce que nous savons de la th6orie des ,19 ~/w®zQ-modules. En particulier nous montrons en dimension un que la cohomologie locale analytique de Dwork-MonskyWashnitzer d'un point ~t valeur clans un 29 txt/w®zQ-module d6finie par une 6quation diff6rentielle est 29 txt/w®zQ-coh6rente si et seulement si cette 6quation admet un indice darts respace des fonctions analytiques dans la boule de rayon un qui est le tube de ce point. On peut donc appliquer les th6or~mes de Robba [Rbl], [Rb2]. Tout se passe comme dans le cas complexe et fait penser que les propri6t6s de finitudes des 29 ~/w®zQ-modules sont li6es ~t leurs propri6tds de finitude de leurs solutions ~t valeur dans les espaces de fonctions analytiques dans des tubes convenables. Dans ce demier § on se place dans le cadre des sch6mas formels falbles de Meridith [Mr] pour 8tre un peu original par rapport ~t Berthelot [B3] qui se place dans le cadre des sch6mas formels. Mais il est clair que les deux points de vue sont nEcessaires. Le premier auteur a commenc6 ~t 6tudier la th6orie des 29x-modules et en particulier la th6orie des 29x-modules en juin 1972. I1 nous a sembl6 d6s 1975 que la th6orie des 29x-modules est le cadre naturelle de la th6orie cristalline. En mai 1983 et durant l'ann6e 1984-85 nous avons eu des discusions avec Grothendieck sur la th6orie g6n6rale qu'il appelle "des coefficients de de Rham". Grothendieck pense d'ailleurs qu'il dolt exister une th6orie des coefficients de de Rham sur Z. En 1985 [N-M 2] nous avons cherch6 ~ montrer le th6or~me de finitude de la cohomologie de Dwork-Monsky Washnitzer sur le modble de la caractfristique nulle &ralde de la th6orie de polyn6me de Bemstein-Sato. A parfir de ce moment lh ayant constat6 que cela est insuffisant nous avons cherch6 h developper la th6orie des ,19 ~t/w®zQ-modules qui devait ~tre ranalogue p-adique de la th6orie complexes des 29x-modules et en particulier montrer que l'image directe par une immersion ouverte du fibr6 trivial est un 29 ~ / w ® z Q module de pr6sentation f'mie. Nous aimerions remercier P. Berthelot, F. Baldassarri et G. Christol des discussions que 1' on a eues ces demi~res ann6es qui nous a permi de s'introduire h la thdorie p-adique. Notations. Si el est un faisceau d'anneaux nous noterons par el-mod la cat6gories des el-modules
d gauche et mod-el la cat6gorie des el-modules d droite. Si A est une cat6gorie ab61ienne nous noterons par D(A) la cat6gorie d6riv6e de la catdgorie A et Db(A) sa sous-cat6gorie des complexes cohomologie bom6e. On note par f* le foncteur image inverse pour un morphisme d'espaces annel6s f et par dim(f) sa dimension relative quand elle a un sens.
271
Nous conseillons au lecteur pour life cet article d'avoir ~ la main le cours [Mes] pour tout ce qui concerne ia th6orie algdbro-g6om6trique des 29x-modules. §1. Le f o r m a l i s m e des f a i s c e a u x d ' o p ~ r a t e u r s
diff~rentieis.
1.1. Les op6rations sur les cat6gories de modules sur les faisceaux d'op6rateurs diffdrentiels. 1.1.1. Soit h : X--->S un morphisme d'espaces annel6s et m un entier positif ou nul. Le faisceau • m) 29 tff(x~s(@ x) ([E.G.A. IV], § 16) des op6rateurs diff6rentiels d'ordre m est d6fini par r6currence sur m
comme le sous-faisceau du faisceau des endomorphismes h ' l ® s - l i n S a i r e s de @x en posant 29 tff(°)s(®X) := ®x et un endomorphisme P e s t un op6rateur diff6rentiel d'ordre m si et seulement pour toute section locale a de ®x l'endomorphisme [P,a] := Pa - aP est un op6rateur diff6rentiel d'ordre m 1. On pose
d~iffx/s(~x) := Umd~l/ff~m)((~X) XtS 1.1.2. Si h : X--->S est un morphisme de schdmas notons par X (m) le m-Sme voisinage infinitesimal de X pour le morphisme diagonal Ah : X --> X XsX, par h m le morphisme canonique x(m)---)X XsX et par p~m), p(2m) les deux morphismes compos6s
p~m): x(m)_.~X XSx -")X p(2m) : x(m)--)X XsX "-)X.
Notons par P (xn)s)(®x)le faisceau des parties principales d'ordre m du S-sch6ma X. Par d6finition on a
X/S((~x)(m):=(p~m)), (p(m))*((S)X)' Le faisceau des parties principales d'ordre m est muni d'une structure de ®x-algSbre h gauche et d'une structure de ®x-alg6bre h droite induites par les deux projections p~m), p (2m).On a alors l'isomorphisme ([E.G.A.IV], 16.8.4) . m) homox(~/~(@x),Gx ) ~ 29/ff(~/s((DX)
et le faisceau 29/ffx/s(®x) des op6rateurs diff6rentiels est alors un faisceau •
m)
sous-faisceaux 29/ff(X~S)(®x).
d'anneaux filtr6 par ses
272
1.1.3. Supposons que le morphisme h est lisse et soient x I . . . . . x n des sections du faisceau ®x au dessus d'un ouvert U telles que dx 1..... dx n forrnent une ®u-base du faisceau f2x/s. Alors les opErateurs diffErentiels
A q ""--A - q~l
q~ / ql !)"" (2 % ....A qnn := (~x~ x,/%!) forment u n e ® o-base du faisceau
.19/ff(x~s) (®x) pour q = (ql ..... %) tels que [ql -< m ([E.G.A. IV], 16.11.2).
1.1.4. Supposons que le morphisme h est lisse et que te schema S est localement n~ethErien. Notons par o h le complexe dualisant relatif pour le morphisme h. Le thEorEme de dualitE [R.D] pour le morphisme
fini p~m)s'Ecrit : (m
(m T
-
(Pl))*(Pl b'((gX) =
h°m®x(PXlS(®X)'@x)" (m)
Mais on ales isomorphismes de dualit6
(p~m))!((gX) -= (hm)!((pl)!(OX)) -= RhOm®XxsX(®X(m), (Pl)!(CgX)), (pl)!(@X) ~ o)pl[dim(pl)] -= (p2)*(oh)[dim(h)]. D'ofi l'isomorphisme Rhomc9 XxsX(@x(m), (p2)*(C0h))[dim(h)] = ~ i f•f x (m) /s(OX). Soit Extdim(h)® XxsX((gx(m), (P2)*(O)h)) ~ ,19/ff(X~)(OX). Prenons la limite avec m on trouve lim_,Ex¢iim(h)o XxsX(@X(m), (p2)*(O~)) - dD/ffx/S(@x). In
Soit Hxdim(h)((p2)*(Oh)) -= ,I9iffx/S(~X) qui est la definition de Mikio Sato des opErateurs diffErentiels (IS], [S.K.K]), incarnation en thEorie des hyperfoncdons du thEor~me des noyaux de Schwartz. 1.1.5. Notons 29X/S le faisceau des opErateurs diffErentiels dg/ffx/s(@x). Si le morphisme h est lisse la
273
donnEe d'une structure de gDx/s-modules d gauche sur un un ®x-module quasi-cohErent ~ 6quivalente ~t la donn6e d'une *-stratification relativement ~t S sur ~ isomorphisme pour tout m
est
([G2], [BI]) c'est ~t dire d'un
satisfaisant i~la condition de cocycle sur les images *-inverses sur les m-rme voisinages infinitEsimaux de la diagonale du produit triple XxsXxsX et compatibles quand m varie. Le faisceau structural ®x est donc un £gx/s-module d gauche.
De m~me si le morphisme h est lisse la donnEe d'une structure de £gx/s-module d droite sur un un ®xmodule quasi-cohErent ~ est 6quivalente ~ la donnre d'une !-stratification relativement ~t S sur ' ~ c'est ~tdire d'un isomorphisme pour tout m p~m~,'~ ~ p(2m~T~, satisfaisant ~tla condition de cocycle sur les images !-inverses sur les m-~me voisinages infinitEsimaux de la diagonale du produit triple XxsXxsX et compatibles quand m varie. Cette description des 29x/smodules tt droite est due ~ Grothendieck et ~ Berthelot. I1 rEsulte du throrEme de dualitE pour les morphismes p ~m)p (2m)que le faisceau dualisant relatif o~nest un dDx/s-module d droite. De m~me par dualit6 il rrsulte que le foncteur 'IlL ---)o~®cgxTlL est une Equivalence de categories entre la catEgorie des dDx/s-modules d gauche quasi-coh6rents et la catrgorie des dOx/s-modules d droite quasi-cohrrents. Le foncteur % ---->home~x(O~a,'lt,) 6tant un quasi-inverse. Dans [Ha] Haastert drcrit, sur un corps de base de caractrristique p, les dgx/s-modules d gauche en terme de limite projective et les £gx/s-modules d droite en terme de limite inductive et en dEduit que ces deux categories sont Equivalentes.
1.1.6. Les dgx/s-modules ~tgauche peuvent se drcrire comme les cristaux de modules, objets du topos critaUin ([G2], [B1] ). De m~me, d'aprrs Grothendieck et Berthe!ot les dgx/s-modules ~tdroite peuvent se drcrire en terme de co-cristaux de modules, objets du topos co-cristallin. Le topos co -cristallin garde un sens quand le S-schEma X est singulier et fournit un substitut intrinsrque ~t la catEgode des dgx/s-modules ~ droite. En caractEristique nulle on dispose de tout ce qu'il faut pour drvelopper une thEorie des coefficients de de Rham-Grothendieck, les co-cristaux justement, pour un morphisme f de varirtrs algrbriques.
274
1.1.7. Soient f : X-->Y un morphisme de S-sch6mas lisses et Af : X.--0.XxsY le morphisme graphe de f. Nous supposons la base S localement n~etherienne. Notons par ql et q2 les projections de XxsY sur X et Y respectivement. Posons Jgx_ow s := qpHxdim(Y/S)(@ x ®S0~y/s) d~lS/y,_X := qI,Hxdim(Y/S)(O}X]S@SOy). La structure de ,19x/s-module d gauche de ®x induit une structure de ,iDx;~s-module d gauche sur le faisceau ggx~y/s et la structure de dgy/s-module ct droite sur COy/s induit une structure de f-ldgy/smodule ~ droite sur le faisceau ,19x_oY/S qui est donc un ( ~ x / s , f-l,tgy/s)-bimodule. De m~me la structure de dgx/s-module d droite de O~x/s induit une structure de dDx/s-module d droite sur le faisceau dgs/y,_ X et la structure de dOy/s-module cl gauche sur (gy induit une structure de f-lJgy/smodule d gauche sur le faisceau dDs/y~X qui est donc un (f-129y/s-29x/s)-bimodule. En vertu de 1.1.4 le faisceau d'anneaux dOx_ox/s pour le morphisme identique de X est isomorphe au faisceau d'anneaux dgx/s. Et l'involution naturelle de XxsX induit un isomorphisme de faisceau d'anneaux de 29x__,x/s sur dOs/x~X. 1.1.8. Toujours pour un morphisme f : X ---)Y de S-sch6mas lisses consid6rons le diagramme naturel : X --~XxsY
$
+
Y --)YxsY. On ales isomorphismes, avec un abus de notations 6vident,
Lf*dgy/s~f*dgy/s~L f*R Fy((gy®s¢-oy/s))[dim(Y/S)]~R Fx(Gx®sO)y/s)) [dimC//S)]~ dDx.oy/s. I1 en r6sulte que le faisceau f*dgy/s est un (dOx/s,g-1 d9 y/s)-bimodule. Si 51L est un @y-module muni d'une *-stratification relativement ~tS son image *-inverse par f est muni d'une *-stratification relativement ~t S de fa~on naturelle. C'est donc un dgx/s-module ~t gauche. L'isomorphisrne naturel de (9 x-modules f*~[], ~ f*,lgy/s®f-l~y/sf-lcJ]~ ~ JDx~Y/S@f-ldBy/sf'l~], est en fait un isomorphisme de Z)x/s-modules h gauche. Ce foncteur d'image *-inverse est exact droite et se d6rive ~ gauche pour donner naissance ~ un foncteur exact de cat6gories triangul6es Db(dgy/s-mod) --~ Db(29x/s-mod)
275 L
--* Lf*~llk ~ dgx~y/s @ ~1~ [
~WS
f-l'lll,.
Le faisceau "P~Y/S6rant ®y localement libre tout dgy/s-module plat reste plat en tant que ®y-module. Le foncteur Lf* de la cat6gorie Db(,19y/s-reod) est donc la restriction du foncteur Lf* de la cat6gorie Db(®y-mod) ce qui justifit les notations. 1.1.9. Pour un morphisme f : X --* Y de S-sch6mas lisses le foncteur f entre les catdgories Db(Cgymod) et Db(®x-mod) est d6fini en factorisant f par une immersion ferm6e i : X --~XxsY suivie d'un morphisme lisse p : XxsY-~ Y. Pour un morphisme tisse p le foncteur p! est d6fini comme p*(-)® cop[dim(p)]. Pour une immersion ferm6e i le foncteur i ! est d6fini comme l'adjoint ~t droite du foncteur i,. On pose alors ~ := i ! p!. Si ~
est un (gy-module muni d'une !-stratification relativement ~ S les
objets du coreplexe ~qt, sont reunis d'une !-stratification relativement ~ S. C'est donc un complexe de 29x/s-modules ~t droite que nous allons d6crire. En fait on a l'isomorphisme naturel de complexes de ,19x/s-modules ~ droite pour tout complexe dgy/s-reodules h droite 'J~ : L f!~'I~ = f'l~Nfl,@f-l~y/sdgSZV,_x[dim(X/S) - dim(Y/S)]. On a ainsi d6fmi un foncteur exact de cat6gories triangulges : Db(reod-dgv/s) ~ Db(mod-dgx/s)
Le foncteur naturel de la cat6gorie des modules ~t gauche dans la cat6gorie des modules ~ droite transforme le foncteur *-image inverse en !- image inverse et r6ciproquement. 1.1.10. Pour un morphisree f : X ~ Y de S-sch6mas lisses on d6finit les foncteurs *-images directes (cristaltines) if, Db(,29x/s-mod) -o Db(dDy/s-mod) par 'IlL ---~ff ~
L :~ Rf,29s/y,__x®,Vx/sTfl,, et
ff Db(mod-,19x/s) --~ Db(mod-dgy/s) L 'Ill, ~ if, ')11, := Rf, gll, ®29X/s,~X__~y/s.
276
I1 rtsulte de la formule de projection que le foncteur naturel de la catdgorie des modules ~t gauche dans la cattgorie des modules ~ droite et compatible aux foncteurs *-images directes. Pour un morphisme lisse de variE~s lisses le foncteur ~ coincide avec la d6finiton de la connextion de Gauss-Manin de Grothendieck quand la base est de caractEristique nulle. Mais bien entendu ce n'est pas le cas en caractEristique non nulle. Darts ([G2], 3.5, p.330 ) Grothendieck donne un example off la connexion de Gauss-Martin d'un morphisme propre et lisse n'a pas une structure de 29-module. En fait la connexion de Gauss-Manin correspond ~ l'image directe des modules sur le faisceau des optrateurs difftrentiels d'tchelon nul ou de p-filtration un cf. § 1.2 ci-dessous. 1.1.1 1. Si ~
est un complexe de la catEgorie Db(29x/s-mod) on dtfinit son complexe dual 'IlL* de la
catEgorie Db(29x/s-mod) en posant nO,* := hornO x(Ob~/s, Rhom ex/s(~L,29x/s))[dim(X/S)]. De mtme si ~ est un complexe de la cattgorie Db(mod-29X/S) on dtfinit son complexe dual n&* de la cattgorie Db(mod-29x/s) en posant T~* := O~s ®o x Rh°m'~x/s(T& ,d9 x/s)) [dim(X/S)]. 1.1.12. Si f : X --+ Y est un morphisme de S-schtmas lisses on d6finit les !-images directes (cristallines)
if(Db(29x/s-mod) --+ Db(29y/s-mod) par ---~f~ ~1, := (~1~*)* et ffl Db(mod-29x/s ) -+ Db(mod-29Y/S )
~ ~ ~ := (~ ~*)*. Donc pour un morphisme f : X -+ Y de S-schtmas lisses et pour les cat6gories Db(29x/s-mod) et Db(mod-29X/s) on dispose des op6rations f*, ~, f., fl et de la dualit6 (-)*. 1.2. Propri6tts de finitude. En gtntral l'anneau F(X;29X/S) pour un S-schtma affine lisse n'est pas nmth6rien. Mais si tousles hombres premiers sont inversibles sur S sauf un nombre p e t six 1..... x n sont des coordonntes locales
277 m
la F(X;@x)-alg6bre F ( X ; H x / s ) est engendr6 par Aip pour m parcourant tousles entiers. En effet si qi est un entier dont le ddveloppement p-adique s'dcrit qi = a0 + alP 1+ ...+ azPt alors le nombre (pl!)al...(pt!)adqi! est une unitd p-adique u et ron a donc ,~
l
Si on note par F(X;dgX/S,rn) pour tout entier rn la F(X;®x)-alg6bre est engendr6 par APm' pour m' < m on obtient pour m variable la p-filtration de F ( X ; H x / s ) quand S est le spectre d'un corps algdbriquement clos k ([Ch], [Sm], [Ha]) et la filtration de Berthelot [B3] par les dchelons quand S est un Zp-SChdma. Nous allons voir que ces filtrations ne d6pendent pas des coordonn6es et permettent d'dtudier l'anneau F(X;,19 x/s). 1.2.1. Cas off S est le spectre d'un corps k algdbriquement clos de caract6~Sstique p > 0. Pour dtudier le faisceau Hx/k on introduit, ~ cotd de ta filtration naturelle par rordre, la p-filtration Hx&.m (m ~ N) ([Ch], [Sm], [Ha]). Pour tout "niveau " rn on note par F m := X ~ X mle m-dme it6r6 du morphisme de Frobdnius. La sous-algdbre Hx/k. m :=hom®xm+l(@x,@ X) de hOmk(®X,® X) est en fait une sous-algdbre d'opdrateurs diffdrentiels et ron a rdgalit6 ([Ch],[Sm]) k-Ad~X/k,m =d~X/k.
On peut consider les catdgories Db(Hx/s,m-mod),Db(Hx/s-mod),Db(mod-Hx/s, m) et Db(mod-Hx/s). Pour tout m e t tout morphisme X ~ Y on ales faisceaux Hx..~y/$,m et d9 S/Y~_X,m de fa~on dvidente. Pour tout m on les op6rations f~, f~, f*,m, f!,m, (-)* pour les catdgories Db(Hx/s,m-mod),Db(mod Hx/s,m) qui donnent par passage ~tla limite quand m tend vers rinfini les opdrations analogues pour les catdgories Db(Hx/s-mod), Db(mod-Hx/s) ~tcondition de se restreindre aux coefficients quasi-coh6rents en tant que ® x -modules [Ha]. Proposition ( 1 . 2 . 2 ) . - - S i X est k-schdma affine non singuIier la F(X;@x)-atgdbre pk F(X;HxN,m) est engendrd par les op~rateurs A i , k = 0,...,m, i = 1 ..... n, oa les A sont associ~s d un systdme de coordonn~es locales x = (x 1..... Xn) au dessus de X. Preuve. I_es op6rateurs A~k. k = 0,...,m sont dans F(X;Hx/k,m) puisque Ieur ordre est < pm+l ([Sm], pm+l
Th., 2.7). Rdciproquement soit P u n opdrateur de F(X;Hx~,m). On a[P, x i
] = 0 pour i = 1..... n.
Soit d son degr6 nous allons montrer que dpro+l, dcrivons P = P0 +'''PdAnd pm+l
ob les Pi commutent avec Xn; par hypothdse [P, x n
i
pm+l
I = 0. Donc ZPi[z~r~ x n
d
] = 0. Mais [An,
278
xPm+i]=A~-Pm+l+Xpm+l d pm+l d n An, Donc 0 = PaXn Am + termes de plus bas degr6 en An. Ceci entraine que Pa = 0. Donc si Pest un op6rateur de p-filtration m+l la plus grande puissance de Ai; i = 1...n, qui apparait darts sa d6composition est strictement plus petite que pm+I En vertu du d6veloppement padique d'un entier s i d < pro+l, A~ appartient ~ l'anneau engendr6 par A~k, k = 0 ..... m. La p-filtration est croissante, pour m > m' l'extension ,IgXlkan, ---) ~X/k.m est plate ~t droite et ~ gauche ([Ch], [Sm]) et pour tout m l'anneau F(U;dgX&,m) est n~eth6rien a droite et ~t gauche pour tout ouvert affine U de X. On en deduit en particulier que le faisceau ~gxlk,m d'anneaux est coh6rent pour tout m. L'anneau F(U;Jgx/k) n'est pas n~eth6rien. Cependant de ces remarquables r6sultats on obtient le th6or6me :
Thdordme (1.2.3).-- Pour toute vari~td X non singuIidre sur un corps k alggbriquement clos de carast#ristique p > 0 le faisceau JOXlkest un faisceau d'anneaux coh6rent. Preuve. I1 faut montrer que le noyau de tout morphisme d~x&-lindaire : (dgx/k)q ~ ,19X/k(~ droite ou gauche) est un dgx/k-module de type fini, Mais le faisceau dgx/k 6tant quasi-coh6rent en tant que ®xmodule il suffit de montrer que le noyau du morphisme F(U;(dgX/k)q) --~ F(U;dgx/k) pour tout ouvert affine U est de type fini. Mais pour U affine F(U;dOx/k) est r6union des anneaux F(U;,19X/k,m) pour m e N. I1 en r6sulte que les op6rateurs diff6rentiels dormant le morphisme pr6c6dent sont dans l'anneau F(U;,19 X/k,m) pour m assez grand. Mais l'extention F(U; dgX/k,m) --* F(U; dgx/k) 6tant plate ([Ch],[Sm]) te noyau du morphisme F(U;(dgX/k)q ) --4,F(U;,IS~x/k) provient par extention des scalaires du noyau du m o r p h i s m e F(U;(d~X/k,m)q)----) F(U;dgx/k,m) pour m assez grand. Mais l'anneau F(U;,Igx/k,m) 6tant
n~eth6rien ce noyau est de type fini. On peut donc comme en caract6ristique nulle consid6rer les cat6gories ab61iennes des dgxtk-modules b b coh6rents et tes cat6gories triangul6es Dc(dgx/k-mod ), Dc(mod-,ggxlk) des complexes de 29x/k-modules
~tcohomologie bom6e et coh6rente. Remarquons cependant que le faisceau structural @x et le faisceau dualisant C0xlk ne sont pas ,Igx&-coh6rents. On a alors le th6or~me de Chase-Smith ([Ch],[Sm]): Th#ordme (1.2.3).-- Pour tout ouvert affine U d'une vari4t# X non singulidre sur un corps k alggbrique ctos de caractdristique p > 0 la dimension homologique de l'anneau F(U;,IDx&) est dgale d la dimension de X. On peut alors d6finir la catdgorie des dgx/k-modules holonomes: Ddfinition (1.2.4).-- On dit alors qu'un dgXlk-module coherent ~ faisceaux Extiex/k(]'lL,dgX/k) sont nul pour i ~ dim(X).
est holonome si les
279
I1 n'est pas clair que la categories des dOx/k-modules holonomes soit abElienne bien que cela semble probable. On note par D~(dOXak-mOd), D~(mod-dOx/k) les categories des complexes de dOx/k-modules cohomologie bornEe et holonome. I1 n'est pas clair que les categories D~(dOx/k-mod), D~(mod-dOX/k) soient triangulEes. De mEme pour tout m puisque le faisceau dOX/k,m est coherent de dimension homologique 6gale ~t dim(X) on a l e s categories D~(dOx/k,m-mod), D~(mod-dOx/k,m). On obtient des categories de coefficients dont on a pas encore exorciser Ies propriEtds de finitude si cela est raisonnable. 1.2.5. Cas d'un Zp-schEma de base S . Soit X un S-schEma lisse. Sur te faisceau dOx/s on a la filtration de Berthelot [B3] par les faisceaux des opErateurs diffErentiels "d'Echelon " m pour m e N qui donne la p-filtration par reduction modulo p e n vertu de (1.2.2). Si on fixe un Echelon m on remplace le faisceau des parties, d'ordre 1, I£ (xlls(@X) par le faisceau des parties principales, d'ordre 1 et d'Echelon m, P (~sm(@X). Pour sa definition precise nous renvoyons le lecteur h l'expos6 de Berthelot darts ce m~rne volume. On pose alors dOiff~s,m((~X) := homtDx(~ OX))S,m(~)X),Ox ). C'est le faisceau des opErateurs diffErentiels d'ordre 1 et d'Echelon m, voir aussi (1.23). C'est un faisceau de ®x-algEbres localement libre de type fini. Pour m > m' on un morphisme naturel
qui fait des dOtff(~san (@x) (pour 1 fixE) un systEme inductif essentiellement constant ~t dOtf-~s(®X). On pose alors dO/ffx]s,m ((~X) := uldOiff~s,m (~X)" Le faisceau
doiffxlS.m (@X) est
un faisceau de ®x-algEbres et le faisceau ® x est doiffxts.m (®x)-
module ~ gauche. La limite inductive des do/ffX/S,m(@x) (me N) est alors canoniquement isomorphe
dOiffx/s(®x).
En coordonnEes locales rimage de dOiffx/s,m(@x) dans dOiffx/s(®x) est engendrEe en
tant que ®x-algEbre par les opErateurs APk, k = 0 ..... m et les morphismes de transition ne sont autre que les inclusions canoniques. Le faisceau est dOiffx/s,m(®x) coherent pour tout m. La reduction modulo p de la filtration par les Echelons de dO/fix/s(@ x) n'est autre que la p-filtration.
280 Remarque (1.2.6).--- L'extension 29 iffx/s,m,(®X)-->29/ffx/s m(@X) pour m > m' n'est pas plate bien que sa reduction modulo p est plate!. Proposition (1.2.7).-- On peut aussi remarquer que l'anneau des opErateurs d'Echelon m est engendr6 par les opErateurs d'ordre au plus d'ordre prn aussi bien en caracterisfique pure p qu'en in6gale caractErisfique p. Ceci donne une desciption intrins6que simple de ta filtration par les Echelons. Proposition (1.2.8).--Si S est le spectre d'un anneau de valuation discrdte W complet d'indgale caractdristique p pour tout ouvert affine U de X et pour tout m le complEt6 p-adique de l'anneau r(u;291ffx/w~(@x) ) est de dimension homologique ~gale d dim(X/W) + 1. A
Pmuve. Notons 29iffx/W,m((~-)X)le complEtE p-adique de 29iffx/w,rn(@x). La reduction modulo p de ranneau 1-'(U;29tf-fx/w.m(@x))est l'anneau des opErateurs diffdrentiels de p-filtration m+l sur un corps de caractiristique p qui est de dimension homologique Egale ~ dim(X/W) ([Ch],[Sm]). Un vertu de ([Rt], thm. 9.33) on a l'in6galitE dh(r(u;29iffx/w,m(@x))) > dim(X/W)+l. D'autre part le graduE associ6 ~ la filtration p-adique de F(U;29/ffxAv~(@x)) est de dimension homologique dim(X/W)+l car isomorphe ~ l'algEbre des polyn6mes ~ une variable sur un anneau de dimension homologique dim(X/W). Donc dh(F(U;~tffx/w,m(®X))) < dim(X/W)+l en vertu de ([N-V], VII-1 1, p. 315). De m6me la dimension homologique de F(U 29iffx/w m(@x)) est moins Egale ~t dim(X/W)+l. 11 est probable qu'elle est Egale ~ dim(X/W)+l.Si on pose avec Berthelot [B3] 29x/w . - ~
29/ffx/w,m(@x) •
m
On trouve que la dimension homologique de F ( U ; 2 9 ~ @ x ) ) est au pIus dim(X/W)+2 car limite inductive d'anneaux de dimension homologique dim(X/X)+l en vertu de [Bet]. D'autre part sa dimension homologique est au moins dim(XjW)+l car sa reduction modulo p e s t de dimension homologique dim(X/W)+l. I1 est probable que dh(F(U;29~w(®x)) = dim(X/W)+1. § 2. Le th6or~me des coefficients de de Rham-Grothendieck en caract~ristique z~ro.
On suppose dans ce § que le schema de base est un corps k de caract6ristique zero que nous supposerons, pour simplifier, alg6briquement clos. Le faisceau des opErateurs 29x/k:= 29/ffx/k(@x) diffErentiels sur un variEtE algEbrique X non singuli~re sur k est alors un faisceaux de @x-atgEbres de type fini tel que le faisceau graduE gr(29x/k) associE ~t la filtration 29 (xm/~):= 29 if~)~ par l'ordre des opErateurs diffErentiels est un faisceau de ®x-alg6bres commutatives de type fini. La variEtE au dessus de X associEe ~t la ®x-algEbre gr(29x/k) est le fibre cotangent T*X de X. L'anneau des sections
globales au-dessus de tout ouvert affine de coordonnEes de X du faisceau 29x/k est n~ethErien. On en dEduit que le faisceau quasi-cohErent 29x/k est en fait un faisceau coherent d'anneaux.
281
2.1. I ~ th6or%me de finitude. 2.1,1. Soit U un ouvert affine de X. On a alors le th6orSme ([Ro], [Bj], [Ch]) : Thdordme (2.1.2).-- La dimension homologique de l'anneau F(U;Igx/k) est ~gale clla dimension de X.
Tout 29X/k-mOdule coh6mnt ~
admet une fillration 'In,(m) (m e N) par des @x-modules coh6mnts qui
est bonne c'est ~t dire dont le gradu6 associ6 g r ( ' ~ ) est un gr(dgX/k)-modtfie cohdrent. La vari6t6 r6duite Ch('Jll,) du fibr6 T*X associ6 h gr('Ill) ne d6pend pas de la bonne filtration choisie. Par ddfinition c'est la varidt6 caractdrisfique de ']m,. En faite la multiplicit6 de la vari6t6 caract6ristique Ch(~],) en chacun de ses points ne d6pend pas de la bonne filtration choisie. En particulier le cycle CCh(]A) associ6 ~t gr(~[IL) ne d6pend que de ~ . C'est par ck!finition le cycle caract6ristique de 7rl,. Voir par exemple ([Mz] ou ([Mes, 1.2.2, 2•4))• On a alors rin6galit6 dite de Bernstein cf. [Be] : Thdor~me ( 2 . 1 . 3 ) . - - L a dimension de la varidtd caractdristique CCh(71L ) d ' u n £gX/k-mOdule cohdrent non nul 7P~est au moins ~gale d dim(X).
Pour une d6monstration g6omdtrique du th6or~me (2•1•3) voir ([M 2] ou ([Mes], I•2•3))• En fait la th6orie des bons anneaux filtr6s voir par exemple ([M 2] ou ([Me], 1.4•1•3, 4,2.14)) montre que le th6or~me atg6brique (2.1.2) est 6quivalent au th4or~me g6om6trique (2.1.3). Si on pose pour un dgx/k-module coherent non nul Til grade(Tfl,) := inf{i; EXt~xlk(~t, i ,d9 X/k) ~ 0}. On a g r a d e ( ' ~ ) = codirnT.x(Ch('ITk)) cf. ([Mes], 1.4.2.14). Cela am6ne h poser la d6finition : Dgfinition ( 2 . 1 . 4 ) . - - On dit qu'un ,6)Xlk-mOdule cohdrent 71% est holonome s'iI est nul ou si la dimension de sa varidtg caractdristique est dgaIe d dim(X)• De fagon dquivalente s'il est nul ou si les •
i
fa~sceaux Ext ~xf(?l~,~gx/k) sont nuls pour i ¢ dim(X).
On note par Mh(dgx/k- ) la cat6gorie des dgx/k-modules ~t gauche holonome qui est alors une souscat6gorie pleine de la catfgorie dgx~-modules coh6rents. Darts une suite exacte courte de 29x~-modules coh6rents le terme m6dian est holonome si et seulement si les termes extremes sont holonomes. En particulier la cat6gorie des dgx~-modules holonomes est ab61ienne. On note D~(,tgx~-mod) la cat6gofie des complexes ,Igx/k-modules ~ cohomologie bom6e et holonome. C'est alors une sous-cat6gorie pleine et triangul6e de la cat6gorie D~(,19x&-mod).
282
Si ~
est un ,IDx/k-module ( ~t gauche) holonome le dgx~-module (~ droite) Extn~ _(Tfl,,dgX/k) est x/K encore holonome. Autrement dit le foncteur de dualit6 'JTk --+ 'rfl,* est une anti-6quivalence de catfgorie de la catEgorie des dDx&-mc~ules (~t gauche ou ~ droite) holonomes dans eIle m6me. 2.1.5. Le point clef des propri6t6s de finitude en caract6ristique nulle pour les dDx/t-modules holonomes est l'6quation fonctionnelle dite de Bemstein-Sato. Motiv6 par le probl6me qui ~ priori n'a rien i~ avoir avec la cohomologie des vari6t6s alg6briques, pos6 par I. Gelfand au congr6s d'Amsterdam (1954), du prolongement analytique de la distribution s --~ ps off P est un polyn6me rdel I.N.Bernstein a d~montr6 le th6or~me suivant. Soit P u n polyn6me ~ n variable ~t coeficients dans k. Notons Dkn/k l'algEbre de Weyl c'est "a dire F(kn;agkn/k) et Dkn/k[S]P s le Dkn/k[S] := Dkn&®kk[s] module engengr6 par le symbol p s II faut voir Dkn/k[s]P s comme sous-module de A[s,P-1]P s off A := k[xt,...Xn] et off l'action de Dkn/k[S] sur A[s,P-1]P s est celle qu'on pense. Thdordme (2.1.6) [ B e ] . - - Soit P un polyname non nuI de A il existe alors un plyname non nul fl une variable B(s) d coefficient clans k et un op~rateur diff~rentiel de Q(s) de Dkn/k[S] tels que l'on air l'gquation fonctionnelle B(s)P s = Q(s)PW. Corollaire (2.1.7).-- Si P e s t un polyn6me le Dkn/k-module A[P -1] est de type fini. En effet pour tout entier m on a un morphisme de spdcialisation de A[s,P-1]P s dans A[m,P-1]P m : (I:~m : A[s,p-x]P s -+ A[m,P-I]p TM. De l'6quation fonctionnelle on d6duit que le Dkn/k-module A[P 1] est engendr6 par p-m pour m assez grand. On peut localiser l'6quation fonctionnelle. Soient U un ouvert affine de X off l'on dispose de coordonnEes locales, A := F(U,®x), Du/k := F(U,dgx/k) et M l'espace des section globales sur U d'un ~gx/k-module holonome. Pour tout 616ment non nul u de M e t toute fonction r6guliEre P sur U on considEre le Du/k[s]-module Dua~[s]P~u. On alors le rEsultat suivant : Thdordme (2.1.8).-- Soit P une fonction non nul de A it existe alors un polyngme B(s) non nul d u n e variable d coefficient dans k et un op~rateur diff~rentiet de Q(s) de DuN[s] tels que t'on ait l'~quation fonctionnelle B(s)PSu = Q(s)PPSu. Le th6or6me (2.1,8) se r6duit h (2.1.6) si U = k n, M = A et u = 1. La d6monstration de (2.1.8) est aujourd'hui 616mentaire. A partir de (2.1.2) et de la th6orie des bons anneaux filtrds elle repose sur le fait que A est une k-alg6bre de typefini et sur le fait qu'en g6om6trie alg6brique tous les faisceaux coh6rents en dehors d'une sous-vari6t6 se prolonge en faisceaux coh6rents cf, ([Mes], 1.4.2).
283
Corotlaire
(2.1.9),-- Si ~fi, u est un 29 u/k-module holonome sur U compldmentaire d'une
hypersurface Z de X l'image directe de effk u par l'inclusion canonique de U dans X est un 29X/k" module holonome.
En effet la question est locale sur X. On peut supposer que X est affine et que Z dEfini par une Equauon P. Si i dEsigne l'inclusion cananique de U dans X, i,'lll, U est un 29Xfk-mOdules quasi-cohErent. Pour montrer qu'il est 29X/k-cohErent il suffit de montrer que le Dx/k-module de ses sections globales est de type fini. Mals 'Ill, U admet un plongement holonome cf. ([Mes], 1.4.1.8) ~ X. L'Equation fonctionnelle (2.1.8) appliquEe aux sections globales d'un tel prolongement et ~ ses gEnErateurs montre que F(X,i, Tfl,u) est un Dx/k-mOdule de type fini. Une fois acquis le fair que i,'}'t],U est 29X/k-cohErent un argument de spEcialisation montre qu'il est holonome cf. ([Me5], 1.8.2, p. 101). On peut dEduire facilement de (2.1.9) que les categories sont stable par images inverses cf. ([Mes], I. 8.7). Si f : X ---->Y est morphisme de vari&ds algEbriques sur k avec les notations du § 1 : Corollaire (2.1.10).-- Si ~
est un coefficient de D~(29y/k-mod) a/ors f*']~ et f!Tfl, sont des
coefficients de D~(29x/k-mod).
Si ~ est un complexe de 29X/k-modules posons DR(TfL) := Rhomzgx&(@x,~). En caract&isque z3ro on on l'isomorphisme (notations du § 1) : L DR('I1L)[dim(X] ~ '1~ ®29X/k29speek<.__X On dEduit de (2.1.8) le thEor~me de fmitude : Th~ordme ( 2 . 1 . 1 1 ) . - - S i ~ est un 29X/k-module holonome Ia cohomologie de RF(X;DR(Tfl,)) sont des espaces vectoriels sur k de dimension f'mie.
Preuve. La suite spectrale de Cech-de Rham perrnet de supposer que X est affine. En Prenant un plongement de X dans un espace numErique, on est r~duit ~t supposer que X = k n. En vertu de (2.1.8) l'image de 'Ill, par l'inclusion de k n dans l'espace projectif pn de dimension n e s t un 29 pn-module coherent. On est rEduit ~t montrer que le complexe RF(Pn;DR('II~)) est h cohomologie de dimension finie sur k pour un 29X/k-module coh6rent 'JTI,. Mais tout 29pn-module coherent est quotient d'un module de la forme 29~®Oen:y pour un @pn-module coherent ~ . Mais RF(Pn; DR(29pn@O vnff')) est isomorphisme h RF(P~; o~x~®opn~r)[-n]. On est rEduit au thEor~me de finitude de Ia cohomologie d'un
284
faisceau algEbrique coherent sur un espace projectif. Mais puisque le dOX/k-module @x est holonome en caractErisque zero on u'ouve que la cohomologie de de Rham d'une variEtE alg6brique non singuli~re sur un corps de caractEristique nulle est de dimension finie. Plus gEnEralement si f : X ~ Y est un morphisme de variEtfs algEbriques non singuliEres sur k on a, avec les notations du § 1, le thEor~me : Th~or~rne ( 2 , 1 . 1 2 ) . - - Si ~
est un coefficient de D~(dOx/k-rnod) alors f~'IIt, et ffl 711, sont des
coefficients de D~(dOy/k-mod).
Preuve. On factorise f e n une immersion fermEe suivie d'une projection. Le cas d'une immersion fermEe ne pose pas problbme. Si f est la projection XxY ~ Y la suite spectrale Cech-de Rham relatif nous rEduit ~t supposer que X est affine. Un plongement dans un espace numErique rEduit ~ supposer que X est l'espace affine k n. Le corollaire (2.1.9) rEduit ~ supposer que X est l'espace projectif pn. Mais tout dor,n×y-module coherent est quotient d'un module de la f o r m e d~pn×y®®pnxyI~' pour un @gt, y-module coherent ~ . La doy/k-cohErence rEsulte alors de la formule de projection et du thEor~me d'images directes par un morphisme projectif des faisceaux algEbriques cohErents. Une fois acquis la coherence le thEorEme de dualitE relative pour un morphime projectif qui dit que le foncteur image directe commute ~ la duatit6 ([Mes], I. 5.3.13) montre que les faisceaux Ext sur ,19Y/k et contre dOY/k des faisceaux de cohomologie des images directes sont concentrEs en degr6 dim(Y) ([Mes], I. 5.4.1, p. 76). Ils sont donc holonomes. En particulier le thEorEme (2.1.12) 6tablit l'holonomie des modules de Gauss-Martin [G2] qui sont les faisceaux de cohomologie du complexe ~ @x et cela pour un morphisme f arbitraire de variEtEs algEbriques non singuli~res sur un corps de caractEristique nulle. L
Si 3'I1,1 et ~ 2 sont des complexes de doX/k-modules (& gauche ) Ie complexe ~ 1 ®Ox 'Ill' 2 est un complexe de dox/k-modules (~t gauche) et il en rEsulte facilement de (2.2.4) que le complexe est ~t cohomologie holonome si ~ 1 et 'm, 2 le sont. Autrement dit pour un morphisme f de variEtds algEbriques non singuliEres sur k les categories L
D~(doX/k-mod) sont stables par les cinq operations f*, f., if, f~ et ®Ox parmi les six operations de Grothendieck. Les categories D~(dox/k-mod ) n'Etant pas stable par l'opEration interne Rhom®x('gl, I, ¢1~,2) qu'il faut remplacer par l'adjoint ~ gauche du produit tensoriel qui existe ([Mes], I1.9.1, p. 185). On dispose d'une thEorie des cycles 6vanescents, la thEorie de la V-filtration, pour les dox/k-modules qui est ranalogue de la thEorie des cycles 6vanescents de SGA 7, cf. par exemple [S-M].
285
2.1.13. Si on part d'un morphisme f de variEtEs analytiques complexes ou p-adiques rigides on a encore L les categories D~(£gx/k-mod) qui sont stables par les operations f*, f!, ~ et ®®x " Pour rimage directe il faut supposer le morphisme propre et imposer une condition d'existence de filtrations globales. Mais les demonstrations sont algEbriques [M-N2]. 2.2. Le thEorEme de comparaison. 2.2.1. Soit X une variEtE algEbrique complexe non singuli~re et X a~ la variEtE transcendante associEe ~t X. On a un morphisme GAGA : (*) RF(X; DR(®x)) --~ RF(Xan; DR(®xan)). Thdordme (2.2.2) (Grothendieck).-- Le morphisme (*) est un isomorphisme.
Comme te complexe DR(@xan) est une resolution du faisceau constant Cxan en vertu du lemme de Poincar6 la cohomologie de de Rham algEbrique d'une variEtE algEbrique complexe non singuliEre est isomorphe ~t sa cohomologie de Betti. Si X est propre le thEor~me (2.2.2) est une cons&tuence du thEorEme GAGA de Serre. Mais si X est affine sa demonstration n6cessite la thEorie des Equations diffErentielles complexes [i points singuliers r~guliers. Plus gEnEralement soit ~ un fibre sur X muni d'une connexion intEgrable. On a encore un morphisme GAGA : (**) RF(X; DR(~)) --->RF(Xan; DR(~aa)). Thdor~me (2.2.3) (Deligne).-- Si le fibrd image inverse de ~ sur toute courbe non singulidre audessus de X n'a que des singularitds r#gulidres d l'infini le morphisme (**) est un isomorphisme.
La demonstration du thEor~me de comparaison de Grothendieck-Deligne ([G1], [D1]) reposait de fa9on essentielle sur le thEorEme de resolution des singularitEs de Hironaka [H]. En ce sens elle restait largement inaccessible vu la difficultE de la demonstration du thEorEme de Hironaka. Nous aUons expliquer que le thEor~me de Hironaka n'est pas indispensable ici. 2.2.4. Dans les thEorEmes de comparaison prEcEdents, comme beaucoup de thEorEmes de gEomEtrie algEbrique, il s'agit de dEmontrer que les fibres h connexion en question ont une ramification moddrde rinfinie. En dimension un le thEorEme de Fuchs affirme qu'un point singulier d'une Equation diffErentielle est rEgulier si et seulement si le nombre de Fuchs de cette Equation attache ~tce point est nul. Le calcul de ce nombre n'offre pas de difficultE. En dimension supErieur il faut faire la m~me chose. Etant donne une variEtE algEbrique non singuliEre X sur un corps k de caractEristique nulle et un fibre ~ connexion ~ u sur le complEmentaire U d'une hypersurface Z dventuellement singuli~re de X nous allons attacher au triplet (X, Z, ~u) une stratication u Z i de Z et pour chaque strate Z i un entier mi
286
positif ou nul qui mesure parfaitement la ramification de ~ u le long de Z. Si X est une courbe ces nombres m i ne sont au autre que les nombres de Fuchs du fibr6 ~ u aux points singuliers Z. Puis il faut donner un crit6re facile ~ v6rifier assurant que le cycle positif ]~miZi est nul. 2.2.5. La d6finiton de ce cycle a pour origine la d6monstration de Grothendieck [G1] de son th6or~me de comparaison. En effet c'est dans cette d6monstration qu'on trouve la manisfestation la plus tangible d'un objet d'une cat~gorie d#riv#e discr6te du type D~(C x) qui est ~t la base de la notion defaisceau
pervers. Rappelons que si X est varidt6 algEbrique complexe un faisceau transcendant 9 r d'espaces vectoriels complexe de dimension finie sur Xan est dit alg6briquement constructible s'il existe une stratification alg6brique telle la restiction de ~ ~ chaque strate est une syst6me local. On note alors D~(C x) la cat6gorie des coefficients complexes constructibles c'est h dire des complexes ~ cohomologie bom6e et constructible. On dit qu'un coefficient constructible ~ a la propriEt6 de support si ses falsceaux de cohomologie hi(~ r) sont concentr6s en degr6s [0, dim(X)] et si la dimension du support du faisceau h i ( ~ ) est au plus 6gale ~t dim(X) - i pour tout i dans [0, dim(X)]. On dit qu'un coefficient constructible a la propri6t6 de co-support si le complexe dual R h o m c x a n ( ~ , Cxan) ( X 6tant non singulier) a la propri6t6 de support. On dit qu'un coefficient constructible est unfaisceau pervers s'il a la propriEt6 de support et de co-support. On note Perv(Cx) la cat6gorie des faisceaux pervers. C'est alors une souscatEgorie pleine de D~(Cx) et ab#lienne cf. [B-B-D]. Un coefficient constructible ~ sur une sousvari6t6 Z de X est un faisceau pervers sur Z si ~ [-codimx(Z)] vu comme coefficient constructible sur X est un faisceau pervers sur X. On note Perv(Cz) la catEgorie des faisceaux pervers sur Z. 2.2.6. Soit ~
un ,19x/c-module holonome sur une vari6t6 alg6brique complexe non singuli6re. Alors
son complexe de de Rham transcendant DR('III, an) := R h o m ~xan/c(@Xan,'lll, an) est un coefficient constructible ayant la propri6t6 de support [K1], voir aussi [N-M1]. D'autre part il r6sulte du th6or6me de dualit6 locale qu'il la propri6t6 de co-support [Me3]. C'est donc un faisceau pervers sur X. 2.2.7. Si Z e s t une sous-vari6t6 ferm6e de X notons par i : Z---) X +- U :j les inclusions canoniques et par ian : zan--~ X an e - U an : jan les inclusions transcendantes correspondantes. Rappelons que le foncteur i an! de D~(C X) dans D~(Cz)
287
est adjoint ~t gauche du foncteur ian, de D~(C Z) dans D~(Cx). Ici ian!(9¢) est simplement i-lRFzan(~'). Soit un 29xtc-modute holonome 'IlL posons I R z ( ~ ) := ian!(DR((j,j-l~lL)an))[1]. En vertu de (2.1.9) j , j - i T ~ est un $gx/c-module holonome et donc IRz('I]L) est un coefficient constructible sur Z. On a ainsi d6fini un foncteur cohomologique de Mh(29x/c-) darts D~(Cz). I1 transforme suite exacte de ,Ox/c-modules en triangle distingu6 de D~(Cz). Pour rassurer le lecteur le complexe IRz(~qL) n'est rien d'autre que le c6ne du morphisme naturel DR((j,j -1TIL)an) ---)Rjan,j-lanDR((']'lL)an et sous cette forme qu'il appara3t dans la d6monstrafion de Grothendieck [G1]. On a alors le th6or~me suivant [Me6] : Thdordme
( 2 . 2 . 8 ) . - - Si Z e s t
une hypersurface et 'IlL est un ,19 x / c . m o d u l e
holonome
le
coefficient IRz('IIL) est un faisceau pervers sur Z.
Comme un triangle disfingu6 form6 par des faisceaux est en faite une suite exacte de la cat6gorie des faisceaux pervers il en r6sulte que le foncteur IR z : Mh(dgx/c-) ---)Perv(Cz) est un foncteur exact de cat6gories ab61iennes. Ddfinition(2.2.9).-- Si Z e s t une hypersurface et ~
est un dgx/c-module holonome on appelle
faisceau d'irr6gularit6 de TfL le long de Z le faisceau IRz(TfL). Par exemple si X est une courbe et Z un point le faisceau IRz(Tfl,) est un espace vectoriel complexe de dimension finie. Sa dimension est 6gale au hombre de Fuchs en Z de Tfl,. Cela r6sulte du th6or6me de comparaison de Malgrange [M1]. I1 faut maitenant avoir un crit6re pour que le faisceau IRz(']]L) soit nul. On dit qu'un module holonome ~t support une sous-vari6t6 lisse Y est lisse si sa vari6t6 caract6ristique contient au plus que le fibr6 conormal T~,X. Soient Y une sous-vari6t6 d'une vari6t6 alg6brique complexe non singuli~re X, Z une hypersurface de X dont la trace sur Y contient le lieu singulier de Y e t de codimension un dans Y e t ~ un ,IDx/c-module holonome ~t support contenu dans Y e t lisse en dehors de Z. On a alors le th6or~me [MET] :
288
Thdordme (2.2.10).-- Sous les conditions pr~cgdentes le faisceau IRz('II), ) est nul si et seulement si Ia codimension clans Z ~ Y de son support est au moins 6gale ~t un. Par exemple si on on prend Y = X et ~
le fibr6 ®x ~ v i a l muni de la connexion naturelle on trouve que
le faisceau I R z ( ® x ) est nul pour toute hypersurface Z puisque de fa~on naturelle son support est contenu dans le lieu singulier de Z qui est bien de codimension un darts Z. A partir de 1~ on touve par un agument combinatoire que le faiscceau IRz(H~(®x) ) est nul pour toute sous-vari6t6 Y de X, pour toute hypersurface Z et tout p. Si on applique cela ~ X = l'espace projectif complexe pro, y radhErance d'une vari6t6 algEbrique affme non singuli~re plong6e dans l'espace numErique C ra et Z le diviseur ~tl'infini on trouve que le faisceau IRz(H~(®x) ) est nul. Mais l'hypercohomologie de ce faisceau est pr6cis6ment robstruction ~ l'isomorphisme de la cohomologie de de Rham de la vari6t6 affine en question avec sa cohomologie de Betti [GI], Autrement dit le th6or6me (2.2.10) implique le th6or~me de comparaison de Grothendieck [G1]. Plus gEnEralement soit ~ un fibre ~ connexion intEgrable sur une varlet6 algEbrique complexe non singuli6re muni d'un plongement dans l'espace num6rique C m. Notons Y l'adhErance de cette vari6t6 dans l'espace projectif pm et ~ l'image directe au sens des ,19-modules de ~ par l'immersion dans pm est alors un 29 pro-module holonome ~ support Y e t lisse en dehors du diviseur ~t l'infini Z. Supposons que l'image inverse de ~ sur toute courbe non singuli6re n'a que des singularitEs r6guli6res ~t l'infini et Y est normale (pour simplifier car ceci n'est pas une restiction). Alors le faisceau IRz(H~(®x)) est ~ codimension Y ~ Z dans au moins un comme on le volt en faisant passer une courbe gEn6rale en un point assez g6n6ral de Y. Le th6or6me (2.2.10) implique que le faisceau IRz(~ ) est nul. Mais I'hypercohomologie de ce faisceau est l'obstruction ~t l'isomorphisme entre cohomologie de de Rham de ~ et cohomologie de de Rham du fibr6 transcendant associ6. Autrement le thEor~me (2.2.10) implique le thEor6me de comparaison de Deligne [D1]. 2.2.1 1. Plus g6n6ralement soit ~
un 29x-module holonome sur une vari6t6 alg6brique complexe non
singuli6re X. On a alors le th6or~me suivant [MET] :
ThAordme (2.2.12).-- L'image inverse de ~t, sur route courbe non singulidre au dessus de X n'a que des singularitds rdgulidres ( y compris d l'infini ) si et seulement si son faisceau d'irr~gularitd le long de tout diviseur ( y compris ceux de l'infini ) de tout ouvert affine est nul. Le th6or~me (2.2.12) arn6ne ~ poser la d6finition :
D~finition ( 2 . 2 . 1 3 ) . - - Un 29 x-module holonome ~ conditions dquivalentes (2.2.12).
est dit rdgulier s'it satisfait au deux
289
Le th6or~me (2.2.10) donne un crit6re qui ne ddpendpas de la r6solution des singularit~s pour v6rifier si un 19x-module est r6gulier ou pas. On note par Mhr(29x- ) la cat6gorie des 29x-modules holonomes r6guliers. Dans une suite exacte de 29 x-modules holonomes le terme m6dian est r6gulier si et seulement si les termes extremes sont r6guliers. Cela r6sulte du fait que le foncteur IR z entre cat6gories ab61iennes est exact pour toute hypersurface Z. La cat6gorie Mhr(29x- ) est donc ab61ienne, stable par extension et sous-quotient. On note par D~r(29X/C-mod ) la sous-cat6gorie de D~(29x/c-mod) des complexes ~ cohomologie r6guliSre. La cat6gorie D~r(29x/c-mod) est alors triangul6e. On d6duit du thfor~me (2.2.10) que les cat6gories D~r(29X/c-mod) pour X variables sont stabiles par les op6radons cohomologiques de Grothendieck. Thdordme (2.2.14).-- Si f : X --~ Y est un morphisme de varidtds algdbriques complexe non singuIidres les foncteurs f*, f!, envoient Ia catdgorie D~r(29y/c-mod) dans la catdgorie Dhr(29X/Cb
rood) et pour tout comptexe ]]L de la catdgorie D~r(29 y/c-mod) on les isomorphismes entre coefficients constructibles :
fmtDR(,tlL an) = DR((f*"ffL)an) fandDR('IlL an) ~ DR((~"JIL)an). Preuve. [Me7]. Thdordme (2.2,15).-- Si f : X --> Y est un morphisme de varidtds algdbriques complexe non singulidres les foncteurs if, f~, envoient la catdgorie D~r(29x/¢-mod) dans la catdgorie D~r(29y/c-
mod) et pour tout complexe ~
de la catdgorie D~r(29x/c-mod) on a l e s isomorphismes entre
coefficients constructibles
DR((ff ~'IL)an) _=Rfan,DR(TfL an) DR((~ 'IlLan)) =_Rf~n!DR('IILan). Preuve. [MET]. On d6duit [Me7] des th6or6rnes (2.2.14) et (2.2.15) le th6or~me des coefficients de de RhamGrothendieck ~ savoir que tes cat6gories D~r(29 x/c-mod) sont stables par les six op6rations de Grothendieck et que le foncteur de de Rham transcendant qui est pleinement fid~le respecte les six opfrations analogues dans les cat6gories D~(Cx) de coefficients alg6briquement constructibles. En
290 particulier on obtient une demonstration du thEor~me de la rggularit~ de la connexion de Gauss-Martin en caractEristique nuUe indEpendante du thEorEme de resolution des singularitEs ([Kal], [Kaz])et ce pour un morphisme arbitraire de variEtEs algEbriques. Ceci remplit parfaitement le programme de Grothendieck en caractdristique nulle ([G2], p. 312) " It would be convenient to have a more general duality formalisme of t)23e f!, f , as developed in [R.D], for the De Rham cohomology ". On constate, une fois de plus, que pour avoir une bonne thEorie cohomologique des variEtEs algEbriques il faut d'abord dEgager une bonne thEorie des coefficients qui sont stables par les operations cohomologiques. 2.2.16. La catEgorie D~r(29X/C-mOd ) est purement algEbrique, en effet la condition pour un dgx/cmodule holonome d'avoir que des singularitEs rEguliEres sur toute courbe au dessus de X est algEbrique. Donc elle garde un sens sur un corps k de base de caractEristique nulle. On dEduit alors que les catEgries D~r(,tgx/k-mod ) sont stables par les six operations de Grothendieck. Mais les demonstrations se ramEnent par le principe de Leschetz au cas transcendant. Cependant le faisceau transcendant IRz(~l~ ) qui est la base des demonstrations a un substitut purement algEbrique. Ceci amEne ~tpenser qu'on peut dEmontrer certainement le rEsultat prEcEdent de fa~on purement algEbrique. Le faisceau IRz(71I,), comme tout faisceau pervers, admet un cycle caractEristique CCh(IRz(Tfl,)) qui est un cycle lagrangien positif du fibre cotangent T*X cf. [L-M]. Par definition le faisceau IRz(]~I,) s'incEre dans une suite exacte de faisceaux pervers sur X : 0 ---4IRz(~flL)[-1] --~ DR((j,j-I'IIL)an) --~ Rjan,j-I~nDR('tlL~a) --~ O. Le cycle C C h ( I R z ( ' ) ~ )[-1]) appara]t comme la difference C C h ( D R ( ( j . j - I ' I I ~ ) a n ) ) _ CCh(Rj~.j-lanDR((7tl,)an). Mais chaque membre de cette difference est purement algEbrique. En effet le cycle CCh0)R((j,j-1711,)an)) est le cycle caractErisfique du dgx/c-module holonome j.j-l'~/1, et le cycle CCh(Rjan.j-lanDR('Jl"k an)) est l'image directe au sens des cycles du cycle caractEristique du dgu/c-module holonome j-1]'l~ [Me6]. Nous allons dEcrire le cycle CCh(IRz('Irk)[-1 ]) darts le cas important oh ~'k est un fibre vectoriel de rang r au-dessus de U. A c e moment 1~ le cycle CCh(Rjan.j-lanDR(]'ll,an)) est Egal ~ rCChf,j,j-l@x) et se dEcrit ~ partir de Fhypersurface Z [L-M]. On a donc CCh(IRz(~)
= C C h ( j , j - l ~ ) - rCCh(j,j-lOx).
Sous cette forme le cycle CCh(IRz(]'D,) garde un sens sur un corps de base de camctEristique nulle. Ce cycle &ant positif on obtient une statification de Z = •Z i et pour chaque strate un entier m i positifou nul et le cycle ZmiZi positif promis en 2.2.4 attach6 au triplet (X, Z, ]TI,) qui gEnEralise le nombre de
Fuchs. Le thEor~me (2.2.10) assure alors que le cycle ZmiZ i est nul 0 ...... si les nombres attaches aux strates de codimension nulle sont nuls. Le calcul de ces derniers est gEnEral accessible. En somme on
291
est darts la m~me situation en dimension supErieure que celle du thEor~me de Fuchs en dimension un. § 3. Le th~or~me des coefficients holonomes complexes d ' o r d e infini. Une fonction g de (Qp[x][1/x])? est la somme d'une sdrie ~am/X m+t (am E ~ a , m ~ N) et d'une fonction de ( ~ [ x ] ) t avec la condition de Dwork-Monsky-Washnitzer limm ~ . ] am[ E"m = 0 pour un reel positif e assez petit convenable ([Dw], [M-W]). Mais 1/xm+l = (-1)mAm(1/x) et si on pose P(A) := ~am(-l)mAm on trouve que Y~arn/Xm+l = P(A)(I/x). Autrement dit ( ~ [ x ] [ 1 / x ] ) t est un module de type fmi et m~me de presentation f'mie sur un anneau d'opErateurs diff6rentiels d'ordre infini. La situation est pareille ~ la situation transcendante comptexe qu'on a longuement 6tudiEe depuis maintenant presque vingt ans. En effet si g est une fonction holomorphe sur le plan complexe qui a au plus une singularit6 essenfieUe ~t l'origine c'est alors une somme d'une s6rie Y.aJx m+l (am e C , m N) et d'une foncfion enti~re avec la condition pour tout e positif il existe une constante M~ telle que [ am[ < MeE~rn.On a par le m~me c~dcul a~lgEbrique que ranneau des fonctions holomorphes sur le plan complexe ayant au plus une singul;u'it6 essentielle en z6ro est un module de prEsenfion finie sur ranneau des op6rateurs diff~rentiels d'ordre inf'mi. Ceci sugg6re que si X est une vari6t6 affine non singuli~re sur Fp et Z une hypersurface de X le faisceau jr,® U t [Mr], o~ U := X-Z, est l'an:flogue du faisceau jan,®oaa de la situation transcendante complexe assocife ~ une situation alg6brique complexe. On dispose sur C d'un th6or~me finitude pour ces faisce~Lux et plus g6nEralement d'tme th~orie des coefficients holonomes complexe d'ordre infmi. 3.1. Le faisceau des opfrateurs difI:'6rentiels complexes d'ordre inrmi. Pour une vari6t6 analytique complexe X on note 29x le faisceau 29iffxlc(®x). 3.1.1. Soit (X, ®x) une vari6t6 analytique complexe. Le faisceau des fonctions holomorphes est un faiscean de FrEehet-NuclEaire : pour tout ouvert U de X respace vectoriel complexe F(U;® U) est un espace vectoriel topologique de Fr6chet-NuclEaire et les morphismes de restictions sont continus. e~
D~finition (3.1.2).-- Le pr~faisceau ,des op~rateurs diff~rentiels d'ordre infini 29 x est ddfinie comme sous ~pr~faisceau dufaisceau homcx(®X,® x) des Cx-endomorphismes continus.
oo
Lemme (3.1.3).-- Le prdfaisceau 29 x est un faisceau. En effet un endomorphisme localement continu est continu. Proposition ( 3 . 1 A ) . - - Si U est un ouvert de X oa sont d~finies des coordonn~es locales x :=
292 (x 1..... x n) un endomorphisme au-dessus de U est opdrateur diffdrentiel d'ordre infini si et seulement c'est une somme infinie Z aa(x)A = oa aa(x) (0re N ~) est une suite de fonctions holornorphes au dessus de U telle que lira4 t4 ~ J aa(x~ 1• o4 uniform6ment sur tout compact de U. Preuve. I1 r6sulte des in6galitds de Cauchy qu'une somme infini Z a=(x)A~t qui la propri6t6 de (3.1.4) est un op6rateur diffdrentiel d'ordre infini. R6ciproquement soit P un op6rateur d'ordre infini. On d6fmit la suite de fonctions holomorphes a~(x) en posant
ac~(x) := ~l~
Y.v.~o~(-1)k( ~)x w lCp(xk) = Z~< a (-1)k(~)(x-y) w ke((x-y)k). De cela si pour tout e assez petit et tout compact K de U on trouve que
1a=(x)l K -< MaO ~4 oi~ M Eest une constante qui ne ddpend que K et de e. Ceci est la condition requise pour que la somme infini Zaac~(x)Aa soit un op6rateur diffdrenfiel d'ordre infini. Par construction P e t Z~ac~(x)Act coincident sur les polyn6mes. Par localisation et densit6 P = Zc~a~(x)AC~.
En particulier on trouve que le faisceau 29x est le sous faisceau de 29 xdes opdrateurs diff6rentiels d'ordre localement fini.
Par construction le faisceau d9 xeSt un faisceau d'anneaux et te faisceau @x est un ,/9 x-module gauche. De m6me partant du faisceau des n-formes diff6rentielles coX qui est aussi un faisceau de FrechetNucldaire muni de sa structure de 29x-module &droite et considOrant le faisceau des endomorphismes Cx-lindaires continus on trouve que ce faisceau est canoniquement isomorphe ~t 29xet que la structure de ,19x- module &droite de Ox se prolonge en une structure de 29x-module d droite. On peut aussi remarquer que ron a Ext n ~(Ox,d~ ~ = ~X X--
"
293
3.1.5. Soient f : X---~Y un morphisme de vari6t6s analytiques complexes lisses e t ~,f : X--)XxY le morphisme graphe de f. Notons par q~ et q2 les projections de XxY sur X et Y respecfivement. Posons
29 XoY := ql*Hxdim(Y)(q2mY) 19 y(-x := ql*Hxdlm(Y)(q~O)X)"
La structure de 19x-module d gauche de ® x induit une structure de 19 x-module d gauche sur le faisceau 19 x-~Y et la structure de 19 ~-module d droite sur my induit une structure de f-129 ~-module d
droite sur le faisceau 29 x--,Y qui est donc un (,ID~¢ f-t J9 ~-bimodule. De mSme la structure de ,19xmodule d droite de o)x induit une structure de 19x-module d droite sur le faisceau 19 y(--x et la structure de 19 ~-module d gauche sur ® y induit une structure de f-1 19 ~,modute d gauche sur le faisceau ,IDy~x qui est donc un (f-119 ~ 2) ~-bimodule. En particulier si fest le morphisme identique on trouve que le faisceau pl,Hxdim(X)(p~a)X) est un (,D~ pl,p2q19 ~-bimodule et donc un ( ~
dO ~-bimodule.
Proposition ( 3 . 1 . 6 ) . - - Le (19 ~ ,19 ~x-bimodule pl,Hxdim(X)(p~C0X) est canoniquement isomorphe au faisceau d'anneaux ,IDx" Preuve. Si K(x,y)dy est une classe de cohomologie de pl,HXaim(X)(p~0lX) et g(x) une foncfion holomorphe la formule de Cauchy montre que 2nfSi'~I x-yl=e K(x,y)g(y)dy, pour un cycle I x-yl =e convenable est une fonction holomo12~he de la forme P(g)(x) = Z ac~(x)Aag(x) qui ne d6pend pas du cycle I x-yl
=e.
On a alors un homorphisme de pl,Hxdim(X)(p~0)X ) d a n s 19 x dont on vdrifie par un
calcul directe que c'est un isomorphisme de (dg~e ,19 x~-bimodules.
3.1.7. On ne connait aucune propri6t6 de finitude du faisceau ,19~¢ En particulier on ignore s'il est coh6rent ou pas. Mais on a l e r6sultat suivant ([S.K.K], 3.4.2):
Thdordme (3.1.8).-- L'extension 19 x---) 19 xeSt fid6lement plate d droite et d gauche. La ddmonstration de [S.K.K.] est micro-diff6rentielle. Comme nous l'avons dit dans l'introduction de [Mes] nous connaissons une d6monstration diff6rentielle. 3.2. Le th6orSme de bidualit6.
294
Soient X une vari6t6 analytique complexe et ¢J~ un fibr6 vectoriel sur X de rang fini & connexion intdgrable. Alors son syst6me local des sections horizontales h o m ~ x ( ® x , ' l & ) le d6terminent compldtement par risomorphisme mill, _=_hom Vx(®X,~%)®Cx® x. I1 est plus commode de considdrer son syst~me des solutions holomorphes hom~x(Tfl, ,®x) et l'isomorphisme pr~cgdent devient un devient un isomorphisme de d~x-modules ~t gauche : ¢j~ = homcx(hom~x(CIll,,@x),@x). Mais si ~
est un ,IDx-module holonome son faisceau (pervers) de de Rham DR(']1I,) :=
llhom~x(@X,'}~ ) ou son faisceau des solutions holomorphes S('Ill, ) := Rhom~x('ll~ ,@x) ne le determinent pas en g~n6ral ~t cause de la ramification non moddrde. Cependant ils d6terminent le ~ x module J B x ® ex'l& obtenu par extension des scalaires. Si ~ ~ est un complexe born6 de ,t9 xmodules (h gauche) on a un morphisme canonique
Bd("fll, ~) : " J ~ _~ Rhomcx(Rhom~x']'lL~,®x),(Dx)
de complexes de ,~x-modules. Ce morphisme s'explicite en prenant une r6solution ,IDx-injective ~ de ®x qui reste par platitude @x-injective et le morphisme Bd(Tfl~~) est simplement le morphisme naturel de bidualit6 : Bd(~], ~) : ~m,~ .-~ homcx(hom~ xffJ'fl,~,~),~ ). La terminologie peut prater h confusion avec les th6or~mes de bidualit6 (interne) pour les coefficients coh6rents ou discrets constructibles. On a alors le th6orSme ([Me3], thm. 2.1) : Thgordme
( 3 . 2 . 1 ) . - - Si ~ ~est un complexe parfait de ,19 ;(modules tel que le complexe
R h o m ~ ~ l l , ~ , @ x ) est constructible le morphisme Bd(~], ~) est un isomorphisme. Rappelons qu'on appelle parfait un complexe de modules admettant localement une r6solution finie par des modules libres de type fini [S.G.A. 6]. Soit Z une hypersurface de X etj rinclusion de U:= X-Z dans X.
295
Corollaire (3.2.2).-- Le morphisme 29 x ® ~)x®x(*Z) --) j.j4® x est un isomorphisrne. Par dualit6 ([Me3], Thm. 1.1) le thtortme de Grothendieck [G1] est 6quivalent ~t l'isomorphisme S(®x(*Z)) ~ j,.j-ICx et (3.2.2) est constquence de (3.2.1) parce que Rhomcx@J-lCx,@ X) = Rj.j-I@x =__j.j- 16) x- Le corollaire (3.2.2) montre en particulier que j , j l @x est un 29 x-module de prtsentation finie ce qui est l'analogue transcendant complexe de (2.1.9) pour le fibr6 trivial. Cependant sa dtmonstration, bien que maintenant indtpendante de la rtsolution des singularitts, ntcessite la connaissance des solutions S(®x(*Z) ). Nous ne connaissons pas une dtmonstration algtbrique directe qui puisse nous ~tre utile darts le cas p-adique sauf dans le cas des singularitts trts simples (croisements normaux, point quadratique ordinaire) cf. 4.4. La dtmonstration de (3.2.1) utitise d'une faqon essentiel les proprittts de constructibilit6 des solutions holomorphes. La cat6gorie des complexes 71~ ~parfaits tels que R h o m s g ~ ' l l k ~ , ® x ) est constructible est triangulte.Une sous-cattgorie, ~t priori plus petite, de complexes qui ont les propritt6s de (3.2.1) est formte des complexes localement de la forme 29 x ® ~ x 'll~ pour un complexe ~ de D~(29x-mod). I1 n'est pas du tout clair que cette dernitre soit triangul~e. Pour 61ucider cette difficult6 il faut un th6or~me de finitude g6ntral 3.3. Le thtor~me de finitude. 3.3.1. Soient ,'3~ un coefficient constructible sur une varidt6 analytique complexe. Alors Ie complexe R h o m c x ( ~ , ® x) est muni d'une structure de 29 x-complexe ~t gauche induite par la structure de 29 xmodule de ®x- On alors le thtor~me [Me4] :
Th~ordme (3.3.2).-- Le complexe R h o m c x ( ~ ,®x) est globalement de la forme 29x®t~x711' pour un complexe 'l~ de Ia cat~gorie D~r(29x-rood). La signification de D~r(29x-mod) est clair. C'est la cattgorie des complexes bornts de 29x-modules cohomologie holonome rtguli~re. Un 29x-module holonome Tfl, est rtgulier si son faisceau IRz(]'fL) est nul pour toute hypersurface Z. Soitj : U ---)X le compltmentaire d'une hypersurface Z de X et 'II~u un fibr6 ~tconnexion inttgrable sur oo
U. La structure de 29u-module ~tgauche de 'IlLUse prolonge en une structure de 29u -module ~ gauche
296
Un cas particulier de (3.3.2) et le Corollaire ( 3 . 3 . 3 ) . - - Le 29 x-module j , ' I ~ u est de la forme 29 X ® ~ x ~ r(*Z) pour un 29xmodule holonome T~ r tel que Ie faisceau IRz('l~r) est nul.
En particulier le 2919x-module j,TfL u est de pr6sentation finie. La d6monstration est hautement transcendante. Bien que ind6pendante aujourd'hui de la r6solution des singularit6s elle n6cessite le th6or~me d'existence de Riemann : trouver un 29x-module holonome T~ r tel que IRz(T& r) est nul et qui a m6me monodromie que ~ u- Le prolongement analytique est au fond de la question dans le th6or6me de firtitude (3.3.2) et semble indiquer que pour la d6monstration d'un r6sultat analogue darts le cas p-adique le Frob6nius est au fond du probl6me. Le th6or6me (3.3.2) utilise toutes les resources de la th6ories des 29 x-modules et en est l'6tape ultime. Mais il a de nombreuses cons6quences et en particulier clarifie la structure de la cat6gorie des complexes parfaits de 29x-modules dont les solutions sont constructibles. D6finition (3.3,4).-- On appelle 2919x-complexe holonome un 2919x-complexe 7& ~ tel qu'il existe
localement sur X un 29x-comptexe holonome Tfl, et un isomorphisme
29 x ® Z x ~ -= ~®" Notons Mh(29 x-mod) la cat6gorie des 29 x-modules holonomes et D~(29 x-mod) ia sous-cat6gorie de la cat6gorie Db(29 x-mod) des complexes holonomes. Les cat6gories Mh(29 ~-mod) et D~(29 X-rood) sont d6finies en terme purement alg6briques ~tpartir du faisceau des op6rateurs diff6rentiels d'ordre infini. Cependant il n'est pas du tout clair que la cat6gorie Mh(29 x-mod) est ab6tienne et stable par extention ni •
b
e~
que la cat6gone Dh(29X-mOd) soit triangul6e. Le th6or~me de finitude (3.3.2) va dire que tel est bien le cas.
Notons T l e foncteur d'extention des scalaires D~r(29X-mOd) "-~ D~(29x-mod); 'l~ --~ T(TI],):=29~® exT&; F l e foncteur fournit par le thEor~me de constructibilit6 D~(29 x-rood) -~ D~(Cx); ~1l,~ ---)F ( ~ ) := Rhom,~ ~T&-,@ X)
297
et G le foncteur fournit par le thEor~me (3.3.2) D~(Cx) -~ D~(29x-mod); IT ~ G(IT):= Rhomcx(IT,@x). Thdor~me (3.3.5)[Me4].-- Les foncteurs F et G sont des Equivalences de categories triangulEes quasi-inverses l'un de l'autre et le foncteur T e s t une 6quivalence de categories.
Comme l'extension 29x---~ 29 xeSt fid~lement plate le foncteur T induit une Equivalence de categories
Mhr(29x-mod) ~ Mh(29x-mod); ¢J~ ~ T ( ~ ) := 29x ®.VxCJ~l,.
En particulier la catEgorie Mh(29 x-mod) est abglienne et stable par extension et la catEgorie D~(29 Xmod) est triangulde. De plus l'inclusion de la catEgorie des 29 X-complexe holonomes darts la catEgorie des ,19x-complexes parfaits dont les solutions sont constructibles est une Equivalence de categories. Ceci rEsulte des thEor~me (3.2.1) et (3.3.2). Enfin l'inclusion de la catEgorie des 29 x-complexes holonomes dans la catEgorie des complexes de 29 X-modules ~ cohomologie bomEe et holonomes est une Equivalence de categories par les mSmes thEor~mes ce qui justifie la notation D~(29 x-mod) pour la categories des complexes holonomes. On a ainsi clarifi6 la structure de la catEgorie des 29 x-Complexes holonomes comme consequence ultime de la thEorie des 29x-modules. 3.3.6. Si X est variEtE algEbrique complexe on dEfinit le faisceau 29 xcomme l'image directe du faisceau des opErateurs diffErentiels d'ordre infini de la variEt6 transcendente associEe par le morphisme canonique X an --~ X. On dEfinit un ,19x-complexe holonome comme un 29 x-complexe localement pour la toplogie de Zariski isomorphe ~ un 29 x-complexe obtenu par extent.ion des scalaires ~t partir Cun 29x-complexe holonome. Alors la catEgorie D~(29 x-rood) des complexes holonomes est Equivalente ~tla catEgorie des coefficients algEbriquement constructibles D~(Cx). L'espoir est qu'un analogue de la categone Dh(29x-mod) garde un sens en caractEristique p > 0 et fournit une catEgorie de coefficients p•
•
b
ela
adiques. Aussi nous allons rappeler ([Mes], II. 9.5.7) le formalisme des six operations de Grothendieck pour les categories D~(29 x-mod). Si f : X --+ Y est un morphime de variEtEs algEbriques complexes non singuli~res on pose
298
L
L
~ :--- Rf.,~W~X®~x~)'rL. pour un complexe % de la catdgode Db(,19~,-mod) et pour un complexe ~ de la catdgorie Db(2) xmod). On obtient ainsi les foncteurs image inverse et image directe entre catdgories de complexes de modules d'ordre infini. Si '111,~ est un complexe de la catEgorie D~(d9 x-mod) il est localement de la forme ,/9 x ®,~x ~1' pour un complexe ~ de la catEgorie D~(29x-mod). Le complexe ZIx ®agXTll,* est un objet de la catEgorie D~(d9 x-mod) donne localement. En vertu du thEor~me (3.3.2) et du thdor~me de dualitd locale c'est en fait un objet globale de la catEgorie D~(~x-mod ) qui est le dual 'Ill,~*. On a donc le foncteur de dualitE de la catEgorie D~(29x-mod) qui est un anti-Equivalence de categories. On pose alors pour un complexe ~1, de la categoric D~(dg~-mod) et pour un complexe ~ de la catdgorie D~(d9 x-rood) f!% := (f*(~*))*
f f ~ := (~(~1,*))*. On alors les foncteurs image inverse et image directe extraordinaires entre catdgofies des complexes de d9 x-modules. Le produit tensoriel interne ® de la catdgorie D~(29 x-mod) est aussi ddfini mais c'est le compl~td du produit tensoriel sur ®x ( cf. [Mes], II, § 9, p. 191). On a alors le thEorEme: Thdordme (3.3.7).-- Soit f : X--+Y un morphisme de varidtds alg~briques complexe non singulidres alors les catdgories D~(dgx-mod) sont stables par les operations cohomologiques ~ ,f~,f*,f!, ® et par
la dualitd. Le foncteur contravariant Rhom,~ ~ ~ % ® x) et le foncteur covariant Rhom,~ ~ @x, ~ ~) qui s'~change par dualit~ sont des dquivalences de categories triangulEes entre la catdgorie des coefficients holonomes d'ordre infini D~(d9 x-mod) et la catdgorie des coefficients constructibles complexes D~(Cx). Le foncteur contravariant Rhom,~ ~'l'g %@x) admet comme quasi-inverse le foncteur Rhomcx(~',®x) et le foncteur covariant R h o m b i ® x, ~ ~) admet comme quasi-inverse le foncteur Rhomcx(~V,@x). De plus le foncteur Rhom,~ ~711, %®x) transforme f* en f-1 mais
299
tran,rforme ft. en f!. Duatement le foncteur Rhom~ ~ ® x, ~**) transforme f* en f! et transforme ft. en f , .
La d6monstrafion de (3.3.7) repose de faqon essentielle sur le th6or~me (3.3.2) et donc sur le prolongement analytique complexe, Dans le cas p-adique il s'agit de trouver des substituts au prolongement analytique!.
§ 4. Sur les coefficients p-adiques d ' o r d r e infini. Soit W un anneau de valuation discrete complet de corps r6siduel k de caract6risfique p > 0 et de corps de fractions K de caract6ristique nulle. Soit X * := (X,® *x) un sch6ma forrnel faible sur W [Mr]. Rappelons que l'espace topologique X sous-jacent est une vari6t6 alg6brique sur k munie de la topologie de Zariski et le faisceau structural @txeSt un faisceau de W-alg6bres. 4.1.On peut consid6mr comme en 1.1 le faisceau des op6rateurs diff6rentiels :
Proposition (4.1.1).-- La cat~gorie des W-schdmas formels faibles admet des produits fibrds finis. Preuve voir [N-M2]. A partir du produit XtxwXt on peut construire comme dans ([E.G.A], § 16) les (b t et l'on a risomorphisme parties principales (s6par6es), d'ordre 1, ~o~v(@ ~) homcgx(~O~v(® ix), ®tx) ~ 29iff(1) ~JX/~(@t~ X ~" D'oh ron d6duit comme dans ([E.G.A.IV]. § 16) que dgiffx/w(® tx) est un faisceau d'anneaux filtr6 de ® tx-alg6bres. Supposons que la vari6t6 X est non singuliSre et que @xt est W-plat. Notons alors " ao _ x~/w (1) et 29xt/w pour d9/ff(~v(O ix)et Z/ffx/w(O ix). Alors pour tout 1 les ® ix-modules ~ ~ () O , ( 1 )t
--(1)d~/X*/W
sont localement libre de type fini. Si (x 1..... Xn) sont des coordonn6es au dessus d'un ouvert aft'me U de X c'est dire telles que dx 1..... dx n forment une base du module des diff6rentielles s6par6es alors le F(U,® tx)-module F(U,29 O{/w) est engendr6 par les op6rateurs ~tpuissances divis6es Aq pour longueur de q < 1 cf.[N-h~2]. Comme on est clans le cas d'un Zp-module de base W, F(U,d9 ~/w) est filtr6 par les
300
opErateurs diffErentiels d'ordre < 1 et d'Echelon m pour m variable cf. § 1. En vertu du developpement p-adique d'un entier ranneau des opErateurs diffErentiels d'Echelon m est engendrE par les opErateurs d'ordre au plus pm On note ,~ Xt/Wm le faisceau des opErateurs diffErentiels d'ordre au plus I e t ~ (1)
d'Echelon au plus m e t '~xt/w,m := u l " ° xt/Wm le faisceau des opErateurs diffErentiels d'Echelon m. Pour m variable les faisceaux forment un syst~me inductif et l'on a risomorphisme
lim ,(gxt/w.ra - 29xt/w. m (1)
Pour tout m le gradu6 gr(,~)Xt/W,m ) associ6 ~t la filtration u l , ~ xt/Wm est un faisceau de (9 tx-algEbres n~ethEriennes commutatives. On a dEduit comme en caractEristique nulle que Ie faisceau d'anneaux dgxt/wcn est coherent et naethErien. P r o p o s i t i o n (4.1.2).-- Pour tout m e t tout ouvert affine U de X 1"anneau F(U;dgxt/w.m) est de dimension homologique dgale au moins d dim(X)+l.
Preuve. C'est la m6me preuve que (1.2.7). Comme rextension 29xt/W,m. ~ dDXt/W,mn'est pas plate pour m' < m on ne peut pas dEduire que le faisceau ,19xt/w est coherent, Mais tensoris6 avec Q ce faisceau ~ toutes les propriEtEs du faisceau des opErateurs diffErentiels sur une variEtE analytique complexe. Le faisceau d'anneaux ,19xt/w®zQ est coherent et de dimension homologique dim(X). On dEfinit naturellement la catEgorie des dgxt/w®zQmodules
hotonomes
comme
la
cat6gorie
des
modules
cohErents
~
tel que
Ext~oxt~W®zQ('II~,,~gxt/w@zQ) = 0 pour i ~ dim(X). La catEgorie Mh(dgxt/w®zQ-) des modules holonomes est abElienne et stable par extension et les cat6gories D~(,lgxt/w@zQ-mod) sont stables par les six operations de Grothendieck et par la dualitE exactement comme dans le cas analytique complexe. Ceci rEsulte du r6sultat purement alg6brique suivant [N-M2]. Si A est une K-algEbre rEguliEre n~ethErienne 6quicodimensionnelle sur un corps K de caractEristique nulle telle qu'il existe x a..... x n 6tEment de A et 01..... On des K-dErivations de A tels que 0i(xj) = 8ij ofa dim(A) = n posons DA/K := A[O 1..... On]. Si les corps rEsiduels des points fermEs de A sont Kalg~briques l'anneau DA/K est de dimension homologique 6gale ~ dim(A) [Bj]. Sous ces conditions un
i DA/K-module M de type fmi tel que ExtDnm(M, DA/K) = 0 pour i ~ dim(A) est dit holonome. Thdordme (4.1.3).-- Sous tes conditions pr~cgdentes soient P u n dldment non nul de A, M u n DA/K-module holonome et u un ~ldrnent non nul de M. AIors il existe une ~quation fonctionnelle non
301
nulle
B(s)Psu = Q(s)PPSu et le D ~ - m o d u l e M[P q] est encore holonome. Le prob16me dans (4.1.3) est que l'algdbre A n'est pas algdbriquement de type fini. Appliquant (4.1.3) ~t une algtbre A t de DMW (Dwork-Monsky-Washnitzer) on trouve que At[p-1]®z Q est un DAt/Kmodule de type fini. Seulement ralg6bre At[P 1] n'est pas faiblement compldte et est donc distincte de (At[p-I])t qui est l'algdbre de coordonndes (dag) du compldmentaire de l'hypersurface ddfinie par la reduction modulo p de P. Le cas complexe cf.§ 3 et les exemples dvidents suggbrent que ce compldt6 est un module de prdsentation fini sur le compldt6 faible en un certain sens de l'anneau DA/w une fois tensorisd avec Q bien stir. Mais c'est l~t un probltme qui semble rel6ver de la thdorie des dquadons diffdrentielles p-adiques et non un probl~me purement algdbrique. Par le m~me thdortme on a une bonne thdorie des 29x/w®zQ-modules pour un W-schdma formel toplogiquement de type fini X. 4.2. Soit un schdma faiblement formel (X,@ tx) sur W, un anneau de valuation discrbte d'indgale caractdristique p, d'iddal maximal m, de corps des fractions K et de corps rtsiduel k. D~finition (4.2.1).-- On appelle faisceau des opdrateurs diff~rentiels d'ordre infini sur le schema faiblement formel (X,®tx) et on note 29 ~ / w le sous-faisceau de
homw(e*x, ® ix)des
endomorphismes P tel pour tout r>l la r~duction modulo m r de Pest un opdrateur difftrentiel sur le schdma (X, (9 ~/mr(gtx) d'ordre infdrieur ou dgale d ~.(r+l) pour une constante r~elle ~ > 0 inddpendante de r.
Darts la notation 29 ~t/w l'indice t sur 29 rappelle qu'on a compldtd faiblement en quelque sorte et l'indice t sur X le distingue du faisceau dOtxrw considdr6 par Berthelot [B3] et construit de m~me ~tpartir d'un W-schtma formel. Le faisceau 29 ~/w est l'analogue p-~Ldique du faisceau des opdrateurs d'ordre infini dans le cas complexe. I1 est tout ~t fait naturel d'examiner dans quelle mesure les rtsultats complexes que ron a ddcrit darts le § 3 ont des analogues dans le cas p-adique. C'est la piste qui nous semble la plus strieuse pour dtmontrer le th6or~me de finitude de la cohomologie de Dwork-Monsky-Washnitzer d'une varitt6 affine non singuli~re sur un corps fini.
302
Cependant il y a des diff6rences importantes. L'extension 29xt/w ~ 29 t / w mSme tensoris6 par ®zQ n'est pas fid61ement plate. Ceci am6ne ~ penser que l'anneau d'une bonne th6orie des coefficients darts le cas p-adique est le faisceau 29 t/w®zQ. Par construction le faisceau (9 test un 29 t/w-module ~ gauche. De m~me en coordonn~es locales le faisceau o)tx/west un 29 t/w-module ~ droite. Mais cette structure ne d6pend pas des coordorm6es parce que l'on a l'isomorphisme mix/w® ®xt/w29 t / w = COx/wtet la structure de 29x,/w-module ~ droite de mtx/w ne d6pend pas des coordonn6es. Soient f : X--~Y un morphisme de sch6mas formels sur W non singuliers et Af : X--+XxwY le morphisme graphe de f. Notons par ql et c12 les projections de XxwY sur X et Y respectivement. Posons
29t_~yt/w:= q,.Hx~
Proposition (4.2.2).-- Le (29 t / w , 29 t / w )'bim°dule Pl*Hxaim(X)(p2t'°xt ) est canoniquement isomorphe au f aisceau d"anneaux 29 ~ /wDarts un travail ult6rieur nous montrerons que le faisceau 29~/w est filtr6 par les compl6t6s faibles des faisceaux 29xt/w~a comme dans la situation de Berthelot. La m6thode de Berthelot [B3] montre alors que le faisceau d'anneaux ,{9 ~/w®zQ est coh6rent. De plus nous montrerons que la dimension
303
homologique de ,[9~/w®zQ est dgale ~tdim(X), Ceci permet de ddfinirles ,/9~Av®zQ-modules holo.omes comme les Z en degrd dim(X).
®zO-modules coh ents telsque leur
Z
®st co.cen
4.3.Pour f : X--+Y un morphisme de schdmas formels sttr W non singuliers, un complexe de ,I9 ~/w" t modules ~tgauche 'It~t et '}l,t tm complexe de a9 yt/w-modules ~tgauche posons : L
f*~l,t:= ,gg~_+yt/w®FI ~tytAvf'l%t L X?/w xq/W On obtient les foncteurs images inverse et directes pour les ~ ~/w-modules ~t gauche. En particulier si Y ®st un point la cohomologie de Dwork-Monsky-Washnitzer d'un ,19~/w-module h gauche~ll, test le complexe de W-modules L
RF(X;d~. ~-xt/w ® ~ $ / w ~j~'*) qui tensorisd avec Q est isomorphe ~t RF(X; D R ( ~ ¢))®zQ[dim(X)] := RF(X; Rhome *xt/w(®Xt,?ll,t))®zQ[dim(X)].
Le point clef sera de ddgager la cat6gorie des ag~t/w-modules stables par les foncteurs images directe et inverse. Comme en caractdristique nuile ceci se rarndne ~tdtablir la stabilit6 par immersion ouverte. Pour rinstant on ne peut clue se contenter de quelques exemple dvidents et d'une conjecture. 4.4.Supposons que le sch6ma formel faible est l'espace affine Spff(W[X] t) de dimension n. Alors ranneau des sections globales Dntdu faisceau Jg~ttw®zQ sont les sdries Z~,~aa,l~XaAI3tel que la sdrie Y.c~,f~aa,l~xt~yI~ soit dans ralgdbre W[x, y]t. Une question naturel qui se pose est de savoir si ranneau Din®zQ est naethdrien. L'anneau Dnt confient l'anneau W[A]t des opdrateurs ~tcoefficients constants et rextenfion W[A] t --+ Din est fid6lement plate. Donc sl W[A]'®ZQ n'dtait pas naethdrien cela entraine t que Dn®zQ n'est pas n~ethdrien. Seulement : Proposition (4.4.1).-- L'anneau W[A]t®zQ est naeth~rien.
304
Preuve. Ceci est une consEquense du falt que l'anneau W [ k ] t ® z Q admet un algorithme de division de Weierstrass-Hironaka. Fixons un ordre total sur N n on a alors ta notion d'exposant pour tout opErateur ~tcoefficients constants dEfini comme l'exposant de son polyn6me initiale pour la valuation m-adique.
Proposition (4.4.2).-- Soient P1 ..... Pr des opdrateurs de W [ A ] t ® z Q alors pour tout opdrateur A il existe des uniques opdrateurs Q1 .... Qr, et R de W [ A ] t ® z Q dont tes exposants satisfassent aux proprigt~s usueIles de la division tels que A = QIP 1 +...+ QrPr + R . La preuve se falt en considErant l'extension W de W tel que s i t est une uniformisante de W e t ~ une uniformisante de W alors t = ~p-1. Un opErateur p(A) est dans W[A]t®zQ si et seulement si la sErie P(r~ex) appartient ~t W[x]t®zQ ofa e est l'indice de ramification absolu de W. En fair le morphime de W [ A ] t ® z Q dans W [ x ] t ® z Q qui tt P(A) associe P(Ttex) est injectif et fait de la K-algEbre DMW une extension libre engendr6 par 1..... r&--2 de la K-alg6bre D M W ?~puissances divisdes. Dans la g.-algEbre K[x] t on a un algorithme de division tel que les quotients et le reste proviennent de W[A]t®zQ si le dividant et les diviseurs proviennent de W[A]t®zQ.
On pourait songer ~tfabriquer un algofithme de division dans ranneau Dnt ® z Q • C'est possible qu'on se restreint ~ l'Echelon zero c'est dire a l'algEbre de Weyl D M W mais non clans le cas gEnEral. En effet considErons ~ une variable le diviseur P = 0 - px. Si on choisi 0 comme exposant de P pour faire le division et on si divise l'opErateur ]~m2"m02m qui est darts W[A] t on trouve que le coefficient constant dans le reste, qui une sErie en x, ne converge pas en caractEristique 2. Si on choisit x cornme exposant et si on divise la sErie Zm(-1)m2mxZm on Irouve que le coefficient constant du reste, qui est une sErie en 2, ne converge pas en caractEristique 2. On peut fabriquer des contres exemples en caractEristique diffErente de 2. Voir en 4.6 rEpilogue pour ce point.
4.5. Une question clef est de montrer que le Dtn®zQ-module (W[xl[p'I])t®zQ est de prEsention fini pour tout polynEme P de W[x].
4.5.1. Si P e s t le monSme xl., ,x r (r _
305 ( W [ x ] [ p ' l ] ) t ® z Q . C'es~ une s6rie Za,~aa,~xttP-~ (cce Nn,13e N, aa, l)~ K ) a v e c la condition DMW v(aa, l~) > ~,([3+ct) asymptotiquement pour une constante positive ~ non nulle. On peut supposer que les aa, l~sont dans W. Pour 1~>2, P'[~= (b~ +...+ b~)13"lP-t/41~'l(13-1)l(I]-r/2)t.En caract6ristique diff6rente de 2 rop6rateur Za,l~act,t~x'X(b~ +...+ ~)I~-1/4t~-1(~-1)!(~-r/2)1 formel est en fait un op6rateur diff6rentiel d'ordre infini. En effet un calcul directe montre qu'il est de la forme Zct,~aa,~xaAV(3t e N r) avec la condition DMW pour la s6rie Zct,,taa,~xC~y"~. En caract6ristique 2 on a x~+...+ x r2 = (x I +...+ xr) z mod(2) et risomorphisme (W[x][P-~])* = (W[x][(xl +...+ xr)'l])*. Darts tousles cas ceci montre que le D~®zQ-module (W[x][Pi])t®zQ est de type fini pour la forme quadratique. Cependant comme dans le cas complexe [Me2] cette m6thode n'a gu~re de chance de montrer les propridt6s de finitude esp6r6es darts le cas g6n6ral. 4.5.3. Nous allons formuler une conjecture dans le cas p-adique calqufe du cas complexe. Soit X un sch6ma affine non singulier formel faible sur W d'alg6bre A t et ~
un 29xt/w-module tel que ~t, ®zQ
soit holonome qu'on peut prendre alg6brique. Si on choisit une section cr : K/Z ---)K de la projection K --) ~ / Z alors 'll~®zQ admet par rapport ~ttoute fonction P de A t u n polyn6me de Berstein-Sato [N-M2] qui permet de d6finir une V-filtration canonique (cf. par exemple IS-M]) ind6x6e par rimage de o dont le gradu6 est localement ind6x6 par un ncanbre fmi d'616ments de K que nous appelerons les exposants de ]q], le long de V(P)®zQ. Faisons rhypoth6se que les exposants de ' ~ le long de V(P)®zQ sont des nombres alg6briques en particulier ne sont pas des nombres de Liouville, ceci ne d6pend pas du choix de c. Alors nous pensons que jr.jr-l(29 i~/w® ~xt/w~j~)®zQ est 29 ~/w®zQ.coh6rent et holonome. o~ j d6signe rinclusion du compl6mentaire de rhypersurface d6finie par P par reduction modulo p. Nous avons v6rifi6 cette conjecture en dimension un grace aux r6suttats de Robba sur les th6or~mes d'indice ([Rbl],[Rb2]) pour un module qui n'a que des singularit6s r6guli~res comp16tement soluble ou est de rang un. De fa~on plus pr6cise :
Proposition (4.5.4),-- Avec les notations prdc~dentes supposons que Z e s t un point d'une courbe affine X alors le cohomologie locale de Z d valeur dans 29 ~/W®~xt/w'll~ ®zQ est ,19 ~/w®z Qcoh~rente si et seulement si le 29xt/w-module ~ ®zQ admet un indice dans l'espace des fonctions analytiques dans le tube de Z. 4.6. Epilogue. Berthelot vient de montrer que ranneau Dnt ®zQ cf. 4.4.2 n'est pas n~eth6rien.
306 REFERENCES
[B-B-D] [Be] [Ber]
[BI] [B2]
[B 3] [B -O] [Bj]
[Ch] [D 1]
[D2] [Dw] [G 11 [G2] [G 3] [Ha] [HI
[K I]
In9
BEILINSON, A., BERNSTEIN, I.N., DELIGNE, P., Faisceaux pervers, Astdrisque 100 (1983). BERNSTEIN, I.N., The analytic continuation of generalized functions with respect to parameter, Funct. Analysis Appl, 6 (1972), 26-40. BERSTEIN, I., On the dimension of modules and algebras (IX), direct limits, Nagoya MathJ. 13 (1958), 83-84. BERTHELOT, P., Cohomologie cristalline des sch6ma de caract6ristique p > 0, Lecture Notes in Math 407, Springer Verlag (1974). - - , G6om6trie rigide et cohomologie des vari6t6s algdbriques de caract6ristique p > 0, Journ6es d'analyse p-adique (1982), in Introduction aux cohomologies p-adiques, Bull. Soc. Math. France, M6moire 23, p. 7-32 (1986). - - , Cohomologie rigide et thdorie des/9-modules, dans ce volume. BERTHELOT, P., OGUS, A., Notes on Crystalline Cohomology, Princeton University Press 21, (1978). BJORK, J.E., The global homological dimension of some algebras of differentiets op6rators, Inv. Math. 17 (1972), p. 67-78. CHASE, S. U., On the homological dimension of algebras of differential operators, Comm. Algebra $ (1974), 351-363. DELIGNE, P, Equations diff6rentielles ~ point singuliers r6guliers, Lecture Notes in Math 163, Springer Verlag (1970). - - , Cristaux discontinus, Notes manuscrites non publi6es qui datent du d6but des ann6es 70 (19 pages). DWORK, B., On the Zeta function of hypersurface I, Publ. Math. I.H.E.S, 12, (1962). GROTHENDIECK, A., On the De Rham cohomology of algebraic varieties, Publ. Math LH.E.S., 29, (1966), p. 93-103. - - , Crystals and the De Rham cohomology of schemes, in Dix expos6s sur la cohomologie des sch6mas, North Holland Company (1968), p. 306-358. - - , Groupes de Barsotti-Tate et cristaux de Dieudonn6, Les Presses de l'Universit6 de Montr6al 45, (1974). HAASTERT B., On the direct and inverse image of ,O-modules in prime caracteristic, Manuscripta Math. 62, (1988), p. 341-354. HIRONAKA, H., The resolution of the singularities of algebraic varieties over a field of caracteristic zero, Ann. of Math. 79 (1964), 109-326. KASHIWARA, M., On the maximally overdetermined systems of differential equations, Publ. RIMS, 10 (1975), 563-579. - - , B-function and holonomic systems, Inv. Math. 38 (1976), 33-53.
307
[Ka 1] [Ka 2] [L-M] [M:]
[Me 1]
[Me21 [Me3] [Me41 [Me5] [Me 6] [Me71
[Mr] [M-W] [N-M 1] [N-M 2]
[N-O] [O] [S-M] [S]
KATZ, N., Nilpotent connexions and the monodromy theorem, application of a result of Turittin, Publ. Math. I.H.E.S. 39, (1970), p. 176- 232. - - , The regularity theorem in algebraic geometry, Actes Congr6s intern. Math.,t970, tome I, Gauthier Villars (1971) p. 437-443. LE.D.T., MEBKHOUT Z., Vari6t6s caract6ristiques et vari6t6s polaires, C.R.A.S. Acad. Paris, t. 296 (1983), p. 129-132. MALGRANGE B., Sur tes points singuliers r6guliers des 6quations diff6rentielles, Ens. Math. 20 (1974), p.147-176. - - , Op6rateurs diff6rentiels et pseudo-diff6rentiels, Institut Fourier 1976. MEBKHOUT, Z., Valeur principale et residu des formes ?: singularit6 essentielles, In Lecture Notes in Math 482, Springer Verlag (1975), p. 190215. --,, Cohomologie locale d'une hypersurface, in Lecture Notes in Math 670, Springer Verlag, (1977), p. 89-119. - - , Thdor~mes de bidualit6 locale pour les 29 x-modules holonomes, Ark. Mat. 20 (1982), p. 111-122. ---, Une 6quivalence de cat6gories et une autre 6quivalence de cat6gories, Comp. Math 51 (1984), p. 51-88. ---, Le formalisme des six op6rations de Grothendieck pour les 29x-modules coh6rents, Travaux en cours Hermann 35 (1989). - - , Le th6or~me de positivit6 de l'irr6gutarit6 pour les ,(9 x-modules, in Grothendieck Festschrift, Birkhatiser (1990). - - , Le th6or~me de comparaison entre cohomologie de de Rham d'une vari6t6 alg6brique complexe et le th6or~me d'existence de Riemann, PubL Math. I.H.E.S, 69 (1989), p. 47-89. MEREDITH, D., Weak formel schemes, Nagoya Math. L 45 (1971), 1-38. MONSKY, P., WASHNITZER, G., Formal cohomology I, Ann. of Math. 88 (1968), 51-62. NARVAEZ L., MEBKHOUT Z., D6monstration g6om6trique du th6or6me de constructibilit6, in Travaux en cours Hermann 35 (1989), p. 248-253. - - , La th~:,orie du polyn6me de Bernstein-Sato pour les alg6bres de Tate et Dwork-Monsky-Washnitzer, Ann. de l'~cole Norm. Sup. ( 1 9 9 0 ) ( h paraitre). NASTASESCU, C., VAN OYSTAEYEN, F., Graded rings Theory, North Holland Comp. (1982). OGUS, A. F-isocrystals and de Rham cohomologie II: Convergent isocristals, Duke Math J. 51 (1984), 765-850. SABBAH, C., MEBKHOUT, Z., 29x-modules et cycles 6vanescents, in Travaux en cours Hermann (I989) 35, p. 200-238. SATO, M., Hyperfunctions and partial diferential equation, Proc. Intern. Conf. on Func. Ana. and Related Topics, 1969, Univ. Tokyo Press, Tokyo,
308
[S-K-K]
[Sin]
[Rb 1] [Rb21 [Ro] [Rt]
(1970), p. 91-94. SATO, M., KAWAI, T., KASHIWARA, M., Micro-functions arts pseudodifferentieI equations, Lecture Notes in Math 287, (1973), p. 265-529. SMITH, S.P., The global homological dimension of ring of differential operators on a non singular variety over a field of positive characteristic, J. of Alg. 107, (1987), 98-105. ROBBA P., Indice d'un oprrateur difffrentiel p-adique IV, cas des syst~mes, Ann. Inst. Fourier t. 35, (1985), p. 13-55. - - , Livre (~tparaitre). ROOS J.E., Determination de la dimension homologique globale des algrbres de Weyl, CYLA.S,, Paris 274, (1972), p. 1556-1558. ROTMAN, J.J., An Introduction to Homological Algebra, Academic Press, New York (1979). Sigles
[E.G.A.IV] E16ments de Gromrtrie Algrbrique, GROTHENDIECK, A., DIEUDONNE, A., Etude locale des schrmas, quatri~me partie, Publ. Math. I.H.E.S, 32 (1967). [S.G.A.6] S6minaire de G 6 o m r t r i e A l g r b r i q u e du B o i s - M a r i e (1966-67), GROTHENDIECK, A.. BERTHELOT, P., ILLUSIE, L., Throrie des intersections et th6or6me de Riemann-Roch, Lectures Notes in Math. 225 Springer V erlag. ( 1971). [S.G.A.7] S6minaire de G 6 o m r t r i e A l g r b r i q u e du B o i s - M a r i e (1967-69), GROTHENDIECK, A., DELIGNE, P., KATZ, N., Groupes de monodromie en gromrtrie algrbrique, Lectures Notes in Math. 2 8 0 , 3 4 0 Springer Verlag (1972-73). [R-D] Residue and Duality, S6minaire HARTSHORNE, Lectures Notes in Math. 20, Springer Verlag (1966).
O n a F u n c t i o n a l E q u a t i o n of I g u s a ' s Local Z e t a F u n c t i o n . * Diane Meuser Boston University Let K be a finite algebraic extension of the field Qp of p-adic numbers, RK the ring of integers of K, PK the unique maximal ideal of RK, K the residue field and q = card -K. Let I IK be the absolute value on K so that the absolute value of an element in PK -- p 2 is q-~. If f(x) is a polynomial in Rg[xl,... ,Xn] the Igusa local zeta function associated to f is defined for s C C, Re(s) > 0 by
ZK(S) =
f ]
JR 7~
If(x)lKldxlK
It is a rational function of q-8, and in fact is in Z(q-l,q-8). The denominator can be written as
E (1--q-m'q-N's) iEI
where (Ni, m l ) are data associated to exceptional divisors El, i E I in a resolution of the singularities of f . The numerator is quite complicated in known examples, and no general result is known. Many of the known examples of ZK(s) are for polynomials associated to irreducible regular K-split prehomogeneous vector spaces. These polynomials are invariant polynomials for a group acting transitively on the complement of the hypersurface defined by f = 0. They have been classified into 29 cases, given in [4]. with some cases containing infinitely many polynomials. Igusa observed that there was a functional equation for ZK(S) in the 20 out of 29 classified cases of the above polynomials for which ZK(s) has been determined. For these cases one has that if L is any finite algebraic extension of K, qL the number of elements in the residue field, and ZL(s) the local zeta function, then ZL(s) is obtained from ZK(S) by the replacement q ~-~ qL. This uniquely defines Z(u, v) E Q(u, v) such that Z % -1
-s
)
His result is that for these cases
(1)
Z(u
v-b
= v d z(u, v)
where d is the degree of f [2]. In order to ask whether a functional equation of this type is true more generally it is necessary to impose a restriction that forces the function Z E Q(u,v) satisfying ZK(S) = Z ( q -1, q-S) to be well-defined. Hence Igusa introduced the following definition.
ZK(S) for f(z) E RK[Xl,...,xn] is universal if there exists a function z(u, v) e Q(u, v) such that ZL(S) = Z(q[ 1, q-£~)
Definition.
* Supported by National Science Foundation Grant Nos. DMS-8702667 and DMS8610730.
310
for all finite extensions L of K. He then posed two conjectures under the assumption that f(x) has "good reduction" modulo PK. By "good reduction" it is meant that if f(x) has coefficients in a number field, then the conjecture should hold for all except possibly a finite number of completions. C o n j e c t u r e I: For homogeneous polynomials, ZK(S) universal implies Z(u, v) has the functional equation (1). C o n j e c t u r e II: If f(x) is one of the remaining nine types of invariant polynomials associated to a prehomogeneous vector space then ZK(S) is universal. T h e o r e m : Conjecture I is true. The general proof will appear in [1]. The proof shows that the functional equation of the Igusa local zeta function is a direct consequence of the functional equation of the Weil zeta function for the smooth, proper varieties given by the intersections of the exceptional varieties in the embedded resolution of the singularities of the projective variety defined by f. More specifically let {Ei}iCT denote the exceptional divisors of such a resolution, and let EI = Aiez El. One can use the theory of resolutions to obtain the following expression for ZL(S) for any finite algebraic extension L of K (2)
zL(
) =
1
1 - qL 1
q;-
bL,
ICT
II(
1-
1 -
1
)
iEI
where bL,I is the number of L rational points of Ez where E1 denotes the reduction of Ex modulo PK. Since Ez is smooth and proper the functional equation of the Weil zeta function states that the map a ~-~ q'~-l-tZl/o~ is a bijection of the eigenvalues of Probenius of E~. Since the definition of universal zeta function has been introduced, the natural question is to ask under what conditions does a given polynomial possess a universal zeta function? In particular the functional equation for the remaining 9 types of polynomials associated to prehomogeneous vector spaces as mentioned above remains a conjecture since one does not know that their zeta functions axe universal. However since the first 20 were shown to have universal zeta functions by Igusa's explicit calculations, it is reasonable to conjecture the others do as well. The following shows that the property of f(x) E RK[Xl,..., xn] satisfying the condition that its Igusa local zeta function is universal implies strong properties for the Well zeta function for the projective variety X over I£ defined by 7 = 0. T h e o r e m 2: Suppose f(z) e t~K[Xl,..., Xn] has the property that it8 Igusa local zeta function is universal. Let Zred(t) denote the reduced Well zeta function obtained from the Well zeta function for X by deleting any common factors in the numerator and denominator. Then the reciprocal zeroes and poles of Zre d are all of the form qi, 0 <_ i
311
degree at most n -- I such that Ne = P(q~). T h e idea is to observe one has
/R~.2 If(x)l'ld~l : Z(q-% q-~9 by universality, and on the other hand oo
/R~2 lf(x)l'ldxl = Vol{x
VoZ{x I tf(x)t
I If(x)l = 1} + ~
=
q-~}- q-~
{=1
Letting Re(s) --+ ~ one gets Vol{x I If(x)l = 1} = Z(q-~,o) but this volume is 1 - q-neN¢. The polynomial expression for N~ is then obtained by considering the power series expansion of Z(u, 0) 6 Q[[u]]. rt--1 Write Ne =- ~ i = 0 aiq e', ai 6 Q. Choosing m 6 Z + such that mai 6 Z Vi, n--1 let Nle = ~i=o rnaiq e'' By considering the Weit zeta function for the affme variety defined by f = 0 we have 3 a i , f l j 6 C such that Ne = ~ a ~ ~ f l ~ , so we let N 2 = Erna~ - Ernfl~. Since N~ = N [ , we have
N•t¢ -
exp E e=l
:
e
N ~: U
exp
'
e=l
which in turn gives
I]~1,,,
-
qi) ml''l
1-ii,a,>o( 1 _ qi)m~,
y[1(1
jgjt) m
-
Ili(1 - ~t)m
Thus after possible cancellation we have each ai,/gj is an integral power of q. Letting N~ denote the number of points on the projective variety X and using Ne : 2~r~(q - 1) + 1 gives the same conclusion for the Well zeta function of X. Let f ( x ) be of degree d in variables. In the case where the variety defined by f ( x ) = 0 is projectively nonsingular the Well zeta function Z(t) is reduced and satisfies
z(t)
N(t)(-1) ("-1) :
(1 --
t)(1 - qt)... (1 -- q("-2)t)
where b
w(t) : ll(1-~,t)
,
i=1
b is the betti number of Hn-~(X, QI) and Ioq] = q(n-2)/2 for all i. Thus n odd implies b = O. But the middle dimensional betti number is given by b = (d - 1) '~ + ( - 1 ) n ( d - 1) So if n is odd we must have d = 2. Conversely these polynomials all have the property that their Igusa local zeta functions are universal since they are special cases of the invariant polynomials associated to prehomogeneous vector spaces.
312
If n is even all the middle dimensional eigenvalues of Frobenius al must equal q(n-2)/2 A further characterization of these varieties can be obtained in terms of properties of tile middle dimensional 1-adic coholnology group. In particular there is a map from algebraic cycles of codimension (n - 2)/2 to H n - 2 ( X , Q~). A cohomology class is said to be algebraic if it is the image of an algebraic cycle. Frobenius acts trivially on the subspace spanned by algebraic cycles so if H n - 2 ( X , QI) is spanned by aJgebraic cycles the Igusa local zeta function is universal. Conversely, Tate's conjecture [6] is that the order of the pole of the Well zeta function at q-('~-2)/2 is the rank of the subspace spanned by the algebraic cycles. Thus one has T h e o r e m 2: A projectiveIy nonsingular variety X defined by 7(x) = 0 where f ( x ) has an even number of variables has a universal Igusa local zeta function if and only if H~-2(X, QI) is spanned by algebraic cycles, with the only if part assuming Tate's conjecture. Any rational variety having a cellular decomposition will satisfy the property that its cohomology is spanned by Mgebraic cycles. Some other examples are given by Fermat hypersurfaces. The Fermat hypersurface of degree d in n variables where n is even and d > 4 has H n - 2 ( X , Ql) spanned by algebraic cycles if and only if there exists an integer v such that pV = - 1 (rood m) where p = char(I(), as was shown by Shloda [5]. These Fermat hypersurfaces are unirationat, ie. there exists a rational map of finite degree from a projective space to the variety. For the case of singular varieties the situation is much less clear since the Weil zeta functions are not as explicit. However this is the primary case of interest since in particular the invariant polynomials associated to prehomogeneous vector spaces define singular varieties. By explicit consideration of the expression of the Igusa local zeta function given in (2) one can easily see P r o p o s i t i o n 1: If {Ei)ieT denotes the collection of exceptional divisors in a resolution of f , then if every subvariety EI = ~i~I Ei for I C_ T has the property that its eigenvaIues of Frobenius are integral powers of q, then the Igu~a local zeta is universal. However, whether or not the converse is true remains open. Even for the prehomogeneous cases whose Igusa local zeta functions have been determined it is not known whether their resolutions satisfy this simple property, since in general their resolutions have not been obtained. Igusa's method of determining the zeta functions for these polynomials does not use a resolution. I have shown that in two non-trivial cases the conditions of Proposition 1 are satisfied. P r o p o s i t i o n 2: If f(x) is the invariant cubic in 27 variables for the group E6 or the invariant quartic in 56 variables for the group ET, then the eigenvalues of Frobenius of every subvariety in the resolution are integral powers of q. The zeta functions of these are known to be universal by methods of Igusa. On the other hand the numerical data of the exceptional divisors was obtained by Kempf in [3]. For instance for the cubic in 27 variables there are three exceptional divisors E1 , E2, Ea with numerical data (1, 1), (2, 10), (3, 27) and the I with ]II > 1 satisfying Ez ~ 0 are {1,2}, {1, 3}. By consideration of the formula for the Igusa local zeta function given in (2) it is clear that the only possibly non-universal contribution comes from the bL,I. By expanding this formula and Z(u, v) as formal power series in v with coefficients in Q(u) one can compare coefficients to show each bn,i is given by a function in Q(u). Then the arguments of Proposition 1 show that the eigenvalues of Frobenius are integral powers
313
of q. A similar but more complicated consideration of the seven exceptional divisors for the polynomial associated to E7 shows that their intersections also have this property. Kempf has indicated to me that he had not been aware of the result of the above property nor was he aware of any geometrical property of the exceptional divisors for the above cases that implied this result. Of course the construction of embedded resolutions for the remaining prehomogeneous cases would enable one to settle Igusa's conjecture, but perhaps there are geometrical properties of these varieties that force theirlocal zeta functions to be universal. References 1. J. Denef and D. Meuser, A functional equation of Igusa's local zeta function, To appear in Amer. d. Math.. 2. J. Igusa, On functional equations of local zeta functions, preprint. 3. G. Kempf, The singularities of some invariant hypersurfaces, Proc. Conference on Algebraic Geometry, Berlin (1985) Teubner-Texte, 92 (1986), 210-216. 4. T. Kimura and M. Sato, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math J., 65, (1977) 1-.155. 5. T. Shioda and T. Katsura, On Fermat Varieties, T6huicu Mat. dourn., 31 (1979), 97-115. 6. J. Tare, Algebraic cycles and poles of zeta functions, Aritl.;metical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), 93-110, Harper and Row (1965).
On Vanishing of Cohomologies of Rigid Analytic Spaces Yasuo Morita MathematicM Institute Tohoku University Aoba, Sendai 980 Japan
1
Introduction
In our previous paper [ Mo ] , we have studied relative cohomologies of the rigid analytic space k n , and, by using a vanishing theorem of relative cohomologies, we have constructed a p - a d i c theory of hyperfunctions on compact subsets of k n . In this paper, we shall review the results of [ Mo ] , and study relevant vanishing theorems of cohomologies of rigid analytic spazes. In particular, we shall give two open problems concerning vanishing of cohomologies of rigid analytic spaces.
2
Vanishing of the Derived Sheaves
"His((.gx)(i # n)
Let Qp be the p - a d i c number field, and let k be a complete nonarchimedean algebraically closed field containing Qp. For example, the field Cp , which is the completion of the algebraic closure of Qp , satisfies this condition. We denote by I I the standard p - a d i c valuation of k with I P I= p-1 . Let X = k n be the n-dimensional affine space with the standard rigid analytic structure ( cf. e.g. [ B G R ] ) . Let Ox be the structure sheaf on this rigid analytic space X , let U be an admissible open subset of X , and let H'(U, Ox) be the i - t h cohomology group. Let K be a compact subset of X , and let HKnu(U, i Ox) be the i - t h relative cohomology group with supports in K fq U , and let 7-l'K(Ox) be the i - t h derived sheaf of Ox with supports in I( (cf. [ Mo ] for the definition). Then we have proved in [ Mo ] that the derived sheaf 7-t~((Ox) vanishes for any nonnegative integer i ~ n . Further, by using the degeneracy of the spectral sequence i j HKnu(U, 7iK(OX)) ~
h HKnu(U, Ox) ,
we have obtained the following isomorphism :
HKnu(U ,,,+m O x ) = H"(U, 7"l'~¢(0x) for any integer m >__O.
315
Hence the presheaf BK defined by
K(I¢ n U) = H nu(U, Ox) becomes a (flabby) sheaf on K . Furthermore, we have proved that the n - t h relative cohomology group H~.(X, (.gx) gives the dual space of the space of locally analytic functions
on K (of. [ Mo ]) One of the most essential part of [ Mo ] is in the following temma. Let U be an affinoid subset of X = k" containing the product of 1-dimensional affinolds D 1 , . . . , D , and let S b e a p r o d u c t of open balls B, = {z E k I I z-a, I<_r [ } (i = 1 , . . . , n ) such that B; C Di and ri E I kx I . (In [ Mo ] , these conditions on U, Di, B, are not correctly stated.) Then we have proved the following : LEMMA. Let the notation and assumptions be as above. Then : (i) The relative cohomology H~.(U, Ox) vanishes for any nonnegative integer i different from n . (ii) The n - t h relative cohomology H~(U, Ox) can be explicitly calculated. REMARK. B. Chi~ellotto also obtained this result in a more generalized form. He studied the Serre duality in the rigid analytic case (cf. his report in this Proceedings) . Though we have stated in [ Mo ] only for compact subsets in the affine space X = k ~, it is easy to see that, for any compact subset K in the projective space X = P~(k) , we can prove that the derived sheaf 7-lK(Ox ) vanishes for any nonnegative integer i # n . In particular, if we denote by L a locally compact subfield of k containing Qp , then we can prove that the derived sheaf 7-['p~(L)(Ox) vanishes for any nonnegative integer i # n. Further, if K is a compact subset of Pn(k) , then we can prove that the cohomology H~¢nu(U, Ox) vanishes for any integer i ~ n + 1 and for any admissible open subset U of W(k) . In the classical case, it is known that for any n-dimensional real analytic manifold M and for any complexification X of M , the derived sheaf 7"l's(Ox) vanishes for any closed subset S of M and for any nonnegative integer i # n (cf. e.g. [ KKK ] , Theorem 2.2.1). This is the most essential fact to construct the theory of hyperfunctions on M, and we have used an analogous fact to construct a p - a d i c analogue of the theory of hyperfunctions (cf. [ Mo ]) . So we have the following problem : Let L be a locally compact subfield of k containing Qp , let X be an n-dimensional rigid anMytic space defined over L , and let M be the subset of X consisting of all L - v a l u e d points of X . Let S be a closed subset of M such that X - S is admissible open in X . Then : PROBLEM V D S . i different from n ?
Does the derived sheaf
~'s(Ox)
vanish for any nonnegative integer
We have already noted that the answer is yes for the projective space X = Pn(k) .
316
3
Relation with Vanishing of Cohomologies
Let (X, O x , T ) be a rigid Let U be an admissible open is admissible open in U . Let supports in S . Then we have
H'snu(U, 7-lJs(.T)) ~
analytic space, and let .T be a sheaf of Ox-module on T . subset of X , and let S be a subset of U such that U - S H's(U,.T) be the i - t h relative cohomology group of ¢- with a spectral sequence
H~nu(U, Y') .
Hence we have an isomorphism n+m n H~.u (u, ~') _~ H m (U, -U.(~-))
for any integer m _> 0 if the derived sheaf ~ ( ~ - ) vanishes for any nonnegative integer i ¢ n (cf. [ G ] , TMor~me 4.4.1 ) Since ~}(.T) is the sheafication of H'snu(U,.T) , the derived sheaf 7~}(.T) vanishes for any nonnegative integer i ¢ n if and only if (1) H'snu( U, .T) vanishes for any integer i _> n + 1 and for any admissible open subset U , and (2) H)nu(U,.T) vanishes for any integer i _< n - 1 and for any sufficiently small adntissible open subset U . Now we have the following exact sequence (cf. [ Mo ]) : o
, ~°~(u,.r)
~ H°(u,f)
~
H°(U-
s,:r)
....
H ~i ( U , J : )
, s'(u,7)
--. ~'(u - s,J:) ....
(exact).
Hence, His(U,.T) vanishes for any nonnegative integer i ¢ n if and only if the following three conditions are satisfied :
Hi(U, Y:) ~- H'(U - S ~ )
for any integer i ¢ n - t, n ,
ffn-l(u, .~) ----+ H n - I ( u - S, .~) H"(U,.T)
, H'~(U - S,.T)
is i n j e c t i v e
,
is surjective.
Hence "H~(~') vanishes for any nonnegative integer i ~ n if and only if
(1')
H"(U,.T) ~ H"(U - S,.T) is surjective, and H ' ( U , y ) ~_ H i ( U - S , . T ) for any integer i_> n + l
holds for any admissible open subset U of X , and
H"-I(U,.T) (2')
----) H'~-I(U - S,.T)
H i ( U , ~ ") ~_ H i ( U - S , . T )
is injective, and for any integer i < n - 2
holds for any sufficiently small admissible open subset U of X . Therefore, if the derived sheaf 7[is(Ox) vanishes for any nonnegative integer i # n , then we have
317
H'(U;Ox) ---
H~(U- S, Ox)
for any integer i >_ n + 1 and for any admissible open subset U of X . In the classical case, it is known that for any coherent O x - m o d u l e 7" on an n-dimensional complex manifold X , the cohomology group H'(X, Ox) vanishes for any integer i > n + 1 (cf. [ Mal ], TMor~m 3 ). Further, it is known that the cohomology H"(X, ~') also vanishes if X is not compact and if 7" is a locally free coherent Ox-module (cf. [ M a l l , Probl~mes 1 ) . Malgrange used the Dolbeault complex to prove these facts, so it is not easy to translate the proof into the p - a d i c case. We note that the cohomologies Hi(X, .7) (i > nq- 1) may not vanish if 7" is not coherent. On the other hand, by a result of A. Grothendieck, the cohomology Hi(X, ~) vanishes for any integer i > n + 1 and for any sheaf of abelian groups 7" on X if X is a noetherian topological space of dimension n . In our case, M. van der Put obtained the following (cf. [ P ] , p.174, L e m m a ) : THEOREM V C
Hi(X, .T') vanishes
, If X is an n-dimensional affinoid space, then the cohomology group for any integer i >_ n + 1 and for any sheM" Y of abelian groups on X.
Van der Put expressed the cohomology H i ( X , ) t') in terms of the Cech cohomology group ~Ii(X, .T') , and expressed it by the Cech cohomology kri()(, Y) of the reduced affine variety X . Then he proved the vanishing of the last cohomology. It seems that his result holds not only for affinoid spaces but also for rigid analytic spaces satisfying a countable condition (cf. [ P ], p.172, Proposition 1.4.4), but the author could not check it because only a sketch of the proof is given in [ P ] . REMARK. Though the cohomological dimension of a paracompact topological space can be calculated locally, its proof seems to have a difficulty to translate into the rigid analytic case (cf. [ G ] , Th4or~me 4A4.1 ) . In the classical case, we can prove that the cohomology H'(X, .T) vanishes for any integer i _> 1 if .T is a soft sheaf. But soft sheaves seem to be not so nice in the rigid analytic case. Related with this question, we are also interested in the following problem : PROBLEM VA.C. Does the cohomology group Hi(X,.T') vanish for any integer i _> n and for any locally free coherent O x - m o d u l e 5c if X is an admissible open subset of a quasi Stein space ?
318
REFERENCES
[A]
M. Artin, Grothendieck topologies, Lecture Notes of Harvard University, 1962.
[ BGR ] S. Bosch, U. G/inter and R. Remmert, Non-Archimedean Analysis, Springer-
[G] [ KKK]
[Mall [Mo] [SM] [P]
Verlag, 1984. R. Godement, Topologie atgdbrique et tMorie des faisceaux, Hermann, 1958. M. Kashiwara, T. Kawai and T. Kimura, Foundations of algebraic analysis, Princeton Univ. Press, 1986. B. Malgrange, Fasceaux sur vari4t4s analytiques r4elles, Bull. Soc. math. France, 83(1955), 231-237. Y. Morita, A p-adic theory of hyperfunctions, It. In : Algebraic Analysis, Vol. I, 457-472, Academic Press Inc., 1989. W. H. Schikhof and Y. Morita, Duality of projective limit spaces and inductive limit spaces over a nonspherically complete nonarchimedean field, Tohoku Math. a., 38(1986), 387-397. M. van der Put, Cohomology on affinoid spaces, Composito Mathematica, 45 (1982), 165-198.
A p-adic Analogue of the Chowla-Selberg Formula Arthur Ogus * University of California, Berkeley
Let X/C be an elliptic curve, with complex multiplication by a quadratic imaginary field E. Then X/C automatically and uniquely descends to the algebraic closure Q of Q in C and has good reduction at every prime 9 of Q. Let Kp denote the algebraic closure of Qp in the completion of Q at 9, and let W, denote the set of automorphisms of Q which preserve 9 and which act as some integral power of the Frobenius automorphism on the residue field kp at 9. These automorphisms extend to automorphisms of K~, by continuity. As explained in [3], there is a canonical semilinear crystalline action of this Well group on H1R(X/'Q) ® Kp, compatible with the action of E. The principle goal of this paper is to give an "explicit formula" for a matrix representat'ion of this action, with respect to a basis for H~R(X/-Q ). As we shall see, our formula, 3.15 below, bears a striking resemblance to the classical Chowla-Selberg formula [15] for the classical period matrix of X/Q, with the classical gamma function replaced by Morita's p-adic gamma function. As a matter of fact, our proof is inspired by and patterned after Gross's proof of the classical formula in op. cir., in which the formula for elliptic curves is deduced from a similar formula for the periods of Fermat curves. In our case, we use the formalism of absolute Hodge cycles to reduce to the computation of the Frobenius matrix of Fermat curves. When p does not divide the degree, this computation goes back a long way, but in fact no convenient reference seemed to exist in the literature until Coleman's article [6], which was written in response to my queries. More recently, Coleman has been able to carry out his computations for all odd primes. In fact, in the case of bad reduction he was only able to calculate part of the Frobenius matrix, but, remarkably, this partial calculation is sufficient for the determination of the calculation of the periods of the "semiversal ulterior cyclotomic motive" constructed here (c.f. Theorem 3.1). Consequently, using the results of this paper, Coleman was finally able to bootstrap the calculations and obtain an explicit formula for the entire Frobenius matrix of the Fermat curve. We refer to his paper for the explicit formulas and the detailed story of the relationship between his results and ours [5]. I should point out that our formula is a rather special consequence of the general philosophy that Hodge cycles should be compatible with the action of Frobenius on crystalline cohomology, as conjectured in [17]. In fact, recent work of Fontaine-Messing [14] and Faltings [12] has made it possible to strengthen this conjecture, and, as Don Blasius has pointed out [4], to prove it for abelian varieties. The strengthened conjecture, which includes a p-adic analogue of Shimura's monomial period relations, has been considered by other authors as well [7]. I only emphasize the Chowla-Selberg formula itself to try *Partially supported by NSF Grant No. DMS-8502783
320
to render crystalline cohomology more "explicit" and "concrete," at least in the setting of the theory of complex multiplication. Our paper is organized as follows. The first sections review the terminology and formalism of motives of CM-type and their classical and crystalline periods. In particular we introduce the concept of a "marked motive," which is a motive endowed with a choice of basis for its cohomology. We construct an abelian group out of the category of marked motives and state the main theorem, which asserts that the periods of a marked motive depend only on the corresponding marked CM-type. This more delicate formulation is essential for Coleman's bootstrap in the determination of the Frobenius matrix for Fermat curves in the case of bad reduction. Section 2 reviews the classical and crystalline cohomology of Fermat curves, being of necessity rather careful about specific choice of bases for cohomology and about rational factors. Section 3 includes the construction of the semiversat ulterior motive M alluded to above, which can probably be viewed as a geometric incarnation of Anderson's constructions in [1]. Finally, section 4 contains a proof of the general result on absolute Hodge cycles on which our formula relies. I would like to thank Don Blasius for sharing a preliminary version of his proof of the "De Rham conjecture" for absolute Hodge cycles upon which our results are based, as well as Robert Coleman for the dedication with which he pursued the precise forms of the formulas I needed. Thanks also go to Hendrik Lenstra and Ken Ribet for useful conversations and hints about Galois cohomology and CM-types.
1
Complex Multiplication
We begin by recalling the basic facts about complex multiplication and motives of CMtype. Let E/Q be a CM-algebra--that is, a product of CM-fields--and for any Q-algebra A, let S(A) =: Mot(E, A) for any. Then E ® K ~ K s(K) for any algebraically closed field K of characteristic zero. Let X/-Q be an abelian variety with complex multiplication by E, so that (by definition) E operates on X/-Q and the corresponding action of E on De R h a m cohomology makes H1R(X/-Q) a free E ® Q-module of rank one. For each s E S ( Q ) , the fiber Y~)R(s ) of H~)R(X/-Q) at s has dimension one over Q , and there is a canonical isomorphism: HbR(X/-Q) ~ II{HbR(s) : s e S}. We shall find it extremely convenient to consider motives of higher weight constructed from abelian varieties of CM-type by linear algebra operations. We refer to [10] for the formal definition, contenting ourselves here with the examples and properties we need. Associated with an E-motive X/-Q of rank r are its various cohomological realizations:
• HB(X/Q)--a free E-module of rank r. • HDR(X/Q)--a free Q ® E-module of rank r. • H~(X/Q)--a free Qp ® E-module of rank r. These realizations are functorial and come equipped with other functorial data as well. For example, the De R h a m cohomology comes with the Hodge filtration, and there are canonical isomorphisms between the De Rham and Betti cohomologies (after tensoring with C). We shall be more explicit about these and other data later. Here are some examples of constructions of E-motives:
321
A/'Q is an abelian variety width complex multiplication by E, then the degree one part of its cohomology is an E-motive of rank one.
• If
• If a: E --* E r is a homomorphism of CM-algebras and X / Q is an E-motive of rank r, then a*X =: X ®E E ' is an Er-motive of rank r. • E ® H i ( P 1) is an E-motive of rank one and weight i if i = 0 or 2. We denote this motive by E if i = 0 and by E ( - 1 ) if i = 2. • If X and Y are E-motives, we can define X ®E Y and HomE(X, Y) so that
H(X ®E Y) ~- H(X) ® H(Y)
and
H(gom(Z, Y)) ~- H o m ( g ( x ) , H(Y)) Here the "H" stands for any cohomological realization, and the tensor product and Horn are taken over the appropriate coefficient ring. There are several ways to define morphisms, and in particular isomorphisms, of Emotives. For the sake of definiteness, let us choose here to use the strictest definition, originally proposed by Grothendieck--morphisms of motives are induced by algebraic correspondences. The point is that any such morphism is necessarily compatible with the all the structures on and compatibilities between the various cohomological realizations. The ttodge filtration on the De Rham cohomology of an E-motive X/-Q is especially important. If X/-Q has rank one, this filtration can be described purely combinatorially. We identify S(Q) with the set of maximal ideals of Q ® E, and the fiber HDR(S) of HDR(X/-Q) at s can be identified as g / ) R ( s ) ~ {z e HDR(X/-Q):ex ----s(e)x for all e e E} Then for each s E S(Q), we define
r(X)(s) =: sup{i: HDn(S) e Fi HDn(X/-Q) } Since each stalk is one dimensional, it follows immediately that
F'HDR(X/-Q) = E {HDR(S) : v(X)(s) >_i} $
Attached to each motive is a weight, i.e. the weight n of the underlying IIodge structure, which can be expressed in terms of r and the natural action of complex conjugation on S(Q). Namely, one finds easily that r(s) + r(~) = n for every s e S(Q). If E is a field, n is just an integer, and in general it is a function on S ( Q ) which is constant on the orbits of GaI(-Q/Q) acting on S(Q). In general, a function r: S(Q) ---+Z such that r ( s ) + v(l) = n is called a "CM-type of weight n." Evidently the sum of a CM-type of weight n and a CM-type of weight m is a CM-type of weight n + m, and the set of all CM-types forms a subgroup of the group of all functions S(Q) ~ Z. We denote this subgroup by CM(E). Let Mot(E/-Q) denote the set of isomorphisms classes of E-motives of rank one. Using the isomorphisms:
X ®E Y "- Y ®E X
and
( x ®E Y) ®E Z "*--X ®E (Y ®E Z),
322
we find that Mot(E/-Q) becomes an abelian group. Since the Hodge filtration of X ® ~ Y is the tensor product filtration, we have r ( X ®E Y) = r ( X ) + r(Y). Similarly, one finds that if a: E --* E' is a homomorphism with corresponding map a*: S ' ( Q ) ---* S(Q), then r ( a * X ) = v ( X ) o a*. We summarize: P r o p o s i t i o n 1.1 Formation of the CM-type induces a surjective homomorphism of abelian groups:
r: M o t ( E / Q ) ---* CM(E) Ira: E --* E' is homomorphism, tet a* denote the corresponding maps S'(-Q) ---* S(-Q),
and
C M ( E ) --* CM(E'),
Mot(El-Q) ---* Mot(E'/-Q)
Then there is a commutative diagram: Mot(El-Q)
~....... CM(E)
1o
1o - -
Mot(E'/Q)
"r
,
CM(E')
Proof: The only part of this proposition that is not yet clear is the surjectivity of r. This is classical; we recall the outline of the argument. Notice that if r E C M ( E ) takes its values in {0, 1}, then the weight w o f t is either 1 or 2. In the latter case, r is constant and equal to v ( E ( - 1 ) ) . If the weight is one, we can regard r as defining a partition of S(Q) into two subsets ~ and ~ . Then there is a well-known complex analytic construction of a complex torus on which the ring of integers O of E operates: O is a lattice in C ~:, and the quotient is the desired torus. One finds that the action of E on cohomology is such that one recovers r as the CM-type. Then one proves that the complex torus is in fact an abelian variety, and that this variety, together with the action of O, descends uniquely to Q. To prove the proposition, one now is reduced to checking that the group C M ( E ) is generated by elements r which take their values in {0, 1}, which is easy. II It is sometimes possible and useful to make more precise statements, with respect to a specific basis. To this end, we define a "bimarking" of an E-motive X to be a pair ((, ~7), where ~ is an E ® Q basis of HDR(X/-Q) and T/is a Q-basis for HB(X). Similarly, we define a "De Rham marking" of X to be an E ® Q---basis ~ of HDR(X/-Q). For example, HDR(E) is just E ® Q, which has a canonical basis 1, and HB(E) is just E, which also has a canonical basis 1. Similarly, H o R ( E ( - 1 ) ) is E ® Q , with basis 1, and H B ( E ( - 1 ) is (2rci)-lE, with basis (2rri) -1. Then we have the obvious notions of the categories of bimarked and De Rham marked motives, and the tensor product operation induces a group structure on the corresponding sets of isomorphism classes, which we denote by B M o t ( E ) and DMot(E), respectively. Notice that an element e of T/~(Q) induces an isomorphism of bimarked motives
(x, ~, 7) ~ (x, e~, e~), so that these two define the same element of BMot(E). If A is any Q-algebra, we let T E ( A ) denote the group of units of E ® A; we have a canonical isomorphism T E ( K ) ~- K *s(K) if K is an algebraically closed field. There are
323
then evident exact sequences:
0
-*
Ts(Q)
0
-*
Ts(Q)/TE(Q)
0
---*
TE(Q)
---* BMot(E)
-*
DMo~(E)
~
0
DMot(E)
--*
Mot(E)
-*
0
---, BMot(E)
---*
Mot(E)
~
0
-*
Let us next review the formalism of periods of E-motives. The theory of integration defines a canonical isomorphism: a s : HDR(X/Q) ®-QC ~ H B ( X / Q ) ®Q c If we choose a basis ~ for HoR(X/-Q) over E ® Q and a basis rl for HB(X/'Q) over E, then the matrix for a s with respect to these bases is a unit of E ® C, which we denote by 7(X,~,rl). Its image in T E ( C ) / T E ( Q ) depends only on X and (, and its image in T E ( C ) / T E ( Q ) depends only on X; we denote these by 7(X,~) and 7(X), respectively. One checks easily that in fact 7 defines homornorphisms: m
BMot(E, Q)
--,
TE(C)
DMot(E,Q)
--*
TE(C)/TE(Q)
Mot(E, Q)
-,
TE(C)/TE(Q),
all of which we denote simply by 7. For example, 7(E, 1, 1) = 1 and
7 ( E ( - 1 ) , 1, (27ri) -1) = 27ri
For the crystalline version, we let p be a prime of Q and let ¢ be a member of the Weil group W~. Since we are working over Qp, we can identify W~, with the "crystalline Weil group" constructed in [3]. Since abelian varieties of CM-type have potentially good reduction everywhere, the crystalline Weil group acts on the completion of their De Pdaam cohomology, and hence also on the completion of the cohomology of any motive construtted from abelian varieties of CM-type. If again ~ is an E ® Q-basis for HDR(X/Q), we let 7 ~ ( X , ~ , ¢ ) E T E ( K p ) denote the matrix for the action of ¢ with respect to ~. (This also makes sense for any E ® K~-basis.) The group Wp also acts on T E ( K ~ ) through its action on K~, and if A E TE(K~,) and ~ E HDn(X/Kp) is a basis, we have the following formulas:
¢(~) = ¢(~)¢(~) ~p(x,~,¢'¢) = - r A x , L¢')¢'(~(x,L¢)) ~Ax, A~,¢) = ¢(~)~-'vAx,~,¢).
(1)
The second of these says that 7p(X, ~) defines a crossed homomorphism
W . ( K . ) --* T E ( K . ) L e m m a 1.2 The crossed homomorphism 7~(X,~): Wp(K~) ---* T s ( K p ) i.e., it vanishes on a subgroup of finite index of the inertia group Ip. K C_ K~ is a finite extension of Qp such that X is defined and has good K and such that ~ E HDR(X/K), then 7p(X,() vanishes on GaI(Kp/K)
is continuous, Specifically, if reduction over n I~.
324
Proof: This follows immediately from the definitions in [3]. Namely, if W(I~) is the Witt ring of the residue field k of K and Xk is the special fiber of X / K , there is a canonical isomorphism: HDR(X/K) ® Kp ~- Hc~,(Xp, W(p)) ®w(p) Kp Then if ¢ e Wp(Kp) has degree n, ¢ is defined to act on H¢ri,(Xp, Wp) ® Kp as g c r i , ( F ~ ) ® ¢. In particular, if n = 0 and ¢ • Gal(gt~/g), then ¢(~) = ~ and - t A x , (, ¢) = 1. I We find that calculation of periods induces a a homomorphism of abelian groups: 7p: DMot(E/-Q) --~ ZI(Wp, TE(Kt~)) The formulas 1 above imply that the image of 7t~(X, ¢) modulo coboundaries from T E ( Q ) is independent 6f the choice of basis ¢. We will therefore find it convenient to make the following definition. D e f i n i t i o n 1.3 Let G be a group and M and N are G-modules with N C M. Then Hi(G, M; N) is tile quotient oft/he module ZI(G, M) of crossed homomorpfiisrns G ---* M by the coboundaries BI(G, N) coming from N. Perhaps it is worth remarking that there are natural exact sequences
0 ~ WIN G --* ZI(G, M) --~ Hi(G, M; N) ~ 0 0 ---* M / ( N + M G) ---* H I ( G , M ; N ) ~ HI(G,M) ---*0 0 ---* HI(G,N) ---* H I ( G , M ; N ) ---*Z I ( G , M / N ) Thus, 7t~(X) should be viewed as an element of g l ( w p , wE(gp); T E ( Q ) ) . For typographical reasons, we shall abbreviate this by HI(Wt,,TE(Kp;-Q)). L e m m a 1.4 The groups HI(Wt~, T E ( K p ; Q ) ) and HI(Wp, WE(Q)) are torsion free. Proof: The group ZI(TE(Kp)/TE(-Q) is evidently torsion free, so we see from the exact sequences above that it suffices to show that HI(W~,, TE(Q)) is torsion free. To this end, let T E ( Q ) n denote the kernel of the surjective map multiplication by n on T E ( Q ) . Let Dp C_ GaI(-Q/Q) be the decomposition group at p. We have a commutative diagram:
HI(Dp,TE(-~)n)
---. HI(Dp, TE(-~) )
I.... HI(Wt~,TE(-~)n)
n,
i
I-.
TM
--.
HI(W~,TE(~))
HI(Dp, T m ( ~ ) )
n
HI(Wp,Tm(~))
Since T E ( Q ) n is a finite set, any cocycle z E ZI(Wp,TE(-Q)n) automatically factors through a finite quotient, and hence prolongs uniquely to a cocycle in Z 1(Dt~, TE(Q)n). Thus, the map resn in the diagram above is surjective (and even an isomorphism). On the other hand, Hilbert's theorem 90 implies that HI(D~, T E ( Q ) ) vanishes. A diagram chase now shows that multiplication by n on HI(Wp, T E ( Q ) ) is injective. II We can summarize the situation so far as follows:
325
Corollary 1.5 Let Kp =: Q
n
Qp. Then there/s a commutative diagram with exact
rOWS:
0
.-.* TE(-Q)/TE(Kp)
--,
ZI(W~,TE(Kp))
T
-*
HI(Wp,TE(Kp;-Q))
0
T
T
0-..
TE(Q)/TE(Q)
--*
DMot(E)
-*
Mot(E)
o
TE(Q)/TE(Q)
--,
TE(C)/TE(Q)
--
TE(C)/TE(Q)
-~
--
--+ 0
--,
O.
R e m a r k 1.6 If E / Q is Galois (as we may as well assume), then GaI(E/Q) operates in a rather trivial way on the right on the category of bimarked E-motives, via the base change operation 1.1. GaI(E/Q) also acts on CM(E), T E ( C ) and on T~(K~,) on the right, and it is clear that the maps r, 7, and 7p are compatible with these actions. The main result which underlies our proofs of Chowla-Selberg states that both the period homomorphisms of Corollary 1.5 depend only on the CM-type. For the classical period 7, this result is essentially equivalent to Shimura's monomial period relations and is due to Shimura and Deligne [11]. T h e o r e m 1,7 The homomorphisms 7 and 7~ above factor through r. That is, there is
a commutative diagram: TE(C)/TE(Q)
T Mot(E)
r
CM(E)
~
I~ HI(W,~,TE(Kp;-Q))
|
To express a convenient analog for marked motives, we let B C M ( E ) and D C M ( E ) denote the fiber products in the diagram below:
DCM(E)
---*
I TE(C)/TE(Q)
CM(E)
BCM(E)
I,
--,
I
--~ TE(C)/TE(-Q)
TE(C)
CM(E)
I, --~
(2)
TE(C)/TE(-Q)
It is clear that we have natural maps:
rDM:DMot(E,-Q) --~ D C M ( E )
and
rBM:BMot(E,-Q) --, B C M ( E ) .
We can now formulate the following slightly stronger version of Theorem 1.7. T h e o r e m 1.8 The homomorphism 7p factors through r D M , and the induced map 7p
fits into an exact ladder:
326
0
---*
TE(Q)/TE(Q)
---*
DCM(E)
--*
0
.--* T E ( - Q ) / T E ( K . )
--*
ZI(W~,,TE(K.))
--
CM(E)
HI(W.,T.(K.;-Q))
-=* 0
---* 0
We shall explain the proofs of 1.7 and 1.8 in section 4. Let us close this section by mentioning the following natural question. P r o b l e m 1.9 Are the maps 7 : C M ( E ) -+ T E ( C ) / T E ( Q )
and
7)~:CM(E) --* H I ( W p , T E ( K t ~ ; WE(Q))
injective?
2
Periods
of
Fermat
Curves
In this section we calculate the periods described in the previous section for the motives constructed from the dacobians of Fermat curves. These calculations are due to other authors; it is simply a matter of licking the formulas into shape. We have to be a little careful to keep track of the rational factors neglected in [11] and to be specific about the choice of bases. It seems best to recall in detail the situation, following the notation of [11] as closely as possible. Let X m denote the Fermat curve of degree m, with homogeneous equation x~n + x ] n + x~n = 0. Let #m denote the group of roots of unity in Q and let Am denote the group /a~ modulo the diagonal, acting on the right on X m by -1
(Z0 : Xl : ~:2)(~0 : ~1 : ~2) = (~0~O 1 : z l ~ i -t : X212 ) Then Am acts on the left on coordinates (and cohomology), and in particular if ( E A, (xi = (~-lxi The group A~ of Q-valued characters of Am can be identified in an obvious way with the subgroup of ( m - I Z / Z ) 3 whose coordinates sum to zero. I f x =: (Xo,X1,X2) is such a character, we let H x denote the x-eigensubspace of H D R ( X m , Q). Recall that H x has dimension one if no Xi = 0 and is zero otherwise; in the former case we say that X is a "Fermat character." To describe the Hodge level of H×, let (a) denote the representative of a in Q 1"3(0, 1]. (Note that the endpoint convention is that of [11] rather than [6]; it makes (a) + ( - a ) equal to 1 if a is a nonzero element of Q / Z and to 2 if a is zero.) For any Fermat character X, we let (X) denote ~ i ( X i ) . L e m m a 2.1 ([11](7.6)) I f x is a Fermat character, the Hodge level of H x is (X) - 1. That is, GrJFgx is zero unless j = (X) - 1, and r ( X ) ( x ) = <X) - 1. The group algebra Q[Am] acts on the Jacobian of X m and its various realizations; in fact, even Q[A] acts on HDR(Xm/-Q). Each Q-valued character X: Am --+ Q defines a homomorphism Sx: Q[Am] ~ Q, and there is a corresponding idempotent e x of Q[Am]: e× =: [Am1-1Y':.~X(~)A. We will allow ourselves to identify X and s×, and we let Fm
327
denote the group of all Fermat characters. The Galois group G a l ( ' Q / Q ) operates on the set of characters A~ and on the group algebra; this action factors through the cyclotomic character GaI('Q/Q) --* Z / m Z * , and g% = %×. Thus, the Z/mZ*-orbits of A~ induce Galois equivariant idempotents of Q[Am] i.e. idempotents of Q[A,~], and we can decompose the Jacobian of Xm (and its corresponding motive) according to these idempotents. The sum ~ e× Q [Am] over all the Fermat characters is Gal(Q/Q)-invariant, and hence descends to a Q-algebra ~m; the characters of ~m are precisely the Fermat characters. Thus, H B ( X ) is a free
=
dyl Yl
Let a0 =: - a l - a2. Then if no al is divisible by m, wa is a differential of the second kind on Xm, and hence defines a cohomology class ~a in H ~ R ( X m / Q ). One sees immediately that ~a E HX, where Xi is the image of - a J m rnod Z. Following Coleman's observations in [6], we shall find it slightly more convenient to consider
=: -';a0a l(x0) -Ixl
(3)
and its corresponding class ~x E HDR. Let A denote the standard one-simplex in R ~, let e,; = e ri/rn, and let ~r : A ---, Ym
by
(.
.~ i / r n
(tl,t2) ~-* ~cm~l
.~ i / r n ~
,cm~2
)
The group algebra Q[Am] operates on the vector space of Q-chains of Ym(C), and we 2 in the i th place and zero elsewhere. Then let 8i be the element of Am which is em rf =: (I - 6 1 ) ( 1 - 6 2 ) 0 " is a cycle of Ym(C), and hence defines an element r/of H B ( X m ) , dual to the homology basis rf. If rn = dn, there is an obvious map frn,,: Xm -" Xn, defined by its action on points: fm,,~(z0 : xl : z2) : (x0d: z d : x~), and on coordinates by ]~n,n(Y~) : Yds" This map is compatible with the actions of Am and An, via the homomorphism Am --~ An sending an element to its dth power. One finds easily that f~,,~(wx) = w x and fm,,*(~') = 71'. We can conclude: C o r o l l a r y 2.2 If n divides m, the natural map Crn --~ ~n induces an isomorphism of bimarked ¢.-motives
• To describe the classical periods, we shall find it convenient to define, for any z E C,
r . ( z ) =: (2~ri)-tr(z). If z 6 Q / Z , we let F,(z) =: F,((z)). P r o p o s i t i o n 2.3 The cohomology class r1 forms a era-basis of H B ( X m ) , and the class =: ~--~x~x forms a chin-basis of H o n ( X m / Q ) . The classical periods of X m are given by
= r , ( o ) / - I r.(x,) '
i
328
Proof: This formula is essentially classical; we follow the treatment of [11]. It can probably also be found, at least implicitly in [1]. T h e following formula is contained in the proof of L e m m a 7.12 of [11]; it appears on the b o t t o m of page 89. Recall t h a t at and a2 are positive integers; we let a0 = : - a l - a2 and assume that no ai is divisible by m. Then: F(1--~)faw
a
--"'+'2---2rtal'rta2' = ,,2¢,~ .... ~m)-tm
(4)
/
Recall the formula: r(s)r(1
- s) = ~ ( s i . ~ )
-~ = ( 2 ~ 0 ~ - ' " ( I
- ~-~"')-'
0)
Hence, r(
) =
2~ir(1
-
-~)-le;,a'(1 -e~2~')-1
(6)
Now suppose t h a t X is a Fermat character and ai = m ( - x i ) for i = 1,2. T h e n also (Xi) = 1 - a i / m for i = 1,2, and hence
r(~) = r.(x,>-'(;,"'(1
-
~;~,)-i
(7)
Substituting this into (4), we find
r(1-~) f ~a=a~m-2r.(xl)-~r.(x2)-l(1-c;,2"')-1(1-~2~)-~
(8)
Continuing to follow [11], we note that if A E Am, A*Wa = X(A)Wa. Hence the group algebra element 6i operates by 6~wa = eVn2a'wa . Let ~ =: (1 - 6t)(1 - 62); then we can write:
= =
f(1 - ~1)'(1 - ~)'~a )/(1 - ~72°,)(1 - ~;2o~)~a
=
a~rn-2r(1-
~)-~r.(x~)-~r.(x~)
-~
(9)
m
Note that 1 - ~o = (x0) + 3 - ( x ) m
T h e Hodge level ( X ) - 1 of H x is either zero or one, and using the fact that F ( s + l ) = s t ( s ) one checks t h a t in either case,
F(I - ~) = 2~i-a°m(X°)2-{×)F,(Xo)
(I0)
Substituting 10 into 9 gives 2
f wa = -a2m-lao-l(Xo)(x)-2(2ri) -1 H r'(Xi)-I t"
i=0
(I1)
329
Recalling that r , ( 0 ) = (2~ri) -1 and the definition (3) o f w x, we find that
~
= r , (o) l ] r . (x,)-l,
as claimed.
|
For the crystalline analogue, we define, for a E Q / Z with denominator prime to p,
rv(a) =: rp((a)), where Fv is Morita's p-adic F-function. Proposition
2.4 I r e E W~i8 has degree one and p does not divide m,
¢ ~ = (_p)Ix)-I I ]
rA-vx,)-%~
i
Proof: This follows from Coleman's formulas in [5]; we simply need a dictionary comparing his notation to ours. His (r,s) is ( - ; ( 1 , - X 2 ) , so that r + s = Xo, and his e(r,s) is 2 - (X). Furthermore, let us note that al
a~
al
a2
af
a~-rn
d(~ Y2 ) = [(~ + ~2)y~ Y2 + a2U~ Y2
]dyl/y~,
and hence
a~(o,,o~-.~) = ,,o~a + d(u;' u~) Using also the fact that dyl/yl = -y~(y2/yl)d(yl/Y2), we find that wx is cohomologous to
-m(Xo)2-(x)~(~,,.~_.~) = m(Xo)~-(×)y~'y~u~lyld(y~ly2) This is just mr]r,~ in Coleman's notation, and as ( ( - r , - s ) = 2 - ( - X ) = (X) - 1, we find t h a t his Corollary (1.9) of [5] is precisely our formula. • Let ~ -- ~ x ~ X , which forms a ~m-basis for HDR(X/Q) as a era-algebra. Recall that CM(q~m) is a subset of the set of functions F,~ ~ Q and that T v , , ( C ) can be viewed as the set of functions Fm --~ C* (and analogously for Kp). It is clear t h a t the cocycle 7~(X,~, 7/) in ZI(Wp, Tcm(K~,)) is determined by its values on elements of degree one. T h e n in the language of the previous section, we can state: Theorem
2.5 The CM-type and periods of the marked ~m-motive (Xm,~, ~) are given
as follows:
¢(x~)(x) = ~ ( x , ) - 1 i
~(x~,~,~) = r~(o)y[r~(x,) -1 i
and, if deg ¢ = 1 and p does not divide m,
~.(x~,~., ¢)(x) = (-v) I¢-'~)-11-I r~(-x,) -1 i
We shall discuss the case in which p divides m in this next section. T h e symmetric group $3 also acts on Xm, and it is clear that ~r*H× = Ha× for o" E $3 and X a Fermat character. However, we shall need the following more delicate remark:
330
Lemma
2.6 I r a E Sa and X is a F e r m i ! character, i'~× = sgn(a)~a×
Proof: It suffices to check this for the two transpositions r =: (1, 2) and i = : (0,2), as these generate $3. Let z =: yl/y2, and ai =: ( - X i ) , so that cox = m ( x o ) 2 - ( × ) Y ~ ' Y ~ d z / z " Since r ' z = z -1, we have r * ( d z / z ) = - d z / z and
~'~x = -re(x0) 2-('~t v~' v?" d~ / z = - ~ , ~ We have i * y l = Yl/Y2 and o'* y2 = y~1, so i* z = Yl and i * ( d z / z ) = d y l / y l = - y ~ d z / z . Let X' =: a)C and a i = : ( - X : ) . Then
i'co~ = - . , ( x o ) ~- I~ v?~ v~?- °~- ~ dz / ~
(12 )
We consider separately the two possibilities (X) = 1, 2, i.e. al + a 2 > m and al + a 2 < m, respectively. In the second case, !
and we have if*co X
=
-my~'y~-a'-a~dzlz
=
-mv~,v;~d~/~
=-
--COX~
I
!
If (X) = 1, we have a~-'m(-x0 ) rn(x0)
= =
2m-al-a2 ! al -4-a2-- rrt-- r n - - a 2 !
Substituting these expressions into equation 12 and using also ,
,
,
.i
.~
,
,
=
(a!'~- m)V~V2
=
' ' -4- d(y ~i y 4 - . , - ( a ' 1 + a'2 - m)y~'y;~
)
=
-,~(x~)v~ ~v~; + d(v°; v,~--,).
d(v°'v % - ' ) = ( ~ + ~ - m)vl v~ + ( 4 - ,~)y~o, V~°~-m, we find that
i'cox
i
a~-rrt
Thus, we see that i*~× = -~o× in this case also.
II
Each element of $3 induces an automorphism i of (I),,~, and hence we can pull back any ~,,,-motive by i , obtaining an action of $3 on the group of bimarked (I)m-motives. C o r o n a r y 2.7 If i E 83, i * ( = s g n ( i ) ~ and i * q = sgn(~l)T1. Consequently there is an isomorphism of bimarked ~m-motives cr* (X, ~, 71) ~ (X, ~, r/). Proof: It is clear from L e m m a 2.6 that i*(~) = s g n ( i ) ~ . Since f o . , , ( = f , , i * ~ sgn(cr) f , , ~, we must also have i,.r/' = s g n ( i ) q ' and hence i * ~ = s g n ( i ) q .
= •
331
3
T h e A b e l i a n Case
In this section we give the "explicit" formula for the periods described in section 1 when E is abelian and p is unramified in E. It suffices to treat the ease of a cyclotomic field Em =: q ( # m ) C Q. Actually we shall find it more convenient to work with the algebra Cm =: Q [ T ] / ( T 'n - 1) ~ I'Idl,n Ed. If m = en, the map T ~ T e induces a map Cm ~ Cn. This map can be identified with the obvious projection l~dl,,~ Ea --~ rIaln Ea. For any Q-algebra R, Mor(Cm, R) is canonically isomorphic to the set /~m(R) of mth roots of unity of R. In particular, if we fix an orientation on C, there is a natural bijection:
m - I Z / Z "*/~m : a ~-* e 2'ri~ and if K is a field containing Q, we have a natural isomorphism
T
(K) "~ K ""~ "~ K m - I Z / Z
LFrom now on we make these identifications without further comment. Notice that U,~ acts naturally on/~m ~ m - l Z / Z . Furthermore, if n divides m, we have natural maps r:Um---*Un
and
i:#n--*#m
and i(~r(u)a) = ui(a) i f u E Um and a e /J~,. Thus we can let U =: limUm act on Q / Z = li__.mrn-lZ/Z ~/Jco, compatibly with our actions at finite levels. Furthermore, we let C stand for the inverse system {Crn : m E Z+}, regarded as a pro-object, so that M o r ( C , R ) =: ~l_~mMor(C,~,R) = #co(R). If K is a field containing Q, we have an identification T c ( K ) "~=K " Q / Z "~=K *~'~ The character group of the torus T c over Q is the free abelian group on Q / Z , which we denote by B Q / Z . Similarly, the character group of T c ~ is the free abelian group on m - I Z / Z , which we denote by Bm Our first goal is to factor the bimarked motive (Xm,~,r/) in a way which reflects the factorization 2.5 of its periods into a product of values of the F-function. This step can be viewed as a geometric incarnation of Anderson's factorization in [1]. Strictly speaking, the factors Mm will not be motives, but "ulterior motives," i.e. elements of the abelian group BMot(Cm) ® Q. If n divides m, the map Crn --* C,~ will induce an isomorphism Mm ®c= Ca "~ M,~. We then say, by abuse of language, that we have constructed an "ulterior motive M on the pro-algebra C." For example, the system {(Xm,~,T/) : m E Z +} forms an ulterior motive on the pro-algebra ¢ =: "li.___m"¢,,~. Because the inverse system {Cm : m E Z +} can be identified with the product I-Ira Era, to give such a motive M on C is the same as giving a system of motives Am =: M ® C Em on each E,n (with no compatibilities). For each i E {0, 1,2}, let j~:/~rn --~ Am be the map inserting ~ into the i th place, and also use jl for the corresponding map C ---*Cm "-'* Q[Am] "-* era. Recall that Xm(--1) is the Tate twist of the Fermat curve of degree m; it has as a bimarking the pair (~, ~l/2~ri). T h e o r e m 3.1 There is a bimarked ulterior C-motive (M,~,r/) of rank one with the following properties:
332
1. The bimarked CM-type rBM( X (--1),~, ~/2~i) o / X ( - 1 ) is isomorphic to the product [Lj~rsM(M,£,,7) in BCM(O) . 2. The CM-type rM 6 Q Q / Z of M is the function ( ) . 3. The complex period 7 6 T o ( C ) ® Q of(M,~, 7) is the function F~( ) - 1 Proof: Let E by the cyclotomic field Q((m). If a:C ---* E is any homomorphism, the ulterior CM-type ( ) on C induces by pullback an ulterior CM-type a ' ( ) on E. As T c ( E ) is the free abelian group on the set of all such a, we obtain in this way a homomorphism rE: T c ( E ) ---* C M ( E ) ® Q : aa ~-* a ' ( ) We construct a homomorphism FE( ): T c ( E ) ---* T c ( C ) ® Q in the same way. Specifically, if we view T c ( E ) as the free abelian group on Q / Z , and if a =: ~ a~ is an element of T o ( E ) , then we have: tea(,.,)
= =
If X: (I, --* E is a Fermat character, let X x ( - 1 ) =: x ' ( X ( - 1 ) , ~ , ,7/2ri) 6 BMot(E), and let a× =: ~ i Xi. It follows from Proposition 2.7 that X× is independent of the ordering of (X0,X1,X~), i.e. depends only on a x. We shall prove Theorem 3.1 simultaneously with the following result. T h e o r e m 3.2 Let E be the cyclotomic field U,~Q(~m). There is a homomorphism
F: B Q / z ® Q --* BMot(E) ® Q with the following properties: 1. Ira 6 q / z z Mor(C,E), F(cra) = a'M. 2. The CM-type r 6 Qu o f F ( a ) is the function rE(or). 3. The complex period 3' 6 T E ( C ) ® Q o f F ( a ) is the function F~(a) -1. 4. F is Gal(E/Q) equivariant and maps B~n ® Q to BMot( Ern) ® Q. 5. For any Fermat character X, rBM(X
(- 1)) =
Proofs: If we have defined a Galois equivariant homomorphism F satisfying 3.2.2-3.2.5, then in particular for each m 6 Z + we have an ulterior Era-motive F(al/m). As explained above, the set of all these defines an ulterior C-motive M such that 1/m*M = F(al/,n). Then for any u 6 U,~, u / m * M = u*(1/m'M) = u'F(al/r,,) = F(au/,n), by the Galois equivariance, and hence 3.2.1 holds. Then 3.1.2 and 3.1.3 follow from the corresponding statements 3.2.2 and 3.2.3; 3.1.1 follows immediately also, e.g. from Theorem 2.5. To prove 3.2, it will suffice to define the map F on any basis for B Q / z ® Q. The natural basis Q / Z is not as convenient as the one provided by the following lemma.
333
L e m m a 3.3 For each b E Q / Z , let fb =: 2at + a-2b. b E Q / Z , / s a basis/'or the vector space B Q / z ® Q.
Then the set of all fb, /'or all
Proof: It suffices to show that the set of all fb's for b E m - X Z / Z spans B,,. Let B " be the space thus spanned. It suffices to show that for each for each a E m-XZ/Z, a~ belongs to B ' . It is clear that - 2 a ~ ~- a - 2 , mod B ' , and by induction (-2)Jct~ ~ a(_:), a for all j. Since m - l Z / Z is a finite set, there exist two distinct integers j and k such that ( - 2 ) i a = ( - 2 ) ~ a , whence (-2)1c~a -~ ( - 2 ) k c ~ mod B " and a . E B ' . It Returning to the proof of 3.2, we note first that Eo = El = E2 = Q. We define
F(fo) =: ( 3 Q ( - 1 ) , 1,(27ri) -3)
and
F(fl/~) =: (2Q(-1),2i,(27ri)-2) •
(13)
Because fo = 3So, F(c~o) is ( Q ( - 1 ) , 1 , ( 2 r i ) - 1 ) , and we can check 3.2.1 and 3.2.2 for (~o instead of )co.
tQ(~0)
=
(0>
=
1 r(Q(-1))
=
r Q ( ~ 0 ) -1
=
( r , ( 0 ) ) -1
= =
2:¢i 7(E(-1),1,(2~ri) -1)
Checking fl/2 = 2ai/2 + a0, we note that
tQ(fl/2) F Q ( f l / ~ ) -1
= = = = =
2(1/2) + 1 = 2 2~(Q(-1)) ( 2 ~ r i ) a r ( 1 / 2 ) - 2 r ( 1 ) -1 (2ri)2(2i) 7 ( 2 Q ( - 1 ) , 2 i , ( 2 7 r i ) -2)
Now i f a ~ {0, 1/2} and we choose an ordering of the set of elements { a , a , - 2 a } we find a Fermat character X. Notice that the isomorphism class of the bimaxked E-motive X× =: x*X,~ is in fact independent of the ordering, by Corollary 2.7. It is also independent of the choice of m, by 2.2 We define F(fa) =: X × ( - 1 ) . Then Theorem 2.5 shows that the CM-type and periods of F(f~) are as predicted by the statement of the theorem. The Gal(E/Q)-equivariance of F follows from Remark 1.6. Statement 3.2.5 is just a restatement of the first two, using the definition of B C M and the formulas 2.5. II R e m a r k 3.4 Although we deduced Theorem 3.1 from Theorem 3.2, let us note that it is also true that Theorem 3.2 is an easy consequence of Theorem 3.1. Indeed, we can use 3.2.1 above to define the homomorphism F. Then properties 3.2.2 and 3.2.3 follow from their counterparts 3.1.2 and 3.1.3, and 3.2.5 follows from theorem 2.5. The Galois equivariance follows from Remark 1.6.
334
R e m a r k 3.5 The Hodge conjecture for all products of Fermat varieties would imply that the factorization 3.1.1 above takes place in BMot(C,~) ® Q, not just in BCM(Crn)® Q. In fact, it seems likely that one could in fact verify the algebraicity of the specific Hodge cycles needed for this statement directly. This would free Coleman's calculation of the Fermat period matrix in the bad reduction case from its dependence on Theorem 1.8, if not entirely from the formalism developed here. Unfortunately we have not had time to complete this task, and we will simply refer to the paper [2] in which a similar calculation was carried out based on Shioda's "inductive structure" of Fermat varieties [18]. Let us also note that our construction of F can be refined in an obvious way to produce a homomorphism from the subgroup BF of BQ/Z generated by the set of all a x for all Fermat characters X to BCM(E). One simply defines F(a×) to be the bimarked E-motive of Xx, and verifies that F prolongs to a homomorphism by inspection from Theorem 2.5. Conjecturely, one would like to say that F factors through BMot(E). We are now ready to look for our p-adic analogue of the Chowla-Selberg formula. Attached to the marked ulterior C-motive (M,~) is the cocycle 7e(M,~) E Z'(W~, Tc( K~)) ® Q ~ Zl(We, T c ( K e ) / l ~ ) Our aim is to give an explicit formula for this cocycle in terms of the Morita p-adic gamma-function. We shall need the following proposition. P r o p o s i t i o n 3.6 Suppose G E Zl(W~,Tc(Kp)/#oo), and let
B
=:
I-IjTa i
Suppose that for every ¢ E Wp , 7p(X(-1),~,¢)(a,a,-2a)
= B(¢)(a,a,-2a),
a(¢)(0) = v eg¢
,
if
a(¢)(1/2)
a E Q/Z\{0,1/2}
and
= v d°g¢/2
Then *[p(M,() = G and 7~,(Xm(-1),() = B. Proof: Fix ¢ E W e of degree one, and define homomorphisms 3`¢ , G 0 : BQ/Z ---*K~,/l~oo 7¢(a) =: H [ 3 ` p ( M , ( , e ) ( a ) ] '~"
and
by :
G ¢ ( a ) =: H [ G ( ¢ ) a ] c'' a
For any Fermat character X, let
and
Be(X) =: B(¢)(X) = I ] a t ( x , ) i
We have to prove that 8¢ = Be and that 3'¢ = G¢. By the constructions in Theorems 3.2 and 3.1, we also have the bimarked motive Era-motive F(a×) = IL x~M.
335 Suppose first that a E Q / Z \ { 0 , 1 / 2 } . Then X =: (a, a , - 2 a ) is a Fermat character, and by hypothesis, Be(X) = ~¢(X). On the other hand, F was constructed so that F(fa) = x ' ( X m ( - 1 ) , ~ ) . It follows that 7¢(fa)
= = = =
7p(r(fa), ¢)(1)
"/~,(X"(X (- I), ~, ".,b)(I)
"r,,(x(-i), ¢)(x) ~(x)
=
B(¢)(x)
=
Go(f~).
Furthermore, G¢(Y0) = C¢(~0) 3 = p3
and
7¢(f0) = [Tp(M,¢)(0)] a = 7 p ( Q ( - 1 ) a, 1) = p3
Similarly,
G¢(II/~) = p2 and r~(Yt/2) = 7 A Q ( - 1 ) L
2i) = - p 2 ¢ ( i ) i
(Recall that we are working modulo roots of unity, so -psi(i)i = 1.) As the set of all f , ' s forms a basis for BQ/Z, it follows that 7¢ = G¢. Now 3.1.1 tells us that the marked CM-type of ( X , , ( - 1 ) , ~ ) is l a rDMj~(M), and hence by Theorem 1.8 we can conclude that 8¢ = I l i J~7¢ = Be. II R e m a r k 3.7 Coleman has asked me to point out that Proposition 3.6 can be refined in the following way. Let S C Q / Z be a subset stable under GaI(-Q/Q), corresponding to quotient C ---* Cs of the pro-algebra C. If S is stable by multiplication by 2, then Lemma 3.3 still applies, and we find that the Bs ® Q has as a basis the set of elements fa : a E S. Let @s be the quotient of @ whose characters consist of the Fermat characters X such that each Xi belongs to S. Finally, let Ms and X s be the bimarked ulterior motives on Cs and @s respectively obtained from M and X by base change. Then Proposition 3.6 applies to Ms and X s , with the obvious modification. Proposition 3.6 shows that a determination of the action of W r, on the part of the cohomology of X,n corresponding to the Fermat characters of the form (a, a,-2a) is enough to determine the entire action. Remarkably, this is precisely the portion of the action that Coleman is able to compute in the case in which p divides m, and so he is able (with the aid of an additional congruence to pin down the roots of unity) to obtain an exact formula for the entire matrix. We refer to his paper [5] for the details and formulas. In anticipation of the aesthetics of our eventual Theorem 3.13, we make the following definition (in the general case). D e f i n i t i o n 3.8 I r e • W~ and a • Q / Z , F~,(¢)(a) =: 7~,(M,~,¢)(a) • Kr,/pao. We shall justify this definition by giving an explicit formula for Fp in terms of the Morita p-adic F-function in the unramified case. Thus, we let C' denote the limit of the Cm's over the multiplicative set of m's which are prime to p, and let M ' be M ®c C' Then T c , ( K p ) ~ K~ Q/Z', where Q / Z ' is the subgroup of Q / Z consisting of the primeto-p torsion. Note that Wo operates on Q/Z1 by the rule ¢(a) = pdeg~a. Since we are working modulo torsion, we can neglect roots of unity--in particular, signs. For any rational number r, we have a well-defined element pr of Kp/poo.
336
r, e zx(w~, Tc,(Kp)/~oo) is the unique co-
T h e o r e m 3.0 With the above notation, cycle Fp
such that rA¢)(a) =
p(¢-'")r~(~)
whenever deg ¢ = 1
Explicitly, ifd =: deg ¢, d-1
rA¢)(~> = 1-Ipl¢ .... olr;(¢,~> i=0
Proof: Since the elements pr 6 K~/poo and the values of the p-adic gamma-function are fixed by W~,, it is clear that the formulas above do indeed define a unique cocycle Fp with the prescribed values on elements of degree one. To prove that the formula is correct, it suffices to apply Proposition 3.6 and Remark 3.7. Indeed, if X is any Fermat character, Theorem 2.5 tells us that for all ¢ of degree one and all a 6 Q / Z ' 7p(X(-1),(,¢)(X)
P(¢-'×)1-Ir.(-x,>-'
=
/
Since Fp(1 - z)Pp(z) = -4-1 and we are working modulo roots of unity, we find
= p(¢-'~l 1-I r~(x,>
7p(X,~ ( - 1 ) , ~, ¢)(X)
i
=
1-Ip(¢-'~')r,(x,> i
i
Finally, we note that
rA¢)(0)
=
v(°lrA0)
--- p and Fp(¢)(1/2)
=
p(ll2Irp(I/2) pi12
Thus Proposition 3.6 applies, with g =: F~. Knowledge of the periods of the ulterior motive C determines the periods of all ulterior E-motives (with E abelian), because of the following fact. P r o p o s i t i o n 3.10 I r E is a cyclotomic field, the map ~E: T c ( E ) ® Q --~ C M ( E ) ® Q
described above is surjective.
337
Proof: This proposition is well-known, but we give the proof in a form which is computationally useful, for example, for our proof of the Chowla-Selberg formulas for elliptic curves. The argument is essentially taken from [16]. We use the action of the group Urn on the set m - I Z / Z . For each divisor d of m, the stabilizer subgroup of the image of 1/d in m - I Z / Z is the subgroup Id C_ Urn of elements congruent to 1 mod d, and the orbit is naturally isomorphic to Ud ~ Um/Id, The orbits are thus in bijeetion with the divisors of m, and hence we obtain a canonical direct sum decomposition &dim where A~ is the free abelian group generated by Ud. If a E B,~, we write ct = ~ d a~ under this decomposition. Thus, a~ = a~/d for v E Ud. To show that our map t E is surjective, we may first complexify it to obtain a map Bm® C ~ CM(Em) ® C, also denoted by t. Regard CM(Em) ® C as a linear subspace of the space of all functions from the abelian group Um --* C. This space has a natural inner product structure, corresponding to the Haar measure on the group U,n in which Um has measure 1, and the set of complex characters of U,n forms an orthonormal basis. Observe first that C M ( E , , ) ® C is precisely the span of the trivial character and the set of odd characters. Indeed, it is clear that each of these characters belongs to C M ( E , 0 ® C. On the other hand, if X is an even character and f E CM(E,n) ® C has weight w, then one finds easily that that < f, X > vanishes if X is nontrivial and is w/2 if X is trivial. Thus, to show that t is surjective, it suffices to show that its image contains the trivial character and every odd character. As we have seen, too is twice the trivial character. Suppose that e is nontrivial and odd, and suppose that e is the smallest divisor of m such that e factors through U,,, ~ U~; let e~ be the corresponding character of U~. C l a i m 3.11 t(tr~) = - L ( 0 , e~)e~, where
e~(u)a~,/~ e Bm® C
c~ =: Z ufiU.
Proof: Suppose a is any member of Bm® C and X is a character of U,~. We recall from [16] that <
x >=
-
L(O,
<
>,
d
where the sum is taken over all the divisors d of m such that X is pulled back from a character Xd of Ud. But ~t lives on the orbit of I/e, and so a~ = 0 if d # e, while a~ = ee. Thus, < t~,X > is zero unless X = e, and < Q,e > = -L(O, ee). As the set of all such X'S form an orthonormal basis, the claim is proved. Since e~ is an odd primitive character, the factor L(0, ee) does not vanish, and thus 3.11 shows that e lies in the image of t. II R e m a r k 3.12 An explicit set of generators for the kernel of
t E was
given in [16].
T h e o r e m 3.13 Let E be the cyclotomic field Q((,,). Suppose that X E Mot(E) ® Q
and a E Bm® q are such that r ( X ) = rE(a). Then
338
I. 7 ( X ) is the class o f F , ( a ) - '
in
2. 7p(X) is the class o f F , ( a )
in
TE(C)/T~(Q)
HI(Wt~,TB(Kp;'Q))
Proof: Consider the bimarked ulterior E-motive F(a) constructed in 3.2, and let X' be F(cQ stripped of its markings. It is clear that r ( X ) = r ( X ' ) , and hence Theorem 1.7 implies that 7(X) = 7(X') and that 7,,(X) = 7p(X'). Thus the formulas 1 and 2 follow from 3.2.3 and 3.8, respectively. | Here is a slight refinement: C o r o l l a r y 3.14 Suppose X, E, and a are as above. H n R ( X / Q ) and 'Ifor HB(X) such that
i. ~ ( x , , , , ~ ) = r / ( ~ , ) - '
2. 7,~(X,Q=F~(a)
in
in
Then there exist bases ( for
TE(C)®Q
ZI(Wp, T £ : ( K p ) ) ® Q
Proof: The first statement of the previous theorem tells us precisely that there exist and 7/such that 3.14.1 holds. It follows that rBM(F(a)) = rBM(X,~,~) in B M ( E ) ® Q , and hence Theorem 1.8 implies that 7~(F(a)) = 7~(X,~). | Let us make this explicit for elliptic curves. Let E be the quadratic imaginary field with discriminant - m and let X/-Q be an elliptic curve with complex multiplication by E. Let r be the CM-type of X, which in this case amounts to just an embedding of E in C. If we use s to obtain an identification t of the set of embeddings of E in C with GaI(E/Q) ~- { i l } , then r = (t + 1)/2. The image of E under s is contained in the cyelotomic field Era, and the corresponding mapping on Galois groups Urn - - #2 can be regarded as a primitive character e of Urn. The pullback of X to Em then has as CM-type (e + 1)/2. According to 3.11 we can write -L(O,e)e = t~,, where a~ =: ~ u e(u)a,lmWrite L for the integer L(0, e), so that r ( X ®E Era) = r E ( l / 2 - a J L ) . T h e o r e m 3.15 With the above notation, there exist bases
and a basis 7}' for the singular homology of X such that
f f,
~,
=
'
(2=i)'/2 i~ r.
,,~ =
¢~,
(2~i1'/~ l-I r . < - ~ / m ) <~)/2L
m c'/~oo
uEU,~
= p~,~/2 l-I r A c ) ( ¢ ~ l m ) - ' ( " ) / 2 ~
, in K~l~oo
U
N
Proof: If we view s as a m a p E --~ Era, s * X is an E,~ motive, and its CM-type is tE(c~0 - a,/L). Then our formulas follow immediately from Theorem 3.13 and the
definitions.
|
339
4
Absolute Hodge Cycles
In this section we explain the proof of Theorems 1.7 and 1.8 from the point of view of the theory of absolute Hodge cycles, following the theme of [11]. T h e o r e m 4.1 Let X =: (X1,X2....Xn) be a family of abelian varieties and projective
spaces over K~, with good reduction and T a tensor construction as explained in [17]. Suppose that ~Da 6 Toa(X) is a Hodge c/ass, i.e. ~Dn 6 F°Ton(X) and crn(~oR) 6 TB(X). Then ~Da is fixed by W,,(K,,). Proof of 1.7 and 1.8: If (X, ~) is a marked E,~-motive of rank one, its cohomology groups can be expressed as a tensor construction involving abelian varieties and projective spaces having good reduction everywhere. If r(X) = O, HoR(X) is purely of type (0,0) and so HDR(X) ® C is trivially generated by Hodge classes. In particular, if rDM(X,~) = 0 in T E ( C ) / T E ( Q ) , an(~) 6 H e ( X ) is a Hodge class, so 4.1 implies that Wp fixes ~ and hence 7~,(X,~) = 1. This proves 1.8. To prove 1.7, we note that Deligne's theory of absolute Hodge cycles [11] tells us that the Hodge classes of HDR(X) ® C lie in fact in HDR(X/-Q). Hence we may multiply ( by an element of T E ( Q ) then and apply the previous argument. II Theorem 4.1 follows from a stronger result, conjectured by Deligne and proved by Blasius. In order to state it, we have to use the additional structure on motives provided by the Fontaine-Messing-Faltings machinery comparing De Rham and 6tale cohomologies [14,12]. Recall that there is a field BDR D_K~ endowed with a canonical filtration F and an action of the Galois group G := Gal(K~,/Qp). Furthermore [12], for each smooth projective scheme X/K~, there is a canonical isomorphism:
a~t: HDR(X/-Q) ® BDR --' H~,(X/Kt,) ® BDR If X / K ~ is obtained by base extension from X/-Q, we also have natural isomorphisms (which we regard as identifications):
H~,(X/-Q, Qp) H~t(X/-Q, Qp) Het(X/C,Qp)
H~,(X/K~,Qp) H~,(X/C, Qp) ~- HB(X)®Qp
~ ~
T h e o r e m 4.2 (Blasius) In the notation of Theorem 4.1, suppose that ~ fi TDR(X) is a Hodge class. Then cr~t(~) = ~ro(~). Proof: For the reader's convenience we include a simplified and (somewhat generalized) version of Blasius's proof. Following Deligne's strategy in [11], we have to establish principles A and B in the above context. Principle A is quite trivial: Suppose that 0i 6 Ti,B for i = 1 . . . n - 1, and let G C_GI(HB(X)) be the subgroup consisting of those elements g such that gr/i = rh for all i; regarded as an algebraic group over Q. Suppose that each r/i is a Hodge class and let ~i denote the corresponding element in Ti,DR(X/C); recall that in fact ~i necessarily lies in T~,DR(X/-Q) by the main result of [11]. Now let (~,, r/n) be the DeRham and Betti components of another Hodge class, and let G' C_ G be group fixing (r/x,... ,r/n-l,rln). Suppose that a~(~i) = rli for all i < n and that G' = G. Then I claim that a~t(~,) = On ahso. To see this, we adapt the argument of [11] and [17].
340
For any Q'--algebra A, let P(A) denote the set of isomorphisms ¢: HDR(X/'Q) ~
A ---*
HB(X) ®Q A such that ¢(() - r/. It is clear that P is representable by a scheme of finite type over Q, and that P(A) is a G(A)-pseudotorsor, i.e. is either empty or a G(A)-torsor. The similarly defined P ' is representable by a closed subscheme of P, and is a G' pseudotorsor. By hypothesis, G' = G, and it follows that P'(A) = P(A) provided that P'(A) is not empty. Since the classical period isomorphism crB belongs to P ' ( C ) , we see that P(C) is not empty, and by Hilbert's Nullstellensatz P(Q) is also not empty, so in fact P' = P. By hypothesis, a~, belongs to P(BDR), and hence also to P'(BDR); this says exactly that cr~,((n) = r/n. We next must prove Principle B. The following is a generalization and simplification of Blasius's proof. P r o p o s i t i o n 4.3 Let f :X --~ S be a smooth proper morphism of Q-schemes of finite type, with S connected, and let 77 be a global section of F°Tfa.'*Q, where T a tensor construction as above. Suppose that for some so E S(Q), a~(~)(so)vR) = 71(so)~t. Then the same is true at every point. Proof: Let X be a smooth compactification of X; one knows by the theory of weights [9] and the degeneration of the Leray spectral sequence [8] that the image of
i;:T(X) --* T(X(s)) can be identified with H°(S, TIa'~Q). In particular, the kernel K(s) of i; is independent of s. Moreover, as i] is strictly compatible with the Hodge filtrations, one can choose an element ~ of F°T(-X) which lifts 7. It suffices to prove that a~,(r/DR) -- r/~, 6 K(s) for every s. As this is true for So by hypothesis, the proposition is proved. II The relationship between Theorems 4.2 and 4.1 uses also the existence of the filtered subring B¢~i, of BDR with its Frobenius endomorphism F. We obtain a semilinear action Pcris of Wv on Boris ® Kv in the obvious way, and there is a natural injection B~i, ®Kp ---* B D R . The following is an expression of Fontaine's conjecture on potentially crystalline representations [13], proved by Faltings in [12]. Messing has pointed out that for abelian varieties, (the only ease we need), this result can in fact be deduced from results in the literature. T h e o r e m 4.4 (Faltings) Suppose X / K p is a smooth projective variety with good reduction. Then there exists a natural isomorphism
Hon(X/K•) ® B~.i~ ® K~ ~- H~t(X/Kp, Qp) ® Beri~ ® K~, This isomorphism is compatible with the isomorphism a~t above, and under it the action of W~ on De Rham cohomology corresponds to idH~ ~ Peris. | It is clear that this result and Theorem 4.2 together imply Theorem 4.1.
References [1] Greg Anderson. Cyclotomy and a covering of the Taniyama group. Mal.herna~icae, 57(153-217), 1985.
Compositio
341
[2] Greg Anderson. Torsion points on Fermat varieties, roots of circular units, and relative singular homology. Duke Mathematics Journal, 54:501-561, 1987. [3] Pierre Berthelot and Arthur Ogus. F-isocrystals and de Rham cohomology I. Inventiones Mathematicae, 72:159-199, 1983. [4] Don Blasius. P-adic ttodge cycle on abelian varieties, in preparation. [5] Robert Coleman. On the Frobenius matrices of Fermat curves. This volume. [6] Robert Coleman. The Gross-Koblitz formula. Advanced Studies in Pure Mathematics, 12:21-52, 1987. [7] Ehud de Shalit. On monomial relations between p-adic periods. Journal f~r die Reine und Angewandte Mathematik (Crelle), 374:193-207, 1987. [8] Pierre Deligne. Th~or~me de Lefschetz et crit~res de d~g~n~scenee de suites spectrales. Publications Mathgmatiques de I'I.H.E.S., 35:107-126, 1968. [9] Pierre Deligne. Th~orie de ttodge II. Publications Mathgmatiques de 17.H.E.S., 40:5-57, 1972. [I0] Pierre Deligne. Valeurs de fonetions L et p~riodes d'int~grales. Symposia in Pure Mathematics, 33(part 2):313-346, 1979.
Proceedings of
[11] Pierre Deligne. Hodge cycles on Abelian varieties. In Hodge Cycles, Motives, and Shimura Varieties, volume 900 of Lecture Notes in Mathematics. Springer Verlag, 1982. [12] Gerd Faltings. Crystalline ¢ohomology and p-adic galois representations. To appear in the American Journal of Mathematics. [13] Jean-Marc Fontaine. Sur certains types de representations p-adiques du groupe de Galois d'un corps local, construction d'un anneau de Barsotti-Tate. Annals of Mathematics, 115:529-577, 1982. [14] Jean-Marc Fontaine and William Messing. P-adic periods and p-adi¢ ~tale cohomology. In Current Trends in Arithmetical Algebraic Geometry, volume 67 of Contemporary Mathematics. American Mathematical Society, 1985. [15] Benedict Gross. On the periods of Abelian integrals and a formula of Chowla and Selberg. Inventiones Mathematicae, 45:193-211, 1978. [16] Neal Koblitz and Arthur Ogus. Algebraicity of some products of values of the 7-function. Proceedings of Symposia in Pure Mathematics, 33:343-346, 1979. (Appendix to "Valeurs de Fonctions L e t P~riodes d'Int~grales" by P. Deligne). [17] Arthur Ogus. ttodge cycles and crystalline cohomology. In Hodge Cycles, Motives, and Shimura Varieties, volume 900 of Lecture Notes in Mathematics. Springer Verlag, 1982. [18] Tetsuji Shioda and Toshiyuki Katsura. On Fermat varieties. Tohoku Mathematical Journal, 31(1):97-115, 1979.
THE COMPLEMENTATION
PROPERTY
OF g ~
IN p-ADIC BANACH SPACES
Wim H. Schikhof Department of Mathematics, K.U. Nijmegen Toernooiveld, 6525 ED Nijmegen, The Netherlands
A B S T R A C T . Let K be a non-archimedean valued field whose valuation is complete and nontrivial. It is shown that go° is complemented in any polar K-Banach space (Theorem 1.2) which opens the way for various descriptions of complemented subspaces of gc¢ (Theorem 2.3).
I N T R O D U C T I O N . (For unexplained terms see below.) Let K be as above. If K is spherically complete and E is a K-Banach space then, like in the 'classical' theory, each closed subspace is weakly closed, each subspace D of E has the weak extension property (WEP) i.e. each f E D' can be extended to an y E E'. It is also well known that these statements are false if K is not spherically complete. In fact, the following questions are posed in [1]. Q.1. Does every weakly closed subspace have the WEP ? Q.2. Is every closed subspace having the WEP weakly closed? It was a close look at these questions (for the (negative) answers, see the Remark following Proposition 1.5 and Example 3.3) that revealed the above-mentioned complementation property of g~.
Again, for spherically complete K this is nothing new as it follows directly from the
spherical completeness of gc~. However, for nonspherically complete K the results came as a surprise. PRELIMINARIES.
Let K be as above. From now on until §5 we suppose that K is NOT
spherically complete. We use the terminology of [2]. P.1.
For an absolutely convex subset A of a K-vector space we set
A* :--- N{),A : A E K, IAI > 1}. A is edged if A = A% P.2.
Let E, F be K-Banach spaces. I:(E, F ) is the Banach space of all continuous linear maps
E --* F with the operator norm, E ' := I : ( E , K ) .
E and F are isomorphic if there exists a
surjeetive linear isometry E ~ F; We write E ,,~ F if E, F are linearly homeomorphic. We shall say that E and F are almost isomorphic if for each e > 0 there exists a linear homeomorphism
T:E--*Fwith
[[T[] < 1 + ¢ , liT-all < l + e .
343
T • £ : ( E , F ) is a quotien~ map if T maps {x • E : Hx[[ < 1} onto {x • F :
llx}[ < 1} . The
closed unit ball {x • E : [[x[[ < 1} is denoted BE. The n o r m closure of a set X C E is X. Its weak closure, i.e. the closure with respect to the weak topology (w-topology) a ( E , E ' ) , is ~'~. Similarly, if Y C E ' then ~--w' is the w~-closure of Y i.e. the closure with respect to the w'-topology
a(E',E). For X C E we set X ° : = { f • E ' : If(x)l _< I for all x • X } For Z C E ' we set X0 := {m • E : If(m)[ _< 1 for all f • Z} X is a polar Beg if (X°)o = X . Let A • •(E, F). If ~
is a neighbourhood of 0 in F then ABE = ABE. (The 'classical' proof
of (one half) of Banach's Open Mapping Theorem yields that ABE is a zero neighbourhood. By absolute convexity ABE is open, hence closed.) P.3. Let E , F be K - B a n a c h spaces. The n a t u r a l map j z : E --* E " satisfies HJEtl < 1. We call
E a polar Banach space (and the norm a polar norm) i f j E is an isometry into E". Following [2], E is topologically pseudoreflexive if JE is a linear homeomorphism into E". E is reflexive if jE is a n isomorphism. Recall ([2], 4.17) that co and ~oo are reflexive and duals of one another via the pairing (x, y) = ~ xny,, (x • co, y • £oo). In the same spirit, co(I) and g°°(I) are reflexive if the cardinality of I is nonmeasurable ([2], 4.21). For A • £ ( E , F )
we define its adjoint A' • £ ( F ' , E ' ) by A ' ( f ) = f o A ( f • F').
We have
HA'I[ < HAIl. The diagram
E
A.~
1~E E"
-Art '~
F
1" F"
commutes. A subspace D of E has the W E P in E if tim adjoint E ' --* D ' of the inclusion map D --+ E is surjective. P.4. The following two statements axe not hard to prove. 1. Let (E,[[ [[) be a K - B a n a e h space. Let ~1 > ~2 > . . . , l i m n ~ o o ~ , , = 0. I f p l , p 2 , . . . are polar norms on E such that l[xll < pn(x) < (1 -k e,~)llxl[ (n e N , x Z E ) then III[ is a polar norm. 2. If E is a polar K - B a n a c h space and E ,-, g ~ then E is almost isomorphic to £oo
(By
reflexivity, E s .-~ co. By choosing t-orthogonal bases of E ~, where t is close to 1 one proves that co and E ~ are almost isomorphic, hence so are E and goo.) P.5. Let A be a complete metrizable absolutely convex compactoid in a Hausdorff locally convex space E over K . Let A E K , ]AI > 1. Then there exist el~e~,.., in AA with lim,,--,oo e , = 0 such that, with B the closed absolutely convex hull of {el, e2 . . . . }, (i) d C B C ),A. (ii) Each x e B has a unique representation x = ~-'].n°°__lA , e , , where A,, • K , I)~,1 < 1 for each n. (iii) If An • K , [A,[ G 1 for each n then )-'~,°°=1A,,e, • B. (Proof. By [4], 6.1 A, as a topological module over {A • K : ]A] < 1}, is isomorphic to a closed compactoid of co. T h e n apply [2], 4.37 ( a ) =~ (~).)
344
P.6. (p-adic Alaoglu Theorem) Let E be a K - B a n a c h space. T h e n BE, is, for the w'-topology, a complete compactoid. (The proof is standard.)
§1 T H E C O M P L E M E N T A T I O N P R O P E R T Y OF goo. Proposition 1.1. Let E be a p,olar K-Banach space, let D be a closed subspace with inclusion map i : D --* E. Then (
~
)~ = BD,. .
P r o o f . Since
.
t
Ili'll < 1 and BD, is wl-cXosed and edged we have S := ( i ' ( B E , ) ) ~ C BD,. Suppose
we had a n f E BD,, f q~ S. As the w'-topology on D ' is of countable type and S is w'-closed and edged, S and {f} can be separated by a w'-continuous linear function D ' --* K ([3], 4.4 and 4.7). But such functions are evaluations ([5], Th. 4.10) so there is an x E D with [f(x)l > i and
Ih(x)l < 1 for all h E S. We have 1 < If(x)l _ Ilfll Ilxll ___ Ilxll so I1=11> 1. On the other hand, by polarity,
II=II= IIi(~)II=
sup{19 o i(z)l : g E B E , }
= sup{li'(g)(z)l : g e BE,}
_< sup{Ih(x)l : h E S} _< 1, which is a contradiction.
T h e o r e m 1.2. Let E be a subspace of some polar K - B a u s c h space X . Let E ~ goo. Then, for each t 6 (0, 1), E has a t-orthogonal complement in X . P r o o f . Let i : E -+ X be the inclusion map. I. We show that the adjoint i' : X ' --+ E I is a quotient map.
By reflexivity the w'-topology
on E ' equals the weak topology. The norm topology on E ' is strongly polar ([3], 4.4) so every norm-closed absolutely convex edged set is weakly closed. ([3], 4.9). Together with Proposition 1.1 this leads to .~1/1I
BE, = i ' ( B x , )
)~ = ( ~ ) ~
= (i'(Bx,)) ~
implying that i ' ( B x , ) is a norm neighbourhood of 0 in E ' . Then (see P.2) i ' ( B x , ) is closed so we find BE, = i ' ( B x , ) ~, which is what we wanted to prove. II. Let t E (0, 1). The space E I is of countable type so it has a v'~-orthogonal base el, e2, .... Now i' : X ' ~ E ' is a quotient map so we can choose zx,z2,... E X I such that i ' ( z , ) = e , , i i z , I] _< t-½[len][ for each n. The formula oo
T(Z n=l
oo
A~e~) = Z
A~z~
(A. E K, lim [[A.e.[[ = O) n~oo
n=l
defines a T E ,C(E',X') for which IITII _< t - I and i ' o T is the identity on E'. Then T ' o i" is the identity on E " and it is easily seen from the diagram Ell
~i"
X"
T-
1,;
---*
X
E
Y E
i
~T'
Ell
3;45
that P := j E z o T' o j x is in L:(X, E), has norui _< t -1 and is a projection onto E. R e m a r k . The space E of Theorem 1.2 is almost isomorphic to ~o~ (see P.4.2). C o r o l l a r y 1.3. Let E be a subapace of some topologically pseudoreflexive K - B a n a c h space X . Let E ,~ £o¢ Then E is complemented in X .
C o r o l l a r y 1.4. (i) Let E , X
be as in 1.2. Then, for each e > O, each f E E r can be extended to an ] E X r with
II]11 < (1 + e)ll$11. (ii) Let E , X
be as in 1.3. Then E has the W E P in X .
Corollary 1.4 yields the following result that may look bizarre at first sight. Proposition
1.5.
Suppose # K
is nonmeasurable.
Let E be a K - B a n a c h space such that E '
separates the points of E. Suppose E r ,'~ g~. TJ~en E ,,~ co.
P r o o f . j E : E -+ E " is injective, so # E < # F " = #co = # K a n d # E is nonmeasurable. Thus we can, in a s t a n d a r d way, construct a quotient map ~r : co(I) -+ E where # I is nonmeasurable. Then r~' : E ' -~ co(I)' is an isometry. By Corollary 5.4 ~r'(E') has the W E P in co(I)' so r " : co(/)" --+ E " is surjective. From the reflexivity of co(I) amLdthe commutative dlagraxn c0(I)
__L+ E
co(I)"
---* I¢H
E"
it follows that j E is surjective. So, E "- E'* ~', co. R e m a r k . It may be worth noticing that the 'dual' statement of Proposition 1.5 is false! In fact, in [2], 4.J a closed subspace D of ~
is constructed for which D ' "-, co b u t D # £°°. This D
furnishes also a negative answer to the question 2 in the Introduction: it is easily seen that each f E D r has a unique extension ] E (£oo), so D has the W E P in £oo, but also D is weakly dense so that D is not weakly closed.
§2 C O M P L E M E N T E D
SUBSPACES
OF' g°%
We first prove two useful lemmas, Let E, F, G be K - B a n a c h spaces, let i E £ ( E , F ) , ~r E £ ( F , G). Suppose Im i = Ker rr, ~r is surjective. A standard application of the O p e n Mapping Theorem shows that for the adjoint sequence G j ---+ ~'' F t -+ i' E ' we have Im r ' = Ker i r. If i' is surjective we can apply the same argument to G' -+ '~' F ' -+ i' E ' yielding the following. L e m m a 2.1. Let D be a closed subspace of a K - B a n a c h space E with inclusion map i : D -+ E and quotient map 7r : E --+ E / D .
Suppose D has the W E P in E.
Then in the commutative
346
diagram D
-~
E
_L~
E/D
D" ~ E" itt we have Im i" = Ker rr", and i" is injective.
---*
(E/D)"
lrH
L e m m a 2.2. (Compare Mso Example 3.3) Let D be a closed subspace of a polar K-Banach space E, and let D have the W E P in E. (i) If D is reflexive then D is weakly closed. (it) I f E is reflexive, D is weakly closed then D is reflexive. P r o o f . Straightforward from Lemma 2.1 and 'diagram chasing'. (Observe that D is weakly closed if and only if JE/O is injective.) Remark.
The following corollary is a partied positive answer to question 2 (see also the remark
following Proposition 1.5). Let E be a K-Banach space with a base whose cardinality is nonmeasurable. Then every closed subspace with the WEP in E is weakly closed. ( P r o o f . Without loss, assume E = co(I) where # I is nonmeasurable. By Gruson's Theorem [2], 5,9 any closed subspaee is isomorphic to Co(J) for some set J. Then # J <_ # I so co(J) is reflexive. Now apply Lemma 2.2.(i).) T h e o r e m 2.3. For a closed subspace D of goo the following are equivalent.
(a) For each t E (0,1), D has a t-orthogonal complement. (b) D is complemented. (c) D is weakly closed. (d) Either D is finite dimensional or D ~ goo. (e) Either g°° / D is finite dimensional or g°° / D ,,., goo. (f) g°°/D is a polar K-Banach space. (g) (g°°/D)' separates the poinU of g°°/D. (h) D is reflexive and has the WEP in go~. (i) BD is weakly closed in goo Proof.
We first prove (a) =~ (b) => (c) => (d) =ez (a). Trivially (a) => (b) =* (c); (d) =ez (a)
is Theorem 1,2, To establish (c) =*. (d), let D be weakly closed, D infinite dimensional. By reflexivity, D = A ° where A is a closed subspace of co. Then A has an infinite dimensional complement B in co ([2], 3.16(v)) so B ~ co a~ld D ~ B' ~ goo. Next, we prove (a) =:> (f) =~ (g) =~ (c) of which only (a) ==~ (f) needs some attention.
Let
0 < tl < t2 < .,. < 1, lim t , = 1. For each n 6 N there is a p r o j e c t i o n P , : goo ..., D with n~oo
I1P, II < t~-1. Then Q , := I - Pn is a projection with norm _< t~ 1 mad kernel D. So there is a bijection An 6 f~(g°° / D , Qng ~ ) making
coo
_~
Q,\
e~/ D ~/A,
Q,~Oo
347
commute. For each n the norm z ~
IIA.zll (z
e g°°/D) is polar. Also we have
Ilzll _< ItA.zll ___tZallzll
(z • g°°/O)
so that (see PA.1) the quotient norm on e ~ / D is polar. We have also (b) =*- (e) ( E / D is linearly homeomorphic to a complemented subspace of g°°) and (e) =~ (g). So at this stage we have proved that ( a ) - (g) are equivalent. The implication (a) =~ (h) is easy, (h) =~ (c) is Lemma 2.2 (i) and (c) =~ (i) is obvious. So we shall complete the proof by showing (i) =~ (d). Let D be infinite dimensional. The 'closed' unit ball of goo is for the w'-topology a(g °°, co) (which equals the weak topology) a metrizable ([3],8.3), complete (P.6), edged compactoid, hence so is BD. Let A • K, ]A[ > 1. By P.5 there exist fl,f2,...inABD with lirnoofn = 0 weakly such that BD C -c-5w{fl,f2,...} C ABD and such that each element of c-OW{fx,f2, ...} has a unique representation f i )~nfn where An • K, [~,1 _< 1 (the summation is with respect to the weak topology of g~). The formula
(~1, ~,...) £ f i ~,f, defines therefore a linear bijection T : goo ~ D. It is easily seen that []x[[ < I[Tx[[ < [)q [Ix][ (x • g°°). Thus, D is linearly homeomorphic to g°°. R e m a r k . The implication (i) :0 (c) is an ultrametric version of the classical Banach-Dieudonn6 Theorem which states that a subspace D of the dual of a complex Banach space is w~-closed as soon as the closed unit ball of D is wt-closed. In the Appendix we shall prove a stronger version (Krein-Smulian Theorem) for Banach spaces over a spherically complete ground field.
§3 H O W A B O U T £¢~(I)? It is natural to ask to what extent the previous results can be generalized to g°°(I). The 0nly positive result we have is in fact Proposition 3.1. The examples 3.2 and 3.3 show that several implications in Theorem 2.3 fail if we replace goo by g°°(I).
Proposition 3.1. Let I be a set whose eardinality is nonmeasurable. For a closed subspace D of g°~(I) the following are equivalent. (a) D is complemented. (b) D ",~ goo(j) for some set J where # J is nonmeasurable. D has the WEP in g°~(I). Proof, (a) =~ (b). Clearly D has the WEP, is weakly closed, so D is reflexive by Lemma 2.2 (ii). (l°~(I) is reflexive). Let P : g°°(I) --* D be a linear continuous surjection. Then P' : D' --* Co(I) is a norm homeomorphism into co(I) so by Gruson's Theorem D' "~ co(J) where # J < # I is nonmeasurable. So D ,-, D" ,,~ goo(j ) .
348
(b) =~ (a). Let i : D "-* g ~ ( I ) be the inclusion map. By (b) the adjoint c0(I) ¢ D' is surjective. Now D ~ g ~ ( J ) , where # J is nonmeasurable so D' ~ co(J) and there is a map T e £(D', co(I)) such that i' o T is the identity on DL Then T' o i" is the identity on D" and jD 1 o T' o Jtcc(z) is a projection of g ~ ( [ ) onto D. E x a m p l e 3.2. Let
# I = # K be nonmeasurabIe. Then there exists an infinite dimensional closed
subspace A1 of g ~ ( I ) that has the W E P in g ~ ( I ) and is of countable type. (Hence, D is weakly closed, reflexive, but not complemented (Lemma 2.2 (i) and Proposition 3.1).) Proof.
We can make, in a standard way, a quotient map co(I) -~ g~.
By reflexivity It" is
surjective, so A1 := ~r'((g~) ') has the W E P in co(I)' and is of countable type. E x a m p l e 3.3. (Negative ar~swer to question 1) Let I, K be as above. Then there exists a weakly closed subspace A2 of ~ ( I )
such that A2 is of countable type, but A2 does not have the WEP in
P r o o L Let D be as in the Remark following Proposition 1.5. Again, make a quotient map ~r : co(I) --* D. It is easily seen that A2 := 7r'(D') is weakly closed, of countable type. If A2 haA the W E P then ~r" would be surjeetive. Then, by reflexivity of c0(I), jD would be surjective conflicting the nonreflexivity of D.
§4 S O M E C O N S E Q U E N C E S
FOR STRONGLY POLAR SPACES.
Recall that a K-Banach space E is strongly polar ([3], 3.5) if sup{If t : f E E ' , [fl <- P} = P for each continuous seminorm p on E. It is proved in [3], 4.2 that E is strongly polar if and only if for each continuous seminorm p, for each subspace D C E, for each f E D' with Ifl -< P, for each ¢ > 0, there exists an extension ] E E' such that I]1 < (1 + e)p. It is still an intruiging open problem whether each strongly polar K-Banach space is of countable type. The previous theory yields the following results.
Proposition 4.1. I ] E is reflexive and strongly polar then each closed subspaee is reflexive. P r o o f . Any closed subspace is weakly closed. Now apply Lemma 2.2(ii). P r o p o s i t i o n 4.2.
Let E be reflexive and strongly polar. Let E' be a subspace of some polar
K-Banach space X . Then E t has the W E P in X and E' is weakly closed in X . P r o o L The first statement follows from Part I of the proof of Theorem 1.2. For the second statement apply Lemma 2.2(i).
Proposition 4.3, Let E be a reflexive strongly polar space. If E' is linearly homeomorphic to a subspace of too then E is of countable type. P r o o f . Assume dim E = co. By Proposition 4.2 and Theorem 2.3 (h) =:~ (d), E' ,~ too. Then E ~ E " ~ co.
349
§5 A P P E N D I X " T H E p - A D I C K R E I N - S M U L I A N T H E O R E M . T h r o u g h o u t §5 K is s p h e r i c a l l y c o m p l e t e . By modifying 'classical' techniques we shall prove: T h e o r e m 5.1. Let E be a K-Bauaeh space, A convez subset C of E' is w'-closed if and only if
for each n e N the set C n {f e E ' : llfll -< n} is w'-closed. P r o o f . We only need to prove the 'if' part. (1) From the assumption on C one easily deduces that C r i B is wl-closed in B for every bounded set B C E'. (2) Let bw' be the topology on E t of uniform convergence on compact subsets of E. Then bw' is locally convex, stronger than w', but coincides with w' on bounded subsets of E'. As
j E ( E ) = ( E ' , w ' ) ' and bw' is admissible we have (Et,bw') ' = j B ( E ) so a convex subset of E' is w'-closed if and only if it is bw'-closed. (See [5] for details) (3) Let a e E ' \ C ; it suffices by (2) to find a bw'-neighbourhood V of a for which V C E ' \ C . We may assume a = 0, see (1). For each r > 0 set BT := {x • E : lixll < r},
B'~ :=
{f E
E ' : Ilfl] < r}. We shall find finite subsets F0,F1,... of E such that Fn C B1/n for each n • {1,2,3,...} and F~o n F ° n ... n F ° n Bt,+l C E ' \ C for each n • {0,1,2,...}. (Then X := U Fn U {0} is compact so U :-- X ° is a bw'-zero neighbourhood, U C E ' \ C . ) As C MB~ n
is w'-closed there is a finite set F0 C E for which Fo° V1B~ C E ' \ C . Suppose we have chosen F0, F1,..., Fn-1 with the required properties, in particular (*)
F0° n F ° n .,. n F ° _ l n B" C E ' \ C
and suppose there is no Fn that meets the requirements. Then, for each finite subset F of
Ba/n we have A F := F ° n.~o nF~ n... nF~_~nB'+~ nC # 0 The sets AF, where F is a finite subset of B1/n, are c-compact in the w'-topology and have the finite intersection property. So there is an f •
n AF.
Then f e C and If[ -< 1 on each
F
finite subset of B1/,,, so []f[[ < n i.e. f • B ' . Then, by (*),
S ~ F° n ~ n...nr°~_~ nB'. c E'\C contradicting f E C. C o r o l l a r y 5.2. A subspace D of E' is w'-ei'osed if and only if BD is w'-closed. Proof.
Suppose BD is w'-closed, Let $ E K, I~1 > 1. For each n E N the set D n {f E
E' : IlYtl < 1~t"} = ~ " B o is w'-closed. :Let r > 0. For large n we have IAin > r so that D M {f E E ' : Ilfll < r} = A"BD N {f E E ' :
Ilfll < r} is w'-closed. Now apply Theorem 5.1.
350
REFERENCES [1] N. de Grande-de Kimpe and C. Perez-Gaxcia: Weakly closed subspaces and the Hahn-Basaach extension property in p-adic analysis. Proc. Kon. Ned. Akad. Wet. 91,253-261 (1988). [2] A.C.M. van Rooij: Non-archimedean functional analysis. Marcel Dekker, New York (1978). [3] W.H. Schikhof." Locally convex spaces over nonspherically complete valued fields. Groupe d'6tude d'analyse ultram6trique 12 no. 24, 1-33 (1984/85). [4] W.H. Schikhof: A connection between p-adic Banach spaces and locally convex compactoids. Report 8736, Department of Mathematics, Catholic University, Nijmegen, 1-16 (1987). [5] J. van Tiel: F,spaces localement K-convexes. Indag. Math. 27, 249-289 (1965).
G r o s s - K o b l i t z f o r m u l a for f u n c t i o n fields Dinesh S. Thakur School of Mathematics Institute for Advanced Study Princeton, NJ 08540, USA
The Gross-Koblitz formula, based on crucial earlier work by Honda, Dwork and Katz, expresses Gauss sums lying above a prime p in terms of values of Morita's p-adic gamma function at appropriate fractions (see [GK],[K]). Now various analogies between the global fields have been quite useful, so I will discuss and sketch a proof of an analogue of the Gross-Koblitz formula in the theory of function fields over finite fields. Let K be a function field of one variable over finite field Fq. Fix any place co of K and let A be the ring of elements of K integral outside co. Basic analogies are, Q~K,
Z~A,
C ~ = : ~
(1)
Gauss sums and gamma functions are both closely related to the cyclotomic theory. Over Q, one has basic cyclotomic extensions Q(/tn)'s and the Kronecker-Weber theorem says that any finite abelian extension of Q is contained in one of these. Over K, usual cyclotomic extensions K(#,,)'s are just constant field extensions and there are many more abelian extensions eg. Kummer and Artin-Schreier extensions. Carlitz [C2] in 1930's and Drinfeld and Hayes [D],[H1],[H2] in 1970's produced other 'Cyclotomic families' K(Aa)'s (a E A) where A~ is the set of a-torsion points of suitable rank one Drinfeld module A -~ EndGa, in analogy with #,, which is the set of n-torsion points of Z ~ EndG,~ (where integer n gives n'th power endomorphism). In Gekeler's talk, we have learnt the basics about Drinfeld modules (see [Ge] for more details). So I will just present a simple example, due essentially to Carlitz [C2], in detail. Let A = Fq[T]. It is easy to see that EndG~ is the (non-commutative) ring of polynomials in Frobenius. Consider the ring homomorphism A --~ EndG~(a ~-~ Ca) given by CT(U) =: T u + u ~, Co(u) =: Ou, (u 6 f/, 8 6 Fq) (2) For a 6 A , let A, =: {u 6 ¢/ : Ca(u) = 0} For example, T-torsion points are just solutions of 'T-th cyclotomic equation' u q + T u = 0. For nonzero a 6 A, K(A=) is an abelian extension of K with Galois group (A/a)*. Let me mention in passing, that for general K, the maximal abelian extension of K is the compositum of all such K(A~)'s over a's and A's (i.e. all possible choices of co's). In our case of A = F~[T], it can also be described [H1] as the compositum of constant field extensions, K(A~)'s and 'K(A~)'s for A = Fq[1/T]'. Gauss sums that we will now consider arise in the mixture of cyclotomic families K(#n)'s and g(A~)'s. ClassicalIy, a Gauss sum is defined to be -
~_, X ( x ) ¢ ( T r x )
352
where 2: is a non-trivial multiplicative character X : F~,, -~ C*, ¢ is a non-trivial additive character ¢ : Fp ---* C*. We view ¢ rather as an isomorphism of Z-modules Z / p ---+#p and replace it by an isomorphism of A-modules ¢ : A / 9 ~ A~ (Here 9 is a monic irreducible polynomiai of positive degree h of A and hence is a prime of A). Notice that ¢ is no longer a character in usual sense. Let k be a finite field of 'characteristic 9' i.e. a finite extension of A l p . To obtain non-trivial Gauss sums, we restrict the class of multiplicative characters to those giving Fq homomorphisms ¢ : k ~ L, where L is a field containing K(Ap). Then Gauss sum [T1],[T2] is defined as
g(¢) = - ~
¢(x-1)¢(Trx)
(3)
xEk*
It's easy to see that one only has to consider k = A l p and that there are h basic Gauss sums, say gi (jmodh) with ¢ = Xi being Fq-homomorphisms A / p --* L, indexed so that X~ = Xj+l(jmodh). One can prove [T1],[T2] analogues of various results on classical Gauss sums. We just state here a weak form (without congruences) of an analogue of Stickelberger's theorem. Let Kh =: K(#qh_l) and L =: K(A~)Kh. Now 9 splits in Kh completly into 9i =: T - X~_j(T)(jmodh) and 9j tota~y ramify to power qh _ I in L, let ~-~ be the unique prime above 9j in the integral closure of A in L. T h e o r e m 1 ('Stickelberger factorization'): With the notation described above, we have, in L, (gJ) =
••
h-j
(4)
Even though the proof is quite different than the classical case, we omit the proof, as the classical version is easy to prove and well-known. Now we turn to the gamma side. Classically, the exponential function e z is nothing but the entire function (normalized) satisfying the functional equation e"* = (e') '~ corresponding to Z ---} EndGm. Similarly, in this game, the exponential e(z) is defined to be the entire function (normalized to be tangent to identity at Lie algebra level i.e. linear term is z) satisfying the functional equation Ca(e(z)) = e(az) corresponding to A --} EndGa of (2). Classically, e" = ~ z"/n!, here e(z) being linear, one can write e(z) = ~ zq"/D,, (normalization corresponds to Do = 1) and hence one can regard D,,'s as factorials of qn by analogy. One gets the recursion relation
D i = [i]D~_I,
[i] = T q ' - T
(5)
by equating the coefficients of z q~ in the functional equation for e(z), for a = T. For n E N, define the factorial of n to be (due to Carlitz)
where n = ~ njq J is the base q expansion. W h y is this a good notion of factorial? For one thing, classically n! = [Ip"p, nn = E~>>.l[n/Np~], where N is the norm and the product is over positive primes. In our case
353
also, as Sinnott noticed (see [Go1]), the same formula holds, if p's are replaced by the monic primes of Fq[T]. Now from (5), it's easy to see that [i] is the product of all monic irreducible polynomials of degree dividing i and D~ is the product of all monic polynomials of degree i. Hence 'removing p-factors', Goss [Go2] made Morita-style p-adic factorial II~ as follows. Define f)i to be the product of all monic polynomials, prime to p, which are of degree i. Goss showed that -/9~ ~ 1 in p-adic topology and hence defined, for n E Z p , n = ~ n s q J , O <_ n j < q,
(7)
II~(n) =: I I (-/gJ) ~j c A~ Now
we can state our main
result:
T h e o r e m 2 ('Analogue of the Gros~-Koblitz f o r m u l a ' ) : •
gj =
l
J
o < j < h
(s)
Proof: (For simplicity, we will not describe which qh _ 1-th root we have chosen and how we choose the embeddings). Clearly, 19~ = D ~ / D a _ h p l, where I is such that /~a is unit at p. Hence, using the base q .expansion qJ/(1 - qh) = ~ q j + i h we get, q1 n A _--=1
=
b ÷mh = Iim(-tF+lDi÷,
,,/p
where w = ord~Dj+,,h. Applying the recursion formula (5), h times, we have
Let T = au be the decomposition in K~ of T, a unit at p (without loss of generality, p ~ T), as the product of its 'Teichmuller representative' a and its one unit part u. As a q'~ = a and u q' ~ 1 as t -~ oo, we have, as m ~ oo, [I + mh] = ((au) q'~h+' - T ) (a q' - T ) , which is just (negative of) one of the pj's above. Using this in the limit above and counting powers of p, using the description of [i] given above, we see that II " qJ
) 1-qh =
"(-p-t)
/p
Comparing with the Stickelberger factorization (4) (and using more precise information of Stickelberger congruences, which we have not stated, to fix units), one immediately deduces (8) Q.E.D. Note that this proof is quite direct and does not need a lot of machinery, unlike the proof in the classical case. Gauss sums described above in detail for Fq[T] can be similarly defined for any A using p-torsion points for suitable Drinfeld modules, but in general they might also have prime divisors not above p. For more peculiarities of the genera/theory, see IT4]. Now, if we drop the insistence on the analogy described above, then 'Gauss sums' i.e. 'elements providing correct Stickelberger elements', were shown to exist in the general
354
situation by Tare and Deligne; Hayes provided an explicit construction. (See [H3],[H4] for the details). Interesting feature of his construction is that 'Gauss sum for a prime Sa' occurs as a torsion point for some rank one Drinfeld-A-module, where the infinite place for A lies above p. Hence an infinity-adic formula for a torsion point is a 'p-adic' formula for Gauss sums. Again, for simplicity, we assume A = Fq[T], though it is not really necessary. Classically, n-th roots of unity are special values e2"~I'~/"of the exponential function. Now 2rriZ can be defined to be the solution set of e* = 1. Since we are dealing with the additive rather than the multiplicative group, and since the kernel of e(z) is of the form grA, for some ~- E [2, we consider # to be an analogue of 2rd. Then a-th torsion points for C are given by e(~rb/a), as is easy to verify using the functional equation
c~(e(~)) = ~(a~). In our non-archimedean situation, meromorphic functions are determined, up to multiplication by a nonzero constant, by their divisors, so that Z
e(z) = ~ II '(~ - ~)
(9)
AE~A
But from the point of view of the divisors, classically, gamma function is a meromorphic function with no zeros and simple poles at zero and negative integers. So we define (using analogy between positive and monic)
r(z) = : -
I I (1 +
)-1, n(z) =: zr(,), (~ e a)
(10)
Z n mordc
With these definitions, we have Theorem 3
('Reflection formula'): 1-I n(e,)_
e(#z)
(11)
06A*
P r o o f : If one compares (9) and (10), apart from the scaling factor ~-, the main difference between the two is that in (9) all the signs are allowed, whereas in (10) we restrict to the monic elements. But the product over 0's takes care of this difference and the formula follows. Q.E.D. Compare this with its classical counterpart 1-I (Oz)! = OEZ*
7rz sin ~rz
which is nothing but r ( z ) r ( 1 - z) = z/sin rrz in disguise. (Note that from the point of view of the divisors, e(z) is an analogue of the classical sine function). On the other hand, one can also interpolate [Go2],[T1],[T3] the factorial function (6) oo-adically to get H~o : Zp --+ Koo, and show [T1],[T3] that essentially
r~(~-) = v~, r~(o) = ~
(12)
355
where Foo(z) =: Ho~(z - 1) and the first equation holds only for odd characteristic. This also generalizes to general A [T1],[T3]. Observations above together with (11) and (12), express 'Gauss sums' in terms of values of 'p-adic gamma functions' at fractions. In this sense, this is an analogue of the Gross-Koblitz formula, the main difference being that in this case the gamma function is constructed by uniform procedure at all places, instead of being interpolated from a fixed gamma function. This gamma function can also be interpolated IT3] and one might ask for Gross-Koblitz phenomenon using the interpolated gamma function. For more information on a two variable gamma function of Goss, functional equations, algebraicity and transcendence results, Chowla-Selberg phenomenon, more analogies and some striking differences, see the references below. References [C1] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math.J. (1935),pp.137-168. [C2] L.Carlitz, A class of polynomials, Trans. A.M.S. 43 (1938), pp.167-182. [D] V. Drinfeld, Elliptic modules (English translation) Math. Sbornik, vo123,(1974),561592. [Ge] E. U. Gekeler, Drinfeld modular curves, Lecture notes in math. 1231. [Gol] D. Goss, von-Staudt for Fq[T], Duke Math.J. 45 (1978),pp.885-910. [Go2] D. Goss, Modular forms for F~[T]. J. reine angew. Math. vol.317, (1980),163-191. [Go3] D. Goss, The F-function in the arithmetic of function fields. Duke Math J. vol. 56 (1988), 163-191. [G-K] B.H.Gross, N. Koblitz, Gauss sums and the p-adic F-function. Ann. Math. 109, 569-581 (1979). [H1] D. Hayes, Explicit class field theory for rational function fields. Trans. Am. Math. Soc. 189, 77-91(1974). [H2] D. Hayes, Explicit class field theory in global function fields. G.C. Rota (ed), Studies in Algebra and Number theory. Academic press 173-217 (1979) [H3] D. Hayes, Stickelberger elements in function fields. Comp. Math. 55, 209-235 (1985). [H4] D. Hayes, The refined ~-adic abelian Stark conjecture in function fields. Inv. Math.
94, 505-527 (1988). [K] N. Katz, Crystalline cohomology, Dieudonne modules and Jacobi sums. In Automorphic forms, representation theory and arithmetic. (TIFR, Bombay, 1979), 165-245. [T1] D. Thakur~ Gamma functions and Gauss sums for function fields and periods of Drinfeld modules. Thesis, Harvard University(1987). IT2] D. Thakur, Gauss sums for F~[T]. Inv. Math. 94,105-112 (1988). IT3] D. Thakur, Gamma functions for function fields and Drinfeld modules, To appear in Annals of Math. [T4] D. Thakur, Gauss sums for function fields, To appear in Journal of Number Theory.
Three generalizations of Mahler's expansion for continuous functions on Zp. Lucien V A N H A M M E
Vrije Universiteit Bmsset, Faculty of Applied Sciences Pleinlaan 2, B-1050 Brussels, Belgium
1. I n t r o d u c t i o n
- Notations.
Let p be a prime number. Zp and Cp denote, respectively, the ring of p-adic integers and the completion of
the algebraic closure of the field of p-adic numbers. The valuation on Cp will be denoted I I. Consider a continuous function f : Zp --4 Cp. Let A be the difference operator defined by (Af) (x) = f (x+l) - f(x). Applying A n-times we get n
(Anf) (x) = Anf(x) = Z ( ~ ) ( - l ) n - k k=o
f(x+k)
The continuity of f implies that lira Anf (x) = 0 uniformly. From this it is easy to get Mahler's expansion n--)oo
(see e.g. [2] ) :
n=o
The purpose of this paper is to prove three results which include Mahler's expansion as a special or limiting case. In the next section we state our results and give a few examples. In sections 3, 4 and 5 complete proofs are given.
2. T h e T h e o r e m s .
T h e ~ e m 1 : If f : Zp --4 Cp is a continuous function and g : N --~ Cp is a bounded sequence then ~(X)
g(n)Anf(0)=
n:=o
~(x)
Ang(0) ,snf(t)lt=x_n
n=o
Anf (t) [ t=x-n is the value of Anf at the point x-n. This is a generalization of Mahler's expansion since for g(n) = 1, n = 0, 1, 2 ..... we get Ang(0) = 0 for n > I and the formula reduces to Mahler's expansion. The following special cases are worth mentioning. Take f(u) = (1 + t) u, I t I < 1. This gives n n=o
n=o
t
n
357
Putting x = - 1 and replacing t by -t we get the well-known expansion g(n) tn = ~ Ang(O) tn n=o (l-t) n+l
(2)
Take g(n) = (-1) n (Y) in (1) and replace t by -t. This gives ( nx) ( n )yt n = ( l _ t ) x Z
(x) (-lnY)
n=o
t n ; ltl
n=o
which can be written as a (known) relation between hypergeometric series 2F1 (-x,-y; 1; t) = (1-t)-x 2F1 (-x, l+y; 1; t_--ftl) Finally' take f(Y) = (Ym +z) then Anf(0) = (rnZ-Zn) , Anf(t)lt-x n - - = (x+z-n~t\m--n, and the theorem becomes m m Z (n)(m~-Zn) g (n)= Z \(x'~(x+z-n'~ n / \ m-n / Ang(0) nmo
n=o
For x = z= m this gives m
£
(nm) 2g(n)= Z ( n )m (
n=o
m+n n ) A m-ng(0)
n=o
Theorem 2 : If f : Zp --->Cp is a continuous function then 0o
x x-~yn
f(x) = f(0) +
(x.o) Anf(t) [ t=-yn n
n=l
For y = 0 we again get Mahler's expansion. The third generalization gives an expression for the remainder in Mahlefs expansion. We need the notion of convolution of two continuous functions. The convolution of two sequences f(n) and g(n) is, by definition, the sequence given by n
(f,g)(n)= 5". f(k) g(n-k) k=o In order to extend this definition to continuous functions defined on Zp, we need the following lemma. l_~mma t : ff the sequences f(n) and g(n) are the restriction to N of two continuous functions from Zp to Cp then lnim_~An(f,g)(0) = 0. Corollary : The sequence n-->(f,g) (n) is the restriction of a continuous function from Zp to Cp, denoted by (f,g). This corollary is well-known (see e.g. [2] p. 106) but the published proofs are somewhat complicated. An easier and more direct proof can be based on (2).
358 Proof of l~mma 1 :
(f,g)(n) Tn =
f(n) T n
g(n) T n
n=o _
1 (l-T) 2
Anf(0)
Ang(0)
k, n=o
n=
Define numbers a n by ~ (f,g)(n) T n = rl=o
e,o
1
Tn
(l_T)2
an
1 (
(l_T)n-l_ T
1 +
I'~FT) £
Tn a n (l_T)n
n=o
n=o
a© (l-T) +
(an + a n - l ) (l_T)n+l n=l
Then An(f,g)(0) = a n + an_1 for n _> 1. Since lim Anf(0) = lim Ang(0) = 0 we see that lim a n = 0 which proves the lemma. 11---)':~ I1~ 11--+oo We now introduce another convolution which is, in a sense, more natural. Definition : (f©g)(x) = (f,g)(x-1) x ~ Zp If U is the function defined by U(x) = 1 for all x e Zp then (fOU)(n) = f(0) + f(1) + ... + f(n-1) and fOU is the "indefinite sum" of f i.e. A (fOU) = f We can now state our third result. Theorem 3 : Mahler's expansion with remainder. If f : Zp -~ Cp is continuous then
f(x) = f ( 0 ) + Af(0) ( ~ ) + . . .
+ Anf(0) ( x ) +
( x ) © (An+lf)(x)
Corollary : If n tends to infinity we get Mahler's expansion. To see this, observe that l[ f o g 11-< II f II. II g II where II f II - sup I f(x) I. x ~ Zp
Hence II ( x )
oAn+lfll
359
3. Proof of Theorem 1 Since lim Anf(x) = 0 uniformly, the series on the l.h,s, and on the r.h.s, are uniformly convergent which ll---->c,o
means that their sums are continuous functions of x. Hence it is sufficient to prove the theorem for x = n c N. Start from the identity (l+vu-v) n = ((v-l) (u-1)+u) n
,)ku°-k u_l)k
k=o k=o The linear map L 1 : Cp [u] -~ Cp : u k --> f(k) maps ( u - l ) k on Akf(0). If we apply first L I to (3) and then the map L 2 : Cp [vl --~ Cp : v k ~ g(k) we get ( ~ ) g(k)Akf(0)= ~ ( ~ ) Akg(0)Akf(t)[ t=n-k k--o k=o which proves the theorem for x = n. Remark : By imposing more severe conditions on the function f one can deduce a formula for f(O) from theorem 1. Write the theorem in the form oo
n=l
o,o
(x-l) n-1
g_~ Anf(0)= g(0). f(x)-f(0)+ ~ / ' x - l ' ~ ~ n x \ n-l] n n=l
Anf(t)l
x-n
tflim a~(x) = 0, uniformly in Zp, one can take the limit for x --~ 0. n.-->oo n This gives
( - 1 )nn - I [ g ( n ) A n f ( 0 ) - Ang(0)zx"f(t)lt =-n]
g(0)f(0) = n=l
If, moreover, f(x) = if-x) then Anf(t)lt~ n = (-1) n Anf(0), f(0) = 0 and we get a formula involving only differences at 0 :
£
(-1)n ---if-- g(n) Anf(0) =
n=l
-
Ang(0) Anf(0) n--
n=l
4. Proof of Theorem 2 x (x+yn) x/x+y n-l'~ Put An(x,y) = x-~yn = n k n-1 ] for n _> 1. Ao(x,y) = 1 We first need a lemma. Lemma 2 : I An(x,Y) I < 1
x,y ~ Zp
Proof : There are three cases to consider. 1e case : I x I > I ny 1. Thenlx+ynl=lxlandtAn(x,y)
l= x@ynt [ ( x + y n ) l
<1.
360
2e case : l x l < l n y l . Then I x+yn I = I nyland x-~yn = n-~ < 1. Hence I A n (x,y) I < 1. 3e case : I x l = l n y [ . ThenlXl=lYl<-land IAn(x'y) l= We can now prove theorem 2. We first consider the case where
x I/'x+n y-l'~l Inl'lk n-1 ./I _<1,
f(x) = ( x )
n > 1.
The theorem then reduces to n
(x)_~
~ (x7~) (xy~) = ~: A~(x,y~(xy~)
k=o
(4)
k=0
This identity follows from the more general identity n
(X+n+nY) = ~ Ak(X'Y)(X+(nnkk)Y) k=o by taking z+ny = 0. Formula (5) can be found in [1] p. 172.
(5)
We now use (4) to prove the theorem. N N
~°,~o) (x)
Ak(X,y) Anf(0) ( n yk)
_-
n=l
n=l
k=l
N = k=l
N Ak(X,y) ~ A n f ( 0 ) ( n yk) n=l
Fromf(x)=~Anf(0)(x) n=o
we
getAkf(x)= ~ A n--k
n f(0)(n_k) x
This means that we can write N Z Anf(0) (nXk) = Akf(x) + rk,N with liNm_~rk,N = 0 n=k Hence
~.f(0)(x)
~
= Z Ak(x'Y) Akf(-Yk) + Z Ak(x'Y) rk,N
n=l
k=l
k=l
Noting that Irk,N I < I r0,N I and using lemma 2 we see that the last sum tends to zero if N---~,. This proves the theorerrL
361
5. Proof of Theorem 3 The proof will follow from two lemmas. Recall that U is the function with U(x) = 1 for all x e Zp. Lemma 3 : (i)
(x) © U = (x) n+l
(ii)
(U©U©U©...©U)(x)=(x)
,n~ N,xe
(n+l) factors Proof : Since all functions involved are continuous it is sufficient to verify the statements for x = k ~ N. k-1 For n = 0 the assertion (i) reduces to (U © U)(k) = k and this is equivalent with ~] i=k. (ii) is trivial for n=0 i=o For n > 0 we use induction on n. The lemma follows from k-1 • { i + l ' ~ { i "~= (kn) O U ( k ) = Z ( ' n ) = ( n k l ) s i n c e k n + l , - \ n + l . / (in) i=o Lemrna 4 : f = f(0). U + U © Af Proof : Since f is continuous it is sufficient to verify this when the variable x = n ~ N. But in that case the lemma reduces to n-I fin) = frO) + Z Af(k) k=o which is obvious. Theorem 3 now follows by using lemma 4 repeatedly. f = f ( 0 ) U + U © Af Af = Af(0) U + U © A2f Hence f = f(0) U + AfrO). U © U + U © U © A2f Continuing in this way we get f = f(0) U + Af(0). U © U + ... + Anf(0). U © U © ... © U + U © U © ... © U © An+lf (n+ I) factors
(n+ 1) factors U
Evaluating this at the point x we obtain (from lemma 3) theorem 3.
REFERENCES
[1]
J. RIORDAN : Combinatorial Identities. Robert Krieger Publishing Company, Huntington, New York 1979.
[2]
W. SCHIKHOF : Ultrametric Calculus. Cambridge University Press, 1984.
P-ADIC SYMMETRIC DOMAINS
Harm Voskuil Department o f Mathematics, University of Groningen P.O. Box 800, 9700 AV Groningen, The Netherlands
§0 INTRODUCTION We will study p-adic symmetric domains. The complex symmetric domains are well-known (See [C] and [H]). We will briefly recall their construction.
Let G be a real non-compact semi-simple and connected Lie group. The group G contains maximal compact subgroups K, they are all conjugated. Now X=G/K is the symmetric space associated to G. An arithmetic subgroup FcG acts properly on G/K. Now X/F need not to be compact, but there exists a space XDX such that X/F is compact (See [BB], [BS], [N] and [AMRT]). The construction above does not work for p-adic Lie groups, since the maximal compact subgroups are
not all conjugated in this case. Our construction is based on the work of
Kurihara (See [Ku]). Let G be a split simply-connected linear algebraic group defined over a non-archimedean local field K. Let F c G be a discrete co-compact subgroup. Now we call X a symmetric space
for the pair (G~F) if X/F is a proper rigid analytic variety. To construct such a space X, we start with a projective variety Y=G/P, here P c G is a maximal parabolic subgroup defined
over K. We then try to construct a space X c Y ,
which is a symmetric domain. In fact the
construction is such that we have:
Y-(HBnY)cXcY Here HB is defined as follows. Let Y be imbedded in a projective space [~. Let T c G be a K-rational torus of maximal rank. Let xl, i = l . . n + l
be the co6rdinates associated to a basis
of P~ such that T acts diagonally on P~(. Now the union of all these hyperplanes xi=O, ~= 1 . . n + l for all maximal K-rational tori T c G is HB. Many examples of discrete co-compact subgroups F of p-adic Lie groups G are known (See [Kan]). Furthermore it is known that the groups F are S-arithmetic if rank(G)>1 (See [Mar]~ [T.1] and
[V]). For more
information about S-arithmetic
groups
we refer
to
[S] and
building B
for
a
the
literature given there. This article is divided into three paragraphs. In
§1 we
briefly
recall
the
construction
of
the
Bruhat-Tits
reductive
linear algebraic group G. Our construction of a symmetric domain X uses the building B. In §2 we give a simplification of the construction of X in the case G=PGL(n,K) acting ;q-1
on Y=P~ . In this case X is very well-known, X=P~-l-{K-rational [Mus] and [Ku]).
hyperptanes} (See [D],
363
G=PSO(f,K), where f is a quadratic form in n variables, acting on the projective space YcP~ -1 defined by f=O. In this case we can not In §3 we study the split orthogonal groups
construct a
symmetric domain for
"symmetric" space for
FoG
discrete and co-compact, but we can construct a
FcH discrete and co-compact. Here HoG is a group isomorphic to
GL(1,K) with l= [ 2 ] ' In
[F] there
is indicated another
approach to
p-adic
symmetric spaces. Last but
not
least I would like to thank Marius van der Put for his help while I was (and am) studying this subject.
§1 THE BRUHAT-TITS BUILDING
Here
we
will
briefly
recall
the
construction
of
the
Bruhat-Tits
building
(or
affine
building) of a reductive linear algebraic group G. For more precise statements and proofs see [BT] and IT.2]. We also will give some extra information about the buildings needed in §2 and §3. Notation: K
a finite extension of Qp or
Fq((t))
V
the additive valuation on K, normalised such that
G
a reductive linear algebraic group defined over K
ToG
v(K*)=Z
a torus defined over K with maximal rank, so
T(K)~ (K*)n with n maximal
rank (G)
the rank of G which is the maximal rank of a K-rational torus
NcG 4)
the normaliser of T
W
a finite WeyI group
4).f,4):f War
an affine root system
ToG
a finite root system
an affine Weyl group
A group G is called
split if rankK(G)=rankL(G) for every finite extension KcL.
We will always assume that G is simple and split.
ToG belongs a finite root system 4)oR n, where n=rank(G). On this Weyl group W. Furthermore we have WeN~T, (#N/T
root system acts a finite
affine root k+c~: (.,.)
system 4):f. The affine root system 4)af consists of the affine-linear functions
R'~R, with c~e4), k ¢ 7 and k-= l m o d 2 if ½c~¢4), defined by: k+c~(x)=(~,x)+k for xeR n, is the
inner product. For the definition of 4):y we refer to
[Mac]. We can identify
364 the affine root k+c~e~al with the halfspace {xeg~n]k+(cx, x)>O}. The boundary {xeRnlk+(a,x)=O} of an affine root is called a wall. The drawing o f all the walls gives a simplicial decomposition of Rn.
J ,/~, type A2
The
(
:L
maximal
simptices
are
triangles). A chamber C is the
the
called
~/,
J
type ,42
chambers (In the
example
intersection of exactly n + l
above,
affine roots
these
are
the
(i.e. halfspaces).
affine roots form a simple basis Ac~/ of the affine root system #a/ (See [Mac]).
These n + l On
~af
affine
root
system
acts
an
Weyl group
affine
W~/, which is generated by the
reflections in the walls. Now we return to our group G. Let T be as before and let TooT be defined by: To: ={t~TIv(tii )=v(tjj)
V i,j}
(Here we assume that T is represented by diagonal matrices). The group N/T o contains an affine Weyl group Wa/. We can fix a set of isomorphisms ~a: U c ~ K ,
c~e#, satisfying certain
conditions (See [BT]). The additive valuation v of K gives us a valuation Vo~c~ on Uc~. We can
use
these
valuations
Vo~c~ to
refine the
set
{Uc~]Cx~#} into
a
set
of
T0-invariant
additive subgroups {Uk+dk+cxe#~(f)}. Here Uk+c~ is defined by:
uk+~: = { u e U ~ l k
+v
o~Au)~0}
Again we have: w(Uk+c~)=U~(k+cO VweWafcN/T o. All K-rational tori ToG of maximal rank are conjugated. Therefore we can associate to each torus ToG as above a space Rn with its simplicial decomposition given by the affine root system. Such a space is called an appartment A. Let A be the appartment belonging to T. The affine building B of G is defined by:
B: = U g . A / ~ gEG
Here g.A
is the
identifying
all
the
appartment affine
belonging to
roots
gTg-1. The equivalence-relation ~
(half-appartments)
belonging
to
the
same
is given by T0-invariant
additive subgroup. The stabiliser of a simplex S e B
is called a parahoric subgroup.
In [BT] it is proved
that the parahoric subgroups of G are compact and that every compact subgroup of G is included in some parahoric subgroup of G. Now the following two statements are clear:
a) b)
FoG(K) discrete <=~F acts with finite stabiIisers of simplices on B. FoG(K) co-compact ~=~B/F is finite. For the next paragraphs we need to know the structure of the Iwahori-groups Pc, the
365
stabiliser of the chamber C.
Proposition: Let C e A c B be a chamber. Let T O be as above and let Aaf be the simple basis of
~al belonging
to C. Now we have: Pc=
For later use we will now give some more detailed information about the buildings of the group SL(n,K) and the split orthogonal groups SO(f,K), where f is a quadratic form. The building o f SL(n,K): (See [BT] §10.2 and [T.2] §i.14) This is a building of type An-1 i.e. the affine root system is of type An-l- Let ToG be a fixed torus and let G=SL(n,K) act on Kn. We choose a basis % i = l . . n of Kn such that T acts diagonally. Now the T0-invariant additive subgroups Uk+%j are: Uk+~ii: ={9eGlg(ed=e=+cej, g(es)=% s ~ i , v(c)_>k} for i ¢ j . On the affine roots we have a relation: c~j=-c~jz For a standard chamber CEA the simple basis Aal of ~al is: cq,1+l, i = t . . n - 1~
l+c%i
The roots in di~I satisfy the following relation: n-1
cq,i+l+ (1 +°%t) = 1
l
The building of SO(f,K), f =
~xix2~+l_i, />1: (See [BT] §10.1) i=1
This is a building of type Aix.4i, /=2, A3, /=3 and D1 for />3. Let TcG=SO(f,K) be a fixed torus and let G act on K2k We choose cobrdinates %
i=1..21 of K~lsuch that T acts
diagonally. The To-invariant additive subgroups are: Uk+~ji: = {geGlg(ei) =ei+cej, g(e~+l_j) = e~m_j - ce2~+i_i, g(es) = es, s ~ i, 2/+ 1 - j , v(c) >_k} for i # j , 2 / + l - j . On the affine roots we have the following relations:
For a standard chamber C e A the simple basis Aay of qSaf is: cq,~+l, i = 1../-1, (xtl+2 , I-{-(x2~,2 The roots in Aai satisfy the following relation:
366
l-2 ~ oq,i+l+Oq_l,l+~l,l+2=l,
cq,2+(l+c~a,2)+2
1>4
i=2
¢xl,2 + ( 1 +o~6,2) +c~,a +eta, 5 = 1
I= 3 /
The b u i l d i n g o f SO(f,K), f = x o +2
~xix~+l_i, / > 1 : (See [BT] §10.1) i=1
This is a building of type Bz. Let TcG be a fixed torus and let G=SO(f,K) act on K a+l. We
choose
a
ei, i = 0 . . 2 /
basis
of
K 2~+I
such
that
T
acts
diagonally.
The
T0-invariant
additive subgroups are:
U~+c,ji: = { g e G ]
g(ei) =ei+cej, g(e~+>j)=e~+>j-ce~+l_i, g(e,)=e,, s # i,21+ l - j , v(c) > k}
for i c j , 2 1 - j and i,j#O and:
Uk+ceO,j: = { g e G I
g(ej)=ej+ 2cxo+dxa+>j, g(%)=%- :ea+l_j, g(es)=e,, s#j,O, c2+d=O, v(d)>_2k}
On the affine roots we have the following relations:
eqj = -o~ji , ccij= c~2z+l_j, ~+1-i, i,j ~ 0 C~o,1=-r~0,~+l_ j (and we define c~j,o=-c~0,j) For a s t a n d a r d chamber CeA the simple basis Aaf of ~a1' is: t+c¢~2,2 , oq,i+l, i= l..l-1, c%,z+I The roots in Aaf satisfy the following relation: ( 1+ e%,a) + 2¢xl,a + C~o,a= 1 ,
/=2
I-1
(1+c¢~2,a)+2 ~
oq,i+l+c%l+l=l~ / > 2
i=l
§2 THE GROUP PSL(n,K) ACTING ON P~ -~ We action
will give on
construction
the
construction
of
a
symmetric
domain
for
y=p~-l. This symmetric domain is also constructed is a simplification
in terms of rigid analytic
of the one given by Kurihara.
geometry
PSL(n,K) starting in [D],
[Mus] and
We describe
(See [BGR] or [FP]). Let us first define
with
its
[Ku]. Our
the construction what we mean
by a symmetric domain. Definition:
Let
G be
local field K. Let F o G
a
reductive
linear
algebraic
group
defined
over
a
non-archimedeaa
be a discrete co-compact subgroup. A symmetric domain X for the pair
( G , f ) is an analytic space X such t h a t X/F is
a proper rigid analytic variety.
367
Notation: Let B be the building of G=PSL(n,K). Let A c B be a fixed appartment and let TAcG
be the K-rational torus belonging to A. We fix a basis {el,...,en} of p ~ - I acts diagonally on FT(-1 with respect to this basis. Let {xl,...,xn)
such that TA
be the associated basis
of 0(1),
To each root c ~ #
belongs a character Xa of TA with which T A acts on the additive subgroup
Ua. To each affine root k+(xeqSay we associate the meromorphic function k . ~
x j ~ where T acts
with character Xa on x-A. X. In the notation of §1 we associate to the affine root k+cqj the subgroup Uk+a,j and the /unction r ~xi.
xj
Proposition 2.1: Let CeA be a chamber, Aay the simple basis defined by C and PccPSL(n,K)
the Iwahori-group stabilising C. Now we have: a)
The
set XC,A: n-1
={peP~-l[ ] ~ ( p ) ]
_<1, i=l..n, VgePc} is an aff!noid subspace of
*
Y=PK . (Here g Xi=X i og-1). b)
The affinoid algebra belonging to Xc, A is:
K< g xi[i= 1..n, g~Pc> =K <~rk~ik+cqieAa~> (So for our standard chamber C of §1 this is K < ~ , Proof:
This
follows directly
from
the
description
x2 Xn-lxn,~x----nxl > .) xs~.., of
Pc and
the
T0-invariant
additive
subgroups given in §1.
HA be the union of the f: p~-IHA.~A (=~n-1) be the map defined by: Definitions:
Let
hyperplanes
defined
by
xi = 0,
i = 1..n.
Let
f(p)=q if and only if v((~)(p))=cqj(q), Vi,j=l..n, i ~ j . Of course here the affine roots are interpreted as affine-linear functions on R"-1 Proposition 2.2: Let f as above. a)
f ( p ) e C .~ peXc, A
b)
XA:=cUXc,A=P~-~--H~
C)
The covering C: ={Xc,nlCeA } of X A is pure. The reduction of X A with respect to the covering C has for every O-simplex S e A exactly
d)
one proper component. Proof: a and b follow directly from the definitions. c)
This is proved by using the function f and statements a and b of the proposition.
d)
This is proved by using a,b,c and the theory of toroidal embeddings (See [KKMS], [0.1]
or [0.2]). Note that one needs, in order to apply the theory of toroidal embeddings,
368 change
the
innerproduct
of
A~-R"-1 such
that
the
lattice
of
vertices of
A
becomes a
sublattice of Lv~-1 with the standard orthogonal inner product. Definitions: Let us define now:
Xc:= Iq Xc,A, A~C
X : = A XA,
He:= (3 HA.
AcB
AcB
Let us fix an appartment A and a basis {Xl,...,Xn} of 0(1) belonging to TA. Now we define a function r: p~-i ,N by: n
if iR x~(p)=O
r(p) = inf
otherwise.
[emma 2.t:
a)
Xc, A n Xc, A, = Xc, A - R-I(flA,\RA) = XC,A, - R-~(RA\ftA, )
b)
Xc=Xc,A-R-I(HB\~IA). (Here R:Xc, A
,XCC,Ais the reduction-map.)
Proof: a) This is proved by using the description of X C , A given in proposition 2.1. b)
This is proved by using statement a repeatedly. Note that infinite
number
of
appaxtments,
we
only
have
a
finite
even though CeA
number
of
for an
different
affinoid
spaces Xc, A for a fixed chamber C. Lemma 2.2: Let r be as above. The function r has the foUcuring two properties. a)
r ( p ) = 0 ~ pert B
b)
r(p)¢O ~ B(gePSL(n,K)) i=t~I ] ~ ( P ) I
=r(p).
Proof: This is clear.
Definition:
We call
an
analytic
space Z
locally proper if Z has two admissible affinoid
coverings {A~lieI } and {A~[i~I } such that:
A~A~, VieI. If I is finite then Z is proper in the sense of Kiehl. If the two coverings axe
invaxiant
under the action of a group F which acts discontinuously on Z and has a finite number of orbits on the Ai, i E l then Z/F is proper. Theorem 2.1: a) X= 13 Xc= n XA=PK~-1 -{K-rational hyperplanes}. CeB
b) c)
AcB
The covering C: = {XcICeB } of X is pure and invariant under the action of PSL(n,K). X is locally proper.
369
r(p)=O then pelt B and pv~Xc VC~B since
Proof: a) We use the function r defined above. If
Xcce~-~-~B. If
r(p)#0
then
]#~:(P)[. one sees b)
peX=P~-I-HB and we can find an element gePSL(n,K) such that There exists a chamber
that in fact
Ceg(A) such that peXc, A. Using lemma 2.1
p~X c.
C,C'eB there exists AcB such that C,C'eA, and proposition 2.2.c. The invariance under the action of PSL(n,K) is clear.
The fact that the covering C is pure follows from the fact that for an appartment
c)
This is proved by using the fact that we have:
Xc={p~p~-ll
Ig~ ( x~ P)I
= 1,
i= 1..n, VgePc}
Xc,~ := {pEPKn - 1 [e -1 -< I . (p)[ <e, i=l..n, VgePc} with e > l is contained in X. Now Xc~Xc,~ and {Xc,~[CeB} is an admissible covering of X. This
Clearly
the
affinoid
space
proves c.
Remark: We can now construct a map A:
X---~B as follows: rl
*
peX we take an appartment g(A)cB such that i / / l l g - ~ i ( p ) l = r ( p ) and we use the function f:P~c-I-HgA---->g(A) to define A(p)=f(p). The proof of theorem 2.].a shows that this is well
For
defined. The map A is the same map as is used in [D] §6 and [Be] §4.3. Now
Xc=A-I(C).
Remarks: 1) It is known that the space X has a reduction consisting of a projective space pn-1 with all K-linear subspaces blown-up for every vertex K
Our
covering C gives this reduction. This can
SeB (See [Mus] and [Ku]).
be calculated by using the
theory of
XA (See proposition 2.2.d). Now XccXc,A is open, so the reduction of Xc is an open subspace of the reduction of XC,A. One can determine the reduction of X by using the fact that the parahoric subgroup PscG is toroidal embeddings. First one determines the reduction of
transitive on the chambers C containing S and also on the appartments A containing S. 2) If
FoG is not co-compact then in some cases one can construct a subcomplex BrcB such
that F acts discontinuously on X r : = ['1
XA and X r / P is a proper rigid analytic variety (See
A cBF
[Mus].). 3)
The following examples of spaces
X/F are known:
a) Mumford-curves (See [Mum.l] and [CP].) b) Mumfords fake projective plane (See [Mum.2] and [I].) (I will give some other examples of surfaces
X/F in my thesis.)
370
§3 THE SPLIT ORTHOGONAL GROUPS t
We take G=PSO([,K),
here f
~xix~+l_ , or [=x~ + ~xix~+l_i.
is a quadratic form f =
i=I
i=l
Now G acts on the projective variety Y defined by f=0 in p~l-1 (resp. P~l). We
exclude the
case f=xlx 4+x2x a.
Then
Y ~-P]~xP~
and
G
is isogenous with
PSL(2,K) × PSL(2,K). In this case Kurihara's original construction does work (See [Mus]).
First we will indicate why the
construction given in §2 does not
work
in this case.
Then we will improve the construction and get a space XA with properties similar to those stated in proposition 2.2. Now the torus TA acts on XA, but the normalizer NA of TA does not. This makes it impossible to construct a symmetric domain for G itself. But we can construct a "symmetric" space for a subgroup ttcG,
which stabilises two disjoint maximM K-rational linear isotropic
subspaces of Y. Clearly H ~-GL(l,K), where I is as above. Now we will show why the construction described in §2 does not work in this situation. I
We only treat the case f =
~ xix21+l_i. The other case is similar. i=1
Let xi, i=1..21 be as above and let TACC be the maximal K-rational torus, which acts diagonally on rD2/-1 "K with respect to these co6rdinates. As in §2 we can now for a chamber C in the appartment AcB belonging to T A define an affinoid subspace XC,ACY. We have:
XC,A: =Sp K< g x ixi [ VgePc, i=l..21>c~Y = Sp K < T r ' ~ t n+c~ijeA~f> nY The differences with the situation in §2 are the following: 1) For each n + ~ q e A ~ f we have exactly two meromorphic functions on p~z-1. They are ~rnxi and ~rnx2t+l-f . Xj X21+l_ i 2) The components of the reduction of C~A Xc'A are not in accordance with the vertices (0-simplices) of A. This is a consequence of the fact that the two meromorphic functions mentioned in 1 need not have the same absolute value for p ecU A Xc, A. There do exist
Pec~A Xc'A such that ~rn~(p) # ~ r n ~ ( p )
3) The components of the reduction of 12 XC,A C~A
. are
not proper.
The second problem can be solved by replacing XC,A by another affinoid subspace XC,A defined by:
371
XC,A: = {peXc,A] [PiP~+l-i] = [PjP~+I-j[ Vi,j = 1..21} The two meromorphic functions mentioned in 1) have the same absolute value for pECyA.~C,A.ffi Still
the
components
of
the
reduction
c~AXC'A
of
are
not
proper.
This
is
because
cUAff[C,A~ and cUAXC,A are rather unnatural subspaces of Y-HA, where HA is the union of the hyperplanes xi=O for i=l..2l. In order to make a space XA with properties as in §2 we need a way to associate to each affine r o o t n+(~ij an unique meromorphic function. This function turns out to be ~rn~., where - *3
the yi are defined by:
3'i --
xi
i = 1..1
xsx2t+l-s
i=l+l..2I
X21+l-i
Here x s is choosen such
that
lxsx~2+l_sI= max Ix~cx~+l_lct. So the function is not uniquely /¢=1 ..I
defined, but its absolute value is. Note that
we have made a choice here. The coSrdinates
xi, i = l . . l define a maximal isotropic subspace x~ . . . . the yi a b o v e replace the xi, i=l..l,
z~=O. We could in the definition of
by some other set of xj's defining a maximal isotropic
subspace. D e f i n i t i o n s : For i= t..l we define for C~A the following affinoid subspace of Y: X C,A. i . =SP K<x~x2~¢~-f x ' 7rnYr [ j=l..l~ n + e t r s e A a f > n Y Xi
2/+1-i
Ys
xr
r= 1..l
xix2t+l-i
r=l+l..2l
Here of course we have: Yr = ~2 l +l-r
Furthermore we define: l
i
I
Xi
We now can define the function fi: X~--.~A( =R ~) by:
fi(p)=q ~, v i
(p) =o~8(q ) r,s=l..2l, r e s
j
Since fi =-f j on XAnX A we can glue the functions fi together into a function f : XA-->A. The function f is well defined on Y-ZA, where Z A is the union of the hyperplanes xi=O for
i= 1..l and the maximal isotropic subspace given by xz+,=xt+~ . . . . .
Proposition
i
i
3.I: a) fi(p)~C ~ p~Xc, A for peXA.
b)
I Xi f ( p ) e C ** pci~_l C,A for p ~ Y - Z A .
c)
The covering C={Xe,nlz=l..l , CeA} of X A is pure.
d)
XA is locally proper.
Therefore X A = Y - Z A. i
.
x2z=O.
372
Proof: a) and b) follow directly from the definitions of fi and f. c) Using the definition of fi one sees that the covering {X~,AICeA } of X~ is pure. So we only have to look at affinoids X i i
C,A
j
and X j
i # j . In this case X ~ nX j
C',A
C,A
C',A
is contained in
XAnX A. Now using fi or fj one sees that the intersection is non-empty if and only if CnC'#¢. Furthermore the intersection is open. d) This can be proved by using the admissabie covering {XclAIZ=l..t , CeA} of X A. Here X~:~:={peY[
~(p).i.21+l_i
<e, l~nYr(P)~s
<e, j=l..l, n+oLrs~Aa/}. Of course we have for e > l :
X~,A g: XC,A i ,~
Remark: Instead of XC,A i we can look at the affinoid subspaces
V~,A: = ~ P Kof P~t-I-Z A. ~s ~ XiX2l+l_ i
This
gives
us
a
pure
T-invariant
covering
i . {Vc,AI*--1..I, CeA} of P~*-X-ZA.
We
have
XC,A=Vc,Ar~Y. As in proposition 3.1 one now proves that P~*-~-ZA is locally proper. Remark: For the standard chaznber C of §1 we can give X~, A explicitly as follows:
X~,A=Sp K < ~ ,
x__22 x~__j xzx~-x X3 ~'''~
~rxix2**l-i
Xl ~ XiX21+l_ i
XlX 2
x~x2*+l-i { j=l..l, j # i > n Y ~ XiX21+l_ i
The generators of the affinoid algebra of X~,A satisfy the following two relations: 2 x,
.
2 . . . . . cx,_2
X'-~l "X~2" X 3 X 2 X2 X3 X i X 2 l + 1 - i
b)
.
x,_,x,
7rxix2l +'-i=T(~ / = 3 XlX2
1
~ xTx2z+l-i=O j=l
XiX21+l-i
Relation a corresponds
with the
relation satisfied
by
the affine roots
forming
a simple
basis Aa] of f~af" Relation b corresponds with the equation f= O. This shows that we have: i = Rc,A i × @,A, i XC,A with RiC,A." =Sp Kand
S C,A.=Sp i . K<Xix21+l-f I j=l..l>/(f=O). XiX21+I-i
P r o p o s i t i o n 3.2: a) The reduction of XiA with respect to the covering {X~,A[CeA } consists of
one component Ds for every vertex SeA. b) Ds~-Es×]~ z-2 and Es is proper and non-singular. c) The reduction of X A = Y - Z A with respect to the covering {X~,AJi=l..l, CeA} consists of one proper component Fs for every vertex SeA. These components Fs are such that we have a surjective map ~: Fs---,P'~-2 with ~oq(p)~-Es for all peP~ -2.
373
Proof: a) Relation a in the remark above shows that the reduction of XC,A i has exactly one component for every vertex SeC. Glueing these components together for all C e A containing S we get the component Ds of the reduction of X~. b) The function fi: X~-->A maps XC,A ~ into CeA. The image fi(P) of peXc,A=Rc,A×SC,A i ~ depends only on the co6rdinates of the projection of p into RC,A. Now the appartment A is, after having
made
the
lattice
of
its
vertices
a
sublattice
of
Z t,
the
picture
of
the
torus
embedding belonging to {Re,AlCoA }. The theory of torus embeddings tells us that we have for i
every S e A a componen.._ttEs in the reduction of {Rc,AICeA} which is proper and non-singular. The
reduction
S~, m of
SiC,A is
of
course
an
/kz-2~,
The
reduction
X~, A
of
is
X~,A = RC,i A >4 SC, A i = RC,Ai×A*-2~. The reduction of X~ is now easily determined, since we only have to glue along open subspaces U x A ~-2 where UcR~,A. So the reduction of X~ consists of one component Es × A z-2 for every vertex S e A . c) We already know the reduction of the X~ for i=l..l. To determine the reduction of XA we only have to glue these together. The
intersection
XC,ANXc, A is given by
2: j : Y i l + l - j
=1
in
both X C,A i and X~, A. i A for a fixed chamber C glue together into an The reductions So, A of S~,
pZ-2 k
with
!
co6rdinates xlx21+l_i, i = l . . l
satisfying the
~xix~+l_i=O.
relation
For
a
fixed ~ePt~ -2 we
i=l
only have to look at one SC,A with reductions of the Xc,A, ~ CeA
_ - - ' 7, p c S c , A. Now part b of the proposition shows that the
and i fixed glue together into components E s × P , ~-2. Now it is
clear that the reduction of X A consists of exactly one component Fs for every vertex S~A, such that we have a surjective map ~: Fs*P~ -2 with - l ( p ) = E s for all pee~- -2. Remark: Looking more precisely at the appa.rtment A and the associated torus-embedding one sees that the reduction of XA has the properties: 1) F s n F s , ~ ¢
~, {S,S'} is a simplex in A
2) F s n F s , ¢ ~
~ FsC~Fs, is of codimension one in Fs and Fs,
Remark: Now we are going to construct for the subgroup HcG~ stabilising the pair of maximal isotropic subspaces x 1= x 2 . . . . .
x~ = 0 and x~+1= xt+~ . . . . .
x~ = 0 a space X,~c Y such that XH[F is a
proper rigid analytic variety for F c H discrete and co-compact. First we define a subcomplex BHCB on which H acts. Then XH: = n
X A is a locally proper
AcB H
space which has a H-invariant affinoid covering. Definition: Let H be as
above. Let A c B
be a
fixed appartment such that
the maximal
K-rational torus TA belonging to A stabilises the two maximal isotropic subspaces mentioned above, so TACH. Now we define the subcomplex BHCB as follows:
BH:= U g . A c B g~H
Lemma 3.1: B H ~-B × R, where B is the building of SL(I,K).
374
Proof:
It
is
clear
that
H=GL(1,K).
Therefore
all
maximal
K-rationM
tori
TcH
axe
conjugated and correspond with an appartment A c B H. To every maximal torus T c H rank(T)=rank(T)+l
corresponds exactly one maximal torus 7"cSL(I,K).
We have
where Tc is the torus of rank one which
and T is isogenous with T × T c ,
is in the center of H=GL(I~K). Now T c acts on R and T on B. This proves the lemma. Note that we don't care about the simplicial structure. Lemma 3.2: Let A,A'cB H be appartments such that A¢3A' contains a chamber C. I f g e P c such
that g(A)=A' then geH. Proof: Let m and m' denote the two maximal isotropic subspaces of Y stabilised by H. Since
L,TA, CH~ they stabilise m and m'. Furthermore there exist gEP c such that g(A)=A' and TA,=gTAg -1. Now gTAg-l(m)=m implies that
TAg-l(m)=g-a(m).
So the maximal
isotropic subspace g-l(m)
is stabilised by
T A. This
proves that g-l(m)=w(m) for some w~W, where W is the finite Weylgroup NA/T A. This cannot be, unless w=id. So g(m)=m. Of course also g(m')=m' and therefore geH.
Definitions:
Let TACH
be a
torus
and let xi,
i=l..21
be
the
associated coordinates of
P~l-lsuch that T A acts diagonally. Let m be the maximal isotropic subspace Xl=X 2 . . . . . and let m' be the maximal isotropic subspace xz+1= xz+2 . . . . .
xl=O
x22 = O.
Let HoG be the stabiliser of m and m'. Let Z A be the union of the hyperplanes xi=O, i = l . . . t and m'. Now X A = Y - Z A. For every A'CBH there is a geH such that g(A)=A'. Our choice of Z A is such that XA,=g(XA) and ZA,=g(ZA) are uniquely defined. Therefore the following definitions are allowed:
x.:=
n
z.:=
A' cB H
u
z A,
A' cB H
We will now construct a pure H-invaxiant covering of Xn. Lemma 3.3:
a)
p~Xc, A ~
b)
PEXc, A ~
i
(p) <1
VgePc, Vj=l..2l
g*xfg*x2t+l~i(p ) <1 VgePc, V j = l . . l XiX2~+I-i
Proof: a) The definition of the yj is such that
X. i ~j(p) _1 Vj=I..21 for peXc,A. We can now
associate to p~X~, A & point ~p~(l-1 defined by ~i:=yflp), now shows that
j = l . . 2 l . The definition of the yj
peVc.,A: =Sp K. rtX r
AS in lemma 2A.b one can show that V c . a - S p K < g - - ~ x l g e P c , j = l . . 2 t > . Therefore we have:
~
xj(~)
= ~
yj(~)
<1.
375 2t
For gePc fl=
we have: g*xj(~)= ~ajkx~(~)
~(~) xj
with
<1,
since fl=v(ajk)+(~kje4~,+f,
i.e.
~ nifli with niei[>0. ,8i ~ f
So we have:
g x~(~)xj <-k=lmax..21 ajk~j (~))
~j'(p)
=
~ xj(~)
aj kxk(p) ---~.l
< - ~ = 1max ..2z]
<
max
x i(p) - k ~ 1 . . 2 ,
ajkXj:(~)l < 1 xj(~)'
This proves a. i
b) This follows from a since we have for peXc,A:
Ig*xjg*x~+~_j(p)l <_tYjY~+,-flP)I = Ixix~+l-~(p)l Remark: A chamber C~B H is contained in infinitely many appartments A c B H. But there exists a finite number N of appartments A1,...,A N such that every XtC,A is equal to X ic,Aj for some je{1,...,N}.The appartments Aj, je{1,...,N} depend on C of course. Definition: Let C e B H and N be as above. For seI={1,...,l} t' we now define:
x~:
N
=
nx~3
./=
Lemma 3.4: a)
i j i ~ X C,A' j is open. XC,Af3Xc,A'CXC,A
b)
X~cX~.4~is
ope~ for ,Ul j=.I..N.
Proof: a) Let g e P c be such that gA=A'. Now lemma 3.3.a gives us:
p~Xc,AnXc,gA ~
(p) =
(p) = 1, k = 1..1
(*)
From lemma 3.3.b we conclude:
~
pEXc,AnXc,gA ~
g * x ~g*x2!+~-i(p) =1 xix21+l_ i
(**)
The equations (*) and (**) together define an open subspace of XiC,A and XJC,A' which is in
fact
C;,ANXJ,A ,.
b) This follows from the repeated use of a.
376
Definition: Let r: Y-~R be defined by 1
0
if
// lx~(p)l=O
i=1
r(p) =
[geH}
otherwise
Here det(g) is the determinant of g as an element of GL(I,K). Lemma 3.5: l
a)
r ( p ) = 0 ~ 3(geH) +Hllg*xi(p) I =0
b)
r(p)#O ~ 3(geY)
c)
r(p)~O ^ p ~ m ' ** p o X H
1
~~
(p) =r(p)
Proof: a) This follows from the completeness of K. b) The
cohrdinates
of
p e P ~ 1-1 are
defined
over
finite
some
extension
L~K.
The
set
{is I jseL, Isl _>r>0}c~ is discrete. From this b follows c) This follows from a and b.
3.1:a ) X . = C Y B H 8YI X~
Theorem
b) The covering ¢={X~,ICeB m s~l} o/ X H is pure and #-invariant. c) X H is locally proper. Proof: a) We will show that for every p e X H there exists a CEB H such that p~X~ for some s ~ I . Since peXH the set F = { g e H I
1 Idet(g)l
" (p) =r(p)} exists and is non-empty. Now
i=1
g*xig*x2l+l_ i t=inf{imlaxs]
Xk~C2[+l_k (p)] ]geF}
exists
for
a
fixed
k
such
that
xkx21+l_k(p)~a0 and
r e 0 , since p~m'. Let F' be defined by F'= {geFlimalx. jig*x~g*x~+l_i(p)l =t'lx~:x2a+l_k(p)]). Now F' is non-empty and in fact F'=F (we will not prove this). Take an element geF'. There exists a chamber CegA such that peX~,g A for some ie{1../}. In fact p e X ~ for some s e I . This follows from lemma 3.2 and lemma 3.4 and the choice of g. b) The
fact
that
C is H - i n v a r i a n t
is clear. The pureness of
the
covering follows from
proposition 3.1 and the fact that for C,C'eB n there exists an appartment AcBI.I such that
C,C'eA. c) This is proved as in proposition 3.1.d and theorem 2.t.c. Remark: Let Tv denote the torus of rank one in the center of H. Let F 0 c T c be a discrete
co-compact subgroup. Let FlcSL(1,K ) be a discrete co-compact subgroup. Then /~=1`0X/'l is a discrete co-compact subgroup of H~GL(I,K). P r o p o s i t i o n 3.3: Let F c H
1`=1`o×F~,
be a discrete co-compact subgroup without torsion of the form
where 1"0 and 1"1 are as in the remark above.
variety XH /1" is non-projective.
Now the proper rigid analytic
377
Proof:
We
have
a
surjective
map
T:XH---*P]~-l-{K-rational
hyperplanes}:=~2 ~-1,
defined
by T((xt,..,x2,))= (xl,..,xz). The fibre of a point p e $21-1 is isomorphic to / ~ - ~ - { 0 } .
F=FoxF~
Since
A]~-x-{0}/F0.
The
the
morphism
algebraic
T
induces
dimension "of
the
a
~p:XH/F----.d -1/F~
map
Hopf-manifold
/k~-l-{0}/F0
is
with
fibre
strictly
less
than l-1 (See [Mus]). Furthermore I2z-1/F1 is an projective variety of dimension t-1. Therefore the algebraic dimension of XH/F is strictly less than 2/-2. So X H / F can not be a projective variety. Remarks: 1) In the proofs above we never needed the fact that p e X H satisfies the equation
f=O. We can delete this equation in the definition of the Xc~ s CeBH, s e I .
This gives us a
fD21-I 7 ~21-I pure H-invariant covering of ~/~ - ~ w The space rK - ~~ m ~t ~ for F c H discrete and co-compact
is proper. l
2) All we did in §3 is also true for Y defined by f = x ~ + ~xix2l+i_ i in P~/. In this case we i=1
have for A c B , where B is the building of G=PSO(f,K) again a space X A. Now XA: = Y - Z A , where
ZA
is
the
union
Xo=Xt+ 1 . . . . .
of
the
hyperplanes
xi=0,
i = 1..l
and
We can cover X A with the affinoids XC,A, CeA, i=O..I. 2 X ~ "=SpK
NOW
the
space
x2~=O. Note that t o n Y is the maximal isotropic space xt+t . . . . .
C,A"
~ XiX2t+l_ i ~ XiX21+l_ i
m
defined
by
x~=O.
for i=l..l.
Here yj is defined by:
yj =
x j,
j = 1..l
xix2t÷l-i
j=l+l..21
X21+l_j
V/x~x2t+l_j
, j=O
o A by X C,A o =SpK
] n+c~rseA~f, j = l . . l > n Y
and here the yj are
XO
given by: x: Y/=
j = 0..l
2 x°
, j=l+l..2I
X2l+l-j
The
subgroup
xl=x 2.....
H
is
now
the
x~=O and x,+~ . . . . .
stabiliser
of
the
maximal
isotropic
subspaces
defined
by
x~=O.
3) For a discrete co-compact subgroup I'cPSO(f,K)
it is not clear yet how to construct a
space X c Y such that X/I' proper. If we assume that / ' is neat (See [B]) then F n N A c T A , here NA is the normaliser of T A. Now F n N A acts properly on XA. The group F has infinitely many orbits on appartments A c B .
It is not clear wether there exists a F - i n v a r i a n t choice of the
X A such that Af~cBXA/F is proper. If such a choice exists, this would give the iv-adic analogon of the bounded symmetric domain which has SO(n)/SO(n-2)×SO(2),
(n=21(+l))
as its compact dual (See [Ku] §0.4).
This symmetric space is denoted by BDI ( q = 2 ) in [HI p.354 and by IV~ in [N] p.114.
378
REFEP~NCES
[AMRT] A. Ash,
D. Mumford, M. Rapoport and Y. Tai, Smooth compactification of locally symmetric varieties, Math. Sci. Press, 1975. [BB] W.L. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966), 442-528. [Be] V. Berkovich, Non-archimedean analytic spaces and buildings of semi-simple groups, Preprint I.H.E.S., february 1989. [B] A. Borel, Introduction aux groupes arithm~tiques, Hermann, 1969. [ss] A. Borel and J.P. Serre, Corners and arithmetic groups, Comm. Math. Heir. 48 (1973), 436-491. [BGRI S. Bosch, U. Giintzer and R. Remmert, Non-archimedean anatys~s, Springer Verlag, 1984. [BT] F. Bruhat and 3. Tits, Groupes r~ductifs sur un corps local I: Donn~es radicieUes valu6es, Publ. Math. I.H.E.S. 41 (1972), 5-251. [C] E. Cartan, Sur tes domaines bornes homog@nes de l'espace de n variables complexes, Abh. Math. Sera. Univ. Hamburg 11 (1935), 116-162; Also, Oeuvres Completes part I, 1259-1308. [D] V.G. Drinfeld, Elliptic Modules, Math. USSR-Sb. 23 (1974), 561-592 [F] G. Faltings, F-isocrystals on open varieties: Results and conjectures, Preprint Princeton University, 1989. J. Fresne! et M. van der Put, Geom~trie analytique rigide et applications, Progress in Math. 18, Birkh~user, 1981. [GP] L. Gerritzen and M. van der Put, Schottky groups and Mumford curves, Lect. Notes in Math. 817, Springer Verlag, 1980. S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962. [HI [I] M.N. Ishida, An elliptic surface covered by Mumford's fake projective plane, TShoku Math. J. 40 (1988), 367-396. [Kan] W.M. Kantor, Reflections on concrete buildings, Geometricae dedicata 25 (1988), 121-145. [KKMS] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroi'dal embeddings I, Lect. Notes in Math. 339, Springer Verlag, 1973. [Ku] A. Kurihara, Construction of p-adic unit balls and the Hirzebruch proportionality, Amer. J. Math. 102 (1980), 565-648. [Mac] I.G. Macdonald, Affine root systems and Dedekind's U function, Inv. Math. 15 (1972), 91-143. [Mar] G.A. Margulis, Aritlm]eticity of irreducible lattices in the semisimple groups of rank greater than one, Inv. Math. 76 (1984), 93-120. [Mum.l] D. Mumford, An analytic construction of degenerating curves over complete local rings, Compositio Math. 24 (1972), 129-174. [Mum.2] D. Mumford, An algebraic surface with K ample, (K2)=9, pa=q=O, Amer. J. Math. 101 (1979), 233-244. [Mus] G.A. Mustafin, Nonarchimedean uniformization, Math. USSR-Sb. 34 (1978), 187-214. [N] Y. Namikawa, Toroidal compactification of Siegel spaces, Lect. Notes in Math. 812, Springer Verlag, 1980. [0.1] T. Oda, Lectures on torus embeddings and applications, Tara Inst. of Fund. Research 58, Springer Verlag, 1978. [0.2] T. Oda, Convex bodies and algebraic geometry, Springer Verlag, 1988. J.P. Serre, Arithmetic groups, in "Homological group theory" edited by C.T.C. Wall, is] London Math. Soc. Leer. Notes Series 36 (1979), 105-136. fT.1] J. Tits, Travaux de Margulis sur les sous-groupes discrets de groupes de Lie, Sere. Bourbaki 1975/76, Lect. Notes in Math. 567, Springer Verlag, 1977, 174-190. ff.2] J. Tits, Reductive groups over local fields, Proc. A.M.S. Syrup. Pure Math. 33 (1979), 29-69. T.N. Venkataramana, On superrigidity and arithmeticity of lattices in semisimple IV] groups over local fields of arbitrary characteristic, Inv. Math. 92 (1988), 255-306.
LIST OF PARTICIPANTS
Alan Adolphson, Department of Mathematics, Oklahoma State University, Stillwater, 74078 Oklahoma, U.S.A. Yves Andr6, Intitut H. Poincar6, 11 rue P. et M. Curie, F-7523I Paris 5, France Jesfis Araujo, Departamento de Matem~ticas, E.T.S.I. Industriales, Castiello de Bernueces, Universidad de Oviedo, 33204 Gijon, Spain Francesco Baldassarri, Dipartimento di Matematica, Universifft di Padova, Via Belzoni 7, 35131 Padova, Italy Edoardo Ballico, Dipartimento di Matematica, Universita di Trento, 38050 Povo (TN), Italy Luca Barbieri Viale, Dipartimento di Matematica, Universit~ di Genova, Via L.B. Alberti 4, 16132 Genova, Italy Jose M. Bayod, Departamento de Teoria de Funciones, Facultad de Ciencias, Avda. de los Castros s/n, 39071 Santander, Spain Vlaclimir Berkovich, Department of Theoretical Mathematics, The Weizmann Institute of Science, P.O.B. 26, 76100 Rehovot, Israel Pierre Berthelot, IRMAR, Universit6 de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France Daniel Bertrand, Universit6 de Paris VI, UER de Math6matiques, Tour 46 5~me Etage 45-46, F-75252 Paris Cedex 05, France Frits Beukers, Mathematics Institute, State University of Utrecht, Budapestlaan 6, P.O. Box 80.010, 3508TA Utrecht, The Netherlands Siegfried Bosch, Mathematisches Institut, Westf'alische Wilhelms-Universit~t, Roxeler SlraBe 64, 4400 Mtinster, West Germany Abdelbaki BoutabaL G 511, R.U. "Jean Zay", F-92160 Antony, France Stefaan Caenepeel, Vrije Universiteit Brussel, Faculty of Applied Sciences, Pleinlaan 2, B-1050 Brussel, Belgium Maurizio Candilera, Dipartimento di Matematica, Universit~ d![ Padova, Via Belzoni 7, 35131 Padova, Italy Michel Carpentier, Math6matiques, Universit6 Paris VI, 4 Place Jussieu, F-75230 Paris Cedex 05, France Pierrette Cassou Nogues, Math6matiques et Informatique, Univ. Bordeaux 1, 351 cours de la Lib6ration, 33405 Talence Cedex, France Bruno Chiarellotto, Dipartimento di Matematica, Universit~t di Padova, Via Belzoni 7, 35131 Padova, Italy Gilles Christol, Universit6 de Paris VI, UER de Math6matiques, Tour 47 5~me Etage 45-46, 75230 Paris Cedex 05, France Robert Coleman, Department of Mathematics, University of California, Berkeley Ca. 94720, USA
380
Matthijs Coster, C.W.I., Kruislaan 413, 1098 SJ Amsterdam, The Netherlands Valentino Cristante, Dipartimento di Matematica, Universit~ di Padova, Via Belzoni 7, 35131 Padova, Italy Nicole de Grande-de Kimpe, Vrije Univ. Brussel, Faculteit Wetenschappen, Plenlann 2, 10F'/, B-1050 Brussel, Belgium Jan Denef, Department of Mathematics, University of Leuven, Celestijnenlaan 200B, B-3030 Leuven, Belgium Bernard Dwork, Department of Mathematics, Fine Hall, Princeton University, Princeton NJ 08540, USA Alain Escassut, D6partment de Math6matiques Pures, Universit6 Blaise Pascal, Complex des C6zaux BP45, F-63170 Aubi~re, France J. Y. Etesse, IRMAR, Univ. de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France Jean Fresnel, UER Math6matiques et Informatique, Universit6 Bordeaux 1,351 cours de la Lib6ration, F-33405 Taience Cedex, France Ernst Ulrich Gekeler, Institute for Advanced Study, School of Mathematics, Princeton NJ 08540, U.S.A. Giovanni Gerotto, Dipartimento di Matematica, Universit?t di Padova, Via Belzoni 7, 35100 Padova, Italy Hiroshi Gunji, Department of Mathematics, University of Wisconsin, Madison, WI 53703, U.S.A. Frank Herrlich, Mathematisches Institut, Ruhr Universit~t, Postfach 102148, D-4630 Bochum 1, West Germany Ernst Kani, Department of Mathematics, Queen's University, Kingston K71 3N6, Ontario, Canada Ha Huy Khoai, Institute of Mathematics, P.O. Box 631, Buu dien Bo Ho, 10000 Hanoi, Vietnam Pierre Jarraud, 5 Avenue de la Porte de Villiers, F-75017 Paris, France Bernard Le Stum, 12 rue de Brest, 35000 Rennes, France Quing Liu, UER Math6matiques et Informatique, Universit6 Bordeaux 1,351 cours de la Lib6ration, 33405 Talence Cedex, France Fraqois Loeser, Centre de Math6matiques, Ecote Polyteclmique, F-91128 Paiaisean Cedex, France Werner Lfitkebohmert, Mathematisches Institut, Universit~t Miinster, Einsteinstr. 62, D-4400 Mtinster, West Germany J. Martinez-Maurica, Departamento de Teoria de Funciones, Facultad de Ciencias, Avda. de los Castros, s/n, 3907, Santander, Spain M. Matignon, UER Math6matiques et Informatique, Universit6 Bordeaux 1, 351 cours de la Lib6ration, F-33405 Taience Cedex, France Zoghman Mebkhout, UER de Math6matiques L.A.n. 212, Universit6 Paris VII, 2 Place Jussieu, F25175 Paris Cedex 05, France Diane Meuser, Department of Mathematics, Boston University, Boston, Ma 02215, U.S.A. Yasuo Morita, Department of Mathematics, Faculty of Sciences, Tohoku University, Aoba, Sendai 980, Japan Elhan Motzkin, 196 rue du chateau des rentiers, F-75013 Paris, France
381
Samuel Navarro H., Dpto. de Matem~itica, Universidad Santiago, Casilla 5659 Correo 2, Santiago, Chile Peter Norman, Department of Mathematics, University of Massachusetts, Amherst, 01002 Massachusetts, U.S.A. Arthur Ogus, Department of Mathematics, University of California at Berkeley, Berkeley, Ca. 94720, USA Pier Ivan Pastro, Dipartimento di Matematica, Universit~t di Padova, Via Belzoni 7, 35131 Padova, Italy Meinolf Piwek, Ruhr-Universit~it Bochum, Fakultiit ftir Mathematik, Postfach 102 148, D-4630 Bochum, West Germany Marc Polzin, UER Math6matique et Informatique, Universit6 de Bordeaux 1, 351 cours de la Liberation, F-33405 Talence, France Marc Reversat, Laboratoire D'Analyse sur les Variet~s, Universit6 Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex, France Alain Salinier, 6, Avenue Montjovis, 87100 Limoges, France Paul J. Sally, Department of Mathematics, University of Chicago, 5734 South University Avenue, Chicago, 60637 Illinois, U.S.A. Roberto Sanchez-Peregrino, Dipartimento di Matematica, Universit~ di Padova, Via Belzoni 7, 35100 Padova, Italy Roberto Scaramuzzi, Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA Wim H. Schikhof, Math. Institut, Katholike Universiteit, Toernooiveld, 6525 ED Nijmegen, The Netherlands Claus Schmidt, Max-Planck-Institut ftir Mathematik, Gottfried-Claren-Stral~e 26, D-5300 Bonn 3, West Germany Steven Sperber, Department of Mathematics, University of Minnesota, Minneapolis, 55455 Minnesota,U.S.A. Harvey Stein, Department of Mathematics, University of California, Berkeley, CA 94770, U.S.A. Francis J. Sullivan, Dipartimento di Matematica, Universit~t di Padova, Via Belzoni 7, 35100 Padova, Italy Marko Tadi~, Department of Mathematics, University of Zagreb, P.O. Box 187, 41001 Zagreb, Yugoslavia Dinesh S. Thakur, School of Mathematics, Institute for Advanced Study, Princeton, 08540 New Jersey, U.S.A. Peter Ullrich, Mathematisches Institut, Universitat Mtinster, Roxeler Sm 64, D-4400 Mtinster, West Germany Bert van der Marel, Mathematisch Instituut, Rijksuniversiteit Groningen, Postbus 800, 9700 AV Groningen, The Netherlands Marius van der Put, Mathematisch Instituut, Rijksuniversiteit Groningen, Postbus 800, 9700 AV Groningen, The Netherlands
382
Lucien van Hamme, Faculty of Applied Sciences, Vrije Universiteit Brussel, Pleinlann 2, B-1050 Brussel, Belgium Guido van Steen, Dept. of Math., Rijksuniv. Centrum Antwerpen, 171 Groenenborgerlaan, B-2020 Antwerpen, Belgium Harm Voskuil, Mat. Instituut, Rijksuniversiteit Groningen, Postbus 800, 9700 AV Groningen, The Netherlands Taoufik Youssefi, Math6matiques et Informatique, Universit6 de Bordeaux I, 351 Cours de la Lib6ration, F-33405 Talence Cedex, France