rfl
Grinnell Industrial Piping, Inc.
PIPING DESIGN cnd
ENGINEERING SIXTH EDITION (Revised 1981)
ITT
PIPING DESIGN ...
1804 downloads
7528 Views
89MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
rfl
Grinnell Industrial Piping, Inc.
PIPING DESIGN cnd
ENGINEERING SIXTH EDITION (Revised 1981)
ITT
PIPING DESIGN AND ENGINEERING CoPYRIGHT 1963, 1971, 19?8, 1976, 1981 ITT GRINNELL CORPORATION
ll5fl]I crionell Industrial piping, Inc. AII tiEhtsresetved includinEthose undet the I
ntetnat ionat and Pan-Ametican CopyriEht
Convent;ons. This book, ot parts thercoL may not be reprcduced in any Iorm without permisston ot ITT Grinne Coeoration. PRINTED
IN TIIE sP 3000
U.S.A.,
1981
FOREWORD The plan of this book has been to compile in a single publication engineering data
and technical information for the use of engineers engaged in the design and application of pressure piping systems hitherto available only by consulting a number of sources. To this we have added considerable material never previously published. We have endeavored to cover, as broadly as possible, all ofthe more importantphases
of piping design and engineering. We gratefully acknowledge our indebtedness to all members ofthe engineering staff
of ITT Grinnell Industrial Piping Inc. and theITT Grinnell PipeHanger Division who
had a Dart in the production of this material.
fII
Cti"rr"tt Industrial Piping, Inc.
TABLE OF CONTENTS Page
yiii
Code Requirement s
E)CAi\SION AND
STRESSES
Introduction,
1
Nomenclature and Symbols.
2
.
Pipe Wall Thickness
2
Stresses. . Cold Springing Modulus of Torsional Rigidity
3 .
Thermal Expansion Srress
Intensification Factor
Flexibility Factor .
7 8 8
.
.
Expalsion Facior, c . Properties of Pipe-Curvature Factors
of Common Shapes 90o Tum .
Tables
11
..
r'7
20 20
Hooked Z Shape
2l U Shape with Equal Tangents . U Shape with Tangenls Lr / 12= 2 U Shape with Tang ents Lj I $= 3 U Shape with Tangetts Li I L;= 4 U Shape with Single Tangent U Shape - Unequal Legs. . . . UShape -Equallegs . . . . .
UShape-Modihed..
...
.
22 24 25
26 27 28 28
.
Two Plane U. Two Plane U - With Tangents Thee Dimensional 90o Turns
29
30 .
Expansion Bends. Double Offset Expansion Bend Circle Bend Exparsion U Bend. Expansion U Bend Tangents = 2 feet Expansion U Bend Tangents =R Exparsion U Bend Tangents = 2R . Expansion U Bend Targents = 4R
Double Offset U Bend
34 38 39
40 41
42 44
.....
45
Lines Inertias Center of GmYity
Centroid
.
Product of Inertia Moment of Inertia Functions of . Functions ofR
O
.
........
46 46 47 49 )l 51
Single Plane System Single Plane System Containing Circular Arcs
...
.
52 54
Multiple Plane System Containing Circular Arcs .
.
62
Multiple Plane System
.....
f,t)
VEI,OCITY AND PRESSURE DROP Equivalent kngth of Fittings Flow ofwaier in Standard Wall Pipe . Reynolds Number - Friction Factor.
Viscosity
Kinematic Flow ofwater in TypeZ Copper Flow of Steam in Standard Wall Flow of Steam Conversion Flow of Iow Pressure Gas in Standard Wall Pipe . . . Flow of High Pressure Gas in Standard WallPipe. . .
Tube Pipe. Factors
. .
.......68 -.....,,., 70 . .. . ,.. ... 72 ......72 ...,...,. 73 .,,...,,.. 74 ......, ., . .. 76 .. .. , ,. 77 . , . . . . . 79
TABLE OF CONTENTS Page
HEAT TRANSFER
80
PRESSURE-TEMPERATURE RATINGS. . . . .
.
.
81
Seamless Carbon Steel Grade B,
A.S.Tlvt. A53 and A 106 Seamless Carbon Steel Grade C, A.S.T.M. A106 Seamless Clxomium,Silicon-Molybdenum Steel A.S.T.M. A335 Grade p1 I 1/a% Chromjtm - th% Molybdenum Seamless Chromium-Molydenum Steel A.S.T.M. A335 Grad,e p2Z 2/e% Ctvomium 1% Molybdenum Seamless Stainless Steel A.S.TM. A312 and 4376 Grades 304 & 304H Seamless Stainless Steel A.S.T.M. 4312 and A376 Grades 316 &316H A.S.T.M. Chemical Requirements .
82 85
88
-
91
94 98
t02
Selection of Materials Piping and Tubing Materials. . . Fitting and Flange Matedals . . Bolting Materials . Gasket Materials Corrosion Chemical Resistance of Piping Materials. Pr-esure-Temperalure Ratings for Steel pipe Flalges and Flanged Fittrngs Alloy-Stee1 Bolt Stud Dimensions. Numbers for Ring-Joint Gaskets and Grooves . . Sugg€sted Specifications for Power Plant piping Materials
103
to4 105 106 107 113
122
124 128
PIPE FABRICATION Procedures . Pipe Bending Tolerances. . . . . Method of Dimensioning Welded Assemblies. . . .
129 130 .
133
FabricatingTolerances. . . . . Butt Welding End Preparation
134
Manual Shielded Metal-Arc and Automatic Submerged Arc Welding . . Manual Inert-Gas Tungsten-Arc Root Pass Welcling. Butt Welding Ends to ANSI 816.25 and p.F.I. ES-1 Typical Details of Bnnch Connections Brarch and Flange Comections Commercial Split Type Backing Ring ITT Grinaell Consumable Backing Rings Standard Pipe Bends Calculations of Pipe Bends kngth of Arcs for Radius
NUCLEAR PIPING
.
135
136 137 139
t40 1,41
t46
PIPE HANGERS AND SUPPORTS The Design of Pipe Hangen . . . . . The Determination of llanger Locations . . . . . Hanger Spans Thermal Movement Calculations.
149 1s0
.
150 153
Hangerload Calculations. . . . Center of Gravity of Bends and Elbows
1s6 158
Selection of the Proper llanger.
Rigid Hangers
Rollers .
162 164
.
.
168 170
Typical Pipe Support Specifications
vl
TABLE OF CONTENTS PIPE HANGERS AND SUPPORTS
. Materials . . Pipe Pipe. .. . . . Beam Dimensions Force Applied at Hanger...
Weights of Piping Materials
Page
(continued)
......172 ......., 198 .,.... L99 -.....2OO .,....201 .....,,....202 ........ . 203 ....,.204 ......,205
.
Thermal Expansion of Piping Insulation Weight Factors . . Deflection of Empty Pipe . . Bending Stress in Empty Bending Stress in Water Filled Minimum Distance to First RigidHanger.
GENERAI TABLES Thermal Expansion of Pipe Materials Propefiies of Saturated Stea.n . Tamna'arrr"o h- ar^ l^'
206 206
.
207
BTU Content and Theoretica! Air Requlements for Combustion of Various Fuels. Heat I-os from Horizontal Bare Steel Pipes . . . . . Wirc and Sheet Metal Guages .
Drill
207
201 208 209 209 209 210
Sizes
Americal National Wood Sqews Tap Drills for ANSI Pipe Threads Tap Dril1 Sizes for Unified and American Screw Threads. Safe Loads for Chains and Ropes Areas and Circumferences of Circles for Diameters in Units and Fractions Table for Gauging Horizontal Cylindrical Tanks - Flat Ends
Weight per Foot of Solid Steel Rounds Equalization of Pipe Discharge Rates. Equalization of Copper Tubing Discharge Rates . Safe I-oads on Steel Pipe Columns American Standard Taper Tfueads Anerican Standard Straight Tfueads . General Thread Information . Bdtish Standard Taper Tlueads Normal Engagement for Tight Joints.
TrigonometdcFormulas. . . .
211 216 219
220 222 222 223 224
.
225
22s 226 226 227
.
Natural Functions of Angles . Ilardness Comparison. . . . . . Properties of Common Materials. Weights in Lbs / Ft.3 of Air at Various Presswes and Temperatues. . . Specific Gravity of Gases Related to Free Ar . . . . . .
Temperatueconyenions
.,
..,.
228 230 232 232 233 234 235 236 237
.
hessureConversions . . hoperties ofwater at Satuntion Pressure . . Decimal Equivalents. . . .. . . Metric ConversionTable. . . .
...
Conversion Factors
238
hoperties of Pipe Index
244
250
Bibliography,
...,.....
vu
Z5S
CODE REQUIREMENTS
Codes fo! various piping services have been developed by nationally rccognized bodies. The sound engineering psctices incorporated in these Codes indicate the minimum safety requirements for the selection of materials, dimensions, design, ercction, ard testing of piping systems. By means of inte4retation and revision thes€ Codes continua.lly reflect the knowledge gained through the research and expeiience of the entirc industly. Generaly, piping Codes form the basis for state or municipal safety laws, Compliance with a Code which has attained this status is mandatory for a.l1 systems induded withir its judsdiction. Although some of today's piping installations are not witiin the scope of.Lny maldatory Code, it is advisable to comply with the applicable Code in the intelests of safety and as a basis for contract negotiaXions. Crntracts with valious ageocies of the Federal Government are regulated by FedeEl specifications or lules which have no direct connection with
the Codes enumerated below, Use$ of this book are cautioned that the piping Codes are now changing morc often than in previous years. Although the fotmulas and other data in this book are in accordance with the Code rles in effect at the time of this pubtcation, it must be recognized that Cod€ fldes may change, and piping engineering and design work pelfolmed in accoralance with infolmation contained herein does not provide complete assurance that all Code rcqufuements have been met, The reader is urged to faniliadze himself with the Code Editioo and Adderda which contain mandatory requirements applicable to his work, The A.S,M.E. Boiler and hessure Vess€l Code is mandatory in many cities and states in the United States and Canada. Local application of this Code into law is oot uniform, making it necessary to investigate the city or state laws which have jurisdiction o1€r the installatiod in question. Compliance witi this Code is required in al locations to qualify fot insuance apprcval, Section I: "Powe! Boilers" concems all piping connections to pover boilers or superheaters including the first stop valve on single boilels, ot including the second stop valve fo! qoss con]lected multiple boiler installations. Section refe$ to ANSI 831.1 which conlains rules for design and constuction of "boile! extemal piping". "Boiler extemal piping" is under the julisdiction of Section I and requfues inspection and code stamping in accordance with Section I even though the flrles fo! its design and construction are contained in ANSI 831.1. Section II: "Matedal Specifications" gives detailed specilications of the materiat which are acceptable under this Code. Section "Nuclear Components " co'Icems all nuclear piping. ft is the responsibility of the designer to determine whether or not a particular piping $ystem is "nuclear" piping, since Section III makes this determination the rcsponsibility of the designer. ln geneol, piping whose failurc could result ir the release of radiation which would endanger the public or plant persormel is considered "nuclear" piping, Section VIII: "Unlired Prcssure Vessels" concems piping, or|ly to the extent of the flanged or threaded connections to the vess€l; exc€pt that the ertire section vill apply in those special cases where unlired pressure vessels are made from pipe and fittings. Section IX: "Welding and Brazirg Qualifications" establishes the minimum requilements for Crde welding.
I
III
Section
Xl:
"Rules for Inseivice Inspection of Nuclear Power Plant Components" contains rulos for the
examination and repair of components throughout the life of the plant, A.S.M.E. also sponsors and publishes the following American National Standards on piping, Variou$ U.S. and Canadiao legislatures have adopted some of these standards as legal requircment$ for that piping. The minimum s€fety requirements of these standards have been accepted by the irdustry as a staidaid for all piping outside the jurisdictiol of othei C,odes. The piping systems covered by these standaJds are lirted belorv: 1: Power Piping 831.1 2i Fuel cas Piping B31.2 3: Petroleum Refinery Piping B31.3 4: Liquid Petroleum Transpodation Piping Syslems 831.4 5: Refr(geration Piping B31.5 6: Cas Tmnsmfusion and Distribution Piping Systems 831,8
I'f'T'
(IIiIN\I.]I,I, IIPIN(i DUSl(iN A\D
DN(IINI'I'IIINC
EXPANSION AND STRESSES INTRODUCTION
Iu order to
of expausic,rr .rrrd is necessary to kno$':
determine the effects
stresses $'ithin a piping system,
it
1. Which Code applies to the system. 2. The design pressure and temper?ture conditions. 3. The material specification. 4. 'l'he pipe size and nall thickness of each of the pipirg components. 5. The layout of the system inclu iing dimensions and the thermal movements, if any, of the terminal points.
6. Limitations of end reactions on termilal points as established by equipment manufacturers. Having determined the basis of the problem, the applicable Code l'ill establish minimum safety requirements for the material at the design conditions of pressure and tcmperature. Some Codes s'pecify thermal expansion Iactors and moduli of elasticity for commonly used piping materials as ryell as forrnulae to determine stress intensification factors and flexibility factors for piping components. Beyond this, the Codes impose no restrictions rvith regard to analysis methods or procedures. Hox'ever, Codes do state that in calculating the flexibility of a piping system betu'een anchor points, the system shall be treated as a tvhole, and that the significance of all parts of the line incLrding restraints such as solid hangers or guides shall be recognized. In addition, Codes require that calculations shall take into account stress intensification factors which apply to components other than sections of straight pipe. The ANSI 831.1 Code for Pressure Piping states that formal calculations or model tests shall be required 'where reasonable doubt exists a,s to the adequate flexibility of a system. In the absence of better information, the need for a formal stress analysis for a two-anchor system of uniform size is indicated when the following approximate criterion is not satisfied: DV
\tr -j*
u)'
lvhere D = nominel pipe
I : U: Z
:
Page 2 illustrates the application
of Code formulae
for pipe wall thickness.
<
o.o3
size,
in inches
resultant of movements to be absorbed by pipe line, in inches anchor distance (length of straight line joining anchors), in feet developed length of line axis, in feet
Use of the simplified methods, formulae and tables shown on the following pages rvill facilitate the solution of piping stress problems.
Page 7 gives thermal expansion factors for various piping materials. Page 3 to 5 define types of stress, the stress range concept and methods of combining stresses. Page 5 discusses cold springing and the ANSI 831.1 Code allowance for cold springing. Page 6 shows values for the modulus of elasticity and torsional rigidity of various piping materials. Page 11 gives the product of modulus of elasticity and the increment in length designated as Expansion
Factor
C.
The dimensional properties of pipe, stress intensification factors, and flexibility factors, for elborvs and bends are tabulated on pages 8 to 16 for all of the common pipe sizes. Formulae for derivation of dimensional propcrtics are given orr pagc 7 and formulae for stress intensification factors and flexibility factors for elbol-s and bends as rvell as other piping components &re given on page 8.
In order to simplify the calculation of stresses and anchor forces. trbles hare ["en pieprred lor various configurations commonly encountered in piping work. The first group, "Tables of Common Shapes" and examples demonstrating their application, is found on pages 17 to 32. The second group of tables, on "Expansion Bends" and examples of their use, is shol-n on pages 34 to 45. \lihen the configuration of a piping systern is such that the forementioned tables and short-cut methods lill not apply, it is necessary to solve the problem using the basic equations of analvtical methods. 'I'his involles use of line inertias of the various piping components for rvhich values may be computed using the tables and formulae given on pages46 to
81.
Basic
equations and representative examples illustrating their application are shown on pages 52 io 6? for the follorving cases: Single Plane System Single Plane System Containing Circular Arcs Multiple Plane System Multiple Plane System Containing Circular Arcs
The piping engineer lho has a working knorvledge of the information outlined in this section can determine the anchor forces, moments and expansion stresses in rnost of the cases he encounters. For the analvsis
of speciat
cases such as branch ,,onnections, variable
or couugated sections, hinged anchors, moving anchors, etc., reference should be made to the bibliography.
]TT
GIII\NI'I,I, P]PI\G
DF]SI(iN
A\D
]IN(iINI.]I'ITI
\(;
NOMENCLATIIRE AND SYMBOLS
DETERMINATION OF PIPE WAI,L THICKNESS
The nomenclature used in this section rvill be in accordance Nith the tabulation shorr-n belorv:
The pipe rvall thickness is determined from the applicable formula of the pertirent C'ode as illustrated in the following cxample:
A1 Inside Area of Pipc Cross Sectior .4,y N{etal Area of Pipc Cross Section C Allorvarrce for 'fhreading, \lechanical Strength,
Giuen:
ard/or corrosion (inches), Cold Spring Factor
c
Expansion Factor (A function of the Product of
D d
and A) Center of Gravity Outside Diameter of Pipe Inside Diameter of Pipe
A
D" E
F 1,
Ip
I, Iza
Z
M P psi
for
specific
conditions) Length (feet)
Length (inches) Moment
,PD '^ = zs+ C
q
Section Modulus of Pipe Cross Section Pipe Wall Thickness Minimurn Pipe Wall Thickness Torque, or Temperature in "F
tm
T
r,t x)
Indicates Horizontal Direction (East-West)
at
Indicates Vertical Direction (Zenith-Nadir)
rl
-l a)
=l
in. (for l0 in. pipe)
from B31.1 Code from B31.1 Code
:
from page
10.75 in.
S ot 610. F
:
15,000 psil
Sat
:
14,350 psiJ
7oo"
F
ssr680'F:
14
from B31.1 Code
I
:
12]/6 from A.S.T.M. A-106
at 90' to
14,350
+
?(15,000
-
14,350)
:
14,610 psi
By substitution:
x
"ffi*H,.
t,,L
*
o ooo
:
0 427
in'
which is the theoretical minimum for rvall thickness without allorving for rvall thickness tolerance. Thickness adiusted for wall thickness tolerance:
-
Indicates Horizontal Direction (North South)
0.000
U:O.4
Stress
xl
ol
:
from 831.1 Code
Solution:
Unit
t
Wall Thickness (t-)
w-r L
Wall Thickness Tolerance
I
r
A.S.T.\I. 4-106 Grade B l0 in.
Datq,:
Pressure (gauge) (psi) Pounds per Square Inch
s
R
680" F
Nlaterial Nominal Pipe Size
D
Expansion Bend Factor N{ean Radius of a Bend, Reactions (Forces and Moments) I{ean Radius of Pipe Wall Allorvable Stress
a
1,200 psi
Temperature
Nlinimum Nominal \Vall Thickness (t)
Total Thermal Expansion Nominal Pipe Size Modulus of Elasticiiy at temperature (oF.) Force (in direction indicated by sub-ccript) Stress Intensifrcation Factor Moment of Inertia of Pipe Cross Section Moment of Inertia of a system about the X axis Product of Inertia of a system in the Xf plane,
Factors as indicated (constant
I
Section 1, ANSI 831.1
Pressure, (P)
lind.' \{inimum Theoretical
etc.
L
Code
0.+27 1007a
-
r2+%
1.00
-
0.125
0.427 0.875
-- lt ihl\ rn.
The nexi greater commercial rvall thickness is found from page 14 to be 0.500 inch rvhich corresponds to Sch.
ttO.
In other s'ords 0.500 inch nominal pipe wall thickness is the thinnest commercial rvall rvhich, r'hen reduced by the full tolerance of I2+7a, satisfies the Code formula for l-.
EXPANSION AND STRESSES
sp is negligible and is not considered in
STRESSES
An element of pipe wall is subjected to four stresses as shown in the diagram. The following gives the intensity of these stresses and the manner in which they may be combined. NorE: In order to avoid additional sircsses the suDDortg should be designed lo carry the weighus involved, to permil
these
computations, sa is the sum of two component parts:
1, Torsional stress resulting from thermal expansion, (This condition occurs only in multiple plane systems. )
''
'*4
unrestrained lhermal movement, and prelent load sbifting due to ch&nge iD position.
:
T 25^ --
2. Direct shear stress is negligible and is not, considered in these computations.
: : sc sn : sr : sr
The ANSI Code lor Pressure Piping 831.1 recognizes the concept of a stress-range with regard to stress due to thermal expansion. Stresses due to thermal expansion tend to diminish rvith time as a result of local yieldiug or creep. This reduction of stress rvill appear as stress of opposite sign in the cold condition. This phenomenon is knorvn as self-springing ol the line and is similar in efrect to cold-springing. Thus, although the hot stress tends to diminish with time, the sum of the hot and cold stresses for any one cycle lyill remain practically constant. This sum is called the stressrange and the Code lor Pressure Piping defines this allowable expansion stress r&nge in terms of hot, and cold tabular S values as:
Longitudinal Stress Circumferential or Hoop Stress Radial Stress Shear or Torsional Stress
sr, is the
s,4:/(1.255"+0.25Si)
zun of three component parts:
1. Bending stress due
I'nr ctrqioh+ nina.
to thermal
expansion.
Sl : So
8l :
M
sB:
.f:
-
For curved pipe:
88:.c
M ?
A,
Both significant
stresses
AM
act in the same direction,
ss is primarily due to internal pressure
sc:P-
'2t
S value) for
cold
allorvable stress (tabular
S value) for
hot
condition stress-range reduction factor
for cyclic
con-
dition Total No. of Full Temp. OveiExpected Life
f
and and and and and and
0.9 0.8 0.7 0.6 0.5
less less
1.0
less less less
over
The stress due to thernal expansion which must not exceed the allowable expansion stress range is called expansion stress and is defined by the Piping Code as: sa
therefore:
8Z:Sa+Sp
allo$'able stress (tabular condition
7,000 14,000 22,000 45,000 100,000 250,000
stress due to internal pressure.
Sp:P:'
allowable expansion stress range
CycJes
2. Bending stress due to weight of the pipe. (When the piping system is properly supported this stress becomes negligible and is not considered in these computations. ) 3. Longitudinal
:
: l(ssfln
1s.y-
The Piping Code further states that the sum of the longitudinal stresses due to pressure, \\'eight and other sustained external loadings shall not exceed s/,. This includes the longitudinal stress due to internal pressure, s1,,
defined above..
I1'T GIiINNI,]I,I, PIPIN(I DDSIGN AND ENGINI]EITIN(i \\'irik: thc
A\SI
coruirdel',s strcsscs
B31.1 Corlc lor Pressure Pilrirrg rltrc to thcrntal crpllsiorr scllarately
from primary stresses due to pressure, l,eight, etc., some other Codes require computation of combined
stress and give formulae for determination of allol'able combiued stress values. trVhen the torsional stress is negligible (as in single plane systems) only the longitudinal stress is significant
and the combined stress, or resultant fibcr stress, is determined by thc formula:
the use of the
C. \\rhcn the anchor forccs and bcuding moments arc determined by the use of a force diagram, us
shorvn on pages 56 to 6?, examinc the systenr for the maximum berrding moment, .L1, in both the straight and cun'ecl pipe. Apply these l,ahres for l1 in the appropriate formulrr:
When the torsional stress is signilicant (as in most multiple plane systems) the combined stress, or resultant fiber stress, is derived from the follorving s
:
*[", +
sc
+ /4Gl + (sz -
scF]
Giuett:
Section I, .{NSI l}31.1 A.S.T.M. Specification 4-106 Grade
M or ss: S-_ $l}: I.I ( x Tbe greatest value ol .sa must not excccd the Allorvable Stress Range of 21,988 psi. \Yhere the torsional stress is significant (as in some multiple plane systems), the Expansion Stress, sa, is:
Example :
(lode llaterial l)ressure
: r{s6f a a15.; For the proper valucs of s, and s" it ss
l.J
1200 psi
'l'emperature 750'F
:
IL
40 in.
Dala:
: -1u : s- : ,4/
+C./ ln(nes12.76 inches!] 24.52
inchessi
d:1.0 ) : 15.000 nsi l *n. n ^J"' I : Sat ?50. F 12,950 psi )
from page
13
from
A, 4it.7 sp = P= = 1200 -::4M LZ.IO
B3l.l
Code
:4298psi
Note that this figure does not exceed the s at 750' F value as required by the Piping Code
{ 6sq" 75q. : 1(1.25 X 15,000 + .25 X 12,950) : 21,988 psi this value represents the maximum expansion stress lhich the Code requirements rvill allorv rvithin the .25S,1
Solve the formula for Case I and then for Case II. The higher of the trvo values for s is the f'Iaximum Rcsultant Stress of the system, $hich must not exceerl the Allorvable Stress Ilange ^S1.
The Longitudinal Pressure Stress and the Maximum Allowable Stress Range
p
The maximum value of s3 and the accompanying value of s1 at the same point. The maximum value of s7 and the accompanyirrg value of s6 at the same point.
Example
I,'iruT:
Sa = /(1.25S.s
is necessary to
inspect the system to find:
I.
l'ipc Size 8 inch Sch. 80 lladius of lJerd i)D" : 5 X 8 in.
factor, must not exceed 21,98g
Il. In the Tablcs of Expansion Bcnds on pages 34 to 45, the Allolable Bending Stress of 21,98E psi rvould be used directly to cnter the tables xs shorvn in the examples oll pagcs 52 to 6?.
s:sz:sa+sp
formula:
A'1,
psr,
p)
system and rnay be applied to the stress calculation in auy one of the three methods shorvn belotv:
A. In the Tables of Common Shapes on pages 1? to 32, the maximum bending stress, found by
:
Giuen:
Code \Iaterial Pressure (P)
Section l, ANSI 831.1 A.S.T.M. Specification A-106 Grade 1200 psi
Temperature 750'F
Size 8 inch Sch. 80 Radius of Bend 5D,, : 5 X 8 in. Pipe
:
40 inches
Data:
: I: Ar : d
7.625 inches 0.500 inches 45.7 inches2
Aa:72-76inches2
from page
13
: 24.52 inchess i:t.0
S-
: S,1 75s. : Ser 6bo.
15,000 psi 12,950
from
1131.1 Code
I:|
EXPANSION AI{D STRESSES
Find: 'fhe Allol'able Strcss Ilangc, Sa, and the Exprlsiou Stress, sr, of the ijystcm. SoLtrtion:
: /( t.25^S n * .25 S zio" r') "t "16,-a. :1(1.25 X 15,000 + .25 X t2,950) :
51
21,988 psi
Fiud valucs for ss arrd s1 in either of the trlo methods shoNn l)tto\1':
A. In the trbles of Commorr Shapes on page-< 1? to 32, by substitutilg the appropriutc formulas:
*sa
:
and /,1 flctor':r i:r ilie
14,800 psi
*sr =
""
A'6
5780 psi
: vG,l +lGt
:
Vfr+,sool- + {ib78oP:
18,780 psi
which is less than the allorvable stress range of 21,9E8 psi.
B. When the anchor forces,
bencling moments, and torques &r'e detcrmincd by the use of a force diagr&nt, as showt ou pages 56 to 67, examine the sJ'stcm to iinrl the conditions lor Clse I and Oase II, as iudicrted aboyc: Casc I
:
*Nlasimum 11
*I'ut,,u,.tu:
",
: lI ,i_, 7
sa:2.L: "u
X 1.0 -
to
:
s,
:
2
r
9.600
2 X rL-o2: 138.000
l
tlrat
Da 15,i1G psi
(1
_
F 3c)#E
ilch
pounds
4.178 psi
5628 Psi
r1+r;sl
:
10,b77 psi
The N{aximum Expansion Stress ss is 18,721 psi, rvhich less ',han the r\llo\\'rble Combined Stress Range,
of 21,988 psi.
* Assumed values for purpose of illustration.
(e)
E"
Ith
lith the lur.thcr condition
islossthan
I
rvhere
: Sr' : /i" : ti, : /? : g
II
138,000
:
,s, .'X
1565Psi
is
,!
_
n.:[rL -f^r,l']a Jc L,,J
15.132 psi
219,600 inch pounds
X 1o
-zl.sz r-isozst
"In a piping system with no cold spring or an equal percentage of cold springing in all directions, the reactions (forces and moments) of Rr and B" in the hot and cold conditions, respectively, shall be obtained as follows from the reaction I derived from the flexibility calculations based on the modulus of elasticity at room temperature, -8", using equations (9) and (10)
lhichever is grcutcr., lrrtl
xzl.n: Crse
:
&no useo,
R": CR, or
- "{i;. rjzl-+ t, l5u5), -
sr
method of obtaining the designed cold spring is specifred
7ti,800 iuch pounds
70,800
: *,11.,.,"*. : r
timc lather than thejr range are significant. Credit for cold springing is accordingly allorved in the calculaiions of thrusts and moments, provided an effective
1r,
2l.ST
*\Iaximum ?
A piping system may be Cold Sprung, or Prestressed, to reduce anchor forces and moments caused bv thermal expansion. This is ar"complished by shortining lhe overrll length of pipe by any desired amounl, not in excess of the calculated expansion. The amount of Cold Spring, C.S., is usually expressed as a percentage or fraction of the iotal expansion A, This procedure is recognized by the ANSI Code for Pressure Piping B31.1 which states: "The beneGcial effeot of judjcious cold springinq in assisting tlre syslem to rttain its most fivorible position sooner is recognized. Inasmuch as the life of a system under cyclic conditions depends on the stress range rather than the stress level at anv one time. no crediI for cold spring is allorved rr ith regird to stresses. In calculatins end thrusts and moments acting on equipment, the actual reactions at any one
378,-100 inclr porrr
3;3.100
z
COLD SPRINGING
cold spring factor varying from zero
for
no
cold spring to 1.00 for 100% cold spring computed expansion stress, psi modulus of elasticitv irr the cold condition. osi modulus of elasiicity in the hot condition, isi
nnsinrum reaction for full exprnsion ranee Lrrscd on Z" rvhich assumes thi most spveie condition (100/6 cold spring, rvhether such is used or not), Ib, and in-lb. R.,Rtr: maximum reactions estimated to occur in the cold and hot conditions, rcspectively, lb, and in-lb. If a piping system is designed rvith different percentages ot co|l spring jn various direclions, Formulas 1g.1 and 110) rre not applicable. In [his crse, the pjpine system shall be analyzed by a compre.hcn.ir-. mirhodl 'l'he crlculatcd hot reactioni "hall be based on thooretical cold springs in all directions not greater than ! of the cold springs as specified or measuied.
ITT GRINNELL- PIPING DESIGN AND ENGINEER]NG
(oo
;; ?9 .5 L') FI
.f d)
& I
dN
a
Fa t>, El
o ;d cr :r,
+1
q\ oO
ro 6t
r\
c.l
i
c.,i
oco
(oo
ON
-OO
'd.;
O@
co@ N6
€Cl
f)o
H
r).:i
c.l
;d cl
..i 6r
@ci c;di N
r-o ;;
N c.t
:o
Xt
oo
&t
R
ni oo
@ct
ca(o
co
't:
Or
^
d
;;
cr*d
.:tr (o
r-d -
.ir f-
o H
c.r
R-
Rg
$t-
oco
oo
o'o
oN
O
@c)
Ci !O N
NO N-
c\
q1 t-o
.'l q
coo
99 ooi
+rH !?o Cr-
i- 0o \o Cl;
F+r Nc\r
1g Fo
qcl q;
qq a:
@qo !?o c.r:
coo di
cr
r- f-
ro$ oN-
!: i{ o-
:n{ \d cr-
r.-
ct q9J oii
(oo cda.i -
qg
gg o):
+, !o t'-:c; 6l:
cr+ CJ 6t:
lo00
Tq @-a
;
r.- .f)
;d 6.'
H ?>
lOO
F-..
i H
o. l 5iF
n'6a U) >'=
/.\ Fl r! .o l' t < oo
)'
3g o 9E I aa
E
00
;d
Y 4,' xt{ iia 5r5
Z
oi
*ci
d iA =1i-
;.i
c.i
oo
hd cr-
qn t-o cri
.!;
Rg
o
= N
ro
d...; Ni
o;
c\
6 ,; N
"j nr
,..i
6ia
bt (5
8R E
E^.ii 3;Q @ia
:.$9
PP
2 €
9; .' ;3
g6
E; d,.i E€
;3
B
3
'e R
c
= 'e
:'s *E ;p E4 n I *3
OO
>a 1?E
F: 5E fjE6B
E--
b? i()
6A eF
E
6 i a^
z
EXPANSION AND STRESSES
ocr ot caN co .i -o aa co-
o :o r.? No
@o
1q
@o ,:l
co:
on
ola r:a
cir
oo
99
1q 1? ':n q;; 3
*;
^^
Fco
o
c.i
a? I
9?< €!9 ,.; od
9,: ?a 9P n? 99 ?1 \9
-9lr
J.;
dF
clfJ
F E
aq
cQ€ .!'!
q.D
,:o
.r@
?q
cl+ cl .i
Oq!
ie
-a
Ae oci
Qa
s.! a e1 c.]9 9q
c -r
.l 6l
99
cro
91
qlo
1e
P1
6?Q
F
z a
11
F.l
E E
ac! 4.6'. -:
ar o:
19
cr @o
::. ;o
<{
ia
-aE
1o
F<
9p
.r@
?i?a @-+
o@
+{t
dc
oo .b& -o od *;
lcl-n n.! Oro
6.r.a
r\o
oci
No
.i;
co..> @v) ;;
z X
Qca
ots-
9r
?-
co
'{o qt-
cr
?t
rN
@9 .D q9-r t9 m.6
Ecr ts-
r-
!.)o c\ Ai
'.lc) ;c;
?!
?i
::5 .-
q){ ;c
F-
sa
rta
nFa
cQ
9a
*a
1n
.o.) i:5
66
--
--
*-
of) o-
Nf) ;-
-; F-
665 ;j
nq
-{a aa
c)cr
!o FA
Z:
n.a
E>
-i.-o
ttl
>h C::
.9?
€: x- a *S =^ +1 9i E; r,; .!d sE EEr -E€
I .g
v" =; i
.:
€ s
E{ < .iho E-
EF
.7 -a
El z= ;! isi R i E,-. tu
ie a}
R
.{ " 2 .-
ri .ab E
.iv ,i R E Io :! EZ = F : 6G E
6E
E
fie
df
4 .:p
?
E F
Fg E-
f ;i
iA
ITT
-t 5;' 9 --i : ry ,:; .:;
(iItI\NI,]I,I,
PIPINTI DI'SIGN AND I]N(;I
E! ::
I'IiItING
s! EE
3
aa-
N
E; ;,
=;-" ;r;
q
s
:
F c
qF 4 !
:=
T-_
nl
I
U
?'
oZ
r; :: -' I -ii; L i i " . n: a ( ::
| 4:
9.c
I .:': L ; _
@
i "-
o U
rr l.,
Ll-
z |
.totaDJ
Nl
_
t
_:.p
=
f,r [fr
z F z LU
LU
V F
,l
o z
--l ^
t-
F J
.2
.< t^
.. l-"
dl:"
alx
l-
^l jL*
ilu
,*1" lF-
.il'*
d
F
c.
-];
a-:<
!
i
i
ir: !vl : o" ta r;; ;"
-.
l'*
: i
i:U ::1 or'
3
j.n
-
l
: o il! !::
hc! i: o:
a"
6? E
o'= 9 -:; > -:
::i -
E
-; i;
: --:lF-l' P-
: -: t .*,r: 1z+ "-;, = --
-
- :; -:::; ;:9 ---::-:-.:+, t ! 2." =; -r ,; =.1 i. T:.:"*!;e - - - a !::r; i a t 1 - : j j :::; ! ! ri *.!g:"-".'-.-'a _: -i,1 !I:,: :':;1E91; t6ZE-4,-' /
{:
'=
:. ?: " 2
a i\f
ic.
,3:
9
;.os
;;
a,: :;
.' 1a \;
;.
+ ' a !. :;
F
st-
+
;':
3l:
;
a
[
! a " -:
tru'E
l:
ti _il =-7 :-
, -
t:
2
LJ
;-
-:
'a .-r =) aP
; d ; *
-11 - ! _i:
'i \! .= - I ,;
lJ rolroj rroj
(lrlrqrraLj prro | .loltol ! lrsuel!l sssrlS
F
r
!r
: E a+
a=7 t
od
' : '
!a
-a: __
La
u(J
ti;;.;LzlE ia,!;o;1 'y: -=^v,,i=-d
; ": .:=-tr;-: l:9:-::= ,i-
.9
jbd'-,o(J:
!!3 1Ld - iE
99=g::
-4i..1-" 9; "i:,:t
-.
: B
-
EXPANSION AND STRESSES
STRESS INTENSI FICATION FACTORS Table D-2 Component
Sketch
Stess Intensifi cation Factor
MEAN RADIUS
r > 3/16 and 6/r < 0.1
l=
1.0
t<
3116 or sh > 0.1 i = 1.8 foi as welded i = 1.0 for flush welds
Buttwelds
6 = allowable mismatch
lF.l .*
ANSI 831.1 Figrres 12?.4.4 (a), (b) and See
Ii\
Fillet Welds
30d Taper Transition per ANSI B31.1 Figure 12?.4,2 and
(c)
i = 1.3 for filet rvelds in Note 1.
as
defined
i = 1.9 max, or i = 1.30 + 0-0036 D k + 0.225 | t
ANSI 816.25
Concentric Reducer per ANSI 816.9
i = 2.0 max or t = 0.5 + 0.01 a tD> (see
t, t"
Note 2)
ITT GRINNELL
-
PIPING D]'SIGN AND ENGIN]'ITIIIN(i Table D-2 (Cont.)
Stress Intensifi calion
Component
'=" C) See
Branch Connections
Figlre D
u
|actor
(t;j
ce
1, Appendi]( D
ANSI 831.1
(see Noies 3 and
4)
Notes for Table D'21 1: -Note -'St;ess
intensification facror of 1.3 may be used for socket weld fittin8 if toe of weld blends snroothlv lviih no undercLrr wrln pipe wall as shown in the concave, unequal leg fill€t weld of ANSI 831.1 Figure 127.4.4.
Note 2: The equation applies only if the following conditions are met: (a) Cone ansle, a, does not exceed 600, and the reducer is concentric' (b) The larser of ,r /11 andt2/r, doesnotexceed l0o. rc) th< watl rhickne\s b not les( lhan I, Lhroughourrhebodlofrher.ducer.er,cptinandimmedi,lell lindrical p.rrion on Ihe smdll end..vliere Ihe rhickne's rhall nol be rc's thJn 1?
Note
3
|
The equation applies onlv
if the following conditions
udiacPnr Io
llr. c)'
are mel:
104 3 are met (b) The axis of the branch pipe is normal to the surface of rhe run pipe lvall' measured berween the centers of adixceni branches along the sufface of (c) - For branch connecrions in a prpe,lhe arc distance radii in the longitudinal direcrion or is not less than lwo th" ;;; ;;" is not tess ran tirree t-i-* ttt" *. of iheir inside .t their radii r long lhe .ircumfe' ence of Ihe run pipe iir""- it i
(a) The reinforcement area raquirements ot ANSI 831.1, paragraph
"'rrn (d)Theinsidecornerradius,/r(seeFisDl)isbetweenl0pe'cent3ndsopercentof4' (e) The outer radius, r, , Gee Fig. D-l)isnot less than thelarserof ?),12,(Tb+ v)12 [for Fig D-l(c)i or?'fl2'
(f)
The outer radius,
/3,
(see Fig. D-1) is
not tess than the larse' of
(r) o.oo2 0do (2) (b)
2
(Sh 9)3-times the offset for the confisurations sho$t in Fiss D-l (a) and D-l (b)
Rnl4- < so
and /'r?/R'?l
< 0.s
The following nomenclature applies to Figure D-r: ri = inside radius of branch pipe, 'n. /;= mean radius of branch PiPe, in. ?i, = nominal thickness of branch pipe' in Rn- mean rcd'us or run PiPe. in 71. = nominal thickness of run pipe, in. do ourside diameler of branch. jn Tb, 0, \, 12, h, rp I a.e defined in Figure D-l ^nd thickness ofrun pipe, calculated asa plain cvlinder /r = rldoirnum r;quned
Note 5i Factors shown apply to
10
b
endinS; flexib
ilitv factor for iorsion
equals
O
9'
EXPANSION AND STRESSES EXPANSION FACTOR, c Temp. 1.
.F
70
Carbon
Carbon
Steel
Steel
c
=.30,,; 0
100
1i0
98
c>
.3o7a
C-lIoly
.
(
Cr.-\Iolv (cr S 3%)
Cr.-\Ioiy
57", < Cr.
<s%)
0
0
0
40
40
35
r06
106
Austenitic Stainless Steels
Cr. Stainless Cr., 17Cr.
& 27 Cr.
113
90
160
171
171
149
232
t;0
224 291
244
244
2t2
323
315
271
114
204 261
391
335
500
326
396
603
389
350
365
391
100
436
467
510
i00
20
Cr'
Wrought Iron
Ni
0
t00 300
25
Steels 12
0
0
47
44
t25
120
204
195
287 352
368
434 541
547
699
629
5S8
794
520
716
681
893
590
809
768
584
626
626
664
711
711
603
796
796
672
989
659
901
886
886
714
1089
730
995
946
909
97,1
971
815
1189
799
1088
1035
996
1008
1068
891
1292
474
1186
1125
1038
1113
1113
s29
134,1
909
1235
1171
1159
967
1395
946
t2a4
1216
1208
1005
1448
983
1256
1043
1500
1022
1384
r303
1081
1i,52
1061
1435
:r00
1351
t12l
1097
11184
!?;
1398
1161
1659
!'50
1445
1200
1713
117
!;;
1192
1240
1766
1212
1634
i L)00
1538
1278
1820
1250
1681
1l;0
1639
1928
1328
1781
I lr)0
1737
1435
2036
1404
1879
1511
2114
1480
1980
600 827
;00
;i5 s00
s50
Expansion Factor c
:
Expansion in inches per 100 1728
X
1134 4
ft. X fc
100
PROPERTIES OF PIPE
: . Streight and Curved Pipe D, : Nominal Pipe Size D : Outside Diameter I : Wall Thickness d : Inside Diameter :D-2t
Inside Area
, ra-4
Iletal Area
a^:d(D-t)
Moment of Inertia
Ip :
: Section
Modulus S-
:
0.0491(D4
-
0.0625A^(D,
d4)
+
d2)
=L) I1
ITT GRINNEI,L - PIPING DESIGN AND ENGINUI'ITING PROPERTIES OF PIPE l'ipe
:l:r
d
Size
Sch.l
Out-
No.
\\'rll
Insitlc I)iem.
Nall Thnrk-
Inches
Diom.
Inside
NIetal Inc]ros'
Inches
Ip \Ioment ol
Inertia Inches'
std.
1.049
0.133
0.86.1
0.,19.1
0.0874
0.133
EO
XS
0.957
0.179
0.719
0.639
0.1056
0.161
0.815
0.250
0
.522
0.836
0
.1252
0.190
xxs
0.599
0.358
o
.282
1.076
0.1405
0.214
40
srd.
1.380
0.140
1.490
0.699
0.1948
0.235
80
xs
.278
0.101
1
283
0.881
0.2418
0.291
1.160
0.250
1.057
1.107
0.2839
o.342
0.896
0.382
0.63r
i.534
0. 3,111
0. 411
1.610
0.145
2.036
0.799
0.3099
0.326
1 . 500
0.200
|.767
1.068
0.3912
o
1.338
0.281
1.406
1
.429
0.4826
0.508
1.100
0.400
0.950
1.885
0.5678
0.598
3.356
1.075
0.ri657
0.5iil 0.731
.315', 160
1i"
1
1.6ti0' 160
XXS
r+'
1.900'
=\.-
2 067
10154
2',
2.3r-5"
2+',
2.875',
3.500"
;l
1.939
rl-l_
0.218
2.953
| .477
168s10313
2.240
2.190
1.1626
0.979
1.503 0 '136
L.774
2.656
1.312
1.104
4.i-88
1.704
1.530
1.064
4.234
2.254
1.925
1.339
2.915
2.353
1.637
""1,,".. ',', |., ",
2
.464
4.028
2.872
1.988
3.068
7.3C3
2.228
3.017
7.721
2.900
6.605
3.016
3.879
2.226
2.626
5.416
4.205
5.033
2. E76
5.466
5.993
3
268
4.788
239
2.3C0
4.000'
t2
,10
sid.
.412
0.8679
l
_
.
3.513
H "a*
9.89
.425
Radius of Curvaiurc Nomincl I'ipe l)ianeters
Long
lirdius ttrtliLrs
Inchcs3
1" 1
Short
Section
llodulus
40
i
Fa ::tors /i and
s,,
k
i
''"::1
3
4
5
4.33
1 .l.t
1.08
r .00
1
.71
2
31)
1.31
.00
1
100
0
100
1 1
.00
.00
1
.00
.00
.98
100
1.02
1.00
.00 1.00
1 1
i
1.21 1.00
1
.00
1.00
1
.00
100
1.00
1
k
100 100
.00 1.00
1.00
I .00 1.00
1
3.63 | .5'2
182 100
1.30 1.00
1.09
100
1.0r)
100
2
+t)
1
.00
1.00
100
1.00 1.00
100
IE
1.i5
1.00
1.00 1 .00
1.00 1.00
100
.00 .00
1.00
1 1
389
1.95
146
.60
1.01
1.00
k
1
i
i
5..15
h
i
2.00
k
l
t
i
1.00 .00 .00
1 1
1'
5.8,1
2.09
397
h
|.62
i
1
i
1.03 1.00
i
2.60 | .25
0,1
1.6:
li
183
I
1.00
h
1.08 1.00
i
.00
1
.00
100
1.00 1 .00
1.00 1 .00
1.00
1.67
| .32
100
1.10 r .00
1.00 1.00
1.00 1.00
1.00 1.00
1
.00
1
.00
100
1
.00
1.00
1
.00
1.00
6.86 2.33
1.78
k
4.69
3.13
1.81
1
1.00 1.00 I 1.00
1.00 1
.00
1.00 1.00 .00 1.00 1
.38
]rrc
00 1.00
1oo
1.00
1.01 r.oo lt.oo 1.0c 1.00 1 1.00 I 0o 1.00 r.00 1 00 1.00 1.00 I r.oo Ioo r
r.oo ooIroo l1o9
1.00 1.00
i33l
k
128
1
1.00 .42
.1 95
2.45
1.E7
.00
1.00 1.00
101
7
1
1il1
1.97
I
r+s
1
]t
N
II
.00
1
1.14
i
i
.00 .00
1
1.93
4
1 1
1.00
ffi 1.00 1.00
k
117 100
.00
1.00
100
1.1e 1 .00 .59
1
I .00 I .00
1.32
1
.00 .00
1.00 1.00
1.10
3.87
1.00
1.00 1.00
2 ...)1
5.80 2.08
1.00
I .00
4..10
I
.00
1.00
r .00
1.00
1.00
.00 1.00
.00 1.00 1
1.73
1 ti6
100
.00
4.,10
k
i
100
.61
|.73
k
1 1
1
.00
100
.00
1
2.2t-
6
i
100
1
1.00
k
.21
2.63
1.7r
k
1
1
.00 I .00
.00 1.00 1.18
1
1186 I 100 1118 I 1.00
1 1
.24 .00
EXPANSION AND STRESSES PROPERTIES OF PIPE Pipe .lize
{Jut-
^iillii''
rn(
Dirm. 31"
.: 000"
1;1x'9"''I#l-
\s
n€s
3.3ti4 0 3t8 4.026
5" 5L3',
6',
a
625',
xxs
8
8" 625',
Inches'
889
trletel -'-""i"'' Section Arec - Yl., llloJuhLs Inchr:"' i"f i "l Inrlresl
;'l
12.73
7
.23
3.2r
382ii10337
11.50
s6J
4.27
3 C2{i 0.437
10.33
11.65
5.18
0.531
9.28
13.27
5.90
3.152 10.674
7.80
15.29
6.79
5.047
0.258
15
.17
5
.45
4.E13
0.375
20.08
7
.43
4.563
0.500
25
.71
9.25
4.313
0.625
30.03
10.80
4.063
0.750
33
12.10
6.065
0.280
8.50
0.432
12.23
5.501
0.562
14.98
5.189
0.718
17.81
4.897
0.864
20.03
8.125
0.250
8.071
0 .277
51.2
7
7.981
0.322
50.0
8.40
7.813
0.406
47
.9
7.625
0.500
7
.439
0
593
64
6.58
43
.26
lladius of Curvature Nominrl I'ipe Diameters
"*
0.237
3.438
5
Jnches
Insidc
13.39
63.4
14.69
.5
16.81
10.48
88.8
20.58
t2.76
105.7
24.52
.5
14.96
\2r.4
72
7.189
0.718
40.6
r7.84
1;0.6
7.001
0.812
38.5
r9.93
153.8
6.875
0.875
21.30
162.0
k
i
h .i
7.90 2 .5t)
5.30 1.96
k k tt
'. t.1l
1.50 1.00
1.48 1.00
1 1
.00 .00
.06
1
.00
.00
1
.00
I .00 1 .00
1 1
.00
k
100
1
.00
.i
1.00
r .00
k
2
k I
8.99 2.79
k
5.92
i
2
1.61
.11
1 01
k
1 1
n
k
.00
.17
i
1.18
1.00
k
| .52 r .00
1.02 1 .00
1.12
t.00
1. {J0
1
.00
k I
1.00 1.00
1 1
.00 .00
k
1.00
I .00 1 .00
k
i
1
.. .. .. .. 1r.0'l
.00
| .. | | | ..
481 184
3.61
2.88
1.52
1
.31
.40 1.16
482
3.24
2
17.35
368
171
3.19 2.44
1.54
2
.59
2.16
41
1.22
t .08
2.76
2.21
1.27
1
.09
1.84 1 .00
l
.15
|.72
1.43
1.07
r .00
1
1.70 1.00
r.36
1.l3
r .00
1
2a.u
1.40
1
.00
1
32.61
1.12 r .00
1.00 1.00
r .00
1.00
1 1
.00 .00
1
2
6.81 4.54 |
2.31
1.77
2.27
| 1 rl
1
1 1
.00
.00
.12 .00
.00 .00
1.00 .00
13
ITT GRINN]II,L
PIPING DESIGN AND ENGINIIE]],ING
-
PROPERTIES OF PIPE Pipe
and
Out-
Sch. Nominal
U'all
side
Inches
Diam. 8"
a.625'
Inside
Diam.
160
20
30 40 60
std. XS
AI
t
AI
lTa]1
Inside
d
Size
ThickInches
6.813
0.906
10.250
0.250
10.136
I.
fletrl lloment
Inchest Inches,
Inertia
s,"
!- ectors ,t and
Section \IodrLlLrs
lnchesa
3
21.97
38.48
i
82.5
E.26
113.7
21 .16
A
0.307
80.7
10.07
10.020
0.365
78.9
1l .91
160.8
29.90
9.750
0.500
16.10
212.0
39.43
25 .57
t0'
80 100
i
k
i
k
t2
22
3.12 8.68 2.72
8 2
15 61
2.08
1.32
1
4.07
3.06
2.41
2.01
1 . 6,1
1.36
1.17
1.04
2.811
2
.17 1.08
|.74
t.'15
1
1.15
1.79 1.00
1.43 1.00
1.20 1.00
.93 I .00
1.00
1.16 I .00
1.00 1.00
1.20 1 .00
1 1
.00
1
.00
r .00
1 1
.00
1 1
.00 .00
1 1
1
.00
1
.31
22.63
286.2
53.25
26.21
321.3
60.34
k
1 1
.60
N
1
.31
0.843
i
k
30.63
367.8
68.43
k
34.01
399.4
71.31
k
117.9
9.84
191.9
30.1
k
0.330
114.8
12.88
248.5
39.0
k
12.000
0.375
113.
14.58
2t'9.3
43.8
11.938
0.406
111 .9
t5.74
300.3
47 .1
11.750
0.500
108.4
19
20
12.250
0.250
30
12.090
60.1
.125
1
60
11.626
0.562
106.2
21.52
80
11.376
0.687
101.6
26.04
100
11.064
0.843
96.1
120
10.750
1.000
90.8
140
10.500
1
.125
160
10.126
r.312
400.5
62.8
2.26 1. 11
1.13 1.00 7
i i
k
1,1.08
,i
3.74
L33
2.86
k .i
10
.31
3.05
6.88 2.33
k
.00
1.00
.16
2.39
3.20 1
4.66
3.50
2.80
1.79
1.48
1
4.28
3.21
2 .51-
1.70
1.40
|.21
.41
2.54
2.06
3.03
2.27 1. 11
.43
19t
1.00 1.00
1 1
.38 .00
1.03 1.00
1.00 1 .00
1.00 1.00
.00
1.00 1.00
1.00
4.46
3.71 1.55
3.54
2
1.50
1.33
2.28
1.
1'
1.12
1
1.1
.00
1
1.00
k
16.05
372.8
53.3
13.126
0
.137
18.62
429 .1
6t .2
1.51 r .00
r .00
k
137.9
.82 .00
1
122.6
375
1 1
1.19 1 .00
781.3
0
1.72 1 .00
.58 .00
.14
13.250
.04
1
47
44.9
1
1
80.5
314.3
.14 1.07
2
1
i
.42
l.14
1.16 r .00
109.9
1.3
2.31
1.45 1.00
700.7
140.5
1.24
1.93 1 .00
41.08
0.312
.28
266
i
86.6
13.376
.40
100
k lt
20
.00
1
100.7
255.4
.00
1.46 1.00
64t .7
10.80
.00
1.00
36.91
143.1
.00
1.16
2
88.1
0.250
17
3.58
1.70
7.2r
1
.43
4.30 1.98
r .47
2
1.00
1.62
3
1
1.00 1.00
4.00
561.8
13.500
.00
1.97
i
k
10
14.00'
.00
1.00
k
.24
1
1'
L
2
.15
2
.03
+
5.90 2.10
4
.42
14',
L+
3 ti5 153
2.92
1. E5
68.1
1
40
4. E7
0.718
8.500
srd.
3.02
1.52
.314
160
30
3.63
1.77
2.39
k
1,
12',
4.53
.11
1
241.9
1.000
12.75'
6.04
1.11
18.92
8.750
xs
.00 t .00
71.8
140
40
.00
.00 1.00
0.593
9.064
sid.
6
1
9.564 9
120
5
.00 1.00
1.13
k
1 1
226
2
L
10.75',
Radius of Curvature Nominal I'ipe Diameters
Short Radius IladiLrs
165.9
?
k k
i
14 59 3.85
L72 2.91
|.74
4.86
2
.00
.92
1.85
1.53
1.32
4.13
3. 10
2
1
.66
.48 1.1E
.21
1.00 .00 1.00
1
2 1
.00
.95 .13
.17
207 1
.05
EXPANSION AND STRESSES PROPERTIES OF PIPE d Size
and
Sch.
Out-
Nominal Inside \Vall ThickWall Diam.
Au
Inside
N{etal
\loment of
Area
Inches'? Inches'?
Inertia
s-
l'a( itors
Inchess
Inches
13.000
0.500
132.7
2t .21
483.8
69.
60
12.
E1-1
0.593
129.0
24.9E
562.4
80.3
80
12.500
0.750
3L.22
.126 0.937
38.47
XS
100
L2
I
Inchesr
r
98.2 a24.5
117.8
11.00' 120
11 .81'1
1
093
109.6
41.32
929.8
132.8
140
11.500
1.250
103.9
50.07
\o27.5
146.E
160
11. 188
1.406
98.3
10
15.500
0.250
18E.7
20
15.376
0.312
.
1116.I 384.0
48.0
15.38
473.O
59.2
30
std.
15.250
0.375
182.6
18.41
562.r
70.3
40
xs
15.000
0.500
176.7
24.35
731.9
91.5
60
14.688
0.656
169.4
31.62
932.6
116.6
80
14.314
0.843
160.9
40.14
1156.6
144.6
100
13.938
1.031
r52.6
48.48
1365.0
170.6
120
13.564
|.2ta
144.5
140
13. 126
1.437
160
12.814
1.593
129.0
10
17.500
0.250
20
17.376
0.312
16' 16.00"
std.
17
194.5 1760.3
220 .O
72.10
1894.0
236.7
24J.5
13.94
549.0
61.0
237.1
17.34
678.0
.250 0.375
.4
806.6
89. 6
24.1r
930.5
103.4
o.447
230
17.000
0.500
227 .O
27
.49
1053.0
117.0
40
16.876
0.562
223.7
30.79
t172.0
130.2
60
16.500
0.750
213.8
40.64
1515.0
168.3
80
16.126
0.937
204.2
50.23
1833.9
203.8
18"
XS
18.00'
3.14
1,
7
.16
2.40
h
k
.69
2.15 1.07
1.79
2.98
2.23
t.79
.33
1.10
1
1.49 1 .00
2.30
1.72 1 .00
1.38
L.
1.00
1
1.34 1.00
1.07
1..00
1.00
1
1.12 1 .00
1 .00
1.00
.00
1
.00
1 .00 1 .00
1.00
l
00
1.00 1.00
1
.00 1.00
1.00 1.00
6.40 2.22
5.12
4.26
2.69
1.91
1.69
6.78 2.31
5.08
4.07 1.64
3.39
12
L79
k
1.50
1.00
1,
1.00
k
|.24
k
l lt
1.00
1.00
17.06
4.27
k tt
k
8.53
2
1.91
.00
1
1.00
1.00
.45
1
5.60 2.03
4.20 1.68
3.36
2.80
.45
1.28
12.39
8.26
4.13
3.10
2.48 1.18
2.06
1.85 1 .00
1.54
1.76 1.00
| .4r
1.17
2
1.37
.64
3.08
|.37
2.34
k 1,
l.t4
k
1.87
2.31 1.13
1
.00
1
1.00
1.40 1.00
| .12
I
k
1.54 1 .00
1.16
1
1,
k
r.27
'L
1
.00
|'
.00
1
.00
1
1.00 1 .00 .00
1
1.00 1.00
1.00
1 1
1.12 1 .00
1.00
1
1
.00
19.25
9. 63
7
.22
4.63
2.52
1,
h
.00
1
1.05
.00 1.00
k
7
1.00
2.41
.66
2.50
2.O7
4.75
1
.00
1.00 .00
.00
.00 1.00
1.00 1 .00
2.08
4.81 1.84
4.60
3.83
1.78
1.58
3.80
3.16
18.99
12.65
4.59
3.50
2.2L
1
.82
r.57
1
5.39 1.98
4.00
a.24
2.70
.:
.62
1.41
1.23
4. 68
3.51
2.81 1.28
2.34 1.14
k 1'
h
.00
3.23
i
L
r5
.00
11. 19
k
k
1.00
16.82 4.23
3.45
t
6
r.25
k
1,
5
1.51
l
L
i
4
3.58
1
i
126
17 .
30
t0.71
h
k
20.76
and
3
L
12.37
A
Radius of Curvaiure Nominal Pipe Diameters
Long Short Rxdius Radius
Sectior
)Iodulus
Inches
Diam.
t1"
Ic
Ar
14.04
9.36 2.86
1
.80
1
1
.49
.39
2.07
1.66
3.10 1.37
2.44
1'
1.18
1.05
k
3.03
2.27 1.11
1.82 1.00
t.52
1.35
h
2.47
1.78 1.00
't
1.19
k
L
4.13
1
.42 .00
1.00 1.00
la
ITT GRINN]'LL
PIPING DESIGN AND ENGINEERING
-
PROPERTIES OF PIPE Ar
d
and
Out-
Sch. Nominal
No.
Wall
side
Diam. 100
18'
120
Inside Di&m.
Wall Thickness
Inches
Inches
15.688
1.156
15.250
Inside
A:r NIetal
Inches, Inches'
I. f{oment of
Inertia IIrchesl
I actors t and i
sSection
Short Long Radius Radius
Inches3
Elbow
\{odtlus
193.3
61. 18
2180.2
242 .2
182.6
71.81
2498.8
277.6 305.5
r
14.876
1.562
173.8
80.66
2749.8
160
14.438
1.7El
163.7
90.74
3020.6
10
20
30
19.500
std. XS
19.250 19.000 18.814
40
13.376
60
0.250 0.375 0.500 0.593 0.812
283.5 278.0 265 .2
17.938
80
\7 .438
1.281
23E.8
120
17.000
1.500
227 .0
1.00
i
1.00
1.00
1.00 1.00
1.00
k
i
1.32 1.00
1 1
.00 .00
r00
1.00 1.00
k
1.13
1
.00
r .00
k
i
12
r.00
1
1
.00
.00
1.00
1.00 1 .00
21.46 4.9E
r0.73 3.13
8.05 .59
6.41 2.23
1.97
t3
2
1
.00
k
21. 18
t
4.93
3.77
7.06 2.37
5.30
1.21
3.53
1.96
1. 69
1.49
30.6
h
15.68
10.46
5.23
3.92
3. 14
2.61
1.60
1.38
r.22
36.2
k
4.37
3.24
1.72
2.62
2.18
1
.42
1.22
I.OE
3.12
2.31
1.3E
1.
1.87 1 .00
1.00
r .80
.00
1.44 1.00
1.20 1.00
1.41 1.00
1.13 1.00
1.00 I .00
1.18 1 .00
1.00 1 .00
1
.00 .00
1.00 1.00
1.00 1.00
.00 1.00
1
23.12
48.9
1114
111
.4
4.04 1704 2257
170.4 225.7
61.4
87
2772
14.
3.08
k I
1.9{
277.2
k
i
2.10 1.16
331.6
h
1. E8
.2
1.00
t
| .57 1
.00 .31
1
l4
.00
r.00
140
16.500
1.750
213.8
100.3
4217
121.7
k
i
1
160
16.064
1.968
202.7
111
.5
45E6
458.6
k
1.14 1.00
1.00
1
10
23.500
0.250
133.7
1316
109.6
12.93
9.70 2.93
7.76 2
.53
2.21
6.40 2.22
5
std. XS
30
23.250
0.375
424.6
27.83
1943
161.9
23.000
0.500
415.0
36.9
2550
212 .5
22.876
0
.562
411.0
4L.4
2840
237 .O
40
22.626 0.687
4t)2 .1
50.3
60
22.064 0.968
382.4
70.0
80 100 120
1,1{)
160
lo
252.7
100
20
24.OO"
1.031
6
1.00
1
20' 20.00"
I
.00 r .00
1. E8
k
298.6 291.0
I B-- +-l-.f 1.41 1 .00
18.00" 140
Radius of Cuntrture Nominal Pipe Diameters
21.564 1.218 20.938 20.376 r9. E76 19.314
1.531 1.812
2.062 2.343
365 .2
344.3
87
4654
.2
108.1
326.I
126.3
310.3
142 .1
293.0
285 .2
159.4
3E7.8 472.a
k 25.58
17.06
5. 60
4.27
k
18. 99
12.65
I
4.58
3.50
lc
k
i
k
i
k
k t
i
7827
652.2
h
8627
718.9
k
788.2
k
9458
25.86
5.64
k
6853
1.00
8.53 2
r.00
6.33
.00 1.00 6
.17
.12
4.26
1.91
1. tig
3.80
3.16
2.21
1.82
5. 60
4.20
3.36
2.80
1.68
1
.45
1.29
1.76
3.40 1.46
2.72
I.25
2.27 r.11
3. l4 1.38
2.35
t4
1.88 1.00
1
2.44
1 1
.83
1.46
.00
r.22
r .00
1.00
1.89 1.00
1
.42
1.13 1.00
1 1
1.56 1 .00
1
1
r .00 .00
1.00 1 .00
L34 .00
1 1
.00 .00
1.00 1.00
1
1 1
.00 .00
1
r .00
2.03 4.53
\ .17
1
t
.69
1 1
1.
1.00 .17
r .00
1.39
.00
r .00
.00
.00 .00
r .00 .00
1.00 1.00
EXPANSION AND STRESSES
TABLES OF COMMON SHAPES
Example 2 :
'fhc fourteen tables of common shapes on pages 20 r 33 may be used to determine thermal expansion -'r'csscs aud anchor forces l'ith a minimum of calcula'ioir, as indicated by the follol'ing examples. Yalues ::ry be ilrterpolated bets'een the tabulated factors .. ithout sacrilicing accuracy.
Ff G?laen:
Example
A
10 inch Sch. 40 piping system, in accordance
'with the sketch, made from A.S.T.M. A 106 Grade A
1:
steel pipe.
The maximum operating temperature is 600'. F.
The bending stress, s6, must not exceed 18,000 psi (for method of determining see page 3).
-____.__a
Data:
D:
10.75 inches I
I Ip : 160.8 inchesa l c.s 6ee" : 743 Gfuez: An 8 inch Sch. 40 piping system, in accordance
n'ith the sketch, made from A.S.T.N{. A 106 Grade A steel pipe.
The maximum operating temperature is 700" F. The bending stless, sa, must not exceed 17,900 psi (for method of determining see page 3). Dete:
: 1p : c.t 7oo" : D
8.625 inchesl I 72.5 inches* J
page 13
909
page
taOLUtlOn:
L _95 _ , * h g8- ""' l.!
:
r9.9
, cD lbr --- .X 909 X 8.625 : rbT: qji : 12,460 psi (r'hich is less than 17,900 allorvable) , cIp- e3.7 - - Lfi ^^-..909Y;2.: r, " : 681 pounds x '""
sB
\;r"
F,
, cf p - k"f -
F
:
.^^..909X;2..' t9.9 x ::" ^,;-'9
\,1.68'rP+ OEP
:
The height, li, rvhich will satisfy the maximum requirement, and the anchor force, r/", for this stress condition. Solution: Reler to page 28.
_
L-tjo
For a
/ca
tD
"r:r. "oi
of L35.2,
L/h:
tto'z
3.72 then
60
h: ' -"" : 16.lfeet 3.72
For L/h of 3.72, k"
:
193.9
7,t3X1Ane , rlc - ,^-^._ : k,- 3448 pounds L; 103.9 X -*r. The results derived from the use of these tables will
F,
be accurate rvhen all of the turns of a piping systern are
then by interpolation from table on page 20: 93'.7
11
lind:
ll
Irind: The marimum bending stress sB, the anchor 1, and r/!, and the resultant anchor force F.
:
page
seL 18,000 X 60 ,nu:,D:..l.gytn -
lorces
k"
Page 13
-
t-r5 pounds
6ee pounds
mitprc
^r
rid.l Gtfihoc
When all of the turns are welding elbows or bends the anchor forces derived from the tables rvill be accurate for practical purposes. The actual forces rvill be somewhat smaller than the values obtained from the tables. The stresses in the elborvs or bends, however, may exceed the values computed from the tables if the stress
intensification factor i for these curved sections is greater than 1. (See pages 12 to 16.) If the proportion of straight pipe to curved pipe is large, a close approximation of the stresses in the curved sections may be obtained in the follorving manner: Determine the Iocation of the centroid in a scale diagram. Pass the resultant anchor force through the
|,7
I1"I GRINNI.ILI,. PIPING DESIGN AND I,]NGI\I'IJITIN(i centroid.
'I'his force mr.rltiplicd by its distancc from the
curvcd section gives the bending moment, stress then is (M/S- )i.
i1{.
The
of pipe arranged in various config[rations. The comparative values for bending stress and anchor force are derived flom the k values in the vadous tables and are expressed as a percentage of the lowest value.
Example 3 : (]O\IP-\Ii,.\TI\TU lle,qultrnt
*J-U
. _](erar
,t\w 16.1
/\/
(Jiuen:'lhe same piping systcm as in Example l, except that the turn at poirrt b is a long radius
l
clding
113
(t\
400
r-J-C---4
372
,--rl----
elborv.
Data:
: 10.81 inches3 i i:2.44
S-
page 13
)
Find: 'lhe appro\imate bending stress, s6, in the rvelding elborv at point
3(i0
1.,.
)__J-----r
,Solalioz: Assuming all oi the -sections to be straight pipe, determinc the location of the cerrtroid: 349
i
eb 95 X 47.5 : Dc 38X 0: 133
g
qb 95 X 38 : 3610 bc 38XI9:722 1332 133
4513
0 4513
IJi13
ii" = -:::1 133
::::33.9feet I;JJ Mat
sB ar
point
poiDr
b
b
X
X
:
=
699
=
104,850 inch pounds
:
104.850
:
15,220 Psi (aPProximatelY)
ffi
12 5
X
12
Z.++
The tables are also helpful in comparing the relative merits of several tentative piping layouts. This function is illustrated in the scale sketches beloiv, rvherein two points are connected r'vith the same total footage
18
506
612
32.0 feet
\."\
,_i----1
,---J-i
I--t
Bending stresses due to thermal expansion are not significantly aflected by increasing thc pipe wall thickness, r&th€rJ increasing pipe wall thickness has a more or less undesirable efrect in that the reacting forces and moments are increased in a direct ratio. This fact is illustrated by studying the equation for the maximum bending stress, sn : htcD/L,lnthe Tables of Common Shapes. The equation is independent of the pipe rvall thickness. Likel'ise studying the equation for reacting force rvill shorv that the pipe wali thickness afrects -1o, which ciirectly affects the reacting force. The aforementioned is true not only in the Tables of Comrnon Shapes but in any stress calculation,
EXPANS]ON AND STRESSES
-\ commonly ercountered piping expansion problem :. thc long stlaight run of pipe lith a Li shtpe of eqLtal ength legs prolidcd to absorb tlie expartsion. 'l'he -.rlaight pipilg nrns are rtsuelly gttided lt regular
intervals to prer.ent lateral movement of the pipe. The follol irg cxample illustrates the application of the Trbles of Common Shapes to this type of problem.
Example 4
RESTRAINED
RESTRAIIIED
A
k,
(t inch Sch.
seamless steel pipe.
:
srr
lfhe maximum opcrating temperature is 350" F. 'l'he maximum bending stress, sa, must rot exceed 22,500 psi (for mcthod of determining see page 3).
12.0
frb
6.625 inches I .
i
Ii, : 28. 14 irrches"] c"135e" : 365
ftom page
22
, D (L,\ : I(bc i\i ) -
A.t,2i /120\ x 30i X n, X ( )",
18
page 18
9008p"i
Page
1l
considered.
i:
2.27 lor 6 inch 90' LR\Y
2.27
X
9068
:
Fr.nd; The maximum bending stress, sB, and the lt.trchor force F,.
u":
Solution:
r. ,s e12
: 18.0
If 6 inch S40 90" long radius welding elbows are used, the stress irrtensification factor, i, must be
D{tta:
D:
GUIDES
GUIOES
l0 piping system in accordauce made from A.S.T.II. A 53 Grade B thc sketch,
Gi'L,en:
lith
AY
BY
L24 h - 12-'
-
^""'i(!) 12
Elborv
from page
13
20,584 psi (l'hich is less than 22,500 allol'ablc stress range)
,R IJ
x 30; x 1", , x \.21]
1'A
;:i -
ro;o pould.
l9
ITT GITINNELL PIPING DI]SIGN AND ]'NGINEIIIIIN(I IIOOKED
90'TIJRN
Z
SIIAPE
f,,
Reacting Rez.cting
Force
llaximum Ip
r" : tt,'
Force
)3enc1ing
Stress
ln lncnes-
-L
c'
jL L-
f o:
f"'c'Ilttt
,r :
lo.' c'
I
r.a
2.D
2.2
t7.2
23.0 32.0 42.0 54.0 68.3 8.1..1
tir'c'
!:
,"-lr'"
0.6 0.8
1.18
1.0
4.3 7.8
12.0 12.5
3ii 46
r.2
l+.4
il
1. ri
15.4
85
1.8
16.6
102
2.O
120
1..1
2.2
19.2
1{0
liil
1E1
2.1 2.l) 2.8
.5
209
.2 15.2 19.7 11
21.3 30.0 37.0
.15.0 5'1.0
l.3l
2.2
7.7 9.2
2n.7
10.9 13.0
36..1 .11 5
15.
r
.2 19.3 17
23
3.0
r75
25.O
231
3.2
207 237
26
.5
259 287
64.8 76.0 88.0
3.6
2t-I
29
.5
3r8
3.8
100.0 113.5
3r.5
3.19
-1.0
]2a.7
1.2
l-l-1
t(i0
.10.4
4. ti
178 198
46.
49 .1 52 .5
4.0 4. !t
406
4.b 4.E
5.0
510 630 700
5. ti
6.0 6.2 6.+
(t.6 6.E
7.0
7.2 7.+ 7.0
7.8 8.0
33.0 34.6
3ii.2
4.8
39.5
528
5.0
11.2
569
219 2J1
43.0
010 052
5.+ 5. ii
203
41.7 938
18.2 .19.8
53..1
1313
15I7 1{lt7 2059
i;96
6.0 790
E{0
1ll0
1420
450 487
ltr.2
t2t2
.11+
37.8
855 1020
381
56.8 (i0.2 01 I 03.6 65.4
802
9.t:t 997 1050 1101
r160 1219
1284
6.2 6..1
21.6 2+.O
2{i.5 29.0 31.6
65.0 6E..1
71.8
.l
6.8
.l{0
78.9
7.O
.179
82.0
5.10
7.6 7.8 8.0
579
015
89. r
195 205
215 226 236 216 257 268
92.7
2ia
100.0
300
gri.3
E
79.5 87.0 05.0
121 130 139
-1
360
508
64.
i2.o
43.4
0.6
7.2
5t.i
58.0
112
334
ll;
46.6
103
58.7 ti1 .8
388
31..1
3t-.4
310
2t0
17.3 22 .O
150
28.0
9.4
tr.2
3.0 3.2 3.6 3.8
p'i
1ts.1
1.7
125
3.{
rzto
l) in inches
L in fcet
2.8
103
I^
f
20.6 22.0
2.t)
20
11
in inches
i
12 .O
Reacting Force
lp lll lDtIIL'S
L
1.0 L.2 1.4 1.6
F": k,' c =ilb t,-
Nlsintutrr Llcrrrling Slles.
pri
l)
in feet
Rcacting Fotce
289
EXPANSION AND STNESSES
Z
SIIAPE
Fx+ K'.c.--Lo
Reacting Force t1 _
Reacting Force
I{arimum Bending Stress s6 I /, ln
1.5
1
L 7 0.6 0,8
1l
9.251
12.8
lncnes_ ,
43..0
83.8
39.0
69
.0
38 11
.8
15
.9
91 76
D in inches
4
k,
kb
r0.5
32 29
85 71
29 29
66 66
12.6 16.0
69
20 27
23
-D : fb'c';psr
ln IeeI
3
2
k,,.c.:--lb
1.
73 62
k6
L n
6.0
22 20
66 5ti
0.6 0.8
.8
19 20
50
t4
51
1.0 1.2
19
21
52 55
1.6
63 68
2.0 2.2
|
1.0 1.2 1.4 1.6
1.8
17
.2
28.3 35.4
1
l
37
.9
37.8 37 .7 42.1
61.9 57.8 60.6 66.3
2t.0 27
35 36
71
.0
43.2
72.O
4I
39
52.a 63.0 76.0 89.0
45.7 48.0
50
4I
5l.0
79.3 86.5 93.8
60 83
49
102
58.2
.2 109.0
7l
43 46
116 132 149
62.2 66.0
116. 1 124 .5
110
70 .0
3.6 3.8
r68
74.O
140 168
188
78.0
133.0 141.0 149.0
59 63 66
t77
70
4.0
2to
4.4 4.6 4.8
235 260 285 310
82.0 86.4 90.6 94.8 99.0
157.8 166.0 174 .5
197 219 24L 264 287
b.n
336 364 393 425 457
103.2 107.6 111 .8 tt6 .2 120.5
201.4 210.0 219.5 228.0
6.0
491
124.a 129 .4 133.8 138.2 142.6
215 .5 251 .5
145.0 152.0 156.5 161.0
2.O
2.2 2.4 2.6 2.4 3.0
5.0
6.2
6.6 6.8 7.0 7.2 7.8 8.0
43
526 562 598 633
670
7i5 758 803 850 898
101
170.0
r$.0
192.0
237 .5
96 124
69 69 69
22 30 38
n1 88
46
96
30 32
42
57
ti0
30
21 22
27 29
67
40 48
25
31
80 E6 92
69 80
30
99 107 114
90
32
104 118
36
68
40
90 97
7L
33
110
91
43 46
105
a2
35
118
104 118 133 149 165
49 121
106
39
128 135
121.
41
136
120
t32
60
142
44 46
727
147
181
150 157
166 185
49
16,1
204
r82
243
D6
133 140 147 154 161
163 182 201
263
63 66 69 72 75
190 198
261
61
168
63
175
206
66 68 71
182 189 197
260 241 304 329 355
52
286 310
381
63
190 196
67 69
203 210 217
r02
126 134 143
159 168
201 221 241
51
88
186 194
203 212 221 230 239
288
18
313
81
370 399 430
92 96 100 104 108
214 254
422 450 474 506
46t
172 116 120
561
r24
282.O
598
128
267 276 285
287 .0 300.0 309 .0 319.0 328.0 337.0
636
132
291
674
303
756 798
136 140 143 148
8,10
152
7t4
25 26
51 61
t77
341
11
83
81
314
,71
22 23
38
493 526
263.5 273.0
14.4
312 321 330 340
339 392
601 639 680 724
770
92
88 92
2t1 223
360
95 98 102 105 108
232 240
386 414 443 472 502
t11
271 242 290 299 308
115 118
122 125 129
28 256 265
599 633
668 703
5l
76 79 a1
205 212 219 227
71
220 239
408 436
84
234
495
86
212
526
89 92 94
218
97 99
256 263 270 279
588
29
38 40 +4 46 48 50
L
.,t
r.6
2.1
80
2.6 2.8
93 99 105
3.0
117
3.4 3.6 3.8
124
4.0
1r1
130
4t
737 1.r3 150
4.6 4.8 5.0
163 56 61
78
620
81
ti55 694
83
169 176 182
230 237 241 250 257
6.0 6.2
6.1 6.6 6.8 7.0 7.2
78 8.0
ITT GRINN]'LL _ PIPINC DESIGN AND ENGINEDRING
II
SIIAPE WITII EQUAL TANGENTS
fF*:kr'c'fi
Reacting Force
Maximum Bending Stress ,u
Ip in inchesa
L
2
L
I"
E 1.0 1.2
r.4
kt
lrb
2.40]' 7.2ol
2'46l 4.2
2.521
3.701
4.481 10.9
4.651 6.791 8-931 11.081
5.3r1 7.221 '?:391 13_53
1.6 1.8
6.461 13.6 8.461 16.3 15.751 10.481 19.0
-'*l
I
12.001 1s.ool 14.851 20.251 18.001 22.501 2r.521 24.831 25.A21 27.r01
2.O
2.4 2.6 2.8
I
3.0 3.2 3.4
29.451 29..151
33.s 34.7
31.8 34.1 36.5 38.8
l
43.7
3.8
49.1
4.0 4.4 4.8
I I |
I
31.2 35.6 40.0 40.1 52.3
54.9 60.8 67.3 74.9 81.0
41.1
88.2 95.9
52.9 | s5.3 55.3 | 1(.l4 L 57.7 | 113.5 60.1 | t22.6 62.4 132.0
43.4
45.e
4e,
50.6
| | I I
|
58.5 64.7 71.0 7e.1 87.2
I
5.0
5.4 103.8
tt2.1 120.7
18.4
21.6
21.8 24.5 2a.o 31.1 34.2
24.8 166 | 28.5 20.4 | 32.2 I 35.9 'LL 3e.7 28.9 I
37.4 40.6 43.8 47.0 50.2
33.6
13.241
I
| I | |
|
se.o 44.5
50.3 57.0
I
| | |
70.8 74.3 77.a 81.3 84.8
Lr,42l 23.4
tl
| I
27.r
73.871
| | |
I
|
16.9 20.8 25.5 30.6
I
| 31.0
I
|
|
li.e
I
14L L7.5 21.3 26.2 31.7
I
I 3s.7
| 44.0
tt
|
I
78.9
87-O
e5.s 104.6 114.0
I I
| |
I
r6i
| I
|
14.e I ao.z I 18.0 | | 22.5 | ?f 3
|
27
.5
|*o | 3e.3
15-3
I
rs.o
23.8
|
+s.s 29.0
|
I
34.7
50.7 I
I
so.z
.n"
22.3 26.7
I
I
|
46.e | 58.0 53.0 I 62.8 60.2 | 67.6
43.7
40.5
|
I
|
| | 58_0
63.3
|
82.0 82.5 | 91.0 87.5 t 101.7
52.2
| |
933
I
I
I
ii:e oD.o
|
63.2
|
7r.5
79.4 I
|
53.0
|
9?.S
I
I
I
| |
59.0 65.1 71.3 77.7 44.2
41.9 50.0 58.3 66.7
91.0 97.8
I
8.0 1236.2
| |
I
88.6 260.7 1123.5 1289.8 1152.0 27 5.0 lr27.0 1305 t156-6 8.4 1261.5 193.4 280.3 1130.5 1320 1161.2 8.6 127 4.6 | 95.8 1304 11e5.8 113{.0 1330 8.8 s8.2 8.2 1248.7
1287.9 I
9.0 t302 9.2 l3r6
9.4 9.6 1345 9.8 1360 10.0 l|375
22
I et.o
tl
1322 1778.6 1340 1184.1 1358 1189.7 1377 1195.3
l3e5 tl
I
|'$
1137.5 1351
1100.5 1102.9 1105.4 1107.? 1110.1 1172.6
1332
t111 9 1367
hzs.o 1416
51.5 l4r, 1r 55.0 l413
1184.2 1188.8 1193.4 1198.1
1348 1365 1381 1397 1414
I
I
J384 1148.0 1402 1r
1158.7 1466
t5.71 21.0 26.3 31.7
1170.4
I
1206.6 1456
1437 1212.4 1458 1218.2 1180 1221.0 1502 1229.8 1525 1236.r
l163 527
1422
1231.0 1238.5 1455 1246.0 l{80
I
I
I
I
lzgs.o l4e5
I261.0
1530
1284.1
124r.6 1520
1268.6
545
r.4 lg;3
1268.2 laz+
p74.2 5R4 1283.8 t611 1291.4
l$e
l2ee.0
1666
12e2.0
56.9
2.6 2.a
63.6 70.6 77.7 84.9 92.2
3.0 3.2 3.4
86.6 97.0
99.5
4.0
109.6
r07.0 108.0 t14.7
125.0
120.0 133.3
122.8 131.0
4.2 4.4 4.6 4.8
117.9 141.0 163-0
139.4
59.2
68.0
]7.2
1314 1336
182.6 191.4 200.2 209.1
t81.8 rs0.2 r98-7 e07.2
.I
216.0
.6
4
3.8
t.-^
H99
1618 1648 1680
1326
171r
6.C
6.' 6.4
6.t 6.t 7.t
242.3
7.t
I
ll292.4 t589 1301
r47.9
157.1
I
1242.7 1427 1250.9 1451 1250.2 1476 l2$7.5 1502 1275.8 1529
lito
126
lD/a
lzzs.s l405
1219.2 1236.0 1253.0 j2z 1.o
1218.5 t358 1226.5 lo6-r 1284.6 1404
12$.b
1218.2 12s4.8
41.1
5.!
l22t.9 I
2.O
l1$.0
135e.0
Dza.+
43.2 38.6
194.5 165.2 165.2 211.0 173.9
t202.4 I379 l2os.e l4oo
l2oo.e 1434
1.tt 1.8
1155.6 1202.7 I
lBs2
1413
t.4
23.9 24.5
llii
I
lse2
1.2
5.2 5.4
I
1372
1.0
1{.9
t49.0
81.5 22t.9 1113.0 1244.2 1138.4 27r.5 1162.I 1297.8 t183-1 1319.0 1201.6 lres 83.8 234.7 lrlo,c .|239.2 1142.9 1287.5 1167.6 1316 U8e.5 1339.0 1208.9 1359 1381 86'2 247.6 F20.0 t27 4.5 1147.4 1304.3 1173.1 t334 l1e5.e 12r6.2 I I
10.4
140.{i 172.6 148.1 1187.0
I
I
n
t33.0
133.2
tl |
49.5
L
lco
hsz.s
125.9
I I 1262.5 I I I I I 7.0 178.9 | 76.7 I 196.3 t106.0 .|217.0 1129.4 24OJ lr5I.7 261.8 1170.3 l24o.7 1187.1 l2es.z 1202.5 1189.8 179.1 209.1 1109.5 1230.5 1133.9 256.0 1156.6 279.a 1176.7 l29s.s lls4.3 t319 1210.5
7.a 1224.2
32.3 38.0
a
I
I
I
1132.5
I
85-8 80.9 92.2 90.4 98.6 100.5
|
107.5 1r30.0 117.8 1136.7 124.5 1149.4 r25.0 1103.0 | 134.0 1r 12.0 131.3 1162.4 136.3 1108.3 | 146.0 120.0 S 1138.1 lr77.o 147.6 1113.5 | 159.0 l12ti.2 tI44.9 t192.6 159.0 1118.8 | 172.0
114.7
I
152.4
I
20.0 25.2 30.7 36.3
41.7 47.3
|
88.4 155.8 t107.0 171.3 1124.1 t85.2 1138.8 1197.8 1151.8 lron.o lror.r 91.9 167.2 lru.s 184.0 t129.5 199.0 1145.1 1213.0 1158.8 l22s.o 1171.0 6.4 148.4 33:3 | 163.3 s5.4 1179.1 1116.0 193.0 1134.9 213.0 1151.4 1228.5 1r65.8 124r.8 [78 6.6 158.2 71.9 I 174.2 98.S 11r1.0 1120.5 212.2 1t40.3 224.O l1i7 .7 1245.0 lr72.s l2ss.5 hse.o t279.O 6.8 168.4 I 74.3 | r45.2 1102.4 1204.0 1125.0 226.4 |it45.7 244.2 1164.0 lre4.b 1180.0 I 7.4 1200.9 7.6 t212.4
15.53
31.2 36.2
I
I
45.2 187.0 90.8 196.5 96.3
|
| |
|
I*u 79.7 | 77.5
I I
|
| 45.7 61.7
68.7 | 5e.5 9?-11 oo.o 74.1
I
64.8 I 141.6
6.0 129.6 6.2 138.8
13.1t
t2.97
I
|
L
I9.4
104.7 106.2 72.4 | 87.2 I 117.8 105.0 112.0 76.6 I 96.3 | so.8 I 105.4 e2.5 Lr2.4 101.9 lllS:3 111.4 124.2 118.7 129.8
85.2 I 89.5 93.9 134.0 | 98.3 144.6 l].02.7
|
I
22.O
5 7
94.4 .02.0
I
53.3
|
I
t
I
2.73 10.3 5.29 14-4 7.45 18.6 r0.41 22.9
10.1 14.0 18.1
|
84.2 95.0
|
|
37.7
| |
I
|
28.8 33.4 38.0 42.7 47.5
3:t
5.2
|
_-l 12.3 26.1 I 1ti
I I I
|
k.
43.0 50.8
51.6 55.6 59.8
|
|
13.9 17.9
5.0
l,
D in inches
61.5 67.8 7 4.2 80.7 87.3
41".2
I
I
| 35.3 I
|
I
l l
|
| tl 64.0 | 64.0 6e.1 | 72.5 I 7r.1 | 68.2 78.r | 77.5
57.0 60.4 63.8 67.3
|
|
e.e2l
2.671
.
"
10
kt
kb
2.641 4 Rll 13.3 7.1 I 17.o e.5 | 20.8
|
ku .
I
Ict
9.291
4.781 12.8 6.981 16.3 9.201 19.8
|
48.7 | 35.8 | 48.7
I
I
I
|
2.581
8.821
12.0 15.2
I
72.5 | 15.8 | 10.6 | 23.4 | 27.3 |
L.
lrh
feet
7
6
5
in
.L
:
260.0 268.9 277.4 246.7 295.7 305 314 323 332
342 351
5 4
8.( 8.t 8.! 8.(
8.t 9.t 9.i 9., 9.1 9.1
EXPANSION AND STRESSES
u
srrAPE
wlTrr
TANGENTS ?2 = 2
Reacting Force
TIn: k"'c'-fi
Reacting tr'olce
Fn
l\{axirnum Bending Stress
* = ko' ,'2L
13 in
L
--'
t
1.0 1.4
4.4 6.4 8.4
1.5
10.4
2.0 2.2
12
:.
':.
-r ri
3.0 3.2
.4
16.0 19.7 23 27
.4 .1
30.9 36.3
-1
41,7
3.6 3.8
46.1
-1.0
58.0 65.0
3.
1.2
50 52
1.0
1.7 2.0 2.7 3.0
4.0 +.+ 4.8 5.2
94.0
7.O
103
t12
ti
12L
7.5 7.9 8.3
131
i.0 a2 eti
;0 :2
;.{
;.6 ;.S
!.0 !.2 !.1
:d
1.10
9.2 9.5 9.9
150 161 171
10.3
182 192
23.3 26.6 29.0 33.2
2.t3
13.ti 20.3 24.1 28.0 32.0 36.1
.11.0
47.3
.17.0
50.9
53.0 60.0
58-0 62.0 65.0 60.0 72.0
2.1
69.0 77.O
86.0 95.0 104
76.0 80.0 84.0 88.0 92.0
113
\57
96.0 9$.0
168
3.6 3.9 4.0 4.9
6.6
'7
1
10.5 10.9
1.1 3
1{3
1t.7
r0 ,2 '+ ,ti
323 339 355
75.2 15.{;
: ,.0
387 403
16.0 16.4 16.8
747
160
122 132
r32
248
137
261
14.5
280 299 319 338
14.9
752 157
\62 167
377
16.6
3r8
17.0
1t'2 176
384
18.0
181 186
402 421
18.4
4'10
:J48
4ri0 169
4E0
775
500
10.4 10.9 11.3 11.8 12.3
199
16.1
312 330
9.1 9.5 9.9
13.6 14.1
15.6
13.9
86.0 92.0
232
295
2)i,
4.2
100 111
120 412
105 111
r22
11)
.2 19.6
201
19.4 19.7 20.1
562
20
20.0 20 .4
205 210 215
587
20.9 21.4
.5
16.5 20.0 2+.0 28.0
3.8 4.2
30.0
21.5
33.0
5.6
40.8
6.0
47.0
41.O
7.0
65.0 76.0 87.0
9t.0 109
8.4 8.9 9.4
59.6 68.0 75.0 83.0 91.0 100 107 115 122 130
1-d
41.8
2.0 2.2
48.2
6.0
61.0
2.6 2.8
.5
6.5 6.9
67.0
3.0
46
5.1.0
{i2.0 71
.0
81.0 92.0 105 118
7.8 8.3 8.8 9.3 9.8
74.O
81.0 88.0 95.0 103
11r 120
3.4 3.6
4.0 4.1
146
5.0
12.2
lL2
206
12.$
5.6
13.0
163 171 180
212
13.5
188
6.0
261
1,1.0
198
6.2
283 306 329
14.5
208
6. -1 6. [i
224
6.8
na
7.0
138
179 186 193
u.7
1.r.l 1.1.5
20L
292
15.0
208
310 329 348
15.5
3E6
17.I
215 222 229 236
15.9 16.3 16.7
30e 125 450
.5 .g 18 .4
251
$
2 r-7
5til
19.3
286
592
19.8 20.2 20.7
295
624
3t2
ii89
21.1.
1-22
21.|i
320 329
22.O
337
408 430 453 476 503
17 17
244 251
531
257 2t\4
5E8
277
1.6
30. ti
11.3 1L.7
10.8 11.3
13.6
2 t-0
25.8
159 3.i2 188
717
618 616 675
t.2
21.O
1-1ti
10.3
560
4.9
1.0
128
13.1
237
4.0
11.4 16.2
10.3 10.8
211
22+ 23L
L.6
2.1 2.6 3.0
L n
732
9,E
120 133
258
L
39.5
49.1
221
2L7
5L2
11.0 14.0
153 100 166
211
8.2
24.8 29.5
146
180
3.0
2.9
171
201
487
D in inches
ha
10.9 L3.6
12.b
16.6
19i;
20.L
206
1118
191
10.9 15.5
140
1.)2
18.4 18.9
2.0
134
128
16.2
1E.0
8.2
f-
:"2
10
153 1?3 189
15.8
r8.8
613
gs.0
1E6
77.1
:.9
61).0
80.0 90.0
127
1.{.8 15.2
62.8 80.0
12.7 13.1
271)
46.8 51.9
7.8
13.2
2t4
31.5 36.6
72.O
2t6
125 128
.2
7,1.0
r23
121
136 140
10{
23.O
57 .O
6.3 6.8
118
14.4
132
02.0 07.0
40.7 48.0 56.0 64.0
11.8 12.3
1'1.0
13.1
3.6 4.0 4.5 4.9
43.0 53.2 57.7
1rJ.8 27
185
2+lJ
252 2{i6 280
20.6 25.6 30.0
2.7
113
23+
210
10.7 14.6
1.8
r1.4
117
\2.3
r.4
t72
114
11.0
kt
2.2 10.2 12.9
feet
kt
k!,
108
11.
216
33.'1
94.0 99.0
13.6
1
23.3 28.3
9.6
146
193
t7 .7 20.4
71.0 76.0 80.0 85.0 80.0
10.0
2.4
.5
8.0 8.4 8.8 9.0
12+
1lJ0
9.9 12
18.7
5.7 6.2
10.7
r1.5
371
E.0 10.E
206 220
309
,E
14.6 t7 .5 20.+
103 107 110
201 228
1.1 1.6
4.7
7r.7
40.1 43.7
5.9 6.3 6.7
5. r
;.
0.5 o.7
79.0 86.0
72.t)
1.6 1.6
kt
116
Z in
8
6
2
L
inchcsa
: hv' c'
lll.
259
20a
502 530
304
754
12.l
15.0
16.0 16.4 16.8 17.2 17
.7
2ta
217 256 265 274
4.8
5.4
7.1 7.6
7.8 8.0 8.2 8.4
18.2 18.6
283
19.0 19.5 20 .0
303 313
324
8.8
20.6 21.0 2l .4 21.8 22.2 22.7
335 345 354
9.0
293
8.
ii
36.1
9.4 9.6 9.8
384
10.0
]TT (;ITINNELL
-
PIPING DESIGN AND ENCINUI'RING
SHAPE WITH TANGENTS L]
U
F,: b' c 'J 1,'
Reactirrg Force
T^
Reacting Force
'"v . IJ' ,t
nlaxinum Bending 12 in inchesa
-D 3p:kt.c.j
Stress
Z in
feet
11.8 16.6
L
D in inches
t5
1.0
|
0.7
1.6 1.8
|
2.2
2.0 2.8
30
20
24
15 18
17
38
5L 59
tt4 69
68
7a E3
10.0 10.7 11.5 12.2
a7
89
90 107 118 130
12.8
95 101 108
13.6
5U
64
67
4.0
62
6E
09 76 E4
73
i3
a2
92
92 102
87
1r1
92
120 131
13.2
154
1+.5 15.2 15.E
| 96 12.4 100
82
5.E
13.0 I 13.6 |
109
166
6.0 6.2
14.2 | 774
179
d.6
| 121 Id.4 | 129 17.1 I 134 15.7
6.8
8.E
232
19.1 |
260
20.4 | 1i3
276
2tn 305
32L 338
s.0 9.2 9.
-1
9.6 9.8 10.0
119
17.8
2f6 8.0 8.2 s.1 s.6
105
208 220
372 389 406 423 440
18.5
|
139 14+ 149
19.8 ti5
21.1 2r .8 22.5 i 23
r63
17
219 234
17.8 18.5 19.1
250 26tt 282 2i)9 335
188 192
r97 202 207 212
3!2
8.6
66 72
15.I
It5
t5.E
18.1
|
3.6 4,3 5.0
19 22
5.8 6.6
40 4tt 52
2E
66 72 79 86 93
52 00 ?0
10.5
80 90
11 12
100 108 115 122 130
17. 0 141
r8.8 148 216 231
.1
219 285
10.8 | 147
304 323
314
172
1t2 187
192 197 203 209
2t4
2r9 224
1q.7 |
20.3
155 161
2r.c | 7,4
|
18.7 22O
I9.4
214 262
20.1 20.7 21.4 22.1 22.9
2E0
300 321
23.6 21.2 21.a 25.5 26.1
178 185 193
| 101 | 1t5
9.8
tl.1
.8 ,4
13.1
13.8 15.3 16.0
1i2
16.7
tE8 205 222
17
211
19.6
262 283
20.3
196
21.O
205 215
1.1.5
.4
18.1
I8.8
330 353
219
376 403 430 457 485
24.2 21.9 25.6 26.2 26.9
260 208 277
513
27.6 28.3
286
605
235 212
430 506
28.2 29.0 29.7
294
30.5
303
31..2
412 321 330 339 348
109 | 4.0 117 I 4.2 125 | 4_4
lt2J 113 | 137
207 209
26.7
32.0 32.7 33.4 31.2
8.2 9.0
21.8 22.6 23.4
410 432
532 560 588 619 649 680
2.2
2tr lu 3r l14
16.5 17.2
177
41t
7.1
9.3
60
387
1;3
rE3
31
139
t9l
201
1u8
.2 | r78
23.9 I
6.3
59
4+
56
14.9
4+ 49
22 26 31 39
50 55
55
)
30
26
3.3 6.0 9.0
| 21 .4 |
18
2t
38 1+
5L
71.2 11.8
4.2 4.9
47
50
5.0 5.2 5.+ 5.6
11
26 31
5L 59
+.E
8.4
2.8
39
4l
3.4 3.6 3.8
1.2
| 25
3.9
30
5.8
2l
47 39
2.6 z. rj
20
34 43
3.0
| 11.4 15.6 15.6 l| 20 3.3 | 20 2.0
10 15
23
26 16
2.6
9.3
t.1 | r2.7 1.5 I 16.1 1.8 | t,J.E
573 037
2S.0
29.7
30.4 31.1 31.7
13{ 4.6 r42 | 4.8 752 161 170
178 147
221
233
7.2
283
7.6 7.4
294 303 313 323
,4
34.3
383 395
33.0
6.0 6.2 6.4 6.6 6.8
243 253 263
353 363
32
5.2 5.4 5.6 5.8
7.O
8.0 4.2 8.4 8.6 8.8 9.0 9.4 9.6 9.8
EXPANSTON AND STRESSES
u
STIAPE
l{rTH
TANGENTS
,;:4
Rerr, ting
Force
F,:
k, '
c.#
Reaciing
Force
Fu
:
1,"'
"
"o
-
Ao
"
.Naximttrn Bendine Stress
Ip in inches*
!-l L;
z
t',
1.0 2.6 12 t 45 lrl b.7 1d | 89 i.E | 11.:
l;u
0.8 1.3 1.8
2.3
.
159
18.0
170
18.9
181
19.7 20.6
19-1
208
..0 222 .2 236 .1250 ;. d 201 ..! 279 :0 296 :2 313 :+ 330 idi3.17 :.s 364
22.1 23.2 24.2
.I
24.5 33.0
2.9 5.0 7.7 13.3 16.3
1.8 2.5 3.3
4.0
5.4 6.3 7.2 8.0 8.9
ii4
ti5
12.3 L3.2
69
71 83
1.1. 1
79
15.0
84
93 104
89
1I6
15.0 15.8
Iii.7
93 $9 106
17.6 18.5
1t2 11E
19.4 20.3 21.2 22.2
125
61
56
66
ti-1
7L
72
76
81 90 100 111 133
112 123
171 185
129
199
110 116
215 230
128 99 10.1
19.4 20.3
107 117
16.8 L7 .7
21 .1
22.0 23.a
215
152
260
26.1
158
276
27
103 169
2U3
109
t1{
ll$
33..1
4E4
3-1.3
r89
430
34.6
l9+ 199
2l()
173 496
36.3 3t'.2
209
61138
31.4 32.3 33.2
519
31.1
231
38.1 3{).0
2r9
35.0 30.0
5f2
'157
210 216
5ti6 590
s
0
+00 +19
1 .176
222
204
.10.0 .11.0
3
562 590
221 229
680
235
710
104
201
2r.6
219 238
22
.1 23.3
I60
25a
21.2
182
25 .1.
26.0 26.9 27 .9
191 199
181 188
277 206 316 340
36.0
255
37.0 37.8 38.7 39.6
262 268 275 282 2E8
41.3
296
404
9+
12.8
183
126 133
168
208 216
22.a
r17 164 173
233
768
-10.5
312
800
41
33.1
200
o.6 6.0
33.4 34.3 35.2 36.0 36.9
299
341
8.0 8.2 8.4 8.6 8.8
741 a2r
37.8 38.6 39.5 40.3
858 896
42.0
352 362 372 382 392
9.0 s.2 9.4 9.6 9.8
5.10
310 318 326
5.2
7.0 7.2 7.4 7.6
265
37.4 38.1 38.9 39.7
,1. 8
249 259 269 279 289
399 427
32.a
2E3 2\)2 331
4.0 4.2 4.4 4.6
1E2
209 26
.1
2a.2
211
,iJ
3.0 3.2 3.4 3.6 3.8
219 229 239
490 519
.3
2l .9
2t-.3
.{83 511
701
20.1 21.0
3.16
2+9
$ t-2
130 138
2.6 2.4
6.2 6.4 6.6 0.8
257
6.r0
.4 18.3 19 .2 17
21.5
32.O
36.4
L12 121
278 299 321
4ti3
31.6
t5.7
191
31.2
578 608
11.0 82
200 218 236
2|t
65
89 96
150 158
24E
.2
72
t.2
52
72 80 88 g6
142
235
2.0 2.2
11.S
1S.8
215
38.6 15.2
7.6
ii3
170 185
1t'4
1.6 1.8
10
t18
160 107
22.a 28.0 33.2
8.4 9.3
.2 18.1 18.9
1-16
4.2
30
123 138 153
20.7
1.0
6.7
68
75 82
L n
.5
20 24 37
kt 12
5.0
108
132 139
L
2.5
72 16
111
228 510 s36
49 56 62
6.2
104 17
D in inchcs
k'l
16.4
412
'160
32.E
13.6
208
30.2 31.0 31.8
31)0 .110
102 113 126 110
12.7
2U.6 30..1
t'2 393
184
70 80 90
10.I 1l.E
28.8
,115
32.0
8L
ti0
389
177
370
52
367
I71
187
63 69
9.1
10.0
105
161
27 .O 27 .9
29 36
7.1 8.3
202
106
I
46 5L 57
29..1
.4 28.3 29.2
.151
382
11
311
31.0
r98 201
?.9 8.8 9.6
2a.7
238
12.2 17.1
19
40
330
1+0 151
30.
I
4.0 4.8
309
26'J
350
2.4
6
21.0 21.9 25.9 26.8 27.8
1+1
330
r92
7.O
23.1,
131 130
181
28.8 29.7 30.6
200
125
26.0
25
168 183
3.4 12
.4 12.3 13.1 14.0
10.6
.10
-1
30
10.5
s.8
.19
31
.8
20.9
48 56
43
56
102
3.9 4.7
11
l{i
59
51
t22
1I
23
3.1
50
36
91 96
1U
2.3
6.2
42 .O
86
5.2
15
18 22 27 33 40
46.5
E1
10.8
?
10
1t6
1.1
20 25 30
ir feet
8
kb
2r0
r.0 I :.2 | -..+ | ..
9.7 11.0 15.0 19.0
6
k!
kr
23.0
rol13.5 3.2 l.r | 17.5 3.8 il|21.5 4.5 I ,r I 25.5 5.1 r. s 29.7 5.8 :t 0 3.1.2 ) 2 40.4 7.1 J+ 17 7.8 i. ii 52 8.5 .i.3 59 9.2 10.0 =.0 66 10.8 72 =.2 r.1 80 ll.ti 88 12.1 =d rs 97 13.2 ;0 107 14.0 i2 rt7 14.8 11 t27 i.6 137 10.4 r.3 148 17 .2 .,0 .. 2 r. 1 r. d 'r _\
4
1,
Ifi
570 603 637 710
29.2 30.0 30.9 32.6
{t.2
309 319
330
.103
10.0
ITT GITINNEI,L PIPING DESIGN AND ENGINEERING
II
SIIAPE WITI{ SINGLE TANGENT
Fx+
Reacting Force
F": k,'"'T
Reacting Force
I. .r'.,: I;,,-('=; L'
Marimun lSending Stress I-p in
1.79
1.4
2.83
2.0
3.6
6.2
6.4
26
99 109
81
20 22 2+
105
26 2a
134
s1
2l
15.0
118
128
27
t2&
18.0 19.9
128 138 148
23 25
139
2t.a
89
30
11.0 12.0
100
11r
152
t79
36 38
27 .O
199
209 225 242
28.5 30.2
209
18S
31.9 33.6
35.4
253
.2
266 277 289
39
41.
r
305 329
403 430 460
173
93 101
3.6
2+.6
110
3.8
26.5
116
4.0
2S
r27
t44
31
136
154 164
33
233 216 259
zffi
47
224
305 330
50
236 249
341
493 523
580 610
77 79
409
398
6.10
a2
4r2
679 718
85
797 837
95
435 451 468 485 502
66 69
9S
39
234
4l
259 280
70
78 80 83 85
359 371 383 395
726
88
76s
91
409 421
805 845 885
94
434
97 100
447
925
103
464
46
302
48
2rl
32+
51
220 229 238
317
37t 425 453
.l8l
58 ti1 63
5r0
461 476
4.6
5.8
80 75C
a2
788 426 864 902 940
a5 87 89
92
94
6.0 6.2 6.4 6.6 6.8 7.O
267 277 287
7.4
308 318 329 341 350
8.0 4.2 8.4 8.6 8.8
68
70
370 383
4.2
5.+ 5.6
397 286 299 311 324
3s6
88 92
262
2.8
154 198 218
43 45 48 50
406 435
12.1
1r4
45
370 384
470
23 .0
8.8
s6
260
340
67 70
3.0
q
520
426 440
77
43
4S1
60 63
.2 19.0 21.0
240
29s 313
1.8
2.1'
20s
58 60 63
1.6
62 69
22r
380
t.2
5.1
13.8
197
285
1-0
2.0 2.2 2.4
IUJ
272
li
40 48
39
426
58
'l
203
46.8
526
30
150 167
301
4S.0
94
t2l
43.0 45.0
497
617 649 681
220
244 263 283
7l 108
29 31
24.4
439 468
tr4
15.8
159 169
165 1?9 193
9.0
10.0
18
102
302 322 342 364 3a7
9.2 9.4 9.6 9.8
17
62
108
7.0
8.0 a.2 8.4 8.6 8.8
17 82 90
19
26L 281
7.4
66
80
59
6.6 6.8
7.4
11.0
63 70
8.8 9.9
79
6.0
10.5
14.I
4.0
5.8
42 49
52 60 ?0
39 45 69
5.0 5.2
38 4+
7.1 8.4 9.8
4.2 5.0 5.9 6.8
3.8 4.2 4.4 4.6 4.8
6.3
20
2.6 2.4 3.0
30
4.0 4.9
2.3r
1.8
2.7 3.$
tr
D
D in inches
,L in fcet
18.3
1.41 2.24 3.15
0.75
1.0
inchesa
sB:kb c';
7.4
L0 9.4 9.6 9.8
EXPANSION .\N D STR
II
SIIAPE UNEQUAL LEGS
tr ,x
L
i
0.2 0.4 0.8
k"
L.1
0.07 0.60 1.15
2.4
0.6 0.7 0.8 0.9
6
I
1.6 1.8
13 19
2.0
27
2.2
4A
2.8 3.0 3..+
3.6 3.8
{.0
81 99 118 138 160
1.6 1.9
2.6 2.9
303 336
2l
28 36 45
Reacting Force
Ia:
Maximurn Bending Stress
s3:t,.".l
6.1
6.9
6.2
Z in feet
in inchesa
7
0.53
8
1.4
2.2
1l
3_0
4.8
3.8 +.4
20
8
4.9
26
10
11 18
4.8
5.4
50 62
22
6.0 6.6
90
9l 110 130
152
20r
206
222
239 273 310
266 288 311 334
11
1.8 2.O
29 39
160 180
244
kt
3.6
60
t42
h,
8
80
124
4.4 4.8 5.2
3.6
37 48
3.8
4.I
0.29 0.75 1.9
178
351
398 445
f-
lcy.C'Lz
D in inches
h
4 lco
58 68
3.5
239
27I
3.0 5.8 9.5
s3 108
184
210
4.8
t,: tr".c-E
2
Ict
1.0
t.2
Reacting Force
Ir
4/3
ESSES
h 0.69
34 4A
18
26
.8.1
4.6 4.8 5.0 o.o 6.0 7.0 8.0 9.0
18 23
o.2 0.4 0.6 0.8
29
1.0
38 49
10.0
62 76
1.6 1.8
11.0 12.0
92 110
2.O
13.0
129
14.5
150
2.4 2.6 2.4
2t9
41
9.0
106
7l
10.0 11.0
a7
9-0
123 142
105
10.0
162
128
185
10.5
183 20tr
151
160
17 19
178
t7
209
189
20
12 13
230
208
19
220
246 273
240
20
259 288
254
23
301
74
280 307 335 365
292
24 26 2a
331
.rr0
318 349 380
306
428
8.0
16 17 18 19
13.5
2l 318
23
88 104 121
60
140
94
162
114
25
4I4
378 424
461
26
512
2a
450 480
481 537
361
L
29
30
t7l 193
362 396 432 469 506
3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
27
ITT GRINNEI,I, PIPING DI.]SIGN AND ENGINEERIN(;
I' L
SEAPE-EQUAL LEGS
&b
o.2 0.3
0.0377 0. 1165
0.5 0.6 0.7 0.8 0.9
0.469 0.765 1.191
1.0 L.2
3.00 4.88
1.8
10.55 14.48
0.617 1.308
0.256
0.4
3.370 4.580 6.430 8. 1I0 10.39
1.68 2.34
1.4
2.0 2.2
19.2 24.6 31.4
2.6 2.8
39
2.4
12.00
F*+
22.26 28.56 43.20 52.32 60.72 70.56
.2
T^
8t.24
48.0
92.64
3.0 a.2 4.4
104.5 118.2 130.8
69.1 82.2 95.6
3.8
111.0
138.4
4.0 4.2
!24.L
160.0
4.4 4.6 4.8
Xlaximum Bending Stress ss
r
147 .O
176.
166.6 189.0
208.8
h,'c';-
Reacting Force
lp ln rncnes-
192.0
"L
L-
to
,D : /cb'c';Psr D in inches
in feet
213.0 246.O 264.O
239.0
5.0 5.2
266.0
I'
SIIAPE-MODIFIED
Reacting Torce
T. k"'r'fr
'r-
f-
ho.".-fi
Reacting Force
Maximum Bending Stress s3
i
kh
2.63 3.38
o.75
242
lt.2
3.6S
1.85
16.5
3.30 4.37
2.24 2.79
12.6
1.01
10.50 14.45
4.12 5.50
1.15
13.5
4\2
13.3
4.5
o
.42
14.5
2.60 4.70 7.75
21"
0.86 2.44 4.65
4.50
22.O
r.o
4.17 5.46
1-26 2.66 4.70 7.60
13.8
28
1.4r
h
k,
10..15
9.30
hb
h,
0.51 0.69
.20
k!
kt
2.62 a.42
7
7,
Directron
4/3
1
2 3 6
"'
D in inches
.L in feet
l]) ln lncnes
L
,D : nt'
14.1
7. 10
28.7
9.33
.5 28.2
5.30 7.08 9.40
7
.87
r 2t.3 16.
28.2
s.+
2.r+
17.6 17.3 2a.2
ol Fyn Force
I J
EXPANSION AND STRESSES
II
T'WO PLANE
u-^ f. :"zlb
Reacting
Force F'
:
h..
c.
Sendlng
Stless
:
/f6.
ct
ss
D
.D 'Iolslonetblress st :,cr'c' Jp )n lncnes_
-L
Psl
ZPsl D in inches
in feet
'Where no value for &; is listed the torsional stress is
negligible. tr'or method of combining stress see pages 4 and 5. NorE: f,ette!6 indicete locetion of maximum combined stress,
L
0.25
L E 1
2
ka
0.040 0.050
I
0.50
c 0.55 c 0.62
I
0.67
).
.42
0.72
0.27
0.76
6
0.061
0.78
7
0.063
0.80
0.31
0.3{
2.
t4
2
.40
3.31
1.73
4.40
11.2
3.0
6.36
11
.3
4.9
L
lu
h,
kh
kt
tr
kb
kt
7.09 0.75
2.05
9.12
0.65
2 26
9.8
o
.0
24.8
3.4
19.5
33.4
7.8
36.7
12.0
2.63
1.72
7
2.69
1.86
6.34
1.99
6.95
2.i1
1
2.08
7
4.71
.16
7.80 B
2.22
8.10 8.40
15.6
20.0
22.O
19.3
tr .4
21.0
26
.8
28.0 23.4
32.0
!
.5
B B
11
34.5 B
44.6
44.7
44.9
.5
B
7
I
49.0
51
.4
8
a
B
37.6
56.0
I
59.3
10
B 29
16.0
40.0
B
24.5
B
10.9
12.2
B
24.4
B
10.2
B
2.28
22.2
B
B 2
16.6
t7.6
B
.40
10.5 B
B
B
0.40
.70
B
B
n
11
6.8
12.9
B
B
0.39
18.9
.52
L
i
B
B
0.38
0.825 0.396
0.0647 0.84
7.24
B
0.37
B
10
1.54
B
0.36
B
0.064
0.75
3
B
0.0635 0.81
3.43
1.90
B
8
0.70
B
B
0.060
i./
c
B
0. o58
At
c
0.195
B
0.055
,
ko
L
t
3
2
40.6
!
2S
ITT GRINNELL
-
PIPING DESIGN AND ENGINEERING
TWO PLANE U_WITS TANGENTS
:
T^
k". c .'fipsi
Reacting
Force F,
Bdnding
Stress sz: h. "."7
D
Torsional
Stress
s,
: tri.c.? psi
D in inches lf ln lncnes_ Z in feet lVhere lo value for i;1 is listed the torsioral strcss is negligible. For method ol combining stress
Norx: Lctters i4dicaie location
see pages
4 and 5.
of maximum combined stress.
k"lkb DI
D
0.51 J 1.26
1 10.20 1.63
2 t0.28
D
I 0.30 |
2.O1
o ."+e
D
3 t0.32 2.r5
6.6
e. zz
1.07
9.3 21.O
13.3
22.O
2.76
7.00
19.6
26.4
4.86
7.86
24.4
29.6
7
.20
51.0
8.50
28.5
31.6
9.58
66.7
D
D
D
5 t0.35 2.32
15.0
5.70
D
4 | 0.34 2.27 0.36 2.36 D
|
O
.37 2.38
9.38
31.6
8.96
8 | 0.38 2.10
I
40.0
9.30
I
9.00 108 D
D
10 I 0.3C 2.43
D
4.35
0.67 3.20 D
1.35 5.80
D
4.30
1.70 7.00
6.23 13.8
D
1.88
7
.44
9.96 D
D
D
7
.44 16.9 D
D
8.94 18.8
2.01 D
D
2.09 8.00 D
D
2.t5 8.13
10.3
D
D
2.17 8. 14
10.7 11.0
30
22.2 D
D
2.26 8.36
2r.7 D
D
2.23 8.30
2t.l
r1.3
22.6
15.9
38.0
9.80
I
z.o
6.3
|
9.3
15.0
rols lo.ss I zr.z
24.O
s.z lo.is
^t 11.0
I
I
c
DIDI 21.5 l7 .40I 36 .2 30.0 D IDI 3t 4 17.75152.6 31.0 DIDI 37 0 17.70 16S-5 .10.5 D IDI 41.6 17.70185.7 49 .4 D IDI 45.0 I 7.14 1100 +slo lohlrre DIDI 50.6 16.45 1127
D
64.0 D
7t.5
z.rsl
43.2
D
43.1
0.38 2.42
81.8
9.20
D
D
10.5 117.7
r55 r8d 6
1
|
6.75
60.2 34.5
171.0136.8 182.8138.8
48.1 D
8.70 119
z".ol | ,
03.6
40.0
D
D
D
16.0
31.4
D
6 7
2.O
1145
DI
14.1 |
10
EXPA\SION AI{D TWO PLANE
STRESSES
U WITH
TANGENTS
Iieacting
Force tt" : r,".
.D ss: /ib.c.Zpsr
Bending Stress
Turii,,ral SnFss s, lp ln lnclles_
/cr
. Ar.c t) nsi l_ D in iuches
in feet
,/-
Where no value for
" 2v.
is listed the torsional stress is
negligible.
For method of combining stress
see pages
4 and 5.
No'rlr: Lotiers indicate location of maximum combined stress.
I'/a : 'I
I
0.25
L
L.
kt
D
D
n
I
1.00
3.3{ 1.16
2.79
8.58 1.50
4.06 12.0
+
4.81 1.1.0
5
5.41 15.6
0
5. ii5
4.10
5.86 11.15
1n. o
5
D
D
D
D
23.9
35.0
5.18
25.4
5.89 16.4 D
8
I
6.06
27
.3
D
28.6
6.22 17.0
32.6 4t3.7
38.
60.9
49.3 17.0 104
l0
4.87 D
40.8
4.59
D
D
.5
86.0
47.4
13.7
:l
L
ka
c
E
c
I
2.38
8.
c
12 35 26.0
2
c
30.8
43.0
60.0
60.0
c
c c
94.4
68. c
r38
r25
68.0
72.0
68.6 18.3
D
D
18.25 209
8ti.5 D
D
84.0 18.15 211
100.5
100
174
77 .O D
D
e;0
6
c
c
59.5 18.0 137
96.6
D
45.0
73.9
15.7 D
D
4.29
2!.
c
;l
c
D
4.02 r06
29.8
0.31 r7 .2
74.0
11.
D 1
D
D
42
st.z
D
D
38.3
D
D
26.1
D 27 .O
D
7
19.5
16.4 10.7 D
33.0
10.7
19.3
D
19.9
D
D
D
.12
2. ."1
c
8.65 14.3
D
25 .O
Iri.0
c
2.2
c
D
D
1.39
kb
1.90
1.7 D
D
3
kt c
1.50
4
3
2
hl
ka
D
2
ti
.50 220 D
r 1,1
',.25
113
7
214
13i
8
c
I
.75 D
189
c
D
c 312
128
c
1274
c
137.5 8.9 382
1330
1148
t. hoi.:
c
7.1
10
L/a-8
i
0.5
0.25
L
I
4.2
1.69
D
lJ.6
3
D
8.75 20.0
D
19.0
7.84
D
D
2.62 23.4
29.0
9.2
31.6
38.6
9.7
D
D
2.79 15.1 D
23.0
11.0
25.0
38.7
7
11.8
26.0
.15.0
8
I
r2.3
27 .O
50.0
D
12.7
27.8
54.0
D
l0
r3.0
28.,{
23.2
57.3
59.6
1
1.9
29.6
28.4
.8
30.6
D
61
23.0
88.8
D
I
9.8
D
D
64.0
9.4
D
D
9.05
2ri.3 r28
8-1.0
D
D
107
67
24.5 c
39.0
D
5.1.0 10.
c
40.9
.2 28.9
t71
40.5 c 57.0
zt. o c
130
82.
1
31.2 225
95.5 3r.9 279 D
l,;; l:;r Iror
c 10'1
D
t09.5 33.6 335
c
8.8 c 17 07 86 107
r29
145
i{06
l*'
108
108
6
161
225
c c
1312
ris.9
c 1-19
c
34.3
c
c 133
2
2A
119
l270
1
c
c 5
]ue 1206
D
r52
l,^
E9.0
D
D
D
c
c
46.8 10. 1 D
8.3
9.9
D
D
6.3 c
D
D
D
10.2
D
9.36 5.60
4. 10 10.0
c
c
1.8
5.201 D
D
L
i
kb
cl t.22
D
2
kl
l^
i
4
3
2
1
299
li
I
390 475
6
li:;
10
ITT
G1TINNELL
-
PIPING DESIGN AND ENGINEERING
THREE DIMENSIONA' 90" TIJRNS
r.. > Ls
L": L2
Bending
Stress
Torsional Stress Reacting Force
* : fr' .'f :
,r
f,:
nr'
22.40
1.36
4.0
1.68
2.80
lr"'"'Ifi"tU
ll)
n,"'
Reacting
x{oment .df- =
Reacting
Moment tr[u,
lD lncnes-
Z in feet
0.31
1.37
41.40
2.09
0.45
t.a2
30.54
3.03 3.33
10.0
t,"','Ifitt-n'
: ka, , ']rr-ri. D in inches
t.4l
6.9
0.60
o.74
5.0
1.01
1
1.10
1.11
6.92
t.a2
1.95
4.7a
L.29
2.00
2.13
22.14
2.80
4.8
2.0
2.53
18. 12
3.70
0.98
2.00
2.8
13.50
.42
1.27
0.45
2.06
1.0
0.66
0.45
0.85
0.29
2.38
0.70
0.66
1.66
21.0
0.39
0.65
o.2l
0.56
0.68
2.01
4
25.3
0
1.20
1.40
1.65
0. s4
0.94
1.98
0.74
0.74
2.t7
0.62
0.62
6.4
0.9
0.37
4.10
0.8
0.58
5.66
0.64
0.65 0.72
8.6
o
.52
0.17
3.10
0.45
0.63
2.38
5
.4+
0. 14
3.43
0.39
0.68
2.76
6
o.72
3.13
7
3.50
8
3.84
I
0.53
0.53 t2.6
0.48
0.77
10.2
29
.4
70.0
2.43
o.47
o.47
0.43
0.81
11.6
33.5
0.51
0.39
o.t2
3.79
0.35
0. 11
4.16
0.32
4.50
0.28
79.2
2.70
0.42
o.42 15.7
0.39
0.91
13.2
37
.6
0.63
0.35
88.2
2.76
0.38
0.38
0.35
0.93
14.6
41.4
0.53
0.31
0.76
4.20
035
4.9
2
o
2.31
40.3
I
1.30
o
61.0
1.78
1.14
.42
0.51
3.3
7t
2.5
I. 1I
0.35
.07
4.4
34.5
2.41
" 'Ifitt.n.
3.78
26.7 43.4
of
X"'c'IrJrn
4.9
ln = lr" ' 'Ifin "
Force f ": Reacting Moment Jlf", :
,'flVS|,
3.2
19.20
Torce
Reacting
combining stresses see page 4 and 5
0.95 1.66
tn
n
n",lFor Method
30.21 19.62
Reacting
9.5
1. 10
0.59
5.0
6.7
1.64
0.84
6.8
10.5
0.84
!2.O
0.85
1.13
8.4
0.52
t.r2
24.7
5.0
o.77
4.7
1.68
0.96
6.7
22.3
4.86
0.54
3.6
L
.62
0.74
6.0
4.80
0.37
1.10
1.48
0.13
0.80
0.09
0.65
0.49
2.3
0. ?0
o.72
3.9
2.0
0.61
1
0.51
2
9.3
0.15
o.22
1.1
1.00
0.71
3.6
10.4
o.24
0.13
0.60
0
-74
0.70
0. 10
0.76
o.42
0.64
0.6 0.4
0.88
o.47
0.66
0.45
4
t2.o
0.11
0.
o.44
0.69
0.82
0.09
13.7
o.21
0.
0.34
0.58
0.95
0.16
0.35
0.67
0.3
0.58
0.50
1.06
o.L2
0.27
0.70
o.24
0.51
0.54
1.18
0.10
0.23
o.74
0.20
0.50
0.59
0.20
0.80
0.18
0.48
0.65
8
0.83
0. 17
0.49
0.69
s
0.88
0.15
o.75
10
o.22
0.
0.30
0.20
0.
o.25
0.57
19.5
0.21
0.
o.22
0.56
7.25
0. 15
21.6
0.21
0.
0.21
0.59
t.42
0. 10
0.18
23.6
o.2l
0.
0.19
0.61
0. 10
0.16
NorE: Letters iDdicete loc.tiion of maximurn combined
streBs.
0.01
EXP.\.\SION AN D
S'I'IITISSES
THREE DIMENSIONAL 90' TURNS
0.25
88.2
;0
0.
0.ori 18.f a
iz
rz.u 7.8
1.13
0.71
1+.7
2.2
o.12
102.3
0.67
0.
c5
0.9
2,IJ
0. 61
69.0
10.77 13.7
.42
0.
10.30 (}.1
r7.0
7
0.9ii
0.tr2
0.5E
0.82 I I.4
3.6
8.75
0.35
0.79
7.4
3.4
6.10
0.23
0.67
5.2
3.
8.19
2.
I 0.3E 1
0.53
0.75
30.3
8..lri
12 l
c.i
0.60
14.
.1
28.14
s.'1g ;.s
0.28
0.90
4.7
2.7
0.56
31
8.01
4.t5
0.09
0..10
9.0
4.9
1
.70
0.07
0
0.00G1 0.77
0.06
0.57 I 1.4 0.47 1 0.7
1.5
6. 21
1.0
0.31
5.3-1
0
0.80
0.04
0.36
0.70
1.1 i0.25
6.24
0 05; 0.47
0.037
0.43
0.7G
0.30
5.50
0.03
0..16
0.026
0.32
0.41
0.80 I 0.23
6. iig
o."r-,;;l o. aa
0.026
0.42 I 0.20
0.63
0.31
6.06
0.03
0.32
0.010
0.30
0.29
0.67
0.22
0.22
0.5i
1
0.21
0.4i
1
0.21
2
,4 '5
r.6
o
0.
{
t-
.5
7
.11
0.057t 0.25
0.021
0.33
6.24
0.24
0.015
0.30
0.21
7.98
0.017
0.19
0.50
0.35
6.50
0.04
0. 18
0
.011
0.2i
0.16
8
E.60
0.069 0.21 0.075 0. 17
0.43 0.45
0.5.+
7
0.015
0.47 | 0.15
0.45
0.37
6.80
0.04
0.16
0.0105 0.31
0.14
9.50
0.0501 0.15
0.012
r{
0.45
0.41
7.02
0.070 0
0.010
0.48 0.52
0.13
0.45
0.44
3.3
0.3.1
132.0
0.49
E8:8
0.49
56.0
11
0.41
38.0
u:4
10
10 08
025 r17.0 0.50
I
14
0.
.4
0.85
10.5
81.0
13.35 1ti.0
0.53
0.76 13.6
50.6
12.06
9.8
0.30
0.72
8.4
35.1
11.07
0.20
0.60
5.8
9.87
23
4.0
2
9.78
1.8
0.05
0.37
1.6
1.9
0.27
3
4.95
0.85
0.03
0.30
0.75
1.3
0.22
T
0.27
9.3
7.3
0.17
6.4
4.2
0.38
0.45
1.0
0.16
0.011
0.29
0.78
0.14
0. 21
0.63
0.16
0.55
3.90
6
4.75
0.23
0. 011
o.22
0.21
0.59
0.16
3.95
4.80
0.18
0.0092 0.22
0.16
0.51
0.167
4.10
0.15
0.0083 0.23
0.13
o
.47
0.176
4.20
0.13
0.0065 o.23
0.
11
0 .42
0.183
4.45
0.
0.0055 o.23
0.10
o.32
0.186
4.62
0.235
o
z
0.0051
__1L
25
1+7.0
0.69
0.255 161.0
50
96.6
0.40
0.38
106.0
61.8
o.24
0.39
67
1
41.5
0.15
0.35
45.6
2
I
12
.2
I.4
0.0.1
0.23
3
5.1
0.019
0.15
5.46
+
3.9
0.012
0.116
3.8
3.2 3.6 3.8 4.0
.6
0.62
0,41
19.4
0. 37
0.55
.7
o.21
o.52
15.3
0.09
0.49
0.034
0.28
0.016
0.20
0.012
0.16
0.007
0.
17
8.25
t
0. 102 0.007
0
0041
0. 110
3. 12
0.104
3.26
0. 106
I,r.ltterc indi@te location of maxinrunr combined stress.
1.+
0.13
0.102
0.108
.12
0.013
4.10
0.17
7
o
0.50
0.19
0.71
\orE:
r0.7
0.19
0.9
t0
10
12.12
T
0.29
8
14.8
0.26
0. '13
6
0.43
0.46
1.4
o.23
3.6
0.26
5.1
r7.2
2.2
-:L
,l ,l
3.8
-27
1.8
0.26
11
O
0.82
0.014
+
0.12 I
0.023
0.010
10
0.4+ 10.26
0.046
0.32
z
0. 11
0.75
.46
11
.12
0.91
0.49
5.20
0.33
0
2.0
1.70
5.00
0.12
.32
0.33
4.29
4.90
s
o
0.47
4.92
5
8
0.14
0.52 1
1.6
.47
6
ig
1
3.4
0.12 .!P
0.
11
0.
11
.12
o
.47
0.10
0.43
0.0{,)
0.39
ITT GRINNT]LL PIPING DI.]SICN AND ENGINEERIN(; EXPANSION BENDS The tables for steel expansion bends on pages 34 to 45 permit the sclection of bends designed to absorb expansion betrveen tl'o fixed points. The tabulated defleclions and anchor forces produce a maximum bending stress of 10,000 psi rvith a nodulus of elasticity, E, of 29 X 106 psi rvhen the tl'o ierminals of the bend are restrained from rotation, as shorvn in Figure 1.
Unrestrained straight runs of pipe on one or both terminals, as sho$'n in Figure 2, rvill increase the fleribility of the system thus reducing anchor force ard
Therr
Acturl F,
the bend is approximately midrvay betu'een the anchors'
The follol'ing ratios rvill permit adjustment of the tabular values for any given set of conditions:
Restrained Bends Select a bend u'hich has a
Tabular Deflection
=
Thermal Expan"io' X'
-. ].]&
Allorv. Stress
.\ttttll Itt Ho' t iotr -l'abular F, X ;. 'l abular I)eflectiort ,
Unrestrained Bends Select a bend so that
Tabular Deflection X
:
bending stress. Since flexibility and thermal expansion are both functions of the overall length, the derivation
of the maximum overall length for a given allo*'able stress involves cut and try calculation. The use of the Q factors, l'hich are tabulated for each "straight run" bend type, rvill result in a close approximation of this maximum length \\ithout further calculation provided
:
Q
t0'Y
Thermal Expansion X ;-., ,, ,,\llo$- iitress
Then
Acrual
f, :
Trbular
\""t*l Dcflpct ion f, x -t rorrlrr , f)efrcction X Q
(Alihough this value is not exact it is sufficiettly accurate for archor design. ) For sizes or radii not tabulated, equivalent values for tleflection and anchor force may be derived from equations listed belorv bend details. Exact solution for unrestrained bends is obtained rvith the help of the "properties of expansion bends" tlhich are also listed
belorv each bend detail. Values for Q have been verified for all tabulated bends Their use rvith other bends should be checked by the exact sohtion for unrestrained bends.
<-
Fx+ -Fx
Fx
E\PANSION AND
STRESSES
Example 1 (Selectron ot a single restrained bend)
II.
Giaen: A fully guided 6 inch schedrrle 40 carbon steel pipe line operating a\ 425" F is to be installed bets een tn'o fixed points 85 feet apart. Assume that the bending stress must not exceed 22,500 psi (for method of determining see page 3).
Solulion:
The anchor forces.
Erprnsion '
-
4.60X
: at 600o
F
:
4.60 inches/100
ft.
(see page 7)
Find: I. A. suitable bend lhich rlill absorb the explnsion in the restrained line l-ithout excceding the illorvable bendirrg stress.
I
I
Type
Found
of Bend
page
Itad. in
\
36
8
1
40
8
nnrLlte
|mseL
1':Rl
1.7'1 inches
Refer to the tables to lind bends rvhich will accommodate a deflection of 1.7.tr ilches. In this crse three bends are shol.n rvhich fulfill this requirement. Final choice will depend upon space llmitations, economy of materials and labor, and the intelsity of the anchor forces.
II
Tabular
Actual
F., lb
4l
2nl
* Actual F.
-
I, :
Deficc-,
2.18
3 .91
r037
16-lE*
13.7
11
I
11t31
2338
12.0
r
lr79
2012
12.0
2.03
6
x
x
ffi
fii
=
ro+s
Anchors, feet
lb
:
4.00
::ipansion
absorb the
in the unrestrained line l'ithout
exceeding
:Le allorvable bending stress.
I
I
Found
;i
on page
Bend
\ I
U\
: tp. u \ -ip. u (
102.1
12.0
r03.8
'l'abunr Defleclion X {/ > 3.9t X -
:2nl
Tabular
I
Tabular
Actual
Tabular
in
Deflec.,
Deflec.
Deflec.,
XO
mches
t,
1.38
1.84
3.Sl
1626
Ito
2.01
| .29
2.24
.30
2.11
39
10
40
8
41
_r\crual
a
lnches
1.33
36
|.75
1
ft:-
Tab.
- a^
1.7.1
I+g 22,300
inches
Refer to the tables to find bends rvhose values for deflection times the appropriate Q value rvill accommodate a deflection of 1.74 inches. As in Example 1 there are several such bends from r,rhich to choose, five
Rad.
D,
3.CI inche.
of rvhich are listed below.
The approxima.te anchor forces.
Typo
.
0.0
X .^^ TUU
: flnd: I. A suitable bend rvhich r-ill
.:p.
111 ..1
Solution: Expansion
::se!
.3
(F, for anv other choice of benr] is obtained similarlv)
Giuen:'lhe same conditions as in Example 1 except :iat the pipe line is unguided (i.e., the line is unre::rained).
)ruble
l)eveloped
Lgth. bet|reen
F\n, '^:::^' n.i.n E, i' l" , Er
Trb. F. X 1037
J
Erample 2 (Selection of a single unrestrained bend)
II,
\I'idth,
Height,
Deflec., lnches
I
Iirp. U I
:
D"
Actu&l
19 999
22,i00
I
Lrp. U 1'
Tabular
3.Clinnhes
Trbuler l)eHer"rior, Z 3 sl X
Deta: Thermal Expansior
-100 -
J
II
width
Approx,
Height, ID
in
Lgth. beiween
lb
feet
feet
Anchors, feet
3070*
dl')
7.r
101.5
1180
2030
t2
20
100.4
1181
1825
T2
l6
102.1
1388
2215
10
10
100.7
F. x-, - E\pansion - ,8, ^^ x-,Er lab. Ded.
- 1626 .. 3.91 .. 25.7 F,=ffixfri\;ff--3070
(I"
for any other choice of bend is obtained similarly)
Developed
ENGINEEIIING ITT GRINNT]LL - PIPING DESIGN AND Solution:
restrained bends) Exampie 3 (Selection of multiple 80 carbon steel Giuen: A fully guided 3 inch schedule betrveen installed be at 550" F is to oiJ" li""
i."i" i; ;
i."a "p".tiittg Joints 2i5
;i';*
f"eL
ExPansion
4.11 X
4100
usr, no,. The headroom clearance IImlts lnl height to aPProximatelY 5 feet' m
-'l::*,,:i ;::.i::, l';':"lH;;|.
Datt: F
= n.tt t".n/tootjj;
ou*" ,l bends Find: I "Ihe mimmum nurnber of suitable line restrained .rrrriir?rir' urrs.J ,1" expansion in the
*ilnoot
"*"."di"g
ai
5n0"
the allorvable bending stress'
I
I
I
Rad.
TvDe
;i
Height
II
of
Tabular
Anchor Spacing,
inches
1b
tb
Bend
D"
tn feet
Douhle\
5.1
.47
10
23
.5
721
o
0.966
6
0.45
10
23
.5
742
5
0.966
6
Offset .f Exp. U\
Bends
feet
Trbrlrt-t;""ti*
4
Developed Length
widih
Actual
feet
llach Ilend
Total
1488
4.3
33.4
334.0
1592
6
30.9
309.0
Tabular Deflection X Q X
bends) (Selection of multiple unrestrained in Example 3 exeepf Ctuen: Thesame couditjons as (i unguided e'' the line is unre-
Example
No of Bends
>
9.66 X
that the bends are
r -! D^-rBends '. Z Number of
strained).
The minimum number of in the unrestrained which will absorb the expansron bending slress' rhe allo\\ahle ii""'t"itf,""t, exceeding ""ir."i'n"-"*lrt"r tiacing and approximate anchor Find,:
suitable bends
l.
oaE
ExPansion = 4'f1 X ""9 100
I
I ;f
Tvpe
Rad.
Bend
D"
Double\ Offset ,
6
Exp.
Ul
1n
6
I
Hqieht tq feet
5
Tabular Deflec.,
:
"i'*J,n" irorn A"u*pf"
966 in"hes
a
inches
'Iabula,r Deflec , XQ
I
II
No.
Anchor
of
Spacing,
Bends
4
Gbuhr
10.000
f=2,b':
n.to'n
29
-
Deflection X
Q
deflection and Refer to the tables [o find the tabular (Allimitation sprce the. suit to O fr"t"t .f a bend ,'r.^,,,1, hon.ls o[ the same heighl, wlll shorv approxithe Q frctors vary .""iv ,f-r" same tabular d9fl5crjon factor rvill lonrid"ruUtv. The bend with the Iargest Q *"";ttum anchor spacing ) The two bends
forces' Solutian:
+.zs
+.29
>
II
Act. Deflec. Ea. Bend
in
inches
:
*at"tial..)
I
't anular Deflec.,
1,1.991
22,500
deflection of Refer to the tables to find the tabular (All bends of a r U"ttJ t" suit the space limitation lhe same values Iill short' approxirnalely eilen hcight -n"'^i.1"i"" and labor of economy d"p"tjs upon .".",rr"i illustration' for here shoivn Two bends are
forces' The anchor spacing and anchor
IL
9'66 inches
> e.66 - "- x '' Number of Bends
Th"einial Expansion
:
Tabular Deflection X No' of Bends
As5ume thar the bend-
apart
:
feei
Actual Deflec. Eeno, inches
-btla,,
o.47
1.40
0.66
7
33
.57
1.38
0.45
1.31
0.59
8
29.38
t.21
3 are used here tor illusl'ration'
Tabular
lb
II Approx.
lb 1514
widrh 1n
Developed Length
feet
Each Bend
Toial
4.3
43.4
303.8
36.8
294.4
EXPANSION AND STRESSES
Example
5 (Exact solution for unrcstrailed bcnds) A- (i" schedule 120 A.S.T II A 106 Grade
Giten: B Doublc Offset Expalsion l3cnd, bcnt orl a-10 inch radius is to be installed il a lirte 6'-r fcct krrig operatirrg at 625' F. -{ssume that the beridirrg stress shall not
Locate gravity aris X-X.
31.1 X569:178 Ilend Straights 55.5ij X 0: 0 178 80.96 r7R
ercecd 22,500 Psi.
Finrl: The alchor force 1. and determine I'hether or rot the system is overstresscd Data:
: /c : t:
l?
floment of Ilertia 1" (about X-X axis)
12.52x (3.33)3X 1.00 :
1.00
Transfer to X--X axis
1.00 1'1.98
vo
Bend about X'--X' aris
3.33 feet
S- : 1r : c
6t).
31.4 X inches3 (from Page
13)
:785
(from Page
X-X
Straights about
49.61 inchesa (from page 13)
55.56
axis
X (2.05)'?
Tolrl .I,
11)
\Iomeut of Inertia of the bend about its o$'n gravrty t\ls (from Page 38) I,:12.52Brk
LcIp I"
05
X
785
X
Fx.-
:
9.425-Ek
:
9.425
:
31.11
X 3.33 X
49.01
:
: -
416
234 t l12 fr'
2276 pounds
11,72
I,Iaximum Bendilg Stress sg Greatest Bending Nloment
Solulion:
\Iodilicd Lergth ol Bend
:
(3.64)':
462
: 2276x9.33)/.12 254,821 inch pounds
1.00
1,t
254,821
,.'
r.1.98
1.00
:
17,011 psi
=-Fx
ITT GRINNI,]I,I, PIPINIi DESITIN ,\ND UN(IINEERIN(I DOUBLE OFFSET EXPANSION BEND No. 10 Bend
Genqol: I,cn7th
:
g.+25R
l{odificd l,errgth
_
I
:
9.1251?h
LcI p
^,IiI 17281"
I.
:
/,
i'or
(aboLrt glavity tris -Y-X) 12.52n3k Slrcss o/ 10,000 psi, E oJ 29 X l0': |
: 0.;2En:/i lncllcs D. - : 9161p pourds 1']. .t,
,(llrccrlon
,? in feel l) irr irr,.ho. 1a in itrchesa /, distance bett'een anchors in feet c erpln:riou frcior -.see page 11 A" total thcrmrl c\p&Dsiou in inches
For Stress of 10,000 psi, E of 29 X
106
lllrlirrs oi lJenrl
/?
6D, Deflec-
2',
40 EO
40
80 4{J
80
40 80 40
80 40
80 40 80
8',
10,
12'
40 80 40 60
std. XS
14' 16"
std.
18',
Std.
20'
38
srd. XS
xs xs
std.
xs
r5.1 I 0.218 0.203 I 0 276 0 2t (i 0.300
0.
0.22r)J 0.3 18 0.2371 0 337 0.258 I 0 3i5 0.280] 0.132 I 0 322 | 0.500
] 0.365 0.500 0.375 0.500 0.375 0.500 0.375
0.28 0.21
0.32 0.28
Iiorce,
tior,
!D
lD.
329 429
0.33
498
0.39 0.39
627
l)eflecrlon, rn.
0.70 0.71
312 392
1.10 I .09
24t)
0.83 0.83
420 542
.30
1.30
336 431
0.99 0.99
501
1 .5,1
401
588
800
0.69 0.56
667
0.85 0.65
784 1012
1.15 1.15 1.63
102
471 625
798
2.27 2.27
638 870
1.23
1064 1.151
].45
1088
1.33
162{i 2386
1.63 1.01
1382 1988
?13
1037 1491
2259 3586
2.44
2051
.52
2990
|
3. 12
II
3364 5323
3.91
2.42 3.56 ,r.69
525
.80
0.82
1
3r4
1 8tl
r7 41
r.27
16.1
215
78r
1277
1.90
1
ti57
0G7
0.84
I'orle,
523
1051
94I
ln.
416
0.57 0.3e
125r
tion,
lb
0.85 0.85
724
?l
Deflec-
Force, 205 268
053
0.48
-A.nchor
0.54 0.55
o17
0.
10r,,
273 359
868
2992
| 0.500I 0.375 0.500 0.375 0 500
AncLor ror.e, I ro
0.44 0.32
2.45 2.05
I
0 .31
8r"
1
4619
3379 5,r00
Temper-
3549
4.25
5.5r
37r6
6.34 5.75
3855 6181
5.00
0 Factor 10' 20'
2',-8', Pipe 300 400 500 600 700 800
1.50 1.46 1 .42 1.38 1.34 1.31
I'ipe
.4ti 1.41 1.37 1
|.29 1.25
EXPANSION AND STRESSES CIRCLE BEND
No. 11 Bend GcneraL:
Leugih
:
0.2838
Nlodified Lerrgth
-
:
6.283Rk
X-X) -
.{. 1ul'out grrrilY 3\is
lor
x-
p LcI p 17281" I" L.EI
Slress oJ 10,000 Psi,
Defleclior r
-
E of 29 X
0.312n:l
3.14R3fr 106:
.
feet D in inches 1r itr inches4 ir feet I see factor c expalsiolt Page 11
lnchcq
E in
-/); It)lr/-l
/l- :
disiance betl een anchors
P
Dorrnds
RDi
A, total thermal erpansion in inches
-
For Stress of 10,000 Psi, E of 29
X
106
Pipe Size
D"
2" 2+',
'10
0.154
0. 12
80
0. 218
0.09
,t0 30
0.203 0.276
0. 11
0.12
66S
.10
0 0
0.19 0. 1{
718
SO
216
300
532
926
40 80
o.226
0.21 0.17
1,368 1,795
,{0
0 .237
80
0.337
0.30 0.21
1,60ii 2,137
40
0
0.375
0.44 0.29
2,1E1
EO
40 80
0.280 0.432
0.57 0.36
2,782
40 80
o
0.81
3,851
0.500
0.55
6,132
10"
40 60
0.365 0.500
1.05 0.
5,113 7,89+
12"
std.
0.375 0.500
1.31
XS
14',
std. XS
0.375 0.500
1.68 1.53
16',
std. XS
0.375 0.500
2.Or
18"
0.375 0.500
2.36 2.14
20"
0.375 0.500
2.72 2.47
5',
0 318
258
322
L
illl
.2l
356
1122
2,971 4,072
5,719 9,081
2"-20" Pipe inclusive
39
ITT GITINNEI,L PIPING DESIGN AND UNGINEEITING EXPANSION U BEND No. 9 Bend. GeneraL:
Length:0.283fi Modificd Length
For
:
6.2838&
" LtI :," I r'281, I,
lt
- '-_ _ L^EI
,1r
\rbour gravlty rxis X-X) -- 3.l4R3k
'Shsss
o/ 10,000 psi, E of 29
.
[JeHenllon -
Fr
0.312.R:t.
:
II
D-
\,
106:
fcct D in inches 1r in inchesa ,I, distance betrveen archors in feet c expansion factor see p&ge11
rcllcs
E irr
r00;1p Pounds
Brr'
A, total thelmal erpausiol in inches
For Stress of 10,000 psi, E of 29
X
106
6D,,
40
0 t+
0.12 0.09
-10
0.15{
80
0
l0
0.203
80
0
276
'10
0
.210
80
0.300
40 80
0.226
4',
40 80
0.237 0.337
0.30
0.2r
2,137
s',
40 80
0.258 0.375
0.4.1
2,131
40 80
0.280 0.432
0.36
8"
40 80
o.322
0.81
10"
40 60
0.365 0.500
0.88
7,E94
12"
std. XS
0.375 0.500
1.31 1.21
5,719
14',
srd. XS
0.375 0.500
1.68
16"
std. XS
0.375 0.500
2.01 1.82
18"
std. XS
0.375 0.500
2.36
2.tl
10,
20'
std. XS
0.375
2.72 2.47
10,563
z',
.213
0 318
500
167
023
0.13
610
0.23
030
0. 14 0 .12
017
710
1,071
0.17
8!3
0.30
0.19 0.14
1,150 1,483
o.23 0.26
s58 1236
0.36 0.36
0.24 0.17
1,3ti8
0.29 0.2.{
1110 1495
o .42
1,795 1,606
0.37 0.28
1339 1780
0.49 0.49
0.53 0.35
1817
0.70
2177
0
2,782 1,072
2360 3394
0.93 0.75
3,85,t
0.29
0.500
0
al)"
105
0
3501
L
6,132
5109
1
5,113
1793
9,0E4
I,230 6,0ij1 9,691 6,346
r63
6,5E13
5337
7877
.42
.62
.42 .03
13 r ls J 1.
1415
2037
EXPANSION AND STRE-CSES EXPANSION
U BEND-TANGENTS : 2
FT
No. 9 Bend GenerqL:
Lerrgth :0.2838 + 4ft trIodilied Lclgth : 6.2t3nir
-
L"EIp LcI p ri28I, I,
+ 4fi
1" (about grar"ity axis ,Y-X) : 3.11n3/i * S/i'!i * 6.28nft + 1.33 psz, !- o/ 29 X 106: 10,000 For Stress o/ (0.3t2n" + u.;gin- + 0.02.r n)ft
. uen.crron
(/i l b; !t132 -1' (R + I)Di 1n.1r".
10671P 1.,: ,-^ ^ \tt i | )ut
-8 in feet D in inches Ia in inchesa .L distance betlreen anchors in feet c expansion factol-see page 11
pounds
A. total thermal expansion in inches For Stress of 10,000 psi, E of 29 X
106
Iladius of Bend Pipe Size
ll'all
Sch.
5I
ThickDeflec-
D"
tion, ln.
-B
6D"
i
8D"
Deffec-
10D"
Deflec-
Deflec-
ID
tion, ln.
1b
255 332
0.43 0.30
233 305
0.56 0.56
200
0.43
394 495
0. 63 0. 63
333
0. 43
712
orce,
Force,
tn,
tion,
ID
Anchor
"iffo
EO
0. 154 0. 213
0.41 0.32
40 80
0.203 O.2t'6
0.39 0.34
40 80
0.216 0.300
0
40 80
0
0. 313
0.38
40
0.237 0.337
0. 03
0.43
1004 1335
0.69 o.52
0.258 0.375
0.80 0.53
147 4
1
2009
0. E9 {J.59
1293
EO
1770
40 80
0.280 0 .432
0.96 0.61
1984
1
.09
1771 2547
1416
0.68
|.32
1180
2915
1.07
2038
16S8
40 80
o.322
1
.22
2961
1
.50
2799
0.500
0. E2
4713
0. s2
4085
1.85 1 31
3227
40 60
0.365 0.500
r .47
41i8
1
1.22
3990
6364
.89 I .40
std. XS
0.375 0.500
|.77
4797
2.30
456E
75rig
1.92
t4'
srd.
0 375
16'
std.
40
EO
5',
8',
10" 12"
40
xs 40
18' 20'
.47
639
0.35
824
.226
812
l.6l
2.11
r.95
4921 7876
0.375 0.500
2.45 2.26
5264
std.
228
418
0.87 0.87
288 362
0.67 0.67
17E 618
0.94 0.94
411
951
0.71
599 7E6
1.05 1.05
509 668
E93
0.81
731
0.81
971
1. 1.
l6 l6
619
1r86
.05
10,18
0.94
1430
0 .51
0. 60
0.48
0.500
0.76 0.76
726
261
1.36 1.36
Temper-
E122
Q
2',-a' Pipe
xs
0.500
2
.60
E962
300
r .42
0 0
3.21 2.94
400
Srd.
1.37
5388
500
1.33
9,r31
600
r.29
XS
500
821 879 1199
5481
2.86 375
529
Factor 10"-20" Pipe 1.29
|.24 1.19
4L
ITT GRINNELL - PIPING DESIGN AND ENGINEERING EXPANSION
U BEND-TANGENTS No' 9 Bend
:
R
Gmeral:
Length
:
8.283R
Modified Length
A'EIp
-
:
2R
_
(8.?lbk
X
106:
LcIP
17281, I"
.r, (about gravity axis x-x) For
+
6.283Rk
Stress
of 10,000 Psi, E of 29
Deflection
rc.577k
:
1ltllp
F. = -
+
0.ol I )R'z
---
+
0.167)ng
.
feet D in inches Ip in inchesa Z distance between anchors in feet c expansion factor-see Page 11 A- total thermal expansion in inches R in
Incnes
Pounds
For Stress of 10,000 Psi, E of 29
I
Scb. I No. I 2'
10"
42
well
| tion, I in. I
Deflec-
ness
0.154
40 80
0.203
0.218
o.23 0.17
487
0.276
0.26 0.22
713
40 80
0.216 0.300
0.36 0.26
766 988
40 80
o.226 0.318
0.46 0.32
1196
40 80
o.237
o
0.337
0.38
40 80
0.258 0.375
0.82 0.54
1071 I 1424 | 1453 I 1982 I
40 80
0.280
1.07
185r I
40 80
o.a22
4{)
0.365 0.500
0.4:J2
0.500
.57
0.67
911
2714 | 2571
1
.03
,!085
0.99 0.66 1.31
0.82
Force,
lb
0. 69
0.44 0.44
234 305
0.69
0.57 0.57
354
0.89 0.89
283
447
474
1
618
1
.05 .05
383 494 456 598
0.67 0.67 0.80 0.80
570
748
t.25
0.93
669
| .45
0.S3
8m
1.45
1211 | 1.31 1651 I r.u 1573 I 1.75 2264 | L.42 2335 | 2.66 3409 | 1.94
909 1238
1.84 1.84
726
1181 1697
2.22
1358
s90 944
1751
52ffi
std.
0.375 0.500
2.45 2.26
3836
14'
srd.
xs
0.375 0.500
3.12 2.84
3841 6153
16'
std.
0.375 0.500
18"
srd.
xs
0.375 0.500
4.38 3.98
20'
std.
0.375 0.500
4.59
xs
0.69 0.52
3r2 | 407 | 473 | 59b I 638 | 824 | 760 I 9s5 | 893 I 1186 |
Anchor
3406
L2'
XS
106
Thick-
40 80
60
X
6053
4035 6458
2',-8' |
10'-20'
t.32
1.28
t.25
L.22
EXPANS]ON AND STRESSES EXPANSION
U BEND-TANGENTS :
2R
No. 9 Bend General:
Lerigth:10.2E38 \{odilicd Lerrgth : 0.28344 + +R
--
A,EIp LcI p i28l , I,
1" (about. gravity axis X-X) For Srress o/ 10,000 psi, E of 29 uenecl
.rorL -
l?z
:
(0.8u;f
|
=
(17
X
106:
.42h
+
1.333)R3
0.0tic2)R'.
D;
lnches
-
8331P
Pounds
F.1)
B in feet D in inches 1p in iuchesa
L distance betq'een anchors in feet c expansion
For Stress of 10,000 psi, E of 29
X
D,,
Sch.
\Yall Thick-
No.
l, in.
)" Deflec-
in. .10
5',
8',
10,
aD"
Anchor
Deflec-
Force,
tion,
lb
10
DeflecForce, Ib
Force,
ln.
tb
0.35 0.27
280
.10
0
203
0..r0
425
EO
0.276
0.35
40 80
0
0.300
0.68
479
0 .12
712
0. 60
40 80
o.226
o .72
68.1
0.318
0.50
0.87
896
0.71
o.237 0.337
0. E8
80
803 1067
| .o7 0.83
669 889
1.47 r .17
40
o.258
1090 1!t85
908
1.05
1238
2.07 1.86
.04
1179 1697
2.25
1272
0.39
1.27 0. 85
40 80
0.2E0
1.65
1388
.132
2
1.06
2037
1.29
40
0.322
2.34
1928
0.500
1.60
3.08
EO
3062
r .93
40 60
0.365 0.500
3.00 2.51
2553 3943
0
233 305
0.70 0.70
41ti
0.90 0.90
613
570
0.51
0.51
216
0.61
0..:13
0 375
EO
6',
0151
rB
6D"
0.218
t0
3l',
see page 11
106
Radius of Bend Pipe
factor
A, total thermal expansion in inches
r7a
D"
Deflec-
Anchor
t1On,
Force,
rn. 1.09 1.09
140 183
266
1.41 1.41
212 268
1.06 1.06
359
1.66 1.66
287 370
1.27
428
1.98 1.98
342
501 667
2.30 2.30
401
682
2.9L
928
2.91
|.27
229
463
448 534 743
885
2553
0 Factor
Temperature,
2',t0'
Pipe Inclusive 5 & 6D" .40
300 400 500
1
600
1.30
1.36 1.33
8 & 10D,, 1. 48 1. 45
1.42 I .40
ITT GIIINNELI, PIPING DI']SICiN AND ITNGINIi]'III\(I EXPANSION
U BEND-TANGENTS : No.
I
4R
Bend
GenErctl:
Length:14.283R Modified Length
L,EI
p
:
6.283R&
+
8n
:
(44'27ic
LcI p
17281, I, 1, (about gravity
X-X)
axis
+
10'66)R3
For Slress o/ 10,000 Psi, E of 29 X 106: (1.4651 + 0.3$)R'9 .
--.
Deflection::
DJUI
f- :
P
RDi -
rncnes
Dounos '
R in feet D in inches I p ln lncnes-
in feet factor-see Page l1 A, total thermal expansion in inches
-L distance betrveen anchors
c expansion
For Stiess of 10,000 Psi, E of 29 X
106
Wall
I'ipe
-thich-
Size
D"
t, in.
Deflec-
Deflec-
tion, j in.
tlon, tn.
-{nchor
Fqf."' 113
2. 13 2 .13
178
2.71 2.74
40 80
0.15,1 0. 218
0.67 0.53
187 2+1
0.83 0.77
1.30 1.36
2i'
40 80
0.203
o.77 0.69
283
0.99 0.99
1.76
|.7b
223
40 80
0 216
2.08 2.08
239
40 80
0
0 .318
40 80
6"
105
384
1.30
0.t1
495
1
1.34
456 599
1.66
0.97
0.237 0.337
1.05
536
2.03
446 593
40 80
0.258 0.375
233
727
2
.87
606 820
40 80
0.230
301
0. '132
2.O2
0.300 .226
i.18 162
1
.t7 .39
162
992
2.04
927
3.76 2 .5r
1359
380 498
tion,
Ib
2',
0.276
Deuec-
li'2
309
3.25 3.25
247 2.47
335 145
8
44
& 10r"
EXPANSIO\
A\D
STRESSES
DOUBLE OFFSET U BEND No. 8 Bend General:
Length = 6.283R Modified Length : 6.2838ft
J.EI p LcI p '"- 17281,- 1,
1" (about gru'ity axis X-X) : 3 61R3tr For Slrcss o/ 10,000 psi, E ol 29 X 106:
. :
-Detlectron
0.2ri0nrA.
-
,
Incnes
- : r20gI P Pounos li. .Rt L distance betu'een anchors in Ieet
in feet D in inches 1r, in inchesa .B
c exPansion
factor
see Page 11
A, total thermal expansion in inches For Stress of 10,000 psi, E of 29 X
106
Radius of Bend A Pipe Size
D"
lVall
Sch.
Thick-
No.
ness
Deflec-
Anchor Force,
lb
tion, ln.
407
0
.12 0. 1l
339 442
0.19 0.19
0.14 0.14
648
0.19 0.17
Deflec-
tion, rn,
0.10 0.08
Force,
Deflec-
Defiec-
tion,
Force,
255 332
0.30 0.30
201 266
0.25 o.25
386 486
0.39 0.39
308 389
694 897
0.29
521 672
0.46 0.46
538
427
0.35 0.35
621
496
El4
ti51
728
tb
Force,
in.
lb
40
0.154
EO
0.218
2i'
40 80
0.203 o.276
0. 11
617
0.10
776
3"
,10
0.216 0.300
0. 16
834
.12
1075
1301
0.25 0.20
1084
0.31 0.23
129\
0.41 0.41
0.44 0.29
1318 1796
0.58 o.52
1317
0.78
1284
0. 63
1847
80
0
992
40 80
0
.226 0.318
0.20 0.14
40 80
0 .237
0.26
0.337
o.r7
1.55U
40 80
0.258 0.375
0.36 o.24
2157
4{)
0.280
0
.47
2015
80
o.432
0.30
2S58
0.58 0.36
1712 2463
40 80
0.322 0.500
0.68 0.46
2755
0.89
2511 3702
t0'
40 60
0.365
0.87 0.73
3705
12'
std.
xs
0.375 0.500
1.11
417 4
.00
6592
std. XS
0.375 0.500
1.39 | .27
4181 6692
std. XS
0.375 0.500
r .67
1.52
4392 7030
srd. XS
0.375 0.500
1.97
4596
srd. XS
0.375 0.500
2.27 2.06
31"
D"
6',
8',
14', 16', 1s',
20'
0.500
1
1582
4416
971
0 .29
968
s89
tb
117
0.64 0.64 0.81 0.81
791 1078
1.79 7660
45
ITT GRINNELL - PIPING DESIGN AND ENGINEERING LINE INERTIAS When determining the location of the centroid of a systern and the value of the inertias it is necessary to consider each uniJony segment individually. The value of each segment is a function of its length, shape, and location applied at its center of gravity. For convenience appiy all dimensions in feet and decirnals. CENTER OF GRAVITY OF LINE SEGMENTS
(O.9.)
C'NTROID
The centroid of a system is located by the algebraic summation of the individual products-segment value times the normal disiance tt om axis to c'g.
Norr: Alecbraic summ:Ltion ltcans trormal distance may be plus or minui rnd r[ust bc ooDsidered in adding rcsults, Straight Line in Plane of Projection (Eq.
r)
I
Straight Line
rL>l tl c,9.-
L-l--t\"n 90" Bend
Straight Line Perpendicular to Plane of Projection
:1.3L.x'
(IIq.
II)
Any Benil
Norp: The factor 1.3 s,ccouDts for the torsional displacement of ihe merDi)el. A_
2l? si\
+ (02
(oz
-
-
0t)
90" Bend in Plane of Projection
or)
- 7"!l2 ", : l.57kRr,
B:/sin+(or+dl) C:Acos+(02+oL)
Y'
D:R-C Nore: \fhere dr errd d"rppnnr irrdepcndenr of sine or e'rsine th.y crc crl)fcss"d in rrJi-rrs. l' = 0.01;-15 rcdrxrrq. Angre
Sine
0 to 90' 90 to 180' 180 to 270"
+
270 to 3ti0"
46
J
(Eq.
a,/-c
s
Cosine
: T'
Note: Ior
values of
I
see pages 12
to
16.
III)
EXP.\\SIO\ AND
Straight Axis
Any Bend in Plane of Projection
:
l;(02
-
STRESSES
(Eq.
Ar)|lx'
line tr
Plane of Projection Parallel to Either
Iv)
(moy be
+or-)
x-
-T I,u
1'
NorE: 0r &nd ,!
:
s.r'e eripressed
in
:
(lilq.
Lr.rJ
vI)
radians.
0.017.15 radians.
Straight Line in Plane of Projection Inclined to Axes Y
90' Bend Perpendicular to Plane of Projection
:
1.15
=2
r' :
1,81.8rl
(Eq.
v)
(moy oe
t
or-,
I
. -" sin20 tzu:t" 24 +txU NoTE: Sin 20 rnay be a,xis tow&rd the +ts
+X or"
sin 29
-I-
see pagc
(Eq.
vII)
+ or -. Measure angle d from the a,xis Io! the proper sign. For values
or.
Straight Line Perpendicular to Plane of Projection
f:r:l [ra -/---/
PRODUCT OF INERTIA
The product of inertia of an element is its length multiplied by its distances from trvo axes. The product of inertia of an entire branch is the sum of all of these products. Since distances r and y may have f or signs the result will be positive or negatir.e. The following formulas give product of inertia for various line segments:
Lro\oted
x
c9-
Y
-Tl,,nou o",
|t .i,r-)I
L-+
---
I
I"o :
L.3Lrg
(Eq.
YIII)
ITT GRINNELL
-
PIPING DESIGN AND I]NGINI'],]RIN(I
90'Bend in Plane of Projection about Axes through c.g.
*
Case 1: Where both
90'Bend in Plane of Projection about Axes not through
axes intersect arc
+Y (moy be + 0r -l
I c.Q>* ]\
or where both
-".-+*X
+
axes intersect
radial lines.
I,u
:
+k(0.r37}") +
:
+fr(0.137B3)
+XSee
Eq.
IX
,4 or Eq.
+
t*
'
*a (Eq.
1.57k&ry
IX B abov€ for proper
sign.
I
+Y
I"v:
(Eq.
-h(0.137R8)
IX
,a)
90o Bend Perpendicular to Platre of Projection Case
2: Where one one
*
*
axis intersects arc and
axis intersects radial line.
--J-
^l
*X'.'-
I,u
:
+k(0J37R3)
@q.
48
Values of 0.137-P4 are tabulated on page 51.
I
Ixa) -z
Nors:
le f (moy +at-) |
:
l.8lRry
(Eq.
xI)
E\PANSION AND
STRESSES
MOMXNT OF INERTIA
Any Bend in Plane of Projection about Axes through Center of Curvature
The momcnt of inertia of an elemert is its lelgth multiplied by the square of its distance from an axis. 'Ihe momerit of inertia ol the entire branch is the sum of all these products. The moment of inertia has a positive sigu orly. Thc follon'ing formulas give moment of inertia for various line segments:
--x t,"
: rt+ (si'z g, (may be
*
or
sin'dr)*
(Eq.
xII) Straight Line in Plane of Projection
-)
Y I
Any Bend in Plane of Projection about Axes not
c.s--l1----:--J
throush Center of Curyature
I
I
-f
I
I" : La" I3
I" :;+
T,U
: rlor, +
-R'(sin 0e
,,r)ry
-
-.R2(cos
sin dy)y
+
d2
-
cos
d')r
f; t.i"'a -
sir'rt
(Eq.
(parallel to
Zr2
axis)
(Eq. XIY,a
(perpendicular to
axis)
to
or;]-
XIII)
I
I
I
90'
90 to 130" 180 to 270" 270 io 360"
* \orE: Nleasure dr and d, from the *X axis tolard the *Y sris for proper signs. \Ihere ,r end tr appcar independent of sire and' coiine tLev are erpressed in radius. 1" : 0.01715 radians.
(Eq. XIVB)
Straight Line in Plane of Projection Inclineil to Axes
Angle
0
)
r,: r,"'ff + ru" ru: Norr: For
r,"ff
+
r,"
(Eq. xv,4 ) (Eq. XYB)
values of slnz a/12 and. cos' d/12 lee page
51.
49
ITT GITINNDLI,
-
PIPING DESIGN AND ENGINEUITING
Straight Line Perpendicular to Plane of Projection Y
Any Bend in Plane of Projection about Axes through Center of Curvature
'---
':':-1--L -
-a
- - -x
I, : l.\Ly'zI Iu - l.}Lr2l
(Eq.
XVI)
l
r":
r,l@,
-
e,)
-
(sin
2d2
t
sin
2d1
)l R" 2
XIxa)
(Eq.
90' Bend in Plane of Projection
z,:r[to,-o,t+
(sin 2d'
sin 2d' )-l RB
-
t
-_,-)
(Eq.
XIXB)
in Plane of Projection about Axes not through Center of Curyature
Any Bend
Length of Arc ' (ge - sr)R
L=
1- = lc(0.119n3)' *
: 1, :
* ft (0.149R3) I
ft(0.149R3)
NorE: For valucs ol 0.I
k!^t) 2"u2
(Eq. xVILa )
r.57kRu2
19R3 sea pagc
XVIIB)
(Eq.
r.57kRr2 5L
90o Bend Perpendicular to Plane of Projection NorE: For values of B and C see page
.
(sin 2d2
, | ,"
'L''',
1.:Kl\Vt-Vt)-
46.
-
.-rolol.d
-
L(8"
(Eq.
XVIIL{)
: l.8lBy2 (parallel to axis) Ic : 1.15(0.149R8) * 1.8lfir'z (perpendicular to axis) (Eq.
AU
XVIIIB)
L(Cz
)l
)
- 9?)l
f lsin 2d2 IIt=kl(or-erl+ff
t,: t.t|n-t2 a'z
sin 2dr
2
/i3 2
(Eq. XX.4)
sin 2dr)-l Rg
- z')l
I2
(Eq. XX-B)
NorE: ln the above tno bends measure angles from l,be +X axis roqard the +y ayis for proper sign llhen the lerms ,r rnd d, appear independenl of sine or,osino lhey xre c\pr$seo in radians. 1' : 0.01715 radiens. Angle 0 to 180" 180
to 360"
Sine
+
EXPANSION AND
FUNCTIONS OF
nld
Sirrr 0
L
Cosr -n
O
+#
d
|
n'aiun"
0
0
0.08333
0
0
15"
0.00558
0.07775
+0.02083
0.26
30
0.02083
0.06250
+0.03608
0.52
45
0.0.1107
0.01107
+0.04167
0.79
60
0.06250
0.02083
+0.03608
1.05
60
0.07775
0.00558
+0.02083
90
0.08333
0
0
7.37
90
105
0.07775
0.00558
-0.02083
1.83
120
0.06250
0.02033
-0.03008
135
0.0.t1ti7
0.04 167
-0.0+167
2.36
150
0.02083
0.06250
-0
03ri08
2.62
165
0.0055E
0.07775
-
02083
2.88
180
0
0
3.
0
0
08333
.
15"
r20
2.09
180
1.1
FUNCTIONS OF R (.4,) Table of 0.149.R3
(1,,) Table of 0.137,li3
Pipe Size
10 2
3l
2.0
1.7
3.3 5.0
4.7
6 8
2l 4I
10
l4 l6
i.o 2.5 5.0
30
70
47
1t1
70
165
.:l:: 1
1.2
10
1.3
1.r 1.1
2.3 ,1.0
1' 5.5
41 79
11
217
30
I9
t9 324
18
99
20 21
4ti1 633
236
1094
Places
left blank are less tban uDity.
1.8
63 86 149
30 51 81
51 76
121
108 149
236
257
.108
t72
r
1.6
2.3
| 2.6 | 4.0 I 7.8 I 14 23 132 4+163
3.6
1.
:.
'i
1.8 2.8 5.5 9.5
76 I 180
r21 |
2
3*
11
5
19
6
44 86
10
108
r49
t2
172 257
236
8
16 18
20 24
DI
INI)
ITT GRIN}JI'I,I, PIPI\(I I)IISI(iN
It-\:(I]NT]I']iI\CI
SINGLE PLANE SYSTEM
Gir:ut: A 10 inch pipirrg s1'stem in accordalce the sketch -shol n abole.
: : Ly : tr.
l'ith
llaximum Operaiing Prcssure P XlaximumOperatirtgTemperatnre 7n0'F Pipirrg Spccification A.S.T.II. A 100 Gradc A 400 pst
Data:
the distarcc in X directiou flom points a to .40
: 0.500 inchesl ,,,..r i)u : scncqule Ip:212 inche;a S- : 39 43 irrches'.1-f c,r r;0" : 996 Sa 5 17,675 psi
page 2 and 14
Page 11 page 3
Reaction forccs 1r, and Fs at poillt e. (At point q reactiorr forces ale equal :rnd opposite.) Reaction moments at points o ard €. Amount and location of flaximum l3cndilg Stress, s3. Solulion.' Assume point o fired ald point, e temporarily released. The thermal explnsiou rvould thett mo1'e point e in the directions and by the amounts l" arrd A, io a nerv locatiorr e/. Establish axes *X' and * I' at point e opposite to the direction of A, arrd Ao respectii'ely. Determirtc the Iocation of the centroid using axes X' and I' as
Iind:
coordinates. Lay axes *X and f )' through the centroid parallel to and in the same direction as *X/ ald + I'l. Calculatc the lirre inertias about axcs X and f. Sollc for Ir. anr) 1r, by substituting the line inertias in the lollorvilg equations;
|u:
I,L, -f I,uLn , r r
El33 lDUl
page 14
r-t-cLP
T T -Lf, r u"r T -f n 2 ctP
t{u -r- rra
9019
-
x
10
(90.19)'z
x
990
x
e
212
porrnds
y
E-r33
I
X i2 +
El33 X 20,-112 3OEE
J
^ tt:
20,112
e
52fect
lhe distarrcc il )- dircction lrom poilts o to 2-1 - 11 : 10 feet
F d
+ 12 :
l0
x i2^, 9o6x"r, ""'
guJe
-
> 20,112 (ri0+9)z' poLlricts
Pass these reactiorr forces tbrough the
centroid. The
ald thcir
respectile dislances from any point giles the berrdirrg moment at tlut product of these force-s
poir:rt. Assumc
count erclocks
clock$-ise rotatior-i
Soli-e
isc rotation as
+
rs -.
aDd
for reaction moments at poiDts a and e
as
follorvs:
r11"r,: -(3088 X
:
r'tf.t":
0.90)
+
(1561
X
18.22)
-
(1501
X
33.78)
+25,+77 fr lb
+(3088
x
9.0.1)
: - 21,815 1r lb
I, the resultant of F, arrd Ir, l'hen passed through the centroid, giles the position of the rteutral axis. 'l'he maximum bclding mometit occuls l,t that poillt rvhich is furthest from the neutraL axis. Irr this case it
is point d.
rlf,rd: : :
+(30E8 X 9.04) +37,625 fr lb 37,62-o
M sP--" s- -
X
12
:
451,500
-
39.43
+
(156i X 0.22)
451,500 inch Pounds
-
11,'151 PSi
The maximum bending stress s6 is 11,'151 psi lvhich is less than the allorvable stress range of 17,675 psi.
EXI \\SI( )N AND
STRESSES
I
12
22-
To find c.g. each seg-
of
ment see page 46.
ab
=
: cd : d,e : bc
14' 72' 24' 40'
Centroid (calculated with origin at point e) Flq. No.
Frl
i.'t.
Lcngtlr /,,
+fti
t2
2l
+40 +20
4ll
:fr'.=
>f=gO
:
b(
\rI VI
.1e
\iI
\rI
\I\ra XI\TA crl
IIVA xIv,4
=
39!,ruo
:
+288
0
zLat =
-+811
+e.o{ft
:++ -+ I'a : * : : : : rr :
-+14X7.e6',
i;
+28E
= :+
1rx13.22X7.1)0 12 X 12 22 X 11.1)0 24X6.22X2.116 {0( - 13 781 X (-9.01)
12
+238
+17 +21
+:OrO
i : fr :
+aa ;s rr
L,L'
a
+ 72E + 552 + 0(i0 + 300
+52
t-I
I
Lt'
r'
X 14.96, +21 x 2. e61
l0 x L04,
2030
2t94 qt2
4983 9649
1116
2686 1362 3269
$is3
1,,
bc
ul.
x 18.22j U .,- '-r, t ,,, '- ,t" -t2
-\IT,T
1-t
XIVB XIVA XIVB
21
4ri4E 1936
X 6.22'
;+10
12929
< 13.78'
I!: Ior
equation ieference numbers see pages 46 to
50.
20112
ITT GRINNELL - PIPING DESIGN AND ENGINEERING SINGLE PLANE SYSTEM CONTAINING CIRCULAR ARCS
Giuen: A. 10 inch piping system the sketch shorvn above.
in accordance with
400 psi Maximum Operating Pressure Maximum Operating Temperature 750" F Piping Specification A.S.T.M. A 106 Grade A
Data:
: : Ip--l: I
0.500 inchesl schedule 60
Solve
page
:
I
page 74
I
)
II
75q'
:
996
page
8e
:
17,675 psi
page 3
lined on page 50 except that the flexibility factor k must be included for all curved segments of the system. Solve for F, and Fo using the equa,tions shown on
2r,369 x 52 + 10,457 X l9 r,- _ 9415X21,369-(1O,457F
: o4t
X l0 +
x
2t,369
1467 pounds
10,457
-
(1467
X
17.37)
(1467 X 34'63) lb ft -23,970 F; the resultant of F" and 1r, rvhen passed through the centroid gives the position of the neutral axis. The maximum bending moment occurs at that point which is furthest from the neutral axis. A scale drawing will show that this point is located betrveen / and g at a normal distance of 9.4 feet from the neutral axis. The bending moment and bending stress in this curved
section of pipe are determined as follows:
M
x
O467P X e.4
:
2e,672rtlb
*i: ffi
The maximum bending moment in straight pipe M^ro
996
x
212
Xjz x 996 X 212
(lo,4or.1-
: \'@W+
: 29,672 X 12 : 356,064 inch Pounds t,: M 356,06{ X 1.00: e030Psi
-- +
: :
(2795
X 9.60)
+
(1467
X
1.21)
+28,607 fr tb 28,60?
M sp=-:s^
Z/95 pounds 9415
+
occurs a,t point g.
L,:40+12:52feet Lt, : 24 - 14 : 10 feet
g4l5
X 0.40) +24,364 ft lb (2795
:
Solution: Determine the location of the centroid and calculate the line inertias in the same manner as out-
_
as
M"rh: + (2795 X 9.60) -
Find: Reaction forces F" and Fu at point [. (At point a reaction forces are equal and opposite.) Reaction moments at points o and h. Amountand location of Maximum Bending Stress, s3.
',,.n -
and
for reaction moments at points a and i,
M*" : -
2 and t4
l
inches''
: 1.74 .ru""a : 1.00
:
+
-,
clockwise rotation as
I
212 inchesa
/c5""6
page 50:
Assume counterclockwise rotation as
point. follows:
S- = 39.+3
c51
Pass these reaction forces through the centroid. The product o{ these forces and their respective distances from any point gives the bending moment at that
X
12
:
343,607
.
3r{3,284 inch pounds
:8714psi
39.43
The maximum bending stress is 9030 psi, occurring member /9 and is less than the allowable stress range of 22,500 psi.
in
EXPANSION AND STRESSES
To {ind c.g. of each segmcnt sec page 46.
: 9.84 ft : 3.68 ft e/ : 15.08 ft tir : 35.84 ft' oc-,. {)1 , Ll(lcllus ojll"".t" : 4.16 ft al, cd
/-aENreotD
\r/
l
_r
rr. zzgs!
:L
tll
)
Centroid (calculated with origin at poht ft)
ab cd dc .I(/
gh
I III I III I III I
1.71 X '1.16
=
11.37
1.57 >,.1.71 X 4.16
=
7.57
x
I: lir
Cl
\.I \B \.I
.\B gh
\-I
>L
+52 +50.19
81
11.37
3133
vI
9
:
1.57 X 1.71 X 4.10
3. 68
+.16
+11.51
+10
15.6E
+38.,t9
11.37 35.
:
0
+11-.92
E4
99.15
+ 511 + 574.1 + 169.2 + 172 + 627 + 437.6 + 613 : :Lr' +3133 I
t
fi
+3.1.63
9.84X17.37X5.32
=
HT:
+ 1.57 X 1.74 X 4.16 X 15.86 X 12.89 -1.74(0.137 3.68 X 11.37 X 1-1.10 +1.74(0.137 X 4.101 + 1.57 X.1.74 X 4.16 X 6.88 X 12.89 15.68X537X2.40 +1.7{(0.137 X 1.16' + 1.57 X 1.74 X 4.16 X 3.86(-8.09) X 4.103)
35.81(-16.71)( 9.60)
+ 11.92
+ 1,t7
+21.O
+88{
+
+
+255.7 +18s
+22.49 +12.0 1.51
0
__:: +
9.
>I'a' = +952.0
:+ 909 : + 2307 :+ 603 : + 1025 :+202 :- 33E : + 57J9
3. 68(14.40y
1.74(0.149 X 4.16D
+
35.81(9. 60)2
.tu
+ r.57 X r.74 X 4.16(12.Eg)'? + 1.57 X1.71X 4.16(12.SSF
1s.68(2. {0)'
1.74(0.i49 X 4.163)
II\''1 \\'II R
+
1.57 X1.74 X 4.16(8.09X
XI\: B
!.81(17.37)1 1.74(0.149 X 4.163) + 1.57 __::_::: + B. C8(11.37)?
X|II B \I\-.4 IVII A
1.74(0.149 X 4.161 15.68(5.37)' 1.74(0.149 X 4.163)
XIY B
ff
For equation reference numbeN
+10.157
Ell5.32)'
1.74(0.149 X 4.16t
T
.2
0
+e 6ort
1,, = !u
17
*35
y't.71X
4.16(15.86)'z
2969 2479 180
+
1.57 X1.74 X 4.16(6.E8)'
+
1.57 )<1.71
x
4.16(3.86)'
452 183
8+tt6 71)'
see pages 46
to
50.
DD
ITT GRINNE'I,I, - PIPING DESIGN AND F]NGIN]iEN]\(i MULTIPLE PLANE SYSTEM
a
l*"*
rAY
't o:,J,/
4"'\+ It
Giuen: .L 10 inch piping system the sketch shot'n above.
in
accordance rvith
Maximum Operating Temperature 750' F 350 psi Maximum Operating Pressure, P A Grade Piping Specification A.S.T M. A 106
Determine the location of the centroid and calculate the line inertias for each projection. Calculation of the line inertias results in two moments of inertia for each axis rvhich are added.
I, : I, : Total 1, :
Data:
t: : d: 1r, : S- : .4r : -4,lr : cat zso. : Sr :
0.365 inchesl schedule 40 j
from page 2 and
14
2013
To\al
2617
:
5724leeLz 4887 feeta
fntroduce these values into the lollorving equations
1,'"-***
996
from page
17,675 Psi
from page 3
and solve for
Fn, artd F".
- F"1.": L"cIP -F"I.a + FrI, - F"Iu":: LvcIc -F"1." - FoI,. * F"I" L"cIr L, : distance in X direction from 0 to e : 14 feet Zs : distance in Y direction from o to e : 20 - 8: 12 feet tr, : distance in Z direction from a to e : 18 feet
11
of Maximum Combined Stress, s'
Solution; Assume point n fixed and point e tempo-
rarily released. 'fhe thermal expansion rvould then
FoI"o
-
L,cIp:14 X 996 X 160'8 :2'2+2,195lblta LucIr: 12 X 996 X 1608: 1'92l,882lbJtB
move point e in the direction and by the amounts A", A,,, and a, to a ne\- location e'.
EsLoblish ax"s -1- X', I Y', and -vZ' at poinl e opposite to the direction of A,, Ar' and A, respectively' Project the piping system into the three planes forrned by ih""u at"". The three planes are denoted as the XY, XZ, and YZ Planes.
[.,
+F,1.
e.
Amountand location
1998
: f 1461 feet3 1"": *2360lee's In" : * 529 leet3
160.8 inchesa
11.91 inchesz
+
5544 feets
1,,
10.02 inches
29.9 inches" 78.9 inchesz
2889
+ 3531 : + 3077 :
Products of inertia from the calculations are:
Find: ReacLiort forces F'", Fu, and F ", at point e' (At point @ reaction forces are equal and opposite ) Reaction Moments M,o, M.", and M, at points o and
Total
i.cl p :
(l
)
(2)
(3)
18
X
+F,5544
-tr'"
146i
-F"236O
996
-
+
X
160.8
Fa1'467 Fa 5724
-
2,882,8221b lr3
:2'242'195 - F"2360 : f ,921,882 r)29 F" : 2,882,822
- Fa 529 + I'' 4887
EXPANSION AND STRESSES
PROIECTION
IN XY PLANE
To lind c.g. see page 46. ab bc
cd
of
each segment
:
201
:
18',
de
l*
; i
Centroid (calculated with origin at e) Lerrsth L. l,.t
Eq. No.
T'
I
I I II II
20
bc
cd d.e
ab
0
0
8
zlt' : i37a
:,L = 6L4
:: ab
+7
t1
1.3X18:23.4
VI VI
VIII VI
XIV B XIV ,4
cd
XVI
d.e
XIV A
ffi:
Lr' ) -t- | +280 +98 I 0-8 o I
u'
+2
-8 -4
I
tor t
La'
+40 - tr2
-187.2
-32
>ty' : -Zgt
Y
,:-ffi;:-445'
+r.zs,
: +1062 :+481 :- 2l 1," : +1461
20x3.22X6.45 14X1.22X(-3.55) 1.3 X 18X (-5.78) X (-3.55) 8X(-5.78)X0.45
; +20 < 6.45' 14 x 3.551 r.3 x 18 X 3.55' ;+8X(0.15):
1,198
295 44
,013
I, ab bc
cd iLe
XIV ,,I XIV B
20 >< a.222
xvr xIv "1
1.3X18X5.78'
1350
i+14xr22, 8
250 780 267
X 5.78'
2647
For equatioD reference numLers sce prges 46 to
50.
ITT GRINNELL-PIPING DESIGN AND ENGINEERING PROJECTION
IN XZ
PLANE
To find c.g. of each segment see
Page
46.
: 20' bc : 14' cd: 18' de:8'
ab
I Centroid (calculated \rith origin at e) Lx' 1.3 X 20
:26 14 18
1.3X 8:10.4 2L
-
+18 +18
+9
0
68-4
462
:+964 :+ 18 -+473 :+905
1.3 X 20 X 7.25 X 5.r1
14X0.25X5.11 18X(-6.75)X(-3.89) 1.3 X 8 X (-6.75) X (-12.89)
xvr xrv ,{ XIV B
xvI
678 365
1.3X20X5.1l'z 14 X 5.11' ; + 18 '1 3.8s' 1.3 X 8 X 12.89',
1730 3531
r.3x.20x.7.25',
$+r+x 6.753 18
{o.zrP
X
1.3X8X6.76' 1,
/6 to 50' For equation reference nrmhers see pages
58
= -
230
=
2389
a20
EXPANSION AND STRESSES
PRO TECTION
IN TZ PLANE
To find c.g. of each segment see page 46.
: 2Ol : L4' cd : l8l
ab
bc
,^l ae-
6
Centroid (calculated with origin at e)
Ilq abI bc
"tl
Length
No.
,, Ft
20
L.3,/ tl : 18.2
II
18
8l
+
>L
I
Lz'
LA'
: 612
+40 | I
)-, -8 -8 -4
1
| 1
-145.6
zLu'
|
_.':n n: 41i 61 2 =
-r14 -32 |
= -281n z
'
+ts
+
I 0
t
=ffi
-
+a27 .6
+18
+162
0
zZ"' :
+US S
= +tt.za
I!"
abl 6c crl, de
vl IIII \'l \I
: +607 = -3r4 +i76 = :,40 I"' : +5n
20x6.38X4.76 13X 14X (-3.62)X-1.76 18X( 3.62)X(-1.24) 8 X 0.38 X (-13.24) I!
ab
XIV ,{
bc
x\rI
cd
\I\:
B
de
XIV
/
:
x 4.76? x 14 X 4.76! r;+18x4.24'
20
r .3
8
453
: 810 : 1402 I" = ffi7
X 13.24'
I, ab
XIV B
bc
XVI
cil dc
XIV ,4 XIV B
?9-"ov^ 12'--'--' 1.3 18
rc,
1480
X 14X 3.62'
238 236
(0.38)'
44
X 3.62'
;+8X
1998
For equation reference numbem see pages 46 to
50
59
ITT GRINNI'I,L
__
PIPI\G D]'S]G\ A\D ]iN(]I\I.]]'III\(I
SOLUTION OF EQUATIONS Line
(l) (4) (2) (5)
+5544
1161
+0.26.1
1
-
1,161
+5721
+1-161
_3E5
(6) (7)
0
+5339
(3) (8) (e)
-23dJ +23/io
(10) (11)
0
-2360 +0.426
-
-529
+4887
+rr51
-248
-
-
622
0
Line
-2,212,195 +.10-t
(1) (4)
1,921,8E2
(.2)
-591,939
(5)
-2,513,821
(6) (7)
-2,882,822 -955,175
(3) (8)
5.12,985
(s)
-4,380,982
(10)
-
622
+0.216
-1
Constant
1005
+17L
-
+3631
+r200
-l
(114)
+1206 +1206
(118)
a)
+0.216
(7 (7 B)
(44)
(4r)
+0.264
x
+0..126 +514
It
rvill be noted that coemcients located symmetrically opposite in reference to a diagonal drarvn frorn the upper left to the lorver right are equal. Equations of this shape can be solved rnost conveniently by the folloli'ing procedure: Insert the coefficients and constants for equations (1), (2), and (3) in ihe lines marked (1), (2), and (3). The constant takes the opposite sign because each line reads as the left side of an equation, and ":0" is omitted from the table. Fill lines in the order indicated by the numbers at the left side of the table as follorvs: Line (4): Divide figures in line (1) by the negatiYe coefficient of ,l7, in line (1) (i.e., by -55aa). Line (5): Multiply figures in line (1) by the coefficient of F, in line (a) (i.e., by +0.264). Line (6): The algebraic sum of lines (2) and (5), f', coefficient becomes 0.
Line (7): Divide figures in line (6) by the negative coefficient of .F, in line (6) (i.e., by -5339). Line (8): Multiply ligures in line (1) by the coefficient of F" in line (a) (i.e., by +0.426). Line (9): X{ultiply figures in line (6) by the coefficient of F, in line (7) (i.e., by +0.216). Line (10): The algebraic surn of lines (3), (8) and (9), F, and /, coefficients become 0. Line (11): Divide figures in Iine (10) by the negative coefficient of F, in line (10) (i.e., by -3634). Line (11,4): Line (11) restated as an equation. Line (114); The solution of equation on line (I1,4) deriving a value of 1206 pounds for l7,. Line (7,4): Line (7) restated as an equation substituting the value for -F, found on line (118).
60
x
1206
+260
+171 +.171
x
1206
(
0 1206 0
731
(11,4) (11/J) (7
^)
(7 R)
(.44)
+404
+ 404
11)
11 11
(.18)
Line (7-B): The solution of equation on line
(7,4)
deriving a value of 731 pounds for lrr. Line (4,{); Line (4) restated as an equation substituting the values for F" and F, found on lines (118) and (7B) respectively.
Line (48): The solution of equation on line (4,4) deriving a value of 1111 pounds for F".
I{aving determined values for the reaction lorces F", Fo and F,, return to the plane projection diagrams and apply the respective reactions at the centroid of each plane. The forces at the ccntroid multiplied by their distance from point e give the reaction moments at point e. The forces at' the centroid multiplied by the distance from any other point give the bending moments at that point. These moments are listed in the follorving table rvith positive sign for counterclockl.ise rotation. Each point of the system is subjected to a torque produced by the moment in the plane perpendicular to the line segment. A corner point (such as b) must be considered first as part of one line segmeut ob and secondly as part of the other line segmcnt bc. The moment causing torque can be readily identified as the one rvhose subscript does not contain the letter designating the direction of the line segment. For example:
the torque at point b is M., then b is considered as a part of segrnent ab (ab being parallel to the f axis), and considered as a part of segment bc X axis). has been determined, the the torque moment Once resultant bending moment is found by the vectorial sum (square root of the sum of the squares) of the other two moments at the point in question.
My, n'hen b is
(bc being parallel to the
EXPANSION AND STRESSES MOMENTS
IN FOOT
POUNDS
+1206X16.39-731 X 4.76
:
M -1111 X 3.55 :
: \/O6,n'
+ (t?"2('i,
:
2o,s8o
,1206 X
731 X 8.22
-
+16,275
3.62
731 X 4.76
-9953
As pori, of
al
ru : /(7Eltt + O'J53)' = 12,675 -1111
X3
+?31 : 55+2S1
As plrlt of
+r
X 5.78
Srmc as
ol
X
5.
:
tl + 1206 x 6.75 + 13,318
As
6c
(231X : 13,321 ,v - {13/91s)-'+
As part
111
-1111 X 12.89 :
c
cd
+
1206
X 6.75
-l\s
,u = r.{ursoPdsst.:Y
:
,1
stso
part of
:
:
+S169
M
:
de
+1206X438+731 X = +14,96t
-Gr80
\/O4S6D'+Gl6f
From inspection of the Moment Tabulation:
: 17,547 s,
--
?
:
al pojnt r. Having computed the maximum bending moment and the maximum torque, the maximum expansion stress is determined in the manner outlined on page 3: Case
: : T-
M
'"
20,380
ft lb
20,380
X
12
fi Ib 3066 X 12 :
:
I
(at Point a)
244,560 inch Pounds
3066
36,792 inch Pounds
M 24+,560 _ : s- 29.9
6t/y
T 36,792 8r:2s^:2xrg-s -
Case
: : ?: :
M
13.24
6180
\Gl I litt :
Case I: The maximum resultant bending momedt is 20,380 ft lb occurring at point a I'ith an accompanying
torque of 3066 ft lb. Case II: The maximum torque is 7845 ft lb in line bc and the larger accompanying M is 13,821 ft lb occurrtng
15,8s0 r:28r
y'Gal3)t+ (281)' :5320
Same as d
+111r > 4 45+731 X 5.78
=
-1206X3.62+731 : +5313 ''13.21
-6180
cd
=
prrt of
+ (7s15x ,M: V(13--13,.3r-sI
't' :7846
ft Ib 13,821 X 12 :
II
v(8l?9r +
4(6157
:
8271 psi
(at Point c)
13,821
7845
ft lb
7845
X
M
s-
12
:
94,140 inch Pounds
105,852 29.9
,Zl -: qt
165,852 inch Pounds
bb4/ pst
1tro
"' 25- 2x-29.9 : l.)/4 s" : r4rrtT (rrt : \/ 15547P + 405?4)' DSI
4
:
6352 psi
psr
615 psi
The maximum combined stress s is 8271 psi' occur-
ring at point o, and is less than the allowable stress range S of 17,675 PSi' OI
ITT GRINNELL - PIPING DESIGN AND ENGINEERING MI'LTIPLE PLANE SYSTEM CONTAINING CIRCI]LAR
ARCS
Bend R:5D. :4 10' L.R.EII E: r.5D,: r'25'
{N,
*'
Gium:
L
10 inch piping system
in
accordance
with
o u-rra lr.
the sketch shown above. 350 psi Maximum Operating Pressure P Uu*ito"- Operatin! Temperature 750' F Piping Speciication ASTM A 106GradeA
Data:
I=
0.365 inchesl
d : 10.02 inches Ip : 160.8 inches{ S- : 29.9 inches3 -4r : 78.9 inches'? 4u : 11.91 inches'z hu."a : 2'44 i*"a : 1.17 ka5.* : 8.15 schedule 40
page 2 and 14
J
75e'
Allow. Se
the.three Soluiion: Project the piping system into planes, determine the location of the centrold and as outialculate the line inertias in the same manner k' il""J-"t otg" 56, except that the flexibility factor' plane i" *"'ira"a for all curved segments in the
-r.i
of projection.
+ 3283 : Tora| Io :2802 + 3841 : Total I :3091 + 1978 :
I" : "
1993
I's :
996
page 11
=
17,675 Psi
page 3
point o reaction forces equal and opposite)'
5069ft3
4lt3 706lt3
177
:14 X 996 X 160'8 : 2,24:2'795lb !t3 : 1,921'882 lb ft3 L,ucI p : l2,X 996 X 160'8 i""t : tS Xs96 X 100 8 : 2,8b2,8221b lt3 " (1) F,5278 - Fv 1400 - F"r779 = 2'242'195 (2) -F"1400 + tr'r 6643 - F" 706 : I'921'882 (3) -F"r779 - Fu ?06 + I" 5069 :2'882'822 L"cI p
:
5276 lI3 6643 ft3
1334 ft3
1"" : Ir":
page 14
point h (ar Find; Reaction forces f., Fu and F" at
62
Stress, s.
Total
iau"* = 2'61 c61
to""t
M.r, M," and Mu" at
points Combined and location of Maximum
moments Reaction --
See pag€ 66
for basic equations.
EXPANSION AND STRESSES
PROIECTION
IN XT
PLANE
To find c.g. of each segment Lengths:
: : el : gh -
ab
cd'
see page 46.
15.84'
8 59' 12 59' 3.841
Radii:
bc-R:4.!61 de-R:1.25' ls-R:4.t8'
Centroiil (calculated with origin at point h)
I lII I
ab bc
cd de
el
ls
gh
12 1.81 X1.25 1.3 X 12.59 1.81 X4.16
41X 4 16
1.57
II I
+46q I
15 84
:226 = 16 35 :7.51
15 94 8.5S
3.84
+14
rr,
+ +
+222.O 4q
+ +
5.55 0.45 0 0 0
XZc'
>z -70.x
15.84,<732X853 +i.q+ro.rr7' +.iot) tt 57 / 2.44 x4.16\5.81(-2 8.5S( - 1 13)(-3.55) l.8l r.2s(-6.23)(-3 55) r 3 x^12.s9(-6.68)(-3 55) 1.81 x 4.16( - 6.68)( -2.04) 3. 84( - 6.68X2 .53)
bc
cil d.e
eI
Is 9h
bc
cd dc
el
XIV B xvlr .{ xlv ,{
XVIII
xvI
,4
Tg
XVIII A
9h
XIV B
ab bc
cd de
el
Is
gh
Ior
x
4.163)
8.59(3.55X 1.81 X 1.25(3.55)',
i(3 ?'6]iat'f,ili'J'r -8J)'
4
+ r.57 x2.44 x + 1.8r x 4
4.16(? 04F
-8 -8 -86.49 - 1.92 -
64.6
- 18. r -130.8 - 48.9
469.8
-312.8
04)
:+989 = + 34.4 500 =+ : + 388.0 : + 102.5 : - 64.9
15.8{{7 32)r
i-.+i[d.us z 4 l0') t- t.5? > 2 14 v 4 16(5 81v tal' #+s ss(t 1.15(0.r19 X 1.25i) + 1.81 X1.25(6.23X 1.3 X 12.59(6.68)' 1.8l X 4. 16(6.68X 3.81(6.68)'
50.
92 .5 108.3 28 .5 206.3
16(2.04x
3.6a12.53y"
equa,tioo reference aumbers see pages 46 to
-103.5
1484
9#*15.84(8.53)' 2.[4e.149
0 0 0
+
-6.49
t:ffi:-44srt -
r=ffi:+6.b6rr
ab
:
47.7 1.0
+4.08
29.3
ITT GITINNI'LL PIPING DESIGN AND I'\ (iI\I'I.]Ii I\( PROJECTION
I
IN XZ PLANE
To find c.g. of each segment
see page 46.
Lengths:
ob:15.84'
: : sh:
ij,;sror----,
cd
8.59'
ef
72.59' 3.E11
Radii:
bc-R:4.161 de-R:1.251
fs-R:4.16'
Centroid (calculated with origin at point ft)
ab bc
cd d.e
el
ls sh
Ls'
Length L, Ft
Eq. No.
II
1.3
I III I
1.57X8.15X1.25=16.00
x 15.84 x 4.16
=
1.8r
8.59
X4.16 1.3X3.84 1.81
II
20.60
12
.59
= 7.54 = 4.99 2L : 77 .85
+r4
+288
+ +
+
bc
5.55 0.45 0
0 0
'La'
VI
12.59(
gh
VIII
ab bc
XVI
cd. d.e
el Js
gh
xlv
,: #
1.3 X 15.84(4.06)'
,4
XVII ,4 XIV B XVIII B XVI
+137
1.51
0
0
.O
>Zz'
:
*10E5.6
= +13.e4rr
-+ 296 246 + 525 + 390
8.r5i0.137
el
,4
+
0
:
+17.55 +10.46
x 1253) + 1.57 X 8.15 X 1.25(-5.16)(3.61) -5.61)( -3.49) 12.43) 1.81 x 4.l6( -5.61)( 1.3 x 3.81( -5.61X - 13. S1)
X,B
XVIII
0 0
+r8
+ +
1.3 X 15.84 X 8.3S X 4.06
8.59(-.06)4.06
ile
47.2
'-* + 135.8 + 15'1.8 + 280. E + 131.8 + lr.4
+18 +18
1.81 X 4.16 X 6.88 X 4.06
VIII XI VI
cd.
+94 I + 47.7
+12.49
- 437 0 : +o.or rr r:zli ab
Lz,
1.8l X 4.16(4.06)'
8.59(4.06r
8.15(0.149 X 1.25)
+
ff
+
1.57 X 8.15 X 1.25(3.61)!
701
210
340 124 142 211
12.5s(3.4eX
1.15(0.149 X 4.16' 1.3 x 3.84(13.94)'
+
1.81 X 4.16(12.43X
1176
970 3283
I, ab
b. cd.
de
el
ls
gh
xvI
XVIII B XIV B XVII B XIV,{ XVIII ,{ XVI
1.3 X 15.81(8.39I 1.15(0.r49 X 4.169
r:r]::_+859(06)' 8.r5(0.149 X 1.259 12.59(5.6r)' 1.81 x 4. r6(5.61X
1.3
x
1450
+
1.81 X 4.16(6.88)!
+
1.57 X 8.15 X 1.25(5.16X
369
425
396 237
3.84(5.61)1
30r1
For equaiion reference Dumbers
see
psgea 46 to
50.
E\PANSION PROJECTION
IN TZ PLANE
To find c.g. of crch scgment
see page 46.
Lengths:
ab:15.81'
: 8.59' : 12.59' glr = 3.811 c:d c.J
Radii:
bc- R:4.t$' de-R:I.2-o' f(J-R=+.16'
Centroid (calculated with origin at point ft) !lq. \o. bc
aj de
gh
I II I III I
Lensth
r, l t
X't
181
10 59
1.3 X 8 1 31 X 1.25
:
15 E{ 7.51
=
11.18
=
1.57 '12.44 X 4.16 =
:,
-
12.59
6..19 8 8 8
15.11-1
6.49
2.26 3.
E-1
bc
VI
-1.92
= 6919
gh
>fr' : -SOS S , = ftH:
^*
+18
135.8
rlR
201 .5
+ 17.55 + 10. {6
131
39.7
+ l5r
0
>Lz'
x 1.25(-3.61) X 5.72 -3 61)(-1.37) 4.163/ I 1.57 X2.44 X4.l6r-2.10( 4J\0.137
12.59{
X,1
-2
10.32\
r,, ab bc
cd de
9h
XIV 1
X\iIII XVI
XVIII B XIV -B XVII B
IIV
: + 7oo 603 2E7
15.81(6.17)l)
,{
A
1.81 X 4.16(6.17)'
1.3 X 8.59(6.17)?
1.15(0.1.19 X 1.253)
+
fr
126
+
1.81 X 1.25(5.72)! 190
12.5er1.37)?
2.44(0 149 X 4.163) 3.81(11.83)'
ala.3
-+8277 :-219 167 = :+- 623 - + 321.4
3.81 X 2.47(-11.E3)
VI
:
*".rrn
1.3X8.5C(-3.61)X6.17 1 8r
.7
21.1
1.81 X 4.1{j(-2.10) X 6.17
VI
Js
-103.5
Lz'
X 8.17 X 617
15.8.1
XI VI II XI
+ -.139 _ 89.5 13 1 - 100.11 6{.6
+.r.08
i:=+:-439fr eb
L,J' _
]J,
+
1721
1.57 x'2.44 X 4.16(10.32)'1
3811
ab
XIV B
lj;::: + 15.84(s.47)'!
bc
X\TIII B
1.15(0.149 X 4.16)
cd
XVI
!s
XVIII ,{ XIV ,1 X\:II ,{
gh
XIV B
de
1.3 X 8.59(3.61)? r .81
X
x4.16(2.10)2
1.25(3. 61)'
12.59(3.61)' 2
+ r.81
.44(O.149 X 4. 16)
+ r.57 X 2.14 X 4. 16(2. 10)':
'' 1;' + 3.81(2.47y
For equation reference numbers see pages 46 to
: 1468 :46 1,16 = : 29.5 : 164.0 : 96.5 r. :
1973
50.
65
ITT CI]TINIiI'I,I, PII,ING DESIGN AND I,]N(IINI'IIITI \C. SOLUTION OF EQUATIONS (See page 60)
F" 1774 _0.330 706
Line
(l)
+5276
(4)
-1334 +0.253
-l
+6643
(2) (5)
-l
(3) (8)
-
+1r55
(10)
0
0
(1lA) (l1B)
+0.253 X Lt44
(4'{ )
(48)
f'
jo,
= 8s3lb
:
571
+o
571
960
|
(2) (5)
-1921'cs2
sc7.275 |
-753,378 -455,516 -'t,olt,zto +goo
336
(1)
I
| | |
I | I
I
xe6o - I
iizs"'
I" :
lb
-2'212't1s | 125
ro.rE3 |
ll,l*'n*
-t"
Line
Consi.ant
-z.lvr.tsz tro;
-r -F' i;:
l1)
(7 A) (7 B)
] |
-s009 -5S6 -2rr +4262
-706 449
(s) (
re y55 -
+ 6306
0
|
4
+1334
(6) (7)
I |
|
-2,8c2,q22
(6) (7)
I
I
(3)
|
(s) (s)
1
|
(10) L
(
l1)
I
*ooo = | re6og .eco=]
llr-1
**" =| ++z;:1
(11/) (11-B) (7
,,,1
(.7
A) B)
(44)
-s
(4R)
+8e3
lb
MOMENTS
IN FOOT POUNDS
(See page 61)
-571 X 6.17 +
9d0
= +t2,21r
u:
t/ (n,stoY
i
16.39
tlz,ztr)' = ta,ttt
:
4710
(435Y : ,/-(4s71)+
49s3
M = ",(B6a5I + (2sssy
M=
X
+893X4.06+960X436 : +7Elr
+893 X 2.81 + 960 X 5.61
=
+7895
ar = Vi?dEB)iTl6IEI
-
10,086
-960 X3.61 = *914
+571 X7.67
+893X0.61 +571 X6
:
-893X13.94+960X5.61
68
=
+4359
M=
-7063
(2283)' : .,{$ss),-+
8488
M = r{n ss),IL,e6sP = rg,+re
EXPANSION AND STRESSES
I.
II.
III.
From inspection the maximum bending moment, M, is 16,111 ft lb occurling at point o rvhich is straight pipe. The accompanying torque ? is 4429 ft lb.
The maximum torque ? is 6989 ft lb in line cd and the larger accompanying bending moment, M, is 7811 ft lb at point d rvhich is cun'ed pipe with an i factor of 2.61. The maximum bending moment, M, in curved pipe u'ith an z factor of 2.61 is 10,085 ft lb ai point e rvith an accompanying torque ? of 644
fi IV.
The maximum expansion stress is determined in the manner ouilined on page 3 as follorvs: Case
I
(at point a)
it Ib :16,111 X 12 : 193,332 inch pounds T :412Sft,lb : +429 X 12 : 53,148 inch pounds i6,11r
: M 193,332 : o*oop"t 29.9 "" sT 53,148 8r:9.c = l.,,,ro o - 66YPSI sz : r/Gaf +-+Gzf- : vre1o6y1 4(88rt
:
6706 psi
7811
ft lb
7811
X
6989
ft lb
6989
X
M ",:i_t: t":zs-T
lb.
The bending moments in curved pipe rvith an i factor of 1.17 are relatively small (points b, c,, and g) and therefore nced not be considered.
M:
: : ?: :
M
"E
Case
.
12 12
II
(at point d)
:
93,732 inch pounds
:
83,808 inch pounds
93,732
,*
.. ^. X ^2.6I
83,868
2 x2g.g =
- .,{;Jul('rt :: Case
III
-
8182psi
l4uzPSr
VEt8tT -! ,t{llgtt 8649 psi
(at point e)
: 10,085 lt lb - 10,085 X l2 -- l2l,020inch pounds 7:644ftlb : 644 X 12 : 7728 inch pounds ^ ^- : r0,564psi : M : i21,020.*26r ;;; "u r, T i728 lzYPsI
M
-.l.!,9qq: "r - oq
'u: {',f-+-4G;7::
vft0-5641 + 4(-l2ef 10,567 psi
The maximum expansion stress sr is 10,567 psi, occurring at point c, and is less than the allorvable stress range Sr of 17,675 psi.
VELOCITY AND PRESSURE DROP The velocity of a fluid florving in pipe is detcrmincd by thc equation:
a
v -- 114 -AI rvhere I/ : velocity (feet/second) Q : rate of florv (cubic feet/second) Cr : inside area of the pipe (sqnarc inches) Reasonable vclocities for rvater ancl st'eam are
Empilical equaticrns and charts have bccn dcviscd to calculalq: this pt'cssut'e dlop \\'itll I eNonalte a(icul a(:y' Thc llational soltrtion, irasccl upon the Fanning or Darcy equation, has tlte most ltnivetsal applic'rtion and has been shorvn to plodllce ii'icur&te tesults after countless expcriments. 'l'hc basitl oclualion (1) requires conversion to motc famiijal terms .\lternate arrangencnts of thc basic equation, (2), (3), and ('l), are exprcssed in tcrms more {amiliar t'o the piping cngtneet'
indicaLed by the fullorring rrngns: Service rvater mains General service l'ater PiPing Boiler feed rvatel PiPing
Lorv pressure steam heating and process piping Lorr pressure otcam meins
2lo 4to 6to
- fLv' n,:,iio
5 feet/second
10 " 13 "
15to 70 " 70 ro
l6i "
165io400 " High pressure steam mains 100to150 " piping Steam engine and pump 150 1o330 " Steam turbine piping
" "
Eflective Length of a pipe line is the sum of the total length of the line plus the equivalent length of all the fiti"ings, valves, etc., rvhich iend to alter ihe straight flow.
Equivalent Length of Fittings in Commercial Wrought Pipe Liaes
90' 5 Diam Bend (including length of PiPe) Gaie Valve
: /r. : lzo :
where Dy
.f
- o.oo2745lL|;s'
(3)
- o.ool2gsr;a
(4)
(2)
",
1
1.D
2 5 1 1
pressure drop (feet of fluid florving) pressure drop (inclies of rvater) Pressure droP (Psi)
(a dimensionless function of the ReYnolds number -R', see chart on Page 72) effective Icngth of the pipe linc (feet) velocity (feet/second)
= friction factor
L: 7: g
:
acceleration -due feet/second')
D : inside diameter tl : inside diameter
: so :
E
to gravity
(32'17 4
of the pipe (feet) of the pipe (inches)
specilic graYity of the liquid (rvater specific gravity of ihe gas (air : 1) specific volume of the vaPor (cubic feei/Pound)
:
1)
I 1.3
The Reynold.s number
I
o tte
72
+ 7
6
Equivalent Length .L (feet) : Nominal Size (inches) X Factor 68
h
fte
Globe Yalve
Angle Valve Angle Radiator Valve Su'ing Check Valve Radiator, Convector or Heater
-
"
line.
Reducer
2.2+ra:
h, '{
The friction of fluid flou'ing in a pipe line causes a drop in the initial pressure, rvhich drop is approximately proportional to the square of the velociiy, and directiy proportional to the llflect'ive Length of the
90" Scren-ed Elborv 90" L. T. Screrved DlborY 45' Screrved Elbol' 180' Screrr'ed Return (oPen) l80o Screrved Return (closed) 90" L. T. \Yelding Elbol 90" Flanged Elborv Tee (outlei)
(1)
Ii"
is found from the equation:
:dl'o : dV -dV --DYP r2p l2Pa l2Y !
: density (pounds/cubic foot) p : absolute viscosity (pounds/{oot second) v : p/p : kinematic viscosity (feet2/second)
where p
(ViscositY of fluids see Page 72)
\:EI,OCITY AND
Example :
f irirl: I'rossttrc drop of kcroscttc flolirtg at l relc of :)0 gpm (!,70'f- il 1]" std. stcel pipo, clli'r'tii e lerrgth 1i0
1cet.
PRE,C.qf
RE DROP
will r.ary in proporiiott rvith the frctors shorvn on page 76. To siurpiify thc conlcisiorr dilidc the rcrlrrirecl stcam lold by thc rppropriate fector itr thc trl)lc, thcn apply thc ldjrrstccl lord dilccil;- to thc grrph. To dctcrnirtc the lclocity: IVa ll'r,-' r:0.010 1 :0.0;09 d,
Dola:
d: ,4r : 1 gpm : u: s:
1.61 inches (from Page 249) 2.036 square inches (from page 249) 0.002228 cnbic feet/second (from page 240) 0.000024 feet'/second (from page ?2) 0.813 (from page 72)
Solution:
0:
30 X 0.00222E
:
0 066E'1 cubic fcet,/second
o 0.000E1 li - l1-:,'l - 11.1^^.Ml) / n": ^dvl% ,f
:
:
0.02E
* u.,,,ffi 'ry, (from chart
1.05
than Strrdard \\'all.
Iloiv of Loiv Prcssrtre Gas in Standard Wall Pipe on pagc 77 indit:rtcs thc flol- of free air (1 atmosphcre and (i0'F) rihen thc iliiiril prcssttre does not much
104
page 72)
J' \|2
h,, -d- 2.2t
y l"'. " ln.r. 0.028
x
121
150
x 1.
:
102.E inchcs
rl,or.el (1.65)'?
X
II' : flos (poitrrds''hoLrr)
The Actual I.D. iudcx at thc top and to thc right of the graph may be used to dctcrmirc valucs for pipe othcr
fcr.i 'en"rrd
:26,000:2.6 x
s'here tr/ : velocity (fect/sccontl)
0.813
til
of rvater
Under ccrtain limiting conditions, suflicicnt accrtracy in pressure drop calculations is obtailed l ith simplified equations rvhich perniit a direct plot of florv against prcssure drop. Graphs of this nature are shol'rr otr ihe
folloiving pages for l\rater in Pipe, \Yater in Tubing, Steam in Pipe, Lorv Pressure Cas in Pipe, and lligh
excced l psi or 28 itrches of \\'ater, gage prcssure. Reasonable accltracf is obtlrined for temperliurcs \yithirr the range of -10'to 100'F and rvhcu thc pressure drop docs not ercced trvo-thirds of the initial gage prcssufe. For guscs other thau air the irrdicated pressure drop rvilL vary directly \rith the spccific gravity of the gas (air : 1) (see trble on prge 212). The Actual LD. irrdcx at the top ard to thc right of the graph rnny be used to deternire valucs for pipe other than Standard \\'all.
IIol'of lligh Pressure Gas in Standrrd \Yall Pipe is usually accompalied by a considerable pressure drop antl decrcase of the density along the entire line. The fleq is eyplns:nd hv thc equrtiot.-
Pressure Gas in Pipe.
Florv of Water in Standard Wall Pipe on pagcs
to 7l is
Q:33.e5
70
based upon an avcrage n'ater temperature of
140'F. Rcasonable accuracy is obiained for rvatcr tcmperatures within the ralge of 50o to 200" F. The prcssure loss scale is 10/6 greater th&n the pressure loss in clcan neq, pipe. The Actual I.D. index at the top and to the right of the graph may be used to detcrmine values for pipe other than Standard \Vall. Florv of Water in Type L Copper Tube on page 73 is based upon an average 11ater temperature of 1-10'F. Reasonable accuracy is obtained for n &ter temperatures within thc range of 50o to 200" F. The Actual I.D. indcx at the right of the graph may be used to obtain values for any smooth drarvn tubirrg. Florv of Steam in Standard Wall Pipe on pages 74 to ?5 is based upon saturated steam at f psi gage (approximately 214'F). For a giver pressure drop at other pressures and temperatures t'he indicated load
(f\ \'F1'z
/=-
N
0 : flol'of
frcc gas at 60" F (cubic feet/minute) d : inside diarneter of the pipe (inches) Pr : initirl prcssure (psi absolute)
Nhere
: : L:
Pu
so
final pressure (psi absolute) spccific gravity of the gas (air : 1) effectir-e lcngth of the pipe lirre (feet)
The graph on page ?8 indicates values of Jpt' - p"' psi absolute for various \.alues of P1 and P2 psi gage. The graph on page 79 irrdicates Q in cubic feet/minute for values ol \,TP:- It / \T.L for various pipe .sizes. Reasonable accuracy is obtailed for temperaturcs rvithin the range of 40" to 100" F. For values of so (see page 212). The Actual LD. index at the iop and to the right of the graph may be used to determine values for pipe other than Standard Wall. 69
ITT CIRINN]II,L
PIPING DESIGN AND I'\(iINNI,]ITI\(
-
I
oat t0 /,,,,t,,,,j lNcHEs
ACTUAL
FLO'
POUNDS/ HOUR
e e RR3 ?8
9 9 R*" +"
8
E HnB g
H
oe g
/
4l
too a,o
ao €.o 5,O
4.0
50
FLOW OF WATIR
WALL PIPE
3.O
to 0.0
8TU/ HR.-
IN
AT
STANDARD
r/n"Elrv |
4p 10 cr"
FLoW (LB/ nR)x'tEV PERATITRE DROP(f) op. o,6
o6
o5
o5
o4 q3
03 0o-
o
o
I
i9
o2
_c 0,1
_q K "jd
{ f,
e
R
ng
?
o,o6 o.o5
3 I
oo3
\y ,e
0'o2
_9
o.0a
I (I
o E o E
f
E
(Il
ool
\9
,,P
0.o04
o006
ooo5
/3
ooo3
/nl
o.oo?
lf /3
o00l o,oooa o.oo06 o.@o5 o.aoo4 o.@o3
oo@2
ooool
g gsE g s
g BEggB:
FLOry GAIONS
/
MINUTE
3
o 6'o o n d dci
0 0 o -
VELOCITY AND PRESSURE DROP
FLoW PoUNDS/ HoUR
oY J
/t'tt/,
oq
3E
Iq
o9| / $t /,/,/"9 "9 -9t
/
e R3 36:^q
j
|,
>9
/,'/'/-""t't1'/'t
\9
t
e
tt/tt"/
r"
e t /t.o /t^
9
/r,
8 /-o
3.o
/$ /v t.o
oa o6
/\e
1'"
o5
19= \'v
/&' /^v
0-oa o,o6
t 0--
o,05
o h 0.o3 H
ii oo2 \ I
o.ot =
0 o oms 0
0.004
0'006 cr
ooo4
& l
o.oo2
H
o-oooa 0.0006 o,o005 o.ooo4
oooo3
g c ggg Eg @9 oi o s!a(j
6
.to
o9 oa .o7
o6 .o5
-o4
o.o3 * .o?5
Y"-2"
z
a
\2
UJ
t-?
N
6
.O2
/2- a
o-
to-20" SMOOTH
TUBES
"/a- 4
alo5
2 34
REYNOIDS NUMBER
s= SP GR. AT
60-
R"=ry=#
E
o E.
30
.20
gccc ooo
rt! ,/
d
g
gE
d
.:
secoNo
99q
cgs
9 g
VELOCITY AND PRESSURE DROP PRESSURE DROP INCHES
/
FOOT OF TUBE
3 d33 33 ocio
d
n 4a
q o
300
OF WATER IN TYPE L COPPER TUBE AT I4O" F FLOVr'
200
ro0
ao
50
30 2a
t0
a 6 5
F
3
-
2
I
oa o6 o5
Q3
o.2
A^ EQUTVALENT RESISTANCE OF "" FITTINGS (F€Er oF ruBe)=NOM|NAL 40 TUBE srzE (NcH€s) x FAcToR (sE!ow)
ol .oa
30 gOoELBow 9oor.r.El6ow 20 45oEL6ow IAO. OPEN FETURN TEE OUTIEI FEDUC€R caTE VALVE AN6LE FAOI^TOR VALVE lo GLobE v^LvE coNvEcroR HEATER
.05
2
ruee
30
I 1,5
? A I 1,5
6
34 e a A
qE€.€EB H gEEEEU 3 e3333-' o doo oi'o" ,ic"is/.ooior EnessunE
50 40
20
fl-v-
ACTUAL tNCHES
o
i
()0
6
Q
I,O.
ooooj / r t tt / , t t t / t t t t / FLOW POUNDS/ HOUR o o o oo o .! o @: R n ]f)(o
/
oooo\ t
/
oq t
/
'
/t
/
t
/
R - R9P + ;6 RF 6 :i/
o5 o.4
FLOW
o3
IN
OF STEAM
.?
STANDARD
WALL
PIPE
ol o.oa 0.06
0.o4
/^2
o.o3
tr
c
o.oz
o 5
p
oooe
o
v.w! J
L,.r
o.oo4
ca
l
S d 0
o.oo3
o.oo2
o9
R 3 933 38 POUNDS,/ FLOW
74
HOUR
\IIiLOC]ITY ,\ND PRF]SSURE DITOP
Q^Aq\o / ' / t / r /t/ aoo,ooo
rt ow porvns -- --/ ,r/ uorrp --'
ro.ooo 2
3 4 56
I
t35
t r 5
6X
d /^o
4.4 o3
o.l
JN
o.oa o.o6 o.o5
a.o4 o.o3 (L
aaz' o F
o o.or r! o.ooa _' 0.006 o.oo5
0-
3 d
o.oo4 0 o.oo3
c
0.002
d
o.ool o.ooo8 o.0006 0.ooo5 o.ooo4
o0003
oom2
aoo t,000
a lo,oo0
2
3 4 56
a
10"
FLOW POUNDS /HOUR
75
ITT GRINNELL-PIPING DESIGN AND I]NGINI'EITINC' TLOW OF STEAM CONVERSION T'ACTORS
,*I )a 5
1.000
0$a
1129
r
069
0
I
908 03.1
1.003
1 12{
l5
I
3rj8
1317
z)
t.412
1.426
1.159 1.213 1.378
r.528
1.4?5
30
1.567 1.657
35
|.742
1.715
|
I
1.199
10
,lll
8?2
r
45
1 898
1.847
50
|
r
968
4 200
350
'{.517
,lo0
4
'{50
5 099
500
5
2
2
105
2 039
180
i
602 682
I I
65{l
6 727
631
912
1!8r 2 0!7
2
137
2 230 2 3,1C
554
2 {61
2 381 2 313 2 611 2.560 2 880 2.78e
311,
159
2 734 2 985 3 222 3 45{l
207
0 i?3
0.756
0.710
o
725
it2
901
0 88r
0
861
0.8{3
0.826
810
;::
0r0
0
987
0.e25
,ilot
891
108
I
0.965 1.058
0.9.15
082
1.015
1!8
r.170
1.1,1,1
1.036 1.120
't
282 \ 2b2 3{i1 1.32S 1r5 I 1. {O2 506 I 4?i 571 I I 537
i:,2 611
r 640
2 040 2111-
2 219
2
I
e2?
t .565 1.683 1.793
1,532
1.5m
1.{71
1.1.13
I
30C
l.3J$
1.581
1.591 1.686
1.5rii
1.5{l
1.856 1.052
1.551 1.652 1.718 1.838
r.622
1.811i
1.613 1,718 1.81? 1,912
1.117 1.523
1.392
1.6,1?
l
1.ii3
1.7{3
1.630 1.711
2.0.1{
2 002
2,0.10
2 0I1
1.!81
I
2.155 2.638 2.810
2.1!3
2.310
1.889 2.086 2.267
1.821
2 259
1,962 2.167 2.355 2.530 2,691
r.850
2.211
2,22i
2. r84
2
2,181
2..135
2.391
2.350
2.3rr
2.118 2.2,-+
2.6.11
2.592
2 515
2.50r
2.,t59
2.4N
2.968 3.128
2.908 3.060
2.8.18
2.7S3
2.61.1
2.000
2.558 2.5r8
2.C36
2.i33 2.680
3.13?
3 075
2.829 2.962 3,088 3.328
2.i80
3.20.1
2. i14 2.881 3.017
2,6S0
2.!96
2.910
2
3.031 3.269
2.983
2 9a1
3 21.!
3 162
3.553 3.766
3.{91
3..13r 3.634 3.828
3.37{
33m
3.698 3.896
3.5?4
3.517
3.76,1
3.70.1
.1.086
.1.014
3.882
1,267
'1.1!2
3.916 ,1.12r
{t2
.1 303
I
I
,1 528
!.,5r
t-t
+.687
1.606
4.218 4.377 4.530
I
{
?59 .1.906
,1.679
1 t9s
1.08{ 1.781
1.8i,1
1.92.1
1.716 1.801
119
589
4 .llc
4 216
4.152
3.91,1 ,1.186
3.85,1 ,1.088
3.770 3.998
3.693 3.915
.1.416
1.311
1.2t5
4.r2i
.1.015
5 806
5 2s9 5 52ti
4.810 5 061 5,312
] 4.0{3 4.,{13 | 4.2s3 I osq | 4.s32 4.'n2 4 162 5 136 I 4,982
3.62r
'*u
4
6.107
5 790
5.554
514
7.3ii
5.802 6.016 6.227
6 ?18 6 947
6..135
6.816
7.473
l2m
8
8112
r250 r300
8 736 8 941
1350
I
t,t3
8.355 8.605 8.859
t4m
I
347
I
9
5.r9
t2 i01
I
4
8 326
22lio
3t5
269
I150
2100
l
'I
1100
11 822 12 262
1.33;
i::l
1060
11 397
1.361
3.1'16
7.11-5
r90o
.386
3.207 3.,t58
7 696 7 908 811?
2m0
1.503
1.t1r
3 529
7.4U
10 977
1.238
3.2ix
950
r8l0
258
3.313 3.606
7. r03
564
t
3.689
7 267
r7m
1.303
3.80.!
900
156
-32i
1..t71
|.3.r2 1,t13
3 935
7.048
9.750
L
3.2i6
850
r0 r0
t.t!9
1.108
1.220 1.280
3.351 3.501 3.780
6 837
r6m
12tl
3,{10
6 258 6 488
r500
.261
3 534 3.69r 3 992
6.025
t,150
1.289
1.,138
t.31.1 1.379
t-62
5.506
6.6.12
511
3.20r
3.r119
'J
195
102
2.582 2.7,19
I
526
4.+21
i|.330
1.452
1.732
4.621
4 i25
5_201
5.059
5.1r1 5.6r6 5.8!7
5
4.932 5.126 5.314
4.818 5.005
.t 895
5..198
5.361
6.014
5.835
6.209 6,400 6,588
6.019
260
5..156
0.200 6.376
5.872 6.031
5.?34 5.890
6.360 6.525
6.r93
6 013
6.351
6.1S4
6.3r3
6.19,1
6,960
6.i25
7.t11 7.32i
6.896 7,065 7.233
6.686 6.846
6.505
i.657
7.m4
6.807
7.3S9
7.160 ?.314
0 955
8.{?5 8 68,r 8.893 9.326 9.775
?.508 7.689 7.870 8.019 8,230 8.108
8.77r 9,135
11.321
9.506 9.885 'to.272
[.964
10.672
ro.252 10.760
11.091
6.,189
7.I0r
3.391
3.838
4
,133
1,1S6
3.908 4.161 4.347
152
861
325
1.121
I
5?9
!.(rst
I.ri6l
1.766
1.739 1.s20 2.085
950
2 2
238 342
12.647
2.arl | 2.iio L
2.888
l3.1ti
289
.1.053
4.
,1.6l
4.865 5.028 5. r87
L
5..154
5 3{1
5 234
5.192 5.638 5.?83 5.924
5.385
5.285
5 05r 5.1$r
1.965
5.609 5.760 5.908 6.055
5.524 5.669 5.807
5.1r{
5.321
s.236
5.56r
5.16r
5 367
6.198 6.339
6.061 6.201
5,$12 6.075 6.201
5.828 5.957 6.084 6.209 6.332
5
6..t54
698
0.335
6.033
t-
.t 933 5 087
6.915
6. i.19
6
598
6 333 6.{00
7 053
6.58{
6
6r.1
6..108
c.726
7.32\
j'.112
6.S77
8.066
7.;!1
7.3S7
7
8.36r
81088
7.at2
7.611-
8.651 8.915
8.358 8.628
8.10!
?.89r 8.133
I
L020
6i,7
1.17
!
6.882 7.013
8.376 8.698
Lril l
1.200 1.253
1.526
7.190
7.619
2113
1.1{3
4.616 4,?93 4,965 5.132 5 2S5
7.380 7.530 ?.810
7..167
7.892 8.053
9.313 9.669 9.096 10.329
5.071 5.212 5.110
5.i07 6.026
i.2b2
8.063 8.269
2.t25
,1.638
6.7it 7.638
1.305 1.402 1.,19{
13,11
3.0,t2
4.5,18
|
L371
3,118 3.242
4.707 4.986
1.08.r
t8{}
1.157
3.20I
5m5
|.022
1.101 1.16r 1.218 1.273
1.1i?
3.m3 3.{70 3 640
'1 900
038
l19
1.0!0
.1911
2.9,10
3.591 3.880
I
1
1.109
|.222
3.023
3.370
1.05{
.130
1,2.16
2.911 3.108
3
0.806 0 8a{ 0.955
l.tit
2 098 2.8i3
3 583
1.07r
0.8!7
t.2i2
2, itr1
llfi1
1 oo2
0.cl1
1.198
2 836
3.398
I Ol0
I
224
2
r04
lxn
1,299
2.5i1
2.138
l *-l
osrrlorts
815
0 9.12 0.927
037
2.3ri{
6
532
'Js9
121
5 7t9
1050
,K
037
61312
8m
.0t6
rtro
0d58 10 612 I 0.032 0 ?.r2 o.?31 0 Tlll
663
0.75.1
o.sb! I o
l
2
6.052
750
09?
9!5
0
0
i8l 0.767
2
2
192
6 597 6 825
7m
1 601
1.763 1.721 1 R79 I 83,1 t.!88 I Ci! 2 092 2 012
I
l
686
188
I
3.002 3 316 | 3.205
I
i92
'*T '*l 6i.t
l_
2 709
3
L
t00
:r:
1 68r L.808
800 850 1)0O 950
650
600
2,000 2.309
jaoon am
I
2
2 211
370
600
55.1
j
r35 .224
1 319
858
655
816
5 630 5 883
550
387
1.173
727
2
3m
I
1.5r7
r
2 2 'Ct 837
859
1.,129
|
100
,1.033
2116
r
2
3
l.Iri5
1.r98
r$5 I
I1t-i
2171
275
1.233
973
90
2o0
035
r
2
3.678
1 062
1 832
2.360
225
92.1
1.895 2 042
80
200
0.9t.1 1.0'.lr
9.18
1.706
223a
175
811
0
1 759
70
3 070 3 285 3 .r8?
0 832
1
60
150
0 855
t38 r.818
r r
972 2.110
125
txr
ilii lili
624 803
0 8a0
s50
.15{J
350
23'1
8 893
8.363 8.612
9.523
9.1i9
8 858
8 370 8 603
I8t3
9.,121
9.103
8.831
812
,223
7.099 7.930 8.158
8
381
8.600
5.t02
;.
5.6{12
6.853
1.824
196
_722
5 622
5.819 5.973
5.716
6 095 6.2r5
5.93{i 6.10J
6 333
6 219
6
6
.t50
5.8ti'i
333
6.827 7.0d6
6.6S0
6 561
6.11.1
6.921
7.r47
6.?88 7.007
6.662
7,29i
7_366
7,221 7.131
7.793 8.00t)
7.636
8.?l.t
8.034
7.085 7.288 7. 188 7.683 7.875
7.718 ?.966 8.181 8.392
ffipIessrLrcsaturlte.lsteam'.\tincreasedpresstlesendtempel&ttIessteampipewill
7 837
6 877
in.chart' !1 !r*!u' drop as inciicatccl nith pressure urup rl'ove, $'rin (xj convcrsion lactor alroleJ conrcrsior''lactor rrv loa,l indicated in chari times (X) load as indic-ated 'uludruu carry c;rrected by dividing same by proper factor above' To simDlifv the use of the chart r! ls suggested thrt the steam Ioads rn question bc Then apply ionected loed directly to low pressure chari.
VELOCITY AND PRESSURE DROP
l
PRESSURE DROP INCHES OF WATER : I {P P d o ! o o o
E EEE3E3 E
/
ESEEES
FOOT OF
PIPE
3 3 3 33
r000ooo aoo.000 600000
:L' .CL. q400,000 _ 600,000 500,000 -
FLOW OF LOW PRESSURE GAS IN STANDARD WALL PIPE
-\o
'.9
30q000
'.6 20o,coo
7
to0ooo
ro0,0o0
/6
60ooo
/b
aooco 6q0oo 50
5o.ooo,
4o,l]00
40,000
_
zo.ooo
j
20,000
-
30,000
0000 8,000
. Q
6.000
s.ooo
I u.o- ""t1 ,000
!,o00
ao0
800
600
600 500
500
3oo
300
LO0
ao 60
50
30 ?a
g sE€g$: g 3ggE3' €gE€se 6 q qC 0 o d cr d o
pREssuRE DRop TNCHES oF WATER ,/ Foor
oF
PIPE
ITT GRINNELL- PIPING DESIGN AND ENGINIIEITI\(' DISCHARGE
P
RESSU RE
6to2030
q
PSI, GAUGE
40 50 60 60
too r.250
300
too
,oo P l o-'
tt F l J
O @
o
6o
<60
50
40 30
lr-r^-
h,"
ti
li!-
to
6102030 DISCHARGE
P
RESSURE
60
40
50
B
PSI,
ao
GAUGE
Example:
at 100 psi (gage) Qiuen: 3,000 CFM (free air) at 125 psi (gage) entering a 100 loot pipe line and discharging Find: The required pipe size. Solution: Fromchart above, for inlet pressure of 125 psi and outlet pressure of 80 \/T- Pr" : vT x 100 \/ r.L
From chart on page ?9, for this value of 8 and 3,000 CFM find 78
iOO psi,
8
2|" Nomilal
Pipe Size'
ruE
77 :
gO'
I
i
YDLr
)r'I'l'l- ,\ND PIiESSIIRII
DITOP
oB'\ tol
SYtO 6XICF
AX to' 6X to'
5X
-!o ,e
FLow oF HIGH PREssuRE ons
tou
rot
IN STANDARD WALL
to
PIPE
iilii 3X
2X lo to aq@o
/tti
6o,0c0 50.@o
40000 30000 20000
oooo &ooo
-''9
6,OOO
5
OOO
1o9
4,OOO
'o9
3,OOO
',o1
z
.\Flpoo "
_
o.6
'.ap
eoo
o 600 = -5ee 400 300
"^a i z
2Aa
I
!
100
ao 60 50
40
1,
3O
IQ
a 6 5 3 2
03
o.4 0.506 o
8
L.O
2345
30 40 5060 80 IOO
,F=-
-+:
79
ITT GRINNFJ],L PIPING DDSIGN AND ENCiINT]EIi,I\C;
HEAT TRANSITI'R The major factors l-hich govern the transfer of heat through pipe l'alls include ihe temperature differcnce bet11'een the hot and cold fluids, the convection of both fluids, the surface condition at the inner and outer l'alls, and the conductivity of the pipe material. For the average practical probiem, rvhere fine economies are not the paramount consicleration, thcse factors can be combined jnto one coeficient designated "Li". The basic equation for determining heat transfcr is:
8: AUlbsQ : Total heat transfer (BTU/hr) ,4 : Total area of heat transfer surface (ft2) U : Overall coefficient (BTU/hr. ft'/'F) h""- : Log mean temperature difierence betl'een
hot
GTD
c.m
:
Greatest temper&ture difference ('F) betrveen boih fluids STD : Smallest tempera,ture difference ('F) bcts-een both fluids As GTD and STD approach the same r.alue the log mean temperature difference approaches the arithmetic
GTD
mean lempera{urp. When
GTD
*r,,
is 2 or less
it
is
crrs-
tomary to use this arithmetic mean temperature:
/r, . i.\
.
: : L: L: l" l"
//" -t i r\
'^:\r )- \
z
tr'luid Gitine-
Heat
Uo
"U"
or G
-
tt)
rJ k
ti)
500c(t.
/ro"-
U4*(t"
:
500G
:
quantity of rvater (gal/min)
,
(see
aDo'el
The area of pipe rvall available for heat iransfer is io be thc surface next to the cold fluid. If the cold fluid is inside the pipe ihe internal surface rvill bc ihe transfer area. If the cold fluid is outside the pipe thc external surface
l'ill
be the transfer
area.
The
latter condition is usually preferable since this area can be extended by the use of 6ns, ribs, etc. Exact, coefficients can usualll' be found only by experimentation under oper.iting conditions. Approximate ranges of valucs for U have been compiled for general use. 'fhcir application requires a ccrtain amount of judgement l-hich should bc bascd upon the ollorving considerations : (1) Maximum valucs should be used only rvhen the velocity of the cooling and cooled fluids is high and rvhen con'osion or scaling of the pipc is negligible. f
(2) The colurnn headed "Free Convections" are thosc obtained l'ith pipe coils and pipe immersed in liquicls under normally static conditions. (3) 'I'hc column headed "Forced Convcctions" covers pipe coiis and pipe immerscd in Iiquids that arc agitated either by mechanical means or by a continuous flol' of
)
initial temperature of the hot fluid ('F) final temperature of the hot fluid ('F) final temperature of the cold fluid ("F) initial temperature of the cold fluid ('F) Overall Coelficients
, ^:
A{I
considcred
and cold fluid ('F) GTD _ STD
Z.J rog10
\Vhen rvatcr is thc cold fluid theequ.r.tion Q : may be rvdttcn
the fluid through the vessel. (4) Il in doubt select the lol-er value of U to give a higlrer r u,lue of coil area requireu.
Expressed in BTU
Hr Ft'?/'F-Ordinary
Ranges of U*r
Fluid Receir-inE
Hert
L-
5-10
t+lt.
Li
I
20
50
Steam lloilers
Steam
+ 1
to Air
;! onnensers, :--------feeo :--::.. \\ Srcr He&teIS Tlca-rf pC ln li;;-T Heatcrc
Under special conditions hieher or lower values may be realizeci. W. H. NicAdams, "Heat, Trinsmission" (Mccrew-ilill Book Co., Inc,) by A. P. Colburn (Copyrighi 1942).
PRESSURE
TEMPERATURE RATINGS
-
- TEMPERATURE RATINGS OF PLAIN END PIPE OF TYPES COMMONLY USED IN POWER PLANT PIPING SYSTEMS
PRESSURE
Pressure-temperature ratings tabulated on the follorving pages of carbon steel and lorv alloy steel pipe commonly used iu power plant piping systems within the scope of the Code for Pressure Piping, ANSI 831.1 198C) and Section I on Power Boilers of the ASME Boilel and Pressure Vessel Code. No al1980 lowances have been included in these ratings for
fabrication tolerances, such as thinning due to bending. The allowable stress values and formulae used are in accordance with all addenda, interpretations, andr/or revisions applicable to these codes in effect Dec. 31, 1981. Pipe wall thicl
-
19?6.
-
The follov'ing formulae were used for the pressure-temperature ratings published in this bulletin:
B3i.i
1980 Pipine Code, Parasraph
I': Where
2,\t,:tt,. l)" -
211t,1-
ASME Power Boiler Code, Section I. Parasfaph PG'27.2.2
10,1
i/,,, (') D,. '2tt\t,,t - (. ) 2.{/.-
_1)
- ,l
I
= Minimum pipe rvall thickness in inches (87rlol" ol nominal wall thickness). P = Maximum internal service pressure in pounds per square inch gage. Where the calculated maximum allowable working pressure exceeds an even unit of 10, the next higher unit of 10 may be used.
1,,,
OE
=
Outside diameter of pipc in inches.
An efficiency factor for longitudinal welded pipe. Pressure-temperature ratings shown in this bulletin are based on .D = 1.00. Reference must be made to the applicable Code to determine the t factor for all pine other than seamless.
S = Allowable stress
in material due to internal
pressure,
at the design temperature, in pounds
per
square lnch.
*C = Allowance for threading and structural stability. .065 inch for r.. to 3 _ inch pipe size. .000 for 4 inch pipe size and larger.
*A:.000" for plain end pipe, or
depth of thread or groove for threaded or grooved end pipe.
*NOTE:No allo$ ance has been made herein for corrosion and,lor erosion i{such allorances a.erequired, asdetermined by the design addtd to (' in tho applicablc turmLrlac above and tht r(luc€d allouable !rcssu.e |.alculared therL{nder.
, = a coefficient having values Temp.
"F Steels
Ferritic
er, they shalt be
as follows:
900o and below 0.4
950'
1000"
10500
1100'
0.5
0.7
0.7
0.7
NOTE:4 mat be interpolated ber$een the;0"1' intervals in th€ above tabte.
ratings are not tabulated for temperature levels where The Code for Pressure Piping831.1, states: "(1) Upon prolonged exposrue to temperatures above ??5o allorvable stress values are not given at the same F, the carbide phase of carbon steel may be converted temperature in the Code for Pressure Piping. The applicable Code should be checked to assure to graphite, and (2) upon prolonged exposure to temperatures above 8?5oF the carbon phase of Car- that selection of pipe to any specification is rvithin on-Molybdenum steel may be converted to graphite," the code limitations. In view of these limitations, pressure-temperature For permissible allorvances for variations in presratings ar.e not tabulated in this bulletin for temper- sLrre and temperature, reference should be made to atures above these values. Also, pressure-temperature paragraph 702.2.4 in the Code for Pressure Piping.
81
PI
PRESSURE
l'I\(i I)lisl(i\ -\\l) l'.l\(iI\ Illll:tl\(
.IEI'1PI]RATL]RI.]. DEGITE I']S F.
RATINGS
-OFTEMPERATURE PLAIN END
Seamless Carbon Steel Pipe to ASTM A53 Gratle .zrl TO
--
B and ASTM A.106 Grade B
0iir
i;11
;01)
12.t0(r
11.30{)
L5.l)txl
ALI,OWABLE STRESS'S' PSI
l
I L.Eril
-
Irilre
\'l
SchedLrle
Sizc
(0.E.11))
Numb€r
Dcsisnaln)n
.10
STD. XS
t60
10
0.1);0)
i)
(.1.000)
(1.5111)l
5;26
92i9
8il;2
i6i2
il39r;
STI).
t).133 0.1?!t
2itl?
2i t1
2119
2219
il9{n)
:\i1;
il.10t)
3t:8
5.195
195?
t;5:l
1i.108
STI).
0.110 0.191
2il(;3
2253 3129
:082
t86t
;12E2
2823
259;r
112;
t218
3t05
j1,195
0 250
\XS
0.jt82
? 19.1
6E;8
618?
5683
0.1t5
211t
202\l
1a22
I
STD, XS
0.2(10
298rJ
2E.11
2;65
235{i
0.2lil
l3iJJ
l llll
372{i
t\.t23
X\S
0.100
ti.t81
6179
;5t-l
5120
sTt).
0.15.1
1?87
1?0iJ
i53ti
I]LL
2;i9
2158
22t',i
20u1
XS
().:1N
0.3tr
.12j1I
10:il
ild39
lt:1.12
0..111(;
55iJri
52tl.j
19;.1
l8lill
l68l
15.,11
\S
0.203 0.21{i
270t
2;81
2328
2r2t)
3?ii6
3590
:l2il9
29i5
;8211
5551
;00?
.1600
XXS
0.llii) t).iiiz
S1'D,
0.21{i
1(;giJ
161.r
\S
0.301)
2398
22t6
l33t lsor
t3:l
XXS
il59E 5111
:ll3r-)
0.{;i)0
l15r; I 21r".. I :ro9l .1398 I
STD.
122r
xs
l;.16 22il I
2tii
196.1
1801
rl0
r.226 0.31t
1330
,10
r.2:li
1133
1.1,13
1232
r
0.337 0.138
2t.tit;
1979
2?.10
2ti12
2:\5t)
2l6J
0.tl I
33i9
t\222
290(;
26?0
0.6;.r
.1391
ll89
t\?i9
3{71
0.25iJ 0.;175
1201 I??O
1083
9gtl
1596
l.l{i6
r).;(l(,
r2(n) 1856 2r2]1
210u
21till
1991
0.62;
:t2t)2
3052
2'.i6t)
2529
0.?50
39Oti
3359
3086
160
{i0
xs
IIS
1ii0
80
0
1{nl
120
1fl1
10
80
xis S1'D.
IS
120
(5.5ii:i)
6126 9?12
(;12{i
21ti
0.Jt)8
STD. XS 1
2ri31 :1697
8t20
10
I
.1099
2;0
il0
(j.,-nxl)
2916
,1299
9ir0l
XXS
STD.
(2.ti;)
3059
I
().iJi8
ti0
t
10.1i
0.tt
0
z 12.r,i
;52r
6il6; 1r586
x!s
8t)
(1.900)
11.19
6012
0.1l:l I
29'jj
3219
5ir;.1
J0 I
;00?
STD.
0.211)
l rit)
l',
il;68
;252
X\S
XS
(l.tni0)
3?J3 {i992 1213:l
l{;0
I (1.3 r ir)
0.lli r).188 0.29 t
\S
rJr)
0109
iimum wofkin,{ l'rcssrrre. I'SI
t(it)
XIS
ri9(i8
.18?,-)
i.1?
I
li(:2
ri;1
lriiS
28li l01l)
132
1{;.10
PIPI\G }IATERIALS PRESSURE
-OFTEMPERATURE PLAIN END
RATINGS
Seamless Carbon Steel Pipe to ASTM A53 Grade B and ASTM -4106 Grade B 20 TO
TI]M PI.]RATURE. T]E(;REES F,
15,000
AI,I,OWAT]L!] STRESS "S'' PSI
N
umber
6
l2t)
(6.625)
l tiO
Desisnation
!10
60 80
I1,13
903
:'
l ?9.1
1090 1710
983
o.132
r542
t.362
2369
2258
2037
1.t1? 1871
0.719 0.861
11082
2938
3767
3591
2651 3210
2435 2976
0.25t)
?78 It61
74r
ti69
6t4
t).2i7
821
0.:122
100?
960
710 866
680 ?96
0.406
t2i'i
121?
1098
1009
0.;00
1588
r
51.1
r366
1251
STI].
:
l90t)
1812
1634
1501
0.719
2323
22\5
140
0.E12
252,1
1998 2277
2092
0.875
2i:14
2.166
2266
160
0.906
2977
2838
2560
2352
2l) 30
0.2;0
621 766 912
?30 869
659
n.500 0.591 0.719
726,1
t20;
1087
99E
1510 1842
1,139
1193
1?56
1298 1584
0.84.1
2t82
18?7
t724
1.000 1.125
2612
2080 2190
2246
29G3
2825
2548
2063 2311
0.250 0.330
522 693
198 660
,149
STD.
0.1175
78ll
XS
0.106 0.500 0.562
xis
sir.
T
100 120 140 160
XXS
20 30 40
ii0 80 100 12t)
0.307 0.:165
.l9l
592
75r
78.1
596 6?8
72t)
113 517 622
81,1
735
1060
1010
9ll
ll95
1139
1027
9,1.1
14011
1266 1568 187:l
1163
0.688
675 83?
0.8.1.1
r823
1.000
2178
1738 2017
1,1t)
\.125
1949
1.:112
2352 2115
2t22
1ti0
2468 2911
26n3
2299
t0
0.250 0.312
475
453
409
59,1
STI].
0_3?5
?16
683
616
0.1118
839
0.;00
9till
800 918
ti0
0.59.1
1148
1095
722 828 988
663
XS 80 100 120
0.750 0.938 1.094
1.160
1392
t256
1154
1846 2169
1?60
2068
1587 1866
1458 1714
140
1.250
2501
238,1
t60
1..10ii
2835
2703
2150 2438
2210
tis
20 :10
(11.000)
r835
2618 2868
8l)
t,1
Inches
0.;91
l0
12
11,850
r20
l0t)
1r)
(12.?50)
12,900
0.2E0
20 30
(10.750)
1.1,300
STD.
XXS
(8.625)
775
Maximum Workinr. Pressure, PSI
Schcdnlc
8
750
-
Pipe Inches
r-00
6;0
4U
511
1.1.10 11-21
169 566
't60 90?
1975
83
PRESSURE
-OFTEMPERATURE PLAIN END
Seamless Carbon Steel Pipe to ASTM A53 Grade TEMPERATURE. DECREES I', AI,I,OWABI,E STRESS "S" PSI
-
RATINGS
B and ASTM A.106 Grade B
20 TO 650
?00
?5t)
,-i 5
15.000
1.1.30i)
12.900
11.850
I'ipe Size Inches
1ti
(16.000)
Schedule
Numb€r
t0
0.2;0 0-312 0.375
625 810 1108
800 1056
722
1.031
1771
I'Ji2 lii88
\23i
1r)0 120 110
1.219
211:i
1817
1..13E
25I',i
2015 2400
2165
1988
lti{l
1.591
2at2
2680
2418
2221
Lll
t.25\)
369
t).t],t2
.161
31? 396
0.1175
555
lt51 139 529
291
2l
4i-
t-
138
0.1:t:3
6,19
ii19
'744
558 640
513
0.5011
STD.
4U
XS
60
ull
STD.
0.?50 0.988 1.156
107.1
968
890
t420
t:t;4
l22l
tt22
1766
1681
1519
1395
2118
2019
t
\22
16?3
1.1{)
1.:l?5 1.562
2:lt2
160
1.781
2426 2790
2660
2086 2399
0.250 0.3?5 0.500
33I
:116
21J5
262
199 669
4i5
529
lJ91
575
528
.10
0.59.1
79',1
685
60 80
0.812
1098 1404
?59 1046
629 lttiT
11t38
t2t7
1109
100 120
1.281
1?60
11J91
20't9
1678 1982
1514
1788
1642
1.10
1.500 1.750
2,146
2332
210.1
1982
160
1.969
2776
2646
2:l8r-
2r93
0.250
30r 453 607
247 432 579
259 389
2lt8
0.375 0.500
522
,179
60
30
STD. XS
1.031
li) 20 30
STD. XS
i2l
662
1916
22t4
353
0.875
1071
7024
921
8,19
80
]'t25
t392
t:lzi
u9?
1099
t00
1.3?5
1715
1635
t4'75
13t5
l2t) I4i)
r.625
2045
19,19
1?58
1615
1.8?5
2380
2:269
2t46
160
2.t25
21t9
2552
2338
1880 2118
0.250 0.375 0.500
276
263 395
30
0.562
625
59i;
4U
768
7;12
ti0
0.688 0.969
1091
1040
9ll8
80
1.219
1U83
1189
r00
1.5i11
r20
1.812
1?53 2093
1318 1i;71 1995
1800
1092 1385 1654
2247
2063 2367
2174
60
l0 20
STD.
XS
140 160
R4
:J6,1
8,lE
]|)
(24.000)
1399 1669
112ii
2t)
24
t523
663 875 11ll?
0.562
:'
I2t)
(22.000)
116 538
710 799
I0tl
22
328 410 494
0.500 0.656 l).u41
u0
115 519
3i7
396 495 596
]E
20 (20.000)
Maximum Workins Irressufc, PSI
Thickness Inches
20
i {18.000)
l)esignation
2.062 2.84,1
415
5:10
2399 2752
2623
2:17
356 178 538 660
l50E
218 327 439 494 60? 862
1895
PIPING }IATERIAT,S PRESSURE
-OFTEMPERATURE PLAIN END
RATINGS
Seamless Carbon Steel Pipe to ASTM -4106 Grade C 20
TF]MPERAl'!:RI]. DE(}REES T'.
Pipe
Size In.hes
I I
SchedLrlc
Nunbcr El)
(0.8.10)
I I)esienatjon I wall
STD, XS
160
XXS
80 1.050)
(
STD, XS
160
XXS
80
1 (
1.315)
STD, XS
160
XXS
1il (1.6ti0)
l.: (1.900)
.10
STD.
80
XS
12.315)
(2.8?5)
80
7t5
16,600
l.l.?0i)
13,350
Maximum Workin!. Pressur€, PSI
4742 5812
;1668
B3lt1
5ll7
.1671
6851
6221
1.1179
't7:17 134.19
119ri9
10814
0.15.1
3569 5016
3385 4758
2998 1213
2122 3826
0.219 0.308
tql
7111
I1331
r07 41
6296 9517
E612
3322 1620
iJl5I
0.109
.136?
0.1.17
612E
0.18rl 0.294
8157
0.1lu
0.lillJ 0.1?9 0.250 0.358 0.110 0.191
i
1382
2?90 3880
25:l{ 5129
10290
6;]79 9760
861:l
7IJ48
2i;7
261;
2:l15
2103
3829
i1632
3216
292r
1336
}937 G402
6i25
5162 8393
7961
70,19
STDXS
0.1,15
2',i
t2
2314
20?6
0.200
3480
3301
292:l
26il i1856
0.21t1
5055
1795
12'16
0.100
i662
it72
5351
STD. XS
0.151 0.218
208.1
191-1
3008
2853
2;2i
2294
.1116
3765 4928
1590
0.1111
19116
XXS
0.136
6461
1682 6128
STD. XS
0.203
221311
2162
1915
0.2i6
3159
2996
2ti5ll
2409
0.375
'1168
3691
3;l5l
XXS
0.552
1391 6793
STI].
0.216 0.300
1975 2?98
0..13u
6443
5426
6i0i
187,1
1659
2654
23i0
2134
3981
3525
i659
5011
3201 .1550
1376
XXS
0.fi10
4197 596ti
.lu
STI].
t?lL
1;15
G.000)
XS
0.226 0.318
1804
80
25i6
2143
2163
.t
80
STD. XS
(.1.500)
t20
r60
80
(5.563)
t20
0.23i
1612
1586
l4u.l
t275
0.3:17
2421
2291-
0.,1i18
319r-
3032
2t)34 2685
24:l1J
t84?
0.531
39.13
:t7.11-)
3:111
XXS
0.671
3r2i
1863
4;106
300? 3910
STD.
0.2511
1.1?0
1:t94
1234
1121
T
0.375 0.50t)
2166
1819
2911
2054 2790
1652 2243
0.625 0.750
:t735
lt5lll
XXS
1551
1:t23
1ti0
5
1885
XXS
XS (3.500)
:3;24
;648
0.382
160
.10
t-;0
\\rall Thickness Inches
t.2it)
160
:lu 2\.t
1?.500
?00
XXS
160
80
650
.1896
160
80
T0
160
24iO
2849 3828
3.176
85
ITT GRINNELL PIPING DESIG\ A\D 1]NGIN]'I'RT)'iG PRESSURE
-OFTEMPERATURE PLAIN END
RATINGS
Seamless Carbon Steel Pipe to ASTM -4106 Grade C TEMPERATURE, DEGREES F. ALLOWABLE STRESS "SI PSI Pipe Size Inches
(6.625)
Wall
Number
Designation
40 80
STD.
120
20 30 40
13,350
Maximum workine P.essur€, PSI
Thickness Inches
t't5i
1596
0.562
2621
2327
2108
0.719 0.864
3596 4395
3411 4169
3020 3692
27
0.250
907
0.2't'7
r005
STD.
0.322
1175
860 953 1115
762 844 987
896
1490
1413
1251
1136
XS
0.406 0.500 0.594
T
0.280 0.432
1017
4:l
3:152
692
1853
t757
22t'7
2103
1862
1691
0.719 0.812 0.875
27l l
2571
2217
3089 3346
2930 3174
2594 2810
2067 2356 2552
1iio
0.906
34?3
3295
29t7
2649
20
0.250 0.307 0.365
125
609
1064
688 848 1009
894
811
t471
1398
7124
80 100
30
40
STD.
89.1
1,113
751
0.500 0.594 0-719
1?61
1671
1238 1479
2748
2038
180.1
0.8,14
2546
24t5
1.000
3047
1.125
34''.t
2891 3215
2138 2559 2903
0.250 0.330
0.u75
610 808 919
8'.12
40
0.,10ii
99?
945
1236
t173
60
0.500 0.562
1394
1322
60 80
T
100
120 140 160
xis
20 30
STD,
T
1942 2325 263',7
165 616
70t 760
837 1038 1170
1063
13i0
t?8?
1622
1629 2018
2541
2411
2135
1938
2879
2731
2,118
3396
322r
2832
2196 2590
526
466
160
\.125 t.312
10
0.250
20 30
0.3t2
140
5t2 679 772
1343 1639
2t27
171',7
xis
578 766
682
1442
0.688 0.844 1.000
80 100
120
423 529
793
582 702
9?9
929
822
1123
1065
943
1340
l27l
tt25
1616 204:l
1809
720
0.750 0.938 1.094
t704 2l:r4 2531
2401
2726
1300 1643 1930
140 160
1.250 1.406
2977 3307
2',t67
2450
2225
3t37
277r1
2523
STD.
0.376
T
0.438 0.500 0.594
4t)
I4 (14.000)
11,700
1120
XXS
(12.750)
16,600
1985
140
t2
17,500
t265
120
10
775
1334
60
(10.750)
750
2092 2763
XXS
8
?00
Sch€du1€
160
(8.625)
-
-20 TO ti50
60 80 100
693 836
717 857 1022
PIPING ]IATDRIAI,S PRESSURE
-OFTEMPERATURE PLAIN END
RATINGS
Seamless Carbon Steel Pipe to ASTM .4.106 Grade C
I'.;t,ow,{uLE qTRI.'Sq 'q' lql -I
TI.]MPER,{1'URE, DEGREES
I'ipe Size
Schedule
Number
wall
10 3l-)
a-.
.10
XS
t6 (1(;.000)
J
Designatio. I
8Lr
?00
750
775
17.;0t)
16.600
1,1.r-00
13,:150
wall
Nlarimuln Workins I'r€ssure, PSI
Thickn€ss
l
ches
0.2;0
48:l
0.312
60;
0.:175
129
0.500
981.)
0.E.l{
129iJ 1679
82il
i47
1086
980
1592
ll
l-)
1280
201iii 2.1ti6
1960 23:19
1736 20?1
157ii
293?
2r-t6
1817
l6?7
I
120
110
tio
1.;91
3280
i1112
2156
2502
l0
0.251-)
J:10
l0t
361
B2IJ
0.ill2
53? 61?
510
4L2
J10 191
758 869 9?8
719 1121
7:J0
66:l
928
,t22
it6
1311
12.16
11011
1002
S;. XS
0.3i5 0.188 0.500
0.;62 0.750
60
61,1
l88l
t5i2
1392
126.1
2060
1951
1?ili)
1571
2111
231.1
2076
1885
28:r0 3215
2681
2:li7
215t3
308;
2131
2442
0.2;0
it87
367
:125
295
0.3?5
582
552
.l,t'1
0.t00
?80
710
189 655
882 t 215
?8t
709
60
0.591 0.812
929
1076
9ii
80
1.013
i;5:r
l:]r-5
12.19
100
205,1
1918 2300
li25
156ti
12t)
1.281 1.500
2t):17
18{9
1,1u
l.?50
285.1
239?
zti7
Itil.)
r.969
3238
2i0i :l|i2
2i20
2470
0.250
351
333
295
268
0.lt?5
528
501
l.ll
,103 5.10
0.9:18
1.1;6
100
t2t)
r.i62
i10 160
t0 2A
STD.
xs +U
10 2\) 30 22
ri(l
(22.000)
80 100
STD. XS
1281 1638
2425
595
0.50t)
70E
672
;95
0.8?5 1.125
t257
1189
L0;3
956
t(:21
15.10
I2:lll
1 il75
2001
189i1
1ilfi,1 1681 200.1
1820
2118
120
|.62i
2386
2263
1,10
1.E75
26iJ,1
160
2.125
2i76 3\72
3009
23:t2 2661
1526
2t2t)
0.250
',122
:105
270
245
0.:175
,184
.r06
:t69
0.500
6.18
459 615
0.562 0.688 0.969
729
692
6lll
896
850 120?
75ll r069
68.1
l2?3
80 100 120
1.219
161u
1530
1.531
2t16
19.10
1.812
2112
2316
1355 1718 2051
12i10 156t) 1862
1.10
2.t62
2:l;l
2rB5
2.:111
2799 3211
26(:5
1ii0
B0!,6
2696
2449
10
,l
30 .1U
(24.000)
61:l
369 162 556
508
L219 1.lllE
1
21
929 1226
.106
1.031
20
20 (20.000)
159 5i,1 692
l)0 I
(1U.000)
20 fo ri;u
60
STD. XS
{95
9?1
87
ITT GRINNELI, PIPING D]'SIC]\ AND IiNCiI\EDITIN(i PRESSURE
_ TEMPERATURE RATINGS OF PLAIN END
SeamlessChromium-Mo|ybdenumAlloySteelPipetoASTMA3SSGradePll (T/t% .HROMIUM
TEMPERATURE, DEGREES F. {SI PSI ALLOWABLE STRESS
Size lnches
Schedule
Wall
Number
Designation
40 80
STD.
XS
]4%
MOLYBDENUM)
-20 TO 800
850
900
960
1,000
1,050
15,000
14,400
13,100
11,000
6,500
4,000
1079
-
Pipe
-
wall
Maximum Working Pressure' PSI
Thickness Inches 0.109 0.147
3',143
3593
3269
5252
454'l
2815 3992
1753
5042
0.r88
6712
6107 10614
5378 9698
3522
2543 2767 4281
xxs
0.294
6992 12153
11667
3059 4299
2537 4127
2612
2290
1412
XS
0.113 0.154
869
STD.
3755
3246
2038
t254
0.219 0.308
6426
6169
3195
1966
9712
9324
5612 8482
4923
xxs
5223
32t4
0.133 0.179
2447 3960
2733
2487 3458
2L2a
3802
2983
1308 1864
805 7147
0.250
5't64
2823
7',137
8820
8467
5034 7'703
4396
0.358
6472
4641
2455
2363
2264
2064
1761
1075
3242
3151
2866
2461
t522
661 937
nazs
3864 6283
2104
t294
7194
4248 6906
3344
xxs
0.140 | 0.191 0.250 | 0.382 |
5541
3641
2241
40
STD.
0.145
2719
2084
1850
tYz
0.200
2983
959 13?5
590 846
XS
2605
2232
80
2864
160
0.28r
4333 6481
4160 6222
3784 5660
32',72
(1.900)
2056 3227
1265 1986
803 1178
494 '725
(0.840)
160
%
40 80
(1.050)
160
40
STD.
1
80
XS
(1.3r5)
160
xxs
40
STD.
rYl
80
XS
(1.660)
160
2
40 80
(2.375)
160
40
2A
80
(2.875)
160
4968
6958
xxs
0.400
STD.
0.154
178',7
0.214
1?15 2475
1560 2252
132ti
2579
0.344
4231 5538
4062 5316
3695 4836
3193 4217
2003
1232
2699
1660
770'.1
542
XS
1924
xxs
0.436
STD.
0.203
1954
0.276
2708
1876 2599
2365
1452 2022
881 724t)
0.375
3616 5590
3289 5085
2833 4442
2856
xs
xxs
0.552
3766 5823
40
STD.
XS
1625 2303
1256 1187
1092
80
1693 2398
1479 2095
3
0.216 0.300
0.438
3454 4909
2703
1680
160
3142
(3.500)
4466
3882
2468
t48l
1350 1928
1146 1643
1001
r25\
1061
1813
3y, (4.000)
xxs
0.600
3598 5114
40 80
STD.
XS
0.226 0.318
2208
2179
40
STD.
0.237
1433
80
T
0.337 0.438
2076
13?5 1992 2630
2393
1543 2047
2535 3320
4
r20
(4.500)
160
40 80
5
120
(5.563)
160
2'.140
691
639 938 1256 1571 2088
467 672 1034 1519 425 616 393 173 966
3379 4394
3244
xxs
0.531 0.6?4
2951
4214
3838
STD.
0.258
1100
932
T
1260 1856
r209
0.3?5
na2
1621
0.500
2521
2420
2202
1378 1880
560 835 1150 1482
912
1836
1130
xxs
0.625
3202
3074
2796
2399
0.?50
3906
3750
3411
2941
maximum range of 1050 F Note: Economics and general practice dictate a
88
'759
1086 1757
1245
5t4 708
PIPING I,IATERIALS PRESSURE
-O['TEMPERATURE PLAIN END
Seamless Chromium-Molybdenum
Alloy Steel Pipe to ASTM
(1]{% CHROMIUM TEMPERATURE, DEGREES F. ALLOWABLE STRESS (S' PSI Pipe Size Inches
Schedule
Number 40 80
6
120
(6.625)
160
20 30 40 8
(8.525)
-
950
r,000
1,050
15,000
14,400
13,100
11,000
6,500
4,000
312
Wall Maximum Workins Pressurc, PSI
STD.
0.280 0.432
1143
0.562
2369
0.719 0.864 0.250 0.277
1098 1722 2274
998 1566
1331
507 806
2069
r765
to17
3082 3767
2959
2692
2308
1423
361?
3290
2834
876 1086
578 635 744
342 380
21r
445
274
944
t4lt
568 711 856
349 437 527
1?31
1056
t794
778
746
679
827 967
732 880
7226
1115 1387 1660
STD,
0.322
T
0.406 0.500 0.594
7277 1588 1900
2323 2644
2230
xxs
0.?19 0.812 0.875
2868
160
0.906
2977
20 30 40
0.250 0.307
621
t20 140
10
60
(10.750)
80 100
t20 I40 160
766
7524 1824
1976
12tI
650 745
2758
2029 2372 2505
2144
1318
811
2858
2600
2228
t372
844
596 735
543 669
458 337
168 207
2542
912
875
796
673
402
248
T
1264
r2l3
1842
1449 1768
934 1118
562
1510
1103 1318 1608
829
346 415 510
2182
2095
1906
608
26t2
2281
1194 840
735
2845
2507 2588
1624 1949 1365
989
1.125
0.844 1.000 2963
522 693 ?88
229
141 187
STD.
0.250 0.330 0.375 0.406
854 1060 1195
t**
xs t2
60
0.500 0.562
(12.750)
80
0.688
t472
100
0.844 1.000
1823
xis
21'.78
502
456 605 688
384 510
420
'746
1017
925
377 469 530 657
404
820 987
505 607
1286 1592
1090 1354
t902
1621
2369
2155 2542
1840 2177
1t25
692
1339
424
415 519
350 438 528
208
r28
281
160
619
228
849
370 425 509
1275 1612 1895
1082
652
1371
831 983
2184 2476
1865 2119
1.312
10
0.250 0.312
475
456
594
0.375
716
571 688
0.438 0.500 0.594
839
806
963 1148
1102
0.?50 0.938 1.094
1460 1846 2169
1.250
2501 2835
(14.000)
80 100
120 140 160
1.406
232 289
1043
160
xs
213
581
1413 1750 2091
2468 291L
40
304
630 783 883
r.t25
s;.
2217
665
t40
60
234
0.500 0.594 0.?19
40
t4
1177
496 663
0.365
,j
20 30
845
STD,
20
120
Pll
900
861 1007
60 80 100
.4.335 Grade
MOLYBDENIM) 850
Thickness Inches
xis
-
%%
20 TO 800
Wall Desigration
XS
RATINGS
2794
924 1402 1772 2083
2401 2722
626 733 841 1003
711
1614
326
194
282 313 401 511
605
It4l
702
1302
801
Note: Economics snd genenl practic€ dictat€ a maximum t€mDerature of 1050 F.
E9
PRESSURE
Allov Steel Pine lo $-SlM A335 Grade Pl1
Seamless Chromium-Molvbdenum (1%%
aHROMIUM
-
%%
MOLYBDENUM)
-
To 800
- Wal Prpe I wall I Thr'kness size I s"nearte I Inches I Nu-lre. I Desisnarion Inches 10
20 30
16
(16.000)
S;,
f
40 60 80
(r8.000)
840 1108 1439
806 1064
733 968 1257
619 819 1065
491
228 302
642
395
r54',7
796 956
2198
1877
11.19
490 588 707
2456
2101
7291
794
124
0.500 0.656 0.844
1381
t20
2517
24t6
160
1.594
2812
10
0.250 0.312 0.375
369 461
555 649 '744 838 1126 1420
6t) 80 100
0.75{J
120 140 160
1.375
2tr8
7.562
2426 2790
0.938 1.1sti
1.781
t766
354 442 533 623 7r5 805 1081 1363 1695 2034 2329 261A
] I I | I I J
27t
toz
339 408
r61 201 243
4',18
285
549 618
.327 3ti9
202 :107
484 567 650
732
150
22',1
984 1240 1542
832
.199
1051 1311
638 ?93
390 488
1850
r576
2118 2436
1808 2085
959 1105 1280
590 680 ?88
318
289
244
145
89
4t9 642
367 493
218
6119
435 584
134 181
797 1098
1054
811
351 486
1.031
1404
13r7
1039
626
299 385
80
696 959 1226
587
ti0
0.594 0.812
1760
1690
1537
130ii
791
487
2t79
1996
r815
1546
;78
2446
2344
2136
1824
940 1115
2665
2424
2074
r274
7'34
263 395 530
227
131
333
198 266
t22
176 620
29"\
47t
(20.000)
r00
120
120 140
1.281 1.500 1.750
160
1.969
2776
10 20
0.250 o.315
30r
289
ST D.
.153
30
XS
0.500
60?
435 583
60 80
100 120 1,10
160 10
20
STD.
XS
216
686
8l 16,1
0.8?5 1.125 1.375
10?.1
1031
1392
1215
1?15
1336 1647
1.198
727:l
170
1.625 1.8?5
2045
1963
1786
92.1
2380
2285
2078
1520 177:l
1083
6ti6
2.t25
27
t9
2610
2371
2031
t246
767
216
265
24r
203
398
862
30t
120 181
lll
485
409
243
150
5,16
460
274
953
806
338 483
169 208 297
1328 1683 2009
1208
to21 r301
6lii
379
?87 947
.184
2303
2095 2103
1092
672 776
0.250 0.3?5 0.500
625
60 80
1.219
1383
100 120
1.531
1.812
1753 2093
110
2.062 2.344
2399 2752
ltii)
251
794 r030
0.562 0.688 0.969
30
600
1091
938
671
?68 1047
2642
temperatu'e range of 1050 F Note: Oconomics and general practice dictate a maximum
90
99
322
499
STD. XS
.10
24 (21.000)
2699
15'72
370
331
20 30
22 (22.000)
18,16
274
0.250 0.375 0.500
10
20
140 169
17'71
4l)
l8
112
625
0.500 0.562
4,000
18r
0.375
0.438
050
227
277:l
xs
6,500
1
305 382 460
1.219 1.438
30
0u0 I
363 453 54ti
415
1.031
STD.
11,000
l
399 498 600
0.250 0.312
100
20
13.1'10
950 I
Maximum Workrng Pressure, PSI
1700 2029
140
90u ]
L 850 15.u00 I rl,aoo I
20
TEMPERATURE. DEGREES F. ALLOWABLE STRESS'S" PSI
RATINGS
-OFTEMPERATURE PLAIN END
1531
1828 1788 205ti
t262
?,a2
74
582
PIPI\G ]IATERI.\LS PRESSURE TEMPERATURERATINGS OF PLAIN END Alloy Steel Pipe to ASTM A335 Grade P22 CHROMIUM 17" MOLYBDENUM)
Seamless Chromium-Molybdenum (2y1%
l
TENTIPER,\TUItll, DIlCREES F.
20 TO 800
850
900
950
ALLOWAI]LE STRESS "S" PSI
1;.00r:)
11.100
r3,t00
11.000
-
t'ipe
1.050
1.
7.i100
5.rJot)
J.200
156.1
1133
L0t)
Wall MariimLrm Workins Pressure, PSI
Schedule
Size
ri0Ll
Desisnalion ,10
\'
1il
.\ (1.050)
.10
80 )
;l59il
3269
281t
i,252
3012
.15E7
3992
0.188
6992 12153
6712
6106
1166?
10611
5378 9698
3059 1299
29117
26i2
4t27
1t755
6169 9324
XXS
0.29.1
STD. XS
0.11ti
1.660)
(
1.9n0)
12.:ti 5)
2\t (2.875)
(1t.500)
3\'2
l (1.500)
t2{i0 ]li 19
1i]1?
5612 8182
,1923
1183.1
2851
2i)ti1
6268
16(n)
337{
11ri7
912
2128
1;70
29llil
2236
l66il
3388
2il9
1821
556t
.11l0
299u (i9.1
9712
t20l
O.zirtl
5761
55:t.l
503,1
1396
XXS
0.il;8
IJ820
tl6?
770:l
6'J72
STD. XS
0.110 0.191
23riii 3242
22til{
201i4
1?61
290
9;9
3151
2866
2lii
I
t82i
1:i58
9l{:l
0.2;0
1,125
252,1 .1370
187?
1:159
719.1
3864 628:l
:i:11,1
0.382
1218 6906
2tt9
20iu
1rJ50
rl55
286,1
2605
1576 221t2
1lt0
2983
1650
t226
lfl8
1l(;i)
ll78l
32',i2
216i
18i11
1328
6222
5660
1968
3872
2879
2085
1326 1921
963
?lri
5I9
111.1
1051
761
0.200 0.2111
55.11
L
2U;2 ii 19
XXS
0.10t)
STD. XS
0.15,1
178?
l?15
1560
0.218
25i9
24i5
2252
0.311
.12111
,1062
3193
210{
178?
1291
XXS
0..1116
55118
5:l16
:t695 1836
421i
i]2118
2108
lTrl
STD. XS
0.203
1951
1876
170?
2599
2365
1058 1.r89
i69
2708
1152 2022
786
0.216
110?
801
0.3?;
3616
!289
2E33
2r 18
L;75
11.10
$90
5085
4112
:t42'.7
25,18
18.15
1693
6?8 971
191
108i,
6181
XXS
0.552
376€ 5823
STD.
0.216 0.300
1179 2095
91I
2398
Lti25 2303
i256
XS
1?87
1310
3598
r1,15.1
;i1,1
.1909
31.12 ,146ii
2it):\ 38t2
2016
XXS
0.438 0.600
2982
1J99 22t)2
STD. XS
t.226 0.:lt8
83t) 1201
llgil
647
STD,
T
li06
161-)
XXS STD. (5.563)
2116
:145E
160
ti0
1695
J2'16
214',i
160
120
2290
2i:l:\
llil.)
EO
1.195
3802
160
:lu
6207
89 l
XS
(,1.000)
83r9
2847
STI),
10
2215
0.133 0.179
80
AU
i11.12
STD. XS
:ltl
:lu
1611J
1227
6126
160
2
221;9
0.219 0.308
XXS
I'r
0.15.1
2101 3052
XXS
Itit)
AU (
374;l
0.I47
16t)
I 1.315
0.109
XS
l6t)
(0.8.10)
(
STI).
XS
120 160
XXS
7O,)
1595
1516
1.1iJil
13;0
l116
2208
2119
1928
L6lll
0.2:31
1.1:lll
1061
16i
20i6
1375 1992
t25l
0.1137
1813
1;43
112ii
570 83?
0.138
2710
26110
2393
2t47
r507
1121
812
0.531 0.67d
3379
:121.1
2951
2535
18E5
l{01
1015
,139.1
.1218
38llu
3;i2(l
250t)
1863
1:1.19
12iio
1209
1100
932
u62
r
?82
1ti21
r378
'14-D
i4(l
2i2l
2420
2202
1880
672 100:l 1it80
500
1856
1026
7
3202
1107.1
2796
2399
t779
1323
95rl
i1906
3750
li4t1
2941
220:l
1638
0.258 0.375 0.500 0.625 0.750
447
{1;J
1
4:\
186
Note: Economics and general practice dictat€ a ma-{imlrm temperature range of 1100 F
91
PRESSURE
-OFTEMPERATURE PLAIN END
RATINGS
SeamlessChromium-MolybdenumAlloySteelPipetoASTMA32sGradeP22
-
-20 TO 800
850
900
950
1,000
1,050
1.100
15,000
14,400
13,100
11,000
7,800
5,800
4,200
TEMPERATURE, DECREES F' ALLOWA,BLE STRESS Pipe Size ' lnches
!S' PSI
-
Wall
Number
Designation
Thickness Inches
STD.
0.280
6
40 80
(6.625)
720
T
0.432
XXS 20 30 40
8 (8.625)
60 80 100
'1
2692
376'.t
'718
746
6',79
0.250 0.277
xs
0.?19 0.812 0.875
998 156ii 2069
2959 3617
3082
0.406 0.500 0.594
1098 1722 2274
861 1007
827 96?
329i)
944
1588 1900
853
1824
1660
1411
t02'l
2323 2648
2230
2029
1?31
1267
942
23t2
1976
r08l
682 ?83
27
2744
1i76
852
2868
1454 1582
222
1646
1224
88ii
458 565
327 105 483
243
176 218 2ri0
93,1
674
501
1118
809 994
602
36ll .t3ti
739
535
1621 1949 2217
118?
882
639
1,133
1066
7i2
1638
1218
882
384 510
21r)
204
t48
365 416
272 310
22,1
452 563 636
336
213
,119
1043
630 ?83 883
303 3.{3
1286 1592
1090 1354
984
1902
1621
2542 53
1213
1103
14,19
1318 1608
12ti4 1510 7842
"*a
0.844 1.000 1.125
2182 2612 2963
sin
0.250 0.330 0.3?5
522 69s 788 854
azo
xs
0.406 0.500
1060
60
0.562
1195
1017 1147
80 100 120
0.688 0.844 1.00i)
t472
14r3
1823 21?8
1750 2091
1..125
2468
2369
2t55
1.10
160
1.312
2971
2794
10
0.250 0.312 0.375
594
5it
0.438 0.50i) 0.594
839 963 1148
120
0-750 0.938 1.094
1460
1.25i) 1.406
2501
240r
218,1
140 160
2835
2'i22
2476
XS 60
14
80
(14.000)
10i)
Note:Ec;;;,"a
-"""ra'
1768
1906
2095 250?
2281
2845
2ir88
502
456
665
i;05 688 'i
46
925
301
359
17:l
197
586
425 530
1184
881
6:18
18.10
1350
100'r
2542
2t7l
160?
1195
721 865
350 438
688
415 519 626
806
?83
924
841
619 711
1102
1003
8,19
510 611
1402
t2i5
1082
1846
\'l'12
1612
13?I
2169
2083
1895
1614
of 1100 F' dictate a ma-ximum lemperature ranse
"'.a"tice
367 459
288
tt77
0.500 0.594 0.719
40
507 634
2t3
1387
912
sio.
221
1115
0.307 0.365
20 30
305 339 397
t524
669 ?96
xis
411
920 11.11
1226
596 ?35 875
72
2308 2834
\2',70
727'.I
621
40
696
1708 2119
521
681
0.250
,j
961
535
20
20
1293
744
2600
160
1?65
880
2858
60 80 100
452 719
845
152
2977
s;. T
608 967
328
1331
635
0.906
120 140
02.750)
1794 2369
160
40 10
Ma:.rmum Working Pressure, PSI
0.?19 0.864
0.322
xis
30
(10.750)
0.562
STD.
120
1%
Wall
Schedule
160
MOLYBDENUM)
(2X% CHROMIUM
524
1865 2119
249
186
313 3?8
233
131 168
28r
20:r
330 380 451
2:19
182
542
42r
991 1179
74\ 87?
635
1:t69
1018
73',i
1162
842
21|) 329
PIPING }{ATERIALS PRESSURE
-OFTEMPERATURE PLAIN END
Seamless Chromium-Molybdenum (2%7O
TEMPERATURE, DEGREES F. IS" PSI ALLOWABLE STRESS Pipe Size lnches
1,000
r,050
1,100
15,000
14,400
13,100
11,000
?,800
5,800
4,200
Wall
MOLYBDENTJM)
Maximum Working Pressur€, PSI
s;.
415 519
625
498 600
0.500 0.656 0.844
840 1108 1439
806 1064 1381
100 120
1.031
t77l
i.219
140
1.438
2113 2517
160
1.594
10
363 453 546
30s
218
162
382 460
2'73 329
203
619
444
141
245
t1'7
239
968 1257
8r9
589
1065
770
330 438 573
1700
754'.1
1314
2029 2416
r846
?10 853
514 618
2198
t5'72 1877
955 1147
r378
1025
742
2'312
2699
2456
2101
1549
1162
834
0.250 0.312 0.3?5
369 461 555
354
322 102
271
193
144
104
242 292
180 217
130
484
339 408
0.438 0.500 0.562
649
623
567
4?8
342
838
805
650 732
618
393 443
254 292 330
239
0.750 0.938 1.156
1126 1420
1081
952
445 565 708
409 513
120 140
1.3?5
2118
855 986
160
1.781
2426 2790
1150 1326
619
7.562
1142
827
60 80
sir. xs
40 60 80
0.250
10
20 30
STD, XS
0.375
0.500 0.594 0.812 1.031
40 60 80
442
744
1363 1695
1542
2034 2829 2678
2118
1808
2436
2085
289 435 584
244 367 493
331 499 669
318 419
797 1098
765
1404
832
984 1240
642 1054 1347
1051 1311
r850
599 760
317
4t5
184
2t2
774
173
t29
93
262 352
195
262
141 190
421
313
696 959
811
1221:
1039 1306
949
70i;
1546
1128
839 995
584
227 314 40,1
511 607 720
1537
2079 2446
1690 1996
140
1.281 1.500 1.750
2348
2136
1824
1338
160
1.969
2'.t't6
2665
2424
207 4
1528
289 435 583
263 395 530
221
1031
1.125
1074 1392
1030
744
553
1.375
1715
1647
938 1215 1498
r273
924
ii87
497
1.625 1.875
2045
1963
1786
1520
824
2380
2285
2078
2.t25
2719
2610
23',14
2031
1109 1299 1495
1lt2
597 ?00 805
0.250 0.3?5 0.500
276
265
144
107
78
398 533
241 362
203
415 556
217
162
11?
485
305 409
292
2t?
30
0.562
625
600
546
460
245
17',7
40 60
0.688
768
7:37
6?l
1091
1017
953
806
302 431
218
0.969
329 406 580
80 100 120
1.219 1.531 1.812
1383 1753
1328 1683 2009
1208 1531 1828
to24
'7
40
1301
945
398 509
1136
550 ?03 845
70ti 815
100 120
0.250
301
0.375
XS
0.500
453 60?
0.875
60 80 100
120 140 160 10
,j
140 160
1760
STD.
lLr
20 30
(24.000)
950
0.250 0.312 0.375
100
22 (22.000)
900
Designation
30
20 (20.000)
850
Number
! (18.000)
,20 TO 800
Thickness Inches
XS
18
.4.335 Grade P22
-
T%
Wall
30
(r6.000)
Alloy Steel Pipe to ASTM
CHROMIUM
Sch€dule
10 2t)
t6
-
RATINGS
STD.
XS
2.062 2.344
2093 2399 2752
44'1
157
823 11? 1'77
319
238
t12
425
307 401
966
2303
2095
1788
1311
974
2642
2403
2056
1514
1126
Note: Economics and gen€ral practice dictate a ma-\imum temperature range of f100
F'
85
234
r28
3t2
612
ITT
GRIN\I]LL
PTPING DIISIGN
Temperat,rre, Degrees
F
Allowable Stress "S" PSI
-
Allov Steel Pipe to ASTM A312 & 4376 Grade TP-304 & TP-304H
-20 TO 100
200
300
400
500
600
650
?00
17,?00
16,600
16,100
I5.900
15,900
15.900
15.900
18,700
2970
2970
2910
395.1
3954 5568
3954 5568
- Wall
Pipe
ScheCule
Size
Number
Thickness
10s
3493
80s
.083 .109 .147
160
.188
8?
40s
'/4
1
1%
4651
6548
4128 5818
3007 4004 5688
2970 3954
8250
it37
7504
?4lr
14341
13450
1304,1
12882
12882
?411 12882
?411 12882
2606 3610 5073
2444 338ti
2371
2841 3243
2341
2341
2341
3243
3243
4758
3284 4615
4557
3243 456?
7582 11460
7111 10748
6897 70424
2714
2546
2469
3151 4382 63?9 9761
.083 .113
160
.2t9
XXS
.308
10s 40s 80s
.109 .133 .1?9
2868 3550 4937
3360 4673
160
.250
XXS
.358
7186 10996
6802 10408
10s 40s 80s
.109 .140
2243
2123
1991
1931
2946 4092
2?88 38?3
2rl15 3632
2536 3523
5221 8489
4897
4',7
49
4690
7962
'7722
7626
4690 1626
1316
2345
1276 2214
3301 4795 7\'.73
.Lr4
2753 3814 5360 8011 12108
.191
160
.250
XXS
.382
8969
10s
.109 .145 .200
1483
264r 3?19
1403 250t) 3520
4657
r0295
6811 10295
6811 10295
6811 10295
2438 3018 4198
2438 3018 4198
2428
3056 4250
2438 3018 4198
6187 9467
6110 9349
6110 9349
61li)
1907
190?
2505 3479
2505
190? 2505 34?9
2505
4690
4690
7626
7626
6811
3018 4198 9349
34?9
6110 9349 1907
1260
1260
1260
2246
2246
3202
2246 3162
3162
3162
1260 2246 3162
4651 695?
4593 6870
4593 6870
4593 6870
4593 6870
t312
1331
1314
1314 1894
1314
1894
2733
2133
2783 4485 58?0
160
.2al
5402
XXS
.400
8080
7648
10s 40s 80s
.109 .154 .218
1545
7977
1918
32t5
1463 2108 3043
254
2768
1314 1894 2?33
i60
.344 .436
6904
4682 6129
4541 5944
4485 58?0
4485 5870
4485 5870
XXS
4993 6535 1332 2306 3195
1249
1211
1196
2163
2097
2071.
2996
2906
2071 2870
I196 2011 2870
1196
.120 .203 .276
1407
1196
t0s
2071 2410
3992
3992
40s 80s
10s 40s 80s
2227
2436 3375
.375
4695 '7259
4444 6871
4168 6444
4043
6250
6t'12
6172
.120
t874
990 1817
977 1795
.300
2990
1088 1998 2830
1020
.276
1150 2111
2654
257 4
2542
917 1795 2542
3814
XXS
2870
3992
977 1795
971 1?95
2542
2542
3814
3814 5420
160
.438 .600
4485 6375
4245 6034
3982 5659
5489
5420
3814 5420
10s 40s 80s
.120
1003 1928
949
890
]a25
1711
863 1660
853 1639
853 1639
1639
2752
2605
2443
2370
2340
2340
2340
.226 .318
Note: These ratings refle"t th" or" of tt "
ilhl oil*o
values permitteal under
"tr"ss
ANsl B 31.1 Porver Piping,
5420 85s
see
1894
3992 6172
3a62
xxs 3,q,
310I
10s 40s 80s
160
3
l6
3306 4402 6198
.294
80s
2t,
Maximum Worhing Pressure, PSI
XXS
40s
2
\Illilt I\ (i
RATINGS
-OFTEMPERATURE PLAIN END
PRESSURE Seamless Stainless
r\ND ItN(lI
6172
853 1639 2340
note in introduction'
PIPING \IJTERI,\LS PRESSURE Seamless Stainless
T€mp€ralure Degfees F Altowable srress Pipe Size
is'
Sch€du1e No.
7
PSI
_
t l,i
Ilr
zti
15,500
800 15.100
850 14.900
900 11,600
950
l.r i]00
1.000 13.700
1.0i0 12,100
1.100
1.150
1.200
9.700
'i,700
6,000
Wall Maximum Working I'ressure, PSI
|
2559
2260
18.1ti
11556
1i009
2114
5007
:140? 4797
4237
ti6ti5
6386
47
I 1586
11100
5640 9804
2783 3705
2727 3631
267
52ai
52ti
5112
7038 12214
6945
ti805 11829
.083 .109
2895 3855
2821
80s
.t41
542t1
160
.188
7225 12558
t2012
3520
1524 2069 3013
2348
42
4112
32i,1
8552
8242
6422 921 r303
118? 1612
10s 40s 80s
.083
2242
2223
2105
20t ?
t7u2
1,150
1186
3161
8080
2194 3039
2150
.tlll
2978
29t'.t
2794
2020
.15.1
1448
.1328
42'tr
.1185
4099
3921
2468 3468
2862
1673 2415
160
6610 10036
6.169
6388 9647
6254
6t26
4311
i1785
2949
945:l
9259
s869 88?0
;183
XXS
.219 .308
ii188
4821
t0s
.r09
2377
2912
2239 2771
2193
1238 1550
1208
80s
.133 .179
4092
2316 2866 3986
2245
40s
385.1
3775
160
.250 .358
580:l 8879
5726 8?61
5610 8585
5.195
XXS
5956 9114
l0s
.109 .140
1859
1811
1715
2442
2:t79
.191
3392
3304
2300 3195
2253
80s
1?87 2347 :t260
1751
,10s
4154 1242
7146
160
.250
4572
XXS
.382
7,134
10s 40s 80s
.109
t229
.200
2189 3082
160
.281
xxs
.400
4477 6698
10s
.109
1281
10s 80s
.t54 .2t8
9777
2828 3934
1877 2630
2208
t720
33,15 5,197
2ii06
958
i47
3191
1451
1178
3129
4307
12t8
4041
7002
6858
6571
t269 1898
3823
2979
111t2
1000
508
1441
2080
808 1169 1ti97
653
1632 2355
951 1396
1087
3861 5058
3413
2816
2373
18,19
3197
2491
9r0 t576
6309
1248 1?98
1231 17'75
12t7
1846
1182 1703
2664
2596 4259
4203
.1118
4034
5501
5390
521-9
l2l
1099 1902 2635
10?6 186:l
1031
258r
2473
3591
3440 5318
I 1941
.276
2798
2726
2689
xxs
.552
3892 6017
3791 5861
:]'7
10s 40s 80s
.120 .216 .300
953 1750
2478
928 1704 2474
2382
898 1648 2335
160
.438 .600
3718
3622
357 4
3502
5284
5148
5080
.120
831
.226 .318
1598 22'31
810 1557 2222
3666 1667
5551
487 885
1628
6438
1136 1967
3361
2435
6525
1166 2019
t942
4314
2885 4381
4131 61?9
.t20 .20t
2192
.1887
3495 5228
2841
42t'.i
10s 10s 80s
2948
3951 5920
2903
4U04
5t22
1405
2'.724
2963
4:172
180:l
625
4362
.436
992
21i0
1136
1086 1935
2454
t273
775
11:J4 2021)
2561
3569 5803
446t
741
785
593 1044
2t134
1280 1783
1469
162 813 1145
3038 4697
2498 3917
2091 3383
1629 2636
482 900 1293
'701 1008
879
812
714
600
1614
1545
1366
i 107
2287
2t9r
1935
1576
3430 4875
3286
2902
2384
1990
4977
4670
4725
3421
2924
1551 2278,
?99 1536
783 1505
ii49
523
7474
t4t2
327 638
2749
2105
2016
10li) r449
420 819
2rg1
724'7 1781
186
924
91ti 1682
761
stress values permitted under ANSI B 31.1 Power Piping, Note: 2. Grade 304 may be used at Temperatwes over 1000 F. provided the carbon is 0.04 pelcerlt or higher.
Note: 1, These ratings rcflect the use oflhe highe! of two
4284
1390 1968
1157
2062
1739 2510
1906 2648
96,1
959 1709 2106
1181
2104
5?84
1511
16,{:l 2158 2998
1197 2l:13 3003
4l
1856
7ll5
8409
1881
229',7
3876 6060
.344
10s ,{0s 80s
2101 2601 3617
4650
160
xxs
2714
?834
5265 8056
XXS
160
31,
5{)
Thickness
XXS
1
Alloy Steel Pipe to ASTM .{312 & A376 Grade TP-304 & TP-304H
40s
10s
RATINGS -OFTEMPERATURE PLAIN END
see
r
note in
irttoduction.
95
PRESSURE Seamless Stainless Temperal.ure Degrees F.
Altowabt€ str€ss "s" PSI
Size
4
5
_
Schedule
\{ all
Number
Thickness
10s .10s
.120 .237
80s
.ll:17
120 160
..1:18
XXS
.674
.531
.A.376 Grade TP-304
200
300
10i)
500
c00
18.700
17.700
16,600
16.100
15,900
I5.900
889 1?86 2587 3416 12Ltl 5478 :100
.2,48 .:375
1;?0 2311
L20
.500
160
XXS
.625 .754
700 15.900
15.900
3143 3991 48?0
842 1691
789 1586 2291
766
75ii
156
i56
156
15118
1519
i 519
1519
l5t9
2226
22n0
220\:)
2200
2200
2901
3n27
1J582
3582
2904 3582
5185
,1863
.1r-
2904 3582 1658
2904
i1988
3032 :17 40
1658
1ii58
{6;8
680 1335
68t) 1335
680 13i]5
2,1,19
3233
,i57
?10
16
2054
689 1352 1993
1968
l9ti8
19611
r968
2',790
2i06
26i2
2672
2672
3??8 4609
3543 1323
:1436
3394
2612 :lil94
.119::l
.1141
4141
{ 111
.1t
577
570
5?0
570
5;0
t227 t925
t212
t2i2
t212
12t2
1901
1901
1901
1901
251t
25t\
25tr
25tr
3267 3993
326i s993
3993
326? s993
1486
139.1
2191
zSi5
680
41
10s
.1:11
670
40s 80s
.281r
1.{25
13,19
.432
22;lr:
2ll6
1265 1985
t2a
.562
2953
2i95
2621
160
.it9
XXS
.861
.1ii97
3637 4445
3111 4169
2512 3308 4041
10s
.1,18
571
.191
.185
,185
,18t
.25t)
860
835
E21
1016
9;3
924
913
821 913
82.1
.2i1
969 1073
540 91?
5,07
20 30
9lll
9.1:l
I189
1115
1081
1068
1068
l0ii8
106u
.106 .500
1256 1592 1980
r507
1413
1353 1683
1353
1ll5:l
1757
l3?0 t704
11153
1871
16U:l
168i1
.594 .719 .812
2369 2896 3301
2242 2712
2103
2040
2014
201,1
2571
2463
2930
2494 2842
2014 216u
3124
2011 2463 2807
280i
2807
:1576 :1712
3381 3513
:t174
3078
30.10
:10.10
8295
:1196
3156
3040 :t156
.3010
160
.875 .906
3156
1t156
l0s
.165
506
436 66?
131
1:t1
131
733
:t0
.30r-
955
90,1
450 688 8.{8
,131
.250
ii5
479
20
822
659 812
659 812
659 E12
659 812
40s 80s
.365 .500
113? 1575 1882
1076
1009 1:198
979 1356
967
1.191
r339
967 1339
1;Jil9
1781
16?1
ti20
1600
967 1339 1600
1600
l60t)
2tt:l
2038
t952
24r5
2:t1:l
1952 2313
1952
2515
19',i7 2:112
2769
60
t20 1,10
XXS
r
683
280?
824
2l6ll
967
80
.r94
100
.it9
t20 l4i)
.844
2296 2721
i.000
3256
3082
2891
2803
2769
2i69
1952 2313 27t:9
160
1.125
3694
:1,196
11279
3180
3141
31.11
3141
It1.11
r0s
.180
168
r13
.116
103
:198
.250
651
5,54
398 551
863
578 766
56r
.3s0
617 81?
398 554
898
20 30
7.13
'i81
7:14
t:31
1:34
40s
.375
982
930
,372
8,16
.,106
100E
.50t)
945 1173
917
80s
1065 1321
835 906
835 906 1123
8lJ5
.10
835 906 1123
60 8l)
.562
1489 1835
14ll-)
.688
100
.8,14
22i3
l2i)
1.000
2716
t4i)
t.t2n
160
1.312
30?6 3629
1250
1137
1123
l2a2
2t52
1322 1629 2018
1957
1933
1933
19311
25ir
2,111
2309
2309
2972
2'731
2338 2649
26t6
3.135
3221
:1724
3085
2616 3085
2309 2616 3085
t737
1580
1266 1560
t266
1266 1560
l;60
Note: These ratings reflect the use ofthe higher of two slress values permitled under ANSI B 31.1 Pover Piping,
96
& TP-304H
MaximLrm Working Pressure, PSI
.134
100
\2
RATINGS
.29 TO luo
t0s
80s
l0
Alloy Steel Pipe to ASTM ABl2 &
10s 80s
.10s E
-OFTEMPERATURE PLAIN END
s€e
90ii 1123
t266 $.t60 193il 231)9
2{;t(; 3085
note in introduction,
PIPIN(; ]IATLR].\I-S PRESSURE Seamless Stainless
-OFTEMPERATURE PI,AIN END
Alloy Steel Pipe to ASTM
RATINGS
& ,\376 Grade TP-304 & TP-304H
.4.312
Tempcrat,rre Degrees F
750
800
850
900
950
j.000
1.050
1,100
I l;rl
1.200
Alloqable Stress 'S" I'Sl
l5,5lio
15.100
1.1.900
1d,600
11.1100
13 700
12.100
9,?00
7,?00
ti.000
Schedule Size
4
Number
Thickness
l0S
.r20
709
694
680
ii5l
575
463
371
.23'.7
7:l'1 1480
'718
,10s
r442
1423
1395
1:166
1309
1156
I5'i
80s
.337
2t45
2089
2062
2020
1979
1896
167.1
9iJ5 1361
12
289 590 866
120
.438
27
2612 3222
2502 308ii
2210 2726
1488
1159
2236
18(nl
1.150
4511
4.{24
:l:157 ,1;lti5
2667 3289 4277
1805
.53r
58 3.102
2722
160
2831 3492
,1189
.1013
2927
21i:l
t92i
637
625
6r2
586
518
411
t226
1201
1151
I0lii
822
18.1,1
1807
t77{)
1ii96
1497
1216
331 663 990
2t;0
t251
2033
lti5u
1062
258:l
2116
1363 1756
31;
zi,s4
2115
1it68 1695
:t.19
279
2li
601 955
168
XXS
8
l2
trlaxinrum Workins Pressur€, I,SI
l0s
.1114
66ll
10s 80s
.258 .375
1302
t9t8
616 1268 1869
120
.500
2605
2538
2504
2454
2.10:l
160
.625
::l:108
3223
3l8t)
:J116
3052
2302 2924
XXS
.?50
40iJ6
3932
3880
3802
3i24
;l56l.l
523
l
10s
.1:11
555
5,11
1it4
.280
I151
I 136
1113
104,1
922
.432
1181 1853
BT2 1090
491
40s 80s
1806
1782
l71i;
l?r0
1638
t447
1171
120
.562
24,18
2384
21105
2258
1556
.?19
3103
11000
2939
.86,1
11792
3i
t2
366?
3591
llllI
2186 8039
2035
XXS
3185 3893
2163 2815
19i1
160
2353 3062
10s 20
.l{E
47:l
161
136
{18
.250
80ll
712 855
i51
'7
4t
710
1276 1686 2091
29i
,al1
i11
744 995
l3 t.l r630
iJL)
.277
890
783 867
838
821
78ii
369 627 695
40s
.322
1041
1011
1000
980
960
812
52'3
12tB
t 166
15i1
15,16
1511
1151)
1030 1281
8:t3 1038
6?3
16,1I
1285 1599
t26E
80s
.106 .500
l3l9
6;ti
{i0
t2Ii
920
t0t)
.59,1
lgtil
r
913
1850
1812
l7llfi
l53ll
l2{6
.7t 9 .812
2.101
2339
2261
2215
2122
187,1
1526
1011 1251
?90
120 110
2736
2tiiis
1888 2308 2630
257i
2521
2418
2136
1713
1135
1118
XXS
.87;
2964
2792 2898
2620 2719
1891
24t2
1961
1562 1625
12ti
11076
2819 2957
2311
.906
2887 2997
27U4
1ti0
10s
.lti5
420
,109
,r0,1
1ii,1
617
592
50r
263 403
2t0
625
252
.i107
71r
323
30
642 792
31-l 5ii?
328
.250
395 ti05
it87
20
761
.10s
918
906
80S
.365 .500 .591
1306 1560
t272 1520
10Lr
.719
1903
1851
120 l.1t)
.8,1.1
1.000
2255 2699
l6l-)
1.125
3062
10s
.180
.230 ;lLr
.33t)
716
10s
.375
81.1
2838
185
,105
:116
,150
3s0
812
Jll 521 656
975
1266
?30
?00
618
.198
399
il11
888
E69
833
736
1230
1205
115.1
1019
1169
1139
1379
1218
665 799
518
1500
593 824 986
1829
li92
1682
1.186
1206
2t97
2t24
981
2r68
765
1993
1760
913
2595
2542
21186
2101-
1132 1719
l17t
2629
1756 2080 2190
1,115
tr02
298:l
2913
2884
2825
2706
2i190
1955
161?
1260
388
il78
il1:l
365
ll58
31:l
30il
243
19,1
526 697
519
i09
15t
5.10
.198
12r
3lJ9
271
iiSll
2tr
671
660
117 633
559
150
361
281
78:l 819
767
751
il20
81.1
512 556
.111
832
636 689
ti90
44ti 556
3.18 .133
189 60?
..106
8llll
793 860
80s
.500
1095
1067
10511
1031
1010
60 80
.562
1231
1202
1187
11ti3
.688
r;21
1.182
1.162
1139 110;]
72A ?80 9ri8
372
1091
964
7t9
628
13,14
961
7i9
l194
97r
100
.lJ:ll
1881
18:.t6
l8l I
t77,4
1r-38
16ti5
I187 1,1? I
120 110
1.000
22i,r
2193
1990
)7
24a4
2352
Itit)
t.ll t 2
2550 3008
2120 2442
2071
Lt25
216.1 2,151
293t)
2E9t
28;13
2775
2251 2659
Note: 1. These ntings rcflect the
2:a t-
505 560
5i
62ll
1169
911
1991
r129 r622
I332
1038
2318
1920
1587
12:16
use of the higher oftwo stress values permitted under ANSI B 31.1 Power Piping, Note: 2. Crade 316 may be used at Temperatue$ over 1000 F, provided the carbon is 0,04 percent or higheJ.
see
note in
irtroduction, IJ?
t,tt)t PRESSURE Seamless Stainless
Ttmperalrrre Desrtss F Allowable Strcss Pipe
"S
Number
Thickness
2
500
{i00
6;0
?00
18,700
18,701.)
18.30t)
18.000
l?,900
1?.000
16,600
Iti.lt00
3176 1228
;lt0l {128
it0.15 J05.1
59;3
5813
570E
7921
i'i37 Iit.150
7597 13206
Ma\ imurrr
.1651
80S
.147
6548
.188 .294
{n)
8716
319:l 1651 651E 8716
Prcssure. PSI
3.118
3362
illl,11
,1551
4476
6108
6ll0:]
1152 6268
u5:l(l
8390 115ii4
14503
2650
2636
250:l
2111
2400
3671
3651
:1.167
3;186
382.1
1,1827
15151
$irkins
2494 :ti:J2
834r1
10s
.08i1
2753
2753
.ll)s
.l l3
381.1
:181,1
EOS
.15,1
5360
5360
5159
5131
18?3
.{758
4672
801I 12r08
?839
77tr
1282
71Ll
698t]
118.19
1r655
?66u 11590
11007
l0?.18
105;1
.219 .308
8011 12108
10s
.109
2868
2868
2806
2?60
2516
.t;3
3;;0
;]t5t)
:1174
;llL7
2'i 45 3398
2607
.l0s
:1227
3t5l
2500 3095
80s
.I;9
4937
49117
4831
4752
4i26
,1.188
4:182
.1:103
6264
160
.2,60
6917
6879
iis33
.3;8
7186 10996
7{):12
X\S
7186 10996
6iJ79
10761
1058,{
r0525
9996
9761
9585
10s
.109 .110
22,13 29,16
224:3
2t95
2r59
2147
2946
2883
2aj2{)
2615
1955 25ri8
80s
.191
4092
1092
400,1
2836 3939
2039 2678 3720
1991
'l0s
3632
34,67
160
.250 .882
5310 8633
i280
XXS
5516 8969
5015 8153
489? ?961
1808 ?818
10s
.109 .115 .200
1948
1948
1906
1875
1865
t77l
1729
1ti98
10s 80s
26.11
2114r
2585
2528
2:,\O2'
3?19
3639
3560
2401 3381
2343
l]?l9
2542 3580
:t301
u24l
160
.281
54t2
4795
4709
8080
5200 7t 18
49ll
.400
5286 790?
5171
XXS
54t)2 8080
773,5
?3,16
7173
70,13
r09
1545 2227
154i,
1479
1405
13?2
2227
1512 2180
1.188
.15.1
2t44
2782
2025
.2t8
3215
:t275
:J146
3094
,1077
2922
r977 2854
.344 .436
;275
52',78
i162
6904
ri156
5049 6608
46132
6904
5071 6645
4795
XXS
6276
- 6129
10s
.120
1407 24:16
1.107
2436
3375
3375
tB11 2384 3303
1249 2163 2996
2942
4595
1t04
10s 40s 80s
80s
.
.20:l .276
5398 8969
8'.117
3917 8585
1941
2802 4598 6018
t226
1354
1347
1279
2345
2332
22t5
32,{9
3231
3069
1520 6987
.1495
4168
409:]
6948
4269 6599
6444
632',1
r002
4695
XXS
.375 .552
,1695
7259
7259 1150
t125
1107
1100
1045
1020
2l11
2066
2[32
2t20
1919
187.1
1840
299{)
2926
2878
21162
27tlt
2654
2606
4389
431t
4293
6
t3i;
6t02
4078 5795
3982 5659
3910
62:19
9t2
890
1752 2502
t? 11
874 1680 2399
160
10s
.t20
,l0s
.216
80s
.300
1150 2111 2990
160
.438 .600
4485 6373
4485 6375
.120
1003
1003
981
.226
192r1
1886
965 1855
960 1845
.318
2',152
1928 2752
2693
2649
2685
XXS
3'i
.100
J'l9:l
40s
3
300
.r09
XXS
RATINGS
200
.083
160
2t,"
-OFTEMPERATUR!] PI,AIN END
-20 TO 100
10s
Iti0
I'r
i\ .\\I) ll\(l1\llllliI\(i
Alloy Steet Pipe to ASTM 4312 & 4376 Grade TP-316 & TP-316H
l0s
xxs
ljl
l)1,:sl(
SchedLile
I
I
PSI -
\(I
10s 40s 80s
Note: These ratitgs reflect the use of the higher of two str$s values permitted undet ANSI B 31,1 Power Piping,
2443 see
note in introduction.
PII'I\Ci ]I..\TEItIAI,S
Seamless Stainless
Trmperatu.e Desrees F Allou able Slress Pipe Size
S
Schedule
' PSI
900
950
1.000
1.050
t.t{)0
1,1;0
1.200
16.000
1;.800
15.700
i5,500
15.10t)
1;.300
11.500
12,10n
9.Ii00
7.100
1.161
Maximum Workin!. I'ressure. PSI
.(,83 .109 .117
2989 3979
2951
293:r 390J
2895
2709
23(;r)
19i19
it85;
2a t-i 3i130
2858
3!29
llli0r)
:\t;2
2ri3l
19rJ9
;603
;5t;l
;.19r'l
;.128
5il9;l
53;i
3606 507?
1195
383+
289i)
l(i0 XXS
_188
7158 12963
?318 12720
6u62
5310
1010
12801
t25r'r8
I718
109:t2
i0190
;921
l0s
.083
.10s
.1t3
.291
2:J56 3263
2:12(:
:t222
2:l12 :12t2
J;86
1529
1501-)
i22;
?178 1211
t-
7131
12396
I
228,2
226i
22,4:l
2l35
1t;il
I510
1111)
:161
31.11
;1121
2342
{.l.lii
1,11.r
1385
2957 1156
:1659
2129 307i]
2il2l
11iOri
160
.219
6t68
6?26
655.1
62li
55;0
18t?
.308
i0360
102110
1016;
6610 10036
659?
XXS
99;1
9906
988rl
ililll5
?87;
5916
l0s
28.16 290.1
2224
l9il
I
1575
1
2:199
t9?3
1.190
l0:19
2132 3828
3362
28l0
2122
5ll?9
55i2
1955
12,;i
321.1
899?
8526
ii J]
6997
52811
t221
l9t)
.109 .138
21151
2:t i?
2362
303;
2123 2999
2108
40s 80s
29U0
2942
_179
1224
41?
I
1115
4092
292;t 1066
161-)
.2;O
6l.1ll
t:072
6033
XXS
.1158
94011
9291
9232
5956 9111
5918 9055
10s
.109 .110
1919
1895
1817
r835
17:t9
lSli;
2520
21!2
2426
1985
1219 162t)
.191
3501
:1.135
:l:t92
lJ;170
2410 3318
22111
80s
2189 u157
188:l 27i:3
1$9
.10s
3173
2ii
221.)5
l;;J3
160
.25tJ
'1.i20
.16iJ1
,1572
t313
t27l
.382
'i6i
7;30
i !u4
7ll8{i
695.1
iJ7ii9 621?
:11i2
XXS
1513 7338
2:195 l L.lrt
160.1
1591
151{l
t:105
105.1
?96
21i
2018 2881
t7 t6
11,15
I091
:1062
2161 3013
25t6
2ti:)
1565
3689
3100
23{t)
5iirjo
I
1661 ?5?8
t
5190
921
10s
.109
1ri67
1616
1G35
.10s
.1.15
2260
2232
22t1
80s
.200
3182
3t42
:3t22
2189 3082
16t)
.281
.15ti.1
1120
.100
682?
6?E.l
1177 6698
4.1.19
X\S
4622 6911
(i65.1
6611
1189 6265
10s
.109 .151 .218
1306 1882
1298
1281
L2?3
126,1
1198
l03ll
u31
1906
1E?t)
18,16
1822
t727
27,50
2i16
2699
266,1
l8il.1 2617
2€30
2193
1195 2169
1210 17?6
I311
l6t) XXS
4157
1129 5796
l3?2
4090 5:t5il
3599 1?5il
2280
5686
1316 5619
3020
.13ti
4513 5907
{0ii9
)oi2
10s
.r20
t2t4
1189
1159
910
151
570
2081 2888
2058
20r9
1329
1003
2831
2798
2762
1889 261?
1637
2852
2006 27ut)
11;1 r993
t09l
.20:l
11E1 20,15
1lG6
10s 80s
3892 6017
:t867 59?8
38.12
3611
5939
5628
947 173i1
911 1727
891
17i0
161];
2116
2319
36?0 5216
80s
.276
t322
t0l7
160
XXS
.552
6211
10s
.r20
98.1
40s 80s
.216 .300
1806 2558
160
.138 .600
:t8lt8
XXS 10s
x',i
8at)
t0s
.10s
2\,
ll0(l
-
80s
2
75r)
Thickness
EOS
1l;
Alloy Steel Pipe to ASTM A3f2 & A376 Grade TP-316 & Tt'-316H
Number
.10s
I
RATINGS
-OFTEMPERATURFJ PI,AIN !]NI)
PRESSURE
.10s
80s
.120 .226 .318
58ll:l
3967 613:l 971 1783
3912 609.1
5122
5
1772 2510
2478
3790 538ti
3?66
:1718
i1691
5852
5281
s250
2s26
rl6?
1
627 914
22i9
lrl?t)
ll12
319.1 4457
2661 3796
2009 2866
761
61.1
{ti3
1116
2015
1115 1616
865 121:l
31?8
30{7
25llil
1913
49,1B
.1:t?6
:\722
2810 ,103
858
8{7
il26
820
7?iJ
6ti9
5lJ,t
1629
812 1618
831
1ii{9
1598
1587
t371
1,195
t292
10.12
?87
2355
2323
231l
2241
2:2$7
2252
2134
1852
1509
t 139
stress values permitted under ANSI B 31.1 Power Piping, see note irl introduction. Note: 2. Grade 316 may be used at Tempelatuies over 1000 F. provided the carbon is 0.04 percent 01 higher'
Note: 1. These ntings Jeflect the use of the higher of two
99
ITT
PIPI\(i I)llsl(l\,\\l) il\(il\Illlltl\(l
(iI \\l.ll,l. PRESSURE
Seamless Stainless Temperature Degrees F
Allosable Stress "S" PSI Schedule
Size
Number
Thickness
10s
.120 .237
120 160
5
.100
500
600
650
700
r8,700
18.700
18.300
18,000
17.900
17,00{J
16,60i)
Iri.300
Maximum Workins Pressure, PSI 889
889 1786
870 1748
856 l? 19
10
808 1624
789
L?
'175 155?
258',7
25,12
2491
2471
2352
2297
2255
3270
3032
297i
5214
3105 3830 4980
3740 1863
fil5
727
.438
3416
i1416
3343
.531
12t3
42t3
4t23
53iil
3288 4055 527:l
851
.10:13
3672
.67.1
5478
t0s
.13{
40s 80s
.258
800 1570 2314
800 1570
783 1537
1512
1503
1128
?10 1394
1369
231,1
2265
2228
22t5
2104
2054
2{)\1
3075 3906 4766
3025
285i
2790
2739
3842 4687
3008 3821 4661
3629 4127
:t543 4323
34?9 4245
609 129ii 2033
595 1265 1985
1212 1949
.s',t5
12(l
.500
31.13
31,13
160
.625
3991
XXS
.7-o0
.1870
3991 4410
77t)
69?
58.1
10s
.13,{
656
.280
670 7425
670
.10s
1.125
1395
645 1372
e41 1364
80s
.,t32
2236
2236
2188
2t52
2740 2821 3678
2684
262r
2574
4,196
427{)
3411 4t 69
3:150 409.1
519 881 9?6
860 953
845
1742 111't
1r 15 1413
1095 138?
r60
.i,62 .719
XXS
.86'1
10s
.148 .2iu .277
2953 3843 4697
2953 3843 4697
2890 3?61 4596
2842
5?1
571 969
558 949
549
546
93:l
r073
1051
1033
928 1028
1209
\202
1532
969 1073
t229
3699 4327
40s
.322
1256
1256
60
.40ii
7592
1592
80s
.500
198i)
1980
193?
1906
1524 1895
2369 2896 3301
2:118 28:J5
2280
2268
2?88 3777
2173 3160
100
720 140
.594 .719 .812
2369 2896 3301
:t230
2065
2571
2525
3001
2930
21377
31?4
3442
3423
]'.t12
3632
357:)
3553
33',74
3295
3117 3235
485
715
496 ?58
487
775
746
741
460 704 868
450 688 848
441 675 832
1033
1009 1398
20
.250
30
.307
95;
955
9:15
919
914
10s 80s
.365 .500
113? 1575
1112
1094 151ti
1088
80
.59,1
1137 1575 1882
140
2103
37 12
.165
120
r.882
1842
18ll
1801
1711
16?1
991 13?3 1640
2270
2198
200r
2662
2604
24r5
2377
3256
3256
3i87
2619 3134
311?
2087 247:l 2960
2038
2i21
2296 2121
2247
2891
2838
3279
3220
416
408
2296
1541
1432
160
1.125
3694
3694
3615
3556
3536
3358
10s
.180
468
468
458
.250
651
65r
426 592
30
.330
863
863
451 627 831
4,18
2t)
40s ,10
80s 60 80 100
720 140 160
.406 .500
.562 .688 .844
982 1065
982 1065
1321
1321
1489 1835 2213
1489 1835
2273
1.000
2116
2716
1.\25
307ri 3629
3076 3269
1.312
\'726
1800
2154 2623
3576
10s
.719 .844 1.000
9ll6
3576
160
100
49'l
3251
.875 .906
XXS
l2
300
XXS
2t) :t0
10
20Ll
5,178
120
8
-20 TO 100
2587
80s
4
Allov Steel Pipe to ASTM .4312 & A376 Grade TP-316 & TP-816H
-
Pipe
40s
RATINGS -OFTEMPERATURE PLAIN END
961 tD42 1293
t457 1796 2225 2658 3011 3551
946
t025 r212
621
766
826 940 1019
893 968
812 945 1173
856 928
1t52
7265
1201
1433 t'7{:6 2188
7425 1757
t322
2176
1354 1668 2066
2018
1298 1600 1981
2614 2961 3493
2600
2469
2471
2367
2945 J474
2797 3299
2'137
2682
3221
3163
i629
pelmitted under ANsl B 31,1 Powe! Piping, see nole in introduction' Note: These €tings reflect the use of the higher of two stress values
100
PIPING I{ATERiAI,S PRESSURE Seamless Stainless
-OFTEMPERATURE PLAIN END
RATINGS
Allov Steel Pipe to ASTM .{312 & A376 Grade TP-316 & TP-316H
Temperature Degrees F
75{l
800
850
900
950
1,000
1,050
1.100
1,1jio
1.200
Altos.able stress "s" PSI
16,000.
15,800
15,700
15,500
i5.400
15,300
14,500
12.400
9.800
7,400
592
-
Pipe
Schedule
Size
Number
Thickness
.t20
,1
10s 40s 80s 120 160
xxs
.674
10s
.134
40s 80s
.254
5
1500
1480
1471
1461
2214
21Sti
2t72
2145
2t31
2t17
690 1385 2006
.438
2923
2868 3537 4599
2813 3469 4511
2795
2649
3605 4687
2886 3560 4629
2831
.531
u447
3267 4248
663 1302 1918
685 1344 1980
751
676
612
r327
1318
1955
19,13
2655
728
73',7
2638 3351 4088
3492 ,1541
2605 3308 4036
4482 655
659 1293
r.285
1906
1894
2588 3287 4010
2571
473 964
357
1196 1740
1.115
1068
2307 2858 1'.i 42
189,1
2368 3148
1430 1?88
2119
t734
2704
2239
3776
3315
2768 355 '164 1215
2ii8
1624
1227
2746 2662
2010
302 516 572
390 432
.134 .280
573
56ii
362
555
552
t48
519
446
t219
1t7 4 1841
1166
1105
952
1913
119? 187?
1181
.422
1201 1889
r.829
1131
1501
120 160
.562
2495
2479 3226
2448
2432
24t6
2290
.719 .864
2527 3288 4018
3185 3893
3165 3868
314.1
3813
2980 3642
1989 2602 3195
10s
.1.18
,188
2t) 30
.250
829 918
482 819 907
4?3 803 890
470 798 884
1041
1034
13lt
.217
3247 3968
3943
81,1
901
844 1260
1554
10s 40s 80s
4l l4
321 638 951
2437 3095
.750
3266 3984
237i
533 1050
XXS
.625
425
728
620 1218 1795
2689 3415 4167
1310 1688 2090
''.t7 918 1621
161
,142
793 878
752
380 646
832
776
974
838 1065
672
t327
1072
507 646 809
1591
1291
975
22u
1074
1061
1362
80s
.322 .406 .500
169,1
1345 1673
r662
1319 1611
1630
1027 1302 1620
100
.594
202',7
2002
1989
1964
1951
1938
120
.719
2447 2?89
2,101
2385
1951
1592
1,202
2111
2'736
27 t13
2370 2701
2246
.812
2478 2424
2432
140
2559
2228
t827
1379
2964
2945
2925
24r7
305?
303?
1988 2068
1501
3076
2773 2878
337 516 63?
268
202
4n
310 384
t22l
758 1053
607 847
1459
1261
I0l?
639 768 943 1126 1360
60
1054 1336
1284
.875 .906
3059 31?6
3021 3136
3002 3116
10s 20 30
.165
433 663 817
428
425 650 802
120
4t7
4).4
393
6;4
612 792
638 786
634 781
601
40s 80s
.365 .500
936
1306 1560
t297
.59,{
954 1322 1580
942
80
973 1348 1610
930 1289 1540
100 120
1961
1940
1927
l4{)
.?19 .844 1.000
2328 2786
2299 2751
2244 2134
160
1.t25
3161
3121
3101
10s
.180 .250 .330
401 55',7
396 550
739
729
XXS 1ijo
20
30
.250 .307
80? 961 1331
1590
1878
2699
2682
1780 2110 2525
l54l
2226 2664
2197
7249 1491 1801
3062
3042
3022
2864
2499
2058
393 547 '125
388 540
385
383
311 433
716
?11
?06
363 505 669
814 883 1095
809 871 1088
804 871
762
1081
t024
t27t3 1502 1860
t423
1130
1r 16
825 894 1109
60 80
.562
7274
1258
t250
1234
1226
.688
1570
1541
r52l
15tt
100
.u4
t945
1921
1908
1884
1872
1.000
2295
2280
r.3t2
3105
2599 3066
2583 3047
2251 2550
2231
t.125
2324 2632
3008
2988
80s
120 140 160
508
1891
830 900
841
881
2511
2241
9ll
40
74{l
856
1903 2255
.375 .406 .500
40s 12
1509
.50i)
40s
10
761 1528
.2:17
120 160
XXS
8
Maximum Workins Pressur€, PSI
2222 2517 2969
1831
82rl
1562
,158
187
2i;0 459
346
523
395 429 534
710 882
568 707 780 991 1236
604
1763
995 1229 1526
2r06
1827
1488
t724
2385 2474
2074
r696
r2al
2454
2019
Note: 1. These ratjngs reflect the u6e of the higher of two stress \aalues permitted under ANSI B 31,1 Pover Piping, Note: 2. Grade 316 may be used at Tempentures over 1000 F, provided the carbon is 0,04 petcent or highet.
see
note
748 934
ir introduction. 101
ITT GIIINNELL PIPING D]'SIG\ AND U\GINI']F]IIIN(' A.S.T.M. CHEMICAI REQUIREMENTS OF VARIOUS PIPE AND TI'BE MATERIAISX
-i'
i; E
.,\335
0.10 to 0.20
0.30 to
0.t0
0.10 to 0.50
U.l(l to 0.20
0.30 to 0.{iL
0.10 to 0.30
0.3010 0.iiO
0.1, mt|i
0.:10
0.81
0.{1to 0.65
1.00to
{i.00
0.{:) to 0.ti5
6.00
0.+5 to 0.05
6.00
0.+5 to 0.ii5
0.50 to 1.0o
to 1.00 to {i.00 to
8.00
0.{-l to 0.(i5
3.00
0.030 0.030
I
0.030
0.J0 m,tr
0.30 to 0.(;0
0.1,1ntrr
0.30 to 0.00
0.25 to 1.00
miri
0.30 to 0.60
0.50 to 1.00
i;
rl)r
1.00
1.00 to 2.00
\
0.
0.50
mrx
0.50
to 0.60
0.0i
to
0.30 to 0.00
0.I5 n1,rr
0.-l-l io
i
0.15
to 0.30 to 1.00
0.50 mllx
0.6I
0.1; mx\
0.30 to
0.1; Ir1ax
0.30 to 0.00
0.030
0.i; ma\
0.30 to 0.60
0.i; mr\
0.30 to 0.00
0.030 0.030
0.09 mo\ ().il i to 0.10
2.00 n1r)(
1.15
0.00 to
to 10.00
i.10
1.50
0.1{ to 0.65
L25
0.11to 0.65 0..1-1to 0.65
to 1.05
to 1.90 to
2.65
0.50 max 0.50 m&x
3.35
to
1.13
.
.
20.00 .. 18.00to20.00 1
|
.
.
ll
2.60
87
2.00
n:rri
1 0.7i m.rr 0.030 0.75 mlr
2.00
m&\
0.030
TI'3C1)
2.00
mr\
0.010
0.030
0.75 mL1\
Tt,3r0
2.00
mr\
0.0
r0 I
0.030
0.75
2.00
mr\
0.010
0.030
0.75 mex
TP 316H8
2.00
ma\
11.0
to 1J.0
10.00
TP 316L TP 316N}, TP 317
2.00
ma\
10.0
to 15.0
16.00 to 18.00
2.00 to 3.00
to 20.00
3.00 to.1.00
TP
304
TP 301}I TP 3O4L
Tt,31d
I
TP 321 TP 321H TP
3.17
TP 347H TP
rr.r\"
0.03ii
3-1IJ
0.030
|
0.75
2.00 msx
0.0t
mar |
0.04 kr
I
mex
|
0.013
0.0;i0
2.00 ma:i
0.llj
{).03 m&x 0.(l'1 to 0.10
2.{)0 max
:1.00
ma\
TP 34iJH 0.0'1 to 0.1{)
0.7; m:rx
|
0.04t)
|
m.rr
mtr
8.0 to 11.0 E.0
to
ll.0
8.0
to
13.Q
13.00 to 20.00
12.0 to 15.0
22.00 to 2.1.00
to 22.0
2'1.00 to 26.00
11.0 to 11.0
i.ti.00 to 18.00
111.0
11.0 to 11.0
1E.00
to
1E.00
0.75 max
9.0
to
13.t)
17.00 ro 20.00
nld\
9.(l
to l:].0
17.00 to 20.00
{1.7;
0.030 t,.0;U I
0.75 max
9.0 to
lr.7ir max
9.0 to 13.0 17.00 to 20.00
0.030
0.75 max
9.0 to
13.1)
17.00 to 20.00
to
13.0
17.00 to 20.00
I
u.75
ma\
9.0
13.0
i
13.00 to
tr.03ll
0.u;lr)
'.
1..
2.00 to 3.00 2.00 to
3.00
.
.
I
.
.
17.00 to 20.00
a For rmalt diameler or rhin wals or both, where many drawing passes art required, a taJbon maximum of 0.040 perc€ is necessaJv in Eades TP 304L and TP 316 L. SmaI ourside diameter and [8ht $ ail tubes are defined as lhose less than UJ(ru Inch rn oulsoe druneler ano lers 'rian 0.049 inch in averase wal thickn€ss (0.044 inch minirnum wall rhickness). The titadum content'shall be not less ahan five times the carbon content and not morcthan0.70 perc€nt- - -c iiriuntiurn oiui riniatm contenr shall be not less rhan refl times lhe carbon content and not more than 1.00-per€en1
t
itii
dciadepscsha'iraveatitaniumcontentofnotlessthanfourtimesthecarboncontentandnotmor€than0.70percent,oracolumbum
contenr ofeishr to len limes lhe carbon conrenl.
ftri cotuitium ptuiianiuLr. cont*t thull be no! less rhan eighr rim€s lhe carbon conlent and nol more lhan 1O0 peicent. ./ rhe riranium coritent shatl b€ not less lhan four limes the carbon contenr and nol mole than 050 percenl. ;-
I
For welded TP 316 and TP ll6H Dip€. the nickel ranse shall be 10.0-14 0% -are-iainiicir iir ctremtsr;es 16 tp lo4 ana Tp 3t6, respecthrly. excepr thal lhev also contain 0.10{.16% hvdros€n ip lo+r.r'-ir-rp lleN The m€thod of nitroeen analvsb shall be a rnatter of agreemeni belween the Purchaser and the manulaclurer' for ' From 1980 A.S.T.M. Specifications Steel Pipins Vaterials.
l,
to2
PIPING MATERIALS SELECTION OF MATERIALS Sclcction
of
nraterials
for a
specific application
requires a knorvledge of currcnt, industry-rvide practices.
Rcscirrclr,,rgrnizr,rior.s ilro crrnsltl,lly seeking irnpror"cd mctliods for haudling the eler increasing problems encouute|td iri ihe fluid transportation of moclern
indnstry. I'rcssurcs no\r co\"cr the rarge from high vacuum to severrl thousand pclunds per square inch. Temperature-s of 300'Ir to i500'F are nolr eDcountcrcd rather frerluently and these extremes may be
excccdcd
in tomorros''s discoveries, Solids, semi-
solids and slurries are conveyed in piping n'ith considerable succcss. All manner of corrosive fluids and soh'ents are pipcd l'ith comparative case and safety.
The entire piping industry has met these challenging problcms l-ith a l-ide &ssortment of metallic and nonmetallic piping mtterials and protcctive coatings. The scvere servicc conditions found in main steam and reheat lines of central pol'er stations have been successfully handled s'ith a varicty of materials. A list of piping matcrials ar-ailable is shorvn on ihis page.
Pipe and Tubing Materials General Applications*
A.S.T.M. Designation
Mate aI and Common Name CARBON STEEL Welded
Electric Resistant welded
Steam and water piping as encountered in steam power plant piping such as main steam lines, bleed steam Lines, boiler feed lines, boiler blow{ff lines, drain piping;up to 7500 F. Non{oFosive gas and air lines ill proce$s piping.
Al35
Al34 Electric Fusion Welded
A139 A.671
Seamless
A53 A106
SpiJal Welded
A2!l
LOW ALLOY STEEL Carbon Moly 1/2/.
Moly I% ChJorne - Y2% Moly l%% Ctuom. - 1/2% Moly Clvome
-1/2%
zlaVo Chrcme - 1%
Mo\y
A.335 P1- 4.69l CM-XX 4.335 P2. .4369 FP2.
4.69l
lz Cr A335 P12. A369 FPl2, A69l l Cr A33s P11. A369 FPl l. A691 l/a Cr A335 P22. A369 FP22.A691 2%Cr A'335
4-6% Chrome w/Silicon
ZCUehJome wtriiarium 4{7, Chro4ete/Columbiqlr 1/o Ctuone -lz% Moly 9% Cl|.Jollre - 1% Moly 3/r% Nickel seamless and rcsistant welded
A67 2
as
For se ic€$ wherc temperatures are above 7500 F encounteled in high pressure and temperature main
steam and rcheat lines. The particulal selection depends on operalilg temperatue and corosion considerations.
P5
A335 P5b
Al35
P5c
A335 P5c A335 P7 A335 p9 A333 crade 3
Prccessing as encountered in oil rcfinedes, air p!eheaters where highly corrosive conditions exist, cata-
lytic processirB units.
Low termpela1ure process piping where impact toughness is requiled.
STAINLESS STEEL 18% Ch$rne - 87o Nickel 187a Chrome - 12% Nickel 18% Chrome - l2% Nickel 18% Chome - 10% Nickel 18% Ctuome - l07a Nickel
A312 TP 304 & H & L. A3s 8 TP 304 A312 TP 316 & H & L. A358 TP 316
4312 TP 317 A312 TP 321 & H A312 TP 347 & H. A358 TP 34?
COPPER PIPE COPPER TUBE
842
ALI]MINUM ALLOYS
8210,8241
888
Piping for nuclear and fossil central station work, '.,{ianr
oi,narhAerar.
in}anql
exnau$ DrDes. cotto$ve serqces.
^^hhn{ti^n
enainF
Process steam, air and water piping. Instrumental lines and domestic use.
Corosive services * General applications aie subject to the various code limitations, and specific service conditions.
103
ITT GRINNT]LL - PTPING DESIGN AND DNGINF]I]III\C Flanges, fittings, bolting material and gaskets are covered in succeeding pages. If structural stability is a factor of consideration, the limiting temperature in general practice for use of carbon steel is 7500F and for carbon moly steel is 850a F, whereas, if stability is not to be considered, 900-1000' F for carbon steel and 950-1050" F for carbon moly steel are the limiting temperatures. Temperature ranges as practiced in fossil type central power stations for low alloy steels are: % Chrome y: Moly ?50-950o F, 1 Chrome % Moly 850-9750 F, 17n Chrome % Moly 900-10000 F and 21/a Chrome 1 Moly up to a design maximum of 10500 F.
The intermediate alloy steels have limiting temper. atures for short time service between 1200-13000 F and the austenitic stainless steels have been used up
to 1600" F for special services. In oil refinery work the "chrome steels," 4--4/o, 7V.9%, and 13ti Chrome, have found considerable favor for high temperature service for oxidation and corrosion resistance, Suitable materials for the sub-zero, or low temper-
ature, applications include fine grain carbon steel, nickel alloys steels, and austenitic stainless steels. The corrosive conditions found in the chemical and process industries have been successfully overcome
Fitting and Flange Materials Classifrcat
Material Specification
iotl
Dimension
S
Deciflcation
Ceneral Applications
CAST IRON ScJewed Fitting$
A.S.T.M. A126 A.S.T.M. A126
ANSI BI6,4
Steam, aiJ, gas and
ANSI816.1
Flaryes and Flanged Fittings
(25-800 rb)
MALLEABLE IRON
ANSI B16.3
(l50-300lb)
A.S.T.M. A47 or Al97
Screwed Fittinss and Flanges
CAST CARBON STEEL Screwed
Flanged
Screwed
Flaiged a.d Flange-d Fittings
\rater, power^. refinery to /)u- f or ln
ANSI B16,5
A.S.T.M. A105 A.S.T,M. A10s A.S.T.M. A181
ANSI B16.5 ANSI B16.5 ANSI B16.5
excess according to adjust€d ratings in ANSI B16J.
Refinery, gas. power ald^non coEosive piping up to 750" F, Above 7500 F alloys are used. Carbolr steel for steam, watei, power, refnery, gas and non cot-
WELDINC*CARBON AND ALLOY STEEL Butt Welding Fittinss
Fittins.
ANSI RI6
q
A.S.T.M. A234 A.S.T.M. A105
ANSI 816.I
A.S.T.M. 862
ANSI B16,15
I (125-2s0lb)
Sdewed Flanges and Flanged
Fitthgs
A.S.T.M. 862 (1501b)
ANSI816.24 ANSI B16.24
Solder Fittinss
Forge-d Stainless
Heat Resistant COPPER
Fitinss AIUMINUM Butt WeldirS Fittit8s Solder
104
rosive piping up to 7500 F. Above 7500 F alloys are used. Steam, water, gas and oil piping,.
A.S.T.M. 861 up to 5000 F. A,S.T,M. 862 up to 4000 F.
A.S.T.M. 862
ANSI B16.I8
A.S.T.M. A217
ANSI B16.5
sure steam,
A.S.T.M. A182 A.S,T.M. A182 A.S.T.M. A297
ANSI B16.5 Made to ordet Made to orde!
temperature and corrosion con-
High tempelatue and prer-
AI,|JOY STEEL Cast
Air and gas piping betow 5500 F. .Stearn, ano gas plpulg up
A.S.T.M. A216 A.S.T.M. A216
FORGED CARBON STEEL
Socket Weldins and Threaded BRASS OR BRONZE Sciew€d Fittings
oil piping
not over 4000 F.
No established stardarfu A.S.T.M. 8361
No established standards
oil and corrosion rcsis-
tance sewices. The padicular selection depeflds on operaling sidelations,
With copper pipe and tube. With aluminum pipe
PIPING }'IATERIALS
with a variety of metallic and non-metallic piping materials. In the interest of economy and structural strength many of these materials are applied to pipeing by the techniqLres of cladding, plating, lining or coating. The table of pages 107 to 112 indicates the relative resistance of several piping materials to the corrosive effeets of certain chemical substances which ale commonly encountered in this class of work, The severe erosive effects of slurries and semisolids are adequateiy offset with the use of soft rubbel linings. The true measures of proper material selection are safety and economy. Knowledge of the research and practical experience of the piping industry is the key to this objective. Pipe and tubing ale made in tlie follo$ ing matelials in addition to those mntelials shogn in the table. Pipina )lukrial ,{, -i."1i.. \r^+"1
Bmss IJronze
Cr-.t Iron
Ccncnt lsl)cslos Clar' .Scrrcr (\'iiri{iccl
Chy) (lorcrctc-Sorcr l)o\\'mctd ( llrss Illl,.lelloy LcrrrL \Ioncl fluntz fletal Nir.hrome Niclicl-( oppcr-Zinc Ni|licl-\langrrrcse l)Lutic PorcclLin Iieinforccd Concretc
IJses
Cor.osion Resistence Corrosion Ilesistance Corrosion Ilcsistrnce Ur'tltrsrorrrrd r\'rter end qas Corrosion Resistrnte Conosion Lnderground Server LndergroLrnd Server Corrosion llesistance Corrosion Resistance Colrosion Ilesistance Conosion llesistance Corrosion Rcsistrnce Corrosion Resistance High Temperuture and Colrosion llcsistence Corrosion llcsistance Corrosion Resistance Corrosion Resistrnce Conosion Resistance
-
Iinderground
rtplnq tlotenaL
LIses
Rubber
Conosion and Erosion Resistance Non-ContaminatiDg Corrosion Ilesistance Corrosion llesistance
Tin
1\rood
Zinc
Bolting
For the average lorv and medium pressure irrstallations, bolts are made up in staggered sequence l'ith open end u'relches rvhich rvill usually result in adequately tight joints. For the high pressure and temperature joints it becomes increasingly more important to make up each stud to a definite tension. Torque u'reriches are sometimes used lor this purpose. In exceptional cases n'here a more positive method is desired, the studs may be tightened until a definite elongation has been attained. For thjs condition an initial cold tension of 30,000 to 35,000 PSI in each stud is recommended. Since the \'Iodulus of Elasticity of stud maierial is 30 X 106 PSI, a tension of 30,000 PSI r.ould result in a unit
of"
30,000
: 0.001 inches per inch of lO X tOu effective length. The effective length is the distance betlveen nut faces plus one nut thickness. Special studs rvith ground ends are required to make micrometer measurements for this purpose. After the joint has been in service periodic checks of the actual cold lengths as compared rvith the tabulated lengths rvill elorrgation
detect any permanent, elongation of the studs. Permanent elongation ivill indicate over stressing and creep. trVhen these conditions become severe ne*' studs may be required to properly maintain the joiut.
Boltine Material
Matedal and Appearance
Steel Machine Bolts
Matedal Specilication
Thrcaded
to
Dimensional S
pecification
Applications
Gercral
A.S.T.M. A307 A.S.T.M. Al94
ANSI81.1
SleelNuts
ANSI 81,1
ANSI818.2.1 ANSI 818,22
Nuts for Carbon and Alloy Steel
A.S.T.r\,I. A194
ANSI B1,1
ANSI B18.2.2
Alloy Steel and Stainless Steel
A.S.T.M. A193
ANSI BI,1
ANSI B18.2.1
Hgh Pressure a]Id Temperature
HEh Pressure
Bolts and Studs
Alloy Steel Bolts, Studs and Stud Bolts Nuts for Alloy SteelBolts, Studs and Stud Bofts
Service
:md
Temperatule A.S.T.M. A32O A.S.T.M. A194
ANSI B1.1 ANSI B1.1
ANSr B18.2.1
Low Temperature
ANSI B18.2.2
Service
r05
ITT
GIiIN\I'I,I,,
PIPING ])I,]SI('IN AND ENGI-\I'EITING
Gaskets Standards of design and material for gaskets are ANSI 816.20 for ring joint gaskets and ANSI B16.?1 for nonmetallic gaskets. A wide assortment of metallic and nonmetallic flat ring or full face gaskets are available for the
wide variety of commercial applications. Gasket materials are usually softer than ihe flange faces in order to preserve the flange. The gasket is therefore expendable for continued makingand breaking of the joint. In most "soft" gaskets their mechanical
strength is lou/, dictating a minimum thickness consistent with adequate sealing properties. Extremely soft materials, such as rubber, are made full face to
gaskets for raised face flanges have an outside diameter which matches the inside edge of the bolts or studs. The inside diameter is determined by the size of the "hole" in the flange plus an allowance for distention inward at the
time of make up. This allowance varies with different
malerials making it necessary to rely
and groove and male and female gaskets are cut to fit the female part of the union. Modern design practicetends toward the elimination of flanged joints with the substitution of all welded lines. This procedure overcomes the flange maintenance problems.
reduce unit pressure and minimize crushing. Flat ring
Gasket Materials Iluid
l'cmps. uD to 1000' Stcam (Fligh Pr.ssure)
Temps. up to 220"
Hot-f
flaterial
SDiral \Yound Comp. Asb€stos
Sicel, Corrugated or Plain llonel, Co useted or Piain I Il'droqcn-,\nncalcd Ful.nituf e Iron Siainless Stccl I2 to 117. Chromium, Corrugatc(l
l'
Tomis. ui to looo' F Tcnps. up to 1000' l' Temp-. up to 750' F T"rn]ls. up to 600' F Temps. up to 600" f
Slc.!m (LoN-Pressufe)
Clasket
Application Temps. up to 1000" F Tcmps. up to 1000' F Tcmps. up to 1000" F
Ingot Iron, Speei.rl lting-'Lypc Joint Comp. Asbestos
_
F.
lcclium and -iIigh Plc;.sules
Hot Lorv Pressutes Hot.......
l-opp"r. Currue:rtod or Plain Red
Ilubber-\\'irc
Inserted
Black Rubber, Red Rubber-\1:irc Inserted I'trorvn llubber-Cloth Inserted Comp. Asbestos
Ilcd Rubber-\\iire Inscrtcd Blacli Rubber Solt Rubber Brown llubber-Cloth Inserted Oils (lIot) O;ls (Cold)
TenT ps.
up to 750'
I
Comp. Asbestos
Ternps. up to 100C" F Tcmps. up to 212'
F.
Cas
Acids
Cofli Fiber
\coprenc Comp. Asbesros
Temps. up to 750" F Temps. up to 220' 1". Tenps. up to 1000'
Comp.,\sbcstos Iled Rubbcr .spiral \Yound Comp. .\sbestos
Temps. up to 1000' r' remDs. u]r Irr
I 'trr 'firmis. up to ij00' F-.
Asbestos-NIetallic
'l'cmps. up to 220" F
Ited Rubbcr
(\'ades-See -.ection on Corrosion) Hot or Col.l \lilleral Acids . . . . .
Shrrrt Lead or Allov Steel Comp. l3luc ,{sbesios \lover llluc -{sbestos
Ternps. up to 1000'F Tenps. up to 700" F
Asbcstos-Nfetrllic Comp.Isbestos Iled Rubber Thin Asbestos
\\'clrk Solutiorls
Hot.. .... Cold.......
106
Ineot hon, Special Ring-Type,Ioiut
Tcpps. up to 300' F.
I
...
upon
recommendations of the gasket manufacturer. Tongue
Sheet Lead
PIPING XIATERIALS
CORROSION
Corrosion occurs rvhen an electric potential forces ions of the corroding material into aqueous solution. This reaction l'ill contilue so long as the material is in contact lrith 11,ater, or r-ater vapor, and the material reniains anodic (ncgative voltage) to its environment. The voltage may lesult flom, (1) the electrode poteniial of the material, (2) exterlal sources, orJ (3) from a combination of the t\ro. Electrode potential is the characteristic of any naterial to be anodic (negative) or, caihodic (positive) in relation to other nraterials. The rate of corrosion may be economically retarded
These materials include the stainless steels, lead, nickel,
by:
corrosion resistance.
1
Selection of costlier "corrosion resistant" maielial, Application of protective coatings.
2. 3. Deactivation of thc corrosivc fluid. 4. Cathodic protection of the base maierial,
Piping matclials are subject to internal and/or external corrosion. Internal corrosion can usually be predicted and controlled sincc the nature of the fluid is knorin. External corrosion is the more difficult to foresee due to the variety of atnospheric and soil conditions rvhich may exist around a single pipe line. Noiable among these are the striiy currents and acid soils encountered by underground lines. Corrosion resistant naterials are usually best adapted to specific uniform conditions rvhich can be predicted.
CHEMICAI RESISTANCE OF PIPING MATERIALS
copper,
tin,
aluminum, and their alloys. Various
plastic, mineral, and oiher nou-metallic materials are in.hr/la.l in thic or^rrn
Protective coating, cladding, lining, plating and painting may be readily adapted to internal and external protection of the ldss expensive base materials,
Coatings include cement, asphalt, tar, and rvaxes. Cladding rvith stainless steel and lining l'ith cement, rubber, porcelain, plastic and synthetic rubbers or plaiing lith metals offer many possible solutions to Deoxidation or de-activation of the corrosive fluid may be economically justified in many process applications. An example of this is the deaerating of boiler feed rvater.
Cathodic proteciion of piping has been successfully applied to some underground installations by imposing a direct cuuent positive potential to the pipe in relation to the ground. A more receut commercial application of the same priricipal is the use of an expendable anodic
naterial in mildly corrosive systems. The follorvirg table indicates the corrosion resistant qualities of some of the more common piping materials to various chemical reagents. NIore detailed information is available from the chemical supplier or from the manufacturer of the verious piping ma{erials. G-Good
D-Depends on Conditions
l. 'l'he inlormation gileD in this tsbLe has been tabulated lrom larious references, Ior use as a general suide. Belore specific applications are"made all se.rice coDditions, such as pressures, tempe.atures, concentrations, operatins cl cles, etc., should be reliewed !ith the manufscturer * Spaces left blank in the "Exposure Conditions" column indicate informRtion on exact test conditions udavailsble.
r07
I'1'T
GItI\\EI,I,
PIPIN(I DESIGN AND F]N(IINF]I.]RI)i(i
CHEMICAI RESISTANCE OF PIPING MATERIALS
(Conti.nueil)
G-Good D-l)epenils on Conditions
F-I'air
U-Lrnsuilrbie
1. The inlomration gi'en h this table hes bean tabulatod from varjous references, for use as a son€ral.auide. arc made alt service con-rditions, such as prcssures, temperatures, concentrations, operatins cvcles' etc.' should be re
' . Staces
i08
left blank in the "nxposure Conditions" column indicrte inftrmai,ion on exac6 test conditions unayail&ble.
:e specific applications with the manufrcturer
IIPI\G,\I-\TI]]1I,\LS CHEMICAL RESISTANCE OF PIPING MATERIAI-S (Continued)
G-Good
F-!'air
D-Dcpends on Conditions
ti-llnsrliteble
t. The iniormation gii,c jr this t&ble has beeD tablrlated lroDr various relerences, {of use rs ll genaral auide. Befo are made all service conditions, such as pressures, taupefatures, concentrations, operatin!. .]ycles, etc., should be reviewed
the manutacturer
* Spac€s Ieft blank in the "Exposure Conditions" columo indicate inlormation on exact test conditions unavailable,
109
ITT GRINNELL -PIPING DESIGN AND ENGINEERING CIIEMICAL RESISTANCE OF PIPING MATERIAIS (Coniinued)
C-Cood
I'-Frir
l)-Depcnds on Conditions
tr-lhsrritrble
has been tabulated from 1'erious references, Ior use as:r eeneral.suide.. Bcforc specific applications l. 'fh"j"to"^rti." et""" t" thts table ;ti;;;i"ttoiaii;ons. such as pressures, temperatures, concentrations, operatine cvcles, €tc , should ba revioved vith the manufacturer ".;;;e; jt]i?,?:",:t "' or'"o r rhe ,,Exposurc conditions" cotumn indicatc informr.tion on exact test conali'"ions unavailable,
110
PIPING lIATERIAI,S G-Cood
CHEMICAL RESISTANCE OF PIPING MATERIAI-S (Continue't) 2S
nxposure Conditions
Chemical
llumi-
Palmitic,{cid
Phenol (Cerbolic
Acid) I'hosphoric .\cid
[,olRed lt1st cop- Lead CarIlrass Iron per
()\'er 500 )r'pr I000"1,' Rm -212"1,'-\Iorsturc
U
U
II
G
D
l)
D
t)
c
C
(;
Picdc
212"-b
DT
-\la\ D
Potassium
II
(;
T)
G
Sodium Bicarbonqta hqkino sndr Snrli,, m Risrrlnheie
t)
SodiLrm Carborste
G
G
G
T
Ci
c
G
G G
G
G
(l Cl
G
L
D U --e--l
D
G
G
I
G
G
G
G
D
G
G
c
G
G G
G I_)
D
G G
!'
I
G
G
G
(;
D
G
G G
Ci
--r -?=-
Po\\ders
D TI
rtt
F'
lv
T)
U
-ttt -Tt
Propane
Sodium Chloride
(]
(-,
--trl
Il
Over 0 I 'ii.
("
CI
-l-l
U
q,,tnL.1
r'
G
al
--rT
Pot,rss;rn (ilrloride I'nirssirrm Cvrnirle D^i^""i,,-
(i
1,-D
G
lcid
(;
U
2piiried.70"I le\;
D
Soft Rubber U
l
aerated,
f,
\Yrotghl, 3lass n llerd Iron
G
n
-l0r'o
U-Unsuitalte
301 316 U
r2?7; 212'I.;
t5%;
D-Depends on Conditions
\atrF \atu-
Stainless Stccls
lloncl
Stcel
Urer 1000"1'
Crude
tr'-Fair
G
200"
Sndirm Cvrnide Sodium Hydroriide
rt. st
,F'
\{eianhosnhBtc
Sodium Perborate
T)
-r G-.1)
IJ
Sodium
Sodium -Nitrate
t
I Xll'1,
Sodium Hypo-
cnlorlte
212"
'/"1 122"t'
Sodium Phosphate, Sodium Phosphaie, diabasie
Sodium Phosphate,
TI
D-F
D
G
D
G
D
G
G
G-r
t
G
TT
r'
D
T
G
G
r' I
G
G
G
G
(
G
G
II
D
D
D
G
G G
G
D
G
G G
Sodirrm Silicate Sodium Sulphide
c-t ) Sodium SuIDhite
G
G
50%: 320'F G
1. The information given in this table has been tabulated from l'arious references,. for use as a geleral.suide.
Before.speciffc spplicationg
. such as p"essurcs, temperatures, concentrations, operatins crcles, eic., should be revie$ed with the manu{acturer a.;;;J; ;n ";.vi;t;;iaittons, "'jtil??l"i;t, tt*t i" the "nxposure conditions" column inilicate idormation 04 exact iest conditioDs unavailable.
111
ITT GRINNELL PIPING DESIGN AND ENGINEERING C-Goocl
CHEMICAL RESISTANCE OF PIPING MATERIALS (Continued) T,ou
I:)rposLrre
Chemical
Conditions
2S (,opCrr- floncl ,\lumi- llcd Casi Iron Ier Lead num
St.,el
Sodium Sul!hile
Strrirloss
ILI'nsuil,,lno
\\ioughi
Stlcls
Iron
\lltuGlsss
301 31ri
rtL
Irrtl
\uHC(\;
ral
Soft lhLbber tlrrbber I
c
(,1
7.5% + 2%
D-Depcnds on Conditions
Ii-lflir
G
G
Solution in pulp and Sodrum
Thiosulphate
r
s.,/-
s.t n .
c G
c
(i
(
(l (i
( (
ic Chlnrnle
Stccm
Less th3n
)u:
500'l' I
llnil
Sulphur
c
r)- L
Solid
I)
I)
I) I)
T)
D
D
T)
t)
:en:501J"1,'
Sulphu
r
lJio\ille I
)rv
] Ioist SrLlphuric Acid
l)rlritc
(
{
(1
t,
t'-a]
TI
t' Tr
t,'
SLrlphur'Irioridc,
D
lrichloretl,ylcne
G
G
G
G
c
II
II
G
G I,'
c
c
a
G
G
c
X{oist
D
D
G-I) lliater. acid mine. cont g o\lolztng
D
D
D
G
G G
D
G
C
c
D
c
G
U
II
c
G
U G
G
t1
G
U
U
(i
G
G
G
G
G
t,-
(1
U
G
G
G
G
D
G
G
G
G
I)
c
(i
G
(;
c
II Ir
G
G
G
G
U
(l
c
G
G
G
I)
I)
l, Zinc Chlnrirlo Zirrc S|llphate
U
D
U
G
I)
U
U
C1
tl,
al-J)
(i IJ
G
G
1, The info.nation siven in this t.ble has beoD tabulated lrom va.ious references, for use as x seneral euide. Before specific apDlications are"rnade all service conditions, such as pressures, teDrperatures, concentrstions, operating cydes, etc., should bs rarienod \yith the manulacturer + Spaces
112
lelt blank in the "Exposure Conditions" column indicate informotior on ex&ct iest coDditioDs unafailable.
PIPI\G \IATERIALS
_
TEMPERATURE RATINGS FOR CAST AND FORGED STEEL PIPE FLANGES AND FLANGED FITTINGS. PRESSURE
Introductory Notes: 1, The pressure
temperature ratings in Tables - inclusive apply to all products 2-150 to 2-2500 covered by ANSI 816.5
2.
All ratings
ar.e
-
1977.
the maximum allowable
non-
shock pressures (psjg) at the tabulated temper-
atures (oF) and may be interpolated between the temperatures shorvn.
3.
It
is assumed the tempelerture of each mater.ial shorvn in tal)les 2-150 to 2-2500 inclusive is the tempelatule of the contnined fluid.
Information in the Introductory notes, Table 1 on Mat_ e als and Pressure-l'emperature Ratings, was extracted {rom
American Standard Steei, pipe Flanges, and Ftanged Fittings 19?7) rvith the permission of the publisher. IANSr 816.5 The Ame can -Society of Mechanical EngineeG, 10 East 40th Street, New York 14, N. y,
4. The use of these ratings requires gaskets forming to the following requirements:
con_
(a) Materials and dimensions for ring joint gaskets shall conform to ANSI Bi6.i0 (b) Materi:Lls and dimensions for gaskets, other than ring joint gaskets, shall confirm to ANSI 816.5, Annex E and ANSI 816.21.
5. General. The products coveled by this standard shall be either steel castings or steel forgings and the bolts, nuts, etc., shall be steel, all as
listed in the respective ASTM specifications leferred to in Tables 1A and 18. 6. Ptoducts used within the jurisdiction of the ASME Boiler and Pressure Vessel Code and the ANSI Code for Pressure Piping are subject to the maximum temperature and stress limitations upon the material and piping stated therein.
7. High Temperature Service. In addition to the fo|egoing considerations, the user should recognize that, at temperatures in the creep range, gradual lelaxation of flanges, bolts, and gaskets may progressively reduce bolt loads. It may be necessary to alrange for periodic tightening of bolts to prevent leakage. Joints subject to substantial thermal gradients may require the same attention,
Low Temperature Service. In addition to the foregoing considerations, the user should recognize that some of the materials listed in the
rating tables undergo sufficient decrease in im_ pact resistance at low temperatures that they cannot safely sustain shock loadings, sudden changes of stress or temperature, or high stress concentrations.
8. Bolting. Boiting listed in Table 18 shall be used in flanged joints covered by this standard. Bolting of other material may be used if per_ mitted by the applicable code or governmental regulation.
113
I'fT (}RI\NDLI, PIPING 1)I'SICI\ .\\D U\(}I,\]]]UitI\(;
TAETE
1A
tIST OF MATERIAT SPECIFICATIONS Applicahle ASTM Specilications PBODUCT FORMS
GROUP 1 MATERIALS
MATERIAL
NOMINAL DESIGNATION
cBOUP No.
a1o5 arsr-Il
1.1
PLATES
CASTINGS
FORG INGS
SPEC.-GR
NOTES
(1)(3)
SPEC.-GR
NOTES
A216-WCB
(1)
A216-WCC
(r)
(1)(3) (10)
SPEC._GR A5l5-70 4516-70
NOTES (1) (1)
4537-C 1.1
C-Mn 5i 1.2
A203-B A203-E
4352-LC2
t/2 Ni 3-1/2 Ni
2
A352-LC3
A350-LF3 A
1a1,1
(
a515-60
{3) (10) 1)
(1)
4516-60
A182-Fl
c-r/2 Mo
12)
A217-WC1
12)14)
A352-LC I C-1/2 Mo
1.7
7/2 Cr-l/2 Mo
Ni-Crr/2
a2!7-WC4
Mo
Ni,cr-t Mo 7 Cr-L/2 Ma
1.9
1-1,
l.to
/4 Ct 7/2 Mo
1.13
2-t/4 C4-t Mo 5 Ct-|/2 Mo
1.14
9crtMo
A1A2 FL2 a182-F r r A1A2-F22
(4) (4)
A217-WC5
(4) (4)
A217-\NC6
t4J
4277 -WC9
4l
A2a4-A A204-B A204-C
A38
7-l I
(2')
(2) (2)
C1.2
A3A7-22 CL.2
a2t7-c5 A2t7-CI2
A182-F9
General Notes:
(a) (b) lc) {d)
Materials shall not be used beyond the limits specified in the governing Code. For temperature limitations see footnotes in Tables 2 and in Annex G of ANSI 816.5. Plate materials are lisred only for use as blind flanges {see 5.1). Additional plate materials listed in ANSI 816.34 may also be used. with corresponding 816.34 Standard Class latings. Material Groups not listed in Table lA are intended for use in valves. See ANSI Bl6.34
Notes:
{1) Upon prolonged exposure to temperature above about 8000 F (4250 C), the carbide phase ol carbon steel may be converted to graPhite. (2) Upon prolonged exposure to temperatures above about 8750 F {4700 C), the carbide phase of carbonflolvHenum steel may be converted to graphite.
{3) Only killed steel shall be used above 8500 F (4500 (4) Use normalized and tempered material only,
114
C}.
PIPING NIATERIALS
TABLE
1A
LIST OF MATERIAT
SPE CIF
ICATIOIIIS
Applicable ASTM SPecif ications PROOUCT FORMS
GROUP 2 MATERIALS
MATERIAL
spEc.-GR
STEEL
GROUP No. 2.1
FoRGtNGslcnsrrr'icslPLATEs rrrores seec.-cn NOTES I SPEC -GR I
NOMINAL DESIGNATION lSCLaNi
A
182-F304
A
182-F304H
(5)
A351-CF8 a1a2-F316
16Cr 12Ni2Mo
A182-F3l6H
l8e'Jy_
_
a35r-cFaM
2.4 2.5
t Bcr-t 0Nicb
2-7
(5)(7)
A240-316L
Ar82-F321
(5)
A!A2.F32LH Ata2-F347
(5)
182-F344 A182-F34aH
,3E;
A240-317 A240-304L
A182-F316L
A
Cr12N
(5)(7)
^i
25Cr_2oNi
Al82-F31O
A351-CF8C
(5)
(5)
i
-
(6)
Ar 82-F304L
_
16Cr-12Ni-2Mo 18Crl oNi-Ti
25
4240-316
A351-CF3M
18 C19Ni-2Mo
?.6
(5)(7)
(5)
(5)
r8 c;rNI-3M-.
2.3
A24O-3O4
a351-CF3
lACr-8Ni 2.2
NOTES
(5)(9)
A351-CH8 A35I-CH20
(5) (5)
A351-CK20
(5)
A240-32L A240-321P' A240-347 A?40-347P' A240-348 A24O-348H
(5){7)
A240-3095 4240-310S
(5){7) (5)(9)
17)
(5)(7)
l7) (5){7)
l7)
percent or hiqher' (5) At temperatures over IOOOo l (5400 c), use only when the carbon content is o'04 p€rcent ancr above' aooo r lazso i;, Use ontv wtren the carbon cont€nt is o 04 heatins it to a temperature of at i;i ;;;i;;;";;;,;"oove it the materiat is heat rreared by r7\ F^r rembeDrure. above loooo l- oio"-'ii,"..i'" " i"itt igOo. F (1O4Oo C) and quenchinq in water or rapidlv coolins bv other m€ans' ,io. i iqss" c), it ti .""o--"no.a that kirled steels containine not less than o to (s) For service temperatures "o.," percent residual silicon be us€cl.
{9}Forservicetemperaturesollo5oUF(5660c)andabove,assurancemUstbeprovic|edthatqIainsizeisnotfinerthan
ASTM NO. 6. (10) To be used onlv for Cl.ss 150 and Class 3oO flanges'
llc
TABLE
1B tIST
OF BOtTIItIG SPECIFICATIONS Applicable ASTM Specifications
BOLTING MATERIALS HIGH STRENGTH SPEC._G R
LOW STRENGTH
SPEC._GR
NOTES
Al93-E}7
A320-L7 A320-L7A 4320-L7B A320-L7C
4320-L43
A193-88 C 1.1 a193-B&C C 1.1 A193-B&M C1.t a193-B&T C 1.1
A193-B5
A193-Bl6 (4)
A193-86 4193-B6X
(4)
a 193-B7M
(4) t4') (4)
A193-Ba CI.z Ar93-BaC Ct-2 A193-B8M C1.2 AI93-B8T C1.2 A32O-E|8 A32O-B8C A32O-B8F A32O-A8M A320-B8T A354-BB A449 4453-651 4453-660 4453-662
4354-BC
4354-BD A453-665 A540-E}21 A.540-822
4540-823 A'540-824
NOTES
t7l 17l
t7) t7) t7)
(6) (6) (6) (6)
A A
193-B8A 193-A8CA A193-BAMA A193-BATA
(7) (7)
(6)
A307-B
(8)
(6)
A320-E}8
(6) {6)
A320-B8C A320-BAM
(7)
t6)
A32O-BaT
(7)
(6) (9)
17,
l7l
t7)
t5) (5) (5)
(a) Boltans materials shall not be used beyond temperatures timits specified in the governing Code-
(l)These boltinq materials may be used with atr tisted materials and att qasket', (2)These bolting materials may be used with att ,isted materiats and a gaskers, provided at has been v€rified that a sealed joint can be maintained und€r rated workjng pressure and temperature_ (3) Th€se boltins materials may be used with all tisted materials but are rimited to crass 150 .nd Crass 3OO loints. See 5-4.1 for recomm€nded sasket practices. (4) This ferritic material is intended for tow temperature service. Use A194 Gr 4 or Gr 7 nut5. (5) This special alloy i5 intended for high temperatur€ service with austenitjc staintess steet. (6) This aurtenitic stainless material has been carbide solution treated ancl strain hardened. Us€ A194 nuts
ot corresponding materiat.
(7) Ahis austenitic stainl€5s materiat has been carbide solution treated but not strain nardened. Use A194
nuts ot corresponding materiat.
(8)This carbon steel fastener shalt not be us€d abov€ 4ooo F (2ooo C) or berow -2Oo F (-29o c). see
Note 3. (9) Acceptable nuts tor use with quenched and tempered botts ar€ a194 Gr 2 and
6
cr
2H_
atso
PIPING ]{ATERIALS
TABLES 2 PR ESSU
RE.TEMPERATU RE RATINGS
TAEtE 2-I50 CTASS 150 Pressures are
Mar'l Group Materials
1.4
1-2
1.1
Carbon stoel
Temp, oF
285
z9o
|
23s
l,
i
265
|
in 1.r0
1.13
5Cr1%Cr -1Mo %Mo
,hMo NiCr. -%Mo
260 1260 1215 I 230 l23ol21ol
200 300 400
%CtlAMo
c-
rrr".-.lnish I Lo.,
-20 to 100
'1.9
1.1
1.5
PRESSUB E.TEMPERATU RE RATIIIIGS pounds per square inch, gage (psig)
2%Cr
29o 260 23o
1.14
2-2
2-1
2-4
2.6
2-7
275 1275|
Tompor-
Typo 310
oF 100
260 23o
275 | 275 235 | 24O
230
l80 ll95
160 145 140 125 110
170 140 110
500 600 650 700
95
95 ao 65 50
750 800 850 900
2O5
200
2.3
Type Typos 9cr Type Type 304L Type 347 itpe 32'l 348 309 1Mo 304 316L
| 2r5
500 600 550 700
170 140 L?5 110
L70
750 800 850 900
95 ao 65 50
95 a0 65 50
950 1000
35 20
35 20
140
125 110
195
175
-_
235
I245 I 2ro | 225 I r90 |
200 300 400
22O
200
725
_a_o_.
35 20
r
950 ooo
NOTES: 1
.
2.
Msteri.h'
Saa
ro!p 1,1
{Spr-GrEd.} Al05, ArSl-IL A2l6-WCB, A515-70
(a) (h )
t.2 1,4
A350-LF2, A537-Cl.l A203 B, A?03-€, A2l6 WCC A350-LF3. A352-LC2. A352 LC3 a I a1-I, A5r5-60
1,5
A I
1.7
A352-LCl a2 04-c
Mrt'l G
Ratinqs shown apply to other material groups where column dividing lines have been omitted. Temperature notes for all Material Groups, Tables 2-150 through 2-2500:
1.9
t.to
A516-70
A5l6-60 a2-F
al82-F t l, A 182-F 12, A3a7-11 a2 l7 -wc6 at82-F22,4387-22,Ct-2 A2 t 7-WC9
]'
t3
l' l4
4,
So6
{Spe-Gr.do)
2.t
Ala2-F3O4,AlA2-F3O4H A240-304, A35l-CFa a35l -cF3
2.2
at82-F3r6, Al82-F3l6H, A24O-316
2.3
A35t-CF3M Ata2-F304L, A240-304L
{9t (r)
Ala2-F3l6L, A24O 3l6L
t9)
P.ta2-F
(h)
{d)
32I, A240-321 a182-F32lH. A24O-32tH
(9)
Ata2-F347, A?40-347
(h)
(h)
aLg2-F347ts', A240-347H Ala2-F348, A240-348 a182-F348H, A24O-F34aH
(h)
(a){s) (d) (a) ( h)
(d) (a) (h)
(.)(s) (d)
t. A204''A, A204-A, A2t1-WC 1 (b){h)
Ala2-F2, A2l7-WC4
Mat..ialr'
Mr{l Group
, C 1-2
{i) (i)
,i,
A240-317, A35l-CFAM
2.6
A240-309S. A35l-CHa, A35 1-CH20
2.7
AIa2-F3lO, 4240-3lOS a35t-cK20
Al82-F5a, a2l7-C5 AtA2-F9, A2t 7 -Ct2 (a) p€rmisrible but not r€comm€nd€d lor prolong€d use above about Sooo F (tr) permissibls but not rocorhm6nd6d lor prolonq€d ure above about 85ooF (c) p.rmisslblo but not r6commondad lor prolonq€d use above about I looo F (d) not to bo u3ed over 65oo F (l) not to ba us€d over SOOo F (q) nol to be used ovsr a5oo F (h) not to be ured ovsr loooo F (i) not to bs uied ov6. lO5oo F (l) not to be used ov€r llOOo F (k) for sorvice ternperature 105Oo F and above, assur.nce must be provlded tiat grain size is not finer than ASTM No. 6. See Tabre lA lor additlonar inlormation and not€s relatinq io speciric mat6rials.
tt7
ITT GRINNELL PIPING DESICN AND DNGIN]IDIIING TABTE 2-3()() CLASS 3t)() PRESSURE.TEMPERATUBE BATINGS Pressures are in pounds per square inch, gage (psig)
Mat'l Group Materials Temp,
-20 to 100 200 300 400 500 600 650 700 750 ao0 850 900
1.2
1.1
1.9
1.4
H
65s 1730 I
620 560 55o 530
635 1705 | 5oo I 665 | 5OO 550 605 455 535 L 590 450 535 | 570 1450 505 1505 1445 410 l41O 1370 2to
695 | 750 750 L 75O 680 | 7sO 710 | 715 655 i 73o 1675 1675 640 17O5 1660 1650 640 620 1665|
530 510 485 450
165
1150
1350 1400
1450 1500
35
Materials
-
I.l *
1.4*
Carbon st€el
Norm.l Hish I Low
-20 to loo 200 300 400 500
600 650 700 750 800 a50 900 950
loo0 I050
990 900 475 845
1000
1000 970 940
925 750 730 705
800 730
7lo
885 405 785 755
665 610 600 600
670 550
670 550
590 495
715
355
230
1.1
t250 1300 1350 1400 1450 t 500
118
720 635
670
100
605
495
590 555
570 535
200 300 400
460 435 430 420
520 490 4ao
4ao 465
415 415 410 405
460 455
385 355
345 365 360
3ao 360 350 345
400
335
390
425 415 405
385
395
370
375
19O I 29O r40 | reo r05 | I r5
325 310
385 365 360
260
325
345 300
195 155 110 85
275
235
205
r80
180 140
140 105
!25
60 50
105 75 60
ao 60 50
70 50
260
70 50
395
35
430
_33_0__
320
oF
6lo
4ao 450
720
430
325 275 170 95
35
25
1.14
1.13
%Ct%Mo
2%Cl 1%Cl %Mo NiCr- -YzMo '1Mo YzMo
Mo
s25 | rooo 10oo I looo
| lOOo 950 955 I a7o 970 | 8e5 I 905 855 | 94o | 88ol 865 1 830 1885 1 855 | J
505
435 425 415 345
500 600 650 700 750 ao0 450 900 950 1000
290 1335 225 | 29O
1050 1100
r7o ] 245 130 205 roo Ll60 8o lr2o
1150 1200
60lso 45 1 55 30J40 25 125
125 0
1300 1350 1400 1450 1500
2.1
2-4
2.2
2-5
2.6
Type fypes 9Cr' Type Type 304L Type 347 Tvpe Tvpe 321 3U) 310 316 1Mo 304 348 316L
97o s4o
705
605
725
630
645
550
660
960 850 7a5 740
885
1o0o lOoO
960 800
960 425
400 675
960
al5
oF
895
to0
805
760 710
200 300 400
585
635
ao5 745
555
755
540
600 590 575
510 480 470 460
610 58s 570 560
690 655 640 625
670 635 620 610
500 600 650 700
565 555
450
555
)25
550
520 510
540 525
!!o_
615 610 590 575
595 5ao 565
750 aoo a50 900
500 430
515
530
710
675 650 600 355 265 7C
*Do not ul
Type 310
435 415 410 405
665
55
'1.10
1.9
140 70
I150
309
CTASS 4t)O PRESSUBE.TEMPERATURE RATINGS Pressures are in pounds per square inch, gage (psig)
1.5
9Os
Types -3_ql Type 32'l Type 348 316L
2.400
1100 1200
1
2.7
600 505
720 600 530
NOTES: 1, Ratings shown apply to other material groups where columns dividing lines are omatted. 2. See Temperature N ote 2, page 117 .
TABTE
Mat'l Group
I 380 ) 2t5 I 225 27O 140 200 95 | 115 50 lro5
2-6
720 620 560 515
750 750 730 705
5OO | 5rO 440 | 485
280 1345
105 50
2.4
2.3
2.1
9Cr- Type Typ€ 316 1Mo 3(}4
605 590 570
1100
1200 L250 1300
1.14
1, 21/.Cr 5Cr1%Cl %Mo NiCr- -%Mo -1Mo %Mo
170
950 1000 1050
'1.13
%Mo
ish I Low
740 150 675 I 750
.10
%Ct-
Carbon steel
Norm.
1
45
1665 l67s 585 | 6sO 470 | 600 | 35o I 4e5
| 255
390
1190 l2s0
15ol14o l15o 14o | 90 llOO 75 1 60 I 70
NOTES: 1. Ratingl i shown apply to othet material groups :olumns dividing lines are omitted. 2, See Te nperaflrre Note 2, page 1',17.
430
540
4lo
445 4ao 430
515 475 460 400
260 205
365 275
315 240
365
lto
165
145
185 140
a5 65 45 30
140 100 80 55
110 a0 65 50
90
515
485 440 430
555 515
465 390 | 445 3oo | 3eo 230 | 33O 175 | 275 r35 I 215
45O
I
230 L25 70 55
45
ll60 8o lro5 60175 40t50 3()l30
1O5
I
950 1000 1050 1100 1150
l'oo
r250
1300 1350 1400 1450 1500
PIPING }IATENI.\LS
TAEtE 2-5|||) CLASS 600
PBESSU
E.TEMPERATU RE BATITIIGS
R
Pressures are in pounds por squsre
1.tr
Mat'l
1.2
1.4*
Mat€rials
1.7
1.5
1.10
1.9
1.13
1.14
1500 r 500
I245t1330t1285rI280
l3 30
500 600 650 700
12
1075 1065
1175 1135
995 915 895 495
750
1010
1o
to
485
8AO
825
t
00 1330 o95 1210
850
825 535
900
345
950
205
I O00
105
1200 12 50 1300
1350 1400 l4 50 1500
t2to lt75 1065 1015
*D^ n.t ra. AqTl A
I zts -----l rgo 38o
a1a1
I
I
+oo
zzs
] 70
ros
475 830
795
5601 685 | 755 3301 425 | 445 I 535
----l
1440 1200 I 055 940
815 805
995 880 7o5
975 900
lo50 1lo0 I l5o
1455 1410
ttl
zos
| ll0
2.6
2.7
9Cr' Typc TvPo 99,1r TYp. Typ.3 Typ. Type 317 1Mo 304 316 Type 321 309 310 348 316L
Norm.lHish I Low to loo l4ao 1500 I235 139O1 15O0 r 50O ll5O0 -20 200 1350 1500 t1?5 13601 r5OO r425 | 1430 300 1315 1455 1095 r 3051 1455 r345 11355 400 1270 t 4l0 1060 r28Ol I4t0 1315ll29s Temp.
2.4
Typ.
'ACtI 'AMo 1%Cl 2%Ct 5CrlAMo 'AMo NiCF -lAMo -1Mo
Carbon steel
inch,g.gc (psig)
llOl5 975
| | 52O | 38s I 2ao 205 140 90 I
eoo 74O
585 380 225 150
ro5
790 780 770 750 645 620 515 390 310 220
845 830
8lo
.
too
910 r090 425 990 11tO
1210 1140 t 065
200 300 400
lo10 930 910
500 500 650 700
895 870 850 830
750 800 850 900
765 720 700 685
915 I035 475 985 855 960 840 935
670
830 425
920
at5
890
_6_5_q.
645
790
8lo
775 725
775
715
720 645
605
5s0 410 365
125
205
90 70 50
ls0
9lo 865
775 725 720 645 550
275
NOTES: 1. Ratings shown apply to other materialgroups where columns dividing lines are omitted. 2. See Temperature Note 2, page J 17.
oF
1345
\240 lo15 t220 1270 955 905 490 865
ttura
1440 1440
1440 1200 1120 1030
Tempcr-
365
345
2ao 210
245
zoo
185
160
125 95 75
950 665
looo lo50
ses
1100
495 4rO
1200
7oO
I I
I
aas 345 260
I
||
I| r rs I 90
rzs
105 80 70
115 0
\?50
240
1300
160
1350 1400 1450 1500
I
t65
115 85
775
670 585
| rlo 60l 75 50l so
TAETE 2-S{)O CTASS 9(}O PRESSURE-TEMPERATUBE BATIiIGS Pressures are in pounds per square inch, grge (nsi!)
Mat'l Group
1.1
1.2
1.9
1.7
Mai€rials
1.10
1.13
Carbon steel
I l%Cl 2%C. %Mo 'AMo NiCF -%Mo
200 300 400
2025 2250
500 600 650 700
17
r640 11815 137 0 r 6l0 lr765 1345
1815 1765 1705
750 ao0 450 900
r5ro
1s 95 1s2 5
!970
1685 1640 t 585
1Mo
2250 2250
203512250 12135 l2r50
re5sl2r8s l2o2o 12030 l92Ol 2rr5 11975 11945
218 5
95 11995 1495 18651 l99s 11925 11920
199 5
2tA5
1900 2l l5
1600 li 705 1345 1151o
l2 35 1123s
7325
lllo
805 515
950
310
1000
155
1050
I100 1150 1200 12 50 1300
1460 1350 845
1030
i 495 | 640 __-l sos I ------l
|
I I tl rs5 II lo5 I qro
2eo
2l l5
1490
1525 t 3l5 1460 1060 1350 ]
1l3O
670
805
sgs 3ao
3ro 16s
78O 11r10
s15 420
| | 3r0 | 2o5 | r35 I
NOTES: Ratings shown apply to other material groups coiumns dividing lines are omitted. 2. See Temperature Note2,page 117.
l.
2.1
2.2
2.3
2.4
25
2.6
2.1
Typ6
9Cr
%Mo
Norm.lHieh ] Low -2O to 100 2220 2250 ta50 2085 | 2250 12250 12250 Temp.
1350 1400 14 50 1500
1.14
hcr-
TYp€ 3()4
316
T6mp6r.
TvP€ Typ6r 347 3G' Typ6 321 348 316t
gqt!
TYpo 310
oF
2160 2160 laoo 2160 1800 1860 1520 l8 30 l5a 5 168 0 1360 16 35 141O 1540 1240 1485 1 310 1435 1145 1375 1245 r 355 1080 1310 t225 1330 lo50 1280 l2l o 1295 lo30 1260
2760
2015
loo
O
t 815
65 1665
1705
200 300 400
1555
l5t0
500
1475
14
60c
1440 1405
35 1395 l3 70
I195 t?70 1010 1245
1385
1340
1240 1370 965 1225 1330
1305
750 ao0 850 900
I tao I245
I165 1215 1150 1ta0 1125
r160
875 565 340
965 l090 925 to80 770 965
22s
585
155
465 330 245
la5 145 105
'to
l9I 17
_9_8_5_
1215
t295
1160 1160
1600
1275 ),245
ll60
I OOO
I
szs
l loo
515 390 3o0 I 235 | 175 |
740 620 485 360
ll50
235
1350 1400
1090
1040
108 0
905
965
ezo
825
710
425
620
545
515
370
410
420 320
310
245
225
185 145
205 155
175
r25
ll5
r25 105
950
r0ro lto5o
107 0
2AQ
650 700
875 IlOOO
I
rr:
1050
1200 1250
l30o
I res 95 rl5
1450
70
1500
70t|
r19
ITT GRINNELI,
PIPING DESIGN AND ENGINEEITINC;
-
TABLE 2.1500 CTASS 15(}O PRESSU RE.TEMPERATU RE RATINGS Pressures are in pounds per square inch, gage (psig)
Mat'lG.oup
1.1
1.2
1.4
1.7
Materials
_-I
Carbon steel
emp.
-20 to
-.1
| ,-o*
200 300 400
3375 3280
500 600 650 700 aoo 850 900
2995 2735 13025 l 22A5 264512940 | 2245 2665 l2A4O lt2245 2520 | 25zo | 2z!o 2060 12060 1185O 1340 a6o
950
515
3r70
750
rooo
1
--r1.13
%Mo 2%Cl scF %Mo Ni-Cr- lY.Ct -lMo %Mo -%Mo
|
1.14
| gcF
| lMo
2.2
2,3
2,4
3750 3750 3640 3530
Type Typ€ 304t 304
Type 321
3165
3600
2.6
3095 J2530 12795 1227O ll2570 12065 12390 | 1910 J2255 l18oO | 2220 1!750
2640 2350
2r85 2O4O
272512940
247o 1277o 2290 | 2590
1610
38o
26fl
NOTES:
i 350 1400 1450 r 500
'|. 2.
loo 200 300 400
2520 2390
2r85 12460
2735 | 24OO 21oo 12340 2075 12305
500 600 650 700
2330 22aO
2230
2540 l249s | 2540 \97O 12075 11645 2065l22aO 2435 12795 | 2435 1sa5 l2o3o h6f6' 2O4O 2220 | 224s 1e2o | 1e7o f2030 l2l60 l'1765 l|2245 il r4o5 lr7r5 | 1885 ltsos lteso r87O | 193O l l930 | 1930 _g4l 1065 ltt15 lr34o I e6o I ra6o r51o | 1820 r 785 lr820 I e45 | 685 I ee5 I 705 i e45 1545 Jrsoo 1730 | l8O0 480 56s 5r5 s65 12851
I I | | *Do not use ASTi t4181 l260l 5r51345J I tTo l 275 | 225 |
1200 1250 1300
oF
310
3360 3025 2845 2665
3O5O 13180
2or5l2160 1r715 1990l2rro lr680
Temper-
309
750 aoo 450 900
2170 2125 207 5
1930 1680 lr75O
|
r150
2.7
Type
347 348
l3600 l3ooo 3600l3600
3OOo |
2O7s
2660
2.5
Type 316t-
| ,"r.
3025 2940 2440
2-1
I
260
1050 1100
1.10
Mo 13085 3470 | 3750 13750 | 3750 | I 37so l28lo 33e5 I 3750 13560 l35so I 13640 12735 3260 13640 13365 133a5 | I 3530 12645 32oO J 3530 13290 | 3240 J | 332s | 2490 sros I aszs I .rro l."oo
",nn 3705 13750
IOO
1.9
%Ct-
Ratings shown apply to other mate ar groups where columns dividing lines are omitted. See Temperature Note 2, page t 17.
TAEtE 2-2500
I
I e8o lr37o | 77Ol1O3O l 55ol elol 41ol 6e5 | 31ol 515 I
I 2eo I
z+ol
seo
||
205
t1o t20
|
I
|
l I
I I
I I
|
950
tooo to50
14Go
r5r0 r61o rr15 lt66s l1460 J 11s5 | t37o
^-^t-_705 I 615 530 455 | 4ro | 34s 310 | 255 24O | 2O5 t90 | 170
1100
eoo lrz.:s 650 J r030 495 | 805 3es 600
1150 1200 1250 1300
rss I 275 225
1350 1400 1450 1500
zso
|
| 155 I t20 |
t9O 120
CTASS 25(|(} PRESSU RE.TEMPERATU RE RATINGS
Pressules are in pounds per square inch, gage (psig)
Mat'l croup
|
1.1
|
1.2
|
1,4
Caabon steel
Temp. 200 300 400 500 600 650 700 750 aoo 450 900 950
rooo 1050 r
loo
r 150
1200 1250 1300 1350 1400 1450
1500
1.9
c Y2Mo
%CtlAMo
Ni4i-
1.10
1.13
1.14
lYaCr 2%Cr .lMo
5Cr-
9Cr-
%Mo
lMo
1
.,AMO m.l High I Low Mo 6170 J 6250 1s145 5785 J62so 5625 | 6250 14680 56601625016250 6250 lse3o 15965 5470 | 6070 14560 s435 6070 5605 | | 15640 5280 | s88o 14405 5330 lssso 1s485 l54oo 4e9o I 5540 l4t50 5I80t5540 15350 15330 4560 | 5O4O 13805 5040 447514905 13740 4905
4440 | 4730 13740
47 30
42OO
4430
I42oO 13685 3430 | 3430 13085
| | |
|
|
6250 6250 6070 5880 5540
2-2
2.3 Type
2.4
Tvpe Type 304 3165
i;;; 316L
TYpe
6000 I6000 5ooo I5160 44oo 14660 392o 14280 3640 J39so 3460 13760
5000 6000 l6000
3180 3000
3360
2460
34OO l37OO
l3600
4220 3780 3440
2920
321
2,5
2.6
2.7
Types
Type
Type
347 348
Temper-
I 5o8ol53ooi 4540 l49oo | 4120 14620 I 3a2o | 4320 | 3640 l4rOO I 3560 I4OOO |
3Ul
35ool3eool
I
I
I
I
oF
too
5600 5o4o 4740 4440
200 300 400
42oo 3980 3880 38oo
500 600 650 700
3320 2800 3460138401 3720 4230 141451423c 32AO I135?o 3460 2740 3440 38Oo 2230 4060 13660 | 4060 :z+o l::eo a68b- 34OO |l37OO |I 3620 3540 t43o 3745 32oo 3380 3460 l|2e4513745 13280 l3600 | 860 2345 l2a6o | 3145 l2r7o | 3os5 3r2O | 3220 3220 13220 | 3220 430 137O 11770 lta60 12230 ll600 J2430 2685 2970 I 3o3O l28OO | 2915 l3O3O -----l r57o lrras ltoso lrrzo irszo 2570 I3OOO 2885 | 3OOo 12430 | 2770 eoo eas aeo sas 2t45l'2685 2sr512685 lttl430 lr860 12430 860 J 570 | 630 153o 12285 1970 122A5 | r43O I 2O5O | | iDo not us€ ASTI\ I AlAl I 285 | 460 j 370I 430 128 5 lr7l5 r51s I r43o lroas I tzrs 915 lr5.r5 1170 11030 1 83011345 685 1145 8s5 770 660 NOTES: | | | lrooo 5i5 I 860 1. Ratings ! hown apply to other material groups 685 1 57ol4s5 I 660 400 | 63.) 515l43Ol37Ol 460 where ca lumns dividing lines are omitted. zas nas 4OOl 345 l260l 3r5 2, See Tem oerature Note 2, page I 17. 200 | 345 315 1 285 l2ool 2oo
--_l
atu re
310
750 aoo 450 900 950
looo 1050 1l oo
I150 1200 1250 1300 350 1400 1450 1500 r
PIPING X'IATERIALS
TAELE
3
HYOEOSTATIC TEST PSESSUBE
SHELL TEST PFESSURES BY CLASS_ALL PAESSURES ARE GAGE
MATEAIAL
t50
GROUP NO.
300
400
1125
\.2
6()0
103
I125 950
1250
a6
2225
154
3350
230
2250
155
3375
233
5625
la75
724
t92
4650
216
5225
2100
r.7
450
30
tl25
2250
155
t,9
tt25
1500
2250
156
3375
1500
2250
156
3375
30
rt25 II25
1500
156
3375
30
I125
2250 2250
156
lloo lloo
2.L
425
29
2.2
425
29
2_3
350
2.7
63
a3
3Aa
9375
3aa
93 75
599
5625
3aa
9375
5625
348
9375
233
5625
3aa
9375
3375
233
5625
3Aa
9375
3250
224
2tJ5 2tJ5 laoo
t25
2700
2175
149
3250
233
2500
9275
3375
l_lo 1.14
't500
900
62t
3250
la7
425
29
425
29
l10o
1450
2L75
3250
27
1025
1350
93
2025
3025
209
to25
1350
93
2025
3025
209
373
627
311
517
373
621
373
621
348
5ao
5050
5AO
Note: Thes€ pressures are subject to the limitations in Section 8 of ANSI 8165.
L2r
ITT GR]NNELL PIPI\(i
I)F]SICIN AND EN(IINI'ERINO
ALLOY-STEEL STUD BOLT DIMENSIONS Lensthr of Srrxi Bolt
L€ngth'of Stud Bolt Nominal Pipe Size
Numbet
Diameter of Bolts
Ring Joint'
of Bolts
1r'16" Raised
Diametef of
Number of
Bolts
Bolrs F
Flat Face
l, t1
't
1
tr\ IL./z
1l
2 2v)
\
2.i5
4
:t.50
3.00
I
4
3.15 1.00 4.25 4.25 1.25
3.25 3.50 u.?5
8 8
:1.75
E
1.50 4.50
4.00 4.00 4.23 4.75
8
5
E
6
8
ri
Size
Bolts
5.5i)
12
I
16
'i.it
1f; 16 20
20
i;.0t)
IL I 11,
6.2,4
lLr
20
7.;i)
7.00
,rInch Rins Jointl
Raised
Face
I
I
lli
ts
|1
4
2
I
ztl 8
3ti 4
5 6 8
t0
ii th 1ls
t
lti
t2 l6
1.1
rtl
2t)
16
Ita
20
0D 0D 18 0D 10 0D 24 0D
3.25 3.50 8.75 4.00 4.25
3.00 3.50 .1.00
4.25
4.25 4.15 5.00
4.50 5.00 5.25
;.50 5.;i) 6.00 6.25 7.00
6.00 6.75 7.60 8.00
8.25
T2
9.2;
tl/s
t\, r11
8.50 9.00
24 24
10.0i)
1t.25
tix!.acted lfom Anrefican Sianda.d Sleel Plp€ Flanses and
24
uale&Female D;am€ter
also Tonsxe
of Bolts
Number of
Ring
i.i5
8.25
L25
Bolts
,Jointrr
t,lnch Raised Face
8.25 8.75 9.00 9.'.l5 10.75
l
3.00
.1
'3.25
I
)jal{,&l'emale also
Tonguc
3.50
4 4
{
4.00
8.00 3.50 8.75 4.00 4.25
3.25 3.50
3.0i) :t.25 it.50
.1.00
:1.75
{.5{J 5.0t)
1.25 4.7i) 5.00
4.00 4.00 .r.50 4.15 3.25
],'
4.75 5.25 5.25
8 8 8
t;
E
,/i
E
5.15
5.5t)
5.50
1
6.75
6.;i)
6.2r)
1
8 72
7.01)
6.?5
6.50 7.25
1't
t2
7.75
'7.75
6.5(l 7.50
11i
16
8.
t-i
1ti
2t)
9.00
8.50 8.75
8_25
1.i5 8.00 8.5i)
1lz
20 20 20
9.50 10.25 11.00
9.00 9.75
9.50
1l;
11.75
10.;0
Lir
24 24
9.25 10.00 10.75 11.50
l:t.25
13.0t)
4.00 .1.50
lansed l'ittings ANSI
Blli
i-
5.25 5.75 6.00
8.50
10.;0
tt.25 t2.i5
1gti
mrr
be chaDrlercd. round€d or
sheaFl
ol pipe. but lhe lap thar scrvls as lhe male lacc musr no1 bc ltss as a mrte lacer for mate amt fcmat€ taDpe{:t joinr made in rhe 1aps. add two thickhess.s ,$ hen f.oov. is made ln the lap. add ihifkiess of piDc lor each Lap
122
?.00 7.50
Lensth' of Stud Bolt
Dimension siven in inthes. ,These lenFhs .to nor in.hde rhe hei!.hr ot th€ poinrs. -{ poinr is thar pa.t ol a snid b.Lt b€yond ihc th.ead and
All
5.00 5.50 6.25 t;.75
600 Pound Flangesl
E
8 72
{.50
8.25 8.50 9.00 10.25
24
400 Pound Flanges'
l l I
.1.5t)
lii
Number
oi
5.25 8 72
Lensth' of Slud Bolt
Diameter of Bolrs
4.25
2\')
0D lri oD 18 0D 20 0D 24 0D
Nominal Pipe
5.U0 5.2r)
1,,,
1f,
:1.50 .1.00
.1.7r-)
llr
t2
"t.75
1.2i
5.21
I I lis
,1.25
5.75 6.00 6.50 6.75
12
l2
lai Face
2.15 3.00 8.25 3.26
3.?5
6.25 ?.00 ?.50
L
lli rl.
4 4
!,s
:1.75
t.7r)
8
t2
l
3.5t) :J.?5
:1.25
3t/, 4
14
3.00
.l
t%
4
\
I
4
B
8 IO
2.50 2.50 2.75
4 4 4
1
Raised
300 Pound Flans€s'
150 Pound Flanses'
l"
l' I ii"
Rins
rhar
I Inch
PIPING X{ATERIALS ALLOY-STEEL STUD BOLT DIMENSIONS (Continued) Lengthr of Stud Bolt
Len!|thr of Stud Bolt
Nirminal Diam€ter I'jpe of UolL\ Size
'/i Inch Male&Female also Raised Fac€ Toner€
NLlmber
Rins
of Bolls
Joint:]
Diameter of Bolts
Number of Bolts
Ring Joints
%Inch Raised Face
Male&Female rlso
ard Groore 1500 Pound Flangesl
9U0 Pound Flansesi
1i 1
4
r'./r
rt, 2 21/,
3 4
I h I
1,1
16 18 20 24
0D 0D 0D 0D 0D
4 8 8
Is
1t(
lfi 6 8 10 12
4 4 4
1N
r.x I.lr
8
t2 t2 16
4.25 4.50 5.00 5.00 5-50
1.25 1.50 5.00 5.00 5.50
4.00 4.25 4.75 5.25
%
I
.t
5.75 6.25 6.00 ?.00
5.75 6.25 5.75 6.75
5.50 6.00 5.50 6.50
,/,
8
7.75 7.75 9.00 9.50
7.50 7.75
t; -A
I
u;
5.75 6.25 7.00 7.75
5.',75 6_25
5.50 6.00
7.00 7.75
7.50
t2 t2
9.75 10.50 12.00
72
13.25
Iti
15.50
9.?5 10.25 11.50 13.25 14.75
16 16 16
17.00 18.50 20.50 22.50 25.75
lk
8
9.25 10.00
1% 1%
20
10.24,
20 20 20 20 20
71.25 11.75 13.50 14.25
10.75
10.50
2l;
lt.25
ll.0{J
zlt
72.75 13.50
12.50 13.50
23i
t7.75
r7.25
1?.0{J
' t
2 2t/t
4.00 4.25 4.75 4.75 5.25
7.25 ?.50 8.50 9.00 9.75
lts
4.25 4.50 5.00 5.00 5.50
4.25 4.50 5.00 5.00 5.50
t\
t,/"
1il
4 4 4
8 8
1%
17i
Tongue and Gr@ve
9.50 10.00
1t.25 13.00 14.50
16.00 17.50 19.50
21.50
17.25 19.00 21.00
24.50
24.00
Lensthrof Stud Bolt
Nominal Diameter Pipe oI Bolts Size
Number of
Ring
Bolts
Joint3
,1 Inch Raised Face
Male&Female also
Tohgre and Gr@ve
2500 Pound Flanges' )/,
''/4
% 1
%
%
4 4 4
r%
1
1
ry,
Ut
4
I
2y,,
rls
8 8
3 4
rlz
8 8
2
5
tr\ t3,\
2
8 10 12
2 21/z
2lt
8 8 12 12 12
5.25
6.50 7.25 '7.50
8.25 9.25 10.75 72.7 5
14.50 16.00 20.50 22.50
6.25 5.25 5.75 6.25 7.00
5.00 5.00 5.50 6.00 6.75
7.25 8.00 9.00 10.25
7.00 7.75 8.75 10.00
12.00 13.75 19.50 21.50
tl.75 13.50 15.00
t9.25 21.25
Extracied from Ame.ican Standard Steel Pipe Flanses and Flansed Fittihss ANSI B16.5 - 19??. Al1 dimension eilen in inches. jThese lenclhs do not include the height of the points. A point is thal part of a shrd bolt beyond the tbread and may be chahlered. founded or sheared.
,Bolrlensthsforlappedjoi.tSmaybedet€rminedafollows:For1appedlapped'a to|,jinchma1efaceonfange'addthicknessof]apand|inch;forlapped'ofemalefaceonange'addihfknesso|
s
a male face; for male and female lapped joint made in the laps. add two thicknesses of pipe, but the lap thai servs as lhe male face must not be less tban 3when gr@ve is made in the lap, add lhickness of pipe for each lap.
il
inch.
t23
ITT GRINNELL - PIPING DESIGN AND ENGINEERING RING-JOINT GASKETS
rffi^' l_c_l / Redius Rr: Xa in. for ring widths % tn. and smallerj 1{: in. for ring widths 1 rn and larger.
Tolerances J
P A
B ard
C 23" Rr
I Rjng Number
R
3
Pitch l)iameter of Ring
width
P
A
of Ring
4
11
he 7n
R16 R17 R18 R19 R20
2
%"
2yi 2%
%t 9\"
2'ku
R 21
ti6
s%
R22 R23 R24 R25
0.170 0.206 0.206
it"
lz
%"
t\,
3),1
3%
i1,
4
(radius of
ring)
%
1\"
% %
ot
Yta
%
%"
),1 l:rt
h,: %a
%
11"
%
0.206 0.206 0.200 0.206 0.206 0.206 0.305
',1, i16
'\t
't" 1\,i
%
0.206 0.305
% %
0.305
0.206
flansie shal] carrv the groove number prefixed bv the letter "R'' sask€t shal l car ry the m anufacturer's trademark, gasket nu mber prefixed by the letter "R" or "RX" and fol lowed by the material
.i"e:oint
"*[ ot"i"t "u.t*" identification.
Purchasers must specjfy oval or octagonal shaped rings as deBired when ordering rings' i,lat".tat ;a"ntiti"ailon ihall conform to the following standards unless other specified on the purchase order' Rins Gaeket MatertaL Riw Gaaket MateriaL lvpe 304 Ste€l D Soft Iron Type 316 Steel s I-ow Chrome SteeL DF-5 Type 347 Steel 4-6% Chrome l/& MolY Steel s410 Type 410 Steel (A NSI 816 20-1973) Flanaes Exr racred from Ameri.an Standard Rins-Jornr Ga-kets and GroovPs o F 5 designates A.S.T.M Spec Al82 ch"mical (-omposilron Kequ "pmPnls onlv
For application of rins joint gaskets
1'L
cteg.
0.206
All dimensions given in inches.
iL Jn" ir,.."6.
L0 u(r\
*i/2 +)i',
R'ng
%
%
1%
Ocfa,gonaL
C
1"t "1"
(angle)
FIa{ of
H
1%u 1,%
rwidih orr flriof orlag"rral ring'
Width on
t3
111,42
R14 R15
!q7 'q lrr.urrd
Oct&gonal
Oval
R12 R13
ring
+ A Dlus tolerance of 3/64 in. for heights B and H isp€rmitted providins the variation in the heisht of anv given ring does not exceed 1/64 in. throughout its entire circumference.
5
Height of Ring
H
(widrh ol ring rhciqhr of rirrs)
bead near rhp .errer rf oval "r,,r1cgon rl 'heped r:rrg' A "mall rhal ir will ,ot errtcr the groove. ij I.ol ohjp.liorrablc Iocated.o
Table 1. Dimensions of Ring-Joint Gaskets 2
\avpregc pir.h diamarcr o[
see
Table
II.
s304 s316 s347
PIPING X{ATERIALS Table
1
4
3
1
Iting
Number
Pitch I)iameter
$iidrh
of Rirrg
Ring
of
26
R27
R28
lt
It
29 30
R 3l
R32 R33 R
It
3,1 ::]5
R36
It
37
R38 R39
It
40
R41 R
,12
,,tt
4
1r1
4_74
% Y"
i\" i\"
,\^
1\, ,,1"
%"
't"
R46
8Xu
%
,,1"
%
%
1
5/\t
T" %
1%
P"52
12
l\a
)1"
It
56
R57
R5E
,',1a
1\6
%
%
r%
l5
t7,1';
{J.305
R73 R74
'/2
1).206
lt
76
261,6
%
0.305
P"77
2t'%
0.413
0.305 0.206
R78 R79 R80
27% 27%
% "/1,6
%
% % "/1" \116
'%a
0.305
0.31)5 0.4rJ5
R87
6% 10%
0.206 0.305 0.413 0.780
%
0.305
1% %
0.413 0.681 0.206 0.305
16%
,,1"
,,1"
161/,
%
%
16lk
v,"
%a
,,1"
,,1,
tE"1
%
%
t,lo %
%
0.377 0.305 0.305
0.341
% t"/B
% % %
RC2
I
R93 R94 R95 R96 R97
2s%
R98 R99
R 100 R t01 R r02 R 103 R
n
r1\u
1%
%"
%
0.583
.'"11"
1% "(, 1% %
r%
3\A
R91
3r%
% % % %
i1"
40%
"4"
%
'11" 'i16 ,,1" 1Y.
0.413 0.485 0.485 0.583 0.879 0.305
% '%" ,",1" ,',\" rY'u
llu %
tt/4
r34
1%
t%
104
:18
1% L% 1%
105
40%
134
33% :lti
0.341
rl\o %
s%
:ltrz
'v* ,,\"
l\/t
r%
33% 36 38
0.341
0.206 0.413 0.681 0.977 0.206
86
R90
0.730 0.206
%
ti
.0.4r3
% ,ho
%
0.305
RE9
r%
0.4t5
%"
2th
31%a
,i\"
0.780 0.206 0.305
%
R85
4%
%
0.413
11"
0.206 0.305
R88
,4
a-
0.485 0.879
1\"
0.485 0.206 0.305
'91,
13/4
Riue
11/4
|t" ,,1"
R84
%
H
r%u
r%
t
I
Octagonal
'71"
%
2%
1Y,u
%
R81
1l
R82
r%
R61 R62 R63
R64 R65
0.206
% %
rilo
i|,
16
1
%"
1%
\554
%
1i\"
ttA
R59 R60
i1"
21
1\"
%
,,1"
7r1,
15 15
2l
t%
0.206 0.305 0.583 0.206 0.879
%"
11"
1\"
22 23 23 23
%
%
2034
% 1i\u h6 ,,1"
2l
%
ll
r%
R72
'v'"
R5r
%
18%
R71
%,
%
1811
0.3.11
%
i1,i
13%
R66
Width on Flat of Octagonal
Oval B
0.305
1\'t
I
Ring A
R67
6
Height of Ring
%
t"
,,/\"
0.341
of
4
'){"
'ii. %
%
12%
\
% ,',\"
8%"
R54 R55
{1.305 0.3{J5
%
i|"
12x4
% %
,,1"
R45
R53
H
"/1"
s%
|\r4
Number
71"
7"
s%
Rntg
Riug (:
0.206 0.305
5%
r0"4
Oclagonal Octagonal
%
'I" llie
I
width
'X,
i\t'
7% 7%
Pitch l)iameter of Ring
\\ridth oir Flat of
i\, )', o
6%
3
R68 R69 R70
5i1^
63.1
2
"1"
5x,,
61"0
I
%
1\^
4%
P"44
R48 R49 R50
'11o
134
R43
R47
'){.
,,1"
1t1
fConcluded)
J
Heighl rf Rirg Oval B
d It
Table 1. Dirnensions of Ring-Joht Gaskets
Dimensions of Ring-Joint Gaskets (Continued)
r% 1V r%
r%
0.413
0.485 0.485 0.485 0.58:l 0.583 0.583 0.305 0.780 0.879 0.879 0.879 0.977 0.977
A1l dimensions given in inches.
This standard shows only flat bottom sroov€s, becaus€ both oval and octagonal rinss may be us€d. The former round bottom sroove rcquires the use of an oval sasket. Th€ eds€ of each rins joint flange shall calry th€ groove number prefixed by the letter "R".
The outer surfac€ of €ach sasket shall carry th€ manufacturcr's trademark, sasket number prefixed by the letter "R" or "RX" and
followed by the material identification. Purchasers must sp€cify oval or octasonal shaped dngs as desjrcd when odering rings. Material identification shall conform to the following standards unless other specified on the purchase order.
Rins Gasket Materidl Soft Iron
law
D
Chrome Steel
4'6% Chrome
IdmtiJicati.on
%Y.
Type 410 Steel
Moly Steel
S
oF-5
R;nsGask?tMotPiol Type 304 Steel Type 316 St€el Type 347 Steel
ldmt;.l,.ot;on 5304 S316 S347
s410
Extracted from American Standard Rins-Joint Gaskets and Grooves (ANSI B16.20-1973) Flanses. E F-5 d€sicnat€s A.S.T.M. Spec. 4182 Chemical Composition Requirements only.
126
ITT GRINNELL - PIPING DESIGN AND ENGINI]EIII\CI Table
II
Application of Gaskets and Grooves to Referenced Standards*
ANSI B16.5 R
Nuflber
rEnd Flang€s ApI 6D and API 600 use caskers and Grooves lor equivalent Pipe Size ANSI 816.s or MSS SP-44 Flanges. tR3O for Lapped Joint only.
PIPING ]I.\TERIALS Table
II
Application of Gaskets and Grooves to Referenced Standards* (Concluded)
use Gaskets and'Gfooves for equivalent Pipe size ANSI B16.5 or MSS SP 44 Flanges. Flanges to API 6A are obsolete. Data for informalion onlv.
.End Flanges API 6D and API 600
ttroooo lb
727
ITT GRINNELL-PIPING DESIGN AND ENGIN!]ERING SUGGESTED SPECIFICATIONS FOR POWER PLANT PIPING MATERIALS Butt or
Prpe
Ma"\. Pressure
Max. Tubing Tqmp, (A.S.T.M. Spec.)
P.SJ.
A335 P22 1060
(Matedal
Fittings (A.S.T.M.
Spec.)
Sp€c,)
Fittings
2%
thid(ness
isthe only limiting
wP22
A1a2 F22
condition 1020
of max.
A369 FP11
A691
plessrue
l%Cr A335 Pl2
A369 FP 12 975 A691
2" and smaller
2h"
nnd larger
21h"
atd
over
:
2" and smaller A234
wPll
At82 F22
A2t1 WC9
4'182 F11
A2l? wc6
At82 F12
A217 WC6
Al05
A216 WCB
Butt Welded
Ct
4335 P11
Gaskets
Bohing
Joiflts
A234
A.369
FP22
Flanges and Socket Weld
A69l
fhe wall Steam
Welding
A182 F11
Socket Welded except Welding Neck Flarues at cormec-
Studs-A193 Gr. B7 Monel,
Nuts-A194
nealed
tions to flanged
equipment
A234
wPl2
A182 F12
lCr
Steam,
Water,
oil
2Y2"
Above 600 The wall thickness
A234
is the
only limiting
A105
A106
115
Cr.B&C
co4dition of max.
r
dovet:
Butt Welded 2" and $nall€t:
WPB
&
wrc
pressurc
Socket welded ex" cept Welding Neck Flanges at connecuons ro flanged
2" and smaller:
4234 A53 Water,
oil
250 up to 600
Nuts Al94
MetallicAsbestos
&
wcc
Gr,2H
equipment
2" and over Butt Welded Steam,
Studs-A193 Cr. B?
Gi. B 750
A106
WPB
A105
Gr. B
Above 160 PSI
Studs A193 Gr. B7
Socket
Nuts-A194
Welded ex-
Gr. 2H
cept Weldhg Neck Flanges at coflnections to flanged
Comp.
Al05
Asbestos
A216 WCB
equipment
2lz" and ovet: Butt Welde-d
2" and smaller:
4234 Steam,
125
Water,
to
oit
A53 Gr. B 450
250
Al06
WPB
A105
Gr. B
Socket Welded except Wetding Neck Flanges at connecrtons to l'la ged
C,S. Bolts
A307 Gr. A, Sq. Hd.
with
Nuts A563 Gr. A, Hex.
Comp. Asbestos
Al05
A216 WCB
equipmenl overi Butt^nd Welded 2" and srrallet: 2Yz"
A234
Socket
A53 Gr. B Water,
oit
128
up to 125
450
A106 Gr. B
WPB
4105
Welded ex_ cept Welding Neck Flanges
at connections to flanged equlpmenr
C.S. Bolts
4'307 Gr. A, Sq. Hd. nith Nuts AJ63 Gr. A, Hex.
A.216 WCB
A105 Comp. Asbestos
125 Lb. Cast
kon
Flanged
PIPE FABRICATION
PIPE FABRICATION PIPE FABRICATION PROCEDURES Since publication of the first etition of Piping Design and Engineering and the printing of this issue, many advances and changes have taken place in the
fieldofpipe
fabrication. New piping components have been developed, a greater variety of material compositions have become commercially available, and the requirements of the piping Codes have become more demanding. All of these conditions have resulted in variations in acceptable fabricating procedures depending on the service conditions involved. A comparison of various fabrication requirements in these Codes will show awidevariation inwelding, testing
have not included, therefore, any suggested specifications for fabrication of piping materials since ihe inclusion of these specifications could result in confusion andpossible
misapplication. It is suggest€d that the piping designer consult with those experienced in the fabrication of the class of materials he will employ and also review the
current recommendations of the Pipe Fabrication
Institute. This action will provide assurance that the specified fabrication requirements will result in procedures which are suited for the fupe of service involved.
The following pagrs provide information with respect
and heat treating requirements. As a result of these
to
variations, nouniversal fabrieatingspecification could be
fabricating details which essentially apply to all types of nine fabrication.
compiled that would encompass the minimum
dimensional tolerances, end preparations and
requirements of each Code for every type of material. We
129
ITT GRI\NELL PiPl-\C; DESICiN ANI) U\(}I \ IiIJ]tI\(; PIPE BENDING TOLERANCES RADII - MINIMUM TANGENTS BENDING MINIMUM Form Tolerances roundness in production carbon steel and low alloy steel
When the radius of a bend is 5 nominal pipe diameters or greater, and the ratio of the nominal diameter to the nominal wall is 35 or less the difference between the
bends. This investigation resulted
in
minimum
recommended bending radii for various ratios ofoutside diameter to the minimum wall thickness. These limits are shorvn in Figure 1. For the convenience of users, these limits were extrapolated to 36" O. D. There is not sufficient data available at present, however, to assure reliability for large diameter bends. The limits given in Figure 1 are for sand filled hot
maximum and minimum diameters shall not normally exceed 8olo of the average measured outside diameter of the straight portion of the pipe. Where special operating conditions or code provisions require an ovality less than 87o it may be necessary to use larger radii or heavier pipe walls to achieve such requirements. To assure compliance with these requirements the Pipe Fabrication Institute conducted an investigation of outof-
bends only and are not necessarily applicable for machine
or other types of bending.
TABLE
1
Minimum Pulling and Holding Legs For Pipe Bends
Nod. Pipc Sir., loch.r
Mio.
h|liu E!4 b.[.r
MiI, Holdhs
lr4 !!A.'
d' l0' t2' r1' r6' rd
tw
!' rVl'
rYz'
6
6
6
6
E
E
I
l0 lo
!6 m
21
6
6
6
6
I
a
I
lo t0 lo
t2
rt
2U2'
!l!r,B
!€c@elrded !{lnt!@
rY'
10"
2t!,
T Contettts
130
of this pag taken ftom PFI Standard
36
2t'
$
u
A 2f !o
g
,2'
{E
x
@
a
,t x
12
15
$
AdjsceEt
Bendt
L2r
22"
10"
ES'
26'
2
teg4l !etu.@
ouc-of-Pl&e ?tPe
U@. llp€ Stze, Iu.hed
2a
t
by courtesy of the Pipe F4bication lhstitute'
32n
,c
5a
'L
tl
PIPE FABRICATION
Tangents On Pipe Bends While it is possible to make out-of-plane pipe bends with little or no tangent between adjacent arcs, this praetice involves a difficult bending setup for the out-
In order to pull a hot bend projierly, minimum straight tangents are required on either end ofthe arc for holding
and for pulling. These are given in Table 1. Longer tangents should be used whenever possible. However, in special cases bends with plain or bevelled ends can be furnished by cutting back the tangents upon completion of bending, and with the recognition that out-of-rounded conditions may exist at the open ends.
ofplane bend due to the clearance requirements for the holding shoes on the portion of the pipe arc already formed. For this reason whenever adequate clearances exist in the design, the minimum tangent (T) shown in Table 2 is recommended between adjacent out-of-plane bends.
Etp.ri.nc* tince 1970 in b.idiig l6rq. diln€t.r pip6 l'.v. donor.rrttad rh..r1.rpol.tsd r.ri6 oI toD€ ii rhit.r.a vill ior .6.es.rily pr.vid. rh. nign.$ egscl n'css.ry {or rh6 rorh.t limit.fion, oi ov.liry i.r.d in p.r.g.aph 4.t 1.r Sendr ro rh. r.dii
.id d.p.
rhoyn. th6.€tor6, tor t€iJr in pip. ,ir.r er..r.r rt.n 2,r inch8. tha r.jio.1 Ji.m,r6f ro miiimuR wdrl rhicli€$ tor 3 rcquir.d b.ndins r.diur .nd +6.ili.J ov.iiry Inr€6^i^91 limir.rio^ $ould br luhi.ct i. .qr.em.nt b.t{.6n rh. purch.io. lid rho
-!
= ci o lr.l
;sl
L !) UJ
12
o-
ato
MIN. WALL THICKNESS, (IN.) FOR MoS"r SEAMLESS ptPE MtN. WALL " NOMTNAL WALL X .e?5. FOR MosT FUStoN WELDEo ptpE MtN. WALL . NoM[,tAL WALL - .OtO.
Flgure
I
Contents of this page taken frotk PFI Standdd ES-24 by coufiesy of the pipe Fabrication Institute
,
ITT GRINNEI,L
PIPI\C'i DI'SIGN AND UNGINEERING
__
Since there are occasions when buckles cannot be avoided, the following restrictions should apply: (a) All wave shapes shall blend into the pipe surface in a gradual manner.
(b)
The maximum vertical height of any
wave, measured from the average height of two adjoining
crests to the valley, shall not exceed 37o of the nominal pipe size. (See Figure 2, Note 1). (c) The minimum ratio of the distance between crests as compared to the height between crests and the included valley shall be 12 to 1. (See Figure 2, Note 2).
Buckles which exceed the above recommended tolerances will be subjected to corrective action to bring them within tolerance.
Application of Pipe \Wall Ruckling Tolerances
Nale I
Depth of average crest to valley
the sum of the outside
is
diameters of the two
adjoining crests divided by two, minus rhe outside diameter
of the valleY'
(oD)l + (oD),, l)cpth
Nare
2
=
-
(orr)"
Ratio of distante between ctests to
dePth- is:
>rz
Contettts
132
of
Depth (per Note
l)
Figure
2
I
Institute' this p48e tdken Irom PFI Siandar.t ES'24 by cowtesy of the PipQ Fabtlcotion
PIPE FABRICATION
METHOD OF DIMENSIONING PIPING ASSEMBLIES In order to assure full penetration to the root of a weld, the ends to be joined are set up with a small gap betrveen
In making his assembiy, the fabricator takes these factors into account. In welds marked "W" in Fig. 1A ancl 1B it may be necessary to vary root spacing, select parts or, if necessary, trim a component to produce overall required dimensions. As an alternative approach, the adjustment in dimension L occasioned by welds marked W in Fig. 1A and 18 may be reflected by appropriate
them called root spacing. This root spacing may vary from 0 to l" depending on the welding technique. Shrinkage of the weld metal occurs in cooling. This shrinkage varies with rvelding process, technique, piping material and pipe wall thickness. On steel the weld shrinkage usually amounts to 1/16" to l(". Consequently the fabricator must make allowances for shrinkage. All standald rvelding fittings and fianges are subject to tolelances on terminaj dimensions (end to end, face to face, or.center to end, etc.). The tolerance on overall length of flanges, as given in ANSI B16.b is
+.06" l: .72"
erances
fol sizes up to and lncluding 10', and fol larger sizes. ANSI 816.9 gives tol-
for butt welding fittings:
compensation to relevant dimensions in the pipinglayout. All the above mentioned variables are beyond the control of the Purchasers' Engineering Department. The Pipe Fabrication lnstitute recommends that allowances for u'eld gap be eliminated from the Engineer's design drarvings, and overail dimensjons of close assembljes of
fittings or fittings and flanges be detennined on the of the net sum of the nominal dimensions of the component parts. basis
For 900 and 450 elbows and tees these are:
Tol. (in)
Size 1/2,,
_
+.06 +.09
B,
10,,
I .09 + .12 I .19
12,' - 24" 26" - 30"
82"
_
48"
L
.IG
L
DIMENSION
ENT DIMENS ION IMENSION NCE
O
IMENSION
'OIMENSION G POINT WP
FIGURE IA
FIGURE IB
Contents of thic Wge tokeh from pFI Standard ES-2 by coufiesy of the pipe Fabication lfistitute.
133
ITT GRINN!]LI,
-
PIPING DF]SIGN AND I.]NGINI]1.]1],IN(
I
FABRICATING TOLDRANCES
The tolerances on linear dimensions (intermediate or overall) apply to the face to face, face to end, and end measurements of fabricated straight pipe and headers; center to end or center to face of nozzles or other attachments; or center to face of bends; as illustrated on
minus 1/16"
2.'
)
INOICA-TEO
I
APPLICA?ION OF PIPE FAERICATION TOLERANCES
L34
ofthis
poge
take from PFI Stsndad
ES-3 by
as
stated on Fig. 1. When closer tolerances than those given are absolutely necessary, they shall be subject to agreement between the Purchaser and Fabricator.
FIGURE
Contents
in diameter over 36".
weld end preparation and on rotation of flanges are
(3E€ PARAGRAFII
IHE
euch 72"
Angularity tolerance across the face of flanges and
Fig. 1. These tolerances are not accumulative. Linear tolerances on "A" are ! ls" for sizes 10" and under, I 3/16" for sizes 12" through 24" and I /4" for sizes over 24" through 36". Linear tolerances on "A" for sizes over 36" are subject to tolerances of t /4" increasing by plus or
FROM
for
Due to the cumulative effects oftoleranceson fittings or flanges, when joined without intervening pipe segments, deviations in excess of those specified above may occur.
co ftesy ofthe Pipe Fabi@tiott lwtltute,
PIPE FABRICATION
BUTT WELDING END PREPARATION I'OR
Manual Shielded Metal-Arc and Automatic Submerged Arc Welding
Frc.
1
For wall thickness up through
,g' noninal
Wiih a splii back ring or without a backing ring. When the internal misalignment of pipe rvall exceeds diameter should be trimmed.
f"
the pipe with the smaller internal
Frc. 2 For wall thicknesses over 1$" through 1.0" nominal With a flat or 10' tapered continuous backing ring.
Frc. 3 For wall tl.ickness over 1,0'/ nominal When tbe thickness- at the welding etrd of a valve, fiitinq, or ^ nange rs greater rha-n that ot tbe pjpe aDd tbe additional thick;ess outsrde drametFr, a taper weld hav{g &- slope Dot lg:iil::.-T: exeeedrng J to I m&y be employed or, altematively. the ercater
oulsrde chameter ma,y be tapered,
at tho same maxiiiun 6lope or
from a poinl, o.n the welding bevel equat to the O.D. of the mating pipe. Similarly, wbcn the greater lhickness is Drovided on l,he- inside of thp valve, fitting. or flange, it shall lie taperoonecl lrom tbe wetdrng end at a slope nol, exeeeding 3 to l. less,.
135
ITT GRINNELL
-
PIPING DESIGN AND ENGINEERING
BUTT WELDING END PREPARATION FOR
Manual Inert-Gas Tungsten-Arc Root Pass Welding
Root Facc Spacing
:
9.69'
:
0.00'
:
g.gg'
Frc. 4 For wall thicknesses of * to 1o With or without consumable insert rings and/or I.D. purging. gtrz.
lzlz" Root Face Spacing
2-'42 A
Frc.
5
For wdl thicknesses over f, through i" With or without consumable insert rings and/or I.D. purging. Nore A: I.D. machidng should be performed rvhere the inside misalignment of wall would otherwise exceed +" without insert ring useage or 11" r,v'ith insert ring useage.
Root Face Spacing
Flc. 6
f'
For wall tlicknesses over or without consumable insert rings and/or LD. purging. With When the thickoess at tbe weldire end of a valve. 6tiinq. or sreater thatr that of the DiDe and the additioDal thickDess -tsper incresser the outside diametcr. i weld bavillq a slope not exceeding 3 to 1 may be empl6yed 6r, altematively-, ibe lreater out€de clxuneter tlray D€ tapere4 et tbe salne lnaxlmu& $ope or fla.Dse is
136
less, from a point on the weldinc bevel eoua-l
to tbe O.D. of the
oipe. Similarlv. shen itre ereat€i lhichess is Drovided o! tbi iDaide of the valve, fitting,1r flange, it shall 5e tspeF bored lrom the welding end st a slope trot e;c;eding 3 to 1. maiins
i!
PIPE FABRICATION BUTT WELDING ENDS1 TO ANSI 816.25 AND PFI ES-l AND MACHINED BACKING RINGS FOR BUTT WELDS TO PFI ES-l
\ominal Pipe Sizc
Schedule
\rLmber or \fall
\ominal O.D.
\ominal I.D.
\ominal \Yall Thickness
]Iachined I.D. of Pipe "C"
rol"ran"n *fi
O.D. of Backing Ring
TaperedRing"DT" Straight Ring "DS"
ffi r"l*,""" 43 3?3
2.-109
2.119
3.279
3.289
.625
4.124
-1.438
.750
.1.209
4.219
5.600
5.610
'r'ol"**"
a3
3?3
5.327 5.O72
100 120
7.327
xxs
7.1ri3 7.053
160
ti.993
7.063 7.00E
7.053 6.998
7.r73
80
.594
9.671
9.681
9.67r
r00
.7r9
9.{52
t20
L452
.84.1
9.23.1
9.162 9.244
r40
r.000
8.959
8.959
160
1.125
8.7f0
8.969 E.750
Ir.620
.562
11.37.1
.638
1r.725 11.507
11.735 11.517
11.725 t 1.507
lt.211
1r.231
10.96S
1.r25
11.234 10.959 10.740
1.31.2
10..113
10.750 10.423
10.959 10.740 10.413
.59'1
12.921 12,646 12.3r9 12.016
12.931 12.656
12.921 12.646
12.329
12.319 12.046 11,771 11.498
r00
t20 1.10
160
60 80 100
0.D.
7.5,16
7.327
r.10
60 80
14
5.082
120 1.10
160
.002 10.750 10.500 10.126
.8-1-1
1.000
.750 .938 1.094 1.250 1.406
11.771
1r.498
12.056 11.781 11.508
9.231 8.7.10
All dimensions are in inches. thelp or the a,tual pjp..to bc fbLri.ated.is greater rhan required for minimrrm ring seating whcn machining to Dimension .,j),h:,n ''I tnc mFlal requrrad lor ma' hrnrng may ba providrLl by depoSiring $eld me(al orr ihc LD. of thc pipe in ihe arel to bp machined. $'h.€n sclerting.a $all. thirknels for- design, allowance should be included to compensate for pernrissible manufactudng tolera,nces
on both nomrnal plpe !\ all thrckness and outside diameter, so that machining to &bove iiimensions wjll in no ress rnan lcqurred ror max)mum ocstgn condrtlons. Note 1: Limited to seamless pipe with under tolerance on outside diameter not greater than )6,, (0.031).
ca€e
result iq a w;ll thickness
ITT GRINNELL _ PIPING
DESTGN
A\D ENCI\EENI\C
BUTT WELDING ENDS' (Continued)
Nominal Pipe Size
16
0.D.
Schedule
60 80
16.000 16.000
14.688
.656
14.811
14.3t2
.844
r4.484
100 120
r6.000
13.938 13.562
1.031 1.219
14.155
t3.827
14.165 13.837
14.124
r.488
13.412
13.452
13.442
12.8t2
1.594
13.171
13.181
13.171
18.000 18.000 18.000 18.000 18.000 18.000 18.000
16.876 16.500
.562
16.975
.938
15.688 15.250
1.156 1.375 1.562 1.781
16.985 16.656 16.329 15.946
16.975 16.646
16.124
16.646 16.319 15.936
15.235 14.852
15.225 14.842
20.000 20.000 20.000 20.000 20.000 20.000 20.000
18.812 18.376
.594
18.921
u.s38
1.031 1.281 1.500 1.750 1.96S
ld.tDo
18.931 18.548 18.165
17.7r7 17.334
17.344
16.896 16.515
16.S06 16.525
22.000 22.000 22.000 22.000 22.000 22.000 22.000
20.750 20.250
.625
20.865
20.865
19.750 19.250 18.750 18.250
1.125
r9.990
r.375
19.125 18.688
r9.115
17.750
2.r25
19.553 19.115 18.678 18.240
20.875 20.438 20.000 r9.563
24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000
22.476 22.624 22.062
.562 .688
Number or Wall
160
0.D.
40 60 80 100
120 1,10
160
40
60
20 0.D.
80 100
120 140
r60
22 0.D.
60 80 100
120 l4{) 160
30
4
60
24 0.D.
O.D. of Backing lting llechined I.D. of Pipe "C" Tapered liing "DT" Straighi Ring "DS' +3 3i3 r^r.."^.-"-- *"'- *0 000 r"re.""* +3.393 -0.010
Nominal I.D.
r40
18
Nominal \Yall
Nominal O,D.
80 100
t20 140
'160
16.000 16.000 16.000
14.876 14.438
17.438
r7.000 16.500 16.062
2r.562 20.938 20.376 19.876 19.312
Thickness
.8r2
r.r*."*
15.225
A.a42
18.921 18.538
20.424
1.625 1.875
14.821 14,491
r8.250
r4.811 14.484 14.155
8.a27
16.319 15.936
18.538
1l'.ltc 17.717 17.334 16.896
16.5r5
20.424 19.990 19.553 18.678 18.240
22.975
2t.427
22.985 22.767 22.275 21.837
2r.280
2r.290
2r.2&
1.812
20.744
20.748
2.062 2.344
20.350
20.798 20.360 19.869
.969 1.219 1.531
22.975 22.757 22.265
19.859
22.737 22.265
2r.a27
20.350 19.859
All dimensions are in inches, Wten the l.D. of the actual pipe to be fabricated ir grealer than requfued fo! minimum tirg seating whe[ machining to Dimensiofl ..C", the metal required for machining may be plovidod by depositing weld metal on the I.D. ofthe pipe in the arca to be machined. When selecting a wall thickness for design, allovanco should be included to compensate for permi$ible manufactudng tolerances on both nominal pip=e wall thichess and outside diameter, so tiat machining to above dimensions will in no case tesult itl a wall thicknoss less than requtued
for maximum design conditions,
Note 1: Umited to s€amless pipe with utrde! tolela$ce on outsid€ diametet not grcatet than 1/32" (0 '031).
138
PIPE FABRICATION
TPICAL DETAILS OE' BRANCH For all 90' nozzle connections, preference shall be given to the extruded type because of its increased strength and smdoth florv iharacteristics. The selection of an extruded type nozzle is limited by a slight reduction of the outlet wall thickness. The final
CONNECTIONS
outlet wall thickness will be no less than ZbTo of lhe run wall thickness. Nozzle connections shall be either the welded or the extruded type. Both types of nozzles shall be reinforced when required by Codes.
Extruded Nozzle
w eloec I\ozzle
Branch size is one-half of run size or less. (See Note 1.)
Welded Nozzle
Branch size
is
ore-half of run size.
greater than (See Note 1.)
R€NrcRONC
NorE 1: \Yhen additional reinforcem_ent
is required by code, use a saddJe
\vhen svatlable
as a
commercial Droduct.
othefwise use & special designed ng or p:rd,
rFjllet thickness
less than the smRller
"T"
shall not.be
of la inch or
times thc minimum required
thickness of the branch.
0.7
wall
139
ITT GRINNELL. PIPING DESIGN AND ENGINEEITING
BRANCII AND FLANGE CONNECTIONS Snall Braach Connections Preference shall be given
nections which
to the F.S. Coupling con-
will be furnished
unless otherwise
specified. E S, SCREWEO COUPLING
Noro: The height of welded pads or bosses above the outside diameter of the run pipe should never be less than required by ASA Standards for full threads or full socket depth. Socket Weld Fitting
I'.S. Welding Neck Flange
@or welding with or without backing ring.) RECOMMENDED MAXIMUM CLEARANCE BEFORE WELDING
F.S. Slip-on Flanges
Refer to applicable
Code
for limits on
Slip-
use
of
Standard Construction
on Flanges.
F.S. Screwed Flanse
140
Fabricated Lap Joint and F,S. Lap Joint Flange
PIPE FABRICATION
ITT GRINNELL COMMERCIAL SPLIT-TYPE BACKING RING IT1' Grirurell backing rings save up to B0 per cent on time- The alignmerrt of pigre is simplified, re. quiriug only that the ends butt up against the nubs which detcrmine thc proper spacing recommended by good code welding practice. Ring tension holds the ring irr place and helps guide thc pipe ends into place, giving assistance that is a necessity in the field and a great time saver irr the shop. No tack welds are necesset-up
shott nubs illustrated
sary when these backing rings are used. With these backing rings it is easier for operators to produce welds of code quality. The outside face of the ring, which forms the bottom of the welding groove, is flat, while the inner face is smoothly contoured for minimum florv restriction. Thus the maximum rinE thickness is coneentrated below the root gap, permitting the use of higher welding current for better penetmtion, cleaner welds and higher weldirg speeds with a mini-
mum danger of "burn tbrough". The uniformly spaced nubs ou ITT Grinnell backing rirrgs are spot welded and melt dorvn with the weld metal to produce complete peuetration and perfect lusiorr. X-Ray inspection proves that their location cannot be detected in the finished weld.
ITT Grinnell
sizes
backing rings are available for pipe from 1 to 24-inch inclusive for both standard and
extra strcDg pipe. Gap is approximately f6" l'hen ring is in place. Short Nubs
Fig.
1992
Fie. 1992L
Extra Strong
!ig.
1993
Fig. 1993L
IiP"
I r% rlz
Ring Diameter D Standa.rd
Extra Strong 6ra
t3,{4
Thickness
T
* Rings with long nubs can be furnished on special order.
., Dbort nubs are regularly fumi€hed.
width
w
%
Nub Diameter S
Nub Leneth
Stardard Xxtra StroDg
Sh*tTI"trc
1%
%
% % %
2Yn
1t3/-
2rt4
22tA
,4
%
3
SYra
22s'42
3%
33i(l
3134
4 5
4r,{,
35941
53,(4
4r%a
%
tYro
6 8 .10
6r/t6
51r.4
rvt6
763.44
7%
%
2
2%
t34
r%
101.44
19""
r34s
13 15
13
13% 15%
18
17%
77
23%
23
ls%
rs46
1r%
16
24
% %
r{t6
12
20
% %
9%
12
inches.
Long Nubs*
Standard
Nominal
All dimensions are ia
r34 ,&
19
%
1316 1346
rYn
7a
I.7
%
%
2.O
%
)6 % %
% % %
3.0
5.0
%
7a 7a 7a
% %
Ys Y6 %$
% %
1.7
7e
346
4.2
11.5 25
25
Y16
%6 %6
Weight
(Approx) lb
%
%
%
Carton
% % %
% %
%6
Standard Packaging
Lings Per
14.0 18.7
10 %6
%
%6
7a 7e
10 10 10
7a 7a 7a
10 10
Y6
t{6
3/n
3
% %
% %
l0
15.0 17.5
20.0 21.5 21.0
ITT GRINNELL
-
PIPING DESIGN AND ENGINI'EITING
ITT GRINNELL CONSUMABLE INSERT RING This consumable insert ring is used in welding a variety of piping materials by the inert-gas tungstenarc welding process. When used in the proper composition and dimensions, this ring produces rvelds of the highest quality. In stainless steel piping for atomic reactors weld joint perfection is of - where exireme importance virtually all welding authorities concerned with such fabrication agree that only with the consumable insert ring can accepta,ble welds be made.
Eccentric Placement for Iforizontal Welding When used for horizontal fired-positiorr rvelding, the consumable insert ring is placed in the eccentric
position:
This eccentric placement enables the ring to compensate for the downrvard sag of the molten rveld metal. It also aids in obtaining a smooth, uniform root contour along the inside diameter of the joint. The two photographs below show horv this consumable inseft ring protrudes: at left, into the groove at the top of the pipe; at right, into the inside of the pipe at the bottom of the pipe.
When this consumable insert welding ring is used, considerably wider misalignment of pipe butt joints can be tolerated than would be permissible with other
techniques. Under average welding conditions, an ofrset of about 3l inch and a gap of + inch can be readily welded. With expert welders, greater oflsets and wider gaps can be bridged without defects in the weld.
-
Five Primary Functions
(1) To provide the easiest welding conditions and thereby minimize the effecrs of undesirable- welding variables caused by the human element. (2) To give the most favorable weld contour to resist cracking caused by weld metal shrinkage and hot shortness, or brittleness in hot metal. (3) To produce metallurgically the soundest possible weld metal composition with desirable properties of strength, ductility- and toughness. (4) To eliminate on ma,ny sizes the need for separately supplied filler metal, also the necessity of one or two additional weld passes. (5) To minimize concavity or sink on the lower I.D. section of the interior of abuttins ends.
The contour of the root-pass weld made with this insert ring in stainless steel piping is shown below in three positions: top, side, bottom.
F ITT Grinnell consumable inserts are available for use u'ith urost all weldable quality piping materizr.ls.
PIPE FABRICATION STANDARD PIPE BENDS over-all dimensions are rvithin the limits of transportation facilities.
n
Each bend should be checked for availability of pipe in the required over-all leugth, arrd to determine that
6
DEVELOPED LENGTH No,
I
=
I.571 R
QUARTER BEND-9Oo
No.4 CROSSOVER EENO
DEVELOPED LENGTH (in degrees) x R x
No. rj BEND -
=
0.828 R
DEVELOPED LENGTH = 2 x DEVELOPED LENGTH oF NO. 5 BEND
I
DEVELOPED LENGTH
=
6.283 R
No 8 DOUBLE OFFSET U BEND
ANGLE
0.01745
46'T0 89' FOR DIMENSIONS . SEE NEXT PAGE
No.5 OFFSET BEND DEVELOPED LENGTH = 6.283R No.9 EXPANSION U BEND
+
2X
(tHEtX|slFooTonlE3i)
A o
s No.
2 SINGLE OFFSET
OUARTER BENO
DEVELOPED LENGTH
=
6.12?B
No.6 SINGLE OFFSET U BEND
l*+o3o3R
Et(b.,os'
Euffl\ DEVELOPED LENGTH No.
3 45'
=
0.785R
rn "L(/.m
1l 1
DA'AP ---- -
F
DEVELOPED LENGTH No. lO
I
'j =
9.425R
DOUBLE OFFSET EXPANSION 8€N0
BEND
DDVELOP LENGTH
=
No.7 U- BENo-
DEVELOPED LENGTH
-
ANCLE
(hdegrees)xRx0.01745 N0. 3tBENo -LESs THAN 45.
DEVELOPED LENGTH
3.142R
lSOo
=
ANGLE
(indegrees)x8x0.0U45
No.7i BEND-
.z,z:\
gfro t79'
PIPE DIAMETER
No.
ll
CIRCLE BENO
143
ITT GRINNELL
PIPING DESIGN AND ENGINEERING
-
CAI,CIJLATION OI' PIPE BENDS
R
@iuen: To
rt,ntl: T
T: Arc
arrd a.
Giam: L, O and R.
and. arc.
n>o
R Lan! 2
:
To
Angle (in degrees)
x
x
R
and arc.
CD:R_O
0.01745
AB
,/
Oipen: R and O,
AAD
:
+^.-1
5 OFFSET
a:
cos-'
BEND
L : \/-AC2-
Arc:
.BC
BCa
:
BC tan
\/CDr}:Tt --n, IACB
CD
ZACD
: tan-'ff
- IACB
tr'or ? and arc see first calculatron. (
7
:
L
la:
find: L, a and arc. BC:2R -O AC :2R, To
No.
f.nd; AB, e, T
I
It R
<,
Angle (in degrees) XnX0.0l?4b
Qium: R1, R2, and O.
Giuen: R, O and, L.
To
f,nd.: L, a, arq,
o <2R
and arc2.
BC:Rt+R2-O
Tofind: a,X and arc.
AC:h+nz
BC:2R-O AD
:2R
: \8,+ BC,=ZA, ICAB : tao-'Bf
L:
\/TC'
- Be:
cr:
BCtano
Arcl :41"1" (in degrees) Xlilx 0,01745 Arc2 :4tr"1" (in degrees) XRrX 0.01?45
cc:90"-(tDAC+ICAB) @iren:
Arc:Angle (in degrees) XAX0.01?45
It O>2n then BC:O-2R, and a:90"+ ICAB. Other values remain the sa,me. A
To find,: L,
a;;.d
a
To
CoiS.t:
B
IACB
arc.
lP-+acz stn-l
Arcr: 4nt1" (in degrees) XArX Arc2: 41"1" (in degrees) XErX
ar
-A
0.01746 0.01746
If O> al +R2 BC:O-(fu*82), and c= - ( IACB + IACD). Other values remain the
180'
same.
t44
and, O.
: tao-t#
: IACB - IACD IACD : AD: x:'VAe - Ai+E* e
t
^o CosP:t
L
f,nd; a, X and
tc :
and P
L: \/E +T
8.2,
BC-Rt+n2-O
B
E:\/ETT
Ry
O1ff:'*Rz'
IDAC
Qium: O,
.BC ,n
COS-'
PIPE FABRICATION LENGTHS OF ARCS FOR RADIUS
llirutcs
Degrees
'
0"
0.000000
60"
1
0.017453 0.034907 0.052360 0.069813 0.087266
61 62 63 66
1.134464
0. 10.1720
ti6
122173
67 68 69 70
2
6 7 8
s 10 11 12 13
I4
17
ln 19
20 22
23 24
o
0.139626 0.157080 0.174633 0.191986 0.209440 0.226893 0.244346 0.261799 0.279253 0.29$706 0.314159 0.331613 0.349066 0.366519 0.383972 0.401426 0.41E879
0.436332 26 27 28
1.047198
120"
2.094396
1.06,1651
121 122
t23 124 126
2.146755 2.164208 2.L81662
1. 15r917 1. 169371
126
2. 199115
1 . 18682,1 | .2012 t-7
128
2
.231021
6 7 8
129
7.221730
130
2.251175 2.268928
l0
l
082104 1.099557 1. 117011
7l
1.239184 1.256637 1.274090 1.291544
76
1.308997
76 77 7a
1.326.150 1.3.13904
136
1.361357 1.378810
80 81 a2 83 84 86
2.408554 2.426008 2.44346L
r8 20
r.413717
r4r
2.460914
2I
112
2..178368
22 23
143
2.495821 2 2
146 147 148 149
2.548181
26
2.565634 2.583087
28
2.600541
29
160
2.6L7994
30
r51 152
2
.635417
31
153 154
roo
2.670354 2.687807 2.706260
156 157 158 159 160
2.722714 2.740167 2. t- 57620 2.775074 2.792627
36
4l
96
38 39
42 43 44
0.715585 0.733038 0.750492 0.767945 0.786398
46 46 48
49 60
52 53
0.802851 0.820305 0.837758 0.855211 0.872666 0.890118 0.907571 0.925025 o.94247a 0.969931 0.977384 0.994838 1.012291 1.0297 44
60
1.047198
1.588250 1.605703 1.623156 1.640609 1.668063
97
1.675516 1.6S2969
98
L710123
99 100
r.727476 L.746329
101
1..762783 1.780236
161
r.797689
163
.5132i 4 .630727
1.815142 1.832696
rti4 165
t.879793
166 167 168 169 170
2.897247
110
1.850049 1.867502 1.884956 1.902409 1.919862
111
1.937315
112
r.954769
171
113 114
1.972222 1.989675
106 107 108 109
IIO
2.007129
116
2.O215a2
1r7 118 119
L20
2.042035 2.059489 2.076942 2.094396
L62
172
173 174 L76
t76 177 178 179 180
21 26
2. it52900
2.809980 2.827433 2.a4Ja87 2.462340
103 104 106
19
144 L46
1.483630
0.628319 o.645772 o .663225 0.680678 0.698132
r02
l3 T4
r.466077
gl
36
133 134 135
11
12
1.4,18623
0.541052 0.558505 0.575959 0.593412 0.610866
94
131
132
2
33
34 36
38 39 40
4/l 46
.914700
2.932153 2.949606 2.96?060 2.984513 3.001966 3.0r9420 3.036873 3.064326
48 49 60
52 53 OD
3.071779 3.089233 3.106686
58
3.141693
60
a.D4r3g
Scconds
0'
0.000000
0.000291
1
0.0005E2
2 3 1
0.000005 0.000010 0.000015 0.000019 0.000024
0.000873 0.001464
138 139 140
1.535890 1.553343 1.670796
JO
0.00116'1
1.396263
1.518.13{t
92 93
1
16 17
88
32
2 3
2.3736-18 2.391101
1.500983
33
I
2.12.9302
r37
87 89 90
2.111848
16
86
30
0.000000
2.286381 2.303835 2.321288 2.338741 2.356194
0.453786 o.471239 0.488692 0.506145 0.623699
29
0'
2.216568
72 73 71
1.€r170
1
0.001745 0.002036 0.002327 0.002618 0.002909 0.003200 0.003491 0.003782 0.004072 0.004363 0.004654 0.004945 0.005236 0.005527 0.006818 0.006109 0.006400 0.006690 0.006981 0.007272
6 7
8
I
10
1l 12 13 1'1
16
t7 18 19
20
2l 22 23
24 26
0.000029 0.00003.1
0.000039 0.000044 0.000048 0.000053 0.000058 0.000063 0.000068 0.000073 0.000078 0.000082 0.000087 0.000092 0.000097 0.000102 0.000107 0.000112 0.000116 0.000121
0.007563 0.007854 0.008145 0.008436 0.008727
26
2t) 30
0.0001.r1
0.009018 0.009308 0.009599 0.009890 0.010181
31
0.000150 0.000155 0.000160 0.000165 0.0001?0
0.010472 0.010763 0.011054 0.011345 0.011636 0.011926 0.012217 0.012508 0.012799 0.013090 0.013381 0.013672 0.013963 0.014254 0.014644
2A
3,1
38
39 40 41 43
41 46
48 49 60
0.000126 0.000131 0.000136 0.000146
0.000175 0.000179 0.000184 0.000189 0.000194 0.000199 0.000204 0.000208 0.000213 0.000218 0.000223 0.000228 0.000233 0.000238 0.000242
0.014835 0.015126 0.015417 0.015708 0.015999
51 52
0.000247 0.000252 0.000257 0.000262 0.000267
0.016290 0.016581 0.016872 0.017162 0.017463
56
0.000271 0.000276 0.000281 0.000286 0.000291
59
60
ITT GITINNIILL PIPING DT]SIGN AND ENGINEERING
NUCLEAR PIPING
INTRODUCTION
No book on the subject of piping would be complete without some discussion of nuclear piping. While much of the information in this book is applicable to all piping, many of the requirements for design and stress analysis of nuclear piping are beyond the scope of this book. The following discussion is included to acquaint the reader, in general terms, with the subject of nuclear piping and the nuclear piping Codes.
Nuclear Codes Prior to the publication of nuclear piping Codes the piping in nuclear power plants was generally designed and constructed to the rules of 831.1 and additional requirements specified by the designers to achieve the dependability requirerl for the critical nature of nuclear piping. Starting in 1960, a series of Code Cases designated as "N" cases were issued to supplement B31.1 for nuclear piping. The first nuclear piping Code "B31.7 Nuclear Power Piping" was pubiished in 1969 and was replaced in 19?1 when these piping rules were included in the ASME Boiler and Pressure Vessel Code Section III. This Code is revised semiannually through the publication of addenda. Once every three years a new edition of the ASME Boiler and Pressure Vessel Code is published incorporating the previous addenda. Nuclear piping must comply with the Code requirements of the Code edition and addenda which are mandatory on the date of the purchase order or contract. Section III, Division 1, contains rules for vessels, pipiug, pumps, valves, metal containment structures, tanks, component supports, and core support structures (Section III, Division 2 contains rules for concrete vessels) and is published in seven separate
volnmes as Subsection Subsection Subsection Subsection Subsection Subsection Subsection Appendices
146
follows
NCA Nts NC ND NE -
NF NG -
-
:
General Requirements Class 1 Components Class 2 Components Class 3 Components Class MC Components Components Supports
Core support Structures
Section III, provides rules covering materials, design, fabrication, installation, examination, and testing of three classes of nuclear piping which denote three levels of quality and are referred to as Classes 1, 2, and 3. It is the responsibility of the designer to select the class that will provide the quality required
for the intended serwice, Requirements and guidance on this subject may be found in publications of the Nuclear Regulatory Comrnission and the American Nuclear Society.
Nuclear Regulatory Commission The rules and regulations of the United States Nuclear
Regulatory Commission (NRC) are published in the Federal Register under Title l0-Atomic Energy. Of particular interest to the nuclear piping designer is 10 CFR 50. 55a "Code and Standards" which limits the time periods for which applicable Code editions and Addenda for a component may precede the date of the application for construction permit. At the time of this writing, piping cannot be constructed to Section III rules in effect more than six months prior to the formal docket date of the application for construction permit. Also of interest to the nuclear piping designer are NRC's Regulatory Guides. Compliance with Regulatory Guides is not mandatory; however, thev are issued to describe methods acceptable to the NRC for imple-
menting specific parts of the Commission's regulations, and to provide guidance to applicants for construction permits and operating licenses. Regulatory. guides sometimes refer to ANSI Nuclear Standards and state that compliance with the referenced ANSI Nuclear Standard is an acceptable method of meeting the requirements ofthe Regulatory Guide. ANSI Nuclear Standards cover a broad range of subjects concerning nuclear, material and nuclear power generation. The N45 seriesofANSI standards which deal with quality assurance, cleaning, packaging, shipping, handling, storage and housekeeping are some of the ANSI N standards which are related to nuclear piping. Design of Nuclear Piping The principal differences between nuclear and nonnuclear piping lie in the more sophisticated and
NUCLEAR PIPING
demanding design analysis. additionai non-destructive
examination (NDE), quality assurance. and Code inspection and stamping. The tl'pe of piping materials and piping product forms used for nuclear piping are essentially the same as those used lor non-nuclear piping. ASME II1 requiles the owner. to plovide, or cause to be plovided, design specifications for components,
(the term component inchtdes jtems such:rs vessels, piping systems, pumps, va)ves and storage tanks), appulten2tn(es, core srlppol.ts, or component stlppot ts. Sepalate design specifications ale not reriuir.ed fol palts, piping srrbassemblies, appur.tenances or component suppofts \!hen they are inclLrded in the design specific:rtions for the comporenrs; lro\l.ever, applicable data in the form of dlawings in srrfficient detail to ptovide for fabric:rtion in accordance with the Code must be provided to the part or piping subassembly manufacturer. The Code requires design Specifications to contain sufficient detail to provide a complete basis for construction in accordance with the Code and must contain the functions of the items coveled, the design requirements, the environmental conditrons including radiation, the Code classification of the items covefed, definition of the component boundalies, and the material requirements including impact test I'equirements as applicable, Design specifications are required to be certified to be correct, complete, and in compliance with the Code by one or more registered professional engineers competent in the applicable field of design and related nuclear po$el plant requirements, Copies of the desigal specifications, in their entirety, must be filed with the enfolcements authorities having jurisdiction at the nuclear plant location L,efore the components are placed ln service and, except for parts and piping snbassemblies, they must be available to the authorized Code inspector at the manufacturing site before fabrication is started. All loadings must be considered in nuclear piping design including, but not limited to. pressure. $.eisht of the component and its conienl s. pressure .l ue to.t at ic ancl dynamic load of liquids, superimposed loads due to other
components, operating equipment, insulalion and linings, wind and sno*' loads, vibrations and earthquake ]oads, reactions of supports. and temperature effects.
The specific combinations and values ol mechanical loadings to be considered in conjunction with design pressure and temperature must be desiqnated as the design mechanical loads and includcd in the desisr, specifications. These loadings, movements due to boih earthquake and anchor movements, and the number of cvcles f.o be used in analvsis must also be part of the
design specifications. Design specrflcatrons are required to categorize the operating conditions to which piping may be subjected as Nonnal, Upset Enery1ent,u, Faulterl. and Zcst conditions.
These terms are fully described in ASME Ill and are mentioned here merely to point out that the stress limits rrhich mrrst be satisfied are different for each of these conditions. For Class I nuclcar piping, ASME Ill requires the llreparation of a stress leport rvhich must include both
thc rlesign drauings and
complete stress
anal-vsis
calcuiations establishing that the design shown by the
rlra$ings uscrl for construction complies rvith the requirements of the design specifications and the rules
of ASME III. Anl computer programs used ih the calculations must be fuilf identified and described in the
stfess leport. The o*ner, or his agent, is required to relre\r the stl.ess feport and certify that the stress report satisfies the requir.ements of the design spec_ ification. CoDies of this cer.tificatior must be attached to copies of the stress repolt and filed with the autholized code in-spector and the enforcement au_ tholities haviug iulisdiction over the nuclear. Do$.€r pllnt installation. The Code includes tables of stress values for the materials permitted lor use under the rules of the Code. Fol Class 1 materinls the tables give allowable design stless inteilsity vlhres; for the other Code classes the tables give allorable str.ess values. Ilecause of the mole vigolous design analysis requirements of Class 1. (omponents the allouable stress intensities are higher thxn the allo$able stress values for the same mlteriris rlhich appear. in the tables fol. the other
Code classes. It should be noted that only those materials included in
the stress tables may be used as pressure retalnlng malerial texcept for I in. and smaller line fittings which may meet other special requirements) and that these materials are to be in accordance with SA or SB specifications which appear in Section II of the ASME Boiler and Pressure Vessel Code. Hou,ever, ASME III
permit the use of material produced underan ASTM designation provided the corresponding SA or SB specification is designated as being identical with the does
ASTM specification for the grade, class or type produced.
Materials Essentialiy all material, including welding and brazing material, must be identified and certified. Identification consists of marking the material with the applicable specification and grade of material. heat number or heat code or, alternatively, a symbol or code which identified the material with its certification. The required certification in most cases is a Certified Materials Test Report which must include the results of all the required tests and examination performed. There are few exceptior:s to this requirement. At this time. a Material Manufacturer's Certificate of Compliance may be provided in lieu of a Certjlied Materials Test Report for piping material 3l in. nominal size and less and non_ 147
ITT GRINNELL
-
PIPING DESIGN AND ENGINEERIN(;
plessufe retaining material which is welded to pressure retaining material which is welded to pressure retaining material. The only non-certified material is material used for temporary or minor permanent attachments such as nameplates, insulation supports and locarrng lugs. A Certificate of Compliance is the material man-
ufacturer's certified statement that the material complies *'ith all requirements of the material snecification and the additional requirements,
if
for nuclear piping, are significantly more to stress corrosion cracking than non-
sensitized (solution heat treated) stainless steels.
Regulatory Guide 1.44 addresses the subject of control of
the use of sensitized stainless steel covering protection against contaminants, cleaning, solution heattreatment,
welding practices and testing for verification of nonsensitization.
any, speci-
fied by the purchaser. Results of tests and examinations are not required to be included in a Certificate of Compliance. Fracture toughness requirements for materials are included in ASME III. While impact testing of nonferrous materials and austenitic stainless steels is not required, the Code is very specific and detailed regarding
impact testing for other materials. The requirements depend upon size and thickness ofthe material, and vary from no impact testing requirements for small size or
thin material to very extensive requirements for thick material. The required impact test properties are related to the lowest service temperature to which the material
will be
subjected, and the number of impact tests required depends upon the material product form. It is sometimes necessary for the designer to specify finegrained material such as SA333 in lieu of SA106 in order to meet the impact test requirements. To reduce the possibility of the occurence of microfissures in austenitic stainless steel welds, the Code requires that weld filler metal contain delta ferrite and states the minimum acceptable delta ferrite content as well as how the determination of delta ferrite content must be performed. Regulatory Guide 1.31 also deals with the subject of delta ferrite and precautions to be taken during welding to assure the presence of delta
ferrite in completed welds. Unstabilized austenitic stainless steels in a sensitized condition, including AISI types 304 and 316 frequently
148
used
susceptible
Inservice Inspection In addition to ASME Boiler and Pressure Vessel Code Section III, the designer ofnuclear pipingshould be familiar with Section XI "Rules for Inservice Inspection of Nuclear Power Plant Components". Section XI contains requirements for inspection and repair of nuclear components throughout the life of the nuclear plant. Although the nuclear components are constructed in accordance with Section III, it is important for the designer to provide the accessability and space necessary
for performing the required inservice inspections. In addition, welds which require ultrasonic inservice inspection should be ground flat orotherwise conditioned lo facilitate this rype of examination. It is important for the nuclear piping designer to have knowledge not only of the nuclear piping Codes, but also of piping material product forms, dimensional standards,
and piping fabrication and installation practices. If the designer is not specific regarding items such as ovality in pipe bends or type of branch connections, re-analysis of the piping design may be required because the piping fabricator used a product or fabrication detail having stress intensification factors different from those used in the piping anaiysis. Costly re-design and analysis can be avoided if the designer has a thorough knowledge of the practical aspects of piping product forms and fabrication details, and his specifications are sufficiently detailed to assure construction which is compatible with his design analvsis,
HANGERS AND SUPPORTS
THE DESIGN OF PIPE HANGERS
INTRODUCTION
It has become rvidely recognized that the selection and design of pipe hangers is an important part of the engineering study of any modern steam generating or process installation. Problems of pipe design for high tempemture, high pressure installations have become critical to a point rvhere it is imperative that such aspects of design as the effect, of concentrated hanser
loads on buildirrg siructure, pipe weight loads on
equipment connections, and physical clearances of the hanger components with piping and structure be taken into account at the early design stages of a project. Engineers specializirrg in the design of pipe hangers have established effcient meihods of performing the work required to arrive at appropriate hanger designs. llolvever, the engineer who devotes varying portions of his time to the design of pipe hangers often must gather a, considerable amount of reference data reculiar only to the hanger calculai ions for his current projecr. It is the purpose of this article to present a compilation of all information necessary for the design of hangers, including a technical section devoied to the listing of piping material, weights, and thermal expansion data. Also, the discussions of the various steps involved in designing supports, presented here in their proper sequence, should serve as a good reference source for the engineer who only occasionally becomes involved in the essentials of hanger design. The first of these steps is that of determining and obtaining the necessary amount of basic information before proceeding r,i.ith calculations and detailins of the pipe supports. No design is complete unless the engineer has had the opportunity to review the equivalent of the fol)orving project data:
The pipe hanger specification, when available (A typical hanger specification is shown on pages 1Zg and 1?9.) A complete set of piping drawings. A complete set of steel and structural drawinss including equipment foundation and boiler structure details.
A complete set of drawings shorving the location of ventilating ducts, electrical trays, pumps, tanks, etc. The appropriate piping specifications and data, which will include pipe sizes and composition identification, r'all thicknesses, and oper&ting tempereturcs. A copy of the insulation specifications rvith densities. Yalve and special fittings lists, which will indicate weights. The movements of all critical equipment connections such as boiler headers, stearn drums, turbine connectlons, etc.
The results of the stress, flexibility and movement calculation performed for critical systems zuch as Main Steam, High Temperature Reheat, etc. The steps in which the engineer will apply this basic information are as follows:
(1) The determination of hanger locations. (2) The determination of the thermal movement of the piping at each hanger location.
(3) The calculation of hanger loads. (4) The selection of hanger types, i.e., spring
as-
sembly, either of the constant support or variable spring type, rigid assembly, etc.
(5) The checking of clearance between the hanser components and nearby piping, electrical cable trays, conduits, ventilating ducts, and equipment.
The final step will not be discussed to any gres,t degree. Obviously, this aspect of design is governed solely by the requirements and layouts of the individual job. Instead, attention rvill be devoted to steps 1 through 4, where the scope of good hanger practice can be generally defined for any installation. Recognizing that each new piping design presents an abundance of new problems to the engineer. no attempt is made to state fixed rules and liriits which would be applicable to every hanger design. Rather, the intention is to illusLrate ideas which will serve as a guide to a simple, practical solution to any pipe support problem.
THE DETER]IINATION OF HANGER LOCATIONS HANGER SPANS
In
order to avoid crcessive ovcrhang of the pipe beH-l and II-2, the doclc4rcd lcrrgth of pipe bet\\'ccn t.hose harrgcls is madc ltss than tlrrcetrvecn harrgers
Support locations are dcpcndent on pipc sizc, piping
colfiguratiol, the locatiou of heavv lalvcs and fittings, ard thc structure that is availablc for thc sr.rpport of thc piping.
No firm rulcs or linrits eri-qt l-hich lill positivcly fix the location of cach support on a piping systcm. hlsiead, thc errginccr must exercise bis ol n judgcncnt
in
each casc
to
detelminc thc appropriatc hanger
locatton. 'I'he suggestcd maximum spans lrctlecn hangcrg listed in table belorv reflect thc practical con-.idcrations involvcd in dctcrmining support spacings on straight runs of ,qt&udard l'all pipe. 'I'hey are normally used for the support spacings of critical systems. 'l'he spans in table bclorv are bascd on a combircd belding and shear strcss of 1500 p-si rrhcl the pipc is lillcd rvith s-aier and .o inch dcflcction is allorved betl'een
supports. Thcy do not apply rvhere conccltrated rveights such as valves or heavy fittings or where chargcs in dircction of the piping systcm occur be-
trvcen hangers. In case of conccntrated loads the supports should be placed as close as possible to thc load in order to kecp bending stresses to a minimum,
\Yhere changcs in direction of thc piping of any critical system occur betrveen hangers, it is considered good practice to keep the total length of pipe between the supports less than three-fourths the full spans in table belorv. Whcn practical, a hanger "
Pipe Size
Span 150
1 lt,z 2 21: 3 31, 7
12 14 16 18 20 24 26 28 30 32 34 36 10 11 12 13 14 16 17 19 22 23 25 27 28 30 32 33 33 34 34 35 35 4
810
fourths thc suggcstcd nrrinurm span irr table bclorv, In considcring t,he vcrtical scction of the pipc on which I-l-3 and H--l arc shol n. it should 6r.st bc notcd that this sectiol of ihc pipe could bc supportcd by one hanger rathcr thal t\\'o as irrdicatcd. 'Irvo hargcrs, certainly, rvill prolidc grcater stability than s.ill a single hanger. Arothcr dr:cidirg factor as to s'hcther one harrgcr or a multiple of haugers should be uscd is the strength of the supportilg stcel membcrs of the stmcture. The use of tl.o hangers n.ill pcrmit the total ri,.cr ueight to be proportioned to tir.o elcvations of the structlrrc, avoidiug thc conccntration of all the riser load at onc buildiirg elclation. The location-q for hangers I-I-5 and II-6 are governed by thc scggested maxintuur -span as lell as thc position of the concentratcd valve s'eight. Conscquently, II-6 has been located adjacer.rt to the valve, and II-b at a convenient location betryecn the valve and the 12 inch riser. The location of hanger H-7 u'ill be determined by calculation to satisfy the condition that no pipe load is to be applied to terminal connection C. It is obvious that by moving the hanger along the 12 foot section of pipe, the amount of load on connection C rvill vary. One support location exists rvhere the entire section will be "balanced", and the load at C equal to zcro. 'Ihe calculations performed in dctermining the exact location of H-7 are shorvn in the scction entitled "The Calculation of llanger Loads". Consider next the 6 inch section of pipe on which H-8 and H-9 are shorvn. One of the requirements for this hanger problem is that the load at terminal connection B shall be zero. By placing H-9 directly over connection B, ve can easily assure that this load will be zero. Also, this hanger location eliminates any bending stresses in the pipe that l'ould be caused by the weight of the valve and vertical pipe at point B. If H-9 could not be located at this point due to structural limitations, it I'ould be desirable to place it as close as possible to the 'veriicel section of pipe to keep the cantilever effect to a minimurn.
42 36
HANGERS AND SUPPORTS
Hanger H-8 is located at a convenient distance betrveen H-9 and the intcrsection of the 0 inch and 12 inch
pipes. In this instance, the location of
adequate
building structure rvill determine the hanger position. The meihods involved in locating hargers lor this problern are typical of those employed by thc haugcr engineer in ihe design of pipe supports. Although the individual piping configurations and structure layout l'ill vary in practically evcry instance, the general methods outlined above rvill apply for any critical piping system. For economy in the support of lorv pressure, Iorv temperature systems, and long outdoor transrnis-sion lines, hanger spans may be ba-"ed ou the allol'able total stresses of the pipe and the amount of allorvable defleciion betrveen supports.
In
steam lines rvith long spans thc dcflection caused
by the rvcight of thc pipe may be large enough to cause an accumulation of condensate at the lorv poilts of the line. \Yater lines, unless properly drained, carr be
frcezing. Thcse conditions can be avoided by erecting the line l'ith a dos'rru-ard pitch in such a manner that succeedirg supports are los'er than the points of maximum deflection in preceding spans as damaged by
represent safe values for any schedule pipe from Sch. 10 to XS pipe.
For fluids other than water, the bending stress cal be forrnd by fir,st flndi1g the added stress causcd bv rvater from ihe Chlrts on pages 209 and 210and niultiplying by the specific gravity of the fluid. Add this to the stress value of the pipe empty. For lines l'hich are thickly insulated, find the deflection or bending siress resulting from the l'eight of pipe bare and multiply by a ratio of the neight of pipe per foot plus insulation to the rveight of bare pipe per foot.
To illustrate the rrse of the deflection charts, consider the follorvirrg examples: Problem
ald
stres-.
:
Find.: The maximum economical hanger spacing for a 10 inch nou-insulated steam trausmission liue, 1200 fcct long, lhich rvill prolide sr.tfficient dlailage lith minimum deflection l'ithin an allol'able bending -stress liruit of 10,000 psi. The maximum dif{erence il elel'a-
tions of the ends of the line is 5 feet. Solution: Maximum Slope
-
Maximum Slope
-
shoryn:
<{r *roi-/{+ 12 rI/ ru.
v r!.
^
1200 1
{t.
in In 20 ft.
From the Chart on page 208, find the intersection of the Curve l inch in 20 feet, and l0 inch nominal pipe size. Read left to find the allol.able pipe sprr of 40 feet.
From the Chart on page 210, the bending stress for 10 inch pipe rvith a support span of 40 feet i s 3249 psi,
which is below the allorvable 10,000 psi. ,4ns. Span
The stresses indieated in the Chart on page 208 rnd the Chart on page 210 are bending stresses resulting
from the weight of the pipe betl'een supports. It should be realized that this stress must be considercd with other stresses in the piping, such as those due to
-
10
ft.
Extract From Chait on page 208
the pressure of the fluid rvithin the pipe, the ber.rdiug and torsional stresses resulting from thermal expansion, etc., in order to design the system for lolol allorvable stress.
The stresses and deflections indicated in the Charts on pages 208, 209 and 210 are based on a single span of pipe with free ends, and n.rake no allowances for coucentrated loads of valves, flanges, etc., between hangers. The stress and deflection values shorvn in the Charts on pages 208, 209 and 210are based on a free end be&m formula and reflect a conservative analysis of the piping. Actually, thc pipc line is a contiuuous structure partially restrained by the pipe supports, and the tme stress ard dcflection values lie betrveen those calculated for the free end beam and a fully restrained structure. The deflections and bendins stress valrres indicated
Problem
:
Ffndr The maximum economical spacing to pror-ide sufficieut drailagc for ur 8 inch s'ater filled line ij00 feet long. The allorvable bendiug stress is 6000 psi, I
DT
ITT GRINNELL
-
PIPING DESIGN AND ENGINEERING
and the difference in elevations between the ends of pipe line is 5 feet. Solafion.' Max. Slope 10
ft.
=
5It. x 12 in/ft. 600
fr.
the
:1in.in
Problem: From the Cha,rt on page 208, find the intersection of the curve 1 inch in 10 feet and 8 inch pipe, and read left to a span of 43 feet. From the Chart on page 209, for an 8 inch water filled line with a support span of 43 feet, the bending stress is 8289 psi, which is greater than the allowable 6000 psi. Therefore, the maximum span should be based on the allowable bending stress of 6000 psi. Referring to the Chart on page 210, the maximum span for 8 inch pipe and an allowable bending stress of 6000 psi is 37 feet.
Ans. Span
:
37
ft
Problem: Find.: 'Ihe maximum spacing and slope for a 6 inch water filled line where the allorvable bending stress is 10,000 psi. The difference in the elevations of the ends of the system is not limited. From the Chart on page 210, the maximum spa,n for a 6 inch water filled line with an allowable bending stress of 10,000 psi is 42 feet. On the Chart on page 208, read from the 42 foot span value to the 6 inch pipe curve. Interpolating between the slope curves 1 inch in 10 feet and I inch in b feet, read the slope 1 inch in 6 feet.
das. Span
!q!E:
ALLOWAALE LOAD AT CONNECTION A IS 50OLBS. ALLOWABLE LOAO AT CONNECTIONS B AND C IS ZERO.
OPERATING TEMPERATURE
aLL P|PE rS
SCH.
t60
8ENDS.
IS IO50'
F.
A 335 Ptz,
lr'e
Figure H-1
152
42
ft
Pipe is sloped at 1 inch in 6 feet. elevation of 7 inch between supports.)
.(/
ALL BENDS ARE 5 OIAMETER ALL ELBOWS ARE L.F. ELLS.
:
(A difference in
HANGERS AND SUPPORTS
TIIERMAT MOVEMENT CALCIILATIONS
I
i I
i
The ne>,-t step in the design of pipe hangers involves the calculation of the therm'al movements of the pipe at each hanger location. Based on the amount of vertical movement and the supporting force required, the engineer can most economically select the proper type hanger (i. e. Constant Support, Variable Spring, or Rigid Assembly). The determination of piping movements to a high degree of accura,cy necessitates a highly complicated study ol the piping system. The simplified method shown below is one rvhich gives satisfactory approximations of the piping movements. Whenever difierences
occur between the approximations and actual movements, the approximation of the movement will always be the greater arnount.
Figure II-1a
Step
I
Draw the piping system of Figure H-1 and show all knowa vertical morlements of the piping lrom its cold
to hot, or operating, position (see Fig. H-la). These movements will include those supplied by the equip ment manufacturers for the teminal point connections. tr'or the illustrated problem, the following vertical movements are known;
Point A 2t' up, cold to hot Pont B -16't up, cold to hot Point C * 11" down, cold to hot H-+ - 0" , cold to hot The operating temperature of the system is given as 1050'F.
ITT GRINNEI,L
-
PIPING DESIGN AND ENGINEERING
Referring to the thermal expansion table (page 7), the coefficient of expansion for low-chrome steel at 1050' F
is .0946 inch/ft.
Calculate the movements at points
D
and
Step
IV
T
E lry
rnultiplying the coefrcient of expansion by the vertical distance of each point from the position of zero movement on the riser DE;
ft. X 20 ft. X 55
Step
.0946 .0946
inch/t : inch/ft
:
5.20 inches w at D 1.89 inches doun aL
The next section of pipe on which there are two points of known movement is the length
,E-"I. The movement at -E was calculated as 1.89" dolvrr. The movement at "/ is equal to the movemeut at the terminal point C (rltt down) plus the amount of expansion of the
ffi
E
46'
tr
Ieg C-J:
.125 inch
Make a simple drawing of the piping between two adjacent points of known movement, extending the piping into a single plane as sholvn for the portion of the system betrveen .4 and D.
+
3.5
ft X .0946 inch/ft
.46" down
As
A,:7)/.1.43:.72'l +z
The vertical movement at any hanger location will be proportional to its distance from the end points:
LH-7:.12t'+.46t'
4 a1 :5i x 320 ar : '41"
The vertical movement
tll-l- :
at H-l
:
.41't
AI1-7
:
17
+ 2'l
aH_6:.58+.46,1
2.41" up
411-6
AH-2
:
LF:7.02 1.46
:
2.27tt
AF
+ 2"
1.48" dowrr
2'
1.43: all-5:1.09+.46 AII-5 Step V
the coefficient of expansion.
to the
ft X .0946 inchft
:
-
as:1x +z
To calculate the vertical movement at IH, multiply its distance from If-4 by
AH-3
1.04" dowr 30
4.27tt up
40
:
Ar:aXL43:t.02tl
227"
The vertical movemerr!, at H-2
.58// dow:r
Ae:l^X1.43:.58'/ +z
22 Az:orX3.20
Az
:
--
.J.
:
1.55// down
Draw the section G-I{. The movement at G is equal movement at F minus the expansion of the
Leg
GF:
/6 lncnes AG
3.78't wp
AG
Elevation
154
1.09"
: 1.48// down 4 ft X .0946 inch/ft :1.10" down
HANGERS AND SUPPORTS
TIIERMAT MOYEMENT CALCWATIONS (Contiaued) The movement at, I/ is equal to the movement of the terminal point B (t/a" up) plzs the expansion of the leg B-H:
After calculating the movement at each hanger location it, is often helpful, for easy reference when selecting the appropriate type hanger, to make a simple table of hanEer movemeuts. Hanger Nurnber
: aH :
AH
.0625tt up .91" up
+ I ft X .0946 inch/ft
Since I1-9 is located at point 11,
AH-9
:
AH
:
.91" up
1'
A,,: x2.01 : - 23. =r All-8:1.10-1.04 AIl-8
:
.06// dorvn
r.04tl
H-1 H-2 H-3 H-4 H-5 H-6 fr- / H-8 H-9
Movement
2.4r" ,tp 4.27tt ttp 3.78" up
0" r-aD oown 1.04// down .58" down
.06" down .91" up
ITT GRINNELL- PIPING DESIGN AND ENGINEERING IIANGER LOAD CAI,CI'LATIONS The thermal expansion of piping in modern high pressure and temperature installations makes it necessary for the designer to specify flexible supports, thereby
requiring considerable thought to the calculation of hanger loads.
Turbine and boiler manufacturers are especially concemed about the pipe weight on their equipment and sometimes specify that the loads at pipe connections shall be zero. The hanger designer must be certain that the loads on the equipment connections of a piping system do not exceed the limits specified by the equipment manufacturers.
The majority of supports for a high tempemture system are of the spring type. The designer must work to a high degree of accura,cy in determining the supporting force required at each hanger location to assure balanced support, in order to select the appropriate size
and type of spring support.
We have prepared a sample problem, illustrated in Figure H-1, in rvhich all of the hangers except 11-Z have been located. This illustration is limited to as few pipe sections as possible but incorporates most of the problems encountered in hanger load calculations. The calculation of loads for hangers involves dividing the system into conyenient sections and isolating each section for study. A free body diagram of each section should be drawn to facilitate the calculations necessary for each hanger load. Most of the free body diagrams
presented here are those which include as large a section of the piping system as is practical for a simple arithmetical solution to the problem. The solution that follows is not intended to illustrate the only method which could be applied. Rather, it isintended to show a composite of various accepted methods which, for the problem under consideration, produce a well balanced system. Of the approaches that could be made to the solution of any problern, there will be one method that will produce the best balanced
Figure
H-2.
Plan View
Note that the value Ior H-2 on this section of thc piping system represents only a part of the total hanger force at
H-2. For clarity,
rve have labelled this force for the next section of pipe beginning al H-2, we will call the hanger force at this point I1-2l/. That is:
E-2'. In the calculations
H-/ + H-dl
+t
r
system. Although the individual loads may vary, the total of all hanger loads rvould be the same in every case. The first step in the solution of a hanger load problem is to prepa,re a table of rveights. For the pipe line shown in Figure H-1, the table on page 165 has been
Also, note that we have considered the weight of the' 90'bend acting s,t the center of gravity of the bend. The distance B is determined from the Chart on page 151 which bas been drawn for convenience;
B:
prepared.
Draw a free body diagram of the piping between point ,4 and 11-2, shorving all supporting forces and all valve and pipe xeights (Fig. 2). We .will consider the
A, H-l and H-2 acting about the axes r-rl and. y-yt. We will apply the three equations LM.-,, - 0: EMr-u, : 0j and loads and supporting forces betrveen
>v :0.
roo
Step
Radius
X.637,
or
5'X.69Z
:
A.185t
I : :0
Taking moments about axis A-A', EMu-u, 1.81(1418)
+
2567
8(1084)
+8672:
H-2'
:
1r(H-2') rl(H-z',)
-
70221b.
0,
HANGERS AND SUPPORTS
Weight
Description 12" Schedule 160 Pipe 12" Schedule 100 L.
lt.
160.3 lb/ft,
375 lb 3370 1b 4650 lb 843 lb 1258 lb
Dlbow.
12" 1500 h Check \-alve 12" 1500 lb Gate \.alve
12" 1500 tb \\.. N. Flange 12" 5 Diemeter Bend
6" Schedule 160 Pipe 6" Schedule 160 90' L. It. Elbow 6" Schedule 160 45" Ilbow 6" 1500 tb Gate \'alve
Tolrl $-ciehi
k/It
180.7
61.2 tb
436.2 lb 3533.2 lb
163.2 lb
4813.2 lb
30.6 ln
873.6 lb
160.2 lb
1418.2 tb
53 26
t7.2 Ib
rb
lb
6.9
1595 lt'
lb/ft
( a'icularions 180.7
436 lb 3533 lb 4813 lb 874 lb 1418
li
56.8 lb//|t
70.2 lb
70ln 33 lb
ti
1676 lb
80.5 lb
Next, consider the section of pipe betrveen 11-2 and
LM,4 : O, 1.81(1418) + 6.5(512) -7 (H-I) +e.5(3533) - i1(,4.) :0 2567 + 3523 + 33564 : 7(11-1) + 11Q4) 3e654 : 7(11-1) + 1i(.4)
I1-3 to determine the l.eight distribution, betrveen these trvo points, of the four foot sectior of pilre and the five diameter bend. H-2"
I
+
III
tV : 0, A + H-L + H-z', - 3i33 Adding forces,
1,118 : -6577 tb -
542
A + H-r + H-2',
1084
:0
Substituting the value of 11-2l, calculated as 1022 lb in Step I,
: 6577 1b ,4:5555-t/-i
A + H-r
+
1022
Step IV
List the three equations developed in the preceding
Figure
H-3,
Elevation View
steps:
(1-) H-z',
lbilft
56.8 rb/fr
32.9
1b
\\i,isht tsed in
Ii/fr
163.2 lb
11.5
Taking moments about axis r-xt ,
Step
20.4
45.3lb/It
II
Step
Tnsrrlarion ,Ca-Si)
\\ eighr
:
1022
(2) 39654 :7(H-r) + (3) ,{ : 5555 - A-1
Step Step Step
LL(A)
I II
III Solving Equation (2) by substituting for .4 : bb55 H-r, 39654 : 7(f1-1) + 11(5555 _ 11_1) I1-1 : 5363 lb Substituting for I1-1 in Equation
: A: A
55551b
_
LMx-z',
:0, 2(723)
5363 lb
rvhich is belorv the allorvable load at ,4 of 500 lb.
:
o
9(H_2") : : H-2't 848llt
o
7.1e(1418)
l1-B' :
_ e(rl_3/)
t29B lb
ZM s-a' :0, 1.81(1418)
B,
l92Ib
+
+
7
H-2:H-zt+H-2tl H-2 I1-2
:
L022lb 1870 lb
+
848 lb
(723)
ITT GRINNI'LL
-
PIPING DESIGN AND DNGINI,DITING Chart A
pro203040506070
E IN DEGREES
99 90 too 0 l2o llo t4o t5o t6o t?lc
l,l
o l
LC
ct
E
,g
I()
.€
= LJ
z o
,7
.l
.G
I
3n
,9
,8 ,7 ,6
.5
,'
,4
.4
trl
-o =
z_
.3
lrJ
(!
.2
o
.l
fo 2o so 40 ro eo-zo ao eo roo ro po J6l;;"6-Jgol;*i;o CENTER OF GRAVIW OFAN ARC
o l
6 tt !
o = IrJ
z o E o uo lrJ -o = = o o
dt
o r0 zo go 4o 50 60 70 80 90 roo lo tao t3o t4o t5o teo Fo 9
158
IN
DEGREES
tgo-
HANGERS AND SUPPORTS
In the next free body diagram consider the 65 foot vertical section of the piping system to determine the supporting forces for I1-3" and 11-. .
It is apparent that the combined forces H-3" and. H-4' rvill equal 65 ft X 180.7 h/ft. Further, both H-3tt and. H-4' could be any value, provided the relationship H-Ttt + H-4' : 11746 lb is maintained. It is not recommended, horvever, to select arbitrary values for these tt'o forces; instead, the load for each hanger should be such that the elevation of the pipe attachment is above the mid-point of the length of pipe supported by the hanger. Thus, the support will be located above the point rvhere I \_ one could consider the rveight Figure H-4. of the pipe column acting, Dlevation View thereby avoiding a condition where the location of the support Iends itself to the (tippirrg" tendency of the pipe when the support is located belorv this point. Since there is 10 feet of vertical pipe above I1-3l/, and 40 feet of pipe betrveen H-Ztt and. H-4t,let H-Zt, support l0 feet plus 30 feet of pipe load: H-3" G0 fr + 30 ft) (1s0.7 1tlft)
Consider the piping betrveen H-4' and II-b to determine the weight distribution of the b diameter bend and the 5 feet of horizontal pipe:
ZM
a-+"
:0,
1.81(1418)
ZM a-s'
+
7.5(e04)
H-5' :
+
8.19(1418)
H_4,,
f1-4
: :
935
:0,
2.5(904)
H-4
- tb10(E-5l) :0
H-4t + 5905
H4" :
:
- 70(H4t'):0
1387 Ib
4518 1b
+
1387
ib
1b
:
H4" : 7228 Lt) : H-3' + H-3" : and I1-3t 1298 Ib (See Fig. H-3), H-3 : 1293 lb + 7228 lb /1-3 : 8521 lb s-4'. : (L0 ft + t5 fi)(180.7 tblft) H4', : 4518 tb since I1-3
Figure
H-6.
Elevation View
tr'igure H-5.
159
ITT GR]NNELL
It
-
PIPING DESIGN AND ENGINEF]RI\G
is obvious that some portion of the rveight of the
6 inch pipe betl.een the 12l'line and I1-g must be supported by H-5" and 11-6. Therefore, be{ore
proceeding thru 11-5 and 11-6, calculate this pipe rveight load l?1, and irtroduce it into the free body diagram for I1-5 and f1-6.
LMu-y' .07 (33)
: +
o,
+ 4.81(70) + 5(2031) _ 5(r1_9) II_9 : 2258 lb
2.34(341)
:
0
,M,.", :0, .
(70)
19
+
+
2.66 (3.11 )
20.73(70)
-
+
5.03 (33)
:
2rR1
0
-
9
(r1_8)
+
12.78 (S49)
13387: e (r1-8) + 2r(R)
tv :0,
Rt-| H-81H-9 R1
-
2031
+
I1-8
-
+
70
- 3.11 - BB -849 - 70:0 : 3394 Ib
11-9
Since I1-9 has been calculated as 22b8 lb, ar + 11-8 3394 lb 2258 tb 1136 lb
:
:
-
I1_8:1136_8r Substitutiug this value for IJ-8 in the 13387:9(11-8)*2L?r,
Equation
13387:.e(1136 _ R) + 27Rl Er : 264 lb Since I1-8
:
1130
-
11-8 : H-8 :
Er, 1136 lb 872 Ib
_
264 1t
Figure
FTx55.3.185 R" 264
r60
t/2wEtcAr tz" ELL.
II-7.
Plan View
H-9. Plan View Dimension .a is determiaed from the Cbart on pa,qe 166. For the sample problem. E : .726x1.5ft:1.09ft. Figure
HANGERS AND SUPPORTS
The free body diagram shorvn in Figure I{-8 extends from 11-5 thru the 12l/ 90" elbow. This is intended to illustrate that the rveight of the 90" elbow may be considered as supported on a beam rvhich passes thru the center of gravity of the elbow and rests on the extensions of the tangents, as shown in Figure H-g:
In Figure I1-8, EM s-s,, : 0, 2(449) +5(1807) + 11.5(4813) 18.e1(218)
LM s-a : 3.5(4813)
-
:
15
(H-6)
f/-,
10(1807)
:
+
13(449)
0
-.75(994) -3.91(218)
:2t8lb +
1626 1t
: .1DID ID
+
436 lb
: -tI-5 :
X:
3.b2 feet
Support Force€ Plus Terminal Point Loads, lb
TVeight of Piping System, lb
ft of 12" Pipe @ 180.7 lb/fr.. . .19787 (3) 12" 5 Dia. Bends @ 1418 lb. . . . . . 4254 (2) 12" 90' L. R. Ells @ 436 lb . . . . . . 972 30.45 ft of 6" Pipe @ 56.8 1i/f1...... 1740 (2) 6" 90' L. R. Ells @ 70 ft. . . . . . . . 140 109.5
The following diagram shows a method for arriving
at the location of I1-7 which will allow zero load
on
connection C.
.
(1) 6" 45'EII @ 33 lb . . . . . . . . . . . . . . 33 (1) 12" 1500 lb Check Valve @ 3SB3 lb 3bBB
(1) 12" 1500 lb c&te Valve @ 4813 li. 4813 (1) 12" 1500 lb WN Flange @874Ih. 974 (1) 6" 1500 lb Gate Valve @ 1676 1b.. 1626
Total Weight of Piping Sysrem. . . .37212
2FTXl8o7' 361
l/rwercat or -zla
ELL=
1626
Figure H-10, Elevatioa View
I2
FLAN€E=
:0
As a final step, check to ensure that the weight of the entire piping system is equal to the total supporting forces of the hangers plus the pipe weight load to be supported by the equipment connectrons:
H-5' + H-|'t :g3b Ib + 2610 lb 3545 lb
1235 lb
x(H_7) : 12369 x(3515):12369
H-5tt :26!011) H-5
+
Solving for distance X, t M" : 0 .54(436) - X(H-7) + 6(1626) + 10.91(218)
+ 15.75(994)+
0,
+
H-7
0
rl-o : cDl l lo
75(H-5't)
The value, in pounds, for I1-7, is equal to the weight
of the piping section:
I74
r;;;Fi735
.A Il-1 :
H-2: E-3
Il-4 Il-5 H-A
H-9
192
5363 1870
: = :
5905 3545
: =
a72 2258
852r
Tolal = 377L2
ITT GITINNI'I,I, - PIPING DI'SIGN AND IJNGINI'I,]IiING SELECTION OF THE PROPER HANGER Selection of the appropriate type hanger for any given application is governed by the individual piping configuration and job requirements. Job specifications
covering hanger types, horvever, are of necessity written in broad terms, and some emphasis is placed on the good judgenent of the hanger engineer to ensure a satisfactory, yet econornical, harrger system. The type of hanger assemblies from which the hanger engineer selects the appropriate kind are
generally classified as follorvs:
(1) Flexible hangers, which include hangers of the constant support and variable spring types.
(2) Rigid hangers, such
as rod hanqers and
are not required. The inherent characteristic of a Yariable Spring is such that its supporting force yaries rvith spring deflection and spring scale. Therefore, verticrl exprrrsion of the piping cluses a corresponding extension or compression of the spring and
l,ill
cause a
in the actual supporting effect of the hanser. The variafion in supporting forcc is equal to ihe produr.t of the amount of verticll expansion and the spring scale of the hanger. Since the pipe rveight is the same during any condition, cold or operating, the change
variation in supporting force results in pipe rveight transfer to equipment and adjacent hangers and consequently additional stresses in ihe piping system. lVhen Yariable Spring hangers are used, the effect of this variation musi be con,idered
stanchious.
(3) Rollers The location of anchors and restraints is not usuallv considered r responsihility of the hanger designer.
it is necessary to determine the location of anchors and restraints before accurate and ,final stress analvsis is possible, ihey are considcred a part oI piping design. Since
VARIABLE SPRINS HAiIGER
Flexible Ifangers When a pipe line expands vertically as
thermal expansion
it
is
necessary
to
a
result, of provide flexible
pipe supports rvhich apply supporting force throughout the expansion and contraction cycle of the system. Flexible hangers are of tryo types: Yariable Spring and Constant Support.
Constant Support hangers provide constant supporting force for piping throughout its full range of vertical expansion and contraction. This is accomplished through the use ol a helical coil spring rvorking in conjunction with a bell crank lever in such a way that the spring force times its distance to the lever pivot is always equal to the pipe load times its distance to the lever pivot.
Variable Spring hangers are recommended for
general use on non-critical piping systems and where
vertical movement is of small magnitude on critical systems. Accepted practice is to limit the amount of supporting force variation tro 2b/e for critical system applications on horizorrtal piping To illustrate the difrerence in the effect of usins a Vari:rble Spring as.ompared rvith a Constrnt Support hanger, refer to the sample problem shown in Fisur"
H-I. page
160.
The load for hanger H-l was calculated as bB6B lb. The verlical movcmenf ct H-l was calculated as 2.il inches up, from the cold to the hot position of the pipe. If a Yariable Spriug hanger were used at H-1, the effect of the variation in supporting force would have
to be considered. The amount of variation can be
Fd =PD
CONSTANT SUPPORT
Because of its constancy in supporting effect the Constant Support hanger is used rvhere it is desirable to prevent pipe weight .load transfer to connected equ;p-
ment or adjacent hangers. Consequently, they are used generally for the support of critical piping systems.
Variable Spring hangers are used to support piping subject to vertical movement, where Constant Supports L62
determined by multiplying the spring scale in pounds per inch by the amount of vertical expansion in inches. Iit,r exum1,le. if rhc ITT Grinrrell I.igure ts-268 Variable Sprilg hanger were considcred, the proper spring size would be number 16 which has a spring scale of 1800 pour.rds per inch. (For convenience, neglect the weight
of the pipe clamp, rod and hex nuts. In designing hangers for an actual pioblem, the weight of components should be added to the calculated load.)
The amount of variation is 1500 lb/in. X 2.41 in.
lb.
:
3615 Standard practice is to calibrate the hanEer in such a way lhat rvhen the piping is ar its hot posilion
the supporting force of the hanger is equal to the calculated load of the pipe. This means that the
HANGF]RS -\ND SIIPPOITTS maximum lariation il supportiug force occurs l'hen the piping is ai its cold positiou, ri-hcu stresses addcd to the piping as I lesrrlt of r-ariatious in supporting forces are lcss clitical. 'I'he hot load for thc r.ariable spr.irrg, then is 5363 h. As the dilectiol of rnor.ement fi'om cold to hot is upl'ard, the cold lord i-q 5303 tb + 3615 Ib, or 8978 lb. Iig. H-a shot s thc pipe ard spring at the cold condition, aird Fig. H-b lt the hot conditiorr. Thc purposc ol the colrsidcratiorrs given to the variatiorr in supporting cffcct is apparelt lten it is recalled that the pipc rrcight docs not change throughout its cold to hot c1'clc, lhile the srrpporting force varies. Irr Fig. I-IJI, thc supportirrg force is equal to the pipe \-eight. Howe\-er, i:r Fig. ll-a, the supportirg force is
ib lhilc the pipe *cight is 53(jB lb. The halger trould exert au nnbalanccd force on the pipe equal to the amount of r-ariation, or B61i Ib. llost of this forcc r-orrld be inrposed directly orr conlection A, rvhere limits are establishcd for the force r*hich may 897E
be applied.
Further', safe piping design rnust be based on rolol pipe stress rvhich includes bcnding, torsional, shear, loDgitudiual, aud circunfcrcutial stresses. The additiol of largc forccs resulting fronr sprirrg variations can raLlse strcsses lrhich liil grcatly reduce the factor of safctt' of thc entire pipilg systerr.
supporting force is too great for the cilical location at H-1. The approoriatc harrger t5.pe for H-l is a coustant support iranger. This hanger 1\.ould be calibrated to the calculatcd pipe l'eight. It I'ould apply a con-stant supportiDg force, iDsuril1g conplcte support of the pipe throughout the pipirrg cxpansion. That is, its suppoltilg folce lould be 5363 lb lhen the pipe l-as at its cold position, and 5363 lb also rvhen the pipe las at its hot po,sitior. Hangcr I{-2 has a calculated load of 1820 h. The vertical mol.cment at tliis location is 4,2? inches up, cold to hot. -\lthorigh the load may be considcred slight, the magnitude of the vertical movement is great, and a corrsideralile amount of supporting force chalge n ould occur if a variable spring l'cre used. For example, the appropriate size variable spring is a f12, Fig.9E (the 4.27 inch travel is beyond the travel capacity of the Fig. 8-268), r,hich has a spring scale of 225 lb/in. The amount of variation equals 4.21 inches X 225 h/in., or 917tb. This variation, expressed as a percentage, is 947 Ib
1gi0 Ib
X
100, or greater than
50/6.
Unless the hanger
engineer were rvilling to perform some rather elaborate
stress calculations to determine the effect of this variation, it rvould be safer to apply the accepted rule rvhich limits variability to 25/6 for oitical systems, and rule out the selection of a variable spring in favor of the constant support type h&uger. The vertical moven.ieut of the pipe at H-3 rvas calcu_ lated as 3.78 inches up, and the load as g521 lb. Irr selecting the spring type for this hanger assembly, it should be recognized that any variation in supporting force rvill not produce bending stresses in the piping system. As the supporting forces at H-B and H_4 are concurrent, no bending is produced as a result of spring
Figure H-b.
variction at H-3. Raiher, any supporting force variation rvill merely resrrli in a corresponding load change at the rigid hanger H-4.
The hanger type for H-B may be a variable spring necessary that the variable spring have a travel capacity l'hich is some amount greater than the calculated pipe movement of B.Zg inches. _ Such a variable spring hanger is the Fig. 9g, thich has a rvorking travel range of 5 inches. As this assembly is of a riser ,,trapeze,, type, t$,o spring units rvill be used, each supporting one_half the total load of 8521 h, or 4261 Ib. 'Ihe appropriate size hanger is a 115 Fig. 98 l'ith a spring scale of 540 lb/inch. The amoult of variation per spring is 3.Zg inches X 540 lb, inch, or 2041 lb. The hot load setting for each hanger is equal to one-half the calculated load, or
type. It is only
It is lrossible to reduce the amount of variabilitv bv using a variable sprirrg rvhich ha. a smalJor spring scale, an IT1' Grinnell Fig. 98 (Variabte Spring Hanger). . ]he /16 Fig. 98 hrs a spring scale o[ 7j0 lb,in., orre_ helf that of {he 8-268. The amounl of variabiliiv rvould be reduced by orie-half, or 2.1I X ZS0 : l80g h. Horvever:, it should be obvious that elven this chanEe in as
163
ITT GITINNI'LI,
-
PIPING DESIGN AND ENGINEERINTi
lb. As thc direction of movement, cold to hot, is up$?rd,_the cold Ioad sctting $-ill be 4261 Ib + 2011 h, or 6302 lb. Figures I{-c and H-d shorv the supportilg forces at H-3 and H-.1 rvhcn the pipe i-q st its cold ancl its hot position. The rveight of riser clamps, rods, etc., are not included, for conveDience. 4261
CoLD LOAD = 4?6t + ?O4t = 650 21+ (EACH)
H-3
5905- 2X204t tez3 {+
the sprilg varirtion cffcct can be corrsiclcrccl rrcgligibJe. The load las calculatcd as 872 Ib, the mor.crncut as
ilch dorlr.r. Thc amonnt of variability for a /8 Fig. 8-26g is .06 irrch X 150 lbf ilch, or g lb. For prnctir:tl purposcs, a 9 1} charrgc in supportirrg force coulcl bc rcgkrctcd, ard a lariablc sprilg sclcctcd for Hargcr I.I-E. Thc selcction of hangcr typcs for stippor.ts H_1 through H-9 in the samplc problcm ilhrstrates the manl.corrsidcrations l.hich should bc givcn il sclccting the appropriate flcxible halgcr at each support location for ary major pipirrg s1-stcrn. In ,"p1s.1h* flcrible hangcr t1'pcs thc crrginccr sliould consider that: .0(i
trYherelcr constatt support hangcr.s arc uscd, the supportilg forcc equals the pipe I.cight throughout its eutire exparr-siorr cycle, and no pipe l.cighl reacttons arc imposcd at equipment conncctions
LOAD:
H-4
and movcment at this hangcr location arc so -qlight that
=
and anchors. ToTAL SUPPORTTNG FORCE
2x63O2+ tA23 = t44ZTit
=
Fieure H-c.
HOT LOAD = 426ti+ ( EACH)
H-3
LoAD
: 5905 {+
Rigid I{angers
TOTAL SUPPORTING FORCE:
ZX426l + 59O5
=
14427.rF
Figure H-d.
The design load for H-B should allow for a calculated cold load of 6302 1b X 2, or 12,604 lb. The load at rigid hanger H-4 is 1823 lb cold, 5905 tb hot. All hanger components should be designed for the larger load. Variation in supporting forces at Hangers H-b, H-6, H-7 and H-9 ilill produce reactions at connections B and C. As one of the requirements of the problem under study is that weight loads at B and C.shall be zero, these hangers must be of the constant support type.
Although
variation L64
it
l'ill
\\'hercvcr variable spring hangers are used, the elgiuccr must check to a-s-qurc that the totll lariation in snpportirig effect docs rrot result iu halmful stresses ard forces l ithin thc pipitig system. Where piping stresses and reactiorrs are knorvn to be close to allowable, the simplcst and, in the long run, most economical type of flexible support is obviously the colstant support hanger. Where piping stresses and end reactions are knol'n to be lorv, variable sprirg hangers can be used satisfactorily for most nor-critical piping support, and for the support of critical systcms ryhere vertical movements are of smlll nragrritudc.
holds tme that at H-8 any hanger force cause ri'eight loads at B and C, the load
Rigid hangers are normally used at locations ryhcre no vertical movement of the pipilg occurs. The design considerations for a rigid harger are pipe temperature, for selection of appropriate pipe clamp material, and load, for selection o{ components suitable for the pipe weights involved.
Pipe clamp material is usually carbon steel for temperatures up to 750" F, and alloy steel for teDlperatures above 750' F. Malleable iron pipe clamps may be used at temperatures up to 450' F. For piping systems of Iorv operating tempcrature, rvhere vertical expansion,is usually not a factor, the rigid hanger assembly components are sclccted aud designed on the basis of calculated or approximatcd loads.
In some instances, however, the rigid hanger is used in a manner rvhere it does more than merely support, the pipe rveight, but acts as a restraint agailst ve$ical
HANGERS AND SUPPOITTS
piping movements. It is in thesc cases that the enqineer should csercisc crre in lhe locnllen oi tho rigld bengcr and the design load he uses in the selcction of components.
The location and effect of any restraint, guide or anchor on a high tempcrature and high pressure system is of necessity a function of the stress a.nalyst. The
irdiscriminate placing of a restraining device on a piping system could alter the piping stresses and end reactions to a serious degree, changing a conservatively designed system into one rvhich exceeds the limits of good design practices. The hanger engineer, though not as rvell acquainted rvith the total stress picture of a piping system as is the stress analyst, must usually decide if the problem is of
this "critical" nature, or whether the system under study is such that the effect of adding a restraint for his convenience rvill be negligible. His decision is based on the factors of operating temperature, operating pressure, and the configuration of the system. Recognizing that pipe design is based on total pipe
Figure ll_e.
: AA
stress, he must determine rvhether the stresses produced
by the addition of a rigid hanger, or vertical restraht, are crilical.
This article is rzol intended to present a short-cut method for the stress analysis of a piping system. In any instance where it is not obvious to an engineer that he is dealing rviih a non-criticai case, the probiem should
either be revierved formally from a total stress viewpoint, or the decision to use a rigid hanger should be changed and a flexible support should be utilized. This article is intended to provide the engineer rvith a simple and quick method of deciding horv he can
rrost
economically treat vertical thermal movernent on a long, horizontal section of a non-critical piping system.
Often, his problein can be expressed
in the
simple
terms of r,vhether he will be able to use a rigid hanger
(See
40 feet
X
.0182
inch/ft.
.728 inch dorvn
"The Calculation of Hanger l{ovements,,, page l6t)
From the Chart on Page 208, using values of 6 inch pipe and a deflection of f; inch, read 17.b feet. This is the minimum distance from the riser where the first rigid hanger may be placed for this problem. If the locations of the hangers are fixed, as they are
for this
case, then
H-2 must be a spring hanger
as-
sembly because it is Iocated only 12 feet from the riser. Therefore, the nearest rigid hanger will be hanger H-8, located 29 feet from the riser. The amount of vertical movement at hanger H-2 will be proportional to its distance betrveen H-3 and the riser, and can be approximated as shorvn in Fig. H-f:
rather than a flexible hanger without,
producing obviously harmful stresses in the system. Consider a simple example, shonn in Fig. H-e, where the hanger engineer is confronted with the problem of how he can best treat vertical movement resulting from thermal expansion of the riser. The horizonlal sections at, both the top and the bottom of the riser are of anv considerable length. He must determine which of r,hl hangers H-2, H-3, H-4, etc., should be spring hangers and rvhich rvill be rigid hangers (vertical restraints in
this instance). He must satisfy a condition that the bending stress produced by the restraining action of the hanger is no greater than some acceptable amount. say, in this instance, 10,000 psi. For an operating temperatu_re of B00o F, the expansion factor for carbon steel pipe is .01g2 inch Der foot.
AH-2"17/29X.72en
A
H-2 =.43"ooWN
Figure H-f.
Thus, H-2 would be selected as a variable spring hanger for .43 inch of dorvnrvard vertical movement, and H-3 would be designed as a rigid hanger. In the above problem the hanEer locations were fixed. If this were not the .".", unJ th" hangers could be placed at any convenient location subjeci to usual 165
ITT GRINNELL
-PIPING DESIGN AND EN(I]NI'I'ITIN(;
hanger span limits, then H-2 would be placed at any distance 17.5 feet or more from the riser. This rvould
satisfy the condition that a maximum bendins stress 10,000 psi would result from the restraining effect of the hanger. If the allorvable effect rvas given as a higher stress, then the hanger could be placed closer to the riser; if lower, the nearest rigid hanger would be placed a greater distance from the rrser. If the hanger were located closer to the riser, a greater restraining force would be applied to the pipe by the hanger. As the location is changed to a greater distance from the riser, a lesser force is required. As illustrated in the following sample problem, this force can be an important factor in the design load of the
of
rvill exert suficient force to deflect the pipe ] inch, producing 10,000 psi berding stress. (See Fig. H-h). To find the lalue of force P, refer to the Chart on page 213. For a pipe size of 10 inches and a span of 18.5 feet, read P as approximately 2700 lb. This force is applied by the pipe hanger H-1, and,
H-2
hanger.
1""
Problem: Gium: l0-inch Sch. 40 pipe, and allowable bending
I'
{,
o'*"*
"-n'
therefore, must be included in the design load for H-1. rvhere the piping movement is in the dovnward direction, the force P is added to the pipe weight to be supported by Hanger H-1. If the pipe weight for H-l were calculated as 2000 lb, then the design load for the hanger components is 2000 h plus
fn this instance,
2700 lb, or 4700 lb, as shorvn in Fig. Ii-i. To solve for Lr, refer to the Chart on page 211, and,
using values of ]-inch deflection and lO-inch pipe, read L2 as 13 feet, the distance to the proposed rigid hanger H-3. As discussed for H-l of this problem, hanger H-3
Figure H-g.
stress
of
10,000 psi produced
by the restraining effect
Figure H-i.
nf +ha hqnoarc
Find: (7) L1 and L2, the distances to the nearest rigid hangers H-1 and H-3, see Fig. H-g. (2) The forces rvhich the hangers must apply to the pipe to allorv the ]-inch and ]-inch deflections resulting from the thermal expansion of the vertical pipe.
Solution: From the Chart on page 211, using values read L1 as 18.5 feet, the distance from the riser to the rigid hanger H-1. This means that at a distance of 18.5 feet, the hanger
of |-inch deflection and l0-inch pipe,
r66
'
PIPE WEIGHT:2OOO+ + P" 27Ooi+ T OIAL = 470 0
ii
must apply sufficient force to restrain the pipe vertically against the force resulting from the thermal expansion of the Yertical piping above H-2. The force P which is required at H-3 can be deter-
HANGERS AND SUPPORTS mined from the Chart on page 213. Using values for lO-inch pipe and a l3-foot span, P is approximately 3800 lb. Silce this force restrains the upl'ard mole-
calculated as 3000 lb, then the net force is 3000 lb 38001b, or E00 1b rrp* ard, as shol'n in Fig. H-k. The hangcr, il this case, rr-ould not be considered as a support for the pipe, but a vertical rcstraint against
fe r--
l-igure H-k.
ment of the pipe, it should be checked against the pipe rveight load to assure that the harger assembly can exert a force equal to the diflerence of the force P and +la6 hihd ...6;nLf
t^.,1
To illustrate, assume that the pipe load at H-3 I'ere calculated as 5000 lb. The difference betl'een the pipe rveight and the force P rvould equal 5000 lb 3800 Ib, or 1200 lb, as shol'n in Fig. H-j. The design load used for hanger H-3 should equal 5000 lb, or pipe rveight only, in this instance. Where the vertical movement is in the uorvard direction. and
{ I |
prpg wEroHt= sooo{ts
FoRcE p = 38oolt ruer roRce= eoor+
uprvard movement. Therefore, either a greater span should be used in ordpr 1o redune rhe force P, or a spring hanger should be used if L2 is maintained as 13 feet, in order to provide support and allow the piping to move uprvard ai this hanger location. Using the values of L1 and Le as determincd iu the original problem, the forces P at each hanger are as shorvn in Fig. H-1. The forces at H-l and H-3 have been discussed in some detail, but it should also be noted that the design 3800
1+
r
t
H-3
1
i .rooo
+
Figure H-j,
1
{
PIPE WEIGHT= 50OO+
FoRcE Pr3800+
Hn ronce'
raoo
+
the force P approaches the pipe weight load, ihe rigid hanger will tend to unload. That is, as the pipe expands upward the net force applied to the pipe by the hanger becomes less. If the force P becomes greater than the pipe rveight at the hanger, the net force on the hanger becomes compressive rather than tensile. When the system has expanded its full amount, the pipe till tend to lift from the hanger, and the supporting effect of the hanger s,ill be zero. If thc pipe weight for the sample problem had been
Figure
II.l.
e7004*
rvell. For this example, the design load for H-2 equals the pipe weight plus 3800 lb, minas 2700 Ib, or design load : pipe weight load plus 1100 1b. load for H-2 should include these forces as
ITT GRINNEI,I,
PIPING DESIGN AND ENGINEEITING
-
In the
preceding problems, the allorvable bending to the restraining effect of the hanger l'as given as 10,000 psi. This allolable stress l'ill, of coruse, vary rvith the indilidual case. Where the stress is other than 10,000 psi, use the Chart on page 211 to read the minimum span, and multiply the span in stress due
leet by the factor indicatcd in the Chart belorv for the specific
strciJs.
Correction Factor for Stresses Other Than 10,000 psi For Bending
Ilultiply
Stress Of:
Length By:
2000 psi
2.24
3000
1.83
{000
1.58
5000
10000
1.41 | .29 1 .12 1 .00
12000
.91
6000 8000
I
15000
.82
20000
.71
llustr cltiue P roblem
plying 29 fcct by 1.83, the span for 4-inch pipe l'ith 3-iuch deflection at 3000 psi is 29 X 1.E3, or 53 feet. 'l'hus, 1,, the minimum distauce to thc first rigid hanger, is 53 feet.
The first rigid hanger in the above problcm rvill be H-5, locatcd 60 fcct from the riscr. The force P rcquired to restrain the piping vcrtically carr be detcrmined from the Chart ori page 213 as about 83 pounds, using yalues of 4 inch pipe and a span of 60 feet. The effect of this force rvill be considered negligible for this problcm. The vertical movements at hanger locations bet\yeen H-5 and the riser are as shol'n in Fig. H-m. The above results are based on an approximate but conservaiive analysis. Wherever the appropriate charts &re uscd, the values listed should assist, the engiueer il arrivilg at an ecolomical, safe design for any rigid hanger assembly. The examples dcscribed tcprcsent situations not frequently encountered in pipe support design, but do point out that the rigid hanger in some instances is more than a simple pipe support, and that good design must allorv for all applicable corditions. Rollers
:
The pipe attachment and structural attachmelt of a hanger assembly should be such that thcy rvill permit the hanger rod to swing to allorv for latcral novement
of the piping rvhere horizontal pipe
expansion is
anticipated.
In
some instances, rvhere piping expansion is slight
and hanger rods are long, the suirrg permitted by thc pivoti[g of the rod at the upper and lorver colncctions is sufficient, &s sho\rn in Fig. H-1.
A : 3 inches, and 3000 psi maximum bending stress through the resira,ining cffect of.the first rigid hanger. Giaen.: 4-iuch Sch. 40 pipe,
Find; L, lhe distance from the riser to the first rigid suppori.
From the Chart on page211, using values of 4-inch pipe and 3-inch deflection, read a span of 29 feet. This span is besed on a stress ol 10,000 psi, and, to correct
for 3000 psi, refer to above Chart. For a stress of 3000 psi, the correction factor for spans is 1.83. Multi-
lLr-
AH-l.i3x3=2.4" x3 = l.a"
A
H-2=
18
A
H-3.
:t x3
=
l-2"
AH-4.:*x3".6'l 168
Figure H-u
IIANGDRS AND SIIPPORTS
In other instances the angularity caused by the horizontal piping movements can appreciably effect the position of the piping system, and can cause harmful horizontal forces rvithin the piping system.
T
I
hangers located on the same long section of pipe, the
effect of the total horizontal force can be serious. (See Fig. H-q.)
zt):
L,,,.
f
Figure ll-o.
In Fig. H-o, note that,
Total horizontal force 860 Ib.
-
86
+
772
+
Certainly, for any sysiem subject
of the large axial piping movement and short hanger rod, the pipe is pulled f; inch ofr elevation when it expands 6 inehes horizontally. The condition described also places a horizontal force component into the piping system, For example, assume a pipe weight of 1000 lb for the above hanger, as in Fig. H-p. because
258
to
+ 344:
horizontal
expansion, the rod angularity from the vertical will
result in a horizontal force component. The point where this angularity becomes critical cannot be defined for every ca.se, but accepted practice is to limit tbe srving from the vertical to 4". Where this angle is greater Lharr 4", a pipe roller should be considered.
Pipe roller supports are of two basic types: those which attach to overhead structure, and those which a,re placed beneath the pipe as base supports.
It
should be noted that where rollers are required,
the pipe operating tempemtures usually are sufficiently high that pipe insulation is used to reduce heat loss and for personnel protection. In these cases a pipe covering protection saddle should be used
in conjunction with the rollers to
Figure H-p.
l,oooo
|
,oooo
The 258h horizontal force by itself may not be of great consequence, but where there is a series of
keep the insulation from crushing. Where the piping is not insulated, the pipe will rest directly on the roller. This is common practice for the support of long transmission lines where the gas or fluid transported is not of elevated operating temperatures, but where the pipe run is subject to some change in ambient temperature, as from summer to winter variances. For example, a pipe Iine 300 feet long subject to
TT tl tlttl
tftl
r5a--t---\-r5
+rnv--'--\+ TYPICAL ROLLEN HANGER ASSEMBLIES
TYPICAL BASE ROLLER SUPPORTS
169
ITT
(i]tI\\ IiI,I, PIPI\G
DESIGN
A\D I!\ CIINTiI'IIIN(;
ambient changes from 70oF to 110'F expands only .00300 inch per foot from the lorv to high tcmperature. ){ultiplied by 300 feet, hol-ever, the total axial expansion is 300 fect x .00300 inch,ifoot, or .918 inch. In instalccs of this nature, rollers l'ill be used, but,
amount of cspansion up to thc full rccommcncled n'orking range of the spring, proliclecl the change in supporting effect, of the variab)c spring is addcd to ihe design load of the rigid -.upport
the pipe covering protection saddlcs s-ill not be required.
\\'hcre transfer of load to adjaccnt hangers or eqrripment is not critical. and rvhcre the lertical movemeDt of the piping is lcss than f ilch, variable sprirrg harrgors may bc uscd, providcd
assenlblY.
A TYPICAL PIPE SUPPORT SPECIT'ICATION 1. Scope Thi-" specification shall apply for the design and fabrication of all hangers, supports, anchors, and guides. \Yhere piping de,.,ign is such that exceptions to this specification are necessary, the particular system irill be iJentified, and the exceptions clearly listed through an addendum rvhich s'ill be made a pari of the specification.
2. Design (a) All supports and parts shall confor m to the latest lcquilemeuts of tlie ANSI Cotlc for Prcssule Pipirrg I331.1, anil \ISS Stlndarrl Plictice SP-i8, except rLs srrpplerncrilccl or modifictl by
the r.ariation in supportiug cffcct docs
its total vertical traYel. (h) The total travcl for constant support h&ngcrs nill be equal to actrral travcl pliis 20/6, It no case s ill the difference bctrvccn actual mrd total tralel be less than ] ilch.
(i)
stops lill be factory installcd so that the halger Ievcr is at the "cold" position. 'l'he trtrrcl stops rvill be of such dcsigu &s to pcnnit fllture reengagemcnt, eYen iri lhe cvcDi the lever is at a
thc requiremeuts of this specificltiott.
po,"ition other tharr "cold",
be beam clamps.
(g) For critical, high-temperature pipiug, at hanger locations rvhere the vertical movenent of the piping is f inch or more, or rrhere it is necessary to avoid the transfer of load to adjacent hangers or connected €q-lipment, pipe ha)Igers
tr
alrproved cottsttrtt sul,polt dcsigtr, as I'I1'Grinrcll Fig. 80-\'arxl ltig. 81-H, ot eclual An exception may be made in the instance where the piping movement occurs at a hanger supporting a portion of a piping riser on $hich a shnll be of
rigid support is also located. In this case, variable spring hangers may be used for any
170
l'ithout having to
makc hanger adjustments.
(j) For non-criticalr low
tempera.ture systcms, rrhere vertical movements up to 2 inchcs are
anticipated, an approvcd prccomprcsscd lariable sprilg dcrign similrrl to I1'T (irirrrrell Irig. 13-268 nrlry bc tist'rl. \I'hel: tlrc vcttir:rtl movcnrcrl is grcxlcf thrrn 2 irtchc,.', l vutiairk'slrt'irtg hrrrrgel sinrilur' 1o I'l"l' (ilirrrrcll l is. 1)8 nlry bi: trscd. \\rhclc rno\'('rn(rl1s rLto of lt smitll Iultgttitrirlc, slrtitrg lrltLgels siurilrtt to I'l'11' (ilirrrrell Irig. 82 ol light duty I''ig. 217 rnrLy bc rt-*ccl.
to
determine the required supporiing force at each hanger location and the pipe l'cight Ioad at each equipment connection, (d) Pipe hangers shall be capable of supporting the pipe in all conditions of operation. They shall allorv free expansion and contraction of the piping. and prererrt exce..ive stres" resultitrg from transferred l'eight being induced into the pipe or connected equipment. (e) Wherever possible, pipe attachments for horizontal piping shall be pipe clamps. (f) Wherever possible, structural attachments shall
made
Constant supports shall be furnished l'ith travel stops which shall prevent ups ard and dorvn-
l-ard movcment of the hanger. 'I'hc travcl
(b) Designs generally accepted as exemplifying good engirreerirrg pnctine, using srock or production pafts, shall be utilized rvherever possible. (c) Accurate $'eight balance calculations shall be
not
excccd 25fi of the calculated pipiug load through
(k)
All rigid
hangers shall provide vertical adjustment af ter erectiol.
a
means of
(l) \\'here the piping s1'stem is subjeci to
shock
loads, such as scisniic tlisturbanccs or thrusts imposed by the actu&tion of s&fety valves, hanger design shall inclrde provision of shock absorbing devices of appror.ed dc-"ign, such as
(irirrrLcll Irig. 200 shoclt riritl srlay sulrltres-sor, oI equal. (m) Selection of vibration control devices shall not be part of thc hanger contractor's rrork. If vibration is encountercd after the pipir.rg systcm is in operation, appropriatc vibration cortrol equipment sill be installed at the direction of
I'fT
the engineers.
(n) Hanger rods shall be subjected to terrsilc loading only. At hauger locations rvherc latcral or
HANGF]RS AND SUPPORTS axial moyement is anticipated, suitable linkage shall be providod ro pclnrit srling.
(o) lVhere hodzontal piping movements are greater than I irrch, or l'here the hanger rod angularity from the vertical is greatcr than 4 degrees from the cold to hot position of the pipe, the hanger pipe and structural attachments shall be offset in such manner that the rod is vertical in the hot position.
(p) Hangers shall bc designed so that they cannot become disengagcd by movements of the support€d pipe.
(q) Hangers shall be spaced in accordance with ANSI B31.1. (r., Where plactical, riser piping shall be supported independently of the connected horizontal piping.
Pipe support attachmenis to the riser piping shall be riser clamp
lugs.
\Yelded attachments
shall be of material comparable to that of the
pipe, and designed
in
accordance
rvith gov-
erning codes, (s) Supports, guides, and anchors shall be so designed that excessive heat I'ill not be transmitted
to the
building steel. The temperature of
supporting parts shall be based on a temperature gradient of 100" F per inch distance from the outside surfrce of t he pipe.
IIANGER DESIGN SERVICE Ilangers for piping 2| inch and larger, and all spring support assemblies, shall be coi:rpletely engineered.
(a) Engineered hanger assemblies shall be detailed on 8] inch x 11 inch sheets. Each sketch l'ill include a location plan shorving the location of the hanger in relation to columns or equipment. Each sketch rvill include an exact bill of material for the component parts making up each assembly.
(b) Each engineered hanger assembly will be individually bundled and tagged as far as practical, ready for installation. Hanger material for piping 2 inch and smaller shall be shipped as loose material, identified by piping system
ouly. A piping drardng marked with approximate hanger locations and types, and hanger sketches showing typical support arrangements will be furnished..
L7r
ITT GITINNELL - PIPING Dt slc-\ AND IIN( I I Nllllttl-\ t' WEIGIITS OF PIPING MATERIAIS
'Ihe tairuhtion of
rveights
of standard piping
materinls has bcen arratlged for conveniertce of selection of data that formerly consun,ed considerable time to develop. For specirl rnaterills, the three formulae listed telou'lor l'eights of tubes, l'eights of coutetrts
of tubes, and
rveights
of piping irsulation rvill
SPEC
ASrl!
AS t'\l
tr\reight of rube
:
F
x
10.68
X T X (D
-
T) 1b/tt
? : lall thickness irt irches D : outsidc diametcr in inches i' : relatile rveight factor leight of tube furnished in this piping data is per based ol lorv carl)on steel s'eighiug 0 2833 poultds The
cubic inch.
Relative Weight Factor F
Aluminurn " " o'35 Brass "" ' 1'12 Cast Iron "'' " 0'91 | 14 CopPer. Ferriticstainlcsssteel..... 0'95 l02 Austenitic stainlcss steel ......... i.00 Steel.... ." 0'98 Nrought iron Weight of contents of a tube
Gx.3lo5:xiD-2T)2 lb/It G : specific grar'ltY of contents 1' : tube lall thickrress in ir.rches D : tube outside diameter in inches
TOL!]RANCI'
IFICATION
be
helpful.
t72
The leight per foot of stecl pipc is subject to the follol'ing tolerlnces:
A;l li,*, -i7 I ilo,,\t A-120 irS ri r -' i0-o. l0-o -
|
*";x",'
ASrNr
A-1oo
.A.srr{
A-385 l?*1;9,*o* *oil",' -tui?
33fi ii;1?1.
-i:.:?"
|sli i_313 r2'landurrder +$.57a, -2.57a API
5L
+6.57a, -3.s7o
All sizes
The l"eight of l-elding tees and latcr&ls are for full size fittirgs. 'l'he l eights of rcducirrg fittings are approrimately tbe same as for fuiL size {itiirrgs'
The leights of rvelding reducers are for ole size reductiou, alcl are approximately correct for other reductions. \Yeights of lah-es of the same type may vary because of indilidual tnatrufacturet's dcsigtrs Listed valve leights alc lpplorimate otrly. Specilic valve u'eights should be used rvheu available.
\l'here speciiic iusulatiort thicklesses and densit'ics differ fron.i those shosl, refer to "Weight of Piping Insulatiorr" formula belolv or to Table on page 207' Weight of Piping insulation
I : ?: D: 1
X.021E
-
x?x
(D
+
1')
Iblft
itisulation delisity in poutrds pcr cubic foot' irrsrriatiou thickness in itrchcs outside diameter of pipe in inches
HANGIIIIS AND SUPPORTS
1t' ptp" r.3r'' o.D.
WEIGHTS OF PIPING MATERIALS
{/ /.4
u-r' z F
z E
i /> uJ
{i\
E=:I
z,\
E_=_:ir t_i___-J
ku Temperature Range 'tr'
Magnesia
2 Calcium F
Combina-
z
tion
FiberSodium
Boldface
iype is
weight io
ffi
pounds. Lightlece type beneath
MM d
Insulation thicknesses and weights arc based on average conditions end do not constitute
tNf.sF
ihicknesses ol materials. IiT sulation weights are based on 85le magnesia and hydrous calcium silicate at 11 lbs/cubic foot. The lisied thicknesses and weishts of
weight
z
Njs
z F
a
A)
IA
recommendation
for
for
specific
combination coverine ar1 the s]lms of ihe inner layer of diatomacecus e&dh e,t 2l lbs/cubic
#
foot and the outer la,yer at 11
,\.
z
is weighi factor
insulation.
/tN
lbs/cubic foot. Insuletion lveights include al-
for wire, cement, canvas, bands and p&int, but not lowances
1
special surface finishes.
To find the weighi of covering
on flanges, valves or fittings,
@ ,r\ +€
rc
Flaneed Bonnet
checl
* 16 lb cu. ft. densiiy.
multiply the weight factor by the weight per loot of covering used on stnight pipe. Valve weights &re &pproximate. When possible, obtain
weights from the manufacturer. Cast iron valve weights are for flanged end valves; steel weights for $'eldine end valves.
All
flanged fitting, flanged
valve and flange weights include the proportional weight of bolts or studs to xoake up ell joinb,
173
]TT GR]NNELL - PIPING DIISIGN AND ]'N (] I \
l/a"
ercn
1.660, o.D.
F]I,]]iINC;
WEIGHTS OF PIPING MATERIALS
Wall Designation
r'2
la
{_!_/
z
trt. w {t\
|.
r-:-i
z
.4'd.
/N
f-+r
\JJ Temperature Range "F
z
Magnesie Calcium
Nom. Thick.,In.
3 .l Combina-
z
iron
FiberSodium
2
z
ffi SW fs-i,N$ $:si,sB
AI
z
T}
L
.A N />
z
Boldface type
is l'eight
in
pounds. Lightface type benea,th
weight
is weight factor
insul&tion.
for
Insulaiion thicknesses and '$eights are based on average conditions and do not constitute
a
recommendation
for
specific
of mate als. Insulation weights are based on 85% magnesia and hydrous calcium silicate at 11 lbs/cubic foot. The thicknesses
listed thicknesses end x'eights of
combination covedng are ihe sums of the inner leyer of diatomaceous earth at 21 lbslcubic foot and the oute. layer at 11
lbs/cubic foot. Insulation weights include al-
lowances for wire, cement, csn-
vas, bands and paint, but not special surface finisbes.-
{={3
@
3
ltl' )
+
rc
174
Io find the r|erght ot covenng on flanges, valves or fittings,
mrrltinlv the rveicht factor bv the ueighi !er foot 6f covering used on strargnt prpe.
Valve $ eights are :rpproximate. lYhen Dossible. obtain
weights from th6 manufacturer. C&st iron valve weights arc lor flanged end valves; steel weights for xelding end valves. AII flanged fitting, flanged valve and flange weights include thc DroDortional lve;qht of bolts
or si,udi to make up all joints.
* 16 lb cu. ft. densitY.
IIAN(-:iENS AND SITPPORTS
WEIGIITS OF PIPING ITATDRIALS
r.eoo" o.D.
l/2"
etea
is
weight in
z1 at
z F
z
w t^ w {i\
L::I
: -4,L,
E
/i\
L]--,-)
\U Tcmperoture Range "F
2
Magnesia Calcium
F Combina-
z
tion
tr'iberSodium
Soldface type
M$ z
strri$
Njs $:1Is z
,'A
L
/A
z
/}} B' .tl
,N
,k{3 Fr
@ li|1
+<J
KU
* 16 lb cu. ft. density.
pounds. Lightface type beneath
*erght rs lvelgnE Iacior Ior insulation.
fnsulation thicknesses anil weights are based on average
condiiiods a,nd do not constitute a recommendation fot specific thicknesses of rnaterials. Insulation weights are b&sed on 8570 maenesia :rnd hvdrous crlcium silicjte at 1l lbsliubi. foot. The listcd thiclinesses and u'eights of combin:r.tion covering are the sums of the inner laver of diatrom&ceous earth a6 21 lbs/cubic
foot and the outcr layer at
lbs/cubic foot. Insulation weights include ol-
11
lowances tor wire, cement, can-
vas, bands and paint, but not specjal surfr.ce fi nishes. To 6nd the weight of covcring
on flrnges, vrlves or fittings'
multiply the we;ght fector bl' the we;ght per foot oi covcring used on shra;qhi pipe.
lre approxi-obto;n possible, \yeiqhts from the ma,nufacturer. Cast ilon volve $eiqhts rre lor flcneed cnd velves; steel weights for ileldinE end valves. valvt
w,lidhts
mate. When"
All
flaneed
fitting,
Ranged
valve end flInee weiqhts jnclude tle prot,ortion;l wciAht of bolts or siudi to make up cll ioints.
t75
ITT GITINNII],I, -- PIPING DESIGN AND I]NGINI]ERING
2" pwn zB7''o.D.
WEIGHTS OF PIPING MATERIALS
fr
4J-{
tu?
z
w
F
{T\ E=:I
z = E
/T\
L_t_,
\t"J Temperature Range "F Magnesia,
2 Calcium F
Combina-
z
iioD
FiberSodium
ffi z d.ll1l.\$
N]s $i:N AI
L}
z
.A
F
,N.
/N
z
]}', 'it
1-{]
@ |lll
+
type is weight in welgnl ls wergh! laclol ror Boldface
pounds. Lightface iype beneath
insulation,
fnsulation thicknesses and weishts ere based on averaqe
coniitions and do not constituie
s, rccommenda,iion for
specific
thicknesses of ma,terials. Insulation weights are based on,857o maqnesla and nvorous calclum siliAte st 11 lbs/cubic Joot. The listed thicknesses and weighis of
combination covering are the
sums of the inner l&yet of diatomaceous earth at 21 lbs/cubic
Joot and the outer l&yer
e,t
11 lbs/cubic foot.
Insulation weights include alfot wire, cement, canvas, bands aDd paint, but not
lowances
surface finishes. special -
To find the weight of covering va,lves or fittings, multiply thg weight factor by the wergnt per looc oI coverrng useo on straight pipe.
on flanges,
Valve weishts are
approxi_
AII flanged fitting,
flanged
mate. When- Dossible,
obtain weishts from the manufacturer. C:&st iron valve v.eights a,re for flanged end valves; steel weights Ior weldine end valves.
valve and flanee weiehts include the DroDortion;l weisht of bolts or siudi to make up all joinrs. * 16 lb cu. ft. derxity.
HANGERS AND SUPPORTS WEIGHTS OF PIPING MATERIALS
2.878 o.D.
2/2"
ewn
n
(J-/ z F
z
l
{!.}
{i\ Ei:l //\^ /\
!-l__,
s*lJ Temperature Range
z
'F
Magnesia Caicium ,
,t Oombin&-
z
tion Fiber Sodium
ffi
z
& Nl-$s
N (,
z
r.4
# ,N
z
d.4
+.€ .t
@ n
+
* 16 lb cu. ft. density.
Boldface
type is *'eight in
pounds. Lightfece type benc&th
{,eighi is weigh6 Jactor for insulation.
Insulation 1hicknesses
and
weights are based on average
conditions and do not constitute
a
recommendation
for
specific
thicknesses of metedals. Insutstion lveights are based on 85% magnesia and hydrous c&lcium silicate at 11 lbs/cubic foot. The listed thicknesses and \reights of combination covering are the sums of the inner lalrer of dia-
at 2l lbs/cubic foot and the outer layer at tomaceous earth 11
lbs/cubic foot.
Insulation *'eights include a1.lowances iot $1re, cemen[, c&n-
vas. bands and Daint. but not
speiial surface finishes. To 6nd the weight of covering on flanges, valves or fittings, multiply the n'eight factor by the \aeight per foot of covering used oI1 straight pipe.
Valve weights are approxima,te. When possible, obtain $eights frorr the manufacturer. Cast iron valve weights are for flanged end valves; steel \reights
for welding end valves.
All
flanged fitiing, flanged
valve and flange weights include the proportional weight of bolts or studs to make up all joints.
3
tt prpn B.boo' o.D. Schedrrle No.
Wall Designation
Thiknegs-In.
WI'IGIITS oII 40
srd. .2t6
3 i/!|
a5
L.R. 90" Elbow
L!r' {h
S.R.90'Iilbow
:Z {r\ t*rJ A 4',4. ttrf,t-l
ri\ {-t \JI
L.R. 45" Elbow
.300
.433
.600
14.32
18.58
3.20
2.86
2.35
4.6
6.1 .8
E.4 .8
10.7
.8 .5
.5
4.4
5.4
F
z
.8
.3
.3
7.4
9.5
12.2
14.8
Tce
.8
.8
.8
.8
Lgteral
t.ri
l3
l9 t.s 2.9
3.7
Reducea
.3
.3
.3
1.4
.1.8
3.5
.5
,5
.3 .5
100-190 200-299 300-3$9 400-4$0 500-599 600-699 700-790 800-899 900-sr9 1C00-1099 1100-1200
i
2
2%
3.01
3.01
4.07
5.4
(ittnl)ir)a- \onr. 'Lhir,k., ln.
2)1
3
3
3
3\/4
31,t
uon
5.07
6.94
6.94
6-94
9.17
9.t7
Calcium
\om. T|ick., In.
I}s Iit
\om. TLick., Lr. Ll,s,/|t Prcssure Rating
1
1.25
1.25
,@ Srirs N-l-s $s
r#) ,'11
<-:: E ts' tfl
3
3t/4
3%
1.6r
l.6r
1.61
2.74
2.74
3.9E
3.98
6.99
6.99
8.99
8.99
(jast lron
Steel 20
20
1l
l9
Welcling Neck
1.5
t7
Lap Joint
9 1.5
19 110
20 53
250
9
t0
1.5 11.5
S.R- 90" Elbow
3.9
46 t32 4 | 3.9
30
50
L.R. 90' Elbov
4.3
26
4l 45" Elbow
3.5
3.6
39
61
Tee
5.9
Ilanged Bonnet Cate
66 7
7.4
Flanged Bonnet Globe or Angle
7.2
7.6
Flanqed Bonnet
46
r00
Bolnet---Globe
6.65
3
t7
Pressure SeaI
6.65
2
9 1.5
Bonnet-Cote
5.24
2
Slip-On
Pressure Seal
s.24
1%
600
Blind
3%
r%
400
ot
3%
1
300
Scren ed
3
I
125
Chec-k
178
2.08
3
1
RN
6/\
1t
150
psl
9 E
1
Il;s.'l't
Sodium
-
80
.3
'l'
I,S
2
Maglesia
Fiber-
3
l
.3
Tonll)er&ture Ruge
!
2.4
cap
}I.\TI.]III'\
160
r0.25
Pipe-Lbs/Ft,
\\'rter-Lbs/Ft
80
I'IPI\(i
tt2 r2l
40
63
4.3 46
3.5
6l
2500
6l
102
1.5
l.D
38 1.5
6l
rl3
1.5
1.5
l9
t9
36
60 1.5
99 1.5
24
38 1.5
6l
r05
67 4.1
9E
150
4.4
4.6
is weight in weight iactor for
Boldfece type
beneath Dounds. Lichtface tvpe -
*:eight
is
insul:rtion.
1.5
Insulation thicknesses
rc based Dased on $eiqhts are
and
average
constitute conditions and do not constitute
specific endation for sPecific recommendation materials. Insula,_ Insulaof materiels. ts are based on 85% tion \i'eiqhts calciurn hydrous calcium macnesii and hydrous foot, The The 11 lbs/cubic foot. siliAh at ll (nesses and weights ot of listed thicknesses )n covering are the combination 're inner layer of dia_ diasums of the tomaceous earth at 21 lbs/cubic
a
thicknessesr
layet the outer laYet foot and ihe
60
93
r35
3.8
3.9
4
r02
151
23E
5.9
6
6.2
10
125 4.4
t55
I
1500
27 1.5
1.5
4.3
900
6.9
4.8
260 5
410 5.5 495
60
95
4.3
4.5
4.8
5
60
70
120
I50
4.3
4.4
4.8
4.9
5.8
20E
235
3
3.2
t35
1E0
440
3
a,t
ic foot. 11 lbs./cubic
rn *'eights include alInsrllation can\\'ire, ccnlent, cen\ent, cirnor \\'lre, lo$aDces for a.nd ptillt, vas, bandsr and ;!aint, but not face finlshes. finrshes. surface sDecial 'To find the ueight of covering hLtings' i, valves or nlungs, on flanges, by ihe the factor bY ie weight fa,ctor multipltthe usecl weight.per' foot of covering used DiDe. on s[rarghiI prpe. approxia.re approxl' viilhts are Valve weight"s possrDle, oo@rn obtain hen possible, rnate- When rm th6 manufaciurer. manufacturer. weishts from valve weights are for C-"ast itonn vs,lve weightl steel weights d valves; stiel flaneed end for i'eldineE end valves. flanged iged fitting, fla4ge.d All flanged jnclude weiqhh jnclud€ flanse weighk valve and flange
bolts 'tion;l $eiEht $eight of boltr the proportionat up all ioints, o mal(e uP or siudi to ioints. * 16 lb cu. ft. density.
IIAN(-i]'ITS AND SIIPPOIiTS WEIGHTS OF PIPING T,{AT]'RIALS
4.ooo"
o.D.
3/2"
rwo
Pipe-LbsTFt
Weter-Lbs
ft
Uf z
[
,.>
t!L_.4J
ft
E.;f
z
,t\ !__
t
_--t
Temper&ture Itange flegrresia
'F
Nom. Thick.,In.
Calci[m
Combina-
z
Nom. Thi(k., In.
tion
FiberSodium
typc is rvcight in $ eight is *eight tsctor for Boldface
pounds. Lightf.lce tl pe bcneath
N;lS O
z
insultrtion.
Insulation thicknesses and Neights arc basecl on average
$rrtM
conditions :rnd do not constitute
Nls
r
{N.is .-x
specific
(iombinstion coverilg arc thc
sum-. of thc iDner
,-a
tomaceous eerth
l:rler of
di.!-
at 21 lbs,'r:ubic
foot anll the outer loycr
dt
11.lbs cubic foot.
,N
Insulation $eights include al-
/9s
z
for
magnesia end hl drous crlcium silicate at 11lbsr'cubi| foot. The listed thicknesses .rnd $ cishl.s of
/11
z
recommendrtion
thickncsses of materials- Insulatiorl lveights are based on E5%
lorvanr.cs
foLLrirc, ccment, cxn-
va.., bdncls and paint, but not
*
special surf ar:e {inis}rcs.
To finrl the geight of covering
on flengcs, valves or fittiIlgs, multt)l)-the \reight ftrctor bI tho
|{ a
wcight per foot of covcring use,l on.'truighl pip"-
@ fil
\
cu.
ft.
ts jlrc
rlrpro\r-
All
rc li
\\'crgr
Lrlrtxin rveights from the m.rnulacturer. Cast iron vslve $cights are for flanged end valves; strlcl \leights for rvekling end valves. I1:rnged fitting, flangcd valvc and flange rveights include
+<J * 16
rl\.c
mrte. lVhcn possible,
the ploportionll weight of l)olts or studs to make up all joints. density.
I'iT (iIII\\I]I,I,
4" ,t
"
4.soo" o.D.
PIPING DI'SIG\
A\I) I]\(;I \
I.]1'II,I\
(i
WEIGHTS OF PIPING X{ATERIAI,S
d)
Ltr z
{ ,^\ u.e
tF
ft
(.)
E--'-I
z
g\
i
dllr -JI
\IJ 'l'empcruturf lilrngo'lr N{agnesia
-\om. 'I'hi(ik., In.
z Calcium,
(lomlrinr-
z
tion
Fiber-
\om.1'Iick., In.
Sodium
(llsi, Iron
ffi z
$fi$ N_l_s trl\ir,sN -41 /A
z
A
L.L
N />
2
E44A
Boldface tvpe
pounds. Lightface
lveight
is weight in tlpe
beneath
is $eight factor
lor
insul&tion.
Insulation thicknesscs
and
weights are based on average conditions and do not constitute
recommends,tion lor specific of materi&ls. Insulation weights are besed on 85% magnesia and hydrous cakium silicate a,t 11 lbs/cubic foot. The listed thicknesses a.nd \reights of combinatioo covering are the sums of the inner layer of diotomaceous earth at 2l lbs/cubic
a
thicknesses
foot and the outer 11 lbs/cubic foot.
ls,l
er at
Insulation lveighls include al-
lowa,nces
lot vire,
cement, can-
vas, bands and paint, but not speeial surface finishes. -
To find ihe reight of coverinB
F{3
@ r\ lAi
+
t4
on flanges, valves or {iltings, multiply the weight ir.tor l,J'
bhe
weight per foot of covering uscd on straight pipe.
Valvc weights are approximate. When possible, obtain
\\'eiqhts from thc manufecturer. (hsi iron valvc wciqhts are for Ilanged end velvcs; stiel rveights Ior n eldine end valves. ALI flanged fitting, flanged valve and fiange weights include the orouortionirl rveieht of bolts
or studi to mrke up all joints.
* 16 Ib cu. ft. density.
180
HANGERS AND SUPPORTS 1VEIGHTS OF PIPING MATERIALS
\f nter-I
bs7 t
{a
F
o.D. 5
tt
prpn
t
u-/ z
5.563"
15.6
|
t7 .7
{l\-" _t
1-
z
.4'A t---i
,
\1"' Tcmperature li.:r.nge "F
z
o
FiberSodium
,l Combina-
z
tion
Ilo)dface iype
z
is
s-eighi in
pounds. Ligbtface t1'pe beneath
4q-$
\reight,
${r..;M
Insulation thicknesses and \reighis arc bascd on :r.verage conditions and do not constitute
N-IS$ Els'i:s
4 /,4
z
,41
|.
/r4 ,N
/?s
z
is $eight f&ctor
for
insulation.
recommendation fot speci{ic of materials. Insulation lveights are ]rased on 85% mngncsia ancl hldrous calcium siliCatc at 11 lbs/cubic foot. The listed thicknesses and rveights of combinetion covcring are the sums of the inncr laier of diatomaceous earth at 21 lbs,/cubic
a
thicknesses
foot &nd the outer la,r'cr at 11 lbs /cubic
foot.
Insuhtion \reights inclrrde al-
lorvances
lor
\\_ire, cement, can-
ves, bands and pdini,, but not special surface finishcs.
1-{
@ lll)
l
lb cu. ft. density.
To lind thc rvcight of covering
on flanges, vrlves or fittings,
multipl-\' the \\eight factor bt'the $eight per foot of coverirrg used on -qtraight pipe. Valve l'eights arc approxi-
mate. lVhen possible, obtain
weights from thc manufacturcr. Cast ilon valve Ycights :rre for flanged end velvesistcel $ eights for r"eldins end valves. ALI frrrigetl fitting, flangcd vrJve rnd t nge rveighhs inrlude the proportional weight of bolts
or studs to makc up all ioinis.
6" ptpn
6.625, o.D.
WIiIGII'I'S OT PII'INCI XI,\TI1RI,\LS
\\"ster--.Lbs Ift
U,tz
fn {i\ fJ:I
z tl
a-j-,
z
E--
/\ fr-D
\JJ 'l empcraturc lhngc "F
z
l{agnesia
\om. TLick., In.
o Calcium
z
Conrbinrtion
\om. Thilk., In.
FiberSodirm
4d-x$ z
i #r-rM
N+S 0s:s'
/41
/,4
z
Boldface type is *eight in pounils. Lightfa.e tl pe bene.rth \r'.lght rs \elgnL rscrnr ror insulation.
Insula.tion thicknesses
magnesia and hydrous calcium silicate at 11 lbs/cubic foot. The listcd thicknesses and veights of
combination covedng &re ihe
sums of the inner layer of diatomrceous earth at 21 lbs/cubic
foot rnd ihe outer l&yer at
\
11
lbs,tubic foot. Insulation Neights include al-
lorvanccs
z IP
LI]
F4l
@
v2
U
+<J
rc
r82
and
weights are based on cvercge corditions and do ltot constitute a rccommcndation for specific thickne-.ses of meterills. Insulation rveights tre bascd on 85/p
for \rire, cement,
can-
v:rs, bands and peint, but not soecial surface finishes.
' To find the {eight of cqvedng
flsrrges, valves or fittings, the \\'ejghi fr, tor bJ- the \\ergh! ler looi ol covcfltlg useo on straight pipe.
on
multipll
\ralvc $'eights are &pproximete. When pos-.ible, obtain
\Yeights from the manufecturer. Cjast iron valve \rcights arc for flangcd end valves; stcel rveights fol rvclding cnd v:rlves.
All flnnged 6tting, flrngcd vxlvc and flrnge \\'.iglris include tlre rrror)ortionxl lv.ight of irolts or siu,l! to mrkc up rll joints. * 16 lb cu. ft. density.
HANGERS ,\ND SUPPORTS
WEIGI]TS OF PIPING MATERIALS
8.625"
o.D.
8"
prpo
$ratcr-Lbs/l t
f,,7
ta
z
z
L!./ ! /) x_p
{i} LJI
-4\
i tr::t
di\
\IJ Tempcrature Iiange Nlagnesia
'F
Nom. Thi, li., In.
2 Calcium o F
)
z
Clombine-
Nom. Thick.,
In.
tion
FiberSodium
7 El
F
is
ffi
ilsulation.
sm$
rveiglrts ale besed
Nis
a
(x!\Nl z
Ilolclf.rce t-\'pe
A 4l
rveight in
p,,un,ls. Lighth, e t.vpc l,enccLh
\ cighl is
\\
L,ighb
Jirtor
for
Insuhtion thi(knesses :lnd on average
coDditioDs and
do
recommendstion
ot constiiuic
for
spccilic
of matcrirls. hsulation Ncights arc bascd on 85!i thicknesses
magncsia aDd hldrous calcium silicate it, 11 lbs/cubic foot. Tbe listed thicknesses and rveights of
combination covering are the sums of the inner layer of diatomeceous earth
at 21
1bs,,/cubic
foot and the outer ldl.er at z
I
,N />
c3:9E
11
lbs/cubic foot.
Insulation rveights include al,lowances 1or \\ lte, cement, caDve,s, ba,nds and Daint, sDecial surfecc finishes: -
but not
To find the $eieht of coverine
{.<3
t4
t
m
+
* 16 Ib cu. ft. density.
on flanges, vdves or fittings,
multiply the $ ejght factor by the \eight.per foot of covering used on sirarghl prpe,
\.alve s.ciehts are aunroximate. l\rhcn- possible, 'cjbtsin
'\rcights from the m'rnufttctluer. Cast ilon valve Neiehts ere for flangcd cnd valves; stiel veights for * elding end valves. .\11 flanged fittins, flansed v&lvc and lirrnge veiglrts in.lude thri troportionrl \leight of bolts
o! studs to makc up all joints.
I'IT GITINNI'LI,_ PIPING DESIGN AND
10tt ptpn ro.zbo" o.D.
z
z
ENGINI]ERINC;
WEIGHTS OF PIPING X{ATDRIALS
,A.
{-p fl.r EJ:I
,l F
f,1-t L-r----,
\]J l'empcrr,ture lirngc "tr' Mggnesia
z Calcium
Combin&9 tion
z
FiberSodium
ffi z
s{-F$
Nls $::i:.{} z
.A z
,t
N
@
m
+<{
rc
Boldfa.ce i"1'pe is $'eight ir bcneath oounds. Liehtfcce tIDe -
i\eight
is
rveight
Jsctor for
insulation.
Insulation thicknesses
and
weiqhts are based on average conilitions end do not constituie a recommendation for specific thicknesses of materi&ls. Insulation weights are based on 85% mcsncsia and hvdrous celcium silicrte at 11 Ibs/cubic foot. The listed thicknesses and weights of combination covering are the sums of the inner layer of diatomeceous earth s,t 2l lbs/cubic
foot and the outer layer at 11
lbs/cubic foot.
Insilation weights include allowances {or \tire, cement, can-
vas. bands and Daint, but not surfoce finishes. speiirl To find the veight of covering on flanges, valves or fit[ings, multiply the r-\'eight factor bv the werghl per loo! or coverlng useo on strcight pipe.
Valvc rrcights sre rppro\imrtc. Whcn possible, ol)t$in \\'cights lrom thc manuf3cturcr. C{st, iro \'rh.c \\'cights are for
flauged end vrlvcsr steel $'eights
fol rveldine end valvcs. .\ll ftanged fitting, flonged velve and lluqe reislrts include tle DroLortionll rveicht of holts or s'uu,l! to make up all joints. * 16 lb cu. ft. deisity.
HA\GERS AND SUPPORTS WEIGHTS OF PIPING MATI'ITIALS Schethrlc
\o.
20
30
40
\\'all Dt:signation
ui
nw zf\ F flII
E PrT\ o t-+-+
3 g'r.
F:
\
L
Thickness In.
.250
.330
Pipe-Lbs/Ft Water-Lbs/Ft
33.3E
43.8
49.6
51.10
49.7
49.0
.562
.687
73.2
47 .0
46.0
88.5 44.0
L.R. 90" Elbow
157 3
S.R.90'Elbow
80 2
l04
60
7E
1.3
1.3
r32
t67
Tee
100
120
.8{3
r.000
| |
107.2
41.6
375 3
lEl 360
2.5
2.5
44 ,7
94
30
3E
E9
'F
100-1!9 200-299 300-399 400-409 500-599 600-699 700-799 800-899 900-9c9 1000-1099 1100-1200
Nom. Thick., In.
1j;
1t'
Ilrs/Ft
6.04
6.04
tion
I-bs/Ft
Fiber-
\om. Thick.,In.
Sodium
Lbs/Ft
r%
8.
2
21/l
t3
10.5
ll/t
1rz
1%
3
1%
Cast Iron
3
3%
4
4
4t/t
414
12.7
15.1
17.9
17.9
20.4
20.4
3
3\l
4
4
411
4k
17.7
21.9
26.7
31.1
31.1
2%
2t4
4
4
5
5
14.20
14.20
24.64
4.64
32,fi
32,fi
Steel
Pressure RaiiDg psr
125
250
150
300
400
600
900
1500
2500
Screwed or
7l
r37
72
140
164
26t
388 1.5
E20
16ll
W-elding Neck
88 1.5
163 1.5
212
4s4
843
1919
1.5
1.5
1.5
1.5
1.5
Nji$
Lap Joint
I6,t
rE1
1.5
286
433
902
1573
1.5
1.5
1.5
1.5
1.5
1.5
{3<sNN
Blind
IIE
209
261
341 1.5
475
92a
1775
1.5
669
8r5
1474
5.8
6.2
Slip-On
a.4 a /t ? /11
S.R. 90" Elbow
=
L.R. 90' Elbow
L{
45' Elbow
1.5
96
265 5
453
6.2
414 4.3
4.3
4.3
403
684
5r3
7.8
808
9.4
j!|J
Flanged Borrnet Check
Bonnet-Clobe
159E
6.2
383
Fbnged Bonnet Globe or Angle
* 16 Ib cu. ft. densrty.
624
6.2
4.3
, F{3
Pressure Seal
485
235
687
1298
7.8
Bonnet-Ga.te
509
6.2
Tee
Pressure SeaL
345 5
6.2
Flanged tsonllet
rc
r77
375
1=43
+
34.9
33 .7
f,
<-::, E IP
39.3
Reducer
Combina- Nom. Thick., In.
B,N (J /9N
1.312 160.3
5.4
Y
/A
1.125
139.7
Latera.l
Maqnesia Calaium Silicate
zs{i$
1G0
2
2.5
?
,ffi
140
ptpn
180
Tempcnr.turc Rlnge
-
48.5
.500
65.4
119 3
L.R. 45" Elbow
80
12"
XS .406
Crp
;z
60
srd.
rz.lilo'o.D.
5.2
4.7
4.8
754 7.8
943
1361
1928
8.3
4.7
s.3
10r5
1420 5.5
21s5
2770 7.2
4
5
1200
710
1410
9.5.
5
674
1160
9.4
9.5
560 6
7
Insulation thicknesses and rrc Lrse,l on evcrnge
\YPiqhts
corrclltrons
a
r
crL.L
FcolnmL,r
'
ilo not constitute
lxtion Jor
tion lreights ale
1410
6.5
listed thir:knesses and treiqhts of combinatiol coverinE are thc .qums
of tbe inncr hr:er of dill-
2i lbs/cubic foot and the outer la\.er at tonLlccous e:uth et 11 ll)s/cubic foot.
hsulation lcights include al,lo\tences lol \\'lrc, coment, cllll-
vas, blrncls and Drint, but nob
4650 8
3370
7.2
2600 8
1975
2560
4515 7
6
on 85%
brLscd
magncsia ltnd hldrous calcium
spu(irl sur'facc lini-sLes. To find the \eight of covering o|1 fl3nHcs, l.rlvcs of ]ittinss. multit,l.r th! \\ciglrtf.L,.toL l,.r' the \"rAht t,rr'foot oI covc|ing uscd orl strll rarrL pllr(,. Vrtve 1v;iih ts
720
stre,,itic
tLi, kI csq,s of matc|j]]s. Insuh-
silicite at 11 lbs,/cubic loot. The
tt24
469
4.5
is rr,,ixht jn tytr b$erth \\ crglLt js $ ciglrt futtor for Boldfrce t1'pe
pounrls. Lightfeco
I
rrc
er,rlori-
m;rt". 1\'hpn 1,os*ilrts,,rlrtrrin
\'eights from tirc mamufroturer. Oest iton valve rveights are for fl.Lrrjje,l,, n,1 vulvrs: sterL rrciglrLs tOt
\\ eLLl
,1ll
Ing Cnd
flc
r,Aed
virLVCS.
fitting,
flrnged
rnd Ilxngc \\'ciglrts inrlude proportioncl \rejg thc l)rolrortioncl \rejght of bolts or studs io make up all joints. v:Ll\ c
I6D
ITT GIiINNEI,L PIPING DESIGN AND ENGINODRI]{G
14" *r*" 14" o.D. Schedule No.
WEIGHTS OF PIPING MATDRIALS 10
20
.250
.312
30
Thickness-In.
Pipe-Lbs/Fi Water-Lbs/Ft
W f4
.
{Jj
Eh, F{#
E {i\ I t-+-l 3 4',4^ EE-
s6.71 62.06
.438
45.7
54.6
60.92
59.7
63.4
140
.593
.537
1.093
1.250
1.406
34.9
106.1
130.7
150.7
170
r89.I
50.0
47 .5
55.9
5E.7
160
2
42.6
45.0
r54 3.5
L.R. 90' Elbow
r02
135
2.3
2.3
S.R. 90' Elbow
100
L.R. 45' Elbow 203
159
Tee
2.8
2.8
218
340
Lateral Reducer
63 1.1
83 1.1
\jJ
cap
t.7
1.7
46
Temper a,ture R&nge "F Magnesia
E g,il::Yi
Fg
.1 LOmotna-
6 ilon
1100-1200 100-1s9 200-29S 300-399 400-499 500-5s9 600-699 700-799 800-E99 900-99S 1000-1099
Nom. Thick.,In.
Lbs/Fi
6.16
1%
2
2th
3
3
3%
4
4
4%
4%
6,16
8.3E
10.1
13.1
13.1
15.8
1E.5
18.5
21.3
21.3
3
3%
4
4
4)A
1E.2
22-a
27,5
]2.4
Nom. Thick.,In.
Lbs/Ft
FiberSodium
\om. Thick.,In.
1t1
1la
Lbs/Ft
7.90
7,90
Pressure RstiDg
,ffi 3$N -
dN-iM
{fiw o
r$l 2M F
-tt rA
fiA zh4
.!l E It' ll---iJ
ru
*@ 3U
+4J
rc
186
120
.500
Ll-,
I
100
XS
srd.
Wall Designation
EO
60
40
psl
Screwed
o!
C".l I-.
2
3
3
4
4
11.r8
11.18
18.00
18.00
25.42
25.42
St"l
I
125
250
150
300
400
600
900
1500
93
lE4 | 1.s |
96
195
235
31E
460
1016
1.5
1.5
113 1.5
217
642
110
220
254
1.5
1.5
1.5
Slip-On
Welding Neck Lap Joint
Blind
7.90
2
406
1.5
617
497
632
664
91E
1549
5.9
6.4
767
622
6.6
6.6
6.6
497
377
587
63E
EE3
1246
4.3
4.4
4.6
4.8
4.9
683 8
96E
1131
1652
2318
8.9
9.6
1920
2960
4170
6.3
7
8
312 192
4.3 563 8
956
Tee
Flanged Bonnet
92r
1762
7.9
8.8
Flanged Bonnei Globe or Angle Flanged Bonnet, Check Pressure SeaI
BonBet-Gate Pressure Seal .
Bonnet-Globe
8.4
905 4.9
.nd do not constitute con-ditions and specific ndation for sPecific a recommendation lnsula" materials Insulathicknesses of materials.
E5% tion rveiqhtsr are based on E5%
I1 lbs/cubic: foot.
alweigbts include aL n rveights Insulation can rr wlre, cement, caD_ wire, cemeni, lowances for no' p3jnt, but bub noi vas, bends and paint, finishes ace finishes. sDecial surface
6425 8.8
'To find the coverint eight of covenng he $$eisht fittings vulvEs or fittings, on flanses, valves
th' frctor bY the multiph: thee weight factor use( foot of covering usect l'eighi per fooh pipe. on straight p1pe.
'eichts are approxl approxl_ Valve weiqhts
9.9
9.9
and r thicknesses and Insulation weiqhts are, based on average
crlcium hr drous calcium nd hldrous meenesii :rnd Th€ foot Tbe silic;te at 11l lbs/cubic foot. of lesscs end \Leights ol lisi,ed thicknesscs the covering are th€ covedng r jnner combin:r,tion dia ls1er of dia_ sums of the: inner layer lbs/cubic serth at 21 lbs/cub( iomaceous eerth
1.5
ttll EE5
Boldface ivpe is rteight in l,iqhthce t\'pe bcneith ireight is - \\eight lactor for Dounds.
al l&Yer at outel l&yer foot and the outer
8.3 6
1076 1.5
437
r42
45' Elbow
Gote
574
354 1.5
239 1.5
292
477
267 1.5
126 1.5
S.R. 90' Elbow
L.R. 90' Elbow
349
5
insulation. 1241 1.5
1.5
2500
5
32.4
obtair eri possible, mete. When Possible, obtain m the th; manufacturer. manulacturer. weights from
1010 11155
sls.2
2620 ti
3475
6380
ro $elghts are for Cast ilonL valve weishts welght sheel weights flanged endt valves; sGel for weldins i end valves. frenged ged frtting, frenge' flanged lnclud eights lnclude lcnse $$eights valve cnd frcnge t)olt of bolts \eighL.ot tionrl \eisht the proportionrl uP all joints. m:l,ke up Jolntr or studs ior rnake 16 lb cu. ft. density
All
'
I]ANGI]RS AND SUPPORTS
tu'o.o.
1YEIGHTS OF PIPING MATERIALS
16"
prpo
A
u_/ z F
z
*
f>\ u,r {i\ L-I
g\.
A
Tempcreture Rcngc
z
'F
Megnesia Calcium
F Combina-
z
tron
FiberSodium
ffis
z
&
Nlrs N z |.
A rA ,N
2
/F
tvpe is rveight in r\cight is $eight factor for lnsulaitonInsulation thicknesscs end \4eights 3re bascd on cverage Boldface
pounds. Lightfrce tJ.pe bcnerth
conditions and do not constihule
a
recommendation
for
specific
thicknesses of rnateri.rls. Insulation weights are based on 85/6 magnesia and hydrous calcium silicate at 11 lbs/cubic foot. The listed thicknesses and weishts of combination covering ar-e the sums of the inner layer qf diatomaceous earth at 21 lbs/cubic
Ioot and the outer la,yer 11 lbs/cubic foot.
s,t
Insulation wcishts include allowances for wira, cement, canvas,,bands &nd paint, but trot speelat surtace nnrshes. To find the weieht of coverins
on flanqes, valvis or fittinesl
multiplttlie
@ hJ
+
t4
* 16 lb cu, ft. density.
weight facior by t-he weight per foot of covering used on-sIrfLrgnt prpe,
valve \4clghts are &rJDroxtmrte. When- possible, obtrin weights from ihi manufacturer.
Cast iron valve weights are for flanged.end valves; stiel reights IOr Wetorng eno valves.
AII
flanged fitting,
flanged
velve and flanee weiehts include the proportion-el weight of bolts
or studs to make up all ioints.
ITT GITINNI'LL PIPING DESIGN AND ENGINI]I'RIN('
18tt pt""
18'o.D.
\\'ater-Lbs
!'t
to
z F
{p
z
EJ-I
F
/
WEIGHTS OF PIPING ]\{ATERIALS
{;\
-rt.,\,
B
A \J-J --
'f0mper.rturc llllngc "F
z
o
)
z
M&gnesia
Calcium
(lombireiion
FiberSodium
ffi
z
ffi Ssjs Enw
ttfe is rcight in ir.igl,t is- $cigl't irctor for IJollhce
nourrils. I-ielLthL e tvnc beneith insul&tion.
Insulation thi.knesses
and
$'eiglrts arc brscd on average conilitions and do not constitute
a lccommc[(htion for
spcciGc
thiekDcsscs of mri,cri&ls. Insul&_ tion \\ciqhts ue )rased on 85/6
maqnesii nnd hrrilous calcium
silicate ct 11 lbs/cul)ic {oot The listcd thickncsscs and rveights of
combination covering erc the
z
rA
t-
A
z
sums of the inrrct h1'er of diatomaceous etith at 21 lbs/ctrbic
foot and the outerr laYcr at 11 ]bs,/cubic foot.
hsuhtion Neights includc alccmenl, ca,nfor $;rrc, \';irc, ccment, lorvtnces ior lowrn(es
vus,.l,rnrls cnrl. l,nint, Lut not \iia r'rI sulfrcc srtl l:rcc nnlsllcs, s1r'iirl 'to rir',1 tt,c reiglrt of coveling
on lling"s, vJv"s or fittings,
$ cight Jxctor l'J the rreigl,h por foot oI coverints uscd on straight l)ipe. Vnlvc Neiglrts 3re spproxrmate. 1\then possil,Je, obtain $eiehts from the msnufa,ctuler. Cast iron vllve rveights are for fl:r,nged end vaivcs; steel \teighis for ;et(line end valves. All fltneed fitting, flanged valve en.l flrnge \\'uights include the uoDc,rtionirl rreiEht of bolts or siudi to m;rke up all joints. * 16 h cu. ft. deDsity.
multil'll:ihe
t
@ ltu
i-
rc
188
I]ANCERS AND
STTPPORTS
20-
TTEIGHTS OF PII'ING }I'\'IDRIALS
z F
z
o.D.
20" ,t
u
&?
f^
i_:-.t
{i\ trJ:I
g\ E=_r L!_'
T, rnfrrxiurc llrr,A,
z o
Magnesi&
z
\om. Thirtr., In.
Calcium
F
)
'F
Combir)tr-
Nom.l'hick.,In.
tion
FiberSodium
z
ffi $4-iM
\rcights ele brsccl on average rrr ditions and do not constitute
N+s trNrN! z k
Roldface tvpe is \\'cight in
rrounds. Lightface tl pc l-.eneath
A /,\ ,--l /A
/> ,L\
ir'eiehi is l\'eiglrt fLiclor for in-rul&tion.
Insul&tion thid(nesscs
a recommcn(ll.ti(nr for
end
specjfic
thichncsscs of matcri$ls. Il$ulDtion weighls .rrc bescd on 85?'o
megnesia rnd lrldlous rralcium silioete at 11 lbs,,(iulric foot. The listed thi(ikness$ ancl rvoights of
combin&tion .overirg l|tc the sums of thc inner l:r-ver of diatomilceous ellrth at 21 lbs,/cubic
foot .rnd the outcr la)'e! at 11 lbs,/cubic foot.
Insulation \\cights inrlude allo$urces for rvirc, cement, c{Lnvas, barrds cn(l print, but not speciLrl surface linishes.
To fnrd thc xeight, of covering
on flangrs, vllvcs or fittings,
2
@ r\ J<{
rc
* 16 lb cu. ft. deDsi',y.
multil)h thc \veight frctor bt'the $eight l)er foot of .ovcling used on slreight pipe.
\-rrlvc 1\'cights rfe sptrfo\imrto. \1lren possil,le, ,,l,trin
cights fiom the manufactlucr'. Cast iron valve rreights arc for flanged end vrlves; stcel Neights for Nelding end vrlvos. All flansed fittine, flanged velvc rnd Hrng" $eights in,lu.lc $
DroDortionLrl \\eiqlrt of l,oLts or siuJi io m.rke up rl1 joints.
thc
ITT GITINN]'I,I, PT?I\(i DUSI(I\ AND I'\(}IN]JUR,IN(
24"
ptpn
24" o.D.
i
1YDIGHTS OI' PIPING TI.A.TI'RIALS
Wai,cr*l,bsi/1,'t,
{6 t\-
z
{/>
{i\
1-.:i
z
8\. E.:-J
F
t----l-! '-l'cn1per:rturc
Maqnesia
llLu)ge'l'
Nom. Thid<., In.
2 Calcium o
F f
z
Combina-
tiol
FiberSodiuDl
z
ffi
Boldface tr.pe is $ciqlrt in luunds. Ligl'Ifi,.e tJ pe bineatlr \1eight is \reisht Iactor for
slt-|ts
$cights rrc brsetl on
Nls
a
qAsir$
Insulation thicknesses
and average
co.diLions rnd do not constitute
recommendation
tLicknesses of
for
maierirls
specific Tns,,llr-
tion rfeights are bascd on 85ol mrgnesia and h1'drous c:rlcium
sili{rrte .'t 11 lbs/cubic foot. The listed thicknesscs and lveights of combin:rtion covering are the sums of the inner laver of dirtom&ceous earth :rt 21 lbs/cubic
z N
/>
Z
lPq tt---.u
1=<3 J
insulation.
@ ff1
J-
rc
190
foot and ihe outer laver at 1l
lbs/rcubic foot. Insulation i{eights include allo$anccs for wire, cement, canvasj bands and print, but, not specisl surfuce finishes.
To find the rveight, of covering
on fianges, valves or fittiogs,
multiplJ' the weight, factor by the weight per foot of covering uscd on straight pipe.
\'alve,neights are
mrtc. \lhen
approxi-
possible, uLtain
weights from the manufacturer. Cast ilon valve $'eiehts :!re for flanged end v.rlves; stlel rveights for rrelding end valves.
,{11 flarged
fitting,
flanged
valve and ffrnge rvcights include the proportional $eight of bolts or studs to make up all joints, + 16 lb cu. ft. density.
HANGERS AND SUPPORTS \\ EIL;HTS OF PIPINU MATERIALS
za"
o.n
26"
prcn
fr?
uj 11.
F
w
{i\ E::I -f/\ t-'-l rl\ r-h \"J Temperature Range "F [I{Lgnesia
Cslcirrm
"
F
3 combinaA E
tion
;r=::;FiberSodium
Boldface type is weight in pounds. Lightface type beneath weiEht is weight factor
Sqr$ G
#rI1$
Nls
Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of mate-
rials. Insulation weishts are based on 85% magnesia and hvdrous calcium silicat€ at
{N z
for insulation.
/
,11
,-11
11
lbs/cuDrc roof,. I ne llsreo f,ntcKnesses and weights of combination coverine are the sums
of the inner laver of diatomaceous earth at 21 lbs/cubic
foot and the outer layer at 11 lbs/cubic foot.
,N
z
itN eE:E D',
.{
F
@
I
ltl' )
+
rc
* 16 lb cu. ft.
Insulation weights include for wire, cement,
allowances
canvas, bands and paint, but not special surface finishes. To find the weight of cover-
ing on flanges, valves or fittings, multiply the weight factor by the weight per foot of covering used on straight pipe. Valve weishts are aporoxi-obtain
mate. When Dossible. weights from- manufacturer. Cast iron valve weishts are for flanged end valves; steel weishtsforweldinsendvalves. A-il flanged fitting, flanged valve and flange weights include the proportional weight of bolts or studs to make uD
all joints.
ITT GItlNNI,ll,l, PIPIN(; DltSItlN A\D
28" *rr,
28" o.D.
lrN( iI
\ Itltlti)i(
i
WEIGHTS OF PIPING MATERIALS
{F
n
u-f
f^
7
t-lJ
{T\ .fA f,-JI
z F
ds {---1-r \IJ
Temper&ture Range'F Magnesirl
Calcitm Combina-
tion
FiberSodium
Boldface type is weigbt in pounds. LiEhtface type beneath weight is weight factor
for insulation,
Frr$
2
Insulation thicknesses and $eishts are based on avelage conditions and do not consti-
&
tute a
Nis {N
z ti
F
l6s/cubic foot. The listed thicknesses and weights of combination covering are the sums
A
of the ihner layer of diatomaceous earth at 21 lbs/cubic
d
foot and the outer layer at 11 lbs/cubic foot.
Insulation weights include allowanees for wire, cement, canvas, bands and paint, but not sDecial surface finishes. To-ffnd the weight of coverins on flanges, valves or fit-
,N
z
/> E!!4
tPtl lHl
tings, multiply t}le weight factor by the welg:ht pe.! root or
{=<3
covering used on stralghl PtPe. Valve weights are apptoxi-
@ m +€
mate. When possible, obtain weiehts from manufactulet. C-ast iron valve weights are for flanged end valves; steel
weishts f orweldinEend valves. A'il flanged fitting, flanged v-alve and flange.welgnls. lnclude the proporuonal \,r'elgnl of bolts or studs to make up
t4
792
'16
recommendation for
sDeciic thicknesses of haterials. Insulation weights are based on 857a magnesia ahd hvdrous calcium silicate at 11
all joints.
lb cu. ft. density.
HANGERS AND SUPPORTS WEIC}H'IS
0!' I'IPIN(}
MATERIALS
so"
o.D.
30tt
"t""
t1
W
w
!f\/>
t-
1L4J
{\ LiJ
; r_t__)
\JJ Temperature Range "F \lagnesia Calcium Com
tron
FiberSoditm
ffi e{'J$ N+S 0;::p
for insulation.
Insulation thicknesses and weights are based on average conditions and do not constitute a recommendation for specific thicknesses of mate-
rials. Insulation weights are based on 857. magnesia and
/.4
hydrous calcium silicate at 11 lbs/cubic foot.The listed thicknesses and weights of combination covering: are the sums of the inner layer of diatomaceous earth at 21 lbs/cubic foot and the outer layer' at 11 lbs/cubic foot.
/9\
allowances
,-q
z
Boldface ti'pe is weight in pounds. Lightface type beneath weight is weight factor
B' .{ LHI
Insulation weights include
for wire,
cement,
canvas, bands and paint, but not special surface finishes. To find the weight of cover-
Fl
ing on flanges, valves or fit-
GD+
fr
mate, When possible, obtain weights from manufacturer. Cast iron valve weights are for flanged end valves; steel
eD+
all joints.
@ * 16 lb cu. ft. density.
tings, multiply the weight fac-
tor by the weight per foot of covering used on straight pipe. Valve weights are approxi-
weights forweldingend valves. AU flanged fitting. flanged vaive ano nange werghls tnclude the proportional weight of bolts or studs to make up
193
ITT GITIN\I.]I,I,
32" *tr"
Bz" o.D.
I'I I'I N(i
I)l,lsl(l\ A\I)
I'lN( it
NllllltlN(l
WEIGHTS OF PIPING MATERIALS
f.2
{U
w
7
z
{l\ tr:J
F
tr-l
/T\ rrl
\IJ Temperature Range
'F
Ma,gnesia
z
Calcium
{ uomDlna5 lron
:
+Asbe!tos
FiberSodium
Boldface tYPe is weight- in
pounds. Lightface tYPe
ffi
sffi fsim dl:jN
/.4 z F
ot
maEe'
are rjals. Insulation weights ano
85q magnesla hvdrous calcium srllcale al rr lbs/cubic foot The listed thrck' nesses and werghts or comolnation covering are- the sums of the inner layer ot dlalomaceous earth at 21 lbs/cubrc
based on
foot and the outer layer at
N
allowances
/>
tr'.s tB---{t
{.
@ fi)
+
sDecific thicl
/'11
acA
n
be-
ireath weight is v/eight laclor for insulation Insulation thicknesses ano weichts are based on average conditions and do not cons"tltute a recommendatron ror
- 16 lb cu. ft. derl"sitY'
11 lbs/cubic foot
Insulation weights include for wire, cement, canvas, bands and PaDt' bu!
not special surface hnrshes' To find the weight or covering on flanges,.valves or "nriin-es. multiPlY the weight facof loot ol toabv the weight pe.r Per foot ioi-'6v--it'",idisttt
used on stralgnt PrPe' covering -Valve-wei ghts are-aPProxi-
mate. When Possible-, oolaln weiEhts from manutalturer' Cast iron valve weights are steel for ffanged end. valves;valves' weiehts fol weldingend
A-ll flanged fitting' flangeo
valve and flange weights. ln_ clude the PropoltionaL wergnt
of bolts or studs to make uP all joints.
HANGIIRS ANI) SUPPONTS
WEIGI{TS OF PIPING MATERIALS
34"
o.D.
34"
prrv
Water-Lbs/Ft
A tlf
f-2 (!-/
f\ w
F
{l\
Fi
z
EJ-l
B
-','>^
A
[*_lJ Temperature Range'F Nom. Thick., In.
.N{agnesia
Caicium
FiberSodium
Boldface type is weight in Dounds. LiEhtface tYPe beireath weighl is weight factor fo! insulation. Insulation thicknesses and weiqhts are based on average conditions and do not constitute a recommendation for specific thicknesses of mate-
ffi z
slit.$ Nj_s$
rlals. lnsulation weights are based on 85% magnesia ancl
(N
lbs/cubic foot. The list€dthicknesses and weights of combi-
z F F
hvdrous calcium silicaie at
,-rl /A /.\
nation covering are the sums
,N
allowances
of the inner layer of diatoma_ ceous earth tt 21 lbs/cubic
foot and the outer layer at 11 lbs/cubic foot.
Insulation weights include
/D
z
11
for \tir€,
cement,
canvas. bands and paint, but not special surface finishes. To-find the weieht of cover-
ins on flanqes. Glves or fittinss- multi;lv the weiEht fac-
tor"by the fueight per foot of coverrng used on stralgnl pIpe.
+=
Valve weights are approxi-
@ If)
mat€. When possible, obtain weiehts from manufacturel. Cast iron valve weiEhts are for flanged end valves; steel weiehts forweldinEend valves. A'il flaneed fitting, flanged
+<J
v;lve and flange weights in-
rc
'
16
lt
cu.
ft.
clude the proportional weight of bolts or studs to make up
all joints.
density.
195
ITT Gn,INNllt,L PIPIN(; l)llsI(lli
36tt
WEIGHTS OF PIPING MATERIALS
86'o.D.
"trp Schedule No.
I
std.
tr'i"t'"* I* T:rz T lrs I
xs .500
F o"--it.r r t T-r I 4ttl 189.6 r e. I
w.t".-Lb.VFt f425.9l
UJ
L.R.90' Elbow
{J} f>, gtt F
{i\
F
S.R. 90" Elbow
L.R. 45' Elbow
f,.J-l
Tee
.4 E-- '.
Lateral
I
422,6
4t6.6
1040
r380
12
12
692
9r3
5
5
5r8
686
4.8
4.8
t294
t6lo
340
360
.625
|
.
/50
236,r | 2A2,4 4r r.o
|
405.1
3.6
3.6
Reducer
.10
30
20
10
Wall Designationl
"r'"4
,\\I) I'l\(;l \ I'lliltl )i(i
235 cap
6
6
100-199 200-299 300-399 100-499 500-599 600-699 ?00-799 800-899 900-999 1000-1099 1100-1200
Temperature Range "F trlagnesia Nom. Thick., In. Calcium. Lbs/Ft z srhcate
14.2
14.2
2
2Yz
3
3th
4
19.2
24.2
29.5
34.8
40.3
F^L omDrna
Nom. Thick., In.
31/2
5 tion
Lbs/Ft
49.4
Fiber =TR6;ffi
Nom. Thick,, In.
<
Sodium
40.84
Lb-s/Ft
Cast
Pr€ssure Rating psr
z
s$ 6{trM
Welding Neck
s$ls dfsv F F
z
Biind
r22.O
4%
4rt
5
40,84
40.84
40.84
40.84
40,84
1500
|
71.48
Steel
r50
300
480
1200
1325
600
900
1600
3350
1.O
1.5
1300
1750
3450
2500
it' tHl'rl
Tee
1.5
for insulation.
Insulation thicknesses and *.eiehts are based on averagp and do not consti"onditions tute a recommendation for sDeciflc thicknesses of mate-
2275 2525 2950 4900 1.5
hvdrous calcium silicate at 1I
lbs/cubic foot. The listed thicknesses and weights of combi_ nation covering are the sums
of the innet laver of diatoma-
at 21 lbs/cubic foot and the outer layet al ceous earth
11 lbs/cubic foot.
Insulation w€ights lncluoe
Gate
Flanged Bonnet Globe or Angle
Flanged Bonnet Check
Bonnet-Gate P!essure Seal
mate. When possible, obtain weiEhts froru manufaeturer. c-ast iron valve weights are fo! flanqed end valves; steel weiEhts ior weldingend valves.
all joints.
Bonnet-Clobe
ft.
cement,
A1l flanEed fitting, flanged valvi and flange weights. include the proportional wergnl of bolts or studs to make uP
Pressure Seal
16 lb cu.
for v"ire,
canvas. bands and Paint, but not special surface finisles. To find the weight ot covering on flanges, valves .or -tr!!ings. multiPlY tne welgn! 1actor by the weight Per oo! or covering used on straight PlPe. Valve weiqhts are aPProxl-
Flanged Bonnet
i
71.48
Boldface type is weight in pounds. Lightface tYPe beneath weight is weight factor
allowances
45'Elbow
@
ll l.o
40.84
I125
/F E4€4
+q]
100.2
rlals. Insulation weights are based on 85% magnesra and
L.R. 90' Elbow
llt' )
a9.7
3
Lap Joint
/A
F€
69,3
3
520
S.R.90" Elbow
l.<1
7
3
Slip-On
/.'ll tA) ,N
6Yz
,J
250
Screrved or
6
3
400
63.s
45.9
5%
3
Iron I
6
5
densitY
HANGERS AND SUPPORTS
WEIGHTS OF PIPING MATERIALS
42"
o.fr.
42"
prpq
Water-l,bs,/Ft
lr) L.R. 90' Elbow
UI
tr2
S.R.
!0
Elbow
[^
d.u
F
{l} L:J
-f\ tr-:-\_u T€mperatur.e Range'F E5,,i
I'J
Nlagnesia CalciLrm
z F
om. Thicl., In.
Combin a
tion
tz
FiberSodirlm
Boldfa(e tyPe i" weieht, in nounds. I iqhtface tYPe beneaih \eighl is weight factor for insulation.
ffi rlTT\* z qFL I lvl Weldlng Neck
nesses and weights
L4 z1
L.R. 90" Elbo*i
tP
.!t
ll-rl
1.
@ fi1 | ,-1Y
Flanged Bonnet Clobe or Angle
of
combr-
r<[J cu.It
foot and the ouier layer ai 11 lts cubic foot. I nsulation \!eights include allowances for wire, cemen!,
canvas. bands and Paint, but not sDecial surface finishes To fin,t the weight of coverinE on flanqes, valves or fittirigs, multiply the weigtrt factur by the weight Per loot or covering used on stralght PlPe. Valve weiEhts aIe aPProxlmate. When possible- obtain
weishts irom manuracturer. Cast iron valve weights are for flanEed end valves; steel
$'eiohts iorweldi ns end valves.
\
T=u-rJ * 16 Ib
mate_
nation covering are the sums of the inner layer of diatoma_ ceous e3rth at 21 lbs/cubrc
?.
I
ol
"ilicate 1bs/cubiu foot. The listed thick-
rfl;:::is
F
sDecific thicknesses
rials. Insulation weights are based on 85ti magnesra ano at 1l hvdrous calcitrm
N+S
z
Tnsulation thicknesses and weights are based on averag€ conditions and do not- cons-trtute a recommendatlon ror
Plessure Seal
Bonnet-Globe density.
A'il flanged fitting, fianged '.,alve and llange weights. Include the Proportrona I welght of bolts or studs to make all joints.
uP
197
ITT GRINNI]LI, PIPING DI'SIGN AND IINGI\D!]IIING THERMAL EXPANSION OF PIPE MATERIALS
^l *l
;l
I
I
I
I
I
I
F
; a
I
n
O
z I I
F]
3
? -I ---t :^ F-{
;l
c
.-l
z
o
z
al tl i6 .J
j
I
;t
X
J
i do U)
F
>o :L-
i
e^
61/;,
I
O
!
F
-
INCHES PER FOOT
HAN(iERS'\ND SUI'PURIS CHARTS AND
TABLES
INSULATION WEIGIIT FACTORS
To determire the leight per foot of any piping
insulation, use the pipe size and nominal insulation thickness to find the insulation l'eight factor F in the chart shorvn belorv. Then multiply l? by the densiiy of the insulation in pounds per cubic foot'
i'_ominal Pipe Size 1
r'/1
tll 2
2r/l 3
3% 4
l) 6 8
--t':-\
1 l-^
,
.057 .051 .066 .080
.10
.091 .10 .15 .13
.19
I
-n-1 ,1
.1,1
.21
.36
.27
.31
.40
.30 .38 .37
.39
.,13
t2
.50
14
.5r
9.211b/tr.
Thirl,n'ss
1%"
.4ti
.70
.44
.68 .66
.7E
.63
.77
.96
r.04 r.13
.97 1.10
1.20
.?\
.88
.38
.64
.83
.97
1.36
.93
t.t2
1.17 1.32
1.07 1.11
1.23 1.34 1.49
1.52
1.7 4
18
.ti-1
20
.70
.96
24
.83
1.13
.80
.88 .90
l.0r
t.21 r.37
1.t2
1.50 1.77
1.23
6"
5%"
.83 .81
.,)d
.6ri
, I
.59
.34
.68 .70 .78 .87
.57
:
,48
.39
.17
10
12
1"
.23
.15 .17
.22 .29
.30
X
3"
2t/r"
.25
.17
is .77
\ominal In.ul"'ioq
.16
.11
Erample. For 4" PiPe rvith 4tl nominal thickness rl the insulation densit'Y is Insulftlon, | =.1i. then the insulation rveight foot, per cubic pounds 12
1.34 1.75
1.79
2.10
1.99
1.99 2.07
2.50 2.62 2.88 3.14
3.40 3.92
1.74 1.92
2.0r 2.2r
2.29 2.51
2.24 2.34 2.58 2.82
2.09 2.44
2,40 2.80
2.73 3.16
3.06 3.54
1.81
1.ti4
1.76
ROD LOAD CARRYING CAPACITIES OF THREADED HOT ROLLED STEEI, A.-36 CONFORMING TO ASTM
Nominal Rod
Diameter, in. Root Area of Thread, sq. in. Max. Safe Load, lbs. at Rod Temp. of 650"F
Vz
.068
1/z
3/+
.126 .202 .302
%
.419
1
.552
1r/s
1l+
7Yr
.69 3
.889
1.293
13/+
1.'i 44
2
21/4
21/2
2.300
3.023
3.?19
4.619
3
3Y4
3h
5.621
6.720
?.918
20?00 21200 33500 41580 50580 60,18C 11240 610 1130 1810 2',tt0 3770 4960 6230 8000 11630 15?00
199
ITT GIIINNI']LI,
-
P]PING D]']SI(IN AND IINTIINDEITING
DEFLECTION OF EMPTY PIPE, STANDARD WEIGHT, CAUSE D BY LOAD BETWEEN SUPPORTS_
BASED ON SINGLE SPA.N WITH FREE ENDS.
^,#++
w.lVElGHt ll{ Poul{OS PER LlflEAR lt{oH 0 = oiiilrce BETwEEI{ HAt{GERs lll ll{cxEs
= OOULUS OF ELASTICITY I - o EIt oF |I{ERTIA
E
l!r! I
z
DEFLECTION
-
INCHES
r*I$,"**i:rft*iJjjsLr"fri{fu:trliiJif"{}k.;r,"i:';i#h1iiirl:ii;}:}xf*}i$""l;f,{lt.l:fi"i;:fsiiiiLrili"'1"#Jffi tor dlainage.
HANGERS AND SUPPORTS
BENDING STRESS
IN EMPTY
PIPE,
STANDARD WEIGHT, CAUSED BY LOAD
BETWEEN SUPPORTS - BASED ON SINGLE SPAN WITH FREE ENDS,
^ W
=
WEIGHT
IN
,[ . orsrarcr
w
1!
POUNDS PER
LINEAL
INCH
BETTvEEN HANGERs rN rNcHEs
Srr = SECTION MoDULUS
F
LU LU
LL I
z. o-
a
MAXIIVUM BENOING STRESS
-
PSI
201
ITT GITINNIII,I,
.
I'IPING
DT']SICIN
AND ]'NGINEEIIIN(i
BENDING STRESS IN WATER FILLED PIPE, STANDARD WEIGHT, CAUSED
BY LOAD BETWEEN SUPPORTS BASED ON SINGLE SPAN WITH
_
FREE ENDS.
"= W = WEIGHT -E-
'
lN
wle
POUNOS PER Lll{EAR lttcH
OISTA'{OE SETTVEEN HANGERS
Sm' SECTIOX
II{
INOH€S
ITIODULUS
F I
z 3
e E sps 202
a:333 ; ; o oo ;
MAXIMUM
BENDING
;
@
F@
STRESS- PSI
HANGERS AND SUPPORTS
MINIMUM DISTANCE TO FIRST RIGID HANGER
, : \-i@;s:lo,ooopsi ---- 1ss
"
I'ipe Size DeflccI
r/7
t).1
2
2k
3t.,
3
80
%
1.5
50
5.5
0.0
65
73
%
0.5
70
7;
3. ir
c.5
10.5
tl
'/+
8.0
90
rJ.5
10.4]
11
.5
13
l1
tl
t2
I3.5
15
16
t2
13.5
l5
16. 5
I
9.0
10
.5
1%
10
11
rt,
ll
t2 .5
135
l5
1r;
t2
13.5
1l .5
l6
2
13
14. 5
15.5
t7
2\ 21/,
r5.5
3t'
2+i
205
23
26
2S
2l
22 .5
2t,
29
32
29
20
22
23.5
2iJ
30.5
2!5
32
.5
26
.5
27 .5
29
25
27 .5
29.5
38
29
.5
31.5
.{0.5
20.3
20 .5
22
21.5
27
2t .5
23
26
2E
24.5
27
30
325
39.5
.5
33
285 36
.5
{1 .5
39.5
435
37
38.5
40
52
47
.5
01
33.5
.5
39.5
3t.5
.11
43.5
37
39
12
.1.1.5
47
41 5
425
4C
55
29
36
5()
19.5
25
34.5
4-l
o
.17.5
5{t
50
49
52.5
5l
55
1E.5
43
23.5
37
385
25 .5
.5
23.5
11 5
28
5
39
20
17
27 .5
10
2t)
19
30
22 .5
26.5
23
.5
20
22
21
26
10
2l
t9
22
22
19
21
0
2l
305
22
21 5
20
27
20
5%
18. 5
24.5
18
20.5
16 5
22
17
5
I3
21
15
19
16
195
23
4!'t
i5
28.5
2l
IE
1.1
1.1
25
I'J.5
t2
l3
17
.5
10
11 5
10
23
\7
4
l2
95
20.5
16
1.7
3.5
195
ll.5
3
8
6
+
i
55.5
61
5g
63
66
63
67
70.5
t-l
75
60
Li3
67
ii3
66
70.5
66
69.5
09
72.5
79
83
77
.5
82
86.5
203
rTT GRINNELL
-
PIPING DESIG{
Al',rD',
uxgxxlltt}ig
BEAM DINIENSIONS TW
ta :a ta L(a
r-'v\n
l
r"';11:'i:ttr'i;:r"":
|
s.r
3 .25
5.0 6.0
I'h 4
5.{ '1.25
l; I
6
13.0
2,h
9.8
7
t2.25
l{.75
I 9
14.?5
3y1
12.5
314
t7.25
3%
.375
.375
zt\
r3?s
I3.4
2%
15.0
zyz
3?5
-1;F 12
30.0
"" \
i\"t_
.438
51L
5'/r
.688
5%
.688
15
18
25.0 30.0
:.
33.9
3'A
40.0
3'/,
50.0
3'/.
42.7 \ 4s.8
I sr.s sg I|
I
s0 .813
20 .938 .625
4 4
24 .625
I s0.0
r0o.0
4%
ros.e
{Y.
120.0
J
J
I|
?
.8?5
7%
i
i;i
7 !/.
r% 8
103
1623
I688 I 748
12%
;s i;r 7f, I
rrta .465 540
.516
.64r .576
.64I .606
I
.736 .?96 .856 .921 .986 106 1.236
1486 1716
l
I
.383 .453
lb%l
'\2 | 12 | I4v, I l[v' | rqyt |
ll4
I
.400
.6?
J \ Br. \
8%
8v,
tt1/
1248
lg le I 4s l8 | s:lsl6sg tjl lru r, I+ Il6s llo I
Ll25
1 563
l3: 18 l;?
868 .998
3 3
87
l5%
fl
.808
I 106 I tzy. I rzo I tz't' I 133 I 12% lzYl
74 ?8 84
2ll
.428
9i:
;;; 87s
I l:: lllll *;
.JlJ .528 .593
I
7s.e
873
.s63
iii
| l4o l8 lrsso la8'l. I I ls3 llo ls8 lro I 6s I l2 12 | 72 \tz l?s l12% I 8s I l2r. I s2 I r2". | 99 lrzvl
38
t4% |
I ;;l? | sor I qs1: cn I ?,/. L628
::i:
I
I
l
I ztg l tsz. 228 l ls7, l I 237 ls% I 7 |
433
I
lsr
I
Pd {r ' lldns' lot llonee
,^ | se jei,J '" ffi I I ?i iiit i | Iz8L8tI
Itox I ro7.
Il2
w.iq ht
.340
I i;;: I lo% I loz. I I ro% I
I 16I I
20.7
t2
378
L
5th
I5
3os
-ln\av' l3r36 l6'/' 6%
l5%
40.8
2%l
25.0
.50
35.0
50.0
20.0
72 77 89 100
25.4
3s.0
.438
ll:
66 .438
23.0
t0
.456
zr \ 5r4 25 \ s',/, I 2e I s% 133 l8 J3s l8 l4s l8 l4e llo
4
at
\_
6
10 1:1
18.4
'37s
"" ,r, \
6
oea eoa
r3
20.0
20.o
IO
3
i5.3
7
5
433 4e3
21A
.375
!*1,"1 ,% I I I ltr^l,,l_ r5.3
|
I8.5 25
I I I .3s8 I zs I e'2, 1 .lo: 181 ^ l3t b lss le I ssa Iao IaT. I I ra I e'2. 1 I se I e'2. 1 e'2. I ez I I s:g
313
":, 2
2%
5
rz I sv. I -l I zo I sz. 2a 67'
.3
6
l0.s
7.7
10.0
l1/r
8.2
2'h
s.5
5
\
9.0
.25
75 I
3'I3
67
5
|
2%
I I
I lle I la% I s38 \ r27 ta/, I ss8 I 136 t41/. II 063 142 l5% I 063 tso ts,a L I izs I lss I ls.^ 1188 I l5'/. I 1248 ',r+ iL tez rre ls% I l3l3 184 ls% I 378 I438 I I93 1 rs% zo2 ls% I I.s03
*l::' ;::l: *t*' !"tt{ *l'""' *tl:
4-l l1/z
1lb
\n
Americdn Sionddrd chonncls
2
,omi^dl
.718 .?18
.774 .688 .748
.813
199 ,)r \ 82 -^
I I I
.686 .751
.83I
.83I
ll../.
.9Il
th
.99 r
8,A
.615
at/.
.685 .740
tt
at/.
s6
I I
lI2
I3
\27
I3
taz
t3,/r
176 184
tll .6ss
I 9
.795 .935 .865 .985
L095 .682 .772
Irn loo
I )l | I
1Z
\)o
1Z
.885
120
12'/t
.930 .900
I|
l:3 150
I
l{
.872
L020
t4,/t
l.t3s
Llo \ .747 llo | .s27 lr{ llo%l .932 27 ras lla I .e?s 160 l14 I l.o7s rz7 l I4', I Lt90 I lo8 I lo% .?so I It6 I lo% ij .8?s I 124 I to7, .s3o ?nll3zlloT'il.m '- I rrz lts I lo6s I leo Ils I ltss | 2lo I lsY. I l3l3 e4 roz
SUPPORTS
HANGERS
F trl ulo
LL^ I
z.a o-7 U)
FORCE 'P" BASED N SPANS OBTAINED IN CHART ON PAGE 168 AND SCH 40 PIPE FOR OTHER SCHEDULES OF PIPE, MULTIPLY "P" BY THE RATIO OF THE MODULUS OF THE SCHEDULE PIPE TO THE SECTION MODULUS OF SCH 40 PIPE.
5 o
o !o(oo a (t o o oooo o o o o oooo
o o {o('o o o oooo
FORCE
-
lbs.
x :
333333 a a 3a 33:333
ITT GITINNELI,
-
PIPING DT]SIGN AND ENGINI'EIIIN(I
THERMAL EXPANSION OF PIPE MATERIALS INCHES PER FOOT Intermediate Temp.
"F
PROPERTIES OF SATURATED STEAM (Standard Barometer 14 696 Psi)
Gauge Pressure'
Alloy Steels (57 Thru
Copper
Brass
Aluminum
lb/sq in.
-.0373 -.0310 -.0244 -.uL Io
0
97. Cr Mo)
,.0275
-200
-.0231 -.0183 -.0132
-IDU
-100
-50 0
50
0?87
0247 0190 0137
-.0079 -.0022
-.0081 -.0023
-.0104 -.0030
70
0.0000
0.0000
0.0000
0.0000
100
.0022
.0034
.0035
.0046
150
,0058
0091
,0093
0123
200 250
,009 4
0151
.0L52
0200
.0132
0208
.0214
.0283
300
.0171
.0267
.027 6
.0366
.0210
0327
0340
,0452
.0250
03
88
.0405
.0539
.02e2
,0449
.0472
.0628
.0335
.0512
.0540
.0717
350 400 450 500
I i |I
550
0379
0574
.0610
.0810
600
0424
0639
.0680
.0903
650
0469
,0703
.0753
700
.0514
.0?68
.0826
750
,0562
0834
.0902
800
.0610
.0900
.09? 8
850
.0658
.0967
.1056
900
.0707
.1037
.1135
.1216 .1298
950 1000
56
.1105
,0806
.r\75
1050
.U6DA
1100
.0905
1150
0952
07
1200
1000
1250
,1053
1300
.1106
1350
.-LIOO
1400
.1205
5
10
20 25 30 40
60 ?0
80
90 95 100 150 200 250 300 350 400 450 500
600 650 ?00 ?50 800 850 900 950 1000 1050
GI,]N]i]
RAI, T.\RLES
TEMPERATI'RE BY COLOR In moderate difiused daYlight
930'Ir laint
tiio.l' Salmonl 1630'F Darl' Orangee I725"F Oruge
1275"F l{edium 0}rcrrY 1137;i'l' Ohert 1' 1.1J0'F I} ight CircrrY
Red
107;-r'| lllood llcd 1175'F Dalk CherrY
r Sealing
1830'F
Lemon
197;'t' Light Ycllorv 2200'! N hite
! Frce Seeling Ileat
Ileat.
BTU CONTENT AND THEORETICAL AIR REQUIREMENTS FOR COMBUSTION OF VARIOUS FUELS Air lt{xluircd
Coal and Coke
for 0omllusl ion, cu [t l)ef lb fuel 125.7
BTU per llr 12,500 13.500 8,300 12,900
l.4ti .5
Gas (Continued) Natural
(l&s,0hio
X"iu.rt C*, P--rvLvatria.
OilGas... RetorL 0o.rl G!,s.....
. '
1025
10.70
1025
11
.1.
510
5.00
t1. I
Fuel OiIs
146.8
RTU per srl
I}'f U
Dcr cu lt
(i,orv )ict
.. '. Anthracite Produccr Gas Bilurninous I'rodu(rcl- (;rs. . . . . . . Bluc \\'ltcr (ias. Cirburl'ted \!xter Grj Cohe Oven Grs. )i rtural Gss, California . .
.
-.. N.rtural Gas, llid-ContiDentrl .. .
)
for Cornbustion' cu ft aif Per cu ft gas
'195
320
gal fuel
226
1.18,500
1468 1498
11.26
127,800
.05
1370 1395 1.131
L52,000
4.37 5.19
1085 E70
Air ltequired foI C.lombustion, cu ft :rir per 1312
1.21
1+0
280
91
130,000 138,500 111,000 1+5,000
1
125
.70
51o
79,500 135,200
9.17
I{EAT LOSS FROM I{ORIZONTAL BARE STEEL PIPES li'fL pcr Hour per Linear !'oot lmbient Air Tetnpe|rture 80' F' be used' may
pipes the follorving lel:iliorr To calculate the loss in fuej auc tu trcat loss irrrougn rrorzo.t.r U"re
Fuellostpe]'hou]'()b,gal,orcuft):ffiiencyo|Boiler
Temperaiure Difference
Nominal Pipc Size,
820
7r6
1,013 1,252 1,565
30,1
206
373
884
255
4ti.1
1,103
115
289
526
1.11
355 123 508
6,r7
3tl
228
5
310 364
612 742 920
464
1178
24
581
167
202
16 18 2A
394
r36
55 67 82 102
168
8 10 12 11
Pipe to Atr
.r00
inchcs
6
'F
I i rl7 | 1699 I 1810 |
030
4E3
1,,+82
2,139
2,851
6,04.1
6,002 7,517
5,4'18 6,761
6,894 8,562
8,673 10,700
8, t-11
10,317 12,507
12,90,1
i'1
3,61'J
4,C't5
2,231
1,373
5,850
2,533
3,61tt
.1,968
6,6.19
8,7
2,E36
4,051
5,570
7,458
9,7E0
11,222 12,599
3,1i2
4,965 5,870
6,83.1
9,16r
12,022
8,075
10,8-18
1,1,248
7,570 9,350
10,'1.13
11,O24
18,.136
t2,912
22,a33
15,213 10,718
r7,355 20,505 22,330
2{i,993 29,1t'2
3.1,89r
38,059
37,525 44,402 4a,352
25,439 28,60,r 31,638 37,817
33,551 37,7.t1 ,11,768 ,19,955
43,346 18,771 54,056 64,620
55,091 61,953 68,738 a2,244
1,853
1493 1691 1892
4,100
1,780 2,199
3,217
5,280
2iil,8
.1318
6,512
3137
5086
7 ,tJ7
5 E,388
11,031
82.1
6309
0,5.10
13,682
18,949
925
707tj
15,368
1021 1213
7815
10,70E t 1,E38 15,652
17,003
21,297 23,540
20,253
24,t17
9303
4,778
2,967 3,722
3,869 4,809
2,639 3,186
12.10
3118
3,1r5
1,242 5,260 6,330 7,6ii3
1,5-16
3506
729
2,275
t2,o22
3,882
2,469 3,064 3,805
1,929 2,391
1,022
1,252
2169
671
1,835
3,013
841 1036
2312
1,120 1,381 1,709
9,863
,1,E25
15,651
1.1,236
17,822
15,988
20,022
15,500
19,680
19,763
23,317
24,659 29,267
23,801 29,500
30,261
37,955 47,089 55,7 42 60,7 47
6S,237
77,a87 86,364 103,342
207
ITT GRINNEI,L PIPING DESIGN AND DNC'iI\T]ERIN(i WIRE AND SHEET-METAL GAUGES (Dianeters ard ihick
esses
in decim&l pafis of an inch) U.S. standard gsugc for sheet
Birmi qham flre (-B \\'.C l or \\ ashburn, rd saux. -(l,rr steel \!ire St,rPL $ LIe ga,ug€,.
stccll
1
0.460 0.410 0.365 0.325
0.3938 0.3625
0.289 0.258
0.2830 0.2625
o.229 0.204 0.182
.3310
0.3065
0.2,137
0.2253 0.2070
0..169
0..$E
0. -l0ti
0.454 0.425 0.380 0.340
0.375 0 .3.+,1
0.312
0.284
o.227 0.219
0.259 0.238
0.207
0.300
o.212
0.220
0.204
0.203 0.180 0.165 0. 1'18
0.201 0.199 0.197
0.180 0.178
0.1196 0.1046 0.0897 0.0747 0.0673
0.175
0.062 0 .05{i
0.0598 0.0538
0.168
0.0,178
0.161
0.050 0.0438 0.0375
0.0418 0.0359
0.032 0.028 0.025 0.022 0.020
0.157 0.155 0.153 0.151 0. 148
0.0344 0.0312 0.0281 0.0250 0.0219
0.0329 0.0299 0.0269 0.0239 0.0209
0.0181 0.0173 0.0162 0.0150
0.146 0.1,13
0.0188 0.0172 0.0156
0.134
0.01.11
0.0t4d
0.018 0.016 0.014 0.013 0.012
o.\27
0.0125
0.0179 0.0164 0.0149 0.0135 0.0120
0.010 0.009 0.008 0.007 0.005
0.120 0.115 0. 112 0.110 0.108
0.0109 0.0102 0.0094 0.0086 0.00?8
0.0105 0.0097 0.0090
0.0063 0.0056
0.0132 0.0128 0.0118 0.0104 0.0095
0.0050 0.0045 0,0040 0.0035 0.0031
0.0090 0.0085 0.0080 0.0075 0.0070
0.004
0.106
0.0070 0.0066 0.0062
0.0067 0.0064 0,0060
10
0.128 0.114 0.102
1I
0.0s1
0.144
0.1920 0. 1770 0.1620 0.14E3
0.1s4
0.1350
0.134
0.191
to
0.120 0. 109 0.095 0.083 0.072
0.188 0.185
0.057
0.1205 0.1055 0.0915 0.0800 0.0720
17 18 19
0.051 0.045 0.040 0.036 0.032
0.0625 0.0540 0.0475 0.0410 0.0348
0.065 0.058 0.035
0.0285 0.0253 0.0226 0.0201 0.0179
0.0317 0.0286 0.0258 0.0230 0.0204
0.0159 0.0142 0.0126 0.0113 0.0100 0.0089
0.081 0.072
0.064
22
2+ 25 26 27 2a 30
0 .0080
33 35 30
38 39
{} 41
42 43
44 46 48 49
50
0.2391 o.2242 0.2092
0.125 0.109 0.094 0.078 0.070
8
2l
0.281 0.266 0.250 0.234 0.219
0.150 0.141
0.162
20
lb
0.1943 0.1793 0.1644 0.1495 0.1345
6
I
0
ll
0.500
0.4900 0..1615 0..1305
.180
per cu
(for steel wire)
0
.0071
0.0066 0.0062 0.0060 0.0058 0.0055 0.0052 0.0050 0.0048 0.0046 0.0044
0.04s 0.0.12
0. 182
o.t72 0.16,1
0.13'
0.103 0.101
0.0s9 0.097 0.095 0.092 0.088 0.085 0.081 0.079 0.077 0.075
o.072 0.069
0.203
0.1t8
Q.Ii2
0 .0082
0.0075
GDNERAL TABLES
DRITL SlZ ES \unrl,rer and Letter Sized Drills
rli,., 7g 78 77
73
7l 70 69 68
ti7
iiti 65
64 63 62
r'
.257 .201
H
.26ti
B
38
.I015
.0i80
.00025,1
37
.1040
.00810 .00850 .00893
n
.00950 .00968 .01002
.000i65 .00020I
.0200
.00031+
3ti
. 1005
.0210 .0225 .0210 .0250 .0260
.0003+6 .000398 .000453
35
.1100
.000531
.0280 .02925 .0310 .0320 .0330
sq rn,
.l110 .1130
33
3I
.1200
.0l130
.000615 .000672 .000755 .000805 .00085ri
30 29
.
1285
2E
.1'105
27
.14.10 .1,170
.01298 .01152 .01550 .01629 .01ti97
.0350 .0360 .0370 .0380 .0390
.000s62 .001018 .00107i;
25 21
.1360
ztJ
I
.0r055
.1t6U
.000'191
K L XI N
.302 .316
a
.323 .332
t7
.1695 .1730
x
1ri
.1770
.02.161
.1170 .1236 .1278
15
.1800 .1820 .1850 .1890 .1910
.o2512 .02ri03 .02685
.413
.13-10
.00385 .00419
.1935
.029'1
.
1960
.0302
.0015.1
.
rs90
.0311
46 45
.0820
.00528
.0E60
.005E0
.0890 .0935 .0960
.00622 .00686 .00723
I{ L3
t2
Ll
.00"184
.00515
t{i10
It
.023,18
Y
.2010 .2040
.0316 .0327
.2055 .2090 .2130
.0332 .0343 .0356
0.0r9 0. 112
;
0.125
6
0.13E
7
0. 151 0.164
8 9
0.t77
28 26 22 20
it
t6
l4
Dianleier, lnch
Threads per inch
1.1
o.212
16
0.268
I
0
.294 0.320
8 8
0.372
7
18
24
ijv_2r*, !s's
2r+',
frurn to B,
.11I6
TAP DRILLS FOR ANSI PIPE TIIREADS
l3
20
Lo
.0409
0.190 0.203 0.216
t0 1l t2
Lr'-lz;-r', I ,"s irom
.038'1
.2280
Number
r6{ s frorLI
L(" to 1r+
.0280s
.22t0
Threads per inch
Ltj
.02E05
AMERICAN NATIONAL WOOD SCREWS
4
.2s5
()
.386 .397 .404
.0700 .0730 .0760 .0785 .0810
3
.0020 .0660 .0ri83 .0716 .0784
.290
.02258
.00213 .00238 .00278 .00317 .00352
2
.2E1
Sizes Av.rilable
.0601
.1063
.0520 .0550 .0595 .0635 .0670
0 .086
.05E0
.368
.00170
1
.2i2
U
.001.15
0
.0519 .0535 .0556
.02039 .02162
l8
rncn
r
T
I9
0.060 0.073
0+'J
.339 .318 .358
.15.10
.00 r 13.1
Diametet,
.0{00
.0820 .086ti .0901 .0050 .1005
t620
.
. 1660
Number
I
l_r14..
J
.01755 .01812 .01863 .01935 .01985
.1495
.
4I
.
.O0t'77
20
48
.250
.00755
.001257 .001320 .001385
50 49
.0-r75
.u
.0080 .0995
.0400 .0410 .0420 .0430 .0465
53 52 51
.216
40 39
2l
55
.0.1,10
.000143
.00r195
56
.0430
.238 .21'2
.0135 .0115 .0160
.1570 .1590
60 59
.231
Size
22
til
;n.
Area, sq lD.
ul. EO
I)id.,
Fractional Drill -{rea, sq xr.
-_. DIze
Size of
Pipe Tap % % %
t2 t1
l0
% %
Size of
Tap Drill 'tY3z
%
|r42 234
riln
1
r%
1v
rr4
2
214
r%
lztiz
209
TAP DRILL SIZES FOR IINIFIED AND AMERICAN SCREW THREADS Str(rss Arca,
0
.000)
80
1
.073) 073) .0Etj)
64
1
2 2
0E6)
NI' (,1
Nt'
4U
45
3 3 4 4
.099) .009)
{5
NC)
56 40
NC
5 5
Nl'
,1,1
.1.12)
.18
NF
4l
.125)
40
NC
37
0.
36 33
0. 1065
.lt2)
10
t2 t2 12
NC)
r38)
:.r38) i. rii4)
,10
NF
32 36
NC
(.1$0; (.190. ( .2l rj.
21
i.l6'rl 10
42
A.F
.r25)
..
8
0505
0.0ri25 0.0730 0.0730 0.0820 0.0E00 0.0935
lla
NF
\
0
53
NC
72 56 b+
0.0.1ti9
%
(.2rtj
23
32
NC N.t'
20
0.1{05 0. t5{u 0.l610
2+ 2a
NIT
1J
0.1770 0. iiJ50
U)i
20 28 32 18 2.t 32
t!
t1 %
5/s 5/s
,k
N.U.t'
UNO
UNF N
]t!'
UNC UNF 1\- LF UNC
2+
'/8
CJ
U.\F
l6
%
l6
I'IT
N
(.2 r6
i.3 ''4
32
,,'
20
UNI'
12
UN
lz
20
'!
II 10 I
l4
7t6
lrt
NO UNF UNC UNC UNO UNC UNC
i3 12
% 3rt
%
8 7
1
114 1%
1l's l3/4
tlh l|/t t% r%
2% 3 3
3\4
U
2;A
2ia 2ea
3ta \%z
%
6W
tr(1
0.4219 0.4219 0.4531
tlh
UNC
13i,44
8 8
8N 8N
l"/+
8
8N
ta
8N
2tA 2%
8N
234
1.4352 ,1.9326
2% 2% 2%
5.41ti4 5.9ti59 6.4957 8.3268
r%
UNC
8
UNC 8N
l,
UNC
t_4
lq Ira la
8N
3%
fi:"f,*tYX'".} ,i",:T"nft:%k;; Kilil;'".tffgift'33T1.:;iiT NC
j
or!
.oarse ,.^
5r;ier,,r. i, UNC I nii,d \rrior'rl ( NatioDal Fine NF
Hi
2 an'l Clcs.ns -
%"
-
F Rl',Ti"illiff''lT" S*i". ijilln"ii*"J
13
wi'
l5
or
3,"u;
p''viJ- i"]":i,Til"rf"::
3 nroli r r"l' r'ln'Ps hu
no
,llo$xlc.' ' "rr h 'i' ( '"'{ z $:rs 'onr f" s"r "rur ,r"'rriL e an'J :i'i;|'; b:i,,,;'ul
( i:br 3 $i l' JIrltfi'!\rm3r^r) ./u-o i:i""'. f'","',i'.; 'i,' r'r'']'' "i'rl "t"s" 6t' aPPLicl1tiors.
tirn' cs r'loolins,\'r'
bpen
Lnril "'rch tl'"..':'i :.'t' llll[";f ifl; u,iin1'ri-r',,11 LHi:l lll i,ii'i'' "li"''.** ",-" !l*
j:l
8.950.1
a/a
"-
lirn"s lh" t"lerar a I( for special close iiL xpplrcrltrons'
2
2t(,
UNC
",""i T"' l;,i'-l;ll. i,'"'iii.1". ""'"''
Clas"rs 3A crrl 3l{
t-1)2
.4971 2.7665 3.2404 3.5519 3.0976
scm* rllow-
i;;',:lT,,,'ii
2.1t07
12"/r2
i/'i lc rl''r;'.)' rii:liil
p"ovi
fit,rPPlications' ';t'"
1.E983
2.0
r.'" 'h!r'|
' "-lili \ l,n l lR I'ra\ile.lolF"trr''' ',\,:'13'
1.4899
5000
l.\ r'"1 2\
Cla*ns I
1.40.11
1.3750
€rtcrnai ti'realls
iDg Pra{itice'
.2319
1
t%
UNC
4
t .2500
r'r$
rFi'h Clas'c- 2l:n'1 2U pr"riJ" r""rrrr's ''" .'. .'L "rcrtl r"r'g'r'"ml b'l ".',:i't"*,t
0.3340 0.4612 0.6051 0.7627 0.7896 0.9084 0.9985 1.1538
1 . 1250
.
'
o.2256
0.7656 0.8750 0.9844 1.0000 1.1094
1
CL"se" -
0.1597 0. lE16
0.5312
2R.
A oi h,.." lr-c-,rr L.us'-l 'n,iil""oJJ 1' binrtjon. Clxs+s 1 1r!l ,+ Irorn strr,lr rJ \\ tre dr.cr'rttuLueo'
0.1'l!6
0.48i14
l3/8
,'rnd
0. rrES 0. i374
0.390ti
8N
i ' r".
0.10ii0
0.6.106 1%!
r|l 3B \?r' rl'o ''inl.'lr'l tlr" "J : rrL r' " ' 'u 5tlliilLru | i,,r,,.;'el tl,re* "'nr" r"' uld ar. I3 s l nrrir' 1,fr"rr' Ch-.".2 ,* * ,,i .,, r, L^r" .r" ,.url' r"' rr'r' rr" l
C'3...' ll{r
0.0ti22
0.36t0
z,/at
1.3281
214 214
(J
6 8 8
8
2y
0.3.137
0.0773 0.0876 0.0929
o"'{t
tLrr:rrds oIlY.
0 .0362
.2720 0.2812 0.3.riio 0.3320
1.2031
4%
0.0199 0.0210 0.0257 0.0269 0.0317
'',
i'll;l; i I!l u, tlrr 't l'rt,.l S\rrrl'rL 'ti'h :.,'.,.;-.',,,;,,i. ', :,1, ,, -r! ' ,' u I' rlrn.tr rsr'rr' r"r",l ,'t rl'' -:trr'F 'le ,,,,,f tl', ' t"''ai'" ",,'.,' allo.anccs ttt,tttt,. of toleranccs ancl .r,cf1'" i i'r rrlr"l' 'lis,','l',':.,'.,", ,r rlrr"''r 'ror' rn" l "r' 'ii'*l'l'1, "i':,,"". d ir' rl'" I \,2 \, ir'd 3A rr"r"n rrl'rr'lr .\" Cl1''-..' r'rl """ ,.,.,,: -'r,,,t .,.t rnJ r'.' f lu
01.'6
0.0i7r
o
1% t txl
4h
0
0.26r0
113/.64
2
0 .0139
I
8N
2
0.0079 0.0082 0.0090 0.0101
0.0377 0.0522 0.0579
8
5
1% 1%
0.00i15
0.22r0
8N
8N
0.00ii0
0.2187
vn
UNC
0.0052
2
1
UNC
0 . t)0-18
0.20{0
6
8N
UNC
7 8 6
0.0039
0.IE90
12
UNO
8
r% r%
C)
0 .0036
0.1130 0.1160 0. r3ti0
2t
.';.,i,',,4 I r''ri' l ',',''ri,",'i tr't ltr.r', \\1"'
002tt
0.0027
l0l0
N.tl
Nfl
0
0 .0960
32 2g
'L'liis irrfolrn.rlnr|\ urL' extj.lrfLe(l fronr ]\merr.r'l \rrr' r,i':,r' <"teu
0.0018
coa-
"
GENERAL TABLES
SAFE LOADS FOR ALLOY STEEL
CHAIN SLINGS,IN POUNDS
Chain Size,
Inches
1/R
Single
Double Sling
Branch Sling -
Horizontal Angle
at 90o angle
at 600 angle
I
at 45o angle
3,250 6,600
5,650
11
,400
4,550 9,300
900
11
zso
19,500
15
s/R
16,500 23,000
28JsO
28,500 39,800 49,800
23,300 32,500 40,600
I
38,75 0
67,100
1.1/8
44,5 00
77 9oO
54,800 63,000
r-rl4
57,500
99,500
81 ,000
1-3l8
67,000
I i 6,000
94,000
1-112
80,000
i
38,000
1-3l4
100,000
112,500 140,000
18
at 30o angle
-[lAlal^
r12
'7
I
t't2,000
32s0
6,600
11
,250
16,500
23,000
28Jso 38,75 0
44,500 5?,500 67,000 80,000 100,000
Reporter' and Additional data can be found in OccuPational Ffetv {aJth u'r wastungton' ' Ailairs' of Nalional publisned by The Bureau
zrr
SAFE LOADS FOR IMPROVED PLOW STEEL WIRE ROPE SLINGS. IN TONS (2OOO LBS.)
Trao-Leg Btidle or Basket Hitch
Single Leg
Digtueter (in.)
s
MS
HT
s
MS 6
3B 112
5la 314
7la 1
1
1la
1.3 2.3 3.6 5.1 69 9.0 1i.0
12
1.2
2.2 3.4
2S
4.9 6.6 8.5
4.2 5.5
10.o
9.0
3.0
72
1114 1
3la
1 112
13t4 2
2114
*lf
13 15 18 25 32 ,rO
14 17 20 27 34 43
slinss are used
to
d: il;.H;#i;"';pf
1l 13 16 21
28 34
MS
HT
s
MS
s
HT
MS
S
HT
Wire Rope Core (Illy'RC) X 19 Ctdssifrcation Collstruction with lttdependent
92 1.6 25 3.6 48 6.3 79 6
s
HT
0 Degrees
45 Degees
0 Degees
Vertical*
Choker
Veftical
Rope
92 1.6 2.5 3.6 43 6.3 79
92 1.6
2.5 3.6
4.4 6.3
79
25 45 72 1o.o 14p 18.0 225
2.4 2.4 4.4 43 63 6.0 9.8 aA l3O 110 17.O 14.0 20.O 18.0
2.3 4.0 62 a1 12.0 6.0 19.0 ,f
2.1 38 59 8.5
29
15.0
121
1',1.0 17.O
35 52 73 9.5 16.0
1B 3.3 5.1 7.1 99 13.o 't6.0
1:t 3.1 48 69 9.3 12.O 140
7A
h)ire Rope Care (IhtRc) X 37 Azssification Construction with lndependent
9J 12 14 19 24 30
9.7 12 14 19 24 30
91 12 14 19
24 30
28 26 34 30 40 36 54 50 686/.56 86 80
22 26 32 42 68
24 23 2€2623 35 3t 47 43 59 55 74 69
be.used to plolect the handle loads wlth sharp cornets. pads oI saddles should be used' should ratins t'itch cr'o*"' iittre raoius oi"be-n[ ii srnal"'l
19
2a 36 48 59
Iope' The
20 18 24 21 29 25 38 35 4a 45 61 57 radius
13 23 3,6 5.0 7! 9.O
1.7
23 42 53 10.0 13.0
|
1.O
14 17 20 27 34 43
t6 1A
23 30
40 4a
,lts
-:-
12
22
34 49 65 8.5
10.0
13 15 18
25 32
40
of bend should not be smaller than five
"
S = Socket or swaged terminal attachment MS = Mechanical sleeve attachment HT = Hand-tucked splice attachment Tableisbasedonadesignfacloroftiv€,slinganglesfolmedbyoneleganda'verticalLinethroughthecranehook,andrrnifofmloading.rolthleelegbddle!i *o t* rt* teg bridle slings' multiplv bv 2'0' mutriply safe load l.,rn!,, ,o, ,*o ,"g o""li ffiJi'l Additional data can be found in occupltional safety
a.nd
National Mfairs, washington' D' Health Reporter, published by The Bureau of
c
.: .: :r.
_F
{IENEI]
\I,
'IABLES
SAFE LOADS FOR EXTRA IMPROVED PLOW STEEL WIRE ROPE SLINGS' IN TONS (2000 LBS.) Two-Leg Bri(lle or Basket Hitch 0 Degees
X I9 C.lassificatiotl Construciott
6
1.5 2:1 4,1 5'9 8.0 10.0 13.0
'2 -3 -3
1.4 2.5 3.9 5'6 7.6 9.8 12.O
13 2.3 3.5
4.4 6.4 8.3 10.0
1.',l 19 29 4.1 5.6 72 9.1
1.1 19 23 4.1 5.6 72 9.1
1.1 ',19
29 4.1
5.6 7.2 9.1
3.o 5.4 a2 12.O 16,0 20.0 26.0 6
16 15 19 18 23 21 31 28 103732 49 46 T -:-
:
s
are useal
24 40
11 13 16 21 2a 35
to handle loads with shalp
; .;#;ilh";;;iittre - ;lcket or
13 15 18
swaged
raaius or
rcni
11 13 16 21 2a 35 col
11
13 ',16
21
2A 35
ne$, pads ot
2a 25 5.0 4,6 78 73 11.0 9.6 15,O 13.0 20.0 17.0 24.O 20I
23 4J 7.1 100 14.O 17.O 23p
2.4 4.3 6A 9.7 13.0 17.O 219
2.3
4S 6.1
8.3 11.0
143 17.0
2.1 38 5.8 8.3 11.0 14.0 18.0
1,0 1 a 3.5 3.3 55 49 71 6.8 11,O 9,0 14.O 124 17 .O 14.O
'f.5 21 4.1 59 8.O 10.0 13.0
1.4 1.3 2-5 2.3 33 3.5 5.6 43 7.6 6,4 9.8 8.3 12.O 10.0
23 27 33 44 57 69
21 25 30 40 52 65
16 19 23 31 40 49
15 18 21 2a 37 46
X 37 Classification Constructton
32 38 46 62 80 98
30 36 42 56 74 92
26 30 36 48 64 80
sadalles sho uld be used
2a 26 33 31 4[3631 54 49 @6455 85 80
23
26 42 69
to plolect the Iope' The latlius ol b en'l
sho
la 21
25 35
45 57
uld not be smallel
24 32
40
is smatler, a choker hitch ratins should be used'
terminal attachment
leg line thlough the clane hook' al1d unifolm loadine' FoI thle€ on a alesign factor ot tive, sling -sffis angles folmeal by one leg and a-vertical by 2,0. multiplv bi t 5 ana for iour leg bridte slings, *= -t ,"i"-f*i fi",itr-f"r two leg bridli Bureau of National Affairs, washington' D c' ,!r-:.:nal found in occupational safety and Health Repoder, published by The
i
1A
tha[ five times
{ . !rechanical sleeve attachment - - -and'tucked sPlice attachment .rLo
13 15
b
dle slings'
baseal
clata can be
2L3
IJ
..1
(-)
;
v-).
\ \\lr U\CI\l,l.l{l\t'
t'- co o:
r"O-s"
oc.ls\o
zl al =l
xt zl
'l
9-T
leRg.8"
I ?. |
6
ts;6X5 f_- r.,- <: s^
;;i66
6 E "^ lH-^'.o f€--r^-_
E
^{ o^
IF"X"X.5" licr.nm
:a;x5 or-- \\
@^ oo^
o\ q d-
'o^ c.l
\o t-- co o
.n \o
\i F- o
\o^ N-
a
888 \o- .1 r-:
.q-
1
q.1
z o
(a
p9
;666 o-(.i$-\
3^q€"8"
'o^
.l
o-
co-
1v1 o) s-
xF65 co- .o^ co. o:
:.i-
4
5.
F^
/A* ^z
8eZ geE
(J
Fooo:
si \O F-
O\
1 tl to.
@-
eesR o-t $: + F- |I 3R33
.o co 1
d-l
.o^
o\ ^]
..o^
o^ d^ co- \
cd o^ "1 io-
O^
S-
.{
\ a'I
".i aJ aJ c.l .i
tr-
a4
()
856
Oo.\l__@
F
F
ooo
xx6. ^{r)-o^\
xF65
e8R8 c\ 1
l(.ooa l\oNcrl^ loo t <..--
L
l's,lr
I
\o-
v'! s:
F
888 ;Fi6
S+(.to"1
HV66 F-- t-^ 1
$-
co^
oo- .\|-
o:..)
F
F t-: 2
tl-
co^
\O^
t:
3Rs"R t-- co o\ i
I F.?A |
:il:
;:
loooQ l\D<_@v -----to^ lo..l"1
o:
v6v;6 r"l \ .t r-^
x6-6 .1 €- S. to-
;.i.{6-
o^ ct .o-
o^ .,)-
888 l-^ @-
cr^
O\l
E
oa\nvl
.:z I
h^ ci6 FtrN
F( .E
.S
q€lss
qB"8"a"
9-t
.o
.o-
6i661sr-tm-
\ cl
;F6d6 o-\vl s-
a"q8" ;6F6
\o Cl Ct
C.l
GENERAL T.\.BLES
I
x66; o-r 1
6-
a"€"G"3"
^v-
I
6 v.6"
c!. o-
co-
I
O
I I I
| 'r,
x:ai5 \o^ o- \o- rl
".r^
56:6
YX:65, .-i r-- oo.
t: lE
o^ .'1. -*
YX'NF
\o- s^
x6.;. O:.o\O
;;
E;6^4 codlo
co^
^t
41".
:d;66 s..L $-
\OO\tn\O
+-
+- F^
RXRFJ
\
v
,;
E
al
lo tq
5I
Hi6;65 fo^ o^
R-;. F.3"
tx zl t-' q.t l.'\ |
\o
1o\
t_- co
o
6-
ts^+^-.4
d
VV;66 o\ dl oo- r--
ts;5i; 6- c\ c.l s-
6.
;6.
I
I
H:'iF (^a-o..cL
vx;+
x66;6 a-vlv^1
U F o- s-
i4 ;;6;6 \o^ o) d. co-
6-;. V.6
a€"s"8"
F
888 Oco-
co-
v)
*.9
:*
EEe
832 lAt :EE EVa ?: .t) >
qs"e
:x:x xi 65^
"r
o^
\o-
t:lo
?flR3"
o\ <-
l'l
o}
c"$"R8"
t<
x x;6 d o.
n5+* 1 E33B dv-{
l.r
z
H
O t;
F
F t9
z c6
!!
E
"t
I I
co^
I
ql
$- \ -1 ''^ \OF o.'O
c{ o- s^
F^ -6^ xFO'cl
1o\o:@^ o, o c.,r $
x
v-;6.
.i 5^
565 tz
;-
b6-
E
I I
R
3:3
YXV6 oo o\ ..Lv^
c-s"l
c"
f:
l\o lic\6'i
:co-\o
co^
vi<=d^ \ 1vl
i6 x;6;6 \O- o\ sf- co-
X
x66i6 rl c'! c.I
eg{<sr
\o t-- o\
o
e.{
e.
tsi45 .{ o: o^
t: t<
215
ITif (iR]\\ I!I,I, PII'I\G
DI|SIGN
FOR DIAMETERS AREAS AND CIRCUMFERENCES OF CIRCLES IN UNITS AND FRACTIONS Circum. 1'/|6
i:it
l3
r! I :,i
341
Lr ll53 Irl . lr;ri Tolll
r+
37
1i ll62.3ol15.160l
Ys
rr ,12
.589049
ur6
I3
e76l
38 | 4
4301
'aj
r,; | 56.7{
lj
1165 131.15.5531
xr | 60
1j
1170.87116
r
l)73 7El+0
76 1167 elll{s
I
'ls
li
I
%
1k
,6
5sl541l
%
8.05033
r7.1751
l; lr70 71117 r\ ll71r ;L I I ll82 'r7lf7 6;117
,16
,;
Lr 167.201
,t/s
i .07$92
rXz
731 1
%
%
8
r" 1
.17810
t.27627
rii t',{,
I
1
.37.145
|
47262
rrk ?s | 6 llll r,/t6 6 7771 |
% \t/t6
l0
1 .570E0
ii2l:i
fi6
.66897 I .76715 1 .86532
10.0r38
L 96350
0.2102
L
'x1,
*l
lE
:\
r
ttl
10.6029
3.i
0.7992
%
0.9956
).t
21h
%
L
%
rX6lt0.680
rX6
3,/
111.0-15
%
16
.9773 12 . t737 11
fi
12.9591 3. 1554 916 113.772
%l %l
r/4 114.186
f,
"rl
"41
113.364
,i6 ll5.466
% |.767r
r
\6 %
l
%
2 l1b.g04
e16 lt 6.349 ss 116 800
1103 87
%
9{ li06.14
% %
lAl ."
86
%
3s 1120.28
78
I
y2 1122.72
I
l6 u25.le sl lr27 68 ,8 1130.19
% %
^ul
%6, %
4.1372 4.3335 .1.5299
Y2 ,46
%
1113 10
i1 lr t7
31132.73 rs lr35 30 ,r ll37.89
%
%
l9
%
1k 1143.14 5s l14b.80
% %
5.3153 15.5116
% ri
]|118 .4') lr 51 .20
tn
l18.I90
%
%
118.665
Lr$ 119 147
%
l8
% %
% )5
%
4.9226 5 .1r89
1316
,h
%
r.,
I
I
% %
rYra
4.2201
ul ."., ,1
%
t\6'|17.257 11.7262 117.721
.k
%
lrl %
,t
rs l1t5,r7
3s lt40 50
tyt6 \%6
h
tl
%
I
,/:
% 114.607 % 115.033
nul
ot
12
:tt
%
38 l10t 62
31 1108 13 7s l1t0.75
%
'l:
) ''l
% % %
1346
112.566
Y.,9
\
8131
1 .0095
rs/ra
y* le .saz
7
%
lr.0 32I
l1t ,+I6 % llr .7e3 Li16 lr2 r77
li1:1,
Il | 95.
t8
r3
2W
t\
.1919
1
lri
t1
h
,zl
10..1065
2 1 9.621
li
I
l6
78.
| 80 5l 182 5l I t4.511
rr
|
:;l
2y',n
rYt6
::
1
,d
,l 111
ii6
?A
1188 6ll+8 6e1 % 1191 751{11.0871 % llrl.83l{9 -1t01
%
lt % %
GENERAL TABLES
AREAS AND CIRCUMFERENCES OF CIRCLES FOR DIAMETERS IN UNITS AND FRACTIONS (Continued) Dia.I
Dir.
ill0
,\ 'ln
t1 5,A
E2
5,llL00
8r6
861101 .31 823.21 101 .
)1
1.1
,rr.,-
:".
tn I
1|1
lr |,z lx
t(
1r7r
1.!
33
\1
Eri8 31110+.
871 E5 10,t
trt7e.
39
11194.
1a
t81
;/t
r
1t225
:'r 901 .261106.421
r
7.1
3
Jl241
t25.271
I
5'10 1599.
60 .221
79 o71
160 614
163,t
.
16,13
.
1652.
r44
51
1707 .4
l|l],2
l]
41
l01l.
,1
!)82.8,11111.1
ti
%
%
tA
I,A
1
1017 0
lli'\,.
1025 0 1032.1
li;
03c.2
t4 1046.3 ,1 1053 5 % 1060.7 % 1068 0 1075 2 1082 5 1097.1
',
% %
711
111 910
010.8
12
184.961
12E.41
%
tn
t4
680.0 16E9.l 145.601
s lt28o.3
%
1A
975 9l 110
t% |;:
%
15ti.
1661. 1670.
1125(l
t.i
%
I
tA
1572
11
,4
29
)1 %
t4
15ti{
1626
.
1233.
%
%
176.7r
1608
s Ll26{ + 11272
\
%
122.91
s li 248.
r
%\
% % 19C3.1
130 801 '/+
11210
:.i
f.i
0i
!, 11217.
t/,
11 105.
13C
120.951 .
11
,1 851
ti ,i
r5 11202.
1i
50
)lt
ib l lE6.
"1.\
tA
381
r8ll1i6
,t0
:1
l9
1( llr11 r1 lt r10.1
14 11161.
5i
% 74
lr l3-r l l
38
32
26
Dia.
Die.
Arca
.31
%
l2l
501
131
.10I
ili 11 11352 . 1360.
!(
%
11361)
7A 1377.
42
31.554
114t0
r, ss
1E00
r837.
.
1876.
.
% % %
35.481 35.E71
1895.4 5,1 331 1905. 1gI'1. l55 .l r
%
lg24
t4
193.1
l r19.2
%
1943. 1053.
7
I
43
.8
1a 1126
189.281 1E9.67
1.71.2r
133 51 1427. 133 9l
11104 5 1111
170 .,131
li 418
1443
168 86r
I
1828.
% lr433.
'%
50.011
1809 1819.
1385.
rr 113e3 ,1 t102. 3A
187.31
1781.
.
t
\71.751
93 60r
FOR DIAMETERS AREAS AND CIRCUMFERENCES OF CIRCLES IN UNITS AND FRACTIONS (Continued) Dia.
Area l('ircum
*'.,]l,
74
19.11194.77911 68 1s 131195 t
71l
i;l
% %
/:.1
'
ltl ftl ,rl
%
.871 l4s2s .e1233 263
114315
)<
%l
92
4/6
I4SUU.lJlrJz .4|1232
)l
tA
11344 5 233
,
14359 .2 234
lr7
.0't9
%
14373 8 234.141
75
14417.91235.61
ss
e2.611s7.13511 % 04.91197.5281t %
63
29 61198.3131 1{
l42.olls3.706l
%
rz
%
%
% lnor,
166.91199.49111 %
%
ri li*ni
% %
11 \1506 .7'
26
lr$6.5J238
%
%
469
.
Y4 €O17.61275.675
761
liisi
ilzsn ,;o
14566
412tse
.
% \52t'7 % l'3r3
ls
.11258 .31258
',"
14581 3123e.
% lss29 11258.789
t,: li: tn
)1
145s6 .3\240
,
|
"*
t;
1461i.4 2,10 s.4 .11626.4\241 t1.7 % 11641 51211.51o
77
7l
'l^
',% lioii
%
l:
1,1656.6
241 903
*jzCI
14686.91212
|
%l
%
'il
)4
!b
91
,:l
%
% %
/ul
i
tj6u
14717 31243.4 11732 ;1243 14717 .8\211 .
l8
11?63.11211 6s2
% %
% %
%
%
% %
e16lL 1,
14128 21227 765
s9 1120e.70lll 34 14156.8122s 5i1 rz llzto ov+lL ?s J4r7l 11228 944
%
7A
z9
li, \'" \,:
li: I i'' 2L8
x
y1
r.6{i5
|
%
.14870.71247 14886 .21247
11917 11932 .71248
%
% t4
Y2 74
2l
% %
% % 90
%
,8
%
%
%
%
%
% % % %
9r
85
lc5o3.91285 885
t % 3.4
11228.51230.51
s,1.
l
%
%
s8 4257 1231 ,4 1979.5250.1.49 i zlztz.+sol 'i j;;l;i;;nll] 11995.2250 .512 iiit stis' t"z rs alzr:.2:o
1615r.11278.031 16168 81278.424
14 16186 21278 816
% %
.
.9r1
%
)/4
.
.21248.57!
l,
89
83
% %
l4cot 71248 1
.11276 853
?8 15394 31260 359
84
66
% ,4
ls3+s 6125s.181
bs 1s3ff1 81259 57-l
%
16 14702.11243.081 r
,
16090
.
%
'/,+.
.81273 711 8.S1274.104 1
% 16013.21274 r8 16030 41275.
i"
l+szr .rlzzs.
i'
25'l
.
*
%
1s153.o
too
iii 2iJ1
% %
18 15168 912s4. I'3s 15184.9 25s.2;4 ls2oo.8J255 647
.
n\rr,
%
y4 1bt21,.2253 684 7s 15137 I125+
2;3
81
11417 .41231i .
ya lssaz .z)psa
2')1
lb1o.-) 4
42a6 3 232 085
%:oro.gzso.gls
t(
15758.3 268.evv
% \stz;.t',zog .sgz
287.848 165e3.5 3/4 66rr.5'Paa.241 % jeozo.a zsa oa+
%
G]]N]IRAL TABLES ENDS TABLE FOR GAUGING I{ORTZONTAL CYLINDRICAL TANKS-FLAT
|aD : %C
Percentage of Total Diameter of Tank
:
Percentage of Total Capacity of Tank
%p
%D 0.1
01'f49
0.0053
0.2
03 0.l
0 .0152
0.5 0.6
0.0279 0.0129 0.0ri00 0.0788
0.7
0.0f)1r2
08 09
1.0 1.2
l.ti 18 20 22
11
6
.4
3060
(i.,t08i
11 8
6. (i320
12.0 12.2
6
0.7970
13 .0
7. ti3{r0 7 . 8110
0.2t00
13.4
7.9840
25.5 20.0
0. 3,r19
L
1580
26.5
13.8
8.3330
4773
14.0
8
5094
27 .O 27 .5
0.7001
1'1.6
9.0.140
2.8 3.0 3.2
0.7886
14.8 15.0
I .221t'
t5.2
1 0533 15.ti
3.6 3.8
1.1.170
4.0 4.2 4.1
1.3418 1.412C
1.54ti1 1
.6515
1.7j11).1
5.0
1.8093
t'2
9.956
10 703 10. E92
16.E 17.0
11.082
11.273
17
.2
11 .465
2.2116
17.0
11 851
3.0771 3.2082 3.3408
4
0276
31.802 32
.412
33.025 33.638 34.254 34.869
41
.5
39.233 39.860 40.490
3.6106 3.8869
28.781 29.330 29.981 30.587 31.192
13.832 14.035 14.238
19.8
3.7.180
28.18,1
35.491
19.6 20.0
202
14.41-1
14.649
.4 20.6
M.454 15.060
20
8.6
4.1696
8.8 9.0 9.2
4.3131 4.4582 4.60,r5
20.8
9.6 9.8
4.9015
21
5.0523
21.8
10.0
5.2044 5.3580 5.5126 5.6690 5.82tt2 5.984E
22.O
42.O
425
15.ti83 15.892 16.101
460
16.312 16.52,r 16.73? 16.949
47
22.4 22.6 22.8 23.0
17. 161
17.376
47 .O
.5 48.0 48.5 49.0 49.5 50.0
55.0 56.0 57.0 57.5 58.0
61
0
61.5 62.0 62.5 63.0 03.5 6.1.0 6.1.5
65.0 66.0
670
74.4 78.6 78.8 79.0
8,r. 108
.a
77
78.0 78.2
8,1.525 84 733 8,1.940
9,1. 1738
94.3310
89..1
89.u
9,1 'lui 4
89.
E
9.1.6-12{)
90.0
9,1.795{i
so .2
9+.9"177
90.4 90.6 90.8
95 0985 95.2+75 9.5 39t55
95 5,llt
91 .0
9t .2 91.4
95.6369 95.8304
85.351 85.556 85.762 85.965 86.168 86.370
91.6 91.8 92.0
95.9721
80.8 81.0 81.2 81.4 81.6 81.8
86.571 86.771 E6.970 87. r09 87.367 87.563
92.8 93.0 93.4 93.6 93.8
97. 1789
65.746 66.362 66.975 67.588 68.198 68.808
82.0 a2.2
E7.760
94.0 91.2
97.5503 07.0703
94.6 94.8 95.0
97.90+-1 98. 1086
69.413 70.019 70.620
83.2 83.4
95.2 95.4 95.6
98.2.106
96.0 96.2
98.6582 98.7568
96.4
98.8530
.2
99.1258 90.2114 99.2939
792 .4
85.146
58.251 58.884 59.510
00.767 61.396
?9.6 79.8 80.0 80.2 80.4 80.6
62.023 62.645 63.268 63.890 64.509 05.131
60.
i.l0
79
42
.4
82.6 82.8 83.0
87.954 88.149 88.343 88.535 88.727
71.816
840
44.2
88.918 89.108 89.2rl7 89.485 E9.673 89.859
84.4
90.044
71
.2r9
68.0
836 83.8
36.732
69 .5
7
?0.0 70.5 71 .0
71.767
850
75.319 75.924
a5
7t.5
76.506
72.0 72.5 73.0
77.O77 77 .647
38.604
81.317
50.989 57.621
73.004 73.593
4.182
E4.6
84.8
90.224 90 .412 90.59.10
96. 1131
96.2520 96.3894 96.5251 96.6592
922 .4 92.6 92
93
96.7918 96.9229 97.0517
.2
97.3048 97.4285
944
958
96.6 96.8 97.0
99.3733 99.4499
86.0 86.2 86.4 86.6
91.4906 91.6670 91.8420 92.0160
99 .7777
43.011 4ts .644 44.274
74.5 75.0
79.897 80.449 80.670 80.890 81.108 81.325
86.8 87.0 87 .2
92.1890 92.3010
98.8 99.0
92.531,1
99.
E7.4
92.7010 92.8695 93.0370
99.2 99.3 99.4
81.543 81.760
88.0 88.2
s3.2030 93.3680 93.5315 93.6940 93.8551 94.0152
99.5 99.6 99.7
75.4
47 .457
76.0 76.2
48.093 48.729 49.366
76.8
50 .000
77 .O
46.819
98.9,167 99 0375
97.6 97.8 98.0 98.2 98.4 98.6
79.339
45.550 46.188
98.557r
91.13.19 91 .3133
97.4
74.O
44. 913
98.3485 98.4539
85.6
85.,1
42.379
75 .2
98.1307
97
.5
73
97.7E8{
90.7754 90.9560
.2
78.215 78.778
44.5 45.0 45 .5
.6
21.2 2r .1
5.1.0
55.087
89.2
68.5 69.0
41. 11{i 41..749
15 267
51..450
82.839 83.051 E3.263 83.476 83.688 83.899
36. 110
43.0 43.5 44.0
2l .0
53.8r.2
53.0
59.5 60.0 00.5
.233 25.818 26..r07 26.996 27 .589 25
38.5 39.0 39.5 40.0 40.5 41.0
3.4749
53. 181
24.651
12.633 12.831 13.030 13.229 13 .429 13.630
19.4
52.0
59.0
12 .437
18.4 18.6 18.8 19 .0 rtJ .2
2.9.+83
35.5 36.0
.0
24.O72
37.0 37.5 38.0
2.6952
2.a2Il
34.5 35.0
22.353 22.923 23 .494
12.210
12.0-10
b.4 6.6 6.8
2 .57
11.657
3,r.0
2t.745
18.0
t'
.4,\97
.0
1(i.,t 1ti ti
1.8914 2.095{i 2.321)
31
32.5 33.0
t5
10.2 10.4 10.6 10.8 11.0
t'
70.327 10.515
18.2
84
L
16.2
16.0
6.0 6.2
E.2
9.588
29.5 30.0 30.5 32.0
2
7.6 7.8 8.0
L4060
28.0 28.5 29.0
10.14r
1.2432
4.E
7.2 7.4
250
13.6
I.1.4
7.O
21
0.,t077
0.ti207
58
2L .222
0. 111(i 0.1(ilr2
8
0.962i)
51
r8.022
19.3:t0 19.551 20.103 20.061
7 .1036
0.87.12
17 .806
18.8S2 19. 110
7.29110
0
50.5
18.210 13.4s7
IJ
12.8
o.2223
17.590
21.0
23
126
0.5501
5.6
236
0 . 1212
2.1 2.6
46
234
21.4 21.6
?.1305
8. ti8ii7 8. E65i
'1
.2
'J{i30
1,1.2
3.
23
50.634 51.271 51.907 52 .513
87.6 87.8
1
9S.8
99.9 100.0
99 .5227
99.5923 99.6581 99.7200 99.8308 99.8554 9S.8788 99.9008 99.9212 99.9400 99.9508 99.9571 99.9848 99.9947 100.0000
2r9
GRI\NELI,
I1'T
PIPINT] DESIG\ T\ND r]NGINI'FJRI\G
WEIGIIT PER FOOT OF SOLID STEEL ROUNDS \\'eightsshowIr&refo|s()lxlIoLllrC1speIfoot()flellg1h''fodetel.miethe\r.eigh1
footoftheI.l).fromttre*'eigtrtpe,iuuioiir'"ri'il..,,qrr,'"igr'l"ar'ebasedonst.eel*'eighiIrg0'2833pourldsp of other metals see relxlive \{eight factors on 1'g 177
16.6E8
,#\
t7.532
96.120 98.136
gV\
Y:l
20.1S2
r.04.30
27.t20
106.39
1x46
wl
22.O70
108.51 110.65
rYra
,rl
*l
Yxl
i*l ';\
0.1669 o.2712 0.2607 0.3155
24.030
T^\
v\
o.37 55
0.4407 0.5111
ial {^\
i\tl
1.0430 1.1499 7.2620 1.3794
"rr\ '%l
;)
1.5019 7.6297
\34:6
1.7627
i\
^r#\
214
:)\
%
n\
\Vr6 st 1 Yt6
%
|
.'''
135.55
%
137.94
rYt6
140.34
% r'/a
40.09r 4r.397
747.7\)
42.719 44.066 45.432 46.819
150.19
323.O7
152.70
326.7 5
48.227
%
fi^
N6
%
757.79
Y\6
160.37 162.97
% "/s
%
%6
t/t
%
IT
73.595 75.356
204.12 207.36
% % % %
Tl,
74.942
I
13.517
t:
|
ll
77.t40
?),
1%6
l\ rx
80.768 82.614 84.480 86.370
,46
%
ryt6
872.57
%
376.51
ro/ra
2t9.29 222.32 225.34 228.46
1321.8 1336.7
1381.9 1397.1
74t2.5
ln l\% Y",
%
t..
% %
l2 t% t'" lso
:l n\
2323.6
78
2403.0
%
1458.9
%
r474.5
1,4
1490.2 1506.1
% % %
2443.1 2463.5
%
2483.8 2504.2 2524.7 2545.2
%
2565.9 2586.7 2607.5 2628.4
1602.7 1619.1
%
2649.3
%
261-O.1
1635.6 1652.r
%
1537.9 1554.0 1570.1 1586.4
%
v,
31
lg %
%
3364.9 3388.7 3412.5 3436.3 3460.5 3484.6 3508.7 3532.9
36
% %
I* |
"{i
3557.0 3581.5 3606.0 3630.8
l"'r l{a
3655.2 3680.1 3704.9 3729.7
'.4
|t% t^-
242it.r
7427.n 1443.3
t522.O
,#\
2245.5 2964.9 2244.4 2303.9
29
1292.3 1307.0
'/"+
I
,u'" {) 926.22 938.70 951.24 963.89 976.60 989.42
t2 % %
210.3r 2r3.28 276.27
%
%
| 'r' ll Y" \* ll%
ll* %l
UI 7^3.
269r.6 27 t2.a
\
32
1685.5
rA
"n*l %
t702.3
%
%
1719.2
%
%
r736.2
% % %
77 53.2
% %
1770.4 1787.6
% %
1804.9
26
1002.3
1668.8
2820.2 2842.O
2907.7
33
% %
4165.9
%
2863.8 2885.7
%
427l.S
40
%
%
297 4.1
Ya
4325.7 4352.5
%
2996.4 3018.8 3041.4 3063.9
% % % %
4379.4 4406.6 4433.8 4461.0
1839.8
1857.4 1875.0 r892.8
1081.4 1094.9 1108.4
l"',r(); |
%
%
459.97 468.77 477.b4
%
3155.0
l7a
% %
446.62 495.66
1t22.1
r:
% %
3178.0
|
504.81
5t4.O2
1135.8 1149.6 1163.5
|
1910.6
l%
t\
ll
Yt
4298.8
2951.9
% %
% %
r.068.0
to64.7
4245.4
%
7422.4
451.23
1041.5
4192.4 42).4.9
2929.1-
%
.j.
4061.2 4087.3 4113.5
4\35.7
1028.3
%
3957.8 3983.3 4009.1 4035.0
%
1015.3
%
I
nl
425.60 434.06 442.55
% %
3855.5 3881.0 3906.5 3932.0
'll ,"1
4\7.20
13
3779.7 3804.8 3830.3
I
201.51
\
222t).2
1366.8
337.92 341.69 345.47 349.29
7r.851
X6
2207.O
t",
330.46 334.18
%
5
% %
12i7.7
|*
319.41
t55.24
187.28 190.09
1263.1
% %
l'3
308.56 312.75 315.78
192.91 195.76 198.64
%
'ts/tn
lr;
15.864
133.18
,6
184.49
2168.7 2187.8
\,, 123
294.37 257.49 301.42 304.98
66.751 68.431 70.130
1Yt6
12.Osi12.777
15.061
tA
368.62
\;
th
%
%
7.6032
).4.278
I|
?4
181.73
10.680 r1.358
r:.
"s
t76.27
%
t:.
60.244 61.839 63.454 65.092
6.0074 6.5187 7.0504
8.7716 9.3870 10.023
/t
rn6
123.92
170.88 173.56
%
r248.6
IY
%
%
164.22
t234.2
l"'N
t42.77 t45.22
49.658 51.106 52.578
%
%
10
121.\7 126.20 128.50
1219.9
\
%
%
1205.1-
% %
'/2 i.7
%
178.99
t7;
|
'46
r7t6
%
l7;
37.549 38.810
%
4.1720 4.5997 5.0481 5.5176
a.777
2a.202 29.297 30.414 31.550
%6
\Yt6
lY;
119.4r
v,
2.6700 3.0142 3.3793
3.765r
lr*
27.118
7,'. )
-
2093.3 2112.0 2130.9 2149.8
28
1177.5 1191.ti
%
353.12 356.9ti 360.83 364.72
%6
l^u
25.O12 26.O74
112.81 114.99 117.19
130.83
0.6675 0.7536 0.8448 0.9413
Y"l
702.22
2l
Y-rq
100.17
23.039
lnches
inches
18.398 1S.285
o.t27a
IVeisht, pounds
Diam.,
Weishl,
% % %
3086.6
34
%
%
%
%
310S.3
3132.r
3201.1
3224.2 3247.5
U
| ., '{2
tn
4598.6 4626.2
4654.1 4681.9
GENERAI TABLES
Weisht,
Diam., WoieLt,
Dram., Weisht,
Diam..
Diam., Weieht,
Diam.,I lveieht,
oi"-.,lw"igr't, rnches
I
Diam., Weieht,
eounds I
]
87rs | 20,210 | 20,268 % | 20,326 3,6 I
42
% %
% '/2
% %
,14 43
%
% % % %
% %
4709.fr 4738.0 47 66.2 4791.5
4s)4
4822.7 4851.2 4879.8 4908.3
50
% %
% % %
%
4936-9 4965.8 499'{.4 5023.2 5052.5 5081.4 5110.6 5139.9
% % % % 51
%
% %
44
%
519E.7
% %
5228.2 5257.8
%
5247.4 5317.0 5346.9
%
% % 45
%
5376.E
5406.7 54:t7.0
% %
51t)
% %
5527.7
%
5588.6 5619.2
% 46
t-
.2
54\)7.2
% %
641.1
11,108
% % %
11,151
%
11,194 11,238
%
%
8,675.1 8,713:2 8,751.3 8,789.3
1,4
8,827.7
65
6708.4
,6
8,E60-9
6712.1 61-7 5.7
% %
6541.5 6575.5 6608.5 6641.8
6809.4 6843.1 6876.7 6910.7
7041,.7
% % % %
7359.5 7394.5 7129.5 7464.4
% % %
% %
%
5898.0 5929.6 5961.2 5992.5
% % % %
7930.6 7967.0 8003.7 8040.1
% % % %
6280.8 6313.1 6345.4 6378.0
55
% %
8076.8 8113.5 8150.5 8187.3
% % % %
4224.3 8261.4 8298.8 8335.8
%
11,411
tA
9,0:0.8 9,059.6
9.|17.4
,i
%
11,455 11,499 11,543
%
11,5E7 11,631
66
9,176.5 9,21ti.0 s,255.1
% % %
9,294.5 9,333.9 9,373.4
11
9,4r2.8
%
9,452.6
% % 67
11,719 11,763 11,807 11,852 11,897 11,941
11,986
% % % %
9,612.0 9,652.1 9,692.3 9,732.7
% % % %
12,165 12,210 12,256
61
% % % % % % %
9,773.2 9,813.3
% % %
% % %
I,E54.r 9,894.5 9,935.3 9,976.1
% %
10,017
%
r0,058 10,099 10,140 10,181
10,222
10,264
62
68
10,305 10,347
10,388
% % % %
10.430 10,172 10,514 10,555
% % %
10,597 10,639 10,682 10,724
% % % %
10,766 10,809 10,851 10,894
%
72
%
tl % % %
12,075
72,r20
73
% % % % % % %
13,986
%
14,034 14,083
16,875 16,928 16,982 17,035
% % 80
17,088
77,t42 17,195 77,219
14,131
14,180
76
% % %
t2,620 12,666
% % %
12,758
%
12,804
% %
% % % %
72,457
12,850 77
12,943 12,SS0
%
% %
13,036 13,083 13,130
13,t77 t3,224
%
13,271
%
13,318 13,365
%
t3,412
% % % %
77,572 17,627 17,681
14,572
15,019 15,069 15,119 15,170
12Aa3
17,518
%
t4,522
% % %
12,437
% %
14,473
14,820 14,869 14,919 14,969
% % % %
17,464
81
% % % %
12,34{t 12,392
72.529 12,574
%
14,37 5
14,671 14,72\)
12,301
17,303 17,356 17,410
%
14,229 14,277 14,326
% % %
%
%
7s%
14,62r
69
70
13,841 13,8S0 13,938
% %
\4,770
t5,220
17,735 17,785 17,844
%
17,953 18,008 18,063 18,118
82
% % % 1,4
18,173 18,228 18,283 18,338
% 83
18,394 18,449 18,505 18,560
15,270 15,321 15,371
15,422 15,473 15,524
15,626 15,677 15,728 75,779
%
18,676 % 54 || 1.8,672 3l | 1e,728 % 1 18,784 84 | 18,840 % | 1s,8s6 Y.a I rs,ssz 3/e | 19,009
15,831
rZ
49
6410_6
%
,i
%
6443.6 6476.2 6509.2
63
8373.2
%
84r0.6
% %
8448.0 8485.7
% % % %
8523.5 8561.2 85S8.9
8637.0
64
% % %
10,937 10,979
lt,o22 11,065
7l
7a
13,460
% % %
13,507
\A
13,650 13,698 13,7 46 13,791
% % %
zo.q+z
3l I| 20,559 ,4 | 20,618 88 | 20,677 :,4 1 20,786 tt I zo,zs+ 2o,5or
15,882 15,934
J+
16,037 16,089 16,141
16,193
/a
85r
1s,065
119,178 | 19,234 I
19,2S1
|
19,3a8
l/8 |
19,462
r+6
13,602
% %
16,215 16,297 16,349
%
16,401
% % % %
16,453 16,506 16,611
119,405
r," I19.519
5; l1e,s76 /1 | t9,633 | 19,690 86 I 19,748 )4 | Le,8o5 % l 1s,863 34 | 19,920 \4 | !s,s78 9/s I 20,036 3l | 2o,os4 '% | 2o,t sr I
I
79
% %
%
16,664 16,717 16,769 16,822
20,8s3
|
| 20,91.2 20,971 3l || 21,03r Ji | 2r'oeo
t/,42
51
8e y8
% %
%
23.907 23,971 24,034 24,097
95
% % %
24,16t
% % % %
24,351 24,415 24,479 24.543
24,224 24,288
24.607
96
% % %
| ,r.tnn
% % % %
| 1.1 | 3; | 21,428 )/4
23,844 |
2r,2os 2r.268
24,67r
21.85
24,300 24.864 24,929 24,993 25,058
I
| 21,38a 21,447 I 'tt | 21,507 21,567
% | 3/4
eo |
21,687 | "t.un rZ I 2r,1- 48
Ys
t1 |
_l r2 |
2r,8oa 21,868
| 21'92s | 2r,985 7s zz,oso ] 91 | 22.111 Y8 | 22,172 li | 22,232 31 | 22,2s3 ,l5 | 22.354 I 22,415 3,4 | 22,476 1; | 22,588 '/8 3A
25,122
97
%
% % % % % %
95,187 25,252
25,3t7 25,382 25,447
25,512 25,574 25,643
98
%
% %
25,708 25,774
25,840
I
% % % %
25,905
25,971 26,037 26,103
I
26,169
99
% % %
26,235
% % % %
26,434
26,301 26,368
I
rs |119,121
I
4a
t, I 3;
%
941,4
20,384
|
I
9,532.1 9,572.3
% % % %
7606.6 7642.3 7678.0 7 t'l4.O 7i 49.7
%
12,031
60
7 570.9
% % % %
8,943.;l
% % %
% %
7 500.2
%
% % %
59
% %
%
7785.8 7821.8 7858.2 7894.2
6151.9 6183.9 6216.2 6248.1
%
%
5773.2 5E04.5 5835.4 5866.7
6024.4 6056.0 6088.0 6119.6
%
7279.7 7251.4 72ti9.4 7324.4
52
% % % %
% % % %
% %
% % %
%
8,90,1.11
11,324 11,368
9,09E.7
7116.0 7150.4 7185.1
% %
% %
% %
11,281
% %
8,982.1
6944.7 6978.7 7013.0 7017.4
5649.8 5680.4 5711.3 5t- 42.3
tA
% %
rs | :z,oor \a | 22,722 J3 22,784 | 1/4 | 58 | 3/4 | %|
22,846 22,907
22,969 2z,oz1
93 | 23,093 23,155 X ta |I 23,218 3,4 23'280 | I
L
| | 3/4"
Y2
./a
23,342 23,4O5
| 22,467 '% 23,530 | 94r/4 | 23,593 | 2\,6ss r/4 | 28,7].8 % zs'zzt | | I
26,501 26,567
26,634
I | |
I |
I | |
I | | | | I
| I
| | I
| |
ITTGITI\NIit,I, PIPI\Ii RATES EQUAI,IZATION OT' PIPE DISCI{ARGE 14
%
21
'-*
.l 2.
2.
42 86
1
t)
18
7. 16
24
2 2,
244 384
104 164
286
3
668 968
4t4
65 94
4
1336
67!
130
24 3?
46 71
1689
Fr
-l
;;i';
2.
1.6
3. 6.
10 18 29
1.52
2.4 3.8 1.1
20
74
t't2
l5
',,
1.8
'1 5.6
10il 77
52
19
ll
15
1.
2.
I
6.
F
2l
I3
2.
:
30
19
7.
3.
'1
81
52
29
5.
111
6.2
223
721
t9i 2.D
j
443
I
3.0
68 r08
7490 13849
6240 2923
335 l53l
29 151 ?1 t5 26 IL
2
11 9.2 4. 30 116 7. 44 123 111 60 32 116
lt'tL
1635 809
8.
151
2.
rar,
3l Ili
1.
231 362
2377
10
31 1t i 5.8 6.81
li
5ii
i1 -1 ool
7.
t3292
39 632 1867 11525 2'11{ 2!7 l{07 7lo 11133 1e,i lr 0r r?5 531
120
2.9
129
8
t
4
1l
6
t8 .liil 4l I t-1 19 3ti
16 30 ri0 7.7 1-1 I 2E 3 6L o. rj t3 2.01 3
1.
10
l. I 1 1 l';
3.
5.
2.
3.
8. 5.
1.
2.
t.
1.
1.
2.
EXTRA STRONG WALL of a larger pipe under the same size required to equal the delivery The iabulateil velues show the mmber^oJ piqes of one
' f$i:i-J,'*1*!'#'H"jr*i"t;;** ,iflf"tln:;ril,*',1'j
lfr:".1"*.1$-:"J1il5.',\.'ji'i';:s l:
3i
'l'jin"ia"
he&d' Thus
ai""'"'
DISCIIARGE RATES EQUALIZATION OT' COPPER TUBING Tube in. % % %
t.0
2 2Y2
L7 26
90
8.6
3.6
4.8
2.O
1.8 2.6 6.4
la 8.2 3.3 I
3.1 6.4 |
2.L
8.s I
6.6 8.2
61
1?111
4
2a4
146
5l 1.5
l
rz
206
I
46
13
2.6
30 44
9.4
23
1.7 1 L 1.5
11 19
3r/4
140
2.5
8.8
21 46 7L 104
3
--
2.4 4.9
1
1% 114
1.8
31/4
214
%
Size,
10
7t)
L21
13
68 27
1i 9.0
3.1 2.O
250
,10
55
20
28
8.3
-1
5..1
1.7
2.7
2.3
1.6
3.
3.6 2.7
14.I
180 99
t7 1I
3.9
5.,1
1.5
2.O
1.6
2.0
1.4
r
GENERAL TABLES
SAFE LOADS ON STEEL PIPE COLUMNS Allorvnble Concentric Loads in
KII'S
(1000 ib)
STANDARD \Y'ILL PIPE
Nominat Pipe Size and $'all Thickness inches Etrective Lensi,h,
Efiectiv( Lenslh,
t2
fr
0
0.3:2
8 10 13
12
1l 16
19
t4
18
20 22
23
30
2t) 17 15
27
2l 19
24
140 13rl 13{i 13:l 129
200
,46
198 196 194
211 212
125
187 162
116 110 104
17E
231 227 222
167
26 2t3
r90
21D 237
231
1li
200 237
la
296
2t)
293
217
254 25r 245
22 24
161
2t2
2.!Ll
2ii.l
154
20ti 200
r47
30 32
ft
375
139
t31
193 186 179
36 38 40 42 44
171 163 154
46 48 50 52 54 56
235
2:9 2:3
289
2t0 2i5
26 28
2t-O
30 32
217
204
34
210 203
258
36
19tt
2'16
1tis 179
2:)9 231
171
224
7$2
216
252
20E
199 190
38
40
46 50 52
50
NorE: Yalues below heavy line are for //Eo tatios sreater than
120'
EXTRA STRONG WALL PIPE Nominal Pipe Size and 1\iall Thickness inches
l4 0.218
0.500
I8
325 323 320
lt I 252 216 210 232 221
36 32 29 25
18
20 22
0.500 6
8 10
t2
317 313
4l
16
0.500
309 304 299
344
16
339
18
391
20 22
329 323
386
286
26 28 30 32
216 207 197
279 271 263
317 310 302
376
26 98 30
1E6
254 245
294 245
370 363 356 348
36 38 40 42
163
234 224
276
213
257
341 332 323 314
36 38 40
304
44
46 48
294
46 48
52 54
261
267
246 235
4
Norr:
2S3
381
284 273
Yaluea below
hesw liDe a.e for l/,&e ratios great€r than
32
52
120.
223
I1'T GRINNI.]LL PIPINCI D]ISIGN AN]) ENGINEERI\C AMERICAN NATIONAL STANDARD TAPER TIIREADS irformalion is abstracled from Ihc \maricxlr Nariunal Slerrdard PiDe Tbread- ANSI 82.l whi.h ha- bcan csrrbhjbed to cover
pii. rhrpad'for variorLL prrrporc\. This:rarrdsrd wt! orte of thp hri e"tal,li.hed arrd rs als6 rhe muir comm,'nlv rr-ed O'her rhreaJins. randard- ir'.ludc Ameri.an Pel r,,lerlm I nolilrlly StB ndard- No. i.t, 6 \ arrd iL, \al,i.h cover oil field I'rb'rl!r marerial su,.h as lirre pipe and .a.-ing Ibrerd. Lirra pipe.rhreld' h5v" Ihe same form i,rd raper an Amerlcsir Nall"r'31 Slalrdard rlpe
THEEADS DUE
TMPERFECT
Tbreads, -{.NSI 82.1.
in inches a -\lso lenqth of thin ring gage and lelrgth from gaeing notch to small e A of plug gage.
OF THREAD
]
IN
]6
,\ll
dimensions
a o
-q.ho
pilch di&neter &t
g.r.ging
notch (halr(l-tight pla'ne)'
lurgth oi plug gage. o Thc lpnr:'1, L5 from rl," "nd oi rl ' r'ilo 'lPrernrirrcs rlt' planp rhp'l,rc,,l r,,r rs irnl''rf'' t rl th" rr'5r' lh' rte\l bcr'"r,,r 'rhi"h ptsrfp, rr rl 'rr"or \r rrri Itl:tir^ rl" "o'le f"rrtcd ,"" ii'*,,4". , Psrs I'rcr"rrs lr," c\lirrJ'f Iurr irrg IhF e\r'"rrrl bv ,rr. rhrpr'l
MEASURED ON DIAMETER
,Uso
s,lrface of the pipe. Lb
: L, -
2P.
0 \rrcn'h t \rn$-\uvr lcror ruri.rl SpF.rficuriorts arp f iseiIj,or'Jirn"nsions ihr.. rl.r"-,ls 3jincl,"s und snrrll"r' 'u ',,.1"-uo are: :iz; 2 r,.inch 2.ii:,6.1r -i2.3 i,.1,33l7l1r'
PLUG GAGE TO ENTET UNTIL NOTCH 15 fTUSH WITH fIRST IHREAD STANDARD TOLERANCE
IS
:
ONE THREAD
DINIENSIONS
Diam. of Pipe
Length
Lengih
0.11t 1 0.1667 0.1667 0.21,t3
0.1E98
+07R 0.5337
0.3800 0.5025 0.6375 0.791s
0.5457
1.001E
0.2113
1.2563 1.6013 1.3,f13
0.2609 0.2609 0.2609
2.3163 2.7006 3.4156 3.9156
0.2601)
0.5826 0.8875 0.9500
0.2500
1.0000
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
1.0500
D 0.2ffiq
0.405 0.540 0.675 0.840
|
0.40r8I 0
1.050 1.2136
1.315 1.660 1.900
1.7961
2.375 2.875 3.500 4.000
I
4.500 6.625 8.625 10.750 12.750
0.D. r6 ().D. 14
14.000 16.000 18.000 20.000 24.000
T-
Lt
8 8 8 8 8
8 8 8 8 8
13.9156
15.9156 17.9156 19.9156
23.9156
0.2500 0.2500 0.2500 0.2500 0.2500
0.2907 0.2967 0.3909 0.4029 0.5088 0.5329 0.5496
0.3017 0.3017 0.3017
t.2625 r.4625 1.6750 1.8750
0.4337 I 2 6937 0.4337 | 2.E837
0.4$7
I 3.0837
0.4337 | 3.2837 0.4337 13.6837
\.T T,\BLES
GF]NET?
AMERICAN NATIONAI, STANDARD STRAIGI{T THREADS Ldormeliori is abstr:rcted irom i,he ,\;:-:ricau Netional Standard Pipe Thrceds, ANSr l]2.1 l straight thread grger :tre useri to grge mechanical joint, straight pipe threads' * Americen Nrtional Slotr.lxrd taper ],ipe thre3(l plug gagss 3re used io_ ga,ge .'ri,igl -. p'p" rhrp:rd. rr, ,n'rt, irg- sir' il' -grgir'e-n,rclr eomirrx flu"h,rith the c,lco .t the thr''.r'l "r s llr rl, l' 1l nr ul "lrc_nlcr, Il 'hrmlereq. allowrng z hrlf t].llns lar8e or small ldierance oi one &ud one
The actu:rl pitoh ciiameters oi the tappe,l hole E'ill be slightly srna,ller than the velues given.
BASIC DIMENSIONS
I'itcl t)irr StrAiglrt Pipe
Threads * in I'ipe
fiPu Dlze In. %
I
% % % %
Threads Per
'1'hread
llax I
xfin
\Iax
NIin
\1ax
27 18 18
0.0370 0.0556 0.0556 0.0714 0.0714 0.0870 0.0870 0.0870 0.0870 0.1250 0.1250 0.1250 0.1250
0.3782
0.3713
c.t748
0.3713
0.3782
0.37.18
0.-1951
0.4899 0.6270
l4 rr)4 LlY2
2
Ill,4
,'/2
trll
2t4
8
3% 4 5
8 10
l2
lnlernal
Inch
rrl 3
ti\l( rn3l
Tnternel
I'itch ot
Straight Pipe Threads for Locknut Connections (Loose Fitting l{echanical Joints)
Straight Pine Tlrreads F,,r lTechariic!,] Jointst (!'ree Fitting)
Couplings (Prcssure Tight Joirts)
\ominai
eter
8 8 8 8 8 8 8
8
0.r250 0.1250 0.1250 0.1250 0.1?50
0.r$5r 0. +8.17 0.6322 0.6218 0.7851 I 0.7717 0.9956 i 0.9822 1.21rj8 I1.230; 1.5vr5 | 1.5752 r.8305 | 1.R112 2.3011 | 2.2aar
2.ii39
3.-1002
3.9005 4.3988
2.7505 3.3768 3.8771
-1.3754
0.1899 0.(i270
0.7784 0.98E9 1.2386
1.5834 1.8223
2.2963
2.it'22 3.3885 3.8888 4.3871 5.4493 6.5060
| 0.6218 0.7717 0.9822 | 0..1847 r 2305 t.5752 r 8142 2.2881
0.6322 0.7E5r 0.9956
| 1.2468 | 1.5915 1.8305 | 2.3044
I 2.1505 2.7735 .j.3768 I 3.4002 3 8771 | 3.1005 +.37s4 | 1.3988 5..1376
l
5.4610
0.4943 16.5I77
tr{ax
o.7784 0.9889 1.2386 1.583.1
Intemsl
Errternal
I{in
NIin
0.3840 0.5038 0.6409 0.7963 r.0067 1.2064 1.605r
0.6357 0.7896
0.3808 0.5125 0.6496 0.8075
1.0000
1.0179
t.2523
r.2739
1.2658
r.5970
1.6187
1.8576 2.3315 2.8129 3.4393 3.9396 4.4379 5.5001 6.5567 8.5508
1.6106 1.8495
0.380s 0.'19Ett
|.8223
1.8441
2.2963
2.3180
1.8360 2.3099
2.7622 3.3885 3.8888
2.7534
2.78\7
3.4198 3.9201
3.,10E1
-1.3871
4.,1184
.1.4067
5.4493 6.5060
5.4805
5.4688 6.5255 8.5196
6.5372
3.9084
8.5313 10.6522
10.6405
12.6491
12.6371
10.6717 12.6686
0.3863 0.5073 0.6444 0.8008 l 0112
2.3234 2.8012 3.4276 3.9279
4.4262 5.4841 6.5450 8.5391 10.6600
12.6569
GENERAL INFORMATION
The symbols recommended for use in designating the various types of pipe threads are as follows:
NPT:
American National Standard taper threads
NPSC: American National Standard straight pipe threads in pipe couplings NPTF: American National Standard taper pipe threads for pressure-tight joints for use without lubricant or sea,ler * NPSF: American National Standard straight pipe threads for pressure-tight joints for use lvithout lubricart or sea.ler* (Dryseal)
NPSI:
American National Standard internal straight pipe tbreads (Dryseal) NPSM: American National Standard straight pipe threads for mechanical ioints NPSL: American National Standard straight pipe threads for lochnuts and locknut pipe threads NPSFI: American National Standard straight pipe threads for hose couplings and nipples NPTR: An.rerican National Standard taper pipe threads for railing fittings. +
I..iubricant may be used
in making up
these joints
when desired, 225
tTT []lU \\l.lLi,
l:,lI'l\(
I
BRITISE STANDARD TAPER THREADS
lniorrrn,ru r "l'-'r.r'',,1 trom lIn Rririqh Engino"riog llPp.rr \o. 2l-lrr3R'
S
i.1rJ\ \\!".iirion
Whitworth 55' forru of thrcad. Total taper: )i inch Pcr toot. IIand Tigltt I'itch Diemeter Engrgemeot l'e.il"gi"',irlgof i$;crr Ii\t''rrrrl
Pitch oI
I'lrterrr:LlThread
Thn,erl
Approriimrte
D
oD.
l I
Jrirl I'rrcfrrrLl Threrds Lr
0.25.15
0]l&'t
.,t0(t3 .5313 .6375
013t14 0.3947
0.052(l
0.0;26
-
0.071.1
,31:i3
0.07I,t
1.0i125 1.3-138
1.90ii3
0.571,1 0.65111
0.0909 0.0c09 0.0909
1.6S75
051?8 0.7500 0.7500
2.2883 2.9013 3.401Il
0.0$00 0.0909 0.0909
3.E91S
0.01109
0.090{}
4.3918
0.0909
53918 6.3e13 7.3860
0.011t9
0.1000 0.1000 0.1000 0.1000 0.1250 0.1250
8.3t60 9.3360 10.3360 11.3700 12.3700
All dimensions in inches
NORMA' ENGAGEMENT FOR TIGHT JOINTS (Lcngth of PiPe Enterine Fitting)
ThF lpnsth of rngagam.nt
bptwepn. male and
'nrk. liP.hl lorn'- rs l"rcao on ih. rh'.".1. bning manhincJ ro rha Amprrcan ii"ri"ra tor pip" ;t'*adq or t h' \PIbr'sndafdror iine ;i;; rhr;xll" rnd has bo"n r-'rahl\sh"d trom pt""r ical\ orkrng 'ondir iuns For i".i.'"ira. rt rc "",t.'m.l3lc and q:rll lhrckn^sscc various sizps, to ;;;"*;;.;,; annlt difror"nr to"qurs in ordPr l;"s'i' or "nscs'menis lisred in the ;-;-ii'; rable. ln consi,l".ing rhF lFng1h ol engrg'menr for s"rp*ed "omt:rnron flangFsrhrs lahla ''oP' nol ;;oii .i";; ;h";'is, c"mcniwill depond. upon 'he Iemale rhr.ads ro
American Standard and API line pipe thretuls
Shoulder tyPe fitting threeds
drainE.ge
Railing fitting thread assembly
r,i.
211
All dimensions in inches
226
pe of
joinr, pr^s'ure cooditioos aod lhe
oI the flanges.
3r.1
*
15
16
I7 16
llsi
n_Flgnr
GENERAL TABLES
TRIGONOMETRIC FORMIJLAS Oblique-Angled Triangle
For Radius,
,{E :
AG: BC : AC :
FG: sina DE : tat a AD : sec a
AB:c AC -b AD:M
1
cos
a
cot a csc
a FormLrlas
Given
srn a
sin2o*coszo:1
cos o
A,B,a I C,b,c
sec2o:1*tan2a
csc2a:llcoL2a
I
. : cos a .srn o
$no
ian o cot a
b, c,
cot q,
1
Vt -
I sin'a
Bln 4
V1 - sin' o V1 - "i":stn
A B,C,a
a,c,A I
C,
x ; ;B
-
1so"
-
(d
+c);
..sinB
cot o
orE__Two values for C, B, and b arc possihie.
1
cosx a
.A t
I
sln
tan o
a,
h-
lt," i,a :r, - rjrn ! B +c' ^i i{' la' : 6r * c2 -2bccosA; orh - csin.4; [n=ccosA; n-b-m; &' = h1 +tu'
B,b sinc = sin4
1+ten'a 1-
BC:a BD:K DC:n
a,b,
c
cos
A
t
.i. .unt Right Triangle a,b,
B
c I n,n
c, +b2 - a, ____26 i ^ -
n--
62
+
b2 2b-
c2
C
+b2: & h l-eot.A: l:tan,4 -cotB ba a2
: s6sg 9: ca-.io4 !: : cb "o"4 "1n6 !:
9
csc
tanB
A:
secB
:
cscB
sec.
227
I'fit' (inI\\l,ll,l,
PIPI\(l l)ltsI(l\ '\\D
llNclINl'll'lltTN(
NATURAL FUNCTIONS OF ANGI,ES Sin
0' 00'
oooo
1.0000
10 20 30 40
0020 0058 00E7
L
50
1" 00' LO
.0000
.0029 313.8 00;lE l7l.9
1.0000
.00iJ7
0116
0.ltl199
01.15
0.9999
.0116 .0116
0175
999iJ
02{)+
1)91)E it(.197
20
O2:J|J
30
02ri2
40 50
0291
I1.1. ti
85.91 rjS.75
I
57 .2tJ 1l). 10
.0175
020l
,12
lL
38.11)
.029I
0320
9997 999{i t1]95
.02ti2 .0320
34.37 31.24
0319
.999-l
0311)
28.6{
t0
0378 0107
.91)U3 .991)2
0378
20 30 40
0436
.9U90
0-137
0lri5
.9989
0-+66
0.104
.01188
0+il5
3" 00'
0523
.998ti
10 20
0552
.99E5
30 40 50
0610 0610 06ii9
2" 00'
4' 00' 10
20 30 40 50
O5IJI
.9983 .9981 .9980 .997E
20.13 21.51 22.90
0.107
11" 00'
)0" 00'
I
.0000 r .0000
2t.17
" 20.21 0521 I 19.03 0553 r8.07 05E2 r7 .17 0612 1ti.35 00.11 15.60 0670 I 14.92
50
It)
40
20 30
30 20
l0
i1)ti,-)
.9805
.l91J+
.2022
.
.2051
50
i3'00'
.1903 .1937
.9816
12" 00'
.2079
40 50
.21{)3
.1)7;7
2217
+.{19
30 2t)
.2221
.9750
22 r-8
4.390 .1.331 4.2r-5
10
2250
97-14
2309
50
1U
22la
2339
40
20
30 20
30
1)72-t
!)717
.2.101 .2 t:J2
l0
50
230ri 2331 23ri3 23t I
9737 9730 9710
.2.ltr2
.9?03 .0ri96 .9089
2193
88" 00'
13" 00'
40
87" oq
14" 00' 10
50 40 30 20
t9
211t' 2I7tJ
26
r7
:1.821
50
2500
.9007
2ii.18
3.77b
25E8
9059 9052 9644
.2679
3.1'32
.271t
3.0t9
.2712
3.6-17
.10
.27i3
3.60{i
9ti28
.2805 .2836
3.siir;
30 20
3.526
28tr
3.4E7 3..150
16'00'
2tt r-2
2700 2728 .27 56
.0875
9959
.090.1
I1.06
50
10
20 30
0921)
0!157 995.1
.01)3,1
40
20
.24t2 .28-10
0987 1{Jl6
9951
.011'J2
30 20
30
40 50
40
i 9C+5 9942 9939 993ti 9932 I !929
.1022
10.71 10.39 10.08 9.788
.2E68 .2896
30 40 50
7' 00' 10
20 30 40 50
8" 00' 10 20
30 40 50
.1219 .1248
.1276 .1305 .1334 .1363 1392
1421 1449 1478 1507 1536
.
1110
.1139
.11i'9 .1198
10
50
18'00'
.3r85
3.1.r0
.3217
3.10t
9511
3219
3.078
3281
3.0i17
3314
3.018
.10
33.16
2.989
30 20
3.172
13r7
.3173
9911 9907
1346 1376
40
9474
3378
2.960
t0
50
.3201 .ts228
9465
3.111
2.932
9903 9899
1405
989'1
1465 1495
.9890 ,9886
r521
.98S1
40 50
1u5t
9E33 9827
1880
9822
1883 1914
11'00'
1908
.9816
1944
98.13 rJ838
Sin
1703 1733
Cot
6.314 6.197 6.084 5.871 5.769
5.485 5.396 5.30S
5.226 5. 1{5
Tan
82" 00'
19" 00'
3256
10
4U
20
3283 3311
30 20
30
3338
40
33ii5
50
3393
10
81' 00'
20" 00'
50 40
20
30 20
10
30 40
40 30 20
20 30 40
3584 3611 3638 3665 3692
10
50
3719
?9' 00'
22', 00'
10
71" 00'
2.501 2.877 2.850
50
.357 4
2.821 2.798
30 20
.3607
2.773 2.747
3511
9336 9325 9315 9304 9293 9283
2L" 00'
50
3476 3508
9397 9387 .9377 ,9367 .9356 .9346
80' 00'
10
72' 00'
34,13
3448 3475 3502 3529
l0 10
.9455 .9446 .9436 .942tt .9417 . s407
3640 3673 3706
3420
10
9528 9520
9537
30
7.115 6.968 6.827 6.691 6.561 6.435
50 40 30 20
50 40 30 20
30 20
1,135
IO
74" 0A'
3.201
95.16
30t9
7.596 7 .429 7 .269
10
50
3121 3153
3057
12E7
50
00'
3.2r-l
9563 9555
9918 9914
83" 00'
10
t5"
?3'00'
9502 9492 9483
\a22
228
40
3.3rJ5
20
30
Cos
30
20
3026
4U
1763 1793 1823
20
30
3.556 8.345
3.376 3.340
7.770
9848
10
a.7i7
299.1
3090 3118 3145
1736 1765 1794
10' 00'
20
3.112
8.144 7.953
1614 1644
40
40
2952 2979 3007 3035 3062
2899 2931 2962
1257
1534
30
2924
10
9613 9605 9590 9588 9580 9572
t-
I22a
9872 s868 s863 9858 9853
20
17" 00'
50
9621
9922
987?
10
.2 t-84
gii30
3.8ri7
9925
1564 1593 1622 1650 1679 1708
9" 00'
1U
84" 00'
50 .t0 30 20
.9ti7l
9002
514
7G'00'
.96E1
0901
1]'255 9.010
I{)
2532
0872
L
3.1)11
30 20
2;0{
12.23 11.83
.1080
.10
4.2t1) 4.165 4.113 4.061 4.011 3.9ri2
j
q0
40
0810 0846
86" 00'
2ij21
l0 77' 00'
30
30 20 I{J
2370
I
2555 2586
20
10
21
12.7r
.10i1
50
l0
0787
.1074 .1103 .1132 .1161 .1190
00'
.5I
2t)+1
.10-15
-1.{i3E
215(i
78
-1
2iil6
10 20
l0 .1.705
2217
20 30 40 50
6' 00'
20
.201)5
1)7ti3
10
99.1E
:ii-l
-1.8{3
.2161
16'00'
.0963
l0
l5
30
30 20
50 40
094r8
.1)
l.;7.1
86' 00'
11 . ,13
0781
2l2i]
l
2130
10
6" 00'
.9793 .9737
.20ii5
i
ir0
l.9E1)
117611
14.30 13.73 13.20
I
.2035
73'oo',
.213(i
0729 0758
0843
.07!9
200{
i.otiii
20
0690
08I4
I
'10
9974
0785
.11)74
.9ill
.210s
9C76
.9969 .99ti7 .99ri4
Cot I
rs4
10
O72
9971
l
.
in)
0698 t-
r-'
Sin
Cot
Cos
I
.10
10
70' 00'
2.723
50
2.699
40
3739
2.675
30
3772 3805
2.651
20
2.b28
10
3839
2.605 2.583 2.560 2.530
3872 3906 3939 3973
4006
2.5t7 2
.496
.3746
.9272
..1040
2.175
Cos
Sin
Cot
Tan
69' 00' 50
40 30
20 10
68' 00'
GENDRAL TABLES
NATURAL FUNCTIONS OF ANGLES (Continued) Sin
u2i2
22' 00'
23'00' l0
40.10 ,107i!
3E00 3827
9261 9250 9239
3854
9224
4108 4L12 417it
3881
921ri
42r0
3!07
9205
42
3034
919+ 9182
4279
10
20 30 40 50
Tar
Cos
.455 .431
50
2.111 2.351 2.375
30 20 .t0
2 2
:tU
9r7 9159
4318 4383
2.282
91{7
14r7
2.2t1
4007
9r35
4152
2.2.1tJ
409.1
tJ
t21
44E7
50
20
4120
1522
30
411t-
9I 12 9100
2.229 2.2LT
.194
30
40
4173
1)0E8
20
4200
9075
1592 4628
t-7
5{J
2.161
10
4226 4253
9003
42i9
9038 9026
3961 3987
,10
4014
50
24" 00'
l0
.101i
26" 00' 10
20 30 40 50
26" 00'
4305 4331 4358
4384
|
9051
8988
4877
2.050
4913 4950. 4980 5022
2.035
4950 4975
30' 00'
l0
20
30 40
31" 00' 10 2\) 30
40 50
.
i0 20 30 40 50
37"
OO'
l0
20 30
1.804
8746 8732
87r8 8704 8689
5619 509ri
8675
L.744
.t0
8616 8587
5890 5930 5969
1.709 1.698 1.686 1.075
8572
6009
8557
6048
8542 8526 8511
6088 6128 6168 6208
8.180
{i249
10 20 30
5324
84ri5
5348
8{50
40
5398
50
5122
8,r34 8-f18 8103
6289 6330 6371
.5446
.8387
6112 6.153
.6494
Cot
1.664 1.653 1.643 1.632 1.621 1
.611
1 . 5-10
67" 00'
Tsn
l0
6248 62i L 0293
7E26 7E08
7790 7?71
75tiii
IO 20 30
6-106
7753 7735 77ItJ 7698 7679
7ri23 7604
,10
7089 7133 7177
722r
50
1.455 I .4-10
30 20 10
1.'137
l
'128
7581
1.319
1'627
1
.311
50 40
7673 7720
1.295
30 20
b3" 00'
7860 7907
r.303 1.2E8
10
1.280
62" 0U
1.265
40 30 20
795.1
L257
E002 8050
1.250 | .212 1 .235
51" 00'
1.224
50 40
83-12
r .220 1.213 1.206 1.199
8301
r.192
60" 00'
8{11
1.185 I. I78
50
8541 8591 8612
1. 171 t6.1
30 20
8098 8146 81'J5
82r3 82'J2
8l9I
.7 52a
6ri0.1
.7509
6626
.7 490
88{7
6618 6670
.7470
88119
.7.151
669I 67r3
.7.131
1.157 1.150
30
8152 90{J4
1. 111
1.098
6777
9217
1.035 1.079 1.u72
10 20 30 40 50
6$67 6988 7000 7030 7050
46' 00'
.70;1
r
v325 9380 9435
r . 006
72'o1
9.190
r .0i.1
72t1 .7153
.7133 112 . t'092 .
927
1.091
7314 7294
.7I93
t-
.70r-
Sin
|
10
49" 00' 40
40
0{J
,10
1.130 1.124 1.117
1 r0l
50
10
1.r37
9057 9110 9163
6884 6905 6$26 ti947
30 20
1. t+-1
6734
6802
10
I
20 30
6841
l0
1.335
d583
10 20 30
30 20
1.3r3
10
43" 00'
40
7415 7490
20 30 40 50
.7333
50
7'100
8093 8744 8796
6799 fi820
66" 00'
1.419 1.411 1.402 1.393 1.385
50 40 30 20 10
65tir
10
,10
1.308 1.360 1.351
6539
44"
1..173 1..1$4
64" 00'
50
42" 00'
l0 56" 00'
I.37{t
7265 7310 7355
4L 00'
,10
50 40 30 20
6225
7ti6{)
10
68' 00'
6180 6202
7898 7880 7862 7844
ti428 6450 6172 619+
59' 00'
1.000 1.590 1.580 1.570 1.560 1.550
I57
40" 00'
10
40 30 20
ti
79i6
6338 6361 6383
60" 00' 50 40 30 20
.6134
71J34
ii3I6
61' 00' 30 20
.6I l1
79Eti 7969 7!)51
10
10
.10
1.732
5299
20
E107 E090
20 30 40 50
62' 00'
1.780 1.7b7 1.75ri
5851
Sin
39" 00'
IO
50
8631
8,196
50 40
r.792
5050 5075 5100
E601
'10
r.868
1.816
.585.1
.5995 .6018 .60+1 .6065 .6088
1
54$7 5505
8r24
800,1
5317
87ri0
.5831
E021.
50
8829
4771
8lt1
.5972
{0
64' 00'
40 30
7046
8073 805ri 8039
20
r .842 1.E29
EI75 8 r58
.5925 .5948
1.907 1.894
5392 5430
.5ii07
i002
t0
8857 8813
8802 87E8
.57rio .57E3
61112
20 30
30
8810
12
6910 6959
.5t78 .500r
1.$21
.88I
.5ri88
.10
.492
r .4E3
8211 8225 8208
36" 00'
5206 5213 5280
5169
.56-10 .506-+
.5i
63' 00'
32" 00'
33" 00'
ii830
1.963 1.949 1.935
|.720
.5225 .5250 .5275
82;8
5095
5812
.5200
0703 67+5 6737
L
8290 8214
10 20 30 40 50
8fi60 8646
olou
.E307
10
2.020
5000 5025
50
55ii8 .5592 .5tt16
1.9t'7
4592
40
30 20
5059
8897 8884 8870
30
1.501
38" 00'
89r0
20
tio01
20
45-10
l0
.8323
1.991
45I4
4848 487 4 4899 4924
1.5r1
2.006
50
29' 00'
6619
50 40 30
8936 8923
4823
.E339
50 40
10
8949
10 20 30 40
66' 00'
2.0ii6
4488
4695 1720
2.115 2.128
48.11
44tr2
28' 00'
55I9
l0
900.t
30 40
4ri69
50
20 30
1.530 1.520
66" 00'
90r3
8962
4643
6536
t0
2.097 2.081
4436
4ti1/
.l
30 20
30 20
4.110
30 40 50
4663 4699
2 2
.E371
l0
4U
2.tt2
10
10 20
14
1734 4770 4806
20
21'Oo',
,13
5l7l
20 30 40
50
b7" oo'
10
50 00
6?" 00'
Lrot 1.5+U
ti.l94
5116
68' 00'
2.350 2.337 2.318 2.300
20 30
t5
Cot
r.000
l
0{8
9601 uti57
1.0J2 1.036
9713
1
9770 9827 9884
1.024
9912
1.0000
Cot
.030
1018 1.012 1.006 1.000 an
20 10
4E-
rJo',
50 40 30 20 10
47" 00' 50
40 30 20 10
46" 00' 50 40 30 20 10
46' 00'
I{ARDNESS COMPARISON 'lcnsilc
10r,1m,3000
Slrengt h of StecL psi X1000 9.r0
t{i1
920 900 880
{30
159
1i)3
860 810
.1.85 .t 90
'1
115
l+6
5.00
l{3
66
ti5 65
820 800
t-22
2.30
il3
6.1
698 ti82
780 700
2.35
63 03 Ir2 61 60 59 59
i20
0.-r3
ti38
.45
2
()27
020
.30 .55
601
2.60 2.65
555
2 2
5.50 5.55 5.00
116
t)5
J29
46
3.00 3.05
.115
4b 43 42 40
120
217 210 202
{01
1115
3ES
188 1E0 175 170
i0
3.15 3.20 3.25
217
363
39
3s2
3E
375 363
331
37 36
350 339
321
3+
330
311
3.35 3.40
63 62 00 59
309 297 289
221)
3.
2
70 08 67
118
47
101 3E8
2.40
t2t
,lll
2
12+
.15
,t6l
16it 1(i0
76
1I't
102
2.50
100
t07
2
.55
99 97 96
105 103
2.$O
93
2.65
90 89 87
112
101 9U
2.70 2.75
2.80
310
t56
30i, 29ii 28t' 219
150
2 t-7
33 32 31 30 29
3.70
269 2n2
28 27
274
133
t29
3.80 3.85 3.90
255
263 256
12(,
218
t22
311 302
293 281
21
248
2tr
l.t5
l{1
118
9I
86 85
5t 50
81
48 47 45
80
;9
77 76
35
3.05
71 70 69 08 67 06 65
2a 26 25 23
2.95 3.00
s9 s8
22
115
2l
Il0
310
i 217 | 2r2
97 96 9ri
20 18
105 103
3.15
t7
100
ti3 ti2
|
207
95
3
.20
1202
9+
3
2it
61 60 59
3.30
57
50 a55
4
4U0 4 tji 4.70
93 92
lRi
9l
| r83 | r;,J lL;+ lr;0 I I lio | 103
90 89 88 87 86 E5
89 87 85
tr_1
310
8.1
82 81
13
4l
3.95 235 4.00 i 221| 4.05 223
11)6
49
i5 i4 i3 i2
2.90
23
192
32
83 82
100
98 96 95 93 91
59 57 56 55
E}
21r
4.10 4.15 4.20 4 25 4.30 4.35 4.40 4.45
65 6+ 63 62 00
78
2.45
"127
3.45 3.50 3.55 3.60 3.65
i1
.15
109
5.90
1-7
74 72
64
5
477
285 290
79 78 76 75
72
5..10
5.80
84 83 u2 81 80 79
2.3:t
2.23
121)
319
259
of steel
t-+ 1-3
321
264
2.20
r3L
070 0rio
2a4
Dl'lt I
2.30
t3l
329
51
Yickc$l Strensth
lllll\
70 68 66 65
137
tit0
57 56 55 55
41)5
1-l!)
128
5.30
;00
rrt.,
1t0
l -10
5.10 5.15 5.20
52 52 50
2.70 2.75 2.80
l{I-\ lrrl'
6E
ti6
070
Irdeni.,
68 67
2.44
10nru 500Iig
10mnl,3000 Di,rm.
3.50
56 55 5+ 53 52 50
39 38 37
3.1
33 31 30
2l
55 52
105 103 | 10r I s9 I
51 50 50 49
GENERAL TABLES
PROPERTIES OF COMMON MATERHLS Weight
lb/cu
Timber, U.S.
seasoned,
l5 20% by
Moisture
1leight Ash, rvhite -red . . . . . .
Birch..... Cedar, white Chestnut.
red.
4l
Cypress... Fir, Douglas .qpruce.
.
.
Fir, Eastern . . . . . . . . . .
Hickory...
30 32 25
3,960
48
10,420
43 33 54 59 41
7,840
:tii
7,7 50
2,920
.
llaple,hard.......... Nlaple, white. . .. .... f)ak, chestnut. . . . .... .
Oak,live.
7,600 9,560 3,030
40 32 22
.
Xlaho any
ft
.
.... ......
Oak, red, bhck. . . Oak, white. Pine, Oregon. . . Pine, red . . Pine, white. . . . . . .
7,270
30 26
...
2,720
Pine, yellow, lorrgJezr,f . 11 f ine, yellolv, short-le&f 38 Redwood, California. . 26
4,280
2t'
1,940
Spruce, white, black . . Teak, African........
3,570 4,1rjo
62
Teak,Indian. . .......
48
Walnut,bhck...-.... Wa,laut,s/hite.,......
26
Specific Gravity
(Air
Gases
Air, 0'lC-760 mm. . . . Ammonia.
:
t)
0.0807 0.0478 0.1234 Carbon Dioxide...... 0.0781 Carbon Monoxide. . .. Gas, Illuminating. . . . . 0.028 0.036
0.59 1.53 0.97 0.35 11.45
0.038-{.039
0.47-0.48
0.00559 0.0784 0.0892
0.068
Natura,l......... Hydrogen..,........ Niirogen. ..,. ,...... Oxygen..,.,......... Gas,
Aluminum, broDze...
.
Brass, Tacopper Tazlnc 20
80 70 60 50
30 40 50
Bronze copper 95 io 3070. .I tin 5 to2lYa..J Copper, cast, rolled. . .
169 481
0.97 1.10
100,000
536.3 523.8 521.3 511.4 552
.00
Tensile Strength, psi 13,000- 24,000
Metals
Aluminum,2s...,....
1
.0
73,000 76,000 80,000 83,000
50,000 145,000
32,000 60,000
Iron
Graycastiron...... Malleable. . . . . . . . . .
WrcughtIron......
Lead................ Monel. ..............
Nickel . , . . . . . . . . . . . .
450 461 480 710
18,000- 24,000 25,000
42,000- 52,000 3,000 160,000
120,000
231
WEIGI{T IN
],tsS,/FT3
OI' AIR AT VARIOUS
Rcprintcd from "Compres.cd Air
PRESSURES AND TEMPERATURES
Deta." Courl"sy
of C^lnprosscd Air Mrgzzioe.
Gauge Pressure (s,bove atmosphere)
Air
rf
0
-20 -100
.0882 .1
.1485 .2
.086,|.11
.1.155 .2
10 20
.1
30
.0811t.1 .0795 .1 .0780 .1 .07G4.1
40 50 00 70 80 90 100
.7
.701
.139;.1
.687 .673
r3381.1870 13101.r3311
.660 .649 .635
.1738
.622
.1707 .1676 .1645 .1018
.611
.1500 .1565 .1541 .1482 .L427
.570
.07
.0 .071
120 .067
1'10
150
175 200
.599 "589
.552 .531 .511 .491
225 250
.0941
275
.054
300 350
.0491
400
.1
.458
.0910.1
.415 .3S1 .36S
.0621
.150
500
47
.716
.1,125.1
110
130
1.010 1.16511.31 08J 1.139 1
.0900
.351
.041,1
.333
600
Thed,,r,qiryforrnyc-rsurrrl.r.rry,.u.,JrtionsofpressrrreandlFmppratureisAqualtotlreproductofsa,(th.spe.ificgr:rvilyofthe rir at thp parri'ular coodr(loos ol presiure ano lemp'r&lure
relared t,r [r;c air), iin,es the der'sitv ot
SPECIFIC GRAVITY S. OF GASES RELATED TO FREE AIR (t'ree air Specific -s
Gas
Ammoni&. . . . . . . . . . . . . . . . . .
Arqon. , , .
,....... Blue Water Ga,s. Carbon Dioxide............. CarboD Nlonoxide........... Cerburetcd Water Cas...... Chlorine. . Co{rl -lletori Gas........... Coke -Oven Gas. .. ........ Dichlorodifl orometharle F-12. Ethr]ene................... ttllst-t lrrnace lias.
,
.
Ethyl Chioride.
Helium.....
Acid.,,....,., Hydrogen..,,.,...,.,....., Hydrochloric
232
Gravity
(Air =
Acetylene.......,......,... Arr,.....,...........,.....
0.899 1.000 0.590 1.378 1
:
.000
0.530
l.530 0.967 0.6.10
2 48ii 0.,120 380
0
4.250 0.96S 2.2(t0 0.138 1.260
0.06s6
Air at I atmosPhere and 60'F) Specific Gravity
Gas
s (Air
1)
Ilydrogen Sulphide.......... Methane. . . . Methvl Chloride. . . . . . . . . . . . N
atural Ges
Neon...... Niiric
Oxidc
.. ..
...........
.
,
Refinerv (;rs:
D\ibbs..... lloudrie. .
0.696 1.038 r .522
Pintsch Gas.... -.. ......... Producr:r Gas, Coal.........
.
Sulphur Dioxide.
1)
0. 57-0.71
0.970
Nitrogen. - . . Nitrous Oxide. Oil Gas..... Lrxyger!.,,
Propilne..
:
1.190 0.544 L.744
0.480 1.105 0.840 0.870 1.560
0.s60 1.510
2.213
GENERAL TABLES
TEMPERATURE CONVERSIONS Fin.l eiven value in mi.l.lle columni if in degrees Centigrade, load Fahrcnheit equilalent in risht hand column; if in deerees Fahrenheit, read CeodsreJc
erui!alrr' r.
lerr har,
C
!' I
-2i3 -20t -26:
-3 -2 s -.! I i
Jia -4.14
-.lJa
-257 -251
-
l ''lrrnrr"
('
424
2-t6
-ll 1
-2.10
-:3.1 -229 2.!;t
.JSA
Stia
:
-JlA
-.,.10 3JO
3
J10
.1
;
-,J00 ,294
-173 -109 -168 -162
2;3
-2ta
-264 -254 2),0
-151
-
a0a 194 164
112
-164 164
-107 - lLl I
-
-96 -90 _79 -73OIJ _ -v2
-
114 130 124
1ta 1AA
90
-84
{5.1
7
)
- ilJ6 t tli
3
-400
I I
;i(i4
10.0
ti0
E6.0
0i)
E7.l 19.6
,J2
9l.4
106
-
ll.1 11
71
7i 62
93.2
.ia
95.0
gti ii
93 99
95. {i IOO..1
10?
2
100
loi.
107.0
r04
11
ltl.!
110 116
45
1i3.0
r2l
L
127
l09.!l
.li i0 ti1
n2
.7
211:
t2.2 54
271
l:.f.
l.t.li
110. 6
1IE.4
t32 r3E
31O
177 182 1S3
-202
15.{l 59
13ri.4 136.2
l8+
15.{i 00
1.10.0
201
141.E
210 216
)1.1
tLr.I u1 l1i.7 ti2
7t)
40 40
na
5a 40
ri.2
63 17.ti 64
147 .2
r99
22\ 221-
260 266
161.6 163.4 165.2
2t-I 242
J7lr | 950 J?l] | s6E bso | 956 stto
107.0
288
650 ll\22
70
7
71
17.6
a
32
2:l 3 71
\7 .2
I I
33.8 35.6
23 21 25
I I
77
170.6
39.2
il5
6
26
I
79
),74.2
2$9 304 310
2li
7
EO
176.0 177.6
316 321
!1
22 22
Iti.7
a 4
37.4
.0 42.E
15. O
6
:11
11.1 13.9 13.J
7
44. (i
8
12. u
I
12.2 11.7 11.
r
10.6 10.0
6.7 6.1
5. {i
5.0
61
83
1A 11
50.0
29
t2
51.iJ 5;1.6
30
r4
57
.2
59.0 60.8 17
62.6
l9
6ii.2
2A 21
6E.0
ti4.4
69. E
76
27 6 a2 2iJ 9
8.9
7.4 7.2
2i
73
4E.2
9.4 IJ.3
4(i.4
i2
I
a5 86
30 c
3l I 3l 7
a8
32 32 33
90
3:)
91
92 93 94
35 35
95
96 97
22
7r.6
2:J
7:1.4
36 I 36 'i
24
7
37 2 99
5.2
l{tE.l{ Ii-2.4
r79.6
1rJl.4 18J.2
lli5.0 rIJ6.E
2 t-7
293
327
332 338 3.13
349
l6a_ 0
35.1
190.4
360
1,92.2
366
194.0 r95.E 197.6 199.4 201.2 203.0 204.8 206.6 20rJ.4
210.2
I I
E7u s96
| 9r4
,* | n"t
11004
,';, llo4o 'uo ll0s8 580 6e0
11076
600
)lll2
.jto
lr0e4
lTtJU tizO l114tt
.Bo l\166 640 lrrE4 650 11202 66A 1220 67tJ l23E
68A 1256
6ta
1274
7AA 1292
377 3IJ2
71A 7370 72A l32a
393
73tJ t346 7,10 1364
399
75A 7342
388
404 410
4rt
421
760
1400 770 )7174
780 l\436
7
7454
577
604
ti10 616 {t21 627
632 636 643 649 654 660 666 t)77 682 6EE
693 699
i04 710
7t0
721 727 732
738 74:l 749
754 760 766 71-7
777
742
fiaa
SS2
Etiii
ii93 8il9 90.1
td70 ld60
910
1234 1244 1254 1284 1274 128A 1294 13AA
lala 1324
1354 1a60 1570 1380 13eO | 14OO | 1|ta I
r360
1744
1
42O
14SO
)
|
1760 il20t) 17i0 3218 17E0 32:16 1790 3254 1800 3272 1810 3290 182A 3308 1E30 :1326 1840 3344 1850 3:162 1800 3:lao r87' 33{}8 1880 :1416 1890 3131
9ti0
9!iii
I
1010 1016
102i
,
7043
to4\)
1051 1060
|
1066
I
r0t-7 lO t-7 IOa2
r0s8
]
2372
ll2i lt:12 llSti
2494 2518 25:t4
tlo4 Tlto
1116 1727
1900 1910 1920
816 1500 2732 82r t5t0 275D 827 1;20 276a 1332 t53O 2786 838 16@ )| 2AU
t4I6 r121
3686 3704
1443 1449
22SA
471J4
2',t30
4S46
2740
496,1
2760 2760 2770 2780 9790
4942 5000
r516
r538
4E20
4838 4856 487 4
5018 5036
5054
2800 2810 2820 9830 2810
5072 5090 510ti
5162
t577
2850 2880 9870
1582 1588
2890
5198 5216 5234
2900 2910
29m
5252 5270
161{J
e$o
5288 53iJ6
1616
29/!O
5324
1621 1638 1643
2954 2964 2970 2980 2990
5342 5360 5378 5396 5414
1649
gAn
5432
1543
1593 1599 1604
t627 r632
I
1243 | 2270 4r1a 1249 1 2980 ) 1136 7254 12290 14t54
473\)
4748 4766
1.199
r566
4046.
4676 4b94
2591)
4892 4910 4928
t177
3812 3830 3848 3866
| 22.1A 4OU \232 | 2250 4082 723a | 2260 4100
465E
2584
2700 2',/ 10 2720
1471
1560
ltil.i 2rr, I193 PrE' lTgtt 21t0 1204 2200 3tg2 r2IO 2atA 4rtq l2lti ) 2p2a l4o2a
25iA
1488 1493
r466
r549 r554
31r:ll :i93ri 3U;6 3974
4622 4640
4802
3791
3'.tO2
2560
2650 2660 2670 2880 2690
37;8
3E84
4568 4586 4604
2614 2.i20 9634 2640
t43E
1521 1527 1532
2A4A
26&
26A0
366E
2420 2a3a
2514 2524 2530
1,4:12
1510
2A1A
217O
t427
3622 3650
\766 | 2130 1171 | 21/0
1
1399 l:104 1410
2000
1149 12100 7754 ) !|tA 1100 i2t9d
1227 1227
l38E
r3s3
r504
I
788 145A | 2642 793 U6A | 266A 799 1t7A | 267r\ Eo4 I riso 2696 810 1490 2714
13E2
36r4
25t.1tj
2606
4532
1980
1t70
1177 2t 60 1182 Pl,rd
l.UA | 2624
25AA
t377
reeo
3722 3740
)
1371
14E2
1950
1960
2050 20(i0 207a 2080 20s0
1143
2480 2490
3542 3560 3578 3596
1940
4424
1366
1,454 1,160
19iJ0
4262 .1298
4442 4460 4474 4496 4514
3452 3470 3488 3506 3521
)570
2552
3lA4
1750'3142
954
7093 7099
2161)
4352 1370 4388 4406
241O
3146
9.13
2282 2:lt)0 2318 2336 2354
2462
43:14
2.!A)
:lt2a
1i2A r7J0
93fi
1038
240A
4316
2394
1349 1354
1714 :trlt)
\J:12
1032
13SA 2426 134A 2444
r321
2S8A
2450 2460
2lO2
2:1.10
1316
42E0
13.13
2Oa4
222a 2216 22€4
1299 1304 1310
4190 4208 4226 4211
2350 2360 2374
3092
1021
2211)
r293
17AA
201a 2066
27\]2
2340
927
993 999 1004
12AA
t2a2
1288
2$A
2120 2/t30 2140
t95A
121A 129A
2314 2320
t2i7
1327 1332 1338
982
1174 2l3a 1184 2156 1194 2ri 4
r266 r271
3038 3056 30t-1
7922 1910
116A 2l2t)
2SA0
1690
10n0
1114 1124 11SA 1144 1164
F
C 1260
916 921
966 971 977
rg t'6 1994
2972 2930 2914 2946
1(i10 1A2A 163A 1640 | 2s84 teso I zooz 16ti0 3i20
ai7
1O.1O 1904
20:t0
158.0 r59.E
2l I
17O 48O 19O
560
11AA 20t2
734
866
i38 1000 rr32 51:l lrt, I 1rJ50 549 irrz, i 1rJ6E 55-1 lOJ' 1666
593
| t)a | 752 /,10 | 770 120 | 78E 13, | 8oo uo I a24 io | A60 460 | "n"
li60
949
599
19..1 67
l4
16.1
3n
lt5{
532
582 588
,nn I uu" i6o I c8o 37O I 698 s8o I 716
li49
lt-94
527
60u 626 b14
232
2A 1A
2J
I
5:l
t06a 1070 1084 ) 1090
23E
254
493 499
571
1;O.E 152.6 154.4 156.2
21:l 249
4Ea
591)
149.0
20.0 68 20.6 09
4
143.6 l:15.4
llJb
sta 320 s30
ll:i.3 65
lE.9 66
22
I ort 230 146 2/+o 161 I 250 42 26A 500 ,;o 5la 28A 536 29A 5,54 nuo
\77
1,27 _4
482
I
1550 2 22 1560 2a10 li;o :ssrJ 1580 2at-6 1590 2a91
843
'-t---t----
510
r29.2
195.0
t3.l.0
ia
601
4t3.6
30o | 572
132 .8
6A
212
S;0 15C2 8r0 tib0 a;0 1J9E 68' 1616 894 r$u4 9AA i 1652 910 rC t-O ,90 l6rJE ,J0 1706 94O 1i24 950 1i42 9ti0 | t-AO r7 t-, 970 gEA
149 l5-1 160 166
131.0
- 166 - lilE 130 -ll2
15.r foo 400 1;1 1t-7
| 284
1::.0
nn
-::0
,ro | 160 I 32O "o, 170 334 180 356 194 :li+ 2AA 392 21A 410
11O
14u
13.3 13.9 ti7
-256
8oo 1472 stl) t{ir0 32' L 1;0r.t dJO 15:6
1?0.?
r:3.8
F I'-
{t; 132 438 .143
I
ri
CJ
100 2t2 i'rg ?rii 13a 2lrB
l0+.0
.1
-3:S 310
51
29
-
a4.2
30
1!
l
57
1A 3A
I I
ti
jll6
-r29 - 193 118
s
:19
,13
l:l.-l
35 :l 36
il59. il
-3f:
-r'16 -140 13:t
6 0 (i
lio.0
23 29
I I I I
-J;A
- 218 -!l: -20i -:lol - 190 - r90 1E4 - 179
1
3li
78.r
il
T
C
77.0
2E80
5126
5741 51E0
ITT GRINNT]LL . P]PING D]ISIGN AND
ENGINEFJRING
PRESSIIRE CONVERSIONS Final qiven value in middle column; if in feet of *-ater, reed PSI equivalent in left, hand columo; hand column. Valucs based on w&ter at 65'F.
Water
0.43 0.86 1.30
2.16 2.59 3.03 3.46 3.89 4.33
Water
PSI
2.3t
6 |I
9.23
s | 4 6 7 8 I 10
4.62 6.sB
11.55
26.42 26.85 27 .29 27 .72 28.15
61 62 63
65
140.91 143.22 145.53 147 .84 150.15
28.58
66
t52 .46
13.86 16.17 18.48 20.75 23.10
68 69
154.77 157.08 159.39 161.70
29 .02 29 .45
29.88 30.32
70
6.06 6.49
11
13 14
25 .41 27 .72
30.03 32.34 34.65 36.96
6.93 17
39 .27
18 19 20
41.58 43.89 46.20
9.09 9.53
21
22
48.51 50.82
10.39 10.82
24
55.44
L\ .26 11.69 12.12 12 .55 12.99
26
7 7
.36 .79
8.22 8.66
L96 26 27 28 29 30
60.06 62.37 6,1.68
66.99 69.30
30.75 31.18 31.62 32.05 32.48
71
72
'/3 71 76
164.01 166.32 168.63 170.94 173.25
| | | I |tl 35.08 | 35.52 | 35.95 I 36.39 | 36.82 |
76 | 175.56 77 | \77.87 78 1180.18 7s 1182.49 80 I 184.80 8.1 | 187.11 82 | 189.42 8s 1191.73 84 I 194.04 85 1196.35
37
.25 37.68 38.12 38.55
86
38.98
87 88 89 90
32.92 33.35 33.78 34.21 34.65
198.66 200.97 203.28 205.59 207.90
I |
325.71
87
328.O2
330.33 332.64 334.95
146 147 118
337 .26 339 .57
I
| | | | | 65.40 | 65.84 I 66.27 | 66.70 | 67. 14 I 67.57 1 68.00 | 63.43 | 68.87 | 69.31 | 69.74 | 70.17 1 70.61 | 71.04 | 71.47 | 71.91 | 72 34 | 72.77 | 73.20 | 73.64 I
1.49
160
I
13.42 13.86
t4.29 11.72 15.16
31
3S
34 36
7t.7r
as .42
91
zto.21
73.92 76.23 78.54 80.85
39
.85
92 93
212 .52
96
219 .45
40.28 40.72
4t.r5
214.83
2t7.14
36
17.75
41
18. 19
42
18.62 19.05 19.49
43
19.92
46 47
37
38 39 40
22L.76 221.07 226.34 228.69 231.00
83.16 85 .47 a7 .74 90.09 92.40
41.58
98
42.O1
97 98 99 100
94.71 97 .02 99.33 101.64 103.95
43.75 44.18 44.61 45.05 45.48
101
45.91 46.34
106 | z+q.so 10f | 247.r7 108 1219.48 109 | 251.79 110 | 254.10
48.08
.45 42.48 43.31 42
44
16
20.79
48 49
21.65
60
106.26 108.57 110.88 113.19 115.50
22.09
61
117.81
22.55
53
23.39 23.82
61
20.35
2t.22
4ti.78 47.21. 47
.64
109 10s 104 106
111
48.5r
112
122.43
48.94
115
124.7 4
19.38 49.81
114 115
r20 . 12 t27 .05
237 .93
240.21 242 .55
256.41 258.72 261.03 263.34 265.65
74.07 74.50 74.94 75.80
181
182
183 181 185
I
291.06 293.37 295.68 297 .99 300.30
341.88 344.19 346.50
1s0
429.66 431.97 434.28 436.59 438.90
1sl
44t.21
1e2
443 .52 445.83
186 187 188 189
1es 1s4 196
448. 14
84.90 85.93 85.76 86.20 86.63
196 197 198 199 240
452.76
.07
201
87.50 87.93 88.36 88.80
202 203 204 205
89.21 89.66 90.10 90.53 90.56
206 207 208 209 210
475.46 478.17 480.48 482.79
211
487
212 213 214 215
489.72 492.03 494.34 496.65
| | | I |
24.69 25.12 25.55 25.99
234
66
60
129.36 131.67 133.98 136.29 138.60
50.24 50.68
116
267 .96
117
270.27 272.58 274.49 277 .20
CI.II
118
51.54 51.98
119 120
76.23 76.67 77 .rO 17
.97
450.45
457.38 459.69 462.00 464.31 466.62 468.93 47 r .24 473.55
485. 10
.4l
169 160
360.36 362.67 364.98 367 .29 369.60
93.56 93.99 94.43 94.86 95.30
216 217 218 919 220
498.96 501.27 503.58 505.89 508.20
161
371.91
221
162
a7
510.51 512.82
166 167 158
348.81 351.12 353.43
164 166
378.84 381.15
95.73 96.16 96.60 97.03 97 .46
166 167 168 16s 170
383.46 385.77 388.08 390.39 392.70
97.90 98.33 98.76 99.20 99.63
226 227 228 229 930
171
395.01 397 .32 399.63
100.00 100.49 100.93 101.36 101.70
231
4.22
163
172 173 174 176
,i01.94 404.25
222 223 22.1
176 177 178 179 180
406.56 408.87 411.18 413.49 415.80
702.23 102.66 103.09 103.53 103.96
5\7 .44
225
| I'1 |
522.06 524.37 526.68 528.99 531.30
236
535.92 538.23 540.54 542.45
236
545.16
238 239 240
549.78 552.09 554.40
232 233
I
24.26
418.11 420 .42 422.73 425.04 427 .35
358.05
169 153 154 156
I
233.31 235.62
284.13 286.44 288.75
78.40 78.84 79.27 79.70 80.14
91.39 91.83 92.20 92.69 93.13
161
I
15.59 16.02 16.45 16.89
Head
1/,2 1/t3 144 145
I
62.37 62.81 63.24 63.67 64.10 64.54 64.97
\Vater
141
.07 I 61.51 | 61.94 | 61
tr'eei of
314.16 316.47 318.78 321.09 323.40
I
28t.82
of wat€r in dghi
PSI
302.61 404.92 307 .23 309.54 311-85
279.51.
I
4.76 5.20
read feei
| | | | | 80.57 | 81.00 I 81.43 | 81.87 | 82.30 | 82.8 | 83.17 | 83.60 | 84.03 I 84.47 |
| 121 | 122 | 12s | 124 I 125 54.58 I 126 55.01 | 127 55.44 I 128 55.88 | 129 56.3i I 130 56.74 | 131 57.18 | 152 57.61 | 1s3 58.04 | lsl 58.48 | 135 58.91 I 156 59.34 | 137 55.77 | 138 60.21 | 139 60.64 I 140
52.41 52.84 53.28 53.71 54.15
I
I
| | | | I
PSI
Head
IIead
1 | 2 |
Feet of W&ter Head
Feet of
Feet, of
PSI
if in PSI;
psl
GENERAL TABLES
PRESSURE CONVERSIONS (Continued) Fincl eivenvaiuc iD middle colurnn; if ir feeL ol \rater', rcarl I'SI ccluiv;rleDt irr lelt ha[d columnl if in PSI, read feet oI rvater in right hand coiLrmn. \'atucs blsrd orr \\rrt1'.rl ti5" F. Feet of Feet of leet of Fect of
PSI
PSI I I
llcud
104.39
241
104.E3
242 243 244
r05.20 105.6!) 106. r3
106.5ri
roti.99
550.71 559.02 5ril .33
113.06
505.9;
121.29
113.l9
Il0.91i l l$. 12
5ii3. (i1
2j6 2j7
568.20
123 .15
21E
572.E8
125.62 r27.7E
2t|9
57o.19
12C.95
107.43 107.86 103.29
2i0
r08.73
251
109.16 109.50 110.03
252
110.,+6
255
110.89 111 .32 111.76
256 257 253
t2n3 25.1
25t
112. 19
It2.tr2
260
'ii.50 57it.81
r3{.28
582.
r3it..16
t2 58t.43
.l3E.62
586.74 589.05
1-10.79
591.3ti
r45 . 12
593. ii7
117.28 149.45
142.95
595.98 5t)8.20 600.rio
r51.61 153.78
I tl,t"t I llead
261 I ri02 91 262 160i].22 2it:) 623.70 275 (t35.25 2s0 L 6.16.80 .
2si ass. rs 2!)0 J 6{i9.90 2t5 90a I 30i |
PSI
PSI
. 1{l
3t5
83r .60 813.15
160.27
370
E51.70
I ri2 . .15
375
6I
330
806.25 877.E0
1ti6. 7iJ
3u5
E09.35
364
155.'J-l
l5il
10+.
gta s9t
r6E.94
693.00
r71.11 r73.27
70.1.55
184. 10
./125
31A 7r0.10 Jli I 72:. C5 sta I i3c.20 ,t2J I 750.75 350 7ii2.30 s35 I 773.85 S/tt-) 1785.i10 3.15 I 79rj.95 350 E08.50 355 L 820.05
195 . 0t) 205 .77
454
2r6.58
500 525 550
6Et.15
l
IIe.rd
Hcrd
40t)
4i5
.12 238.25
22 t'
2{9.09 259.90 270.73 281.56 292 .40
303.22
700
31,1.05 32.1.88
?25 750
335.i2
900.90
I t2.45 924.00 981.75 10-10
i733
';i5
1790
800
1E48
825
1906
368.20 379.03 389.86 400.70
854
i964
900
2021 2079
925
2r37
411.54
95A
2195
.133.18
9i5
2252 2310
92.45
r097
1617 1(i75
1213
ti49.7
1000 1540
1271
866.3
9040
'1620
3000
6930
600
1328 1386
6i25
1414
650
1502 1559
1300
3465
PROPERTIES OF WATER AT SATURATION PRESSIIRE T€mpefctule, ".F'
32 .10
50 60 70
80 00 100 110 120 130 110 150 160 170 180
rg0 200
2to 2t2 220 230 210 250
Srturxti(nr Pressure,
psi (abs)
500
550 600 650 700
Density,
Conversion,
lb,'g.Ll
fi oI $ ater/psi
Absolute Viscosiiy,
tbi,It3
2.307 2.307 2.307 2.309 2.311
0.001203
0.000513 0.000460 0.000415 0.000376 0.000313 0.000316
0.0885 0.1217 0.1781 0.2563 0.3631 0.5069
62
.12 62.43 62.41 62.37 62.30 62.22
8.3,16 8.3,17
8.3r9
2.3r5
0.{i9E2 0.9492
62.12 62.00
8.305 8.289 8.2ri8 8.253 8.228 8.208
2.318
8.182 8.157
2.353
|.275 1.692
2.222 2.889
61.8'1
61.73 61 .51 61.39
8.344 8.330 8.330
2.328 2.333 2.340 2.3.16
3. 718 4. t'41
61.20
5.S92
60.79 60.57 00.35 60.13
8. 128
8.098 8.069 8.039
2.386
5S.88
8.006
2
59.81 59.63
7.S97
7.510 9.339 11.53 14.12 14.696 17.10 20.78 21.97
ii1.01
5C.38
29 .82
59.10 58.82
.42 67.01 134.6
58.09 57.31 55.59
122.6 680.8
,19.02
45
300 350 400 450
Dcnsiry,
1045
2208 3094
45.47 42.37 37.31 27 .10
2.360 2.369
2.395 .405 2.408
.973 7.939 7.002
2.415
7.86'1
2.448
7 i67
2
7
7.662 7 .132 1'.773 6.892 6.554 6.133 5.665 4.98E
3.623
2
.425
2.436 .479 2.513 2.591 2.684
lb/sec. ft
0.0010'12 0.000E80
0.000753 0.000657 0.000579
0.000290 0.000269 0.000250 0.000233 0.000218 0.000205 0.000193 0.000191 0.000181 0.000171 0.000163 0.000154
2.938
0.000136 0.000124 0.000108 0.0000874 0.0000806 0.0000672
3.139 3.399 3.860 5.314
0.0000605 0.0000538 0.0000470 0.0000269
2.793
235
ITT GRINNULL-PIPING DESIGN AND ENGINEERING DECIMAL EQUWALENTS
€ I 3
DECINIAI"S of a FOOT
s 0
w
5 %,
7
I I]
'/B Ysz
36
15
% %
17
th 19 s/s
2l
rt42
% 25 t34z
27
0.0833 0.0846 0.0869 0.0872
0.6667 0.6680 0.6693 0.6?06
0.7600 0.7513 0.?626 0.7539
0.8333 0.8316 0.8369 0.8372
0.916? 0.9180 0.9193 0.9206
0.0052 0.0065 0.0078 0.0091
0.0886 0.1?19 0.2662 0.3386 0.4219 0. 6062 0. 6886 0.6719 0.0898 o.fi42 0.2565 0.3398 o.4232 0.5065 0.5898 0.6732 0.0911 0.L746 0.2678 0.3411 0.4246 0.50?8 0.6911 0.6746 0.0924 0.1758 0.2591 0.3424 o .4258 0.5091 0.5924 0.6758
0.7662 0.7565 0.?678 0.7591
0.8386 0.8398 0.8411 0.8424
0.9219
0.0104 0.093? 0.r71L 0.2604 0.0117 0.0951 0.1784 o.2rit7 0.0130 0.0964 0.179? 0.2630 0_0143 0.0977 0.1810 0.2643
39
4l
0.3333 0.4167 0"6000 0.6833 0.3346 0.4180 0.5013 0.5846 0.3369 0.4193 0.6026 0.6869 0.3372 0.4206 0.5039 0.5872
0.3437 0.3451 0.3464 0.3477
5
0.9246 0.9258
7
0.4284 0.5117 0.5951 0.6784 0.7617 0.8451 0.9284 o.4297 0.6130 0.6964 0.679? 0.?630 0.8464 0.9297 0.4310 0.5143 0 .5977 0.6810 0.7643 0.8477 0.9310
17
0.6E23
o.0247 0.1081 0.191,1 o.2747 0.3581 0.4414 0.2?60 0.2773 0.1120 0.1953 0.2786 0.1133 0.1966 o.2799
0.0260 0.0273 0.0286 0.0299
0. 1094 0. 1927 0.1107 0. 1940
0.0312 0.0326 0.0339 0.0352
0.1146 0. 1159 0.1172 0.1185
0.1979 0.1992 0.2006 0.2018
0
.5247
0.608i 0.6914 o.7747 0.8581 0.9414
0.3694 0 .4427 0.6260 0.6094 0.3607 0.4440 0.5273 0.6107 0.3620 0.4463 0.6286 0.6120 0.3633 0.4466 0.5299 0.6133
0.692? 0.6940 0.6963 0.6966
0.?760 0.7773 0.7786 0.7799
o.2412 0.3646 o.4479 0.6312 0.6146 0.2826 0.3659 o.4192 0.5326 0.6159 0.2839 0.3672 0.4606 0.6339 0.6L72 o.2852 0.3685 0.4518 0.5352 0.6185
0.69?9 0.6992 0.7006 0.7018
o.74L2 0.8646 0.9479 o.7426 0.8659 0.9492
0.1198 0.2031 0.2866 0.1211 0.2011 0.2878 0.1224 o.2067 0.2891 0.1237 0.2070 0.2904
0.3698 0.4631 0.6366 0.3711 0 .4544 0.5378 0.a724 0.466? 0.6391 0.3737 0.4570 0.5404
0.8694 0.8607 0.8620 0.8633
0.8698 0.9631 0.8711 0.9544 o.4724 0.966? 0.8737 0.9570
0.7917 0.7930 0.?943 0.7956
0.8?60 0.8763 0.8776 0.8789
0.9683 0.9596 0.9609
0.3802 0.3815 0.38S8 0.3841
0.4636 0.6469 0. 6302 0.?136 0.4648 0.5482 0.6315 0.7I48 0.4661 0.6496 0.6328 0. ?161 0.461-4 0.5508 0.6341 0.7174
0.?969 0.8802 0.7942 0.8815 0.7995 0.8828 0.8008 0.8841
0.9636 0.9648 0.9661
0.2188 0.3021 o.2201 0.3034 0.2214 0.3047 0.2227 0.3060
0. 3864
0.7188 0.8021 0.8864 0.7201 0.8034 0. 8807 0.72L4 0.8047 0.8880 0.7227 0.8060 0.8893
0.9688 0.9701 0.9?14 o.9727
0. 041?
0.0621 0.0534 0.0647 0.0560
0.1364 0.1367 0.1380 0.1393
0.4688 0.6621 0.3867 0.4701 0.5534 0.3880 o.4714 0 .6647 0.3893 0.4727 0.5560
0.6364 0.6367 0.6380 0.6393
2Yr2
%
r5
61 63
236
0.06?7 0.1610 0
o.3!77 0.4010
.4a44 0.0690 0.1523 0.2357 0.3190 0.4023 0.4857 0.0?03 0.1636 0.2370 0.3203 0.4036 0.4870 0.0716 0. 1549 0.2383 0.3216 0.4049 0.4883 0.0729 0.1662 0.2396 0.3229 0.4062 0.4896 0 .o7 42 0.1576 0.2409 0.3242 0.4076 0.4909 0.0?66 0.1689 0.2422 0.3266 0.4089 o .4922 0.0768 0.1602 0.2435 0.3268 0 .4102 0.4935
0.0781 0.0794 3r4 0.0807 0.0820
0.1616 0.1628 0.1641 0.1654
234!|
o
0.667? 0.5690 0.6703 0.5716
0.6610 0.6523 0.6636 0.6549
% s/s
21
t/"2
% 25 tY,*
29
%
0. s674
% t74 Ys rsiz
39
4I
0.8229 0.9062 o.8242 0.9076 0.8266 0.9089 0.8268 0.9102
59
0.2448 0.3281 0.4116 0.4948 0.6?81 0.6616 o.7444 0.8281 0.9116 0.9948 0.2461 0.3294 0.4128 0.4961 0.5794 0.6628 0. 7461 0.8294 0.9128 0.9961 0.2474 0.3307 n /l1n 1 0.497 4 0.6807 0.6641 o.7474 0.8307 0.9141 0.9974
61
o.2447 0.3320 0.4154 0.4987 0.5820 0.6654 0.7447 0.8320 0.9154 0.9987
0.43?600
0.453r25
0.600000 0.515625 0.631260 0.546875 0.662600 0.578125 0.693760 0.609375
2/"2
0.812600 0.828125 0.843760 0.859375
114a
63
0.376000 0.390625 0.406260 0.421a75
0.760000 0.765625 0.781260 0.796875
%
29(z
0.9935
0.312600 0.328125 0.343760 0.359375
254
%
o.9922
0.260000 0.265625 0.281260 0.296875
0.687600 0.703125 0.718760 0.734375
51
0.9896 0.9909
0.18?600 0.203125 0.218760 0.234375
234
o.7344 0.4177 0.9010 0.9844
0.6729 0.6662 0.7396 o.5742 0.6576 0.7409 u.0 tDD 0.6689 o.7422 0.5768 0.6602 0.7435
0.126000 0.140625 0.156260 0.171875
0.626000 0.640625 0.666260 0.671875
%
17
0.7357 0.8190 0.9023 0.9857 0.73?0 0.8203 0.9036 0.9870 0. 7383 0.8216 0.9049 0.9883
0.062600 0.078125 0.093760 0.109375
214
15
49
0.015625 0.031260 0.046875
0.468760 0.484375
31
o.9622
0.0586 0.1419 o.2253 0.3086 0.3919 0.4753 0.5586 0.6419 o.7253 0.8086 0.8919 0.9753 2342 0.069s 0.L432 0.2266 0.3099 0.3932 0.4766 0.6699 0.6432 0.7266 0.8099 0.8932 0.9766 0.0612 0.1445 o.2279 0.3112 0.3945 o .4779 0.5612 0.6445 0.7279 0.8112 0.8945 o.9775 % 0.0625 0. 1468 0.2292 0.3126 0.3968 0.{t92 0.6625 0.6458 0.7292 0.8126 0.8968 0.9?92 0.0638 0.1471 0.2305 0.3138 0.3971 0.4805 0.5638 0.6471 0.7305 0.8138 0.8971 0.9805 25h 0.0661 0.1484 0.2318 0.3161 0. 3984 0.4818 0.5661 0.6484 0.7318 0.8161 0.8984 0.9818 0.0664 0. 1497 0.2331 0.3164 0.3997 0.4831 0.5664 0.6497 0.7331 0.8164 0.8997 0.9831 r%6
l9
0.?839 0.8672 0.9506 o.7452 0.8685 0.9518
0.6198 0.7031 0. ?866 0.6211 0.?o44 0.7878 o.6224 0.7067 0.7891 0.6237 0.7070 0.7904
%
)'i
0.9463 0.9466
t% 0.0673 0.1406 o.2240 0.3073 0.3906 o.4740 0.6673 0.6406 0.7240 0.8073 0.8906 0.9740
49
l5
o.9427 0. 9440
,i) 3l:6
0. 0208
0.4683 0.5417 0.6260 0. 7083 0.4596 0.5430 0.6263 0.7096 0.4609 0. 6443 0.62?6 0.7109 0.4622 0.5456 0.6289 o.7122
43
l1
0. 1042 0.18?6 0.2?08 0.3642 0.4376 0.6208 0.6042 0.68?6 0.7708 0.8642 0.9376 0.9388 o.0221 0.1055 0.1888 0.2721 0.3555 0.4388 0 .5221 0.6055 0.6888 0.772r 0.0234 0.1068 0.1901 0 _2784 0.3668 0.4401 0. 6234 0.6068 0.6901 0.1734 0.8668 0.9401
0.1823 0.2666 0.s490 o .4323 0.6990 0.1836 0.2669 0.3503 0.4336 0.5169 0.6003 0. 1849 0.2642 0.3616 0.4349 0.6182 0.6016 0.1862 0.2695 0.3529 0.4362 0.5195 0.6029
'/t6
,s
13
0.0990 0.1003 0.1016 0.1029
'4)
3,iz
0.4277 0.6104 0.6937 0.6771 0.7604 0.8437 0.92?1
0.3760 0.3763 0.3776 0.3789
%
3
o.9232
0.1260 0.2083 o.2917 0.0430 0.1263 0.2096 0.2930 196 0.0443 0.L276 0.2109 0.2943 0.0456 0.1289 0.2122 0.2956 % 0.0469 0. 1302 0.2136 0.2969 0.0482 0.1315 0.2148 0.2982 rsa 0. 0496 0.1328 0.2161 0.2996 0.0508 0.1341 0.2174 0.3008
2tAz
0 1
0.7666 0.8490 0.9323 0.6836 0.7669 0.8503 0.9336 0.6849 0.?682 0.8616 0.e349 0.6862 0.7695 0.8529 0.9362
0.0166 0.0169 0.0182 0.0195
0.0366 0.0378 nh 0.0391 0.0404
% 33
0.1667 0.1680 0.1693 0. 1706
0.2600 0.2513 o.2626 0.2539
11"
0.0000 0.0013 0.0026 0.0039
%6
29
€ 9"
5',
0.876000 0.890625 0.906260 0.921875 0.937500 0.953125
3t4 0.968750 0.984375
GENERAL TABLES
METRIC CON\TERSION TABLE
0 Vrzs
Yaa Ttza 3,(4 7.42s
Convert 3.7643 metors to fcct, inches end frrctious 3.76-13 mctcrs
0.0000 0.1984 0.3969 0.5953 0.7937 0.9921 1.1906 1.3890
:
3.6556 t0&
ZO
Convert 15'-6146" to meters
:4.5720 meterc : .163513 meters 15, 6Z*, : J3E51B meters
l5'
1211
626"
m*
107.95 : 412 in. t4r' : .75 3.7643 meters : tZ' +%r
-4
INCIIIJS AND FITACTIONS-[,IILLIX,tETERS Millimeters % % Yra
%
52.3876
3. 1750
2%
53.9751
t-tr25
2yt6
55.562ri
i}.3500
2%
4
% %
2yt6
L
1i.
5250 1125 7000
Inches
% 4r:A
6tA 6yt6
157. 163
8%6
8%
209.550
2t/t6
58 737d
4"1e
106.303 107.950 109.538
61ls
8Yt6
214
211. 138
60. 3251
1'/s
153.750 160.338
63.j
161 . 925
2!la
61.9126
4\6
111. 125
8%
6yt6
1)1
163.513
03 .5001
112.713 114.300
6%
846
165. 100
81/4
212.725 2t'1.313 215.900
65.0876
u.247 5 15 8750
2%
66.6751
4r 4%
115.888
%
I
2tyt6
68.2626 69.8501
1tyt6
1%
tYt6
19.0500
2%
20.6375
2tyt6
%
22 2250
2%
23.8125
2tYra
25.4001
3
1%
26.9876 28.5751
314 3%
13,(a
30. 1626
3%6
1s/ra
lYn
1% 1'/t6
I'A
\n6 1%
115/a
2
50.8001
1.% 11Yt6
r%
Ityt6 1%
166.688
8ry'.6
2r7 .48a
168.27 5
119.063
8%
61Yt6
%$169.863 171.450
8%
6t"/t6
219.075 220.663 222.250 223.838 225.425 227.013 228.600
71.'1376 73.0251
4\yj6
4%
74.6126 76.2002
1ty't6
125.4r3
5
127.000
7
77 . r'87
t-
5%6
128.588
TYra
79.3732 80.9027 82 .5502
5%
130.175 131 763
7%
5%
133.350 134.938
b\6
6rYt6
6%
9Xa 91.4
t-Yt6
170.388 180.975 182.563
7%
184.150
e%
7y'ta 7 r.6 77
185.738 187.325 188.913 190.500
95/t6
53/4 5%6
88.9002
514
136.525 138.113 139.700
3!16
90 .1a77 92.O7 52
5%6
141 . 288
7%
5ryt6
142.875 144.463 146.051
t47.63E 149.225
7t3/t6
7t,/,t 8
3% StYtr
3%
3t94 3% 3r016
93.6627 95.2502 96.8377 98.1252
5% 5t%6
100.013
5ty't6
101.600
150.8 r3
6
152.400
8%
8t/6
.312i
a7
8tyt6
176.213 177.800
3:4
3716
81t4
r73.038 174.625
7rA
71t16 7 3/t
t'%
Inches LMillimcters 255.588 257 .176 254.763 260.351 261.938 263 .526
207 .963
6Y6
120 650 122 238 123.425
a5.7252
3{i.5126 38.1001
t:),i
6%
t17.4t'5
84. 1377
34.9251
39.6876 41.2751 42.8626 44.4501 46.0376 47 .6251 45.2126
1Yt6
3ti
31.7501 33.3376
8%
4t 4%
Yra
%
,04 JS8 206.375
153.088 155 575
1501
57
2\/t
. 4t325
%
6%
%
t-
Millimeters
103. 188 101.i t'5
12
1\6
Inches
230. 188
265. 113
266.701 268.288 269.876 271. .463 273.051 27.1.638
276.226
277.8t3 279 .401
llYn
280.988 282 .576 284.163
t7"/t6
287.338 288.926 290.513
lrrA t1:' rryl
s\6
23]..775 233.363 234.950 236.538 234 .125 239.713
9r/r,
2,11.300
I1716 11r,4
192.088
er{6
s% 9\t 6
242.888
71Y16
193.675 195.263 196.850
214.47 5
11%
246.063 247.650
198. '138
9ryf,
1t%
200.025 201.613 203.200
s%
93/t6
9rA
s%
2$ .23a 250.825 252 .413
91X6 10
254.001
Ilzls
t71yt6
lttyt6
rr'%
Ilt"/16 12
285.75r
292.IOI 293.688 255.276 296.863 298.451 300.038 301.626 303.213 304.801
FEET INTO METERS Feet
Meterg
Feet
Meters
2
0.3048 0.6096
16 17
3
0.91,14
18
4.8768 5.1816 5.4864
19
5.7912
20
6.0960
I 4
t.2t92 1.5240
6 7 8
I
1.8288 2.1336
2.4384
10
2.7 432 3 0480
l1
3.3528
12 13
14
3.9624 4.2672 4.5720
Feet
Meters
Feei
MeteN
Feei
MeteN
9.4488
46
14.021
18.593
9..7536
47
14.326
10.058 10.363
48
14 630
61 62
49
l0.668
50
.14.935 15.240
10.973
51 52 53
7.6200
36 3t38 39 40
26 27 28
7 .9218 8.2296
41 42
12
2S
8.8392 9. 1440
22 23 24 25
30
6.4008 6.7056
7.0r04
7.3t52
11 278
l1
582
1r.887 12.1.92
16.764
.197
56
13. r06
8. 534,1 41
66
13.411
13.716
59 00
17.069
lt'.374 r7.983 18.288
20. r17
77 78 79
84
71 72 73
2t .611 21.946 22,250 22.860
23.470
27.736
92
23.774
93
28.041 28.346 28.650 28.955
25
21.031
22.555
MeieIs
91
24.689 24.994 25.297
20.726 21 336
Ieet
23.165
24.079 24.384
68 69 70
20.422
MeteN
80 81 82 83
15.850 16. 154 16..159
t2.402
64
18.898 19 .202 19.507 19.812
Feei
.602
25.907 86
26.212
87
26 .317
88
26.822
89
27 27
90
.126
.432
94 95 96 97
29.260
98
29.565 29.870
99 100
30.480
30.
t74
ITT GRINNI'LI, PIPING DESIGN AND I'NGINI'I'IiIN(i CONVERSION FACTORS To Obtaitr
Multiply Absolute viscosity
BTU,/minute
1
Gram/second centimeter
Absolute viscosity (centipoise)
0.01
Poise
Acceleratio due io gravity (9)
32.
980 6
Feet/second' Centimeters/second'
acres
0.4047
H€ctares
10
Square Chains Square Feet
(poise)
4017
0.001562 4840 160
Areg
Bushels
2150..1
Oalories (Kg)/Kilogrant Oubic inchcs
Liters
35 21
I'ecks
a2
Quorts (dry)
Cables
120
Fathoms
Calories (gm)
0.003$68 0.001
tsTU
0. 0011628
Litels
1.558
4185
X
0..12ti5
L1628 Cal (gm)/sec/cm'/'Cl cm
Calories (Kg)
3.968
BTU
l0s
)Ietels
0.001558 .1185
Joules
0.01
Hectares Square Feet
42tr.5 0.0011628 1.1628
r
1000 3088
14.69ti3 1.058 1013 15 235.1408
Pounds/Squrre inch Tons/Square foot
Calories
(Kg)/Iig
Calolies
(Xg)/minute
Bags of cement
94
Pounds of cement
Barrels of oil
42
Grllons of oil (US)
Berrels of cement
376
Pounds of cement
Barrels (irot leg&l)
31
Callons (US) Gallons (US)
Boerd feet
144
Boiler hoNe power'
33,479
33.9.1 10,333
or
X I in.'
9.803
34.5
252.016 0.252 777.51 0.0003927 1051.2 107.5 0.0002928 8.89
Iics. Squar. meter Xlillibars
Cubic inches Kilowatts Pounds of w&ter evaPo_ rated/hour at 212'F
Calo cs (gm) Calories (Kg)
238
51
'13
09351
r2.96
Foot pounds/second Homc power
Horse pov'er
N{illigram
Centares (Certiares)
1
Square m€ters
Centigram
0.01
Grams
Centiliters
0.01
Liters
Oentimetels
0.3s37
Inches
0.01
fleterc flillimeters
0 032808 10
CcntimcteN of Hg at 32'F
0.0r316
0
4461 136
27.45 0. 1934 Centimeters/second
Feet
Atmospheres Fcet oi rvater at 62' F Kgs/Square meter Pourds/Square Iuot
rourcls/squere
1.963
Feet/minute
0.030
Iiilometers/hour )Ieters/minute
0.$28r 0. ti 0 02237
"t
Cal (Ks)/Hr/v'1/"C/
Foot pounds/second
200
C.rlories (Kg),rCu meter 32" F
1.49
BTU/Hr/ft'/'F/foot
Carlts (diamond)
Joules
Kilowatthours
BTU/Cu foot at 0' C
Kilow.rtts
Horse power houm
Kilogram meters
Iiilogram meters Kilowatt houN Watt houls
BTU/pound
1.8
0
Calorica (gm)
0.06972
Foot pounds
Cal (gm)/Sec/cm'?l"C/
0.0r757
(Ks)/IIr/lI'/'C/N{ 0 671
BTU/hour
0.00.113
0.02356
Cal
Ounces/Squarc inch
r
0.0003728
fliles/hour llil€s/minute
Ccntimet€rs/second'
0.03281
Feet/second'
Meter
Centipoise
0.000672
PouDds/sec fooi
2.42 0.01
Poise
Kilowatts
Chains (Gunter's)
1 66 100
cn
Feet/second
cm
* For thickness less ihan 1 in. use actual thickness in decimals of an inch.
hours
BTU/t{r/ft'l'F/ft
Ca]ories (I{g) /Cu meter 0.112'1
BTU/minute
liilowatt
Foot pounds , tlorse pol!er nours
29.92r
/Hr/rt'/'F /rt
Ifilogram meteN
212.13
Cnls of Hq at 32" F Inches of IIe at 32' F Feei. of \\'alcr tt 62' F
B"rU
Joulcs 6
Cubic fcet/N1inute Gallons/N'tinute
76.0
BTU/Cu foot
X r0
pounds
IIorse po$,er hours
10-6
726 5430.86
o .0247
BTU
Ioot
Cubic Feei cs.llons (US) Cubic f{eterc
1076.39
Atmospheres
Oalories (Ks)
3.08E
325,851 1233. '19 1,233,4S0
angsiroms
0.556
Square XIeteN Square flilcs Seuere Yards S{uare Rods
43,560
Acre-feet/hour
BTU/pound
4 4
17
43,560
Acre.feet
To Obtain
Multiply
Pounds/hour foot
Feet
Links
GENERAL TABLES
CONVERSION FACTORS (Continued) To Obtain
Multiply
by
To Obtain
N{etdc horse Dower
Cubit
0.98632
Horse power
106
Circular mils
0. 7854
Square inches Square mils
18 1440 24 86,,100
Inches
Days (mean)
Days (sideresl)
86,164.1
Solar seconds
Square mils Circula,r inches
Decigmms
0,I
Granrs
Deciliters
0.1
Liters
Cubic feet Cubic inches Cubic rneters Cubic yards Gallons (US)
DecimeteB
0.1 Meters 60 Minutes 0.01745 Radians 3600 Seconds 0,5556 Degrees C 1 lplus 460] Degrees F -above
Multiply Cheval-vapeur
CircuLar inches
I
Kilogranr meiers/second
785,400
Circular mils
0.7854 10-6
X 10-5 3.531 X 10-' 7.854
Cubic ceniimeters
0.06102
106 1.308
x
10-6
0.0002642
Cubic feet
0.001 0.002113 0.001057 0.03s1
Liters
2432O
Cubic Cubic Cubic Cubic
Pints (liq. US) Quarts (liq. US) Ounces (fluid)
1728
0.02832 0.03704 7 .48052 28.32 . 59.84 25.92
2.296
X
10 !
alrsolut€ u
Degrees C
1.8 I
lplus 32] De$ees F lplus 273] Degrees C above abso-
Degrees/second
Quarts (liq. US) Acrc feet
Dekagrams
0.01745 0.1667 0.002778 10 10 10
lute 0
Radians/secoad
Revolutions/minute Revolutions/oecond Grame
Pounds at 39.2" F Pounds at 62' F
o.1247
Cubic centimeteN/sec Gallons (US)/second
Diameter (circle) (approx) (approx) tapprcx./
3. 14159265359 Circumference 3.1416
Gallons/24 hours Acre feet/24 hours
Diameter (circle)
0.88623
o.707r
Side of equal square Side of iiscrib6d square
Gellons (US)/24 hours Gallons/minute Acre feet/24 houls
Diameters (sphere)
0.5236
Volume (sphere)
Litels/second
.472
62'F Galons (US)/minute
Pounds \r'ater/min at
0.033058 646,317
448.831 1.98347 16.387 0.0005787 1.639 X 10-6
2.143
X
0.004329 0.01639 0.03463 0.01732 106
61,023
1.308 264.2
10-5
Cubic centimeters Cubic feet, Cubic meters Cnbic yards Gallons (US)
DekameteN
Diaro (major) X diam (minor)
0.7854
Area (circle)
Diameter, (sphere)
3.1416
Su
Diam (inches) X RPM o.262
Beli speed ft/minuto
Quaits (liq. US)
Digits
o.75
Inches
Cubic Cubic Cubic Cubic
Drams (avoirdupois)
27.34375 0.0625 L.77lU5
Grains Ounces (avoir.) Grams
Pints (liq. US)
centimeters feet inches
yards
2t13 1057
Quarts 1liq. US)
764,600
Cubic centimeters
27
202
Cubic feet Cubic inches Cubic rneters Gallons (US)
764.6
Liters
807.9
Pints (liq. US) Quarts (liq. US)
0.45
Cubic feet/second
3.367 12.74
ace (sphere)
Liters
Feet
1616
3.14
Arca of ellipse
Fathoms
0.7646
Meterc
0.7854
Liiers Pints (liq. US)
46,656
Literg
Diameiert (circle)
GaJIons (US)
1000
Cubic yards/minute
F
62.4266 62.3554
7. 4805 10,772
Cubic ya,rds
Degrees
Uess 321
yards
Bushels
62.36
Cubic meteN
F
Seconds
Dekaliters
o
Cubic inches
DegreeB
mete$
Litels Pints (liq. US)
Cubic feet/miauto
Cubic feet/second
inches
Gallons (US)
0.803564 Cubic feet of water
centimeiers
Degrees (angle)
Minutes Houls
Gallons (US)/second Liters/second
tr'eet
30.48
t2
Feet of water at 62
Feet/miDute
Ceniimeters trnches
0.3048
Meters
+
Yards
0.06061
Rods
0.029465 0.88162 62.3554 0.43302 304,M
Atmospheres
0.5080 0.01667 0.01829
Centimeterr/second Feet/second
Inchesof He at 32o F Pounds/souire foot Pounds/s
Kilogram/sq metcr
Kilo4et€rs/hour
239
ITT GRINNDLL -
PIPINC,i DIISIGN
AND IrlNGINltltltIN(;
CONVERSION FACTORS (Continued) To Obtaitr
Multiply
by
To Obtain
0.3048 0.01136
N{eters/minute
Grains/gallon (US)
17. 118
Parts/million Pounds/millioo gallons
30.48 1.097 0.5921 18.29 0.6818 0.01136
Centimeters/second
Multiply Feet/minute Feet/second
142.86
Miles/hour Kilomcters/hour X{eteIs/minute Miles/hour Miles/minuie
30.48 0.3048
Centimelers/second'?
Flet of a hexagon
1.155
Distance across corners
Flat of a square
1.414
Dists,nce across cor[ers
Foot pounds
0.0012861
BTU
Feei/second'
Nletcrs/second'
o.32412 0.0003241
5.05
X r0{
1.3558 0.13826
3.766 Foot pounds/minute
Xilogram meters 10-7
Furlong
\l-ati hours
0.001286 0.01667
BTU/minute
Gallons (US)
3.03
Horse porver Calories (Kg)/minuie
10-6
Pounds/cubic foot Pounds/cubic inch Grains/100 cubic ft
Grsins/gallon (US) Pounds/100 gallons (US) Pounds/cubic foot,
1000
Parts/million
32.174
Feet,/second,
980.6
Centimete.s/second!
4
Inches Centimeters
HectareE 107,639 100
Square feet
Ares
100
Grams
Kilowa,its
Hectolitels
100
Liters
,10
Rods
llectometers
100
Metels
220
Yards
660
Feet
Hecto\vatts
100
W:rtts
0.125
Nttiles
Kilometers
Hogshead
63
Gallons (US)
Cubic inches
I{orse power
23a.1759
Liters
4.543
Gallons (US)
3785
Cubic centimete$ Cubic feet
0.13368 0.00.1951
Cubic inches Cubic meters Cubic yards
3.785
Liters
Pints (liq. US)
X
10.7 o.7457 745.7 Horse power (boiler)
Gallons (US) of water/ minute 6.0086 0.002228 0.13368 8.0208 0.06309 3.78533 0.0044192 1 1 1
0.0648 0.0020833 o.0022857
33,479
9.803
34.5
Acre feet
Ilorse power hours 8.3357
.44
1.014
Quarts (liq. US) Callons (Imperial) 10-6
42
33,000 550
1.20095
3.069
240
Pounds
Ilectograms
0.83267
Grains
5a .417
10.16
Kilowatts
Calories (Kg)/minute
8 4
Gallons (US)/minute
Pounds/inch
Ounces (troy)
Ilorse porver
0.003785
at 62" tr'
0.0056
8.345 o.062427
Gravity (g)
Kilogl'ams X{iliigrams
Ounces (avoir.)
0.036r3 4.37 Grams/liter
!Jno"
0.03527 0.03215 0.002205
Grams/cubic centimeter 62.43
Hand
BTU/minute
o.o77L7 0.001818 0.01945 0.001356
231
Gallons (US) of water
Grums/centimeter
Foot pounds/second
0.2012 Gallons (Imperial)
Kilowatt hours
0.0003766
0.0003241 2.26 X 10-5
Foot pounds/secoDd
Calories (gm) Caiories (Kg) Horse power hours
1000
JOUteS
X
X
980.7 15.43 0.001
Knois
(US)
rounds oI
w:t
641,700
ter
641.1-
1,980,000 2,684,500
Tons of water/24 hours Cubic feet/second Cubic feetlminute Cubic feet/hour Liters/second
273,7 40
Inches
Liters/minute Acre feet/24 hourc Grains (evoirdupois) Grains (apothecary) Grains (troy) Grems Ounces (iroy) Ounces (avoir. )
2546.5
BTU/minute
Foot pounds/minute Foot pounds/second Nfetric horse po*er (Cheval vapeur) Calories (Kg)/mio
Kilolvatts
Waiis BTU/hour Kilowatts
Pounds of water evaporated/hour at 212" F
BTU
Calories (gm) Calories (Kg) Ioot pounds
Kilogram meters
0.7455
Kiloivatt houN Watt hours
2.51
CentimeteB
0.08333
Feet NIils Lines Points
1000 12
Inches of Hg at 32" F
Litels
0.03342 345.3 70.73 0.49117 1.1343
Kilograms/square meter Pounds/square foot Pounds/s
F
GENERAL TABLES
CONVERSION FACTORS (Continued) Inches ot Hg at 32'
Multiply
To Obtaitr
Multiply
I
Inches ol \raier at 02" F Ounccslsquare inch
r3 .611{
7.85872
IDches of waier at 62" F 0.002.155
0.073.{7
10-? 7
980,665 2 205
Lines
0.083-33
Inches
l{iloiYatt hours
Links
7
Wult
Liters
secoDd
32 . 1507
0 009302
BTU
0.0023.1,1
L 80ii
X
Fooi pouDds 10
6
Horse poiver hours
Xilowatt hours
I(ilograms/cubic meter
0.06243
Pounds/cubic foot
Kilograms/meter
0.6720
Pounds/foot
Kilograms/sq centimeter
71
Kilogram/sq nreter
9.678
.223
X 10 6
lvatt
0.003285 0.002896 0.2048 0.001422 0.007356
Atmosphercs Fcet of \reler at 62' F Inches of Hg ar 32" F Pounds/square foot Pounds/square inch Centimete;s of IIg at 32" F
Kiloliters
1000
Kilomei,ers
100,000
Kilometers/hour
KilometeIs/hr/sec
Kilowatts
14,250
i3t'.6 1.341
Kilowath hours
Centimeters/second
0.06
Kilometers/hour
Feet/minute Feet/second
0.03728
lliles/hour
0.03728
NIiles/minute
I{eters
llcters/second
N{iles/hour
l{icrons
10-6
Meters
0.001 0.03937
X{illimeters
0.001 0.0254
Inches
Fcet/second
25.1
Nlicrons
Nteters/minute tr{iles/hour Knots
160,934
Centimeterc
5280
I'eet
Feet/minute
Centimeters/sec/sec Feet/sec/sec N{eters/sec/sec
BTLi/minute
Foot pounds/minute Fooi pounds/second
r000
Calories (Kg)/min W&tts
3413
BTU
1+.3.1
1.667 3.281 0.05468
Centimetels
Centimeters/second
56.92
Kilometers Millimeters
Kilometers/hour Kilometers/minute
27.7a
o.2774
1000
0.06
Yards
0. 9113
Centimeters Feet Inches Yards
Gallons (US)/minute
Liters
1094
27.t-8
100
T
Gallons (US)/second
Feet/second
I{iles
0.5396
Cubic feet/second
Feet/minute
Feei
0. 6214
Pounds of water at 62'
0.0005886 0.004403 0.26418 3.281 39.37 1.094 0.001
Meters/minute
Cubic ceni,imeters Cubic fect, Cubic inches Cubic meters Cubic y:rrds Gailons (US) Gallons (Imp) Pints (liq. US) Quarts (liq. US)
196.8
o.62L1
0.9113 16.67
Liters/minute
Inches
3.2E1
1000 3281
54 68
8.107 X 10 t 2.2018
hours
Pounds/sq inch Nletdc rtmosphere
.22
.114 1.057
Joules
.721 Y. tO-6 0.002724 2
I
0 2
Caiories (gm) Calories (Kg)
2.311
7.233 3.653
6r.02
Clrams
Ounccs (avoir.) Ounces (troy)
35.271
1000
0.001 0.001308 0 .2612
l'ons (shori)
1000
.92
0.03531
Dynes Pounds
0.001102
Kilogrnm mctcrs
N{iles
Foot pounds Ilorse po\,i'er houm Xilogram meters
I
Kilograms
3
ots
Calories (gm)
0.101s7
I
I-eagues
Ca,lories (Kg)
X 10 0.0002778
K
Kilogram meters Wei.t hours
r.4932
BTU
2.778
If
Horse power hours
Nautical miles/hour Miles/hour Kilometels/hour
0.239 0.000239 0.73756
X
1000
Calories (gm)
Crlories (Kg) Foot pounds
1.1516
0.00094869
3.72
2,655,200 1.341 3,600,000 367,100
Xilogran$/squdre mcter Ounces/stluarc inch Pounds/square foot Pounds/squale inch Inches of llg at 32"
860,500
860.5
Atrnosphcres
25.37 0.5771 5.1963 0.03609 Joules
Kilowatt hours
Miles/hour
N{ils
Nlillimeters
63,360
Irrches
1.609
Kilometers
1760 80
YDrds
320
Chsins Rods
0.8684
Nautical miles
44.70
Centimeters/second
88 1..167
I'eet/minute
1.609 0.8684 26.42
Kilometers/hour Knots Metels/minute
Feet/second
24r
ITT GRINNELL - PIPING DESIGN AND ENGINEERING CONVERSION FACTORS (Continued) Multiply
by
To Obtain
Multiply
Miles/minute
2682 88 I .609
Centimcters/second
Poncelots
Feet/secold
60
Miles/hour
Kilometers /minuie
Milliba,rs
0.000987
Atmosphere
Milliers
1000
Kilogra,rns
Milligrams
0.001 0.01543
Grame
Grains
Milligrams/liter
1
Parts/millioo
Milliliters
0.001
Liiers
Million gals/24 hours
| .54723
Cubic feet/second
0.1
Centimetels lnches
Millimeters
0.03937 39.37
Microns
Miner's inches
1.5
Cubic feet/miaute
Minutes (angle)
0.0002909
Radians
Nautical miles
6080.2 1.1516
Feet MiIes
Ounces (avoirdupois) 437.5 0.0625 24.349527 Ounces (fluid)
Ounces (troy)
Drams (avoir. )
7000
0.0005 453.5524 1.21528 14.5833 Pounds (troy) 240 12
373.24t77 o.822a57 13.1657 0.00036735 0.0004114:| 0.00037324 Pounds of water at 62"
F 0.0f604 27.i'2
Drams (avoir.) Grains
Tons (short) Grams Pounds (trov) Ounces (irov) Grains Pennyweights (trcy) Ounces (troy) Grams Pounds (avoir.) Ounces (avoir.) Tons (long) Tons (short)
Tons (metdc) Cubic feet
0.120
Cubic inches Gallons (US)
0.0002673
Cubic feei/second
Pounds/cubic foot
0.01602 16.02 0.0005787
Grams/cubic centimeter Kilograms/cubic meter Pounds/cubic inch
Pounds/cubic inch
27.68
,728
Grams/cubic centimeter Kiloerams/cubic meter Pounas/cubic foot
Pounds/foot
1.488
Kilograms/meter
Pounds of water/min at
62' F
LiteIs
0.25
Gills
Pounds/inch
178.6
Gm,ms/centimeier
480 20
Grains Pennyweights (troy) Pounds (troy) Glams
Pounds/hour foot
0
.4132 0.004132
Centipoise
14.881 1488.1
Poise grams/sec cm
0.016037 4.882 0.006944 0.014139 0.0004725
Feet of water at 62' F Xilograms/square meter
0.068044 2.30934 2.0360 703.067
Atmospheres Feet of water at 62' F Inches of Hg at 32" F Kilosrams/square meter Tnchis of waier at 62'F
0.0625
12725
0.004253
Cubic centimeters
Ounces (avoir.)
Pounds/square inch Inches of ;ater at 62' F
Pounds/sec foot Pounds/square foot
Centimeters of water at 62' F Inches of Hg at 32' F Atmospheres Pounds/squsre inch Inches
Palms
0.0584 0.07016 8.345
Pennyweights (troy)
Grains/gallon (US) Grains/gallon (Imp) Pounds/million gal (US)
0.0041667
Grains Grams Ounces (troy) Pounds (troy)
4
Gills
0.05
0.5
28.875 473.r
Ounces (fluid) Quarts (liq. US) Cubic inches Cubic ceniimeters
Pipe
126
Gallons (US)
Points
0.01389
Inches
242
Ounces (avoir.)
Cubic inches
o .
Poie€
16
1.805 0.02957 29 .57
1'732 4.39
Pints (liq. US)
Horse power
Ounces (troy)
31.103481 1.09714
Parts/million
Xilogram meters/second
1.315 256
Grains Pounds (avot.) Grs,ms
100
0.9r15
0.08333
Ounces/square inch
Pounds (avoirdupois)
Mils
1000
To Obtain
by
27,6&
27
Quadrants (angul*r)
.9r2
rolse gfams/sec
cm
uenllporse
Pounds/square inch Inches of IIg at 32' F Atmospheres
Degrees
90
5400 324,000
|.75r
Minutes Seconds
Radians
Quarts (dry)
67
Qua s (liq. US)
2,
Pints (liq. US)
32
946.3
Ounces (fluid) Cubic inches Cubic centimeters
i01.28
Pounde
.54 101.43 101.41 220 .46 roL .47
PouDds
Quintal, Argentine Brazil Castile, Peru Chile
o.0672
Pounds/sec foot,
242 100
Pounds/hour foot
Metric
Ceniipoise
Mexico
.20
0.9463
125
Cubic inches Liters
Pounds Pounds Pounds Pounds
GENERAL TABLES
CONVERSION FACTORS (Continued) by
Multiply Quires
To Obtain
Multiply
by
To Obtain
Sheets
Square miles
27,878,400
Souare leet
2.590
S
Hectarea Square yards bqu&re rooa
57. B0 3438 206,625
Degrces Seconds
259 3,097,600 102,400
0.637
Qu&drants
1
Sections
Radians/second
57.30 0.1592 9.549
De$ees/second
0.01
Square centimeters squafe rncnes -qLlare mrls
Radians/second!
573.0 0. 1592
Revolutions/minutet
Radints
Reams
RevolutioDs
Minutes
Reiolutions/second Revolutions/minute Revolutions/secoud'
500
Sheets
360
Degrees
4 6.283
Quadrants
0.00155 1550 1973
Square
Square yerds
Radia,ns
Radians/second Revolutions/second
Stere
Revolutions/minute'
0.001745 0.0002778
RadianB/second' Revolutions/second'
Stone
Revolutions/second
360
Degrees/second
60
Revolutions/minute
6.283
Radians/second' Revolutions/minute'?
Feei Yards
Rods Seconds (angle)
4.848
Sections
I
Side oI
Tons (long)
Radians/second
3600
r
square
X
10-6
Tons (short)
Radians
Diameter
.4142
of
inscribed
equal srea, Spaa
I
Inches
Square ceniimeiers
0.001076 0.1550 0.0001
Square feet pduare inches Dquare melers Square millimeters
2.296
X
10-6
929.0
lM
Square kilometers
Square ceutimeters Squs,re Sq:uare
Square rniles
E
1,000,000
feet millimeters Cfrcular inches Circular mils Squa.re mils
247.r
Acres
10,760,000 1,000,000
Squarc feet Squarc metels Square miles Squa.re yards
1,1s6,000 Square metels
0.0002471 10.764 1.196
10
I
Pounds
Kilograms
1016
2240
r.l2
Kiloqrams rounos Tons (shori)
1000
Kiloarems
2205 1.1023
Tons (short)
2000 32,000 907. 185
12,000
1
Acrcg lQuare feet, DQUare v&rqs C6ntare!
640
Acrcs
t,ounds
Pounds Ounces
KilogIams Tons (meiric) Tons (long)
BTU/hour BTU/24 hours Pouads of water/hour
Gallons (US)/minute Cubis feet/hour
BTU/minute Foot DouDds/minute
Ioot lounds/second
rtorse Dower C,a,loriris (Kg) /minute
I
Joule/second
3.413 860.5 0.8605
BTU
2655
Watk/squa.re inch
Square feet Square meteN Square miles
6.35029
0.056s2 44.26 0.7376 0.001341 0.01434 0.001 Wa,tt houN
?
Cubic meters
I .3263
leuare incbes
0.0069,14
0.3861
X
Tons of water/24 hours 83.33 at 62' F
Squa,re centimeters
6.452
7,273,89
0.0002066
288,000
Acres
0. 1111
645.2 1.27324
Square inches
0.16510
Dquare me,iers es Dquate S{ua,re yorde
0.0s29 3.587 X 10-3 Square inches
Tons of refrigeration
Diameter of circle wiih
100
10--6
0.90718 0.89286
circle
7.1284
Squere feet
Tons (metric)
Squaxe miles
1
Circular mils Square millimeters
3.228
0.1047 0.01667
6.283
0.0006452
0.8361
DeErees/secoDd
Revolutions/minute
Revolutions/secondt
nils
Circular mils
Calories (gm) Calories (Kg)
Foot Dound6
0.001341
Hor,se power hours
3600
JOtUeS
367.1 0.001
Kiloqram meters
Kilo;a,tt hours
8.2
BTU/square foot/ Dinute Foot pounds/sq ftl
0.1931
Horse power/square foot
9L.44 0.9144 0.1818
Centimeters Feet Inches Meters Rods
8760
Hourg
iunute
Year (365 days)
244
ITT GITINNDLL PIPING DESICiN AND I'\CI:{EERING PROPERTIES OF PIPE Tbe lollowing lo.Inulds ore used showa in tbe toble:
t wetght ol pipe
i
per foot
i lt€ lerritic
steels DC.I' be dbout 5% l*s, atrd the du.stelitic stdi:rless steek qbout 2 qreoter thdn the vqluos shown in this tdbl€ which dle bd5ed on weigbts lor. ccrbon steel.
the computotiod ol the vclues
(pounds) = 10.6802(D-0
weight oI wqte! p€! Ioot (pou!ds) square feel outside surface per toot Bquore feet iDside surroce p€! loot inBide qred (squdre inches) d!€d o( meldl (squdre idches) moment oI irledid (inches.)
= = = :
0.3405dt 0.2618D
= =
0.785(P-d?) 0.049r(D.-d.)
* scbedule nurBb€rg Stoadcrd weight pipe dnd schedule 40 ale the sdtre j! dll sizeg tbrcugh lo-indr; tlom l2-!rch lhrough 24-inct, Brdndord weight pipe bds d wdll thiclcress ol %-i:rch.
0.26f8d
0.785d
Enro strolg weight pipe old schedule 80 ale the sdme in dll sires thtough 8-inch; flom f-inch through 24-inch, extrq sttong weight pipe hqs d wdu lbicktess of %-inch.
Bec{ior Dodulus (iDcbeBr)
Double extrq strorlg w€ight pitr€ hos no coresponding schedule nueber.
rddius ol gyrotioE (inches)
1{- = qreq oI metol (aquore irches) d = iNide dio'neter (idches)
D : Fa = t = |to!rinql PrPe
aite
outtide didmeter,
gchedule
lrcll
lurnbera
thick-
c
b
% 0,405
40 80
std
% 0.540
40 80
std
iD.
10s
40s 80s
l0s
xs
7a
0.675
oulsid€ didmete! (inches) lodiu3 of gFatiotr (ircbes) pipe woll thicloess (inches)
40 80
srd
xs
40s 80s
sq
neaa,
i|r.
in-
pe!
0.049 0.068
0.307 0.269 0.215
0.0740 0.0568 0.0364
0.0s48 0.0720 0.0925
0,410 0.364 0.302
0.1320 0.1041
0.095
0.065 0.088
0.I19
ss
0.065
r0s
0.065
40s 8os
0.091
0.126 0.065
%
0440
40 s0
;;; XS
r0s
0.083
40s 80s
0.109
r60
0.t47 0.187
xt(s
0,294
0.065
t/ ,.050
40 80
J; xs
l0s
0.083
40s 80s
0.113 0.154 0.218 0.308
xxll I t.3t5
40 80
;;;
t.660
80
xs
sq
lt
irside
li
perlt
0.r06 0.r06
0.0804 0.070s 0.0563
0.0970 0.1250
0.r41
0.1073
0.141
0.0716
0.15t4
0.141
0.0s55 0.0794
0.?10 0.545 0.493 0-423
0.396
0.1582 0.1245 0.1670 o.2173
0.220 0.177 0.L77
0.1859
o.t77
0.1106
0,710 0.674 0.622 0.516 0.466 a-252
0.3959 0.357 0.304 0.2340 0.1706
0.1583
o.220 0.220 0.220 0.220 0.220 0.220
0.920 0.884 0.424
0.565 0.614
0.742
0.432
0.614 0.434
0.2s6r 0.14?9
0.5r0 0.t18
t.r03
0.2553
0.2333
0,1910 0.1405
0.lxs9
0.533
0.rg-74
0.2503 o.320 0.383 0.504 0.2011
0.2s21 0.333 0.435
1|'eight
weight ol wdter p€r Il, perll, surldce, sudqce, out!ide
lbt
0.00331
0535
0.0310
0.00378
0.0r032 0.01230 0.01395
0.538 0.423 0.568 0,739
0.1716
0,0I197
0.0285
0.l0rr
0,00586
0.0173?
0.0827 0.060s
0.00?30 0.00862
0.02160
0.2150 0.2169 0.2090
0.02554
0.1991
0.1859 0,1765
0.s38
0.171
0.0I20
0.0285
0.671
0.1s47
0.01431
0.m4t
0.r628
0.851
0.13r6
0.01710
0.1433 o.1220 0.0660
r.oB8
0,1013 0.0710 0.0216
0.020r0 0.02213 0.02425
0.0407 0.0478 0.0s27 0.0577
0.27s0 0.2692 0.2613 0.2505 0.2402
0.215 0,275 0.275 o.215 0.215 o.275
0.2409
0,684 0.8s7
028A2
0.02{51 0,02970 0.0370 0.0448 0.0527 0.0s79
0.0467 0.0s66 0.0706 0.0853 0.1004 0.1104
0.349 0,343 0.334
0.443 o,428 0.421 0.407 0.387
0.1427 0.1295
0.23t4 0.2t57
1.304 1.714
0,2661 0.2301
0.1875
1.937
o.1284
0.1r3t
2-111
0.0541
0.310
0.868
0.478
1.404 1.679
0.409 0,374
0.0500 0.0757 0,0874
0.0760
0-2872 0.2746 0.2520
2.t72
0.31r
0.r056
0.1606
0.2r34
2.444
0.2261
0.1570
3.659
o.t22t ,
0.1252 0.1105
0.19m o.zt37
0.1038 0.1605 0.1948 0.2418 0.2839
0.1250
0.56{
0.193{
0.341
0.411
0.550 0.540 0.524 0.506 0.472
0.1s80 0.2469
0.1663
0.2818
1.076
0.065 0,109
1..530
1.839
0.s26
0.434
0,401
r.107
0.7s7
t-442
1.633
u.531
0.434
0.378
1.805
0.1cl
0.140
1.380
1.496
0.669
0.434 0.434 o.431 0.434
0.361
2.213 2.997 3.765
0.548
0.{97
0.463
1.214
1.067
0.49?
0.{40
2.085
0.962
t% r0s
0.065
t-770
0.109
r.682
2-461 2.222
0.375 0.613
t.534
0.2t92
L,414
0,599
0.896
0.1215 0.1146
1.t31
0.s22
0.382
0.00122
0,1943 0.1607
0.8r5
1.107
0.16s4 0.1628 0.154?
0.00279
0.0451
0.250 0.358
0,88r
0.t27r
0.0572
0.957
1.283
0.00437 0.0052s 0.00600
0.330 0.425
0.3r5
0.I79
1,057 0.631
in.3
qrrqtion, i'r"
0.000€8
0.133
1.27A
ina
rddiua
0.00r06
40s 80s
1.160
ineliid,
modulua,
0.0246 0.01s7
0.413 0.494 0,839 0.838
0.191
teclion
ol
0.032r
0.945 0.864 0.719
0,250
Etorled
0.r86
0.109
40s 8os
ruEbers
0.215
0.106
l0s
xxs
244
836.19 Btainless steel pif'e Bcbedule
0.344 0.344 0.344 0.344 0.344 0.344
t60
r.900
c: ANSI
lun$€rs
lomirql woll dickness designdtiod.
1.I85 r.097 r.049
r0s
s;;
036,10 st€el pip€
0.06s
xxs
10
3q. iD"
b: ANSI
5S
r60
1%
i..
836.10 sl6el pipe schedule
tt
ingide iasido rnetdl diqtnelet, cq.
d: ANSI
0.335 0.304 0.2346
0.458 o.2132
0.ll5l 0,132s
0.2345 0.29r3 0.342
0.259S
0.321
0.304 0,2840
0.361
0.649 0.634
GENERAL TABLES PROPERTIES OF PIPE (Continued) noEircl
schedule
prpe 3ir(
lulrber'
outside
dioEeter
c
10
srd
80
xs
40s 80s
rh
180
xxs
.1.@
ingide
thick-
didlll-
nea&
b
in.
*qit iD.
2.375
;;
srd
80
xs
40s 80s
150
xxs
;; ;; 80
1.338
1.406
1.429
0.400
1.
r00
t.885
0.525
0.850 0.600
0.950 0.567
2.247
0.283
2.551
0.497
0-472 0.776
0.622 0.622 0.822 0.622 o.622 n-622 o.622 o.622
0.588 0.565
0.7s3 0.753 0.753 0.753 0.753 0.753 0,753 0.753
0.065 0.109
2.245
0.15{
2-067
3.35
0.218 0,343 0,436
1.939
2.953 2.240
t.229
3.199
0.781
3.641
5.76
0.728 1,03S
t.704
3.334 3,260
8.73 8.35 7.39
0.89r t.274
0.083
3.834
tii
l0s
o-t20
3.760
{0s
r<s
80s
0-226 0.318 0.636
4.334 4.260 4.124 4.026 3.826 3.626 3.500 3.438
14.?5
40s 80s
ns
0,083 0.120
0.t88 40s 80s
0.237
1
80
4'Jco
120
0.337 0.437 0.s00
r80
0.531
ro(s
0.671 0.800 0.s2s 5S
;; ;;; xs
t20
':o
2.709 2.635 2.469 2.323
2.190 2.656
0.083 0.120 0.216 0.300 0.437 0.600 0.725 0.850
;;
80
1.25I 1.00I
t.774
5.2t2
l0s
5.56'
1.689 1.503
l,075 t.411
t,276
t60
40 80
0.083 0.120 0.203 0.276 0.375 0,552 0.675 0.800
2.t57
t.275
xs
r;;
r0s 40s
t::
Frft
0.281
1.826
10s
audsce, per It
0.4s? 0.497 0.497 0.49?
1.525
80s ':'-
xxs
4n
0.49t
1.068
1.171
;; -..
3h
0.799
2.254 2.915 4.03 4.663
160
80
2.036 r.767
Burlcrce,
1.610
4.79 4.24 3.55 2.464
t(s
xrs
3 3.500
{0s
sq. !n"
lt
inside
1.500
0.687
2% 2.875
aq. rn.
Eg
oulside
0.145
0,562
los
It
rnetql
0.200
0,650
t0s
irl.
aq
ilside
0.10€ 0.134 0.258 0.375 0.500 0.62S
0.750 0.875 1.000
2.t25
0.s7I
1.163
0.979
t.312
I.104
10.882
0.769 0.533
t.442
t.2r40
12.385
0.341
r.5r30,
12740
0.64t0
0.709 0.690
2.475
2.493
0.494
3.531
2.36t
0.710 0.988
0.68?
0.646
5.793
2.076
1.530
1.064
1.837
1.925
1.339
r.067 o.192 0.554
2.353 2.872 3.0890 3.2250
0.988 0.975 0.947 o.921 0.894
1.998
0.8{4
2.1490 2.2430
0.8140 0.7860
3.78
I.301
0.714
1,208
3.61
t-822
1.041
3.20 2.864 2,345 1.80r
3.02 3.90 s.03 5.99
t-724
1.164
2.226 2.A78
1.136
3.4S
1.047
4.859 6,408 7.7
t0
8.678
o.4t2 0.246 0.123
1.604
2.638
1.582
0.5i1
3.653
r,455
0.508 0.442 0.393 0.328 0.282
5.022 7.444 9.029
1.280
0.608 0.556 0,464 0.399 0.334
1.004
l.l0
1.463
3.548
9.89
3.36d 2.728
8.89
2.680 3.68 6-721
1.04t 1.04, t.047
5,345 5.295 5.047 4.813 4.563 4.313 4.063 3.813 3.563
3,631
10.0t 13.70 15.860
17.129 3.03 4.33 7.58 10.25
t4.32 18.58
0.420
0.56r 0.73I
0.623 0.605 0.581
0.549 0.5200 0.4980
1.09{
2t.487
1,431
6.S010
3.7ts0
1.0140
24.057
1.103
6.8530
3.9160
0.9840
0.980
r.385 1.372
1,047
0.715
22.850
2.394 3.14 4.9240
1.337
12.51
2,756 4.19 6.28 s.8480
1.378
0.929 0.881
5.01 4.81 4.25 3.85 2.530
1.960
0.984
3.47 4.91
1.152
1.178
r.t35
3.92
2.81t
1.249
1,562
t4-25
1.651
1.115
1.549
2.547
2.600!
1,5250
12.73
3)1
1.178
1.054
3.96 5.8500 1.29
t.762
13.357
1.178 1.178
3.2I
1.510
I1.50
4,41
1.t78 r.178
1.800
2.900 2.650
iE,
0.817 0.802 o.787 0.766 0,729 0.703 0.6710
1.047
0.9I6
UoD"
ir!.3
0.2652
1.021
5.{7
0.882 0.?65 0.608
9Yrs-
lua,
0.315 0.499 0.666 0.868
6.317 7.073
5,42 4.15 3.299 2.543
2.300 2.050
2.224 3.02 4.21
2-7tS
inertio,
rcdius
0.326 0.412 0.508 0.s98 0.6470 0.6670
0.916 0.916 0.916
3.068
It,
reclion rnodu.
0.310 0.391 0.483 0.568 0.6140 0.6340
0.873 0.853 0.803 0.759 0.687 0.502 0.537 0-471
2.900
0,916 0.916 0.916 0.s16
0,421 0.393 0.350 0.288 0.223 0.157
weight momolll weight oI wcte! oI perIt. per
I
5.845
r033
1.082
Lll
8.560 10,79
1.002
14.98
r8.96
31.613
4.98 1.45 4.160 4.02 3.38 2.464
16.6610
353r8
2.3S1
17.7130
9.73 9.53
6,95
9.294 r0.384
t.t78
0.949 0.915 0.900 0.825 0.759 0.694
r.868
1.456
1.399
1.456
1.386
20.01
2.255 4.30
6.35 7.?7
l.{56
1.321
t4.62
I8.19
6.ll
1.456
1,260
16.35
1.456
l.l9s
20.18 27.04
14.6t
7.95 9.70
1.456
1.129
t2.91
11.34
ll.4t3
12.880
1.456 1.456
9.966
14.328
1.455
9.621
9.28 7.80 6.602
5.5I3 22.14 22.02
6.283 6.62
1.178
8.10
1.178 1.178
t.r78
r.064 0.998 0.933
6.40 6.17 5.800
21.360 22.51
27.54
32.95 38.55 43.810 47,134
1.2100
9.61
4.21
11,55
5.18
t.477 r.445
12.71t0 t3-27
5.6760
r.4250
15.29
6.79 7.4050 7.8720
8.43
2,498 3.03
15.17
7.89 7.09
1.307
20.68 z5-71
1.416 1.374
r.$80 1.3060
r.920 r.878
7.43 9.25
1.839
30.0
10.80
l.?60
33.6 36.64s0
t2.r0
1.722
4.951
r3.1750
4.232
39.lll0
14,0610
5.62
1.799
1.5520
ITT CiIiINNIII,I, PIPINCI DESI(I\ AND ]iJNGIN]'I'ITIN(' PROPERTIES OF PIPE (Continued) pipe siz€
wdll
gchedule
thick-
inside didm-
inside
rbet(rl
sq. rn.
sq. llr.
b
6
40
st;
40s
80
xs
80s
t20 160
xxs
sudcrc
pe!
Il
2_304
4.35
30.100
1.620
rs.020
22.6600
6.065
28.89
5.58
L734
1.s88
18.97
r3.100 12.5r
6.8400 8.s0
2.255 2.2700 2.245
5.761
26.0'7
r-734
I.508
28.57
11.29
2.195
1.440
36.39
21,I5
r3.33
1.358
45.30
17.81
2.153 2,104
18.83
15.64
1.734
1.282
53.r6
r0.30 9.16 8.17
14.98
66.3
16.792
t7.662
t.734
l.2ll
60.076
72.1190
20.03 21.7720
2.0200
1.125
5.189 4.897 4.625 4.375
t.734 t.?34
40.5 49.6 59.0
12.23
23.',|',|
8.40 10.70
15.025
19.429
t.734
1.t45
66.084
76.5970
23.t244
r.98s0
0.I0s
8.48',7
2.201 2.180
24.07
26.45
6.13
3.01
13.40
23.59
35.4
8.21
0.219
8.r87
2.Is0
rs.640
3.00 2.S700
2.t27
22.38
22.900 22.48
51.3200
6.58
2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258
9.91
8.329
55.5 54.5 s2.630
2.916
0.14s
2.u3
24.70
22.t8
2.089
28.55 35.64
21.69
2.045
20.79
s7.7 63.4 72.5 88.8
L996
43.39
I9.80
1.948
s0.87
23.942 26.494
2.258 2.255 2.258 2.258 2.258 2.258
0.219
0.280 0.432 0.562
5.501
0.718
3.94 5.800
51.2
0-322
7.981
0.406 0.500
7.813 7.625
50.0 47.9
100
0.593
7.439
I20
0.718
7.I89
I
140
0,812
7.001
8.625
160
0.906
6.8I3
1.000
Ll25
6.625 6.375
0.r34
10.482
86.3
4.52
2.8rs
r0.420
85.3
2.815
0.219 0.250 0.307
10.312
83.52
10.250 10.136
4;;
0.365
80s
0.500 0.s93 0.718 0.843 0.875
r0.020 9.750 9.564
82.5 80.7 78.9 74.7
5.49 1.24 8.26
l0s
IO 10.750
60
s0 100
120
8.40
r0.48 12.78
43.5 40.6 38.5 36.5 34.454 31.903
I4.96 17.84
I9.93 2r,97
I.882 I.833
11.9000
I3.39 14.69
t6.8I
2.060
2.962 2.953 2.938
20.58
2.909
105.7
24.52
2.874
18.84
tzt,4
25.t4
2.847
17.60
140.6
32.6
2.807
I6.69
Is3.8
35,7 38.5
2.777 2.748
4r-0740 44.2020
2.7r90 2.68t0
1.784
74.69
15.80
t.734
81.431
14.945
177.t320
1.66S
90.114
13.s38
190.8210
15.15
3',7.4
3.75
36.9
14,30
3.74
24.63
36.2
63.7 76.9 r00.46
I I.85
I8.70
18.69
3.72
28.O4
35.8 35.0
113.7
21.16
3,7r
137.S
2s.57 29.90
3.59
34.I
10.07
2.8I5 2.8I5 2.8I5
I.9l
2.815
2-744 2.728 2.10 2.683 2.654 2.623
I6.10
r
7.284
2A.V
34.24 40.48 s4.74
32.3
I60.8 2t2,0
64.33
31.1
244-S
45.6
246.2
53.2
89.20 92.28
324
60.3
2.36
29.5 28.0 27.6
333.46
62.04
3.60 3.56 3.52 3.50
71.8
18,S2
2.8r5 2.8r5
2.553 2.504
9.314
68.1
22,63
2.815
9.064
26,24
2.8r5
9.000
64.5 63.62
2.438 2.313
27.t4
2.815
39.4
140
1.000
8.750
60.r
30.6
2.815
2.391
104.r3
26.1
68.4
3.47
160
r.125 r.250
8.500 8.250 7;150
56.7 53.45 47.15
34.0
2.81S
u5.65
74.3
2.81S
3.43 3.39
2.03
r48.I9
42A.r7 478.59
79.66
2.8I5
24-6 23.2 20.5
399
37.31 43-51
2.225 2.18
89.04
3.31
I9.20 22.V3 30.1
4.45 4.44 4.42
1.500 0.156
12.438
tzt.4
6.17
3.34
12.390 12-250
120.6
1.tl
1r7.9
9.S4
I2.090
1I4.8
I2.88
r2.000
113.1
14.58
11.938
ul.9
ts.74
1r.750
I08.4
l9-24
3.34 3.34 3.34 3.34 3.34 3.34
io
0.180 0.250 0.330 0.375 0.406 0.500 0.562
11.626
106.2
2r.52
3.34
3.08 3.04
80
0.687
r1.376
t0I.6
26-O4
3.34
2.9'18
I1.250
99.40
28.27
3.34
2.94
100
0.750 0.843 0.875
11.064
96.1
3r.5
3.34
11.000
32.64
t.000
10.750
95.00 90.8
36.9
3.34 3.34 3.34
10s
;i 30
;;
40
-s t2,750
lion,
in.3 3.58
51.8
iixs
Ius,
irl"a
14.40
8.071
30
inertio,
tb
u.85
8.12s
40
per Ii,
13.74
0,27',|
20
qYra-
r3.s8
0.250
5S
lbt
modu-
9.29
20
80s
p€r It,
ol
5.37
30
80
lt
radiua
weigrht
1.664
I
;;; 4;;
per
weisht
t.677
32.2
8.625
40
It
inside
1.734 1.734
3t.'1
1.000
60
sq
t.734
6.407 6.357 6.187
0.134
0.864
10s
It
outside
2.231 2.733 4.410
0.109 IOS
sq
r20 t40 160
80s
126.82
3.26 3.24
20.99
52.7
122.2
24.20
52.2
140.5
3.21
33.38
sl.l
191.9
3.17
43.71
45.7
248.3
39.0
4.39
3.14
49.56 s3.53
49.0 48.5
279-3
43.8
300
47.1
65.42
47.0
362
s6.7
4.38 4.37 4.33
73.I6 88.5I
46.0
401
62.8
4.31
43.1
510.7
2.A97
96.2 07.20 10.9
4I.6 41.i
562
2.88
578.5
2.4t4
25.49
39.3
642
I00.7
4.t7
2.749
39.68
37.5
70r
109.9
4.13
35.8 34.9
755.5
118.5
4.09
781
t22.6
4.07
3.I3
I.t25
10.500
86.6
4l,r
1.250
10.250
3.34
2.68
10.126
82.50 80.s
45.16
1.312
47.1
3.34
2.651
44.O
74.5
4-27
80.1 88.1
4.25 4.22
90.7
4.21
GENERAL TABLES PROPERTIES OF PIPE (Continued) nonbol FiF aize
Bcbedule
outsr'de
rluErbsrt
wqll lhick-
ibsid€ dicm-
in.
tE"
eter, b
in.
c r0s
l0 2n
l4 14.@0
;;
i;
6.78
0.2r0
13.580
144,80
9.10 9.48
0.219
13.562
144.50
0.250
13.500
I43.1
10.80
0.281
13.438 13.376
141.80
l2.ll
140.5
13,42 14.76
4.82 4,80 4.79 4.?8
3-42 3.40
t2.814
24.98
3.35
0.625
tzr.7
84.91
12.750
26.26
89,28
12.s00 12,12A
t22-7
31.2
3.57
3.34 3.27 3.17
3.67 3.67
3,09
r50.67
3.0I 2.929
3.67
i;
15.624 15.s00
188.7
12,37
4.19 4,19 4.19
0.312
15,376
t85.7
15.98
4.I9
0.375 0.500 0.656
15.250
182.5
18.41
15.000
t78.7
r4.688
169.4
r4.3ll.
24.35 31.6
160.9
40.r
13.938
r52.6
48.5 s6,6 65.?
4.19 4.19 4.19 4.19 4.19 4.19 4.19 4.19
144.5 135.3 129.0
9.24
4.71
4.63
r0.52
4.71 4.71
4.61
0.165
t7.670
0.188
r? -624
0.2s0
t7.500
245.20 243.90 240.3
0.312 0.375
t7,376
237.l
17.34
17.250
20,76
0.437
t7.t26
24.t\
4.71
0.500
17.00
0.562
16.876
233.7 230.4 227.0 223,7
4.71 4,71
60
0.750
16.500
80
2I3.8
0.937
r00
204,2
r.r56
t20
16.r26 r5.688
1.375
15.250
140
1.s62
14,876
160
173.S
1.781
r4.438
163.7
30
xs
io
l0s l0 20 30 40 60 s0
r00
;.. xs
0.188 0.218 0.2s0 0.37s 0.s00 0.s93
13,94
27.49
1,71
30.8
4.7
40.6 50.2
4-7r
4.58 4.55 4.52 4.48 4.15 4-42 4-32
4-7r
4.22
193.3
61.2
4.7
L
4.1I
182.6
71.8 80,7 90.7
4.71
3.99 3.89 s.78
| t9.634 1302.40 | re.s64 J300.60 | lg.soo j 2ss.6 I l9.2so | 2sr.o | le.0o0 | 283.s | rs.sr4 | 27s.0 0.sr2 J 18.376 I 26s.2 0.87s | 18.2s0 | 26r.6 1.031 I 17.s38 I 2s2.? r.281 | 17.438 | 23S.8
1I.70 15.51
23,t2 30.6 36.2
48.9 52.6 61.4
75.3
|
4.71 4.7
|
5.24 | s.l4 s.24 | s.rz 5.24 | 5.11 s.24 J 5.04 s.24 | 4.97 s.24 J 4.93 s.24 14.8r s.24 4.78 s.24 || 4.t0 5.24 |
4.S7
117.8
930
159.6
1.48
257
32.2
5.60
292
36,5
384
48.0 59.2 70.3 91.5
28 32 42.05
136.46
473 562
732 73.4 69.7
933
164,83
t92,29 3.44 3.35
825
l0l7
107.50
13.126 12.814
4.7 4
s4.1
42.6
3,85 3.75 3.65
13.564
80.3
589 687
r89.t2
79.r
1-437
65.3 69.1
132.8 146.8
82,77
r40
6t.2
tt21
64s8
1.2t8
4.85
t70,22
53.2
3.93
120
4,86
40.,1
50.0 47.5 45.0
106.13 130.73
3.9S
1.031
36.5
4.73 4.69 4,63 4.58 4.53
52.36
r00
5S
55.3
83.0 81.8 80.s
'.0.843
l0s
58.7 58.0
4.10 4.09 4.06 4.03
80
^'.
32,2
53.3
98.s
20
225.1
4.88 4.87 4,87
373 429 456.8 484 562
45.68 50.2 54.57 63,37 67.8 72.09
0,593
'12.1
2t6,2
4.90
59.t
3.44
192.90
60.
62.8
27.8 30,9
4.81
ll.l88
xs
23.2
194.6
4.83
t5.570
40
r62.6
m.r
44.9
3-47
191.70
63.7
4S-2
3.67
8-21 9,34
ItL
344.3
3.67 3.57 3.67
44.3
Uo|1,
in.3
3.67
3.67
r6.05
50.1
lu&
285-2 314
18.62
109.6 103.9
in.a
61.5 60.9 60.3
r37.9
19.94
in6rtia,
4t.2
135.3
2t.21
It,
3-52 3,50 3.48
t3,126
134.00
prer
ID
6ection tqdius nrodu- 9yro-
62.1
139.20
13.062
23.0 27.7 30,9
moEr€al
ol wqter ot
32.2
13.312 13.250
r3,000
tbt
weight
36.71
0.16s 0.188 0.250
;;
3.S7
weight p€! Il.
3.53
160
;;
20 20.000
3.58
3,67 3.67 3.67
ll,8l4
l0s
p€rlt
lt
p€r
fl
132.7 129.0
160
)8.000
inaide audcce
11.500
30
l8
8.t6
6q
outeide audqce,
1,250 1.406
20
t6
r47.20 r45.80
:q lt
1.093
r40
r6.0@
r3.688
0.750 0.937
100 120
aq. iD"
13.624
0.500
80
sq. iIt.
0.188
0.344 0.375 0.437 0.469
40
!n€tql
0,156
0.312
;; ;;;
itrside
223.64
62.6 58.6
245.11
l3l t^^
98.2
116.6
ll57
144.6
r365
170.6 194.5
I760
220.0
1894
5.57 5.53 5,48
5.43 5.37 5.30 5.24 5,17 5.12
106.2
368
40.8
6.31
105.7
4t7
46.4
6.30
47,39 59.03
104.3
549
61.0
6.28
I02.8
678
?0.59
101.2
807
89,6
6,23
82.06
99.9
93I
103.4
6.21
93.45
98.4 97.0 92,7 88.5 83.7 79.2
1053
117,0
104.75
138.U r70.75 207.95
244.t4
1172 1834
t30.2 168.3
6.I0
203.8
5.04 5.97 5.90 5.84 5.77
2I80
242.2
27?.6
274,23
75.3
308.51
71.0
2459 2750 3020
40
131.0
s74
57.4
46
t30,2
52.73
129.5
757
75,7
306 336
7.00 6.99
7S.60
126I)
I
l14
lll.4
6.94
104.13
122,A
1457
145.7
6.90
122.91
120.4
1704
1?0.4
225?
225.1
1t3.4
2409
240.S
108.87
109.4
2772
ls6,l0
277 -2
103.4
3320
332
I66.40 r78.73
6.79 6.77 6;12 6.63
ITT GRINNELI, PIPING DI'SI(iN ANI) I,]N(iI\I'IITING PROPERTIES OF PIPE (Continued) nonrinal pip6 siz€ oulstde
achedule
wall
aumber'
thicL-
inside dicm-
neaa,
etet,
in.
b
i!. 20
20.000
per lt,
rqdius
ol
9Yrci-
inertid, lur, iu-.
' Uo!,
in. 6.56
227.0
87.2
2I3,8
100.3
5.24 5.24
4.45 4.32
296.3? 341.10
98.3 92.6
3760 4220
376
r6.500
422
6.48
1.968
16.064
202.7
III,5
s.24
4,21
379,01
87.S
4590
45S
6.41
0.I88
2t.624
367.3
12.8S
5.76
5.66
0.218
2r.564 2I.500
365.2 363.1
I4.92 I?.18
21.250
3s4.7
25.48
346.4
33.77
338.2
41.s7
330.1
50.07
l0s
20
;i;
30
xs
0.250 0.375 0.500
s.63 5.76 5.76
60
0,875
322.r
58.07
80
I.125
19.750
306.4
73.74
IS.250
291.0 276.r
89.09 104.02
5.76
4.9I
tI8.55
5.76
247.4
132.68
5.76
4.78 4.65
0.750
5.76 5.76
1.625
18.750
140
1.875
160
2.t25
t8.250 I7.750
261.6
23.500
434 425 415
18.65
6.25
27.83
6.28 6.28
4ll
41.4
406
45.9
402 398
s0.3 54.8
436.1
16.29
388.6
63.54 70.0 s7.2
0.250 0.375 0.500 0.562 0.52s
IO
std
xs 30 40
0.687
;:
0.750 0.218 0.875
24.000 60
0.968
23.2s0 23.000 22.876 22.750 22.626 22.500 23.56{ 22.250 22.084
382
36.9
6.28 6.28 6.28 6.28 6.28 6.28 8.28
303
126.2
4758
432.8
7.31
354
119.6
493.8
7.23
403
113.3
5432 60s4
550.3
?.ls
451
t07.2
602.4
7,07 8.40 8.35
295.0
180.1
2550
I40.80
l7s.I
2840
237.0
8.29
5.95
I56.03
tl8.2
3140
26t.4
5.92 5.89
I7I.l7
t74.3 t72,4
3420
285,2
8.27 8.25
37r0
It52
309 96.0
8.22
188.9
186,2d
8.31
8.41
5.83
216
168.6
42S6
354.7
8.18
5.78
238.11
165.8
4650
388
8.28
5,65
296.36
158.3
413
5.48
367.40
I49.3
5670 68S0
5.33
429.39
7S30
571 652
183.13
141.4 134.5
8630
719
541.94
t2'L0
9460
788
8.15 8.07 7.96 1.47 7,19 7.70
19.876 19.314
310
142.1 159,4
6.28
5.20 5.06
510.7
I9.85
6.81
6.68
1646
126.6
9.10
505.8
25.18
6.8I
6.64
67 86
221.4
0.3t2
25.500 25.376
2t9.2
0.375
25.250
500.7
30.19
6.61
103
211.1
159.7 190,6
9.08 9.06
0.500
25.000
490.9
40.06
6.81 6.81
2016 2478
2t2.4
32SS
250.7
24.150
49.82
r69
208.6
4013
308.7
9.02 8.98
0.750
24.500
481.I 47t.4
6,54 6.48
136
0.62S
5.41
202
204.4
47
44
0.875
24.250
461.9
235
200,2
5458
364.9 419.9
L000 I.125
24.000
23.750
0.250
27.500
0.312
0.875
27.316 27.250 2?.000 26.750 26.500 26.250
r.000
26.000
0.250
std
0.375
XS
0.500 0.625
0.750
30
4029
125.4S
2-062
xs
t32.8
6.02
I40
20
139.6
161.9
6.28 6.28 6.28
std
197
251
257.2
109.6
126.3
l0s
7.56 7.52 7.47 7.39
2400 2829 3245
l9{3
t08.1
l0
2t8.2
7,65
l3l6
326
30
7.61
r83.8
344
20
t?7.5
188.0
20.376
l0
I953
7.70 7.69
63.41 94.62
1.812
28.N0
1490
150.2
885
6.09
120
20
153.7 146.6 143.1
365
;i;
81
9t.8 I35.{
170
20.938
IO
r0l0
143
21.564
293
58
5.37 5.30 5.17 5.04
r.218 1.53r
2-343
7.71
rs9.1 158.2 157.4
5.43
80 100
160
69.7 80,4
44
5.50
21.000 20.750 20.500 20.250
20
30.000
tbf
per tt,
ilotnent
17.000
r20
30
aud(ice, sUdOCe, per lt pe! ll
weight
I.750
100
28.000
aq in.
weiEht
1.500
0.625
2A
aq !n"
sq It oubide ingide
rq It
140
22
26
rnetdl
120
i;
22.000
inside
59,49
6.8I 6.8I
8.S3
6.81
452.4
69.07 78.54
6,8r
5,35 6.28
267
1S6.1
6149
473.0
8.89 8,85
443.0
87.91
6.81
6.22
299
r92.1
6813
524.1
8.80
594.0 588.6
21.80
7.20
74
257.3
2098
149.8
9.8I
1.t7
s2
185,8
7.33
7.07 7.00 6.94 6.87
t47
3105 4085
22t.8
43.20
5038
359.8
2t8
255.0 252.6 244.0 243.4 238.9
2601
32.54
7.33 7,3s 7.33
426.0
253
234.4
5964 6865
490.3
9.79 9.77 9.12 9.68 s.64 9.60
6.8r
288
230,0
7140
6.71
323
552.8 613.6
9.51
572.8
562.0
27.t4
53.75 64.21
541.2
74.56 84.e2
7.33
7.13
tIl
183
2S1.8
9.5S
1.125
25.750
520.8
94.98
7.33 7.33
0.250 0.312
29.500
683.4 671-8
23.37
7.8S
7.72
79
2S6.3
2s85
172.3
99
293,7
3201
213.4
10.50
29.250
29.19 34.90 46,34 57.68
7.69
0.375
7.85 7.85 7.85 7.85
lI9
291.2
3823
254,8
10.48
158
2A8.2
5033
335.5
t0.43
196
281.3
62r3
414,2
10.39
0.500
0.625
29,376 29.000 28.750
530,9
672.0 650.5
649-2
7.59 7.53
8590
GDNEIt,\I, IfAI]LES PROPERTIES OF PIPE (Continued) woll
pipe size
inside
lhickb 40
in,
in.
sqn
inside sq. in.
inside sq. in.
per
Il
weight
9vrd'
per Il.
rbf
lb
in.l
in.
0.750
28.s00
637.9
68 92
7.85
737l
491.4
30
0.87s
28.250
620.7
80.06
7.85
7.39
272
211.B
8494
566.2
I0.34 'I0.30
30.000
1.000
28.000
615.7
7.33
3t0
267.0
10.26
604.7
7.85
7.26
347
262.2
s5s1 10653
639.4
27 .7 SA
91.11 102.05
7.85
].l25
7t0.2
ta.22
0.250
3
24.93
8.38
8.25
85
337.8
196.3
t r.22
3
t.500 r.376
779.2
0.312
'7?3.2
31.42
8.38
8.2r
t06
335.2
38St
243.2
Srd
11.20
0.37s
31.250
766.9
8.38
xs
12'7
332.5
4656
2S 1.0
1
31.000 30.750
7
L38
Li8 8.ll
168
327.2
6140
383.8
n.14
578
473.6 518.6
I1.09 I1.07
l0 2A
32
30
0.500 0.625
32.0AA
40
0.688
30.624
742.s 736.6
l0 srd 20
XS
32].9
7
230
3I S.0
8298
316.7
8990 10372
561.9
I
L05
648_2
l
t.0l
8.38
7.38
250
7t8.3
85.52
8.38
291
i.000
30.000
706.8
97.38
8.38
7.92 7.85
331
306.4
u680
730.0
10.95
1.125
29.750
8.38
7.',/9
371
301.3
13023
814.0
10.92
0.250 0.312
33.500
88t.2
26.50
8.S0
8.77
90
s82.0
3773
22t.9
I1.93
33.376 33.250
874.9
32.9S
8.90
4.74
u2
379.3
4680
2',15.3
lLst
867.8
39.61
LS0
135
376.2
ss97
855.3 841.9
52.82 65.53
8.S0
179
370.8
7385
329.2 434.4
l1.89
33.000
8.70 8.64
8.90
8.57
365.0
9t24
536.7
835.9
72.00
L90
8.54
223 245
362.1
587.8
I1.80 I1.78
8.51
266
637.0
t.0I
8.90 8.90
9992 10829
I1.76
8.44
310
354.I
0.37s 0.500
32.750 32.624
10s.0
It.85
32.500
829.3
78.34
0.875
32.2s0
816.4
9
L000
32.000
804.2
103.67
8.S0
8.38
353
s48.6
1.125
31.750
79t.3
lr
6.t3
8.90
8.3r
39S
343.2
1250I 141t4 I5719
0.250
3s.500
989.7
2g.Il
s6
429.1
35.376
34.35
s.28
119
std
426.1
0.375
42.41
L42
9.23
xs
143
314.2
s62.1
55.76
9.42
9.I6
IS0
423.I 4t7.1
6664
0.500
35.250 35.000
s82.9 s75.8
9.42 9.42
9.2S
0.3I2
8785
488.I
12.55
0.625
34.750
69.s0
9.42
Ll0
236
411.1
10a72
604_0
12.51
9.03
12.46
l0
30
rL12 830.2 924.7
1t.63
11.67
4491
249.5
t2.64
556s
30s.r 12.59
0.750
34.500
948.3 934.7
L97
282 328
716.5
920.6
3.42 9.42
I28S8
34.250
83.01 96.50
405.3
0.875
399.4
14903
827.9
12.42
1.000 L I25
34.000 33.750
907.9
109.96
9.42
8.90
3?4
3S3.6
1685t
936.2
12.38
894.2
123.19
9.42
8.89
4ts
387.9
18763
t442.4
t2.34
41.500
t0.s9
586.4
xs
10.99
i67
57S.3
0.500
41.000
1320.2
49.08 65.18
10.86 10.80
rt2
4l.250
1352.6 1336.3
32.A2
srd
0.250 0.375
10.73
222
s72.3
0.625 0.750
40.750
81.28
10.6?
276
40.500
I304.1 r2aa.2
10.60
1.000
40.000
1256.6
1.250
39.500
1.500
39.000
t225.3 I194.5
128.81 160.03
to.47 I0.34 10.2I
40
40
20s
LO2
730.5
0.688 0.750
42.000
8.05
30.250
40
30
8.38 8.38
30.500
34.000
42
61.59
0.750
0.625
20
4S.48
0.875
30
36.000
1.18
54.7
67.68 73.63
34
20
234
97.23
190.85
r0.99 I0.99 10.s9 10.99
I0.99 10.99
t26
339.3
14.73
506.1 668.4
14.71
565.4
t4627 t4037 t'7373
827.3
I4.62
330
558.4
20689
985.2
14.59
438
544.8
27080
I4.50
544
531.2
649
517.9
33233 39181
t28S.5 t582.5 186s.7
I4.33
7
14.57
t4.41
INDEX
A
Page
68 231
Absolute Viscosity. Acids, hoperties of Air, Properties of. Air Requirements for Combustion of Fuels Air, Weight of . Alcoho1, hoperties of
231
.......
207
.....
231
Allowable Stress Range. Alloy"Steel Stud Bolt Dimensions. Aluminum, Properties of. . . . American National Wood Screws A.P.I.-A.S.M.E. Unfired hessureVessel Code . . . . . American Soew Threads, Tap Drill Sizes . . .. .. ..
4\
122
231 209 .
viii
.
210
viii
A.S.M.E.BoilerCode. . . . . . AN.SJ. Pipe Threacls, Tap Drills for
.
A.S.T.M. Chemical Requtuements . American Standard Straight Thrcads
209 102
.
225
224 208
Anerican Standad Taper Threacls American Wire Gauge. . . . . . Ammonia, Properties
of . . .
.
Anchor Forces Anlhracite,Prcperties of. . . . Arc, Length of, for Radius I . . . Area of Circles Ash Timber, Properties of . . .
5
231 .
145
216 .
B
Rings. Materials. Beam Dimensions Bending, Minirnum Tangents . . . Bending Moments Bending, Radii Bending Stress Bending Stress in Empty Pipe Bending Stress in Water Filled Pipe . Bends, Pipe - Calculation of. Bends, Stanclard Pipe . . . . . . Birch Timber, hoperties of . . Birmingham Wire Guage Bituminous, Propedies of . . . Branch Connections, Typical Details. Brass, Properties of Brick, hoperties of Brinnell Hardness British Standard Taper Threads B.T.U. Content of Fuels . . . . Bronze,Propertiesof ...... Brown & Sharpe Wire Guage .. Butt Welding End Prepantion . Butt Welding Ends. Backing
Bolting
.., 137,141'142 '....... 105 204 """" .....- 132 . . 4,18,52,54 .......'..132 ... 3,4,5,52,54 ...'....200 , . . . 202 ........lM ,.'.....143 .....,..231 ....208 ........231 .. .. . .. . 139,140 ...'...231 .......231 .. .....230 .......226 ........207 ...... -. 231 ...,...2O8 ....'.. 135 .......137
c
. Bends.... of
Calcium Silcate Insulation . . Calculation of Pipe Carbon Dioxide. Properties
250
.... 173-L97 .......144 ,.......231
Page
of. . Center of Gravity Center of Gmvity of Bends . . Center of Gravity of Elbows .
. -.... 231 ........231 46 ........ 158 ........ 158 Centigrade, Conversion to Degrees Fabrenheit. . . . . . 233 ... 17,46 Centroid. . . 211215 Chains and Ropes, Safe Ioads for. ........231 Charcoal, Propefties of . . . . . ........102 Chemical Content of Steels . . Chemical Resistance of Piping Materials. . . . . . . . . . 107 ........231 Chestnut Timber, Properties of .......231 Chlorofom, Properties of .... 39 Circle Bend 216 Circles. Areas and Circumferences of. ........... ........216 Circumferences of Circles . . . 3 Circumferential Stress ..... .......231 Coke" Properties of ....... viii Code RequLements .......... 5 Cold Springing .......223 Columns, Pipe, Safe toads ... .... l'73-19'7 Combination Insulation . . . . . Commercial Split-Type Backing Rings. . . . . . ... .. 141 18 Comrnon Shape Comparison . ......5,1732 Common Shapes 20 90o Tum. 20 Hooked Z Shape 2l Z Shape. . 22 U Shape - Equal Tangents 23 U Shape - Tangent s. "\= z f 24 U Shape - Tangentr. r'-t= 3 I!" 25 U Shape - Tangenh. +: 4
Carbon Monoxide, Ftoperties Ce
Timber, hopedies
of.
122
... - Single Tangent. .. l*gs. . Unequal U Shape - Equal Legs ...... U Shape - Modified Ushape
26
.
27 28 28 29
U Shape
Two Plane U Shape Two Plane U Shape with Tangents. Three Dimensional90o Turns .
30
-
Concrete,Propertiesof. . . .
231
.
t62
Constant Support Hangels. . . Consumable lnsert Ring Conversion Factors ConYersion Factofi, Flow of Steam.
Copper,hopertiesof
..
....
142
238 76
.
Copper Tube Discharge Rates, Equalization
Cork, hoperties of Correction Factor for Stresses . Corrcsion, Cosine Functions of Angles. . Cotangent Functions of Angles CraneChainand RoDe . . . . .
of . . . . .
222 231 168
107
228 228 211
Page
Page
. 219 ........231 .,...... 231
Cylindrical Tanks, Horizontal, Gauging . . . . . . . . . Cypress Timber, Properties
of Coal ard Coke, Properties of .
D
Fluids. . Decimals of a Foot DeflectionofEmptyPipe... Deflections. Design of Expansion Bends . . Design of Pipe Hangers . . . . . Discharge Rates, Equalization of Double Offset Expansion Bend Drill Sizes Drills, Tap, for A.S.A. Pipe Threads Darcy Equation Flow of Decimal Equivalents. : . . . .
34
......,.149 ......222
38
..209,210 -..
.
2O9
of
231
End heparation for Welding . . 135 Engagement. Normal Pipe Thread . 226 Equalizationof Discharge Rates. . . . . ; 222 Equivalent Length of Copper Fittings Equivalent Length of Wrought Steel Fittings. . . . . . . 68 Etler , Properties of 231 Expansion and Stresses. , 167 Expansion Bends. 34 Expansion Bends. 34 Double Offset . 38 Circle Bend 39 Expansion U Bend . 40 Expansion U Bend -Tangents=2ft. 1l Expalsion U Bend Tangents = R. 42 Expansion U Bencl Tangents = 2R . 43 Expansion U Bend Tangents = 4R . 44 Double Offset U Bend 45
-
.....
Expansion Factor Extra Improved Plow Steel Wfue Rope. Extruded Nozzles
... .... ...
139
Falrenheit, Conversion to Degees Centigfade. . . . . - Flow of Fluiils Fir, Douglas Spruce, Timber,hoperties of . . . . . . . Fir, Eastern, Timber, Properties of Fitting Materials
.
kp
FlowofFluids Flowof Gases. FlowofSteam
.
..
. . 69 ,79 ....., 231 .. 69,77 .. ....,... 231 .......231 Gases, Properties of .......... 106 Gasket Materials ,.-.,.124 Gaskets - Ring Joint ...,.,,231 Gasoline, Properties of . . . . . . 219 Gauging Hodzontal Cylindrical Tadcs .........,. .,....,208 Gauges, Wires and Sheet Metal. .,,,......206 General Tables Glass, hoperties of .,,....231 Granite, Properties of. . . .. .. ....... 231 Grooves - Ring Joint ...124,L25
H
.,.,,...149 . ..... .,......171 . ,.,,....156 Selection. ........162 Halger Spans ...........150 Hanger Weight Balance Calculations .... 156 Hardnes Comparison. . . . . . .,....,.230 Heat Loss from Pipes - . . . . . . . . , , . . . 207 80 Heat Transfer Through Pipe. . . Hickory Timber, hoperties of . ..,....231 Hooked lZ" Shape 20 Hangers and Supports.
....
Ilanger Design Service Hanger I-oad Calculations . . Ilanger
Hoop Stress Hydrogen, Properties
of . . . .
........231
I Improved Plow Steel Wire
Pipe Iron, hoperties of.
Rope. .
.,..., 212 , 1t,12,244 ........ L99 ....... 231 .
K
.
231
Kerosene, hoperties of. . . .
104
Kinematic
Viscosity
.
........231 .,,.. 68,72
L
104
140 . 140
.
.
Joint . Flat Split Welding Rings . Flexibility Factor
Pipe . Pipe.
High Pressure in Standarcl Gas, Illuminating, Propefties of Gas, Low Pressure in Standard Gas, Natural, Properties of Gas,
140
..
Screwed.
233 68
,..... 68,69,70 ...,..205 .... .. , 2Q7 ...,....207 .......,228
G
Inside Area of Insulation, Weight Factors. .
Fa fng Equation
Slip-on
. Natural.
11
F
Flaage Cormections Flange Materials Flanges -WeldingNeck. . . .
.
68
........236 .... 199,236 ........ 200 .... 151
E Earth, hoperties
Waler.
Flow of Force applied at llanger . . . . . Fuels, Air Requirements for Combustion of Fuels, B.T,U. Content . . , . Functions of Angles,
.
.
1ln r40 L4t 8
. 68,69,77,78,79 ... ..... 77.79 ... 68,69,74,76
kp
1N
Joint Flaage .
Irad , Properties of I*ngth of fuc for Radius 1 . . . Lignite,Propertiesof . . . . . . Limestone, hoperties of. . . . Line Inertias . Liquids, Propedi€s
of. . . . . . .
231 .
145
23r 231 46
.......231
25L
Page
Columns. .......- 223 Stress .......- 3! Lye,Soda,Propertiesof.... ........ 231 Linear Tolerances 13},l3l , l3Z I-oads on Steel Pipe
l,ongitudinal
M
.. 133 Insulation .... 173-197 Mahogany Timber, Properties of. ......231 Marila Rope. ...........214 Maple Timber, Properties of . ........ 231 Masonry, Properties of . . . . . ........231 Matedal Selection ........ 103 Pipe and Tubing .......103 FittingsandFlanges....... ...... 104 Bolting.. ...........105 Gaskets.. ........... 106 Maximum Spacing Between Pipe Supports . . . .. .. . 150 Metal Area ofPipe. .....11,244 Metals, Properties of ...... ........ 231 Metric Conversion Table . . . . . . ......23j Milk, Properiies of. .... .. . 231 Minimum Bending Radii . . . . . .......132 Minimum Distance to First Rigid Hanger . . . . . . . . . 203 Minimum Tangents for Bending -......132 Minimum Wall Thickness .... ...... 2.81 Moduli of Elasticity and Torsional Rigidity . . . . . . 6,34 Molasses, Propedies of . . . . . - -...... 231 Moment of Inertia - Line Element 48 Moment of Inertia of Pipe. . . ......11,224 Moments,Bending. ....... 5,17,52,54,61 Monel, Properties of. . . . . . . ....-...231 Multiple Plane System ..... 56 Multiple Plane Systems Containing Circular Arcs. . . . 62 Method of Dimensioning Welded Assemblies. Magnesia
N
. .
.. -... . 231 ........231 Tum 20 ....... 32 . ........231 . 2 . .-.....139 Nozzles, Welded ...-.-...139 Nuclear Piping ....... 146-148 Number 8 Bend. .......-. 45 Number9Bend.... . . . . . 40,41,42,43,44 Number 118end.... 39 Nurnber 10 Bend. 38 Nylon Rope ....215 Nichrome, Properties of . .. Nickel, Properties of . . . . . Ninety Degee Ninety Degree Turns - Three Dirnensional. Nitrogen, Properties of. . . . Nomenclatue and symbols . Nozzles, Extruded
o Oak Timber, hoperties of . . Oils, hoperties Oxygen, Properties of. . . . .
of
252
. .
..... . -. 231 ........231 .,...... 231
p page Pine Timber, Properties of. . . ........231 Pipe Bends, Calculations of . . ........144 Pipe Bending, Standards . . . . ..... 130-132 Pipe Columns, Loads on . . . . ........223 Pipe Corrosion .--.......107 Pipe Discharge Rates, Equalization of . . . . . ... - -. 222 Pipe Fabrication ...-.-..- 129 Pipe Fabrication Procedures . ....-.-. 129 Pipe, Heat l-oss From. .....2O7 Pipe, Heat Transfer Through . 80 Pipe Materials .....-..... 103 Pipe Materials Specifications . .......- 128 Pipe Materials, Weights of . . . . . ...--.172 Pipe, Minimum Wall Thickness. -.....2,81 Pipe Properties ........11,244 PipeThread Engagement,Normal. .. . . . . . ... .. . 226 Pipe Thread Symbols . . . . . . ........225 Pipe Threads, Tap Drills for. . . .......2O9 Pipe Wall Thickness - Determination of . . . . . . . - 2,81 Plow Steel Wire Rope. . . . -......-..211 Pressure Conversion ......- 244 hessure Drop. .......... 68 Pressure Stress .,........ 6 Pressure - Temperaturing Ratings of Plain End Pipe ...... 81-101 Prestressing 5 hoduct of Inertia 47 Properties of Common Materials. ......231 Properties of Pipe .. . 11-16,244 hoperties of Saturated Steam . .-.....206 Properties ofwater .. .... . 235 Pressure-Temperature Ratings of Flanges, Fittings, ValYes . ....... 113 o Q
Value
Expansion Bends
R
Stress. ... Radius of Gyration Red Wood Timber, Properties of Relatiye Weight Factor... Restrained Bends. Resultant Fiber Stress . . . . . ReynoldsNumber Rigid Hangers. Ring-Joint Gaskets. Rockwell llardness Rockwool, Properties of. . . . Rollers.. Rope, Malila Rope, Nylon. Rope, Steelwtue Ropes, Chains, Safe l,oads for . Rubber Goods, Properties of. Radial
Radii, Minimum Bending
3
..... 130-132 ...-...244 ......231 .........I72 34 ........ 4,5 ...... 68,72 ..........164 ...-...124 -......230 .-...--.231 ..... 168 ... 214 ...........215 .. .... 212,213 ....211215 -.-....- 231
S
page
- 211215 of .. - -.. . 231 Sandstone,Propertiesof..... . -..... 231 Screwed Flanges ..--.....140 Screws, Wood, American National ...,. 209 Section Modulus of Pipe . . . . ......11,244 Selection of Matedals. .... . ....,... i03 Pipe and Tubing ....... 103 Fittings and Flanges. . . . . . . . . . . . . 104 Bolting.. ........... 105 Gaskets.. ........... 106 Selection ofProper Hanger .. ........162 Shear Stress ....3,4 Sheet Metal Gauges .......208 Shellac, Properties of . . . . . . -.......231 Silver, Properties of .-.....231 Sine Functions of Angles ... ........228 Single Plane System 52 Single Plane System Containing Circular Arcs . . . . . . 54 Slipon Flanges .......... L4O Socket Weld Fitting... ....140 Solder, Properties of ...... ........ 231 Solids,hopertiesof. . ... .. .-......231 Solution of Equations .... ...... 60,66 Specifications - Power Plant Piping Materials . . . . . . 128 Specific Gravily ofcases .... ,......232 Split Type Backing Ring . . . . ........I41 Spruce Timber, hoperties of . ........231 Steam in Standard Pipe. . . . . . . ..69,74,76 Steam, Sarurated. Propeties o[ ...-.-.206 Steam Velocities ......... 68 Steel, hoperties of .......231 Steel Rounds, Weight of . . . . ........ 220 Steel, Wire Gauges. .......20g SteelWire Rope ......212.213 Straight Threads, American Standard ........... 225 Stress, Bending, in Empty Pipe. ..-....201 Stress, Bending, in Water Filled Pipe . . . . ZOz Safe toads for Chains and Ropes Sand, Propefties
...
.. ..
--.
Stress Calculations Single Plarc System Single Plane System Containing Circular Arcs
Multiple Pl.ane System ..... Multiple Plane System Containing Circular
52
...
.
54
)t)
Arcs.... Strcsses . .
.......-. 62 3 StresslntensificationFactors. ...... 8,9,10 Stress Values, Allowable . . . . gl Stubs Steel Wire Gauge. . . . Sway Brace
.
208 170
T
.. . Bending.
of Common Shapes Tangent Functions of Angles . Tangents, Minimum for Tables
.......17-33 -......22g ... l3O-132
Page
.......... Z1g Threads . . . . 209 Threads. . . . - . 21,0 Standard. .... ZlO Standard. .-....226 Teakwood,Propertiesof ... ...... - - Z3l Temperature by Color . . . . . ......-.207 Temperature Conversions . . . ....,...233 Thermal Expansion Data. . . . ... 7.198"206 Thermal Movement Calculations. ...... 16l Thread Engagement, Normal Pipe Thread . . . . . . . . . 226 Threads, American Standard Straight ........... 225 Tlueads, American Standard Taper. -...224 Ttueads, British Standard Taper. ......226 Ttuead Symbols, Pipe. . . . . . ........225 Tfuee Dimensional 90o Tums . 32 Timber, hoperties of ....... ,,.....231 Tin, Properties of ........ Z3l, Tolerances, Linear. . . -..13e-132 Torsional Rigidity of Ferrous Materials .......... 6 Trigonometric Formulas . . . . . .......227 Tubing Materials ......... 103 Turpentine, hoperties of ... ........ Z3l Two Plane U Shape 29 Two Plaae U Sbape with Tangents 30 Typical Pipe Support Specification. ....170 Tanks, Horizontal Cylindrical, Gauging Tap Drills for U.S.A.S. Pipe Tap Drill Sizes for Screw Taper Tbreads, American Taper Threads, British
U U Bend
Expansion
ft.. .. . Expansion-Tangents=4R . Double Offset. U Shape - Equal Tangents . . . . U Shape - Tangents. !r : 2 L, U Shape - Tangents. !r = 3 Expansion Expansion Expansion
-
Tangents = 2 Tangents = R Tangents = 2R
q 41
42 43 44 45
22 23
L"
U Shape U U U U U
-
Tangents. !.:.
Shape Single Tangent Shape Unequal Legs
Shape Shape Shape
-
-
=
4
..... -..
Equal Legs Two Plane. . . . Two Plane with Tangents.
Unified SrewThrcads. . . . . US. Standard Sheet Metal Gauge Unrestrained Bends
25
26 27
z8 29 30
2t0 208
v Variable Spring llangers . . Velocity and heszure
...
Drop. Velocity of Steam
..,....162 ......... 6E ...... 6g,69
253
Page
ofWater Absolute Kinematic llardness.
Velocity
68 68
Viscosity, Viscosity, Vickers
72
........23O w
. ...... . Velocities . Air
Walnut Wood, hoperties of .
.... .... 231 .. ... . .....69,73 ..... ......... ........ ...........232
Washbum & Moen or Roebling Wire Gauge. . 208 Water in Copper Tube Water in Standard Pipe . . . . . 69,70 Water, Ploperties of. . . . . . .....231,235 68 Water 156 Weight Balance Calculations Weight of
264
Page
weight of Solid steel Rounds. Weights of Piping Materials . .
........220 .... - 172,244 Welded Nozzles. ......... 139 .......'. 140 Welding Neck Flange . . . . . . 141 Welding Rings - Commercial Split Type ......... Welding Rings - Consumable Insert ....142 ....208 Wirc Gauges ..212,213 Wire Rope .....2O9 Wood Screws, American National. Woods, Properties of . . . . . . . . . . . . . . ....... - 231 Zinc, Propedies
of.
Z Shape. . Z Shape,Hooked.
z
.......
231 21
20
BIBLIOGRAPHY Books (handbooks)
Author Piping Handbook Handbook
Sabin Crocker
of Engineering Fundamentals
Kent's l\4echanical Engineers, Handbook
Vol. l- Power Vol. ll - Design, Shop practice
Published by
McGraw-Hill Book Co., Inc.
Ovid W. Eshbach :
Marks' Mechanical Engineers, HandbooK
R. T. Kent, Ed.-in-Chief
Lionel S. Marks, Ed.
Welding Handbook
John Wiley & Sons, Inc.
McGraw-Hill Book Co.. Inc. American Welding Society
l\4etals Handbook SAE Handbook (annual)
American Society of l\4eta ls Society of Automotive Engineers American Society of Heating, Refrigeration and Air Conditioning Engineers
Heating, Ventilating, Air Cond. Guide (annual)
A.S.R.E. Refrigerating Data Book American Gas Handbook Machinery's Handbook
'American Society of Refrigerating Engineers
Handbook of Chemistry & Physics
Erik Oberg & F. D. Jones Charles D. Hodgman,
Handbook of Fire Protection Handbook of Welded Steel Tubing
Crosby-Fisk, Foster
Ed.-in-Chief
Seamless Steei Tube Data
American Gas Journal, Inc. The Industrial Press Chemical Rubber Publishing Co.
National Fire Protection Association Formed Steel Tubing Institute &amless Steel Tube Institute
Bending Seamless Steel Tubing
Seamless Steel Tube Institute
Thermodynamic Properties of Steanr Thermodynamic Properties of Air
Keenan & Keyes
Air Data Cameron Hydraulic Data
F. W. O'Neil, Editor
Compressed
Shaw & Loomis, Editors
Ingersoll-Rand Co,, Cameron pump Division Ingersoll-Rand Co., Cameron pump Division Heating, Piping, Air Conditioning C,ontractor National Association
Edw. P. Goehring
Cornell Maritime press American Institute of Steel Construqton John Wiley & Sons, lnc.
Compressed
Keenan
& Kaye
Cameron Pump Operators Data Standard lVanual on Pipe Welding,2nd Ed. Marine Piping Handbook
A.l.S.C. Handbook The Corrosion Handbook
Herbert H. Uhlig
John Wiley & Sons, Inc. John Wiley & Sons, Inc.
Air
Magazine
Books (textbooks) Strength
of Materials Part I Elementary Theory
& Problems
S. Timoshenko
Strength of Materials Part ll Advanced Theory & Problems Design of Piping for Flexibility with Flex-Anal Charts
D. Van Nostrand & Co., lnc.
S. Timoshenko
D. Van Nostrand & Co., Inc,
H. A. Wert and S. Smith
Piping Stress Calculations Simpl Design of Piping Systems
S. W. Spielvogel
Blaw-Know Co., Piping Division McGraw-Hill Book Co., Inc.
if
ied
The M. W. Kellogg Co.
BTBLIOGRAPHY (Continued)
Books (textbooks) (Gontinued) Publi$ed bY
Author Hydrau lics
Elementary Mechanics of Fluids Flow of Fluids through Valves, Fittings and Pipe Materials and Processes
R. L. Daugherty
McGraw-Hill Book Co., Inc.
Hunter Rouse Technical Paper 409
John Wiley & Sons, Inc.
J. F. Young
John Wiley & Sons, Inc,
American Society for Testing Materials
@mpilation of Available High Temperature Creep
Characteristics of
Crane Co.
and
Metals and Alloys
American Society of Mechanical Engineers
Hot Water Heating and Radiant Heatinq and Heat Transmission
W. H. McAdams
Technical Book Co. McGraw-Hill Book Co., Inc.
Logarithms and Squares Principles of Chemical Engineering
C. K. Smoley
C. K. Smoley & Sons
Walker, Lewis. McAdams & Gilliland
Mccraw-Hill Book Co., Inc.
Radiant Cooling
F. H. Giesecke
lnternational Gitical Tables
Clarence J. West
Corrosion: Causes & Prevention
Frank N, Speller
McGraw-Hill Book Co., Inc. Mccraw-Hill Book Co.. Inc.
Periodicals {trade magozines)
Title Chemical and Metallurgical Engineering
Combustion Compressed
Air
Magazine
Heating. Piping & Air Conditioning Heating and Ventilating Materials and Methods (ex. Metals & Alloys) Marine Engineering & Shipping Review Oil and Gas Journal Power Power Engineering Steel (weekly) Welding Design and Fabrication Trans. ASME (8 Pub. Per Year) ASME, Applied Mechanics, Journal (4 pub. per yr.) Mechancial Engineering
Journal ASNE, (quarterly) Metal Progress The Welding Journal Refrigerating Engineering Ref rigeration Abstracts (quarterly) Civil Engineering
Trans. ASCE (annual)
Journal AWWA lndustrial and Engineering Chemistry Industrial Radiography AGA Proceedings (annual) ASTM Proceedings (annual)
Publi$ed bY McGraw-Hill Publishing Co., lnc. Combustion Publishing Co., Inc. Compressed Air Magazine Co.
Keeney Publishing Co.
The lndustrial Press Reinhold Publishing Corp. Simmons-Boardman Publishinq Co. Petroleum Publishing Co. McGraw-Hill Publishing Co:, Inc. Technical Publishing Co.
Penton/lPC Inc. Penton/lPC Inc. American Society of Mechanical Engineers American Society of Mechanical Engineers American Societv of Mechanical Engineers American Society of Naval Engineers American Societv of Metals American Welding SocietY American Society of Refrigerating Engineers American Society of Refrigerating Engineers
American Society of Civil Engineers American Society of Civil Engineers American Water Works Association American Chemical Society American Industrial Radium & X-Ray Society American Gas Assocation American Society for Testing Materials