SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACES
NORTH-HOLLAND MATHEMATICS STUDIES Notas de Matematica (99)
Editor: Leopoldo Nachbin Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro and University of Rochester
108
SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACES
H. 0.FAlTORINI University of California at Los Angeles USA.
1985
NORTH-HOLLAND -AMSTERDAM
NEW YORK
OXFORD
OElsevier Science Publishers B.V., 1985 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN: 0 444 87698 7
Publishers:
ELSEVIER SClENCE PUBLISHERS B.V. P.O. BOX 1991 1000 BZ AMSTERDAM THE NETHERLANDS
Sole distributors for the U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC 52 VAN DERB ILT AVE NUE NEW YORK, N.Y. 10017 U.S.A.
Library of Congress Cataloging in Publication Data
Fattorini, H. 0. (Hector O.), 1938Second order l i n e a r d i f f e r e n t i a l equations i n W a c h spaces. (North-Holland mrthematics s t u d i e s ; 108) (Notas de m a t d t i c a ; 99) Bibliography: p. 1. Differential equations, P a r t i a l . 2. Differential equations, Linear. 3. Banach spaces. I. Title. 11. Series. 111. Series: lVDtas de m a t d t i c a (Amsterdam, Netherlands) ; 99. w . 1 8 6 no. 108 510 s ~515.3'541 84-28658
wav1
ISBn 0-444-87698-7
PRINTED IN THE NETHERLANDS
V
PREFACE
An initial value or initial-boundary value problem u t = Au, u
=
uo
for
(1)
t = 0
A
is a partial differential operator in the space variables x l ' . . . can be recast in the form of an ordinary differential initial value
where
x rn problem
~ ( 0 =) u0'
u'(t) = Au(t), where
A
(2)
is thought of as an operator in a function space E
and the
boundary conditions, if any, are included in the definition of the space E or of the domain of A . I f
E is suitably chosen, solutions of (2) will
exist for sufficiently many initial data on
uo
in the norm of
uo
and will depend continuously
E. This yay of looking at (1) was initiated by Hille
and Yosida in the forties and resulted in the creation and development of semigroup theory, now an integral part of most advanced treatments of parabolic and hyperbolic partial differential equations. A second order initial value or initial-boundary value problem
utt = Au, u = uo, u
=
u1
for
(3)
t = 0
can be reduced in the same way to an ordinary differential initial value problem ~"(t) = Au(t), where
A
~(0) = u0, u'(0)
=
u
(4)
1
is defined as in (2). This, however, can often be avoided reducing
(3) to a first order system following the "take the derivative as a new function" rule one learns in elementary theory of partial differential equations. That this trick always works, at least if one measures the derivative in a new norm, is in fact one of the results in Chapter I11 of this book. Moreover, the choice of this norm is usually natural and has physical meaning. However, reduction to first order is of no particular help in a problem as elementary as the growth of solutions of u"(t)
=
(A
+
cI)u(t)
PREFACE
vi
in terms of the growth of the solutions of
u"(t)
=
Au(t).
In other
problems, such as singular perturbation, direct consideration of second order equations leads to simpler and more inclusive theories. Finally, the formalism associated with ( 4 ) has proven useful in other fields, such as the control theory of hyperbolic equations. These and other reasons give motivation to the development of a theory of second order differential equations in Banach spaces. This work presents a few facts on that theory and some applications.
NO claim of completeness is made, either in the text or in the references; many important results have been left out and many important papers are not mentioned. Chapter I expounds semigroup theory; Chapter I1 presents cosine function theory, which stands in relation to the second order equation ( 4 ) as semigroup theory stands in relation to the first order equation (2). Chapter I11 deals with the reduction of ( 4 ) to a first order system mentioned above and other related topics. The next four chapters are on applications; in Chapter IV we treat the initial-boundary value problem (3) with
A a second order uniformly elliptic partial differential operator in a domain of m-dimensional Euclidean space, with either the Dirichlet boundary condition or a variational boundary condition. Chapter V treats the second order equation ( 4 ) in Hilbert spaces, where many special results are available; there are applications to equations with almost periodic and periodic solutions. Chapters VI and VII are on singular perturbation problems, with applications to diverse physical situations. Finally, in Chapter VIII we touch upon the theory of the "ctmplete" second order equation u"(t)
t Bu'(t)
+
Au(t)
=
0
(5)
without going too far into it; mostly, we search for the correct definition of correctly posed initial value problem for (5). Some shortcuts through the book are possible, and we do not bother to indicate them explicitly; for instance, Chapter 1 1 1 is only briefly needed in Chapters IV and V and not used at all in Chapters VI and VII. Some effort has been made to make this book as self-contained as possible; nothing isneededexcept the elementary theory of Banach and Hilbert spaces and some acquaintance with parabolic partial differential equations. The functional calculus for self adjoint operators is only used in Chapters IV and V and in exercises in other chapters. The exercises throughout the book cover parts of the theory not in the text or related facts of interest; references are included for the less
PREFACE
vii
immediate.
I am glad to acknowledge my thanks to many colleagues who read parts of the book and suggested improvements and to the Instituto Argentino de
MatemAtica, Consejo Nacional de Investigaciones Cientificas y TQcnicas, Argentina, for its hospitality during March I983 and August 1984, at which time the actual writing was concluded. Finally, and most important of a l l , the undertaking of this project would have been impossible without the understanding support of the National Science Foundation, which support extended during the entire time it t o o k to complete it. As always, my wife Natalia was encouraging, patient and understanding and to her go my very special thanks.
Buenos Aires, August 1984
This Page Intentionally Left Blank
ix
CONTENTS
PREFACE. LIST OF SYMBOLS. CHAPTER I.
............................................. ..........................................
V
xiii
THE CAUCHY PROBLEM FOR FIRST ORDER EQUATIONS. SEMIGROUP THEORY
....... .................... ..........................
51.1
The Cauchy problem for first order equations.
1
51.2
The Cauchy problem in
6
(-m,m).
51.3 The Hille-Yosida theorem. 51.4 51.5 51.6
.................................. The inhomogeneous equation. ........................ Miscellaneous comments. ............................ Semigroup theory.
7 13
15 18
CHAPTER 11. THE CAUCHY PROBLEM FOR SECOND ORDER EQUATIONS. COSINE FUNCTION THEORY
311.1
The Cauchy problem for second order equations.
511.2 The generation theorem.
511.3 Cosine function theory.
........................... ...........................
....................... .............. ...........................
511.4
The inhomogeneous equation.
511.5
Estimations by hyperbolic functions.
511.6
Miscellaneous comments.
CHAPTER 111.
....
24 28 32 35
37 38
REDUCTION OF A SECOND ORDER EQUATION TO A
FIRST ORDER SYSTEM. PHASE SPACES. 5111.1 Phase spaces.
....................................
5111.4
........... Resolvents of fractional powers. ................. Translation of generators of cosine functions. ...
5111.5
The principal value square root reduction.
43
5111.2 Fractional powers of closed operators.
50
5111.3
56
5111.6 9111.7 5111.8
....... Second order equations in Lp spaces. ............. Analyticity properties of bb(t). ................. Other square root reductions. ....................
59 62 71
80 86
CONTENTS
X
5111.9
Miscellaneous comments.
95
. * . . . . . . . . . . . . . . . . . I . . . .
CHAPTER IV. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS 5IV.l Wave equations: the Dirichlet boundary condition. sIV.2 5IV.3
5IV.4 5IV.5 sIV.6 sIV.7
SIV.8 sIV.9
CHAPTER V.
. The phase space. ................................ The Cauchy problem. ............................. Wave equations: other boundary conditions. ...... The phase space. ................................ The Cauchy problem. ............................. Higher order equations. ......................... Higher order equations (continuation). .......... Miscellaneous comments. .........................
100
104 109 112 116 117
118
120 124
UNIFORMLY BOUNDED GROUPS AND COSINE FUNCTIONS
IN HILBERT SPACE
...... ... Uniformly bounded groups in Hilbert space. ...... Almost periodic functions. ...................... Almost periodic groups in Hilbert space. ........ Banach integrals. ...............................
133
5V.6 Uniformly bounded cosine functions in Hilbert space.
145
sv. 1 g.2
5v.3 sv.4
5v.5 sv.7
The Hahn-Banach theorem: Banach limits.
Almost periodic cosine functions in Hilbert space...
.........................
SV.8 Miscellaneous comments.
126 128
138 142 153 158
CHAPTER VI. THE PARABOLIC SINGULAR PERTURBATION PROBLEM sVI.1
Vibrations of a membrane in a viscous medium.
sVI.2
Singular perturbation. Explicit solution of the perturbed equation.
5VI.3 sVI.4 sVI.5 5VI.6
............................
The homogeneous equation: convergence of u(t;E) Convergence of u'(t;E)
..
165 166
....
and higher derivatives...
...
The homogeneous equation. Rates of convergence.....
171 180 192
Singular integrals of liilbert space valued functions and applications to inhomogeneous first order equations.
.....................................
202
5VI.7 The inhomogeneous equation: convergence of u(t;E) and u'(t;E).
...................................
210
sVI.8 Correctors at the initial layer. Asymptotic series. 5VI.9 Elliptic differential operators.
218
sVI.10 Miscellaneous comments.
233
............... ........................
228
xi
CONTENTS CHAPTER VII. OTHER SINGULAR PERTURBATION PROBLEMS sVIT.1
A singular perturbation problem in quantum
mechanics.
.....................................
sVII.2 The Schrodinger singular perturbation problem..
sVII.3 sVTI.4 sVII.5 sVII.6 sVII.7 sVII.8
Assumptions on the initial value problem.
....
238 239
......
24 1
......
245
The homogeneous equation: convergence results
................ Elliptic differential operators. ............... The inhomogeneous equation. .................... Miscellaneous comments. ........................ Verification of the hypotheses.
250 258 262 265
CHAPTER VIIT.
THE COMPLETE SECOND ORDER EQUATION sVIII.1 The Cauchy problem. ........................... sVIII.2
Growth of solutions and existence of phase spaces.
270 271
sVIII.3 Exponential growth of solutions and existence of
................................. ................. sVIII.5 Miscellaneous comments. ....................... BIBLIOGRAPHY. ................................................. phase spaces.
§VIII.4 Construction of phase spaces.
276 289 298 303
This Page Intentionally Left Blank
xiii
LIST OF SYMBOLS
This Page Intentionally Left Blank
1
CHAPTER I
THE CAUCHY PROBLEM FOR FIRST ORDER EQUATIONS. SEMIGROUP THEORY
$1.1 The Cauchy problem for f i r s t order equations.
E
We denote by with domain
D(A)
be complex and
a general Banach space and by
E
in
D(A)
Unless otherwise s t a t e d
w i l l be dense i n
E.
We shall use i n t h e s e q u e l t h e
t o i n d i c a t e functions
t h e i r i n d i v i d u a l values a t with values i n t h e i i m i t as
-t
t
are
u(t), f ( t ) ,
0
t h e l i m i t i s one-sided a t [0,
-t
m).
t = 0.
t
will
E
u f t ) , t + f ( t ) , ...;
etc.
of t h e quotient of increments
e x i s t s and i s a continuous function of other than
t
i s continuously d i f f e r e n t i a b l e i n
E
h
a l i n e a r operator
E.
...
symbols u(^t),,);('f
A
and range i n
u(t)
A function
t 2 0
h-l(u(t
i n t h e norm of
i f and only if
+ E;
h)
-
u(t))
of course,
Similar d e f i n i t i o n s a r e used i n i n t e r v a l s
A (stron_g or genuine) s o l u t i o n of t h e a b s t r a c t d i f f e r -
e n t i a l equation ~ ' ( t =) Au(t) in
[0,
that
i s a continuously d i f f e r e n t i a b l e E-valued f u n c t i o n u ( t )
m)
u(t)
(1.1)
E
D(A)
and (1.1) i s s a t i s f i e d f o r
t >_ 0.
such
Solutions a r e
correspondingly defined i n other i n t e r v a l s . The Cauchy o r i n i t i a l value problem f o r (1.1)i n
t >_ 0
is that of
f i n d i n g s o l u t i o n s s a t i s f y i n g t h e i n i t i a l condition u ( 0 ) = uo
.
The Cauchy problem f o r (1.1)i s w e l l posed ( o r properly posed) i n
t? 0
i f and only i f t h e following two assumptions hold:
(a) f o r any
-fying
(Existence). uo
(1.2).
E
D
There e x i s t s a dense subspace
t h e r e e x i s t s a solution
u(t^)
of
D
(1.1)
of
E
such t h a t
t r_ 0 s a t i s -
2
FIRST ORDER EQUATIONS
(b)
There e x i s t s a nonnegative, f i n i t e
(Continuous dependence).
function
t
defined i n
C(t^)
10
such t h a t
Ilu(t)': 5 c(t)llu(o)ll f o r any s o l u t i o n of (1.1).
(1.3) i s assumed t o hold f o r
Note that o r not
u(0)
Also, s i n c e t h e equation must hold i n p a r t i c u l a r f o r
D.
E
s o l u t i o n of (l.l), whether
t = 0 we must have D
.
5 D(A)
(1.4)
F i n a l l y , t h e Cauchy problem f o r (1.1)i s uniformly w e l l posed (or
t 5 0
uniformly properly posed) i n
t5 0
C(f)
i s nondecreasing i n
C($)
i s bounded on compacts of
E(t)
=
sup {C(s); 0 <_ s
5
i f ( a ) and ( b ) hold and t h e function
(obviously, it i s enough t o assume t h a t
t 2 0
s i n c e we may r e p l a c e it by
t).
We n o t e t h a t condition ( b ) i n t h e w e l l posed c a s e i s equivalent t o pointwise continuous dependence of t h e s o l u t i o n s on t h e i r i n i t i a l values, s i n c e no r e l a t i o n between d i f f e r e n t values of
i s postulated.
C(z)
In
the uniformly w e l l posed case, t h e dependence i s continuous on bounded s u b i n t e r v a l s of 0
5 t <_
T <
Let
u
t >_ 0
due t o t h e f a c t t h a t
C(t)
-. D,
E
t 1 0 .
5
C(T)
in
Define S(t)u = u(t) ,
where
u(<)
i s t h e s o l u t i o n of (1.1)w i t h u ( 0 ) = u.
i s a bounded operator w i t h in
E,
(1.5)
S(t)
ilS(t)l:
5
C(t).
Since
can be extended t o a bounded operator i n
denote by t h e same symbol) without i n c r e a s e of norm. function
tion or
S($)
Obviously,
D(S(t)) = D E
S(t)
i s dense
(which we
We c a l l t h e operator
t h e propagator ( o r s o l u t i o n operator or fundamental soluh
evolution operator) of (1.1). If
u(t)
i s an a r b i t r a r y s o l u t i o n
of (1.1)t h e n U(t)
= S(t)u(O)
This i s nothing but t h e d e f i n i t i o n of
S(t)
(t
2
when
0)
. u(0)
(1.6) E
D.
To prove
3
FIRST ORDER EQUATIONS
(1.6) i n t h e g e n e r a l c a s e , l e t
[u
1
be a sequence of elements i n
un (^t) S(t)u(O) = l i m S ( t ) u n = l i m u n ( t ) = u ( t )
such t h a t Then
un
-+
t h e s o l u t i o n of (1.1)w i t h
u(O),
D
un(0) = un.
by ( b ) .
THEOREM 1.1. Let t h e Cauchy problem f o r (1.1)be w e l l posed i n
hen
t 5 0.
(i)
s(s +
S(0) = I,
(ii) There e x i s t s a c o n s t a n t
~
with
depending on
C6
(iii)
t
5
s(;)
0
5
Co
u 0
and l e t
u(e)
from (1.6). dense i n
[0,
we have
o
( s t r o n g l y continuous i n
To prove t h e second
u(0) = S ( t ) u
we deduce t h a t
Since
u ( 0 ) = u.
Fix
is a
u(2)
u(s) = S(s)S(t)u
Noting t h a t a l l o p e r a t o r s involved are bounded and
D
is
t h e second e q u a l i t y (1.7) f o l l o w s .
E,
uo
E
E,
{un)
a sequence i n
D
with
Since
t 1 0,
pointwise i n
of
(1.7)
i s uniformly w e l l posed).
u ( g ) = S(s^ + t ) u .
S(t>un
S(;)uo
.
6 z 0
be t h e s o l u t i o n of (1.1)with
We prove n e x t (iii). Let
I+,.
t >
(1.7) i s obvious.
and consider t h e f u n c t i o n
s o l u t i o n of (1.1)with
un +
t2 0
The f i r s t e q u a l i t y
D
E
( s , t >_ 0)
such t h a t
i s s t r o n g l y continuous i n
Proof.
t
sfs)s(t)
such that, f o r every
w
i f t h e Cauchy problem f o r
pick
=
( i f t h e Cauchy problem f o r (1.1) i s uniformly
6
w e l l posed t h e r e e x i s t s
t)
-+
(1.lo)
S(t)u()
S(^t)uo i s s t r o n g l y measurable t h e r e .
Accordingly,
i s almost s e p a r a b l y valued, t h a t i s , t h e r e e x i s t s a n u l l s u b s e t m)
such that
Xo = { S ( t ) u o ; t d, do)
i s s e p a r a b l e ( f o r t h i s and
o t h e r r e s u l t s on measurable v e c t o r valued f u n c t i o n s s e e for i n s t a n c e HILLE-WILLIE generated by
[1957:1,Ch. 1111. ru01 IJ Xo
It follows t h a t t h e c l o s e d subspace
is s e p a r a b l e and t h e r e e x i s t s a sequence
f t n ;n 2 l’j contained i n t h e complement of do such that t h e s e t (uol (J ( S ( t n ) u O ; n 2 11 i s fundamental i n Eo ( f i n i t e l i n e a r
Yo =
Eo
FIRST ORDER EQUATIONS
4
Yo a r e dense i n E 0 ). L e t now t k do ( n = 1,2, ...); then S ( t ) u o and S ( t ) S ( t n ) u O =
combinations of elements of
t + tn )! do
that
S ( t + tn)uO belong t o eo
Eo.
-
eo = do U (do
Define
t l ) U (do
-
such
t2) U
...;
i s a n u l l s e t and it follows from t h e preceding arguments that
c_
S(t)Eo
0 < Cr
We show next t h a t i f
(t p
Eo
-
there exists
5c
!lS(t)II
-
eo)
(1.11)
(a <_ t 5 B)
(t
(1.12)
*
If t h i s were not t h e case we could f i n d a sequence
and a numerical sequence
such t h a t
C = C
iiunll = 1 Fun> C_ E, IlS(t n)unll 5 n
[a,f31 such t h a t
in
( n = 1,2,...). Applying t h e argument leading t o (1.11)we can construct f o r each
c_
En
n
a null set
#
t
for
union of t h e
en;
E
m(t)
= IlS(t)II,
Em
em = el U e2 U
SUP
.. ..
m(t,)
> n and i f
#
t
S(t)En
S(t)
t
i n the
>0
denote by
Em;
since
IIS(:)vnil
with
t
Given
i s t h e supremum of t h e sequence
m(Z)
a dense sequence i n t h e unit sphere of Moreover,
S ( t ) E m E Em for
t h e norm of t h e r e s t r i c t i o n of
i s separable,
with
i s t h e closed subspace generated by t h e
i s separable and
complement of t h e n u l l s e t
En
and a separable subspace
hence i f Em
n’
en
to
El, {vn]
Em and is i t s e l f measurable.
em we have
m(s
+ t)
=
u E Em, hdl 5 11 5 SUP f lb(s>vli; v E Em, b l l < _ m ( t > l Accordingly, a c o n t r a d i c t i o n r e s u l t s from:
1/s(s)S(t)uli;
< - m(s)m(t).
LEW 1.2.
t
defined i n
Let
1 0
m(<)
and such that
m(s + t ) where
e
be a nonnegative f i n i t e measurable function
5
is a null set i n
interval
[a,p ] ,
o
( s > 0, t ,d e ) ,
m(s)m(t) (0,
c a< B <
m).
Then
m(Z)
(1.13)
i s bounded i n every
m.
+ t
)! e ,
(1.13) implies m(s)m(t) 5 m(a), thus e i t h e r m ( s ) 5or m ( t ) 2Hence if d is t h e s e t of a l l t i n [ 0 , a ] with m(t) >_ we have eU d U ( a - d) 2 [ O , a ] s o t h a t Id] + ] a - dl >_ a , where 1.1 indic a t e s Lebesgue measure. But Id1 = la - d l , hence Id1 >_ a/2. Assume now t h a t m($) is unbounded i n [ a , f31, so that t h e r e e x i s t s Proof.
Let
a sequence
[anl
a > 0.
If
t h e r e with
s
= a, t
m(an) +
m.
.
Applying t h e argument above we
5
FIRST ORDER EQUATIONS
deduce t h e existence of a measurable set
dn
[0, p ]
in
with
.Jm(an)
i n dn, which c o n t r a d i c t s t h e a/2 and m ( t ) 2 /dnl 1 an/2 f a c t t h a t m(t) i s everywhere f i n i t e . This completes t h e proof of
Lemma 1.2. End of proof of Theorem 1.1. Let 0
I h / <_ r , ( S ( t O + h)
in
5
0
< CY <
-
< to
-
0
to > 0,
E,
E
0 < r < to,
We obtain from ( 1 . 7 ) t h e e q u a l i t y
r.
-
S ( t O ) ) u = S ( t ) ( S ( t O+ h
t <_ B.
bounded i n
@
u t)
-
S(tO
-
valid a t least
t))u,
I n view of (1.12) t h e f u n c t i o n on t h e r i g h t hand s i d e i s
5 t 5 B;
it i s a l s o e a s i l y seen t o be s t r o n g l y measurable.
I n t e g r a t i n g we o b t a i n
-
(B
a ) l l S ( t O+ h ) u -S(tduII
5
rB
C
ilS(to + h
-
t)u
-
S(tO
-
t ) u l l d t , (1.14)
,J cy
where t h e r i g h t hand s i d e tends t o zero i n view of t h e mean c o n t i n u i t y of Bochner i n t e g r a b l e functions (HILLE-PHILLIPS [1957:1, p. 861). t h e n completed t h e proof of ( i i i ) in t h e g e n e r a l case.
We have
If t h e Cauchy
problem f o r (1.1) i s uniformly well posed t h e convergence i n ( 1 . 1 0 ) i s uniform on f i n i t e s u b i n t e r v a l s of
[O,
thus
m)
i s continuous i n
C(:)u
t 2 0. F i n a l l y , we show (ii). Observe f i r s t t h a t , by v i r t u e of (iii) f o r each
u
E
E and
S > 0
the function
S(i)u
i s continuous, hence bounded
in
6 5 t <_ 1; it follows from t h e uniform boundedness p r i n c i p l e (DUNFORD-SCHWARTZ [1958:1, p. 521) t h a t Ils(t)II 5 C6 in 6 5 t 5 1. Let
t 2 1/2
be a r b i t r a r y ,
we have
S ( t ) = ~ ( n / e ) s ( t- n/2> = ~ ( 1 / 2 ) " ~ ( t n/2)
t h e l a r g e s t i n t e g e r with
n/2
-
llS(t)ll <_ C exp (n log C ) in
n
5
C exp ( W t )
with
<_ t . Using (1.7)
s o that i f
c
=
c1/2 '
which i s (1.8)
w = 2 log C,
t 2_ 1/2; obviously, t h e i n e q u a l i t y can be extended t o t i 6
( p o s s i b l y with a d i f f e r e n t constant) o r t o is uniformly w e l l posed.
t 2 0 when t h e Cauchy problem
This completes t h e demonstration of Theorem 1.1.
We comment b r i e f l y on s e v e r a l obvious consequences. case, t h e f u n c t i o n that if
{un(;)],
C(t")
u(;)
in (1.3) can be replaced by a r e s o l u t i o n s of (1.1)and
exp ( - w t ) u n ( t ) + exp ( - u t ) u ( t )
uniformly i n
problem f o r (1.1)i s simply w e l l posed, uniformly i n
t 2 6
f o r each
6 > 0.
bargained f o r i n t h e d e f i n i t i o n .
I n t h e uniform
Co exp ( & )
un(0)
t 20.
exp ( - u t ) u ( t )
4
u(0)
so then
When t h e Cauchy +
exp ( - & ) u ( t )
This is considerably more t h a n we
6
FIRST ORDER EQUATIONS
The Cauchy problem i n
$1.2
my.
(-m,
We d e c l a r e t h e Cauchy problem f o r (1.1)w e l l posed i n
-a
< t <
m
If ( a ) and ( b ) i n t h e previous s e c t i o n hold with t h e following modifications:
t h e solutions i n ( a ) a r e solutions i n
t 10,
and
t.
for a l l
(1.3) holds i n If
(-m,
and
C($
uniformly w e l l posed i n
t.
be defined f o r a l l
(-m,
(-m,
m)
r a t h e r than i n
t 2 0
(or
t h e Cauchy problem f o r (1.1) i s
m))
Plainly, t h e propagator
m).
defined
C(t)
a r e both nondecreasing i n
C(-;)
j u s t bounded on compacts of
(-m,
with a f i n i t e function
m)
S(t)
can now
It i s remarkable t h a t t h e notions of w e l l posed
and uniformly w e l l posed problem coalesce i n t h e p r e s e n t s i t u a t i o n , a s t h e next r e s u l t shows. THEOREM 2.1. (-03,
m).
Then
Let t h e Cauchy problem f o r (1.1)be well posed i n (i)
(ii) There e x i s t constants
Co,
w
such that
( t h u s t h e Cauchy problem f o r (1.1)i s uniformly w e l l posed i n (iii)
s(;>
a ) ) .
(-m,
i s s t r o n g l y continuous f o r a l l t. t ? 0.
The proof of (2.1) is t h e same a s that f o r t h e case
To show
(iii)we note that t h e assumptions imply that t h e Cauchy problems f o r
both (1.1)and U ' ( t ) = -Au(t) a r e w e l l posed i n ' t
2
0,
(2.3)
u(t^)
s i n c e t h e correspondence
~ ( - 2 ) maps
-t
s o l u t i o n s of (1.1) i n t o s o l u t i o n s of (2.3) and v i c e versa. be t h e propagator of (2.3) i n
t 2 0.
s (t)= Applying Theorem l . l ( i i i ) t o h
we deduce t h a t
S(t)
S(t^)
kt
~-(t)
We v e r i f y e a s i l y t h a t
S(-t)
and t o
(t 2 0)
.
is s t r o n g l y continuous i n t < 0
t > 0
in
S ( - c ) = S-(t^)
and
t > 0.
However,
S(h)u = S ( t + h)S(-t)u,
follows.
In p a r t i c u l a r , t h e Cauchy problems f o r (1.1)and ( 2 . 3 ) a r e
thus s t r o n g c o n t i n u i t y a t
t
= 0
FIRST ORDER EQUATIONS
7
t L 0 which y i e l d s ( 2 . 2 ) by i n t e r v e n t i o n o f Obviously, t h i s i n e q u a l i t y implies t h a t t h e Cauchy
uniformly w e l l posed i n Theorem l . l ( i i ) .
problem i s w e l l posed i n
(-m,
thus completing t h e proof of
m),
Theorem 2.1.
$1.3
The Hille-Yosida theorem. Assume that t h e Cauchy problem f o r (1.1) i s w e l l posed i n
that
is closed.
A
number with
Re
X>
Let
w
R(X)u =
(1.9), X
be t h e constant i n
E
Define an operator i n
w.
[
e
-Xt
S(t)u d t
and
t 2 0
a complex
by
(u
E
.
E)
(3.1)
I
Since t h e norm of t h e integrand is bounded by
ColIu/I exp ( w
is a bounded operator i n
u
Assume now t h a t
E.
s o l u t i o n of (l.l), s o t h a t
Then
D.
E
-
Re X)t, R ( X ) h
S(t)u
is a
s l ( t ) u = AS(t)u. (l) Using a w e l l known r e s u l t
on i n t r o d u c t i o n of closed operators under t h e i n t e g r a l s i g n (HILLE-PHILLIPS
[1957:1,p. 831) we obtain A
LT
-
e-‘%(t)u
dt =
L~
.,
= e -XT S(T)u
for
T > 0.
R(X)u
E
ment of
Letting
D(A)
E,
and
T
-t
00
e-XtAS(t)u d t = JOT e-XtSt ( t ) u d t
-
u
+ X L T
e-XtS(t)u d t
and using closedness of
AR(X)u = XR(X)u
choose a sequence
- u.
{unj
-
-
A ) R ( X )= I
I n p a r t i c u l a r , (3.2) shows t h a t
w e l l one-to-one. Then
(XI
-
-u
(XI
-
X
E
p(A),
A)-l = R(X), The f a c t t h a t
p(A)
A):D(A)
t h e resolvent s e t of p(A)
u. Then
-t
i s onto.
E
u
A
E D(A)
It is a s with
Au = Xu.
/lu(t)II =
u = 0.
W e have then
and t h a t
contains t h e half plane
R(X;A) = Re
X>
w.
i s nonempty allows f o r t h e complete i d e n t i f i c a -
t i o n of t h e subspace Do of “admissible i n i t i a l d a t a ” c o n s i s t i n g of a l l uo such t h a t X€p(A),
S($)uo
and
R(X)E C_ D ( A )
(3.2)
i s a s o l u t i o n of (1.1)with
s o that
-t
.
(exp (Re X)t)(/ull which c o n t r a d i c t s (1.9) u n l e s s proved t h a t
un
so that
To s e e t h i s assume t h e r e e x i s t s
u ( t ) = ( e m (Xt))u
i s an a r b i t r a r y e l e -
such t h a t
D
R(X)un -+ R(X)u, AR(X)un= XR(X)un u n + XR(X)u (XI
u
Now, i f
in
we deduce that
A
is a s o l u t i o n of (1.1). This is done a s follows.
E
E
If
R(X;A)S(t)u is a s o l u t i o n of (l.l), h e n c e i t f o l l o w s f r o m ( 1 . 6 ) t h a t
a
FIRST ORDER EQUATIONS
(t > 0)
R(X;A)S(t)u = S(t)R(X;A)u
u
This e q u a l i t y extends t o a l l
E by denseness of
E
(3.3) f o r u
Write
(XI
=
-
v E D(A)
A)v,
D
(3.3)
and implies t h a t
.
( t 2 0)
S(t)D(A) C_ D(A)
.
(3.4) (XI
and then apply
-
A)
to
The r e s u l t is
both s i d e s ,
AS(t)u = S(t)Au
u
valid f o r
E
Jb
S(t u - u =
for
u
E
D.
Apply
(3.5 we obtain
Making use of
D(A).
R(X;A)
t
t S'(s)u
"
t o both s i d e s and u s e
R(X;A)(S(t)u
u
E;
E
(3.3):
the r e s u l t i s
t
-
U)
S(S)AR(X;A)U
=
Since both s i d e s a r e bounded operators of to all
S(s)Au ds
ds =
u
.
ds
t h e e q u a l i t y can be extended
using (3.3) again and applying
(XI
-
t o both s i d e s ,
A)
we obtain
s(t)u
-
u
=
rt
AS(s)u ds
(3.6)
JO
for a l l
u
E
D(A).
(1.1)f o r any
u
Obviously, t h i s implies t h a t E
A,
D(, = D(A) We can obtain estimates for R ( X ; A ) formula
= (-l)nn!R(X;A)nfl
R(X;A)(II)
S(;)u
i s a s o l u t i o n of
hence
.
(3.7)
and i t s powers using t h e well known and d i f f e r e n t i a t i n g
(3.1) under
t h e i n t e g r a l s i g n ( t h i s can be e a s i l y j u s t i f i e d on t h e b a s i s of t h e dominated convergence theorem).
results for
where ities
u
E
E
and
Re
X>
The formula
0.
Using (1.9) we obtain
Co and w a r e t h e constants i n (1.9). We show next t h a t inequal(3.9) a r e as well s u f f i c i e n t f o r uniform well posedness of t h e
9
FIRST ORDER EQUATIONS
Cauchy problem for (1.1).
3A
THEOREM 3 . 1 (Hille-Yosida).
f o r (1.1)i s 5
and
w
The Cauchy problem
t 2 0 with propagator S ( t ) u(A) i s contained i n t h e half-space
uniformly w e l l posed i n
s a t i s f y i n g ( 1 . 9 ) i f and only i f Re X
b e closed.
R(X;A)
(3.9).
s a t i s f i e s inequalities
The proof of t h e other h a l f below
We have a l r e a d y proved one h a l f .
i s perhags not t h e s h o r t e s t a v a i l a b l e but can be adapted with minor changes t o equations o t h e r than (1.1) ( s e e Chapter 11). We begin by constructing s o l u t i o n s of (1.1)given s u f f i c i e n t l y "smooth" i n i t i a l conditions.
u
E
D(A 3 ),
> w, 0.
w'
Let
Define ( 2 )
N
u(t;u) = u
+
tAu
t2 2 +A u 2 w'+im
+
(3.10)
eXt
Ju'-im
&i
3u ax - R(X;A)A
( t 5 0)
,3
.
A deformation of contour shows t h a t t h e i n t e g r a l i n (3.10) vanishes for
t
5 .O,
thus N
u(0,u) = u ~ ~ ~ ( t=; O u ()e q ~ (~w ' t ) )
Obviously,
as
t
.
(3.11)
+
m.
An e a s i l y j u s t i f i a b l e
d i f f e r e n t i a t i o n under t h e i n t e g r a l s i g n shows that continuous d e r i v a t i v e in
t > 0;
;(E;u)
on t h e o t h e r hand
A
has a can be introduced
under t h e i n t e g r a l s i g n with convergence of t h e r e s u l t i n g i n t e g r a l , s o that
<(t;u)
E
D(A)
"U(t;u)
and
-
AE(t;u) =
+
&1
-t2 A 3u 2 w'+im X t
w'-im
= o Accordingly,
u"(t;u)
-
(XI
,3
-
A)R(X;A)A3u dA
( t 2 0 ) .
is a s o l u t i o n of (1.1). A n argument s i m i l a r t o t h e
one leading t o t h e proof t h a t
R(X)
in
(3.1) coincides with R(X;A)
(or
a d i r e c t i n t e g r a t i o n of ( 3 . 1 0 ) ) shows t h a t
L
e
u ( t ; u ) d t = R(X;A)u
This e q u a l i t y w i l l be used t o obtain bounds on inversion formula below.
u(-)
.
(3.13) by use of t h e
Post
FIRST ORDER EQUATIONS
10
Let
LEMMA 3.2.
t >_ 0
E-valued continuous f u n c t i o n defined i n
f ( t ) = O ( e q (at))
such that
(Sf)(:)
f(?)
b e t h e Laplace transform of
as
t
+
f o r some
w
CY
and l e t
t,
(Sf)(X) =
e-Xtf(t)
dt
.
Then
t > 0.
uniformly on compacts of
The proof i n t h e s c a l a r c a s e can b e found i n WIDDER [1946:1, Chapter V I I ] .
The extension t o v e c t o r valued functions i s immediate.
End of proof of Theorem 3.1.
We apply t h e inversion formula (3.14)
in (3.10); i n view of (3.13) we obtain
t o t h e function
(3.15)
s o t h a t , u s i n g i n e q u a l i t i e s (3.9) w e o b t a i n IllY(t;u)ll
5 Collu/I lim
n
Define N
N
S(t)u = u(t;u) for
u
E
ment of
D ( A 3 ),
u(t)
s(%) we
operator such t h a t
(t
0)
t h e solution i n (3.10).
can extend each E ( t )
g($)
.
Arguing as i n t h e t r e a t -
t o a bounded everywhere defined
i s s t r o n g l y continuous i n
t 2 0
and
C l e a r l y , t h e proof of Theorem 3 . 1 w i l l be complete i f we show t h a t any solution
u(t)
of (1.1)admits t h e r e p r e s e n t a t i o n U(t) = iqt)U(O)
.
(3.18)
11
FIRST ORDER EQUATIONS
This is done as follows.
It r e s u l t s from t h e d e f i n i t i o n of for all
R(X;A)S(t)u = g ( t ) R ( X ; A ) u
u
thus f o r a l l
D(A 3 )
E
g(t) u
E
that
E.
Ace ord i n g l y ,
-S ( t ) A u = A i ( t ) u m(t^)
On t h e o t h e r hand,
(u
t 2 0)
D(A),
E
.
(3.19)
i s a continuously d i f f e r e n t i a b l e
= S(i)R(h;A)3
W(t)
o p e r a t o r valued f u n c t i o n t h a t s a t i s f i e s
Accordingly, i f
= Am(t).
i s a n a r b i t r a r y s o l u t i o n of (1.1)we have
u(^t)
d as m ( t
-
+ m ( t - s)Au(s)
(3.19), hence R(X;A)3u(t)
after
-
(XI
Applying
3.3.
= 0
(0
5 s 5 t)
(3.20)
= m(O)u(t) = h ( t ) u ( O ) = R(X;A)3S(t)u(0).
u(A)
(-m,
be c l o s e d .
A
uniformly w e l l posed i n i f and only i f
s)u(s)
t o b o t h s i d e s (3.18) r e s u l t s .
A)3
Corresponding t o t h e c a s e
THEORFM
-
s ) u ( s ) = -Am(t
(-m,
m)
we have
a)
The Cauchy problem f o r (1.1)&
w i t h propagator
i s contained i n t h e s t r i p
satisfying (2.2)
S(%) /Re
XI 5 w and R(X;A)
w,
n
satisfies
5
IIR(X;A)n(l Proof.
Co( /Re
XI -
( IRe XI
=
0,1,. . . )
.
(3.21)
We have a l r e a d y observed t h a t i f t h e Cauchy problem f o r (1.1)
i s w e l l posed i n
t h e n t h e Cauchy problem f o r ( 2 . 3 ) ( o f course
m)
(-m,
a l s o f o r (1.1))i s w e l l posed i n
t 2 0.
i n e q u a l i t i e s (3.21) f o l l o w from Theorem
Since
3.1.
R(X;-A)
= -R(-X;A),
Conversely, we deduce from
t h e same theorem t h a t i f (3.21) holds t h e n t h e Cauchy problem f o r (1.1) and (3.2) i s w e l l posed i n
t 2 0.
t 2 0 with
S
and
S- s a t i s f y i n g (1.9) i n
T h i s i s e a s i l y s e e n t o imply t h a t t h e Cauchy problem f o r (1.1)i s
w e l l posed i n
(-a,
m),
t h u s completing t h e proof of Theorem 2.1.
For t h e s a k e of b r e v i t y i n f u t u r e s t a t e m e n t s , w e i n t r o d u c e t h e A closed, densely defined operator A i s s a i d t o
following n o t a t i o n .
1
belong t o & + ( C 0 , w ) posed i n
t 2 0
i f t h e Cauchy problem f o r (1.1)i s uniformly w e l l
and t h e s o l u t i o n o p e r a t o r
S(c)
satisfies
(1.9).
We
12
F I S T ORDER EQUATIONS
1 1 &+(w) = U {&+(Co,w); C > 13 ( n o t e t h a t Co < 1 i s h p o s s i 01 1 The n o t a t i o n s f o r t h e case b l e ) and &+ = U {Q+(w); -m c w < a].
a l s o write
-m
c t <
a r e K1(C0,w)
m
(Co t h e constant i n ( 2 . 2 ) ) ,
d(u),
X1; w e
s h a l l not employ any s p e c i a l symbol f o r operators t h a t make t h e Cauchy problem only w e l l posed. The following r e s u l t i s an inmediate consequence of t h e Hille-Yosida theorem.
Let
THEOREM 3.4.
X Xo, t 2 0 and
h a l f plane
Re
tinuous i n
be an operator such t h a t
A
km
such that
u
E
(t 1
1
A E & + ( C ,w) 0
and
0)
(3.22)
*
E
S(t)
X>
(Re
e-XtS(t)u d t = R(X;A)u
Then -
contains t h e
an operator valued f u n c t i o n s t r o n g l y con-
S(t)
wt lls(t)lI <_ Coe
Assume t h a t , f o r each
p(A)
l o ).
(3.23)
i s t h e s o l u t i o n operator of (1.1).
We o b t a i n t h e i n e q u a l i t i e s (3.9) from (3.23) i n t h e same way 1 a s from (3.1); applying Theorem 3.1 it r e s u l t s that A E &+(C,,w). Let S(t) be t h e propagator of (1.1). Then (3.23) holds f o r both S and S Proof.
whence
S =
REMARK
s
follows from uniqueness of I a p l a c e transforms.
3.5.
I n e q u a l i t i e s (3.9) follow from t h e i r real counterparts
The proof i s an elementary e x e r c i s e i n Taylor s e r i e s . weaken, s a y Theorem 3.4 by p o s t u l a t i n g (3.23) only f o r
This allows us t o
X z w, although
t h e advantage does not seem t o b e very s i g n i f i c a n t . REM4RK 3.6.
Replacing powers of t h e r e s o l v e n t by d e r i v a t i v e s ,
i n e q u a l i t i e s (3.9) can be w r i t t e n t h u s : llR(k;A)(n)l\
5
COn!(Re
X
-
w)
-(n+l)
(Re
X>
W,
n
s
0,1,...)
.
(3.25)
Although t h i s form i s l e s s p r a c t i c a l , s i m i l a r i t y with generation theorems f o r other equations becomes more apparent ( s e e Section 11.2).
13
FIRST ORDER EQ,UATIONS
91.4
Semigroup t h e o r y . Given two Banach spaces
a l l l i n e a r bounded o p e r a t o r s from (uniform o p e r a t o r ) topology.
A
E-valued f u n c t i o n
F
and
E
we denote by
into
E
F
(E;E)
t 2 0
defined i n
t h e space of
endowed with i t s usual
We u s u a l l y a b b r e v i a t e
S(^t)
(E;F)
to
(E).
i s c a l l e d a semigroup
i f (1.7) h o l d s , that i s i f
s(s +
s(0) = I ,
(s, t 2 0)
t ) = S(S)S(t)
(4.1)
*
Equations ( 4 . 1 ) a r e o f t e n c a l l e d t h e e x p o n e n t i a l ( f u n c t i o n a l ) equations. We have s e e n i n t h e preceding s e c t i o n s t h a t t h e s o l u t i o n o p e r a t o r of a w e l l posed Cauchy problem i s a s t r o n g l y continuous semigroup.
As t h e
following r e s u l t shows, t h e converse is as w e l l t r u e . THEORFM 4.1.
t L 0.
S(-)
b e a semigroup s t r o n g l y continuous i n
Then t h e r e e x i s t s a unique c l o s e d , densely d e f i n e d o p e r a t o r
such t h a t
E
1
E+
i s t h e e v o l u t i o n o p e r a t o r of
S(t)
Proof.
A
We d e f i n e t h e i n f i n i t e s i m a l g e n e r a t o r
A
of
S(t)
by t h e
formula 1 AU = lim I;(S(h) kt0+
The domain of
A
a r b i t r a r y and
a > 0
u
c o n s i s t s of a l l
E
E
-
such t h a t
r a S(S)U
=
ds
a Jo
The second e q u a t i o n ( 4 . 1 ) implies t h a t
hence
ua
E
a+ h
-
I)ua =
D(A)
S ( S ) U ds
ua -+ u
as
(4.3) e x i s t s .
For u
-
.
+
(4.4)
h
S(s)u ds),
(with AU& =
But
(4.3)
define ua
g 1( S ( h )
.
I)u
a
( a f o r t i o r i , D(A))
-+
0,
1 g(s(a) - I)U)
.
t h u s t h e s e t of a l l elements of t h e form
is dense i n
E.
(4.5) ua
FIRST ORDER EQUATIONS
14 We prove next t h a t
t 2 0
for h, 0 ,
i s closed.
A
thus if
u
E
D(A)
u
If
then
u
after (4.5). Au -+ v. n
E
Let
E
as w e l l and
D(A)
.
(4.6)
E,
{u n
D(A)
be a sequence i n
un + u,
such t h a t
Then 1 j-(S(h)
1 1 ) u = l i m h(S(h) n+
-
h + O+
Taking limits a s
Let now
u
E
-
we see t h a t
shows t h e closedness of
ht
E we have
S(t)u
AS(t)u = S(t)Au Hence, for any
E
h
1 ) u = l i m (Au,) n n+m
u
E
D(A)
.
h
= v
and t h a t
Au = v,
which
A.
D(A).
Integrating
(4.6) i n
0
ds
S(s)u
S(s)Au ds =
5
s
5t
we o b t a i n
tAut = S ( t ) u
=
-
u
h
using
(4.6) i n t h e l a s t e q u a l i t y .
differentiable i n
t
>0
This shows t h a t
with
,
S ' ( t ) u = S(t)Au = AS(t)u
so that
t >_ 0.
S(^t)u i s a s o l u t i o n of (4.2) i n
This proves ( a ) i n t h e
d e f i n i t i o n of uniformly w e l l posed Cauchy problem. dence p r o p e r t y ( b ) i s checked a s f o l l o w s . for a l l
u,
llS(t)ull
t 2 0.
0 <_ s
5t
and
S(z)u
$3(t)il
i s continuous
- s)u(s) - s)Au(s) -
AS(t
u ( t ) = S(t)u(O) This completes t h e proof.
5
0
thus
) : ( u
i s an a r b i t r a r y
i s continuously d i f f e r e n t i a b l e
v(s) = S(t
v'(s) = S(t
t
must be a s w e l l bounded on
Using t h i s we can show that i f
s o l u t i o n of ( 4 . 2 ) t h e n in
Since
The continuous depen-
must be bounded on bounded s u b s e t s of
by t h e uniform boundedness theorem compacts of
i s continuously
S(t)u
.
-
s)u(s) = 0,
so that
FIRST ORDER EQUATIONS The c a s e tion
A
E
El;
< t <
-m
E
m.
t
is
&eJ
S(
-)
be a group s t r o n g l y continuous i n
Then t h e r e e x i s t s a unique c l o s e d , densely d e f i n e d o p e r a t o r
such t h a t
Q1
s,
conversely, we have
THEOREM 4.2.
A
(E)-valued func-
A
and s a t i s f y i n g ( 4 . 1 ) f o r a l l
t
The propagator of ( 4 . 2 ) i s a s t r o n g l y continuous group
c a l l e d a group. when
i s handled i n a similar way.
m)
(-w,
defined f o r a l l
S(t^)
15
i s t h e e v o l u t i o n o p e r a t o r of (4.2).
S(:)
We omit t h e p r o o f , which i m i t a t e s t h a t of Theorem 4.1. I n t h e f u t u r e , " s t r o n g l y continuous semigroup" means a semigroup s t r o n g l y continuous i n
t 5 0,
cates continuity i n
< t <
continuous i n
-w
t > 0, t
only w e l l posed i n
$1.5
while " s t r o n g l y continuous group" i n d i We s h a l l make no u s e of semigroups only
m.
which a r e n a t u r a l l y a s s o c i a t e d with Cauchy problems
2
0.
.
The inhomogeneous equation Let
f ( % ) b e a continuous
t
E-valued f u n c t i o n d e f i n e d i n
5
0.
S o l u t i o n s ( s t r o n g or genuine) of t h e inhomogeneous equation
a r e d e f i n e d i n t h e same way as s o l u t i o n s of (1.1). S i n c e t h e d i f f e r e n c e of two s o l u t i o n s of (5.1) i s a s o l u t i o n of (l.l),i f most one s o l u t i o n of
u(0) = uo Let S(%)
u ( : )
A
E
5:
there is at
(5.1) s a t i s f y i n g t h e i n i t i a l c o n d i t i o n
.
(5.2)
be an a r b i t r a r y s o l u t i o n of ( 5 . 1 ) s a t i s f y i n g ( 5 . 2 ) and l e t
be t h e propagator of (1.1). Given
t h a t the function
S(t
-
G)u(;)
t > 0
f i x e d we show e a s i l y
i s continuously d i f f e r e n t i a b l e i n
G)U'(~)
= 0 5 s 5 t with d e r i v a t i v e - S ' ( t - $)u(i) + S(t S ( t - hs)(u'(hs) - A u ( i ) ) = S ( t - z ) f ( i ) . I n t e g r a t i n g we o b t a i n
u ( t ) = S(t)uo
+ Jot
S(t
However, t h e converse i s n o t i n g e n e r a l t r u e : s o l u t i o n of (5.1) more t h a n c o n t i n u i t y of below a c l a s s i c a l r e s u l t .
f
-
s ) f ( s ) ds
.
t o make (5.3) a genuine
i s needed.
We prove
(5.3)
16
FIRST ORDER EQUATIONS
LEMMA 5.1.
Assume t h a t one of t h e following two c o n d i t i o n s
is
-s a t i s f i e d : (a)
f(t)
(b)
f(6)
D(A)
E
and
u
Suppose i n a d d i t i o n t h a t
2 (5.1) 2 Proof.
0
Af(t^) a r e continuous i n
f(;),
i s continuously d i f f e r e n t i a b l e i n 0
E
0
Then ( 5 . 3 )
D(A).
0
5 t 5 T,
or
5 t 5 T. i s a genuine s o l u t i o n
5 t 5 T. S(t^)uo i s a s o l u t i o n of (1.1)when
Since
u0
E
may d i s r e g a r d t h e f i r s t t e r m on t h e r i g h t hand s i d e of (5.3).
our claim it i s enough t o show that and u(t) = Assume ( a ) holds.
Lt
Lt
(Ads)
+
u(t>
A~(Z)
D(A),
E
( 0 <_ t
f ( s ) ) ds
D(A)
we
To prove
i s continuous
.
5 T)
(5.4)
Then
['( 1
n S
Au(s)ds =
.,
-
r)Af(r)dr
0
r"
=
\
S(s
(S(t
-
r)f(r)
-
f ( r ) ) dr
,
0
j'
which i s nothing i f n o t (5.4). On t h e o t h e r hand, suppose t h a t ( b ) i s v e r i f i e d . bY P u t s , u(t) =
-
t i
rt
=
j$ Lt-'
Then, i n t e g r a t i n g
S ( r ) f ( s ) d r ) ds
Lt (J"'
S(s)f(O)ds +
u o
S ( r ) f ' ( s ) d r ) ds
Y
Hence Au(t) = S ( t ) f ( O )
-
t f(0) +
-
(S(t
s)
-
I ) f ' ( s ) ds
i
= S(t)f(O)
-
f(t)
+
[t
S(t
-
s ) f ' ( s ) ds
.
I n t e g r a t i n g and r e v e r s i n g t h e o r d e r of i n t e g r a t i o n we o b t a i n (5.4). D e t a i l s a r e omitted.
.
17
FIRST ORDER EQUATIONS
Obviously, formula (5.3) makes sense w i t h much weaker conditions on f.
15 p c
Let
a.
The space
c o n s i s t s of a l l (equivalence)
Lp(O,T;E)
c l a s s e s o f ) s t r o n g l y measurable functions
f ( ^ t ) defined i n
0
5
t
5
T
such t h a t
endowed w i t h t h e norm
II*lIp;
c o n s i s t s of a l l (equivalence
Lm(O,T;E)
c l a s s e s o f ) e s s e n t i a l l y bounded s t r o n g l y measurable functions endowed w i t h t h e norm
llflIm
= e s s . SUP llf(t)ll
.
OitLT All t h e spaces
Lp(O,T;E)
are Banach spaces
[1957:1,
(HILLE-PHILLIPS
P. 891). If
f
element of
L'(0,T;E)
is, say, a function i n
not be d i f f e r e n t i a b l e anywhere or
t). W e s h a l l declare u ( t )
any
and
uo
u(t)
LEMMA 5.2.
Co,
w
Assume 0
5 t <_
T.
t h e constants i n Proof.
uo
E
E,
( ~ ( 2 ) may
may f a i l t o belong t o
D(A)
for
t o be a generalized s o l u t i o n of (5.1).
The following r e s u l t concerns c o n t i n u i t y p r o p e r t i e s of
continuous i n
i s an a r b i t r a r y
(5.3) i s not i n g e n e r a l a s o l u t i o n of ( 5 . 1 )
E,
f
E
L1(O,T;E).
Then
u( t^) u(;)
. 3
Moreover, we have
(1.9).
(5.5) i s r a t h e r obvious.
To prove t h e rest of Lemma 5.2 we
note that ib(t')
for
0 < t < t'.
-
u ( t ) / / <_
rt'lb(t'
-
s ) i i lif(s)ll ds
The f i r s t i n t e g r a l can be made small when
t'
-
t + 0
by c o n t i n u i t y of t h e i n d e f i n i t e i n t e g r a l of sunrmable f u n c t i o n s ; t h e second y i e l d s t o s t r o n g c o n t i n u i t y of
S(z)
and t h e uniform boundedness theorem.
18
$1.6
FIRST
OIlDER EQUATIONS
Miscellaneous comments. Theorem
3.1 was discovered independently by HILLE [1948:1] and
YOSlDA [1948 :11 i n t h e p a r t i c u l a r case where
= 1. The proof f o r t h e 0 g e n e r a c a s e was discovered, a l s o independently, by FELLER 11953:1],
MIYADERA [1952:1] and PHILLIPS [1953:1].
C
I n all t h e s e papers, Theorem
3.1 i s formulated i n t h e l a n g u a g e of s t r o n g l y continuous semigroups and t h e i r generators r a t h e r t h a n t h a t of a b s t r a c t d i f f e r e n t i a l equations and t h e i r propagators. HILLE [1952:11.
The proof of Theorem
3.1 presented here follows
E a r l i e r r e s u l t s on semigroups of operators were obtained
by NATHAN, FUKAMIYA and GELFAND ( f o r more information on t h e h i s t o r y of t h e subject see HILLE-PHILLIPS [1957:1] or t h e author [1983:1, p.
91 1.
Theorem 1.1 i s due independently t o MIYADERA [1951:1] and PHILLIPS [1951:1], who improved on l e s s general statements of DUNFORD and HILLE. I n i t s present form, t h e notion of uniformly well posed ( a b s t r a c t ) Cauchy problem i s due t o LAX ( s e e LAX-RICHTMYER [1956:1].
The notion of
a b s t r a c t Cauchy problem was introduced by HILLE [1952:2 1 ( s e e a l s o HILLE [1953:11,
[1953:21,
[1954:11,
[1954:21,
[1957:11, PHILLrPS [1954:11)
although h i s d e f i n i t i o n of a w e l l posed Cauchy problem i s somewhat d i f f e r e n t from t h a t employed here.
For a thorough discussion of t h e ab-
s t r a c t Cauchy problem and t h e c l a s s i c a l Cauchy problem of solving a p a r t i a l d i f f e r e n t i a l equation with i n i t i a l d a t a prescribed on a noncharacter;istic surface see t h e author [1983:1, p.
54 1.
I n p a r t i c u l a r , t h e present
formulation of t h e Cauchy problem o r i g i n a t e s i n t h e concept of properly posed Cauchy problem formulated by HADAMARD
EXERCISE 1. L e t
Snow t h a t
A
E
&,
A
[1923:1].
be a bounded operator i n a. Banach space
E.
t h a t is, t h a t t h e Cauchy problem f o r
u'(t) i s uniformly well posed i n
-m
C
(6.1)
= Au(t)
t <
w.
The group
S ( t ) generated by
A
(or, equivalently, t h e propagator of (6.1)) i s given by
t h e s e r i e s (6.2) converging uniformly on compact subsets of Prove t h a t
S(t)
can a l s o be expressed i n t h e form
-m C
t <
m.
FIRST ORDER EQUATIONS
[ eAtR(h;A) r
where
dh
19
,
(6.3)
i s a simple closed curve (or t h e union of a f i n i t e number of
t h e s e ) o r i e n t e d counterclockwise and e n c l o s i n g t h e spectrum
its (their) interior.
if
(1)
1
>
b)
+’
ti)
2
u(A)
in
Show t h a t IlS(t)ll
5
Ils(t)ll
5
, where
> -w-
w
= sup {Reh;
+
- = inf
li)
h
{Reh;
a(A)]
,
(6.6)
E rs(A)]
,
(6.7)
E
Produce a n example where ( 6 . 4 ) ( r e s p . ( 6 . 5 ) ) does n o t hold with =
(resp.
W
1-
-u-). Show t h a t
=
c a n be extended t o a f u n c t i o n
S(t)
+
S(5) holomorphic ( a s a (E)-valued f u n c t i o n ) f o r all i s continuous i n t h e norm of
S(t)
5;
i n particular
(E).
h
EXERCISE 2.
Let
t = 0
(continuity a t
of ( E )
b e a semigroup continuous i n t h e topology
S(t)
suffices).
Show t h a t t h e i n f i n i t e s i m a l
h
generator for
n
=
IlhR(A;A)
A
S(t)
of
1 and c o n t i n u i t y of
- 111 < 1
A
for
bounded i n v e r s e ) . and
i s a bounded o p e r a t o r ( H i n t : at
S(t)
t
=
0
use formula
t o show t h a t
hR( A;A)
sufficiently large so t h a t
Show t h a t
has a
(6.2)
admits t h e r e p r e s e n t a t i o n s
S ( : )
(3. 8)
(6.3). EXERCISE
3. Let
E = C
0
be t h e Eanach space o f all
(-m,m)
(complex-valued) continuous f u n c t i o n s
and such t h a t
U(X)
4
0
as
1x1
-
a,
u(x)
defined i n
-m
<x c
m
endowed with t h e norm
Define S ( t ) u ( x ) = u(x + t ) Snow t h a t
S ( : )
(-m
i s a s t r o n g l y continuous group i n
infinitesimal generator.
(6.9)
m)
E.
Identify i t s
20
FIRST ORDER EQUATIONS
EXERCISE
4.
Prove t h e r e s u l t of Exercise
inf'initesimal g e n e r a t o r ) i n t h e space
6.3 (and i d e n t i f y t h e 15 p <
LP(-m,m),
m.
Show t h a t
(6.9) i s not strongly continuous ( o r even s t r o n g l y measurable) i n Lm( -a,m) . EXERCISE
5.
Define S(t)u(x)
i n t h e space
C
0
=
u(x + t )
(t
2
(6.10)
0)
of all continuous f i n c t i o n s defined i n x
[O,m)
tending t o zero at i n f i n i t y , endowed with t h e
supremum norm.
2
0
Show t h a t
i s a s t r o n g l y continuous semigroup and i d e n t i e i t s i n f i n i t e s i m a l
S(t)
generator.
Do t h e same i n t h e spaces
EXERCISE
6.
LP(O,m)
(t
5
x <
m.
(0
5
x < t)
m)
(t
=
2
0).
(6.11)
i s a s t r o n g l y continuous semigroup i n t h e spaces
S(:)
(15 p C
m)
functions defined i n u(0) = 0
15 p <
Define
S(t)u(x)
Show t h a t
Lp(O,m),
and i n t h e space
x
(but not i n
2
0,
C
070
of all continuous
[O,m)
tending t o zero a t i n f i n i t y and such t h a t
Co[O,m)).
I d e n t i f y t h e i n f i n i t e s i m a l generator
i n each case.
EXERCISE Show t h a t
7.
A E Et
Let
A
be a normal operator i n a H i l b e r t space
i f and only i f
u
+
(defined by
H.
(6.6) i s f i n i t e .
Prove t h e formula (6.12)
for t h e semigroup
generated by
S(c)
of t h e i d e n t i t y associated with
A,
where
P(dh)
i s the resolution
Using t h e f u n c t i o n a l c a l c u l u s for
A.
normal operators show t h a t
Show t h a t i f
A
EXERCISE 8. Show t h a t
A
E
&
i s s e l f a d j o i n t t h e n each Let
A
S(t)
i s self adjoint.
be a normal operator i n a H i l b e r t space
i f and only i f
W+
and
w-
E.
(defined by ( 6 . 7 ) ) a r e
FIRST ORDER EQUATIONS
21
Prove t h a t t h e formula (6.12) holds i n
finite.
-m
and t h a t
(6.13) and
hold.
iA i s a s e l f a d j o i n t o p e r a t o r t h e n each
Show t h a t i f
EXERCISE
9.
Let
H, A
H i l b e r t space
i s normal.
S(t)
be a s t r o n g l y continuous semigroup i n a
S(.f)
i t s infinitesimal generator.
Show t h a t
(3.8) show t h a t EXERCISE 1 0 .
i s normal ( H i n t :
A
(HILLE [1938:1],
i s self a d j o i n t
Assume t h a t each u s i n g t h e f i r s t formula
i s normal).
R(A;A)
hypoteses of Exercise 9 , A
S(t)
.
i s unitary
SZ.-NAGY [1938:11).
assume t h a t each
(Hint:
R(A;A)
show t h a t
Under t h e
i s self adjoint.
S(t)
Then
i s s e l f adjoint f o r
h red). EXERCISE 11.
(STONE [1932:11)
9, assume t h a t each EXERCISE 1 2 . Banach space
S(t)
Let
E.
Under t h e hypoteses of Exercise
i s unitary.
iA
Then
is self adjoint.
be a strongly continuous semigroup i n a
S(;)
Define w = l i m
2t l o g
.
Ils(t)\\
(6.15)
t - m
Show t h a t t h e l i m i t e x i s t s ( t h e value
(a) hi
c
W.
If
(b)
hi1
>
hi
'11
=
-m
i s allowed)
and
then
(6.16) (6.16) may n o t hold f o r
although for
(I)'
<
fJ,
g e n e r a t o r of
(r)
(6.6).
H i l b e r t space and MERCISE 13. serninrouD
S(<)
=
(1)
itself. ( c )
(6.16) cannot hold
i s a bounded o p e r a t o r t h e n
A
defined by
W'
Using Exercise 6.1 show t h a t i f t h e i n f i n i t e s i m a l
(d)
A
Show t h a t
(6.17) h o l d s
a s well i f
E
is a
i s a normal o p e r a t o r .
Show, by means o f a n example, t h a t t h e r e e x i s t s a i n separable H i l b e r t space
H
with i n f i n i t e s i m a l
22
FIRST ORDER EQUATIONS
generator
A
such t h a t
>
(r)
S(i)
More g e n e r a l l y , we can c o n s t r u c t
lib+,
i n such a way t h a t
where
h >0
i s a r b i t r a r i l y preassigned.
See ZAECZYK
[1975:11;
e a r l i e r (although l e s s elementary) example can be found i n HILLEPHILLIPS
[1957:1, p . 6651 where
EXERCISE
14.
n(A)
3.:?
Prove Lemma
i s i n f a c t empty ( 1 )
so t h a t
u s e the f a c t that
(Hint:
with
(6.18) EXERCISE 15.
Prove t h a t t h e “ r e d ” i n e q u a l i t i e s (3.24) imply t h e i r
complex c o u n t e r p a r t s ( 3 . U ) .
(Hint:
if
Re h >
f~
express
R(A;A)
by
means of i t s Taylor s e r i e s
with
p
real.
EXERCISE
R(A;A)
=
Then l e t
p
16. Let
i n f i n i t e s i m a l generator, Show t h a t i f
u
E
D(A)
be a s t r o n g l y continuous semigroup,
S(t)
t h e niimber defined by
(11
(6.15),
its
A
w’ >w,
0.
then
(6.20) t h e l i m i t being uniform on compact s u b s e t s of
l i m i t is
EXERCISE 17.
Let
E
such t h a t
h(h ; A ) / / 5 u
E
D(A)
For
t = 0
the
be a ( n o t n e c e s s a r i l y densely defined) l i n e a r
A
operator i n a Banach space
Show t h a t i f
t > 0.
(6.3)).
(compare with
$u
C/h
R(X;A) exists for
( h > w)
.
X >
w
(6.21)
then
l i m
A-
+m
hR(h;A)u = u
.
(6.22)
and
FIRST ORDER EQUATIONS
23
FOOTNOTES TO CHAPTER I (1) We d e n o t e h e r e by
not t h e d e r i v a t i v e of
( E ) ) applied t o valued funct i on s .
u.
S'(;)u S(;)
t h e d e r i v a t i v e of t h e f u n c t i o n
S(t^)u
(which may f a i l t o e x i s t i n t h e norm of
The same o b s e r v a t i o n a p p l i e s t o o t h e r o p e r a t o r The c o r r e c t n o t a t i o n
(S(i)u)'
becomes cumbersome
later. ('2)
Roughly speaking,
R( i;A)u.
u(t)
i s t h e i n v e r s e Laplace t r a n s f o r m of
However, t h e c o r r e s p o n d i n g i n t e g r a l may n o t be c o n v e r g e n t
-1
-2
...
t h u s we u s e t h e w e l l known formula R(h;A)u = h u + A Au + + A- mAm -1 u + hmmR(h;A)Amu f o r m = 3, which a l l o w s d i f f e r e n t i a t i o n w i t h respect t o
t.
24
CXIIPTER I1
THL CAUCHY PROELEM FOR SECOND ORDER EQUATIONS COSINE FUIVCTION THEORY
The Cauchy problem f o r second o r d e r e q u a t i o n s .
$11.1
A t h e o r y f o r t h e equation
u"(t)
(1-11
Au(t)
=
t h a t p a r a l l e l s c l o s e l y t h a t of (1.1.1)can be developed without undue difficulty.
We prove t h e fundamental r e s u l t s i n t h i s chapter.
s o l u t i o n of (1.1)in t E-valued f u n c t i o n u(:)
30
A
i s a twice c o n t i n u o u s l y d i f f e r e n t i a b l e
such t h a t
u(t)
E
D(A)
and (1.1)h o l d s t h e r e ;
s o l u t i o n s i n d i f f e r e n t i n t e r v a l s a1.e defined accordingly.
The Cauchy
problem i s now t h a t of f i n d i n g s o l l t i o n s of (1.1)t h a t s a t i s f y t h e i n i t i a l conditions u(0)
=
u0
, u'(0)
=
u1
(1.2)
The Cauchy problem i s w e l l posed o r p r o p e r l y posed i n
2
t
i f and only
0
if (a)
uo,ul
E
D
There e x i s t s a dense subspace there e x i s t s a solution
D
of
u ( 7 ) of
E
such t h a t for any
(1.1)2
t
2
satisfying
0
(1.2). (b)
t
2
0
There e x i s t s a nonnegative, f i n i t e f u n c t i o n
C(<)
defined i n
such t h a t
llu(t)ll
5
C ( t ) ( / l u ( ~ ) l l+
IlU~(O>ll>
The d e f i n i t i o n s of well posed problem in posed problem i n
[0,m)
and
(-my=)
(-m,m)
(t
2
(1.3)
0)
and uniformly well
a r e obvious analogues of t h e f i r s t
o r d e r case and we omit t h e d e t a i l s . We d e f i n e now two p r o p a g a t o r s o r s o l u t i o n o p e r a t o r s
c(<)
and
8(<)
25
SECOND ORDER EQUATIONS
a s follows: C(t)U
for u
D,
E
u(t)
where
v(f)
(1.4)
u(t)
(1.1) with
i s t h e s o l u t i o n of
u ( 0 ) = u, u ' ( 0 ) = 0 ; 3 ( t ) solution
=
i s defined i n t h e same way i n r e l a t i o n t o t h e v ( 0 ) = 0, v ' ( 0 ) = u .
satisfying
@ ( t )and
Both
8(t)
a r e extended by c o n t i n u i t y t o bounded, everywhere defined operators E
satisfying
IlC(t)ll
1. C ( t ) ,
Il8(t)il
5
It follows from t h e
C(t).
definitions that S(t)u
u(:)
If
ds.
=J:@(S)U
i s an a r b i t r a r y s o l u t i o n of
(1.5)
(1.1) we have
The proof i s t h e same a s i n the f i r s t order case.
u(i)
to
=
C(2 + t ) u
and
v(i)
=
S(i + t ) u
Applying t h i s e q u a l i t y
(1.5)
(and u s i n g
i n the
second i n s t a n c e ) we i n s t a n t l y o b t a i n
+ S(s)@'(t)u,
(1.7)
= @ ( s ) d ( t ) u+ S ( s ) @ ( t ) u ,
(1.8)
@(s + t ) u = @(s)C(t)u
a(s for
u
D
E
+ t)u
(obviously,
(1.8) may be extended t o all u
E
E
by
continuity). The next r e s u l t shows (among o t h e r t h i n g s ) t h a t t h e two notions of p r o p e r l y posed problem coalesce i n t h e second order case.
THEOFEM 1.1. Let t h e Cauchy problem for t
2
&
0.
Then
( i ) The Cauchy problem for
so t h a t
(-m,m>,
@(;)
(1.1) be well posed i n
(1.1)i s u n i f o r d y well posed
i s s t r o n g l y continuous i n
@(;)
(-,m).(ii)
s a t i s f i e s t h e cosine f u n c t i o n a l equations C(0) hi?)
=
I, C(S
+
t) + C(~-t)=2@(s)@(t)
There e x i s t constants
C ,m 0
(-m
<
S,
t <
m)
.
(1.9)
such t h a t
(1.10)
26
SECOND CRDER EQUATIONS
-
u(c)
(1.3)
obvious t h a t
a solution i n
t
u(-G)
with
u'(0)
extended t o a s o l u t i o n i n
2
-m
0
=
-m
u ( t ) = -u(-t), t < 0)
( r e s p . by
i f it i s v e r i f i e d i n t
identity
u(0) = 0 )
u(t)
u(-t), t > 0
by
i s verified i n
(a)
thus
=
E
(1.7) ( f o r u
The proof of Given
E
t
for
D)
u
E
0
m
(1.11) and a d d t h e two
(1.9)
(1.11): t h e r e s u l t i s E
E
applied t o
by c o n t i n u i t y .
(iii) i m i t a t e s c l o s e l y t h a t of Theorem 1.1.1 ( i i i ) .
t h e r e e x i s t s a n u l l subset
E
-m
.
-t
and
and t h e e q u a l i t y can be extended t o d l u
D,
can be
It f o l l o w s from t h e above c o n s i d e r a t i o n s t h a t
0.
resulting e q u a l i t i e s using
u
On t h e o t h e r hand,
m.
(resp. with
@ ( - t=)@ ( t )8,( - t ) = - 8 ( - t ) Write
0.
maps s o l u t i o n s i n t o s o l u t i o n s , t h u s it i s
can be extended t o
1. 0
3
t
(1.1) i s w e l l posed i n
Proof: Assume t h e Cauchy proklem for The a s s i g n a t i o n
subspace
Eo
sequence
(tn] ,k d o
0
of
{u,}
such t h a t t h e s e t
such t h a t t h e
[O,m)
L r@(t)uo; t { do]
{u,)
generated by
d
i s s e p a r a b l e and a
U F@(tn)uo]
i s fundamental
-
i n Eo; accordingly, i f e0 = ( d o tl) u ( d o + tl) U ( d o - t2) U . . . , e 0 i s a n u l l s e t and it f o l l o w s from t h e second e q u a t i o n (1.9) t h a t
@W0 E Eo We show next t h a t
#
(t
eo)
(1.12)
*
Il@(t)lli s bounded on i n t e r v a l s
Assuming t h e o p p o s i t e we o b t a i n a bounded sequence
Tun]
5 E,
\l@(tn)unl/ 2 n.
j\unl/ = 1 with
[-@,PI, B <
3 n
{t
m.
and a sequence
Operating e x a c t l y a s i n t h e
proof of Theorem 1.1.1 we can t h e n c o n s t r u c t a s e p a r a b l e subspace
un
E containing all t h e @ ( t ) E , 5 Em f o r t e,; of
t
extended t o n e g a t i v e
and a n u l l s e t
since not
in
m(t),
Chapter I, t h e f u n c t i o n
C(-t)
=
t h i s r e l a t i o n can be
t h e norm of t h e r e s t r i c t i o n of
Em i s defined and measurable €or a l l
if
t f e m , m(s + t ) 5 E
eft)
A s i n t h e semigroup c a s e i n
-1,.
to
+ sup { l l @ ( s - t ) u I I ; u
Em
e m such t h a t
t;
moreover,
SUP
~ 2 l I @ ( s ) ~ ( t ) u ul l ;c E,,
E,
/Iu11 5 13
5
2m(s)m(t)
lluII +
m(tn)
@(t)
>n
and
5 1.3
m(s-t).
The contra-
d i c t i o n i s t h i s time obtained with t h e a i d of t h e following r e s u l t :
LEMMA 1 . 2 . defined i n
-00
Let m(;)
m
be a nonnegative f i n i t e measurable f u n c t i o n such t h a t
m(-t)
=
m(t)
27
SECOND ORDER EQUATIONS
where e [-@,@I,
i s a null set i n
B <
m.
a > 0, s + t = a, t f e .
Proof: Let =
+ m(a- 2 t )
2m(a- t ) m ( t )
must occur: (c)
a)
m(a- 2 t )
m ( t ) 2-/2.
t c [-a,a]
-
3 [-a,a],
m(a)
[-p, a 3 U [ a , @ ] with o r i g i n we note t h a t , m(s- t ) s
if
.(a)
we have
m(i)
near
5
2
2a.
m(f)
m.
2rn(s)m(t) + m(s
To show boundedness n e a r t h e
+ t ) for t
-e;
(1.13)
the
taking
t >
o
t t h e proof of Lemma 1 . 2 i s complete.
- @ ( t o= )2 @ ( t ) ( @ ( t 0+
CX C f3
(a-2d)
Arguing as i n
i s even we deduce from
End o f proof of Theorem 1.1. Let
Take
t h e s e t of a l l
u
e U d U (a-d)
u
E
E, t o and
A few manipulations with t h e cosine f u n c t i o n a l e q u a t i o n
@(to -t h )
+ m(s-t) =
i s bounded on every s e t of t h e form
0 < 0: < p <
since
2m(s)m(t)
- t ) 2 .im(a)/2 2 1 and d i s
4 / d / = I d ] + / a - d / + l a - 2dl
we deduce t h a t
inequdity
m(a
m(a)/2 ( b )
Accordingly,
thus
Lemma 1 . 1 . 2
2 2
Since
one o f t h e following t h r e e i n e q u d i t i e s
m(t) L G ) / 2
with
f i x e d and
i s bounded on i n t e r v a l s
m(c)
(-a,m).
and i n t e g r a t e i n
t h u s again c o n t i n u i t y of
h
01
@(<)u
h
arbitrary.
(1.9) show
that
- t ) - @(to - t ) )- ( @ (+t ho- 2 t ) - @ ( t- o2t)). 5 t 5 f3; we o b t a i n
for a l l
t
follows from i t s mean con-
tinuity. To show ( i i ) we apply once more t h e uniform boundedness p r i n c i p l e
Il@(t)l\ i s bounded i n 0 5 t f 1. Choose 0,W l/@(t)ll f COeWt i n 0 5 t 5 1 and 211@(l)l/e-W+ e-2w f 1.
and conclude t h a t such t h a t Assume t h a t
(1.10)
t h u s it h o l d s f o r
all
t
proof.
2
0;
since
holds f o r
0 ft
5
n
+
0 ft
5n
.
Then
1. By induction,
(1.10) i s v a l i d f o r
@ ( - t=) @(t),it i s v a l i d for a l l
t.
This ends t h e
28
SECOND ORDER EQUATIONS
The comments a f t e r Theorem 1.1.1 have an obvious c o u n t e r p a r t here: we omit t h e d e t a i l s .
bound on
Note a l s o thltt
y i e l d s an exponential
(1.10)
(1.5):
through
E;
(1.14) if
#
w
for
0;
511.2
=
we o b t a i n
0
The g e n e r a t i o n theorem. The following analogue of The'wem 1.3.1
Let
THEOREN 2.1.
A
uniformly w e l l posed i n
The Cauchy problem f o r
with propagator
(-m,m)
R(h2;A)
i f and only i f
be c l o s e d .
holds.
e x i s t s i n t h e h a l f space
Proof: The f i r s t t a s k i s t o show t h a t
(1.1)
@(t) satisfying Reh > and
2
(1.10)
i s nonempty ( i n t h e
p(A)
f i r s t o r d e r case, t h i s was a byproduct of t h e proof and d i d not r e q u i r e a s e p a r a t e argument ).
cp(t)
such t h a t
Choose a twice continuously d i f f e r e n t i a b l e f u n c t i o n
cp(t) = 1 i n
If
u
E
D =
then
@(c)u
A@(t)u, AQ(A)U
that
A
=
5
-h+
D(A)
t
2
2
and d e f i n e
=lo-
e A t cp(t)@(t)u dt
(2.2)
r"
e-htcp(t)@"(t)u d t =
-hu +
h2Q(A)u
- 0
h2Q( A)u
i s closed and
Q(A)E
t h e form
in
i s twice continuously d i f f e r e n t i a b l e and
(e-htcp"(t)
Since
1, w ( t ) = 0
t h u s we o b t a i n i n t e g r a t i n g by p a r t s twice t h a t
+s,' =
5t 5
?m
Q(A)u
@"(t)u
0
- 2he- j t c p ' ( t ) ) @ ( t ) u + M( A)LL
Q(A)
and extend
and
dt =
. M(h)
(2.3) a r e bounded we can e a s i l y show
(2.3) t o all
u
E
E;
we r e w r i t e it i n
29
SECOND OKDER EQUATIONS
A simple e s t i m a t i o n y i e l d s
A
for
2
6 > 0.
r e a l s o l a r g e t h a t t h e r i g h t hand s i d e of
A
Take now
- h-'M(h))-l
(2.5)
i s l e s s than
(2.4)
on t h e r i g h t by it we o b t a i n
1. Then
A
(I
-1 2 ( A I-A)P(A)
e x i s t s and multiplying
I ,
=
(2.6)
2
P( A) = Q( A ) ( I - h-'M(h))-', so t h a t A I - A i s onto. We can show t h a t P(h) i s 1 - 1 i f we assume i n a d d i t i o n t h a t h > W ; t h e n i f 2 ( h I - A ) u = 0 t h e function u ( t ) = cosh(ht) s o l v e s (1.1) b u t does
where
not obey
(1.3) w i t h C ( t )
We have t h e n shown t h a t
= Co exp(IJt), a c o n t r a d i c t i o n unless u = 0 . 2 Arguing R(A ;A) e x i s t s and e q u a l s h-lP(A).
now e x a c t l y as i n Theorem 1.1.1 we show t h a t @(t)D(A) 5 D ( A )
which a g a i n i m p l i e s t h a t
R(A;A)@(t) = @ ( t ) R ( A ; A )
and
A@(t)u = @(t)Au
Making use of
u (1.3.6)
for
u
E
E
D;
D
(2.7)
we o b t a i n
t h e e q u a l i t y i s extended t o
and i m p l i e s t h a t
u
E
D(A)
@ ( i ) u i s a s o l u t i o n of
i n t h e same way as (1.1) f o r any
i n o t h e r words,
D(A);
where
(2.7)
.
2
0 of every u
i s t h e space of a11 " a d m i s s i b l e i n i t i a l values" c o n s i s t i n g
D
2
D1
t i o n of t h e space
S(G)u
such t h a t
@ ( i ) u i s a s o l u t i o n of
such t h a t
D
(1.1). (The i d e n t i f i c a -
of a l l "admissible i n i t i a l d e r i v a t i v e s "
s a t i s f a c t o r y and w i l l be postponed u n t i l t h e next c h a p t e r ) . Let now
Reh >
W.
Define
/' 0
m
R(A)u for
u
E
E.
If
u
i s a s o l u t i o n i s c o n s i d e r a b l y more complex and l e s s
u
E
D(A)
and
=
T > 0
e-At@(t)u d t we have
30
SECOND ORDER EQUATIONS
.
+ A2 rTe-AtC(t)u d t JO
Since
@"(t)u
@(t)Au,
=
@'(T)u
=
rT
@ ( t ) A u dt
0
a n d we can t a k e l i m i t s i n
R(A)u c D ( A )
AR(A)u
with
u
extended t o all
(2.9)
F
E
=
so t h a t
h 2
T
2s
2 A R(1)u
-
m
,
t o conclude t h a t
- k; again,
5 D(A)
R(A)E
t h i s e q u a l i t y can be
and
.
-1 2 ( A I-A)R(A) = I
(2.10)
-
showing t h a t ( A I A ) i s onto. We have a l r e a d y proved b e f o r e t h a t 2 h I - A i s one-to-one, so t h a t A p(A) i f Reh > w and R(h)
=
D i f f e r e n t i a t i n g iinder t h e i n t e g r a l s i g n we deduce t h a t
M(A2;A).
m
(AR( A2;A))(")u
=
[
(-1)"
"
t
(1.10) i n
2
(2.11)
( 1 . 3 . 8 ) ) and. a l l the inequalities
( s e e t h e j u s t i f i c a t i o n of using
tne-At@(t)u d t
0
(2.1) follow
0.
Solutions o f
We prove now t h e o t h e r h a l f of Theorem 2.1.
(1.1)
a r e defined by t h e formula ( 2 )
-u ( t ; u )
=
t2
u + 7 Au +
t 4 A 2u + 1
2.
At
W'+im
R(A2;A)A3u
c ~ l u W ' - j m
(2.12)
(t for
u
E
D(A3)
s o l u t i o n of
and
0'
>
L
0)
- c .
The checking t h a t
w,O.
(1.1) i s done j u s t a s i n Theorem
t h e same way t h a t
dh
A5
llL(t;u)ll
= O(exp
-u ( ~ , u )
= U,
(w't))
-
u'(O,U)
u(t;u)
is actually a
1.3.1; a l s o , we prove i n
as = 0
t
-
m,
(2.13)
and
L m e - h t L ( t ; u ) d t = hR(h2 ;A)u
for
Re7 >
W'.
It follows from t h i s e q u a l i t y and from Lemma 1.3.2 t h a t
31
SECOND (\WF:Y FCUATIONS
(2.14) hence, using i n e q u a l i t i e s
(2.1),
l l h t ; ~ ) l l5 C o I I ~ I / l i m n-
p-y,1
-(n+l)
wt
wt
= cOllulle
ft 1 0 )
.
(2.15)
m
Condition ( a ) i n the d e f i n i t i o n of uniformly well posed problem f o r (1.1) i s v e r i f i e d a s follows:
if u
u
0’ 1
E
D(A3),
i s given by
(1.2)
u(t)
G(t;u )
=
0
-1
Lt-
@(t)U
(E)
u
E
D(A3)
- valued
We s h a l l show t h a t i f 0
we define
(2.16)
= i(t;u)
E,
ohtaining a
s t r o n g l y continuous function with
-S ( t ) u 2
(b)
a n d extend it by c o n t i n u i t y t o all of
A second operator valued function
t
.
u ( s ; u ~ )d S
To check t h e continuous dependence statement
for
a solution satisfying
u(;)
-8 ( t )
=Lt
i s defined by
.
“@s)u d s
i s an a r b i t r a r y s o l u t i o n of
(1.1) i n
we must have
u(t)
=
E(t)u(O) + Z(t)u’(O).
(2.18)
This i s done a s i n the f i r s t order case and we only sketch t h e d e t a i l s . The f i r s t step i s t o show t h a t and consequently with functions
h(t)
A;
c(t)
= “@t)R(h;A)3 and
=
“(t)R(A;AP
commute with
h ( t ) = i(t)R(A;A)3
continuously d i f f e r e n t i a b l e and s a t i s f y h’(t)
z(t)
and
R(X;A)
t h e second i s t o note t h a t t h e operator valued
h’(t)
= AZ(t)R(A;Af’=A h ( t ) .
=
a r e (twice)
h ( t ) , and the equality
Accordingly
32
SECOND OFTIER EQUATIONS
and
(2.18)
h ( 0 ) = R(A;A)3,
follows noting t h a t
h(0)
=
This com-
0.
p l e t e s t h e proof of Theorem 2.1.
REMARK 2.2. Theorem 2.1 shows i n p a r t i c u l a r t h a t we have t h e r e l a t i o n 2 2 t h e region t o t h e l e f t o(A) 5 ;Reb 5 w } = {A;Reh 5 b) - (Imh)2/4m23, 2 I n p a r t i c u l a r , if o f a p a r a b o l a p a s s i n g through t h e p o i n t s U2, 2 2iw
{w
.
a(A)
o=O,
i s contained i n t h e n e g a t i v e r e a l axis.
A n o t a t i o n s i m i l a r t o t h a t f o r t h e f i r s t o r d e r c a s e w i l l be u s e f u l here.
@(t) s a t i s f i e s
g2(Co,o) w
2
for
The following analogue of Theorem
&
THEOREM 2.3. t h e h a l f plane continuous i n
t
2
km
u
E
2 Q
(Co,w)
wt Cge
@(
=
for
< 0 by Theorem 2 . 1 ) .
1.3.4 holds:
(t
L
:1 1 )
hR(h2 ;A)u
2 R( A ; A )
exists i n
(2.20)
0).
(Reh
> ho).
(2.a)
i s t h e s o l u t i o n o p e r a t o r of
The proof i m i t a t e s t h a t o f Theorem
REMARK 2.4.
8(u)
E
eht@(t)u d t
F
05
and such t h a t
0
Assume t h a t , f o r each
A
if
an o p e r a t o r valued f u n c t i o n s t r o n g l y
ll@(t>ll5
Then
W
-a
i s t h e union of a l l
8 ( W )
be a n o p e r a t o r such t h a t
A
hot @(:)
Reh
2 K (CO,w)
to
g2 i s t h e union of all t h e
and
2 Q ( 0 ) i s empty f o r
(note t h a t
0
The c l a s s
(1.10).
21
C0
belows
(1.1) i s (uniformly) w e l l posed i n
t h e Cauchy problem for and
A
A c l o s e d , d e n s e l y defined o p e r a t o r
(1.1).
1.3.4 and we omit it.
I n e q u a l i t i e s ( 2 . 1 ) follow from t h e i r r e a l c o u n t e r p a r t s
( s e e Remark 1.3.5).
$11.3 A
Cosine f u n c t l o n t h e o r y . (E)-valued f u n c t i o n
C(i)
defined i n
-m
C m
i s called a
c o s i n e f u n c t i o n o r cosine o p e r a t o r f u n c t i o n i f t h e c o s i n e f u n c t i o n a l equations
(1.9) hold, t h a t i s , if
33
SECOND ORDER EQUATIONS
+ t) +
C ( 0 ) = I, C(s
s,t
f o r all
in
The propagator
(-m,m).
(3.1)
C ( s - t ) = 2C(s)C(t)
of a well posed second
C(t)
o r d e r Cauchy problem i s a s t r o n g l y continuous c o s i n e f u n c t i o n ; we s h a l l show i n t h i s s e c t i o n t h a t , j u s t as i n t h e f i r s t o r d e r case, t h e converse
i s also true.
c(G)
THEOREM 3.1. &eJ -m
A
c(f)
(S2 such t h a t
i s t h e e v o l u t i o n o p e r a t o r of
1 -
Au = l i m (C(h) 2 h-0 h of
=
i s t h e s e t of all
A
speaking, ii
- 21 +
(3.1) yields C(t)
(note t h a t
c(<) is
The i n f i n i t e s i m d g e n e r a t o r o f
Proof:
D(A)
be a. c o s i n e f u n c t i o n s t r o n g l y continuous i n
Then t h e r e e x i s t s a unique c l o s e d , d e n s e l y defined o p e r a t o r
a.
C(-h))u C(-t)
u
=
2 l i m (C(h) - I)u h-0 h
setting
s = 0).
(3.3)
The domain
such t h a t t h e l i m i t e x i s t s (roughly
i s t h e "second d e r i v a t i v e of
A
c E, a > 0 .
defined by
C
a t the origin").
Let
We define
ua =
- t)C(t)u
-?-
["(a a2u 0
Using (3.1) we o b t a i n 2
- (@(h) - I)ua
=
dt
-
.
(3.4)
t
h
- t)@(t)u
h2 h
.-
4 -
-
- t ) @ ( t ) ud t
a2h2 + h -
2 -
-h-
2 -
+
h
- t)@(t)udt
a%*
-h
- t ) @ ( t ) u d t, (3.5)
a2h2 thus
ua
E
D(A)
with AU"
ua
Since that
A
f o r all
-
u
as
a
-
hence
$ (c(a>-
I)U
a
0
it r e s u l t s t h a t
i s closed we n o t e t h a t
s,t;
=
(3.1)
D(A)
i s dense i n
implies t h a t
C(s)C(t)
E. =
T o show
C(t)C(s)
34
SECOND ORDER EQUATIONS 2 2 ( @ ( h ) -I)@(t)ll = @ ( t7 ) ( @ ( h ) -I)U
h
h2 for
h
#
Accordingly,
0.
u
if
D(A)
E
@(t)u
then
D(A)
E
and
A@(t)II = @(t)Au
f o r any
u
E.
E
Hence
after (3.6). Let Aun v. Then
{u }
-
2
(1.7)
n
( @ ( h )- 1)u
be a sequence i n
= l i m
so t h a t t a k i n g l i m i t s as
h
2 ( @ ( h )2
h
n-m
h
+
D(A)
h
I ) u n = l i m (Au ) n n- m
u
we deduce t h a t
0
D(A)
E
-
un
such t h a t
=
h
v
u,
,
and
Au = v
a s claimed.
If u
E
D(A)
we have
r t ( t- s ) @ ( s ) A u d s
=
' 0 = A
rt(t-
s ) @ ( s ) u ds =
Lt t2
( t - s ) A C ( s ) u ds
Au
t
=
C(t)u
- u.
(3.9)
0
Hence
@(G)u i s twice continuously d i f f e r e n t i a b l e i n @"(t)u
so t h a t
=
@(<) i s a s o l u t i o n of
@(t)Au (3.2)
=
-m
m
A@(t)u,
in
-m
C
with
(3.10)
t C
and t h e e x i s t e n c e
p o s t u l a t e i n t h e d e f i n i t i o n of w e l l posed problem i s v e r i f i e d .
To show
continuous dependence, we proceed a s i n Theorem 1.4.1; f i r s t we prove
ll@(t)lli s bounded
with t h e help of t h e uniform boundedness theorem t h a t on compact subsets of
and t h e n define
(-m,m)
s(t)u
rt@(s)u
= $'
so t h a t
Ils(t)il
ds
i s as well bounded on compacts.
a r b i t r a r y s o l u t i o n of
(3.2)
,
(3.11)
0
If
t h e proof of Theorem 2 . 1 t h a t t h e f u n c t i o n
@(t - S)U(S)
i s constant, whence t h e formula
u'(t)
u(;)
i s an
we can show e s s e n t i a l l y a s i n t h e end of
=
@(t)u(O) + s ( t ) u f ( o )
+ S(t
- s)ul(s)
35
SECOND ORDER EQUATIONS
This completes t h e proof o f Theorem
results.
$11.4
3.1.
The inhomogeneous e q u a t i o n . We c o n s i d e r here t h e e q u a t i o n
u"(t)
=
Au(t) + f ( t ) .
(4.1)
S o l u t i o n s a r e defined i n t h e same way a s s o l u t i o n s o f A c
(1.1); a g a i n i f
g2 uniqueness of s o l u t i o n s of t h e i n i t i a l value problem f o r
(4.1)
implies t h a t t h e r e i s a t most one s o l u t i o n of
(1.1)
satisfying the
i n i t i a l conditions u(0)
Let
f(:)
u(:)
is
uo, u ' ( 0 ) = u1'
be a continuous f u n c t i o n defined i n
be a s o l u t i o n of
fixed
=
a d
(4.1)
satisfying
(4.2) 0
5t 5
(4.2).
t > 0
Integrating i n
0
0 5 s 5 t with 5 t 5 T we o b t a i n
=
@ ( t ) u o + W(t)ul
(4.3)
A s i n t h e f i r s t o r d e r case,
S(t - s)f(s) d s .
(4.3)
(4.1)
w i l l be a genuine s o l u t i o n of
i f a d d i t i o n a l c o n d i t i o n s a r e imposed on
s)
derivative
+L t
u(t)
(1.1)
@(t - i ) u ( ;) + s(t - ^ s ) u ' (
i s continuously d i f f e r e n t i a b l e i n
- s)f(s).
and l e t
that @ ( f ) , s(i) a r e t h e s o l u t i o n o p e r a t o r s of
we o b t a i n using t h e e q u a t i o n t h a t t h e f u n c t i o n
S(t
T,
Assuming t h a t
f(t).
LENMA 4.1. Assume t h a t one of t h e following two c o n d i t i o n s
is
satisfied: (a)
f(t)
(b)
f(:)
E
D(A)
&
f(t), Af(t)
a r e continuous i n
0
5t 5
T.
5t 5
T,
or i s continuously d i f f e r e n t i a b l e i n
Suppose i n a d d i t i o n t h a t s o l u t i o n of
Proof:
(4.1)
g
0
uo,ul
E
D(A).
0
Then
(4.3)
D(A),
D1 2 D(A)
i s a genuine
1. t 5 T.
We have a l r e a d y noted t h a t
Do
=
and following comments) t h u s we only c o n s i d e r t h e l a s t term i n Since
%(;)
@ ( t )u,( t )
i s d i f f e r e n t i a b l e i n t h e norm of
i s always
(E)
(see (2.8) (4.3).
with d e r i v a t i v e
continuously d i f f e r e n t i a b l e w i t h d e r i v a t i v e u'(t)
=
rt@(t-s ) f ( s ) d s . 0
(4.4)
36
SECOND ORDER EQUATIONS
To e s t a b l i s h t h e conclusion of Lemma 4 . 1 i n e i t h e r case it i s enough t o show t h a t
u(t)
E
i s continuous and
D(A), Au(t)
=L t
(Au(s) + f ( s ) ) d s
u'(t)
If ( a ) holds we have
=Lt(
Au(s) d s
Lt(
LtAS(B
=
=
t h u s proving
/gsl(s
- r ) f ( r j d s)
Lt(C(t
- r ) f ( r )- f ( r ) )
(4.5).
If we assume ( b )
5t 5
(0
.
T)
- r)Af(r)dr)
(4.5)
ds
dr
,
dr
(4.3)
i n s t e a d we i n t e g r a t e
by p a r t s :
u(t)
=
-
[t(&-t-sS(r)f(s)dr) 0
=ktS(s)f(0) ds I n view of
ds
+Lt(
ds
j:-ss(r)f'(s)dr)
.
(l.?),
1 t ( @ (-t I'
Au(t) = @ ( t ) f ( O ) - f ( 0 )+
s ) - I)f'(s)
ds
' 0
= @ ( t ) f ( O )- f ( t )
+I
-t @(t - s)f'(s) d s
.
0
We o b t a i n now
(4.5)
i n t e g r a t i n g and r e v e r s i n g t h e o r d e r of i n t e g r a t i o n
( s e e t h e proof of Lemma 1 . 5 . 1 ) .
(4.3)
J u s t a s i n t h e f i r s t order case, we s h a l l c a l l s o l u t i o n of
(4.1)
say, a f u n c t i o n i n LEMMA 4.2. continuous i n
(w-'(ewt-1)
if 1
uo,ul
E
and
f
is,
L (o,T;E).
Assume 0
a r e a r b i t r a r y elements of
a generalized
5t 5
uo,ul T
E
E, f
E
1 L (o,T;E).
u(i> g
with
i s replaced by
t
continuously d i f f e r e n t t a b l e and
when
W
= 0).
u
0
=
0
then
U(<)
37
SECOND ORDER EQUATIONS
The proof i m i t a t e s t h a . t
of
Lema 1 . 5 . 2 and i s t h e r e f o r e omitted.
Estimations by hyperbolic f u n c t i o n s .
911.5
It i s sometimes convenient t o r e p l a c e t h e e s t i m a t e ( 1 . 1 0 ) f o r a cosine f u n c t i o n by
Obviously, both are e q u i v a l e n t , b u t t h e value of t h e constant i n g e n e r a l be d i f f e r e n t ; p r e c i s e l y ,
Co
will
(5.1) i m p l i e s ( 1 . 1 0 ) with t h e same
c o n s t a n t , whereas t o p a s s from (1.10) t o ( 5 . 1 ) t h e c o n s t a n t must be -2 doubled. If we denote by Q (Co,w) t h e c l a s s of a l l i n f i n i t e s i m a l g e n e r a t o r s of s t r o n g l y continuous c o s i n e f u n c t i o n s s a t i s f y i n g
If
W
> 0,
(5.1)
implies t h e following e s t i m a t e f o r
(5.1),
d(i): (5.2)
If
= 0,
t h e i n e q u a l i t y i s (1.15).
We can e a s i l y o b t a i n a g e n e r a t i o n theorem based on
(5.1) r a t h e r t h a n
although t h e c o u n t e r p a r t s of i n e q u a l i t i e s ( 2 . 1 ) a r e l e s s simple.
on ( l . l O ) ,
THEOREM 5.1.
Let
A
be c l o s e d .
The Cauchy problem for (1.1)2
uniformly well posed i n
(-m,m)
i f and only i f
e x i s t s i n t h e h a l f space
R(h2;A)
[l(hR(h2;A))(n)ll
5
with propagator
@(:)
satisfying
Reh >
(5.1)
(1)
C o ( - l ) nn!(Reh((Reh)*-U 2 )-1) ( n )
where t h e i n d i c a t e d d e r i v a t i v e s on t h e r i g h t hand s i d e a r e t a k e n with respect t o t h e variable
Proof.
ReX.
Combining t h e b a s i c formula (2.11) (which i s obtained
e x a c t l y as i n Theorem 2.1) with i n e q u a l i t y
(5.1) w e
obtain
38
SECOND XDER EQUATIONS
W e use t h e n again (2.11), t h i s time f o r t h e s c a l a r cosine function cosh
wt
(whose i n f i n i t e s i m a l generator i s
sequence o f i n e q u a l i t i e s
To prove t h e converse, we only need t o
t h e r e s u l t i s the
make a few minor changes i n
Observe f i r s t t h a t t h e f i r s t i n e q u a l i t y (5.3)
t h e proof of Theorem 2.1.
implies t h e f i r s t i n e q u a l i t y ( 2 . 1 ) .
l(t;u)
W2);
(5.3).
Thus t h e c o n s t r u c t i o n of t h e function
i n (2.12) and t h e p r o o f of i t s p r o p e r t i e s proceeds i n e x a c t l y t h e
same way.
However, t h e e s t i m a t i o n ( 2 . 1 5 ) i s s l i g h t l y d i f f e r e n t .
W e use
again t h e Post i n v e r s i o n formula (1.3.14) obtaining
where w e use on t h e right s i d e Laplace transform i s
h( h2
(I.3.u)for t h e function cosh
- w2)-l).
lilt
(whose
The r e s t of t h e proof i s j u s t l i k e
t h a t of Theorem 2.1 and we omit t h e d e t a i l s .
J u s t a s ( 2 . 1 ) , i n e q u a l i t i e s ( 5 . 5 ) follow from t h e i r
REMARK 5.2. r e a l counterparts
( s e e Remarks
$11.6
1.3.5 and 2 . 4 ) .
This can be again proved using Taylor s e r i e s .
Miscellaneous comments. Strongly continuous cosine f u n c t i o n s were introduced by SOV‘A [1966:1],
who defined t h e i n f i n i t e s i m a l generator and proved t h e generation theorem 2.1.
Other p r o o f s of Theorem 2.1 were given by DA PRATO-GIUSTI
and t h e author
[1969:3 1 i n c e r t a i n l o c a l l y convex spaces.
proof i s t h e one we have employed here. t h e norm of ( E )
[1967:17
This l a s t
Cosine functions continuous i n
were considered e a r l i e r by KUREF’A [1962:1] who t r e a t e d
a s well t h e case where t h e cosine f u n c t i o n t a k e s values i n a Banach algebra; t h e end r e s u l t of t h i s v e r s i o n of t h e theory i s t h e r e p r e s e n t a t i o n
C(t)
= cos(tA1I2)
( s e e Exercise
2 below).
The d e f i n i t i o n of properly
posed Cauchy problems f o r higher order equations (of which (1.1))i s a p a r t i c u l a r case) i s due t o t h e author [1969:21, a s well a s t h e r e l a t i o n between s t r o n g l y continuous cosine functions and s o l u t i o n operators of second order equations.
Theorem 1.1 i s due t o t h e author [1969:21; a
39
SECOND ORDER EQUATIONS
r e s u l t of t h e same "measurability implies c o n t i n u i t y " type was proved
KUREPA
e a r l i e r by
[1962:1], where both measurability and c o n t i n u i t y a r e
understood i n t h e norm of ( E ) ( o r , more g e n e r a l l y , i n t h e norm of a Eanach a l g e b r a ) .
Theorem 2.3 i s due t o t h e author [1969:2].
EXERCISE 1. Let
A
be a bounded operator i n a Esnach space E.
Show
n
that
A
E
t h a t i s , t h a t t h e Cauchy problem f o r
Ed,
i s uniformly well posed i n generated by
A
-00
The cosine f u n c t i o n
m.
c(:)
i s given by t2n
m
@ ( t ) = cosh(tA1/2)
An,
=
n=O t h e s e r i e s (6.2) uniformly convergent on compact subsets of
-m
m.
We also have 00
8 ( t ) = A-1/2sinh(tA1'2)
t2n+l
(2n+l)1 An,
=
n=O the series
(6.3) converging i n t h e same sense a s ( 6 . 2 ) .
expressions cosh (tA1/2)
and
A-1/2sinh(tA1/2)
do not assume t h e existence of square r o o t s of i s given by t h e s e r i e s ( 6 . 2 ) and
(6.3)
.
Note t h a t t h e
a r e p u r e l y symbolic and
A;
t h e i r actuaJ meaning
@(;),
Prove t h a t
S(:)
can
a l s o be expressed a s
@(t)
where
r
=
&J;osh(th1/2)R(h;A)
,
(6.4)
i s a simple closed curve ( o r t h e union of a f i n i t e number of
t h e s e ) oriented counterclockwise and enclosing interior.
dh
(Note t h a t t h e choice of square r o o t
of (6.4) and h-1'2sinh(th1/2)
o(A)
in its (their)
h1/2 i n t h e integrands
(6.5) i s i r r e l e v a n t , since cosh(th1l2) = t2"ln/(2n>:, = 7 t2n+1hn/(2n + l)!). Show t h a t (6.4) and (6.5) imply
40
SECOND ORDER EQUATIONS
; A
0 = SuprRe A’/‘
(i)
Alternately,
E
.
~ ( A ) I
(6.8)
i s t h e l e a s t p o s i t i v e number such t h a t
(,lo
a(A)
i s con-
t a i n e d i n t h e closed r e g i o n t o t h e l e f t of t h e parabola
5
(d
>0
(with
$/4‘,’2
2
p a s s i n g through t h e p o i n t s with
(? -
=
, -+ S i O i2 .
(0
,
(6.9)
I n p a r t i c u l a r , (6.6)and(6.7)hold
n a t u r a l l y depending on
C
( 6 . 6 ) and (6.7) do not n e c e s s a r i l y hold w i t h 8(;)
5;
0’
A
s(5)
and
s(t^)i s
@(;)
Show t h a t
(1)
holomorphic
@(;)
i n particular,
continuous i n t h e norm of (E)(of course, t h e norm of ( E )
w =
@(i)
can be extended t o f u n c t i o n s
(as (E)-valued f u n c t i o n s ) f o r all
is
Produce a n example t o show t h a t
contained i n t h e negative r e a l a x i s . and
a(A)
if
(11)
is
always continuous i n
l/@(;)ll
due t o formula ( 1 . 5 ) and boundedness of
on
compact s u b s e t s ) . n
EXERCISE 2. topology of
@ ( t )be a c o s i n e f u n c t i o n continuous i n t h e
Let
(E)
t
(continuity a t
suffices).
= 0
A
use formula ( 2 . 1 1 )
n = 1 and c o n t i n u i t y of
for
- I I/
Ilh2R( h2;A)
show t h a t 2 2 h R(h ; A )
of
< 1 for
h
h a s a bounded i n v e r s e ) .
r e p r e s e n t a t i o n s ( 6 . 2 ) and
EXERCISE 3.
Let
-
1x1 -,
as
0
t
at
=
0
to
@(;)
admits the
(6.4).
E = C
m
@(;)
(Hint:
s u f f i c i e n t l y l a r g e so t h a t
Show t h a t
be t h e Banach space of all (complex-
(-m,m)
0 valued) continuous f u n c t i o n s u ( x ) u(x)
Show t h a t t h e
@(<) i s a bounded o p e r a t o r .
i n f i n i t e s i m a l generator
defined i n
endowed with t h e norm
-m
<x <
m
and such t h a t
(1.6.8).
Define @ ( t ) u ( x )= Show t h a t
,.
5
(U(X
+ t) +
u(x
-t))
(-m
.c t
<
(6.10)
m).
@ ( t )i s a s t r o n g l y continuous c o s i n e f u n c t i o n i n
i t s infinitesimal generator.
EXERCISE
4.
Identify
Show t h a t x +t
b(t)u(x) =
E.
1,
u(%) d5
(-m
Prove t h e r e s u l t of Exercise
i n f i n i t e s i m a l g e n e r a t o r ) i n t h e space
LP(-m,m).
m)
.
(6.11)
3 (and i d e n t i f y t h e Show t h a t (6.11) i s
n o t s t r o n g l y continuous (or Even s t r o n g l y measurable) i n
Lm(-m,m).
41
SECOND ORDER EQUATIONS
EXERCISE
Show t h a t (defined by
5.
A E 6
Let
A
6.8) i s f i n i t e .
Prove t h e formulas
C(t)u =
where
P(dh)
H.
be a normal operator i n a Hilbert space -2 ( o r , equivalently, t o Q ) i f and only i f b10
2
(u
E
H,
--a,
(6.12)
C m),
i s t h e r e s o l u t i o n of t h e i d e n t i t y associated with
A.
Using t h e f u n c t i o n a l c a l c u l u s f o r normal operators show t h a t
EXERCISE
6.
Let
@ ( t )i s normal.
be a s t r o n g l y continuous cosine f u n c t i o n
i t s i n f i n i t e s i m a l generator.
H, A
i n a H i l b e r t space each
@(;)
A
Show t h a t
i s normal (Hint:
Assume t h a t proceed a s i n
Exercise 1 . 9 ) EXERCISE
@(t)
7.
Under t h e hypoteses of Exercise
i s self adjoint.
Then
A
i s self adjoint.
6.6 assume t h a t each (Hint:
proceed a s i n
Exercise 1.10)
EXERCISE 8.
Show by means of an
with i n f i n i t e s i m a l generator
A
example, t h a t t h e r e e x i s t s a
c(i)
i n separable Hilbert space H such t h a t Irl > tclo, where hjo i s defined
s t r o n g l y continuous cosine function
by (6.8) and 1 w = l i m sup - logllC(t) t-+m
More g e n e r a l l y , we can construct
where
h > 0
EXERCISE
t
I[
.
(6.16)
@(<) i n such a way t h a t
i s a r b i t r a r i l y preassigned ( s e e Ekercise 1.13).
9.
Prove t h a t t h e "real" i n e q u a l i t i e s ( 2 . 2 2 ) imply t h e i r
complex counterparts ( 2 . 1 ) . imply i n e q u a l i t i e s
(5.3).
Likewise, show t h a t i n e q u a l i t i e s
(5.6)
42
SECOND ORDER EQUATIONS
EXERCISE 10. Let
c(;>
i t s i n f i n i t e s i m a l generator, Show t h a t i f
u
E
D(A)
a s t r o n g l y continuous cosine function, '1)
t h e number defined by (6.16),
EXERCISE 11. L e t
>
W,
0.
then
It I > 0 .
t h e l i m i t being uniform on compact subsets of
S(;)
uf
A
A
E
2. Show t h a t
A
E
."_,t h e
propagator
of t h e equation
(6.17)
u ' ( t ) = Au(t) given by t h e a b s t r a c t Weierstrass formula.
where
C(t)
i s t h e propagator of
u " ( t ) = Au(t)
.
FOOTNOTES TO CHAPTER I1
(1) See i n e q u a l i t i e s (2)
(1.3.25).
See footnote (2), p . 27; h e r e
transform of
hR( A;A)
u
i s meant t o be t h e inverse Laplace
with t h e adjustments needed t o produce conver-
gence and t o l e r a t e two d i f f e r e n t i a t i o n s with r e s p e c t t o
t.
43
CIUPTEK I11 REDUCTION OF A SECOND ORDER EQUATION TO A A FIRST ORDER SYSTEM.
PHASE SPACES.
5111.1 Phase spaces. It seems n a t u r a l t o a s k whether t h e Cauchy problem f o r t h e equation
E
i n t h e Banach space
can be reduced t o t h e Cauchy problem f o r a f i r s t
t h e obvious candidate i s of course t h e system
o r d e r equation:
ui(t)
q(t),
=
Auo(t),
(1.2)
i s considered i n t h e space
u,(t)
E X E
it may g i v e r i s e t o an improperly posed Cauchy problem due t o t h e u'(t),
fact that
However, i f
u'(t) 1
where
=
u(t).
=
(1.2)
u(t),
unlike
may f a i l t o depend continuously on
u(o), u'(0). EXAMPLE 1.1. We can c a s t t h e one-dimensional wave equation utt
=
uxx
l e t , say,
u
E
to
E = L
2 (-m,m),
(1.1) i n t h e following way ( s e e Exercise
Au(x)
=
u"(x)
where
D(A)
11.3)
i s t h e s e t of a l l
E such t h a t u" (understood i n t h e sense of d i s t r i b u t i o n s ) belongs 2 Then t h e Cauchy problem f o r (1.1) i s well posed with pro-
L
.
pagators ly,
i n t h e form
@(;),
@'(t)u
s ( < ) given
by formulas
(11.
6.10),
(11. 6.11).
Obvious-
i s g i v e n by 1 @'(t)u(x) = (ul(G 2
-
t h u s it i s not a bounded o p e r a t o r i n However, t h e r e d u c t i o n measured i n a d i f f e r e n t norm.
(1.2)
+
t) - u'(X-t)),
E.
w i l l always suceed i f
u,(t)
is
Since more t h a n one of t h e s e norms w i l l
be used i n t h e f u t u r e w e g i v e t h e following g e n e r a l d e f i n i t i o n , i n which
we do not p o s t u l a t e t h a t t h e Cauchy problem f o r
(1.1)i s n e c e s s a r i l y
44
PHASE SPACES
well posed i n t h e sense of $11.1; we assume, however, t h a t c o n d i t i o n i n t h e d e f i n i t i o n of w e l l posed problem holds t h e r e e x i s t s a dense subspace t h e r e e x i s t s a s o l u t i o n of
C2 = E
x El
0
of
E
2
uo, ul
such t h a t f o r every
E
D
(1.1) i s a product
(endowed with any of i t s product norms) where
Eo
El a r e Banach spaces s a t i s f y i n g t h e following assumptions:
and
% 5E
( a ) Eo,
(b) C2 = E
0
2
t
0
1
f o r any s o l u t i o n
u ( t ) with u ( 0 )
We note an obvious consequence of
E
El
6(;) 2
such t h a t
(1.1) with
s o l u t i o n of u'(t)
2
(-.
Eo
There e x i s t s a s t r o n g l y continuous semigroup
x E
n Eo
D
w i t h bounded i n c l u s i o n : moreover,
D n E ) i s dense i n Eo i n t h e topology of 1 dense i n El i n t h e topology of El). (-.
in
(a)
t h a t is, t h a t
0,
(1.1) s a t i s f y i n g t h e i n i t i a l c o n d i t i o n s
t 2 0 for t h e e q u a t i o n
A phase space i n space
D
t
in
for a l l
t
u(0)
2
0,
E
(b):
Eo, u ' ( 0 )
thus
Eo
E
and
Eo, u ' ( 0 )
E
u(<)
if
El t h e n
El
E
El.
i s an a r b i t r a r y
u(t)
Eo
E
and
a r e i n v a r i a n t subspaces
f o r t h e vaJues of a s o l u t i o n and fox i t s d e r i v a t i v e , r e s p e c t i v e l y .
Note
a l s o t h a t t h e r e might w e l l be s o l u t i o n s whose i n i t i a l values do not belong t o
Eo, El; ( b )
does not apply t o t h e s e s o l u t i o n s .
The n o t i o n of phase space i n defined; h e r e
all
t
u(0)
E
if
B(:)
m
i s correspondingly
i s required t o be a group a n d
u(<)
Eo, u'(0)
-m
i s any s o l u t i o n of E
(1.1) i n
-= t
<
happens f o r m
with
El.
W e show below t h a t i f t h e Cnuchy problem f o r i n t h e sense o f
-m
(1.4)
$11.1 t h e n a phase space
(1.1) i s well posed
Em (which i s maximal i n
a n obvious s e n s e ) always e x i s t s (of course, t h e t r i v i a l choice Eo
=
E
=
1
-
= {O] a l s o provides a phase space!) To c o n s t r u c t 1 E with i t s o r i g i n a l norm, while E = D1, where D1
E
0
-
C2
we t a k e m i s t h e space
45
PHASE SPACES
u such t h a t @ ( t ) u i s c o n t i n u o u s l y d i f f e r e n t i a b l e i n < t < co ( a s we s h a l l s e e l a t e r i n Theorem 1 . 2 , t h i s s p a c e i s none
of a l l -m
D1,
other than
t h e space of a d m i s s i b l e i n i t i a l v a l u e s f o r s o l u t i o n s
-
o f (1.1), d e f i n e d i n 511.1). To d e f i n e the norm i n
LEMMA C = C(u)
For every u c Eo
1.2.
=
-D1
t h e r e e x i s t s a constant
such t h a t ll@t(t)ull 5 C(1
(id
we use t h e a u x i l i a r y result below.
Eo = Dl
the constant i n
+
It
(11.1.10)).
Proof: We b e g i n b y renorrning t h e space llullt
e-O
SUP
=
as f o l l o w s :
E
I
11.
1s l l ~ ( s ) u
-m<s<m
/1u/1 5 I/u/I'
Obviously,
5
t h u s t h e new norm i s e q u i v a l e n t t o t h e
ColluI1,
o r i g i n a l one and it i s enough t o p r o v e
u
t
l l @ ( t ) u l / l5 el*lItlllul/t (-a<
D
1' v a l u e s of @(:)
Set
q(t)
=
t <
We have
(1.6)
m).
exp(-i~it)(l@'(t)ull' f o r
t
2
Since d i f f e r e n t
0.
commute ( a consequence of t h e c o s i n e f u n c t i o n a l e q u a t i o n
(11.1.9)) we c a n d i f f e r e n t i a t e
11'11'
II*/l'.
for
(11.1.9). Hence
by t h e cosine functional equation
Let
(1.5)
norms, m u l t i p l y i n g by
(11.1.7) w i t h r e s p e c t t o
exp(-rA)(s + t ) )
s.
Taking
(71.1.10) we
a n d using
obtain
(1.7) i m p l i e s
Obviously,
m
arbitrary let
-
q((t m) of
q(s)
since
+
m)
in
@I(t^)u
?(a)
5
mq(1)
be the g r e a t e s t i n t e g e r
5
q(t
- m)
0
5
51.
s
+
mq(1)
5
5 t. where
=
...
1,2,
Then C
q(t)
For
t
2
5
i s t h e supremum
(1.5) f o l l o w s f o r t 2 0; ( 1 . 5 ) h o l d s f o r all t . T h i s
Accordingly,
i s a n odd f u n c t i o n ,
completes the p r o o f .
C(1 + t )
for m
0
PHASE S P A C E S
46
.. We can now d e f i n e a norm i n
D
1 by
+ t)-'llet(t)ul!I.
1 1 u l 1=~ rnax{llull, sup e - " t ( l
t>o
A
-
D1
moment's c o n s i d e r a t i o n shows i h a t
(1.8)
i s a Eanach space equipped
11. 1l0.
with
THEORFM 1 . 3 .
The space
i s a phase space for
C?
5
x E 1 with = E 0 < t < ffi; moreover,
= E
m
(1.1)
-m
-
-
and
Eo = D1
(1.9)
I11 = D1'
6(<)i s given by
The group
(1.lo)
and i t s i n f i n i t e s i m a l g e n e r a t o r i s
(1.11)
w i t h domain
D(I1) = D ( A )
D1.
X
max ( j \ u \ / , \ \ v l \ ) i s used i n
(-m
where
c0
and -
are the constants i n
u
=
m
m
~tl)?w
1)*(1 +
(gmm>
/l[u,vl\\,
\/U!le =
Em we have
5 (co +
IlG(t)l!
I f , say, t h e norm
(1.12)
m).
(11.1.10).
The proof t h a t follows i s by no means t h e s h o r t e s t but can be adapted e a s i l y t o a more g e n e r a l o i t u a t i o n ( f o r an a l t e r n a t e proof s e e
As basis a r e equalities
Exercise 111.15).
(11.1.7) and
We have a l r e a d y noted t h a t t h e second h o l d s f o r every
u
f i r s t can be extended from with r e s p e c t t o
t
in
0
E
5t 5
D 7,
to
u
We prove now t h a t each
i s even and
t
1.
u
c
-
D1
E
E.
The
f o r t h i s we i n t e g r a t e
u
E
E
by c o n t i n u i t y ,
and d i f f e r e n t i a t e
z.
with r e s p e c t t o
t o work i n
61;
extend t o d l
apply t h e e q u a l i t y t h u s obtained t o any
@(:)
E
u
(11.1.8).
0.
c'(:),
6 ( t ) i s a bounded operator i n
8(:)
To show t h a t
%;
since
a r e odd, it i s obviously s u f f i c i e n t
@(<) i s a bounded operator from
47
PHASE SPACES
El
(11.1.7) d i f f e r e n t i a t e d w i t h r e s p e c t t o
we use
El
into
@'(s)@(t)u
t h e form
=
@'(s + t)u-@(s)@'(t)u.
in
s
It i m p l i e s t h a t
l l @ f ( s ) @ ( t ) u l l5 l l @ ' ( s + t ) U / l + Il@(s)ll ll@'(t)Ull
-< (1 + Since
(1 + s
+ t) 5
ll@(t)ul10 5
i n t h e form
Estimates
t ) e w(s+t)jlul10 +
(1 + s ) ( l + t )
(co
@'(s)s(t)u
1)(1
+
8 ( t ) w e use
To h a n d l e
and t h a t
+
s
(1.13) t o
bounded o p e r a t o r from
E
(uO
6
E0)
(1.131
d i f f e r e n t i a t e d with r e s p e c t t o
@(s+ t ) u
S t ( t ) = @ ( t ) maps
t ) e~ ( s + t ) l l u l l O .
we o b t a i n .
t)el*~tlluI/O
+
(1I.l.a) =
c0(1 +
- @(s ) @ ( t ) u ;
into
E
s
the result i s
with
(1.16) c l e a r l y show t h a t e a c h 6 ( t ) i s a E
with t h e norm i n d i c a t e d i n
E
into
(1.12).
6(;) s a t i s f i e s t h e f i r s t o f t h e semigroup e q u a t i o n s i s o b v i o u s ; t h e second f o l l o w s from (11.1.7) a n d (11.1.8). The n e x t t a s k i s t o show t h a t 6(<)i s s t r o n g l y c o n t i n u o u s : s i n c e The f a c t t h a t
G(tl)
-6(t)
=
G(t)(G(t'
- t ) - I)
it i s o b v i o u s l y s u f f i c i e n t to p r o v e
s t r o n g c o n t i n u i t y a t t h e o r i g i n and, due t o t h e symmetries o f t h e o p e r a t o r s i n the m a t r i x o f
6(t)
IIE(h)u-ull
+
Q*
we o n l y need t o show t h a t 0
( h - 0+)
Again, t h i s must be done i n f o u r s t e p s . (11.1.7)
with respect t o
s
.
(1- 1 7 )
For t h e f i r s t we d i f f e r e n t i a t e
and recombine it i n the form
48
PHASE SPACES
@ ' ( s ) ( @ ( h ) u - u )= @ ' ( s
+
h)u-@'(s)u-@(s)@'(h)u
(U
F
E o ) . (1.18)
W e d i f f e r e n t i a t e now t h e c o s i n e f u n c t i o n a l equation @(s
+ t ) + @ ( s - t ) = 2 @ ( s ) @ ( t ) with r e s p e c t t o t , o b t a i n i n g + t ) u - @ ' ( s - t ) u = 2 @ ( s ) @ ' ( t ) u for u E Eo. Replacing s
@'(s
s
+ h/2
t
and
by
h/2
@'(s
we o b t a i n
(1.18), we o b t a i n
- ~ 1 1 " -, 0
ll@(h)u
u
E
E
f o r every
u
t
E.
0'
(1.191
+ h ) u - @ ' ( s ) u = 2@(~+ h/2)@'(h/2).
Combining t h i s e q u a l i t y with
f o r every
by
( h * 0+)
(1.20)
The second s t e p i s t o prove t h a t
To do t h i s we use t h e d i f f e r e n t i a t e d v e r s i o n of
(11.1.8) @'(s)8(h)u = @(s + h ) u - @ ( s ) u + @(s)(@(h)U-u).
(1.22)
F i n a l l y , we m u s t show t h a t
for e v e r y u
E
Eo,
and IlS'(h)u
u
f o r every
(1.19)
to
E
E,
(1.23)
- u1i
-
-,
(1.24)
0+)
P u t t i n g now
(1.17) follows, completing t h e proof
together,
6(<).
It only remains t o i d e n t i f y
14,
t h e i n f i n i t e s i m a l g e n e r a t o r of
T o do t h i s we show f i r s t t h a t 2i
In fact, l e t h-'(@(h)u
- u)
(1.22)
-
0
v,
(1-25)
u c D(A)
and
v
E
9.
(1.19); t h e r e s u l t i s t h a t
i n t h e norm 'of
applied t o
c - %. so t h a t
LI = [ u , v ] E D ( A ) ,
(1.18) by h and use
Divide
with
(h
both of which r e l a t i o n s a r e obvious.
o f t h e s t r o n g c o n t i n u i t y of
6(t).
0
Eo.
We proceed i n t h e same way
obtaining t h a t
h-'S(h)v
-, v,
also
49
PHASE SPACES
i n t h e norm of h-'(@(h)u-u)
-
Since
EO'
@'(O)u
h-l(@'(h)u
0
=
E,
in
- u)
-
C " ( 0 ) u = Au
(1.25)
t h e proof of
and i s complete.
Two more a u x i l i a r y f a c t s a r e necessary f o r t h e proof t h a t a c t u a l l y coincide.
(i)
2' J
%
and
23
The f i r s t i s
i s closed.
{un) = { [ u n , v n ] 3 be a
To see t h i s , l e t
-
Bm a.nd 8 u n ( w , z ) E Em u and vn w i n Eo, vn v and i n t h e norm of Em so t h a t un A u n - z i n E. Then w E Eo and (by closedness of a), u E D(A) with Au = z , i . e . [ u , v ] E D(N) a n d % [ u , v ] = [v,Au] = [ w , ~ ] . sequence i n
(ii)
D(8)
u
For every
E
E
[u,v]
un
such t h a t
E
-
-
w e have
(1.26)
Lh
S(t)u d t
E
D(A)
(U E
E).
(1.28)
The f i r s t two have a l r e a d y been e s t a b l i s h e d a t t h e beginning of t h e proof.
To prove
(1.28) A
we note t h a t f o r
kh
-
a sequence E
D1
{un}
E
D(A)
we have
S ( t ) u d t = @(h)u- u,
which e q u a l i t y can be extended t o a l l
u
u
in D(A).
As f o r
(1.29)
E approximating u by (1.27), w r i t e (1.29) f o r
u
E
and d i f f e r e n t i a t e (using a g a i n closedness of
A).
The r e s u l t i s
A L h @ ( t ) u d t = @'(h)u.
We show f i n a l l y t h a t
Let
uh
u
be an a r b i t r a r y element of Em. Since elements of t h e form
a r e dense i n
Em, i f
(1.25)
holds we can s e l e c t a sequence
50
PHASE SPACES
D(%)
in
such t h a t
2(un h =
%, %uh
closedness of
D(B)
u
h -, 0
we l e t
= l i m
uh
Un
particular that
Then
- u).
-
( U n p
-
h'(B(h)u
+
h-l(6(h)u
=
D(%)
belongs t o
D(%)
C?
in un)
u
If
whereas
Uh
(1.4.5))
u)(see
% = lim h
with
%
-1
(6(h)u - u )
that This
= 'pu.
(1.30).
must be dense i n
Em (Theorem 1 . 4 . 1 )
we o b t a i n i n
i s dense i n E0 i n t h e topology of
D(%)
t h u s by
i n a d d i t i o n belongs t o
and o b t a i n s g a i n from closedness of
completes t h e proof of Since
u
+
h-'(G(h)un-
=
Eo.
-D1,
Let
u be an a r b i t r a r y element of E,, = {un] a sequence i n D(A) such t h a t u u i n EO. Then we have S ( t ) u n s ( t ) u and +
n As(t>un = 8"(t)un = @ ' ( t ) u n that
8(t)u
D(A)
E
s o l u t i o n of
@'(t)u
AS(t)u =
and
(1.1) i n
-
+
-W
whence it follows
t
f o r a31
s"(t)u,
so t h a t
proving t h a t
m,
(1.9)
opposite i n c l u s i o n i s obvious, t h u s
S(t)u
is a
5 D1.
D1
The
holds and t h e proof of
Theorem 1.3 i s complete. Theorem 1 . 2 might be taken t o imply t h a t "every well posed second o r d e r Cauchy problem can be reduced t o an e q u a l l y well posed f i r s t order system", t h u s t h e t h e o r y of go t o semigroup t h e o r y .
(1.1) could be reduced from t h e word
I n r e a l i t y , t h e s i t u a t i o n i s not s o simple;
on t h e one hand, t h e growth of
s(i) a t
match a c c u r a t e l y t h e growth of
@(;)
on t h e o t h e r hand t h e norm of
i n f i n i t y ( s e e 1.11) does not
or even t h a t of
S(:),
while
i s not easy t o i d e n t i f y (it depends
Eo
on complete knowledge of t h e s o l u t i o n s of
(1.1)). Taking a c l u e
from t h e wave and Klein-Gordon equations we may expect t h a t t h e reduction (1.2) t o f i r s t o r d e r can be made t o work i f one measures graph norm of a square root of
A.
u(t)
i n the
This p r e s c r i p t i o n w i l l be seen t o
work, a l b e i t with some r e s t r i c t i o n s , i n t h e next s e c t i o n s . 5111.2
F r a c t i o n a l powers of closed o p e r a t o r s .
A densely defined o p e r a t o r a(C)
(C > 0)
i s s a i d t o belong t o t h e c l a s s
A
H(A;A)
i f and only i f
IIR(A;A)JI 5 C/A Obviously we have inequalities
a(1)
(1.3.24)
w e only can a s s u r e t h a t
=
$(l,O)
with
since
5
0
Cn/An
(2.1)
(2.1) implies all t h e
If
= 0.
(n
and
.
( h> 0)
Co = 1,
IIR(h;A)"II
A > 0
exists for
=
C > 1, however,
0,1,. ..)
which does
PHASE SPACES
A
n o t imply t h a t
E
&
51
(for a counterexample see HILLE-PHILLIPS
[1957:1,P. 3711). We show below t h a t f r a c t i o n a l powers of
(or r a t h e r of
A
(-A))
c a n be c o n s t r u c t e d employing t h e formula
(-A)
cy
=
sinwr -
R(h;A)(-A) d h
9
which i s t h e v e c t o r c o u n t e r p a r t of a w e l l known s c a l a r formula
[1963:1, p . 3031).
(GRADSTEIN-RIDZYK
Although complex v a l u e s of
a r e handled j u s t a s e a s i l y , we s h a l l only u t i l i z e i n t h e range
5 cy 5 1.
0
KQ'
i s defined by t h e r i g h t hand s i d e of
KCYu = -s inQ'iT where t h e branch of the integral
r e a l , mostly
We r e s t r i c t t h e t r e a t m e n t accordingly.
0 < cy < 1. The o p e r a t o r
Let
a
( w i t h domain
D(KcU) = D ( A ) )
t h a t i s , by
(2.2),
R(A;A)(-A)u
d?
,
i s t h a t which i s r e a l when
(2.3) h
2
That
0.
i s convergent a t i n f ' i n i t y i s c l e a r from
(2.3)
w
(2.1);
near z e r o we use t h e second r e s o l v e n t e q u a t i o n i n t h e form R( A;A)( -A)U
LEMMA 2 . 1
u
n
-
Proof: 0, K u a n
The o p e r a t o r 0 <
Let
-
v
t
Q'
E.
Ka
< 1,
[u,)
Select
p
Yn =
u
=
- M ( A;A)U.
(2.4)
i s c l o s a b l e for each
a sequence i n
> 0
D(A)
Q',
0 <
< 1.
with
f i x e d and write
.
R(~;A)K@u~
It follows from i t s d e f i n i t i o n t h a t
Q'
(2.5)
KQ' commutes w i t h
R(p;A)
i n the
sense t h a t R ( P ; A ) K ~ U = K"R(P;A)U
for
u
E
D(KQ')
=
D(A).
Moreover,
KaR(p;A)
(2.6)
i s everywhere defined and
bounded s i n c e K~R(P;A)U =
sinq TT
(I
- hR( A;A))u
dh
52
PHASE SPACES
(2.5)
Hence we obtain, taking l i m i t s i n
R(p;A)v
thus
0,
=
vn- 0
that
so t h a t
v = 0, ending t h e proof.
Lemma 2 . 1 makes p o s s i b l e t h e following d e f i n i t i o n :
(-A)
C
Y
-
KCY ( 0 <
=
where t h e b a r i n d i c a t e s c l o s u r e .
1
(-A)
= -A.
CI
< l),
(2.8) (-A)
O f course, we d e f i n e
(-A)cy
The following r e s u l t s imply t h a t
0
I,
=
exhibits, a t
l e a s t i n p a r t , t h e behavior expected of a f r a c t i o n a l power.
u
LEMMA 2.2.
D(A).
E
l i m K u cy a.- 1-
Proof: 5
where
=
and
h = a > 0.
III~II 5
(2.2);
SUP
A? a
the result i s
u + R(A;A)Au
E
D(A);
we r e t u r n t o
(2.11)
u
(2.1).
Since
we have
-
u
as
h
-
by v i r t u e of t h e f a c t t h a t
be extended t o a l l
(2.11)
ll((h + ~ ) R ( A ; A ) - I ) A u ~ / .
hR(h;A)u
u
we o b t a i n
For t h e second i n t e g r a l we make use again
T o e s t i m a t e t h e r i g h t hand s i d e o f
for
(2.2)
I2 correspond t o t h e division of t h e domain of
o f t h e s c a l a r v e r s i o n of
=
(2.9)
Using t h e s c a l a r c o u n t e r p a r t of
integration at
hR(A;A)u
-Au.
E
E
(2.12)
w
l(hR(h;A)(\
(2.12)
and shows t h a t t h e r i g h t hand s i d e of
can be made a r b i t r a r i l y small for a l a r g e enough. e s t i m a t e i s independent of
CY.
To d e a l with
can (2.11)
Obviously t h e
I1 we o n l y have t o
observe t h a t t h e integrand can be bounded uniformly w i t h r e s p e c t t o ct
for
ct
t o zero a s
near
1 ( s e e ( 2 . 4 ) ) thus t h e f a c t o r
sinah
(/%/I
drags
a - 1. This completes t h e p r o o f .
The corresponding r e s u l t i n t h e neighborhood of
LEMMA 2.3
Let u
E
D(A)
be such t h a t
=
0
is
53
PHASE SPACES hR(A;A)u
-
as
0
A-
O+.
(2.13)
Then l i m K u CY-
=
(Y
o+
u.
(2.14)
Proof: Proceeding i n a way s i m i l a r t o t h a t used i n Lemma 2.2 (2.4)
b u t making use of
where
J1
J2 a r i s e once again from d i v i s i o n of t h e i n t e r v a l of
and
A
integration a t
+
that
(A
that
11J211 -, 0
we o b t a i n
=
a > 0. u
l)R(A;A)uas
CY
-
=
0.
To e s t i m a t e t h e second i n t e g r a l we observe
R(A;A)(Au
+ u)
a n d use
it f o l l o w s
(2.1);
The corresponding bound for
J1
follows
from t h e i n e q u a l i t y
I n f a c t , the p o r t i o n of t h e bound corresponding t o t h e c o n s t a n t obviously tends t o z e r o when
t h u s we can make
llJ,II
(Y
-
0.
C
On t h e o t h e r hand,
a r b i t r a r i l y small by t a k i n g a small enough.
This completes the p r o o f . An obviously d e s i r a b l e p r o p e r t y of any d e f i n i t i o n o f f r a c t i o n a l power i s t h e a d d i t i v i t y r e l a t i o n
= (-A)"(-A)'.
I n t h e present
l e v e l of g e n e r a l i t y only a s l i g h t l y weaker statement can be proved (Theorem 2.5 below).
I t s key i n g r e d i e n t i s t h e following r e s u l t .
(2.16)
54
PHASE SPACES
u
Proof: Let
2 D(A ).
E
/'"/'"
s i n q si$n
KKu=--
ffB
Tr
7r
K u c D(A)
Since
D(K@u)
=
B
we may w r i t e
B-1 2 p R(A;A)R(p;A)A u dAdp
" O d O
.
( t h a t t h e i n t e g r a l i s a b s o l u t e l y convergent i n t h e quadrant
i s shown i n t h e same way a s for
(2.3)).
i n t e g r a t i o n i n t o t h e two t r i a n g l e s change of v a r i a b l e
A by
interchanging
@
5
2
A,p
0
Divide t h e domain of h
in the f i r s t ,
p = ?ur
(2.17)
A
5
A
and
and perform t h e
p
i n t h e second;
pa
=
i n t h e second i n t e g r a l we o b t a i n .
p
(2.18)
U s i n g t h e second r e s o l v e n t e q u a t i o n we deduce t h a t
2
R ( ;"o;A)R( A;A)A u
=
1 {R( h;A) - a R ( A a ; A ) ] (
1 - 0
and r e p l a c e t h i s expression i n t h e integrand of
(l-a)-l
of the factor
-
(2.19) On account
(2.18).
t h e two i n t e g r a l s r e s u l t i n g from
(2.19)
as t h e l i m i t when
(2.18)
cannot be separated, b u t we can w r i t e p
-A)u
1- of
s i n w s i M r Frn --
h"@-lR( h ; A ) ( - A ) u d a dh
TT
mJyp-
- -sinWJ lr
B h"+B-lR(b;A)(-A)~
7r
0
dadh.
(2.20)
0
W e compute t h e second term i n t e g r a t i n g f i r s t i n
A,
making t h e change
of v a r i a b l e
by
A.
)us = i-1
and t h e n chmging a g a i n
p
We o b t a i n (2.a)
where
C a,B
To e v a l u a t e t h e constant
E =
c,
A = 1,
so that
we apply t h e argument above t o
1
f o r all
ca,B --
sin(cu
KO
=
@
and it
tha.t
This completes t h e proof of
(2.16).
7T
-t
p )T
.
follows from
(2.21)
55
PKASE SPACES
where t h e b a r i n d i c a t e s c l o s u r e . Proof:
<
a+ B
1 and l e t
u E D((-A)'(-A)')
and of t h e f a c t t h a t
Assume f i r s t t h a t
>
p
and
commutes w i t h
(-A)'
i n t u r n follows from commutativity of
I n view of Lemma 2.4
0.
for a n y
R(p;A)
K,
and
w e have
R(p;A))
'O
= ( ~ R ( ~ ; A ) ) ~ ( - A ) , ( - A )+~ (-A)~(-A)'~ ~
-
(FR(~;A))~U u = ( -A)"( -A)'u,
(-A)""u
i s closed,
as
p
+
<
<1
y
Y
=
KY
Y n +
vn
+
.
If
(-A)'u.
m
then
v
u
and
K'v
E1u = Y
Y
u
n
{pn]
= K&u
Q
+ p.
D(A2)
= pnR(pn;A)un E = p
R(p ;A)K u
y n n n which shows t h a t
taking closures,
y =
with
(A ) ' +
-A)@ C - (-A)"@. K1 Y
for
(-A)'(
(2.23)
{u,]
Y
E D(A)
+
with
un
-
u,
u E D(K;+')
C
Y(-A)'(
on t h e o t h e r hand,
Y so t h a t
with Y and completes t h e p r o o f of ( 2 . 2 3 ) .
y n
K
= D(Kt);
(-A)'u
K1 Y
= (-A)
-A)'U
= D(A2 )
-A)@ 3 - (-A)"@
u E
'( -A)'u
w e have
D(K1)
=
K RKR u =
(-A)"(-A)B
3_ ; ' & K
b y v i r t u e of ( 2 . 2 3 ) for
This c o m p l e t e s t h e p r o o f o f (2.22) f o r
Assume now t h a t
u E D(K ) =
Assume t h a t
i s a sequence of p o s i t i v e numbers w i t h
S i n c e Lemma 2 . 4 i m p l i e s t h a t = K$;U
D((-A)"t') Since
.
K' C K t h u s K1 C K Y - Y' Y Y s o t h a t t h e r e e x i s t s a sequence
= D((-A)') pn
a.
+
To t h i s end, d e n o t e b y
= (-A)y
Obviously we have
+
p
we h a v e
KIY
K u
as
We p r o p o s e t o show t h a t f o r
D(A2).
restricted t o
E
( -A)"tB.
(-A)"(
i s c l o s a b l e and
We p r o v e n e x t t h e o p p o s i t e i n c l u s i o n ,
K
u
w e deduce t h a t
m
(-A)"( -A)@ C -
thus
-A)@
(-A)"(
t h e operator 0
(which
c1
( p ~ ( p ; ~ ) )= ~Ku K ( V R ( ~ ; A ) ) ~ ~= ( - A ) " ( - A ) B ( ~ R ( ~ ; A ) ) ~ ~=
K"+f3
Since
a or
( i n a n improved v e r s i o n ) i s obvious i f e i t h e r
(2.22)
p are z e r o , t h u s w e may suppose t h a t a , p > 0.
a + B = 1. Let
u E D(A)
y - K u Y
a + p < 1.
and c o n s i d e r t h e f u n c t i o n (2.24)
56 in
PHASE SPACES
5
0 < y
C o n t i n u i t y of
1.
y
t h e d e f i n i t i o n and c o n t i n u i t y a t
u
Accordingly, i f
-A
The p r o o f t h a t
E
2
D(A )
2 (-A)
0 < y < 1 i s obvious from
in
(2.24)
1 h a s b e e n proved i n Lemma 2 . 2 .
=
we have
o! (-A)@
i s e x a c t l y t h e same a s i n t h e p r e v i o u s
c a s e ; t h e o p p o s i t e i n c l u s i o n depends on t h e f a c t t h a t i f r e s t r i c t i o n of
A
to
D(A2)
argument employed above for
$111.3
Ti'
then
K;/
.
=
A
which i s shown u s i n g t h e
We omit t h e d e t a i l s .
R e s o l v e n t s o f f r a c t i o n a l powers.
A s s e e n i n t h e next result, c o n d i t i o n of
R(A;A)
The s e c t o r
c (cp-)
Obviously,
A
=
0
t h e s e t of a l l
h
implies existence
cp',
Proof:
0 <
Let
exists in
0 -c Cp <
(cp)
0
rn'
C
0;
lare A /
with
A
E
5
5
h0 > 0 .
Since
C/lAl
Ih- h0 1 < %/Cl
<.
The
c+(a) ( r e s p . y-(p)) i s larg A / < u?).
3(C1)
f o r some
a
(A
E
C1 > 0.
Then
a r c s i n (l/C1)
=
e x i s t s a constant
lIR(h;A)(/
replaced by (cp-).
or
Cp ( r e s p .
c+(cp-)w i t h
a, t h e r e
we w r i t e
T,
5
i s d e f i n e d i n t h e same way w i t h
exists i n the sector
f o r every
Cp,
b e l o n g s t o any s e c t o r
THEORD4 3.1. Assume t h a t
R(A;A)
Given
+ i n d i c a t e s e x c l u s i o n of
subindex
(2.1)
i n a sector containing t h e p o s i t i v e r e a l axis.
We i n t r o d u c e some n o t a t i o n s .
R(h;A)
is the
A'
C
=
C
Z+h' 1 ) .
Cp'
such t h a t
(3.1)
CLpO
]/R(hO;A)l] 5 5 l/llR(hO;A)ll
it f o l l o w s t h a t
and c a n be e x p r e s s e d
there by t h e power series m
R(A;A)
=
T j=0
Since
(pO
- A)~R(A@;A)~+'.
(3.2)
57
PHASE SPACES
with 0 <
u)
< cp, h
u)'
<_ ho
= arc sin
s i n cp'
E
t h e f i r s t statement stands proved. Let
(l/Cl),
C+(m'),ho
/ h l / c o s a r g A.
=
and we c a n e s t i m a t e
(3.2)
5
I h - hol
Then
los i n l a r g h /
as f o l l o w s :
This completes t h e p r o o f . The n e x t s t e p i s t h a t o f e s t a b l i s h i n g e x i s t e n c e and e s t i m a t e s similar t o
(3.1) f o r t h e r e s o l v e n t of t h e f r a c t i o n a l powers; we
r e s t r i c t ourselves here t o t h e case
since other values of
1/2,
D =
cy
are o f l e s s i n t e r e s t i n c o n n e c t i o n w i t h second o r d e r e q u a t i o n s .
p
b e a nonzero complex number i n t h e s e c t o r d e f i n e d by (Tr- v)/2
so t h a t
-k2 b e l o n g s t o t h e s e c t o r
exists.
Define Q(P)
=
5
(3.3)
cp < T r p ,
Z+(W-) where
-(PI- ( - A )
1/2
Let
2
)R(-P
the r e s o l v e n t of
A
(3.4)
;A).
D( ( 2 D(A), Q(p) i s everywhere d e f i n e d ; on t h e o t h e r hand, we observed i n t h e p r e v i o u s s e c t i o n ( s e e ( 2 . 7 ) ) t h a t K,R( h;A)
Since
i s bounded for
i s bounded.
0 <
-= 1,
o/
Since
and
(-A)cy
Q(p)u
for u u
E
E
thus
=
D(((-A)1/2)2) facts that that
Q(p)-
commute, we have
R(A;A)
2
-R(p ; A ) ( p I
- ( -A)1/2)u
(3.5)
then
(PI + (-A)1/2)Q(p)u ((-A)
fortiori
It a l s o f o l l o w s from c o m m u t a t i v i t y t h a t i f 1/2 2 R(-p2)u E D ( ( ( -A) ) ) and
D(A1/2).
D( ( ( -A)1/2)2)
since
-a
(-A)CYR( h;A)
1/2 2
5 -A
2
2
)
Q(p)
D(A )
=
- ( p 21
(Theorem 2 . 5 ) .
i s dense i n
+
A)R(-p 2 ;A)u
we c a n t h e n u s e
E;
(3.6)
(3.6)
and t h e
i s c l o s e d t o deduce
that is,
Q(p)E
(PI + (-A)1/2)Q(u)u : D ( (-A)"*) I n p a r t i c u l a r , p I + (-A)'/* PI- (-A)'12 i s one-to-one; f o r i f u
u
On t h e o t h e r hand,
i s bounded and t h a t
(3.6) h o l d s f o r e v e r y u,
=
-+
E
is
D((-A)1/2)
and
(3.7)
u.
=
E
5 D((-A) 1/2)
&.
On t h e o t h e r hand,
i s such t h a t
PHASE SPACES
58
( p I - (-A)I12)u
=
t h e n from (3.7)
(3.5)
t h e n it r e s u l t s from
0
u
that
that
111 + ( - A ) 1/2. This time we o b t a i n t h a t
i s onto, while
PI- (-A)”’
both -p
pI
belong t o
-
PI - (
+
pI
(3.4)
in
-
: D( (
(
E
The conclusion i s t h a t
are invertible, that is,
and
p
i n p a r t i c u l a r , we have
p((-A)’12;
R(p;
+
pI
i s one-to-one.
(-A)’/*
and
and
0.
=
We run now t h e e n t i r e argument r e p l a c i n g by
Q(p)u = 0
- (-A)’/~)
Although t h e mere f a c t
that
2
-(PI - ( - A ) ’ / ~ ) R ( - P
= ~ ( p = )
;A).
(3.8)
i s nonempty i s a l l what
p((-A)
i s needed f o r t h e moment, s i g n i f i c a n t information on t h e r e s o l v e n t can We s t a r t from
be obtained with a l i t t l e more work. b a s i c formula
(2.3),
(3.8)
using t h e
obtaining
Using t h e second r e s o l v e n t e q u a t i o n we deduce t h a t
Replacing i n t o
(3.9)
we o b t a i n s f t e r a simple c a l c u l a t i o n t h e formula
h1/2
$ 10 R(A;A) A + p -m
R(p;-(-A)’/?
=
(which has a well known s c a l a r c o i i n t e r p a r t ; see p . 303 I).
Up t o t h i s p o i n t ,
(3.3).
defined by
However,
(3.10)
dh
GRADSTEIN-RIDZYK [1963:1,
has been a complex number i n t h e s e c t o r
p
(3.10)
(E) - v a l u e d a n a l y t i c
defines a
f u n c t i o n i n t h e e n t i r e p l a n e minus t h e imaginary a x i s , t h u s it provides an a n a l y t i c e x t e n s i o n of
t o t h e r i g h t half plane
R(p;-(-A)’/*)
Rep > 0 .
Since t h e norm of t h e r e s o l v e n t
operator
E must tend t o i n f i n i t y a s
t h e resolvent s e t to
p(-(-A)’/’)
p(B)
with
approaches t h e boundary of
p
it follows t h a t e v e r y
R(p;-(-A)’/?)
of a n a r b i t r a r y
R(p;E)
g i v e n by
with
p
(3.10).
Rep > 0
belongs
This statement
c a n be improved a s f o l l o w s : THEOREM 3.2.
cp = arc s i n ( l / C l )
as i n Theorem 3.1.
R( P ; ( -A I/*) e x i s t s i n t h e s e c t o r
x+($(cp+ T ) - ) ;
0 < m’ C rp
C = CW ’
-
t h e r e e x i s t s a constant IIR(~;-(-A)’/’)II
5
c/lpl
(p
Then
moreover, i f
such t h a t
C+C
$ (TI
+
71))
(3.11)
59
PIMSE SPACES
< @' < cp.
cp'
Let
Proof:
of i n t e g r a t i o n i n ( 3 . 1 0 ) t o e i t h e r of t h a t i f , say,
w e have
0
p
3 . 1 we c a n deform t h e p a t h 0 5 A < m so t h e rays Aeki@',
Using Theorem
rind
1
A.1-/2~-i@'/2
m
R(V;-(-A)'/~)
h + ei V v 2
0
=
R( he-"
;A)dA
.
(3.13 )
The f i r s t i n t e g r a l f o r m u l a d e f i n e s a n a n a l y t i c f u n c t i o n i n t h e whole
e x t e n s i o n of
1
- (q' + T), t h u s p r o v i d e s a n analytic 2 t o t h e h a l f p l a n e R e e-iq"2p > 0. I n a
arg p =
p l a n e minus t h e l i n e
R(A;-(-A)1'2)
(3.13) y i e l d s a n a n a l y t i c e x t e n s i o n t o t h e h a l f p l a n e 1 t h u s R(k;-(-A)1/2) exists i n (q' + T I ) ) .
symmetric f a s h i o n ,
> 0,
R e ei"'2p
It remains t o estimate t h e r e s o l v e n t . so t h a t
with
For
c > 0,
p E
$
1 55 (n +
+ T ) ) , Im p
5
0
0
p
w e use (3.13) i n s t e a d o b t a i n i n g t h e
Gf
t h e mere f a c t t h a t
and
-p
p
b e a complex number s u c h t h a t
belong t o
p(
-( -A)1/2)
w e have
= ~ ( ~ ; - ( - A ) " ~ ) R ( - ~ ; - ( - A )l/2)E = ~ ( -2p; A ) E = D(A).
that
p((-A)'"
improvement of a ( p a r t i c u l a r c a s e ) of Theorem
Proof: L e t both
( ( -A)1'2)2
Im p 20
Then
T h i s completes t h e proof of Theorem 3.2.
An i m p o r t a n t consequence fGllOWing
IJ. E
TI).
so t h a t
x+( 2-1 (ql
same e s t i m a t e .
Let
5
p = (p\eiJi w i t h
c+( c+(12(ql + n)),
C
-A,
-p2
D( ( (
f
#
is the
2.5:
E
p(A).
Since =
Since (2.22) i m p l i e s
(3.14) s t a n d s proved.
5111.4 T r a n s l a t i o n of g e n e r a t o r s o f c o s i n e f u n c t i o n s . If A i s t h e i n f i n i t e s i m a l g e n e r a t o r of a s t r o n g l y c o n t i n u o u s
60
PIIASE SPACES
semigroup
then
S(:)
A-bI
any complex number) i s th:
(b
infinitesimal
The S ( G ) = e-btS(f). b corresponding r e s u l t for cosine functions i s somewhat harder to prove.
generator of t h e s t r o n g l y continuous semigroup
LEMMA 4.1.
be t h e i n f i n i t e s i m a l generator of a strongly
A
~ ( ts a t i s f y i n g
continuous cosine f u n c t i o n
Il@(t111 5 coeb It1 and l e t
b
(-m
be a n a r b i t r a r y complex number.
m>
Then
% = A - b 2I
(4.1) i s the
i n f i n i t e s i m a l generator of a s t r o n g l y continuous cosine function cb(Z)
satisfying (2)
/Eb(t)ll1. Coe Proof:
Define, i n d u c t i v e l y ,
C 0 ( t ) = @ ( t ) , @,(t)u
(u
-m
=
E,
E
m.
=J’
(S*@n-l)(t)u -m
.. .
el({),
Co(<),
Obviously
functions i n
(4.2)
< t <
m,
n
=
t 8(t 0
1,2
- s)@n-l(s)u
ds
(4.3)
,... ) .
are all s t r o n g l y continuous operator valued
Denote by
dn)
t h e s e t of a l l n-tuples
...,
(el,e2, en) with e = + 1; W(n) has 2n elements. It i s easy t o j see by induction s t a r t i n g from t h e cosine f u n c t i o n a l equation (11.3.1) t h a t f o r a r b i t r a r y r e a l numbers
...,sn
to’s1,
... @(sl)@(tO) = +
we have
~ @ (+ elsl t ~
+ a * .
2
where t h e sum i s extended over all 0
5 to f tl 5
Since
It
0
(el,.
.., e n
... 5 t n = t > o , o z s j 5 t j - t j - 1 ( j = 1, ...,n; tn = t). s + ... + e s I 5 t we obtain from ( 4 . 4 ) that 11 n n wt (4.5) II~(sn>@(sn-l) @(Sl)@(tO)I/ 5 Coe
+ e
7
We i n t e g r a t e now t h e l e f t hand s i d e of parallelepipedon
(4.5)
(4.4)
~ ( ~ 1Let.
*
of
+ en s n )
we g e t
0
5
s
j
5 t j - t j m 1( j
(4.4) =
1,
i n t h e n-dimensional
...,n;
tn
=
t).
Making use
61
PHASE SPACES We note next t h a t
- t n-1 ) ... S ( t1- t O ) @ ( t o ) u d t O .. . dtnml,
C ( t ) u =JS(t n
t h e i n t e g r a l t a k e n on t h e r e g i o n
it follows from
(4.5)
0
5 to 5 tl 5
... 5 tn-lz t ,
thus
that
(4.6) Consequently, t h e s e r i e s m
7(-b2lncn(t)
Cb(t) =
(4.7)
n=O
Cb({)
2
t
converges uniformly on compacts of
0.
This p l a i n l y i m p l i e s t h a t @ (0) =
(E)-valued f u n c t i o n with
i s a s t r o n g l y continuous
b
I.
Moreover
We o b t a i n from
(4.3)
(11.2.11),
and ( a v e c t o r valued v a r i a n t )
of t h e convolution formula for Laplace transforms t h a t
for Reh >
Hence, a f t e r a c l e a r l y p e r m i s s i b l e term-by-term i n t e g r a t i o n ,
[d.
m
emht@b(t)u d t
( -b2)"R( h2;A)n+1u
h
=
n=O = AR(A
for Reh >
(1)
+ Ib I.
2
=
2 hR(h ;A&
(U
Ab
@b( [ E l )
is
a s i n f i n i t e s i m a l g e n e r a t o r , completing t h e
b
w i l l be a r e a l number with
b
we have, i n view of t h e f i r s t i n e q u a l i t y
b
(4.10)
E E)
4.1.
I n t h e sequel, v a l u e s of
2 b ;A)u
It follows t h e n from Lemma 11.2.3 t h a t
a cosine f u n c t i o n with proof of Lemma
+
2 W.
For t h o s e
(11.2.11),
llR(h2;%)ll = /IR(A2 + b2;A)ll
'
cO
( A2 + b 2 ) l P ( ( h2
(where
C1
+
b2)1/2
depends of course on
b).
- u)
5-
(A> 0)
(4.11)
A2
Accordingly,
Ab
belongs t o t h e
62
PHASE SPACES
3(C )
class
2
= (b I - A )
k
defined i n 4111.2 and t h e f r a c t i o n a l powers
<
0
CY
i s a bounded o p e r a t o r i n
Proof:
K e,b
%.
t h e operator
u
If
E
- A)a - (b21 - A)ff
(4.12)
as a. consequence,
D(A);
Denote by
( b "1
Then
2 (A.
<1, b, b '
(-A,)"-( -%)CY=
ff
t h e operator
D(A)
(2.3)
corresponding t o
we have
CY
-(-%I = (Ko(,bl - Ko(,b)'
=
-
-lorn -
=
-
hff-l(R(h;%,)A,,
yL
R(A;%)A,)u
dh
1
h f f ( R ( h ; % r ) - R ( h ; % ) ) ~ dh
-J
m
+ ( b t 2 - b2 ) s i n f f r Tr
ABR(?;%,)R(h;%)u
dh
I
Both i n t e g r a l s d e f i n e bounded o p e r a t o r s , t h u s boundedness of
follows.
=
can be defined.
LEMMA 4.2. Let
(-%I)
(-%)"
If
u
-
E
D((-%)O)
t h e n t h e r e e x i s t s a sequence
ff
ff
un u, (-A,) un * (-Ab) u . i s convergent as w e l l t h u s u E D((-%,)").
By v i r t u e of
e q u a l l y well with t h e r o l e s of
b'
such t h a t
b
and
(4.12)
{un]
E
D(A)
(4.12), (-%,)"un
Since t h e argument works
(4.13)
reversed,
It remains t o d e f i n e t h e f r a c t i o n a l powers of
%
follows.
itself.
We
s e l e c t a r b i t r a r i l y one of t h e p o s s i b l e values:
In particular,
$111.5
~t/~
= i(-%) 1/2
.
The p r i n c i p a l value square root r e d u c t i o n .
Throughout t h e r e s t of t h i s c h a p t e r A w i l l be t h e i n f i n i t e s i m a l generator o f a s t r o n g l y continuous c o s i n e f u n c t i o n
(4.1),
t h a t is,
A
E
s(Co,m).
c(<)
satisfying
A s seen in Section 1 1 . 3 , A ~ g2 i s
e q u i v a l e n t t o t h e f a c t t h a t t h e Cauchy problem f o r
63
PHASE SPACES
i s ( u n i f o r m l y ) w e l l posed i n t 2 0 ( e q u i v a l e n t l y , it i s uniformly well We s h a l l a l s o r e q u i r e t h e following ad hoe posed i n - m < t < m ) . p o s t u l a t e , which w i l l be shown t o hold a u t o m a t i c a l l y i n c e r t a i n Eanach spaces i n t h e following s e c t i o n .
Let
5.1.
ASSUMPTION
2
b
(1;.
Then 8 ( t ) E t
i s a s t r o n g l y continuous f u n c t i o n of
for
E
-m
and <12s(t)
D(A;/')
m.
It f o l l o w s from Lemma 4.2 t h a t Assumption 5.1 i s independent of the particular
b
2w
The f o l l o w i n g result e s t a b l i s h e s another
used.
t r a n s l a t i o n invariance property.
LEMMA 5.2.
&&
Sb(t)E
..;'," 5
t
- w < t < m .
S (t)u b
@,(s)u d s .
=
and
D(Ai/2)
Proof:
2
b
%,
w,
(.,(<)
as i n Lemma 4.1,
Then i f Assumption
5.1 i s s a t i s f i e d ,
i s a s t r o n g l y continuous f u n c t i o n of
$/$(t)
Term-by-term i n t e g r a t i o n of t h e s e r i e s
(4.7) shows t h a t
where
On t h e o t h e r hand, c o n s i d e r t h e s e r i e s
where
2,(t) =
%1/2S ( t ) ,
2,(t)u
(u
E
=
E,
(S*2 -m
n-1
)(t)u
=it
8 ( t - s ) ~ ~ - , ( s ) ud s
0
W,
n = 1 , 2 ,...)
.
An argument v e r y s i m i l a r t o t h a t used i n Lemma 4 . 1 shows t h a t each term
in
(5.2)
and
(5.3)
i s s t r o n g l y continuous and t h a t both series a r e
uniformly convergent on compact s u b s e t s of
-m
m,
thus the l i m i t
64
PHASE SPACES
(5.3)
2b(c) o f
%'I2
i s a strongly continuous function.
commutes w i t h
S(t)
$/*
%
AtPsb(t)u
THEOREM 5.3.
=
R(h;A)
( t h i s f o l l o w s from t h e f a c t t h a t
commutes w i t h s(t) and from t h e d e f i n i t i o n o f R(?\;A)), hence a n ( t ) = 1 / 2 S n ( t ) ; s i n c e and
On the o t h e r hand,
At/2 i n t e r m s of is closed, Sb(t)E
-
C
2b(t), which completes t h e argument.
Let Assumption 5.1 h o l d .
Then for each
2
b
(A),
b
i s t h e i n f i n i t e s i m a l g e n e r a t o r of t h e s t r o n g l y c o n t i n u o u s group
(5.4)
(5.5) we renorm t h e space E i n t h e same way a s i n Lemma 1.2, so t h a t (1.6) h o l d s i n t h e new norm; t h e n Theorem 4.1 To prove
imp1i e s t h a t
ll~b(t)llt 5 e (r61+b)ltI Define for
(-m<
q ( t ) = e x p ( - ( h ) + b ) t ) / l %1/2 g k ( t ) l l
Cb, Sb
result i s
This shows
a f t e r multiplication by
(1.7), (5.5)
for t
t <
2
0
30
and it f o l l o w s f o r a l l
q(t)
t
The g r o u p e q u a t i o n s a r e a n immediate consequence o f and
(11.1.8)
a n d use
e x p ( - ( w + b ) ( s + t ))$/'.
which h a s b e e n s e e n t o imply t h a t
for t
(5.6)
m).
5
The
C(l + t).
by symmetry.
(11.1.7)
(11.1.8). Finally, if
Reh >! , f
=
we have
R(h;412)u
t h u s it r e s u l t s from Theorem g e n e r a t o r of
(Reh >
W
1.3.4 t h a t $/2
+
b)
,
(5.7)
i s the infinitesimal
% ( t ) a s claimed.
Assumption 5 . 1 and t h e p r e v i o u s results p r o v i d e a phase space for t h e e q u a t i o n (5.1), where E = E and E = D(%1 / 2 ) endowed wi.th i t s 1 0 g r a p h norm ( n o t e t h a t , by v i r t u e o f Lemma 4 . 2 t h e g r a p h norms of a w two
*
are equivalent f o r
b , b'
2
w).
This r e d u c t i o n of (5.1) t o
a first o r d e r Cauchy problem w i l l be r e s t a t e d i n a d i f f e r e n t form a t t h e
65
PHASE SPACES
end of t h e s e c t i o n .
THEOREM 5.4.
The space if=D(.$, 1 /2) x E (D(% 1 / 2 )
g r a p h norm) i s a p h a s e space f o r @
t a i n e d i n t h e s t a t e space
(5.1)
1/2
D(%
generator
)
c -D1
Proof:
D(A);
(5.8)
(1.11) r e s p e c t i v e l y and a r e t h e
(-m
We show f i r s t
(5.8). 0
5
s
Note t h a t
@ ' ( s ) u = Ab(s)u
=
~ ( s ) ud s
AJ(,
.
S i n c e t h e l e f t hand s i d e i s a bounded o p e r a t o r o f
E
E.
8 ( s ) maps
Assume now t h a t
u
E
for
5 t, t
@(t)u
u
(5.9)
m)
C > 0.
integrating i n
t h e i n t e g r a l of
which i s con-
6(;) and i t s i n f i n i t e s i m a l
The group
a r e given by (1.10)
f o r a n adequate co n s t an t
E
m
D1,
=
IIE(t)l/(3) 5 ~ ( +1 It I)e[lllt 1
u
o f Theorem 1 . 2 : p r e c i s e l y ,
m
t h e i n c l u s i o n b e i n g bounded.
-m
equipped with i t s
into
D(A) :
E
and
(5 . l o ) u
it f o l l o w s t h a t
(5.10)
h o l d s for a l l
u s i n g Assumption 5 . 1 we c a n w r i t e
t @ ( t ) u = (Ab + b 2 1 ) L
which o b v i o u s l y i m p l i e s t h a t
@ ()u t
8(s)u d s
i s continuously d i f f e r e n t i a b l e
with derivative
This e s t a b l i s h e s t h e i n c l u s i o n r e l a t i o n
(5.8).
To show t h a t t h e
i n c l u s i o n i s bounded it i s s u f f i c i e n t t o show t h a t
for a n adequate co n s t an t
estimate f o r
Ai/2bb(t);
C.
T h i s i s proved j u s t a s t h e c o r r e s p o n d i n g
a f t e r renorming of t h e s p a c e we w r i t e
(11.1.8)
66 for
PHfiSE SPACES
@
and
(1.7) f o r
p r e m u l t i p l y by 2/:A
8,
q(t>
and work with t h e i n e q u a l i t y
exp(-rnt)IlAt/2s(t)l\.
=
(5.12)
Once i n p o s s e s s i o n of
(5.11) t h a t
we o b t a i n from
(5.13) ( w i t h t h e obvious m o d i f i c a t i o n i f = 0 ) which shows t h e i d e n t i t y t o be bounded. o p e r a t o r from D(% 1/2 ) i n t o D1 f*)
6 ( t ) i s a group h a s a l r e a d y been p r o ed i n Theorem
The f a c t t h a t 1.2.
To show t h a t each
6(t): 3
-
R
i s a s t r o n g l y continuous f u n c t i o n i n
-
-
i s a bounded o p e r a t o r and
6(t)
we o n l y have t o show t h a t
-
@ ( t:)D($12) D($/*), S ( t ) :E D($/2), @ ' ( t:)D(') E and s'(t) : E E a r e a l l bounded o p e r a t o r s s t r o n g l y continuous i n t and +
obeying e s t i m a t e s of t h e form (5.12). This i s obvious f o r s ' ( t )= @ ( t ) a s an operator i n E; i n D ( %1 / 2 ) we use t h e f a c t t h a t @ ( t )commutes with
@ ' ( t )i s based on
The treatment of
2.
and t h e d e s i r e d p r o p e r t y of
(5.12).
by i n e q u a l i t y g e n e r a t o r of
6(t)
Reh >
u
and
8 ( t ) i s j u s t Assumption
1.5
and
(5.13)
complemented
It only remains t o i d e n t i f y t h e i n f i n i t e s i m a l
i n t h e space [u,v]
=
(5.11)
E
i3
3.
This i s done a s f o l l o w s :
if
t h e n we have
( i m p l i c i t i n (5.14) i s t h e e a s i l y v e r i f i a b l e f a c t t h a t t h e Laplace transforms of @ ( t ) u and @ ' ( t ) u e x i s t i n t h e norm of D(% 1/2 )). A r o u t i n e computation shows t h a t
thus
91
i s t h e i n f i n i t e s i m a l g e n e r a t o r of
6(;) by v i r t u e of Theorem
1.3.4. Let
3
=
E
X
E
endowed with any of i t s product norms.
ing r e s u l t i s e s s e n t i a l l y e a u i v a l e n t t h a t t h e Cauchy problem f o r
(5.1)
and t h a t Assumption 5.1 h o l d s .
The follow-
t o Theorem 5.4; we s t i l l assume
i s uniformly well posed i n
(-m,m)
67
PHASE SPACES
TiXOREM
in
9
=
E x E
5.5.
Let
b
2
w i t h domain
W.
Consider t h e o p e r a t o r
D(Ab)
=
Then
x D(A:/*).
D(A;/')
i n f i n i t e s i m a l g e n e r a t o r of a s t r o n g l y continuous group
A
is the
q D ( t ) such t h a t
(4) l l ~ ~ ( t ) I5 l (c(1 q
+
W 2 e ( "l+2b)ItI
(-m
(5.17)
m). h
of
There i s a one-to-one correspondence between s o l u t i o n s u ( t )
with
u'(t)
=
of
u(;)
and solutions
~ ' ( 0 )E
(5.1)
(5.18)
2ibU(t)
g i v e n by
(d/' + u(;)
ibI)u(i)
w Ll'({)
Proof:
Let
w i t h domain with
D($)
=
D($/*)
x D(A;/*)
=
0
il
-i I
0
Finally, l e t
In view of Theorem 5.3 we have
I)(%/'),
I
(5.19)
SO
that
9+,
=
+
by
68
PHASE SPACES
moreover, it follows a g a i n from that
u
(11.1.7),
(11.1.8) a n d Assumption 1 . 5
If Reh >
Pb(<) i s a s t r o n g l y continuous group.
= [u,v] E
W
+
b
and
3 we have
and we check e a s i l y enough t h a t from meorern
1.3.4
The f a c t t h a t
26
that
= % ,,
+
\
%(A) = R(h ; \ )
s o it follows again
i s t h e i n f i n i t e s i m a l generator of
bl) g e n e r a t e s a group
%(t)
Pb(t).
is (a particular
case o f ) a c l a s s i c a l r e s u l t i n p e r t u r b a t i o n t h e o r y ( s e e HILLE-PHILLIPS
(5.17)
[1957: 1,p. 3891) b u t t h e e s t i m a t e
i s s l i g h t l y nonstandard,
The main ingredient w i l l be t h e
t h u s we s t a r t t h e proof from s c r a t c h .
following r e s u l t , which i s a s o r t of complement t o t h e Hille-Yosida Theorem 1.3.1.
W e s t a t e and prove it i n a r a t h e r general version.
LEMMA 5.6. Banach space
L A S(i) be a s t r o n g l y continuous semigroup i n t h e E, A i t s i n f i n i t e s i m a l g e n e r a t o r . Then S ( t ) s a t i s f i e s
Ils(t)ll 5 m
f o r a.n i n t e g e r lIR(h;A)"II
5
21
cO(l
S(i)
talewt
(t
L
(5.22)
0)
if and only i f
Co((Reh-U)-"
+
(Reh >
If
-1-
n(n W,
n
... ( n + m - l ) ( R e h - w ) - ( n + m ) 0,1, ... ). (5.23)
+ a) =
i s a s t r o n g l y continuous group, t h e n Ils(t>ll
5 co(l +
Itlm)eWltl
(-m
m)
(5.24)
i f and o n l y if
IlR(h;A)"II.
5
... ( n + b l - l ) ( n = 0,1, ... ).
Co(( lRehl -m)-n + n(n
(IReh( >
0,
+
a)
[Rehl -h))-(n+m)) (5.25)
69
PHASE SPACES
Proof:
Using
(5.22)
i n formula
(1.3.8) a l l
result instantly.
The corresponding formula f o r
estimates
when
(5.25)
is a group.
S(t)
a r e a consequence of Lemma 1.3.2. =
( - l ) n n ! R(h;A)n
-A
(5.23)
t a k e s care of
The opposite i m p l i c a t i o n s
In f a c t , since
we o b t a i n from formula
inequalities
R(A;A)(~)
=
(1.3.14) ( s e e a l s o
(1.3.15))
that
Ils(t>llIc0 Colimtmn-n(n + 1)
... (n + m > ( l - - wt )-(n+m+l) n 5
t
The corresponding e s t i m a t e i n way.
w t -(n+l) + l i m (1- F )
assumed for
h >
co(l + tm)ewt. (t 2
0)
for groups follows i n t h e same and
(5.25)
need o n l y be
real.
End of proof of Theorem
%(.)
0
(5.23)
We observe i n passing t h a t
=
satisfying
(5.20).
IIR(~;%)~II(~)
5.5.
g e n e r a t e s a group
5.6 we o b t a i n
5 c ( ( I h l - r ~ - b ) -+~n ( l h I (111
%
The o p e r a t o r
Applying Lemma
- w - b)-(”+l))
,...
+ b , n = 0, 1
).
(5.26)
Consider t h e s e r i e s
.. . R( h;\)(R(
R( h ; $ ) ( R ( A;\)b’B+
for
kl,k
*,...
=
t h u s each term of
where
of
k =
(5.26)
O,l,Z
,..., Ihl
(5.27)
>
W
h;%)bp?”
(5.27)
+ 2b. It i s e a s y t o see t h a t
can be w r i t t e n i n t h e form
and p + q = k + n. We make use of t h i s r e l a t i o n and j t o deduce t h a t t h e g e n e r i c term i n t h e series (5.27) i s k
bounded i n norm by a n expression of t h e form
PHASE SPACES
70
Cbk
( Ih( - fIi
1 - b)k+n
+
Cb
k
k + n (/Al-fIl-b)
(k + n ) ( k + n + 1)
+ mk
( [ A ] - 0 1 - b)k+n+2
k+n+l
' (5.30)
*
We observe next t h a t
111 >
for
U
..
+
where it must be remembered t h a t
2b,
k =
..
cki
and t h a t
.,k assume independently all t h e v a l u e s 0,1,. We d i f f e r e n t i a t e n next (5.31) r e p e a t e d l y w i t h r e s p e c t t o Ihl o b t a i n i n g t h e e q u a l i t i e s
kl,
1
+
k
n
n)b ( , h / - u - b ) k+n+l
1 Accordingly,
k
k
+
n)(k
+n +
( / h i - u - 2 b ) n+l
-
l)b
k
- (
( ( ] A / -td-b)k+n+2
the series
(5.27)
n(n
(5.32)
'
+ 1)
I A l - u - 2b)n+2
(5.33) '
i s convergent i n t h e norm of t h e space
( 3 ) and we can e s t i m a t e t h e norm o f t h e sum by ( a constant t i m e s ) t h e
sum of
(5.31), (5.32) and (5.33).
We observe f i n a l l y t h a t
(2.57)
is
nothing b u t
and check (by d i r e c t a p p l i c a t i o n of t h e d e f i n i t i o n ) t h a t R(A;%)
(R(h;\)bp)j
=
R(A;%
(5.34)
+ bB) = R(X;%).
The end r e s u l t i s t h e sequence o f i n e q u a l i t i e s
l ] ~ ( X ; % ) ~ l / ( ~y) C ( l h l - ~ - 2 b ) -+ ~Cn(1Al - u - 2 b ) - ( n + 1 )
+
Cn(n
+ 1)( I A / -
U s i n g (a s l i g h t Il'$(t)ll
5 c(1
+
- 2b)-(n+2)
( / A 1 > w + 2b, n
=
... )
0,1,
(5.35)
71
PHASE SPACES
-00
C
t
C
(5.17).
which completes t h e proof of
m,
W e a t t e n d f i n a l l y t o t h e l a s t statement i n t h e proof o f Theorem
5.5. with u(0)
u(<)
Let u'(0) E
I)($/*).
E
D(A)
easily that
Since
u(t)
@ ( t ) u ( O ) + S(t)u'(O)
=
it f o l l o w s t h a t
u'(t)
( t ) , g i v e n by
(5.19),
LI
(5.1)
be a s o l u t i o n of t h e second order e q u a t i o n
0(4I2)
for a l l t
E
with and we check
(5.18).
i s a s o l u t i o n of
That
t h e correspondence i s one-to-one i s obvious.
§r11.6
Second order equations i n
Lp
spaces.
All t h e r e s u l t s i n t h e previous s e c t i o n ( i n p a r t i c u l a r t h e p r i n c i p a l value square r o o t r e d u c t i o n i n Theorem 5 . 5 ) depend on t h e v a l i d i t y of Assumption 5.1.
A s seen i n t h i s
s e c t i o n , Assumption
5.1
i s a u t o m a t i c a l l y v e r i f i e d i n a c l a s s of spaces i d e n t i f i e d below. A triple
(X,y,p)
where
i s an a r b i t r a r y s e t i s a measure
X
i s a u - f i e l d of s u b s e t s of
space i f
a d d i t i v e measure i n
7.All
positive, i.e.
2
p(e)
0
X
and
i s a countably
p
measure spaces considered here w i l l be
f o r any
e c
( f o r d e t a i l s on t h i s d e f i n i t i o n
and connected f a c t s see DUNFORD-SCHWARTZ
[l958:1, Chapter 1111). 'The
(complex) Lebesgue spaces
L r ( X ) (1 5 r
i n t h e customary manner.
Lr(X,F,p)
=
5
m)
a r e defined
A l l r e s u l t s below a r e based on t h e following
theorem on H i l b e r t transform of v e c t o r valued f u n c t i o n s .
THEOREM
1< r C
where
for
6.1. Let
f
E
For -
m.
Lp(-m,m;E),
depending on
p
be a measure space and l e t
(X,y,p)
E
>
0,
1< p <
b u t not on
define
Then t h e r e e x i s t s a c o n s t a n t
m.
f
or
C
such t h a t
E
(6.3) where
11. \ I p
i n d i c a t e s t h e norm of
Hf
=
l i m &+
e x i s t s ( i n t h e norm of
Lp(
LP(-m,m;E))
0
-a,
Moreover,
m;E).
(6.4)
HEf f o r every
f
E
LP(-m,m;E)
so t h a t ,
72
PHASE SPACES
with
( 6 . 3 ) , H i s a bounded o p e r a t o r i n LP(-m,m;E)
i n view of norm < C .
For a proof see DUNFORD-SCHWARTZ [1963:1, p , 11731. Theorem p;
Actually
6.1 w i l l be only needed for a n a r b i t r a r i l y f i x e d value of p = r,
for
t h e r e s u l t i s nothing b u t a n i n t e g r a t e d form of
M. R i e s z ’ s w e l l known result on Lp boundedness of t h e ordinary H i l b e r t transform (DUNFORD-SCHWARTZ [1961:1, p . 10591). We s h a l l need i n t h e sequel a c o r r o l l a r y of Theorem W
2
denote by
0
functions
Su(E)
f ( < ) defined i n
Ilfl/m,o
-a
mPA( E )
<m
-m
(E) f o r a l l z > 0; P family of semi-norms THEOREM 6.2.
-wltl
llf(t)ll,
(6.5) 15 p <
m,
E-valued s t r o n g l y measurable f u n c t i o n s
i s a l o c a l l y convex space endowed with t h e
{/l*l/p,T;~
Let
c > w,
>
0).
1< p <
m,
E
a Banach space s a t i s f y i n g
men -
m.
exists i n the t o p o l o g u
hp(E)
-+
- valued
such t h a t
m
(6.1) for some r , 1 < r <
Hc :gu
e
~ ~ * ~ ~ m ,O on. t h e other hand, f o r
denotes t h e space of a l l
f ( t ) defined i n
For
such t h a t
m
= e s s . SUP -m
endowed with t h e norm
6.1.
t h e space of a l l s t r o n g l y measurable E
and d e f i n e s a continuous operator
mp(E).
Proof: the interval
For any
It I < a.
a > 0 Let
let T
xa
3 1,
be t h e c h a r a c t e r i s t i c f u n c t i o n of
0 < E
5 1, t 5
IT].
We have
f(s) ds ISI?T+l
= (H:’lf)(t)
+ (HE’ C Pf ) ( t ) +
(H:’jf)(t)
.
(6.8)
73
PHASE SPACES
It i s obvious t h a t
HC”
=
E
E
( e - c l t l -l)/<
c o n v o l u t i o n of
(6.9)
holds f o r
r e s u l t s from Theorem LP(-m,m;E)
.
5 T>
(6.9)
by q+l(;)f(i) thus an e s t i m a t e of c 2 H C J 2 f ( t ) = l i m HE’ f ( t ) . F i n a l l y it c l H f = l i m HcJ1f e x i s t s i n t h e norm of
’
6.1 t h a t
E
and
where a g a i n
C
depends only on
THEORFM 6.3. r, 1 < r <
( It1
and t h a t
E
t e n d s uniformly on compacts t o t h e
HC’:f(t)
On t h e o t h e r hand,
i s independent of
f CllflIm,i)
ilHE’3f(t)ll
t h e type of
’
Hc’
E
and l e t
W,
A
T.
This ends t h e proof of Theorem
6.2.
(6.1) f o r some Then Assumption 5.1 h o l d s :
be a Banach space obeying E
2
(S
(W).
e qu iv a l e n t l y ,
qt)
=
(6.11)
@Jt> + Ay2Sb(t)
i s a s t r o n g l y continuous group ( w i t h i n f i n i t e s i m a l g e n e r a t o r
( 5 . 5 ) ) for b -5
satisfying Proof:
Let
b
2 W.
w.
u
If
E
D(A)
we have (6.12)
We have a l r e a d y proved t h a t
%
generates a cosine function
$(:)
satisfying
Let
c >
A = c2 of
W
+ b.
We d i v i d e t h e i n t e r v a l of i n t e g r a t i o n i n
(6.12)
and use i n t h e second i n t e g r a l t h e i n t e g r a t e d - b y - p a r t s
(11.2.11)
for n
=
1:
R ( h2 ;%)u v a l i d for
Reh >
W
+ b.
=Jim
e-7\Ssb(s)u d s
The r e s u l t i s
,
at
version
(6.14)
74
PHASE SPACES
The integrand i n t h e second i n t e g r a l i s now transformed a s follows. Write
(11.1.7)
the fact that
for
@'(t)u
Cb, Sb, u =
D(A)
F
f o r both
t
-t.
and
Using
and s u b t r a c t i n g t h e e q u a l i t i e s so
S(t)Au
obtained we prove t h a t
-sb(s)sb(t)A$ = Since
u
E
D(A),
(@,(s
(observe t h a t
C
(Cb(S-t)-Cb(S +
- t ) - Cb( s
t h e r e e x i s t s a constant Il(c$(s
5
+ t))u
= O( l s l )
- t ) - @b(s '
w i l l depend on
t))UIl
u
5
and
deduce t h a t
11 ( Cb( s - t ) - Cb( s + t ) h /I d s 5 C
Since
h-1/2(
as
s
+
(6.16) 0
SO
that
such t h a t
C
=
.
t))U
C ( A'/'
h1/2 - w - b ) -2
Cse
(w+b)s
(s
L
t ) . Accordingly,
dm
s e -(h1/'-W-b)sds
0)
we
=
- - b)-* . 0
.
i s summable i n
2 ( c ,m)
it follows from t h e
Lebesgue dominated convergence theorem t h a t
By (a vector-valued v e r s i o n o f ) T o n e l l i ' s theorem t h e order of i n t e gration i n
t h e i n t e g r a l on t h e r i g h t hand s i d e of
(6.17)
reversed. Once t h i s i s done, the a t t r a c t i v e formula r)
CC
4/28b(t)u
[
= f lr 8b ( t )d o
$l m
+
l i m E+o
-CS
n
h-1/2R(X;Pg)(-A,)~
dh
( @ b ( s - t )- C b ( s + t ) ) u d s
can be
75
PHASE SPACES
(6.18) So f a r , so good:
results.
with r e s p e c t t o
s)
(6.18)
but
(specifically, the integral
s t i l l o n l y makes sense for u
does not provide enosgh information on connection, of course, t h a t Theorem
E
i s an a r b i t r a r y element of
-
-
d12Sb(t).
D(A)
E
6.2 proves u s e f u l . { un 3
and l e t
and t h u s
It i s i n t h i s Assume t h a t
be a sequence i n
u
D(A)
u. Then C b ( s ) u n cb,( s ) u uniformly on compact s u b s e t s of n (-m,m). I n view of (6.13), Cb(s)u,+ C b ( s ) u i n XU,(E) and it t h e n r e s u l t s from (6.18) and Theorem 6.2 t h a t , for 1 < p < m, $12Sb(f)un u
with
converges i n T
> 0.
Lp( (-T,T);E)
t h a t i s , converges i n
hp(E),
f o r every
Passing if necessary t o a subsequence we can t h e n i n s u r e t h a t
*Sb(t)un-
g(t)
for t
o u t s i d e of a s e t
depending of course on
(-CO,CO)
(belonging t o
L’((-T,T);E)
u)
where
f o r every
closed o p e r a t o r , it follows t h a t i f <12Sb(t)u
=
T
t
(t
E
SF
i s a E-valued f u n c t i o n
g(t) > 0).
Since
d, Sb(t)u
E
g(t)
of f u l l measure i n
d
E
D(%
)
i s a and
(6.19)
d).
Let
so t h a t
e
has a complement of n u l l measure i n e = -e,
e
+
W e have
(-co,M).
-
e c e.
The f i r s t e q u a l i t y f o l l o w s from t h e f a c t t h a t f u n c t i o n ; t o show t h e second we apply
$/2
(6.20)
$j2Sb(t)
i s an even
t o both s i d e s of
(11.1.8)
obtaining
+ t)u
L+(s
= @(s)%1/2Sb(t)U
+ C(t)Ay‘&Js)u.
The two e q u d i t i e s ( 6 . 2 0 ) combined imply t h a t c l a s s i c a L r e s u l t i n measure theory, a > 0. that
Applying t h e n r e p e a t e d l y e =
(-co,~),
graph theorem
e
- e 5 e,
t h u s by a
c o n t a i n s an i n t e r v a l
t h e second r e l a t i o n
S b ( t ) E _C D(A;l2)
so t h a t
$12Sb(t)
e
for a l l
(6.20)
t;
(-a,a),
we deduce
by t h e closed
i s a bounded o p e r a t o r .
Consider now t h e group
l$(<). It f o l l o w s from
(6.19) t h a t
76
PHASE SPACES n
bb(t)u
i s s t r o n g l y measurable for each
u
( i i i ) shows t h a t
yielding Theorem 1.2.1.
so t h a t t h e argument
%(<)
i s s t r o n g l y continuous.
This ends t h e proof of Theorem 6.3.
9111.5 - including t h e construction of t h e s t a t e space i n Theorem 5.4 and t h e p r i n c i p a l Theorem
6.3 a s s u r e s t h a t
a L t the r e s u l t s i n
value square root reduction i n Theorem 5.5-hold.
More can be proved;
for instance, a s t h e following r e s u l t shows, t h e phase spaces constructed i n Theorems 1 . 2 and
5.4
a r e a c t u a l l y t h e same (except f o r
a readjustment of t h e norm). THEOF3M
6.4.
E
where, a s i n Theorem 1.2,
be as i n Theorem 6.3.
Then i f
a
u
Dl
i s t h e s e t of a l l
@(G)u i s continuously d i f f e r e n t i a b l e i n
norm (1.8) Proof:
of
-m
2W,
such t h a t Moreover t h e
m.
i s equivalent t o t h e graph norm of
D1
b
We have already shown i n Theorem 5.4 t h a t
1 2
D(Ab/ ). D(At/2)
5 %l
with bounded inclusion, thus a s soon a s we prove t h a t (6.22)
t h e closed graph theorem w i l l t a k e e w e of equivalence of t h e norms. To show ( 6 . 2 2 ) we start with formula (6.18)
always for
u
E
i n i t s second version,
and check t h a t t h e p r i n c i p a l value i n t e g r a l can
D(A)
be d i f f e r e n t i a t e d with respect t o
t
under t h e i n t e g r a l sign.
i s obvious enough i f we note t h a t (always f o r
c >
W
+ b)
This
we have
which, a s an ordinary i n t e g r a l , can be d i f f e r e n t i a t e d under t h e i n t e g r a l sign.
rrn
The d e r i v a t i v e equals e-'lSe
-03
= l i m E+
0
J;
(q(t- s ) - q ( t ) ) u ) e-c:st
Is1 1"
T(t-
S)U
ds
ds
.
77
PHASE SPACES
Hence
M
u
Let
D so t h a t @,(;)u i s continuously d i f f e r e n t i a b l e i n 1' As a p a r t i c u l a r case of Theorem 1 . 3 we know t h a t D ( % ) i s
E
(-m,m).
N
dense i n
Em,
thus
sequence
{un)
5 D(A)
particular
D1
i s dense i n
D(A)
u
with
@ I j ( t ) u n .+ @ $ ( t ) u
thus, by v i r t u e of Theorem
-
and we may s e l e c t a N
u i n t h e norm of D1: i n n uniformly on compact subsets of
@i(t)un
6.2,
-
in
@;(<)u
Sc (E ).
again Theorem 6.2 we deduce t h a t t h e r e e x i s t s
%/2@,(t)un
-
h ( t ) i n hp(E), used i n Theorem 6.3 shows t h a t
e
of f u l l measure i n
D(A)
t h e proof of Theorem
(11.1.7). O r i g i n a l l y , t h i s e q u a l i t y was
i s dense i n
1.3). u
=
u
thus of Theorem
E
s =
F
u c D 1
using
D1
Dl
(see
-t we g e t
@ ( t ) @ ( t ) u+ S ( t ) @ ' ( t ) u
D(<j2).
u
i n t h e topology o f
D1
Setting
On account of t h e f a c t s t h a t deduce t h a t
h ( i ) t h (E) P and and argument s i m i l a r t o t h e one $ ( t ) u E D(% 1/2 ) f o r t i n a s e t
but we can extend it e a s i l y t o
u c D(A),
the fact that
Applying such t h a t
(-w,m).
We make use now o f proved f o r
(-m,m)
and t h a t
.
S(t)E
5 D($12)
This completes t h e proof of
we
( 6 . ~ )and
6.4.
W e reformulate below some of t h e r e s u l t s h i t h e r t o
A s t r o n g l y continuous cosine f u n c t i o n
obtained.
@ ( t )i s s a i d t o possess a
group decomposition if t h e r e e x i s t s a. s t r o n g l y continuous group such t h a t
U(<)
@ ( t=) Let
u
E
B
$ (lA(t)
(-w
c t <
be t h e i n f i n i t e s i m a l generator of t h e group
2
D(B )
(L(t)u)"
then =
lA(t)u
B%(t)u,
(6.24)
m).
U(g).
If
i s twice continuously d i f f e r e n t i a b l e with
thus
i n f i n i t e s i m a l generator A 2 = B u; i n other words,
AU
+ U(-t))
u
belongs t o t h e domain
of t h e cosine f u n c t i o n
D(A)
of t h e
@ ( t )and
PHASE SPACES
78
2
E CA
16.25)
h be so l a r g e t h a t A, -1E p(B) and h2 2 2 ( w i t h R ( h ;B ) = - R ( A ; E ) R ( - h ; E ) . The e q u a l i t y
Let
E
p(A).
2
h I - B
2
h2
Then 2 2
E
p(E )
C_ h I - A
( t h a t follows from ( 6 . 2 5 ) ) and t h e e x i s t e n c e of i n v e r s e s a r e t h e n e a s i l y seen t o imply t h a t E2
(6.26)
A,
=
Thus, t o e x h i b i t a n example of a cosine f u n c t i o n not having any group decomposition it i s s u f f i c i e n t t o t a k e
@ ( t =) c o s ( t A ) ,
i s a bounded o p e r a t o r having no square r o o t whatsoever.
A
where
(6.27)
An operator l i k e that can be found i n HALMOS [1967:1,p . 115 I: EXAMPLE 6.5.
5
(c0,
=
5,,
. ..
E
Let
=
fi2 be t h e H i l b e r t space of a l l sequences
115 11
such t h a t
)
=
2/1)
(715
C
Consider t h e
W.
unilateral shift
Then t h e r e e x i s t s no (bounded o r lmbounded) operator E such t h a t 2 B = A. I n f a c t , assume such a B e x i s t s . Then, s i n c e D(A) = E we must have as w e l l
A
is.
Let
N(A)
d i m N(A)
Since
D(B)
=
E;
N(B)
5 N(A)
we must have
f
and N(A), N(B)
A
5 1.
d i m N ( B ) = 1. Then t h e r e e x i s t s
Bq
with
=
5.
If
q = pc
then
a r e l i n e a r l y independent.
which b e l i e s t h e f a c t t h a t =
103,
A ( r e s p . of B ) .
( r e s p . N ( B ) ) be t h e nullspace of
= 1 and
d i m N(B)
Assume
must be onto s i n c e
B
moreover,
so t h a t
B
5
=
0,
f
E
N(B),
#
f
0.
a contradiction.
B u t both
q
and
5
Take
q
Hence
q
belong t o
d i m N(A) = 1. We deduce t h e n t h a t
i s one-to-one.
E u t t h i s i s impossible s i n c e
i s not one-to one. I n view o f t h e f a i l u r e of t h e group decomposition (6.24) i n g e n e r a l
and of t h e r e s u l t s i n t h e l a s t t h r e e s e c t i o n s one may surmise t h a t a formula l i k e (6.24) may be a v a i l a b l e o n l y for a convenient t r a n s -
79
PHASE SPACES
l a t e of
cb(c).
This i s of course t h e case under t h e assumptions i n
vigor here.
6.6. Let E be a Bana.ch space s a t i s f y i n g t h e assumptions of Theorem 6.3 and l e t @(<) be a s t r o n g l y continuous cosine f u n c t i o n i n E such t h a t TKEOREN
Finally, l e t
b
2 W.
Then t h e s t r o n g l y continuous cosine f u n c t i o n
2
@,(t) generated by
A-b I
llc$(t)ll
5
(which s a t i s f i e s
(6.29)
Coe
possesses a group decomposition
$ (L4Jt)
cb ( t ) =
+
where t h e s t r o n g l y continuous group
(6.30)
03)
satisfies
(6.11)
(+1It )e
C > 0.
6.6 i s of 5.1 h o l d s :
Theorem Assumption
%(<)
I
h~(t)Il5 ~ f o r some c o n s t a n t
(-m
b.&-t))
course t r u e i n an a r b i t r a r y Banach space i f t h e only t h i n g t o be proved i s t h e e s t i m a t e
(6.311. The most s i g n i f i c a n t p a r t i c u l a r case of Theorem '*)
= 0,
where
C(c)
i s uniformly bounded:
ll@(t>ll 5 co Here
c(:)
(-02
(6.12)
m).
i t s e l f admits t h e group decomposition
(6.24)
It i s n a t u r a l t o a s k whether t h e growth of L L ( ~ ) a t b e t t e r matched t o t h a t of
(1 + itl) t i v e when
with
It] =
m
can be
t h a t i s whether t h e f a c t o r
@(;),
can be eliminated i n
E
(6.6) i s undoubtely
(6.33).
The answer i s i n t h e affirma-
i s a H i l b e r t space; t h i s w i l l b e shown i n Chapter 5 by
completely d i f f e r e n t methods. answer i s n o t known.
I n a g e n e r a l Banach space, however, t h e
PWSE SPACES
80
%(t).
A n a l y t i c i t y p r o p e r t i e s of
$111.7
There i s more t h a n meets t h e eye i n t h e semigroup s h a l l see i n t h i s s e c t i o n , each
a s we
%(t):
i s t h e boundary value of a
%(t)
The proof of t h i s r e s u l t w i l l
semigroup a n a l y t i c i n a h a l f p l a n e .
r e q u i r e a s h o r t d i g r e s s i o n i n t o t h e t h e o r y of a n a l y t i c semigroups. Let
S(i)
be an a r b i t r a r y s t r o n g l y continuous semigroup.
say t h a t
S(%)
i s analytic if there exists
) : ( S
admits an a n a l y t i c e x t e n s i o n
1%
5;
51 5
cp,
u
E
For every
S E
S(C)U
z+w
An argument very s i m i l a r t o t h a t l e a d i n g t o
A
5c
such t h a t
t o the sector
(7.1)
u.
=
(1.1.9)shows
t h e existence
e'l'
i s t h e i n f i n i t e s i m a l g e n e r a t o r of
t o indicate that
< r/2
such t h a t IIS(C)II
If
S(i)
u)
E, l i m
C,@
0 <
# o?,
5
151-0,
of c o n s t a n t s
Cp,
W e
satisfies
S(c)
S(t)
( a ) and
we w r i t e
A
E Ce(c0)
(b).
The following r e s u l t provides a f a i r l y complete c h a r a c t e r i z a t i o n of g e n e r a t o r s of a n a l y t i c semigroiips. TKEOREM CI
7.1 ( i ) Let
such t h a t
and f o r every
R(h;A)
Cp',
0
A
t
Cl(p).
Then t h e r e e x i s t s a r e a l constant
exists i n the sector
C
cp' < cp
t h e r e e x i s t s a constant
that
(ii) Assume t h a t
R(h;A)
Ih;(arg
(where a i s
r e a l and
exists i n a sector
( ~ - a ) Cl C D+ ~ / 2 , ~ # a }
0 < cp < ~ / 2 ) a n d s a t i s f i e s
C = C
CD'
such -
81
PHASE SPACES C > 0.
t h e r e f o r some c o n s t a n t
Assume t h a t
Proof: for
A
Then
a(a').
E
A
and of ( 7 . 2 ) , i f
Reh
if
a(co')
Consider formula
I n view o f t h e f a c t t h a t
R(A;A).
E
S(t)
0 < cp' < cp.
1.3.8 ( n
i s analytic i n
=
I)
F + (cp)
i s l a r g e enough, t h e p a t h of i n t e g r a t i o n can be
r+(a)
deformed t o e i t h e r of t h e r a y s
or
upper and lower boundaries of t h e s e c t o r
r-(a),
r+(a).
respectively the The f i r s t choice
y i e l d s t h e formula
Since
(7.7) provides an a n a l y t i c e x t e n s i o n of
the integral
t i l t e d half-plane
Re hi'
//R(A;A)II
r-
Using
results.
r+
i n s t e a d of
Rehe-icp > B
5
R(A;A)
t o the
> B and t h e e s t i m a t e
Bl
C/IReAeia-
(Rehim
> p).
(7.9)
t h e r e s o l v e n t can be extended t o
and t h e twin e s t i m a t e
Obviously, t h e union of t h e two s l a n t e d h a l f p l a n e s i s a
(7.3)
s e c t o r o f t h e type of
assembled on t h e b a s i s of The proof of
and t h e e s t i m a t e ,
(7.8) and
(7.4)
can be e a s i l y
(7.10).
(ii) i s l e s s t r i v i a l .
Assume t h a t
R( A;A)
exists
(7.5) and t h a t (7.6) h o l d s . Since A E a(@) + CIE a(q) for any c we may assume t h a t a: < 0 .
i n a s e c t o r of t h e form i f and only i f
Let
0 < %,cp2
two r a y s
A
< cp and l e t
arg A =
'4
+ 7/2,
r(y,cp2) ImA
2
0
be t h e contour c o n s i s t i n g of t h e
and
arg A =
-(a2 + ~ / 2 ) , Imh 5
t h e e n t i r e contour o r i e n t e d clockwise with r e s p e c t t o t h e r i g h t h a l f plane.
Define
Obviously t h e i n t e g r a l does not depend on t h e p a r t i c u l a r choice of
al,cp2 and d e f i n e s an i n f i n i t e l y d i f f e r e n t i a b l e E - valued f u n c t i o n i n 5 3 0 . Let now a' such t h a t 0 < cp' < a and a" with
0,
82
PHASE SPACES
cp' < cp" < m.
If we use i n t h e i n t e g r a l t h e contour
r(a" - cp',cp")
it
A
i s clear t h a t
S(5)
t o the h a l f s e c t o r
can be extended a s a n (E)-valued a n a l y t i c f u n c t i o n
5
0 f arg
5
f CI',
Symetrically, t h e contour
0.
r(co",cD"- a')
p r o v i d e s a (E)-valued a n a l y t i c e x t e n s i o n t o
-a' < arg 5 5
0,
5 f
t h u s t a k i n g c a r e of
0
of a n a l y t i c semigroups. first
0
5
axg
integration i n
(a)
It remains t o show ( b ) .
i n the definition To do t h i s we t a k e
5 5 CD' and use T(?" - m',c~") as t h e contour of (7.11); making l a t e r t h e change of v a r i a b l e z = hi
we o b t a i n
(7.12) Obviously, we can deform f u r t h e r t h e contour of i n t e g r a t i o n t o , say,
r(cD",a" - C D ' )
and t h e n modify t h i s contour i n such a way t h a t
z,
as
it t r a v e l s upwards, does not h i t t h e o r i g i n and p a s s e s t o it r i g h t . Call
r'
t h e contour t h u s obtained.
To e s t i m a t e t h e integrand we use
(7.6):
(7.12) t h a t
We o b t a i n t h e n from
A symmetric argument t a k e s c a r e of t h e range
-cp'
f Re
55
0.
(b)
for
u
Putting
t o g e t h e r t h e two e s t i m a t i o n s we o b t a i n
I n view o f t h i s i n e q u a l i t y , it i s enough t o show dense s u b s e t of
say, for
E,
5
0
we use t h e contour
q c p " -cp,a")
way a s
r ' ; we
R(h;A)u
=
call
h-'R(A;A)Au
r"
Re
55
parately the cases
u
:D(A);
Cp'
and
a s customary, we t r e a t se-
-
t ~ '5
Re 5 5 0 .
I n the first
modified near t h e o r i g i n i n t h e same
t h e r e s u l t i n g contour.
+ A-lu
in a
so t h a t
If
u
E
D(A)
we have
83
PHASE SPACES
5
(7.6) t h e f i r s t i n t e g r a l i s a continuous function of 5 a r g 5 5 m'; f o r 5 = 0 t h e i n t e g r a l vanishes, a s can be
I n view of in
0
e a s i l y seen t r a n s l a t i n g t o t h e r i g h t t h e domain of i n t e g r a t i o n . second i n t e g r a l evaluates t o
u
E
D(A)
1. This shows t h a t
(7.4),
and, i n view of
(b)
holds f o r
ends the proof of Theorem
Through t h e r e s t of t h i s s e c t i o n
A
The
7.1.
i s t h e i n f i n i t e s i m a l generator
(4.1).
satisoing
of a s t r o n g l y continuous cosine f u n c t i o n C ( < ) W e r e q u i r e Assumption 5.1 t o hold s o t h a t , i f
b
2 W,
i s a s t r o n g l y continuous group.
THEOREM 7.2. continuous i n
L$(;)
The group
t h e upper h a l f plane Im
52
function i n
Re
5>
Proof:
If
b
Im
5
0
(ii)
0
(iii)
0.
2W
a d m i t s a n extension
such t h a t
Lj(t)
(i)
i s an
l+(t)
to
(E)-valued a n a l y t i c
There e x i s t a constant
then t h e operator
%(i)
i s strongly C > 0
satisfies
-Ab
such t h a t
(2.1)
It follows t h e n from Theorem 3.2 t h a t t h e r e e x i s t s (see (4.11)). $ > 0 such t h a t R ( h ; (-%) 1/ 2 ) e x i s t s i n larg A \ < ~i + ~ r / 2 and satisfies
-
Thus Theorem 7.1 a p p l i e s t o show t h a t
-(-%)1/2
generator of a s t r o n g l y continuous semigroup
is the infinitesimal
bb(S)
analytic i n
larg 51 < q, 5 f 0. Since Theorem 3.2 does not provide d i r e c t i n f o r mation on t h e growth of b b ( t ) f o r t r e a l we s h a l l o b t a i n t h i s information by means o f an e x p l i c i t r e p r e s e n t a t i o n for b b ( t ) .
Define
To show t h a t t h e l i m i t e x i s t s we perform a n i n t e g r a t i o n by p a r t s , obtaining t h e equivalent express ion
rm
Tb(t) =
/
'- 0
h(t,h)R(h;-%)2
dh
,
(7.19)
84
PHASE SPACES
there e x i s t s a constant
-< c,h1/2
for t
2
(7.20)
C,
5
(t
+
2
may i n p r i n c i p l e depend on
C'
need only use
(7.20)
t >0
continuous i n
h> 0
in
b > w),
i s c e r t a i n l y the case i f
E
(7.20)
O),
(7.19)
h
at
= 1
(7.U) we o b t a i n t h e estimate
and
ll'b(t)ll where
2
Dividing t h e domain of i n t e g r a t i o n i n
6.
and using
(A
such t h a t
C6
' > '1, %'
(if
6.
so t h a t
(7.22) e x i s t s we
in
C' = 0
(7.22):
xb(t)
W e prove e a s i l y t h a t
i n t h e norm of
(E).
this
is
On t h e o t h e r hand, i f
D ( A ) we have Tb(t)u-u
=
f a s i n thlp(R(A;-%)u-$
l i m
a + ~0
and t h i s expression tends t o zero when
t
+
0.
Although
a c t u a l l y strongly continuous a t t h e o r i g i n ( i . e .
for every
u
E
E)
u ) dh
TJO
xb(t)u
xb(i) +
u
as
is
t
+
r e s u l t w i l l be obtained below.
If we t a k e
u
E
D(A)
then t h e previous
s t e p s show t h a t t h e following computation i s j u s t i f i e d :
A1/2
R(h;-%)u
=
d h = R(p;-(-%)1/2)~.
Since t h e same Laplace transform r e l a t i o n must of needs hold for bb(;)u,
-
where
0
we need not prove t h i s d i r e c t l y , a s a f a r stronger
bb(;)
we have
i s t h e a n a l y t i c semigroup generated by 3,(t)u
=
Irb(t)u
(by uniqueness of Laplace
(7.24)
PHASE SPACES
u
transforms) f o r We extend
u
a f o r t i o r i for
D(A),
E
85
E
l+( t oit) h e upper h a l f plane
E.
z2
by mea.ns of
0
t h e formula
%(C)
=
% ( t+
\(;)
Since
i'I) = % ( t ) b b ( z )
i s s t r o n g l y continuous i n
s t r o n g l y continuous i n upper h a l f plane
2
0,
l+(c)
group and
m
...
and t
S(c)
S(t)E
5 D(Am)
(7.26)
complex a s w e l l ) .
t > 0;
be an a r b i t r a r y element of
Lrb('c)u
E
D(-(-%)'12)
=
D(i(-%)'/*)
i n f i n i t e s i m a l g e n e r a t o r of with r e s p e c t t o
t
E.
t
-
- ( - A b ) 1/2*
T > 0,
Then, i f
is the
Since
=
\(:),
obviously,
W e apply t h i s obser-
v a t i o n (for m = 1) t o t h e a n a l y t i c semigroup generated by
u
for
R(A;A) dh
e
( 7 . 2 6 ) can be extended t o t Let
is
i s a n a n a l y t i c semi-
AmS(t) i s (E)-continuous i n
(so t h a t , i n c i d e n t a l l y ,
bb(q)
0 and
1
AmS(t) =
(7.25)
i s closed, t h e r e s o l v e n t e q u a t i o n
A
i t s i n f i n i t e s i m a l generator t h e n
1,2,
and
m
0).
i s s t r o n g l y continuous i n t h e
and Cauchy's formula t h a t i f A
=
-M
2
'c
m,
We observe next t h a t it follows from
0.
(7.11), t h e f a c t t h a t
formula
for R(A;A) each
'I
5 2
Im
(-m
%(t)Lrb('c)u
i s differentiable
with
Dt%(t)Irb(z)u =
%(t)%u=')'2(b'
-i %(t)(-(-%)"2)bb('I)u
= -i DTLj(t)bb(T)u
(-rn
03,
>
(7.27)
0).
B u t t h i s e q u a l i t y i s nothing b u t t h e Cauchy-Riemann e q u a t i o n for t h e (continuously d i f f e r e n t i a b l e ) function
Im
analytic i n
5>
\ ( g)u,
thus
w e l l known r e s u l t (HILLE-PHILLIPS [1957:1, p. 931) t h a t
i s analytic i n
Im
%( % ) u
is
as a E-valued f u n c t i o n ; it follows t h e n from a
0
5>
0
l+,(t)
itself
a s a (E)-valued f u n c t i o n .
To complete t h e p r o o f of Theorem 7.2 we only have t o observe t h a t the fact that b b ( 0 ) = I.
\(t)
i s an e x t e n s i o n of
bb(t)
The e s t i m a t e (7.16) follows from
from ( 5 . 5 ) f o r
i s obvious since
( 7 . 2 2 ) for b b ( ~ ) and
l+( i). Note, incidentally, t h a t the factor
can be a l t o g e t h e r eliminated i f c e r t a i n l y t h e case i f
b >
0.
%
has a bounded i n v e r s e :
1+
lIm5/
this is
F i n a l l y , it i s of i n t e r e s t t o observe
86
PHASE SPACES
L+(t) and
that
t
bb(‘C) commute f o r a r b i t r a r y v a l u e s of
t h e e a s i e s t way t o see t h i s i s by means of formula using t h e f a c t t h a t
%(t)
commutes w i t h
(7.18)
). b
R(’\;-A
and for
7 ;
bb(;),
A s a consequence,
we o b t a i n
For t h e sake of completenesn, we r e s t a t e Theorem 7.2 using the group decomposition language o f Theorem
THEOREM 7.3.
6.6.
Let t h e assumptions of Theorem
cb(i)
admits a group decomposition of t h e form
s t r o n g l y continuous group
to
Im
5 2
0
decomposition
(7.16).
(6.24),
$111.8
If
where
Im
s t r o n g l y continuous i n
Then, i f
(6.10),
b
2. L ,
where t h e
% ( t ) admits a s t r o n g l y continuous e x t e n s i o n Im
which i s a n a l y t i c i n
and t h e e s t i m a t e
6.6 be s a t i s f i e d
c(i).
f o r t h e s t r o n g l y continuous c o s i n e f u n c t i o n
’*
=
and s a t i s f i e s
0
0, @(%)
b(t)
5 >
5 >
(7.28)
i t s e l f admits t h e group
i s analytic i n
Im
52
0,
and s a t i s f i e s
0
Other square root r e d u c t i o n s .
The t h e o r y developed i n t h e l a s t s i x s e c t i o n s l a c k s s u b t l e t y i n one important r e s p e c t , namely i n t h e r i g i d choice of t h e p r i n c i p a l
%
v a l u e square r o o t of system,
i n t h e r e d u c t i o n of
(1.1) t o a f i r s t o r d e r
Although t h i s h a s been seen t o work s a t i s f a c t o r i l y i n
Lr
spaces, t h e following example i l l u s t r a t e s t h e drawbacks of t h e choice i n t h e general case. EXAMPLE 8.1. valued
Let
E = C
2lr
be t h e space of a l l complex
(-m,m)
2 ~ p e r i o d i ccontinuous f u n c t i o n s defined i n
with i t s u s u a l supremum norm.
(--m,
endowed
m)
Consider t h e s t r o n g l y continuous cosine
function =
(U(X
2
+ t)
Its i n f i n i t e s i m a l g e n e r a t o r i s c o n s i s t i r g of a l l
u
E
E
i
u(x
A
= D
such t h a t
-t)) 2
u
=
(-m
2
d /ds2
a)
.
with domain
i s twice continuously
(8.1) D(A)
87
PHASE SPACES
differentiable.
@ ( t ) i s u n i f o r d y bounded, we can apply t h e
Since with
b
2
be obtained s e t t i n g
t
= 0
theory i n
$5
w = 0.
An e x p l i c i t formula f o r
(6.23)
in
f o r any
t i v e e x p r e s s i o n r e s u l t s i f we t a k e limits a s
c
c > 0;
-
0
can a more a t t r a c -
( s e e Exercise ll
I n t h e p a r t i c u l a r case under c o n s i d e r a t i o n t h e
i n t h i s Chapter). formula r e a d s
(6.18)
S i m i l a r manipulations with
( s e e Exercise 10 ) y i e l d t h e
formula
where t h e i n t e g r a l i s understood a s t h e l i m i t when i n t e g r a l over
-tI 2
1s
E,
s
2
-
(8.3) 0
of t h e
However, t h e s i n g u l a r i n t e g r a l
0.
o p e r a t o r on t h e r i g h t hand s i d e of C 2lr( - m , m )
E
(8.3)
i s not bounded i n
so t h a t Assumption 5.1 does not hold and t h e p r i n c i p a l
v a l u e square r o o t r e d u c t i o n f a i l s u t t e r l y .
Nevertheless, a f a r more
elementary r e d u c t i o n works.
with domain
Let
B
=
d/dx
D(B)
consis-
t i n g of a l l continuously d i f f e r e n t i a b l e f u n c t i o n s i n E. Then 2 = A and we o b t a i n a group decomposition o f t h e form (6.24) with
E
L ( t ) u ( x ) = u(x + t ) .
(8.4)
I n o t h e r words, t h e second o r d e r e q u a t i o n t o t h e system
(
7 = ~ (u,),, ) ~
~
can be reduced
ut t = uxx ( u ' ) ~ = ( u ~ )as~ we l e a r n i n elementary
c o u r s e s on p a r t i a l d i f f e r e n t i a l equations. I n view of Example
8.1 one may wonder whether a d i f f e r e n t choice
of square r o o t may make t h e square r o o t r e d u c t i o n work f o r g e n e r a l c o s i n e f u n c t i o n s i n g e n e r a l Eanach spaces.
The following example
shows t h a t t h e answer t o t h i s q u e s t i o n i s i n g e n e r a l negative. EXAMPLE 8 . 2 . c o n s i s t i n g of
odd
(8.1) (note t h a t
(-m,m) be t h e subspace of C e T ( - w , m ) 2r f u n c t i o n s , @ ( t ) t h e c o s i n e f u n c t i o n defined by
Let
E
=
Co
h
@ ( t ) maps
t r a n s l a t i o n group (6.24), since L ( t )
(8.4)
C:lr(-m,m)
into itself).
However, t h e
does not provide a group decomposition l i k e
does not map
CElr(-m,m)
into itself.
As we s h a l l
88
PHASE SPACES
see below, t h e r e e x i s t s no s t r o n g l y making b
%
c,
E
A,,
(6.24) =
-
A
happen. 2 b I and
continuous group i n
I n f a c t , much more t h a n t h i s i s t r u e :
if
@b(t)i s t h e cosine f u n c t i o n generated by
L$,(<)
t h e r e e x i s t s no s t r o n g l y continuous group
such t h a t
I n view of t h e remarks i n §111.6,t h i s statement i s e q u i v a l e n t t o : if
b
E
%
C,
has no square r o o t
whatsoever t h a t g e n e r a t e s a
+/2
s t r o n g l y continuous group,
O u r claim i s proved a s follows.
Assume t h e - r e p r e s e n t a t i o n
%(<).
h o l d s for some s t r o n g l y continuous group let
En
be t h e one-dimensional subspace of
s i n nx.
@ ( ts)i n nx
Then
@ ( t )l e a v e s each
= cos n t s i n
nx.
(4.3)
series representation
En
n
=
..
1,2,.
generated
(-m,m)
277.
A
by
For
E = Co
(8.5)
i n v a r i a n t since
We deduce from t h i s and t h e p e r t u r b a t i o n
Cb
that
En
l e a v e s each
invariant
as well; p r e c i s e l y ,
@,(t)s i n nx b
2
0
u(t,x)
=
% ( t )s i n nx
for
%
Since
i s a s o l u t i o n of u(0,x)
=
F;”,,
utt(t,x)
En
n’
6
E
t h i s shows t h a t
We show next
E n
into
(4.3))
- b 2u ( t , x )
To prove t h i s we i s g i v e n by
@,(s) it a l s o commutes with
( a g a i n because of t h e p e r t u r b a t i o n s e r i e s commutes with
(8.6)
u xx ( t , x )
invariant.
t h e p r o j e c t i o n of
% ( t ) commutes with
=
s i n nx, ut(O,x) = 0 ) .
a l s o l e a v e s each subspace
observe f i r s t t h a t
2 1/2 b ) t s i n nx
(8.6) can a l s o be obtained noting t h a t
(formula
with i n i t i a l c o n d i t i o n s that
+
c o s (n2
=
@(s)
and a f o r t i o r i
% ( t ) maps E n
into itself.
Making u s e of t h e f a c t t h a t every semigroup i n a f i n i t e dimensional space must be an exponential, equation cos (n2
+ b2)”*t
=
$ (e
(8.7)
iTn(b)t
reduces t o
-izn(b)t + e
)
(-m<
t <
w)
i s a complex number; obviously t h e only choice i s 2 z n ( b ) = u ( n + b 2 ) l l 2 , where, for each n 2 1 on equals 1 or n and does not depend on t . We conclude t h a t \ ( t ) must be a
where
7
n
(8.8)
(b)
m u l t i p l i e r operator of t h e form
-1
89
PHASE SPACES
u
where
-
a
-
( n 2 + b2)1/2 in
(8.9)
n n
s i n m.
Ze
izn(b)t
a
n=l
as
n
..
)
s i n nx,
(8.9) b, T ( b ) - n = n Lj, t ) i s t h e operator
so that if
m
-+
there exist coefficients
(n = 1,2,.
n
Notice now t h a t , f o r f i x e d
O(n-l)
=
m
-
%(t)u
- C l t 1n-l /cn(t) <
cn(t),
such t h a t
(8.lo) % ( t ) i s a strongly continuous group i n E
It f o l l o w s t h a t only i f
i s ; each
b,(E)
i f and
i s g i v e n by
bo(t)
(8.11) Consider now t h e following operator i n
if
*
c27J *
u
-
~ neinx c
then
m
Qu(x)
- n=-m ancne i n x
(8.12)
where we have set
a.
D(Q)
The domain
=
Q
of
Since
Q s i n nx =
s i n nx
-Q
( n = 1,2
u
such t h a t Qu E C2r 2lr of a l l t r i g o n o m e t r i c polynomials i n
c o n s i s t s of a l l
and i n c l u d e s t h e subspace c2Tr.
,... ) .
0 , a-n = -on
-
PPT
icr
cos nx
n
s i n nx
=
C
E
we have
i a n ( c o s nx
- i an
sin m)
- inonx (8.131
= ia e
n
b(t)
On t h e o t h e r hand, i f
:kT
i s t h e t r a n s l a t i o n operator
(8.4) we have
b ( t ) b O ( t ) s i n nx d t
ina t
TT
2J
= 7r
e
i s a trigonometric
Hence, i f
u(x)
combining
(8.13) and Qu(x)
s i n n(x + t ) d t
= U(X)
=
ia e
-ina x n
n
polynomial i n
0
C21r
(8.14) w e have,
(8.14),
-as,”
b(t)bo(t)u(x) d t
,
(8.15)
90
PHASE SPACES
Q
so t h a t
i s a bounded o p e r a t o r i n t h e space
.
trigonometric polynomials t h e value of
Qu(x)
at
We d e f i n e now a
@u = 0
D includes P
@U(G) =
so t h a t , by c o n t i n u i t y of P
2T.
(8.16)
Q
p
Po
,
(8.17)
i s a continuous l i n e a r
@
2T’
Hence
- u(-.))}
a(; 1 (u(;o in
(8.12),
Moreover, i n view of
2T’
We can t h e n extend
t i n u i t y and by t h e theorem of Bore1 measure
taking
@
Qu(0).
f o r any even t r i g o n o m e t r i c polynomial.
functional i n
of all odd
0: @U
Again, t h e domain of
PgT
functional
@
to
Cg,
p r e s e r v i n g con-
F. Riesz t h e r e e x i s t s a p e r i o d i c f i n i t e
such t h a t
(8.18)
p - z o eni m . Since
2 n
a
=
a n
for a l l
n
and a theorem of HELSON
we have
[1953:1]a p p l i e s
t o show t h a t , a f t e r eventual
modification of a f i n i t e number of i t s Fourier c o e f f i c i e n t s
p
must
reduce t o a f i n i t e l i n e a r combination of p o i n t masses, t h a t i s ,
( i n a somewhat ad hoc n o t a t i o n ) .
Hence
(8.20) where
{gn]
i s t h e sequence
{an],
a f i n i t e number of i t s elements.
p o s s i b l y a f t e r modification of
Obviously, a c o n t r a d i c t i o n w i l l b e
obtained i f we show t h a t any sequence of t h e form
(8.20)
must e i t h e r
be p e r i o d i c o r t a k e an i n f i n i t e number of values, s i n c e t h e sequence
{Gn]
t a k e s only a f i n i t e number of v a l u e s (obvious) and cannot be =
-u
proved by i n d u c t i o n on
m
periodic (since
n’ i n f i n i t e number of changes).
t o make
{an]
p e r i o d i c would imply an
The underlined statement on
(8.20)
and we omit t h e d e t a i l s .
The absence of any group decomposition i n Example 8.2 m u s t of course be t r a c e d i n p a r t t o t h e l a c k o f d e s i r a b l e p r o p e r t i e s o f
the
is
91
PHASE SPACES
( f o r i n s t a n c e , E i s n o t r e f l e x i v e ) . One may r a i s e 27r t h e q u e s t i o n of whether some group decomposition can be guaranteed space
E =
CO
E
under assumptions on
r e f l e x i v i t y o r uniform convexity) t h a t
(say,
A s f a r as reflexivity
$111.5.
f a l l s h o r t of t h e very s t r i n g e n t ones i n
goes t h e answer i s i n t h e n e g a t i v e , a s we s h a l l see below. EXAMF'LE 8.3.
There e x i s t s a r e f l e x i v e space
densely defined o p e r a t o r
A
in
and and a closed,
F
F such t h a t ( i ) A g e n e r a t e s a
s t r o n g l y continuous cosine f u n c t i o n ( i i ) For any complex number b 2 t h e operator = A b I p o s s e s s e s no square r o o t whatsoever g e n e r a t i n g
-
%
This i s e a s i l y seen by modifying t h e
a s t r o n g l y continuous group.
space i n Example 8.2 i n a way suggested by F. LAUFBURSCHEN [ p r i v a t e communication].
( b ) for
k
2
m
E =
Let EE
(a) t h e subspace
c;~,
EZ
(8.1)
(obviously,
EE
b, m i s i n v a r i a n t by
Lj,
,m
% , & t =) 2 ( % , & t +)
cm(g),
(c)
;)
L
0, m
of
t.
Eo
of E genm, & @(t) be t h e cosine
Let
k).
t h e r e s t r i c t i o n of
@,(t)). EE
Consider
5 n3
@,(;)
to
Assume t h e r e e x i s t s a
such t h a t (-a
m(t>)
-
(8.Z)
a p p l i e s e q u a l l y well h e r e :
the
admitting t h e r e p r e s e n t a t i o n
(t)u(x)
m
-
C
e
ina t n
a s i n IIX
(8.22)
n
n=m
t, where each u equals 1 or -1 and i s independent n The r o l e o f t h e operator Q i s now played b y Q ~ U ( X >=
1. i n the
{ s i n nx; m
(8.2~) for c i m p l i e s a similar decomposition b, m t h e r e s t r i c t i o n of @(;) t o Em with a s t r o n g l y
continuous group
f o r each
\"b
%(t) i n E
The argument u s e d f o r
(i)
(t) in
1
for
<, n 5
and denote by
s t r o n g l y continuous group
decomposition
a fixed integer.
t h e ( f i n i t e dimensional) subspace
e r a t e d by t h e f u n c t i o n s { s i n nx; rn function
21
m
and
generated by t h e f u n c t i o n s
subspace
The operator
Q,
C
u c e inx
2m
n n
Em generated by a l l t h e f u n c t i o n s
{einx;
m
5 n].
a d m i t s the representation
(8.24) f o r every t r i g o n o m e t r i c polynomial i n
EE,
t h u s it i s bounded t h e r e
92
PHASE SPACES
and we can define a continuous l i n e a r f u n c t i o n a l (8.16)
(with
Q
and
= Qm)
@
m After extending
(8.17).
in
EE
by
@
to
Eo = C
1 2l.I by t h e Hahn-Banach theorem we deduce t h e existence of t h e measure p in
on
as before; since
(8.18)
argument applied t o
2
In1
= ~ t ; l for
i s unmindful
)L
and t h e
m
modification of a f i n i t e
Of
number of Fourier c o e f f i c i e n t s , t h e conclusion i s i d e n t i c a l :
Ei, t h u s L
cannot be a bounded operator i n strongly continuous group i n
to
in
Ir
(t)
O,m
0 _
I r o , m ( t O ) i s unbounded; for i f
t
i s bounded for d l
and
u
E
i s arbitrary, l e t
EE
Ei such t h a t
be a sequence of trigonometric polynomials i n Then L
0,m
(i)un
Qm
cannot be a
This implies t h a t t h e r e e x i s t s some
EE.
such t h a t
TT
O,m
(:)
i s continuous f o r a l l
n
Lc
and
O,m
(;)un-
{u,]
u u. n.. IrO,m(t)u +
li ( i ) u i s s t r o n g l y measurable for a l l u and 0,m i s a s t r o n g l y continuous applying Theorem 1.2.1 we o b t a i n t h a t IrO,LIl
pointwise, t h u s
(i,)
group, a c o n t r a d i c t i o n .
t h e choice of t h e sequence
t
For a r b i t r a r y
t o w i l l depend, of course, on
We note t h a t and
where t h e norm i s t h a t of
{an; n k
1m
2
in
m)
(8.22).
define
~ b , ~ ( t a)s an o>erator i n
i n f i m i m i s taken over a l l p o s s i b l e choices of
u = + 1. We claim t h a t , f o r any n (say, i n It] 5 1) such t h a t
-
as
k
-
m
I n f a c t , assume t h i s i s not t r u e f o r a c e r t a i n t h e r e e x i s t s a f i n i t e sequence and such t h a t
5
m,k
n
5
and t h e k ) with
t h e r e e x i s t s a sequence
m,
m
{an; rn
EO
{t,)
.
(8.25)
m.
Then f o r each
uk , m > ' k , m + l > " ' ~ o k , k
with
k,n
k
-
= +
(8.26) where
C
i s a constant independent of
_< ;n m5 k) { ~ ~ , ~
k
Note t h a t t h e (possibly unbounded) operator on t h e
on
with
and t h e sequence
has been used i n t h e d e f i n i t i o n
n
2k
Lc
0, m
(8.22) of (t)
Lc
O,m
(t).
a l s o depends
b u t t h e s e a r e i r r e l e v a n t when obtaining
~ ~ , ~ ( t It ) .i s now easy t o see t h a t t h e r e e x i s t s a subsequence k(1) < k(2) c
...
such t h a t
a k( j),m
=
'rn
(j
ak( j ) , m + l
=
am+l
93
PHASE SPACES
(j
2
2),
.. .
i.e.
Accordingly, i f
-
i s dense i n
(It 1
(8.22)
2
5
thus
(8.27)
seen t o be impossible.
(8.27) k).
But
implies t h a t t h e o p e r a t o r s
It] 5 1, t h u s f o r a l l
Em f o r
we o b t a i n
m>
i s a n i n c r e a s i n g f u n c t i o n of
Em,
a r e bounded i n
in
U ~ , U ~ + ~ ,
I L 0 , m (t)llm,k 5 II-(lm,k
O,m
. ..
corresponding t o t h e sequence
(note t h a t
o ( a 2 m ) becomes -k ( j >, 1 b ( t ) i s t h e group
such t h a t each sequence
s t a t i o n a r y a f t e r a wliile.
t,
This completes t h e proof of
A
as f o l l o w s .
m ( l ) < m(2) C
sequence
{t.], Itj 1 J
51
...
(t)
0,m
(8.25). F
and
we can produce a
of p o s i t i v e i n t e g e r s and a sequence
such t h a t
'm(j),m(j+l)
The space
(8 . 2 5 )
Using
L
which h a s a l r e a d y
With t h i s r e l a t i o n i n our hands w e c o n s t r u c t t h e space t h e operator
4 -> m Em,k
( t ) - m j
as
j
h
m
.
(8.28)
F i s t h e E l b e r t sum of a l l t h e f i n i t e dimensional spaces 2 t h u s i s a r e f l e x i v e Banach space; s i n c e t h e
F. = E J m ( j ,m(j+1)' norm i n 1x1 5 TT
i s dominated by
6
L
times t h e supremum norm i n t h e
same i n t e r v a l , F i s a subspace of t h e space Lo (-,a) of a l l odd, 2lr 2 ~ - p e r i o d i c f u n c t i o n s which a r e square i n t e g r a b l e i n 1x1 5 TT endowed The cosine f u n c t i o n @(;) i s defined by 2 i t s i n f i n i t e s i m a l g e n e r a t o r A i s d /ax2 with maximal domain.
with t h e corresponding norm.
(8.1);
Assume t h a t f o r some for
%(;).
shows t h a t
LL,(;)
i s bounded i n , say, defined b y (8.28)
b
we can f i n d a group decomposition
(8.9)
must obey (8.9) and t h a t i n case Ill.+(t)/lF It1 51 t h e same must be t r u e of ~ ~ ~ o (b,(t) t ) ~ ~ ,
with
b = 0.
( t . ) i s t h e sequence i n
But i f
J
then
.sup
3 21ym( j),m(
thus
(8.U)
An argument very s i m i l a r t o t h a t p e r t a i n i n g t o t h e space
j+l)(tk)
~ ~ b o ( t .+ k )m~ ~by v i r t u e of
ym(k),m(k+l)(tk)J
(8.28),
(8.29)
and a c o n t r a d i c t i o n i s
obtained. The following r e s u l t shows t h a t t h e problem of f i n d i n g a group
94
PHASE SPACES
decomposition of a cosine function becomes m d i c a l l y simpler
if one
i s allowed t o enlarge t h e underlying space.
THEOREM 8.4.
Let c ( ; )
i n t h e Banach space_ E
be a s t r o n g l y continuous cosine function
satisf'ying
wltl Then t h e r e e x i s t s a Banach space /Iu/IE5 (C
(u
E
E)
(8.30)
m).
5 F,
E
F such t h a t
l I ~ l5l ~Cllu/lE
(8.90))
t h e constant i n
(-..
,
(8.31)
a n d a s t r o n g l y continuous group
U(t)
such t h a t (8.32)
Moreover,
F
i s minimal i n t h e sense t h a t f i n i t e l i n e a r combinations
of elements of t h e form
Proof: L e t u(c) (0
defined i n
U(t)u
(-m
03,
u
E
E)
G
be t h e space of a l l continuous
-a
t h e constant i n
m
(8.30)).
such t h a t The space
axe dense i n
E-valued f u n c t i o n s
llu(s)ll = O(eWISI) as G
F.
(sI
becomes a Banach space
-
equipped with t h e norm 11u(i)11 =
sup
e-W~s~t~u(s)~~.
(8.34)
-fo<S<m n
E
The space
can be i d e n t i f i e d with a subspace
E
of
F through
t h e map
and we obviously have
(8.36) A
If
u(s)
h
E
E we have @ ( t ) u ( i ) = @(t)@(;)u =
L2 (@(t
+
i)u
-
+ @(ti ) u > =
03
95
PEIASE SPACES
1 (u($
=
- t)),
+ t ) + u(2
2
(8.37)
h
@(t)
thus
a c t s on elements of
i n t h e same way as t h e " t r a n s l a t i o n
1.,
(8.1), ( 8 . 2 ) and (8.3).
c o s i n e f u n c t i o n s " appearing i n Examples 1'
i s d e f i n e d as t h ? c l o s e d subspac? of
u ( z + t ) with
t h e form
10
g e n e r a t e d by a l l elements of
G
U(t^)
The semigroup
<m.
The space
F is
in
d e f i n e d by
U(t)u(S)
2
E with
Identifying
i s nothing b u t (8.30).
to
h
=
u(s + t )
(8.31) we n o t e t h a t i f
G,
$111.9
Miscellaneous comments
(8.38)
(8.33) follows; obviously (8.36)
( a s we may),
To check
I l u ( t ) u ( ~ ) l /=
.
SUP
e
-Mi
s
1 114.
u(G)
belongs
+ t)ll
.
Phase spaces f o r a b s t r a c t higher o r d e r equations more g e n e r a l t h a n
(1.1)were introduced by WEISS [1967:l] ( s e e Chapter 8 f o r a d d i t i o n a l information).
w a s introduced Em i n '$111.1
The maximal phase space
The t h e o r y of f r a c t i o n a l powers of c l o s e d
by KISYkKI [1970:1].
o p e r a t o r s i n $111.2 and $111.3 w a s developed b y B W I S H N A N [1960:1] although somewhat l e s s g e n e r a l d e f i n i t i o n s were around b e f o r e . results i n
of t h e a u t h o r [1969:2] and [1969:3]. t h e growth of t h e c o s i n e f u n c t i o n possible:
The
'$111.4, $111.5 and $111.6 a r e s l i g h t l y improved v e r s i o n s Some f u r t h e r improvements regarding
Cb(;)
s e e Chapter V I , Exercises
generated by
3 t o 8.
A
-
b21
are
Theorem 7.1 on a n a l y t i c
semigroups 2nd t h e i r i n f i n i t e s i m a l g e n e r a t o r s i s a c l a s s i c a l r e s u l t of H I L L E i n t h e f i r s t e d i t i o n ( p u b l i s h e d i n HILLF-PHILLIPS [1957:1].
1948) of
his treatise
The a p p l i c a t i o n t o second order equations
(Theorem 7.2) i s due t o t h e a u t h o r [1981;2], although t h e f a c t t h a t f r a c t i o n a l r o o t s of
-A
g e n e r a t e a n a l y t i c semigroups was proved much
b e f o r e by BALAKRISHNAN [1960:1]; t h e e s t i m a t i o n of i s there.
LA(;)
The problem of f i n d i n g g e n e r a l s q u a r e root
based on (7.19) reductions f o r t h e
e q u a t i o n (1.1)w a s s y s t e m a t i c a l l y examined by KISYGSKI [1972 : l ] , who provided Example
8.2 f o r b
= 0.
The r e f l e x i v e e x t e n s i o n (Example 8.3)
i s i n t h e a u t h o r [1981:2] and f o l l o w s an unpublished s u g g e s t i o n of
96
PHASE SPACES
F. LAUFBURSCHEN. EXEXCISE 1.
Let
A E QL(C,w)
s t r o n g l y continuous semigroup
A - bI E a(C)
Then A
>
for
b
R(A;A - b1)
(that i s ,
w
generate a
A
such t h a t
exists f o r
and s a t i s f i e s
0
jlR(h;A
For
2
(that is, l e t
S(t.)
> w,
b
(bI
-
A)a
-
( h > 0)).
b1)Il < - C/A
( a > 0 ) i s i n v e r t i b l e and
( s e e YOSIDA [1978:1, p. 2601). A s c a l a r counterpart of (9.2) i s i n
GRKDSTEIN-RIDZYK [1963 :1, p. 3311 EXERCISE 2. let
-
( t h e author, [1983:3]).
A
E
Il@(t)ll < - Cewltl
-
A
b21
E
for
S(C)
b
2
w.
(a
For
b
>
w,
(that is,
8(C,w)
generate a s t r o n g l y continuous cosine f u n c t i o n
A
Then
Let
such t h a t
.
(9.3
- A)'
( a >0) i s
< m ) )
(b21
@(t^)
1
i n v e r t i b l e and
KV denotes t h e Macdonald f u n c t i o n defined by
where
for
v
#
..
+3,~2,.
and extended lyi c o n t i n u i t y t o a l l values of
(WATSON [1944:1, p. 781).
of a well known i n t e g r a l formula (GRADSTEIN-RLDZYK [l963 :1, p.
EXFRCISE
3.
Let
A,
v
We note t h a t (9.4) i s a vector-valued analogue S(t)
b e as i n Exercise 1.
Given
u
763 ] ). E
E
we say
97
PHASE SPACES
that
S($)u
L
i s c o n t i n u o u s l y d i f f e r e n t i a b l e of o r d e r
and o n l y i f t h e r e e x i s t s
p >
sal/fs(s)(l i n t e g r a b l e i n
s >_ 0
fB(g)
and a f u n c t i o n
w
t
2
0
if
continuous, w i t h
and such t h a t
i m
(t > - 0).
‘-1 f p ( s ) d s
=
e-%(t)u
&
0
(9.6)
h
The f u n c t i o n
of
c1
i s c o n t i n u o u s l y d i f f e r e n t i a b l e of o r d e r
S(c)u
that
i s t h e d e r i v a t i v e of o r d e r
f,(:)
-
u E Ea = D ( ( b 1 ( n o t e t h a t b y Lemma 4.2,
D((b1
a
- A) )
e-@u. c1
Show
i f and o n l y i f
(9.7)
A)‘)
does n o t depend on
b).
The
r e s u l t shows, i n p a r t i c u l a r t h a t t h e d e f i n i t i o n of c o n t i n u o u s d i f f e r e n t i a b i l i t y of o r d e r EXERCISE 4.
2.
Given
E
a &
order
function at
u
t m
E -X
fe($)
does not depend on t h e
~1
[1966:1 3 or
KOMATSU
( t h e author,
[1983:3]).
we say t h a t
@(;)
<
t
<m
u
w
chosen.
See
Let
A, C(;)
be as i n E x e r c i s e
i s c o n t i n u o u s l y d i f f e r e n t i a b l e of
>
i f and o n l y i f there e x i s t s
continuous i n
-X
with
and a
w
(.)I1 B
integrable
sal]f
and such t h a t
<
(a
fp(g)
The f u n c t i o n t h a t if
p >
t h e a u t h o r [ 1983:3] f o r a d d i t i o n a l d e t a i l s .
t
< m).
(9.8) a of
i s t h e d e r i v a t i v e of o r d e r
@ ( t ) u i s c o n t i n u o u s l y d i f f e r e n t i a b l e of o r d e r
..
a # n + 1/2, n = 0,1,.
E
E
5.
c1
( t h e author,
Show that i f
c1
>
6.
(the author,
(9.9)
the implication is i n general false.
[1983:3]). L e t > 0 and u
0, 6
i s c o n t i n u o u s l y d i f f e r e n t i a b l e of o r d e r
EXERCISE
with
‘= D((b21 - A ) a ) .
For t h e e x c e p t i o n a l v a l u e s of EXERCISE
2 ‘
Show
then u
E x e r c i s e 2.
e-p%(t^)u.
[1983:3]).
A, @(;)
b e as i n
E E
then
‘+by
@(t)u
201
Let
E
b e a space s a t i s f y i n g
98
EVSE SPACES
@(z)
(6.1) w i t h 1 < r < m, A,
i's i n E x e r c i s e 2.
c o n t i n u o u s l y d i f f e r e n t i a b l e of order
2a w i t h
a
Then
>
0
@(t^)u i s i f and o n l y i f
(9.9) h o l d s . A
EXERCISE 7.
0
<
< -
1.
S(t)
Assume t h a t
t > - 0.
a in
Let
EXERCISE 0<
< - 1.
2
t
in
c1
8.
0.
h
@ ( t )b e a s t r o n g l y c o n t i n u o u s c o s i n e f u n c t i o n .
Let
h
@ ( t ) u i s c o n t i n u o u s l y d i f f e r e n t i a b l e of o r d e r
-
Show t h a t
on compact s u b s e t s of EXERCISE 9.
i s Hdlder c o n t i n u o u s w i t h exponent
S(t^)u
>_
t
Assume t h a t 0.
i s c o n t i n u o u s l y d i f f e r e n t i a b l e of o r d e r
S($)u
Show t h a t
on compact s u b s e t s of
b e a s t r o n g l y c o n t i n u o u s semigroup,
c(t^)u
i s Kdlder c o n t i n u o u s w i t h exponent c1
< t < m.
( t h e author,
[1369:2]).
Let
@($) a s t r o n g l y c o n t i n u o u s c o s i n e f u n c t i o n i n 2.
Banach s p a c e ,
t h a t Assumption 5 . 1 h o l d s i f and o n l y i f s t r o n g l y continuous f u n c t i o n i n
i
> - 0,
V(Z)E C - D(A)
=
/ ii
space,
~ ( 2 )a
AV(F)
Show
is a
-
log s ( S ( s + t ) - S(s
t))ds.
(9.10)
0
use t h e e x p r e s s i o n for
EXERCISE 10.
and
where
r l
V(t)
(Hint:
b e an a r b i t r a r y
E
(b21
-
o b t a i n e d i n E x e r c i s e 2).
( t h e a u t h o r [1169:1]).
Let
E
b e a n a r b i t r a r y Banach
strongly cosine function satisfying
Using f o r m u l a (6.18) show t h a t
@ ( s ) u ds
TI
<
t
<m
20
E
O+ of t h e i n t e g r a l o v e r
-
for e v e r y
u
in
E
D(A), (t-
SI
where
>_
E.
v.p.
i n d i c a t e s l i m i t as
Formula ( 9 . B ) i s a n o p e r a t o r
a n a l o g u e o f t h e scalar f o r m u l a
v a l i d for
a
>_
0
(9.Q)
(GWSTEIN-RIDZYK [1963:1, p. 4211)
99
PIUSE SPACES
EXERCISE 11.
Under t h e assumptions i n E x e r c i s e 10, show u s i n g
formula (6.23) t h a t
u
for e v e r y
D(A).
E
Formula
(9.14) i s a n o p e r a t o r a n a l o g u e of t h e
s c a l a r formula
valid for
a
>
0.
(GRADSTEIN-RIDZYK [I963:1,p. 4201).
EXERCISE l2. Using E x e r c i s e s 5 and 8 show t h a t f o r m u l a (?.l2), as < t < M for
w e l l as i t s more g e n e r a l v e r s i o n (6.18) h o l d i n
ucE,y>O. Y EXERCISE
13. Using E x e r c i s e s 5 and 8 show t h a t formula (9.14), as < t < m f o r u c: E (6.23), h o l d i n
w e l l as i t s more g e n e r a l v e r s i o n f o r any
y
> 1/2.
EXERCISE 14. n o t bounded i n
F?(t^)
equals
Y
Show t h a t t h e s i n g u l a r i n t e g r a l o p e r a t o r (8.3) i s
C271(-m,m).
EXERCISE 15. of
-M
Prove Theorem
R(h;U)
1.3 showing t h a t t h e Laplace t r a n s f o r m
and a p p l y i n g Theorem
1.3.4.
FOOTNOTES TO CHAPTER I11
(1) Elements of
Eo x El
and similar p r o d u c t s p a c e s w i l l b e d e n o t e d
as "row v e c t o r s " or "column v e c t o r s " a c c o r d i n g t o convenience. (2)
3
T h i s e s t i m a t e c a n b e c o n s i d e r a b l y improved (see Chapter VI, E x e r c i s e s
t o 8).
(3) (4) (5) (6) (7)
See f o o t n o t e ( 2 ) . See f o o t n o t e ( 2 ) . See f o o t n o t e ( 2 ) . See f o o t n o t e ( 2 ) . See f o o t n o t e ( 2 ) .
100
CHAFTER I V APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS
Wave equations:
5IV.l
t h e D i r i c l l e t boundary condition.
W e consider i n t h e f i r s t s i x s e c t i o n s of t h i s chapter t h e equation U"(t) = A ( @ ) u ( t ) .
(1.1)
Here
m
m
Au =
D j ( a . (x)Dju) Jk
with
x = (xl, . . . , x m ) , D ' = a/ax
j
~ ( x )a r e defined i n a domain 0 A(B)
denotes t h e r e s t r i c t i o n of
condition
@
r
a t t h e boundary
or
bj(x)Dju
-e
+
c(x)u
j =1
j=1 k = l
and t h e c o e f f i c i e n t s a . ( x ) , b . ( x ) , Jk J of m-dimensional Euclidean space Rm A
obtained by means of a boundary
of t h e form
D " u ( ~ ) = y ( ~ ) ~ ( ~( X)
-
E
r),
(1.4)
D" denotes t h e conormal d e r i v a t i v e t o be defined below ( s e e (4.1)). 1 Since t o r e p l a c e a j k ( x ) by ( a j k ( x ) + a k j ( x ) ) does not change t h e
where
a c t i o n of
A
on smooth f u n c t i o n s we s h a l l assume from now on t h a t
a
jk
We r e q u i r e t h e valued. A
If t h e
a
jk a
(x)
= a
kj
(x).
t o be real-valued; t h e
b. J
and
c
can b e complex-
have f i r s t order p a r t i a l d e r i v a t i v e s , we can w r i t e
jk
i n t h e more n a t u r a l form
m
Au =
m
m A
a . (x)DjDku + r b . ( x ) D j u j=1 k = l j=1 J
+
c(x)u
,
(1.5)
101
PARTIAL DIFFEREWIAL EQUATIONS
where
The passage from ( 1 . 2 ) t o (1.5) and v i c e v e r s a i s no longer p o s s i b l e i f
the
a
assume
(1.5) represent
a r e not d i f f e r e n t i a b l e ; i n t h i s case ( 1 . 2 ) and
jk
[1974:1]).
q u i t e d i f f e r e n t e n t i t i e s ( s e e PUCCI-TALENT1
We s h a l l always
i s w r i t t e n i n t h e form ( l . 2 ) , c a l l e d t h e divergence o r
A
v a r i a t i o n a l form.
The c o e f f i c i e n t s
a
b c w i l l be required t o be jk’ j’ merely measurable and bounded; we p o s t u l a t e i n a d d i t i o n t h a t A be uniformly e l l i p t i c i n t h e sense t h a t
(1.6) f o r some
ic
> 0.
Our f i r s t r e s u l t concerns t h e D i r i c h l e t boundary condition (1.3). No assumptions whatsoever w i l l be placed on t h e domain boundary
r.
or the
0
In t h i s high l e v e l of g e n e r a l i t y , it i s obvious t h a t
(as well as t h e boundary condition
u
=
0)
Au
will have t o be understood
i n a s u i t a b l y generalized sense; for instance, i n view of t h e l a c k of smoothness o f t h e
a
jk’
i t i s not c l e a r whether
can be applied t o
A
any nonzero function. The b a s i c space i n our treatment i s supporting r o l e w i l l be played by
a(n)
( o f Schwartz t e s t f b n c t i o n s )
+(O), in
H
2 = L (0).
An important
t h e c l o s u r e of t h e space
$(n);
m(X)
c o n s i s t s of all i n f i n i t e l y d i f f e r e n t i a b l e functions in
0, and t h a t t h e space
a;LI
functions
u
$(n)
(k
an i n t e g e r
and
+(n)
2
L2(n).
with support
1) c o n s i s t s o f
having p a r t i a l d e r i v a t i v e s of order
understood i n t h e sense of d i s t r i b u t i o n s ) i n
8(n)
we r e c a l l t h a t
5k
(derivatives
The spaces
( f o r all necessary f a c t s on t h e Sobolev spaces
ADAMS b975 :1I )
Hk(n), #(n)
consult
.
The f i r s t stage of o u r argument w i l l be t h e c o n s t r u c t i o n of operator
d(0)
a r e f i l b e r t spaces equipped with t h e s c a l a r product
Ao(B),
where
A0
i s the
self a d j o i n t p a r t ol
A,
the
102
PARTIAL DIFFEREmIAL EQUATIONS
With t h i s i n mind, we introduce a new s c a l a r product i n
#,(fi)
by t h e
formula
(u,v),
=
[(a- c ) c v dx
ifi
where
dx
=
... dxm
dxl
(u,~),
(and conjugate l i n e a r i n C > c
constants
h ( y y ajk&Dkv)
dx
(1.9)
and
cY>v It i s obvious t h a t
+
=
e s s . sup c
-
and t h a t
= (V,U)~
u).
.
(1.10) (U,V)~
i s linear i n
v
Moreover, we see e a s i l y t h a t t h e r e e x i s t
such t h a t
0
( w e u s e t h e uniform e l l i p t i c i t y assumption for t h e f i r s t i n e q u a l i t y ) . Accordingly, t h e norm
(1.12) corresponding t o t h e s c a l a r product norm of
4
defined by
(1.7);
(1.9) i s
equivdent t o the original
t h u s we s h a l l assume from now on
&(n)
endowed with (1.12) ( o f cotirse, t h e same arguments apply t o t h e
space
$(",
a f a c t t h a t w i l l be used i n 61V.4).
A function
u
E
$(n)
D(AO(f3)) i f and only i f
belongs t o
(1-13 1
i s continuous i n t h e norm of
L
2
(i)):
i f t h i s i s t h e case, w e extend
( s i n c e €$(a) i s dense L2(Q) 2 i n t h e topology of L (n) t h i s extension i s unique). L e t
t h e l i n e a r f u n c t i o n a l (1.1)) t o a l l of in v
L E
2
(Q)
2
L (0) be such t h a t
(1.14) Define A0(B)" (Motivation i s obvious:
= azI
-v .
i f the coefficients a
(1.15) jk
and t h e boundary
r
103
P A R T I A L DIFFEREIWIAL EQUATIONS
u
are smooth and
u
and
w
=
r,
on
0
=
r).
on
0
-A u = v in n 0 f o l l o w s f o r any smooth w such t h a t
i s a smooth f u n c t i o n such t h a t then
(1.14)
We check e a s i l y t h a t t h e d e f i n i t i o n of A (f3)
above does
0
a.
not depend on
We wish t o show t h a t t h e o p e r a t o r
j u s t defined i s s e l f a d j o i n t .
AO(B)
We b e g i n by proving t h a t
( U - AO(B))D(AO(f3)) h > v.
f o r any
In fact, l e t
(1.16)
= L2P)
be a n a y b i t r a r y element o f
v
L2(Q)>.
Define a l i n e a r f u n c t i o n a l by
w
(1.17) i s
Since
4(0),
L * ( ~ I it i s a s well continuous i n
continuous i n
u
thus there exists
E
$(n)
(1.16)
such t h a t =
( U , d A
hence
(1.17)
*
(V,.>X
-+
(1.18)
(v,w>, u
note t h a t o u r c o n s t r u c t i o n of
follows:
yields the
estimate
Rewriting ( 1 . 1 4 ) i n t h e form
w = u
and t a k i n g
we s e e t h a t
(1.19)we deduce t h a t from
(1.18) t h a t i f
R(h;Ao(p))
u, v
( h- AO(f3)~,v)= so t h a t
Ao(B)
defined.
A1
E
D(A,(B))
(U,V),
i s symmetric.
u
E
4(Q)i n
D(AO(@)).
X-D(A0(B))
To prove t h a t
result.
h > v.
combining with
It a l s o f o l l o w s
then =
=
( u , hv
- A(B)v) i s densely
AO(B)
We f i n a l l y prove t h a t
In o r d e r t o d o t h i s it i s sufficient t o show that
i s dense i n all
i s one-to-one;
exists for
t h e topology of
c a s e , t h e r e would e x i s t an element
to
- AO(B)
w
E
d(". $(."I
I f t h i s were not t h e with
( U , W ) ~=
I n view of (1.20) t h i s i m p l i e s t h a t which, d u e t o
A (B) 0
(1.16),
D(AO(B))
shows t h a t
w
0
for
i s orthogonal
w = 0.
i s s e l f a d j o i n t we make u s e of t h e following
104
PARTIAL DIFFERENTIAL EQUATIONS
Let
LEMMA 1.1. X l b e r t space
number
A.
Proof: -
Assume t h a t t h e resolvent
H.
Then
Let
be a. densely defined symmetric operator i n t h e
A
u,v
be two a r b i t r a r y elements of
( R( A;A)u,v) =
so t h a t
R()\;A)
( ( AI
p(A)
contains a r e a l
i s s e l f adjoint.
A
=
(R( A ; A ) U ,( AI
- A ) R (A;A)u,
R( A;A)v)
H.
Then
- A ) R ( A;A)V) =
(u, R( A, A ) V )
i s symmetric; t h u s
where t h e interchange of i n v e r s e s a n d a d j o i n t s i s e a s i l y j u s t i f i e d (see
RIESZ-SZ.-NAGY [1955:1I ) .
This ends t h e proof.
i s s e l f a d j o i n t and bounded above (by Ao(B) generates a strongly continuous cosine f u n c t i o n A0 ( @ ) @(<) given by Having shown t h a t
U)
we know t h a t
C(t)
=
cosh t A o (B)1/2
(1.22)
where t h e expression on t h e r i g h t i s defined by means o f t h e f u n c t i o n a l calculus for s e l f a d j o i n t operators; i f r e s o l u t i o n of
Ao(B)
P(dp)
i s the spectral
then
where t h e upper l i m i t of i n t e g r a t i o n i s due t o t h e f a c t t h a t
Ao(B)
Z V ' I I U ~for ~ ~ u E D(A)). A ( B ) we s h a l l construct a phase space for and t h e n incorporate t h e first order terms by means of a p e r t u r -
i s bounded below by U
((AO(B)u,u)
To handle t h e full operator
Ao(B) b a t i o n argument t o be proved i n next s e c t i o n .
The proof t h a t
A(B)
generates a s t r o n g l y continuous cosine f u n c t i o n w i l l be given i n P I V . 3 .
b . 2
The phase space.
Since t h e operator
Ao(@)
B
i s s e l f a d j o i n t , a square r o o t =
AO(P) 1/2
(2.1)
can be defined by means of t h e f u n c t i o n a l c a l c u l u s f o r unbounded f u n c t i o n s
105
PARTIAL DIFFERENTIAL EQUATIONS
of o p e r a t o r s (DUNFORD-SCHWARTZ r e s o l u t i o n of
Ao(B),
u
then
[1963:1I ) ; D(E)
E
if
i s the spectral
P(dp)
i f and only i f
and
There remains t h e problem of t h e choice of square r o o t
b1L-1/2 i n (2.3);
although (as we s h a l l see below) t h i s choice i s immaterial, we d e f i n e p1/2
w 2
for
= p2 ;j
nonnegative number
( r t / 2 t h e nonnegative square r o o t of t h e
0
r)
and
pl/*
i (-P)’/~ .t
=
i s not e a s i l y i d e n t i f i a b l e i n t e r m s of
D(B)
we b e g i n by noting t h a t i f
D(B)
p C 0.
Although
E
t u r n s out t o be
facilitate the identification
To
A > v then
.
= D((U-A~(@))’/~)
To see t h a t (2.4) h o l d s we n o t e t h a t
D(B)
Ao(f3),
a familiar space (Theorem 2.2 below). of
for
u
E
(2.4)
D((AI-AO(B))l / 2 )
i f and
only if
w)1/21iP(dw)uI/2 <
A(:-[
m
.
(2.5)
The f a c t t h a t ( 2 . 2 ) and ( 2 . 5 ) a r e e q u i v a l e n t f o l l o w s from t h e boundedness
of the function
1p
Ill2-
Ih-
p
1 /2.
LEMMA 2.1. Let Q be a densely defined, i n v e r t i b l e o p e r a t o r such -1 . that Q i s everywhere defined and bounded. Then D(Q2) i s dense i n
D(Q)
i n t h e Rraph norm o f Proof:
D(Q) w i t h
If u vn
-
T H E O E M 2.2.
6
v
D(Q)
D(Q). then
u
and note t h a t
Q-lv; -1 Q vn
=
-
s e l e c t a sequence
u,
Q(Q-lvn) = v
{vn] n
-
Qu.
in
106
PARTIAL DIFFEREWIAL EQUATIONS
It follows from Lemma 2.1 t h a t D ( A ( B ) ) i s dense i n D ( ( U - A 0 ( @ )1) /2 ) i n t h e graph norm of ( h r - A o ( B ) ) l / q ; on t h e o t h e r hand, we have shown i n 6 I V . l t h a t
$(n),
D(AO(B))
i s dense i n
%(n)
t h u s ( 2 . 7 ) i s e a s i l y seen t i imply t h a t
i n t h e norm of
D((U-Ao(!3))1/2)
=
*(o).
Combining with ( 2 . 4 ) , Theorem 2.2 f o l l o w s . We a r e now i n p o s i t i o n t o c o n s t r u c t a phase space f o r t h e equation
u“(t)
=
Ao(B)U(t)
.
(2.8)
I n f a c t , Theorem 111.5.4 a s s e r t s t h a t
A. ( @ )-ll2sinh t A. ( B )1/2
c o s h t Ao(B)1/2 r,(t)
r
=
1
; (2.U)
(2.12)
with domain
D(V0(B)) = D ( A O ( p ) ) ,<
J$(n).
T o t a k e c a r e of t h e f i r s t
o r d e r terms we introduce t h e p e r t u r b a t i o n o p e r a t o r
?=IF *I. 0
0
107
PARTIAL DIFFERENTIAL EQUATIONS
where
(2.14) Obviously,
p
i s a bounded o p e r a t o r i n
of t h e o p e r a t o r result
, where
A(B)
A0(B)
=
+
The necessary p r o p e r t i e s
@.
w i l l be a consequence of t h e following
P
does not have t h e same meaning as i n ( 2 . U ) .
P
Let
THEOREM 2 . 3 .
be t h e i n f i n i t e s i m a l g e n e r a t o r of a group
A
A
S(t)
i n a Banach space
E
Ils(t>li5 ithat is, l e t
A
t h e operator
gl(coJo
$-
Proof:
A
E
+
such t h a t COeultl
c1 ( C o , U ) ) , P
(-m
and l e t
P
m)
b e a bounded o p e r a t o r .
D(A + P ) = D ( A ) )
( w i t h domain
Then
belongs t o
cllplI)* ~y v i r t u e o f Theorem
1.1.3
R(A;A)
e x i s t s for
IAJ
>
~1
and s a t i s f i e s
I n p a r t i c u l a r , if
then
(2.16) hence t h e s e r i e s
i s convergent i n t h e uniform topology of o p e r a t o r s .
w e have Q(A)(~-A-P)U =
-
(PR( h;A))n( hl A
= R( A;A)
- P)u
n=O co
=
a3
T ( R ( A ; A ) P ) ~ T~ -( R ( A ; A ) P ) ~ ~= n=0
n=l
u.
If
u
E D(A)
108
PARTIAL DIFFEREIWIAL EQUATIONS
Similarly, i f
u
f
E, m
(AI-
A -P)Q(A)U
=
c
(XI - A - P)R(A;A)
(PR(A;A))"~
n= 0 m
1
=
W
( F R ( A . ; A ) ) ~ ~-
n=O
c
( P R ( A ; A ) ) ~ ~=
,
n=1
thus
Q(A) = H(A;A + P)
.. .
.
jl,. . , j m = 0,1,2,.
where
.
Due t o t h e f a c t t h a t some of t h e
jk
may
n PIS w i l l be of t h e form
b e zero, t h e t y p i c a l term containitlg
(2.17) where
s1
+
+
sn+l = n
+m
and
s
k
>
0.
Making use of (2.15) w e
s e e t h a t (2.17) can be bounded i n norm b y
Accordingly
Applying Theorem
1.3.3
( t h i s time backwards) as modified by Remark 1.3.5
we conclude t h e proof. P u t t i n g t o g e t h e r t h e r e s u l t s i n t h i s s e c t i o n we o b t a i n .
THEOREM 2.4.
Let A -
be t h e o p e r a t o r (1.2),
p the Dirichlet
109
PARTIAL DIFFEFJ"IAL EQUATIONS
(1.3), and l e t
boundary c o n d i t i o n
A(@) with domain
D(A(p))
D(AO(B)).
=
(2.18)
+ p
= A0(P)
Hi(CL) x L*(n)
Then t h e s p a c e
Q
phase s p a c e f o r t h e e q u a t i o n u"(t) = A(p)u(t).
(2.19)
srV.3 The Cauchy problem. The r e s u l t s i n t h e p r e v i o u s s e c t i o n do n o t show t h a t t h e Cauchy problem f o r t h e e q u a t i o n (1.1)i s w e l l posed i n t h e s e n s e of $11.1. We The b a s i c p r o d u c t s p a c e w i l l b e
s h a l l do so h e r e .
We d e f i n e a ( 3 ) - v a l u e d f u n c t i o n
3 (t) 0
I
=
30(z) b y
cosh t Ao(p)
1'
s i a i t Ao(p)l'2
sinh t Ao(p)
"'
cosh t AO(B)li2
=I where
B
cosh t B
sinh t B
sinh t B
cosh t B
i s t h e s q u a r e r o o t of
t h a t t h e group
X) = L2(n) x L*(n).
P.
B0(t)
AO(P)
I= (3.1)
c o n s t r u c t e d in fiyIV.2.
We n o t e
does depend on t h e c h o i c e of s q u a r e r o o t
B; i n
I\
"j,(t)
c o n t r a s t , t h e group
d e f i n e d b y (2,ll) i s independent of
s e e t h i s w e n o t e that, cosh t B
Ao(p)
To
c a n b e d e f i n e d d i r e c t l y i n t e r m s of
as f o l l o w s :
cosh t B = c(t;A
( B ) ) with c ( t , p )
0
The same o b s e r v a t i o n a p p l i e s to AO(f3)"'sinh
!L~(@)"~.
p-'/'sinh
t p1/2
= tp +
t3rJ.'/3! + t
contrast, P"~,
B.
thus
sinh t
=
:'
cosh
= I+ t2p/,2! + t
p1 2'
A o ( p ) -l/isinh . t Ao(f3)1'2
5! + =
+
-..
p1I2
+
t5p2/5!
+
depend on S3p3l2/3!
(3.1) depends on t h e v a l u e of
on t h e c h o i c e of
t
41~~/4! + .-.
and t o
To s e e t h i s w e s i m p l y n o t e t h a t the f u n c t i o n s
t + t3p/3! i-(
=
... p
and
a n d not on
+ t5p5/2/5! p1j2
t p"
pl"sinh
+
In
p. 2 ' 1
...
depends on
chosen ( e q u i v a l e n t l y ,
B).
Working as i n Theorem
=
111.5.5 we show t h a t t h e i n f i n i t e s i m a l
110
PARTIAL DIFFERENTIAL EQUATIONS
generator
8 of 0
W
0
is
To proceed f u r t h e r , we make t h e assumption t h a t
v
=
ess. s u p c ( x ) < 0 ;
(3.3)
( a s we s h a l l see l a t e r , t h i s can be dispensed w i t h ) . has a bounded i n v e r s e f o r
now t h e operator
F
it follows t h a t
A >V,
AO(B)-l,
bounded i n v e r s e
hence
B
X-AO(B)
Since
Ao(f3) i t s e l f h a s a -1 B Consider
.
h a s a bounded i n v e r s e
We claim t h a t
i n (2.14).
FE-’ i s a bounded o p e r a t o r i n
L2(n);
Theorem 2 . 2 ) i s continuous i f
(3.4)
since
D(E)
E-1 : L2(R) * D ( B )
i s c l e a r t h a t we o n l y have t o show t h a t t h e graph norm of
D ( B ) = +(?)
i s e q u i v a l e n t t o t h e norm of
$(Q).
consequence of t h e f a c t t h a t b o t h norms make
D(B)
(see
$(Q)
E
B,
it
in
This, i n turn, i s a complete and of
the
[1958:1 I ) .
open mapping p r i n c i p l e ( s e e DUNFGRD-SCHWARTZ Having proved t h a t
=
i s given t h e graph norm of
( 3 . 4 ) i s i n f a c t bounded, consider t h e o p e r a t o r
Applying Theorem 2.3 we deduce t h a t t h e o p e r a t o r
(4=%o+T g e n e r a t e s a s t r o n g l y continuous group
The r e s o l v e n t
R(A;B0 +
7)
(3.6)
S ( t ) i n t h e space
must e x i s t for
h
3.
Write
sufficiently large:
write
111
PARTIAL DI1’1’6PI IUIAL F~JUATIONS
(3.8)
Looking st the. first column of t h e r n s t r i x ? q u a t i o n
(3.9)
3
3,
the i d e n t i t y o p e r a t o r i n
(A’I
- B ‘
- P)R
(A)
11
we o b t - i i n
=
(kI
- AO(p)
- P)Rll(A)
=
hI.
(3.10)
Workini; i n t h e same way w i t h tlie ~ q u i ~ t i o i i
F i n a l l y , o b s e r v i n g t h e element i n t h e upper l e f t c o r n e r of the m a t r i x (24u a t i o n
rrn
R(h;% + 9 ) u =
e-htP(t)u
0
LJ
(which r e s u l t s from
(1.3.8))
dt
0
w e o b t a i n , making use of (3.L?), t h a t
U
which e q u a l i t y , i n view of Theorem 1 1 . 2 . 3 i m p l i e s t h a t
S(%) = V 11( 2 )
i s a s t r o n g l y continuous c o s i n c f u n c t i o n with i n f i n i t e s i m a l g e n e r a t o r
A(@)
(3.13)
= AO(P) + p,
D ( A ( B ) ) = D(AO(B)).
To get r i d of assumption
(3.4) it
suffices t o replace
c(x)
by
112 c(x)
PARTIAL DIFFERFWIAL EQUATIONS
-
- u 6 (6 >
operator
P
i n t h e definition of
0)
i n t h i s case, t h e
Ao(B);
i s defined by
m rb.(x)DJu + ( v + b)u
Pu =
j=1
(3.14)
J
i n s t e a d of (2.14). We have completed t h e proof of
THEOREM 3.1. Let A be t h e v p e r a t o r (1.21,
-boundary
the Dirichlet
c o n d i t i o n (1.31, and l e t
A(B) with domain
D(A(f3))
=
i s w e l l posed i n
-m
A;(@)
Wave e q u a t i o n s :
+
(3.15)
P
Then t h e Cauchy problem f o r t h e e q u a t i o n
D(AO(B)).
=
u"(t)
GIV.4
f?
=
(3.16)
A(B)u(t)
w.
o t h e r boundary c o n d i t i o n s .
We study i n t h e next two s e c t i m s t h e o p e r a t o r ( 1 . 2 ) with boundary
(1.4),
c o n d i t i o n s o f t h e form
where
v = (v
,..., vm)
i s t h e o u t e r normal v e c t o r on t h e boundary
1
t h e e x p r e s s i o n on t h e l e f t - h a n d s i d e of d e r i v a t i v e of
u
(1.1)w i l l be
L
$(a).
at
2
(a);
The o p e r a t o r
x
E
r.
(4.1) i s
Again, t h e b a s i c space i n our t r e a t m e n t of
t h e a u x i l i a r y space i s now Ao(B)
however, t h e s c a l a r product
r;
c a l l e d t h e conormal
d(n)
i n s t e a d of
w i l l be a g a i n defined by ( 1 . 1 4 ) and (1.15); (U,W)(,,
is different.
T o guess t h e c o r r e c t
d e f i n i t i o n we perform t h e f o l l o w i q ; formal computation using t h e divergence theorem, where t h e boundary enough.
r
and t h e i n t e r v e n i n g f u n c t i o n s a r e smooth
113
PARTIAL DIFFERENTIAL EQUATIONS
Accordingly, we should define
( u , ~ ) , = r ( a - c ) r v dx+L(rrajkD’%Dkv) dx-JiFv -0
dx.
u,v r
$(n)
However, t o give sense t o ( 4 . 2 ) for
arbitrary
(4.2) some
assumptions on Q w i l l be necessary, d u e t o t h e presence of t h e boundary integral.
A domain
0
5 Rm
i s said t o be of c l a s s
i f and only i f , given any point V
of
x
Rm and a map
in
t h e open u n i t sphere i n
(a)
q
(b)
The map
(c)
5k
in
(resp. i n
n r)
=
E
r ?
C(k) (k
an i n t e g e r
2
0)
t h e r e e x i s t s an open neighborhood (Sm = Sm(O,l) = {q E Rm;lql < 13
such t h a t
?
with
q(x) = 0 .
-1 ( r e s p . q ) possesses p a r t i a l d e r i v a t i v e s of
q
q ( v n n) = Q(V
q: V +
Rm)
i s one-to-one and onto
order
-v
x -
s
sm=
t so
(resp. i n
V 111
=
Sm) which a r e continuous i n
).
.
{q r
sD ;qm > 0 3
b-,
s ~m =; 0 3 ~ .
E
A l i t t l e use w i l l be made i n t h e following l i n e s of t h e Sobolev spaces
&’P(n)
c o n s i s t i n g of a l l f i n c t i o n s
LP(n);
p a r t i a l derivatives i n
t h e space
Also, we s h a l l employ t h e spaces u in
-
continuous i n
n,
C(l)(F)
having f i r s t
i s normed with
c o n s i s t i n g of a l l f u n c t i o n s
having continuous f i r s t p a r t i a l d e r i v a t i v e s
each d e r i v a t i v e admitting a continuous extension t o
THEOREM
1 f p c
u r LP(fi)
&”(n)
m.
4.1
& n
men
(a)
be a bounded domain of c l a s s
if
Dju
a. and l e t
114
PARTIAL DII’FERENTLAL EQUATIONS
t h e r e e x i s t s a constant
u
f o r everx
then
E
(depending only on 0, p , q ) s u c h t h a t
C
C(’)(F).
if
(b)
(4.3) holds f o r everx
q
2
1.
For t h e proof of a c o n s i d e r a b l y more g e n e r a l r e s u l t see ADAMS We n o t e t h a t Theorem 4.1 h o l d s a s w e l l f o r domains
[1975:1, p. 1141.
which a r e “piecewise of c l a s s c y l i n d e r s whose base i s a
(in
C (’”’
such a s , say, p a r a l l e l e p i p e d o n s or
- 1)- d i m e n s i o n d
also, t h e boundedness h y p o t e s i s i s not e s s e n t i a l : r e s u l t holds i f
THEOREM 4.2. 8
( b u t not
Let fl
n)
f o r instance, t h e
i s bounded.
be a domain o f c l a s s
, 15p
C( 0 )
(or, r a t h e r , t h e s e t of r e s t r i c t i o n s of f u n c t i o n s of
dense i n
<
Then -
M.
0) @
ds’p(o).
The proof can be seen i n ADAMS assumptions; r e c a l l t h a t t h e space t e s t functions i n Let
c(1);
domain of c l a s s
0
R
m
[1975: 1, p. 541 under =
l e s s stringent
i s t h e space o f Schwartz
.
be a bounded domain of c l a s s
domain of c l a s s
m @(R )
C(l)
w i t h a bounded boundary
(or, more g e n e r a l l y , a
r).
Assuming t h a t
E Lm(r), t h e following e s t i m a t i o n i s j u s t i f i e d by Theorem 4 . 1 (and t h e comments a f t e r i t ) : h e r e u,v a r e f u n c t i o n s i n a and we t a k e
y
p = q = 1 .
Now,
115
PARTIAL DIFFEPJ3I'dTIAL, EQUATIONS
We go back t o (4.2). with
CY
>
V = ess.
Assume t h a t t h e s c a l a r product
sup c
e l l i p t i c i t y condition
a s i n (1.10).
( U , V ) ~
i s chosen
Then, t a k i n g t h e uniform
(1.6) i n t o account we o b t a i n from (4.4) and ( 4 . 5 )
that
(4.6) t h u s it i s obvious t h a t , i f
o/
i s s u f f i c i e n t l y l a r g e , t h e f i r s t of t h e
two i n e q u a l i t i e s
w i l l hold f o r
u
E
8 ; that t h e second i s as w e l l t r u e follows from
(4.6) with no p a r t i c u l a r requirements on CY beyond cy > v . The f a c t 8 i s dense i n $(n) (Theorem 4.2) and t h e Schwartz i n e q u a l i t y
that
(u,~),
imply t h a t argument
for
can be defined, using a n obvious approximation
arbitrary
u
E
$(a).
Since t h e norm defined by ( 4 . 2 )
d(R), we
i s e q u i v a l e n t t o t h e o r i g i n a l norm of follows t h a t
$(n)
s h a l l assume i n what
Il-IIcy.
i s endowed w i t h
From t h i s p o i n t on, t h e c o n s t r u c t i o n of t h e o p e r a t o r corresponding t o t h e s e l f a d j o i n t p a r t (1.8) of condition
B
A
Ao(B) and t o t h e boundary
i n (4.1) proceeds e x a c t l y i n t h e same way as i n t h e c a s e
of t h e D i r i c h l e t boundary c o n d i t i o n :
u
E
D(A,(@))
(w
E
$(n))
i f and o n l y i f t h e
l i n e a r fbnctional
w
-
i s continuous i n t h e norm of
(u,v),
L2(R);
AO(B)u where
v
i s t h e unique element of
=
(4.9)
we d e f i n e cuu
L
2
- V, (n) s a t i s f y i n g
(4.10)
116
PARTIAL DIFFERENTIAL EQUATIONS
(4.11) A s i n sIV.1, coefficients
motivation f o r t h i s stems from t h e f a c t t h a t i f t h e a
jk function such t h a t
and t h e boundary
cm - A 0u
= v
a r e smzoth and
in
and
0
D"u = y,
i s a smooth
u
t h e n (4.11)
follows f o r any smooth w. Operating a s i n 6 I V . l we show t h a t
( U - AO(B))D(A,,(B)) t h i s time for any
h > a,
CY
=
so l a r g e t h a t (4.7) holds.
estimate of the type of (1.19) and prove t h a t
A,
i n t h e same range o f Finally,
Ao(B)
Ao(p)
W e o b t a i n an
U-AO(B) i s one-to-one
(AI-A0(p))-'
so t h a t
h >
exists i n
cy.
i s symmetric s o t h a t , using Lemma 1.1 we show t h a t
i s s e l f a d j o i n t and bounded above by
depending not only on t h e cosine f u n c t i o n
OIV.5
(4.12)
L2W,
a, where
v but also on t h e c o e f f i c i e n t
@,(t)
generated by
Ao(@)
ff
y.
i s a constant Accordingly,
i s t h i s time given by
The phase space.
The arguments i n s I V . 2 have an obvious counterpart h e r e . c o n s t r u c t i o n of t h e square r o o t
B of
Ao(B)
The
proceeds i n t h e same way,
as does t h e proof of THEORFM 5.1 D(E) =
d(n).
(5.1)
The phase space f o r t h e equation
u " ( t ) = Ao(B)u(t) i s now
(5.3)
El
=
$(".
(5.4)
117
PARTIAL DIFFEREWIAL EQUATIONS
Again, t h e phase space The group
Go(;)
( 5 . 3 ) i s t h e same one provided by Theorem 111.1.3.
propagating t h e s o l u t i o n s of ( 5 . 2 ) i s given by (2.11)
with i n f i n i t e s i m a l g e n e r a t o r D(210(f3)) = D ( A O ( f 3 ) )
(2.12), i t s domain being i d e n t i f i e d by
x €$(D).
To t a k e c a r e of t h e f i r s t order terms we
use Theorem 2.3 a p p l i e d t o t h e bounded p e r t u r b a t i o n o p e r a t o r (2.13).
I n t h i s way we o b t a i n ;
Let
THEOREM 5.1.
r,
A
0
be a domain of c l a s s
t h e operator ( l . 2 ) ,
(3
measurable and bounded on
I-.
with domain
D(A(f3))
=
CiLi
t h e boundary c o n d i t i o n
w i t h bounded boundary
( 1 . 4 ) with y
Let -
D(AO(f3)).
d(n)
Then t h e space
X L'(0)
is a
phase space f o r t h e e q u a t i o n
u"(t)
Q1v.6
=
.
A(B)u(t)
(5.6)
The Cauchy problem.
A l l t h e r e s u l t s i n S e c t i o n IV.3 have a n immediate c o u n t e r p a r t h e r e ; we
d e f i n e t h e semigroup B O ( i ) given by ( 3 . 1 ) i n t h e product space 2 2 = L (0) X L ( a ) ; again, depends on t h e p a r t i c u l a r square r o o t
z0(t)
of
Ao(B)
chosen.
B
However, we need
This can be achieved by r e p l a c i n g l a r g e i n t h e d e f i n i t i o n of
Ao(f3);
t o have a bounded i n v e r s e .
c ( x ) by
m Pu = C b . ( x ) D J u + j =1 J TmOREM boundary
y
2
6.1.
r, A
fi
t h e o p e r a t o r (1.2), B
D(A(B))
i s w e l l posed i n
-m
= D(Ao(f3)).
< t <
m
.
P
for
CY
sufficiently
i s t h e n defined by
(6.1) C(l)
with bounded
t h e boundary c o n d i t i o n
( 1 . 4 ) with
Let -
r.
u"(t)
-a
LXI
be a domain o f c l a s s
measurable and bounded on
with domain
c(x)
t h e operator
Then t h e Cauchy problem f o r t h e e q u a t i o n =
A(B)u(t)
(6.3)
118
PARTIAL DIFFERFNTIAL EQUATIONS
6IV.7
HXgher o r d e r equa.tions.
We consider b r i e f l y i n t h e r e s t of t h e c h a p t e r t h e e q u a t i o n
u"(t)
=
A(P)u(t)
(7.1)
an(x)Dnu
(7.2)
where
Au
=
l ( Y l 3
i s an a r b i t r a r y p a r t i a l d i f f e r e n t i a l o p e r a t o r of o r d e r p (Y
=
and
(a
1, D
,. . . , a m )
i s a m-gle of nonnegative i n t e g e r s ,
... (Dm) m,
= (D1)Qi
i n a domain
0
of
whose c o e f f i c i e n t s
m-dimensional Euclidean space
t h e r e s t r i c t i o n of
A
B
r.
a t t h e boundary
a,(.)
(here
la1 = a1 +
. .. + am
a r e defined
Rm; A ( B )
denotes
obtained by imposition of a boundary c o n d i t i o n Some i n s i g h t on t h e e q u a t i o n
(7.1)can
be
obtained examining t h e c o n s t a n t c o e f f i c i e n t case i n t h e whole space; we do t h i s for EXAMPLE
m
7.1.
=
1.
Consider t h e d i f f e r e n t i a l e q u a t i o n
u"(t] i n t h e space
w i t h ao, al,
2
L (Rx).
...,a
c o n s i s t s of all
Here
=
i s t h e d i f f e r e n t i a l operator
A
complex c o n s t a n t s ,
PA
u(x)
E
2 L (R)
o f d i s t r i b u t i o n s ) belongs t o
(7.3)
Au(t)
such t h a t
L*(R).
a 0; t h e domain o f A P Au (understood i n t h e sense
Through t h e Fourier-Plancherel
transform
( s e e STEIN-WEISS [l97l:11) the
equation
(7.3) i s e a s i l y seen t o be
equivalent t o t h e equation u"(t) where
=
Au(t),
i s t h e multiplication operator
(7.6)
119
PARTIAL DIFFWENTIAL EQUATIONS N
L2(RE).
in
We check t h a t
i s a normal o p e r a t o r , t h u s
A
2
E
d
( E x e r c i s e 11.5) i f and only i f w0 - sup{Re X1>’ ;X
a(x)) < m,
(7.8)
N
a(x), t h e spectrum of
where
E
i s e a s i l y i d e n t i f i e d as
A,
As proved i n E x e r c i s e 11.5, (7.8) i s e q u i v a l e n t t o t h e f a c t t h a t
~(x)
i s contained i n a r e g i o n of t h e form Re h < - w2 - ( I m h ) > / 4 3 . LEMMA 7.2.
-
A
2
i f and o n l y i f
E
p
(a)
(7.9) i s even ,(b)
a
is P -
r e a l with (-l)p’zap (c) j
is r e a l i f
aj
i s odd,
j
>
j
i s even
>
p/z,
,
(7.10)
(d) aj i s imaginary i f
p/2.
Assume t h a t ( a ) , ( b ) , ( c ) and ( d ) hold.
Proof:
P(t) = where
j
<0
q(c)
( - ~ ) P ’ ~ ~ , E P+
i s a polynomial of degree
r ( t ) + q(t),
5 p/z
Then we have
(7.11)
w i t h complex c o e f f i c i e n t s ,
and
with r e a l c o e f f i c i e n t s
b
3’
Obviously, f o r
1
sufficiently large
we s h a l l have
\El,
for l a r g e t h e form
which implies t h a t
(7.9), t h u s
E
i s odd.
Since
i s c o n t a i n e d i n a r e g i o n of
8.
We prove t h e converse. p
u(A)
Assume t h a t ( a ) i s v i o l a t e d , t h a t i s , t h a t
120
PARTIAL DIFFERENTIAL EQUATIONS
and
a.
f
0, it i s obvious t h a t
t e n d s t o i n f i n i t y along t h e
P(5)
-
5 2 a, hence o(i) cannot be contained i n a r e g i o n of t h e form (7.9). To show t h e n e c e s s i t y of (7.10) when p i s even we use t ! i e corresponding v e r s i o n of (7.14): imaginary axis i n opposite d i r e c t i o n s
p(5) if
(-l)’”a,
I ~ I - ~ ()1 5)1
+ 0(
(-1)p”ao5P(1
=
p(5)
i s not r e a l and negative,
-
(7.15)
m);
w i l l tend t o i n f i n i t y
i n t h e d i r e c t i o n of t h e p o s i t i v e r e a l axis. F i n a l l y , we show t h a t ( c ) and ( d ) a r e as well necessary.
Note f i r s t
t h a t both c o n d i t i o n s axe necessary and s u f f i c i e n t i n order t h a t t h e polynomid
r ( 5 ) i n (7.11)
have r e a l c o e f f i c i e n t s .
h a s a t l e a s t one complex c o e f f i c i e n t , and l e t
bk
Assume t h a t
r(5)
be t h e complex
c o e f f i c i e n t of h i g h e s t o r d e r ; we can w r i t e t h e n
where
p/2 < k
(7.13)w i l l
5
p
- 1.
2k > p,
Since
a n i n e q u a l i t y of t h e type of
51.
not hold i n t h i s c a s e f o r l a r g e
This ends t h e proof
of Lemma 7.1. We note t h e c u r i o u s consequences o f Lemma
belongs t o
2
,
d
-
A =
+
-
=
(-$I8
6
+(-&)5 (d/dx) 5
does not, i n s p i t e of t h e f a c t t h a t (d/dx)8
although t h e o p e r a t o r
t h e operator A
of
(dx)
7.1:
than
(d/dx)
6
i s a “tamer” p e r t u r b a t i o n
.
I n t h e following s e c t i o n we s h a l l attempt a t h e o r y of t h e equation
(7.l),
b u t only i n t h e c a s e where
t h e D i r i c h l e t boundary c o n d i t i o n . c o e f f i c i e n t s of
O1v.8
A
of o r d e r > p/2
B
i s t h e h i g h e r order v e r s i o n of
Lemma
7.1 i n d i c a t e s
that the
w i l l have t o be s u i t a b l y r e s t r i c t e d .
Higher o r d e r e q u a t i o n s ( c o n t i n u a t i o n )
We study here t h e e q u a t i o n
(7.1) w i t h
an operator
A
of t h e form
121
PARTIAL DIFFERFNTIAL EQUATIONS
c
7
Au =
(-l)Ial-'D"(a+(x)D
Bu ) +
I4 5 k
la1 5 k The c o e f f i c i e n t s
101 T
am, ba
k
a r e r e a l and defined i n a bounded domain
Rm.
in-dimensional Euclidean space
of
W e s h a l l assume t h a t t h e c o e f f i c i e n t s
of t h e p r i n c i p a l p a r t of t h e operator
a
(8.1)
bo/(x)Dau.
A,
OB
c
(-l)ial-lDw(a~D')
,
(8.2)
Ictl=k [BI=k
a r e continuous i n
-
n;
t h e r e s t of t h e
simply measurable and bounded i n r e s t r i c t i o n of
A
R.
a
*'
a s well as t h e
A(B)
The operator
obtained by imposition a t t h e boundary
b,
are
denotes t h e
r
of t h e
D i ric h l et b ound a ry cond it ion
... =
u = D"u =
(Dw)k-l~ = 0
(x
E
r)
(8.3)
(8.3) w i l l be s a t i s f i e d only i n a generalized sense t o be
(although
c l a r i f i e d l a t e r ) . We assume t h a t
and t h a t
A
f o r some
K
i s u n i f o r d y e l l i p t i c , which i n t h i s case means t h a t
> 0.
The following r e s u l t (Ggrding's i n e q u a l i t y ) w i l l be b a s i c .
To s t a t e
it w e introduce t h e Sobolev spaces wk'p(fi) (1 5 p < m ) c o n s i s t i n g of u defined i n fl and having p a r t i a l d e r i v a t i v e s of
all f u n c t i o n s
5k
order
For
p
(understood i n t h e sense of d i s t r i b u t i o n s ) i n
LP(R);
the
w k ~ p ( n >i s
norm of
=
2
wky2(n) =
( t h e only case of i n t e r e s t t o u s ) we s h a l l w r i t e
$(Q).
( i n t h e norm of
The space
Hk(n)).
$(n)
The statement t h a t
v e r s i o n o f t h e boundary conditions THEORail
8.1 L e t
L
i s t h e c l o s u r e of u E %(a)
(8.3).
be a d i f f e r e n t i a l operator;
d)(n)
in
$(n).
i s t h e weak
122
PARTIAL DIFFERENTIAL EQUATIONS
i n a bounded domain
7
c
bI5k
lPl5k
Q
5 Rm.
(-l)lN(-lDTY(aOIT;Dpu)
Assume t h a t a l l t h e c o e f f i c i e n t s
a r e measurable and bounded and t h a t
ICY~ =
=
k.
i s continuous i n
a$
Then t h e r e e x i s t constants
x
14 5 k Is I I
0
when
such t h a t
C,CY
JaaM(x)D?DBu
-
dx
2
k
For a proof see FRIEDMAN [1969:1,p.321. W e proceed t o t h e c o n s t r u c t i o n of a phase space f o r t h e equation
where
A.
i s t h e s e l f a d j o i n t p a r t of A, A~ =
7 Ao(B)
The d e f i n i t i o n of renorm t h e space
where
CY
$(n)
Y
(8.8)
(-i)lml-lDm(aOIT;Dpu).
IBl5k
l+k
follows t h a t f o r t h e second order case.
W e
by means of t h e s c a l a r product
i s t h e constant i n (8.6).
We have
(8.10) The second i n e q u a l i t y follows f r o m t h e boundedness of t h e c o e f f i c i e n t s
of A ; t h e first i s a consequence of Theorem 8.1.
u
E
4(.".)
belongs t o
D(AO(B))
i f and only i f t h e l i n e a r f u n c t i o n a l
w -, ( u , ~ ) , i s continuous i n t h e norm of element of
2
L (a)
L
2
(Q),
A,(@).
being t h e orily
that satisfies
W e show i n t h e same way as i n t h e case a d j o i n t and t h a t
An element
Ao(B)
k = 2
i s bounded above
g e n e r a t e s t h e cosine f u n c t i o n
(by
that o!),
Ao(B) so that
i s self Ao(B)
123
PARTIAL DIFFERENTIAL EQUATIONS
C(t) and a square r o o t
cash t A o ( B ) 1 / 2
=
=
(8.12)
can be defined as i n gIV.2: we have
B = A,(@)'/' D(B)
,
#(n)
=
D((U h >
t h e l a s t i n e q u a l i t y holding for
- A ~ ( B ) 1) /2 ),
(8.13)
Theorem 111.5.4, combined with
cy.
(8.13) i m p l i e s t h a t Q =
i s a state space for (8.7).
(8-14)
H p ) x L2(Q) To show t h a t
Gf
i s as well a s t a t e space
f o r the f u l l equation
we i n c o r p o r a t e t h e lower order terms i n
(8.1) through p e r t u r b a t i o n
(Theorem 2.3) d e f i n i n g
(8.16) and
:]
? = [ : We o b t a i n i n t h i s way: THEOREM 8.2.
Let A
(8.1), @
be t h e operator
the Dirichlet
boundary c o n d i t i o n (8.3), and l e t
(8.18)
A(B) = Ao(B) + P w i t h domain
Then t h e space
D(A(@)) = D(Ao(@)).
a phase space f o r t h e equation
$(Q)
x L2(n)
(8.15).
The t r e a t m e n t of t h e Cauchy problem f o r (8.15) f o l l o w s word by word t h a t f o r second order e q u a t i o n s i n pIV.3; THEOREM
8.3.
L A A
we only s t a t e t h e f i n a l r e s u l t .
be t h e operator (8.1),
boundary c o n d i t i o n ( 8 . 3 ) , and l e t
B the Dirichlet
124
PARTIAL DIFFERFNTIAL EQUATIONS
A ( B ) = Ao(B) with domain
D(A(B))
( 8 -19)
P
Then t h e Cauchy problem f o r t h e
= D(AO(B)).
equation (8.15) i s well posed i n
9IV.g
+-
-m
m.
Miscellaneous comments.
(7.1))
Wave equations l i k e (1.1) (and i t s higher order counterpart were t r e a t e d by semigroup methods i n GOLDSTEIN [1969 :1]. EXERCISE 1. A l i n e a r operator
in a
D(B) = E
with domain
i s said t o be compact ( i n older terminology, completely
E
Banach space
B
{Au
continuous) i f
3
n (un}.
c o n t a i n s a convergent subsequence f o r every
u(A)
of a compact
operator c o n s i s t s of a ( f i n i t e or countable) sequence
{\,$,... 3
bounded sequence
Show t h a t t h e spectrum
of
complex numbers having a n accumulation p o i n t at zero when t h e sequence
is infinite.
(See KATO [1976:1, Sec. 3.73).
EXERCISE 2.
u
E
E, u
#
0
A be a s i n Exercise 1, and l e t
Let
i s an eigenvalue of
h
Prove t h a t
A,
h
E
o(A), h
Show t h a t t h e space
(9.11
h
of all generalized eigenvectors with
Pg(A)
( i . e . t h e s e t of all v e c t o r s
u
such t h a t
(?J-A)mu = 0 f o r some i n t e g e r an i n t e g e r
m(h)
m
2 1)
i s f i n i t e dimensional.
such t h a t i f
(9.2)
Show t h a t t h e r e e x i s t s
(9.2) holds f o r any i n t e g e r
m
2
m(A)
then
(9.3)
(AI-A)m(h)u = 0 EXERCISE 3.
Show t h a t t h e r e e x i s t s a compact operator
separable Hilbert space such t h a t an eigenvalue of
A
(Hint:
(a)
o(A) = { O ]
(b)
0
A
in
i s not
t r y t h e Volterra operator
=k X
Vu(x> in
0.
such t h a t
(AI-A)u = 0
eigenvalue
#
that is, there exists
L*(O,~)).
U(5)d5
(9.4)
125
PARTIAL DIFFERENTIAL EQUATIONS
EXERCISE 4 . that
f o r all R(p;A)
Let
(Hint:
p E p(A) =
be a n o p e r a t o r i n a Eanach space
A
i s compact f o r some
R(h;A)
h
E
Then
@(A).
E
such
i s compact
R(p;A)
use t h e second r e s o l v e n t e q u a t i o n
R(A;A) + (A-p)R(p;A)R(A;A)
and t h e f a c t t h a t t h e sum o f two
compact o p e r a t o r s and t h e product of a compact o p e r a t o r and a bounded o p e r a t o r a r e compact; s e e KATO EXERCISE 5.
Let
A
[1976:11).
be as i n Exercise
empty o r c o n s i s t s of a sequence that
+
h
then
m
A
EXERCISE
6.
o(A)
is
and t h e space
Show t h a t i f
A
E
a(A)
EB(h) of g e n e r a l i z e d
-
enjoys t h e p r o p e r t i e s described i n E x e r c i s e 2. Show t h a t t h e r e e x i s t s a n o p e r a t o r as i n Exercise
(Hint:
a(A) =
A
Show t h a t
of complex numbers such
i f t h e sequence i s i n f i n i t e .
i s a n eigenvalue of
e i g e n v e c t o r s of
with
\, h2,. ..
4.
t r y t h e inverse of the Volterra operator
4
(9.4)).
n be a bounded domain i n m-dimensional into Ehclidean space Rm, B a l i n e a r bounded o p e r a t o r from L2(n) EXERCISE
7.
Let
$(".
Show t h a t
L2(Q),
i s compact (See MIHAILOV
E,
thought of a s a n o p e r a t o r from
L2(")
into
[1976:1]).
7 show t h a t t h e second o r d e r o p e r a t o r s i n (3.15) and (6.2) and t h e h i g h e r o r d e r o p e r a t o r s i n (8.19) enjoy t h e s p e c t r a l p r o p e r t i e s i n Exercise 5 ( H i n t : show t h a t R(h;AO(p)) i s compact u s i n g Exercise 7 and t h e n apply Ekercise 5 ) . EXERCISE 8.
Using Exercise
126
CHAPTER V UNIFORMLY BOUNDED GROUPS AND CmINE FUNCTIONS IN HILBERT SPACE
4 v.l
The Hahn-Baaach theorem: Let
E
Banach l i m i t s .
be a n a r b i t r a r y r e d l i n e a r space.
A functional
p :E
-W
i s c a l l e d sublinear i f
for
u, v
E
E
arbitrary.
THEOFEM 1.1. (Hahn-Banach). a linear functional.
Let F
be a subspace of
E, cp : F
J
R
Assume t h a t
Then t h e r e e x i s t s a l i n e a r f u n c t i o n a l
0 :E
-.
R
such t h a t
For a proof see BANACH [1932: 1, p . 281.
With t h e h e l p of Theorem
1.1 we can c o i s t r u c t a n i n t r i g u i n g
extension of t h e notion of l i m i t .
Let
bounded complex functions defined i n t
l i m i t in
B
i s a functional
p e r t i e s , where
f(t), g ( i )
E
B = B[O,m)
1. 0 .
be t h e space of d l
A Banach l i m i t or peneralized
LIM : B -t 6: enjoying t h e following pros +m B and C U , ~ a r e complex numbers.
127
I N HILBERT SPACE
5
lim i n f f ( s )
(d)
S-
(f)
LIM f ( s )
r e a l valued:
Banach l i m i t s i n
LIM f ( s )
s+
arbitrary.
B
for
f
S-
m
m
$( be t h e subspace of
Let
B
c o n s i s t i n g of
Define
t h e i n f i m u m taken over all p o s s i b l e f i n i t e sequences
BR,
of nonnegative numbers. Using Theorem 1.1 f o r a linear functional
We check i n s t a n t l y t h a t rp = 0
and
F = (0)
Q :BR
LIM = Q.
Obviously,
satisfies
p
(5,)
(1.1).
we deduce t h e existence of
R such t h a t
-+
(f
Q(f) < P ( f ) Set
LIM f ( s ) s +-m
LIM R e f ( s ) + i LIM I m f ( s )
=
r e a l valued f u n c t i o n s .
E
B exist.
once t h i s done we simply s e t
S-'W
f
is real.
f
m
Obviously, it i s enough t o construct
Pro3f:
for
if
if t h e l a t t e r e x i s t s .
l i m f(s)
=
s-
THEOFZM 1 . 2 .
E
sup f ( s )
S-m
S-m
m
L3-m
f
zlim
@z
~ L I Nf ( s ) [ I l i a sup]f(s)(.
(el
for
LIM f ( s ) s-
S-+W
(a)
holds.
E
%I.
(1.6)
Replacing
by
f
(1.6)
in
-f
S-.m
we o b t a i n
This y i e l d s (d)
(c).
-
p ( f ) < U r n sup f ( t ) and - p ( - f ) z
Since
l i m inf f ( t ) ,
(1.6) and (1.7); obviously, ( d ) implies we take 5 1 = h, 5 2 -- 2h, ...,cn = nh i n (1.5)
follows from
To check
(b) p(f(c
+
h)-f(i))
5:
(f). so t h a t
l i m sup ( f ( s + n h ) - f ( t ) ) . S+'X
Since
n
way t h a t that €3
is arbitrary,
p(f(i)
p(;'(t
- f ( f , + h ) ) 5 0,
Q(f(: + h ) ) = Q(f(;)).
be such t h a t
+
eie LIM f(s)
h)
- f ( ; ) ) 5 0.
t h u s it follows from
Finally, we show =
We deduce i n t h e same
ILIM f ( s ) l .
(e)
Then
(1.6)
and
a s follows.
(1.7) Let
128
I N HILBERT SPACE
This concludes t h e prsof of Theorem 1 . 2 . A Banach l i m i t
5
sequences
(co,Cl,
=
i n t h e space
LIM
n-
... )
is
p r o p e r t i e s corresponding t o
limits i n
l i m inf n- m
cn 5
I LIM
(el)
n(f')
LM n- m
Proof:
LIM n- m
5lim n-
m
5,
=
COROLLARY 1.3.
and
i n the d e f i n i t i o n of Eanach
(f)
lim n- rn
LIM
cn I'_ l i m
sup
cn
{Cn]
if
is real.
n-m
SUP IS,^. m
5,
if t h e l a t t e r e x i s t s .
am
Ba.nach l i m i t s i n
exist.
Define
LIM n- m s+
-
(a)
4" enjoying t h e
functional i n
R
B:
(d')
where
of complex bounded
Rm
m
cn
=
LIM f ( S ) , s-
m
i s one of t h e Banach l i m i t s constructed i n Theorem 1 . 2
m
f(s) =
5,
in
n
5
s < n + 1.
Uniformly bounded gro-ips i n Hilbert space.
8V.2
Throughout t h e r e s t of t h i s chapter (except i n Section V .3) we
shall assume t h a t Let
B
E
= H
i s a complex H i l b e r t space.
be a s e l f a d j o i n t operator i n
Then it follows e a s i l y
H.
from t h e f u n c t i o n a l c a l c u l u s f o r self ad j o i n t operators t h a t
U(;),
where U ( t ) = exp(itB)
(-a <
t <
m),
(2.1)
129
IN HILBERT SPACE
i s a s t r o n g l y continuous group i n
* exp(itE)
U(t)* =
exp(-itE)
=
H.
Moreover, since -1 U(-t) = U(t) , each U(t)
=
i s unitary;
i n particular
[1963:1, C h . XI11 f o r t h e necessary d e t a i l s on
( s e e DUNFORD-SCHWARTZ
It was f i r s t proved by Stone t h a t t h e
the functional calculus).
converse i s a s w e l l t r u e (See Exercise 1.11)
Let U(i)
THEORFM 2 . 1 .
t h a t each
E
= -iA,
U(t)
Then
t h e i n f i n i t e s i m a l generator of
E
Proof: that
be a s t r o n g l y continuous gro'ip.
i s a u n i t a r y operator.
Let
h > 1 real.
n = 1 and
/
(R(h;A)u,v) =
U(t).
be t h e i n f i n i t e s i m a l generator of
A
i s self adjoint.
-iA
(1.3.8) f o r
We have
=I
r m
7.m
emAt(U(t)u,v) d t
e-Xt(u,U(t)*v)
=
-
(u,R(-h;A)v)
where we have used i n t h e l a s t e q u a l i t y t h e f a c t t h a t R( A;A)* = -R(-$A).
=
N +A
If V(t)
=
exp(itE)
so that
A*
=
(2.3)
9
U(-t)
s t r o n g l y continuous semigroup with i n f i n i t e s i m a l generator Y
dt
0
=Lme-At(u,U(-t)v) d t
(XI-A)
We show
U(<).
To t h i s end we use formula
' 0
Accordingly,
Assume
holds f o r
(2.1)
is a -A.
Taking inverses, t h i s implies t h a t -A,
thus
3 = -iA
i s self adjoint.
(computed by t h e f u n c t i o n a l c a l c u l u s ) we show
easily that i
2"
-
e AtV(t)u d t
=
R(A;iE)u=R(h;A)u
( h > 1)
' 0
f o r each
~1 E
Since
H.
U(<) and
that
U(;)
s a t i s f i e s t h e same e q u a l i t y it follows
V(t) coincide by uniqueness of Laplace transforms.
The following result shows t h a t uniform boundedness of t h e group
S(:) space
implies that
S(t)
i s u n i t a r y a f t e r a '!change i n geometry" i n t h e
H. S u r p r i s i n g l y enough, t h e r e are no conditions whatsoever on t h e
t-dependence of
THEOREM 2.2
c ).
S(
S(i) be a group i n H (S(0)
= I,
S(S + t )
= S(s)S(t)
130
I N HILBERT SPACE
for
-W
< s, t <
Assume thai,
m).
‘ken t h e r e e x i s t s a bounded, self a.d,joint o p e r a t o r C - ’ I / U ~ ~ ~5 ( Q u , ~ ) 5 Cllul12
(u
t
Q
satisfying
E)
(2.5)
and such t h a t
U ( t ) = QS(t)Q-’
t.
i s u n i t a r y for every Proof:
9
:H x H
9
W e define a sesquilinear functional
c
--t
( t h a t i s , a map
l i n e a r i n t h e second v a r i a b l e , conjugate l i n e a r i n t h e
f i r s t ) by
LIM i s one of t h e Banach limits constructed i n Theorem 1 . 2
where
I ( S ( t ) u , S ( t ) v ) I 5 C211ul/
(note t h a t , since (s(i)u,S(i)v)
belongs t o I4(u,v)l
By
B[O,m)).
5c
2
l l ~ l lllvll
t h u s t h e r e e x i s t s a bomded o?erator L)(u,v) = Q(v,u),
Moreover, s i n c e and it follows from IlS(t)ull C-*1/Ul12
2
C-lllulI)
5
2
C /lull2
(e)
we have
(u,v
E
in
H
P
(Pl1,V)
HI,
(2.8)
such t h a t
.
t h e operator
(2.9) i s self adjoint,
p
(which i m p l i e s i n p a r t i c u l a r t h a t
and from p r o p e r t y
5
(PU,U)
(2.4)
=
I/v\I t h e f u n c t i o n
so t h a t
of Banach l i m i t s t h a t
(d)
i s p o s i t i v e a s well and hence
P
possesses a p o s i t i v e , s e l f a d j o i n t square root
Q
satisfying
(2.5).
Moreover, we have (PS(t)U,V)
=
LIM ( s ( s + t ) u , S-)
s(s)v)
for
u,v
E
H
=
m
by v i r t u e of
LIM ( s ( s ) u , S ( s - t ) v ) s-
LIM ( s ( s ) u , s ( s ) s ( - t ) v ) S-
=
m
(b).
Hence
m
(Pu,S(-t)v)
=
131
I N HILBEKT SPACE
S(t)*P
=
PS(-t)
(-m
m)
.
(2.10)
Qml l e f t and r i g h t , t h i s e q u a l i t y becomes
Multiplying by
Q-lS(t)*Q which i s n o t h i n g b u t
(QS(t)Q-')"
QS(-t)Q-l,
=
(2.11)
-1 -1 )
(QS(t)Q
=
.
This ends t h e p r o o f
of Theorem 2.2. The f a c t t h a t
=
Hence
S(t)*'
=
i s u n i t a r y d e s e r v e s some comment.
QS(t)Q-l
(u,PS(-t)u)
S(-t),
*Q
where
s c a l a r product
(2.12).
as stating that
each
=
(Qu,QS(-t)v)
=
(u,S(-t)v)
Define
Q '
denotes adjoint with respect t o the
Accordingly, Theorem 2.2 c a n be i n t e r p r e t e d
w i l l i n f a c t be unitary a f t e r replacing t h e
S(t)
o r i g i n a l s c a l a r product by
(2.12);
s i n c e b o t h norms a r e e q u i v a l e n t
t h e t o p o l o g y o f t h e s p a c e induced by a n y of t h e two norms i s t h e same. S(t^), no On t h e o t h e r hand, we have
I n t h e a b s e n c e o f h y p o t e s e s on t h e t-dependence of f u r t h e r c o n c l u s i o n s on
U(t^)
COROLLARY 2.3.
Assume t h a t
u
S(t)
s a t i s f y t h e assumptions o f Theorem 2.2.
i s c o n t i n u o u s (or, more g e n e r a l l y , s t r o n g l y rneasur-
S(t)u
a b l e ) f o r each
are possible.
E
E.
Then t h e r e e x i s t s a s e l f a d j o i n t o p e r a t o r
and a bounded s e l f a d j o i n t o p e r a t o r
S(t) Conversely, e v e r y group s a t i s f y i n g Proof:
=
Q-'exp(itE)Q
S(i)
o f t h e form
Q
satisfying (-m
(2.13)
t <
a).
and such t h a t
(2.13)
i s a strongly continuous
(2.4).
By v i r t u e o f Theorem I. 1.1
measurability of
C
(2.5)
E
s t r o n g c o n t i n u i t y and s t r o n g
S(t^)u f o r each u E E a r e e q u i v a l e n t .
Applying
132
I N HILEERT SPACE
Theorem 2.1 t o t h e s t r o n g l y c o n t i n u o u s group operators
(2.13)
-1 QS(t)Q of u n i t a r y
results instantly.
We c l o s e t h i s s e c t i o n w i t h a d i s c r e t e v e r s i o n of Theorem 2.2. THEOREM 2.4.
Let
operators s a t i s f y i q
-
{S,;
-m
< n <
S = I, S 0 m+n
a)
- 'DSn
be a sequence of bounded n so t h a t S = S1). Assume (n
that
Then t h e r e e x i s t s a bounded, s e l f a d j o i n t o p e r a t o r
Q
(2.5)
such t h a t
h o l d s and
-1
U =QSQ n n
i s u n i t a r y for every U
n.
(2.15)
Equivalently, t h e r e e x i s t s a unitary operator
such t h a t
sn
rz
Q-'$Q.
The p r o o f i m i t a t e s t h a t of ?lieorem 2.2. defined a s t h e positive,
(2.16) The o p e r a t o r
Q
is
s e l f a d j a i n t square r o o t of t h e o p e r a t o r
P
d e f i n e d by
i s one o f t h e Banach l i m i t s of sequences c o n s t r u c t e d i n -1 C o r o l l a r y 1.3. W e p r o v e a r g u i n g as i n Theorem 2 . 2 t h a t U = QS Q n n i s u n i t a r y for a l l n; since we have QSnQ-' = whence Un = (2.16) f o l l o w s for u = u 1' We n o t e t h e f o l l o w i n g r e s t a t e m e n t of C o r o l l a r y 2.3 i n t h e l a n g u a g e
where
LIM
p,
p
o f d i f f e r e n t i a l e q u a t i o n s i n Banach s p a c e s .
THEOREM 2.5.
the H i l b e r t s p a c e
Let A
H
be a closed, densely defined operator i n
such t h a t t h e Cauthy problem f o r u ' ( t ) = Au(t)
i s w e l l posed i n
-a C
e r a l i z e d s o l u t i o n of
t <
m.
(2.18)
(2.18)
Assume, moreover, t h a t for e v e r y gen-
w e have
IN HILBERT SPACE
(where
C
u(t)).
may depend on
133
Then t h e r e e x i s t s a s e l f a d j o i n t
E and a bounded s e l f a d j o i n t operator
operator
equalities(2.5)
D(A)
and such t h a t A
{u;Qu
=
Q
satisfying in-
D(B)]
E
@
-1
(2.20)
iQ BQ.
=
The converse i s a s w e l l t r u e . Theorem
2.4 has
an obvious formulation i n r e l a t i o n t o t h e
difference equation
where
i s a bounded i n v e r t i b l e operator i n
A
can be solved forward and backwards).
(so that
H
(2.21)
We omit t h e d e t a i l s .
It i s useful t o know whether t h e conclusions of
REMARK 2.6.
C o r o l l a r y 2.3 hold under weaker c o n d i t i o n s on t h e t-dependence of If t h e space
S(i).
H
i s separable it i s enough t o r e q u i r e t h a t
be weakly measurable ( t h a t i s , t h a t
S(t)
(S(t)u,v)
u,v
E
H)
i s s t r o n g l y measurable for every
u
a s a complex valued f u n c t i o n f o r every
be measurable
since t h i s implies
A
that
S(t)u
[1957:1, p . 73 I).
H)
To see t h i s we may use on t-dependence); s i n c e
S(c)
i m p l i e s strong c o n t i n u i t y .
(which does not r e q u i r e any assumption
(2.6)
w i l l be s t r o n g l y (weakly) continuous i f
S ( : )
S(f)
is, we may assume t h a t
U(i)
S(t)
i s continuous f o r each
(S(<)u,v)
since weak c o n t i n u i t y of
and only i f
( s e e HILLE-PHILLIPS
However, it i s enough t o assume t h a t
i s weakly continuous ( i . e . t h a t E
E
I n a g e n e r a l H i l b e r t space weak and s t r o n g measur-
a b i l i t y do not c o i n c i d e .
u,v
E
i t s e l f i s unitary.
Then
=
GV.3
2(u,u)
-
((s(s
-t) +
S(t
-
(2.22)
s))u,u).
Almost p e r i o d i c f u n c t i o n s . Let
R >
0.
A
set
e
(-m,m)
i f and only i f every (open) i n t e r v a l
i s s a i d t o be I
of l e n g t h
A-dense i n
2
k
(-m,m)
c o n t a i n s some
I N HILBERT SPACE
134
p o i n t of
e. *
f ( t ) defined i n
A function
E
space
with v a l u e s i n a Eanach
m
i s c a l l e d almost p e r i o d i c ( i n t h e sense of
i s continuous and f o r every
>
E
9, =
there exists
0
H. Eohr) i f it and a
R(E;f)
e = e ( & ; f ) such t h a t
1-dense s e t
W e s h a l l o r d i n a r i l y denote by
(3.1)
-m
t;
for a l l
t h e s e t of a l l
e(i;f)
every element of
& - t r a n s l a t i o n number of
which s a t i s f y
T
w i l l be denominated a
e(E;f)
f.
Obviously, a p e r i o d i c f u n c t i o n i s almost p e r i o d i c ( f o r every we may t a k e
e
{np,
=
-m
m]
where
i s t h e period of
p
>0
E
f(i)).
We prove below a number of elementary f a c t s on v e c t o r valued almost p e r i o d i c f u n c t i o n s which s u f f i c e
(Theorems
3.7, 3.8
3.9) w i l l be omitted.
and
f(i)
LEMMA 3.1.
uniformly continuous i n
-m
be almost p e r i o d i c .
(b)
m.
Rf(t^) = (f(t); i s precompact i n Proof: and a
for
To show
w
e
and
( a ) we s e l e c t =
e(E/3;f)
T
E
O z t ,
I l f ( t ) - f ( t ' ) / 1 5 & for
t,t'
It-ttlrs.
ml
> 0,
a number
E
number
\lf(t +
+ T)
1
= 1(E/3;f)
- f(t)ll 5 ~ f
/ 3
on
b , 0 < 6 < 1 such t h a t
t ' Z a + l
and
It-t'I58.
be a r b i t r a r y p o i n t s i n t h e r e a l l i n e such t h a t Choose
T
E
This completes t h e proof of
>0
(3.2)
/If(%
such t h a t
s ~u c h t h a t
O
llf(t)- f(t'>ll 2 llf(t> - f(t +
E
f ( t ) is f(t),
(a)
Usin5 uniform c o n t i n u i t y of
e.
compact i n t e r v a l s we s e l e c t next
Let
-m
Then
The range of
E.
A-dense s e t -m
t o i l l u m i n a t e somewhat t h e
On t h e o t h e r hand, t h e p r o o f s of t h e fundamental p r o p e r t i e s
definition.
(a).
To show
Then
T)ll
(b),
we s e l e c t a g a i n
and o b t a i n from t h e d e f i n i t i o n of almost p e r i o d i c f u n c t i o n a
1
=
1 ( & / 2 , f ) and a 1-dense s e t
z)- f(t)l/ 5 &/2
for
T E e
e = e(r/2;f)
and 611 t.
such t h a t
Since t h e image of t h e
135
I N HILBERT SPACE
interval
0
5t 5
4
tl,
f i n i t e sequence
denotes t h e sphere
8(u,p)
that
0 < t
f(t
-+
0
+
-T
T) E
5t 5
T =
< 4, t j
T(t)
4
we can s e l e c t a
E
such t h a t
... U8(f(tn);E/2)
s(f(t,);E/e)u
E
a r b i t r a r y r e a l number,
that
i s compact i n
. . .,t n i n
f(t)
where
f(i)
by
{v;\/v-uil
5
01.
Ilf(t)- f(tj)lI5 I l f ( t )
t
Let
be an
a t r a n s l a t i o n number i n
an element of t h e sequence
g(f(tj);E/2).
t
tl,
e
such
... , tn
such
Then
- f ( t '-TI11
+ Ilf(t + -TI
- f(tj)ll5 E
so t h a t
. . . u 8(f(tn);&)
5 s(f(tl);E)U
Rf(i) i s arbitrary,
Rf(i)
*
i s t o t a l l y bounded; e q u i v d e n t l y ,
Since
E
Rf(;)
i s precompact ( s e e DUNFOFD-SCHWARTZ A s a consequence of
(b)
[1958:1, p . 221).
we o b t a i n t h a t every almost p e r i o d i c
f u n c t i o n i s bounded.
LENMA 3.2.
&&.
(fn(c))
be a sequence of almost p e r i o d i c f u n c t i o n s
f n ( t ) f ( t ) uniformly i n
such that
-a
+
Then
m.
f(i)
&
&most p e r i o d i c .
Proof: Choose for
-m
E>O.
Once
m.
n
Let n be so l a r g e t h a t has been s e l e c t e d , l e t
e = e(E/3;f n ) a 4-dense s e t such t h a t -a < t < m and T E e. Then
- f(t)llI It(t
Ilf(t + +
f o r all
t
and
+
Ilfn(t
e,
=
2)
.>f n ( t+
l/fn(t+ -r> - fn(t)ll+ llfn(t) 2 E
+
which shows t h a t
Ilfn(t)- f ( t ) l l < E / 3 a(E/3;fn)
-fn(t)ll
and
5 ~ / 3for
-TI11 +
- f(t)lI5 E f(t)
i s almost p e r i o d i c a s
claimed. The following " t o p o l o g i c a l " c h a r a c t e r i z a t i o n of almost p e r i o d i c f u n c t i o n s w i l l simplify some of t h e p r o o f s t h a t follow. E-valued f u n c t i o n
f(g)
defined i n
if f o r every sequence of real numbers
-m
C
(h,]
t <
m
A
continuous
i s t r a n s l a t i o n precompact
t h e r e e x i s t s a subsequence
IN HILBERT SPACE
136 h
(f(t + h n ( k ) ) J
such t h a t
n(k)
THEORFSI 3.3.
A function
it i s t r a n s l a t i o n precompact
E:Assume
f(:)
i s convergent, uniformly i n
f(t)
.c t c
-m
i s almost p e r i o d i c i f and only i f
.
i s almost p e r i o d i c .
Let
be a countable
2
If s 0 i s an element o f we may t a k e advantage o f t h e precompactness o f t h e range E f ( t )
dense s e t i n (Lemma 3.1)
(say, t h e r a t i o n a l s ) .
(-m,m)
t o s e l e c t a subsequence
f ( s o + hn(k))
{hn(,)}
of
{hn}
2
such t h a t
Using t h e n t h e method of Jiagonal
i s convergent.
{kn3, such ( a t t h i s stage we cannot
sequences we can b e t t e r t h i s with a subsequence, denoted f ( s + k ) converges for s E 2 n a s s e r t t h a t t h e r e i s convergence f o r s k, 2 ,
that in
2
Select
E
> 0,
and l e t
1 - d e n s e s e t such t h a t 'G E
or even t h a t convergence
i s uniform).
e:
It - t '
choose then
I
5
1
+
lif(t
1 ( & / 5 ; f ) > 0, e
=
5 ~ / 5f o r
T )- f ( t ) l l
such t h a t
6 = F(E/?)
[O,aI
i n t e r v a l s of l e n g t h
56
with
f i n i t e number
R
and p i c k r a t i o n a l s tl,
t h e s e i n t e r v a l s ; once t h i s i s done, determine
'G = ' G ( t )
t
be an a r b i t r a r y r e a l number. e
E
t
and a p o i n t
(-t, -t
i n the interval
It +
such t h a t
j
b(t + kn) - f ( t
T -t
and a l l
5
E/5
if
.I
r
of sub-
i n each of
such t h a t
j
=
1,2
,..., r.
Pick a t r a n s l a t i o n number
+ a)
J
. ..,t r
no
+ km)ll 5 ~ / 5 f o r m,n 3 no,
l\f(t. + kn)-f(tj Let
a11 t
\if(t)-f(t')II
a
( t h a t t h i s i s p o s s i t l e follows from Lemma 3.1 ( a ) ) .
6
Finally, cover t h e i n t e r v a l
J
e(E/5;f)
=
(so t h a t
.c 6 .
+ km)ll 5 / k ( t + k n >
0 < t + T <
1)
We have
- f(t
+
T + kn)/I
+ Ilf(t + T + k n ) - f ( t . + kn)[I + l / f ( t .+ k n ) - f ( t . + km)II J J J
+ / I f ( t j + k m ) - f ( t + T + km)[I
+ llf(t + if
n,m
2 no.
T
+ km) - f ( t + km)II 5
This shows t h a t
E
(-m
m)
f ( < ) i s t r a n s l a t i o n precompact a s
claimed. We prove t h e converse. compact.
If
such t h a t f o r l a t i o n numbers
Assume t h a t
f ( t ^ ) i s t r a n s l a t i o n pre-
f ( t ^ ) i s not almost p e r i o d i c then t h e r e e x i s t s
no T.
>0 Let
there exists a a-dense set hl
be a r b i t r a r y and l e t
e
(al,bl)
E
of
>0
E-trans-
be an
m.
137
I N HILBERT SPACE
> 21%/
i n t e r v a l of l e n g h t of
Let
f(t).
Obviously,
h2
=
h2-hl
( 5 + bl)/2
of
1% 1 +
and d e f i n e
f(<)
(a2,b2),
belong t o
be t h e midpoint of
(y,bl), t h u s
belongs t o
f ( : ) .
& - t r a n s l a t i o n niimber of of l e n g t h > 2(
not containing any E - t r a n s l a t i o n number
Ih21) h
3
(a2,b2)
not containing any € - t r a n s l a t i o n number
= (a
2
+ b2)/2.
Then
h
3
-Ll and
h3-h;,
n - yh n - h 2 , . . . , h n - h n - l
{hn)
f(t).
which shows t h a t t h e sequence
Then, i f
(f(G
sequence uniformly convergent i n
+
-a
hn))
n > m
of r e a l numbers
a r e not
n, h
such t h a t , f o r each
we have
cannot c o n t a i n any subThis ends t h e proof of
00.
3.3.
COROLLARY @g($)
Let
3.4.
f(t), g(t)
be almost p e r i o d i c .
i s almost p e r i o d i c f o r a r b i t r a r y complex
Then
a,@.
(h ) be an a r b i t r a r y numerical seqJence. n Theorem 3.3 s e l e c t a subsequence { h n ( k ) ] such t h a t both Proof:
f(f
+
Let
hn(kl), g(c
Then af(t -W
f(t^).
hence cannot be & - t r a n s l a t i o n numbers o f
& - t r a n s l a t i o n numbers of
af(f) +
cannot be an
We s e l e c t next an i n t e r v a l
Arguing i n t h e same way we c o n s t r u c t a sequence
Theorem
(y,bl).
h2-hl
W,
+
hn(k))
h n ( k p + Bg(t thus
COROLLARY %complex
+
3.5.
+
a r e uniformly convergent i n hnik))
Using
-a <
t <
m.
i s uniformly conveFgent i n
a f ( < )+ @ g ( t ) i s almost p e r i o d i c by Theorem 3.3. Let
_.
f ( < ) be almost p e r i o d i c , and l e t
m l u e d almost p e r i o d i c f u n c t i o n .
Then
Q(f)
p(;)f(%) i s almost
periodic. The proof i s very s i m i l a r t o t h a t of C o r o l l a r y
3.4 and i s t h e r e f o r e
omitted. COROLLARY
where {un]
3.6.
~ e t
i s a sequence of elements of
r e a l numbers and t h e s e r i e s
Then f ( t )
(3.3)
i s almost p e r i o d i c .
E,
(An]
i s a sequence of
c o m e r g e s uniformly i n
-w
< t <
m.
138
I N HILBERT SPACE
P a r t i a l sums ot
Proof:
(3. 3)
are almost p e r i o d i c by C o r o l l a r y
3.4; t h e l i m i t of t h e p a r t i a l sums i s almost p e r i o d i c by Lemma 3.2. THEORESI 3.7.
exists
.
&J
f({)
be slmoat p e r i o d i c .
Then t h e mean value
Moreover,
&lT T
M(f)
l i m
=
T+ m f o r every
t,
-m
(3.5)
m.
For a proof see COIIDdNJ3ANU
[1971:1];we shall
f ( s + t ) ds
[l968:1,p . 145 1
o r AMERIO-PROUSE
only use t h e r e s u l t f o r complex-valued f u n c t i o n s .
The same holds t r u e of t h e following two theorems, where
f(c)
i s again
assumed t o be almost p e r i o d i c . TKEOREM 3.8.
The mean value M( emiA'f
(t) )
(-m
i s non null o n l y for a f i n i t e o r countable s e t of See CORDUNEANLT that
exp(-ihi)f($)
THEOREM 3.9.
-
m
< A <
m.
[l968:1,p. l k 9 ]
1's.
o r AMERIO-PROUSE [1971:1]. Note
i s d m o s t p e r t o d i c by Corollary 3.5. Assume t h a t
Then f(t) =
M(exp(-ihi)f(<)) = 0
for a l l
A,
0.
The proof i s i n COKDUNEANU
gV.4
(3.6)
m)
[1968:1,p. 1511.
Almost p e r i o d i c groups i n H i l b e r t space.
If Let B be a self a d j o i n t operator i n t h e H i l b e r t space H. B has p u r e p o i n t spectrum ( i . e . if all elements of a ( B ) a r e eigen-
v a l u e s of
B)
then t h e r e e x i s t s
R
{PA;-m < A <
family
orthogonal ( s e l f ad j o i n t ) p r o j e c t i o n s such t h a t
2' -m
and
PAu
= u
(U
E
H),
m}
of mutually
139
I N HILBERT SPACE
BU
Z
=
(U E
"P~U
D(B)),
(4.2)
-m
K with
both s e r i e s convergent i n t h e norm of'
IlulI2
/lPAu/l2 and
=
PAu = 0 except ~ ~ = ~ h211p,,Ul~2. U ~ ~ Of2 course t h i s i m p l i e s t h a t f o r h i n a f i n i t e or countable s e t ~ ( u ) , i n g e n e r a l depending on
u.
c o n s i s t s p r e c i s e l y of t h o s e
B
The domain of
s e r i e s on t h e r i g h t hand s i d e of
I n c a s e t h e space
m.
t o see t h i s , l e t
{un]
H ; c o n s i d e r t h e ( c l e a r l y countable) s e t
u
A
H
i s separable t h e f a m i l y of p r o j e c t i o n s
H
(PA] i s a c t u a l l y countable: sequence i n
for which t h e
c A ~ I ~ P<~ ~ I I 2
or, eqiivalently,
Then, i f
u
( 4 . 2 ) converges i n t h e norm of
u
and
i s a sequence i n
{un]
E
E
P u = l i m PAvn A
w e have
be a dense
o = a ( u )Ucs(u2) 1 0, where v
=
u. . .
n
u.
converging t o
It has a1rea.dy been observed i n 6V.2 t h a t U ( t ) = exp(itB)
(-m
(4.1)
m)
i s a s t r o n g l y continuous group with i n f i n i t e s i m a l g e n e r a t o r each
unitary).
U(t)
B
(with
Under t h e p r e s e n t assumptions we have
with
Condition (4.4)
(4.5)
obviously i m p l i e s t h a t convergence of t h e s e r i e s
i s unifozm i n
C o r o l l a r y 3.4 t h a t
(-m,m)
t h u s it f o l l o x s from Lemma 3.2 and
i s almost p e r i o d i c f o r every
U(i)u
u
E
E.
Obviously t h e same conclusion holds f o r a s t r o n g l y continuous group S ( t ) which admits t h e r e p r e s e n t a t i o n S ( t ) = Q-'exp(itB)Q where
Q
B
,
(4.6)
i s a s e l f a d j o i n t operator having pure p o i n t spectrum and
a bounded i n v e r t i b l e o p e r a t o r , o r , e q u i v a l e n t l y , for a s t r o n g l y
continuous group whose i n f i n i t e s i m a l g e n e r a t o r i s of t h e form
-1
A = iQ B Q , with
B
and
Q
a s before.
(4.7)
140
I N HILBERT SPACE
(4.6) with
We show below t h a t t h e r e p r e s e n t a t i o n
B
having
pure p o i n t spectrum i s a necessary c o n d i t i o n i n o r d e r t h a t each
S(t)u
be almost p e r i o d i c . THEOREM
u,v
E
H
Let
4.1.
be a group i n
S(<)
Assume t h a t , for each
i s almost p e r i o d i c .
(S(t)u,v)
the function
H.
Then
S(t)
( 4 . 6 ) with Q a bounded s e l f a d j o i n t operator s a t i s f y i n g i n e q u a l i t i e s of t h e type of ( 2 . 5 ) 4 B a self
admits t h e r e p r e s e n t a t i o n
a d j o i n t operator of t h e form
(PA]
i s separable t h e f a m i l y
H
(4.2);
i s countable. It follows from t h e f a c t t h a t almost p e r i o d i c f u n c t i o n s
Proof:
a r e bounded i n
-m
(HILLE-PHILLIPS
[1957:1, p .26 1)
For each r e a l
A
C
and from t h e uniform boundedness p r i n c i p l e
m
t,hat
Mh
d e f i n e a bounded o p e r a t o r
(MAuJv)
= l i m
T-
in
&J:e-ihs(S(s)u,v)
u,v
a.nd
except f o r a. f i n i t e o r countable s e t ) . E
T+m using Theorem
rT 2 T k
3.7:
-T
e-ih(s+t)(S(s
.
A
(and
(4.9)
For
-m
(M,,J,v) C
h
h, t <
+ t)u,v)
d t = e i A t (MhuJv)
so t h a t if w e m u l t i p l y T
m
(4.10)
ih t
MA
-
(4.11)
J
5 t <_
= 0
accordingly,
M S(t) = e
-T
ds
H we have
= e i At lim
Now
by t h e formula
rn
By v i r t u e of Theorem 3.7 t h e l i m i t e x i s t s for a.11 for all
H
we o b t a i n
(4.11)
by
exp(ipt)/2T
and i n t e g r a t e i n
141
I N HILBEKT SPACE
< A <
iMA;-m
Accordingly
i s a family of mutually orthogonal ( n o t
m}
necessarily self ad joint) projections i n Let
P
H.
be t h e s e l f a d j o i n t operator defined i n t h e proof of
(2.10) i n mind we deduce t h a t
Theorem 2.2. Keeping (PMAu , v )
( M Au,Pv) = lirn $L/I:e-ik( T- 02
=
S( s ) u , P v ) d s
T = l i m
$JT
e-ihs(u,S(s))tPv) d s
lirn T+ m
=
(MAv,Pu)
T -
= l i m
T+
e ihs(S(-s)v,P~) d s
s:
=
T+ m
e-ihs(Pu,S(-s)v)
(Pu,MAv).
=
ds
(4.14)
m
Acco-dingly, ic
PMA
so t h a t , i f
Q
=
MAP
,
(4.15)
i s t h e p o s i t i v e s e l f a d j o i n t square r o o t of
i s self adjoint f o r a l l
P, P A = QMAQ-l
B
a d j o i n t operator
by (4.2)
A.
a n d a group
V ( t ) = &-'exp(itE)Q
(-m
We d e f i n e t h e n a s e l f by
V(t)
m).
(4.16)
Noting t h a t
c
V(t)u = -m<
A<
m
w e deduce, usiw uniform convergence of l i m T + m
2T
"I
-T -T
for a l l real (V(s)u,v)
(4.17)
=
e-ihs(V(s)u,v)
A.
ds
=
-i
( M u,v) = l i m emihs( S( s ) u , v ) d s A T+ m 2T '-T
Application of Theorem
(S(s)u,v)
f o r all
that
u,v
t
H
3.8 t h e n y i e l d s t h e e q u a l i t y hence
S ( s ) = V(s),
establish-
i n g i n f u l l t h e claims of meorem 4.1. We r e s t a t e t h e r e s u l t i n t h e s t y l e of Theorem 2.5:
TKEORFM 4.2. t h e H i l b e r t space
Let H
A
be a closed, densely defined o p e r a t o r i n
such t h a t t h e Cauchy problem for
142
I N HILBERT SPACE
u'(t)
i s w e l l Esed in -
-m
=
(4.18)
Au(t)
< t < M. Assume, moreover, t h a t for every (4.18) and every v c H t h e f u n c t i o n
generalized s o l u t i o n of
i s almost p e r i o d i c .
Then t h e r e e x i s t s a s e l f a d j o i n t operator
pure p o i n t spectrum and a bounded s e l f a d j o i n t operator
(2.5)
i n e q u a l i t i e s of t h e type of
ic
( t h e sum understood elementwise) where
GV. 5
,
?Qq1PAQ
-mc A <
ad j o i n t p r o j e c t i o n s i n
satisfying
and such t h a t
= i Q -1BQ =
A
Q
E
co
{PA] i s t h e family of s e l f
(3.2).
Banach i n t e g r a l s . Consider t h e space
5
=
Bl(
-GO, m)
of bounded complex valued
1 defined i n
functions p e r i o d i c with period
< t<
-m
m.
We define
below anextension of t h e notion of' i n t e g r a l s i m i l a r t o t h e extension
.r
of l i m i t introduced i n $1. A Banach i n t e g r a l or generalized i n t e g r a l i n % i s a functional ( - ) a s : B1 + c such t h a t , f o r f,g E B1 and
au,B complex we have
+ Bg(s)) d s
( a ) [(nf(s) (b)
=
aJf(s) d s + B / g ( s ) ds
"
[f(s + t) d s = J f ( s ) d s
(c) >f(s)
ds
2
0
if
f
2
0
(-m
.
m).
*
( d ) l l d s = 1.
f i s l o c a l l y Riemann i n t e g r a b l e .
THEOREM 5.1.
Banach i n t e g r a l s i n
B1
exist. -
143
I N HILBERT SPACE
A s i n t h e case of Banach l i m i t s it i s obviously s u f f i c i e n t
Proof:
to define [(.)
f o r r e a l valued f u n c t i o n s .
ds
Let
Bll,R
be t h e
-1
B1,
corresponding subspace of p ( f ) = inf -m<
For
f
E define l,R
E
(5.11
sup s <m
t h e infimum t a k e n with r e s p e c t t o a l l f i n i t e s e t s Again we use Theorem 1.1 f o r
numbers. CD
F = {O]
@:%,R
obtaining a l i n e a r f u n c t i o n a l
= 0
@ ( f )I P ( f )
(f
@ ( f )1 - P ( - f )
(f
R
+
%,R)
E
...,
Sl, 5 n of r e d and t h e f u n c t i o n a l such t h a t
(5.2)
9
so t h a t
s
We define from
(-) ds
(5. 3).
@.Obviously
=
To show
a r b i t r a r y and t a k e
(5.3). = 2t
+ t )- f ( s ) ) 5
p(f(s
-m<
so t h a t
p(f(g
+
5
t)-f(;))
5o
(a)
(5.%) (c)
h o l d s and
it s u f f i c e s t o observe t h a t
(a)
(5.2) and 51 = t , 5 2
p ( - 1 ) = -1 and use
%,&
E
0;
To prove
,...,5 n
- f(s)),
we prove i n t h e same way t h a t
p(f(;)-f(i
+
L e t now
be a l o c a l l y Riemann i n t e g r a b l e f u n c t i o n i n
5,
f
= l/n,
52
t))
=
2/n,.
thus
..,
.s,
=
(b)
follows from
n
1 and l e t t i n g
so t h a t
(f)
such t h a t
follows.
eieJf(s)
//f(s) This shows
+
and
(5.3). Taking
we deduce t h a t
m
-J
El
be a r b i t r a r y .
f ( s ) ds, p(-f) I
0
Finally, l e t
i s positive.
ds
f
F
Then, by
d s ; = l e i e r { s ) d s =JRe(eief(s))
(e)
(5.2)
1 f ( s ) ds
1
P(f)
t
Then
(f(s + nt)
sup s <m
p ( 1 ) = 1,
we select
(b)
= nt.
follows
Choose
e
(c), ds
5 s
If(s)l d s
.
and ends t h e proof o f Theorem 5.1.
We s h a l l need i n t h e sequel a v e r s i o n of t h e Banach i n t e g r a l f o r t h e space
B
= B(-ca,m)
properties similar t o
of a l l bounded f u n c t i o n s i n
s
(-) ds
(-m,m)
satisfying
p l u s an i n t e r v a l a d d i t i v i t y p r o p e r t y
and a rudimentary change-of-variable formula.
144
IN HILBERT SPACE THEOREM 5.2.
There e x i s t s a f a m i l y of f u n c t i o n a l g
,/
r.b (.)ds:E-6:
‘ a defined f o r
-W
sal i s f y i n g t h e following p r o p e r t i e s :
m
b
( i ) Jb((l‘f(s) + B g ( s ) ) d s
1;;
f(s) d s = rbf(s
(ii)
(iii) (iv)
J
k
‘J a
-b f ( s ) ds a
2o
Ibl
t) d s
f(s)
if
f(s) d s + B
(l’Ja
(-m
Lb .
.
g(s) ds
m)
.
2o
.
ds = b-a
a
(v)
lLbf(s) ds)
I [blf(:)l
ds
*
b
( v i ) Ja
f(s) ds
rb/2
(vii)
+
y C f ( s ) ds =L[cf(s) “b
J a/2 Proof:
$l b
f(2s) d s
Let
c
=
if
ds
.
a
.
f(s) ds
If
0.
-c < 2a, 2b < c
(5.4)
define
f(s;a,b,c) = 0
& 5 s < ca , -bc <_ s < 1F )
(-
(E 5
f(s;a,b,c) = cf(cs) and extend
f(s;a,b,c)
to
-a
< s <
m
all
s.
(5.4)
b
< -)
i n such a way t h a t t h e r e s u l t i n g
f u n c t i o n i s 1 - p e r i o d i c ( t h a t i s , belongs t o the inequalities
s
El).
f a i l s t o hold we d e f i n e
I n c a s e one of f(s;a,b,c)
=
0
for
The Punctionals i n q u e s t i o n a r e defined by means of any of t h e
Banach i n t e g r a l s
I-
i n Theorem
Lbf(s)ds
=
5.1 by means of t h e formula
LIbl n- m
i
f(s;a,b,2n) d s ,
LIM i s any of t h e Banach l i m i t s c o n s t r u c t e d i n C o r o l l a r y 1 . 3 . n- m The checking of p r o p e r t i e s ( i ) Lo ( v i i ) i s f a i r l y r o u t i n e and i s
where
145
I N HILBERT SPACE
thus l e f t t o the reader. The i n t e g r a l s i n Theorem 5.2 w i l l a l s o be called Banach i n t e g r a l s .
Pv.6
Uniforaly bounded cosine functions i n HiLbert space. B be a s e l f a d j o i n t operator i n
Let is,
(Eh,u)
2
for
0
u
D(B))
E
S(t,A) = cos(th1/2) in
Efl2
(6.1)
=
S(t;e)
c (-1)nt 2nAn /(2n)!
h or of t h a t of
of square root o f
use of
=
such t h a t
B
10
(that
and l e t
@ ( t ) = cos(&) where
H
,
(6.1)
(note t h a t t h e choice
i s irrelevant; i n fact, the
B
i s purely symbolic).
continuous cosine function such t h a t each
Then
C(i) i s a strongly
@ ( t ) i s self adjoint;
more over,
We have s(t) where
7j(t,h)
t h e use of
=
=
s l / 2 s i n ( t I f / 2 ) = q(t;E)
A-1/2sin(tA1/z)
d/2
=
c (-l)nt2n+1A"/(2n
i s purely symbolic).
(6.3)
+ l)!
(again,
Since
we can o n l y assert t h a t
(which i n e q u a l i t y follows anyway from d i r e c t i n t e g r a t i o n of However, if
E
>
0,
Ik112sin so t h a t , i f
a(B)
-
i s contained i n
( h? E l ,
c h
2
E,
The converse of t h e s e observations holds a s w e l l .
(6.2)).
I N HTLBERT SPACE
146 *
THEOREM
Assume t h a t each
with
B = -A,
then
B
if
2
A
8(:)
2 EIIuII , u
Proof: n
=
with
D(B)
E
E
holds.
B 2 EI with
A
1 and
holds
@(:).
Inequality
>0
E
( t h a t is
>0).
It i m i t a t e s t h a t o f Theorem 2 . 1 .
i n f i n i t e s i m a l g e n e r a t o r of for
(6.2)
holds i f and o n l y if
2
(BU,U)
a s t r o n g l y continuous c o s i n e f u n c t i o n .
@ ( t )i s a s e l f a d j o i n t o p e r a t o r . Then (6.1) t h e i n f i n i t e s i m d g e n e r a t o r of @(;). rf
and t h e s t r o n g e r e s t i m a t e
0
for
(6.5)
Let @ ( t )be
6.1.
A
Let
be t h e
Making use of formula
(11.2.11)
r e a l and l a r g e enough we o b t a i n 2
( M ( h ;A)u,v) =
so t h a t
s e l f ad j o i n t . that
B(t)
o(A) =
=
Moreover,
R( A2;A)
h
e x i s t s for
i s contained i n a n i n t e r v a l
itself is
s u f f i c i e n t l y l a r g e so
1,
(-,a
A
a <
m.
Accordingly,
i s a s t r o n g l y continuous o p e r a t o r valued f u n c t i o n
5(t;-A)
satisfying
B(t)
i s self a d j o i n t , t h u s it f o l l o w s t h a t
R(h2;A)
Ili!J(t)ll 5 exp(Ult1)
with
'I2.
a
=
The f a c t t h a t
@ ( t )i s proved by uniqueness of Laplace transforms a s i n
Theorem 2 . 1 .
a(A)
Assume t h a t supremum of
cos
in
(6.5)
The f a c t t h a t
a > 0.
c o n t a i n s some
A
2
and
-:I
w i l l be t r u c when
Then
[l@(t)il i s the
(6.6) has no chance t o h o l d . a(A)
5 (-m,-~],
E
< 0
nas
been a l r e a d y e s t a b l i s h e d i n t h e remarks preceding t h e statement of Theorem
6.1.
( 6 . 5 ) holds.
Conversely, assume t h a t
p a r t s t h e f i r s t formula
(11.2.117
2 R(h ;A)u =
I n t e g r a t i n g by
we o b t a i n
r"
e-AtS(t)u d t
' 0 for
A > 0
and
u
E.
E
Taking norms, it r e s u l t s t h a t
I I R ( A ~ ; A ) I =I o(A-') which i m p l i e s t h a t hence
o(A)
5
(-m,-E]
0
f
p(A)
as
A-
(DUNFORD-SCHWARTZ
f o r some
E
>0
o+, [1958:1, p . 5671),
a s claimed.
This ends t h e proof
147
I N HILBERT SPACE
of Theorem
6.1.
The next r e s u l t i s a n exact c o u n t e r p a r t of Theoyem 2.2 for c o s i n e However, t h e method of proof i s somewhat d i f f e r e n t .
functions.
THEORZM 6.2. @(s
+ t) +
@(s
Let c(<)
- t) =
be a c o s i n e f u n c t i o n i n
2C",(s)@(t)
for
-m
c s, t <
m).
Then t h e r e e x i s t s a bounded, s e l f a d j o i n t o p e r a t o r
5
?-ll2(2C + 1)-111ul12
(Qu,~)
5
(u
C/IUI/~
H
Q E
(@(O) =
I,
Assume t h a t
such t h a t
(6.8)
E),
a nd Q ( t ) = Q@(t)Q-'
t.
i s self a d j o i n t for a l l
The proof uses some techniques a l r e a d y met i n connection with t h e t h e o r y of almost p e r i o d i c f u n c t i o n s , although nothing i s almost periodic here.
We b e g i n by s e l e c t i n g one of t h e Banach i n t e g r a l s
constructed i n Theorem 5.2 and one of t h e Banach l i m i t s i n Theorem 1.2, and observing t h a t
LIM T-m
e x i s t s f o r any
f
E
B;
4 FT f ( s ) d s
(6.10)
"0
i n f a c t , due t o p r o p e r t y
(v)
of Banach i n t e g r a l s
we have
where
i s a bound for
C
If(s)l
, so
t h a t t h e f u n c t i o n of
( 6 .lo) i s bounded i n T 2
t h e Banach l i m i t i n
LEMMA 6.3. ~ e f t
$L
E
f o r any
t
Proof:
&
inside
B.
T
LIM T 4 rn
T
0.
f(s + t ) ds
=
LIM
$
(6.11)
T-m
(-m,m).
Assume f o r t h e moment t h a t
t
2
0.
By v i r t u e of
(ii)
and
148
I N HILBERT SPACE
(vi)
we have
$LT
f(s + t )
which expression i s seen t o tend t o zero as
-
T
i t s Ba.nach l i m i t m u s t be zero as well, proving LEMMA
6.4. e
xe
Let T >
=
e(E,T,u)
0, E
=
5
Ct;o 5 t 5
t h e c h a r a c t e r i s t i c f u n c t i o n of
t
Proof: Set equation
=
s
= u/2
cr
e
E
E
H,
(6 -12)
ll@(t)uII < ~ l l u 1 1 3 .
e.
i n t h e (second) cosine f u n c t i o n a l
0/2
=
@(u) + I
-
we have
Accordingly, i f
so t h a t
hence
(11.1.9). m e r e s u l t i s 2qu/2)2
Hence, i f
T,
(v);
using
(6.11).
+ l), u
1/(2C
m
&
f! e.
5 1/(2C + 1)
we deduce t h a t
It follows t h a t i f
shows t h a t t h e f u n c t i o n s
x (i)
and
u
x
E
f2;)
e
then
2a
#
e,
which
have d i s j o i n t support.
Hence
by
(i)
and
t i o n we o b t a i n
(v).
Taking t h e change-of-variable property i n considera-
(6.13),
thus ending t h e proof of Lemma 6.4.
149
I N HILBERT SPACE
Proof of Theorem 6.2.
m e operator
i s t h i s time defined by
P
ds
E y v i r t u e of Lemma
6.4
with
E =
1/(2C m
t h u s it f o l l o w s from t h e d e f i n i t i o n of
+ 1)
P
.
(6.14)
we have
that
On t h e o t h e r hand, it i s obvious t h a t
Accordirgly, i f inequalities Let now
i s t h e p o s i t i v e , s e l f a d j o i n t square r o o t of P,
Q
(6.8) h o l d . t
be a real number,
u,v
elements of
H.
Using t h e
c o s i n e f u n c t i o n a l e q u a t i o n s and Theorem 5.2 we deduce t h a t ( P @ ( t ) u , v ) = LIM
L T ( @ ( s ) C ( t ) u , @ ( s ) v d) s
T-‘M T L =
1LIM 2 T-m
$lo -T
( @ ( s + t)u,C(s)v) ds
$k
T
+ 1_
*
LIM T-m
+ 1_
LIM T-m
(@(s - t)u,@(s)v) d s
PT
‘
for
u,v
E
H.
$ j o ( @ ( s ) u , @ ( s+ t ) v ) d s
Accordingly,
(6.18) P r e - and p o s t - m u l t i p l y i n g by QC(t)Q-l
Q
-1
= Q-’@(t)*Q
we obta.in =
(Q@(t)Q-’)*.
(6.19)
150
I N HILBERT SPACE
This completes t h e proof of Theorem
6.2.
The coriiments following Theorem 2.2 apply h e r e a s w e l l :
replacing
t h e o r i g i n a l s c a l a r product by ttie ( t o p o l o g i c a l l y e q u i v a l e d c ) s c a l a r product
(2.12)
-
@ ( t )s e l f a d j o i n t .
r e n d e r s each
COROLLARY 6.5.
Assume i n a d d i t i o n t h a t
C(;)
Q
B
u
B
2
t
E.
Then t h e r e e x i s t s a s e l f ad-
tnd a bounded s e l f a d j o i n t o p e r a t o r
0
(6.8)
s a t i s f y i n g i n e q u a l i t i e s of t h e form
@ ( t=) Q - l c o s (tB1/')Q @(;)
Conversely, e v e r y
(-a
E 2 EI f o r some
(6.7).
and such t h a t
(6.20)
of t h e form
cosine function s a t i s f y i n g only i f
6.2.
s a t i s f y t h e hypoteses of Theorem
@ ( t ^ ) u i s continuoas ( o r , more g e n e r a l l y
s t r o n g l y measurable) f o r each j o i n t operator
We omit t h e d e t a i l s .
m)
.
(6.20)
i s a s t r o n g l y continuous
Inequality
(6.5)
h o l d s i f and
> 0.
E
The following d i s c r e t e v e r s i o n of Theorem
6.2 corresponds t o
Theorem 2.4.
THEOREM tors in
2C C mn
H
Let {cn;-m < n c
6.6.
m)
be a sequence of bo,mded opera-
s a t i s f y i n g t h e " d i s c r e t e c o s i n e equations"
+ Cm-,
= @,+,
m,n.
f o r all
=
I
'
Assume t h a t
Then t h e r e e x i s t s a bounded, s e l f a d j o i n t o p e r a t o r
2-l(2c +
0
l)-'hIl2 5
(Qu,.)
Q
5 Cllul12
satisf'ying
(6.22)
and such t h a t
fin
i s s e l f ad,joint f o r a l l operator
U
n.
=
QCnQ
-1
Equivalently, t h e r e e x i s t s a u n i t a r g
such t h a t
@n
=
2
Q-l(V" +
U-n)Q
.
(6.24)
The proof i s r a t h e r s i m i l a r t o t h a t f o r t h e continuous v e r s i o n . The o;lerator
P
i s now defined by
151
I N HILBEHT SPACE
(Pu,v) where
1.3.
Il@2muII 2
then
P r o c e e d i n g as i n t h e p r o o f o f Lemma 6.4 we c a n show
IICmuII < Ellull
t h a t if
-
LM n- m
i s one o f t h e Banach l i m i t s o f sequences c o n s t r u c t e d i n
LIM
Corollary
=
11
f o r which
f o r an arbitrary integer
EIIU// i s
PmuII 5
a t least e q u a l t o
5
indicates the largest integer
[s]
m
and
5
E
hence t h e n m b e r o f i n t e g e r s between
Ellu/l;
s.
[ ( n - 5)/41,
Taking
E = 1/(2C
(2C +l)-l
0
and
n
where
+ 1) we
obtain
and it i s o b v i o u s t h a t
Q,
thus
(6.22).
t h e p g s i t i v e s e lf a d j o i n t s q u a r e r o o t of
hence e a c h
(6.23)
in
=
C*P, n
(6.27)
is self adjoint.
Consider now t h e sequence of o p e r a t o r s {AS,) m = n
satisfies
(6.17) shows t h a t
A computation e n t i r e l y s i m i l a r t o
P@n
P
{fin;-m
a].
Obviously
s a t i s f i e s a s well t h e d i s c r e t e c o s i n e e q u a t i o n s so t h a t , t a k i n g
we o b t a i n =
2 2an
-
I
.
Making use of t h e s p e c t r a l mapping theorem f o r bounded o p e r a t o r s (DUNFORD-SCHWAF3Z [1958:1,
p.
(An]
-
An
E
5691) w e deduce t h a t i f
i s d e f i n e d i n d u c t i v e l y by a(2Bn- 1). B u t
I An]
bounded i n d e p e n d e n t l y o f
We c a n t h u s d e f i n e inverse t o
cos A
n,
\ if
=
A
E
~ ( 8 , )and
A , A = 2A2 - 1 t h e n n n-1 > 1; s i n c e u(fin) must b e
I A1
w e deduce t h a t
E = arc cos
a1, where
i n the interval &
a r c cos A
i s the function
[ - ~ / 2 , ~ / 2 ] . Let
n = c o s (nB)
.
(6.28)
152
I N HILBERT SPACE
Then it follows from t h e f b n c t i o n ? l c a l c u l - u s f o r s e l f a d j o i n t o p e r a t o r s
{&
that
s a t i s f i e s a s w e l l t h e d i s c r e t e c o s i n e f u n c t i o n a l equation;
n
i n particular,
&
which shows i n d u c t i v e l y t h a t
(6.23)
with
n
(6.28)
We only have t o combine
(6.24),
t o obtain
8 f o r all n s i n c e & = 8 1 1' n 1 ( i n t h e f*orm & = f e x p ( i n E ) + e x p ( -inB)}) n 2 where LJ = e x p ( i E ) .
1
-
Theorem 6.1 i s obviously e q u i v a l e n t to t h e following r e s u l t for second order a b s t r a c t d i f f e r e n t i a l e q u a t i o n s .
Let
THEOREM 6.7.
be a c l o s e d , densely defined o p e r a t o r i n t h e
A
H such t h a t t h e Cnuchy problem f o r
H i l b e r t space
u"(t)
-
i s w e l l posed i n
(6.29)
Au(t)
=
(eq'iivalently, i n
moreover, t h a t f o r every g e n e r a l i z e d s o l u t i o n of u'(0)
=
(where
0
we have
C
may depend on
operator
with
B
B
1. 0
~ ( t ) ) Then .
=
LU;QU
E
D(E))
Moreover, all s o l u t i o n s of
-
-W
a)
0).
Assume,
(6.29) with
there e x i s t s a s e l f adjoint Q
(6.11) and such t h a t
and A=-&
in
2
and a bounded s e l f a d j o i n t o p e r a t o r
s a t i s f y i n g i n e q u a l i t i e s of t h e fo-m
D(A)
t
-1
a.
(6.31)
(6.29) a r e bounded i n t 1 0 ( e q u i v a l e n t l y , 12 2 &I f o r some & > 0 . The converse
i f and only i f
i s a s well t r u e . REMARK
6.8.
A s i n t h e group c a s e it i s of i n t e r e s t t o know
whether t h e conclusions of Corol1:try c o n d i t i o n s on t h e t-dependence of t h e same. function
Weak m e a s u r a b i l i t y of (@(t)u,v) f o r a l l
6.5 hold under l e s s s t r i n g e n t
@(;).
The answers a r e e s s e n t i a l l y
@ ( t ) ( t h a t i s , m e a s u r a b i l i t y of t h e
u,v e H)
s u f f i c e s when
H
i s separable:
i n t h e g e n e r a l c a s e , it i s enough t o assume weak c o n t i n u i t y , s i n c e it
153
I N HILRERT SPACE
implies strong continuity.
J!J(f)
(6.9) with
I n view of t h e r e p r e s e n t a t i o n
@(;)
s e l f a d j o i n t , it i s obviously s u f f i c i e n t t o prove t h i s when
i s s e l f a d j o i n t , i n which case we have
=
((C(2t)
+
I ) ~ J , u ) - 2 ( ( @ ( s+ t ) + @ ( s - t ) ) u , u ) + ( ( @ ( 2 s ) + I ) u , u )
@ ( t ) i s s t r o n g l y continuous i f it i s weakly continuous.
thus
pV.7
Almost p e r i o d i c cosine f u n c t i o n s i n H i l b e r t s , . Let
be a s e l f a d j o i n t operator i n
B
H.
Assume t h a t
B
2
0
and t h a t it has pure p o i n t spectrum; t h e n t h e r e e x i s t s a family {PA;A
2
0J
of mutually orthogonal p r o j e c t i o n s such t h a t PAu= u
(u
E
H)
(7.1)
h l0 and
for
u
E
D(R)
( s e e t h e comments following
results from t h e i n i t i a l remarks i n
(4.1)
and
It
(4.2)).
Pv.6 that
(7.3)
@ ( t=) cos (tIY2) i s a s t r o n g l y continuous, uniformly bounded cosine f u n c t i o n with i n f i n i t e s i m a l generator
@(t)u
=
A
A 20
=
-B.
We have
(u
cos thli2P,u
t h e s e r i e s convergent i n t h e norm o f
H
o n l y a coxntable number of t h e
P u
be non n u l l (as pointed out i n
8V.4,
h
if t h e space
ing p r o p e r t y f o r
s ( ; ) ~may
(6.4)
H
3.2 and C o r o l l a r y
not hold s i n c e
and following comments).
a;
u)
may
i s separable
P A must of needs v a n i s h ) .
@ ( < ) u i s an almost p e r i o d i c f u n c t i o n f o r every u bounded ( s e e
-m
which a l s o implies t h a t
( i n g e n e r a l depending on
a l l b u t a countable number of t h e p r o j e c t i o n s
(7.4), Lemma
(7.4)
E),
uniformly i n 2
llPAuli = Ilui12
t h i s f o l l o w s from t h e e q u d i t y
Uniform convergence of
E
E
H.
3.4
imply t h a t
The correspond-
llS(<)ll may not be However, t h e c o n d i t i o n
154 on
IN IIILBERT SPACE a( B)
11s;:) 11
t h a t guarantees boundeciness of
p e r i o d i c i t y a s well; i n f a c t , i f
a(B)
which i s a s well almost p e r i o d i c .
guarantees almost A
i s contained i n
2
we have
E,
Under t h e s e conditions, a n almost
p e r i o d i c i t y property holds a s well i n phase spaces; we l o o k only a t t h e “ p r i n c i p a l value square r o o t ” phase space Theorem 111.5.4 f o r constructed i n r o o t of B.
constructed i n
J
Observe f i r s t t h a t t h e square r o o t
= 0.
W
6111.3 coincides with t h e p o s i t i v e , s e l f ad j o i n t square
Since
@ ( t )we have
commutes with each
This, combined with (7.4) shows t h a t c(i) i s almost p e r i o d i c i n t h e (endowed with t h e graph norm of (-A)1/ 2 ). space Eo = D((-A)1/2) Since
8(<)
i s almost p e r i o d i c i n
almost p e r i o d i c i n I3
for a l l
11
E, €3
,
it follows t h a t 6(:)li i s 6(i) i s t h e group
where
(111.1.10) corresponding t o t h e phase space 3
. Noting
that
(7.6) we see t h a t
(-A)1/28(t)u
Accordingly, t h e group
i s almost p e r i o d i c i n
E
b o ( i ) i n t h e group decomposition
corresponding t o t h e p r i n c i p a l value square r o o t that
bO(t)
i s almost p e r i o d i c f o r any
i n t h e product space
5) =
E x E
u
’=
H
u
f o r every
E E.
(111.6.24) i s such
uo(t)
and t h e group
used i n t h e reduction t o a f i r s t order
system i n Theorem 111.5.5 enjoys t h e same p r i v i l e g e s . The following r e s u l t i s a s o r t of converse of t h e preceding observations. THEOREM
f o r each
7.1. Let @(:)
be a cosine function i n
u,v z H t h e f u n c t i o n
@(<) a d m i t s t h e r e p r e s e n t a t i o n
Assume t h a t
( @ ( t ) u , v ) i s almost p e r i o d i c .
(6.20) with
operator s a t i s f y i n g i n e q u a l i t i e s of t h e type of a d j o i n t operator of t h e form
H.
(7.2): if
H
Q
Then
a bounded s e l f a d j o i n t
(6.8) and
B
a self
i s separable, t h e family
{PA] i s countable.
Proof:
It follows from t h e f a c t t h a t almost p e r i o d i c functions a r e
155
I N HILBEHT SPACE
bounded i n
-m
< i; <
m
and from t h e uniform boundedness p r i n c i p l e t h a t
@ ( t )i s weakly continuous and t a k i n g heed of Remark 6.8 we n o t i c e t h a t @(<) f i t s i n t o t h e assumptions of Coj-ollary 6.5, thiis we might adopt i t s conclusion as Noting t h a t t h e assumptions imply t h a t
However, a s i n t h e grotip case i n Theorem 4.1 we
a starting point.
s h a l l p r e f e r a d i r e c t c o n s t r u c t i o n f e a t u r i n g a f a i r l y explicit formula
B.
f o r t h e s p e c t r a l family of operator
N,,
in
H
A
For each
2
by t h e formula rT
_I
( N ~ u , v ) = l i m IT-m
/
cos A t ( @ ( s ) u , v ) d t
T ~ J O
e
iA t
(@(t)u,v)d t
W e see applying Theorem 3.7 t h a t t h e l i m i t i n
(Nhu,')
(incidentally, of
A's.)
For a n y
d e f i n e a bounded
0
A
= 0
3 0,
-m
.
(7.8)
(7.8) e x i s t s for a l l
h
for a l l but a f i n i t e or countable number
m,
u,v
E
H
we have
or
C"(t)N,, by v i r t u e of
(3.5);
from t h e f a c t t h a t Multiply
(7.9)
Nx@(t)
the fact that @(s)
by
=
and
Nh
(7.9)
ht)NA
= (COS
and
@ ( t ) commute f o l l o w s
@ ( t )commute f o r a r b i t r a r y
exp(ipt)/2T
and i n t e g r a t e i n
-T
Since fl if
A = ~ = o
5
s,t.
t
1. T.
I N HILBERT SPACE
156 we have
Nh
if
0
if
N N = A +
Accordingly t h e o p e r a t o r s
a r e a family of mutually orthogonal ( n o t n e c e s s a r i l y s e l f ad j o i n t ) projections i n Let
be t h e s e l f a d j o i n t operator defined i n t h e p r o o f of
P
Theorem
3.1:
and l e t
Q
use of
H.
(7.9)
(7.8) and
T+ =
w
$LT
cos As(N,,u,@(s)v)
(N,,u,N~v)= l i m T+m
=
so t h a t
Making
we o b t a i n
(PNAu,v) = l i m
which i s
P.
be t h e p o s i t i v e s e l f a d j o i n t square r o o t of
'
ds
cos h(@(s)u,N,,v) d s
TL 0
(Pu,NAV)
*
PN,, = NAP;
PA = QMAQ-'
accordingly,
i s self adjoint f o r a l l
self a d j o i n t o p e r a t o r
B
from t h e family
A.
(PA;h
We define now a
2
01
of s e l f a d j o i n t
p r o j e c t i o n s by t h e formula
(7.14) ( t h e domain of
B
c o n s i s t s of a l l
convergent i n t h e norm of
E)
u which make t h e s e r i e s
and s e t
(7.14)
157
I N HILBEW SPACE
& ( t )= Q-lcos (tB1/2)Q
.
(7.15)
Since &(t)u
=
1/2 -1 cos t h Q PhQl = 2 cos tM,,u A? 0 A? 0
(7.16)
an obvious computation based on t h e uniform convergence of and on
(7.10) shows t h a t i f
- [T
l i m T+m
2Tb
T+
E
H
we have
eiAS(&(s)u,v) d s = ( N hU , V )
-T
= l i m
u,v
(7.16)
2T
(7.17)
e i h ( @ ( s > u , v )d s
m
(&( ; ) U , V ) and
so t h a t both almost p e r i o d i c f u n c t i o n s
By Theorem
have t h e same Fourier s e r i e s .
(@(;),u,v)
3.8 we must have
& ( s ) = @ ( s ) by a r b i t r a r i n e s s of u,v.
( & ( s ) ~ , v= ) ( @ ( s ) u , v ) , thus
This conclludes t h e p r o o f 3f Theorem 7.1. I n t h e language of a b s t r a c t d i f f e r e n t i a l equations, t h i s r e s u l t can be f o r n u l a t e d a s follows.
Let
THEOREM 7.2. t h e f i l b e r t space
H
A
be a closed, densely defined o p e r a t o r i n
such t h a t t h e Cauchy problem for
u”(t) i s w e l l posed i n
-m
=
(7.18)
Au(t)
t
(equivalently, i n
and every
i s almost p e r i o d i c .
v
E
H
E
D(B)l
with
Then t h e r e e x i s t s a s e l f a d j o i n t o p e r a t o r B
2
s a t i s f y i n g i n e q u d i t i e s of t h e f o r m
D ( A ) = 1u;Qu
Assume,
the function
pure p o i n t spectrum and such t h a t Q
0).
(7.18)
moreover, t h a t fo.r every generalized s o l u t i o n of u’(0) = 0
2
0
B
with
and a s e l f a d j o i n t operator
(6.8)
and such t h a t
and A
=
-Q
-1 BQ=
-c
-1
?Q PAQ
A? 0
( t h e sum understood elementwise) where a d j o i n t pro,jections i n
(7.2).
{PA] i s t h e f a m i l y of self
158
I N HILBERT SPACE
Miscellaneous comments .
Pv.8
Eanach l i m i t s and Banach i n t e g r a l s were introduced by BANACH
[1932:1]a s applications of t h e Hahn-Banach theorem.
As anfching based
on Theorem 1.1 (whose proof uses the axiom of choice or, equivalently, the Hausdorff-Zorn lemma o r t h e p r i n c i p l e of t r a n s f i n i t e induction), "construction1' of Banach l i m i t s o r i n t e g r a l s i s t o t d l y nonconstructive and vaguely incredible even t o mathematicians without a philosophical
Two of the most i n t r i g u i n g applications o f Banach l i m i t s
t u r n of mind.
t o a n a l y s i s a r e Theorems 2.2 and 2.4, both due t o SZ.-NAGY [1947:l]. These r e s u l t s a r e statements on representations of groups
G
(the r e a l
l i n e and t h e i n t e g e r s r e s p e c t i v e l y ) and have been generalized by DMMIER
[1950:l] t o uniformly bounded representations of c e r t a i n groups G
into
t h e d g e b r a of linear bounded operators i n a Hilbert space; for r e l a t e d
material see GREENLEAF [1969:1]. The corresponding generalization of Theorem 6.2 i s due t o K U " A [1972:1]. We note t h e results of LORCH [19L+l:11
on s p e c t r a l a n a l y s i s of operators s a t i s f y i n g t h e assumptions
of Theorem 2.4 i n r e f l e x i v e Banach spaces; the main result i s a s p e c t r a l resolution modelled on t h a t f o r
unitary operators i n Hilbert space.
Theorem 2.2 can be s t a t e d i n t h e following equivalent form: A
-
THEOREM 8.1. Let S ( t ) be a group i n a Hilbert space H s a t i s f y i n g (2.4). Then t h e r e e x i s t s a Hilbert norm II*I/' H of t h e form (2.12), equivalent t o the o r i g i n a l one and such t h a t Ils(t>ll'
51
(-m
(8.I1
m)
on
In f a c t , Theorem 8.1 i s an obvious consequence of Theorem 2.2: the other hand, i f (8.1) holds then we must have
In f a c t , if
IlS(t)u/l'
contradiction.
C
lIul/'
Since each
then S(t)
h111' =
llS(-t)S(t)ull' <
S ( t ) i s unitary, hence Theorem 2.2 follows. Theorem 2.4 i s equivalent t o
THEOREM 8.2. satisfying (2.14).
Let S
kII',
a
i s i n v e r t i b l e , (8.2) implies t h a t each
The same argument shows t h a t
be a bounded operator i n t h e Hilbert space
Then there e x i s t s a Hilbert norm
t h e form (2.12), equivalent t o t h e
I\*llt 2
o r i g i n a l one and such t h a t
H
of
H
159
I N HILBERT SPACE
It i s n a t u r a l t o ask whether Theorem 8.2 has a counterpart for semigroups, i . e . whether a semigroup s a t i s f y i n g (2.4) i n
2
t
will
0
s a t i s f y (8.1) a f t e r a renorming of t h e space along t h e l i n e s of The answer i s i n the negative; see PACKEL
Theorem 8.1.
[1969:1].
The
answer f o r t h e d i s c r e t e version was known e a r l i e r t o be also i n t h e negative. (FOGUEL [1964: 11). W e note t h a t t h e problem o f renorming a Eanach space with an equivalent Banach norm t h a t improves t h e constant i n ( 2 . 4 ) t o
1 has a
simple a f f i r m a t i v e answer for semigroups, groups or cosine functions a l i k e ( s e e Exercise 5 ) a s well a s f o r t h e i r d i s c r e t e counterparts.
The theory of almost periodic groups i n Hilbert space i s due t o t h e author [1970:4] although t h e f a c t t h a t
U(i)u, u
given by ( 4 . 3 ) i s
almost p e r i o d i c was known before (see AMERIO-PROUSE [1971:1] f o r references and for numerous r e s u l t s on almost periodic s o l u t i o n s of a b s t r a c t d i f f e r e n t i a l equations).
Likewise, t h e r e s u l t s presented here on
uniformly bounded cosine functions (Theorem
6.2 and 6.5) as well a s t h e
r e s u l t s on almost p e r i o d i c cosine functions (meorem 7.1) a r e due t o t h e author [1970:3], although t h e remarks on almost p e r i o d i c i t y of functions
of the form (7.4) go back e s s e n t i a l l y t o MUCKENHOWPT [1928-1929:1].
The
6.6) i s also due t o t h e author [1970:3]. Remark 2.6 i s i n SZ.-NAGY [1938:1]; t h e analogue for cosine functions (Remark 6.6 i s i n the author [1974:31).
d i s c r e t e version (Theorem
The theory of periodic and almost periodic semigroups, groups and cosine functions i n Eanach space was i n i a t e d i n t h e l a t e s i x t i e s . DA PRATO
[1968:1] and BART [1977:1] t r e a t p e r i o d i c strongly continuous Y
semigroups and groups while CIORANESCU [1982:1] t r e a t s p e r i o d i c d i s t r i b u t i o n semigroups. GIUSTI [1967:1].
Periodic cosine functions were considered by
Finally, almost p e r i o d i c semigroups and cosine functions
were considered r e s p e c t i v e l y by EART-GOLDEERG
L1982:lI.
[1978 :1] and by PISKARFV
Some of t h e i r r e s u l t s w i l l be found below (Exercises
EXERCISE 1.
Let
E
be an a r b i t r a r y
vector space.
has a b a s i s , tha,t is, a l i n e a r l y independent subset
for each
u
E
E
we have
{u,]
6 to 15).
Show t h a t such t h a t ,
E
160
I N HILBERT SPACE
the scalars
all zero except f o r a f i n i t e number.
{Am]
See JACOESON
[1953:1, P . 2391 Using Exercise 1 show t h a t t h e r e e x i s t s a f u n c t i o n
EXERCISE 2. f :R
4
R
such t h a t f(s + t )
=
f(s)
+
f(t)
(8.4)
but
for any
c
(Hint:
W i s a vector space over
A n y nonzero l i n e a r f u n c t i o n a l
one, l e t
[t,}
CY
be a base of
i s fixed
EXERCISE 3.
group
t h e f i e l d of r a t i o n a l
f : R .+ Q w i l l do. W a s i n Exercise 1 and define
numbers.
where
0,
To construct
. U s i n g Exercise 2 show t h a t t h e r e e x i s t s a u n i t a r y
( i n one-dimensiond Eanach space) t h a t does not a d m i t t h e
U(<)
representation (2.1).
4.
EXERCISE
that (a) (Hint:
in
-m
a(B) =
Give an example of a s e l f - a d j o i n t operator (-m,~),
(b)
< h c
number of
A
Every
consider t h e H i l b e r t space
H
E
o(B)
B
such
i s an eigenvalue of
of a l l f u n c t i o n s u ( i )
B
defined
vanishing for all but for a f i n i t e o r countable
W,
and such t h a t
A’s
Define Au(A) = h ( A )
A<
(-m<
W)
,
(8.7)
n
t h e domain of to
A
c o n s i s t i n g of all
u(A)
E
H
such t h a t (8.7)
belongs
H). EXERCISE
such t h a t
5.
A
(a)
Let
S(t)
be a semigroup i n a Banach space
E
161
I N HlLBERT SPACE
Show t h a t t h e r e e x i s t s a n e q u i v a l e n t norm
(b)
Let
II-II'
b e a group i n a Ba.nach space
S(t)
Show t h a t t h e r e e x i s t s a n equivalent norm
(c)
S t a t e and prove a v e r s i o n of ( b )
c exp
(id
It I )
(Hint:
and i n
and with cosh
in
E
such t h a t
f o r c o s i n e f u n c t i o n s both with
on t h e right-hand s i d e .
fdt
(b),
6.
Banach space
E
Let
be a s t r o n g l y continuous semigroup i n a
S(t)
IIS(t)ul/ = llull S(t)E
Then ( a )
(t 2 0 ) for
Each S ( t )
isometry) ( b )
is
for
t <0
u
Each E
E,
S(t)
The group
i s one-to-one ( i n
t h u s each
onto ( i n view of ( a )
i s dense in E) ( c )
S ( t ) = S(-t)-'
i s almost p e r i o d i c ( t h a t i s , a s t r o n g l y
S(i)u
such t h a t
almost p e r i o d i c semigroup).
that
II-1/'
such t h a t
i n ( a ) use
EXERCISE
fact,
E
such t h a t
S(t)
it i s enough t o show
S(t) = S(t)
i s s t r o n g l y almost p e r i o d i c
of almost periodic f u n c t i o n i n
t
2
0
i s an
i s t h e same a s i n
for
t
2
0,
(The d e f i n i t i o n -m
m
;
see BAFT-GOLDBEFG [1978:1] ). A
EXERCISE Eanach space
7.
Let
S(t)
E.
For
-W
be a s t r o n g l y almost p e r i o d i c group i n a
< A
C
m
d e f i n e a bounded o p e r a t o r
MA i n
E
by
(8.8) ( a ) Show t h a t
[MA;
projections, that i s
-a
-z h <
m)
i s a f a m i l y of mutually orthogonal
I N HILBERT SPACE
162
(b)
Show t h a t
,
MAS(t) = S(t)MA = eiAtS(t)
(8.10)
and t h a t
E A = MAE
(8.11)
D(A),
with AMA= i h M where
i s t h e i n f i n i t e s i m a l genera.tor of
A
more p r e c i s e l y , f o r each
u
E
E
{'I,) i s
MAu # 0 periodic function t h a t if pole a t
A's
f o r which
use t h e approximation theorem f o r t h e E-valued almost
S(t)u;
see AMEHIO-PROUSE [l9v:1,p .
lo, t h e n
has an isolated eigenvdue
A
E;
{ank) such t h a t
t h e ( f i n i t e or c o u n t a b l e ) sequence o f
(Hint:
Show t h a t t h e
i s dense i n
m)
t h e r e e x i s t s a sequence of i n t e g e r s
and a double sequence of complex numbers
where
(c)
S(t").
EA(-m < A
subspace generated by t h e eigenspaces
{r,)
(8.12)
A'
241).
R(A;A)
Show
(d)
h a s a simple
AO *
EXERCISE
8.
S t a t e a n d prove a. s u i t a b l e converse of Exercise
t h a t i s , g i v e s u f f i c i e n t c o n d i t i o n s on an i n f i n i t e s i m a l g e n e r a t o r
7; A
to
generate a s t r o n g l y almost p e r i o d i c group. EXERCISE
9.
Let
S(t)
be a s t r o n g l y p e r i o d i c semigroup ( i . e . a
i s p e r i o d i c f o r each
s t r o n g l y continuous semigroup such t h a t
S(;)u
t h e period depending i n g e n e r a l on
( a ) Show t h a t
u)
extended t o a s t r o n g l y continuous group
[1977:1]).
(See BART
Let
p
S(;)
periodic i n
A
{ikp; k =
..., -l,O,l,. ..
has a pole of order one.
-a
u,
can be
< t < a. S(<).
be t h e l e a s t p o s i t i v e period of
i s t h e i n f i n i t e s i m a l g e n e r a t o r of
Then i f the set
R(A;A)
(b)
S(i)
1
with each
(c)
S ( i ) , a(A)
ikp
i s conta.ined i n
a n eigenvalue where
Show t h a t ( c ) i n Exercise
7 can
163
I N HILEERT SPACES
be strenghtened t o m
u
(8.14)
Mkpu
=
k=-m
u
if
E
D(A).
If
u
(8.14) h o l d s i n Cgsaro mean,
E,
E
(8.15) or i n Abel mean,
EXERCISE 1 0 .
S t a t e and prove a s u i t a b l e converse of h e r c i s e
t h a t i s , g i v e s u f f i c i e n t c o n d i t i o n s on a n i n f i n i t e s i m a l g e n e r a t o r
9; A
t o g e n e r a t e a ( s t r o n g l y ) p e r i o d i c group. EXERCISE 11. Using EXercise 111.3 show t h a t (8.14) h o l d s i f
u
F
-
D( ( I A)ru),
(Y
> 0;
see $111.2 f o r d e f i n i t i o n s and p r o p e r t i e s o f
a s shown i n E x e r c i s e 111.7, i f
f r a c t i o n a l powers ( H i n t : then
S(i)u
i s gdlder continuous with exponent
Dini-Lipschitz theorem (ZYGMUID
w;
[1959:1, p , 63 I),
valued f u n c t i o n s , for t h e Fourier s e r i e s o f
u E D ( ( I - A)ru)
use t h e n t h e
generalized t o vector
S(i)u).
The following e x e r c i s e s are analogues of E x e r c i s e s 7, 8, 9, 1 0 and 11 f o r c o s i n e f u n c t i o n s . EXERCISE 12. i n a Banach space
N
@(:)
Let E.
For
- lim A - T - m T =
Show t h a t {Mh;A
5
A <
m
d e f i n e a bounded o p e r a t o r
F T c o s At(@(s)u,v)dt 0
l i m gIIeiAt(c(t)u,v)at
T+ (a)
be a s t r o n g l y almost p e r i o d i c c o s i n e f u n c t i o n 0
2
=
.
m
01
i s a family of mutually orthogonal p r o j e c t i o n s ,
where
M~ (b)
=
NA f o r
A > 0 , Mo =
&/2a0
Show t h a t M,,C(t) = @ ( t ) M A
and t h a t
Nhu,
=
cos h t @ ( t )
.
I N HILBERT SPACE
164
EA
=
(8.18)
MAE _C D ( A ) ,
with AM
- -A A -
2
MA,
(8.19)
A i s t h e i n f i n i t e s i m a l g e n e r a t o r of S(:). ( c ) Show t h a t ( c ) 7 h o l d s for t h e eigenspaces EA; i n p a r t i c u l a r , t h e r e p r e s e n t a t i o n (8.13) i s v a l i d f o r each u E E.
where
of a t e r c i s e
EXERCISE
13.
S t a t e and prove a s u i t a b l e converse of Exercise 1 2 .
EXERCISE
14.
Let
h
@ ( t )be a s t r o n g l y p e r i o d i c cosine f u n c t i o n
(defined i n t h e same way as for semigroups i n Exercise
(a)
@(;)
Show t h a t
is periodic i n
@(t).
l e a s t p o s i t i v e period of g e n e r a t o r of with each
@(;),
-(kpj2
order one. ( c )
-m
Then, i f
A
m.
(b)
an eigenvalue of
Show t h a t ( c )
u =
A
where
Let
p
be t h e
i s the infinitesimal 2 { - ( k p ) ; k = 0,1,.
i s contained i n t h e s e t
a(A)
9).
R(?\;A)
.. 3
h a s a p o l e of
i n Exercise 1 2 can be strengthened t o
TM
2u
(8.20)
k=O - ( k p ) if u E D(A)
u
( o r , more g e n e r a l l y , i f
Exercise 111.5).
For
u
E
E,
(8.20)
E
D((I-A)")
f o r some
a > 0 ; cf.
holds i n Cgsaro mean,
o r i n Abel mean
u EXERCISE
=
-
m
l i m (1 A) F A ~ M 2u h-. 1k=O -(kp)
.
15. S t a t e and prove a s u i t a b l e converse
(8.22) of Exercise
14.
165
CHAPTER V I
THE PARAEOLIC SINGULAR PERTUREATION PROELEM
Vibrations of a membrane
4VI.l
i n a viscous medium.
r
Consider a uniform membrane fixed t o t h e boundary
of a two
R and immersed i n a viscous medium.
dimensional domain
The small
o s c i l a t i o n s of t h e membrane a r e described by t h e equation pvtt where brane
+ yt
UAV
=
(X
E
a) ,
(1.1)
i s t h e v e r t i c a l movement of t h e mem-
v = v ( x , t ) = v(xl,x2,t) and t h e c o n s t a n t s p,y,a
are, r e s p e c t i v e l y , t h e mass d e n s i t y
p e r u n i t a r e a of t h e membrane, t h e c o e f f i c i e n t of v i s c o s i t y of t h e medium and t h e t e n s i o n of t h e membrane.
v satisfies
The displacement
t h e boundary c o n d i t i o n
o
v ( x , t )=
r) ,
(.
(1.2)
and t h e i n i t i a l c o n d i t i o n s v(x,O) If we d e f i n e
=
v ( x , t ) = u(x, (u/y)t)
and t h e boundary c o n d i t i o n ( 1 . 2 ) ; u(x,0)
(~p)'/~/y
Setting
=
0
u
R)
.
(1.3)
s a t i s f i e s t h e equation
=
-Y 0u
JX)
(x
E
0)
.
(1.5)
w e can w r i t e (1.5) i n t h e form
= F
E U E
then
E
the i n i t i a l conditions are
u ( x ) , ut(x,O)
2
where
(x
u 0 (x),vt(x,O) = u,(x)
tt
+ u
t
= a u
(.
E
n>
9
w i l l be small i f the medium i s h i g h l y viscous
can write t h e second i n i t i a l c o n d i t i o n i n t h e form ut(x,O) = c-1(;)1k1(x)
.
(1.6) ( y >> 1). W e
166
PARABOLIC SINGULAR PERTWATION
This suggests t h e problem of studying t h e behavior of t h e s o l u t i o n of
(1.6) on
as
-
E
allowing f o r dependence of t h e i n i t i a l c o n d i t i o n s
0,
This w i l l be done i n t h e r e s t of t h e c h a p t e r for a n a b s t r a c t
E.
model encompassing e q u a t i o n s l i k e
E x p l i c i t s o l u t i o n of t h e perturbed
Singular perturbation.
sV1.2
(1.6).
equation.
w i l l be t h e i n f i n i t e s i m a l g e n e r a t o r
Throughout t h i s c h a p t e r A
c(:)
of a s t r o n g l y continuous c o s i n e f u n c t i o n space
(that is,
E
A
E
8;
i n t h e complex Banach
see: Exercise 2 ) .
We c o n s i d e r t h e
Cauchy problems
2
E U"(t;E)
+
=
U(0;E)
+
= AU(t;E)
U'(t;E)
f(t;E)
3 o),
(t
(2.1)
u
0
( t ) ,
U'(0,E)
= U1(E),
and
u'(t)
-
=
Au(t)
+
(t
f(t)
-
3 0),
~ ( 0 =) u 0'
-
(2.2)
Roughly speaking, t h e r e s u l t s i n t h e f o l l o w i n g s e c t i o n s e s t a b l i s h that
if
u(t;E)
u(t)
as
E
0
if
uO(E)
i s suitably restricted.
ul(E)
u,
f(t;E)
f(t)
and
R e s u l t s o f t h e same t y p e hold
f o r derivatives.
A s a f i r s t s t e p , we compute t h e e x p l i c i t s o l u t i o n of ( 2 . 1 ) using simple changes of dependent and independent v a r i a b l e . Writing -t/2&2 t/2E U(t;E) = e v(t/E;E) ( o r , equivalently, v(t;E) = e u(Et;E)) we e a s i l y show that
i s a s o l u t i o n of t h e i n i t i a l v d u e
v(t;E)
problem v(t;&) + e
V(O,E)
= UO(E),
Conversely, e v e r y s o l u t i o n u(;;E)
=
V'(0,E)
t/2E
1 U (E) 2E 0
f(&t;&),
(2.3)
+
EU1(E).
v ( t ^ ; ~ ) of ( 2 . 3 ) g i v e s r i s e t o a s o l u t i o n
of t h e i n i t i a l v a l u e proklem ( 2 . 1 ) .
The ( g e n e r a l i z e d )
s o l u t i o n of t h e i n i t i d value problem (2.3) i s g i v e n by V(t;E)
=
C(t;E)V(O;E)
+
s(t;E)v'(O;&)
+,JtS(t
-
s ; E)es/2E f ( E s ; E )
ds,
(2.4)
PARAEOLIC SINGULAR PERTURBATION
c(:p
where
S(t;E)u =
i s t h e cosine f u n c t i o n generated by
167
A + ( 2 ~ ) - ~and 1
W e know from Lemma 111.4.1 t h a t t h e
C(s;E)u d s .
Cauchy prtbpem f o r
However, t h e s e r i e s r e p r e s e n t a t i o n (111.4.7) i s not
i s well posed.
convenient here and we provide a d i f f e r e n t r e p r e s e n t a t i o n below which, A
i n c i d e n t a l l y , proves a f r e s h t h a t LEMMA 2.1.
A
kt
8, t h a t
E
be well posed, and l e t
b
(2E)-21
E
8.
i s , l e t t h e Cauchy problem f o r =
U"(t)
+
Au(t)
(2.6)
be an a r b i t r a r y complex number.
Then
t h e Cauchy problem f o r U"(t)
i s well posed; t h e propagators
=
(A
2
+
b I)u(t)
cb(;),
S b ( t ) of (2.6)
by Cb(t)u =
c(t)U
d t Il(b(t2
+
(2.7)
bt
(t2
-
-
('1
a r e given
s~)'/~) C(s)u d s , ( 2 . 8 )
s2)1/2
and
where
Io,
5
a r e t h e Bessel f u n c t i o n s defined by (2.10)
The proof can be c a r r i e d out i n ( a t l e a s t ) t h r e e ways, all of which we sketch b r i e f l y below.
In t h e f i r s t , one t a k e s advantage of
t h e d i f f e r e n t i a l equation
(2.11) s a t i s f i e d by if
u, v
then
E
u(f)
Iv(x)
D(A)
and of a l i t t l e i n t e g r a t i o n by p a r t s t o show t h a t
(so that
= cb(;)u
c(t*)u, S(t*)u a r e genuine s o l u t i o n s of ( 2 . 6 ) ) i s a genuine s o l u t i o n of (2.7): uniqueness
+ %(t*)u
of s o l u t i o n s of ( 2 . 7 ) i s proved transforming them back i n t o s o l u t i o n s of
(2.6) by means of formulas (2.8) and (2.9) with b replaced by i b .
168
PARAEOLIC SINGULAR PERTUREATION
For d e t a i l s on t h i s l i n e of approzch (&though t h e context t h e r e i s somewhat d i f f e r e n t ) see SOVA
[1970:4].
The second uses Theorem 11.2.3; w e
show t h a t t h e Laplace transform of C b ( c ) u given by ( 2 . 7 ) equdls 2 2 2 The t h i r d i s based on Lemma 111.4.1, h R ( A ; A + b I ) u = AR(A2 - b ;A)u.
en i n (111.4.7) combined
p l i c i t c o n s t r u c t i o n of each of t h e terms s e r i e s r e p r e s e n t a t i o n (2.10) f o r
I o ( x ) , I1(x).
ex-
with the
We omit t h e d e t a i l s .
(2.8), (2.9) t o t h e equation
Applying t h e t r a n s l a t i o n formulas (2.5) we o b t a i n C(tjE)U
+
= C(t)U
and
=L t
S(t;E)u
-
l o ( ( t 2 s')'/~/~E)C(S)U d s
both v a l i d f o r a r b i t r a r y
u
and
t.
c ( s ) u ds
(2.12)
,
(2.13)
Using t h e s e formulas i n ( 2 . 4 ) and
making a n obvious change of v a r i a b l e i n t h e i t e r a t e d i n t e g r a l r e s u l t i n g from t h e i n t e g r a l i n ( 2 . 4 ) we o b t a i n t h e f i n a l formula for u ( c ; & ) , we have used u(t;&) = e
+
(11.4.3) f o r t h e s o l l i t i o n of t h e nonhomogeneous equation:
-t/2E
2 ( t /& )uo ( E 1
-
t e - t / 2 E 2 ~ t / &T ( ( ( t / E ) 2 E2
((t/E)*
2 = e-t/2E
where
C(t/&)u,,(E)
-
s)ll2/2E)
c(s)(, u O ( E ) ) d s S2)1/2
1
+
cp(t,s;&)C(s)(~ uO(E)) d s ' 0
2 = e-t/2E
C(t/E)Uo(&)
+
R(t;E)($
U,(E))
+
qt;E)($
U O(E)
+
E2U,(&))
(2.14)
169
PARABOLIC SINGULAR PERTURBATION
where t h e d e f i n i t i o n s o f t h e s c a l a r f u n c t i o n s
Cp(t,s;&),
qt;&)a r e
R(t;&),
t h e o p e r a t o r valued f u n c t i o n s t h e formula (3).
$(t,s;E)
and
e a s i l y read off
The f o l l o w i n g r e s u l t i s a n immediate consequence of formula (2.14) and t h e correspondence between s o l u t i o n s of ( 2 . 1 ) and t h o s e of (2.3):
LEMMA 2.2.
Every g e n e r a l i z e d s o l u t i o n
t 10.
continuous i n
f u
0
then
(E) = O
of
u(t;E)
(1.1)
u ( t ; & ) i s continuously
differentiable. precisely, i t s
We examine now t h e i n i t i a l value problem (2.2),
r e l a t i o n with t h e second order i n i t i a l value problem f o r (2.6).
Let A
THEOREM 2.3.
(2.6) be w e l l posed.
8,
E
t h a t is, l e t t h e Cauchy problem f o r
Then t h e i n i t i a l value problem f o r
u ' ( t ) = Au(t)
i s w e l l posed i n t
2
(2.15)
t h e propagator of (2.15)
0,
g i v e n by t h e
a b s t r a c t W e i e r s t r a s s formula
S(t)u = The propagator in -
if
5 >
-
Re A
0;
m
2
e-'
/4tC(s)u
more p r e c i s e l y ,
then
A
E
G(rp)
(t > 0 ) .
ds
c a n be extended t o a ( E )
S(<)
8(c0;w)
E
,(d *L
for
- vdued 0
< ep <
(2.16)
analytic function Finally,
7/2.
<(c0;" 2 1.
A E
The proof of Theorem 2.3 (which was proposed as Exercise 11 i n
-
Chapter 11) goes as f o l l o w s .
A E g(Co;w)
l/c(t)ll Thus, i f
S(i)
5
Co cosh CLTt
(-rn
(2.17)
a).
i s t h e ( E ) - v a l u e d f u n c t i o n defined by (2.16) we have
We check e a s i l y t h a t
t > 0
Recall t h a t , by d e f i n i t i o n ,
i f and only i f
S(i)
i s continuous i n t h e norm of
due t o t h e fast t e l e s c o p i n g of t h e integrand as
(E) s
-+
s(0) = I , we check next t h a t
S(t)
only c o n t i n u i t y a t
t
t h at , i f
p
> 0,
=
must be proved.
Defining (2.191
i s s t r o n g l y continuous i n t >_ 0; 0
for
m.
trivially,
To do t h i s we note f i r s t
170
PARABOLIC SINGULAR PERTUREATI O N
m
e - U 2 cosh 2 ~ t ' / ~ udu
-
t
which e x p r e s s i o n t e n d s t o zero a s
For
O+.
,
(2.20)
t > 0
we have
The argument below is standard i n approximation theory.
In
0
5
s
Ilc(s)u
- uII
taking
0
Once
d i v i d e t h e i n t e r v a l of i n t e g r a t i o n i n (2.21) a t
given, we
5
w e use ( 2 . 1 8 ) , t a k i n g
p
C &/2
there; i n
<_ t <_ 6,
This shows t h a t
6
llS(t)u
s
2
p
p
we e s t i m a t e by
for 0 <_ t 5 6 ,
E
2C0
is
t i m e s (2.20)
so t h a t
d e f i n i t i o n completed by (2.19), i s s t r o n g l y continuous i n 2 Using t h e e q u a l i t y i n (2.18) we o b t a i n Let A > w
E/4C0.
its
S(i), t
.
--
> 0
so s m a l l t h a t we shall have
so small t h a t ( 2 . 2 0 ) does not surpass
- ull 5
E
s = p.
1
2
0.
(2.22)
2 ' A- w
By T o n e l l i ' s theorem, convergence of t h e i n t e g r a l (2.22) i m p l i e s t h a t t h e order of i n t e g r a t i o n can be i n v e r t e d .
This j u s t i f i e s t h e following
computation:
R(A;A)u
=
( A > w2)
by t h e f i r s t e q u d i t y (2.11).
S(f ) A.
Re
We apply t h e n Theorem 2.3 t o deduce t h a t
i s a s t r o n g l y continuous semigroup with i n f i n i t e s i m d g e n e r a t o r That S(i) can be extended t o a ( E ) - v a l u e d f u n c t i o n a n a l y t i c i n
5 > 0,
G(m)
(2.23)
a s well as t h e e s t i m a t e s corresponding t o t h e c l a s s e s
can be proved r e p l a c i n g
we have
t
by
6
i n (2.23).
If
Re
6>
0
171
PARABOLIC SINGULAR PERTUREATION
ds
(2.24)
which implies t h e d e s i r e d e s t i m a t e s .
BVI.3
The homogeneous equation:
convergence of
W e i n v e s t i g a t e here t h e convergence of *
E
-+
0
we o b t a i n uniform bounds on that
cp,$
2
/lu(t;E)/I
where
f(t)
i n t h e homogeneous case
C0
0
u(<;&).
u(;;E).
to
u(t^;E)
* = f(t;E)
=
u(:)
as
A s a f i r s t step
0.
Using formula ( 2 . 1 4 ) and noting
we o b t a i n from ( 2 . 1 7 ) t h a t -t/2E2
ICoe
cosh ( Wt/E
h0( E 11
i s t h e constant i n (2.17).
Since
i s a cosine
cosh
f u n c t i o n ( i n t h e sense o f t h e preceding s e c t i o n ) with i n f i n i t e s i m a l 2 generator w t h e f u n c t i o n on t h e r i g h t hand s i d e of (3.1) equals
,
COt(t;E),
where
5
i s t h e s o l u t i o n o f t h e s c a l a r i n i t i a l value
problem 2
E %"(t;E)
+
s'(t;E)
=
2
W
,
5(t;E)
(3.2) S(0,E)
with
So(&)
explicitly.
=
Iluo(&)II, f
Let
= %()(E),
El(&)
A (E) =
S'(O,E)
= t1;1(E),
Ilu,(~)~~W . e compute t h i s f u n c t i o n (-1 (1 + ~ w * E ~ ) ' / ~ ) / ~ E * be t h e two ( r e d . , =
d i f f e r e n t ) roots of t h e c h a r a c t e r i s t i c equation
2 2
E
h
+
A-
2
W
= 0.
1 72
PARABOLIC SINGULAR PERTUBAT I ON (1+
4w2&2)1/2
other hand,, k(E)eA+('.)t
Am(&)
Since
< 1 + 2w2E2 we have C 0,
0
t h u s we may r e p l a c e
< -
A+(O)
< w2.
On t h e
k(E)eh-(E)t
by
i n t h e f i r s t term of (3.3) f o r e s t i m a t i o n purposes.
t h e second, we simply d e l e t e
-e '-('It
noting t h a t
>?(E)
-
In
h-(E) =
(1 + 4 u ~ ~ & ~ )>~1/ /~ ~/ ~ &W .e~ o b t a i n i n t h i s way t h e following r e s u l t :
where
Co,w
a r e t h e c o n s t a n t s i n (2.17).
To study convergence of
u(t;E)
we s h a l l use t h e asymptotic
s e r i e s f o r t h e Bessel f u n c t i o n s ,
where
( s e e WATSON [1948:1, pp. 203 and 1981). The asymptotic s e r i e s ( 3 . 5 ) w i l l be used with
x =
2E
((:)*
-
both t o c a l c u l a t e limits (as i n (3.10)-(3.11),
(3.25)-(3.26),
(4.14)-
(4.15)) and f o r e s t i m a t i o n purposes (as i n (3.14)-(3.15), (3.27)-(3.28), (4.16)). The second a p p l i c a t i o n deserves some comment. Since t h e functions x = 0 , (3.5) w i l l not provide good bounds
t o be estimated are r e g u l a r a t
near zero. However, t h i s i s not very s i g n i f i c a n t , s i n c e t h e s e functions converge t o limits t h a t do have s i n g u l a r i t i e s a t
x = 0. To improve t h e
estimations, we s h a l l r e p l a c e remainders of t h e form
O(x%)
by
o ( ( x + a)%) which a r e r e g u l a r a t t h e o r i g i n . It i s p l a i n t h a t t h e observations above can be a p p l i e d a s w e l l t o t h e asymptotic s e r i e s obtained from t h e s e r i e s (3.5) f o r functions of t h e form
173
PARAEOLIC SINGULAR PERTUREATION
x-'Iu(x),
where
B
and
a r e a r b i t r a r y r e a l numbers. Likewise, we s h a l l
u
( 3 . 5 ) term by term t o provide asymptotic s e r i e s for d e r i v a -
differentiate
t i v e s of a r b i t r a r y o r d e r . This can be easily j u s t i f i e d . To t h i s end we We proceed t o t h e e s t i m a t i o n of u ( t ; & ) - u ( t ) . d i v i d e t h e i n t e r v a l of i n t e g r a t i o n i n ( 2 . 1 4 ) i n
0
5
5
s
s(E),
where t h e asymptotic development ( 2 . 5 ) c a n be u s e d , and t h e "small" interval
s(&)
5 t 5 t / & where
rougher bounds w i l l s u f f i c e .
The
d i v i s o r y p o i n t between t h e " i n n e r " and " o u t e r " i n t e g r a l s i s defined by
where
q
< 1/2 w i l l be s p e c i f i e d l a t e r .
The l e n g t h of t h e second
interval is
We use t h e asymptotic development ( 3 . 5 ) t o o r d e r
0
5
s
5
S(E):
* X
IJX)
=
(1 +
o($))
m
=
in
0
.
(3.9)
(2lrx)l
A f t e r d i v i d i n g by
x
and performing a few c a n c e l l a t i o n s we o b t a i n
where =
X(t,S;E)
To o b t a i n (3.11) from
Obviously,
(1.10)
-
- q ( F )2 ) -3/4(1 + o($)).
(3.9) we
T(x),
-1
m
=
0.
e x i s t s a constant
have used t h e i n e q u a l i t y
(3.11) i s uniform i n t h e i n t e r v a l
To o b t a i n a n e s t i m a t e f o r
x
Since C
(3.11)
(lrt)
cp
we use formula
xmlI (x) i s r e g u l a r f o r 1
such t h a t
0
5
s
5
s(E).
(3.5) f o r t h e f u n c t i o n x
=
0,
there
PARABOLIC SINGULAR PERTURBATION
174
where
x; t h e choice of 2 i n t h e denominator of increasing, since ( 2 + x) -3/2 ex
does n o t depend on
C
(3.13) makes t h e f b n c t i o n (a
+
x)"
ex
is increasing f o r
l a t i o n s leading t o (3.10)-(3.11)
holds i n
0
5 s 5 t,
and t h e c o n s t a n t
C
a>
CY. Essentially
t h e same manipu-
reveal that t h e e s t i m a t e
where
does not depend on
E,t.
I n e q u a l i t y (3.14)
l e a d s t o t h e estimates below.
holds, where
i s a constant t h a t does not depend on
C
s,t,E.
We make use of (3.14)-(3.15) observing t h a t 2 1/2 2 (Es/t) ) 5 1 ( E s / t ) /2 i n t h e exponent and t h a t (Es/t) 2 ) 1/2 >_ (1 (Es(E)/t)')1/2 = 2~ i n t h e denominator of
Proof.
(1 (1
-
-
(2.14);
t h e term
-
2 4E /t
i n s i d e t h e p a r e n t h e s i s i s p o s i t i v e and can
be dropped.
where t h e c o n s t a n t
C
does not depend of
Proof. We use a g a i n (3.14)-(:,.15)
hand s i d e of t h e i n e q u a l i t y
s,t,E.
keeping i n mind t h a t t h e r i g h t
(3.13) is a n increasing f i n c t i o n of
x.
Accordingly, we can e s t i m a t e t h e r i g h t hand s i d e of (3.14) by t h e value obtained i n s e r t i n g t h e highest p o s s i b l e value of (which i s t h e summand
(1
-
2
(Es(E)/t)2)1/2
4E /t
= 2q).
(1
-
(Es/t
2 1/2
)
Once t h i s is done we d i s c a r d
i n t h e o u t e r p a r e n t h e s i s o f (3.15).
The r e s u l t
i s (3.17). A s a n immediate consequence of (3.17) and of the estimation (3.8)
PARABOLIC SINGULAR PERTURBATION f o r the length of the interval
s(E)
t h e r e and i n o t h e r i n e q u a l i t i e s
C
s ,t ,&
<_
175
5 t we o b t a i n
s
denotes a c o n s t a n t independent o f
not n e c e s s a r i l y t h e same i n d i f f e r e n t i n e q u a l i t i e s . Let
g(t;&)
> 0 . We s a y t h a t a family of f'unctions converges uniformly i n t > - t ( E ) t o a f u n c t i o n g(:) if and t(E)
> 0
f o r each
E
only if sup
1 h
-
llg(t;E)
g(t)lI = 0 .
Ed0 t)t(E)
I f t h e supremum i s t a k e n i n s a y that
t
2
t ( E ) <_ t 5 a
g ( ; ; ~ ) converges t o
a > 0
for
a r b i t r a r y we
uniformly on compacts of
g(:)
t(E). We prove below that f o r every
on compacts of
t ,t(E)
s u b s e t s of
as long as
E,
u
E
E, R(t;E)u-r S(t)u
uniformly w i t h r e s p e c t t o
t(E)/E2
4
(E
m
.+ 0 )
uniformly
u on bounded
.
(3.20)
I n f a c t , assume t h i s i s f a l s e . Then t h e r e e x i s t s a bounded sequence
[u,]
sequence
{t,]
For each
n
C
E,
a sequence 2
such that
we choose
tn/En
'n
-21-
{En]
*
with and
m
End
0
and a bounded
lIR(tn;En)un
- S(t,)unll
2 6 > 0.
such that 'in
-
WE
n
n --
(3.21)
n (note t h a t zero,
'n
-
n 1/2
< 1/2: moreover, s i n c e both as
n
+ m).
En
and
E n t n-1/2
tend t o
We d i v i d e t h e i n t e r v a l of i n t e g r a t i o n i n
(2.14) according t o t h e e q u a l i t y (3.7) with
q = q n'
We have
176
PARABOLIC SINGUMR PERTURBATION
The f i r s t i n t e g r a l tends t o zero as convergence theorem: that
(note that
1
-
(Es/t)2
uniform estimate
due t o the dominated
m
+
9
-
cp(t,,s;E,)
n
i n f a c t , t e asymptotic r e l a t i o n (3.10) shows e-'
/4tn-+ 0
2 211, -,
1. hence
(3.16).
as
-
n-,
Es/t
m
0)
for
s
fixed
and we have t h e
The second i n t e g r a l tends t o zero by (3.18).
A s f o r t h e t h i r d it i s e a s i l y seen t o telescope making the change of variable
ti1/'s
=
(J
tn a r e bounded. I n f a c t ,
and r e c a l l i n g t h a t t h e
Now, it follows from (3.8) and (3.20) that S(E
n
)
=
tn 2 1/2 (1 - 4q ) n n
t
2
s(En) >_ 2 t 1/4&-1/2 n
Thus
8n
-
m
(1
-
,3/4
2'in)l/2 2 2
as
n
-
m
n -
-
(3.24) El/2 n s o t h a t (3.23) tends
t o zero (we note t h a t i f
w = 0 t h e i n t e g r a l (3.23) tends t o zero 2 under the s o l e assumption that t,,/En -,m , where t h e tn may be
unbounded; t h i s f a c t bears on a resuLt below). a contradiction and j u s t i f i e d
OUT
claim about
We have then obtained sf.
We prove next t h e corresponding statement f o r
5(t;E).
The
estimates a r e obtained i n a s i m i l a r fashion, thus we only s t a t e the final results.
Formula (3,10)-(3.11) has t h e following counterpart:
with X(t,S;E) = (77t)-1/2(1 The estimate is uniform i n The inequality
holds i n
0 5 s 5 t, where
-
2 (y))-1/4(l +
0 5 s 5 s(E).
.
(I(%))(3.26)
PARABOLIC SINGULAR PERTURBATION
177
p(t,S;E) = t and t h e constant
(3.28)
does not depend on
C
we use t h e asymptotic formula (3.5) f o r
m = 0
E,t.
To o b t a i n (3.25)-(3.26)
m = 1; t h e same formula with
yields the inequality
Using t h e i n e q u a l i t y (3.26)-(3.27) we e a s i l y o b t a i n t h e following counterparts of L e m 3.2 and Lemma 3.3 :
holds, where the constant
where t h e constant Using
C
does not depend on
does not depend on
C
s,t,E.
s,t,E.
(3.31) and (3.8) we obtain
We prove t h a t
6(t;E)u uniformly i n of
t >_
S( t ) u
uniformly with respect t o
t(E)
i n e x a c t l y t h e same way used f o r
E
(3.33)
R;
u
i n bounded s e t s
d e t a i l s a r e omitted.
A f t e r a n elementary estimation of t h e f i r s t term i n (2.5) t h e proof of t h e following r e s u l t i s complete:
Let
THEOREM 3.6. UO(E)
and l e t
u(t;E)
-b
v,
uO(E),ul(E) 2
E UJE)
E
E
-. uo
be such that
- v
(E
+
0)
be the generalized s o l u t i o n of ( 3 . l ) ,
number such t h a t (3.20) holds.
,
(3.34) t(E) > 0
Then
U(itjE) -. u(Z)
(3.35)
178
PARABOLIC S INGUMR PERTURBATION
unifwmly i n compacts of s o l u t i o n of ( 3 . 2 ) w i t h respect t o
uo,v
REMARK 3.7.
if.
2
t
t(E)
u(%)
where
u(0) = uo.
i s t h e generalized
The convergence i s uniform with
(Iuo(I, /(v(I a r e bounded.
does not converge t o
uO(E)
thus t h e r e i s a "boundary l a y e r " near zero where approximation t o
t >_ 0 u
Obviously, uniform convergence i n
expected s i n c e i n g e n e r a l
u(^t)
cannot be
as
0
-
E
0,
i s not a good
u(;;&)
[1981:1] f o r a thorough
( s e e KEVORKIAN-COLE
treatment of t h e one dimensional case). Note a l s o t h a t m i f o r m -opt -w2t e u(t;E) t o e u ( t ) i n t >_ t ( E ) cannot be
convergence of
assured even i n t h e s c a l a r case.
To s e e t h i s , l e t
s o l u t i o n of t h e i n i t i a l value problem
-w
< w2
since ?(&),A*(&) e-',2tew2t = 1,
we have
e
L3t -2 1 with
<'(O;E)
-, 0
<(t;E)
be t h e
<(i;E)
as
t
Then,
= 0. +
the s o l u t i o n of t h e same equation with
=,
whereas
E =
0.
However, a n examination of t h e proof of Theorem 3.2 shows t h a t u(%) uniformly i n
u(i;E)
t
t(E)
i n t h e p a r t i c u l a r case
( i n f a c t , t h e r e i s no need t o assume t h e sequence
w = 0
{tn] bounded).
We
state this special result. THEOREM a d d i t i o n that
3.8.
w = 0
&
(2.17) ( i . e . assume that
uniformly bounded cosine function
i s uniform i n REMARK
u(t;E)
-*
t >_
3.9.
u(t)
3.6
Let t h e assumptions of Theorem
C(1)).
A
hold.
Assume i n
generates a
Then t h e convergence i n
(3.35)
t(E).
Condition (3.20) i s necessary i n order that
uniformly i n
t2
a t l e a s t without a d d i t i o n a l
t(E),
assumptions on t h e i n i t i a l d a t a ( s e e 4VI.5).
This can be seen a s
Consider f i r s t t h e one dimensional c a s e (3.2) with, say, -2 = 0 , <'(O,E) = E For each E > 0 l e t t ( E ) be such that 2 -, a , where 0 < a < m . Then we seE from (3.3) that
follows. <(O,E) t(E)/E
.
t(t(E),E)
+ .-
1 - e-a,
although
<(t;E)
+
ew
i n t h e sense of Theorem
However, uniform convergence i n t 2 0 can be obtained i f we 2 assume that E - <'(O,E) 4 0. A s we shall s e e i n 4VI.5 t h i s r e s u l t has
3.6.
an i n f i n i t e dimensional counterpart (Theorem following example (where uniform i n
lluoll 5 1
t 2 0,
u1( E ) = 0 )
5.5).
However, t h e
shows t h a t convergence, although
may not be uniform i n
u = l i m uO(E) f o r 0
i f condition (3.20) i s violated.
EXAMPLE 3.10.
Consider t h e space
E = R2
of a l l complex sequences
179
PARABOLIC SINGULAR PER!RJREATION
u = [un ] = [un;n >_ 1) w i t h lluIl2=
We check that
IlC~,31l
2 =
c bnI2<
i s a H i l b e r t space.
E
*
The operator
2 A u = A [ u ] = { - n u,] n
i s defined by
A
,
(3.36)
and generates t h e s t r o n g l y continuous, uniformly bounded cosine function c ( t ) { u n ] = {(cos n t ) u n ] . The (generalized) s o l u t i o n of t h e i n i t i a l value problem (2.1) f o r w i t h i n i t i a l conditions U(t;E)
{Un(t;E)]
=
uO(E) =
{uOn(E)] and
(E)
1
= {u
In( E ) ]
Qin, Yin
+
Yin(t;E)(E
defined as i n (3.3) f o r
2
0 < b
(3.37)
Uln(E)),
w = in,
mandatory modifications when t h e two r o o t s ,)&(:A An(&) 2 2 2 c h a r a c t e r i s t i c polynomial E A + A + n = 0 . coalesce. Let
is
with
n ( t ; E ) = Qin(t;E)Uon(E) the finctions
u
A
with the
of t h e
< 1. Take (3.38)
= b/2m.
Em
Then
-
= (-1 -)/2&* Am(&) m
h+(E) m = (-1+ -)/2E2
m'
We solve t h e i n i t i a l value problem (2.1) f o r
A
with
m' u
= 0,
(E)
1 u ( E ) = u = {u ] independent of E . Note that t h e s o l u t i o n of (2.2), 0 n that i s , t h e semigroup generated by A , i s s ( t ) E u n l = CeLet
{tm ]
n2t
(3.39)
Unl
be a sequence of p o s i t i v e numbers such that
2
tm/Em
Then, passing i f necessary t o a subsequence w e m y assume t h a t 2
tm/Em
We have
u (tm;Em) = Q. ( t ;e )u n in m m
+
a >_
o
.
f.
m.
180
PARABOLIC SINGULAR PERTURBATION
= -1k (1 - b2)1/2,
where y’
convergence f o r if
llull
which inequality precludes uniform
bounded i f
i s adequately chosen, a t l e a s t
b
a f 0.
We note the following reformulation of Theorem 3.6: THEOREM
3.11.
Let t(E) > R(t;E)
uniformly on cmpacts of
-
S ( t ) , eJ(t;E)
t >_ t(E)
(2.17) (that is, i f
w = 0
be such that (3.20) holds.
0
A
(3.40)
S(t)
4
i n the topology of ( E ) .
Convergence of
u ’ (t;E)
If.
generates a uniformly bounded cosine
function C(%)) t h e convergence i n (3.40) i s uniform i n
QVI.4
Then
t >_ t(E).
and higher derivatives.
A s pointed out i n QVI.2, formula (2.14) does not necessarily
provide a genuine s o l u t i o n of (2.1): a r e arbitrary,
u
(E)
0 u(Z;E)
u(%;E)
i n fact, i f
uo(E)
may not even be d i f f e r e n t i a b l e .
and
u~(E)
However, if
it follows from (2.4) (or d i r e c t l y from (2.14)) that
= 0
i s continuously d i f f e r e n t i a b l e :
noting that
we obtain
I;)(x) = I1(x)
0
-t/2EC
U’(tjE) = W(t;E)(E 2u
(E)) =
1
2 e C(t/E)(E2U1(E)) E
-
%s,t” ZE
$(t,s;E)C(s)(E2u1(E))
ds =
181
PARABOLIC SINGULAR PERTURBElTION
-2 where t h e obvious cancelling out of E2 and E i s t o be frowned 2 upon, s i n c e E u (E) not u (E) w i l l tend t o a l i m i t l a t e r . I n view 1 1 of (3.34) t h e l a s t two terms of (4.1) a r e i n d i v i d u a l l y divergent as E
-
thus they w i l l have t o be j o i n t l y estimated.
0
i n t e g r a l s defining q < 1/2
with
R and B a t
s(E)
W e divide t h e
as i n t h e previous s e c t i o n
t o be f i x e d l a t e r . The outer i n t e g r a l s a r e estimated
i n d i v i d u a l l y using Lemma 3.3 and Lemma 3.5. We have
by v i r t u e of (3.17) and of t h e bound (3.8) f o r t h e l e n g t h of t h e i n t e r v a l of i n t e g r a t i o n :
i n t h e same way, but t h i s time using (3.31)
we obtain 1
t/E
2JE ji ( t) > s; E l IlC(S>~IIds 5c We t a k e
q < 1/2
+ II~II(') -.{3/2
3/2
f i x e d i n both i n e q u a l i t i e s .
combined i n t e g r a l i n
0 5 s 5 s(E)
t h e asymptotic s e r i e s (3.5).
[0,11= r'(3/2)/r(-l./2) [1,1]= T(5/2)/T(l/2) = 3/4, thus
It f o l l o w s from (4.5) t h a t Cp(t,s;E) = X ( t , s ; E )
7
- WE
)I -
exp
(4.3)
Estimation of the
w i l l r e q u i r e an a d d i t i o n a l term i n
Taking now m = 1 we obtain
noting that
with
(i-
=
-1/4. On
t h e other hand,
182
PAWBOLIC SINGULAR PERTURBATION
- 3 p 72 r -1/pt-3/2
(1
- (Y) ) 2
-5/4 (1
+
0
($));
(4.7)
On t h e o t h e r hand.,
with = (Tt)
X(t,SjE)
+ - -1 E , l T2
-1/2t-3/2
(4.9)
4 where due a t t e n t i o n has b e e n p a i d t o (3.l2) i n t h e r a n g e
0
5
s
5
t(E).
Formulas ( 4 . 6 ) and (4.7) w i l l be m o d i f i e d a s f o l l o w s . We u s e T a y l o r ' s 1 i n t h e f i r s t p a r e n t h e s i s of ( 4 . 7 ) :
formula of order
2
=
1+
t(7)
(1 +
o((g))
(4.10)
I n t h e second p a r e n t h e s i s it i s enough t o u s e T a y l o r ' s formula o n l y up . t o order zero:
(1 -
(7y4 =
1+
"r);
2
)
(4.11)
.The r e s u l t i s
The t r e a t m e n t of (4.9) i s similar: t h e a n a l o g u e s o f ( 4 . 1 0 ) a n d (4.11) a r e
il and
-
(gy4 1 (q(1o((y)2)) =
1+
4
t
+
183
PARABOLIC S I N G U I A R PERTURBATION
thus t h e f u n c t i o n y,
i n ( 4 . 9 ) can be expressed as follows:
(4.13) We combine now (4.6)-(4.7)
with ( 4 . 8 ) - ( 4 . 9 ) , making use of t h e asymptotic
expressions (4.l-2) and (4.13): t h e r e s u l t i s
with
The next t a s k i s t o o b t a i n an e s t i m a t e f o r t h e f u n c t i o n i n (4.14)-( 4.15) which i s uniform w i t h r e s p e c t t o
in
s
0
<_ s <_ t ( & ) and which i s a t t h e
same t i m e independent o f € , t > 0. This i s e a s i l y done keeping i n mind t h e comments a f t e r ( 3 . 6 ) ; a l l we have t o do i s t o r e p l a c e t h e remainder
by 1
+ o((1 +
(which amounts t o r e p l a c i n g
$I1)
O ( X - ~ )b y O ( ( 1
+ x ) ~ i)n ( 3 . 5 ) ) and t h e n
note t h a t t h i s l a s t expression remains bounded for a l l values of
E,
t > 0.
The r e s u l t of t h e s e manipulations i s t h e bound E -2
in
0
IvJ(t,SjE)
-
Jr(t,SjE)I < - c(t-3/2 + s 2 t -5/2)e-s2/4t
5 s <- t ( E ) , where
C
does not depend on
we t a k e advantage of t h e i n e q u a l i t y
E
or t ; i n t h e exponent
(1 - (Es/t)2)1/2
T o use (4.16) i n t h e e s t i m a t i o n of
(4.16)
5 1- (E~/t)~/2.
(4.1) we t a k e p r o f i t of t h e
w e l l known formula. m e-'
2 /4tcosh
ws ds = ( n t )l/2e(u2t
(4.17)
184
PARABOLIC SIIKULAR PERTURBATION
(which w a s a l r e a d y used i n QVI.2) and of i t s d i f f e r e n t i a t e d version
La
2
s2e"
/4t cosh
ws ds
(4.18) both v a l i d f o r
t > 0.
To complete t h e e s t i m a t i o n of (4.1) it only remains t o dispose of t h e f i r s t ( n o n i n t e g r a l ) term.
if 0 <
This i s done observing that
< 1/h. v < 1/2 f i x e d i n ( 4 . l 2 ) , (4.13) and t h e i r consequences (4.14), (4.15) and (4.16) we o b t a i n from (4.17) and (4.18): E
Taking
THEOREM 4.1. and of
(0
E,t
<
There e x i s t s a constant E
< 1/h, t > 0 )
independent of
C
2
J I B ~ ( ~ ; E5) Ic(w* J
+
l/t)ew
The following r e s u l t e s t a b l i s h e s that of t h e d e r i v a t i v e THEOREM 4.2.
of t h e semigroup
S'(%)
Let
u
0
for a l l
= 0
(E)
w
2
0
such t h a t
.
(4.20)
(5' 1%;~) i s an approximation S(^t). E
> 0,
y(E)
E
E
such
that 2 E U p )
4
uo
(E
+
(4.21)
o),
u(t;E)
t h e generalized s o l u t i o n of (2.1), t ( E ) > 0
holds.
Then t u ' ( t jE)
uniformly on compacts of s o l u t i o n of (2.2) w i t h respect t o
uo
t
t(E)
u(0) = uo.
if 1 1 ~ ~ 1 1is
4
,
such t h a t (3.20)
t u ' (t)
where
(4.22)
u(t)
is t h e g e n e r a l i z e d
The convergence i s uniform with
bounded.
The proof i s e s s e n t i a l l y similar t o t h a t of Theorem 3.6; assuming
that (4.22) f a i l s t o hold t h e r e e x i s t s a sequence sequence
[tn] and a bounded sequence
{un}
in
{En],
E
a bounded
such that
185
PARABOLIC SINGULAR PERTURBATION
tn/En
2 4
m
and
- S ' (tn)unl/ 2 6 > 0 . We choose 'n An obvious d i f f e r e n t i a t i o n under the i n t e g r a l
tn//B'(tn;En)un
according t o (3.21). s i g n shows that
2
-s2/4t
C(s)u ds.
(4.23)
We have
where
The f i r s t term in (4.24) i s immediately seen t o tend t o zero using
I n t h e f i r s t i n t e g r a l we use the asymptotic development (4.14)-(4.15) t o show t h a t q ( t , s j E ) + 0 i n (2.17) f o r
0
5
s
5
liC(t)ull.
s(E)
n n and t h e estimate (4.16); t h e i n t e g r a l tends t o zero
then by t h e dominated convergence theorem.
The second and t h i r d
i n t e g r a l s a r e t a k e n c a r e of by (4.2) and (4.3) respectively.
Finally,
t h e f o u r t h i n t e g r a l i s seen t o tend t o zero by means of t h e change o f variables bounded:
tm1l2s = u, n in f a c t ,
keeping i n mind that t h e sequence 2 as
[tn] is
PARABOLIC SINGULAR PERTURBATION
186
ti1/2s(E ) -+ m ( s e e (3.24)). We obtain then a c o n t r a d i c t i o n n and thus c m p l e t e t h e proof of Theorem 4.2.
where
I n t h e case
tn a r e unbounded.
the
THEOREM 4.3.
2
(4.3) tends t o zero a s
= 0,
u)
tn/En+
even i f
m
Hence we may improve Theorem 4.2 as follows:
Let t h e assumptions of Theorem 4.2 hold.
i n a d d i t i o n that
u)
= 0
&
(2.17) ( t h a t i s , t h a t
uniformly bounded cosine function (4.22) i s uniform i n
C(%)).
Assume
generates a
A
Then t h e convergence i n
t >_ t(E).
Results of t h e type of Lemma 4 . 1 and Theorems 4.2 and 4.3 can
w e l i m i t ourselves t o
be obtained f o r higher d e r i v a t i v e s ;
i s not twice continuously d i f f e r e n t i a b l e f o r a l l
Since 6 ( t ; E ) u u
E
E,
6"(t;E).
however, t h e estimates w i l l r e f e r not t o B"(t;E)
i t s e l f but
to t h e "mollified" operator 6"(t;E)(E-1R(E-1;A)). THEOREM 4.4. There e x i s t s a constant C such that t , E ( t > 0 , 0 c E c 1/&)
independent of
u)
> 0
and of
5
116"(t;E)(E-1R(&-1;A))ll
C(w4
f
2 w 2 / t + l/t 2 ) eu) t
The proof i s straightforward b u t tedious. that
U E
D(A),
B"(t;E)u
s o that
.
(4.26)
Assume f o r t h e moment
e x i s t s ; a n e x p l i c i t formula f o r it
can be obtained from (4.1): -t/2&2 G,"(t;E)u =
E3
-t/2E2 C'(t/E)u
-
4
-t/2E C(t/E)U
2E
+
te
2 C(t/E)U
8E6
C(s)u ds
te
2 -t/2E f
t e 4E7
C(s)u ds 2
-t/E
Jo
Ii(((t/E)2
-
2 1/2
s )
/2&) C(s)u ds
Il(((t/E)2
-
S2)l/'/2E) C(s)u ds
PARABOLIC SINGULAR PERTURBATION
187
e 4E5
where terms a r e grouped t o g e t h e r as t h e y appear i n d i f f e r e n t i a t i n g
(4.1).
Note a l s o that t h e t h i r d and f o u r t h i n t e g r a l s a r e i n d i v i d u a l l y
divergent and must be combined i n t o one.
We t a k e a look f i r s t a t t h e
terms that l a y o u t s i d e of i n t e g r a l s . For t h e second we have
and t h e same estimate o b t a i n s for t h e t h i r d and t h e f o u r t h ,
SO
that
t h e y s a t i s f y (4.26) even without t h e i n t e r c e s s i o n of t h e mollifying operator then
E-1R(E-1;A).(4)
For t h e f i r s t term we note that i f
C(^t)v i s continuously d i f f e r e n t i a b l e w i t h
hence
C' ( t ) v = d(t)Av
Since
w
7
v
E
D(A)
C " ( t ) v = C(t)Av,
and we have
0, l/S(t)ii 5 C e x p ( ~ t ) ( ~ and ) t h e r i g h t hand s i d e of (4.29)
can be estimated i n t h e same way as (4.28). To e s t i m a t e t h e six i n t e g r a l s i n (4.27) we d i v i d e t h e domain of integration a t specified l a t e r .
s = s(E)
given by
(3.7), with q < 1/2 t o be
For t h e f i r s t o u t e r i n t e g r a l we t a k e advantage of
(3.17) f o r cp(t,s;E), divided by t E 2 ; f o r t h e i n t e r v a l of i n t e g r a t i o n we use (3.8). The r e s u l t is a bound of t h e form t h e estimate
The s e c o n d , f i f i h and s i x t h i n t e g r a l s a r e t r e a t e d i n t h e sane way: i n a l l c a s e s , due t o t h e a d d i t i o n a l f a c t o r e s t i m a t e of t h e form
t/E2
we end up with a n
188
PARABOLIC SINGULAR PERTURBATION
A s pointed out a f t e r (4.27) the t h i r d and f o u r t h i n t e g r a l s must be
combined i n t o one t o a m i d divergence a t
s = t/E
w r i t t e n s e p a r a t e l y only f o r typographical reasons).
( i n f a c t , they a r e The basis of the
r e s u l t i n g estimation w i l l be t h e asymptotic s e r i e s f o r the h n c t i o n obtained from (3.6): Q(x) = X-~(X-~I~(X))'
we deduce from it that
The combined integrand of the f o u r t h and f i f t h i n t e g r a l (including f a c t o r s outside of the i n t e g r a l ) i s
-
2 -t/2&2 t e Q ( ((t/E)2
16E~
-
~~)'/~/2E)C(s)u.
I n view of (3.30) we have
where p(t,S;E) = t
(3
(4.34)
is increasing w e can bound the r i g h t hand side of (4.34) by i t s value a t s = s ( E ) subsequently deleting the f a c t o r 6$/t from t h e outer parenthesis. The r e s u l t i s an upper bound f o r
Since
-t
x)-5/2ex
t h e combined integrand of the form
Therefore, the i n t e g r a l can be bounded by the following expression:
This completes the consideration of the outer i n t e g r a l s .
We look a t t h e inner i n t e g r a l s . t h e i n t e g r a l belaw:
We begin by grouping them i n t o
PARABOLIC SINGUL4R PERTURBATION
189
O(t,s;E)C(s)u ds.
Using t h e asymptotic developments (3.5) f o r
Io, I1 and Ii of
m = 1 i n t h e f i r s t and f o u r t h i n t e g r a l s and of order
order
i n t h e r e s t we o b t a i n f o r
B
m = 2
a n expression of t h e form
a l i n e a r combination of terms of t h e form
with X
with
(4.36)
j = 2,1,0,C
f o r each t e r m
expression f o r
J
>
We then use T a y l o r ' s formula of order 2 ) 'j, ending up w i t h t h e following
U . , ~ .0.
J
(1 - ( E s / t ) X:
o(&)) 2
where each
i s independent of
X,(t,s)
t > 0
cosine f u n c t i o n
and apply formula C(^s) = cos og,
(in fact,
E
(4.27) i n
where
t h e space
(4.39)
is a f i n i t e
X,
>_ 0 ) . We
s@t-* w i t h ct:B
l i n e a r c o m b i d t i o n of terms of t h e form then f i x
2j
E = C
t o the
i s a r e a l parameter.
0
Naturally, t h e r e s u l t must be t h e second d e r i v a t i v e of t h e s o l u t i o n of E 2t " ( t j E )
4-
< ' ( t ; E ) = w 2< ( t j E )
,
(4.40)
w i t h i n i t i a l conditions <(t,O)
= 0 , < ' ( t ; O ) = E -2
,
(4.41)
hence
< ( t F )= y 4s ( t F ) where
Yw(t;E)
Y
is t h e f b n c t i o n defined i n (3.3). <"(t;E)
-
Q
4
e
-0
2
We check e a s i l y t h a t
t
(4.42)
t > 0 i s being kept f i x e d , it follows from (4.30), (4.31) and (4.35) t h a t t h e o u t e r i n t e g r a l s tend t o zero as E -, 0; we o b t a i n
Since
t h e n making use of (4.28) and following comments t h a t lim E+O"O
O(t,s;E) cos
QS
ds =
0
4
ems2'.
(4.43)
190
PAFABOLIC SINGULAR PERTURBATION
Observe t h a t
We t r y next t o i d e n t i f y t h e d i f f e r e n t terms i n (4.39). E2/r,t
+
and t h a t
0
-, 0 i n t h e i n t e r v a l
Es/t
0 < s < t ( & )O .n t h e o t h e r
hand, on account of (4.37) and (4.39), of t h e form of each X
3’
estimating t h e exponent i n (4.37) i n t h e same way used t o o b t a i n (3.16) and making use of t h e dominated convergence theorem we deduce from (4.39) that
By uniqueness of Fourier cosine transforms we obtain that X . ( t , s ) = 0 J
2
-s
(&)
$qZe
2
/4t
me - m e 3
-s2/4t
-s2/4t
4
t
3 s2
-s2/4t
(4.45)
Replacing back i n (4.39), we see that t h e sum reduces t o a unique
The e s t k t e derived from (4.46) Lemma 4.4 s i n c e
E2/t
i s not good enough f o r t h e proof of
need not remain bounded.
To o b t a i n t h e
required bound we workwith t h e asymptotic developnent (3.5) minding t h e comments a f t e r (3.6) on obtention of bounds, as i n t h e argument leading t o (4.16).
The estimate obtained i s of t h e form
) X ( t , S , & ) ) <_ C(t’5l2 + s2 t -7/2 in
0
5
s
5
inequality
t(E),
where
(4.47)
does not depend on E or t. Using t h e 5 1 - (Es/t) 2/ 2 i n t h e exponent as we
C
(1 - (Es/t)2)1/2
d i d i n obtaining
s4t-9/2)
(4.16) we deduce t h a t 2
J@(t,S;E)I 5 C(t - 5 / 2 in
0 <_ s 5 t ( E ) , where
C
+
&-7/2
+
s4t-9/2)e-s
is independent of
E and
To complete the proof of Lemnla 4.4 w e use (4.18),
/4t
(4.48)
t. differentiated
191
PARABOUC SINGULAR PERTURBATION
once a g a i n : L m s 4 e - ' 2/4tcosh
cus d s = l 2 ~ r ~ / ~2 t +~ 4/ ~81/2t7/2w2ecu2t e~ ~ 2
+ 1 61/2t9/2w4ecu ~ t RF,MARK 4.5.
The c a s e
w = 0,
excluded from Lemma cu > 0
incorporated noting t h a t t h e hypotesis deduce that
that
118(t)ll
5
Ct,
If
w = 0
4.4 can be
was only used t o
which i n e q u a l i t y appears i n t h e
IlS(t)II 5 C exp cut,
estimation (4.29).
(4.49)
t h e n we can only a s s e r t i n g e n e r a l
thus t h e r i g h t - h a n d s i d e of (4.29) i s bounded
as f o l l o w s :
Accordingly, t h e following e s t i m a t e holds f o r
6"(t;E):
We can state u s i n g t h e preceding arguments a convergence r e s u l t for
-1
;A))
5,"(t;E)(E-&(E
of Theorem 4.2. result for
whose proof i s very much t h e same as t h a t
We i n c l u d e i n t h e s t a t e m e n t below t h e corresponding
6'(t;E)
which is nothing b u t a r e f o r m u l a t i o n of Theorem
k.2:
THEOREM 4.6.
Let
t(E)
> 0
t6'(t;E)
be such t h a t (3.20) holds.
-
tS'(t),
t*E'l(t;E) (E-$(E-l;A>)
uniformly on compacts o f
t >_
t(E)
4
Then (4.52)
t2S"( t )
,
(4.53)
i n t h e topology o f
(E).
Obviously, r e s u l t s of t h e type o f Lemma 4.4 and Theorem 4.6 can be obtained f o r d e r i v a t i v e s of any o r d e r o f
6.
We omit t h e d e t a i l s .
I n a s e n s e , t h e r e s u l t s above do not t e l l t h e whole s t o r y about
5" s i n c e t h e smoothing o p e r a t o r
E-lR(E-l;A)
only plays a r o l e i n
t h e f i r s t term on t h e r i g h t hand s i d e of (4.27); b e s i d e s , t h e f i r s t
t e r m a l s o makes it necessary to s e p a r a t e t h e c a s e t i o n purposes.
is :
A s t a t e m e n t on
@'(t;E)
u)
= 0
f o r estima-
t h a t avoid t h e s e inconvenients
192
PARABOLIC SINGULAR PERTURBATION
THEOREM 4.7 w
2
and of
0
IlG"(t;E)U
(a)
-
E
.There e x i s t s a constant
( t > 0, 0 <
t,E
-
- j e t/2E2
c ' ( t / E 1UII 2
5 c(w4 + a2/t + i/t )\lull (b)
-
E -3e-t/2E
.
(4.54)
D(A)
QVI.5
n a,
2 C'(t/E)u)
t2S"(t)u
(4.55)
t >_ t ( E ) uniformly w i t h r e s p e c t t o i s any bounded s u b s e t i n E.
uniformly on compacts of E
(u E D(A))
We have t2(6''(t;E)U
u
independent of
C
< 1/40) such t h a t
E
where CB
The homogeneous equation.
Rates of convergence.
We show i n t h i s s e c t i o n t h a t i f t h e r e i s no ''crossover" of i n i t i a l conditions ( i . e . i f we have uo,
uO(&)
r a t h e r than (3.34)) then
t
5
2 E
u1(&) -.
E
respect t o
u
D(A)
D(A)
(5.1) u(%)
u0
E
uniformly i n
D(A)
or t o c e r t a i n
I n contrast with the not be uniform w i t h
(Iu/(is bounded.
be t h e o p e r a t o r a c t i n g on t h e i n i t i a l c o n d i t i o n
i n (2.14), i . e . &(t;E) = e 4 / 2 2 C(t/E) E
and E.
3vI.4, convergence w i l l
even i f
Let Q(t;E)
o
-t
converges t o
u(^t;E)
subspaces intermediate between
u
as
w i t h p r e c i s e r a t e s of convergence i f
0,
r e s u l t s of 3Vr.3 and
If
o
both
R(:;E)u
d i f f e r e n t i a b l e , t h u s s o is
+ 5 1R ( t ; E ) + 2 1& ( t j E ) .
(5.2)
a r e twice continuously
and B(t;;E)u u(;;E)
uO(E)
= Q(;;&)U.
The d e r i v a t i v e
r)
v(t;E) = u ' ( t ; E ) i s a generalized s o l u t i o n of (2.1) with i n i t i a l conditions v(0;E) = u ' ( 0 j E ) = 0 and v ' ( 0 ; E ) = u"(0;E) = E -2Au. Hence, by uniqueness, we must have ( t ; E ) = & ' (t;E)U = 6(t;E)Au.
(5.3) 2 On t h e other hand, we may w r i t e (4.1) i n the form W ( t ; E ) = E - Q ( t ; & ) -2 E 6 ( t ; E ) , hence U'
G(tjE)U = &(tjE)U
-
2 E
G'(tjE)U
.
Applying t h i s e q u a l i t y t o a n element of t h e form Au we o b t a i n
(5.4) and using (5.3)
-
PARABOLIC SIPU'GUWI PERTURBATION Q ' ( t j E ) u = AiS(t;E)U
-
193
.
2 6'(t;E)Au
E
(5.5)
s o t h a t Q ( i ; & ) u i s a genuine s o l u t i o n of t h e nonhomogeneous first order equatior? (2.2). Consequently, t h e variation-of-constants
(1.5.3)applies and we have
formula
-
Q(t;E)u
lb(t;E)ll <_ C O Q w ( W= where
C
- s ) ~ ' ( s ; E ) A uds
S(t)U = - E 2 L t S ( t
c0
jit ew2(t-s)y'(s;E) w
a r e the constants i n (2.17)
0'
=
and
-&
2Q ( t ; & ) Au.
(t
ds
Yw
2
0)
(5.6)
, (5.7)
is the function i n
(3.3). It w i l l be divided i n s e v e r a l steps.
Proof:
e-AtS(t)u d t (see
(1.3.8)).
=I
u
On the other hand, i f
(A
If
u
e-ht6(t;E)u
(5.8)
D(A),
E
e'htt51
dt =
(t;E)u
dt =
1 22 u & A
0
+
E,
> w)
,m
L(h)u
E
Adi(A)u - 1 C(A)U -u + 1 2 h2 &*A
+ L m e - A t 6 f ' ( t ; E ) u d t = &'A2
( h > w).
E
so t h a t
2 h2 I f A
(E
- A)L(A)u =
u and we deduce using denseness of
D(A) that ( A > w2 ).
X(A) = R(E2 A2 + A;A)
(5.9)
Accordingly,
W e use now (11.2.11):
=k m
hR(A2;A)u
e-At@(t)u d t
( A > w, u
f
E).
(5.11)
Making use o f (5.11) and of the cosine f u n c t i o n a l equation (11.3.1) f o r C(t)
we obtain
2 2pv R ( ~ ~ ; A ) ;A)U R(~ =dmkae-(Ps*t)(C(~
+
t ) + C(S
-
t ) ) u dsdt
(p,v
> w).
(5.12)
194
PARABOLIC SINGUIAR PERTURBATION
Taking advantage of t h e convolutiun theorem i n t h e d e f i n i t i o n of
i n (5.6) we deduce, making use o f (5.8) and (5.10) t h a t
Q(^t;E)
2 2 m(h;A)R(E A
+
A; A ) u =
( A > w2,
dt
E).
(5.13)
( A > w 2 ),
(5.14)
u
E
By v i r t u e of (5.12) we m y a l s o w r i t e
AR(A;A)R(E
2 2
A
+
A; A)U =
[mlmh(tys,h;E)(C(s
t ) + C(S
-t
-
t ) ) u dsdt
with
Consider t h e s c a l a r cosine f u n c t i o n A
C ( t ) = cosh w t
( 4
< t<
m)
.
(5.16)
Here we have w
s(Z>
2
= e
t
( t 2 0)
I
and G(t;E) = YW(t;E), Yw
as defined i n (3.3); accordingly it follows from (5.7) t h a t $(t;E)
Applying formulas
= Ow(t;E)
.
(5.13) and (5.14) we obtain
rm
Let now
u be a n a r b i t r a r y element of
of t h e d u a l space
E*
with
* IIu /[
=:
function
According t o t h e previous arguments,
*
E, u
a n a r b i t r a r y element
l[ull = 1, and consider t h e s c a l a r
195
PARABOLIC SINGULAR PERTURBATION
Lme-Atr(
t;E)
+
dt =L F ( t , s , h ; E ) ( k ( s
t)
-
-
k(s
(5.18)
t ) ) dsdt
where
Obviously , k(s)
Let
0
(-m
<
<
s
m)
.
(5.20)
be a flrnction defined and i n f i n i t e l y d i f f e r e n t i a b l e i n
R(^A)
A >_ 0.
2
R
We say that
is alternating
(-1) nR (n) (A)
>- o
(in
(A?
0,
t 1 0)
if
n = 0,1,...)
We define correspondingly a l t e r n a t i n g functions i n
.
(5.21)
t >_ a.
It i s obvious that the swn of two a l t e r n a t i n g f u n c t i o n s and t h e product of an a l t e r n a t i n g f u n c t i o n by a nonnegative c o n s t a n t i s alternating.
More g e n e r a l l y , i t follows from L e i b n i z ' s formula that
t h e product of two a l t e r n a t i n g f i n c t i o n s i s a l t e r n a t i n g .
LEMMA. 5.2. alternating.
m(i)
be a f i n c t i o n such that
rn'(%)
Then 6
R ( A ) = e -m(^A)
(5.22)
i s alternating. Proof:
Obviously, it is enough t o show that each summand i n
t h e d e r i v a t i v e of order
with
j,.
.., p
*
n 2 1 of
R ( A)
i s of t h e form
1 and n k+(j-1)+ ...+(p- 1) (-1) = (-1)
n = 1; assuming it is t r u e for n,
This statement is obvious f o r validity for
its
n i 1 follows from L e i b n i z ' s formula.
LEMMA 5.3. Let
E
> 0,
*
m(A) = ( E A Then m' (A)
(5.24)
+
A)
q2
(A,O)
is alternating.
The proof i s l e f t t o t h e reader (Exercise 1).
.
(5.25)
196
PARABOLIC SINGULAR PERTURBATION LEMMA 5.4.
t
+
Aza.
Let
f ( % ) be continuous i n
Assume t h e Laplace transform
m.
t >_ 0 , f ( t )
=
O(exp a t )
Pf(^A) i s a l t e r n a t i n g i n
Then f ( t ) >_ 0
( t >_ 0 ) .
(5.26)
The proof is an immediate consequence of Lemma 1.3.2 ( s e e (1.3.14)). End of proof of Theorem 5.1. We go back t o (5.18). The d e f i n i t i o n (5.15) of t h e flmction h ( t , s , A ; t ) , Lemma 5.3, Lemma 5.2 and the is comments preceding it show t h a t h, a s a function of A, a l t e r n a t i n g f o r any s , t 2 0 , E > 0. Since t h e f i n c t i o n k ( s ) defined i n (5.19) i s nonnegative, it follows from (5.18) t h a t the Laplace i s a l t e r n a t i n g . Thus, by Lemma 5.4, transform of r(ht;E) r ( t ; E ) >_ 0 ( t 2 0 , E > 0 ) . Taking i n t o account t h e a r b i t r a r i n e s s of
*
u and u
,
(5.7) follows, completing t h e proof of Theorem 5.1.
I n a l l of t h e r e s u l t s t h a t follow u(:;&)
u(z))
(resp.
is the
s o l u t i o n of t h e homogeneous i n i t i a l value problem (2.1) (resp. ( 2 . 2 ) ) .
and applying (5.6) and (5.7) to t h e f i r s t term on t h e r i g h t hand s i d e t o estimate t h e other summands we use (3.4) which implies
of (5.28): (taking u
0
(E)
= 0
or
Ilc(t;E)ll <_ C o l w ( t ; E ) ,
u (E) = 0 1 IlG(t;E)II
alternately)
5 COYw(t;E)
( t >_ 0,
E
’0)
*
(5.29)
W e obtain a simpler but l e s s p r e c i s e bound noting t h a t @,(t;&), u?t (Lemma 3.1) and i n t e g r a t i n g ( 5 . 7 ) by p a r t s ; it r e s u l t s YW(t,E) 5 e t h a t Ow(t;E) 5 (1+ w2t)eat so t h a t (5.27) becomes 2 lju(t;E) u(t>li 5 c O2 (1 ~ + w 2t ) e w2t / l ~ u +o ~coew ~ t ~ l u o ( ~ )~ , I I +
-
-
197
PARABOLIC SINGULAR PERTURBATION 2 wLt e I/ul(~)I(
( t 2 0,
+ c0E
Theorem 5.5 implies t h a t when
t
D(A)
E
0
-
/lU(t;E)
uniformly on compacts of
u
u(t)ll
E
> 0)
.
(5.30)
we have 2
= O(E
1
(5.31)
if
0
I1uO(~)- uoIl = O(E
2
and
llu,(~>Il =
o(1).
(5.32)
Estimates of t h e same s o r t can be e a s i l y obtained f o r t h e d e r i v a t i v e u'(t;E)
if
u
0
E
2
D(A )
and
uO(E)
In f a c t ,
D(A).
E
v(%;E) = u ' ( % j E )
i s t h e s o l u t i o n of t h e i n i t i a l value problem (2.1) w i t h v(O;E)=U'(O;E)=U~(E),
~ ( 2 =)
On t h e o t h e r hand,
= u"(0;E) = E
v'(O,E)
-2
(AuO(E)
-
ul(E)).
(5.33)
i s t h e s o l u t i o n of (2.2) w i t h
u'(t)
(5.34)
~ ( 0= ) ~ ' ( 0 =) AuO. Accordingly, we have
THEOREM 5.6.
Assume t h a t
u
2
0
E
and
D(A )
uO(E) E
2 2 l ( u ' ( t ; E ) - u ' ( t ) l l 5 COE @ w ( t ; E ) l ( A uolI + CO+w(t;E)lIU1(E)
-
+ COYW(t;E)/lU1(E)
2
D(A).
-
Then
AuolI
AU,(.)ll
2
2 w t 2 (1 + w t ) e IIA uolI
5
COE
+
c0 ew t(I/U1(E)
2
- AUoll
.
( t 2 0) It follows from t h i s r e s u l t that i f
- Auo(E)/I)
IlU,(E)
+
uo
(5.35) 2
D(A )
E
uO(E) E D(A)
and
then llu'(t;E) uniformly on compacts of Ilu,(E)
-
t 2 0 2
- u'(t)l/ =
2 O(E
(5.36)
)
if
- Au~(E)II =
2
)
and
IIu~(E)
= Of& )
and
/ I A u O ( ~ ) AuoII = O ( E ).
AuoI/ =
O(E
O(E
> , (5.37)
or,e q u i v a l e n t l y , i f Ilu,(E)
- Auoll
Theorems 5.5 and
2
-
2
(5.38)
5.6 a r e e a s i l y s e e n t o i n p l y convergence r e s u l t s
v a l i d f o r a r b i t r a r y i n i t i a l conditions.
PARABOLIC SINGULAR PZRTURBATION
198
Let
5.7.
THEOREM
(resp. ( 2 . 2 ) w i t h u
t i o n of (2.1)
E E
0
uO(E)
~ ( 2 ) ) be
(resp.
u(^tjE)
-. uo,
arbitrary).
-. 0 &s
E'u1(E)
t h e generalized solu-
E
+
Assume t h a t
(5.39)
0.
Then U(tjE)
uniformly on compacts o f Proof.
u.
U(0) =
6> 0
Pick
r(^t)be
Let
u(t)
+
E
(5.40)
0
+
t >_ 0 .
u
and choose
E
D(A)
with
;1
- uoI/ 5 & .
t h e s o l u t i o n of t h e i n i t i a l value problem (2.2) with
Applying Theorem 5.5 and i n e q u a l i t i e s
(5.29), ( 5 . 3 0 ) , we
obtain
-
IIU(tF)
5
COE
5
U(t>ll
2 (1+
2 (u
-
IIU(tF)
+
t ) e w t/lAiiI
5
COE
2
2 w t
e
l l ~ ~ l +l
i ~-
uOl/
2
coew t l l u o ( ~ ) 2 w t
11u1(@)11+ C06 e
-
uo1l
.
(5.41)
> 0
s u f f i c i e n t l y small we c a n obviously make t h e r i g h t hand 2 2C0 & ew a i n 0 5 t 5 a , a > 0. This ends the proof.
E
side <_
2
t ~ ~ u l +( ~coew ) ~ t ~l
2 cO& 2 (1 + w2t > e wt
+ Taking
c0E 2ew
U(t)lI
-
C o e " tlluo(E)
2
t
-
II3t)
:(t>lI +
2
2
Concerning d e r i v a t i v e s , we have
Let
THEOREM 5.8.
that
u(t)
u(tjE),
u~,u~(E E )D(A) AuO(E) a Au, u l ( f ~ )
-
b e its i n Theorem 5.7.
Au0 -as
E
+
Assume
0.
(5.42)
-
Then
U'(tjE) uniformly on compacts of
U'(t)
4
as
E
(5.43)
0
+
t >_ 0 .
The proof follows t h e l i n e s of t h a t of t h e previous r e s u l t . 6 > 0,
,(^t)
and choose
u
E
2
D(A )
such that
llAu
- AuoI/ 5 6 .
Let
Then, i f
is a g a i n t h e s o l u t i o n of t h e i n i t i a l value problem (2.2) w i t h
U(0) = uo we a p p l y (5.29) and (5.35),
obtaining
199
PARABOLIC SINGULAR PERTURBATION
2
+ c 08 e w t
(t
0,
E
(5.44)
> 0).
T h i s completes t h e proof.
5.9.
Convergence i n (5.31) and (5.36) is uniform i n t ? 0 ( r a t h e r t h a n j u s t uniform on compacts of t ? 0 ) i f w = 0 . O f REMARK
course, t h e same observation applies t o a l l t h e other r e s u l t s i n t h i s section. For easy reference l a t e r w e c o l l e c t t h e s e p a r t i c u l a r cases of Theorems 5.5, 5.6 5.7 and 5.8 under a single heading. THEOREM 5.10.
cosine m c t i o n
Assume that A
c(Z>
with I M t ) II 5
Let
u(ht;E)
(2.1)
,
u(%)
generates a s t r o n g l y continuous
co
(4
-1.
be t h e generalized s o l u t i o n of t h e i n i t i a l value problem t h e generalized s o l u t i o n of t h e i n i t i a l value problem
(5.45)
(5.46)
(5.47)
2 00
PARABOLIC S I N G W R PERTURBATION
-
7
UO(E) + uo, ELUl(E)
&s E
0
+
0.
(5.48)
(5.49) uniformly i n
t 2 0
if
AuO(E)
--t
Au,
uI(E)
+
&S
Auo
E
-
(5.50)
0.
REMARK 5.11. The r e s u l t s i n t h i s section do not supersede those i n QVI.4 ( i n p a r t i c u l a r , Theorem j.6 on convergence of u ( t j & ) and Theorem 4.2 on convergence of t h e derivative u'(t;E)}. One reason is that "crossover" of i n i t i a l conditions (see (3.34)) is ruled out here, although t h i s will be remedled i n a sense i n QvI.8 by means of correction terms t o s t r a i g h t e n out convergence near zero.
Another,
and far more hiportant reason, is that the convergence r e s u l t s i n
gVI.3 and sVI.4 a r e uniform with respect t o bounded i n i t i a l conditions (see the statement of Theorem 3.6); more precisely, t h e r e s u l t s a r e o n convergence of
i n t h e norm of ( E ) ,
Q ( Z ; & ) , G ( $ ; E ) , 6'($;E)
i s , i n t h e uniform topology of operators.
that
A s t h e theorems i n t h i s
section make c l e a r , the p r i c e we pay f o r convergence i n t h e norm of
i s loss of convergence i n an " i n i t i a l layer"
(E)
o5t5
t(E),
even
if crossover of i n i t i a l conditions is avoided (see Example 3.10).
We note f i n a l l y t h a t t h e arguments i n 4VI.4 y i e l d bounds f o r G ' ( t ; & ) and &"(t;&)
4.4) not amenable t o t h e
(see Theorems 4.1 and
methods of the present section. It is n a t u r a l t o a s k whether we may obtain convergence of order E
~
0 ,<
~y
< 1 for uo i n spaces intermediate between E and
2
D(A) (D(A ) f o r t h e derivative). This question has s e v e r a l equally n a t u r a l answers, one of which we present here; another can be found
i n the author [1983:4] and a t h i r d , more useful i n p r a c t i c e , w i l l be examined i n 4VI.9. We introduce the spaces
u
E E
b(,
(0
5 CY 5 1) consisting of a l l
such that llAS(t)ull = O ( t Y - l )
as
Equivalent characterizations of t h e spaces BERENS if
[1967:1, pp.
ll1 and 1151:
if
0
t -. O+. kt
ff
5 LY 5
(5.51)
a r e given i n BUTZER1, u
E
HCy i f and only
PARABOLIC SINGULElR PERTURBATION
-
IIS(t)u
S(%)u
(equivalently, i f
a ) . We have Ill
=
D(A)
UII
o(tCY> a s t
=
4
201
o+,
(5.52)
is l o c a l l y Hblder continuous with exponent E i s r e f l e x i v e ; i n t h e general case only
when
H1 2 D(A) can be assured. We use nuw (4.23) t o estimate
S'(t):
2
2
5 ~ ( w+ l / t > e w Let
u
f
Ha.
(t
2
0)
.
(5.53)
Define
IuI,
= ~~u~~ + sup ( w 2
+
l/t)a-le-W
2 tl/AS(t)ul/.
(5.54)
t>_o Obviously,
I *ICYi s
a norm i n
31
CY
(which, i n c i d e n t a l l y , makes
Ha
a
Banach space). The following two r e s u l t s a r e formal counterparts of Theorem 5.5 and 5.6.
The proof of both r e s u l t s i s based on a d i f f e r e n t estimation of t h e operator
a.
commute with A
Assume f i r s t t h a t
u
E
D(A);
since
S
and
6'
and with each other we can w r i t e
=L t
B(t;&)u
It follows from (4.1) that
V(t
-
s;E)AS(S)U d s .
(5.57)
202
PARABOLIC SINGULAR PERTURBATION
-
Take the
(1 cu)-th power of both s i d e s , take the
a-th
power of both
sides of (4.20) and multiply the i n e q u a l i t i e s thus obtained term by term.
The r e s u l t is ll5'(tF)Il
Hence, i f
u
(u)
2
+
2
l/tlffew
(t
2 01.
(5.59)
Za,
E
/b(tF)UII 5
<- CE -2(l*)
+
CE -2(1*)\ulffew2tLlt(w2
- s))"(w2
l/(t
+ l/s>l*
ds, (5.60)
whence the estimates (5.55) and (5.56) r e s u l t .
REMARK 5.u. Direct v e r i f i c a t i o n that an element u to
m y be d i f f i c u l t .
31,
f
E
belongs
S u f f i c i e n t conditions can be obtained using
the theory of f r a c t i o n a l parers of i n f i n i t e s i m a l generators touched upon i n Chapter 111. I n f a c t , we have
Let
LEMMA 5.15.
b
>
.
- A)a)
D( ( b 2 1 The
w
C_
Ua
u
continuously d i f f e r e n t i a b l e of order Hblder continuous with exponent
-
lIs(t)u
t
+
Qm.6.
(5.61)
<_ 1).
D((b1
E
i s continuously d i f f e r e n t i a b l e of order
S(%)u
other hand, it has been proved i n Exercise
as
(Y
r e s u l t i s a consequence of Exercises 3 and 7 i n Chapter 111.
I n f a c t , it follows from Exercise 3 that if
c
(0
O-t,
thus
u
E
UII
CY
= 1/S(t)u
-
CY
>_
0.
S(t)u
i f and only
On the
is
c a 5 1) then S(^t)u is
t>_ 0,
in
c(
(0
that i f
- A)(Y)
s o that
S(0)ull = O(tCu)
Uu.
Singular i n t e g r a l s of Hilbert space-valued f'unctions and
w l i c a t i o n s t o inhomogeneous f i r s t order equations. We prove i n t h i s s e c t i o n a r e s u l t on the i n i t i a l value problem U'(t) = Au(t) v a l i d whenever
A
+
f(t)
(t
2 0),
U(0) = 0 .
(6.1)
generates an a n a l y t i c semigroup i n a H i l b e r t space
The b a s i s of t h e argument (as well a s o f the corresponding theorem f o r t h e i n i t i a l value problem (2.1)) i s t h e following r e s u l t on singular
H.
203
PARABOLIC SINGULAR PERTURBATION
i n t e g r a l s of H i l b e r t space-valued f’unctions.
Let
THEOREM 6.1. values i n
(H)
H
-
defined i n K(Z)
< tc
2 L (-,m;H)
(a)
.
(6.2)
A
K(a)
The Fourier transform
a f u n c t i o n with
and such that
m
n
L (-,a;H) -
(b)
m
1
E
K(Z)
be a H i l b e r t space,
satisfies
-
(X;f)(t) = r m K ( t i’
Then t h e r e e x i s t s a constant
C
( 6.5)
s)f(s) d s .
-m
depending only on
p
and
B
that
II’I1p
where
i n d i c a t e s t h e norm of
LP(-m,m;H).
The proof (of a more g e n e r a l theorem) can be found i n STEIN
[1970:1];the resull; f o r s c a l a r funccions i s i n pp. 29 and 34, while t h e extension t o vector-valued function is i n pp. 46-48. since ) :(K
e L
1
We note t h a t ,
(6.6) follows from (6.5) and Young’s
(-,m;H),
.
Hcwever, what is s i g n i f i c a n t i n Theorem i n e q u a l i t y (STEIN [ 1970:1] ) 6 . 1 i s that C does not depend, among other t h i n g s , of t h e L1 norm of K(%) but only on p and B. This w i l l be d e c i s i v e below. THEOREM 6.2. A
Assume t h a t
A
E
G(cp),
< cp <
0
7r/2
( t h a t i s , that
g e n e r a t e s an a n a l y t i c semigroup) i n t h e H i l b e r t space
T > 0,
1c p <
m,
f(%)
E
L’(0,T;H)
u ( : )
&a
s o l u t i o n of t h e i n i t i a l value problem (6.1). derivative exists
~ ‘ ( tf )L’(0,T;H)
u’(i)
E
0
5t 5
T
t h e (generalized)
Then
( i n the sense that t h e r e
=l t
u(t)
u<^t) has a
such that
LP(O,T;H)
u’(s) ds
(0
H.
5t 5
T))
-
PARABOLIC SINGULAR PERTURBATION
204
Moreover.
u(t)
f
D(A)
i s s a t i s f i e d a.e.
a.e. i n
(and of course on A)
p
0
<_ t 5 T
and t h e equation (6.1)
Finally, t h e r e e x i s t s a constant
C
depending o n l x
such that A
IIU' (
t)
Ip
i Cl/fllp
(6.8)
*
The proof naturdLlY w i l l depend on Theorem 6.1 and ( a variant o f ) t h e representation u'(t) that follows from
LEMMA
space
#
t S1(t
-
s ) f ( s ) ds
(6.9)
The hypotesis l e s s easy t o v e r i f y w i l l be
For t h i s we s h a l l use t h e following r e s u l t .
(c).
t
(1.5.3).
=&
E.
6.3. Assume that
K(^t) be a function with values i n a Banach K(i) is continuously d i f f e r e n t i a b l e for
0 and that
llK'(t)\l 5 B'/tl-2
Then
K(t)
s a t i s f i e s (6.4) ( w s
(t
#
(6.10)
0).
B' = (2log 2)B').
s o that
We use a similar argument i n t h e range
s < t.
The estimation runs i n exactly t h e same way when
t < 0 and we
omit t h e d e t a i l s .
Proof of Theorem 6.2. We say that an H-valued function f ( i ) defined i n 0 <_ t 5 T belongs t o C(O,T;D(A)) i f f ( t ) E D(A) and f ( i ) , Af(^t) a r e continuous. We have already proved (Lemma 1.5.1 ( a ) ) t h a t if f ( z ) E C(O,T;D(A))
of (6.1)
then t h e generalized solution
defined by
=k t
u(t)
S ( t - s ) f ( s ) ds
(0
5 t 5 T)
u(i)
205
PARABOLIC S I N G U U R PERTURBATION
(6.1); i n p a r t i c u l a r ,
i s a c t u a l l y a genuine s o l u t i o n of
Lt
S ( t - s ) f ( s ) ds
u'(t) = L t S f ( t -s)f(s) d s + f ( t ) = A
= / g f S ( t -s)Af(s) d s + f ( t )
Let
( 0 <_ t
f ( t ) be a f u n c t i o n i n C ( O , T ; D ( A ) ) .
5
+
f(t)
(6.2)
T)
Assume t h a t
p
> w,
where
w
i s a c o n s t a n t such lls(t)ll f o r some
Co.
5
wt
f ( t )= kR(b;A)f(t)
Then
belongs t o
b
that t h e previous c o n s i d e r a t i o n s apply.
=k
(6.13)
( t 2 0)
Coe
C(O,T;D(A))
We w r i t e (6.12)f o r
SO
f = f : LL
t
ul(t)
S 1 ( t -s)pR(p;A)f(s)
P
= AltS(t
=k t S ( t
Let
p > w,w
d s + pR(p;A)f(t)
- s)pR(p;A)f(s
- s)kR(p;A)Af(s)
t h e constant i n (6.13).
Consider t h e (H)-valued
function K
P ,P
for t >_ 0 ;
( t ) = e-PtS'(t)pR(w;A)
for
t C 0
we s e t
is infinitely differentiable i n second expression f o r
It follows t h a t particular for
K
PYP
(t)
(6.15)
= emPtS(t)pAR(p;A)
K ( t ) = 0. Obviously, K (t) P>P PL,P t > 0 ( s e e 5111.7). Using t h e i n (6.15) we s e e that
(t)
K f Lr(-m,=;H) f o r a l l r, 15 r 5 m , P?P r = 1, 2 a s r e q u i r e d i n (a) of Theorem 6.1.
We have
(27~)-'/~?~,~(~) = L m e b t K PYP ( t ) d t
in
PARABOLIC S INGUIAR PERTURBATION
206
It follows from t h e first inequality (1.3.9) t h a t
5 PC0(IL
IlCLR(IL;A>ll
- w1-l
(P
(111.7.6) i n Theorem 111.7.1 t h a t ,
and from
> w),
(6.18)
if p i s s u f f i c i e n t l y large,
s o that (6.17) implies that (6.3) i n Theorem 6 . 1 is s a t i s f i e s with a
constant
B
t h a t does not depend on
p
(say, i n 1.1
1 p).
To handle
( c ) we use t h e following estimate f o r t h e derivatives of an a n a l y t i c semigroup, which i s a consequence of t h e r e s u l t s i n Chapter I11 (see formula (111.7.U)): -m w i t IIS(~)(= ~ )III IA % ( ~ 5 ) I cmt I e
where
Cm i s a positive constant and
( t > 01,
w1 >
w, w
(6.19)
t h e constant in
(6.13). A moment's r e f l e c t i o n shows t h a t it i s possible t o deduce from this inequality, from (6.18) and from t h e first expression i n
thus we can apply Lemma 6.3 t o show t h a t
K
PYP
s a t i s f i e s as well (6.4).
We have thus v e r i f i e d a l l t h e hypc'teses of Theorem 6 . 1 f o r t h e kernel K
P7P
(i)
w i t h a constant
t h e r e e x i s t s a constant
B
C
that does not depend on p .
Accordingly,
depending on p but not on p
such t h a t
if
for
f E LP(O,m;H),
then llull
Now, i f
M> m> 0
T > 0
and
CY
Lp (0 ,m ;H)
5
Cllfll
(6.21) LP(O,m;H)'
is a r b i t r a r y , t h e r e obviously e x i s t constants
(depending only on
p,cu,T)
such t h a t
(6.22) hence, i f
207
PARABOLIC SINGULAR PERTURBATION
-
S'(t for
f
E
s)pR(p;A)f(s) ds
L~(o,T;H>,
We r e t u r n t o
(6.14).
Keeping i n mind that f ( t ) E C(O,T;D(A))
and
making use of t h e f a c t that pR(p;A)u
-+
u as
(6.24)
p --.
( s e e Exercise I.l7), and of t h e uniform bound (6.18) we can use t h e dominated convergence theorem i n combination with (6.22) and deduce
i s t h e s o l u t i o n of (6.1) (given by (6.11)) then
u(i)
that if
Let, finally,
C(O,T;D(A))
llf,
{$(:)I
LP(O,T;H),
be an a r b i t r a r y function i n
f(z)
a sequence i n
such t h a t
- fll
- 0
as
nhm
L~(o,T;H)
and
u
(i)
v(t>
E
L~(o,T;H).
n applied t o
.
t h e s o l u t i o n of (6.1) with fn
-
fm that
Since
f = f It r e s u l t s from (6.25) n converges i n t h e Lp norm t o a
.A(;)
u n ( t > -, u ( t )
o <- t 5
uniformly i n
T,
I\
where
u(t)
is t h e weak s o l u t i o n of (6.1), we can t a k e limits i n t h e
equality
and conclude t h a t ( 6 . 7 ) holds with of t h e claims on
u(;)
u l ( t ) = v(t).
we w r i t e (6.12) f o r
fn
To prove t h e r e s t
i n t h e form
.
u ' ( t ) = Aun(t) + f n ( t ) n
(6.26)
-
uh(f)
u' i n L ~ ( O , T ; H > , passing i f necessary t o a subsequence, we may assume t h a t u h ( t ) + u ' ( t ) and f n ( t ) f ( t ) i n a s e t e of full measure i n 0 5 t 5 T. Using t h e f a c t that A is
Since
closed we obtain t a k i n g limits i n (6.26) t h a t u ' ( t ) = Au(t) i f ( t )
(t
u(t) E
E
D(A)
and
e).
This ends t h e proof of Theorem 6.2. The next r e s u l t on t h e nonhomogeneous equation (6.1) i s considerably simpler and not r e s t r i c t e d t o H i l b e r t spaces. Banach space
E,
t h e class
Ha(O,T;E)
Given an a r b i t r a r y
i s defined as follows:
PARABOLIC SINGUIAR PERTURBATION
208 for
0
5 CY 5 1, Ua(O,T;E)
a-Hblder continuous i n
The spaces
E
Let
6.4.
H ~ ( o , T ; E ) ,o <
semigroup S(i)
T,
defined and
f
and is endowed w i t h t h e norm
a r e Banach spaces.
aa(O,T;E)
THEOREM
f(^t)
c o n s i s t s of a l l functions
5 t <_
0
cy
E.
E
be an a r b i t r a r y Banach space,
5 1, and assume
Then
u(t),
A
generates an a n a l y t i c
t h e generalized s o l u t i o n of (6.1)
i s a genuine s o l u t i o n , t h a t is, u ( i ) i s continuously d i f f e r e n t i a b l e i n 5 t 5 T, u ( t ) E D(A) (6.1) i s s a t i s f i e d i n 0 5 t 5 T. Finally,
0
t h e r e e x i s t s a constant
Ca
such t h a t (0 5 t I T)
llu'(t)ll 5 CaIf(:)la
Proof: derivative
We use again i n e q u a l i t y S (t)
.
(6.28)
*
(6.19), t h i s time f o r t h e
first
I n view of (6.27 ) we have
hence t h e function (6.30) i s w e l l defined i n 0
0 5 t 5 T.
5 t < t ' 5 T. Ignoring ( a s we
We show that
) : ( v
i s continuous.
Let
may) t h e nonintegral term, we have
I n view of ( 6 . 2 9 , t h e f i r s t i n t e g r a l i s bounded by a constant times
The integrand i n t h e second i n t e g r a l tends t o zero a s
t'
-
t
-
0
and
can be estimated, using (6.29) again, by a constant times
thus the i n t e g r a l tends t o zero due t o t h e dominated convergence theorem. It follows from inequality (6.29) that t h e r e e x i s t s a constant
Ca
PAFtABOLIC SINGULAR PERTURBATION
209
such t h a t
Let
be t h e weak solution of (6.1).
u ( : )
-
S(t
-
s)(f(s)
Writing
f(t))ds +
we see using once again (6.29) that
(6.33)
u(t)
E
D(A) and
n t
= p ( t
-
s)(f(s)
- f(t))ds + S(t)f(t) - f ( t )
,
(6.34)
s o that
which shows t h a t
is continuous i n 0 <_ t 5 T. Thus, t o i s a genuine solution of (6.1) we only
Au(t)
complete t h e proof that
u(t)
have t o show that
=
u’(t)
v(t)
,.
a.e. or
which, i n view of (6.32), a l s o implies (6.27).
follows. Assuming that
integrating
by parts
f(t)
We can do t h i s as
i s continuously d i f f e r e n t i a b l e we have,
,
P t
v(t> = -
- j o(DsS(t - s))(f(S)
- f(t))dS + S(t)f(t)
n t
\IO
P t
S(t -s)f’(s)ds+S(t)f(O)=J
(6.37) S(s)fl(t -s)ds+S(t)f(O)
.
0
Interchanging t h e order of integration,
Lt
v(s)ds
= k t S ( r ) (J,”f’
+ktS(s)f(0)ds To prove (6.36) f o r
f
E
H,
=
Lt
- r)ds
(s
S(t
-
s ) f ( s ) ds
we s e l e c t a sequence
.
(6.38) {fn] of continuously
d i f f e r e n t i a b l e functions such th a t
Ilf - f n l H Cy
0
Once this i s donewrite (6.38) for fn and take limits: that t h i s i s j u s t i f i e d follows from (6.32) applied t o f - f n . as
nd
-
m.
210
PARABOLIC SINGUIAR PERTURBATION
QVI. 7
The inhomogeneous e q u a t i o n :
u(
convergence of
u'( t ; & )
t;E)
We examine i n t h i s s e c t i o n e s t i m a t e s and convergence r e s u l t s for
t h e generalized solution
u( t ; E )
of t h e nonhomogeneous i n i t i a l v a l u e
problem &'u'l(t;&)
+ u'( t ; E )
= Au(t;E)
= 0,
U(0;E)
+
( t >_ 0 ) ,
f(tjE)
(7.1)
.
= 0
UJE)
The l i m i t w i l l be t h e s o l u t i o n of
u ' ( t ) = Au(t) Roughly speaking,
-t
f(t)
( t >_ 0 ) ,
(7.2)
u(0) = 0 .
t h e e s t i m a t e s a r e "dynamic" ( t h a t i s ,
&-dependent) c o u n t e r p a r t s of t h e r e s u l t s i n
QVI.6; the main t o o l s
will be t h e s i n g u l a r i n t e g r a l methods t h e r e a n d t h e estimates on and 6" o b t a i n e d i n QVI.4. 'The f i r s t results (Theorems 7.2 a n d 7.4) are a c t u a l l y independent o f s i n g u l a r i n t e g r a l s and a r e v a l i d i n a g e n e r a l Banach s p a c e E; t h e o t h e r s (Theorem 7.6) a r e r e s t r i c t e d t o
6'
H i l b e r t space-valued f u n c t i o n s . Throughout t h i s s e c t i o n
(7.1) and u ( i ) u(tjE) =
J:
u(;;E)
is t h e generalized solution of
is t h e generalized s o l u t i o n of (7.2):
=lo -
we have
,t
5 ( t -s j E ) f ( s j E ) d s ,
u(t)
S(t
s ) f ( s ) ds.
(7.3)
The f i r s t r e s u l t (which w i l l n o t be u s e d i n t h e s e q u e l ) i s on c o n d i t i o n s on s o l u t i o n of
f(t;E)
that g u a r a n t e e t h a t
i s a genuine
u(tjE)
(7.1).
LEMMA 7.1.
Assume t h a t one of t h e f o l l o w i n g two c o n d i t i o n s is
satisfied:
(a)
f(t)
(b)
f(t)
D(A)
f
and
f(t), A f ( t )
are c o n t i n u o u s i n
0 5 t
5 T,
or Then
is continuously d i f f e r e n t i a b l e i n
u(t;E)
0
<_ t 5 T.
is a g e n u i n e s o l u t i o n of (7.1).
T h i s r e s u l t c a n be reduced t o Lemma 11.4 . 1 t h r o u g h t h e t r a n s f o r m a t i o n s u s e d t o t r a n s m u t e t h e s o l u t i o n of ( 2 . 1 ) a n d viceversa.
i n t o t h e solution of ( 2 . 3 )
211
PARABOLIC SINGULAR PERTURBATION
Assume t h a t
THEOFEM 7.2.
o
4
T
<
hen
m.
~(Z;E)
(a)
(resp. u(Z))
d i f f e r e n t i a b l e ( r e s p . continuous) i n 2 w T Coe lif(kaly
IIdt;&)II5 (c)
If
f(:;&)
f(i) &
+
1
i s continuously
5 t i T.
0
1idt)ii 5
Ll(0,T;E)
with
f ( % ) E L (0,T;E)
f(%;E),
2 coew
(13)
Tllf("tll,
(OFt5T)
u(ht;&) -+ u ( t )
then
*
(7.4)
uniformly i n
O
Proof:
I n e q u a l i t y (7.4) f o r
u(%)
was a l r e a d y shown i n Lemma
1.5.2; t h e corresponding e s t i m a t e f o r u ( t ; E ) way from (7.3) and t h e e s t i m a t e (3.4) f o r
2
(t 2 0)
I I ~ ( ~ ; E >5I ICoew
Continuity o f
0
If
5 t < t' 5
(7.5)
T
we have
-t
t' l i u ( t l ) -u(t)ll<_/;
.
was shown as w e l l i n Lemma 1.5.2, b u t we
u(t)
s k e t c h t h e proof anew.
follows i n t h e same
B(^t;E),
i i S ( t ' - s ) - S ( t -s)llllf(s)llds
llS(t' -s)llds+]
' t
0
. (7.6)
The f i r s t i n t e g r a l i s shown t o converge t o z e r o on account of t h e estimate 2 m t lls(t>llI Coe
(t 2 0 )
(7.7)
*
The integrand of t h e second tends t o z e r o due t o c o n t i n u i t y of and i s bounded i n norm by a c o n s t a n t times
llf(s)ll,
S(^t)
t h u s we show
t h e i n t e g r a l tends t o z e r o using t h e dominated convergence theorem.
To prove that
i s continuously d i f f e r e n t i a b l e we note that it
u(t;E)
follows from (2.14) t h a t t h e norm o f u'(tjE)
(E)
in
B(%;E) i s continuously d i f f e r e n t i a b l e i n
t >_ 0 ;
exists for a l l
t
t h i s i s e a s i l y s e e n t o imply that and
=I -'
u'(t,E)
t 6l(t
-
s;&)f(s)ds.
0
Continuity of of
u(%).
To show
ul(t;&) (c)
i s d e a l t w i t h i n t h e same way as c o n t i n u i t y
we note t h a t
(e(t-S;&) -S(t
-s))f(s)ds.
If uniform convergence does not p r e v a i l t h e n t h e r e e x i s t s a sequence
PARABOLIC S INGUIAR PERTURBATION
212
[tn] i n the i n t e r v a l 0 <_ t 5 T such t h a t llu(tn;En) - u(t)ll i s bounded away from zero f o r some sequence {En) such t h a t E n + 0. We may assume t h a t tn + t (0 5 t 5 T ) . If t = 0 a contradiction is obtained with t h e help of (7.5) and (7.7); i f t # 0 we deduce from Theorem
3.6 that B(tn
as
n
-t
- SjE)f(S)
4
S(t
-
SjE)f(S)
This time t h e contradiction r e s u l t s from t h e dominated
03.
c onvergence theorem.
REMARK 7.3.
When
UI =
0
we can take
T =
i n the statement of
m
Theorem 7.2; i n e q u a l i t i e s (7.4) become llu(t;E)Il
5 Col!f("t~)Il1, Ilu(t)Il 5 coIIf("tIl1
Moreover, we obtain uniform convergence of
(0
u(t;E)
5 t IT) *
in
t 2 0
(7.10) (this
i s a consequence of (7.9)).
The next r e s u l t establishes uniform boundedness and convergence of t h e d e r i v a t i v e
7.4.
THEOREM 0
5
(a) t 5 T.
g
Assume that
and
u(^t;&) (b)
-,
Proof: -
f(t;E), f ( t )
f
aW(O,T;E), 0 <
There e x i s t s
C ,
(0
5 t IT I * (7.11)
+
f(i)
in
The f a c t that
u(%)
i s a genuine s o l u t i o n of (7.2) i n
second estimate (7.11):
6.4 together with the
continuous d i f f e r e n t i a b i l i t y of
follows from Theorem 7.2, under t h e only assumption t h a t
u'(t;E)
5 1.
such that
0
continuous.
cy
a r e continuously d i f f e r e n t i a b l e i n
U(t), U ' ( ~ ; E )5 1 0 ( 0 , ~ ; ~ )then U(t;E) uniformly i n 0 5 t 5 T. ~ ' ( t )- S(t)f(O)
f(Z;E)
a(t,e)f(O)
u(2)
5 C c y I f ( b ) l W Yllu'(t>ll 5 CcyIf("tl,
llu'(t;E)ll (c)
under stronger assumptions on t h e functions
f("t.
f(Z;E),
Then
u'(t;E)
u'
(t;E)
f(%) i s
To show t h e f i r s t inequality (7.11) we w r i t e L
Lt
6'(t
-
s;E)(f(S;E)
and use the estimate (4.20) f o r B ' ,
-
f(tjE))
i-
B(t;E)f(t;E).
which implies t h a t
(7.12)
213
PARABOLIC SINGULClR PERTURBATION
(7.12) t h a t
Accordingly, it follows from
which y i e l d s (7.11). We prove f i n a l l y t h e convergence statement ( c ) .
(7.8)
for
u'(t;E)
and
(6.9)
for
u'(t)
Using formulas
we e a s i l y assemble t h e
following expression: u'(t;c)
-
u'(t)
= j- t
6'(t
-
s;E)(f(s;E)
-
s)(f(s)
-
f(tjE))
f
G(t;E)f(t;E)
0 n t
-Jo-S'(t
=
j o-6'( t -
s ;&)
( (f( s ;E)
f j 0 - ( W ( t -s;E)
-
f(t))ds
- f ( s ) ) - ( f ( t ;E)
f
S(t)f(t)
- f ( t )) )ds t 6(t ;E)
f (t ; E )
- S ' ( t - s ) ) ( f ( s ) - f ( t ) ) ds - S ( t ) f ( t ) .
(7.14)
The f i r s t i n t e g r a l can be estimated i n norm by a n expression of t h e f orrn
The integrand i n t h e second i n t e g r a l tends t o zero i n moreover, we have, using (6.19) and
Theorem 4.2;
0
5
s
< t
by
(7.13),
F i n a l l y , we have
+
11(6(t;E)
-
S(t))(f(t)
2 5 C0ew tllf(:;E) f
CIlt"(6(tF)
-
f(0))ll
-
f(;))la
-
s(t))llllf(~)lla
.
(7.16)
The f i r s t term obviously converges uniformly t o zero i n The same i s t r u e of t h e second due t o Theorem
3.6.
0
5t5
T
.
214
PARABOLIC S I N G W R PERTURBATION
REMARK 7.5. G(t;E)f(O)
We s e e e a s i l y t h a t t h e c o r r e c t i o n terms
and
S(t)f(O)
t h a t produce uniform convergence of t h e
d e r i v a t i v e s cannot be dropped; t h i s i s due t o t h e f a c t t h e r e cannot be uniform convergence of
unless
u'(t;C)
to
u'(t)
(since
f(0) = 0.
I n t h e r e s t of t h e chapter we s h a l l assume that
E
= H
is a
Hilbert space; t h e estimations and convergence r e s u l t s w i l l be based on Theorem 6.1 on s i n g u l a r i n t e g r a l s .
THEOREM 7.6. belong t o
Assume H
LP(O,T;H)
(0
i s a H i l b e r t space, and l e t
continuously d i f f e r e n t i a b l e and u ( t ) E D(A)
(c)
There e x i s t s a constant
Proof:
u(t)
v
i n t h e sense that t h e r e e x i s t s (b)
1< p
m,
E
<
a).
P
L'(0,T;H)
with a.e.
including t h e second i n e q u a l i t y
(7.17)' u'(t;E)
u(^t)
S'(t),
Lp(O,T;H)
of (7.2)'
were proved i n Theorem 6.2.
(7.8)
t o which Theorem
6.1 can be a p p l i e d i n t h e way used t o show Theorem 6.2. unlike
is
t Iov(s)ds = u ( t ) 0 5 t 5 T.
w i l l be formula
expressing it a s an i n t e g r a l with k e r n e l B ' ( t ; E ) Gf(t;E),
f(i)
f($;E),
u(;;E)
such that
The statements concerning t h e s o l u t i o n
The b a s i s of t h e treatment of
(a)
has a d e r i v a t i v e i n
u ' ( t ) = Au(t) f f ( t ) C
Then
Since
is not singular a t t h e o r i g i n , t h e argument
i s a c t u a l l y simpler and t h e smoothing operator pR(k;A)
need not be
used. Let
p
t 2 0, K
for
LEMMA
and -
> w
t
2
(w
(t;E) 0
7.7.
such t h a t
t h e constant i n (4.20) and (4.26)) and define
=
o
for
t c 0.
There e x i s t constants
E
0'
B > 0
independent of
E
215
PARABOLIC SINGULAR PERTURBATION
-
(7 19)
Proof:
Write 6"(sjE)U
for
u
E
D(h),
of (4.27) and
where
5
0
=
X0 ( S ; E ) U +
is t h e f i r s t term on t h e r i g h t hand side
Xl i s t h e sum of t h e r e s t .
r a t h e r , Theorem 4.7)
(7.20)
Zl(S;E)U
Using Theorem 4.4 ( o r ,
we deduce 2
~ ~ ~ ( s ;5&c(w2 ) ~ -t ~ w2s-'
kt
t > 0, u
Kp(S;E)U-Kp(S
By Theorem
E
D(A).
-
tjE)U
+
s-2)eW
5
C's-2e ps
( s > 0)
.
(7.21)
We have =
4.1 we have
Putting together (7.21) and (7.23) we can estimate t h e integrand of t h e
f i r s t i n t e g r a l i n (7.22) by
Cb-2, thus t h e i n t e g r a l i t s e l f is
bounded by a constant times
1 s - t
- -s1 '
(7.24)
The second i n t e g r a l i n (7.22), a f t e r i n t e g r a t i o n by p a r t s , becomes
(7.25) A look at t h e integrand i n (7.25) makes p l a i n that it can be estimated
by a constant times
216
PARABOLIC SINGULAR PERTURBATION
thus t h e i n t e g r a l c o n t r i b u t e s another serving of (7.24).
Putting
t o g e t h e r a l l estimations and taking advantage of t h e f a c t t h a t
D(A)
is dense i n E we deduce t h a t
-p
c
+
~
2 -t),-( S-t)/2E eW( S-t)/E e
(5
-
,
E
(7 27)
t h e last two summands o r i g i n a t i n g from estimation of t h e boundary terms On t h i s basis, we proceed t o estimate t h e i n t e g r a l
i n (7.25).
(7.28) The i n t e g r a l of t h e f i r s t t e r m i n (7.27) i s computed as i n Lemma 6.3. The i n t e g r a l of t h e second term i n (7.27) i s
To compute t h e i n t e g r a l of t h e last term we make t h e change of variables
s
-
t =
t h e domain of i n t e g r a t i o n i s then
0;
< s <_ -2t
The bounding of (7.28) f o r
Let
LEMMA 7.8. Then t h e r e e x i s t s
B
t < 0
KO(;;@)
P runs along t h e same l i n e s and is
be t h e Fourier transform of
t
independent of
I/"K~(Q;E)II
Proof:
K ( t ; E ) = 0 f o r t < 0.
i s of course unnecessary since
omitted.
2 t and
Estimation of t h e p a r t of (7.28) with domain
we obtain (7.29) again. -m
s
5B
<
(a
D
<
and 03,
Kp(t;E).
such that
E
Eo>
.
(7.30)
14);A)
.
(7.31)
o <E5
We use e q u a l i t y (5.10):
= (p
"
b)R(E2(p
-
w2
4- ( p
-
We make then use of t h e f i r s t i n e q u a l i t y i n t h e sequence (11.2.22) c h a r a c t e r i z i n g generators of cosine functions; s e t t i n g
h= p
- b,
PARABOLIC SINGULSlR PERTURBATION
C0lP
--
2
(Re(E2(p
- b >+
(P
- 4
- b))1/2 - w ) I E 2 ( p -id2i-
A/
1x1
V/ 11-11
=
-
+ l)1’2(P/lUl)1’2)
(Re((U
2
UlAl-1’2}\U
0 < Re 1-1
i s t h e unique multiple of
h
- kdl
by
i s bounded away from zero i n t h e s t r i p t l y small, where
(p
(7.32) 1/2
]A\-’, setting u = E A we see t h a t it i s enough t o show t h a t
Multiplying numerator and denominator noting t h a t
217
(7.33)
+ 111’2 2 with
1.
sufficien-
E~
111 = P.
on t h e l i n e
p
and
We check e a s i l y t h a t (7.33) never vanishes, thus we only have t o show t h a t it i s bounded away from zero for 1 ~ +1 m. Note t h a t , f o r 1U1 = r a t t a i n s i t s minimum a t Re((u + 1)1’2(~/1~])1’2)
u
=
+ir, thus
(7.34) On t h e o t h e r
I
EOlUl -
1x1
hand,
q u + 111’2,
>
lhl-1/21U
so t h a t
Ei21~1
thus our claim holds f o r
Proof of Theorem 7.6.
T h a t the kernel
independent of
< 1, 1/2w.
K (t;E) P
satisfies
(a)
in
was shown i n Lemma 7.7, while (6.3), with B
E
likewise independent of
was t h e s u b j e c t of Lemma 7.8.
E
t h e operator
-Lt
f(;) i s bounded i n
-<
The estimate (6.4) with
Theorem 6 . 1 i s obvious from i t s d e f i n i t i o n . B
E~
+
K (t
-
Accordingly,
s ; E ) f ( s ) ds
(7.35)
P
Using (6.22) we deduce t h a t (7.6) defines
LP(O,T;H).
a s w e l l a bounded operator i n
LP(O,T;H).
This y i e l d s t h e first
estimate (7.15). We prove f i n a l l y
(d).
The statement on convergence of
i s a consequence of Theorem 6.1. Lp
we t a k e
f,
say, i n
To show convergence of
H1(O,T;E)
u(^t;E)
u‘(;;E)
in
and w r i t e t h e d i f f e r e n t i a t e d
version of (7.9) as follows: u’(t;E)
-
U’(t) =
Lt
6 ’ ( t -SjE)(f(SjE)
+ k t ( G 1 ( t -s;E)
+
(6(tjE)
-
-
f ( s ) ) ds
- S ’ ( t - s ) ) ( f ( s ) - f ( t ) ) ds
S(t))f(t).
(7.36)
PARABOLIC SINGULdR PERTURBATION
218
Apply (7.11) t o t h e first i n t e g r a l , Theorem 7.4 t o t h e second and Theorem
3.6 t o t h e last term:
t h e conclusion i s
To show convergence f o r a r b i t r a r y
g(t;E),g(:) (7.1),
E
('7.2).
H1(0,T;E)
and
f(i)
u'(%;E)
-
u'(;)
LP(O,T;H),
€
v(t;E), v ( t )
5
LP(O,T;H).
let
t h e respective solutions of
W e have
The f i r s t and last terms on t h e r i g h t hand s i d e of (7.33) can be made small using t h e f a c t that
i s dense i n
al(O,T;E)
LP(O,T;H)
and both
i n e q u a l i t i e s (7.17); f o r t h e second term we use (7.32) and following comments.
iv1.8.
This ends t h e proof of Theorem 7.6.
Correctors a t t h e i n i t i a l layer.
Asymptotic s e r i e s .
We work i n t h i s s e c t i o n with t h e homogeneous i n i t i a l value problem
+
E2u"(t;E)
U
u ' ( t ; F ) = Au(t;E)
u'(0;E) = ul(E)
= uO(E),
0 (0;s)
(t
2
0),
,
(8.1)
and t h e equation u ' ( t ) = Au(t)
(t
with i n i t i a l condition t o be fixed below.
2
(8.2)
0),
A s pointed out before
(see Remark 5 . l l ) , i n the general conditions of Theorem 3.6 (where t h e r e may be crossover of i n i t i a l conditions), uniform convergence of
u(t;E)
t o u(t)
t = 0
near
cannot be expected since i n general
uo (E) f , uo. However, uniform convergence can be a t t a i n e d through addition of correctors (solutions of a d i f f e r e n t approximating equation) a t t h e boundary.
This method can be applied equally well t o the case
where the i n i t i a l conditions i n powers of
E,
uO(E),
ul(E)
have asymptotic expansions
as made c l e a r below.
We assume that
u
0
and
(E)
have asymptotic developments
u1(E)
of t h e form U (E)
0
=
U
0
+
EU
1
+
2
E U
2
+
F
2 u
3
t.
.-.+
E
% + O(E IW-1 ),
N
PARABOLIC SINGUIAR PERTURBATION The objective is t o show that
219
possesses a similar asymptotic
u(t;E) development, uniformly on compacts of
t 2 0 ; t o produce convergence t = 0 we shall need t o introduce correction terms a t each step.
near
We examine f i r s t t h e cases
by d e t a i l s .
N = 0 t h e c e n t r a l idea is t o approximate u(i) u(t;E) but by u(t;E) - vO(t;E), where v ( t j E )
For
t = 0
near
N = 0,l where t h e method i s unencumbered
not by
0
is t h e s o l u t i o n of E2vyt;E) 0
+
V'(tjE) = 0 ,
v'(0;E) = 0
0
vo(t;E)
as
0
-+
E
-. m
E -2 v
0 '
(8.4)
.
We r e f e r t h e reader t o KEVORKIAN-COLE [1981:1]f o r a thorough A
discussion of
t h e choice of
vo(t)
i n t h e one dimensional case only
pointing out that the i n i t i a l condition is t o eliminate t h e contribution of
y(E)
to
u
I n f a c t , it follows from (8.4)
(see Remark 5.11).
0
that u'(0jE)
+
.
= 0
V'(0;E)
On t h e other hand, since 2
v0 (t;E) =
v (t;E)
,
-e-t/EVo
(8.5)
t 5 t ( E ) outside The p r i c e t o w i l l not be a solution of
w i l l not d i s t u r b convergence i n t h e region
0 of t h e boundary layer (here
pay, of course, i s t h a t
t(E)
s a t i s f i e s (3.20)).
-
v0 (t;E) t h e homogeneous equation (8.1), thus a l l t h e r e s u l t s below w i l l use u(t;E)
t h e theory of t h e nonhomogeneous equation (only t o t h e extent of Theorem
7.2).
Throughout t h i s section,
u(t;E)
i n i t i a l value problem (8.1) w i t h
uo(E)
denotes t h e solution of t h e and
asymptotic developments of t h e form (8.3). asymptotic expansions (8.3) i s an element of
5
CEk
f o r some constant
C
as
E
4
0.
ul(E)
having
The term
O(Ek)
E
i n the
whose norm i s
Solutions of t h e equation
( 8 . 2 ) , with i n i t i a l conditions specified i n t h e following r e s u l t s
w i l l be usually w r i t t e n
t h e fbnctions
uo(t), ul(t);
u 2 ( t ) , u3(t),
...
e t c . a r e solutions of a d i f f e r e n t equation (see (8.21)).
THEOREM 8.1.
Assume that (8.3) holds for N = 0 ,
uO(&)= u0
and t h a t
uo, v
0
E
+
o(E),
D(A).
u ~ ( E )= E
Then -
-2
v + 0
O(E
-1
)
(E
that is 4
0)
,
(8.6)
220
PARABOLIC SINGULAR PERTURBATION U(tjE) = u o ( t )
t >_ 0 ,
uniformly on compacts of (8.2)
+
vo(t;E) +
u
where
0
(8.7)
O(E)
(i)
is t h e solution of
W B
(8.8)
u ( o ) = u0 + v 0 ' 0
If
w = 0,
(8.7) holds uniformly i n
Proof.
t >_ 0 .
The function w(;;E)
= u(;jE)
- vo(G;E)
i s a s o l u t i o n of t h e i n i t i a l value problem ~
+
E2w"(tjE)
~ ( 0 ; s )=
1
w = w
U (E)
0
-
w'(t;E) = A w ( t ; E )
+ vo,
2 e-t/E Avo,
~ ' ( 0 j E ) = Ill(&)
- E -2
(8.10) To.
i s t h e s o l u t i o n of t h e homogeneous equation with t h e assigned i n i t i a l conditions and w2 is t h e s o l u t i o n
Write
-k
w2
where
w1
of the inhomogeneous equation with zero i n i t i a l conditions and 2 f ( t ; E ) = -e-t/E
We apply t o w1 while
w2
(8.W
AV0 '
Theorem 5.5 (with t h e simplified estimate (5.30)),
i s handled by means of Theorem 7.2 ( s p e c i f i c a l l y , t h e f i r s t
i n e q u a l i t y (7.4)). The final estimate i s
with t h e obvious modification i n t h e last term i f
w = 0.
This ends
t h e proof. For
N = 1 an a d d i t i o n a l c o r r e c t o r must be used, namely
2 vl(tjE) = -e -t/@
THEOREM 8.2.
1'
Assume t h a t ( 8 . 3 ) holds f o r
N = 1, t h a t i s
221
PARABOLIC SINGULAR PERTURBATION
u
0
u
=
(E)
= E - 2v 0
1 u , u 1, vo, v1
-~ and t h a t
!I
U(tjE) = u ( t ) +
D(A
U
2
0
t
u n i f o r m l y on compacts o f
O(E ),
f
+ d v l i-
o(1)
(8-131
1. Then
V0(tj&) f
0
2
t Eul
(E)
E(ul(t) +
(resp.
uo(i)
where
0,
+ O(E 2
Vl(tjE))
1
(8.14)
&
u,(t))
the s o l u t i o n o f (8.2) w i t h
u0 ( 0 ) = uo If -
i.
vo
(resp.
w = 0 , (8.14) holds uniformly i n
u,(o)
= u1 +
(8.15)
t >_ 0 .
We c o n s i d e r t h i s t i m e t h e f u n c t i o n
Proof.
w(^tjE) = U(ntjE)
-
-
vo(i;E)
= Aw(tjE)
E2w"(t;E) i w ' ( t ; E ) =
U
As i n Theorem
0
(E)
+
vo
C EV1,
2
-
W'(0,E) =
(8.16)
Evl(t;E)
t h a t s o l v e s t h e i n i t i a l v a l u e problem
w(O,E)
q.
e-t/E
U (E)
1
-
Av
0
-
2 @e-t/E Avl,
E -2V
(8.17)
-1
- E
y
1'
0
8.1, we write w as t h e sum o f a s o l u t i o n w1
(8.18)
of t h e
homogeneous e q u a t i o n t a k i n g t h e a s s i g n e d i n i t i a l c o n d i t i o n s and a solution
w2
of t h e nonhomogeneous e q u a t i o n w i t h z e r o i n i t i a l c o n d i t i o n s .
We a p p l y a g a i n t h e s e c o n d i n e q u a l i t y (7.4) t o
and
w2
(5.30) t o
W1,
obtaining
Obviously, a d i f f e r e n t t a c k must b e a d o p t e d f o r N >_ 2 , s i n c e t h e f i r s t term o n t h e r i g h t hand s i d e s of ( 8 . 1 2 ) and (8.19) c a n n o t b e squeezed smaller t h a n
level.
O(E2).
We p r o c e e d at first o n a p u r e l y f o r m a l
The a p p r o x i m a t i n g h n c t i o n w i l l b e of t h e form
u
N
(tjE)
= u (t) + EUl(t)
0
N
f
*-.
-t E UJt)
,
(8.20)
222
PAMBOLIC S I N G L U R PERTURBATION
a r e defined a s before and t h e where u0 (t), u1(^t) s a t i s f y t h e d i f f e r e n t i a l equations un' ( t ) = Aun(t)
-
~:-~(t)
u
( t >_ 0 )
(t), n 2 2, .
(8.21)
Noting t h a t t h e c o r r e c t o r s 2 vo, v1
used i n t h e cases N = 0,l a r e of 2 t h e form v O ( t j E ) = v (t/E ), vl(t;E) = v (t/E ), we s h a l l use a 0 1 combination of c o r r e c t o r s of t h e form II ( t ; E ) = v (t/E N 0
The
v
n'
n >_ 2
2
)
+
tVl(t/E
2
+
) +
N 2 VN(t/E ).
E
(8.22)
w i l l s a t i s f y t h e d i f f e r e n t i a l equations vn" ( t )
+
vA(t) = Avn-,(t)
(t
2
0)
,
(8.23)
and t h e decay condition vn(t)
-, o
as
t
4
m
and
(8.24)
n = 1,2
Note that t h e equation s a t i s f i e d by , ) : ( u U'n (
. is
(8.25)
t ) = Aun(t),
vn, n = 1 , 2 s a t i s f i e s v p )
+ vA(t)
= 0
.
(8.26)
Consider now t h e f'unction
N
I1=0 p )
= ( E 2U
N
+ &-2
N
c &"Vi(t/E2) + E-2 c E"V;l(t/E2)
+ E-2
17;O
+ up)) +
E ( E 2 u;l(t)
c E"(yll(t/&2) t VA(t/E2)) -2
+ up))
223
PARABOLIC SINGULAR PERTURBATION
+
N-2
c
EnAvn(t/E2)
n=0 N
=
c
EnA(un(t)
+
2
vn(t/E ) )
ti=O
The i n i t i a l conditions on u
Il’
u0 ( 0 ) = uo
-
E N - 1 AvNml(t/E2)
n = 0,l
+ vo,
ENAvN(t/E 2 ).
(8.28)
a r e those i n Theorem 8.1: = u1
u,(o)
+ v1
.
(8.29)
On t h e other hand, t h e i n i t i a l conditions on v n = 0 , 1 must be n’ 2 2 those t h a t insure t h a t v (t;E) = v (t/E ), v (t;E) = v,(t/E ), 0 0 1
v0 ( t ; E ) , v1(t;E)
where
a r e t h e correctors used i n Theorem 8.2.
Accordingly, $0)
= vo, vi(0) = vl,
hence, taking (8.26) and (8.24) i n t o account,
v ( t ) = -e 0
For
n
2
2,
-t vo, v,(t)
t h e i n i t i a l conditions f o r
= -e
un(i)
-t
v
1’
and
vn(t)
are,
respectively un(o) = un
thus for
un(E) tU(t;E)
-
must be constructed a f t e r
(8.32)
vn(o)
vn(t).
The i n i t i a l conditions
are obtained from (8.29) (8.30) ( 8 . 3 2 ) and (8.33):
PARABOLIC SINGULAR PERTUBBATION
224 lo ( 0 ; E ) = N
cN Enun(O) + cN Envn(o) = =O
Il=O
= u
0
- v
+
v
-
0
-
-
vn(o>>
G 2
+
EV
cN Envn(o) = cN n=2
0
=
c
+ N E n(un
“(9 + vl)
f
E
nun
(8.34)
=O
N
N
n=0
n=0
c Enu’n( 0 ) 4- c Enm2vn
N-2
c
E=O
EnU’(0) = n
c
n - 2 v n + E N-1 U&l(O)
E
I1;O
N
f
E
up)
(8.35)
Hence, i n view of (8.3), IlU(0F)
- mN(o;E)I/
= O(EPst1)
-
=
(8.36)
and IlU’(0;E)
lo$OjE)I/
O(EN-l)
.
(8.37)
We face now t h e problem of making a l l t h e s e computations valid. Roughly speaking, t h i s amounts t o :
(a) showing t h a t every d e r i v a t i v e w r i t t e n ( a s i n (8.171, (8.21), (8.24), e t c . ) a c t u a l l y e x i s t s . (b)
etc.),
showing t h a t every time we w r i t e
(as i n (8.17), (8.21),
Au
u a c t u a l l y belongs t o t h e domain of
A.
This w i l l be done by r e q u i r i n g “smoothness” conditions of varying degree on t h e c o e f f i c i e n t s
un’ vn
u o ( t > = S(t>(U0 + v&
i n (8.3). u,W
We begin with
= S(t)(U1+
a r e made e x p l i c i t i n (8.31).
“J
(8.38)
while
vo(t), vl(t)
v,(t),
v3(t) we solve (8.23) with t h e i n i t i a l condition (8.33) at and t h e decay condition (8.24) as t -. m:
t = 0
To construct
225
PARABOLIC S TNGULAR PERTURBATION
v;(o)
v2
=
-
v"(t) 3 v ~ ( o= ) v3
3
v2(t) -,o
u$o), f
-
vl(t) 3
= -e -tA v ~
-, o
u~(o), v 3 ( t )
t
as
=,
4
( t 2 0),
-
t
as
(8.40) m
.
Solving e x p l i c i t l y these e q u a t i o n s , v2(t)
= te
-t Avo
-
-t v ( t ) = t e Av
3
-t
(v2
- e -t (v3
1
- Au0 -
2Avo)
9
(8.41)
- AU1
avo)
9
(8.42)
-
A(uo + v,), U i ( 0 ) = A(U1 + vl). u s i n g t h e equation (8.21) and t h e
where w e have used t h e fact t h a t We compute next
e
u 2 ( t ) , u3(t)
U'
0
(0) =
i n i t i a l c o n d i t i o n (8.32) :
u;(t)
2
AU2(t) - S(t)A (u0 + v0)
=
( t >_ 0 ) , (8.43)
u2(o) =
?(t)
Au3(t)
=
-
U2
+ To
7
2
( t 2 0),
S(t)A (ul + vl)
(8.44) u ( 0 ) = u + v1 3 3
9
2 ) where we have used t h e f a c t s t h a t u " ( t ) = S(t)A (uo t v,), ~ " ( t = 0 1 2 (see (8.29) and (8.37)). = S(t)A (ul -t v,), v;)(O) = vo, v i ( 0 ) = v1
Hence
U,(t)
=
S(t)(U2 + v0)
=
S(t)(U2
f
v0)
-
u ( t ) = S(t)(u3
3
With
S(t
Lt
-
s)S(S)A
2
(u0 + v0) dS
tS(t)A 2 (u0 + v0) ,
-k
2
vl) - tS(t)A (ul
(8.45) -k
v~).
(8.46)
up(%),u 3 ( t ) ,
see that
v4(i),
y2(i), v3(t) already manufactured, we can e a s i l y v 5 ( t ) w i l l have t h e form v4(t)
=
e-tP4(t), v5 ( t )
=
e-tP5(t)
,
(8.47)
PARABOLIC SINGULAR PERTURBATION
226
where
is a polynomial of degree 2 whose c o e f f i c i e n t s a r e l i n e a r
P4(%)
combinations of
AJu
0’
AJvo ( j 5 j), Au2
and
Av2
uo, vo 7u2yv2 replaced by On t h e other hand, we have
t h e same polynomial with respectively.
U4(t)
- P4(0))
2tS(t)A3(uo
u (t) = S(t)(u
5
+
u
(i)
(resp. u5($))
-
vo)
- P5(0))
5
42
is
2
-2tS(t)A3(ul + vl) thus
P (t)
+ tS(t)A (u2 + v0) -
= S(t)(~4
-
and
5 u1,v1,u3,v3
t2 S(t)A4 (uo + v,),
+ tS(t)A2 (u3 i- vl)
(8.48)
-
- t2 S(t)A4(ul + v,),
(8.49)
can be constructed i f uo, vo E D(A 4 ), 4 2 D(A ), u3 E D(A ). However, i f we wish (8.47)
u E D(A ) (resp. ul,vl E 2 t o be a genuine solutions of (8.23) we a c t u a l l y need that
vo E D(A 5 ) and u E D(A 3 ), u4, P4(0) E D ( A ) ; i n view of our 0’ 2 previous comments about P4, it is s u f f i c i e n t f o r t h i s t h a t 4 3 2 uo, vo E D(A ), u2 E D(A ) v2 E D(A ) and u,, E D(A). Likewise, i f u
we wish (8.48) t o be a genuine s o l u t i o n of (8.21) we must a s k t h a t
3
2
E D(A5), u3 E D(A ) v3 E D(A ), u5 E D(A). It w i l l be of ul’ “1 i n t e r e s t l a t e r t o a s c e r t a i n t h a t u 4 ( t ) , u ( t ) a r e twice continuously 5 6 d i f f e r e n t i a b l e . This w i l l be t h e case i f u0’ V0Y U1’ v1 E D(A 1, u2, u3 E D(A 4), v2, v3 E D(A 3) and u4”-15 E D(A). From t h e s e observations we surmise t h e following r u l e s , v a l i d f o r
arbitrary m
2
1. I n t h e f i r s t place, we have
v,(t> where
(resp. Pml(%))
P,(t)
a r e l i n e a r combinations of (j
5
2m.-
A L ~A , J
3),
= e -tP*,(t)
= e-tP&),v;w,(t)
-
(8.50)
i s a polynomial whose c o e f f i c i e n t s
AJu ,AJ, 0
... Ajua-4,A3uh-4.(j
(j ~ 5~an
,
0
(j <_ 2m
-
l), AJu2,AJv2
5 31, Aua-2y Ava-2 (resp. AjV 11, A J U ~ , AJ, (j <- ;im - 31,. . AJ, 2m-3’ 2m-3 3
.
( j 5 3 ) , A U ~ - , , A V ~ - ~ . Accordirigly: h
(a)
v,(t)
and
vwl(^t) E
can be constructed i f
D(A2m-1), u2,v2,u3,v3
E
D(A2m-3),.
..
PARABOLIC S I N G U I A R PERTURBATION
& v*,(;)
vh(i)
Moreover,
227
a r e always genuine solutions of (8.23), (8.33)
vh(t),vml(t)
w i t h Av&(t), Avwl
E D(A)
.
continuous
if
The statement about genuine solutions i s obvious since (8.23) i s e s s e n t i a l l y a s c a l a r equation.
u&(t)
can be constructed i f (8.51) holds (b) u&,(%) These f m c t i o n s a r e genuine solutions o f (8.21) ~f
u,(t)
.
a r e twice continuously d i f f e r e n t i a b l e i f
,um,(t)
U2mm-2’v&2’u&4’v&-l
u2m ’v2m’ u2mt 1’vwl E Obviously, conditions (8.52)’
4
D(A ) 9
(8.54)
D(A~).
(8.53) and (8.54) a r e excessive f o r
t h e various purposes a t hand; we have ”equalized indices” among t h e
u
n
and t h e
v
n
t o shplify.
Assume that (8.3) holds i n t h e norm of E for 2 and that ~ > ~ - l ’ ~ ~ v ND(A - l > Y ~-2’~-ZjYvN-2’vN-3 u ~ , u ~ , vE ~ D(A , ~ ~).
THEOm8.3. Odd’
-4-
D(A )
3
N
,...,
N
N
n=O
n=O
(8.55) uniformly on compacts of
t 2
o
(uniformly i n
t
o
if
U)
= 0).
g
PARABOLIC SINGULAR PERTURBATION
228
i s even t h e same r e s u l t obtains under t h e assumption t h a t 2 Nt2
N>_ 2
uN>vN E D(A
1,
Proof. N = 2m
+
%-17%-29vN-19v~q-2
f
We consider f i r s t t h e case
1 and apply r u l e ( a ) .
N
odd
Avo(t),
...,AvN(t)
>_ 3;
we s e t here
Since conditions (8.51) a r e s a t i s f i e d
...
(with something t o spare) we deduce t h a t with
1.
D ( A ~ ) , . * * > U ~ > U O0, V E ~D(A >V
continuous.
vo(t), , v N ( t ) E D(A) Taking (8.50) i n t o account we
deduce t h a t
(8.56) This w i l l be used t o estimate the l a s t two terms on t h e r i g h t hand s i d e of (8.28):
f o r t h e f i r s t two terms we simply use t h e f a c t ,
u~-~(t)and
assured by (b), t h a t differentiable.
%(t)
a r e twice continuously
Using t h e f i r s t inequality (7.10) i n (8.28) we
obtain
where, i n v i e w of (8.56), the contribution of t h e l a s t two terms i s O(EW1),
This ends the proof.
The case
N
even >_ 2
i s handled
much i n t h e same way and we omit t h e d e t a i l s .
@?I. 9 E l l i p t i c d i f f e r e n t i a l equations. We apply the theory i n t h e lust eight sections t o t h e d i f f e r e n t i a l operator
m
m
i n a bounded domain R
.
m
of m-dimensional space w i t h boundary
T; here
229
PARABOLIC SINGULAR PERTURBATION
A(p)
d e n o t e s t h e r e s t r i c t i o n of
o b t a i n e d by means of t h e D i r i c h l e t
A
boundary c o n d i t i o n
o
=
U(X)
r),
(X E
(9.2)
or b y means of t h e v a r i a t i o n a l boundary c o n d i t i o n N
D ~ ~ ( X= )
The c o n s t r u c t i o n of
(x
y(x)u(x)
E
r).
(9.3)
w a s c a r r i e d o u t i n Chapter IV i n c o n s i d e r a b l e
A(@)
9IV.3 ( f o r t h e D i r i c h l e t boundary c o n d i t i o n ) and i n SN.6 (for t h e boundary c o n d i t i o n ( 9 . 3 ) ) t h a t A ( B )
d e t a i l ; i n p a r t i c u l a r , it w a s shown i n
g e n e r a t e s a s t r o n g l y continuous c o s i n e f u n c t i o n , t h u s a l l t h e r e s u l t s i n t h i s chapter apply automatically.
SVI. and u 0
5 , for 5.13.
i n s t a n c e t h e “ i n t e r m e d i a t e ” e s t i m a t i o n s i n Theorems 5.12 Combining Theorem
D ( ( b 2 1 - A(@))‘)
E
u n i f o r m l y on compacts of D((b21
-
5.u w i t h Lemma 5.15 w e deduce t h a t
-
u ( t ) I I = 0(E2’)
t > - 0.
p
Hl(n).
E
-o
(9.4)
The most i n t e r e s t i n g c a s e i s
D((b21 - A ( B ) ) if
as
can b e identified.
A(f3))‘)
if
l a r g e enough) t h e n
(b
jlu(t;E)
where
Of s p e c i a l i n t e r e s t a r e t h o s e i n
c1 =
1/2,
I n f a c t , w e s h a l l show t h a t
(9.5)
= Hi(Cl)
i s t h e D i r i c h l e t boundary c o n d i t i o n and
bl,
...,bm
belong t o
To show ( 9 . 5 ) we n o t e t h a t it h a s a l r e a d y b e e n proved t h a t
D ( ( b 2 1 - AO(@))1/2) especially
=
(see ( N . 2 . k ) ) a n d r e c a l l Theorem IV.2.2, HO(R) 1
(IV.2.6)). Thus, D((b21
We s k e t c h t h e p r o o f of
w e o n l y h a v e t o shod t h a t
- Ao(p))lb2) (9.6).
cosine function generated by used t o c o n s t r u c t
Let
- A(p))”I2)
.
(9.6)
C ( t ) = c o s h t Ao(@)1’2
Ao(p).
b e the 0 It f o l l o w s from t h e p e r t u r b a t i o n
e0(t) (or
6(t) from
cosine function generated by
= D((b21
A(p)lb
d i r e c t l y ) that
C(t),
the
c a n b e e x p r e s s e d b y means of t h e
perturbation series C ( t ) U = C0(t)U where domain
+
gTJF*Co(t)u
+ qTJF*qTJF*Co(t)u +
d e n o t e s t h e ( o n l y ) bounded e x t e n s i o n o f
O1 H (Q))
t o a l l of
* * *
,
So(t)P
(9.7) (with
L2( Q ) ; t h a t t h i s e x t e n s i o n e x i s t s follows
230
PARABOLIC SINGULAR PER’IURBATION
S ( t ) P i s bounded ( i n t h e norm o f 0
from t h e f a c t t h a t
1
L2(n))
in
~ ~ ( n )s,i n c e s o ( t ) P = (sinh t Ao(B)1/2)Ac(B)-1/2P, and
Using (1.5) and t h e “ r e c i p r o c a l ” series Co(t)u = we show t h a t
@(t)U
-
qqF*C(t)u
+
f40P*rn*C(t)u +
(9.8)
@ ( t ) u i s continuou.;ly d i f f e r e n t i a b l e i f and o n l y i f (9.6) follows f r o m Theorem
@,(ti) i s c o n t i n u o u s l y d i f f e r e n t i i b l e , t h u s
111.6.4. However, i n t h e p r e s e n t s i t u i t i o n , estimates on rates o f convergence l i k e (1.4) c a n b e o b t a i n e d under weaker assumptions b y more e l e m e n t a r y methods.
We s k e t c h below t h i s theeory i n a s u i t a b l y ” a b s t r a c t ” v e r s i o n .
Let
E = H
be a H i l b e r t s p a - e and
A.
a s e l f adjoint operator
such t h a t
with
K
>
0.
We c o n s i d e r t h e o p e r a t o r A = A.
where
P
+ P,
(9.10)
i s such that
m-l
(9.11)
i s bounded, where B = ( - A )1/2 d e f i n e d as i n srV.3. Using essentially 0 t h e same methods i n srV.4 we show t h a t A g e n e r a t e s a s t r o n g l y
c o n t i n u o u s c o s i n e f u n c t i o n , t h u s ill r e s u l t s i n t h i s c h a p t e r apply, i n particular those i n
sVI.5. We e x p l o i t t h e s e below.
Using t h e f u n c t i o n a l c a l c u l u s f o r s e l f a d j o i n t o p e r a t o r s we can d e f i n e f r a c t i o n a l powers
( -Ac)‘
of
-Ao
where
<=
+ iT i s
231
PAFXBOLIC SINGULAR PERTURBATION
a n a r b i t r a r y complex number:
where
P(dp)
P(-dp)
we s e t
i s t h e r e s o l u t i o n of t h e i d e n t i t y for . A
i s t h e r e s o l u t i o n of t h e i d e n t i t y for
-AO).
(so that
Due t o w e l l
known p r o p e r t i e s of t h e f u n c t i o n a l c a l c u l u s ( s e e f o r i n s t a n c e DUNFORD-
SCHWARTZ [ 1963 :11 ) we have ~ / ( - A o ) s ~ ~ / =z I/(-Ao)afi.iu!l
=
row
p2allp(-dp)ul12
.
= /l(-Ao)ou/!2
19-13)
Q : H -, H b e a l i n e a r o p e r a t o r s u c h t h a t
Let
llQd<_ K O I / ~ I I
(u
E
H),
11Qull <_ K I I I A O ~ / /
(u
E
D(A))
To o b t a i n estimates f o r
Q
(9.14)
.
i n t h e intermediate spaces
D( ( -Ao
)O")
w e a p p l y t h e t h r e e l i n e s theorem below t o t h e H-valued holomorphic function Cp(0
= Cp(a
+ iz)
THREE LINES THEORFSI
-
=
9.1.
Q(-Ao)
-cx-iT
f(c)
u
(0 < - a <- 1).
A
Let
be a Banach s p a c e v a l u e d
Then
l o g M(a)
The proof c a n b e found i n DUNFORD-SCHWARTZ a complex-valued f u n c t i o n
f(<):
<
a < I b , - Re i s a convex f u n c t i o n of 8, where
a n a l y t i c f u n c t i o n d e f i n e d and bounded i n a s t r i p
< Irn 5 < m.
(9.15)
[1958:1, p. 5201 for
t h e proof of t h e g e n e r a l c a s e i s t h e
same. Using
(9.13) we deduce from (9.14) t h a t t h e f u n c t i o n W ( 5 )
i n (9.15) s a t i s f i e s
defined
PARABOLIC S I N G W PEBTURBATION
232
The preceding two estimates a r e a notable improvement over
(5.55)
and
(5.56) i n t h a t no ad-hoc assumptions on t h e b. have t o be made and J i n t h a t t h e constants on t h e right-hand s i d e s a r e far b e t t e r i d e n t i f i e d . W e show below t h a t t h e r a t e s of convergence provided by t h e estimate (9.22) ( o r by
(5.55))
a r e b e s t possible.
233
PkRABOLIC SINGULAR FERTURBATION
EXAMF'IL 9.2.
We consider the operator
A= in
R
=
(OJ) E R1
(9.24)
I??
a n a l y s i s shows t h a t
i s isomorphic t o
L2(1(R)
j u s t t h e operator i n Example 3.10. E ( t ; E ) cun3 = w
that, for
n
Qin(t;E)
Assume
{unj
>
0
1 2
4
t
f i x e d and = e E
-n2t
+
E
n te
-n2t
and t h a t
Q2
Fourier
A(B)
is
We have E)Un1
CQ&;
Q ( t ; & )has been defined i n (3.3).
where
p.
with t h e D i r i c h l e t boundary condition
,
(9.25)
Using Taylor s e r i e s we show
2
-
2 2 -n t
2~ n e
+
O(E)
(E
-+
01 (9.26)
Q2 i s such t h a t
lMt; €1b n 3 f o r small
E
and
t.
Then
c~
4 Q 1i n ( t ;
thus, by (9.261,
c I n4te-n2t f o r small
so t h a t
9vI. 10
t.
This implies t h a t
{un] E D(A). Miscellaneous comments.
The s i n g u l a r p e r t u r b a t i o n problem f o r t h e system ( 2 . 1 ) was considered by K I S Y f k K I [1963:1] i n t h e case where d e f i n i t e operator i n H i l b e r t space.
A
i s a s e l f adjoint, positive
Similar assumptions a r e used by
SMOLLER [1965:1], [1965:2], although i n [1965:2] t h e operator A
is
not n e c e s s a r i l y p o s i t i v e d e f i n i t e and approximations of (2.2) by equations of order
>_ 3
a r e s t u d i e d a s well.
For other r e s u l t s i n t h i s
s e t u p see LATIL [1968:1]. The next s t e p i n t h e d i r e c t i o n of increasing g e n e r a l i t y w a s taken
PARABOLIC SIJ5GULAR PERTURBATION
234
by KISYfiSKI [1970:1],
SOVA [1970:2],
[ 1 9 p : 1 ] and SCHOENE [1970:1].
The f i r s t two a u t h o r s work under t h e assumptions i n t h i s chapter, t h a t
is, require
A
t o be t h e i n f i n i t e s i m a l genprator of a s t r o n g l y
continuous c o s i n e function; SCHOE,NE assumes t h a t
2
A = B
,
where
i s t h e i n f i n i t e s i m a l g e n e r a t o r of a s t r o n g l y continuous group.
B Every
such o p e r a t o r i s t h e i n f i n i t e s i m . 1 g e n e r a t o r of a s t r o n g l y continuous cosine f u n c t i o n ( s e e 111.6.24 anc, comments t h e r e ) , b u t t h e converse
111.6.5) t h u s KISYIkKP s and SOVA's r e s u l t s have
i s not t r u e (Example
a wider range of a p p l i c a b i l i t y (on t h i s matter s e e a l s o NAGY [1976:1]). The most p r e c i s e r e s u l t s a r e thoze o f KISYfiSKI [1970:1] who proved
5.5 and Thecirem 5.6 f o r u o ( ~ ) ,u ~ ( E ) f i x e d ; t h e c r u c i a l s t e p i s t h e e s t i m a t e (5.7) using t h e t h e o r y of a l t e r n a t i n g functions. SOVA's r e s u l t s i n [15"p:2] and [1972:1]a r e somewhat l e s s
Theorem 5.1,
Theorem
p r e c i s e and obtained i n a d i f f e r e n t way; i n s t e a d of w r i t i n g t h e s o l u t i o n s of ( 2 . 1 ) e x p l i c i t l y , S@VAe s t i m a t e s t h e i r Laplace transforms and uses t h e Post-Widder formula
(1.3.14).
A treatment of t h e s i n g u l a r
p e r t u r b a t i o n problem i n another v e i n w a s given by GRIEGO-HERSH [1971:1]. Convergence of t h e s o l u t i o n of (2.1) using e x p l i c i t formulas of t h e type of (2.14) w a s s t u d i e d bj' DETTMAN [1973:1].
The r e s u l t s i n
t h e f i r s t f o u r s e c t i o n s i n t h i s chapter a r e i n t h e a u t h o r [1983:4]. The main novelty h e r e i s t h a t t h e y are uniform with r e s p e c t t o t h e i n i t i a l conditions
u o ( ~ ) ,u l ( ~ ) as long as
bounded, although t h e r e i s a n i n i t i a l l a y e r
convergence i s l o s t .
Section
uO(e), E2 ul(&)
0
< -t < - t(E)
remain
where
5 is a l s o t a k e n from [1983:4]; t h e r e s u l t s
are s l i g h t g e n e r a l i z a t i o n s of t h o s e i n KISYfiSKI [1970:1] mentioned above i n t h a t t h e i n i t i a l conditions a r e allowed t o depend on "intermediate" e s t i m a t e s in Theorems5.U and
5.13
The
are i n [1983:4].
The treatment of t h e nonhomogeneous equation i n Sections
i s a l s o i n t h e author [1983:4].
E.
5 and 6
Theorem 6.2 i s due t o DE SIMON [1964:1].
Section 8 on asymptotic development of t h e s o l u t i o n of (2.1) i s a l s o i n t h e author [1983:4].
Thr asymptotic s e r i e s i s a n a b s t r a c t
v e r s i o n of a w e l l known s e r i e s u:ed i n d i v e r s e s i n g u l a r p e r t u r b a t i o n problems for p a r t i a l d i f f e r e n t i a l equations ( s e e f o r i n s t a n c e GEEL [1978:1]).
The p a r t i c u l a r form used h e r e i s modelled on HSIAO-WEINACVT
[1979:1], whoccnsider t h e h e a t equation i n dimension
1 i n a space of
continuous f u n c t i o n s .
The "numerical perturbation" formula (2.8) (due t o SOVA [1970:4])
PARABOLIC SINGULAR PERTURBATION
235
i s a n abstract v e r s i o n o f a w e l l known f o r m u l a for t h e s o l u t i o n of t h e t e l e g r a p h i s t ’ s e q u a t i o n (or of t h e Klein-Gordon e q u a t i o n ) i n terms o f t h e s o l u t i o n of t h e wave e q u a t i o n .
[1970:4].
a r e i n SOVA
O t h e r e x p r e s s i o n s of t h e same t y p e
They a r e p a r t i c u l a r c a s e s o f t r a n s m u t a t i o n
f o r m u l a s , which can b e r o u g h l y d e s c r i b e d as t r a n s f o r m i n g t h e s o l u t i o n o f a d i f f e r e n t i a l e q u a t i o n i n t o t h e s o l u t i o n of a n o t h e r d i f f e r e n t i a l See t h e a u t h o r [ 1983:11
equation.
f o r a d d i t i o n a l i n f o r m a t i o n and
references. An i m p o r t a n t a p p l i c a t i o n of (2.8) i s t h a t of estimatirg t h e growth 2 of t h e s o l u t i o n s of u ” ( t ) = ( A + b I ) u ( t ) f o r a n y complex b i n
terms of t h e s o l u t i o n s of
u “ ( t ) = Au(t).
On t h i s s u b j e c t , we i n c l u d e
some r e s u l t s ( E x e r c i s e s 3 t o 8 ) t a k e n from t h e a u t h o r Let
EXERCISE 1.
a
>
0
be a r b i t r a r y ,
m ( A ) = (ah2
Show t h a t
m’ (A)
a
Let
8.
(A >_ 0)
(10.I)
>
a n a r b i t r a r y complex number
0,
A
an
Show t h a t t h e Cauchy problem f o r
i s w e l l posed i n
-X
<
t
< m.
s o l u t i o n of ( 1 0 . 2 ) i n terms of by
+ A) 1h
is alternating.
EXERCISE 2 . operator i n
[1985:2].
Write a n e x p l i c i t f o r m u l a f o r t h e
@(6),
t h e cosine function generated
A.
I n Exercises
3 t o 8,
@(t;A)
i s a s t r o n g l y continuous c o s i n e
f u n c t i o n with infinitesimal generator
EXERCISE A
3.
Let
A
@(t;A
+
Il@(t;A
(Hint:
b21),
+
b
i s a complex number
b e a normal o p e r a t o r i n a H i l b e r t s p a c e
generates a cosine function Il@(t;A)11 < - e o s h c*rt
Then
and
Re b > - 0.
i n t h e r i g h t h a l f plane
such t h a t
A
@(t;A)
< t < m).
u s e E x e r c i s e 11.5).
(10.3)
(a
t h e c o s i n e f u n c t i o n g e n e r a t e d by
b21)ll < - cosh(w2 + \ R e bl
)d 2 t
H
with
2 A + b I
(a
<m).
satisfies
(10.4)
236
PARABOLIC S I I J G W PERTURBATION
EXERCISE
4.
Let
b e t h e i d i n i t e s i m a l g e n e r a t o r of a s t r o n g l y
A
C( t; A )
continuous cos i n e f u n c t i o n
Show t h a t
+
@(t;A
IlC(t;A
+
b21)
satisfics
5 Co
b21)I/
< t < m ) , (10.6)
cosh wt + CoKw(b;t)
K ( b ; t ) = Ku(b; tl )
where
satisfying
w
(a
and
Kw(b;t) = [ b
for
t
(10.7)
c o s h ws ds
2 0.
EXERCISE 5. function
Show t h a t t h e r e e x i s t s a s t r o n g l y c o n t i n u o u s cosine satisfying
@(t;A)
C ( t ; A ) = c o s h Wt
(a
(SO.8 )
9
and
+
Il@(t;A
(Hint:
2
b I)ll = cosh
i*rt
+
Ku(b;t)
use t h e c o s i n e f u n c t i o n (11.6.10) i n t h e s p a c e
~ ( x )d e f i n s d i n
continuous f u n c t i o n s Iu(x)(ewx
-
0
EXERCISE
1x1
as
6.
4
m,
4
< m )
(a
<x<
endowed w i t h t h e norm
.
Ew of a l l
and such t h a t
llullw
=
rnax(u(x)leWL).
Using t h e a s y m p t o t i c development of t h e Bessel f u n c t i o n
(GRADSTEIN-RYDZYK [1963:1,p. 9751 o r WATSON [1948:1,p. I1(x) show t h a t t h e r e e x i s t a c o n s t a n t C s u c h t h a t , i f 0 > -0
Ko(Q;t)
<_
C$2(t11/2
( 4
Kw ( i r l ; t ) < - C q l / 2 1 ~ ~ 1 / 4 ~ ~ I t( -I m < t < Show t h a t , g i v e n
EXERCISE
(10.9)
7.
6
>
0
there exists
Using the f a c t t h a t
c
>
0
I1(x)
1991)
,
(10.10)
m).
(10.11)
such t h a t
>_
0,
show: if
b
>_
0
237
PARABOLIC SINGULRR PERTURBATION
and
@(t;A)
i s a c o s i n e f u n c t i o n s a t i s f y i n g (lo.?),
I/@(t;A
(Hint:
+
b21)Il
<_
then
(a
c o s h &).
a p p l y (2.8) t o t h e s c a l a r c o s i n e f u n c t i o n
EXERCISE 8. H
Let
Ko(b;t), Kw(b;t) @(t;A)
for b
(10.14)
Using
(10.6), (10. lo), (10.11)and (10.14) plus the Phragm6n-Lindel.cif o b t a i n upper bounds f o r
.
< t < m)
Co cosh(w2 + b 2 ) l I 2 t
theorem
complex.
be a c o s i n e f u n c t i o n i n a H i l b e r t space
satisfying Il@(t;A)II
5 co
Show t h a t t h e r e e x i s t s a c o n s t a n t Il@(t;A
(Hint:
(C
<
t
.
< m )
(10.15)
depending o n l y on
+ b*I)II < - CeIRe b 1
It(
Co
< t < m)
(a
such t h a t
.
use t h e t h e o r y i n C h a p t e r V, s p e c i f i c a l l y C o r o l l a r y
(10.16)
v.6.5).
FOOTNOTES TO CHAPTER V I
(1) We note a n i n c o n s i s t e n c e of n o t a t i o n w i t h $111.4, where w e use -b2 i n s t e a d o f b2.
(2) S t r i c t l y speaking, we s h o u l d w r i t e since
@($) i s o n l y s t r o n g l y c o n t i n u o u s .
@(0)f ( ~ sE)dU ; i n t h e integrand, W e s h a l l ignore t h i s here
and i n o t h e r p l a c e s .
( 3 ) The l e t t e r
4
i s used w i t h a d i f f e r e n t meaning i n C h a p t e r s 111
and V I I I .
( 4 ) R e c a l l t h a t , due t o t h e f i r s t i n e q u a l i t y (11.2.22) we have
( 5 ) T h i s i s t h e o n l y p l a c e where t h e f a c t t h a t ( s e e Remark 4.5 on t h e c a s e w = 0).
w
>
0
i s significant
238
CHAPTER VII
OTHER SINGULAR PERTUREATION PROBLEMS
A .
PvII.1
I n r e l a t i v i s t i c quantum mechanics ( s e e SCHOENE
[1970:1]) one
considers
f u n c t i o n s of t h e form
2
u ( x , t ) = v(x,t)exp(imc t / h ) where
v
i s a s o l u t i o n of t h e Klein-Gordon equation f o r a f r e e p a r t i c l e
(here m
= -h c Av
i s t h e mass of t h e p a r t i c l e ,
t h e speed of l i g h t ) .
h utt
-
h/&c2
<< 1 we expect
u
i s Planck's c o n s t a n t and
h
If f o l l o w s t h a t
;f nC
since
+ m2c 4v
22
2
h vtt
u(x,t)
iu
-
c
s a t i s f i e s the equation
-Au;
t-an
t o d i f f e r by l i t t l e from t h e s o l u t i o n
of t h e Schrb'dinger equa.tion
It i s t h e n natural t o c o n s i d e r t h e e q u a t i o n &
where
2
utt(x,t;E)
- i ut ( x , t ; & ) =
u ( x , t ; & ) = u ( x l J . . .,x,,t;&)
i n t h e "space v a r i a b l e s "
xl,.
. .,xD
,
(1.1)
i s a d i f f e r e n t i a l operator
A
like rn
m
AU =
and
Au(x,t;E)
5 a (x)DjDku + j=1 7 b.(x)Dju + j=1 k=l jk
C(X)U,
(1.2)
J
or a s u i t a b l e higher order v e r s i o n ; t h e problem a t hand i s t h a t of determining i n which way ( i f any) u(x,t;E)
+u(x,t)
(1.3)
is
239
OTHER PROELEMS
as
where
+O,
E
u(x,t)
i s t h e s o l u t i o n of t h e unperturbed equation
(1-41
ut ( x , t ) = iAu(x,t).
This w i l l be done i n t h e r e s t of t h e cha.pter for a n a b s t r a c t v e r s i o n of
(l.l), (1.4).
The Schrgdinger s i n g u l a r p e r t u r b a t i o n problem.
k I . 2
Throughout t h i s c h a p t e r A
w i l l be t h e i n f i n i t e s i m a l generator of
a s t r o n g l y continuous cosine f u n c t i o n
(that is, &
C(t)
8 ) . We consider t h e Cauchy problems u"(t;E) - iu'(t;E) = Au(t;E) + f ( t ; E ) A
E
i n t h e Banach space
E
2
(-m
m),
(2.1) U(0;F)
= U,(€),
U'(0;E) = UJE),
iAu(t)
+
u(0) = u
and
u'(t)
=
if(t),
0
(-m
(2.2)
m).
The Schrgdinger s i n g u l a r p e r t u r b a t i o n problem i s t h a t of showing t h a t +u(t)
U(t;E)
as
E
40,
where convergence i n (2.3) can be understood i n v a r i o u s senses.
A s u p e r f i c i a l k i n s h i p of ( 2 . 1 ) and (VT.2.1)
factor
-i
(2.3)
before
u'(t)
i s obvious, although t h e
causes r a d i c a l d i f f e r e n c e s between t h e s e
i n i t i a l v d u e problems, as put i n evidence a l l throughout t h i s c h a p t e r . An e x p l i c i t s o l u t i o n of ( 2 . 1 ) can be constructed by t h e methods of p1.2
( o r i t can be formally obtained from where
u(t;E)
(V1.2.14) considering
u(it;iE),
i s t h e f u n c t i o n i n (2.14), and keeping i n mind t h a t
T(-x)
= -I ( i x ) = -iJ1(x)). I o ( - x ) = I ( i x ) = J O ( x ) and t h a t 0 1 r e s u l t i s a n e x p l i c i t expression f o r t h e s o l u t i o n of (2.1):
The end
OTHER PROBLEMS
240
+ ’-
rt
Ci(t
-
s ; & ) f ( s j E ) ds
0
The obvious d i f f e r e n c e between t h e r e p r e s e n t a t i o n ( 2 . 4 ) f o r ( g e n e r a l i z e d ) s o l u t i o n s of t h e i n i t i a l value problem ( 2 . 1 ) and t h e similar r e p r e s e n t a t i o n (VI.2.14) f o r t h e i n i t i a l v a l u e problem (VI.2.1) l i e s i n t h e d i f f e r e n t asymptotic behavior of t h e i n t e g r a n d s and t h e exponential factors.
I n (VI.2.14) we can combine t h e asymptotic e s t i m a t e 1 1 ~ x ) =l o(x-1/2ex)
( s e e 9VI.2)
IlC( )
11
(2.5)
+ w
e -t/2e2
with t h e r a p i d l y d e c r e a s i n g f a c t o r
bound (VI.2.17) f o r E +O
x
as
and t h e
t o show t h a t we can t a k e limits d i r e c t l y as
using t h e dominated convergence theorem:
t h e r e s u l t s a r e uniform
convergence r e s u l t s of t h e type of Theorems VI.3.6 and
VI.3.8. I n t h e
same way w e o b t a i n uniform bounds f o r d e r i v a t i v e s (Theorem vI.4.1). I n c o n t r a s t , t h e asymptotic e s t i m a t e s =
IJ”(X>I
combined with t h e i n d i f f e r e n t f a c t o r
o( X W 2 ) e it/E2
(2.6) in
( 2 . 4 ) do not allow
d i r e c t passage t o t h e l i m i t ; i n f a c t , doing so formally, one c a n only hope f o r a r e l a t i o n similar t o (VI.3.40) Si(t)u = S(it)u
for
5,Gi
with l i m i t
=
which does not make sense even i n t h e most f a v o r a b l e case where i s uniformly bounded i n
-m
a.
llc(t)/l
Hence, computation of t h e l i m i t
( 2 . 3 ) w i l l have t o be c a r r i e d o u t by i n d i r e c t means.
I n particular
(and i n c o n t r a s t with t h e p a r a b o l i c s i n g u l a r p e r t u r b a t i o n problem) t h e e x i s t e n c e of t h e group
S i ( t ) = exp(iAt) = S ( i t )
i s not assured by t h e
existence-uniqueness assumption f o r ( 2 . 1 ) above but w i l l follow from t h e s t r o n g e r assumptions i n bVII.2.
(we note i n p a s s i n g t h a t S i ( t ) i s t h e ”boundary v a l u e ” of t h e a n a l y t i c semigroup c o n s t r u c t e d i n 4VI.2).
A s it may be expected, t h e convergpnce results for t h e o p e r a t o r s and
Gi(t;E)
Qi(t;E)
(which w i l l be c a l l e d i n what f o l l o w s t h e p r o p a g a t o r s o r
s o l u t i o n o p e r a t o r s of ( 1 . 1 ) - ( 1 . 2 ) ) a r e d i f f e r e n t i n c h a r a c t e r from t h o s e
241
OTHER PROBLENS
for
&(t;&), q t ;
E )
i n Chapter VI, e s p e c i a l l y those i n 5VI.2 t o 5VI.4.
The main d i f f e r e n c e s between t h e r e s u l t s i n t h i s chapter and those i n Chapter V I can be summarized a s follows: There a r e no uniform bounds ( t h a t i s , bounds i n t h e norm of
(a)
for
(E))
(Example (b)
@i(t;E)
f$(t;E),
,...
of t h e type of (VI.4.20),
4.9). There a r e no convergence r e s u l t s i n t h e norm of
‘&(t;s), e i ( t ; E ) ,
e;(t;E),
...
@i(t;E),
m.4.6 o r Theorem VI.4.7: convergent (Example 4 . 6 ) . Theorem
for
of t h e type of Theorem VI.3.11, Ei(t;&) i s not even s t r o n g l y
6i(t;F)
The nonexistence of uniform bounds f o r
inhomogeneous equation ( 2 . 1 ) :
(E)
i n fact
well a s t h e lack of convergence of
(c)
(m.4.54).
E.(t;E)
and
@i(t;&), as
h a s consequences f o r t h e
i n fact,
Vr.7.4 f o r HGlder
There a r e no analogues of Theorem
continuous f u n c t i o n s o r of Theorem
v1.7.6
f o r functions i n LP
.
Among t h e r e s u l t s on t h e p o s i t i v e side, w e have
(a)
There e x i s t s a n analogue of Theorem VI.7.2
c l a s s of o p e r a t o r s (e)
A
(Theorem
for a restricted
7.1).
Most of t h e r e s u l t s i n p V I . 5 on r a t e s of convergence can be e s p e c i a l l y Theorem 4.1).
proved i n t h e present s i t u a t i o n ( s e e OVII.4, We mention f i n a l l y t h a t t h e theory i n
h . 8 concerning asymptotic
s e r i e s does not seem t o extend t o t h e Schrodinger s i n g u l a r p e r t u r b a t i o n problem:
can be formally defined
although t h e asymptotic s e r i e s ( V I . 8 . 2 0 )
i n t h e present s i t u a t i o n , t h e
L1
norm of
v (t/E n
2
)
over any f i n i t e
i n t e r v a l cannot b e conveniently bounded.
4VII.3
Assumptions on t h e i n i t i a l value problem.
A
A s pointed out i n m I . 2 , t h e f a c t t h a t
t h a t t h e Cauchy problem f o r ( 2 . 1 ) i s well posed.
E
8
allows u s t o show
The key condition
on ( 2 . 1 ) t h a t w i l l allow u s t o prove (2.3) i s ASSUMPTION
3.1.
& e J
Q.(t;E),
ei(t;E)
be t h e propagators of ( 2 . 1 )
242
OTmR PROBLEMS
Then t h e r e e x i s t c0nstant.s
Ilgi(t;E)lI
Co C
'
5
1'
and
t
independent of
w
E
such t h a t
ll~i(t;&)ll 5 ClewltI
COewlt1,
Assumption 3.1 can be g i v e n n c o n s i d e r a b l y simpler form a s f o l l o w s . be a s o l u t i o n o f ( 2 . 1 ) . it / 2 ~ * equivalently, u ( t ) = e v(t/)).
Let
v"(t)
Then
v(t)
1 -I)v(t)
(A
=
v ( t ) = e-it/2Eu(Et)
Set
u(t;E)
(-m
or,
satisfies
m),
4E
V(0) =
(3.2) =
V'(0)
UO(E),
i -2E
U0(E)
+
€U1(E).
u ( t ) can be e x p l i c i t l y w r i t t e n i n terms of t h e p r o p a g a t o r s (2~)-~1),8(t;A (2E)-21) of t h e i n i t i a l value problem (3.2):
Accordingly,
C(t;A
-
-
2
u(t) 2
+
-
C(t,/E;A
=
8(t/&;A
-
(21
(2i)-*I)uO(E)
&
)-*I)(-
uO(E)
+
(3.3)
Eu1(E)).
(We note, i n c i d e n t a l l y , t h a t f o r m t l a ( 2 . 4 ) c a n be obtained from
(3.3)
although t h i s w i l l p l a y no r o l e i n what f o l l o w s ) .
by Lemma VI.2.1,
Using
( 3 . 3 ) we deduce t h a t 2 &.(t;E:) = e i t / : ' E
-
2 i(2&)-1eit/2E
6.(t;E)
C(t;A
-
(t/&;A
= E
(2E)-21) = e
8(t;A
-
S(t/E;A
-
-
(2E)-21),
-1 it/2E2 e 8(t/E;A
-it/2cG i
(2E)-21)
-
( t ; E ) + (i/2)e
(2E)-"I)=
(3.4)
,
(2E)-21)
-it/2EG
Ee-it/2EG i ( E t ; E )
i ( t;E) '
.
Accordingly, Assumption 3.1 v i l l hold i f and only i f
(3.5) (3.6)
(3-7)
243
OTHER PROBLEMS
We s h a l l examine i n pvII.5 a c l a s s of o p e r a t o r s s a t i s f y i n g Assumption 3 , l :
pv11.6, t h e s e o p e r a t o r s i n c l u d e t h e p a r t i a l d i f f e r e n t i a l
as s e e n i n
o p e r a t o r ( 1 . 2 ) ( w i t h boundary c o n d i t i o n s ) , t h e c o e f f i c i e n t s s u i t a b l y restricted. We p o i n t o u t below a consequence o f Assumptios 3.1. THEORJ%V 3 . 2 . i A
and
w
Proof:
Coeu:lt/
u
2 D(A )
E
Si(<)
such t h a t
(-m
(3.9)
m),
t h e n it f o l l o w s from f o r m u l a ( 2 . 4 ) ( o r from
t h e c o n s i d e r a t i o n s a t t h e b e g i n n i n g of t h i s s e c t i o n ) t h a t four times continuously d i f f e r e n t i a b l e , E
2
QI'"(t;E)u
-
Then
(3.1).
t h e constants i n If
3.1.
s a t i s f y Assumption
g e n e r a t e s a s t r o n g l y c o n t i n u o u s group
Ilsi(t)ll 5 C0
A
Let t h e operator
i&y(t;E)u
=
K'll(t;E)U
AQy(t;E)u
E
(-m
K,(t;&)u I
and
D(A)
m).
On t h e o t h e r hand, we have E;(o;E>~ Ey'
= E -2 ( A E ~ ( o ; E ) ~
= E
(0;E)U
+ iQ!(O;&)u)
-2
+
(AEi(0;E)u
= E-'A~,
iEy(0;E)u) = 1
i E
-4 Au,
t h u s we o b t a i n , a p p l y i n g (2.4),
+
Ej'(t;E)u = E - 2 Q . ( t ; f ) A u Accordingly, it f o l l o w s from Assumption
5
l/Qy(t;&)U/l
cE-*ewltl1lAu(l
We t a k e now a sequence
later.
For u
E
= A(Qi(t;En)U
Using a g a i n
(2.4),
n
1,
3.1 t h a t
(-m
1> El >
E2
C m,
>
.. . >
0 < E
0
9
Eo).
t o be s p e c i f i e d
we have
D(A)
E,(E;(tjEn)U 2
CE
i& -2 G i ( t ; f ) A u .
-
Ei(t;En+l)u)
-
-
i(Ei(t;En)u
a i ( t ; E n + l ) ~ )+ ( E 2 n
-
-
Ei(t;En+l)u)
E 2n + l ) ~ ~ ( t ; E n + l ) ~ .
=
is
244
OTHER PROBLEMS
In view of (2.12) and Assumption 7.1, i f
Selecting now a sequence (say,
En =
n-1/2)
we show t h a t
t
E
2 D(A )
we have
t h a t t e n d s t o zero s u f f i c i e n t l y slowly
[En)
uniformly with respect t o
u
i s a Cauchy sequence,
{PSi(t;En)u}
on compact subsets of
t h e uniform bound (3.1) and t h e denseness of
D(A2)
-
m
Using
m.
we deduce t h a t
converges strongly, uniformly on compacts of
{Qi(t;en)J t o a s t r o n g l y continuous operator valued f u n c t i o n
Si( s )
-
m
m
satisfying
t h e e s t i m a t e (3.9). Denote by
i.( \;E)u
equation (2.1) f o r
t h e Laplace transform of
Ki(t;u)
Qi(0;&)u = u, Q;(O;E)u
= 0
Writing
Ki(t;E)u.
D ( A ) ) and t a k i n g i n t o account t h a t we deduce, a f t e r i n t e g r a t i n g from 0 t o
(u
E
t
two times, ds
.
Taking Laplace transforms, we o b t a i n
where t h e i n t r o d u c t i o n of
A
under t h e i n t e g r a l s i g n i s e a s i l y j u s t i f i e d .
It follows t h a t c.(h;E)u = (E2h 1
for
A
>
w.
Putting
E = E
n with
-
2 2 i)R(E h
-
ih;A)u
ren 1 a sequence a s above and
t a k i n g l i m i t s , we o b t a i n Si(h)u = -iR(-h;A)u for
u
E
D(A)
and thus, by denseness of
follows t h e n from Theorem 1.3.4 t h a t group with i n f i n i t e s i m a l generator
= R(h;iA)u
D(A),
Si(i) A.
f o r all u
E
E.
It
i s a s t r o n g l y continuous
This ends t h e proof of Theorem
3.2. We note t h a t o u r proof i n c l u d e s a r e s u l t on convergence of to
Si(t).
However, i t ' s not worth formulating since it w i l l be
considerably improved i n next s e c t i o n .
gi(t;E)
245
OTHER PROBLEMS
h1.4
The homogeneous e q u a t i o n : be an element o f
u
Let
convergence r e s u l t s .
D(A).
u(t;&)
=
The f u n c t i o n
&!(t;e)u 1
i s a g e n e r a l i z e d s o l u t i o n of t h e homogeneous e q u a t i o n (2.1) w i t h u(0;r)
= 0,
= &;(o;E)u
U'(0;E)
-2
AQ.(o;€)~+ i E
= E
1
-2 ~ ( o ; & ) u= 1
E-2~u.
It f o l l ow s t h a t Ei(t
;E)u
=
6. ( t ; & ) A U
(4.11
*
1
On t h e o t h e r hand, v ( t ; & ) = G!(tjE)U 1
is a l s o a g e n e r a l i z e d s o l u t i o n of (2.1) w i t h = C2U,
v(0;E) = Q ( 0 ; E ) U
= v ( o ; E ) ~= F
-2
+
A ~1. ( o ; E ) ~
V'(0jE)
iE-2Gi(o;E)u
= iE
-4u,
so t h a t d!(t;E)u 1
Since a l l operat o r s i n
u
t o all
E
E.
= €
(4.2) a r e
-2
+
Ei(t;E)u
i E
-2
fj(t;E)U.
(4.2)
bounded, t h e e q u a l i t y c a n be extended
We combine (4.1) and (4.2), t h e l a t t e r i n e q u a l i t y w r i t t e n
for a n element o f t h e form Au.
The r e s u l t i s
& i ( t ; E ) u = iA&.(t;E)u
-
i& 2% ( t ; & ) A u .
(4.3)
1
iA
Since
semigroup
i s t h e i n f i n i t e s i r n a i l g e n e r a t o r of t h e s t r o n g l y c o n t i n u o u s Si(z),
we o b t a i n a p p l y i n g f o r m u l a
gi(t;E)u
-
Si(t)u
=
u
E
2
D(A )
Ei(t;E)u
-
-ii2ktSi(t
= -iE2Lt
If
(1.5.7)
E$(t
that
s)Gi(s;E)Au d s
-
s;&)Si(s)Au d s . ( 4 . 4 )
we can i n t e g r a t e b y p a r t s :
- Si(t)u=
- E ~ B(t;&)Au . 1
- iE
- s;&)Si(s)A 2u
ds.
E s t i m a t i n g t h e i n t e g r a l i n (4.5) i n a n o b v i o u s way, w e o b t a i n
(4.5)
246
OTHXR PROELEMS
THEOF34 4.1.
let
u(t;&)
L A A be a n o p e r a t o r s a t i s f y i n g Assumption 3.1 @ u(t)
be a s o l u t i o n of t h e homogeneous problem (2.1),
a s o l u t i o n of t h e homogeneous problem ( 2 . 2 )
with
uo
E
D(A2).
Then we
have iiu(t;E)
+
-
U(t)ll
5
C l & 2 e W I t I ( ~ ~ ~ u+g C~ i~
11)
I ~ I I I A * U ~
~ o e U : ~ t ~ ~ ~ u o ( ~ ) - u O ~ ( + ~ ~ ~ 2( -emU
The proof of ( 4 . 6 ) i s e s s e n t i a l l y t h e same a s t h a t of (VI.5.27): we o n l y have t o note t h a t
-
U(t;E)
U(t)
-
+ Ei(t;E)(Uo(E)
Theorem
4 . 1 i m p l i e s t h a t when u
0
-
-m
Si(t)uo
u o > + e i ( t ; E ) ( E 2U 1 ( E ) )
2 D(A )
E
Ib(t;E)
uniformly on compacts of
-
= gi(t;E)Uo
-
(4.7)
we have
(4.8)
u(t)/l = o(E2) if
m
Estimates of t h e same sort c a n be e a s i l y obtained f o r t h e d e r i v a t i v e u'(t;E)
if
uo E D ( A 3 )
and
uO(E)
E
In fact,
D(A).
v(t;&) = u'(t;&)
i s t h e generalized s o l u t i o n of t h e homogeneous equation ( 2 . 1 ) with
v(O;E)
=
u'(0;~)=
y ( ~v'(O;E) ), v(t) = u'(t)
On t h e o t h e r hand, equation (2.2)
=
u"(0;~)=
-2 E
(Au~(E)
+
iul(E)).
(4.10)
i s t h e s o l u t i o n of t h e homogeneous
with ~ ( 0 =) u ' ( 0 )
Applying Theorem 4 . 1 t o
THEOREM 4.2.
Let
v(t;&), v ( t )
A
=
iAu
(4.11)
0'
we o b t a i n
be a s i n Theorem 4.1 and l e t
s o l u t i o n o f t h e homogeneous problem ( 2 . 1 )
u(t;&)
with uO(E) E D ( A ) , with uo E D(A').
a s o l u t i o n of t h e homogeneous problem ( 2 . 2 )
u(t)
Then
we have IIu'(t;E)
+
-
u'(t)ll
ewltl(COllul(t)
5
-
+ C01t~I~A3uol~)
C1&2e"ltl(llA2uoll
iAuo/I
-t C1Ilu,(E)
-
iAuO(E)/I).
(4.12)
247
OTHER PROBLEMS
uo
It f o l l o w s from t h i s r e s u l t t h a t i f
D(A3)
E
and
uO(E) E
D(A)
then
- u f ( t ) / (=
IIU'(t;E)
uniformly on compacts of
\iul(
E)
-w
- i A u0 11 = O( E2 )
and
llul(
if
m
E)
E>II=O(E 2)
- iAuO
as
(4.14)
E
or, e q u i v a l e n t l y , i f
Theorems 4 . 1 a n d 4 . 2 a l l o w u s t o deduce convergence r e s u l t s f o r a r b i t r a r y i n i t i a l conditions.
Let
THEORDd 4.3.
u(t;E)
homogeneous problem ( 2 . 1 )
with
be a g e n e r a l i z e d s o l u t i o n of t h e uO(E),
ul(E)
with
s o l u t i o n of t h e homogeneous problem ( 2 . 2 )
2
uO(&) + u o ,
E u,(E)
E, u ( t )
E
as
-0
uo
E
E
-0.
a. g e n e r a l i z e d Assume t h a t
E.
(4.16)
Then u(t;E)
uniformly on compacts o f
Proof:
-u ( 0 ) u(t) = u. Let
Pick
+ >
E
2 D(A )
such t h a t
/lu-u0ll
5
6.
uO(E),
-
u(t)ll
(I
l[AFll +
4 . 1 we deduce t h a t
I: I I 4 t ; E ) -
U(t>ll
+
II3t) -
I
C o l t llA2'ull) + CoemJt lIuO(E)
u(t)ll
- ull
.
(4.18)
s u f f i c i e n t l y small we can obviously make t h e right-hand
0
5 2C06eUB i n
THEORFM 4.4. uo
E
It1 5 a > 0.
Let u ( t ; & ) , D(A)
u(t)
T h i s ends t h e p r o o f .
be as i n Theorem 4.3.
Assume
and t h a t
AuO(&)-Au, Then -
u
Clelult~E211u1(E)~/+ Cobemltl
side o f (4.18)
that -
(4.17)
4 0
E
m.
and choose
Applying Theorem
< C1E2ewlt
&
0
as
b e t h e s o l u t i o n of t h e i n i t i a l value problem ( 2 . 2 ) with
Il.(t;E)
Taking
>
6
-a
+u(t)
ul(&) + i A u 0
as
E -0.
(4.19)
248
OTHER PROBLEMS
+
u'(t;E)
uniformly on compacts of
Proof:
Given
Ilu'(t) -
so t h a t
6
>
-a
0
u
u ' ( t ) / l = IlSi(t)(u
u
E
(4.20)
-0
m.
-
choose
We use t h i s time (4.12) with
as
I'(t)
D(A3 )
E
-
such t h a t
llAu
- AFoII 5
i n s t e a d of
uo:
6
5 C06elUlt1.
uo)ll = IISi(t)(AE-Auo)II
d e t a i l s a r e omitted.
We have a l r e a d y pointed out t h a t no analogues of t h e uniform bounds i n Chapter VI o r of t h e uniform convergence r e s u l t s t h a t we e s t a b l i s h e d t h e r e e x i s t i n t h i s case.
To p u t t h i s i n evidence we u.se ( a s we d i d
a l r e a d y i n Chapter VI, f o r i n s t a n c e i n &le VI.3.10) t h e H i l b e r t E = A2
space
1IuII
that
( r1 ~ ~ 1 ~ <) " ~ and
=
m
A
fun; 15 n <
such
m 3
i s t h e ( s e l f adjoint) operator
{ F n ] i s a sequence o f r e d l numbers bounded above ( t h e domain of
where
A
o f all complex valued sequences
fun]
c o n s i s t s of all
belongs t o
a2).
such t h a t t h e r i g h t hand s i d e of (4.U)
We shall a l s o u s e t h e space
ordinary Euclidean norm and a n o p e r a t o r
E =C
m
with i t s
o f t h e form ( 4 . U ) .
A
We
check e a s i l y t h a t t h e s o l u t i o n o p e r a t o r s o f ( 2 . 1 ) corresponding t o t h e
(4.22)
(A:
where
E),
hi( E)
a r e t h e r o o t s of t h e c h a r a c t e r i s t i c polynomial
+ n
2E
2
2E
( n o t e t h a t , since t h e sequence
h i ( & ) w i l l be d i f f e r e n t f o r
h:(E),
EXAMPLE 4.5.
to
fwn3
uo
even i f
i s bounded above, t h e r o o t s E
s u f f i c i e n t l y small).
Convergence i n Theorem
lluoI/ i s bounded.
4.3 i s not uniform with r e s p e c t
We t a k e
E = A
2
, LLn
= -n
2
,
249
OTHER PROBLEMS
(4.24)
(4.25)
(4.26) I n c o n s t r a s t , t h e r e i s uniform convergence o u t s i d e of a n i n i t i a l l a y e r 0
5t 5t(E)
s e e Theorem VI.3.11.
i n t h e parabolic case:
EXAMPLE 4.6. convergence of
2
The c o n d i t i o n
u(tjE)
& ul(E)
i n Theorem 4.3
-0
cannot be weakened.
E = Q1
We t a k e
for and
r e w r i t e formula (4.23) a s follows:
6.(tjE)E 1
2
ul(&) = 2 i e
- 4 E2 & 9 / 2 & 2 ) t 2 1/2 (1 - 4 E w )
2 ul(&),
it/2e2 s i n ( ( 1
which does n o t have a l i m i t as
1-0 u n l e s s
E
E
2
E
(4.27)
ul(E) -0.
For t h e a b s t r a c t p a r a b o l i c case see Theorem VI.3.11: we n o t e that t h e r e i s a g a i n convergence o u t s i d e of a n i n i t i a l l a y e r .
EXAMPLE 4.7. possible.
The r a t e of convergence i n Theorem 4.1 i s b e s t
We use t h e space
E
=
3
and t h e o p e r a t o r
A
i n (4.U).
Write (4.22) i n t h e form Ei(tjE)
bn3 =
P,(t;E)Un
3
(4.28)
A f t e r some computation with Taylor s e r i e s we check t h a t
(4.29) where
as
r n ( & ) i s a r e a l number.
E 4 0 .
Assume t h a t
Rewrite t h i s i n e q u a l i t y a s
f u,)
E
Q 2 i s such t h a t
250
OTHER PROBLEMS
iVnt
~ ~ - ~ - pe ~ I (1un ~ -c ;c2.~ ) Taking (4.29) i n t o account, we obtain, a s s u m i n
that
p n
i n (4.2l),
+ m
(4.10) u
so t h a t
2
D ( A ).
E
We r e c a l l t h a t i n t h e a b s t r a c t p a r a b o l i c case,
convergence of order
u
that
D(A)
E
EXAMPLE even when
<
V
4.8.
m.5.5).
Convergence i n Theorem
i n (3.1).
0
0 , u O ( E ) = u,
eA+(E)t
can be obtained under t h e weaker assumption
( s e e Theorem
u1 =
uniformly t o
E2
u
1
We t a k e h e r e
the fact that
(E) = 0 ;
S i ( t ) = eiWt
4.9.
i f a bound of t h e type of
E +O;
e i't
uniformly i n e;(t;E).
2
t
0.
We o b t a i n
(4.28),
(VI.4.20) were v a l i d :
A
would be a bounded o p e r a t o r , absurd i f
VII.5
does not converge
Q.(t;E)u 1
There a r e no uniform bounds f o r
from (4.23) t h a t , w i t h t h e n o t a t i o n of
as
S'(t)
i s unbounded.
V e r i f i c a t i o n of t h e hy-poteses.
We examine i n t h i s s e c t i o n o p e r a t o r s t h a t s a t i s f y Assumption beginning with t h e case where normal o p e r a t o r .
is, that
0,
i s a n obvious consequence of t h e f a c t t h a t
does not converge uniformly t o
EXAMPLE
4.3 i s n o t uniform i n t > E = C1, A u = ku w i t h
A
E
= H
i s a H i l b e r t space and
It f o l l o w s from Fxercise 11.5 -that A
E
A
8(C,w)
g e n e r a t e s a s t r o n g l y continuous c o s i n e f u n c t i o n
3.1,
is a
(that
C(t)
satisfying
Ilc(t)ll 5 i f and only i f
cr(A),
C e U J l tI
t h e spectrum of
(-m
A,
m),
(5.1)
i s contained i n a r e g i o n o f
t h e form
( t h a t i s , t h e r e g i o n t o t h e l e f t o f t h e p a r a b o l a p a s s i n g through 2 2 It 2iw ). We note i n p a s s i n g t h a t C ( t ) c a n be computed using t h e
UJ
,
f u n c t i o n d c a l c u l u s f o r normal o p e r a t o r s :
251
OTHER PROELEMS
C ( t ) U = c(t;A)u =
where
P(dp)
i s t h e r e s o l u t i o n of t h e i d e n t i t y for A 2
c(t;p,) = cosh t$/2 = 1 + t ~/2! constant
+
...
+
and
Moreover, t h e
C i n (5.1) c a n be t a k e n e q u a l t o 1. ( I n f a c t , t h e e s t i m a t e
Ilc(t)II 5
can be improved t o THEOFSM and o n l y i f
Proof:
cosh U r t ) .
5.1. The normal o p e r a t o r o(A)
s a t i s f i e s Assumption
A
3.1
if
i s contained i n a h a l f - s t r i p . Rep
iA
4 2 t p /4!
5
IIm
a,
FI 5 b .
(5.3)
We have s e e n (Theorem 3.2) t h a t Assumption
g e n e r a t e s a s t r o n g l y continuous group.
3.1 i m p l i e s t h a t A
Since, on t h e o t h e r hand,
g e n e r a t e s a cosine f u n c t i o n i t follows t h a t
o(A)
i s contained i n t h e
i n t e r s e c t i o n of a h o r i z o n t d s t r i p with a r e g i o n defined by (5.2) which i n t e r s e c t i o n i s i t s e l f contained i n a h a l f - s t r i p of t h e form Conversely, l e t inequalities
(5.3).
i s a subset of
o(A)
be contained i n a h a l f - s t r i p defined by both
w(E)
-
(2E)-2
a s e t of t h e form (5.2) i f and only if
> -
W(E),
i s a s o l u t i o n of t h e e q u a t i o n a m - -
- w(E)2
-
E
5 (4a)-1/2
b2 , 4 4E)2
4E2 if
a ( & )= a
The h a l f - s t r i p corresponding t o
w
where
(5.3).
we have
and t h e f i r s t e s t i m a t e (3.8) i s v e r i f i e d , s a y for
i s a c t u a l l y s a t i s f i e d f o r all
(5.6) away from z e r o ) . S(t;A
E
2
0,
0
_<
E
5 (8a)-’l2
(it
as we s e e e a s i l y e s t i m a t i n g
W e n o t e next t h a t
-
(2~)-~1) = s(t;A
-
(2E)-*I),
(5.7)
252
OTHER PROBLEMS
where
s ( t ; p ) = p-1/2sinh
t h e norm
IlS(t;A
-
s i n tp1/21
lP-1’2
= t
tpl/*
-
t3p2/3!
- ... ,
+ t5p3/5!
thus
does not surpass t h e supremum of
(2E)-21)ll
i n t h e h a l f s t r i p defined by
5
Rek
a
1 -4E2 ’
IIm 1-115 b
.
If 1 belongs t o the region defined by (5.3) t h e n
On t h e
for
li.
l i m i t e d by (5.8)
118(t;A
-
w = w(E)).
( 2 ~ ) - ~ I ) 5l l 2 ( 1
-< 2&(1 -
w
(recall that
r e g i o n defined by (5.2) with
-
must be contained i n the Hence
La&2 ) -1/2& , w ( 4 l t l
4 a E 2 -1/2 e x p ( ( 1
which i s t h e second i n e q u a l i t y (3.8).
-
4a&2)-1/%EIt
1) ,
T h i s ends t h e proof of Theorem
5.1. We note t h e important p a r t i c u l a r case where with
-A
2
i n which case we can t a k e
0,
A
in
w = 0
i s self-adjoint
(3.8).
Another
case t h a t can be reduced t o t h i s i s covered by the following r e s u l t
THEOREM 5.2. function
Let
A
generate an uniformly bounded cosine
C(t),
IlC(t)II H.
i n a H i l b e r t space Proof:
Then
5 c A
(-,
<
(5.10)
co)
s a t i s f i e s Assumption 2.1
We have shown i n Theorem
v.6.7 t h a t
if
A
with
w = 0.
i s a n operator
t h a t s a t i s f i e s t h e assumptions i n Theorem 5.2 t h e n t h e r e e x i s t s a (self-ad j o i n t ) bounded, i n v e r t i b l e operator operator
B
with
B
5
0
Q
and a s e l f ad j o i n t
such t h a t A = $
-1
BQ.
(5.11)
I n obvious notation, C ( t ; A ) = Q-’C(t;B)Q,
8 ( t ; A ) = Qm18(t;B)Q,
(5.12)
253
OTHER PROBLEMS t h u s i t follows from Theorem claimed. constants
5.1 t h a t A
s a t i s f i e s Assumption
To compute e x p l i c i t l y t h e c o n s t a n t s
Ci,
l/Ql/, lIQ-'/l
(7.8)'
in
C1
Co,C1 i n (3.1)
or the
e x p l i c i t e s t i m a t i o n s f o r t h e norms
These a r e given i n Theorem
a r e needed.
3.1 a s
v.6.7 although it
i s not c l e a r whether t h e y a r e b e s t p o s s i b l e . Another c l a s s of o p e r a t o r s s a t i s f y i n g Assumption 3.1 i s i d e n t i f i e d below.
5.3.
THEOREM
Let
be a n a r b i t r a r y Banach space,
E
3.1, B a bounded o p e r a t o r . s a t i s f i e s Assumption 3.1 a s w e l l .
s a t i s f y i n g Assumption
A.
a n operator A = A
Then
+
0
B
The proof of Theorem 5.) i s based on t h e following r e s u l t on p e r t u r b a t i o n of c o s i n e f u n c t i o n s , where
E i s again a n a r b i t r a r y
Eanach space. THEOREM 5.4.
Let
be t h e i n f i n i t e s i m a l g e n e r a t o r of a s t r o n g l y
A.
continuous c o s i n e f u n c t i o n
Then
+B
A = A.
C(i) = C(t-A ) ' 0 '
B
a bounded o p e r a t o r .
g e n e r a t e s a s t r o n g l y continuous c o s i n e f u n c t i o n
C ( t ; A ) = C(t;AO + E).
5.4 i s a n obvious k i n of Theorem IV.2.3, where a s i m i l a r
Theorem
"perturbation-by- bounded -operator" r e s u l t i s shown f o r g e n e r a t o r s o f s t r o n g l y continuous groups.
Although Theorem
5.4 can be shown
by
means of e s t i m a t i o n s of t h e r e s o l v e n t a s i n Theorem IV.2.3, we s h a l l use here another method t h a t y i e l d s an e x p l i c i t formula f o r
C(t;AO
+ E).
Given two
(E)
-
valued f u n c t i o n s
s t r o n g l y continuous i n
-m
C
m
and
G(t^),
defined and
we d e f i n e t h e i r convolution by
t F(t
(F*G)(t)u=J
F(t")
-
s)G(s)u d s .
(5.13)
0
We check e a s i l y t h a t f u n c t i o n defined i n
(FxG)(<) -m
-= m.
theorem, any s t r o n g l y continuous bounded i n t h e norm of moreover,
llF(:)II
(E)
i s a s t r o n g l y continuous
(E)
-
valued
Note t h a t , by t h e uniform boundedness
(E)
-
valued f u n c t i o n must be
on compact s u b s e t s of
i s t h e supremum of t h e f a m i l y
-m
m;
{IIF(t)uII; IIuI(
513
of continuous f u n c t i o n s , t h u s i s lower semicontinuous as a f u n c t i o n of
t.
This g i v e s sense t o t h e following e s t i m a t i o n :
254
OTHER PROBLEMS
ll(Fx-G)(t)!
51
t l17(t - s)llllG(s)Il d s
(5.14)
' 0
for
t
2
0,
with a n obvious c o u n t e r p a r t f o r
t h a t t h e convolution of
(E)
-
t < 0.
We check e a s i l y
v,CLued s t r o n g l y continuous f u n c t i o n s
enjoys all t h e p r i v i l e g e s of i t s s c a l a r c o u n t e r p a r t (such as a s s o c i a t i v i t y ) that make sense i n t h e p r e s e n t c o n t e x t . function
Define a
Q ( t ) as t h e sum of t h e s e r i e s
C ( t *'A 0) ~ + C ( t ; A O ) + + B 8 ( t ; A O ) ~ + C ( t ; A o ) ~ E S ( t ; A O ) ~ B B 8 ( t ; A O ) U+ To show convergence o f (5.15) we pick c o n s t a n t s
and make use of (5.14) i n each of t h e terms.
C
0
,W>
(5.15)
a s .
such that
0
The f i n a l r e s u l t i s
It follows t h a t (5.15) converges uniformly on compact s u b s e t s of -W
m
to
s i n c e each term i n (5.15) i s a s t r o n g l y
Q(t)u;
continuous function,
Q(t)i s
a s t r o n g l y continuous ( E )
-
valued
function satisfying
l/Q(t>ll 5 Ce
(5.18)
(5.17) and (5.18) we see t h a t we can m u l t i p l y (5.15) by + CollBll and t h e n i n t e g r a t e term by term. By v i r t u e exp(-At) i f A >
Using
u)
of t h e convolution theorem f o r Laplace transforms i n each term we obtain, using t h e f i r s t e q u a l i t y (11.2.11),
where t h e j u s t i f i c a t i o n of t h e l a s t i n e q u a l i t y follows t h e l i n e s of t h e
255
OTHER PROBLEMS
We apply t h e n Theorem 11.2.3.
argument used i n Theorem IV.2.3.
This
completes t h e proof of Theorem 5.4. We note t h e following formula, which i s obtained i n t e g r a t i n g (5.15)
in
5
0
s
1. t :
S ( t ; A ) u = S(t;A 0 -t
-t
B)u = 8 ( t ; A
( 2 ~ ) - ~ 1 )and
)u
0
...
-t
(5.20)
We use t h e s e r i e s (5.15) t o express
+ B - ( 2 ~ ) - ~ 1=) C ( t ; A O 0
C(t;Ao-
+ S(t;AO) * W ( t ; A O ) u
)U
8(t;Ao)*E!S(t;Ao)*BS(t;A
Proof of Theorem 5.3: C(t;A
0
( 2 ~ ) - ~+ 1B)
-2
S(t;Ao- ( 2 ~ ) I)
i n terms of
and estimate t h e convolutions
i n an obvious way, using a s a b a s i s both i n e q u a l i t i e s
(3.8).
We
obtain
IIC(t;Ao -t
+
B
C;CfllBlI 2
-
& 2: ~e 2
(act<=,
WEJtl
8(t;Ao-
+
C;C1l/Bl(t(s
ewEltl
... = C'e (wtClllBI1)El tl 0 (5.21)
o < _ & I E O ) .
A t o t a l l y similar estimation of
of
+
( ~ E ) - ~5I C;ew'ltl )~I
8(t;A
0
-t
B
-
w rIi t)t e n i n terms (~E)-~
( 2 ~ ) - ~ 1 using ) (5.20) y i e l d s :
llS(t;Ao+ B
-
( 2 ~ ) - ~ 1 ) 1c -I ClEeW'ltl
+
CII/BII 2 Itl$ewFiti
This ends t h e proof of Theorem 5.3. We examine i n t h e r e s t of t h e s e c t i o n a complement t o Theorems and 4.2 obtained by means of i n t e r p o l a t i o n theory. E = H
We assume that
i s a H i l b e r t space and that
A = A0 + B ,
(5.23)
i s s e l f - a d j o i n t and bounded above (that 0 s a t i s f i e s Assumption 2 . l h a s been proved i n Theorem 5.3). To
where A
4.1
B
i s bounded and A
simplify, we a l s o assume that
a(Ao)
5
achieved by an obvious decomposition of
(-m,O),
Ao.
which can always be F i n a l l y , it i s required
256
OTHER PROBLEMS
that BD(AO)
c D(AO) -
(5.24)
We have already pointed out i n 8V1.8 how t o defined f r a c t i o n a l powers
5
where
(-Ao)',
= cy +
i z i s a n a r b i t r a r y complex number. The pertinent
formula i s (-A u')
where
=
[m p 5 P(-+)u
i s the resolution
P(-+)
,
Jo
O
(5.25)
of t h e i d e n t i t y for Ao.
It was already
proved i n Section v1.8 that lI(-Ao)
Let
5
2
Ull
Q :H * H
= Il(-Ao)
cy+izull2
be a l i n e a r operator such t h a t
IlQull IKolluil
(u
E
HI,
2 IlQul' 5 $l1AOull
(u
E
D(AE))
-
(5.27)
Consider t h e H-valued holomorphic function c p ( ~ )= cp(a + i.t) = Q(-A 0 )
for
u
E
H
-orti.tu
5
CY
5 21,
Making use of both i n e q u a l i t i e s (5.27) and applying
fixed.
Hadamard's t h r e e - l i n e s theorem t o cp lldQ
(0
+ i7)ll
(see again gVI.8) we deduce t h a t
5 KO(2*)/*Ig2llUIl
(0
5 a 5 2),
hence
(2*)/2g/2~~(-~O)cyu~~ (u
IlQull<_KO
E
D((-A 0 )~u,o 5
5
We apply t h i s argument t o t h e operator Ki(t;&) - S i ( t ) .
2).
(5.28)
Using (3.1)
and (3.9) we o b t a i n ligi(t;E)u
-
Si(t)u/j 5 *coew(tl
II~II.
(5.29)
The second estbnate i s somewhat l e s s t r i v i a l , since (4.5) provides 2 bounds i n terms of IlAul] and of 11A2ull, r a t h e r than llAOull a s needed. To perform t h e conversion we note that 2 -2 2 -2 2 = (Ao f A B + FAo = (Ao + B) A. A A. 0 =I+ABCI 0
-2 0
-1 2 -2 +BAo + B A o ,
f
2 -2 B )A
(5.30)
where t h e f i r s t , t h i r d and fourth operators a r e t r i v i a l l y bounded; t h e
257
OTHER PROBLEMS
second ( i n f a c t , even A BA-l) 0
closed graph theorem.
i s bounded because of (5.24) and t h e
0
On t h e other hand, we have
AAO' = ( A ~+ B > A-2~ =
-l+
.'0"
(5.31)
It follows from (5.30) and (5.31) that
.
2 2 2 //A uI/5 C / I A O ~ / I ,h/l5 C I I A O ~ / l
(5.32)
We combine (5.32) with (4.5), obtaining IIQi(t;E)U - s i ( t ) u l /
5
It1
clE2(i+
IIA;UII
(u
E
(5.33)
D(A2) = D ( A i ) ) .
(5.33) with t h e preceding remarks ( e s p e c i a l l y (5.28)) we deduce t h a t i f u E D((-A 0 )") 0 < 01 5 2 , we have
Combining (5.29) and
/IQi(t;E)u -si(t)ull 5 c ( a ) E 0 ( ( i + It1 )a/2eultl (U E
Let
THEOREM 5.5.
B
bounded and
A
0
-
D((-A)~), E = H
c t <
II(-A,)"UII
(5.34)
m).
be a Hilbert space,
A = A
0 s e l f - a d j o i n t and bounded above, and l e t
u(t)
be a s o l u t i o n of t h e homogeneous problem (2.1),
+ B with u(t;E)
a solution
of t h e homogeneous problem (2.2) w i t h u E D((-A )"), 0 < CY 5 2. 0 0 Then, i f (5.24) holds t h e r e e x i s t s a constant C(a) such t h a t llU(t;E)
-
u(t>il 5 c ( ~ ) E Q ( +~ I t l ) a / 2 e ~ l t JI I ( - A ~ ) ~ ~ ~ I I
+ coewltli~uo(E)-uo1l + cle"ltlE21/q(e)ll The proof follows that of Theorem vI.8.2;
(-m
< t c
m)
. (5.35)
we omit t h e d e t a i l s .
Theorem 5.5 implies that
uniformly on compacts of i~u,(E>
- u0ll
THEOREM 5.6.
-m
= o ( E CY
Let
E,A
< t <
1,
a
II%(E>II
if = ~ ( E c y - ~ )a s
E
4
o
be as i n Theorem 5.5, and l e t
.
(5.37) u(t;&)
be a s o l u t i o n of t h e homogeneous problem (2.1) with uO(&) E D @ ) , u ( t ) a s o l u t i o n of t h e homogeneous problem (2.2) with uo E D((-AO)1- ). Then, i f (5.24) holds t h e r e e x i s t s a constant
C(U)
such t h a t
~ l u l ( t ; E )- u * ( t > l l sc b > E a ( i + I t l ) a / 2 e " l t l ~ ~ ( - ~ o ) 1 ~ u o ~ ~ (5.38)
258
OTHER PROELEMS
The proof c o n s i s t s i n applying Theorem t h e proof of Theorem
u0
4.2).
u0 (E)
D((-AO)lw),
E
E
llul(E)
-
iAuOII
~ ' ( t )( s e e
u'(t;E),
A s a consequence, we o b t a i n e a s i l y t h a t , i f D(A)
then
- u'(t)ll
IlUYtjE)
uniformly on compacts of
5.5 t o
-co CY
= O(E
(5.19)
=
if
m
-
) and
IIul(E)
)
/IAuO(E)
cy
iAuo(E)II
= O(E
) ,
(5.40)
or, e q u i v a l e n t l y , i f IIu,(E)
Sv11.6
-
iAuOII =
CY
O(E
arid
-
Auo// =
O(Ecy)
.
(5.41)
E l l i p t i c d i f f e r e n t i a l operators.
We examine t h e o p e r a t o r (1.2) w r i t t e n i n divergence or v a r i a t i o n a l form,
i n an a r b i t r a r y domain
Rm; h e r e (6.1) i s
fl of
m-dimensional Euclidean space
D j = ?/ax
A s pointed out i n SIV.1, and x = ( x ,..,x,). j 1 equivalent t o (1.2) i f t h e c o e f f i c i e n t s a are d i f f e r e n t i a b l e . We jk assume a g a i n t h a t a = a The symbol A ( @ ) w i l l denote t h e jk kj' r e s t r i c t i o n of (6.1) obtained by imposition of a boundary c o n d i t i o n R, e i t h e r t h e D i r i c h l e t boundary c o n d i t i o n U(.)
=
o
(.
r),
F
(6.2)
or t h e v a r i a t i o n a l boundary c o n d i t i o n
-
D~U(X) =
r
where
F 7 ajk(x)vjD k u ( x )
i s t h e boundary of-
n
normal ( u n i t ) v e c t o r a t x; DVu
u
at
= y(x)u(x)
and
w
= (vl,.
(x
. .,v,)
E
r)
,
(6.3)
i s the exterior
i s c a l l e d t h e conormal d e r i v a t i v e o f
x.
The o p e r a t o r
A(B)
h a s a l r e a d y been c o n s t r u c t e d i n Chapter I V
under minimal assumptions on t h e c o e f f i c i e n t s .
However, a d d i t i o n a l
hypoteses w i l l have t o be placed on t h e f i r s t order c o e f f i c i e n t s t o force and
c
t o s a t i s f y Assumption
A(P)
a r e measurable and bounded i n
allowed; t h e
a
jk
3.1. We assume t h a t t h e
n.
Complex v a l u e s f o r
b
a c
j
jk are
a r e r e a l and s l t i s f y t h e uniform e l l i p t i c i t y c o n d i t i o n
259
OTHER PROBLEMS f o r some
K>
0.
F i n a l l y , we assume t h a t t h e f i r s t order c o e f f i c i e n t s
a r e imaginary, t h a t i s
Gj(x)
b.(x) J with
(6.5)
ib.(x) J
=
b
r e a l (we s h a l l see l a t e r t h a t t h i s requirement cannot be j e l i m i n a t e d ) and t h a t each b belongs t o $ y m ( R ) ( i . e . it has f i r s t j p a r t i a l derivatives i n Lm(R)).
A s we see below, t h e requirements t h a t t h e b
j
a
..ki
be r e a l and t h e
be imaginary cannot be omitted.
EXAMPLE
6.1.
m = 1, 0 = R, A
Let
t h e constant c o e f f i c i e n t
operator
+
A u = aull
bu'
+
cu
.
Using t h e Fourier-Plancherel transform we show t h a t
o(A)
so t h a t : if
a
(a)
o(A)
i s not r e a l
=
[-aa2
-
ibcr
+ c;
-a
< u <
,
m]
w i l l not be contained i n a r e g i o n of t h e form ( 5 . 2 ) (b)
if
a(A)
i s not imaginary,
b
contained i n a h a l f - s t r i p of t h e form The c o n s t r u c t i o n of t h e o p e r a t o r
w i l l not be
(5.3). h a s been c a r r i e d out i n
A(6)
Chapter I V without t h e s p e c i a l requirements on t h e
b
j
present here.
In t h e case of t h e D i r i c h l e t boundary c o n d i t i o n , no r e s t r i c t i o n s on R
t h e domain
were necessary:
it i s enough t o r e q u i r e t h a t ( o r a domain of c l a s s
y E Lm(r). Assumption
C(l)
f o r a boundary c o n d i t i o n of type
n
be a bounded domain of c l a s s
with bounded boundary
However, o u r job i s now t o show t h a t
r)
A( B)
3.1 under t h e r e i n f o r c e d assumptions on t h e
s h a l l do s o by proving t h a t
A(R)
AO(B)
with
s e l f - a d j o i n t and
=
A&B)
E
.t
where
g(n) d e f i n e CY
> 0
is linear i n
i s a parameter t o be f i x e d below. v,
conjugate l i n e a r i n
u
3'
and w e
This w i l l be achieved by
s l i g h t m o d i f i c a t i o n s of t h e arguments i n Chapter I V
E
satisfies b
(6.6) t h a t we o u t l i n e
below, beginning with t h e D i r i c h l e t boundary c o n d i t i o n . u,v
and t h a t
B ,
bounded.
(6.3)
C(l)
For
Obviously,
[u,v],
and we check e a s i l y t h a t
260
OTHER PROBLEMS
[v,u],
Using t h e uniform e l l i p t i c i t y assumption ( 6 . 4 ) , t h e
= [u,v&.
5
IDJ,),[
inequality
+
( ~ / 2 ID%[* )
and i t s counterpart
(1/2E) IvI2
[ Z J v I we e a s i l y show t h a t i f
for
i s l a r g e enough, t h e f i r s t
CY
ineq u a l i t y 2 c (u,.)
5
c > 0,
holds for some
5c
[U,Ul,
where
2
(u
(u,u>
#(W
E
(6.8)
i s t h e o r i g i n a l s c a l a r product of
(u,v)
t h e second i n e q u a l i t y ( 6 . P ) i s a consequence of t h e assumptions
#(O);
on t h e c o e f f i c i e n t s .
We s h a l l from now on assume
AO(R)
The operator
((@I
-
=
[u,wl,
(w
c o n s i s t i n g of all u
E
$w,
$(n)
E
right-hand s i d e of (6.9) continuous i n t h e norm of of t h e theory of (u,v),
has:
(6.9)
which make t h e
L2(Q).
The r e s t
unfolds e x a c t l y as i n Chapter I V , s i n c e it i s
Ao(B)
[u,v],
based on t h e p r o p e r t i e s of t h e s c a l a r product same
[U,U~/‘.
i s defined by
AO(B))U,W)
A (5) 0
the domain of
endowed with
$(Q)
(lullCY=
t h e s c a l a r product (6.7) and i t s associated norm
which a r e t h e
Ao(B)
we check i n t h e same way t h a t
i s symmetric
and densely defined, t h a t i t s c o n s t r u c t i o n does not depend on
(11 - AO(B))D(AO(B))
-
h
E
A1
-
if
p(AO(D))
A?
3 a> ,
h 2 a.
Ao( fi) i s one-to-one f o r byproduct of (6.8) t h a t ( A 1 A0(3))-’ and t h a t
(A
E
=
that
(6.10)
We a l s o o b t a i n as a
i s bounded, so t h a t
This i s known t o imply t h a t
(Y.
Q‘,
is
Ao(i3)
s e l f ad j o i n t ( see Lemma IV.l.1). The f u l l operator Bu =
2
( b .Dju J
The assumptions on t h e operator.
We define
A(f3)
b
i s constructed by p e r t u r b a t i o n .
+ cu
D’(bju))
3
and on
A(5)
=
c
=
imply t h a t
no(fi)
and i t follows from Theorem 5.1 t h a t
- 2 7 (Djbj)u
for
u,v
E
$(O).
cu
.
A(@)
(6.11)
i s a bounded
(6.12)
+ B
The case where t h e boundary c o n d i t i o n a g a i n a s i n Chapter I V .
B
+
Let
s a t i s f i e s Assumption 3.1.
(6.3) i s used
i s handled
This time, however, t h e f u n c t i o n d i s
The d e f i n i t i o n of t h e operator
A0(6)
is
261
OTHER PROBLEMS
-
((@I The o p e r a t o r
A ~ ( Q ) ) ~ , W ) = [U,~I:,
(6.11).
B
t h e f u l l operator
3.1.
A(B)
satisfies
Summarizing :
Let R
THEORFM 6.2.
be a domain
& Rm,
A
(6.1) with
t h e operator
dJrn(C2),
b.
a
8)
A(
i s t h e bounded o p e r a t o r defined
It f o l l o w s a g a i n from Theorem 5.1 t h a t
Assumption
(6.14)
$,(Q)).
E
Ao( 0) i s a g a i n s e l f a d j o i n t :
i s obtained by formula (6.12), where by
(w
c E Lm(Q), E Assume, moreover t h a t t h e a are real jk’ J jk and s a t i s f y t h e uniform e l l i p t i c i t y assumption (6.4) and t h a t t h e b j a r e p u r e l y imaginary. If 8 i s t h e D i r i c h l e t boundary c o n d i t i o n (6.2)
I
A ( B ) defined by (6.7) and (6.9) s a t i s f i e s Assumption R i s bounded and of c l a s s and R i s t h e boundary measurable and bounded i n r t h e n t h e c o n d i t i o n (6.3) w i t h o p e r a t o r A ( 8 ) defined by (6.13) (6.9) s a t i s f i e s Assumption 3.1.
t h e operator
7’)
If
3.1.
6.3. Theorem 5.5 h a s an i n t e r e s t i n g a p p l i c a t i o n i s not e a s i l y i d e n t i f i a b l e even f o r D( ( -Ao( B))cy)
REMARK Although
here. @
=
1
under t h e p r e s e n t smoothness assumptions, we have show i n Theorem I v . 2 . 2 and Theorem
Iv.5.l
that
D((-Ao(8))1’2) when
8 is
=
5.5
8
E
HbQ)
%(a)
(6.3).
Using Theorem
E)
-
u(t)ll
(6.17)
= O ( E1/2)
and
Ilu0(d
-
uoII =
o(E1/2),
IlU,(E)II
u
E
$(a).
0 c o n d i t i o n (5.24) holds.
(6.18)
= O(E - 3 F ) .
The same r e s u l t h o l d s for boundary c o n d i t i o n s we assume t h a t
(6.16)
B i s t h e D i r i c h l e t boundary c o n d i t i o n ,
we deduce t h a t i f
uo
=
i s t h e v a r i a t i o n a l boundary c o n d i t i o n
Ilu(t; if
(6.15)
t h e D i r i c h l e t boundary c o n d i t i o n ( 6 . 2 ) , and
D((-*o(B))1/2) when
$(a)
B of type (6.3) where
However, we c a n only guarantee
(6.17)
This i s e a s i l y seen t o be t h e case i f
r Djbj,
c
E
$’“(n).
if
262
OTHER PROBLEMS
Sv11.7
The inhomogeneous e q u a t i o n .
A s pointed o u t i n SVII.2, t h e e x p l i c i t ( g e n e r a l i z e d ) s o l u t i o n of t h e i n i t i a l value problem ( 2 . 1 ) with n u l l i n i t i a l c o n d i t i o n s
is
UJE)
U0(E),
=k t
-
Gi(t
u(t;E)
s;&)f(s;&)ds.
We have a l r e a d y noted ( i n Example 4.6) t h a t s t r o n g l y convergent a s
(7.1) of
E
+
0.
(7-1) i s n o t even
ei(t;E)
However (and somewhat s u r p r i s i n g l y )
t u r n s out t o t r a n s l a t e convergence of
i n t o convergence
f(t;E)
a t l e a s t f o r a c l a s s of o p e r a t o r s c o n t a i n i n g t h e d i f f e r e n t i a l
u(t;E)
o p e r a t o r s i n Sv11.6.
THEORFM
7.1. Let
E = H
be a H i l b e r t space,
(7.2)
A = A0 + E , where
A.
operator.
L ~ -T,T;H) (
i s a s e l f a d j o i n t o p e r a t o r bounded above, Let
such t h a t f(s;E)
in
o
T > 0, k ( s ; E);
1
L (-T,T;H).
-
E
f(s)
Finally, l e t
5
as
u(t;E)
E
F
~
-
)a
a bounded
B
f a m i l y of f u n c t i o n s i n
(7.1)
0
be t h e (weak) s o l u t i o n of t h e
i n i t i a l value problem 2
EU"(t;E)
-
iU'(t;E)
+ f(t;E)
= AU(t;E)
( I t ]5 T ) ,
-
(7 4) U(0;E)
uniformly i n
It I 5 T,
= 0, l ~ ' ( 0 ; E ) = 0 .
u(t;
where
E)
i s t h e weak s o l u t i o n of
u ' ( t ) = i A u ( t ) + i f ( t ) (It1 5 T)
, (7.6)
u(0) = 0 .
Proof:
We c a n obviously assume t h a t
incorporate i n t o
B
t h e " p a r t of
s h a l l show f i r s t Theorem 7.1 f o r E,
c o n s i d e r i n g f i r s t t h e case
P(dp)
A.
a(Ao)
5 ( 0 , ~ )( i f
with spectrum i n
IJ.
2
not we 0").
We
and t h e n mix t h e p e r t u r b a t i o n A. f ( t ; E ) = f ( t ) independent of E . Let
be t h e r e s o l u t i o n of t h e i d e n t i t y f o r
A.
and
Ei(t;E;Ao)
the
263
OTHER PROBLEM2
(7.3) w i t h E = 0 . The same c o n s i d e r a t i o n s l e a d i n g t o Examples 4.5 and 4.6 show t h a t
(second) propagator of t h e e q u a t i o n
PO
for
u
are
t h e r o o t s o f t h e c h a r a c t e r i s t i c polynomid
Let
0
E
5
E,
t
where
5
T.
We can w r i t e
t
u(t;E)=
[ ei(t - s ; € ; A 0 ) f ( s )
c, d s = [:P(dp)L[
e(t -
s ; & ; p ) f ( s ) ds
(7.10)
" 0
a f t e r an e a s i l y j u s t i f i e d interchange i n t h e order of i n t e g r a t i o n . note next t h a t
hence
On t h e o t h e r hand,
Since
we deduce t h a t , f o r
p
fixed,
12(t;p;
E)
-
ieipt -/ote'Psf(s)
ds
W e
264
OTHER PROBLEMS
uniformly i n
0
5 t 5 T.
To handle t h e f i r s t i n t e g r a l we note t h a t
-
+
h (p;~)
as
i m
-o
E
and use t h e following uniform v e r s i o n of t h e Riemann-Lebesgue lemma: if -
g(t)
i s a ( s c a l a r or v e c t o r - v a l u e d ) f u n c t i o n i n
lim
J'''eiosg(s)
the
L1
0
5
t
5 T;
t h e proof i s achieved approximating
g
in
Applying (7.15) t o t h e f i r s t
norm by smooth f u n c t i o n s .
integral i n
(7.15)
ds = 0
0
a-'m
uniformly i n
then
L1( 0 , T )
(7.13) we o b t a i n T(t;p;E)
uniformly i n
0
5
Assume t h a t
t
as
0
F
-
(7.16)
0
5 T.
u(t;&)f. u ( t )
itn],
e x i s t s a sequence
-+
0
uniformly i n
5 tn 5
T
0
5t 5
and a sequence
T. {En],
Then t h e r e E~
-+
0
such t h a t
llu(tn;tn) Making use of
(7.14), (7.16)
-
Il(t,)II
of t h e range
-T
0
5t 5
5t 5
0.
(7.17)
6 > 0.
and a v a r i a n t of t h e dominated convergence
theorem we o b t a i n a c o n t r a d i c t i o n with h o l d s uniformly i n
2
T.
(7.17).
This shows t h a t
(7.5)
An e n t i r e l y s i m i l a r argument t a k e s c a r e
The case where
f
depends on
E
i s handled
writing
+ktGi(t
- S;E;A)f(S)
ds
(7.1.8)
and making use of t h e uniform bound (7.11). We i n c o r p o r a t e f i n a l l y t h e p e r t u r b a t i o n
B.
It results from (3.7)
and from t h e p e r t u r b a t i o n formula (5.20) ( o r d i r e c t l y ) t h a t we have
+ 6. ( t * & ' A ) x BGi(t;&;A0)u 1 " O
265
OTHER PROBLEMS
hence U(t
;E)
ei(t;€ ; A O )
=
Y
+ S ( t ; &;Ao)
f (t ;&)
+ ei(t;&;Ao) * EEi(t;E;A0) Now, using
Y
E e i ( t ;€ ; A O ) x f ( t ; E)
*Eei(t;&;AO)
...
*f(t;&)+
(7.20)
(3.1) we show t h a t t h e n-th term of t h e s e r i e s ( 7 . 2 0 ) i s
bounded i n norm by
On t h e o t h e r hand, using r e p e a t e d l y t h e p r e v i o u s l y proved r e s u l t on convergence of that
e.(t;E-A
3 0
1
) * f ( t ; & ) i n each term of (7.20) we deduce
ei(t;&;Ao)*E6.(t;&;AO)*f(t;E), 1
E6i(t;E;Ao)*f(t;c),...
qt;E;Ao)
*Bei(t;&;Ao)x
all converge uniformly i n
It/
5
T;
the
l i m i t of t h e n-th term of ( 7 . 2 0 ) i s
. .. x E i S ( t ^ ; i A o ) * f ( t ) S(i;iAo) * iES(i;Ao) . .. * i B S ( f ; A o ) * i f ( ; ) * BiS(t";iAo) x
iS(;;iAo) =
t h u s t h e sum of t h e s e r i e s converges uniformly, as S(<;iAO) *
if(t) +
S(i;iAo)
+ S(t;iAo) = S(<;i(A0
where
S(t;iAo)
i A ( r e s p . by 0
,
Y
x
+
iBS(:;iAo)
-,
0,
+ B))
x if(;)
B)).
+
E))
to
x if(;)
iBS(<;iA0 ) x- iBS(t";iAo) x if(;) +
(resp. S(t;i(Ao
i(Ao
Y
E
...
, i s t h e group generated by
This completes t h e proof of Theorem
7.1.
SVII. 8 Miscellaneous comments The Schr'ddinger l i n e a r p e r t u r b a t i o n problem w a s discussed by
SCHOENE [1970:1] i n t h e c a s e where
E
i s a B i l b e r t space and
A
a
s e l f a d j o i n t operator; i n t h a t p a r t i c u l a r s e t t i n g , Theorem 4.1 w a s proved by Schoene with somewhat s t r o n g e r assumptions on t h e i n i t i a l conditions. author
The m a t e r i a l i n t h i s c h a p t e r i s e n t i r e l y t a k e n from t h e
[1985:1].
Problems of t r a f f i c flow ( s e e WfTCTHAM whose l i n e a r i z e d v e r s i o n i s
[1974:1]) l e a d
t o equations
266
GTHEE PROBLFMS
where
E
i s a small parameter; t h e main problem a b o u t (8.1) i s t h a t of
showing t h a t t h e s o l u t i o n t e n d s t o t h e s o l u t i o n of t h e l i m i t e q u a t i o n
w i t h due a t t e n t i o n b e i n g p a i d , among o t h e r t h i n g s , t o t h e l o s s of one i n i t i a l c o n d i t i o n i n c u r r e d i n g o i , i g from (8.1) t o (8.2).
For a c l a s s i -
c a l t r e a t m e n t of t h e problem see MECTHAM [1974: 11 o r ZAUDFBER [ 1983 :11. An a t t e m p t t o t r e a t t h i s problem I n a n o p e r a t o r t h e o r e t i c way w a s made
[1985:1];some
i n t h e author Exercises
3 to
u.
of tlie key r e s u l t s a r e g i v e n below i n
The methods u:,ed resemble b o t h those i n t h e S c h r g d i n g e r
s i n g u l a r p e r t u r b a t i o n problem ( s u c h as t h e uniform bounds i n Assumption
3.1) and t h o s e i n t h e p a r a b o l i c s i n g u l a r p e r t u r b a t i o n problem ( s u c h as t h e a s y m p t o t i c developments i n
sVI.8).
EXERCISE 1. Write and i n t e r p r e t f o r m u l a ( 2 . 4 ) for t h e o p e r a t o r
i n t h e spaces
LP(-,m)
EXEBCISE 2 . Assumption
and
Co(i.,m)
(see E x e r c i s e s
11.3 and 11.4 ).
Show t h a t t h e o p e r a t o r s i n E x e r c i s e l do not s a t i s f y
3.1 ( e x c e p t i n L2(-m,o,)).
EXERCISE 3.
Let
E = H
be e (complex) H i l b e r t s p a c e ,
A
a self
a d j o i n t o p e r a t o r such t h a t
with
K
>
0, Q
t h e ( o n l y ) p o s i t i v e self a d j o i n t s q u a r e r o o t o f
-A,
B
a c l o s e d , d e n s e l y d e f i n e d o p e r a t o i such t h a t
Show t h a t the Gauchy problem 2
E
u"(t)
+
u l ( t ) = (s2A. + B ) u ( t )
(-
(8.5) u ( 0 ) = uo, u ' ( 0 ) = ul,
267
OTHXR PROBLEMS
i s w e l l posed f o r a n y
E
>
(Hint:
0
t h i s f o l l o w s from a s t a n d a r d
theorem on p e r t u r b a t i o n of g e n e r a t o r s of c o s i n e f u n c t i o n s . a u t h o r [ 1971:11, SHIMIZU-MIYADNU
See t h e
[1978:I], TAKENAKA-OKAZAWA [1978:11
o r TMVIS-WEBB [1981:1].
4.
EXEBCISE
(Hint:
i s a s o l u t i o n of
(8.5) w e have
u(t^)
If
i s a s o l u t i o n of
6.
u(t)
and i n t e g r a t e ) .
(8.5) w e have
m u l t i p l y t h e e q u a t i o n (8.5) scalarly by
EXFXCISE
5;
u(t^)
m u l t i p l y t h e e q u a t i o n (8.5) scalarly b y
EXERCISE 5.
(Hint:
If
u' ( t ) and i n t e g r a t e ) .
The assumptions a r e t h e same i n E x e r c i s e s
3, 4, and
we r e q u i r e i n a d d i t i o n t h a t
(Hint:
m u l t i p l y (8.7) b y
and add t o (8.6).
Take r e a l p a r t s .
Combine t h e f i r s t t h r e e i n t e g r a l terms i n t o one and use t h e f a c t t h a t
for a l l
u
E
D(Q), v
EXERCISE
7.
E
H,
consequence of (8.8)).
Assume t h a t
268
OTHW PROBLEMS
Re(Bu,u)
<_
w\/u/12
(u
D(B))
E
.
(8.11)
Using t h e i n e q u a l i t i e s 21 ( u ( t ) , u1 (t))12<_ ~ 1 ~ 1 (t)l12 1 ~ 1 ~+ a - 2 ~ ~ u ( t ) ~ ~ 2 , 21(U0,u1)1 2 f p 2 1 ~ u l ~ ~+2 f3-211u0112 and (8.9)show t h a t
(8.U)
EXERCISE 9.
i n (8.u) l e t t i n g
cx = $2
Setting
f? +
0
and u s i n g
G r o n w a l l l s i n e q u a l i t y show t h a t , i f uo = 0, \Iu(t)!l*
EXERCISE 10.
Let
+ 4~
4
2,4& l~Q~(t)ll" <_ 464 \/ul/\
yl(t;,),
6,(t;E)
.
(8.14)
b e t h e s o l u t i o n o p e r a t o r s of
(8.5) ( d e f i n e d i n t h e same way K(t;&), B ( t ; & ) are d e f i n e d for t h e U s i n g (8.13) m d (8.14) show t h a t
e q u a t i o n (VI.2.1)).
\\(I+ ~ E ~ Q ) \ ( ~+ ;2E ~ ~)4 ( ) -I ' 1 1<_ 2e2&
EXERCISE 11.
9, and 10.
(t? 0)
(8.15)
9
The assumptions are t h e same i n E x e r c i s e s
We r e q u i r e i n a d d i t i o n :
if
u
E
D(A)
then
Bu
E
6, 7, 8, D(Q)
and
II(W - BQ)u/I <_ C I I Q d f o r some c o n s t a n t C.
EXERCISE12.
Show t h a t
(8.15) c a n b e " r e c t i f i e d " t o
Show that (8.18) (in fact, the improved estimate
(8-17)
269
O'I'HER PROBLEMS
can IJe shown without assuming (8.17); we r e q u i r e i n s t e a d t h a t as well
(8.4), (8.8)
7
> 0 and t h a t
for
II(AB
satisfy
and (8*11). D((ELA + 8)) 5 D(BA)
EXERCISE 13. Assume t h a t E
P*
u
E
D(FA),
-
BA) U I
w i t h t h e same assumptions on
i s a s t r o n g l y continuous
5 gW
5 D(AB)
for a l l
KIIAuII i n Exercise l2. Show t h a t X h ( t ; E ) A
-1
(H)-valued f u n c t i o n s a t i s f y i n g
EXERCISE 14. The hypotheses a r e t h e same i n Exercise 13; we assume i n addition that Re A >
(8.5).
C.
BD(A) C_ D(Q) and t h a t
(A1
-
B)D(A)
is dense i n
H
for
Prove a n analogue of Theorem 4 . 1 f o r t h e i n i t i a l value problem
270
CHAPTER VIII ME COMPLETE SECOND ORDER EQUATION
gVIII.1 Let
The Cauchr problem. be, as usual, a complex Banach space,
E
D(A)
with domains
in t >_ 0
and
D(B)
dense i n
E
A,B
and range i n
l i n e a r operators
E.
Solutions
of t h e a b s t r a c t d i f f e r e n t i a l equation u"(t)
+
Bu'(t)
+
(1.11
Au(t) = 0 (1)
(which, by obvious reasons, is c a l l e d t h e complete second order a b s t r a c t d i f f e r e n t i a l equation) are assumed. t o s a t i s f y t h e following conditions:
i s twice continuously d i f f e r e n t i a b l e ,
u(2)
Au(^t) and
Bu'(^t) a r e continuous and
u ( t ) E D(A),
~ ' ( t f) D(B),
(1.1) I s satisfied i n
Similar d e f i n i t i o n s a r e used i n i n t e r v a l s other t h a n
t
2
0.
[O,m).
The theory of (1.1) i s considerably more complicated than t h a t of i t s incomplete counterpart (11.1.1) and can hardly be s a i d t o be i n d e f i n i t i v e I n f a c t , a l l we shall do i n t h i s chapter is t o t r y t o decide which is t h e c o r r e c t notion of well posed Cauchy problem f o r (1.1). A s we s h a l l
form.
see i n gVIII.2 use of ( t h e obvious extension o f ) t h e d e f i n i t i o n i n $11.1 f o r t h e incomplete equation leads t o paradoxical s i t u a t i o n s e n t a i l i n g
loss of exponential growth of s o l u t i o n s and nonexistence of phase spaces; moreover, t h e Cauchy probl-em may be w e l l posed i n an i n t e r v a l 0
5t5T
without being w e l l posed i n
t >_ 0
(Example 2.2).
This
motivates t h e i n t r o d u c t i o n of an a d d i t i o n a l assumption i n $3 (Assumption
3.1).
I n t h i s s e t t i n g a phase space generalizing that
constructed i n $111.1f o r t h e incomplete equation (111.1.1) i s assembled
i n $4. Modifying s l i g h t l y t h e d e f i n i t i o n i n $11.1we say t h a t t h e Cauchy problem f o r
(1.1) i s w e l l posed or properly posed in t
5
0
i f and
only i f (a)
There e x i s t dense subspaces
uo E Do, u1 satisfying
E
D1
DO,D1
then t h e r e is a s o l u t i o n
of u(%)
u ( 0 ) = u0,u'(O) = u1
.
E
such that i f
of
(1.1) & t
5
0
(1-2)
THE COMPLETE EQ,UATION
(b)
t L0
27 1
C(%) defined i n
There e x i s t s a nonnegative, f i n i t e f u n c t i o n
such t h a t llu(t)ll
5
t >_ 0 .
f o r any s o l u t i o n of (1.1) I f the function
t >_ 0
(1.3)
C(t)(llu(O)lI + l l U ~ ( 0 ) l l )
C(t)
in
(1.3) can be chosen nondecreasing i n
( o r , more g e n e r a l l y , bounded on compacts of
t
0)
then we
say t h a t t h e Cauchy problem f o r (1.1) i s uniformly w e l l posed ( o r
t >_ 0 .
uniformly properly posed) i n
The propagators o r s o l u t i o n operators of (1.1)a r e defined by
u(2)
where
(resp.
u ( 0 ) = u, u ' ( 0 ) = 0
C ( t ) (resp. of
D
Since both C(t)
and
0
a(t)
v(%))
i s t h e s o l u t i o n of (1.1)with v(0) = 0, v ' ( 0 ) = u).
(resp.
The d e f i n i t i o n of
s(t)) makes and
sense f o r u E D ( r e s p . f o r u E D1). 0 Dl a r e dense i n E we can extend (using (1.3))
t o all of
E
a s bounded operators; t h e s e operator-
valued functions r e s u l t s t r o n g l y continuous i n Iic(t)li
5 C ( t > , ils(t>iI 5 C ( t >
Moreover, by d e f i n i t i o n ,
C ( 0 ) = I,
S ( 0 ) = 0.
t >_ 0
U(t) =
c(t)u(o) +
and s a t i s f y
( t >_ 0 ) .
(1.5)
F i n a l l y , we prove e a s i l y
u(%) i s a n a r b i t r a r y s o l u t i o n of (1.1)i n
t h a t if
(1-4)
S ( t ) u = v(t),
@ ( t ) u =u ( t ) ,
t 2 0
then
S(t)Ul(O).
(1.6)
The proof i s t h e same a s t h a t of (11.1.6). We s h a U assume from now on that t h e operators
A
and
B
are
closed. $vIII.2
Growth of s o l u t i o n s and existence of phase spaces.
The d e f i n i t i o n of phase space i s , except f o r small modifications, t h e same i n $111.1. A phase space i n
t
0
f o r t h e equation (1.1)
equipped with any of i t s product n o r m , @ = Eo x E 1' El a r e Banach spaces s a t i s f y i n g t h e following assumptions:
i s a product space where
E 0 (a)
(-.
D1
dense i n (b)
and
E ,E
6 E with bounded inclusion; moreover, 1Do Eo El) is dense i n E i n t h e topology of Eo ( r e s p . i s
0
n
0
El i n t h e topology of
El).
There e x i s t s a s t r o n g l y continuous semigroup G ( t )
272
THE COMPLETE EQUATION
E = E
in
0
X
t 2
E
o
1
such that
with
for any s o l u t i o n u ( i )
u(0)
E
E ~ u , l(0)
E
E ~ .
The comments a f t e r t h e d e f i n i t i o n of phase space i n $111.1apply here:
we omit the d e t a i l s . We examine i n the rest of t h e s e c t i o n t h e r e l a t i o n of t h i s notion
w i t h t h a t of w e l l posed Cauchy problem i n the case where
E = Q2 is
t h e set of a l l sequences with
2 ~ ~ { u n= ] ~ Iu ~n
c
l2
u = [un jn >_ 1)= {un] of complex numbers and A , B a r e the operators c
ACunI = lanun),
B{ un] = Fbnun],
(2.2)
rb ) sequences of complex numbers t o be determined l a t e r : n t h e domain of A c o n s i s t s of a l l {u ) E E w i t h {a,.,) E E. The n domain of B i s s i m i l a r l y defined; observe that both A and B a r e
{an]
and
normal operators commuting w i t h each other.
u(%) = [un(%)] i s a s o l u t i o n of (1.1)then each u (%) s a t i s f i e s the s c a l a r equation n u''(t> + b n u ' ( t ) + a u ( t > = 0. On t h i s b a s i s , we deduce that the n?? propagators C(%), b ( t ) of (1.1) must be given by
where
+
hn,A,
If
a r e the r o o t s of t h e c h a r a c t e r i s t i c equation h2 + b A + a n = O ,
(2.5)
h = h- (a case t h a t we w i l l n n Obviously, a necessary condition f o r t h e Cauchy problem
w i t h the modifications de rigueur when
avoid here).
f
f o r (1.1) t o be w e l l posed i n
a(t) =
Ilc(t)II
t
2
= SUP
n>_l
0
i s that
-
A+ e n
n
A$
THE COMPLETE EQUATION
273
and
be bounded on compacts of
0
5 t <
Conversely, t h e preceding conditions
w.
imply t h a t t h e Cauchy problem f o r (1.1)i s well posed: the Fourier c o e f f i c i e n t s of
u ,u 0
1
f o r , i f (say)
a r e a l l zero except f o r a f i n i t e
number, then 4 t ) = c(t)Uo + s(t)U, t 2 0
f'unishes a solution of (1.1)i n
u(0) = u u ' ( 0 ) = ul. 0' 1 Moreover we obtain taking coordinates t h a t any solution u(%) of (1.1) m u s t be of the form
u ( t ) = C(t)U(O)
f
with
( t 2 0)
S(t>U'( 0 )
,
(2.8)
then
I( SUP Q ( S ) ) l I ~ ( O ) I I o5sst
Il.(s)ll
(a)
(
SUP
~(~))llU'(O)Il.
o<_sst
Let w ( - ) be an a r b i t r a r y function i n t
EXAMPLE 2.1.
on compact subsets. that
+
T-hen there e x i s t A , B
The Cauchy problem f o r Ilc(t)ll L 4 t ) ,
I n fact, l e t
2
0,
(2.9) bounded
of the form (2.2) such
(1.1)i s w e l l posed i n
ils(t>II >_ 4 t )
( t >_ 1)
.
t 2 0.
(b) (2.10)
il = ( w n 1, n >_ 1 be a sequence of p o s i t i v e numbers
such that (2.11) but otherwise a r b i t r a r y .
for
Define
n 2 1, and l e t CY
m(t) = sup
t
-
n z l @n Noting t h a t
( t z o ) .
(2.14)
THE COPLETE EQUATION
274
for 1 - t/n 5 1/2 m(t) <
for a l l
n = n(t)
such t h a t
we s e e t h a t
t
2
as
a t = o(pn)
n
t
Moreover, f o r each
0.
-..
n
00
t;
for a l l
then
t h e r e e x i s t s an i n t e g e r
t
c?
n -
m(t) =
(2.15)
on
Let now t < t'; s i n c e
CY
> 1 for a l l
Also, a,
m(n> >_
t >_ 0 ,
i s increasing i n
m(^t)
accordingly t h e f u n c t i o n on compacts.
n
thus bounded
n = wn
'n
(n
2 1)
.
(2.17)
Define yn = l o g I n view of t h e i n e q a l i t y
Cyn
+ Lwl/". n n
= log w;/n
log x i x
5
2-1/2ex,
valid for
(2.18) x
5.
0, we
h.ave yn We s e l e c t now
a n,bn i n
n
-
n'
(2.19)
(2.5) i n such a way that (2.20)
We have i
( h I = p > e . n n -
(2.21)
On t h e o t h e r hand, i n view of (2.19),
2
(8, thus the sequence
A =
{A'-]n /A/
-
2 1/2
VJ
>_ Yn>
i s contained i n t h e region e,
Accordingly t h e r e e x i s t c o n s t a n t s
0 C_
Re h
0> 8
7
5 I m A. 0
independent of
fl
such that (2.22)
275
THE COMPLETE EQUATION
I n view of t h e d e f i n i t i o n (2.14) of
m(t)
we obtain from (2.23) and
(2.24) that
e(m(t> -et> 5 a(t>5
5
e(m(t) - e t > in
t 2 0.
T(t)
o(m(t>
+ e
t
1,
(2.25)
5 o ( m ( t > + et >,
(2.26)
The i n e q u a l i t i e s on t h e right-hand s i d e s of (2.25), (2.26)
imply that t h e Cauchy problem f o r (1.1) i s w e l l posed i n only remains t o choose t h e sequence i n e q u a l i t i e s (2.10) a r e s a t i s f i e d .
0
To do t h i s , we assume ( a s we
Keeping i n mind that t h e
constant i n (2.22) i s independent of t h e choice of
Both conditions (2.U) a r e obvious. the greatest integer
5 t.
It
0.
i n such a way t h a t t h e
u(%) i s nondecreasing.
obviously may) t h a t
t
we s e t
fl,
On the other hand l e t
t
2
1, n = [ t ] ,
Then, taking (2.16) and (2.27) i n t o account,
we o b t a i n
whence t h e f i r s t i n e q u a l i t y (2.10) r e s u l t s from (2.25); t h e second follows i n a similar way from (2.26).
EXAMPLE 2.2.
Let
a > 0.
Then t h e r e e x i s t A , B of t h e form
(2.2)such t h a t t h e Cauchy problem f o r (1.1)i s w e l l posed i n 0
b u t not w e l l posed i n any i n - t e r v a l 0 <_ t <_ a!, a’ > a.
5 t 5 a,
For t h i s example we s e t bn
A = 0
(so that
+
n
= h
n
= 0 ) ; we p i c k t h e
i n such a way t h a t
1
A-n = -al o g
(so that
b
n
=
-
-1n ).
i
n + -(n a
2
- (log
2 1/2 n) )
W e check immediately t h a t
thus we o n l y have t o check t h e boundedness have
a
of
(n
L
1)
C(t) = I T(;)
(2.29) for a l l
i n (2.7). We
t,
276
THE COMPLETE EQUATION
Example 2.1 has important consequences i n t h e theory of phase spaces f o r t h e equation (1.1). I n f a c t , l e t
(l.l), t h e choice of
= E
0
x El
be a phase space f o r
El e n t i r e l y a r b i t r a r y .
and
Eo
t?
The b a s i c exponential growth r e l a t i o n (1.1.9) f o r t h e semigroup
qi)
i n ( 2 . 1 ) implies t h a t t h e r e e x i s t constants
such t h a t
C,W
A
f o r any s o l u t i o n and
u(t)
of (1.1)with
do not depend on t h e s o l u t i o n
W
u(0)
E
u(t).
Eo, u ' ( 0 ) =
If Eo
El, where
C
includes all f i n i t e
sequences ( t h a t is, all sequences whose elements, except f o r a f i n i t e
(2.8), say, u ( 0 ) = {S,,], u ' ( 0 ) = 0 The f a c t t h a t (2.31) cannot hold f o r all
number vanish), we can take i n ('mn
m
t h e Kronecker d e l t a ) . i s obvious since
Re A:+
observation a p p l i e s t o
THEOREM 2.3
A similar
(see (2.3) and ( 2 . 4 ) ) .
~4
We have t h e n shown:
El. A, B
be t h e operators employed i n Example 2.1.
t 1 0 f o r t h e equation (1.1) but (1.1)does not admit any phase space is: = E0 x E 1 -where EO or contain a l l f i n i t e sequences i n E:. ' k e n t h e Cauchy problem i s w e l l posed i n
Example 2.2 i s even more i n t r i g u i n g ; i n f a c t , d t h o u g h we could e a s i l y define a notion of "phase space i n
0
5t 5
a"
f o r (l.l), t h e
Cauchy problem for a f i r s t order equation must be well posed i n i f it i s w e l l posed i n
0
5t 5
t 2 0 a, It then follows that an equivalence
between (1.1) and a f i r s t order equation i s u n l i k e l y i n any sense. Examples 2 . 1 and 2 . 2 seem t o i n d i c a t e t h a t " t h e r e i s something missing" from t h e d e f i n i t i o n of well posed Cauchy problem we have introduced i n gVIII.1. This holds in t h e sense that an a d d i t i o n a l assumption i n next s e c t i o n w i l l guarantee existence of s t a t e spaces. SVIII.3
Exp onentidl growth of s o l u t i o n s and e x i s t e n c e of Dhase spaces.
W e r e t u r n t o a general Banach space
E.
Assume
Cf
=
E
0
x El
is a
phase space f o r t h e equation u"(t)
+
Bu'(t)
+
Au(t) = 0
(3.11
such t h a t E = E with i t s o r i g i n a l norm (such was t h e case f o r dl1 1 phase spaces constructed i n Chapter I11 f o r t h e incomplete equation
277
THE COMPLETE EQUATION
(111.1.1). Then,by d e f i n i t i o n of phase space we m u s t have
S 1 ( t ) must be a bounded operator i n
It follows t h a t
E
(we check
This j u s t i f i e s
e a s i l y t h a t t h i s i s not t h e case i n fiamples 2.1 and 2 . 2 ) .
at l e a s t h a l f of t h e following assumption:
3.1.
ASSUMPTION
t
2
0
u
E
E.
u
f o r all 8(t)E
(b)
( a ) S(:)u
i s continuously d i f f e r e n t i a b l e i n
E.
E
5 D(B)
i s continuous i n
BS(t)u
t
2
f o r all
0
A s we s h a l l see below, Assumption 3.1 guarantees exponential growth
(3.1), as well as e x i s t e n c e o f a s t a t e space.
of t h e s o l u t i o n s THEOREM 3.2.
t
2
3.1 be s a t i s f i e d .
and l e t Assumption
0,
C, w
Let The Cauchy problem f o r
(3.1) be well posed i n Then t h e r e e x i s t c o n s t a n t s
such t h a t
Ils;(t)ll
Ilc(t)llJ
1. Ce
wt
(t 2
(3.2)
'
The proof of Theorem 3.2 i s l e n g h t y and w i l l be c a r r i e d out i n W e examine f i r s t some immediate consequences of
several steps. Assumption 3.1. operator
u
-
a >0
Let
C(0,a;E) be t h e Banach space of
and l e t
E-valued f u n c t i o n s with i t s usual supremum norm.
611 continuous
St(t)u
from
E
The
t o C(0,a;E) i s easily seen t o be closed;
since it i s everywhere defined, by t h e closed graph theorem it i s as well bounded.
Ils'(t)ll B8(t)
0
5 t 1. a .
st(;)
a r b i t r a r y we see t h a t
f u n c t i o n such t h a t
E8(:)
a
Taking i n t o account t h a t
t
i s s t r o n g l y continuous i n
bounded on compacts t h e r e i n .
shows t h a t
t
S t ( t ) i s a bounded operator f o r all
B u t then
i s bounded i n
llSt(t)ll
2
0
and
is with
The same argument applied t o
i s a s t r o n g l y continuous o p e r a t o r valued
IIBS,(t)ll
i s bounded on compacts of
t
2
0.
We s h a l l need l a t e r t o solve t h e inhomogeneous equation
u"(t) + Bu'(t)
+
Au(t) = f ( t )
.
(3.3)
Solutions of (3.3) a r e defined i n t h e same way as f o r t h e homogeneous equation (3.1).
THE COMPLETE EQUATION
278
W 3.3.
L
Then
f ( t " ) be continuously d i f f e r e n t i a b l e i n
2
0.
(a) u(t)
=
( S - ! + f ) ( t )=
i s a solution of
(3.3) w i t h u ( 0 )
solution of (3.3)
then
v(t) where
t
= u'(0)
=
0.
C(t)u(O) + S(t)u'(O) + u(t)
=
v(;)
(b)
(t
2 0) ,
(3.5)
i s defined b x (3.4).
u(t)
Integrating (3.4) by p a r t s we obtain
Proof:
Differentiating, rt
u'(t) = 8(t)f(0)
+J
8(t - s ) f ' ( s ) d s ,
0
u"(t) = S'(t)f(o) +
[t S ' ( t - s ) f ' ( s ) d s .
'0
Let now
u
E
W e have
D1.
AS(s)u
Integrating i n
0
5
s
=
-B~'(s)u-~"(~)u.
5 t,
A L t 8 ( s ) u d s = -Bb(t)u- S ' ( t ) u
+ u.
Since the right-hand side i s a continuous operator of from closedness of
A
and the f a c t t h a t
(3.9) u,
i s dense i n
D1
it follows E
that
(3.10)
L t S ( s ) u d s E D(A)
for all u E E and t h a t (3.9) a c t u a l l y holds f o r every u E E. These observations make c l e a r ( a f t e r t h e i n t e g r a t i o n by p a r t s (3.6)) t h a t i f
u(i)
i s t h e function defined by ( 3 . 4 ) then
i s continuous i n
u'(t)
E
D(B) with
t
2
0.
Bu(i)
u ( t ) c D(A)
and
Au(;)
Moreover, we obtain from (3.7) t h a t continuous i n
t 2 0
and a l s o that
u(t)
is
279
THE COMPLETE EQUATION
i n f a c t a solution o f v(i)
(3.1) a s
To show
claimed.
i s a n a r b i t r a r y s o l u t i o n o f ( 3 . 3 ) and
(b)
u(;)
we note t h a t i f
t h e s o l u t i o n provided
by (3.4), v ( t ^ ) - u ( t " ) i s a s o l u t i o n of t h e homogeneous equation (1.1) so t h a t formula ( 1 . 6 ) a p p l i e s .
3.4.
LEMMA
(a)
u
Let
D(A).
Then
C ' ( t ) u = -8(t)Au
(t
E
c(i)u
(a)
i s continuously
d i f f e r e n t i a b l e and we have
(b)
Let
u
E
Do
n D(B).
0)
.
(3.11)
Then
( a ) According t o Lemma
2
(t
S ' ( t ) u = C(t)u-S(t)Eu Proof:
2
0)
I
3.3 t h e f u n c t i o n
u(t) = -Lt8(s)Au ds
u(0) = u'(0) = 0.
+
u"(t)
i s a s o l u t i o n of t h e equation
E u ' ( t ) + Au(t)
+
v(t) = u(t)
Consequently,
u
(3.5) we have v ( t ) C(t)u-u
\c
= C(t)u, =
-
-
with
v(0) = u, v ' ( 0 ) = 0 .
t h a t is,
S(S)AU ds,
which i s t h e i n t e g r a t e d v e r s i o n o f (3.11).
u(t) =
-Au
satisfies the
homogeneous equation (1.1)with i n i t i a l c o n d i t i o n s By v i r t u e o f
=
To show
(b),
let
/;tS(s)Bu d s . "0
Applying a g a i n Lemma 3.3 we see t h a t u ( t ) satisfies f Au(t) = Bu. On the other hand, let
-
v(t) = We have v ' ( t ) = C(t),
s,' ;at
C(S)U d s
v " ( t ) = C'(t)u = thus
v(t)
conditions
satisfies v(0)
=
v"(t)
+
U,
jo'
Bv'(t)
0, v ' ( 0 ) = u .
.
C'(S)U d s +
=
u"(t) + Bu'(t) t
C"(S)U d s ,
+
Av(t) = Eu,
Accordingly,
with i n i t i a l
w(t) = v ( t )
- u(t)
2 80
THE COWLETE EQUATION
s a t i s f i e s (1.1)with i n i t i a l conditions w(t) = S(t)u
w(0) = 0,
w ' ( 0 ) = u,
SO
that
o r , equivalently, s ( t ) u = / o t ( C ( s ) u - b(s)Bu) d s ,
(3.13)
from which (3.12) i s deduced by d i f f e r e n t i a t i o n .
3.5.
COROLLARY
Do = D(A).
(a)
n D(B).
E. ( c ) D1 _3 D(A)
D
(b)
g
(d)
u
E
s " ( t ) u + S'(t)Bu + S(t)Au
D(A)
=
D(A)
n
D(B)
0)
.
i s dense i n
n D(E), (t
= 0
2
(3.14)
3.4 ( a ) it was proved t h a t C(;)u is a s o l u t i o n of (3.1) f o r a l l u E D ( A ) ; since it i s always t r u e t h a t Do CD(A), ( a ) follows. Similarly, one of t h e s t e p s i n t h e proof of Lemma 3.4 ( b ) was t o show t h a t f o r any Proof:
u
E
D~
n
A s a by-product of t h e proof of Lemma
D ( B ) = D ( A )n D ( B ) , s ( ; ) ~
n
D1 = D(A)
D(B)).
To show t h e denseness statement
Y
consider t h e subspace
of
E
rl,(
i)
(b)
we
c o n s i s t i n g of a l l elements of t h e form ds
\[rl,(S)S'(S)U
where
(c)
4.5 it i s not i n general t r u e
r e s u l t s ( a s we s h a l l see below i n Example that
thus
i s a s o l u t i o n o f (3.1),
i s any i n f i n i t e l y d i f f e r e n t i a b l e ( s c a l a r ) function with
t > 0.
support contained i n
Let
i s a continuous function with
u
E
E
be a r b i t r a r y .
S'(0)u = u.
Then
Accordingly, i f
,.
S'(s)u
{Qn] i s a
sequence of nonnegative i n f i n i t e l y d i f f e r e n t i a b l e functions, each rl, with support i n
0
5 t 1. 1
and such t h a t
srl,n(s)8'(s)u d s as
n
+
m.
Hence,
Y
i s dense i n
by p a r t s , any element of
-
E.
[Qnds
+
=
n
1, we have
u
Observe next t h a t , i n t e g r a t i n g
Y can be w r i t t e n i n t h e form
/'$'(s)S(s)u
)
d s =~rl,"(s)(L[Oss(r)u d r
W e deduce from the f i r s t expression
(3.15) t h a t
Y
ds
5 D(B);
.
(3.15) on t h e
other hand, t h e second combined with (3.10) and t h e comments preceding
i t , implies for
(d),
that
Y
5 D(A),
which completes the proof o f
(b).
As
it follows from d i f f e r e n t i a t i n g (3.12) and then expressing
c t ( t ) u by means of (3.11).
W e have t h e n completed t h e proof of
28 1
THE COMPLETE EQUATION
1.5.
Lemma
W e point out t h a t , as a consequence of e q u a l i t y (3.12), t h e operator
S(t)E
D(A) f l D(B)
(with
'w t o d l
extension
E,
of
a s domain) admits a bounded
namely
S(t)E = C ( t )
c(:), -
at(<>
Since is
- 8f(t).
(3.16)
are s t r o n g l y continuous functions i n t
2
0, so
S(t)E.
W e consider i n what follows t h e characteristic polynomial of
2 P ( h ) = h I + h e + A . For each
h, P(h)
3.6.
LEMMA
cy,p
constants
Proof:
C
P(h)
i s closable f o r all A.
such t h a t
0
Assume
{un]
sequence
(3.17)
i s a l i n e a r operator with domain
(a)
2
(3.1),
(a)
D(P(A))
P(h)
There e x i s t
i s one-to-one for
i s f a l s e for
such t h a t
(b)
un
some +
A.
Then t h e r e e x i s t s a
0 , vn = P(h)un
-
v
#
0.
Let
u ( t ) = eAtun (t 2 0 ) . Clearly u ( i ) s a t i s f i e s t h e inhomogeneous n equation (2.3) with f ( t ) = ehtvn. W e g e t a s a consequence of Lemma 3.3 (b)
that
Letting
n
-
w e obtain
D i f f e r e n t i a t i n g twice,
If w e s e t
t
= 0
i n t h i s l a s t expression w e o b t a i n v = 0,
a contra-
diction. Regarding
(b),
assume
P(A)
i s not one-to-one f o r some
A.
Then
282
THE COWLETE EQUATION
u
there exists
u(t) = e
At
u
D(P(A)),
E
such t h a t
0
P(A)u = 0 .
Obviously
i s a s o l u t i o n of (3.1); making use of t h e estimate (1.3)
u
t >0
f o r any f i x e d
we deduce t h a t (Re h ) t
5
C(t)(l
PI)
+
-
Taking logarithms, we o b t a i n t h e i n e q u a l i t y opposite t o (3.18) f o r
B
t-1 l o g C(t),
cy =
=
t-l.
End of t h e proof of Theorem 3.2:
Let
cp be a twice continuously
d i f f e r e n t i a b l e s c d a r valued f u n c t i o n with compact support and such that
m(t)
1 near zero.
Consider t h e ( p l a i n l y bounded) operator i n
t h e space E, R(A;m)u = defined f o r all complex
A.
.io, e
(3.19)
m(t>S(t)u d t ,
We have
R(h;m)E
5 D(E).
Moreover, we can
w r i t e , i n t e g r a t i n g by p a r t s ,
t h u s it follows from (3.10) t h a t
5 D(A)
R(A;m)E Assume of
u
E
D(A)
n D(B) 5 D1.
(3.1) (Corollary 3.5
+L
5 D(A).
R(h;cp)E
r~D(B) =
Hence
D(P(A)).
(3.a) S(i)u
U s i n g the fact that
(c))
i s a solution
we show, i n t e g r a t i n g by p a r t s , t h a t
m
P(A)R(h,m)u
=
u
e-At((coS;)"(t)u
+L
+
E(&)'(t)u
+
fo
=
where
u
emAtM(t,m)u d t = u + ;(h,K~)u
M(t,m) = 2 m t ( t ) 8 ' ( t ) + m"(t)8(t)
s t r o n g l y continuous support contained i n
(E)
- valued
+
( 0 , ~ ) . Let
W
>0
Re h
2
W
and t h u s
I
+
M( A,@)
t
2
0
,
(3.22)
is plainly a with compact
be so l a r g e t h a t
A
Then, indicating Laplace transforms with
for
cD'(t)B(t)
function i n
A(@)(t)u) d t
,
has a bounded inverse i n t h i s region.
283
THE COMPLETE EQUATION
Define a bounded o p e r a t o r
R(h)
b y means of t h e formula m
I + I? h,cp))-l ( = R( h,O)
R( A) = R( A,@)(
2 (-l)%(
h,cp)",
(3.25)
,
(3.26)
n=O We r e w r i t e ( 3 . 2 2 ) i n t h e form
+
$A,cp)u
P m denotes t h e c l o s u r e of
P( A).
mR(h,co)u = u where
u
must i n f a c t hold f o r a l l
may r e p l a c e
E.
It f o l l o w s immediately from
Then
R( h,m)E 5 D(P( A)), R( A)E
Observe now t h a t , s i n c e
P(A) by
E
P(h)
in
D)
E
h(h,a) i s bounded t h a t (3.26)
i s c l o s e d and
the facts that
(u
(3.27).
5 D(P( A));
hence we
The e q u d i t y t h u s obtained
implies t h a t
R(A)E
=
D(P(A))
A
a t l e a s t f o r t h e s e v a l u e s of
v
fact, l e t Then
P( h)(v
E
D(P(h))
- R( h ) u )
D
=
D(A)
v
p
n D(E), P(h)
f o r which
be such t h a t
= 0,
We show next t h a t observe f i r s t t h a t
=
(1.28)
i s one-to-one.
R(h)E,
u
and l e t
=
In
P(A)v.
a contradiction. i s one-to-one
P(h)
k(i,m)
R(^A;m),
in
ReA >
W.
To do t h i s ,
a r e e n t i r e f u n c t i o n s of
7
(as
Laplace t r a n s f o r m s of f u n c t i o n s with compact s u p p o r t ) . Note t h a t , by v i r t u e of t h e e s t i m a t e
(3.24),
t h e series on t h e right-hand s i d e of
(3.25) converges uniformly i n Reh 2 Let now
v
E
D(P(h))
=
r e g i o n defined by ( 3 . 1 8 ) . element of
E).
n D(B),
D(A)
W,
v
R(h)
i s analytic there. A
and l e t
be, say, i n t h e
By t h e preceding comments,
v
=
R(h)u
(u
some
Then R(h)P(h)v = R( A)P(A)R(
The lef't
hence 0
h ) =~ R( h ) =~ V .
hand s i d e of (3.28) i s a n a l y t i c i n
Reh >
in t h e r e g i o n defined by (3.18), it must e q u a l Re)\ > W, which shows t h a t P ( h ) v # 0 throughout
v
C o l l e c t i n g all t h e o b s e r v a t i o n s made about
W;
v
(3.29) s i n c e it e q u a l s
a s well i n
Reh > P(A)
and
a s claimed.
R(A)
we
can w r i t e
R( A)
= P( A)-1
(Reh > a).
(3.30)
284
THE COMPLETE EQUATION
W e o b t a i n now some rough e s t i m a t e s for
h a l f plane
Reh
2
Plainly
W.
R( A,cp),
R(h), E R ( h ) ,
ER(h,cp)
AR(h)
t h e other hand, it follows from t h e expression (3.20) f o r I/AR( h , U )
/I 5 C I hl .
m
r yn
5
R(h;A)
on that
(3,24),
F i n a l l y , i n view of II(1 + i ( h , U ) ) - l l l
i n the
a r e bounded t h e r e :
- y)-l.
= (1
n=O Accordingly,
in
Reh >
0
for some constant
I n view of t h e f i r s t estimate the
C.
-
For
W
>
W
and
u
E
E
define
(3.31), we can d i f f e r e n t i a t e twice under
i n t e g r a t i o n sign, (3.33)
(k
=
0,1,2)
with
u(k)
continuous i n
we deduce i n a d d i t i o n t h a t
t
2 0,
i n t r o d u c t i o n of
being p o s s i b l e .
Bur(;), and
A
F
t
Au(;)
2
0.
Using t h e o t h e r e s t i m a t e s
e x i s t and a r e continuous i n
under t h e corresponding i n t e g r a l s
Hence
P(h)R(h)u d)\
Pushing t h e contour of i n t e g r a t i o n i n (3.33) for k = 0,l
t o the right
we show t h a t u(0) = u'(0) = 0
.
(3.35)
We express t h e n t h e s o l u t i o n of t h e i n i t i a l value problem (3.34)-(3.35) by means of formula
(3.4),
a n e q u d l i t y t h a t suggests Laplace transform o r
obtaining
-
as w i l l be proved l a t e r
-
that
i s the
R(h)
F+(<).
We now t r y t o find a new r e p r e s e n t a t i o n f o r
R(h).
Let
u
E
D;
285
THE COMPLETE EQUATION
o p e r a t i n g as i n t h e l i n e s l e a d i n g t o (3.22) and making use of C o r o l l a r y
(a)
3.5
we show t h a t , i f
R(h,co)P(h)u = u
+
u
D(P(A))
E
"we-ht((&)'t(t)u
=
D(A)
n D(E), + (&)(t)Au)dt
+ (c&)'(t)Bu
J 0 ,W
=
where now
N(t;cO)
u
+ j oe-htN(t;co)udt +
= 2CD'(t)8'(t)
= u
+
N ( h ; c ~ ) u,
c o " ( t ) g ( t ) + u)'(t)
m.
(3.37) If
W'
30
i s such t h a t
Il$h;m)ll
then Let
Q(h)
= (I
5y
in
Reh
2
D,
E
and
+ ;V(h;CD))-lR(h;@).
Q(A)P(h)u for u
W'
I + $h;u))
It f o l l o w s from
i s invertible there.
(3.37) t h a t (3.39)
= u
which p l a i n l y shows t h a t
&(A) = R ( h )
in
Accordingly, m
R(?\) =(I + i ( h ; C ~ ) ) - ~ R ( h ;=@() (-l)n~(h;co)n)R(h;c). n=O
(3.41)
This formula suggests(by i n v e r s i o n of Laplace t r a n s f o r m s ) t h a t
where
*
denotes convolution and t h e exponent
convolution power.
We attempt t o j u s t i f y
of (3.38) and of Young's i n e q u a l i t y ,
and, i n g e n e r a l ,
If
C
i s a c o n s t a n t such t h a t
*n
indicates the
(3.42) d i r e c t l y .
n-th
By v i r t u e
286
THE COPPLETE EQUATION
we can combine (3.
I\N(t;q)*”\I
44) and (3. 43) *(n-1)
= \IN(t;a)
a s follows:
*N(t;w)/\
n-1 u r t e
5
(t
Cy
2
0,
n = 1, ...) (3.45)
Consequently, t h e s e r i e s W
(-l)nN(t;cq) n=l converges uniformly on compacts of h(t;cp)
t
2
*n
0
(3.46) t o a (E)-valued f u n c t i o n
such t h a t Ilh(t;cp)I/
-1 w ’ t
5 c(1- r)
(t
e
F
(3.47)
0).
Since t h e p a r t i a l sums of t h e s e r i e s (3.46) s a t i s f y t h e e s t i m a t e (3.47)
as well and each of i t s terms i s s t r o n g l y continuous, i t s Laplace transform i n t h e region -
integration.
Let
Reh
2
W’
can be computed by term-by-term
h
S(t)
be t h e f u n c t i o n defined by t h e r i g h t hand s i d e
of (3.42), t h a t i s
-S ( t ) u
=
= (8@I
(&)(t)u
.t
+Jtn(t
h(t;cp))* ( & ) ( t ) u
- s;ep)(cpS)(s)u
ds
.
(3.48)
0
Plainly,
n
for some constant
C.
Computing t h e Laplace transform of
S(t)
by
a p p l i c a t i o n of t h e convolution theorem and l i k e w i s e applying t h e convolution theorem t o each of t h e terms i n t h e s e r i e s of
h(t;cp)
we
e a s i l y see t h a t it e q u a l s m
( by (3.41).
(-l)%( ~ ; P ) ~ ) A;@) R(
=
R( A)
(3.50)
n=O
B u t then, by a well known r e s u l t on Laplace transforms of
a n t i d e r i v a t i v e s , we have, a f t e r inversion,
for
-w > W1,
u
E
E.
Compare t h i s with
(3.36)
and d i f f e r e n t i a t e t h r e e
t i m e s t h e e q u a l i t y obtained from uniqueness of Laplace transforms.
The
.
THE COMPLETE EQUATION
287
result i s
Z(t)
( t 1 0),
S(t)
=
(3.51)
t h u s , i n view of (3.49) w e have
118(t>ll5 Apply (3.48) t o an a r b i t r a r y
account t h a t
(@)(O)
=
0
u
E
E
cp
wt
(3.52)
and d i f f e r e n t i a t e :
taking into
w e obtain
S t ( t ) u = (8
@ I
+ n(t;ep))* ( @ ) ' ( t ) u .
(3.53)
S i m i l a r l y , applying b o t h s i d e s of (3.48) t o elements of t h e form
Eu
(with
u
E
w e obtain
D ( A ) l l D(B))
'qqEu
= (6 @ I
(3.54)
+ h ( t ; q ) ) * (&)(t)u;
it i s obvious t h a t t h e equality can be extended t o a l l
u
E
E.
We u s e
now (3.16) t o deduce t h a t
W e obtain from (3.55) and (3.53), i n conjunction w i t h (3.47), t h a t
llc(t>ll 5 Cew t t
7
118 ( t )
11 -< CeWtt
(t
10)
(3.56)
C . The estimate (3.52) and t h e first i n e q u a l i t y (3.56) comprise t h e claims i n Theorem 3.2, whose proof i s t h u s complete.
for some constant
COROLLARY
3.7.
Under t h e assumptions i n Theorem 3.2 we have
liS'(t)ll 5 Cewt, b ( t ) l i 5 Ce for some constants
(t
2
0)
(3.57)
C,W.
(3.57) i s t h e second inequality (3.56). show t h e second w e make u s e of t h e "left-handed" companion of (3.48), Proof:
To
wt
The f i r s t inequality
namely
8(t)u
=
( @ ) ( t ) * (6 @ I + h(t;v))u
,
(3.58)
THE COMPLETE EQUATION
288
where m
nqt;w)
=
F (-l)%(t;a)*n.
(3.59)
n=1
Formula (3.59) can be j u s t i f i e d d o n g t h e same l i n e s as t h e "right-handed" formula was.
On t h e b a s i s of
(3.23) w e
deduce t h a t
thus (3.59) converges u n i f o r d y on compacts of
t
2
0,
its l i m i t
h
sat i s f y i r g
Equality
(3.58) can be e s t a b l i s h e d , a s i n t h e case o f (3.48) by t a k i n g
t h e Laplace transform of both s i d e s and using (3.25) and (3.33). Using t h e f a c t that of
t
i s a (E)-valued s t r o n g l y continuous f u n c t i o n
B8(;)
we deduce from
(3.58) t h a t
.
ES(t)u = ( a B S ( t ) ) * ( 6 63 I + h ( t ; q ) ) u We o b t a i n t h e second i n e q u a l i t y (3.57) from
(3.62)
(3.58) and (3.61).
This
ends t h e proof of C o r o l l a r y 3.7. We note i n c l o s i n g t h a t o t h e r e q u a l i t i e s , l i k e have as w e l l left-handed
S'(t)u
(3.53)
and
(3.55)
companions; t h e s e are =
( @ ) ' ( t )(6 * @ I
+ h(t;a))u
(3.63)
and =
C(t)U
respectively.
( ( c p C ) ( t ) + ( c p ' S ) ( t ) ) * (6 @ I
+ rn(t;a))u
Nothing milch can be obtained from t h e s e i d e n t i t i e s t h a t
was not known p r e v i o u s l y on t h e b a s i s of (3.53) and (3.55), t h e exponential bounds emanating from exponent
W
(3.64)
in
improvement i f
(3.23) i n s t e a d of
<mT
W'
except t h a t
(3.63) and (3.64) employ t h e i n (3.38), which may be a n
( t h i s i s not v e r y e x c i t i n g , however s i n c e b o t h
exponents a r e probably v e r y f a r from o p t i m a l ) .
REMARK 3.8.
Using technique.;
similar t o t h o s e i n t h e proof of
Theorem 3.2 we can show t h a t i f t h e Cauchy problem f o r (3.1) i s well
289
THE COMPLETE EQUATION
posed i n
0
5t 5
a
t h e n a s u i t a b l e v e r s i o n of Theorem 3.2 holds.
Exercise 14 and t h e author [1970:2]) REMARK
3.9.
for details.
I n t e g r a t i n g by p a r t s i n
R(A;cp)u =
ik
See
(3.19) w e
obtain
C x
(3.65)
e-At(c@)'(t)u d t ,
thus
I n view of (3.25),
hence it follows from
(3.66) t h a t
Using t h e uniform bound (3.66)
and t h e denseness of
can extend (3.67) t o a r b i t r a r y
gVIII.4
u
E
D(A)
n D(B),
we
E.
Construction o f phase spaces.
Em f o r t h e equation
W e show i n t h i s s e c t i o n t h a t a phase space
u"(t) + Eu'(t) + Au(t)
=
0
(4.1)
can be constructed i f t h e Cauchy problem f o r ( 4 . 1 ) i s well posed i n
t
2
0
and Assumption 3.1 i s s a t i s f i e d ( a s noted i n Theorem 2 . 3 t h e
s o l e assumption t h a t t h e Cauchy problem f o r (4.1) i s well posed i n t h e sense of QVIII.~ i s insufficient). g e n e r a l i z a t i o n of t h e space
@
The space
am i s
the d i r e c t
i n $111.1 f o r t h e incomplete equation.
m For i t s d e f i n i t i o n , t h e following r e s u l t s h a l l be needed. LEMMA 4.1.
t
2
0
Let t h e Cauchy problem f o r ( 4 . 1 ) be well posed i n
and l e t Assumption
such t h a t
C(t)u
3.1 be s a t i s f i e d .
Assume t h a t
u
2
0.
i s continuously d i f f e r e n t i a b l e i n t
E
E
&
Then t h e r e
290
THE COMPLETE EQUATION
exist -
such t h a t
C,W
where C -
(but not
Proof:
W)
we use equal-ity
t 30
differentiable i n
( d ) ( i +)
may depend on
(cp'S)(i)u
(3.55);
u.
c(i)u
if
i s continuously
( i n f a c t , i n t h e support of
CD)
then
i s continuously d i f f e r e n t i a b l e as well:
t h e n d i f f e r e n t i a t e both s i d e s of
(3.55),
we can
obtaining
C ' ( t ) u = ( & @ hI (+ t;v))* ((U'C)(t)u+ ( d ' ) ( t ) U +
(U"s)(t)u+ (U'S')(t)u),
(4.3) hence ( 4 . 2 ) follows using
(3.47).
This ends t h e proof of Lemma
4.1.
The c o n s t r u c t i o n of t h e m a x i m a l phase space f o r ( 4 . 1 ) proceeds now much i n t h e same way a s f o r (111.:!.1).
The space
m'
I s defined as
follows : @
m
= E o X E
endowed w i t h any of i t s product norms.
u
E
E
c(i)u
such t h a t
The norm i n
W
>
2
0
0.
SUP
s20
e
-us
IFr( s ) u l l ,
(4.5)
Eo
=
(4.6)
D ( A ) _C E o .
i s a Banach space i s much t h e same as t h a t f o r t h e
(111.2.1) and w e omit i t .
THEORE3l 4.2.
t
2
W e obviously have Do
equation
c o n s i s t s of all
so l a r g e t h a t ( 3 . 2 ) , t h e f i r s t i n e q u a l i t y (3.57)
W'
and ( 4 . 2 ) h o l d .
The proof t h a t
Eo
is
Eo
W',
The space
i s continuously d i f f e r e n t i a b l e i n t
l I ~ 1 1=~ IIuII + where
(4.4)
Let t h e Cauchy problem f o r
and l e t Assumption 3.1 be s a t i s f i e d .
f o r (4.1). Proof:
We must show t h a t
( 4 . 1 ) be well posed i n Then
Em i s a phase space
29 1
THE COMPLETE EQUATION
We prove f i r s t t h a t each Em. q t ) i s a bounded operator i n Em. I n order t o do t h i s we t a k e u E D0 and f i x t > 0 . Due t o time invariance of ( 4 . 1 ) t h e f u n c t i o n i s a s t r o n g l y continuous semigroup i n
u(i)
=
C ( t + g)u
i s a s o l u t i o n of ( 4 . 1 ) t h u s it follows from formula
(1.5) that C(S
+
= C(s)C(t)u
t)U
This e q u a l i t y i s extended t o
+ S(s)C'(t)u
u
aJ_1
E
Eo
(s,t
as follows:
2
(4.8)
0).
integrate i n
0 5rzt,
-rote(. +
T)u dT = c ( s )
Lt
C(7)U dT
+
and extend (4.9) t o a r b i t r a r y
u E E by denseness of we d i f f e r e n t i a t e and o b t a i n (4.8). The analogue of ( 4 . 8 ) f o r S ( t ) i s S(S
+ t)u
= C(s)S(t)u
+
u(s) = 8(s
+
Do;
u
for
E
2
0),
(4.10)
t)u, u
E
D1;
since all
u
operators i n (4.10) are bounded we can extend t h e e q u a l i t y t o all We note i n passing t h a t (4.8) i t s e l f can be extended t o all
a( s ) C ' ( t )
modified form observing t h a t
Eo
(s,t
S(s)S'(t)u *I
and i s shown by applying (1.5) t o
(4.9)
S(s)(c(t)u-u),
u
f
E
E
E.
in a
must have a bounded extension.
We s h a l l not make use of t h i s i n what follows. We prove t h a t each
qt)
i s a bounded o p e r a t o r i n
Em. To do
t h i s , we m u s t show t h a t t h e o p e r a t o r s C ( t ) :Eo
-
c ' ( t ) : Eo
E 0 E
are bounded i n t h e spaces i n d i c a t e d .
8 ( t ) :E
-
8 ' ( t ) :E
Eo
-.
(4.11) E
This i s r a t h e r obvious f o r
c'(t)
E ) and f o r a t ( t ) (from Assumption 3.1). 0 Note a l s o t h a t it follows from Corollary 3.7 and Lemma 4.1 t h a t
(from t h e d e f i n i t i o n of
292
THE COMPLETE EQUATION
( h e r e and i n o t h e r i n e q u a l i t i e s
C
denotes an a r b i t r a r y constant, not
n e c e s s a r i l y t h e same i n d i f f e r e n t p l a c e s ) . Continuity of
C(t)
C(s)C(t)u = C ( s + t ) u - S ( s ) C ' ( t ) u j
form
and d i f f e r e n t i a t e with respect t o
apply t o an element
u
+ t ) u - 8'(s)CI(t)u.
i s a bounded operator from
C(t)
i n the of
E~
We obtain
s.
Cl(s)C(t)u = C l ( s If follows t h a t
Write ( 4 . 8 )
i s proved a s follows.
Eo
(4.13) into
and
Eo
(4.14) f o r some constant
Finally, boundedness of
C.
Write (4.10) i n t h e form
It follows t h a t
' 0
i s continuous i n
+ t ) u - 8t(s)Sl(t)u.
)
5
wt
(t
Ce
(4.15)
L
(4.16)
0)
W e have t h e n completed t h e proof t h a t each
C.
Em: moreover, t h e r e e x i s t s a constant
wt
l l ~ t I l l ~ 5~ Cme ) f o r some constant
W e then
The r e s u l t i s
i s a bounded operator and
8(t)
lls(t)ll(E.E f o r some constant
i s shown a s follows.
+ t)u-S(s)S'(t)u.
C(s>S(t)u = 8 ( s
d i f f e r e n t i a t e t h i s e q u a l i t y term by term. C f ( s ) S ( t ) u= S l ( s
S(t)
C,
t h e constant
(t
C
10 )
q t )
such t h a t (4.17)
being t h e same i n Corollary 3.7
w
and Lemma 4.1. The semigroup equation
follows from (4.8) and (4.10) and t h e i r d i f f e r e n t i a t e d versions (4.13) and (4.15). n
The next step i s t o show t h a t
q t )
i s s t r o n g l y continuous.
It
i s enough t o prove t h a t Ilqh)u as
h
qtk
-
O+.
- uII( Em)
+
(4.19)
0
However, we s h a l l skip t h i s step since we show below t h a t
has a derivative at t h e o r i g i n ( i n t h e norm of
s)
for u
in
293
THE COMPLETE EQUATION
Gm; t h i s , combined w i t h t h e uniform bound (4.28)
a dense subset of obviously i m plies
THEOREM 4.3.
(4.19),
q;)
since
i s a s t r o n g l y c o n t i n u o u s semigroup w i t h
8 given by
infinitesimal generator
8=
=
c l o s u r e of
71,
(4.20)
where
w i t h domain D(%) = D ( A )
The f u n c t i o n
i s a s o l u t i o n of
u(;)
u(t)
(4.22)
( D ( A ) fI D ( E ) ) .
X
(4.1) o n l y i f
= [u(t),u'(t)l
(4.2?)
i s a s o l u t i o n of
u'(t)
=
%u(t).
Proof: We b e g i n b y showing t h a t t o p o l o g y of
Eo.
i s dense i n
D(A)
To d o t h i s we s e l e c t a
(4.24)
"6-sequence"
Eo
{@,I
i n the
of scalar
f u n c t i o n s l i k e that used i n t h e proof o f C o r o l l a r y 3.5 ( b ) , and show that
u as
n
-
( f o r any
f o r each
m
u
E
E)
(4.13) we s e e that
u
n
= J$ , ( t ) c ( t ) u
E
E
0' i s obvious.
dt
That ( 4 . 2 6 )
-
(4.26)
u
h o l d s i n t h e t o p o l o g y of
Assume now t h a t
u
E
EO.
Then, using
E
294
THE COMPLETE EQUATION
and we check e a s i l y t h a t
e-WSC'(s)un converges uniformly i n
to
un
emWSCt(s)u, s o t h a t
-
u
in
20
t
EO'
W e show next t h a t
u
Em f o r each
in
l i m i t r e l a t i o n s as
E
h
-
D(3).
This i s equivalent t o t h e following f o u r
0+:
-
h'l(C(h)u for
for
u
u
u
for
E
E
E
u
E
h-lS(h)u
-
u
(4.28)
h-lC'(h)u
-
-Au
in
Eo
(4.29)
D(A) n D(B),
D(A),
D(A)
n D(B).
- u)
+
--. -Bu
in
0
(4.31)
E
To prove (14.28) we use (4.13) i n t h e form
s,
i s bounded i n norm by a constant
t h e constant described a f t e r
e W I S , m'
(4.32) as h
(4.30)
E
in
and
This expression, as a f u n c t i o n of
times
in Eo
D(A),
h-'(S1(h)u for
u ) -, 0
(4.5).
The l i m i t of
is
C"(~)U-S'(S)C"((~)U= C"(S)U + S'(S)AU = 0 after (3.11). C1(s)(h"S(h)u
To show (4.29) we w r i t e (4.10) in t h e form
- u ) = h''(St(s
+ h)u
- S t ( s ) u ) - g'(s)h''(8'(h)u - u ) - c ' ( s ) u , (4.33)
which i s bounded i n norm as well by a constant times
as
h
-
O+
eWts; i t s l i m i t
is
S"(S)U-S'(S)S"(O)-C'(S)U
=
S"(S)U + S'(S)BU
+
S(S)AU = 0
(4.34)
295
THE COMPLETE EQUATION
i n view of Corollary 3.5(d).
F i n a l l y , t h e two l i m i t r e l a t i o n s (4.30)
and (4.31) a r e obvious, since and
u
E
h-l(W'(h)u
- u) n D(E)
-D(A) 1
D
-
-
h-lC'(h)u
( s e e Corollary
3.5
%
=
=
-AC(O)u- EC'(0)u
= -Au
-Eu f o r
(c)).
q;)
Having proved (4.27), we know t h a t semigroup and t h a t , i f
C"(0)u
- BS'(0)u
S"(0)u = -A8(0)u
i s a s t r o n g l y continuous
i s i t s i n f i n i t e s i m a l generator, t h e n
(4.35)
U C B . T o improve (4.35) t o (4.20) it w i l l be s u f f i c i e n t t o prove t h a t Uh
f o r all u
E
D(9J)
s e l e c t a sequence
In f a c t , i f
{un]
(t)u d t
= kJhE
5 D(Z)
E
D(U)
(4.36)
(4.36) i s t r u e and
-
un
with
u
in
u Qm
E
(g, we may
(that
D(8)
is
dense i n ( u )h + 11
follows from (4.26) and f r o u Corollary 3.5 ( b ) ) . Then whereas u(un) h = 8 ( u n ) h = h -1(F(h)un- un) -+ h -1( S ( h ) u - u);
uhn€ D(E)
f o r any
u
E
Gh = Assume that tends t o 8 u
u
that
E
h > 0
Qm and any
and
-
h-'(5(h)u
.
u)
(4.37)
u E D(%). Taking i n t o account t h a t t h e r i g h t s i d e of (4.37) as h+O+ it follows from t h e fact t h a t i s closed
D(@
u
and
uu
= %u, which completes t h e proof of (4.20).
The i n c l u s i o n r e l a t i o n (4.36) c a n be reduced t o t h e f o u r r e l a t i o n s
(4.38)
(4.39) / g h C l ( t ) u d t = C(h)u
L h S t ( t ) u d t = S(h)u-u If
u
E
D(A)
E
-
u
D(A)
we have
E
D ( A ) fl D ( B )
n D(B)
(U E
(u
D(A)
=L
E
D(A)),
(4.40) (4.41)
D(E)).
h
AJOhC(t)u d t
so t h a t (4.38) h o l d s .
8(<)u
AC(t)u d t ,
On t h e o t h e r hand, i f
u
E
D(A)
i s a s o l u t i o n of ( 4 . 1 ) s o t h a t (4.39) holds and
(4.42)
n D ( B ) 5 D1
then
296
THE COMPLETE EQUATION
ALhs(t)u dt =/rAS(t)u
(4.43)
dt.
Obviously, (4.40) i s v e r i f i e d ; t o check ( 4 . 4 1 ) we note t h a t , since
u
E
n
D(A)
S(h)u
E
5 D1,
D(B)
D(A):
S(t^)u i s a s o l u t i o n of ( 4 . 1 ) so t h a t
on t h e o t h e r hand, h
1-
.Io
s'(t)u d t
=&
h
(4.36).
This ends t h e proof o f
We check t h e f i n a l statements i n Theorem 4.1.
i s t h e s e t of d l
D(@)
(4.25), we note t h a t
i s d i f f e r e n t i a b l e i n &!
qt)u
q;)
(4.44)
BS'(t)u d t .
. m
I n t h e matter of
u = [u,v]
such t h a t
I n view of t h e d e f i n i t i o n (4.7) of
t h i s means t h a t
(a) C(t)u + 8(t)v (b)
Cl(t)u
+
Statement ( b ) i s obvious i f again
(4.8) and ( 4 . 1 0 ) .
omit them.
i n Eo,
i s differentiable
S * ( t ) v i s differentiable i n
[u,v]
E
D(A) x
A s for ( a ) , we use
The d e t a i l s shoula be familiar by now and w e
We have concluded t h e proof of
EXAMPLE 4.4.
D1.
(4.45)
E.
Theorem
4.4.
We show below t h a t , i n g e n e r a l ,
% + a ;
(4.46)
(4. 25) cannot i n g e n e r a l be guaranteed, so t h a t t h e r e i s no t o t a l equivalence o f t h e equations ( 4 . 1 ) and (4.24). We
moreover, e q u a l i t y i n
E =
consider t h e space
we assume t h e elements o f We d e f i n e t h e o p e r a t o r s
so t h a t we have
-
A = -n, n
zc
i n Example2.1, b u t , f o r t e c h n i c a l reasons, E
t o be of t h e form
A, B
i n (2.2) thusly:
+
A n
=
-n
2
n2
It f o l l o w s t h a t
=
tun) = {un;n
2
21.
, 2
2 -nt
and
u
-
-Yu} n ' n
(4.48)
THE COMPLETE EQUATION
llc(t>ll5
o(t) =
297
= 3 . 1 nl2
n
-2'
- n
hence t h e Cauchy problem f o r ( 4 . 1 ) i s well posed i n
3.1 i s s a t i s f i e d .
e a s i l y t h a t Assumption
u = (un)
sequences
t
2
Eo
The space
We check
0.
c o n s i s t s o f all
such t h a t
(4-50)
n t h e norm
I 1
being equivalent t o t h e g e n e r d norm (4.5).
space
5E
c o n s i s t i n g of all sequences
*
E
1
Obviously,
D ( A ) C El
Take a sequence
C
Eo
C
=
{u ) n
such t h a t
each i n c l u s i o n being bounded and s t r i c t .
E,
{urn] = {u
u
Consider t h e
nm
)
of elements of
D(A)
such t h a t
um - + L I C 1 E
El,
i n t h e topology of
(4.52),
both
{nu
u
where
nm 1
{vm]
=
Qw
proving t h a t
does not belong t o D ( A ) . I n view of 2 converge i n E, so
{w ) = {n ),u ?
and
that
converges i n
But
u
#
D(U),
u
=
+
D ( A ) x D1.
[u,v]
belongs t o
D(g) = D(@).
so t h a t D(W
REMARK
(4.52)
4. 5.
The r o l e o f p a r t ( b ) of Assumption
3.1 i s somewhat more
obscure t h a t of ( a ) , which has been shown t o be e s s e n t i a l i n t h e c o n s t r u c t i o n of phase spaces.
It can be shown ( s e e Exercises 1 t o 11)
t h a t ( b ) can be given up, but some a d d i t i o n a l assumptions i n
D1
must be added
t h a t a r e not e s p e c i a l l y e a s y t o v e r i f y .
of Theorem 4.2 holds (Exercise
13).
Do
and
A version
298
THE COMPLETE EQUATION
QVIII .5.
Miscellaneous comments
.
The equation ( 4 . 1 ) has been extensively studied by semigroup methods since t h e paper of LIONS [1957:1
1.
Other e a r l y c o n t r i b u t i o n s a r e due
t o M I T J A G I N [1961:11 and SOEOLEVSKI? [1962:13, can i n f a c t depend on
t.
[1964:ll
where
A
and
E
For r e f e r e n c e s see KREiN [1967:1]; some of t h e
more recent l i t e r a t u r e i s i n t h e author
[1983:1].
In these papers, the
emphasis l i e s i n reducing ( 4 . 1 ) t o a f i r s t order system i n a product space (by means o f ad hoc assumptions on t h e c o e f f i c i e n t s
A,
E)
and
t h e n using semigroup theory. The d e f i n i t i o n s and r e s u l t s presented i n t h i s chapter a r e due t o t h e author; Sections VIII.1, VIII.2 and VIII.3 a r e taken from [1970:2]. contained ( i n a somewhat d i f f e r e n t formulation) i n
Section VIII.4 i s
A much e a r l i e r treatment of ( 4 . 1 ) i n t h e s p i r i t of 6v111.4
[1981:1].
i s due t o WEISS [1967:1], where t h e notion of phase space i s introduced i n a somewhat more general form:
i n t h i s formulation of t h e theory, t h e
( 4 . 1 ) i s not assumed t o be well posed i n t h e sense
Cauchy problem f o r of gvI11.1.
It i s obvious t h a t one could generalize t h e t h e o r y i n t h i s chapter t o more general equations (say, d i f f e r e n t i a l equations of order
n).
This has been done f o r t h e material i n t h e f i r s t t h r e e s e c t i o n s i n t h e author [1970:2].
A more i n t e r e s t i n g l i n e of approach i s suggested by
Assume t h e Cauchy problem f o r (4.1) i s well
t h e following argument.
posed and t h a t Assumption
n
X = D(A)
D(E)
3.1 i s s a t i s f i e d .
Consider t h e space
endowed with t h e " j o i n t graph norm"
\ \ u \ /+ l\Bul\ + \\AuI/. Since A and 13 a r e closed, X i s a Eanach space and 63 = 6" @ I + 6' B E + 6 '8 A (6 t h e Dirac d e l t a ) i s a
l\uIIx
=
d i s t r i b u t i o n i n t h e space -W
00,
&l((X;E))
with support i n
t
2
0
of a l l d i s t r i b u t i o n s defined i n and va.lues i n t h e space of operators
On t h e other hand, we check on t h e b a s i s of p a r t ( b ) of
(X;E). Assumption 3.1 t h a t
S(;)
(extended t o
t h e r e ) i s a d i s t r i b u t i o n defined i n and values i n we have
D(A)
(E;X).
-m
By d e f i n i t i o n of
n D ( B ) 5 Dr)
t < 0 by s e t t i n g 8 ( t ) = 0 t < m, with support i n t
C:
we prove t h a t L?*8=6@1.
On t h e other hand, (3.14) implies t h a t
2
0
S(i) (and due t o t h e f a c t t h a t
(5.1)
299
THE COMPLETE EQUATION
where
( r e s p . I) i s t h e i d e n t i t y o p e r a t o r i n
J
X (resp. E).
In this
s e t t i n g , t h e problem of c o n s t r u c t i n g t h e propagator S ( t ) of (4.1) of f i n d i n g a c o n v o l u t i o n i n v e r s e of (such as
2
t
having support i n
63
is that
s a t i s o i n g suitable properties
0, e t c . ) and we can pose t h i s problem
i n r e l a t i o n t o an a r b i t r a r y d i s t r i b u t i o n
63
E
t h u s being
&I+((X;E)),
a b l e t o t r e a t e q u a t i o n s more g e n e r a l t h a n d i f f e r e n t i a l ; f o r i n s t a n c e ,
63
€C I
= St(:)
-
+ 6(;) C% A + 6(t"
h) @
E corresponds t o t h e d i f f e r e n c e -
d i f f e r e n t i a l equation
u ' ( t ) + Au(t) + Eu(t - h )
st(;)
and t h e d i s t r i b u t i o n 63 =
@
i s t h e Heaviside f u n c t i o n
h(:)
t < 0)
I + 6(:)
=
C 3A
0
,
+ h(:) t
(h(t) = 1 for
@
2
where
E,
0, h ( t ) = 0
for
corresponds t o t h e i n t e g r o d i f f e r e n t i a l e q u a t i o n
~ ' ( t+) A u ( t ) + E
Lt
u(s)ds = 0.
For d e t a i l s on t h i s approach s e e t h e a u t h o r [1976:1], [1980:11, [1983:11,
b983 :2 1. I n Exercises 1 t o
i s well posed i n Assumption
t
2
4
we suppose t h a t t h e Cauchy problem f o r
a s defined i n $ V t I I . l ;
0
we d o not r e q u i r e
3.1.
EXERCISE 1. Let holds (Hint:
u
D(A)
E
EXERCISE 2.
E
D,I
.
Show t h a t (3.11)
Let
u
s,'
n D(E)
Do
F
-
~ ( s ) A ud s )
.
be such t h a t
(5.4) Bu
E
Dl. Show t h a t
(Hint : prove t h e i n t e g r a t e d v e r s i o n
8(t)u = EXERCISE 3.
i s such t h a t
Au
prove t h e i n t e g r a t e d v e r s i o n c(t)U = u
(3.12) h o l d s .
such t h a t
Au
Lt(
C(
s)U
-
8(s ) E u ) d s )
(5.5)
Combining Ekercises 1 and 2 show t h a t i f E
D1, Bu
E
Sl'(t)u
D 1
+
u
E
D
0
t h e n (3.14) h o l d s , t h a t i s
b'(t)Eu
+
S(t)Au
=
0
.
(5.6)
Dl
300
THE COMPLETE EQUATION
EXERCISE
4.
Show t h a t p a r t ( t ~ of ) Lemma 3.6 i s t r u e i n t h e present
l e v e l of g e n e r a l i t y , t h a t i s P ( h ) = h'I
+ hE + A
(5.7)
i s one-to-one i n a region of t h e f c i r m R e h > a + p l o g (1 + I h l ) I n Exercises ASSUMPTION
u
for all
of
E
{u
(5.8)
5 t o 11 we r e q u i r e p a r t ( a ) of Assumption 3.1, t h a t i s
5.1.
i s continuously d i f f e r e n t i a b l e i n t
S(i)u
E
5.
U s i n g Exercise 2 show t h a t t h e operator
0
Do Tl D(B); Bu
D1]
E
8(t)B
(with
h a s a bounded extension
t o all
given by = C(t)
EXERCISE 6.
Define
with
m(F)
-
Sf(t)
.
(5.9)
R(h;c~) as i n (3.19),
R( h;fn)u
Jbwe-htm(t)s(t)u
=
,
dt
a t e s t f u n c t i o n i d e n t i c d l y equal t o
(5.10)
1 near zero.
(a s l i g h t l y extended v e r s i o n o f ) (5.6) show t h a t if u such t h a t
Au, Bu
E
where
N(t;rp) = 2 v f ( t ) 3 ' ( t ) EXERCISE
Show t h a t for
7.
E
Do
Using
n D(B)
is
D1 t h e n (3.37) holds, that i s ,
+ $h;a)u
R(h;a)P(h)u = u
Define
-t
p"(t)s(t)
R(h)
as i n
+
,
(5.11)
a ' ( t ) W .
(3.41)
for
Reh
3 W,
w l a r g e enough.
u as i n Exercise 6 we have R(h)P(h)u = u
EXERCISE 8.
h(:;rp)
2
E E.
EXERCISE domain
.
For Reh
given by (3.46).
R( A). EXERCISE 9 .
Define
2
w,
W
.
l a r g e enough, d e f i n e
S(;)
Prove that t h e Laplace transform of
(5.12)
- (3.48),
by
8 equals
301
THE COMPLETE EQUATION
jta-'/r(a) ya ( c o n v o l u t i o n by
;lo
0)
(t < 0 )
Ya produces t h e " a n t i d e r i v a t i v e of order a " ) . Show
t h a t , m u l t i p l y i n g (5.12) by o b t a i n , u s i n g Exercise
for
2
(t
and i n v e r t i n g Laplace t r a n s f o r m s we
8,
as i n Exercise 6.
u
EXERCISE 10. Assume t h a t t h e s e t of d1 u
Au, Eu
E
D1 i s dense i n t h e space X
Do
E
n D(B)
= D(A)
n D(B)
such t h a t
endowed with t h e
norm
EXERCISE 11. Snow t h a t , i f
(Y1
€3 I
+ Y2
Combining (5.13) and
@ E
u
E
D1,
+ Y @A) * 3
SU = Y
€3 u
3
(t
2
(5.14)
0).
( 5 . 1 4 ) , prove t h a t , under t h e c o n d i t i o n s of
Exercise 10,
qt) = E(t). EXERCISE 12.
Under t h e c o n d i t i o n s of Exercise 1 0 , show t h a t
(3.53) ( r e s p . (3.54)) h o l d s for st(;)
formula
t h a t there exist constants
EXERCISE
u
E
E
SL(t)B).
c(t)u
Show
i s continuously d i f f e r e n t i a b l e i n
if
t 10
(4.3) h o l d s , so t h a t Ilcl(t)UII
C
(resp. f o r
such t h a t
C,W
13. Under t h e c o n d i t i o n s of Exercise 8 show t h a t ,
i s such t h a t
t h e n formula
with
(5.15)
( b u t not
w)
5
Ce
wt
may depend on
under t h e p r e s e n t hypotheses.
(t
u.
L
0)
-
(5.17)
Show t h a t Theorem 4 . 2 i s v a l i d
THE COMPLETE EQUATION
302
EXERCISE w e l l posed i n
14. 0
5t 5
E
D(A)
n D(B)
i s well posed i n
2
0
u E.
i s dense i n
t
t h a t Assumption
a (a > 0),
t h e r e and t h a t t h e s e t of all
Bu
(5.3) i s 3.1 i s s a t i s f i e d
We suppose h e r e t h a t t h e Cauchy problem f o r
f
D ( A ) I- D(E)
such t h a t
Then t h e Cauchy problem for
(5.3)
and Assumption 3.1 i s s a t i s f i e d . Note t h a t 611
t h e assumptions i n t h i s Exercise a r e s a t i s f i e d f o r t h e incomplete equation
u"(t) + Au(t) = 0
(5.18)
under t h e only assumption t h a t t h e Cauchy problem for
(5.18) i s w e l l
posed; of course, t h e r e s u l t for (5.18) can be proved i n a more elementary way by ad hoc methods. FOGTNOTES TO CHAPTER VIII
(1) We note t h e i n c o n s i s t e n c y of n o t a t i o n involved i n w r i t i n g t h e incomplete e q u a t i o n
u" + Au
=
0,
and not
u"
=
Au
as i n Chapters I1
and 111. (2)
Although t h e argument could be completed using (3.25), t h e " l e f t -
(3.41) s i m p l i f i e s some of t h e arguments. ( 3 ) We might s e t h e r e W1 = min(U,wl): f o r i f W ' < U, R(A) c a n be ana'Lytically continued t o Reh > W ' by means of Q ( h ) . ( 4 ) Convolution by Y i s employzd h e r e t o avoid using convolution of 3
handed" r e p r e s e n t a t i o n
distributions.
303
BIBLIOGRAPHY
R. A. ADAMS [1975:1]
Sobolev Spaces. Academic Press, New York, 1975
L . AMERIO and G. PROUSE
[1971:1]
Almost-periodic Functions and Functional Equations. Van Nostrand - Reinhold, New York, 1971
A. V. BALAKRISHNAN [1960:1]
Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math. 10 (1960) 419-437
S. BANACH [1932:11
Th6orie des OpCrations LinCaires. Monografje Matematyczne, Warsaw, 1932
H. BART [1977:1]
Periodic strongly continuous semigroups. Ann. Mat. Pura
m. 115 (1977) 311-318
H. BART and S. GOLDBERG [1978:1]
Characterizations of almost periodic strongly continuous groups and semigroups. Math. Ann. 236 (1978) 105-116
L. R. BRAGG and W. DETTMAN [1968:1]
An operator calculus for related partial differential equations. J. Math. Anal. Appl. 22 (1968) 261-271
P. L. BUTZER and H. BERENS [1967:1]
Semi-groups of Operators and Approximation. Springer, New York, 1967
J. CHAZARAIN [1971:1]
ProblGmes de Cauchy abstraits et applications a quelques problGmes mixtes. Jour. Functional Analysis 7 (1971) 386-445
304
I.
BIRLIOGRAPHY
CIORXNESCU
[1974:1]
Sur les solutions fondamentales d'ordre fini de croissance. Math. Ann. 211 (1974) 37-46
[1982:1]
On periodic distribution semigroups. Integral Equations and Operator Theory 7 (1982) 27-35
C. CORDUNEANU [1968:1]
Almost Periodic Functions. Interscience-Wiley, New York, 1968
G. DA PRATO [1968:1]
Semigruppi periodici. Ann. Mat. Pura Appl. 78 (1968) 55-67
G. DA PRATO and E. GIUSTI [1967:1]
Una caratterizzazione dei generatori di funzioni coseno astratte. Boll. Un. M,it. Italiana (3) 22 (1967) 357-362
E. M. DE JAGER [1975:1]
Singular perturbations of hyperbolic type. Nieuw Arch. Wisk. 23 (1975) 145-171
L. DE SIMON [1964:1]
Un'applicazione della teoria degli integrali singolari allo studio d e l l e equazioni differenziali lineari astratte del primo ordine. Renrl. Sem. Mat. Univ. Padova 34 (1964) 205-223
J. W. DETTMAN [1973:1]
Perturbation techniqws for related differential equations. J. Differential Equations 14 (1973) 547-558
J. DIXMIER [1950:1]
Les moyennes invariantes dans les semi-groupes et leurs applications. Acta Sci. Mat. Szeged 12 (1950) 213-227
N. DUNFORD and J. T. SCHWARTZ [1958:1]
Linear Operators, part I. Interscience, New York, 1958
[1963:1]
Linear Operators, part 11. Interscience-Wiley, New York, 1963
BIBLIOGRAPHY
305
H. 0. FATTORINI [ 1969:11
Sur quelques bquations diffgrentielles pour les distributions vectorielles. C. R. Acad. Sci. Paris 268 (1969) A707-A709
[ 1969:21
Ordinary differential equations in linear topological spaces, I. LDifferential Equations 5 (1969) 72-105
[ 1969:3]
Ordinary differential equations in linear topological spaces, 11. J. Differential Equations 6 (1969) 50-70
[ 1970: 11
On a class of differentia1 equations for vector valued distributions. Pacific J. Math. 32 (1970) 79-104
[ 1970:2.1
Extension and behavior at infinity of solutions of certain linear operational differential equations. Pacific J. Math. 33 (1970) 583-615
[ 1970:3]
Uniformly bounded cosine functions in Hilbert space. Indiana Univ. Math. J. 20 (1970) 411-425
[ 1971:13
Un teorema de perturbacibn para generadores de funciones coseno. Rev. Uni6n MatemBtica Argentina 25 (1971) 291-320
[1976:1]
Some remarks on convolution equations for vector valued distributions. Pacific J. Math. 66 (1976) 347-371
[ 1980:11
Vector valued distributions having a smooth convolution inverse. Pacific J. Math. 90 (1980) 347-372
[ 1981:1]
Some remarks on second order abstract Cauchy problems. Funkcialaj Ekvacioj 24 (1981) 331-344
[ 1983:1]
The Cauchy Problem. Encyclopedia of Mathematics and its Applications, vol. 18, Addison-Wesley, Reading, Mass. 1983
[ 1983:2]
Convergence and approximation theorems for vector valued distributions. Pacific J. Math. 105 (1983) 77-114
983:3]
A note on fractional derivatives of semigroups and cosine
functions. Pacific J. Math. 109 (1983) 335-347
983:4]
Singular perturbation and boundary layer for an abstract Cauchy problem. Jour. Math. Anal. Appl. 97 (1983) 529-571
985:1]
On the Schrodinger singular perturbation problem. To appear.
[ 1985:2]
On the growth of solutions of second order linear differential equations in Banach spaces. To appear.
[ 1985:3]
The hyperbolic singular perturbation problem: an operatortheoretical approach. To appear.
306
BIBLIOGRAPHY
W. FELLER [1953:1]
On the generation of unbounded semi-groups of bounded linear operators. Ann. of Math. 57 (1953) 287-308
S. R. FOGUEL [1964:1]
A conterexanlple to a problem of Sz.-Nagy. Proc. Amer. Math. SOC. 15 (1964) 788-790
A. FRIEDMAN [1969:1]
Partial Differential Equations. Holt-Rinehart-Winston, New York, 1969
[1969:2]
Singular perturbation for the Cauchy problem and for boundary value problems. J. Differential Equations 5 (1969) 226-261
R. GEEL [1978:1]
Singular Perturbations of Hyperbolic Type. Mathematical Centre Tracts no 98, Mathematisch Centrum, Amsterdam, 1978
J. GENET and M. MADAUNE
[1977:1]
Perturbations singulisres pour une classe de problsmes hyperboliques non lin6aires. Lecture Notes in Mathematics, vol. 594 (1977) 201-231, Springer, New York, 1977
E. GIUSTI [1967:1]
Funzioni coseno periodiche. B o l l . Un. Mat. Ital. (3) 22 (1967) 478-485
J. GOLDSTEIN [1969:1]
Semigroups and second order differential equations. J . Functional Analysis 4 (1969) 50-70
[1969:2]
An asymptotic property of solutions of wave equations. Proc. Amer. Math. SOC. 63 (1969) 359-363
[1970:1]
An symptotic property of solutions of wave equations, 11. J. Math. Anal. Appl. 32 (1970) 392-399
[1970:2]
On a connection between first and second order differential equations in Banach spaces. J. Math. Anal. Appl. 30 (1970) 246-251
[1972:1]
On the growth o f solutions of inhomogeneous abstract wave
equations. J. Math. Anal. Appl. 37 (1972) 650-654
307
[1974:1]
On the convergence and approximation of cosine functions. Aeq. Math. 10 (1974) 201-205
J. GOLDSTEIN and J . T. SANDEFUR [1976:1]
Asymptotic equipartition of energy for differential equations inHilbert space. Trans. Anier. Math. SOC. 219 (1976) 397-406
I. S. GRADSTEIN and I. M. RIDZYK [1963:1]
Tables of Integrals, Sums, Series and Derivatives. (Russian). Gostekhizdat, Moscow, 1963
F. P. GREENLEAF [1969:1]
Invariant Means on Topological Groups and Their Applications. Van Nostrand, New York, 1969
R. GRIEGO and R. HERSH [1971:1]
Theory of random evolutions with applications to partial .~ differential equations. Trans Amer. Math. SOC. 156 (1971) 405-418
J . HADAMARD
[1923:1]
Lectures on Cauchy's Problem in Linear Partial Differential Equations. Yale University Press, New Haven, 1923. Reprinted by Dover, New York, 1952
P. R. HALMOS [ 1967:11
A Hilbert Space Problem Book. Van Nostrand, New York, 1967
H. HELSON [1953:1]
Note on harmonic functions. Proc. Amer. Math. SOC. 4 (1953) 686-691
E. HILLE [ 1938:11
On semi-groups of linear transformations in Hilbert space. Proc. Nat. Acad. Sci. USA 24 (1938) 159-161
[ 1948:11
Functional Analysis and Semi-Groups. Amer. Math. SOC. Colloquium Pubs. vol. 31, New York, 1948
[ 1952:1]
On the generation of semi-groups and the theory of conjugate . functions. Comm. Sgm. Math. Univ. Lund Tome Supple'mentaiTe (1952) 122-134
BIBLIOGRAPHY
308 [ 1952:2]
A n o t e o n C a u c h y ' s p r o b l e m . Ann. SOC. P o l . Math. 2 5 ( 1 9 5 2 )
56-68 [ 1953: 11
S u r l e p r o b l s m e a b s t r a i t d e Cauchy. C. R . Acad. S c i . P& 236 ( 1 9 5 3 ) 1466-1467
[ 1953:2]
Le p r o b l 6 m e a b s t r a i t d e C a u c h y . U n i v . e P o l i t e c n i c o T o r i n o Rend. Sem. Mat. 1 2 ( 1 9 5 3 ) 95-105
[ 1 9 5 4 : 1]
Une g & n & r a l i s a t i o n d u problBme d e C a u c h y . Ann. I n s t . F o u r i e r G r e n o b l e 4 ( 1 9 5 4 ) 31-48
[ 1954:2]
T h e a b s t r a c t Cauchy p r o b l e m a n d C a u c h y ' s p r o b l e m f o r p a r a b o l i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s . <J. A n a l y s e Math. 3 ( 1 9 5 4 ) 81-196
[ 1 9 5 7 : 11
Probl6me d e Cauchy: e x i s t e n c e e t u n i c i t 6 d e s s o l u t i o n s . B u l l . Mat. Soc. S c i . M,ith. P h y s . R . P. Roumaine ( N . S . ) 1 ( 1 9 5 7 ) 141-143
E. HILLE a n d R . S. PHILLIPS [1957:1]
F u n c t i o n a l A n a l y s i s a n d Semi-Groups. Amer. Math. SOC. Colloquium Pubs. v o l . 3 1 , P r o v i d e n c e , 1957
G . C. HSIAO a n d R . J . WEINACHT [1979:1]
A s i n g u l a r l y p e r t u r b e d Cauchy p r o b l e m . 7 1 (1979) 242-250
J. Math. A n a l . A p p l .
N . JACOBSON
[1953:1]
L e c t u r e s o n A b s t r a c t A l g e b r a . Van N o s t r a n d , N e w Y o r k , 1953
T. KATO [1976:1]
P e r t u r b a t i o n Theory for L i n e a r O p e r a t o r s . 2nd. e d . S p r i n g e r , N e w York, 1976
J. KEVORKIAN [1981:1]
a n d J . COLE P e r t u r b a t i o n Methods i n Applied Mathematics. S p r i n g e r , New Y o r k , 1981
J . KISYNSKI [1963:1]
Sur l e s Cquations hyperboliques avec p e t i t e paramktre. C o l l o q . Math. 10 (1963) 331-343
[1970:1]
On s e c o n d o r d e r C a u c h y ' s p r o b l e m i n a Banach s p a c e . B u l l . Acad. P o l o n . S c i . S e r . S c i . Math. A s t r o n o m . P h y s . 18 ( 1 9 7 0 ) 371-374
RIR1,TOGRAPHY
[1971:1]
309
On operator-valued solutions of D'Alembert's functional equation, I. Colloq. Math. 23 (1971) 107-114
[1972:1]
On operator-valued solutions of D'Alembert's functional equation, 11. Studia Math. 42 (1972) 43-66
[1972:2]
On cosine operator functions and one-parameter semigroups of operators. Studia Math. 44 (1972) 93-105
[ 1974: 1]
On M. Kac's probabilistic formula for the solution of the telegraphist's equation. Ann. Pol. Math. 29 (1974) 259-272
H. KOMATSU [1966:1]
s. G.
Fractional powers of operators. Pacific J. Math. 19 (1966) 285-346
KRE~N
[1967:1]
Linear Differential Equations in Banach Spaces (Russian). Izdat. "Nauka", Moscow, 1967
S. G. KREYN, J u . I. PETUNIN and E. M. SEMENOV [ 1978: 11
Interpolation of Linear Operators (Russian). Izdat. "Nauka", Moscow, 1978
S. KUREPA [ 1962: 1]
A cosine functional equation in Banach algebras. Acta Sci. Math. Szeged 23 (1962) 255-267
[ 1972: 11
Uniformly bounded cosine functions in a Banach space. Math. Balkanica 2 (1972) 109-115
[ 1973: 11
A weakly measurable selfadjoint cosine function. Glasnik Mat. Ser. I13 8 ( 2 8 ) (1973) 73-79
[ 1976: 11
Decomposition of weakly measurable semigroups and cosine operator functions. Glasnik Mat. Ser. 111 11 ( 3 1 ) (1976) 91-95
B. LATIL [ 1968: 11
Singular perturbations of Cauchy's problem. J. Math. Anal. 23 (1968) 683-698 &la
P. D. LAX and R. RICHTMYER [1956:1]
Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math. 9 (1956) 267-293
310
BIB1,IOGRAPHY
J. L. LIONS [1957:1]
Un remarque slur les applications du th6orPme de Hille Yosida. J. Math. SOC. .lapan 9 (1957) 62-70
E. R. LORCH [1941:1]
The integral represent,ition of weakly almost periodic transformations in reflexive vector spaces. Trans. Amer. Math. SOC. 49 (1941) 18-40
D. LUTZ [ 1980: 11
Uber Operatorwertige Losungen der Funktionalgleichung des Cosinus. Math. Z. 171 (1980) 233-245
V. P. MIKHAILOV [1976:1]
Partial Differentia1 Equations (Russian). Izdat. "Nauka", Moscow, 1976.
B. C. MITJAGIN [1961:1[
Differential equations with small parameter in a Banach space. Izv. Akad. Nauk. Azerbaidzan, Ser. Fiz.-Matem. i Tehn. 1 (1961) 23-38
I. MIYADERA [1951:1]
On one-parameter semigroups of operators. J. Math. Tokyo 1 (1951) 23-26
[1952:1]
Generation of a strongly continuous semi-group of operators. Tahoku Math. J. (2) (1952) 109-114
B. NAGY [1976:1]
Cosine operator functions and the abstract Cauchy problem. Period. Math. Hungar. 7 ( 3 ) (1976) 15-18
H. S. NUR [1971:1]
Singular perturbations of differential equations in abstract spaces. Pacific J. Math. 36 (1971) 775-780
C. F. MUCKENHOUPT [1928/29:1] Almost periodic functions and vibrating systems. Jour Math. P h y s . M.I.T. (1928/29) 163-199
RlBLIOGRAPHY
311
E. W. PACKEL [1969:1]
A semigroup analogue of Foguel's counterexample. Proc. Amer. Math. Soc. 21 (1969) 240-244
R. S. PHILLIPS [1951:1]
On one-parameter semi-groups of linear transformations. Proc. Amer. Math. SOC. 2 (1951) 234-237
[1953:1]
Perturbation theory for semi-groups of linear operators. Trans. Amer. Math. Soc. 74 (1953) 199-221
[1954:1]
A note on the abstract Cauchy problem. Proc. Nat. Acad. Sci.
USA 40 (1954) 244-248
_ .
S. I. PISKAREV [1979:1]
Discretization of an abstract hyperbolic equation (Russian). Tartu Riikl. Uel. Toimetised N o 500 Trudy Mat. i Meh. 25 (1979) 3-23
[1982:1]
Periodic and almost periodic cosine operator functions. Mat. Sb. 118 N o 3 (1982) 386-398
C. PUCCI and G. TALENT1 [1974:1]
Elliptic (second-order) partial differential equations with measurable coefficients and approximating integral equations. Advances in Math. 19 (1976) 48-105
F. RIESZ and B. SZ.-NAGY [1955:1]
Functional Analysis. Ungar, New York, 1955
H. SLICHCHTING [1951:1]
Grenzschicht-Theorie. Braun, Karlsruhe, 1951
A. Y. SCHOENE [1970:11
Semi-groups and a class of singular perturbation problems. Indiana Univ. Math. J. 20 (1970) 247-263
M. SHIMIZU and I. MIYADERA [1978:1]
Perturbation theory for cosine families in Banach spaces. Tokyo J. Math. 1 (1978) 333-343
J. SMOLLER [ 1965:1]
Singular perturbations and a theorem of Kisy6ski. J. Math. Anal. A p p l . , 1 2 (1965) 105-114
312
[ 1965:2]
BIBLIOGRAPHY
S i n g u l a r p e r t u r b a t i o n s of Math. 28 (1965) 665-677
C a u c h y ' s p r o b l e m . Comm. P u r e A p p l .
M. SOVA
[1966:1] [1968:1]
C o s i n e o p e r a t - o r f u n c t i o n s . Rozprawy Mat. 49 (1966) 1-47 P r o b l s m e d e Cauchy poiir k q u a t i o n s h y p e r b o l i q u e s o p k r a t i o n n e l l e s Ann S c u o l a Norm. S u p . P i s a (3) 22 (1968) 67-100
2 c o e f f i c i e n t s c o n s t a i i t s non-born6s. [ 1968: 21
Unicitk des solutions exponentielles des kquations diffkrent i e l l e s o p 6 r a t i o n n e l l t s s l i n k a i r e s . B o l l . Un. Mat. I t a l . ( 4 ) 1 (1968) 629-699
[ 1968:3:
Solutions pkriodiques des kquations d i f f k r e n t i e l l e s o p k r a t i o n n e l l e s : Le miathode d e s d k v e l o p p e m e n t s d e F o u r i e r . C a s o p i s PeBt. Mat. 93 (1968) 380-421
[1968:4]
S e m i g r o u p s arid c o s i n e f u n c t i o n s of n o r m a l o p e r a t o r s i n H i l b e r t s p a c e s . C a s o p i s P e s t . Mat. 93 (1968) 437-458
[ 1970:1]
b q u a t i o n s d i f r f k r e n t i e l l e s o p k r a t i o n n e l l e s v l i n k a i r e s du s e c o n d o r d r e 2 c o e f f i c i e n t s t o n s t a n t s . Rozprawy C e s k o s l o v e n s k e Akad. Vgd. Rada Mat.. P r i r o d . Vgd. 80 (1970) s e z i t 7, 1-69
[ 1970:2]
kquations hyperboliquc,s a v e c p e t i t param6tre dans les e s p a c e s d e B a n a c h g k n 6 r a u x . C o l l o q . Math. 21 (1970) 303-320
[ 1970:3]
R k g u l a r i t k d e l ' e v o l u t i o n l i n k a i r e isochrone. Czechoslovak Math. J. 20 (1970) 251-302
[ 1970:4]
P e r t u r b a t i o n s nEmkriqiies d e s e v o l u t i o n s p a r a b o l i q u e s e t h y p e r b o l i q u e s . Casopi:; P e g t . Mat. 96 (1971) 406-407
[ 1972: 11
E n c o r e s u r l e s k a u a t i o n s h v o e r b o l i o u e s a v e c p e t i t param6tre d a n s l e s e s p a c e s d e Bzinach g 6 n k r a u x . C o l l o q . M a t h . 25 (1972) ,
I
135-161 Y
P . E. SOBOLEVSKII [ 1962:1]
On s e c o n d - o r d e r d i f f e r e n t i a l e q u a t i o n s i n a B a n a c h s p a c e 146 (1962) 774-777 ( R u s s i a n ) . D o k l a d y Akzid. Nauk.
[1964:11
On s e c o n d o r d e r e q u a t - i o n s w i t h a s m a l l p a r a m e t e r i n t h e h i g h e r d e r i v a t i v e . U s p e h i Mat. Nauk. 19 (1964) 217-219
SSSR
E. M. STEIN
[197O: 11
S i n g u l a r I n t e g r a l s a n d D i f f e r e n t i a b i l i t y P r o p e r t i e s of F u n c t i o n s . P r i n c e t o n l l n i v e r s i t y P r e s s , P r i n c e t o n , 1970
E. M. STEIN a n d G . WEISS [ 1971:1]
I n t r o d u c t i o n t o F o u r i e r A n a l y s i s on E u c l i d e a n S p a c e s . P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n , 1971
BIBLIOGRAPHY
313
M. H. STONE [1932:1]
On one parameter unitary groups in HIlbert space. Ann. Math. 33 (1932) 643-648
B. SZ.-NAG1 [1938:1]
On semi-groups of self-adjoint transformations in Hilbert space. Proc. Nat. Acad. Sci. USA 24 (1938) 559-560
[1947:1]
On uniformly bounded linear transformations in Ililbert space. Acta Sci. Math. Szeged 11 (1947) 152-157
T. TAKENAKA and N. OKAZAWA [1978:1]
A Phillips-Miyadera type perturbation theorem for cosine functions of operators. Tahoku Math. J. 30 (1978) 107-115
C. C. TRAVIS and G. F. WEBB
[1981:1]
Perturbation of strongly continuous cosine family generators. Colloquium Math. 45 (1981) 277-285
G. N. WATSON [1948:1]
A treatise on the Theory of Bessel Functions. 2nd. ed. Cambridge University Press, Cambridge, 1948
B. W E I S S
[1967:1]
Abstract vibrating systems. J. Math. M g c L 17 (1967) 241-255
G. WHITHAM [1974:1]
Linear and Nonlinear Waves. Wiley-Interscience, New York, 1974
D. V . W I D D E R
[1931:1]
Necessary and sufficient conditions for the representation of a function as a Laplace integral. Trans Amer. Math. SOC. 33 (1931) 851-892
[1946:1]
The Laplace Transform. Princeton University Press, Princeton,
1946 K. YOSIDA
11948:ll
On the differentiability and the reuresentation of oneparameter semigroups of linear operators. J. Math. SOC. Japan 1 (1948) 15-21
[1978:1]
Functional Analysis. 5th. ed. Springer, Berlin 1978
314
BIBLIOGRAPHY
J . ZABCZYK
[1975:1]
A note on Co semigroups. B u l l . Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 23 (1975) 895-898
E. ZAUDERER
[1983:1]
Partial Differential Equations of A p p l i e d Mathematics. Wiley-Interscience, New York, 1983
A. ZYGMUND [1959:1]
Trigonometric Series, v o l I. Cambridge University Press, Cambridge, 1959