Smithells Light Metals Handbook
Smithells Light Metals Handbook Edited by
E. A. Brandes CEng, BSc(Lond), ARCS, FIM an...
236 downloads
1018 Views
2MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Smithells Light Metals Handbook
Smithells Light Metals Handbook Edited by
E. A. Brandes CEng, BSc(Lond), ARCS, FIM and
G. B. Brook DMet(Sheff), FEng, FIM
Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 A division of Reed Educational and Professional Publishing Ltd
OXFORD BOSTON JOHANNESBURG MELBOURNE NEW DELHI SINGAPORE
First published 1998 Reed Educational and Professional Publishing Ltd 1998 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers
British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0 7506 3625 4 Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress
Typeset by Laser Words, Madras, India Printed and bound in Great Britain by Hartnolls Ltd, Bodmin, Cornwall
Contents
Preface
vii
1 Related specifications Related specifications for wrought aluminium alloys Related specifications for magnesium alloys Titanium and titanium alloys corresponding grades or specifications
2 General physical properties of light metal alloys and pure light metals 2.1 2.2 2.3 2.4
General physical properties of pure light metals and their alloys The physical properties of aluminium and aluminium alloys The physical properties of magnesium and magnesium alloys The physical properties of titanium and titanium alloys
3 Mechanical properties of light metals and alloys 3.1 Mechanical properties of aluminium and aluminium alloys Alloy designation system for wrought aluminium Temper designation system for aluminium alloys 3.2 Mechanical properties of magnesium and magnesium alloys 3.3 Mechanical properties of titanium and titanium alloys
4 Aluminium and magnesium casting alloys 4.1 Aluminium casting alloys 4.2 Magnesium alloys
1 2 3 3
5
5 6 10 13
14 14 14 15 40 55
67 68 80
vi
Contents
5 Equilibrium diagrams
93
5.1 Index of binary diagrams
93
6 Metallography of light alloys 6.1 Metallographic methods for aluminium alloys 6.2 Metallographic methods for magnesium alloys 6.3 Metallographic methods for titanium alloys
7 Heat treatment of light alloys 7.1 Aluminium alloys Annealing Stabilizing Hardening 7.2 Magnesium alloys Safety requirements Environment Conditions for heat treatment of magnesium alloys castings
8 Metal finishing
163 163 168 171
173 173 173 173 173 176 176 176 176
179
8.1 Cleaning and pickling processes Vapour degreasing Emulsion cleaning 8.2 Anodizing and plating processes 8.3 Plating processes for magnesium alloys Dow process (H. K. Delong) Conditions Electroless plating on magnesium ‘Gas plating’ of magnesium (vapour plating)
179 179 179 182 185 185 185 185 185
9 Superplasticity of light metal alloys
186
10 Light metal-matrix composites
188
Index
193
Preface
The light metals covered by this handbook are only those of industrial importance aluminium, magnesium and titanium. The values given have been updated to the time of publication. They are intended for all those working with light metals; for research or design purposes Reference to source material may be found in Smithells Metals Reference Book (revised 7th edition). For design purpose values of mechanical properties must be obtained from the relevant specifications. Equilibrium diagrams are taken to be the most suitable for general work. For specialist work on any system, original sources should be consulted. E.A.B. Chalfont St Peter, Bucks
1
Related specifications
2
RELATED SPECIFICATIONS FOR WROUGHT ALUMINIUM ALLOYS
BS international
Nominal composition old ISO No. Al
1050A 1080A 1200 1350 2011 2014A 2017A 2024
99.5 99.8 99 99.5 Cu6BiPb Cu4SiMg Cu4MgSi Cu4Mg1
2031 2117 2618A
Cu2NiMgFeSi Cu2Mg Cu2Mg1.5 Fe1Ni1 Mn1 MnMg Si5 Si12 Mg1 Mg5 Mg4.5Mn Mg3.5 Mg2 Mg3.6 Mg3Mn Mg1SiCu Mg0.5Si Si1MgMn Zn4.5Mg Zn6MgCu
3103 3105 4043 4047 5005 5056A 5083 5154A 5251 5454 5554 6061 6063 6082 7020 7075
UK former BS designation 1B 1A 1C 1E FC1 H15 2L97, 2L98, L109, L110, DTD5100A H12 3L86 H16 N3 N31 N21 N2 N41 N6 N8 N5 N4 N51 N52 H20 H9 H30 H17 2L95, L160, L161, L162
France former NF
W. Germany Wk. No.
A5 A8 A4 A5/6 A U5 PbBi A U4SG A U4G A U4G1
3.0255 3.0285 3.0205 3.0257 3.1655 3.1255 3.1325 3.1355
A U2N A U2G A U2GN
3.1305
Italy Canada
Sweden
990
4 007 4 004 4 010
CB60 CS41N
4 355 4 338
S5 S12 G0.6 G5M G4.5MC
A G2M A G2.5MC
3.3525 3.3537
A GSUC
3.3211
A SGM0.7 A Z5G A Z5GU
3.2315 3.4335 3.4365
New UNI
Japan
4 507 4 509 3 567
A1050 A1080 A1200
AK 8
6 362 3 581
CG42
D 16
3 583
9002/4
A2024
CG30
D 18 AK 4-1
3 577 3 578
9002/1 9002/6
A2217
3 568
9003/3 9003/5
4054
4106 3.3555 3.3547
Old UNI
9001/2 9001/4 9001/1 9001/5 9002/5 9002/3
3.0515 3.0505 A A A A A
USSR
GM41 GR40 GM31N GM31P GS11N GS10 ZG62
4140
A2011 A2014
A3105 A4043
5 764
9005/1
A5005
7 790
9005/5
A5083
3 574 7 789
9005/3
6 170
9006/2
A5454 A5554 A6061 A6063
3 571 7 791 3 735
9006/4 9007/1 9007/2
AMG3
4104 4 212 4 425 SM6958
AD3 AD31 V95
A7075
Smithells Light Metals Handbook
Table 1.1
Related specifications
3
Table 1.2 RELATED SPECIFICATIONS FOR MAGNESIUM ALLOYS Cast alloys Nominal composition
UK designation
UK BS2970 MAG
RE3Zn2.5 Zr0.6
ZRE1
6-TE
EZ33A-T5
4442B G-TR3Z2 MG-C-91 3.6204
3.5103
Zn4.2RE1.3 Zr0.7
RZ5
5-TE
ZE41A-T5
4439A G-Z4TR
MG-C-43 3.6104
3.5101
Th3Zn2.2 Zr0.7
ZT1
8-TE
HZ32A-T5 4447B G-Th3Z2
MG-C-81 3.6254
3.5105
Zn5.5Th1.8 Zr0.7
TZ6
9-TE
ZH62A-T5 4438B
MG-C-41 3.5114
3.5102
Al8Zn0.5 Mn0.3
A8
1-M
AZ81A-F
G-A9
MG-C-61
3.5812
Al9.5Zn0.5 Mn0.3
AZ91
3-7B
AZ91C-T4
G-A9Z1
Al7.5/9.5 Zn0.3/1.5 Mn0.15min
C
7-M
USA ASTM
USA AMS
France AFNOR
Standard AECMA
W. Germany W. Germany aircraft DIN 1729
3.5194 3.5912
1.4.2 Wrought alloys Zn3Zr0.6
ZW3
Al6Zn1Mn0.3 AZM Al8.5Zn0.5 Mn0.12min
E-151M
AZ80
Al3Zn1Mn0.3 AZ31
MG-P-43
E-121M AZ61A-F
S-1110
4350H G-A6Z1
MG-P-63
W.3510
3.5612
AZ80A
4360D
MG-P-61
W.3515
3.5812
AZ31B-0
4375F
MG-P-62
W.3504
3.5312
G-A2Z1
Table 1.3 TITANIUM AND TITANIUM ALLOYS. CORRESPONDING GRADES OR SPECIFICATIONS
IMI designation
UK British Standards (Aerospace series) and Min. of Def. DTD seriesŁ
France AIR-9182, 9183, 9184
Germany BWB series†
AECMA recommendations
IMI 115
BS TA 1, DTD 5013
T-35
3.7024
Ti-POI
IMI 125
BS TA 2,3,4,5
T-40
3.7034
Ti-PO2
IMI 130
DTD 5023, 5273, 5283, 5293
T-50
IMI 155
BS TA 6
IMI 160 IMI 230
BS TA 7,8,9 BS TA 21, 22, 23, 24, BS TA 52 55, 58 DTD 5043 BS TA 14, 15, 16, 17 BS TA 10, 11, 12, 13, 28, 56
IMI 315 IMI 317 IMI 318 IMI 318 ELI (extra low interstitial)
USA AMS series‡
ASTM grade 1
(
T-60
3.7064
Ti-PO4
T-U2.
3.7124
Ti-P11
T-A5E T-A6V
T-A6VELI
Ti-P65 3.7164
Ti-P63
USA ASTM series
AMS 4902, 4941, 4942, 4951
ASTM grade 2
AMS 4900
ASTM grade 3
AMS 4901 AMS 4921
AMS 4909, 4910, 4926, 4924, 4953, 4966 AMS 4911, 4928, 4934, 4935, 4954, 4965, 4967
AMS 4907, 4930, 4931
ASTM grade 4
ASTM grade 5
ASTM grade 3, F. 136. continued overleaf
4
Smithells Light Metals Handbook
Table 1.3 (continued )
IMI designation
UK British Standards (Aerospace series) and Min. of Def. DTD seriesŁ
IMI 325 IMI 550 IMI 551 IMI 624
BS TA 45 51, 57 BS TA 39 42
France AIR-9182, 9183, 9184
Germany BWB series†
T-A3V2.5
3.7194
T-A4DE
3.7184
T-A6Zr4 DE
3.7144
IMI 646 IMI 662
IMI 679 IMI 680 IMI 685 IMI 811 IMI 834
AECMA recommendations
T-E11DA T-A6ZD T-A8DV
3.7154
USA ASTM series
AMS 4943 4944
ASTM grade 9
Ti-P68 AMS 4919, 4975, 4976 AMS 4981 AMS 4918, 4971, 4978, 4979 AMS 4974
3.7174
BS TA 18 20, 25-27 DTD 5213 BS TA 43, 44
USA AMS series‡
Ti-P67 AMS 4915, 4916
T-A6E Zr4Nb
Ł UK BS 3531 Part 1 (Metal Implants in Bone Surgery), and Draft British Standard for Lining of Vessels and Equipment for Chemical Processes, Part 9, also refer. † Germany DIN 17850, 17860, 17862, 17863, 17864 (3.7025/35/55/65), and TUV 230-1-68 Group I, II, III and IV also refer. ‡ USA MIL-T-9011, 9046, 9047, 14577, 46038, 46077, 05-10737 and ASTM B265-69, B338-65, B348-59T, B367-61T. B381-61T, B382-61T also refer.
2
General physical properties of light metal alloys and pure light metals
2.1
General physical properties of pure light metals and their alloys
Table 2.1
PHYSICAL PROPERTIES OF ALUMINIUM, MAGNESIUM AND TITANIUM
Property Atomic weight C D 12 Atomic number Density (g cm 1 ) liquid at 660 ° C Al, 651 ° C Mg, 1685 ° C Ti Melting point ° C Boiling point ° C Thermal conductivity Wm 1 K 1 at ° C 0 100 200 400 600 800 1 1 Specific heat Jkg K at ° C 20 0 100 200 300 400 600 800 6 1 Coefficient of expansion 10 K at ° C 0 100 100 200 300 400 600 800 Electrical resistivity at ° C 20 100 200 300 400 600 800 Temp. coefficient of resistivity 0 100 ° C 10 3 K 1
Aluminium
Magnesium
Titanium
26.98154 13 2.70 2.385 660.323 (fixed pt ITS-90) 2520
24.305 12 1.74 1.590 649
47.88 22 4.5 4.11 1667
238 238 238
900 917 984 1030 1076
23.5 23.9 24.3 25.3 26.49
2.67 3.55 4.78 5.99 7.30
4.5
1090 155.5 167 130
3285 16 15 14 13 (13)
1022 1038 1110
519 528 569
1197
619 636 682
26.0 26.1 27.0
8.9 8.8 9.1
28.9
9.4 9.7 9.9
4.2 5.6 7.2
54 70 88
12.1
119 152 165
4.25
Note: For surface tension and viscosity of liquid metals see Metal Reference Book 7th ed. pp. 14 7 to 14 8
3.8
6
Smithells Light Metals Handbook
2.2
The physical properties of aluminium and aluminium alloys
Table 2.2 THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM ALLOYS AT NORMAL TEMPERATURES sand cast
Material Al Al Cu Al Mg Al Si Al Si Cu
Al Si Cu MgŁ Al Cu Mg Ni (Yalloy) Al Cu Fe Mg Al Si Cu Mg Ni (Lo Ex)
Ł Die cast.
Nominal composition % Al Al Cu Cu Cu Mg Mg Mg Si Si Si Cu Si Cu Si Cu Mg Cu Mg Ni Cu Fe Mg Si Cu Mg Ni Si Cu Mg Ni
99.5 99.0 4.5 8 12 3.75 5 10 5 11.5 10 1.5 4.5 3 17 4.5 0.5 4 1.5 2 10 1.25 0.25 12 1 1 2 23 1 1 1
Density g cm 3
Coefficient of expansion 20 100 ° C 10 6 K 1
Thermal conductivity 100 ° C Wm 1 K 1
Resistivity µ m
2.70 2.70 2.75 2.83 2.93 2.66 2.65 2.57 2.67 2.65 2.74
24.0 24.0 22.5 22.5 22.5 22.0 23.0 25.0 21.0 20.0 20.0
218 209 180 138 130 134 130 88 159 142 100
3.0 3.1 3.6 4.7 4.9 5.1 5.6 8.6 4.1 4.6 6.6
69
2.76
21.0
134
4.9
71
2.73
18.0
134
8.6
88
2.78
22.5
126
5.2
71
2.88
22.0
138
4.7
71
2.71
19.0
121
5.3
71
2.65
16.5
107
Modulus of elasticity MPa ð103
71
71 71 71
88
Table 2.3 THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM ALLOYS AT NORMAL TEMPERATURES wrought
Specification 1199
1050A 1200
Al Al Al Al
99.992
Density g cm 3
Coefficient of expansion 20 100 ° C 10 6 K 1
H111 H18
2.70
23.5
H111 H18
2.70
23.5
H111 H18
2.71
23.5
H111 H18
2.71
23.5
T4 T6
2.8 2.8
22 22
239 234 239 234 230 230 230 230 226 226 226 226 142 159
T3 T6
2.77 2.77
23 23
151
5.7 5.7
73 73
T8
2.59
23.6
88.2
9.59
76
T8
2.58
23.9
84
9.59
75
H111 H12 H14 H16 H18
2.74
23.0
180
3.9
0.0030
151
4.8
0.0024
ConditionŁ Sheet
99.8
Extruded Sheet
99.5
Extruded Sheet
99
Extruded Sheet Extruded
2014A
2024 2090 2091
3103
Cu Mg Si Mn Cu Mg Mn Cu Li Zr Cu Li Mg Zr Mn
4.4 0.7 0.8 0.75 4.5 1.5 0.6 2.7 2.3 0.12 2.1 2.0 1.50 0.1 1.25
Sheet
Extruded
Thermal conductivity 100 ° C Wm 1 K 1
Resistivity µ cm 2.68 2.70 2.68 2.74 2.76 2.79 2.80 2.82 2.85 2.87 2.89 2.86 5.3 4.5
Temp. coeff. of resistance 20 100 ° C 0.0042 0.0042 0.0042 0.0042 0.0042 0.0041 0.0041 0.0041 0.0041 0.0040 0.0040 0.0040
Modulus of elasticity MPa ð103 69 69 69 69 69 69 69 69 69 69 69 69 74
69
General physical properties of light metal alloys and pure light metals
1080A
Nominal composition %
continued overleaf
7
8
Table 2.3 (continued) wrought
5083 5251
5154A
Mg Mn Cr Mg Mn
4.5 0.7 0.15 2.0 0.3
Mg
3.5
5454
Mg Mn Cr
2.7 0.75 0.12
Al Li Al Mg Li
Li Mg Li Li Mg Mg Si Cu Cr Mg Si Mg Si
2.0 3.0 2.0 3.0 2.0 1.0 0.6 0.2 0.25 0.5 0.5 0.5 0.5
Mg Si Mn Mg Si
1.0 1.0 0.7 1.0 1.0
Al Li Mg 6061
6063 6063A 6082 6082
Density g cm 3
Coefficient of expansion 20 100 ° C 10 6 K 1
Thermal conductivity 100 ° C Wm 1 K 1
2.67
24.5
2.69
Resistivity µ cm
Temp. coeff. of resistance 20 100 ° C
Modulus of elasticity MPa ð103
109
6.1
0.0019
71
24
155
4.7
0.0025
70
2.67
23.5
2.68
24
4.9 5.3 5.4 5.7 5.1
0.0023 0.0021 0.0021 0.0019
H111 H22 H24
147 142 138 134 147
Sheet Sheet
T6 T6
2.56 2.52
77 79
Sheet
T6
2.46
84
Bar
H111 T4 T6
2.7 2.7 2.7
23.6 23.6 23.6
180 154 167
2.70
23.0
2.7 2.7
24 24 24 23 23
3.5 3.3 3.5 3.2 3.3 4.1 3.7
0.0033 0.0035
2.7
193 201 197 209 201 172 184
2.69
23.0
188 193
3.6 3.4
0.0033 0.0035
ConditionŁ Sheet Sheet Extruded Sheet Extruded Sheet
H111 H12 H14 H111 H13 H16 H111 H14
Extruded
T4 T6 Bar T4 T5 T6 Bar/Extruded T4 T6 Sheet
T4 T6
70 70
68.9 68.9 68.9
0.0031 0.0031
71 69 69 69 69 69 69
Smithells Light Metals Handbook
Specification
Nominal composition %
6463 Al Cu Mg Si (Duralumin)
Al Si Cu Mg (Lo Ex) Al Zn Mg
7075
8090
H111 D Annealed. H12,22 D Quarter hard. H14,24 D Half hard. H16,26 D Three-quarters hard. H18,28 D Hard.
0.65 0.4 4.0 0.6 0.4 0.6 4.5 0.5 0.75 0.75 4.0 1.5 2.0 12.0 1.0 1.0 1.0 10.0 1.0 0.7 0.4 5.7 2.6 1.6 0.25 2.5 1.3 0.95 0.1
Bar
T5 T6 T6
2.71 2.71 2.80
23.4 23.4 22.5
209 201 147
3.1 3.3 5.0
0.0023
Sheet
T4 T6
2.81
22.5
147 159
5.2 4.5
0.0022 0.0026
73
Forgings
T6
2.78
22.5
151
4.9
0.0023
72
Forgings
T6
2.66
19.5
151
4.9
0.0023
79
Forgings
2.91
23.5
151
4.9
0.0023
Extrusion T6
2.80
23.5
130
5.7
0.0020
Plate
2.55
21.4
93.5
9.59
Sheet
T4 D Solution treated and naturally aged. T6 D Solution treated and artificially aged.
69 69 73
72
77
General physical properties of light metal alloys and pure light metals
Al Cu Mg Ni (Yalloy)
Mg Si Cu Mg Si Mn Cu Mg Si Mn Cu Mg Ni Si Cu Mg Ni Zn Cu Mn Mg Zn Mg Cu Cr Li Cu Mg Zr
9
The physical properties of magnesium and magnesium alloys THE PHYSICAL PROPERTIES OF SOME MAGNESIUM AND MAGNESIUM ALLOYS AT NORMAL TEMPERATURE
Material Pure Mag Mg Mn
Nominal composition† % Mg 99.97 (MN70)Mn (AM503)Mn
Mg Al Mg Al Zn
Mg Zn Mn Mg Zn Zr
AL80Al Be (AZ31)Al Zn
Condition
Density at 20 ° C g cm 3
T1
1.74
0.75 approx.
T1
1.75
Melting point °C Sol. Liq. 650 650
651
Coeff. of thermal expansion 20 200 ° C 10 6 K 1
Thermal conductivity Wm 1 K 1
Electrical resistivity µ cm
Specific heat 20 200 ° C J kg 1 K 1
Weldability by argon arc process‡
27.0
167
3.9
1 050
A
26.9
146
5
1 050
A
1.5
T1
1.76
650
651
26.9
142
5.0
1 050
A
0.75 approx. 0.005
T1
1.75
630
640
26.5
117
6
1 050
A
3 1
T1
1.78
575
630
26.0
(84)
10.0
1 050
A
Relative damping capacity§
C
(A8)Al Zn
8 0.5
AC AC T4
1.81 1.81
475Ł
600
27.2 27.2
84 84
13.4
1 000 1 000
A
C
(AZ91)Al Zn
9.5 0.5
AC AC T4 AC T6
1.83 1.83 1.83
470Ł
595
27.0 27.0 27.0
84 84 84
14.1
1 000 1 000 1 000
A
C
(AZM)Al Zn
6 1
T1
1.80
510
610
27.3
79
14.3
14 000
A
(AZ855)Al Zn (ZM21)Zn Mn
8 0.5 2 1
T1
1.80
475Ł
600
27.2
79
14.3
1 000
A
T1
1.78
(ZW1)Zn Zr
1.3 0.6
T1
1.80
625
645
27.0
134
5.3
1 000
A
(ZW3)Zn Zr (Z5Z)Zn Zr
3 0.6 4.5 0.7
T1
1.80
600
635
27.0
125
5.5
960
C
AC T6
1.81
560
640
27.3
113
6.6
960
C
(ZW6)Zn Zr
5.5 0.6
T5
1.83
530
630
26.0
117
6.0
1050
C
27.0
A A
Smithells Light Metals Handbook
Table 2.4
10
2.3
Mg Y RE Zr
Mg RE Zn Zr
Mg Ag RE Zr
4.0 3.4 0.6
AC T6
1.84
550
640
26.7
51
14.8
966
A
(WE54)Y RE() Zr
5.1 3.0 0.6
AC T6
1.85
550
640
24.6
52
17.3
960
A
(ZRE1)RE ZN Zr
2.7 2.2 0.7
AC T5
1.80
545
640
26.8
100
7.3
1 050
A
(RZ5)Zn RE Zr (ZE63)Zn RE Zr
4.0 1.2 0.7 6 2.5 0.7
AC T5
1.84
510
640
27.1
113
6.8
960
B
AC T6
1.87
515
630
27.0
109
5.6
960
A
(ZTY)Th Zn Zr (ZT1)Th Zn Zr
0.8 0.5 0.6 3.0 2.2 0.7
T1
1.76
600
645
26.4
121
6.3
960
A
AC T5
1.83
550
647
26.7
105
7.2
960
A
(TZ6)Zn Th Zr
5.5 1.8 0.7
AC T5
1.87
500
630
27.6
113
6.6
960
B
(QE22)Ag 2.5 RE(D) 2.0 Zr 0.6
AC T6
1.82
550
640
26.7
113
6.85
1000
A
AC T6
1.81
540
640
26.6
113
6.85
1000
A
(EQ21)RE(D) Ag Cu Zr
2.2 1.5 0.07 0.7
B
(B)
continued overleaf
General physical properties of light metal alloys and pure light metals
Mg Th Zn ZrŁŁ
(WE43)Y RE() Zr
11
(continued)
Mg Zn Cu Mn
MG Ag RE ŁŁ Th Zr
(ZC63)Zn Cu Mn (ZC71)Zn Cu Mn
6.0 2.7 0.5 6.5 1.3 0.8
(QH21)Ag RE(D) Th Zr (ZA)Zr
2.5 1.0 1.0 0.7 0.6
AC Sand cast. T4 Solution heat treated. T5 Precipitation heat treated. T6 Fully heat treated. † Mg Al type alloys normally contain 0.2 0.4% Mn to improve corrosion resistance. ŁŁ Thorium containing alloys are being replaced by alternative Mg alloys.
Melting point °C Sol. Liq.
Coeff. of thermal expansion 20 200 ° C 10 6 K 1
Thermal conductivity Wm 1 K 1
Electrical resistivity µ cm
Condition
Density at 20 ° C g cm 3
AC T6
1.87
465
600
26.0
122
5.4
962
B
T6
1.87
465
600
26.0
122
5.4
62
B
AC T6
1.82
540
640
26.7
113
6.85
1005
A
AC
1.75
650
651
27.0
(146)
(4.5)
1050
A
T1 Extruded, rolled or forged. RE Cerium mischmetal containing approx. 50% Ce. Ł Non-equilibrium solidus 420 ° C. () Estimated value. RE(D) Mischmetal enriched in neodynium. RE() Neodynium + Heavy Rare Earths.
Specific heat 20 200 ° C J kg 1 K 1
Weldability by argon arc process‡
‡ Weldability rating: A Fully weldable.
§ Damping capacity rating: A Outstanding.
B Weldable. C Not recommended where fusion welding is involved.
B Equivalent to cast iron.
Relative damping capacity§
A
C Inferior to cast iron but better than Al-base cast alloys.
Smithells Light Metals Handbook
Nominal composition† %
Material
Mg Zr
12
Table 2.4
General physical properties of light metal alloys and pure light metals
2.4
13
The physical properties of titanium and titanium alloys
Table 2.5 PHYSICAL PROPERTIES OF TITANIUM AND TITANIUM ALLOYS AT NORMAL TEMPERATURES
Material IMI designation
Temp. Coefficient Thermal coefficient Magnetic of conof Specific suscept. Nominal expansion ductivity Resistivity resistivity heat 10 6 composition Density 20 100 ° C 20 100 ° C 20 ° C 20 100 ° C 50 ° C cgs units g 1 % g cm 3 10 6 K 1 W m 1 K 1 µ cm µ cm K 1 J kg 1 K 1
CP Titanium Commercially pure IMI 230 Cu 2.5 IMI 260/261 Pd 0.2 IMI 315 Al 2.0 Mn 2.0 IMI 317 Al 5.0 Sn 2.5 IMI 318 Al 6.0 V 4.0 IMI 550 Al 4.0 Mo 4.0 Sn 2.0 Si 0.5 IMI 551 Al 4.0 Mo 4.0 Sn 4.0 Si 0.5 IMI 679 Sn 11.0 Zr 5.0 Al 2.25 Mo 1.0 Si 0.2 IMI 680 Sn 11.0 Mo 4.0 Al 2.25 Si 0.2 IMI 685 Al 6.0 Zr 5.0 Mo 0.5 Si 0.25 IMI 829 Al 5.5 Sn 3.5 Zr 3.0 Nb 1.0 Mo 0.3 Si 0.3 IMI 834 Al 5.8 Sn 4.0 Zr 3.5 Nb 0.7 Mo 0.5 Si 0.35 C 0.06
4.51
7.6
16
48.2
0.0022
528
C3.4
4.56 4.52 4.51
9.0 7.6 6.7
13 16 8.4
70 48.2 101.5
0.0026 0.0022 0.0003
528 460
C4.1
4.46
7.9
6.3
163
0.0006
470
C3.2
4.42
8.0
5.8
168
0.0004
610
C3.3
4.60
8.8
7.9
159
0.0004
4.62
8.4
5.7
170
0.0003
400
C3.1
4.84
8.0
7.1
163
0.0004
4.86
8.9
7.5
165
0.0003
4.45
9.8
4.8
167
0.0004
4.53
9.45
7.8
4.55
10.6
530
3
Mechanical properties of light metals and alloys
The following tables summarize the mechanical properties of the more important industrial light metals and alloys. In the tables of tensile properties at normal temperature the nominal composition of the alloys is given, followed by the appropriate British and other specification numbers. Most specifications permit considerable latitude in both composition and properties, but the data given in these tables represent typical average values which would be expected from materials of the nominal composition quoted, unless otherwise stated. For design purposes it is essential to consult the appropriate specifications to obtain minimum and maximum values and special conditions where these apply. The data in the tables referring to properties at elevated and at sub-normal temperatures, and for creep, fatigue and impact strength have been obtained from a more limited number of tests and sometimes from a single example. In these cases the data refer to the particular specimens tested and cannot be relied upon as so generally applicable to other samples of material of the same nominal composition.
3.1
Mechanical properties of aluminium and aluminium alloys
The compositional specifications for wrought aluminium alloys are now internationally agreed throughout Europe, Australia, Japan and the USA. The system involves a four-digit description of the alloy and is now specified in the UK as BS EN 573, 1995. Registration of wrought alloys is administered by the Aluminum Association in Washington, DC. International agreement on temper designations has been achieved, and the standards agreed for the European Union, the Euro-Norms, are replacing the former British Standards. Thus BS EN 515. 1995 specifies in more detail the temper designations to be used for wrought alloys in the UK. At present, there is no Euro-Norm for cast alloys and the old temper designations are still used for cast alloys. In the following tables the four-digit system is used, wherever possible, for wrought materials. 3.1.1
Alloy designation system for wrought aluminium
The first of the four digits in the designation indicates the alloy group according to the major alloying elements, as follow: 1XXX 2XXX 3XXX 4XXX 5XXX 6XXX 7XXX 8XXX 9XXX
aluminium of 99.0% minimum purity and higher copper manganese silicon magnesium magnesium and silicon zinc other element, incl. lithium unused
Mechanical properties of light metals and alloys
15
1XXX Group:
In this group the last two digits indicate the minimum aluminium percentage. Thus 1099 indicates aluminium with a minimum purity of 99.99%. The second digit indicates modifications in impurity or alloying element limits. 0 signifies unalloyed aluminium and integers 1 to 9 are allocated to specific additions. 2XXX-8XXX Groups: In these groups the last two digits are simply used to identify the different alloys in the groups and have no special significance. The second digit indicates alloy modifications, zero being allotted to the original alloy.
National variations of existing compositions are indicated by a letter after the numerical designation, allotted in alphabetical sequence, starting with A for the first national variation registered. The specifications and properties for Cast Aluminium Alloys are tabulated in Chapter 4. 3.1.2
Temper designation system for aluminium alloys
The following tables use the internationally agreed temper designations for wrought alloys, (BS EN 515. 1995) and the more frequently used ones are listed below. The old ones still used for existing BS specifications e.g. BS 1490. 1989 for castings are compared with the new ones at the end of this section.
U.K.
Meaning
F H111
As manufactured or fabricated Fully soft annealed condition
Strain-hardened alloys H H1x H2x H3x H12,H22,H32 H14,H24,H34 H16,H26,H36 H18,H28,H38 Heat-treatable alloys T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Strain hardened non-heat-treatable material Strain hardened only Strain hardened only and partially annealed to achieve required temper Strain hardened only and stabilized by low temperature heat treatment to achieve required temper Quarter hard, equivalent to about 20 25% cold reduction Half hard, equivalent to about 35% cold reduction Three-quarter hard, equivalent to 50 55% cold reduction Fully hard, equivalent to about 75% cold reduction Cooled from an Elevated Temperature Shaping Process and aged naturally to a substantially stable condition Cooled from an Elevated Temperature Shaping Process, cold worked and aged naturally to a substantially stable condition Solution heat-treated, cold worked and aged naturally to a substantially stable condition Solution heat-treated and aged naturally to a substantially stable condition Cooled from an Elevated Temperature Shaping Process and then artificially aged Solution heat-treated and then artificially aged Solution heat-treated and then stabilized (over-aged) Solution heat-treated, cold worked and then artificially aged Solution heat-treated, artificially aged and then cold worked Cooled from an Elevated Temperature Shaping Process, artificially aged and then cold worked
A large number of variants in these tempers has been introduced by adding additional digits to the above designations. For example, the addition of the digit 5 after T1-9 signifies that a stress relieving treatment by stretching has been applied after solution heat-treatment.
16
Smithells Light Metals Handbook
A full list is given in BS EN 515. 1995 but some of the more common ones used in the following tables are given below. T351 T3510 T3511 T352 T651 T6510 T6511 T73 T7651
T76510 T76511
Solution heat-treated, stress-relieved by stretching a controlled amount (usually 1 3% permanent set) and then naturally aged. There is no further straightening after stretching. This applies to sheet, plate, rolled rod and bar and ring forging. The same as T351 but applied to extruded rod, bar, shapes and tubes. As T3510, except that minor straightening is allowed to meet tolerances. Solution heat-treated, stress-relieved by compressing (1 5% permanent set) and then naturally aged. Solution heat-treated, stress-relieved by stretching a controlled amount (usually 1 3% permanent set) and then artificially aged. There is no further straightening after stretching. This applies to sheet, plate, rolled rod and bar and ring forging. The same as T651 but applied to extruded rod, bar, shapes and tubes. As T6510, except that minor straightening is allowed to meet tolerances. Solution heat-treated and then artificially overaged to improve corrosion resistance. Solution heat-treated, stress-relieved by stretching a controlled amount (Again about 1 3% permanent set) and then artificially over-aged in order to obtain a good resistance to exfoliation corrosion. There is no further straightening after stretching. This applies to sheet, plate, rolled rod and bar and to ring forging. As T7651 but applied to extruded rod, bar, shapes and tubes. As T7510, except that minor straightening is allowed to meet tolerances.
In some specifications, the old system is still being applied. The equivalents between old and new are as follows. BS EN 515 BS1470/90 Pre-1969 BS F M H111 0 0 T3 TD WD T4 TB W T5 TE P T6 TF WP T8 TH WDP TH7 is as TH and then stabilised. F/M is as manufactured or fabricated.
Table 3.2
ALUMINIUM AND ALUMINIUM ALLOYS-MECHANICAL PROPERTIES AT ROOM TEMPERATURE
Wrought Alloys
Nominal composition Specification %
Form
Condition
0.2% Proof stress MPa
Tensile strength MPa
Fatigue Elong. % strength on 50 mm Shear Brinell (unnotched) Impacy Fracture (½2.6 mm) strength hardness 500 MHz engery toughness p MPa (P D 5D2 ) MPa J (MPa m1/2 ) or 5.65 S0
Remarks
Al 99.99
Sheet
H111 H14 H18
20 60 85
55 85 110
55 20 12
50 60 70
15 23 28
Highest quality reflectors
1080A
Al 99.8
Sheet
H111 H14 H18
25 95 125
70 100 135
50 17 11
60 70 70
19 29 29
Domestic trim, chemical plant
Wire
H111 H14 H18
60 70
19 30 35 41
65 75 85 65
21 30 40 22
65 75 70 65 75
21
1050A
1350
Al 99.5
Al 99.5
Sheet
H111 H14 H18 Bars and sections as extruded Rivet stock H15 Tubes H111 H18 < 75 mm H18 > 75 mm Wire H111 H14 H18
Wire
H111 H14 H18
70 90 105 110 140 130 160 35 105 130 50 125
80 110 145 75 140 75 120 125 110 115 42 75 100 115 115 170 140 195 28 97 165
83 110 186
47 15 10 38
55 69 103
General purpose formable alloy
21 30 38 48 Electrical conductors 48 continued overleaf
Mechanical properties of light metals and alloys
1199
17
18
Table 3.2 (continued ) Wrought Alloys
1200
Al 99,0
2011
2014
2014A
Cu 5.5 Bi 0.5 Pb 0.5 Cu 4.4 Mg 0.7 Si 0.8 Mn 0.75 Cu 4.4 Mg 0.7 Si 0.8 Mn 0.75
Form Sheet
H111 H13 H14 H16 H18 Bars and sections as extruded Tubes H111 H > 75 mm H < 75 mm Extruded bar T3 25 mm T6 50 75 mm Wire T3 10 mm Plate T451 T651 Bar/tube T6510 Sheet Clad sheet Bars and sections Tubes Wire
2024
Cu 4.5 Mg 1.5 Mn 0.6
Condition
River stock Bolt and screw stock Plate
35 95 115 125 145 40
Tensile strength MPa
Fatigue strength (unnotched) 500 MHz MPa
Elong. % on 50 mm (½2.6 mm) p or 5.65 S0
Shear strength MPa
Brinell hardness (P D 5D2 )
43 20 12 11 9 38 40 6 6 14 16
70 75 80 90 95 70 70 100 95 240 240
22 31 35 38 42 23 21 34 32 95 100
35 40 50 60 60 45Ł
22 10 8
260 290
108 139
140 125
115 135
130Ł 130Ł 95Ł 95Ł 140 124
128 120 295 260 350 290 415 440
90 105 120 135 160 85 90 131 124 340 370 365 425 485 490
T4 T6 T4 T6 T4 T6 T4 T6 T4 T6 T4 T6
270 430 250 385 315 465 310 415 340 425 340 425
450 480 425 440 465 500 425 480 445 465 450 460
20 10 22 10 17 10 12 9 15
260 295 250 260
T3 T351
345 325
485 470
18 19
285 285
115 135 115 135 115 135
120 120
Impacy engery J
Fracture toughness (MPa m1/2 )
Remarks
27 31
General purpose, slightly higher strength than 105A
26 27
Free machining alloy
140 140
Heavy duty applications in transport and aerospace, e.g. large parts, wings Aircraft applications (cladding when used 1070A) 22 8
Structural applications, especially transport and aerospace
Smithells Light Metals Handbook
Specification
Nominal composition %
0.2% Proof stress MPa
2024
Cu 4.5 Mg 1.5 Mn 0.6
Plate/sheet extrusions
H111 T4 T6
75 325 395
185 470 475
20 20 10
125 285
47 120
90 140
2117
Cu 2.5 Si 0.6 Mg 0.4
Sheet
T4
165
295
24
195
70
95
2090
Cu 2.7 Li 2.7 Zr 0.12
Plate Plate (12.5 mm)
T81 T81
517 535
550 565
8 11
2091
Cu 2.1 Li 2.0 Mg 1.50 Zr 0.1
Plate (12 mm) Plate (40 mm) Extrusion (10 mm) Extrusion (30 mm) Plate (12 mm) Plate (38 mm) Sheet
T8 ð 51 T8 ð 51 T851
310 310 505
420 430 580
14 6 7
T851
465
520
11
35
T851 T851 T8
460 430 390
525 495 495
10 8 10
43 38 38
Cu 6 Mn 0.3 V 0.1
Plate/sheet/ forgings
H111 T4 T6
75 185 290
170 360 415
18 20 10
105
2004
Cu 6 Zr 0.4
Sheet
H111 T6
150 300
230 420
15 12
100Ł 150Ł
2031
Cu 2.3 Ni 1.0
Forgings
T4 T6
235 340
355 420
22 15
201 201
95 95
Cu 2.0 Mg 1.5 Si 0.9 Fe 0.9 Ni 1.0
Forgings
H111 T6
70 330
170 430
20 8
295
45 130
Mg 0.9 Si 0.9 Fe 0.9 2618A
Vehicle body sheet 71 34
High strength, low density aero-alloy Medium strength, low density aero-alloy in damage-tolerant temper Medium strength, low density aero-alloy Medium strength, low density aero-alloy Weldable, creep resistant, hightemperature aerospace applications Superplastically deformable sheet Aero-engines, missile fins
85Ł 170Ł
Aircraft engines
continued overleaf
Mechanical properties of light metals and alloys
2219
Aircraft structures
19
20
Table 3.2
(continued )
Wrought Alloys
3103
Mn 1.25
Form Sheet
Wire
Condition H111 H12 H14 H16 H18 H111 H14 H18
Tensile strength Mpa
65 110 125 130 140 155 160 180 185 200 60 115 135 155 170 200 205 245
Elong.% on 50 mm (½2.6 mm) p or 5.65 S0
Fatigue strength Shear Brinell (unnotched) Impacy Fracture strength hardness 500 MHz energy toughness MPa (P D 5D2 ) MPa J (MPa m1/2 )
40 17 11 8 7
80 90 95 105 110
3105
Mn 0.35 Mg 0.6
Sheet
H111 H14 H18
55 150 195
115 170 215
24 5 3
85 105 115
3004
Mn 1.2 Mg 1.0
Sheet
H111 H14 H18
70 200 250
180 240 285
20 9 5
110 125 145
3008
Mn 1.6 Fe 0.7 Zr 0.3
Sheet
H111 H18
50 270
120 280
23 4
3003 Mn 1.2 clad with 4343 Si 7.5
Sheet
H111 H12 H14 H16
40 125 145 170
110 130 150 175
30 10 8 5
3003 Mn 1.2 clad with 4004 Si 1.0 Mg 1.5
Sheet
Physical properties
as for 3003 clad with 4343
30 40 44 47 51 30 45 55 65
50 55 60 70 70
34 29
Remarks General purpose, holloware, building sheet
20
Building cladding sheet
45 63 77
95 105 110
Sheet metal work, storage tanks Thermally reistant alloy. Vitreous enamelling
75 85 95 105
Flux brazing sheet
Vacuum brazing sheet
Smithells Light Metals Handbook
Specification
Nominal composition %
0.2% Proof stress MPa
4032
4043A
Si 12.0 Cu 1.0 Mg 1.0 Ni 1.0 Si 5.0
Forgings
T6
240
325
5
Rolled wire
4047A
Si 12.0
5657
75
130
20
Wire
F
189
225
8
Mg 0.8
Sheet
H111 H14 H18
40 140 165
110 160 195
25 12 7
75 95 105
28 40 50
High base purity, bright trim alloy
5005
Mg 0.8
Sheet
H111 H14 H18
40 150 195
125 160 200
25 6 4
75 95 110
28
Architectural trim, commercial vehicle trim
5251
Mg 2.25 Mn 0.25
Sheet
22 7 2 16 20 8 5 4
110 125 140
Bar Sheet
185 245 285 170 180 220 250 270
45 70 80
Mg 2.0 Mn 0.3
95 230 275 60 60 130 175 215
125 145 175
5251
H111 H14 H18 F H111 H22 H24 H28
125 132 139
47 65 74
92 124
95 100 230 255
185 200 250 270
20 20 6 5
125
45
95Ł
95 260 290
200 280 310
Wire
H111 H18
110
Pistons
Welding filler wire Brazing rod
50 29
Sheet metal work Marine and transport applications; good workability combined with good corrosion resistance and high fatigue resistance
49
48 75 85 continued overleaf
Mechanical properties of light metals and alloys
Bars and sections as extruded (F) Tubes H111 H14 H18
115
21
22
Table 3.2 (continued ) Wrought Alloys
Mg 3.5 Mn 0.5
H111 H22 H24 Bars and sections as extruded (F) Tubes H111 H14
125 245 275 125 125 220
240 295 310 230 225 280
Wire
H111 H14 H18
125 265 310
240 295 355
Rivet stock
H111 H12 H111 H22 H24
125 105 200 225
250 290 250 277 297
22 7 5
159 165 179
65 77 85
170 210 180
72 110 77
Form
Condition
Sheet
24 10 9 25 20 7
Mg 2.7 Mn 0.75 Cr 0.12
Sheet
5083
Mg 4.5 Mn 0.7 Cr 0.15
Sheet
H111 H24 Bars and sections as extruded (F)
170 290 180
310 370 315
21 9 19
5083
Mg 4.5 Mn 0.7 Cr 0.15
Tube
180 300
320 375
20 7
250
330
12
5556A
Mg 5
Wire
H14
5056A
Mg 5.0 Mn 0.5
Wire
H111 H14 H18
Rivet stock
H111 H12 Bolt and screw H14 stock
140 300 300 340 340 400 400 450 140 300
300 350 340
55 80 95 55 55
115 125 130 140Ł
Welded structures, storage tanks, salt water service 48
55 90 100
5454
H111 H14
155 175 175 145
Remarks
115 125 130
Higher strength alloy for marine and transport, pressure vessels and welded structures Marine applications, cryogenics, welded pressure vessels.
77
Weld filler wire 65 95 110 120 65
Rivets, bolts, screws
Smithells Light Metals Handbook
Tensile strength MPa
Nominal composition Specification % 5154A
Fatigue Elong.% strength on 50 mm Shear Brinell (unnotched) Impacy Fracture (½2.6 mm) strength hardness 500 MHz energy toughness p MPa (P D 5D2 ) MPa J (MPa m1/2 ) or 5.65 S0
0.2% Proof stress MPa
6060
Mg 0.5 Si 0.4
Bar
T4 T5 T6
90 130 190
150 175 220
20 13 13
6063
Mg 0.5 Si 0.5
Bars, sections and forgings
F T4 T6
85 115 210
155 180 245
30 30 20
Wire
H111 T4 T6
115 195
115 180 230
280 160 210
310 200 240
Mg 1.0 Si 0.5
Bar
T6510 T5 T6
6061
Mg 1.0 Si 0.6 Cr 0.25 Cu 0.2
Bars and sections Wire
T4 T6 T8 6 mm T8 (6 10 mm)
Bar Bolt and screw stock
T6510 T8
280 290
Mg 1.0 Si 1.0 Mn 0.7
Bar/extrusion
Mg 1.0
Bars, sections and forgings
T5 T6510 T451 T651 T6 T4 T6 T4 T6
6082
Si 1.0 Mn 0.5
Plate
Tubes
100 130 160
35 52 75
43 31
Architectural extrusions (fast extruding)
50 70 22 12 12
129 117 152
50 65 78
20 13
160 200
60 90
310 340
13
205
100
260 285 150 289 285 160
300 315 240 315 315 240
15 11 19 12 12 25
185
85
205 180
68 104 100 65
285 160 285
310 245 325
13 20 10
215
145 230 280 310 310 400 385 430 295 385 380 415
60 70
100 65 95
79 69 85
Transport, windows, furniture, doors and architectural uses, pipes (irrigation) 34 27
Intermediate strength extrusion alloy
95
41 34
continued overleaf
Mechanical properties of light metals and alloys
6063A
Medium strength extrusion alloy for doors, windows, pipes, architectural use; weldable and corrosion-resistant
23
24
Table 3.2
(continued )
Wrought Alloys
6463
Tensile strength Mpa
T4 T6
130 215
180 240
16 12
150 205 150
Form
Condition
55 79
70 70
60
97 115
Remarks
Mg 0.55 Si 0.4
Bar
6009
Si 0.8 Mg 0.6 Mn 0.5 Cu 0.4
Sheet
T4 T6
130 325
235 345
24 12
7020
Zn 4.5 Mg 1.2 Zr 0.15
Bars and sections T4 T6
225 310
340 370
18 15
7075
Zn 5.6 Mg 2.5 Cu 1.6 Cr 0.25
Sheet/plate/ forgings/ extrusion
H111 T4 T73
105 505 435
230 570 505
17 11 13
7050
Zn 6.2 Mg 2.2 Cu 2.3 Zr 0.12
Thick section plate/ forgings
T736
455
515
11
7475
Zn 5.7 Mg 2.2 Cu 1.5 Cr 0.2
Sheet/plate/ forgings
T61 T7351
525
460
12
7016
Zn 4.5 Mg 1.1 Cu 0.75
Extrusions
T6
315
360
12
Bright anodized vehicle bumpers
7021
Zn 5.5 Mg 1.5 Cu 0.25 Zr 0.12
Extrusion
H111 T6
115 395
235 435
16 13
Bumper backing bars
Vehicle body sheet
100 126 150 330
60 150
Transportable bridging
160
220
270
220
7
Aircraft structures
Low quench sensitivity, high stress corrosion resistance. Aircraft structures High base purity. High fracture toughness. Aircraft structures
Smithells Light Metals Handbook
Nominal composition Specification %
Fatigue Elong.% strength on 50 mm Shear Brinell (unnotched) Impacy Fracture (½2.6 mm) strength hardness 500 MHz energy toughness p MPa (P D 5D2 ) MPa J (MPa m1/2 ) or 5.65 S0
0.2% Proof stress MPa
8079
Fe 0.7
Foil
8090
Li 2.5 Cu 1.3 Mg 0.95 Zr 0.1
Plate Plate (38/65 mm)
Sheet
Extrusion
8090
8091
35 160
95 175
26 2
483
518
4.3
42
T8151
387
476
6.5
42.5
T8771
483
518
4.3
42
T81
360
420
T6 T8
373 436
472 503
5.7 5
75
T81551
440
510
4
45
T82551 T851
460 515
515 580
4.2 5
39 30 40
11
Domestic foil
42
Extrusion (10 mm) Extrusion (30 mm) Plate (12 mm)
T851
460
520
9
T851
455
500
7
33
Li 2.4 Cu 1.2 Mg 0.50 Zr 0.14
Forging
T651
468
517
7
28.1
T651
400
453
7
36.7
Li 2.5 Cu 1.2 Mg 0.66 Zr 0.12 Li 2.4 Cu 1.9 Mg 0.85 Zr 0.1
Forging
420
499
7.8
16.98
As 2090 but lower density Under-aged, damagetolerant condition Peak-aged, medium strength condition Under-aged, damagetolerant condition with a recrystallized grain structure Peak-aged, medium strength condition Damage-tolerant condition Peak-aged, medium strength condition
Peak-aged (32 h at 170 ° C. (Shrimpton) Under-aged (20 h at 150 ° C). (Shrimpton) Soln. trt, 530 ° C, WQ, aged 30 h at 170 ° C
continued overleaf
Mechanical properties of light metals and alloys
8090
H111 H18
25
26
Table 3.2 (continued ) Wrought Alloys
Specification 8091
Li 2.4 Cu 2.0 Mg 0.70 Zr 0.08
8091
Form Plate (40 mm)
Li 2.3 Cu 1.7 Mg 0.64 Zr 0.13
Forging
460
164
408
159
408
158
436
503
8.2
20.72
Remarks Peak-aged (6% stretch, 32 h at 170 ° C Peak aged (no stretch, 100 h at 170 ° C) Duplex-aged (ditto, 24 h at RT, 48 h at 170 ° C) soln. trt. 530 ° C, WQ, aged 20 h at 170 ° C
Cast alloys 25 25
30Ł 30Ł
19 19
High conductivity, high ductility
60 65
45 95
8 12
Very high corrosion resistance
230 230
85 95
55
15
Strength + corrosion resistance
5 6
90 120
40 50
55 85
170
8
110
55
75
215
10
130
195 210
240 290
3 6
Al
(LMO)
Al 99.0
Sand cast Chill cast
F F
30 30
80 80
30 40
Al Mg
(LM5)
Mg 5.0 Mn 0.5
Sand cast Chill cast
F F
100 100
160 215
6 10
(LM10) Mg 10.0
Sand cast Chill cast
T4 T4
180 190
295 340
12 18
(LM18) Si 5.0
Sand cast Chill cast
F F
60 70
125 155
(LM6) Si 11.5 (LM20) (LM6)
Sand cast
F
65
Chill cast
F
Si 7 Mg 0.4
Sand cast Chill cast
T6 T6
Al Si
Al Si Mg (2L99)
55 55
1.5 2.5
Intricate castings
45Ł
4
60
60Ł
9.5
Very similar alloys, excellent casting characteristics and corrosion resistance. LM6 has slightly supperior corrosion resistance
90
56 90
Good strength in fairly difficult castings. Cast vehicle wheels
Smithells Light Metals Handbook
Nominal composition %
Fatigue 0.2% Elong.% strength Proof Tensile on 50 mm Shear Brinell (unnotched) Impacy Fracture stress strength (½2.6 mm) strength hardness 500 MHz energy toughness p MPa (P D 5D2 ) MPa J (MPa m1/2 ) Condition MPa MPa or 5.65 S0
Al Cu Si
(L154)
Cu 4.2 Si 1.2
(L155) Al Cu Si
(LM24) (LM4)
(LM22)
(LM2) Al Cu Mg
(LM12)
Cu 3.5 Si 8.0 Cu 3.0 Si 5.0
Al Cu
(L119)
Al Zn Mg
(DTT) 5008B
Al Cu Si Zn
(LM27)
Al Si Cu Mg
(LM30)
Si 17.0 Cu 4.5 Mg 0.6
(LM16)
Si 5.0 Cu 1.0 Mg 0.5
Zn 5.3 Mg 0.6 Cr 0.5 Cu 2.0 Si 7.0
T4 T4 T6 T6 F F F F T6 T6 T4
170 175 215 215 110 150 90 100 230 260 115
225 280 295 320 200 320 155 170 260 330 260
8 15 5 10 3 2 3 3 1 3 9
Aircraft castings
Sand Chill Chill Chill Sand
cast cast cast cast cast
F F F T6 T6
85 95 155 285 200
140 185 185 310 225
1 2 1
Sand cast
T4
220
5
Sand cast
F
85
155
2
Chill cast Chill cast Die cast Die cast
F F F O
100 160 240 265
180 180 275 295
3 0.5 1 1
Sand cast Chill cast
T4 T4
130 130
210 245
3 6
200 210
80 85
70 85
1.5 2.5
Sand cast Chill cast
T6 T6
245 275
255 310
1 2
215 225
100 110
60 70
1 1.5
85 90 85 85 70 80 105 110 75
70 80 85 130 90
2
70Ł 75Ł
0.7 0.7
4.5
55 60 0.9 60
75
Excellent die casting alloy General engineering, particularly sand and permanent mould castings Good combination of impact resistance and strength General purpose die casting alloy Castings to withstand high hydraulic pressure Sand castings for elevated temperature service Colour anodizing alloy
Versatile general purpose alloy
80 110 120
Die castings with high wear resistance, especially automobile cylinder blocks Water-cooled cylinder heads and applications requiring leak-proof castings
Mechanical properties of light metals and alloys
Cu 3.0 Si 5.0 Mn 0.5 Cu 1.5 Si 10.0 Cu 10.0 Mg 0.25 Cu 5.0 Ni 1.5
Sand cast Chill cast Sand cast Chill cast Chill cast Die cast Sand cast Chill cast Sand cast Chill cast Chill cast
continued overleaf
27
28
Table 3.2 (continued ) Cast Alloys
Specification
Form
Sand cast T5 Chill cast T5
120 160
185 255
2 2.5
120 160
70 80
55Ł 70Ł
1.5 2.5
Sand cast T6 Chill cast T6
235 275
255 310
1 1
200 230
100 110
70Ł 85Ł
0.7 1.5
Al Cu Mg Ni (L35) (Y Alloy)
Sand Chill Sand Chill Sand Chill Sand Chill Sand Chill
90 90 135 165 95 100 225 240 220 240
140 180 165 220 170 230 255 310 235 290
2.5 4 1.5 2.5 3 8 1 3 1 2
Al Si Cu Mg Zn
Sand cast F Chill cast F
130 130
180 200
1 2
Sand cast T5 Chill cast T5
120 170
130 210
0.3 0.3
120 120
Sand cast T6 Chill cast T6
120 170
130 210
0.3 0.3
120 120
Al Si Mg Mn (LM9)
Si 12.0 Mg 0.4 Mn 0.5
(LM25) Si 7.0 Mg 0.3
Al Si Cu Mg Ni
Cu 4.0 Mg 1.5 Ni 2.0 (LM21) Si 6.0 Cu 4.0 Mg 0.2 Zn 1.0 Si 23.0 Cu 1.0
(LM29) Mg 1.0 Ni 1.0
cast cast cast cast cast cast cast cast cast cast
F F T5 T5 T7 T7 T6 T6 T6 T6
60 60 75 85 65 70 105 105 115 115 85 90
Fluidity, corrosion resistance and high strength. Extensive use for low-pressure castings
The most widely used general purpose, highstrength casting alloy
55 75 60 95 80Ł 110Ł
Remarks
1.5 4.5
Highly stressed components operating at elevated temperatures General engineering applications, particular crankcases Pistons for high performance internal combustion engines High performance piston alloy
Smithells Light Metals Handbook
Nominal composition %
Fatigue 0.2% Elong.% strength Proof Tensile on 50 mm Shear Brinell (unnotched) Impacy Fracture stress strength (½2.6 mm) strength hardness 500 MHz energy toughness p MPa (P D 5D2 ) MPa J (MPa m1/2 ) Condition MPa MPa or 5.65 S0
(LM28)
(LM13)
Si 19.0 Cu 1.5 Mg 1.0 Ni 1.0 Si 11.0 Cu 1.0 Mg 1.0 Ni 1.0
Chill cast
T5
170
190
0.5
120
Sand cast Chill cast Chill cast
T6 T6 T5
120 170
130 200 220
0.5 0.5 1
120 120 105
Sand Chill Sand Chill
Lo Ex
cast cast cast cast
T6 T6 T7 T7
190 280 140 200
200 290 150 210
0.5 1 1 1
190
115 125 75 75
Si 9.0 Cu 3.0 Mg 1.0 Ni 0.7
Chill cast
T5
180
230
1
105
Al Cu Si Mg Fe Ni
(3L52)
Cu 2.0 Si 1.5 Mg 1.0 Fe 1.0 Ni 1.25
Sand cast Chill cast
T6 T6
260 305
285 335
1 1
120 125
Al Cu Si Fe Ni Mg
(3L51)
Cu 1.5 Si 2.0 Fe 1.0 Ni 1.4 Mg 0.15
Sand cast Chill cast
T5 T5
135 150
170 210
2.5 3.5
Ł Fatigue Limit for 50 ð 106 cycles. M D as manufactured. H111 D annealed. H2 H4 intermediate tempers. H5 H6 H8 D fully hard temper.
(1) (2) (3) (4)
Special Special Special Special
temper for maximum stress corrosion resistance (US designation T73). heat treatment for combination of properties (US designation T736). heat treatment for combination of properties (US designation T61). heat treatment for combination of properties (US designation T7351).
70 75
Low expansion piston alloy 1.4
1.4
80
Piston alloy
Aircraft engine castings for elevated temperature service
Aircraft engine castings
Mechanical properties of light metals and alloys
(LM26)
85Ł 100Ł
29
30
Smithells Light Metals Handbook
Table 3.3 ALUMINIUM AND ALUMINIUM ALLOYS
Nominal composition %
Condition
Al (1095)
Al 99.95
Rolled rod
(1200)
Al 99
Material (specification)
MECHANICAL PROPERTIES AT ELEVATED TEMPERATURES
Temp. °C
Time at temp. h
0.2% Proof stress MPa
Tensile strength MPa
35 35 30 25 14 11 6 115 105 85 50 17 11 6 150 125 95 30 14 11 6 40 37 34 30 25 17 14 145 130 110 60 30 17 14 185 110 60 30 17 14 55 55 55 50 40 30 20
55 45 25 12 5 90 75 60 40 30 17 14 125 110 90 65 30 17 14 165 150 125 40 30 17 14 110 90 75 60 40 30 20 150 145 125 95 50 30 20 200 155 95 50 30 20 145 145 130 95 60 40 30
Elong. % on 50 mm or p 5.65 S0
Wrought Alloys H111
H111
H14
H18
Al Mn (3103)
Mn 1.25
H111
H14
H18
Al Mg (5050)
Mg 1.4
H111
24 93 203 316 427 24 100 148 203 260 316 371 24 100 148 203 260 316 371 24 100 148 203 260 316 371 24 100 148 203 260 316 371 24 100 148 203 260 316 371 24 148 203 260 316 371 24 100 148 203 260 316 371
10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000
61 63 80 105 131 45 45 55 65 75 80 85 20 20 22 25 75 80 85 15 15 20 65 75 80 85 40 43 47 60 65 70 70 16 16 16 20 60 70 70 10 11 18 60 70 70
Mechanical properties of light metals and alloys
31
Table 3.3 (continued )
Material (specification)
Nominal composition %
Al Mg (cont.)
Al Mg Cr (5052)
(5154)
Mg 2.25 Cr 0.25
Mg 3.5 Cr 0.25
Temp. °C
Time at temp. h
0.2% Proof stress MPa
Tensile strength MPa
H14
24 100 148 203 260 316 371
10 000 10 000 10 000 10 000 10 000 10 000 10 000
165 165 150 50 40 35 20
195 195 165 95 60 40 30
H18
24 100 148 203 260 316 371
10 000 10 000 10 000 10 000 10 000 10 000 10 000
200 200 175 60 40 35 20
220 215 180 95 60 40 30
H111
24 100 148 203 260 316 371
10 000 10 000 10 000 10 000 10 000 10 000 10 000
90 90 90 75 50 35 20
195 190 165 125 80 50 35
30 35 50 65 80 100 130
H14
24 100 148 203 260 316 317
10 000 10 000 10 000 10 000 10 000 10 000 10 000
215 205 185 105 50 35 20
260 260 215 155 80 50 35
14 16 25 40 80 100 130
H18
24 100 148 203 260 316 371
10 000 10 000 10 000 10 000 10 000 10 000 10 000
255 255 200 105 50 35 20
290 285 235 155 80 50 35
8 9 20 40 80 100 130
H111
24 100 148 203 260 316 371
10 000 10 000 10 000 10 000 10 000 10 000 10 000
125 125 125 95 60 40 30
240 240 195 145 110 70 40
25 30 40 55 70 100 130
H14
24 100 148 203 260 316 371
10 000 10 000 10 000 10 000 10 000 10 000 10 000
225 220 195 110 60 40 30
290 285 235 175 110 70 40
12 16 25 35 70 100 130
H18
24 100 148 203 260 316 371
10 000 10 000 10 000 10 000 10 000 10 000 10 000
270 255 220 105 60 40 30
330 310 270 155 110 70 40
8 13 20 35 70 100 130
Condition
Elong. % on 50 mm or p 5.65 S0
continued overleaf
32
Smithells Light Metals Handbook
Table 3.3 (continued )
Material (specification)
Nominal composition %
Al Mg Mn (5056A)
Mg 5.0 Mn 0.3
Al Mg Si (6063)
Mg 0.7 Si 0.4
T6
(6082)
Mg 0.6 Si 1.0 Cr 0.25
T6
(6061)
Mg 1.0 Si 0.6 Cu 0.25 Cr 0.25
T6
Al Cu Mn (2219)
Cu 6.0 Mn 0.25
Condition As extruded
Forgings
F
T6
Al Cu Pb Bi (2011)
Cu 5.5 Pb 0.5 Bi 0.5
T4
Al Cu Mg Mn (2017)
Cu 4.0 Mg 0.5 Mn 0.5
T4
(2024)
Cu 4.5 Mg 1.5 Mn 0.6
T4
Temp. °C
Time at temp. h
20 50 100 150 200 250 300 350 24 100 148 203 260 316 371 24 100 148 203 206 316 371 24 100 148 203 260 316 371 20 100 150 200 250 300 350 400 24 100 148 203 260 316 371 24 100 148 203 260 316 371 24 100 148 203 260 316 371
1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 100 100 100 100 100 100 100 100 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000
0.2% Proof stress MPa
Tensile strength MPa
145 145 145 135 111 75 50 20 215 195 135 45 25 17 14 230 270 175 65 35 30 25 275 260 213 105 35 17 14 230
300 300 300 245 215 130 95 60 240 215 145 60 30 20 17 330 290 185 80 45 35 30 310 290 235 130 50 30 20 385 365 325 280 205 145 70 30 375 320 195 110 45 25 17 430 385 274 150 80 45 30 470 422 295 180 95 50 35
220 185 135 110 45 20 295 235 130 75 30 14 11 275 255 205 115 65 35 25 340 305 245 145 65 35 25
Elong. % on 50 mm or p 5.65 S0 25 27 32 45 56 77 100 140 18 15 20 40 75 80 105 17 19 22 40 50 50 50 17 18 20 28 60 85 95 8
15 16 25 35 45 90 125 22 18 16 28 45 95 100 19 17 17 22 45 75 100
Mechanical properties of light metals and alloys
33
Table 3.3 (continued )
Material (specification) Wrought alloys Al Cu Mg Si Mn (2014)
Nominal composition %
Cu 4.4 Mg 0.4 Si 0.8 Mn 0.8
Al Cu Mg Ni (2618)
Cu 2.2 Mg 1.5 Ni 1.2 Fe 1.0
(2031)
Cu 2.2 Mg 1.5 Ni 1.2 Fe 1.0 Si 0.8
Al Si Cu Mg Ni (4032)
Si 12.2 Cu 0.9 Mg 1.1 Ni 0.9
(4032) Al Zn Mg Cu (7075)
Zn 5.6 Cu 1.6 Mg 2.5 Cr 0.3
Al Mg (LM 5)
Mg 5.0 Mn 0.5
(LM 10)
Mg 10.0
Al Si (LM 18)
Si 5.0
Temp. °C
Condition
T6
24 100 148 203 260 316 371 Forgings T6 20 100 150 200 250 300 350 Forgings T6 20 150 200 250 300 350 400 Forgings T6 20 100 200 250 300 350 Forgings T6 24 100 148 203 260 316 371 T6 24 100 148 203 260 316 371 Cast alloys Sand cast F 20 100 200 300 400 Sand cast T4 20 100 150 200 300 400 Pressure die F 24 cast 100 148 203 260
Time at temp. h
0.2% Proof stress MPa
Tensile strength MPa
Elong. % on 50 mm or p 5.65 S0
10 000 10 000 10 000 10 000 10 000 10 000 10 000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000
415 385 275 80 60 35 25 415Ł 410 400 260 85 45 35 325Ł 340 260 170 70 30 20 325Ł 310 255 110 45 30 320 305 225 60 35 20 14 505 430 145 80 60 45 30
485 455 325 125 75 45 30 480 465 430 295 110 70 50 430 440 300 210 115 50 30 430 400 310 155 75 40 380 345 255 90 55 35 25 570 455 175 95 75 60 45
13 14 15 35 45 64 20 10
1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 10 000 10 000 10 000 10 000 10 000
95 100 95 55 15 180 205 154 105 40 11 110 110 103 80 40
160 160 130 95 30 340 350 270 185 90 45 205 175 135 110 55
4 3 3 4 4 16 10 0 42 85 100 9 9 10 17 23
8
13
9 9 9 30 50 70 90 11 15 30 60 65 80 65
continued overleaf
34
Smithells Light Metals Handbook
Table 3.3
(continued )
Temp. °C
Time at temp. h
0.2% Proof stress MPa
Tensile strength MPa
Elong. % on 50 mm or p 5.65 S0
24 100 148 206 260 20 100 200 300 400 20 100 200 300 400
10 000 10 000 10 000 10 000 10 000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
145 145 125 105 40 95Ł 140 110 40 20 270Ł 255 60 25 12
270 225 185 150 75 155 180 135 60 30 325 290 90 40 25
2 2 21 3 7 13 2 2 2 12 27 2 2 25 65 65
20
1000
200Ł
275
1 2 1 2 1 2
Material (specification)
Nominal composition %
(LM 6)
Si 12.0
Pressure die cast
F
Al Si Cu (LM 4)
Si 5.0 Cu 3.0 Mn 0.5
Sand cast
F
Al Si Mg (LM 25)
Si 5.0 Mg 0.5
Chill cast
T6
Al Cu Mg Ni
Cu 4.0
Sand cast
T6
(4L 35)
Mg 1.5
100
1000
255
325
Ni 2.0
200 300 400
1000 1000 1000
150 30 15
135 55 40
Condition
Al Si Ni Cu Mg
Si 12.0
20
1000
275Ł
285
(LM 13)
Ni 2.5
100
1000
280
320
Cu 1.0 Mg 1.0
200 300 400 20 100 200 300 400
1000 1000 1000 1000 1000 1000 1000 1000
110 30 15 200Ł 195 110 35 15
165 60 35 275 250 170 60 35
Chill cast
T6
Chill cast Special
T6
32 60 1 2 1 2 1 2
15 25 1 1 3 15 50
Ł 0.1% Proof stress.
Table 3.4 ALUMINIUM AND ALUMINIUM ALLOYS Material (specification)
Nominal composi tion %
Al (1200)
Al 9.0
Condition Rolled and drawn rod
H111
H18
Al Mn (3103)
Mn 1.25
Rolled and drawn rod
H111
MECHANICAL PROPERTIES AT LOW TEMPERATURES
Temp. °C
0.2% Proof stress MPa
Tensile strength MPa
Elong.% on 50 mm or 50 mm
Reduction in area %
24 28 80 196 24 28 80 196 24 28 80 196
34 34 37 43 140 144 147 165 40 40 50 60
90 95 100 170 155 155 165 225 110 115 130 220
42.5 43.0 47.5 56 16 152 18.0 35.2 43.0 44.0 45.0 48.8
76.4 76.4 77.0 74.4 59.8 59.4 65.3 67.0 80.6 80.6 79.9 71.2
Fracture toughness MPa m1/2
Mechanical properties of light metals and alloys
35
Table 3.4 (continued ) Material (specification)
Al Mg (5052)
(5154)
Nominal composi tion %
Mg 2.5 Cr 0.25
Mg 3.5 Cr 0.25
Temp. °C
0.2% Proof stress MPa
Tensile strength MPa
Elong.% on 50 mm or 50 mm
Reduction in area %
24 28 80 196
180 185 195 220
195 205 215 290
15.0 15.0 16.5 32.0
63.5 64.4 66.5 62.3
24 28 80 196
97 99 97 115
199 201 210 330
33.2 35.8 40.8 50.0
72.0 74.2 76.4 69.0
H18
24 28 80 196
235 230 236 275
275 280 290 400
16.6 18.3 20.6 30.9
59.1 63.2 64.5 57.4
H111
26 28 80 196
115 115 115 135
240 240 250 350
28 32 35 42
66 72 73 60
H18
26 80 196 253
275 280 325 370
330 340 455 645
9 14 30 35
Condition Rolled and drawn rod
H18
Rolled and drawn rod
H111
Sheet
(5056A)
Mg 5.0 Mn 0.2
Plate
H111
20 75 196
130 130 145
290 290 420
30.5 38.2 50.0
32.0 48.2 36.2
Al Mg Si (6063)
Mg 0.7 Si 0.4
Extrusion
T4
26 28 80 196
90 105 115 115
175 190 200 260
32 33 36 42
78 75 75 73
Extrusion
T6
26 28 80 196
215 220 225 250
240 250 260 330
16 16 17 21
36 36 38 40
24 28 80 196
300 310 305 330
320 352 330 385
15.2 12.0 14.9 18.3
38.8 34.0 38.7 34.7
24 28 80 196
270 280 290 315
315 330 345 425
21.8 21.5 22.5 26.5
56.4 52.5 53.7 46.5
24 28 80 196
300 305 320 400
480 500 510 615
23.3 24.4 25.3 26.7
31.8 33.1 30.8 26.3
24 28 80 196
400 405 415 460
500 502 514 605
14.5 12.7 13.3 14.0
25.8 21.5 22.0 19.7
26 28 80 196 26 28 80 196
290 290 302 380 415 415 420 470
430 440 440 545 485 485 495 565
20 22 22 20 13 13 14 14
28 28 26 20 31 29 28 26
Al Mg Si-Cr (6151)
Mg 0.7 Si 1.0 Cr 0.25
Forging
T6
Al Mg Si Cu Cr (6061)
Mg 1.0 Si 0.6 Cu 0.25 Cr 0.25
Rolled and drawn rod
T6
Al Cu Mg Mn (2024)
Cu 4.5 Mg 1.5 Mn 0.6
Rolled and drawn rod
T4
Rolled and drawn rod
T8
Rod
T4
Al Cu Si Mg Mn (2014)
Cu 4.5 Si 0.8 Mg 0.5 Mn 0.8
Rod
T6
Fracture toughness MPa m1/2
continued overleaf
36
Smithells Light Metals Handbook
Table 3.4 (continued ) Material (specification)
Nominal composition %
Condition
Temp. °C
0.2% Proof stress MPa
Tensile strength MPa
Elong.% on 50 mm or 50 mm
26 80 196 253 27 196 269 27 73 196 269 24 28 80 196
410 460 530 590 535 600 615 440 460 495 550 485 490 505 570
465 510 610 715 565 715 820 480 495 565 630 560 570 590 670
12 14 11 7 11 13.5 17.5 6 7 10 7 15.0 15.3 15.3 16.0
Forging T6
(2090)
(2091)
Al Zn Mg Cu (7075)
Cu 2.7 Li 2.3 Zr 0.12 Cu 2.1 Li 2.0 Mg 1.50 Zr 0.1 Zn 5.6 Mg 2.5 Cu 1.6
Plate (12.5 mm)
T81
Plate (38 mm)
T8
Rolled and drawn rod
T6
Reduction in area %
Fracture toughness MPa m1/2
24 24 22 22 34 57 72 24 32 32 32 29.1 26.2 23.6 20.1
H111 D Annealed. H18 D Fully hard temper. T4 D Solution treated and naturally aged. T6 D Solution treated and precipitation treated.
Table 3.5 ALUMINIUM ALLOYS
CREEP DATA
Temp. °C
Stress MPa
Minimum creep rate % per 1000 h
H111
20 20 80 80 250 250 250 250
24.1 27.6 7.0 8.3 1.4 2.1 2.8 4.1
0.005 0.045 0.005 0.01 0.005 0.01 0.015 0.055
0.39 1.28 0.045 0.065 0.047 0.047 0.052 0.152
H111
80
45
0.005
0.085
110 115 125 30 45 60 3.90 7.7 15
0.055 0.17 0.21 0.08 0.20 0.62 0.045 0.12 0.35
0.33 0.57 1.19 0.21 0.39 0.92 0.10 0.25 0.60
100 100 100 150 150 200 200
40 55 75 7.5 15 7.5 15
0.013 0.022 0.046 0.126 0.147 0.107 0.273
0.126 0.107 0.174 0.413 0.647 0.341 0.658
205 205 205
17 34 51
0.04 0.09 0.14
Nominal composition %
Condition
Al (1080)
99.8
Sheet
Al Mg (5052) (LM 5)
Mg
Sheet
Mg 5.6
Cast
100 100 100 200 200 200 300 300 300
(LM 10)
Mg 10
Cast
Al Cu
Cu 4
Cast
Material (specification)
Total extension % in 1000 h
Mechanical properties of light metals and alloys
37
Table 3.5 (continued )
Material (specification)
Nominal composition %
Condition
Cu 10
Cast
Al Si (LM 13)
Si 13 Ni 1.7 Mg 1.3
Sandcast (modified)
Al Mn (3103)
Mn 1.25
Extruded rod
Al Cu Si (2025)
Cu 4 Si 0.8
Extruded T4
Al Cu Mg Mn (2024)
Cu 4.5 Mg 1.5 Mn 0.6
Clad sheet T4
Clad sheet T6
Al Cu Mg Ni (2218)
Cu 4 Mg 1.5 Ni 2.2
Forged T4
Temp. °C
Stress MPa
Minimum creep rate % per 1000 h
205 315 315 205 205 315 315 315 100 100 200 200 200 300 300 300 200 200 200 200 200 200 200 300 300 150 150 150 200 200 200 250 250 250 35 100 100 150 150 190 190 35 35 100 100 150 150 190 190 100 100 100 200 200 300 300 400
70 8.90 13.1 34 68 8.90 13.1 17 45 60 15 23 30 3.8 7.7 15 15 31 34.8 38.6 42.5 46 54 7.5 15 90 125 155 30 45 60 15 23 30 415 344 385 276 327 140 200 424 430 347 363 242 289 117 193 193 232 270 77 108 7 15 1.5
0.69 0.13 0.29 0.01 0.11 0.12 0.43 0.99 0.016 0.06 0.016 0.054 0.14 0.013 0.047 0.223 0.001 0.022 0.040 0.060 0.13 0.15 0.73 0.007 0.39 0.03 0.045 0.325 0.035 0.1 0.040 0.02 0.07 2.36 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 0.01 0.02 0.04 0.028 0.16 0.037 0.5 0.05
Total extension % in 1000 h
0.190 0.675 0.096 0.179 0.432 0.026 0.098 0.428
0.340 0.395 0.722 0.107 0.204 0.700 0.156 0.176
0.394 0.440 0.835 0.173 0.345 0.078 0.640 0.110
continued overleaf
38
Smithells Light Metals Handbook
Table 3.5 (continued )
Material (specification)
Nominal composition %
Temp. °C
Stress MPa
Minimum creep rate % per 1000 h
Cast T4
200 200 300 300 400
77 116 7 15 1.50
0.01 0.08 0.018 0.08 0.06
Condition
Al Cu Mg Zn (7075)
Zn 5.6 Cu 1.6 Mg 2.5
Clad sheet T6
35 35 35 100 100 100 150 150 150 190 190 190
430 480 495 295 355 370 70 170 245 45 75 125
Al Mg Si Mn (6351)
Mg 0.7 Si 1.0 Mn 0.6
Extruded rod
100 100 100 100 150 150 150 200 200 200 200
193 201 232 255 93 108 154 31 46 62 77
Total extension % in 1000 h 0.153 0.287 0.072 0.151 0.132
0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0 0.007 0.010 0.11 1.6 0.0087 0.023 0.22 0.011 0.040 0.13 0.28
H111 D Annealed. T4 D Solution treated and naturally aged, will respond to precipitation treatment. T6 D Solution treated and artificially aged.
Table 3.6 ALUMINIUM ALLOYS
Material (specification) Al Mg (5056)
Nominal composition %
FATIGUE STRENGTH AT VARIOUS TEMPERATURES
Condition
Temp. °C
Endurance (unnotched) MPa
MHz
Remarks
Mg 5.0
Extruded
65 35 C20
184 164 133
20
Rotating beam
Mg 7.0
Extruded rod
65 35 C20
182 178 173
20
Rotating beam
(LM 10)
Mg 10.0
Sand cast (oil quenched)
20 150 200
93 77 40
30
Rotating beam
Al Si (LM 6)
Si 12.0
Sand cast (modified)
20 100 200 300
51 43 35 25
50
Rotating beam, 24 h at temp.
Al Cu (2219)
Cu 6.0
Forged T6
20 150 200 250 300 350
117 65 62 46 39 23
120
Reverse bending stresses
Mechanical properties of light metals and alloys Table 3.6
39
(continued )
Material (specification)
Nominal composition %
Al Si Cu (LM 22)
Si 4.6 Cu 2.8
Al Cu Si Mn (2014)
Endurance (unnotched) °C
MPa
MHz
Remarks
Sand cast
20 100 200 300
62 54 60 42
50
Rotating beam
Cu 4.5 Si 0.8 Mn 0.8
Forgings T6
148 203 260
65 45 25
100
Rotating beam
Al Cu Mn Mg (2014)
Cu 4.0 Mn 0.5 Mg 0.5
Extruded T4 rod
25 148 203 260
103 93 65 31
500
Rotating beam, 100 days at temp.
Al Cu Mg Si Mn (2014)
Cu 4.4 Mg 0.7 Si 0.8 Mn 0.8
Forgings T4
20 150 200 250 300
119 90 62 54 39
120
Reversed bending
Forgings T6
20 150 200 250 300
130 79 57 39 39
120
Reversed bending
Forged
20 148 203 260
117 103 65 45
500 100 100 100
Rotating beam after prolonged heating
Chill cast T6
20 100 200 300
100 105 108 80
50
Rotating beam, 24 h at temp.
20 150 200 250 300 350 20 100 200 300
113 82 70 59 39 39 97 107 97 54
120
24 149 204 260
151 83 59 48
500
Al Cu Mg Ni (2218)
Cu 4.0 Mg 1.5 Ni 2.0
Temp. Condition
Al Ni Cu
Ni 2.5 Cu 2.2
Forged T6
Al Si Cu Mg Ni (LM 13)
Si 12.0 Cu 1.0 Mg 1.0
Chill cast (Lo-Ex)
Al Zn Mg Cu (7075)
Zn 5.6 Mg 2.5 Cu 1.6 Cr 0.2
Plate T6
T4 D Solution treated and naturally aged, will respond to precipitation treatment. T6 D Solution treated and artificially aged.
50
Reversed bending
Rotating beam, 24 h at temp.
Reversed bending
40
Mechanical properties of magnesium and magnesium alloys
Table 3.7 MAGNESIUM AND MAGNESIUM ALLOYS (WROUGHT)
TYPICAL MECHANICAL PROPERTIES AT ROOM TEMPERATURE
Specifications
Material
NominalŁ composition %
Mg
Mg 99.9
Sheet, annealed Bar, extruded
Mg Mn
Mn 1.5
Sheet Extruded bar (1 in diam.) Extruded tube
Mg Al Zn
Form
DTD or BS (Air)
118C 142B 737A
BS (Gen. Eng.)
Tension
ASTM
Elektron
AM503
Compression
Proof stress 0.2% MPa
UTS MPa
Elong. %
Proof stress 0.2% MPa
Hardness VPN 30 kg
69 100
185 232
4 6
100 162 154
232 263 247
6 7 6
131 170 162
232 263 255
13 10 11
100 93
50 60 55 70 50 60
30 35 35 45
3370-MAG-S-101M 3373-MAG-E-101M 3373-MAG-E-101M
M1A-F, B107 M1A, B107
3370-MAG-S-1110 3370-MAG-S-111M 3373-MAG-E-111M
AZ31, B90 AZ31, B90 AZ31, B107
AZ31
3372-MAG-F-121M 3373-MAG-E-121N 3373-MAG-E-121M
AZ61, B91 AZ61, B107 AZ61, B107
AZM
183 183 170
293 293 278
8 8 8
147 147 147
60 70 55 70 60 70
AZ80A, B91
AZ855
208
293
8
185
65 75
124
35 45 45 55 45 55
Al 3.0 Zn 1.0 Mn 0.3
Sheet, annealed half hard Extruded bar and sections
Al 6.0 Zn 1.0 Mn 0.3
Forgings Extruded bar and sections Extruded tube
2L513 2L512 2L503
Al 8.0 Zn 0.5 Mn 0.3
Forgings
88C
Mg Zn Mn
Zn 2.0 Mn 1.0
Sheet, annealed half breed Extruded bar sections
5091 5101
3370-MAG-S-1310 3370-MAG-S-131M 3373-MAG-E-131M
ZM21
131 170 162
232 263 255
13 10 11
Mg Zn Zr
Zn 1.0 Zr 0.6
Sheet Extruded bar and sections Extruded tube
2L514 2L508 2L509
3370-MAG-S-141M 3373-MAG-E-141M 3373-MAG-E-141M
ZW1
178 208 193
263 293 278
10 13 7
154 177
55 70 60 75 60 75
Zn 3.0
Sheet
2L504
3370-MAG-S-151M
ZW3
185
270
8
154
60 70
Smithells Light Metals Handbook
3.2
Zr 0.6 Zn 5.5 Zr 0.6 Mg Zn Cu Mn
Forgings 2L514 Extruded bar and sections 2L505 (1 in diam.) Bars and sections Heat treated 5041A
Zn 6.5 Cu 1.3 Mn 0.8
Bars and sections Heat treated
Mg Th Zn ZrŁŁ
Th 0.8
(Creep resistant)
Zn 0.5 Zr 0.6
Extruded bar and sections 5111 Forgings 5111
Mg Th MnŁŁ (Creep resistant)
3372-NAG-F-151M 3373-MAG-E-151M
224 239
309 309
8 18
193 213
60 80 65 75
3373-MAG-E-161TE ZK60A-T5, B107-70 ZW6
270
340
10
255
60 80
ZC71
340
360
6
ZTy
147
263
18
50 70
147
232
13
50 70
ZC71-T6, B107
Th 2.0 Mn 0.75
Sheet
HM21-T8, B90
165
247
9
179
Th 3.0 Mn 1.2
Extruded bar and sections
HM31-T5
227
287
8
185
Mechanical properties of light metals and alloys
Nuclear alloys: Two wrought magnesium alloys (Magnox AL80; Mg0.75Al-0.005 Be and MN70; Mg0.75 Mn) of interest only for their nuclear and high-temperature properties have room-temperature tensile properties similar to those of AM503. Ł It is usual to add 0.2 0.4% Mn to alloys containing aluminium to improve corrosion resistance. M D As manufactured. O D Fully annealed. TE D Precipitation treated. ŁŁ Thorium-containing alloys are being replaced by alternative Mg alloys.
41
Material Mg Zr Mg Al Zn
composition % Zr 0.6 Al 6.0 Zn 3.0 Al 8.0 Zn 0.4 Al 9.5 Zn 0.4 Al 9.0 Zn 2.0
Mg Zn Zr Mg Zn RE Zr
Mg RE Zn Zr (Creep resistant) to 250 ° C) Mg Th Zn ZrŁŁ (Creep resistant to 350 ° C) Mg Zn Th ZrŁŁ
Zn 4.5 Zr 0.7 Zn 4.0 RE 1.2 Zr 0.7 Zn 6.0 RE 2.5 Zr 0.7 RE 2.7 Zn 2.2 Zr 0.7 Th 3.0 Zn 2.2 Zr 0.7 Zn 5.5 Th 1.8 Zr 0.7
Condition AC AC TB TF AC TB AC TB TF Die cast AC TB TF TE
DTD or BS (Air)
BS (Gen. Eng.)
Tension
ASTM KIA, B80 AZ63A-F, B80 AZ63A-T4, B80 AZ63A-T6, B80
Elektron
Proof stress 0.2% MPa
UTS MPa
Elong. %
Proof stress 0.2% MPa
Brinell hardnesst VPN 30 kg
185 199 275 275 158 247 154 232 239 216 165 275 275 263
2.0 5 10 5 4 11 2 6 2 3 2 8 2 6
54 97 97 131 86 82 93 90 124 108 97 97 145 162
40 50 50 55 73 50 60 50 60 55 65 55 65 75 85 60 70 65 63 84 65 75
3L124 3L125
2970 2970 2970 2970 2970
2L127
2970 MAG 4-TE
ZK51A-T5, B80
Z5Z
51 97 97 131 86 82 93 90 127 111 97 97 145 161
TE
2L128
2970 MAG 5-TE
ZE41A-T5, B80
RZ5
150
216
5
139
55 75
TF§
5045
ZE63
190
295
7
190
70 80
TE
2L126
2970 MAG 6-TE
EZ33A-T5, B80
ZRE1
95
162
4.5
93
50 60
TE
5005A
2970 MAG 8-TE
HZ32A-T5, B80
ZT1
93
216
7
93
50 60
TE
5015A
2970 MAG 9-TE
ZH62A-T5, B80
TZ6
167
270
8
162
65 75
3L122
MAG MAG MAG MAG MAG
1-M 1-TB 3-M 3-TB 3-TF
ZA
Compression
A8 AZ81A-T4, B80 AZ91C-F, B80 AZ1C-T4, B80 AZ91C-T6, B80 AZ91B-F, B94 AZ92A, B80
AZ91
Smithells Light Metals Handbook
Specifications NominalŁ
42
Table 3.8 MAGNESIUM AND MAGNESIUM ALLOYS (CAST) TYPICAL MECHANICAL PROPERTIES AT ROOM TEMPERATURE
Mg Th ZrŁŁ
Th 3.0 Zr 0.7
TF
Mg Ag RE‡ -Zr
Ag 2.5 RE 2.0‡ Zr 0.6 Ag 2.5 RE 2.0‡ Zr 0.6 RE(D)2.2 Ag 1.5 Zr 0.6 Cu 0.07
TF
Mg RE(D) Ag Zr-Cu
Mg Ag Th RE‡ ZrŁŁ
Mg Zn Cu Mn
93
208
5
93
50 60
MSR-A MSR-B
187 204
247 260
5 3
178 193
65 80 65 80
QE22A-T6, B80
QE22
200
260
4
195
65 80
EQ21A-T6, B80
EQ21
195
261
4
TF
QH21A-T6, B80
QH21A
210
270
4
TF
WE43-T6, B80
WE43
185
265
7
75 90
WE54-T6, B80
WE54
205
280
4
75 90
ZC63-T6, B80
ZC63
158
242
4.5
55 65
5025A 5035A
TF
5055
TF
5055
TF
TF
2970 MAG 12-TF
2970 MAG 13-TF
2970 MAG 14-TF
MTZ
75 90
200
65 80
Ł It is usual to add 0.2 0.4% Mn to alloys containing aluminium to improve corrosion resistance. RE D Cerium mischmetal containing approx. 50% cerium. RE./ D Neodymium plus Heavy Rare Earth metals. † Brinell tests with 500 kg on 10 mm ball for 30 s. RE(D) D Neodymium enriched mischmetal. ‡ Fractionated rare earth metals: MSR-A contains 1.7%; MSR-B contains 2.5%. § Solution heat treated in an atmosphere of hydrogen.
AC D Sand cast. TE D Precipitation heat treated. TB D Solution heat treated. TF D Fully heat treated. ŁŁ Thorium-containing alloys are being replaced by alternative Mg alloys.
Mechanical properties of light metals and alloys
Mg Y RE() Zr
Ag 2.5 RE 1.0‡ Th 1.0 Y 4.0 Zr 0.7 RE()3.4 Zr 0.6 Y 5.1 RE()3.0 Zr 0.6 Zn 6.0 Cu 2.7 Mn 0.5
HK31A-T6, B80
43
44
Smithells Light Metals Handbook
Table 3.9
MAGNESIUM AND MAGNESIUM ALLOYS (excluding high temperature alloys for which see table 3.10) TYPICAL TENSILE PROPERTIES AT ELEVATED TEMPERATURES
‘Short-time’ tension†
Material
Nominal compositionŁ %
Form and condition
Mg
Mg 99.95
Mg Al Zn
Al 8.0 Zn 0.4 (A8)
Mg Zn Zr
Mg Zn RE Zr
Test temp. °C
Young’s modulus GPa
Forged
20 100 150 200
45
Sand cast
20 100 150 200 250
45 34 32 25
Sand cast and solution treated
20 100 150 200 250
(AZ855)
Forged
Al 9.5 Zn 0.4 (AZ91)
0.2% proof stress MPa
UTS MPa
Elong. %
170 128 93 54
5 8 16 43
86 76 65 62
158 154 145 100 75
4 5 11 20 27
45 34 33 28
82 73 65 62
247 202 154 116 85
11 16 21 25 21
20 150 200
45
221 153 102
309 216 154
8 25 28
Sand cast
20 100 150 200 250
45
93
154 131 122 108 77
2 2 6 25 34
Sand cast and solution treated
20 100 150 200
45
90
232 222 196 139
6 12 16 20
Sand cast and fully heat treated
20 100 150 200 250
45 40 37 28 19
127 91 77 62 46
239 232 185 133 103
2 6 25 34 30
Zn 4.5 Zr 0.7 (Z5Z)
Sand cast and heat treated
20 100 150 200 250
45 34 28 22 19
161 124 102 79 57
263 185 145 113 85
6 14 20 23 20
Zn 3.0 Zr 0.6 (ZW3)
Extruded
20 100 200 250
45 40 22 12
255 162 46 11
309 182 127 100
18 33 56 71
Sheet
20 100 150 200 250
45 40 33
195 120 74
270 165 116 76 49
10 33 42 51 59
Sand cast Sand cast treated
20 20 150 200 250
45 41 40 38 33
150 134 120 99 74
216 195 167 131 99
4 6 19 29 35
Zn 4.0 Re 1.2 Zr 0.7 (RZ5)
Mechanical properties of light metals and alloys
45
Table 3.9 (continued ) ‘Short-time’ tension†
Material
Nominal compositionŁ %
Form and condition
Test temp. °C
Young’s modulus GPa
0.2% proof stress MPa
UTS MPa
Elong. %
Mg Zn Th ZrŁŁ
Zn 5.5 Th 1.8 Zr 0.7 (TZ 6)
Sand cast and heat treated
20 100 150 200 250
45 34 31 28 26
161 134 110 82 52
270 224 178 130 91
9 22 26 26 25
Mg Ag RE Zr (D)
Ag 2.5 RE(D)2.0 Zr 0.6 (QE22)
Sand cast and fully heat treated
20 100 150 200 250 300
45 41 40 38 34 31
201 185 171 154 102 68
259 232 210 185 142 88
4 12 16 20 27 59
Mg RE(D) Ag Zr Cu
Re(D)2.2 Ag 1.5 Zr 0.6 Cu 0.07 (EQ21)
Sand cast and fully heat treated
20 100 150 200 250 300
45 43 42 41 39 35
195 189 180 170 152 117
261 230 211 191 169 132
4 10 16 16 15 10
Mg Ag Re(D)ŁŁ Th Zr ‡
Ag 2.6 RE(D)1.0 Th 1.0 Zr 0.6 (OH21)
Sand cast and fully heat treated
20 100 150 200 250 300
45 41 40 38 37 33
210 199 190 183 167 120
270 242 224 205 185 131
4 17 20 18 19 20
Mg Y RE() Zr
Y 4.0 RE()3.4 Zr 0.6 (WE43)
Sand cast and fully heat treated
20 150 200 250 300
45 42 39 37 35
185 175 170 160 120
265 250 245 220 160
7 6 11 18 40
Y 5.1 RE()3.0 Zr 0.6 (WE54)
Sand cast and fully heat treated
20 100 150 200 250 300
45 43 42 41 39 36
205 197 195 183 175 117
280 260 255 241 230 184
4 4.5 5 6.5 9 14.5
Zn 6.0 Cu 2.7 Mn 0.5 (Zc63)
Sand cast and fully heat treated
20 100 150 200
45
158 141 134 118
242 215 179 142
4.5 9 14 11
Zn 6.5 Cu 1.3 Mn 0.8 (Zc71)
Extruded and fully heat treated
20 100 200
45 40 32
325 206 115
350 259 163
6 16 14
Mg Zn Cu Mn
Ł It is usual to add 0.2 0.4% Mn to alloys containing aluminium to improve corrosion resistance. † In accordance with BS1094: 1943; 1 h at temperature and strain rate 0.1 0.25 in in 1 min 1 . ‡ Tested according to BS4A4. RE D Cerium mischmetal containing approx. 50% Ce. RE(D) D Neodymium enriched mischmetal. RE./ D Neodymium plus Heavy Rare Earth metals. ŁŁ Thorium-containing alloys are being replaced by alternative Mg alloys.
46
Smithells Light Metals Handbook
Table 3.10 HIGH TEMPERATURE MAGNESIUM ALLOYS
TENSILE PROPERTIES AT ELEVATED TEMPERATURE
‘Short-time’ tension†
Material
Nominal compositionŁ %
Form and condition
Test temp. °C
Young’s modulus GPa
0.2% proof stress MPa
UTS MPa
Elong. %
Mg RE Zn
RE 2.7 Zn 2.2 Zr 0.7 (ZRE1)
Sand cast and heat treated
20 100 150 200 250 300 350
45 40 38 36 33 28 21
93 79 76 74 65 48 26
162 150 139 125 107 85 56
4.5 11 19 26 35 51 90
Mg Th ZrŁŁ
Th 3.0 Zr 0.7 (HK31) (MTZ)
Sand cast and fully heat treated
20 100 150 200 250 300 350
45 40 38 38 36 34 29
93 88 86 85 83 73 56
208 188 174 162 150 136 103
4 10 13 17 20 22 23
Mg Th Zn ZrŁŁ
Th 3.0 Zn 2.2 Zr 0.7 (ZT1)
Sand cast and heat treated
20 100 150 200 250 300 350
45 36 34 33 33 31 28
93 88 79 65 56 49 45
216 159 131 108 90 76 63
9 23 27 33 38 41 34
Th 0.8 Zn 0.5 Zr 0.6 (ZTY)
Sheet
20 100 150 200 250 300 350
45 41 41 40 40 34 29
181 179 176 165 124 73 17
266 224 201 171 134 96 56
10 10 11 15 20 27 38
Mg Ag RE(D) Zr
Ag 2.5 RE(D)2.0 Zr 0.6 (QE22)
Mg RE(D) Ag Zr Cu
RE(D)2.2 Ag 1.5 Zr 0.6 Cu 0.07 (EQ21)
Mg Ag RE(D) Th ZrŁŁ
Ag 2.5 RE(D)1.0 Th 1.0 Zr 0.6 (QH21)
Mg Y RE() Zr
Y 4.0 RE()3.4 (WE43) Y 5.1 RE()3.0 Zr 0.6 (WE54)
Sand cast and fully heat treated Sand cast and fully heat treated Sand cast and fully heat treated Sand cast and fully treated Sand cast and fully eat treated
High strength cast alloys with good elevated temperature properties for which see Table 3.9
Ł It is usual to add 0.2 0.4% Mn to alloys containing aluminium to improve corrosion resistance. † In accordance with BS 1094: 1943; 1 h at temperature; strain rate 0.1 0.25 in in 1 min 1 . RE D Cerium mischmetal containing approx. 50% Ce. RE(D) D neodymium-enriched mischmetal. RE./ D Neodymium plus Heavy Rare Earths. ŁŁ Thorium containing alloys are being replaced by alternative Mg alloys.
Mechanical properties of light metals and alloys Table 3.11 HIGH-TEMPERATURE MAGNESIUM ALLOYS
47
LONG-TERM CREEP RESISTANCE
Stress to produce specified creep strains%
Material Mg RE Zn Zr
Nominal composition % RE 2.7 Zn 2.2 Zr 0.7 (ZRE1)
Form and Condition
Temp. °C
Time† h
0.05 MPa
0.1 MPa
Sand cast and heat treated
200
100 500 1 000
52 41 36
66 54 47
250
100 500 1 000 100 500 1 000 100 500 1 000
23 11
28 19 14 7.4 5.2 4.3 97
32 24 20 8 6.5 5.6 111 106 103
117 117 116
100 500 000 100 500 000 100 500 000 100 100
77
86 75 70 43 28 23 12 6.2 5.4 45Ł
97 88 83 52 37 31 19 8.6 6.9 63Ł 62Ł
101 96 91 67 52 43 32 15 12 97Ł 100Ł
28Ł
43Ł 29Ł 19Ł
65Ł 45Ł 27Ł
315
Zn 4.0 RE 1.2 Zr 0.7 (RZ5)
Sand cast and heat treated
100
150 1 200 1 250 1 Mg Th ZrŁŁ
Th 3.0 Zr 0.7 (HK31) (MTZ)
Sand cast and fully heat treated
200 1 260 315
Mg Th Zn ZrŁŁ
Mg Th Zn ZrŁ
Th 0.8 Zn 0.5 Zr 0.6 (ZTY) Th 3.0 Zn 2.2 Zr 0.7 (ZT1)
Sheet
Sand cast and heat treated
100 1 000 100
250
9.3Ł
14Ł
0.5 MPa
1.0 MPa
36 30 26
34 30
71 65 58
107 100 97 73 64 53 39 19 15 111Ł
32Ł
Stress of 46 MPa (3 tonf in 2 ) produced 0.03% creep strain Stress of 46 MPa (3 tonf in 2 ) produced 0.03% creep strain 50 56 63 66 43 51 58 63 39 48 56 61
250
100 500 1 000
42 35 31
300
100 500 000 100 500 000 100 500 000 100 500 000 100 500 000
23 19 17 14 12 10 10
28 21 19 19 13 12 12 9 8 8
35 25 21 24 16 13 18 10 8 11
46 36 32 29 21 15 21 12 9 12 8
51 36 26
66 56 51
82 69 63
96 85 80
52 41 36 36 25 20 23 14 10 13 9 8 102 94 90
100 500 1 000
26 15 11
32 22 17
45 26 20
56 40 31
62 49 40
1
1 350 1 375 1 Sand cast and heat treated
29 22 20 6.2 4.3 3.9 31Ł
100
325
Zn 5.5 Th 1.8 Zr 0.7 (TZ6)
5.6
0.2 MPa
150 1 200
48
Smithells Light Metals Handbook
Table 3.11 (continued ) Stress to produce specified creep strains%
Material Mg Ag RE(D) Zr
Nominal composition % Ag RE(D) Zr (QE22)
2.5 2.0 0.6
Form and Condition
Temp. °C
Time† h
0.05 MPa
Sand cast and fully heat treated
200
100 500 1 000
55
100 500 1 000
18
250
Mg RE(D) Ag Zr Cu
RE(D) Ag Zr Cu (EQ21)
2.2 1.5 0.6 0.07
Sand cast and fully heat treated
0.1 MPa
0.2 MPa
0.5 MPa
1.0 MPa
74 54 46
88 65 56
82 73
89 79
26 15 10
33 22 16
28 22
31 26
200
100 500 1 000
78 57 48
95 71 62
116 88 76
250
100 500 1 000
29 18 14
36 22 19
42 30 24
100 500 1 000
32 20
39 26 21
32 26
173 148 139
Mg Ag RE(D) Th ZrŁŁ
Ag RE(D) Th Zr (QH21)
2.5 1.0 1.0 0.6
Sand cast and fully heat treated
250
Mg Y RE() Zr
Y 4.0 RE() 3.4 Zr 0.6 (WE43)
Sand cast and fully heat treated
200
100 500 1 000
148
161 115 96
250
100 500 1 000
44
61 46 39
200
100 500 1 000
160 120 120
165 140 132
250
100 500 1 000
47 43 16
61 40 32
81 58 48
150
100 500 1 000
94 82 74
99 92 89
104 98 95
200
100 500 1 000
60 51 42
63 55 49
67 61 55
Y 5.1 RE() 3.0 Zr 0.6 (WE54)
Mg Zn Cu Mn
Zn Cu Mn (ZC63)
6.0 2.7 0.5
Sand cast and fully heat treated
Sand cast and fully heat treated
Ł Total strains. † 4 6 h heating to test temperature followed by 16 h soaking at test temperature. RE D Cerium mischmetal containing approx. 50% Ce. RE(D) D Neodymium-enriched mischmetal. RE./ D Neodymium plus Heavy Rare Earth metals. ŁŁ Thorium-containing alloys are being replaced by alternative Mg alloys.
22
36 30
Mechanical properties of light metals and alloys Table 3.12 HIGH-TEMPERATURE MAGNESIUM ALLOYS
49
SHORT-TERM CREEP RESISTANCE
Stress to produce specified creep strains%
Material Mg RE Zn Zr
Nominal composition % Re 2.7 Zn 2.2 Zr 0.7 (ZRE1)
Th 0.8 Zn 0.5 Zr 0.6 (ZTY)
Th 3.0 Zn 2.2 Zr 0.7 (ZT1)
130 128 125
136 134 129
84 83 82 59 58 49 107 105 99
92 91 89 73 69 56 116 114 103
111 110 108 80 76 62 127 124 114
123 120 114 85 83 68
130 129 125 90 88 73 136 134 125
86 83 71 62 59 48 96 95 94
90 88 76 69 66 53 103 103 102
94 91 81 76 73 59 119 118 117
99 96 86 79 76 64 138 137 137
30 60 600 30 60 600
80 78 74
88 86 82
103 102 96 110 95
117 116 107 159 157 145
163 160 149
128 127 120 165 162 151
30 60 600 30 60 600
20 18
32 28 15
48 40 20
80 67 31 100 96 85
93 82 42 118 114 103
102 98 66 125 123 114
30 60 600 30 60 600 30 60 600
58 57 56 55 53 50 96 93 63
65 64 63 60 59 59 113 109 90
71 69 68 64 63 61 120 117 102
84 81 74 73 72 71 128 124 110
102 99 86 76 76 74 137 133 114
111 107 98 82 80 77 144 137 119
30 60 600 30 60 600
70 65 56 54 52 44
77 74 60 59 57 49
85 80 66 64 62 53
96 90 74 70 66 56
99 94 77 74 70 58
107 99 82 76 73 59
250
30 60 600 30 60 600 30 60 600
76 74 73 52 51 42 100 99 86
30 60 600 30 60 600 30 60 600
Sand cast and heat treated
200
Sand cast and fully heat treated
250
Sheet
250
Sand cast and heat treated
200
250
315
Zn 5.5 Th 1.8 Zr 0.7 (TZ6)
118 117 116
30 60 600
350
Mg Th Zn ZrŁ
98 97 96
200
315
Mg Th Zn ZrŁ
Stress to fracture MPa
Sand cast and heat treated
315
Th 3.0 Zr 0.7 (HK31) (MTZ)
10.0 MPa
Time† s
250
Mg Th ZrŁ
5.0 MPa
Temp. °C
315
Zn 4.0 RE 1.2 Zr 0.7 (RZ5)
2.0 MPa
Form and condition
Sand cast and heat treated
200
250
315
0.05 MPa
† 1 h heating to test temperature followed by 1 h soaking at test temperature. RE D cerium mischmetal containing approx. 50% Ce. Ł Therium-containing alloys are being replaced by alternative Mg alloys.
1.0 MPa
83 79 67
116 113 93 86 82 69 145 145 144
50
Table 3.13 MAGNESIUM AND MAGNESIUM ALLOYS
FATIGUE AND IMPACT STRENGTHS
Material Mg Mn Mg Al Zn
NominalŁ composition % Mn 1.5 (AM503) Al 6.0 Zn 1.0 (AZM) Al 8 Zn 0.4 (A8)
Al 9.5 Zn 0.4 (AZ91)
Mg Zn Zr
Mg Zn RE Zr
Zn Zr (ZW3) Zn Zr (Z5Z) Zn RE Zr (RZ5) Zn RE
3.0 0.6
‡ Condition Extruded Extruded
Sand cast Sand cast and solution treated Sand cast Sand cast and solution treated Sand cast and fully heat treated Extruded
State
temp. °C
U N U N
20
U N U N U U U N U N
20
20
20 150 200 20 20
U N U N
20 20
Impact strength§ for single blow fracture
105
5 ð 105
106
5 ð 106
107
5 ð 107
MPa
MPa
Mpa
MPa
MPa
MPa
107 76 161 127
90 90 139 110
88 54 133 103
86 51 125 97
85 50 124 94
83 48 120 91
108 107 124 108 93 71 114 110 124 103
93 80 102 86 69 52 91 83 93 82
90 73 97 82 66 48 89 74 93 80
88 66 91 74 59 38 88 68 93 79
88 65 90 73 57 36 86 66 93 79
86 63 90 69 57 31 85 63
117 93 151 124
90 66 137 99
80 66 134 93
79 65 128 91
77 65 127 90
Test temp. °C
Unnotched
Notched
J
J
20
12 14
4 4.5
20
34 43
7 9.5
20
3 5
1.5 2
20
18 27
4.5 7
196 20
1.5 1.5 2.0
1 1.5
20
7 9.5
3 4
76 65 124 88
20
3 4
1 1.5
20
23 31
9.5 12
77
4.5 0.7
Sand cast and heat treated
U N
20
111 90
86 86
85 85
82 82
80 80
77 77
20 196
7 12 0.8
3 4
4.0 1.2 0.7
Sand cast and heat treated
20
99 93 85 74 82 59
97 91 80 69 80 54
97 88 73 62 79 52
96 86 69 59 77 52
94 83 65 54 74 51
4 5.5 0.7
1 2
Sand cast and heat treated
124 108 97 93 100 77
20 196
2.2 2.7
U N U U U N
20
6 7.5
1 2
150 200 20
Smithells Light Metals Handbook
Fatigue strength† at specified cycles
Zr (ZRE1)
0.7
U U U U
150 200 250 300
69 68 59 49
60 59 48 39
59 56 45 37
57 52 43 37
57 51 43 36
57 51 42 34
6 2.5 0.6
Sand cast and fully heat treatedŁŁ
U N
20
144 99
131 83
127 79
121 73
119 72
117 71
Ag RE(D) Zr (MSR B)
2.5 2.5 0.6
Sand cast and fully heat treated
U N N U
20
119 77
103 65
103 63
77
68
103 62 90 57
102 62 88 54
100 62 86 51
Ag Re(D) Th Zr (QH21)
2.5 1.0 1.0 0.6
Sand cast and fully heat treated
U N U
135 86 108
114 72 76
111 69 65
109 64 56
108 63 55
108 62 52
Mg Zn Th ZrŁŁ
Zn Th Zr (TZ6)
5.5 1.8 0.7
Sand cast and heat treated
U N
20
120 100
86 86
85 80
83 77
83 76
82 76
Mg Th ZrŁŁ
Th Zr (MTZ)
3.0 0.7
Sand cast and fully heat treated
U N U U
20 80
74 48 74 63
68 40 68 59
65 36 60 54
63 34 59 52
62 32 58 51
Mg Ag RE(D) Zr
Mg Ag RE(D)Th ZrŁŁ
200 250 20 250
200 250
0.5
20
12.9 17.6
2.3 2.7
20 196
8 11 0.5
1.5 3
continued overleaf
Mechanical properties of light metals and alloys
Zn RE Zr (ZE63)
196
51
52
Table 3.13 (continued )
NominalŁ composition %
Material Mg Th Zn ZrŁŁŁ
Th Zn Zr (ZTY) Th Zn Zr (ZT1)
‡ Condition
0.7 0.5 0.6
Extruded
3.0 2.2 0.7
Sand cast and heat treated
State U N U U U N U U U
temp. °C 20 200 250 20 200 250 325
Impact strength§ for single blow fracture
105
5 ð 105
106
5 ð 106
107
5 ð 107
MPa
MPa
Mpa
MPa
MPa
MPa
100 73 80 97 76 71 66
86 52 74 63 82 59 60 51
83 51 68 59 79 56 59 46 43
79 49 60 54 74 51 54 43 37
76 48 59 52 71 49 52 42 34
74 46 57 51 68 48 51 39 29
Mg RE(D) As Zr Cu
RE(D) Ag Zr Cu
2.2 1.5 0.6 0.07
Sand cast and fully heat treated
U
20
103
94
93
92
91
90
Mg Y RE() YZr
Y RE() Zr
4.0 3.4 0.6
Sand cast and fully heat treated
U U U
20 150 250
114 107 107
101 97 81
98 94 74
94 87 65
93 85 64
91 83 62
Y RE() Zr
5.9 3.0 0.6
Sand cast and fully heat treated
U U U
20 200 250
113 118 115
104 96 84
102 90 78
100 84 67
99 83 66
97 82 65
Zn Cu Mn
6.0 2.7 0.5
Sand cast and fully heat treated
U N
20
100 62
94 57
92 56
90 55
Mg Zn Cu Mn
Ł It is usual to add 0.2 0.4% Mn to alloys containing aluminium to improve corrosion resistance. ŁŁ Solution heat treated in an atmosphere of hydrogen.
† Wohler rotating beam tests at 2960 c.p.m. ‡ U D Unnotched. N D Notched. Semi-circular notch of 0.12 cm (0.047 in) radius. Stress concentration factor 1.8.
Test temp. °C
Unnotched
Notched
J
J
20
7 8
1.5 3
196
0.8
§ Hounsfield balanced impact test, notched bar values are equivalent to Izod values. RE(D) D Neodymium enriched mischmetal. ŁŁŁ Thorium-containing alloys are being replaced by alternative Mg alloys. RE./ D Neodymium plus Heavy Rare Earths.
Smithells Light Metals Handbook
Fatigue strength† at specified cycles
Mechanical properties of light metals and alloys Table 3.14 HEAT TREATMENT OF MAGNESIUM ALLOY CASTINGS Heat treatment conditions for magnesium sand castings can be varied depending on the particular components and specific properties required. The following are examples of the conditions used for each alloy which will give properties meeting current national and international specifications. NominalŁ composition %
Material Mg Al Zn
Condition
Time h
Temperature °C
(AZ80)
Al Zn
8.0 0.4
TB
12 24
400 420
(AZ91)
Al Zn
9.5 0.4
TB
16 24
400 420
TF
16 24
(AZ91)
8 16
400 420 Air cool 180 210
Mg Zn Zr
(Z5Z)
Zn Zr
4.5 0.7
TE
10 20
170 200
Mg Zn RE Zr
(RZ5)
Zn RE Zr
4.0 1.2 0.7
TE
2 4 10 20
320 340 Air cool 170 200
(ZRE1)
RE Zn Zr
2.7 2.2 0.7
TE
10 20
170 200
(HK31)
Th Zr
3.0 0.7
TF
2 4
(TZ6)
Zn Th Zr
5.5 1.8 0.7
TE
2 4 10 20
320 340 Air cool 170 200
(ZT1)
Th Zn Zr
3.0 2.2 0.7
TE
10 20
310 320
Mg Th Zr†
10 20 Mg Zn Th Zr†
560 570 Air cool 195 205
Mg Ag RE(D)Zr
(QE22)
Ag RE(D) Zr
2.5 2.0 0.6
TF
4 12 520 530 Water/Oil Quench 195 205 8 16
Mg RE(D) Ag Zr Cu
(EQ21)
RE(D) Ag Zr Cu
2.2 1.5 0.6 0.07
TF
4 12 515 525 Water/Oil Quench 195 205 12 16
Mg Ag RE(D) Th Zr
(QH21)†
Ag RE(D) Th Zr
2.5 1.0 1.0 0.6
TF
4 12 520 530 Water/Oil Quench 12 20 195 205
53
54
Smithells Light Metals Handbook
Table 3.14 (continued ) NominalŁ composition %
Material Mg Y RE() Zr
Mg Zn Cu Mn
Condition
Time h
Temperature °C
(WE43)
Y RE() Zr
4.0 3.4 0.6
TF
4 12 520 530 Water/Oil Quench 245 255 12 20
(WE54)
Y RE() Zr
5.1 3.0 0.6
TF
4.12 520 530 Water/Oil Quench/Air Cool 245 255 12 20
(ZC63)
Zn Cu Mn
6.0 2.7 0.5
TF
4 12 435 445 Water Quench 180 200 16 24
Note:- Above 350 ° C, furnace atmospheres must be inhibited to prevent oxidation of magnesium alloys. This can be achieved either by: (i) adding 1/2 1%SO1 gas to the furnace atmosphere; or (ii) carrying out the heat treatment in an atmosphere of 100% dry CO2 . Ł It is usual to add 0.2 0.4% Mn to alloys containing aluminium to improve corrosion resistance. RE D Cerium mischmetal containing approximately 50% cerium. TB D Solution heat treated. RE(D) D Neodymium-enriched mischmetal. TE D Precipitation heat treated. RE./ D Neodymium plus Heavy Rare Earth metals. TF D Fully heat treated. † Thorium-containing alloys are being replaced by alternative Mg alloys.
Mechanical properties at subnormal temperatures At temperatures down to 200 ° C tensile properties have approximately linear temperature coefficients: proof stress and UTS increase by 0.1 0.2% of the RT value per ° C fall in temperature, and
elongation falls at the same rate: modulus of elasticity rises approximately 19 MPa (2800 lbf in 2 ) per ° C over the range 0° to 100 ° C. No brittle-ductile transitions have been found. Tests at 70 ° C have suggested that the magnesium-zinc-zirconium alloys show the best retention of ductility and notched impact resistance at this temperature.
3.3
Mechanical properties of titanium and titanium alloys
Table 3.15 PURE TITANIUM, TYPICAL MECHANICAL PROPERTIES AT ROOM TEMPERATURE Elongation % DesignationŁ Iodide IMI 115
IMI 125
IMI 155 IMI 160
Ł IMI Nomenclature.
Pure, 60 HV Commercially pure
Commercially pure
Commercially pure
Commercially pure Commercially pure
† Up to 16.3 mm.
Condition
Annealed sheet Annealed rod Annealed wire † Annealed sheet Annealed rod Annealed tube Annealed sheet Annealed rod Annealed wire Hard-drawn wire Annealed sheet Annealed rod Annealed wire
Tensile strength MPa
103 255 220
241 370 370 390 460 460 480 540 540 550 700 640 670 690
340 305 325 420 360
540 500
on 50 mm
on 5D
55 33
Red. in area %
<1.83 mm
<3.25 mm
1t
2t
1 12 t
2t
2tC
2 21 t
Mod. of elasticity GPa
Mod. of rigidity GPa
105
38
80 40
70
28
57
24
48
23
46
38 30 35 25 24 11.5 24 24
Specification bend radius 180 ° bend
2 12 t
3t
Mechanical properties of light metals and alloys
IMI 130
Grade
0.2% proof stress MPa
55
IMI 230
Cu
6.0
Condition Annealed sheet Aged sheet Annealed rod Aged rod
0.2% proof stress MPa
Tensile strength MPa
520 670 500 580
620 770 630 740
IMI 260
Pd
0.2
Similiar to commercially Pure Titanium 115
IMI 261
Pd
0.2
Similiar to commercially Pure Titanium 125
IMI 315
Al 2.0 Mn 2.0
Annealed rod
590
720
IMI 317
Al Sn
5.0 2.5
Annealed sheet
820
860
930
1 000
IMI 318
Al V
6.0 4.0
Annealed sheet Annealed rod Aged rod (fastener stock) Hard-drawn wire
1 110 990 1 050
1 160 1050 1 140 1 410
IMI 550
Al Mo Sn Si
4.0 4.0 2.0 0.5
F.h.t. rod
1 070
IMI 551
Al Mo Sn Si
4.0 4.0 4.0 0.5
F.h.t.rod
1 140
Annealed rod
Elongation % on 50 mm
on 5D
Red. in area %
24 20
Specification bend radius 180 °
Mod. of elasticity GPa
2t(0.5 3 mm) 2t(typical)
125
27 22
45 41
125
21
50
120
16
Mod. of rigidity GPa
4t(<2 mm) 4 21 t. 3 mm/ 15
37
10
120 5t( 3.25 mm)
15 15
40 40
106
1 200
14
42
116
1 300
12
40
113
46
4
43
continued overleaf
Smithells Light Metals Handbook
DesignationŁ
Nominal composition %
56
Table 3.16 TITANIUM ALLOYS TYPICAL MECHANICAL PROPERTIES AT ROOM TEMPERATURE
Sn 11.0 Al 2.25 Mo 1.0 Si 0.2
Quenched and aged rod Air-cooled and aged rod
1 080 1 000
1230 1120
11 13
40 45
108
IMI 680
Sn 11.0 Mo 4.0 Al 2.25 Si 0.2
Quenched and aged rod Furnace-cooled and aged rod
1200
1350
12
37
115
1080
1160
14
47
IMI 685
Al Zr Mo Si
6.0 5.0 0.5 0.25
F.h.t. rod
920
1020
11
22
124
IMI 829
Al Sn Zr Nb Mo Si
5.5 3.5 3.0 1.0 0.3 0.3
F.h.t. rod
848
965
12
22
120
IMI 834
Al Sn Zr Nb Mo Si C
5.8 4.0 3.5 0.7 0.5 0.35 0.06
F.h.t. rod
931
1067
13
22
120
Ł IMI Nomenclature.
46
47
Mechanical properties of light metals and alloys
IMI 679
57
58
Smithells Light Metals Handbook
Table 3.17 COMMERCIALLY PURE TITANIUM SHEET, TYPICAL VARIATION OF PROPERTIES WITH TEMPERATURE
DesignationŁ
Temperature °C
0.2% proof stress MPa
Tensile strength MPa
Elongation on 50 mm %
IMI 115
196 100 20 100 200 300 400 450
442 306 207 168 99 53 42 36
641 444 337 296 218 167 131 120
34 34 40 43 38 47 52 49
IMI 125
20 100 200 300 400 450
334 250 184 142 127 119
479 397 300 232 190 175
31 32 40 45 38 35
IMI 130
196 100 20 100 200 300 400 450 500 20 100 200 300 400 450
730 590 394 315 205 139 102 93
855 737 547 462 331 247 199 182
28 28 28 29 37 40 34 28
460 372 219 151 110 96
625 537 386 281 221 202
25 26 32 36 33 26
IMI 155
Ł IMI nomenclature.
Mod. of elasticity GPa
Transformation temperature °C ˛/˛ C ˇ 865
108 99 91 83 65 46
˛ C ˇ/ˇ 915
Table 3.18 TITANIUM ALLOYS, TYPICAL VARIATION OF PROPERTIES WITH TEMPERATURE
Designation
Nominal composition %
IMI 230
Cu
2.5
Condition S.h.t (trans.)
Temperature °C
0.2% Proof stress MPa
Tensile strength MPa
Elongation % on 50 mm
on 5D
Red in area %
Mod. of elasticity GPa
20 100 200 300 400 500
500 410 310 270 250 220
605 540 450 410 380 380
24 29 33 31 30 33
Aged sheet (trans.)
20 100 200 300 400 500
622 553 471 457 429 357
761 704 635 607 573 468
24 23 26 23 19 21
Aged
20 100 200 300 400 500
638 601 507 496 415 361
795 761 687 658 592 491
22 21 23 20 21 27
40 39 45 50 53 57
107 100 92 85 78 71
Transformation temperature °C ˛/˛ C ˇ 790 ˛ C ˇ/ˇ 895 š 10
Pd
0.2
Similar to IMI 115
IMI 262
Pd
0.2
Similar to IMI 125
IMI 315
Al 2.0 Mn 2.0
Annealed rod
20 100 200 300 400 500
618 510 386 293 278 201
757 649 525 432 417 340
18 21 22 19 18 22
41 46 48 50 56 72
110 107 97 86 76 62
˛ C ˇ/ˇ 915 š 20
IMI 317
Al Sn
Annealed rod
20 100 200 300 400 500
822 692 494 415 374 346
919 798 638 576 522 485
18 19 18 19 18 21
39 40 44 42 41 57
112 109 105 89 84 81
˛/˛ C ˇ 950
5.0 2.5
˛ C ˇ/ˇ 1025 š 20
Mechanical properties of light metals and alloys
IMI 260
59
IMI 318
Nominal composition % Al V
6.0 4.0
Condition Annealed rod
Heat-treated rod (fastener stock)
IMI 550
Al Mo Sn Si
4.0 4.0 2.0 0.5
F.h.t. rod
IMI 551
Al Mo Sn Si
4.0 4.0 4.0 0.5
F.h.t rod
IMI 679
Sn Zr Al Mo Si
11.0 5.0 2.25 1.0 0.2
Quenched and aged rod
0.2% Proof stress MPa
Tensile strength MPa
196 100 20 100 200 300 400 500 600 700
1560 1165 970 825 710 645 580 450 125 40
20 100 200 300 400 500 20 100 200 300 400 500 600 20 100 200 300 400 500 600 20 100 200 300 400 450
Temperature °C
Elongation % on 5D
Red in area %
1675 1265 1040 920 815 750 700 605 265 135
6 12 15 17 18 18 18 26 58 127
29 33 38 43 49 56 63 72 85 94
106 102 96 90 85 79
1035 925 805 710 635 540 1081 965 805 700 655 585 310 1250 1125 925 815 745 670 460
1145 1035 925 850 805 695 1220 1130 960 900 835 780 585 1390 1300 1145 1045 970 920 755
14 15 16 16 18 25 15 15 16 16 17 19 26 10 11 14 15 14 18 27
49 49 60 55 60 68 83 27 29 38 38 41 55 65
116 112 106 101 95 90 85 113 108 103 98 93 88 81
1050 940 820 740 710 680
1230 1145 1020 990 940 910
10 11 12 11 11 11
37 43 45 46 46 46
on 50 mm
Mod. of elasticity GPa
Transformation temperature °C ˛ C ˇ/ˇ 1000 š 15
˛ C ˇ/ˇ 980 š 10
˛ C ˇ/ˇ 1050 š 15
˛ C ˇ/ˇ 950 š 10
Smithells Light Metals Handbook
Designation
60
Table 3.18 (continued )
IMI 680
IMI 685
Sn Mo Al si
11.0 4.0 2.25 0.2
Air-cooled and aged rod
20 100 200 300 400 500
1 020 895 770 695 665 600
1 095 995 900 865 850 795
14 16 16 14 14 15
41 47 49 49 48 48
108 103 99 94 90 85
Quenched and aged rod
20 100 200 300 400 450
1 180 1 020 905 835 805 725
1 330 1 190 1 105 1 075 1 020 975
12 14 15 15 14 13
43 49 53 56 57 54
106 100 96 94 90 88
Furnace-cooled and aged rod
196 100 20
1630 1 280 1 030
1730 1 380 1 130
8 21 10 15
36 43 49
196 100 20 100 200 300 400 500
1 480 1 1 40 890 800 720 650 595 535
1 560 1270 1 030 935 850 800 750 695
6 10 12 13 15 16 18 19
13 18 22 22 24 27 31 37
124 120 114 108 102 95
˛ C ˇ/ˇ 945 š 15
Al Zr Mn Si
6.0 5.0 0.5 0.25
F.h.t. rod
IMI 829
Al Sm Zr Nb Mo Si
5.5 3.5 3.0 1.0 0.3 0.3
F.h.t. rod
20 200 500 540 600
895 622 501 487 457
1 028 792 665 653 634
10 21 14 21 15 16 14
22 28 36 42 38
119 110 93 91 88
˛ C ˇˇ 1 015 š 15
IMI 834
Al Sn Zr Nb Mo Si C
5.8 4.0 3.5 0.7 0.5 0.35 0.06
F.h.t. rod
20 100 200 300 400 500 600
931 840 746 700 662 609 505
1 067 962 885 832 790 764 656
13 13 14 14 14 15 16
22 23 27 32 36 42 50
120 116 112 106 102 96 92
1045
˛ C ˇ/ˇ 1 020 š 10
Mechanical properties of light metals and alloys 61
62
Smithells Light Metals Handbook
Table 3.19 COMMERCIALLY PURE TITANIUM
TYPICAL CREEP PROPERTIES
Stress MPa to produce 0.1% plastic strain in IMI designation IMI 130
IMI 155
Temperature °C
1000 h
10 000 h
100 000 h
20 50 100 150 200 250 300 20 50 100 150 200 250 300
288 243 179 140 113 96 87 309 252 188 145 116 102 93
270 221 165 133 116 101 83 278 232 170 131 108 97 90
207 165 119 96 77 66 55 260 213 157 122 104 94 86
Table 3.20 TITANIUM ALLOYS IMI designation
Nominal composition %
IMI 230
Cu
2.5
TYPICAL CREEP PROPERTIES
Stress MPa to produce 0.1% total plastic strain in Condition Aged sheet
Annealed sheet
IMI 317
Al Sn
5.0 2.5
Annealed rod
IMI 318
Al V
60 4.0
Annealed rod
IMI 550
IMI 551
IMI 679
Al Mo Sn Si Al Mo Sn Sn Zr Al Mo Si
4.0 4.0 2.0 0.5 4.0 4.0 4.0 11.0 5.0 2.25 1.0 0.2
Fully heattreated bar
Fully heattreated rod Air-cooled and aged rod
Temperature °C
100 h
200 300 400 450 20 100 200 300 400 20 100 200 300 400 500 20 100 200 300 400 500 300 400 450 500 400 450
435 375 220 109 360 279 235 202 125 633 474 370 359 337 162 832 704 638 576 287 32 724 551 254 82 621 307
119 818 680 636 568 144 18 718 516 174 51 575 217
20 150 300 400 450 500
896 703 664 579 448 131
880 695 664 571 386 93
300 h
500 h
608 463
1000 h
593 458 370 359 337 88 788 676 635 102
540
710 471 101 31 501
880 672 649 526 247 62
Mechanical properties of light metals and alloys
63
Table 3.20 (continued )
IMI designation IMI 680
Nominal composition % Sn Mo Al Si
11.0 4.0 2.25 0.2
Stress MPa to produce 0.1% total plastic strain in Condition
Temperature °C
100 h
300 h
20 150 200 300 400 450 500 300 350 400 200 300 400 450 500 450 500 550 600
1127 945 862 804 555 298 88 570 540 490 599 551 497 461 408 478 420 300 130
1112 942 856 788 540 209 51
500 550 600
461 339 205
Quenched and aged rod
Furnace-cooled and aged rod IMI 685
Al Zr Mo Si
6.0 5.0 0.5 0.25
Heat-treated forgings
IMI 829
Al Sn Zr Nb Mo Si Al Sn Zr Nb Mo Si C
5.5 3.5 3.0 1.0 0.3 0.3 5.8 4.0 3.5 0.7 0.5 0.35 0.06
Fully heat treated rod
IMI 834
Heat-treated forgings
Table 3.21 TITANIUM AND TITANIUM ALLOYS
Condition
Tensile strength MPa
Commercial purity
Annealed rod
Room
354 354
IMI 125
Commercial purity
Annealed rod
Room
417 417
IMI 130
Commercial purity
Annealed rod
Room
550 550 550
IMI 115
1000 h
592 541 480 431 340
589 535 462 426
TYPICAL FATIGUE PROPERTIES
Temperature °C
IMI designation
Nominal composition %
500 h
550 550 550 550 589 589 589 589
Details of test Rotating bend Smooth Kt = 1 Notched Kt = 3 Rotating bend Smooth Kt = 1 Notched Kt = 3 Rotating bend Smooth Kt = 1 Notched Kt = 2 Notched Kt = 3.3 Direct stress (Zero mean) Smooth Kt = 1 Notched Kt = 1,5 Notched Kt = 2 Notched Kt = 3.3 Smooth Kt = 1 Notched Kt = 2 Notched Kt = 3 Notched Kt = 4
Endurance limit for 107 cycles stated) MPa
š 193 š 123 š 232 š 154 š 270 š 170 š 170 š š š š š š š š
263 247 170 116 278 147 123 116
continued overleaf
64
Smithells Light Metals Handbook
Table 3.21 (continued )
IMI designation
IMI 160 IMI 230
Nominal composition %
Commercial purity Cu 2.5
IMI 260
Pd
0.2
IMI 262
Pd
0.2
Condition
Temperature °C
Tensile strength MPa
Details of test
Endurance limit for 107 cycles stated) MPa
Direct stress (Zero mean) Smooth Kt
š 376
Annealed rod
Room
674
Annealed sheet Aged sheet
Room room
564 772
Aged sheet
room
761
Annealed rod
room 400
598
Annealed
Room
638
Aged rod
Room 400
700
Aged rod
Room
792
Reversed bend Reversed bend Direct stress (Zero minimum) Smooth Kt = 1 Rotating bend Smooth Kt = 1 Smooth Kt = 1 Direct stress (Zero mean) Smooth Kt = 1 Rotating bend Smooth Kt = 1 Smooth Kt = 1 Direct stress (Zero mean) Smooth Kt = 1 Notched Kt = 3.3
IMI 318
Al Sn
Al V
5.0 2.5
6.0 4.0
Annealed rod
Annealed rod
Room
Room
960 960
1015 1015
IMI 550
IMI 551
Al Mo Sn Si
Al Mo Sn Si
4.0 4.0 2.0 0.5
4.0 4.0 4.0 0.5
0!560 š 370 š 150 š 280 š 450 š 290
š 470 š 200
Similar to IMI 115 Similar to IMI 125 Rotating bend
IMI 317
š 390 š 490
Fully heattreated rod
Fully heattreated rod
Room
Room
1180 1180
Smooth Kt = 1.0 Notched Kt = 2.0 Notched Kt = 3.3 Direct stress (Zero mean) Smooth Kt = 1.0 Notched Kt = 1.5 Notched Kt = 2.0 Notched Kt = 3.3 Rotating bend Smooth Kt = 1 Notched Kt = 2.7 Direct stress (Zero minimum) Smooth Kt = 1 Notched Kt = 1 Direct stress (Zero minimum) Smooth Kt D 1 Notched Kt D 3
Rotating bend Rotating bend Smooth Kt D 1 Notched Kt D 2.4 Rotating bend Smooth Kt D 1 Notched Kt D 3.2
Limits for this alloy 108 cycles š 371 š 263 š 239
š š š š
433 278 201 154
š 470 š 230
0!750 0!325
0!850 0!350
š 587 š 394 š 750 š 430
Mechanical properties of light metals and alloys
65
Table 3.21 (continued )
IMI designation
Nominal composition %
Condition
Temperature °C
IMI 679
Sn Zr Al Mo Si
11.0 5.0 2.25 1.0 0.2
Air-cooled and aged rod
Room 200 400 450 500
IMI 680
Sn Mo Al Si
11.0 4.0 2.25 0.2
Quenched and aged rod
Room
Room
Tensile strength MPa
Rotating bend Smooth Kt D 1.0 Smooth Kt D 1.0 Smooth Kt D 1.0 Smooth Kt D 1.0 Smooth Kt D 1.0 Rotating bend 1272 1272 1272
1272
Room 200 400 Furnace-cooled rod
IMI 685
Al Zr Mo Si
6.0 5.0 0.5 0.25
Fully heattreated rod
Room
20 450 520
450 520
Fully heattreated forging
Room Room 475 475
IMI 829
Al Sn Zr Nb Mo Si
5.5 3.5 3.0 1.0 0.3 0.3
Fully heattreated rod
Room
IMI 834
Al Sn Zr Nb Mo Si C
5.8 4.0 3.5 0.7 0.5 0.35 0.06
Fully heattreated rod
Room
Ł Limits for 108 cycles.
Details of test
1100
Smooth Kt D 1 Notched Kt D 2 Notched Kt D 3.3 Direct stress (Zero mean Smooth Kt D 1 Notched Kt D 2 Notched Kt D 3.3 Rotating bend Smooth Kt D 1 Smooth Kt D 1 Smooth Kt D 1 Direct stress (Zero Smooth Kt D 1 Direct stress (Zero mean) Smooth Kt D 1 Smooth Kt D 1 Smooth Kt D 1 Direct stress (Zero minimum) Smooth Kt D 1 Smooth Kt D 1 Direct stress (Zero minimum) Smooth Kt D 1 Notched Kt D 3.5 Smooth Kt D 1 Notched Kt D 3.5 Direct stress (Zero minimum) Smooth Kt D 1 Notched Kt D 3
Direct stress (Zero minimum) Smooth Kt D 1 Notched Kt D 2
Endurance limit for 107 cycles stated) MPa š641Ł š510Ł š510Ł š 556 š 495 (Limits for 2 ð 107 cycles) š 710 š 340 š 293 (Limits for 2 ð 107 cycles) š 695 š 371 š 232 (Limits for 108 cycles) š 648 š 495 š 479 š 680
š 440 š 300 š 260
0!475 0!425
0!640 0!220 0!460 0!210
0!550 0!260
0!577 0!363
66
Smithells Light Metals Handbook
Table 3.22 IZOD IMPACT PROPERTIES OF TITANIUM AND TITANIUM ALLOYS IMI designation IMI 130† IMI 317 IMI 318 IMI 550
IMI designation IMI 551
IMI 679
IMI 680
IMI 685
Nominal composition % Condition Commercially pure Sn 5.0 Al 2.5 Al 6.0 V 4.0 Al 4.0 Mo 4.0 Sn 2.0 Si 0.5
196 ° C
78 ° C
20 ° C
100 ° C
200 ° C
300 ° C
400 ° C
500 ° C
17.6 (13) 13.5 (10)
62.4 (46) 20.3 (15) 14.9 (11)
61.0 (45) 27.1 (20) 20.3 (15) 19.0 (14)
62.4 (46) 35.2 (26) 25.7 (19)
72 (53) 52.8 (39) 40.6 (30)
82 (60 21 ) 63.7 (47) 65.0 (48)
84 (62) 70.5 (52) 83.5 (63)
82 (60 21 ) 71.8 (53) 92.0 (68)
196 ° C
78 ° C
20 ° C
100 ° C
200 ° C
300 ° C
400 ° C
500 ° C
Fully heattreated rod
13.5 (10)
19 (14)
20.3 (15)
21.7 (16)
24.4 (18)
26.5 (19 21 )
28.5 (21)
31.2 (23)
Air-cooled and aged
10.8 (8)
13.5 (10)
14.9 (11)
16.3 (12)
19 (14 21 )
25 (18 21 )
30 (22)
33.9 (25)
Quenched and aged rod
8.1 (6)
8.8 (6 12 )
10.8 (8)
12.2 (9)
14.9 (11)
17.6 (13)
20.3 (15)
25.7 (19)
Fully heattreated rod
31.2 (23)
39.3 (29)
43.4 (32)
Annealed rod Annealed rod Annealed rod Fully heattreated rod
Nominal composition % Condition Al 4.0 Mo 4.0 Sn 4.0 Si 0.5 Sn 11.0 Zr 5.0 Al 2.25 Mo 1.0 Si 0.2 Sn 11.0 Mo 4.0 Al 2.25 Si 0.2 Al 6.0 Zr 5.0 Mo 0.5 Si 0.25
Izod value Joules (ft lbf)Ł
Charpy value Joules (ft lbf)
Ł BSS 131 (1) 0.45 in diameter straight notched test pieces. † Izod values of commercial purity titanium are appreciably affected by variation in hydrogen content within commercial limits (0.008% maximum) in Ti 130 rod.
4
Aluminium and magnesium casting alloys
Aluminium casting alloys ALUMINIUM-SILICON ALLOYS
Specification BS 1490: 1988 Related British Specifications
LM6M(Ge) BS L33
LM20M(Ge)
Composition (%) (single figure indicates maximum) Copper Magnesium Silicon Iron Manganese Nickel Zinc Lead Tin Titanium Other Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temperature Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, C Casting temperature range, C Specific gravity
LM9M(SP) |
LM9TE(SP)
0.1 0.1 10.0 13.0 0.6 0.5 0.1 0.1 0.1 0.05 0.2
0.4 0.2 0.6 10.0 13.0 1.0 0.5 0.1 0.2 0.1 0.1 0.2
{z 0.1 0.2 10.0 13.0 0.6 0.3 0.7 0.1 0.1 0.1 0.05 0.2
E E G P E E E E F 565 575 710 740 2.65
EŁ E G P G E E E F 565 575 680 740 2.68
G E GŁ G E G G E F 550 575 690 740 2.68
LM9TE(SP) }
LM13TE(SP) |
LM13TF(SP) {z 0.7 1.5 0.8 1.5 10.0 12.0 1.0 0.5 1.5 0.5 0.1 0.1 0.2
G G FŁ E G F G E F 525 560 680 760 2.70
LM13TF7(SP) }
Smithells Light Metals Handbook
Table 4.1
68
4.1
Heat treatment Solution temperature, ° C Solution time, h Quench
520 535 2 8 Cold water
Precipitation temperature, ° C Precipitation time, h Stabilization temperature, ° C Stabilization time, h Special properties
150 170 16 (minimum)
Suitable for thin and intricate castings, readily welded
Pressure casting alloy
ŁŁ Or for such time to give required BHN.
190(12.3) 3 75 85 (4.9 5.5)
170(11.0) 1.5 110 130 (7.1 8.4)
240(15.5) 0 1 220 250 (14.2 16.2)
230(14.9) 2 150 170 (9.7 11.0)
295(19.1) 0 1 270 280 (17.5 18.1)
515 525 8 (minimum) Water, 70 80 ° C For pistons: 200 250 4 6ŁŁ
Low coefficient of expansion Good bearing properties Piston alloy
210(13.6) 1 HB90-120
Notes Association of Light Alloy Refiners and Smelters Grading: E Excellent, F Fair, G Good, P Poor, U Unsuitable, (Ge General purpose alloy; SP special purpose alloy as per BS 1490:1988).
170(11.0) 0.5 160 190 (10.4 12.3) HB 100 150
140(9.1) 1 130(8.4) HB 65 85
280(18.1) 1 270-300 (17.5-19.4) HB 100 150
200(12.9) 1 190(12.3) HB 65-85
Aluminium and magnesium casting alloys
units in brackets) 190(12.3) 5 70 80 (4.5 5.2)
Ł Not normally used in this form. † If Ti alone is used for grain refinement then Ti 6< 0.05%. ‡ Fully heat-treated. § Refine with phosphorus subject to examination under microscope.
160 180 4 16
Suitable for low-pressure cassting High strength and hardness
SI units (Imperial units in brackets) Mechanical properties sand cast Tensile stress min., MPa (tonf in 2 ) 160(10.4) Elongation min.% 5 Expected 0.2% proof stress, 60 70 2 MPa (tonf in ) (3.9 4.5) Mechanical properties chill cast SI units (Imperial Tensile stress min., MPa (tonf in 2 ) 190(12.3) Elongation, min. % 7 Expected 0.2% proof stress, 70 80 (4.5 5.2) MPa (tonf in 2 )
150 170 16 (minimum)
515 525 8 (minimum) Water, 70 80 ° C 160 180 4 16
69
LM18M(SP)
Composition % (Single figure indicates maximum) Copper Magnesium Silicon Iron Manganese Nickel Zinc Lead Tin Titanium Other Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temperature Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, C Casting temperature range, C Specific gravity
LM25M(Ge) |
LM25TE(Ge)
0.1 0.1 4.5 6.0 0.6 0.5 0.1 0.1 0.1 0.05 0.2
{z 0.20 0.20 0.60 6.5 7.0 0.5 0.3 0.1 0.1 0.1 0.05 0.2†
G G GŁ P E E G E F 565 625 700 740 2.69
G E GŁ G‡ E G G G F 550 615 680 740 2.68
LM25TB7(Ge)
LM25TF(Ge) }
LM29TE(SP) |
LM29TF(SP)
{z 0.8 1.3 0.8 1.3 22 25 0.7 0.6 0.8 1.3 0.2 0.1 0.1 0.2 Cr 0.6; Co 0.5, P§
P F U G G F F E P 520 770 At least 830 2.65
}
Smithells Light Metals Handbook
Specification BS 1490: 1988 Related British Specifications
70
Table 4.1 (continued )
Heat treatment Solution temperature, ° C Solution time, h Quench Precipitation temperature, ° C Precipitation time, h
525 545 4 12 Water, 70 80 ° C 155 175 8 12
Stabilization temperature, ° C Stabilization time, h Special properties
525 545 4 12 Water, 70 80 ° C 155 175 8 12
185 To produce HB requirement
495 505 4 Air blast 185 8
250 2 4 Readily welded
Mechanical properties sand cast SI units (Imperial 120(7.8) Tensile stress min., MPa (tonf in 2 ) Elongation min. % 3 Expected 0.2% proof stress, 55 60(3.6 3.9)
General purpose high-strength casting alloy units in brackets) 130(8.4) 2 80 100(5.2 6.5)
150(9.7)
160(10.4)
230(149)
120(7.8)
120(7.8)
1 120 150 (7.8 9.7)
2.5 80 110 (5.2 6.5)
0 2 200 250 (12.9 16.2)
0.3 120(7.8)
0.3 120(7.8)
HB 100 140
HB 100 140
MPa (tonf in 2 ) 190(12.3)
230(14.9)
280(18.1)
190(12.3)
190(12.3)
2 130200(8.4 12.9)
5 90 110(5.8 7.1)
2 220 260 (14.2 16.8)
0.3 170(11.0)
0.3 170 190 (11.0 12.3) HB 100 140
MPa (tonf in 2 ) Ł Not normally used in this form.
† If Ti alone is used for grain refinement then Ti 6< 0.05%. ‡ Fully heat-treated. § Refine with phosphorus-subject to examination under microscope. ŁŁ Or for such time to give required BHN.
HB 100 140 Note E Excellent. F Fair. G Good. P Poor. U Unsuitable. (Ge General purpose alloy; SP Special purpose alloy as per BS: 1490: 1988).
Aluminium and magnesium casting alloys
Mechanical properties chill cast SI units (Imperial units in brackets) 140(9.1) 160(10.4) Tensile stress min., MPa 2 (tonf in ) Elongation min. % 4 3 80 100(5.2 6.5) Expected 0.2% proof stress, 60 70(3.9 4.5)
More suited to chill (grav, die) casting Piston alloy
71
72
Smithells Light Metals Handbook
Table 4.2
ALUMINIUM-SILICON-COPPER ALLOYS
Specification BS 1490; 1988 Related British Specifications LM2M(Ge) Composition % (Single figures indicate maximum) Copper Magnesium Silicon Iron Manganese Nickel Zinc Lead Tin Titanium
0.7 2.5 0.30 9.0 11.5 1.0 0.5 0.5 2.0 0.3 0.2 0.2
Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temp. Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, ° C Casting temperature range, ° C Specific gravity
G† G† E G‡ G G G E F 525 570 2.74
LM4MTF LM4M(Ge) (Ge) |
{z 2.0 4.0 0.15 4.0 6.0 0.8 0.2 0.6 0.3 0.5 0.1 0.1 0.2
G G G G G G G G G 525 625 700 760 2.73
Heat treatment Solution temperature, ° C Solution time, h Quench
505 520 6 16 Water at 70 80 ° C 150 170 6 18
Precipitation temperature, ° C Precipitation time, h Special properties
}
Alloy for pressure die castings
Mechanical properties sand cast Tensile stress min. MPa (tonf in 2 ) Elongation min. % Expected 0.2% proof stress, MPa (tonf in 2 )
LM16TF LM16TB (SP) (SP) 3L78 |
{z 1.0 1.5 0.4 0.6 4.5 5.5 0.6 0.5 0.25 0.1 0.1 0.05 0.2Ł
LM21M(SP) }
G G F† G G G G G G 550 620 690 760 2.70 520 530 12 (min) Water at 70 80 ° C
3.0 0.1 5.0 1.0 0.2 0.3 2.0 0.2 0.1 0.2
5.0 0.3 7.0 0.6
G G G† G G G G G G 520 615 680 760 2.81
520 530 12 (min) Water at 70 80 ° C 160 170 8 10
General engineering alloy Pressure tight. High Can tolerate relatively strength alloy in TF high static loading in condition TF condition
Equally suited to all casting processes
SI units (Imperial units in brackets) 140(9.1) 2
230(14.9)
70 110 (4.5 7.1)
200 250 120 140 220 280 80 140 (12.9 16.2) (7.8 9.1) (14.2 18.1) (5.2 9.1)
Mechanical properties chill cast SI units (Imperial units in brackets) Tensile strength min. MPa 150(9.7) 160(10.4) 280(18.1) (tonf in 2 ) Elongation min. % 1 2 1 Expected 0.2% proof stress, MPa (tonf in 2 ) 90 130 80 110 200 300 (5.2 7.1) (12.9 19.4) (5.8 8.4) Ł 0.05% min. if Ti alone used for grain refinement. † Not normally used in this form. ‡ The use of die castings is usually restricted to only moderately elevated temperatures.
170(11.0) 230(14.9) 2
230(14.9) 280(18.1) 3
150(9.7) 1
170(11.0) 1
140 150 250 300 80 140 (9.1 9.7) (16.2 19.4) (5.2 9.1)
Aluminium and magnesium casting alloys
73
Table 4.2 (continued ) Specification BS 1490: 1988 LM22TB Related British Specifications (SP)
LM24M (Ge)
LM26TE (SP)
LM27M (Ge)
Composition % (Single figures indicate maximum)
|
Copper Magnesium Silicon Iron Manganese Nickel Zinc Lead Tin Titanium
2.8 3.8 0.05 4.0 6.0 0.6 0.2 0.6 0.15 0.15 0.1 0.05 0.2
3.0 4.0 0.1 7.5 9.5 1.3 0.5 0.5 3.0 0.3 0.2 0.2
2.0 4.0 0.5 1.5 8.5 10.5 1.2 0.5 1.0 1.0 0.2 0.1 0.2
1.5 2.5 0.3 6.0 8.0 0.8 0.2 0.6 0.3 1.0 0.2 0.1 0.2
Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temp. Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, ° C Casting temperature range, ° C Specific gravity
G† G G† G G G G G G 525 625 700 740 2.77
F† F† E G‡ G G G G F 520 580
G G F†
G E G†
E G F G F F 520 580 670 740 2.76
G G G G G G 525 605 680 740 2.75
Heat treatment Solution temperature, ° C Solution time, h Quench Precipitation temperature, ° C Precipitation time, h Special properties
2.79
515 530 6 9 Water at 70 80 ° C
LM30TS (SP) {z 4.0 5.0 0.4 0.7 16 18 1.1 0.3 0.1 0.2 0.1 0.1 0.2
Chill casting Alloy for Piston alloy, Excellent Alloy for pressure die alloy (grav. pressure retains castability casting automobile engine die) die castings strength cylinder blocks and hardness at elevated temps. sand cast SI units (Imperial units in brackets) 140(9.1) 1 80 90 (5.2 5.8)
chill cast
Tensile strength min., MPa (tonf in 2 ) Elongation min. % Expected 0.2% proof stress, MPa (tonf in 2 )
SI units (Imperial units in brackets) HB D 90 120
245(15.9) 8
180(11.7) 1.5
210(13.6) 1
110 120 (7.1 7.8)
100 120 (6.7 7.7)
160 190 90 110 150 200 160 200 (10.4 12.3) (5.8 7.1) (9.7 12.9) (10.4 12.9)
Note: E Excellent. F Fair. G Good. P Poor. U Unsuitable. (Ge General purpose alloy; Sp-Special purpose alloy as per BS 1490;1988).
160(10.4) 150(9.7) 2 0.5
}
U F G G G F G F P 505 650 Well above 650 ° C 2.73
Stress relief 175 225 8(minimum)
200 210 7 9
Mechanical properties Tensile stress min., MPa (tonf in 2 ) Elongation min. % Expected 0.2% proof stress, MPa (tonf in 2 ) Mechanical properties
LM30M (SP)
160(10.4) 0.5
LM12M(SP)
| {z Composition % (Single figures indicate maximum) Copper 9.0 11.0 Magnesium 0.2 0.4 Silicon 2.5 Iron 1.0 Manganese 0.6 Nickel 0.5 Zinc 0.8 Lead 0.1 Tin 0.1 Titanium 0.2
LM12TF(SP)Ł
[LM14-WP]†
[LM11-W]
[LM11-WP]
4L35
2L91
2L92
}
|
3.5 4.5 1.2 1.7 0.6‡ 0.6‡ 0.6 1.8 2.3 0.1 0.05 0.05 0.25
{z
4.0 5.0 0.10 0.25 0.25 0.10 0.10 0.10 0.05 0.05 0.25
361B
741A
4.0 5.0 0.10 0.25 0.25 0.10 0.10 0.10 0.05 0.05 Ti C Nb 0.05 0.30
3.5 4.5 1.2 2.5 0.5 0.5 0.1 0.1 0.1 0.1 0.05
}
Other Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temperature Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, C Casting temperature range, C Specific gravity
Co 0.5 1.0 Nb 0.05 0.3
F G U G P G F G E 525 625 700 760 2.94
F G U E F E G G G 530 640 700 750 2.82
F P U F F P F P G 545 640 680 700 2.80
F P U
F G
F P F P G 540 650 675 750 2.80
F F G G G 530 640 710 725 2.80
Smithells Light Metals Handbook
Specification BS 1490; 1988 Aerospace BSL series DTD series
74
Table 4.3 ALUMINIUM-COPPER ALLOYS
Heat treatment Solution temp., ° C Solution time, h Quench Precipitation temperature, ° C Precipitation time, h Special properties
Mechanical properties sand cast Tensile stress min., MPa (tonf in 2 ) Elongation % Expected 0.2% proof stress, min., MPa (tonf in 2 )
515 520 6
500 520 6
525 545 12 16
525 545 12 16
525 545 16 (minimum)
Water at 70 80 ° C 175 180 2 (minimum)
Boiling water
Water at 70 80 ° C 120 140 1 2
Water at 70 80 ° C 120 170 12 14
Water or oil
495 505 10 (minimum)†† Oil at 80 90 ° C
160 70 8 16
195 205 4 5
Piston alloy, now superseded by LM13 and LM26. Excellent machinability
95 103§ 2ŁŁ Excellent props. at elevated temperatures Grav. die alloy
Good shock resistance
High strength alloy
220(14.2)
220(14.2)
280(18.1)
324(21.0)
263(17.0)
210 240
7 165 200
4 200 240
310(20.1)
250(16.2)
(13.6 15.5)
(10.7 12.9)
(12.9 15.5)
280(18.1)
265(17.1)
310(20.1)
402(26.0)
340(22.0)
230 260
13 165 200
9 200 240
4 360(23.3)
260(16.8)
(10.7 12.9)
(12.5 15.5)
SI (Imperial units in brackets)
Ł Not included in BS 1490: 1988. † [ ] signifies obsolete specification. ‡ Si C Fe 1.0 max. § Or 5 days ageing at room temp. ŁŁ Can substitute stabilizing treatment at 200 250 ° C if used for pistons. †† Allow to cool to 480 ° C before quench.
(14.9 16.8) HB 100 130
Note: E Excellent. F Fair. G Good. P Poor. U Unsuitable. (Ge General purpose alloy; SP Special purpose alloy as per BS 1490: 1988).
Aluminium and magnesium casting alloys
Mechanical properties chill cast SI units (Imperial units in brackets) 170 278(18.0) Tensile stress min., MPa 2 (tonf in ) Elongation % Expected 0.2% proof stress, 140 170 139 170 min., MPa 2 (tonf in ) (9.0 11.0) HB 100 150
75
76
Smithells Light Metals Handbook
Table 4.4 MISCELLANEOUS ALUMINIUM ALLOYS Specification BS 1400; 1988 Aerospace BSL series DTD series
LM5M(SP)
4L53
L99
0.2 7.4 7.9 0.25 0.35 0.1 0.3 0.1 0.9 1.4 0.05 0.05 0.25
0.1 9.5 11.0 0.25 0.35 0.10 0.10 0.10 0.05 0.05 0.2†
0.1 0.20 0.45 6.5 7.5 0.20 0.10 0.10 0.10 0.05 0.05 0.20
F F
G E F‡
680 720 2.64
F F F‡ F E P F G G 450 620 680 720 2.57
425 435§ 8 Oil at 160 ° CŁŁ or boiling water
425 435 8 Oil at no more†† than 160 ° C
5018A
Composition % (Single figures indicate maximum) Copper 0.1 Magnesium 3.0 6.0 Silicon 0.3 Iron 0.6 Manganese 0.3 0.7 Nickel 0.1 Zinc 0.1 Lead 0.05 Tin 0.1 Titanium 0.2 Other Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temp. Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, ° C Casting temperature range, ° C Specific gravity
LM10TB(SP)
F F F‡ F E P F F G 580 642 680 740 2.65
Heat treatment Solution temperature, ° C Solution time, h Quench
F E P F G G
Precipitation temp., ° C Precipitation time, h
E G G G F 550 615 680 740 2.67 535 545 12 Water at 65 ° C min 150 160 4
Special properties
Good corrosion resistance in marine atmospheres
Mechanical properties Sand cast Tensile stress min, MPa (tonf in 2 ) Elongation % Expected 0.2% proof stress, min MPa (tonf in 2 )
SI units (Imperial units in brackets)
Mechanical properties chill cast Tensile stress min, MPa (tonf in 2 ) Elongation % Expected 0.2% proof stress, min MPa (tonf in 2 )
SI units (Imperial units in brackets)
Good shock resistance and high corrosion resistance ***
Excellent castability with good mech. props.
140(9.1) 3
278 3
280(18.0) 8
230(14.9) 2
90 110(5.8 7.1)
170(11.0)
170 190 (11.0-12.3)
185(12.0)
310(20.1) 12 170 200 (11.0 12.9)
280(18.1) 5 200(12.9)
170(11.0) 5 90 120(5.8 7.8)
309(20.0) 10 170(11.0)
Ł [ ] obsolete. † 0.05% min. if Ti alone used for grain refinement. †† Not normally used in this form. § Or 8 h at 435 445 C then raise to 490 500 C for further 8 h and quench as in table. ŁŁ Do not retain castings in oil for more than 1 h. ŁŁŁ Not generally recommended since occasional brittleness can develop over long periods.
Aluminium and magnesium casting alloys Table 4.4
77
(continued )
Specification BS 1400: 1988 Aerospace BSL series DTD series
LM28TE(SP)
LM28TF(SP)
[LM23P]Ł
[LM15WP]Ł
3L51
3L52 5008B
Composition % (Single figures indicate maximum) Copper 1.3 1.8 Magnesium 0.8 1.5 Silicon 17 20 Iron 0.7 Manganese 0.6 Nickel 0.8 1.5 Zinc 0.2 Lead 0.1 Tin 0.1 Titanium 0.2 Other Cr 0.6 Co 0.5 Properties of material Suitability for: Sand casting Chill casting (gravity die) Die casting (press die) Strength at elevated temp. Corrosion resistance Pressure tightness Fluidity Resistance to hot shortness Machinability Melting range, ° C Casting temp. range, ° C Specific gravity
P F F G F F G P 520 675 6<735 2.68
Heat treatment Solution temperature, ° C Solution time, h Quench
0.8 0.05 1.5 0.8 0.1 0.8 0.1 0.05 0.05 0.25
2.0 0.2 2.8 1.4 1.7
G G G‡ G G G F G G 545 635 680 750 2.77
495 505 4 Air blast
Precipitation temp, ° C
185
185
150 175
Precipitation time, h
To produce required HB
8
8 24
Special properties
Mechanical properties sand cast Tensile stress min, MPa (tonf in 2 ) Elongation % Expected 0.2% proof stress, min MPa (tonf in 2 )
Piston alloy
Aircraft engine castings
1.3 0.5 0.6 0.8 0.1 0.5 0.1 0.05 0.05 0.25
3.0 1.7 2.0 1.4 2.0
F G U E G F F G G 600 645 685 755 2.75 520 540 4 Water at 80 100 ° C Oil or air blast 150 180 (195 205) 8 24(2 5)
0.1 0.5 0.75 0.25 0.5 0.1 0.1 4.8 5.7 0.1 0.05 0.15 0.25 Cr 0.4 0.6
F P U‡ F E F F P G 572 615 730 770 2.81
175 185‡‡ (at least 24 h after cast) 10(at least 24 h after cast)
High mechanical props. at elevated temps.
Good strength without heat treatment. See‡‡
160(10.4) 2
280(18.1)
216(14.0) 4
125(8.1)
245(15.9)
150(9.7)
325(21.0)
232(15.0) 5
295(19.1)
180(11.7)
SI units (Imperial units in brackets) 120(7.8)
HB100 140 Mechanical properties chill cast SI units (Imperial units in brackets) Tensile stress min, 170(11.0) 190(12.3) 200(13.0) MPa (tonf in 2 ) 3 Elongation % Expected 0.2% proof stress min, MPa (tonf in 2 ) 160 190 140(19.1) HB 90 130 (10.4 12.3) HB 100 140
†† Can be furnace cooled to 385 395 ° C before quench. Do not retain in oil for more than 1 h. Further quench in water or air. ‡‡ Alternative-room temp. age-harden for 3 weeks. Note: E Excellent. F Fair. G Good. P Poor. U Unsuitable. (Ge General purpose alloy; SP Special purpose alloy as per BS 1490: 1988).
78 Smithells Light Metals Handbook
Table 4.5 HIGH STRENGTH CAST AL ALLOYS BASED ON AL-4.5 CU European Designation Al Assoc (USA) designation Cu Mg Si Fe Mn Ni Zn Sn Ti Ag Others each Others total
KO1
201.0 4.0 5.2 0.15 0.55 0.10 0.15 0.20 0.50
0.15 0.35 0.40 1.0 0.05 0.10
A-U5GT
201.2 A201.0 A201.2 4.0 5.2 4.0 5.0 4.0 5.0 0.20 0.55 0.15 0.35 0.20 0.35 0.10 0.05 0.05 0.10 0.10 0.07 0.20 0.50 0.20 0.40 0.20 0.40
0.15 0.35 0.40 1.0 0.05 0.10
0.15 0.35 0.40 1.0 0.03 0.10
0.15 0.35 0.40 1.0 0.03 0.10
204.0 4.2 5.0 0.15 0.35 0.20 0.35 0.10 0.05 0.10 0.05 0.15 0.30 0.05 0.15
204.2 4.2 4.9 0.20 0.35 0.15 0.10 0.20 0.05 0.03 0.05 0.05 0.15 0.25 0.05 0.15
206.0 4.2 5.0 0.15 0.35 0.10 0.15 0.20 0.50 0.05 0.10 0.05 0.15 0.3 0.05 0.15
206.2 A206.0 A206.2 4.2 5.0 4.2 5.0 4.2 5.0 0.20 0.35 0.15 0.35 0.20 0.35 0.10 0.05 0.05 0.10 0.10 0.07 0.20 0.50 0.20 0.50 0.20 0.50 0.03 0.05 0.03 0.05 0.10 0.05 0.05 0.05 0.05 0.15 0.25 0.15 0.30 0.15 0.25 0.05 0.15
0.05 0.15
0.05 0.15
Aluminium and magnesium casting alloys
79
Table 4.6 MINIMUM REQUIREMENTS FOR SEPARATELY CAST TEST BARS
Alloy
Sand/Die
TreatmentŁ
UTS MPa
201.0
Sand Sand Sand Die
T6 T7 T4 T4
414 414 311 331
204.0
0.2 PS MPa
EI% in 50 mm or 4 ð diam
345 345 194 220
5.0 3.0 6.0 8.0
Typical HB 500 kgf 10 mm 110 140 130 95
Ł For temper designations see Table 7.3.
Table 4.7 TYPICAL PROPERTIES OF SEPARATELY CAST TEST BARS
Alloy
Sand/Die
TreatmentŁ
201.0
Sand
T4 T43 T6 T7 T7
Sand Sand
Sand
T4 T7
Ł Elevated temperature properties.
0.2 PS MPa 215 255 380 435 415 360 345 275
EI% in 50 mm or 4 ð diam
Room 150CŁ
Temp. 0.5 100 h 1 000 h 10 000 h
365 414 448 485 460 469 380 360 315
205C
0.5 h 100 h 1 000 h 10 000 h
325 285 250 185
310 270 230 150
9 10 9 14
260C
0.5 h 100 h 1 000 h 0.5 h 100 h 1 000 h 10 000 h
195 150 125 140 85 70 60
185 140 110 130 75 60 55
14 17 18 12 30 39 43
20C 120C 175C
436 384 333
347 316 302
11.7 14.0 17.7
315C
A206.0
UTS MPa
20 17 7 8 4.5 5.5 6 8.5 8 7
Typical HB 500 kgf 10 mm 95 135 130
118HV 137HV
80
Magnesium alloys
Table 4.8 ZIRCONIUM-FREE MAGNESIUM ALLOYS Grain refined (0.05 0.2 mm chill cast) when superheated to 850 900 ° C or suitably treated with carbon (as hexachlorethane) Elektron designation ASTM designation Specifications BS 2970: 1989 BSS L series Equivalent DTD
A8 AZ81 MAG1MŁ (GP)†
Composition % (Single figures indicate maximum) Aluminium 7.5 9.0 Zinc 0.3 1.0 Manganese 0.15 0.4 Copper 0.15 Silicon 0.3 Iron 0.05 Nickel 0.01 CuCSiCFeC4Ni 0.40 Material properties Founding Characteristics Tendency to hot tearing Tendency to micro-porosity Castability§ Weldability (Ar-Arc process) Relative damping capacity¶ Strength at elevated temperatureŁŁ Corrosion resistance Density, g cm 3 Liquids, ° C Solidus, ° C Non-equilibrium solidus, ° C Casting temperature range, ° C
Good Sand and permanent‡ mould Little Appreciable A Good C C Moderate 1.81 600 475 420 680 800
MAG1TBŁ (GP) 3L. 112
A8 (High purity) AZ81 MAG2M(SP)†
MAG2TB(SP)
684A
690A
7.5 9.0 0.3 1.0 0.15 0.7 0.005 0.01 0.003 0.001
Good Special melting technique required Little Appreciable A Good C C Moderate 1.81 600 475 420 680 800
Smithells Light Metals Handbook
4.2
Heat treatment Solution: Time, h Temperature, ° C Cooling
12 (min) 435 (max)‡‡ Air, oil or water
Elektron designation ASTM designation Specifications BS 2970: 1989 BSS L series Equivalent DTD
AZ91 AZ91 MAG3M(GP)
Relative damping capacity¶ Strength at elevated temperatureŁŁ Corrosion resistance Density, g cm 3 Liquidus, ° C Solidus, ° C Non-equilibrium solidus, ° C Casting temperature range, ° C
MAG3TB(GP) 3L.124
C alloy MAG3TF(GP) 3L.125
MAG7M(GP)
MAG7TF(GP)
9.0 10.5 0.3 1.0 0.15 0.4 0.15 0.3 0.05 0.01 0.40
7.5 9.5 0.3 1.5 0.15 0.8 0.35 0.40 0.05 0.02 0.75
Good Sand, permanent mould and die (pressure) Little Less than MAG1 A Good, but some difficulty with die castings C C Moderate 1.83 595 470 420 680 800
Good Sand, permanent mould and die (pressure) Little Less than MAG1 A Good, but some difficulty with die castings C C Moderate 1.82 600 475 420 680 800
81
continued overleaf
Aluminium and magnesium casting alloys
Composition % (Single figures indicate maximum) Aluminium Zinc Manganese Copper Silicon Iron Nickel Cu C Si C Fe C Ni Material properties Founding Characteristics Tencency to hot tearing Tendency to micro-porosity Castability§ Weldability (Ar-Arc process)
12 (min) 435 (max)‡‡ Air, oil or water
82
Table 4.8
(continued )
16 (min) 435 (max)‡‡ Air, oil or water
Elektron designation ASTM designation
AZ91 (HP) AZ91E
Specifications BS 2970: 1989 BSS L series Equivalent DTD
ZC63 ZC63
AZ91D MAG11 (GP)
Composition % (Single figures indicate maximum) Aluminium Zinc Manganese Copper Silicon Iron Nickel Cu C Si C Fe C Ni Material properties Founding Characteristics Tendency to hot tearing Tendency to micro-porosity Castability§ Weldability (Ar-Arc process) Relative damping capacity¶ Strength at elevated temperatureŁŁ Corrosion resistance Density, g cm 3 Liquidus, ° C Solidus, ° C Non-equilibrium solidus, ° C Casting temperature range, ° C
16 (min) 435 (max)‡‡ Air, oil or water
Sand and permanent mould Good Little Less than MAG1 A Good C C Excellent 1.83 595 470 420 680 800
8.5 9.5 0.45 0.9 0.15 0.40 0.015 0.020 0.005 0.0010
High pressure die Good Little Little A Difficult C C Excellent 1.83 595 470 420 620 680
5.5 6.5 0.25 0.75 2.4 3.0 0.20 0.05 0.01
Sand, permanent and high pressure die Good Little Little B Good C B Moderate 1.84 635 465 700 810
Smithells Light Metals Handbook
Heat treatment Solution: Time, h Temperature, ° C Cooling
Heat treatment Time, h Temperature, ° C Cooling
16 (min) 435 (max) Air, oil or water
Elektron designation ASTM designation Specifications BS 2970: 1989 BSS L series Equivalent DTD Heat treatment continued Precipitation: Time, h Temperature, ° C Stress relief: Time, h Temperature, ° C
Not suitable
8 440 (max) oil or water
A8 AZ81 MAG1MŁ (GP)†
MAG1TBŁ (GP) 3L.122
2 4 250 330
A8 (High purity) AZ81 MAG2M(SP)†
MAG2TB(SP)
684A
690A
2 4 250 330 140 (9.1) 85 (5.5) 2
200 (13.0) 80 (5.2) 6
Mechanical properties chill cast (SI units first, Imperial units following in brackets) 185 (12.0) 230 (14.9) Tensile strength (min), MPa (tonf in 2 ) 2 0.2% proof stress (min), MPa 85 (5.5) 80 (5.2) p (tonf in ) Elongation % (min) (5.65 S0 ) 4 10
185 (12.0) 85 (5.5) 4
230 (14.9) 80 (5.2) 10
Applications
Automobile road wheels
Good ductility and shock resistance
High-purity alloy
offers good corrosion resistance
continued overleaf
Aluminium and magnesium casting alloys
Mechanical propefties sand cast (SI units first, Imperial units following in brackets) Tensile strength (min), MPa (tonf in 2 ) 140 (9.1) 200 (13.0) 2) 0.2% proof stress (min), MPa (tonf in 85 (5.5) 80 (5.2) p Elongation % (min) (5.65 S0 ) 2 6
83
84
Elektron designation ASTM designation Specifications BS 2970: 1989 BSS L series Equivalent DTD Precipitation: Time, h Temperature, ° C Stress relief: Time, h Temperature, ° C
AZ91
MAG3M(GP)
MAG3TB(GP) 3L.124
MAG3TF(GP) 3L.125
MAG7M(GP)
MAG7TB(GP)
8(min) 210(max) 2 4 250 330
MAG7TF(GP)
8(min) 210(max) 2 4 250 330
Mechanical properties sand cast (SI units first, Imperial units following in brackets) Tensile strength (min), MPa (tonf in 2 /†† 125 (8.1) 200 (13.0) 2 95 (6.2) 85 (5.5) 0.2% proof stress (min), MPa p (tonf in ) Elongation % (min) (5.65 S0 ) 4 Mechanical properties chill cast (SI units first, Imperial units following in brackets) Tensile strength (min), MPa (tonf in 2 ) 170 (11.0) 215 (13.9) 2 0.2% proof stress (min), MPa 100 (6.5) 85 (5.5) p (tonf in ) Elongation % (min) (5.66 S0 ) 2 5 Applications
C alloy
200 (13.0) 130 (8.4)
125 (8.1) 85 (5.5)
185 (12.0) 80 (5.2) 4
185 (12.0) 110 (7.1)
215 (13.9) 130 (8.4) 2
170 (11.0) 85 (5.5) 2
215 (13.9) 80 (5.2) 5
215 (13.9) 110 (7.1) 2
For pressure tight applications Increased proof stress after full heat treatment
Principal alloy for commercial usage
Smithells Light Metals Handbook
Table 4.8 (continued )
Elektron designation ASTM designation
AZ91(HP) AZ91E
Specifications BS 2970: 1989 BSS L series Equivalent DTD Precipitation: Time, h Temperature, ° C Stress relief: Time, h Temperature, ° C
ZC63 ZC63
AZ91D MAG11(GP)
16 (min) 200 (max)
Mechanical properties sand cast (SI units first, Imperial units following in brackets) Tensile strength (min), MPa (tonf in 2 ) 200 2 130 0.2% proof stress (min), MPa p (tonf in ) Elongation % (min) (5.65 S0 ) 2
Typical high pressure die-cast properties
210 125 3
Mechanical properties chill cast (SI units first, Imperial units following in brackets) Tensile strength (min), MPa (tonf in 2 ) 215 2) 0.2% proof stress (min), MPa (tonf in 130 p Elongation % (min) (5.65 S0 ) 2
200 150 1
210 125 3
High purity alloy
Ł M-as cast.
TS Stress relieved only. TE Precipitation treated only. TB Solution treated only. TF Solution and precipitation treated. † GP General purpose alloy. SP Special purpose alloy. ‡ Permanent mouldDgravity die casting. § Ability to fill mould easily. A, B, C, indicate decreasing castability.
offers excellent corrosion resistance. Max. temp. 120 ° C
Better foundability than AZ91 with superior elevated temperature properties
¶ Damping capacity ratings. ADOutstanding; better than grey cast iron. BDEquivalent to cast-iron. CDInfersior to cast-iron but better Al-base cast alloys. ŁŁ ADParticularly recommended. BDSuitable but not especially recommended. CDNot recommended where strength at elev. temps is likely to be an important consideration. †† 1 MPaD1 H m 2 D0 064 75 tonf in 2 . ‡‡ SO or CO atmosphere. 2 2
Aluminium and magnesium casting alloys
Not suitable
Applications
8 (min) 210 (max)
85
86
Table 4.9 MAGNESIUM-ZIRCONIUM ALLOYS Inherently fine grained (0.015 0.035 mm chill cast)
Specifications BS 2970: 1989 BSS L series Equivalent DTD Composition % (Single figures indicate maximum) Zinc Silver Rare earth metals Thorium Zirconium Copper Nickel Iron Silicon Manganese Material properties Founding characteristics Tendency to hot tearing Tendency to micro-porosity Castability¶ Weldability (Ar-Arc Process) Relative damping capacityŁŁ Strength at elevated temperature†† Resistance to creep at elevated temperature Corrosion resistance Density, g cm 3 (20 ° C) Liquidus, ° C Solidus, ° C Casting temperature range, ° C
Z5Z ZK51
RZ5 ZE41
ZRE1 EZ33
MAG4TEŁ (GP)† 2L.127
MAG5TE(SP) 2L.128
MAG6TE(SP) 2L.126
3.5 5.5
3.5 5.5
0.8 3.0
0.75 1.75
2.5 4.0
0.4 1.0 0.03 0.005
0.4 1.0 0.03 0.005
0.4 1.0 0.03 0.005
Good in sand and permanent moulds§ Marked Very appreciable B Not recommended B/C C Poor Moderate 1.81 640 560 720 810
Good in sand and permanent moulds Some Virtually none A Moderate B/C B Moderate Moderate 1.84 640 510 720 810
Excellent in sand and permanent moulds Little None A Very good B A Good up to 250 ° C Moderate 1.80 640 545 720 810
Smithells Light Metals Handbook
Elektron designation ASTM designation
Heat treatment Solution: Time, h Temperature, ° C Cooling Precipitation: Time, h Temperature, ° C
2 followed by 16 330 180 Air cool after each
8 200 Air cool
2 330 to precede precipitation treatment
Precipitation treatment affords s/relief
10 250 max Air cool
Mechanical properties sand cost SI units (Imperial units in brackets) Tensile strength min, MPa (tonf in 2 ) 230 (14.9) 2 0.2% proof stress min, 145 (9.4) p MPa (tonf in ) Elongation, % (5.65 S0 ) min 5
200 (13.0) 135 (8.7) 3
140 (9.1) 95 (6.2) 3
Mechanical properties chill cast SI units (Imperial units in brackets) 245 (15.9) Tensile strength min, MPa (tonf in 2 ) 2 0.2% proof stress min, 145 (9.4) p MPa (tonf in ) Elongation, % (5.65 S0 ) min 7
215 (13.9) 135 (8.7) 4
155 (10.0) 110 (7.1) 3
For high-strength pressure-tight applications
High degree of pressure tightness at room and elevated temperatures
Post weld stress relief: Time, h
Applications
High strength plus good ductility. Not suitable for spidery complex shapes
continued overleaf
Aluminium and magnesium casting alloys
16 180 Air cool
87
88
Table 4.9 (continued )
Specifications BS 2970: 1989 BSS L series Equivalent DTD
ZT1‡‡‡ HZ32
TZ6‡‡‡ ZH62
MAG8TE(SP)
MAG9TE(SP)
5005A
5015A
ZE63 ZE63
5045
Composition % (Single figures indicate maximum) Zinc Silver Rare earth metals Thorium Zirconium Copper Nickel Iron Silicon Manganese
1.7 2.5
5.0 6.0
5.5 6.0
0.10 2.5 4.0 0.4 1.0 0.03 0.005 0.01 0.01 0.15
0.20 1.5 2.3 0.4 1.0 0.03 0.005 0.01 0.01 0.15
2.0 3.0 0.4 1.0 0.03 0.005 0.01 0.01 0.15
Material properties Founding characteristics Tendency to hot tearing Tendency to micro-porosity Castability¶ Weldability (Ar-Arc process) Relative damping capacityŁŁ Strength at elevated temperature†† Resistance to creep at elevated temperature Corrosion resistance Density, g cm 3 (20 ° ) Liquidus, ° C Solidus, ° C Casting temperature range, ° C
As per MAG7 but more sluggish Little None C Very good B A Good up to 350 ° C Moderate 1.85 645 550 720 810
Similar to MAG5 Very little Low B Fair C B Fair Moderate 1.87 630 520 720 810
Good Negligible Virtually none A Very goodŁŁŁ B/C C Poor Moderate 1.87 625 516 720 810
Smithells Light Metals Handbook
Elektron designation ASTM designation
Heat treatment Solution: Time, h Temperature, ° C Cooling Precipitation: Time, h Temperature, ° C Post weld stress relief: Time, h Temperature, ° C
30 for 12 mm sctn. 70 for 25 mm sctn. 480††† Air blast or water spray 16 315 Air cool
48 or 72 138 127 Air cool
Pptn. treatment affords stress relief
255 (16.5) 155 (10.0) 5
275 (17.8) 170 (11.0) 5
255 (16.5) 155 (10.0) 5 For heavy duty structural usage
Sand Cast Alloy High strength with good ductility and excellent fatigue resistance. Structural parts aircraft, etc. continued overleaf
Aluminium and magnesium casting alloys
2 350 Air cool SI units (Imperial units in brackets) Mechanical properties sand cast 185 (12.0) Tensile strength min, MPa (tonf in 2 ) 2 0.2% proof stress min, 85 (5.5) p MPa (tonf in ) Elongation, % (5.65 S0 ) min 5 SI units (Imperial units in brackets) Mechanical properties chill cast Tensile strength min, MPa (tonf in 2 ) 185 (12.0) 0.2% proof stress min, 85 (5.5) p MPa 5 Elongation, % (5.65 S0 ) min Applications Creep resistant alloy
2 followed 16 330 by 180 Air cool after each
89
Specifications BS 2970: 1972 BSS L series Equivalent DTD
MSR-A
MSR-B
MTZ‡‡‡ HK31
MSR QE22
MAG12TF(SP) 5025A
Composition % (Single figures indicate maximum) Zinc 0.2 Silver 2.0 3.0 Rare earth metals 1.2 2.0‡ Thorium Zirconium 0.4 1.0 Copper 0.03 Nickel 0.005 Iron 0.01 Silicon 0.01 Manganese 0.15 Yttrium
5035A
EQ21 EQ21
WE54 WE54
MAG13TF(SP)
MAG14TF(SP)
WE43 WE43
5055
0.2 2.0 3.0 2.0 3.0‡
0.2 2.0 3.0 1.8 2.5‡
0.4 1.0 0.03 0.005 0.01 0.01 0.15
0.4 1.0 0.03 0.005 0.01 0.01 0.15
0.3 0.1 2.5 4.0 0.4 1.0 0.03 0.005 0.01 0.01 0.15
0.2 1.3 1.7 1.5 3.0‡ 0.4 1.0 0.05 0.10 0.005 0.01 0.01 0.15
0.2
0.2
2.0 4.0¶¶¶
2.4 4.4¶¶¶
0.4 1.0 0.03 0.005 0.01 0.01 0.15 4.75 5.5
0.4 1.0 0.03 0.005 0.01 0.01 0.15 3.7 4.3
Smithells Light Metals Handbook
Elektron designation ASTM
90
Table 4.9 (continued )
Elektron designation ASTM designation
MSR-A
Specifications BS 2970: 1989
MSR-B
MSR QE22
MTZ‡‡‡ MK31
MAG12TF (SP)
WE54 WE54
WE43 WE43
MAG13TF(SP)
MAG14TF(SP)
Good Little Slight B Very good B/C A
Good Very little Slight B Very good B/C A
Good Very little Slight B Very good B/C A
Good up to 200 ° C
Very good up to 250 ° C
Very good up to 250 ° C
Moderate 1.81 640 545 720 810
Excellent 1.85 640 550 720 810
Excellent 1.85 640 550 720 810
BSS L series Equipment DTD
5025A
5035A
5055
Material properties Founding characteristics
Good
Good
Good
Tendency to hot tearing Tendency to micro-porosity Cqstability¶ Weldability (Ar-Arc process) Relative damping capacityŁŁ Strength at elevated temperature†† Resistance to creep at elevated temperature
Little Slight B Very good B/C A
Little Slight B Very good B/C A
Little Slight B Very good B/C A
Good up to 200 ° C
Good up to 200 ° C
Good up to 200 ° C
Corrosion resistance Density, g cm 3 (20 ° C) Liquidus, ° C Solidus, ° C Casting temperature range, ° C Heat treatment Solution: Time, h Temperature, ° C Cooling Precipitation: Time, h Temperature, ° C
Moderate 1.81 640 550 720 810
Moderate 1.82 640 550 720 810
Moderate 1.81 640 550 720 810
Good up to 350 ° C for short time applications Moderate 1.84 645 590 720 810
8 525‡‡ Water or oil
8 525‡‡ Water or oil
8 525‡‡ Water or oil
2 565‡‡,¶¶ Air cool
8 520‡‡ Water or oil
8 525‡‡ Air cool
8 525‡‡ Water or oil
16 200 Air cool
16 200 Air cool
16 200 Air cool
16 200 Air cool
16 200 Air cool
16 250 Air cool
16 250 Air cool
Less easy to found than MSR types Very little Negligible C Very good B/C A
91
continued overleaf
Aluminium and magnesium casting alloys
EQ21 EQ21
Specifications BS 2970: 1989 BSS L series Equipment DTD
MSR-A
MSR-B
MSR QE22
EQ21 EQ21
WE54 WE54
MAG13TF(SP)
MAG14TF(SP)
Repeat above cycle
1 505 followed by above quench and age
1 510 followed by above aircool and age
1 510 followed by above quench and age
240 (15.5)
200 (13.0)
240
250
250
175 (11.3) 2
93 (6.0) 5
170 2
175 2
165 2
240
250
250
170 cast Similar to MSR alloys but less but less
175 2 Excellent strength up to 300 ° C for short time applications. Excellent corrosion resistance
165 2 Excellent strength up to 250 ° C for long time applications. Excellent corrosion resistance
MAG12TF(SP) 5025A
5035A
1 510 followed by above quench and age Mechanical properties sand cast SI units (Imperial units in brackets) Tensile strength min, MPa (tonf in 2 ) 240 (15.5) 240 (15.5) 0.2% proof stress min, MPa 2 (tonf in ) 170 (11.0) 185 (12.0) p 4 2 Elongation, % (5.65 S0 ) min Mechanical properties chill cast SI units (Imperial units in brackets) Tensile strength min, MPa 240 (15.5) 240 (15.5) (tonf in 2 ) 0.2% proof stress min, MPa 2 170 (11.0) 185 (12.1) (tonf in ) p 4 2 Elongation, % (5.65 S0 ) min Applications High strength in thick and thin section castings. Good elevated temperature (up to 250 ° C) short time tensile and fatigue props. Ł See footnote to Table 4.1. † See footnote to Table 4.1. ‡ Neodymium-rich rare rearths (others Ce-rich). ¶ See footnote to Table 4.1.
§ See footnote to Table 4.1.
WE43 WE43
5055
Post-weld stress relief: Time, h Temperature, ° C
ŁŁ See footnote to Table 4.1.
MTZ‡‡‡ MK31
240 (15.5) 175 (11.3) 2 Similar to MSRA-B
Usually sand 2 Superior short time tensile and creep resistance at temperatures around 300 ° C
†† See footnote to Table 4.1. ‡‡ SO or CO atmosphere. 2 2 ¶¶ Castings to be loaded into furnace at operating temperature. ŁŁŁ But only before hydriding treatment. ††† In hydrogen at atmospheric pressure. ‡‡‡ Thorium containing alloys are being replaced by alternative magnesium based alloys. ¶¶¶ Neodymium and heavy rare earths.
Smithells Light Metals Handbook
Elektron designation ASTM designation
92
Table 4.9 (continued )
5
5.1 Ag Ag Ag Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al
Equilibrium diagrams
Index of binary diagrams Al Mg Ti As Au B Ba Be Bi Ca Cd Ce Co Cr Cs Cu Dy Er Fe Ga Gd Ge Hf Hg Ho In K La Li Mg Mn Mo Na Nb Nd Ni Pb Pd Pr Pt Pu Re Ru Sb Sc Se Si Sm Sn Sr
94 95 95 96 96 97 97 98 98 99 99 99 100 101 102 102 103 103 104 105 105 105 106 106 107 107 108 108 109 109 110 110 111 111 112 112 112 113 113 114 115 116 116 117 117 118 118 118 119 119
Al Ta Al Te Al Th Al Ti Al Tl Al U Al V Al W Al Y Al Yb Al Zn Al Zr Au Mg Au Ti B Ti Ba Mg Be Ti Bi Mg Bi Ti C Ti Ca Mg Ca Ti Cd Mg Cd Ti Ce Mg Ce Ti Co Mg Co Ti Cr Ti Cu Mg Cu Ti Er Ti Fe Mg Fe Ti Ga Mg Gd Mg Gd Ti Ge Ti H Ti Hf Ti Hg Mg In Mg In Ti Ir Ti
120 120 120 121 121 122 122 123 123 124 124 125 126 126 127 127 128 128 129 129 130 130 131 131 131 132 132 133 133 134 134 135 135 136 136 137 137 138 138 139 139 140 140 141
K Mg La Mg Li Mg Mg Mn Mg Na Mg Ni Mg Pb Mg Pr Mg Pu Mg Sb Mg Sc Mg Si Mg Sn Mg Sr Mg Th Mg Ti Mg Tl Mg U Mg Y Mg Zn Mg Zr Mn Ti Mo Ti N Ti Nb Ti Nd Ti Ni Ti O Ti Os Ti Pb Ti Pd Ti Pt Ti Pu Ti Sc Ti Si Ti Sn Ti Ta Ti Th Ti Ti U Ti V Ti W Ti Y Ti Zn Ti Zr
141 142 142 143 143 144 144 144 145 145 146 146 147 147 148 148 148 149 149 150 150 151 152 152 153 153 154 154 155 155 156 156 157 157 158 158 159 159 160 160 161 161 161 162
94
Ag Al
Smithells Light Metals Handbook
Equilibrium diagrams
95
Ag Mg
Ag Ti
96
Al As
Al Au
Smithells Light Metals Handbook
Equilibrium diagrams
97
Al B
Al Ba
98
Al Be
Al Bi
Smithells Light Metals Handbook
Equilibrium diagrams
99
Al Ca
Al Cd
Al Ce
100
Al Co
Smithells Light Metals Handbook
Equilibrium diagrams
101
Al Cr
102
Al Cu
Al Cs
Smithells Light Metals Handbook
Equilibrium diagrams
103
Al Dy
Al Er
104
Al Fe
Al Fe
Smithells Light Metals Handbook
Equilibrium diagrams
105
Al Ga
Al Gd
Al Ge
106
Al Hf
Al Hg
Smithells Light Metals Handbook
Equilibrium diagrams
107
Al Ho
Al In
108
Al K
Al La
Smithells Light Metals Handbook
Equilibrium diagrams
109
Al Li
Al Mg
110
Al Mn
Al Mo
Smithells Light Metals Handbook
Equilibrium diagrams
111
Al Na
Al Nb
112
Smithells Light Metals Handbook
Al Ni
Al Nd
Al Pb
Al Ni
Equilibrium diagrams
113
Al Pd
Al Pr
114
Al Pt
Smithells Light Metals Handbook
Equilibrium diagrams
115
Al Pu
116
Al Re
Al Ru
Smithells Light Metals Handbook
Equilibrium diagrams
117
Al Sb
Al Sc
118
Al Se
Al Si
Al Sm
Smithells Light Metals Handbook
Equilibrium diagrams
119
Al Sn
Al Sr
120
Al Ta
Al Te
Al Th
Smithells Light Metals Handbook
Equilibrium diagrams
121
Al Ti
Al Tl
122
Al U
Al V
Smithells Light Metals Handbook
Equilibrium diagrams
123
Al W
Al Y
124
Al Yb
Al Zn
Smithells Light Metals Handbook
Equilibrium diagrams
125
Al Zn
Al Zr
126
Au Mg
Au Ti
Smithells Light Metals Handbook
Equilibrium diagrams
127
B Ti
Ba Mg
128
Be Ti
Bi Mg
Smithells Light Metals Handbook
Equilibrium diagrams
129
Bi Ti
C Ti
130
Ca Mg
Ca Ti
Smithells Light Metals Handbook
Equilibrium diagrams
131
Cd Mg
Cd Ti
Ce Mg
132
Ce Ti
Co Mg
Smithells Light Metals Handbook
Equilibrium diagrams
133
Co Ti
Cr Ti
134
Cu Mg
Cu Ti
Smithells Light Metals Handbook
Equilibrium diagrams
135
Er Ti
Fe Mg
136
Fe Ti
Ga Mg
Smithells Light Metals Handbook
Equilibrium diagrams
137
Gd Mg
Gd Ti
138
Ge Ti
H Ti
Smithells Light Metals Handbook
Equilibrium diagrams
139
Hf Ti
Hg Mg
140
In Mg
In Ti
Smithells Light Metals Handbook
Equilibrium diagrams
141
Ir Ti
K Mg
142
La Mg
Li Mg
Smithells Light Metals Handbook
Equilibrium diagrams
143
Mg Mn
Mg Na
144
Mg Ni
Mg Pb
Mg Pr
Smithells Light Metals Handbook
Equilibrium diagrams
145
Mg Pu
Mg Sb
146
Mg Sc
Mg Si
Smithells Light Metals Handbook
Equilibrium diagrams
147
Mg Sn
Mg Sr
148
Smithells Light Metals Handbook
Mg Ti Mg Th
Mg Tl
Equilibrium diagrams
149
Mg U
Mg Y
150
Mg Zn
Mg Zr
Smithells Light Metals Handbook
Equilibrium diagrams
151
Mn Ti
152
Mo Ti
N Ti
Smithells Light Metals Handbook
Equilibrium diagrams
153
Nb Ti
Nd Ti
154
Ni Ti
O Ti
Smithells Light Metals Handbook
Equilibrium diagrams
155
Os Ti
Pb Ti
156
Pd Ti
Pt Ti
Smithells Light Metals Handbook
Equilibrium diagrams
157
Pu Ti
Sc Ti
158
Si Ti
Sn Ti
Smithells Light Metals Handbook
Equilibrium diagrams
159
Ta Ti
Th Ti
160
Ti U
Ti V
Smithells Light Metals Handbook
Equilibrium diagrams
161
Ti W
Ti Y
Ti Zn
162
Ti Zr
Smithells Light Metals Handbook
6
Metallography of light alloys
Metallography can be defined as the study of the structure of materials and alloys by the examination of specially prepared surfaces. Its original scope was limited by the resolution and depth of field in focus by the imaging of light reflected from the metallic surface. These limitations have been overcome by both transmission and scanning electron microscopy (TEM, STEM and SEM). The analysis of X-rays generated by the interaction of electron beams with atoms at or near the surface, by wavelength or energy dispersive detectors (WDX, EDX), has added quantitative determination of local composition, e.g. of intermetallic compounds, to the deductions from the well-developed etching techniques. Surface features can also be studied by collecting and analysing electrons diffracted from the surface. A diffraction pattern of the surface can be used to determine its crystallographic structure (low-energy electron diffraction or LEED). These electrons can also be imaged as in a conventional electron microscope (Low-energy electron microscopy or LEEM). This technique is especially useful for studying dynamic surface phenomena such as those occurring in catalysis. X-rays photoelectron microscopy (XPS or ESCA) now enables the metallographer to analyse the atoms in the outermost surface layer to a depth of a few atoms (0.3 5.0 nm) and provides information about the chemical environment of the atom. Auger spectroscopy uses a low-energy electron beam instead of X-rays to excite atoms, and analysis of the Auger electrons produced provides similar information about the atoms from which the Auger electron is ejected. Nevertheless, the conventional optical techniques still have a significant role to play and their interpretation is extended and reinforced by the results of the electronic techniques.
6.1
Metallographic methods for aluminium alloys
PREPARATION
Aluminium and its alloys are soft and easily scratched or distorted during preparation. For cutting specimens, sharp saw-blades should be used with light pressure to avoid local overheating. Specimens may be ground on emery papers by the usual methods, but the papers should preferably have been already well used, and lubricated or coated with a paraffin oil (‘white spirit’ is suitable), paraffin wax or a solution of paraffin wax in paraffin oil. Silicon carbide papers (down to 600-grit) which can be well washed with water are preferred for harder alloys, the essential point being to avoid the embedding of abrasive particles in the metal. For pure soft aluminium, a high viscosity paraffin is needed to avoid this. Polishing is carried out in two stages: initial polishing with fine ˛-alumina, proprietary metal polish, or diamond, and final polishing with -alumina or fine magnesia, using a slowly rotating wheel (not above 150 rev. min 1 ). It is essential to use properly graded or levigated abrasives and it is preferable to use distilled water only; it is an advantage to boil new polishing cloths in water for some hours in order to soften the fibres. Many aluminium alloys contain hard particles of various intermetallic compounds, and polishing times should in general be as short as possible owing to the danger of producing excessive relief. Relief may be minimized by experience and skill in polishing; blanket felt may with advantage be substituted for velveteen or selvyt cloth as a polishing pad, while the use of parachute silk on a cork pad is also useful for avoiding relief in the initial stages of the process, but a better general alternative is to use diamond polishing, followed by a very brief final polishing with magnesia. Many aluminium alloys contain the reactive compound Mg2 Si. If this constituent is suspected, white spirit should be substituted for water during all but the initial stages of wet polishing, to avoid loss of the reactive particles by corrosion.
164
Smithells Light Metals Handbook
Table 6.1 MICROCONSTITUENTS WHICH MAY BE ENCOUNTERED IN ALUMINIUM ALLOYS Microconstituent Al3 Mg2 Mg2 Si CaSi2 CuAl2 NiAl3 Co2 Al9 .1/ FeAl3 MnAl6
Appearance in unetched polished sections Faint, white. Difficult to distinguish from the matrix. Slate grey to blue. Readily tarnishes on exposure to air and may show irridescent colour effects. Often brown if poorly prepared. Forms Chinese script eutectic. Grey. Easily tarnished Whitish, with pink tinge. A little in relief; usually rounded Light grey, with a purplish pink tinge
CrAl7
Light grey Lavender to purplish grey; parallel-sided blades with longitudinal markings Flat grey. The other constituents of binary aluminium-manganese alloys (MnAl4 , MnAl3 and ‘υ’) are also grey and appear progressively darker. May form hollow parallelograms Whitish grey; polygonal. Rarely attacked by etches
Silicon ˛(AlMnSi).2/ ˇ(AlMnSi).2/ Al2 CuMg Al6 Mg4 Cu
Slate grey. Hard, and in relief. Often primary with polygonal shape use etch to outline Light grey, darker and more buff than MnAl6 Darker than ˛(AlMnSi), with a more bluish grey tint. Usually occurs in long needles Like CuAl2 but with bluish tinge Flat, faint and similar to matrix
(AlCuMn).3/ ˛(AlFeSi).4/ ˇ(AlFeSi).4/ (AlCuFe).5/ (AlFeMn).6/
Grey Purplish grey. Often occurs in Chinese-script formation. Isomorphous with ˛(AlMnSi) Light grey. Usually has a needle-like formation Grey ˛ phase lighter than ˇ phase (see Note 5) Flat grey, like MnAl6
(AlCuNi) (AlFeSiMg).7/ FeNiAl9 (AlCuFeMn) Ni4 Mn11 Al60 MgZn2
Purplish grey Pearly grey Very similar to and difficult to distinguish from NiAl3 Light grey Purplish grey Faint white; no relief
In Table 10.1 constituents are designated by symbols denoting the compositions upon which they appear to be based, or by the elements, in parentheses, of which they are composed. The latter nomenclature is adopted where the composition is unknown, not fully established, or markedly variable. The superscript numbers in column 1 refer to the following notes: (1) On very slow cooling under some conditions, FeAl3 decomposes into Fe2 Al7 and Fe2 Al5 . The former is micrographically indistinguishable from FeAl3 . The simpler formula is retained for consistency with most of the original literature. (2) ˛(AlMnSi) is present in all slowly solidified aluminium-manganese-silicon alloys containing more than 0.3% of manganese and 0.2% of silicon, while ˇ(AlMnSi), a different ternary compound, occurs above approximately 3% of manganese for alloys containing more than approximately 1.5% of silicon. ˛(AlMnSi) has a variable composition in the region of 30% of manganese and 10 15% of silicon. The composition of ˇ(AlMnSi) is around 35% of manganese and 5 10% of silicon. (3) (AlCuMn) is a ternary compound with a relatively large range of homogeneity based on the composition Cu2 Mn3 Al20 . (4) ˛(AlFeSi) may contain approximately 30% of iron and 8% of silicon, while ˇ(AlFeSi) may contain approximately 27% of iron and 15% of silicon. Both constituents may occur at low percentages of iron and silicon. (5) The composition of this phase is uncertain. Two ternary phases exist. ˛(AlCuFe) resembles FeAl3 ; ˇ(AlCuFe) forms long needles. (6) The phase denoted as (AlFeMn) is a solid solution of iron in MnAl6 . (7) This constituent is only likely to be observed at high silicon contents.
It should be noted that some aluminium alloys are liable to undergo precipitation reactions at the temperatures used to cure thermosetting mounting resins; this applies particularly to aluminiummagnesium alloys, in which grain boundary precipitates may be induced. ETCHING
The range of aluminium alloys now in use contains many complex alloy systems. A relatively large number of etching reagents have therefore been developed, and only those whose use has become more or less standard practice are given in Table 6.2. Many etches are designed to render the distinction between the many possible microconstituents easier, and the type of etching often depends on the magnification to be used. The identification of constituents, which is best accomplished by using cast specimens where possible, depends to a large extent on distinguishing between the
Metallography of light alloys
165
Table 6.2 ETCHING REAGENTS FOR ALUMINIUM AND ITS ALLOYS No. 1
Reagent
Remarks
Hydrofluoric acid (40%) 0.5 Hydrochloric acid (1.19) 1.5 Nitric acid (1.40) 2.5 Water 95.5
ml ml ml ml
(Keller’s etch)†
15 s immersion is recommended. Particles of constituents are outlined. Colour indications: Mg2 Si and CaSi2 : ˛(AlFeSi) and (AlFeMn): ˇ(AlCuFe): MgZn2 , NiAl3 , (AlCuFeMn), Al2 Cu Mg and Al6 CuMg: ˛(AlCuFe) and (AlCuMn): Al3 Mg2 :
all common microblue to brown darkened light brown brown to black
blackened heavily outlined and pitted The colours of other constituents are little altered. Not good for high Si alloys
2
Hydrofluoric acid (40%) 0.5 ml Water 99.5 ml
15 s swabbing is recommended. This reagent removes surface flowed layers, and reveals small particles of constituents, which are usually fairly heavily outlined. There is little grain contrast in the matrix. Colour indications: blue Mg2 Si and CaSi2 : slightly darkened FeAl3 and MnAl6 : NiAl3 : brown (irregular) ˛(AlFeSi): dull brown (AlCrFe): light brown dark brown Co2 Al9 : (AlFeMn): brownish tinge ˛(AlCuFe), (AlCuMg) and (AlCuMn): blackened ˛(AlMnSi), ˇ(AlMnSi) and (AlCuFeMn) may appear light brown to black ˇ(AlFeSi) is coloured red brown to black The remaining possible constituents are little affected
3
Sulphuric acid (1.84) Water
20 ml 80 ml
30 s immersion at 70 ° C; the specimen is quenched in cold water. Colour indications: violently attacked, Mg2 Si, Al3 Mg2 and FeAl3 : blackened and may be dissolved out blue CaSi2 : ˛(AlMnSi) and ˇ(AlMnSi): rough and attacked slightly darkened NiAl3 and (AlCuNi): ˇ(AlFeSi): slightly darkened and pitted ˛(AlFeSi), (AlCuMg) and (AlCuFeMn): outlined and blackened Other constituents are not markedly affected
4
Nitric acid (1.40) Water
25 ml 75 ml
Specimens are immersed for 40 s at 70 ° C and quenched in cold water. Most constituents (not MnAl6 ) are outlined. Colour indications: ˇ(AlCuFe) is slightly darkened Al3 Mg2 and AlMnSi: attacked and darkened slightly Mg2 Si, CuAl2 , (AlCuNi) and (AlCuMg) are coloured brown to black
5
Sodium hydroxide Water
1 g 99 ml
Specimens are etched by swabbing for 10 s. All usual constituents are heavily outlined, except for Al3 Mg2 (which may be lightly outlined) and (AlCrFe) which is both unattacked and uncoloured. Colour indications: slightly darkened FeAl3 and NiAl3 : (AlCuMg): light brown ˛(AlFeSi): dull brownŁ ˛(AlMnSi): rough and attacked; slightly darkenedŁ MnAl6 and (AlFeMn): coloured brown to blue (uneven attack) tends to be darkened MnAl4 : The colours of other constituents are only slightly altered continued overleaf
166
Smithells Light Metals Handbook
Table 6.2 (continued ) No. 6
7
Reagent Sodium hydroxide Water
Remarks
10 g 90 ml
Specimens immersed for 5 s at 70 ° C, and quenched in cold water. Colour indications: ˇ(AlFeSi): slightly darkened light brown Mn11 Ni4 Al60 : ˇ(AlCuFe): light brown and pitted light to dark brown CuAl2 : FeAl3 : dark brown (FeAl3 is more rapidly attacked in the presence of CuAl2 than when alone) MnAl6 , NiAl3 , (AlFeMn), CrAl7 and AlCrFe: blue to brown ˛(AlFeSi), ˛(AlCuFe), CaSi2 and (AlCuMn): blackened
Sodium hydroxide Sodium carbonate (in water)
3% 5%
8
Nitric acid Hydrofluoric acid Glycerol
20 ml 20 ml 60 ml
9
Nitric acid, 1% to 10% by vol. in alcohol
Recommended for aluminium-magnesium alloys. Al3 Mg2 is coloured brown. 5 20% chromium trioxide can be used
10
Picric acid Water
4 g 96 ml
Etching for 10 min darkens CuAl2 , leaving other constituents unaffected. Like reagent 4
11
Orthophosphoric acid Water
9 ml 91 ml
12
Nitric acid
13
Nitric acid (density 1.2) Water Ammonium molybdate, (NH4 )6 Mo7 O24 , 4H2 O
3% 5%
Useful for sensitive etching where reproducibility is essential. In general, the effects are similar to those of Reagent 5, but the tendency towards colour variations for a given constituent is diminished. Particularly useful for distinguishing FeNiAl9 (dark blue) from NiAl3 brown). Potassium salts can be used. A reliable reagent for grain boundary etching, especially if the alternate polish and etch technique is adopted. The colours of particles are somewhat accentuated
The reagent is used cold. Recommended for aluminium-magnesium alloys in which it darkens any grain boundaries containing thin ˇ-precipitates. Specimen is immersed for a long period (up to 30 min). Mg2 Si is coloured black, Al3 Mg2 a light grey, and the ternary (AlMnFe) phase a dark grey 10 s immersion colours Al6 CuMg4 greenish brown and distinguishes it from Al2 CuMg, which is slightly outlined but not otherwise affected
20 ml 20 ml
20 ml of reagent are mixed with 80 ml alcohol. Specimens are immersed, and well washed with alcohol after etching. Brilliant and characteristic colours are developed on particles of intermetallic compounds. The effects depend on the duration of etching, and for differentiation purposes standardisation against known specimens is advised
3 g
14
Sodium hydroxide (various strengths, with 1 ml of zinc chloride per 100 ml of solution)
Generally useful for revealing the grain structure of commercial aluminium alloy sheet67
15
Hydrochloric acid (37%) Hydrofluoric acid (38%) Water
Recommended (30 s immersion at room temperature) for testing the diffusion of copper through claddings of aluminium, aluminiummanganese-silicon, or aluminium-manganese on aluminiumcopper-magnesium sheet. Zinc contents up to 2% in the clad material do not influence the result68
16
Ammonium oxalate Ammonium hydroxide, 15% in water
15.3 ml 7.7 ml 77.0 ml 1 g
Develops grain boundaries in aluminium-magnesium-silicon alloys. Specimens are etched for 5 min at 80 ° C in a solution freshly prepared for each experiment
100 ml
Ł These are isomorphous and the colour depends on the proportion of Mn and Fe. † Sodium fluoride can be used in place of HF in mixed acid etches.
Metallography of light alloys
167
colours of particles, so that the illumination should be as near as possible to daylight quality. It is recommended that a set of specially prepared standard specimens, containing various known metallographic constituents, be used for comparison. It is very easy to obtain anomalous etching effects, such as ranges of colour in certain types of particles, and carefully standardized procedure is necessary. It should be remembered that the form and colour of the microconstituents may vary according to the degree of dispersion brought about by mechanical treatments, and also that the etching characteristics of a constituent may vary according to the nature of the other constituents present in the same section. Some etching reagents for aluminium require the use of a high temperature; in such cases the specimen should be preheated to this temperature by immersion in hot water before etching. For washing purposes, a liberal stream of running water is advisable. Electrolytic etching for aluminium alloys. In addition to the reagents given for aluminium in Table 6.2 the following solutions have been found useful for a restricted range of aluminium-rich alloys: 1.
2.
3.
4.
5.
6.
The following solution has been used for grain orientation studies: Orthophosphoric acid (density 1.65) 53 ml Distilled water 26 ml Diethylene glycol monoethyl ether 20 ml Hydrofluoric acid (48%) 1 ml The specimen should be at room temperature and electrolysis is carried out at 40 V and less than 0.1 A dm 2 . An etching time of 1.5 2 min is sufficient for producing grain contrast in polarized light after electropolishing. The solution below is also used for the same purpose and is more reliable for some alloys: Ethyl alcohol 49 ml Water 49 ml Hydrofluoric acid 2 ml (quantity not critical) The specimen is anodized in this solution at 30 V for 2 min at room temperature. A glass dish must be used. Not suitable for high-copper alloys. For aluminium alloys containing up to 7% of magnesium: Nitric acid (density 1.42) 2 ml 40% hydrofluoric acid 0.1 ml Water 98 ml Electrolysis is carried out at a current density of 0.3 A dm 2 and a potential of 2 V. The specimen is placed 7.6 cm from a carbon cathode. For cast duralumin: Citric acid 100 g Hydrochloric acid 3 ml Ethyl alcohol 20 ml Water 977 ml Electrolysis is carried out at 0.2 A dm 2 and a potential of 12 V. For commercial aluminium: Hydrofluoric acid (40%) 10 ml Glycerol 55 ml Water 35 ml This reagent, used for 5 min at room temperature, with a current density of 1.5 A dm 2 and a voltage of 7 8 V, is suitable for revealing the grain structure after electropolishing.72 For distinguishing between the phases present in aluminium-rich aluminium-coppermagnesium alloys, electrolytic etching in either ammonium molybdate solution or 0.880 ammonia has been recommended. In both cases, Al2 CuMg is hardly affected, CuAl2 is blackened, Al6 Mg4 Cu is coloured brown, while Mg2 Al3 is thrown into relief without change of colour.73
GRAIN-COLOURING ETCH
For many aluminium alloys containing copper, and especially for binary aluminium-copper alloys, it is found that Reagent No. 1 of Table 6.2 gives copper films on cubic faces which are subject to preferential attack and greater roughening of the surface. Subsequent etching with 1% caustic soda solution converts the copper into bronze-coloured cuprous oxide, and a brilliant and contrasting
168
Smithells Light Metals Handbook
representation of the underlying surfaces is obtained. The technique is of use in orientation studies in so far as the films are dark and unbroken on (100) surfaces, but shrink on drying on other surfaces. In particular (111) faces have a bright yellow colour with a fine network on drying, which has no preferred orientation, while (110) faces develop lines (cracks in film) which are parallel to a cube edge.
6.2
Metallographic methods for magnesium alloys
PREPARATION
1. Magnesium is soft and readily forms mechanical twins and so deformed layers should be avoided. 2. Abrasives and polishing media tend to become embedded. Therefore use papers well-covered with paraffin making sure the deformed layer is removed. 3. Some phases in magnesium alloys are attacked by water. If these are present use paraffin or ethanol as lubricant. 4. Some very hard intermetallics can be present. Therefore keep polishing times short to avoid relief. The recommended procedure is to grind carefully to 600-grit silicon carbide papers. Then polish with fine ˛-alumina slurry or 4 6 µm diamond paste. This is followed by polishing on a fine cloth using light magnesia paste made with distilled water or a chemical attack polish of 1 g MgO, 20 ml ammon. tartrate soln. (10%) in 120 ml of distilled water. In reactive alloys, white spirit replaces distilled water and chemical attack methods avoided. ETCHING
The general grain structure is revealed by examination under cross-polars. This will also detect mechanical twins formed during preparation. A selection of etching reagents suitable for magnesium and its alloys is given in Table 6.3. Of these, 4 and 1 are the most generally useful reagents for cast alloys, while 16 is a useful macro-etchant and, followed by 4, is invaluable for showing up the grain structure in wrought alloys. Table 6.3 No.
ETCHING REAGENTS FOR MAGNESIUM AND ITS ALLOYS
Etchant
Remarks
1
Nitric acid Diethylene glycol Distilled water
1 ml 75 ml 24 ml
This reagent is recommended for general use, particularly with cast, die-cast and aged alloys. Specimens are immersed for 10 15 s, and washed with hot distilled water. The appearance of common constituents following this treatment is outlined in Table 6.4. Mg-RE and Mg-Th alloys also
2
Nitric acid Glacial acetic acid Water Diethylene glycol
1 20 19 60
Recommended for solution-heat-treated castings, and wrought alloys. Grain boundaries are revealed. The proportions are somewhat critical. Use 1 10 s
3
Citric acid Water
5 g 95 ml
4
Nitric acid, 2% in alcohol
A generally useful reagent
5
Nitric acid, 8% in alcohol
Etching time 4 6 s. Recommended for cast, extruded and rolled magnesium-manganese alloys
6
Nitric acid, 4% in alcohol
Used for magnesium-rich alloys containing other phases, which are coloured light to dark brown
7
Nitric acid, 5% in water
Etching time 1 3 s. Recommended for cast and forged alloys containing approximately 9% of aluminium
8
Oxalic acid 20 g l 1 in water
Etching time 6 10 s. Used also for extruded magnesiummanganese alloys
9
Acetic acid, 10% in water
Etching time 3 4 s. Used for magnesium-aluminium alloys with 3% of aluminium
ml ml ml ml
This reagent reveals grain boundaries, and should be applied by swabbing. Polarized light is an alternative
Metallography of light alloys
169
Table 6.3 (continued ) No. 10 11 12
Etchant
Remarks
Etching time 6 s These regants are recommended for magnesium-aluminium alloys with 3 to 6% of Orthophosphoric acid, 13% in glycerol Etching time 12 s aluminium Tartaric acid Used for wrought alloys. Mg2 Si is roughened and pitted. 10 s to 2 min for Mg-Mn-Al-Zn alloys. Grain contrast in cast alloys 100 g l 1 of water
Tartaric acid 20 g l 1 of water
13
Citric acid and nitric acid in glycerol
Used for magnesium-cerium and magnesium-zirconium alloys. The magnesium-rich matrix is darkened and the other phases left white
14
Orthophosphoric acid Picric acid Ethyl alcohol
Recommended for solution-heat-treated castings. The specimen is lightly swabbed, or immersed with agitation for 10 20 s. The magnesium-rich matrix is darkened, and other phases (except Mg2 Sn) are little affected. The maximum contrast between the matrix and Mg17 Al12 is developed. The darkening of the matrix is due to the development of a film, which must not be harmed by careless drying
0.7 ml 4 g 100 ml
15
Picric acid saturated in 95% alcohol 10 ml Glacial acetic acid 1 ml
A grain boundary etching reagent; especially for Dow metal (Al 3% Zn 1%, Mn 0.3%). Reveals cold work and twins
16
Picric acid, 5% in ethyl alcohol 50 ml Glacial acetic acid 20 ml Distilled water 20 ml
Useful for magnesium-aluminium-zinc alloys. On etching for 15 s an amorphous film is produced on the polished surface. When dry, the film cracks parallel to the trace of the basal plane in each grain. The reagent may be used to reveal changes of composition within grains, and other special purposes
17
Picric acid, 5% in ethyl alcohol 50 ml Glacial acetic acid 16 ml Distilled water 20 ml
As for Reagent 16, but suitable for a more restricted range of alloy composition
18
Picric acid, 5% in ethyl alcohol 100 ml Glacial acetic acid 5 ml Nitric acid (1.40) 3 ml
General reagent
19
Picric acid, 5% in ethyl alcohol 10 ml Distilled water 10 ml
Mg2 Si is coloured dark blue and manganese-bearing constituents are left unaffected
20
Hydrofluoric acid (40%) Distilled water
Useful for magnesium-aluminium-zinc alloys. Mg17 Al12 is darkened, and Mg3 Al2 Zn3 is left unetched. If the specimen is now immersed in dilute picric acid solution (1 vol. of 5% picric acid in alcohol and 9 vol. of water) the matrix turns yellow, and the ternary compound remains white
10 ml 90 ml
21
Picric acid, 5% in ethyl alcohol 100 ml Distilled water 10 ml Glacial acetic acid 5 ml
Reveals grain-boundaries in both cast and wrought alloys. This reagent is useful for differentiating between grains of different orientations, and for revealing internally stressed regions
22
Nitric acid conc.
Recommended for pure metal only. Specimen is immersed in the cold acid. After 1 min a copious evolution of NO2 occurs, and then almost ceases. At the end of the violent stage, the specimen is removed, washed and dried. Surfaces of very high reflectivity result, and grain boundaries are revealed
The appearance of constituents after etching. The micrographic appearances of the commonly occurring microconstituents in cast alloys are as given in Table 6.4. ELECTROLYTIC ETCHING OF MAGNESIUM ALLOYS
This has been recommended for forged alloys. The specimen is anodically treated in 10% aqueous sodium hydroxide containing 0.06 g l 1 of copper. A copper cathode is used, and a current density of
170
Smithells Light Metals Handbook
Table 6.4 THE MICROGRAPHIC APPEARANCE OF CONSTITUENTS OF MAGNESIUM ALLOYS Microconstituent .1/
Mg17 Al12 .2/ MgZn2 .3/ Mg3 Al2 Zn3 Mg2 Si.4/
Appearance in polished sections, etched with Reagent 1 (zirconium-free alloys)
Manganese.5/ (MgMnAl).5/
White, sharply outlined and brought into definite relief Appearance very similar to that of Mg17 Al12 Appearance similar to those of Mg17 Al12 and MgZn2 Watery blue green; the phase usually has a characteristic Chinese-script formation, but may appear in massive particles. Relief less than for manganese Tan to brown or dark blue, depending on duration of etching. Individual particles may differ in colour Grey particles, usually rounded and in relief. Little affected by etching Grey particles, angular in shape and in relief. Little affected by etching
Microconstituent
Appearance in polished sections etched with Reagent 4 (zirconium-bearing alloys)
Primary Zr (undissolved in molten alloy) Zinc-rich particles.6/
Hard, coarse, pinkish grey rounded particles, readily visible before etching
Mg2 Sn.4/
Mg9 Ce Mg5 Th Mg-Th-Zn MgZn2
Fine, dark particles, loosely clustered and comparatively inconspicuous before etching Compound or divorced eutectic in grain boundaries. Appearance hardly changed by few per cent of zinc or silver Compound or divorced eutectic in grain boundaries (bluish). Appearance hardly changed by few per cent of zinc if Zn exceeds Th Brown acicular phase. Appears in Mg-Th-Zn-Zr alloys when Th ½ Zn Compound or divorced eutectic in grain boundaries. Absent from alloys containing RE or Th
The superscript numbers in column 1 refer to the following notes: (1) This is the -phase of the magnesium-aluminium system; it is also frequently called Mg4 Al3 or Mg3 Al2 . (2) Although the phase MgZn may be observed in equilibrium conditions, MgZn2 is frequently encountered in cast alloys. (3) This ternary compound occurs in alloys based on the ternary system magnesium-aluminium-zinc, and may be associated with Mg17 Al12 . (4) Blue unetched. (5) These constituents are best observed in the unetched condition. (6) Alloys of zirconium with interfering elements such as Fe, Al, Si, N and H, separating as a Zr-rich precipitate in the liquid alloy. Co-precipitation of various impurities makes the particles of indefinite composition. Note: The microstructure of all zirconium-bearing cast alloys with satisfactory dissolved zirconium content is characterised by Zr-rich coring in the centre of most grains. In the wrought alloys zirconium is precipitated from the cored areas during preheating or working, resulting in longitudinal striations of fine precipitate which become visible on etching.
0.53 A dm 2 is applied at 4 V. After etching, the specimen is successively washed with 5% sodium hydroxide, distilled water and alcohol, and is finally dried. NON-METALLIC INCLUSIONS IN MAGNESIUM-BASE ALLOYS
The detection and identification of accidental flux and other inclusions in magnesium alloys involves the exposure of a prepared surface to controlled conditions of humidity, when corrosion occurs at the site of certain inclusions, others being comparatively unaffected. The corrosion product or the inclusion may then be examined by microchemical techniques. The surface to be examined should be carefully machined and polished by standard procedures. The polishing time should be short, and alcohol or other solvent capable of dissolving flux must be avoided. As soon as possible the prepared specimens are placed in a humidity chamber, having been protected in transit by wrapping in paper. A suitable degree of humidity is provided by the air above a saturated solution of sodium thiosulphate. The presence of corrosive inclusions is indicated by the development of corrosion spots. At this stage the corroded area may be lightly ground away to expose the underlying structure for microexamination so that the micrographic features which are holding the flux become visible. With other specimens, or with the same specimens re-exposed to the humid conditions, identification of the inclusions may be proceeded with, as follows: 1. Detection of chloride
The corrosion product is scraped off, and dissolved on a microscope slip in 5% aqueous nitric acid. A 1% silver nitrate solution is then added, and a turbidity of silver chloride indicates the presence
Metallography of light alloys
171
of the chloride ion. The solution of the corrosion product should preferably be heated before adding the silver nitrate to remove any sulphide ion, which also gives rise to turbidity. Alternatively, a 10% solution of chromium trioxide may be added directly to the corrosion spot, when chloride is indicated by an evolution of gas bubbles from the metal surface, and the development of a brown stain. This method is less specific than the silver nitrate method, and may give positive reactions in the presence of relatively large amounts of sulphates and nitrates. 2. Detection of calcium
Scrapings of corrosion product are dissolved in a small watch glass on a hot plate in 2 ml water and one drop of glacial acetic acid. To the hot solution a few drops of saturated ammonium oxalate solution are added. The presence of calcium is indicated by turbidity or precipitation. Spectroscopic identification of calcium in the solution is also possible. 3. Detection of boric acid in inclusions
Scrapings of corrosion product and metal are placed in a test tube with 1 ml of water. The inclusion dissolves, and complete solution of the sample is effected by adding a small portion of sulphuric acid (density 1.84) from 9 ml carefully measured and contained in a graduated cylinder. When solution is complete, the remainder of the acid is added and the mixture is well shaken; 0.5 ml of a 0.1% solution of quinalizarin in 93% (by wt.) of sulphuric acid is now added, mixed in, and allowed to stand for 5 min. A blue colour indicates the presence of boric acid. The colour in the absence of boric acid varies from bluish violet to red according to the dilution of the acid, which must thus be carefully controlled as described. 4. Detection of nitride
A drop of Nessler’s solution applied directly to the metal surface in the presence of nitride, gives an orange brown precipitate, which may take about 1 min to develop. This test should be made on freshly prepared surfaces on which no water has been used, since decomposition of nitride to oxide occurs in damp air. 5. Detection of sulphide
The corrosion product is added to a few drops of water slightly acidified with nitric acid. A drop of the solution placed on a silver surface gives rise to a dark stain if sulphide was present in the corrosion product. Sulphur printing may also be applied. 6. Detection of iron
The corrosion product is dissolved in hydrochloric acid. A drop of nitric acid is added with several drops of distilled water. In the presence of iron, the addition of a crystal of ammonium thiocyanate develops a blood-red colouration. In all the above tests, a simultaneous blank test should be carried out. Iron-printing, analogous to sulphur-printing, can be applied using cleaned photographic paper impregnated with a freshly prepared solution of potassium ferricyanide and potassium ferrocyanide acidified with nitric or hydrochloric acid.
6.3
Metallographic methods for titanium alloys
PREPARATION
The preparation of titanium samples by ordinary methods of grinding is straightforward but needs care; final polishing is difficult. Specimens are easily scratched, and mechanical working of the surface during polishing causes twin-formation which may obscure other metallographic features. Other ‘false’ structures may be caused by the presence of local, randomly dispersed areas of cold work, which give a duplex appearance to homogeneous specimens. Electrolytic polishing of surfaces ground wet by ordinary methods to the 000 grade of emery paper is therefore recommended. Mechanical polishing, if preferred, may be carried out with diamond preparation, with a final fine polish (if required) with alumina, both with a trace of hydrofluoric acid. Examination for hydride is carried out in polarised light between crossed polaroids; the hydride then appears bright and anisotropic. This also reveals the grain structure of ˛-titanium.
172
Smithells Light Metals Handbook
ETCHING
The presence of surface oxide films on titanium and its alloys necessitates the use of strongly acid etchants. Those given in Table 6.5 are useful. Table 6.5 ETCHING REAGENTS FOR TITANIUM AND ITS ALLOYS No. 1
2
3
4
5
6
7
Etchant
Conditions
Hydrofluoric acid (40%) Nitric acid (1.40) Lactic acid
1 3 ml
Hydrofluoric acid (40%) Nitric acid (1.40) Lactic acid
1 ml
Hydrofluoric acid (40%) Nitric acid (1.40) Water (Kroll’s reagent)
Remarks
5 30 s
Mainly unalloyed titanium; reveals hydrides
5 30 s
As Etchant 1
3 10 s
Most useful general etch
5 30 s
Chemical polish and g.b. etch
3 20 s
Useful for ˛/ˇ alloys. ˛ is attacked or stained. ˇ unattacked
5 15 s
General purpose, TiAlSn alloys
3 20 s
TiAlSn alloys
10 ml 30 ml
30 ml 30 ml 1 3 ml 2 6 ml to 100 ml
Hydrofluoric acid (40%) Nitric acid (1.40) Lactic acid
10 ml
Potassium hydroxide (40%) Hydrogen peroxide (30%) Water (can be varied to suit alloy)
10 ml
10 ml 30 ml
5 ml 20 ml
Hydrofluoric acid (40%) Nitric acid Glycerol
20 ml 40 ml
20 ml
Hydrofluoric acid Nitric acid (1.40) Glycerol Water
1 25 45 20
ml ml ml ml
7
Heat treatment of light alloys
7.1
Aluminium alloys
7.1.1
Annealing
For softening aluminium alloys that have been hardened by cold work: Alloys 1080A, 1050, 1200, 5251, 5154A, 5454, 5083 360 ° C for 20 min. Alloys 3103, 3105 400 425 ° C for 20 min. Heat-treatable alloys that have not been heat treated 360 ° C š 10 ° C for 1 h and cool in air. Alloys that have been heat treated 400 425 ° C for 1 h and cool at 15 ° C/h to 300 ° C. For Al-Zn-Mg alloys of the 7000 series, after cooling in air, reheat to 225 ° C for 2 4 h.
7.1.2
Stabilizing
To relieve internal stress. Normally heat to 250 ° C followed by slow cooling is adequate.
7.1.3
Hardening
Conditions for solution treatment and ageing for both cast and wrought aluminium alloys are given in Tables 7.1 and 7.2. For the alloy designation system and compositions see Chapter 3. Temper designations are given in Table 7.3.
Table 7.1
HEAT TREATMENT DATA FOR ALUMINIUM CASTING ALLOYS
Solution treatment Material designation and temper
Alloy type
Precipitation treatment
Temperature °C
Time1
Quench2
h
medium
505 520
6 16
Hot water
520 535 425 435
2 8 8
Water Oil at 160 ° C max4
515 515 520 520 515
8 8 12 12 6 9
Hot Hot Hot Hot Hot
Temperature °C
Time3 h
150 170 150 170 150 170
6 18 16 16
160 180 160 180 200 250
4 16† 4 16 4 16
160 179
8 10
BS 1490 LM 4 TF LM 9 TE TF LM 10 TB LM 13 TE TF TF7 LM 16 TB TF LM 22 TB
Al Si5 Cu3 Al Si12 Mg Al Mg10 Al Si11 Mg Cu Al Si5 Cu1 Mg Al Si6 Cu3 Mn
525 525 530 530 530
water water water water water
continued overleaf
174
Smithells Light Metals Handbook
Table 7.1 (continued ) Solution treatment Material designation and temper LM 25 TB7 TE TF LM 26 TE LM 28 TE TF LM 29 TE TF LM 30 TS
Alloy type Al Si7 Mg
Precipitation treatment
Temperature °C
Time1 h
Quench2 medium
525 545
4 12
Hot water
525 545
4 12
Hot water
495 505
4
Air blast
495 505
4
Air blast
Temperature °C 250 155 175 155 175 200 210 185 185 185 185 175 225
Al Si9 Cu3 Mg Al Si19 Cu Mg Ni Al Si23 Cu Mg Ni Al Si17 Cu4 Mg
Time3 h 2 8 8 7
4 12 12 9 † 8 † 8 8
BS ‘L’ series (4L 35)
Al Cu4 Ni2 Mg2
500 520
6
Boiling water
3L 51 (3L 52)
Al Si2 Cu Ni Fe Mg Al Cu2 Ni Si Fe Mg
520 540
4
Water at 30 100 ° C
(4L 53) 3L 78 (2L 91) 2L 92 (L 99) (L 119)
Al Al Al Al Al Al
425 435 520 530 525 545 525 545 535 545 542 š 5
8 12 12 16 12 16 12 5
L 154 L 155
Al Cu4 Si1 Al Cu4 Si1
510 š 5 510 š 5
16 16
540 š 5
4 12
540 š 5
4 12
430 š 5
8
440 š 5 495 š 5
8 8
Mg10 Si4 Cu1 Cu4 Cu4 Si6 Cu5 Ni1
Oil at 160 ° C max4 Hot water Hot water Hot water Hot water Boiling water or oil at 80 ° C Water (50 70 ° C) Water (50 70 ° C)
95 110 or room temperature 150 175 150 180 or 195 205
2 5 days
160 170 120 140 120 170 150 160 215 š 5
8 10 1 2 12 14 4 12 16
140 š 10
30 days 16
165 š 10 130 š 10
8 12 1 2
165 š 10 180 š 5
8 12 10
8 24 8 24 2 5
DTD specifications 722B 727B
Al Si5 Al Si5
735B 5008B 5018A
Al Si5 Al Zn5 Mg Al Mg7 Zn
or then
Water (80 100 ° C) or oil Water (80 100 ° C) Oil > 160 ° C > 1 h then oil at room temperature, or air Boiling water
1 Single figures are minimum times at temperature for average castings and may have to be increased for particular castings. 2 Hot water means water at 70 80 ° C unless otherwise stated. 3 The exact number of hours depends on the mechanical properties required. 4 The castings may be allowed to cool to 385 395 ° C in the furnace before quenching. The castings shall be allowed to stay in the oil for not more than 1 h and may then be quenched in water or cooled in air. † The duration of the treatment shall be such as will produce the specified Brinell hardness in the castings. Ł For temper designation see Table 7.2. () Specification now withdrawn.
Table 7.2 TYPICAL HEAT TREATMENT DATA FOR WROUGHT ALUMINIUM ALLOYS Times and temperatures within the limits shown. some specifications give tighter limits Solution treatment Material designation 2011
Alloy type
Temper‡
Temperature °C
Al Cu5.5 Pb Bi
T 3 (TD) T 6 (TF)
510 š 5 510 š 5
Quench medium†
Ageing temperature °C
Time at temperature h
Water Water
Room 155 165
48 12
Heat treatment of light alloys
175
Table 7.2 (continued ) Solution treatment Material designation 2014A
Temper‡
Alloy type Al Cu4 Si Mg
2024
Al Cu4 Mg1
2031 2117 2618A 6061
Al Al Al Al
6063
Al Mg Si
Cu2 Ni1 Mg Te Si Cu2 Mg Cu2 Mg15 Te1 Ni1 Mg1 Si Cu
6082
Al Si1 Mg Mn
6101A
Al Mg Si
6463
Al Mg Si
7010
Al Zn6 Mg2 Cu2
7014
Al Zn5.5 Mg2 Cu Mn
7075
Al Zn6 Mg Cu
Temperature °C
Quench medium†
T T T T T T T T T T T T T T T T T T T T T T T T
3 (TD) 4 (TB) 6 (TF) 651 351 4 (TB) 42 4 (TB) 4 (TB) 6 (TF) 4 (TB) 6 (TF) 4 (TB) 5 (TE) 6 (TF) 4 (TB) 6 (TF) 651 4 (TB) 6 (TF) 4 (TB) 6 (TF) 351 7651
505 š 5 505 š 5 505 š 5 505 š 5 495 š 5 495 š 5 495 š 5 525 š 10 495 š 5 530 š 5 525 š 15 525 š 15 525 š 5
Water Water Water Water Water Water Water Water or oil Water Water Water Water Water
525 š 5 530 š 10 530 š 10 525 š 15 525 š 5 525 š 5 525 š 5 525 š 5 475 š 10 475 š 10
T T T T T T
73651 6 (TF) 6510 6 (TF) 651 73
465 š 10 460 š 10 460 š 10 460 š 10 460 š 10 465 š 5
Water Water Water Water Water Water Water Water Water Water or followed by Water Water 85 ° C or oil Water or oil Water Water Water (60 80 ° C) or followed by Water followed by Water 70 ° C or followed by
T 7351
465 š 5
T 7352
465 š 5
Ł Heating to temperature at not more than 20 ° C/h. † Water below 40 ° C unless otherwise stated. ‡ For temper designation see Table 7.3
Table 7.3 ALUMINIUM ALLOY TEMPER DESIGNATIONS Symbol
Condition
Casting alloys BS 1490 M TB TB7 TE TF TF7 TS
As cast Solution treated and naturally aged Solution treated and stabilized Artificially aged Solution treated and artificially aged Solution treated, artificially aged and stabilized Thermally stress relieved continued overleaf
Ageing temperature °C
Time at temperature h
Room Room 155 190 155 190 Room Room Room 155 205 Room 160 200 Room 165 195 Room 160 180 160 180 Room 175 185 165 195 Room 170 š 10 Room 170 š 10
48 48 5 5 48 48 48 2 96 16
172 š 3Ł 120 š 3 172 š 3 172 š 3Ł 135 š 5 135 š 5 135 š 5 135 š 5 110 š 5 120 š 5 177 š 5 110 š 5 177 š 5 110 š 5 120 š 5 177 š 5
6 24 6 10 12 12 12 12 6 20 6 6 5 6 20 6
20 20
20 24
3 12 5 15 5 15 1 20 7 12 3 12 1 20 1 20 5 15 15 15 24
24 30 10 24 12 24 30 10
176
Smithells Light Metals Handbook
Table 7.3 (continued ) Symbol
Condition
BSEN515 T T T T T T T T T T
1 2 3 (TD) 4 (TB) 5 (TF) 6 7 8 (TH) 9 10
Cooled from elevated temperature shaping process and naturally aged to stable condition As T 1 but cold worked after cooling from elevated temperature Solution treated, cold worked and naturally aged to stable condition Solution treated and naturally aged to stable condition Cooled from elevated temperature shaping process and artificially aged Solution treated and artificially aged Solution treated and stabilized (over-aged) Solution treated, cold worked and then artificially aged Solution treated, artificially aged and then cold worked Cooled from elevated temperature shaping process artificially aged and then cold worked
Ł British equivalents in parenthesis.
7.2
Magnesium alloys
7.2.1
Safety requirements
A potential fire hazard exists in the heat treatment of magnesium alloys. Overheating and direct access to radiation from heating elements must be avoided and the furnace must be provided with a safety cutout which will turn off heating and blowers if the temperature goes more than 6 ° C above the maximum permitted. In a gastight furnace a magnesium fire can be extinguished by introducing boron trifluoride gas through a small opening in the closed furnace after the blowers have been shut down. 7.2.2
Environment
For temperature over 400 ° C, surface oxidation takes place in air. This can be suppressed by addition of sufficient sulphur dioxide, carbon dioxide or other suitable oxidation inhibitor. In the case of castings to MEL ZE63A and related specifications, solution treatment should be carried out in an atmosphere of hydrogen and quenching of castings from solution treatment temperature of MEL QE22 is to be done in hot water. If microscopic examination reveals eutectic melting or high temperature oxidation, rectification cannot be achieved by reheat-treatment. Quench from solution treatment should be rapid, either forced air or water quench. From ageing treatment, air cool. 7.2.3
Conditions for heat treatment of magnesium alloys castings
These are shown in Table 7.4 and for some wrought magnesium alloys in Table 7.5. Stress relief treatments are given in Table 7.6. Table 7.4 HEAT TREATMENT OF MAGNESIUM CASTING ALLOYS Solution treatment Specifications
Composition
MEL ZRE1 BS 2L126 BS 2970 MAG 6 ASTM EZ33A UNS M12330
Zn2.5 Zr0.6 RE3.5
Temperature (° C)
Time (h) quench
Ageing Temperature (° C)
Time (h) quench
250
16 AC
Heat treatment of light alloys
177
Table 7.4 (continued ) Solution treatment
Temperature (° C)
Time (h) quench
330 +170 180
2 AC 10 16 AC
140
48 AC
Zn2.2 Zr0.7 Th3.0
315
16 AC
MEL TZ6 DTD 5015A BS 2970 MAG 9 ASTM ZH62A UNS M16620
Zn5.5 Zr0.7 Th1.8
330 +170 180
2 AC 10 16 AC
MEL EQ21A
Ag1.5 Zr0.7 Cu0.07 Nd(RE)2.0
520
8 WQ
200
12 16 AC
MEL MSR-B DTD 5035A
Ag2.5 Zr0.6 Nd(RE)2.5
520 530
4 8 WQ
200
8 16 AC
MEL QE22 (MSR) DTD 5055 ASTM QE22A UNS M18220
Ag2.5 Zr0.6 Nd(RE)2.0
520 530
4 8 WQ Hot WQ
200
8 16 AC
MEL A8 BS 3L122 BS 2970 MAG1 ASTM AZ81A UNS M11818
Al8.0 Zn0.5 Mn0.3
380 390 410 420
8 AC 16 AC
MEL AZ91 (ST) BS 3L124 BS 2970 MAG 3
Al9.0 Zn0.5 Mn0.3 Be0.0015
380 390 410 420
8 AC 16 AC
ASTM AZ91C (ST&PT) UNS M11914
Al9.0 Zn0.5 Mn0.3 Be0.0015
380 390 410 420
8 AC 16 AC
200
10 AC
MEL MAG 7 (ST) BS 2970 MAG 7
Al7.5/9.5 Zn0.3/1.5 Mn0.15
380 390 410 420
8 AC 16 AC
MEL MAG 7 (ST&PT)
Al7.5/9.5 Zn0.3/1.5 Mn0.15
380 390 410 420
8 AC 16 AC
200
10 AC
Specifications
Composition
MEL RZ5 BS 2L128 BS 2970 MAG 5 ASTM ZE41A UNS M16410
Zn4.2 Zr0.7 RE1.3
MEL ZE63A DTD 5045 ASTM ZE63A
Zn5.8 Zr0.7 RE2.5
MELZT1 DTD 5005A BS 2970 MAG 8 ASTM HZ32A
Temperature (° C)
480Ł
Time (h) quench
Ageing
10 72 WQ
Ł In hydrogen. Max 490 ° C.
Table 7.5 HEAT TREATMENT OF MAGNESIUM WROUGHT ALLOYS Solution treatment Specifications
Composition
Form
MEL AZ80 ASTM AZ80A UNS M11800
Al8.5 Zn0.5 Mn0.12
Ex F
Temperature (° C)
400
Time (h) quench
2-4 WQ
Ageing Temperature (° C)
Time (h) quench
177
16 AC
177
16-24 AC continued overleaf
178
Smithells Light Metals Handbook
Table 7.5 (continued ) Solution treatment Specifications
Composition
Form
ASTM HM31A UNS 13310
Th2.5-4.0 Zn0.3 Zr0.4-1.0
Ex
ASTM 60A UNS 16600
Zn5.5
F T6 F T4 F T5
Notes: Ex extrusions, F aged, AC air cool, WQ
Temperature (° C)
500 500
forgings, T4 solution treated, T5 water quench.
Ageing
Time (h) quench
2 WQ 2 WQ
cooled and artificially aged, T6
Table 7.6 STRESS RELIEF TREATMENTS FOR WROUGHT MAGNESIUM ALLOYS
Specifications
Composition
Form
Temperature (° C)
Time (min)
MEL AZM ASTM Al61A UNS 11610
Al6.0 Zn1.0 Mn0.3
Ex&F SH SA
260 204 343
15 60 120
MEL AZ80 ASTM AZ80 UNS 11311
Al8.5 Zn0.5 Mn0.12 min
Ex&F Ex&FŁ
260 204
15 60
MEL AZ31 ASTM AZ31B UNS 11311
Al3.0 Zn1.0 Mn0.3
Ex&F SH SA
260 149 343
15 60 120
Notes: Ex extrusions, F and artificially aged.
forgings, SH
sheet hard rolled, SA
sheet annealed, Ł
cooled
Temperature (° C)
Time (h) quench
232
16 AC
150
24 AC
150
24 AC
solution treated and artificially
8
Metal finishing
The processes and solutions described in this section are intended to give a general guide to surface finishing procedures. To operate these systems on an industrial scale would normally require recourse to one of the Chemical Supply Houses which retail properietary solutions.
8.1
Cleaning and pickling processes
VAPOUR DEGREASING
Used to remove excess oil and grease. Components are suspended in a solvent vapour, such as trior tetrachloroethylene. Note: Both vapours are toxic and care should be taken to ensure efficient condensation or extraction of vapours. EMULSION CLEANING
An emulsion cleaner suitable for most metals can be prepared by diluting the mixture given below with a mixture of equal parts of white spirit and solvent naphtha. Pine oil Oleic acid Triethanolamine Ethylene glycol-monobutyl ether
62 g 10.8 g 7.2 g 20 g
This is used at room temperature and should be followed by thorough swilling. Table 8.1
ALKALINE CLEANING SOLUTIONS
Metal to be cleaned All common metals other than aluminium and zinc, but including magnesium
Composition of solution
Sodium hydroxide (NaOH) Sodium carbonate (Na2 CO3 ) Tribasic sodium phosphate (Na3 PO4 .12H2 O) Wetting agent
Temperature
oz gal 1
gl 1
°F
°C
Remarks
6
37.5
180 200
80 90
For heavy duty
4
25.0
1 1 4
6.2 1.5 continued overleaf
180
Smithells Light Metals Handbook
Table 8.1 (continued ) Metal to be cleaned
Composition of solution gl 1
°F
°C
2 4
12.5 25.0
180 200
80 90
For medium duty
2
12.5
2 1 8
12.5
4 4 1 8
25.0 25.0
180 200
80 90
For light duty
2 4 1 8 2
12.5 25.0
180 200
80 90
12.5
180 200
80 90
4
25.0
1 4
1.5
6 1
37.5 6.25
2
12.5
2 1 1 8
12.5 6.25
Sodium hydroxide Sodium carbonate Tribasic sodium phosphate Sodium metasilicate (Na2 SiO3 .5H2 O) Wetting agent Tribasic sodium phosphate Sodium metasilicate Wetting agent Aluminium and zinc
Tribasic sodium phosphate Sodium metasilicate
Most common metals
Sodium carbonate Tribasic sodium phosphate
Wetting agent
Wetting agent
Most common metals
Temperature
oz gal 1
Sodium carbonate Sodium hydroxide Tribasic sodium phosphate Sodium cyanide (NaCN) Sodium metasilicate Wetting agent
Remarks
0.75
0.75
0.75 Electrolytic cleaner, 6 V Current density 100/A ft 2 (10/A dm 2 ) Article to be cleaned may be made cathode or anode or both alternately Room
Room
May be used electrolytically
0.75
Table 8.2 PICKLING SOLUTIONS Metal to be pickled Aluminium (wrought)
Aluminium (cast and wrought)
Composition of solution
For etching Sodium hydroxide (NaOH)
Nitric acid, s.g. 1.42 Hydrofluoric acid (52%) Water
Temperature
oz gal 1
gl 1
8
°F
°C
56
104 176
40 80
Articles dipped until they gas freely, then swilled, and dipped in nitric acid 1 part by vol. to 1 of water (room temperature)
1 gal 1 gal
11 11
Room
Room
Articles first cleaned in solvent degreaser. Use polythene or PVC tanks
8 gal
81
Remarks
Metal finishing
181
Table 8.2 (continued ) Composition of solution
Metal to be pickled
Temperature
oz gal 1
gl 1
°F
Bright dip Chromic acid Ammonium bifluoride Cane syrup Copper nitrate Nitric acid (s.g. 1.4) Water (distilled) to
0.84 oz 0.72 oz 0.68 oz 0.04 oz 4.8 oz 1 gal
5.2 g 4.5 g 4.2 g 0.25 g 30 ml 11
195
90
Immerse for 1 21 min. Solution has limited life. AR chemicals and deionized or distilled water should be used
Aluminium and other nonferrous metals
Bright dip Phosphoric acid (s.g. 1.69) Nitric acid (s.g. 1.37)
8.4 gal 0.6 gal
9.41 0.61
195
90
Immerse for several min. Agitate work and solution. Good ventilation necessary. Addition of acetic acid
Magnesium and magnesium alloys
General cleaner Chromic acid
16 32
100 200
Up to b.p.
Up to b.p.
For removal of oxide films, corrosion products, etc. Should not be used on oily or painted material
Sulphuric acid pickle Sulphuric acidŁ
3%
Room
Room
Should be used on rough castings or heavy sheet only. Removes approx. 0.002 in. in 20 30 s
Nitro-sulphuric pickle Nitric acid Sulphuric acidŁ
8% 2%
Room
Room
Bright pickle for wrought products Chromic acid Sodium nitrate
°C
Remarks
23 4 1 8
150 25 3 4
Room
Room
37 21 3 41
235 20
Room
Room
1
6.2
Acetic acid
8 approx.
50 approx.
Room
Room
Special purpose pickles
Citric acid
8 approx.
50 approx.
Room
Room
Special purpose pickles
Calcium or magnesium fluoride Bright pickle for castings Chromic acid Concentrated nitric acid (70%) Hydrofluoric acid (50%)
Lustrous appearance. Involves metal removal
Note: It is almost universal practice to use an inhibitor in the pickling bath. This ensures dissolution of the scale with practically no attack on the metal. Inhibitors are usually of the long chain amine type and often proprietary materials. Examples are Galvene and Stannine made by ICI.
182
8.2
Anodizing and plating processes
Composition of solution
Temperature
oz gal 1
gl 1
°F
°C
Chromic acid (CrO3 ), chloride content must not exceed 0.2 g l 1 sulphate less than 0.5 g l 1 (After Bengough- Stuart)
5 16
30 100
103 108
38 42
Sulphuric acid (s.g. 1.84)
32
200
60 75
Hard anodizing Hardas process Sulphuric acid
32
200
23 41
Eloxal GX process Oxalic acid (COOH)2 .2H2 O
12.8
15 24
5 C 5
80
70
20
Current density amp ft 2 (A dm 2 )
Time and voltage
Cathodes
Vat
Hangers
Remarks
Pure aluminium or titanium
Slight agitation is required
Current controlled by voltage. Average 3 4 (0.3 0.4) d.c.
† 1 10 min 0 40 V increased in steps of 5 V 5 35 min Maintain at 40 V 3 5 min Increase gradually to 50 V 4 5 min Maintain at 50 V
Tank or stainless steel
10 20 (1 2) d.c.
12 18 V 20 40 min
Aluminium or lead plates (tank if lead lined)
Lead lined steel
Pure aluminium or titanium
The current must not exceed 0.2 Al 1 of electrolyte
25 400 (2.5 40) d.c.
40 120 V
Lead
Lead lined steel
Aluminium or titanium
Agitation required. Gives coating 1 3 thou. thick
10 20 (1 2) d.c.
50 V 30 60 min
Vat lining
Lead lined steel
Aluminium or titanium
Oxalic acid processes are more expensive than sulphuric acid anodizing; but coatings are thicker and are coloured.
Steel (exhausted)
This process cannot be used with alloys containing more than 5% copper
Smithells Light Metals Handbook
Table 8.3 ANODIZING PROCESSES FOR ALUMINIUM Good ventilation above the bath and agitation of the bath is advisable in all cases.
Eloxal WX process Oxalic acid
12.8
80
75 95
25 35
20 30 (2 3) a.c.
20 60 V 40 60 min
Vat lining
Lead lined steel
Aluminium or titanium
Integral colour Anodizing Kalcolor process Sulphuric acid Sulphosalicylic acid
0.8 16
5 100
72
22
30 (3) d.c.
25 60 V 20 45 min
Lead
Lead lined steel
Aluminium or titanium
Aluminium level in solution must be maintained between 1.5 and 3 g l 1
† Period according to degree of protection Complete cycle normally 40 min.
Metal finishing 183
184
Table 8.4 ANODIZING PROCESSES FOR MAGNESIUM ALLOYS Temperature
oz gal 1 g l 1 HAE process Potassium hydroxide Aluminium Potassium fluoride Trisodium phosphate Potassium manganate Dow 17 process Ammonium bifluoride Sodium dichromate Phosphoric acid 85% H3 PO4 Cr 22 process Chromic acid Hydrofluoric acid (50%) Phosphoric acid H3 PO4 (85%) Ammonia solution MEL process Fluoride anodize Ammonium bifluoride
19.2
120
1.7 5.5 5.5
10.4 34 34
3.2
20
39
232
16
100
14
88
4 4 13.5
25 25 84
25 30
160 180
16
100
Current density A ft 2 (A dm 2 )
Time and voltage
Cathodes
12 15 (1.2 1.5)
90 min at 85 V approx. a.c. preferred
Mg alloy for a.c. Mg or steel if d.c. used
Mild steel or rubber lined
Mg alloy
Matt hard, brittle, corrosion resistant, dark brown 25 50 µm thick, abrasion resistant
160 180 70 85
5 50 (0.5 5)
10 100 min up to 110 V a.c. or d.c.
Mg alloy for a.c. Mg or steel for d.c.
Mild steel or rubber lined
Mg alloy
Matt dark green, corrosion resistant, 25 µm thick approx., abrasion resistant
165 205 75 95
15 (1.5)
12 min 380 V a.c.
Mild steel
Mg alloy
Matt dark green, corrosion resistant, 25 µm thick approx.
<86
5 100 (0.5 10)
30 min 120 V a.c. preferred
Rubber lined
Mg alloy
Principally a cleaning process to improve corrosive resistance by dissolving or ejecting cathodic particles from the surface
F
C
<95
<35
<30
Mg alloy for a.c. Mg or steel for d.c.
Vat
Hangers
Remarks
Smithells Light Metals Handbook
Composition of solution
Metal finishing
8.3
185
Plating processes for magnesium alloys
DOW PROCESS (H. K. DELONG)
This process depends on the formation of a zinc immersion coat in a bath of the following composition:
Component Tetrasodium pyrophosphate Zinc sulphate Potassium fluoride
Concentration gl oz gal 1 16 5.3 1.0
1
120 40 7
The treatment time is 3 5 min at a temperature of 175 185 F (80 85 ° C) with mild agitation. The pH of the bath should be 10 10.4. The steps of the complete process are: 1. 2. 3. 4. 5.
Solvent or vapour degreasing. Hot caustic soda clean or cathodic cleaning in alkaline cleaner. Pickle 41 1 12 min in 1% hydrochloric acid and rinse. Zinc immersion bath as above without drying off from the rinse. Cold rinse and immediately apply copper strike as under.
Component Copper cyanide Potassium cyanide Potassium carbonate Potassium hydroxide Potassium fluoride Free cyanide pH Temperature
Concentration gl oz gal 1 4.2 7.4 2.4 1.2 4.8 1.2 12.8 13.2 140 ° F (60 ° C)
1
26 46 15 7.5 30 7.5
CONDITIONS
30 40 A ft 2 (3 4 A dm 2 ) for 12 1 min, reducing to 15 20 A ft 2 (1.5 2 A dm 2 ) for 5 min or longer. If required, the copper thickness from the above strike can be built up in the usual alkaline or proprietary bright plating baths. Following the above steps, further plating may be carried out in conventional electroplating baths. ELECTROLESS PLATING ON MAGNESIUM
Deposits of a compound of nickel and phosphorus can be obtained on magnesium alloy components by direct immersion in baths of suitable compositions. Details of the process may be obtained from the inventors. The Dow Chemical Co. Inc., Midland, Michigan, USA. ‘GAS PLATING’ OF MAGNESIUM (VAPOUR PLATING)
Deposits of various metals on magnesium components (as on other metals) can be produced by heating the article in an atmosphere of a carbonyl or hydride of the metal in question.
9
Superplasticity of light metal alloys
Superplasticity is the name given to the ability of a material to sustain extremely large deformations at low flow stresses at a temperature around half the melting point expressed in Kelvin. It is only found in metals and alloys, which have, and can maintain during forming, a very fine grain structure. A parameter which indicates the degree of superplasticity is the strain rate sensitivity m, given by the high temperature flow equation: D KPem , is the stress for plastic flow, eP the applied strain rate and K is a constant. Superplastic materials have m values normally between 0.4 and 0.6, while most other metals and alloys at elevated temperatures have m values of 0.2; viscous materials (e.g. glass) behave like a Newtonian fluid and have m values of 1. A full discussion of the mechanism of superplasticity, including methods for determining m, can be found in K. A. Padmanabhan and G. J. Davies, ‘Superplasticity’, Berlin, Springer-Verlag, 1980. The tables in this chapter give alloy systems with the temperature range over which they show superplasticity, the maximum possible percentage elongation, and the m value. The values of about 10 4 quoted under remarks are preferred strain rates.
Table 9.1 NON-FERROUS-SYSTEMS (LIGHT METAL ALLOY)
Temperature range ° C
Maximum elongation %
m
Al (commercial) Al 7.6Ca Al 7.6Ca
380 580 400 600 ¾500
6 000 850 570
0.2 0.78 0.32
Al 5Ca 5Zn Al 17Cu Al 32:74Cu
450 400 520 ¾510
600 >160
0.35 0.7
Al 33Cu Al 6Cu 0.5Zr Al 2.59Cu 2.26Li 0.16Zr(2090)
380 520 400 500 450 480
1 150 2 000 1 800
0.9 0.5
Al 4.40Cu 0.70Mg 0.80Si 0.75Mn(2014) + 15%SiC
450 480
160
0.4
Al 25 33Cu 7 11Mg Al Ga Ti Al 4Ge Al 2.4Li 2.0Cu 0.70Mg 0.08Zr(8091 Al 2.5Li 1.2Cu 0.6Mg 0.1Zr(8090)
420 480 RT 400 500 490 550
>600
0.72 0.3 0.5
230 1 350
0.6
520 530
660 1200
0.65
Alloy system
Remarks
Euratom alloy Optimum 500 ° C at 4.16 ð10 4 Alcan 08050 After 25% pre-deformation at 510 ° C TI Supral Optimum 520 ° C at 5 ð10 4 Elong% 350% at 5.25 MPa hydrostatic pressure
Optimum 530 ° C at 10 3 10 4 2 3 mm sheet at 2 5 ð10 4
Superplasticity of light metal alloys
187
Table 9.1 (continued )
Temperature range ° C
Maximum elongation %
m
Remarks
¾530
>1 000
0.68
2 mm sheet at 5 ð 10 4 and 5 10 micron grain size
1.56Mg 5.6Zn 3Mg 6Zn 0.93Mg 10.72Zn 0.42Zr 5.8Mg 0.37Zr + others 4.89 Mg 1.19Cr
530 340 360 550 520 482 520
500 400 1 550 >800 >1 000
0.7 0.35 0.9 0.6
Al 8.0Mg 1.0Li 0.15Zr Al 5.70Zn 2.30Mg 1.50Cu 0.22Cr(7475) + 15% SiC
300 495 515
>1 000 97
Al 5.70Zn 2.30Mg 1.50Cu 0.22Cr(7475)
¾530
1 300
350 400 180
Mg 9Li Mg 9Li
Alloy system Al 2.4Li 1.2Cu 0.60Mg 0.12Zr(8090) Al Al Al Al Al
Mg 33Al Mg 9Li
Mg Mg Mg Mg Ti Ti Ti Ti
4.3Al 3Zn 0.5Mn 30.7Cd 5.5Zn 0.5Zr 0.5Zr
(commercial) 4Al 0.2502 5Al 2.5Sn 6Al 4V
Ti 6Al 5Zr 4Mo 1Cu 0.25Si Ti 8Mn Ti 15Mo Ti 11Sn 5Zr 2.25Al 1Mo 0.25Si
TI BA 480 Optimum 520 ° C at 1.6 ð10 2
0.43
Elong% 310% at 5.25 MPa hydrostatic pressure Optimum 530 ° C at 2.8 ð10 4
2 100 460
0.8 0.52
200
445
0.47
250
310
0.44
Eutectic At 3 ð10 4 ; 6.1 micron grain size At 1 ð10 3 ; 7.1 micron grain size At 1 ð10 4 ; 14.2 micron grain size Russian MA 15
450 270 310 500
250 1 000 150
0.6 0.3
ZK 60
900 950 1 050 900 1 100 750 1 000
RC 70
450 1 000
0.8 0.6 0.72 0.85
800 580 900 580 900 800
300 140 450 500
Commercial alloy used throughout world IMI 700
0.95 0.6 IMI 679
10
Light metal-matrix composites
Metal-matrix composites are engineered materials comprising reinforceants of high elastic modulus and high strength in a matrix of a more ductile and tougher metal of lower elastic modulus and strength. The metal-matrix composite has a better combination of properties than can be achieved by either component material by itself. The objective of adding the reinforceant is to transfer the load from the matrix to the reinforceant so that the strength and elastic modulus of the composite are increased in proportion to the strength, modulus and volume fraction of the added material. The reinforcement can take one of several forms. The least expensive and most readily available on the market are the particulates. These can be round but are usually irregular particles of ceramics, of which SiC and Al2 O3 are most frequently used. Composites reinforced by particulates are isotropic in properties but do not make best use of the reinforceant. Fine fibres are much more effective though usually more costly to use. Most effective in load transfer are long parallel continuous fibres. Somewhat less effective are short parallel fibres. Long fibres give high axial strength and stiffness, low coefficients of thermal expansion and, in appropriate matrices, high creep strength. These properties are very anisotropic and the composites can be weak and brittle in directions normal to that of the fibres. Where high two-dimensional properties are needed, cross-ply or interwoven fibres can be used. Short or long randomly oriented fibres provide lower efficiencies in strengthening (but are still more effective than particulates). These are most frequently available as SiC whiskers or as short random alumina (‘Saffil’) fibres or alumino-silicate matts. Long continuous fibres include drawn metallic wires, mono-filaments deposited by CVD or multifilaments made by pyrolysis of polymers. The properties of some typical fibres are compared in Table 10.1. The relative prices are given as a very approximate guide. Because most composites are engineered materials, the matrix and the reinforceant are not in thermodynamic equilibrium and so at a high enough temperature, reaction will occur between them which can degrade the properties of the fibre in particular and reduce strength and more especially fatigue resistance. As many composites are manufactured by infiltration of the liquid metal matrix into the pack of fibres, reaction may occur at this stage. Some typical examples of interaction are listed in Table 10.2. In order to obtain load transfer in service, it is essential to ensure that the reinforceant is fully wetted by the matrix during manufacture. In many cases, this requires that the fibre is coated with a thin interlayer which is compatible with both fibre and matrix. In many cases, this also has the advantage of preventing deleterious inter-diffusion between the two component materials. The data on most coatings are proprietary knowledge. However, it is well known that silicon carbide is used as an interlayer on boron and on carbon fibres to aid wetting by aluminium alloys. The routes for manufacturing composites are still being developed but the most successful and lowest cost so far is by mixing particulates in molten metal and casting to either foundry ingot or as billets for extrusion or rolling. This is applied commercially to aluminium alloy composites. Another practicable route is co-spraying in which SiC particles are injected into an atomized stream of aluminium alloy and both are collected on a substrate as a co-deposited billet which can then be processed conventionally. This is a development of the Osprey process and can be applied more widely to aluminium and other alloys. Other routes involve the infiltration of molten metal into fibre pre-forms of the required shape often contained within a mould to ensure the correct final shape. This can be done by squeeze casting or by infiltrating semi-solid alloys to minimize interaction between the fibre and metal. Fibres can also be drawn through a melt to coat them and then be consolidated by hot-pressing.
Table 10.1 PROPERTIES OF REINFORCING FIBRES AT ROOM TEMPERATURE
Fibre
Preparation route
Cont. mono-filament Cont. multi-filament Whisker (random, short) Multi-filament Random short fibres Cont. multi-filament Cont. multi-filament
Chemical vapour depos. Polymer fibre pyrolysis Polymer fibre pyrolysis Oxide/salt fibre pyrolysis Polymer fibre pyrolysis Polymer fibre pyrolysis
150 10 15 0.1 2.0 15 25 2 4 10 8
Density g cm 3 3.4 2.6 3.2 3.9 3.5 2.0 1.9
3 800 2 500 10 000 1 500 2 000 3 000 4 200
Elastic modulus GPa
Coefficient of thermal expansion K 1 ð 106
Price relative to glass fibre
450 200 700 380 300 600 300
4.5 4.5 4.5 7.0 7.0 0 0
500 100 150 100 25 1 000 100
Light metal-matrix composites
SiC SiC SiC ¾Al2 O3 ¾Al2 O3 C(high modulus) C(med. strength)
Form
Diameter µm
Fracture stress MPa
189
190
Smithells Light Metals Handbook
Table 10.2 TYPICAL INTERACTIONS IN SOME FIBRE-MATRIX SYSTEMS
System
Potential interaction
Al C
Formation of Al4 C3 at interface. Degradation of C fibre properties.
Al Al2 O3
No significant reaction at normal fabrication temperatures
Al oxide (Al2 O3 SiO3 B2 O3 )
B2 O3 reacts with Al to form borides.
Al B
Boride formation; interlayer of SiC needed.
Al/Li Al2 O3
Interfacial layer of LiAl5 O8 on liquid infiltration.
Al SiC
No significant reaction below melting point. Al4 C3 and Si can form in liquid Al.
Al steel
Formation of iron aluminides.
Mg(AZ91) C
No significant reaction at m.p. of alloy provided O and N avoided during infiltration.
Ti B
Formation of TiB2 . Formation of TiC, TiSi2 and Ti5 Si3 .
Ti SiC
Temperature of significant interaction ° C 550 ¾495
770 500 ¾650 m.p. 660 >700 500
750 700
Table 10.3 MECHANICAL PROPERTIES OF ALUMINIUM ALLOY COMPOSITES AT ROOM TEMPERATURE
Form
Heat treatment
% particulate
0.2% proof stress MPa
1.0 0.6 0.2 0.25
Extrusion
T6
4.4 0.7 0.8 0.75
Extrusion
T6
Nil 10% Al2 O3 15% Al2 O3 20% Al2 O3 13% SiC 20% SiC 30% SiC Nil 10% Al2 O3 15% Al2 O3 20% Al2 O3 10% SiC
276 297 317 359 317 440 570 414 483 476 483 457
310 338 359 379 356 585 795 483 517 503 503 508
20.0 7.6 5.4 2.1 4.9 4.0 2.0 13.0 3.3 2.3 0.9 1.8
69.9 81.4 87.6 98.6 89.5 120.0 140.0 73.1 84.1 91.7 101.4 91.2
Sheet Extrusion
T6 T6
8.2% SiC Nil 15% Al2 O3 20% Al2 O3
448 290 359 359
516 414 428 421
4.5 10.0 3.8 3.1
82.5 73.1 88.3 91.7
Base Alloy
Nominal composition
6061
Mg Si Cu Cr
2014A
Cu Mg Si Mn
Tensile stress MPa
Elongation %
Elastic modulus GPa
Fracture toughness MPa m 1/2 29.7 24.1 22 21.5 17.9
2.71 2.81 2.86 2.94
25.3 18.0 18.8
2.80 2.92 2.97 2.98
Cu Mn V
6.0 0.3 0.1
2618
Cu Mg Si Fe Ni
2.0 1.5 0.9 0.9 1.0
Sheet Extrusion Extrusion
T6 T6 T6
¾10% SiC Nil 13% SiC
396 320 333
468 400 450
3.3 6.0
93.6 75.0 89.0
Zn Mg Cu Cr Li Cu Mg Zr
5.6 2.2 1.5 0.2 2.5 1.3 0.95 0.1
Extrusion
T6
Nil 12% SiC
617 597
659 646
11.3 2.6
71.1 92.2
Extrusion (18 mm)
T6 T6
Nil 12% SiC
480 486
550 529
5.0 2.6
79.5 100.1
7075
8090
17.7
28.9
Light metal-matrix composites
2219
Density g cm 3
191
192
Smithells Light Metals Handbook
Table 10.4 MECHANICAL PROPERTIES OF ALUMINIUM ALLOY COMPOSITES AT ELEVATED TEMPERATURES
Base Alloy
Nominal composition
6061
Mg Si Cu Cr
1.0 0.6 0.2 0.25
2014A
Cu Mg Si Mn
4.4 0.7 0.8 0.75
Temperature °C
0.2% proof stress MPa
Tensile strength MPa
Heat treatment
% particulate
Extrusion
T6
15% 15% 15% 15% 15% 15% 15%
Al2 O3 Al2 O3 Al2 O3 Al2 O3 Al2 O3 Al2 O3 Al2 O3
22 93 150 204 260 316 371
317 290 269 241 172 110 62
359 331 303 262 179 117 69
Extrusion
T6
15% 15% 15% 15% 15% 15% 15%
Al2 O3 Al2 O3 Al2 O3 Al2 O3 Al2 O3 Al2 O3 Al2 O3
22 93 150 204 260 316 371
476(413) 455(393) 407(352) 317(283) 200(159) 103(62) 55(35)
503(483) 490(434) 434(379) 338(310) 214(172) 110(76) 55(41)
Form
Figures in parentheses are for basic alloy without particulate.
Table 10.5 MECHANICAL PROPERTIES OF MAGNESIUM ALLOY COMPOSITES AT ROOM TEMPERATURE
Base Alloy ZK60A
Nominal composition
Tensile strength MPa
Elongation %
Elastic modulus GPa
260
325
15.0
44
330 370 450 405
420 455 570 490
4.7 3.9 2.0 2.0
68 74 83 83
80
8.0
12% Al2 O3 (fibre)
200
3.5
24% Al2 O3 (fibre)
280
2.0
75
10.0
45
338
0.8
112
% reinforcement
Form
Mg 5.5Zn 0.5Zr
Extruded rod
Nil 15% 20% 15% 20%
Mg 12Li
Squeeze infiltration Squeeze infiltration Squeeze infiltration Extruded rod Extruded rod
0.2% proof stress MPa
SiC(partic.) SiC(partic.) SiC(whisker) B4 C(partic.)
Nil
Nil 20% SiC(whisker)
Table 10.6 MECHANICAL PROPERTIES OF TITANIUM ALLOY COMPOSITES
Base Alloy Ti-6Al-4V
Form Forging
% particulate
Temperature °C
10% TiC 10% TiC 10% TiC 10% TiC 10% B4 C
21 427 538 649 21
Figures in parentheses are for basic alloy without particulate.
0.2% proof stress MPa 800 476(393) 414(359) 369(221)
Tensile strength MPa 806 524(510) 455(441) 317(310) 1055(890)
Elongation % 1.13 1.70(11.6) 2.40(8.5) 2.90(4.2)
Elastic modulus GPa 106 120
205
Index
Alkaline cleaning solutions, 179 80 Alloy designation systems, 14 15 Aluminium: anodizing processes, 182 3 mechanical properties, 17, 30, 34 physical properties, 5, 6, 7 Aluminium alloy composites, mechanical properties, 191, 192 Aluminium alloys: creep data, 36 8 etching, 164 7 fatigue strength, 38 9 heat treatment, 173 6 mechanical properties, 30 34, 34 6 metallographic methods, 163 7 microconstituents, 164 miscellaneous, 76 8 physical properties, 6, 7 9 stabilizing treatment, 173 superplasticity properties, 186 7 temper designation systems, 15 16, 175 see also cast and wrought aluminium alloys Aluminium copper alloys, 74 6 Aluminium silicon alloys, 68 71 Aluminium silicon-copper alloys, 72 3 Annealing treatment, aluminium alloys, 173 Anodizing processes: aluminium, 182 3 magnesium alloys, 184 Binary diagrams, index, 93 4 Cast aluminium alloys: high strength, 78, 79 mechanical properties, 26 9, 33 4 Cleaning solutions, alkaline, 179 80 Delong, H.K. see Dow (plating) process Dow (plating) process, 185 Electroless plating process, magnesium, 185 Emulsion cleaning process, 179 Etching process: aluminium alloys, 164 7 electrolytic, 169 70
magnesium alloys, 168 71 titanium alloys, 172 Fibre-matrix systems, 188, 190 Finishing processes, 179 85 Gas plating process, magnesium, 185 Grain-colour etch, 167 8 Hardening treatment, aluminium alloys, 173 Heat treatment: aluminium alloys, 173 6 magnesium alloys, 173 6 Magnesium: electroless plating process, 185 gas plating process, 185 mechanical properties, 40, 44 physical properties, 5, 10 12 Magnesium alloy composites, mechanical properties, 192 Magnesium alloys: anodizing processes, 184 etching, 168 71 fatigue and impact strengths, 50 52 heat treatment of castings, 53, 176 8 heat treatment of wrought alloys, 177 8 high temperature, 46 9 long-term creep resistance, 47 8 mechanical properties, 40 41, 42 3, 44 5 metallographic methods, 168 71 microconstituents, 170 non-metallic inclusions, 170 71 physical properties, 10 12 plating processes, 185 safety requirements, 176 short-term creep resistance, 49 specifications, 3 stress relief treatments, 178 superplasticity properties, 187 zirconium-free, 80 85 Magnesium-zirconium alloys, 86 92 Metal-matrix composites, 188 Metallography, techniques available, 163
194
Index
Pickling solutions, 180 81 Plating processes, magnesium alloys, 185 Reinforcing fibres, properties, 189 Stabilising treatment, aluminium alloys, 173 Superplasticity properties, 186 7 Temper designation systems, 15 16, 175 Test bar properties, high strength cast aluminium alloys, 79 Titanium: creep properties, 62 fatigue properties, 63 4 Izod impact properties, 66 mechanical properties, 55 physical properties, 5, 13 specifications, 3 Titanium alloy composites, mechanical properties, 192 Titanium alloys: Charpy values, 66 creep properties, 62 3
etching, 172 fatigue properties, 64 5 Izod impact properties, 66 mechanical properties, 56 7 metallographic methods, 171 2 physical properties, 13 specifications, 3 4 superplasticity properties, 187 temperature effect on properties, 59 61 Titanium sheet, temperature effect on properties, 58 Vapour degreasing process, 179 Vapour plating see gas plating process Wrought aluminium alloys: compositional specifications, 14 designation system, 14 15 mechanical properties, 17 26, 30 32, 34 6 physical properties, 7 9 specifications, 2