THE BIDUAL OF C(X) I
NORTH-HOLLAND MATHEMATICS STUDIES
101
THE BIDUAL OF C(X) I
Samuel KAPLAN Purdue University West Lafayette Indiana U.S.A.
1985
NORTH-HOLLAND -AMSTERDAM
0
NEW YORK
OXFORD
' Elsevier Science Publishers B V , 1985 All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording of otherwise, without the prior permission of the copyright owner
ISBN: 044487631 6
Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V P.O. BOX 1991 1000 BZ AMSTERDAM THE NETHERLANDS
Sole distributors for the U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC 52 VAN DER B ILT AVENUE NEW YORK, N.Y. 10017 U.S.A.
L i b r a r y of Congres5 Cataloging i n Publication D a t a
&plan, Samuel, 1916The bidual of C(X) I.
(North-Holland mathematics studies ; 101) Bibliography: p. 1. Banach spaces. 2. Duality theory (Mathematics) 3. Embeddings (Mathematics) I. Title. 11. Title: Bidual of C.(X). I. 111. Series. 515.7'32 84-18665 QA322.2.K36 1985 ISBN 0-444-87631-6 PRINTED I N THE NETHERLANDS
PREFACE
T h e most commonly o c c u r r i n g , and p r o b a b l y t h e most i m p o r t a n t ,
n o n - r e f l e x i v e r e a l Banach s p a c e s ’ ( a l l o u r s p a c e s a r e o v e r t h e r e a l s ) a r e t h o s e o f t h e form C(X), X c o m p a c t , and t h o s e o f t h e 1 form L ( p ) , 1-1 a g i v e n m e a s u r e . For a n o n - r e f l e x i v e Banach s p a c e E , t h e r e a r e some n a t u r a l p r o b l e m s which do n o t a r i s e i n t h e r e f l e x i v e c a s e . such a r e : t o d e s c r i b e i t s b i d u a l E ” ,
Three
t o d e s c r i b e t h e imbedding
o f E i n E ” ; and - s i n c e E ” i s d e t e r m i n e d by E - t o s e e how
much o f t h e s t r u c t u r e o f
El’
can be o b t a i n e d from t h i s i m b e d d i n g . 1
For a s p a c e o f t h e form C(X) o r L ( p ) , t h e answer t o t h e f i r s t p r o b l e m i s w e l l known: t h e b i d u a l o f C(X) i s a C(Y), Y c o m p a c t , and t h a t o f L 1( p ) i s an L 1 (v) , v some m e a s u r e . A l s o t h e imbedd i n g o f L 1( p ) i n i t s b i d u a l i s w e l l known, and c a n b e d e s c r i b e d i n a r e l a t i v e l y s i m p l e and s a t i s f y i n g manner. The p r e s e n t work i s c o n c e r n e d w i t h t h e imbedding of a s p a c e C(X) i n i t s b i d u a l C“(X) and t h e s t u d y o f what p r o p e r t i e s of t h e l a t t e r c a n b e f o u n d s t a r t i n g from t h i s imbedding. my knowledge, l i t t l e h a s b e e n done i n t h i s d i r e c t i o n .
To
Or
r a t h e r , what we have i s a s c a t t e r e d body o f o c c a s i o n a l r e s u l t s ; t h e r e h a s been no s y s t e m a t i c a p p r o a c h t o t h e p r o b l e m . For a number o f y e a r s now, I have d e v o t e d m y s e l f t o s u c h a s y s t e m a t i c a p p r o a c h , and many o f t h e r e s u l t s have a p p e a r e d i n V
vi
Preface
a series of papers ( [ 2 2 ] - [ 2 8 ] ) .
My program i n t h i s monograph
i s t o p r e s e n t what I know, b o t h from my own work and t h a t of
o t h e r s , a s a u n i f i e d whole.
The c a n v a s i s a l a r g e o n e , and
t h e m a t e r i a l h e r e c o n s t i t u t e s o n l y t h e f i r s t volume. m a t i c i a n o f s t a n d i n g once remarked t o me t h a t C ' l ( X ) a gigantic C(Y),
A mathe-
was s i m p l y
much t o o c o m p l i c a t e d t o make g e n e r a l s t a t e -
A c t u a l l y , o f c o u r s e , many g e n e r a l s t a t e m e n t s
ments a b o u t .
Indeed, t h e b i d u a l of a general C ( X )
can be made a b o u t i t .
( i n common w i t h a l l m a t h e m a t i c a l o b j e c t s ) h a s an o r d e r l y and beautiful structure. C(X)
and i t s b i d u a l c a n be s t u d i e d t h r o u g h t h e i r r i n g
structure or, equivalently, t h e i r vector-space-cum-lattice structure.
We f o l l o w t h e l a t t e r r o u t e , examining them a s
Banach l a t t i c e s , t h a t i s , norm c o m p l e t e normed R i e s z s p a c e s . P a r t I i s an i n t r o d u c t i o n t o R i e s z s p a c e s , w i t h t h e c o n c e p t s and n o t a t i o n s w e w i l l u s e . ( s p a c e s o f t h e form C ( X ) ) ~'(p)).
P a r t I 1 d o e s t h e same f o r M l - s p a c e s and L - s p a c e s ( t h o s e o f t h e form
P a r t 111 c o n s i s t s of c l a s s i c a l m a t e r i a l on c ( x ) , i t s
d u a l , and b i d u a l
.
I n t h e r e m a i n d e r o f Volume I , we p r o c e e d w i t h t h e d e v e l o p ment o f o u r program.
I n p a r t I V , we s i n g l e o u t - o r o c c a s i o n -
a l l y d i s c o v e r - t h e s u b s p a c e s o f C l l ( X ) which seem t o be t h e most i m p o r t a n t .
The p r i n c i p a l one ( a f t e r C ( X )
t o be t h e s u b s p a c e U ( X )
i t s e l f ) seems
of "universally integrable" elements.
I t c o n t a i n s t h e s u b s p a c e s o f Bore1 e l e m e n t s and B a i r e e l e m e n t s , and s h a r e s many o f t h e i r p r o p e r t i e s .
In the context of C'l(X),
i t seems t o be a more n a t u r a l s u b s p a c e t h e n e i t h e r o f t h e l a t t e r
t o work w i t h .
Also p l a y i n g an i m p o r t a n t r o l e i s t h e norm
c l o s e d l i n e a r s u b s p a c e g e n e r a t e d by t h e " l o w e r s e m i c o n t i n u o u s "
Preface
vii
( e q u i v a l e n t l y , t h e "uppersemicontinuous")
elements.
I t seems
t o me w o r t h y o f more a t t e n t i o n t h a n h a s s o f a r been g i v e n t o i t . I n a n a t u r a l way, t h e d u a l Cl(X) o f C(X) i s t h e "home" o f a l l t h e s p a c e s L 1 (u),
p r u n n i n g t h r o u g h t h e Radon,
m e a s u r e s on X , and C"(X) t h e s e measures.
or regular,
i s t h e "home" o f t h e s p a c e s L m ( p ) f o r
Riemann i n t e g r a t i o n , t h e s u b j e c t o f P a r t V ,
t u r n s o u t t o be an i m p o r t a n t u n i f y i n g c o n c e p t i n s t u d y i n g t h e imbedding o f t h e s e L 1 ( p ) I s i n C'(X) and L m ( p ) ' s i n C v f ( X ) , I t i s c l o s e l y r e l a t e d t o what we c o n s i d e r an i m p o r t a n t c o n c e p t i n
R i e s z s p a c e s : t h e "Dedekind c l o s u r e " o f a s u b s e t .
This concept
a l s o i n c l u d e s Lebesgue i n t e g r a b i l i t y ( t o be d i s c u s s e d i n Volume 1 1 ) . I n P a r t V I , we examine t h e i d e a l o f " r a r e " e l e m e n t s ( c o r r e s p o n d i n g t o t h e nowhere d e n s e s e t s i n t o p o l o g y ) and i t s r e l a t i o n t o t h e Dedekind c o m p l e t i o n o f C(X). C'l(X) i s c l o s e l y c o n n e c t e d n o t o n l y w i t h i n t e g r a t i o n t h e o r y , but a l s o with general topology.
With e a c h Boolean a l g e b r a ,
t h e r e i s a s s o c i a t e d a t o p o l o g i c a l s p a c e , i t s S t o n e s p a c e , and t h e s t u d y o f Boolean a l g e b r a s h a s b e e n e n r i c h e d by t h e s t u d y of t h e t o p o l o g i c a l p r o p e r t i e s of t h e s e Stone spaces.
Parallel-
i n g t h i s , f o r e a c h C(X), Cll(X) seems t o p l a y t h e r o l e o f a " S t o n e s p a c e " f o r C(X).
As the reader w i l l see, there i s a
r e m a r k a b l e a r r a y 'of c o n c e p t s i n C " ( X )
analogous - i n f a c t ,
g e n e r a l i z i n g - t h e p r i n c i p a l concepts o f (general) topology. Some o f t h e s e a p p e a r i n C h a p t e r 1 0 , o t h e r s i n P a r t V I . The r e l a t i o n o f C " ( X )
t o the function spaces of ordinary
a n a l y s i s on X i s examined i n t h e monograph.
T h i s i s done
t h r o u g h t h e Isomorphism t h e o r e m , e s t a b l i s h e d i n 5 5 3 .
Although
t h e p r o o f i s r e l a t i v e l y s i m p l e , t h e t h e o r e m i s n o n - t r i v i a l , and
viii
Preface
h i g h l i g h t s t h e c e n t r a l r o l e of t h e Dini theorem i n t h e r e l a t i o n b e t w e e n C(X) a n d C"(X)
While t h e i n t r o d u c t o r y m a t e r i a l i n P a r t s I and I 1 i s s e l f c o n t a i n e d , o u r g o a l i s a l w a y s C"(X), two p a r t s a r e o f t e n o m i t t e d .
and t h e p r o o f s i n t h e s e
F o r an e n c y c l o p e d i c p r e s e n t a t i o n
o f R i e s z s p a c e s , w e r e f e r t h e r e a d e r t o Luxemburg and Zaanen [ 3 6 ] ; f o r a more l i m i t e d , b u t b e a u t i f u l l y w r i t t e n , p r e s e n t a t i o n ,
we r e f e r h e r o r him t o S c h a e f e r [ 4 7 ] ; a n d f o r a n e x t e n s i v e d e v e l o p m e n t o f t o p o l o g i c a l R i e s z s p a c e s , t o A l i p r a n t i s and Burkinshaw [ 2 ] .
F i n a l l y , f o r C(X) i t s e l f , t h e r e i s Semadeni [ 4 9 ] .
To k e e p t h e i n t r o d u c t o r y m a t e r i a l from becoming t o o d e n s e , I h a v e r e l e g a t e d some o f i t t o E x e r c i s e s i n t h e f i r s t t h r e e
chapters. I w a n t t o a c k n o w l e d g e h e r e some d e b t s .
To t h e D e p a r t m e n t o f
Mathematics of Purdue U n i v e r s i t y f o r providing, over t h e y e a r s , t h e a t m o s p h e r e a n d t h e a s s i s t a n c e n e e d e d t o c a r r y on t h e o r i g i n a l work a n d t h e work on t h i s monograph.
To t h e D e p a r t m e n t o f
M a t h e m a t i c s o f W e s t f i e l d C o l l e g e , U n i v e r s i t y o f London, w h e r e I carried
o u t a good p a r t o f t h e work a s a g u e s t o f t h e D e p a r t -
ment f o r more times t h a n I c a n remember.
To Owen B u r k i n s h a w
f o r k i n d l y p r o o f r e a d i n g t h e e n t i r e f i n a l copy.
And f i n a l l y , t o
E l i z a b e t h Young f o r t h e many h o u r s a n d t h e c a r e w h i c h s h e d e v o t e d t o t y p i n g t h i s volume.
Purdue U n i v e r s i t y July, 1984
TABLE OF CONTENTS
PREFACE
V
PART I BACKGROUND
CHAPTER 1
RIESZ SPACES
51
Ordered v e c t o r s p a c e s
2
52
Riesz spaces
5
53
R i e s z s u b s p a c e s and R i e s z i d e a l s
9
54
Order convergence
15
55
O r d e r c l o s u r e and b a n d s
20
56
R i e s z homomorphisms
26
57
Dedekind c o m p l e t e n e s s
31
58
Countabilit y p r o p e r t i e s
36
59
R i e s z norms and Banach l a t t i c e s
38
E xe r c i s e s
CHAPTER 2
44
RIESZ SPACE DUALITY
510 The s p a c e E b o f o r d e r bounded l i n e a r f u n c t i o n a 1s
52
9 1 1 E a s " p r e d u a l " o f Eb
62
ix
Contents
X
512
The s p a c e E C o f o r d e r c o n t i n u o u s l i n e a r functions
69 bb
74
513
The c a n o n i c a l i m b e d d i n g o f E i n E
514
The t r a n s p o s e o f a R i e s z homomorphism
78
515
The d u a l o f a Banach l a t t i c e
88
Exercises
89
PART I 1 L-SPACES AND Mll-SPACES
CHAPTER 3
§
16
MIL-SPACES AND L-SPACES
93
MI- s p a c e s
517
The components o f ll
100
918
MI-homomorphisms
108
519
L-spaces
109
520
The e x t r e m e p o i n t s o f K(E)
116
Exercises
CHAPTER 4
119
DUAL L-SPACES AND MIL-SPACES
521
The d u a l o f an MIL-normed s p a c e
120
522
1 ~ 1
a diversion
126
§23
The d u a l o f a n L - s p a c e
132
524
Mappings o f L - s p a c e s
138
(El
,E)
,
Contents
CHAPTER 5
xi
DUALITY RELATIONS BETWEEN AN L-SPACE AND ITS DUAL
525
T o p o l o g y on t h e d u a l o f an L - s p a c e
144
526
Dual b a n d s
146
527
B a s i c b a n d s i n t h e d u a l o f an L-space
147
528
Equi-order-continuity
152
529
Weak c o m p a c t n e s s
159
PART I 1 1 C (X)
CHAPTER 6
,
C (X)
,
C" (X) : THE FRAMEWORK
(C(X) ,X) - D U A L I T Y
The t o p o l o g y o f s i m p l e c o n v e r g e n c e
530
on C(X) 531
166
The d u a l i t y b e t w e e n t h e norm c l o s e d R i e s z i d e a l s o f C(X) and t h e c l o s e d
( o r open) s u b s e t s of X 532
169
The d u a l i t y b e t w e e n t h e MIL-subspaces o f C(X) and t h e u p p e r s e m i c o n t i n u o u s decomposition
933
CHAPTER 7
of X
The MIL-homomorphisms o f C(X)
(C(X)
,
176 181
C ' (X)) - D U A L I T Y
934
The i m b e d d i n g o f X i n C ' ( X )
186
535
Atomic a n d d i f f u s e Radon m e a s u r e s
188
xii
Contents
536
The v a g u e t o p o l o g y on C ' ( X )
193
537
Mapping d u a l i t y
199
CHAPTER 8
C"(X)
938
The i m b e d d i n g o f C(X) i n C " (
539
Some s i m p l e s e q u e n c e s p a c e s
8
206
208
PART IV THE STRUCTURE OF C"(X) : BEGINNINGS
THE FUNDAMENTAL SUBSPACES O F C"(X)
CHAPTER 9
5 40
Cll(X).
213
a n d C"(X)d
The b a s i c b a n d s a n d C"(X)
217
5 42
The 'Is emi c o n t i n u o u s " e 1emen t s
221
§43
The Up-down-up t h e o r e m
228
5 44
The s u b s p a c e U(X) o f u n i v e r s a l l y
§
41
0
integrable elements
2 31
945
The s u b s p a c e s s ( X ) a n d S(X)
234
546
Dedekind c l o s u r e s
2 35
547
The B o r e 1 s u b s p a c e Bo(X)
237
548
C(X)
238
CHAPTER 1 0
and C(X)
THE OPERATORS u AND L
549
The o p e r a t o r s u a n d L
248
550
The o p e r a t o r 6
256
Contents
551
&bands
552
Applications to general bands
CHAPTER 11
and u-bands
263 2 71
U(X)
553
The Isomorphism theorem
554
Immediate consequences o f the Isomorphism theorem
955
xiii
275
277
The universally measurable subsets of
x
289
§56 The Nakano completeness theorem
294
Appendix
297
PART V RIEMANN INTEGRATION
CHAPTER 12
THE RIEMANN SUBSPACE OF A BAND
557
The Dedekind closure of C(X),
303
558
A representation theorem
307
559
Examples of Riemann subspaces
310
CHAPTER 13
RIEMANN INTEGRABILITY
560
Riemann integrable elements
316
561
p-Riemann integrability
317
562
Riemann negligible elements
324
xiv
Contents 563
564
Riemann integrability and Riemann subspaces
32 7
Examples
331
PART VI THE RARE ELEMENTS
CHAPTER 1 4
THE LEAN ELEMENTS
565
Elementary properties
336
566
A "localization" theorem
342
CHAPTER 15
THE RARE ELEMENTS
567
Elementary properties
348
568
A "localization" theorem
359
CHAPTER 1 6
THE DECOMPOSITION C'(X) = Ra(X)'
0
C(X)'
569
The decomposition o f C'(X)
36 3
570
The band Ra(X)d
365
571
The band Ra(X)
572
Examples
CHAPTER 1 7
ad
370 372
THE DEDEKIND COMPLETION OF C(X)
973
The Maxey representation
377
574
The Dilworth representation
378
Contents
xv
575
A third representation
38 3
576
A fourth representation
387
CHAPTER 1 8
THE MEAGER ELEMENTS
577
Elementary properties
578
Sums o f positive elements o f a
389
Riesz space
390
579
Sums o f positive elements o f C " ( X )
395
580
The "localization" theorem
400
BIBLIOGRAPHY
410
This Page Intentionally Left Blank
PART I
BACKGROUND
1
CHAPTER 1
R I E S Z SPACES
Notation.
N
=
{ n , m , - . . } and IR
=
{ l , ~ , .} w i l l d e n o t e t h e
n a t u r a l numbers and t h e r e a l numbers r e s p e c t i v e l y . s p a c e s w i l l a l w a y s be o v e r
pi,
Our v e c t o r
w i t h t h e n e u t r a l element denoted
by 0 . A n i n d e x e d s e t {aalacl
w i l l g e n e r a l l y be w r i t t e n simply
{aaI .
5 1 . Ordered v e c t o r spaces
< on a s e t E , we mean, a s u s u a l , a b i n a r y By an o r d e r -
r e l a t i o n which s a t i s f i e s
(I)
a < a for a l l a€ E
(reflexivity) ;
(11)
a < b, b < c implies a < c
(transitivity) ;
(111)
a < b, b < a implies a
(anti-symmetry).
For a s e t A
=
=
b
{ a a ) i n E and bE E , A < b w i l l mean a a
f o r a l l a , and s i m i l a r l y € o r A > b.
A s u b s e t A o f E w i l l be
< b f o r some bE E . s a i d t o be bounded above i f A -
2
5 b
Any s u c h b-
Riesz Spaces
3
i n g e n e r a l , i t i s n o t u n i q u e - w i l l be c a l l e d an u p p e r bound of A .
C o r r e s p o n d i n g d e f i n i t i o n s h o l d f o r bounded below and
lower bound.
I f A i s bounded below and a b o v e , we w i l l s a y i t
i s o r d e r bounded. An e l e m e n t b of E i s c a l l e d t h e supremum of a s e t
3 if (i) b > A and ( i i ) c > A implies c > b. The a infimum o f A i s d e f i n e d i n t h e same way w i t h > r e p l a c e d by <
A = {a
I n g e n e r a l , n e i t h e r t h e supremum n o r infimum e x i s t s . supremum d o e s e x i s t , we w i l l d e n o t e i t by V A o r
.
I f the
a and i f a a’ t h e infimum e x i s t s , we w i l l d e n o t e i t by A A o r Aaaa. V
By an o r d e r e d v e c t o r s p a c e E , we w i l l mean a v e c t o r s p a c e endowed w i t h an o r d e r which s a t i s f i e s t h e c o m p a t i b i l i t y conditions:
< b , then If a -
a
(11)
),a < ),b f o r a l l
+
c < b
c f o r a l l cE E ;
(I)
+
),
> 0. -
We have i m m e d i a t e l y :
(1.1)
L e t E be an o r d e r e d v e c t o r s p a c e and { a J a s u b s e t o f E.
a
If V a e x i s t s , then a a ~ ( va ) = v ( A a a ) f o r a l l A > 0; (i)
a
cla
(ii)
-(Vaaa) = A a ( - a a ) ;
(iii) v a
cla
+
c =
+
c ) f o r a l l cE E .
More g e n e r a l l y , i f {b } i s a l s o a s u b s e t o f E and V b e x i s t s , B B B then ~aa
c1
+ vB bB
= V
cl,fdaa
+
be>.
a
Chapter 1
The n o t a t i o n
denotes t h a t a,B (over t h e r e s p e c t i v e index s e t s ) . V
~1
and
vary independently
The " d u a l " s t a t e m e n t t o ( l . l ) , o b t a i n e d by r e p l a c i n g A a l s o holds.
T h i s w i l l be t r u e t h r o u g h o u t t h e work.
V
by
For
e v e r y p r o p o s i t i o n i n v o l v i n g one o r more o f t h e s y m b o l s A,<,>,
V,
_ _
t h e s t a t e m e n t o b t a i n e d by i n t e r c h a n g i n g t h e f i r s t
two w i t h e a c h o t h e r a n d t h e l a s t two w i t h e a c h o t h e r w i l l a l s o hold. A subset A of a vector space E i s a
cone
i f it s a t i s f i e s
the conditions:
(I)
a , b € A implies a + b€ A;
(11)
a € A i m p l i e s ha€ A f o r a l l
(111)
a, - a € A implies a
=
x
> 0; -
0.
A c o n e a l w a y s c o n t a i n s 0 , and c o n t a i n s n o o t h e r l i n e a r
subspace. An e l e m e n t a o f an o r d e r e d v e c t o r s p a c e E i s c a l l e d o-s i t i v e i f a > 0 (thus 0 i s positive). P
I t is immediate t h a t
t h e s e t of p o s i t i v e elements of E i s a cone.
I t is called the
p o s i t i v e cone o f E , and w i l l be d e n o t e d by E,.
I t is easily
verified that a < b i f a n d o n l y i f b - a € E,
s o t h e o r d e r i s known i f E, A i n a vector space E,
b
- a€
i s known.
( c f . E x e r c i s e 1) ,
Moreover, f o r any cone
t h e d e f i n i t i o n "a < b i f and o n l y i f
A" d e f i n e s a c o m p a t i b l e o r d e r o n E f o r w h i c h A i s
p r e c i s e l y E,.
Riesz Spaces
5
3 2 . Riesz s p a c e s
A R i e s z s p a c e , o r v e c t o r l a t t i c e , i s an o r d e r e d v e c t o r
s p a c e which i s a l a t t i c e u n d e r t h e o r d e r , t h a t i s , e v e r y f i n i t e { a l , . - . , an } h a s a supremum and an infimum i n E . We n . r e s p e c t i v e l y ; and, a s i s w i l l d e n o t e t h e s e by Vyai and A 1a 1 set A
=
customary, i f n
2 , a l s o by a1Va2 and alAa2.
=
n t h e v e r y d e f i n i t i o n , Vlai
Note t h a t , by n and ~~a~ a r e i n d e p e n d e n t o f t h e
o r d e r i n g o f t h e s u b s c r i p t s ; i n p a r t i c u l a r , a l v a 2 = a2Va1 and alAa2
=
a2Aal.
For two s u b s e t s A , B o f a R i e s z s p a c e E ( i n d e e d , o f any l a t t i c e ) , i f V A and V B e x i s t , t h e n (VA)V (VB)
= V (AIJ
B)
For t h r e e e l e m e n t s a l , a 2 , a 3 , t h i s g i v e s 3 u s ( a 1Va 2 ) v a , = a l v ( a 2Va 3 ) = v 1a 1. ’ s o we c a n w r i t e a 1Va 2v a 3 ( a s s o c i a t i v e law).
unambiguously.
And o f c o u r s e t h i s e x t e n d s t o any f i n i t e
number o f e l e m e n t s . The i d e n t i t i e s (1.1) w i l l be a p p l i e d r e p e a t e d l y t o a s e t c o n s i s t i n g o f two e l e m e n t s s o we s t a t e them f o r t h i s c a s e explicitly.
( 2 . 1 ) Given e l e m e n t s a , b o f a R i e s z s p a c e E , (i)
X(aVb) = ( 1 a ) v (Xb)
(ii)
-(aVb) = ( - a ) A ( - b )
(iii)
avb
+
c
=
(a + c)V (b
for a l l
+
x
> 0;
c).
This g i v e s u s immediately t h e s u p r i s i n g l y s t r o n g c o r o l l a r y :
Chapter 1
6
For a l l a,bE E ,
(2.2)
avb
avb - b
Pro of. -
=
+
a b
=
a + b.
(a - b)v 0
=
a - bAa ( t h i s l a s t e q u a l i t y
from E x e r c i s e 2 ) . QED
Note t h a t from ( i i ) a b o v e , f o r an o r d e r e d v e c t o r s p a c e t o be a R i e s z s p a c e i t i s s u f f i c i e n t t h a t t h e supremum e x i s t f o r every p a i r of elements. The f o l l o w i n g d i s t r i b u t i v e law i s e a s i l y v e r i f i e d : I f and V b e x i s t i n a Riesz s p a c e E , t h e n B B Vaaa (Vaaa)V ( V b ) = V (a vbB). In p a r t i c u l a r , B B a aV(V b ) = V ( a v b ) , a n d f o r t h r e e e l e m e n t s a , b , c ,
P a
av(bvc)
B
=
B
(avb)v ( a v c ) .
Not s o o b v i o u s i s a n o t h e r
( D i s t r i b u t i v e Law) Given a s u b s e t {a 1 o f a R i e s z s p a c e E , a i f Vaaa e x i s t s , t h e n (2.3)
bA(vaaa) = V a ( b h a a ) f o r a l l bE E .
Proof. Set a
=
Vaaa.
T h a t bAa
2
bAaa f o r a l l a i s c l e a r .
Suppose c > bAa f o r a l l a ; we h a v e t o show c > bAa. For e a c h U a, c > bAa = b + a - bva > b + a - bva. I t follows a a aa c 2 Va(b + aa - b v a ) = b + V a a a - b v a = b + a - b v a = h a . QED
7
Riesz Spaces
The " d u a l " law bv ( A a a a ) = A (bva ) a l s o h o l d s . F o r two c1 a e l e m e n t s , t h e laws r e d u c e t o bA(alVa2) = (bAal)V(bAa2) and bV(alAa2)
(bVal)A(bVa2).
=
By s t r a i g h t f o r w a r d a r g u m e n t from ( 2 . 3 ) , we c a n a l s o o b t a i n the apparently stronger
One o f t h e most u s e f u l p r o p e r t i e s o f a R i e s z s p a c e i s g i v e n by t h e
( D e c o m p o s i t i o n Lemma).
(2.5)
Given a R i e s z s p a c e E , i f
a,bl,b2EE+
and a
5
bl
with 0 < al
5
0
5
a2
Set al
=
a b l and a 2 = a
Proof. a - a/\bl
=
bl,
Ov(a
+
b 2 , t h e n a can be w r i t t e n a
5
=
al
+
b2 (al,a2 are not unique).
- b l ) 5 Ovb2
- al.
Then a 2
=
= b2 ( t h e second e q u a l i t y again
from E x e r c i s e 2 ) . QED
Given a , b E E
with a < b, the s e t {cla < c < b } w i l l be
d e n o t e d by [ a , b ] and c a l l e d an i n t e r v a l .
The D e c o m p o s i t i o n
Lemma c a n b e s t a t e d : For e v e r y b l , b 2 E E + ,
[O,bl
[O,blI
+
[O,b21.
+
b2] =
a2
8
Chapter 1
I t f o l l o w s f r o m t h e D e c o m p o s i t i o n Lemma, b y i n d u c t i o n , t h a t i f a , b l , . * - ,bnE E, 0 < a . < bi -
1 -
(i
-
,n).
1,.
=
Crib. 1 1'
and a <
then a
F o r e a c h a E E , we s e t la1 =
(-a)V 0
[lo] or [47].
aV(-a), a+
=
and
= aVO,
The v e r i f i c a t i o n o f t h e f o l l o w i n g i s
-(a/\O).
=
n Clai w i t h
F o r a more g e n e r a l f o r m u l a t i o n
( b u t which i s a c t u a l l y e q u i v a l e n t ) , c f .
a
=
s t r a i g h t forward.
(2.6)
/a
+
+
-
0;
(0)
a
A
a
(i)
a
=
a+ - a ;
(ii)
la1
(iii)
/-a/
(iv)
l X a / = / ~ / l a flu r a l l X ;
(v)
a
(Vi)
(a
=
a+ + a
= =
= 0 +
=
a
+
Va
-
;
la/;
i f and o n l y i f
/a1
=
0;
b)+ < a+ + b + , (a + b ) - < a-
+
b-,
b/ < /a1 + j b l .
The f o l l o w i n g i s due t o B i r k h o f f ( [ 9 ] ,
Chapter 1 4 ,
Theorem 8 ) .
(2.7) Theorem. -
(Birkhoff).
For a l l e l e m e n t s a , b , c of a Riesz
space, IcVa
-
cvbl
+
I a a - cr\bI
=
la - b l .
Riesz Spaces Proof.
U s i n g E x e r c i s e 7 and t h e d i s t r i b u t i v e l a w s , we
have (cVa - c v b )
(cVa)V ( c v b )
=
i n g t h e s e and a p p l y i n g ( 2 . 2 ) +
avb) - ( c
+
(cVa)A ( c v b ) = c v ( a v b ) -
-
cV ( a / \ b ) , and s i m i l a r l y , l a a - a b
(c
9
I
= c ( av
gives us
a/\b) = avb - a/\b
c V a - cvbl
la - b
=
) - a(a/\b). +
Add-
Iaa-cxbl=
( a g a i n by
Exercise 7 ) .
(2.8)
Corollary.
For a l l a , b , c o f a R i e s z s p a c e ,
< la - b l , IcVa - c v b l -
Iaa - abI < la - b l
A R i e s z s p a c e E i s Archimedean 0 = An(l/n)a.
every a , b € E ,
.
i f f o r every a € E + ,
A common ( e q u i v a l e n t ) d e f i n i t i o n i s t h a t f o r
if 0 < nb < a f o r a l l n , then b
R i e s z s p a c e s w i t h which
=
0.
A l l the
we w i l l work w i l l be Archimedean.
The s i m p l e s t example o f a non-Archimedean R i e s z s p a c e i s t h e p l a n e R'
ordered l e x i c o g r a p h i c a l l y : f o r a l l (al ,bl)
(a2,b2)tlR',
(al,bl)
5
,
( a 2 , b 2 ) i f (i) a l 5 a 2 o r ( i i ) a l = a 2
and b l 5 b 2 .
53. R i e s z s u b s p a c e s and R i e s z i d e a l s
A l i n e a r subspace F o f a Riesz space E w i l l be c a l l e d a
Chapter 1
10
Riesz subspace of E i f i t i s closed under the l a t t i c e operat i o n s : a , b E F i m p l i e s avb, a/\bEF.
I t i s e a s i l y shown t h a t
f o r F t o be a R i e s z s u b s p a c e , i t i s s u f f i c i e n t t h a t a E F imply a+EF (Exercise 6 ) .
A Riesz subspace F i s i t s e l f a Riesz space
under t h e induced o r d e r , w i t h F
n E,
= F,.
The i n t e r s e c t i o n o f an a r b i t r a r y c o l l e c t i o n o f R i e s z s u b spaces i s a Riesz subspace.
Consequently, f o r each s u b s e t A
o f E , t h e i n t e r s e c t i o n o f a l l t h e Riesz s u b s p a c e s c o n t a i n i n g A i s t h e s m a l l e s t Riesz subspace c o n t a i n i n g i t .
I t i s called
t h e R i e s z s u b s p a c e g e n e r a t e d by A . The sum o f two R i e s z s u b s p a c e s i s , i n g e n e r a l , n o t a Ri-esz s u b s p a c e ( c f . E x e r c i s e 1 2 ) . We t u r n t o R i e s z i d e a l s .
For a l i n e a r s u b s p a c e I o f a R i e s z s p a c e E , t h e f o l l o w -
(3.1)
ing a r e equivalent:
'1
2'
(i)
I i s a R i e s z s u b s p a c e , and
(ii)
0 < b < a€ I
a€I
i m p l i e s bE I ;
and ( b l < la1 imply bE I .
The p r o o f i s s t r a i g h t f o r w a r d .
I f I h a s t h e above p r o -
p e r t i e s , we w i l l c a l l i t a Riesz i d e a l o f E . ( 5 6 ) , t h e term "ideal"
As we w i l l s e e
i s j u s t i f i e d by t h e f a c t t h a t t h e R i e s z
i d e a l s a r e p r e c i s e l y t h e n u l l s p a c e s o f t h e homomorphisms of Riesz spaces. The i n t e r s e c t i o n o f an a r b i t r a r y c o l l e c t i o n o f R i e s z
Riesz Spaces
11
i d e a l s i s a Riesz i d e a l , so a g a i n , f o r each s u b s e t A of E , t h e i n t e r s e c t i o n of a l l the Riesz i d e a l s c o n t a i n i n g A i s t h e I t i s c a l l e d t h e Riesz
s m a l l e s t Riesz i d e a l c o n t a i n i n g i t . i d e a l g e n e r a t e d by A .
This Riesz i d e a l has a simple c h a r a c t e r i z a t i o n :
( 3 . 2 ) The R i e s z i d e a l g e n e r a t e d by a s u b s e t A o f a R i e s z s p a c e
E c o n s i s t s of a l l bEE
satisfying:
m
5 z l X i [ a i l f o r some
Ibl
cm R +}. s e t { a l , - . - , a m } c A and { l l , - . - , ~
And t h e xi's c a n
be r e s t r i c t e d t o e l e m e n t s o f N .
Again, t h e v e r i f i c a t i o n i s s t r a i g h t f o r w a r d .
Unlike t h e
s i t u a t i o n w i t h R i e s z s u b s p a c e s , we have
(3.3) Theorem. Let { I } b e a c o l l e c t i o n of R i e s z i d e a l s o f a
a t h e s e t o f a l l f i n i t e sums R i e s z s p a c e E , and s e t I = C I c1 a' n z l a i , where a l , - * - , a n a r e a r b i t r a r y a ' s , n i s an a r b i t r a r y n a t u r a l number, and a i E Ia
(i
=
1
,
e
.
e
Then I i s a R i e s z
,n).
i
i d e a l , and I + = c a ( I a ) + .
n Suppose 0 < b i a = zlaiEI.
P roof. -
h e n c e , by t h e D e c o m p o s i t i o n Lemma ( 2 . 5 ) , b 0
i bi 2 ( a i ) ' -
t h i s gives
US
(i
=
b.EI. 1
l , . . ., n ) .
cli
(i
Since each I
,...
= 1
< b < zy(ai)+, Then 0 =
cybi, with
i s a Riesz i d e a l , "i , n ) , h e n c e bE 1. Thus
Chapter 1
12
c o n d i t i o n ( i i ) i n ( 3 . 1 ) 1' i s s a t i s f i e d . To v e r i f y c o n d i t i o n n .E I . We have 0 < a+ < z;(ai)+ ((vi) in ( i ) , c o n s i d e r a = c 1a 1 (2.6)), h e n c e , r e p e a t i n g t h e argument used a b o v e , we o b t a i n a + E I , which e s t a b l i s h e s ( i ) ( E x e r c i s e 6 ) .
For the f i n a l
e q u a l i t y i n t h e theorem, s e t b = a i n t h e f i r s t p a r t of t h e proof. QED
I n p a r t i c u l a r , t h e sum o f two Riesz i d e a l s i s a R i e s z ideal.
While t h i s i s n o t t r u e f o r R i e s z s u b s p a c e s , n o t e t h a t
t h e sum o f a R i e s z s u b s p a c e and a R i e s z i d e a l i s a Riesz s u b space (Exercise 1 3 ) .
a,bEE a r e d i s j o i n t i f IalAIbl = 0 . k i n t from b .
We a l s o s a y a is dis-
Properties of d i s j o i n t n e s s a r e c o l l e c t e d i n
E x e r c i s e s 5 , 8 , and 9 .
Two s u b s e t s A , B o f E a r e d i s j o i n t i f
e v e r y e l e m e n t o f A i s d i s j o i n t from e v e r y e l e m e n t o f B. The f o l l o w i n g i s e a s i l y v e r i f i e d .
( 3 . 4 ) Let A , B be s u b s e t s o f a R i e s z s p a c e E , and H , I t h e R i e s z
i d e a l s which t h e y r e s p e c t i v e l y g e n e r a t e .
I f A and B a r e
d i s j o i n t , t h e n s o a r e H and I .
( 3 . 5 ) For two R i e s z i d e a l s H , I o f a R i e s z s p a c e E , t h e f o l l o w -
ing are equivalent:
'1
H and I a r e d i s j o i n t ;
13
Riesz Spaces
2'
a b = 0 f o r a l l a € H,,
'3
H
4'
H, (7 I + = 0 .
n
2'
Proof. we show 1' la1
I
=)
3'
=
0;
i m p l i e s 1' 4'
F i n a l l y , i f 4'
by t h e d e f i n i t i o n o f d i s j o i n t n e s s ; I f 1' h o l d s , t h e n f o r a € H
a 2'.
l a l ~ l a l= 0 , s o 3'
=
bE I + ;
holds.
'3
h o l d s , t h e n f o r a € H,,
n
I,
o f c o u r s e i m p l i e s 4'. a ~ b € H,
b € I,,
0 I,
= 0
QED
For any s u b s e t A o f E , we w i l l d e n o t e by Ad t h e s e t o f e l e m e n t s o f E d i s j o i n t from A , and we w i l l c a l l i t t h e d i s j o i n t I t i s e a s y t o v e r i f y t h a t Ad i s a R i e s z i d e a l .
of A.
t h a t i f H i s t h e R i e s z i d e a l g e n e r a t e d by A , t h e n Hd
Also =
Ad.
L e t E , F be two R i e s z s p a c e s , and d e n o t e t h e e l e m e n t s o f E by a ' s and t h o s e o f F by b ' s . E
x
F and d e f i n e ( a l , b l )
5
bl
b2.
5
Form t h e p r o d u c t v e c t o r s p a c e
( a 2 , b 2 ) i f and o n l y i f a l
Under t h i s o r d e r , ( i ) E
x
5
a2,
F i s a Riesz s p a c e , w i t h
t h e o p e r a t i o n s V ,A g i v e n c o o r d i n a t e w i s e : ( a l , b l ) V ( a 2 , b 2 )
=
(alVa2,b1Vb2), and ( i i ) E and F a r e d i s j o i n t R i e s z i d e a l s o f E
x
F.
I f a R i e s z s p a c e i s t h e d i r e c t sum, i n t h e a l g e b r a i c s e n s e , o f two o f i t s R i e s z i d e a l s , t h e n t h e same two p r o p e r t i e s hold:
( 3 . 6 ) Theorem.
Suppose t h e R i e s z s p a c e E i s t h e d i r e c t sum
o f two R i e s z i d e a l s : E
=
I 3 H (that is, I
+
H = E, I
nH
= 0).
14
Chapter 1
For e v e r y a E E , b y a = aI av b
+
denote t h e r e s u l t i n g unique decomposition o f a
a[!.
Then f o r a l l a , b E E
aIVb I
+
aHVbH
a/\b = aIAbI
+
a# bH
=
*
In p a r t i c u l a r , a+
=
(a,)+ +
+,
-
a- = (aI)- + l a 1 = la11
aHI
+
*
In addition, a > 0 i f and o n l y i f 0 < a a ( a . - I ' H -
Proof.
Since I
nH
=
0 , I and H a r e d i s j o i n t ( 3 . 5 ) ,
h e n c e , b y E x e r c i s e 9 , a+ = ( a I ) +
+
(aH)+.
The r e s t o f t h e
theorem follows e a s i l y QED
(3.7) Corollary.
I f E = I EI H , I a n d H R i e s z i d e a l s , t h e n
H = I d a n d I = Hd .
Proof.
We h a v e H C I d
s i d e r bE I d , b > 0. bAbI = 0 , h e n c e b
=
.
Then a b
For t h e o p p o s i t e i n c l u s i o n , con=
0 f o r a l l a € I + , hence bI =
bHEH. QED
No te t h a t , b y t h e C o r o l l a r y , a R i e s z i d e a l I c a n h a v e most o n e co m pl em ent ar y ___
Riesz i d e a l , Id .
I n g e n e r a l , Id need
Riesz Spaces
15
n o t be complementary t o I , t h a t i s , we may have I
+
Id # E .
As an e x a m p l e , l e t E b e t h e R i e s z s p a c e o f c o n t i n u o u s f u n c t i o n s
on t h e r e a l i n t e r v a l
[ 0 , 1 ] , and I be t h e s e t o f f u n c t i o n s
which v a n i s h on [1/2,1].
Then I d c o n s i s t s o f t h o s e f u n c t i o n s
which v a n i s h on [0,1/2], and I + I d d o e s n o t c o n t a i n t h e c o n s t an t f u n c t i o n s .
5 4 . Order convergence
Consider a s e t S. set
a
(that is,
A mappingA->S
f
i n t o S of a d i r e c t e d
i s endowed w i t h an o r d e r < satisfying:
f o r a l l u l , a 2 € d , t h e r e e x i s t s a 3 € d s u c h t h a t a1,a2 < a ) w i l l be c a l l e d a n e t i n S.
For e a c h a€..$,
by sa and r e f e r t o f a s " t h e n e t { s , ) . t h e n o t a t i o n { s a } i n two d i s t i n c t ways:
we w i l l d e n o t e f ( a )
Warning:
We t h u s u s e
Standing a l o n e , {s,}
s i m p l y d e n o t e s an i n d e x e d s e t , w h i l e t h e p h r a s e " t h e n e t
{s,)"
i n d i c a t e s t h e i n d e x s e t i s d i r e c t e d (and t h e sa's a r e
not necessarily d i s t i n c t ) .
We t u r n t o a R i e s z s p a c e E . A n e t { a } i n E w i l l be c a l l e d a s c e n d i n g ( r e s p . d e s c e n d -
a
t o n i c n e t i s one which i s e i t h e r a s c e n d i n g o r d e s c e n d i n g .
aa
+
w i l l d e n o t e t h a t { a a } i s an a s c e n d i n g n e t , a n d a a + , t h a t i t i s
a descending n e t .
a and a,+a, t h a t i t i s a d e s c e n d i n g n e t w i t h a a' We e m p h a s i z e t h a t t h e s e n o t a t i o n s a l w a y s i m p l y t h a t
net with a = a
= A
a
cla
.
a cl + a w i l l d e n o t e t h a t { aa ) i s an a s c e n d i n g
V
Chapter 1
16
we a r e d e a l i n g w i t h a n e t . The v e r i f i c a t i o n o f t h e f o l l o w i n g i s s t r a i g h t f o r w a r d
(4.1)
Given a a + a and b +b ( t h e same d i r e c t e d i n d e x s e t ) , t h e n a (i)
(-aa) +(-a) ;
(ii)
Xaa+Aa
(iii)
(aa
(iv)
(aolvba).f ( a v b ) ;
(v)
(aaAba) ( a / \ b ) .
+
for all
ba)+(a
+
> 0;
b);
By an o r d e r bounded n e t , we w i l l mean one whose s e t o f v a l u e s i s o r d e r bounded. I f a a + a , t h e n , by r e p l a c i n g t h e n e t by a t e r m i n a l p a r t ,
,
i f n e c e s s a r y , we c a n assume i t h a s a f i r s t e l e m e n t a
and i s
"0
t h e r e f o r e an o r d e r bounded n e t ( s p e c i f i c a l l y , a for all a).
< a < a "0a -
And s i m i l a r l y f o r a d e s c e n d i n g n e t .
So hence-
f o r t h t h e n o t a t i o n s a + a and a + a w i l l always i m p l y t h a t we c1 a a r e d e a l i n g w i t h an o r d e r bounded n e t . Given a n e t { a 3 ( n o t n e c e s s a r i l y m o n o t o n i c ) , we w i l l s a y
"
t h a t t h e n e t {a } o r d e r converges t o a E E , i f t h e r e e x i s t n e t s a Ira}, { s 1 i n E , w i t h t h e same i n d e x s e t , s u c h t h a t ( i ) r a + a , a ( i i ) s + a , and ( i i i ) r < a < s f o r a l l a. We w i l l d e n o t e a- a a t h i s o r d e r c o n v e r g e n c e by a -+ a . a Note t h a t ( I ) from, t h e p r e c e d i n g p a r a g r a p h , t h e n o t a t i o n
"
a
-+
a net,
a always i m p l i e s t h a t we a r e d e a l i n g w i t h an o r d e r bounded (11) a + a and a + a a r e s p e c i a l c a s e s o f o r d e r c o n v e r g e n c e , a a
Riesz Spaces
17
a n d ( 1 1 1 ) f o r a n e t { a }, i f a = a f o r a l l a, t h e n a -t a . a a a For o r d e r c o n v e r g e n c e t o be a u s e f u l t o o l , l i m i t s m u s t b e
We v e r i f y t h i s .
a'
we 1 h a v e t o show a' = a . By d e f i n i t i o n , t h e r e e x i s t n e t s { r } . a 1 2 2 { s } s a t i s f y i n g t h e c o n d i t i o n s ( i ) , (ii), (iii) { s a } and I r a } , a We n o t e f i r s t t h a t f o r a l l f o r a' a n d a 2 r e s p e c t i v e l y . 1 In e f f e c t , choose Y E A 2 < s As a , f i E d ( t h e i n d e x s e t ) , r UV r a - a a' 1 1 1 1 2 such t h a t a , a < y; then r V r 2 < r V r 2 < a < s A s 2 < s A s ci a - y y - y - y y - a 0' 1 1 2 1 2 I t f o l l o w s t h a t a V a 2 = V ( r V r ) < A ( s A S ) = a1Aa2, whence
unique.
Suppose
a
2
a
a 1 = a2 .
a
a
-
c1
B
-+
B
and a
-t
U
a';
B
The a b o v e d e f i n i t i o n a n d d i s c u s s i o n c l e a r l y h o l d s i n a n y lattice.
In contrast, the following equivalent definition of
o r d e r convergence i s meaningful o n l y i n a Riesz s p a c e .
( 4 . 2 ) F o r a s e t { a } i n a R i e s z s p a c e E a n d aE E , a ing are equivalent: lo 2'
(a
-
a
a
-+
the follow-
a,
t h e r e e x i s t s a n e t { pc1 } i n E s u c h t h a t p c1 $ 0 a n d
a a ( 5 p,
f o r a l l a.
h o l d s , a n d f o r e v e r y a, s e t p
s - r a a' Then p a + 0 ( 4 . 1 ) , a n d F o r e v e r y a, r < a < s , r < a < s a- a a - a - u' Cc-versely, < a - a a 5 p a , t h a t i s , l a - aal 5 p a . hence pa assume 2' h o l d s . Then f o r e v e r y - p a -< a a - a 5 p a , h e n c e < a i a + p . T h u s a - p , a + pa a r e t h e d e s i r e d a pa- a a U r s a' a' QED Proof.
Assume 1'
c1
=
Chapter 1
18
From (4.1), we o b t a i n e a s i l y
3 b e two n e t s i n a R i e s z s p a c e E , w i t h t h e a b , then I f aa + a and b
( 4 . 3 ) Let { a , } , { b same i n d e x s e t .
c1
(i)
(-aa)
(ii)
laa
(iii)
a
(iv)
aavba
-+
avb,
(v)
a Ab a a
-+
aAb.
ci
-+
+
(-a),
Xa f o r a l l X ,
ba
+
-f
-f
a
+
b,
And, a s a c o r o l l a r y ,
(i)
a
a
+
a i f and o n l y i f ( a
(ii)
a
w
+
a i f and o n l y i f ( a ) +
(iii)
a
a
-+
a implies
(iv)
if a
(4.4)
a
-
w
a
+
a, b
a
laa/ +
-+
a) +
-+
0;
a + a n d (aa)- + a - ;
/at;
b , and a
< b
a-
a
f o r a l l a, t h e n
a < b.
T h e r e i s a p a r t i c u l a r k i n d o f m o n o t o n i c n e t w h i c h we w i l l o f t e n use.
F o l l o w i n g B o u r b a k i , we w i l l s a y t h a t A c E i s
f i l t e r i n g upward
-
i f a l , a 2 E ; A i m p l i e s alVa2EA.
d i r e c t e d s e t , h e n c e t h e i n j e c t i o n map
a n e t , an a s c e n d i n g o n e .
at+
A is then a
a of A into E is
This n e t w i l l be c a l l e d t h e
( c a n o n i c a l ) n e t a s s o c i a t e d w i t h A.
In general, we w i l l write
i t {aa} e v e n t h o u g h t h e i n d e x s e t {a} i s A i t s e l f .
I t is
19
R i e s z Spaces
clear that i f a
= VA,
then t h i s n e t order converges t o a .
A w i l l b e s a i d t o b e f i l t e r i n g downward i f a l , a Z f A i m p l i e s
a1Aa2EA.
A s above, t h e r e i s a c a n o n i c a l n e t a s s o c i a t e d w i t h A,
t h i s time a descending one.
And i f a
=
AA, then t h i s n e t order
converges t o a .
the set of a l l
G i v e n a s u b s e t A o f E , w e d e n o t e b y A(') limits i n E of o r d e r convergent n e t s o f A. that (i) A c A(1),
(ii) A c B i m p l i e s A(')
I t i s immediate
c B ( l ) , and
(iii)
( A I J B ) ( l ) = A(1) IJ B " ) .
In addition,
(4.5)
( i ) I f A is a l i n e a r subspace, then so i s A('); ( i i ) I f A i s a s u b l a t t i c e , t h e n s o i s A (1) ; ( i i i ) I f F i s a Riesz subspace, then so i s F ' l ) ,
I f I i s a Riesz i d e a l , then so is
(iv)
I'll,
with
and ( I ( ' ) ) +
i s t h e s e t o f suprema o f a r b i t r a r y s u b s e t s o f I + .
Proof.
(i) and ( i i ) a r e immediate; a l s o t h e f i r s t s t a t e -
ment i n ( i i i ) .
There e x i s t s a n e t {a } c F s u c h t h a t a
a € (F('))+. Then ( a a ] +
To p r o v e t h e l a s t s t a t e m e n t i n ( i i i ) , c o n s i d e r c1
+
a+
=
a, so a € (F+)(').
Thus ( F ( ' ) ) +
c1
a.
+
c ( F + )(1). ,
The o p p o s i t e i n c l u s i o n f o l l o w s f r o m t h e e a s i l y v e r i f i e d f a c t t h a t t h e l i m i t o f an o r d e r c o n v e r g e n t n e t o f p o s i t i v e e l e m e n t s
is positive. Now s u p p o s e I i s a R i e s z i d e a l . subspace.
We show t h a t 0 - b - a E I
By ( i i i ) , I ( ' )
i s a Riesz
i m p l i e s b e I(1)
,
hence
20
Chapter 1
i s a Riesz i d e a l .
I(') a
a
-f
a (by ( i i i ) a g a i n ) .
There e x i s t s a n e t { a } i n I + such t h a t a Then aaAb€ I,
f o r a l l a , and
I t remains t o prove t h e l a s t a A b -f a/ib = b . Thus b E I ( l ) . a statement in ( i v ) . I f a E E i s t h e supremum o f some s u b s e t o f
t h e n , by E x e r c i s e 1 4 , some n e t i n I + o r d e r c o n v e r g e s t o a ,
I,,
s o a € I'll.
C o n v e r s e l y , s u p p o s e a € ( I (1) ) + .
There e x i s t s
3
Since
n e t {a } i n I+ such t h a t aa a . Then aaAa -t a ~ =a a . a a Aa < a , i t f o l l o w s e a s i l y t h a t a = V a ( a a A a ) . a -f
QED
55. Order c l o s u r e and bands
A s u b s e t A of E w i l l be c a l l e d o r d e r c l o s e d i f i t i s
c l o s e d under o r d e r convergence i n E of n e t s i n A: f o r e v e r y n e t { a } i n A and a € E ,
+ a implies aEA. I t is easily verified a t h a t t h e union o f a f i n i t e c o l l e c t i o n of o r d e r c l o s e d s e t s and
a
a
t h e i n t e r s e c t i o n o f an a r b i t r a r y c o l l e c t i o n a r e o r d e r c l o s e d . We have a l r e a d y p o i n t e d o u t i n t h e p r o o f o f ( 4 . 5 )
t h a t E,
i s order closed. A useful property:
(5.1) A Riesz subspace F o f a Riesz space E i s o r d e r c l o s e d i f and o n l y i f F,
Proof. -____
i s order closed.
Suppose F i s o r d e r c l o s e d .
S i n c e F,
= F
n
E,,
i t i s t h e i n t e r s e c t i o n o f two o r d e r c l o s e d s e t s , h e n c e o r d e r
Riesz S p a c e s
closed.
C o n v e r s e l y , l e t F,
21
b e o r d e r c l o s e d , and s u p p o s e a n e t
{ a } i n I: o r d e r c o n v e r g e s t o a n e l e m e n t a . Then (a,)' CL + I t f o l l o w s a , a E F + , hence a E F . and ( a a ) - + a - .
+
a+
QED
Consider a subset A o f E .
The i n t e r s e c t i o n o f a l l t h e
o r d e r c l o s e d s e t s c o n t a i n i n g A i s an o r d e r c l o s e d s e t , hence t h e smallest one c o n t a i n i n g A.
We w i l l c a l l i t t h e o r d e r
c l o s u r e o f A. I n g e n e r a l A(1)
i s n o t o r d e r c l o s e d , hence i s a p r o p e r
s u b s e t o f t h e o r d e r c l o s u r e o f A. A(3)
and so on.
=
Let A ( 2 )
=
( A ( 1 ) )( 1 ) 9
I t may r e q u i r e a t r a n s f i n i t e
s e q u e n c e o f t h e s e i t e r a t i o n s t o o b t a i n t h e o r d e r c l o s u r e o f A. (Note, however, t h a t A i s o r d e r c l o s e d i f and o n l y i f A
=
A").)
I t i s c l e a r t h a t i f A c B , t h e n o r d e r closure A c o r d e r c l o s u r e B.
A l s o , f o r a n y two s u b s e t s A , B o f E ,
o r d e r c l o s u r e ( A ! J B ) = ( o r d e r c l o s u r e A) IJ ( o r d e r c l o s u r e B )
Combining ( 4 . 5 ) w i t h Z o r n ' s lemma, we c a n show
(5.2)
Theorem. (i)
Let E b e a R i e s z s p a c e .
I f A is a l i n e a r subspace, then so is i t s o r d e r
closure. (ii)
I f A i s a sublattice, then so i s i t s order closure
( i i i ) I f F i s a Riesz subspace and G i t s o r d e r c l o s u r e , t h e n G i s a R i e s z s u b s p a c e a n d G,
= o r d e r c l o s u r e F,.
Chapter 1
22
F o r a R i e s z i d e a l I , w e c a n do b e t t e r .
I(1) is order
c l o s e d , h e n c e i s t h e o r d e r c l o s u r e o f I (we t h u s h a v e n o n e e d o f Z o r n ' s lemma):
For a R i e s z i d e a l I o f a Riesz s p a c e E , I(1)
(5.3)
is order
c l o s e d , hence i s t h e o r d e r c l o s u r e o f I .
Proof.
By ( 5 . 1 ) a n d ( 4 . 5 ) , we n e e d o n l y show t h a t ( I ( 1 ) ) +
i s c l o s e d under t h e o p e r a t i o n o f a d j o i n i n g suprema o f a r b i t r a r y subsets of itself. idempotent.
Now t h i s o p e r a t i o n i s e a s i l y shown t o b e
Since (I('))+
i s o b t a i n e d by a p p l y i n g t h e o p e r a -
t i o n t o I + , we a r e t h r o u g h .
QED
We w i l l s e l d o m e n c o u n t e r o r d e r c l o s e d R i e s z s u b s p a c e s i n t h i s work. abound,
I n c o n t r a s t t o t h i s , o r d e r c l o s e d Riesz i d e a l s w i l l
The l a t t e r h a v e a name: a n o r d e r c l o s e d R i e s z i d e a l o f
a Riesz s p a c e E i s c a l l e d a
band
of E.
The r e m a i n d e r o f t h i s 5
i s devoted t o bands. Given a s u b s e t A o f a R i e s z s p a c e E , t h e i n t e r s e c t i o n o f a l l t h e bands c o n t a i n i n g A i s a band, hence t h e s m a l l e s t one
c o n t a i n i n g A. clearly I(1),
I t i s c a l l e d t h e band g e n e r a t e d by A.
It is
where I i s t h e Riesz i d e a l g e n e r a t e d by A.
We r e m a r k e d i n 53 t h a t f o r e v e r y s u b s e t A o f a R i e s z s p a c e , Aa i s a Riesz i d e a l .
In point of f a c t ,
Kiesz S p a c e s
(5.4)
23
For e v e r y s u b s e t A of a Riesz space E , A
Proof. -__
d . i s a band.
I t r e m a i n s t o show t h a t Ad i s o r d e r c l o s e d .
This
f o l l o w s f r o m ( 5 . 1 ) and ( i v ) o f E x e r c i s e 5 .
QED d d For a s u b s e t A of a R i e s z space E , w e w i l l denote (A ) s i m p l y by A dd
(5.5)
.
I t i s o b v i o u s t h a t A C A dd .
Let A b e a s u b s e t o f a R i e s z s p a c e E , I t h e R i e s z i d e a l
g e n e r a t e d by A ,
a n d H t h e b a n d g e n e r a t e d by A ( h e n c e t h e o r d e r
closure of I ) .
Then Ad
Id
=
=
H
d
a n d ( t h e r e f o r e ) Add
=
Idd
=
Hdd.
The v e r i f i c a t i o n i s s t r a i g h t f o r w a r d .
F o r an A r c h i m e d e a n
R i e s z s p a c e , w e c a n s a y more:
( 5 . 6 ) Theorem. -____
I f E i s an Archimedean Riesz s p a c e , t h e n f o r
every R i e s z i d e a l I , Idd i s i t s o r d e r c l o s u r e .
i f I i s a band, then Idd
Proof.
=
I.
Idd i s o r d e r c l o s e d ( 5 . 4 ) ,
of I i s contained i n I
dd
.
In particular,
so the order closure
For t h e o p p o s i t e i n c l u s i o n c o n s i d e r
24
bE ( I
Chapter I dd
< a < b } ; we show b = V A . ) + and s e t A = { a € I 1 0 -
Suppose A < c < b ; we h a v e t o show c = b . On t h e o n e h a n d , dd 0 < b - c < b , s o b - cE I on t h e o t h e r h a n d b - c E 1 d .
.
To
e s t a b l i s h t h i s , i t i s enough t o show t h a t i f dE I . s a t i s f i e s
0 < d < b - c , then d
=
0.
We have 0 c d < b - c < b , s o dEA,
so d < c , so 0 < 2d < c + (b - c) we h a v e 0 < nd < b for a l l n We t h u s h a v e b
- cE I d d
=
=
b.
1,2,...
P r o c e e d i n g by i n d u c t i o n ,
.
I t follows d
r) I d , whence b -
c
=
=
0.
0.
QED
( 5 . 7 ) C o r o l l a r y 1. A o f E , Add
I f E i s Archimedean, t h e n f o r e v e r y s u b s e t
i s t h e band g e n e r a t e d by A .
(5.8) Corollary 2.
For a R i e s z i d e a l I o f an Archimedean R i e s z
space E , the following a r e equivalent:
1'
the order closure of I i s E;
Z0
Id = 0.
For a counterexample t o ( 5 . 8 )
,
hence t o ( 5 . 6 )
,
when E i s
n o t A r c h i m e d e a n , l e t E b e t h e p l a n e IR2 o r d e r e d l e x i c o g r a p h i c a l l y ( 5 2 ) and H t h e y - a x i s . f o r e H~~
=
Then H i s a b a n d b u t Hd = 0 and t h e r e -
E.
We have s e e n ( 3 . 7 ) t h a t i f E then H
=
I d and I = H d .
=
I a H , I , H Riesz i d e a l s ,
T h u s , by ( 5 . 4 ) ,
I and H a r e b a n d s
( 3 . 7 ) can be s t a t e d a s f o l l o w s : A R ies z i d e a l I h as a
R i e s z Spaces
25
complementary Riesz i d e a l i f and o n l y i f E
I 3 Id; i n such
=
c a s e , ( i ) I d i s t h e o n l y c o m p l e m e n t a r y R i e s z i d e a l and ( i i ) I i s a band.
In g e n e r a l , even i f I is a band, I complementary t o I . i d e a l I i s a band.
+
Id
# E , so I d
is not
I n t h e example f o l l o w i n g ( 3 . 7 ) , t h e R i e s z However, i n an Archimedean R i e s z s p a c e ,
I d i s " a l m o s t " complementary t o I ( ( 5 . 9 ) b e l o w ) . We f i r s t a d o p t a n o t a t i o n .
I f two l i n e a r s u b s p a c e s F , G
of a vector space s a t i s f y F n G F
+
Thus f o r a R i e s z i d e a l I o f a R i e s z
G t o indicate this.
s p a c e , we w i l l a l w a y s d e n o t e I
(5.9)
Theorem.
0 , we w i l l w r i t e F 3 G f o r
=
+
I
d
by 1 3 I
d
.
I f E i s Archimedean, then
(Luxemburg-Zaanen).
f o r e v e r y Riesz i d e a l I of E , t h e o r d e r c l o s u r e o f I
Proof.
(I @ Id)d
=
Id
n
Idd
=
0 (Exercise 17).
Id i s E.
%,
Now
apply (5.8) QE D
Remark.
( i ) Since I 3 Id i s a R i e s z i d e a l , t h e theorem
s a y s t h a t e v e r y e l e m e n t o f E+ i s t h e supremum o f some s u b s e t d of (I 3 I )+ ( i i ) Theorems ( 5 . 6 ) a n d ( 5 . 9 )
a r e contained i n a general
t h e o r e m o f Luxemburg a n d Zaanen ( [ 3 5 ] Theorem 2 2 . 1 0 ) , w h i c h s t a t e s t h a t t h e p r o p e r t y i n e a c h o f them i s , i n f a c t , a n e c e s s a r y and s u f f i c i e n t c o n d i t i o n f o r E t o be Archimedean.
Chapter 1
26
56. R i e s z homomorphisms
C o n s i d e r a l i n e a r mapping E ->F into another.
T o f one R i e s z s p a c e
Perhaps t h e weakest p r o p e r t y T can have i n v o l v -
i n g t h e Riesz space s t r u c t u r e i s o r d e r boundedness.
T w i l l he
s a i d t o b e o r d e r bounded i f i t c a r r i e s o r d e r bounded s e t s i n t o o r d e r bounded s e t s .
A stronger property is positivity.
T is
c a l l e d p o s i t i v e i f T(E+) c F + , o r , e q u i v a l e n t l y , i f i t p r e i m p l i e s Ta i Ta,. That a p o s i t i v e 2 1 l i n e a r mapping i s o r d e r b o u n d e d i s i m m e d i a t e . A stronger pro-
serves order: a
1 -
a
L
p e r t y s t i l l : T w i l l b e c a l l e d a R i e s z homomorphism i f i t p r e s e r v e s t h e l a t t i c e o p e r a t i o n s , t h a t i s , i f f o r a l l a , b E E:, T(avb)
=
(Ta)V(?'b) a n d T(ar\b)
=
(Ta)A(Tb).
A R i e s z homomorphism
clearly preserves order. A f o u r t h p r o p e r t y , s t r o n g e r t h a n o r d e r boundedness b u t
i n d e p e n d e n t o f t h e o t h e r two p r o p e r t i e s ,
is order continuity.
T w i l l be c a l l e d o r d e r continuous i f it p r e s e r v e s o r d e r con-
vergence: a
(6.0)
a.
+
a i m p l i e s Ta(,
+
Ta.
I f T i s o r d e r c o n t i n u o u s , t h e n i t i s o r d e r bounded
Proof. -__
I t i s e n o u g h t o show t h a t f o r a n i n t e r v a l o f t h e
f o r m [ O , a ] i n E , T ( [ O , a ] ) c [ - c , c ] f o r some c E F , .
As a set,
[ O , a ] i s f i l t e r i n g downward ( a l s o u p w a r d , b u t n o m a t t e r ) . L e t {a } b e t h e a s s o c i a t e d ( d e s c e n d i n g ) n e t ( c f . t h e d i s c u s s i o n c1
R i e s z Spaces
following ( 4 . 4 ) ) .
Then a,+O,
27
s o , b y h y p o t h e s e s , Ta
ci
+
s a y s t h e r e e x i s t s a n e t {b } i n F s u c h t h a t b 4 0 a n d ITa
"
CY
This
0.
a
I
< b
-
f o r a l l a. Now s i n c e t h e d i r e c t e d i n d e x s e t {a} i s a c t u a l l y t h e s e t
[ O , a l , i t h a s a f i r s t e l e m e n t a0 ( w h i c h i s a c t u a l l y a ) .
Since
f o r a l l Q, a n d t h u s { b c x }i s d e s c e n d i n g , i t f o l l o w s b < b a-b i Ta < b f o r a l l a, 'Thus b is the desired c. noci"0 aO
QED
F o r now, o u r i n t e r e s t l i e s i n R i e s z homomorphisms.
( 6 . 1 ) Given a l i n e a r mapping E __ > F o f o n e R i e s z s p a c e i n t o another.
The f o l l o w i n g a r e e q u i v a l e n t :
1'
T i s a R i e s z homomorphism;
2'
T p r e s e r v e s one o f t h e l a t t i c e o p e r a t i o n s V , A ;
3'
~ ( a + )= ( ~ a ) +f o r a l l a E E :
4'
For a l l a , b E E ,
Proof.
Assume 4'
a/\b
0 i m p l i e s Ta/\Tb
=
For a , b E E ,
holds
( a - a/\b)A (b
=
a ~ b )= 0 ,
-
hence T ( a - a/\b)A T b - W b )
=
0.
Writing t h i s (Ta - T ( a / \ b ) ) A (Tb - T ( a / \ b ) ) = 0 ,
we h a v e Ta/\Tb
-
T(aAb)
=
0,
0.
iy.
Chapter I
28
w h i c h g i v e s u s 2'.
The r e m a i n d e r o f t h e p r o o f i s s t r a i g h t -
forward.
QED
(6.2)
I f E __ > F i s a R i e s z homomorphism, t h e n T(E) i s a
Riesz subspace o f F and T-l(O) i s a Riesz i d e a l of E .
The p r o o f i s s i m p l e . I f a l i n e a r mapping E
> F i s a b i j e c t i o n and b o t h T
~
and T - l p r e s e r v e t h e l a t t i c e o p e r a t i o n s , t h e n T w i l l be c a l l e d a R i e s z isomorphism.
For a l i n e a r b i j e c t i o n t o be a Riesz
isomorphism, i t s u f f i c e s t h a t T(E+)
The r e m a i n d e r o f t h i s
§
=
F,.
i s d e v o t e d t o two k i n d s o f R i e s z
homomorphisms w h i c h w i l l b e w i t h u s t h r o u g h o u t t h e w ork.
( 6 . 3 ) Theorem.
Let I b e a R i e s z i d e a l o f a Riesz s p a c e E , E / I
t h e q u o t i e n t v e c t o r s p a c e , and E -> E / I t h e q u o t i e n t map. Then (i)
q ( E + ) i s a c o n e , h e n c e d e f i n e s a n o r d e r on E / I .
Under t h i s o r d e r , (ii)
E/I i s a Riesz space;
(iii)
q i s a R i e s z homomorphism ;
(iv)
f o r every interval [a,b] of E , q([a,b]) = [qa,qb].
29
Riesz Spaces
*
We d e n o t e t h e e l e m e n t s o f E / I by % , b , ' * . .
P roof. -
n e e d o n l y show t h a t g , - S i E q ( E + ) i m p l i e s 2 t h a t qa
-5, s o
Z.
=
also -a
S i n c e qaE q ( E + ) , a +
jEE+
€ o r some j E 1 .
- a + j -> 0 , we have - i < a 5 j.
Z
iEE+
+
f o r some i E I .
Writing these a
q(-a) = i
+
2
0,
( E x e r c i s e 11) , s o
Thus a E I
-
Choose a s u c h
0.
=
( i ) We
0.
=
We n e x t show t h a t f o r a E E , qa'
=
(qa)',
which w i l l
e s t a b l i s h b o t h ( i i ) and ( i i i ) .
q i s p o s i t i v e by t h e v e r y
d e f i n i t i o n o f t h e o r d e r on E / I ,
s o qa'
b 2
qa,
b 2 0;
a + s u c h t h a t qb
Since
b
>
q a , bo + j
2
a f o r some j E 1 .
b.
t h a t qbO = since b
2
0, b o
+
i
bo + i v j > a , hence bo + iVj 2 a + .
2
q a , qa
+
2
-
0.
Suppose
We w i l l do t h i s by
qa'.
2
f i n d i n g an e l e m e n t b
-
'>
we have t o show
2
=
b.
Choose b o s u c h
0 f o r some i E I .
I t follows b o
And +
ivj
LO,
Thus b o + i v j i s t h e
d e s i r e d b. (iv) Since q i s p o s i t i v e , q ( [ a , b ] ) c [qa,qb].
For t h e
o p p o s i t e i n c l u s i o n , c o n s i d e r CE [ q a , q b ] and c h o o s e c E E t h a t qc qd
=
s.
=
such
Then, s e t t i n g d = ( c V a ) A b , we have dE [ a , b ] and
?. QED
Suppose E = I 3 H , I , H R i e s z i d e a l s ( h e n c e b a n d s ) . c a n o n i c a l mappinga+?al
o f E o n t o I i s a p r o j e c t i o n , t h a t i s , an
i d e m p o t e n t l i n e a r mapping o f E i n t o i t s e l f . by &I
.
The
We w i l l d e n o t e i t
S i n c e p r o j I e x i s t s whenever a R i e s z i d e a l I h a s a
complementary R i e s z i d e a l (and t h e r e f o r e b o t h a r e b a n d s ) , s u c h an I i s c a l l e d a F o j e c t i o n b a n d , and p r o j I i s c a l l e d a projection.
band
Chapter I
30
(6.4)
F o r a p r o j e c t i o n E-
Theorem.
> E on a R i e s z s p a c e ,
the following a r e equivalent: 1'
T i s a band p r o j e c t i o n ;
2'
( i ) T i s a R i e s z homomorphism, a n d < a f o r a l l aEE,. ( i i ) 0 5 Ta -
Proof. Assume 2'
T h a t 1'
h o l d s , and s e t H
The m a p p i n g E
i s t h e content of ( 3 . 6 ) .
T(E),
I
=
T-l(O).
Then E
=
H 3 I,
> E d e f i n e d b y S a = a - Ta i s a l s o a p r o j e c -
L
t i o n , w i t h S(E)
=
I , S - l ( O ) = I].
So we n e e d o n l y show S i s a
Note t h a t by i t s d e f i n i t i o n , S a l s o
R i e s z homomorphism.
satisfies
=
0
I i s a R i e s z i d e a l ; w e show FI i s a R i e s z i d e a l .
and, by ( 6 . 2 ) ,
(ii): 0 < Sa < a f o r aEE,
Then 0 < SWSb < ar\b (6.1)
implies 2
=
Now s u p p o s e ar\b
0 , hence S w S b = 0.
=
0.
I t f o l l o w s from
t h a t S i s a R i e s z homomorphism.
QED
( 6 . 5 ) A band p r o j e c t i o n p r e s e r v e s suprema and i n f i m a o f a r b i t rary sets.
A f o r t i o r i , it is order continuous.
If AA
Proof. A(projI(A))
=
=
0 i n E , t h e n , by 2'
( i i ) i n (6.4)
above,
0. QE D
Riesz Spaces
31
5 7 . Dedekind c o m p l e t e n e s s
A liiesz s p a c e w i l l b e c a l l e d D e d e k i n d c o m p l e t e i f e v e r y
s u b s e t w h i c h i s bounded a b o v e h a s a supremum i n E - e q u i v a l e n t l y , e v e r y s u b s e t b o u n d e d b e l o w h a s a n infimum i n E .
F o r l a t e r c o m p a r i s o n , we g i v e two a d d i t i o n a l d e f i n i t i o n s . An o r d e r e d p a i r ( A , B ) ~
o f s u b s e t s o f E w i l l be c a l l e d a D e d e k i n d
cut i f ( i ) A < B a n d ( i i ) e a c h i s maximal w i t h r e s p e c t t o t h i s
< B i m p l i e s c E A , and c > A implies c E R ) . property (that i s , c -
Note t h a t V A
=
A B i f e i t h e r e x i s t s ; and i n s u c h c a s e , i t l i e s
b o t h i n A and B , and i s i n f a c t t h e o n l y e l e m e n t i n t h e i r i n t e r -
section.
For a R i e s z space E , t h e following a r e e q u i v a l e n t :
(7.1)
1'
E i s Dedekind c o m p l e t e ;
2'
f o r every p a i r of subsets A , B such t h a t A < B, there
ic < B; e x i s t s c E E such t h a t A -
3'
f o r e v e r y Dedekind c u t ( A , B ) ,
A
n
B i s n o t empty.
The v e r i f i c a t i o n i s s i m p l e . Remark.
'3
above i s e s s e n t i a l l y Dedekind's o r i g i n a l
definition.
Note t h a t i f E i s Dedekind c o m p l e t e , t h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e e l e m e n t s o f E and t h e D e d e k i n d c u t s
32
Chapter I
o f E , g i v e n by c B
=
(A,B), where A
=
CaEEla 5 c } ,
2 c}.
{bEEIb
(7.2)
I+
A Dedekind c o m p l e t e R i e s z s p a c e E i s A r c h i m e d e a n .
Proof.
C o n s i d e r aEE+
5
b 5 ( 1 / 2 n ) a f o r a l l n , s o 2b
b
=
b
2 0 , t h i s g i v e s u s 2b
0.
and l e t b = A n ( l / n ) a ; w e show
b , whence b
=
=
(l/n)a f o r a l l n.
Since
0. QED
Judged by u s e f u l n e s s , t h e f o l l o w i n g i s p r o b a b l y t h e m o s t i m p o r t a n t p r o p e r t y o f a Dedekind c o m p l e t e R i e s z s p a c e [ 4 4 ] .
( 7 . 3 ) Theorem..
(F. Riesz)
I n a Dedekind c o m p l e t e R i e s z s p a c e
E , e v e r y band I i s a p r o j e c t i o n b a n d .
Proof.
We n e e d o n l y show I + I d s u f f i c e s t o show t h a t I + + ( I d ) + = E,.
c = V([O,b] Suppose 0
2
a
hence a
c
5 c , hence a
+
E , and f o r t h i s , i t
C o n s i d e r bEE,,
Since I i s a band, cEI;
I).
2
=
b - c, aEI. =
Then 0
5
and l e t
we show b - c E I d .
a + c
5
b , with a + c f I ,
0. QED
Note t h a t c
=
bI.
Exercise 2 1 c o n t a i n s t h e d e t a i l s o f t h e
Riesz Spaces
33
a c t u a l computation of bI i n various s i t u a t i o n s . Remark. -__
The R i e s z theorem c o n t a i n s a l l t h e d e c o m p o s i t i o n
theorems o f c l a s s i c a l i n t e g r a t i o n t h e o r y .
I t may have been
R i e s z ' d e s i r e t o show t h a t t h e s e d e c o m p o s i t i o n theorems were t h e same t h a t l e d him t o d e f i n e R i e s z s p a c e s .
I n a Dedekind c o m p l e t e R i e s z s p a c e E , t h e c o n c e p t s of l i m i t s u p e r i o r and l i m i t i n f e r i o r o f an o r d e r bounded n e t can
be d e f i n e d .
And t h e s e , i n t u r n , l e a d t o an a l t e r n a t e d e f i n i -
t i o n o f o r d e r convergence. Given an o r d e r bounded n e t { a c l ) i n E , we d e f i n e limsupclacl = /\cl(VB,ccaB)and l i m i n f c l a a c l e a r t h a t liminfaacl
5
limsup a
clcl
.
=
Vcl(~8,,ag).
I t is
I f (and o n l y i f ) t h e two a r e
equal, t h e n e t i s order convergent:
( 7 . 4 ) I f E i s Dedekind c o m p l e t e , t h e n f o r an o r d e r bounded s e t the following a r e equivalent:
{ a a } i n E and aEE,
2'
liminf a
=
a = limsup a
cla
cla
.
For e a c h a, s e t r
= A a and s = VB,aaB. Then a B>a - B cl r -f l i m i n f a a a , s a + l i m s u p a and r < a < s f o r a l l a. The c1 a a' a- a- a e q u i v a l e n c e o f 10 and 2' now f o l l o w s e a s i l y .
Proof.
QE D
We w i l l s a y a R i e s z s u b s p a c e F o f a R i e s z s p a c e E i s
Chapter 1
34
Dedekind d e n s e i n E i f e v e r y e l e m e n t o f E i s b o t h t h e supremum o f some s u b s e t o f F a n d t h e infimum o f some s u b s e t o f F .
As i s
o b v i o u s , i f F i s Dedekind d e n s e i n E , t h e R i e s z i d e a l g e n e r a t e d
by F i s a l l o f E ; h e n c e , g i v e n a R i e s z s u b s p a c e F , t o a s k a b o u t i t s Dedekind d e n s e n e s s makes s e n s e o n l y i n
t h e Riesz i d e a l
which i t g e n e r a t e s . N o t e t h a t i f E i s D e d e k i n d c o m p l e t e and F i s Dedekind dense i n E , t h e n t h e r e i s a one-one c o r r e s p o n d e n c e between t h e e l e m e n t s o f E and t h e Dedekind c u t s o f F . We w i l l s a y a R i e s z s u b s p a c e F o f a R i e s z s p a c e E
has
a r b i t r a r i l y small elements i n E i f f o r every a > 0 i n E , there e x i s t s bE F s u c h t h a t 0 < b < a.
(The common t e r m i n o l o g y i s
t h a t F i s o r d e r dense i n E . ) .
I f E i s Archimedean, t h e n f o r a R i e s z s u b s p a c e F , t h e
(7.5)
following are equivalent: 1'
F has a r b i t r a r i l y small elements;
2'
f o r e v e r y aEE,,
t h e r e e x i s t s a n e t Cb 1 i n F, c1
such
t h a t ba+a.
Proof.
We n e e d o n l y show t h a t 1'
h o l d s , and c o n s i d e r a > 0 .
Set A
enough t o show t h a t a = V A . c
3
0 such t h a t A < a
=
i m p l i e s 2'.
{bCF 10 < b < a } ; it i s
Suppose n o t .
- c.
Assume '1
Then t h e r e e x i s t s
We show t h a t b E F , 0 < b < c implies
b = 0 , which w i l l c o n t r a d i c t lo.
So c o n s i d e r b E F ,
0
5
b
5 c.
Since c
5
a , t h i s g i v e s us
35
Riesz Spaces
b < a , hence bE A , (a - c)
c
+
hence b < a - c.
a , whence 2 b € A ,
=
But t h e n 2b = b + b <
whence a l s o 2b < a
t i n u i n g b y i n d u c t i o n , w e h a v e nb < a - c for a l l n I t follows b
=
c.
-
=
Con-
1,2,..
..
0.
QE D
Let E b e a n A r c h i m e d e a n R i e s z s p a c e , I: a R i e s z s u b s p a c e ,
(7.6)
and I t h e R i e s z i d e a l g e n e r a t e d b y F .
Then t h e f o l l o w i n g a r e
e qu i v a 1e n t : '1
F i s Dedekind d e n s e i n I ;
2'
F has a r b i t r a r i l y small elements i n I.
Proof.
We n e e d o n l y show 2'
and c o n s i d e r a € I .
Choose b E F
i m p l i e s 1'.
Assume 2'
such t h a t -b < a < b.
holds Then
a + b > 0 and b - a > 0 , h e n c e , by ( 7 . 5 ) , t h e r e e x i s t { c n } , a + b = V c and b - a = V d Write the acl B 6' l a s t o f t h e s e a - b = A ( - d ) . Then f r o m t h e f i r s t , Id,} c F s u c h t h a t
B
a A
=
B
v 0 c. Q
- b = V
(c
n o .
B
- b ) , and from t h e s e c o n d , a = A,(-d,)+
b=
(b - d o ) . QED
A s i s common w i t h c o n c e p t s o f c o m p l e t e n e s s , t h e r e i s a
s t a n d a r d c o m p l e t i o n t h e o r e m f o r Dedekind c o m p l e t e n e s s .
The
n e c e s s i t y o f Archimedeanness i n t h e following theorem f o l l o w s from ( 7 . 2 )
a n d t h e o b v i o u s f a c t t h a t a R i e s z s u b s p a c e o f an
Archimedean R i e s z s p a c e i s i t s e l f A r c h i m e d e a n .
Chapter 1
36
(7.7)
-___ Theorem.
(Nakano, J u d i n )
For e v e r y Archimedean R i e s z
s p a c e E , t h e r e e x i s t s a Dedekind c o m p l e t e R i e s z s p a c e
e,
unique
up t o R i e s z isomorphism, and a R i e s z isomorphism o f E o n t o a Dedekind d e n s e R i e s z s u b s p a c e o f
g.
For a p r o o f , s e e [ Z ] o r [ 3 6 ] . E i s c a l l e d t h e Dedekind c o m p l e t i o n o f E .
58.
Countability properties
A s u b s e t A o f a Riesz space E w i l l be c a l l e d a - o r d e r
c l o s e d i f i t i s c l o s e d i n E u n d e r o r d e r c o n v e r g e n c e o f sequences Clearly order closedness implies o-order c1osedness;but
i n A.
not conversely. The u n i o n o f a f i n i t e c o l l e c t i o n o f o - o r d e r c l o s e d s e t s and t h e i n t e r s e c t i o n o f an a r b i t r a r y c o l l e c t i o n a r e a - o r d e r closed.
And ( 5 . 1 ) h o l d s h e r e : A R i e s z s u b s p a c e F i s a - o r d e r
c l o s e d i f and o n l y i f F,
i s o-order closed.
The a - o r d e r c l o s u r e o f a s e t A i s t h e i n t e r s e c t i o n o f a l l t h e a - o r d e r c l o s e d s e t s c o n t a i n i n g A , hence i s t h e s m a l l e s t such s e t .
A g a i n , i n g e n e r a l , we c a n n o t o b t a i n t h e a - o r d e r
c l o s u r e o f A by s i m p l y a d j o i n i n g t o A t h e l i m i t s o f a l l o r d e r c o n v e r g e n t s e q u e n c e s i n A. I f t h i s l a t t e r s e t i s i n s e r t e d i n p l a c e of A(') and t h e t e r m " a r b i t r a r y " r e p l a c e d by " c o u n t a b l y " r e s u l t i n g theorem h o l d s f o r t h e p r e s e n t c a s e .
,
i n (4.5)
then the
Similarly for
Riesz Spaces
37
( 5 . 2 ) and ( 5 . 3 ) w i t h " o r d e r c l o s u r e " r e p l a c e d by " a - o r d e r closure".
We w i l l c a l l a R i e s z i d e a l g e n e r a t e d by a s i n g l e e l e m e n t a p r i n c i p a l Riesz i d e a l . P r i n c i p a l
band i s d e f i n e d s i m i l a r l y .
From ( 3 . 2 ) , we h a v e :
( 8 . 1 ) The R i e s z i d e a l I g e n e r a t e d by an e l e m e n t a o f a R i e s z space E c o n s i s t s o f a l l b E E (n d e p e n d i n g on b ) .
Thus I
satisfying: =
/b/< n l a l f o r some n
lJnn[- la1 , l a ] 1 .
Combining t h i s w i t h ( 5 . 3 ) , i t i s e a s y t o show t h a t :
( 8 . 2 ) L e t I be t h e R i e s z i d e a l g e n e r a t e d by an e l e m e n t a . Then (i)
t h e o - o r d e r c l o s u r e of I c o i n c i d e s w i t h i t s o r d e r
c l o s u r e , hence i s t h e band H g e n e r a t e d by a ; ( i i ) f o r e v e r y bEI-I,
,
b = Vn(bA(nlal)).
A R i e s z s p a c e w i l l b e c a l l e d o-Dedekind c o m p l e t e i f e v e r y c o u n t a b l e s u b s e t which i s bounded above h a s a supremum and e v e r y one bounded below h a s an infimum.
of ( 7 . 2 )
Note t h a t t h e p r o o f
a c t u a l l y e s t a b l i s h e s t h e s t r o n g e r r e s u l t : a a-Dedekind
c o m p l e t e R i e s z s p a c e i s Archimedean. The R i e s z theorem ( 7 . 3 ) c a n n o t be e x p e c t e d t o h o l d f o r a
38
Chapter 1
o-Dedekind complete Ricsz s p a c e .
(8.3)
We h a v e t h e w e a k e r r e s u l t :
I n a a - D e d e k i n d c o m p l e t e R i e s z s p a c e E, e v e r y p r i n c i p a l
band i s a p r o j e c t i o n band.
-__ Proof.
Let 1 be t h e band g e n e r a t e d by a ; a n d , f o r sim-
p l i c i t y , we c a n t a k e a > 0.
We show c
=
v([O,b]
n
=
=
Vn(bA(na)).
I ) ; t h e remainder of the proof w i l l then
be t h e same a s f o r ( 7 . 3 ) .
(8.2), d
Given b E E + , s e t c
F o r e v e r y dE [ O , b ]
V,,(dA(na)) < vn(bA(na))
=
r-)
I , we h a v e , by
c.
QED
Notation.
Let E be a a-Dedekind complete R i e s z s p a c e ,
aEE, a n d I t h e b a n d g e n e r a t e d b y a.
By t h e a b o v e , I i s a p r o -
j e c t i o n b a n d , s o f o r e a c h b E E , w e h a v e t h e component b I o f b i n I , a n d f o r e a c h s u b s e t A o f E , we h a v e A I
=
projI(A).
H e n c e f o r t h , we w i l l a l s o d e n o t e t h e s e b y b a a n d Aa r e s p e c t i v e l y . Note t h a t i n t h i s n o t a t i o n , I
=
E
a
.
5 9 . R i e s z n o r m s a n d Ranach l a t t i c e s
We w i l l u s e t h e s y m b o l
[(1(1
t o d e n o t e a seminorm, s i m p l y
p o i n t i n g o u t when i t i s a c t u a l l y a norm. A s u b s e t A o f a Riesz s p a c e i s c a l l e d s o l i d i f a E A and
/b/
5 /a1 i m p i i e s bEA
-
e q u i v a l e n t l y , aEA
implies
Riesz Spaces
39
[-lal,lal] c A.
We r e c o r d t h e b a s i c p r o p e r t i e s o f s o l i d s e t s
i n Exercise 2 2 .
Note t h a t a R i e s z i d e a l c a n be d e f i n e d a s a
s o l i d l i n e a r subspace.
F o r a seminorm
(9.1)
.!I
on a R i e s z s p a c e E , t h e f o l l o w i n g
are equivalent; 1'
the unit ball of
2'
for a l l a,bEE,
[I .[I
is solid;
5 ;la\\.
Ibl < la1 i m p l i e s IIbll
The v e r i f i c a t i o n i s s i m p l e . A seminorm s a t i s f y i n g t h e a b o v e w i l l b e c a l l e d a R i e s z
s e_ m_ i n_ o r_ m , o r a R i e s z norm i f i t i s a c t u a l l y a norm. _ from
2O,
IIal] =
11
la(ll f o r a l l a E E .
From ( 2 . 8 ) ,
(9.2) If
II.11
Note t h a t ,
we h a v e
i s a R i e s z seminorm, t h e n f o r a l l a , b E E ,
11 av c
- bvcll <
/ l a c - bAcll <
a - bll
11 a
- bll
,
.
I t follows t h e l a t t i c e o p e r a t i o n s V , A a r e uniformly con-
t i n u o u s under
11 -11 .
Note t h e c o r o l l a r y t h a t E,
i s closed under
A t p r e s e n t , o u r i n t e r e s t i s R i e s z norms.
II.11. A R i e s z space
endowed w i t h a R i e s z norm w i l l b e c a l l e d a normed R i e s z s p a c e .
Chapter 1
40
The f o l l o w i n g i s e a s i l y v e r i f i e d .
( 9 . 3 ) A normed R i e s z s p a c e i s Archimedean.
Also
(9.4)
I n a normed R i e s z s p a c e , (i)
t h e norm c l o s u r e o f a R i e s z s u b s p a c e F i s a R i e s z
s u b s p a c e , and i t s p o s i t i v e cone i s t h e norm c l o s u r e o f F,; ( i i ) t h e norm c l o s u r e o f a R i e s z i d e a l i s a R i e s z i d e a l , and i t s p o s i t i v e cone i s o b t a i n e d by a d j o i n i n g t o I + t h e (norm) l i m i t s o f i t s norm c o n v e r g e n t a s c e n d i n g s e q u e n c e s .
I n p a r t i c u l a r , a Riesz subspace F i s o n l y i f F,
norm c l o s e d
i f and
i s norm c l o s e d , and a R i e s z i d e a l I i s norm c l o s e d
i f and o n l y i f I + c o n t a i n s a l l t h e (norm) l i m i t s of i t s norm convergent ascending sequences I n a normed R i e s z s p a c e , o r d e r b o u n d e d n e s s i m p l i e s norm boundedness.
The c o n v e r s e i s f a l s e : i n t h e s e q u e n c e s p a c e R
1
t h e S c h a u d e r b a s e s I d n } , w h e r e e a c h dn i s t h e s e q u e n c e h a v i n g 1 i n t h e n t h p o s i t i o n and 0 e l s e w h e r e , i s norm bounded b u t n o t o r d e r bounded.
F u r t h e r m o r e , o r d e r c o n v e r g e n c e and norm
c o n v e r g e n c e a r e i n d e p e n d e n t o f e a c h o t h e r : i n R',
the
s e q u e n c e t l / n ) d n } norm c o n v e r g e s t o 0 , b u t i s n o t e v e n o r d e r b o u n d e d , s o c a n n o t b e o r d e r c o n v e r g e n t ; on t h e o t h e r h a n d , i n
,
Riesz Spaces
41
t h e sequence space c of convergent sequences, t h e sequence n { c l e k } ( n = 1 , 2 ; - * ) , w h e r e en i s t h e s e q u e n c e h a v i n g 1 i n t h e n t h p o s i t i o n and 0 e l s e w h e r e , o r d e r converges t o t h e element (l,l,l,.--) b u t i s n o t e v e n norm Cauchy.
F o r m o n o t o n i c n e t s , h o w e v e r , norm c o n v e r g e n c e i m p l i e s order convergence:
I n a normed R i e s z s p a c e , i f b > A a n d b i s i n t h e norm
(9.5)
c l o s u r e o f A, t h e n b
P roof. A < c < b.
hence (Ib
-
= VA.
Suppose n o t .
Then t h e r e e x i s t s c s u c h t h a t
I t f o l l o w s t h a t f o r e v e r y aEA, b - a > b
all> - IIb - cI[ > 0 .
-
c > 0,
This contradicts the hypothesis
t h a t b i s i n t h e norm c l o s u r e o f A. QED
C o r o l l a r y 1.
(9.6)
I f a monotonic n e t {a } i n a normed R i e s z a
s p a c e norm c o n v e r g e s t o some e l e m e n t b , t h e n i t o r d e r c o n v e r g e s t o b.
Proof. (9.5),
For c o n c r e t e n e s s , assume { a } i s a s c e n d i n g . CL
i t i s e n o u g h t o show t h a t b > { a }. a = b. F o r e v e r y CL > a 0 , I[ b v a a - aa,l
'
bva aO
0
(Ib - ad/ ( 9 . 2 ) . - aJl
limdlbva aO
By
F i x a,; w e show =
[Ibvaa
-
0
S i n c e l i m IIb - aall = 0 , t h i s g i v e s a = 0 , h e n c e , b y t h e u n i q u e n e s s o f norm
42
Chapter 1
convergence, bva
= b. c10
Corollary 2.
(9.7)
I n a normed R i e s z s p a c e , e v e r y band -
i n d e e d , e v e r y o - o r d e r c l o s e d R i e s z i d e a l - i s norm c l o s e d .
Even f o r a m o n o t o n i c n e t , o r d e r c o n v e r g e n c e n e e d n o t i m pl y norm c o n v e r g e n c e : t h e exam pl e above i n t h e s p a c e c i s a n ascending sequence.
(9.8)
L e t E b e a normed Riesz s p a c e a n d I a norm c l o s e d R i e s z
ideal.
Then u n d e r t h e q u o t i e n t o r d e r a n d q u o t i e n t norm, E / I
i s a normed R i e s z s p a c e .
Proof.
Let B b e t h e u n i t b a l l o f E .
t h a t q(B) i s s o l d, t h a t i s , f o r every aEB, S i n c e 1qaI = q 1 a
We n e e d o n l y show [ I - q a l , \ q a [ J c q(B).
( ( 6 . 3 ) ( i i i ) , t h i s f o l l o w s from ( ( 6 . 3 ) ( i v ) ) . QED
A Banach l a t t i c e i s a normed R i e s z s p a c e w h i c h i s norm
complete.
As i s t o b e e x p e c t e d , t h e p r o p e r t i e s o f a normed
R i e s z s p a c e c a n g e n e r a l l y b e i m pr ove d upon f o r a Banach l a t t i c e . I t i s s t i l l t r u e o r d e r c o n v e r g e n c e and norm c o n v e r g e n c e
are independent.
However, we now h a v e :
Riesz Spaces
(9.9)
Theorem.
I n a Banach l a t t i c e E , i f a s e q u e n c e { a n ) norm
converges t o aEE,
t h e n some s u b s e q u e n c e o r d e r c o n v e r g e s t o a .
For s i m p l i c i t y , take a = 0.
Proof.
s e q u e n c e i f n e c e s s a r y , we c a n assume
We show an
43
+
0.
m For each n , {cnlaj
I}
And, b y t a k i n g a s u b -
anll < 1/2" (m
=
(n
=
1,2,
- - .).
n , n + 1 , 9 3 3 ) i s an
a s c e n d i n g Cauchy s e q u e n c e w i t h norms a l l < 1/2"'l;
hence i t
norm c o n v e r g e s t o some b n E E ,
Then bn+O,
by ( 9 . 6 ) , a n d l a n /
5 bn ( n
=
w i t h ]Ibnlj i 1/2"-l.
1 , 2 , - - - ) , s o we a r e t h r o u g h .
QE D
(9.10)
Corollary.
I n a Banach l a t t i c e , i f a s e t i s 0 - o r d e r
c l o s e d , t h e n i t i s norm c l o s e d .
F o r a g e n e r a l normed R i e s z s p a c e , w e were a b l e t o show t h i s only f o r Riesz ideal (9.7).
'
G i v e n A l i n e a r m a p p i n g E __ > F o f o n e normed R i e s z s p a c e i n t o a n o t h e r , we c a n a s k w h a t a r e t h e r e l a t i o n s b e t w e e n o r d e r c o n t i n u i t y a n d norm c o n t i n u i t y f o r T , o r ( s i n c e norm c o n t i n u i t y
i s e q u i v a l e n t t o norm b o u n d e d n e s s ) b e t w e e n o r d e r b o u n d e d n e s s a n d norm c o n t i n u i t y .
I n g e n e r a l , t h e r e i s none ( E x e r c i s e 2 4 ) .
However, i f E i s a Banach l a t t i c e , w e h a v e t h e
( 9 . 1 1 ) Theorem. ( C . mapping E
Birkhoff)
E v e r y o r d e r bounded l i n e a r
> F o f a B a n a c h l a t t i c e i n t o a normed R i e s z
Chapter 1
44
s p a c e i s norm c o n t i n u o u s .
Proof.
Assume T i s n o t norm c o n t i n u o u s .
e x i s t s a s e q u e n c e {a,)
1. n (n
IITanll (k
=
Then t h e r e
i n E s u c h t h a t l i m n ~ ~ a =n ~0 ~and By ( 9 . 9 ) , some s u b s e q u e n c e { a } "k
= 1 , 2 , ...).
order converges t o 0 , hence, i n p a r t i c u l a r , i s
1,2,...)
o r d e r bounded.
I t f o l l o w s {Ta } (k = 1 , 1 , . . . ) i s o r d e r nk
bounded i n F a n d t h e r e f o r e norm bounded. f a c t t h a t IITa "k
11 2
n k (k
=
This contradicts t h e
1,2,...). QED
(9.12)
Corollary
E v e r y p o s i t i v e l i n e a r mapping o f a Banach
l a t t i c e E i n t o a normed R i e s z s p a c e i s norm c o n t i n u o u s .
In
p a r t i c u l a r , t h i s h o l d s f o r e v e r y R i e s z homomorphism o f E .
Borkhoff's proof of (9.11)
(cf.
[ 9 ] ) was f o r a l i n e a r
functional, but i t c a r r i e s over verbatim.
EXERCISES
I n t h e s e e x e r c i s e s , E i s always a Riesz s p a c e , although some h o l d more g e n e r a l l y f o r a n o r d e r e d v e c t o r s p a c e and some
Riesz Spaces
45
for a lattice
1.
For a l l a , b , c E E , (i)
a < b i f and o n l y i f (b - a ) > 0;
(ii) a < b i f and o n l y i f ( - a ) > (-b);
(iii) if a < b and c < d, then a
+
c < b
+
d, avc < bvd,
and a c < bAd.
2.
For a l l a , b , c E E , c c - a b
=
-
avb
=
( c - a)A(C - b ) and
( c - a)V(c - b ) .
3.
For a l l aEE, a ( - a ) < 0 < aV(-a).
4.
Given a E E + , t h e n (i)
5.
f o r a l l b,cEE, av(b
+
c) < avb
+
avc;
( i i ) f o r a l l b,cEE, ah(b
+
c) < a b
+
a c .
(i)
a/\b = 0 i f and o n l y i f avb = a + b .
(ii)
a b
=
0 i f and o n l y i f &(Xb)
( i i i ) For a l l a , b , c E E + , i f a b
=
=
0 for all 1 > 0.
0 and a < b
+
c , then
< c. a -
(iv)
If
v c lbc l e x i s t s a n d a b a
=
0 f o r a l l a, t h e n
a(Vaba) = 0.
6.
(v)
I f a b = 0 and a c
(vi)
I f bAc = 0 , t h e n f o r a l l a > 0, a ( b
(i)
F o r a l l a , b E E , avb b - (b
- a)'.
=
=
0 , t h e n aA(b
+
c) = 0. c)
=
a + ( b - a ) + and ar\b
=
+
a h b + aAc.
Chapter 1
46
(ii)
For a l i n e a r s u b s p a c e F o f E t o b e a Riesz s u b s p a c e , it s u f f i c e s t h a t a E F i m p l i e s a+EF.
la - b l .
7.
avb - a/\b
8.
(Converse t o ( i ) i n ( 2 . 6 ) ) . Then b
9.
(i)
=
a+, c
a
=
G i v e n bAc = 0 , s e t a = b
+
b)-
a- + b - , and / a + b l
=
-
c.
.
I f a and b a r e d i s j o i n t , t h e n ( a
(a (ii)
=
I f a and b a r e d i s j o i n t and a
+
+
=
b)'
= a+ + b + ,
lal+Ibl.
b > 0 , then
a > O , b > O . ( i i i ) I f a l , . . . ,an a r e mutually d i s j o i n t and a l l d i s t i n c t from 0 , t h e n t h e y a r e l i n e a r l y i n d e p e n d e n t .
10.
lR i m p l i e s
11.
lim 1
I f E i s Archimedean, t h e n f o r e v e r y a E E ,
x c1 a
-f
cta
=
0 in
0.
I f I i s a Riesz i d e a l , then f o r a l l a , b E I ,
with a < b,
[a,b] c I.
12.
I n R',
l e t F1 b e t h e l i n e a r s u b s p a c e g e n e r a t e d b y t h e
element (1 ,l,O)
,
and F 2 t h e o n e g e n e r a t e d b y ( O , l , l ) .
Then F1 a n d F 2 a r e R i e s z s u b s p a c e s b u t F
13.
1
+
F2 i s not.
I f F i s a R i e s z s u b s p a c e and I a R i e s z i d e a l o f E , t h e n F + I i s a R i e s z s u b s p a c e , w i t h (F + I ) +
c F+
+
I.
Riesz Spaces
14.
Let A b e a s u b l a t t i c e o f E .
47
For a E E , . t h e f o l l o w i n g a r e
equivalent.
15.
'1
a i s t h e supremum o f some s u b s e t o f A ;
2'
t h e r e i s a n e t {a } i n A such t h a t a +a. c1.
c1
Let A , B be s u b s e t s of E. (i)
o r d e r c l o s u r e (AIJ B) IJ
(ii)
( o r d e r c l o s u r e A)
=
(order closure B).
O r d e r c l o s u r e ( A n B ) c ( o r d e r c l o s u r e A)
n
( o r d e r c l o s u r e B ) , and t h e i n c l u s i o n i s p r o p e r
in general. ( i i i ) If, i n ( i i ) , A , B a r e R i e s z i d e a l s , w e h a v e e q u a l i t y .
16.
(a)
F o r R i e s z i d e a l s 11,12,H o f E : (i)
H
n
(I1
(ii) if E (b)
18.
I1
Q
12, t h e n H
=
(fdnI,) 3 ( H n 1 2 ) .
12;
=
H I a n d i s a p r o j e c t i o n b a n d o f H.
If I a n d H a r e p r o j e c t i o n b a n d s , t h e n s o a r e 1 n I{ and I
17.
I1
n
+
=
H
n
I1
12)
If I i s a p r o j e c t i o n b a n d , t h e n f o r e v e r y R i e s z i d e a l H, H n I
(c)
=
+
+
H.
(I
d
n Hd .
(i)
For R i e s z i d e a l s I , H ,
(ii)
I f E i s Archimedean, t h e n , i n a d d i t i o n , d order closure (Id + H ) .
+
H)d
=
I
(InIj)d
If E i s D e d e k i n d c o m p l e t e , t h e n : (i)
e v e r y R i e s z i d e a l i s Dedekind c o m p l e t e ;
(ii)
e v e r y o r d e r c l o s e d R i e s z s u b s p a c e i s Dedekind complete.
=
48
19.
Chapter 1
I f E i s Dedekind c o m p l e t e , t h e n f o r e v e r y p a i r o f
(i)
bands I , H , I (ii)
+ H
i s a band.
The a b o v e n e e d n o t b e t r u e i f E i s n o t Dedekind complete.
20.
I f I i s a p r o j e c t i o n band, then f o r e v e r y a € E + \ aI
21.
=
V{bEIIO < b < a}.
Let E be Dedekind c o m p l e t e . (i)
Let I b e a R i e s z i d e a l a n d H i t s o r d e r c l o s u r e . Then f o r e a c h b E E + , h H
(ii)
=
V{aEIIO < a < b}.
Let H b e t h e b a n d g e n e r a t e d by a s u b s e t A . f o r e v e r y bEE,,
m
bH = V {bA ( c l n i / a i
( i i i ) Given a E E , t h e n f o r e a c h bEE,,
I ) I aiEA:
Then n i E N}.
ba = v n ( b A ( n l a l ) ) .
(We r e c a l l t h a t ba i s t h e component o f b i n t h e band g e n e r a t e d by a ( 5 8 ) (iv)
Let F be a R i e s z subspace and H t h e band g e n e r a t e d by F .
22.
.>
Then f o r e v e r y bEE,,
bH
=
V{bAa a € F + }
.
XE IR.
(i)
I f A i s s o l i d , t h e n XA i s s o l i d f o r a 1
(ii)
I f {A } i s a c o l l e c t i o n o f s o l i d s e t s , t h e n nclAa.
a.
and \J A
clcl
are solid.
( i i i ) Given A A C E , b y t h e s o l i d h u l l o f A , w e w i l l mean t h e i n t e r s e c t i o n o f a l l t h e s o l i d s e t s c o n t a i n i n g A. T h i s s o l i d h u l l i s p r e c i s e l y IJaEA
[- l a l , l a / ] .
(iv)
I f A i s s o l i d , i t s ~convex h u l l i s s o l i d .
(v)
I f A i s s o l i d , t h e n A c A+ - A+ ( A + = A
inclusion is proper i n general.
n
E+).
The
Riesz Spaces
23.
Let E b e a Banach l a t t i c e .
49
I f I i s t h e b a n d g e n e r a t e d by
a c o u n t a b l e s e t , then I i s a p r i n c i p a l band.
24.
(i)
The Banach l a t t i c e c o f c o n v e r g e n t s e q u e n c e s c a n b e written c
=
co
9 IRE
,
w h e r e co i s t h e s u b s p a c e o f
sequences c o n v e r g i n g t o 0 and U = ( l , l , l , * . * ) .
Let
P b e t h e p r o j e c t i o n o f c o n t o co d e f i n e d by t h i s decomposition.
Then, c o n s i d e r i n g c as t h e r a n g e
s p a c e , P i s norm c o n t i n u o u s b u t n o t e v e n o r d e r bounded ( h e n c e n o t o r d e r c o n t i n u o u s ) . (ii)
We d e n o t e , a s c u s t o m a r y , t h e s p a c e o f a l l f i n i t e s e q u e n c e s b y IR"), (Xl,X2,...),
and d e n o t e e a c h a €
IR")
by
it being understood t h a t only a f i n i t e
number o f t h e An's d i f f e r f r o m 0 . ( i l , A 2 , . . . , X n , - . - ) +>
Then t h e m a p p i n g
(X1,2x 2 , . . . , n ~ n ., . . ) i s o r d e r
c o n t i n u o u s b u t n o t norm c o n t i n u o u s .
25.
The f o l l o w i n g a r e e q u i v a l e n t : 1'
'2
E i s Dedekind complete; e v e r y a s c e n d i n g n e t i n E,
which i s bounded above
is order convergent; 3'
26.
e v e r y d e s c e n d i n g n e t i n E,
L e t E b e a normed R i e s z s p a c e .
i s order convergent.
G i v e n b = V A , l e t A1 b e
t h e s e t o b t a i n e d by a d j o i n i n g t o A t h e suprema o f a l l f i n i t e s u b s e t s o f A.
Then b i s i n t h e norm c l o s u r e o f A1.
CIIAPTIJR 2
RTESZ S P A C E D U A L I T Y
L e t L: be a v e c t o r s p a c c .
N o t a t i o n a n d t e r m i_ n o_ l og y~.
l i n e a r E u n c t i o n a l $ on E , t h e v a l u e o f 4 a t a E E by ( a , + ) .
We d e n o t e b y E
*
For a
w i l l be denoted
t h e v e c t o r space o f a l l l i n e a r func-
t i o n a l s on E ( a d d i t i o n a n d s c a l a r m u l t i p l i c a t i o n d e f i n e d p o i n t w i s e on E ) .
I t f o l l o w s from t h e v e r y d e f i n i t i o n o f l i n e a r func-
t i o n a l on t h e o n e h a n d , a n d t h e a b o v e d e f i n i t i o n o f a d d i t i o n and s c a l a r m u l t i p l i c a t i o n i n E b i l i n e a r f u n c t i o n on E E and E
*
E
*
E
=
is a
on t h e o t h e r , t h a t (.;)
.
a r e s e p a r a t i n g on each o t h e r : ( “ , G o )
i m p l i e s 40
aEE
x
*
*
0 , and ( a o , $ )
=
0 for a l l +€ E
*
D f o r a1 1
=
implies a0
=
*
i s c a n o n i c a l l y cndowed w i t h t h e t o p o l o g y a ( E , E ) o f
*
p o i n t w i s e c o n v e r g e n c e on E , a n d t h e terms “ c o n v e r g e n t i n E ”, “bounded i n E*“,
” c l o s e d i n E*“,
and s o f o r t h will always r e f e r
t o t h i s topology.
*
F u n c t i o n a l a n a l y s i s g e n e r a l l y works w i t h a p r o p e r subspace
of E , r a t h e r than E
*
itself.
*
F o r a s u b s p a c e F o f li , ( J ( F , € )
o f course coincides w i t h t h e topology induced by t h a t of E
*
.
Note a l s o t h a t E i s always s e p a r a t i n g on F , b u t F need n o t h e on E . The t o p o l o g y o f C
*
has three b a s i c properties.
50
0.
Riesz Space D u a l i t y
(1)
E* i s complete.
(11)
(Tihonov)
51
For e v e r y s u b s e t A o f E X , t h e f o l l o w i n g a r e
cquivalcnt: 1'
A i s compact;
2'
A i s c l o s e d and bounded.
Otherwise s t a t e d , C
*
has t h e IIeine-Rorel property.
( 1 1 1 ) For e v e r y l i n e a r s u b s p a c e I; o f E
*
,
t h e following are
equivalent: 1'
2
0
I: i s s e p a r a t i n g on
F i s dense i n E
*
E;
.
Consider a l i n e a r subspace F of E a l i n e a r f u n c t i o n a l @ +>
*
( a , @ ) on F .
.
Each a E E
defines
I f F is separating
on E , t h e n d i s t i n c t e l e m e n t s o f E d e f i n e d i s t i n c t l i n e a r f u n c t i o n a l s , and w e have a c a n o n i c a l imbedding o f E i n t o F
*
.
O t h e r w i s e s t a t e d , i f F i s s e p a r a t i n g on E , t h e n E a n d F a r e e a c h a s p a c e o f l i n e a r f u n c t i o n a l s on t h e o t h e r .
We a d o p t a c o n v e n t i o n f o r R .
so Chapter 1 a p p l i e s t o i t .
IR i s i t s e l f a R i e s z s p a c e ,
Iiowever, when d e a l i n g w i t h R, we
w i l l u s e t h e t e r m i n o l o g y common i n a n a l y s i s , r a t h e r t h a n t h e
52
Chapter 2
one w e have a d o p t e d f o r R i e s z s p a c e s .
F o r e x a m p l e , we w i l l
write sup 1 i n s t e a d o f v 1
.
o r d i n a r y convergence i n R .
I f { A } i s bounded t h e n t h i s
clcl
cla
"1
=
lim 1
w i l l denote
cla
c1
c l e a r l y c o i n c i d e s w i t h o r d e r convergence.
5 1 0 . The s p a c e E b o f o r d e r bounded l i n e a r f u n c t i o n a l s
Let E h e a R i e s z s p a c e and
+
a l i n e a r f u n c t i o n a l on E .
The d e f i n i t i o n s on l i n e a r mappings i n 5 6 a p p l y t o 4, r e s t a t e them h e r e f o r F =
IR.
+
i s o r d e r hounded i f i t i s
bounded on e v e r y o r d e r b o u n d e d s e t . n o n - n e g a t i v e on E + . max((a,+},(h,$})
and w e
I t is positive if it is
I t i s a R i e s z homomorphism i f ( a v b , $ )
f o r a l l a,bEE.
=
F i n a l l y , i t i s o r d e r con-
tinuous i f a
+ a implies (a,$} = lima(aa,$). a We w i l l d e n o t e t h e s e t o f o r d e r bounded l i n e a r f u n c t i o n a l s
on E by E
b
,
I t i s a l i n e a r subspace of E
positive linear functionals are a l l in E
h
*
.
.
Moreover, t h e Since they con-
s t i t u t e a c o n e , t h e y d e f i n e a n o r d e r on E b f o r w h i c h t h e c o n e
i s p r e c i s e l y ( Eh ) + .
(10.1)
Theorem.
(Riesz).
b b Under t h e o r d e r d e f i n e d by ( E ) + , E
i s a Dedekind c o m p l e t e R i e s z s p a c e .
Proof.
We show $+ e x i s t s i n Eb f o r e v e r y $ E E b
.
I t is
R i e s z Space D u a l i t y
e a s y t o show t h a t t h e n , f o r a l l + , J , E E
-~ Lemma 1.
by f ( a )
dE[O,b].
(J,
-
4)'
= +VJ,,
cE [ ( ) , a 1( c , + > *
+
For e v e r y cE [ O , a ]
b, so ( c , + ) + ( d , + )
I t follows f ( a ) + f ( b ) < f(a i f eE[O,a
+
f i s a d d i t i v e and p o s i t i v e l y homogeneous.
Consider a,bEE+. 0 < c + d < a
sup
=
,+
C o n s i d e r + E n b , and d e f i n e a
hence t h a t E b i s a R i e s z s p a c e . f u n c t i o n f on E,
b
53
+
d,+) < f(a
+
b).
For t h e o p p o s i t e i n e q u a l i t y ,
b).
+
(c
=
and d € [ O , b ] ,
b ] , t h e n by ( 2 . 5 ) ,
e
=
Hence ( e , + ) = ( c , + )
+
(d,+) < f(a) + f(b).
It
Thus f i s a d d i t i v e .
That
+
follows f ( a + b) < f(a)
f(b).
+
c
+
d , where c € [ o , a ] and
and 1 > 0 i s clear.
f ( x a ) = x f ( a ) f o r a l l aEE+
This e s t a b -
l i s h e s t h e Lemma. Applying E x e r c i s e 1 ( i n t h e p r e s e n t C h a p t e r ) , t h e r e i s a u n i q u e l i n e a r f u n c t i o n a l $ on E which c o i n c i d e s w i t h f on E, (hence i s p o s i t i v e ) ; w e show t h e o r d e r on E b , aEE+. wEEh
aEE,.,
5
a2
= $+.
IJJ
From t h e d e f i n i t i o n o f
i f and o n l y i f ( a , + , )
T h u s , by t h e v e r y d e f i n i t i o n o f satisfies w > 0, w hence w >
J,.
1. + ;
(a,w)
2
J,,
$ >
5
(a,+2) for a l l
+.
we show ( a , w ) > (a,$) ( c , ~ ) (c,+)
Suppose for a l l
f o r a l l c€[O,a].
Hence ( a , o ) > s u pc E [ o , a ] ( C 9 + )= f ( a ) = ( a , + ) . Thus E b i s a R i e s z s p a c e .
T h a t i t i s Dedekind c o m p l e t e
f o l l o w s from t h e f o l l o w i n g s t r o n g e r p r o p e r t y ( c f . E x e r c i s e 2 5 i n Chapter 1 ) :
54
Chapter 2
b I f an a s c e n d i n g n e t { $ 1 i n ( E ) + i s , ( E ~ , E ) c1 b b o u n d e d , t h e n $ + $ f o r some $ E E . Lemma 2 .
c1
For e a c h a E E + ,
i s a n a s c e n d i n g n e t i n lR f o r
{( a , @ , ) }
w h i c h , by t h e h y p o t h e s i s ,
~ u p , ( a , $ ~ )<
v e r g e s ; d e n o t e i t s l i m i t by f ( a ) .
is additive.
on E, l i m a( a
b,$a)
+
=
I t f o l l o w s it con-
CU.
The f u n c t i o n € t h u s d e f i n c d
In e f f e c t , f o r a , b E E + , f ( a
lim,[(a,$,)
+
(b,$,)l
+
= lim,(a,$,)
b) = +
l i m ( b , $ ) = f ( a ) + f ( b ) . And, a s i s e a s i l y v e r i f i e d , i t i s c1 a a l s o p o s i t i v e l y homogeneous. S o , a g a i n by E x e r c i s e 1 , f has a unique extension t o a1
o f E as a p o s i t i v e l i n e a r f u n c -
t i o n a l $. I t remains t o prove @
=
“,$y
t o show t h a t f o r e a c h a , ( a , $ )
2
4 2
(a,$a)
f o r a l l a: We h a v e
t h i s h o l d s from t h e above d e f i n i t i o n o f $ .
$iE b ,
Now s u p p o s e
@a f o r a l l n,we show ( a , $ ) > ( a , $ ) f o r a l l a i E + , hence
il,
$
Hut
for a l l aEE+.
2
@.
Given a E E + ,
Supu(a,$a)
=
(a,$) > (a,$,)
f o r a l l a , hence ( a , $ )
>
-
(a,@>.
T h i s e s t a b l i s h e s t h e Lemma a n d t h u s c o m p l e t e s t h e p r o o f
o f t h e Theorem.
QED
Remark.
I n p l a c e o f Lemma 2 , we c o u l d h a v e u s e d t h e
following equivalent property:
(10.2)
I f a s u b s e t {@a} o f E b i s f i l t e r i n g upward a n d s a t i s f i e s :
Riesz Space D u a l i t y
s u p a ( a , $cx)
<
f o r a l l aEE+,
such t h a t
then there e x i s t s $EEb
(a,$)
m
sup ( a , $ ) f o r a l l a€E+.
=
c1
CL
We g i v e a more d e t a i l e d d e s c r i p t i o n o f t h e R i e s z s p a c e structure of E
b
.
F i r s t , we record e x p l i c i t l y the following,
obtained i n the proof o f (10.1).
Combining t h i s w i t h E x e r c i s e 6 i n C h a p t e r 1 , we o b t a i n
(10.4)
For e v e r y 4 , $ € E b
and a E E + ,
In p a r t i c u l a r ,
(10.5)
F o r all + , $ E ( E
b
)+,
the following are equivalent
55
Chapter 2
56
'1
@A+ = 0 ,
f o r e v e r y aEE+ a n d
2'
with b
+
c
=
> 0, there exist b,cE[O,a],
E
a , such t h a t (by@)
+
( c , + >2
E -
A l s o f r o m ( 1 0 . 3 ) - a n d t h e f a c t t h a t / b l 5 a i f and o n l y i f b = c - d with c,dE
[o , a ]
( 1 0 . 6 ) F o r e v e r y $EEb
a n d aEE+,
--
we h a v e
Whence ( o r by s t r a i g h t f o r w a r d c o m p u t a t i o n ) ,
(10.7)
F o r e v e r y aEE
and $ E E
I(a,+.)l
2
b
,
(la1
,Id)
*
An o b v i o u s p r o p e r t y o f E b *
(10.8)
Given a s e t { $ , ) . i n
f o r a l l aEE+, t h e n $ =
V$ ,.,
Eb and $ E E
b
,
i f ( a , $ ) = sup,(a,$,)
Riesz Space D u a l i t y
57
The o p p o s i t e i m p l i c a t i o n d o e s n o t h o l d , e v e n f o r a f i n i t e
s e t , w h i c h i s why w e n e e d ( 1 0 . 4 ) .
However, i t __ does hold i f
{$a} i s an a s c e n d i n g n e t o r a s e t w h i c h i s f i l t e r i n g u p w a r d . This i s contained i n the proof of (10.1).
More f u l l y , f r o m
that proof,
(10.9)
b i n (E ) + , t h e f o l l o w i n g a r e
F o r an a s c e n d i n g n e t
equivalent: 10
{ G a l i s a ( ~ b , ~c o)n v e r g e n t ;
2'
{$a} i s .(Eb,E)
3'
{$a} i s o r d e r c o n v e r g e n t ;
'4
{$a} i s o r d e r b o u n d e d .
bounded;
In another formulation, f o r a s e t
b c (E ) + which i s
f i l t e r i n g upward, t h e f o l l o w i n g a r e e q u i v a l e n t : t h e r e e x i s t s $€Eb
1'
(hence
such t h a t ( a , $ ) = sup ( a , $ ) c1
lima(a,$a))
f o r a l l aEE,;
2'
s u p a < a , @ c l )<
co
3O
va$a e x i s t s i n E ~ ;
' 4
{$
=
c1
c1
f o r a l l a€E+;
} i s o r d e r e d bounded.
( 1 0 . 1 0 ) C o r o l l a r y 1.
In E
b
,
o r d e r convergence i m p l i e s o(Eb,E)
convergence.
(10.11) closed.
Corollary 2.
b I n E , a .(Eb,E)
closed set is order
Chapter 2
58
In p a r t i c u l a r , a a ( E b , E ) c l o s e d Riesz i d e a l i s a l ~ a n d .
We c a n s a y m o r e :
( 1 0 . 1 2 ) The o ( E b , l l )
c l o s u r e o f a R i c s z i d c a l ,I o f ‘:1
band, and i t s p o s i t i v e cone i s t h e 0 ( L b , E )
is
closure of ,J+.
We w i l l p r o v e t h i s i n t h e n e x t 5 ( f o l l o w i n g ( 1 1 . 9 ) ) . The c o n v e r s e s o f ( 1 0 . 1 0 ) ,
( 1 0 . 1 1 ) , and ( 1 0 . 1 2 ) a r e f a l s e .
We p o s t p o n e a n e x a m p l e u n t i l we h a v e some c o n c r e t e E h ’ s .
b The p o s i t i v e c o n e ( E ) + o f E b i s D ( E b , E )
closed.
Tndeed,
w e c a n make a s t r o n g e r s t a t e m e n t :
(10.13)
h
€*.
(C ) + is closed i n
flence i t i s n o t o n l y “(F,’,l.)
b
c l o s e d i n I: ; i t i s a c t u a l l y ~ ( E ~ , Ec o) m p l e t e .
T h i s f o l l o w s from t h e v e r y d e f i n i t i o n o f o ( E b , E ) positive linear functional. [$I,$]
can be w r i t t e n ( 4
is closed i n E
*
.
+
Note t h a t , s i n c e e v e r y i n t e r v a l b
(E )+)
17
($ -
b (E ) + ) , i t follows i t
S i n c e i t i s a l s o bounded i n C
( 1 0 .1 4 ) Every i n t e r v a l o f E
and o f
b . is o(Eb,E)
*
compact.
,
we h a v e
Riesz Space D u a l i t y
F o r a s u b s e t A o f E , w e , s e t A'
=
b
I
(a,$)
0 for
=
.
a l l aEA}
( 1 0 . 1 5 ) For e v e r y R i e s z i d e a l I o f E ,
-__ Proof.
=
If
0 , s o $+€IL.
every s€T+, 0 < (a,$) Ricsz i d e a l .
IL i s a band o f E
I f $EIL, then f o r every a E I + , ( a , + + )
s u pb E , O , a l ( b , $ )
(10.12)
{$EE
59
2 (a,$)
=
b
.
=
0 < q < $ € I L , then f?r -
0, s o $ € I L .
Thus IL i s a
S i n c e IL i s o(Eb,E) c l o s e d , i t f o l l o w s from
t h a t it i s a band.
QED
(10.16)
Corollary.
-
For e v e r y R i e s z i d e a l I o f E , E
b
=
( I L ) d 0 11.
T h i s f o l l o w s from t h e R i e s z theorem ( 7 . 3 ) . S i n c e I' of
$IL
from I .
and ( I L ) d a r e d e t e r m i n e d by I , t h e c o m p u t a t i o n
f o r a n e l e m e n t ~p o f E b c a n b e c a l c u l a t e d ( I L1 Specifically,
and
( 1 0 . 1 7 ) Theorem.
Given a R i e s z i d e a l I , t h e n f o r e v e r y
d $ € ( ( I L ) ) + and aEE+,
Chapter 2
60
Proof. -__
Denote t h e r i g h t s i d e by f ( a ) .
f u n c t i o n f on E,.
We t h u s h a v e a
f i s a d d i t i v e a n d p o s i t i v e l y homogeneous
( c f . t h e p r o o f o f Lemma 1 i n ( l O . l ) , h e n c e h a s a u n i q u e e x t e n s i o n t o a p o s i t i v e l i n e a r f u n c t i o n a l $ on E .
,
I t is c l e a r t h a t 0 c $ < 4 (a,$)
=
hence $ € ( I L )
We show $
d. In addition,
( a , + ) f o r a l l aEI,: hence f o r a l l a E I .
s e p a r a t i n g on ( I L ) d , we h a v e
+.
=
Since I i s
4.
$ =
QED
(10.18) Corollary.
(a,$)
0 f o r a l l c $ E ( I ' ) ~ and a E I d
=
Consider a c o l l e c t i o n { I
c1
1 o f R i e s z i d e a l s of E.
general theory of vector spaces,
(
I ' s a r e o ( E , E b ) c l o s e d , (nclIcl)' a
=
~
~
= 1n L y~( I a)) ' ,
By t h e
~a n d i f t h e
o(Eb,E) closure ( ~ ~ ( 1 ~ ) ~ ) .
For a f i n i t e c o l l e c t i o n , t h i s l a s t can be s t r e n g t h e n e d :
( 1 0 . 1 9 ) -~ Theorem.
For two R i e s z i d e a l s I , H o f E , ( I n H)L
Proof.
Consider $ € ( I
=
1'
+
H)',
+ El'.
a n d w e c a n assume
0>
0.
Riesz Space D u a l i t y We h a v e t o show $ € I L
4
,
E b = (IL) d 3 I',
HL.
+
61
s o i t i s enough t o show $
EHL.
so $ = $ By ( 1 0 . 1 7 )
(IL 1
II e a ch aEH+,
(Illd ,' f o r
+
O-< b-< a
Since every such b l i e s i n H , ( a , $ )
=
So t h e r i g h t s i d e
0.
i s 0 , a n d we a r e t h r o u g h .
If E = I
( 1 0 . 2 0 ) C o r o l l a r y 1.
E~
(i)
= HL
that H
+
I
T h a t HL =
H , I,H Riesz i d e a l s , then
3 11
( i i ) HL = I b and IL
P roof. -
%,
0
1'
b.
=
H
=
0 i s t r u e i n general vector spaces;
E f o l l o w s from ( 1 0 . 1 9 ) .
We t h u s h a v e ( i ) .
By
I b i n ( i i ) , we mean, more p r e c i s e l y , t h a t t h e b i l i n e a r b form ( , . ) on I x HL i n d u c e d by t h e c a n o n i c a l o n e on E X E
HL
=
-
d e f i n e s a R i e s z i s o m o r p h i s m o f HL o n t o I $
+-> $11 c l e a r l y
maps HL i n t o I
b
.
b
.
The mapping
The v e r i f i c a t i o n t h a t
t h i s mapping i s a R i e s z i s o m o r p h i s m ( i n t o ) i s s t r a i g h t f o r w a r d . b I t r e m a i n s t o show i t i s o n t o . Given $ € I , l e t $ b e t h e element o f Eb d e f i n e d by ( a , $ ) = ( a , $ ) f o r a l l a E I ( a , $ ) = 0 f o r a l l aEH.
and
Then $ € H I and c o i n c i d e s w i t h $ o n I ,
h e n c e i s c a r r i e d i n t o $ u n d e r t h e a b o v e mapping. QED
62
Chapter 2
(10.21) Corollary 2. b b a n d s o f E , t h e n .J
(Lotz [ 3 3 ] ) . +
I f ,J,G a r c a ( E b , E )
G i s a o(Eb,E)
closcd
c l o s e d band.
We w i l l p r o v e t h i s a t t h e e n d o f 511.
511. E a s " p r e d u a l " o f E
b
We e x a m i n e w h i c h p r o p e r t i e s o f 510 h o l d when we i n t e r b c h a n g e E and E b ( a n d o f c o u r s e r e p l a c e a ( E b , E ) by o ( E , E ) . b While E i s a l w a y s s e p a r a t i n g on E b , we n e e d n o t h a v e E s e p a r a t i n g on E . However, f o r t h e s p a c e s t o b e c o n s i d e r e d b i n t h i s work, E w i l l b e s e p a r a t i n g on E . Consequently, w e w i l l i n c l u d e t h i s a s s u m p t i o n i n many o f t h e t h e o r e m s b e l o w . E b , b e i n g Dedekind c o m p l e t e , i s A r c h i m e d e a n .
While E n e e d
n o t b e Dedekind c o m p l e t e , we do h a v e
( 1 1 . 1 ) I f Eb i s s e p a r a t i n g on E , t h e n E i s A r c h i m e d e a n .
Proof. -__ b
Suppose 0 < b < ( l / n ) a (n
every $ E ( E ) + (b,$)
=
0.
,
0
5
(b,@)
I t follows b
=
5 ( l / n ) ( a , $ ) (n
=
1,2;.*). =
1,2;-.),
Then f o r hence
0. QE n
The f o l l o w i n g s h o u l d b e compared w i t h t h e d e f i n i t i o n o f a
Riesz S p a c e D u a l i t y
63
positive linear functional.
(11.2)
Tf
E
b . i s s e p a r a t i n g on E , t h e n f o r a l l a E E , a E E +
if
b and o n l y i f ( a , + ) > 0 f o r 311 + € ( E ) + .
P r o o f . Suppose a#E+.
i d e a l g e n e r a t e d by a - .
# 0 ; l e t I be t h e Riesz
Then a
I _
We h a v e E b
=
d ( I L ) 3 1'
(lO.lh),so
c l e a r l y ( I L ) d i s s e p a r a t i n g on I .
I t follows there e x i s t s
s € ( ( I L ) d ) + such t h a t ( a - , $ ) > 0 .
S i n c e , by (10.181, ( a + , $ ) = O ,
we h a v e ( a , $ )
=
- ( a ,$I) < 0 . QED
(11.3)
Corollary.
E,
-
b is a(E,E ) closed in E.
We now t u r n t o t h e q u e s t i o n w h e t h e r t h e r e s u l t s i n 510 b c a r r y o v e r when w e i n t e r c h a n g e E a n d E . (10.1) of course does n o t c a r r y o v e r , s i n c e E n e e d n o t b e Dedekind c o m p l e t e . o f course (10.2)
( a l s o Lemma 2 i n ( 1 0 . 1 ) ) d o e s n o t c a r r y o v e r .
In contrast t o t h i s ,
(10.3) and i t s immediate consequences
a r e r e p l a c e d h e r e by s t r o n g e r r e s u l t s :
(11.4)
Then
Given a € E ,
b then f o r every + € ( E ) + ,
64
Chapter 2
M o r e o v e r , t h i s supremum i s a t t a i n e d . such t h a t ( a , + )
=
[O,@]
(a+,+).
(a+,+>2 (a+,$>
Proof.
T h e r e e x i s t s I)€
2
( a , + > f o r a l l $C LO,@],
so we
n e e d o n l y show t h e e x i s t e n c e o f a $ s a t i s f y i n g t h e l a s t Let I b e t h e R i e s z i d e a l g e n e r a t e d by a + .
equality.
g i v e s t h e decomposition Eb Then ( a , $ ) = ( a ' , + )
=
(1')
d
0 1'.
Set $
=
+
This
(1')d'
- ( a ,+) = ( a + , + ) = ( a + , + ) , where t h e s e c -
ond e q u a l i t y f o l l o w s f r o m ( 1 0 . 1 8 ) , a n d t h e l a s t f r o m t h e d e f i n i t i o n of
+. QED
b ( 1 1 . 5 ) For e v e r y a , b E E and + E ( E ) + , with p + u
=
there exist ~ , o € [ O , + l ,
4, s u c h t h a t (a"b,+)
=
(a,p)
(mb,+)
=
(a,o>
+
+
(b,o)
,
(b,D)
2
T h i s f o l l o w s f r o m ( 1 1 . 4 ) i n t h e same way t h a t ( 1 0 . 4 ) f o l l o w s from ( 1 0 . 3 ) .
(11.6)
I f E b i s s e p a r a t i n g on E , t h e n f o r a l l a , b E E + , t h e
following are equivalent: 1'
a/\b
2'
b f o r e v e r y +E(E )+, t h e r e e x i s t p,crE[O,+],
=
0.
with
Riesz Space D u a l i t y
p +
such t h a t
= @,
0
(a,D)
P roof.
2'
65
T h a t 1'
=
(b,o) = 0.
i m p l i e s 2'
h o l d s , and s e t c = w b .
f o l l o w s from ( 1 1 . 5 ) .
b Then f o r e v e r y + E ( E ) + ,
Suppose letting
$ = p + u be t h e d e c o m p o s i t i o n p o s t u l a t e d by 2 O , we have
0 < ( c , @ )= ( c , p )
+
( c , ~ 5) ( a , ~ )+ ( b , o )
=
0.
I t follows c
=
0
QE D
( 1 0 . 8 ) c a r r i e s o v e r , b u t now n e e d s p r o v i n g .
Given a s e t { a } i n E and a f o r a l l + E ( E b ) + ,t h e n a = V a . a ,
L e t Eb b e s e p a r a t i n g on E .
(11.7)
aEE, i f ( a , @ ) = sup ( a , , $ )
P roof.
S i n c e f o r e v e r y a, ( a , + > >
for a l l
i t f o l l o w s from ( 1 1 . 2 ) t h a t a > aa.
t h e r e e x i s t s bEE
such t h a t aa
5
Suppose a # vclacl.
b < a f o r a l l a.
@E(E~)+, Then
( E b ) + by b
i t s e l f i s s e p a r a t i n g on E , h e n c e t h e r e e x i s t s $E(E ) + s u c h t h a t (a
- b,$)
> 0.
Then ( a , @ ) > ( b , $ ) > sup,(aa,$)
=
(a,$)
and
we have a c o n t r a d i c t i o n . QE D
b
i s s e p a r a t i n g on E , t h e n f o r an b ascending n e t i n E , o ( E , E ) convergence i m p l i e s o r d e r con(11.8)
Corollary.
ve r g e n c e
If E
66
Chapter 2
( 1 0 . 9 ) d o e s n o t c a r r y o v e r ; e v e n f o r an a s c e n d i n g n e t , b o r d e r convergence d o e s n o t imply a ( E , E ) convergence: example i n t h e s equence s p a c e c p r e c e d i n g ( 9 . 5 ) , n s e q u e n c e {C e 1 (n = 1 , 2 , . I k
a
In t h e
the ascending
order converges t o the element
a )
b ( l , l , l , a - . ) b u t does n o t o(E,E ) converge t o it ( t h e r e e x i s t s b . $ € E w i t h v a l u e 1 on t h i s l a t t e r e l e m e n t a n d v a l u e 0 on all the elements of the sequence. I t follows of course t h a t (10.10), not carry over.
b F o r an e x a m p l e o f a o ( E , E ) c l o s e d R i e s z i d e a l
which i s n o t o r d e r c l o s e d , l e t E sequences.
( 1 0 . 1 1 ) a n d ( 1 0 . 1 2 ) do
=
c, the space of convergent
c i s a Banach l a t t i c e , a n d we w i l l s e e ( 1 5 . 7 ) t h a t
t h e r e f o r e E b i s a c t u a l l y t h e Banach s p a c e d u a l o f E .
It
f o l l o w s t h a t f o r l i n e a r s u b s p a c e s o f E , t h e norm c l o s u r e a n d b o(E,E ) closure coincide.
sequences converging t o 0.
Now c o n s i d e r c o , t h e s u b s p a c e o f co i s a R i e s z i d e a l w h i c h i s norm
b c l o s e d , hence o(E,E ) c l o s e d .
But i t s o r d e r c l o s u r e i s a l l
of E.
I t i s n o t t o b e e x p e c t e d t h a t ( 1 0 . 1 3 ) and (10.14) s h o u l d h h o l d w i t h E a n d Eh i n t e r c h a n g e d . (E ) + i s t h e s e t o f all p o s i t i v e l i n e a r f u n c t i o n a l s on E , b u t E + i s n o t t h e s e t o f a l l b t h o s e on E .
For a s u b s e t A o f E h , we w i l l d e n o t e t h e s e t { a E E l ( a , @ ) = O f o r a l l $CA}
by A L .
Only p a r t o f (10.15)
carries over:
( 1 1 . 9 ) F o r e v e r y R i e s z i d e a l .I o f E b ,
I n general, it i s n o t a band.
J
L
i s a R i e s z i d e a l of E.
Riesz Space D u a l i t y
Proof.
That J
67
i s a R i e s z i d e a l f o l l o w s by t h e a r g u m e n t
i n (10.15) using (l1.4),
To show i t n e e d n o t be a b a n d , t a k e
t h e R i e s z i d e a l co o f c a n d s e t <J b
u(E,E ) closed (cf. above), J
1
c
=
= 0'
( c0 )I.
S i n c e co i s
and w e h a v e shown
abovc
t h a t i t i s n o t a band. QED
We a r e now i n a p o s i t i o n t o p r o v e ( 1 0 . 1 2 ) . Consider a b R i e s z i d e a l <J o f E . I t s .(Eb,E) c l o s u r e i s (.J )' h e n c e , by 1
(11.9)
and ( 1 0 . 5 ) i s a b a n d .
I t r e m a i n s t o show t h a t ( ( J ) ' ) + L b The l a t t e r i s c o n t a i n e d i n ( E ) +
i s t h e 0 ( E b , E ) c l o s u r e o f J,.
by ( l O . l 3 ) , h e n c e i s c o n t a i n e d i n ( ( J ) ' ) + . L
For t h e o p p o s i t e
b ~ E ( E) + i s n o t i n t h e a ( ~ b , ~c l)o s u r e o f
i n c l u s i o n , suppose
< J + ; we show i t i s n o t i n ( J )" 1
J+ i s a c o n v e x c o n e , so by
t h e Hahn-Banach t h e o r e m , t h e r e e x i s t s a E E s u c h t h a t s ~ p ~ ~ ~ + (= a 0, <+ () a , + ) .
+iJ+, hence a+CJ
L
t u r n t h a t $ E ( J )'. I
Thus i n E b ,
.
it follows t h a t ( a + , + ) = 0 f o r a l l
Since (a',+)
2 (a,+)
> 0 , it follows in
This completes t h e proof o f (10.12).
t h e a(Eb,E) closure of a R i e s z i d e a l i s order
c l o s e d , w h i l e (as we s h a l l s e e ) t h e o r d e r c l o s u r e n e e d n o t b e b o(E , E )
closed.
In E , exactly the opposite holds.
The
b
u(E,E ) c l o s u r e o f a Riesz i d e a l need n o t be o r d e r c l o s e d ( c f . t h e d i s c u s s i o n f o l l o w i n g ( 1 1 . 8 ) ) , b u t , a s w e now show, b its order closure is o(E,E ) closed.
( 1 1 . 1 0 ) I f Eb i s s e p a r a t i n g on E , t h e n e v e r y b a n d I o f E i s
Chapter 2
68
b a(E,E ) closed.
P roof. -
We show ( I L )
1
t a i n s some a E I d , a a fortiori (IL)
1
#
=
I.
Suppose n o t .
Then ( I L ) c o n 1
0 : E i s A r c h i m e d e a n , by (ll.l),
is also.
Now I i s a band o f ( I L )
our assumption, a proper band.
L
so
,
and by
I t f o l l o w s from ( 5 . 8 ) t h a t
t h e r e e x i s t s a E ( I L ) d i s j o i n t from I . 1
Now a v a n i s h e s on I L , and by (10.18), i t v a n i s h e s o n (IL)d.
a t h u s v a n i s h e s on a l l o f E b ,
h e n c e a = 0 , a n d we h a v e
a contradiction. QED
does c a r r y
(10.12)
o v e r on i n t e r c h a n g i n g E and E b ,
i f we
r e p l a c e "band" b y t h e w e a k e r " R i e s z i d e a l " :
(11.11) I f E
b
b i s s e p a r a t i n g on E , t h e n t h e a ( E , E ) c l o s u r e o f
a R i e s z i d e a l I i s a R i e s z i d e a l , and i t s p o s i t i v e c o n e i s t h e u ( E , Eb ) c l o s u r e o f I + .
The p r o o f i s t h e same a s t h a t u s e d a b o v e t o e s t a b l i s h (10.12).
The w e a k e r c o n c l u s i o n i s d u e t o t h e f a c t t h a t ( 1 1 . 9 )
i s weaker than ( 1 0 . 1 5 ) .
I f {J,} i s a c o l l e c t i o n o f R i e s z i d e a l s o f E b ,
f r o m t h e g e n e r a l t h e o r y o f v e c t o r s p a c e s , (CaJa)L =
then again
n,(J,)L,
R i e s z Space D u a l i t y
a n d i f t h e J ' s a r e .(Eb,E) c1
closed,
69
(nc J1 a) L
= a(E,E
b
) closure
( C , ( J ~ ) ~l )l o.w e v e r , t h e t h e o r e m c o r r e s p o n d i n g t o ( 1 0 . 1 9 )
not
h o l d : g i v e n two b a n d s J , G o f E b ,
t h e n , i n g e n e r a l , <J
(JnGjL. F o L a n e x a m p l e , l e t E = c a g a i n , a n d s e t I J = ( ( c ~ ) ' ) ~ a, n d G = (c,)'.
show <J
1
+ G
1
# E.
J
L
=
(c,)~
J
n
=
G = 0 , s o (.JnG)L
=
co,
=
E:
0 , by E x e r c i s e 2 , and G
b since the l a t t e r is a(E,E ) closed.
does
Thus J + G L
= L
L
0 +co
CL#
+
We =
c6'
# E.
F i n a l l y , we give t h e proof of t h e Lotz theorem (10.21).
(J
+
G)l
.J + G .
=
JL n G L , h e n c e ( ( J + G ) L ) L
S i n c e (J
+
=
(.Jl)'
+
(Gl)'
(10.19)
=
G ) L i s a Riesz i d e a l o f E , by ( 1 1 . 9 ) ,
(10.15) g i v e s us t h e d e s i r e d r e s u l t . N o t e t h a t t h i s t h e o r e m d o e s n o t c a r r y o v e r t o E : t h e sum b b o f two o ( E , E ) c l o s e d R i e s z i d e a l s o f E n e e d n o t b e o ( E , E ) closed.
We p r e s e n t a n e x a m p l e i n E x e r c i s e 6 .
5 1 2 . The s p a c e E C o f o r d e r c o n t i n u o u s l i n e a r f u n c t i o n s
We r e c a l l ( 5 1 0 ) t h a t a l i n e a r f u n c t i o n a l space E i s o r d e r continuous i f a lima(acl,@).
c1
-t
@
on a Riesz
a implies ( a , $ ) =
We w i l l d e n o t e t h e s e t o f o r d e r c o n t i n u o u s l i n e a r
f u n c t i o n a l s on E by E C .
By ( 6 . 0 ) , E C
C
Eb.
(12.1) Given a R i e s z s p a c e E , t h e n f o r 4 E E are equivalent:
b
,
the following
Chapter 2
70
lo
@EEC;
2'
I$lEEc;
3'
f o r e v e r y n e t { a 1 o f I:,
Proof.
a 40 i m p l i e s ~
a
We show f i r s t t h a t 1'
h o l d s , and s u p p o s e a $ 0 b u t { ( a n , a
implies 3
I@I }
0
.
i (ma rY
a' 1 4 1 )
=
0.
Assume 1'
d o e s n o t c o n v e r g e t o 0.
Ry t a k i n g a s u b n e t i f n e c e s s a r y , we c a n assume t h e r e e x i s t s I
0 such t h a t ( a a ,
/@I)
> 1 for a l l
(1.
Then f o r e a c h a , t h e r e
e x i s t s b E [ - a a ] such t h a t ( b $) > 1 ( 1 0 . 6 ) . a a' a Y(. ' 0 ( s i n c e lbwl < a n ) , h e n c e , by 1 , l i m ( b , $ ) = 0 . a c1 a contradiction.
i m p l i e s 1'
The v e r i f i c a t i o n t h a t 3'
But h a
+
0
We t h u s h a v e
implies 2
0
a n d 2'
is straightforward.
qr: u
( 1 2 . 2 ) -___ 'Theorem.
___ Proof.
E C i s a band o f E
b
.
EC i s c l e a r l y a l i n e a r subspace.
g i v e s u s t h a t i t i s a Riesz i d e a l .
(12.1) then
Finally, that it is order
c l o s e d f o l l o w s from t h e
Lemma. ___
Given a n e t { @ } i n ( E c ) + , i f @ , i t @ E E b , t h e n @ € E C . ci
71
Riesz Space D u a l i t y
(b,$)
=
l i m ( b , $ ) u n i f o r m l y on [ - a , a ] . -_____
ct
Now s u p p o s e a 40 i n E ; we show l i I n B ( a R , ( P ) = 0 , w h i c h will B e s t a b l i s h t h e Lemma, a n d , w i t h i t , t h e Theorem. We c a n a s s u m e t h e n e t { a 1 h a s an i n i t i a l e l e m c n t , w h i c h we d e n o t e b y a o . B
agE[O,aO]
f o r a l l B,
s o , by t h e a b o v e r e s u l t , ( a , , @ )
l i m a ( a B , @ J u n i f o r m l y i n P.
Since a l s o l i m
B( , ‘I 4 ’@ CL )
=
=
0 for
a l l a , s t a n d a r d f u n c t i o n t h e o r y g i v e s u s t h a t l i m B ( a B , @ )= 0 .
QE D
E‘
h a s s t r o n g e r p r o p e r t i e s t h a n II
b
.
The f o l l o w i n g
i m p r o v e s on ( 1 1 . 9 ) .
(12.3)
F o r e v e r y R i e s z i d e a l .J o f E c ,
Proof. -__
.J
1
,I
1
i s a band o f E .
i s a Riesz i d e a l by (11.9).
That i t i s o r d e r
c l o s e d f o l l o w s f r o m t h e o r d e r c o n t i n u i t y o f t h e e l e m e n t s o f .J. QEI)
F o r t h e s i g n i f i c a n c e o f t h e n e x t two t h e o r e m s , s e e E x e r c i s e s 4 and 5 .
(12.4)
Theorem.
i d e a l ,J O f E‘,
I f E i s Archimedean, t h e n f o r e v e r y Riesz
t h e b a n d ( J L ) d o f E i s s e p a r a t i n g on J .
Chapter 2
72
C o n s i d e r $ E J , and s u p p o s e ( a , $ ) = 0 f o r a l l d a E ( J ) . Then ( a , $ ) = 0 f o r a l l a E ( . J ) %, J , h e n c e ( $ b e i n g L L L d o r d e r c o n t i n u o u s ) f o r a l l a i n t h e o r d e r c l o s u r e o f ( J ) %, .J . Proof. d
L
the latter is E.
By ( 5 . 9 ) ,
I t follows $
=
L
0.
QED
( 1 2 . 5 ) Theorem.
Let E b e Archimedean.
n
J , G of EC, i f J
( . J ~n ) ~
G = 0 , then (G )d c J L
=
0 , whence ( G ) d c J L
t h a t f o r every
a1
+
bl
=
d
1
c GL,whence
d We show t h a t f o r a E ( ( G L ) ) + a n d
g e n e r a t e d b y , s a y , $.
=
a n d (J )
Assume f i r s t t h a t G i s a p r i n c i p a l R i e s z i d e a l ,
Proof.
+A$
L
o.
=
$EJ+, (a,$)
F o r two R i e s z i d e a l s
E
5
> 0, (a,$)
0 , s o , by ( 1 0 . 5 ) ,
L
.
S p e c i f i c a l l y , we show
E.
there exist al,blEIO,a],
a , such t h a t b1,$)
+
(bl,$)
5
E/2.
In turn, there e x i s t a2,b2E[0,bl], a2
+
b2
=
bl,
such t h a t
C o n t i n u i n g i n t h i s f a s h i o n , we o b t a i n two s e q u e n c e s Can} {b,}
,
i n E+ w i t h t h e p r o p e r t i e s (i)
an
(ii)
(an,$>
+
bn
= +
(n
bn-l
O n , + )5
N o t e f i r s t t h a t bn+O.
E D n
=
2,3,...),
(n = 1 , 2 ; . - ) .
I n e f f e c t , s u p p o s e bEE
satisfies
0 < b < bn f o r a l l n . Then 0 < (b,$) < (bn,$) 5 ~ / f o2 r a~ l l n, whence ( b , + ) = 0 . I t follows b E G I . Since 0 < b < a, we
R i e s z Space D u a l i t y
a l s o have bE(G ) d , h e n c e b
=
J.
73
0.
I t f o l l o w s xnan = a i n t h e s e n s e o f o r d e r c o n v e r g e n c e . Since $ i s order continuous, ( a , $ ) Thus ( G ) d c J 1
(12.3)
1
and ( 5 . 6 ) ) ,
.
zn(an,$) 5
=
I t f o l l o w s (.Jl)d
E.
c (Gl)dd
=
G
1
(by
and we have t h e t h e o r e m f o r G a p r i n c i p a l
I n t h e g e n e r a l c a s e , l e t { G 1 be t h e s e t o f a l l a d p r i n c i p a l Riesz i d e a l s i n G . Then (Jl) c (Ga)l f o r a l l a , Riesz i d e a l .
hence ( J ) d c na(Ga)l= (1 G )
a a 1
1
=
G
1
. QED
(12.6)
Corollary.
I f E i s Archimedean, t h e n for two R i e s z
ideals J , G of EC, i f J
G = 0 , t h e o r d e r c l o s u r e of J
1
+
G
1
is E.
T h i s f o l l o w s from t h e above and ( 5 . 9 ) . For t h e f o l l o w i n g , s e e Theorem 3 1 . 5 i n [ 3 5 ] .
( 1 2 . 7 ) Theorem.
I f a Riesz space E i s
(Luxemburg-Zaanen).
Archimedean, t h e n e v e r y band J o f E c i s o ( E C , E ) c l o s e d i n E C .
P roof. ( J )' 1
n
Set G = J
EC; s o EC = J 3 G.
G = 0 ; i t w i l l l o l l o w (J1)'
desired conclusion.
(J1)'
d
c ((Gl)d)l.
By ( 1 2 . 5 ) , Jl
n 3
We show
E C = J , which i s t h e (Gl)d, hence
S i n c e (G ) d i s s e p a r a t i n g on G ( 1 2 . 4 ) , 1
74
((C
Chapter 2
L
d ) )'
n
C = 0 , and we a r e t h r o u g h .
I f a Riesz spacc E i s Archimedean, t h e n f o r
(12.8) Corollary.
e v e r y Riesz i d e a l J o f E C , t h e o r d e r c l o s u r e of J and i t s o(EC,E) c l o s u r e i n EC c o i n c i d e .
§ 1 3 . The c a n o n i c a l i m b e d d i n g o f E i n E
We w i l l d e n o t e ( E b ) b s i m p l y by E b b ,
Assume Eb i s s e p a r a t i n g on E .
Notation.
( a , $ ) on E
x
a n d ( E b ) c by E b c .
Then w e h a v e t h e c a n o n i c a l i m -
b * b e d d i n g o f E i n (E ) : f o r e a c h aEE,
t h e l i n e a r f u n c t i o n a l $+->
bb
i t s image i n ( E b ) *
( a , $ ) on E
b
is
.
Thus f a r we h a v e worked w i t h t h e b i l i n e a r f o r m
Eb .
We a r e now i m b e d d i n g E i n t o E b b
.
In order
n o t t o c h a n g e ( a , $ ) t o ( $ , a ) , we a d o p t t h e c o n v e n t i o n t h a t t h e d u a l i t y between Eb and (Eb)* w i l l be d e n o t e d by a b i l i n e a r f o r m on ( E b ) * f o r $€Eb (@,$).
x
Eb
( i n s t e a d o f Eb
x
(E b ) *) .
Otherwise s t a t e d ,
,
t h e v a l u e of 0 a t $ w i l l b e w r i t t e n bb The same n o t a t i o n w i l l t h e n b e i n h e r i t e d f o r E . and Q E ( E b ) *
( 1 3 . 1 ) -___ Theorem.
Let E
b
b e s e p a r a t i n g on E .
The c a n o n i c a l
imbedding o f E i n t o (Eb)* i s a R i e s z isomorphism Ebc o f Ebb.
into
t h e band
Riesz Space D u a l i t y
75
T D e n o t e t h e c a n o n i c a l i m b e d d i n g b y E -->(E
Proof.
So T i s g i v e n b y ( T a , g )
=
( a , $ ) f o r a11 aEE
and $ E E
b * )
b
.
.
By
t h e v e r y d e f i n i t i o n o f o r d e r on E b , t h e l i n e a r f u n c t i o n a l Ta bb i s p o s i t i v e f o r e v e r y a E E + , hence l i e s i n E . I t f o l l o w s I n f a c t , T(E) c Eb c :
T(E) c E b b .
that i s the content of
(10.12).
We show t h a t ar\b
=
0 i n E i m p l i e s (Ta)A(Tb) = 0 i n E b
which w i l l complete t h e p r o o f . show t h e r e e x i s t p , a E [ O , $ ] , (Tb,a)
'<
(cf. (10.5)).
f
P
Consider $E(E ) + +
0
= $,
Since (Ta,p)
=
E
such t h a t ( T a , p ) =
( b , a ) , we c a n e v e n b y ( 1 1 . 6 ) , f i n d a p , O
(Tb,a)
and
bb
-, 0
, ; we
+
( a , p ) and ( T b , a )
=
f o r which ( T a , p )
=
0. QELJ
H e n c e f o r t h , we i d e n t i f y E w i t h i t s image i n E b b .
We
state this explicitly:
I f E b i s s e p a r a t i n g on E , t h e n u n d e r t h e b i l i n e a r f o r m ( a , $ ) on E
x
Warning.
Eb,
E i s a R i e s z s u b s p a c e o f Ebb - i n f a c t , o f E
bC .
While t h e c a n o n i c a l imbedding o f E i n Ebb p r e -
s e r v e s t h e l a t t i c e o p e r a t i o n s , t h a t i s , suprema and i n f i m a o f f i n i t e s e t s , i t does n o t , i n g e n e r a l , p r e s e r v e suprema and infima of a r b i t r a r y s e t s .
Otherwise s t a t e d , it i s n o t
order continuous. E i s O(Ebb,Eb) d e n s e i n E b b ,
s i n c e i!: i s s e p a r a t i n g on E b ;
so a f o r t i o r i i t i s O(Ebb,Eb) d e n s e i n Ebc.
I t follows e a s i l y
Chapter 2
76
from t h i s and ( 1 2 . 8 ) t h a t t h e band o f Ebb g e n e r a t e d by E i s p r e c i s e l y Eb c .
A c t u a l l y , we have a much s t r o n g e r r e s u l t i n
( i i ) of (13.2) below. S i n c e E b c c o n t a i n s E , i t i s s e p a r a t i n g on E b , h e n c e , by t h e i n t r o d u c t i o n t o C h a p t e r 2 , E b c and E b a r e e a c h a s p a c e o f l i n e a r f u n c t i o n a l s on t h e o t h e r .
The f o l l o w i n g t h e o r e m s a y s
more: n o t o n l y i s E b c t h e s p a c e o f o r d e r c o n t i n u o u s l i n e a r b
i s i n t u r n t h e space o f o r d e r conbc t i n u o u s l i n e a r f u n c t i o n a l s on E . Thus t h e f o l l o w i n g c a n b e f u n c t i o n a l s on E b , b u t E
c o n s i d e r e d t h e c e n t r a l d u a l i t y theorem f o r R ies z s p a c e s .
( 1 3 . 2 ) Theorem.
(Nakano).
Let E
b
b e s e p a r a t i n g on E , s o t h a t
t h e p a i r (EbC,Eb) a r e e a c h a s p a c e o f l i n e a r f u n c t i o n a l s on the other. (i)
Then each i s a c t u a l l y t h e space of order continuous l i n e a r
f u n c t i o n a l s on t h e o t h e r ; ( i i ) E c E b c and i t s o r d e r c l o s u r e i s a l l o f E
bc .
We w i l l n o t p r o v e ( 1 3 . 2 ) i n i t s f u l l g e n e r a l i t y .
We w i l l
e s t a b l i s h i t l a t e r f o r t h e two c a s e s i n w h i c h w e a r e i n t e r e s t e s :
E an L - s p a c e and E an M-space w i t h u n i t .
A R i e s z s p a c e F i s c a l l e d p e r f e c t i f F C i s s e p a r a t i n g on F , s o t h a t F c a n b e imbedded i n ( F c ) maps F o n t o Fcc (i)
(= (F')').
* , . and
t h i s imbedding a c t u a l l y
I n s h o r t , F i s p e r f e c t i f F = Fcc.
i n ( 1 3 . 2 ) above s a y s t h a t i f E b i s s e p a r a t i n g on E ,
t h e n Eb i s p e r f e c t .
Riesz Space D u a l i t y
77
We c l o s e t h i s 5 w i t h a t h e o r e m w h i c h we w i l l l a t e r n e e d .
W h i l e E b i s s e p a r a t i n g on E f o r a b r o a d r a n g e o f R i e s z s p a c e s , EC i s r a r e l y s o .
flowever, i f i t i s s e p a r a t i n g on E , t h e n we
have t h e c a n o n i c a l imbedding o f E i n (Ec)*.
I t c a n b e shown
h e r e a l s o , b y t h e same p r o o f a s was u s e d f o r ( 1 3 . 1 ) , t h a t t h i s c a n o n i c a l imbedding i s i n f a c t a Riesz isomorphism o f E i n t o Ecc.
I f E i s Dedekind c o m p l e t e , w e c a n s a y more:
Theorem. ( N a k a n o ) . ( 1 3 . 3 ) -~
I f E i s Dedekind complete and EC i s
s e p a r a t i n g on E , t h e n u n d e r i t s c a n o n i c a l i m b e d d i n g i n E C C , E
i s a R i e s z i d e a l whose o r d e r c l o s u r e i s a l l o f E c c .
Proof.
Lemma 1. F o r e v e r y d e c o m p o s i t i o n E c c (I
I b a n d s ) , E = (E 1, 2
n
11) 3 ( E
By E x e r c i s e 8 , E C
Proof. -___
(applying Exercise 8 again) ((Il)l)L
n ( ( I ~ ))' I ~n ) ~ I ~ .
= E
( ( I ~ ) =~
Corollary.
= E
n
= I1 0 I 2
12).
(I2Il 3 ( I l l l ,
=
E
=
and t h e r e f o r e
((I1)l)L 3 ((12)L)1*
Rut
0 I1 ( 1 2 . 7 ) ; and s i m i l a r l y ,
I f I i s a p r o j e c t i o n band o f E C C , t h e n f o r
every aEE, aIEE.
Lemma 2 .
E i s Dedekind d e n s e i n t h e R i e s z i d e a l I o f Ecc
78
Chaptcr 2
g e n e r a t e d by 1 .
Proof.
Ry ( 7 . 6 ) , i t i s e n o u g h t o show t h a t i f b E I , b > 0,
then t h e r e e x i s t s a E E such t h a t 0 < a 5 b . b
so v
-
1> 0
c f o r some c E E .
h c = 0 , s o v h > O ( b - Xc)
Now A
Let II b e t h e b a n d o f E"
g e n e r a t e d hy (h
Straightforward computation gives C o r o l l a r y above, xc € E 11
h,
( b - r o c ) + z 0 f o r some
(b - ~ c ) + = b, so, finally,
h0 > 0 .
=
US
0
i
hclI
i
-
h.
hocl+. Ry t h e
so is t h e desired a.
Now I i s T k d e k i n d c o m p l e t e ( ( 1 0 . 1 ) a n d I l x e r c i s c 1 8 o f C h a p t e r l),
h e n c e , h y Lemma 2 ,
i s t h e D e d e k i n d c o m p l e t i o n o f I:.
S i n c e E i s D e d e k i n d c o m p l e t e , we h a v e E T h a t t h e o r d e r c l o s u r e o f E i s Ec' c
t h a t i t i s a ( E c c , I 1 ) d e n s e i n I!
C
=
I.
f o l l o w s from t h e f a c t
combined w i t h ( 1 2 . 8 ) .
(11: r)
5 1 4 . 'The t r a n s p o s e o f a R i e s z homomorphism
Let E __ > F b e a l i n e a r m a p p i n g o f o n e R i e s z s p a c e i n t o By t h e t r a n s p o s e T t o f T , we w i l l , + Tt * mean t h e m a p p i n g E <-F d e f i n e d by +> another.
$€F $€F
* *
f o r t h e moment,
+
,
o r e q u i v a l e n t l y , by ( a , T t $ )
=
(Ta,$)
+ o T for e v e r y
f o r e v e r y aEE
.
b b (14.1) I f T i s o r d e r bounded, t h e n Tt(F ) c E
.
and
79
R i e s z Spacc D u a l i t y
Proof.
Given $ € F b , t h c n f o r e v e r y o r d e r bounded s e t A
of I:, t sup / ( a , T ij~)l a€ A
(since T(A)
=
SUP
a€ A
l(Ta,$)l
i s o r d e r bounded).
<
~0
Thus Tt$EE b . QE D
I
E v e r y mapping E -->F o r d e r bounded.
which w e w i l l e n c o u n t e r w i l l be
S i n c e i t i s E b a n d Fb t h a t w e a r e i n t e r e s t e d i n ,
t h e term " t r a n s p o s e "
and n o t a t i o n Tt w i l l h e n c e f o r t h d e n o t e
t h e r e s t r i c t i o n o f t h e above t r a n s p o s e t o F
(14.2)
[i)
b
.
T p o s i t i v e implies Tt p o s i t i v e .
( i i ) I f Fb i s s e p a r a t i n g on F , t h e c o n v e r s e h o l d s : T
t
positive implies T positive.
b t I f I $ E ( F ) + , t h e n f o r e v e r y aEE,, ( a , T 11,) = t b 0, that is, T $E(E )+. ( i i ) I f a E E + , then f o r every
-__ Proof.
(Ta,$)
2
(i)
b $E(F )+, (Ta,$)
=
(a,Tt$) > 0 , hence, by [ l l . Z ) ,
TaEF,.
QE D we w i l l d e n o t e t h e s e t o f all b o r d e r bounded l i n e a r mappings o f E i n t o F by L ( E , F ) ( t h u s G i v e n two R i e s z s p a c e s E , F ,
Eb
=
Lb(E,IR)).
F b e i n g a v e c t o r s p a c e , Lb(E,F) i s a v e c t o r
s p a c e u n d e r t h e usual d e f i n i t i o n s o f a d d i t i o n a n d s c a l a r multiplication. The p r o o f o f ( 1 0 . 1 ) d e p e n d e d upon t h e f a c t t h a t lR i s
Chapter 2
80
Dedekind c o m p l e t e .
I f F i s D e d e k i n d c o m p l e t e , an a d a p t a t i o n o f
t h a t proof g i v e s us
b I f F i s Dedekind c o m p l e t e , L ( E , F ) i s a
( 1 4 . 3 ) Theorem. - _ _ c _
Dedekind c o m plete R i e s z s p a c e , w i t h t h e s e t o f p o s i t i v e l i n e a r mappings f o r p o s i t i v e c o n e .
(Note t h a t , a s a c o n s e q u e n c e , t h e s t a t e m e n t t h a t a l i n e a r mapping T i s p o s i t i v e c a n b e w r i t t e n T > 0.) Contained i n t h i s theorem i s t h e r e s u l t t h a t e v e r y o r d e r b o u n d e d l i n e a r mapping T i s t h e d i f f e r e n c e o f two p o s i t i v e l i n e a r mappings: T
=
.
T+ - T
U s i n g t h i s , we c a n s h a r p e n ( 1 4 . 1 )
considerably :
I f F i s Dedekind c o m p l e t e , t h e n f o r e v e r y
( 1 4 . 4 ) Theorem.
I
o r d e r bounded l i n e a r mapping E __ > F , t h e t r a n s p o s e E b <*
Fb
-__ Proof.
is order continuous.
T
=
T+ - T - , s o T t = ( T + ) t - ( T - ) t .
> 0. o n l y prove t h e theorem f o r T -
By ( 1 4 . 2 ) , T
t
Hence w e n e e d > 0 , hence t o
show T t i s o r d e r c o n t i n u o u s , i t s u f f i c e s t o show t h a t + a + O
t F o r e v e r y aEE,, ( a , T $a) = t S i n c e {Tqa.}, l i k e { $ } , i s a d e s c e n d i n g ( T a , Q a . ) + 0 , by ( 1 0 . 9 ) . a t n e t , i t f b l l o w s a g a i n f r o m ( 1 0 . 9 ) t h a t Tq,+ 0 . i n Fb i m p l i e s
Tt+
a.
G 0 in E
b
.
QE D
Riesz Space D u a l i t y
81
E x a m i n a t i o n o f t h e a b o v e p r o o f shows t h a t f o r T p o s i t i v e , t h e c o n c l u s i o n h o l d s w i t h o u t t h e a s s u m p t i o n t h a t F be Dedekind complete.
(14.5) I f E
We r e c o r d t h i s .
~
> F i s a p o s i t i v e l i n e a r t r a n s f o r m a t i o n o f one
R i e s z s p a c e i n t o a n o t h e r , t h e n E <- Tt
Fb i s o r d e r c o n t i n u o u s .
Remark. I t c a n b e shown t h a t t h e c o n d i t i o n t h a t F b e ____ Dedekind c o m p l e t e c a n be e l i m i n a t e d f r o m ( 1 4 . 4 ) e n t i r e l y , n o t only for T positive.
The r e m a i n d e r o f t h i s 5 i s c o n c e r n e d w i t h t h e t r n s p o s e o f a R i e s z homomorphism.
We f i r s t c o n s i d e r two s p e c i a l c a s e s :
( i ) T i s a s u r j e c t i o n , and ( i i ) T i s an i n j e c t i o n .
-TI n
the
f i r s t c a s e , T h a s t h e f a c t o r i z a t i o n E L > E / T - l (O)->F,
-
w h e r e q i s t h e q u o t i e n t map a n d T a R i e s z i s o m o r p h i s m . In the T1 i s e c o n d c a s e , T h a s t h e f a c t o r i z a t i o n E ---> T(E) -> F, w h e r e i i s t h e c a n o n i c a l i n j e c t i o n o f T(E) i n t o F a n d T1 i s a
Riesz isomorphism o f E o n t o T ( E ) .
T h u s , i n e f f e c t , t h e two
s p e c i a l c a s e s r e d u c e t o t h e c a s e s ( a ) t h e q u o t i e n t map d e t e r m i n e d by a R i e s z i d e a l a n d ( b ) t h e c a n o n i c a l i n j e c t i o n o f a Riesz subspace.
( 1 4 . 6 ) Theorem.
-> E / I t h e q u o t i e n t map.
and E (E/I)
Let I be a R i e s z i d e a l o f a R i e s z s p a c e E ,
b
Then E b <- q t
Riesz i s o m o r p h i c a l l y o n t o I".
( E / I ) b maps
Chapter 2
82
Proof.
We c l e a r l y h a v e qt((E/I)b)
mapping i s o n t o , S i n c e qa
=
To show t h e
c 1'.
c o n s i d e r 4 i I L , a n d we c a n assume 4 > 0.
qb i m p l i e s ( a , $ )
=
( b , $ ) , 4 determines a (positive)
l i n e a r f u n c t i o n a l ii, on E / T b y ( q a , + ) = ( a , $ ) f o r all a E E . t t h u s have a $ i ( E / I ) b such t h a t q $ = 4.
We
t t S i n c e q i s p o s i t i v e , s o i s q . And s i n c e q i s o n t o , (1 t i s o n e - o n e . Thus I L < q ( E / I ) b i s a p o s i t i v e b i j e c t i o n .
M o r e o v e r , from t h e a b o v e p r o o f t h a t q t i s o n t o , positive.
is also
(qt)-'
I t i s easily shown t h a t a b i j e c t i o n T s u c h t h a t
b o t h T and T - '
a r e p o s i t i v e i s a R i e s z i s o m o r p h i s m , s o we a r e
through.
QEn
H e n c e f o r t h , we i d e n t i f y '1
with (E/I)
b
.
We s t a t e t h i s
explicitly.
Given a R i e s z i d e a l I o f a R i e s z s p a c e E , t h e n u n d e r t h e b i l i n e a r form ( $ , $ )
we h a v e IL
on ( E / I )
x
'I
d e f i n e d by ( q a , $ ) = ( a , $ ) ,
(E/I)b.
To d e a l w i t h t h e c a n o n i c a l i n j e c t i o n o f a R i e s z s u b s p a c e ,
we n e e d some p r e l i m i n a r y r e s u l t s .
A l i n e a r mapping E
-> F o f o n e R i e s z s p a c e i n t o
a n o t h e r w i l l be c a l l e d i n t e r v a l p r e s e r v i n g i f (i)
T i s p o s i t i v e , and
(ii)
f o r every i n t e r v a l [a,b] of E , T([a,b])
=
[Ta,Tb].
R i e s z Space D u a l i t y
83
Note ( 6 . 3 ) t h a t a q u o t i e n t map i s i n t e r v a l p r e s c r v i n g .
114.7)
If E
> F i s i n t e r v a l p r e s e r v i n g , t h e n f o r e v e r y Riesz
~
i d e a l T o f E , T ( I ) i s a Riesz i d e a l o f F and T(T+)
=
((T(T))+.
I n p a r t i c u l a r , T(E) i s a R i e s z i d e a l o f F.
If 0 < d < cET(I), then, since T i s interval
Proof. -__
preserving, dET(1).
We show t h a t i f c E T ( I ) , t h e n c ' + E T ( T ) ,
which w i l l e s t a b l i s h b o t h t h a t T ( 1 ) i s a Riesz i d e a l ( c f . ( 3 . 1 ) ) and t h a t T ( I + ) (Ta) Tb
=
+
5
Ta
+
,
=
((T(I))+.
c
=
T a f o r some a E T , s o 0 < c+
so t h e r e e x i s t s b E [ O , a + ]
=
such t h a t
c'.
QED
An e x t e n s i o n lemma
(14.8)
Lemma.
p o s i t i v e l i n e a r f u n c t i o n a l on F , (a,+) 5(a,$) Then
+
a n d @ i s o n e on E s u c h t h a t
for a l l aEE+.
can bc e x t e n d e d t o a p o s i t i v c l i n e a r f u n c t i o n a l
such t h a t
35
Proof.
~-
p(a)
Suppose $ i s a
Let E b e a R i e s z s u b s p a c e o f F .
= (a+,$)
on F
$.
D e f i n e t h e s u b l i n e a r f u n c t i o n a l p on F b y for a l l aEF.
Then p d o m i n a t e s
+
on E , s o , b y
Chapter 2
84
t h e Hahn-Banachtheorem, @ can h e e x t e n d e d t o a l i n e a r f u n c tional
T
on F w h i c h i s s t i l l d o m i n a t e d by p .
(a,$)
2
(a,?)
5 ~ ( a )= ( a , $ ) ,
p(a) = 0 , so
5 is so
positive.
For e v e r y a < 0,
Finally, f o r every a > 0,
T 5 +. QED
Remark. -
The above Lemma f i r s t a p p e a r e d i n o u r p a p e r [ 2 3 ]
( P r o p o s i t i o n ( 2 . 4 ) , t h e Lemma).
(14.9) Theorem. -
Let E be a Riesz s u b s p a c e o f a Riesz s p a c e F ,
a n d E __ > F t h e c a n o n i c a l i n j e c t i o n .
Then E b <- i t
Fb i s
interval preserving.
___ Proof.
i t i s o f c o u r s e t h e r e s t r i c t i o n map c$ k----->+IE.
C o n s i d e r a n i n t e r v a l [ 0 , $ ] o f Fb .
Since it is positive,
For the opposite inclusion, given
it([O, $1) c [O,it$].
@ € [ O , i t $ ] , t h e n by ( 1 4 . 8 ) , $ h a s e x t e n s i o n
t h a t TE[O,$].
Then @
=
5 to
a l l of F such
it$, a n d we a r e t h r o u g h . QED
( 1 4 . 1 0 ) C o r o l l a r y 1.
Given a Riesz subspace E o f a Riesz
s p a c e F; (i)
t h e r e s t r i c t i o n map
I+%-->
$ l E maps Fb o n t o a R i e s z
i d e a l o f Eb; (ii)
i f Fh i s s e p a r a t i n g on F (on E i s e n o u g h ) , t h i s
Riesz i d e a l i s o(Eb,E) dense i n Eb;
Riesz Space D u a l i t y
85
( i i i ) i f E i s s e p a r a t i n g on F b , t h e r e s t r i c t i o n map i s a R i e s z i s o m o r p h i s m o f Fb o n t o a R i e s z i d e a l o f E b .
( i i ) I f Fb i s s e p a r a t i n g on F , t h e n i t i s s e p a r a t i n g on E , h e n c e i t ( F b ) i s Proof.
( i ) follows from ( 1 4 . 9 )
s e p a r a t i n g on E .
( i i i ) i Li s o n e - o n e , o n t o , a n d p o s i t i v e , s o
i t i s e n o u g h t o show t h a t ( i t ) - '
(14.6)).
and ( 1 4 . 7 ) .
i s p o s i t i v e ( c f . the proof of
S u p p o s e i t q, > 0;we h a v e t o show q, > 0.
i t $+, s o i t J,
=
t i p f o r some P E [ O , $ + ] .
0 < it $ <
Since it i s one-one,
q , = p , o .
QED
Warning.
In general, i
t . i s n o t a R i e s z homomorphism.
For a Riesz i d e a l I o f F ,
((it)-')(O)
=
,'I
and i t i s n o t
h a r d t o show t h a t i n t h i s c a s e , i t i s a R i e s z homomorphism a n d m o r e o v e r maps ( I L ) d R i e s z i s o m o r p h i c a l l y o n t o i t ( F b ) .
Thus
(14.11) C o r o l l a r y 2.
Given a R i e s z i d e a l I o f a R i e s z s p a c e F, b i s R i e s z isomorphic t o a R i e s z i d e a l of I .
Again, we i d e n t i f y t h e Riesz isomorphic spaces o b t a i n e d i n t h e above C o r o l l a r i e s :
I f a R i e s z s u b s p a c e E o f a R i e s z s p a c e F i s s e p a r a t i n g on b b F b , t h e n u n d e r t h e b i l i n e a r f o r m ( a , $ ) on E x F , F i s a R i e s z
Chapter 2
86
ideal of E
b
.
F o r e v e r y R i e s z i d e a l I o f F , u n d e r t h e b i l i n e a r form b ( a , @ ) on I x ( I L ) d , ( I L ) d i s a R i e s z i d e a l o f I .
We a r e now i n a p o s i t i o n t o d i s c u s s a g e n e r a l Riesz homomo r p h i s m .
(14.2)
(Kim) L e t E , F b e R i e s z s p a c e s , w i t h E
Theorem..
s e p a r a t i n g on E a n d Fb s e p a r a t i n g on F. mapping E ->
T
T i s a R i e s z homomorphism;
2'
T
P roof.
Then f o r a l i n e a r
F, the following are equivalent:
1'
t
b
i s interval preserving.
Assume T i s a R i e s z homomorphism.
Then T - l ( O )
i s a R i e s z i d e a l , and we h a v e t h e f a c t o r i z a t i o n
This gives, i n turn, the
Ttorization of T t :
t
Eb
< [4 fi/T-l(0))b
<-
Tt
t (T(E))b < A F b .
"t . I t f o l l o w s from t h e p r e c e d i n g r e s u l t s (and t h e f a c t t h a t T i s
a R i e s z isomorphism) t h a t Tt i s i n t e r v a l p r e s e r v i n g . Now assume T t i s i n t e r v a l p r e s e r v i n g , a n d c o n s i d e r a E E . b We show t h a t f o r e v e r y + E ( F ) + , ( T a + , $ )
f o l l o w t h a t Taf
=
(Ta)'.
=
( ( T a ) + , + ) ; it w i l l
Riesz Space D u a l i t y
87
(11.4)
(11.4) QE D
The a b o v e t h e o r e m a p p e a r e d i n [ 2 9 ] .
I t was p r o v e d
i n d e p e n d e n t l y b y Ando a n d L o t z f o r Banach l a t t i c e s ( c f .
[33]).
T i s a Riesz b homomorphism i f a n d o n l y i f f o r e v e r y R i e s z i d e a l J o f E , t t T t ( J ) i s a R i e s z i d e a l o f Eb a n d T ( J + ) = (T ( J ) ) + .
K i m a l s o gave t h e f o l l o w i n g c h a r a c t e r i z a t i o n :
The s e c o n d p a r t o f t h e
above p r o o f h o l d s v e r b a t i m w i t h
T a n d T L i n t e r c h a n g e d t o g i v e us
(14.13)
I f a l i n e a r m a p p i n g E __ 'I' > F o f o n e R i e s z s p a c e i n t o
another is interval preserving, then E
LTt-Fb
is a Riesz
homomorp h i s m .
Combining ( 1 4 . 1 2 ) ,
( 1 4 . 1 3 ) , and ( 1 4 . 4 ) , w e have
( 1 4 . 1 4 ) L e t E -> F b e a l i n e a r m a p p i n g o f o n e R i e s z s p a c e i n t o a n o t h e r , a n d E b b ___ Ttt > Fb b i t s b i t r a n s p o s e Ttt
=
(Tt)t).
(that is,
88
Chapter 2
(i)
i f T i s a R i e s z homomorphism, t h e n T t t
i s an o r d e r
c o n t i n u o u s R i e s z homomorphism. ( i i ) I f T i s i n t e r v a l preserving, then Ttt
i s o r d e r con-
t i n u o u s and i n t e r v a l p r e s e r v i n g .
5 1 5 . The d u a l o f a Banach l a t t i c e
Notation.
norm d u a l by E ' ,
weak
L e t E b e a normed s p a c e .
a n d , a s c u s t o m a r y , we w i l l c a l l o ( E , E ' ) t h e
t o p o l o g y on E .
However, f o r o ( E ' , E ) , we w i l l a d o p t t h e
B o u r b a k i term, t h e v a g u e t o p o l o g y on E ' . for E
=
We w i l l d e n o t e i t s
(They o n l y used i t
C(X) .)
I f E i s a normed R i e s z s p a c e , t h e n E ' c E
b
.
I n more
detail,
( 1 5 . 1 ) I f E i s a normed R i e s z s p a c e , t h e n (i)
E'
i s a v a g u e l y dense ( t h a t i s , a ( E ' , E ) dense) Riesz
i d e a l of Eb; ( i i ) under t h e induced R i e s z space s t r u c t u r e , E ' i s a Banach l a t t i c e .
Proof. -__
E v e r y o r d e r b o u n d e d s e t o f E i s norm b o u n d e d , s o
e v e r y e l e m e n t o f E ' i s o r d e r bounded. S i n c e E ' i s s e p a r a t i n g b on E , i t i s v a g u e l y d e n s e i n E . ( i i ) f o l l o w s from t h e f a c t t h a t the u n i t b a l l o f ' E ' i s the polar of the u n i t b a l l of E,
89
Riesz Space D u a l i t y
h e n c e , by E x e r c i s e 9 , i s s o l i d .
( 1 5 . 2 ) C o r o l l a r y 1.
I f E i s a normed R i e s z s p a c e , t h e n Eb i s
s e p a r a t i n g on E .
(15.3) C o r o l l a r y 2 .
I f E i s a normed R i e s z s p a c e , E '
is
Dedekind c o m p l e t e .
T h i s by E x e r c i s e 1 8 i n C h a p t e r 1. Combining ( 1 5 . 1 ) a n d ( 9 . 1 1 ) ,
( 1 5 . 4 ) I f E i s a Banach l a t t i c e , E '
=
E
b
.
EXE RC I SES
I n t h e s e e x e r c i s e s , E i s always a Riesz s p a c e .
1.
L e t f b e a n a d d i t i v e a n d p o s i t i v e l y homogeneous f u n c t i o n
on E + : f ( a + b ) A > 0.
Then a
=
I--->
f(a)
+
f ( b ) , f(Aa)
=
Af(a) f o r a l l
f(a+) - f(a-) is linear functional
on E , a n d t h e o n l y o n e whose r e s t r i c t i o n t o E, with f .
coincides
Chapter 2
90
2.
Given a R i e s z i d e a l I o f E , t h e n f o r e v e r y @E(E
b
)+
and
a6 I<+,
3. I f E
h . i s s e p a r a t i n g on E , t h e n f o r e v e r y R i e s z i d e a l T
of E ,
4.
(i)
( ( P A L
If E
=
Id .
b . i s s e p a r a t i n g on E , t h e n f o r e v e r y R i e s z i d e a l
I of E ,
( 1 1 ) ~i s s e p a r a t i n g on T .
b ( i i ) For a R i e s z i d e a l ,J o f E , ( t J L ) d may b e 0 .
5.
(i)
F o r two R i e s z i d e a l s 1 , I I o f E , I
(Il)dj]
(Hqd
n
H = 0 implies
0.
=
h ( i i ) F o r two Riesz i d e a l s J , G o f E , i t i s p o s s i b l e t o d d h a v e J n G = 0 w h i l e (,J ) n ( G ) # 0 . L
L
6.
(i)
( 1 0 . 2 0 ) f a i l s t o h o l d i f E and Eb a r e i n t e r c h a n g e d (and of c o u r s e
changed from s u p e r s c r i p t t o
1
subscript). ( i i ) The above s t a t e m e n t h o l d s e v e n i f E i s
Dedekind
complete.
7 . Even i f E c i s s e p a r a t i n g on E , E C
n o t imply E
= I;
L
+
J
L
=
<J 0 G ( b a n d s ) d o e s
.
8 . I f Ec i s s e p a r a t i n g on E ,
t h e n Ec
=
and E i s D e d e k i n d c o m p l e t e ,
J 3 G does imply E = E
L
3 J
L
.
Riesz Space D u a l i t y
9.
(i)
91
If R c E i s s o l i d , t h e n i t s p o l a r A o - i n - E b i s s o l i d .
( i i ) I f A c E b i s s o l i d , t h e n AO-in-E i s s o l i d .
10
I f a s o l i d s e t A o f I:. i s a b s o r b i n g ( t h a t i s , IJn(nA) * b t h e n A'-in-E c E .
11.
Let E b e a Banach l a t t i c e .
(i)
b I f I: i s a norm c l o s e d R i e s z s u b s p a c e , t h e n E / F L F
b . i s o m e t r i c a l l y and R i e s z i s o m o r p h i c a l l y .
( i i ) H e n c e , i f I i s a norm c l o s e d R i e s z i d e a l , t h e n (IL)d= T
12.
=
b
.
I n a B a n a c h l a t t i c e , i f I i s t h e b a n d g e n e r a t e d by a c o u n t a b l e s e t , then I i s a p r i n c i p l e band.
E),
=
PART I 1
L - SPACES AND MIL- SPACES
C(X)
i s an M I - s p a c e ( a n M - s p a c e w i t h u n i t ) , i t s d u a l C ' ( X )
i s an L-space, and i t s b i d u a l
Cll(X)
d e f i n e M-space a n d L - s p a c e b e l o w ) . C'l(X)
exist a t three levels.
i s a g a i n an M a - s p a c e (we
Thus t h e p r o p e r t i e s o f
A t t h e f i r s t l e v e l , are i t s p r o -
p e r t i e s a s an M I - s p a c e .
A t the next, deeper, level, are those
i t possesses a s a d u a l .
And a t t h e d e e p e s t l e v e l a r e t h o s e i t
possesses a s a b i d u a l . two l e v e l s .
I n P a r t I 1 h e r e , we d e a l w i t h t h e f i r s t
Our i n t e r e s t , o f c o u r s e , l i e s i n t h e t h i r d l e v e l ,
and w e w i l l b e o c c u p i e d w i t h t h o s e p r o p e r t i e s f o r t h e r e m a i n d e r of t h e work.
92
CHAPTER 3
M I - S P A C E S AND L-SPACES
The norms o f C ( X ) t h a t of
C l ( X )
and
Cl'(X)
a r e o f a s p e c i a l t y p e , and
of a t y p e " d u a l " t o t h i s .
In the p r e s e n t chapter,
we s t u d y t h e s e two t y p e s .
516 Mll-spaces
An e l e m e n t a > 0 f o r a R i e s z s p a c e E i s an o r d e r u n i t f o r E i f f o r every b E E , t h e r e e x i s t s X > 0 s u c h t h a t -Aa ib < l a e q u i v a l e n t l y , i f t h e R i e s z i d e a l g e n e r a t e d by a i s a l l o f E .
-
C l e a r l y , i f a i s an o r d e r u n i t , t h e n l a i s a l s o an o r d e r u n i t f ~ ? ^ every X > 0.
I n g e n e r a l , a R i e s z s p a c e d o e s n o t have an o r d e r
unit. I f we a r e working w i t h a p a r t i c u l a r o r d e r u n i t i n a R i e s z
s p a c e , we w i l l h a b i t u a l l y d e n o t e i t by 1.
An o r d e r u n i t II o f an Archimedean R i e s z s p a c e E d e f i n e s a c a n o n i c a l R i e s z norm ( c a l l e d an o r d e r u n i t norm) on E by jlaIj = inf{XI -
f o r a l l aEE.
xn -i a
We h a v e , i m m e d i a t e l y ,
93
i -
An}
94
Chapter 3
( 1 6 . 1 ) F o r a l l a , b E E , [ l a - b[I < b + €1.
i E and o n l y i f b - € 1 < a <
E
E q u i v a l e n t l y , IIaII < 1 i f and o n l y i f
la1 < ll
.
In
1 , and t h e u n i t b a l l B ( E ) o f E i s [ - n , R ] .
p a r t i c u l a r , \Ill;/
The norms d e f i n e d by two o r d e r u n i t s on a R i e s z s p a c e E are clearly equivalent. I t i s i m m e d i a t e from ( 9 . 1 ) R i e s z norm.
( 1 6 . 2 ) Let
t h a t a n o r d e r u n i t norm i s a
And t h e f o l l o w i n g i s e a s i l y v e r i f i e d .
11 I[ a
b e an o r d e r u n i t norm.
(1 avb(I
=
max(\I all
Then f o r a l l a , b E E + ,
, Ilhll J
.
A norm riith. t h i s p r o p e r t y ( w h e t h e r o r n o t it i s d e f i n e d
by a n o r d e r u n i t ) i s c a l l e d a n M-norm.
In keeping with t h i s
w e w i l l h e n c e f o r t h c a l l a n o r d e r u n i t norm
[I
an Ma-norm,
and we w i l l c a l l t h e ( u n i q u e ) o r d e r u n i t 1 d e f i n i n g i t s i m p l y the unit for
I[ . [I
( o r f o r E , i f t h e r e can be no c o n f u s i o n ) .
E v e r y R i e s z s p a c e w i t h an M-norm c a n b e i s o m e t r i c a l l y ( a n d
Riesz i s o m o r p h i c a l l y ) imbedded i n o n e w h i c h h a s a n o r d e r u n i t d e f i n i n g i t s norm.
Thus t h e R i e s z s p a c e s w i t h M-norms a r e
p r e c i s e l y t h e Riesz subspaces o f Riesz s p a c e s withMll-norms: o t h e r w i s e s t a t e d , e v e r y M-norm c a n b e c o n s i d e r e d i n d u c e d b y a n M I - norm.
I t i s t o be e x p e c t e d t h a t f o r an M R -norm, t h e r e s u l t s o f 559 and 1 5 can be s t r e n g t h e n e d .
To s t a r t w i t h , we h a v e
t r i v i a l l y t h a t u n d e r a n M-norm, o r d e r b o u n d e d n e s s and norm boundedness a r e e q u i v a l e n t .
Also
Ma-spaces and L-spaces
95
( 1 6 . 3 ) I n an MI-normed s p a c e , i f a b o u n d e d n e t {au} norm c o n verges, then it order converges.
Proof. -___
F o r s i m p l i c i t y , a s s u m e { a } norm c o n v e r g e s t o 0 . c1
F o r e a c h a, s e t ra
=
~ u p ~ , ~ I I a 'Then ~ ~ l .{r 1 i s a descending n e t
-
CL
o f r e a l n u m b e r s c o n v e r g i n g t o 0 , s o rclll+O. S i n c e la f o r a l l a, a a
+
0
I
<
-
r I c1
0 .
QED
(16.4)
C o r o l l a r y 1.
I n a n M I - normed s p a c e , e v e r y norm c o n -
v e r g e n t sequence o r d e r converges.
(16.5) C o r o l l a r y 2 .
I n a n MI-normed s p a c e , an q r d e r c l o s e d s e t
( o r e v e n a o - o r d e r c l o s e d o n e ) i s norm c l o s e d .
I n an MIL-normed s p a c e ) t h e R i e s z s u b s p a c e s c o n t a i n i n g t h e u n i t I have s t r o n g p r o p e r t i e s .
(16.6)
We g i v e two o f t h e m .
Let E b e a n MI-normed s p a c e a n d F a R i e s z s u b s p a c e c o n -
t a i n i n g the u n i t I o f E.
I f aEE i s i n t h e norm c l o s u r e o f F ,
t h e n i t i s t h e norm l i m i t ( h e n c e o r d e r l i m i t ) o f a n a s c e n d i n g sequence o f F , and a l s o o f a descending one.
Chapter 3
96
I t i s enough t o show t h a t f o r
Proof.
< b < a. b E F s u c h t h a t a - €1 E / 2 .
E
> 0 , there exists
Choose c € F s a t i s f y i n g I I c - all 5
Then a - ( ~ / 2 ) l l< c < a + ( ~ / 2 ) 1 , h e n c e a - Ell < c -
( ~ / 2 ) 1< a , and c - ( ~ / 2 ) n i s t h e d e s i r e d b . QED
A g a i n , l e t F be a R i e s z s u b s p a c e c o n t a i n i n g I t .
Suppose
a E B ( E ) , t h e u n i t b a l l o f E , and t h a t { a 1 i s a n e t i n F s u c h c1
t h a t aa
-f
a.
V(-n)
Then (a,An)
+
a
also.
Thus a i s t h e l i m i t
o f a n o r d e r c o n v e r g e n t n e t o f t h e u n i t b a l l B(F) o f F .
Com-
b i n i n g t h i s w i t h Z o r n ' s lemma ( a s i n t h e p r o o f o f ( 5 . 2 ) , w e can e s t a b l i s h :
( 1 6 . 7 ) L e t E b e a n MIL-normed s p a c e , F a R i e s z s u b s p a c e c o n t a i n i n g t h e u n i t ll o f E , a n d G i t s o r d e r c l o s u r e .
Then B I G ) i s
t h e o r d e r c l o s u r e o f B(F).
As i n a normed a l g e b r a w i t h i d e n t i t y , w e h a v e :
( 1 6 . 9 ) Let E b e a n MIL-normed s p a c e . i d e a l , then inf a€ I
--Proof.
11 a
-
It]]
I f I i s a proper Riesz
= 1.
S u p p o s e IIa - lL\l = r < 1 f o r some a E I .
a > It - r n , h e n c e 0 < It < (1 - r ) - ' a , the hypothesis that I is proper.
Then
h e n c e IlEI, c o n t r a d i c t i n g
S i n c e O E I , t h e a b o v e infimum
M I - s p a c e s and L - s p a c e s
97
is attained. QED
(16.10) Corollary.
I n a n Ma-normed s p a c e , t h e norm c l o s u r e o f
a p r o p e r Riesz i d e a l i s a l s o p r o p e r .
The f o l l o w i n g i s o f c o u r s e what w e w o u l d w a n t .
( 1 6 . 1 1 ) Let E be a n MIL-normed s p a c e a n d I a p r o p e r norm c l o s e d Riesz i d e a l .
Then t h e q u o t i e n t norm on E / I i s a n MIl-norm w i t h
q I for unit.
--P r o o f . We show t h a t f o r e v e r y a E E / I , if
121 5 q n .
Suppose
some aEE s u c h t h a t q ( a ( 5 Xql.
( / a ( /5
11 all 5
1.
[I;//
5 1 i f and o n l y
Then f o r X > 1,
a
S i n c e t h i s h o l d s f o r a l l X > 1, 121
:q n ;
2 2 0.
Choose a n y aEE s u c h t h a t q a
Then q b
=
II;]l
5
Ilb;l
5
w e h a v e t o show
S i n c e t h e q u o t i e n t norm i s a R i e s z norm ( 9 . 8 ) ,
2 a l s o , hence
qa f o r
T h i s s a y s la1 5 X I , h e n c e J.21 =
A.
C o n v e r s e l y , s u p p o s e 121
=
=
5
qn.
IIa:] 2
1.
w e c a n assume
and s e t b = (av0)An.
5 1. QED
I f a R i e s z s p a c e w i t h a n M-norm i s norm c o m p l e t e , we w i l l
c a l l i t an M-space ( t h e common name i s ( A M ) - s p a c e ) .
And i f a
R i e s z s p a c e w i t h a n MI-norm i s norm c o m p l e t e , w e w i l l c a l l i t
Chapter 3
98
an MIL-space. A norm c l o s e d R i e s z s u b s p a c e o f a n M-space E i s i t s e l f an M-space.
We w i l l c a l l i t a n M - s u b s p a c e o f E .
F i n a l l y , i f an
M - s u b s p a c e o f a n M I - s p a c e E c o n t a i n s t h e u n i t IL o f E , we w i l l c a l l i t an MIL-subsnace o f E .
A s i s w e l l known, t h e B a i r e c l a s s e s i n f u n c t i o n t h e o r y a r e
each c l o s e d under uniform convergence.
This i s a property of
an MIL-space:
( 1 6 . 1 2 ) L e t E b e a n MIL-space, F a R i e s z s u b s p a c e c o n t a i n i n g t h e u n i t 1 o f E , and G t h e s e t o f e l e m e n t s which a r e l i m i t s o f Then F i s norm c l o s e d ( h e n c e
o r d e r c o n v e r g e n t s e q u e n c e s i n F.
an MIL- s u b s p a c e )
-__ Proof.
.
S u p p o s e a i s i n t h e norm c l o s u r e o f G , a n d f o r
s i m p l i c i t y , we c a n assume 0 < a <
(i)
n.
T h e r e e x i s t s { a n } (n = 0 , 1 , 2 , . - * ) i n G,
II anII 2
(n
l/zn
I n e f f e c t , by ( 1 6 . 6 ) ,
t h e r e i s a n a s c e n d i n g s e q u e n c e {cn3
i n G such t h a t a - (l/zn)Il i cn r e p l a c i n g e a c h cn by (c,)', = co a n d a n =
'n
0,1,2,...)
u n d e r norm c o n v e r g e n c e .
Cnan = a
S e t a.
=
such t h a t
-
5 a (n
= 0,1,2,-.
w e c a n assume cn
cn-l
(n
=
1,2,...).
1. 0
a ) ,
and,
f o r a l l n.
The s e q u e n c e
99
MIL-spaces a n d L - s p a c e s
t h e n has t h e above p r o p e r t i e s .
an
Now b y t h e d e f i n i t i o n o f G I f o r e a c h n , t h e r e e x i s t s a sequence {b
nm } ( m
=
i n I: w h i c h o r d e r c o n v e r g e s t o a n ;
1,2,...)
and w e can c l e a r l y t a k e 0 < bnm
brn = xn=Ob nm ( m
1,2,..-).
=
5
We show bm
F o r e a c h n , t h e s t a t e m e n t t h a t bnm
nm } (rn
t h e r e e x i s t s e q u e n c e s {p,,}, pnmJ-an9 qnm+an9 a n d qnm
2
qnm
9,
'
9
< (1/2")n Pnm -
m
cn,Oqnrn ( m
=
=
qm
m
= Cn,oq,rn
{q
brim
5
a , h e n c e aEG
-f
a
-f
=
Set
n
(as m
1,2;--)
-f
a)
. means
i n E such t h a t
Pnm f o r a l l m, a n d w e c a n t a k e
f o r a l l m.
S e t p,
m
=
~,,~p,,,
1,2,-.*).
(ii)
9,
5
f o r a l l m.
(l/2n)ll
5 bm 5 Pm f o r
m 5 Zm n z 0 bnm 5 cn,opnm
a l l m.
= p,,
and s i n c e t h e t h i r d
e x p r e s s i o n i s b m' w e h a v e ( i i ) .
q m +a
(iii)
--
We h a v e q1 5 q 2 5 .< a. Suppose c > q f o r a l l m. Then m N N c > c a for a l l N: i n e f f e c t , f o r every m > N , c 2 q,, Cn=oq,m; On N N h e n c e c 2 Vm(Cn=Oqnm) = Cn,0an. N Thus a = Vmqm, a n d we I t follows c > V (C a ) = a. N O n have ( i i i ) .
We h a v e p1
2
show c < a + (1/2
p2 N
2
> a. -
)ll f o r a l l N
Suppose c < p, = 0,1,2,...,
f o r a l l m ; we
whence c < a.
Fix N
Chapter 3
100
5 1 7 . The components o f II
Given a p o s i t i v e e l e m e n t a o f a R i e s z s p a c e E , eEE be c a l l e d a component o f a i f eA(a - e ) d e f i n i t i o n i s t h a t (ze)Aa
8
w i l l be d e n o t e d by
=
e.
=
0.
will
An e q u i v a l e n t
The s e t of a l l components o f a
(a).
I n t h i s 5 , w e a s s e m b l e t h e p r o p e r t i e s we w i l l need o f Z ( n ) ,
1 t h e u n i t f o r an MIL-norm on a R i e s z s p a c e E .
However, s i n c e
e v e r y a > 0 o f a R i e s z s p a c e i s an o r d e r u n i t f o r t h e R i e s z i d e a l which i t g e n e r a t e s , t h e r e s u l t s a r e c o m p l e t e l y g e n e r a l , t h a t i s , hold f o r
(17.1)
Z(n)
8
(a) f o r every a > 0 .
i s a s u b l a t t i c e of E.
Moreover, i t i s a Boolean
a l g e b r a w i t h 0 f o r i t s z e r o , 1 f o r i t s u n i t , and 1 - e f o r t h e complement o f e .
The v e r i f i c a t i o n i s s t r a i g h t f o r w a r d .
(17.2)
8 (l) i s
o r d e r c l o s e d (hence norm c l o s e d ) i n E .
Mll-spaces and L - s p a c e s
101
T h i s follows e a s i l y from t h e above and ( 4 . 3 ) .
Given a d e c o m p o s i t i o n E immediate t h e
=
1 1 3 I 2 (11,12 bands), i t i s
,
band components 111
1
% of
ll a r e a l s o com-
p o n e n t s o f I i n t h e s e n s e d e f i n e d above i n t h e p r e s e n t 5 .
Con-
v e r s e l y , s u p p o s e e 1 , e 2 a r e complementary components o f 1 ( t h a t i s , e 2 = ll - e 1) i n t h e p r e s e n t s e n s e , and l e t 11, I 2 be t h e R i e s z i d e a l s which t h e y g e n e r a t e . that E = I l @ I 2 with el
=
1111, e 2
=
I t i s a g a i n immediate
I I 2 . Thus an e l e m e n t o f
E i s a "component" o f ll i n one s e n s e i f and o n l y i f i t i s one
i n the other sense. Contained i n t h i s d i s c u s s i o n i s t h e r e s u l t t h a t every Riesz i d e a l g e n e r a t e d by a component o f It i s a p r o j e c t i o n band and e v e r y p r o j e c t i o n band i s a p r i n c i p a l R i e s z i d e a l .
(17.3)
More f u l l y :
For a R i e s z i d e a l I o f an Mll-normed s p a c e E , t h e
following a r e equivalent: 1'
I i s a p r o j e c t i o n band;
2'
I i s t h e R i e s z i d e a l g e n e r a t e d by some component e o f I .
Moreover, (i) e
=
llI '.
( i i ) t h e norm on I i n d u c e d by t h e norm on E i s p r e c i s e l y t h e MI-norm d e f i n e d by e .
The c o n d i t i o n i n 2'
t h a t i t be a component o f It t h a t
generated I i s e s s e n t i a l .
I n g e n e r a l , n o t even a p r i n c i p a l
102
Chapter 3
band i s a p r o j e c t i o n band ( u n l e s s , o f c o u r s e , E i s 0-Dedeking complete ( 8 . 3 ) ) .
(17.4)
Corollary . The B o o l e a n a l g e b r a
(1) i s i s o m o r p h i c w i t h
t h e B o o l e a n a l g e b r a o f p r o j e c t i o n b a n d s o f E.
Remarks. -__
( i ) N o t e t h a t [jell = 1 f o r e v e r y component e o f ll.
( i i ) I t may h a p p e n t h a t t h e o n l y p r o j e c t i o n b a n d s o f E a r e 0 a n d E , s o t h e o n l y c o m p o n e n t s o f ll a r e 0 a n d It.
A f i n i t e subset {e1;*.,en} E r t i t i o n o f ll i f z nl e i
=
It.
o f g ( l l ) w i l l be c a l l e d a ( I t follows automatically that
the ei’s a r e mutually d i s j o i n t . )
A p a r t i t i o n { d l , ’ * - , d m }w i l l
b e c a l l e d a r efinement of { e l , . - . y e n } i f every d . < e . f o r 3 1 some i . Each e i i s t h e n c l e a r l y a sum o f d . ’ s . Given two I partitions {el;.-,en}, { d l , ‘ . , d m } o f ll, t h e s e t {eiAd. 3 3 ( i = l , . . . , n ; j = l,... m) i s a g a i n a p a r t i t i o n a n d i s a
.
r e f i n e m e n t o f t h e two g i v e n o n e s .
So by i n d u c t i o n , e v e r y
f i n i t e s e t o f p a r t i t i o n s h a s a common r e f i n e m e n t . Straightforward computation, using refinements, gives u s :
(17.5)
E v e r y e l e m e n t a o f t h e l i n e a r s u b s p a c e g e n e r a t e d by
can be w r i t t e n i n t h e form a p a r t i t i o n o f ll.
c n1
i
1’
where { e
- ..
(1)
,en} i s a 1’ And e v e r y f i n i t e number o f e l e m e n t s o f t h i s =
e.
8
l i n e a r s u b s p a c e c a n a l l b e w r i t t e n i n t e r m s o f t h e same
M l l - spaces and L -spaces
103
partition.
The above representations are not unique.
If an element can
be written in terms of some partition, then it can be written in terms of any refinement of that partition.
(17.6) Given an MI-normed space E , the linear subspace generated by 8 (I) is a Riesz subspace (containing 1 of course).
Proof. Consider an element a of this subspace; we show a + is also an element.
a
=
c n11ie i' { e l , * - - ,ne} a partition
of I. By permuting the subscripts if necessary, we can assume 11,"',Xk
> 0 and Xk+l, . . . ,A,
5 0 (the cases 1 .1
and 1. < 0 for a l l n are trivial). 1 -
k Then zlXiei
> 0
-
for all n
= a+
(Exercise 8
in Chapter 1). QED
Remark. -- The lattice structure in this Riesz subspace is transparent: Consider elements a,b in it. By ( 1 7 . 5 ) ' they can n b = Cn1 ~ i e i ,{e1;--,e n 1 a partition of I. be written a = zlXiei, Then avb = ~n~ ( m a x ( A ~ , ~ ~ ) ) e ~ . Combining the above with ( 1 6 . 6 ) ' we obtain :
(17.7) Suppose a is in the norm closure of the linear subspace generated by%(l).
Then there exists a sequence {bkl
Y
Chapter 3
104
such t h a t : (i)
< a; b 1 -< b 2 -< * * - -
(ii)
l i m k ( l a - bk\l = 0 ;
( i i i ) j < k i m p l i e s { e k l , . * . ek , n ( k ) } i s a r e f i n e m e n t o f
If a > 0 , we c a n t a k e t h e b k ‘ s > 0
Z(l)
i s c a l l e d t o t a l i n E i f t h e l i n e a r subspace which i t
g e n e r a t e s i s norm d e n s e i n E . We p r e s e n t t h e c l a s s i c a l F r e u d e n t h a l s p e c t r a l t h e o r e m . F i r s t , two u s e f u l lemmas on c o m p o n e n t s .
We r e c a l l ( 8 . 3 ) t h a t
i n a u - D e d e k i n d c o m p l e t e R i e s z s p a c e , t h e band g e n e r a t e d b y a ny e l e m e n t a i s a p r o j e c t i o n b a n d ; a l s o t h a t we d e n o t e t h e component i n t h i s band o f e a c h bEE by ba.
-__ Lemma.
(17.8)
Let E b e a-Dedekind complete.
If aEE+
(i)
and e
=
l a ,t h e n ae = a .
I t f o l l o w s a and
e g e n e r a t e t h e same b a n d . ( i i ) If aEE, e ad
=
-a
=
ll a+’
and d
=
ll - e , t h e n a e
=
a+ and
*
The v e r i f i c a t i o n i s s t r a i g h t f o r w a r d . Let E b e a - D e d e k i n d c o m p l e t e . we s e t
Given aEE, f o r e a c h A € R,
M I - s p a c e s and L - s p a c e s
105
We w i l l c a l l t h e e ( 1 ) ' s t h e s p e c t r a l e l e m e n t s o f a , and a {e,(h) I h E IR} t h e s p e c t r a l f a m i l y o f a . Note t h a t e a ( X ) = 1 f o r 1 <
-11
a [ ] and e a ( x )
( 1 7 . 9 ) Lemma.
=
Let E
- 11 a l l .
0 for
be
o-Dedekind c o m p l e t e .
),EX, d e n o t e e a ( x ) s i m p l y be e ( x ) , and s e t d ( h )
Given aEE =
and
I - e(1).
Then
P roof. -
(a
ae(x)
1. x e ( x ) ;
ad(1)
5
(a - Xn)e(x)
=
ld(X)'
(a - XI)' > 0 , by ( 1 7 . 8 ) .
Xn)e(A) = a e ( x > - x n e ( x > = a e ( x ) - 1 e C x ) .
x e ( x )> 0.
But
Thus a e ( l )
-
The s e c o n d i n e q u a l i t y f o l l o w s s i m i l a r l y from
( a - xn)d(X) = - ( a -
an)-
< 0. -
QED
( 1 7 . 1 0 ) Theorem.
(Freudenthal [18]).
I f an MI-space E i s
a-Dedekind complete, t h e n Z ( 1 ) i s t o t a l i n E.
P roof.
W e show i t c a n be a p p r o x i m a t e d i n
C o n s i d e r aEE.
t h e norm b y l i n e a r c o m b i n a t i o n s o f i t s s p e c t r a l e l e m e n t s . can assume 0 < a < I. F i x n , d e n o t e l / n by
E,
and s e t
We
Chapter 3
106
e k -- e a ( ( k dk
=
ek
dn
=
en '
-
-
1)~)
ek+l
I t i s i m m e d i a t e from ( 1 7 . 9 ) t h a t
Thus
n,e, d Ad k j
en ' =
0 for k # j ,
a = Cn a = ~ " a dk dk
'
=
Remark. -
I
[icn ( a dk - ( k
- i I E dk 1 1
o-Dedekind completeness i s , i n g e n e r a l , s t r i c t l y
stronger than the property t h a t % ( n ) i s t o t a l . t a k e f o r E t h e space c of convergent sequences
As a n e x a m p l e ,
107
MIL-spaces a n d L - s p a c e s
We r e c o r d a s i m p l e r e s u l t ( 1 7 . 1 2 )
w h i c h we w i l l n e e d l a t e r .
Let E be a o-Dedekind complete Mn-space, F a R i e s z subspace c o n t a i n i n g t h e u n i t ll o f E , a n d A t h e s e t o f a l l s p e c t r a l e l e m e n t s o f e l e m e n t s of F. verified,
Note f i r s t t h a t , as i s e a s i l y
f o r a n y aEE a n d a n y s p e c t r a l e l e m e n t e a ( x ) o f a , we
a (A) = e (a-AIL) ( 0 ) . H e n c e , i n t h e p r e s e n t c a s e , s i n c e ILEF, e v e r y e l e m e n t o f A c a n b e w r i t t e n i n t h e f o r m e , ( O ) , a E F .
have e
IL a+' tn,laEF+}.
But e a ( 0 ) A
=
=
T h u s , s i n c e F i s a R i e s z s u b s p a c e , we h a v e
The v e r i f i c a t i o n o f t h e f o l l o w i n g i s now s t r a i g h t f o r w a r d .
(17.11)
L e t E b e a 0 - D e d e k i n d c o m p l e t e MIL-space,
subspace containing of elements o f F.
(and
n,
F a Riesz
and A t h e s e t o f a l l s p e c t r a l e l e m e n t s
Then 4 i s a s u b l a t t i c e o f & ( n ) c o n t a i n i n g ll
0).
(17.12) Corollary.
The l i n e a r s u b s p a c e G o f E g e n e r a t e d b y A
above i s a Riesz subspace.
Proof. For e a c h eEA, -~
G c o n t a i n s ll
- e.
I t f o l l o w s G con-
t a i n s t h e B o o l e a n s u b a l g e b r a o f e ( I L ) g e n e r a t e d b y A, h e n c e i s g e n e r a t e d bv t h e Boolean s u b a l g e b r a , hence i s a Riesz s p a c e (cf. the proof of (17.6)). QED
Chapter 3
108
§18.
M l l -hnmomorphisms
S i n c e u n d e r an Mll-norm, o r d e r boundedness and norm boundedn e s s a r e e q u i v a l e n t , we have
(18.1)
I f E , F a r e MIL-normed s p a c e s , t h e n f o r e v e r y l i n e a r
mapping E -> F , t h e f o l l o w i n g a r e e q u i v a l e n t :
'1
T i s norm c o n t i n u o u s ;
2'
T i s o r d e r bounded.
I n p a r t i c u l a r , e v e r y p o s i t i v e l i n e a r mapping i s norm cont i n u o u s , hence e v e r y R i e s z homomorphism.
A l s o , f o r an MILb normed s p a c e E ( w h e t h e r norm c o m p l e t e o r n o t ) , E ' = E
.
As u s u a l , i t i s R i e s z homomorphisms t h a t we a r e i n t e r e s t e d
in.
L e t E , F be MI-normed s p a c e s .
By an MI-homomorphism
of E
i n t o F , we w i l l mean a R i e s z homomorphism T w i t h t h e p r o p e r t y : Tll(E) = l l ( F ) .
We w i l l g e n e r a l l y u s e t h e symbol lL f o r t h e
u n i t s o f h o t h E and F ; t h u s t h e above e q u a l i t y w i l l be w r i t t e n T R = ll.
Note t h a t ( i n t h e u n i f o r m norm) [[ T(I = 1.
The term Mll-isomorphism i s c l e a r . t h a t an Ma-isomorphism i s an i s o m e t r y .
I t is easily verified By an imbedding o f one
Ma-normed s p a c e E i n t o a n o t h e r one F , we w i l l mean an Mll-isomorphism o f E o n t o a R i e s z s u b s p a c e o f F c o n t a i n i n g It.
( 1 8 . 2 ) An MIL-homomorphic image o f an Mll-space E i s an M I - s p a c e .
109
MIL-spaces a n d L - s p a c e s Proof.
Let E
-> F b e a n Ma-homomorphism.
a R i e s z subspace of F c o n t a i n i n g space.
We h a v e t o show
n,
a n d i s t h u s a n MIL-normed Consider a
T(E) i s norm c o m p l e t e .
norm Cauchy s e r i e s CnTan i n T ( E ) .
Then T(E) i s
By d i s c a r d i n g some terms a t
5 1/2"
t h e b e g i n n i n g a n d g r o u p i n g t h e r e s t , we c a n assume IITanll (n
=
1,2,...)
.
T h i s can be w r i t t e n
2
- (1/2")IL(F)
Tan
5
(1/2")Il(F).
For e a c h n , s e t b n = [anV ( ( - l / Z n )
Then IIbnjl
5 1 / 2 " a n d Tbn
=
n(E) 1 IA ( ( 1 / 2 n ) n(E) 1 .
Tan ( n = 1 , 2 , . . . )
.
From t h e f i r s t
o f t h e s e , I n b n i s norm C a u c h y , s o ( E b e i n g norm c o m p l e t e ) t h e r e
e x i s t s bEE
s u c h t h a t Cnbn
=
b i n t h e norm.
c o n t i n u o u s , we h a v e CnTan = CnTbn
S i n c e T i s norm
Tb.
=
QED
(18.3)
Corollary.
If E
-> F i s a n MIL-homomorphism o f o n e
MIL-space i n t o a n o t h e r , t h e n T ( E ) i s a n M I - s u b s p a c e o f F.
919 L - s p a c e s
Dual t o M-norms a r e L - n o r m s . R i e s z s p a c e E i s a d d i t i v e o n E,,
I f a R i e s z norm
11 . [ I
on a
that is,
= IIaII + [ l b [ [ f o r a l l a , b E E + ,
\ l a + b[I
i t w i l l b e c a l l e d a n L-norm.
A s s o c i a t e d w i t h a n L-norm
the set K
=
{aEE+I[Iall = 1 1 .
[I
is
110
Chapter 3
K i s c o n v e x a n d norm c l o s e d , a n d e v e r y a E E + c a l l be w r i t t e n u n i q u e l y i n t h e form a
Ah, b E K .
=
So
e v e r y aEE c a n b e w r i t t e n , u n i q u e l y , a ~b = a + , Kc = a
[la;].
= =
Xb -
I t follows w i t h b,cEK,
KC,
.
N o t e t h a t , w h i l e K i s d e t e r m i n e d by t h e norm l a t t e r i s , i n t u r n , d e t e r m i n e d by K . t h e n , from t h e a b o v e ,
11
/ a l I l = ~ ~ a ++i l11 a-11
=
1 a1 x +
=
a+
+
a-
[I . !I,
the
In e f f e c t , given aEE, =
Xb
Xc, h e n c e
+
a![
=
K.
Given a R i e s z s p a c e E , a c o n v e x s u b s e t K o f E + s u c h t h a t every a
0 has a unique r e p r e s e n t a t i o n a
a b a s e f o r E,. ~
Then, a s a b o v e , e v e r y a h a s t h e u n i q u e
representation a
Xb -
=
KC,
b,cCK, Xb
=
is e a s i l y v e r i f i e d t h a t t h e f u n c t i o n IIaII on E .
Xb, h E K , i s c a l l e d
=
a: =
= a
KC
X
+
K
, and i t i s an L-norm
Summing u p ,
( 1 9 . 1 ) Given a R i e s z s p a c e E , t h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e b a s e s o f E + a n d t h e L-norms on E .
11 - ! I ,
the correspondence base i s K
=
{aEE+I/Iall
e a c h b a s e K , t h e c o r r e s p o n d i n g L-norm i s a+
=
Xb, a
= KC,
[I a [ [ =
For e a c h L-norm
1 1 , and f o r
=
X
+ K,
where
b,cEK.
Because o f t h e
a b o v e , an L-norm i s a l s o c a l l e d a b a s e -
norm. Henceforth,
g i v e n an L-normed s p a c e E , i t w i l l b e c o n -
v e n i e n t t o d e n o t e t h e c o r r e s p o n d i n g b a s e by K ( E ) t h e b a s e o f E,.
and t o c a l l i t
We e m p h a s i z e t h a t t h i s n o t a t i o n a n d t e r m i n o l o g y
111
MIL-spaces a n d L - s p a c e s
w i l l a l w a y s mean t h a t w e h a v e a g i v e n f i x e d L-norm.
I t is
c l e a r t h a t f o r e v e r y R i e s z s u b s p a c e F o f E , t h e norm i n d u c e d on F i s a l s o on I,-norm a n d K ( F ) = K(E)
n
F.
Given a s u b s e t A o f a v e c t o r s p a c e , w e w i l l d e n o t e b y conv A t h e convex e n v e l o p e o f A.
(19.2)
E
=
Let E b e an L-normed s p a c e .
.J 3 G ,
For every decomposition
*J,G b a n d s , K(E)
Proof.
=
c o n v [ K ( J ) IJ K ( G ) ] .
Consider a E K ( E ) and w r i t e a
=
aJ
+
aG.
If neither
_ I
component i s 0 , we c a n w r i t e
Then a<,/[\aJII i s i n K J ,
IIall
1.
=
/' I
a G I a G 11 i s i n K G , a n d
Thus a € c o n v [ K ( J ) IJ K ( G ) ] .
!I aJII
+
11 aGll
=
I f e i t h e r component i s 0 ,
there i s nothing t o prove. QE D
When combined w i t h norm c o m p l e t n e s s , an L-norm d i s p l a y s a number o f r e m a r k a b l e p r o p e r t i e s .
Central t o these properties
i s t h e f o l l o w i n g g e n e r a l p r o p e r t y o f a n L-norm.
(19.3)
Theorem. I n a n L-normed s p a c e E , i f a n e t {aa 1 i s mono-
t o n i c a n d norm b o u n d e d , t h e n i t i s norm Cauchy.
Chapter 3
112
Proof.
For c o n c r e t e n e s s , l e t {a } be a n a s c e n d i n g n e t . c1
We c a n assume i t h a s a f i r s t e l e m e n t , w h i c h i n t u r n a l l o w s u s t o assume i t i s i n E,.
Set A
w e show t h e r e e x i s t s a.
such t h a t \ \ a a - a
Choose a.
such t h a t
a
=
11 3
,?
II a a
- a
-
E.
aO
ll a a 0 II 5 II aall 2
1, h e n c e
NOW c o n s i d e r
supallaclll.
a0
I
E
> 0;
c E for a l l a > cia. a 0 Then f o r a z a0, 1 - E <
5
II $1
-
II a a 0 II 5
E
*
QE D
I f a n L-normed s p a c e i s norm c o m p l e t e , we w i l l c a l l i t an
L - s p a c e ( t h e common name i s ( A L ) - s p a c e ) .
Thus an L - s p a c e i s a
Banach l a t t i c e whose norm i s a n L-norm.
(19.4) Theorem.
Proof.
An L - s p a c e i s D edeki nd c o m p l e t e .
By E x e r c i s e 2 5 i n C h a p t e r 1, i t i s enough t o show
t h a t i f { a } i s an a s c e n d i n g n e t i n E, w h i c h i s bounded a b o v e , a t h e n V a e x i s t s . { a } i s norm b o u n d e d , h e n c e , b y ( 1 9 . 3 ) , norm c1
ac1
Cauchy, h e n c e norm c o n v e r g e s t o some aEE.
Then a = V a ( 9 . 5 ) a a
and w e a r e t h r o u g h . QED
( 1 9 . 5 ) -~ Theorem.
I f E i s an L-space, t h e n f o r a monotonic n e t
i n E , o r d e r c o n v e r g e n c e a n d norm c o n v e r g e n c e a r e e q u i v a l e n t .
,
ME-spaces a n d L - s p a c e s
Proof. -~
113
We c a n c o n f i n e o u r s e l v e s t o an a s c e n d i n g n e t { a } U
And by (9.6), we n e e d o n l y show t h a t i f { a } i s o r d e r
i n E,.
U
c o n v e r g e n t , t h e n i t i s norm c o n v e r g e n t .
Assume a f a . N
It
t h a t { a } i s norm Cauchy, h e n c e norm c o n a v e r g e s t o some b E E . A f o r t i o r i , it order converges t o b , f o l l o w s from (19.3)
hence b
=
a.
QED
A seminorm
I/ - ; I
on a R i e s z s p a c e E i s o r d e r c o n t i n u o u s i f
f o r e v e r y n e t { a } i n E , a -f a i n p l i e s l i m [ l a - aclll = 0 . T t a a N i s e a s y t o s e e t h a t a R i e s z s e m i n o r m 11 .[I i s a r d e r c o n t i n u o u s i f a n d o n l y i f a 4 0 i m p l i e s l i m IIauII a. a
(19.6) Corollary.
I n (19.5) Let E
=
=
0.
I n an L - s p a c e E , t h e norm i s o r d e r c o n t i n u o u s
t h e m o n o t o n i c i t y c a n n o t be d i s p e n s e d w i t h .
1’ a n d f o r e a c h n , en
the nth position.
=
(O,... , O , l , O ; .
a
)
the 1 in
,
Then t h e s e q u e n c e { ( l / n ) e n } ( n
=
1,2;**)
norm c o n v e r g e s t o 0 b u t , n o t b e i n g e v e n o r d e r b o u n d e d , d o e s n o t order converge.
S i n c e , a s i s e a s i l y v e r i f i e d , k1 i s a n L - s p a c e ,
t h i s s u p p l i e s a c o u n t e r example. However, e v e r y Banach l a t t i c e h a s t h e w e a k e r p r o p e r t y ( 9 . 9 ) , hence ( 9 . 1 0 ) .
Combining t h i s w i t h ( 1 9 . 5 ) g i v e s u s t h a t a s u b -
s e t o f a n L - s p a c e i s o r d e r c l o s e d i f a n d o n l y i f i t i s norm closed.
More s h a r p l y ,
Chapter 3
114
( 1 9 . 7 ) -___ Theorem.
For a s u b s e t A o f an L - s p a c e , t h e f o l l o w i n g
sets coincide:
1'
t h e o r d e r c l o s u r e o f A;
2'
the a - o r d e r c l o s u r e of A;
3'
A(1).
4'
t h e s e t o b t a i n e d by a d j o i n i n g t o A t h e l i m i t s o f
o r d e r c o n v e r g e n t s e q u e n c e s o f A;
5'
t h e norm c l o s u r e o f A .
P r o o f . The f i r s t s e t c o n t a i n s t h e s e c o n d and t h e t h i r d . -~ The l a t t e r two e a c h c o n t a i n t h e f o u r t h , w h i c h i n t u r n c o n t a i n s t h e f i f t h by ( 9 . 9 ) .
Finally, the f i f t h s e t contains the f i r s t
by ( 1 9 . 6 ) . QED
One c o n s e q u e n c e w o r t h n o t i n g i s t h a t i n a n L - s p a c e , e v e r y norm c l o s e d R i e s z i d e a l i s a p r o j e c t i o n b a n d . A Riesz s p a c e E i s s a i d t o have t h e c o u n t a b l e sup p r o -
p e r t y (Fremlin) i f b = V A i n E i m p l i e s b
=
V,a,
f o r some
c o u n t a b l e s u b s e t l a n } o f A.
( 1 9 . 8 ) Theorem.
Proof.
An L - s p a c e E h a s t h e c o u n t a b l e s u p p r o p e r t y .
Suppose b = V A .
Let A1 b e t h e s e t o b t a i n e d by
a d j o i n i n g t o A t h e supreme o f a l l f i n i t e s u b s e t s o f A.
Then,
Ma-spaces and L-spaces
115
by E x e r c i s e 2 6 i n C h a p t e r 1 , b i s i n t h e norm c l o s u r e of A
1’ h e n c e i n t h e norm c l o s u r e o f some c o u n t a b l e s u b s e t { a n ) o f A
I t f o l l o w s from ( 9 . 5 ) t h a t b
= V
a . n n
1’
S i n c e each an i s t h e
supremum o f a f i n i t e s u b s e t o f A , w e o b t a i n a c o u n t a b l e s u b s e t
o f A h a v i n g b f o r supremum. QE D
(19.9) C o r o l l a r y 1.
I n an L - s p a c e E , e v e r y o r d e r bounded s e t A
of mutually d i s j o i n t elements i s c o u n t a b l e , A
cnII anll
<
=
{ a n } , and
co *
P r o o f . We c a n assume A c E,. ____ there exists b
T h e n , by ( 1 9 . 8 ) , b
= VA.
{ a n } c A ; w e show A
E i s Dedekind c o m p l e t e , s o
.
{a,}
=
t i n c t from a l l t h e a n ’ s .
n a n f o r some
S u p p o s e t h e r e e x i s t s aEA
Then aAan
(Exercise 5 i n Chapter 1).
= V
=
dis-
0 f o r a l l n , h e n c e a/\b = 0
But t h e n a = 0 ( s i n c e aEA, h e n c e
< b ) , and w e h a v e a c o n t r a d i c t i o n . a -
n S i n c e t h e a n ’ s a r e mutually d i s j o i n t , xlai n ~ ~ ~ l a =i i11 lz l a i l j
n
= IIvlai[j
5 IIaII f o r a l l n .
= V
n hence 1a i ’
Thus CyIIan[I < \ I a [ I <m QED
A s t r o n g e r p r o p e r t y t h a n t h e above f o r a R i e s z s p a c e i s
t h a t e v e r y s e t o f m u t u a l l y d i s j o i n t e l e m e n t s (bounded o r n o t )
be c o u n t a b l e .
This i s c l e a r l y equivalent t o the property t h a t
every s e t of mutually d i s j o i n t bands be countable.
A Riesz
s p a c e w i t h t h i s p r o p e r t y w i l l b e s a i d t o b e a t most c o u n t a b l y
Chapter 3
116
decomnosable.
(19.10) C o r o l l a r y 2 .
F o r a b a n d ,J o f an L - s p a c e E , t h e f o l l o w -
ing are equivalent: lo
.J i s a p r i n c i p a l b a n d ;
2'
J i s a t most c o u n t a b l y d e c o m p o s a b l c ;
3'
,J i s c o u n t a b l y g e n e r a t e d .
-___ P r o o f . Assume ,J i s t h e b a n d g e n e r a t e d b y some a E E , ,
and
l e t {J } be a c o l l e c t i o n o f m u t u a l l y d i s j o i n t ( n o n - z e r o ) bands a i n J . For e a c h " , a J # 0 ; hence, by (19.91, is c o u n t a b l e . a A fortiori,
{Ja} i s countable.
Now a s s u m e J i s a t m o s t c o u n t a b l y d c c o m p o s a b l e , and l e t { a } be a maximal c o l l e c t i o n o f m u t u a l l y d i s j o i n t e l e m e n t s o f J + . c1
Then J i s t h e b a n d g e n e r a t e d by { a a } . t h e band g e n e r a t e d b y a a .
i s countable.
'1
For e a c h a , l e t < J ab e
Then {J } i s c o u n t a b l e , whence { a c x } a
J i s thus countably generated.
T h a t 3'
implies
h o l d s f o r a g e n e r a l Banach l a t t i c e ( E x e r c i s e 2 3 i n C h a p t e r 1 ) . QED
§ 2 0 The e x t r e m e p o i n t s o f K ( E )
We w i l l d e n o t e b y e x t A t h e s e t o f e x t r e m e p o i n t s o f a s e t A i n a vector space.
In this 5,
w e c o l l e c t some p r o p e r t i e s
b l l - s p a c e s and L - s p a c e s
117
o f e x t K ( E ) , E a n L-normed s p a c e .
Let E be an L-normed s p a c e .
(20.1)
For e v e r y p r o j e c t i o n band
J of E ,
e x t K(E)
Proof. ___ aEK(E)
IIaII
=
n
=
[ e x t K ( J ) ] IJ [ e x t K(J
C o n s i d e r a € e x t K(E).
d
I].
If a
= 0 , then a E J , hence J S i m i l a r l y , i f aJ = 0 ,
J = K ( J ) , hence a € e x t K(J).
T h i s c o n t r a d i c t s t h e a s s u m p t i o n t h a t a € e x t K(E).
1.
Thus t h e l e f t s i d e o f t h e d e s i r e d e q u a l i t y i s c o n t a i n e d i n t h e right side. For t h e o p p o s i t e i n c l u s i o n , c o n s i d e r a € e x t K ( J ) ; t o show a € e x t K ( E ) . +
K
=
1.
Suppose a
Then 0 < hb,
KC
=
Xb
+ KC,
b , c € K ( E ) , X,K
< a , s o Xb, K c E J ,
S i n c e a € exr. K ( J ) , i t f o l l o w s X
=
0 or
K
=
we h a v e
SO
2 0,
b,c€K(J).
0.
QED
F o r a n e l e m e n t a o f a v e c t o r s p a c e , IRa w i l l d e n o t e t h e
s e t {Aa(AE IR}.
Thus lRa i s t h e ( o n e d i m e n s i o n a l ) l i n e a r s u b -
space generated by a .
118
Chapter 3
L e t E b e a n L-normed s p a c e .
(20.2)
Then f o r a € K ( E ) , t h e
following a r e equivalent: 1'
aE e x t K(E);
2'
lRa i s a R i e s z i d e a l o f E .
Assume a € e x t K ( E ) , a n d s u p p o s e 0 < b < a ; we
Proof.
If b = 0 o r b
show b = Ilblla. 0 < b < a.
w i t h (b/II bII
Set c
1E
=
K(E),
=
a , we a r e t h r o u g h .
a - b, so 0 < c < a also.
(c/ll
cII
1 E K(E),
and
[I bII
+
Suppose
Now
11 cII
=
[I a [ ] =
1.
S i n c e a i s a n e x t r e m e p o i n t o f K ( E ) , we must h a v e a = b / l l b [ l , whence b
=
Ilbll a .
C o n v e r s e l y , assume IRa i s a R i e s z i d e a l , and s u p p o s e a
=
Xb +
KC,
with b,c€K(E), b,c > 0, X +
n e s s , l e t X > 0. f o r some p € IR.
K
= 1.
For c o n c r e t e -
Then 0 < Xb < a , s o , b y a s s u m p t i o n , Xb T h i s g i v e s b = (li/X)a, and s i n c e
[I bII
=
pa
= 1, i t
follows b = a. QEP
(20.3)
Corollary.
The e l e m e n t s of K ( E )
are mutually d i s j o i n t .
I n c o n t r a s t t o 918, w e p o s t p o n e t h e c o n s i d e r a t i o n o f mapp i n g s o f an L - s p a c e t o 5 2 4 .
MI-s p a c e s and L - s p a c e s
119
EXERCISES
1. A R i e s z i d e a l o f a R i e s z s p a c e i s maximal i f i t i s p r o p e r
and c o n t a i n e d i n n o o t h e r p r o p e r R i e s z i d e a l .
I n an M a -
normed R i e s z s p a c e , a maximal R i e s z i d e a l i s norm c l o s e d . I t need n o t be o r d e r c l o s e d .
2.
Let E be a Riesz s p a c e . (i)
I f b i s a component o f a , a n d c i s a component o f b , t h e n c i s a component o f a .
( i i ) I f b , c a r e c o m p o n e n t s o f a , and c < b , then c i s a component o f b .
3. Let E be a n MI-normed s p a c e , and e , d € z ( I )
(i)
eAd
=
0 i m p l i e s e + d E & (I).
( i i ) ( e - d)',
( e - d ) - , le - d l € 6 ( I ) .
( i i i ) I f e # d , t h e n IIe - d/l
=
1.
CHAPTER 4
DUAL L- SPACES AND M I -SPACES
N o t a t i o n . As we w i l l s e e b e l o w , t h e d u a l o f an M I - s p a c e i s an L - s p a c e and t h e d u a l o f an L - s p a c e i s an M I - s p a c e . I n b o t h ~
c a s e s , t h e e l e m e n t o f t h e Mll-space w i l l a p p e a r i n t h e f i r s t p o s i t i o n i n t h e b i l i n e a r form (
a
,
.
)
giving the duality.
Since
o u r p r i m a r y s p a c e C(X) and i t s b i d u a l a r e b o t h M I - s p a c e s , t h i s i s i n accordance with t h e convention adopted a t the beginning o f 513.
5 2 1 . The d u a l o f an MI-normed s p a c e
Our f i r s t two p r o p o s i t i o n s h o l d f o r an M-normed s p a c e , and we s t a t e them s o .
( 2 1 . 1 ) Theorem.
I f E i s a n M-normed s p a c e , t h e n E j i s an
L-space.
Proof.
11 $11
+
[I $11.
Consider $ , $ C ( E ' ) + :
we h a v e t o show 114
I t i s enough t o show t h a t f o r e v e r y 120
E
+
> 0,
$11
=
Dual L-spaces a n d M a - s p a c e s
Since E '
121
i s an L - s p a c e , w e can d i s c u s s K ( E ' ) .
The f o l l o w -
ing i s a sharpening of (20.2).
(21.2)
Theorem.
L e t E b e a n M-normed s p a c e .
Then f o r $ € K ( E ' ) ,
the following are equivalent: io
4~ e x t K ( E ' ) ;
2'
IR$ i s a R i e s z i d e a l o f E ' ;
3'
$-l(O)
4'
$ i s a R i e s z homomorphism o f E i n t o R .
Proof. (20.2).
By
Conversely, 3'
i s a R i e s z i d e a l o f E ( h e n c e a maximal o n e ) ;
We e s t a b l i s h e d t h e e q u i v a l e n c e o f 1' a n d 2'
( R G ) ~= $ - ' ( O ) ,
2O,
h e n c e 2'
i m p l i e s '3
s i n c e IR$ i s o n e - d i m e n s i o n a l , IR$
i m p l i e s 2'
=
i m p l i e s .'4
We show 3'
By
the factorization E
3O,
(11.9).
((R$),)',
(10.15).
in
hence
'
t h e m a p p i n g E ->R h a s
L> E / + - ' ( O )
4 >lR.
.
q i s a R i e s z homomorphism; we show 4 i s a R i e s z i s o m o r p h i s m ,
w h i c h w i l l g i v e u s .'4 E/+-l(O)
i s p o s i t i v e (since $ i s ) , and, since
is one-dimensional, it is a b i j e c t i o n .
I t follows
Chapter 4
122
6 is
F i n a l l y , '4
a Kiesz i s o m o r p h i s m .
i m p l i e s '3
by ( 6 . 2 ) .
QED
We t u r n t o a n MI-normed s p a c e C . (18.1), E'
Note f i r s t t h a t f r o m
(we d o n ' t n e e d norm c o m p l e t e n e s s ) .
= Eb
( 2 1 . 3) I f E i s an M I - s p a c e , t h e n f o r e v c r y
(I,$). (Thus f o r
$ € ( E l ) + ,
$EK(E')
$ € ( E l ) + ,
i f and o n l y i f
11 $11 = (n,$) =
1.)
The p r o o f i s i m m e d i a t e .
( 2 1 . 4 ) C o r o l l a r y . For e v e r y
[I $11
=
(n,++)
+ € E l ,
+
(I,$-).
I t follows $ > 0 i f and o n l y i f
\I$\\
=
(n,$)
Remarks. 1. For an Ma-normed s p a c e , ( 2 1 . 1 ) i s o b v i o u s from the equality 2.
2'
I) $\I
=
( I , $ ) f o r $€(E')+.
F o r a n MI-normed s p a c e , we c a n s t r e n g t h e n ( 1 0 . 5 ) :
need only hold f o r a
=
a.
Let E be a n MI-normed s p a c e , a n d s u p p o s e T h i s s a y s t h e l i n e a r s u b s p a c e g e n e r a t e d by
6 (n)
6 (I) i s
is total. norm d e n s e
i n E , h e n c e e a c h + € E l i s c o m p l e t e l y d e t e r m i n e d by i t s v a l u e s on g(I).
We now show t h a t a l s o $'
4 onG(n1.
i s determined by t h e v a l u e s o f
Dual L - s p a c e s and M a - s p a c e s
Let E b c a n MI-normed s p a c e w i t h
(21.5) each
@,€El
5
given
E
Then f o r
a n d e t t (I),
We c a n assume
Proof. (d,$+)
(ll) t o t a l .
123
II$II
=
1.
For every d < e , (d,$) 5
F o r t h e o p p o s i t e i n e q u a l i t y , w e show t h a t
(e,$+).
there exists d < e such t h a t ( d , @ ) > (e,$+)
> 0,
< a < e and ( a , @ ) > (e,@+)Choose aEE s u c h t h a t O -
-
2 ~ .
E.
T h e r e e x i s t s a p a r t i t i o n { e l , - . . , e n } o f ll a n d a
Lemma.
n l i n e a r combination z l l i e i
m
(i)
xlei
(ii)
o
=
such t h a t
e f o r some m < n,
5 Iqhiei 5 a , n ( i i i ) IIa - xlXieill 5 E . I n e f f e c t : By ( 1 7 . 7 ) , t h e r e i s a p a r t i t i o n o f ll a n d l i n e a r c o m b i n a t i o n s a t i s f y i n g ( i i ) and ( i i i ) . The comqon r e f i n e m e n t o f t h i s p a r t i t i o n and t h e p a r t i t i o n { e , n - e } i s t h e n t h e d e s i r e d one.
Note t h e 0 < 1. < 1 (i 1 -
=
l,a.+,n).
Chapter 4
124
I t follows
m
( ( a , $ > - C I X i ( e i ' @ ) l<
€
9
whence
zyxi(ei,$)
(a,$>
-
E
2
( e , @ + )-
2E
*
S u p p o s e ( e i , @ ) > 0 f o r i = l , . * . , k , where 1 i k i m, and (ei,+) < 0 f o r t h e remaining i ' s , i f t h e r e a r e any.
a l w a y s p e r m u t e l , . . . , n s o a s t o have t h i s .
5 z kl ( e i , $ )
=
(ei,$) < 0 f o r i = 1, * .
We a r e a s s u m i n g
m
t h a t ( e i , $ ) > 0 f o r a t l e a s t one i . )
k c,xi(ei,@)
(We c a n
< Then c l x i ( e i , $ ) k k ( z l e i , @ ) , s o zlei is t h e d e s i r e d d.
- ,n,
m
then clxi( e i , $ )
<
0 = (O,$),
If
so 0
i s t h e d e s i r e d d.
QEn
We r e c a l l ( 5 1 5 ) t h a t f o r a n y normed s p a c e E , we c a l l
o(E',E)
t h e v a g u e t o p o l o g y on
E l .
I f E i s an MIL-normed s p a c e , t h e n K(E')
of
( E l ) +
with t h e hyperplane {$CE1l(IL,$)
=
is the intersection l}.
The f i r s t o f
t h e s e i s v a g u e l y c l o s e d by ( 1 0 . 3 ) , a n d o f c o u r s e t h e s e c o n d i s I t f o l l o w s K(E')
also.
i s vaguely closed.
tained in the unit b a l l B ( E ' ) ,
Since it i s con-
w h i c h i s v a g u e l y c o m p a c t , we
obtain
( 2 1 . 6 ) I f E i s an MIL-normed s p a c e , K(E')
In a d d i t i o n ,
i s v a g u e l y compact.
Dual L - s p a c e s a n d MIL-spaces
(21.7)
125
I f E i s an MIL-normed s p a c e , e x t K ( E ' ) i s v a g u e l y
compact.
Proof.
We show e x t K ( E ' ) i s v a g u e l y c l o s e d i n K ( E ' ) .
Suppose a n e t {$ } i n e x t K ( E ' ) c o n v e r g e s v a g u e l y t o $ E K ( E ' ) . c1
We show $ i s a R i e s z homomorphism ( 2 1 . 2 ) .
Given a , b E E , t h e n ,
u s i n g (21.2), (avb,$)
=
l i m (avb,$ )
=
limcl max((a,+&
a
c1
(b,$a))
= max(1im ( a , $ ) , l i m a ( b , $ c l ) ) c1
=
a
max ( ( a , $ ) ,( b , > )
( 2 1 . 8 ) C o r o l l a r y 1.
I f E i s a n MI-normed s p a c e , e v e r y aEE
a t t a i n s i t s norm on e x t K ( E ' ) .
Proof.
aEE",
s o b y ( 2 3 . 2 ) b e l o w a n d t h e v a g u e com-
p a c t n e s s o f K ( E ' ) , a a t t a i n s i t s norm on K ( E ' ) .
I t follows
e a s i l y f r o m t h e K r e i n - M i l m a n t h e o r e m t h a t a a t t a i n s i t s norm on e x t K(E').
QED
(21.9) Corollary 2. i s s e p a r a t i n g on E .
I f E i s a n MIL-normed s p a c e , t h e n e x t K ( E ' )
Chapter 4
126
101
522.
( E ' ,E), a d i v e r s i o n
We h a v e s e e n t h a t f o r a n M I - s p a c e E , t h e norm on E '
s a t i s f i e s the identity
[I $11
(1,I @ ( ) .
=
Given a g e n e r a l R i e s z
s p a c e E , t h e r e i s a n i m p o r t a n t p o l a r t o p o l o g y on Eb t h a t i s d e f i n e d b y a g e n e r a l i z a t i o n o f t h e above i d e n t i t y , and whose p r o p e r t i e s a r e c o n s e q u e n t l y s t r i k i n g l y similar t o t h o s e o f an L-norm.
We t u r n a s i d e i n t h e p r e s e n t 5 t o s t u d y t h i s t o p o l o g y .
We n e e d some p r e p a r a t i o n .
A t o p o l o g y on a R i e s z s p a c e i s
called l o c a l l y s o l i d i f it has a b a s i s f o r t h e neighborhoods of 0 consisting of s o l i d sets ( 5 9 ) . called a locally solid space.
The R i e s z s p a c e i s t h e n
Under a l o c a l l y s o l i d t o p o l o g y ,
t h e o p e r a t i o n s a v b , a/\b a r e u n i f o r m l y c o n t i n u o u s ; and i f t h e topology i s Hausdorff, t h e p r o p e r t i e s (9.3) "sequences:
r e p l a c e d by " n e t s "
d e l e t e d from ( 9 . 7 ) ,
-
( 9 . 8 ) , with
i n ( 9 . 4 ) and " a - o r d e r c l o s e d "
a l l hold (the proofs there did not use the
convexness of the u n i t b a l l ) .
The r e a d e r c a n a l s o r e f e r t o [ Z ]
f o r a complete development o f t h e p r o p e r t i e s o f l o c a l l y s o l i d spaces. A t o p o l o g y i s b o t h l o c a l l y s o l i d a n d l o c a l l y convex i f i t
has a b a s i s f o r t h e neighborhoods of 0 c o n s i s t i n g of convex s o l i d s e t s - e q u i v a l e n t l y , i f i t c a n be g i v e n b y a f a m i l y o f R i e s z s emin or m s .
Such i s t h e t o p o l o g y we now t u r n t o .
L e t E b e a Riesz s p a c e . on E b b y Il$lla
=
(la1
,[$I).
Each aEE d e f i n e s a seminorm
11
a l l a
The t o p o l o g y d e t e r m i n e d by t h i s
f a m i l y o f seminorms ( a r u n n i n g t h r o u g h E ) w i l l b e d e n o t e d b y
101
( Eb ,E)
( N akano) .
the unit b a l l of
11 .!Ia
I t i s n o t h a r d t o s e e t h a t f o r e a c h aEE, i s p r e c i s e l y t h e p o l a r s e t [ - la1 , / a 1 1 .
Dual L - s p a c e s a n d M I - s p a c e s b ( E ,E) i s s i m p l y t h e p o l a r t o p o l o g y on E b d e f i n e d by
101
Thus
127
t h e i n t e r v a l s o f E.
for
More g e n e r a l l y ,
A c E , the family
.\I
,laE41
defines
a ( n o t n e c e s s a r i l y H a u s d o r f f ) t o p o l o g y , w h i c h we d e n o t e by
101
(Eb,A).
I f R i s t h e s o l i d h u l l of A, then c l e a r l y
I ~ I ( E ~ , =E )I O ~ ( bC , E + ) .
~ a l j ~ ~= ,I ~~ I)( E ~ , A ) I.n p a r t i c u l a r ,
Thus, i n s t u d y i n g t h e s e t o p o l o g i e s , w e can c o n f i n e o u r s e l v e s t o semi-norms o f t h e form To o u r k n o w l e d g e ,
II$\Ia,
101
a > 0.
(Eb,E) was f i r s t d e f i n e d by Dieudonng
I t s importance l i e s i n the f a c t t h a t i t i s t h e c o a r s e s t
[12].
which i s l o c a l l y
p o l a r t o p o l o g y on Eb ( f i n e r t h a n o ( E b , E ) ) We a l s o h a v e
solid.
(22.1)
Theorem.
b
101
complete under
Given a R i e s z s p a c e E , Eb i s
(Dieudonng). (E , E ) .
-~ Proof. C o n s i d e r a Cauchy n e t
in
lOj(E
b
,E).
Then
i s a f o r t i o r i v a g u e l y Cauchy, h e n c e c o n v e r g e s i n E* t o some $ E E * .
We show f i r s t t h a t $ E E
t h a t f o r e a c h aEE,, that (a,
-
I)
0,
b.
I t i s e n o u g h t o show
0 i s b o u n d e d on [ - a , a ] . <
1 for a l l
c1
2
Then f o r b E [ - a , a ] a n d
u0.
0
a'a
0'
I(bAa) -
( W a) I
=
I(bAa
-
U
< (
IbI,I$a -
<
(a,14c1 -
<
1,
0
Choose a0 s u c h
>I 0, I ) 0
I) 0
128
Chapter 4
+ 1
D e n o t i n g t h i s l a s t q u a n t i t y by K , we have t h a t f o r e v e r y b E [ - a , a l , I ( b , $ > l = l i m a l ( b , + a ) l (K. We c o m p l e t e t h e p r o o f b y showing t h a t l i m f o r a l l aEE+.
C o n s i d e r aEE+ and
> 0.
E
]I$
c i a
Choose . a
-
$11
a = 0
such t h a t
> a0. for a l l a -
I t i s enough t o show t h a t f o r /(b,+a exists a
+)I 5 3
a.
~1
> a0 and bE [ - a , a ] , -
I $ a 1 c o n v e r g e s v a g u e l y t o +, t h e r e
2 ~ . Since
such t h a t I ( b , $
a1
-
$)I 5
E.
Then f o r a n y
a > a0,
A l l o u r a b o v e d i s c u s s i o n up t o ( b u t n o t i n c l u d i n g )
h o l d s w i t h E and Eb i n t e r c h a n g e d .
11 - [ ] +
11 all+
( la1
Every + € E b
(22.1)
defines a semi-
,I + / ) ,
and we t h u s o b t a i n t h e b t o p o l o g y 1u1 (E,A) d e f i n e d by e a c h s u b s e t A o f E In p a r t i c u l a r , b b we h a v e 1 0 1 (E,E ) . I f E i s s e p a r a t i n g on E , t h i s l a s t i s
norm
on E by
=
.
s i m p l y t h e t o p o l o g y i n d u c e d on E b y
1 0 I (Ebb,Eb).
129
Dual L - s p a c e s a n d M l l - s p a c e s
The f o l l o w i n g i s e a s i l y v e r i f i e d .
( 2 2 . 2 ) Given a s u b s e t A o f E , l e t I b e t h e R i e s z i d e a l g e n e r a t a l by A .
Then ~ O I ( E ~ , =A )/ ~ I ( E ~ , I ) .
I n t h e o p p o s i t e d i r e c t i o n , w e c a n s a y more:
( 2 2 . 3 ) Theorem.
Given a s u b s e t A o f E
i d e a l g e n e r a t e d by A. (i)
(n((E,A)
=
b
,
l e t J be t h e Riesz
Then
(a((E,J);
( i i ) t h e s e t o f l i n e a r f u n c t i o n a l s on E w h i c h a r e
101
(E,A)
continuous i s p r e c i s e l y J .
P roof.
The p r o o f o f ( i ) i s e a s y ; w e show ( i i ) .
By ( i ) ,
w e c a n a s s u m e A = J, s o ( i i ) r e d u c e s t o (E,
101
That e v e r y element o f J i s
(E,J))'
101
(E,J)
= J.
continuous is c l e a r .
For
t h e c o n v e r s e , c o n s i d e r a l i n e a r f u n c t i o n a l I$ on E w h i c h i s IoI(E,J) continuous.
T h i s means t h e r e e x i s t s $ E J +
i s b o u n d e d on ( t h e n e i g h b o r h o o d o f 0 )
[-$,,$,lo.
s u c h t h a t I$
For s i m p l i c i t y ,
l(b,I$)l
assume s u p bE
But
[-$,$I0
[-$,$I i s c l o s e d i n E* ( 1 0 . 1 4 ) , hence and w e a r e t h r o u g h .
([-$,$I
0 0
)
in-^*= [-$ A QED
I,
Chapter 3
130
Remark. -__
I f E and E b a r e e x c h a n g e d i n ( 2 2 . 3 )
(and we t a k e
A i n ) , t h e n ( i i ) h o l d s i f J i s r e p l a c e d by t h e R i e s z i d e a l bb g e n e r a t e d by A i n E
.
The s i m i l a r i t y b e t w e e n
101
(Eb,E) and t h e L-norm t o p o l o g y on
t h e d u a l o f an MIL-normed s p a c e i s d i s p l a y e d i n t h e n e x t few r e s u l t s . Note f i r s t t h a t f o r e v e r y a € E , b E has t h e property:
114 +
$lia
=
f o r t h e seminorm
/14/la
II.II 4
t h e seminorm
II$IIa
on
And s i m i l a r l y
f o r a l l 4,$E(Eb ) + . b on E d e f i n e d b y 4 E E . +
11 * [ I a
Given a s u b s e t A o f a R i e s z s p a c e E , i f a m o n o t o n i c n e t
(22.4)
i n Eb i s
101
(Eb , E ) b o u n d e d , t h e n i t i s
101
(Eb , A )
Cauchy.
And
s i m i l a r l y f o r a s u b s e t A o f Eb and a m o n o t o n i c n e t i n E .
A l l t h a t n e e d s t o b e shown i s t h a t t h e n e t i s
f o r e a c h aEA, (19.3)
(22.5)
11 . \ l a - C a u c h y
The p r o o f o f t h i s i s i d e n t i c a l w i t h t h a t o f
.
For a m o n o t o n i c n e t i n E
b
,
l o l ( E b , E ) c o n v e r g e n c e and
o r d e r convergence a r e e q u i v a l e n t .
P roof.
That t o p o l o g i c a l convergence of a monotonic n e t
i m p l i e s i t s o r d e r c o n v e r g e n c e h o l d s f o r any l o c a l l y s o l i d
Dual L - s p a c e s a n d MIL-spaces
131
Hausdorff s p a c e : t h e p r o o f s o f (9.6) and (9.5) c a r r y o v e r t o The p r o o f o f t h e c o n v e r s e i m p l i c a t i o n i s i d e n t i -
such a space.
cal with that of (19.5).
QED
(22.6)
C o r o l l a r y 1.
I n Eb o r d e r convergence i m p l i e s
(01
(Eb,E)
convergences.
The p r o o f i s t h e same a s t h a t o f ( 1 9 . 6 ) . Combining ( 2 2 . 5 ) w i t h ( 9 . 4 )
(or rather, its adaptation to
a l o c a l l y s o l i d s p a c e ) , we h a v e
(22. 7) Corollary 2.
I n Eb t h e o r d e r c l o s u r e and
(01
(Eb,E)
c l o s u r e of a Riesz i d e a l c o i n c i d e .
We s h a r p e n ( 2 2 . 3 ) :
( 2 2 . 8 ) Theorem.
G i v e n a s u b s e t A of E b ,
the set of linear
f u n c t i o n a l s on E w h i c h a r e \ u I ( E , A ) c o n t i n u o u s o n e v e r y i n t e r v a l
o f E i s p r e c i s e l y t h e b a n d g e n e r a t e d by A .
Proof. ___
A g a i n w e c a n assume A i s a R i e s z i d e a l J o f E
b
.
Thus we h a v e t o show t h a t t h e s e t o f l i n e a r f u n c t i o n a l s on E
Chapter 4
132
w h i c h a r e \ u \ ( E , J ) c o n t i n u o u s on e v e r y i n t e r v a l of E i s t h e b order closure of J - which, by ( 2 2 . 7 ) , i s t h e 1 0 1 (E , E ) I f J i s s e p a r a t i n g on E t h e n t h e G r o t h e n d i e c k
c l o s u r e of J .
c o m p l e t e n e s s theorem g i v e s t h e d e s i r e d r e s u l t ( c f . [ 4 5 ] , Chap.6, Theorem 2 ) .
I f J i s n o t s e p a r a t i n g on E , t h e n , b y a s t r a i g h t -
f o r w a r d a r g u m e n t , we c a n r e d u c e t h e t h e o r e m t o o n e on E/.J
L
and
again apply t h e Grothendieck theorem.
5 2 3 . The d u a l o f an L - s p a c e
We r e t u r n t o o u r main s t r e a m o f d e v e l o p m e n t .
(23.1)
I f E i s an L-normed s p a c e , t h e n E ' i s a
Theorem. -~
(Dedekind c o m p l e t e ) M I - s p a c e w i t h i t s u n i t I g i v e n by (n,a)
-__ Proof.
=
( [ a + ( [- Ila-\l
Consider
$ , $ € ( E l ) + ;
for a l l aEE.
we show
For c o n c r e t e n e s s , l e t t h e r i g h t s i d e b e
11 $ V t j [ l 5 II$II,
show
11$11
(I$([.
=
max((l$(l, [ I $ \ \ ) .
We n e e d o n l y
and f o r t h i s , i t i s enough t o show ( $ v t j , a ) <
f o r a l l aEK(E). F i x aEK(E).
II$I[
\I$V$[[
By (10.4), we have t o show ( $ , b )
for a l l b,c > 0 such t h a t b + c = a .
pair.
Then
+
($,c)
Let b , c be s u c h a
5
Dual L - s p a c e s a n d Mll-spaces
(4,b)
+
(UJ,C>
=
I [ bII
(4,
(IbII ll 4 < II !I !I @\I <
'3
=
= =
=
+
i s an M-space.
Thus E ' by n ( a )
(I1 blI II aII \I $11 [I $ II -
b p:r )
+
I] cII
133
(+,m ) C
II CII II $Ii + II C I I [I $11 II C I I ) II 441 +
Now d e f i n e t h e f u n c t i o n ll on E +
( l a ; ] . ll i s a d d i t i v e on E + b y t h e d e f i n i n g p r o p e r t y o f
t h e L-norm, a n d i s o f c o u r s e p o s i t i v e l y homogeneous.
Its
e x t e n s i o n t o a l l o f E i n t h e u s u a l manner i s t h e r e f o r e a n So w e c a n now w r i t e ( l L , a ) i n s t e a d o f n ( a ) f o r
element o f
E l .
a l l aEE.
Finally, given
aEE+, ( $ , a )
(11$(1
(la// 5
@ € [ E l ) + ,
I[ a / [ =
if
I]$ll -<
( & a ) ; hence
I#J
1, t h e n f o r e v e r y < 1.
Thus Il
is
the unit f o r E l . QE D
A g a i n , t h e r e m a r k a b l e p r o p e r t i e s o f a n L-norm a p p e a r when combined w i t h norm c o m p l e t e n e s s :
(23.2)
For a l i n e a r f u n c t i o n a l
$ o n an L-space E , t h e f o l l o w i n g
are equivalent:
'1
$ € E l ;
2O
@ab;
3'
$E.EC;
4'
+
i s norm c o n t i n u o u s on K ( E ) ;
5'
I$
i s bounded on K [ E ) .
Chapter 4
134
We a l r e a d y h a v e t h e e q u i v a l e n c e o f 1'
Proof.
I _
a n y Banach l a t t i c e ( 1 5 . 4 ) .
T h a t 1'
implies 3
0
t h e o r d e r c o n t i n u i t y o f t h e norm i n E ( 1 9 . 6 ) , from ( 6 . 0 ) .
i m p l i e s Z0,
0
1
and 2'
for
f o l l o w s from and t h a t 3'
o f c o u r s e i m p l i e s 4'
a n d 5'.
Since
the unit b a l l B(E)
o f E i s c o n t a i n e d i n t h e convex h u l l o f
K ( E ) IJ ( - K ( E ) ) ,
implies lo.
0
implies 1
5'
T t r e m a i n s t o show t h a t 4'
.
S u p p o s e $ @ E'.
Lemma.
F o r e a c h a E K ( E ) , nElN, a n d
__.
E
> 0, there exists
bEK(E) s u c h t h a t jlb - a ( / < Z E and l ( $ , b ) l > n.
We c a n assume
E
r: 1. -
4 i s discontinuous a t 0 (in the
n o r m ) , s o t h e r e e x i s t s c E E + s u c h t h a t IIcII Zn.
Set d = a + c.
5
I(@,c)l
E,
+
I(@,c)l
- ]($,a)/> Zn, a n d i t f o l l o w s by s t r a i g h t f o r w a r d com=
E,
l(@,d)l
2
I($,a)l
putation that b
Then [ I d - a [ [ <
F
d/[[dl[ has t h e d e s i r e d p r o p e r t i e s .
I t f o l l o w s from t h e Lemma t h a t t h e r e e x i s t s a norm Cauchy s e q u e n c e {a,} Since K(E)
i n K(E) s u c h t h a t
i s norm c l o s e d , i t i s norm c o m p l e t e , h e n c e t h e
s e q u e n c e c o n v e r g e s t o some aEK(E). a on K ( E ) ,
> n (n = 1 , 2 , . * . ) .
-
Then 4 i s n o t c o n t i n u o u s a t
and we a r e t h r o u g h . (2ED
We e m p h a s i z e one o f t h e r e s u l t s c o n t a i n e d i n t h e a b o v e prob p o s i t i o n : F o r a n L - s p a c e E , E ' = E C = E . As i n d i c a t e d i n t h e p r o o f , t h i s i s a p r o p e r t y o f a l l Banach l a t t i c e s w i t h o r d e r
Dual L - s p a c e s a n d M I - s p a c e s
135
con t i n uo 11s no rm .
( 2 3 . 2 ) I f E i s an L - s p a c e , t h e n f o r $ € E l ,
P-r o o f .
We show t h a t f o r e a c h a E B ( E ) , t h e u n i t b a l l o f E ,
t h e r e e x i s t s bEK(E) such t h a t w r i t t e n i n t h e form a h +
=
K
jlajl
=
Xb -
l($,b)l
> [($,a)[.
a can be
where b , c E K ( E ) , X , K > 0 , and
KC,
(cf. the discussion a t the beginning of 519).
Assume, f o r c o n c r e t e n e s s , t h a t l($,a)l
l($,b)l
=
IV@,b)
<
hl($,b)l
=
(h
=
[I aII I(
<
I(
+
Then
+
+
KI($,C)I KI(+,b)l
K) I ( $ , b ) [
$,b)
$,b)
I($,c)(.
K($,C)I
-
< hlt$,b)l
2
I
I. QED
We d e n o t e b y A(K(E)) t h e s e t o f a l l bounded a f f i n e f u n c t i o n s on K ( E ) .
A(K(E)) i s c l e a r l y a v e c t o r s p a c e u n d e r p o i n t -
w i s e a d d i t i o n and s c a l a r m u l t i p l i c a t i o n .
We a l s o endow i t
w i t h t h e p o i n t w i s e g r d e r a n d t h e supremum norm.
(23.4)
4
Let E b e a n L-normed s p a c e .
t->$ I K ( E )
Then t h e r e s t r i c t i o n map
i s a l i n e a r b i j e c t i o n of E '
o n t o A(K(E)) w h i c h
Chapter 4
136
i s norm p r e s e r v i n g a n d maps
( E l ) +
onto (A(ti(E)))+.
I t follows
A(K(E)) i s an MIL-space a n d t h e mapping i s a R i e s z i s o m o r p h i s m .
Proof.
'The mapping i s c l e a r l y l i n e a r , p o s i t i v e , and
(by ( 2 3 . 3 ) ) n o r m - p r e s e r v i n g .
From t h i s l a s t , i t i s o n e - o n e .
E v e r y p o s i t i v e a f f i n e f u n c t i o n f on K(E) h a s an o b v i o u s ( u n i q u e ) e x t e n s i o n t o an a d d i t i v e , p o s i t i v e l y homogeneous f u n c t i o n on E + , h e n c e t o a p o s i t i v e l i n e a r f u n c t i o n a l 4 on E ; a n d i f f i s bounded on K ( E ) , t h e n 4 i s bounded o n B ( E ) ,
so l i e s in
E l .
QED
We n e x t e s t a b l i s h t h e Nakano t h e o r e m ( 1 3 . 2 ) f o r t h e s p e c i a l case o f an L - s p a c e .
For s u c h a s p a c e , i t h o l d s i n
s h a r p e r form:
( 2 3 . 5 ) -~ Theorem.
For e v e r y L - s p a c e E , E
=
P r o o f . S i n c e E i s D e d e k i n d c o m p l e t e and E ' g i v e s u s t h a t E i s a Riesz i d e a l o f (El)' e q u a l t o (El)'.
(19.7)
=
E C , (13.3)
with order closure
a n d t h e norm c o m p l e t e n e s s o f E t h e n
g i v e u s t h a t E = (El)'. QED
Dual L - s p a c e s a n d MI1 - s p a c e s
137
A t r i v i a l a s p e c t o f t h e above t h e o r e m , b u t w o r t h r e c o r d i n g i s t h a t an L - s p a c e i s a band o f i t s b i d u a l . L - s p a c e , we a l s o h a v e E '
= EC ( 2 3 . 2 ) ,
S i n c e f o r an
w e a l s o have ( c f . t h e
d e f i n i t i o n following (13.2).
( 2 3 . 6 ) An L - s p a c e i s p e r f e c t
A s w e know, f o r a n y R i e s z s p a c e E ,
( i ) Eb i s Dedekind
bc . b c o m p l e t e , and ( i i ) E i s s e p a r a t i n g on E . F o r a n MIL-space F , b t h e s e two p r o p e r t i e s c h a r a c t e r i z e F a s a n E . S p e c i f i c a l l y ,
( 2 3 . 7 ) Theorem.
(Dixmier).
F o r an MIL-space F , t h e f o l l o w i n g
are equivalent:
'1
F i s t h e d u a l o f a Banach l a t t i c e ;
2'
F
3'
(i)
=
(F')'; F i s Dedekind c o m p l e t e , and
i s s e p a r a t i n g on F.
( i i ) F'
P roof. -
Assume 3'
i d e a l o f Fcc = ( F c ) ' .
holds. ((F')'
By ( 1 3 . 3 ) , F i s t h a n a R i e s z makes s e n s e , s i n c e , a s a b a n d o f
t h e Banach l a t t i c e F ' , FC i s i t s e l f a Banach l a t t i c e ) . f r o m ( 2 1 . 3 ) a n d ( 2 3 . 1 ) , IL(F) = IL(Fcc). a n d we h a v e 2', 1'
2'
i m p l i e s 1'.
But
I t f o l l o w s F = (F')',
F i n a l l y , a s we remarked above,
i m p l i e s 3'.
QED
Chapter 4
138
A c t u a l l y , G r o t h e n d i e c k h a s shown [19] t h a t 1'
above c a n
be r e p l a c e d by a c o n s i d e r a b l y w e a k e r s t a t e m e n t :
(23.8) (Grothendieck).
I n 1'
a b o v e , i t s u f f i c e s t o assume o n l y
t h a t t h e p r e d u a l o f F i s a Banach s p a c e .
I t then follows t h a t
t h i s p r e d u a l i s FC ( h e n c e a n L - s p a c e ) .
Remark. -
is essential.
I n ( 2 3 . 7 ) , t h e a s s u m p t i o n t h a t F i s an MIL-space The s p a c e c o o f s e q u e n c e s c o n v e r g i n g t o 0
s a t i s f i e s condition 3 bounded s e q u e n c e s .
0
,
but ((c0)')'
=
La, t h e s p a c e o f a l l
Note t h a t co i s even an M-space.
5 2 4 . Mappings o f L - s p a c e s
We h a v e s e e n ( 1 8 . 1 ) t h a t a l i n e a r mapping o f o n e MIL-normed s p a c e i n t o a n o t h e r i s norm c o n t i n u o u s i f a n d o n l y i f i t i s o r d e r bounded.
L - s p a c e s ( b u t n o t L-normed s p a c e s ) h a v e a much
stronger property (24.1). Henceforth, w e adopt t h e convention t h a t i f E , F a r e MIL-normed s p a c e s , a l i n e a r mapping o f E i n t o F w i l l a l w a y s b e r e p r e s e n t e d w i t h E on t h e
l e f t a n d F on t h e r i g h t : E-> T
F,
w h i l e i f E , F a r e L-normed s p a c e s , t h e mapping w i l l b e r e p r e m
s e n t e d w i t h F on t h e
l e f t and E on t h e r i g h t : F <- '
E
Dual L - s p a c e s a n d Mll-spaces
( 2 4 . 1 ) ____ 'Theorem.
139
E of one L-space
F o r a l i n e a r mapping F<---
i n t o another, the following are equivalent: 1'
T i s norm c o n t i n u o u s ;
2'
T i s o r d e r bounded;
3'
T i s order continuous.
P roof. -
Assume T i s norm c o n t i n u o u s .
Then t h e t r a n s p o s e
F ' __ Tt > E l i s a l s o norm c o n t i n u o u s , h e n c e o r d e r b o u n d e d ( 1 8 . 1 ) .
I t f o l l o w s by ( 1 4 . 4 ) t h e b i t r a n s p o s e F1<- T t t continuous.
Now E , F a r e b a n d s o f E " , F "
i s easy t o v e r i f y , TttlE TttlE
= T,
s o we h a v e .'3
El' i s o r d e r
respectively, hence, as
i s a l s o order continuous.
3'
i m p l i e s 2'
But
b y ( 6 . 0 ) , a n d 2'
i m p l i e s 1' by ( 9 . 1 1 ) . QED
F o r L - s p a c e s , o u r i n t e r e s t now l i e s i n i n t e r v a l p r e s e r v i n g maps.
( 2 4 . 2 ) Let F <- T
E b e a n i n t e r v a l p r e s e r v i n g l i n e a r map o f o n e
L-space i n t o a n o t h e r .
Then f o r e v e r y R i e s z i d e a l J c o n t a i n e d
i n TIE):
(i)
( T - I [ J ) ) + i s t h e p o s i t i v e cone o f a R i e s z i d e a l M
(ii)
T(M) = J ;
of E;
( i i i ) i f J i s a band, then so i s M.
140
Chapter 4
Note t h a t M i s o f n e c e s s i t y t h e l a r g e s t R i e s z i d e a l con t a i n e d i n T-'(J). Proof of (24.2).
For ( i ) , i t i s enough t o rem ark t h a t
since T is positive, ~ E ( T - ' ( J ) ) + implies [0,a1 c T-1 (J). ( i i ) f o l l o w s from ( i ) and t h e i d e n t i t y T(E)+
(T(E))+ (14.7).
=
( i i i ) f o l l o w s from t h e o r d e r c o n t i n u i t y of T ( 2 4 . 1 ) .
Finally,
QED
(24.3) C o r o l l a r y . Under t h e above h y p o t h e s i s , f o r e v e r y d e composition T(E)
J1 0 J2
=
o f T(E) i n t o b a n d s , t h e r e i s a u n i q u e l y d e t e r m i n e d d e c o m p o s i t i o n
E = G0 of E i n t o bands such t h a t T(GO)
Proof.
0 , T(G1)
=
L e t M1,M2
%,
Gla
G2
= J l , T(G2) = J 2 .
b e t h e b a n d s i n T -'(J1),
T-l(J2) given
by ( 2 4 . 2 ) .
MI
+
M 2 i s i t s e l f a b a n d ( E x e r c i s e 19 i n C h a p t e r l ) , s o w e
n e e d o n l y show t h a t (M1 e x i s t s aE(M1 (Ta)
+
0 < (Ta)J
Suppose n o t .
2 Ta and
Then t h e r e
Ta > 0 ( e l s e aEM1,M2), h e n c e
c a n n o t b o t h v a n i s h ; s a y (Ta) J2
1
M2)d = 0 .
M2)d, a > 0 .
a n d (Ta) J1
t
> 0.
Since
J1
T is interval preserving, there exists
141
Dual L - s p a c e s a n d M I - s p a c e s
. Rut t h e n b i b l l , c o n t r a d i c t i n g 1 This establishes ( i ) .
b E [ O , a ] s p c h t h a t 7%
aE(M1
+
M2)
d
.
Now s e t G o
=
M1
=
n
(Ta).,
M2, G1
=
M1
n
(Go)
d
,
G2 =
M2
n
(Go)
d
. QED
Go above i s , i n g c n e r a l , n o t a l l o f T
-1
largest Riesz ideal contained i n the latter.
(0).
I t is the
In f a c t , it i s
n o t h a r d t o see t h a t T - l ( O ) b e i n g a R i e s z i d e a l i s e q u i v a l e n t t o o u r T b e i n g a R i e s z homomorphism.
A l i n e a r mapping E __ > F o f o n e Mll-normed s p a c e i n t o
a n o t h e r i s c a l l e d a Markov mapping i f ( i ) T i s p o s i t i v e a n d ( i i ) Tll = ll.
N o t e t h a t e v e r y MIL-homomorphism i s a Markov
mapping. The f o l l o w i n g i s a n e a s y c o n s e q u e n c e o f ( 2 1 . 2 )
and ( 2 3 . 1 ) .
( 2 4 . 4 ) F o r a l i n e a r mapping C __ > F o f o n e Ma-normed s p a c e into another, the following are equivalent: 1'
T i s a Markov m a p p i n g ;
2'
T ~ ( K ( F ~c) )K ( E ~ ) .
And f o r a l i n e a r mapping F<-
E o f one L-space i n t o a n o t h e r ,
the following are equivalent: lo
T(K(E)) c K (F);
2i
T t i s a Markov m a p p i n g .
Combining t h e f i r s t p a r t w i t h ( 1 4 . 1 2 ) , we h a v e
Chapter 4
142
( 2 4 . 5 ) Theorem. _-
For a l i n e a r mapping E ->
T
I: o f o n e bill-
normed s p a c e i n t o a n o t h e r , t h e f o l l o w i n g a r c e q u i v a l e n t : 1'
T i s an M I
2'
T
t
homomorphism;
( i ) i s i n t e r v a l p r e s e r v i n g , and ( i i ) maps K(F')
i n t o K(E').
And c o m b i n i n g t h e s e c o n d p a r t w i t h ( 1 4 . 1 3 ) ,
( 2 4 . 6 ) 'Theorem. -
F o r a l i n e a r mapping
F:
<-
T
E o f one I,-spnce
into another, the following are equivalent: 1'
T ( i ) i s i n t e r v a l p r e s e r v i n g , and
( i i ) maps K(E) 2'
T t i s a n MI-homomorphism.
-__ Proof.
Suppose 2
i n t o K(F);
0
A c t u a l l y ( 1 4 . 1 3 ) o n l y g i v e s u s t h a t 1' holds.
Then b y ( 2 4 . 5 ) ,
interval preserving.
i m p l i e s 2'. Ttt t h e mapping F"<E" i s
S i n c e E , F a r e bands i n E",F"
it f o l l o w s t h a t T t t ( E i s a l s o i n t e r v a l p r e s e r v i n g .
l a s t i s T , s o w e have ( i ) i n lo.
T h a t 2'
respectively, But t h i s
i m p l i e s ( i i ) i n 1'
f o l l o w s from ( 2 4 . 4 ) .
QED
A s i s t o b e e x p e c t e d , a mapping w i t h t h e p r o p e r t i e s ( i i ) above h a s r a t h e r s a t i s f y i n g p r o p e r t i e s :
(i),
Dual L - s p a c e s a n d M I - s p a c e s
(24.7)
Let F <-
1
143
E be a l i n e a r mapping o f o n e L - s p a c e i n t o
a n o t h e r w h i c h i s i n t e r v a l p r e s e r v i n g a n d maps K(E) i n t o K ( F ) . Then (i)
T(ext K ( E ) ) c e x t K(F);
and f o r e v e r y b a n d J o f E , (ii)
T(,J) i s a band o f F ,
( i i i ) T(K(J)) = K(T(J)). I n p a r t i c u l a r , T(E) i s a b a n d o f F.
-__ Proof.
( i ) f o l l o w s from ( 2 0 . 2 )
c o n s i d e r a band J o f E .
and ( 1 4 . 7 ) .
To show ( i i ) ,
By ( 1 4 . J ) , T ( J ) i s a R i e s z i d e a l o f F ;
we h a v e t o show i t i s o r d e r c l o s e d . Then by ( 1 9 * 8 ) and ( 1 9 * 5 ) ,
=
Suppose b = V A , A c ( T ( J ) ) + .
Cnbn ( i n t h e
where
[ b n l c ( T ( < J ) ) + . F o r e a c h n , t h e r e e x i s t s anE.J+
such t h a t
Tan = bn ( ( 1 4 . 7 ) a g a i n ) , a n d , s i n c e T c l e a r l y p r e s e r v e s t h e norms o f p o s i t i v e e l e m e n t s ,
[I anll
=
\ I bnII .
I t f o l l o w s Znan i s
a norm Cauchy s e r i e s i n J , s o Can = a i n t h e norm f o r some a E J .
S i n c e T i s norm c o n t i n u o u s , Ta = b , a n d w e h a v e ( i i ) . f o l l o w s from T ( J + )
=
(iii)
( T ( J ) ) + (14.7) and t h e f a c t t h a t T p r e -
s e r v e s t h e norms o f p o s i t i v e e l e m e n t s . QE n
Remark. with (18.3).
The l a s t s t a t e m e n t i n ( 2 4 . 7 )
s h o u l d b e compared
CfIAPTER 5
D U A L I T Y RELATIONS BETWEEN AN L-SPACE AND ITS DUAL
As w e s t a t e d a t t h e b e g i n n i n g o f P a r t 11, i n o r d e r t o
s t u d y t h e p r o p e r t i e s o f C"(X)
as a b i d u a l , w e must f i r s t b e
c l e a r a b o u t what p r o p e r t i e s d e r i v e from t h e f a c t t h a t i t i s a dual.
525. T o p o l o g y on t h e d u a l o f a n L - s p a c e
L e t E be an L - s p a c e . which w i l l concern u s . lol(E',E),
T h e r e a r e f o u r t o p o l o g i e s on E '
These a r e t h e vague t o p o l o g y a ( E ' ,E)
,
t h e Mackey t o p o l o g y T ( E ' , E ) , a n d t h e norm t o p o l o g y ,
l i s t e d i n order of increasing fineness.
The o n l y p a r t o f t h i s
t h a t n e e d s showing i s t h a t -c(E',E) i s f i n e r t h a n Since E i s a Riesz ideal of
El'
El',
(E',E).
( 2 3 . 5 ) , t h i s f o l l o w s from ( 2 2 . 3 ) .
Our i n t e r e s t a t p r e s e n t l i e s i n l o l ( E ' , E ) . a c t u a l l y a band o f
101
Since E i s
t h e condition given i n (22.3) f o r a
l i n e a r f u n c t i o n a l Q, on E ' t o l i e i n E
- t h a t 0 be l o l ( E ' , E )
c o n t i n u o u s on E ' - c a n b e r e p l a c e d b y t h e w e a k e r c o n d i t i o n t h a t Q, b e of E '
(cf.
l a l ( E ' , E ) c o n t i n u o u s on t h e u n i t b a l l B ( E ' ) = [ - I l , n ] (22.8)).
I n d e e d , as t h e f o l l o w i n g theorem shows, i f
w e know t h a t Q E E " , t h e n i t s u f f i c e s f o r 0 t o b e 144
lal(E',E)
145
An I . - s p a c e a n d i t s D u a l
c o n t i n u o u s on t h e p r o p e r s u b s e t
6 (1) o f
B(E').
&(a).
We r e c a l l t h a t e a l w a y s d e n o t e s an e l e m e n t o f
Note
a l s o , from t h e Dedekind c o m p l e t e n e s s o f E ' and t h e f a c t t h a t
e(1) i s o r d e r c l o s e d i n E ' , t h a t a n e t { e a } i n & ( l l ) o r d e r c o n verges i n
E ( 1 ) i f and o n l y i f i t o r d e r converges i n E ' .
( 2 5 . 1 ) -___ Theorem. tional
@
on E ' ,
I f E i s an L - s p a c e , t h e n f o r a l i n e a r f u n c the following are equivalent:
loO E E ;
is order continuous;
2' 3'
0 is I ~ I ( E I , E c o) n t i n u o u s ;
4'
i s I ~ I ( E I , E )c o n t i n u o u s on B ( E ' ) ;
5'
@ E E " a n d @ i s o r d e r c o n t i n u o u s o n 6 (1);
6'
oEE" a n d
Q, i s
101
(E',E)
7'
0EE" and
@
is
101
( E ' , E ) c o n t i n u o u s a t 0 on C$
8'
4 E E " and e $ 0 i m p l i e s l i m ( e c1
Proof. equivalent.
c o n t i n u o u s o n 6 (I);
c1
6O,
0) = 0 .
a'
We a l r e a d y h a v e t h a t t h e f i r s t f o u r p r o p e r t i e s a r e By t h e r e m a r k p r e c e d i n g t h e p r o p o s i t i o n , 2'
i m p l i e s S o , w h i c h i n t u r n i m p l i e s 8'. implies
(I);
w h i c h i m p l i e s 7';
A l s o , o f c o u r s e , '4
and, by (22.6),
We c o m p l e t e t h e p r o o f b y s h o w i n g t h a t 8'
Assume cp s a t i s f i e s 8'.
7'
i m p l i e s 8'.
implies 2
0
I t f o l l o w s from (21.5)
. and t h e
same k i n d o f a r g u m e n t a s was u s e d i n t h e p r o o f o f ( 1 2 . 1 ) 101 a l s o s a t i s f i e s 8'.
that
o
> 0.
that
H e n c e , f o r s i m p l i c i t y , w e c a n assume
We c a n a l s o a s s u m e t h a t
I[ 011
=
1.
Chapter 5
146
a n d we c a n t a k e 0
Assume $ $ 0 i n E ' , 0.
w e h a v e t o show t h a t i n f a ( $ , , @ )
0.
=
5
5 n
for a l l a;
Suppose n o t .
Then t h e r e
e x i s t s X > 0 such t h a t
(i)
2X f o r a l l a .
($,,@)
For e a c h a , s e t em
~ ~ $ 0 A.p p l y i n g -
XI)'
8O,
I t ( $ c w . - X n ) + . By ( 1 7 . 9 1 , Xe, 5 $ , + O , we h a v e l i m , ( e a , @ )
< A l l + lL(,ixa)+ =
< 2X,
An
+
=
0.
Now $a
e a , h e n c e ($,,@)
=
hence
$,All
+
5 (An,@)+
= 0 , we c a n f i n d c1 s u c h t h a t
S i n c e lim,(e,,@)
(e,,@). ($,,@)
=
c o n t r a d i c t i n g ( i ) above. QED
Remark. -
On t h e o r i g i n a l s p a c e E ,
t h e g i v e n norm t o p o l o g y ,
so l o l ( E , E ' )
101
(E,E')
=
T(E,E')
o f f e r s n o t h i n g o f new
interest.
526. Dual bands
From ( 1 0 . 2 0 ) a n d E x e r c i s e 9 o f C h a p t e r 2 , we h a v e
( 2 6 . 1 ) L e t E b e an L-space (i)
If E
=
J1 @ J
E l
=
(J,P
(ii) If E'
=
2 (J1,J2 b a n d s ) , t h e n
3
(J1lL.
I1 3 I 2 (I 1 , I 2 bands), then
E = ( I 2 )L 3 ( I l l L .
=
An L - s p a c e a n d i t s Dual
147
O t h e r w i s e s t a t e d , e v e r y band J o f E d e t e r m i n e s u n i q u e d c c o m p o s i t i o n s o f b o t h E and
E
E l ;
.J 3 ,J
=
d
, E'
=
(JL)d 3 .JL;
and e v e r y band I o f E ' d e t e r m i n e s u n i q u e d e c o m p o s i t i o n s o f b o t h E ' and E : E '
=
Id, E
I
=
(I )d 3 I L
L
.
We w i l l c a l l (.JL) d
t h e band d u a l t o J o r t h e d u a l band o f J ; and w e w i l l c a l l (I )
d
t h e band d u a l t o I o r t h e d u a l band o f I .
1
-
T h e s e terms
a r e w e l l d e f i n e d o n l y i n t h e c o n t e s t o f a f i x e d L-space E and i t s dual E ' .
Each .J i s t h e d u a l b a n d o f i t s d u a l b a n d , a n d s i m i l a r l y f o r each I .
Thus w e c a n t a l k a b o u t a p a i r o f d u a l b a n d s ( I , , J ) ,
meaning t h a t I
=
( J L ) da n d ,J
=
(T. ) d . ( N o t e t h a t (,JL) d
=
( I , . J ) i s a p a i r o f d u a l b a n d s , t h e n c l e a r l y .J i s an b L - s p a c e and I i s i t s d u a l . Thus I = , J t = J c = J a n d J = I c If
(under t h e b i l i n e a r form following (cf.
(26.2)
(9.7),
(
a
, . ) on E ' x E ) .
We a l s o r e c o r d t h e
(12.7)).
I f E i s an L - s p a c e ,
c l o s e d and e v e r y band o f E '
t h e n e v e r y band o f E i s weakly
i s vaguely closed.
5 2 7 . B a s i c b a n d s i n t h e d u a l o f an L - s p a c e
Let E b e an L - s p a c e .
"small",
The p r i n c i p a l b a n d s o f E , b e i n g
can b e t h o u g h t of as t h e b u i l d i n g b l o c k s of E .
h a v e c h a r a c t e r i z e d them i n ( 1 9 . 1 0 ) .
In E ' ,
We
however, e v e r y
148
Chapter 5
band i s p r i n c i p a l - i s i n f a c t a p r i n c i p a l R i e s z i d e a l . b a n d s , t h e n , c a n be t h o u g h t o f a s " s m a l l " ? t h e bands d u a l t o p r i n c i p a l bands o f E . band a b a s i c band o f
What
The a n s w e r i s :
We w i l l c a l l s u c h a
E l .
We a d o p t a s p e c i a l n o t a t i o n f o r a b a s i c band o f
Given
E l .
a E E , l e t ,J h e t h e band o f E g e n e r a t e d by a , a n d I t h e band of E ' dual t o ,J.
Under t h e c o n v e n t i o n a d o p t e d a t t h e e n d o f 58,
f o r a n y bEE o r A c E , bJ i s d e n o t e d by h a , a n d an a b u s e o f l a n g u a g e , f o r a n y
or A C
$ € E l
n o t e d by $a a l s o , and A I b y A a .
E l ,
A<, by A a .
By
$ I w i l l be d e -
Even t h o u g h a l i e s i n E , n o t
El, t h i s d o e s n o t l e a d t o c o n f u s i o n .
The r e a s o n f o r t h i s
n o t a t i o n i s t h a t l a t e r a w i l l be a m e a s u r e p , a n d t h e n J a w i l l be L
1
(u)
a n d 1, w i l l h e t h e d u a l s p a c e L m ( p ) .
b o t h b a n d s J,I a r e d e t e r m i n e d by a . n o t a t i o n , n o t o n l y do we h a v e J
=
Ea,
In any c a s e ,
Note t h a t u n d e r o u r but also I
=
We d e v e l o p t h e p r o p e r t i e s o f b a s i c b a n d s . C o n s i d e r aEE a n d t h e p a i r o f d u a l b a n d s t e r m i n e d by a .
(522).
(\I-
11
a l l a
((Ea)L)d, the restriction of
an L-norm.
I(
Now a a l s o d e f i n e s t h e seminorm
Since the n u l l space of =
de-
a
i s c l e a r l y (E,)'
[I . ] l a
E l )
and
is a n
to
Thus ( E l ) a i s endowed w i t h an MIL-norm
t h e c a n o n i c a l MI-norm o f
on E '
a n d a n L-norm
s -
11
11 - \ I a
N o w , a s w e know, t h e band E a i s a n L - s p a c e and b e i n g i t s d u a l b a n d , i s t h e n i t s d u a l s p a c e ( w i t h laf o r t h e unit).
Consequently, i n t h e remainder of t h i s 5 , we w i l l t h i n k
o f them t h i s way, and w r i t e (( simply
a ( (
s i m p l y ((
-11
and ((
.\Ia
11 -!Ia.
The t o p o l o g y on
d e f i n e d by t h e L-norm
11 - [ I a
is, in
149
An L - s p a c e a n d i t s Dual
g e n e r a l , s t r i c t l y c o a r s e r t h a n t h a t d e f i n e d by t h e Ma-norm
!I.:/. Il+lla
I n e f f e c t , w e c a n assume IIaII =
.;I,
under
]I
( l ~ $ l , l a l )2
[/+{I
IIaII
=
;]+:I.
Since ( E ' ) a i s complete
i t f o l l o w s t h a t i n g e n e r a l , i t i s n o t complete under
s o i s n o t an L - s p a c e .
a i l a ,
1 ; then f o r every
=
N e v e r t h e l e s s , we show t h a t i t
p o s s e s s e s many o f t h e i m p o r t a n t p r o p e r t i e s o f a n L - s p a c e .
i s o f c o u r s e Dedekind c o m p l e t e ( E x e r c i s e 1 8 i n Chapter 1 ) .
And s i n c e a i s o r d e r c o n t i n u o u s on
i s an o r d e r c o n t i n u o u s norm.
Moreover, p a r t i a l l y compensating
f o r the lack of Il-[la-completeness, the u n i t b z l l Ii,-complete:
In e f f e c t ,
*;Ia [-na,lla] i s
[-lla,ILa] i s v a g u e l y c o m p a c t ( 1 0 . 1 4 ) ,
s o t h e B o u r b a k i t h e o r e m ( [ 4 5 ] Chap. 6 , C o r . t o P r o p . 3) g i v e s the desired result.
The p r o o f o f ( 1 9 . 5 ) now c a r r i e s o v e r
v e r b a t i m , a n d we h a v e :
(27.1) in
Let E b e a n L - s p a c e a n d a E E . o r d e r convergence and
I1
Then f o r a m o n o t o n i c n e t
Ila-convergence are e q u i v a l e n t .
A s a s u b s t i t u t e f o r ( 9 . 9 ) , w e have
(27.2)
Let E b e a n L-space a n d a € E .
s e q u e n c e { I $ ~ }i n
[I . ; l a - c o n v e r g e s
I f an o r d e r bounded t o $€
t h e n some
s u b s e q u e n c e o r d e r c o n v e r g e s t o $.
The p r o o f i s e s s e n t i a l l y t h e same a s t h a t f o r ( 9 . 9 ) .
150
Chapter 5
(27.2)
i n t u r n g i v e s us t h e f o l l o w i n g s u b s t i t u t e f o r ( 1 9 . 7 ) .
( 2 7 . 3 ) L e t E b e an L - s p a c e a n d a E E .
Then f p r an o r d e r b o u n d e d
the following sets coincide.
subset A of 1'
the order closure of A;
2'
t h e o-order c l o s u r e of A;
3'
A(1).
'4
t h e s e t o b t a i n e d by a d j o i n i n g t o A t h e l i m i t s o f o r d e r
c o n v e r g e n t s e q u e n c e s o f A. 5'
the
11
*
;closure
o f A.
(19.8) and ( t h e r e f o r e )
(19.9) c a r r y over (indeed, i n a
s t r o n g f o r m ) , and p a r t o f (19.10) w i t h " p r i n c i p a l band" r e p l a c e d b y " b a s i c band".
(27.4)
Theorem.
We combine a l l t h i s i n
Let E b e a n L - s p a c e .
Then f o r a b a n d I o f E ' ,
t h e f o l l o w i n g are e q u i v a l e n t : 1'
I i s a b a s i c band;
2'
I h a s t h e c o u n t a b l e sup p r o p e r t y ;
3'
e v e r y s e t o f m u t u a l l y d i s j o i n t c o m p o n e n t s o f 1, i s
countable;
' 4
I i s a t most c o u n t a b l y decomposable.
P roof.
The p r o o f o f ( 1 9 . 8 )
(with (19.5) r e p l a c e d by
An L - s p a c e a n d i t s Dual
0
(27.1)) gives us that 1 g i v e s u s t h a t 2' (cf.
implies 2
implies 3
0
.
3'
And t h e p r o o f o f ( 1 9 . 9 )
and 4 '
F i n a l l y , s u p p o s e 4'
(17.3)).
.
0
151
are clearly equivalent
holds.
Then t h e band ,J o f
E d u a l t o T i s a l s o a t most c o u n t a b l y d e c o m p o s a b l e ; h e n c e by ( 1 9 . 1 0 ) , J i s a p r i n c i p a l band. 0
is 1
Thus I i s a b a s i c b a n d , w h i c h
. QED
Note t h a t ( 1 9 . 9 )
c a r r i e s o v e r i n f u l l f o r c e t o 3'
above:
f o r e v e r y c o u n t a b l e , m u t u a l l y d i s j o i n t s e t o f components { e n } o f n ( E i ) , CnIIenlla
i
a.
Given a n L - s p a c e E , (E',E),
(25.1) applies not only t o the pair
b u t a l s o t o e v e r y p a i r ( T , < J ) o f d u a l b a n d s , s i n c e .J
i s an L - s p a c e and I = %J'.
I f J i s a p r i n c i p a l band o f E , w e
c a n a d d two more e q u i v a l e n t c o n d i t i o n s :
(27.5)
Let E b e an L - s p a c e and aEE.
t i o n a l 0 on
t h e f o l l o w i n g are e q u i v a l e n t :
1'
@EEa;
2'
0 i s o - o r d e r c o n t i n u o u s on
3'
0 is
Proof. on E ' ,
Then f o r a l i n e a r f u n c -
11.
; ] , - c o n t i n u o u s on
[-n,,na].
A s f o r every element of E ,
h e n c e on
f o l l o w s from ( 2 7 . 2 ) .
s o 1'
i m p l i e s 2'.
Suppose 0 i s
0
i s order continuous T h a t 2'
1) .\I a - c o n t i n u o u s
i m p l i e s 3' on [ - n a , J l a ] .
Chapter 5
152
Now
101
i s f i n e r t h a n t h e t o p o l o g y d e f i n e d by
((E'),,Ea)
so, a fortiori, follows
I[
e l l a ,
l~l((E')~,E~)-continuous on [ - l a , l a ] .
Q, i s
T t
i s I~I((E')~,E~)-continuous on e v e r y i n t e r v a l o f
$I
b
S i n c e Ea i s a band i n = (E,)";
,
=
(Ea)', so
now c f . t h e comment f o l l o w i n g
((E1)a)b
=
(23.5)),
(22.8) a p p l i e s t o g i v e u s OEE,.
Thus 3'
implics lo.
QED
-~ Remark.
Actually, t h e topology
t o p o l o g y d e f i n e d by
\I.I[ a
101 ( ( E 1 I a , E a )
c o i n c i d e on [ - l l a , l a ] ( c f .
and t h e (29.8)
below).
Given a R i e s z s p a c e F , l e t us d e n o t e b y Foc 0 - o r d e r c o n t i n u o u s l i n e a r f u n c t i o n a l s on F.
I t f o l l o w s by
t h e same a r g u m e n t s a s were u s e d f o r FC t h a t F5' Fb.
And c l e a r l y FC c Fac c I:b .
s e t o f Fac.
the set of
i s a band o f
I n g e n e r a l FC i s a p r o p e r s u b -
We h a v e s e e n t h a t f o r an L - s p a c e E , E '
h e n c e , from t h e a b o v e , E '
=
EC = EoC
band o f E a n d I i t s d u a l b a n d i n E l . L - s p a c e , we h a v e I = J C a l s o h a v e , by ( 2 7 . 5 ) ,
=
Jac.
that J
=
=
Eb.
=
E C = Eb ,
Now l e t J b e a
J b e i n g i t s e l f an
For J a p r i n c i p a l band, w e Ic
=
Iac.
528 E q u i - o r d e r - c o n t i n u i t y
In
5528, 2 9 , w e d e v e l o p t h e m a t e r i a l w e w i l l n e e d on
weak c o m p a c t n e s s .
Our t r e a t m e n t , t h e c h a r a c t e r i z a t i o n o f weak
c o m p a c t n e s s by e q u i - o r d e r - c o n t i n u i t y , stems f r o m Nakano.
For
An L - s p a c e and i t s D u a l
153
e x t e n s i v e d i s c u s s i o n s o f t h e t o p i c , we r e f e r t h e r e a d e r t o [ 1 7 ] a n d [ 2 ] ( c f . a l s o [27]).
/I - 1 1
Let
(28.1)
b e a ( n o t n e c e s s a r i l y R i e s z ) seminorm on a R i e s z
s p a c e F , and B i t s u n i t b a l l .
Then t h e f o l l o w i n g a r e e q u i -
valent:
[I
1' (19.6)
i s order continuous (cf. the d e f i n i t i o n preceding
1; o o
i n F implies lima(sup
2'
a
3'
a
'4
a a+ O i n F i m p l i e s l i m a ( s u p
5'
a GO in F implies [-a
-+
CY -f
c1
i n F implies [ - l a
c1
Proof.
1'
i m p l i e s 2':
a
a
a' a
I
Ilb[l)
0;
=
Ibl+,l , l a a l l c B f o r some a ;
I b I'I
1c
Suppose 2
aa
IIlb[l)
=
0;
B f o r some a.
0
f a i l s t o hold.
Then
t h e r e i s a n e t { a } i n F and a n E > 0 s u c h t h a t a 0 while a a f o r e v e r y a, t h e r e e x i s t s b w i t h Ib 1 < ( a a ( a n d (1 ball > E . a a -+
Since b
+
a
I] .]I
0 , i t follows
c l e a r l y i m p l i e s 3'
and
4O,
I t r e m a i n s t o show t h a t 5' E
IIaB[l 5
for a l l 6 > a.
c a + 0 a n d J a a l-L c
a
a n d e a c h o f t h e l a t t e r i m p l i e s 5'. i m p l i e s 1'.
B
11
Suppose aa
+
0 , and
There e x i s t s a n e t {ca} such t h a t
f o r a l l a.
Since (l/E)ca+O, t h e n , by So,
[ - ( ~ / E ) c ~ (, l / ~ ) ac] c B f o r some a.
h e n c e [lc
2'
> 0 ; we h a v e t o show t h e r e e x i s t s a s u c h t h a t
consider E
is not order continuous.
<
-
E
for a l l B > a, hence
Then [ - c a , c a ] c E B ,
11 a,\] 5
> a. E f o r a l l fi QED
Let E b e a normed s p a c e ( a l t h o u g h t h e f o l l o w i n g c a n b e
154
Chapter 5
done more g e n e r a l l y ) .
F o r e a c h s u b s e t A o f E , t h e p o l a r A'
E l d e t e r m i n e s a g a u g e f u n c t i o n , w h i c h we w i l l d e n o t e by
I n g e n e r a l , it i s p o s s i b l e t o have
o f El.
\)
@[IA
=
m
in
\I - [ I A .
f o r some e l e m e n t s
As i s e a s i l y v e r i f i e d , t h e f o l l o w i n g a r e e q u i v a l e n t :
'1
11 $[IA
2'
A'
3'
A i s norm b o u n d e d .
<
m
for a l l ~ E E ' ;
i s absorbing i n E '
I n s u c h c a s e ( s i n c e A'
(El
=
lJn(nAo));
i s convex and v a g u e l y c l o s e d ) ,
a seminorm on E ' w i t h A'
aEE i s o r d e r c o n t i n u o u s on
E l ,
A s we know, e v e r y i s an
F o r a s u b s e t A o f E , we w i l l
.\IA
say t h a t A i s equi-order-continuous o n 2 i f
(1. \ I A
11 . ; l a
and ( t h e r e f o r e )
o r d e r c o n t i n u o u s seminorm on E l .
(Note t h a t
is
for its unit ball.
Now l e t E b e a normed R i e s z s p a c e .
continuous.
11 * \ IA
is order
i s t h e n a u t o m a t i c a l l y a seminorm
a n d t h e r e f o r e A i s norm b o u n d e d . ) We g i v e some c h a r a c t e r i z a t i o n s o f e q u i - o r d e r - c o n t i n u i t y i n L-spaces.
(28.2)
Theorem.
- c _ _
For a s u b s e t A o f E ,
Let E b e an L - s p a c e .
the following are equivalent: 1'
A i s e q u i - o r d e r - c o n t i n u o u s on
2'
+
3'
+,+O
' 4
e v e r y bounded monotone n e t i n E '
5'
a i n~ E ~ ' implies l i m
[IQ, a
a
i n E' i m p l i e s l i m n \ l + n ( l A
E l ;
=
0;
=
0;
is
e v e r y b o u n d e d monotone s e q u e n c e i n E '
11
*
[IA-Cauchy;
is
11
- IlA-Cauchy
An L - s p a c e and i t s Dual
Proof.
1'
-~
uity.
2
0
exists
o f c o u r s e i m p l i e s 3'.
\IA
- $
<
.
-
a
an
<
> E for a l l n. -
"n+ 1 plete) 4
Assume 3'
+ $ f o r some
@ € E l ,
<
h o l d s , and suppose
11 -IIA-Cauchy.
{$"I i n E ' i s n o t
> 0 and a1 < a 2
E
by t h e d e f i n i t i o n e q u i - o r d e r - c o n t i n -
i m p l i e s 2'
a descending n e t
155
-
*
such t h a t
a
But ( E '
h e n c e , hy
Then t h e r e
b e i n g D e d e k i n d com-
2O,
(In a n d we h a v e a c o n t r a d i c t i o n .
Thus 3'
implies 4
0
.
-
$!IA
4'
of
0,
=
c o u r s e i m p l i c s 5'. Assume 5'
holds.
We show t h a t c o n d i t i o n 4'
s a t i s f i e d , t h a t i s , i f $a+O, then l i m (sup a
of (28.1) i s
O'
11$!A)
l+I+,l
S u p p o s e a n e t { $ } s a t i s f i e s cp + O b u t n o t t h e c o n c l u s i o n .
"
CY
Then t h e r e e x i s t s c > 0 s u c h t h a t f o r e v e r y f o r which
(*)
I$
<
-
[@al
but
/I
> 2 ~ .
T h e r e e x i s t s e q u e n c e s t u n } i n E ' a n d {a,} (i) (ii)
ul
3
w2
I(wn,an)l
(iii)
,... > 2c
there is a $
i n A such t h a t :
;
for a l l
11;
I ( u m , a n ) 1 5 & f o r a l l m,n s u c h t h a t m > n .
To p r o d u c e t h e s e s e q u e n c e s , w e p r o c e e d i n d u c t i v e l y . Choose a1 a r b i t r a r i l y ; t h e n c h o o s e
al
1
5
such t h a t
"1
a n d II$lllA > $"+O,
26;
t h e n c h o o s e alEA s u c h ~ ( + l , a l ) >~
26.
Since
$ a V + l + ~ ) l& i t h a); h e n c e , s i n c e a l i s o r d e r c o n t i n u o u s ,
w e c a n c h o o s e a 2 > a1 t o s a t i s f y
Chapter 5
156
(the first of these, because also /all is order continuous).
l$,l
Now choose $ 2 such that
5 $a and 2
choose a2iA such that /($2,a2)l fashion, and setting wn
= $a
v $ ~(n
> ZE,
then
Proceeding in this
> ZE.
n+ 1
i1$2[[A
=
1 , 2 , * * * ) , we obtain
the desired sequences. Now IIwn - Wn+lllA 1 2 l(Wn I ( ~ ~ + ~ , a ~ >) l2~ -
E
= E.
-
wn+19an)l
3
\(wn,an)l
This contradicts 4'
-
and completes
the proof. QED
Remark. -
Contained in the above proof is the result that
a subset A of an L-space E is equi-order-continuous on E ' if and only if every countable subset of A is equi-order-continuous on E ' .
(28.3) Theorem. _____ In an L-space E, every weakly convergent
sequence is equi-order-continuous.
Proof. -
It is enough t o consider a sequence {an) which
converges weakly t o 0.
Denote the set {a,,)
+n $ 0 ;
=
(*)
we show limnl[$njlA
0 (28.2).
by A, and assume
Suppose not.
We can assume (for simplicity) that there exists
such that -
+n+l,an)l
>
E
for all n.
E >
0
An L - s p a c e and i t s Dual
157
In e f f e c t , by s u p p o s i t i o n , t h e r e e x i s t s
E
> 0 such t h a t
€ o r e a c h n o t h e r e i s a n n > no and an m s u c h t h a t l ( $ n , a m ) / > S e t no
2 ~ . We p r o c e e d b y i n d u c t i o n .
)I
and m1 s u c h t h a t I ( $ , , , a 1
1 a n d c h o o s e n1 > 1
=
The e l e m e n t s a l ; * * , a
> ZE.
ml
ml
s o limn($n,ai)
a r e o r d e r c o n t i n u o u s on E ' ,
=
0 (i
1,. . - , m , ) .
=
I t f o l l o w s t h e r e e x i s t n 2 > n l a n d m 2 > ml s u c h t h a t
I(
)I
$ n 2 9 aml
E
and I(+,
) ) > 2 ~ . Continuing i n t h i s
,a
2
m2
f a s h i o n , w e o b t a i n subsequences { $ nk ,a
k l($n
mk
>
I(
26,
$n
,amk)/ >
-
k
)I
k+l E
,a
mk
)I
< -
E
for a l l k.
},{a } such t h a t mk
f o r a l l k.
Then
Since t h e subsequences re-
'nk+ 1
t a i n t h e d e f i n i n g p r o p e r t i e s o f t h e o r i g i n a l s e q u e n c e s we have (*)
.
A s i s e a s i l y v e r i f i e d , t h e r e e x i s t s a (unique) p o s i t i v e l i n e a r mapping (n
=
1,2,-..).
1
Rm->
E'
( e n i s t h e e l e m e n t o f R"
p o s i t i o n and 0 e l s e w h e r e . ) T
such t h a t Ten
=
$n - $n+l
having 1 i n the n t h
T h i s g i v e s u s (a")'
<--- T~
Since
Ell.
t i. s v a g u e l y c o n t i n u o u s , a n d { a n } c o n v e r g e s v a g u e l y t o 0 i n m
El',
{Ttan} c o n v e r g e s v a g u e l y t o 0 i n (a ) ' .
h e n c e , by ( 2 3 . 5 ) ,
R
1 i s a band i n ( a " ) ' ,
t c o n s i d e r t h e component (T a n )
Now R m
=
,
(a')'
so f o r each n , we can
o f T t q n . I t f o l l o w s from t h e R
t c l a s s i c a l P h i l l i p s Lemma [ 4 2 ] t h a t t h e s e q u e n c e { ( T a n ) c o n v e r g e s t o 0 n o r m w i s e . Thus f o r l a r g e e n o u g h n , whence
I(
e n , ( T t a n ) 1)
I 5
E.
But
(1
R1 (Ttan)
}
11
I!
ZE,
158
Chapter 5
a n d we h a v e a c o n t r a d i c t i o n .
QED
Given a s e t B c o n t a i n i n g t h e o r i g i n i n a R i e s z s p a c e , t h e union of a l l t h e s o l i d sets contained i n B i s again a s o l i d s e t , hence t h e l a r g e s t one i n B. F o r t h e f o l l o w i n g p r o p o s i t i o n , n o t e t h a t i f any s e t B i n a n Ar ch imed e an R i e s z s p a c e F s a t i s f i e s S o i n ( 2 8 . 1 ) , t h e n B i s absorbing i n F.
(28.4) (28.1),
I f a c o n v e x s e t B i n a R i e s z s p a c e s a t i s f i e s 5'
in
t h e n t h e l a r g e s t s o l i d s e t B1 c o n t a i n e d i n B i s a l s o
c o n v e x and s a t i s f i e s p r o p e r t y S o i n ( 2 8 . 1 ) .
Hence B1 i s
a b s o r b i n g an d i t s gauge f u n c t i o n i s a n o r d e r c o n t i n u o u s R i e s z seminorm.
I f i n a d d i t i o n , B i s t h e u n i t b a l l o f i t s gauge
f u n c t i o n , t h e n B1 i s t h e u n i t b a l l o f
%
gauge f u n c t i o n .
The p r o o f i s s t r a i g h t f o r w a r d .
C o r o l l a r y 1. (28. 5) -
F o r e v e r y o r d e r c o n t i n u o u s seminorm
a R i e s z s p a c e F , t h e s m a l l e s t R i e s z seminorm
2 II.II
11 [I *
on
e x i s t s and
i s a l s o order continuous.
Corollary 2 . (28.6) -
I f a s u b s e t A o f a normed R i e s z s p a c e E i s
An L-space and its Dual
159
equi-order-continuous on El, then the norm closed, convex, solid hull A1 of A is also equi-order-continuous.
It is clear that (A,)'
is the largest solid set in ,'A
so
(28.4) applies.
(28.7) _____ Theorem. Let E be an L-space.
I f a subset A of E is
equi-order-continuous, then the convex solid hull of A hence also A - is relatively weakly compact.
Proof. By ( 2 8 . 6 ) , we can assume that A itself is convex and solid.
So we need only show that (Ao)'
We achieve this by showing that (Ao)' consider @€(Ao)O-in-(E')*;
(A0)O-in-(E')*.
=
we have to show QEE.
is sufficient, by ( 2 3 . 5 ) , to show that on El.
is weakly compact.
@
So
For this, it
is order continuous
This follows from the fact that 0 is bounded on A',
which is the unit ball of an order continuous norm. QED
5 2 9 . Weak compactness
We can now describe the weakly compact subsets of an L-space. We first record.
160
Chapter 5
(29.1) Theorem. -
Intervals of an L-space E are weakly compact.
This follows from (10.14) and the fact that E is a Riesz ideal of E" = ( E l ) b
.
(29.2) Theorem. (Nakano).
F o r a subset A of an L-space E, the
following are equivalent: '1
A is equi-order-continuous on
'2
A is relatively weakly compact.
-__ Proof.
We have already proved '1
E l .
implies 2'
(28.7).
For
the converse, suppose A is relatively weakly compact but not equi-order-continuous. quences {$n} in for all n.
E l ,
By (28.6), there exist
{an} in A such that $,+O
E
> 0 and se-
and l($m,an)l
> E
Thus not only {an}, but every subsequence of (a,}
fails to be equi-order-continuous. But, by Smulian's theorem, some subsequence of {an} is weakly convergent and therefore, by (28.7), equi-order-continuous. We thus have a contradiction. QE D
Combining this theorem with (28.6), we have the
(29.3) Corollary 1. If a subset of an L-space is relatively weakly compact, then s o is its convex, solid hull.
An L - s p a c e and i t s Dual
161
I f a s u b s e t A o f an L - s p a c e E i s r e l a -
(29.4) Corollary 2.
t i v e l y weakly compact, t h e n e v e r y s e t B o f m u t u a l l y d i s j o i n t elements of A i s countable, B
=
{ a n } , and limnllanII
By ( 2 9 . 3 ) , we can assume A i s s o l i d .
P roof.
0.
=
To e s t a b l i s h
t h e p r o o f , i t i s enough t o show t h a t f o r e v e r y 1 > 0 , t h e r e i s o n l y a f i n i t e number o f e l e m e n t s o f B w i t h norm > 1.
Suppose
t h e r e e x i s t s A > 0 and an i n f i n i t e s e t {bn} c B s u c h t h a t IIb,ll
> 1 f o r a l l n. -
In E ' ,
second paragraph i n 527).
l l , , (n = 1 , 2 , . . - ) ( c f . t h e n The e n ' s a r e a l s o m u t u a l l y d i s j o i n t ,
s e t en
hence ( a s i s e a s i l y v e r i f i e d ) e n
= 0.
0.
I t f o l l o w s from ( 2 9 . 2 )
In p a r t i c u l a r , s i n c e A i s s o l i d ,
t h a t limn\lenllA = 0 . limn(en,/bnI)
+
=
But ( e n , l b n l ) = ( n , I b n l )
=
IIbnll
2
1 , s o we
have a c o n t r a d i c t i o n .
QED
(29.5)
C o r o l l a r y 3.
E v e r y w e a k l y compact s u b s e t A o f an L-
s p a c e E i s c o n t a i n e d i n a p r i n c i p a l band o f E .
R e p l a c e A by i t s s o l i d h u l l A1.
Proof.
L e t { a n } be a
maximal s e t o f m u t u a l l y d i s j o i n t e l e m e n t s o f A1.
Then t h e
band J g e n e r a t e d by t h e s e t { a n } i s a p r i n c i p a l band ( 1 9 . 1 0 ) . That A 1 c
J f o l l o w s from t h e e a s i l y v e r i f i e d f a c t t h a t i f a
s o l i d s e t i s not contained i n J , then it contains a non-zero element of J
d
. QED
162
Chapter 5
A t o p o l o g y 7 on a R i e s z s p a c e i s c a l l e d Lebesgue i f o r d e r convergence i m p l i e s convergence i n
g.
An e q u i v a l e n t d e f i n i t i o n
f o r a l o c a l l y convex t o p o l o g y i s t h a t t h e f a m i l y o f d e f i n i n g seminorms a r e e a c h o r d e r c o n t i n u o u s . From ( 2 9 . 2 )
(and ( 2 9 . 3 ) ) , we h a v e
(29.6) Corollary 4. 7(E',E)
I f E i s an L - s p a c e , t h e Mackey t o p o l o g y
on E' i s a Lebesgue R i e s z t o p o l o g y .
Also
( 2 9 . 7 ) C o r o l l a r y 5.
I f E i s an L - s p a c e ,
?-(El
, E ) i s d e f i n e d by
t h e s e t o f a l l o r d e r c o n t i n u o u s R i e s z seminorms on
E l .
N o t e t h a t f o r an L - s p a c e E , s i n c e e v e r y i n t e r v a l o f E i s w e a k l y compact ( 2 9 . 1 ) - and c o n v e x - we h a v e :
(29.8) If E i s an L-space, then ( u )( E l , E ) c r ( E '
,E).
T h i s c a n a l s o b e s e e n from ( 2 9 . 1 ) seminorms
{I] - I I a I
aEE}
defining
IuI
and t h e f a c t t h a t t h e
(El ,E)
a r e a l l o r d e r con-
An L - s p a c e a n d i t s Dual
I n g e n e r a l , a n L - s p a c e E c o n t a i n s w e a k l y compact s e t s
tinuous.
n o t contained i n i n t e r v a l s , so T ( E ' , E )
lo/(E',E). of E '
16 3
i s s t r i c t l y f i n e r than
However, t h e two a l w a y s c o i n c i d e on t h e u n i t b a l l
((29.10) below).
We n e e d t h e f o l l o w i n g t h e o r e m .
I t was
p r o v e d o r i g i n a l l y b y Amemiya a n d Mori f o r a D e d e k i n d c o m p l e t e R i e s z s p a c e , a n d l a t e r , b y a n e l e g a n t p r o o f , shown t o h o l d f o r
a g e n e r a l Riesz s p a c e by A l i p r a n t i s and Burkinshaw ( [ Z ] , Theorem 1 2 . 9 ) .
We r e f e r t h e r e a d e r t o t h e i r p r o o f .
( 2 9 . 9 ) Theorem.
A l l t h e l i a u s d o r f f L e b e s g u e t o p o l o g i e s on a
R i e s z s p a c e E i n d u c e t h e same t o p o l o g y o n e v e r y o r d e r b o u n d e d subset of E.
Thus :
(29.10) C o r o l l a r y . T(E',E)
I f E i s an L - s p a c e ,
c o i n c i d e on t h e u n i t b a l l
then
101
[-ll,n] o f E ' .
(E',E)
and
PART I11
C (X) , C ' (X)
,
C" (X) : THE
164
FRAMEWORK
CHAPTER 6
(C(X) ,X) -DUALITY
X , Y w i l l d e n o t e compact H a u s d o r f f s p a c e s .
C(X) i s t h e s e t
o f r e a l c o n t i n u o u s f u n c t i o n s on X , a n d n ( X ) w i l l d e n o t e t h e f u n c t i o n o f c o n s t a n t v a l u e 1 on X .
Under t h e u s u a l p o i n t w i s e
d e f i n i t i o n s o f a d d i t i o n , s c a l a r m u l t i p l i c a t i o n , a n d o r d e r , C(X) i s a R i e s z s p a c e w i t h n(X) f o r a n o r d e r u n i t .
The MI-norm
d e t e r m i n e d by n(X) i s p r e c i s e l y t h e s t a n d a r d supremum n o r m , and u n d e r t h i s norm, C(X) i s c o m p l e t e . Thus C(X) i s a n M I - s p a c e .
I n more d e t a i l , f o r f , g E C ( X ) ,
f v g a n d fAg a r e g i v e n b y ( f V g ) ( x ) = m a x ( f ( x ) , g ( x ) ) a n d ( f A g ) ( x ) = m i n ( f ( x ) , g ( x ) ) f o r a l l xEX. f+(x)
=
( f ( x ) ) + , and f - ( x )
in particular, =
Ifl(x)
=
/f(x)I,
( f ( x ) ) - f o r a l l x€X.
Although X is n o t a v e c t o r s p a c e , i t i s u s e f u l (and s u g g e s t i v e ) t o t h i n k o f C(X) a s " d u a l " t o X.
This has been
done by v a r i o u s w r i t e r s , e s p e c i a l l y i n t h e c o n t e x t o f C a t e g o r y Theory ( c f .
[49],
523.2 or [4T).
We w i l l f o r m u l a t e t h e r e l a -
t i o n s b e t w e e n C(X) a n d X f r o m t h i s v i e w p o i n t .
Since X has a
n a t u r a l i m b e d d i n g i n t o t h e d u a l C'(X) o f C(X), C'(X) w i l l t h u s play the r o l e of "bidual"
t o X.
I n p a r t i c u l a r , we w i l l f e e l
free t o denote f ( x ) by ( f , x ) . X w i l l b e c a l l e d t h e K a k u t a n i - S t o n e s p a c e o f C(X).
165
Chapter 6
166
5 3 0 . The t o p o l o g y o f s i m p l e C o n v e r g e n c e o n C ( X )
X i s o f c o u r s e s e p a r a t i n g o n C ( X ) by v e r y d e f i n i t i o n : f # g means t h e r e e x i s t s xEX
such t h a t f ( x )
# g(x).
Dually,
C(X) i s s e p a r a t i n g on X , a n d i n d e e d , i n a v e r y s t r o n g s e n s e : (Urysohn) f o r e v e r y p a i r o f d i s j o i n t , c l o s e d , non-empty s u h s e t s Z1,Z2 o f X , ( i i ) f(x)
=
Remark. -___
t h e r e e x i s t s fEC(X) s a t i s f y i n g ( i ) 0 < f (n(X),
1 f o r a l l xEZ1,
(iii) f(x)
=
0 f o r a l l xEZZ.
I l e n c e f o r t h , we w i l l c a l l an f E C ( X ) w i t h t h e a b o v e
properties a Urysohn f u n c t i o n f o r t h e ( o r d e r e d ) p a i r (Z,,Z,). A s o n e would e x p e c t , we d e f i n e o ( C ( X ) , X )
a s t h e topology
on C ( x ) o f p o i n t w i s e c o n v e r g e n c e on X : a n e t { f } i n CL
C(X) c o n -
v e r g e s t o fEC(X) i n a ( C [ X ) , X ) i f f ( x ) = l i m f ( x ) f o r a l l xEX. CY.N
We w i l l c a l l i t by i t s common name: t h e t o p o l o g y o f s i m p l e convergence.
And we c a n d e f i n e o ( X , C ( X ) ) a s t h e t o p o l o g y o n X
o f p o i n t w i s e c o n v e r g e n c e o n C(X): a n e t { x } i n X c o n v e r g c s t o c1
xEX i n ~ ( y C, ( X ) )
if f ( x )
=
limolf(x,)
for a l l fEC(X).
Since
x
completely regular,o(X,C(X)) i s simply t h e o r i g i n a l topology on X .
We e x a m i n e o(C(X) , X ) . Norm c o n v e r g e n c e ( i n C ( X ) )
and s i m p l e c onvergence.
i m p l i e s b o t h o r d e r convergence
T h e r e i s no o t h e r i m p l i c a t i o n b e t w e e n
the t h r e e convergences: Let X = a m , t h e one-point (Alexandroff) c o m p a c t i f i c a t i o n o f N , and f o r e a c h n , l e t en b e t h e e l e m e n t o f C(X)
h a v i n g v a l u e 1 on n E N a n d v a l u e 0 e l s e w h e r e .
t h e s e q u e n c e {ne,}
Then
c o n v e r g e s t o 0 s i m p l y b u t n e i t h e r normwise n n o r i n t h e o r d e r , a n d t h e s e q u e n c e {c e . ) ( n = 1 , 2 , . * . ) o r d e r 1 1 c o n v e r g e s t o l(X) b u t d o e s n o t c o n v e r g e e i t h e r s i m p l y o r no r m w i s e .
is
16 7
(C(X) ,X)-Duality
For a monotonic n e t , however, w e have one a d d i t i o n a l implication:
( D i n i t h e o r e m ) F o r a m o n o t o n i c n e t { f } i n C(X) cr f E C (X), the following a r e equivalent : (30.1)
1'
{fci. 1 c o n v e r g e s t o f n o r m w i s e ;
2'
{fa} c o n v e r g e s t o f s i m p l y ;
We n e e d o n l y show 2'
Proof. -__
implies lo.
and
For c o n c r e t n e s s ,
assume { f } i s a d e s c e n d i n g n e t w i t h i n f f ( x ) = 0 f o r a l l xEX. a a Consider E > 0 . F o r e a c h xEX, c h o o s e a ( x ) s u c h t h a t (x) <
E.
Since f
cr (XI
i s c o n t i n u o u s , t h e r e e x i s t s an o p e n
n e i g h b o r h o o d W(x) o f x s u c h t h a t f
(XI
(Y) <
E
f o r a l l yiW(x).
Now X i s c o m p a c t , s o t h e r e e x i s t x l , - - ,*x n s u c h t h a t { W ( x l ) , . - . , W ( x n ) } c o v e r s X. Then a > a ( € ) implies fa(y) <
Choose a(€) 2 w ( x , ) , . * . , a ( x n ) . E
f o r a l l yEX.
QED
I n common w i t h norm c o n v e r g e n c e a n d o r d e r c o n v e r g e n c e , simple convergence h a s t h e f o l l o w i n g e a s i l y v e r i f i e d , p r o p e r t y
(30.2)
I f { f } a n d {p } c o n v e r g e s i m p l y t o f a n d g r e s p e c t i v e l y , c1
t h e n {fcrVg,),
a
{fclAgcl},
Ifc1 + g a l , a n d {Afcl}
o f IR) c o n v e r g e s i m p l y t o f v g , f A g , f
+
(A
any element
g , a n d Af r e s p e c t i v e l y .
Chapter 6
168
Otherwise s t a t e d , t h e l a t t i c e o p e r a t i o n s and v e c t o r s p a c e o p e r a t i o n s a r e continuous under simple convergence.
F o r a R i e s z s u b s p a c e F o f C(X) t o b e s i m p l y
(30.3) Corollary.
c l o s e d , i t s u f f i c e s t h a t F+ be s i m p l y c l o s e d .
i s simply c l o s e d .
Note a l s o t h a t C ( X ) +
The f o l l o w i n g i s t h e c r u c i a l p a r t o f M . H .
Stone's proof
of t h e Stone-Weierstrass theorem.
( 3 0 . 4 ) _____ Theorem.
(Stone).
F o r a s u b l a t t i c e A o f C(X), t h e
following are equivalent:
'1
A i s simply closed;
2'
A i s norm c l o s e d .
We n e e d o n l y show t h a t 2'
P roof.
i m p l i e s 1'.
Assume A i s
norm c l o s e d , a n d c o n s i d e r f i n t h e s i m p l e c l o s u r e o f A . E
> 0.
We show t h e r e e x i s t s gEA
such t h a t
i A
( i ) F o r e a c h xoEX, t h e r e e x i s t s g
\I g
- fll
Fix
5 3 ~ .
such t h a t
xO
(XI
2
f ( x ) - 3~
f o r a l l xEX,
gXO
gx (x,)
< f(xo)
+
E *
0
In e f f e c t , s i n c e f i s i n t h e simple c l o s u r e of A, then f o r
169
(C(X) , X ) - D u a l i t y e a c h xEX, t h e r e e x i s t s g ( g x .(XI
-
<
f(x)
-
E ;
(xo)
€ A such t h a t J g xO
- f(xo)
< r-, -
xO
and from t h e s e c o n d o f t h e s e i n e q u a i t i e s ,
0
t h e r e e x i s t s a n o p e n n e i g h b o r h o o d W x) o f x s u c h t h a t ( y ) 2 f ( y ) - 3~ f o r a l l y 6 W ( x ) . X b e i n g compact, t h e r e xox e x i s t { x l , . . - , x n } s u c h t h a t IW(x,), * . , W ( x n ) } c o v e r s X. Set g
Since x
was a r b i t r a r y i n ( i ) , w e now d r o p t h e s u b s c r i p t .
0
We t h u s h a v e { g x l x E X } c A s u c h t h a t f o r e v e r y x , gx 3 ~ l l ( X ) and gx(x) < f(x) +
c o v e r s X.
Set g
=
m
tliTlgx
i 3 ~ l l ( X ;) s o we a r e t h r o u g h .
+
3~ f o r a l l y E V ( x ) .
, x m } s u c h t h a t {V(x,)
.
f -
For e a c h x , choose a n e i g h b o r -
E.
hood V(x) o f x s u c h t h a t g x ( y ) < f(y) Again t h e r e e x i s t s { x , , . .
2
, . . * ,V(xm) 1
< f + Then g E A a n d f - 3 ~ n ( X )5 g -
QED
(30.5)
Corollary.
(i)
Norm c l o s e d R i e s z i d e a l s o f C ( X )
a r e simply closed.
( i i ) M I - s u b s p a c e s o f C(X) a r e s i m p l y c l o s e d .
531. The d u a l i t y b e t w e e n t h e norm c l o s e d R i e s z
i d e a l s of C(X)
and t h e c l o s e d ( o r open) s u b s e t s o f X
F o r e v e r y s u b s e t Q o f X , we s e t QL
=
{fEC(X)] f(x)
=
0 for all
a n d f o r e v e r y s u b s e t A o f C ( X ) , we s e t
~€41;
Chapter 6
170
Z(A) Z(A)
{x€X I f ( x )
=
=
0 f o r a l l fEA). (In l i n e with our d u a l i t y
i s c a l l e d t h e z e r o - s e t o f A.
a p p r o a c h , w e would p r e f e r t o d e n o t e Z ( A )
b y A&, b u t Z ( R ) i s
the established notation.) We h a v e i m m e d i a t e l y :
( 3 1 . 1 ) For e v e r y A c C ( X )
,
Z(A) i s a c l o s e d s u b s e t o f X .
In the opposite d i r e c t i o n , given
Q
c X,
it i s e a s i l y
v e r i f i e d t h a t QL i s a R i e s z i d e a l a n d s i m p l y c l o s e d , s o a f o r t i o r i norm c l o s e d .
( 3 1 . 2 ) For e v e r y
Thus:
Q c X,
Q'
Now i t i s c l e a r t h a t
i s a norm c l o s e d R i e s z i d e a l .
(0)' =
QL
M o r e o v e r , by t h e Urysohn t h e o r e m , t h i s property.
( 3 1 . 3 ) For e v e r y
Dually ,
0is
We t h u s h a v e :
Q c X, Z(QL)
=
(q
0.
the closure of
Q i n X).
the largest set with
171
(C(X) , X ) - D u a l i t y ( 3 1 . 4 ) For e v e r y s u b s e t A o f C(X),
i s t h e norm c l o s e d
(Z(A))'
Riesz i d e a l H g e n e r a t e d by A.
H c (Z(A))'
-__ Proof.
by ( 3 1 . 2 ) .
clusion consider f € ( Z ( A ) ) I , B
=
{ g E H 10 c: g 5 f } .
i s f i l t e r i n g upward. we show f ( x )
=
H e n c e , b y t h e D i n i Theorem ( 3 0 . 1 1 , i f
I f f(x)
=
it w i l l follow t h a t
0 , w e are through.
c a n assume h ( x ) > f ( x ) . =
Suppose
I t f o l l o w s t h e r e e x i s t s hEII, w i t h
h(x) > 0 ( t h e r e e x i s t s kEAwith k(x) # 0 ; s e t h
t h a t g(x)
Set
B i s n o t empty ( i t c o n t a i n s 0 ) and i t
Then xeZ(A).
f(x) > 0.
a n d we c a n assume f > 0 .
s u p g E B g ( x ) , f o r e v e r y xEX,
Consider x .
fEfl.
For t h e o p p o s i t e con-
Then g
=
=
l k l ) , and w e
hnf i s an element of B such
f(x).
QED
In particular,
(31.5) For e v e r y Riesz i d e a l I o f C ( X ) ,
(Z(1))'
i s t h e norm
closure of I.
Summing u p ,
(31.6) There i s a one-one correspondence between t h e f a m i l y o f c l o s e d s u b s e t s 2 o f X a n d t h a t o f norm c l o s e d R i e s z i d e a l s II of C(X):
H <->
Z i f and o n l y i f Z = Z(H)
i f and o n l y i f H
=
ZL.
Chapter 6
172
Given H <-->
Z,
s e t W = X\Z:
Thus t h e r e i s a o n e - o n e
c o r r e s p o n d e n c e b e t w e e n t h e norm c l o s e d R i e s z i d e a l s o f C ( X ) and t h e open s e t s o f X .
T h i s corresp o n d en ce can be g iv en w i t h -
out reference t o the closed s e t s .
First a definition.
A func-
t i o n f on a l o c a l l y compact s p a c e T i s s a i d t o v a n i s h a t i n f i n i t y i f f o r every -~ compact.
E
> 0, the set {tET
1
If(t)
1
> E} i s
The f o l l o w i n g i s e a s i l y v e r i f i e d .
( 3 1 . 7 ) There i s a o n e - o n e c o r r e s p o n den ce between t h e f a m i l y o f
open s u b s e t s W of X and t h a t o f t h e norm c l o s e d R i e s z i d e a l s
H o f C(X): H <-->
fEH}
W i f and o n l y i f W
=
{ x G X \ f ( x ) # 0 f o r some
i f and o n l y i f H i s t h e s e t o f c o n t i n u o u s f u n c t i o n s on
W which v a n i s h a t i n f i n i t y .
H e n c e f o r t h Z w i l l a l w a y s d e n o t e a c l o s e d s e t of
Notation.
X , a n d W an open s e t .
F o r a s u b s e t A o f C ( X ) , W(A) w i l l b e
t h e s e t X\Z(A). The s e t o f c o n t i n u o u s f u n c t i o n s v a n i s h i n g a t i n f i n i t y on a l o c a l l y compact s p a c e T w i l l b e d e n o t e d by C w ( T ) .
Note
t h a t i t i s an M-space u n d e r t h e supremum norm, a n d i s an MEs p a c e i f and o n l y i f T i s c o m p a c t . U s i n g t h e above n o t a t i o n , we c a n s t a t e p a r t o f ( 3 1 . 7 ) a s
follows: I f X
= W IJ Z ,
W a n d Z c o m p l e m e n t a r y , t h e n ZL = Cw(W) .
A n o t h e r o b s e r v a t i o n on C w ( W ) . elements of C(X) of W.
Let Ho c o n s i s t o f t h e
e a c h h a v i n g f o r i t s s u p p o r t a comp.act s u b s e t
Then Ho i s a R i e s z i d e a l , i s c o n t a i n e d i n C w ( W ) ,
norm d e n s e i n t h e l a t t e r .
We n e e d o n l y v e r i f y t h e l a s t
and i s
(C(X) ,X) - D u a l i t y
statement.
173
Tn e f f e c t , s i n c e W i s c o m p l e t e l y r e g u l a r , Ho i s s o , by ( 3 0 . 4 )
s i m p l y d e n s e i n C'(W),
( o r t h e Dini Theorem), i s
norm d e n s e i n i t .
We c h a r a c t e r i z e v a r i o u s t y p e s o f R i e s z i d e a l s o f C(X) by p r o p e r t i e s of X . by i n t Q
.
We w i l l d e n o t e t h e i n t e r i o r o f a s e t Q i n X
Recall that a r e g u l a r c l o s e d s e t i s one which i s
t h e c l o s u r e o f an o p e n s e t , a n d a r e g u l a r o p e n s e t i s o n e which i s t h e i n t e r i o r o f a c l o s e d s e t .
We h a v e s e e n ( 3 1 . 2 ) t h a t f o r Q c X , QL i s a norm c l o s e d Riesz i d e a l .
F o r a n o p e n s e t W i n X , WL
(31.8)
___ Proof. WL
F o r an o p e n s e t , w e c a n s a y m o r e :
Let 2
X\W.
=
i s a b a n d o f C(X)
T h e n , as i s e a s i l y v e r i f i e d ,
(ZL)d, hence i s a band
=
QE D
For a Riesz i d e a l H o f C(X),
(31.9) C o r o l l a r y 1.
o r d e r c l o s u r e tI
P roof. simplicity, and H can
=
.'2
=
( i n t Z(H))'.
We c a n a s s u m e H i s norm c l o s e d . denote Z(H)
Also f o r
s i m p l y by Z a n d W(H) b y W.
So W
=
X\Z
S i n c e C(X) i s A r c h i m e d e a n , w h a t we w a n t t o p r o v e
b e s t a t e d : Hdd
=
( i n t Z)'.
A s we remarked i n ( 3 1 . 8 ) ,
2
Chapter 6
174
Hd
=
W"
(x\W)*
But t h e n Hd =
,
(w)" ,
s o , by t h e same r e m a r k , H d d
=
j i n t z)'.
=
QED
For a R i e s z i d e a l f1 o f C(X), t h e
(31.10) Corollary 2.
following are equivalent: lo
t h e o r d e r c l o s u r e o f H i s C(X);
'2
Z(H) h a s empty i n t e r i o r ( s o , b e i n g c l o s e d , i s nowhere
rare,
dense -
i n t h e Bourbaki terminology);
WIN) i s d e n s e i n X .
3'
The f o l l o w i n g a r e a l s o c o r o l l a r i e s , b u t we l i s t them a s theorems.
( 3 1 . 1 1 ) ____ Theorem.
F o r a norm c l o s e d R i e s z i d e a l H o f C ( X ) ,
the
following are equivalent:
1'
H i s a band;
'2
Z(H) i s a r e g u l a r c l o s e d s e t ;
'3
W ( H ) i s a r e g u l a r open s e t .
P roof. Z(H)
=
i f Z(H) H
=
I f H i s a band, t h e n , by (31.9) and (31.3),
m, so
Z(H) i s a r e g u l a r c l o s e d s e t .
Conversely,
i s a r e g u l a r c l o s e d s e t , t h e n , by ( 3 1 . 4 ) and ( 3 1 . 9 ) ,
(Z(H))'
=
order closure H. QED
(C(X) ,X) -Duality
175
I f a s e t i n X i s b o t h open and c l o s e d , w e w i l l c a l l i t clopen.
F o r a norm c l o s e d R i e s z i d e a l lI o f C ( X ) ,
( 3 1 . 1 2 ) Theorem.
the
following are equivalent: 1'
H i s a p r o j e c t i o n band;
2'
Z(II) is clopen;
3'
W(t1)
-__ Proof..
i s clopen.
S u p p o s e H 3 Hd
=
C(X),
but Z(H)
some xEZ(H) i s i n t h e c l o s u r e o f W ( I I ) . t1 v a n i s h e s on
Conversely, i f X =
T t
v a n i s h e s on x , c o n t r a d i c t i n g ( l l ( X ) ) ( x ) Z1lJ
=
So
Then e v e r y e l e m e n t o f
x a n d e v e r y e l e m e n t o f Hd v a n i s h e s on x .
follows a l l of C(X)
C(X)
i s n o t open.
=
Z2, w i t h Z1,Z2 d i s j o i n t , t h e n c l e a r l y ,
( Z , P 3 (Z$. QED
Finally
,
( 3 1 . 1 3 ) Theorem.
For a R i e s z i d e a l H o f C ( X ) ,
are equivalent: 1' H i s a maximal R i e s z i d e a l ;
2'
Z(f1)
1.
consists of a single point.
the following
176
Chapter 6
-__ Proof.
Assume H i s m a x i m a l , a n d c h o o s e xEZ(f1).
a p r o p e r Riesz i d c a l o f C ( X )
w i t h 11.
{x}'
is
and c o n t a i n s [ I , hencc c o i n c i d e s
I t f o l l o w s from ( 3 1 . 3 ) t h a t Z ( l I )
=
{x}.
T h a t '2
i m p l i e s lo i s c l e a r . Qlill
Consider a c l o s e d s e t Z o f X. Cw(W), W
= X\Z.:
As we h a v e s e e n , ZL =
Tn a d d i t i o n , C(X)/ZL = C(Z) ( c f .
(33.6))
5 3 2 . The d u a l i t y b e t w e e n t h e M l l - s u b s p a c e s o f C ( X )
and t h e u p p e r s e m i c o n t i n u o u s d e c o m p o s i t i o n o f X
P a r a l l e l i n g 531, we c o l l e c t h e r e t h e o r e m s r e l a t i n g t h c M I - s u b s p a c e s o f C(X) t o t h e t o p o l o g y o f X. immediately a r i s e s .
A difficulty
E v e r y MIL-subspace F c o n t a i n s l l ( X ) ,
t h e a n n i h i l a t o r o f F i s always cmpty.
hence
A substitute for this
a n n i h i l a t o r i s t h e dccomposition of X i n t o t h e sets of cons t a n c y o f F.
(The a n n i h i l a t o r __ does e x i s t
-
in C'(X)!
And
i s closely r e l a t e d t o these s e t s of constancy.) By a d e c o m p o s i t i o n o f X , w e w i l l mean a f a m i l y x
=
{Za}
o f m u t u a l l y d i s j o i n t , c l o s e d , n o n - e m p t y s u b s e t s o f X whose
union i s X.
The d e c o m p o s i t i o n s o c c u r r i n g i n o u r s u b j e c t a r e
of a special kind.
A decompositionx
=
{Za} o f X i s c a l l e d
uppersemicontinuous i f f o r e v e r y c l o s e d s e t Z i n X , t h e union of a l l the Za's intersecting 2 i s also closed.
I t i s e a s i l y v e r i f i e d t h a t i f X s > Y i s a continuous mapping ( r e m e m b e r , X , Y a r e a l w a y s compact H a u s d o r f f ) , t h e n t h e
(C(X) , X ) - D u a l i t y
decomposition
2
=
{s
-1
(y) / y € s ( X ) }
177
of X i s uppersemicontinuous.
Conversely, every uppersemicontinuous decomposition
X i s d e t e r m i n e d b y a c o n t i n u o u s mapping o f X :
2
=
{Za} o f
In e f f e c t , l e t
X A> L b e t h e mapping w h i c h a s s i g n s t o e a c h xEX t h e Z t a i n i n g i t , and d e n o t e h y J f i n e d b y t h i s mapping q .
(Z,J)
cona t h e i n d u c t i v e t o p o l o g y on 5 d e -
The r e s u l t i n g t o p o l o g i c a l s p a c e
is called the q u o t i e n t s p a c e o f X d e t e r m i n e d by
c a l l e d t h e q u o t i e n t map, a n d ? very d e f i n i t i o n o f ? ,
the quotient topology.
is
By t h e
q i s continuous.
( 3 2 . 1 ) The q u o t i e n t s p a c e
Proof.
t ,q
(x,y) i s
compact H a u s d o r f f .
N o t e f i r s t t h a t an e q u i v a l e n t f o r m u l a t i o n o f t h e
u p p e r s e m i c o n t i n u i t y o f 5 i s t h a t f o r e v e r y open s e t W o f X , union o f a l l t h e 2 ' s c o n t a i n e d i n W i s a l s o open. c1
a s u b s e t Q o f X whole i f it i s a union o f Z ' s . whole i f Q
=
q
-1( q ( Q ) ) .
c1
the
Let u s c a l l
Q is then
T h u s , by t h e d e f i n i t i o n o f t h e
i n d u c t i v e t o p o l o g y , i f a n o p e n s e t W i n X i s w h o l e , t h e n q(W)
i s open i n
(2,y).
I t f o l l o w s t h a t t o show
(2,y)
is Hausdorff,
i t s u f f i c e s t o show t h a t d i s t i n c t Z ' s h a v e d i s t i n c t w h o l e (Y
neighborhoods i n X.
So c o n s i d e r Z
j o i n t open neighborhoods Wl,W2
"1
#
Za2,
and c h o o s e d i s -
o f Zal,Za r e s p e c t i v e 1y . 2
V1 b e t h e u n i o n o f a l l t h e Z ' s c o n t a i n e d i n
a
union of a l l those contained i n W2.
Since
2
Le t
W1, a n d V2 t h e i s uppersemicon-
t i n u o u s , V1 a n d V2 a r e o p e n , s o w e a r e t h r o u g h .
That
(t,7)
i s compact f o l l o w s from t h e c o n t i n u i t y o f q . QED
Chapter 6
178
mapping X
Returning to a continuous
__ >
resulting uppersemicontinuous decomposition
of X, form the quotient space ( X , y j . ical mapping ( 2 , J j
-
Y and the
2 = I S -1 ( y ) 1 y E s (X)}
Then s induces the canon-
2: Y such that the following diagram
commutes.
Then
(32.2)
2 is a homomorphism of
(X,r)onto Y.
The verification is simple.
We can now proceed with o u r examination of the MIl-subspaces of C(X).
Given a subset A of C ( X ) ,
a set Z in X will
be called set of constancy of A if (i) e v e r y f E A i s constant on 2 , and (ii) 2 is maximal with respect to this property.
If
A consists of a single element f, then t h e s e t s of constancy
are the sets { f - l ( X ) I X E I R l .
(32.3)
Given a subset A of C ( X ) ,
the set of sets of constancy
of A is an uppersemicontinuous decomposition of X.
(C(X) ,X)-Duality
Proof. -__
179
The family of continuous mappings { f l f E A 1 of X
into R defines a single continuous mapping X -> S IR
A
so
has the product topology). {
Then s(X)
IRA (as always,
is compact Hausdorff,
s - l(y) I y E s ( X ) 1 s an uppersemicontinuous decomposition of X.
But the sets s-l[y) are precisely the sets of constancy of A. QED
For any decomposition continuous), let F ( 2 )
=
x
of X (not necessarily uppersemi-
{fCC(X)lf
is constant on every
ZCX} .
Then, a s can b e verified b y straightforward computation, F(X) is an MIL-space.
(32.4) Given a subset A of C ( X ) ,
sets of constancy.
Then F(x)
let
b e the collection of its
is precisely the Ma-subspace I:
of C ( X ) generated by A.
____ Proof.
A s we have noted above, F(2)
and therefore contains F.
is an MIL-subspace
Conversely, consider fEF(x);
show f is in the norm closure of F, hence lies in F. [30.4),
we
By
it is enough t o show that f is in the simple closure
of F.
Lemma.
For every Z l , . . + , Z n € X ,a l l distinct, F contains
_ _ I
a Urysohn function for (Zl, lJnZ.) ( c f . the beginning of 5 3 0 ) . 2 1
Chapter 6
180
T h e r e e x i s t s R E F s u c h t h a t g(Z,) g(Z,)
tains A).
#
g ( Z z ) ( s i n c e I: c o n -
and g ( Z 2 ) a r e e a c h a s i n g l e r e a l n u m b e r , s o
by a d d i n g a n a p p r o p r i a t e m u l t i p l e o f I ( X ) t o g , i f n e c e s s a r y ,
w e c a n assume g ( Z 2 )
=
0.
Then,, h y m u l t i p l y i n g g b y an a p p r o -
p r i a t e s c a l a r , w e c a n assume g ( Z 1)
=
1.
The e l e m e n t (gVo)AI(X)
o f F i s now a Urysohn f u n c t i o n f o r ( Z l , Z 2 ) ; d e n o t e i t b y E ~ . S i m i l a r l y , F c o n t a i n s a Urysohn f u n c t i o n g i f o r e a c h p a i r (ZIJZi)
(i
=
3,...,n).
A;gi
i s t h e n a Urysohn f u n c t i o n f o r
( Z l , lJ;Zi). I t f o l l o w s f r o m t h e Lemma t h a t f o r e v e r y f i n i t e s u b s e t { x l , * - - , x n }o f X , t h e r e e x i s t s g E F s u c h t h a t g ( x i ) i
=
l,...,n.
=
f(xi)
€or
Thus f i s i n t h e s i m p l e c l o s u r e o f F .
OED
i t s sets of constancy a r e s i n g l e
I f A i s s e p a r a t i n g on X , points.
(32.5)
(32.4) then reduces t o
( W e i e r s t r a s s - S t o n e Theorem - l a t t i c e v e r s i o n ) .
A c C(X) i s s e p a r a t i n g on X ,
If
t h e n t h e M I - s u b s p a c e o f C(X)
g e n e r a t e d b y A i s C(X) i t s e l f .
( 3 2 . 4 ) s t a t e s t h a t i f we s t a r t w i t h an ME-subspace F o f C(X), t a k e t h e s e t 2 o f i t s s e t s o f c o n s t a n c y , t h e n t a k e F ( , ) , we a r r i v e b a c k a t F .
Dually,
(32.6) Every uppersemicontinuous decomposition
2
of X i s the
(C(X) ,X) - D u a l i t y
181
s e t o f s e t s o f c o n s t a n c y o f t h e MIL-subspace F ( X ) w h i c h i t
determines.
Proof.
We n e e d o n l y show t h e m a x i m a l i t y o f e a c h Z E
Specifically, consider
Zo€X
and x e Z o ; w e h a v e t o show t h e r e
e x i s t s fEF(z) such t h a t f ( x ) # f(Zo). space
(x,J)
determined b y x .
Denote b y Y t h e q u o t i e n t
Y i s compact H a u s d o r f f ( 3 2 . 1 ) ,
h e n c e t h e r e e x i s t s hEC(Y) s u c h t h a t h ( q x ) # h ( q ( Z o ) ) . f
=
hoq.
5.
Set
Then f i s a c o n t i n u o u s f u n c t i o n on X w h i c h i s c o n -
s t a n t on e v e r y Z € z , h e n c e i s i n
F(2)
- and s a t i s f i e s
f(x) # f(Zo).
QED
Summing u p ,
( 3 2 . 7 ) T h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e MIL-subs p a c e s F o f C(X) a n d t h e u p p e r s e m i c o n t i n u o u s d e c o m p o s i t i o n s of X.
F <-->;!
i f and o n l y i f
2
2
i s t h e s e t of sets of con-
s t a n c y o f F i f a n d o n l y i f F c o n s i s t s o f t h e e l e m e n t s o f C(X) c o n s t a n t on e v e r y Z E
2.
033. The MIL-homomorphisms o f C ( X )
For t h e following d i s c u s s i o n , it i s convenient t o use t h e notation
( f , x ) i n place of f(x)
(cf. the beginning of the
Chapter 6
182
Chapter).
Each xEX
d e f i n e s a f u n c t i o n on C(X) by f +>
(f,x),
and s i n c e C(X) i s s e p a r a t i n g on X , d i s t i n c t x ' s d e f i n e d i s t i n c t functions.
We c a n t h e r e f o r e i d e n t i f y e a c h x w i t h t h e f u n c t i o n
i t d e f i n e s , and h e n c e f o r t h w e w i l l do t h i s : x w i l l be c o n s i d e r e d a f u n c t i o n on C(X).
M o r e o v e r , by t h e v e r y d e f i n i t i o n
o f a d d i t i o n a n d s c a l a r m u l t i p l i c a t i o n i n C(X), x i s a c t u a l l y a linear functional.
Even m o r e , f r o m t h e d i s c u s s i o n o f t h e
b e g i n n i n g o f t h e C h a p t e r on t h e l a t t i c e o p e r a t i o n s i n C ( X ) , e v e r y xEX i s , i n f a c t , a n MI-homomorphism o f C(X) ( i n t o IR). And t h e y a r e t h e o n l y o n e s :
( 3 3 . 1 ) F o r a f u n c t i o n $ o n C(X), t h e f o l l o w i n g a r e e q u i v a l e n t
'1
$ i s a n MI-homomorphism o f C(X) i n t o R ;
2O
$EX.
P roof. -
I t r e m a i n s t o show t h a t ' 1
implies 2
0
.
We n o t e
f i r s t t h a t two MI-homomorphisms $1 , $ 2 o f C(X) i n t o 1R a r e i d e n t i c a l i f and o n l y i f (+1)-1(0) h o l d s f o r 4.
$-'lo) i s
=
Now assume 1'
($2)-1(0).
t h e n a R i e s z i d e a l H o f C(X), a n d
$ b e i n g a s i n g l e l i n e a r f u n c t i o n a l - i s a maximal o n e .
Z(H)
consists of a single point x (31.13).
Hence
But t h e n x -1( 0 )
=
H,
s o w e have $ = x . QED
C o n s i d e r a c o n t i n u o u s mapping X <-
S
Y.
For each fEC(X),
f o s i s a c o n t i n u o u s f u n c t i o n on Y, s o an e l e m e n t o f C(Y). t h u s h a v e a mapping f
I--->
f o s o f C(X) i n t o C ( Y ) .
We
We w i l l c a l l
(C(X) ,X) - D u a l i t y
183
t h i s mapping t h e t r a n s p o s e o f s , a n d d e n o t e i t b y s t . f o r a l l f E C ( X ) and yEY, ( s t f , y )
=
Thus,
(f,sy).
I t i s t r i v i a l t o v e r i f y t h a t C(X)
S
t
> C(Y)
Mn-
i s an
homomorphism.
We show t h a t , c o n v e r s e l y , f o r e a c h Mn-homomorph-
T i s m C(X) ->
C(Y), t h e r e e x i s t s a unique c o n t i n u o u s
X
( 3 3 . 2 ) Theorem.
X,Y,
=
(Stone).
mapping
T:
Given two c o m p a c t H a u s d o r f f s p a c e s
t h e r e i s a one-one correspondence between t h e c o n t i n u o u s
m a p p i n g s s o f Y i n t o X a n d t h e Ma-homomorphisms T o f C(X) i n t o C(Y).
s i f a n d o n l y i f (f,sy)
T <->
= (Tf,y)
for a l l ffC(X)
a n d yEY.
Proof.
-~
I t r e m a i n s t o show t h e e x i s t e n c e o f s , g i v e n T .
F o r e a c h yEY, yoT i s an M ~ - h o m o m o r p h i s m o f C(X) i n t o R , h e n c e , by (32.1),
an element o f X.
o f Y i n t o X; d e n o t e i t b y s .
f E C ( X ) a n d yEY.
We t h u s h a v e a m a p p i n g y k--> So ( f , s y )
=
(Tf,y) for all
i t i s immediate from t h i s i d e n t i t y t h a t f o r
e v e r y n e t { y a } i n Y a n d yoEY, i f ( g , y o ) = l i m a ( g , y a ) gEC(Y), t h e n ( f , s y o ) = l i m a ( f , s y a ) continuous.
That T
=
f o r a l l fEC(X).
i s a n MIL-subspace o f C(Y) ( 1 8 . 2 ) , a n d T - ’ ( O )
R i e s z i d e a l o f C(X).
for all Thus s i s
s t f o l l o w s f r o m t h e same i d e n t i t y .
As we know, f o r a n MIL-homomorphism C(X)
s(Y)
yoT
T
--A
C(Y), T(C(X))
i s a norm c l o s e d
And f o r a c o n t i n u o u s m a p p i n g X <---1 i s a c l o s e d s u b s e t o f X and { s (x) ( x € s ( Y ) } i s an
S
Y,
184
Chapter 6
uppersemicontinuous decomposition o f Y.
Y b e a c o n t i n u o u s mapping a n d T
( 3 3 . 3 ) L e t X <s (i) (ii)
T-'(O) -1 {s
=
(s(Y))'and
(x) ( x E s ( Y ) l
s(Y)
=
=
st .
Then
Z(T-'(O));
i s t h e s e t of s e t s of constancy of
T ( C ( X ) ) , a n d T(C(X)) i s t h e s e t o f e l e m e n t s o f C(Y) c o n s t a n t -1 on e v e r y s (x),
Otherwise s t a t e d , T - l ( O ) and s(Y) c o r r e s p o n d t o e a c h o t h e r u n d e r ( 3 1 . 6 ) , and T(C(X)) and { s each o t h e r under (32.7).
-1
(x) I x € s ( Y ) }
correspond t o
The p r o o f o f ( 3 3 . 3 ) i s s t r a i g h t -
forward.
(33.4) Corollary. (i)
s i s a s u r j e c t i o n i f a n d o n l y i f T i s an i n j e c t i o n .
( i i ) s i s an i n j e c t i o n i f and o n l y i f T i s a s u r j e c t i o n .
We a p p l y t h e a b o v e t o t h e m a t e r i a l o f 5 § 3 1 , 3 2 .
Let F b e
an MIL-subspace o f C ( X ) a n d 2 i t s s e t o f s e t s o f c o n s t a n c y , and d e n o t e t h e q u o t i e n t s p a c e
( Z J ) by
Y.
Let Y
q u o t i e n t map.
Then an a d a p t a t i o n o f t h e a r g u m e n t f o r ( 3 2 . 6 ) , t p l u s ( 3 3 . 4 ) a b o v e , g i v e s u s t h a t C(Y) %> C ( X ) i s an MILi s o m o r p h i s m o n t o F.
do t h i s :
Thus F c a n b e i d e n t i f i e d w i t h C(Y).
We
(C(X) , X ) - D u a l i t y
Let F b e an M I - s u b s p a c e o f C ( X ) ,
(33.5)
constancy o f F, Y q u o t i e n t map.
=
(2,y) t h e
185
2
t h e s e t of s e t s of
q u o t i e n t s p a c e , and Y
Then u n d e r t h e d e f i n i t i o n ( f , q y )
=
(f,y) for a l l
f E F and qyEY, w e h a v e F = C ( Y ) .
Now l e t Z b e a c l o s e d s u b s e t o f X a n d H Let X <-
S
ZL ( s o Z
=
=
Z(H)).
t Z b e t h e i n j e c t i o n map.
MI-homomorphism o n t o . ~
Then C ( X )
onto C(Z).
Thus
We do t h i s :
C(X)/H
can be i d e n t i f i e d w i t h C ( Z ) .
(33.6)
For e v e r y c l o s e d s u b s e t Z of X , =
i s an
Factoring it:
t " we o b t a i n a n M a - i s o m o r p h i s m (s ) o f C ( X ) / H
definition (qf,z)
>c(z)
~
C(X)/ZL
( f , z ) for a l l qf€C(X)/Z'
=
C(Z)
under the
and z E Z .
L
Remark. The mapping C ( X ) s t r i c t i o n map f k--> f l Z .
T i e t z e E x t e n s i o n Theorem.
__ > C ( Z )
is c l e a r l y t h e r e -
(33.6) then a l s o follows from t h e
CflAl'TER
7
(C(X) , C ' ( X ) ) - D U A I . T T Y
5 3 4 . The i m b e d d i n g o f X i n C 1 ( X )
The e l e m e n t s o f t h e d u a l C ' ( X ) o f C(X) a r e c a l l e d t h e Radon m e a s u r e s on X ; w e w i l l d e n o t e thcm by ~ i , v , u , p , u .
-
f e e l f r e e t o o m i t "Radon";
We w i l l
that i s , unless otherwise s t a t e d ,
" m e a s u r e : w i 11 a l w a y s mean Radon m e a s u r e . S i n c e C(Xj apply.
i s an ME-space, t h e r e s u l t s o f 5 5 2 1 , and 1 9
I n p a r t i c u l a r , C ' (X) i s a n L - s p a c e w i t h
IIuI[
=
( nfX) , p )
for a l l uEC'(X)+. Under ( f , x ) , e a c h xEX i s a p o s i t i v e l i n e a r f u n c t i o n a l on C(X) w i t h ( 1 , x )
=
1.
I t follows xEK(C'(X)j.
Combining t h i s
w i t h ( 3 3 . 1 ) and ( 2 1 . 2 ) , we o b t a i n :
( 3 4 . 1 ) -__ Theorem.
X = ext K(C'(X)).
K ( C ' ( X ) ) is o f t e n c a l l e d t h e s t a t e s p a c e o f C(X), and i t s e l e m e n t s a r e c a l l e d ____ states. e x t r e m e p o i n t s o f K(C1 ( X ) ) ,
The e l e m e n t s o f X , b e i n g t h e a r e t h e n c a l l e d t h e =re
186
s t a t e s on
(C(X) , C ' ( X ) ) - D u a l i t y
187
C(X).
The e l e m e n t s o f K ( C ' ( X ) )
are also called the probability
( K a d o n )_ m_ e a_ s u_ r e_ s on X.
-
A consequence o f (34.1) worth n o t i n g i s t h a t f o r X1,X
2 E X , x1
+
x 2 i m p l i e s xlAx2
=
0 in
c'(x)
(2'
i n (21.2)).
A s a c o n v e r s e t o ( 3 4 . 1 ) , we h a v e t h e f o l l o w i n g s p e c i a l c a s e o f K a k u t a n i ' s c l a s s i c t h e o r e m 1211.
( 3 4 . 2 ) ____ Theorem. ( K a k u t a n i ) .
Every MI-space E i s a C ( X ) .
S p e c i f i c a l l y , we c a n t a k e f o r X t h e s e t e x t K ( E ' ) endowed w i t h t h e vague t o p o l o g y .
Proof.
-I_.
E-
By ( 2 1 . 6 ) ,
C ( e x t K ( E ' ) ) by
e x t K(E') i s v a g u e l y compact. (Ta,$)
=
Define
( a , $ ) f o r a l l a E E and
$€ e x t K(E').
Then T i s a p o s i t i v e l i n e a r m a p p i n g w i t h T I =
Il(ext K ( E ' ) ) .
By (21.8), T i s an i s o m e t r y , h e n c e o n e - o n e .
We
show n e x t t h a t T p r e s e r v e s t h e l a t t i c e o p e r a t i o n s , h e n c e i s a n Mn-isomorphism o f E i n t o C ( e x t K ( E ' ) ) .
Given a , b E E , t h e n f o r
every $€ e x t K(E'), (T(aVb),$) = (avb,$) max((Ta,$), ( T b , $ ) )
=
(TaVTb,$).
=
max((a,$),(b,$))
(Here t h e s e c o n d e q u a l i t y
f o l l o w s f r o m t h e f a c t t h a t $ i s a R i e s z homomorphism ( 2 1 . 2 ) , and t h e l a s t from t h e d e f i n i t i o n o f o r d e r o n C ( e x t K ( E ' ) ) . ) F i n a l l y , T(E)
=
i s s e p a r a t i n g on e x t K ( E ' ) ,
t h e W e i e r s t r a s s - S t o n e Theorem ( 3 2 . 5 ) , T(E)
s i n c e E i s , s o , by = C(ext K(E')).
QE D
Chapter 7
188
With t h e i n t r o d u c t i o n o f C t ( X ) , w e c a n c o n s i d e r weak c o n v e r g e n c e on C(X).
The D i n i Theorem g i v e s u s an i m p o r t a n t p r o -
p e r t y o f t h i s convergence.
For l a t e r c o m p a r i s o n , we p r e s e n t i t
a s a s h a r p e n i n g o f t h e D i n i Theorem.
(34.3)
( D i n i Theorem).
F o r a m o n o t o n i c n e t {fa} i n C(X) and
fEC(X), t h e following a r e e q u i v a l e n t : 1'
{fa) c o n v e r g e s
2'
{fa} c o n v e r g e s t o f w e a k l y ;
3'
{fa] c o n v e r g e s t o f s i m p l y .
t o f normwise;
5 3 5 . Atomic a n d d i f f u s e Radon m e a s u r e s
S i n c e C t ( X ) i s an L - s p a c e , e v e r y norm c l o s e d R i e s z i d e a l i s a band (hence a p r o j e c t i o n b a n d ) .
I n p a r t i c u l a r , t h e band
o f C t ( X ) g e n e r a t e d b y X i s s i m p l y t h e norm c l o s e d R i e s z i d e a l which i t g e n e r a t e s .
I n f a c t , we h a v e m o r e :
( 3 5 . 1 ) The b a n d o f C'(X) g e n e r a t e d b y t h e s u b s e t X i s s i m p l y
t h e norm c l o s e d l i n e a r s u b s p a c e w h i c h X g e n e r a t e s .
-__ Proof,
I t i s e n o u g h t o show t h a t t h e l i n e a r s u b s p a c e
c x c p x i s a Riesz i d e a l . f o l l o w s from ( 3 . 3 ) .
S i n c e each1Rx i s a R i e s z i d e a l , t h i s
QED
(C(X) , C ' ( X ) ) - D u a l i t y
189
We w i l l c a l l t h e a b o v e b a n d t h e a t o m i c p a r t o f C ' ( X ) , a n d C ' ( X ) a has a s i m p l e , e v e n t r a n s p a r e n t ,
d e n o t e i t by C ' ( X ) a .
We l e a v e many o f t h e f o l l o w i n g s t a t e m e n t s t o t h e
structure.
reader's verification. a f t c r (34.1),
( O f major u s e f u l n e s s i s t h e f a c t , noted
t h a t the elements of X a r e mutually d i s j o i n t :
x1 # x 2 i m p l i e s x1/\x2
=
0 , h e n c e t h a t two s u b s e t s o f X w i t h
cinpty i n t e r s e c t i o n a r e d i s j o i n t i n t h e R i e s z s p a c e s e n s e . ) Let Q b e an a r b i t r a r y s u b s e t o f X , a n d J t h e b a n d w h i c h i t generates.
Then J i s s i m p l y t h e norm c l o s e d l i n e a r s u b s p a c e
g e n e r a t e d b y Q (same p r o o f as f o r ( 3 5 . 1 ) ) , a n d ,J
n
X
=
Q.
v e r s e l y t o t h i s l a s t i d e n t i t y , l e t J be a band o f C ' ( X ) a ,
set Q
J
=
n
X;
t h e n t h e band g e n e r a t e d by Q i s J .
Conand
Thus
(35.3) There i s a one-one correspondence between t h e bands J of a n d t h e s u b s e t s Q o f X : J<--->
C'(X)a
n
Q = J
Q i f and o n l y i f
X i f and o n l y i f J i s t h e band g e n e r a t e d by Q .
We a l s o h a v e :
(35.3)
If X
g e n e r a t e d by versely,
Q , , Q,
= Q,IJ
Q,,Q,
n
=
respectively,
i f C'(X)a
J2 flX , t h e n Q,
0 Q,
=
Q,
8,
and J1,J2 a r e t h e bands
t h e n C'(X)a
J, 3 J 2 ( b a n d s ) , a n d Q, =
P, a n d X
=
Q, IJ Q,.
=
J 1 o J,.
=
J1
n
X, Q,
Con=
Chapter 7
190
Our n e x t g o a l i s t o g i v e a s i m p l e r e p r e s e n t a t i o n o f C ' ( X ) u F o r e a c h xEX,lRx i s a p r o j e c t i o n band o f C ' ( X ) ,
((35.4) below).
hence, given P E C ' (X) form Axx.
,
t h e component o f p i n t h i s band h a s t h e
Note t h a t t h u s , f o r e v e r y U E C ' ( X )
u n i q u e l y d e t e r m i n e d s e t o f numbers
X
, we
have t h e
I xEX},
Fix a s u b s e t Q o f X , and l e t G b e t h e l i n e a r s u b s p a c e o f C l ( X )
generated by Q.
( S o G i s t h e R i e s z i d e a l cxEQRx, a n d
E v e r y P E G h a s t h e form P
lies in C'(X)u.)
=
zyXx;xi I
(x1;
**,xn€Q).
F o r two e l e m e n t P = C n X x . and v 1 xi 1
=
z nl ~ X i ~ i
(we c a n c l e a r l y assume t h e y a r e l i n e a r c o m b i n a t i o n s o f t h e same e l e m e n t s o f Q ) , w e h a v e p + v
=
Cn(A 1 xi
+
K ~ . ) x Xu ~ ,= 1
f o l l o w i n g d e s c r i p t i o n o f t h e band J g e n e r a t e d by
Q i s now
e a s i l y e s t a b l i s h e d (remember, G i s a c t u a l l y a R i e s z i d a e a l )
( i ) E v e r y p E J l i e s i n t h e h a n d g e n e r a t e d b y some c o u n t a b l e s u b s e t {xn} o f Q , and i n t h e b a n d , i t h a s t h e u n i q u e r e p r e s e n t a t i o n p = ZnXxnxn i n t h e s e n s e o f norm c o n v e r g e n c e .
( i i ) Two e l e m e n t s p , v o f J c a n a l w a y s b e w r i t t e n i n t e r m s o f t h e same c o u n t a b l e s e t { x n } c Q : p = C A and w e h a v e p + v
=
Cn(A 'n
zn
max(X
,K
'n
'n
) x n , [IFiIj =
xn, v = C n ~ x n ~ n , 'n + K ) x n , Ap = Cn(AX )xn, pVv = 'n xn n
I.
C o n s e q u e n t l y , we c a n d e n o t e e a c h p E J b y 1-1 = CxEQAxx, i t being understood t h a t Ax = 0 f o r a l l but a countable s e t of The s e t o f c o e f f i c i e n t s {Xx)x€Q) each P E G .
i s uniquely determined f o r
I n t h i s n o t a t i o n , we h a v e
u
+ v = CX~q(Xx
+
KX)X,
X I S .
(C(X) , C ' ( X ) ) - D u a l i t y
191
Some g e n e r a l n o t a t i o n : G i v e n a s e t T, d e n o t e b y a l [ T ) s e t o f a l l r e a l f u n c t i o n s p on T s u c h t h a t Z t E T l p [ t )
1
<
the
m.
n (The sum d e n o t e s t h e supremum o f a l l f i n i t e sums C 1 I p ( t i ) I . ) 1 I t i s immediate t h a t f o r e v e r y p C (T), p ( t ) # 0 f o r only a countable set of t ' s .
Under p o i n t w i s e a d d i t i o n , s c a l a r m u l t i -
p l i c a t i o n , and o r d e r , t h e norm IIp1I
?,!
1
CtETIp(t)
=
( T ) i s a R i e s z s p a c e ; a n d endowed w i t h
1,
i t i s an L-space.
Henceforth, the
1 symbol R ( T ) w i l l a l w a y s mean t h i s L - s p a c e .
We r e t u r n t o o u r s u b s e t Q o f X a n d t h e b a n d J w h i c h i t generates.
X x i n J , d e f i n e t h e f u n c t i o n p' x€Q x Then, from t h e p r e c e d i n g d i s c u s s i o n Xx (x€Q).
For e a c h
on Q by p'(x)
=
u
=
C
p' i s c l e a r l y an i s o m e t r i c R i e s z i s o m o r p h i s m t h e mapping p t-->
o f <J o n t o V
1
(9).
1 Thus <J c a n b e i d e n t i f i e d w i t h R ( Q ) .
We
do t h i s :
(35.4) Theorem. -
Q.
Given a s u b s e t Q o f X , l e t ,J b e t h e b a n d
1x€Q X xx a s t h e f u n c t i o n on Q w i t h v a l u e Xx a t x , we h a v e LJ = a ' ( Q ) . We h a v e
g e n e r a t e d by
T h e n , c o n s i d e r i n g e a c h i~
We w i l l d e n o t e ( C I ( X ) a ) d i f f u s e p a r t o f C'(X)
d
(hence
by C ' [ X ) d ,
=
and c a l l i t t h e
the subscript d ) .
Its ele-
m e n t s a r e t h e d i f f u s e (Radon1 m e a s u r e s on X - a l s o c a l l e d t h e purely non-atomic ones.
The d e c o m p o s i t i o n C l ( X )
=
C'(X)
C ' (X)d g i v e s a s t a n d a r d r e p r e s e n t a t i o n o f e v e r y u E C ' {X)
a
3
as
t h e sum o f a u n i q u e l y d e t e r m i n e d a t o m i c m e a s u r e a n d a u n i q u e l y
192
Chapter 7
determined d i f f u s e one.
T h e s e two components o f p w i l l b e
d e n o t e d s i m p l y b y pa and p d ( i n s t e a d o f p
C ' (XIa
and 1-1 C ' (X) d l *
And f o r a s u b s e t A o f C 1 ( X ) , i t s images u n d e r p r o j e c t i o n i n t o C ' ( X ) u and C ' ( X ) d w i l l b e d e n o t e d by Au and A d . The f o l l o w i n g i s e a s i l y v e r i f i e d .
( 3 5 . 5 ) Let J be a Riesz i d e a l o f C ' ( X ) , and s e t Q
Then Ja i s c o n t a i n e d i n t h e
=
*J
n
X.
If J is a
band g e n e r a t e d by Q .
b a n d , t h e n J a c o i n c i d e s w i t h t h e b a n d g e n e r a t e d by Q .
For a Riesz i d e a l J o f C ' (X)
(35.6) Corollary.
,
the following
are equivalent:
'1
J c C ' (X)d;
2'
J
~
C'(X)a
X
g.=
i s a l w a y s s e p a r a t i n g on C(X) ( s i n c e X i s ) .
c o n t r a s t t o t h i s , C ' ( X ) d may c o n s i s t o n l y o f 0 :
Let X be t h e
A l e x a n d r o f f o n e - p o i n t c o m p a c t i f i c a t i o n o f N ; t h e n C(X) ( t h e s p a c e o f c o n v e r g e n t s e q u e n c e s ) a n d C'(X) = A t t h e o t h e r extreme, C'(X)d
In
1
=
c
(X) = C ' ( X ) u .
may a l s o b e s e p a r a t i n g on C ( X ) :
L e t X b e a r e a l i n t e r v a l ; t h e n t h e Lebesgue m e a s u r e on X i s d i f f u s e a n d , a s i s w e l l known, t h e b a n d i t g e n e r a t e s i s s e p a r a t i n g on C(X). Remark. -____
The s p a c e s X f o r w h i c h t h e r e e x i s t s a t l e a s t
o n e d i f f u s e m e a s u r e d i f f e r e n t from 0 c a n b e d e s c r i b e d p r e c i s e l y
(C(X) ,C' (X))-Duality
193
( ( 3 7 . 8 ) below).
5 3 6 . The v a g u e t o p o l o g y on C ' ( X )
0 on C ' ( X )
A linear functional
l i e s i n C(X)
i f i t i s v a g u e l y c o n t i n u o u s on C ' ( X ) ;
i f and o n l y
a n d i n d e e d , by t h e
G r o t h e n d i e c k c o m p l e t e n e s s t h e o r e m , i t s u f f i c e s f o r Q t o be
We c a n s a y m o r e :
v a g u e l y c o n t i n u o u s on t h e u n i t b a l l B ( C ' ( X ) ) .
( 3 6 . 1 ) -~ Theorem.
A l i n e a r f u n c t i o n a l 0 on C ' ( X )
lies i n C(X)
i f a n d o n l y i f 0 i s v a g u e l y c o n t i n u o u s on K ( C ' ( X ) ) .
Proof.
We n e e d o n l y show t h a t i f
@ i sv a g u e l y c o n t i n u o u s
on K ( C ' ( X ) ) , t h e n i t i s v a g u e l y c o n t i n u o u s on B ( C ' ( X ) ) .
a n e t {pa} i n B ( C ' ( X ) )
J(@,p) - (@,pa)l
A,@-
pa +
c o n v e r g e s v a g u e l y t o p , b u t ( 0 , ~ )#
Then w e c a n a s s u m e t h e r e
l i m a ( G,p,).
2
E
for a l l a.
exists
=
K
), = {O
a
> 0 such t h a t
For e a c h a , w e c a n w r i t e
w h e r e P , u ~ E K ( C ' ( X ) ) , X,K,, > 0 , and a 1 (cf.519). Now t h e real i n t e r v a l [ 0 , 1 ] i s compact.
i s v a g u e l y c o m p a c t , s o b y t a k i n g an a p p r o p r i a t e
s u b n e t , w e c a n assume t h e r e e x i s t X , K €
and
E
KaUas
a and K ( C ' ( X ) )
that
Suppose
limaha,
K
=
lim
K
c1
a'
} converges vaguely t o
{pa} O.
On t h e o t h e r h a n d ,
@
such
converges vaguely t o p, On t h e o n e h a n d i t f o l l o w s
t h a t { p } c o n v e r g e s v a g u e l y t o AD c1
IR a n d p , o E K ( C ' ( X ) )
KU,
whence Xp
-
KO
= p
b e i n g v a g u e l y c o n t i n u o u s on K ( C ' ( X ) ) ,
. we
Chapter 7
194
S i n c c X i s s e p a r a t i n g on C(X), t h e l i n e a r s u b s p a c e g e n e r a t -
A f o r t i o r i , C ' ( X ) r L i s also.
ed by X i s vaguely dense i n C ' ( X ) .
More s h a r p l y , b y t h e Krein-Milrnan t h e o r e m , t h e c o n v e x h u l l o f X i s v a g u e l y d e n s e i n K(C' ( X ) ) .
I t f o l l o w s K(C'(X)=)
is also.
We w i l l n e e d t h e f o l l o w i n g f u r t h e r s h a r p e n i n g .
( 3 6 . 2 ) F o r two R i e s z i d e a l s J1,J2 o f C ' ( X ) ,
the following arc
equivalent: 1'
< J 2 i s c o n t a i n e d i n t h e v a g u e c l o s u r e o f J1;
2'
( J 2 ) + i s c o n t a i n e d i n t h e v a g u e c l o s u r e o f (.J1)+.
3'
K ( J 2 ) i s c o n t a i n e d i n t h e vague c l o s u r e o f K ( J 1 ) .
P roof. -
2'
T h a t 1'
i m p l i e s 2'
f o l l o w s f r o m (10.12).
Assume
By 2O, some n e t {pa} i n (J1)+
h o l d s and c o n s i d e r p E K ( J , ) . 1
converges vaguely t o P.
Then
IIuil
=
(n(X),u)
lirna[lpal[ , s o , t a k i n g a s u b n e t , w e c a n assume
lima(ll(X),pa)
IIuaI[ #
Thus 2'
i m p l i e s 3.
T h a t 3'
=
0 f o r a l l a.
Then {vc13 i s a n e t i n K(.J1)
For e a c h a, s e t v U = c o n v e r g e s v a g u e l y t o p.
=
and 0
implies 1
i s immediate.
QED
(36.3) Corollary.
For a R i e s z i d e a l J o f C ' ( X ) ,
the following
(C(X) , C ' (X)) -Duality
195
are equivalent:
'1
,J i s v a g u e l y c l o s e d ;
.7 0
%J+ i s v a g u e l y c l o s e d ;
0
3
4'
R(J)
is vaguely closed;
K(J)
i s vaguely closed.
By t h e d i s c u s s i o n i n 5 4 1 0 , 11, t h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e v a g u e l y c l o s e d b a n d s tJ o f C ' ( X )
and
t h e ( w e a k l y c l o s e d , h e n c e ) norm c l o s e d R i e s z i d e a l s I I o f i f and o n l y i f J
J<-->H
C'(X):
Now c o n s i d e r a s u b s e t Q o f X . l i n e a r subspace of C ' ( X ) i d e a l of C(X)
(31.2),
n
X
=
Z(QL)
=
1
.
But ' Q
i s a Riesz
so QLL i s , i n f a c t , the vaguely closed
Q (31.3).
c l o s e d band of C ' ( X ) ,
then J
X,
Two e a s y c o n s e q u e n c e s a r e t h a t
L
HL i s p r e c i s e l y t h e v a g u e l y
a n d [ i i ) i f ,J i s a v a g u e l y
c l o s e d band g e n e r a t e d by Z(H),
n
<J
QLL i s t h e vaguely c l o s e d
g e n e r a t e d by Q .
( i ) f o r a Riesz i d e a l H of C ( X ) ,
J
=
Moreover, i f Q i s a c l o s e d s u b s e t o f
___ b a n d g e n e r a t e d by Q .
QLL
i f and o n l y i f I1
fIL
=
=
(JnX)'
- equivalently,
Z(J ) L
Summing u p ,
X.
There i s a t h r e e - w a y correspondence between
( 3 6 . 4 ) Theorem.
t h e c l o s e d s u b s e t s 2 o f X , t h e norm c l o s e d R i e s z i d e a l s H o f C(X),
and t h e v a g u e l y c l o s e d bands J o f C ' ( X ) .
Z,H,
a n d .J
c o r r e s p o n d t o e a c h o t h e r i f and o n l y i f t h e f o l l o w i n g h o l d :
J
n
(i)
Z
=
Z(H)
=
(ii)
H
=
ZL
=
J .
(iii) J
=
€1'
=
t h e v a g u e l y c l o s e d band g e n e r a t e d b y 2 .
X;
1'
=
Chapter 7
196
Remark 1. -
In ( i i ) , w e c o u l d have w r i t t e n Z
1
.
i t depends
on w h e t h e r we t h i n k o f X a s t h e " p r e d u a l " o f C(X) o r a s a s u b -
s e t o f Cl(X). Remark 2 . b e emp ty : l e t J
C1(X)d f o r a real i n t e r v a l .
=
a bo v e t h e o r e m , s i n c e f o r __ any X , Ct(X)d
n
X =
We saw i n 535 t h a t f o r two s u b s e t s Q l , Q 2 bands J1,J2 which t h e y g e n e r a t e , J2
=
I n d e e d , by t h e
@,w e
have t h a t
Qln
Q,
=
o f X and t h e
fl i f and o n l y i f
F o r c l o s e d s u b s e t s o f X , w e c a n s a y more:
0.
(36.5) Let Z1,Z2 they generate.
b e c l o s e d s u b s e t s o f X and J 1 , J 2 t h e b a n d s Then t h e f o l l o w i n g a r e e q u i v a l e n t :
io
z1 n z 2
2'
J~
3'
(vague c l o s u r e J1)n
n J~
P roof. -
=
+;
= 0;
( v a g u e c l o s u r e J,)
We n e e d o n l y show t h a t 1'
Urysohn f u n c t i o n f o r t h e p a i r ( Z l , Z 2 )
=
0.
i m p l i e s 3'. ( c f . 530).
n(X) - f i s a Urysohn f u n c t i o n f o r ( Z 2 , Z l ) .
Let f be a Then g
=
assume 1-1 > 0 , h e n c e i t s u f f i c e s t o show t h a t ( n ( X ) , p ) The v a g u e c l o s u r e o f J1 i s ( Z 1 ) l L ; s i n c e g€(Z1)', follows ( g , u ) +
(g91-I)
=
0.
=
0.
S i m i l a r l y , ( f , p ) = 0.
=
Now s u p p o s e p l i e s
i n t h e v a g u e c l o s u r e s o f b o t h J1 a n d J2; w e show p
(f3.1-I)
X may
i s v a g u e l y c l o s e d i f and o n l y i f C1(X ), = 0 .
C '( X) ,
Jln
n
I f a band J i s n o t v a g u e l y c l o s e d , J
We c a n
0.
= 0.
it
Then (n(X),.cl)
=
QED
197
(C(X) ,C' (X))-Duality
A non-empty s u b s e t Q o f a t o p o l o g i c a l s p a c e i s c a l l e d
d e n s e - i n - i t s e l f i f , a s a s p a c e i n i t s own r i g h t , i t h a s no If Qis d e n s e - i n - i t s e l f ,
isolated point.
let ,J b e t h e v a g u e l y c l o s e d
Given a s u b s e t A o f C ' ( X ) , band g e n e r a t e d by A .
Then
8.
then so i s
. J / T X w i l l be c a l l e d t h e s u p p o r t
I f A c o n s i s t s o f a s i n g l e e l e m e n t 1~., w e w i l l c a l l .J
of A. -
X
t h e s u p p o r t o f p.
(36.6)
Theorem.
--
For e v e r y non-empty s u b s e t A o f C ' ( X ) , ,
~
the
support of A i s d e n s e - i n - i t s e l f .
___ Proof.
Let J b e t h e v a g u e l y c l o s e d b a n d g e n e r a t e d by A ,
X h a s an i s o l a t e d p o i n t x.
and s u p p o s e J
is a closed set.
Then Z
=
(,JnX)\{x 1
Let J1 b e t h e v a g u e l y c l o s e d b a n d g e n e r a t e d
by Z .
J = J g R x . 1
Note f i r s t t h a t w r i t t e n J1
%,
Rx.
Jln
Rx
=
0 by ( 3 6 . 5 ) ,
s o J1 + R x c a n b e
S i n c e Rx ( b e i n g o n e - d i m e n s i o n a l ) i s a l s o
v a g u e l y c l o s e d , i t f o l l o w s f r o m t h e L o t z Theorem ( 1 0 . 2 1 ) t h a t J1 3 Wx i s v a g u e l y c l o s e d .
I t i s i m m e d i a t e t h a t J1 3 R x c < J .
The o p p o s i t e i n c l u s i o n f o l l o w s f r o m t h e f a c t t h a t J l 3 R x c o n t a i n s Z IJ
{x)
and i s vaguely closed.
This e s t a b l i s h e s (*).
Chapter 7
198
Now A c C ' ( X ) d ,
h e n c e A c { x } d , hence by (*)
,
A c .Jl.
T h i s c o n t r a d i c t s t h e a s s u m p t i o n t h a t t h e v a g u e l y c l o s e d hand g e n e r a t e d by A i s . J . QED
G i v e n a c l o s e d s u b s e t Z o f X, l e t W
=
v a g u e l y c l o s e d band g e n e r a t e d by Z , and I1
s o b y s t a n d a r d Banach s p a c e t h e o r y , ,J 11'.
=
=
X\Z,
<J b e t h e
Z ' .
Then .J
(C(X)/II)
'
=
HL,
and C ' ( X ) / . J
S i n c e ,Jd c a n b e i d e n t i f i e d w i t h C ' ( X ) / , J , t h e l a s t i d e n t i t y
can be w r i t t e n J d = 1 1 ' . Now H = Cw(W) and C[X)/II
=
C(Z)
( c f . § 3 1 ) , s o t h e above
can b e w r i t t e n :
( 3 6 . 7 ) -____ Theorem.
L e t 2 b e a c l o s e d s u b s e t o f X, W
-J t h e v a g u e l y c l o s e d b a n d g e n e r a t e d b y
Z.
=
X\Z,.and
Then
.J = C ' ( Z ) ,
Jd
=
(Cw(W))'.
We r e s t a t e o n e o f t h e s e for e m p h a s i s .
Corollary. (36.8) -J
=
=
Given a v a g u e l y c l o s e d b a n d (J o f C'(X),
C'(JnX),
T h e r e i s u n d o u b t e d l y a body o f r e s u l t s f o r t h e Mll-subs p a c e s o f C(X) p a r a l l e l i n g t h o s e w e h a v e g i v e n f o r norm c l o s e d
( C ( X ) ,C' ( X ) ) -Duali t y
Riesz i d e a l s .
199
However, w e h a v e l i t t l e t o o f f e r i n t h i s d i r e c -
One p r o b l e m : f o r an M I - s u b s p a c e F , w e know no r e a s o n a b l e
tion.
d e s c r i p t i o n o f F'. R e c a l l t h a t i n t h e d u a l i t y b e t w e e n C(X) a n d X, t h e r o l e played by Z ( H )
f o r a norm c l o s e d R i e s z i d e a l H was t a k e n f o r F ,
We n o t e h e r e t h a t t h e s e
by t h e s e t o f s e t s o f c o n s t a n c y o f F .
s c t s of constancy a r e simply the i n t e r s e c t i o n s with X of the t r a n s l a t e s o f F'.
5 3 7 . Mapping d u a l i t y
The d i s c u s s i o n i n 5 2 4 on a n bin-homomorphism a n d i t s t r a n s -
We e x p a n d on t h e r e s u l t s
pose a p p l i e s t o t h e p a i r (C(X),C'(X)). given there.
Let C(X)
__ > C(Y) h e a norm c o n t i n u o u s
o r d e r bounded - l i n e a r mapping. vaguely c o n t i n u o u s .
Then C ' ( X )
d e t e r m i n e d b y i t s v a l u e s on Y . mapping C ' ( X )
<--
SL
cl(\lr)
is
i s completely
Moreover, e v e r y c o n t i n u o u s
Y , where C'(X) h a s t h e vague t o p o l o g y , i s
t t h e r e s t r i c t i o n t o Y of such a transpose T : C(X) ->
<- T~
equivalently,
S i n c e t h e l i n e a r s u b s p a c e o f C'(Y) g e n e -
r a t e d by Y i s v a g u e l y d e n s e i n C 1 ( Y ) , T t
S
-
t CCY) by ( s f , y )
=
(f,sy).
In effect, define
I t is easily verified
t h a t s t i s l i n e a r a n d norm c o n t i n u o u s . We t h e n h a v e tt tt S C1(Y), with s J Y = s , s o s t .i s t h e d e s i r e d T . C ' (X)
is straightforward.
The r e s t
Chapter 7
200
There i s a three-way correspondence between
( 3 7 . 1 ) Theorem.
t h e norm c o n t i n u o u s l i n e a r m a p p i n g s C(X) __ > C ( Y ) , c o n t i n u o u s l i n e a r m a p p i n g s C ' (Xj <--S
<-
C'(X)
the vaguely
C' (Yj , a n d t h e m a p p i n g s
Y c o n t i n u o u s w i t h r e s p e c t t o t h e t o p o l o g y o f Y and T , S , and s c o r r e s p o n d t o e a c h
t h e vague topology o f C t ( X ) .
o t h e r i f and o n l y i f t h e f o l l o w i n g h o l d :
tt ;
(i)
s
=
T~
(ii)
s
=
Sly;
(iiij T
=
st = s ~ / c ( x ) .
In ( i i i ) , S
of t h i s 5,
t
=
s
t d e n o t e s Ctt(X) S > C " ( Y ) .
For t h e r e m a i n d e r
s , T , S w i l l correspond w i t h each o t h e r a s above.
We s h a r p e n t h e f i r s t h a l f o f ( 2 4 . 4 ) .
( 3 7 . 2 ) The f o l l o w i n g a r e e q u i v a l e n t : lo
T i s a Markov m a p p i n g ;
2'
S(K(C' Y)j)
3O
s(Y) c K(C' (X 1 .
Also (24.5)
= KlC'
(XI);
(by combining i t w i t h ( 3 3 . 2 ) ) .
( 3 7 . 3 ) The f o l l o w i n g a r e e q u i v a l e n t :
'1 2'
T i s a n MIL-homomorphism;
S (i) i s i n t e r v a l p r e s e r v i n g a n d ( i i ) maps K ( C ' ( Y ) ) i n t o K ( C ' ( X ) ) ;
(C(X) ,C'(X))-Duality
3O
201
x.
s(Y) c
I f S s a t i s f i e s t h e a b o v e , t h e n , from ( 2 4 . 7 ) , i f G i s a band o f C ' ( Y ) , S(G)
The f a c t t h a t S i s
i s a band o f C ' ( X ) .
v a g u e l y c o n t i n u o u s g i v e s u s more:
(37.4) I f s , T , S s a t i s f y (37.3), then f o r every vaguely closed band G o f C ' ( Y ) , S(G)
Proof.
i s a l s o a vaguely c l o s e d band.
is
By ( 3 6 . 3 ) i t s u f f i c e s t o show t h a t K ( S ( G ) )
vaguely c l o s e d .
By ( 2 4 . 7 ) ,
K(S(G))
S(K(G));
=
is
since K(G)
v a g u e l y compact and S i s v a g u e l y c o n t i n u o u s , S ( K ( G ) )
is also
v a g u e l y compact. QED
( 3 7 . 5 ) Theorem. H
=
T
-1
Suppose s , T , S s a t i s f y ( 3 7 . 3 ) .
( 0 ) , and J = S ( C ' ( Y ) ) .
e a c h o t h e r by ( 3 6 . 4 ) : Z = Z ( H )
Set Z
=
s(Y),
Then Z,H, and J c o r r e s p o n d t o = J
n
X, H
=
ZL
=
Jl, and
J = HL = t h e v a g u e l y c l o s e d band g e n e r a t e d by Z .
T h i s f o l l o w s from ( 3 3 . 3 ) ,
(36.4),
( 3 7 . 3 ) , and ( 3 7 . 4 ) .
The f o l l o w i n g r e s u l t c o n t a i n e d i n t h e above i s w o r t h noting.
I f C(X)
[Tt(C'(y>)l
?i
X.
-> C(Y)
i s an MI-homomorphism, t h e n Tt(Y)
=
Chapter 7
202
( 3 7 . 6 ) C o r o l l a r y 1.
L e t C(X) ___ > C(Y) be an MIL-homomorphism.
Then (i)
T i s a s u r j e c t i o n i f and o n l y i f T t i s an i n j e c t i o n .
( i i ) T i s a n i n j e c t i o n i f and o n l y i f T t
(37.7) Corollary 2 .
L e t C(X) ->
T
is a surjection.
C(Y) b e an MI-homomorphism,
Then and s e t J = T t ( C ' ( Y ) ) . t ( i ) T [ C ' ( Y ) ] = Ja; U
( i i ) T~ [ C ' ( Y ) ~ 3] J ~ .
Proof.
( i ) f o l l o w s e a s i l y from t h e comment f o l l o w i n g
( 3 7 . 5 ) above a n d t h e f a c t t h a t T t i v e elements.
t
p r e s e r v e s t h e norms o f p o s i -
( i i ) f o l l o w s from ( i ) . QED
( 3 7 . 8 ) C o r o l l a r y 3.
L e t C(X)
and s e t J = T t ( C ' ( Y ) ) .
->C(Y) be an MI-homomorphism,
I f T i s s u r j e c t i v e , T t maps CI(Y),
and
C 1 ( Y ) d e a c h R i e s z i s o m o r p h i c a l l y and i s o m e t r i c a l l y o n t o <Ju and J d respectively.
We showed i n ( 3 6 . 6 ) t h a t a n e c e s s a r y c o n d i t i o n f o r C ' ( X ) t o c o n t a i n non-zero d i f f u s e measures i s t h a t X c o n t a i n a s u b s e t which i s d e n s e - i n - i t s e l f .
We show t h i s c o n d i t i o n i s a l s o s u f -
ficeint. We w i l l u s e t h e f o l l o w i n g s t a n d a r d p r o p e r t y o f compact
(C(X) ,C' (X)) -Duality
203
spaces.
Lemma.
~f
Y
C
X i s~ a c o n t i n u o u s s u r j e c t i o n , t h e n t h e r e
e x i s t s a c l o s e d s u b s e t 2 o f X w h i c h i s mapped o n t o Y w h i l e no p r o p e r c l o s e d s u b s e t o f Z i s mapped o n t o Y .
The f o l l o w i n g t h e o r e m i s d u e t o W . and Semadeni ( c f .
Theorem.
(37.9)
-
Rudin and t o P e l c z y n s k i
[49] 519.7).
The f o l l o w i n g a r e e q u i v a l e n t :
X c3ntains a dense-in-itself subset;
1'
there i s a continuous s u r j e c t i o n of X onto a r e a l
2'
interval ; 3O
c'(x)d #
Proof.
0.
Assume X c o n t a i n s a s e t Q d e n s e - i n - i t s e l f .
Choose
d i s t i n c t p o i n t s xo,xl of Q y then d i s j o i n t closed neighborhoods of xOyx1 r e s p e c t i v e l y .
Vo,V1
Choose d i s t i n c t p o i n t s x o o , x o l
o f Q i n t h e i n t e r i o r o f V o and x l o , x l l
of Q i n t h e i n t e r i o r
Then c h o o s e d i s j o i n t c l o s e d n e i g h b o r h o o d s V o o , V o l
o f V1.
x o o , x o l r e s p e c t i v e l y i n V o and VloYVl1 i n Vl.
of xlo,xll
of
respectively
C o n t i n u i n g t h i s p r o c e s s i n d u c t i v e l y , we o b t a i n , f o r
(ij = 0 or 1 for j = l,...,n); each n , Zn closed s e t s V. i l . . . in d e n o t e t h e i r union by Zn. Finally, set Z =
nnZn.
F o r e a c h x E Z , t h e r e i s a u n i q u e s e q u e n c e { i n )(n
=
1,2,..*),
204
Chapter 7
w i t h in
=
.
0 o r 1 f o r a l l n , such t h a t xEnnVili2...i n
Let s x be t h e e l e m e n t i n t h e r e a l i n t e r v a l [ 0 , 1 ] w h i c h h a s t h e dyadic representation 0 . i i 1 2 mapping o f Z o n t o [ 0 , 1 ] ,
- - . in
* - . .
x t->s x i s t h e n a
and i s c l e a r l y continuous.
e x t e n s i o n t h e o r e m now g i v e s u s 2
0
The T i e t z e
. <s
Now assume t h e r e i s a c o n t i n u o u s s u r j e c t i o n Y X onto t a r e a l i n t e r v a l Y. Then C(Y) __ >C(X) i s an M l l i s o m o r p h i s m tt ( i n t o ) , and t h e r e f o r e C ' ( Y ) C'(X) i s s u r j e c t i v e . It
<s
f o l l o w s from ( 3 7 . 7 ) t h a t C ' ( Y ) d c st t ( C ' ( X ) d ) . ( i t c o n t a i n s t h e L e b e s g u e m e a s u r e on Y ) , C I ( X ) d h a v e 3'.
T h a t 3'
Since C'(Y)d# 0
# 0.
We t h u s
i m p l i e s 1' was shown i n ( 3 6 . 6 ) .
QED
Combining t h e a b o v e w i t h ( 3 6 . 7 ) , we o b t a i n e a s i l y :
( 3 7 . 1 0 ) C o r o l l a r y 1.
Let Z b e a c l o s e d s u b s e t o f X a n d J t h e
v a g u e l y c l o s e d band which i t g e n e r a t e s .
Then t h e f o l l o w i n g a r e
equivalent:
1'
'2
Z contains a dense-in-itself subset; Jd # 0 .
Corollary 2. (37.11) -
The f o l l o w i n g a r e e q u i v a l e n t :
1'
X is dense-in-itself;
2'
C ' (X)d i s v a g u e l y d e n s e i n C ' ( X ) ;
3'
c ~ ( x > , i s s e p a r a t i n g on
c(x).
(C(X) , C ' (X))-Duality
205
If X contains no dense-in-itself subset, it is called dispersed or scattered..
-
The equivalence of '1
and 3'
(37.9) can be stated as follows.
(37.12) Corollary 3.
The following are equivalent:
1'
X is dispersed;
2O
c'(x)d
=
0.
in
CHAPTER 8 C"
The i m b e d d i n g o f C(X)
538.
S i n c e C'(X)
(X)
i s an L - s p a c e , t h e r e s u l t s i n P a r t I1 on t h e
d u a l o f an L-space a l l a p p l y t o C"(X). existence of C(X). consider C(X) do s o .
Since
C l ( X )
The new f a c t o r i s t h e
i s s e p a r a t i n g on C ( X ) , w e c a n
as a R i e s z s u b s p a c e of
C1l(X)
(5131, and w e w i l l
We h a v e m o r e :
( 3 8 . 1 ) The u n i t
C(X)
i n C1'(X)
n(X)
of C(X)
i s a l s o t h e u n i t o f C"(X).
Thus
i s an MIL-subspace o f C " ( X ) .
T h i s f o l l o w s from ( 2 1 . 3 ) and ( 2 3 . 1 ) .
As w e p o i n t e d o u t i n 513, w h i l e t h e i m b e d d i n g o f C ( X )
C"(X)
in
p r e s e r v e s t h e suprema and i n f i m a o f f i n i t e s e t s ( t h e
l a t t i c e o p e r a t i o n s ) , it does n o t , i n g e n e r a l , p r e s e r v e t h o s e of i n f i n i t e s e t s .
(Thus i t i s n o t o r d e r c o n t i n u o u s . )
Hence-
f o r t h , t h e n o t a t i o n f = V A w i l l a l w a y s mean t h a t f i s t h e supremum o f A i n C " ( X ) ,
e v e n when A a n d f a r e b o t h i n C ( X ) . 206
C" (X)
And s i m i l a r l y f o r f
-f
c1
f.
207
I f we w a n t t o i n d i c a t e t h a t t h e s e
r e l a t i o n s h o l d i n C(X), w e w i l l w r i t e " f
''f
a
+
=
V A - i n C(X)" a n d
f i n C(X)".
( 3 8 . 2 ) Under t h e r e s t r i c t i o n o f t h e form ( * , . ) on C"(X)
t o C"(X)
x
K ( C ' ( X ) ) , Cf'(X)
=
x
C'(X)
A ( K ( C ' ( X ) ) ) , t h e s p a c e o f bounded
a f f i n e f u n c t i o n s on K ( C l ( X ) ) , a n d C(X) i s t h e s u b s p a c e o f vaguely continuous ones.
The f i r s t s t a t e m e n t was e s t a b l i s h e d i n ( 2 3 . 4 ) ,
the second,
i n (36.1).
S i n c e C"(X) i s a n M a - s p a c e , norm b o u n d e d n e s s i n Cl'(X) a n d o r d e r b o u n d e d n e s s i n C"(X)
are equivalent.
Thus
w e can
s i m p l y r e f e r t o a s e t ( o r a l i n e a r mapping) a s "bounded",
w e w i l l do s o .
and
( A l l t h i s of course a l s o h o l d s i n C(X).)
We r e c o r d a f u r t h e r s h a r p e n i n g o f t h e D i n i Theorem.
In
s p i t e o f t h e c o n v e n t i o n on o r d e r c o n v e r g e n c e a b o v e , w e a c t u a l l y do u s e t h e p h r a s e " i n Cf1(X)" i n 4'
below.
This i s t o emphasize
the contrast with the other three statements.
(38.3)
( D i n i Theorem).
For a bounded monotonic n e t { f } i n
C(X) a n d f E C ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t :
1'
I f a } c o n v e r g e s t o f normwise;
'2
{f } converges t o f weakly;
'3
{ f a ) converges t o f simply;
c1
c1
208
Chapter 8
' 4
{ f a } o r d e r c o n v e r g e s t o f i n C"(X).
P-r o o f .
The new s t a t e m e n t i s 4'.
T h a t 1'
implies 4
0
And, s i n c e e v e r y e l e m e n t o f C ' (X) i s o r d e r
f o l l o w s from ( 9 . 6 ) .
i m p l i e s .'2
c o n t i n u o u s on c l l ( x ) , 4'
QED
5 3 9 . Some s i m p l e s e q u e n c e s p a c e s
Some s e q u e n c e s p a c e s
w i l l r e c u r t h r o u g h o u t t h e work.
To
a v o i d u n n e c e s s a r y r e p e t i t i o n , w e c o l l e c t t h e m a t e r i a l on t h e s e here.
I t i s w e l l known, a n d i n any c a s e , e a s i l y v e r i f i e d .
Throughout t h i s g , T i s a f i x e d s e t . k"(T)
i s t h e s p a c e o f bounded f u n c t i o n s on T endowed w i t h
p o i n t w i s e a d d i t i o n , s c a l a r m u l t i p l i c a t i o n , and o r d e r , and w i t h t h e supremum norm.
I t i s a D e d e k i n d complete MI-space, w i t h t h e
f u n c t i o n n ( T ) €or u n i t . T R g e n e r a t e d by I l ( T ) .
Note t h a t i t i s t h e Riesz i d e a l o f
c o ( T ) w i l l d e n o t e t h e s u b s e t o f km(T) c o n s i s t i n g o f t h o s e f u n c t i o n s f which "vanish a t i n f i n i t y " :
set { t E T l If(t)I > i d e a l o f k"(T).
E }
is finite.
f o r every
E
> 0 , the
c o ( T ) i s a norm c l o s e d R i e s z
Note t h a t f o r e v e r y f E c o ( T ) , f ( t ) # 0 f o r
only a countable s e t of t ' s . c(T) i s t h e l i n e a r subspace co(T) I t t u r n s o u t t o be a n MIL-subspace.
+
W
n (T)
of km(T).
C"
(X)
209
1
We h a v e a l r e a d y d e f i n e d XO. (T) ( c f .
535).
We e m p h a s i z e t h a t t h e a b o v e s p a c e s a r e i n d e p e n d e n t o f a n y
t o p o l o g y w i t h w h i c h T may b e endowed.
F o r e x a m p l e , when we
1 1 d i s c u s s e d il ( T ) i n 535, t h e n , a s f a r a s il ( X ) was c o n c e r n e d , X
was s i m p l y a d i s c r e t e s e t . C'(X)a.
( N ot e t h a t t h i s h o l d s a l s o f o r
The t o p o l o g y o f X d o e s n o t e n t e r i n t o i t s p r o p e r t i e s
a s an L - s p a c e .
Under two d i f f e r e n t t o p o l o g i e s on X
t h a t X i s c o m pact - t h e r e s u l t i n g C ' ( X ) , ' s
-
such
w i l l be i d e n t i c a l .
Where t h e y w i l l d i f f e r i s i n t h e v a g u e t o p o l o g i e s . )
We r e c o r d t h e d u a l i t y p r o p e r t i e s o f o u r s p a c e s . w i t h t h e M- s p ace ( b u t n o t a n M I - s p a c e )
(39.1)
il 1( T )
=
( c o ( T ) ) ' = (c0(T))'
We s t a r t
co(T).
= ( c , ( T ) ) ~ under the
b i l i n e a r form , p ) = 'tETf ( t ) p ( t ) 1 f o r f E c o ( T ) , pE R ( T ) . (
(39.2)
am(T)
=
(al(T))' = (al(T)IC
=
(al(T)Ib under t h e
=
(c0(T))".
b i l i n e a r form ( f9p) = CtETf(t)p(t)
f o r fERm(T), PER' (TI.
Thus Rm(T)
And t h e
o r i g i n a l i m b e d d i n g o f co(T) i n am(T) c o i n c i d e s w i t h i t s c a n o n i c a l imbedding i n i t s b i d u a l .
Chapter 8
210
U n l i k e c o ( T ) , c ( T ) i s a n MIL-space h e n c e c a n b c r e p r e s e n t e d
as a C ( X ) .
The a p p r o p r i a t e X i s t h e c l a s s i c a l A l e x a n d r o f f o n e -
p o i n t c o m p a c t i f i c a t i o n a T o f T , T b e i n g c o n s i d e r e d t o have t h e d i s c r e t e - h e n c e l o c a l l y compact - t o p o l o g y . C ( n T ) , and ( c ( T ) ) '
=
C'(aT).
Thus c ( T )
=
Now aT i s d i s p e r s e d , h e n c e
C ' ( C X T )=~ 0 ( 3 7 . 1 2 ) , a n d we h a v e C ' ( a T )
=
C ' ( ~ L T )= ~ gl[aT).
L e t u s d e n o t e t h e new p o i n t i n u T b y t,:
aT
=
T IJ
{t,}
Each t E T i s a n o r d e r c o n t i n u o u s l i n e a r f u n c t i o n a l o n C('T), 1 1 w h i l e tm i s n o t , s o we h a v e C ' ( a T ) = 9. ( T ) 3 W t , , with k (T) ( C ( a ~ )'.
.
=
Summing up :
From ( i i ) and ( 3 9 . 2 ) ,
(39.4)
km(T) c a n a l s o b e w r i t t e n a s a C ( X ) .
The a p p r o p r i a t e X
i s t h e S t o n e - C e c h c o m p a c t i f i c a t i o n RT o f T , T b e i n g c o n s i d e r e d
Let u s d e n o t e t h e p a r t B-T
t o have t h e d i s c r e t e topology. Z:
RT = T I J
Z (Z i s a c l o s e d s e t i n PT, a n d T an o p e n o n e ) .
I t i s e a s i l y v e r i f i e d t h a t ZL ( 3 6 . 7 ) , C ' ( @ T ) = L1(T)
=
3 C'(Z).
co(T).
Hence, by ( 3 9 . 1 ) and
Summing u p ,
by
C" (X)
211
( i i i ) h e r e f o l l o w s from ( 3 9 . 2 ) a n d ( 2 3 . 5 ) .
A s i s c u s t o m a r y , w e w i l l d e n o t e R"(N),
1
R (N) s i m p l y b y Rm,
c o , c , and R
customary t o s a y t h a t c
0
c o ( N ) , c(IN), a n d
1
.
A word o f w a r n i n g : I t i s 1 a n d c h a v e t h e same d u a l s , v i z R .
In t h e p r e s e n t work, t h i s i s an i n c o r r e c t s t a t e m e n t . k1
=
.9
1
(N), b u t c'
= k
1
(&).
W h i l e IN a n d aW
(c0)'
=
h a v e t h e same
c a r d i n a l i t y , t h e p o i n t t m i n aW h a s d i f f e r e n t p r o p e r t i e s t h a n t h e p o i n t s i n IN.
As we p o i n t e d o u t a b o v e , t h e p o i n t s o f N a r e
o r d e r c o n t i n u o u s on c , w h i l e t w i s n o t . N o t e t h a t , a s a c o n s e q u e n c e , we m u s t a l s o d i s t i n g u i s h between Rm
=
R"(N)
a n d R"(aN).
PART I V
THE STRUCTURE OF C ” (X) : BEGINNINGS
212
CIIAPTER 9
THE FUNDAMENTAL SUBSPACES OF C" (X)
5 4 0 . C"(X)a a n d C"(X)d
The d e c o m p o s i t i o n C ' (X)
C ' (X)a 3 C ' ( X ) d
=
i n t o the atomic
and d i f f u s e p a r t s o f C ' ( X ) g i v e s u s t h e d e c o m p o s i t i o n C"(X) = C'l(X)a 0 C"(X)d, w h e r e C"(X)a
[C' ( X ) d ] L a n d C'l(X)d
=
=
By t h e t e r m i n o l o g y a d o p t e d i n 5 2 6 , C1'(X)a and
[C'(X)a]L.
C ' ( X ) a a r e d u a l b a n d s , w h i c h i s why w e u s e t h e n o t a t i o n C"(X)a; and s i m i l a r l y f o r c " ( x ) d and C ' ( X ) d .
We e x a m i n e t h e b a n d C"(X)a. C''(X)a = [ C ' ( X ) a ] ' , we h a v e C ' ( X ) a every fEC"(X)a,f
Remark.
=
a"(X).
Specifically, for
Note t h a t i n t h e p r e s e n t w o r k , w h i l e c(X) a n d =
C"(X)a,
1( X ) , b e i n g t h e p r e d u a l
i s never contained i n the l a t t e r .
The i d e n t i t y o f t h e d u a l p a i r (C"(X)a, (k"(X),a
1
R (X), and
Cx,-XX,xEC' (X)a, ( f , p ) = EXEX( f , x ) X x ( 3 9 . 2 ) .
co(X) a r e c o n t a i n e d i n iz"(X) o f a"(X),
=
=
i s t h e f u n c t i o n on X w i t h t h e v a l u e ( f , x ) on
e a c h xEX; s o f o r i-1 _ I _
S i n c e C'(X)a
1
C1(X)a) w i t h
(X)) means t h a t t h e p r o p e r t i e s o f C ' ( X ) a a r e w e l l
known, a n d e v e n t r a n s p a r e n t .
We r e c o r d two t h a t we w i l l u s e
frequently.
213
Chapter 9
214
(40.1)
F o r A c C"(X)a a n d fEC"(X),
,
the following are cqui-
valent:
'1
f
2'
(f,x)
=
VA; supgEA(g,x) f o r a l l
=
EX.
I t i s i m m e d i a t e t h a t t h e t o p o l o g y on C"(X)u i n d u c e d by
a(C"(X) , C ' ( X ) ) c o i n c i d e s w i t h o ( C " ( X ) a ,
C ' (X)u).
'Thus w e can
s i m p l y t a l k a b o u t t h e v a g u e t o p o l o g y on C''(X)a w i t h o u t ambiguity.
(40.2) Corollary.
F o r a bounded n e t { f } i n C"(X)a a n d c1
f E C " (X)a, t h e f o l l o w i n g a r e e q u i v a l e n t : 1'
{f } o r d e r converges t o f ;
2'
{fa} c o n v e r g e s v a g u e l y t o f ;
3'
(f,x)
c1
=
lim (f
u
x) f o r a l l
a,
XEX.
We a d o p t t h e same c o n v e n t i o n f o r c o m p o n e n t s i n C"(X)u and
C''(X)d t h a t we d i d i n 5 3 5 f o r components i n C t ( X ) u and C'(X),: p r o j a and p r o j d w i l l d e n o t e t h e b a n d p r o j e c t i o n s o n t o C"(X), a n d C"(X)d r e s p e c t i v e l y ; f o r f E C " ( X ) , f a and f d w i l l b e t h e c o r r e s p o n d i n g c o m p o n e n t s ; a n d f o r A c C''(X), we w i l l d e n o t e p r o j a ( A ) and p r o j d ( A ) by Au and A d . Now c o n s i d e r t h e image C(X)u o f C(X) u n d e r p r o j , .
Since
X i s s e p a r a t i n g on C(X), p r o j a c l e a r l y maps C(X) M l - i s o m o r p h i c -
a l l y o n t o C(X)u.
Even m o r e , s i n c e e a c h fEC(X) i s d e f i n e d by
S u b s p a c e s o f C" ( X )
i t s v a l u e s on X , X,
215
i t f o l l o w s t h a t i f R € C ( X ) ~ i s c o n t i n u o u s on
t h e n t h e r e e x i s t s fEC(X) s u c h t h a t f u
=
g.
Otherwise s t a t e d
C(X)a c o n s i s t s p r e c i s e l y o f t h o s e e l e m e n t s o f C"(X)a w h i c h a r e c o n t i n u o u s on X .
i n g e n e r a l , C(X)a # C ( X ) ! !
Nevertheless,
Given f E C ( X ) , f a i s t h e e l e m e n t o f C"(X)u w h i c h a g r e e s w i t h f on e v e r y xEX, s o " l o o k s l i k e " f .
But f a d o e s n o t c o i n c i d e w i t h
f o n C ' ( X ) d i n g e n e r a l ; fa v a n i s h e s on C ' ( X ) d w h i l e f n e e d n o t .
A s t r i k i n g e x a m p l e i s f u r n i s h e d b y n(X)
for X t h e r e a l i n t e r v a l
[0,1].
Il(X)a h a s t h e c o n s t a n t v a l u e 1 on
C"(X)d;
in particular,
=
1 but ( l ( X ) a , u )
=
X b u t v a n i s h e s on
f o r t h e Lebesgue m e a s u r e
u on X ,
(l(X),p)
0.
W h i l e C(X)a i s M a - i s o m o r p h i c w i t h C ( X ) , t h e i m b e d d i n g o f C(X)a i n C t ' ( X ) a
i s i n a d e q u a t e f o r t e l l i n g u s a b o u t t h e imbedd( w h i c h i s e s s e n t i a l l y w h a t t h i s work i s
i n g o f C(X) i n C ' l ( X )
However, w e r e c o r d h e r e a p r o p e r t y f o r w h i c h i t
about).
Remember t h a t V A i n '1
adequate. i n C"(X)
(40.3)
b e l o w means t h e supremum
.
For A c C(X)
1'
f
2'
f a = VA,.
= VA;
_Proof. implies 2
0
and f E C ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t :
.
S i n c e b a n d p r o j e c t i o n p r e s e r v e s s u p r e m a , '1 Assume '2
holds.
By a d j o i n i n g s u p r e m a o f f i n i t e
s u b s e t s o f A t o A , we c a n r e d u c e t h e p r o b l e m t o t h e f o l l o w i n g :
Let I f c 1 } b e a n a s c e n d i n g n e t i n C ( X )
and f € C ( X ) : i f (fa)=l.fu
216
Chapter 9
(in C1l(X)u), show that fa+f (in Ctt(X)).
This follows f r o m
(40.2) and the Dini Theorem (38.3). QED We have been discussing C(X)a.
What about C(X)
The latter may vary from 0 to all of C(X).
n
C”(X)a?
Specifically, from
(37.11):
(40.4) Theorem. The following are equivalent: 1’
X is dense-in-itself;
zo
c(x) n
C ~ I ( X )=~ 0 .
And from (37.12):
(40.5) Theorem. The following are equivalent: 1’
X is dispersed;
2O
C(X) c cyX)a.
C’(X)a C(X)
n
is always separating on C(X),
Ct‘(X)d
=
0.
so we always have
Combining this with (40.4), we have that
for X dense-in-itself, C(X)
has only 0 in common with both
Ct’(X)u and C t t ( X ) d .
A final property of C(X),.
Recall (cf.141
that f o r a
S u b s p a c e s o f C"(X)
217
s u b s e t A o f a R i e s z s p a c e E , A(1) d e n o t e s t h e s e t o f a l l l i m i t s o f n e t s i n A which a r e o r d e r c o n v e r g e n t i n E .
( 4 0 . 6 ) Every e l e m e n t o f C1l(X)a i s t h e l i m i t o f an o r d e r c o n -
v e r g e n t n e t i n c ( x ) ~ : [ C ( X ) ~ I ( ' )= C ~ I ( X ) ~ .
Proof.
C o n s i d e r f€C"(X),,
The collection.&!
and we c a n assume 0 < f < ll(X)u.
= { a } of a l l f i n i t e s u b s e t s of X i s a d i r e c t e d
s e t under i n c l u s i o n .
We w i l l o b t a i n a n e t i n C(X)u, i n d e x e d by
A , which o r d e r c o n v e r g e s t o f .
Given a
=
{ x l , - + . , x n ) , choose
gaEC(X) s u c h t h a t 0 < g (i = l , * * - , n ) . a -< n ( X ) and g a ( x i ) = f ( x i ) Then ( f , x ) = l i m a ( g a , x ) = l i m a ( ( g a ) a , x ) f o r e v e r y xEX. It f o l l o w s from ( 4 0 . 2 )
t h a t (ga)a
-t
f.
QED
As an i l l u s t r a t i o n o f o u r e a r l i e r s t a t e m e n t t h a t t h e
imbedding o f C(X)u i n C 1 l ( X ) u d o e s n o t t e l l u s a b o u t t h e imbeddi n g o f C(X) i n Cll(X), we w i l l s e e l a t e r (548) t h a t , i n c o n t r a s t t o t h e above r e s u l t , C(X)(')
i s a p r o p e r s u b s e t o f C"(X).
5 4 1 . The b a s i c bands and Cg(X)
We f i r s t i n t r o d u c e t h e B a i r e e l e m e n t s o f C"(X) b r i e f l y , i n o r d e r t o e s t a b l i s h t h e i m p o r t a n t theorem ( 4 1 . 3 ) .
The a - o r d e r
c l o s u r e o f C(X) i n Cl'(X) w i l l be c a l l e d t h e B a i r e s u b s p a c e o f
218
Chapter 9
C"(X),
a n d d e n o t e d by B a ( X ) .
B a i r e e l e m e n t s o f C"(X).
-
ordinal
0 c
c(
< fi,{>
I t s e l e m e n t s w i l l be c a l l e d t h e
S e t Ba(X)O
=
C(X), and f o r each
t h e f i r s t uncountable o r d i n a l , l e t
Ba(X)a b c t h e s e t o f a l l l i m i t s o f o r d e r c o n v e r g e n t s e q u e n c e s i n IJ
=
--
O
Ba(X)B.
' J O <-a < Q
*
Then C ( X ) = Ba(X)O c B a ( X ) l c . . - c Ba(X) (Y
Ba(X)a
=
Ba(X).
The s u b s p a c e s Ba(X)
(1
(0 < cx c (?)
w i l l be c a l l e d t h e B a i r e c l a s s e s o f C " ( X ) .
( 4 1 . 1 ) Theorem.
E v e r y B a i r e c l a s s i s an MIL-subspace o f C"(X).
Ba(X) i s a 0 - o r d e r c l o s e d ME-subspace o f C'l(X).
The f i r s t s t a t e m e n t f o l l o w s f r o m ( 1 6 . 1 2 ) ; (5.2),
t h e s e c o n d , from
t h e d i s c u s s i o n i n 5 8 , and ( 9 . 1 0 ) .
Cons i d e r a b a s i c b a n d C"(X)
u
of C"(X)
( t h a t i s , lJEC'(X)
i s t h e band o f C"(X) d u a l t o t h e band C ' ( X ) (cf. 1-1 1-1 R e c a l l t h a t f o r f E C " ( X ) , t h e component o f f i n C"(X)
and C"(X) 527)).
i s d e n o t e d by f
1'
u'
and f o r A c C"(X),
u n d e r t h e p r o j e c t i o n i n t o C"(X)
P
t h e image o f A i n C"(X)
i s d e n o t e d by A
1'
. LJ
1 C ' ( X ) l - l c a n b e i d e n t i f i e d w i t h t h e s p a c e L (p) ____ Remark.
as t h e d u a l o f C'(X) 1-1' LJ' Thus C ' ( X ) i s t h e "home" o f
( t h e Radon-Nikodym T h e o r e m ) , s o C"(X)
can be i d e n t i f i e d w i t h L m ( p ) . 1 t h e s p a c e s L ( p ) , a n d C"(X) t h a t o f t h e s p a c e s L m ( u ) ,
1-1 r u n n i n g
t h r o u g h t h e Radon m e a s u r e s . We saw i n ( 4 0 . 6 )
t h a t C"(X)a = [ C ( X ) a ] ( l ) .
b a n d , we h a v e a n e v e n s t r o n g e r r e s u l t
For a b a s i c
Subspaces of Ct1(X) (41.2) Theorem.
Given uEC'(X),
every fEC"(X)
an order convergent sequence in C(X)
Proof.
C(X),,
it is u ( C " ( X )
11
P
is thc limit of
.
is separating on C'(X)
u (since C(X) is), so
)-dense in C"(X)
It follows from the
C'(X)
Ll '
219
I'
1J'
discussion in the opening paragraph of 5 2 5 that C(X)
101
(C'l(X)lJ,C' (X)l-l)-densein C"(X),,.
in C 1 ' ( X )
1'
under the norm
A fortiori, it is dense
1-1'
and we can assume 0 5 f 5 n(X)
By the above, there is a sequence {gn} c C(X)p -
gn;I11
limnllf - g i
n
=
0.
is also
(1 .{I 1-1 .
Now consider f€Cl'(X)
limnll f
li
Then,
n(X)l-lilU = 0.
]I - [ I p
L1
.
such that
being a Riesz norm,
(27.2) now gives the desired
result. QED
We can now establish the theorem mentioned at the beginning o f the 5 : the canonical band projection of C"(X) Cll(X),, maps the second Baire class Ba(X)2
onto
onto all of C1l(X)u.
This is the classical theorem that for every U , each element of
Lm(p) -
which is an equivalence class of u-integrable
functions - contains a function of the second Baire class.
(41.3)
Proof.
Consider fEC"(X),,
.
By (41. 2) above, there is a
sequence ifn? in C(X) such that (fn),,
-+
f.
We can assume
Chapter 9
220
{ f n } i s bounded: i n e f f e c t , l e t
=
IIfll; s o - x I ( X )
< f < P -
All(X),, ; t h e n we n e e d o n l y r e p l a c e e a c h f n by [fnV ( - x l l ( X ) ) Now s e t g
(All(X)).
=
limsupn f n
=
AnVmZnfm.
Then g E B a ( X ) 2
and - s i n c e b a n d p r o j e c t i o n p r e s e r v e s suprema and i n f i m a
-
gP = limsupn(fn),, = f .
QED
By E x e r c i s e 23 o f C h a p t e r 1 , t h e u n i o n o f a c o u n t a b l e s e t of p r i n c i p a l bands o f Cl(X) i s c o n t a i n e d i n a p r i n c i p a l b a n d . I t follows t h e union of a countable s e t of b a s i c bands o f
i s c o n t a i n e d i n a b a s i c band.
C"(X)
One c o n s e q u e n c e i s t h a t
t h e u n i o n o f a l l t h e b a s i c b a n d s o f Ctf(X) i s a l s o t h e i r ( a l g e b r a i c ) sum, h e n c e a R i e s z i d e a l .
( 4 1 . 4 ) C:(X)
We d e n o t e i t by C;(X).
i s a 8 - o r d e r c l o s e d R i e s z i d e a l o f C"(X) whose
o r d e r c l o s u r e i s C"(X).
T h a t C''(X) remarks.
i s o - o r d e r c l o s e d f o l l o w s from t h e a b o v e
Since it i s a Riesz i d e a l , the statement t h a t i t s
o r d e r c l o s u r e i s Ctt(X) i s e q u i v a l e n t t o t h e ( s t r o n g ) s t a t e m e n t t h a t e v e r y fEC"(X)+ below.
i s t h e supremum o f t h e e l e m e n t s o f C:(X)
T h i s f o l l o w s e a s i l y from t h e f a c t t h a t e v e r y band o f
Cll(X) c o n t a i n s a b a s i c b a n d .
We c a n d e s c r i b e C:(X)
n
C f t ( X ) a (= [C:(X)la)
S i n c e e v e r y e l e m e n t o f C l ( X ) a i s o f t h e form P
precisely. =
znXxnxn, a
band o f Ctt(X)u i s b a s i c i f and o n l y i f i t c o n s i s t s o f a l l t h e
S u b s p a c e s o f Ct'(X)
elements o f C"(X)a
which v a n i s h o f f some c o u n t a b l e s u b s e t o f X .
Thus t h e b a s i c bands o f C"(X)a able subset of X I .
(41.5)
Ck(X)
221
a r e t h e b a n d s {L"(Q)
IQ a count-
I t follows:
C't(X)a c o n s i s t s o f a l l fEC"(X)a
such t h a t
(f,x) # 0 on o n l y a c o u n t a b l e s e t o f x ' s ( d e p e n d i n g on f ) .
(41.6)
Corollary.
C:(X)
n
C't(X)a i s t h e o - o r d e r c l o s u r e o f
co (XI
5 4 2 , The " s e m i c o n t i n u o u s " e l e m e n t s
I n e x p l o r i n g how t h e s t r u c t u r e o f C'l(X) i s d e t e r m i n e d by t h e MIL-subspace C(X), o u r f i r s t a p p r o a c h , t h e one t o be f o l lowed i n t h e r e m a i n d e r o f t h i s c h a p t e r , w i l l be t o l o o k f o r " l a y e r s " o f C"(X)
"between"
s i b l e " from C(X). o f such kind. C(X)
C(X) and C"(X) which a r e " a c c e s -
Our p r i n c i p a l i n t e r e s t w i l l b e MIL-subspaces
The t o p o l g i e s on
Cll(X) a r e o f no h e l p i n t h i s .
i s c l o s e d u n d e r t h e norm t o p o l o g y o f Cl'(X), and u n d e r
o(Cll(X) , C ' ( X ) ) , d e n s e i n C"(X).
101 (Clt(X) , C ' ( X ) ) ,
and -r(Cl'(X) , C ' ( X ) ) , i t i s
Thus t h e norm t o p o l o g y i s t o o f i n e and t h e
o t h e r t h r e e a r e too coarse. I n c o n t r a s t t o t h i s , t h e use of o r d e r convergence e n a b l e s
u s t o u n c o v e r v a r i o u s s u b s p a c e s o f t h e k i n d we a r e s e e k i n g .
Chapter 9
222
(An e x c e p t i o n t o t h e c o n c l u s i o n o f t h e a b o v e p a r a g r a p h i s s u p p l i e d by s e q u e n t i a l convergence i n t h e above t o p o l o g i e s .
I t e n a b l e s u s t o d i s c o v e r and s t u d y t h e v a r i o u s R a i r e c l a s s e s . tiowever, t h e same r e s u l t c a n b e o b t a i n e d u s i n g a - o r d e r c o n vergence.)
A c t u a l l y , t h e f i r s t s u b s e t s w e examine a r e n o t l i n e a r s u b -
We n e e d some p r e l i m i n a r i e s .
spaces.
A subset P of a vector
s p a c e i s c a l l e d a wedge i f i t i s c l o s e d u n d e r a d d i t i o n a n d Note t h a t a c o n e
m u l t i p l i c a t i o n by n o n - n e g a t i v e s c a l a r s . (cf.
§ 1 ) i s a wedge w h i c h c o n t a i n s no l i n e a r s u b s p a c e o t h e r
than 0.
I f P i s a wedge, t h e n P
(-P) and P
-
P are both linear
s u b s p a c e s , t h e f o r m e r t h e l a r g e s t o n e c o n t a i n e d i n P and t h e l a t t e r t h e s m a l l e s t one c o n t a i n i n g P.
(So P
- P is the linear
s u b s p a c e g e n e r a t e d by P . )
(42.1)
I f a wedge P i n a R i e s z s p a c e E i s a l s o a s u b l a t t i c e o f
E, then P t h a t aVbEP
- P is a Riesz subspace o f E.
If fact, it suffices
f o r a l l a,bEP.
T h i s f o l l o w s from ( a - b)'
= avb
- b.
Given a s u b s e t A o f a R i e s z s p a c e E , w e s e t
A'
='A
=
CaEE
{aEE
1 1
a = V B f o r some B c A);
a = A B f o r some B c A ) .
Subspaces of C " ( X )
Note that (i) (A',)' A c A'',
and (iii) - A '
=
= A'
and (Au)'
223
=
A',
(ii) A c A'
and
(-AIu.
(42.2) If P is a wedge in a Riesz space - in particular, if P is a linear subspace
-
than P p and Pu are wedges.
The verification is straightforward. If A is a subset of a Riesz space E, then, as we noted in (i) above, 'A rema.
is closed under the operation of taking sup-
In general, it is not closed under the operation of tak-
ing infima.
And similar statements hold for AU with "suprema"
and "infima" interchanged. lattice, then A '
However, by ( 2 . 4 ) , if A is a sub~
is closed under the operation of taking
infima of finite subsets and AU, under the operation of taking infima of finite subsets.
We thus have
(42.3) If A is a sublattice of a Riesz space E, then so are A R
and AU.
We now turn to C " ( X ) .
Consider the wedges C ( X ) '
We will call the elements of C(X)' of C(X)'
the u s c ones, of C"(X).
and C(X)'.
the ~ s elements, c and those The notations " R s c "
and " u s c "
are of course suggestive of "lowersemicontinuous" and "uppersemicontinuous" respectively, but they are for these words.
=
abbreviations
224
Chapter 9
By t h e p r e c e d i n g , C(X)' l a t t i c e s o f C"(X).
(42.4)
C(X)'
P roof. -
and C(X)'
a r e wedges and s u b -
In a d d i t i o n ,
and C(X)'
a r e norm c l o s e d .
C o n s i d e r f i n t h e n o r m - c l o s u r e o f C(X)'.
each n = 1 , 2 , . * . ,
c h o o s e fn€C(X)'
For
< l/n. s u c h t h a t ( I f n - f[l -
Then f - (l/n)n(X) < f -
< f
n -
+
(l/n)n(X),
hence < f n - (l/n)n(X) < f , f - (2/n)n(x) -
hence, i n t u r n , f = NOW
v n [fn
- n ( x ) c c ( x ) c c(x)',
-
(l/n)n(X)].
s o [fn - ( I / ~ ) R ( X ) I : C ( X ) ~f o r a l l n .
I t f o l l o w s f€C(X)R. QED
S i n c e C(X) = - C ( X ) , we have C(X>u f o r a€C(X)'
( a - u)EC(X)'
and u€C(X)',
-C(X)'.
=
This g i v e s i n t u r n t h a t ( a - mu)€C(X)'
Consequently,
, and ( u - a)€C(X)'. and ( u - R A U ) € C ( X ) ~ .
The f i r s t o f t h e s e , f o r e x a m p l e , f o l l o w s from t h e i d e n t i t y R
- mu
=
( a - u)VO and t h e f a c t t h a t C(X)'
For s i m p l i c i t y , we w i l l w r i t e C(X)" similarly for C ( X ) ' ~ ,c and C(X)uu = C(X)',
XIuu,
C(X R'
and C(X)uR.
and C(X)"
i s a sublattice. f o r (C(X)')&, While C(X)"
and =
a r e new i n g e n e r a l .
C(X)'
S u b s p a c e s of C t t ( X )
(42.5)
C ( x p
In e f f e c t , - ( C ( X ) ' ) ~
Since C(X) c C(X)u
=
=
225
-C(X)RU.
(-c(x)')'
=
and C ( X ) c C ( X ) ' ,
((-C(X)p)Q
=
(C(Xp)Q.
we a l s o have
C(X)Q c C(Xp',
(42.6)
c ( X p c C(X)RU.
The argument u s e d f o r ( 4 2 . 4 ) g i v e s u s t h a t C ( X ) I u C ( X ) U R a r e norm c l o s e d a l s o .
and
Unexpectedly perhaps, t h e y a r e ,
i n f a c t , a-order closed:
( 4 2 . 7 ) -~ Theorem. (i)
C ( X ) R U i s c l o s e d under t h e o p e r a t i o n s of t a k i n g
i n f i m a o f a r b i t r a r y s u b s e t s and suprema o f c o u n t a b l e s u b s e t s . ( i i ) C(X)"
i s c l o s e d under t h e o p e r a t i o n s of t a k i n g
suprema o f a r b i t r a r y s u b s e t s and i n f i m a o f c o u n t a b l e s u b s e t s .
Proof.
We show C ( X ) R U i s c l o s e d u n d e r t h e o p e r a t i o n o f
t a k i n g suprema o f c o u n t a b l e s u b s e t s . ifn} c C(X)lU.
fl 5 f 2 nl(X)
Suppose f = v n f n ,
S i n c e C ( X ) R U i s a s u b l a t t i c e , w e c a n assume
z - - -Let .
A
=
> f f o r sonte n ) .
EESC(X)'~1 R > f j
(A i s n o t empty, s i n c e
We show f = h A , h e n c e l i e s i n C ( X ) Q u .
226
Chapter 9
S i n c e C ( X ) k i s a l s o a s u b l a t t i c e , A i s f i l t e r i n g downward, s o i t i s enough by ( 1 0 . 9 ) ,
-___ Lemma.
t o prove t h e
F o r e a c h u E C ' ( X ) + and
E
> 0, there exists LEA
such t h a t ( t , l J ><
(f,u>
+
2E.
F o r s i m p l i c i t y o f n o t a t i o n , we assume 0 < f <
uEC'(X)+
and c > 0 .
n(X).
Fix
We n o t e f i r s t
In e f f e c t , t h e r e i s a descending n e t i n C(X)'
o r d e r con-
v e r g i n g t o f n , a n d we c a n as s um e i t s members a r e a l l < n(X). E v e n t u a l l y , some member o f t h e n e t w i l l h a v e
these three
properties. Now s e t Ln
=
V5=lti
[n
( i ) an d ( i i ) a r e c l e a r . n
=
1, s i n c e fil
=
ki.
=
1,2,.'-).
Then
Also ( i i i ) and ( i v ) hold f o r
Assume ( i v ) h o l d s f o r n .
We show t h a t
Subspaces o f C"(X)
then ( i i i ) and ( i v ) hold f o r n
1.
+
227
This w i l l e s t a b l i s h the
four propert i es. (Rn+l'l-l)
=
(RnVRn+yd
=
(R;+]d
<
(R;+lW)
+
+
< ( fn+],U)
+
(fn+]d)
+
=
Thus ( i i i ) h o l d s f o r n
+
- R;+$+,!d
((an
( (Rn - f n + l ) + , " ) E
(1 - P ) E
+
(2 - 2 - n ) E *
1.
so
Thus ( i v ) h o l d s f o r n + 1.
n IIn '. w e show R s a t i s f i e s t h e Lemma, w h i c h w i l l complete t h e proof. L€C(X)' , and by (ii) , R 2 f. Thus Now s e t R
LEA.
= V
now (f,v)
=
limn(fn,v),
(a,~)
=
limn(Rn,u).
and
S i n c e , by ( i i i ) , (an,v) 5 (fn,v)
we h a v e
+
2s f o r a l l n ,
Chapter 9
228
Applying ( 7 . 4 ) ,
we have t h e
Corollary.
C ( X ) R U and C(X)"
(42.8)
are o-order closed.
5 4 3 . The Up-down-up theorem
C o n s i d e r t h e two c h a i n s :
C(X)
C(X)R c C(X)RU c C(X)RUR c
* '
C ( x p c C(X)Ut c c(x)'Ru
-
-
= c
* *
Wedges a t t h e same s t a g e i n t h e two c h a i n s a r e t h e n e g a t i v e s of e a c h o t h e r , and t h e r e a r e v a r i o u s c r o s s i n c l u s i o n s ( c f . ( 4 2 . 6 ) , f o r example). chains.
A n a t u r a l q u e s t i o n i s : how l o n g a r e t h e s e
We show t h e y a r e q u i t e s h o r t .
F i r s t , a p r o p o s i t i o n which we w i l
n e e d , and which i s o f
interest in itself.
Suppose we have p vEC'(X) s u c h t h a t FI > 0 ,
v > 0 , and
A s we know, t h e r e e x i s t s fEC"(X)+
~JAV=
0.
t h a t ( f , p ) = 0 , ( f , w ) > 0 (11.6).
such
I n f a c t , we c a n choose f t o
be U S C :
( 4 3 . 1 ) Given p,wEC'(X)
s u c h t h a t p > 0 , w > 0 , and p.hv
t h e r e e x i s t s W € C ( X ) ~s u c h t h a t w
2
0 , ( w , p ) = 0, ( w , w )
=
0,
> 0.
S u b s p a c e s o f C"(X)
Proof.
I[ u[[ =
We c a n a s s u m e
I _
I I v / [ = 1.
229
We w i l l d e f i n e , b y
i n d u c t i o n , a s e q u e n c e I f n ] i n C(X)+ s a t i s f y i n g (i)
> f2 >...9 fl -
(ii)
(fn,p>
5
(n = 1 , 2 , . . - ) ,
l/zn+l
(iii) (fn,u> > 1/2
+
(n
1/2"+'
=
1,2,...)
Choose f l , g l E C ( X ) + s u c h t h a t fl
+
(f,,!J> (cf.
(10.5)).
fl,
.,fn-l
g1 = -t
m i ,
(gp") I 1 / 2
Then f l h a s t h e t h r e e p r o p e r t i e s .
have been chosen.
fn
+
(fn,u)
gn +
=
Assume
Choose f n , g n E C ( X ) +
such t h a t
fn-y
(gn,") 5
Then ( f n , v ) = ( f n - l , v ) 1/2 + 1/2"+l,
2
- ( g n , v ) 2. 1 / 2
+ l/Zn
- 1/2"+'
and t h u s f n h a s t h e t h r e e p r o p e r t i e s .
=
w = A f n n
i s now t h e d e s i r e d e l e m e n t o f C(X)u. QED
(43.2)
(Up-down-up T h e o r e m ) . C(X)2UR = C(X)"R"
= C"
(X) .
P ro o f . The c o r e o f t h e t h e o r e m i s c o n t a i n e d i n t h e
f o l l o w i n g Lemma ( c f . 5 4 1 f o r a d i s c u s s i o n o f C:(X)).
P r o o f o f t h e Lemma.
.
2 30
Chapter 9
( I ) I t i s e n o u g h t o show
c (X I n e f f e c t , s u p p o s e t h i s i n c l u s i o n h o l d s ; we show t h a t
I i s a Dedekind
t h e n , f o r e v e r y b a s i c band I , I, c C(X)RU. complete MI-space w i t h I ( X ) ,
f o r u n i t , hence, by the
F r e u d e n t h a l Theorem ( 1 7 . 1 0 ) , I + i s t h e norm c l o s u r e o f t h e s e t of p o s i t i v e l i n e a r combinations o f elements of&(ll(X))
n
I.
S i n c e C(X)Qu i s a norm c l o s e d w e d g e , t h i s e s t a b l i s h e s ( I ) . CL(X); w e h a v e t o show e E C ( X ) e U .
So c o n s i d e r e E t ( n ( X ) )
e l i e s i n a b a s i c b a n d , s o e = ll(X)v f o r some v E C ' ( X ) , a n d we c a n t a k e p € C ' (X)+ w i t h
Il(X),
EC(X)9'u
11 1111
1.
=
The s t a t e m e n t t h a t
i s e q u i v a l e n t t o : n(X) - Il(X),IEC(X)S.
We show
t h i s l a s t statement.
(11) F o r e v e r y v > 0 s u c h t h a t
ponent e(v) of
n(X)
,IAV
= 0,
t h e r e e x i s t s a com-
,
s u c h t h a t e(v)EC(X)"
(e(v),u) = 0,
( e ( v ) , v > > 0.
Let w be 'the u s c e l e m e n t o b t a i n e d i n ( 4 3 . 1 ) , and s e t e ( v ) = I ( X ) w ( t h e c o m p o n e n t o f n(X) i n t h e b a n d g e n e r a t e d b y w ) Then e ( v )
=
vn[(nw)An(X)],
hence l i e s i n C(X)UR, and c l e a r l y
has t h e desired properties. We c o m p l e t e t h e p r o o f o f t h e Lemma b y s h o w i n g t h a t n ( x ) - n ( x l v = v C e ( v ) Iv > 0 ,
,IAV
D e n o t e t h e supremum on t h e r i g h t b y d . d 5 n(X) - n(X),.
Suppose ( l t ( X )
=
01. dAlt(X)p = 0 , h e n c e
- n(x)u)
- d > 0.
Let I b e
t h e band i t g e n e r a t e s and J t h e band o f Cl(X) d u a l t o I . Choose v E J , v > 0 .
Then pAv
=
0 , s o we have a c o r r e s p o n d i n g
2 31
S u b s p a c e s o f C" (X)
e(u).
Rut t h e n e ( v ) A d
=
0 , contradicting the definition of d.
We c a n now e s t a b l i s h t h e t h e o r e m ( 4 3 . 2 ) .
Every element
o f C"(X)+ i s t h e supremum o f some s u b s e t o f C:(X)+.
t h e Lcmma, C"(X)+ c C(X) fEC(X)"'. i n C(X)
lies in
.
Hence b y
C o n s i d e r a n y f E C " ( X ) : w e show
N o t e f i r s t t h a t f o r e v e r y n , nn(X) a n d -nll(X) l i e
,
2
Choose n s u c h t h a t f
h e n c e i n C(X)'"'.
Then ( s i n c e C(X)'up c(x)'~'.
0 u'
-nn(X).
i s a wedge) f + n n ( x ) > 0, hence l i e s i n
[Ience, f i n a l l y , f
=
(f
+
nn(x))
+
(-nn(x)) also
c(x)'~'. QEII
The Up-down-up t h e o r e m i s c o n t a i n e d i n ___ Note. [25].
my p a p e r
P e d e r s o n ' s g e n e r a l Up-down-up t h e o r e m f o r C * - a l g e b r a s
appeared i n 1972 [41].
F r e m l i n p u b l i s h e d h i s Up-down-up-down
t h e o r e m f o r p e r f e c t R i e s z s p a c e s i n 1 9 6 7 [16].
5 4 4 . The s u b s p a c e U ( X )
of universally
integrable elements
We now h a v e
C ( X p c C(X)RU c C(X)RU'
CIX)
=
= C"(X)
C ( x p c C(XpR
C
.
C(XpRU
Of t h e s e , t h e i n t e r m e d i a t e members C(X)'
a n d C(X)Ru o f t h e t o p
232
Chapter 9
row a r e o n l y w e d g e s , n o t l i n e a r s u b s p a c e s , and s i m i l a r l y f o r t h e i n t e r m e d i a t e members C(X)u a n d C(X)" Now C(X)u
=
-C(X)',
s o C(X)'
n
l a r g e s t one c o n t a i n e d i n C (X) s i m i l a r l y f o r C(X)'' subspaces.
2!
(lC(X)U'.
C(X)'
o f t h e b o t t o m row.
i s a l i n e a r subspace, the
( e q u i v a l e n t l y , i n C(X)');
and
They a r e e a c h , i n f a c t M I -
We t h u s h a v e t h e c h a i n o f Ma- s u b s p a c e s :
c(x) c
c ( x l Rn
n C ( X ) ~ c'
c(xiu c C ( X ) ' ~
Have w e f o u n d new MIL-subspaces?
(44.1) Theorem. -
C(X)'
n
C(X)'
cll(x).
The f i r s t one i s n o t new:
= C(X).
P ro o f . We n e e d o n l y show t h e l e f t s i d e i s c o n t a i n e d i n C(X)
*
Lemma. ( i ) E v e r y f€C(X)'
i s vaguely lowersemicontinuous
on K ( C ' ( X ) ) . ( i i ) Every f€C(X)'
i s v a g u e l y u p p e r s e m i c o n t i n u o u s on
K(C'CX1).
I n e f f e c t , t h e r e i s a n e t { f } i n C(X) s u c h t h a t f t f . c1
I t follows ( f , p ) = s u p ( f a , p ) f o r a l l pEK(C'(X)). f
Is
0.
c1
Since the
a r e v a g u e l y c o n t i n u o u s on K ( C ' ( X ) ) , t h i s g i v e s u s ( i ) ,
( i i ) i s proved s i m i l a r l y . I t f o l l o w s f r o m t h e Lemma t h a t e v e r y f€C(X)'
n
v a g u e l y c o n t i n u o u s on K ( C ' ( X ) ) , h e n c e by ( 3 6 . 1 ) , l i e s
C(X)u i s
Subspaces of C"(X)
233
in C ( X ) . QED
Our c h a i n o f MIL-subspaces i s now r e d u c e d t o
The m i d d l e member
new, i n g e n e r a l d i s t i n c t from b o t h C(X)
and C r f ( X ) . We s h a l l s e e t h a t i t can be i d e n t i f i e d w i t h t h e f a m i l y o f f u n c t i o n s on C which a r e i n t e g r a b l e w i t h r e s p e c t t o e v e r y Radon m e a s u r e .
( T h i s i s a l r e a d y foreshadowed by t h e f a c t
t h a t an e l e m e n t o f C"(X) supremum o f
USC
l i e s i n i t i f and o n l y i f i t i s a
e l e m e n t s and an infimum o f Rsc o n e s . )
Con-
s e q u e n t l y , we w i l l c a l l i t s e l e m e n t s t h e u n i v e r s a l l y i n t e g r a b l e e l e m e n t s o f C"(X),
( 4 4 . 2 ) -____ Theorem.
and w e w i l l d e n o t e i t by U(X).
U(X)
i s a a - o r d e r c l o s e d MI-subspace o f C"(X).
The a - o r d e r c l o s e d n e s s f o l l o w s from ( 4 2 . 8 ) .
U(X) i s p e r h a p s t h e most i m p o r t a n t MI-subspace o f C"(X) a f t e r C(X)
itself.
I t w i l l come t o d o m i n a t e o u r work.
2 34
Chapter 9
5 4 5 . The s u b s p a c e s s ( X ) and S(X)
We a r e s t i l l l o o k i n g f o r MIL-subspaces. a R i e s z s u b s p a c e o f C"(X) t i o n , u s i n g C(X)'
= -C(X)'
(42.1).
C(X)'
- C(X)'
is
A s t r a i g h t f o r w a r d computa-
a n d t h e f a c t t h a t b o t h c o n t a i n IL(X).
gives u s :
(45.1)
The f o l l o w i n g R i e s z s u b s p a c e s c o i n c i d e : C(X) R - C(X) 9
C(XIu - C ( x I u , (C(Xl'l+
- (C(X)')+,
a n d (C(X)')+
-
We w i l l d e n o t e t h i s common s u b s p a c e by s ( X ) .
(C(X)u>+.
While i t i s
a R i e s z s u b s p a c e c o n t a i n i n g IL(X), i t i s , i n g e n e r a l , n o t norm c l o s e d , s o i s n o t an MI-subspace. Appendix t o C h a p t e r 1 1 . )
(We g i v e an e x a m p l e i n t h e
I t s norm closure
g
an MIL-subspace.
We w i l l d e n o t e i t by S ( X ) . We now h a v e t h e c h a i n o f M a - s u b s p a c e s :
C(X) c S(X) c U(X) c C'l(X)
I n g e n e r a l , S(X) i s d i s t i n c t f r o m b o t h C(X) a n d U(X), s o we h a v e i s o l a t e d a s e c o n d new M I - s u b s p a c e .
C(X)RU - C(X)'U s p a c e o f Cl'(X).
(= C(X)U'
- C(X)UR) i s a l s o a R i e s z s u b -
I t c o n t a i n s U(X> o f c o u r s e , a n d a r e a s o n a b l e
c o n j e c t u r e m i g h t be t h a t i t i s d i s t i n c t from C"(X). n o t know w h e t h e r o r n o t t h i s i s t r u e .
,
We do
2 35
Subspaces o f C"(X)
5 4 6 . Dedekind c l o s u r e s
B e c a u s e o f i t s l a t e r i m p o r t a n c e , we s i n g l e o u t a n o p e r a t i o n w h i c h we h a v e u s e d a b o v e .
Given a s u b s e t A o f a R i e s z
s p a c e E , b y t h e D e d e k i n d c l o s u r e o f A i n E , we w i l l mean t h e s e t o f e l e m e n t s o f E w h i c h a r e e a c h b o t h t h e supremum o f some s u b s e t o f A a n d t h e infimum o f some s u b s e t o f A .
Otherwise R s t a t e d , t h e Dedekind c l o s u r e o f A i n E i s t h e s e t A AU. The D e d e k i n d c l o s u r e o f A o f c o u r s e c o n t a i n s A .
If it
c o i n c i d e s w i t h A , we w i l l s a y t h a t A i s D e d e k i n d c l o s e d i n E .
We l i s t some e a s i l y v e r i f i e d p r o p e r t i e s . c l o s u r e o f a s e t i s Dedekind c l o s e d .
The D e d e k i n d c l o s u r e o f
a Riesz subspace i s a g a i n a R i e s z s u b s p a c e s . a u t o m a t i c a l l y Dedekind c l o s e d .
The D e d e k i n d
A Riesz ideal is
If a subset A of E i s , a s an
o r d e r e d s e t , D e d e k i n d c o m p l e t e , t h e n A i s Dedekind c l o s e d i n E . The c o n v e r s e i s f a l s e ( c f .
( 4 6 . 3 ) b e l o w a n d t h e Remark f o l l o w -
ing i t ) .
( 4 6 . 1 ) I f a l i n e a r s u b s p a c e F o f C''(X)
contains ll(X),
D e d e k i n d c l o s u r e o f F i s norm c l o s e d .
I t follows t h a t
(i)
then the
F a n d i t s norm c l o s u r e h a v e t h e same D e d e k i n d c l o s u r e ,
and ( i i ) i f F i s D e d e k i n d c l o s e d , t h e n i t i s norm c l o s e d .
Proof.
An e x a m i n a t i o n o f t h e p r o o f o f ( 1 6 . 6 ) shows t h a t
2 36
Chapter 9
F t h e r e need o n l y b e a l i n e a r s u b s p ace c o n t a i n i n g
I (we do n o t
need t h e sequ e n c e s o b t a i n e d t o b e m o n o to n ic) . QED
(46.2) Corollary.
I f a R i e s z subspace of C"(X)
contains IL(X),
t h e n i t s Dedekind c l o s u r e i s a Dedekind c l o s e d M I - s u b s p a c e .
I n o u r s e a r c h f o r new M I - s u b s p a c e s , what a b o u t t h e Dedekind c l o s u r e s o f o u r t h r e e M I - s u b s p a c e s C ( X ) , U(X)?
The r e s u l t s a r e n e g a t i v e .
(44.1) t h a t C(X)
(46.3) C(X)
Remark.
S ( X ) , and
We h a v e a l r e a d y shown i n
i s Dedekind c l o s e d .
We r e s t a t e i t f o r m a l l y :
i s Dedekind c l o s e d i n C l ' ( X ) .
In general, C(X)
i s f a r from b e i n g Dedekind
complete.
( 4 6 . 4 ) The Dedekind c l o s u r e o f S ( X )
i n C''(X)
i s U(X)
(so U(X)
i s Dedekind c l o s e d i n C " ( X ) ) .
Proof.
By ( 4 6 . 1 ) , i t i s enough t o show t h a t t h e Dedekind
closure of s ( X ) U(X)
and t h e
i s U(X).
T h i s f o l l o w s from t h e d e f i n i t i o n o f
S u b s p a c e s o f Cll(X)
-____ Lemma.
s(x)'
237
= c ( x ) ' ~ , s ( ~ ) ' = c(x)".
C(X)' c s ( X ) , s o C(X)RUc S ( X ) ~ . For t h e o p p o s i t e i n -
c(x)'
c l u s i o n , s ( ~ )= (42.6)
=
C(X)",
-
c(x)'
=
+ c(x)'
c(x)'
c c(x)RU + c(x)RU
s o S ( X ) ~c C(X)RU. QE D
5 4 7 . The B o r e l s u b s p a c e Bo(X)
What do we o b t a i n i f we r e p e a t t h e o p e r a t i o n s t h a t we have c a r r i e d o u t i n t h i s c h a p t e r , b u t s t a r t i n g t h i s t i m e w i t h S(X) instead of C ( X ) ?
(47.1)
(i)
On t h e w h o l e , l i t t l e t h a t i s new.
S(X)'
= U(X)
R
= C(X)''.
( i i ) s ( x ) ~= u ( x ) ~= c ( x ) ' ~ .
The v e r i f i c a t i o n i s s i m p l e .
The 0 - o r d e r c l o s u r e o f S ( X ) , however, d o e s g i v e u s somet h i n g new.
We w i l l c a l l t h i s a - o r d e r c l o s u r e t h e B o r e l s u b -
=ace - o f C"(X),
and d e n o t e i t b y Bo(X).
c a l l e d t h e B o r e l e l e m e n t s o f C"(X). d e f i n e t h e c l a s s e s Bo(X),
( 4 1 . 1 ) g i v e s us:
(0
5
c1
I t s e l e m e n t s w i l l be
A s w i t h Ba(X), we c a n
2 a).
The argument u s e d f o r
238
Chapter 9
( 4 7 . 1 ) Bo(X) i s a 0 - o r d e r c l o s e d MIL-subspace o f C'l(X). Bo(X),
Every
i s a n MIL-subspace.
Note t h a t ( i ) Bo(X) i s a l s o t h e 0 - o r d e r c l o s u r e o f s ( X ) , and ( i i ) Ba(X) c Bo(X) c U ( X ) .
( i ) f o l l o w s f r o m ( 1 6 . 5 ) , and
( i i ) from C(X) c S(X) c U(X) t o g e t h e r w i t h t h e f a c t t h a t U(X)
is 0-order closed (44.2).
548. C(X) ")
and C(X) ( 2 )
I n o u r s e a r c h f o r new MIL-subspaces, w e h a v e s o f a r i g n o r e d an o b v i o u s s e t o f c a n d i d a t e s : c C ( X ) ( 1 ) , C ( X ) ( 2 ) , . . . }
(cf. §54,5).
One c o n s e q u e n c e o f t h e Up-down-up t h e o r e m ( 4 3 . 2 ) i s t h a t C(X)(3)
=
C"(X).
So we n e e d o n l y e x a m i n e C(X)(')
A g a i n , we h a v e n o t h i n g new. U(X)
and C ( X ) ( 2 ) .
We show i n t h i s 5 t h a t C ( X ) ( l )
( a l l r o a d s l e a d t o U[X)) and C(X)(')
ment on t h e i d e n t i t y g i v e n a b o v e ) .
=
C"(X)
=
(an improve-
Both p r o o f s a r e n o n t r i v i a l ,
and we f i r s t r e c o r d some g e n e r a l t h e o r e m s i n f u n c t i o n a l analysis.
The f i r s t i s t h e Hahn-Banach t h e o r e m i n t h e f o r m we
w i l l use i t .
(48.1)
(Hahn-Banach T h e o r e m ) .
L e t E b e a l o c a l l y convex s p a c e .
I f t h e convex s u b s e t s A , B o f E h a v e t h e p r o p e r t y t h a t t h e c l o s u r e of A - B does n o t c o n t a i n 0 , then t h e r e e x i s t s a cont i n u o u s l i n e a r f u n c t i o n a l @ on E s u c h t h a t
Subspaces o f C"(X)
2 39
Let K b e a compact convex s u b s e t o f a l o c a l l y
( 4 8 . 2 ) Lemma.
convex s p a c e E , and KO a c l o s e d convex s u b s e t o f K .
Suppose
f i s a c o n v e x l o w e r s e m i c o n t i n u o u s f u n c t i o n on K , a n d
(i)
( i i ) g i s a c o n c a v e u p p e r s e m i c o n t i n u o u s f u n c t i o n on K O s u c h t h a t g ( a ) < f ( a ) f o r a l l aEKo.
Then t h e r e e x i s t s a n
a f f i n e c o n t i n u o u s f u n c t i o n h on K s u c h t h a t h ( a ) > g ( a ) f o r a l l aEKo,
(i)
( i i ) h ( a ) < f ( a ) f o r a l l aEK.
P roof.
Form t h e p r o d u c t s p a c e E
x
IR ( w i t h e l e m e n t s ( a , ) , ) ) ,
and s e t G = I(a,1)(aEKo F = t(a,?,)la€K,
7
x x
<
g(a)l
> f(a13.
I t i s e a s i l y v e r i f i e d t h a t G and F a r e convex s e t s .
We show
S u p p o s e a n e t { ( a ?,a)} a' i n F - G c o n v e r g e s t o 0 ( i n t h e t o p o l o g y o f E x lR). F o r e a c h
t h a t 0 i s n o t i n t h e c l o s u r e of F - G.
a. (aa,Xa)
a n d ( c ,T I E G . a ,K a) E F a c 1 K i s compact, s o , t a k i n g a s u b n e t i f n e c e s s a r y , w e c a n assume =
(ba7Ka) - ( c a 7 n a ) , where (b
{ b a } c o n v e r g e s t o bEK.
s o a c t u a l l y b€Ko.
I t follows { c } a l s o converges t o b , c1
Choose r , s E IR s u c h t h a t g ( b ) < r < s < f ( b ) .
Then e v e n t u a l l y g ( c ) < r a n d f ( b ) > s , h e n c e K - IT > f ( b a ) a a a a This c o n t r a d i c t s t h e assumption t h a t t h e g(c,) > s - r > 0. n e t {la}
} converges t o 0 inlR. a I t f o l l o w s from ( 4 8 . 1 ) t h a t t h e r e e x i s t s a c o n t i n u o u s =
{
K
~ -
linear functional
on E
x
lR, a n d t E R , s u c h t h a t
240
Chapter 9
(i)
( (a,
SUP
(a, X)EG Now ( E
x
XI ,Q)
IR)'
< t <
E'
=
x
i n f ( ( b , K ) ,o). (b,K)EF
IR, s o
0 =
($,u) with $EE', uEW.
Note t h a t u > 0 : i n e f f e c t , s u p p o s e u aEKo, u f ( a ) (a,$)
+
5
0; then f o r every
5 ug(a) hence ( ( a , f ( a ) ) , Q > = ( ( a , f ( a ) ) , ( $ , u ) )
uf(a) 5 ( a , $ )
+
ug(a)
=
=
((a,g(a)),O), contradicting ( i ) .
F o r s i m p l i c i t y , assume u = 1 .
Then ( i ) becomes
In p a r t i c u l a r , (a,+)
+
g(a) < t < ( b , $ )
+
f(b)
f o r a l l aEKo, bEK. The f u n c t i o n h on K d e f i n e d by h ( b ) = t - ( b , + ) now h a s the desired properties. QED
Let K b e a compact c o n v e x s e t i n a l o c a l l y
(48.3) Corollary.
convex s p a c e .
Then f o r a f u n c t i o n f o n K , t h e f o l l o w i n g a r e
equivalent:
'1
f i s t h e p o i n t w i s e supremum o f a s e t A o f c o n t i n u o u s
a f f i n e f u n c t i o n s on K ; f i s a lowersemicontinuous convex f u n c t i o n .
2'
Assume 1' h o l d s .
P roof. -
Then f i s c l e a r l y l o w e r s e m i -
c o n t i n u o u s ; w e show i t i s c o n v e x . and b i n K , X and show f ( c ) Kg(b)
5
Xf(a)
5 Xf(a)
+
Suppose c
K
non-negative, and X +
+
Kf(b).
K
Xa
= =
+
Kb, w i t h a
We h a v e t o
1.
F o r e v e r y g 6 A , g ( c ) = Xg(a)
K f ( b ) ; h e n c e SupgEAg(C)
5 lf(a)
+
Kf(b).
+
S u b s p a c e s o f C"(X)
241
S i n c e t h e l e f t s i d e i s f ( c ) , we are through. Now as s um e 2'
Consider anEK
holds.
a n d 1 < f ( a o ) ; w e show
t h e r e e x i s t s a c o n t i n u o u s a f f i n e f u n c t i o n h on K s u c h t h a t h ( a ) < f ( a ) f o r a l l aEK a n d h ( a o ) > 1. t h e p r e s e n t K , KO c o n s i s t o f t h e p o i n t a
I n ( 4 8 . 2 ) , l e t K be 0'
f be t h e given f ,
a nd g b e t h e f u n c t i o n on K O d e f i n e d by g ( a o )
=
1.
Then t h e
conditions there are s a t i s f i e d , so the h given there i s the d e s i r e d one. QED
Remark.
The a b o v e o f c o u r s e h o l d s w i t h "supremum"
p l a c e d b y " inf i m um " ,
" convex" b y " c o n c a v e " ,
re-
and "lowersemi-
c o n t i n u o u s " by " u p p e r s e m i c o n t i n u o u s " .
t u r n t o C'l(X).
We
The f o l l o w i n g i s e a s i l y d e r i v e d f r o m
( 4 8 . 3) ( a n d ( 3 8 . 2 ) ) .
For f E C " ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t :
( 4 8 . 4 ) Theorem. lo
f EC ( X ) R ;
2'
f i s v a g u e l y l o w e r s e m i c o n t i n u o u s on K ( C ' (XI).
We w i l l n e e d t h e f o l l o w i n g s p e c i a l c a s e o f t h e i n s e r t i o n
theorem o f D.A. Edwards [ 1 5 ] .
( 4 8 . 5 ) Theorem. -___F
(Edwards).
We u s e h i s p r o o f .
F o r e v e r y p a i r U E C ( X ) ~ ,R€C(X)
R
242
Chapter 9
such t h a t u < R , t h e r e e x i s t s fEC(X) s u c h t h a t u < f < k.
Proof.
We c o n s i d e r o n l y t h e v a g u e t o p o l o g y on K(C'(X)),
w e w i l l o m i t t h e m o d i f i e r "vague". K(C'(X))
and
so
A l s o we w i l l w r i t e K f o r
f o r ll(X).
I t s u f f i c e s t o e s t a b l i s h the following:
( I ) T h e r e e x i s t s a s e q u e n c e {f,}
(n
=
0,1,2,...) i n C(X) s u c h
that
u - 2-nn
-
f n -< R
+
z-"n
(n
=
0,1,2;.*)
(n
=
1,2,...).
and < fn f n - 1 - 2-"n -
5 fn-l
+ z-"n
Let u s show f i r s t t h a t t h e t h e o r e m f o l l o w s from ( I ) .
t h e s e c o n d s e t o f i n e q u a l i t i e s , t h e s e q u e n c e {€,I Cauchy, h e n c e norm c o n v e r g e s t o some f € C ( X ) .
By
i s norm
T h e n , by t h e
f i r s t set of i n e q u a l i t i e s ,
u - 2-nn < f < R
+
f o r a l l n.
I t follows u < f < R.
We p r o c e e d t o e s t a b l i s h ( I ) , o r r a t h e r t h e s t r o n g e r property:
We w i l l c h o o s e f o t o s a t i s f y p r o p e r t y ( i i ) b e l o w , a n d t h e
r e m a i n i n g f ' s by i n d u c t i o n t o s a t i s f y ( 1 1 ) . n
A c t u a l l y , we w i l l
Subspaces of C”(X) only derive f1 from f O . same
243
‘The derivation of fn from fn-l is the
.
Note first that, by ( 4 8 . 4 ) , for every
ic
> 0, u
uppersemicontinuous affine function on K and R
f
-
K is I ~ an
Kn is a lower-
semicontinuous one, and that
Set
K
=
foEC(X)
1 and a p p l y (48.2) with K O = K (also (38.2)).
We obtain
such that
We proceed to derive fl.
Proof of (iii):
In effect, by (ii), ( f o Since f 0 - (u -
n)
-
(u - ll) ,p) > 0 for all p E K . .
is an ilsc element, it is lowersemicontinuous
244
Chapter 9
on K.
(fO (U
-
-
But K is compact, so there exists 0 <
x
( u - ll),,)
n)
>
-
Since
for all p E K .
x
< 1
such that
I t follows that f o -
An. k - u >
0, we also have R - ( u
-
It)
2 n
Writ-
> XI. -
ing these two inequalities in the form -1 ( u - z n) + xn < fo + 2-'n, -1 < a + z-ln, ( u - 2 n) + An we obtain the first inequality in ( * ) . Again by (ii), ( ( a .
1) - fO,p) > 0 for all p E K .
+
(a
+
f0 is again lowersemicontinuous on K , so there exists 0 < such that ( (a.
(a
+
lL)
-
+
nj) - fO,p) >
for a l l p E K .
ll) < 1 -
It follows that
This gives us the first of the following;
f0 2 A l l .
the second is trivial.
xn
(fO
-
2-ln)
(fO
-
2 - l +~ I n < f0
+
<
t,
2-ln,
+
2-ln.
+
We thus obtain the second inequality in ( * ) . (*),
(For the
in
we need only take the smaller of the two x's obtained
above. ) The two inequalities in ( * ) now give us ( u - 2-ln)v(f0
-
2-'n)
<
(fO
+
2-'n)r\(a
+ 2-ln)
-
xn,
which gives us (iii). Finally, applying (48.2) and (38.2) to (iii), we ontain an flEC(X) satisfying ( 1 1 ) .
QED With the Edwards theorem, we can establish our identity for c(x)(~).
S u b s p a c e s o f C"(X)
(48.52)Theorem
___ Proof.
C(X)
U(X).
=
Suppose f € C ( X ) ( l ) .
I f c l } i n C(X) s u c h t h a t f
245
=
This says t h e r e e x i s t s a n e t
V,ba2afp
f
= A V
a B>cc R -
(cf.
(7.4)).
Thus f i s a supremum o f u s c e l e m e n t s a n d a n i n f i m u m o f e s c e l e m e n t s , h e n c e l i e s i n U(X). For t h e o p p o s i t e i n c l u s i o n , s uppose f E U ( X ) . e x i s t n e t s {ua}i n C(X)u a n d {La? i n C(X)
R
Then t h e r e
(we a s s u m e , a s we
c a n , t h a t t h e y h a v e t h e same d i r e c t e d i n d e x s y s t e m ) s u c h t h a t
u +f and k n + f . c1
element f
N
A p p l y i n g ( 4 8 . 4 ) , we o b t a i n , f o r e a c h a , a n
o f C(X) s u c h t h a t u,'
fa 5 La.
Then f ,
+
f , so
f E c (X) (I).
QED
I t r e m a i n s t o show t h a t C ( X ) ( 2 )
=
C"(X).
S i n c e C(X)(')
=
U(X), w e s t a t e t h i s i n t h e f o r m
Theorem. U(X)"'
(48.6)
=
C1l(X)
I n f a c t , w e e s t a b l i s h a much s t r o n g e r r e s u l t ,
(Ba(X)2)(1)
C" (X) :
(48.7) Theorem. -
E v e r y fEC"(X)
v e r g e n t n e t i n Ba(X)2.
i s t h e l i m i t o f an o r d e r con-
=
Chapter 9
246
P roof.
L e t 3 be t h e s e t o f b a s i c bands o f C"(X).
It is
Now c o n s i d e r f€Cll(X),
a n d we
a d i r e c t e d s e t under inclusion. < f < I(X). c a n assume 0 -
By ( 4 1 . 3 ) , f o r e a c h I € $ , we c a n
c h o o s e g ( I ) E Ba(XI2 s u c h t h a t g ( I ) I
=
f I ; a n d we c a n c l e a r l y
take g(1) t o s a t i s f y 0 < g(1) < n(X). {g(I)IIEJ] Let gI
=
g
i s a n e t ; w e show i t o r d e r c o n v e r g e s t o f . =
liminfIag(T)
hI = f I f o r a l l I € J .
(f,p) f o r a l l
Fix Io.
Since3 is directed,
and h
I t w i l l f o l l o w ( g , p)
uEC'r(X), h e n c e g
=
h
We show
1imsuprE3g(I).
=
=
=
( h , 11)
=
f.
For e v e r y I € J s u c h t h a t I 2 I o , g ( I ) I
=
fI :
0
in effect, g(III
(g(I)I)Io
=
=
.
(fI)Io = f I
0
I t follows
0
0
(cf. (6.5))
= fI
The p r o o f t h a t h I 0
i s t h e same 0
We r e c o r d t h e M I - s u b s p a c e s o f C"(X)
which we have s i n g l e d
out i n t h i s chapter:
We a l s o h a v e t h e v a r i o u s B a i r e c l a s s e s a n d B o r e 1 c l a s s e s .
247
Suhspaces of C"(X)
We also record the fact that we have established Nakano's theorem (13.2) for the special case
o f C(X).
As is to be
expected, the statement here is considerably stronger than that of the general case.
(48.8)
(i)
C'(X)
=
(C1l(X))c.
(ii)
c"(x)
=
(c'(x))~.
(iii) The order closure of C(X) C(X) (2)
=
Cf'(X).
is C " ( X ) ;
indeed
CHAPTER 1 0
THE OPERATORS u and R
549. The o p e r a t o r s u and R
T h e r e i s a p e r v a s i v e a n a l o g y t h r o u g h o u t t h i s work between t h e e l e m e n t s o f C"(X) and t h e s u b s e t s o f a t o t a l l y d i s c o n n e c t e d compact H a u s d o r f f s p a c e [ i n f a c t a h y p e r s t o n i a n o n e ) . elements correspond
The u s c
t o c l o s e d s e t s , t h e Rsc e l e m e n t s t o open
s e t s , and ( t h e r e f o r e ) t h e e l e m e n t s o f C(X) t o c l o p e n ( b o t h c l o s e d and open) s e t s .
The Edwards Theorem ( 4 8 . 5 ) c o r r e s p o n d s t o
the property t h a t t h e clopen s e t s c o n s t i t u t e a b a s i s f o r t h e topology.
The e l e m e n t s o f U(X) c o r r e s p o n d t o t h e s e t s m e a s u r -
a b l e w i t h r e s p e c t t o e v e r y r e g u l a r m e a s u r e , t h e e l e m e n t s o f Bo(X) t o t h e Bore1 s e t s , t h e e l e m e n t s o f Ba(X)l t o t h e s e t s which a r e s i m u l t a n e o u s l y a n F,
and a G g ,
and s o o n .
"Analogy" i s t o o weak
a word; t h e p r o p e r t i e s o f C"(X) a r e a c t u a l l y g e n e r a l i z a t i o n s o f the topological properties. C.A.
Akermann [l] h a s u s e d t h i s a p p r o a c h f o r C * - a l g e b r a s .
That c a s e i s more d i f f i c u l t , and he d e f i n e d h i s " t o p o l o g i c a l " properties only f o r projections. For e a c h fEC"(X), we d e f i n e
248
The O p e r a t o r s u and k
249
Thus 2 ( f ) i s t h e l a r g e s t k s c e l e m e n t b e l o w f , and u ( f ) i s t h e s m a l l e s t u s c e l e m e n t above i t .
I n t h e above a n a l o g y , t h e y
c o r r e s p o n d t o t h e i n t e r i o r and t h e c l o s u r e o f a s e t , r e s p e c t i v e ly .
By t h e v e r y d e f i n i t i o n , k ( f )
=
f is equivalent to the state-
ment t h a t f i s a n Q s c e l e m e n t , and f = u ( f ) t o t h e s t a t e m e n t t h a t f i s a usc element.
And by ( 4 4 . 1 ) ,
2(f)
=
f = u(f) is
I t i s immediate
e q u i v a l e n t t o t h e s t a t e m e n t t h a t fEC(X).
< g implies k(f) < k ( g ) and u ( f ) < u(g), that k(xf) that f -
A k ( f ) and u ( X f )
=
Au(f) f o r a l l X > 0 , and t h a t k ( - f )
=
=
-u(f).
We p r o c e e d t o d e v e l o p t h e p r o p e r t i e s o f o u r two o p e r a t o r s . The v e r i f i c a t i o n o f many o f t h e s e r e q u i r e s o n l y r o u t i n e c a l c u l a t i o n , and w i l l be o m i t t e d .
(49.1) L(f)
+
Proof.
k(g) I Q ( f
+
+
g) i s t h e l a r g e s t s u c h below f
k(-g) < k(f);
+
2) < u(f)
+
u(g).
i s an ksc element,
g, since klf) + k(g)
k(f) + k(g) 5 k(f + g),
ity.
g ) 5 9>(f) + u ( g ) < u(f
For t h e f i r s t i n e q u a l i t y , Q ( f ) < f and k ( g ) < g,
so k ( f ) + k ( g ) 5 f and k ( f
+
+
g, i t f o l l o w s
By t h e f i r s t i n e q u a l i t y , k ( f
since Q(-g)
=
+
g)
+
- u ( g ) , w e have t h e second i n e q u a l -
The o t h e r two f o l l o w b y symmetry. QED
Chapter 10
250
The verification of the following is straightforward.
For a finite set, the last inequality in the first line a nd the first inequality in the second line become equalities
(49.4)
We also have
The Operators u and R -~ Proof.
251
The first inequality in the first row is immediate
(cf. (49.3)); we show the second. u(g) - Q(f)Au(g)
=
(u(g)
-
From the first equality, u(g)
a(f) -
+
> (g - f)' -
=
g - fAg.
f ) A u ( g ) is a usc element
(cf. the discussion preceding (42.4)),
hence we obtain u(g)
-
, we have < u(fAg).
QED
In particular,
(49.6) Corollary. f E C"(X)
For an t s c element R , a usc element u , and
, RAu(f) < u(RAf), uVR(f) > R(uVf).
Another, useful, corollary:
(49.7)
fAg = 0 implies R(f)Au(g)
=
0.
Of the equalities and inequalities obtained so f a r , the binomial ones can be sharpened when one of the elements lies in C ( X ) .
252
Chapter 1 0
I f g € C ( X j , t h e n f o r every fEC"(X),
(49.8)
e(f
+
u(f
g ) = E(f)
+
p,
u(f)
+
g.
+ g)
=
T h i s f o l l o w s from ( 4 9 . 1 ) .
Proof. ___
The f i r s t a n d f o u r t h o f t h e s e a r e s p e c i a l c a s e s o f
By a p p l y i n g ( 4 9 . 5 ) a n d ( 4 9 . 3 ) ,
( 4 9 . 4 ) ; we show t h e s e c o n d . together with k(g) L(f)vp
=
=
g = u ( g ) , we h a v e L ( f V g ) < Q(f)Vu(g) =
k(f)vk(g', < a ( f v g ) , which g i v e s u s e q u a l i t y . QE D
S e t t i n g g = 0 i n ( 4 9 . 9 ) , we o b t a i n
(49.10)
(U(f))+
= U(f+)
(E(f>)+
=
Q(f+)
(u(f))-
=
L(f-j
(k(f))-
=
U(f-)
The O p e r a t o r s u a n d P,
253
Whence,
(49.11)
P roof.
u(f+)vu(f-)
u(f)
=
U(f+) - e ( f - ) .
a(f)
=
a(f')
lu(f)l =
ll(f+)
+
a(f-1
= u[f')va(f-).
la(f)j
PJf+)
+
u(f-)
=
+ u(f-)
I
=
=
a(f')vu(f-).
[u(f+)va(f-)]
u ( f + v f - ) = u ( If
h o l d i n g by ( 4 9 . 4 ) . a(f')
=
lu(f) IV l a ( f ) =
u(f-).
-
I),
v
[a(f+)vu(f-)l
t h e second l a s t e q u a l i t y
For t h e i n e q u a l i t y , k ( l f l ) = G(f+ (a(f))-
(g,(f))++
t h e t h i r d term by u ( f + )
+
=
=
la(f)
1,
Q(f-) - a(lf1)
+
f-) <
and - r e p l a c i n g
5
lu(f)l. QE D
T h i s f o l l o w s from t h e f a c t t h a t i f Kn(x) < f < xll(X) , t h e n Kn(x) < a(f)
( 4 9 . 1 5 ) C o r o l l a r y 1.
< -
f
< U(f) -
<
[I f\I
For f E C " ( X ) + ,
xn(x).
=
[lu(f)[l.
Combining t h i s w i t h ( 4 9 . 1 3 ) , we h a v e
(49.16) Corollary 2 .
II u ( f )
- u ( g ) ;I <
jl a ( f )
- R(g)
I1 f
- R[I
*
11
Thus t h e o p e r a t i o n s u(-) a n d a ( * ) a r e norm c o n t i n u o u s .
We w i l l n e e d t h e f a c t t h a t Z ( n ( X ) ) i s c l o s e d u n d e r t h e o p e r a t i o n s u ( * ) a n d I,(.):
Proof.
(Zu(e))An(x)
=
u(Ze)An(X)
=
u [ ( Z e ) ~ n ( x ) ]= u ( e )
'l'hc Operators
11
(the second equality from (49.9)), so u(e) n(X)
(cf. §17).
255
and R
is a component o f
Similarly for e ( c ) .
QED
Notation. -~ a(u(f)),
We can consider combined operations like
a(a(f)),
u(k(u(f))),
expressions simply au(f),
and so on. a a ( f ) , uau(f),
We will write such
. - ..
We note immedi-
ately that the operations a ( . ) and u ( . ) are idempotent: aa(f)
=
k(f),
uu(f)
=
u(f).
Also, it can be shown by simple
examples that the two operations do not commute: ku(f)
# uk(f),
in general. We record two properties we will use.
The verification is simple. and ua(f)
Note that, in general, ku(f)
are not comparable orderwise.
(49.19) The operations a u ( . ) and u a ( * ) are idempotent: every fEC"(X)
(i)
,
auau(f)
=
au(f),
(ii) u a u a ( f )
=
ua(f).
Proof. -
for
In the first inequality of (49.18) above, replace
256
Chapter 1 0
f by u ( f ) ;
t h i s g i v e s us k u ( f ) < kuku(f).
< ku(f). inequality there, kuku(f) -
From t h e l a s t
Thus we h a v e ( i ) .
(ii) is
shown s i m i l a r l y . QED
The p o s s i b l e o p e r a t i o n s o b t a i n a b l e a s c o m b i n a t i o n s o f
a ( . ) and u ( . ) t h u s r e d u c e s t o s i x : a ( . ) , u ( * ) , k u ( * ) , u k ( - ) , a u k ( * ) , and u k u ( * ) .
5 5 0 . The o p e r a t o r 6
F o r e a c h f € C ” . ( X ) , we d e f i n e
S(f)
=
u(f) - a(f).
6 ( f ) corresponds t o t h e f r o n t i e r of a set i n topology, and,
i n function theory, t o the function giving the s a l t u s of a function a t every point. I t i s immediate t h a t 6 ( f ) > 0 and 6 ( f ) = 0 i f and o n l y i f fEC(X).
Also t h a t 6 ( f ) i s a usc element.
From t h e i d e n t i t i e s
k ( - f ) = - u ( f ) and u ( - f ) = - k ( f ) , w e have 6 ( - f ) more
=
6(f).
Even
The O p e r a t o r s u a n d II
257
The v e r i f i c a t i o n i s s t r a i g h t f o r w a r d .
Proof. [u(f)
+
a(g)l
6 ( f ) - 6(g)
- [il(f)
+
=
[u(f) - a ( f ) ] -
u(g)l 5 u(f
+
g) -
[ ~ ( g )- a ( g ) ]
a(f
+
g)
=
6(f
= +
8).
The o t h e r i n e q u a l i t i e s a r e o b t a i n e d i n t h e same way. QED
I n t e r c h a n g i n g f and g , and u s i n g 6 ( - h ) the
-___ Proof.
a(fvg) = u(fvg) - a(fvg)
=
6 ( h ) , we obtain
258
Chapter 10
QED
We s h a r p e n o n e o f t h e i n e q u a l i t i e s i n ( 5 0 . 2 ) .
(50.5)
S(f
+
g)
5
6(f'Jg)
+
6(fAg) < S(f)
S e t t i n g g = 0 , we o b t a i n :
+
6(g).
The O p e r a t o r s u a n d EL
(50.6)
C o r o l l a r y 1.
F o r e v e r y f€C"{X), 6(f)
Setting f
=
259
f+, g
=
=
6(f+)
+
6(f-).
f - , and a p p l y i n g C o r o l l a r y 1, w e
obtain :
(50.7) Corollary 2.
For e v e r y f€C"(X), S(jfl)
C o r o l l a r y 3. (50.8) -
5 6(f).
For e v e r y f € C " . ( X ) , 6(f) < 2u(lfl)
Proof.
Since f + , f - > 0 , we have 6 ( f f ) < u(f+)
and & ( f - ) < u(f-) < u(lf1).
5
u(lf()
Now a p p l y ( 5 0 . 6 ) . QED
( 5 0 . 9 ) I f gEC(X), t h e n f o r e v e r y f € C " ( X ) , S(f
+
g) = S(f).
This i s immediate from (49.8). t h a t f o r e v e r y fEC"(X), 6 ( f ) = s ( l L ( X )
A u s e f u l consequence i s
- f).
Chapter 1 0
260
For a l l f , g E C " ( X ) ,
(50.10)
I)&(f)
- 6 k ) I I 5 211 f
- gll.
Thus t h e o p e r a t i o n & ( - ) i s norm c o n t i n u o u s .
T h i s follows from ( 4 9 . 1 6 .
Under R i e s z homomorphisms, R i e s z s u b s p a c e s show up a s i m a g e s o f R i e s z s u b s p a c e s , and R i e s z i d e a l s a s i n v e r s e images of R i e s z i d e a l s .
I t may b e w o r t h n o t i n g , t h e r e f o r e , t h a t u n d e r
t h e mapping C"(X)---> 6
C"(X),
t h e i n v e r s e images o f R i e s z i d e a l s
a r e Riesz subspaces (6 i s o f course n o t l i n e a r ) :
(50.11) Theorem. -
I f I i s a norm c l o s e d R i e s z i d e a l o f C"(X),
then &-'(I) (i)
i s a n MJl-subspace o f C l ' ( X ) ,
(ii)
contains C(X),
and
( i i i ) i s closed under t h e operations u ( - ) , & ( * ) ,
Proof.
&
(
a
+
.
g ) E I an d , by ( 5 0 . 4 1 ,
Thus & - l ( I ) i s a R i e s z s u b s p a c e .
T h a t i t i s norm
c l o s e d f o l l o w s f r o m t h e norm c o n t i n u i t y o f & ( * )
(50.10).
F i n a l l y , t h a t & - l ( I ) c o n t a i n s 1 f o l l o w s from ( i i ) , w h i c h i s clear.
)
I f s ( f ) E I , t h e n by ( S O . l ) , & ( X f ) E I ; and i f
& ( f ) , 6 ( g ) E I , t h e n , by ( 5 0 . 2 1 , 6 ( f G(fVg)EI.
and
( i i i ) f o l l o w s from t h e e a s i l y v e r i f i e d i n e q u a l i t i e s :
0 < & ( U ( f ) , & ( & ( f ) ) , & ( & ( f5) )s / f ) .
QED
The O p e r a t o r s u a n d R
Kemark. ___
261
( i i ) and ( i i i ) c l e a r l y h o l d even i f I i s n o t
norm c l o s e d . For I a b a n d , w e c a n s a y m o r e :
(50.12)
I f I i s a band o f
Cll(X),
then 6
-1
( I ) i s Dedekind c l o s e d
i n C"(X).
We p r o v e a s t r o n g e r r e s u l t : i f A , B c 6 - ' ( 1 ) , and V A = f
=
A B "modulo I " , t h e n f E A ; ' ( I ) .
A
Precisely,
I f A,B c 6-'(1),
( 5 0 . 1 3 ) Let I b e a band o f C " ( X ] .
5 f 5 B,
A
5
f
5
B,
and (AB - VA)EI, t h e n f E 6 - ' ( 1 ) .
Proof.
We w i l l u s e t h e o b v i o u s
F o r e v e r y kEC"(X), Lemma. -
Now s e t g show ( u ( h )
= VA
and h
= AB.
the following a r e equivalent:
By h y p o t h e s i s
(h - g ) E I .
k(g))EI; s i n c e k(g) < f < u(h), it w i l l follow
-
u ( f ) - p,(f)CI, which i s t h e d e s i r e d r e s u l t . Fix v E I
1
,v
0.
Since 6-'(I)
i s a s u b l a t t i c e , we can
assume A i s f i l t e r i n g u p w a r d s a n d B downwards, h e n c e w e c a n r e p l a c e them by n e t s { g a l a n d { h g } s u c h t h a t g U f g and h U + h .
We
Chapter 10
262
Then { k ( g ) } i s a l s o a n a s c e n d i n g n e t a n d { u ( h ) } a d e s c e n d i n g
8
c1
net, so k(gcl)+k < k(g) and uChS)+u > u(h1. A p p l y i n g t h e Lemma a n d t h e o r d e r c o n t i n u i t y o f v , we h a v e
(!L,v>
=
lima(a(ga),u>
=
lima
= (g,v>
-
and. s i m i l a r l y ,
(u,v>
=
(h,v>
*
Thus
QED
As a n a p p l i c a t i o n o f t h e o p e r a t i o n 6('),
we present a
t h e o r e m o f K r i p k e a n d Holmes [ 3 0 ] ( t h e y d i d i t i n t h e c o n t e x t of ordinary function theoryJ.
(50.14)
F o r e a c h f E C " ( X ) , t h e d i s t a n c e o f f f r o m C(X)
(1/2)11 6 ( f )
11,
Proof. -__
and t h i s d i s t a n c e i s a t t a i n e d .
For e v e r y g E C ( X ) , 6 ( g ) = 0 , hence, by ( 5 0 . 1 0 ) ,
/ I f - gll > (1/2)1[ ~ ( f ) l [ . We show t h e r e e x i s t s gEC(X)
11 f
is
- gjl < (1/2)11 6 ( f ) l l .
D e n o t e (1/2)\1 6 ( f )
11
by r .
such t h a t
Then
The O p e r a t o r s u a n d i! 6(f) <
11 6 ( f ) i l n ( X )
=
2rn(X).
263
We w r i t e t h i s
u ( f ) - rn(X) < e(f) Then by t h e Edwards Theorem ( 4 8 . 5 ) ,
+
rn(x).
t h e r e e x i s t s gEC(X) s u c h
that (i)
u ( f ) - rn(X) < g
5
a(f)
+
rl(X).
I t follows f
- r m )
2
g < f
+
rn(x),
t h a t i s , \If - gII 5 r .
QE D
-~ Remark.
From t h e two p a r t s o f t h e p r o o f , f o r e v e r y
gEC(X) s a t i s f y i n g ( i ) , wc h a v e \If - g [ l
=I
r (not j u s t < r).
i s e a s y t o v e r i f y t h a t , c o n v e r s e l y , e v e r y gEC(X) w i t h ! I f =
It
- g!I
r satisfics (i).
951. R - b a n d s and u - b a n d s
A n a t u r a l p r o b l e m i n t h e s t u d y o f Cl'(X) i s t h e c l a s s i f i c a -
t i o n o f i t s bands.
Thus f a r we h a v e e n c o u n t e r e d t h e p a i r o f
c o m p l e m e n t a r y b a n d s C't(X)a and C''(X)d, a n d t h e b a s i c b a n d s { C " ( X ) l l j ~ E C ' ( X ) } . I n t h e p r e s e n t 5 , w e l o o k a t two a d d i t i o n a l , relatively
simple types.
We f i r s t r e c o r d some s i m p l e p r o p e r t i e s o f a g e n e r a l b a n d I o f C"(X).
I i s i t s e l f an
MIL-space, w i t h n(X),
( b u t n o t e t h a t w i t h one e x c e p t i o n - I
=
MI-subspace, s i n c e it does n o t c o n t a i n
n(X));
p r o j e c t i o n p r o j I o f C"(X)
C"(X)
for unit
- I i s n o t an
and t h e c a n o n i c a l
onto I i s an o r d e r continuous
Chapter 10
264
MIL-homomorphism.
Also ( c f .
(18. 3 ) ,
( 6 . 5 ) , and ( 4 8 . 8 ) ) :
( 5 1 . 1 ) F o r e v e r y band I o f C"(X),
i s an MIL-subspace o f I ,
(i) C(X),
( i i ) t h e o r d e r c l o s u r e o f C(X),
Remark.
- c _ _
form ( c f .
For p a r t i c u l a r bands,
(40.6),
(51.2) Corollary.
is I.
( i i ) may t a k e a s t r o n g e r
(41.2)).
For t h e o r d e r c l o s u r e o f a s u b s e t A o f a
band I t o be I , i t s u f f i c e s t h a t t h i s o r d e r c l o s u r e c o n t a i n C(X)I *
I n c o n t r a s t t o ( i i ) a b o v e , t h e o r d e r c l o s u r e o f C(X)
n
I is,
i n g e n e r a l , a p r o p e r s u b s e t o f I (we d e s c r i b e i t i n ( 5 2 . 1 ) ) . However, a s we now show, t h e l a t t e r o r d e r c l o s u r e i s s t i l l a band.
( 5 1 . 3) Theorem.
F o r e v e r y Riesz i d e a l H o f C(X)
,
the order
c l o s u r e o f H i s a band o f C1'(X) ( h e n c e t h e band g e n e r a t e d b y H ) .
P r o o f . Let I1 b e t h e b a n d o f C " ( X )
g e n e r a t e d by H; w e show
The O p e r a t o r s u and k
265
I1 i s i n f a c t t h e o r d e r c l o s u r e o f H
Lemma.
Let I.
For e v e r y f E C ( X ) + ,
=
V{h€I-Il~Oc h < f}.
be t h e R i e s z i d e a l o f C " ( X )
I1 i s t h e o r d e r c l o s u r e o f I o , s o f T
g e n e r a t e d by H . =
V{gEIo 1 0 < g
5
Then f}.
But f o r e v e r y s u c h g , t h e r e e x i s t s hEH s u c h t h a t g < h i f : choose kEH s u c h t h a t g c k , and s e t h
=
hf.
This e s t a b l i s h e s
t h e Lemma, and t h e Theorem f o l l o w s from ( 5 1 . 2 ) .
QED
We t u r n t o t h e f i r s t of o u r s p e c i a l t y p e s o f b a n d . I of C"(X)
(51.4)
i s an Rsc e l e m e n t .
w i l l be c a l l e d a n & - b a n d i f n ( X ) ,
Let I be a band o f C l ' ( X ) ,
and s e t H
A band
=
I.
C(X)
The
following a r e equivalent: 1'
I i s an & - b a n d ;
2'
I i s t h e band o f C " ( X )
3'
g e n e r a t e d by H;
I i s t h e o r d e r c l o s u r e of H .
P roof.
Assume '1
holds.
Then n ( X ) ,
i s t h e supremum o f a
s u b s e t o f C ( X ) which i s c l e a r l y i n I , hence i n H . e a s i l y from t h i s .
T h a t 2'
i n t h e proof o f (51.3).
i m p l i e s 1'
2'
follows
f o l l o w s from t h e Lemma
The e q u i v a l e n c e o f 2'
and '3
is the
Chapter 1 0
266
content of (51.3).
(51.5) C o r o l l a r y . There i s a one-one co r r es p o n d en ce between t h e R-bands I o f C " ( X )
and t h e norm c l o s e d R i e s z i d e a l s H o f C ( X ) .
H i f and o n l y if H
I <->
=
C(X)
n
I i f and o n l y i f I i s t h e
generated by H (equivalently, t h e order c l o s u r e
band o f C " ( X ) of H).
P r o o f . The --
o n l y s t a t e m e n t remain in g t o be proved i s t h a t
i f I i s t h e b a n d g e n e r a t e d by a norm c l o s e d R i e s z i d e a l H o f
C(X),
f
=
then C(X)
I
=
H.
Consider f E C ( X )
n
I, f > 0.
f I , i t f o l l o w s from t h e Lemma i n ( 5 1 . 3 ) t h a t f
V{hEH 1 0 < h < f}.
Since
=
T h i s i s f i l t e r i n g upward, h e n c e , by
D i n i ' s t h e o r e m ( 3 8 . 3 1 , f i s i n t h e norm c l o s u r e o f H , h e n c e i n H. QED
Some a d d i t i o n a l c h a r a c t e r i z a t i o n s o f an R-band:
(51.6) Let I b e a band o f C ' l ( X ) ,
and H = C ( X )
n
I.
J i t s d u a l band i n C l ( X ) ,
The f o l l o w i n g a r e e q u i v a l e n t :
The O p e r a t o r s
and R
11
1'
I i s an R - b a n d ;
2'
I i s t h e vague c l o s u r e o f H ;
3'
1 1 i s s e p a r a t i n g on J ;
4O
I
=
267
Ill ;
J.
5'
I
6'
I
i s vaguely closed;
1
= G1
f o r some v a g u e l y c l o s e d b a n d
By ( 5 1 . 5 ) a n d ( 2 6 . 2 ) , 2' -__f'roof. ( 5 1 . 3 ) , hence t o lo.
S u p p o s e 2'
(1IJ.)'
=
I
(IJ.)'
1
.
=
I.
Thus 4'
( H ' )
=
S u p p o s e 5'
=
holds.
Conversely,
=
1
5'
(GL)J.
i f 4'
T h i s s a y s t h a t 2'
(HL)'.
holds.
holds.
then I
i s e q u i v a l e n t t o 3'.
I t f o l l o w s from ( 1 0 . 1 5 )
=
(I
1
holds then I
4'
holds.
iJ. n c ( x )
o f c o u r s e i m p l i e s 6'. =
and (26.2) t h a t =
i m p l i e s 5'.
T h e n , i n t h e d u a l i t y b e t w e e n C(X) and
C ~ ( X ) , ( ( I ~ =) ~I )~~ . But ( I J . )J .
So 4'
J ' , 2'
in
i s e q u i v a l e n t t o 3'
T h i n k i n g o f i t a s a s u b s e t o f C(X), t h i s can b e
w r i t t e n (HI)' tl'
=
of Cl(X).
Then, t h i n k i n g o f H as a s u b s e t o f C " ( X ) ,
holds.
I.
=
Since I
C,
G,
s o 5'
=
Finally,
I
n
c(x) = H.
i f 6'
holds,
holds. QE D
A b a n d I o f C"(X) w i l l b e c a l l e d a u - b a n d i f n ( X ) , usc element.
I f two c o m p o n e n t s e , d o f E(X) s a t i s f y e
+
is a d =
lt(X), t h e n o n e i s a u s c e l e m e n t i f a n d o n l y i f t h e o t h e r i s a n
~ s ecl e m e n t .
I t follows t h a t f o r a b a n d I o f C"(X),
u-band ( r e s p . an k-band)
a u-band).
i f a n d o n l y i f I d i s an k - b a n d ( r e s p .
And i t f o l l o w s f r o m t h i s , i n t u r n , t h a t t h e
c h a r a c t e r i z a t i o n s o f k-bands have "dual"
u- b a n d s
.
I is a
characterizations f o r
Chapter 1 0
268
Whereas f o r an k - b a n d I , C(X)
I plays t h e central r o l e ,
f o r a u - b a n d I , i t i s C(X), t h a t p l a y s t h e c e n t r a l r o l e . can s a y t h i s a n o t h e r way. w i t h C(X)/(C(X)
n
Id).
We
Note t h a t C(X)I c a n b e i d e n t i f i e d
T h u s , where t h e r e i s a o n e - o n e c o r r e s -
pondence b e t w e e n t h e k - b a n d s o f C1'(X) and t h e norm c l o s e d R i e s z i d e a l s o f C(X), we w i l l s e e t h a t t h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e u - b a n d s o f C"(X)
and t h e q u o t i e n t
s p a c e s o f C(X) ( w i t h r e s p e c t t o norm c l o s e d R i e s z i d e a l s ) . One c h a r a c t e r i z a t i o n o f an k - b a n d i s t h a t i t i s t h e s m a l l e s t band o f Cl'(X) c o n t a i n i n g some R i e s z i d e a l o f C(X). T h a t i s t h e c o n t e n t o f 2'
i n (51.3).
Correspondingly a u-band
can b e c h a r a c t e r i z e d a s t h e l a r g e s t band o f C'l(X) " c o n t a i n i n g " some q u o t i e n t s p a c e o f C ( X ) - t h e word " c o n t a i n i n g " b e i n g appropriately defined.
(51.7)
T h a t i s t h e c o n t e n t o f '3
below.
L e t I b e a band o f C'l(X) and J i t s d u a l band i n C ' ( X ) .
The f o l l o w i n g a r e e q u i v a l e n t : 1'
I i s a u-band;
2'
J i s vaguely closed;
3'
For e v e r y band I1 o f C"(X), i f (i)
I1
3
I , and
o n t o C(X), i s a b i I1 j e c t i o n ( h e n c e a n M I - i s o m o r p h i s m ) , t h e n I1 = I . ( i i ) t h e p r o j e c t i o n o f C(X)
P roof.
The e q u i v a l e n c e o f 1' and 2'
t h a t o f l o and 5' above b a n d ) .
i n (51.6)
i s a restatement of
( w i t h I t h e r e r e p l a c e d by I d , I t h e
We p r o v e t h e e q u i v a l e n c e o f 1' a n d 3'.
Suppose
The O p e r a t o r s u and
269
,?.,
we h a v e two b a n d s 1,11 w i t h I c 11, s o t h a t ( I 1 ) always have ((C(X), ) I 1 C(X),)
a n d C(X)
n
=
C(X),
( t h a t i s , C(X)
( I , ) d c C(X)
n
o n t o C(X),
w e show ( I l l d
i s o n e - o n e (so C(X)
n
I1 (I,)d
=
h o l d s a n d I1 s a t i s f i e s t h e h y p o t h e s e s o f
=
I d , whence I 1 = I .
h e n c e , by ( 5 1 . 3 ) ,
(Il)d
Conversely, suppose 3
=
n
C(X)
C(X)
o n t o C(X),
=
C(X)
n
Id c
h o l d s ; w e show I i s a u - b a n d .
n
To
t h e band g e n e r a t e d by
d (so i t s d i s j o i n t i s I1). I
(Il)d,
By ( * ) , C(X)
Id.
f i t o u r n o t a t i o n , d e n o t e by
0
onto
0
0
C(X)
We
Id'
Now s u p p o s e 1
(Il)d,
.
And i t i s c l e a r t h a t
Id.
and C(X), a r e M a - i s o m o r p h i c ) i f a n d o n l y i f C(X)
3';
d
projects
I1
n
c I
I1
( * ) t h e p r o j e c t i o n o f C(X)
C(XI
d
By t h e v e r y d e f i n i t i o n o f
I d , s o , by ( * ) , t h e p r o j e c t i o n o f
i s one-one.
I t f o l l o w s f r o m 3'
that I
=
I1.
I1 Sincc (I,)d
i s a n ,?.,-band, I l i s a u - b a n d , s o we a r e t h r o u g h .
QED
We g i v e c h a r a c t e r i z a t i o n s o f k - b a n d s a n d u - b a n d s i n terms
o f t h e i r d u a l b a n d s i n C'(X).
(51.8)
Let I b e a b a n d o f C"(X)
The f o l l o w i n g a r e e q u i v a l e n t : 1'
I i s a n R-band;
2'
J = (c(x)
I n such c a s e , I
=
n 11'. (C(X)
n
I)".
a n d J i t s d u a l b a n d i n C'(X).
C h a p t e r 10
270
___ Proof.
Set H
=
C(X)
n
( I L ) d , i t f o l l o w s f r o m '4
0
I.
Suppose 1
i n ( 5 1 . 6 ) t h a t .J
holds.
S i n c e ,J
CI(X)/HL
=
=
=
H'.
C o n v e r s e l y , i f J = H I , t h e n fl i s s e p a r a t i n g on LJ, h e n c e , b y 3'
i n ( 5 1 . 6 ) , I i s an R - b a n d . QE D
Remark. -
The a b o v e i s a c t u a l l y ( 3 6 . 7 ) r e s t a t e d .
a n d J i t s d u a l b a n d i n C'CX).
Let I b e a band o f C " ( X )
(51.9)
The f o l l o w i n g a r e e q u i v a l e n t :
'1
I i s a u-band;
2'
J
=
(C(X)I)'.
In such case, I
Proof.
=
(C(X)I)I'.
S e t II
I _ _
(C(X)I)l t o <J
=
HL.
n
I
d
.
Then C(X),
=
Thus we n e e d o n l y show t h a t 1'
Since J
HL.
=
C(X)
=
=
d [I )
I'
t h e i d e n t i t y ,J
=
C[X)/H, h e n c e
is equivalent IIL
is equivalent
t o I d b e i n g an k - b a n d ( 5 1 . 6 ) , s o w e a r e t h r o u g h .
QED
Given a b a n d I o f C'l(X), l e t <J b e i t s d u a l b a n d i n C ' ( X ) , and Q
=
J
n
X.
In g e n e r a l , I cannot be r e c a p t u r e d from
i n d e e d , Q may e v e n b y e m p t y .
Q
-
I f I i s a u - b a n d o r an R - b a n d ,
c a n b e r e c a p t u r e d f r o m Q: however, i t -
(51.10).
I f I i s a u - b a n d , w i t h d u a l b a n d J , t h e n <J
n
X is a
The O p e r a t o r s u a n d R
c l o s e d s e t Z o f X , C(X),
=
J
C(Z),
271
C ' ( Z ) , and I =
=
C'l(Z).
T h i s i s e a s i l y v e r i f i e d from t h e m a t e r i a l i n t h e p r e s e n t section (cf.
(51.11)
(36. 7 ) ) .
I f I i s an f - b a n d , w i t h d u a l b a n d . J , t h e n J
I
o p e n s e t W o f X a n d C(X)
n
X i s an
Cw(W).
=
This also is e a s i l y verified.
-__ Remark.
I n § 5 6 , we g i v e w h a t i s p r o b a b l y t h e l a r g e s t
f a m i l y o f bands1 o f C"(X) r e c a p t u r e d from J
w i t h t h e p r o p e r t y t h a t each I can be
X (J t h e b a n d o f
C l ( X )
dual t o I ) .
9 52. A p p l i c a t i o n s t o g e n e r a l bands
Given a band I o f C " ( X ) ,
t h e n , i n g e n e r a l , Il(X),
n e i t h e r an Rsc n o r u s c e l e m e n t . g e n e r a t e d by k(Il(X),) k-band i n I .
is
IIowever, t h e R i e s z i d e a l
i s a n R-band,
and i s c l e a r l y t h e l a r g e s t
And t h e R i e s z i d e a l g e n e r a t e d b y u ( l l ( X ) , )
u-band, and i s c l e a r l y t h e smallest u-band c o n t a i n i n g I .
is a
By
a n a b u s e o f n o t a t i o n , we w i l l d e n o t e t h e f i r s t b a n d b y R ( 1 ) and t h e s e c o n d by u ( 1 ) . From t h e d e c o m p o s i t i o n
Cll(X)
= 1 3 Id,
w e have
272
Chapter 1 0
Ctt(X)
=
(Q(1))
u(1) 3 a(Id). =
u(1
d
O t h e r w i s e s t a t e d , ( ~ ( 1 ) =) ~k ( I d )
(and
1).
We h a v e i m m e d i a t e l y :
( 5 2 . 1 ) For e v e r y b a n d I o f C " ( X ) , a ( I )
i s t h e b a n d g e n e r a t e d by
~ ( xn ) I.
For e v e r y band I o f C t l ( X ) , ( a ( I ) ) L i s t h e
(52.2) Corollary.
vague c l o s u r e o f I
Remark,
L
.
C l e a r l y C(X)
n
k(1)
=
C(X)
s m a l l e s t band f o r which t h i s i s t r u e .
n
I
and k ( I ) i s t h e
I t f o l l o w s a l l t h e bands
b e t w e e n I a n d ~ ( 1 ) h a v e t h e same i n t e r s e c t i o n w i t h C(X), and ~ ( 1 )i s t h e s m a l l e s t b a n d f o r w h i c h t h i s i s t r u e .
For t h e bands between I and u ( I ) , t h e r e i s a c o r r e s p o n d i n g statement: projection
t h e y a l l h a v e t h e "same"
image o f C(X) u n d e r b a n d
- t h e word "same" now m e a n i n g " M I - i s o m o r p h i c " .
We
s t a t e t h i s precisely.
(52.3)
F o r e v e r y b a n d I o f C"(X),the p r o j e c t i o n o f u ( 1 ) o n t o I m p s
u ( I)
M I - i s o m o r p h i c a l l y o n t o C(X),.
Moreover, u ( I ) i s t h e
l a r g e s t band f o r which t h i s i s t r u e .
T h i s f o l l o w s f r o m t h e a b o v e Remark a n d ( * ) i n t h e p r o o f
The O p e r a t o r s u a n d R
273
of (51.7).
And from ( 5 2 . 2 ) ,
w e have:
( 5 2 . 4 ) Let J b e t h e b a n d d u a l t o t h e b a n d I o f C"(X).
Then
t h e vague c l o s u r e o f 3 i s t h e band d u a l t o u ( 1 ) .
We c a n now d e s c r i b e (C(X) a r b i t r a r y b a n d I o f C"(X).
n
I ) ' and (C(X),)'
From ( 5 1 . 8 ) a n d ( 5 1 . 9 ) , we h a v e
t h a t (C(X)
n
(C(X)I)'
<J i f a n d o n l y i f I i s a u - b a n d .
=
I)'
=
f o r an
J i f a n d o n l y i f I i s an R - b a n d , a n d
From t h e f i r s t o f t h e s e , we h a v e i m m e d i a t e l y :
( 5 2 . 5 ) F o r e v e r y b a n d I o f C"(X), t o a(11,
(c(x) n
SO
I ) I I
=
(C(X)
n
I ) ' i s t h e band dual
~ ( 1 ) .
The c o r r e s p o n d i n g s t a t e m e n t f o r C(X),
i s less d i r e c t .
( 5 2 . 6 ) L e t I be a b a n d o f C''(X) a n d J i t s d u a l b a n d i n C ' ( X ) .
Then ( C ( X ) , ) '
so (C(X),)"
can be i d e n t i f i e d w i t h t h e vague c l o s u r e o f J.,
can be i d e n t i f i e d w i t h u ( 1 ) .
Denote t h e v a g u e c l o s u r e o f J b y J1. t h e b i l i n e a r form
( ( . , - ) ) on C(X),
x
We h a v e t o d e f i n e
J1 g i v i n g t h e d u a l i t y
2 74
Chapter 1 0
Note f i r s t t h a t i f I i s a u - b a n d , s o t h a t .J i t s c l f i s v a g u e l y c l o s e d , t h e n f o r fCC(X), and l i E t J , ( ( f , ] ~ ) ) = b e i n g t h e c a n o n i c a l b i l i n e a r form on C " ( X ) c a u s e I and .J a r e d u a l b a n d s .
(f,Ll),
XC1(X).
the l a t t e r This be-
Now l e t I b e a g e n e r a l b a n d , and
Denote t h e r e s t r i c p r o h , u ( I ) the p r o j e c t i o n of u(1) onto I. tion of proj s i m p l y by p . So p i s an M l l I , u ( I ) to c ( X )U ( I ) i s o m o r p h i s m o f C(X) o n t o C(X),. Then, f o r f E C ( X ) I and Ll(I)
uEJ1,
the desired valuc ((f,ii)) ((f,lJ))
i s g i v e n by
(P-'(f),lJ)
=
-
And t h e i m b e d d i n g o f f i n t o t h e b i d u a l o f C(X), i s g i v e n by
f
L-, p-l
(f).
I n s t u d y i n g a p a i r o f d u a l b a n d s ( I , J ) , t h e r e i s o f t e n no l o s s i n r e p l a c i n g C'(X) b y t h e v a g u e c l o s u r e ,JI o f <J a n d
( t h e r e f o r e ) C''(X) b y u ( 1 ) . ourselves t o t h e support
O t h e r w i s e s t a t e d , we c a n c o n f i n e
.J1n X
o f J i n s t e a d o f a l l o f X.
We
will do t h i s i n p r a c t i c e b y s i m p l y a s s u m i n g t h a t J i s v a g u e l y d e n s e i n C'(X)
- e q u i v a l e n t l y , t h a t u(1) = C"(X).
553. The Isomorphism theorem
We pointed o u t in 540 that the projection of
Clt(X)u
maps C(X)
bin-isomorphically onto C ( X )
0.
Cl'[X)
onto
. We show now
that, in fact:
(53.11 (Isomorphism theorem). C"(X)u
maps U(X)
Proof. on U(X).
The projection o f C " ( X )
onto
MI-isomorphically onto U(X)a.
We need o n l y show that the projection is one-one
And for this, it is enough to show that for a l l
f,gEU(X), fu
5 g, implies f
-___ Lemma 1.
<
g.
For all Rl,L2EC(X)
R
,
(Rl)u
5
(R2)u
implies
5 L2' By the definition of C(X)',
the Lemma can be stated:
every pair of subsets A,B o f C(X) which are bounded a b o v e , V A u -< VBu implies V A < VB.
We show this. 275
For
2 76
C h a p t e r 11
Assume V A VgEB(faAg,) VgEB(fAg)
.
For e v e r y f E A , . f < V B hence f = aa' a I t fOllOWS f r o m ( 4 0 . 3 ) t h a t f = = v g € B ( f A g )U .
-
< VB
a -
u
Since t h i s holds f o r a l l f E A , V A < VB.
VB.
Lemma 2 . For a l l t e C ( X ) ' -___
u
< -
u
and uEC(X)',
u -
R
implies
a
a
In e f f e c t ,
(a.
-
u)&
=
-
u
> 0. u -
S i n c e I? - u i s a n k s c
e l e m e n t , i t f o l l o w s f r o m Lemma 1 t h a t Q - u > 0. Now c o n s i d e r a n y f , g E U ( X ) s u c h t h a t f a 5 g,. some A c C(X)u a n d g
=
A B f o r some B c C(X)
R
f
=
(cf. 544).
vA f o r Then
= VA a n d ga = A B ~ . S i n c e , by s u p p o s i t i o n , f a 5 g a , t h i s a a g i v e s u s A < B * h e n c e , by Lemma 2 , A - B; h e n c e , f i n a l l y , a - a' f / g.
f
QED
(53.2)
Corollary.
Given fEU(X), f i s c o m p l e t e l y d e t e r m i n e d by
i t s v a l u e s on X .
Proof. know f .
so f
By t h e I s o m o r p h i s m t h e o r e m i f w e know f
(We m u s t know t h a t f E U ( X ) ! ! ) .
a'
t h e n we
Now C''(X)a = k"(X),
i s c o m p l e t e l y d e t e r m i n e d by t h e s e t o f v a l u e s a C ( f a , x ) I x E X 3 But ( f , x ) = (f , x ) f o r a l l x E X . . Thus f i s a d e t e r m i n e d by t h e s e t o f v a l u e s { ( f , x ) I x E X } ,
We e m p h a s i z e a g a i n t h a t , a s f a r a s we know, i t i s o n l y U(X) whose e l e m e n t s a r e d e t e r m i n e d by t h e i r v a l u e s on X . may b e
-
It
i n some s t i l l t o b e d e f i n e d s e n s e - t h a t U(X) may b e
t h e l a r g e s t s u b s p a c e o f Ctt(X) c o n t a i n i n g C(X) f o r w h i c h t h i s holds.
We s t a t e t h i s i n a d i f f e r e n t way.
The I s o m o r p h i s m
t h e o r e m g i v e s u s an i d e n t i f i c a t i o n o f U(X) w i t h a s u b s p a c e o f ilm(X),
t h a t i s , w i t h a s e t o f f u n c t i o n s on X .
( B u t remember:
U(X) i s r e a l l y d i s t i n c t f r o m t h i s f u n c t i o n s p a c e . )
I t may b e
t h a t U(X) i s t h e l a r g e s t s u b s p a c e o f C1'(X) w h i c h c o n t a i n s C(X) and whose e l e m e n t s c a n b e i d e n t i f i e d i n a " n a t u r a l " way w i t h f u n c t i o n s on X .
554.
Immediate c o n s e q u e n c e s o f t h e Isomorphism theorem
The u - o r d e r c l o s e d n e s s o f U(X) and t h e o r d e r c o n t i n u i t y o f band p r o j e c t i o n g i v e s u s :
(54.1)
U(X)a
is o-order closed.
Whence,
( 5 4 . 2 ) Given i f n } c U(X) a n d f € U ( X ) , t h e f o l l o w i n g a r e e q u i valent:
C h a p t e r 11
278
1'
{f,}
order converges t o f i n U ( X ) ;
2'
{f,}
order converges t o f i n Clt(X) ;
0
3
{fn} converges t o f vaguely;
4'
{f,}
5'
{ ( fn ) u } o r d e r c o n v e r g e s t o f a .
i s bounded a n d ( f , x )
Proof. t h a t U(X)
That lo i m p l i e s 2
0
=
limn(fn,x) €or a l l x E X :
f o l l o w s e a s i l y from t h e f a c t T h a t 2'
i s u-order closed i n Ctt(X).
implies 3
(40.2)
0
.
Since ( (fn)a,x)
g i v e s u s t h a t 4'
i m p l i e s 5'.
=
( f n , x ) and ( f , , x ) F i n a l l y , assume 5
of
3'
f o l l o w s from t h e o r d e r c o n t i n u i t y o f e v e r y u E C ' ( X ) . course implies 4
0
0
=
holds.
~ ~ I)s o~m o) r p. h i s m t h e o r e m a n d t h e Then f a = A ~ ( V ~ > ~ ( The -
o r d e r closedness o f U(X) f
=
limsup f 11
Thus f n
-t
n
.
gives us t h a t f
=
An(VmZnfm).
(f,x),
0-
Thus
A s i m i l a r argument g i v e s us t h a t f = l i m i n f n f n .
f.
QED
Contained i n t h e Isomorphism theorem i s t h e f o l l o w i n g :
( 5 4 . 3 ) The p r o j e c t i o n o f C " ( X )
o n t o C"(X
and B o ( X )
MIl-isomorphically i n t o C ' t ( X ) u .
and C ( X ) u
l a t t i c e i s o m o r p h i c a l l y i n t o C"
We h a v e a l r e a d y s e e n t h i s f o r C ( X ) then characterized C(X)a:
i n 540.
M o r e o v e r , we
279
(54.4) For g E C " ( X ) u , lo
gEC(x)u;
'2
g is
the following are equivalent:
continuous on X.
Using this, we can a l s o characterize (C(X) R )a and (C(X)u)a:
(54.5) For g E C " ( X ) , ,
the following are equivalent:
'1
g i (CCX)'
2'
g is lowersemicontinuous on X.
ja ;
Similarly for (C(X)u)a,
Proof.
with "uppersemicontinuous" in '2
Given L € C ( X ) ' ,
then by the Lemma in the proof of
(44.1), R is lowersemicontinuous on X. all x € X , , i t follows R, versely, assume 2'
Since (R,,x)
=
( L , x ) for
is a l s o lowersemicontinuous on X.
holds.
Con-
Then by standard function theory
(and ( 4 0 . 1 ) ) , g is the supremum in Ctl(X)a of the set B of elements of C"(X)a
B
=
A d , A c C(X).
below i t which are continuous on X. p, = V A then satisfies p,
a
By ( 5 4 . 4 ) ,
= g.
QED
We recall (48.4) that an element f of C t l ( X ) lies in C ( X )
1
if and only if f is vaguely lowersemicontinuous on K ( C ' ( X ) ) . It is not sufficient that f be lowersemicontinuous on X. ever, for fEU(X), the latter is sufficient:
How-
Chapter 11
280 (54.6) Corollary 1. lo
f€C(X)R;
2’
f is lowersemicontinuous on X;
3’
fa is lowersemicontinuous on X.
0
Proof.
I t remains only to show that 3
pose 3’ holds. that R, f
For f € U ( X ) , the following are equivalent:
fa.
=
implies 1’.
Then, by ( 5 4 . 5 ) , there exists L€C(X)’
Supsuch
It follows from the Isomorphism theorem that
= J?,.
QED
For a second corollary, we recall some function theory. We are interested in C ” ( X ) a , ~ we ~ state it in terms of functions on X.
Consider a bounded function g on X.
function ^g on X as follows: neighborhoods of x ; then g ( x )
g determines a
let {V } be the family of all c1
=
infa(sup
g(y)).
We denote
va
limsup It is easily verified that 2 is g(y). Y+X an uppersemicontinuous function above g , and is the smallest this by ^g(x)
one. of g.
=
We will call it the qpersemicontinuous upper envelope The lowersemicontinuous lower envelope of g is defined
s imi larl y
.
We then have
(54.7) Corollary 2.
For f E U ( X ) , u(f),
tinuous upper envelope of f a , and il(f), tinuous lower envelope.
is the uppersemiconis the lowersemicon-
281
T h i s f o l l o w s e a s i l y from ( 5 4 . 6 ) and t h e Isomorphism The o r em. The c o n d i i o n fEU(X) c a n n o t b e d r o p p e d : i n t e r v a l and f
=
ll(X)d
.
Let X b e a r e a l
Then f a = 0 , w h i c h i s i t s own u p p e r -
semicontinuous upper envelope, but it i s n o t hard t o v e r i f y that u(f)
=
ll(X),
hence u ( f ) a
=
Il(X)a
#
I n ( 5 4 . 5 ) , we c h a r a c t e r i z e d (C(X)')a
0.
a n d (C(X)')a
in
We c a n do t h e same f o r s ( X ) , ,
C " ( X ) a , u s i n g o n l y C"(X)a.
S(X)a,
a n d Ro(X),.
Ba(X),,
(54.8) For e v e r y g€C"(X),,
the following are equivalent:
lo
gEs(XIa :
2'
g i s t h e d i f f e r e n c e o f two ( b o u n d e d ) l o w e r s e m i c o n -
tinuous functions.
S i n c e t h e Mll-isomorphism o f U(X) o n t o U(X)a i s a n i s o metry, t h i s gives, i n turn:
(54.9)
F o r e v e r y gEC"(X).
, the following are equivalent:
lo
gES(X),:
2'
g i s i n t h e norm c l o s e d l i n e a r s u b s p a c e g e n e r a t e d by
t h e ( b o u n d e d ) l o w e r s e m i c o n t i n u o u s f u n c t i o n s on X.
By a B a i r e f u n c t i o n on X , we mean o n e d e f i n e d i n t h e
282
Chapter 11
standard way in function theory, starting from continuous functions (that is, by (54.4), the elements of C(X)a).
Similarly
for a Borel function.
(54.10) For gEC"(X)a 1'
2
0
gEBa(X)a
, the following are equivalent:
:
g is a H a i r e function on X .
(54.11) For g E C " ( X ) a
, the following are equivalent:
'1
gEBo(X):
2'
g is a Borel function on X.
(54.8), (54.9), (54.10), and ( 5 4 . 1 1 ) each have a corollary paralleling (54.6).
We leave their formulations to the reader.
What about a l s o characterizing I J ( X ) a
in C"(X),
using only
We shall see below that this fails (54.20).
C(X),?
Given an
element of C"(X)cc, we cannot, with the above restriction, determine whether o r not it lies in
U(aa.
Before showing this, we have to look at U ( X ) (thus far, we have been considering U ( X ) a ) . Note that, by the I s o m o r p h i s m theorem,
(54.12)
n
C"(X)cc
U(X)
In c o n t r a s t t o t h i s (and u n l i k e t h e c a s e w i t h C ( X ) ) , always i n t c r s c c t s C"(X)
U
i n more t h a n 0 :
F o r e v e r y xoEX, t h e e l e m e n t f o o f C ' f [ X ) u
( 5 4 . 1 3 ) Thcorcm.
w h i c h h a s v a l u e 1 on x
0
and
I)
on t h e r e s t o f X i s a u s c e l e m e n t
( h e n c e l i e s i n U(X)).
--__ Proof.
fo
=
u.
Set A
{fEC(X)+I ( f , x o ) > l } and u
A i s f i l t e r i n g downward.
t i n u o u s on C " ( X ) (u,xo)
=
=
=
A A ; we show
Since each xiY
i s order con-
- and X i s a normal s p a c e - it f o l l o w s
1 and ( u , x )
0 for a l l
=
x # xo.
T h u s ua
c o m p l e t e t h e p r o o f b y s h o w i n g t h a t u v a n i s h e s on
fo.
=
Cl(X),
We and
thus coincides with ua. C o n s i d e r U E C ' ( X ) ~ , a n d we c a n t a k e p > 0. that 0 <
E
E
such
< 1 / 2 ; we show ( u , ~ )< 2 ~ . ui/\x0 = 0 , h e n c e t h e r e
exist f,gEC(X)+, f (g,xo) <
Take
+
&
g
=
n(X),
such t h a t ( f , p ) <
Then ( f , x o > > (1
-
E),
SO
E:
and
(1/(1 -
~))feA.
I t follows
C o r o l l a r y 1. (54.14) -
c o ( X ) + c C(X)'.
Hence co(X) c s ( X )
T h i s f o l l o w s f r o m t h e a b o v e a n d t h e f a c t t h a t C(X)u i s a
C h a p t e r 11
284
norm c l o s e d wedge. Combining ( 5 4 . 1 4 ) w i t h ( 4 1 . 6 ) a n d t h e f a c t t h a t U(X) i s 0 - o r d e r c l o s e d , we h a v e
(54.15) Corollary 2 . .
C z x)
n
c l l ( ~c ) ~~ ( x ) .
Thus U(X) c o n t a i n s a 1 t h e e l e m e n t s o f C"(X)a w h i c h v a n i s h
o n a l l b u t a c o u n t a b l e number o f
X I S .
In addition:
( 5 4 . 1 6 ) C o r o l l a r y 3. a b l e number o f
Proof.
X I S ,
fa
I f fEU(X)
v a n i s h e s on a l l b u t a c o u n t -
t h e n fEC".(X)u.
a l s o v a n i s h e s on a l l b u t a c o u n t a b l e number o f
x's, s o b y t h e p r e c e d i n g r e m a r k , f a E U ( X ) .
i t f o l l o w s from
t h e Isomorphism theorem t h a t f = f a .
QED
The n e x t c o r o l l a r y s t a t e s t h a t t h e p r o p e r t y ( 4 0 . 1 ) o f C''(X)u h o l d s a l s o f o r U(X)u a n d f o r U(X)
n
C"(X)u.
(54.17) C o r o l l a r y 4 . F o r B c U ( X ) u a n d gEU(X)a, are equivalent: 1'
g = VB;
the following
285 '2 0
3
g
VB-in-U(X)u;
=
(g,x)
suphEB(h,x) for all xEX.
=
Similarly, with U(X)u
replaced by U(X)
_-Proof. We need only show that
2'
n
C"(X)u
implies .'3
This follows
easily from (54.13).
(54.18) Corollary 5. gEU(X)u
, ga
+
QED
For a bounded net {gal in U(X)u
g in U(X)u
placed by U(X)
implies g
a
+
and
g. Similarly with U(X)u re-
C''(X)u.
Combining (54.17) with the Isomorphism theorem we have the
(54.19) Theorem.
For A c U ( X ) and fEU(X), the following are
equivalent: '1
f
2'
(f,x)
=
VA-in-U(X); =
supkcA(k,x)
for all XEX.
We return to the question of characterizing U(X)u starting from C ( X ) u .
in C " ( X ) u
In line with the characterizations ob-
tained earlier in this section, the characterization should be that U(X)u
is the Dedekind closure of S ( X ) ~ (cf. (54.8) and
540), o r , equivalently, that U ( X ) u consists of those elements of
C ' l ( X ) u
which are each both the infimum o f some subset of
286
C h a p t e r 11
( C ( X ) u ) e (= ( C ( X ) R ) u b y ( 5 4 . 5 ) ) a n d t h e supremum o f some s u b s e t We show f i r s t t h a t t h i s D e d e k i n d
of (C(X)u)u (= ( C ( X ) u ) u ) .
c l o s u r e i s a l l o f Cll(X)u.
( 5 4 . 2 0 ) E v e r y fEC"-(X)u
a n d t h e supremum o f some s u b s e t o f (C(X) R
s u b s e t o f (C(X)')u
Proof. g,
i s s i m u l t a n e o u s l y t h e infimum o f some
For e a c h xEX, l e t
b e t h e e l e m e n t o f Cll(X)u w i t h v a l u e 1 on x a n d 0 e l s e w h e r e ,
and s e t u
X
=
uX i s a
(f,x)gx.
immediate t h a t f
=
VxExux.
ll(X)u - (1 - ( f , x ) ) g x .
USC
e l e m e n t (54.13), a n d i t i s
A g a i n , f o r e a c h xEX, s e t hx
Then h,E(C(X)')),
and f
=
=
AxEXhx. QED
We s h a l l s e e l a t e r t h a t U(X)u i s , i n g e n e r a l , a p r o p e r s u b s p a c e o f C"(X)u.
Thus t h e c o n j e c t u r e f a i l s , a n d we a p p a r e n t -
l y c a n n o t c h a r a c t e r i z e U(X)u s t a r t i n g f r o m C(X)u. B e f o r e c o n t i n u i n g t h e d i s c u s s i o n , we n o t e some c o n s e q u e n c e s of (54.20).
(54.21)
C o r o l l a r y 1.
s(X),,
S ( X ) u , a n d U(X)), a l l h a v e Ct'(X)a
f o r t h e i r Dedekind c l o s u r e s .
S i n c e Cll(X)u i s D e d e k i n d c o m p l e t e , t h e a b o v e a n d t h e Isomorphism theorem g i v e us
The D e d e k i n d c o m p l e t i o n s o f s ( X ) , S(X),
( 5 4 . 2 2 ) Theorem. a n d U(X)
can a l l be i d e n t i f i e d w i t h C"(X),.
Note t h a t , i n c o n t r a s t t o ( 5 3 . 2 0 ) , C ( X ) a closed.
Bo(X),
i s Dedekind
I n e f f e c t , i f f i s i n t h e Dedekind c l o s u r e o f C ( X ) a ,
t h e n i t i s e a s i l y s e e n t o b e c o n t i n u o u s on X , h e n c e l i e s i n C(XIa.
We e x a m i n e ( 5 4 . 2 0 )
g determines t h e s e t s A
=
S e t g,
morphism t h e o r e m , A < B. and ( g * ) ,
g
=
so gEU(X),
(s*1,
=
.
=
=
Consider gEC"(X)a
=
f
=
=
By t h e I s o -
g = AB,.
V A and g*
(VN,
= AB.
= g,
= VA,
Then g,
i g* -
and s i m i l a r l y
t h e n t h i s common e l e m e n t l i e s i n U(X),
,
that is, g
=
fa for
g*, as i s e a s i l y v e r i f i e d using t h e I s o -
Summing u p : a n e l e m e n t g o f C ' l ( X ) a
morphism t h e o r e m .
.
< g } and B = a -
And c o n v e r s e l y , i f g E U ( X ) ,
f E U ( X ) , t h e n g,
U(X),
((g*)=
= g*,
I f g,
f o r (g*),).
{ U € C ( X ) Iu ~
S o , b y ( 5 4 . 2 0 1 , VA,
3 g}.
{REC(X)'~~,
more c l o s e l y .
i f and o n l y i f g,
=
lies in
g*.
We w i l l s e e l a t e r t h a t g i v e n gEC"(X),
=
a"(X),
t h e n g,
*
and g * h a v e t h e f o l l o w i n g p r o p e r t y : F o r e v e r y p € C ' ( X ) + , ( g , p ) j*gdp and ( g , , p )
=
=
j * g d u , w h e r e I*gdu i s t h e u p p e r i n t e g r a l o f
g w i t h r e s p e c t t o p a n d /*gdu i s t h e l o w e r i n t e g r a l .
R e t u r n i n g t o o u r d i s c u s s i o n on n o t b e i n g a b l e t o c h a r a c t e r -
ize U(X)a
from C(X),,
t h e r e i s an a d d i t i o n a l message i n ( 5 4 . 2 0 ) :
While, by t h e Isomorphism t h e o r e m , w e can o b t a i n t h e i n t r i n s i c p r o p e r t i e s o f U(X) embedding o f U ( X )
by s t u d y i n g U ( X ) u i n C"(Xj
, we c a n n o t l e a r n a b o u t t h e
from t h a t of U ( X ) a
i n Cl'(X)u.
For
C h a p t e r 11
288
e x a m p l e , U(X) i s Dedekind c l o s e d i n C"(X) w h i l e U(X)u i s n o t Dedekind c l o s e d i n C"(X)u. L e t X be a r e a l i n -
We g i v e a s e c o n d , c l a s s i c a l , e x a m p l e . t e r v a l , p t h e Lebesgue m e a s u r e on X , a n d x t i o n of a l l f i n i t e subsets of X. under i n c l u s i o n .
For e a c h
=
{ Z } be t h e c o l l e c -
Note t h a t x i s a d i r e c t e d s e t
Z€z,
l e t f Z be t h e elemen t o f
C1l(X)a h a v i n g v a l u e 1 a t e a c h p o i n t o f Z and v a l u e 0 e l s e w h e r e Then { f , } i s an a s c e n d i n g n e t i n U(X) ( 5 4 . 1 3 ) , s u p Z ( f Z , x ) = 1 = ( I l ( X ) , x ) f o r a l l xEX. o r d e r converge t o l(X) (l(X),p)
=
1.
However,
If,} does n o t
since ( f , , ~ ) = 0 f o r a l l Z€x, while
( I f , } o r d e r c o n v e r g e s t o Il(X)=.)
A f i n a l p r o p e r t y o f U(X).
o u s o n Cll(X).
and we h a v e
Every p € C ' ( X ) i s o r d e r c o n t i n u -
S i n c e U(X) i s a - o r d e r c l o s e d i n C"(X), i t f o l l o w s
e v e r y pEC'(X) i s a - o r d e r c o n t i n u o u s on U(X), c o n s i d e r e d a R i e s z space i n i t s e l f .
I n g e n e r a l , a u€C'(X) i s n o t o r d e r c o n t i n u o u s
on U(X) ( c o n s i d e r e d a s a R i e s z s p a c e i n i t s e l f ] . We show t h a t t h e u ' s w h i c h a r e o r d e r c o n t i n u o u s on U(X) a r e p r e c i s e l y t h e e l e m e n t s o f C ' (X)u.
( 5 4 . 2 3 ) Theorem.
For uEC'-(X), t h e f o l l o w i n g a r e e q u i v a l e n t :
lo
lJEC'(X)a ;
2'
p i s o r d e r c o n t i n u o u s on
Proof.
U(X).
C o n s i d e r p E C ' ( X ) a , 1-1 > 0.
To show p i s o r d e r c o n -
t i n u o u s on U(X), i t i s enough t o show t h a t f a + O
i n U(X) i m p l i e s
0 = l i m (fa,p). a
By t h e Isomorphism t h e o r e m , ( f a ) a + O i n U(X)a,
Hence by ( 5 4 . 1 7 ) ,
(fcl)a+O.
it follows 0
Cll(X)a,
=
Since p i s order continuous on
l i m ( ( f ) ,p) a Cla
Thus 1'
lim(fN ,p).
=
i m p l i e s 2'.
,
Conversely, consider p € C ' ( X ) d o r d e r c o n t i n u o u s on U(X).
1-1 > 0 ; we show p i s n o t
Now i n t h e c l a s s i c a l example a b o v e ,
X c o u l d have been any compact s p a c e and p any s t r i c t l y p o s i -
t i v e element o f C1(X)d
.
So we a r e t h r o u g h .
QED
Remark 1.
I t i s n o t d i f f i c u l t t o show t h a t
all
the order
c o n t i n u o u s l i n e a r f u n c t i o n a l on U(X), n o t o n l y t h o s e i n C"(X), l i e i n C ' ( X ) a - o t h e r w i s e s t a t e d , U(X)' Remark 2 .
= C'(X)a.
( 5 4 . 2 3 ) i s a s p e c i a l c a s e o f a g e n e r a l theorem
by M a s t e r s o n [ 5 2 ] .
355. The u n i v e r s a l l y m e a s u r a b l e s u b s e t s o f X
L e t ( 1 , J ) be a p a i r o f d u a l b a n d s . vague c l o s u r e o f J by J1, call J
n
X t h e s e a t of J
be no c o n f u s i o n .
(u(I),J1)
Then, d e n o t i n g t h e
a r e dual bands.
and a l s o t h e s e a t o f L .
Note t h a t J
We w i l l There can
X = { x E X [ . ( f , x ) # 0 f o r some
f E I } ; s o i t c a n be d e f i n e d i n d i f f e r e n t l y u s i n g e i t h e r J o r I . S i m i l a r l y , t h e support of J , be c a l l e d t h e s u p p o r t o f I .
Jln
X,
( c f . 536) w i l l a l s o
Thus t h e s u p p o r t o f J i s s i m p l y
t h e s e a t o f J1 - e q u i v a l e n t l y , t h e s u p p o r t o f I i s s i m p l y t h e s e a t of u ( 1 ) .
C h a p t e r 11
290
We e x t e n d t h e a b o v e t o a r b i t r a r y s u b s e t s . A o f C 1 ( X ) , l e t $J b e t h e b a n d g e n e r a t e d b y A .
Given a s u b s e t Then by t h e --s e a t
w e w i l l mean t h e s e a t o f J , a n d s i m i l a r l y f o r t h e s u p p o r t
__ of A
o f A.
I n p a r t i c u l a r , we c a n t a l k a b o u t t h e s e a t a n d s u p p o r t o f
a s i n g l e element
of Cl(X).
Similarly
f o r t h e s e a t and s u p -
p o r t o f a s u b s e t o f C'l(X), a n d i n p a r t i c u l a r o f a s i n g l e e l e men t
. F o r a band J o f C l ( X ) , w e c l e a r l y h a v e J
.
Note a l s o t h a t f o r a
=
JU
n
X.
t h e s e a t of I i s t h e s e a t
E q u i v a l e n t l y , f o r a band I o f C ' ( X ) , of Ia
.OX
R i e s z i d e a l G o f C f ( X ) , i f we
d e n o t e i t s o r d e r c l o s u r e b y .J, t h e n J
n
X
=
G
X.
The s u p p o r t o f a s e t ( i n e i t h e r Cl(X) o r C"(X))
is, i n
g e n e r a l , n o t t h e c l o s u r e o f i t s s e a t : t h e s e a t of C1(X)d i s ~
always empty, b u t i f X i s d e n s e - i n - i t s e l f , t h e n t h e s u p p o r t o f C1(X)d i s a l l o f X.
We w i l l s i n g l e o u t b e l o w a f a m i l y o f b a n d s
o f C"(X) w i t h t h e p r o p e r t y t h a t t h e s u p p o r t o f e a c h i s t h e closure of its seat.
D i s t i n c t b a n d s o f C l ( X ) c a n h a v e t h e same s e a t , a n d s i m i l a r l y f o r d i s t i n c t b a n d s o f C"(X). band o f Cl(X) o r o f C"(X)
Thus, i n g e n e r a l , a
c a n n o t be r e c a p t u r e d from i t s s e a t .
I f w e know t h a t a b a n d J o f C 1 ( X ) i s v a g u e l y c l o s e d , t h e n w e
can r e c a p t u r e it from i t s s e a t Z u s u a l , ZL = Z'-in-C(X)
(so
know Jd i s v a g u e l y c l o s e d ,
J
= J
n
= C1(Z)).
X ; J = (Z')',
I t follows t h a t i f we
we c a n a l s o r e c a p t u r e J f r o m i t s
s e a t (which i n t h i s c a s e i s an open s e t ) . know t h a t a b a n d I o f C"(X)
where, a s
E q u i v a l e n t l y , i f we
i s a u - b a n d - o r a n R-band - t h e n
we can r e c a p t u r e i t f r o m i t s s e a t .
We w i l l d e s c r i b e b e l n w w h a t
i s p r o b a b l y t h e l a r g e s t f a m i l y o f b a n d s o f C"(X) w h i c h c a n b e
291
r e c a p t u r e d from t h e i r s e a t s .
We now s i n g l e o u t a p a r t i c u l a r f a m i l y o f s u b s e t s o f X , "universally measureable ones.
I n t h i s 5 and t h e f o l l o w i n g o n e ,
w i l l be d e n o t e d s i m p l y by
z(ll(X))
ways d e n o t e a n e l e m e n t o f t . either C"(X) For
o r C'(X))
e € 6 ,C(e)
the
t,
and t h e l e t t e r e w i l l a l -
Also t h e s e a t o f a s e t A ( i n
w i l l b e d e n o t e d b y Q(A).
is c l e a r l y the set { x E X I(e,x)
1).
=
I t is
e a s i l y v e r i f i e d t h a t t h e m a p p i n g e +-> Q(e) ( t h a t i s , t h e r e s t r i c t i o n of Q(.)
6
t o g ) i s a B o o l e a n a l g e b r a homomorphism o f
o n t o t h e Boolean a l g e b r a o f a l l s u b s e t s of X.
is not one-one. this. write
However i t i s one-one
Note f i r s t t h a t
6
n
C"(X),
=
&,
OT,
=
6 n
In general, it
we record
C"(X),;
(n(X),);
we w i l l
6,.
( 5 5 . 1 ) The r e s t r i c t i o n o f t h e o p e r a t o r Q ( * ) t o z , hence i s a Boolean a l g e b r a isomorphism o f 6 ,
is one-one,
w i t h t h e Boolean
a l g e b r a of a l l s u b s e t s o f X.
F o r e a c h s u b s e t (! o f X , w e w i l l c a l l t h e u n i q u e t h a t Q(e)
=
eE2,
such
Q t h e c h a r a c t e r i s t i c e l e m e n t of Q i n C 1 ' ( X ) a . These
-
two B o o l e a n a l g e b r a s , t h a t o f a l l s u b s e t s o f X a n d t h a t o f t h e i r c h a r a c t e r i s t i c e l e m e n t s i n C 1 l ( X ) a a r e o b j e c t s commonly dealt with in analysis. p a i r o f Boolean a l g e b r a s :
We a r e more i n t e r e s t e d i n a d i f f e r e n t
292
C h a p t e r 11
n
( 5 5 . 2 ) The r e s t r i c t i o n o f t h e o p e r a t o r Q ( . ) t o
U(X)
is also
o n e - o n e ( b u t n o t o n t o ) , hence i s a Boolean a l g e b r a isomorphism w i t h a Boolean s u b a l g e b r a o f t h a t of a l l t h e s u b s e t s o f X .
Th s f o l l o w s from Q(e)
=
Q ( e a ) , t h e Isomorphism t h e o r e m ,
and ( 5 5 1 ) .
We w i l l c a l l t h e s e t s CQ(e) IeE
U(X) 1 t h e u n i v e r s a l l y
8
m easurable s u b s e t s o f X , and f o r e v e r y s u c h Q c a l l e t h e c h a r a c t e r i s t i c element o f Q .
=
Q ( e ) , we w i l l
We emphasize t h a t t h i s
t e r m , " t h e c h a r a c t e r i s t i c e l e m e n t o f Q" w i l l o n l y be used when we know t h a t Q i s a u n i v e r s a l l y m e a s u r a b l e s e t , and t h a t t h e n t h e term r e f e r s t o a unique element o f
u(x).
Given Q c X , i f
we d o n ' t know t h a t i t i s u n i v e r s a l l y m e a s u r a b l e ( o r know t h a t i t i s n o t ) , t h e n we can o n l y r e f e r t o i t s " c h a r a c t e r i s t i c e l e -
ment i n C 1 r ( X ) a r r .
Even f o r a u n i v e r s a l l y m e a s u r a b l e s e t , we c a n
of c o u r s e s t i l l r e f e r t o i t s c h a r a c t e r i s t i c e l e m e n t i n C 1 ' ( X ) a . I n g e n e r a l , t h i s w i l l be d i s t i n c t from i t s c h a r a c t e r i s t i c e l e ment, a l t h o u g h , i n some c a s e s , t h e two w i l l c o i n c i d e ( f o r example, when Q c o n s i s t s o f a s i n g l e e l e m e n t x ) . Some immed a t e p r o p e r t i e s o f t h e f a m i l y o f u n i v e r s a l l y measurable s e t s
I t c o u l d e q u a l l y w e l l have been d e f i n e d a s
t h e family of s e a t s of elements o f lJ(X),
{Q(f) l f C U ( X ) I .
c l o s e d u n d e r suprema and i n f i m a o f c o u n t a b l e s e t s . e of
8 0
U(X)
I t is
An e l e m e n t
i s a u s c e l e m e n t ( r e s p . an llsc e l e m e n t ) i f and
o n l y i f Q(e) i s a c l o s e d s e t ( r e s p . an open s e t ) . I n p a r t i c u l a r eE8
,nU ( X )
over,
l i e s i n C(X)
i f and o n l y i f Q(e) i s c l o p e n .
More-
293
(55.3)
F o r e v e r y eE
8 n
(i) Q(u(e))=
U(X),
91e),
( i i ) Qlk(e)) = i n t e r i o r Q(e), ( i i i ) Q(s(e)) = frontier Q(e).
T h i s f o l l o w s from (54.7) and o r d i n a r y f u n c t i o n t h e o r y .
We s i n g l e o u t a n o t h e r f a m i l y o f b a n d s o f C"(X). c l u d e s t h e R-bands and t h e u - b a n d s . c a l l e d a U-band i f l l ( X ) I E U(X).
a l s o a U-band.
n 1~1.
IU(X
It is clear that collection
In particular,
( 5 5 . 4 ) F o r a b a n d I o f C"(X) 1'
I i s a U-band;
2O
U(X), c U(X);
(55.5)
=
=
n(X)
-
2 n
Jl(X),,
If follows e a s i l y t h a t u(x)
t h i s h o l d s , t h e n IL(X),€U(X),
30 u ( x )
I
[u(x)
Corollary.
n
I]
u(x),
=
u
X)
n
U(X).
hence I d i s
[u(x)
=
I.
s o I i s a U-band.
,
w i l l be
A b a n d I o f C"(X)
of U-bands i s a Boolean a l g e b r a i s o m o r p h i c t o
F o r e v e r y U-band I , n(X)
I t in-
n
11
3
Moreover, i f Thus
the following are equivalent:
B [u(x)
n rdl.
The m a p p i n g I t->U(X)
n
I i s an isomorph-
i s m o f t h e Boolean a l g e b r a ' o f U-bands o n t o t h a t o f t h e p r o j e c t i o n bands o f U ( X ) .
C h a p t e r 11
294
I t i s c l e a r t h a t t h e mapping I
6
-
2
Q(1)
i s an i s o m o r p h i s m
o f t h e B o o l e a n a l g e b r a o f U-bands o n t o t h a t o f t h e u n i v e r s a l l y measurable s u b s e t s of X.
Thus a U-band i s d e t e r m i n e d by i t s
M o r e o v e r , from ( 5 5 . 3 ) , t h e s u p p o r t o f a U-band i s t h e
seat.
closure of i t s s e a t .
A s we s t a t e d e a r l i e r , t h e U-bands may
c o n s t i t u t e t h e l a r g e s t f a m i l y o f b a n d s i n C'l(X) w i t h t h e s e two p r o p e r t i e s .
5 5 6 . The Nakano c o m p l e t e n e s s t h e o r e m
We g i v e t h e c l a s s i c a l c h a r a c t e r i z a t i o n o f Dedekind comp l e t e n e s s f o r C(X) i n t e r m s o f t h e t o p o l o g y o f X ( 5 6 . 3 ) .
( 5 6 . 1 ) The f o l l o w i n g a r e e q u i v a l e n t :
'1
C(X) i s Dedekind c o m p l e t e ;
2'
f o r every t s c element t , U ( L ) E C ( X ) ;
3'
f o r every usc element u , L ( U ) E C ( X ) .
Proof.
Assume C(X) i s Dedekind c o m p l e t e a n d c o n s i d e r a n
ksc element il. show f
=
u(Q).
hence f > u(a). {hEC(X)lh > t}.
1'
i m p l i e s 2'.
Let A = { g E C ( X ) ( g < a } and f = V A - i n - C ( X ) ; we f
2 u(a):
in effect, f > A, hence f > VA = t,
For t h e o p p o s i t e i n e q u a l i t y , l e t B = Then B > A , s o f < B , s o f < A B = u ( ~ ) . Thus C o n v e r s e l y , assume 2' h o l d s , a n d c o n s i d e r
A C C(X), A bounded a b o v e ,
C(X).
U ( R ) E C ( X b) y 2'.
so f > u(k).
Thus '2
Set R
VA; w e show u ( k )
=
=
VA-in-
Suppose fEC(X1, f > A; then f > VA 0
implies 1
.
a n d 3'
2'
=
II,
a r e clearly e q u i -
valent.
QED
We n e x t show t h a t i t s u f f i c e s f o r '2 f o r elements of
(we a r e s t i l l d e n o t i n g
or 3 C$
0
above t o h o l d
(Il(X)) b y
&
and
r e s e r v i n g t h e l e t t e r e t o denote an element o f z ) .
( 5 6 . 2 ) The f o l l o w i n g a r e e q u i v a l e n t : 1'
C(X) i s Dedekind c o m p l e t e ;
4'
for every
element e i n
6,
u(e)Ec(~)
SO
f o r every usc element e i n
E,
a(e)Ec(x)
RSC
____ P r o o f . We n e e d o n l y show 4'
i m p l i e s 2'
h o l d s a n d c o n s i d e r a n Rsc e l e m e n t I ? , 0 < R < n
above.
Assume 4'
n(X).
For each
1 , 2 , * * * , set
=
n
n
w h e r e t h e e i ( k / n ) ' s a r e t h e s p e c t r a l e l e m e n t s o f I? d e f i n e d i n 517.
Rn
i s c l e a r l y a n Rsc e l e m e n t .
By t h e p r o o f o f t h e
Freudenthal theorem ( 1 7 . 1 0 ) , we have limn+m[l R by ( 4 9 . 1 6 ) ,
(n
=
limn,,[lu(R)
- u(tn)[l = 0.
Qn[I
=
0 , hence,
We show u ( k n ) E C ( X )
1,2;..); it w i l l follow t h a t u(a)EC(X). n R n = ~ ~ = ~ ( k / n ) e ~ ( k h/ enn )c e, by (49.4), u(R,)
=
C h a p t e r 11
296
VE=l(k/n)u(eQ(k/n)). (k
=
l,...,n),
S i n c e , by a s s u m p t i o n ,
u(eQ(k/n))EC(X)
u(R,)EC(X). QED
Combining t h e above w i t h ( 5 5 . 3 ) i t ) , we have ( c f .
(56.3)
(Nakano)
(and t h e remark p r e c e d i n g
[541):
The f o l l o w i n g a r e e q u i v a l e n t :
1'
C(X) i s Dedekind c o m p l e t e ;
6'
f o r e v e r y open s e t W i n X , W i s open.
-
We h a v e b e e n d e a l i n g w i t h t h e s e t components o f n(X) i n C l t ( X ) .
t
=
8
(n(X)) o f
all t h e
Note i n t h e f o l l o w i n g c o r o l l a r y ,
we a r e d e a l i n g o n l y w i t h t h o s e i n C(X).
(56.4) Corollary.
The f o l l o w i n g a r e e q u i v a l e n t :
1'
C(X) i s Dedekind c o m p l e t e ;
7'
8
(n(x))-in-c(x) is ( a ) t o t a l i n C(X), and ( b ) Dedekind c o m p l e t e .
Proof. (56.2). assume 7'
T h a t 1'
i m p l i e s 7'(a)
That i t implies 7 O ( b )
is contained i n the proof of
f o l l o w s from ( 1 7 . 2 ) .
h o l d s ; w e show t h a t t h e n 4'
Conversely,
( i n 56.2)) holds.
We n o t e f i r s t t h e f o l l o w i n g c o r o l l a r y o f ( 1 7 . 7 ) .
Lemma 1 .
If;(Il(X))-in-C(X)
i s t o t a l i n C(X), t h e n e v e r y
fEC(X)+ i s i n t h e norm c l o s u r e o f t h e s e t o f e l e m e n t s below i t o f t h e form Xe, where e €
6
( n ( X ) ) - i n - C ( X ) and
> 0.
I t f o l l o w s f i s t h e supremum ( i n C t ’ ( X ) ) o f t h i s s e t o f elements.
Lemma 2 . elements of
Every e € i $ which i s Rsc i s t h e supremum o f t h e
t (n(X))-in-C(X)
below i t .
By d e f i n i t i o n , e i s t h e supremum o f a l l t h e e l e m e n t s o f C ( X ) + below i t .
Let i e a ) be t h e s e t o f a l l e l e m e n t s o f
6
(n(X))-
in-C(X) which have t h e f o l l o w i n g p r o p e r t y : t h e r e e x i s t f E C ( X ) + below e and A > 0 s u c h t h a t Xea 5 f < e. u s i n g t h e comment a f t e r Lemma 1 , t h a t e
I t is easily verified, =
V e
clcl
.
Lemma 2 g i v e s u s t h a t a l s o e v e r y e € z which i s infimum o f t h e e l e m e n t s o f $- ( l l ( X ) ) - i n - C ( X ) above i t .
USC
is the
T h a t 4’
h o l d s c a n now be p r o v e d by e x a c t l y t h e same argument used t o p r o v e 2’
(56.1). QED
Appendix
We p r e s e n t h e r e t h e example p r o m i s e d i n 9 4 5 t o show t h a t t h e Riesz subspace s(X) of C ” ( X ) (45.1),
s(X)
=
n e e d n o t be norm c l o s e d .
(C(X)u)+ - (C(X)’)+,
and i t i s i n t h i s form
By
Chapter 11 that we will treat it. We have to exhibit an element o f C"[X) which is not in (C(X)')+
(C(X)u)+
-
& in its norm closure. Since
but
U(X)
is
norm closed, this element will still be in U(X), and thus we can work within LJ(X).
It follows from the Isomorphism theorem This means we can
that, equivalently, we can work in U(X)=.
confine ourselves to bounded functions on X and use the tools and terminology of ordinary function theory (in particular, cf. (54.6)). Specifically, let X be a real (compact) interval. produce a sequence If,]
We will
of bounded, non-negative functions on
X and a function f on X such that:
for each k, fk = uk - vk, uk and vk non-negative
(I)
uppersemicontinuous functions on X; limkll f - fk[I
(11)
=
0;
(111) f cannot be expressed in the form f
=
u - v, u and
v non-negative uppersemicontinuous functions on X.
Lemma. -
Let X be the real interval [a,b].
1 > 0, there exists a non-negative g on X with
F o r every
I[ gI[
=
1 such
that: (i)
g can be written in the form g
=
u - v, u and v non-
negative uppersemicontinuous functions on X; (ii) for every such representation of g, I[u/l 2 1.
Proof.
I _
To avoid burdensome details, we establish the
Lemma for 1 = 2; it will be clear that the same procedure
( c o n s i d e r a b l y l e n g t h e n e d ) w i l l work f o r a r b i t r a r y n , h e n c e f o r any
> 0.
Let { x n } (n
1 , 2 , . . - ) be a descending sequence of d i s t i n c t
=
p o i n t s i n t h e open i n t e r v a l ( a , b ) which c o n v e r g e s t o e a c h n , l c t {xnm} (m
=
For
3.
1,2,...) be a d e s c e n d i n g s e q u e n c e o f
d i s t i n c t p o i n t s i n t h e o p e n i n t e r v a l ( X ~ , X ~w-h i~c h) c o n v e r g e s to x n,m
( t a k e xo
n
1,2,.-.
=
=
b).
We d e f i n e g b y g ( a )
n
=
=
0 otherwise.
=
2 , u(xnm)
=
1 for
=
1 f o r n,m
=
1,2;-*,and
F i n a l l y d e f i n e v by v ( a ) = v ( x n )
=
1 for
Then u and v a r e u p p e r -
and v ( x ) = 0 o t h e r w i s e .
1,2,...,
g(xnm)
and g ( x ) = 0 o t h e r w i s e .
Now d e f i n e u by u ( a ) u(x)
=
semicontinuous and u - v = g , which e s t a b l i s h e s ( i ) . To show ( i i ) , a s s u m e g = u - v , w i t h u a n d v n o n - n e g a t i v e uppersemicontinuous.
Since v > 0 , t h e c o n d i t i o n g(xnm)
g i v e s us u(xnm) > 1 f o r n,m
=
1,2,-..
.
Since u i s uppersemi-
continuous, t h i s g i v e s u s , i n t u r n , t h a t u(xn) > 1 for n The c o n d i t i o n g ( x n )
1,2;.*.
n = 1,2,.
-
9
.
-
=
0 then gives us v(x ) > 1 f o r
n S i n c e v i s u p p e r s e m i c o n t i n u o u s , we o b t a i n v ( a ) > 1.
Applying t h e c o n d i t i o n g ( a )
u(a)
=
1
=
=
1, w e o b t a i n , f i n a l l y , t h a t
2.
QED
We p r o c e e d t o c o n s t r u c t t h e e x a m p l e .
l e t X be t h e r e a l i n t e r v a l [0,1]. al > b 2 > a 2 > * ” >
bk > ak > . . -
For c o n c r e t e n e s s ,
Choose a s e q u e n c e 1 > b l >
converging t o 0.
For each k ,
l e t Z k be t h e c l o s e d i n t e r v a l [ a k , b k ] a n d gk t h e f u n c t i o n on 2 Z k g i v e n by t h e Lemma w i t h = k . D e f i n e hk ( k = 1 , 2 , - - . ) o n X , byhk(x) = (l/k)gk(x) k d e f i n e f k = Clhi ( k
on Zk, h k ( x ) =
1,2,...)
=
0 elsewhere.
and f = cyhi
Finally
(norm c o n v e r g e n c e ) .
Chapter 1 1
300
Then { f k } and f have t h e desired properties.
Remark.
A study o f t h e problem o f t h e n o r m closure o f
s ( X ) o n a real interval h a s been carried out b y Ryan [ 4 6 ] .
PART V
RIEMANN INTEGRATION The a p p r o a c h t o Riemann i n t e g r a t i o n p r e s e n t e d h e r e stems from t h e f o l l o w i n g p a p e r s : C a r a t h e o d o r y [ l l ] , Loomis [ 3 2 ] , Bauer [ S ] , and Semadeni [ 4 8 ] .
The r e a d e r i s r e f e r r e d t o them
for further references.
301
CHAPTER 1 2
THE RIEMANN SUBSPACE O F A BAND
I n 5 4 0 , we d i s c u s s e d C ( X j a , a n d i n 5 4 1 , C ( X ) , band C"(X)
u'
pEC'(X).
We now t u r n t o C(X),
€or a b a s i c
f o r a g e n e r a l band
I of C"(X). N o t e f i r s t t h a t t h e o r d e r c l o s u r e o f C(X),
is a l l of I .
I n s h a r p e r f o r m t h e Up-down-up t h e o r e m h o l d s f o r C(X), i n I . R T h i s f o l l o w s f r o m t h e e a s i l y v e r i f i e d f a c t t h a t (C(X) ) I = ( C ( X ) I ) p . , (C(X)'')I
= (C(X)I)ue,
and s o o n .
Note a l s o t h a t
p r o j I d o e s n o t p r e s e r v e D e d e k i n d c l o s u r e : w h i l e C(X) i s ( 4 6 . 3 ) , C(X), i s , i n g e n e r a l , n o t
D e d e k i n d c l o s e d i n Cl'(X) Dedekind c l o s e d i n I .
E x a m i n a t i o n o f i t s Dedekind c l o s u r e w i l l
l e a d u s t o Riemann i n t e g r a t i o n . C o n s i d e r a c o n c r e t e case: I J
=
=
L m ( p ) and i t s d u a l band
1 L ( p ) , f o r p L e b e s g u e m e a s u r e on a r e a l i n t e r v a l .
them s i m p l y by La and L
1
.
L e t C b e t h e image i n Lm o f t h e c o n C(X) , ) . By a s t a n d a r d t h e o r e m L 1 t h e s e t o f l i n e a r f u n c t i o n a l s on L
tinuous functions (that is C on t h e t o p o l o g y
o(L1,C),
which are a(L1,C) which a r e o(L1,C)
We d e n o t e
=
continuous is C i t s e l f .
What a b o u t t h o s e 1 c o n t i n u o u s on t h e u n i t b a l l B(L ) ? T h i s i s no
l a r g e r ; G r o t h e n d i e c k ' s completeness theorem gives us t h a t i t i s s t i l l C.
What a b o u t t h e s e t o f t h o s e t h a t a r e 0(L1,C) 1
o u s on K ( L ) ?
continu-
T h i s s e t i s l a r g e r ; w e show t h a t i t i s t h e
Dedekind c l o s u r e o f C i n Lm. 302
Riemann Subspace of a Band
303
Now, contained implicitly in a theorem of Caratheodory [ll] is the fact that this Dedekind closure is precisely the image R in La of the Riemann integrable functions.
We thus have
a topological characterization of R: R consists of those elements of Lm which are a(L1,C) continuous on K ( L 1 ) . In this chapter,we establish o u r results not for the above concrete case but for a general band.
§ 5 7 . The Dedekind closure of C ( X ) ,
We first record a theorem from function theory - which we have met earlier ($54)
-
and a sharpening of it for convex
sets.
(57.1) Let Q be a subset of a topological space T, and h a bounded function on Q. -
h(t)
We define =
limsup h(q) qE Q
on the closure
by
.
q+t Then
(i)
h is uppersemicontinuous on Q;
(ii) if h is uppersemicontinuous on Q , then E(q)
=
h(q)
for q E Q .
Again, we will call 5 the uppersemicontinuous upper envelope of h.
304
Chapter 1 2
A f u n c t i o n f on a c o n v e x s e t Q ( i n some v e c t o r s p a c e ) i s
concave ( r e s p . convex) i f t h e f o l l o w i n g h o l d s . q 1 , q 2 E Q and X 1 , X 2
2
Xlf(q1)
(resp. f ( l p l
(57.2)
+
X2f(q2)
0 such t h a t
Proof.
x2
=
1 , f(X1ql
x2q2) 5 xlf(ql)
+
+
x2q2)
=
1.
XIF;(pl)
+
A2F(p2).
Set p
=
Alpl
+
and
x1,x2 2
X2p2.
0 such t h a t
We h a v e t o show h ( p ) >
I t i s enough t o show t h e f o l l o w i n g ( q ' s
always denote elements of 9).
F o r e v e r y q1 E p l + N a n d q 2 E p 2 + N
,
X1ql
+
X2q2Ep +N;
hence
The d e s i r e d i n e q u a l i t y f o l l o w s d i r e c t l y from t h i s .
Our g o a l i s ( 5 7 . 5 1 b e l o w .
1
X2f(q2))*
I f h i s c o n c a v e , t h e n s o i s f;.
Consider p1,p2En
X2
+
+
+
I n t h e above t h e o r e m , l e t T b e a l o c a l l y convex s p a c e
and Q a c o n v e x s u b s e t .
X1
xl
For e v e r y
Riemann S u b s p a c e o f a Band
( 5 7 . 3 ) Lemma 1.
Let I b e a b a n d o f C"(X), w i t h d u a l b a n d J .
F o r a bounded f u n c t i o n h on K ( J ) ,
'1
305
the following a r e equivalent:
h i s t h e p o i n t w i s e infimum on K ( J )
o f some s u b s e t o f
C(X),; h i s concax'e a n d u p p e r s e m i c o n t i n u o u s on K ( J )
2'
with res-
p e c t t o u (J,C(X) I ) .
T h a t '1
Proof.
i m p l i e s 2'
i s c l e a r , s i n c e every element
i s a f f i n e a n d u ( J , C ( X ) d c o n t i n u o u s on K ( J ) .
o f C(X),
To show
t h e c o n v e r s e , w e n o t e f i r s t t h a t C ~ ( J , C ( X ) ~c o) i n c i d e s w i t h t h e r e s t r i c t i o n t o .J o f t h e v a g u e t o p o l o g y u ( C ' (X) , C ( X ) ) ; c a n work w i t h t h e l a t t e r .
s o we
S e c o n d l y , b y t h e comment a t t h e e n d
o f 8 5 2 , we c a n , f o r s i m p l i c i t y , assume .J i s v a l u e l y d e n s e i n C'(X).
K(J)
i s then vaguely dense i n K ( C ' ( X ) ) ,
uppersemicontinuous upper envelope K(C'(X)).
so t h e
o f h i s d e f i n e d on a l l o f
-
By ( 5 7 . 1 ) and ( 5 7 . 2 ) , h i s c o n c a v e a n d v a g u e l y u p p e r -
s e m i c o n t i n u o u s , a n d c o i n c i d e s w i t h h on K ( J ) . and (38.2) g i v e s u s t h a t
o f some s u b s e t o f C(X).
Applying (48.3)
i s t h e p o i n t w i s e infimum on K ( C ' ( X ) )
'1
follows immediately.
QE D
For a monotonic n e t i n I , o r d e r convergence is e a s i l y s e e n t o be e q u i v a l e n t t o p o i n t w i s e c o n v e r g e n c e on K(J)
(cf. (10.9)).
Combining t h i s w i t h ( 5 7 . 3 ) , w e o b t a i n :
( 5 7 . 4 ) Lemma 2 .
Let I b e a b a n d o f C"(X), w i t h d u a l b a n d J .
For f E I , , t h e f o l l o w i n g a r e e q u i v a l e n t :
Chapter 1 2
306
l o f E (C(X) 2'
y;
f i s u p p e r s e m i c o n t i n u o u s on K ( J ) w i t h r e s p e c t t o
O(J,C(X)~).
I n t h e two Lemmas, we c a n o f c o u r s e r e p l a c e " u p p e r s e m i c o n t i n u o u s " by " low ers em icontinuous " ,
"concave"
by "convex",
and ( C ( X) I ) u by (C(x),)'.
( 5 7 . 5 ) Theorem.
L e t I b e a band o f Cf'(X ), w i t h d u a l b a n d < J .
For a l i n e a r f u n c t i o n a l $ on J , t h e f o l l o w i n g a r e e q u i v a l e n t . 1'
$ i s i n t h e D edeki nd c l o s u r e o f C(X ), ;
2'
$ i s a ( J , C ( X ) I ) - c o n t i n u o u s on K ( J ) .
Proof.
N ot e t h a t i f
element of I .
s a t i s f i e s ZO,
In effect, u(J,C(X),)
t h e n i t must b e a n
i s c o a r s e r t h a n t h e norm
topology o f J , s o (23.2) g i v e s t h e d e s i r e d conclusion.
The
t h e o r e m f o l l o w s f r om Lemma 2 and t h e comment f o l l o w i n g i t .
UED
H e n c e f o r t h , we w i l l c a l l t h e D edeki nd c l o s u r e o f C ( X ) , Riemann s u b s p a c e o f I , a n d d e n o t e i t b y R ( 1 ) .
the
The t e r m i n o l o g y
o f c o u r s e comes f r om t h e C a r a t h e o d o r y t h e o r e m r e f e r r e d t o i n the introduction to this chapter. Remark. above theorem.
o ( J , C ( X ) I ) c a n be r e p l a c e d by o(C'(X),
I t then reads:
C(X))
in the
The Riemann s u b s p a c e o f a band
Riemann S u b s p a c e o f a Band
o f C"(X)
307
c o n s i s t s o f t h e l i n e a r f u n c t i o n a l s on tJ w h i c h a r e
v a g u e l y c o n t i n u o u s on K ( J ) .
By i t s d e f i n i t i o n , R(1) (C(X),)'
=
(C(X)')I
Warning!
(C(X),)un
=
and (C(X)I)'
=
(C(X)7)2.
(C(X)'),,
While f E R ( 1 ) i f and o n l y i f f
Now
s o we have:
=
uI
=
RI f o r
some usc e l e m e n t u a n d some Rsc e l e m e n t t , w e may n o t b e a b l e t o choose u and R s o t h a t R
i
u.
We g i v e a n e x a m p l e i n 563.
558. A r e p r e s e n t a t i o n theorem
F o r e v e r y b a n d I o f C"(X),
C(X),
i s an M I - s u b s p a c e o f I
w h i c h i s s e p a r a t i n g on t h e d u a l b a n d J .
This represents a q u i t e
general situation:
( 5 8 . 1 ) -___ Theorem.
Let E b e an L-space, E '
i t s d u a l , and F an
M I - s u b s p a c e o f E ' w h i c h i s s e p a r a t i n g on E . compact s p a c e X, d e n s e i n C'(X)
Then t h e r e e x i s t s a
a band J o f C'(X) - which w e c a n t a k e v a g u e l y
-
a n d an i s o m o r p h i s m o f E o n t o J s u c h t h a t E '
i s M I - i s o m o r p h i c t o t h e band I d u a l t o J and F i s Ma-isomorphic
308
Chapter 1 2
t o C(X),.
F i s an MIL-space, s o i s M I - i s o m o r p h i c t o C(X) f o r
Proof.
some X c o m p a c t .
L e t C(X) __ To > F b e t h i s isomorphism, F i > E t
the canonical i n j e c t i o n o f F i n t o
E l ,
and s e t T = i o T o .
'
C(X) -> E l i s an ME-isomorphism o f C(X) i n t o C o n s i d e r C t ( X ) <--by ( 2 4 . 7 ) ,
Tt(E)
Tt
El'.
E l .
E i s a b a n d o f E"
i s a band J of Cl(X).
Thus
( 5 2 3 ) , hence
Since F is separating
on E , Tt maps E o n e - o n e , h e n c e Tt I E i s an i s o m e t r i c R i e s z i s o morphism o f E o n t o J .
And s i n c e E i s s e p a r a t i n g on F , .J i s
s e p a r a t i n g on C ( X ) , h e n c e v a g u e l y d e n s e i n C t ( X ) . For s i m p l i t S E. Let I b e t h e band o f C''(X) c i t y d e n o t e T I E b y S: J
Then I __ St > E '
s an ME-isomorphism o f I o n t o
i t r e m a i n s t o show t h a t S t f I = T f f o r e v e r y f € C ( X ) . aEE, ( S t f I , a )
=
( f I , S a ) = ( f Sa)
=
E l ;
For e v e r y
( f , T t a ) = ( T f , a ) , s o we a r e
through. QE D
Combining t h i s t h e o r e m w i t h ( 5 7 . 5 ) , we o b t a i n t h e
(58.2)
C o r o l l a r y 1.
Under t h e h y p o t h e s e s o f t h e a b o v e t h e o r e m ,
t h e Dedekind c l o s u r e o f F c o n s i s t s o f t h o s e l i n e a r f u n c t i o n a l s on E w h i c h a r e c r ( E , F )
(58.3) Corollary 2.
ing are equivalent:
c o n t i n u o u s on K ( E ) .
Under t h e h y p o t h e s e s o f ( 5 8 . 1 ) , t h e f o l l o w -
Riemann S u b s p a c e o f a Band
'1
E'
309
F" ( w i t h t h e g i v e n i m b e d d i n g o f F i n E' t h e c a n o n -
=
i c a l imbedding o f F i n i t s b i d u a l ) ; 2'
E
3'
K(E)
=
Proof.
F'
(under t h e b i l i n e a r form
(
*
,
a
)
on E '
E);
x
i s ~ ( E , F )c o m p a c t .
Assume 1'
holds: E'
=
F"
=
(F')
'.
Since both E
and F ' a r e L - s p a c e s , i t f o l l o w s f r o m ( 2 3 . 5 ) t h a t E
=
F'.
=
(El)'
And s i n c e E i s c o m p l e t e l y d e t e r m i n e d b y i t s v a l u e s on F , i t i s e a s i l y v e r i f i e d t h a t t h e b i l i n e a r f o r m ( . , - ) on E ' restricted to F
x
course implies 3
0
E , when
x
E , g i v e s an isomorphism o f E o n t o F ' .
.
Assume 3'
~ ( J , C ( X ) ~ ) - c o m p a c th,e n c e J
holds. =
C'(X)
of
2'
is
Then i n ( 5 8 . 1 ) , K ( J ) ( 3 6 . 3 ) , hence I
=
C"(X).
I t f o l l o w s E ' = F".
QED
This gives us, i n turn:
(58.4)
Theorem.
The d u a l E ' o f a n L - s p a c e E i s t h e b i d u a l o f
an ME-space i f a n d o n l y i f E ' c o n t a i n s a n ME-subspace F s u c h that (i)
F i s s e p a r a t i n g on E , a n d
( i i ) K(E)
Remark.
i s a(E,F) compact.
By c o m b i n i n g t h e a b o v e w i t h D i x m i e r ' s t h e o r e m ,
we o b t a i n c o n d i t i o n s f o r a n ME-space t o b e t h e b i d u a l o f an ME-space w i t h o u t a s s u m i n g i n a d v a n c e t h a t i s i s a d u a l s p a c e .
Chapter 1 2
310
§ 5 9 . Examples o f Riemann s u b s p a c e s
A s e x a m p l e s , w e w i l l d e s c r i b e t h e Riemann s u b s p a c e s o f t h e f o l l o w i n g b a n d s o f Clf(X): a b a s i c band C"(X)
a U-band ( i n lJ' p a r t i c u l a r a u - b a n d o r a n 2 - b a n d ) , a n d t h e two p a r t i c u l a r b a n d s Crl(X) a n d Cl'(X)a. A b a s i c band I
f u r n i s h e s t h e example from which 1-I we h a v e t a k e n t h e name "Riemann s u b s p a c e " . We show i n t h e =
C'l(X)
n e x t c h a p t e r t h a t R(C"(X) j e c t i o n o f C"(X)
) i s t h e image u n d e r p r o j
LJ
!J
(the pro-
o n t o C'l(X) ) o f t h e s e t o f e l e m e n t s o f C " ( X )
v
w h i c h a r e "Riemann i n t e g r a b l e " w i t h r e s p e c t t o 1-1. For I R(C"(X))
=
=
C1'(X) i t s e l f , we a l r e a d y h a v e t h e a n s w e r ( 4 6 . 3 ) :
C(X).
Remark. -
We w i l l s e e i n t h e n e x t c h a p t e r t h a t t h i s
g e n e r a l i z e s t h e c l a s s i c a l t h e o r e m t h a t a f u n c t i o n on a r e a l i n t e r v a l i s Riemann i n t e g r a b l e w i t h r e s p e c t t o e v e r y r e g u l a r measure - e q u i v a l e n t l y R i e m a n n - S t i e l t j e s i n t e g r a b l e w i t h r e s p e c t t o e v e r y f u n c t i o n o f bounded v a r i a t i o n - i f and o n l y i f it i s continuous ( c f . 564). F o r I a U - b a n d , we h a v e a s i m p l e c h a r a c t e r i z a t i o n o f R ( 1 ) . I t s h o u l d be compared w i t h t h a t o f a g e n e r a l b a n d i n ( 5 7 . 5 ) .
( 5 9 . 1 ) Let I b e a U-band, w i t h d u a l b a n d J .
ment f o f I , t h e f o l l o w i n g a r e e q u i v a l e n t : 1'
fER(J);
2'
(i)
f E U ( X ) , and
( i i ) f i s c o n t i n u o u s on J
X.
Then f o r an e l e
Riemann S u b s p a c e o f a Rand 0
Proof.
Suppose 1
holds.
Then ( i ) f o l l o w s f r o m ( 5 7 . 6 )
and ( 5 5 . 4 ) , a n d ( i i ) f o l l o w s f r o m ( 5 7 . 5 ) . v e r s e l y suppose 2
0
311
Thus 2'
holds.
Con-
holds.
( * ) T h e r e e x i s t a u s c e l e m e n t u a n d a n Rsc e l e m e n t R s u c h t h a t =
(UIIa
( R I ) a = fa.
S i n c e f i s c o n t i n u o u s on . J n X ,
fa i s also.
Hence t h e r e
e x i s t an u p p e r s e m i c o n t i n u o u s f u n c t i o n h and a l o w e r s e m i c o n t i n u -
o u s o n e g on X w h i c h c o i n c i d e w i t h f f o r some u s c e l e m e n t u , a n d g = R a
n
v a l u e s on <J
n
X),
X ; s o uI a
( u ~ =) (~k I ) a
=
h
=
ua
€ o r some k s c e l e m e n t .t.
Then u and R c o i n c i d e w i t h f on J I a v a n i s h on X \ ( J
on J n X ( 5 7 . 1 ) .
a
X.
Since the elements of
they a r e completely determined by t h e i r =
=
fa.
This can be w r i t t e n
RIU
f a , and w e have ( * ) .
Now u I , k I E U ( X )
( ( 5 5 . 4 ) a g a i n ) , s o from ( * ) t h e I s o -
morphism t h e o r e m , a n d Z o ( i )
,
uI
= kI
= f.
Thus fER(.I)
. QED
For emphasis, w e s i n g l e o u t t h e f o l l o w i n g , c o n t a i n e d i n t h e above.
(59.2) C o r o l l a r y .
F o r a U-band I , R ( I ) c U(X).
N o t e t h a t f r o m ( 5 1 . 1 0 ) a n d ( 4 6 . 3 ) , we h a v e
31 2
Chapter 1 2
( 5 9 . 3 ) For a u-band I , R(1)
=
C(X),.
T h i s does n o t h o l d f o r an R - b a n d : Take f o r X terval [0,1].
Let G be t h e ( o n e - d i m e n s i o n a l ) band o f C ' ( X )
g e n e r a t e d by t h e l e f t e n d p o i n t x C"(X).
the real in-
0 o f X , and s e t I = (;I i n
=
Now l e t u be t h e u s c e l e m e n t d e f i n e d by u(0)
=
1,
u(x)
=
sin(l/x)
0 < x < 1,
and R be t h e R s c e l e m e n t d e f i n e d by R(0) = -1,
L(x)
=
0 < x < 1.
sin(l/x)
(Remember t h a t an e l e m e n t o f U ( X ) by i t s v a l u e s on X.)
Set f
=
can be c o m p l e t e l y s p e c i f i e d
(1/2)(u + L ) .
Then fEU(X)
l i e s i n I , s i n c e i t v a n i s h e s on x = 0 , hence on G .
and
Moreover,
i t i s c o n t i n u o u s on t h e h a l f - o p e n i n t e r v a l ( 0 , 1 ] , which i s
Gdn X.
I t f o l l o w s from ( 5 9 . 1 ) t h a t f E R ( 1 ) .
Suppose f = gI f o r some gEC(X). (0,1],
We show f(? C(X),.
Then g c o i n c i d e s w i t h f on
s i n c e no e l e m e n t o f C(X) can have t h e v a l u e s s i n ( l / x )
on ( 0 , 1 ] , we have a c o n t r a d i c t i o n .
For I = C " ( X ) u ,
we a l r e a d y a l s o have R(1) ( c f . t h e comment
f o l l o w i n g ( 5 4 . 2 2 ) ) : R(C"(X)u) = C ( X ) u .
More g e n e r a l l y :
( 5 9 . 4 ) For e v e r y band I o f Ct'(X)u, R(1) c o n s i s t s o f t h o s e e l e ments o f I which a r e c o n t i n u o u s on t h e s e a t Q ( 1 ) o f I .
Riemann Subspace of a Band
-~ Proof.
some f € I }
31 3
Recall that Q ( 1 ) is the set {xEXl (f,x) # 0 for
( § 5 5 ) , so I = k " ( Q ( 1 ) ) .
The proposition then follows
from the fact that a function on any Q
c
X is continuous on Q
if and only if it is the restriction to Q of some lowersemicontinuous funcion on X and of some uppersemicontinuous function on X. QE D
We de not have a description of R(C"(X)d)
(but cf. (65.5)).
We give an example to show that it is properly larger than C(X),
.
( S o , unlike C(X)a,
C(X)d
is not Dedekind closed.)
First, a
(59.5) -__ Lemma.
If X is dense-in-itself, then for every usc ele-
ment u , U€C"(X)~ implies u > 0.
Proof.
We show the equivalent statement: for every Rsc
< 0. element R , R E C " ( X ) ~ implies R -
so R+
=
V{f€C(X)j
T h u s R'
is also an ilsc element,
But, by ( 4 0 . 4 ) ,
0 < f < a'}.
consists only of 0.
il+
=
the latter set
0.
We proceed with our example.
Let X be the real interval
[ 0 , 1 ] , u the characteristic element of the closed set [ 0 , 1 / 2 ] ,
and R the characteristic element of the interval [O,l/Z). (Remember, we mean the characteristic elements in U(X); so u is a usc element and
k
an Rsc element (cf. § 5 5 ) . )
Then
Chapter 1 2
314
( b y ( 5 4 . 1 3 ) ) , h e n c e ud
u - REC"(X)a
I t r e m a i n s t o show u d & C(X)d.
that fd (u,x)
=
ud = R d .
Suppose t h e r e e x i s t s f E C ( X ) s u c h
We show R < f < u , whence ( k , x )
f o r a l l xEX, which i s i m p o s s i b l e .
f - REC"(X)a
f - u <-O .
,
hence u ~ € R ( C " ( X ) ~ ) .
= Rd,
s o , b y t h e Lemma, f
-
5 (f,x) 5
( f - R ) d = 0, so
R > 0.
Similarly,
CIIAL'TER
13
RTEbIANN INTEGRABILITY
C o n s i d e r t h e c l a s s i c a l Lebesgue t h e o r e m : a bounded f u n c t i o n o n a r e a l i n t e r v a l i s Ricmann i n t e g r a b l c i f a n d o n l y i f i t s s e t o f p o i n t s o f d i s c o n t i n u i t y h a s (Lebesgue) measure z e r o . While q u i t e a t t r a c t i v e , t h e t h e o r e m h a s an u n s a t i s f a c t o r y f e a t u r e : i t r e q u i r e s f i r s t d e f i n i n g "Lebesgue measure z e r o " ,
a
c o n c c p t o u t s i d e t h e domain o f Riemann i n t e g r a t i o n . T h i s u n s a t i s f y i n g f e a t u r e can be e l i m i n a t e d . s u b j e c t o f m e a s u r e on o u r r e a l i n t e r v a l . Lebcsgue m e a s ure.
I-lerc m e a s u r e means
C o r r e s p o n d i n g t o "measure"
i n t h e same way
t h a t "Riemann i n t e g r a l " c o r r e s p o n d s t o " L e b e s g u e have t h e concept of " c o n t c n t " .
Consider t h e
integral",
we
The t h e o r e m f o r s e t s c o r r e s p o n d -
i n g t o the Lebesgue theorem above r e a d s : a s e t h a s c o n t e n t ( i s q u a d r a b l e ) i f and o n l y i f i t s f r o n t i e r h a s measure z e r o .
But
t h e f r o n t i e r o f a s e t i s c l o s e d , and f o r a c l o s e d s e t , h a v i n g measure z e r o i s e q u i v a l e n t t o having c o n t e n t z e r o .
Thus t h e
theorem can he s t a t e d : a s e t h a s c o n t e n t i f and o n l y i f i t s f r o n t i e r has content zero. The way t o e l i m i n a t e m e a s u r e f r o m L c b e s g u e ' s t h e o r e m i s
now c l e a r .
We r e p l a c e t h e s e t o f p o i n t s o f d i s c o n t i n u i t y o f a
f u n c t i o n f by t h e s a l t u s f u n c t i o n o f f , which g i v e s t h e p o i n t s
of discontinuity.
The s a l t u s f u n c t i o n i s a l w a y s p o s i t i v e a n d
uppersemicontinuous,
and f o r s u c h a f u n c t i o n , h a v i n g Lebesgue 31 5
Chapter 1 3
316
i n t e g r a l z e r o i s e q u i v a l e n t t o h a v i n g Riemann i n t e g r a l z e r o . Thus t h e L e b e s g u e t h e o r e m b e c o m e s : a bounded f u n c t i o n i s Riemann i n t e g r a b l e i f a n d o n l y i f i t s s a l t u s f u n c t i o n h a s Riemann i n t e g r a l zero. T h i s w i l l b e o u r a p p r o a c h t o Riemann i n t e g r a b i l i t y , u s i n g t h e f a c t t h a t f o r an element f o f C " ( X ) ,
6(f) is the gencraliza-
tion of the saltus function of a function.
560. Riemann i n t e g r a b l e e l e m e n t s
We f i r s t d e f i n e Riemann i n t e g r a b i l i t y w i t h r e s p e c t t o a band J o f C l ( X ) .
I n 5 6 1 , we e x a m i n e i t w i t h r e s p e c t t o a
s i n g l e e l e m e n t 1-1 o f C ' ( X ) . Given a b a n d J o f C l ( X ) , an
e l e m e n t f o f C"(X) w i l l b e
s a i d t o b e Riemann i n t e g r a b l e w i t h r e s p e c t t o J i f 6 ( f ) E t J L . We w i l l d e n o t e t h e s e t o f s u c h e l e m e n t s b y
B(J).
Thus X ( J )
=
6 - l (.JL). From ( S O - l l ) , we h a v e :
(60.1)
F o r e v e r y band J o f C ' (X),
3 (J)
(i)
i s an Ma-subspace o f C"(X),
(ii)
c o n t a i n s C(X),
( i i i ) i s closed under t h e operations u ( - ) , a ( - ) ,
a(.).
I t i s e a s y t o s e e from t h e d e f i n i t i o n t h a t i f f C % ( J ) and
Riemann I n t e g r a b i l i t y
a(f) 5
g 5 u ( f ) , t h e n gE.2 (J).
31 7
A c t u a l l y , from ( 5 0 . 1 3 1 , we have
a much s t r o n g e r r e s u l t :
(60.2)
If A,B c X(J), A
In p a r t i c u l a r ,
a(J)
5 f 5 B , and (AA
- VB)EJL,
then f € x ( J ) .
i s Dedekind c l o s e d .
561.
u-Riemann i n t e g r a b i l i t y
Given p E C ' ( X ) , an e l e m e n t f o f C''(X) w i l l be s a i d t o be Riemann i n t e g r a b l e w i t h r e s p e c t t o IJ,o r 1-1-Riemann i n t e g r a b l e , if ( 6 ( f ) ,
14) =
0.
( 6 1 . 1 ) Given p E C ' ( X ) , t h e n f o r e v e r y f E C " ( X ) , t h e f o l l o w i n g a r e equivalent :
'1
f i s Riemann i n t e g r a b l e w i t h r e s p e c t t o 1-1;
2'
f i s Riemann i n t e g r a b l e w i t h r e s p e c t t o C ' ( X )
Fi'
T h i s f o l l o w s from t h e e a s i l y v e r i f i a b l e f a c t t h a t f o r gEC"(X)+, g E ( C J ( X ) I . I y i f and o n l y i f ( 8 , 11-11)
=
0.
Thus t h e s e t o f 1-1-Riemann i n t e g r a b l e e l e m e n t s o f C"(X) precisely by
a (1-1).
a(C'(X) ) .
u
is
We w i l l a l s o d e n o t e t h i s (MI-)s u b s p a c e
Some c h a r a c t e r i z a t i o n s o f
2 (J):
31 8
Chapter 13
( 6 1 . 2 ) Given a b a n d J o f C l ( X ) , t h e n f o r f E C " ( X ) , t h e following are equivalent: 1'
f i s Riemann i n t e g r a b l e w i t h r e s p e c t t o J ;
2'
f i s Riemann i n t e g r a b l e w i t h r e s p e c t t o e v e r y u E L J :
3'
t h e r e e x i s t a u s c e l e m e n t u a n d an k s c e l e m e n t a. s u c h
that R < f 5 u and u - L E J ' :
'4
( ~ ( f ) , u )= ( f , p > = ( u ( f ) , p ) f o r e v e r y ~ E J .
The p r o o f i s i m m e d i a t e .
We n e x t g i v e some c h a r a c t e r i z a t i o n s o f x ( p ) .
For s i m p l i c -
i t y , we t a k e p > 0.
(61.3)
Given u € C ' ( X ) + , t h e n f o r f E C " ( X ) , t h e f o l l o w i n g a r e
equivalent:
1'
f i s p-Riemann i n t e g r a b l e ;
h>f
g
t h e r e e x i s t s u b s e t s A , B o f C(X) s u c h t h a t A < f < B and ( f , ~ = )
'4
SUP
€5A
(g,p)
=
inf ( ~ , L O ; hEB .
t h e r e e x i s t s e q u e n c e s { g n l , { h n } i n C(X) s u c h t h a t
The p r o o f i s s t r a i g h t f o r w a r d .
319
Riemann I n t e g r a b i l i t y
I n t h e c l a s s i c a l t h e o r y o f Riemann i n t e g r a t i o n on a E u c l i d e a n s p a c e , Rieman i n t e g r a b i l i t y i s d e f i n e d b y o n e o f t h e properties 2
0
,
3 O , o r 4'
above, but using a d i s t i n g u i s h e d
family of "step functions" i n place of continuous functions. Among t h e p r o p e r t i e s p o s s e s s e d b y t h e s e s t e p f u n c t i o n s a r e t h e following.
Each s t e p f u n c t i o n i s a f i n i t e l i n e a r c o m b i n a t i o n
(I)
of f u n c t i o n s which can be o b t a i n e d as s p e c t r a l e l e m e n t s o f continuous functions ( c f . 517). ( 1 1 ) Each s t e p f u n c t i o n i s Riemann i n t e g r a b l e .
In ( 6 1 . 5 ) we generalize the classical procedure t o t h e p r e s e n t c a s e i n t h e f o r m o f a c o n d i t i o n f o r p-Riemann i n t e g r a b i l i t y i n terms of s p e c t r a l elements o f continuous f u n c t i o n s . F i r s t , h o w e v e r , we m u s t a n s w e r t h e f o l l o w i n g q u e s t i o n .
Are t h e
s p e c t r a l e l e m e n t s o f c o n t i n u o u s f u n c t i o n s Riemann i n t e g r a b l e ( b y o u r d e f i n i t i o n ) ; a n d i f n o t , a r e s u f f i c i e n t l y many Riemann integrable t o enable us t o carry out the classical process? The q u e s t i o n was a n s w e r e d b y Loomis
[32].
Indeed, he proved a
more g e n e r a l r e s u l t , w h i c h r e d u c e s , i n o u r c o n t e x t , t o t h e
f o 1l o w i n g :
(61.4) Theorem (Loomis).
Given p E C ' { X ) ,
then f o r every fEC"(X),
the following are equivalent:
'1
f i s p-Riemann i n t e g r a b l e ;
2'
a l l b u t a c o u n t a b l e number o f t h e s p e c t r a l e l e m e n t s o f
f a r e p-Riemann i n t e g r a b l e .
Chapter 1 3
320
Proof.
We c a n assume p > 0 , IIui1
=
1, and 0 < f < n(X).
F o r t h e r e m a i n d e r o f t h e p r o o f , we w i l l d e n o t e n(X)
s i m p l y b y I]
and e a c h s p e c t r a l e l e m e n t e f ( X ) s i m p l y b y e ( 1 ) . Assume 1' h o l d s . (6(e(x)),p) e s t a b l i s h 2'.
2
E
We show t h a t f o r e v e r y E > 0 ,
f o r o n l y a f i n i t e number o f A ' s , w h i c h w i l l S p e c i f i c a l l y , we p r o v e t h e
Then
We show t h e e q u i v a l e n t i n e q u a l i t y
Note f i r s t t h a t f A X n n - f A A n - l n we w o r k w i t h t h i s l a t t e r f o r m .
= (fAXnn -
An-ln)'
;
Riemann I n t e g r a b i l i t y
This i s t h e f i r s t i n e q u a l i t y i n ( i i ) .
T h i s i s t h e second i n e q u a l i t y i n ( i i ) , s o we have ( i i ) , and
with it, ( i ) .
I t follows f r o m ( i ) t h a t f o r n = l,.-.,m,
321
Chapter 1 3
32 2
(Here we have used t h e a s s u m p t i o n t h a t f - hence e a c h g n i s Riemann i n t e g r a b l e ; c f . 4'
i n (61.2).)
Then
Since l E = l ( 6 ( e ( ~ n ) ) , 2 ~ )m E , t h i s g i v e s u s m < 1 / ~ and , comp l e t e s t h e p r o o f o f t h e Lemma.
Now assume 2'
holds.
I t i s c l e a r t h a t t h e proof of
F r e u d e n t h a l ' s s p e c t r a l theorem (17.10) can be m o d i f i e d ( f o r o u r f ) s o t h a t t h e s p e c t r a l e l e m e n t s a r e u-Riemann i n t e g r a b l e . Thus f i s i n t h e norm c l o s u r e o f j ; ! ( u ) .
Since
x(u)
i s norm
c l o s e d , f E j;! ( p ) .
QED
We can now g i v e o u r g e n e r a l i z a t i o n o f t h e c l a s s i c a l cond i t i o n f o r Riemann i n t e g r a b i l i t y .
( 6 1 . 5 ) Given p E C ' ( X ) + , t h e n f o r f € C t t ( X ) , t h e f o l l o w i n g a r e equivalent:
' 1
f i s u-Riemann i n t e g r a b l e ;
2'
t h e r e e x i s t s e q u e n c e s { g n } , {h,}
satisfying:
Riemann I n t e g r a b i l i t y
323
t h e g n ' s and h n ' s a r e l i n e a r combinations o f
(i)
u-
Riemann i n t e g r a b l e s p e c t r a l e l e m e n t s o f e l e m e n t s
of C ( X ) ; gl 5 g 2
(ii)
2 * *-* f<-< * . * I
( i i i ) supn(gn,v)
Proof.
(f,v)
S u p p o s e 1' h o l d s .
t o s a t i s f y 4'
(*)
=
h2 < h1 , =
infn(hn,p).
Choose s e q u e n c e s { g ; } , { h , l }
of (61.3).
For e a c h n , t h e r e e x i s t g n , h n , l i n e a r combinations o f p -
Riemann i n t e g r a b l e s p e c t r a l e l e m e n t s o f e l e m e n t s o f C ( X ) , s u c h t h a t gn 5 g;
,
hn
2
hA
and
[ I g n - gA[19 IIhn - hA[I
5
l/n.
I n e f f e c t , gn c a n b e o b t a i n e d b y t h e m o d i f i c a t i o n o f t h e proof of (17.10)
p o i n t e d o u t a t t h e end of t h e p r e c e d i n g p r o o f ,
a n d s i m i l a r l y f o r hn ( t h e a p p r o x i m a t i n g s t e p e l e m e n t s i n ( 1 7 . 1 0 ) can b e chosen above t h e g i v e n a ) . Applying (17.12) and ( 6 0 . 1 ) , w e can assume, i n a d d i t i o n , t h a t t h e s e q u e n c e {g,} descending.
They t h u s s a t i s f y ( i ) a n d ( i i ) o f 2'.
f o l l o w s f r o m 4' T h a t 2'
i s a s c e n d i n g and t h e sequence {hn} i s
i n ( 6 1 . 3 ) a n d t h e norm c o n t i n u i t y o f
i m p l i e s 1'
f o l l o w s f r o m 5'
(iii) p.
i n (61.3). QED
Remark. p-Riemann i n t e g r a b i l i t y i n o r d i n a r y a n a l y s i s i s d e f i n e d f o r f u n c t i o n s on X C''(X)a.
- i n our context, f o r elements of
I t i s easy t o v e r i f y t h a t the space of functions
w h i c h a r e p-Riemann i n t e g r a b l e i n t h e o r d i n a r y s e n s e i s
Chapter 13
324
2 (u),
precisely
562. Riemann n e g l i g i b l e e l e m e n t s
We r e t u r n t o a g e n e r a l band J o f C ' ( X ) . R(J)
n J'
We w i l l c a l l
t h e s e t o f Riemann n e g l i g i b l e ( w i t h r e s p e c t t o J )
e l e m e n t s , an d w e w i l l d e n o t e i t b y f X ( J 1 . w i l l also write
,TX
I f J = C'(X )
I.r'
we
(1-1).
( 6 2 . 1 ) Given a b a n d J o f C ' ( X ) , t h e n f o r f € C " ( X ) , t h e f o l l o w i n g are equivalent: 1'
fCh%(J);
2'
u ( f ) ,k(f)EJ1:
'3
u(/fl)EJ'.
S u p p o s e 1' h o l d s , t h a t i s , 6 ( f ) E J '
Proof. f - 6(f), f
w e h a v e 2'. 3'
holds.
+
6(f)EJL. T h a t 2'
h'?, (J)
Then
Since f - 6cf) < tcf) < u(f) < f + 6(f),
i m p l i e s '3
f o l l o w s from (49.12).
Th en, a g a i n by ( 4 9 . 1 2 1 ,
u ( f ) , t ( f ) E J L , hence G(f)EJ'. fE
and fEJ'.
(u(f)I,
T h a t fEJ'
Suppose
l t ( f ) IEJL, hence
is trivial.
Thus
. QED
(62.2)
C o r o l l a r y 1.
Given a b a n d J o f C ' ( X ) ,
t h e n f o r fEC"(X),
Riemann Integrability fE Jvx (J) if and only if
1 f( -<
325
u for some usc element u in J L .
I t follows , f $ ( J ) is the Riesz ideal of C " ( X )
generated by the
usc elements in (J'),.
Proof.
Suppose g € l X ( J ) and 0 5 If1 5 /gl. Then u(lf/) 2
~ ( / g / ) .Since,
by '3
hence, again b y '3 ideal.
above,u(jgj)EJL, it follows u(lfl)EJL.
above, fcJY*x(J).
Thus J v x ( J ) is a Riesz
The rest of the Corollary is clear.
Remark. Note that, since h?$?(J)= X ( J )
n
QED JL,
,qx(J) is norm
closed.
It follows from (62.1) that Riemann negligibility can be defined first, and then used to define Riemann integrability. Specifically, define g to be Riemann negligible if u(lgl)EJL, then (since 6(f) is a positive usc element) define f to be Riemann integrable if 6 ( f ) is Riemann negligible.
(As
we
pointed out in the introduction to the present chapter, this eliminates the mention of Lebesgue negligibility in Lebesgue's characterization of Riemann integrability.
By definition X ( J )
=
6-'(JL).
Contained in the above dis-
cussion is the fact that actually X ( J )
=
&-lWX(J)).
This
gives us:
(62.3) Given a band J of C' (X), let H be the Riesz ideal
C h a p t e r 15
326
g e n e r a t e d Oy Sa(J)). Then (i)
S-'(H)
=
g(H
1
) , a n d H i s t h e s m a l l e s t Riesz i d e a l of
Clt(X) w i t h t h i s p r o p e r t y ; ( i i ) jZ(HI)
=
J ( J ) , and H
1
i s t h e l a r g e s t b a n d o f C1(X )
with t h i s property
The b a n d H 1 g e n e r a t e d by S ( ( R ( J ) )
(that is, the order clos-
u r e o f t h e above H) i s o f c o u r s e t h e smallest band o f C"(X) s u c h t h a t S-'(H1) t h a n J'
=
T h i s band may b e s t r i c t l y s m a l l e r
X(J).
- equivalently,
H
I
may b e s t r i c t l y l a r g e r t h a n J .
an example, l e t X b e a f i n i t e s e t .
Then Cll(X)
=
As
C(X), s o
S ( C t l ( X ) ) = 0 , s o f o r e v e r y band J o f Cll(X), H = 0 , s o H1
=
0.
We e m p h a s i z e ( i i ) a b o v e . : f o r e v e r y band J o f C l ( X ) , t h e r e
i s a l a r g e s t b a n d ( i t c o n t a i n s J ) w i t h t h e same Riemann i n t e g r a b l e e l e m e n t s i n C"(X).
We c l o s e t h i s 9 w i t h a n i n t e r e s t i n g r e s u l t .
(62.4)
Giv e n a band J o f C t ( X ) , e v e r y Riemann i n t e g r a b l e e l e -
ment o f C1l(X)d i s Riemann n e g l i g i b l e :
g(J) n
Proof.
C"(X)d
c&?,(J).
Consider f €$(J)
we show f E J'. a ( f ) = 6 ( f ) EJ'.
By ( 5 4 . 1 2 ) ,
n C 'l (X )d,
L(f)
=
and we c a n t a k e f > 0;
0 , hence u ( f )
Thus 0 < f < u ( f ) € J',
=
u(f) -
whence f EJ'. QED
327
Riemann I n t e g r a b i l i t y
563. Riemann i n t e g r a b i l i t y and Riemann s u b s p a c e s
Let J be a band o f C'(X) Then
J(J),
=
a n d I its d u a l band i n
Cll(X).
J ( J ) / J ~ % ( J ) A. r e a s o n a b l e e x p e c t a t i o n i s t h a t I n ( 6 3 . 2 ) , we l i s t
R ( J ) , = R(1) t h e Riemann s u b s p a c e o f I . some common b a n d s f o r which t h i s i s t r u e . p r i n c i p a l b a n d s {C'(X)
Among them a r e t h e
l ~ € C ' ( X ) l , which a r e t h e o n e s d e a l t w i t h
LJ i n ordinary integration theory.
We w i l l s e e below, however,
t h a t f o r a g e n e r a l band o f C'(X),
t h e e x p e c t a t i o n need n o t be
born o u t . First,we record:
( 6 3 . 1 ) For e v e r y band J o f C'(X),
w i t h d u a l band I ,
nJ),= R ( I ) Proof. f - R(f)EJ'.
Suppose f E J ( J ) .
Then 6 ( f ) E J ' ,
I t follows a ( f ) , = f I
=
so u ( f ) - f ,
u ( f ) I , whence f I E R ( I )
(57.6). QED
( 6 3 . 2 ) L e t J b e a band of Cl(X),
w i t h d u a l band I .
f i e s any o f t h e f o l l o w i n g c o n d i t i o n s , t h e n X ( J ) ,
If J satis-
= R(1):
( i ) J i s a p r i n c i p a l band; (ii) J i s vaguely c l o s e d - e q u i v a l e n t l y , I i s a u-band;
Chapter 1 3
328
( i i i ) Jd i s v a g u e l y c l o s e d - e q u i v a l e n t l y , I i s a n R-band; (iv)
J i s v a g u e l y d e n s e i n C'(X) - e q u i v a l e n t l y ,
U(1)
=
Cll(X).
I n e a c h c a s e , i t o n l y r e m a i n s t o show t h a t
Proof. R(1) c a ( J ) , .
Assume ( i ) h o l d s , t h a t i s , J
=
C'(X)
f o r some u E C ' ( X ) .
I-r
By ( 2 7 . 4 ) , t h e r e e x i s t s e q u e n c e s { ( g ) I , n P I ( h n ) l - r l i n C(X) s u c h t h a t ( g ) + f , ( h ) + f . LJ n1-1 n1-1
Consider f E R ( 1 ) .
To show t h i s , we r e p l a c e Cgn3,thn3 by s e q u e n c e s
C1711> k i t h t h e d e s i r e d p r o p e r t y . -
g1
h e prmceed i n d u c t i l e l y .
Set
=
gl,
then s e t hl
= hlvgl.
We h a v e (gl)l-l
= (gl)p,
and (E1I-r 1 = (hlll-lv(Fl)l-l = ( h l ) l - l v ( g l ) u = ( h l l V .
-
-
g l , - ..,gm, El,..-,En
Ti
{En},
< * - *
n Set
have been chosen s o t h a t
of course,
Assume
El z - -+ -gn* <<
5Kl a n d (Ek)l-l = =
( g k ) l - l , (Ek)l-l = ( h ) ( k = l , . . . , n ) k1-1 (gn+lVzn)AEn. C o n t i n u i n g i n t h i s f a s h i o n , we
f -<
.
obtain (*), N o w s e t R = Vn g n' u = An hn '
T h e n R-< u a n d R = f = u . 1-1 1-1
To e s t a b l i s h t h a t f E J ? j ( J ) I , we n e e d o n l y show t h a t uE%'(J). T h i s f o l l o w s from u - I! EJ'
( s i n c e (u
-
a) I
=
0 ) a n d 3'
in
(61.2). Assume ( i i ) h o l d s .
Then by ( 5 9 . 5 ) a n d ( 6 0
C(X), c 2 ( J ) , . Assume ( i i i ) h o l d s , a n d c o n s i d e r f E R ( 1 ) .
We c a n assume
Riemann I n t e g r a b i l i t y
We show t h a t i n t h i s c a s e , n o t o n l y i s f i n
0 < f < ll(X)I.
but is actually i n
je(J),,
329
J ( J ) . By ( 5 7 . 6 ) , t h e r e e x i s t a n Rsc 2 f 5 uI.
element k and a u s c element u such t h a t k I (uV0)A
l l ( X ) ; t h e n (u,) I = f a l s o .
S e t El
= ( k V 0 ) A U ( X ) I (by
a s s u m p t i o n , l l ( X ) l i s a n Rsc e l e m e n t ) ; t h e n ( R 1 ) I
R I E I , s o we a c t u a l l y have R1 We t h u s have R1 - R1 € I d =
, ' J
=
I t follows
hence f € X ( J ) .
Assume ( i v ) h o l d s .
Then i t f o l l o w s e a s i l y from t h e f a c t
t h a t p r o j , mgps C ( X ) MU-isomorph c a l l y o n t o C(X), again, R(I) c
But
f also.
= f.
f < u l , w i t h ( u , ) ~= f . I 1
=
S e t u1 =
XCJ)
(not j u s t
B(J
(52.3) that,
, I)
QED
The r e m a i n d e r o f t h i s s e c t i - n i s d e v o t e d t o a n example t o show t h a t f o r a g e n e r a l band J o f C l ( X ) , w i t h d u a l band I ,
X(J), #
For c l a r i t y , we f i r s t c o n s t r u c t a n example i n
R(1).
o r d i n a r y f u n c t i o n t h e o r y , t h e n show t h a t we a c t u a l l y h a v e a n example i n C ' l ( X ) . Let w = t h e f i r s t i n f i n i t e o r d i n a l ; o1 = t h e f i r s t u n c o u n t a b l e o r d i n a l ;
N
=
fi
= the s e t of ordinals
t h e s e t o f o r d i n a l s { B 16 < w ) ;
{ B I B 5 01;
IN1 = t h e s e t o f o r d i n a l s t a l a < w l l ;
-
N1
=
t h e s e t o f o r d i n a l s Icxlci
We e n d o w m and
ml
5
with t h e order topology.
p a c t Hausdorff. Let X =
N1
Z =
m1
Q
WEjl
=
all.
fl
x x
X
(product topology);
w) IJ (wl W)
x
m);
U ( ~ 1W)
They a r e t h e n com-
330
So
Chapter 13
Z is a closed subset of X, and Q c Z. Consider the function f on Q with value 1 on the points of and 0 on the points of w1
N1x w
x
IN.
istic function of the closed set W, istic function of the open set X \ ( w ,
Let u be the characterw,
x x
and
m).
il
the character-
Then u is upper-
semicontinuous, R is lower semicontinuous, and
Note that we do not have
2 u ; we show there exist no
R
R lower-
semicontinuous and u uppersemicontinuous such that R < u and ( * ) is satisfied.
u(wl,n)
=
Suppose such a pair R,u exists.
0 for all n E N .
Now
Since u is uppersemicontinuous, i t
follows that limsupa+w u(a,n) < 0 for all n E N . Hence, since 1 N1 is uncountable, there exists a. such u(a,n) < 0 for all c1L c1 0
and nEl?i.
By assumption, R < u , so we also have
R(a,n) < 0 for all a
2
a.
and n C N . R being lowersemicontinuous,
< 0 for all a > a o , which conthis gives in turn that R ( a , w ) -
tradicts the definition of R . The above construction has been carried out in identify this with C r r ( X ) a . (37.12).
X is dispersed, so C " ( X )
=
It f o l l o w s u above is a usc element of C " ( X )
an Rsc element. R l Q = RI,
Let I be the band R"(Q)
so by ( * ) , f E R ( I ) ,
.
Then ulQ
=
Cll(X). and k u I and
but it is easily shown, using the
above argument, that there is no gEC"(X) such that ( k ( g ) ) I (u(g)),
= f.
Now
k"(X).
=
Riemann I n t e g r a b i l i t y
331
5 6 4 . Examples
Consider t h e c a s e J
=
C(X)
u'
and we c a n t a k e p
2
We
0.
have no s p e c i a l comment t o make a b o u t x ( p ) beyond t h e s t a t e m e n t i n ( 6 3 . 2 ) , b u t we t a k e t h i s o c c a s i o n t o remark on s t a n d a r d We r e l a t e i t t o o u r
Riemann i n t e g r a t i o n i n f u n c t i o n t h e o r y .
a p p r o a c h by - a s u s u a l - i d e n t i f y i n g L"(X)
with CII(X)u
" f u n c t i o n " will mean an e l e m e n t o f C l f ( X ) a ) .
I t i s e a s y t o show
(SO
t h a t t h e s e t o f f u n c t i o n s which a r e Riemann i n t e g r a b l e ( w i t h respect to
u)
i n the standard sense i s precisely
X ( U ) ~ ,and
the
s e t o f t h o s e which a r e Riemann n e g l i g i b l e i n t h e s t a n d a r d s e n s e is precisely
y x ( ~ =)$ ~ X(p)
CII(X)u.
And r e m a r k a b l y , by ( 6 2 . 4 ) .
Thus, by ( 6 3 , 2 ( i ) ) , t h e s p a c e o f Riemann i n t e g r a b l e f u n c t i o n s modulo t h e s p a c e o f Riemann n e g l i g i b l e o n e s c a n be i d e n t i f i e d w i t h t h e Riemann s u b s p a c e
) - otherwise s t a t e d , LJ This i s t h e Caratheodory
R(C"(X)
w i t h t h e Riemann s u b s p a c e o f L m ( p ) . theorem. We l o o k a t o t h e r e x a m p l e s .
(64.2)
X ( C ' (X)) = C(x) = .R(C"(X)).
332
Chapter 1 3 Proof.
( C * ( X ) ) ' = 0 , s o I ( c ~ ( x ) )= 6
-1
(0) = c(x).
We
have a l r e a d y n o t e d t h e s e c o n d e q u a l i t y i n 5 5 9 ( c f . ( 4 6 . 3 ) ) . QED
We have remarked e a r l i e r ( 5 5 9 ) t h a t t h i s g e n e r a l i z e s t h e c l a s s i c a l theorem f o r a r e a l i n t e r v a l : a f u n c t i o n f i s RiemannS t i e l t j e s i n t e g r a b l e w i t h r e s p e c t t o e v e r y f u n c t i o n o f bounded v a r i a t i o n i f and o n l y i f f i s c o n t i n u o u s .
The above i s a s t r o n g s t a t e m e n t .
For f EC"(X) t o be
Riemann i n t e g r a b l e w i t h r e s p e c t t o e v e r y a t o m i c Radon m e a s u r e , f must l i e i n C(X); i t i s n o t enough t h a t i t be c o n t i n u o u s on X .
The o n l y r e s u l t we have t o o f f e r a t p r e s e n t on x ( C l ( X ) d ) i s a c h a r a c t e r i z a t i o n due t o C . Goffman f o r t h e c a s e where X i s
m e t r i c and d e n s e - i n - i t s e l f ( o r a l c o m m u n i c a t i o n ) .
( 6 4 . 4 ) Lemma.
First, a
I f X i s a compact m e t r i c s p a c e , a p o s i t i v e u s c
e l e m e n t u l i e s i n Cii(X)u i f and o n l y i f ( u , x ) = 0 f o r a l l b u t
a c o u n t a b l e number of
XIS.
Riemann I n t e g r a b il i t y
Proof.
333
The s u f f i c i e n c y f o l l o w s from ( 5 4 . 1 6 ) .
Comversely,
s u p p o s e U E C " ( X ) ~and t h a t ( u , x ) > 0 f o r a n u n c o u n t a b l e number Then t h e r e e x i s t s 1 > 0 and a c l o s e d u n c o u n t a b l e s u b -
of x ' s .
> 1 €or a l l xEZ 0'
s e t Zo o f X ,
such t h a t ( u , x )
take X
S i n c e X i s compact m e t r i c , Z o c o n t a i n s a c l o s e d
=
1.
d e n s e - i n - i t s e l f subset 2.
For s i m p l i c i t y ,
L e t e be t h e c h a r a c t e r i s t i c e l e m e n t
Then ( e , x ) < ( u , x ) f o r a l l x , s o t h e Isomorphism theorem
of Z .
gives us e < u. L e t I be t h e band o f C"(X) g e n e r a t e d by e , and J i t s d u a l band i n C'(X).
Then J i s t h e v a g u e l y c l o s e d band g e n e r a t e d
by Z ( c f . (51.10) and ( 3 6 . 7 ) ) , h e n c e , b y ( 3 7 . 1 0 ) , c o n t a i n s a d i f f u s e measure ~ > 0 . But t h e n ( e , u ) > 0 , s o ( u , ~ )> 0 , c o n t r a d i c t i n g u EC'l(X)u. QED
S i n c e f o r e v e r y f EC"(X), 6 ( f ) i s a p o s i t i v e u s c e l e m e n t , t h e sbove g i v e s us o u r v e r s i o n o f Goffman's t h e o r e m :
( 6 4 . 5 ) I f X i s compact m e t r i c , t h e n f o r f E C " ( X ) , i f and o n l y i f ( 6 ( f ) , x )
=
f Ex(C'(X)d)
0 f o r a l l b u t a c o u n t a b l e number o f
X I S .
Goffman's s t a t e m e n t i s a s f o l l o w s :
(64.6)
(Goffman).
A bounded r e a l f u n c t i o n on a c l o s e d i n t e r v a l
i s Riemann i n t e g r a b l e w i t h r e s p e c t t o e v e r y p u r e l y n o n a t o m i c
3 34
Chapter 13
measure if and only if its set of points of discontinuity is countable.
PART V I
THE RARE ELEMENTS I n t o p o l o g ? , , iiiiport;iiit r o l c s a r c p l a y e d deiisc s e t s a n d t h e s e t s o f E i r s t c a t e g o r y
ti),
-
t h e no\
i n R o u r b a k i ' s tcriiiPlaying s i m i lar
i n o l o g ) , , t h e r a r e s e t s a n d t h c incagcr s e t s .
r o l c s i n the s t u d y of' C " ( S ) , we h n v c t h e " r a r c c l c i n e i i t s " and
t l i c "mcagcr c l e m c n t s " .
lJn1 i k e t h e s i t u a t i o n
iii
t o p o l o g y , the
more i n i p o r t n i i t r o l e Iicre sccms t o hc t h a t o f t h e r a r e c l c m c n t s , a n d most
or
P a r t 1'1 i s J e v o t c d t o t h e s e .
We f i r s t e x a m i n e t h e c l e m e n t s o f C " ( X ) t h c s e t s w i t h empty i n t e r i o r i n t o p o l o g y . "1 e:in".
335
corresponding to \lie c a l l s u c h c l c m c n t s
CHAPTER 1 4 THE LEAN ELEMENTS
565. Elementary p r o p e r t i e s
An e l e m e n t f o f C t ' ( X ) w i l l be c a l l e d
lean
i f a ( If
1)
=
0.
If1 i s t h e n a l s o l e a n a n d , i n f a c t , s o i s e v e r y e l e m e n t of t h e
R i e s z i d e a l g e n e r a t e d by f .
Thus a n a l t e r n a t e d e f i n i t i o n i s
t h a t f i s l e a n i f t h e R i e s z i d e a l which i t g e n e r a t e s i n t e r s e c t s C(X) only i n 0.
There i s a n abundance o f l e a n e l e m e n t s .
We show t h a t € o r
u ( f ) - f and f - a ( € ) a r e l e a n .
every f EC"(X),
l e a n e l e m e n t i s o f t h i s form.
Note
Moreover, e v e r y
t h a t the following proposi-
t i o n c o r r e s p o n d s t o s t a n d a r d t o p o l o g i c a l ones on s e t s w i t h empty i n t e r i o r [ 31,581
.
( 6 5 . 1 ) For f € C l ' ( X ) ,
f > 0 , the following a r e equivalent:
1'
f is lean;
2'
f
=
u ( g ) - g f o r some ~ E c ~ * ( x ) ;
3'
f
=
h - R(h) f o r some h € C " ( X ) ;
4O
f < 6(f).
336
The Lean E l e m e n t s
Proof. ___ u(f)
S u p p o s e 1' h o l d s .
p(f)
=
S(f).
u(f) < s(f)
=
u(f)
-
-
=
0.
so f
=
f - k(f).
T h a t 3'
Finally, i f f
t ( u ( g ) - g) 0
plies 1
5
Then k ( f ) = 0 , s o f < u(f) =
holds.
S u p p o s e 4'
e(f) < u ( f ) , so u ( f )
Thus 1' h o l d s .
a(f)
i n 3'.
Thus 4'
=
1'
i m p l i e s 3':
i m p l i e s 2'
u(g)
-
337
holds.
Then
u(f) - Elf), so
=
i n effect, k(f)
=
0,
f o l l o w s by s e t t i n g g
=
-11
g , t h e n by ( 4 9 . 2 ) ,
u ( g ) - u ( g ) = 0 , whence k ( f )
=
0 < k(f) =
Thus 2'
0.
im-
. QED
I f f i s l e a n , t h e n s o are f + and f - .
The c o n v e r s e i s f a l s e .
For o n e e x a m p le, l e t X be a r e a l i n t e r v a l and g a n d h t h e c h a r a c t e r i s t i c elements o f t h e sets o f r a t i o n a l p o i n t s and i r rational points respectively h are lean.
(555)).
( r em em be r, g , h E I J ( X )
Suppose k(g) > 0 ; t h e n e(g),
g and
i s a lowersemicon-
t i n u o u s f u n c t i o n o n X w hi ch i s > 0 a n d v a n i s h e s o n t h e i r r a t i o n a l points, an impossibility. Then f +
=
g and f -
=
Similarly for k(h).
11, b o t h l e a n , w h i l e If
I
=
Set f
=
g - h.
R ( X ) , which i s n o t
lean. F o r a n e x a m p l e removed f r o m f u n c t i o n i m a g e r y , l e t X b e d e n s e - i n - i t s e l f and f f - = l.(X)d, f
=
l(X)u
- n(X)d.
Then f +
=
n(X),
and
b o t h l e a n ( c f . t h e comment f o l l o w i n g ( 4 0 . 5 ) ) , w h i l e
n(x).
=
Remark.
N ot e t h a t i n t h e s e two e x a m p l e s , 6 ( f )
T h u s, i n c o n t r a s t w i t h ( 6 5 . 1 ) ,
(65.2)
=
2.n(X).
6 ( f ) is, i n general, not lean.
If f i s l e a n , t h e n k ( f ) < 0 < u(f).
C h a p t e r 14
338
Proof.
f f and f - a r e l e a n , h e n c e , by ( 4 9 . 1 1 ) ,
u(f+) - a(f-)
=
u(f+) > 0 , and L ( f )
=
a(f')
u(f)
=
- u(f-) = -u(f-)
.(
0.
QED
We n o t e t h e u s e f u l c o r o l l a r y t h a t i f a u s c e l e m e n t u i s l e a n , > 0 , and i f an Esc e l e m e n t R i s l e a n , t h e n R < 0. then u -
(Note
that (59.5) i s a corollary of t h i s . ) Note a l s o t h a t t h e c o n c l u s i o n o f ( 6 5 . 2 ) i s n o t a s u f f i c i e n t c o n d i t i o n f o r f t o be l e a n , a s t h e examples p r e c e d i n g ( 6 5 . 2 ) show. These examples a l s o show t h a t t h e s e t o f l e a n e l e m e n t s i s not c l o s e d under a d d i t i o n o r t h e l a t t i c e o p e r a t i o n s i s n e i t h e r a l i n e a r subspace nor a s u b l a t t i c e of
V,A.
C'l(X).
So i t
I t con-
t a i n s w i t h e a c h e l e m e n t t h e R i e s z i d e a l g e n e r a t e d by t h a t c l e ment.
I t i s t h u s a union of Riesz i d e a l s , a c t u a l l y t h e union
o f a l l t h e R i e s z i d e a l s i n t e r s e c t i n g C(X) o n l y i n 0 .
I t is
t h u s a s o l i d s e t , and c o u l d be d e f i n e d a s t h e l a r g e s t s o l i d s e t i n t e r s e c t i n g C(X) o n l y i n 0 . An o b v i o u s , b u t u s e f u l , consequence o f t h e s o l i d n e s s i s t h a t i f f i s l e a n , t h e n f o r e v e r y band I o f Cl'(X), f I i s a l s o lean. Another p r o p e r t y :
( 6 5 . 3 ) The s e t o f l e a n e l e m e n t s i s norm c l o s e d .
T h i s f o l l o w s from t h e e a s i l y v e r i f i e d f a c t t h a t i f a s o l i d
s e t i n t e r s e c t s C(X) o n l y i n 0 , t h e n s o does i t s norm c l o s u r e .
The Lean Elements
339
The examples preceding (65.2) actually show that the sum of two lean elements f,g need not be lean even if f A g
=
0.
ever, under "stronger" disjointness of f and g, their sum
How-
%
lean.
> 0 are lean and u ( f ) A g (65.4) If f,g -
Proof.
By (49.1), k(f
+
g)
-
u(f)
(using Exercise 4 in Chapter 1) R(f u(f)Af
R(f
+
+
g)
u(f)Ag =
=
f.
Thus 0
<
k(f
+
0, then f
=
+
t(g)
u(f).
=
g) < u(f)A(f
+ g) < L(f)
g i s lean.
+
Hence g)
+
<
0, whence
=
0.
QED
(65.5) Corollary 1.
Suppose f,g
0 are lean.
< R and fAR Rsc element R such that g -
Proof.
By (49.7), u(f)AR
=
=
If there is an
0, then f
0 , so u(f)Ag
=
+
g is lean.
0 and (65.4)
applies.
Let I be a u-band or an R-band.
(65.6) Corollary 2 . f EC"(X),
i f fI and f
Proof.
I
For every
are lean, then f is lean.
For concreteness, let I be a u-band, and we can
Chapter 1 4
340 a s su me I f 1
II
II
USC,
a n d If
=
Ifl
1
and If1
=
If I
I
dl,
s o , by t h e
1
a r e l e a n . We show u ( I f 1 ) A l f d I I i t w i l l f o l l o w from ( 6 5 . 4 ) t h a t I f 1 i s l e a n . I f I I .Y(X),,
which i s
If
If
=
0;
= 0.
so, a fortiori, u(lflI)Alfl
I
QED
I n t u i t i v e l y , a l e a n e l e m e n t s h o u l d be " n e g l i g i b l e " .
We
n e x t e x p l o r e t h e c o n s e q u e n c e s o f two e l e m e n t s o f C1l(X) d i f f e r i n g by a l e a n e l e m e n t .
Proof. is lean.
0 5 ( L ( f ) - u ( g ) ) + 5 ( f - g)',
hence (L(f) - u ( g ) ) +
S i n c e i t i s a n ~ s ecl e m e n t , i t f o l l o w s ( a ( f ) - u ( g ) ) + = 0.
QED
A f o r t i o r i , i f f - g is lean, then L(f) < u(g).
This gives
us :
( 6 5 . 8 ) C o r o l l a r y 1.
2,(P
f
I f h i s l e a n , t h e n f o r e v e r y gE C"(X ),
h) 5 u ( g > .
(65.9) Corollary 2 .
If h i s l e a n , then f o r every usc element u,
a(u
i h)
<
u,
The Lean Elements
and for every Rsc element u(R
t
341
k,
h) > k.
In particular, for every gEC(X), R(g
?
h)<- g < u(g
(65.10) Corollary 3.
II s
+
*
11).
If h is lean, then for every gEC(X), hll L
I1 gII -
This last follows from the preceding and (49.14).
We will be interested in knowing when a given f EC"(X) differs from a usc element or an ksc element by a lean element. Now for every f, f ially lean.
<
u(f),
so (f - u(f))+
We can expect that if u(f)
0, hence is triv-
=
is replaced by a
smaller usc element u , then (f - u ) + will no longer be lean How much smaller must u be?
We have a simple answer.
(65.11) Theorem, F o r every f EC"(X),
(f
-
uk(f))+
is lean, and
uk(f) is the smallest usc element for which this is true.
Proof.
o
<
(f
-
ua(f))+
<
(f
-
.t(f))+
=
Since
f - a(f).
this last is lean (65.1), it follows (f - uk(f))+
is lean.
Now
suppose u is a usc element such that (f - u ) + is lean; we show u > u&(f).
It is enough to show that u 2 R(f).
k((f
-
u)')
=
0,
34 2
SO
Chapter 1 4
I,(f
-
U)
< 0 (49.11), -
SO
a(f) - u < 0 (49.2).
Thus u > ?(f).
QED
Remark.
D u a l l y , u s i n g t h e f a c t t h a t u ( f ) - f i s l e a n , we
have: (ku(f)
-
f)'
i s l e a n , and L(f) i s t h e l a r g e s t fsc element
f o r wh ich t h i s i s t r u e .
A l l t h e s t a t e m e n t s i n P a r t VI h a v e
similar dual s t a t e m e n t s . ( 6 5 . 1 1 ) h a s a c o r r e s p o n d i n g t h e o r e m i n t o p o l o g y : G i ven a s e t A i n a t o p o l o g i c a l s p a c e T , l e t I: t h e i n t e r i o r of A.
=
Int,t h e c l o s u r e o f
Then A \ F h a s empty i n t e r i o r , a n d I: i s t h e
s m a l l e s t c l o s e d s e t f o r w hi ch t h i s i s t r u e . i n t h e n e x t 5 , we exam i ne t h i s f u r t h e r .
For t h e d i s c u s s i o n
Let u s say t h a t A has
empty i n t e r i o r a t a p o i n t t o f T i f t h e r e e x i s t s a n e i g h b o r h o o d
W o f t s u c h t h a t A n W h a s empty i n t e r i o r .
Then t h e s e t F
a b o v e i s p r e c i s e l y t h e s e t o f p o i n t s o f T a t w h i c h A d o e s n__ ot h a v e empty i n t e r i o r . (A
n
Thus A h a s a u n i q u e d e c o m p o s i t i o n A
=
i n t o t h e s e t o f i t s p o i n t s a t which i t does n o t
F ) IJ ( A \ F )
h a v e empty i n t e r i o r a n d a s e t w i t h empty i n t e r i o r .
(65.11)
g i v e s u s a c o r r e s p o n d i n g decomposition o f e a c h f EC"(X) : f = fAuk(f)
+
(f
-
uk(f))+.
For a n e l e m e n t o f & ( I L ( X ) ) ,
d e c o m p o s i t i o n i s i n t o two e l e m e n t s o f E ( l l ( X ) ) r e p l a c e d by
V,
and
+
the
can be
making t h e a n a l o g u e c l e a r e r .
566. A ' l l o c a l i z a t i o n " t h e o r e m
The f o l l o w i n g " l o c a l i z a t i o n " and e a s i l y v e r i f i e d ( c f .
theorem i n topology i s obvious
[31], S8,VII):
I f a s e t A h a s empty
34 3
The Lean E l e m e n t s
i n t e r i o r a t e v e r y p o i n t , t h e n A h a s empty i n t e r i o r .
The
( ( 6 6 . 3 ) bel ow ) r e q u i r e s more
correspond-ing theorem f o r C"(X) work t o p r o v e .
( 6 6 . 1 ) L e m m a 1.
I f fAg i s l e a n , t h e n s o a r e f + A g , f - A g ,
lf/Ag,
IflAIgl, and f - .
Proof.
5
-IfAg/
fAg < f+Ag < I fl A g
<
IflAlgl 5 /fAgl.
S i n c e t h e s e t o f l e a n e l e m e n t s i s s o l i d , i t f o l l o w s f+A g,
/flAg,
f - = 1 - f - 1 , s o , by w hat w e h a v e j u s t
and IflAlgj a r e l e a n .
shown, t o p r o v e t h a t f - A g i s l e a n , i t s u f f i c e s t o show t h a t (-f-)Ag i s lean.
(-f-)Ag
=
i s l e a n s i n c e fAg i s l e a n .
o
so
<
f-
=
(fA0)Ag
=
(fAg)AO
=
- ( f A g ) - , w hi ch
Finally, f > fAg, s o - f < -(fAg),
(-f)+ < (-(fAg))+
=
(fAg)-;
s i n c e (fAg)- i s l e a n ,
it follows f - i s lean. QED
No te t h a t f A g l e a n d o e s n o t i m p l y t h a t f + i s l e a n : l e t f
=
n(X)
and g
that f is lean. the
=
0.
I t f o l l o w s t h a t fAg l e a n d o e s n o t i m p l y
The f o l l o w i n g Lemma p r e s e n t s a c a s e i n w h i c h
implication does hold.
Lemma (66.2) - 2 . G i ven a n Rsc e l e m e n t k , l e t I b e t h e band w h i c h it generates.
Then f o r f E I , i f f A k i s l e a n , f i s l e a n .
Chapter 1 4
344
Proof. (49.4)
Case I , R > 0 : By ( 6 6 . 1 ) ,
f a ( 1fI)AR = R(lflAR)
=
0.
IfIAR i s l e a n , h e n c e
Since t h e o n l y element o f I
d i s j o i n t from R i s 0 , i t f o l l o w s R ( l f 1 ) = 0 . < 0: Case 11, R -
Thus f i s l e a n .
By t a k i n g n e g a t i v e s , t h i s c a s e c a n be
writ t e n :
Given a u s c e l e m e n t u > 0 , l e t I be t h e band which i t
(*)
generates.
Then f o r g € 1 , i f gvu i s l e a n , g i s l e a n .
We w i l l p r o v e t h i s a t t h e end of 567. We p r o c e e d t o p r o v e ( 6 6 . 2 ) f o r t h e c a s e o f a g e n e r a l k s c L e t H be t h e band g e n e r a t e d by R'.
element R .
Then H i s a n
R-band, s o by ( 6 5 . 6 ) , i t i s enough t o show t h a t f H ahd f
are
H lean. fHAR+
=
fHARH = (fA!L)H, which i s l e a n by t h e comment p r e -
ceding (65.3).
S i n c e '.9
i s a n Rsc e l e m e n t , Case I above g i v e s
us t h a t f H i s lean. f dA(-R-) = f dAR = (fAR) d , w h i c h , a g a i n , i s l e a n by H H H H t h e comment p r e c e d i n g ( 6 5 . 3 ) . Now - R - = 9,110, h e n c e i s a n Rsc e l e m e n t , and s i n c e R ed by - k - ,
i s c l e a r l y c o n t a i n e d i n t h e band g e n e r a t H Case I 1 above g i v e s u s t h a t R is lean. H QED
We a r e now i n a p o s i t i o n t o e s t a b l i s h o u r l o c a l i z a t i o n theorem.
( 6 6 . 3 ) Theorem. Then f o r f E C " ( X ) ,
Let
{aa]
be a c o l l e c t i o n o f Rsc e l e m e n t s .
fARalean f o r a l l a i m p l i e s t h a t V a ( f A R a )
is
The Lean E l e m e n t s
34 5
lean.
We p r o v e t h e f o l l o w i n g t h e o r e m , which i s e a s i l y shown t o be e q u i v a l e n t t o t h e above.
L e t { L a } b e a c o l l e c t i o n o f Rsc e l e m e n t s a n d R = v,Lu.
If
FARcx i s l e a n f o r a l l a , t h e n f A k i s l e a n .
Proof.
< k ; s o we For s i m p l i c i t y , we c a n assume t h a t f -
have t o show t h a t f i s l e a n . Case I , L > 0 and f i s i n t h e band g e n e r a t e d by Lemma 2 , i t i s enough t o show t h a t If \ A l l i s l e a n .
:
By
il = V a i l a
v t r ( R w ) + , and by Lemma 1 , I f \ A ( L a ) + i s l e a n f o r e v e r y a. f o l l o w s L ( l f [ ) A ( e w ) += 0 f o r a l l a ( 4 9 . 4 ) , whence L( whence ( a g a i n by ( 4 9 . 4 ) )
=
It
f()AL
=
0,
IfjAR i s l e a n .
Case 11, L < 0 : Choose a n a r b i t r a r y cto.
5 f <- R <- O ,
fARa 0
hence, t a k i n g n e g a t i v e s , 0 < -f < -(fARa ) , which i s l e a n . 0
Now remove t h e r e s t r i c t i o n of p o s i t i v e n e s s o r n e g a t i v e n e s s on R .
L e t I b e t h e band g e n e r a t e d by R + .
By ( 6 5 . 6 ) , we n e e d
are lean. I We r e d u c e t h e c a s e o f f I t o Case I a b o v e . R + = v w ( R a ) + and
o n l y show t h a t f I and f
I -< R I = R + , s o i t s u f f i c e s t o show t h a t f I A ( R a ) + i s l e a n f o r a l l a. (Ra)+ 5 R + , so (Ra)+ = ((La)+),, so fIA(La)+ = f
fIA((ka)+)I
=
( f A ( L a ) + ) , , which i s l e a n by ( 6 6 . 1 ) a n d t h e
comment p r e c e d i n g ( 6 5 . 3 )
.
We r e d u c e t h e c a s e o f f
I
t o Case I 1 a b o v e .
-1
= LAO
=
34 6
Chapter 1 4
Va(LaAO) = V c l ( - ( ~ c l ) -and ) ~ fId 5
=
- f
, so
i t s u f f i c e s to
A(-(Lcl)-) i s l e a n f o r a l l a. f I d = c - f - ) d I I ( f + E I ) , s o we have t o show t h a t ( - f - ) d A ( - ( t 1 - 1 i s l e a n . I
show t h a t f
f i r s t that (-f-)A(-(ila)-) =
(fAo)A(LaAo)
Note
= (fAka)Ao = - ( f A k , t ) - ,
S i n c e - f - 5 ( - f - ) d , we have ( - f - ) A ( - ( k a ) - ) < I ( - f - ) d ~ ( - ( k a ) - ) 0 , h e n c e , by t h e p r e c e d i n g s t a t e m e n t , I ( - f - ) d ~ ( - ( ~ c l ) i-s) l e a n . I QED
which i s l e a n .
We l e a v e t h e v e r i f i c a t i o n o f t h e f o l l o w i n g t o t h e r e a d e r .
C o r o l l a r y 1. (66.4) -
Let {I,} be a c o l l e c t i o n o f il-bands and I
be t h e band w i t h ll(X)I
=
V ~ I ( X )( ~ s o I i s a l s o an il-band).
If
c1
fI
i s l e a n f o r a l l a, t h e n f I i s l e a n . c1
(66.5) Corollary 2 .
For e a c h f EC"(X), t h e r e e x i s t s a l a r g e s t
R-band I f o r which f I i s l e a n .
Analogous t o ( 6 6 . 3 ) , we h a v e :
( 6 6 . 6 ) Theorem..
u =
A
c1
ua'
Let Iua} be a c o l l e c t i o n o f u s c e l e m e n t s and
Then f o r f E C " ( X ) ,
t h a t (f - u ) + i s lean.
( f - ua)+ l e a n f o r a l l a i m p l i e s
The Lean E l e m e n t s
Remark.
A t f i r s t glance,
347
( 6 6 . 6 ) a n d ( 6 6 . 3 ) seem t o b e t h e
same t h e o r e m , a n d i t i s t r u e t h a t t h e y r e d u c e t o t h e same t h e o -
rem i n t o p o l o g y . Proof o f
-
k(f),
u)')
5
fAu
~ +
t h e y do n o t c o i n c i d e .
By ( 6 5 . 7 ) , 9 ( f a ) 5 ua f o r a l l a.
(66.6).
follows L(f) < ~
E((f
However, i n C " ( X ) ,
=
(f
uu, h e( n c e~ 2 ( f ) 5 f A u . -
whence 2 ( ( f - u ) '
u)+ =
=
Then n ( f )
f , whence t ( f )
+
k((f
It
+ -
u)')
5
0.
QED
Remark.
Note t h a t a l s o ( 6 6 . 5 ) a n d ( 6 5 . 1 1 ) r e d u c e t o t h e
same t h e o r e m i n t o p o l o g y .
CHAPTER 1 5
THE RARE ELEMENTS
§ 6 7 . Elementary p r o p e r t i e s
An e l e m e n t f o f C"(X) w i l l be c a l l e d r a r e i f u ( If ~
that is, i f ku(lf1)
=
0.
1)
i s lean,
A rare element i s of course l e a n .
As i s
We w i l l d e n o t e t h e s e t o f r a r e e l e m e n t s by Ra(X).
t o b e e x p e c t e d , t h e p r o p e r t i e s o f Ra(X) a r e much s t r o n g e r a n d more s a t i s f y i n g t h a n t h o s e o f t h e s e t o f l e a n e l e m e n t s .
To
b e g i n w i t h , w h i l e t h e l a t t e r s e t i s n o t even a l i n e a r s u b s p a c e , we h a v e :
(67.1)
Ra(X) i s a norm c l o s e d R i e s z i d e a l .
S u ppos e f , g E R a( X ) .
Proof.
ku(lf
+
gl) 5 Rullfl <
Then
atuofl)
< %u(lfl) =
hence !Lu(\f
+
lgl)
+
+
+
u(lgl)l
(49.1)
u(lgl)
(49.1)
u(lgl),
gl) 5 ku(lg/)
=
0.
Thus ( f
+
g) E R a ( X ) .
c l e a r t h a t i f f E R a( X ) , t h e n Xf E Ra(X) f o r a l l A ER. 34 8
I t is So Ra(X)
The Rare Elements is a linear subspace. g E lia(X)
ideal.
That f E Ra(X)
349
and ( g l
follows from the definition. Finally, the operation
(49.16)), hence Ra(X)
So
<
If
1
implies
Ra(X) is a Riesz
u ( . ) is norm continuous (iterate
is norm closed. QED
As is easily seen, Ra(X) is the Riesz ideal generated by
the positive lean usc elements, hence by all the lean usc elements (cf. the comment following (65.2)). Some additional characterizations:
(67.2) For f EC"(X), '1
f E Ra(X);
2'
f',f-
3O
Lu(f)
the following are equivalent:
E Ra(X); =
0 = uR(f);
< 0 < uL(f). 4O Lu(f) -
Proof. If 2'
That l o and 2'
are equivalent is contained in (67.1)
holds, then (by iterating (49.10))Lu(f)
uL(f-)
=
0, and similarly for u!,(f).
course implies 40 . (ku(f))'
=
Finally assume ' 4
0 and Lu(f-)
=
(uk(f))-
=
=
ku(f')
Thus 3' holds. holds. 0.
-
'3
Then k u ( f ' )
Thus 2'
of =
holds. QED
' 4
above should be compared with (65.2).
In that case, the
inequalities were only necessary; here they are a l s o sufficient.
Chapter 1 5
350
( 6 7 . 3 ) Ra(X) i s c l o s e d u n d e r t h e o p e r a t i o n s u ( * ) , a ( . ) ,
(therefore) 6( * )
Proof.
and
.
S u ppos e f E R a( X ) .
Then i t h a s p r o p e r t y 4'
we show u ( f ) a n d k ( f ) a l s o h a v e t h i s p r o p e r t y . k(f) < 0 , and u a ( u ( f ) ) > ua(f) > 0.
in (67.2);
au(u(f))
=
Similarly for k(f).
QED
We h a v e s e e n t h a t f,g l e a n d o e s n o t i m p l y t h a t f + g , f v g , fAg a r e l e a n .
(67.4)
However,
I f f i s l e a n a n d g i s r a r e , t h e n f + g , f v g , a n d fAg a r e
lean.
(67.5) Corollary.
I f a R i e s z i d e a l I o f C'l(X) i s c o n t a i n e d i n
t h e s e t o f l e a n e l e m e n t s , t h e n I + Ra(X) i s a l s o .
I t follows
t h a t i f a R i e s z i d e a l i s maximal w i t h r e s p e c t t o b e i n g c o n t a i n e d i n t h e set of l e a n elements
,
t h e n i t c o n t a i n s Ra(X ).
The Rare Elements
Again, i f two e l e m e n t s o f
C'l(X)
351
d i f f e r o n l y be a r a r e e l e -
ment, we c a n s a y more t h a n we c a n i f t h e y d i f f e r by a l e a n element.
( 6 7 . 6 ) Given f , g E C " ( X ) , i f ( f - g ) + i s r a r e , t h e n ( u ( f ) - u ( g ) ) +
and ( P ( f ) - Q ( g ) ) + a r e r a r e .
Proof.
By ( 4 9 . 2 ) , ( u ( f ) - u ( g ) ) + , ( R ( f ) And by ( 4 9 . 1 0 ) ,
(u(f - g))'.
(u(f - g))'
=
R(g))+
-
2
u ( ( f - g)'),
which
i s r a r e by h y p o t h e s i s .
( 6 7 . 7 ) Given f , g E C 1 ' ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t :
1'
(u(f)
u(g)j+ is rare;
2'
(u(f) - u(g))+ i s lean;
3'
Ru(f) 5 Q u ( g ) ;
4O
uRu(f) 5 u R u ( g ) .
-
And t h e f o l l o w i n g a r e e q u i v a l e n t : 11.
(a(f)
21.
( a ( f ) - . ~ ( g ) ) +i s l e a n ;
3'.
u Q ( f ) 5 uR(g);
4'.
QuR(f) < RuR(g).
Proof. 4'.
T h a t 2'
-
~ ( g ) ) +i s r a r e ;
We o f c o u r s e have t h a t 1' i m p l i e s 3'
i m p l i e s 2'
f o l l o w s from ( 6 5 . 7 ) .
and '3
implies
F i n a l l y , suppose
352 4'
Chapter 15
holds; we show ( u ( f )
( u ( f ) - u(g))+
=
-
u(g))'
is rare.
[ u ( f ) - uRu(f) + u R u ( f ) - uRu(g)
+
uRu(g) - u ( g ) ] +
< ( u ( f ) - u R u ( f ) ) + + ( u R u ( f ) - uEu(g))+
+
(u!Lu(g) - u(g))+.
The second term in this last line vanishes by supposition, and uRu(g) 5 u ( g ) , so the last term vanishes.
We thus have:
This last is lean by (65.1), hence, being a usc element, is rare. The equivalence o f l', 2 ' , 3', 4 ' i s proved similarly. QED
Combining (67.6) and (67.7):
(67.8) I f ( f - g ) + is rare, then the eight properties in (67.7) hold.
I f we interchange f and g in the above three propositions,
then combine the statements thus obtained with the original ones, we have
(67.9)
I f f - g is rare, then the following s i x properties
-
The Rare Elements
353
o f which t h e f i r s t t h r e e a r e e q u i v a l e n t and t h e l a s t t h r e e a r e
equivalent - a l l hold: (i)
u ( f ) - u(g) is rare;
(ii)
!,u(f)
iu(g);
=
(iii) uau(f)
utu(g);
=
(iv)
e(f) - a(g) is rare;
(v)
uk(f) = uL(g);
(vi)
kua(f) = k u k ( g ) .
(67.10)
I f r i s r a r e , t h e n f o r e v e r y g E Cl'(X),
C o r o l l a r y 1.
ku(g
2
r ) = ku(g),
uL(g t r ) = uk ( g ) .
I f r i s r a r e , then f o r every usc elementu,
(67.11) Corollary 2.
ku(u
?
r) = k(u),
and f o r e v e r y ksc e l e m e n t L, uk(k
2
r)
=
u(L).
In p a r t i c u l a r , f o r every g E C ( X ) , ku(g ? r ) = g = u k ( g
We c a n a l s o s t r e n g t h e n ( 6 5 . 1 1 )
(67.12)
Theorem.
r).
(Note t h a t u k u ( f ) > uL(f)).
For every fEC"(X), (f - uku(f))'
i s r a r e , and
u L u ( f ) i s t h e s m a l l e s t u s c e l e m e n t f o r which t h i s i s t r u e .
Chapter 1 5
354
Proof.
To show t h a t ( f - u L u ( f ) ) + i s r a r e , i t s u f f i c e s t o
show t h a t ( f - k . u ( f ) ) + i s r a r e .
- ku(f))+
0 < (f
k u ( f ) ) + = u ( f ) - k u ( f ) , which i s l e a n ( 6 5 . 1 ) ,
< (u(f)
-
hence ( u ( f ) - n u ( f )
being a usc element) r a r e . Now suppose u i s a u s c e l e m e n t s u c h t h a t ( f - u ) + i s r a r c , we show t h a t u > ui,u(f). k u ( ( f - u)')
=
I t i s enough t o show u z ku(f).
0 , s o Lu(f - u ) < 0 , s o L(u(f)
whence ( a g a i n by ( 4 9 . 2 ) ) k u ( f )
-
u<
-
u )<
0
(49.2),
0.
QED
I f f E Ra(X), t h e n t h e R i e s z i d e a l g e n e r a t e d by f i s c o n t a i n e d i n Ra(X) ( s i n c e Ra(X) i s i t s e l f a R i e s z i d e a l ) . general, the band g e n e r a t e d b y f i s n o t . f E Ra(X) does n o t imply l l ( X ) f E Ra(X).
In
Otherwise s t a t e d ,
A s an example, l e t X be
a r e a l i n t e r v a l , { r n } t h e s e t o f r a t i o n a l p o i n t s of X , and
u t h e u s c e l e m e n t d e f i n e d by ( u , r I 1 ) (u,x)
=
=
l / n (n = 1 , 2 , . - . ) and
I t i s easy t o v e r i f y t h a t u i s r a r e b u t
0 otherwise.
R ( X ) u (which i s t h e c h a r a c t e r i s t i c e l e m e n t o f { r n l ) i s n o t r a r e - i n d e e d u(ll(X)u) = n ( X ) . We do have t h e f o l l o w i n g :
( 6 7 . 1 3 ) For f EC"(X), f
1'
f E Ra(X);
2'
n(x) (f -
Proof.
(xi 1
3
0 , t h e following a r e equivalent:
+ E Ra(X) f o r a l l
A > 0.
Suppose 1' h o l d s , and c o n s i d e r 1 > 0 .
Let
The Rare Elements
e
=
n(X)
(XI 1
(f-
0 < e < (l/X)€€
+.
Then, by ( 1 7 . 9 ) ,
(ii)
< f.
e -
Thus
Ra(X).
C o n v e r s e l y , s u p p o s e 2' 0 < f < n(X).
Xe < f
355
h o l d s , a n d , f o r s i m p l i c i t y , assume
Consider X > 0 .
( f - h n ( X ) ) + E Ra(X).
t h e l a t t e r i s i n Ra(X) b y a s s u m p t i o n . ( f - hll(X))+ < ll(X);
f < n ( X ) , hence
the d e s i r e d i n e q u a l i t y then follows.
I t f o l l o w s from ( i ) and ( i i ) t h a t f i s i n t h e norm c l o s u r e o f Ra(X).
S i n c e Ra(X) i s norm c l o s e d , f E Ra(X). QED
While t h e band g e n e r a t e d by a n e l e m e n t o f Ra(X) need n o t be c o n t a i n e d i n Ra(X), i t i s contained i n t h e s e t of l e a n elements. T h i s i s c o n t a i n e d i n t h e f o l l o w i n g t h e o r e m , which i s t h e c l a s s i c C a t e g o r y theorem f o r compact s p a c e s .
(67.14)
(Category theorem).
I f { f n } c Ra(X)+ and f = V n f n ,
then f i s l e a n .
Proof.
I t s u f f i c e s t o show t h a t V n u ( f n ) i s l e a n , s o , f o r
Chapter 1 5
356
s i m p l i c i t y , we can t a k e t u n } c Ra(X)+ and f pose f i s n o t l e a n .
=
vnun.
Now s u p -
Then t h e r e e x i s t s g EC(X) s u c h t h a t 0 < g < f.
Again f o r s i m p l i c i t y , we c a n assume IIgll > 1 . S e t vn
=
unAg ( n
=
Then t h e v n t s a r e u s c e l e -
1,2,..-).
m e n t s , Cvnl c Ra(X)+, and g
=
Vnvn.
h n } c C(X)+ s a t i s f y i n g :
. . .) ; for all n
We remark f i r s t t h a t , s i n c e IIgll > 1, ( g - l ( X ) )
Hence,
0.
s i n c e ( g - n ( X ) ) E C(X), no l e a n e l e m e n t c a n dominate i t . We o b t a i n t h e h n ' s i n -
We p r o c e e d t o e s t a b l i s h t h e Lemma. ductively.
By t h e above r e m a r k , v 1 i- ( g - IL(X)).
Now v1 i s
t h e infimum o f a l l t h e e l e m e n t s o f C ( X ) between i t and g ; hence t h e r e e x i s t s hlEC(X)
such t h a t
v1 hl
5
h l 5 g9 (g -
n(x) 1 -
That i s , hl s a t i s f i e s t h e Lemma. Assume h l , - . - , h n have b e e n c h o s e n t o s a t i s f y t h e Lemma.
To e s t a b l i s h t h i s , we show t h e s t r o n g e r i n e q u a l i t y : Vn+l
(g
(g - l ( X )
- n(X>) - hn)
Suppose hn
+
Vn+l
>
(g - n ( X ) ) .
hn
+
Write t h i s
t h e l e f t s i d e i s i n C(X) and t h e 5 v ~ + ~Here .
r i g h t s i d e i s l e a n , hence ( g - n ( X )
- hn)
5 0 , o r hn 2 Cg
- 1(X)).
T h i s c o n t r a d i c t s t h e i n d u c t i o n h y p o t h e s i s t h a t hn s a t i s f i e s ( i i i )
357
The R a r e E l e m e n t s
i n t h e Lemma.
I t f o l l o w s f r om ( * ) ( a s i n t h e c h o i c e o f h l ) t h a t t h e r e exists
EC(X) such t h a t
hnvvn+1 5 h n + l 5 g , hn+l b
s
-
n(x)),
w hic h e s t a b l i s h e s t h e L e m m a . But t h e n h n + g , s o
by D i n i ' s t h e o r e m , limnllg - hnll
=
0.
A ga in t h i s c o n t r a d i c t s ( i i i ) i n t h e L e m m a .
QED
We h a v e s e e n ( 6 5 . 1 ) t h a t u ( f ) l e a n ( a l t h o u g h tE(f)
,
-
f and f
i n general, is not).
-
t ( f ) are always
If o n e o f t h e s e i s
r a r e , we c a n s a y much m o r e :
(67.15) For f E C " ( X ) ,
t h e following are e q u i v a l e n t :
1'
u(f)
2'
f - t ( f ) i s rare;
3'
6(f) is rare;
4'
6(f) is lean.
P roof. -
-
f is rare;
If one of u ( f )
-
f and f - k ( f ) i s rare, then,
s i n c e t h e o t h e r i s l e a n , i t f o l l o w s from ( 6 7 . 4 ) t h a t 6 ( f ) i s l e a n , hence (being a usc element) rare. imply
4O,
w h i c h i m p l i e s 3'.
3'
Thus 1' a n d 2'
o f c o u r s e i m p l i e s '1
each
a n d 2'.
QED
A t r i v i a l c o r o l l a r y i s t h a t f o r a u s c e l e m e n t u a n d a n Lsc
Chapter 1 5
358
element R ,
6 ( u ) and 6 ( k ) a r e r a r e .
For e v e r y f E S(X) , 6 ( f ) E Ra(X).
( 6 7 . 1 6 ) Theorem.
Proof.
We have a s t r o n g e r r e s u l t :
Suppose f i r s t t h a t f E s ( X ) , t h a t i s , f
where u1 and u 2 a r e u s c e l e m e n t s . 6(ul)
Then, by ( S O . Z ) ,
6(u2) E Ra(X) ( c f . t h e above r e m a r k ) .
+
holds f o r s(X).
=
u
1 - u2
0 < 6(f) <
Thus t h e theorem
That i t h o l d s f o r i t s norm c l o s u r e S ( X ) f o l l o w s
from t h e f a c t s t h a t t h e o p e r a t i o n 6(.)
i s norm c o n t i n u o u s ( 5 0 . 1 0 )
and R a ( X ) i s norm c l o s e d . QED
( 6 7 . 1 7 ) C o r o l l a r y 1, 1'
f is rare;
2'
f i s lean;
3'
u(f) is lean;
4'
k(f)
Proof. u(f) = f Thus '3
+
For f E S ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t :
is lean.
'1
o f c o u r s e i m p l i e s 2'.
Suppose 2'
holds.
Then
( u ( f ) - f ) , hence i s l e a n by ( 6 7 . 1 6 ) above and ( 6 7 . 4 ) .
holds.
hence i s r a r e .
Suppose 3'
holds.
> 0 by ( 6 5 . 2 ) , Then u ( f ) -
Since S ( f ) i s a l s o r a r e ( 6 7 . 1 6 ) ,
L(f)
=
u(f) - 6(f) is rare.
k(f)
5
0 by ( 6 5 . 2 ) ,
F i n a l l y , suppose 4'
hence - k ( f )
therefore rare, so k(f) is rare.
i t follows
holds.
Then
i s a p o s i t i v e l e a n usc element,
Since f - k ( f ) i s a l s o r a r e ,
The R a r e E l e m e n t s
by ( 6 7 . 1 6 ) , i t f o l l o w s f
=
L(f)
+
(f
-
359
!,(f)) i s r a r e . QED
For a g e n e r a l e l e m e n t f o f C t l ( X ) ,
a u ( f ) a n d u a ( f ) h a v e no
particular order relation, that is, a l l possible order relations occur.
However:
(67.18) C o r o l l a r y 2 .
Proof.
For f E S ( X ) ,
QU(f)
-
uf,(f).
u ( f ) - t ( f ) is l e a n , by (67.16),
so a ( u ( f ) - k(f)) = O .
Applying (49.2) g i v e s us a u ( f ) - uL(f) < 0.
QED
We c l o s e t h i s 5 w i t h t h e p r o m i s e d p r o o f o f ( * ) i n ( 6 6 . 2 ) . 0 < u - gvu, hence u i s l e a n , and t h e r e f o r e (being a p o s i t i v e U
S
~e l e m e n t )
rare.
I t f o l l o w s from t h e C a t e g o r y theorem (67.14)
t h a t I i s contained i n the s e t of lean elements.
Thus g i s l e a n .
QED
568. A " l o c a l i z a t i o n " t h e o r e m
The p r o p e r t i e s e s t a b l i s h e d i n 566 f o r l e a n e l e m e n t s h o l d , w i t h one e x c e p t i o n , f o r r a r e elements.
Note t h a t w e h a v e b e e n
f o r c e d t o change t h e o r d e r of development.
360
Chapter 1 5
(68.1) Theorem. f o r fEC"(X), fAR,
L e t {La}
b e a c o l l e c t i o n o f Rsc e l e m e n t s .
rare f o r a l l
c1
i m p l i e s t h a t Va(fARa)
Then
i s rare.
A g a i n , we p r o v e t h e f o l l o w i n g e q u i v a l e n t t h e o r e m i n s t e a d .
L e t {La} b e a c o l l e c t i o n o f Rsc e l e m e n t s , a n d g,
= VIJP,il.
I f fAk,x i s r a r e f o r a l l u , t h e n fnil i s r a r e .
P roof.
Again, f o r s i m p l i c i t y , w e c a n assume t h a t f < 8 . ~
We show i ? u ( f ) < 0 < uR(f)
(cf. (67.2)).
Ru(f) < 0: W e f i r s t p r o v e t h a t i t s u f f i c e s t o show P u ( f ) A Rc 0.. Assume Ru(f)AR < 0. au(f)Au(R) < 0. comes R u ( f ) < 0.
Then u ( k u ( f ) A L ) < 0 , s o by ( 4 9 . 6 ) ,
But f < R , so Ru(f) < u(k), so t h i s last beNow t o p r o v e k u ( f ) A k < 0. ku(f)AR
(the l a s t inequality
Ru(f)A(VaRa) = Vcx(Ru(f)Aila) < Vclku(fARa) f o l l o w i n g from ( 4 9 . 4 )
and ( 4 9 . 6 ) ) .
=
S i n c e LU(fAka) < 0 for
a l l a , Vaku(fARm) 5 0 , a n d we a r e t h r o u g h . uR(f)
0 : Choose cto a r b i t r a r i l y .
Then u k ( f ) > v R ( f A R c l )-> 0 . 0
QED
A g a i n we h a v e t h e c o r o l l a r i e s :
( 6 8 . 2 ) C o r o l l a r y 1.
Let
{Ia} b e a c o l l e c t i o n o f R - b a n d s a n d I
t h e b a n d w i t h I l ( X ) I = Vall(X)I
a implies t h a t f I i s rare.
.
rare f o r a l l a
Then f I
a
The R a t e Elements
(68.3) Corollary 2.
For e a c h f E C " ( X ) ,
361
there exists a largest
t - b a n d I f o r which f I i s r a r e .
Again ( 6 8 . 3 ) and ( 6 7 . 1 2 ) r e d u c e t o t h e same t h e o -
Remark.
rem i n t o p o l o g y . ( 6 6 . 1 ) h o l d s w i t h " l e a n " r e p l a c e d by " r a r e " .
We r e c o r d
the f a c t :
( 6 8 . 4 ) I f fAg i s r a r e , t h e n s o a r e f+Ag. f - A g ,
IflAg,
If I A I g l ,
and f - .
The p r o o f i s t h e same. (66.2) a l s o c a r r i e s over t o r a r e n e s s , but only f o r L > 0:
( 6 8 . 5 ) Given a n Rsc e l e m e n t il > 0 , l e t I b e t h e band which i t generates.
P roof. -
Then f o r f € 1 , i f fAR i s r a r e , f i s r a r e .
By ( 6 8 . 4 ) , ) f l A L i s r a r e , s o f o r s i m p l i c i t y , we c a n
assume f > 0.
For e v e r y n E N , 0 < fAnR < n ( f A k ) , s o fAna i s
rare.
=
Since f
Vn(fAnL), i t f o l l o w s from ( 6 8 . 1 ) t h a t f i s r a r e QED
The a b o v e d o e s n o t h o l d € o r a g e n e r a l Lsc e l e m e n t R : be a r e a l i n t e r v a l and { r n } t h e r a t i o n a l p o i n t s o f X .
Let X
L e t f be
36 2
Chapter 1 5
t h e c h a r a c t e r i s t i c element of t h e s e t { r n l , and u t h e u s c e l e ment d e f i n e d by ( u , r n )
wise.
Finally, l e t R
by R a n d fAL
= =
l / n (n
-u.
=
and ( u , x )
=
0 other-
Then f i s i n t h e b a n d g e n e r a t e d But u ( f ) = n ( X ) , s o f i s n o t
R , w hi ch i s r a r e .
=
1,2,...)
rare. A s with l e a n elements ( c f .
( 6 6 . 6 ) ) , t h e f o l l o w i n g theorem
i s analogous t o (68.1), and while they a r e a c t u a l l y d i f f e r e n t , t h e y r e d u c e t o t h e same t h e o r e m i n t o p o l o g y .
( 6 8 . 6 ) Theorem.
u
= Aauu.
Then f o r f E C " ( X ) ,
t h a t ( f - u)'
Proof. Aauu =
u.
Let {uul be a c o l l e c t i o n of usc elements, and (f
-
ua)+ r a r e f o r a l l a i m p l i e s
i s rare.
By ( 6 7 . 8 ) , R u ( f ) Thus ( f - u)'
5 ua f o r a l l a, h e n c e Ru(f)
< ( f - Ru(f))'
<
<
u ( f ) - k u ( f ) E Ra(X)
( t h i s l a s t by ( 6 7 . 1 6 ) . QED
CHAPTER 16 THE DECOMPOSITION C1(X)
=
Ra(X)'
0
C(X)'
569. The decomposition of C'(X)
Ra(X) Ra(X)L.
determines the decomposition C1(X)
=
(Ra(X)
I
)
d 0
Each of these summands has a simple characteristization.
(69.1) Theorem.
Proof. -
Ra(X)L
=
C(S)'.
c C(X)':
Ra(X)I
and suppose fa+O in C(X).
In
ffect, consider I,rERa(X) , p > 0 , I
Then u
U is order continuous on C"(X),
=
Since
~~f~ is in Ra(X).
( u , ~ , r ) = infa( f,,p)
=
Thus
0.
1-1 is order continuous on C(X).
For the opposite
every U € (Ra(X)I) Ra(X)
, v
> 0, fails to be order continuous on C(X).
is separating on (Ra(X)
ment uERa(X)+ C(X)
d
inclusion, it is enough to show that
1
)d, so there exists a usc ele-
such that ( u , ~ , r ) > 0.
Choose a net { f a } in
such that faJ.u. Then fw.'cO in C(X),
but lima(fa,v)
=
(u,I,r> > 0 .
QED
363
Chapter 1 6
364
( 6 9 . 2 ) Theorem.
( R a ( X ) L ) d = Ra(X)'.
We p r o v e t h e more g e n e r a l t h e o r e m :
( 6 9 . 3 ) I f I i s a norm c l o s e d R i e s z i d e a l o f
then ( I l ) d
Cl'(X),
=
IC.
Proof.
We show f i r s t t h a t ( I ) d i s a R i e s z i d e a l o f 1'. 1
Note t h a t , s i n c e Cl(X) i s a band o f C 1 " ( X ) ,
n
[ (11) d - i n - c l l l (X)]
Cl(X),
and t h u s ( I ) d 1
(II) d
=
i s a band o f
Combining t h i s w i t h ( 1 4 . 1 1 ) , we have t h a t
(IL)d-in-C1'l;X).
( I L ) d i s a Riesz i d e a l o f Ib.
Now e a c h u E ( I ) d I
i s o r d e r con-
t i n u o u s on Cll(X), hence - s i n c e I i s a R i e s z i d e a l - on I . Thus ( I L ) d i s a R i e s z i d e a l o f 1'. I t r e m a i n s t o show t h a t ( I ) d i s a l l o f 1'. I
t h a t , by ( 1 5 . 4 ) and ( 2 1 . 1 ) ,
Ib
=
Note f i r s t
I ' and s o i s a n L - s p a c e .
t h e imbedding o f ( I ) d i n 1 ' i s c l e a r l y norm p r e s e r v i n g . I
Now Since
i s norm c o m p l e t e , i t i s norm c l o s e d i n I f , h e n c e , by
(19.7), order closed.
i s a band o f 1'.
Thus
Finally,
( I l l d i s s e p a r a t i n g on I , h e n c e v a g u e l y d e n s e i n 1'; t h e Luxemburg-Zaanen theorem ( 1 2 . 7 ) ,
h e n c e , by
( I ) d = 1'. I
QED
We c a n t h u s w r i t e o u r d e c o m p o s i t i o n o f C 1 ( X )
C'(X) = Ra(X)' t i o n of X, X
0 =
[X
C(X)'.
i n t h e form
By ( 2 0 . 1 ) , t h i s g i v e s us t h e decomposi-
n Ra(X)']
IJ [X
n
C(X)'].
So e v e r y xEX
is
C'(X) e i t h e r i n Ra(X)'
=
o r C(X)'.
Ra(X)'@
C(X)'
365
We c a n s h a r p e n t h i s :
( 6 9 . 4 ) O f x € X i s an i s o l a t e d p o i n t , i t l i e s i n C(X)';
i f not,
it l i e s in R ~ ( x ) ' .
Proof.
Let u b e t h e c h a r a c t e r i s t i c e l e m e n t o f x .
x is not isolated.
Suppose
Every f€C(X) s u c h t h a t 0 < f < u vanishes
on X\x ( s i n c e u d o e s ) , h e n c e , b e i n g c o n t i n u o u s on X , a l s o v a n i s h e s on x ; i t i s t h e r e f o r e 0 . is isolated.
Thus u E R a ( X ) .
Suppose x
Then u i s c o n t i n u o u s on x, h e n c e ( b y t h e d i s -
c u s s i o n following (40.2)
and t h e Isomorphism theorem) ufC(X)
I t f o l l o w s t h a t Wu c C ( X ) .
.
But IRu i s i n f a c t a b a n d , s o t h i s
i n c l u s i o n a c t u a l l y g i v e s u s t h a t i t i s d i s j o i n t from Ra(X). Thus uERa(X)d X
=
[Ra(X)']'
,
a n d t h e r e f o r e v a n i s h e s on
Ra(X)'.
QED
5 7 0 . The b a n d Ra(X)
d
Ra(X) also d e t e r m i n e s a d e c o m p o s i t i o n o f C"(X): Ra(X)dd 3 Ra(X)d.
=
Ra(X)dd i s t h e band g e n e r a t e d by Ra(X), or
equivalently, i t s order closure. Ra(X)d = (Ra(X)')'.
C"(X)
I t i s a l s o (C(X)')',
O t h e r w i s e s t a t e d , ( R a ( X ) d d , Ra(X)')
p a i r o f d u a l b a n d s , and (Ra(X)d,C(X)c) decomposition can be w r i t t e n :
is also.
while is a
So t h e a b o v e
366
Chapter 1 6
(70.1)
C''(X)
Ra(X)"
=
%,
C(X)".
We examine Ra(X)d i n more d e t a i l .
Our f i r s t aim i s t o
show t h a t C(X)
i s Dedekind d e n s e i n R a ( X ) d , t h a t i s , t h e Ra (XI Dedekind c l o s u r e R(Ra(X) d ) o f C(X) i s a l l o f Ra(X)d ( 7 0 . 3 ) . Ra (XI
( 7 0 . 2 ) Theorem.
F o r e v e r y f€IJ(X) Jl ( f )
Proof.
Ra(X)d
= f
,
Ra(X)
d = u(f)
We show t h e s e c o n d i d e n t i t y .
Ra(X)d
Set I
=
Ra(X) d .
Note f i r s t t h a t f o r an Q s c e l e m e n t Q , ( u ( k ) - . f ) € R a ( X ) , h e n c e u(Q), = R,.
Now c o n s i d e r f E U ( X ) .
elements such t h a t
?,!
c1
+f.
Choose a n e t
{aa)
o f Ilsc
Then ( Q a ) , + f I , s o b y t h e above
identity, u(a ) +fI.
a 1
Now f < u(f) < U(Q) for a l l c1
u ( ~ , ) , + f , , and t h u s f I
( 7 0 . 3 ) C o r o l l a r y 1.
Proof. _-
=
(L,
h e n c e f I 5 ~ ( f 5) ~
u(f),.
R(Ra(X)d) = Ra(X)
d
.
The Up-down-up t h e o r e m h o l d s Ra(X)d' f o r F i n Ra(X)d ( c f . t h e i n t r o d u c t i o n t o C h a p t e r 1 2 ) , s o FRuQ
=
Ra(X)
S e t F = C(X)
d
.
d S i n c e R(Ra(X) ) = FR
FU, we t h u s n e e d o n l y
C'(X)'
show t h a t Feu'
=
FR
=
R a ( X t 3 C(X)'
36 7
FU.
=
We f i r s t show F R
=
FU.
Consider f E F
'.
Then, by t h e
above mentioned d i s c u s s i o n i n t h c i n t r o d u c t i o n t o Chapter 1 2 , t h e r e i s a n e s c e l e m e n t R s u c h t h a t p. ( 7 0 . 2 1 , U(')
=
f.
Thus F E F U .
= f , whence, by Ra (XI T h i s g i v e s u s F' c F u ;
Ra(X)d t h e o p p o s i t e i n c l u s i o n i s shown t h e same way. F'
FU g i v e s u s FRu
=
Fa.'
=
F
=
Fuu
=
FU
=
F i!
,
The i d e n t i t y
h e n c e , f i n a l l y , F 'uk
-
a. .
Remark. -___
Contained i n t h e above a r e t h e i d e n t i t i e s
S i n c e R z ~ ( X )i s~ D e d e k i n d c o m p l e t e , we h a v e t h e
(70.4) Corollary 2 . C(X)
Ra(X)d i s t h e D e d e k i n d c o m p l e t i o n o f
Ra(XId'
(70.5) p r o j
maps s u p r e m a a n d i n f i m a i n C(X) i n t o s u p r e m a Ra (XI and i n f i m a i n Ra(X)d: f o r e v e r y A c C(X), f = AA-in-C(X) implies f Ra (XI A
(A
Proof. =
(So, a f o r t i o r i , f
Ra(X)
Ra(X)d -
d) -in-C(X) Ra(X)
u
d).
= A(A
Ra(X)d')
C o n s i d e r A c C(X) s u c h t h a t AA-in-C(X)
AA is r a r e .
Since proj
=
0.
Then
preserves infima i n C"(X),
Ra ( X I
36 8
Chapter 16
t h i s gives us
d)
A(A
=
Ra (XI
u Ra (X)
d
=
0.
QE D
d , c o n s i d e r e d a s a mapping o f C ( X ) Ra (XI d . i n t o Ra(X) i s o r d e r c o n t i n u o u s , and t h e r e f o r e i s a l s o o r d c r (70.6) Corollary.
proj
c o n t i n u o u s c o n s i d e r e d a s a mapping o f C(X)
o n t o C(X) Ra(X) d '
(70.7)
Theorem.
-
C(X)'
=
[C(X)
dIc. Ra (XI
C(X)
0 , and s u p p o s e f,+O
p
P r o o f . C o n s i d e r pEC(X)',
in
I t f o l l o w s e a s i l y f r o m (70.6) t h a t t h e n f,+O
in
Ra(X)d'
R a ( X ) d , whence i n f , ( f a , p )
=
0.
Thus U E [ C ( X )
C o n v e r s e l y , c o n s i d e r $E[C(X)
dlc.
Ra(X)d
IC.
~t f o l l o w s from
Ra (XI (70.6) t h a t t h e l i n e a r f u n c t i o n a l $oproj c o n t i n u o u s , h e n c e an e l e m e n t o f C(X)',
on C ( X ) i s o r d e r Ra (XI and c o i n c i d e s w i t h on
QED
Remark.
The a b o v e t h e o r e m a n d ( 5 4 . 2 3 ) a r e s p e c i a l c a s e s
of a g e n e r a l theorem o f J . J . Masterson [ 5 2 ] , which s t a t e s t h a t an Archimedean R i e s z s p a c e a n d i t s D e d e k i n d c o m p l e t i o n h a v e t h e same o r d e r c o n t i n u o u s l i n e a r f u n c t i o n a l s t h e comment p r e c e d i n g ( 2 6 . 2 ) ) .
(cf.
( 5 4 . 2 2 ) and
C'(X)
Ra(X)'
=
3 C(X)'
369
The f o l l o w i n g a r e o f c o u r s e e q u i v a l e n t : 1'
c(x)'
20 c(x)
i s S e p a r a t i n g on c ( x ) ;
n
R ~ ( x = ) 0~; ~
t h e mapping o f C ( X ) o n t o C ( X ) Ra (XI i s an Ml-i s o m o r p h i s m . 3'
g i v e n by p r o j Ra(X)d
Combining t h i s w i t h (70.4), w e h a v e :
( 7 0 . 8 ) 'Theorem.
I f C(X)'
i s s e p a r a t i n g o n C ( X ) , t h e n Ra(X) d
i s t h e D e d e k i n d c o m p l e t i o n o f C(X).
Remark,
I n g e n e r a l , t h e D e d e k i n d c o m p l e t i o n o f C(X) c a n
b e r e a l i z e d i n a n a t u r a l way o n l y a s a q u o t i e n t s p a c e o f C'l(X), not as a subspace (cf. Chapterl7). s e p a r a t i n g on C(X)
-
The p r e s e n t c a s e - C(X)'
i s p r o b a b l y t h e o n l y one i n which t h e r e
e x i s t s a n a t u r a l , u n i q u e l y d e t e r m i n e d , s u b s p a c e o f C"(X)
which
c a n b e i d e n t i f i e d w i t h t h e d e s i r e d Dedekind c o m p l e t i o n .
(Using
t h e Axion o f C h o i c e , V e k s l e r
[ 5 3 ] shows t h a t t h e r e e x i s t i n
C"(X) many c o p i e s o f t h e D e d e k i n d c o m p l e t i o n o f C(X) c o n t a i n i n g C(X) i n i t s g i v e n i m b e d d i n g i n C"(X).) We c o m p l e t e t h i s 5 w i t h t h e c a s e t h a t C(X) i s D e d e k i n d complete.
(70.9)
I f C(X) i s D e d e k i n d c o m p l e t e , t h e n p r o j
maps C(X)
Ra ( X I o n t o Ra(X)
~
d
.
Chapter 16
370
Proof.
C o n s i d e r fERa(X)
d
;
we h a v e t o show f E C ( X ) Ra(Xld'
By t h e Remark f o l l o w i n g ( 7 0 . 3 ) , f ment R , h e n c e b y ( 7 0 . 2 ) , f
=
R
f o r some ~ s ecl e -
Ra (XI
But b y t h e h y p o t h e s i s
= u(k)
Ra ( X ) d m and ( 5 6 . 1 ) , u ( k ) E C ( X ) , s o we a r e t h r o u g h .
(>En
(70.10) Corollary.
I f C(X) i s D e d e k i n d c o m p l e t e and C(X)'
s e p a r a t i n g on C ( X ) , d o n t o Ra(X)
then p r o j
is
maps C(X) M I L - i s o m o r p h i c a l l y Ra (XI
.
T h i s f o l l o w s from ( 7 0 . 9 ) and t h e e q u i v a l e n c e s p r e c e d i n g (70.8). Remarks. -___
(1) I f t h e two c o n d i t i o n s o f ( 7 0 . 1 0 )
fied, X is called hyperstonian.
are s a t i s -
( 2 ) Note t h a t ( 7 0 . 1 0 ) i s a
p a r t i c u l a r c a s e o f Nakano's theorem ( 1 3 . 2 ) .
5 7 1 . The b a n d Ra(X)
dd
An i m m e d i a t e q u e s t i o n i s w h e t h e r Ra(X)dd c o n t a i n s a l l t h e lean elements.
We s h a l l s e e i n t h e n e x t 5 t h a t t h i s n e e d n o t
be s o . For e v e r y fERa.(!),
u ( f ) a n d k ( f ) a r e a l s o i n Ra(X) ( 6 7 . 3 ) .
Does t h i s p r o p e r t y h o l d f o r Ra(X)dd? However, b y ( 7 0 . 2 )
,
Again t h e a n s w e r i s n o .
C'(X)
=
Ra(X)'
0 C(XlC
371
F o r f E U ( X ) , i f f E R a ( X ) d d , t h e n u ( f ) , a ( f ) E R a ( X ) dd .
(71.1)
T h i s i m m e d i a t e l y e x t e n d s t o all f i n t h e R i e s z i d e a l g e n e r a t e d b y [J(X)
(71.2)
n
Ra(X)dd.
Indeed:
L e t I b e t h e R i e s z i d e a l g e n e r a t e d b y U(X)
n
Ra(X) dd .
Then f o r f € C " ( X ) , t h e f o l l o w i n g a r e e q u i v a l e n t : lo
fEI;
Z0
t(f),u(f)EI;
3'
1( f ) ,u(f) ERa(X) d d .
___ Proof. A l s o 2'
a n d 3'
2'
a r e c l e a r l y e q u i v a l e n t ( k ( f ) , u ( f ) ELJ(X)).
c l e a r l y i m p l i e s .'1
We show 1'
s i d e r f E I , a n d assume f i r s t t h a t f > 0.
i m p l i e s 3'.
Con-
Then t h e r e e x i s t s
g E U ( X ) n Ra(X)dd s u c h t h a t 0 < f < g , whence 0 < k(f)
u(g).
Since
gEIJ(X),
u(g)ERa(X)dd
(71.1),
<
u(f) 5
so
k ( f ) , u ( f ) ERa(X)dd.
QE D
I f C(X)'
i s s e p a r a t i n g on C ( X ) ,
t h e n C(X)
s o t h e e l e m e n t s o f Ra(X)dd a r e a l l l e a n .
n
R E L ( X )=~ ~ 0,
T h i s h a s a consequence
t h a t e v e r y e l e m e n t o f U(X) i n Ra(X)dd i s r a r e :
(71.3)
Ra(X).
I f C(X)'
i s s e p a r a t i n g on C ( X ) , t h e n U(X)
(Hence a l s o t h e R i e s z i d e a l I o f ( 7 2 . 1 )
n
Ra(XIdd c
above.)
372
Chapter 1 6 Proof.
I f f € U ( X ) n Ra(X)dd, f > 0 , t h e n , by ( 7 1 . 1 ) ,
u(f)€Ra(X)dd,
hence u ( f ) i s l e a n , hence u ( f ) i s r a r e , hence f
is rare,
QED
5 7 2 . Examples
How l a r g e and how small c a n e a c h o f t h e b a n d s Ra(X)', C(X)',
Ra(X)dd, and Ra(X)d b e ? S i n c e e v e r y i n f i n i t e compact s p a c e h a s a t l e a s t one non (69.4) gives us:
isolated point,
(72.1)
Ra(X)'
= 0 i f and o n l y i f
X is a finite set.
A fort-
i o r i , t h e same h o l d s f o r Ra(X).
However, Ra(X)' i n f i n i t e : L e t X = OlN
may b e o n l y o n e - d i m e n s i o n a l , e v e n f o r X =
{1,2,...,n;*.,w~,
t h e Alex an d r o f f onec , Cl(X) = R 1( X ) ,
p o i n t c o m p a c t i f i c a t i o n o f N.
Then C(X)
and C"(X)
Let u b e t h e c h a r a c t e r i s t i c e l e -
ment o f
=
W.
Ru = Ra(X).
k"(X)
(cf. 539).
Then Ra(X)
=
=
n u , Ra(X)d = k m ( N ) , and Ra(X) dd
C o r r e s p o n d i n g l y , Ra(X)'
I n c o n t r a s t t o Ea(X)',
= lRw
we h a v e C(X)'
b u t i t may b e 0 f o r X i n f i n i t e .
and C(X)'
= L!
1
=
(IN).
# 0 for X finite,
Consider t h e c l a s s i c a l
Ct(X)
Theorem.
=
Ra(X)'
3 C(X)'
373
I f X i s d e n s e - i n - i t s e l f and
(Szpilrajn [51]).
s e p a r a b l e , t h e n f o r e v e r y n o n - z e r o r e g u l a r m e a s u r e 1-1, t h e r e exists
3
nowhere d e n s e s u b s e t Z s u c h t h a t p ( Z ) > 0 .
I n o u r c o n t e x t t h i s becomes:
(Szpilrajn).
(72.2)
I f X i s d e n s e - i n - i t s e l f and s e p a r a b l e ,
t h e n f o r e v e r y p E C t , ( X ) , p > 0 , t h e r e e x i s t s fERa(X)+ s u c h t h a t ( f , u ) > 0.
Hence
(72.3) Corollary.
I f X i s d e n s e - i n - i t s e l f and s e p a r a b l e , t h e n
c(x>c = 0.
I n p a r t i c u l a r , C(X)' C(X)'
=
0 , t h e n Ra[X)'
=
=
0 for X a real interval.
Cl[X),
and t h e r e f o r e Ra(X)dd
When =
C'I(X).
Thus i n t h i s c a s e Ra(X) i s o r d e r d e n s e i n C"(X). A c o m p l e t e l y d i f f e r e n t e x a m p l e o f a s p a c e X w i t h C(X)'
is X
=
BN\N:.
Dieudonn6 h a s shown t h a t i t h a s i n f a c t a much
stronger property (cf.
[ 1 4 ] , Lemma 8 ) .
A t t h e o t h e r e x t r e m e C(X)'
X
=
= 0
& i s an example.
c a n b e s e p a r a t i n g on C(X),
A n o t h e r e x a m p l e i s o b t a i n e d by t a k i n g
374
Chapter 1 6
f o r C(Y) t h e b i d u a l C"(X),
X any compact s p a c e .
C l ( X ) , w h i c h i s s e p a r a t i n g on C"(X).
(L"(p))c
= L
=
A more i n t e r e s t i n g e x a m p l e
1-1 t h e L e b e s g u e m e a s u r e on some r e a l i n -
i s t h e MU-space L a ( , ) ,
terval.
Here C(Y)'
1
(p),
w h i c h i s s e p a r a t i n g on L " ( p ) .
We c o n c l u d e w i t h some r e s u l t s on t h e v a g u e c l o s u r e s o f Ra(X)'
o r e q u i v a l e n t l y , on u(Ra(X) d d ) a n d u ( R a ( X ) d ) .
a n d C(X)',
Let W be t h e s e t o f i s o l a t e d p o i n t s o f X , and 2
=
X\W.
Then ( c f . ( 3 6 . 7 ) a n d t h e d i s c u s s i o n f o l l o w i n g ( 3 1 . 7 ) ) ZL
s o C1(X)
=
C 1 ( Z ) 0 al(W)
( 6 9 . 4 ) , W c C(X)'
a n d C"(X)
=
C"(Z)
o
=
co(W),
A l s o , by
a"(W).
a n d Z c Ra(X)'.
(72.4) Let W be t h e s e t o f i s o l a t e d p o i n t s o f X , and Z
=
X\W.
Then (i)
t h e v a g u e c l o s u r e o f Ra(X)d i s C l ( Z ) ;
(ii)
u(Ra(X)
dd
( i i i ) a(Ra(X) d )
Proof.
=
a"(W).
( i ) and ( i i ) are e q u i v a l e n t by t h e p r e c e d i n g
identities (cf. Z c Ra(X)',
) = C"(Z);
( 5 2 . 4 ) ) ; and a l s o ( i i ) and ( i i i ) .
Since
and C'(Z) i s t h e v a g u e l y c l o s e d band g e n e r a t e d by Z ,
i t f o l l o w s C ' ( Z ) i s c o n t a i n e d i n t h e v a g u e c l o s u r e o f Ra(X)'. 1 F o r t h e o p p o s i t e i n c l u s i o n , a (W) c C(X)', h e n c e Ra(X)' c [al(W)ld i n C'(Z).
=
C l ( Z ) , h e n c e t h e v a g u e c l o s u r e o f Ra(X)'
is contained
Thus ( i ) h o l d s , a n d we a r e t h r o u g h . QED
Note t h a t
1(W) = ( C ( X ) c ) a a n d ( t h e r e f o r e ) L"(W)
=(Ra(X)d) a .
C'(X)
Ra(X)'
=
This gives us (11) below.
3 C(X)'
375
include (I), which we have re-
We
marked earlier, €or comparison.
(72.5) Corollary 1 . [ I ) The following statements are equivalent: lo
c(x)c
2'
Ra(X)'
3'
Ra(X)dd
0;
=
C'(X);
=
C"(X)
=
- otherwise stated,
Ra(X)
is
order dense in C"(X).
(11) The following weaker statements are equivalent: lo
(c(x)c)a
'2
Ra(XlC is vaguely dense in c'(x);
3'
u ( R ~ ( X ) ~ ~ )= C"(X).
=
0;
We single out the following for emphasis.
(72.6) Corollary 2 .
If X is dense-in-itself, then U(REI(X)~~)
C" (X) .
Other consequences of (72.4):
=
376
C h a p t e r 16
-__ Proof.
(a) f o l l o w s from (72.4
( i i i ) and ( 5 2 . 1 ) .
fol-
(b)
lows from ( 7 2 . 4 ) , ( 3 3 . 6 ) , a n d ( 5 1 . 1 0 ) .
Q E 13
F i n a l l y , a n e n l i g h t e n i n g e x a m p l e i s s u p p l i e d b y C(X)
L m ( u ) , 1-1 t h e L e b e s g u e m e a s u r e on some r e a l i n t e r v a l . a l r e a d y r e m a r k e d t h a t C(X)'
= L
1
(p),
Cl(X).
d
E q u i v a l e n t l y , u(Ra(X) )
=
We h a v e
hence i s s e p a r a t i n g on
C(X), a n d t h u s i s v a g u e l y d e n s e i n C l ( X ) . l a t e d p o i n t s , s o , b y ( 7 2 . 6 ) , Ra(X)'
=
But X h a s no i s o -
i s a l s o vaguely dense i n
u(Ra(X)
dd
) = C"(X).
We c a n now a n s w e r ( i n t h e n e g a t i v e ) t h e two q u e s t i o n s r a i s e d a t the beginning of 571. Ra(X) d # 0 w h i l e k(Ra(X) d ) lean.
=
I n t h e above e x a m p l e ,
0 , hence a l l i t s elements a r e
We t h u s h a v e l e a n e l e m e n t s n o t c o n t a i n e d i n Ra(X)
And s i n c e u(n (X)
dd) R a ( X ) dd such t h a t u ( f ) E , Rn(X) .
=
dd
.
l l ( X ) , w e h a v e an e l e m e n t fERa(X)
dd
CHAPTER 1 7
TfIE D E D E K T N D C O M P L E T I O N OF C ( X )
5 7 3 . The Maxey r e p r e s e n t a t i o n
By a n a b u s e o f l a n g u a g e , we w i l l c a l l a R i e s z i d e a l I o f
C"(X) I
n
lean
i f a l l of i t s elements are lean - equivalently, i f
c ( x ) = 0.
( 7 3 . 1 ) Theorem.
i d e a l I , C"(X)/I
Proof.
(Maxey [ 3 7 ] ) .
F o r e v e r y maximal l e a n R i e s z
i s t h e D e d e k i n d c o m p l e t i o n o f C(X).
T i s norm c l o s e d , b y ( 6 5 . 3 ) ,
s o C"(X)/I
i s an
M I - s p a c e w i t h qIl(X) f o r t h e u n i t (q t h e q u o t i e n t m a p ) , a n d q i s an MI-homomorphism.
I t f o l l o w s q maps C(X) M I L - i s o m o r p h i c a l l y
onto q(C(X)).
(*)
q(C(X)) i s Dedekind d e n s e i n C"(X)/I.
By ( 7 . 6 ) , w e n e e d o n l y show t h a t q ( C ( X ) ) h a s a r b i t r a r i l y
small e l e m e n t s i n C " ( X ) / I .
Consider fEC"(X)/T,
t o show t h e r e e x i s t s g E q ( C ( X ) ) s u c h t h a t 0 < 377
> 0 ; we h a v e < If.
Otherwise
378
Chapter 1 7
s t a t e d , i f we d e n o t e by H t h e Riesz i d e a l o f C"(X)/T by f , t h e n we h a v e t o show t h a t H
n
generated
q(C(X)) # 0 .
c o n t a i n s I p r o p e r l y , h e n c e , by h y p o t h e s i s , i t i s n o t
q-l(H)
l e a n : q - l ( ~ )n C ( X )
+
0.
I t f o l l o w s 11 n q ( c ( x ) )
+
0.
T h i s e s t a b l i s h e s ( * ) ; we c o m p l e t e t h e p r o o f b y s h o w i n g t h a t C"(X)/I C"(X)/I;
(cf.
i s Dedekind c o m p l e t e .
w e show t h e r e e x i s t s ?EC"(X)/I
(7.1)).
Similarly, s e t
-
A1
5
-
B1,
(A,B)
Let
Set
gl
b e a Dedekind c u t i n
i n q ( C ( X ) ) , and n q ( C ( X ) ) , a n d B1
il =
A1
=
=
hence - q b e i n g an isomorphism
fEC"(X) s u c h t h a t A1
5 f
< B1.
Then
il 5
e l e m e n t o f A i s a supremum o f e l e m e n t s o f
ii
i s an infimum o f e l e m e n t s o f
G1,
q-'(i,) -1 q (B1)
n
A1
qf <
A1
2
<
-
=
-
,.
of
<
such t h a t
B1.
s,.
-
n
C(X).
C(X). Choose Since every
and e v e r y element
i t f o l l o w s ;Z < qf <
B.
QED
(73.2) Corollary.
I f C(X) i s D e d e k i n d c o m p l e t e , t h e n f o r . e v e r y
maximal l e a n R i e s z i d e a l I , Ct'(X)
Remark.
=
C(X)
@
I (algebraically!).
A l i p r a n t i s a n d B u r k i n s h a w h a v e shown t h a t M a x e y ' s
t h e o r e m h o l d s f o r a g e n e r a l R i e s z s u b s p a c e o f a Dedekind comp l e t e R i e s z s p a c e ([2],
Theorem 2 . 1 8 ) .
574. The D i l w o r t h r e p r e s e n t a t i o n
( 7 4 . 1 ) Given a n Rsc e l e m e n t k a n d a
USC
element u, t h e following
Dedekind Completion of C(X)
379
are equivalent: '1
a
=
there exists a Dedekind cut ( A , B )
of C(X)
such that
VA, u = AB; 2O
u(n)
=
u, t ( u )
=
R.
The verification is simple.
A pair ( a , u ) satisfying the above conditions will be called a regular pair. called a regular -__
The element t of the pair will be
P,sc element, and the element u, a regular usc
element . Dilworth calls the corresponding functions (he works with functions, not elements o f C"(X))
normal, but we want to
.~
emphasize the relation of our elements to the regular open sets and closed sets in topology.
(74.2) For a usc element u , the following are equivalent: '1
u is a regular usc element;
2O
u
=
3'
u
= U(R)
ut(u);
for some
And for an Rsc element
LSC
element R .
R , the following are equivalent:
'1
R is a regular R S C element;
2O
R = Ru(R);
3'
R = a(u)
___ Proof.
for some usc element u.
In each statement, 1' and '2
equivalent, and '2
implies 3'.
That 3'
are easily seen to be implies
2'
follows from
Chapter 1 7
380
t h e f a c t t h a t t h e o p e r a t i o n s u a ( . ) a n d f,u(.)
a r e idempotent.
QED
W ith t h e c o r r e s p o n d e n c e o f t h e r e g u l a r e l e m e n t s t o r e g u l a r sets i n a t o p o l o g i c a l s p a c e , w e a l s o have c o r r e s p o n d i n g theorems.
For t h e f o l l o w i n g c f .
(74.3)
( [ 1 3 ] , Theorem 4 . 2 ) .
I f { f } i s a bounded s e t i n C"(X), cl
t h e elements o f which
a r e a l l regular usc elements o r a l l regular (i)
RSC
elements, then
f ) is a regular usc element, a a ( i i ) R ( A f ) i s a r e g u l a r Rsc e l e m e n t . a a u(V
Proof.
F o r c o n c r e t e n e s s , assume t h a t f ' s a r e r e g u l a r usc a
e l e m e n t s : {ua}.
A
u
is
USC,
so ( i i ) f o l l o w s from ( 7 4 . 2 ) .
a a u ) . S i n c e v ~ ( u , ) i s Rsc, i t i s enough t o acl a > u(VclR(ua)); show t h a t u = U ( V ~ ( )u) . We o f c o u r s e h a v e u a a we show t h a t f o r e v e r y u s c e l e m e n t v s u c h t h a t v > u(V,R(u,)), Now s e t u =
u(V
For e v e r y a,
w e have v > u.
(ua i s r e g u l a r ) .
v > ~ ( u , ) , hence v > uR(ua) = ua
hence v > u(V u ) I t follows v > v u acl a a'
=
u.
QED
( 7 4 . 4 ) C o r o l l a r y 1. (i)
ul, u 2 r e g u l a r u s c e l e m e n t s i m p l i e s ulvu2 i s r e g u l a r .
( i i ) R1,
R2 regular
RSC
elements implies k 1 ~ k 2 i s regular.
Dedekind Completion o f C(X)
381
( 7 4 . 5 ) C o r o l l a r y 2 . Under t h e h y p o t h e s i s o f ( 7 4 . 3 ) : ( i ) v,u(fa)
- v,a(fa)
i s rare;
( i i ) A,u(fa)
- ~,l(f,)
i s rare.
Proof.
we p r o v e ( i ) .
V,u(fa)
v u k ( f a ) 5 u(v,f,)
- VaR(fa)
proof o f ( 7 4 . 3 ) .
Now a p p l y ( 6 7 . 1 6 ) .
5 U ( Vc lfc l ) , s o 0
= 6(vaa(f,)),
< V,u(f,)
-
t h i s l a s t by t h e
QED
We w i l l d e n o t e t h e s e t o f r e g u l a r u s c e l e m e n t s by C(X)Ur and t h e s e t o f r e g u l a r Rsc e l e m e n t s by C(X)". The Dedekind c u t s o f C ( X ) with t h e
a r e i n one-one correspondence
r e g u l a r p a i r s i n C(X), h e n c e w i t h t h e r e g u l a r u s c e l e -
ments and w i t h t h e r e g u l a r Rsc e l e m e n t s .
Since t h e r e i s a
o n e - o n e c o r r e s p o n d e n c e between t h e Dedekind c u t s o f C(X) and t h e e l e m e n t s o f i t s Dedekind c o m p l e t i o n ? ( X ) , i t f o l l o w s t h e r e i s one between t h e r e g u l a r u s c e l e m e n t s and t h e e l e m e n t s o f
t ( X ) ; and s i m i l a r l y f o r t h e r e g u l a r Q s c e l e m e n t s .
Thus, b y
t h e Maxey t h e o r e m :
( 7 4 . 6 ) For a maximal l e a n R i e s z i d e a l I o f C'l(X), t h e q u o t i e n t map C"(X) %>
C"(X)/I
i s a b i j e c t i o n of each of the follow-
i n g s e t s onto C"(X)/I:
(i)
c(x)"
(ii) c(x)'~.
As a c o r o l l a r y , we have ( c f .
[13]):
Chapter 1 7
382
( 7 4 . 7 ) Theorem.
(Dilworth).
C(X)"
a n d C(X)"
a r e each iso-
m o r p h i c a s l a t t i c e s t o t h e Dedekind c o m p l e t i o n o f C ( X ) .
(So,
i n p a r t i c u l a r , t h e y a r e Dedekind c o m p l e t e . )
We w i l l n e e d t h e f o l l o w i n g g e n e r a l i z a t i o n o f ( 7 4 . 6 ) . A c t u a l l y , we w i l l n e e d i t o n l y f o r I more g e n e r a l l y . c o n t a i n s Ra(X)
(74.8)
R a ( X ) , b u t we s t a t e i t
=
R e c a l l t h a t e v e r y maximal l e a n R i e s z i d e a l (67.5).
L e t I be a l e a n R i e s z i d e a l c o n t a i n i n g Ra(X), and A modulo I .
a n e q u i v a l e n c e c l a s s o f C"(X)
I f A c o n t a i n s an k s c
element o r a usc element, then:
(i)
A c o n t a i n s e x a c t l y one r e g u l a r p a i r
(ii)
f o r e v e r y ksc e l e m e n t R i n A , u ( a )
every usc element u i n A,
USC
Proof.
=
uo, and f o r
~ ( u )= Q,;
( i i i ) k0 i s t h e l a r g e s t
smallest
(ko,uo);
RSC
e l e m e n t i n A , a n d uo i s t h e
element.
( i ) S u p p o s e A c o n t a i n s a n Rsc e l e m e n t R .
u ( k ) - RERa(X)
again, Ru(k)EA.
Then
( 6 7 . 1 6 ) , hence u ( 2 ) E A ; and a p p l y i n g (67.16) S e t uo
=
u ( k ) , R,
=
a u ( ~ ) . (k0,uo) i s a
r e g u l a r p a i r ; t h a t i t i s u n i q u e w i l l f o l l o w from ( i i ) . ( i i ) C o n s i d e r two E S C e l e m e n t s (u(k23 - k 2 )
+
(E2 - k l )
+
(kl
1 , ~ 2i n A .
- u(al))ERa(X)
+
u ( R ~ )- u ( a , ) = I
+
Ra(X)
I t f o l l o w s from (67.17) and (67.9) t h a t uku(k2) = u k u ( k l ) .
=
I. But
D e d e k i n d C o m p l e t i o n o f C(X)
and uRu(R1)
uilu(k2) = u(k,)
same u 0 .
=
u(Rl).
Thus R 1
and
a2
give the
S i m i l a r l y , two u s c e l e m e n t s i n A g i v e t h e same L o .
( i i i ) Given a n y Lsc e l e m e n t R i n A , R f i k(uo)
38 3
=
5 u(R)
=
uo, so
S i m i l a r l y , f o r any u s c element u i n A , u
Po.
2 uo. QED
Contained i n t h e above and t h e comment f o l l o w i n g i t
-
i t can a l s o be s e e n from (65.2)
-
is the r e s u l t that the only
lean r e g u l a r element i s 0. Finally,
i f ( a n d o n l y i f ) C(X) i s D e d e k i n d c o m p l e t e , t h e n
t h e o n l y r e g u l a r e l e m e n t s a r e t h e e l e m e n t s o f C(X):
( 7 4 . 9 ) The f o l l o w i n g a r e e q u i v a l e n t : 1'
C(X) i s D e d e k i n d c o m p l e t e ;
2O
C(xpr
=
C(X);
3O
C(X)Q'
=
C(X).
This is contained i n the r e s u l t s of t h i s be s e e n from (56.1)
§.
I t can a l s o
(and ( 7 4 . 2 ) ) .
575. A t h i r d r e p r e s e n t a t i o n
By t h e Maxey t h e o r e m ( 7 3 . 1 ) , t h e D e d e k i n d c o m p l e t i o n A
C(X) o f C(X) i s a n Mn-homomorphic image o f C"(X), w i t h C(X) mapped M X - i s o m o r p h i c a l l y ,
s u c h t h a t t h e D e d e k i n d c l o s u r e of
Chapter 1 7
384
A
( t h e image o f ) C ( X ) i s i t s D e d e k i n d c o m p l e t i o n .
C(X)
is
c l e a r l y t h e s m a l l e s t MI-homomorphic image o f C1'(X) w i t h t h i s property.
5 , we p r e s e n t w h a t i s p r o b a b l y t h e
In the present
l a r g e s t Mn-homomorphic image o f C1'( X)
w i t h t h e same p r o p e r t y .
We e x t e n d o u r term "Riemann s u b s p a c e " ( 5 5 7 ) t o q u o t i e n t spaces of
Cl'(X).
Given a norm c l o s e d Riesz i d e a l I o f C"(X),
t h e n by t h e Riemann s u b s p a c e o f C 1 I ( X ) / I , we w i l l mean t h e Dedekind c l o s u r e o f q ( C ( X ) ) ( q t h e q u o t i e n t map); we w i l l d e n o t e i t by R ( C " ( X ) / I ) .
For a band o f Crl(X), t h e d e f i n i t i o n r e d u c e s
t o t h e former one. The blaxey t h e o r e m c a n now be s t a t e d a s f o l l o w s : I f I i s a maximal l e a n R i e s z i d e a l , t h e n (i)
R(C"(X)/I)
( i i ) R(C"(X)/I)
We show t h a t f o r I
=
i s Dedekind c o m p l e t e , and =
C"(X)/I.
Ra(X), ( i ) s t i l l h o l d s ( ( 7 5 . 3 ) b e l o w ) .
I n t h e f o l l o w i n g two lemmas, q i s t h e q u o t i e n t map o f C'I(X) o n t o C"(X)/Ra(X).
In general, q is not order continu-
o u s ; however, i t h a s a p a r t i a l o r d e r c o n t i n u i t y :
(75.1)
Lemma 1.
( i ) Given a s e t {u } o f u s c e l e m e n t s , c1
.
u = A u i m p l i e s qu = A q u a a a a ( i i ) Given a s e t { i } o f Rsc e l e m e n t s , a i = v i implies q i = V q i acl a a
.
P-r o o f . -
We p r o v e ( i ) .
S i n c e q p r e s e r v e s o r d e r , qu
5 qua
D e d e k i n d C o m p l e t i o n o f C(X)
< qua f o r a l l a ; S u p p o s e t h a t f o r some f E C " ( X ) , q f -
for a l l
we show q f < qu.
The a s s u m p t i o n t h a t q f < qu
u s ( f - u )'€Ra(X)
for a l l a.
c1
(f
-
385
u)+ERa(X),
a
for a l l a gives
I t f o l l o w s from (68.6) t h a t
hence q f 5 qu. QED
(75.2)
Lemma 2 .
The f o l l o w i n g c o i n c i d e :
lo
q(c(x)ur);
2O
q (C (XI R r ) ;
3O
q(C(XIU);
4O
q(C(X)5;
5'
R [ C" (X) /Ra (XI ] .
Proof.
(74.8),
That l o ,
2O,
3O,
a n d '4
c o i n c i d e f o l l o w s from
s o i t s u f f i c e s t o show t h a t q ( C ( X ) u ) = R [ C " ( X ) / R a ( X ) ] . c h o o s e A , B c C(X) s u c h t h a t V A
Given u€C(X)',
Then b y Lemma 1, A q ( B )
quE R[C" (X) / Ra (X) ] Conversely,
=
qu
=
q(R ( u ) )
= Vq(A)
=
,
a(u), AB
=
u.
hence
. if
?
= Aq(A),
A c C(X), t h e n , s e t t i n g u = A A
a n d a p p l y i n g Lemma 1 a g a i n , w e h a v e q u =
?.
Thus ? € q ( C ( X ) u ) . QED
( 7 5 . 3 ) Theorem.
R[C"(X)/Ra(X)]
i s Dedekind c o m p l e t e , h e n c e i s
t h e D e d e k i n d c o m p l e t i o n o f C(X).
Proof.
S i n c e t h e q u o t i e n t map q maps C(X)ur o n e - o n e
Chapter 1 7
386
and o r d e r p r e s e r v i n g o n t o R[C"(X)/Ra(X)]
( ( 7 4 . 8 ) and ( 7 5 . 2 ) ) ,
t h i s f o l l o w s from ( 7 4 . 7 ) . Q E 1)
i s D e d e k i n d c o m p l e t e , i t i s Dedekind
S i n c e R[C"(X)/Ra(X)] c l o s e d i n C"(X)/Ra(X).
i t h a s a much s t r o n g e r
Actually,
property:
((75.4)
I f a subset
o f R[C"(X)/Ra(X)]
( s a y ) , t h e n V F-in-C'l(X)/Ra(X) a R[C"(X)/Ra(X)].
Proof.
-~
-
fa
= q(ka)
k
< AIL(X).
a-
e x i s t s and l i e s i n
{fa} i lq(lL(X)) f o r some A.
f o r some
RSC
element k
Set R = V R cta
.
i s bounded a b o v e
c1
(75.2),
Now f o r e a c h a, a n d we c a n assume
Then, by ( 7 5 . 1 ) ,
qk
=
V
cta
. QED
Whence, p e r h a p s s u r p r i s i n g l y ,
( 7 5 . 5 ) Theorem.
Proof. C"(X)/Ra(X).
R[C"(X)/Ra(X)]
Suppose
i s o r d e r c l o s e d i n C''(X)/Ra(X).
{ f a ] c R[C"(X)/Ra(X)],
By ( 7 5 . 4 ) , f o r e v e r y
a,
e x i s t s and b e l o n g s t o R[C"(X)/Ra(X)].
qct =
Since
'from ( 7 5 . 4 ) a g a i n t h a t f€R[C"(X)/Ra(X)].
-f
f"
in
-.
.f - i n - C " ( X ) / R a ( X )
-
c1
Get+?,
i t follows QED
Dedekind Completion of
Comb n i n g ( 7 5 . 2 ) ,
(75.5), a n d ( 7 4 . 9
387
,
w e have t h e
I f C(X) i s D e d e k i n d c o m p l e t e , t h e n q ( C ( X ) )
(75.6) C o r o l l a r y .
i s o r d e r c l o s e d i n C"(X)/Rs(X).
576. A f o u r t h r e p r e s e n t a t i o n
By ( 5 0 . 1 1 ) , s - l ( R a ( X ) ) i s a n Mll-subspace o f C"(X)
which and a ( . ) .
c o n t a i n s C(X) a n d i s c l o s e d u n d e r t h e o p e r a t i o n s u ( .
I t corresponds t o t h e family of s e t s i n a topological space which have nowhere d e n s e f r o n t i e r s . Corresponding t o a s t a n d a r d theorem i n topology
w e have :
( 7 6 . 1 ) The f o l l o w i n g c o i n c i d e :
'1
6 - l (Ra(X))
2'
S(X)
'3
C(X)u
+
Ra(X)
4'
C(X)'
+
Ra(X)
5'
C(X)ur
%,
6'
C(X)"
0 Ra(X).
Proof.
Ra(X)
+
Ra(X)
T h a t S o a n d 6'
comment p r e c e d i n g ( 7 4 . 9 ) .
a r e d i r e c t sums f o l l o w s f r o m t h e Now 6' c 4'
c '2
a n d 5'
c '3
c .'2
Chapter 1 7
388
c l o f o l l o w s from ( 6 7 . 1 6 ) a n d ( 6 7 . 3 ) .
T h a t 2'
p r o v e t h a t 1' c S o , easily verified, Then f Ru(f)
= +
6'.
Suppose 6(f)ERa.(X).
If - u R ( f )
I 5
-
Lu(f))EC(X)"
+
Since, as i s
6 ( f ) , it follows f
u R ( f ) + ( f - u R ( f ) E C ( X ) U r + Ra(X). (f
I t remains t o
-
u!L(f)€Ra(X).
Similarly, f =
Ra(X). QED
We h a v e s e e n ( 6 7 . 1 8 ) t h a t f o r f € S ( X ) , R u ( f ) < u!L(f). ( 6 7 . 2 ) , t h i s a l s o h o l d s f o r fERa(X). S(X)
+
Ra(X)
(cf.
(67.10),
Indeed, it holds f o r
f o r example).
(76.2) For f E s-l(Ra(X)), ku(f)
5
By
We r e c o r d i t :
uR(f)
From ( 7 5 . 2 ) a n d ( 7 6 . 1 ) w e h a v e :
( 7 6 . 3 ) Let q b e t h e q u o t i e n t mapping o f C"(X)
o n t o C"(X)/Ra(X).
Then q [ S - l (Ra(X) ) ]
=
R [ C " (X) /Ra(X)
1.
Whence :
(76.4)
6-I(Ra(X))/Ra(X)
i s t h e D e d e k i n d c o m p l e t i o n o f C(X).
CHAPTER 1 8
THE MEAGER ELEMENTS
5 7 7 . Elementary p r o p e r t i e s
The a - o r d e r c l o s u r e o f Ra(X) w i l l be d e n o t e d b y Me(X), and i t s e l e m e n t s w i l l be c a l l e d meager.
A meager e l e m e n t i s
t h e g e n e r a l i z a t i o n t o C"(X) o f a m e a g e r , o r f i r s t c a t e g o r y , s e t i n topology. We have i m m e d i a t e l y t h a t Me(X) i s a a - o r d e r c l o s e d R i e s z ideal.
Moreover, i t i s a l e a n i d e a l .
Category theorem ( 6 7 . 1 4 ) .
(77.1)
(Category theorem).
This i s simply the
We r e s t a t e i t :
E v e r y meager e l e m e n t i s l e a n .
S i n c e Me(X) i s a - o r d e r c l o s e d , we h a v e , u n l i k e t h e c a s e w i t h Ra(X):
(77.2)
fEMe(X) i m p l i e s n(X),EMe(X).
389
Chapter 18
390
O t h e r w i s e s t a t e d , Me(X) c o n t a i n s , w i t h e a c h e l e m e n t , t h e band g e n e r a t e d b y t h a t e l e m e n t . U n l i k e R a ( X ) , Me(X) i s t i o n s u ( * ) , Q(+),
c l o s e d under any of t h e o p e r n -
I n t h e f i r s t example f o l l o w i n g ( 6 5 . 1 ) ,
6(.).
g i s meager w h i l e u ( g )
not
=
n(X).
However, we n o t o n l y h a v e
Me(X) c Ra(X)dd ( o b v i o u s ) , b u t :
(77.3)
For a l l fEMe(X), u ( f ) , a . ( f ) E R a ( X )
-~ Proof. By ( 7 1 . 2 )
, we
dd
n e e d o n l y p r o v e t h a t Me(X) i s c o n -
t a i n e d i n t h e R i e s z i d e a l g e n e r a t e d b y U(X) fEMe(X), f > 0 , w e h a v e f -
.
= V
g n n'
n
Ra(X)dd.
{gn} c Ra(X)+.
Given
Then
0 < f < ~~u(g~)€Ll(X s o) ,we a r e t h r o u g h . QE n
Note, f i n a l l y , t h e c o r o l l a r y o f (71.3) ;
(77.4)
I f C(X)'
i s s e p a r a t i n g on C ( X ) , t h e n Me(X)
=
Ra(X).
(Thus Ra(X) i s o - o r d e r c l o s e d . )
5 7 8 . Sums o f p o s i t i v e e l e m e n t s o f a R i e s z s p a c e
The r e m a i n d e r o f t h e c h a p t e r i s d e v o t e d t o o b t a i n i n g f o r
The Meager Elements
391
the meager elements the "localization" theorems that were obtained for the lean elements and the rare elements.
We know
of no direct method o f doing this, and do not actually reach
our goal until 5 8 0 .
5578, 79 develop the machinery we will use.
r
Given a set {a), the s y m b o l
will always denote a
The collection of all r's is a directed set
Cinite subset.
under the order defined by inclusion. Let E be a Riesz space and {aa} a set of positive elements.
For each
r
=
non-empty, set a,
{al;*-,an},
=
Zna 1 a.' 7
and for 'I the empty set, set a r arl
5
=
Then
0.
r l c r2 implies
ar , and thus {ar}allT is an ascending net.
If a
= Vrar
2
(hence aT+a), we will write a
=
Caaa, or simply a
=
Caa, and
call a the __ sum of the a a l s . We emphasize that we use the
2 0 for all
symbol Caa only if a a
01
(and the above supremum
exists).
(78.1)
(78.2)
If a
If a
=
=
Zaa and b
=
Cba,
then
a + b
=
I(aa
+
Caa, b a
C b a , and b a 5 aa for a l l a , then
= -
ba).
b
=
C(aa
-
ba).
We will often use this last in the form: Caa uaa
-
ba).
-
Zba
=:
Chapter 18
392
(78.3)
L e t E b e Dedekind c o m p l e t e .
Suppose a
decomposed i n t o two d i s j o i n t s e t s : { a } (i) b
=
CaB a n d c
=
za
=
=
La
and
CL
{ o } IJ {y}.
{CL}
is
Then
e x i s t , and
Y
( i i ) a = b + c.
C o n s i d e r two s e t s { a ) , { B I .
As a g r e e d ,
r
w i l l always
d e n o t e a f i n i t e s u b s e t o f t h e f i r s t s e t ; and i n t h e f o l l o w i n g ,
A w i l l always d e n o t e a f i n i t e s u b s e t o f t h e second s e t . usual,
{a}
x
{B} is the set of a l l ordered p a i r s (n,R).
As
It
i s c l e a r t h a t i n t h e d i r e c t e d s e t of a l l f i n i t e s u b s e t s o f
{a]
t h o s e o f t h e form T x A
{B},
x
Consider a s e t { a
(a,B)
1 of p o s i t i v e elements of
i s , t h e s e t i s i n d e x e d by {a} write aaB f o r a
are cofinal.
x
(8)).
E (that
For s i m p l i c i t y , w e w i l l
Thus Lacla w i l l mean 1
( a ,Kla(a,BI * From t h e a b o v e p a r a g r a p h , i t i s c l e a r t h a t t h e f o l l o w i n g e q u a l (u,B)*
i t y h o l d s (when e i t h e r s i d e e x i s t s ) .
(78.4)
a
ct
=
L e t E b e Dedekind c o m p l e t e .
"aaB,
then a = C C a c1
V
=
Ca
aB'
B aB
=
CaaB
=
CBCaaclB-
The f i r s t e q u a l i t y i s o u r h y p o t h e s i s .
Proof.
a
I f a =Cctaa, and f o r e a c h n ,
We show
By ( * ) a b o v e , i t s u f f i c e s t o show t h a t a =
a l l T,AarxA'
The Meager E l e m e n t s
a
a
rxA = ‘crEr,BEA
r
=
5
393
uB
BE a aa B
‘&EraN
< a.
-
Since t h i s holds f o r a l l
r,A,
the opposite inequality,
f i x To.
V
> va l l r , aa r x a -
a11
Vall
, a ar x n
<
a.
To e s t a b l i s h
Then
a
A r0xn
a(ZatroCBcnaafi)
=
‘ail
=
‘acro(Vall
=
‘atroaa
=
ar
a‘BEaaaB)
. 0
> V a rarxA -
I t follows Vall
r r
= a .
I t r e m a i n s t o show t h a t 1
= z z a a a a@‘ Note f i r s t < a < a f o r a l l r , hence
, hence ar x B - r a e x i s t s - otherwise s t a t e d , zNaaBe x i s t s f o r each
t h a t f o r e a c h 6, V
(a,BIaclB
a l l rarxg
a
D e n o t e t h i s sum by b show t h a t bA
5
< a
aB
-
B
.
We show C b e x i s t s . B B
I t i s enough t o
a f o r a l l A. ’A
=
‘B€AbB
= C B E n ( V a l r~a r x B ) =
“all
r
=
‘all a
rarxA
<
Denoting obtain b
(‘BcaarxB)
(cf. proof above).
b by b , and c o p y i n g t h e p r o o f o f a B B =
za
aB’
=
Ca
aB’
we
a.
Chapter 18
394
Now l e t {a} b e t h e s e t o f a l l o r d i n a l s < a f i x e d o r d i n a l 0.
Let E b e Dedekind c o m p l e t e , and s u p p o s e z a each a, ~
n
exists.
~ exi< s t s , a~n d i ta i s e~a s y t o s e e t h a t V
Then f o r a
a
p
1=
c an -
(78.5)
L e t E b e Dedekind c o m p l e t e , and c o n s i d e r a bounded s c t
{ a n } i n E + , w h e r e now {a} i s t h e s e t o f o r d i n a l s o r d i n a l 0.
< a fixed
Set bl
=
b
=
a
a
1’ (a - V c1
a )+ B
f o r a > 1.
Then
Proof.
We u s e i n d u c t i o n on 0 .
for 0 a finite Case I ,
ca
Assume i t h o l d s f o r e v e r y 0 < Oo.
ordinal.
oo =
h a s an i m m e d i a t e p r e d e c e s s o r n o : Then
Ca
+
0
= v a < a aa
ba 0
+
0
=
The e q u a l i t y c l e a r l y h o l d s
ba
0
“a
0
- v n < n0 a n ) +
aa)vaa
= 0
0
= vn
Case 11, 0, i s a l i m i t o r d i n a l : preceding the proposition,
T h e n , by t h e o b s e r v a t i o n
The Meager Ilcments
=
57!).
v,L
Q 1: I1
Sums of positive elements of C T T ( X )
Suppose we have { f l y ) , { p r Uc ) C"(X)+
for a11
(1.
and I f l l
5
395
such that En
5
u(pa)
Tf YpLx exists, then Cu(pcL) exists, hence 7 f n exists Tu(~i,,).
We will need an answer to the question:
under what circumstances do
hie
have I f c x - u ( Q Q ?
In general, Y u ( p rt ) and u ( T p 1 are not comparable. example where Zu(pci)
An
u ( T p i , ) is obtained by taking for X thc
real interval [ O , I ] , for p l thc characteristic clcment of the hali-open interval [ 0 , 1 / 2 ) ,
for p 2 that of (1/2,1], and then
examining the sum p
An example where C L I ( ~ ~ <) i ~ ( ~ pis~ ~ )
+ p2.
obtained by taking for X a real interval, letting {rn? be the rational points in X , taking for pn the characteristic element of rn (n
=
1,2,.'-), and then considering Fpn.
We return to the question raised above.
The conditions
in the following proposition may secm arbitrary, but they will be what we need €or our "localization" theorem.
(79.1) Suppose { p a } is a subset of C " ( X ) +
If
such that Cp,
exists.
Chapter 1 8
396
6 ( p ) E R a ( X ) f o r all a , and a ( i i ) { a } i s a s e t o f p o s i t i v e RSC elements s a t i s f y i n g
(i)
U
R
< u ( p ) f o r all a , t h e n
u -
a
CR
(Y
< Ll(J:p(J.
-
We f i r s t e s t a b l i s h t h e t h e o r e m f o r a f i n i t e s c t
Proof.. {pl,---,pn}.
i i ( ~ p ~ ) ] we + ; h a v e t o show t
Sct R
=
[zpi
-
0 < a.
=
[cai
- U(ZPi)l+
CU(Pi)
<
= C(U(Pi)
=
0.
- 7Pi -
Pi)
C6(Pi)
<
E Ra(X). I t f o l l o w s 9“
=
0.
We t u r n t o t h e g e n e r a l c a s e . proved,
‘r
f o r e v e r y f i n i t e s u b s e t T o f {a}.
< u(p )
r
-
Ry t h e f i n i t e c a s e j u s t
( 7 9 . 2 ) C o r o l l a r y 1.
Let { R
a
1 , {ma 1 b e s e t s o f & s c e l e m e n t s
such t h a t 0 c -
and s u p p o s e C R (i) (ii)
< R
a -
< u(m,)
a -
f o r a l l u,
( o r e q u i v a l e n t l y , Cma) e x i s t s .
< u(cma), a (ka- mu) E R a ( X ) .
CR
c
c1
m
Hence
Then
The Meager E l e m e n t s
39 7
( i ) f o l l o w s from ( 7 9 . 1 ) and ( 6 7 . 1 6 ) .
Proof.
0 < C ( Q u - mu)
For ( i i ) ,
- Cmu
=
CRu
<
u(Cmul
=
6 (Cma)
-
Cmc,
E Ra(X). QED
The f o l l o w i n g c a n be t h o u g h t o f a s a t h i r d " l o c a l i z a t i o n " t h e o r e m f o r r a r e n e s s ( w i t h ( 6 8 . 1 ) and ( 6 8 . 6 ) ) .
(79.3)
Corollary 2 .
L e t { g a l b e a s e t o f Rsc e l e m e n t s a n d { r u 3
a s e t of r a r e elements such t h a t 0 < ru
5 Ru
f o r a l l u.
Then i f I R u e x i s t s , C r u i s r a r e .
Proof.
For e a c h a , s e t
We show f i r s t t h a t { R u } ,
ma = ( Q a - u ( r a ) ) + .
{mu] s a t i s f y t h e h y p o t h e s e s o f ( 7 9 . 2 ) .
< mu F o r e a c h a, i t i s c l e a r t h a t mu i s Rsc and 0 -
u(R,)
2
u(m,).
R u = RaAu(ra)
+
(La- u ( r a ) ) +
=
5 Q u ; we show
QuAu(ru)
+
ma.
Hence
u( R u)
=
uR(R a )
=
uR(RaAu(ru)
=
uR(mu)
+
ma) (67.10)
< u(ma).
Now 0
5
ru
5
R u - ma f o r a l l a , h e n c e , by ( i i ) i n C o r o l l a r y 1,
CraERa(X). QED
Chapter 18
398 For a general set {r
c1
}
of rare elements, Trcy,i f i t exists,
need not be rare (even if the set is countablc).
We will need the following stronger form of (79.3).
(79.4) Corollary 3. Suppose {ga}
(i)
c C"(X)+
satisfies:
~ g ,exists;
(ii) cg, 5 u ( z k ( g a ) ) . If{r 3 is a set o f rare elements such that a
€or all a,
O < r
a 5 ga
Then zr
0.
is rare.
Proof. a(g,)
+
F o r each a , set h
a
= ga-!2,(g,).
Then 0 < r < a -
ha, so by the Decomposition Lemma ( 2 . 5 1 ,
where 0 < p
< a(g,)
a-
and 0 < (la 5 ha.
so it suffices to show that Cp,
rare follows from (79.3).
r
a = p, + q,, Then crC, = Cp, + C ( l a ,
and C q a are rare.
That Cpa is
We show Ch, is rare, hence Cq,
is
rare.
(78.2) (ii j
Finally, as a consequence of (78.5):
(79.5) Let { k } be a bounded set of positive Rsc elements, where 0.
The Meager E l e m e n t s
ttu}
399
i s t h e s e t o f o r d i n a l s < a f i x e d o r d i n a l 0.
Set
and
Then
We f i r s t show t h a t x m
Proof. -__
LY
<
-
~p(g,l
f o l l o w t h a t u(rm ) < u(jye(gn)) < u(Vka). a (m
being esc) m
i:ga
= V J R b~y
< k(ga),
a -
hence z m
m
5V
R ~ ;i t w i l l
,5 g a ,
< zt(ga).
a-
hence
And z k ( g a ) <
(78.5).
We c o m p l e t e t h e p r o o f b y s h o w i n g t h a t u ( v k ) < u(1m ) . We a a u s e i n d u c t i o n on 0. The i n e q u a l i t y h o l d s f o r 0 = 2 , i n f a c t , VJR, =
=
ml
=
zma.
Assume t h e i n e q u a l i t y h o l d s f o r e v e r y
0 < 0,.
Case I , 0, h a s a n i m m e d i a t e p r e d e c e s s o r a o .. (78.3) (49.1)
400
Chapter 18
QED
580. The " l o c a l i z a t i o n " t h e o r e m
A s w i t h l e a n e l e m e n t s ( 6 6 . 1 ) and r a r e e l e m e n t s ( 6 8 have :
( 8 0 . 1 ) I f fAg i s m e a g e r , t h e n s o a r e f + A g , f - A g ,
IflAg,
and f - .
The p r o o f i s t h e same. ( 6 8 . 5 ) a l s o c a r r i e s o v e r t o Me(X), and i n d e e d w i t h t h e R S C element R > 0 r e p l a c e d by a g e n e r a l g > 0:
The Meager E l e m e n t s
401
( 8 0 . 2 ) Given g > 0 , l e t I b e t h e band which i t g e n e r a t e s .
Then
f o r f E I , i f fAg i s meager, f i s meager.
The a r g u m e n t i s t h e o n e u s e d f o r ( 6 8 . S ) , w i t h a n a p p e a l t o t h e a - o r d e r c l o s e d n e s s o f Me(X) a t t h e e n d .
We n e x t c a r r y o v e r ( 7 9 . 3 ) t o Me(X).
(80.3)
Let { k } b e a s e t o f ksc e l e m e n t s a n d {h } c1
i'L
R
s e t o f mea
ger ones such t h a t <
hn
5
i a f o r a l l a.
Then i f C i a e x i s t s , Cha i s m e a g e r .
F o r e a c h a, ha
Proof.
-~
r a r e elements.
=
cnran, { r a n } a s e t of p o s i t i v e
T h e n , b y ( 7 8 . 4 ) , Chc,
= C
aC n r an
=
'nCaran*
For
< h 5 i a , h e n c e , b y ( 7 9 . 3 ) , c a r a n e x i s t s and an i s r a r e ; d e n o t e i t by r n . Then xh = c r n E M e ( X ) .
each n , 0 < r
c1
QED
(80.3)
i n t u r n g i v e s t h e s t r o n g e r form:
(80.4) C o r o l l a r y . (i)
S u p p o s e {ga} c C " ( X ) +
satisfies:
cga exists
( i i ) cg
< u(ca(g,)).
a I f { h } i s a s e t o f meager e l e m e n t s s u c h t h a t a
402
Chaptcr 18
0 < ha
2
ga for a l l a ,
t h e n 1 1 1 ~ i s meager.
The p r o o f i s t h e same a s f o r ( 7 9 . 4 ) . We c a n now e s t a b l i s h t h e " l o c a l i z a t i o n " t h e o r e m .
Notc t h a t
i t c o r r e s p o n d s t o a c l a s s i c a l t h e o r e m o f B a n a c h ' s i n topology,
and, l i k e h i s theorem, u s e s w e l l - o r d e r i n g .
(80.5)
Theorem. -
Then f o r f E C " ( X ) ,
L e t { a } b e a c o l l e c t i o n o f Rsc e l e m e n t s . c1
fARa m e a g e r f o r a l l a i m p l i e s
V
a
is
(fAg,)
meager.
As b e f o r e , we prove t h e f o l l o w i n g e q u i v a l e n t theorem instead.
L e t { a } b e a c o l l e c t i o n o f Rsc e l e m e n t s , a n d R a I f f A R a i s meager f o r a l l a , t h e n fAR i s meager.
P roof. -
< R. F o r s i m p l i c i t y , w e c a n assume f -
Lemma. -
The t h e o r e m h o l d s f o r {La} c C " ( X ) +
Proof.
For e a c h B, s e t f a = f A R a ;
thus f
= VaRa.
and f E C " ( X ) + .
=
Vf,.
We
T h e Meagcr E l e m e n t s
well-order t h e index s e t
{ ~ t } ,
403
s o , f o r s i m p l i c i t y , we c a n assume
i t i s t h e s e t o f a l l o r d i n a l s < an o r d i n a l 0.
hl 11
Set
fl
=
(fa
f )+ ci > 1. B {ha} s a t i s f y t h e c o n d i t i o n s o f ( 8 0 . 4 ) ,
cx
=
We show t h a t { g } , cx h e n c e xh i s m e a g e r .
v
-
R
S i n c e , by ( 7 8 . 5 ) ,
CY
zh
= ri
Vfu
f, t h i s w i l l
=
c o m p l e t e t h e p r o o f o f t h e Lemma. By ( 7 8 . 5 ) a n d ( 7 9 . 5 ) ,
v9
< u(VE
h
< f
a-
CY
, so h
a
%l
I t r e m a i n s t o show t h a t 0 < hn 5 g o .
i s meager.
h 0 = [ f a - V B
O <
=
[ f A k C Y - V B < wf A P F ] +
=
[fAka
fA
-
Now, i n any R i e s z s p a c e , f o r a ( b
-
c)'.
=
(Va<,kB) 1'.
3,
b, c > 0 , we h a v e aAb - aAc <
Thus 0 < h a -< [ f A ( k , =
fA(ka
=
fAga
<
ga.
-
-
Vll<,kB)+]+ VB
We p r o c e e d t o p r o v e t h e t h e o r e m . Case I , K > 0 and f l i e s i n t h e band g e n e r a t e d by
p :
We show If / A k i s m e a g e r ; i t w i l l f o l l o w f r o m ( 8 0 . 2 ) t h a t meager. (80.1)
By h y p o t h e s i s , f o r e v e r y a , fAka i s m e a g e r .
twice, we have t h a t
hence V P meager.
+ =
a
I+
=
R.
lf1ALa+
i s meager.
Now
is
Applying
V i a
I t f o l l o w s f r o m t h e Lemma t h a t
1fI
= k,
lflAP is
404
Chapter 18
Then f A k a -< f < k < 0 , whence,
- 0 : Fix a .
Case 11,
,Q <.
Thus - f , and t h e r e -
taking negatives, 0 < -f < -(fAta)€Me(X). f o r e f , i s meager. Case 111, p,+,
0: L c t I b e t h e band
a n d R - b o t h d i f f e r from
a r e b o t h meager. I R+ = vkCi+ and We r e d u c e t h i s t o Case I .
g e n e r a t e d b y k f ; we show f I a n d f f I i s meager: < a
f
I -
I
a l l a.
= g,+.
I t r e m a i n s t o show t h a t f I A k
fIALo;+
= fIA(ka'l1
=
+ . (y.
i s meager f o r
B u t , by ( 8 0 . 1 1 ,
(fAkaC)I.
fAY,'
i s m e a g e r , s o ( f A 2 C Y + ) Ii s m e a g e r , s o w e a r e t h r o u g h .
We r e d u c e t h i s t o Case I T :
i s meager:
V(-ta
)
=
-a
,
fId
5 R
and f I f
A(-a,
= -k
I
.
- ) i s meager.
I t r e m a i n s t o show t h a t , g i v e n a, T h i s f o l l o w s from:
Id
(-f-)A(-La-)
=
-(fAka)-,
w h i c h i s m e a g e r , s o we h a v e ( i ) .
( i i ) , we need o n l y v e r i f y t h a t - f
< f d.
-
For
We l e a v e t h i s t o t h e
I
reader. QED
(80.6)
C o r o l l a r y 1.
I t h e b a n d w i t h n(X),
Let 11 } b e a c o l l e c t i o n o f R - b a n d s , a n d c1
.
= Vall(X)I
meager f o r a l l
Then f I
c1
CY
ct
i m p l i e s t h a t f I i s meager.
(80.7)
C o r o l l a r y 2 . For e a c h f € C " ( X ) ,
there exists a largest
The Meager E l e m e n t s
405
R-band T s u c h t h a t f I i s m e a g e r .
( 6 6 . 6 ) and ( 6 8 . 6 1 , w e h a v e t h e " o t h e r " " l o c a l i z a t i o n "
As i n
theorem:
Let { u } b e a b o u n d e d s e t o f u s c e l e m e n t s , a Then f o r f E C " ( X ) , ( f - ua)+ m e a g e r f o r a l l a
( 8 0 . 8 ) Theorem. and u
.
= AU
a implies t h a t (f
u ) + i s meager.
-
< n(X) f o r a l l a. a A l s o , b y w e l l - o r d e r i n g t h e i n d e x s e t { a ) , we c a n a s s u m e {a} i s
We c a n a s s u m e f < n(X)
Proof.
and u
t h e s e t o f a l l o r d i n a l s < some o r d i n a l 0. Set R Then Aqa (p
-
qa)'
=
=
0,
n(X) - u , p
(p
-
4,)'
f - u , and q
= =
a
=
a n d p+
( f - u,)',
u
a =
-
u f o r e a c h a.
(f - u)'.
Thus
i s m e a g e r f o r a l l a , a n d we h a v e t o show t h a t p+ i s
meager.
For each
U,
set
Note t h a t f o r e v e r y a, P . ~ = h e n c e i s a n Rsc e l e m e n t .
(n(x)
-
U)
A l s o t h a t II
-
(ua -
= V P . ~a n d
n(x)
LI) =
p+
=
Vp,.
Now s e t
a > 1,
and
-
ua,
Chapter 18
406 hl
=
P1
h
=
(Pa
c1
-
v B < a p I+
c1
@
It follows f r o m (78.5) that p+ = Ch
ci
.
> 1.
Thus, if we show that
{ g c x } , {ha} satisfy the conditions of ( 8 0 . 4 ) , i t will f o l l o w
that p + is meager. Cg,
exists: in effect, by (78.5) again, 7 g M
= VR(l =
k.
Combining this with (79.5) gives us C g M 5 u ( C k ( g a ) ) ; thus (ii) is satisfied. a l l a.
q,
Since 0 < h (x 5 p,
=
(p - 4,)'.
ha is mcager f o r
It remains to show that 0 < h M 5 pa €or each a.
are positive.)
QED
The Meager E l e m e n t s
(80.9) Thcorcm. ti
407
For e v e r y f E C " ( X ) , t h e r e e x i s t s a u s c e l e m e n t
such t h a t (i)
~ i r ( f<) u
(ii)
( C - u ) + i s m e a g e r , and
-
uKu(f),
( i i i ) u i s t h e s m a l l e s t usc e l e m e n t f o r w h i c h ( i i ) h o l d s .
r h i s f o l l o w s f r o m t h e a b o v e Theorem t o g e t h e r w i t h ( 6 5 . 1 1 ) h'ote t h a t w h i l e i n t h e two f o r m c r t h e o r e m s , we
and ( 6 7 . 1 2 ) .
were a b l e t o s p e c i f y t h c u s c e l c m e n t p r e c i s e l y , i n t h e p r e s e n t o n e , we h a v e o n l y e s t a b l i s h e d i t s e x i s t e n c e . Remarh. -__
Again a s w i t h l c a n n e s s a n d r a r e n e s s ,
(80.5)
and
( 8 0 . 8 ) r e d u c e t o t h e same t h e o r e m i n t o p o l o g y .
In t o p o l o g y , m e a g e r s e t s p l a y a more i m p o r t a n t r o l e t h a n r a r e ones.
I n C " ( X ) , t h e r a r e o n e s seem t o h e more i m p o r t a n t .
The f o l l o w i n g d i s c u s s i o n t h r o w s some l i g h t on t h i s .
To make
t h e c o m p a r i s o n s more i n t u i t i v e , we p r e s e n t t h e d i s c u s s i o n i n t e r m s o f o r d i n a r y f u n c t i o n t h e o r y - more e x a c t l y , b o u n d e d f u n c t i o n s w i t h t h e supremum norm
--
w i t h no r e f e r e n c e t o C " ( X).
S o , b y u ( f ) , we w i l l mean t h e u p p e r s e m i c o n t i n u o u s u p p e r e n v e l o p e o f f , by 6 ( f ) ,
"rare",
"meager",
t h e s a l t u s f u n c t i o n o f f , and so on. "Riemann i n t e g r a b l e " ,
The t e r m s
a n d s o on a r e m o d i f i e d
i n t h e o b v i o u s way. In working w i t h s u b s e t s o f a s e t X , i f a s e t i d e a l o r s e t r i n g i s n o t l a r g e enough f o r o u r p u r p o s e s , w e u s u a l l y t a k e i t s U-closure.
When d e a l i n g w i t h f u n c t i o n s , h o w e v e r , i f a R i c s z
i d e a l o r Riesz subspace i s n o t l a r g e enough, t h e n between t h e i d e a l ( r e s p . subspace) and i t s 0 - o r d e r c l o s u r e , t h e r e l i e s i t s norm c l o s u r e , a n d w e o f t e n f i n d t h i s l a s t t o b e t h e c o r r e c t
Chapter 18
408
enlargment.
And i f o u r i d e a l o r s u b s p a c e i s a l r e a d y norm
c l o s e d , t h e n i t may t u r n o u t t o be p e r f e c t l y a d e q u a t e , w h e r e i t s correspondent
i n s e t t h e o r y was n o t .
I n d e e d we may o b t a i n a
s h a r p e r theorem than i s p o s s i b l e i n s e t theory.
We g i v e two
examples. Example 1. f u n c t i o n on X .
L e t X b e com pact a n d .9 a l o w e r s e m i c o n t i n u o u s Then 6 ( k ) i s r a r e .
Compare t h i s w i t h t h e
s t a n d a r d theorem: t h e s e t o f p o i n t s of d i s c o n t i n u i t y o f R i s meager. Even t h o u g h a f u n c t i o n - s a y a p o s i t i v e o n e - i s r a r e , t h e s e t IxEXlf(x) > 0 ) i s , i n g e n e r a l , o n l y meager.
(In Riesz
s p a c e c o n c e p t s , f E R a( X ) i m p l i e s o n l y t h a t lLfEMe(X) . )
Other-
w i s e s t a t e d , t h e above s e t c a n n o t d e t e r m i n e w h e t h e r f i s r a r e o r o n l y meager. Example 2 .
L e t X be a r e a l i n t e r v a l , and c o n s i d e r t h e
c l a s s i c Le b e s gue t h e o r e m : a bounded f u n c t i o n f on X i s Riemann
i n t e g r a b l e i f and o n l y i f i t s s e t o f p o i n t s o f d i s c o n t i n u i t y h a s Le b e s g u e m e a s u r e 0 .
I n f u n c t i o n t e r m s : f i s Riemann i n t e g r -
a b l e i f an d o n l y i f 6 ( f ) h a s L ebes gu e i n t e g r a l 0 . can immediately sharpen t h e theorem.
But now we
6 ( f ) i s a p o s i t i v e upper-
s e m i c o n t i n u o u s f u n c t i o n , a n d f o r s u c h f u n c t i o n s , t h e L ebesgue i n t e g r a l v a n i s h i n g i s e q u i v a l e n t t o t h e Riemann i n t e g r a l ( e x i s t i n g and) v a n i s h i n g .
Thus t h e t h e o r e m becom es: a bounded f u n c -
t i o n f i s Riemann i n t e g r a b l e i f and o n l y i f S ( f ) h a s Riemann
--
integral 0. ( No te t h a t t h i s c l o s e l y p a r a l l e l s t h e s e t t h e o r e m ( o r d e f i n i t i o n ) : a s e t h a s J o r d a n c o n t e n t i f and o n l y i f i t s f r o n t i e r has Jordan content 0.)
The Meager E l e m e n t s
409
The n e e d f o r L e b e s g u e ' s t h e o r e m i n t h e f o r m h e g a v e i t i s e x p l a i n e d b y t h e d i s c u s s i o n i n Example 1 .
The f u n c t i o n s h a v i n g
Riemann i n t e g r a l 0 f o r m a norm c l o s e d i d e a l ; t h o s e h a v i n g Lebesgue i n t e g r a l 0 form a o - o r d e r c l o s e d i d e a l .
R I B L T OGRAPl IY
1.
Akemann, C . A . ,
The g e n e r a l S t o n e - W e i e r s t r a s s p r o b l e m , J .
Funct. Anal. 4 ( 1 9 6 9 ) , 277-294. 2.
Aliprantis,
and B u r k i n s h a w , O . ,
C.D.
L o c a l l y S o l i d Riesz
S p a c e s , Academic P r e s s , 1 9 7 8 . 3.
B a n a c h , S . , ThdorSme s u r l e s e n s e m b l e s d e p r e m i s r e c a t e g o r i e , F u n d . Math. 1 6 ( 1 9 3 0 ) , 3 9 5 - 3 9 8 .
4.
B a n a s c h e w s k i , B . , The d u a l i t y b e t w e e n M - s p a c e s a n d c o m p a c t H a u s d o r f f s p a c e s , Math. N a c h r .
5.
Bauer, H . ,
75 ( 1 9 7 6 ) , 4 1 - 4 5 .
Uber d i e B e z i e h u n g e n e i n e r a b s t r a k t e n T h e o r i e
d e s Riemann- I n t e g r a l s zur T h e o r i e R a d o n s c h e r M a s s e , Math. 6.
Z.
65 (1956), 448-482.
, Sur l'equivalence des t h g o r i e s de l ' i n t e g r a t i o n selon N.
Bourbaki e t s e l o n M.H.
S t o n e , B u l l . S O C . Math.
de F r a n c e 8 5 ( 1 9 5 7 ) , 5 1 - 7 5 . 7.
,
Theorems o f K o r o v k i n t y p e f o r a d a p t e d s p a c e s ,
Ann. I n s t . F o u r i e r 2 3 ( 1 9 7 3 ) , 2 4 5 - 2 6 0 . 8.
Bauer, H.
a n d Donner, K . ,
Math. Ann. 9.
Korovkin approximation i n C o ( X ) ,
236 ( 1 9 7 8 ) , 2 2 5 - 2 3 7 .
B i r k h o f f , G a r r e t t , L a t t i c e T h e o r y , A m e r . Math. S O C . , 1 9 4 8 .
10. Bourbaki, N . ,
I n t e g r a t i o n , C h a p t e r s I - I V , Hermann e t C i e ,
1952. 11. C a r a t h g o d o r y , C .
,
Uber d i e F o u r i e r s c h e n K o e f f i z i e n t c n d e r 410
Bib1iography
41 1
n a c h Riemann i n t e g r i e r b a r e n F u n k t i o n e n , Math.
2.
1
( 1 9 1 8 ) , 309-320.
12
Dieudonn;,
. J . , S u r l e tht5orzme d e L e b e s g u e - N i k o d y m ,
o f blath. 13
42 (1941),
Ann.
547-556.
The n o r m a l c o m p l e t i o n o f t h e l a t t i c e o f c o n -
Dilworth, R . P . ,
t i n u o u s f u n c t i o n s , T r a n s . Amer. Math. S O C . 68 ( 1 9 5 0 ) , 427-438. 1 4 . D i x m i e r , . J . , S u r c e r t a i n s c s p a c e s c o n s i d g r 6 s p a r M.H.Stone,
Summa B r a s i l . Math. 2 ( 1 9 5 1 ) , 1 5 1 - 1 8 2 . 1 5 . Edwards, D . A . , S e p a r a t i o n d e s f o n c t i o n s r 6 e l e s d e f i n i e s
s u r un s i m p l e x d e C h o q u e t , C . R . 16. Fremlin, D.I1.,
P a r i s 261, 2798-2800.
A b s t r a c t Kgthe s p a c e s , P r o c . Camb. P h i l . S O C .
63 (1967), 653-666. 17.
, T o p o l o g i c a l R i e s z S p a c e s and Measure T h e o r y ,
-
Cambridge U n i v e r s i t y P r e s s , 1974. 18. Freudenthal, H . ,
T e i l w e i s e g e o r d n e t e Moduln, N e d r l . Akad.
W e t e n s c h . , P r o c . S e r . A 39 ( 1 9 3 6 ) , 6 4 1 - 6 5 1 . 19. Grothendieck, A . , des e s p a c e s L 20.
Une c h a r a c t e r i z a t i o n v e c t o r i e l l e - m e t r i q u e 1
,
Can. J . Math.
7 (1955), 552-561.
Kakutani, S . , Concrete r e p r e s e n t a t i o n of a b s t r a c t (L)-spaces a n d t h e mean e r g o d i c t h e o r e m , Ann. o f Math.
(2) 4 2
(1941), 523-537.
,
21. -
C o n c r e t e r e p r e s e n t a t i o n o f a b s t r a c t (M) -
s p a c e s , Ann. o f Math. 22.
(2) 4 2 (1941), 994-1024.
K a p l a n , S . , On t h e s e c o n d d u a l o f t h e s p a c e o f c o n t i n u o u s f u n c t i o n s , T r a n s . A.M.S.
23.
,
86 ( 1 9 5 7 ) , 7 0 - 9 0 .
The s e c o n d d u a l o f t h e s p a c e o f c o n t i n u o u s
f u n c t i o n s 11, T r a n s . A.M.S.
93 (1959), 329-350.
412
Bibliography
,
24.
The s e c o n d d u a l o f t h e s p a c e o f c o n t i n u o u s
f u n c t i o n s IV, T r a n s . A . M . S .
,
25.
C l o s u r e p r o p e r t i e s o f C(X) i n i t s s e c o n d d u a l ,
P r o c . A. M.S.
,
26. -
1 1 3 (1964), 512-546.
1 7 (1966), 401-406.
The s e c o n d d u a l o f t h e s p a c e o f c o n t i n u o u s
f u n c t i o n s a n d t h e Riemann i n t e g r a l , I l l . J . Math. 1 2 ( 1 9 6 8 ) , 283- 302.
,
27.
On weak c o m p a c t n e s s i n t h e
m e a s u r e s , J . F u n c t . Anal.
,
28.
s p a c e o f Radon
5 (1970), 259-298.
Riemann a n d L e b e s g u e i n t e g r a b i l i t y , J . London
Math. S O C . ( 2 )
5 (1972), 459-464.
2 9 . K i m , J o n g s i k , The c h a r a c t e r i z a t i o n o f a l a t t i c e homomorph-
ism, Can. J . MAth. XXVII ( 1 9 7 5 ) , 1 7 2 - 1 7 5 . 3 0 . Kripke, B. R.
and Holmes, R . B . ,
A p p r o x i m a t i o n o f bounded
f u n c t i o n s by c o n t i n u o u s f u n c t i o n s , B u l l . A.M.S.
71
(1965), 896-897. 31. K u r a t o w s k i , C . ,
Topologie, Polish S c i e n t i f i c Publishers,
Warsaw, 1 9 5 8 . 3 2 . Loomis, L . M . ,
Math.
Linear f u n c t i o n a l s and c o n t e n t , Amer. J .
76 ( 1 9 5 4 ) , 1 6 8 - 1 8 2 .
A n o t e on t h e sum o f two c l o s e d l a t t i c e i d e a l s ,
33. Lotz, H.P.,
P r o c . A.M.S. 34.
,
44 ( 1 9 7 4 ) , 3 8 9 - 3 9 0 .
E x t e n s i o n s a n d l i f t i n g s o f l i n e a r mappings on
Banach l a t t i c e s , T r a n s . A . M . S . 3 5 . Luxemburg, W . A . J .
and Z a a n e n , A . C . ,
2 1 1 (1975), 85-100. N o t e s on Banach f u n c t i o n
s p a c e s I X , K o n i n k l . N e d e r l . Akad. W e t e n s h . , S e r i e s A67 (1964), 360-376. 36.
,
R i e s z Spaces, North-Holland, 1971.
Bibliography
37. Maxey, W., The Dedekind completion of C ( X ) dual, P h . n . 38. Nnkano, f f . ,
413
and its second
Thesis, Purdue Univ., 1973.
Line Spektraltheorie, Proc. Phys.-Math. S o c . ,
.Japan 23 (1941), 485-511. 39.
, Stetige lineare funktionale auf dem teilweisegeordnetcm Modul, J. Fac. Sci. Imp. Univ. Tokyo 4 (1942), 201-382.
, Lincar Lattices, Wayne State Univ. Press,
40.
Detroit, 1966. 41. Pedersen, G.K., Monotone closures in operator algebras, Amer. .J. Math. X C I V (1972), 955-962.
42. Phillips, R., On linear transformations, Trans. A.M.S. 48 (1940), 516-541. 43. Riesz, F., Sur la d6composition des operations fonctionelles lingaires, Atti. del Congr. Internaz. dei Mat., Bologna 1928, V O ~ .3, 143-148. 44. -
, Sur quelques notions fondamentales dans la thgorie g6nerale des operations lingaires, Ann. of Math. 41 (1940), 174-206.
45. Robertson, A.P. and Robertson, Wendy, Topological Vector Spaces, Cambridge Univ. Press, 1964. 46. Ryan, F.D., On the uniform closure of the linear space generated by the non-negative uppersemicontinuous functions, Purdue Univ. Dissertation, 1965. 47. Schaefer, H.H., Banach lattices and Positive Operators, Springer-Verlag, 1974. 48. Semadeni, Z., Functions with sets of points of discontinuity belonging to a fixed ideal, Fund. Math. 5 2 (1963), 25-39.
414
Bib1 iography
, Banach Spaces of Continuous Functions, Polish
49.
Scientific Publishers, Warsaw, 1971. 50. Stone, M . H . ,
Notes on integration I-IV, Proc. Nat. Acad.
Sci. U . S . A . 35 (19A9),
34 (1948), 336-342, 447-455, 483-490, and 50-58.
51. Szpilrajn, E., Remarques sur les fonctions complstemcnt additives d'ensembles, Fund. Math. 2 2 (1934), 3 0 . 3 - 3 1 1 . 52. Masterson, J.J., Dual space of a vector lattice and its cutcompletion, Trans. A.M.S.
128 (1967), 515-522.
53. Veksler, A . I . , On a new construction o f Dedckind completion of vector lattices and of Il-groups with division, Sibirskii Mat. Zhur. 10 (1969), 1206-1213. (Translated by Consultants Bureau, 1970). 54. Nakano, H., Uber das System aller stetigen Funktionen auf einem topologischen Raum, P r o c . Imp. Acad. Tokyo 17 (1941), 308-310. 55. Stone, M.H., Boundedness properties in function lattices, Can. J. Math. 1 (1949), 176-186.
INDEX OF SYMBOLS
19
166
13 23
21s
59
237
66 38
a
+
aAb
165
192,214,
92
192,214
189
222
191
222
92
135
213
8
213
8
218
8
220
7
172
5
208
5
208
50
conv A
111
15 15
256
1s
39 2
16 415
Symbols
416
E+
4
169
c*
50
170
Eb
52
291
EC
69
E
bb
74
2
$c
74
E'
88
306
38
384
28
316
5
100
348
ext A
116
Ea E/ I
2 34
r
391
2 34 11
int Q
173
391 50
110
166 126
79
127
191 208
78
249
87
223
144
255 2 33
Me (X)
389
249 255
2 324
223
Symbo 1s
172
165
Y
165
172 170
3
VA
3
claa
AA
3
Aaaa
Fa
n
G
3
25 93 165
38
417
I N D E X OF TERMINOLOGY
a r b i t r a r i l y small elements Archimedean atomic
9
189
Baire classes
218
B a i r e element
218
Baire function
281
Baire subspace
217
Banach l a t t i c e
42
band
22
band, b a s i c band
148
g e n e r a t e d by A
band, p r i n c i p a l
22
37
29
band, p r o j e c t i o n base
34
110
Bore1 e l e m e n t
237
Bore1 f u n c t i o n
282
Bore1 s u b s p ace
237
bounded above
2
bounded b e l o w
3
bounded
207
418
Terminology
c h a r a c t e r i s t i c c l e m e n t i n C" c h a r a c t e r i s t i c clcment clopen s e t component cone
CI
291
292
175 100, 101
3
C o u n t a b l e Suli p r o p e r t y
114
c o u n t a b l y decomposable ( a t most)
D e c o m p o s i t i o n lemma decomposition of X Dedekind c l o s u r e
7
176 233
Dedekind c l o s e d
235
Dedekind c o m p l e t e
31
Dedekind c o m p l e t i o n Dedekind c u t
31
Dedekind d e n s e
34
dense-in-itself diffuse
36
197
191
disjoint dispersed
1 2 , 13 205
d u a l bands
147
equi-order-continuous
f i l t e r i n g upward f i l t e r i n g downward
hyperstonian
370
18 19
154
115
419
Terminology
420
108
imbedding infimum
3
interval
7
interval preserving
82
Kakutani-Stone space
165
109
L-norm L-space
112
R-band 2 6 5 lean
336, 377
Lebesgue t o p o l o g y
162
l i m i t inferior
33
l i m i t superior
33
locally solid l o w e r bound
126 3
lowersemicontinuous lower envelope
M-norm M-space
94
97
M-subspace
98
MIL- homomorphism MIL-isomorphism Mll-norm MIL-space
108
94 98
MI-subspace
98
Mackey t o p o l o g y Markov mapping meager
108
389
144
141
280
Terminology
net ~
15
, ascending
15
__ , d e s c e n d i n g
15
__ , m o n o t o n i c
15
net associated with A norm, b a s e
116
__ , o r d e r u n i t
93
normed R i e s z s p a c e
order closed
39
3 , 1 6 , 26
o r d e r bounded
20
order closure
21
order continuous
26, 113
16
o r d e r convergence order unit
partition
18
93
102
p o s i t i v e cone
4
p o s i t i v e element
4
p o s i t i v e mapping
26
p r o b a b i l i t y Radon m e a s u r e s p r o j e c t i o n , band
29
quotient space of X
Radon m e a s u r e rare
186
348
refinement
102
regular element
379
177
187
421
rerminology
422
regular pair regular set
379 173
Riemann i n t e g r a b l e
316, 3 1 7
Riemann n e g l i g i b l e
324
Riemann s u b s p a c e
3 0 6 , 384
R i e s z homomorphism Riesz i d e a l
26
10
, principal
-
R i e s z isomorphism R i e s z norm
28
39
K i e s z seminorm Riesz space
39
5
, perfect
-
Riesz s u b s p a c e
seat
37
76
10
2 8 9 , 290
separating
50
s e t of constancy
178
simple convergence spectral state
166
10.5
186
,
pure
186
s t a t e space
186
support supremum
1 9 7 , 2 8 9 , 290 3
a-Dedekind complete n-order closed a-order closure
36 36
37
Terminology transpose
78, 1 8 3
U-band
293
u-band
267
unit
94
unive rs a 11 y rneasurab1e
29 2
universally integrable
233
u p p e r bound
3
uppersemicontinuous decomposition uppersemicont i n u o u s upper envelope Urysohn function
vague topology
166
88
vanish at infinity
wedge
227
zero set
170
172
176
280, 30.3
423
This Page Intentionally Left Blank