3DJHL
7KHUPRG\QDPLFVRI3RO\PHU%OHQGV
3DJHLL
+2:7225'(57+,6%22. %...
134 downloads
1142 Views
17MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
3DJHL
7KHUPRG\QDPLFVRI3RO\PHU%OHQGV
3DJHLL
+2:7225'(57+,6%22. %<3+21(RU$030(DVWHUQ 7LPH %<)$; %<0$,/2UGHU'HSDUWPHQW 7HFKQRPLF3XEOLVKLQJ&RPSDQ\ ,QF 1HZ+ROODQG$YHQXH%R[ /DQFDVWHU3$86$ %<&5(',7&$5'$PHULFDQ([SUHVV9,6$0DVWHU&DUG %<:::6,7(KWWSZZZWHFKSXEFRP 3(50,66,21723+272&23<32/,&<67$7(0(17 $XWKRUL]DWLRQWRSKRWRFRS\LWHPVIRULQWHUQDORUSHUVRQDOXVHRUWKHLQWHUQDORUSHUVRQDOXVHRIVSHFLILF FOLHQWVLVJUDQWHGE\7HFKQRPLF3XEOLVKLQJ&R,QFSURYLGHGWKDWWKHEDVHIHHRI86SHUFRS\ SOXV86SHUSDJHLVSDLGGLUHFWO\WR&RS\ULJKW&OHDUDQFH&HQWHU5RVHZRRG'ULYH'DQYHUV 0$86$)RUWKRVHRUJDQL]DWLRQVWKDWKDYHEHHQJUDQWHGDSKRWRFRS\OLFHQVHE\&&&D VHSDUDWHV\VWHPRISD\PHQWKDVEHHQDUUDQJHG7KHIHHFRGHIRUXVHUVRIWKH7UDQVDFWLRQDO5HSRUWLQJ 6HUYLFHLV
Start of Citation[PU]Technomic Publishing[/PU][DP]1997[/DP]End of Citation
3DJHLLL
3RO\PHU7KHUPRG\QDPLFV/LEUDU\9RO
7KHUPRG\QDPLFVRI3RO\PHU%OHQGV <XUL6/LSDWRY $QDWRO\(1HVWHURY $FDGHP\RI6FLHQFHVRI8NUDLQH
Start of Citation[PU]Technomic Publishing[/PU][DP]1997[/DP]End of Citation
3DJHLY
3RO\PHU7KHUPRG\QDPLFV/LEUDU\—9ROXPH D7(&+120,&âSXEOLFDWLRQ 3XEOLVKHGLQWKH:HVWHUQ+HPLVSKHUH E\ 7HFKQRPLF3XEOLVKLQJ&RPSDQ\,QF 1HZ+ROODQG$YHQXH%R[ /DQFDVWHU3HQQV\OYDQLD86$ 'LVWULEXWHGLQWKH5HVWRIWKH:RUOG E\ 7HFKQRPLF3XEOLVKLQJ$* 0LVVLRQVVWUDVVH &+%DVHO6ZLW]HUODQG &RS\ULJKWE\&KHP7HF3XEOLVKLQJ $OOULJKWVUHVHUYHG1RSDUWRIWKLVSXEOLFDWLRQPD\EHUHSURGXFHGVWRUHGRUWUDQVPLWWHGLQDQ\IRUPRU E\DQ\PHDQVZLWKRXWZULWWHQSHUPLVVLRQRIFRS\ULJKWRZQHU1RUHVSRQVLELOLW\LVDVVXPHGE\WKH $XWKRUDQGWKH3XEOLVKHUIRUDQ\LQMXU\RUDQGGDPDJHWRSHUVRQVRUSURSHUWLHVDVDPDWWHURISURGXFWV OLDELOLW\QHJOLJHQFHXVHRURSHUDWLRQRIDQ\PHWKRGVSURGXFWLGHDVRULQVWUXFWLRQVSXEOLVKHGRU VXJJHVWHGLQWKLVERRN 3ULQWHGLQWKH8QLWHG6WDWHVRI $PHULFD 0DLQHQWU\XQGHUWLWOH 3RO\PHU7KHUPRG\QDPLFV/LEUDU\—9ROXPH7KHUPRG\QDPLFVRI3RO\PHU%OHQGV $7HFKQRPLF3XEOLVKLQJ&RPSDQ\ERRN %LEOLRJUDSK\S ,QFOXGHVLQGH[S /LEUDU\RI&RQJUHVV&DWDORJ&DUG1R ,6%11R 7KLV7HFKQRPLF3XEOLVKLQJ&RPSDQ\,QFHGLWLRQLVSURGXFHGXQGHUOLFHQVHEHWZHHQ7HFKQRPLF 3XEOLVKLQJ&RPSDQ\,QFDQG&KHP7HF3XEOLVKLQJ
Start of Citation[PU]Technomic Publishing[/PU][DP]1997[/DP]End of Citation
Table of Contents
Pagev
Preface
ix
1
J.
Basic Principles o f Thermodynamics of Polymer Solutions 1.1 The M a i n Thermodynamic Characteristics o f Solution 1.2 Regular Solutions. Hildebrand-Scatchard Equation — 1 . 3 Phase Equilibrium in Solutions. Binodals and Spinodals 1.4 The Flory-Huggins Theory 1.4.1 Entropy of M i x i n g 1.4.2 The Heat and Free Energy o f M i x i n g 1.5 Dilute Solutions o f Polymers — 1 . 6 Phase Separation In Polymer Solutions References 2 Statistical Theories of Polymer Solutions ~ " 2 . 1 The Theory by Prigogine-Patterson 2.2 The Role of Various Contributions o f the M i x i n g Parameters 2.3 Effect of Solvent Chain Length on the Interaction Parameters " " 2 . 4 N e w Flory Theory 2.5 M o d i f i c a t i o n of the N e w F l o r y Theory
1 2 4 9 10 U 13 \6 30 33 34 42 44 48 55
2.6 N e w Huggins Theory
59
2.7 Sanchez-Lacombe Theory
65
2.7.1 Equation of State
65
"2.7.2 Mixtures of Liquids
67
2.7.3 Free Energy and C h e m i c a l Potential
69
2.7.4 Functions of M i x i n g
70
2.7.5 Phase Stability and Spinodal
71
2.8 Some Experimental Results of Thermodynamic Properties o f Polymer
73
Solutions References
77
3 Thermodynamics o f Polymer M i x i n g 3.1 Binary Mixtures 3.1.1 Application o f the Theory of Regular Solutions to Thermodynamics of Polymer M i x i n g ^ .1.2 Application o f N e w Statistical Theories for Describing Thermodynamic Properties o f Polymer Mixtures 3.1.3 The Application o f the N e w Huggins Theory 3.1.4 The Sanchez-Lacombe Theory 3.1.4.1 Chemical Potentials ~i. 1.4.2 The Stability of Phase and Spinodal 3.1.4.3 Criterion of M i s c i b i l i t y o f Polymer-polymer M i x t u r e _ 3 . 2 Experimental Data on Thermodynamic Properties o f Binary Polymer Mixtures 3.2.1 Phase Behavior o f Binary Polymer Mixtures
81 81 83 88 98 101 102 104 107 110 112
Page vi 3.2.2 Concentration and Temperature Dependencies o f Parameters o f T h e r m o d y n a m i c Interactions in the Mixtures of Oligomers and Polymer Homologues 3.2.3 Influence o f Various Factors on the M i s c i b i l i t y
128
143
3.2.3.1 Deuteration and Tacticity o f Polymers
143
3.2.3.2 Branching of Chains
144
3.2.3.3 Effect o f Pressure
144
^ S . 2 . 3 . 4 Asymmetry o f the Length o f Statistical Segment 3.2.4 Possible Errors in Estimating the M i s c i b i l i t y o f Mixtures Obtained from Solutions in a C o m m o n Solvent 3.3 M i s c i b i l i t y of Polymers at the Interface with Solid
148 148 _L5J_
3.3.1 Phase Diagrams o f F i l l e d Polymer Mixtures
151
3.3.2 Phase Separation in T h i n F i l m s of Polymer Mixtures at the Interface
155
with S o l i d 3.3.3 Thermodynamic Interaction Parameters in F i l l e d Polymer Mixtures 3.3.4 O n the E q u i l i b r i u m and Non-equilibrium Compatibilization of Polymer Mixtures 3.4 Ternary Polymer Systems "3.4.1 Ternary Systems Polymer-polymer-solvent 3.4.2 Ternary Polymer-polymer-polymer Systems 3.5 Thermodynamics o f Formation of Stable Dispersion in Binary Polymer
161 167 169 169 185 205
Mixtures References 4 Homopolymer-copolymer and Copolymer-copolymer Blends " " 4 . 1 M e a n - f i e l d Binary Interaction M o d e l s 4.1.1 M i s c i b i l i t y W i n d o w s —A.2 Effect of the Sequence Distribution in Copolymer on the Phase Behavior o f Homopolymer-copolymer Mixtures —A3 The Dependence o f the Phase Behavior of Copolymer Mixtures o f Various Compositions on the Sequence Distribution —AA
210 227 227 230 235 239
The Effect of the Sequence Distribution in Copolymer and Its Compatibilizing Effect in M i x t u r e of T w o Immiscible Polymers AA 1 Mixtures o f Homopolymers with Homologue Series of Polymers of Another Chemical Nature 4.5 Ternary Mixtures
251
4.6 M o d i f i e d Theories of the Equation-of-state
264
References
271
5 Mechanism and Kinetics of Phase Separation in Polymer Solutions and Blends 5.1 Nucleation and Growth
243
259
275 275
5.2 Spinodal Mechanism o f Phase Separation
277
5.3 Application o f the Theory of Spinodal Decomposition to Polymeric Systems
283
Page vii _ _ 5 . 4 Some Experimental Results on Kinetics of Phase Separation in Solutions and Mixtures of Polymers 5.5 Factors Influencing the Kinetics o f Phase Separation
299 320
5.5.1 Tacticity
32J.
5.5.2 Effects of A d d i t i o n o f Diblock-copolymers
323
5.5.3 Spinodal Decomposition Near S o l i d Surface
328
"5.5.4 Shear-induced Phase Separation " 5 . 6 Phase Separation Accompanying Reactions of Polymer B l e n d Formation
329 334
5.6.1 Spinodal Decomposition in IPNs
334
5.6.2 Nucleation and Growth During I P N Formation
340
5.6.3 Some Features of Microphase Structure of IPNs References 6
35J. 356 363
Interface in D e m i s i n g Solutions and Polymer Mixtures 6.1 Vrij-Roebersen Theory —
364
6.2 Kammer's Theory
371
6.3 The Theory by Helfand
374
6.4 The Theory by Nose
380
—
6.5 Sanchez-Lacombe Theory
381
6.6 Other Theories o f Polymer-polymer Interface
391
6.7 Scaling Principle in Describing the Interface
397
6.8 Some Experimental Data on the Interfacial Properties o f Polymer Blends
400
—
6.8.1 Interfacial Tension
400
6.8.2 The Interfacial W i d t h and Interfacial Profiles
401
6.9 Surface Segregation in Polymer Mixtures
406
6.9.1 Surface Segregation Near the Interface with S o l i d
408
6.10 Segregation o f Block-copolymers at the Interface Between
412
Homopolymers References
428
Nomenclature
435
Index
443
3DJH
,QGH[ $ $FU\ODWHV $FWLYHQXFOHDWLRQ $GVRUSWLRQ SUHIHUHQWLDO $PRUSKRXVOD\HU $QQHDOLQJ $V\PPHWU\ $WDFWLF $WKHUPLFVROXWLRQ $WWUDFWLRQ % %LPRGDO GLVWULEXWLRQ VKDSH %LPRGDOLW\ %LQDU\ V\VWHP PL[WXUHV %LQGHU(TXDWLRQ %LQGHU7KHRU\ %LQRGDO %OHQGV %ORFNUHSXOVLRQ %ROW]PDQFRQVWDQW %RQG DSSUR[LPDWLRQ URWDWLRQ %RXQGDU\OD\HUWKLFNQHVV %UHDNSRLQW %UXVK %XON HQULFKPHQW
& &DKQ7KHRU\ &DKQ +LOODUG 7KHRU\ &DKQ+LOODUG&RRN7KHRU\ &DUERQ\OJURXS &DVDVVD0DUNRYLW](TXDWLRQ &HOOXORVHDFHWDWH &HOOXORVHQLWUDWH &HQWUDOUHOD[DWLRQIRUPXOD &KDLQ EUDQFKLQJ FRLOLQJ FROODSVH FRPSUHVVLRQ FRQILJXUDWLRQ FRQIRUPDWLRQ FRURQD GLIIXVLRQ HQWDQJOHPHQWV IOH[LELOLW\ IUHH OHQJWK OLQHDU UHSWDWLRQ XQSHUWXUEHGGLPHQVLRQ &KHPLFDOSRWHQWLDO &KRQ*ROGEHUJ3RVWXODWH &ORVHORRS &ORXGSRLQW &OXVWHU H[SDQVLRQ &OXVWHUL]DWLRQ &RDOHVFHQFHPHFKDQLVP &RDUVHQLQJUDWH &RKHVLRQHQHUJ\GHQVLW\ &RLO GLPHQVLRQ J\UDWLRQUDGLXV RYHUODS &RPSDWLELOLW\ERXQGDULHV &RPSDWLELOL]DWLRQ &RPSDWLELOL]HU &RPSRVLWLRQ JUDGLHQW QRQFULWLFDO SDUDPHWHU &RPSUHVVLELOLW\WHUP
3DJH
&RQFHQWUDWLRQ IOXFWXDWLRQ JUDGLHQW SURILOH &RQIRUPDWLRQ &RQWDFW HQHUJ\ H[WHUQDO IRUPDWLRQ LQWHUDFWLRQ LQWHUVHJPHQW SDUDPHWHU SRO\PHUVROYHQW VHJPHQWVHJPHQW &RSRO\PHUEUXVK &RSRO\PHUV GLEORFN &ULWLFDO FRPSRVLWLRQGLIIHUHQFH FRQFHQWUDWLRQ OLQH QXFOHL SRLQW UHJLPH UHJLRQ VROXWLRQWHPSHUDWXUH WHPSHUDWXUH YDOXH &URVVOLQNLQJGHJUHH &URVVRYHU &U\VWDOOLQLW\GHJUHH &U\VWDOOL]DWLRQ ' GH%URJOLHZDYHOHQJWK 'HE\H([SUHVVLRQ 'HFRPSRVLWLRQNLQHWLFV 'HJUHHRIIUHHGRP
'HPL[LQJ 'HQVLW\ FKDQJH FRPSRQHQWV HQWURS\ ORFDO SDFNLQJ SURILOH UHGXFHG VHJPHQWDO 'HSOHWLRQ 'HXWHUDWHG 'HXWHUDWLRQ 'LIIXVHERXQGDULHV 'LIIXVLRQ FRHIILFLHQW PLFURVFRSLFDO WLPH 'LIIXVLYLW\ PXWXDO 'LOXWLRQ LQILQLWH 'LVSHUVLRQ VWDEOH 'LVWULEXWLRQIXQFWLRQ 'RPDLQ GLPHQVLRQ IRUPDWLRQ VPDOO VSKHULFDO 'ULYLQJIRUFH '6& ( (QGJURXS (QHUJ\ FRKHVLRQ FRQILJXUDWLRQDO GLPHQVLRQOHVV
H[FHVV H[FHVVIUHH H[FKDQJH IUHH LQWHUDFWLRQ LQWHUFKDQJH LQWHUPROHFXODU LQWHUPROHFXODULQWHUDFWLRQ PL[LQJ (QULFKPHQW (QWDQJOHPHQW WXEH (QWKDOS\ FRQWULEXWLRQ LQWHUDFWLRQ PRODU SDUDPHWHU WUXH 3DJH
(QWURS\ FKDQJH FRPELQDWRULDO FRQIRUPDWLRQDO FRQWULEXWLRQ PL[LQJ PRODU SDUDPHWHU UHVLGXDO (SR[\UHVLQ (TXDWLRQRIVWDWH (TXLOLEULXP VWDWH WKLFNQHVV (WK\OHQHYLQ\ODFHWDWHFRSRO\PHU (XOHU/DJUDQJH(TXDWLRQ (YDSRUDWLRQ (YROXWLRQWLPH ([FHVVFKHPLFDOSRWHQWLDO ([FHVVYDOXH ([FKDQJHSDUDPHWHU
([RWKHUPLFHIIHFW ) )LOOHU )LOPWKLFNQHVV )ORU\7KHRU\ )ORU\+XJJLQV(TXDWLRQ )ORU\+XJJLQV7KHRU\ )ORU\+XJJLQV6WDYHUPDQ(TXDWLRQ )ORU\+XJJLQV6WDYHUPDQ7KHRU\ )ORU\ .ULJEDXP 2URILQR (TXDWLRQ )ORU\6FRWW(TXDWLRQ )OXFWXDWLRQV DPSOLWXGH VLQXVRLGDO )RUFHV DWWUDFWLRQ LQWHUPROHFXODU )RUZDUGUHFRLOVSHFWURVFRS\ )UDFWDOQDWXUH )7,5 )XPHVLOLFD )XUXNDZD7KHRU\ * *HH5HODWLRQ *HOSRLQW *HOV *LEEVIUHHHQHUJ\ *LQ]EXUJ/DQGDX(TXDWLRQ *\UDWLRQUDGLXV
+ +HDWFDSDFLW\ +HIODQG7DJDPL7KHRU\ +HOIDQG7KHRU\ +HOPKRO]IUHHHQHUJ\ +HQU\5DXO/DZ +HWHURJHQHLW\OHQJWK +LOGHEUDQG6FDWFKDUG(TXDWLRQ +LOGHEUDQG6FRWW$SSUR[LPDWLRQ +LOOHUW7KHRU\ +LUVFKIHOGHU(\ULQJ7KHRU\ +XJJLQV7KHRU\ +\GURJHQERQGLQJ +\GUR[\OJURXS , ,GHDOVROXWLRQ ,QKRPRJHQHLW\VFDOH ,QWHUDFWLRQ GLOXWLRQ GLSROHGLSROH HOHFWURVWDWLF HQHUJ\ SRO\PHUVROYHQW VHJPHQWVHJPHQW VSHFLILF V\PPHWULF WHUP XQIDYRUDEOH ,QWHUGLIIXVLRQ ,QWHUIDFH SRO\PHUSRO\PHU UHJLRQWKLFNQHVV ,QWHUIDFLDO SURILOH WHQVLRQ
3DJH
WKLFNQHVV ZLGWK ,QWHUIDFLDOWHQVLRQ ,QWHUIDFLDOWKLFNQHVV ,QWHUPROHFXODULQWHUDFWLRQ ,QWHUSKDVH ERXQGDU\ UHJLRQ WKLFNQHVV ZLGWK ,QWULQVLFYLVFRVLW\ ,QYHUVHJDVFKURPDWRJUDSK\ ,31 ,VRWDFWLF ,VRWKHUPDOFRPSUHVVLELOLW\ ,VRWRSLFHIIHFW ,VRWURSLFPHGLXP . .DPPHU7KHRU\ .DROLQ .DZDVDNL2KWD7KHRU\ .LQHWLFV .XKQ6HJPHQW .XUDWD
/DWWLFHFHOOPRGHO /D\HU DGMDFHQW DPRUSKRXV HQULFKHG LQWHUIDFLDO /&67 IDOVH /HLEOHU7KHRU\ /HQQDUG-RQHVSRWHQWLDO /LJKWVFDWWHULQJ /RFDOIOXFWXDWLRQV /\XSDQRY)XQFWLRQ 0 0DFURSKDVH 0DUN.XKQ+RXZLQNFRQVWDQW 0DUNRY(TXDWLRQ 0DWUL[ 0HDQILHOGWKHRU\ 0HDQILHOGDSSUR[LPDWLRQ 0HFKDQLFDODQDORJ\ 0HOW 0HOWLQJSRLQW GHSUHVVLRQ 0HWDVWDELOLW\ 0HWDVWDEOH HTXLOLEULXP VWDWH UHJLRQ ]RQH 0LFHOOH 0LFURSKDVH VHSDUDWLRQ VWUXFWXUH
0LVFLELOLW\ ELQDU\PL[WXUH ERUGHU ERXQGDULHV FRQGLWLRQ ORRS PXWXDO SDLU UHJLRQ ZLQGRZ 0L[LQJ HQHUJ\ HQWKDOS\ HQWURS\ IUHHHQHUJ\ 3DJH
IXQFWLRQV KHDW PROHFXODU QRQUDQGRP SDUDPHWHUV UHODWLYHGHQVLW\ 0L[WXUH ELQDU\ PRQRGLVSHUVH SRO\PHUSRO\PHU WHUQDU\ 0RGHO &DKQ+LOODUG FRQFHQWUDWHGVROXWLRQ ,]LQJ ODWWLFH PDLQILHOGODWWLFH PHDQILHOGELQDU\LQWHUDFWLRQ 5RXVH
0RODU IUDFWLRQ VXUIDFHDUHD YROXPH 0ROHFXODU DWWUDFWLRQ ILHOG PDVV PL[LQJ YROXPH ZHLJKW 0RQWH&DUORVLPXODWLRQ 0RUSKRORJ\ 1 105 1RVH7KHRU\ 1XFOHDWLRQ PHFKDQLVP 1XFOHL IRUPDWLRQ QXPEHU JURZWK 2 2KWD1R]DNL7KHRU\ 2QVDJHUFRHIILFLHQW 2UGHUSDUDPHWHU 2ULHQWDWLRQFRQWULEXWLRQ 2UQVWHLQ=HUQLNHIRUP 2VPRPHWU\ 2VPRWLFSUHVVXUH 2VWZDOGULSHQLQJ 3 3DLULQWHUDFWLRQ 3DUDPHWHURIWUDQVLWLRQ
3KDVH DPRUSKRXV EHKDYLRU FRH[LVWLQJ FRQWLQXRXV GLDJUDP GLVSHUVHG GLVVROXWLRQ HQULFKHG HTXLOLEULXP KRPRJHQHRXV VHSDUDWLRQ VWDELOLW\ VWDWH WHUQDU\ WUDQVLWLRQ 3RLVVRQ5DWLR 3RODUJURXSV 3RO\EXWDGLHQH 3RO\DON\ODFU\ODWH 3RO\DON\OPHWKDFU\ODWH 3RO\DOSKDPHWK\OVW\UHQH 3RO\EXW\OPHWKDFU\ODWH 3RO\GLPHWK\OVLOR[DQH 3RO\HWK\OHWK\OHQH 3RO\HWK\OHQHGLSKHQ\OHWKHU 3RO\HWK\OHQHJO\FRODGLSDWH 3RO\HWK\OHQHJO\FRO 3RO\HWK\OHQHR[LGH 3RO\K\GUR[\HWKHU 3RO\PHWK\OPHWKDFU\ODWH 3RO\PHWK\OPHWKDFU\ODWH 3RO\QDSKWK\OPHWKDFU\ODWH 3RO\SKHQ\OHQHR[LGH 3RO\SURS\OHQHJO\FRO 3RO\YLQ\ODFHWDWH
3DJH
3RO\YLQ\ODOFRKRO 3RO\YLQ\OEURPLGH 3RO\YLQ\OFKORULGH FKORULQDWHG 3RO\YLQ\OHWK\OHQH 3RO\YLQ\OIOXRULGH 3RO\YLQ\OPHWK\OHWKHU 3RO\YLQ\OQDSKWKDOHQH 3RO\YLQ\OSKHQRO 3RO\YLQ\OLGHQHIOXRULGH 3RO\DPLGH 3RO\EXWDGLHQH 3RO\EXWHQH 3RO\FDSURODFWRQH 3RO\FDUERQDWH 3RO\HVWHUV 3RO\HWKHUV 3RO\HWK\OHQH FKORULQDWHG 3RO\LVREXW\OHQH 3RO\LVRSUHQH 3RO\LVRSURS\OHQH 3RO\PHU DIILQLW\ DOOR\V DPRUSKRXV ELQDU\PL[WXUHV FKDLQ FRLO FRPSDWLEOHSDLUV FRQIRUPDWLRQ FU\VWDOOLQH GHQVLW\ GHXWHUDWHG IOH[LELOLW\ JXHVW KRVW
PLVFLEOHSDLUV PL[LQJ PL[WXUH PL[WXUHV SDLUV VHJPHQW 3RO\ROHILQHV 3RO\SURS\OHQH 3RO\VW\UHQH 3RO\XUHWKDQH 3RURG/DZ 3UHFLSLWDWLRQ 3UHIHUHQWLDODWWUDFWLRQ 3UHVVXUH FRQVWDQW 3ULJRJLQH)ORU\(TXDWLRQ 3ULJRJLQH)ORU\3DWWHUVRQ(TXDWLRQ 3ULJRJLQH3DWWHUVRQ7KHRU\ 3URWRQDWHG 4 4XDVLFU\VWDOOLQH 4XHQFKLQJ 5 5DGLXV J\UDWLRQ VSKHULFDOGRPDLQ 5DQGRPSKDVHDSSUR[LPDWLRQ 5DXO/DZ 5HJLRQ PHWDVWDEOH SUHFULWLFDO 5HLQIRUFHPHQW 5HOD[DWLRQSURFHVV 5HSWDWLRQ
5HSXOVLRQ IRUFHV 5RH7KHRU\ 5RWDWLRQ LQWHUQDO 5RXVHPRWLRQ 5XEEHU 6 6$1 6DQFKH]/DFRPEH7KHRU\ 6DQGJODVV 6$;6 3DJH
6FDOHIDFWRU 6FDOLQJ IXQFWLRQ ODZ SULQFLSOH WKHRU\ XQLYHUVDO 6FKQHLHU(TXDWLRQ 6FRWW$SSURDFK 6FRWW7KHRU\ 6HJPHQW GHQVHO\SDFNHG OHQJWK QXPEHU VWDWLVWLFDO YROXPH 6HOIGLIIXVLYLW\ 6HSDUDWLRQ PHFKDQLVP PLFURSKDVH 6HTXHQFHGLVWULEXWLRQ 6KDZ3DUDPHWHU
6KHDUHIIHFW 6LJJLD0HFKDQLVP 6PDOODQJOHVFDWWHULQJRIKHDWQHXWURQV 6ROXELOLW\ GLDJUDP PXWXDO 6ROXWLRQ LGHDO LQILQLWHO\GLOXWH 6ROYHQW FRPPRQ WKHUPRG\QDPLFTXDOLW\ YROXPH 6RUEDWH SRODU 6RUSWLRQHTXLOLEULXP 6SLQRGDO ELPRGDO FKHPLFDO FRKHUHQW GHFRPSRVLWLRQ LVRWKHUPV PHFKDQLVP UHDO UHJLRQ 6WDWH PHWDVWDEOH QRQHTXLOLEULXP VWDEOH 6WDWLVWLFDO WKHRULHV 6WHUHRUHJXODULW\ 6WHULF KLQGUDQFH UHVWULFWLRQV 6WLUOLQJ)RUPXOD
6WRFNPD\HU(TXDWLRQ 6WUXFWXUDO FRQWULEXWLRQ IDFWRU 6WUXFWXUH ORFDOYDULDWLRQV PRGXODWHG 6XSHUFRROLQJ 6XUIDFH FRQWDFW HQHUJ\ HQULFKPHQW IUDFWLRQ LQWHUDFWLQJ OD\HU ORFDO VHJUHJDWLRQ VLODQL]HG WHQVLRQ 6\QGLRWDFWLF 6\VWHP SRO\PHUSRO\PHU SRO\PHUSRO\PHUVROYHQW SRO\PHUVROYHQW VWDELOLW\ WHUQDU\ 7 7DFWLFLW\ 7HPSHUDWXUH FULWLFDO GHPL[LQJ 3DJH
HXWHFWLF JODVVWUDQVLWLRQ SUHFLSLWDWLRQ
UHGXFHG 7HUSRO\PHUV 7KHUPDOH[SDQVLRQFRHIILFLHQW 7KHUPDOIRUFHV 7KHUPRG\QDPLF FRPSDWLELOLW\ SUREDELOLW\ 7KLQILOP 7UDQVLWLRQERXQGDU\ 7ULDGV 7XUELGLW\ 7XUELPHWU\ 8 8&67 IDOVH 8QLIRUPGLVWULEXWLRQ 9 YDQGH:DDOVHTXDWLRQ YDQGHU:DDOV5XOH 9DSRUVRUSWLRQ 9LULDOFRHIILFLHQW YLULDOH[SDQVLRQ 9LVFRVLW\ 9ROXPH FKDQJH GHQVHO\SDFNHG H[FHVV H[FOXVLRQ IUDFWLRQ IUHH PLQLPXP UHGXFHG UHWHQWLRQ VSHFLILFUHWHQWLRQ 9ULM5RHEHUVHQ7KHRU\ : :DYHQXPEHU JOREDO
<