This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
= ( b y V I I ; ( 4 . 1 2 ) )
4 96
ALGEBRAS WITH INVOLUTION
XV
1
f o r e v e r y f e L (G). Thus, t h e l a s t r e l a t i o n s y i e l d now ( 5 . 4 1 , and t h i s t e r m i n a t e s t h e p r o o f o f t h e theorem. I W e c l o s e t h i s s e c t i o n w i t h t h e f o l l o w i n g commentary, where w e
d i s c u s s t h e g e n e r a l i d e a b e h i n d t h e p r e c e d i n g Theorem 5 . 1 , p o i n t i n g So w e have t h e n e x t .
t h u s o u t p o s s i b l e a b s t r a c t forms of it a s w e l l .
Scholium 5.1. - By a n a l y z i n g t h e p r o o f o f t h e above Theorem 5.1 , w e r e a l i z e t h a t t h e main i n g r e d i e n t i n it i s t h e c l a s s i c a l SNAG Theor e m (Theorem 3 . 1 ) . This i s c o n c l u d e d i f o n e a l s o c o n s i d e r s t h e comment f o l l o w i n g C o r o l l a r y 2 . 1 a s w e l l a s t h e g e n e r a l a r g u m e n t a t i o n i n C h a p t . X1V;Section 2 . So by t a k i n g f u r t h e r ( 1 . 9 ) i n t o a c c o u n t , one c a n a p p l y a s i m i -
l a r argument t o t h a t o f Lemma 1 . I
,
f o r i n s t a n c e ( o r y e t s e e a l s o (2.11)),
t o g e t a n " i n t e g r a l r e p r e s e n t a t i o n " of t h e a l g e b r a morphism ( r e p r e s e n t a t i o n ) of t h e t o p o l o g i c a l a l g e b r a c o n s i d e r e d . Then, it i s c e r t a i n l y c l e a r t h a t following an analogous reasoning t o t h e preceding one,
as w e l l a s t h e g e n e r a l l i n e o f t h o u g h t d e v e l o p e d h i t h e r t o , one i s l e d t o t h e following conclusion:
h e can consider a "spectral decomposition" of t h e form h
( 5 . 4 ) f o r a suitable topological tensor product algebra E Q F T
(5.11)
r e l a t i v e t o a given pair o f "eomuting representations" of t h e algebras E , F . N o w c o n c e r n i n g t h e t y p e of t o p o l o g i c a l a l g e b r a s which might b e
c o n s i d e r e d above, o n e c a n t a k e , f o r example, t h a t of t h e a l g e b r a E i n t h e p r e v i o u s Theorem 5 . 1 ;
t h e t e n s o r i a l topology
T
under considera-
t i o n s h o u l d a l s o be a f a i t h f u l o n e ( c f . Theorem X I I I ; 4 . 1 ) . F u r t h e r m o r e , i n view o f Theorem X I V ; 2 . 1
,
the topological algebras
considered need not necessarily be bounded ones. ( A s i m i l a r r e l a t i o n t o ( 5 . 7 )
i s t r u e , of c o u r s e , f o r a l g e b r a s of t h e form C,(m(E)); c f . , f o r example, Lemma X I I ; 1.4).0n t h e o t h e r h a n d , t h e a l g e b r a s E , F c o u l d have a l s o l o c a l l y compact and o-compact ( h e n c e , hemicompact) spectra. W e c a n t h e n a p p l y Theorem X I I ; 1 . 2
Ccfm(F)) being
and b e s i d e s (2.12), t h e a l g e b r a s
c c C ? ? Y ( E ) )and
now F r g c h e t ( c f . S . WARNER [5: p. 267, Theorem 2 1 1 .
I n c o n c l u s i o n , one m i g h t c o n s i d e r t h e p r e c e d i n g l i n e s a s a h i n t t o a possible (finite!)
rem.
"topological tensor product anatogon"
of
SNAG
Tho-
6.
491
APPENDIX
6. Appendix: Enveloping locally m-convex C*-algebras W e c o l l e c t i n t h i s a p p e n d i x s e v e r a l r e m a r k s c o n c e r n i n g a cert a i n t y p e o f t o p o l o g i c a l * - a l g e b r a s which seems t o b e of p a r t i c u l a r i n t e r e s t i n connection with t h e t h e o r y of * - r e p r e s e n t a t i o n s
Of
toPo-
l o g i c a l * - a l g e b r a s . T h i s argument c o u l d a l s o be c o n s i d e r e d a s a n a t u r a l o u t g r o w t h of t h e machinery d e v e l o p e d so f a r . T h u s , w e f i r s t g i v e , i n p a r t i c u l a r , a n example of a ( c o m t a t i v e ) topological *-algebra whose en -
veloping ( l o c a l l y m-convex) C*-algebra is a barrelled &-algebra (and in f a c t a Banach algebra). T o make o u r e x p o s i t i o n more c o m p r e h e n s i b l e , w e f i r s t r e c a l l t h e corresponding d e f i n i t i o n s of t h e b a s i c n o t i o n s t h a t w e a r e going t o a p p l y b e l o w . ( H o w e v e r , f o r f u r t h e r d e t a i l s of t h e t e r m i n o l o g y a p p l i e d
w e r e f e r t o M. FRAGOULOPOULOU [ 2 ] ) . Thus , s u p p o s e w e h a v e a I c c a l l y m-eonvex *-algebra ( E ; r = pa la I) w i t h a continuous i n v o l u t i o n ( c f . S e c t i o n 2 ) , h a v i n g a l s o a bounded approxi-
mate i d e n t i t y (see C h a p t . X I V ; S e c t i o n 1 ) . NOW, o n e d e f i n e s on E a new family, say, W a e 1
(6.1)
o f *-preserving semi-norms s a t i s f y i n g ( 2 . 3 ) . ( C*-semi-norms" ; t h e s e a r e , i n f a c t , subtnultipZicative o n e s : See 2 . SEBESTeN [I: p. 2 , Theorem 21 ) T h u s ,
.
t h e p r e v i o u s f a m i l y i s g i v e n by t h e r e l a t i o n
H e r e R,(E)
d e n o t e s t h e set o f c o n t i n u o u s r e p r e s e n t a t i o n s of E i n H i l -
bert s p a c e s ( w i t h r e s p e c t t o t h e uniform o p e r a t o r t o p o l o g i e s ) such t h a t one h a s
I / @(xl/I
(6.3)
k.pa(d,
xeE,
f o r some k > 0 (see M. FEAGOULOPOULOU [ 2 : p. 68, Lemma 4 . I ] ) ( 6 . 1 ) d e f i n e s E as a l o c a l l y m-convex C*-algebra,
.
So t h e f a m i l y
t h e t o p o l o g y o f which i s , i n
g e n e r a l , weaker t h a n t h e i n i t i a l l y g i v e n t o p o l o g y i n E . NOW, t h e envelaping ( l o c a l l y m-convex
n i t i o n , t h e "Hausdorff completion"
C*-l
aZgebra of E , i s , by d e f i -
( c f . N . BOURBAKI [ 4 : Chap. 2 ; p. 23,
D g f i n i t i o n 4 1 ) of t h e a l g e b r a E w i t h r e s p e c t t o t h e f a m i l y of s e m i norms ( 6 . 1 ) ; h e n c e , by i t s d e f i n i t i o n , a complete l o c a l l y m-convex C*-algebra. W e d e n o t e it by E I E ) . The l a t t e r a l g e b r a h a s f o r t h e r e p r e s e n t a t i o n t h e o r y o f E t h e
s a m e i m p o r t a n t s i g n i f i c a n c e a s t h e a n a l o g o u s one does f o r t h e c l a s s i c a l case o f t h e r e p r e s e n t a t i o n t h e o r y o f Bariach * - a l g e b r a s . S e e , f o r
498
XV
i n s t a n c e , J . D I X M I E R [I]
ALGEBRAS WITH I N V O L U T I O N
and
[2: p. 69,
M . FRAGOULOPOULOU
Theorem 4 . 1 1 . But
i n d e a l i n g w i t h r e p r e s e n t a t i o n s of t o p o l o g i c a l * - a l g e b r a s and of t h e a s s o c i a t e d a l g e b r a s E I E ) , a s a b o v e , a c e r t a i n s p e c i a l c l a s s of l o c a l l y in-convex a l g e b r a s seems t o p l a y a p a r t i c u l a r r61e. Namely, t h o s e l o c a l l y rn-convex
*-algebras
( w i t h c o n t i n u o u s i n v o l u t i o n and a bounded
a p p r o x i m a t e i d e n t i t y ) , f o r which t h e c o r r e s p o n d i n g ( e n v e l o p i n g ) a l q e bra E(E)
b a r r e l l e d l o c a l l y m-convex &-algebra ( s e e M . FRA-
is, i n e f f e c t , a
COULOPOULOU [2: p. 70, D e f i n i t i o n 4 . 2 1
and [5: p . 18 f f . ] ) . Now, a (com-
p l e t e ) a l g e b r a o f t h e l a t t e r t y p e i s made i n f a c t i n t o a ( " n o r m a b l e " ) C*-algebra
( L a s s n e r ' s Theorem : C f . G . LASSNER [l] a n d / o r
Theorems 2 . 2 , 2 . 3 1
f o r a s h o r t e r p r o o f o f t h e same r e s u l t ) . So w e a r e
l e d t o a t h e o r e t i c account theory ( ! )
M . FRAGOULOPOULOU [7:
( a t l e a s t ) f o r t h e bounds of t h e r e l e v a n t
.
W e come n e x t t o t h e d i s c u s s i o n of t h e ( c o m m u t a t i v e ) example a l -
r e a d y p r o m i s e d a t t h e b e g i n n i n g of t h i s s e c t i o n . Then, r e l y i n g o n t h i s ,
w e a l s o g i v e a n a n a l o g o u s non-commutative
example of t h e afore-men-
t i o n e d t y p e of t o p o l o g i c a l a l g e b r a s . So w e f i r s t h a v e t h e f o l l o w i n g . Example 6 . 1 . - Suppose t h a t w e a r e g i v e n a second countable Cm-manifold X . F u r t h e r m o r e ,
complex-valued
c -functions m
f i n i t e dimensional compact
l e t c"iX) b e t h e a l g e b r a of
on X c o n s i d e r e d a s a * - a l g e b r a by com-
e%
p l e x c o n j u g a t i o n of f u n c t i o n s . Thus,
is a
( c o m m u t a t i v e ) FQ ( F r 6 -
c h e t & ) - l o c a l l y m-convex *-algebra ( w i t h a n i d e n t i t y e l e m e n t ) : By Example I V ; 4. (2) ( c f . I V ; ( 4 . 1 9 ) )
,
e"(X) is a
F r g c h e t l o c a l l y m-convex a l g e b r a
whose s p e c t r u m i s (homeomorphic t o ) X
(Theorem V I I ; 2 . 1 ) .
Hence, b y
Lemma V I ; 1 . 3 ( s e e a l s o C o r o l l a r y V I ; 1.1 and P r o p o s i t i o n V ; l . l ) ,
c (X) m
i s a & - a l g e b r a t o o . Moreover it i s c l e a r from I V ; ( 4 . 1 3 ) t h a t t h e a l g e b r a i n q u e s t i o n h a s a continuous invoZution ( i n f a c t , t h e i n v o l u t i o n s a t i s f i e s ( 2 . 1 ) ) . So w e h a v e now t h e f o l l o w i n g : The enveloping ( l o c a z l y m-convex C*-) algebra of c m ( X ) is t h e (commutative P - ) algebra e J X ) ; i.e., one has t h e
re l a t i o n (6.4)
E(C-W
=
eu(X),
& t h i n an isomorphism of t o p o l o g i c a l algebr-as .
Of c o u r s e , h e r e cu(X) s t a n d s f o r t h e a l g e b r a of complex-valued cont i n u o u s f u n c t i o n s on X , endowed w i t h t h e t o p o l o g y u o f u n i f o r m c o n v e r g e n c e i n X. N o w t o p r o v e t h e p r e v i o u s a s s e r t i o n , w e make u s e o f t h e f o l l o w i n g r e s u l t which a l s o h a s a n i n d e p e n d e n t i n t e r e s t i n c o n n e c t i o n w i t h
6. APPENDIX
499
some other context (TopologicaZ Algebraic Geometry ; see, for instance, A . V. FERREIRA - G . T O M A S S I N I
Lemma 6.1.
[I: p. 473, Lemma 0.I]
)
. So
we have.
Let E b e a c o m u t a t i v e a d v e r t i b l y complete l o c a l l y m-convex alge-
bra w i t h an i d e n t i t y element and s p e c t m
m(E),having
a l s o a continuous Gel’fand
map. Then, the f o l l o w i n g t h r e e propositions are e q u i v a l e n t : 1 ) E i s a Q-algebra. 2) m ( E )
i s a weakly compact subset of E’.
3 ) The topology of E can be defined by a f a m i l y
=
of submulti-
p l i c a t i v e semi-norms i n such a way t h a t , f o r every U E I ,one has t h e r e l a t i o n
(6.5)
=m(gcl),
m ( E ) =???(Ea)
w i t h i n homeomorphisms
(cf.Chapt. V; Lemma 6.3 for the notation applied)
.
Proof. We first have that l ) - 2 ) , according to Lemma VI; 1.3. Furthermore, if (6.5) is true, since E is a (commutative) Banach alc1 gebra with an identity element, m(ga)2 m ( E l C Ei will be compact, so that by hypothesis for E an equicontinuous subset of E‘ (cf. Theorem VI; 1.1). Therefore, E is a Q-algebra as well (Lemma VI; 1.3)] i.e., h
.
3) 4 1) On the other hand, suppose that E is a Q-algebra; then (the same lemma, as above, or yet Proposition 11; 7.1)] m ( E ) is an equicontinu-
n=
ous subset of E‘. Consequently, if ( Uc1 )Cfer is a local basis of E corresponding to an Arens-Michael decomposition of it (see Theorem 111; 3.1), then there exists an index c1 E l such that
m(E)C
(6.6)
(Uc1i0
(cf. J . HORVATH [I: p. 2 0 0 , Proposition 61). So by Lemma V ; 6.3 (cf. V; (6.23)), one has (6.7) within homeomorphisms, while the analogous relation is obviously true for every C L ’ E I ,with a’>a .Therefore, by considering the set (6.8)
I
c1
a
i a ’ e l : a‘> a }
]
where c1 E I is determined by (6.6), one finds a c o f i n a l s u b s e t of I . S o we may restrict ourselves to the subsystem = (Ucl,)a,eIcl of n which
ncl
still defines the same topology in F. Accordingly, the same provides a corresponding family of submultiplicative semi-norms (see Proposition I; 3.2) for which (6.7) is in force. So we have proved that 1) implies 3) as well, and this completes the proof of the lemma. I
So we come next to the
500
XV ALGEBRAS WITH INVOLUTION
m(cw(X)) = X (Theorem V I I ;
Proof of ( 6 . 4 ) . S i n c e
2.1),
one g e t s
( S t o n e - W e i e r s t r a s s Theorem)
C-~XI
(6.9)
(see a l s o V I I ; (2.1)
ep)
=
and L . NACHBIN [4: p. 48, C o r o l l a r y 2 , a n d Remark I]).
Now l e t u s p u t , f o r c o n v e n i e n c e , E
= C m ( X ) , and l e t (;,IaeI
be
t h e f a m i l y of commutative Banach * - a l g e b r a s a r i s i n g from a n Arens-Mic h a e l d e c o m p o s i t i o n o f E . Moreover, d e n o t e by
R;(E)
t h e set of
(topo-
l o g i c a l l y ) i r r e d u c i b l e * - r e p r e s e n t a t i o n s $ of E ( i n H i l b e r t s p a c e s ) such t h a t
11 $ ( X I 11
2
palxi, x
t h e s u b s e q u e n t comment] )
.
E
E
.(See
M . FRAGOULOPOULOU [2: p. 67; (3.3)
T h u s , one g e t s
Rile) = R'(za/
,
and
within a bi-
j e c t i o n ( i b i d . ; p . 67, P r o p o s i t i o n 3 . 5 ) . Here t h e s e c o n d member o f t h e l a s t r e l a t i o n s t a n d s f o r t h e s e t o f a l l c o n t i n u o u s ( t o p o l o g i c a l l y ) irr e d u c i b l e * - r e p r e s e n t a t i o n s of t h e c o m m u t a t i v e Banach * - a l g e b r a C o n s e q u e n t l y ( c f . e . g . R.D. MOSM [1:p.70, = R*(i? I
R'IEI
(6.10)
c1
Corollary 6.4]),
=m(i? = (Lemma 6.1) a =m(Ea.)
kcu.
one g e t s
m(,Pi
( w i t h i n b i j e c t i o n s ) , f o r e v e r y a E I. Moreover, i f $ E m ( E ) and
i s the
one h a s
a s s o c i a t e d e l e m e n t i n ??Z($,),
$a(xa) = @(xi,
(6.11)
h
f o r e v e r y aEI, w i t h Z E E and zcl= [ z I a e E c 1 ( c f . V ; ( 6 . 1 6 ) ) . Thus, c o n s i d e r now t h e ( s u b m u l t i p l i c a t i v e ) C*-semi-norms i n g t h e C*-loealZy m-convex topology ( o f
defin-
t h e e n v e l o p i n g a l g e b r a ) of B ( c f .
( 6 . 2 ) a n d M. FRAGOULOPOULOU [2: p. 68, Lemma 4 . I ] ) ; t h e n w e h a v e (6.12)
sup
@ f o r every
c1
/ I mcx) I1
E R&(EI
=
s u p I1 @(dII = @ E ???(El
II 2 I l m
f
E I . T h e r e f o r e , t h e p r e v i o u s topology i s i n f a c t t h e "sup-
norm" t o p o l o g y i n
CtXl.
On t h e o t h e r h a n d , t h e e n v e l o p i n g l o c a l l y m-
convex C*-algebra of ew(X) i s , b y d e f i n i t i o n , t h e ( H a u s d o r f f ) complet i o n of t h e l a t t e r a l g e b r a w i t h r e s p e c t t o t h e t o p o l o g y d e f i n e d by t h e semi-norms
( 6 . 1 2 ) , h e n c e , a c t u a l l y by t h e "sup-norm", o n a c c o u n t
of t h e same r e l a t i o n . T h i s f i n a l l y p r o v e s t h e a s s e r t i o n , b e c a u s e of (6.9). I
Now r e l y i n g on t h e p r e c e d i n g Example 6 . 1 a s w e l l a s on t h e t e c h n i q u e of t o p o l o g i c a l t e n s o r p r o d u c t a l g e b r a s , w e s t i l l o f f e r a n o t h e r example of t h e t y p e c o n s i d e r e d a b o v e , b u t where now ( a s w e a l s o p r o mised i t e a r l i e r ) t h e i n i t i a l ( l o c a l l y m-convex) bra is
non-commutative
t o p o l o g i c a l *-alge-
( a n d t h e same i s t r u e f o r t h e r e s u l t i n g e n v e l o p -
ing algebra). So w e have t h e n e x t
6.
L e t u s assume t h a t t h e c o n d i t i o n s i n t h e p r e v i o u s
Example 6 . 2 . Example 6 . 1 ,
50 1
APPENDIX
concerning t h e d i f f e r e n t i a l manifold X considered, a r e
s a t i s f i e d . Moreover, s u p p o s e t h a t G i s a l o c a l l y compact group C* ( G ) b e t h e
group C*-algebra
G; i.e.
of
c*(G) :=
(6.13)
,
and l e t
o n e h a s , by d e f i n i t i o n ,
E(L'(G))
.
I n o t h e r words, o n e c o n s i d e r s t h e e n v e l o p i n g (normed) C * - a l g e b r a
of
1
( t h e Banach * - a l g e b r a ) L - i G ) ( c f . C h a p t . V I I ; S e c t i o n 4, and J. DIXMIER [l : p. 2701 )
.
Furthermore, c o n s i d e r t h e f o l l o w i n g " g e n e r a l i z e d group
a l g e b r a " of G
(see Theorem X I ; 5 . 1 , a n d X I ; ( 5 . 1 4 )
t o g e t h e r w i t h t h e subsequent c o m -
ment t h e r e ) . NOW, by h y p o t h e s i s f o r X , t h e a l g e b r a ( 6 . 1 4 ) i s a Frdchet
l o c a l l y m-convex *-algebra ( w i t h a c o n t i n u o u s i n v o l u t i o n ; t h e l a t t e r a s s e r t i o n f o l l o w s e a s i l y from t h e r e l e v a n t comment on ( 4 . 1 ) ) . Moreover, t h i s algebra i s
non-comutative
( u n l e s s G i s a b e l i a n ! S e e a l s o L . H . LOO-
MIS [I: P. 123, Theorem 31C1). On t h e o t h e r h a n d , one has t h e r e l a t i o n E ~ L ~ ~G " , c
(6.15)
x i i i=
ep, c*(G)),
within an isomorphism of topological algebras. The s e c o n d member of t h e C * - a l g e b r a of c o n t i n u o u s C*(Gl-valued f u n c t i o n s on X: I n d e e d , by ( 6 . 4 )
4.21,
,
(6.15)
is
( 6 . 1 4 ) , a n d M. FRAGOULOPOULOU [5: p. 134, C o r o l l a r y
one h a s t h e f o l l o w i n g
= ( c f . M. TA'AKESAKIrl: p.211,
Theorem 4 . 1 4 1 )
C*(GIG q X ) = ( b y Theorem X I ; 1.1) c u ( X , E
C*(G)l
.
The p r e c e d i n g r e l a t i o n s a r e v a l i d , of c o u r s e , w i t h i n isomorphisms of t h e r e s p e c t i v e t o p o l o g i c a l a l g e b r a s . So w e h a v e p r o v e d ( 6 . 1 5 ) .
I n c o n c l u s i o n , ( 6 . 1 4 ) p r o v i d e s a n example of a inon-commutative) l o c a l l y m-convex *-algebra whose enveloping algebl-a ( g i v e n by ( 6 . 1 5 ) ) i s ( t o p o l o -
gizable a s ) a ( n o m e d ) C*-algebra.
This Page Intentionally Left Blank
503
BIBLIOGRAPHY
M. Abel 1. Description o f l i n e a r m u l t i p l i c a t i v e f u n c t i o n a l s in algebras of continu-
ous f u n c t i o n s . UC. z a p . T a r t u s k . U n i v . 4 3 0 ( 1 9 7 7 ) , 1 4 - 2 1 . [ R u s r i a n l . 2 . Tensor products of spaces of vector-valued f u n c t i o n s . U E . z a p . T a r t u s k . Univ. 448(1978), 3-11.[Russian].
3 . Description o f closed i d e a l s i n algebras o f continuous vector-valued funct i o n s . M a t . Zametki 3 0 ( 1 9 8 1 ) , 7 7 5 - 7 8 4 . [ R u s s i a n ] . M. Akkar 1. %r l a s t r u c t u r e des algdbres topologiques localement niultiplicativement convexes. C . R . Acad. S c . P a r i s
279(1974), 941-944.
J. Alcantara - D.A. Dubin 1. I*-algebras and t h e i r a p p l i c a t i o n s . P u b l . RIMS, K y o t o U n i v . 1 7 ( 1 9 8 1 ) , 179-199. H. Alexander 1. Analytic f u n c t i o n s in Banach spaces. P h . D . T h e s i s , U n i v . o f C a l i f . , Berkeley, 1 9 68 G.R.
.
Allan 1. A spectral theoiy f o r l o c a l l y convex algebras. P r o c . L o n d o n Math. S o c .
15(1965), 3 9 9 - 4 2 1 . 2 . On a class o f l o c a l l y convex aZgebras. P r o c . L o n d o n Math. S o c . 1 7 ( 1 9 6 7 ) , 91-114.
3 . An extension o f t h e Silov-Arens-Calderdn
Theorem. J . L o n d o n Math. SOC
4 4 ( 1 9 6 9 ) , 595-LUl.
G.R. A l l a n -H.G.
Dales -J.P.
McClure
1. Pseudo-Banach algebras. S t u d i a Math. 4 0 ( 1 9 7 1 ) , 5 5 - 6 9 .
G. A m u r i r i f e i
1. Topological algebras w i t h i n v e r t i b l e
elements. B u l l . U n i v . B r a s o v .
Ser. C 1 9 ( 1 9 7 7 ) , 1 - 4 ( 1 9 7 8 ) . [ R o m a n i a n ] . C. Andreian Cazacu
1. Theorie der Funktionen mehrerer komplexer Vercinderlicher. B i r k h a k e r Verlag, Basel, 1975.
.
BIBLIOGRAPHY
504
C. Apostol
1. b*-algebras and t h e i r representation. J. London M a t h . SOC. 3 (197 1) , 30-38.
J. A r a h o v i t i s 1. Spectral dynamical systems. Comment. M a t h . 21( 1979), 9-22.
2. Topological algebra representations o f topological groups. J . Math. A n a l . A p p l . 77(1980),
225-244.
3 . On various t y p e s o f barrelledness o f a topological algebra. Yokohama M a t h . J. 32(1984),
1-13.
4. *-flows and almost p e r i o d i c i t y ( t o a p p e a r ) . R. Arens 1. Convex topological algebras. B u l l . A m e r . M a t h . S o c . 52(1946), p . 829 (
:52-9-336). w
2 . The space L and convex topological r i n g s . Bull. Amer. M a t h . S o c . 52 (1946), 931-935. 3 . Pseudo-normed algebras. B u l l . A m e r . M a t h . S O C . 53(1947), p . 69(: 531-93).
4. Linear topological d i v i s i o n algebras. Bull. A m e r . M a t h . SOC. 53(1947), 623-630.
5 . A g e n e r a l i z a t i o n of nomned r i n g s . P a c i f i c J. M a t h . 2(1952), 455-471. 6 . Dense i n v e r s e l i m i t r i n g s . M i c h i g a n M a t h . J. 5(1958), 169-182. 7. The a n a l y t i c f u n c t i o n a l c a l c u l u s i n commutative topological algebrr . Pac i f i c J . Math. 11(1961), 4 0 5 - 4 2 9 . R. Arens -A.P.
Calder6n
1. A n a l y t i c f u n c t i o n s o f s e v e m l Banach algebra elements. Ann. o f Math.
62(1955), 204-216.
A. A r o s i o 1. Locally convex i n d u c t i v e l i m i t s o f normed algebras. R e n d . Sem. M a t h . U n i v . P a d o v a 51(1974),333-359. V. Aurich 1. The spectrum a s envelope o f holomorphy o f a domain over an a r b i t r a b produ c t of complex l i n e s . L e c t . Notes in M a t h . no 3 6 4 , S p r i n g e r - V e r l a g , B e r l i n , 1974. p p . 109-122. E. B a l l i c o -A.V. Ferreira 1. A s t r u c t u r a l property o f p ~ m ei d e a l s i n a topological noetherian algebra w i t h an a p p l i c a t i o n to complex a n a l y s i s . R e n d . A c c . L i n c e i 55(1978), 235-238. C. B i n i c a - 0 . S t Z n i s i l Z 1. Algebraic Methods i n t h e Global Theory o f Complex Spaces. J o h n W i l e y a n d Sons, London, 1976.
505
SIBLIOGRAPHY
-
E. Beckenstein L. N a r i c i - G . Bachman 1 . Maximal i d e a l s i n topoZogica2 algebras. J. anal. math. 25(1972),159161. 2 . Topological Algebras. North-Holland, Amsterdam, 1977.
H. Behnke - P. T h u l l e n 1
. Theom-e der Funktionen mehrerer komplexer
Veranderlichen ( 2nd edit ion 1.
Springer-Verlag, Berlin, 1970.
S.J. B h a t t 1 . A note on generalized B*-algebras. J. Indian Math.Soc. 43(1979), 253257. !I(
2 . On Arens' algebra L
.
Glasnik Mat. 15(1980), 305-312. 3 . Representability of p o s i t i v e f u n c t i o n a l s on a b s t r a c t s t a r algebras without i d e n t i t y w i t h applications t o l o c a l l y convex *algebras. Yokohama Math. J. 29(1981), 7-16.
F.T.
Birtel 1 . Uniform algebras with unbounded f u n c t i o n s . Rice Univ. Studies 54
(1958),no4, 1-13.
J.E. B j o r k 1. Analytic convexity and a n a l y t i c s t r u c t u r e s i n Banach algebras. Ark. Mat.
9(1971), 39-54. M. Bonnard 1 . Trois r 6 s u l t a t s
SUP
l e s l i m i t e s i n d u c t i v e s e t p r o j e c t i v e s d' algsbres lo-
calement convezes. C. R. Acad. Sc. Paris 260(1965), 2655-2657.
2 . Sur des applications du CaZcul fonctionnez holomorphe. B u l l . Soc. math. France, Memoire no 34(1967),5-54. 3 . Sur l e calcul fonctionnel holomorphe multiforme dans l e s algdbres topologiques. Ann. scient. Ec. N o r m . S u p . 2(1969), 397-422.
4. Sur Za d6eomposition d'une aZg2bre topologique en produit carte'sien d' i d e a m . Colloq. Math. 39(1978), 117-122.
F.F. Bonsal
- J.
Duncan
1. Complete Normed AZgebras. Springer-Verlag, Berlin, 1973.
H.J. B o r c h e r s - J . Yngvason 1 . On t h e aZgebra of f i e Z d operators. The weak c o m t a n t and i n t e g r a l decomp o s i t i o n of s t a t e s . Commun. math. Phys. 42(1975), R. B o t t - J . M i l n o r
231-252.
1. On t h e p a r a l l e l i z a b i l i t y of t h e spheres. Bull. Amer. Math. SOC. 64
(1958), 87-89. N. Bourbaki 1. Th6oorie des ensembles, Chap. 3. Hermann, Paris, 1967.
2. Algdbre,
asp. 1-3.
Hermann, Paris, 1970.
506
BIBLIOGRAPHY
3 . Algsbre, Chap. 4-5. H e r m a n n , P a r i s , 1 9 5 9 .
4. 5. 6. 7.
Topologie g & & a l e , Chap. 1-4. Hermann, P a r i s , 1 9 7 1 . Topologie gdn&ale,
Chap. 5-10. H e r m a n n , P a r i s , 1 9 7 4 .
Espaces v e c t o r i e l s topologiques, Chap. 1-2. H e r m a n n , P a r i s , 1 9 6 6 . Espaces v e c t o r i e l s topologiques, Chap. 3-5. H e r m a n n , P a r i s , 1 9 6 4 .
8. I n t g g r a t i o n , Chap. 1-4. 9. I n t & r a t i o n ,
Herrnann, P a r i s , 1 9 6 5 .
Chap. 5 . H e r m a n n , P a r i s ,
1967.
10. I n t d g r a t i o n , Chap. 7 , 3. H e r m a n n , P a r i s , 1 9 6 3 . 1 1 . VariLtLs d i f f 6 r e n t i e l l e . s e t anazytiques. Fuse. de r d s u l t a t s , §§ 1-7. Hermann, P a r i s ,
1967.
1 2 . Znndorie s p e c t r a l e s , Chap. 1-2. H e r r n a n n , P a r i s , 1 9 6 7 . F. B r i c k e l l
- R . S . Clark
1. D i f f e r e n t i a b l e ManifoZds. An I n t r o d u c t i o n . Van N o s t r a n d R e i n h o l d Co. London,
J.M.
,
1970.
Briggs 1 . F i n i t e l y generated i d e a l s i n regular F-algebras. P a c i f i c J . M a t h . 6 1 (i975),339-350.
R.M.
Brooks 1. Boundaries f o r l o c a l l y m-convex algebras. Duke ? l a t h . J . 3 4 ( 1 9 6 7 ) , 1 0 3 106.
2 . On l o c a l l y m-convex *-algebras. P a c i f i c J . Math. 2 3 ( 1 9 6 7 ) , 5 - 2 3 . 3. On commutative l o c a l l y m-convex algebras. Duke Math. J . 3 5 ( 1 9 6 8 ) , 257268.
4. On t h e spectrwn o f f i n i t e l y - g e n e r a t e d l o c a l l y m-convex algebras.
Studia
Math. 2 9 ( 1 9 6 8 ) , 1 4 3 - 1 5 0 .
5. On representing F*-algebras. P a c i f i c J . Math. 3 1 ( 1 9 7 1 ) , 5 1 - 6 9 . 6. A n a l y t i c s t r u c t u r e i n the s p c t m o f a natural system. P a c i f i c J . Math. 49(1973),
315-344.
7 . On t h e spectrwn o f an i n v e r s e l i m i t o f holomorphic f u n c t i o n algebras. A d v . Math.
1 9 ( 1 9 7 6 ) , 238-243.
R . Carmignani 1. A n a l y t i c continuation, enveZopes of holomo2rphy, and p r o j e c t i v e and d i r e c t
Z i m i t spaces. T r a n s . A m e r . Math. S O C . 2 0 9 ( 1 9 7 5 ) ,
R . Carpenter 1. Principal i d e a l s
in
F-aZgebras. P a c i f i c
237-258.
J . Math. 3 5 ( 1 9 7 0 ) ,
559-
563.
2 . Singly generated homogeneous F-algebras. T r a n s . A m e r . Math. S O C . 1 5 0 ( 1 9 7 0 ) , 457-468.
3 . Uniqueness of topology f o r e o m t a t i v e semisimple F-algebras. Math. S O C . 2 9 ( 1 9 7 1 ) ,
113-117.
Proc
. Amer .
507
BIBLIOGRAPHY
H. C a r t a n 1
. S6minaire
i c . Norm. S u p .
(
19 5 1 / 5 2 ) : Fonctions analytiques de plus-
i e u r s variables complexes. W . A . B e n j a m i n , I n c . , N e w Y o r k , 196;.
L. Chambadal -J.L. Ovaert
1 . AZgBbre l i n k a i r e e t aZgDbre t e n s o r i e l l e . Dunod, P a r i s , 1968. A.K.
Chilana
1. The space of bounded sequences with t h e mixed topology. P a c i f i c J. Math. 48(1973),
29-33.
2. Topological algebras u i t h a given dual. P r o c . A m e r
.
Math. S O C . 4 2
(1974), 192-197.
A.K.
C h i l a n a - V . Kaushik 1 . k b e d d i n g l o c a l l y convex algebras i n non A-convex algebras without non-
zero continuous m u l t i p l i c a t i v e l i n e a r f u n c t i o n a l s . P o r t u g a l . M a t h . 38
(1979), 79-96(1984). A.K.
C h i l a n a - S . Sharma 1. Locally boundedly m u l t i p l i c a t i v e l y convex algebras. M a t h . N a c h r .
77
(1977), 139-161. Th. C h r y s s a k i s 1. Nwnerical ranges i n localLy m-convex algebras, I (to a p p e a r ) .
2 . Spectra and numerical ranges i n topological algebras ( t o a p p e a r ) .
D. C l a y t o n 1 . A reduction of the continuous homomorphism problem for F-algebras. Rocky Mount.
A.C.
J . Math.
5(1975),
337-344.
Cochran
1. Weak A-eonvex algebras. P r o c . A m e r . M a t h . S o c . 26(1970), 73-77.
2 . Topological algebras and Muckey topologies. P r o c . A m e r 30(1971), 115-119. 3 . Inductive l i m i t s o f A-convex algebras. P r o c
.
Amer
.
.
Math. SOC.
M a t h . SOC. 3 7
(19731, 489-496. 4 . Representation o f A-convex aZgebras. P r o c . A m e r .
M a t h . S o c . 44(1973),
473-479. A.C.
Cochran- R. Keown-C.R.
Williams
1 . On a c l a s s o f topologicaz algebras. P a c i f i c J. M a t h . 34(1970),17-25.
A. C o l o j o a r B 1 . Alg&bre syme'trique du dual d' un espace nucZe'aire-DF. R e v . roum. math. p u r e s a p p l . 23(1978),
1317-1339.
2 . Sur Ze thkorDme de Poincark-Birkhoff-Witt. a p p l . 25(1980),
Rev. roum. m a t h . p u r e s
1327-1347.
I . ColojoarZ 1. Elemente de t e o r i e s p e c t r a l z . E d . A c a d . R e p . SOC
. Romsnia ,
BucureSti,
508
BIBLIOGRAPHY
1968. J.F. Colombeau 1. D i f f e r e n t i a l Calculus and Holomorphy. North-Holland
, Amsterdam, 1982.
2. New Generalized Functions and Multiplication of D i s t r i b u t i o n s . NorthHolland, Amsterdam, 1984. P.M.
Cohn
1. Algebra, Vol. 2 . John Wiley and Sons, London, 1977.
I.G. Craw 1 . Factorization i n FrLchet algebras. J. London Math. S O C .
44(1969),
607-611.
2 . A condition equivalent t o the c o n t i n u i t y of characters on a Frgchet algebra. Proc. London Math. SOC. 22(1971), 452-464.
H.G. Dales 1. Automatic c o n t i n u i t y : A sumrey. Bull. London Math. S O C . 10(1978),
3/9-18?. 2. Discontinuous homomorphisms from topological algebras. Amer. J. Math.
101(1979), 635-646. J.T. Daly
1. On L i o u v i l l e F-algebras. Studia Math. 40(1971),
1-16.
Z. Daoul t z i -Ma1 amou
1 . Strong spectral c o n t i n u i t y i n topological matrix a2gebras (to appear) B.H.
.
Dayton 1. SKI of c o m t a t i v e nomed algebras. “Algebraic K-Theory”, Evanston
1976. Lecture Noies in Math., No 551. Springer-Verlag, Berlin, 1976. pp. 30-43. W . D i e t r i c h , Jr. 1. The maximal i d e a l space of t h e topological algebra C(X, E l . Math. Ann.
183(1963), 201-212. 2 . The GeZfand degree of a topological algebra. Math. Ann. 189(1970), 285-298. 3 . Function algebras on completely regular spaces. Diss . , Northwestern Univ., Evanston, Ill., 1971. 4 . On the idea2 s t m c t u r e o f e l x i . Trans. Amer. Math. SOC. 152(1970), 61-77. S. Dineen
1. Complex Analysis i n Lccclly Convex Spaces. North-Holland
1981.
J . Dixmier 1. C*-algebras. North-Holland, Amsterdam, 1977.
,
Amsterdam,
509
BIBLIOGRAPHY
P.G.
Dixon 1. Generalized B*-algebms.
Proc
. London
Math S o c
2 . An embedding theorem f o r commutative Bo-aZgebras.
. 2 1 ( 1 970 ) , 6 9 3- 7 1 5 . S t u d i a Math. 4 1
( 1 9 7 7 2 ) , 163-168.
P.G. Dixon- D.H.
Fremlin
1. A remark concerning m u l t i p l i c a t i v e f u n c t i o n a l s on LMC algebras. J. L o n don Math.
A.G.
SOC.
5(1972),
231-232.
Dors 1. On t h e s p e c t m of an F-algebra.
P h . D . T h e s i s , U n i v . of U t a h , 1 9 7 0 .
2 . A Frdchet algebra example. P r o c . A m e r . M a t h . S O C . 6 4 ( 1 9 7 7 ) , 6 2 - 6 4 . M. Dostdl 1. Remark on t h e t e n s o r algebras. C o m m e n t . Math. U n i v . C a r o l i n a e 3 / 4 ( 1 9 6 2 ) , 3-8.
M. Duboi s-Vi ol e t t e 1. A g e n e r a l i z a t i o n of t h e c l a s s i c a l moment problem on *-algebras w i t h applic a t i o n s t o r e l a t i v i s t i c quantum t h e o r y , I . Comrn. Math. P h y s . 4 3 ( 1 9 7 5 ) , 225-254.
2 . A g e n e r a l i z a t i o n of t h e c l a s s i c a l moment problem on *-algebras w i t h cipplic a t i o n s t o r e l a t i v i s t i c quantum t h e o r y , I I . C o m m . Math. P h y s . 5 4 ( 1 9 7 7 ) , 151-172.
E.J. Dubuc- H. Porta 1. Convenient c a t e g o r i e s of topological algebras. Bull. Amer
.
Math. SOC .
7 7 ( 1 9 7 1 ) , 975-979.
2 . Convenient c a t e g o r i e s o f topological algebras, and t h e i r d u a l i t y t h e o r y . J . P u r e A p p l . Algebra 1 ( 1 9 7 1 ) , 2 8 1 - 3 1 6 .
J . Dugundji 1 . Topology. A l l y n a n d B a c o n , I n c .
, Boston,
1966.
N. Dunford- J.T. Schwartz
1. Linear Operators, Part I . General Theory. I n t e r s c i e n c e P u b l .
, Inc. ,
N e w York, 1 9 5 7 .
A.V.
Ferreira
- G . Tomassini
1. F i n i t e n e s s p r o p e r t i e s of topological algebras, I . A n n .
Sc. Norm.
Sup.
Pisa 5(1978),471-488.
0. F o r s t e r 1. Primarzerlegung i n Steinschen Algebren. M a t h . A n n . 1 5 4 ( 1 9 6 4 ) , 307-329. 2 . Uniqueness of topology i n S t e i n algebras. “ F u n c t i o n Algebras”. Proc. I n t e r n . Symp.,Tulane
Univ.,1965.
S c o t t , Foresman Co.,
Glenview,
Ill.,
1966. pp.157-163.
3 . Zur iT7zeorie d e r Steinschen Algebren und Moduln. ; . l a t h . 376-405.
2. 9 7 ( 1 9 6 7 )
,
510
BIBLIOGRAPHY
4. Holomorpkiegebiete. Appendix to Chapt . VI H. Behnke-P. Thullen : Theorie der Funktionen mehrerer komplexer Veranderlichen. Springer-Verlag, Berlin, 1970 (2nd edition). p p . 134-147.
5. Funktionentkeoretische H i l f s m i t t e l i n d e r f i e o r i e d e r k o m t a t i v e n BanackAlgebren. Jber. Deutsch. Math.-Verein. 76(1974), 1-17.
6. Riemannsche FZZcken. Springer-Verlag, Berlin, 1917. English transl. : Lectures on Riemann Surfaces. Springer-Verlag, Berlin, 1981. M. Fragoulopoulou 1. I n t e g r a l representations of l i n e a r forms on topological algebras. Comment.
Math. 21(1979), 43-53. 2 . Spaces o f r e p r e s e n t a t i o n s and enveloping l.m.c.*-algebras.
Pacific J.
Math. 95(1981), 61-73. 3 . Abstract Bochner-Weil-Raikov
theorem i n topological algebras. B u l l .
Austral. Math. S o c . 26(1982), 39-44. 4. *-semisimplicity of t e n s o r product 2.rn.c. *-algebras.
J . Math. Anal.
Appl. 90(1982), 431-439.
T.W.
B.R.
B.R.
I .M.
I.M.
5 . Representations o f t e n s o r product Z . m . c . *-algebras. Manuscr. Math. 42(1983), 115-1’+5. 6 . S y m e t r y and q - c o m t a t i v i t y in topological *-algebras. Period. Math. Hung. (to appear). 7 . On strong s p e c t r a l l y bounded 2.m.c. *-algebras (to appear). 8 . Kadison’s t r a n s i t i v i t y f o r Locally C*-algebras. J. Math. Anal. Appl. 108(1985), 422-429. Gamelin 1. Uniform Algebras. Prentice-Hall, Inc . , Englewoof Cliffs , N. J., 1969. Gelbaum 1 . Tensor products o f Banach algebras. Canad. J. Math. 11 (1959) ,297-310. 2 . Note on t h e t e n s o r product of Banach algebras. Proc. Amer. Math. SOC. 12(1961), 750-757. 3 . Tensor products and r e l a t e d questions. Trans. Amer. Math. S o c . 103 (1962), 525-548. Gelbaum- A. Kyriazis 1. Fiber t e n s o r product bundles. Proc. Amer. Math. S o c . 93(1985), 675-680. Gel’fand - D.B. Fuks 1 . Cohomologies o f L i e algebra o f t a n g e n t i a l v e c t o r f i e l d s o f a smooth manif o l d . Funkt. Anal. Prilozh. 3(1969), 32-52.=English transl. Funct. Anal. Appl. 3(3)(1969), 194-210. Gel’fand- D.A. Kaidan 1. Some problems o f d i f f e r e n t i a l , geometry and t h e c a l c u l a t i o n o f cohomolo-
51 1
BIBLIOGRAPHY
g i e s of L i e algebras of v e c t o r f i e Z d s .
D o k l . Akad.
Nauk SSSR 2 0 0
(1971), no 2 = T r a n s l . as S o v i e t M a t h . D o k l . 12(1971), 1367-1370. Gel ’ f a n d - D . A .
I.M.
Kazhdan - D . B .
Fuks
1 . The a c t i o n s of i n f i n i t e - d i m e n s i o n a l
Lie algebras. Funkr
.
Anal. Pr-ilozh.
6(1972), no1,10-15. = E n g l i s h transl. Funct. Anal.Appl.6(1972), 9-13.
I . Gel’fand - D . Raikov-G. S h i l o v 1 . Commutative Nomed Rings. C h e l s e a P u b l . Co., Bronx, N.Y., 1964.
I.M.
G e l ’ f a n d -N.Ya.
Vilenkin
1 . Generalized Functions, V o l . 4 . A p p l i c a t i o n s o f Harmonic A n a l y s i s . Acad e m i c P r e s s , N e w YoiTk,
1964.
J. G i l de Lamadrid
1. Uniform c r o s s norms and t e n s o r products of Banach algebras. Bull. A r n e r . M a t h . S O C . 69(1963), 797-803.
2 . Uniform c r o s s norms and t e n s o r products of Banach algebras. Duke M a t h .
J. 32(1965), 359-358. 3 . Algebras of k e r n e l s . “ F u n c t i o n a l A n a l y s i s ” . Proc. Conf., I J n i v . o f
Calif., I r v i n e , 1966. Thornson Book Co., W a s h i n g t c n , D.C.,:957. pp.
175-180.
4. Topological modules: Banach a l g e b r a s , t e n s o r products, algebras o f kern e l s . T r a n s . Amer. M a t h . J.R. G i l e s
- 0.0.
S O C . 126(1967),
361-419.
Koehler
1 . On numerical ranges of elements o f l o c a l l y m-convex a l g e b r a s . P a c i f i c J. Math.
49(1973),
79-91.
L. G i l l m a n - M . J e r i s o n 1 . Rings o f Continuous Functions. S p r i n g e r - V e r l a g ,
N e w Y o r k , 1975.
R. Godement
1
. Topologie
H. Grauert
- R.
algbbrique e t the‘orie des f a i s c e a u x . H e r m a n n , F a r . i s
,
1976
.
Remmert
1 . Theorie d e r Steinschen RaiL-ne. S p r i n g e r - V e r l a g ,
B e r l i n , 1977. Eng-
l i s h t r a n s l . : Theory of S t e i n Spaces. S p r i n g e r - V e r l a g , B e r l i n , 1979. A. Grothendieck 1 . Sur c e r t a i n s espaces de f o n c t i o n s holomorphes, I . J . r e i n e angew Marh. 192(1953),
.
35-54.
2 . Sur l e s espaces ( F ) e t ( D F ) .
Summa B r a s i l . M a t h . 3(195$1),57-123.
3 . Produits t e n s o r i e l s topologiques e t espaces nucle’aires. M e m . A m e r . Math. S o c . n o 16(1955). h e r . M a t h . S o c . , P r o v i d e n c e , R . I . , 1 9 6 6 .
4. Topological Vector Spaces. G o r d o n a n d B r e a c h , N e w York, 1973. B. Guennebaud 1 . Alyashres Zocalement convexes sur l e s corps value‘s. B u l l . S c i . m a t h . 91
(19571, 75-96.
512
BIBLIOGRAPHY
A. Guichardet 1. Chamct2res e t reprgsentations des p r o d u i t s t e n s o r i e l s de C*-alg2bres. Ann.
s c i e n t . t c . Norm. Sup.
81(1964),
189-206.
2 . Special Topics i n Topological Algebras. Gordon a n d Breach , New York, 1968.
S.L. Gulick 1. The bidual of a l o c a l l y m u l t i p l i c a t i v e l y - c o n v e x algebra. P a c i f i c
J.
Math. 1 7 ( 1 9 6 6 ) , 7 1 - 9 6 .
R.C. Gunning - H . Rossi 1. A n a l y t i c Functions of Several Complex Variables. P r e n t i c e - H a l l ,
Inc.
,
Englewood Cliffs, N. J . , 1965.
R. Harvey-R.O.
Wells, J r .
1 . Compact holomorphically convex s u b s e t s of a S t e i n manifozd. T r a n s . A m e r . Math.
SOC. 1 3 6 ( 1 9 6 9 ) , 5 0 9 - 5 1 6 .
A. Hausner 1. Group algebras o f vector-valued f u n c t i o n s . B u l l . A m e r . Math. Soc. 6 2 ( 1 9 5 6 ) , abstract 4 9 3 . 2. The tauberian theorem for group a l g e b r as o f vector-valued f u n c t i o n s . P a -
c i f i c J . Math. 7 ( 1 9 5 7 ) , 1 6 0 3 - 1 6 1 0 . 3 . I d e a l s i n a c e r t a i n Banach algebra. P r o c . A m e r . Math. S O C . 8 ( 1 9 5 7 )
,
246-249.
4 . On generalized group algebras. Prcc. A m e r . Math. S c c . l O ( 1 9 5 9 1 , 1 - 1 0 .
5. On a homomorphism between generalized group algebras. B u l l . A m e r . Math. SOC. 6 7 ( 1 9 6 1 ) ,
E . R . Heal -M.P.
138-141.
Windham
1. F i n i t e l y generated F-algebras w i t h a p p l i c a t i o n s t o S t e i n manifolds. P a -
c i f i c J. Math.
51(1974),
459-465.
S. Helgason
1. D i f f e r e n t i a l Geometry, L i e Groups, and Symmetric Spaces. A c a d e m i c k7~’ec,s, New Y o r k , 1 9 7 8 . W.J. Hery 1. Nuxirnal i d e a l s i n algebras of topological algebra valued f u n c t i o n s . P a c i f i c J . Math. 6 5 ( 1 9 7 6 ) ,
365-373.
E . H i l l e -R.S. P h i l l i p s 1. Functional Analysis and Semi-Groups. A m e r . Math. Soc . C o l l o q u i u m Publ.
R.A.
Vol. 3 1 . Amer. Math. S O C . , P r o v i d e n c e , R h o d e I s l a n d , 1 9 5 7 .
Hirschfeld 1. Reprdsentations i n d u i t e s duns l e s espaces quasi-hilbertiens p a r f a i t s . C . R. A c a d . S c i . P a r i s 2 7 2 ( 1 9 7 1 ) , 1 0 4 - 1 0 6 .
2 . P r o j e c t i v e limits o f u n i t a r y r e p r e s e n t a t i o n s . Math. A n n . 1 9 4 ( 1 9 7 1), 180-196.
513
BIBLIOGRAPHY
F. H i r z e b r u c h 1. Topological Methods i n Algebraic Geometry. S p r i n g e r - V e r l a g ,
Berlin,
1978.
J.G. Hocking - G . S .
Young
1 . Topology. A d d i s o n - W e s l e y Publ. Co., R e a d i n g , M a s s a c h u s e t t s ,
1961.
K. Hoffman 1 . Fundamentals of Banach Algebras. 1st. Mat. U n i v . Parand, C u r i t i b a , 1962. L. Hormander
1. An Introduction t o Complex Analysis i n Several Variables. North-Holl a n d , Amsterdam, 1973. J . Horvdth 1 . Topological Vector Spaces and D i s t r i b u t i o n s , Vol. I . A d d i s o n - W e s l e y Reading, Massachusetts, 1 9 6 6 .
Publ. C o . , L. van Hove
1 . Topologie des espuces f o n c t i o n n e l s a n a l y t i q u e s e t des groupes i n f i n i s des transformations. A c a d . r o y a l e B e l g . B u l l . C1. Sci. 3 8 ( 1 9 5 2 ) , 333-351.
T. Husain 1 . I n t r o d u c t i o n t o Topological Groups. W.B. S a u n d e r s C o . , P h i l a d e l p h i a , 1 9 6 6 .
T. Husain - J . L i a n g 1. Mz4ltiplicative f u n c t i o n a l s on Frgcket algebras w i t h bases. C a n a d .
J.
Math. 2 9 ( 1 9 7 7 ) , 2 7 0 - 2 7 6 .
T. Husain -S.-B.
Ng
1 . On t h e boundedness of m u l t i p l i c a t i v e and p o s i t i v e f u n c t i o n a l s . J. A u s t r a l . Math.
T. Husain
- R.
SOC. 2 1 ( 1 9 7 6 1 ,
498-503.
Rigelhof
1. Representations of MQ*-algebras.
T. Husain - S . A .
Math. A n n .
1 8 0 ( 1 9 6 9 ) , 297-306.
Warsi
1 . A note on A-convex &-algebras. B ull. SOC. Roy. Sci. L i e g e 4 5 ( 1 9 7 6 ) , 163-165.
T. Husain - S . Watson 1. Unconditional orthogonal bases. P r o c . Amer. Math. S O C . 7 9 ( 1 9 8 0 ) , 5 3 9 - 5 4 5 . 2. TGpOlOgiCal algebras w i t h orthogonal Schauder bases. P a c i f i c J . Math. 91(1980),
339-347.
A. Inoue 1 . Locally C*-algebras. Mem. F a c . S c i . Kyushu Univ. ( S e r . A) 2 5 ( 1 9 7 1 ) , 197-235.
J.M. I s i d r o 1. Topologias en cuerpos. R e v . Ma+. Hisp. Amer. I V ( S e r . W I 1 ) no 1 ( 1 9 7 7 ) , 19-24.
2 . Characterization of t h e spectrum of some topological algebras of holomorp h i c f u n c t i o n s . ” A d v a n c e s i n Holomorphy” . P r o c . Sem. Holom. , Univ. R i o d e J a n e i r o (26-28 S e p t . , 1977). N o r t h - H o l l a n d
Math. S t u d i e s
514
BIBLIOGRAPEY
no 3 4 . N o r t h - H o l l a n d
S.O.
P u b l . Co.,
A m s t e r d a m , 1 9 7 9 . p ~ .4 0 7 - 4 1 6 .
Iyahen
1. On c e r t a i n c l a s s e s of l i n e a r topological spaces. P r o c . L o n d o n Math. SOC. 1 8 ( 1 9 6 8 ) , 285-307. B.E. Johnson 1 . An i n t r o d u c t i o n t o t h e theory of c e n t r a l i s e r s . P r o c . L o n d o n Math. S O C . 3( 1 9 6 4 ) , 299-320.
2 . C e n t r a l i s e r s on c e r t a i n topological algebras. J . L o n d o n Math SOC. 3 9 ( 1 9 6 4 ) , 603-614. D.L. Johnson 1. Continuity of p o s i t i v e f u n c t i o n a l s on topological "-algebras. J . Math.
Anal. A p p l . 8 9 ( 1 9 8 2 ) , 359-369.
G.P. Johnson 1 . Spaces of f u n c t i o n s w i t h values i n a normed r i n g . B u l l . A m e r . Math. S O C . 6 2 ( 1 9 5 6 1, a b s t r a c t 458.
P.E.T.
Jdrgensen
1. The automorphisrns of convolution algebras of C
0,
f u n c t i o n s . J . Math.
Anal. A p p l . 6 4 ( 1 9 7 8 ) , 25-47.
2 . D i s t r i b u t i o n representations of L i e groups. J . Math. A n a l . A p p l . 6 5 (1978 ) , 1-19.
J.-P. Kahane -W. Zelazko 1 . A c h a r a c t e r i z a t i o n of maximal i d e a l s i n commutative Banach algebras. S t u d i a Math. 2 9 ( 1 9 6 8 ) , 3 3 9 - 3 4 3 .
I . Kaplansky
1. TopoZogicaI r i n g s . A m e r . J . Math. 6 9 ( 1 9 4 7 ) , 1 5 3 - 1 8 3 . 2 . Topological r i n g s . B u l l . A m e r . Math. S O C . 5 4 ( 1 9 4 8 ) , 8 0 9 - 8 2 6 . 3. Normed algebras. D u k e Math. J. 1 6 ( 1 9 4 9 ) , 3 9 9 - 4 1 8 . Y. Katznel son 1. An Introduction t o Harmonic Analysis. J o h n W i l e y & S o n s , I n c .
,
New
York, 1 9 6 8 . V . Kaushik
1. Topological v e c t o r spaces, algebras and t h e i r operator theory. P h . D . T h e s i s , U n i v . of D e l h i , 1 9 8 0 . L. Kaup - B .
Kaup
1 . Holomorphic Functions of Several Variables. Walter d e G r u y t e r , Berl i n , 1983. J.L.
Kelley 1. General Topology. S p r i n g e r - V e r l a g , N e w Y o r k . R e p r i n t of t h e 1 ' 3 5 5 e d . p u b l i s h e d b y Van N o s t r a n d .
J.L.
K e l l e y - I . Namioka e t a l . 1. Linear Topological Spaces.
Springer-Verlag,
New Y o r k , 1 9 7 6 .
BIELIOGRAPHY
S.M.
51 5
Khaleelulla
1. Countably m-barrelled algebras. Tamgang J . M a t h . 6(19?5), 185-190.
2 . Counterexamples i n Topological Vector Spaces. n o 936. S p r i n g e r - V e r l a g ,
L e c t u r e N o t e s in M a t h .
B e r l i n , 1982.
E. K i l l a m 1. The s p e c t m and t h e radical i n l o c a l l y m-convex algebras. Math.
12(1962),
Pacific J
.
581-588.
S. Kobayashi - K. Nomizu
1 . Foundations of D i f f e r e n t i a 2 Geometry, Vol. I .
I n t e r s c i e n c e Publ.
,
Nex Y o r k , 1963. R. Kochendorffer
1 . Introduction t o Algebra. W o l t e r s - N o o r d h o f f P u b l .
A. Koriyama
- Y.
Maeda
, Groningen,
1972.
- H. Omori
1. On Lie algebras of v e c t o r f i e M s .
T r a n s . h e r . M a t h . SOC. 226 (1977),
89-117. L.M. K o r s u n s k i i 1. I n f i n i t e tensor products of l o c a l l y convex spaces. U k r . M a t h . J . 27
(19751, 13-23.[Russian]. G. Kothe
1. Topological Vector Spaces, I . S p r i n g e r - V e r l a g ,
Berlin,
1969.
2 . Topological Vector Spaces, I I . S p r i n g e r - V e r l a g , N e w Y o r k , 1979. B. Kramm 1. A c h a r a c t e r i z a t i o n of Riemann algebras. P a c i f i c J. Math. 65 (1976 393-397.
,
2. Gleason p a r t s and boundary value i n t e g r a l s f o r c e r t a i n Frdcchet-nuclear algebras.
Mich. Math. J .
24(1977),
129-139.
3 . (3FNI-analytic spaces, S t e i n algebras and a "universal" laolornorphic f u n c t i o n a l c a l c u l u s . Sen). P . L e l o n g - H . S k o d a ( A n a l y s e ) , A n n e e s 19781 79. L e c t u r e N o t e s in Math. n o 822. S p r i n g e r - V e r l a g , Berlin, 1980. p p . 109-128.
4. Analytische S t r u k t u r i n Spectren, e i n Zugang &er 3?'-,6::-dirnensionale HoZornorphie. J . F u n c t . A n a l . 37(1980), 249-270.
5. Nuclearity and f u n c t i o n algebras - a s u r v e y . " F u n c t i o n a l A n a l y s i s : Surv e y s a n d R e c e n t R e s u l t s 111". N o r t h - H o l l a n d M a t h . S t u d i e s n o 9 0 . N o r t h - H o l l a n d , A m s t e r d a m , 1984. p p .
233-252.
A. K y r i a z i s
1 . TopoZogicaZ algebras of k e r n e l s . A e q u a t . M a t h . 27(1984), 220-230.
2 . On t h e spectra o f topological M a t h . J . 31(1983),
A-tensor product
A-algebras. Yokcharna
47-65.
3 . Tensor products o,ftopological geometric J-spaces 4 . On topological algebra bundles ( t o a p p e a r ) .
(to appear).
516
BIBLIOGRAPHY
M. Landsberg 1. Lineare topologische Raume die n i c h t lokalkonvex s i n d . Math. Z.65(1956), 104-112. G. Lassner
1. Topological algebras of operators. Rep. Math. Phys. 3(1972), 279-293. A.R.
Larotonda
- I.M.
Zalduendo
1. Continuity of characters i n products of algebras. Comment. M a t h . U n i v . C a r o l . 24(1983), 453-459. R. Larsen 1 . Banach Algebras. An Introduction. Marcel D e k k e r , Inc.,New York, 1973. S . Lata
1. Centralisers in l o c a l l y convex algebras. Yokoharra &th. J. 24(1976), 69-77. 2. Double c e n t r a l i s e r algebra w i t h the s t r i c t topology. I n d i a n J. P u r e A p p l . M a t h . 8(1977),
V . Ya.
124-127.
Lin
1 . Holomorphic f i b e r i n g s and multivalued f u n c t i o n s of elements of a Banach
algebra. F u n c t . Anal. P r i l o z h . 7(1973), 43-51.[Russian]. = ( E n g l i s h t r a n s l . ) F u n c t . A n a l . A p p l . 7(1973), 122-128.
J.A.
Lindberg, Jr.
1. Polynomials over complete 1.m-c. algebras and simple i n t e g r a l extensions. R e v . Roum. Math. p u r e s a p p l . 27(1972), 47-63.
2 . Integral extensions of c o m u t a t i v e Banach algebras. C a n a d . J. Math.
25(1973),
673-686.
G.L. L i t v i n o v
1 . On dual topological algebras and topological algebras Hopf. T r u d y Sem. Vect. Tens. A n a l .
18(1978),
372-375.
J.G. Llavona 1. Approximtions of d i f f e r e n t i a b z e f u n c t i o n s . Adv. Math. S u p p l . S t u d i e s V o l . 4(1979), 197-221. L.H.
Loomis
1. An Introduetion t o Abstract Harmonic Analysis. D . v a n N o s t r a n d , P r i n c e t o n , N . J . , 1953. R.J.
Loy 1. Continuity of derivations on topological algebras of power s e r i e s . B u l l . A u s t r a l . M a t h . S O C . 1(1969), 419-424.
2 . Uniqueness of t h e Frdchet spaee topology on c e r t a i n topological algebras.
Bull. A u s t r a l . Math. S O C . 4(1971), 1-7. 3 . Local a n a l y t i c s t r u c t u r e i n c e r t a i n c o m t a t i v e topological algebras. B u l l . Austral. M a t h . S o c . 6(1972), 161-167. G.W.
Mackey 1. Comutative Banach Algebras. M i m e o g r a p h e d N o t e s , H a r v a r d Univ., 1952.
51 7
BIBLIOGRAPHY
Notas de Mat. No 1 7 . P u b l . 1 s t . Mat. p u r a a p p l . C o n s . Nac. P e s q .
,
Rio d e J a n e i r o , 1 9 5 9 . 6 . Malgrange 1. Ideals of D i f f e r e n t i a b l e Functions. Oxford U n i v . P r e s s , L o n d o n , 1966. A. Mallios 1. On t h e spectrum of a topological tenso r prodzct of l o c a l l y convex alge-
bras. Math. A n n . 1 5 4 ( 1 9 6 4 ) , 1 7 1 - 1 8 0 . 2. Tensor products and harmonic a n a l y s i s . Math. A n n . 1 5 8 ( 1 9 6 5 ) , 4 6 - 5 6 . 3. Heredity of tensor products of topological algebras. Math. A n n . 1 6 2 (1966) , 246-257. 4. Inductive l i m i t s and t e n s o r products of topological algebras. Math. A n n . 170(1967)
,
214-220.
5. Note on the tensor products and harmonic a n a l y s i s . Math. A n n . 1 7 3 (1967), 287-289.
6 . Spectrum and boundary of topological tensor product algebras. B u l l . SOC
.
m a t h . Grece 8 ( 1 9 6 7 ) , 1 0 1 - 1 1 5 .
7. Semi-simplicity of tensor products of topological algebras. B u l l . Soc . m a t h . Gri?ce 8 ( 1 9 6 7 ) ,
1-16.
8 . On the s p e c t m of topological algebras. J . F u n c t . A n a 1 . 3 ( 1 9 6 9 ) , 301-309. 9. On f u n c t i o n a l representations o f topological algebras. J. F u n c t . Anal. 6 ( 1 9 7 0 ) , 468-480.
10. On topological algebra sheaves of a nuclear t y p e . S t u d i a Math. 38(1970), 215-220.
11. Representation theory of l o c a l l y m-convex topological algebras. B u l l . Soc math.
F r a n c e , Memoire 31-32(1972),
.
249-256.
12. On generalized spectra of topological tensor algebras. P r a k t i c a A k a d . AthFnSn 45( 1 9 7 1 ) , 76-82.
13. On continuous homomorphisms between topological tensor algebras. P r a k t i k a Akad. AthEn6n 4 ? ( 1 9 7 2 ) ,
49-58.
14. On m-barrelled algebras. Pralctika Akad. AthZnEn 4 9 ( 1 9 7 4 ) , 98-112. 15. On the barrelledness of a topological algebra r e l a t i v e t o i t s spectrum. Remarks. B u l l . S O C . m a t h . Grece 1 5 ( 1 9 7 4 )
,
152-161.
16. Topological a l g e b m s i n s e v e m l complex variables. Pmc. C o n f . " F u n c t . Anal. Appl."
er-Verlag,
Madras, 1 9 7 3 . L e c t u r e Notes i n Math. n o 3 9 9 . Spring-
B e r l i n , 1 9 7 4 . pp.
342-377.
17. GeneraZized s t r u c t u r e sheaf envelopes of topological f u n c t i o n algebra
spaces. P r a k t i k a Akad. A t h e n b n 4 9 ( 1 9 7 4 ) ,
373-385.
18. On a convenient category of topological algebras, I . P r a k t i k a A k a d . AthBnBn 5 0 ( 1 9 7 5 )
,
454-477.
19. On a convenient category of topological algebras, 11: Applications. Prakt. Mad. A t h F n S n 5 1 ( 1 9 7 6 ) , 2 4 5 - 2 6 3 .
518
BIBLIOGRAPHY
20. P K n c i p a l hoZomorphic f i b e r bundles as applied t o topological aZgebras.
Proc. Romanian - Finnish Sem. Compl. Anal. , Bucharest, 1976. Lecture Notes in Math. nol43. Springer-Verlag, Berlin, 1979. pp. 456-474. 21. Continuous l o c a l i z a t i o n , covering spaces and Galois theory of commutative
topoZogical algebras
(
to appear)
.
22. Vector bundles and K-theory over topological algebras. J . Math. Anal.
Appl. 92(1983),
452-506.
23. Hermitfan K-theory over topological *-algebras. J. Math. Anal. Appl
.
106(1985), 454-539. 24. Homotopy i n v a r i a n t s o f t h e s p e c t m o f a topological algebra. J. Math. Anal. Appl. 101(1984), 297-307. 2 5 . Topological algebras as applied t o D i f f e r e n t i a l Geometry (to appear) . 26. On f i n i t e l y generated topological algebras w i t h appZications t o ccmplelc m n i f c l d s . “Complex Anal. Appl. I ‘ Proc. Ixtern. Conf , Varna , 1983. p p . 144-152. 27. Continuous v e c t o r bundles ouer topological algebras. J . Math. Anal. Appl. (to appear).
.
28. On l o c a l i z i n g a topological aZgebra (to appear).
B.D. Malviya 1. On ZocaZZy m-convex aZgebras.
Math. Nachr. 60(1974), 315-320.
Y . Matsushima
1 . D i f f e r e n t i a b l e Manifolds. Marcel Dekker, Inc. , New Y o r k , 1972.
K. Maurin 1. General Eigenfunction Expansions and Unitary Representations of Topologi-
cal Groups. PWN-Polish Sci. Publ., Warszawa, 1968.
J.P. McClure 1. Automatic c o n t i n u i t y of f u n c t i o n a l c a l c u l u s f o r vector-valued f u n c t i o n s .
J. London Math. SOC. 5(1972), 154-158. 2 . On some algebras o f germs of anaZytic f u n c t i o n s . J. London Math. SOC.
10(1975), 11-15.
R.D. Mehta -M.H. Vasavada 1. A n o t e on automorphisms of t e n s o r product of Banach algebras. Indian J.
pure appl. Math. 16(1985), 13-16. W.E.
Meyers 1. Montel aZgebras on t h e plane. Canad. J. Math. 22(1970), 116-122.
E . A . Michael
1 . Locally m u l t i p l i c a t i v e l y - c o n v e x topological algebras. Mem. Arner
Soc. No ll(1952).
.
Math.
(Reprinted 1968).
A. Mirkil 1. The Work of SiZov on Commtative Semi-Simple Banach AZgebras. Notas de
519
BIBLIOGRAPHY
Mat. n o 2 0 . I n s t . Mat. p u r a a p p l . , C o n s . N a c . P e s q . ,
Rio d e
J a n e i r o , 1966 (2nd r e v i s e d e d . ) . 0. Montgomery
1 . Continuity in topological groups. Bull. A m e r . M a t h . SOC. 4 2 ( 1 9 3 6 ) , 8 7 9 882.
P.D. Morris -D.E.
Wulbert
1 . Functional representation of topological algebras. P a c i f i c J . Math. 22(1967),
R.D.
323-337.
Mosak
1. Banach Algebras. U n i v . o f J . Mujica
Chicago P r e s s , Chicago, 1975.
1 . The Oka-Veil theorem in Locally convex spaces w i t h tlze approxifiation prop-
e r t y . S m . P a u l K r g e , Annee 1 9 7 7 / 7 8 . S e c r . m a t h . , 11 r u e P i e r r e e t Marie C u r i e , P a r i s . C x p . 3 .
2 . Spaces o f germs of holomorphic f u n c t i o n s . S t u d i e s i n A n a l y s i s . Adv. Math. S u p p l . S t u d i e s
v o l . 4 . Academic P r e s s , N . Y . , 1 9 7 9 .
pp. 1 - 4 1 .
3. Complex homomorphisms of t h e algebra of holomorphic f u n c t i o n s i n Fre'ehet spaces.
M a t h . Ann.
2 4 1 ( 1 9 7 9 ) , 73-82.
4. I d e a l s o f holornoyphic f u n c t i o n s on Frdchet spaces. morphy".
" A d v a n c e s i n Holo-
P r o c . Sem. Holom., U n i v . R i o d e J a n e i r o , 1 9 7 7 . N o r t h -
H o l l a n d Math. S t u d i e s no 3 4 . North-Holland
Amster-
Publ. Co.,
danl, 1 9 7 9 . p p , 5 6 3 - 5 7 6 .
5 . Ge'menes Holomorfos y Funciones Holomorfas en Espacios de Fr4chet. Lecture
Notes,
Univ.
S a n t i a g o d e Compostela,
Spain, 1978.
6 . On t h e Nachbin topology i n spaces of holomorphic f u n c t i o n s . B u l l . h e r . Math.
SOC. 8 1 ( 1 9 7 5 ) , 9 0 4 - 9 0 6 .
7. Holomorphic germs on i n f i n i t e dimensiona2 spaces. " I n f i n i t e D i m e n s i o n a l Holomorphy a n d A p p l i c a t i o n s " . N o r t h - H o l l a n d , Amsterdam, 1977. pp.
313-321.
J.R. Munkres 1. Topology. A First Course. P r e n t i c e - H a l l , I n c . , E n g l e w o o d C l i f f s , New J e r s e y , 1975.
V . Mural i
1. Partion of u n i t y on algebraic i n d u c t i v e limits. Math. J a p a n . 2 2 ( 1 9 7 7 ) , 497-500.
L . Nachbin 1. Sur l e s algsbres denses de fonctions d i f f d r e n t i a b l e s sur une varie'te'. C . R . Acad. S c . P a r i s 2 2 8 ( 1 9 4 9 ) , 1549-1551.
.
2 . Topological v e c t o r spaces o f continuous f u n c t i o n s . P r o c N a t
.
Acad.
Sci. U.S.A. 40(1954), 471-474. 3. Algebras o f f i n i t e d i f f e r e n t i a l order and t h e operational c a l c u l u s . Ann.
520
BIBLIOGRAPHY
o f Math.
7 0 ( 1 9 5 9 ) , 413-437.
4. Elements of Approximation Theory. D. v a n N o s t r a n d , P r i n c e t o n , N. J.,1967.
5. On t h e closure of modules of continuously d i f f e r e n t i a b l e mappings. R e n d . Sem. Mat. U n i v . P a d o v a 6 0 ( 1 9 7 8 ) , 3 3 - 4 2 .
6 . SUP la densite' des sous-algZbres po1ynorniaZe.s d' applications continivnent d i f f e ' r e n t i a b l e s . SBm. P . L e l o n g - H . S k o d a ( A n a l y s e ) AnnBe 1 9 7 6 / 7 7 . L e c t u r e N o t e s i n M a t h . n o 694. Springer-Verlag, B e r l i n , 1978. pp. 1 9 6 202.
7 . Topology on Spaces of Holomorphic Mappings. Springer-Verlag, B e r l i n , 1 9 6 9 . 8 . On the p r i o r i t y of algebras o f continuous functions in weighted approxination. Symp. M a t h . 1 7 ( 1 9 7 6 ) , 1 6 9 - 1 8 3 . 9. A look a t approximation theory. " A p p r o x i m a t i o n T h e o r y a n d F u n c t i o n a l Analysis".
N o r t h - H o l l a n d , Amsterdam, 1 9 7 9 . pp. 309-331.
10. Some natural problems i n a p p r o x i m t i n g continuously d i f f e r e n t i a b l e s r e a l functions.
I'
Functional Analysis
,
Holomorphy a n d A p p r o x i m a t i o n
T h e o r y " . Marcel D e k k e r , N e w Y o r k , 1 9 8 3 .
p p . 369-377.
M . A . Naimark 1. Nomed Algebras. Wolters
-
Noordhoff
P u b l . , Groningen,
1972.
G.F. Nassopoulos 1. D u a l i t y and functional representations of c e r t a i n complete algebras.
PraMika
Akad. AthZn6n 56(1981), 327- 338.
2 . The d u a l i t y betueen l o c a l l y C*-algebras and f i l t e r e d spaces. Summer Meeting i n "Category Theory".
L.D.
.
C a m b r i d g e , J u l y 1981. Abs : 2 0 .
Nel
1. T o p l o g i c a t algebras of unbounded functions and unbounded operators. J. London M a t h . S O C . 3 9 ( 1 9 6 4 ) , 2 2 0 - 2 3 0 . G. Neubauer
1. Zur Spektraltheorie i n lokalkonvexen Algebren. M a t h . Ann. 1 4 2 ( 1 9 6 1 ) , 131-164.
S.B. Ng - S .
Warner
1. Continuity of p o s i t i v e and m u l t i p l i c a t i v e f u n c t i o n a l s . Duke M a t h . J . 3 9 ( 1 9 7 2 ) , 281-284.
P . Noverraz 1. Pseudo-Convmite', Convexit6 Polynomiale e t Domines d' Holomorphie en Dimension I n f i n i e . N o r t h - H o l l a n d , A m s t e r d a m , 1 9 7 3 . M.E.
Novodvorskii 1 . On c e r t a i n homotopic i n v a r i a n t s of the space of maxim1 i d e a l s . Mat. Zametki 1 ( 1 9 6 7 ) , 4 8 7 - 4 9 4 . t R u s s i a n I .
H. Omori 1. I n f i n i t e Dimensional L i e T r a n s f o m t i o n Groups. L e c t u r e Notes i n Math. no 4 2 7 . S p r i n g e r - V e r l a g , B e r l i n , 1 9 7 4 .
52 1
BIBLIOGRAPHY
W. Page 1. Topological Uniform S t r u e t u r e s . J o h n W i i e y , New Y o r k , 1 9 7 8 .
M. Papatriantafillou 1 . Hermitian D i f f e r e n t i a 2 Geometry i n A-bundles. D o c t o r a l D i s s
.
of A t h e n s , G r e e c e , 1 9 8 5 . [ G r e e k ; E n g l i s h s u n m a r y ] . 2 . F i n s l e r s t r u c t u r e s on A-bundles. Math. Nachr ( t o a p p e a r )
.
.
Univ.
M. Petrich 1. Semicharacters of t h e c a r t e s i a n product of two semigroups. Math.
12(1962),
Pacific
J.
679-683.
A. Pietsch 1 . Nuclear Locally Convex Spaces. S p r i n g e r - V e r l a g , B e r l i n , 1 9 7 2 . H. Porta - L. Recht 1. Spectra of algebras of holomorphic germs. Ill. J. Math. 1 3 ( 1 9 6 9 1, 515-520. H. Porta J.T. Schwartz 1 . Representations of t h e algebra of a l l operators i n H i l b e r t space, and r e -
-
l a t e d a n a l y t i c f u n c t i o n a l g e b r a s . Corn. Pure Appl. Math. 2 0 ( 1 9 6 7 ) , 457-492.
J.B. Prolla 1. On polynomial algebras of continuous2y d i f f e r e n t i a b l e f u n c t i o n s . R e n d . Acc.
Naz.
Lincei 57(1974),
481-486.
2 . Topological algebras of vector-valued continuous f u n c t i o n s . A d v . Math. S u p p l . S t u d i e s , Vol. 7 B ( 1 9 8 1 ) , 7 2 7 - 7 4 0 . 3 . Topics i n Functional A n a l y s i s over Valued Division Rings. N o r t h - H o l l a n d , A m s t e r d a m , 1 982 .
J.B. Prolla -S. Machado 1 . Weighted Grothendieck subspaces. Trans. A m e r . Math. S o c . 1 8 6 ( 1 9 7 3 ) , 247-258. V . Ptdk 1. Banach algebras w i t h i n v o l u t i o n . Manuscr. M a t h . 6 ( 1 9 7 2 ) , 2 4 5 - 2 9 0 . L.E. Purse11 -M.E. Shanks 1 . The L i e algebiw of a smooth manifold. ?roc. A m e r . Math. Soc.5 ( 1 9 5 4 ) , 4 6 8 - 4 7 2 .
I. Richards 1 . A c r i t e r i o n f o r rings of a n a l y t i c f u n c t i o n s . T r a n s . A m e r . Math. S O C .
128( 1 9 6 7 ) , 5 2 3 - 5 3 0 . C.E.
Rickart 1. General Theory of Banach Algebras. R . E . K r i e g e r Publ. C o . , H u n t i n g -
ton, N. Y . , 1974.
(
O r i g i n a l edition 1 9 6 0 , D. van N o s t r a n d R e i n h o l d ) .
2 . Holomorphic c o n v e z i t y f o r general f u n c t i o n algebras. C a n a d . J . Math. 20(1968),
272-290.
3 . A n a l y t i c f u n c t i o n s o f an i n f i n i t e number of complex v a r i a b l e s . D u k e Math.
J. 3 6 ( 1 9 6 9 ) , 5 8 1 - 5 9 8 . 4. N a t u m l Function Algebras.
S p r i n g e r - V e r l a g , N e w York, 1 9 7 9 .
A.P. Robertson -W.J. Robertson 1 . Topological Vector Spaces.
C a m b r i d g e Univ.
P r e s s , 1973 (2nd edition).
522
BIBLIOGRAPHY
S. Rolewicz 1. Metric Linear Spaces. PWN- P o l i s h S c i . P u b l . , Warszawa, 1 9 7 2 . D. Rosa 1. 3-complete and Br -complete topological algebras. P a c i f i c J. Math. 6 0 (1975),
199-208.
M. Rosenfeld 1 . C o m t a t i v e F-algebras. P a c i f i c J . M a t h . 1 6 ( 1 9 6 6 ) , 1 5 9 - 1 6 6 . H. Rossi 1. Holomorphically convex s e t s i n several complex variables. A n n . of Math. 74(1961), 470-493. 2. h envelopes of holomorphy.
Comm. p u r e a p p l . Math. 1 6 ( 1 9 6 3 ) , 9 - 1 9 .
W. Rudin 1. Real and Complex Analysis ( 2 n d e d i t i o n ) , M c G r a w - H i l l H.H. Schaefer 1. Topological Vector Spaces. S p r i n g e r - V e r l a g ,
,hew
York, 1974.
New York, 1 9 7 1 .
R . Schatten 1. A Theory of Cross-Spaces. P r i n c e t o n U n i v . P r e s s , 1 9 5 0 . K r a u s R e p i n t Corp., New York, 1 9 6 5 . K. Schmudgen 1. h e r LMC *-Algebren. M a t h . N a c h r . 6 8 ( 1 9 7 5 ) , 1 6 7 - 1 8 2 . M. Schottenloher 1. h e r analytische Fortsetzung i n Banachraumen. Math. A n n . 1 9 9 ( 1 9 7 2 ) , 3 1 3 336.
2 . Polynomial approximation on compact s e t s . " I n f i n i t e D i m e n s i o n a l Holom o r p h y and A p p l i c a t i o n s " .
North-Holland,
Amsterdam,
1977. pp.
379-391.
L. Schwartz 1. TMorie des d i s t r i b u t i o n s . H e r m a n n , P a r i s , 1 9 7 3 .
2. F'roduits t e n s o r i e l s topologiques d' espaces v e c t o r i e l s topologiques. Espaces v e c t o r i e l s topologiques nucle'aires. Applications. S4m. 1 9 5 3 1 5 4 . Fac
. Sc i . P a r i s , S e c r 4 t a r i a t
math.
, 11 rue
P i e r r e e t M i e Curie, P a r i s ,
1954.
3 . Espaces de fonctions d i f f e ' r e n t i a b l e s d valeurs v e c t o r i e l l e s . J . A n a l . Math. 4 ( 1 9 5 4 / 5 5 ) ,
88-148.
4. Thdorie des d i s t r i b u t i o n s 2 valeurs v e c t o r i e l l e s (Chap. I). A n n . Fourier 7 ( 1 9 5 7 ) ,
Inst.
1-141.
5 . Thdorie des d i s t r i b u t i o n s d valeurs v e c t o r i e l l e s (Chap. II). A n n . I n s t . Fourier 8 ( 1 9 5 9 ) ,
1-209.
Z. Sebestytk 1. Every C*-seminom i s automatically submultiplicative. P e r i o d . Math. Hung.
lO(19791,
1-8.
523
BIBLIOGRAPHY
I.E.
Segal
1 . The group algebra of a l o c a I . l y compact group. T r a n s . A m e r . M a t h . S O C . 61(1947),
I.E.
Segal - R . A .
69-105.
Kunze
1. I n t e g r a l s and Operators. S p r i n g e r - V e r l a g ,
S.A.
Berlin, 1978.
Selesnick 1. Watts cohomology f o r a c l a s s of Banach algebras and t h e d u a l i t y of com-
pact a b e l i a n groups. Math. Z. 1 3 0 ( 1 9 7 3 ) , 3 1 3 - 3 2 3 . T. S h i r o t a 1. On l o c a l l y convex v e c t o r spaces o f continuous f u n c t i o n s . P r o c . J a p a n . Acad.
N. Sibony
- J.
30(1954),
294-298.
Wermer
1. Generators f o r A ( W . T r a n s . A m e r . Math. Soc. 1 9 4 ( 1 9 7 4 ) , 1 0 3 - 1 1 4 .
H.A.
Smith 1. Tensor products of topological algebras. T h e s i s , Univ. of P e n n . , 1 9 6 4 .
2. Tensor products o f l o c a l l y convex algebras. Proc. A m e r . M a t h . S o c . 17( 1 9 6 6 ) , 1 2 4 - 1 3 2 . V.K.
Srinivasan
1 . On some Gelfand-Mazur l i k e theorems in Banach algebras. B u l l . A u s t r a l . Math.
Soc. 2 0 ( 1 9 7 9 ) , 2 1 1 - 2 1 5 .
E.M. S t e i n -G. Weiss 1. Introduction t o Fourier Analysis on Euclidean Spaces. P r i n c e t o n U n i v . Press,
P r i n c e t o n , N. J . , 1971.
S. S t e r n b e r g
1 . Lectures on D i f f e r e n t i a 2 Geometry. P r e n t i c e - H a l l ,
Inc.
, Englewooa
Cliffs, N. J . , 1 9 6 4 .
E.L. S t o u t 1 . The Theory of Uniform Algebras. Bogden & Q u i g l e y on-Hudson,
N
, Inc. , T a r r y t o w n -
. Y . , 19'7 1 .
I. suciu 1 . Function Algebras. Noordhoff I n t e r n . Publ. , L e y d e n , 1 9 7 5 . Sya D o - s i n ( X i a Dao-Xing, H s i a Tao-shing) 1 . On semi-normed r i n g s w i t h an i n v o l u t i o n . I z v . A k a d . Nauk SSSR, S e r .
Mat. 2 3 ( 1 9 5 9 ) ,
509-528.[RussianI.
2 . Measure and I n t e g r a t i o n Theory on Infinite-Dimensional Spaces. A c a d e m i c P r e s s , New York,
1972.
Z. Takeda
1 . I n d u c t i v e l i m i t and i n f i n i t e d i r e c t product o f operator algebras. T G h o k u M a t h . J . 7(1955),
67-86.
M. Takesaki 1 . Theory of Operator Algebras. S p r i n g e r - V e r l a g ,
New Y o r k , 1 9 7 9 .
524
BIBLIOGRAPHY
G. Tomassini 1. Sulla topoZogia d e l l o s p e t t r o d i un' algebra d i Baruch. A n n . S c u . N o r m . Sup. P i s a 2 3 ( 1 9 6 9 ) ,
529-539.
2. I n v i l l u p o d' hoZomorfia e s p a z i pseudoconcavi. 87( 1970)
,
Ann. Mat. p u r a a p p l .
59-86.
3 . On some f i n i t e n e s s properties of topological algebras. Sympos. Math. 1 1 ( 1 9 7 3 ) , 305-311.
J. Tomiyama 1. Tensor products of c o m t a t i v e Banach algebras. T b h o k u Math. J . 1 2 ( 1 9 6 0 ) , 147-154.
3 .C. Tougeron 1. Idkaux de fonctions d i f f 6 r e n t i a b Z e s . S p r i n g e r - V e r l a g , F. Treves
B e r l i n , 1972.
1. Topological Vector Spaces, Distributions and Kernels. A c a d e m i c P r e s s , N e w York, 1 9 6 7 .
2. Linear P a r t i a l L X f f m e n t i a l Equutions w i t h Constant C o e f f i c i e n t s . Gordon & Breach, New York, 1 9 6 6 . L. Tsitsas 1 . On the generalized p o s i t i v e spectrum o f ordered topological tensor produ c t algebras. J . Math. A n a l . A p p l .
37(1972)
,
341-350.
2 . On the generaZized spectra of topological atgebras. J. Math. A n a l . Appl. 4 2 ( 1 9 7 3 ) , 174-182.
Ph. Turpin
1. Une remrque sur l e s aZgBbres d inverse continu. C . R . A c a d . S c i . P a r i s 270(1970), 1686-1689.
E. Vassiliou 1 . On the infinite-dimensionaZ Liege 47(1978),
holonomy theorem. B u l l . S O C . R o y . S c i .
223-228.
L. Waelbroeck 1 . Les algDbres d inverse continu. C . R . A c a d . S c i . P a r i s 2 3 8 ( 1 9 5 4 ) , 6 4 0 - 6 4 1. 2 . Le caZcu1 synbolique dans l e s algBbres c o m t a t i v e s . J . math. p u r e s a p p l . 33( 1 9 5 4 ) , 1 4 7 - 1 8 6 . 3 . Note sur l e s algBbres du caZcuZ symbolique. J . math. p u r e s a p p l . 3 7 (1958),
41-44.
4. Topological Vector Spaces and Algebras. L e c t u r e Notes i n Math. no 230.
Springer-Verlag,
B e r l i n , 1971.
5 . The hotomorphic functional calculus and non-Banach algebras. " A l g e b r a s i n Analysis".
P r o c . I n s t r u c t . Conf.
Press, L o n d o n , 1 9 7 5 . pp. 1 8 7 - 2 5 1 .
,
B i r m i n g h a m , 1 9 7 3 . Academic
525
BIBLIOGRAPHY
F.W. Warner
1. Foundations of D i f f e r e n t i a b l e Manifolds and L i e Groups. S p r i n g e r - V e r l a g , N e w York, 1 9 8 3 . S. Warner 1 . Weak l o c a l l y m u l t i p l i c a t i v e l y convex algebras. P a c i f i c J . Math. 5 (1955),
1025-1032.
2 . Inductive l i m i t s of normed algebras. T r a n s . A m e r . Math. S O C . 28(1956), 190-216.
3. Polynomial completeness i n l o c a l l y muZtiplicatively-convex algebras. Duke Math. J . 2 3 ( 1 9 5 6 ) ,
1-11.
4. Weakly topologized algebras. Proc. k.i:?r.. Math. SOC. 8 ( 1 9 5 7 ) , 3 1 4 - 3 1 6 . 5. The topology of compact convergence on continuous f u n c t i o n spaces. Duke Math. J . 2 5 ( 1 9 5 8 ) ,
265-282.
6 . A neu approach t o Gelfand-kzur theory and t h e extension theorem. Michigan Math. J . 2 6 ( 1 9 7 9 ) ,
13-17.
T. Waiewski 1. Sur l e s matrices dont l e s e'le'ments sont des fonctions continues. Compos. Math. 2 ( 1 9 3 5 ) ,
63-68.
P.O. Wells, J r . 1. Holomorphic hulls and holomorphic convexity of d i f f e r e n t i a b l e manifolds.
T r a n s . A m e r . Math. S O C . 1 3 2 ( 1 9 6 8 ) ,
245-262.
C . Wenjen
1. On semi-normed *-algebras.
P a c i f i c J. Math. 8 ( 1 9 5 8 )
,
177-186.
2. A remark on a problem of M . A . Naimark. P r o c . Japan.Acad. 4 4 ( 1 9 6 8 ) , 6 5 1 655.
H. Whitney
1. On i d e a l s of d i f f e r e n t i a b l e f u n c t i o n s . A m e r . J. Math. 7 0 ( 1 9 4 8 ) 2. Complex Analytic V a r i e t i e s . Addison-Wesley
, Reading,
, 635-658.
Mass., 1972.
J.H. Williamson 1. On topologizing the f i e l d C t t l . Proc. Amer. Math. S O C . 5 ( 1 9 5 4 ) , 729-734. A.W.
Wood
.
1 . Numerical range and generalized B*-algebras. Proc. London Math. SOC 34(1977)
,
245-268.
V . Wrobel 1 Tensorproduktoperatoren i n lokalkonvexen Ramen. Hab i1i t a t i o n s s c h r i f t,
.
Kiel,
T.-S.
1981.
WU
1. Continuity i n topological groups.
P r o c . Amer. Math. S O C .
13(1962),
452-453.
B. Yood 1. Homomorphisms of normed algebras. P a c i f i c J. Math. E ( 1 9 5 8 )
, 373-381.
526
BIBLIOGRAPHY
2 . Hilbert algebras as topological algebras. Arkiv Math. 12(1974), 131-151. W.R.
Zame 1. Algebras of a n a l y t i c germs. Trans. Amer. Math. SOC. 174(1972), 275-288.
2. E x t e n d i b i l i t y , boundedness and sequential convergence in spaces of holomorphic f u n c t i o n s . Pacific J. Math. 57(1975), 619-628. 3 . Holomorphic convexity of compact s e t s in a n a l y t i c spaces and the s t m ture of algebras of holomorphic germs. Trans. Amer. Math. SOC. 222 (1976), 107-127. 4. Homomorphisms i n t o a n a l y t i c r i n g s . Amer. J. Math. 101(1979), 1103-1122.
5 . Existance, uniqueness and c o n t i n u i t y of functional calculus homomorphisms ( preprint ) . W. ielazko 1. On the l o c a l l y bounded and m-convex topological algebras. Studia Math. 19(1960), 333-356. 2 . Metric generalizations of Banach algsbras. Rozprawy Matematyczne (Dissertationes Mathematicae) no 41. PWN-Polish Sci. Publ., Warsaw, 1965. pp. 1-70. 3 . Banach Algebras. Elsevier P u b l . Co. Amsterdam, 1973. 4. On maximal i d e a l s in c o m t a t i v e m-convex algebras. Studia Math. 58 (1976) 291-298.
N.P. Zimakov 1. On t h e theory of l o c a l l y convex algebras. Taskent. Gos. Univ. NauEn. Trudy (Vopr. Matem. ) , vip. 490(1976), 118-122. [Russian].
527
List
of
Symbols
a E - T ( E , m(E)),190
a ox 241 axi I
a ( E $ F / , 436 a ( E $ F ) , 436
2 (X) , a,(X)
132
I
a(x,E l ,
395
A=f.AeC:
/XIS1
1,
(o-completion)I
8,
36 30
21
E ^ = F ( E )74, E + = E B C , 256 E
1
= E @ C ( " u n i t i z a t i o n " of an algebra E )
E = & lm
Ba
,
,
83
E = l i m ( E a , fa(,) EQlF
I
E ~ F E,
,
83
360 Tl
~
EqF, E@F 2
32
PF E
~ F 366 ,
E8F
, 370
2
EBF, E
~
F E ~ F , 372
&
E
EF
= S E ( E L , F ) , 373
E ~ F , E ~ F 375 , T
T
E(c."(x)I
€'(x)= F O X
(dfl,
, 240
I
498
( e " ( X ) l t , I 132 I
45
F t X ) , 219
528
LIST OF SYMBOLS
SE(G/, 1
403
.t(E@F, G ) , 380 T
lAmEa
, lLm(Ea,
limi,
I
86
f a a l l 110
LIST OF SYMBOLS
u=
{ X E ~ :I h l = I
1 , 232
(UI (balanced h u l l ) , 6 < U > (convex h u l l ) , 6
2,
73
x o y , 43
x o F , 45 x e y , 360 $(7?7CE)I = S p E ( x ) , 104
( x , V , p I , 208
I
e n d of a proof in the text)
( o r y e t of a s t a t e m e n t n o t p r o v e d
529
This Page Intentionally Left Blank
531
INDEX
a-barrel ( =algebraic barrel) , 3 absolutely convex, 7
-,
algebra, 1 37
-, -,
32, 38
-, m-barrelled,
-, A-convex, -, A-normed,
-, -, -, -,
-,
advertibly complete, 44, 45
-,
Arens (Lw~[0,211), 2 Arens-Calderdn, 299 Baire, 24 Banach, 31
-, -,
-,
-, barrelled locally convex, - - - m-convex , 9
9
I
-, -,
bounded, 184 central, 430 complete locally convex, 21
-I
- - m-convex , 21
-,
-, - topological, 21 -, division, 61
-, -, -
-,
-,
Frgchet (topological), 9 - locally convex, 9 - - m-convex, 9 f u l l , 266 Gel’fand-Mazur, 308
- , group, 231
-, Hilbert, 303 -, inductive limit, 112 - - - locally m-convex,
-, -,
120
infinite (projective)topological tensor product ( = infinite tensor product locally convex), 385 - tensor product, 384
infra-Pt5k ( Br-complete), 308 - - I algebraically, 310
-, -
local, 351 locally bounded, 39 8
m-infrabarrelled, 306 Michael , 269 morphism, 14 Nachbin-Shirota, 262 normable, 13 normal, 334 nuclear, 302 of polynomials, 162
-, polynomial, 312 - , primary, 301 -, projective limit, 162 - - -, strictly dense, 174 -, Ptdk (fully complete) , - , - , algebraically, 310
-, -, -,
-, -, -, -, -, -, -, -I
-,
267
quasi-complete, 23 regular, 332 Riemann, 353 semi-normable, 13 semi-normed, 1 Silov, 334 simple, 338 spectrally barrelled, 142 Stein, 228 tensor product , 362 topologically simple, 338 uniform, 214
532
IXTDEX
c h a r t o f a m a n i f o l d (see l o c a l chart)
Waelbroeck, 54 Warner , 214
,
Wiener-Tauber
c e n t e r (of an a l g e b r a ) ,
349
commutant , 430
42
a-normed, r-complete
429
compact d i s c , 373
, 280
0-complete ( = s e q u e n t i a l l y c o m p l e t e ) , 63 a p p r o x i m a t e i d e n t i t y , 465
- - ,bounded, 465
-
S t e i n s e t , 161
c o m p a t i b l e t o p o l o g y , 364, 375, 382 c o n c a v i t y module, 41 C o n d i t i o n I N ) , 250
- - ,- , e v e n t u a l l y ,
continuous r e p r e s e n t a t i o n , 461
466
a p p r o x i m a t i o n p r o p e r t y , 312
c o n t r a c t i b l e s p a c e , 306
- _ ,Banach-Grothendieck,
c o n v o l u t i o n a l g e b r a of e m - f u n c t i o n s , 325 - m u l t i p l i c a t i o n ( L1 - a l g e b r a ) , 232
--
303,374
f o r a l o c a l l y m-convex a l g e b r a , 445
c o t a n g e n t s p a c e , 243
a t l a s , Nachbin, 245 a-convex h u l l , a b s o l u t e l y , 380
_ - ,b a l a n c e d a-norm,
-,
a n d , 380
40
submultiplicative
B a r r e l (see a - ,
,
41
I-, and rn-bar-
rel) bicommutant
,
Decomposition ( o f a l o c a l l y m-convex a l g e b r a ) , A r e n s - M i c h a e l , 91 d i v i s i o n a l g e b r a , l o c a l l y convex, 61
- -,t o p o l o g i c a l ,
61
E-modif i c a t i o n , 297 430
boundary , 189
e l e m e n t a r y measure of a r e p r e s e n t a t i o n , 415
- s e t , 189
e n v e l o p e o f holomorphy, 160 & - p r o d u c t , 373
C m - a t l a s , 245
-,
maximal,
245
Fourier-Gel’fand
C m - a n a l o g o n of Banach-Stone Theorem, 277
- of S t o n e - W e i e r s t r a s s Theorem, 240
CIX)-embedded, C*-semi-norm,
222
b i l i n e a r map, 360
character, generalized,
271
- g r o u p , 232 - - , s e c o n d , 240 - of a l o c a l l y compact g r o u p , c o n t i n u o u s , 232
--
an algebra, 61
f u n d a m e n t a l d e f i n i n g f a m i l y of subm u l t i p l i c a t i v e semi-norms ( f o r t h e t o p o l o g y o f a l o c a l l y m-convex a l g e b r a ) , 15 G a l o i s c o r r e s p o n d e n c e , 222
491
c a n o n i c a l b a s i s of t h e t a n g e n t s p a c e , 241
-
t r a n s f o r m , 239
G(=GSteaux)-holomorphic f u n c t i o n , 31 5 g a u g e f u n c t i o n (Minkowski f u n c t i o n al), 1 $? ( E l -convex , 354
5 (El-regular ,
355
S ( E ) - s e p a r a b l e , 354 G e l ’ f a n d map, 73
-
s p a c e , 139 t o p o l o g y , 139
INDEX
533
- transform algebra, 14
-, cw-analogon of Uryson’s,
- - - , generalized, 212
-,
- - of
t
(element of an algebra),
13
- - - - , generalized, 212
generators (of an algebra), algebraic , 1 4 1 -, topological, 141 group C*-algebra, 501 Hermitian element (of a *-algebra) , 485 hk-topology, 331 holomorpic set, 161 holomorphically convex set, 161 hypocontinuous bilinear map ( = ( & E , U3 I - hypocont inuous ) , 28 F Ideal, left (right), 63
-, closed maximal, -, 2-sided1 63
67
-,-,
maximal, 64 idempotent subset (of an algebra), 1 inductive system of algebras, 111
- - - sets, 109 - - - tensor product algebras, 36 3
intertwining operators, 77 inverse system of algebras ( = projective system of algebras) , 83 invertible element (of an algebra), k-covering family, 165 - sequence, 128
k-space, 166 k-topology, 166
225
Embedding (Rernmert-Bishop-Narasimhan) , 229
-, Grothendieck’s, -, Schur’s, 7 1
392
-,
Whitney‘s Imbedding , 241 local basis, 5 chart, 129 - coordinate (function), 130 expression of a tangent vector, 24 1 - global coordinates, 228 locally convex algebra ( = with separately continuous multiplication) , 4
-
--
--
- with continuous multiplication, 4
topological algebra, 9 equicontinuous (see spectrum)
m ( = multiplicatively)-convex algebra, 5
---
---
C*-algebra , 484 - , enveloping, 491 *-algebra , 484 topological algebra, 9
- uniformly, 148
m-barrel, 5 m-bornivorous , 307 m-bounded , 307 m-convex, 5 m-set, 1 measure , idempotent-valued, 477 -, spectral, 477 multiplication, bounded preserving, 29 -, (jointly) continuous, 4 -, separately continuous, 4 multiplicative distribution, 326
LFQ -algebra, 301
-
Z(=linear)-barrel, 3 (Zkl -algebra, 304 Lemma, Arens-Calderbn, 299
Nachbin atlas, 245
subset (of an algebra= m-set), 1
- chart, 245
534
INDEX
- Shirota space, 262
-,
normal coordinates , 244 - family of functions, 334
semi-simple (topological) algebra, 266 -, functionally, 267 -, strongly ( = functionally), 267 semi-topological group, 53 Silov-Arens-Calder6n-Waelbroeck theory, 295 - - - - functor, 296
O(X)-regular,
229
Oka s principle , 300 I-homogeneous norm, 40 order of homogenuity, 41 Polynomial, n-homogeneous, 311 continuous, 311
- ,_ ,
- boundary, 189
space of (Schwartz) distributions, 326
polynomially convex hull, 162 projective system of algebras, 83
submultiplicative, 1
spectral decomposition of a pair of " commuting r epre sent ations" , 496
--,
strictly dense, 174 Prolla-Machado ( = (PMI-) condition, 397
- map, 295 - - , weakly, 295
-
mapping theorem, polynomial, 198
&-algebra, 43
- synthesis, algebra of, 349
quasi-invertible ( = quasi-regular) element (of an algebra) , 47
- -,
Regular element, 47
-
family of functions, 332 representation, irreducible, 77
- space, 482
-,
weakly continuous unitary, 489
set of, 349
spectrum, algebraic , 67
-,-, extended,
68
-, generalized, 177 -,-, extended, 177 -, local, 47 -, locally equicontinuous, 142, -, topological (global), 69, 139
-,-,
178
extended, 141 -hypocontinuous, 68
,r)
resolvent equation, (first), 51
fG
- - , (second), 51 - function, 50
*-algebra, 481 -, topological , 481 -,-, self-adjoint, 482 *-morphism, 481 *-representation, 482 support (of a function), compact,
- set, 50
Riemann surface, 353 Runge type, 319
G -hypocontinuous,
Schwartz space, 132 S6-set, 161 semi-norm, absorbing , 37 -,-, left (right), 37 - ported by a compact s e t , 315
-,
127
28
projective tensor product, 368
z-hypocontinuous, 28 tangent space, 240 tensor, decomposable, 360 tensor product a-norm, 379,382 -
-
--
topology , inductive , 370 - , projective, 366
INDEX
535
t e s t f u n c t i o n s , 132
- I
Theorem, F r o b e n i u s , 61
- , i n v e r s e image, 80
-, -,
-,
G e l f and-Mazur
,
61
( c o m m u t a t i v e ) Gel'fand-NaTmark, 488
-, -,
Igusa-Remmert-Iwahashi,
230
-, L o c a l , 348 -, M a l l i a v i n ' s , 349 -, N a c h b i n ' s , 249 -,-, v e c t o r i z a t i o n o f , 395 -, Oka-Weil ( " i n f i n i t e - d i m e n 319
-,
P o n t r j a g i n D u a l i t y , 240
-, -, -,
Ptbk's,
-,
Sya Do-Sin, 487
268
R i e s z r e p r e s e n t a t i o n , 474 SNAG (= Stone-Nahark-Ambrose-Godement) , 489
topological algebra, division, 63 - - , f i n i t e l y g e n e r a t e d , 283
---
with continuous inversion, 51 - - multiplication, 4
- _ - - q u a s i - i n v e r s i o n , 51 - - - separately continuous
m u l t i p l i c a t i o n (= t o p o l o gical algebra), 4
-
s p a c e , compactly g e n e r a t e d ( = k - s p a c e ) , 166
topology, b i p r o j e c t i v e tensori a l , 311
-, ern-,131 - compatible
with t h e tensor p r o d u c t a l g e b r a s t r u c t u r e , 375
-----_
vector space struct u r e , 364
- ( o n H W ) ) , compact p o r t e d , 316
-,
compactly g e n e r a t e d (= k-toP o l o g y ) , 166 f a i t h f u l , 444
-, -, f i n a l l o c a l l y c o n v e x , - - - rn-convex, 120 -, - v e c t o r s p a c e , 113 I
,
331
J a c o b s o n , 331 l o c a l l y m-convex i n d u c t i v e
l i m i t , 120 -I
Nackey, 374
- , m e a s u r e , 129
K r a m m , 354
sional"),
-,
h u l l - k e r n e l (hk-topology)
113
-,
M i c h a e l , 269
-
of b i e q u i c o n t i n u o u s c o n v e r g e n c e , 371
-,
p r o j e c t i v e t e n s o r i a l , 366
-,
Stone-Jacobson,
-,
s t r o n g e s t l o c a l l y m-convex,
-, -, -,
t r i v i a l l o c a l l y rn-convex, van Hove,
331 8
8
137
Z a r i s k i , 331
t r i p l e t f o r a topological algeb r a , 208 Unit semi-ball, closed, 1 , 2 unitary group, (multiplicative) 232 Wiener-Tauber
condition,
349
,
This Page Intentionally Left Blank