s AND APPLICATIONS
NORTH-HOLLAND MATHEMATICS STUDIES Notas de Matematica (105)
Editor: Leopoldo Nachbin Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro and University of Rochester
NORTH-HOLLAND-AMSTERDAM
NEW YORK
OXFORD
117
TRANSMUTATION THEORY AND APPLICATIONS Robert CARROLL University of Illinois Urbana, Illinois
1985 NORTH-HOLLAND -AMSTERDAM
NEW YORK
OXFORD
@
Elsevier Science Publishers B.V., 1985
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN: 0 444 87805 X Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V. P.O. BOX 1991 1000 BZ AMSTERDAM THE NETHERLANDS
Sole distributors for the U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC. 52 VAN DER BILT AVE N U E NEW YORK, N.Y. 10017 U.S.A.
Librarj o f Congress Cataloging in Publiralion D a l a
Carroll, Robert Wayne, 1930!Transmutation theory and applications. (Eurth-Holland mathematics studies ; 117) (Notas de m a t e d t i c a ; 105) Bibliography: p. Includes index. 1. Transmutation operators. 2. C i f f e r e n t i a l operators. I. T i t l e . 11. Series. 111. Series: Notas de m a t d t i c a (Rio de Janeiro, Brazil) ; 105. QAl.NB6 no. 105 C€@.329.43 510 s t515.7'2421 65-12928 ISBN bh44-87805-X (U.S. )
PRINTED IN THE NETHERLANDS
PREFACE
We use t h e word t r a n s m u t a t i o n o p e r a t o r o r t r a n s m u t a t i o n t o r e f e r t o operat o r s B which i n t e r t w i n e two second o r d e r l i n e a r d i f f e r e n t i a l o p e r a t o r s P and Q ( u s u a l l y on [O,CD))
i n t h e sense t h a t QB = BP, a c t i n g on s u i t a b l e o b j e c t s .
One can a l s o deal w i t h d i f f e r e n t i a l o p e r a t o r s o f d i f f e r e n t o r d e r s and we r e f e r t o [C29] and r e f e r e n c e s t h e r e f o r t h i s aspect o f t h e t h e o r y .
Such
o p e r a t o r s a r e o f t e n c a l l e d t r a n s f o r m a t i o n o p e r a t o r s by t h e Russian school ( L e v i t a n , Naimark, MarEenko, e t . a1 . ) , b u t t r a n s f o r m a t i o n seems t o o broad a term, and, s i n c e some o f t h e machinery seems "magical" a t times, we have f o l l o w e d L i o n s and D e l s a r t e i n u s i n g t h e word t r a n s m u t a t i o n .
L e t us empha-
s i z e t h a t t h e i n t e r t w i n i n g above i s n o t o p e r a t o r s i m i l a r i t y i n Lp t y p e spaces ( t h e s p e c t r a can be d i f f e r e n t ) ; B i s u s u a l l y an i n t e g r a l o p e r a t o r w i t h a d i s t r i b u t i o n k e r n e l and, when t r i a n g u l a r , i t w i l l be i n v e r t i b l e (as a Volterra operator).
Such t r a n s m u t a t i o n s a r i s e and can be c h a r a c t e r i z e d
i n v a r i o u s ways v i a Cauchy problems, Goursat problems, G e l f a n d - L e v i t a n (G-
L) equations, m i n i m i z a t i o n procedures, s p e c t r a l e i g e n f u n c t i o n p a i r i n g s , Thus, l e t P and 0 be o f t h e form P Qu = ( A o u ' ) ' / A Q - q ( x ) u f o r example. Then i f e.g. b, = -A2v!, v r ( 0 ) = 1, Dxqh(0) P =, 0, and b! = pi,Q where p y has s i m i l a r p r o p e r t i e s r e l a t i v e t o Q,
e i g e n f u n c t i o n c o n n e c t i o n formulas, e t c .
one w i l l have a t r a n s m u t a t i o n B: P
+
Q and t h e formal c o n n e c t i o n i s expres-
sed v i a q 4x ( y ) = ( e ( y , x ) , p ~ ( x ) ) w i t h 6(y,x) = (!Ji(x),;:(y))v P P A p ( x ) q p x ( x ) and v denotes a s p e c t r a l p a i r i n g f o r (P,pA). t h a t i n c e r t a i n circumstances (e.g.
Ap = A
q and, f o r s i m p l i c i t y , p = 0 so P = D',
Q
where 3 P( x ) =
As a model we n o t e
= 1 with suitable potentials
P
Cosxx = p x ( x ) , and dv = (2/T)dx)
one has @(y,x) = 6 ( x - y ) t K(y,x) w i t h K(y,x) = 0 f o r x > y ( c a u s a l i t y ) and t h e connection l e a d s t o a Goursat problem f o r K o f t h e form Q(Dy)K(y,x) = P(Dx)K(y,x)
w i t h q ( x ) = 2DxK(x,x) and Kx(y,O) = 0.
a l s o has k e r B - l = y(x,y)
= 6(x-y)
Q
+ L(x,y) and t h e s p e c t r a l p a i r i n g f o r
( Q , p x ) i s g i v e n v i a a Parseval f o r m u l a (Qf,@,g)w
QfQg), where Qf = 9:
fr
Q
=
f ( x ) n x ( x ) d x ( w i t h say f E L
= Cf here i f we t a k e A
Q
=
I n such s i t u a t i o n s one
2
fr f ( x ) g ( x ) d x
=
( R4 ,
h a v i n g compact s u p p o r t
-
1 ) , and R Q i s a d i s t r i b u t i o n ( t h e g e n e r a l i z e d
vi
ROBERT CARROLL
s p e c t r a l function of MarEenko), RQ = (2/7)[1 + FCL(y,o)] ( F c
Q
Fourier co-
s i n e transform). Thus the transmutation theory, B: D2 + Q here, expressed through connections ( k e r n e l s ) K and L "sees" both t h e potential q (via K(x,x)) and t h e spectrum ( v i a L(y,O)); when q i s real R (I d w = a spectral Q
measure. Moreover t h e development uses very l i t t l e information i n a canonical way reminiscent of category theory. The crucial ingredients a r e hyperbolic d i f f e r e n t i a l equations, Riemann functions, generalized t r a n s l a t i o n , eigenfunctions p X Q ( x ) which a r e e n t i r e functions of X of exponential type x , Paley-Wiener ideas and contour i n t e g r a t i o n , G-L equations, e t c . (a G-L equation a r i s e s from p X 4 ( y ) = (S(y,S),q!(S)) by taking w s c a l a r products w i t h ((XI - thus r ( y , x ) = ( ~ ~ ( x ) , ~ ~ =( (Y ~) ~) (~ Y , PS ) , ~P ~ ~) u( )S ) ~ ~ ( X In f a c t one has a l s o z ( y , x ) (R(Y,s),A(s,x))). as the kernel of a transmutation " a d j o i n t " t o B-'.
Ap(x) =
= aP(x)aQ1(y)y(x,y)
Now t h e above leads t o many developments of e s s e n t i a l l y mathematical i n t e r e s t r e l a t e d t o special functions and d i f f e r e n t i a l operators b u t t h e r e i s another s i d e of the story. One knows t h a t many l i n e a r physical processes based on Newton's second law f o r example a r e governed ( a t l e a s t t o f i r s t approximation) by second order 1 i n e a r d i f f e r e n t i a l operators and equations. T h u s i t should come as no s u r p r i s e t h a t t h e mathematical machinery useful (and e s s e n t i a l ) i n studying such processes has s i m i l a r p a t t e r n s and s t r u c t u r e f o r various problems a r i s i n g i n d i f f e r e n t d i s c i p l i n e s . Moreover transmutation can be p a r t i a l l y regarded i n the context of studying an operat o r Q i n terms of a "known" operator P and i t i s possible t o t r a n s p o r t various types of P machinery t o Q via B (e.g. t h e Fourier cosine transform and i t s inverse correspond t o t h e Q transform and i t s inverse f ( x ) = ( RQ, Qf(X) C QP ~ ( X ) ) via ~ B[Cosxx](y) = p QX ( y ) ) . In this s p i r i t v a r i o u s formulas a n d procedures i n quantum s c a t t e r i n g theory and geophysical a c o u s t i c wave theory f o r example have s i m i l a r s t r u c t u r e (based on transmutation connections) and the transmutation machine;-y i s e s p e c i a l l y useful in studying inverse problems. A t another level ( i n t e g r a l equations of G-L and Wiener-Hopf (W-H) type) one encounters c e r t a i n aspects of l i n e a r estimation and f i l t e r i n g theory w i t h t h e underlying s p e c t r a l i z a t i o n based on Fourier theory f o r s t a tionary processes. There a r e many f a s c i n a t i n g and useful connections here with techniques from s c a t t e r i n g theory f o r example in analyzing t h e various f i l t e r i n g and smoothing kernels. Thus i n a c e r t a i n meaningful way t h e transmutation theme, i n the context of second order linear d i f f e r e n t i a l operators, can be thought of q u i t e generally as a d e f i n i t i v e way of studying
PREFACE
" a l l " such operators i n a unified and canonical manner.
vii The machinery aoes
t o a reasonable enough depth in t h a t i t sees t h e c o e f f i c i e n t s and spectrum and one expects t o study f u r t h e r the " s e n s i t i v i t y " o f t h e machinery in variour senses. Thus although we f e e l t h a t t h e theory has reached a stage where
a s o r t of d e f i n i t i v e presentation i s possible ( a n d hopefully embodied here i n p a r t ) we a l s o suggest t h a t t h e theory and methods can be developed f u r t h e r in various ways. Let us i n d i c a t e now t h e r e l a t i o n of t h i s book t o t h e a u t h o r ' s previous two books on transmutation ( 1 ) Transmutation and operator d i f f e r e n t i a l equat i o n s , North-Hol land, 1979 and ( 2 ) Transmutation, s c a t t e r i n g theory, and s p e c i a l f u n c t i o n s , North-Holland, 1982. There is very l i t t l e i n t e r s e c t i o n w i t h ( 1 ) since i n ( 1 ) we were primarily i n t e r e s t e d in s o l u t i o n s o f ordinary d i f f e r e n t i a l equations w i t h operator c o e f f i c i e n t s and the transmutation 2 methods were b a s i c a l l y only of the most elementary s o r t , connecting D with 2 2 2 2 2 D, D with - 0 , and D with Qm = D + [(2m+l)/x]D o r w i t h D + (2m+l)CothxD ( t h e l a t t e r t h r e e connections occur of course a l s o i n t h e present volume). Also contained i n ( 1 ) was a d e t a i l e d account of the Hutson-Pym development of generalized t r a n s l a t i o n i n a t e n s o r product context (not repeated here). However a t l e a s t one half of ( 1 ) was mainly concerned w i t h operator d i f f e r e n t i a l equations as such and questions of existence of s o l u t i o n s , uniqueness, e t c . On t h e other hand, although we have w r i t t e n rouqhly 25 papers s i n c e w r i t i n g ( 2 ) , and of course o t h e r work h a s appeared in the intervening t h r e e y e a r s , we will n a t u r a l l y include here some basic material from ( 2 ) i n a reorganized form. The present book i s designed more as a " t e x t " on t r a n s mutation ( a s well as a research monograph) and t h e f i r s t chapter in f a c t s t a r t s with an introduction t o d i s t r i b u t i o n s and Fourier a n a l y s i s . Then t h e r e a r e 5 s e c t i o n s on basic s p e c t r a l a n a l y s i s (from several points of view), and on transmutation f o r operators D2 - q , where t h e presentation i s s s s e n t i a l l y s e l f contained a n d t h e d e t a i l s a r e s p e l l e d out completely. Then in s e c t i o n s 9-12 we deal with s i n g u l a r operators a n d t h e general Parseval formula v i a transmutation methods following ( 2 ) ; the procedure i s designed t o d i s p l a y the e s s e n t i a l canonical s t r u c t u r e without becoming immersed in excessive d e t a i l (which can be found i n ( 2 ) ) . Chapter 2 begins with a treatment of general transmutation theory via s p e c t r a l pairings and develops t h e i n t e r p l a y between various c h a r a c t e r i z a t i o n s of transmutation in terms of connection formulas, Goursat problems, Cauchy problems, s p e c t r a l p a i r i n g s , and minimization. General G-L a n d Marzenko ( M ) equations a r e developed
viii
ROBERT CARROLL
from various points of view with use of generalized translation as an essential ingredient in the theory. The canonical M equation connecting full line Fourier type operators P with general Q uses a new form of operational calculus in its development and reveals the intrinsic structural form of such equations as factorizations related t o the general G-L factorization. Sections 8-9 involve new results on Bergman-Gilbert (8-G) operators and related operators arising in transmutation theory via "complex angular momentum". A general Kontorovi&Lebedev (K-L) theory is developed and applied in the study of generatinq functions as transmutation kernels. Section 10 is also new and uses transmutation techniques intrinsically in the development of orthogonal functions relative to general measures. Section 1 1 is mostly new material on the construction o f transmutations with emphasis on the relations between kernels and coefficients. Chapter 3 consists of applications in several areas to show most clearly the intrinsic and canonical nature of transmutation methods in studying physical problems governed by second order linear differential equations. The first section is an introduction to stochastic ideas (with definitions and basic background information from probability theory). Then in §§3-5 we review some main lines of work on linear stochastic estimation and filtering in the sense of extracting and studying the structure of the basic integral equations and relating this t o underlying differential problems. Theorems are proved in detail and various techniques of use in electrical engineering for computation are indicated (although we do not say anything specific about numerical procedures). In §§6-7further connections of this work to transmutation theory and scattering theory are developed and we show how the minimizing procedure characterizing transmutation kernels in 57.7 i s equivalent to linear least squares estimation when there is an underlying stochastic process. In 558-9 we show how transmutation methods play an intrinsic role in the study of one dimensional geophysical inverse problems (such techniques can also be used for certain three dimensional problems as reported on in (2)). Section 8 is largely taken from (2) (with considerable refinement) and 59 contains new material involving transmission readout. Many new mathematical features (e.g. splitting of spectral measures) arise and have structural similarity to topics in estimation theory (e.g. Wiener filtering). In 570 we briefly survey some information on random evolutions related t o transmutation and as a separate topic make some remarks on the Darboux transformation. 511 is about canonical equations in the context of
PREFACE
ix
t r a n s m u t a t i o n w i t h o p e r a t o r c o e f f i c i e n t s and some a p p l i c a t i o n s t o t r a n s m i s sion l i n e s a r e indicated.
The a u t h o r would again l i k e t o thank Leopoldo Nachbin f o r h i s s u p p o r t and encouragement over the p a s t y e a r s . My w i f e Joan has been p a t i e n t l y support i v e a g a i n through months of s c r i b b l i n g and t y p i n g and I am g r a t e f u l . I would a l s o l i k e t o acknowledae some c o n v e r s a t i o n w i t h a number of people on v a r i o u s a s p e c t s o f this and r e l a t e d t h e o r y ; i n p a r t i c u l a r l e t me mention r e c e n t (5 1982) d i s c u s s i o n s w i t h A. B r u c k s t e i n , S. Dolzycki, M. Faierman, T. K a i l a t h , I . Knowles, B. Levy, J . McLaughlin, E. Robinson, E. Rosinger, P. S a b a t i e r , F. S a n t o s a , W. Symes, and B. Whiting.
This Page Intentionally Left Blank
CABLE Of CONCENCS
PREFACE
1, I n t m d u c t i a n
1
2, Distribufinn thenry
3
3, Fnurier a n a l y s i s
8
4, Basic transmutatinns
14
5- Parseval fnrmulas v i a transmutation ana the generalizea
s p e c t r a l function 6, S p e c t r a l thenry i n the energy v a r i a b l e 7. S p e c t r a l fhenry i n the momentum v a r i a b l e 8, C l a s s i c a l s p e c t r a l theory and r e l a t i o n s t n f u l l l i n e s c a t t e r ing 9, I n t r o a u c t i a n t o s i n g u l a r uperators and s p e c i a l functinns 10, Paley-Wiener thenrems, s p h e r i c a l t r a n s f n m , and Parseval formulas f u r s i n g u l a r aperatnrs 11- E x p l i c i t cnnstructions nf generalizea t r a n s l a t i o n s and transmutatinns f n r s i n g u l a r nperatars 12, canonical fnrmulatiun nf Parseval fnrmulas ana transfarms
I, m t m a u c t i n n
21
29 37
47
58 69 80
90
103
2, S p e c t r a l pairings f o r generalized t r a n s l a t i n n and trans-
mutatinn kernels
105
3, &he general extenaed &elfand-Levitan equation
117
4 , Quantum s c a t t e r i n g t h e m y
126
5. &he marcenkn equation v i a transmutatinn
136
6, &he marcenkn equatinn f o r Fnurier type nperatnrs
147
7. minimization a s a hireckive i n characterizing transmu-
t a t i n n kernels 8, cnnstructinn nf transmutatinns far 5 type nperatnrs 9, &he Bergman-Gilbert (B-c) a p e r a t n r ana generating f unct inns 10. Orthngnnal pnlynnmials ana transmutation xi
159
171 187 208
xii
ROBERT CARROLL
11, Relatims behueen kernels ana p o t e n t i a l s
1- Intrnhuctinn
220
229
2- Prnbahility t h e n q ana rananm prncesses
230
3, Ginear s t u s h a s t i c estimation
237
4, F i l t e r i n g ana i n t e g r a l eqnatinns
244
5- Znnouatinns ana s c a t t e r i n g
252
6, &ransmutatinn ana l i n e a r s t n c h a s t i c estimatinn
259
7. Randm € i e l a s ana s i n g u l a r nperators
270
8, Geophysical inverse pruhfems ( r e f l e c t i o n data)
275
9,
Geophysical inverse prnblems (transmissinn aata)
10, Same miscellaneous tupics 11, Equatinns with operator c o e f f i c i e n t s
288 300 308
REFERENCES
323
INDEX
347
CHAPEER 1
BACKGR0LIND IIIAEERIAL: AND BASIC IDEM
1, I N E R 6 D U ~ Z B N . This chapter i s designed t o serve as a source of basic information f o r t h e r e s t of t h e book. I t contains s e c t i o n s on d i s t r i b u t i o n s , Fourier transforms, eigenfunction theory, e t c . and i s l a r g e l y s e l f contained (some basic information on p r o b a b i l i t y theory and s t o c h a s t i c processes appears in Chapter 3). Naturally some f a m i l i a r i t y w i t h basic functional ana l y s i s , t h e Lebesgue i n t e g r a l , complex a n a l y s i s , e t c . will be helpful b u t
i t i s l e s s necessary than one m i g h t imagine. W e have found f o r example t h a t b r i g h t engineering o r physics students without a g r e a t deal of mathematical s o p h i s t i c a t i o n a r e o f t e n the best audience f o r " i n t e r d i s c i p l i n a r y s t u d i e s " of t h i s type; t h e i r physical i n t u i t i o n and general good sense allow them t o see through a l o t of "axiomatic t r a s h " and come t o terms w i t h t h e real i s sues immediately. On t h e o t h e r hand mathematics students often have t o overcome t h e p a r a l y s i s induced by too many E ' S , 6 ' s , a-rings, e t c . before their i n t u i t i o n can f l o u r i s h . In any event, c e r t a i n ideas from point set topology and basic functional a n a l y s i s (e.g. open s e t ) will n o t be defined b u t otherwise we will t r y t o be as complete as possible. Let us give a preview of t h e f i r s t chapter a s follows. §§2-3 involve i n troductory material on d i s t r i b u t i o n s and Fourier transforms. The material on boundary values of a n a l y t i c functions i s only included because of i t s int r i n s i c i n t e r e s t and o t h e r possible a p p l i c a t i o n s ( c f . here t h e material on e l l i p t i c transmutation in [C35,40]). Next §§4-5: Theorem 1.4.3 i s a basic theorem showing a technique f o r constructing transmutations via Cauchy problems. The i n t e r a c t i o n of t h i s theorem w i t h the construction o f kernels v i a Riemann functions and Goursat problems t o a r r i v e a t Theorems 1.4.8 and 1.4. 9 i s p a r t i c u l a r l y i n s t r u c t i v e . The use of these kernels i n t h e subsequent machinery t o prove t h e Parseval formula in Theorem 1.5.8 shows repeatedly 2 how information based on D and t h e Fourier transform can be transmitted 2 ( o r perhaps transmuted!) t o t h e development of theory f o r Q = D - q. The
1
2
ROBERT CARROLL
f o r m u l a RQ = ( 2 / ~ ) [ 1 + cLh(y,o)]
i n Theorem 1.5.5 shows how t r a n s m u t a t i o n
"sees" t h e spectrum w h i l e q ( y ) = 2D K (y,y) from Theorem 1.4.9 e x h i b i t s how Y h t r a n s m u t a t i o n "sees" t h e c o e f f i c i e n t q. §§6-8:
S e c t i o n 6 shows how t o determine t h e s p e c t r a l measure and i n v e r s i o n
formula f o r " s p h e r i c a l f u n c t i o n s " based on Q(D)u = ( A u ' ) ' / A where A has p r o p e r t i e s o f i n t e r e s t i n a p p l i c a t i o n s (see Chapter 3, § 8 ) . The expression 9 ( y ) + c-aQ (y) o f ( 6 . 2 6 ) leads t o dv = dX/2alcQ(X)I 2 as i n (6. qQ(y) = c A Q h Q -A 37) and t h e i n v e r s i o n (6.35)-(6.36). C l a s s i c a l c o n t o u r i n t e g r a l techniques u s i n g a Green's f u n c t i o n a r e e x p l o i t e d .
S e c t i o n 7 uses e s s e n t i a l l y t h e
-
same k i n d o f c o n t o u r i n t e g r a l technique w i t h c e r t a i n e i g e n f u n c t i o n s based
-
2
2 2
on o p e r a t o r s Qu = x u" + 2xu' + x [k
-
q(x)]u where t h e s p e c t r a l parameter
now corresponds t o complex a n g u l a r momentum ( i n s t e a d o f energy).
Section 8
reviews t h e c l a s s i c a l f o r m u l a t i o n o f e i g e n f u n c t i o n expansions f o l l o w i n g e.g. Titchmarsh and develops some f a c t s about " F o u r i e r t y p e " o p e r a t o r s D2 on
(-m,m).
-Sinhx/x,
-
p(x)
Such o p e r a t o r s posses e i g e n f u n c t i o n s @; 5 e x p ( i A x ) , x! P (pX n, CosXx, and Z A n, e x p ( - i x x ) and t h e o p e r a t i o n a l c a l c u l u s based Q
P
on these f u n c t i o n s i s r e l a t e d t o f u l l l i n e s c a t t e r i n g t h e o r y s i m u l t a n e o u s l y w i t h t h e c l a s s i c a l e i g e n f u n c t i o n expansion t h e o r y . 509-12 a r e on s i n g u l a r o p e r a t o r s
= (A u ' ) ' / A
Q
Q
+
p
2
Q
u - { ( x ) u modeled on
t h e r a d i a l Laplace-Beltrami o p e r a t o r i n a rank one noncompact Riemannian symmetric space.
The s p h e r i c a l f u n c t i o n s i n v o l v e e.g.
Bessel f u n c t i o n s ,
a s s o c i a t e d Legendre f u n c t i o n s , Jacobi f u n c t i o n s , e t c . and t h e i n t e g r a l t r a n s forms i n c l u d e t h e Hankel and g e n e r a l i z e d Mehler t h e o r y . o n i c a l technique o f 854-5 t o such s i n g u l a r o p e r a t o r s .
We extend t h e canNumerous examples a r e
g i v e n and t y p i c a l k e r n e l s f o r t r a n s m u t a t i o n and g e n e r a l i z e d t r a n s l a t i o n a r e displayed.
P r o p e r t i e s o f t h e s p h e r i c a l f u n c t i o n s and J o s t s o l u t i o n s a r e
proved as needed f o r l a r g e classes o f t y p i c a l s i t u a t i o n s and general cons t r u c t i o n s a r e i n d i c a t e d w i t h some s k e t c h o f t h e p r o o f a t l e a s t .
The main
theme i s t h a t t h e r e i s a canonical i n t r i n s i c procedure e x p l i c i t l y based on t r a n s m u t a t i o n f o r d e t e r m i n i n g Parseval formulas and e i g e n f u n c t i o n expansion h
theorems f o r general o p e r a t o r s Q i n terms o f s u i t a b l e p r o t y p i c a l model opera t o r s Qo whose t h e o r y i s known.
The t r a n s m u t a t i o n machine t r a n s p o r t s t h e
necessary p r o p e r t i e s and s t r u c t u r e around and produces e x p l i c i t c o n s t r u c t i o n s from which t h e g e n e r a l i z e d s p e c t r a l f u n c t i o n RQ a r i s e s i n terms o f a transmutation kernel.
DISTRIBUTION THEORY
3
DZ5ERZBUE'I0)N CHE0Rg. A g r e a t deal of the progress in studying p a r t i a l d i f f e r e n t i a l equations over t h e l a s t 35 years o r so has been due t o t h e de-
2.
velopment and systematic use of t h e theory of d i s t r i b u t i o n s (and i t s extensions t o boundary values of a n a l y t i c functions, hyperfunctions, e t c . ) . There a r e many treatments of t h i s theory a v a i l a b l e ( c f . [Bgl; Bzl; C19,29; Gfl; H11; Hml; Jb3; Nal; Rb1,2; Th2,3; Yal; S j l ] ) . One can deal with c l a s s i c a l d i s t r i b u t i o n theory as a ( b e a u t i f u l and s i g n i f i c a n t ) t o p i c i n l o c a l l y convex topological vector spaces b u t this i s f o r t u n a t e l y unnecessary i n p r a c t i c e f o r a n a l y s i s and applied mathematics. In f a c t i t i s s u r p r i s i n g l y easy t o approach t h e s u b j e c t honestly and almost immediately begin t o use
T h i s i s the approach we will adopt here and f o r our purposes we can e s s e n t i a l l y confine our a t t e n t i o n t o 1 R . Thus
d i s t r i b u t i o n s and t h e r e l a t e d Fourier theory.
Let S? be Rn o r an open s e t i n Rn. Define C; as t h e vector DEFlNIElBN 2.1. space of Cm functions i n R with compact support (support q = supp q is t h e s m a l l e s t closed s e t o u t s i d e of which q :0 ) . A d i s t r i b u t i o n T in R i s a l i n e a r map T: C: C such t h a t f o r any compact s e t K c R t h e r e e x i s t cons t a n t s C and k (depending on K ) with (*) I T ( 9 ) ) I = I ( T , q ) l 5 C 1 suplD'q1, -f
Ci;
c K), Daq = D;',..D>p, Dk = a / a x k , a = ( a l , . . . , a ), 1 ~ =1 1 a k ) . I f k i s t h e same f o r a l l K one says T i s of n order 5 k. One w r i t e s D ' ( S ? ) f o r t h e vector space of such d i s t r i b u t i o n s T. la1 5 k ( q E C;(K)
=
19 E
SUPP q
This can be s t a t e d i n terms of sequential c o n t i n u i t y as follows.
Given a
compact s e t K c W l e t DK be t h e vector space of C: functions in P w i t h supp o r t i n K. One places a topology on DK by specifying t h a t a sequence q € j DK converges t o 0 provided suplD'q. I -+ 0 uniformly on K f o r each f i x e d a. J Clearly i f T s a t i s f i e s t h e condition of Definition 2.1 then ( T , p ) -f 0 when j -+ 0 i n DK ( i . e . T: D K + C i s continuous). On the other hand i f (*) i n
'j
Definition 2.1 does not hold f o r some K = ^K, while ( T,q ) -+ 0 whenever q j j 0 i n D K a r b i t r a r y , then, f o r any j , taking C = k = j i n Definition 2.1, we have I( T , q j ) I > j 1 suplDaqj I ((a15 j ) f o r some p E Di. One can assume j ( T , q j ) = 1 (by l i n e a r i t y ) and then I0"q.I 5 l / j f o r la1 5 j ( i . e . q + 0 i n J j ~i when we l e t j r u n ) although ( T , q J. ) + 0. This c o n t r a d i c t s and hence one can s t a t e -+
EHE0REm 2.2, A l i n e a r map T: C;(R)
+
C i s a d i s t r i b u t i o n ( T E D ' ( S ? ) ) i f and
only i f T i s a continuous l i n e a r map DK REIRARK 2.3,
+
C f o r every K c R compact.
By Theorem 2 . 2 in order t o t e s t whether o r not a s p e c i f i c o b j e c t
4
(e.g.
ROBERT CARROLL
a d e l t a o b j e c t d e f i n e d b y ( 8 , ~ =) ~ ( 0 )i s a d i s t r i b u t i o n one needs
o n l y check i t s a c t i o n on convergent sequences o f t e s t f u n c t i o n s q I n p r a c t i c e t h i s i s a l l we need.
j
E
UK).
However l e t us mention t h a t t h e r e i s a
m
t o p o l o g y on U = C o y c a l l e d a s t r i c t i n d u c t i v e l i m i t topology, which i s chara c t e r i z e d by t h e p r o p e r t y t h a t a l i n e a r map T: U
+
F,
F a l o c a l l y convex
t o p o l o g i c a l v e c t o r space, i s continuous i f and o n l y i f T: U t i n u o u s f o r each Kn i n any " d e t e r m i n i n g " sequence Kn
a
which exhaust 52 ( i . e .
= UK,).
C
Kn+l
Kn
-+
F i s con-
o f compact s e t s
We remark t h a t a l o c a l l y convex t o p o l o g i c a l
v e c t o r space F i s a t o p o l o g i c a l v e c t o r space whose t o p o l o g y i s determined by a ( n o t n e c e s s a r i l y c o u n t a b l e ) f a m i l y o f seminorms p,.
T h i s means t h a t a
fundamental system o f neighborhoods o f 0 i n F i s determined by f i n i t e i n t e r s e c t i o n s of s e t s V,$E)
= I x E F, p ( x ) < a
-
€1.
R e c a l l t h a t a seminorm p
on F i s a r e a l v a l u e d f u n c t i o n on F such t h a t p(x+y) 5 p ( x ) + p ( y ) and p(ax) = IciIp(x);
i f p ( x ) = 0 i m p l i e s x = 0 t h e n p i s c a l l e d a norm.
This allows
us t o s p e c i f y d i s t r i b u t i o n s T E U'(C)as continuous l i n e a r maps T: U when
U
-f
C
has t h e s t r i c t i n d u c t i v e l i m i t t o p o l o g y (and accounts f o r t h e
= C:
"duality" notation U
EHWLE 2-4. L e t clearly (8,q
.) =
- U').
= R ' and l e t q + 0 i n U be a g e n e r i c sequence. Then j K ~ ~ ( +0 0 ) so t h e 6 o b j e c t i s a d i s t r i b u t i o n . F o r any Llo1c
J function f define (f,q) =
rZ f ( x ) q ( x ) d x
so f determines a d i s t r i b u t i o n .
f o r IP E C i .
Evidently
(f,q.)
+
J I n p a r t i c u l a r one d e f i n e s t h e Heavyside
0
f u n c t i o n Y by Y(x) = 0 f o r x < 0 and Y(x) = 1 f o r x > 0. Now t h e main reason f o r c o n s t r u c t i n g a t h e o r y o f d i s t r i b u t i o n s was t o be a b l e t o d i f f e r e n t i a t e enough o b j e c t s so t h a t a t h e o r y o f l i n e a r p a r t i a l d i f f e r e n t i a l equations was p o s s i b l e .
Thus U
i s constructed v i a a topology
based on d i f f e r e n t i a t i o n and by d u a l i t y we w i l l be a b l e t o d i f f e r e n t i a t e ob-
U'. More p r e c i s e l y l e t T E 0' and c o n s i d e r t h e map M: q + Dkq -(TyDkq): U U + C. C l e a r l y M i s l i n e a r and Dk: UK + U K i s continuous;
jects i n
-f
-f
hence ( g i v e n t h a t t h e t o p o l o g y o f UK i s i n f a c t t h e t o p o l o g y induced b y U ) by Remark 2.3 Dk: finition,
U
-f
U i s continuous.
+
C i s continuous by de-
M i s continuous and hence determines an element i n
-(T,Dkq)).
UI(a)(M(lp)
=
This leads t o
DEFZNZCZ0N 2-5- Given T (2.1)
Since T: U
( D k T,q) =
EHilPCE 2.6.
-
E
U' one d e f i n e s DkT by t h e f o r m u l a
(q E
U)
(T,Dkq)
Given T = f E C'(n) we see t h a t (2.1) reduces t o t h e standard
5
DISTRIBUTION THEORY formula of i n t e g r a t i o n by p a r t s . DY = 6 s i n c e
(2.2)
(DY,?)
= -(Yp') =
-
Applied t o T = Y of Example 2.4 one has
q'(X)dX = r ~ ( 0 =) ( 6 , ~ )
jOrn
DEFZNZ&ZBN 2-7, Let E denote Cm(R) with t h e topology of uniform convergence on compact s e t s of functions a n d a l l d e r i v a t i v e s . T h i s will be a metrizable space ( t h e topology i s defined by a countable number of seminorms) and convergence can always be r e f e r r e d t o sequences. If Kn C Kn+l w i t h a = UKn i s a "determining" sequence of compact s e t s then a sequence 9 k + 0 i n E means t h a t f o r any p and n , s u p lDaqkl -+ 0 (x E Kn) f o r l a \ 5 p. The dual space E ' (= the space of continuous l i n e a r maps E -+ C ) i s in f a c t the space of d i s t r i b u t i o n s T with compact support (we omit t h e proof of t h i s b u t i t i s r o u t i n e - see t h e references c i t e d e a r l i e r ) . Here one says t h a t T = 0 in The complement i n 52 of an open s e t A c a i f ( T , 9 ) = 0 f o r a l l q E C:(A). t h e union of a l l such A where T = 0 is c a l l e d s u p p T. DEFZNZCZBN 2-8, For B
t h a t s u p Ix Da9(x)J
-
=
<
Rn now l e t S denote t h e space of Cm functions
(x
E
n
R ) f o r every a = ( a l ,...,a n ) and B = ( B 1
$,).
9
such
,...,
Such functions a r e c a l l e d rapidly decreasing and one says 9 k 0 in S 2 m a i f f o r any m and p , s u p I ( l + l x l ) D q k l + 0 (x E Rn) f o r IaI 5 p. This w i l l be t h e natural space f o r Fourier transforms ( s e e 53) and t h e dual space S ' , -+
t h e space of continuous l i n e a r maps S
C, i s a subspace of 27' c a l l e d t h e space o f tempered d i s t r i b u t i o n s . One shows S ' C 27' by using t h e d e n s i t y of 27 in S - s e e the references c i t e d f o r d e t a i l s ) . +
DfFZNlCl@N 2.9, For 9,lL E C:(Rn) one defines (9 * Jl)(x) = 9(x-S)Jl(S)dE (convolution). For d i s t r i b u t i o n s S,T i n U'(Rn) S * T may not be always def i n e d . However i f S E 27' and T E E ' f o r example one can define S * T E 27' by t h e r u l e (9 E U ) (2.3)
( S
*
@ T , q ( x + y ) ) = ( S x , ( T y , 9 ( x + y ) ) ) = ( T, ( S , , ~ P ( X + Y ) ) )
Ty9) = ( S
EXAMPLE 2-10, Let S
X E
Y
Y
U'(Rn) and T = Dk6
E
E l .
Then
ROBERT CARROLL
6
When t a l k i n g about convergence i n D', E l , or S ' one will always mean weak convergence (and i n f a c t t h e only l i m i t s which a r i s e w i l l involve sequences). Thus f o r example Tn + T in D' w i l l mean ( T n , v ) ( T,P) for any fixed q E D. -f
MAWCE 2.11-
Let
J, E
u(R") w t h say
J,
1 centered a t the o r i g i n , and !$ ( x ) d x f o r IP E D, a s k + m y
This shows t h a t
+
6 in
= 1.
$
c B(0,l)
Set $ k ( x )
=
=
ball of radius
kn$(kx) and then,
i$
( $ k x ) , P ( x ) ) = kn
(2.5)
2 0, supp
D'.
D'(Rn) we can define a r e g u l a r i z a t i o n T k = T * Jlk w i t h Q k a s i n Example 2.11. One can show e a s i l y ( c f . references c i t e d ) t h a t T k E C m ( R n ) and Tk T in U' a s k m. REmARK 2-12. For T
E
-f
-f
REIIARK 2.13. Let US mention here a l s o t h a t since the Lebesgue i n t e g r a l and measure theory a r e often not f a m i l i a r t o s t u d e n t s (and s c i e n t i s t s ) working w i t h d i f f e r e n t i a l equations one can nevertheless define and use L 2 theory
f o r example via distributions ( c f . [Rnl f o r example). T h u s consider Cz(0,m) and define t h e ( r e a l ) s c a l a r produce ( f , g ) = f m fgdx w i t h IIf1I2 = ( f , f ) . Let 0 q n be a Cauchy sequence in this norm topology and then f o r any t e s t function (13
I(J,,v~ -
- p m y $ ) l5
II+IIIIqn
-
o
so ($,q,,) i s Cauchy and converges t o R ( J , ) where R i s l i n e a r . That R is then a d i s t r i b u t i o n follows from t h e Banach-Steinhaus theorem f o r example ( c f . [C40] b u t we omit the d e t a i l s here ( 0 is a so c a l l e d barreled space in i t s natural topology). 2 T h u s we sayv, -+ R in D' and one can i d e n t i f y R w i t h an L function i f one 2 knows about L2; i f not we simply define L as t h e c o l l e c t i o n of d i s t r i b u tions L obtained i n this manner ( o r more generally a s the c o l l e c t i o n o f Cauchy sequences from C:(O,m) - a b s t r a c t completion). One shows e a s i l y t h a t i f two Cauchy sequences cpn and \Lln a r e equivalent ( i . e . lipn - $,I1 -+ 0 a s n m) then they determine t h e same d i s t r i b u t i o n R ( e x e r c i s e ) . Further R E S ' i s evident and one can define (R,m) = lim (pn,JIn) w i t h IIRll = lim lllpnll when 2 9, (resp. $,) a r e Cauchy sequences defining 1 (resp. m). Similarly L i s complete in norm and hence a Hilbert space; we leave t h e d e t a i l s here a s a r e l a t i v e l y easy exercise. One can obtain t h e o t h e r Lp spaces ( 1 5 p < m) by s i m i l a r procedures whereas f o r Lm one has t h e space of d i s t r i b u t i o n s f In f a c t one can say more gensuch t h a t I( f,lp ) I 5 MllcpIIL1 f o r a l l 9 E C;. e r a l l y t h a t L p i s the space of d i s t r i b u t i o n s f such t h a t I( f y 9) I 5 MlllpflLq 2 f o r a l l 9 E C: ( l / p + l / q = 1 , p > 1 ) . Let us mention a l s o t h a t i f f E L , J, E Co
qm)l = l(qn
pmll -+
-+
7
DISTRIBUTION THEORY
m
w i t h a d e t e r m i n i n g Cauchy sequence v k equality
",1
[vk(s) -
t h e n by t h e Cauchy-Schwartz i n 2 v L ( c ) I d c 1 2 5 x f 1vk - v,12dc = Xllvpk - v,tlL2 so t h a t E X
Co,
0
IX v k ( c ) d c converges u n i f o r m l y i n any f i n i t e i n t e r v a l t o a continuous func0
S i n c e - ( f , $ )= - l i M v k , $ ) = l i m ( f v k , $ ' ) = ( F , $ ' )
t i o n F(x).
t h a t F i s a p r i m i t i v e o f f, F ' = f, and F =
fX
it follows
f ( c ) d c + c i n an e v i d e n t no-
tation. L e t us make a few remarks here about t h e r e p r e s e n t a t i o n o f d i s t r i b u t i o n s i n 1 R as boundary values o f a n a l y t i c f u n c t i o n s ( c f . [Bgl; B z l ; C40; Cbl-3; H11; Odl,Z]).
These m a t t e r s a r e u s e f u l f o r e l l i p t i c t r a n s m u t a t i o n i n [C35,40].
CHEBREFII 2-14. L e t T
E
E'(R1),
The a n a l y t i c r e p r e s e n t a t i o n o r Cauchy r e p r e A
s e n t a t i o n o f T i s d e f i n e d by T ( z ) = ( l / 2 n i ) ( T t , ( l / t - z ) ) function o f z f o r z
E
and i s an a n a l y t i c
C n o t i n supp T.
vn(t)
Phoal;: F o r Imz # 0 t h e d i f f e r e n c e q u o t i e n t sequence f o r small Azn,
-
[(l/(t-z-Azn) a l y t i c i n C-R. K* so t h a t
(
converges i n E t o ( l / ( t - 2 )
(l/t-z)]/Azn,
For K = supp T p i c k a ( t )
€
27 w i t h a
=
2
)
=
E so T i s an-
E
1 on K and supp
CL
=
As z
+
xo
i n E so t h a t T ( z ) i s continuous as z
+
xo and hence a n a l y t i c a t
Tt,(l/t-z))
= ( Tt,a(t)/(t-z)
).
E
a(t)/(t-z)
R-K*,
-+
A
a(t)/(t-xo)
Since K
xo ( e x e r c i s e ) .
*
K can be t a k e n as c l o s e t o K as d e s i r e d t h e theo-
2
rem f o l l o w s . as I z (
One sees e a s i l y i n Theorem 2.14 t h a t l ? ( z ) l = 0(1z1-')
-
r e a l , ?(x+iE)
? ( x - i E ) = O ( ( X ~ - ~ ()e x e r c i s e
-
c f . [Bzl]).
-+
m
and f o r x
L e t us r e c a l l
a l s o f r o m c l a s s i c a l p a r t i a l d i f f e r e n t i a l e q u a t i o n s t h a t i f f ( t ) i s a cont i n u o u s bounded f u n c t i o n one has a harmonic r e p r e s e n t a t i o n
-m
Thus f* i s harmonic f o r Imz # 0 ( i . e . A f * = 0) and e.g. E
-+
0.
f*(t+iE)
-f
f ( t ) as
A l s o one shows e a s i l y t h a t t h e convergence i s u n i f o r m on compact
s e t s i n t.
Now l e t f ( t ) = O ( ( t 1 " )
f o r a < 0 and w r i t e ? ( z ) = ( 1 / 2 a i ) 2 Since ( l / Z n i ) [ l / ( t - z ) - l / ( t - z ) ] = ( y / n ) [ l / l t - z l 1 we see
/If ( t ) d t / ( t - z ) . t h a t fn(x+iE)
-
A
fh(x-iE) = f * ( x + i c ) and consequently as
E
-+
0, f ( x + i a )
-
A
f(x-iE)
T
E
-+
f(x).
This type o f representation f o r functions p r e v a i l s a l s o f o r
E ' i n t h e f o l l o w i n g sense.
CHE0REm 2.15,
L e t T E E ' and l e t
derivatives.
Then
lim E+O
[I [?(x+iE)
-
v
E
E be bounded a l o n g w i t h each o f i t s
?(x-is)]v(x)dx = (T,v)
8
ROBERT CARROLL
Phoo6:
-
L e t T*(z) = sgn(y)[;(z)
?(?)I
= ( ] Y ~ / T T )T( t , ( l / l t - z [
easy argument w i t h Riemann sums y i e l d s As
E
-f
0, 9 ( x + i e )
(a)
LI T * ( x + i E b ( x ) d x
.
*
Tt,ro*(x+iE)).
*
Hence IP ( x + i c )
One can a l s o check e a s i l y t h a t T ( z ) i s harmonic f o r Imz E
= (
Then an
q ( x ) u n i f o r m l y on compact s e t s and a s i m i l a r conver-
+
gence holds a l s o f o r a l l d e r i v a t i v e s o f 9 ( e x e r c i s e ) . * 9 ( x ) i n E and ( Tty9 ( x + i E ) ) + ( T,q ).
T
2 ).
+
+
0 s o from ( * )
E ' i s a l s o t h e boundary v a l u e o f a harmonic f u n c t i o n ( a c t i n g on
9 E
E
We see i n p a r t i c u l a r t h a t f o r T E E ' w i t h s u p p o r t K t h e r e
as i n d i c a t e d ) . A
i s a f u n c t i o n T ( z ) a n a l y t i c i n C-K such t h a t Theorem 2.15 h o l d s f o r 9 E D. A
A
But T i s n o t t h e o n l y such a n a l y t i c r e p r e s e n t a t i o n o f T s i n c e T + E, f o r e n t i r e , has t h e same p r o p e r t i e s ( f o r 9 E
E
U). Modulo t h i s l a c k o f unique-
ness one can a l s o p r o v e L e t T E D ' w i t h supp T = K.
CHEOREn 2.16,
a n a l y t i c i n C-K such t h a t f o r 9 E
lim
J
E+o
[f(x+ie)
-
Then t h e r e e x i s t s a f u n c t i o n f ( z )
D
f(x-is)&(x)dx
= ( Ty9)
,m
Such f a r e c a l l e d a n a l y t i c r e p r e s e n t a t i o n s o f T and we o m i t t h e p r o o f here ( c f . [Bzl] f o r example). 3,
F0URZER ANAQWIS-
The F o u r i e r i n t e g r a l and r e l a t e d t h e o r y i s one o f
t h e most s i g n i f i c a n t items i n a l l o f mathematics s i n c e i n p a r t i c u l a r i t u n i t e s b o t h p u r e and a p p l i e d mathematics i n b r e a t h t a k i n g harmony. p o i n t o f view one t h i n k s e.g. CDu2; Pel, Wo1,2]
For t h i s
o f Wiener, Kolmogorov, e t c . and books such as
a r e p a r t i c u l a r l y u s e f u l ( c f . a l s o CC19; G f l ; H l l ; S j l ;
Yal] f o r modern approaches).
We w i l l u t i l i z e F o u r i e r methods t h r o u g h o u t t h e
book i n one f o r m or a n o t h e r and g i v e here some background i n f o r m a t i o n .
Let
us d e f i n e f o r f E S(Rn) ( c f . D e f i n i t i o n 2.8)
I
a,
(3.1)
F f ( h ) = ?(A) =
f(x)e
i(X , X )
dx
-(n
where ( A , x ) =
1 X jx j*
The f o l l o w i n g formulas a r e obvious
m
(3.2)
D%(X)
=
[
il"lxclei'
Ayx)f(x)dx
-m
Now t h e i n v e r s i o n f o r m u l a f o r (3.1), has t h e form
which i s proved below i n Theorem 3.2,
FOURIER ANALYSIS
9
m
(3.4)
f ( x ) = ( I / z ~ ) ~P ( A ) e m i (
Using t h i s , w i t h (3.2)-(3.3),
dA
and t h e d e f i n i t i o n o f convergence e t c . i n De-
one proves e a s i l y
f i n i t i o n 2.8,
EHE0REm 3-1- The F o u r i e r t r a n s f o r m i s a 1-1 b i c o n t i n u o u s map S
-f
S (onto).
Now we s t a t e t h e i n v e r s i o n ( 3 . 4 ) as p a r t o f t h e f o l l o w i n g theorem For f , g E S one has (3.4) along w i t h
tHE0REm 3.2.
[
(3.5)
m
I"
I
F(A)g(A)dA =
f(x)F(x)dx
J-m
J-m
The f o r m u l a (3.5) w i l l be w r i t t e n (?,g)
= (
fY:) and i s c a l l e d t h e Parseval
r e 1a t i on.
Ptraod:
One can see e a s i l y t h a t
,1
I,
m
(3.7)
03
g(X)fv(A)e-i(A'x)dA
I
Indeed t h e l e f t s i d e i s (
I e x p ( i tA,y-x)g(x)dA)dy
&l)f(X+ddQ
=
g ( A ) e x p ( - i ( 1 , ~ () I f ( y ) e x p ( i (A,y)dy)dh =
I f(y)F(y-x)dy
=
=
I
f(y)
Consider now
I y(n)f(q+x)dn.
g(EA) i n s t e a d o f g(A) so t h a t
I, m
(3.8)
m
g ( a A ) e x p ( i (h,<)dx =
I,
E - ~
g ( z ) e x p ( i (z,E/E)dz
=
E-';(~/E)
I t f o l l o w s t h a t i n (3.7) m
(3.9)
j-
g(EA)7(oe
-i(A,x)
m
dx =
E
-
m
I,
~
:(q/E)f(x+o)dr!
=
Now one uses a w e l l known f o r m u l a ( c f . [ Y a l ] )
2 Thus, s e t t i n g g ( x ) = e x p ( - l x l / 2 ) and l e t t i n g
E
+
0 one o b t a i n s f r o m (3.9)
m
(3.11)
g ( 0 ) j"?(A)e" a
(xyx)dA = f ( x ) j-T(S)dE
2 T h i s i s (3.4) s i n c e g ( 0 ) = 1 w h i l e I G(c,)dg = ( 2 a ) n / 2 / e x p ( - 1 5 1 /2)dg = (271)n. For (3.5) we s e t x = 0 i n (3.7) w h i l e f o r (3.6) one has s i m p l y (3.12)
I
(f
*
g)(x)exp(i
A,X
dx =
i
e
I
f(x-c)g(E)d<)dx =
ROBERT CARROLL
10
(3.12)
1
=
e i (x'c)g(c)ei(x3x-c)f(x-c)dcdx
=
F(A)~(x)
Now one uses t h e Parseval formula (3.5) t o define t h e Fourier transform i n S ' by d u a l i t y ( c f . Definition 2.5 f o r the analogous porcedure f o r d i f f e r e n t i a t i o n ) . Thus, given T E S ' , consider t h e map N : q Fq + ( T , F q ) : S -+ S -+ C. By Theorem 3.1, F: S S is continuous and hence N i s continuous, as -f
-f
a composition of continuous maps, so N determines an element o f S ' , N(q) T, q ).
=
(
DEFZNZCZBN 3 - 3 , Given T
6 S'
one defines the Fourier transform FT by
EMWCE 3.4, One can check t h e following formulas e a s i l y ( T
FA
(3.15)
F(DkT) = - i x k F T
(3.16)
Dk(FT)
[m
S')
F(ixkT)
=
Let us take ? = ? i n t h e Parseval formula (3.5) so f o r f , g J i ( x ) e x p ( - i (A,x))dx with f ( x ) = ( 1 / 2 ~ ) ~and ? consequently (3.17)
S)
1
(3.14)
=
E
(q E
=n,
Fgdx
=
[
E
S F(h) =
OD
( 2 ~ ) FgdA ~
Using t h e density o f :C
o r S i n L2 one obtains immediately
2 2 CHE0REm 3-5- The Fourier transform i s an isomorphism L + L w i t h ( g
E
2
L )
Obviously a d i f f e r e n t normalization f o r F would make the correspondence g + g in (3.18) an isometry b u t we p r e f e r t h e present formulas because of (3.6) e remark t h a t S * T is n o t i n general defined f o r and (3.14) f o r example. W S,T E S ' but, when S E S ' w i t h T E Ui (a space of d i s t r i b u t i o n s we will e releave undefined), then S * T E S ' makes sense and F(S * T ) = FS FT. W mark also t h a t t h e Fourier transform can be defined f o r 2)' by using somewhat d i f f e r e n t techniques ( c f . [EaZ]).
u
Let us go now t o a t o p i c which plays an unusually important r o l e i n transmutation theory, namely t h e Paley-Wiener complex of ideas. F i r s t
11
FOURIER ANALYSIS
CHE@)REm 3-6- An e n t i r e f u n c t i o n F ( c ) , r; E C n y i s t h e F o u r i e r t r a n s f o r m F ( g ) =
JIf ( x ) e x p ( i ( x , < ) d x ,
c B(0,R) that
Pkoul;:
= t k i- i n k y o f a f u n c t i o n f E C:(Rn)
1x1 5 R I , i f and o n l y i f f o r e v e r y
= {x;
(?I
ck
IF(c)1 5 CN(l
+
N t h e r e e x i s t s CN such
Icl)-Nexp(RIImcl).
The n e c e s s i t y i s immediate f r o m t h e r e l a t i o n ( c f . ( 3 . 3 ) ) , II(-ii;k)RK ( i n t e g r a l o v e r 1x1 5 R).
F ( c ) = J DBf(x)exp(i<x,c))dx
IT)-^
f i n e (*) f ( x ) =
?(E)
w i t h supp f
fIexp(-i(x,c))F(c)dt
-
= F ( < ) and f E Cm ( e x e r c i s e
For s u f f i c i e n c y de-
(5 r e a l ) .
One sees e a s i l y t h a t
use an analogue o f (3.2) f o r t h e d i f f e r -
Now i n (*) one can use Cauchy's theorem and ( ? ) t o s h i f t t h e
entiation).
c o n t o u r o f i n t e g r a t i o n so t h a t f o r a r b i t r a r y n = a x / J x I ( a > 0 ) m
(3.19)
f(x) = (2~)-"
I.
e-i(x"-in)
F ( 5- in ) dc
Take N = n + l so t h a t m
(3.20)
If(x)/
5 (2ii)-'CNe
I f now 1x1 > R we l e t
Ra).
CY + m
R l ~ \ - ( x Y ~ )
.
L
(l+lc))-Ndc
t o obtain f ( x ) = 0 ((x,n)
Hence supp f C B(0,R).
=
a l x l while
Rlql =
An e n t i r e f u n c t i o n F ( r ; ) i s t h e F o u r i e r t r a n s f o r m o f T E E ' i f N and o n l y i f f o r some c o n s t a n t s R, N, and C one has (*) IF(r)l 5 C ( l + ( < I )
&MBREm 3.7expR1 Imr;I .
Ptrool;: F o r n e c e s s i t y l e t K = supp T and t a k e some f i x e d $ E C E equal t o 1 on K w i t h supp $ = K ' 3 K. Then one sees e a s i l y t h a t f o r any cp E E , (T,cp) = ($T,q)
= (
Since T E
T,cp$).
D'
by D e f i n i t i o n 2.1 t h e r e e x i s t c o n s t a n t s c
1 sup
and k (depending on K ' ) such t h a t I T ( x ) ( 5 c
DKl. C'
1
But sup
take K'
x =kE IOCYcpI (1.1
C
B(0,R)
O K , f o r any
5 k, x
E
f o r some R.
cp E
E so
( ( T,cp)l
(1.1
ID%(
5c
1
5 k) for x
SUP
E
5
ID"(cpPJ,)I
K ' ) where c ' depends on c and $.
We can a l s o
Now t a k e cp = e x p ( i ( x , < ) )
=
s o (T,cp)
FT and A
one o b t a i n s (+).
F o r s u f f i c i e n c y we know F
f o r some T
L e t Gk be an approximate i d e n t i t y as i n (2.11) and one
E
S'.
has FTk = F(T ($k(<)\ <
c
*
$ k ) = F(FQk).
But SUPP J/k
(l+l)-Mexp((Imr;l/k).
by Theorem 3.6,supp
Tk
C
B(O,R+l/k). -f
m
C
S ' f o r 5 r e a l so F = T
B(O,l/k)
= FT
and hence f o r any M
Consequently I F T ~= ~
Cn(l+lr;i~-Wexp(R+l/k)(Im<\ and s i n c e Tk c supp T + supp $k and as k B(o,R).
E
E Cm ( e x e r c i s e
-
1
~
<
~
~
1
c f . Example 2.11)
B u t one checks e a s i l y t h a t supp T
i t f o l l o w s f r o m t h e above t h a t supp T
C
*
$k
12
ROBERT CARROLL
The c l a s s i c a l Paley-Wiener theorem i n v o l v e s L
2
f u n c t i o n s and we s t a t e here
some one dimensional v e r s i o n s o f t h e t y p e needed l a t e r ( t h e p r o o f s a r e l e f t as e x e r c i s e s here
-
c f . [Bsl;
Cel; Du2; P e l ; P f l ; R m l ; Yal]).
Thus f i r s t
one says t h a t a f u n c t i o n f ( z ) i s o f e x p o n e n t i a l t y p e T i f f o r each t h e r e e x i s t s M such t h a t I f ( z )
I
5 Mexp( I z I ( T t E ) ) f o r z
E C.
> 0
E
Then we have
2 F i s an e n t i r e f u n c t i o n o f e x p o n e n t i a l t y p e T w i t h f E L on 2 t h e r e a l l i n e i f and o n l y i f f ( z ) = F ( t ) e x p ( i t z ) d t where F E L (-T,T).
&HEBREm 3.8.
JT,
f ( z ) i s an e n t i r e f u n c t i o n o f e x p o n e n t i a l t y p e T w i t h f
6HEBREm 3.9.
f o r z r e a l i f and o n l y i f f ( z ) =
/IT F(t)exp(itz)dt
E
L'
where F(T) = F(-T) = 0
and t h e f u n c t i o n o b t a i n e d by e x t e n d i n g F t o be 0 o u t s i d e o f [-T,T]
has an
a b s o l u t e l y convergent F o u r i e r s e r i e s on any l a r g e r i n t e r v a l [-T-E,T+E]. It w i l l be u s e f u l t o i n c l u d e here some i n f o r m a t i o n about t h e F o u r i e r t r a n s -
form r e l a t i v e t o a n a l y t i c r e p r e s e n t a t i o n s e t c . as i n 52. Thus ( w o r k i n g i n n 1 1 2 R and C ) f o r f E L say w r i t e F ( x ) = f ( f , x ) = ( f , e x p ( i ~ x ) ) and l e t F ( z ) be t h e a n a l y t i c r e p r e s e n t a t i o n o f F
-
t h i s can be d e f i n e d as t h e Cauchy r e -
preresentation ?(z) = ( 1 / 2 d ) ![ F ( t ) d t / ( t - z ) ] . For f E L
mEBREiil 3.10,
Then ( c f . [ B z l ] )
one has ( z = x + i y )
w i t h F(X) = F ( f , x )
By d i r e c t i n t e g r a t i o n one has f o r y # 0 (Y(E) = Heavyside f u n c t i o n )
Ptroa6:
(e.g.
2
(7/2a) J m e x p ( i c z ) e x p f - i c t ) d 5 = l / Z s i ( t - z ) 0
f o r y > 0).
By P a r s e v a l ' s
formula ? ( z ) = ( F ( t ) , ( l / Z d ( t - z ) ) )
= ( F f , l / 2 ~ i ( t - z ) ) = (f(<),Y(c)exp(igz))
(y > 0 ) o r = ( f ( E ) , - Y ( - E ) e x p ( i E z ) )
(y < 0) .
S i m i l a r l y one can e a s i l y shownthat i f G
E
L
T h i s i s Theorem 3.10). 2
and g ( t ) = F-l(G,t)
then
Such r e p r e s e n t a t i o n s as i n Theorem 3.10 or (3.21) can be extended i n an obv i o u s manner t o f u n c t i o n s ( c o n t i n u o u s ) f and G which a r e bounded by Itla f o r 4
some
~1
as t
-+ m
n
and F(z) = f ( f , z )
i s c a l l e d a g e n e r a l i z e d F o u r i e r transform,
"-1
F (G,z) i s t h e g e n e r a l i z e d i n v e r s e transform. L e t us c a l l a continuous f u n c t i o n f w i t h If(t)l = O ( l t 1 " ) a tempered f u n c t i o n . Then i t i s
while $(z) =
i m n e d i a t e t h a t t h e f o l l o w i n g theorem h o l d s .
FOURIER ANALYSIS
13
KHE0REm 3-11. If f is a tempered function then f o r
I
q E S
m
(1/2n)
- j ( f , x - i ~ ) ] e - ~ ~=~ ed-x€ l t l f ( t ) ;
[;(f,x+is)
n ,
E+O lim
- ;(f,x-ie)]
F-'[;(f,x+is) 1i m
E+o
=
f(t);
[ [f(f,x+ie) - i(f,x-i~)]q(x)dx
=
(F(f),q)
a r e a n a l y t i c f o r y # 0. Also 4 c l e a r l y from t h e d e f i n i t i o n s , F ( f , x + i e ) = F [ f ( t ) Y ( t ) e x p ( - ~ t ) , x ] and F ( f , x - i s ) = - F [ f ( t ) Y ( - t ) e x p ( e t ) ,XI. This leads t o t h e f i r s t equation d i r e c t l y . Next by t h e Parseval formula and the f i r s t equation t h e r i g h t s i d e of t h e P J L V V ~ : One notes t h a t j ( f , z ) and ? ' ( f , z ) 4
second equation tends t o lim
(
e x p ( - E ( t l ) f ( t ) , f q )= ( f ( t ) , F q )
= (Ff,q).
Now f o r T E S ' one has DmT E S ' and a simple d u a l i t y argument y i e l d s F(DmT) = (-ih)mFT while DmFT = F[(ix)'"T] ( c f . Example 3 . 4 ) . Further one can prove Let T E S ' . Then t h e r e e x i s t s a tempered function f and a n i n t e g e r n such t h a t Dnf = T . Writing ;(T,z) = (-iz)";(f,z) i t follows t h a t F(T,z) i s an a n a l y t i c representation of FT i n t h e sense t h a t f o r q E S,
KHE0RZm 3.12,
I\
( F ( T ) , q ) = lim
(
[F(T,x+iE)
A
- F(T,x-ie)],q)
(E +
0).
Ptlvo6: From Definition 2.8 ( c f . a l s o Remark 2.3) t h e topology of S i s determined by seminorms p ( q ) = sup ((l+x2)mDkqIso t h a t a fundamental sysm,k tern of neighborhoods of 0 i n S c o n s i s t s e.g. of s e t s V (6) = { q E S ; m,k 2mL Ilqll = s u p I ( l + x ) D qpI 5 6 ; 0 5 L 5 k; x E R Consequently, given T E m yk S ' and E > 0 t h e r e e x i s t s m , k such t h a t (( T,q ) I 5 E when q E V m Y k ( B ) . For any J, E S w r i t e = 6$/11J,llm,k; then q E V ( 6 ) and (( T y q ) I = ( ( TyJ,6/lIJ,ll ) I m,k < E which means (*) (( T,IL)I < ( ~ / 6 ) I I $ l l = c s u p I ( l + x2 )mD P$ 1 f o r 0 5 p 5 m,k k. A simple a p p l i c a t i o n of Hahn-Banach ideas and some r o u t i n e c a l c u l a t i o n y i e l d s now T = DnF where ( l + x 2 ) - p F i s continuous and bounded ( e x e r c i s e - c f . [Gfl; Jb3; S j l l ) . In this connection l e t us note t h a t s u p (l+x2)ml$ql 5 2 m+j L+j ( D q I and hence i n ( * ) t h e r e e x i s t s c ' s u c h t h a t ( ( T , J , ) I 5 k . sup(l+x ) J c ' sup I (1+x2)m+kDk$l5 c ' /tID[(l+x2)m+kDk$Jdx< ~'IlD[(l+x~)~~D~J,]ll~l. Thus T is defined and continuous on a subspace A = C D [ ( ~ + X ' ) ~ + ~ DIL~ E$ ; Sl of L 1 and by Hahn-Banach t h e r e e x i s t s g E Lm such t h a t ( T , x ) = I gxdx. From 2 m+k Dg] a s a d i s ( T , J , ) = I g D [ ( l + ~ ~ ) ~ + ~ D ~we J , ]have d x T = (-l)k+lDk[(l+x ) 2 t r i b u t i o n . Finally one can represent (-l)k+1(l+x2)m+kDga s D f ( i n various ways) w i t h f continuous and tempered. Hence (with n = k+2) we have
.
(3.22)
;(T,x+iE) - i ( T , x - i e )
=
(-i)"[(x+iE)'f(f,x+iE)
- (x-iE) n FA ( f , x - i ~ ) ]
14
ROBERT CARROLL
m
= (-ix)n
(3.22)
[ f(t)e-€ltleitxdt
+ O ( E ~ )+
LW
+ n ( -i)"x"-'
( iE )
Imf (t)e-'
1 I [ U( t ) -Y ( - t ) l e i Xtdt
im
.
I f we l e t (3.22) a c t on a t e s t f u n c t i o n 'P E S and
w i l l follow.
E
t e n d t o z e r o t h e theorem
EMCAFRPCE 3-13, One can check e a s i l y t h a t t h e f o l l o w i n g formulas h o l d . T = 6 ; T ( z ) = -1/2niz;
(3.24)
T = Y(t);
FT = 1; i ( ~ , z ) =
(
6+,rp) = l i m
= -(l/hi)log(-z)
BMZt
-
=
{
-l/iz
(y > 0 )
0
(Y < 0 )
We w i l l be concerned f i r s t w i t h d i f f e r e n t i a l op-
q ( x ) on [O,m)
( c f . g e n e r a l l y [Ael;
;(T,z)
-m
tmmmuc~cI0NSi.
e r a t o r s Q f D ) = DL
(y # 0 ) ; FT = 2n6+
(1/2ai) j ( t ) d t / ( t + i E ) ;
E O '
4,
(Y < 0)
-1/2
I\
T(z
' 0)
1 / 2 (Y
A
(3.23)
and t h e i r e i g e n f u n c t i o n expansion t h e o r y Dcl; CL1; Chl; Cml; Cgl-4;
C29,30,37,39,40;
2; Lll-3,6-10; Lvl-3; Mcl-4; Nb1,2; Stb2; Te2; T j l ] ) . 2 e r a t o r i s Q = D and t h e a s s o c i a t e d F o u r i e r t h e o r y .
Gel-4;
Gf
The p r o t o t y p i c a l opThus from t h e F o u r i e r
i n v e r s i o n formulas i n §3 one has immediately.
CHZ0RZm 4.1. (4.1)
2 F o r f E S ( o r L ) one can w r i t e (du = (Z/n)dA) FCf =
c
f(x)Coshxdx;
f(x) =
I
(FCf)(x)CoshxdA
S i m i l a r formulas h o l d o f course w i t h COSAX r e p l a c e d by SinAx and we r e f e r t o dv = (2/n)dA as a s p e c t r a l measure.
L e t us c o n s i d e r t h e b a s i c e i g e n f u n c t i o n
equation
S t r i c t l y speaking t h e Q and h s h o u l d be c a r r i e d a l o n g as i n d i c e s i n c a l c u l a t i o n s b u t we w i l l o f t e n w r i t e rpQ ( x ) = rp(A,x,h) o r even rpQ ( x ) = v(A,x) i f A,h AYh no c o n f u s i o n can a r i s e . When h = 0 we speak o f " s p h e r i c a l f u n c t i o n s " r p Y y 0 = ( f o r reasons t o appear l a t e r ) and when h -+ w we d i v i d e by h approprpA(x) Q r i a t e l y and d e a l w i t h so c a l l e d ( i n p h y s i c s ) " r e g u l a r " s o l u t i o n s rp! = OT = 1. The " p o t e n t i a l " q ( x ) i s assumed t o s a t i s f y i n g O ,Q( O ) = 0 w i t h Dxe,(0) Q vanish s u i t a b l y a t
m
( f o r now assume e.g.
t h e r e w i l l be s o l u t i o n s ( J o s t s o l u t i o n s )
( * ) Jm x l q ( x ) l d x < -) so t h a t 0 2 o f Qip = - A rp s a t i s f y i n g
15
BASIC TRANSMUTATIONS
(4.3)
akX(x) Q exp(+ixx) a s x Q
m
-f
We will discuss various ways of developing t h e expansion theorems analogous t o Theorem 4.1 f o r t h e operator Q a n d eigenfunctions P ~ , ~O u. r basic technique here i s transmutational i n nature and will serve a s a model f o r o t h e r developments l a t e r . T h u s 2 DEFINZCIBN 4-2, Let P and Q be two operators of t h e form D2 - q ( x ) = Q ( D - p ( x ) = P ) where p and q will be assumed continuous f o r the moment. An opQ , i f BP = QB, a c t i n g on e r a t o r B i s s a i d t o transmute P i n t o Q , B: P s u i t a b l e functions. There a r e normally many such B which usually w i l l be i n t e g r a l operators w i t h d i s t r i b u t i o n kernels. -f
One c o n s t r u c t s such transmutations i n several ways and we give two points of view here ( c f . a l s o Chapter 2 f o r f u r t h e r information). T h u s f i r s t we give a general procedure, somewhat formally, i n order t o i n d i c a t e d i r e c t i o n s ( c f . [C38-40; Ho2-4; L13; Lpl -3; Mc3,4] ) . CHE@)REm 4.3- Let A and C be l i n e a r operators commuting with P ( a c t i n g on
s u i t a b l e o b j e c t s ) and assume the Cauchy problem (y 2 0, (4.4)
P(Dx)lp = Q ( D )v; q ( x , O ) Y
=
-m
<
x
<
m)
A f ( x ) ; sy(x,O) = C f ( x )
has a unique s o l u t i o n ( i n some c l a s s of functions 9 ) . To f i x ideas one thinks here of f , given on [O,m), t o be extended t o (--,a) a s an even funct i o n and A,C a r e t o a c t on this extension. The potential p ( x ) i s correspondingly extended as an even function. Then, f o r s u i t a b l e f , upon defining Bf(y) = p ( 0 , y ) i t follows t h a t QBf
=
BPf.
P m 6 : Let IL(x,y) = P(DX)v(x,y) so [ P ( D x ) - Q(Dy)15, = P(Dx)[P(Dx) - Q ( D Y ) b 0 while $(x,O) = BAf(x) = APf(x) and DyJi(x,O) = D y P ( D x ) ~ l y = O = P ( D x ) D y \ 0 ( x , 0 ) = PCf(x) = CPf(x). Consequently given uniqueness i n Cauchy problems =
of the form (4.4) f o r $, a s well a s 9 , we can w r i t e $(O,y) = BPf(y). B u t $(O,y) = P(Dx)9(x,y)lx=0 = Q ( D )p(O,y) = QBf(y) and t h e r e f o r e B i s a t r a n s Y mutation P Q. -f
Generally one will have t o f i x a domain D ( P ) so t h a t f E D ( P ) i s " s u i t a b l e " i n Theorem 4.3 and t h e extension of f (and p ) t o (-m,-) must be
REWRARK 4.4,
examined. We a r e usually not concerned here with Lp type spaces so f o r D ( P ) 2 one often takes f E C w i t h s u i t a b l e conditions a t x = 0 and perhaps x = m. In p r i n c i p l e , d i f f e r e n t extensions of f from [ 0 , m ) t o (-m,m) y i e l d d i f f e r e n t
16
ROBERT CARROLL
t r a n s m u t a t i o n s and t h i s i s discussed i n CC40; L13; L p l ; Mc3,4].
We n o t e a l -
so t h a t f o r a n o n t r i v i a l d i f f e r e n t i a l o p e r a t o r P t h e r e a r e o n l y a v e r y l i m i t e d number o f o p e r a t o r s A and C which w i l l c o m u t e w i t h
P
so some o f t h e
apparent g e n e r a l i t y o f Theorem 4.3 i s i l l u s o r y . Now i n s o l v i n g Cauchy problems o f t h e f o r m (4.4)
i t i s , perhaps s u r p r i s i n g -
We f o l l o w [Mc3,4]
l y , expedient t o use t h e method o f Riemann f u n c t i o n s .
I t w i l l be s u f f i c i e n t t o here ( c f . a l s o [C40; Ho1,2; L13; L p l ] ) . 2 D s i n c e o u r c o n s t r u c t i o n w i l l produce i n v e r s e s 73 = B - l and i f B1: w i t h B2: D2 + P t h e n BIB; 1 : P + Q ( i . e . f r o m B2D2 = PB2 we o b t a i n -1 -1 2 -1 B2 P and B1B2 P - BID B2 = QB,B;'). We w i l l b e g i n w i t h A f ( x ) = C f ( x ) = G(x) i n (4.4) (on
2
(--,m)),
P = D
, and
Q = D2
-
P
take
=
D2 + Q 2 -1 D B2 F(x) and
q with q possibly
P i c k a p o i n t (;,$) and l e t R(x,y,$,j) be t h e Riemann func2 t i o n s a t i s f y i n g DxR = Q(D )R w i t h R = 1 on t h e c h a r a c t e r i s t i c 'lines x-x^ = Y +(y-$) ( R i s c o n s t r u c t e d below). L e t D be t h e t r i a n g l e w i t h v e r t i c e s (x^-y*, 2 0), (?,;), and (i+$,O). L e t cp s a t i s f y DXv = Q(D )cp; m u l t i p l y t h i s e q u a t i o n Y by R and t h e R e q u a t i o n by IP so t h a t upon s u b t r a c t i n g one has vxxR - vRxx = complex valued.
o r e q u i v a l e n t l y Dx(cpxR - q R X ) - D (cp R - cpR ) = 0. I n t e g r a t e 9YYR - 'PRYY Y Y Y D and use Green's f o r m u l a t o o b t a i n (I' = a D = boundary D) t h i s over
(IPR -
(vXR - cpRx)dy
(4.5)
Y
r
cpR )dx = 0 Y
Using t h e a p p r o p r i a t e boundary values we have t h e n (changing (;,$)
to
and (x,Y) t o (5,111)
'x-y
EHE0REm 4.5,
'I
z
Given a Riemann f u n c t i o n R as i n d i c a t e d t h e s o l u t i o n o f DXp =
Q(Dy)cpy p ( x , O ) = F ( x ) , and cp (x,O) Y
= G(x) i s g i v e n by (4.6).
L e t us c o n s t r u c t R now f o l l o w i n g [Mc4] (assuming q E Co f o r convenience). 2 A A A Thus c o n s i d e r D R = Q(D )R and w r i t e 5 = x t y and 17 = x - y w i t h 5 = x+y and X Y n , % A 11 = x-y. Set r ( c , n ) = R(x,y,$,?) (= r(cYn,?,6)) and i n t h e r e g i o n D ' : 5
n 55 5
one has
(4.7)
4r
En + q ( ( c - q ) / Z ) r
= 0
w i t h r(t,n) = r(S,;) = I . T h i s i s a s o - c a l l e d Goursat problem f o r r and t h e r e g i o n i s shown below.
17
BASIC TRANSMUTATIONS
(4.8)
Set ( 1 / 4 ) q ( ( c - n ) / 2 ) = - f ( < , n ) a n d then ( 4 . 7 ) can be converted t o an i n t e gral equation 4
(4.9)
r(5,n)
=
1 -
1;
ds j q f ( s y t ) r ( s , t ) d t
fi
One uses successive approximations i n a standard manner i n s e t t i n g r o ( c , n ) =
1 and
rn(c,n)
(4.10) If I f ( s y t )
<
=
-
( 1;
f ( s , t ) r n b (l s , t ) d t d s
M i n D ' f o r example one finds e a s i l y ( e x e r c i s e )
(4.11) Consequent y the s e r i e s
10" rn f o r
r converges uniformly i n D ' and represents a continuous function. By ( 4 . 9 ) , r has continuous f i r s t p a r t i a l d e r i v a t i v e s in 5 and I? and, i f q E C1, then r has continuous second d e r i v a t i v e s . Hence
CHZ0REIll 4-6, The Riemann function R with continuous second p a r t i a l deriva-
t i v e s s a t i s f y i n g t h e Goursat problem ( 4 . 7 ) can be constructed a s above via 1 (4.9) when q E C . I f q E C o y (4.9) y i e l d s a generalized Riemann function r w i t h continuous f i r s t p a r t i a l d e r i v a t i v e s . By approximating (uniformly) 1 Co p o t e n t i a l s q by C p o t e n t i a l s q n the generalized Riemann function r can be approximated by twice d i f f e r e n t i a b l e Riemann functions rn so t h a t ( 4 . 6 ) can be v e r i f i e d f o r generalized Riemann functions. Pmod:
For t h e approximations r n + r = R we r e f e r t o [ M c ~ ] .
The case of principal i n t e r e s t t o us involves F = Af In this event (4.6) becomes
=
.
f and G = Cf = f ' .
18
ROBERT CARROLL
Now s e t x = 0 and d e f i n e (4.13)
K(Y,S)
-(1/2)[RS(S,0,0,Yl
=
so t h a t K w i l l be continuous.
+ Rq(S,O,O,Y)l
D e f i n e t h e n a t r a n s m u t a t i o n B by
(4.14)
Bf(y) = ~ ( O , Y ) = f ( y ) +
(4.15)
E f ( y ) = e ihy +
rY
J
K(y,S)f(S)dS -Y Q 2 Moreover, i f one takes Eh(x) t o be t h e s o l u t i o n o f Qu = -h u w i t h E?(O) = 1 9 Q 2 2 and DxEh(0) = i h t h e n q ( x , y ) = e x p ( i x x ) E h ( y ) s a t i s f i e s D q = Q(D )q = -h q X Y w i t h q(x,O) = e x p ( i x x ) and D q(x,O) = i h e x p ( i x x ) = ( e x p ( i x x ) ) ' . Using Y (4.14) we have t h e n
= K(y,x)
W r i t e now K,(y,x)
ry
K(y,c)eihcdS
-
K(y,-x)
and
EHE0REM 4.7- The o p e r a t o r s Bh and ,B w i t h continuous k e r n e l s Bh(y,x) = 6(y-x) + Kh(y,x) and ~,(y,x) = 6 ( y - x ) t K,(y,x) a r e t r a n s m u t a t i o n s D2 + Q and a r e c h a r a c t e r i z e d by qXQYh(y) = Coshy +
(4.17)
P:
,(y)
loY
Kh(y,x)CosAxdx;
= [Sinxy/h]
+
1
Y
Km(y,x)[Sinhx/A]dx
0
Pfiaab:
A f o r m u l a s i m i l a r t o (4.15) h o l d s f o r EQ & x ) and e x p ( - i h x ) so t h a t
Cosxx + h[Sinxx/x] EQ x ( y ) ] .
-t
+
~ ! , ~ ( y =) (1/2)[E!(y)
The c a l c u l a t i o n y i e l d i n g (4.17) i s t h e n r o u t i n e ( e x e r c i s e ) .
-
Now f o l l o w i n g [Mc4] l e t us determine K(y,x)
i t s e l f as a s o l u t i o n o f a Gour-
s a t problem and a t t h e same t i m e r e l a t e t h e p o t e n t i a l q t o K(x,x). t h a t K determines K t i o n (0'
-
9
o r Km f r o m (4.16).
q)E = -A E f o r E = Ex4 o f (4.15) and c o n v e r t t h i s t o an i n t e g r a l
Eh(x) Q = e ixx
+
One o b t a i n s
lox
[Sinh(x-t)/h]q(t)E:(t)dt
Put (4.15) i n (4.18) now t o g e t (4.19)
Note
Thus t a k e t h e d i f f e r e n t i a l equa-
e q u a t i o n by t h e v a r i a t i o n o f parameters technique. (4.18)
-
Eyh(y)] t (h/ZiA)[EhQ(y)
'1 -X
K(x,t)eihtdt
[SinX(x-t)/h]q(t)eihtdt
= 0
+
B A S I C TRANSMUTATIONS
I
I
t
X
+
(4.19)
19
[Sinx(x-t)/x]q(t)
K(t,S)eixSdgdt
-t
0
S+x-t eixudu
= ( 1 / 2 ) /S-x+t
One uses now r e l a t i o n s o f t h e form [Sinx(x-t)/x)eixS
t o s i m p l i f y t h e r i g h t s i d e o f (4.19) and r e p r e s e n t i t as a F o u r i e r t r a n s form (note K ( t , c ) (exercise
-
=
It\).
0 f o r 161 >
A l i t t l e c a l c u l a t i o n y i e l d s then
c f . LMc41)
i
& ( x+ t 1
(4.20)
K(x,t)
(1/2)
=
j0
t+x-u
q(u)du + ( 1 / 2 ) J:q(u)
K(u,t ) & d u t-x+u
The r e g i o n o f i n t e g r a t i o n f o r t h e second i n t e g r a l i s shown i n (4.21 )
I n t h e r e g i o n s 1 and 2 , 151 > l u l so K(u,() = 0 and a change o f v a r i a b l e s u+c = 2a, u-5 = 2 ~ ,x + t = 2w, x - t = 2v y i e l d s ( H ( ~ , B ) = K ( c c + ~ , a - ~ )e t c . )
1
w
(4.22)
H(w,v)
(1/2)
=
q(y)dy +
da Ivq(a+B)H(a,B)dB 0
0
0
One solves t h i s by successive approximations i n w r i t i n g
1
W
W
(4.23)
HO(w,v) = ( 1 / 2 )
q(y)dy; Hn(W,V) =
jo da l:q(a+B)Hn-1(a,B)dB
0
and t h e n H =
lm Hn(w,v) 0
w i l l be u n i f o r m l y convergent f o r say 0 5 w,v 5 a
and hence r e p r e s e n t s a c o n t i n u o u s f u n c t i o n s a t i s f y i n g (4.22). w r i t e u o ( x ) = Ix I q ( t ) \ d t , u,(x) 0
=
Indeed i f we
IX u o ( t ) d t , and D ( u ) = max 1 1 ' 0
f o r 0 5 g 5 u t h e n one can show e a s i l y t h a t (4.24)
I
IHn(w,v)
5 (1/2)n(w)[ul (w+v) -
ul (w)
-
u1 ( v ) l n / n !
(q(a+B)ldB = uo(v+a) C l e a r l y \HO(w,v)I 5 (1/2)n(w) and, s i n c e IV Da[ul(v+a)
-
(4.25)
\H(w,v)
- u,(v)],
u1(a)
I
q(t)dtl
0
0
-
(4.24) i s s t r a i g h t f o r w a r d ( e x e r c i s e ) .
5 (1/2)n(w)exp[ol (w+v) -
u1 (w)
-
ul
(v)l
uo(a) =
Hence
20
ROBERT CARROLL
(some v a r i a t i o n s on t h i s e s t i m a t e a r e a l s o i n d i c a t e d i n [ M c ~ ] ) .
F i n a l l y we
n o t e t h a t from (4.22) w i t h continuous q and H i t f o l l o w s t h a t Hw and Hv a r e continuous as w e l l as Hwv = q(w+v)H(w,v). = 0.
and H(0,v)
IIHE0RElll 4.8,
F u r t h e r H(w,O) = (1/2) I W q ( y ) d y 0
Consequently
The c o n t i n u o u s k e r n e l K o f (4.15) and Theorem 4.7 can be a l s o
c o n s t r u c t e d by successive approximations from (4.20) o r e q u i v a l e n t l y (4.22) and e s t i m a t e d v i a (4.25) x-t).
( w i t h H(w,v) = K(w+v,w-v) = K ( x , t ) ,
2w = x+t, 2v =
K has continuous f i r s t p a r t i a l d e r i v a t i v e s and s a t i s f i e s Hwv =
q(w+v)H g e n e r i c a l l y w i t h
rx
(4.26)
K(x,x) = (1/2)
J
q(S)dS; K(x,-X)
= 0
0
I f q has n continuous d e r i v a t i v e s t h e n K has n + l continuous p a r t i a l d e r i v a -
t i v e s and i n p a r t i c u l a r t h e e q u a t i o n Hwv = q(w+v)H can t h e n be w r i t t e n ( f o r n 21)
2 2 DtK = [Dx
(4.27)
-
q(x)]K
Thus these e q u a t i o n s r e p r e s e n t necessary and s u f f i c i e n t c o n d i t i o n s f o r a t r a n s m u t a t i o n k e r n e l K as i n (4.15) i . e . I + Kh o r I + K, i n an obvious n o t a t i o n , have i n v e r s e s d e f i n e d by Neumann s e r i e s . We
One knows t h a t V o l t e r r a t y p e o p e r a t o r s o f t h e form (4.17), write I
+
Lh = ( I + Kh)-'
e t c . so t h a t e.g.
Now u s i n g (4.16) and (4.26) we see t h a t K h ( x y x ) =,h + K(x,x)
I x q(S)dS w h i l e DxKh(y,O)
= 0.
= h
+ (1/2)
On t h e o t h e r hand Kh w i l l s a t i s f y an equa-
0
t i o n o f t h e form (4.27) which we d e r i v e as f o l l o w s (assume q
E
C
l
so t h a t
t h e second p a r t i a l d e r i v a t i v e s a r e a l l d e f i n e d ) . Take (4.17) and w r i t e 2 2 2 down D 9 - 9p + A cp = 0 = -qCosAy - q ( y ) I KhCos + A' J KhCos + I D K Cos Y 2 Y h Then observe t h a t A I KhCos = + (Kh(y,y)CosAy)' + DyKh(y,y)CosAy. 2 Thus - I KhD 2 Cos = ASinAyKh(y,y) - J DxKhCos + DxKh(y,y)CosAy - DxKh(y,O). (4.29)
2 [Dy
-
2 q ( Y ) l K h ( y ~ x ) = DxKh(Y,X);
2DyKh(Y,Y)
which i s c o n s i s t e n t w i t h o u r o b s e r v a t i o n s above. c a r r i e d o u t i n [Mc4] r e l a t i v e t o ,L,
= q(Y);
DxKh(Y,O)
= 0
Similar calculations are
and one shows (as f o r K above) t h a t
s o l u t i o n s Kh and Lh t o t h e corresponding problems (4.29) and (4.30)
(below)
BASIC TRANSMUTATIONS
can be constructed by successive approximations.
21
Hence
Transmutation kernels Kh(y,x) f o r (4.17), s a t i s f y i n g (4.29) (with Kh(y,y) = h t ( 1 / 2 ) I Y q ( c ) d E ; ) and L h ( x y y ) f o r (4.28) s a t i s f y i n g
EHE0REm 4.9,
0
2 2 D x L h ( X , Y ) = EDY - q ( Y ) l L h ( X , Y ) ; Lh(xYx)
(4.30)
=
-h
- (1/2)
q(t)dt; JOX
D L ( ~ ~ -0 h L) h ( x , O ) = 0
Y h
can be constructed by successive approximations ( q
E
1 C ).
One sees now t h a t i f Kh i s constructed via (4.29) and f thenfor Bh = I + Kh
E
C
2
with f ' ( 0 ) = 0
Q ( D ) B f = BhD:f Y h 2 Similarly i f f E C s a t i s f i e s f ' ( 0 ) = h f ( 0 ) and L h i s constructed v i a (4.30)
(4.31)
then f o r Bh (4.32)
=
I + Lh
D:Bhf
= BhQ(D )f
Y
W e note t h a t f E C:(O,-) s a t i s f i e s both requirements so t h a t generally one can find a l a r g e c l a s s of functions on which various transmutations B: P + Q can a c t and intertwine P and Q. REmARK 4-10, There a r e analogous r e s u l t s t o Theorem 4.9 f o r Km and Lm ( c f .
( 4 . 1 7 ) ) b u t we will omit t h e d e t a i l s here.
Similarly in what follows we
o m i t the s e p a r a t e c a l c u l a t i o n s needed f o r t h e Bm - Bm s i t u a t i o n . P A ~ E V A I :F ~ R ~ L IUZA L Mewczrnucmm AND EHE GENERACZZED S ~ P E ~ R A IFLINC: We will f i r s t develop t h e s p e c t r a l theory and eigenfunction expan2 sions following [Mc4] ( c f . a l s o [C38-40; Mc31). T h u s write P(D) = D and 2 1 Q ( D ) = D - q (where q can be complex valued and q E C o r Co will be assumed whenever convenient - a c t u a l l y t h e theory can be developed f o r say P JOmx l q ( x ) l d x < e t c . b u t we abstain for now). One w r i t e s q p , ( x ) = CosXx and 5.
&LON,
-
s e t s f o r s u i t a b l e f ( c f . Theorem 4 . 1 ) (5.1)
rm
P f ( h ) = Cf(X) =
f(x)CosAxdx
JO
We take P
= P-'
(5.2)
PF(x) = IT IT)
so t h a t m
F(A)CosXxdA 0
(and w r i t e a l s o d v = (2/n)dh).
For Q we w r i t e f o r s u i t a b l e f
22
ROBERT CARROLL
We w i l l show how an i n v e r s i o n f o r (5.3) can be o b t a i n e d i n t h e form
a!h
=
Q-,1
where RQ i s a c e r t a i n d i s t r i b u t i o n c a l l e d t h e g e n e r a l i z e d s p e c t r a l f u n c t i o n by Marc'enko.
Note t h a t s i n c e q i s p o s s i b l y complex valued t h e o p e r a t o r Q
i s n o t n e c e s s a r i l y s e l f a d j o i n t and R4 may n o t be a measure. 2 2 2 L e t K ( r e s p . K ( u ) ) be t h e space o f L f u n c t i o n s on C O Y - ) 2 w i t h compact s u p p o r t (resp. w i t h s u p p o r t i n [O,a]). The space CK (u) o f 2 Cosine t r a n s f o r m s o f K ( u ) c o n s i s t s o f even e n t i r e f u n c t i o n s g(X) w i t h g E 2 L f o r X r e a l and Is(?,)] 5 cexpulImXl ( b y a v e r s i o n o f t h e Paley-Wiener 1 theorem 3.8). L e t Z(u) be t h e even e n t i r e f u n c t i o n s g w i t h g E L f o r 2 1 2 r e a l and I g ( X ) l 5 cexpulImXI. Put L (resp. L ) t y p e t o p o l o g i e s on C K ( a ) 2 (resp. Z ( u ) ) . L e t Z = U Z ( U ) and CK2 = UCK ( u ) w i t h s t a n d a r d i n d u c t i v e l i m i t
DEFZNZCZBN 5.1.
Thus a sequence gn .+ g i n o r countable u n i o n t o p o l o g i e s ( c f . [C19; G f l ] ) . 2 Z (resp. CK ) i f t h e e x p o n e n t i a l t y p e o f a l l gn i s bounded by some u and gn 2 g i n L1 ( r e s p . L ); such s e q u e n t i a l convergence i s a l l we need c o n s i d e r 2 2 (as for U - c f . Remark 2.3). E v i d e n t l y Z C CK and i f g1,g2 E CK t h e n g =
-f
g 1g 2 E Z ( i n f a c t t h e v e c t o r space o f such p r o d u c t s forms a dense s e t i n Z ) .
DEF'INICZBN 5.2,
The dual Z ' o f Z i s a space o f g e n e r a l i z e d f u n c t i o n s ( i n
which t h e so c a l l e d g e n e r a l i z e d s p e c t r a l f u n c t i o n R w i l l be found) w i t h act i o n on Z denoted by ( R , v ) o r
(
R,V)~.
g i v e n by a f u n c t i o n i n t h e form
(
R,P)
R E Z ' i s called regular i f i t i s =
Im R(X)'+'(X)dX f o r R
E Lm.
The co-
0
s i n e t r a n s f o r m i s d e f i n e d i n Z ' by d u a l i t y , i . e . ( q , c ( T ) ) = (T,Cv) where
op
= jm v(X)CosXxdX. 0
REmARK 5.3.
I n v o k i n g t h e Banach-Steinhaus theorem ( c f . [C19])
t h a t i f a sequence Rn E Z ' converges weakly ( i . e . then R
E
Z ' and Rn
-f
R weakly.
(
Rnv)
-+ (
one can say
R,v) f o r p E Z )
F o r o u r purposes such s e q u e n t i a l convergence
w i l l s u f f i c e and t h e r e i s no need t o go i n t o more d e t a i l i n d e s c r i b i n g t h e topologies o f Z o r Z ' . Now suppose we have c o n s t r u c t e d t r a n s m u t a t i o n s Bh and Bh = Bh' as i n Theorem 4.9 and w r i t e &(yyX) = 6(y-x) + Kh(y,x) w i t h yn(x,y) Define then f o r s u i t a b l e g
= 6(x-y) + Lh(x,y).
23
PARSEVAL FORMULAS
(5.5)
Btg(X) =
(
Bh(YYx)Yg(Y)) = g ( X )
+
J
m
Kh(Y,x)g(Y)dY
X
S i m i l a r l y Big(y) = ( y h ( x ' Y ) Y g ( x ) ) = g ( y ) + 1 ; Lh(xyy)g(x)dx. EHEBREm 5-4- For f , g E K2 ( u ) , Bif and B i g belong t o K2 ( u ) and (P (5.6)
PBif = Qhf; Qh"g
Q
C)
= Pg
*
*
P t r o o ~ : Using (4.17) one has PBhf = (CosAx,B,,f(x))
=
(CosXx,( B h ( y Y x ) , f ( y)) )
@h(yYx)yCoshx)yf(y))= ( q Q ( y ) , f ( y ) ) = Qhf(A). Similarly one has A ,h Q = ( ( y h ( x Y Y ) Y 9 h y h ( Y ) ) Y g ( x ) ) = ( cosXxYg(x)) QhBtg = ( q XQ, h ( Y ) , ( Y h ( x Y Y ) , g ( x ) ) ) = Pg. = ((
This kind of r e s u l t (due here t o Martenko) was generalized in LC39,40] and provides a useful ingredient in proving Parseval formulas of the type
1
m
(5.7)
Q
f ( x ) g ( x ) d x = ( R YQhfQhg)
*
0
where f , g E K2 and RQ E Z ' (note QhfQ,,g E Z by Theorem 5.4 since e.g. Bhf * 2 2 and Bhg E K ( u ) ( f o r some 0 ) so Qhf = PBif E C K ( u ) and by Definition 5.1 t h e product is i n Z ) . Another ingredient involves t h e idea of a generalized t r a n s l a t i o n S: which can be defined v i a Theorem 4.3. Thus i f P = Q i n Theo-
rem 4.3 we write q ( x , y ) = S{f(x). I f we now want S; t o have s u i t a b l e prope r t i e s however we must examine the extension problem more c a r e f u l l y . T h u s
we will be concerned with F ( x )
= Af(x) = f ( x ) and G(x) = Cf(x) = h f ( x ) in (4.4) f o r P = Q. Now t h e construction leading t o Theorem 4.5 and Theorem 4.6 can a l s o be used p r a c t i c a l l y verbatum f o r t h e equation Q(DX)q = Q ( D )q Y ( c f . [ M c ~ ] ) and one obtains
x-y One notes here t h a t i f we take x ~y J
where w i s continuous f o r q E Co say. (i 2; i n ( 4 . 8 ) ) so x-y 2 0 then t h e extension of q t o ( - m , m ) does not a r i s e Generally one thinks of data f in ( 5 . 8 ) s a t i s f y i n g f ' ( 0 ) = h f ( 0 ) following t h e construction f o r Theorem 4.9 and i n order t o have q ( 0 , y ) = f ( y ) an extension of such data t o ( - m , m ) i s suggested i n t h e f o r m (w(O,y,<,h) = m h ) (5.9)
(1/2)[f(y) - f ( - y ) l =
1
Y
0
mh(Y,c)f(<)d<
+
6
mh(Y.-'l)f(-Q)d'l
is known such generalized t r a n s l a t i o n s can be found f o r example i n t h e form Typically i f R'
24
ROBERT CARROLL
f o r s u i t a b l e F(x).
Indeed such
q
Q(Dxk=
s a t i s f y formally
Q(D )lp and Y
setting f ( X ) = V(Xy0) = (F(X)cpX,h(X)yR Q Q )A
(5.11) one has
(x,O) = h f ( x ) by (4.2). Y (one w r i t e s here q ( x , y ) = S:f(x)).
Further q(y,x)
~p
= q(x,y)
and q ( 0 , y ) = f ( y )
We n o t e t h a t one i s n o r m a l l y i n t e r e s t e d
i n x,y > 0 i n (5.10) and f o r x ) y no e x t e n s i o n o f q i s r e q u i r e d w h i l e f o r
0 5 x 5 y we can s i m p l y d e f i n e q ( x , y ) = q ( y , x ) . w r i t e f o r 0 5 x,y <
where O(x,y)
m
We n o t e a l s o
i s d e f i n e d as i n (5.8) f o r 0 ~y 5 x.
e(y,x)
=
Hence i n (5.8) we can
t h a t i f we t a k e h = 0, q even, and f even t h e n q Q
A ,h
also (5.11)) and t h i s corresponds t o Uo(y,<) i n (5.9) ( c f . (4.6)).
( x ) w i l l be even ( c f .
= -(1/2)R
0
(s,O,O,y)
b e i n g odd
Formulas o f t h e f o r m (5.10) f o r g e n e r a l i z e d t r a n s l a -
t i o n s a r e t r e a t e d f u r t h e r i n Chapter 2. We n o t e i n passing t h a t t h e model 2 2 g e n e r a l i z e d t r a n s l a t i o n f o r Dxq = D v , q(x,O) = f ( x ) and IP (x,O) = 0 i s Y Y q(X,Y) = (1/2)[f(X+Y) + f ( X - Y ) l . Now t h e program t o a r r i v e a t t h e Parseval f o r m u l a (5.7) goes as f o l l o w s . L e t sn(x) be a sequence o f f u n c t i o n s such t h a t 6,, 2.11).
I t i s convenient h e r e t o t a k e 6,(x)
an(x) 2 0 f o r 0 < x < l / n , 0 f o r any h.
+
and Im Gn(x)dx = 1.
U
L~,,(x+Y)
+
Sn(x-y)
I;
en ( x ,Y)
1
a,
6 n ( X ) = un(X,0)
=
E l
( c f . Example
;:;1Q
=
2 l/n,
Then a l s o SA(0) = h6,,(0)
0
We w r i t e " e x p e r i m e n t a l l y " f r o m (5.10)
(1/2
6 in
= 0 f o r x = 0 and f o r x
-
=
(5.12)
w(x,y, 5 ,h) 6n ( 5 I d < ;
Rn(~h"f',h(x)d~
0
L e t Bh and B,
be determined as b e f o r e so t h a t Bh~!yh = CosXy.
a p p l y i n g Bh = I + Lh t o t h e l a s t e q u a t i o n i n (5.13) one o b t a i n s
Then f o r m a l l y
PARSEVAL FORMULAS
Now
(
i s continuous i n y b u t may grow a r b i t r a r i l y as y
Lh(y,x),6,(x))
one c o n c e n t r a t e s on an i n t e r v a l 0 5 x,y 5 u. t i o n y"(y) = 1 f o r 0 5 y 2 20 w i t h 'y (5.15)
Y ' ( Y ) [ ~ ~ ( Y )+
E v i d e n t l y R:
25
[
so
Choose a smooth c u t o f f func-
= 0 for y
Lh(y,x)Gn(x)dx1 =
+ m
2 2a+l.
c'
Then w r i t e
R:(h)Cosxydh
can be found v i a t h e i n v e r s e F o u r i e r Cosine t r a n s f o r m ( c f .
Theorem 4.1 and (5.18) below) and one w r i t e s
Note f o r 0 < x,y 5 u t h e corresponding formulas i n (5.13) i n v o l v i n g en and
w do n o t r e q u i r e an i n d e x u .
Now one shows (see t h e p r o o f o f Theorem 5.5)
t h a t UE(x,y) expressed v i a Bn and w tends t o 6 ( x - y ) so t h a t , f r o m (5.161, 2 f o r f,g E K ( u ) (5.17)
(tj(x-y),f(x)g(y))
=
J
m
f(x)g(x)dx
=
0
F u r t h e r f r o m (5.15) one has ( s i n c e 6,
-f
'R
= (2/71)[1
+
F i n a l l y one w i l l l e t u a r e p r o v i d e d below.
J 0 +
-f
6)
Y'(Y)Lh(Y~O)COs~YdYl = ( 2 / a ) [ l m
t o o b t a i n R'
+
+
CfY'(Y)Lh(Y~O)jI
R = R 4 and t h e r e m a i n i n g d e t a i l s
Thus
EHE0RElIl 5-5, L e t Q(D) = D2 - q on COY-) w i t h q E Co and l e t ~ QP ~ , ~ s( aXt i )s f y Q ( D ) q = -h2q w i t h p 4 (0) = 1 and D x p ~ , h ( 0 ) = h. D e f i n e L?,,f(A) = (f(x), pQ
(x)) for f
1,h R = RQ
Ptrood:
E
E
2Lh K say.
Then t h e r e e x i s t s RQ = (2/71)[1
Z ' such t h a t t h e Parseval f o r m u l a (5.7)
We w i l l s k e t c h t h e m i s s i n g d e t a i l s .
+ CLh(y,O)] w i t h 2 holds f o r f,g E K .
Thus f i r s t l e t us n o t e , w o r k i n g
i n t h e r e g i o n 0 ( y 5 x 5 u , x - y 5 6 5 x+y,
(w(x,y,c,h)l 5 c ( u ) say and 5 c ( u ) Im6,,(S)dc 5 c ( u ) ( r e c a l l here U i ( x , y ) = U,"(y,x) so e s t i m 0 a t e s f o r en(x,y) on 0 5 y 5 x 5 u w i l l c a r r y o v e r t o t h e r e g i o n 0 5 x,y 5 0). F u r t h e r s i n c e 6,(c) = 0 f o r 5 > l / n we have en(x,y) = 0 f o r ( x - y l > l / n . le,(x,y)\
Given f,g
2
E K
(0)
consider
I
Iom Imen(x,y)f(x)g(y)dxdyl 5 c(a) I I If(x)g(y) 0 0 5 x,y 5 a1 whose two dimensional
dxdy o v e r a r e g i o n On = { \ x - y ( 5 l / n ,
I
26
ROBERT CARROLL
measure tends t o 0 as n
-+
On t h e o t h e r hand i t i s obvious t h a t (1/2)
m.
From t h i s we can conclude t h a t t h e l e f t s i d e o f (5.17)
2 Iomf(x)g(x)dx).
f o l l o w s , which we w r i t e s y m b o l i c a l l y as (U:(x,y),f(x)g(y)) -+ ( a ( x - y ) , f ( x ) 2 K ( a ) . Next we observe t h a t (5.18) i s i n f a c t r i g o r o u s ( r e -
g(y)) f o r f , g E
c a l l Lh i s continuous e t c . ) .
F u r t h e r as u
-f
U
m,y
(y)Lh(y,O)
-+
Lh(y,O)
uni-
formly on compact s e t s f o r example and t h e n i t s Cosine t r a n s f o r m as an e l To s p e l l t h i s o u t l e t us w r i t e i n D e f i -
ement o f Z ' tends t o CILh(y,O)]. n i t i o n 5.2,( q,CT) = (C q,T)
Z ( T ) f o r some 'I, and supp
f o r T E Z ' and q E Z. C9
c
continuous f u n c t i o n s converging u n i f o r m l y t o (
Tn,Q)
-+
(
T , Q ) so (q,CTn)
(weakly) as u
+ m
q E
Z, q E
T on compact s e t s t h e n c l e a r l y
converges t o what must be (q,CT)
T h i s proves t h a t Ra
t i o n s 5.2 and 5.3).
Note t h a t f o r
I f CTn E Z ' and Tn i s a sequence o f
[o,T].
+
(cf. Defini-
RQ = ( 2 / ~ ) [ 1 +CLh(y,O)]
in Z'
and s i n c e QhfQhg E Z i n (5.17) we can pass t o l i m i t s i n
t h e r i g h t hand s i d e .
Consequently one o b t a i n s (5.7).
We can e x p l i c i t l y i n d i c a t e t h e a c t i o n o f R4 on a t e s t f u n c t i o n q = C q E Z by ( n o t e supp q i s compact) (5.19)
( R Q , Q ) = (2/.rr)(Q,CS q
(O)
'
t
CLh) = ( q y 6
t
L ) = h
Lh(YSo)q ( Y l d Y
Now i n t h e Parseval f o r m u l a (5.7) l e t us s e t g ( x ) = l / S on [x,x+S] 0 elsewhere so t h a t as 6
mally.
+
0, Imf ( x ) g ( x ) d x = ( l / S ) JXtSf(x)dx 0
T h i s p o i n t v a l u e may n o t make sense f o r f E
f so t h a t Qf,
*
xrK however sof (t ax k) e f oe.g.r -+
*
Then by Theorem 5.4 we have PBhf E Z and B h f i s con* 1 t i n u o u s (PBgf = C B h f E L 1. Hence f ( x ) = B t f K h ( y , x ) f ( y ) d y i s conE
Z.
and g =
t i n u o u s and p o i n t values make sense.
On t h e o t h e r hand qhg = ( l / S )
c+*
Q Y h ( y ) d y q Q ( x ) p o i n t w i s e and Q g f -+ 9 XQ , h ( ~ ) Q h f ( A ) i n Z when Qhf E Z qX Ash2 * hp% ( n o t e here g E K ( a ) i m p l i e s Bhg E K (u) and f o r g as above Bhg i s i n f a c t -f
'I B;gCosAxdx i s i n f a c t 0 bounded f o r X r e a l (and a n a l y t i c i n A ) - t h i s i m p l i e s ( qQA y h ( x )I 5 M f o r r e a l so q Q ( x ) can a c t as a m u l t i p l i e r i n Z - t h e l i m i t i n g process can a l s o piecewise continuous and bounded so !2+g = PBtg =
XYh be used t o e s t a b l i s h a n a l y t i c i t y ) .
We a r r i v e t h e n a t
CHE0REN 5-6- I f C?+,fE Z one has an expansion (5.20)
Q f ( x ) = (RQ,C!+,f(h)qX,h(X))
27
PARSEVAL FORMULAS
RElllARK 5-7- As i n d i c a t e d above a t t h e c o n c l u s i o n o f t h e p r o o f o f Theorem 5.6
one can deduce p r o p e r t i e s o f t h e
(x) from t h e i r representation v i a h,h D i r e c t estimates are also possible v i a
lpQ
t r a n s m u t a t i o n k e r n e l s and cosines.
i n t e g r a l equations o f t h e form (4.18) and t h i s w i l l be examined l a t e r . remark a l s o t h a t (5.20) i s v e r y general, a l t h o u g h f i s r e s t r i c t e d .
We
The po-
t e n t i a l q may be complex valued and R 4 i s n o t n e c e s s a r i l y a measure ( c f . The d i s t r i b u t i o n a c t i o n o f RQ i n v o l v e s X r e a l
[C40; Mc4] f o r examples).
g e n e r a l l y and one p i c k s up complex eigenvalues f o r example i n t h e sense o f c o n t o u r i n t e g r a t i o n ( c f . [C40]). w r i t t e n f o r Q h f = F,
qhF
(5.21)
=
qh
=
The i n v e r s i o n expressed by (5.20) can be
~il
( RQ,F(i)lpQ ( x ) ) A,h
I f now q and h a r e r e a l one has a s e l f a d j o i n t s i t u a t i o n w i t h $
‘ PQ ~ , ~ ( X ) Hence . i f F ( X ) = Qhf i t f o l l o w s t h a t F(A)) =
0 for f
jm f(x)T(x)dx 0
K2 .
E
F(x) =
(x) = A,h Q h F a n d hence (RQ,F(x)
Such RQ w i l l be c a l l e d p o s i t i v e and
one proves i n [Mca]
CHEBRElll 5-8, I f q and h a r e r e a l t h e r e e x i s t s a nondecreasing f u n c t i o n -a < 1-1 < m , such t h a t f o r f , g E K2 m
(5.22)
f(x)g(x)dx = 0
I n f a c t f o r f,g E L
w i t h phf(J!J)
=
Jm 0
2
(
I
p(u),
m
Q
R QhfQhg) =
phf(J!J)Qhg(JF)dP(!J)
-m
one has ( w i t h i n t e g r a l s convergent i n s u i t a b l e senses)
f(xk(JP,,(x)dx
(f,g)
and
= 1 : Qhf(d!J)QhS(J!J)dP(!J).
The p r o o f o f Theorem 5.8 i s based on a c l a s s i c a l r e p r e s e n t a t i o n theorem o f F. Riesz f o r p o s i t i v e f u n c t i o n a l s ( c f . LGf3; Mc4; Rml; R o l l ) . Z’ i s positive i f
(
R,f(x))
>
One says R E
0 f o r a l l f ( - ) E Z satisfying f(dv) L 0 f o r
( R,F(X)F(x)) 5 0 f o r F E 2 Q . CK as above so R i s p o s i t i v e and induces a p o s i t i v e homogeneous, a d d i t i v e f u n c t i o n a l RQ [ g ( p ) ] = RQ [ f ( d u ) ] = ( R Q , f ( A ) ) on t h e s e t A o f g ( u ) = f ( h ) -m
< 11 <
T h i s can be shown t o be e q u i v a l e n t t o
a.
( f o r f E Z ) t a k i n g r e a l values f o r
-m
< !J <
m.
One shows a l s o f o r example
i n [Mc4] as an e x e r c i s e CBRBCCARg 5-9,
L e t 16q(x)
dp i s d i s t r i b u t e d over
1
0
-
h)
2
i n Theorem 5.8.
i.e.
[O,m),
m
(5.24)
9( I h l
1
m
f(x)g(x)dx =
0
Qhf(d!J)Qhg(JlJ)dP(!J)
Then t h e measure
28
ROBERT CARROLL
-
REMARK 5-10. One can transmute P = D2 t r a n s m u t a t i o n s B1: D2
+
Q and
B2
= Bil:
q1 i n t o Q = D2 P
-+
-
q2 by composing
D2 (one can a l s o c o n s t r u c t t h e
t r a n s m u t a t i o n d i r e c t l y which w i l l be discussed l a t e r f o r more general op1 2 e r a t o r s ) . Thus e.g. i f B, % I + Kh and B2 % I + Lk one o b t a i n s f o r B = B1B2: P
-+
Q
L a t e r i n Chapter 2 we w i l l study t h e f o r m a t i o n o f s p e c t r a l p a i r i n g s t o repr e s e n t such t r a n s m u t a t i o n k e r n e l s K(y,<).
where R
P
i s t h e s p e c t r a l f u n c t i o n f o r P.
Formally i n f a c t B = I + K i s
Indeed u s i n g o u r s p e c t r a l mach-
i n e r y h e u r i s t i c a l l y and f o r m a l l y one has ( s e t ;(A)
= (Pkf)(h))
S i m i l a r l y i n a f o r m a l s p i r i t ( i n t e g r a l s may sometimes be i n t e r p e r t e d as d i s tribution pairings)
so
‘v,k
(h)Rp
%
~(A-V).
Consequently, f o r m a l l y a p p l y i n g (5.27) t o q p v,k
I n t h e same way one can r e p r e s e n t t h e k e r n e l y(x,y) (5.31)
Y(x,Y)
= (q,yk(X)qA,h(Y)YR P Q
f o r B = B-l i n t h e form
Q)
We mention a l s o t h e i m p o r t a n t a d j o i n t t y p e t r a n s m u t a t i o n via
E‘ =
(5.32)
(B-’ )* o r (
v(y),Bu(y)) =
(c)
( E v(x),u(y))
E:
P
-+
Q defined
SPECTRAL THEORY IN ENERGY It i s t h e n immed a t e t h a t
= ker
?!
29
has t h e form ( c f . ( 5 . 3 1 ) )
N
(5.33)
6,
B(Y,X
=
u(x,y);
E ( Y ) = G(Y,X),f(X)) L e t us g i v e now t h e f i r s t o f
$PECCRAt CHE0RM IN CHE ENERG1J VARIABLE,
some procedures t o determine t h e s p e c t r a l measure which produce e x p l i c i t We w i l l work here f i r s t w i t h t h e e q u a t i o n
formulas.
L
Q(0)u = (Au')'/A = -A u
(6.1) where A
1 C (0,m) w i t h 0 < a
E
(i.e. A'
-+
c
A(x) 5 A <
0 as f a s t as d e s i r e d ) .
m
and A
Bp1,Z;
Sa1,4,6;
Bql-4; B v l ; Bbgl; C37,40,49,66-73,76;
Sel-3;
Stf2-6,8,9]).
Am as x
-f
"rapidly"
m
Such o p e r a t o r s a r i s e i n many p r a c t i c a l
problems ( i n geophysics, t r a n s m i s s i o n l i n e s , e t c . Bo1,2;
-+
We w r i t e q !
-
see e.g. Gi1,2;
[Bb1,2;
Bnl;
G r l ; K l l - 3 ; Ne4;
( r e s p . @'+A) 4 f o r the solutions o f
(6.1) s a t i s f y i n g (6.2)
~ Q ~ ( =0 1;) DxqA(0) 4 = 0; @p,A(x) Q % A?exp(?iAx)
as x
+
m
Q w i l l a g a i n be c a l l e d J o s t s o l u t i o n s and f o r v a r i o u s reasons t o apThe @+A p e a r l a t e r i n c o n n e c t i o n w i t h s p e c i a l f u n c t i o n s and L i e t h e o r y we w i l l c a l l t h e q QA s p h e r i c a l f u n c t i o n s .
If A E C
REmARK 6.1.
2 i n (6.1) one can s e t
J, = &u
w i t h Q ( x ) = A-4(&4)xx
and t h e n (6.3)
J,xx
- Q(x)J,
2
= - A J,
w h i l e if u ( 0 ) = 1, u ' ( 0 ) = 0 one f i n d s ( n o r m a l i z i n g t o A(0) = 1 ) (6.4)
$(O)
= 1; J , ' ( O )
= (1/2)A'(O) = h
which b r i n g s us t o t h e s i t u a t i o n o f (4.2) f o r q y y h ( w i t h q = Q ) .
L e t us
n o t e a l s o t h a t i n t h e c a l c u l a t i o n s t o f o l l o w f o r t h e Q o f (6.1) one c o u l d always add a t e r m -G(x)u t o Q(D)u w i t h say -+
<
E
Co v a n i s h i n g s u i t a b l y as
X
-; t h e n a t u r e o f t h e r e s u l t s and e s t i m a t e s would be e s s e n t i a l l y unchanged
(except f o r t h e p o s s i b l e emergence o f d i s c r e t e eigenvalues). Going now t o (6.1) one uses a v a r i a t i o n o f parameters procedure t o c o n v e r t t o i n t e g r a l equations ( s e t t i n g q = - A ' / A ) (6.5)
Q
q A ( y ) = Coshy +
Q CSinx(y-17)/h1q(rl)DrlqA(~)d~;
30
ROBERT CARROLL
One can s o l v e these equations i n t h e form 9p,(y) Q = Im9,,(X,y) c ; ~ ~ ( h , y ) w i t h p 0 = Coshy, a.
I,
= exp(ihy),
and AI2 AQ ( y ) =
0
and
m
(6.7)
Qln(A,y) =
L e t us n o t e t h a t i f A $'
'L
i h e x p ( i h y ) as y
ihA?exp(ihy)
[Sinh(~~-y)/hIq(rl)Ql~_~ (A,n)dn;
E
u
'L
e x p ( i h y ) and
m
t h e n u = A%
-f
0; hence ( 6 . 6 ) i s a c c e p t a b l e f o r n o r m a l i z a t i o n
-f
since A '
CL and one uses Remark 6.1 w i t h IL
r a t h e r t h a n t r y i n g t o work i n i'(y)
satisfies
w i t h Gh(y). Q
'L
A:'exp(ihy)
and u '
'L
The d e t a i l s o f e s t i m a t i o n
a r e g i v e n i n [C4OY67; S e l l ( c f . a l s o [ B r l ] )
and a r e sketched below as needed. Thus g i v e n t h e hypotheses on A an assumption q E L 1 (0,m) i s n o t r e s t r i c t i v e and by i t e r a t i o n (see t h e p r o o f below) one has f o r Imh 2 0
S i m i l a r l y f o r any
x
E C
The r e s u l t i n g s e r i e s converge u n i f o r m l y on compact s e t s i n t h e a p p r o p r i a t e domains and one o b t a i n s
CHE0REFR 6-2-
i s an e n t i r e f u n c t i o n o f X o f e x p o n e n t i a l t y p e y w h i l e qp,(y) Q
a Qx ( y (resp. @Q- h ( y ) ) i s a n a l y t i c f o r Imh > 0 (resp. Imh < 0) and t h e f o l l o w i n g estimates are s a t i s f i e d
Ptraad:
To check t h e estimates ( 6 . 8 ) - ( 6 . 9 )
f i r s t note t h a t ISinhxl 5
c l h l x e x p ( 1 I m x l x ) / ( l + ) A 1x1 and [ S i n X ( x - c ) \ 5 c l h l xexp( 1 I m h ) ( x - c ) ) / ( l + l h \ x ) (observe
1x1 ( x - c ) / ( l + ) x ) ( x - c ) ) 5
Ixlx/(l+lXlx)).
Hence
SPECTRAL THEORY IN ENERGY
31
1 where we take ImA L 0 (and assume say q E L ) . Similarly @i(A,y) = -/ym Cosx(q-y)q(n)@~(A,n)dn. The Cosine term can be given a crude estimate of the form ICoshxl 5 cexp((Imx1x) so that for ImA 2 0 m
(6.13)
I@i(A,y)( 5 c tellmx'(n-y'lq(n)l
(@A(h,n)ldn
5
clkle-Y1mA [lq(n)ldn Hence replacing estimates like
lAlq/(l+lA\q)
by an upper bound 1 , we get
w
(6.14)
1@2(h ,Y
I
c
el Imx I ( ' )
5c
I q(n)II@fii
( A ,111
I d d I 1I
5
rw
2 -yIrnA Iq(n)l J (q(c)ldcdn 5 c2(1/2)e-y1mx [lq(n)\dn12 c e n Further -/ym CosA(q-y)q(n)@i(A,n)dq = @~(A,Y) so (for ImA 2 0 ) m
(6.15)
]@;(A,Y)~
5 c i e I ImxI
c2 I x 1 e-YImA [lq(n)\
1 q ( n ) 1 1";
[lq(c)ldcdn
(A
, n ) 1 dn 5
5 (1/2)cZlxle -yImx [ [lq(n)Idnl2
The pattern is now clear and leads to (6.8) SO that (note l@o(h,y)l 5 exp(-ylmh) for @ = 1 an we have (6.11) for Q and Imx 5 0 (the series converges absolutely and uniformly). The estimates for @(-X,y) are virtually identical except that we work with Imx 5 0. Similar considerations apply 4 Indeed Ivo(A,y)l 5 exp(yl1mxl) with to the series for v(A,y) = vA(y). Ivpb(x,~)l 5 Ixlexp(ylImAl). Hence
Continuing we obtain
P i (xly)=
'1 Cosx(y-n)q(n)v~(x,n)dn 0
and
I P i (h,y)l
'1 exp(lIrnhI(y-n)Iq(n)ll~]exp(nIImhI)dn 5 Ihlexp(ylImhl) /oylq(n)ldn. 0 Y (6.17) (v~~(A,Y)I5 e'lmx'(y-n)Iq(~)II~i(x,~)Id~/I~I5
5
Hence
1
0
(1/2)e11mA/Y [ J;Iq(n)Idnl
2
The pattern is again clear as before and we conclude that (6.9) holds. Hence the series for qp,(y) 4 converges absolutely and uniformly on compact sets in x and (6.10) is valid. The following observations will be needed in Chapter 3 . We note that if we write (6.8) as l@n(xyy)l 5 exp(-yIma)Qn(y)cn/n! with (following (6.151, 1 5 Ixlexp(-yImh)Qn(y)cn/n!, then
\@.;I(A,Y)
IL2'(LY) - *&Y) (@ =
^cQ
ax). Q
1"1 cnQn/n!
Since
one o b t a i n s
(6.19)
IA3(x,y) - e iAy )A~'(A,Y)
-
S i m i l a r c o n s i d e r a t i o n s a p p l y t o q ( ~ , y ) and one has (6.20)
-
Iv(h,y)
I
Cosxyl 5 ce
:1 1
I
q ( n ) dn ;
~ l p ' ( ~ , y +) ASinhyl 5 ? [ A l ey'lmhl
l:lq(n)ldn
LETIIIN\ 6-3. Under t h e hypotheses i n d i c a t e d we have (6.19) and (6.201, s i m i l a r i n e q u a l i t i e s i n v o l v i n g @Q- A ( y ) .
plus
It i s perhaps somewhat more r e v e a l i n g ( i n p l a c e o f ( 6 . 5 ) - ( 6 . 6 ) ) 2 t o s t a r t from A E C (A(0) = 1) and use Remark 6.1 t o o b t a i n f o r J, = A%!,
REmARK 6.4.
h = (1/2)A'(O) = J / ' ( O ) , and Q = A-"')'
c loX
(6.21)
J , ( x ) = CosXx + h[SinAx/X]
(6.22)
A'(x)qX(x) Q
= CosXx
where (6.22) now uses o n l y A (6.23)
A?i(x)@,(x) Q
= e ihx
+
+
[SinX(x-E)/XlQ(6)J/(~)d~
(A?')'[CCISX(X-E)~~
1
Q - Sinx(x-E) h
Similarly
(and h d i s a p p e a r s ) .
E
C
-
IxW
(A')'[CosX(~-x)@!
+P ,Q dS l 6 1
+
Sinx~n-x)Dn@~]dn
One can now produce i t e r a t i o n s as i n t h e p r o o f o f Theorem 6.2 and a r r i v e a t a somewhat n e a t e r c o n s t r u c t i o n i n c e r t a i n respects.
We w i l l r e t u r n t o t h i s
l a t e r . One notes however t h a t a l t h o u g h A E C ' o n l y i s needed t o s p e c i f y q: and (PA Q by i t e r a t i o n from (6.22)-(6.23), i n o r d e r t o v e r i f y t h a t t h e d i f 2 f e r e n t i a l e q u a t i o n i s s a t i s f i e d one needs A E C . When b o t h (6.5)-(6.6) 2 and (6.22)-(6.23) a p p l y ( i . e . f o r A E C ) t h e n t h e s o l u t i o n s agree by uniqueness. The terms i n t h e @,,(-~,y) e t c . f o r
@
x
s e r i e s f o r example ( i n Theorem 6.2) s a t i s f y Gn(X,y) = r e a l so one o b t a i n s f o r X r e a l
SPECTRAL THEORY IN ENERGY
@.,(Y) -4
(6.24)
33
= @Q- x ( ~ ) ; q -QP , ( y ) = 9 Q- , ( ~ ) = v Qx ( y )
f o r any X E C w i t h G,(y) Q = @-x(y) Q ( a c t u a l l y @,(y) -9 # 0, ax Q and Q a r e l i n e a r independent w i t h
= q
x
Q
(6.25)
Q; ( y ) ) .
Further f o r
Q
A(Y)W(@.,(Y),@-,(Y)) = -2ix
(W(f,g) = f g ' - f ' g i s t h e Wronskian). Hence qhQ w i l l be a l i n e a r combinat i o n of ax Q and ,@! which by p r o p e r t i e s i n d i c a t e d i n ( 6 . 2 4 ) w i l l be q AQ ( Y ) = c Q ( x ) @Q~ ( Y ) + C Q ( - h )Q@ - ~ ( y )
(6*26)
c
( A ) = c (-A) for (where Q Q o b t a i n s ( r e c a l l A(0) = 1 )
x
real).
Using (6.25) w i t h y
+
W(qx(0),@ Q Qx ( 0 ) ) = Dx@-x(0) Q = -2ihc ( A ) ; D p xQ( O )
(6.27)
0 and (6.26) one
=
2ihc (-1)
Q Q (and thus in general C ( A ) = c (-i)). Such formulas, o r perhaps b e t t e r Q Q A(y)W(qx(y),@-,(y)) Q Q = -2ihc ( A ) , show e.g. t h a t x c (x) i s a n a l y t i c f o r Im x Q Q < 0. We c o n s i d e r now t h e p o s s i b l e vanishing of c ( x ) (= c ( A ) ) f o r Q ( D ) a s Q i n ( 6 . 1 ) (no term :(x) i s adjoined here - c f . Remark 6.1). I f C ( A )= 0 f o r A r e a l , A # 0 , t h e n c(-X) = c ( A ) = 0 and q Q x ( y ) = 0 by (6.26) which contraQ and %: one o b t a i n s d i c t s ~ Q ~ ( =0 1.) Let then ImA > 0 and from (6.1) f o r ax ( A = A
(6.28)
1
+iA)
2
DxaA Q ( O N-9A ( 0 )
- Dxz:(0)@xQ ( 0 ) = 4iA1x2 jiA(Y)I@!(Y)l
( n o t e terms with expi(x-7)y
exp(-2x2y) + 0 a s y +
=
'dY
and by Theorem 6.2 t h e
i n t e g r a l i n (6.28) makes s e n s e ) . Now by (6.27) Dx@:(0) = 0 (= DxG:(0)) means c ( - A ) = 0 and by (6.28) this can happen only i f x 1 = Rex = 0. Hence Q t h e zeros ( i f any) of x c ( - A ) i n i t s h a l f p l a n e of a n a l y t i c i t y ImA > 0 occur
Q
Q on t h e imaginary a x i s . A t such a point one would have cp,(y) = c ( X ) @Q~ ( Y ) 2 Q which by (6.11) belongs t o L Such eigenfunctions would correspond t o what a r e c a l l e d bound s t a t e s b u t we can show t h a t t h e r e a r e n ' t any. Indeed 2 (with obvious n o t a t i o n ) , given q = c ( A ) @ E L w i t h ( 6 . 1 1 ) , multiply (6.1) Q by AG and i n t e g r a t e t o obtain ( A = i h 2 ) +
(6.29)
h2
l~\cp12Ady= -
c
lo m
( b ' ) ' l p d y = -Ap'GIm
Since DxvA(0) Q = 0 and ADxq:(y)$:(y)
+
0 as y
-f
m
+
(A <
AIq'12dy and (6.11) holds)
34
ROBERT CARROLL
2 2 we have -A2 J " l q l Ady =
Jm
0
0
2 A l q ' I d y which i s i m p o s s i b l e .
Consequently
CHEaREm 6.5, A ( y ) W (Q~ ~ ( y ) Q, @ ~ ( y=) )2 i x c (-A) so Xc (-A) i s a n a l y t i c f o r Imx Q 4 > 0 and does n o t v a n i s h t h e r e . A l s o c ( - 1 ) = 0 f o r r e a l x # 0. The func-
Q
Q Q t i o n s c ( 1 ) and c (-A) can be expressed v i a Dx@-x(0) and DxaX(0) as above.
Q
Q
It i s p o s s i b l e t o g i v e some f u r t h e r formulas f o r c
Q Thus from (6.5) w i t h q,(y)
v a r i o u s ways. (6.30)
q'
- ixq
=
-
ixy
+
%
'Q
which a r e o f use i n
q(X,y), @.,(y)
rY e - ix (y-rl)
%
a+, e t c .
q(rl )q ' (A ,rl )drl
JO
As Y m 3 A(Y)W(V,@+) Theorem 6.5; hence
A)d_exp(ixy)[iAq
-t
-+
- q'],
(-A)by
Note also f r o m ( 6 . 5 ) "
so t h a t t h e i n t e g r a l i n (6.31) makes sense.
x
9
cQ(-X) = (
(6.31)
Let
which equals 2 i h c
-+
0 so t h a t J/(O,y) = Jy q(q)$(O,q)dn w i t h J / ( O , O ) = J/,
=
0 since 0
5
0
I t f o l l o w s t h a t J/(O,y) = &,exp(JY
$(x,O). let
x
+
0 one o b t a i n s c (-A)
Q
(6.6) and (6.27);
q(rl)drl) f 0 and i n (6.31) if we 0 Another form f o r c (-A) f o l l o w s f r o m
i2/2.
Q
indeed
c (-A) =
(6.33)
-+
Q
1/2)Ai3[1
- (l/ix)
~osxrlq(n)@~(n)d~J 0
CHE0REiR 6.6, One can r e p r e s e n t c (-A) by (6.31) o r (6.33) ( I m x 2 0 ) and Q (1/2)i: as x + 0. Consequently ( c f . Theorem 6.5) from (6.31) c Q ( - x ) -+
c ( - 1 ) # 0 f o r Imx 2 0.
Q
R?EiMRK 6-7- F o r v a r i o u s purposes one would l i k e an e s t i m a t e I c (-A)[
Q
f o r Imx (6.33).
n ,
q(q)(l/Z)[exp(2ix,-,)
cQ(-x)
-+
-+
m
t h e n from t h e c o n s t r u c t i o n i n Theorem
and ( r e c a l l q = - A ' / A )
A?ihexp(ihq)
Hence f o r I m x > 0 and Imh (6.34)
E
0 and some ( h e u r i s t i c ) i n f o r m a t i o n i n t h i s d i r e c t i o n f o l l o w s from Thus i f I m x > 0 and Imh
6.2 e t c . @: "J,"
2
+ l]dq +
%
( l / i x ) f m CosAqq(n)@idn 0
( 1 / 2 ) A 2 J m q(n)dn = -(1/2)A~'logAm. 0
m
(l/Z)A?[l
and t h i s vanishes o n l y when log(:
+
(1/2)A~31~gAm] = -A4.m
Except f o r such i s o l a t e d cases
%
SPECTRAL THEORY I N ENERGY
5 c f o r Imh
t h e n one would expect I l / c (-X)l
Q
35
0.
Now one can develop an expansion t h e o r y f o r Q j u s t as i n §5 ( c f . Theorem We want t o i n d i c a t e here another method
5.6) and t h i s w i l l be done l a t e r .
o f d e t e r m i n i n g t h e s p e c t r a l measure by c o n s t r u c t i n g a Green's f u n c t i o n and u s i n g c o n t o u r i n t e g r a t i o n ( c f . [C40,67;
Thus we w i l l es-
Dcl; Nel; S e l l ) .
For s u i t a b l e f
t a b l i s h the following inversion. m
j
(6.35)
Qf(h) =
(6.37)
d v ( x ) = ^v(h)dh = d h / 2 a l c (A)[
f(x)A(x)q:(x)dx
= F(X)
2
Q
9-l).
The technique which we d e s c r i b e now can ob i o u s l y be ap2 Consider t h e p l i e d t o Q(D) = D - q b u t we o m i t t h e d e t a i l s ( c f . [ D c l l ) . (thus
=
so c a l l e d r e s o l v e n t k e r n e l o r Green's f u n c t i o n (q((A,x) a QA ( x ) , x < = m i n ( x , x ' ) , (6.38)
RCX2,x,^X)
Q
Q XI,
(pA
@(h,X)
%
and x, = max(x,x')) =
(p(X,x,)a(x,x,)/A(x)W(~,a)
L e t JI E C 2 , 4x+ -( r e c a l l f r o m Theorem 6.5 t h a t A(x)W((p,@) = 2 i h c (-A)). 2Q 2 :+O, and ;= ;-0 so f o r I = jm J,(x)[Q(DX) + X ]R(h ,x,$)A(x)dx one has 0
I
(6.39)
=
+:
JI(x)[Q(Dx) + x 2 ] R ( h 2 , x , ~ ) A ( x ) d x = $(X)A(X)R,(~x+ x-
-A
(x)~(x)~l;
$1
h
-
+
J; i+ R(h2,x,?)[Q(Dx)
-
+ X27JI A(x)dx
-
so t h e l a s t two terms v a n i s h w h i l e t h e f i r s t
Now R i s continuous and J, E C' term gives (6.40)
I
s i n c e AR
X
=
= J,(i)A($)[Rx(h2,;+,?)
W(q,@)/A(x)W((p,@)
-
Rx(h2,C-,"x)1
=
JI($)
( w i t h W e v a l u a t e d a t ?).
Consequently one
can make an i d e n t i f i c a t i o n (6.41)
A ( x ) [ Q ( D ~ )+
S i m i l a r l y A(x)[Q(Dx)
x 2 [ R ( A2 ,x,?)
+ x2 ]R(x2,;,x)
=
6(x-j;)
= 6(x-*x).
L e t now 5 be a smooth f u n c -
t i o n v a n i s h i n g n e a r 0 and m (e.g. 5 E CE(0,w)) and t h e n f o r e = Q(D)c, 2 2 2 (A(y)5(y),[Q(Dy) + A l R ( X ,x,Y)) = S(x1 = (A(y)R(X ,x,Y),[Q(DY) + A215(Y))
(<
,
)
being a d i s t r i b u t i o n p a i r i n g ) .
It follows t h a t
36
ROBERT CARROLL
Now r e c a l l t h a t A(x)W(@,@) = 2 i h c c ( - h ) i s a n a l y t i c f o r Imh > 0 w i t h a zero o n l y a t A = 0 f o r Imh 2 0 w h i l e
i s a n a l y t i c f o r Imh > 0. Also by 2 Theorem 6.2 and (6.41) i n t h e numerator R(h ,x,y) w i l l have e x p o n e n t i a l = @
bounds exp(y-x)Imh f o r x > y and exp(x-y)Imh f o r y > x s i d e r R as a f u n c t i o n o f E = h
2 (E
T,
(ImA
Con-
> 0).
Except f o r a c u t on
energy).
i n t h e E p l a n e R w i l l be a n a l y t i c i n E ( c f . [Dcl;
[O,m)
Nel] f o r d i s c u s s i o n
-
the
upper h a l f p l a n e i n h i s mapped o n t o t h e E plane). Now t a k e a l a r g e c i r c u l a r c o n t o u r o f r a d i u s Y i n t h e E p l a n e and i n t e g r a t e (6.42) around t h i s c o n t o u r t o o b t a i n
(note g e n e r a l l y IR/EI
1 ',
0(1/E3/2;at
least
-
c f . Remark 6.7).
On t h e o t h e r
hand i f one takes a c o n t o u r as i n d i c a t e d i n (6.44) i n t h e E p l a n e ( a v o i d i n g the c u t )
1
t h e n upon i n t e g r a t i n g (6.42) around t h i s c o n t o u r t h e r e r e s u l t s (6.45)
I
dE
EI=r
Put t h i s i n (6.43),
rm
c(y)A(y)R(x2,x,y)dy
1;
'0
-
2 E A R ( 1 +ie,x,y)dy
dE
2
with y
2 n i ~ ( x )=
loy
0
dE j o m c ( ~ ) A ( ~ ) R (-iE,x,y)dy h -+
= 0
t o obtain
(4,
jo dE l O c ( ~ ) A ( y ) [ R (2h-ie,x,y) m
(6.46)
+
m
-
Now pass t o t h e h plane, o b s e r v i n g t h e p o s i t i o n s o f A
2
R(h + i ~ , x , y ) l d y
2
+iE
and l e t t i n g
E
-f
0,
we o b t a i n
lo m
(6.47)
<(XI =
I
m
C(Y)A(Y)
v(h,xh(x,y)dv(A)dy
0
2 w i t h dv(A) = d x / 2 1 ~ [ c ~ ( x ).I Note here t h a t t h e i n t e g r a n d i n (6.47) has t h e form ( 1 / 2 a i ) [ ~ A 1 ( 2 A / 2 i ) { 1 where {
1
= @ ( X , Y ) [ ~ ( - ~ , X ) / ( - ~ C ~) ()
xc 4( - A ) ] f o r x > Y o r I 1 = @ ( h , x ) C ~ ( - x , y ) / ( - ~ c q ( h ) )
-
-
*(A,x)/
@(h,Y)/AcQ(-A)l
for
SPECTRAL THEORY IN MOMENTUM y > x.
37
The equation (6.47) follows then upon using (6.26
.
Since 5 i s an
a r b i t r a r y t e s t function we have proved CHE0RElll 6-8, The spectral measure f o r t h e eigenfunctions
1
'(x) A
i s given by
( 6 . 3 7 ) and t h e inversion (6.35)-(6.36) holds f o r s u i t a b l e f . REmARK 6-9, The transmutation theory f o r (more general) operators Q of the
form ( 6 . 1 ) will be developed l a t e r and we will a r r i v e a t a Parseval formula e t c . a s i n 55. Thus from ( 6 . 3 5 ) - ( 6 . 3 6 ) one has f o r s u i t a b l e f , g
=lo m
(6.48)
(
w i t h f(x) 7,
=
R Q ,Qfqg)
(k5f)(x)(A'g)(x)dx
Thus R Q ( R Q ,Qf(A)qA(x)). Q
?1
dv i n (6.37).
SPECCRAI; CHEBRU I N CHE lIl0mENClllll UARZABCE,
Let us give a v a r i a t i o n on
S6 t o cover operators of t h e form
-
Qu
(7.1)
2
=
2 x u " + (n-1)xu'
t x2[k2
-
G(x)]u
= X
2
u
E i s fixed and A 2 = L(L+l) ( L corresponds t o complex angular momentum) i s e s s e n t i a l l y t h e s p e c t r a l v a r i a b l e (see below). The case o f gene r a l n w i l l be t r e a t e d l a t e r and we deal here only w i t h n = 3. Note t h a t t h e n-dimensional Laplace operator has t h e form where k
(7.2)
%
( rn-1 ur)r/rn-l + A i u ; r 2A u
An u =
=
r 2 urr + ( n - l ) r u r
t Dnu S
2 s
where 0;" = r An depends only on "angle" v a r i a b l e s . Thus operators such as ( 7 . 1 ) will a r i s e i n s p h e r i c a l l y symnetric problems of physics and s e t t i n g n = 3 w i t h 'P = xu (7.1) becomes (7.3)
x
2
q"
+ x2[k2 -
{(x)]lp
2
= A q
( n o t e ( x L u ' ) ' = ~ ( x u ) " ) . This equation a r i s e s e.g. i n studying s c a t t e r i n g problems a t f i x e d energy k2 = E in quantum mechanics and one can e x t r a c t a wealth of information from the physics l i t e r a t u r e ( s e e e.g. [Bdl; Bel; Bbdl, 2 ; C43-46,54; Cnl-7; Cel; Crl; Dc1,2; Gjl-3; L17; L r l ; Jb2,4; J d l ; Ne1,6; Rfl; Sa10-121). Later in connection w i t h special functions e t c . we will have occasion t o study s i n g u l a r operators of t h e form (7.4)
Gu
=
(xn-'u')'/xn-'
- G(x)u
= -k
2
u 2 A
with s p e c t r a l v a r i a b l e k and f o r q^(x) = A2/x2 - <(x) we s e e t h a t x Qu = A 2 2 2 - k x u becomes Qu = u. I t m i g h t seem a t f i r s t t h a t t h e study of Q and
ROBERT CARROLL
38
can be e a s i l y connected ( s i n c e a s u b s t i t u t i o n 5 = logx y i e l d s xDx = D C ) b u t t h e r e a r e good reasons f o r only u s i n g such a connection a f t e r c e r t a i n basic machinery i s i n place. In p a r t i c u l a r the s p e c t r a l theory i s d i f f e r e n t f o r N
4"
and n = 3 o r more parThus go t o ( 7 . 1 ) f o r t i c u l a r l y t o ( 7 . 3 ) w i t h A* = v2 - (1/4) = E(E+l) where v = E + ( 1 / 2 ) . In this section we will develop a spectral theory, w i t h a Parseval formula and and Q as we will now see.
inversion theorem, and then p u t together some formulas analogous t o ( 5 . 2 7 ) , (5.31), e t c . A p a r t i c u l a r case of g r e a t importance i n the study of special functions involves t h e Bergman-Gilbert operator and t h i s i s developed in Section 2.9 ( c f . a l s o [Bcl; C41-43,54; Cnl-7; Gjl-3; H d l ; SalO])
REMARK 7.1,
There i s a g r e a t deal of precise information i n [L17; Lrl] f o r example r e l a t i v e t o a s above which we momentarily ignore. The reason f o r this i s p a r t l y because the s p e c t r a l theory developed t h e r e uses an additiona l parameter, w h i c h a r i s e s i n describing s e l f a d j o i n t r e a l i z a t i o n s of ?,and the kind of r e s u l t s we want (which should not depend on such a parameter) would then have a form where t h e parameter was i n e x t r i c a b l y bound u p i n the REMARK 7.2,
6
formulas. r e a l . In order t o deal w i t h s p e c t r a l T h u s take ( 7 . 3 ) as indicated w i t h questions without introducing unwanted parameters ( c f . Remark 7.2) we follow
a technique of [Bbdl]. We assume as in [Bbdl] t h a t 1 ; x l q ( x ) l d x < m as well as .rowx21G(x)ldx < m and w i l l follow t h e i r notation i n this section. T h u s the J o s t solution f ( v , - k , x ) = xg(v,-k,x) 'L exp(ikx) as x m and t h e regul a r solution 9 ( v , k , x ) 'L xu 'L xv +(1/') as x + 0. We will c i t e p r o p e r t i e s of -f
the J o s t s o l u t i o n s and regular s o l u t i o n s from [Bbdl; Bel; Bdl; Dc1,2] as s i n c e we a r e primarily involved needed and do not emphasize hypotheses on
w i t h asymptotic p r o p e r t i e s and a n a l y t i c i t y p r o p e r t i e s o f f and
9
(cf. also
LCel; J d l ; Fnl; Lrl; L17; Ne1,6; Sa10-121). In c o n t r a s t t o physics where properties of a r e meaningful we a r e mainly concerned with being able t o j u s t i f y c e r t a i n mathematical developments and thus we deal w i t h p r o p e r t i e s of f and 9 ; such p r o p e r t i e s do hold of course f o r various types of hypotheses on 5 (which a r e r e a l i s t i c ) . The regular s o l u t i o n 9 ( v , k , x ) behaves l i k e v+( 1 /2 1 near x = 0 and is determined by X (7.5) When
?=
0 one has
39
SPECTRAL THEORY I N MOMENTUM
(7.6)
po(v,k,x)
= 2"r(u+l)k
-" b
x'Jv(kx)
and i n f a c t p can be determined i n terms o f such f u n c t i o n s by
(7.7)
p(u,k,~) = x
-
v+'
-
fox
E'CJ
[x'1~/2Sinv.rrl
v
(kS)J - V ( k x )
- J-,(kS)J,(kx)l~(S)p(v,k,5)dS
Under s u i t a b l e hypotheses t h e l i n e Rev = 0 w i l l be i n a r e g i o n where both p(v,k,x)
and p(-v,k,x)
usual W(p,!b)
= p$'
a r e d e f i n e d and a n a l y t i c ( c f . [ L r l ] ) .
- v'J/
and t h e n W(p(v,k,x),p(-v,k,x))
J o s t s o l u t i o n s one d e f i n e s f(v,k,x)
%
We w r i t e as
= -2v.
For t h e
e x p ( - i k x ) and corresponding t o (7.5)
and (7.7) one has t h e formulas
(7.8)
f(v,k,x)
= e
-ikx
- e k ( x - E ) ] [ q( c )
( 1 / 2 i k ) [[eik(c-x) (7.9)
f(v,k,x)
( i1w'/4)
fo(v,k,x)
%
(v, k, v)dc
+
( k5 H t ( kx 1
0, fo(v,k,x)
and f o r := (7.10)
[$[H;
= fO(v,k,X)
+ ( v2-S-,)/ c 2 ] f
-
H t ( kc 1H: ( kx
1%5 ) f ( v, k ,E )dS
e x p ( - i k x ) has t h e form
= ( ~ 1 / 2 )3-'e - $ i n ( v+ k)(kx)'H:(kx);
f o ( v y - k , x ) = IT/^) ?ie + i T ( v+4 )(kx)'HA(kx) The J o s t f u n c t i o n i s d e f i n e d as f ( v , k )
=
W(f(v,k,x),lp(v,k,x))
and thus t h e
" f r e e " Jost f u n c t i o n i s f o ( v y k ) = 2"(.rr/2)%'(~+l)k-"+~exp[-Si.rr(v-~)] (while f o ( v , - k ) = 2"(~/2)%'(v+l)k -v+4e x p [ + i ~ ( v - % ) ] . We c i t e now
L E ~ A7.3, p(v,k,X),
With i n d i c a t e d hypotheses on {, p(u,-k,x) f ( G , - k , ~ ) = f(v,k,X),
f(v,k)f(-v,-k)
f(-v,k,x)
= 4 i v k , and f o r f,-
W i t h such hypotheses p(v,k,x)
%
= f(v,k,X),
f(v,?k),
and p ' ( v , k , x )
= Ip(v,k,x),
G(c,L,x)
f(v,-k)f(-v,k)
=
-
f' = f ( ? v , k )
a r e e n t i r e i n k and a n a l y t i c i n
40
ROBERT CARROLL
f o r Rev > 0 with P continuous up t o Rev = 0. The J o s t s o l u t i o n f ( v , k , x ) is a n a l y t i c i n (u,k) f o r v E C and Imk < 0 (and continuous up t o Imk = 0). Correspondingly f ( v , k ) is a n a l y t i c i n ( v , k ) f o r Rev > 0, Imk < 0 , and i s continuous up t o the boundaries Rev = 0 and Imk = 0. v
ZIEIRARK 7-4- Another assumption of
often made ( c f . [Eel; C e l l ) which allows
one t o enlarge the a n a l y t i c i t y region involves t h e assumption t h a t G ( x ) = (m > 0 ) so t h a t q ( x ) can be a n a l y t i c a l l y continued i n t o
( o(p)exp(-px)du/x
t h e half plane Rex > 0. Also on any ray argx = 8, 1 0 1 5 ( ~ / Z ) I T - E , one requires Jm I x q ( x ) ) d x < M < m. T h i s c l a s s includes t h e Yukawa p o t e n t i a l s of 0
i n t e r e s t i n physics.
Other work involving p o t e n t i a l s
having a n a l y t i c o r
meromorphic continuations i n t o regions i n C can be found in e.g. [Bdl; F n l ; Ne6; Sa11,131; the results a r e important i n terms o f locating Regge poles o r zeros of f ( v , - k ) . There i s of course an enormous wealth of information i n the physics 1i t e r a t u r e concerning the r e l a t i o n between hypotheses on and t h e r e s u l t i n g p r o p e r t i e s of the regular s o l u t i o n , J o s t s o l u t i o n s , and t h e J o s t function. We have c i t e d a few sources but make no attempt t o survey t h e l i t e r a t u r e . We go now t o t h e e x p l i c i t development i n [Bbdl] f o r t h e so-called inversion
i n the v-plane ( k w i l l be f i x e d ) . Much of t h e c a l c u l a t i o n t h e r e i s repeated here and f u r t h e r d e t a i l s a r e supplied i n order t h a t we can expand upon t h i s and modify ( n o n t r i v i a l l y ) c e r t a i n techniques. With t h e proper interp e r t a t i o n this will t h e n lead t o transmutation kernels e t c . as desired. The c l a s s i c a l Green's function is
where r< = m i n ( r , r ' ) and r, = m a x ( r , r ' ) . Then a s o l u t i o n JI of (7.3) can be = 0 via expressed i n terms of a s o l u t i o n JIo of ( 7 . 3 ) w i t h JI(v,k,r) = Jl0(w,k,r) +
(7.13)
c
G(v,k,r,r'):(r'
)Jlo(v,k,r')dr'
Consider now formally f o r s u i t a b l e h
(7.14) where
vdv ~ ~ m h ( r ' ) [ - G ( u , k , r , r ' ) / r r ' ] d r '
I(k,r) =
r
r i s a semicircle
Q
of " i n f i n i t e " radius i n t h e half plane Rev > 0
w i t h v e r t i c a l s i d e the axis Rev = 0. This can be evaluated i n two ways as follows. First t h e only poles of the integrand occur a t t h e zeros of the J o s t function a t v = v j ( t y p i c a l l y simple) so t h a t
SPECTRAL THEORY I N MOMENTUM
Note here t h a t t h e f r e e J o s t f u n c t i o n f o ( v , - k )
41
f o r example has no such
zeros so t h i s c o n t r a s t s s i g n i f i c a n t l y from t h e s i t u a t i o n i n [ L r l ; g a r d i n g t h e d i s c r e t e spectrum.
One can show t h a t ( c f . [Bel;
v and s i n c e ~ ( ,k,r) j
j'
(7.17)
I(k,r)
(1/2ik)f(v
=
1
= ri
-k,r)
L l l ] re-
Bbdl])
we have
lorn*
f(v.,-k,r)f(v
-k,r') dr'
j'
J
M2 ( v j , k )
Next we e v a l u a t e I a l o n g t h e c o n t o u r
r.
Since f ( v , - k , r )
i s even i n v and
(7.11) h o l d s one has f i r s t , f o r m a l l y ,
F o r t h e l a r g e s e m i c i r c l e SF. one r e c a l l s t h a t ( c f . [Bel; v(v,k,r)
%
exp( -+in),
Ipo(v,k,r)
rv+', f ( u , - k )
%
%
fo( v,-k )
and ( u s i n g (7.11 ) ), f ( v , - k, r )
%
%
+
m,
( kr/v)+exp ( % i r v ) [ (2v/ek)"
exp(-+ia)/rv
-
c f . "e61).
Hence ( Y d e n o t i n g t h e Heavyside f u n c t i o n )
(ek/2v)"r"exp(+in)]
B b d l l ) as 1v1
2(~kf'(2v/ek)~exp(+iav)
(such e s t i m a t e s a r e standard i n p h y s i c s
-
We n o t e here t h a t i n t e g r a l s o f t h e form 9 ( e k / 2 ~ ) ~ " ( r s ) " d v v a n i s h s i n c e IvI
-f
(observe ( e k / 2 ~ ) ~ " ( r s ) "= ( a / 2 ~ ) ~ f' o r a = ek(rs)'
l i n g ' s formula aZ/zZ
4271 azexp(-z)z-'/r(z)
%
etc.).
(7.19) one r e c a l l s t h a t l i m SinRy/y = 1~6(y)as R d e l t a f u n c t i o n and we r e f e r t o [C40,67]
-+
-
also by S t i r -
I n order t o evaluate m
( t h i s i s a two-sided
f o r a d i s c u s s i o n o f one and two
-
c f . a l s o pp.150 and 292). Set y = l o g ( s / r ) f o r exiR iR ample So when s 5 r, I-iR ( s / r ) " d v = J-iRexp(vy)dv = 2iSinyR/y + 271iS(y) iR e r e - m < y 5. 0) w h i l e f o r s ? r t h e o t h e r t e r m i n (7.19) y i e l d s I-iR (r/s)" (h iR dv = J-iRexp(-yv)dv = 2iSinyR/y 271i6(y) a g a i n and h e r e r 5 s < p u t s US i n t h e range 0 5 y m. Hence (7.19) becomes
sided d e l t a functions
-+
(7.20)
.I.
jOr+ [ ] @ G ( l o g ( s / r ) ) d s rij
m
=
T i [
=
$th(ret)6(t)dt
-m
which equals r i h ( r ) .
Set now ( v
j
d e n o t i n g t h e zeros Z of f ( v , - k )
(Rev > 0)
ROBERT CARROLL
42
(7.21)
dp(v) = (2i/~)vLdv/f(v,-k)f(-vy-k) dp(v) =
1 ~ ( v - Jv . )
( v E [O,i-);
( v E Z)
Then from ( 7 . 1 7 ) , ( 7 . 1 8 ) , and ( 7 . 2 0 ) one o b t a i n s ( c f . [Bbdl]) &HE0REm 7-5, The " c o m p l e t e n e s s " r e l a t i o n f o r the J o s t s o l u t i o n s can be writ-
ten s y m b o l i c a l l y a s ( f ( v , - k , r ) (7.22)
s(r-s)
=
I
= rg(v,-k,r)
etc.)
g(v,-k,r)g(v,-k,s)dp(v)
In o t h e r words, f o r s u i t a b l e f , from G f ( v ) = fn(v) = J; obtains f ( x ) = ( ? ( v ) , g ( v , - k , x ) )p.
Phuod:
f ( x ) g ( v , - k , x ) d x one
T h i s c o n c l u s i o n a r i s e s from the e q u a t i o n h ( r ) = Jm h ( s ) E d s where 0
lo
i m
(7.23)
E =
1 g ( v j , - k y r ) g ( v j y - k y s ) / M 2 +-2 i
2
g(v,-k,r)g(v,-k,s)v f(v,-k)f(-v,-k)
dv
The f u n c t i o n h can be q u i t e g e n e r a l here - h E Lz i s s u g g e s t e d i n [Bbdl] and c e r t a i n l y h E is a d m i s s a b l e . 1 Let now f ( v , - k , r ) refer t o e q u a t i o n ( 7 . 3 ) w i t h p o t e n t i a l G, and c o n s i d e r
Ci
f o r s u i t a b l e H(u,r) ( t h e model here i s H ( u , r ) = f ( u , - k , r ) / r (7.24)
JH(vyk,r) =
I
i n [Bbdl])
m l 1 H(uyr)dpl( v ) k g (u,-k,s)g (v,-k,s)ds
1 1 1 ( r g ( v , - k , r ) = f ( v , - k , r ) e t c . ) . One knows t h a t ( $ ( v ) 2. f ( v , - k , r ) ) 2 2 DrW($(v),$[v)) = ( v 2 - u ) $ ( u ) $ ( v ) / r and W 0 as r m y so 1 1 (7.25) J H ( v , k , r ) = - H ( u , r ) W(f ( v , - k , r ) , f ( u y - k y r ) ) d p l ( p ) -+
I
u
-+
- v
1
Now d e n o t e by u . the z e r o s o f f ( u , - k ) f o r Reu > 0 and p u t ( 7 . 2 1 ) i n ( 7 . 2 5 ) J t o o b t a i n ( u s i n g (7.11) a g a i n ) i m 1 W(f ( v , - k y r ) ~ ( u y k , r ) L uH(u,r)du (7.26) JH = ( i / r ) 2 1 - i m ( ~ 2- v If ( u , - k ) W(f'(v,-k,r)f 1(Ujy-k,r))
I
-1
2 2 2 ( u j - v )Ml(pjyk)
H(vj,r)
(symmetry p r o p e r t i e s o f t h e J o s t s o l u t i o n s a r e worked i n h e r e and v i s t a k e n s l i g h t l y away from t h e imaginary p a x i s i n t o the r i g h t h a l f p l a n e
43
SPECTRAL THEORY IN MOMENTUM Rev > 0 ) . Add now t o (7.26) an i n t e g r a l over a l a r g e semicircular a r c of the same integrand so t h a t a term /-r a r i s e s which can be evaluated as before (-r denotes r traversed in the opposite d i r e c t i o n )
( t h e H ( v , r ) t e r n comes from t h e pole a t u (7.28)
= v).
Consequently
JH = H ( v , r ) + ( i / n ) f I H d u
where IH i s t h e integrand i n (7.27).
To evaluate k b now one uses asymptot i c estimates f o r l a r g e 1u1 ( c f . (7.19) e t c . ) and here s p e c i f i c assumptions about H(u,r) a r e needed. Typically one can s t a t e
Take H(v,r)
EHEOREm 7-6,
(7.29)
(i/r) t I H d u
(7.30)
JH
(7.31) Pmad:
=
= f ( u , - k , r ) / r in J =
H and IH above. Then
-(1/2)f 1(v,-k,r)/r
f ( v , - k , r ) / r - (1/2)f1 ( v , - k y r ) / r =
N
B(r,s)
=
The i n t e g r a l
1
1 1 g ( u , - k , r ) g ( v , - k , s ) d p (u)
lrm
B(r,s)f 1(v,-k,s)ds/s
9 1 H d p i s s i m i l a r t o (7.19) i n some respects.
For
1 ~ we 1
have W(f 1 ( v , - k , r ) , p ’ ( p , k , r ) f 1 (v,-k,r)(v+%)r’-$ - Drf 1 ( v , - k , 1 r)r”+$ so t h a t estimating f ( p , - k ) and f ( u , - k , r ) as before one has ( R + m) large
2 2 Note here t h a t (u+$)/(p -v ) = A/(u-v) + B / ( p + v ) with A+B = 1 and log[(iR+v)/(-iR+v)] -t log(-1) = in a s R 2 2 + m. On t h e other hand l / ( u - V ) = (1/2v)[l/(u-v) - l / ( u + v ) ] so t h e i n terms cancel. The r e s t follows immediately.
so ( i / n ) ’I* IHdu ’L - ( 1 / 2 ) f 1 ( v , - k , r ) / r .
REmARK (7.33)
7-7- The p r o p e r t i e s of
H
%
f(p,-k,r)/r
%
H used here were p r e c i s e l y r-1(kr/p)4e5iiau[
1;
44
ROBERT CARROLL
-
[ ] = (2u/ek)ve-’iTr-u
(7.33)
and o n l y t h e f i r s t t e r m i n [ 1 L e t us w r i t e ( f l % f ( v , - l , r ) (7.34)
I made
1-1
kim u
(ek/Zp) e
r
a c o n t r i b u t i o n t o t h e i n t e g r a l i n (7.32)
etc.)
IHn.(ek/2v)’e‘LrinyH/2~)(v%/(v2-v2)[f1
Thus i f e.g.
H(ekr/Zv)’exp(-%iav)
-f
0 as l u l
-f
(v+3)rU-4 m
-
Drflru%]e’iT
t h e r e w i l l be no c o n t r i b u -
t i o n from t h e IH i n t e g r a n d and JH = H. Now go back t o I i n (7.14) and observe t h a t t h e c a l c u l a t i o n i s b a s i c a l l y t h e same i f one t a k e s
and d p ( v ) i n (7.21) w i l l be t h e same.
The d i f f e r e n c e which a r i s e s due t o
t h e i n t e g r a l frm i n s t e a d o f f m i s however o f c o n s i d e r a b l e i n t e r e s t and i t 0
appears o n l y i n t h e t e r m (7.19)% corresponding t o (7.19).
Thus t h e t e r m
(7.19)% w i l l be
.f.=
(7.36)
f(r/s)vY(s-r)dv
%
C a l c u l a t i o n s such as (7.20) a p p l y again o f course b u t now we o b t a i n a two s i d e d 6 e x p r e s s i o n a c t i n g on one s i d e o n l y which must be i d e n t i f i e d w i t h $6+ where 6, denotes a one s i d e d 6 f u n c t i o n ( c f . [C40,67]
E m m A 7.8. so t h a t ( s (7.37)
REmARK (7.38)
F o r s u i t a b l e f u n c t i o n s h (as i n Theorem 7.5),
y(k,r)
Hence
= (1/2)h(r)
r) (1/2)6+(s-r)
7.9.
and 53.8).
=
g(u,-k,r)g
1
(v,-k,s)dp(u)
L e t us d e f i n e now ( c f . (7.31)) B(r,s) =
g(v,-k,r)g
1
(u,-k,s)dp(u)
and Lemna 7.8 demonstrates t h a t p ( r , s ) = 0 f o r s > r which we r e f e r t o as a t r i a n g u l a r i t y p r o p e r t y ( c f . [C40]).
The a c t i o n o f p ( r , s )
f o r s < r w i l l be
i n d i c a t e d below. I f one combines Lemma 7.8 w i t h Theorem 7.6 we o b t a i n a r e s u l t o f [ B b d l l
which can be s t a t e d as f o l l o w s ( t a k e h = f 1( v , - k , r ) / r
i n Lemma 7.8)
SPECTRAL THEORY IN MOMENTUM
EHE0REFII 7-10,
(7.39)
45
Let b ( r , s ) = ;(r,s) - B(r,s) ( r 5 s); then
g(v,-k,r)
1
= g (v,-k,r)
-t
b(r,s)gl(v,-k,s)ds
REmARK 7-11- The kernel b ( r , s ) can be w r i t t e n as b ( r , s ) = I g ( v , - k , r ) 1 1 1 g (v,-k,s)[dp ( v ) - d p ( v ) ] and t h e use of both s p e c t r a l measures d p and d p in i t s d e f i n i t i o n renders i t i n e f f e c t i v e f o r c e r t a i n purposes. In [Bbdl]
b ( r , s ) i s t r e a t e d a s a function with a j u m p a t r = s and various formulas a r e derived ( c f . (7.47)). This appears however t o be i l l advised and we w i l l discuss t h e matter below i n Remark 7.13. 1 Referring t o Remark 7.11 and Theorem 7.10 t h e presence of dp and dp i n -1 b ( r , s ) mixes t h e operators Q and Q i n an unwieldy manner and we want t o remove t h i s ( a l s o i t i s i n c o r r e c t t o t r e a t b as a f u n c t i o n ) . The key t o and 6 on (0,~)r a t h e r achieving t h i s i s t o consider t h e kernel a c t i o n of T h u s B ( r , s ) = 0 f o r s > r and a c t i n g on s E [ r , m ) , than only on [ r , m ) . B ( r , s ) = ( 1 / 2 ) 6 + ( s - r ) by (7.37). To see t h e r e s t of t h e B a c t i o n we s e t again g ( v , - k , r ) = f ( v , - k , r ) / r (so g s a t i s f i e s (7.1) w i t h n = 3, L(L+l) = 2 2 h2 = v -4,e t c . i n t h e form Qu = h u ) and interchange the r o l e s of ql and 1 1 1 -1 q in JH ( s o p ct p , f c+ f , e t c . where p l y f r e f e r t o Q w i t h p o t e n t i a l -1 q ) in order t o consider ( c f . ( 7 . 2 4 ) - ( 7 . 2 8 ) ) Iu
Iv
N
(7.41)
IH = [W(f(v,-k,r),~(~,k,r))/(p
2
-v
2
)f(~,-k)l~H(~,r)
1 Upon taking then H = g ( p , - k , r ) one obtains ( i / n ) 9 1 H d p = - 4 g ( v , - k , r ) h.
(7.42)
“ 1 J H = g ( v , - k , r ) - ( l / 2 ) g ( v y - k y r )=
e
and
g(v,-k,s)B(s,r)ds
Now combine (7.42) w i t h (7.37) and w r i t e formally m
(7.43)
(g(v,-k,s),B(s,r))
=
1 g(v,-k,s)B(s,r)ds = g (v,-k,r) -
( i . e . B ( s , r ) = (1/2)6+(r-s) f o r r 2 s ) .
Consequently 1 and i i ( r , s ) = EHE0REm 7-12. Define B ( r , s ) = ( g ( v , - k , r ) , g ( v , - k , s ) ) P ( g ( v , - k , r ) , g 1 ( ~ , - k , s ) ) ~ l .Then B(r,s) = 0 f o r s > r and F(r,s) = 0 f o r
46
s
ROBERT CARROLL
r ; in f a c t f o r s > r B(r,s) (1/2)6+(r-s). Define <
( l / Z ) s + ( s - r ) and f o r s 5 r , g ( r , s ) =
=
N
(7.44)
Bf(r) = ( B ( s , r ) , f ( s ) ) ; iif(r) = (;(r,s),f(s))
“V
z: 5’
5’
N
and + c a r e transmutations with B[g(v,-k;)](r) Then B: Q + 1 - 1 g (v,-k,t-) and B[g ( v y - k y - ) l ( r ) = g ( v , - k , r ) .
=
Pfi006: The statements about B and have been proved above. To obtain t h e analogous a s s e r t i o n s f o r and consider t h e c a l c u l a t i o n s f o r I i n (7.35)again ( p 1 f, p , f 1 c, f , e t c . ) (7.37). If we interchange the r o l e s of y l a n d then one can consider m 1 ?(k,r) = vdv h(s) ( v y ~ y r ) f ( v y - k y s )d s = (7.45) rsf (v,-k) r N
[ ‘
J
[h(s)[
1
g1 ( v , - k , r ) g ( v , - k , s ) d p 1Ids
=
(1/2)h(r) =
6
h(s)F(s,r)ds
Thus z ( s , r ) = ( 1 / 2 ) 6 + ( s - r ) f o r s 2 r ( i . e . g ( r , s ) = (1/2)6+(r-s)f o r r and, a s in (7.43), from (7.30) we obtain
s)
N ( g1 ( v , - k , s ) , B ( r , s ) ) = rm g 1 ( v , - k , s ) E ( r , s ) d s = g ( v , - k , r ) -
I
(7.46)
N
To check t h e transmutation nature of and one requires gf = QB acting on s u i t a b l e o b j e c t s . Without specifying domains generally one wants t o consider action on various objects a t we simply check t h i s here formally via t h e kernels by noting “1 “1 QrB(r,s) = Q,B(r,s) and Q,B(s,r) = QrB(s,r) f o r r # s. Then u B(r,s) = s(r-s) + K(r,s) so t h a t from g ( v , - k , r ) = g 1 ( v , - k , r ) g 1 (v,-k,s)ds t h e r e r e s u l t s Nh
-
- I V
N
N
(7.47)
CD,
?cl
51
and here ( s i n c e various times) f i r s t that =
+
( l / r ) ~ ? r , r ) = (1/2)[Cl(r) -
w r i t e e.g. + r(r,s)
!:
C(~)I
+
1 s ) . T h e c a l c u l a t i o n follows [Bbdl] w i t h (note QrK(r,s) = 5sF(rys)f o r r K i n place o f b ( s e e Remarks 7.11 and 7.13) and one wants s 2”K(r,s)Dg 1 (v,-k, “ 1 ( v , - k , s ) + 0 as s + m. The resulting j u m p i n Y s ) + 0 and s 2 DSK(r,s)g K(r,s) a t s = r permits one t o w r i t e formally f o r s u i t a b l e f , Q + 8 r , s ) , f ( s ) ) = ( ; s1F ( r y s ) y f ( s ) ) = (K(r,s),:;f(s)) so ?$f = E$’f as required ( r e c a l l Q and ”1 Q have s e l f a d j o i n t form when n = 3 ) . S i m i l a r l y t ; ( B ( s , r ) , f ( s ) ) = ( Q S B ( s , r ) , N I V
N
N
N
N
f ( s ) ) =(B(s,r),Q,f(s)) or
G1%
=
%{f.
.
N
FULL L I N E SCATTERING
REIIARK 7.13-
47
The problem in u s i n g Theorem 7.10 can be seen as follows. First
of course one does not want t o mix the two s p e c t r a l measures p and p1 s i n c e i t i s much e a s i e r t o deal with transmutations expressed i n t h e form (7.44) ( c f . [C40]). More s e r i o u s l y however one simply cannot t r e a t b a s a function in view of our c a l c u l a t i o n s leading t o Theorem 7.12. T h u s e.g. B ( r , s ) = 0 f o r s > r by (7.37) and thus b ( r , s ) = ; ( r , s ) - B ( r , s ) = g ( r , s ) f o r s > r. I f one wanted t o regard b ( r , s ) in ( 7 . 3 9 ) a s a function 6 ( r , s ) f o r s > r w i t h t h e 6 function action removed ( a s in LBbdl]) i t would have t o be ident i f i e d w i t h g ( r , s ) t h e r e and g - g1 = i ( r , s ) g1 ( s ) d s ( g ( r ) = g ( v , - k , r ) ,
fr
On the o t h e r hand t h e r e a r e two o t h e r "equally l e g i t i m a t e " candiL ( r , s ) g ( s ) d s . I f t h e argument of [Bbdl] were c o r r e c t 1 1 we should simply be a b l e t o e x t r a c t g - ( 1 / 2 ) g = 1 ; bv(r,s)g ( s ) d s from J H in (7.30). Perhaps more compelling i s t o t h i n k of F ( r , s ) = bY(r,s) i ( r , s ) g1 ( s ) d s . Thus ( l / Z ) & + ( s - r ) in J H o r i n (7.46) and t o w r i t e g = ,--1 t h e r e a r e c o n t r a d i c t i o n s and consequently we will t r e a t B[g ] = ( ; ( r , s ) , g 1 ( s ) ) = g ( r ) a s t h e basic transmutation here and dismiss (7.39) a s heurist i c (and c o r r e c t ) b u t misleading s i n c e b ( r , s ) i s not a function. etc.).
d a t e s t o represent
I,"
8.
CLABSZCAL SPEtXRAL CHEsRM AND RELACZ0w C 0
FULL LINE BCACCERZNG,
The
development of s p e c t r a l ideas i n §§6-7 i s e s p e c i a l l y important f o r applicat i o n s in physics and special functions. The connection of J o s t functions w i t h s p e c t r a l measures and t h e i m p l i c i t f a c t o r i z a t i o n of t h e s p e c t r a l meas u r e in terms o f e.g. c ( A ) and ? ( A ) = c (-A) will have f a r reaching s i g Q Q Q n i f i c a n c e in succeeding chapters. I t will a l s o be useful t o connect this material w i t h t h e c l a s s i c a l theory expounded i n [TeZ] ( c f . a l s o [L19]). T h u s we w i l l r e c a l l and sketch here t h e formulation of [TeZ] f o r [0,m) and (leaving some of the d e t a i l s a s e x c e r c i s e s ) . tinuous and r e a l ) (-my-)
(8.1) Let
q
(8.2)
QU = U "
= q ( x , x ) and
-
q(X)U
e
=
One considers ( q con-
= -XU
e ( x , X ) s a t i s f y (8.1) w i t h
q ( 0 ) = S i n a ; q ' ( 0 ) = -Cosa; e ( 0 ) = COSU; e ' ( 0 ) = Sina
Thus W ( q , e ) = q e ' - q ' e = 1 . The general s o l u t i o n of (8.1) has then t h e form u = e + Lq and i f one imposes a boundary condition a t some x = b of the form u(b)Cosg + u ' ( b ) S i , n ~= 0 then s e t t i n g ctnB = z
48
ROBERT CARROLL
For b f i x e d , as z v a r i e s
l d e s c r i b e s a c i r c l e Cb w i t h Cb
C
f o r b' < b
Cbl
+ m Cb tends t o a l i m i t c i r c l e o r a l i m i t p o i n t . I f m = m(A) i s 2 t h e l i m i t p o i n t o r any p o i n t on t h e l i m i t c i r c l e , Jm Ie+mpI dx 5 -1m m/ImA
and as b
0
Consequently f o r Imx # 0 (8.1) has a s o l u t i o n $(x,x) 2 2 = e(x,A) + m(x)v(x,A) i n L (0,m) (and i n f a c t J t I$(x,X)l dx = - Im m ( A ) / 2 Imh). I n f a c t i n t h e l i m i t c i r c l e case a l l s o l u t i o n s o f (8.1) a r e i n L
(sgn I m m = -sgn Imx).
.
One w r i t e s now f o r f E L 2 (no c o n f u s i o n w i t h @(A,x) = a QA ( x ) as i n 56 should a r i s e here) (8.4)
@(x,X) = $(x,x)
i"
v(y,h)f(y)dy
+
v(X,A)
0
$G ( x ,Y¶ A 1f ( Y )dY
1
$(y,h)f(y)dy
=
so O(0,x)Cos~r t @'(O,x)Sina = 0 and f o r f E C say, Qip t A@ = f ( G i s c a l l e d a Green's f u n c t i o n
-
The f u n c t i o n m(A) i s e a s i l y seen t o be
as b e f o r e ) .
a n a l y t i c i n e i t h e r h a l f p l a n e Imx > 0 o r ImA < 0. F u r t h e r i f f, q f , and f " 2 0 (Imx f 0) w i t h f ( 0 g o s a + f ' ( 0 ) S i n a = 0 w h i l e , as x -+ m, W($,f)
E L
-+
then an i n t e g r a t i o n by p a r t s i n (8.4) y i e l d s
@(x,A)
(8.5)
*
where @
= (l/x)[f(x)
-
@*(x,x)I
has t h e same form as @ i n (8.4), w i t h f r e p l a c e d by Qf= f "
-
qf.
Note here t h a t (8.5) has t h e f o r m f(x) =
(8.6)
lom
G(xyy,A) [Af(y)
A more o r l e s s r o u t i n e e s t i m a t e on P(x,x)
=
O ( 1/
@,
Qf(y)ldy u s i n g Q€J + A@ = f, shows now t h a t
f o r Imx # 0 ( e x e r c i s e - c f . [Te2, p. 341). A p p l y i n g 2 w i t h f and QfE L , one o b t a i n s from (8.51, ( * ) @(x,X) = f ( x ) / A
O(lA\'/lImA\)
t h i s t o @*, L
+
I x I 3/4 I I m x I 1.
low l e t I' be a s e m i c i r c l e o f r a d i u s R and c e n t e r i s w i t h base segment ( - R + i s , R + i G ) . here on
r, x
=
By (*) above Ir @(x,A)dx + n i f ( x ) as R
i s + Rexp(ie), 0 5 e
-
6 > 0 one can e s t i m a t e e.c(. t &fn/2de/Re
6/R
= O(R-3/4)
+
< n, and
iF [F?*/(s+RSine)]de
O(R-3/410gR)
i s a n a l y t i c i n t h e upper h a l f R+i 1i m I m C IT) (8.7) f ( x ) = R+= -R+i Define next formally Since
@
Ir dh/A
-+
T i
B the l i n e -+
Note
i n terms o f say I"RF?'de/s
(and s i m i l a r l y f o r a/2 5 p l a n e one o b t a i n s 6 @(x,X)dxl 6
-.
while f o r fixed 0
e
5 T).
49
FULL LINE SCATTERING
1
x
lim 6+0
(8.8)
[ - I m m(u+i6)]du = k ( x )
0
I t can be shown t h a t k ( x ) makes sense and i s a non-decreasing f u n c t i o n o f A
-
( c f . [TeZ]
t h i s i s somewhat more t h a n an e x e r c i s e b u t we w i l l o m i t t h e Given ( 8 . 8 ) one can use ( 8 . 4 ) and w r i t e o u t ( 8 . 7 ) as
d e t a i l s here).
R+i 6 I m [+ IR+A!x,i)dA] R t i6
(8.9)
1 1 loX c (Y, A
f
(Y d y l
t
1
C-
( 1/a)
IRt
jOm
+ m(x)c(x,x)ld
I
P(x,h)dk(x)
c(Y*x)f(Y)dY 0
e and c a r e r e a l f o r x r e a l ) .
(8.10)
[e(x,h)
LRLi 6 c (x, A 1d l [e (Y A )+m( A )c (Y )If (Y )dy
id m
-m
(recall
[ -(1/1~)1
R+i 6
m
(]/IT)
+
Im
= Im
F u r t h e r one o b t a i n s immediately
m
l f ( x ) I 2 d x = ( l / n ) lm1F(h)12dk(h);
F(X)
=
jomP(Y,x)f(Y)dY
= c(A,f)
CHEtIREIII 8-1. Given t h e nondecreasing f u n c t i o n k(A) d e f i n e d by (8.8), has f o r f E L2, f ( x ) = We go n e x t t o (8.11)
(8.12)
and l e t q and
(-m,m)
~ ( 0 =) 0; ~ ' ( 0 )= -1;
(so w(p,e) m2(A),
(l/1~)/1 q(x,x)c(h,f)dk(x),
= 1).
e
one
and (8.10) holds.
be t h e s o l u t i o n s o f Qu = -xu s a t i s f y i n g
e ( 0 ) = 1; e ' ( 0 ) = 0
By t h e h a l f l i n e t h e o r y t h e r e w i l l be f u n c t i o n s m,(x)
and
a n a l y t i c f o r Imx > 0 say, such t h a t $l(xyx)
= e(x,A)
+ m,(A)c(x,x)
9 2 ( x y x ) = e(x,x)
E
+ m2(A)c(x,h)
L2 ( - m , O ) ; E
L 2 (0,m)
One has I m ml > 0 and Im m2 < 0 f o r Imx > 0 w h i l e W(IL1y$2) = ml(h) - m 2 ( X ) . and i n f a c t l$l(x,A)l 2 dx = Im(ml)/ImX w i t h Im I$,(x,X)[ 2 dx = - I m ( m 2 ) /
lL
Imx. (8.13)
D e f i n e now 9(x,A)
G
=
=
if
$2(x,A)+,(y,A)/(ml
0
G(x,y,x)f(y)dy
-
m2)
G = ILl(xy~)$2(yy~)/(ml
-
f o r s u i t a b l e f where
(Y 1x1;
m2)
(Y > x )
We n o t e i n p a r t i c u l a r t h a t i f q i s even t h e n c i s even and follows that
m,(x)
=
-m,(x).
D e f i n e now
e i s odd.
It
50
ROBERT CARROLL
(8.14)
Thus 5 and 5 a r e nondecreasing and
i s o f bounded v a r i a t i o n .
Given 5, TI, 6 d e f i n e d as i n (8.14) one has f o r f
tHEe)REIII 8.2-
e(x,A)e(A,f)dc(A)
+
( l / n ) l z e(x,A)p(x,f)dn(A)
IT)/: p(x,A)p(h,f)dc(x)
e(x,f)dT-(A)
+
REMARK 8.3,
The case o f even q, where m,(A)
f ( x ) = (1/n)
F u r t h e r 5 ' = -Im(l/2ml)
:1
e(x,h)e(A,f)dch)
and 5'
+
E
LL, f ( x ) =
(1/~)_/:V ( X , A )
and (8.16) h o l d s .
importance l a t e r and we have t h e n ml/(ml-m2) (8.17)
One argues
2 I f ( x ) l dx =
(8.16)
(l/n)lz
T-
w i l l be o f p a r t i c u l a r
= -m,(A),
= 1 / 2 so ~ ( 1=) 0. +
IT)
Im(ml/2).
Hence
c
p(x,A)v(A,f)dc(A)
EXNWCE 8-4- It i s worth w h i l e showing how t h e s e formulas r e l a t e t o t h e standard F o u r i e r t h e o r y on [0,-) say when q = 0. Thus one has p = Sina C o s ( x J ~ ) - (x-')CosaSin(xJA) function $ =
e +
and
e
= CosaCos(xJA)
+ (x-')SinaSin(xJx).
mp must be a m u l t i p l e o f e x p ( i x J A ) i f ImA > 0 and one
It f o l l o w s t h a t -1m m ( x ) = f i n d s m(A) = [Sina-iJACosa]/[Cosa+ iJASina]. 2 2 Jh/[Cos a + ASin a3 f o r A > 0 and - I m m ( A ) = 0 f o r A < 0. One has t h e n
The
FULL LINE SCATTERING
dx f ( x ) = ( l / n ) jm"p 2( x Y )p ( Y f, 2 oCos ~1 + xSin ~1
(8.18)
Consider 2h4
(A
51
~1
=
n / 2 so p = CosxJx and e = x-'SinxJA
x
0) with k(A) = 0 f o r
<
0.
p(A,f)
=
Jo
u-l/'du =
0 m
m
(8.19)
w h i l e k ( x ) = I'
One has
f(x)CosxJxdx;
f ( x ) = (1/n)
J q(x,f)A-'CosxJkdr 0
F o r a = s2, dh = 2sds, e t c . one o b t a i n s t h e s t a n d a r d Cosine i n v e r s i o n f o r mulas.
-iJx, $1 =
For
(--,a)
one has e = CosxJA, p = -x-'SinxJx,
exp(-ixJx),
=
0, e t c .
$2 = e x p ( i x A ) , 5 ' = 1/2Jx
(x
iJx, m2(x) = O ) , 5' = 0 (x < O ) ,
m,(x) >
The s t a n d a r d F o u r i e r t h e o r y f o l l o w s e a s i l y .
RENARK 8.5. Take q even again and r e f e r t o Remark 8.3. some n o t a t i o n used i n [C47,48,80] (8.20)
P
x x(0)
=
P
0; Dxx x ( 0 )
2
-
F o r comparison w i t h
we w i l l w r i t e here i n s t e a d o f (8.11)
P P -1; ~ ~ ( =0 1;) 0 X'p A ( 0 )
=
Thus p p and xhp s a t i s f y P u = ( 0
e
=
=
0
2 2 p ) u = - A u ( a r e p l a c e s A ) and q
T,
x xP w i t h
F o r convenience here we w i l l assume p ( x ) i s even, r e a l , p o s i t i v e , 1 and continuous w i t h p(x)exp(2Hx) E L (0,m) f o r some H > 0. Operators P = 2 0 - p w i t h such p w i l l be c a l l e d F o u r i e r t y p e o p e r a t o r s ( c f . [C47,48,80; 'L
p!?
Hol; S t b l ] ) .
Much o f t h e development i n t h e f o l l o w i n g remarks f o r F o u r i e r
t y p e o p e r a t o r s i s v a l i d f o r weaker growth hypotheses on p (e.g. Im Ip(x)l 2 0 ( l + x )dx < m w i l l do). The e x p o n e n t i a l growth c o n d i t i o n above was used i n [Hol] t o g i v e a n a l y t i c i t y i n a s t r i p \ I m h ( < 6 , which we do n o t need ( c f . a l s o [Nbl]);
however i t i s convenient here t o use t h i s h y p o t h e s i s i n o r d e r
t o connect t h e m a t e r i a l t o [Hol, S t b l ] . -1m(1/2m1)
and t' = Im(ml/2)
As i n Remark 8.3 one has now 5' =
w h i l e (8.17) w i l l be w r i t t e n now
I n t h e p r e s e n t s i t u a t i o n t h e spectrum o f P w i l l be a b s o l u t e l y continuous, P P p x ( x ) i s even i n x, x X ( x ) i s odd i n x, and b o t h end p o i n t s on (-m,m) a r e P P l i m i t p o i n t ( c f . [Hol; S t b l ; TeZ]). The f u n c t i o n s p A and x h can be cons t r u c t e d f r o m h a l f l i n e c o n s i d e r a t i o n s (one r e f e r s here t o CTe2, Chapter51
ROBERT CARROLL
52
a s well as [Hol; S t b l ] f o r some of t h e c a l c u l a t i o n s which follow). P us s e t x ( x ) = x A ( x ) w i t h lp(x) = l pPh ( x ) and w r i t e
x(x)
(8.22) As
x
-f
m
+ (l/x)
= -[Sinxx/x]
c
Sinh(x-y)p(y)x (y)dy
r e a l ) , x ( x ) = u(A)Coshx + v(A)SinAx + o ( 1 ) where
(A
Thus l e t
p(A) =
- 1/A)
( u and v a r e (A r e a l ) , q ( x ) = u ( A )
IO SinAyp(y)x(y)dy m and v(X) = - ( l / A ) + ( l / A ) l m Coshyp(y)x(y)dy 0
a c t u a l l y functions of A' = z ) . Similarly as x m Coshx + v,(A)SinAx + o ( 1 ) where p 1 ( A ) = 1 - ( 1 / ~ ) / " Sinhyp(y)lp(y)dy a d -f
0
Coshyp(y)lp(y)dy. Since W(x,lp) = xlp' - v ' x = 1 , FI(A)V~(X) On t h e o t h e r hand f o r Imh > 0 one obtains as x -+ m, x(x) - u l ( h ) v ( h ) = 1/A. = exp(-ixx)[M(A) + o ( l ) ] and ~ ( x =) exp(-ixx)[Ml(x) + o ( l ) ] ( n o t e t h a t
v l ( A ) = (l/A)$
exp(iAx)
0 in this s i t u a t i o n ) where
(8.23)
M(A) = (1/2iA) - (1/2iX) M1(A)
must have ml
=
w i t h Im[m;']
=
eihYp(y)x(y)dy;
- (1/2iA) ~omeiAypb)lp(y)dy
+ %iv and M1 ( A ) + %pl + 4 i v l . If we r e q u i r e lp + n ~ ( > 0 i n t h e s p e c t r a l theory ( i . e . m % m2 = -m, above) we 2 2 2 -m = M1/M. I t follows t h a t Im[m,] = l / A ( v +v ) = 1/4A1Ml 2 -1/4x1M11 . Consequently ( w r i t i n g e.g. d g ( z ) = g ' ( z ) d z =
0, M ( A ) As ImA 2 E L (0,~) f o r ImA -+
= (1/2)
:j
-f
%p
2x5 ' ( z ) dh ) (8.24)
2
dg = dh/41M11 ; d r = dA/41MI
2
We note a l s o t h a t i n f a c t from (8.22), f o r 0 5 ImA < H ( A # O), x ( x ) = exp(-iix)M(A) + exp(iAx)M(-A) + E w i t h M g i v e n i n (8.23) and s i m i l a r l y (8.25)
q ( x ) = CosAx + ( l / x )
r
Sinh(x-y)p(y)lp(y)dy =
0
e-iAxM1(h) + eiAxMl(A) + I where I % O(exp(-xlPH-ImXI)). Formulas such as ( 8 . 2 2 ) and (8.25) can be solved i t e r a t i v e l y here f o r Imh > -2H say. From [Hol; S t b l ] one knows t h a t M and M1 a r e a n a l y t i c f o r ImA > -H (except f o r a simple pole a t A = 0 ) and n e i t h e r functions vanishes f o r ImA > - 6 . Further, uniformly in Imh > -H+E,
IM(A) - (1/2iA)l REMARK 8.6,
(8.26)
= O(/h(-2)
and I M 1 ( A ) - (1/2)1 = O(IAl-') as
Now define two functions as follows ( c f . [Holl)
u1 = ZiA[M(A)lp
- M1(A)x]; u 2
=
ZiA[M(A)lp + M1(1)x]
1x1
+ m.
FULL LINE SCATTERING E v i d e n t l y u1 and u2 a r e d e f i n e d f o r a r e a l s o a n a l y t i c f o r Imh > -H. r e a l , as x
-f
since, f o r
x
-
MIM-
=
m
( $ ) u1
r e a l , by (8.23)
=
(8.27)
u2(x) p(x)
ul(-x) 'L
m
-
w i t h ul(-x)
= u2(x)
and t h e y
Using (8.22) and (8.25) we see t h a t f o r X
-
2iAexp(iXx)[M(A)M1(-x)
k [ ( u + i v ) ( q - i v 1)
from u,(x)
where
?,
< x <
-m
53
i(A)
M1(A)M(-A)]
M(-x) and ?,(A)
=
(ul+ivl)(u-iv)]
exp(iAx),
%
M1(-A), and t h u s MM;
=
= Si(vvl
-
uvl)
-iAx
-
A(x)eiAx
Hence
= 1/2iA.
we have f o r A r e a l e-ixx
(x
-+
-a);
p(A)u2(x)
%
e
= 1/4iAM(A)M1 (1) and A(A) = -[M(h)M1 (-A)
i n p a r t i c u l a r f r o m [Hol]
p
(x
-+
m)
+ M ( - A ) M 1 (x)]/2MM1 (A); T h i s s i t u a t i o n thus
i s a n a l y t i c f o r I m X > -6.
appesrs t o be a standard one i n t h e f u l l l i n e s c a t t e r i n g problem as i n [Cel; Ddl; F a l ; K f l ] and we w i l l d i s c u s s r e f l e c t i o n c o e f f i c i e n t s e t c . below. e v e r i n view o f t h e way u, and u2 a r e formed i n (8.26),
How-
which d i f f e r s f r o m
t h e s t a n d a r d c o n s t r u c t i o n , some e x p l i c i t connections w i t h standard n o t a t i o n e t c . must be developed. P
REI1IARK 8-7- We r e c a l l t h e d e f i n i t i o n o f @.,(x) i n [C40] and e a r l i e r i n t h i s P P P P c h a p t e r t o see immediately t h a t u1 = Q A ( x ) . Now vA = cPaA + c;@-~ f o r A = Ikpx(x) ((
r e a l and .t,(x) P
= @hp/cp) w i t h
T h i s l e d us ( i n c o r r e c t l y ) t o w r i t e { ( x ) [C40, p. 3261.
=
d P ( x ) v PA ( x ) -
P 2 i h x A ( x ) i n e.g.
-A)
However (as w i l l be shown below) M 1 ( X ) = cp
and (8.26)
says t h a t P g ( x ) = 2iA[(M/Ml)vA(x)
(8.29)
-
x,(x)] P
A w i t h 2Re[PiAM/M1]
= 2iA[MM;
-
2 = l/IMII 2 = l / l c p
MIM-]/IMII
(cf.
(t) -
in
P + Im[2ihM/Ml]vA(x) P But I m g ( x ) = -2AxX(x) = -2Ax;(x) PA I n general A ( x ) , which w i l l correspond t o a r e [2XA(X)M(h)/M1(-X)lvA(x).
Remark 8.6).
f l e c t i o n c o e f f i c i e n t , i s n o t z e r o ( c f . Remark 8.11), [Hol]
s h o u l d s t i p u l a t e Ims > 0 i n (2.17)
and Theorem 2 . 4 i n
( c f . 22.6 f o r f u r t h e r c l a r i f i c a -
t i o n about t h i s p o i n t ) ; f o r ImA = 0 one has (8.27) above. passing t h a t -2AAM/M; = i A / 2 p l c p l 2 .
REmARK 8-8-
We n o t e a l s o i n
L e t us examine b r i e f l y t h e f u l l l i n e s c a t t e r i n g problem i n
o r d e r t o g a i n some p e r s p e c t i v e here.
The c o n n e c t i o n o f c l a s s i c a l s p e c t r a l
q u a n t i t i e s w i t h t h e parameters o f s c a t t e r i n g t h e o r y on t a i n i n t e r e s t i n i t s e l f and i t c o u l d
(-my=)
i s o f a cer-
be i n d i c a t e d f u r t h e r i n a system
54
ROBERT CARROLL
context l a t e r .
One d e f i n e s ( c f . [Cel; F a l l )
1
m
-
(8.30)
f+(A,x)
= e ixx
(8.31)
f-(X,x)
= e -ihx
Thus f+ % e x p ( i x x ) as x as above t h e n f + ( x , - t )
+
+ m
[SinA(x-t)/~]p(t)f+(A,t)dt
x
I,
X
[Sinx(x-t)/A]p(t)f_(A,t)dt
and f -
= f (A,t)).
'L
e x p ( - i h x ) as x
-f
-m
( a l s o i f p i s even
By i t e r a t i o n one can c o n s t r u c t f+ and
f- v i a t h e i n t e g r a l equations (8.30)-(8.31) and g e n e r a l l y f o r reasonable
Imx
p o t e n t i a l s i n p h y s i c s f+ w i l l be a n a l y t i c f o r also).
(8.32)
f-(x,x)
> 0 (here f o r
Imx
>
-H
= cij(x))
One w r i t e s (cij
= Cllf+(A,x)
f+h,x)
+ cl2f+(-x,x);
= c22f-(Lx)
+
c21
+ 2 i h w i t h c12 = cZ1 = W(f+(x , x ) , f - ( x , x ) ) / 2 i h ; Also cl1(x) = c1 = w(f-(x ,x) ,f+(-x ,x) ) / 2 i h ; c Z 2 = W(f-(-x ,x , f + ( x , x ) ) / Z i x . 2 2 2 E x p l i c i t formulas can be ob- c Z 2 ( - x ) and Ic121 = 1 + lcllI = 1 + IcZ2( t a i n e d by w r i t i n g f o r example as x + m and W(f,(x,x),f+(-x,x))
(8.33)
f-(A,x)
=
=
e- i x x
+
(,ixx P i x ) jme-i
j w e i A t p(t)f-(x,t)dt
(,-i~x/~~~)
-
tp( t ) f -( A , t ) d t
-03
+
o(1); f-(A,x)
%
+
clle ixx
C12e-ixx
-m
( t h e l a t t e r from (8.32)). f-(x,t)dt
and c12 = 1
-
It f o l l o w s t h a t cll
(l/Zix)/:
problem i n v o l v e s f i n d i n g s o l u t i o n s
(8.34)
x1 x2
Q ,
'L
{ {
=
(1/2ix)lI exp(-ixt)p(t)
exp(ixt)p(t)f-(h,t)dt.
x1
and
x2
The s c a t t e r i n g
such t h a t
exp(ixx) + s12exp(-ixx)
X
s1 exp( ixx)
x+m
s22exP(-iAx)
X
e x p ( - i x x ) + sZlexp(ixx)
X'm
-f
+
-m
-m
Here s12 and sZ1 a r e r e f l e c t i o n c o e f f i c i e n t s (resp. s l l and sZ2 a r e t r a n s -
I f we w r i t e now x1 = f - ( - x , x ) + s 1 2 f - ( h , x ) = f (x,x) = sll[cZ2f-(x,x) + c,,f-(-x,x)] t h e n one f i n d s t h a t s l l = l / c Z 1 sll+
mission c o e f f i c i e n t s ) .
and s12 = c ~ ~ / c ~ ,S.i m i l a r l y sZ2 = l / c 1 2 and sZ1 = cll/c12 and ( s l , ( ' + (s2,I2 = 1 f o r example ( a l s o s,*
REmARK 8.9.
=
so s l l = sZ2
sZ1 h e r e ) .
By way o f connecting t h e f u l l and h a l f l i n e s i t u a t i o n s ( f o r p
FULL LINE SCATTERING
55 ihx
-
even) let us write now as x - m (cf. (8.30) and (8.33)), f+(A,x) = e jm -m [ Si n x (x-t )/Alp ( t ) f+ ( A, t ) dt = exp ( i AX) - [exp (i xx)/2i A] exp ( - i At ) p (t) f+(h,t)dt + [exp(-ihx)/2ih]lI exp(iht)p(t)f+(A,t)dt. From (8.32) f + cZ2 and cZ1 = exp(-ihx) + cZlexp(ixx) so cZ2 = (l/Zih)/: exp(iht)p(t)f+(h,t)dt 1 - (l/Zih){I exp(-ixt)p(t)f,(A,t)dt. Note that c12 = c21 implies that I - mm exp ( i At)p (t) f- (A, t )dt = iz exp (-i At )p (t)f+( A, t )dt = iz exp ( i At) p (-t) f+(h,-t)dt, which is clear for p even s o that f+(A,-t) = f-(x,t). Now if (8.30) represents u1 = P and u2 = f- (ul f+) then from (8.26) and (8.23) -+
/I
Q ,
I
a
(8.35)
ul(0) = 2ihM(h)
1 -
=
u 2 (0) = 1 +
[Sinht/h]p(t)u,(t)dt
=
0
jmeixtp(t)x(t)dt 0
Note also -LL Sinxtp(t)u2(t)dt u,(-t) = u,(t) (p being even). (8.36)
Dxul(0)
=
=
,)i
=
-I: SinAtp(t)ul (t)dt automatically when Similarly
-2ihM1~'(0)= 2ixM1
-
Im
= ih
-
:1
Cosxtp(t)ul(t)dt
eihtp(t)p(t)dt
0
We observe a l s o that (8.26) is compatible in structure with (8.30)-(8.31). Thus recall (8.22) and (8.25) for x and p and write e.g. (using (8.35)(8.36)) (8.37)
lox
f,
=
eixx
,
Sinhlx-t) pf+dt
jox- g 1 SinA(x-t) p(t)f+dt
=
,i~x
+
A
2ihM1) - Cosxx(2ihM - l)]
(ix- [-r
=
X
2ihMCosxx + 2ihM1 - +
j
[Sinh(x-t)/x]p(t)f,(X,t)dt
0
Now substitute f+ = u1 =_2ix[b - Mlx] into (8.37) and everything fits together. Further since Lm ppexp(iAt)dt = 2Jm WCoshtdt and pxexp(iht)dt 0 = 2iI" pxSinhtdt we have, cZ2 = (1/2ih)Jm -m exp(iht)pu,dt = [b - Mlxlp(t) 0 exp(iht)dt = 2M/" ppcoshtdt - 2iMlim BSinhtdt. But 1 - 2ixM = Imexp(ixt) 0 0 0 pxdt and i x - 2iAM1 = j m ppexp(iht)dt so ImSinhtpxdt = Im[l - 2ihMI with 0 0 Im Cosxtbdt = Re[ih - 2ixM1] and it follows that cZ2 = -2ih[2MM1A] = -A/p 0 so that the full line picture is consistent with the view o f A as a reflection coefficient (cf. (8.27)). In order now to explicitly compare with (8.34) write for p = 1/4ixMM1 exp( ihx) X'W (8.38) U, = p u l = %[(p/M1) - (x/M)I { exp(ihx) - Aexp(-ixx) x --
r:
_/I
Q
-f
56
ROBERT CARROLL
( $ ) i n Remark 8.6 and (8.27) p l u s u,(-x) = u 2 ( x ) ) . Thus i s e x h i b i t e d as a t r a n s m i s s i o n (resp. r e f l e c t i o n ) c o e f f i c i e n t (cf.
A = -s12 i n (8.34) and
p =
s22y A = -s
0 f o r 1x1 > R say, so t h a t i n f a c t
f o r x > R,
7
(8.39)
(v/M1) = e-ihx
= exp(-iAx)M1
T h i s r e q u i r e s t h a t M;/M1 M-M1]/2MM1
f
PI,
(resp. - A ) sll,
(p =
A l s o n o t e t h a t i f we assume p =
21 ). becomes = i n (8.38),
exp(ihx)M;.
+ eixx(M-/M1 1 )
p
t h e n u s i n g (8.25)
Consequently we must have f o r x > R = pul
+ pu2
= (p-A)eihx
+
e-ixx
I f we w r i t e t h i s o u t w i t h A = -[MM;
= p-A.
and p = 1/4ihMM1 one a r r i v e s a t z-z = 1 / 2 i h where z = MM;
+ and
t h i s i s known t o be t r u e . I n c o n n e c t i o n w i t h t h e s p e c t r a l measures o b t a i n e d i n (8.24)
REmARK 8.10-
t h e expansion theorem (8.21) f o r even f ( w i t h p even) so t h a t P = 0 ( s i n c e x,(x) i s odd) and
t a k e e.g. x!(f) (8.40)
f(x) =
lo -
P P q,(f)q,(x)dC;
P qx(f) =
2 2 where d g ( h ) = dv(h) = dX/2.rr[M1(
.
m
f(y)v!(y)dy 0
Then f o r M1 = c p ( - h ) we have t h e c o r -
r e c t h a l f l i n e measure dv = dA/2rlcp12 ( c f (6.37)).
We can d e r i v e t h e r e -
s u l t M1(A) = cp(-A) d i r e c t l y as f o l l o w s . Thus r e c a l l f o r W(f,g) = f g ' P - P P P P f ' g ( q = cPbx + c ~ @ - ~ W(*A,@-x) ), = - 2 i x w i t h W(IP,@~) = 2ihcp(-A) and P W ( V J , @ - ~ ) = -2iXcp ( c f . (6.27)). Now use (8.25) w i t h t h e asymptotic r e l a P P t i o n s ah plr e x p ( i h x ) and DXaA i h e x p ( i h x ) t o o b t a i n as x m -f
(8.41)
2ihcp(-x) =
qD
*p
X h
-
qlah P = ih
-
lom weiAYdy
Hence, d i r e c t l y , f r o m (8.23) we have c p ( - h ) = M 1 ( X ) . know t h e s p e c t r a l measure f o r
x
I n a s i m i l a r s p i r i t we
transforms v i a c l a s s i c a l s c a t t e r i n g theory
on t h e h a l f l i n e i n terms o f J o s t f u n c t i o n s F ( A ) e t c .
Thus f o r o u r x ( c f .
[C40, p. 222 o r C e l l (8.42)
x
= [F(A)@-
-
F(-h)@+]/2ix
) = - 2 i x , F ( A ) = W(x,@+)). By formulas i n [ C e l l , w h i c h a r e o b t a i n ed i n t h e same way as (8.41) one has F ( h ) = 1 - Im p ( t ) e x p ( i A t ) x ( t ) d t so (W(@+,@
t h a t F ( x ) = 2ihM(h) by (8.23).
0
The s p e c t r a l measure f o r t h e e i q e n f u n c t i o n
FULL LINE SCATTERING
57
t h e o r y i n [ C e l l f o r example i s g i v e n as f o l l o w s
1
m
w
(8.43)
f(X) =
f(y)x[(y)dy;
f(x) =
0
lom
7(X)x~(x)[2h2dh/nlF121
Now go t o (8.21) and proceed as i n (8.40) t o o b t a i n v i a (8.24) ( u s i n g odd functions f )
2
d<(X ) = dw(A) = dx/ZnlMI
(8.44)
2
Thus F = 2ihM w i t h I F 1 2 = 41 I M I
less potential p (cf. [ K f l ] )
A.
t h a t MM;
=
2 agrees w i t h (8.43)-(8.44).
We observe t h a t i f A = 0 one has a t r a n s p a r e n t o r r e f l e c t i o n -
REIIARK 8.11tion of
2
and t h i s corresponds t o Re MM;
Since we know t h a t 2 i I m MM; 1 / 4 i ~o r cp(A) = M i = 1/4iXM.
= 0 by d e f i n i -
= 1/2iX by Remark 8.9 i t f o l l o w s
I n general o f course t h i s i s n o t
t r u e ( c f . Remark 8.7). L e t us summarize a few i t e m s now i n
EHE4)REm 8-12, L e t p be r e a l , even, p o s i t i v e , and continuous w i t h pexp(2Hx) 1 2 E L (0,m) and Pu = D u - pu. D e f i n e P, x , ul, u2, M, and M1 as i n (8.22), (8.23),
(8.25),
= -[MM;
+ M-M1]/2MM1
M;/Ml). pole a t
and (8.26).
and p a r e a n a l y t i c f o r ImX > - 6 (except f o r a s i m p l e
Then M, M1,
x
Set p = 1/4ixMM1 = +[(M-/M ) - (M-/M)] and A 1 1 + (M-/M)] ( t h u s p+A = -M-/M and p - A =
= -+[(M;/M1)
= 0 i n M and M1)
and n e i t h e r M n o r M1 vanishes f o r ImX > - 6 .
The
f u n c t i o n s u1 and u2 a r e a n a l y t i c f o r ImA > -H and f o r X r e a l as x m , u1 = P % e x p ( i X x ) w i t h pu2 1~ e x p ( - i A x ) - A(X)exp(iAx). The f u n c t i o n q~~ = a XP / c -P -f
has t h e f o r m (8.29) and c p ( - x ) = Ml(h) w i t h F ( X ) = 2iXM(x) where F = P The c o n n e c t i o n w i t h t h e f u l l l i n e s c a t t e r i n g problem as i n ReW(x,$). mark 8.8 g i v e s f+ = ul,
f - = u2, and e x h i b i t s -A (resp. p ) as a r e f l e c t i o n
(resp. t r a n s m i s s i o n ) c o e f f i c i e n t f o r u+ = pul and u- = pu2 ; thus p = sll
sZ2 and A
=
-s12 = -sZ1.
We n o t e a l s o t h a t A/A-
= -p/p-
and AA- = 1.
The f o l l o w i n g i n v e r s i o n f o r m u l a ( c f . [Hol; S t b l ] ) w i l l be v e r y h e l p f u l i n d i s c u s s i n g t h e Marzenko (M) e q u a t i o n i n Chapter 2 . v a t i o n i n [C40,34]
We gave a f o r m a l d e r i -
w h i c h was b a d l y phrased and t h i s was r e v i s e d and c o r -
r e c t e d i n [C47;48].
iTHE0REII 8-13. F o r s u i t a b l e f one has m
(8.45)
f(x)ul(x,x)dx;
F(A) = -m
Prrooa:
Consider f o r m a l l y
f ( x ) = (1/2n)
p(A)F(X)u2(A,x)dA
=
58
ROBERT CARROLL
]
(i/2n)
[ ( M / M 1 ) ~ ~ - ( M 1 / M ) x x l ~+ d ~( 1 / 2 n )
-m
1
[X(X)V(Y)
-
- mm q(x)x(y)hdA = 0 = Now I
[I q ( y ) x ( x ) A d A s i n c e
r e c a l l t h a t ( c f . (8.24),
Remark 8.10,
I
q
and x a r e even i n A and we
and [C40; C e l l )
I
m
(8.47)
~ ( x - Y )= ( 1 / 4 ~ )
m
q(x)q(y)dA/M,M;
= (1/4a)
Then observe t h a t
il
(M/Ml)qqAdh
= 1 / 2 i x so t h a t (i/Zn)/;
dh = (i/4n)L:
-
qqh[MM;
x(x)x(Y)dAlMM-
-m
m
M-M,
~(x)x(~)l(ihdh)
-m
=
-/I(M-/M;)qqxdA
qqx(M/Ml)dA
and r e c a l l t h a t MM;
-
= ( i / 4 n ) j z qqph[(M/M1)
-
(M-/M;)]
MIM-]dA/MM;
= ( 1 / 8 n ) l I qqdh/M M- = ( 1 / 2 ) 6 ( x - y ) . lml (M1/M)xxAdx = - ( i / 4 n ) L m xxh[(M1/M) -
S i m i l a r l y one o b t a i n s -(i/Zn)/:
(M;/M-)]di = -(i/4n)j_: xxAIM-M1 - MM;]dA/MM= (1/8n)/: xxdA/MM- = ( 1 / 2 ) ~ ( x - Y ) . The i n v e r s i o n (8.45) f o l l o w s immediately v i a an i d e n t i f i c a t i o n
.
~ ( x - Y )= ( 1 / 2 ~ ) j : pU2(X)U1(Y)dA. 9,
INCR0DlltXIBN CO 5ZNGlltAR 0PERAE0G AND 5PECIAL fllNmI0W-
The s t u d y o f
s i n g u l a r d i f f e r e n t i a l o p e r a t o r s i s connected w i t h v a r i o u s s p e c i a l f u n c t i o n s and t h i s p r o v i d e d t h e i n i t i a l impetus f o r o u r work on t r a n s m u t a t i o n t h e o r y i n 1978-79.
I t was p o s s i b l e t o develop a general t h e o r y i n v o l v i n g connec-
t i o n s between Operators, e i g e n f u n c t i o n s , i n t e g r a l transforms, e t c . and p r o v i d e a u n i f i e d f o r m u l a t i o n f o r many r e s u l t s (new and o l d ) .
Much o f t h i s
w i l l be sketched i n t h e p r e s e n t book and some d e t a i l s w i l l be repeated
-
( c f . [C27-49,54,63-65,741
f o r s i n g u l a r problems cf.
Fhl; D i l - 9 ; Dul; F i l , 2 ; F j l ; 5; Ocl; Oel; Pb2-4;
4
p
Q
= $lim[A'/A
Q
Q
9;
] as x
Gql-3; Gt1,2;
S r l - 3 ; Sx1,2;
Bbal,2;
He1,2;
Sy1,2;
B b f l ; Cpl-4;
La1,2;
L12; Lpl-3,
S t e l ; Tc1,2;
Tql; Wbl,
The model o p e r a t o r s w i l l have t h e form
Ybl-51).
Qou = (A u ' ) ' / A
where
F11,2;
Pd2; Rk1,2;
2; Wcl; Wel; Wil-14;
(9.1)
a l s o [C1-5,9-11,19-
B j l ; Bkl; B11; B r l ; Bul; By1,7;
22,25,26,56,60-62;Spl;
Z A A. i o u = Qou + pqu; Qu = Q u +
m.
The
pQ
-
A
q(x)u
f a c t o r i s p u t i n as i n d i c a t e d i n
order t h a t various spectral regions fit together. and A
Q
are possible.
(m > +) A
Q
t
-
where C as x
3
Q
> 0 and
w i t h A'/A
singularities i n 1; Sz1,2;
For example i n [Tj1,2]
Vd1,2]).
Q
a r e Cm and even.
Q
Various hypotheses on 2m+l Cq(x) Q G e n e r a l l y we a l s o t h i n k of
one takes A ( x ) = x
3. 2p 2 0 as i n [Cgl-4]
6 are permitted The o p e r a t o r s
( c f . a l s o [Bxl-5;
^a" = Go
where i n a d d i t i o n s u i t a b l e Cf';
Ge2,3;
Ff1,5,6;
Kp
a r e modeled on t h e r a d i a l Laplace-
59
SINGULAR OPERATORS
B e l t r a m i o p e r a t o r i n a noncompact r a n k one Riemannian symmetric space ( c f . [Fcl-3;
Ff2-4; C f l ; Hbl; Hkl; Hcl-7;
T11; Wgl; Mkl,2])
Kp2-13; L b l ; Gbl; Snl; T a l ; Tj1,2;
and n a t u r a l l y t h i s embodies a l s o t h e t y p i c a l s i n g u l a r op-
e r a t o r s a r i s i n g i n many problems i n d p p l i e d mathematics i n v o l v i n g s p h e r i c a l
*'+'
o r c y l i n d r i c a l symmetry. T y p i c a l examples a r e A = x h2m+l x -x 2 o t l (ex+e-x Q2B+1 x (p, = mtk), and A, = ( e -e ) ) (p,
(pQ =
=
o),
AQ
a+B+l).
=
For A
s i m p l i c i t y i n t h i s s e c t i o n we w i l l u s u a l l y exclude s t r o n g s i n g u l a r i t i e s q = B/X
2 near x
= 0 i n o r d e r t o deal w i t h t r a n s f o r m s based on " s p h e r i c a l func-
t i o n s " p! s a t i s f y i n g
&
(3.2)
= = 1; DXpA(0) Q
= - i 2 p ; p!(O)
0
( c f . however Example 9.5 and S e c t i o n 10 f o r s t r o n g s i n g u l a r i t i e s ) . We remark here t h a t r r h i i e hypothesss on general A w i l l be ex-
FEmAZUC 9.1.
4
p l i c i t l y p r o v i d e d l a t e r we w i l l d e l i b e r a t e l y n o t be t o o s p e c i f i c about The reason f o r t h i s i s t w o f o l d .
t.
F i r s t we observe t h a t t h e r e a r e numerous
t r e a t m e n t s o f s i n g u l a r problems i n t h e l i t e r a t u r e i n v o l v i n g v a r i o u s t y p e s o f hypotheses on Co,
6 and c o r r e s p o n d i n g l y d i f f e r e n t
L2, weak, e t c . types o f s o l u t i o n s - see e.g.
Sz1,2;
Tj1,Z;
Vd1,2])
[Bx1,2;
Ge2,3;
Cgl-4; S o l ;
These a r e a l l o f i n t e r e s t i n t h e i r own r i g h t and
sometimes n o t comparable another.
t y p e s o f r e s u l t s (e.g.
-
i.e.
one t y p e o f r e s u l t i s n o t " b e t t e r " t h a n
Thus l i s t i n g a l l t h e types o f r e s u l t s i s e x c e s s i v e and u n r e a l -
i s t i c w h i l e attempting t o e x t r a c t a "best" r e s u l t o f a given type requires i s o l a t i n g the type o f r e s u l t .
T h i s l e a d s t o t h e second p o i n t which we want
The t r a n s m u t a t i o n "machine" by means o f which we can r e l a t e
t o emphasize.
d i f f e r e n t i a l o p e r a t o r s and c o r r e s p o n d i n g s p e c i a l f u n c t i o n ,
"runs" by means
o f v a r i o u s p r o p e r t i e s o f e i g e n f u n c t i o n s and t r a n s m u t a t i o n k e r n e l s .
Any which produces such p r o p e r t i e s a r e thus considered s a t i s -
hypotheses on
f a c t o r y o r d e s i r a b l e here.
There a r e v a r i o u s hypotheses which work ( f o r
which one r e f e r s t o [Bx1,2;
Ge2,3;
Cgl-4; S o l ; Sz1,Z;
Tj1,2;
Vd1,2]
b u t we
p r e f e r n o t t o c o n t i n u o u s l y c i t e such hypotheses i n o r d e r t o be a b l e t o emphasize t h e p r o p e r t i e s o f e i g e n f u n c t i o n s and t r a n s m u t a t i o n k e r n e l s which f u e l t h e t r a n s m u t a t i o n machine. dition that
jm(l+x)l:(x)ldx 0
<
L e t us s t i p u l a t e as a general s o r t o f conm
w i l l u s u a l l y be s u f f i c i e n t b u t t h i s can
be improved i n v a r i o u s ways. L e t us i l l u s t r a t e t h e m a t t e r w i t h some examples b e f o r e g o i n g f u r t h e r .
!%WIPCE
9.2,
I n many ways t h e p r o t o t y p i c a l s i n g u l a r o p e r a t o r can be s a i d t o
ROBERT CARROLL
60
be (usually we take here m real w i t h m > -(1/2) b u t one can a l s o t r e a t m E C with Rem > - ( 1 / 2 ) ) (9.3)
;iou
m
= Q O ~= ( x 2 m + 7 u ~ ) ~ / x 2 m=+ u1" + [ ( ~ m + l ) / x l u '
m
4o 2 Then Qmu - -A u has spherical function s o l u t i o n s
(9.4)
P?(X) = 2 ~ ( 1 n + l ) ( x x ) - ~ J ~ ( ~ x )
We w r i t e g e n e r i c a l l y O,(x) Q = A ( x ) p9h ( x ) and expect generally t o find " J o s t " Q 2 Q solutions akX(x)f o r ije = - A e s a t i s f y i n g Q
(9*51
%
&+(x)e-+ i h x
(x
Q
-+
-1 A
( c f . [Cgl-4; C f l ; Tj1,2; Kpl; Ffl]). (9.6)
In the present s i t u a t i o n f o r Qm
q QA ( x ) = i m+l5x -rn+ (vhx/2f5 HA(Ax)
where H A denotes the Hankel function of f i r s t k i n d . (*) P ~ ( x )= cQ(X)@x(x) Q + c Q ( - A ) @ - ~Q( x ) and (9.7)
Then a s before one has
w(@;(x)y@!h(x))x 2m+l = - 2 i h
From (*) and (9.7) follows (9.8)
cQ(-A) = 2~(m+l)A-m-4im~'/J2n
(note -2ixc
Q as x
pA]
(9.9)
+
= x 2m+l c ( - x ) w ( @ Q ~ ,Q@ - ~=) x2m+1~(@f,p;) = Q0).(-A) Q From this one obtains (cm = 1/2"r(m+l))
Ro(x) =
tQ(x)
lim x 2m+ 1 [-ox@:
= cih2m+1 = 1 / 2 n l c Q ( h ) 2 (
Ro a r i s e s i n the inversion theory as i n (6.35)-(6.37),
Remark 8.10, Remark 10.8, Theorem 10.12 - c f . a l s o 511. I t can o f course a l s o be produced v i a the c l a s s i c a l theory of Hankel transforms. (9.10)
q4 h ( x ) = Oh(x)/c Q (-A) =
4 aO-(A/X)~+'
HA(xx)
2"+(m+l) As w i l l be seen l a t e r functions o f t h e type q xQ ( x ) i n (9.10) play an importa n t r o l e i n the general theory. We note here t h a t J ( z ) / z p i s e n t i r e in z P and WAQ can be regarded as a n a l y t i c in the A plane c u t e.g. along t h e nega1 f a c t o r ( r e c a l l here Hm(z) = t i v e imaginary axis t o accomodate a = [~-,,(z) - e-imTJm(z)l/iSinmn and consequently one can write q lQh ( x ) (1
SINGULAR OPERATORS
61
~ , [ A X - ~ ~ J - , ( A X ) / ( A X ) - ~ - e - imnA2m+lJ , ( x x ) / ( ~ x ) ~ ]
Q
remark however t h a t n e a r A = O,aA(x)
-
-2mA+m
c f . [C40,
(+
kmx
%
p. 1271).
We
f o r m > +) which
m
t h e r e f o r e d i f f e r s i n b e h a v i o r from some o t h e r t y p i c a l examples ( c f . Example 2 L e t us r e c o r d here a l s o f o r f u t u r e r e f e r e n c e t h a t i A ( z ) = H,(z) for 1 1 z r e a l whi 1e Hm(zexp ( v i n ) ) = [ S i n (1 -v)mn/Sinmn]H,( z ) - exp (-ima) [ Sinvmn/ 2 S inmn] Hm ( z )
9.4).
.
EXAmPfE 9-3, F o l l o w i n g [Kpl; C f l ; F f l ] we c o n s i d e r A 4 = AaYB= (ex-e-x ) 2a+1(ex+e-x)2B+1 w i t h p = p Q = a + ~ + 1 . It i s e q u i v a l e n t here t o work w i t h A p y q = (ex-e-x)p(e2x-e-2x)q
with
p =
(p+2q)/2 and we w i l l use
whichever n o t a t i o n makes t h e formulas appear t h e most simple. +1, p = ~ ( w B ) , B = ( q - l ) / Z , [ c t n h x t tanhx]/2. L e t us w r i t e t h e n
a l s o coth2x = c t n h Z x =
We a r e m a i n l y i n t e r e s t e d i n r e a l p,q 2 = Qou + p u w i t h
&I
+ [A' /A
= u"
c4B
]u';
A'/A = ( 2 a + l ) c t n h x + ( 2 ~ + l ) t a n h x
a7B
&
One d e f i n e s t h e s p h e r i c a l f u n c t i o n s as b e f o r e ( i . e . and ~ ' ( 0 =) 0 ) and t h e r e s u l t i n g t h e f i r s t kind.
(a+l =
q y y BE q p y q a r e
Thus (sh = Sh = sinh, ch = Ch = cosh) 2
q A ( x ) = ~ " ' ~ ( x=) F[%(p+iA),%(p-iA),a+l,-sh (p+q+1)/2 and a # -1,
r(a+l)-'q:(x)
2
= -1 q , q ( 0 ) = 1,
c a l l e d Jacobi f u n c t i o n s o f
4
(9.12)
0 as i n [ F f l ] .
4
Qou = Q:,Bu
(9.11)
and a = (p+q-1)/2;
Note q = 28
-2,
...
It f o l l o w s e a s i l y t h a t
i s required).
i s e n t i r e i n a, B, and A.
XI
For J o s t s o l u t i o n s one has t h e
Jacobi f u n c t i o n s o f t h e second k i n d (9.13)
Q
a,(x)
= (ex-e
(where A # -i,- 2 i ,
... )
-x
)
iA-p
-2
F[~(~-a+l-i~),+(~+a+l-ih),l-iA,-sh
Q( x )
and
@
w r i t e i n o u r s t a n d a r d manner
q!
%
e x p ( i h - p ) x as x
+ c-@'
= cQ@!
Q
where ( c f . L e m a 9.9)
-A
-f
m.
[Kpl] c Q i s used somewhat d i f f e r e n t l y
-
A l s o one can
f o r 1 # 0,Li , f 2 i ,
The l a t t e r form i s used i n [ F f l ] and t h e former i n [Kpl] one uses
Q
x]
. ..>
(note t h a t i n
= 2JncQ/r(a+l) f o r c
4;
n o t e a l s o here t h a t i f one w r i t e s a = % ( p + i A ) , b = % ( p i x ) , and c = %(p+q+ Q 2 1) t h e n i n (9.13) 'px(x) = F(a,b,c,-sh x ) ) . The f o l l o w i n g i m p o r t a n t propert i e s a l s o f o l l o w immediately f r o m t h e above formulas
62
ROBERT CARROLL
and c-+,-+(A) = 1 / 2 . Let us use S t i r l i n g ' s formula log r ( z + y ) = (z+y-$) logz - z + +1og2n + 0 ( 1 z 1 - ~ ) , uniformly i n largzl 5 n-6, t o estimate : Q ( ~ ) = 1/2nlc,(A)12
= 1/2nc (A)c (-A)
9
s
f o r real
and a simple c a l c u l a t i o n shows t h a t + m as 1 x 1 -+ m.
G,
w"Q
%
x
with
1x1 large.
Thus
T h u s f o r Re(Za+l) > 0,
klx12at1.
EMlnPCE 9-4, A special case of p a r t i c u l a r iimportance involves A. = Am,-+ A = ( e - e ) -- ZZm+' shZm+'x. Then Ak/Am = (2m+l)cothx and we a r e
-'"+'
m
=
dealing with the r a d i a l Laplace-Beltrami operator in spaces l i k e SL(Z,R)/ S O ( 2 ) ( c f . [C25,26,60-63; Spl; Vfl]). In t h i s s i t u a t i o n
v Qx
(9.17) where P!;-+
= Zmr(rn+l)sh-"x P;T-+(chx)
denotes t h e associated Legendre function of t h e f i r s t kind (cf
[Rel]) and, w i t h
p =
m++,
i s t h e associated Legendre function of the second k i n d .
where Q-+i (9.19)
c (1) = 22mr(m+l)r(ix)/Jnr(p+ix)
(9.20)
\IrQ(x) x = [ - i ~ 2 - ~ ~ s h r-( p~ -xi x ) / r ( m + l ) ] T + - i A ( c h x )
Also
Q
hl
Note where Q:(z) = e x p ( i ~ n ) Q ~ ( z ) / r ( u + ~is+ le)n t i r e i n 1-1 and v ( c f . [Rel]). here t h a t r ( p - i x ) becomes i n f i n i t e f o r p - i x = -n o r x = - i ( p + n ) . We note a1 so (9.21) A 2
Ic,(x)
= Ac,(h/n)sh(nX)r(p+ix)r(p-iX) 2
where c, = aZ-4?-2(m+l)
(recall r ( i x ) r ( - i x ) = n/hsh(ax)).
MAmPCE 9.5, The following example w i t h s i n g u l a r 2e t i v e ( c f . a l s o [ C f l l ) . Take AQ = sh 2 ch x and
from [Cg3] is i n s t r u c 2 2 2 2 = ( B /sh x ) - ( c /ch x ) .
4
SINGULAR OPERATORS
2 One s e t s v = J l ( i - Z e + [ ( 2 e - l ) +4c2I4) and
63
4(1-2a+[(Za-l) 2+4~']') 2 2 L here 2a % 2m+l s o 2a-1 = 2m and T = -m t (m +B ) '). Then (note spherical function b u t we use t h e same notation here) (9.22)
q!
=
chvxshvx
4
F['(p+~+v-iX),%(p+T+u+ih),atT+4,-Sh
-p-~+ih
a A ( x ) = shTxch (note here
p =
(9.23)
qQ =
A
X F[%(p+T+v-ih)
(note
T =
2
i s not a
x];
, % ( a - e + ~ - v +-iA), l 1-ix,ch
-2
X]
ate). Another, more revealing,form f o r q! i s
shTxch-p-Ttih X F[%(
p+T+v-i A )
,%( a-e+T-V+l -i A )
2
,~l+~q t h3 ,X ]
Q 2 The eigenvalues A a r e characterized by @.,(x) being L near x = 0 which rej quires t h a t %(n-e+=-v+l-iA) = -n, n E Z. Hence f o r Imx > 0 (9.24)
cQ(-A) -
x
r ( - i )r( a+T+%) r(%(a-e+T-v+l-iA)r(%(a+e+T+v-ix)
-
f o r i x $ Z. Note t h a t % ( a - e + ~ - v + l ) -4ix = -y/2 - i x / 2 = - n in (9.22) corresponds t o i x = 2n - y while in c (-1) t h e gamma function w i t h argument Q -4y - g i x becomes i n f i n i t e f o r -b- $ i x = -n which is the same s i t u a t i o n . Thus t h e eigenvalues A,, have t h e form i A n = 2n -
y
or An = (y-2n)i.
In [C40] we displayed a g r e a t deal of d e t a i l e d information from [Bxl,2; Ge 2,3; F f l ; Kpl; Sz1,2; T j 1 , 2 ; Cgl-4; Vd1,2] concerning t h e construction of Riemann functions, transmutation kernels, generalized t r a n s l a t i o n s , e t c . f o r s i n g u l a r operators of t h e type indicated (containing t h e generic singul a r i t y ( 2 m + l ) / x i n t h e u ' term). We w i l l n o t repeat a l l of t h e technical d e t a i l here and will organize t h e material i n a somewhat d i f f e r e n t manner. A c e r t a i n amount of t h e d e t a i l was needed in order t o give an extension o f
t h e Marzenko technique of 55 t o cover s i n g u l a r operators. Other d e t a i l s were developed in order t o e s t a b l i s h p r o p e r t i e s of eigenfunctions, transmut a t i o n kernels, e t c . i n order t o deal w i t h e.g. i n t e g r a l transforms and connection formulas between special functions. In t h e remainder of t h i s s e c t i o n we w i l l sketch some r e s u l t s from [ F f l ; Kpl] which e s t a b l i s h c e r t a i n p r o p e r t i e s o f eigenfunctions based on Example 9.3 and provide a model s i t u a t i o n f o r constructing general transmutation kernels l a t e r v i a s p e c t r a l i n t e g r a l s ( c f . Chapter 2). The technique f o r obtaining general Parseval formul a s f o r s i n g u l a r operators, of the type i n §5, will then be developed i n §§lo-12. (9.25)
Let us f i r s t note t h a t f o r Qo a s i n ( 9 . 1 )
64
ROBERT CARROLL
( s o (Qo)*Q:
= -A2Sf
for
ff = A@:)
while a useful transformation w i l l a r i s e
from t h e formulas
( n o t e a l s o t h a t Qou = (A u ' ) ' / A
Q
Q
2 i s i n formal s e l f a d j o i n t form on L (A d x )
Q
I n particub u t we p r e f e r t o work w i t h Qo and (ao)* f o r v a r i o u s reasons). 2 2 l a r f o r Q: o f (9.3) one has = D - (m - k ) / x 2 . Thus g e n e r a l l y a t r a n s -
5:
f o r m a t i o n o f t h i s t y p e i n t r o d u c e s s p e c i f i c " s t r o n g " s i n g u l a r i t i e s 8/x2 i n Moreover i f one begins w i t h a Q' f o r which s p h e r i 2 2 c a l f u n c t i o n s o l u t i o n s o f Qou = - A u e x i s t ( c f . ( 9 . 2 ) ) t h e n f o r 6Ov = - A v t h e p o t e n t i a l t e r m q"(x).
one has p a r t i c u l a r corresponding s o l u t i o n s v = L'u
Q
w i t h A%
1 as x
-f
Q "0
Thus c e r t a i n p a r t i c u l a r s t r o n g s i n g u l a r i t i e s and o p e r a t o r s Q
+
0.
w i t h "non-
s p h e r i c a l " b a s i c s o l u t i o n s w i l l always a r i s e and must be accomodated. The q" c o n t a i n s general terms B / X 2 i s r e a l l y n o t t o o much d i f -
general case when
f e r e n t b u t we p r e f e r t o d e f e r i t f o r t h e moment ( c f . [ C f l ;
REIIIARK 9.6,
Cgl-411 and
To c l a r i f y t h i s a l i t t l e here we n o t e t h a t t h e r e a r e v a r i o u s
ways o f h a n d l i n g t h e p r o t o t y p i c a l s i n g u l a r i t y (2m+l)/x i n t h e u ' term. one works w i t h A ( x ) = C
example i n [ T j l ] ( c f . a l s o [C40]) C
Q
10).
E Cm i s even and p o s i t i v e w h i l e
4 E. Cm i s even
Q
and r e a l
For
' 4 (, X ) X ~ ~ + where (Q = ^s" -
6).
Q ( x ) a r e t h e n compared t o those o f AQ: i n (9.4). The s p h e r i c a l f u n c t i o n s p A A
A.
I n [ S o l ] a general t h e o r y i s g i v e n f o r Qu = Q u,
-
t u w i t h q u i t e general
q^
( a d m i t t i n g s t r o n g s i n g u l a r i t i e s ) w h i l e i n [Cg3] one works w i t h e s s e n t i a l l y t h e same s i t u a t i o n b u t expressed d i f f e r e n t l y v i a hypotheses on A [C40]);
Q
(cf. also
i n b o t h of these t r e a t m e n t s t h e b a s i c e i g e n f u n c t i o n s may n o t be
s p h e r i c a l f u n c t i o n s however.
We w i l l comment on t h i s l a t e r ( c f . 910).
us n o t e here t h a t i f one begins w i t h terms Qu = u " + (Zm+l)u'/x s u i t a b l e a ) t h e n f o r A = xZm+'exp( l a ) t h i s i s ( A u ' ) ' / A = Qu.
Let
+ au' ( f o r V i a (9.26)
2
- %A"/A. q v where q = -A-'(A')" = +(A'/A) 2 2 But A ' / A = (2m+l)/x + and A"/A = (2m+1)(2m)/x + Za(Zm+l)/x + ( a ' f a ) 2 2 2 2 so q = -(m - k ) / x 2 - a(m+*)/x - CY / 4 - a'/2 = - ( m - k ) / x + q. Hence Qu = 2 2 xZm+' one has -A-'(&)" - A u i s e q u i v a l e n t t o bv = - A v and s i n c e f o r A 2 2 -m-4 Q = m+' Q Q = -(m +)/x i t follows that w = x v satisfies x Q [: +q]w = 2 2 + ';i)[xm+l"w] = bv = - A v so [Qo + {]w = -1 w. Hence a n o n s i n g u l a r au' m added t o t h e g e n e r i c s i n g u l a r i t y ( 2 m + l ) u ' / x can be passed t o a p o t e n t i a l w i t h a s i n g u l a r p a r t l / x which does n o t c o n t r i b u t e any new q u a l i t a term
we have A5Qu = ~ [ A % J ] = Gv = v "
(x
+
SINGULAR OPERATORS
65
t i v e features t o the solution. One can use t h e e x p l i c i t Now go t o Example 9.3 and we f o l l o w [Kpl; F f l ] . formulas f o r p QA and Q o f course t o determine p r o p e r t i e s b u t one can a l s o proceed v i a general a n a l y t i c a l techniques which g e n e r a l i z e t o o t h e r s i t u a Thus one proves
t i o n s (complex a , can ~ a l s o be a d m i t t e d b u t we o m i t t h i s ) . ( c f . [C40; F f l ; Kpl]) EHE@RE:1 9-7- F o r x i s e n t i r e i n A. = C-1-1")
For x E
as x
n E Z+ t h e r e e x i s t s Kn such t h a t f o r X = c+iu,
+
QQA ( x ) = e ( i h - p ) ~
where I D F ( A , x ) l
Qu = Qou +
p
2
u, Qo = Q:,B)
Q Q ( g i v e n by ( 9 . 1 3 ) ) i s a n a l y t i c f o r A
(O,m),
and a Q X ( x ) = [l + o ( l ) ] e x p ( i A - p ) x
(9.27)
-
( g i v e n by (9.12)
q!
E [O,m),
e-2'
-f
ri
m.
L
For c > 0,
-1Sle,
and x
> 0, and
E
E
E 0
[c,m)
Q(X,x)l
5 Kn.
I n o r d e r t o e s t a b l i s h t h a t p QA ( x ) i s an e n t i r e f u n c t i o n o f e x p o n e n t i a l t y p e we p r e f e r t o make c o n t a c t here w i t h t h e f o r m u l a t i o n of [ T j l ] and w i l l prove &HEOREM 9.8.
L e t A ( x ) = X ~ ~ + ' C ~ ( Xm ) >, -4, w i t h C
s t r i c t l y positive.
Q
Q
( n )
A
E
Cm, even, and
L e t q E Cm be even ( r e a l ) and s e t Qu = (A u ' ) ' / A Q
-
qu
corresponds t o Theorem 9.7). L e t pQQA be t h e (so q = - p 2 w i t h A = A Q Q, asB2 Q unique s o l u t i o n o f Qu = -1 u w i t h p QX ( 0 ) = 1 and DxqA(0) = 0. Then p QA ( x ) i s e n t i r e i n X and s a t i s f i e s f o r x L 0,
5 K ( x ) e x p ( ( I m h ( x ) ( K E Co[O,-)) 2 Phaad: Set VJx) = A??xkX(x) and we o b t a i n (*) V; - [ % ( A ' / A + 4(Al/A ) ' 2 Q 2 Q Q Q Q + q]VA+ A V, = 0 ( n o t e ( A ' / A ) I = A"/A - ( A ' / A ) ) . Since A = xZm+lcQ we Q Q Q Q Q Q 2 can s e t X ( x ) = (Zm+l)C'/ZxC + $ ( C ' / C ) I + + ( C ' / C ) + q and w r i t e (*) as Q Q Q Q Q Q 2 2 V i - [(m -$)/x2 + X ( x ) - A ]Vx = 0 (9.28) Iq!(x)l
Q
Note t h a t s i n c e C %
<'(0)xrn+'
Q
Q
i s Cm and even t h e same h o l d s f o r X.
and Vl;(x)
(m+$)C'(0)xm-'.
4
A l s o as x
t e c h n i q u e one o b t a i n s an i n t e a r a l e q u a t i o n
1
X
(9.29)
V,(x)
=
um(Xx)
+
-f
0, V,
Using t h e v a r i a t i o n o f parameters
Gm(x,x,c)x(c)VA(S)dc
Known p r o p e r t i e s o f Bessel and Hankel f u n c t i o n s ( c f . [ M b l l ) y i e l d
ROBERT CARROLL
66
(+I IU,(AX)~ 5 c[x/(l+lAlx)lmG' exp(l1mAlx) and I G (A,xy5)1 ,< C[x/(l+lXlx)l 5 C l A l - lm [lXlx/(l+lAlx)lmq' exp(lImAl(x-c)) f o r -4 < m -< 4 while lG,l [ l A ) S / ( l + l A ) 5 ) ~ - " e x p ( l I m A l (x-s)) for m >
4. One can solve (9.29) by suc-
cessive approximations i n a standard manner by s e t t i n g Vy(x) = pm(Xx) and
Vy(x) = :f G (x,x,E)X(c)V:-l(s)dc w i t h V,(x) = 1 ; V i ( x ) . From (*) we have Alx~~ f o r n 2 0 I VRA ( x ) l 5 C n ~ f " x / ( l + ~ A ~ x ) l m ~ S " e x p ( ~ I m A ~ x ) [ x / ( l + ~foXlx(5)ldEln Consequently t h e s e r i e s f o r VAconverges absolutely and uniformly on compact s e t s and gives t h e unique s o l u t i o n desired. By uniform convergence V A i s e n t i r e and
U
Hence I vQA ( x ) l 5 K(x)exp(l Imxlx) as a s s e r t e d . Next one can use S t i r l i n g ' s formula as i n Example 9.3 t o estimate c ( A ) Q given by (9.14) (note a l s o t h a t from (9.14) c ( A ) = 0 when A = i ( 2 n + p ) o r
4
i(Zn+l+a-B) unless one of these i s equal t o i m where i t would be canc e l l e d ) . Thus in a straightforward manner one obtains A =
LElllMA 9.9-
-EIs/
Given
E
> 0 there exists
K > 0 such t h a t f o r
A =
s+iq w i t h
rl
2
(p,q F 0 r e a l ) IXcQ(-A)I 5 K(l+lAl) -%(P+q);
(9.32) Further
AC
Q( - A )
i s analytic i n
I C Q ( - A ) I -1
K ( 1+ 11I )%(P+q)
w i t h zeros in t h e s e t -i[:,m).
P L C J O ~ : The estimates follow from S t i r l i n g ' s formula as indicated once
(9.14) i s known.
We note a l s o t h a t
since A W i s independent of x and p: = c aQ + c-aQ with AQ(x)W(@A,@-x) Q Q comQ QQ QQ -A and *-A e s t a b l i s h e d above (note puted from t h e asymptotic behavior of t h a t A Q exp(2px) here). Consequently Xc ( - A ) is a n a l y t i c i n 1;1. To esQ Q Q t a b l i s h (9.14) one can write ( l i m i t s as x -+ m ) lim [exp(iA-p)xp,,(x)] = 1imCc (h)exp(iAtp)xexp(iA-p)x + c ( - ~ ) e x p ( i ~ + p ) x e x p ( - i ~ - p ) x=] c ( - A ) f o r 4 4 9 ImA 0. Now use t h e representation (9.12) f o r p JQx ) with a = 4 ( p + i x ) , = +(p-iA)¶ c = % ( p + q + l ) , p,q 2 0 r e a l , and ImX = TI > 0 w i t h 0 < n < l + p/2 ( t h i s insures t h a t Reb = Re ?-,(p-ih) = +(p+q) > 0 and Re(c-b) = Re 4(1+ p+ih) = 4(1+ p - n ) > 0 ) . A standard formula f o r t h e hypergeometric 2 function (cf. [Mbl]) gives then (z Q-sh x )
b
SINGULAR OPERATORS
Z Z a r ( c ) JoItb-l ( l - t ) c - b - l -a
r
m
which i s (9.14) f o r tinuation to A
E P.
T-
as r e s t r i c t e d .
67
ZZar(c)r(-iA) dt = r ( b ) r ( c - a )
One then extends t h i s by a n a l y t i c con-
I
W e record next a few known formulas involving Jacobi functions and hyperOne can then prove geometric functions ( c f . [Ak3; Mbl; Eb2,3; F f l ; Kpl]). various r e s u l t s (e.g. Theorem 9.12) b u t more important, t h e formulas serve a s models f o r various general s i t u a t i o n s . We will show l a t e r how t o derive such formulas canonically and i n t r i n s i c a l l y i n a unified manner based on transmutation machinery ( c f . a l s o [C40,64,65]). Moreover various general r e s u l t s can then be e s t a b l i s h e d “canonically” without recourse t o special p r o p e r t i e s of hypergeometric functions. T h u s t h e models a r e chosed t o serve a s exhibition pieces f o r general r e s u l t s ( e . g . t r i a n g u l a r i t y o f transmutat i o n kernels) which a r e e s t a b l i s h e d l a t e r i n a canonical manner. Also the models e x h i b i t various typical p r o p e r t i e s o f growth and a n a l y t i c i t y which a r e used l a t e r i n t h e a b s t r a c t presentation. Thus using t h e formula F ( a , b , c , z ) = (1-z) c-a-b F(c-a,c-b,c,z) and Bateman’s i n t e g r a l ( c f . [EbZ])one has f o r y (9.35)
>
0, Rev > 0 , and Rec
> 0
r - l ( c + u ) yc+p - ( 1+y ) a tb-c+p F ( a+p ,b+p ,c+p ,- y ) = [l /r ( c ) r ( p ) ] ~ ~ x C( -1 +x)a+b-cF ’ ( a , b,c, - x ) (y-x)’-’dx
From [Ak3] f o r x
>
0 , Reu
>
0 , and Reb
0, one can w r i t e
>
Translating t h i s i n t o Jacobi functions one obtains E m N A 9-10,
For x > 0 , Rep
> 0,
and Rea
>
-1
while f o r s > 0, Rep > 0 , and ImA > -Re(a+B+l) ( r e c a l l
7aB
= 2JTcaB/r(a+1))
68
ROBERT CARROLL
a+” ’+’( Next, u s i n g (9.15)
t ) [C h2t
-
Ch2slv’-l Sh2tdt
t o g e t h e r w i t h (9.37)-(9.38),
LEIiIIRA 9-11. F o r Rea > Reg >
-+,
one has i n p a r t i c u l a r
e x p ( i x s ) = ?(-A)-’
fsm@,(t)A(s,t)dt
(Imx
> 0)
and I ‘ ( a + l ) - ’ A ( t ) ~ ~ ( t ) = IT-4 f t CosXs A(s,t)ds where L P ~ , 0 f e r t o i n d i c e s ( a , ~ )and A ( s , t ) = A ( s , t ) can be w r i t t e n i n t h e form
A , and c(-A) r e -
a,B
One can e v a l u a t e t h e i n t e g r a l i n (9.39) e x p l i c i t l y as a hypergeometric f u n c t i o n ( c f . [Kpl]).
Indeed u s i n g E u l e r ’ s i n t e g r a l ( c f . [EbZ]) w i t h a s u b s t i -
t u t i o n (Cht-Chw)/(Cht-Chs) mentioned b e f o r e (9.35), A(s,t)
(9.40)
= 5 i n (9.39),
p l u s t h e hypergeometric i d e n t i t y
one o b t a i n s
= 2 a+28+5/2 r(a+%)-1Sh2tChB-at
( C hwt-Ch2s ) “-F‘
This can be used i n p r o v i n g ( c f . [ F f l ;
(a+B, a- B, a+%, 2Cht Cht-ChS
1
Kpl])
L e t 9 Qh be t h e s p h e r i c a l f u n c t i o n tHE0RElIl 9.12. L e t x = c + i n and x E [O,m). o f Example 9.3 which i s e n t i r e i n ?, and C m i n x. F o r each n one has Kn w i t h (9.41)
Ir(a+l)-’O!)$x)
I
5 K n ( l + ( x l ) n + k ( l + x ) e x p ( In1-Rep)x
where k = 0 i f Rect > -4 and k = (+-Rea)
i f Rea <
a l s o t r u e t h a t IDypy(x)1 5 K,(l+x)”’exp( and I m h
i n the (9.42)
Consider f i r s t n = 0 and Rea > (pX
F o r p,q 2 0 r e a l i t i s
( n 1 - p ) ~ ( r e c a l l q = 2W1, p =
F u r t h e r f o r a,@ E C and c > 0 t h e r e e x i s t s 0 I @Q X ( x )I 5 Kexp[-x(ImA + Rep)].
2(a-6)).
Prruua:
-+.
-4.
K such t h a t f o r x ~c
Put t h e k e r n e l e x p r e s s i o n (9.40)
f o r m u l a o f Lemna 9.11 t o o b t a i n Ilp,(t)l
ItRe(a-B) ) t ( ShtCht)- 2Rea /ot(Ch2t-Ch2s)Rea-’ds ( c e ( I ImX -
ce
( ( I m x (+Re(a-B))t
Rea,Rea
(t)
By [Eb2] one has an e s t i m a t e 19!eayRea ( t )I 5 k(l+t)exp[-2Rea+l]t so, com(9.41) f o r n = 0. For n ~1 one uses b i n i n g t h i s w i t h (9.42), we o b t a i n
SPHERICAL TRANSFORMS known formulas ( c f . [EbZ]) (9.43)
69
such as
r(a+l)-lDtp:yB(t)
=
- % [ ( a + a + l ) 2 +A 2 ]r -1 (a+2)Sh2tp;+1'B+1
(t);
p l u s t h e d i f f e r e n t i a l e q u a t i o n and t h e n i n d u c t i o n arguments can be a p p l i e d . We o m i t t h e d e t a i l s h e r e and f o r t h e l a s t a s s e r t i o n we r e f e r t o [Kpl;C40].
PALEg-DZENER C H E O R m , SPHERICAL CRAWF0RlIl5, AND PA%EVAL F6RlllllLM FOR
10.
We g i v e f i r s t a s k e t c h o f t h e arguments i n [Kpl] used
SLNGllLAR 0PERAC0W.
t o prove Paley-Wiener t y p e theorems and t h e i n v e r s i o n f o r m u l a f o r t h e FourWe w i l l see l a t e r t h a t many o f t h e c o n s t r u c t i o n s a r e
ier-Jacobi transform.
s p e c i a l cases o f general t r a n s m u t a t i o n formulas and thus t h e t e c h n i q u e has c a n o n i c a l g e n e r a l i z a t i o n s as w e l l as i n t r i n s i c t r a n s m u t a t i o n a l meaning. Some f e a t u r e s a l s o have a group t h e o r e t i c s i g n i f i c a n c e which we w i l l d i s c u s s briefly later. [Mkl;
The i d e a s here have m o t i v a t e d some o f t h e development i n
T j l ] as w e l l as some o f o u r p r e s e n t a t i o n i n [C64,65].
We w i l l see
a l s o t h a t t h e r e a r e connections w i t h t h e more general t e c h n i q u e based on [Mc4] ( c f . o u r S e c t i o n 5 ) which we develop below f o r s i n g u l a r o p e r a t o r s (as i n [C39,4D]).
Thus l e t H denote even e n t i r e r a p i d l y decreasing f u n c t i o n s g
o f e x p o n e n t i a l t y p e so t h a t f o r any n t h e r e e x i s t s kn w i t h I g ( A ) l 5 kn D e f i n e t h e Fourier-Jacobi t r a n s -
( l + \ A l ) - " e x p ( A I I m x l ) f o r some A = A(g). form f o r f E C i by
where 9 f = [O,m)
(
f ( t ) , cQA ( t ) )as u s u a l .
Note t h a t when d e a l i n g w i t h C:
h e r e on
we mean even Cm f u n c t i o n s on R i f an e x t e n s i o n i s e v e r used. 0
One can
use formulas l i k e (9.43) and i n t e g r a t e by p a r t s t o determine t h e a n a l y t i c n
continuation o f f For
cl
=
A
a,B
i n (a,@)so t h a t f
8 = -4 one has by (9.15)
(A)
.a,B p?'-'(t)
=
i s i n f a c t e n t i r e i n (A,~,B). Cosxt w i t h
= 1 so t h a t
(10.1 ) becomes t h e Cosine t r a n s f o r m which by s t a n d a r d Paley-Wiener arguments i s a b i j e c t i o n o f C i o n t o H.
DEFINZCI0N 10.1
For f
E
C:
and Rea > -4 d e f i n e F
d t (Abel t r a n s f o r m ) where A = Aa,B. Recl > Re8 >
-4one
[ f ] ( s ) = :J f ( t ) A ( s , t ) a,B i s a n a l y t i c i n (a&) and i f
F,,,[f](s)
has by (9.39) (C(t,s)
=
Ch2t
-
Ch2s, d c = d(Chw))
ROBERT CARROLL
70
On t h e other hand combining Lemma 9.11, ( l O . l ) , and t h e d e f i n i t i o n of F a,% above we obtain
Actually (10.3) t u r n s out t o be a very special case of a genREmARK 10.2. e r a l formula in transmutation theory which we develop l a t e r ( c f . [C40,64, 651). I t a l s o has a version in t h e theory of Lie groups and symmetric spaces where exp(-ps)F [ f ] ( s ) can be i n t e r p e r t e d a s a Radon transform of a a,B radial function f ( c f . [Hc2,5]) and we l e t i t s u f f i c e f o r now i n t h i s d i r ection t o w r i t e i n standard Lie theory notation ( c f . [Hcl-91 f o r example) (10.4)
Ff(a)
=
e'(logs) I N f ( a n ) d n ; F*(?I)
=
1,
F ( a ) e-iA(loga)da ;
Then ? = (Ff)* corresponds t o (10.3) a n d our transmutation version of (10.3) l a t e r will have t h e form PF [ f ] = Q f . In [Lbl] one speaks of f a c t o r i n g t h e 4 spherical transform S as S = MH where H i s c a l l e d a Harish transform and M is a Mellin transform.
To analyse F Koornwinder works with Weyl f r a c t i o n a l i n t e g r a l transformaa,B t i o n s ( f o r which we give transmutation versions l a t e r - c f . a l s o [C40; Mkl; T j l ] and see [KplZ] f o r f u r t h e r group t h e o r e t i c meaning). Thus DEFZNIBZ0N 10.3- For a
E
One shows e a s i l y t h a t W l J o
R, g
WY
C:([a,
E
=
?J+Y)
) ) , and Reu
W lJ [g](y) E
>
0 define
C:[a,m),
W o = i d e n t i t y , 113-1
[g] = - g ’ , and WIJ[g](y) i s e n t i r e in l~ w i t h (p,y) WIJ[g](y) continuous. Rev > 0, Thus U p : C o [ a , m ) -+ Co[a,m) i s 1-1 onto. Define next f o r f E ,C: -f
u > 0, s 2 0 , m
(10.6)
!.Uz[f](s) = r(V)-’
f ( t ) [ C h u t - Chus]’-’d(Chat)
W“[f](s) can be extended t o be e n t i r e in and Nu: C: + C; i s 1-1 o’nto w i t h lJ kJ inverse W y Applying t h e s e constructions t o (10.2) one sees t h a t f o r f E lJ C,: F,,,[f](s) has an a n a l y t i c continuation t o an e n t i r e function i n ( a , ~ ) given by
.
71
SPHERICAL TRANSFORMS
For a , @ E C, Fa,B:
C:
-f
C E i s 1-1 o n t o and t h e i n v e r s e i s
Combining (10.3) w i t h t h e above b i j e c t i o n s and t h e Paley-Wiener theorem f o r t h e Cosine t r a n s f o r m we have a Paley-Wiener theorem f o r t h e Jacobi t r a n s form (10.1)
EHE6REN 10-4. For a,B E C t h e map f
+
ia,B
i s 1-1 f r o m C:
o n t o H. b m
Now f o r t h e i n v e r s i o n f o r m u l a we have i n (10.1) ?-$,-$(A)
= (2/i~)'/
0
COS t
d t so t h a t
S e t t i n g Cosht = [ e x p ( i x t ) + e x p ( - i A t ) ] / 2
and changing t h e i n t e g r a t i o n p a t h
i n (10.9) one o b t a i n s irl+m,,
(10.10)
f-, (h)eixtdx in-m 2,-%
f ( t ) = (l/ZIT)+
.
where
rl
i s a r b i t r a r y (note
t h e change o f c o n t o u r s
LI
I
ii s
even, 1- ;exp(-iht)dh = i : t e x p ( i x t ) d h , and 0 in+m t o fifl-- i s j u s t i f i e d by Cauchy ' s theorem).
The i d e a now i s t o g e n e r a l i z e t h i s f o r m u l a i n u s i n g f o r g
where e.g.
50, Q
a n a l y t i c f o r Imh >
> -Re(a+B+l), Q
and
r\
> -Re(a-B+l)
SO
H, t > 0, and
that c
( c f . here Lemma 9.10 and n o t e t h a t c
have zeros where a - B + l + i h = -2n o r a + B + l + i h = -2n).
E
a,B
(-A)-'
is
~ i n, (9.14) ~ will
Now f o r g E H ( g even,
e n t i r e , r a p i d l y d e c r e a s i n g o f e x p o n e n t i a l t y p e ) t h e r e i s an A such t h a t On t h e o t h e r hand by I g ( X ) l f K n ( l + l h l ) - n e x p ( A I I m h I ) f o r any n = 0,1,
....
Theorem 9.12 f o r c > 0 t h e r e e x i s t s K such t h a t when t 5 c and Imx 2 0, \@:'@(t)\ 5 Kexp[-t(Imh+Rep)]
w h i l e t o e s t i m a t e ca,B(-h)-l
v a r i a t i o n o f Lemma 9.9 f o r complex
one can use a
which i s e s t a b l i s h e d from (9.14) u s i n g Thus r e c a l l i n g t h a t
C Y , ~
u s i n g S t i r l i n g ' s f o r m u l a i n t h e same way ( c f . [ K p l ] ) . p+q = 2a+l
I;EmmA 1 0 - 5 - For each a , @ E C and y > 0 t h e r e e x i s t s K such t h a t i f E C and A i s a t a d i s t a n c e > y f r o m t h e p o l e s o f ?a,B(-A)I then l ~ C Y , B ( - ~ ) l - ' <
Ky(l+lhl)
Rea+%
.
72
ROBERT CARROLL
P u t t i n g t o g e t h e r t h i s i n f o r m a t i o n we o b t a i n f o r t L c, ImA 2 0, Imh L -Re
ImA > -Re(a-B+l) +
(a+B+l) + y and
1 g (A
(10.12 )
y
( - 1)1 5
B(t)/zaJ
<
(1+ I A I p a + 5 (for s u i t a b l e choice o f n).
"K:, (1+ 1 A 1 ) - n e A l I m ~1 e-t(ImA+Rep
Z y ( l + l N- Z e
( A - t ) ImAe- tRep
Hence t h e i n t e g r a l i n (10.11) converges abso-
l u t e l y and i t s v a l u e does n o t depend on T- f o r T- as i n d i c a t e d . I n p a r t i c u l a r t a k e Rea > -S and IReBl < Re(a+l); t h e n Re(a-B+l) > 0 and Re(a+B+l) > 0 so one can t a k e II = 0 i n (10.11).
(recall
It f o l l o w s t h a t
= [ r ( a + i ) / z ~ ~ ~ [ c(A ~)@:.'
p y y B
a,B
LEl!UnA 10.6-
F o r Rea >
-4and
+
5,B(
Hence
-A)@"']).
IReBl < Re(a+l),
i f g E H then
E
C i and
(ia,B);,B = g. Phaod:
From (10.11) and (10.12),
i f one l e t s
T- +
my
it follows that t > A
5
implies ( t ) = 0. A l s o Ca,,(t) i s even i n t f r o m (10.13). Now from a,B Theorem 9.12 and Lemna 10.5 one has f o r A , t 0 (note Imh = 0 here) (10.14)
iy(l+lAl)
Ig(h)D!
2Rea+l cn(l+lhl)n+k(l+t)et/Imxl-tRep
Consequently one can d i f f e r e n t i a t e
(10.13) under t h e i n t e g r a l s i g n and we have
(10.15)
< f i 1 + t ) ( l + l A l ) - 2 e -tRep -
by t a k i n g s u i t a b l y l a r g e rn.
(gY0,B)L
5 I(m(l+lx[ )-meAllrnAt
~:yB(t)/c"a,B(-A)~a,B(A)I
observe t h a t f o r F
T- >
0 and s > 0
9'a,B ( t ) E
A
in-m
?'
a,B
dxdt =
(-A)
The i n t e r c h a n g e o f i n t e g r a l s i s permissable s i n c e ( f r o m (9.40)) ( t z s > 0) w h i l e (10.12)
t h e form l g (A)@;''(t )/c" (-A) a,B Hence
in
To show t h a t g =
Ci.
@a' ( t )
~Ci,,,l(S) , ~ = (2d-4
< cexp( Rept ) ( t - s )
5a , B ( t )
I A a y B ( s , t )I
i n d i c a t e s an e s t i m a t e o f
[ 5 Kexp[-t ( I m ~ + R e p ) l (+Il A I )-'exp ( A I m A )
.
N
= c
(-A)). v'( 1 / 2 ~ )li:Tmg( a,B
Now we use Lemma 9.11 in (10.15) t o obtain A )exp( i A s ) d h . Consider now ( 10.9)- (1 0.10)
n t h e form ( c f . a l s o ( 1 0 . 3 ) )
to-invert this
1" F a , a [ i a , C l ( ~ ) C ~ ~ X ~[ di a~, C f ( h ) m
(10.17)
g(A
Phovd:
(2/7)'
=
Then f
Let a,, E C .
CHEOREN 10.7.
and f
=
E
Ciwith g =
a36
i f and only i f g
E
H
=
We know by Theorem 10.4 t h a t f
A
+
f a , B : C:
+
H i s b i j e c t i v e onto a n d
Ci,
= f if f E t > 0 , and t h u s i t i s s u f f i c i e n t t o prove (f* )" a,B a,@ ( r e c a l l C: r e f e r s t o even C: f u n c t i o n s ) . By Lemma 10.6 t h i s holds A > -4 and IReB( < R e ( a t 1 ) . However f i s a n a l y t i c i n (a,a,A) and 0,B a l y t i c continuation ( f o r Rea > - n - 1 ) described a f t e r (10.1) can be sed in the form
a , E~ C
f o r Rea t h e anexpres-
<
Oyly...y A = A ). Also (10.11) allows one t o determine (t) a+n ,B+n a,B f o r t > 0 as an a n a l y t i c function of a , @ . Consequently t h e r e l a t i o n f = (Fa,@),',, follows by a n a l y t i c continuation by extension from t h e region of Lemma 10.6 (note i s a n a l y t i c in ( a , ~ )( A + - i Y - 2 i , . . . ) by (9.13).
(n
=
Suppose t h a t
REIRARK 10.8,
-$and Re161
Rea+l).
<
?
a,B
has n o poles f o r Imh 5 0 (e.g. Rea >
(-A)-'
Then from (10.13) and (10.1) one has ( f
E
, C:
g
E
H)
This follows from estimates Ig(A)I 5 Kn(l+lXI)-neexp(AIImhI), Ic"a,@( - h ) I - ' A < K(l+lhl)Rea+4, e t c . as above. S e t t i n g g = h with h = we will r e f e r t o ~ say a (10.19) a s a Parseval formula even when a , E~ C . For real a , with
4
IBI
a+l (10.19) i s a standard Parseval formula w i t h Ic" ( h ) I 2 = _ Q The formula becomes e.g. 1- f F A d t = lm?;,; 4-2 o 1 2 4 0 \FQ(h)\ dA f o r f l y f 2 E :C a n d t h e transform f + ? can then be extended as 2 2 2 L (dw ) where dw ( A ) = d h / I ? Q ( l ) I (cf. an isometric isomorphism L (A d t ) 4 4 4 a l s o [Ffl] - t h e formulas have t o be adjusted when we use Q i n (10.1) and dwq = dX/2alcQ(i)I 2 ).
>
-4 and
<
;Q(~)F[-A) f o r A real e t c .
-f
74
ROBERT CARROLL
We r e c o r d n e x t some hypotheses and c o n c l u s i o n s f r o m [Cg3] d e a l i n g w i t h a A 2 q u i t e general s i t u a t i o n f o r equations ( c f . ( 9 . 1 ) ) Qu = (A u')'/A + p u 4 Q Q 2 4u = - A u modeled on t h e r a d i a l Laplace-Beltrami o p e r a t o r ( w i t h s i n g u l a r p o t e n t i a l ) i n a r a n k one noncompact symmetric space.
The p r o o f s a r e n o t
g i v e n here b u t t h e p r o p e r t i e s i n d i c a t e d f o r e i g e n f u n c t i o n s and r e s u l t s f o r transformations w i l l provide useful guidelines.
G e n e r a l l y here A
4
t
as
m
.1 2p > 0 ( p = p ). More p r e c i s e l y ( c f . [Cg3] f o r d e t a i l s ) Q Q Q A A DEFINI&IBN 10-9. Assume A > 0 and :(x) qo (9, 5 0 g e n e r a l l y ) . L e t b be Q-
x
-f
m
and A ' / A
an odd a n a l y t i c f u n c t i o n , f an even e n a l y t i c f u n c t i o n , g1 and g2 bounded
f u n c t i o n s on any i n t e r v a l [xO,m), bounded f u n c t i o n on [xo,m)
along w i t h t h e i r d e r i v a t i v e s , and h a
( x o > 0) .
One s t i p u l a t e s e i t h e r o f t h e f o l l o w -
i n g s i t u a t i o n s , denoted by H1 and H2 r e s p e c t i v e l y . i n v o l v e s (rn
5 -4,
B
(10.20)
Al/A
= 2mt1 -+ 2b(x);
Near x = (10.21)
Q Q
m,
= (B~/x') + f(x)
!(x)
x
H1 r e q u i r e s (a > 0, 6 > 0, B~ 1 A;7/AQ = 2al/x
+ e-"gl(x);
A ; ~ / A=~ 2p
2 0,
y >
$ ( x ) = a:/x2
+ e-"g2(x)
0) + emYxh(x)
4 as w i t h H1 p l u s
w h i l e H2 r e q u i r e s t h e same h y p o t h e s i s f o r (10.22)
Near x = 0, H1 :H2
L 0)
(p >
0, 6 > 0 )
&
2
REMARK 10.10, I n [Cg3] t a k e s2 = -A w i t h s % - i A . Then t h e e q u a t i o n = 2 2 2 2 - A u becomes n e a r x = 0 (*) u " + ( ( 2 m + l ) / x ) u ' + 2bu' + p u - ( a / x )u - f u 2 = - A u so t h a t x = 0 i s a r e g u l a r s i n g u l a r p o i n t . The Fuchs-Frobenius t e c h n i q u e leads t o c o n s i d e r a t i o n o f an i n d i c i a 1 e q u a t i o n
+
'T
2mT
(m +a 2) 4.
-
= 0 with
2
r o o t s T + = -m ? (m2 + B')'. Then t h e r e L e t T = T+ and s e t a = a r e t w o - l i n e a r l y independent s o l u t i o n s q Q and II,Q o f (*) such t h a t (m,B 0) (10.23)
q Q (x,A)
= xTUl(x,A);
ILQ (x,A)
=
(xT'/2a)Vl(x,A)
w i t h DxqQ = T X ~ - ' U ~ ( X , A ) and D x i Q = (T-/2a)xT--1V2(x,A) a n a l y t i c i n ( x , ~ ) and t e n d t o 1 as x -+ 0. and t h u s i f m < 0,
T+ =
-2m and
T-
= 0.
+
where Ui and Vi a r e
Note here if a = 0, I n o r d e r t o have
qQ
T+
=
- m + Iml
be t h e s o l u -
+
0. It t i o n equal t o 1 a t x = 0 i n t h i s s i t u a t i o n one assumes m 2 0 o r a i s a l s o necessary t o change t h e f o r m o f Dxq Q above i n case B = 0 and T+ = 0.
The case
a
= 0 and rn = 0 i s t r e a t e d i n [Cg3]
t i o n o f i t here.
Note t h a t f o r
T
b u t we o m i t any d e s c r i p -
# 0, qQ(x,A) d i f f e r s f r o m a s p h e r i c a l
75
SPHERICAL TRANSFORMS f u n c t i o n 9 hQ ( x ) s i n c e
xT near x = 0; i f B = 0 we can s i m p l y deal w i t h
'L
ip
t h e s p h e r i c a l f u n c t i o n ~ Qp ~ ( as x ) before. S i m i l a r l y one has two l i n e a r l y i n A dependent ( J o s t ) s o l u t i o n s @Q (x,*h) o f Qu = - h 2 u such t h a t ( n o t e @Q (x,X) Q
@J
Q
-1) = Ag5(x)exp(-ixx)W1 (x,X)
(x w i t h Wi(x A ) @
+
1 as x
ip
Q (x,h)
P
2u
(x)W(ip 4 (x,h),@ Q (x,A))
=
= A04(x)exp(ihx)W2(x.h)
[ [ ( B2~ / x2 ) + e - Y x h ( x ) ] ] u = -12 u;
-
For H2: [ ] =
cQ(A)@Q (x,A)
=
@Q (x,X)
The p o i n t x = m i s an i r r e q u l a r s i n g u l a r p o i n t A 2 t h e e q u a t i o n Qu = -1 u t a k e s t h e form
+ e-"gl(x);
[ ] = (2nl/x)
A
=.
u" + [ I u ' +
(10.24)
One has
+
and near x =
i n genera
and
-c
+ c
4 (x,-X)
(-A)@
Q (-x)2ix,
+
2p
For H1:
e-"g2(x)
with A
M(@y,@Q)
4 the
i n analogy t o
= 2 i x and
s i t u a t i o n f o r spher-
(x)ip 4 (x,A)
i cQ a l f u n c t i o n s . One a l s o w rQi t e s RQ (x,X) = A and dw ( A ) = dh/ r) Q Z I T / C ~ ( X ) I 2 w i t h q f ( h ) = Jm f ( x ) nQ (x,A)dx. I n general, besides a continuous 02 2 spectrum on 10,~)( i . e . X LO), t h e o p e r a t o r -$ ( i n L (A d x ) ) w i l l have a 2 Q f i n i t e number o f eigenvalues p = -yj = - s 2 ( s > 0 ) i n t h e i n t e r v a l [(op2,o)
( ~ y =
-ujip:
= y?ipQ J J =
-
359:;
xj
=
i:j;
dq
=
po(x,iyj))
L Z W 10.11- F o r x 2 0 t h e r e e x i s t c o n s t a n t s K and N such t h a t f o r IwQ(x,h)l 5 Kexp( I q l - p ) x where h = s + i v .
1x1 2 N
I f H2 holds w i t h B~ = 0 t h e n f o r
xo > 0, x 2 x and Imh > - 6,, t h e f u n c t i o n A ( x ) @9 (x,x) i s holomorphic i n Q X and as 1x1 + O' =, @Q ( x , x ) = 8 ( x ) e x p ( i A x ) [ l + O ( l / h x ) ] and Dx@9 (x,X) = -i(%/%)aQ(x,x)
Q
+ ih~Si(x)exp(ihx)[l+O(l/Ax)].
I f H2 holds w i t h B~
+ 0 or
Imx > 0 and continuous 2 0 which, as I h l + m w i t h I m x 2 nl > 0 and x 2 xo > 0, has t h e form v ( x , x ) = cl(~)(-ih)~Siexp(ixx)[l+O(l/hx)] where c1 (1) = l / l o g ( - i h ) i f 2 2 al = 0 (a, -~ = + B: - m - k ) ; cl(h) = ( - i x l a i f a, 0. A - + ( X ) V ( X , X ) = Q c1 ( A ) ( - i X ) % (x,h). F u r t h e r f o r Imx 2 0 t h e r e e x i s t c o n s t a n t s and such t h a t f o r 1x1 2: one has ( C ~ ( - A ) ) - ~5 z l X l y under hypotheses H1 o r H2 (y can be made p r e c i s e b u t t h i s i s n o t needed). F i n a l l y f o r x > 0, @Q (x,x)/ H1 h o l d s one has a f u n c t i o n v, holomorphic i n h f o r f o r Imh
;,
+
c (-1) i s holomorphic f o r Imh > 0, h # A . (= i y . ) ; t h e zeros o f c,(-A) in Q J J t h e upper h a l f p l a n e ( i f any) correspond t o t h e A j' T h i s lemma p l u s Remark 10.10 i n d i c a t e some o f t h e b a s i c i n f o r m a t i o n going i n t o t h e f o l l o w i n g theorem.
We t a k e DT = I f ; x - T f ( x ) E D,;
I,
= even Cm
L e t H denote even r a p i d l y decreasing e n t i r e f u n c t i o n s g o f 2 m e x p o n e n t i a l t y p e as b e f o r e ( i . e . t h e r e e x i s t s R such t h a t ( l + l h ( ) exp functions).
(-RIImX()Ig(x)( <
m
fo r any m).
Then t h e main r e s u l t s f r o m [Cg3] a r e
0
76
ROBERT CARROLL The map f
ZHE0REM 10.12.
+
g f i s a b i j e c t i o n DT
-z
H onto.
The i n v e r s i o n 9
i s g i v e n by
= 0J-l
2 where It II i s t h e L (A dx) norm ( n o t e here t h a t 2 Q 2 + - l *
xj
= iyj
and dw ( A ) = dh/
Q
F i n a l l y i n t h e c o n t e x t o f Paley-Wiener theorems l e t us r e f e r t o t h e hypotheses o f [ T j l ] o r [ F f l ] where t h e f o l l o w i n g theorem i s proved ( c f . a l s o [C40]).
F i r s t one i d e n t i f i e s a f u n c t i o n f w i t h t h e d i s t r i b u t i o n TAf (A =
A ) d e f i n e d by ( TAf,qO) = Jm f ( x ) q ( x ) A ( x ) d x f o r
Q
Q
0
v
E
D,.
L e t Jc be t h e space o f even e n t i r e s l o w l y i n c r e a s i n g f u n c t i o n s IG(x)l 5 K ( l + l h l ) Ne x p ( A I I m h [ ) f o r some N and A ) .
CHE0RE8 10.13.
o f exponential type (i.e. Then t h e map f
-+
Q f i s a 1-1 map E ' - + K onto.
Note here t h a t i d e n t i f y i n g a f u n c t i o n f w i t h TAf g i v e s QTAf = Qf which (up t o a c o n s t a n t ) i s t h e f o f Theorems 10.4,
10.7,
and 10.12.
We go now t o a
" c a n o n i c a l " d e r i v a t i o n o f Parseval formulas f o r s i n g u l a r o p e r a t o r s f o l l o w i n g t h e technique o f [Mc4] used i n S e c t i o n 5 t o o b t a i n (5.7). terms o f o p e r a t o r s o f t h e form (9.1). 2
p
Q
A
4
4 lim
= Qou +
Thus Qou = (A u ' ) ' / A Q ; ?u
Q*
and (Qo) u = [AQ(u/A ) ' ] I . We Q Q Q 2 Q does n o t have " s t r o n g " s i n g u l a r i t i e s B / X n e a r x = 0 here so t h a t
u; Qu = P u
assume
-
This pro-
and we w i l l phrase t h e m a t t e r f o r m a l l y i n
cedure was developed i n [C39,40] G(x)u where
p
=
A'/A
s p h e r i c a l f u n c t i o n s q: can be used f o r s i m p l i c i t y i n t h e e x p o s i t i o n .
Note
t h a t f u n c t i o n s o f t h e t y p e q Q f r o m 5§4,5 w i l l n o t a r i s e i n t h e s i n g u l a r AYh problem s i n c e ~ ' ( 0 1= 0 i s i m p l i c i t l y r e q u i r e d . Via (9.26) we have associV A 2 ated the operators 2, o ; and Q % Q; t h e b a s i c o p e r a t o r s t h u s have t h e P
Go
b u i l t i n (recall
p
4
= 0 f o r Qo = Q;).
Q
We w i l l use t y p i c a l a n a l y t i c i t y pro-
p e r t i e s and Paley-Wiener t y p e i n f o r m a t i o n about q: and @A!
^4o
as developed i n [ F f l ;
10.5 and 10.6 65; T j l ] ) .
-
f o r operators
K P l ] ( t h u s see Theorems 10.4 and 10.7 w i t h Lemmas
c f . a l s o Lemma 10.11, Theorem 10.12,
and [Cgl-4;
Ge1,2;
We w i l l g i v e a s k e t c h o f t h e procedure f o l l o w i n g [C39,40].
f i r s t one wants t o determine a g e n e r a l i z e d s p e c t r a l f u n c t i o n Ro f o r with
Go
as i n (9.1)
t r a n s m u t i n g D2
-+
C64, Thus
*ao
and
t h i s w i l l be known ( i f n o t i t can be "discovered" by
-
d e t a i l s o f t h i s a r e i n d i c a t e d l a t e r i n 52.2). AO
In
p a r t i c u l a r , r e f e r r i n g t o Q as P now g e n e r i c a l l y , w i t h s p h e r i c a l f u n c t i o n s P P P P P P P solutions Ex = ApqA, and q x ( x ) = C ~ ( X ) @ ~ ( X ) + ~ ~ ( - h ) @ - ~ ( x ) ,
pox, J o s t
SPHERICAL TRANSFORMS
77
one has by r e s u l t s of [ F f l ; Cg3; Ge1,2; T j l ; Kpl] as indicated i n Theorem 10.7, Remark 10.8, a n d Theorem 10.12 f o r example (10.26)
RO(A)
=
1/2nlcp(X)IC
( c f . a l s o Theorem 10.15 - typical R
P
a r e given in (9.9) and ( 9 . 2 1 ) ) .
The
^ao
transforms P and P associated with P = a r e designated as before (Pf(A) = P P fom f(x)CLA(x)dx; Pf(X) = f m f ( x k , ( x ) d x ) a n d P = P-' has t h e f o r m P F ( x ) = 0 P F(A)pA(x)dvp(h)where d v p ( A ) = cp(h)dA where C p ( A ) = R o ( h ) . We r e f e r t o ?) g e n e r i c a l l y as (with s u i t a b l e p o t e n t i a l :) and w i l l use a transmutation n A P = p Qh ) which we assume t o have been "created" B: P Q (characterized by &PA e.g. via a p a r t i a l d i f f e r e n t i a l equation technique using Riemann functions e t c . as in Sections 4-5 (such constructions a r e sketched in 511 f o r the s i n g u l a r case - one can a l s o use other techniques a s in Chapter 2 ) . Let us
I,"
-f
f i r s t give a formal g e n e r a l i z a t i o n of Lemma 5.4 as follows.
LEmmA 10-14- Let Bf(y) = ( B ( y , x ) , f ( x ) ) and Bg(x) = ( y ( x , y ) , g ( y ) ) ( 8 = B - ' ) . A n P = pQ Assume B: P + Q i s characterized by &PA i. Then (10.27)
Pmud:
*
*
PB f = q f ; @ g
=
Pg
P Formally PB*f = ( p p x ( x ) , (B ( y , x ) , f ( y ) ) )
=
P CCp,(x),B(y,x)),f(y)) =
.
( v : ( y ) , f ( y ) ) = qf. Similarly qg*g = ( 9 QA ~ y ) I ( Y ( x , y ) , g ( x )=) )( ( ~ , (QY ) , Y ( X , Y ) ) , P g ( x ) ) = h J , ( x ) , g ( x ) ) = Pg. We want t o a r r i v e a t a Parseval formula of the form ( c f . ( 5 . 7 ) ) (10.28)
(
R,Qfqg!g)A= (Ai5f,At4g); (R,Qfqg) = (L5f,L5g)
Q
Q
f o r s u i t a b l e f , g (generally of compact support - f = A f , e t c . ) . One exQ pects R = R Q t o be a d i s t r i b u t i o n i n t h e dual of some space of e n t i r e funct i o n s (e.g. R E Z ' i n Theorem 5.5) and t h e a n a l y t i c i t y p r o p e r t i e s of QfQg * * can be determined via Lemna 10.14 in terms of PB f and PB g. One will USu a l l y have some t r i a n g u l a r i t y of t h e form ~ ( y , x )= 0 f o r x > y in t h e d i s * t r i b u t i o n kernel ~ ( y , x )so t h a t B f ( x ) = ( B ( y , x ) , f ( y ) ) = 0 f o r x > u i f
/x"
f ( y ) = 0 f o r y > Q (e.g. ( B ( y , x ) f ( y ) ) = B(y,x)f(y)dy = B(y,x)f(y)dy). Similarly y(x,y) = 0 f o r y > x ( e . q . a s a Volterra i n v e r s e ) and Paley-Wie-
ner type information can be passed back and f o r t h between P and Q transforms. Since we know Ro = v P here by assumption such information i s a v a i l a b l e f o r PB*f and this i s passed t o Qf f o r use in a formula (10.28). Next, following 55 ( c f . here (5.13)) we t r y t o f i n d a generalized t r a n s l a t i o n ScSo(x) A
78
ROBERT CARROLL
(SQ(x) = 6 ( x ) / A ( x ) ) .
We o m i t i n t h i s s k e t c h any approximations t o 6
Q
9
of
t h e f o r m 6n which may be needed t o j u s t i f y t h e procedure as i n 55 ( t h i s w i l l
4
be done l a t e r ) .
Given (10.29) one m u l t i p l i e s by s u i t a b l e f,g and i n t e g r a t e s
t o o b t a i n t h e Parseval formula ( + ) (A?f,A"g) R = Sp(X)RV i n (10.28).
= (
Q
The f o r m u l a (10.29)
$p(h)R",Qf2q)x
so t h a t
serves t o determine Rw as f o l -
Set y = 0 i n (10.29) t o o b t a i n f o r m a l l y
lows. (10.30)
GQ(x) =
(
R",lpi(x) 0 )v
Operate on t h i s f o r m a l l y w i t h B t o a r r i v e a t (10.31)
BGQ(y) =
(
Rv,BPx(y)), Q
Consequently R = CpRV w i t h (.)
= ( R",P~(Y)), P
=
I n o r d e r t o make such a formula
R" = PEGQ.
more useable one i n t r o d u c e s a q a i n t h e o p e r a t o r s v
'i =
(10.32)
v
v
P
One has a t r a n s m u t a t i o n B:
+
( t h i s i s checked l a t e r ) . ~1
Q
/ x and u p =
(K(y,x),f(x) A+;,
= G[A:(y)Bf(y)]
= i[#(x)bf(xj]
I n o u r p a r t i c u l a r s i t u a t i o n w i t h A. v
t o have k e r n e l forms g(y,x) form
)
T h i s term ;(x)
aQ
Note t h a t
%//$
=
as de-
= Ap one expects B and
5 = k-'
.
= ~ ( x - Y )+ K(y,x)
here.
= A$(y);Bf
= b F [ A F ( xV) f ( x ) ]
and ;(x,y)
= 6(x-y) + i ( x , y )
has a g e n e r i c s i n g u l a r i t y o f t h e
I n t h i s e v e n t one can w r i t e Bf(y) = f ( y ) +
and &g(x) = g ( x ) + ( L ( x , y ) , g ( y )
)(I x ,y)aQ( y 1.
(10.33)
i n (9.26).
a'(y)Bap'(x) 9
= A$(y)BAi'(x)[A$x)^Pf(x)]
sired.
6 = 6" and 6 as
Q o f t h e form ( n o t e AQ = Ap)
Observe t h a t ( f o r s u i t a b l e f ) G$[L;(x)f(x)I A;(y)B;f
BR"
)
where i n p a r t i c u l a r L(x,y) =
Consequent] y
6q(x) = 6Q(x)
+
( L ( X , Y ) , ~ Q ( Y ) )= ~ Q ( x + )
;(XI;
i s w e l l d e f i n e d i n t h e case A ( y ) = y2m'1 f o r example f o r
suitable potentials
4 (cf.
i n g t o (10.33) and (.)
[C39,40;
Ge1,2]
we have f o r m a l l y
Q
and remarks l a t e r ) .
Now r e t u r n -
SPHERICAL TRANSFORMS
(10.34)
R" = PB6
Q
= P6
79
+
+
Q
( s i n c e Ap = AQ). Consequently R = :pRw = RoR" = Ro + R R" = R + R where o q 0 9 (see Remark 10.15 beR r e p r e s e n t s t h e c o n t r i b u t i o n due t o t h e p o t e n t i a l q e observe a l s o t h a t i f we t a k e t h e f o r m u l a B6 =PR" ( i n (10.31)), low). W
Q
m u l t i p l y by s u i t a b l e f ( y ) , (10.35)
and use (10.33) t h e r e r e s u l t s
(PR",f) = ( ( R " , p XP( y ) ) U , f ( y ) ) =
(R,Pf)A =
4
(
~ Q ( Y +) L ( Y ) , f ( Y ) )
=
1i m
yjo
( R V , ( f ( y ) , pPx ( y ) ) ) " = (R",Pf)"
f(y)/AQ(Y) +
=
;(Y)f(Y)dY 0
T h i s e x h i b i t s Ro and R (10.36)
(
i n t h e form ( f o r s u i t a b l e f , g o f compact s u p p o r t )
9
1i m Ro,Pf)A = Y+O f ( y ) / A Q ( y ) ;
(
Rq,Pf)x
=
jOm
We n o t e a l s o t h a t i f P f = F(X) t h e n f ( y ) = BF(y) =
( s i n c e Ap = A
Gp
again.
Q
-
some d e t a i l s a r e i n 511-12);
i(y)f(y)dy
(
P F(x),PA(y))"
and
t h i s a l s o i d e n t i f i e s Ro and
Thus i n sumnary we have f o r m a l l y e s t a b l i s h e d t h e f o l l o w i n g theo-
rem (see 5511-12 f o r f u r t h e r d e t a i l s ) CHE0REPl 10.15,
The Parseval f o r m u l a (10.28)
( f o r s u i t a b l e f,g o f compact
w i l l be a consequence o f (10.29), which i n t u r n de-
support) w i t h R =
A
where B i s a t r a n s m u t a t i o n B = B-':
t e r m i n e s R V = PB6
Q: by Eip; = p p ( h e r e P =
that
= 4(y)BA;+(x):
t h e form ;(x,y)
Q
A
+
P characterized
^oo and ^o a r e g i v e n by ( 9 . 1 ) so t h a t Ap = AQ). Given P' 6 (Pas*,i i n (9.26)) and 8 = is-' have k e r n e l s o f -f
= 6(x-y)
A
+ i ( x , y ) f o r example w i t h say L ( x )
E
l Lloc
A
(1 de-
as y + 0) i t f o l l o w s t h a t R = Ro + R q = ? J ~ + R w i t h f o r m a l l y R = $ p ( X ) I m L4( x ) QPA ( x ) d x ( g e n e r a l l y R i s a d i s t r i b u q 9 0 q t i o n ) . More p r e c i s e l y t h e a c t i o n o f R i s determined by(R ,Pf), = Im pix) 9 q 0 f ( x ) d x f o r s u i t a b l e f o f compact s u p p o r t and Ro and GP a r e a l s o i d e n t i f i e d
f i n e d as l i m c(x,y)/L;(x)&(y)
Q
through
(
Ro,Pf
= l i m f ( y ) / A Q ( y ) as y
-f
0.
P REEU?K 10-16- We n o t e e s p e c i a l l y t h a t t h e e x p r e s s i o n Im2 ( x ) P X ( x ) d x i n R
q 0 i s formal i n t h a t i t r e p r e s e n t s a d i s t r i b u t i o n ; one s h o u l d n o t t h i n k o f i m A
p o s i n g c o n d i t i o n s on L ( x ) as x "rigorously".
-f
m
i n o r d e r t o d e f i n e such an expression
We have a l r e a d y determined R,,
r i g o r o u s l y , as a d i s t r i b u t i o n ,
80
ROBERT CARROLL
v i a t h e f o r m u l a ( R , P f ) A = Im 2 ( x ) f ( x ) d x f o r s u i t a b l e f o f compact support. 9 0 We n o t e a l s o (as i n Theorem 5.6) t h a t f r o m a Parseval r e l a t i o n (10.28) one can t a k e f o r m a l l y e.g.
G(x) = 6 ( x - y ) w i t h Q i ( A ) = n QA ( y ) and produce an i n -
v e r s i o n formula (10.38)
i(y) =
(
R',Qt(x)q!(y)
)A
Theorem 10.15 shows t h e i n g r e d i e n t s which go i n t o a Parseval f o r m u l a (10.28) when i t i s d e r i v e d by what we s h a l l c a l l t h e t r a n s m u t a t i o n method.
The "ca-
n o n i c a l " f e a t u r e s a r e obvious and we see t h a t a s i d e from e s s e n t i a l l y formal c a l c u l a t i o n s t h e method hinges upon (10.29) and t h e e x i s t e n c e o f a s u i t a b l e A
L ( x ) i n (10.33)
(the condition A
Q
= Ap has a l s o been used a t s e v e r a l p l a c e s ) .
A l s o Lemma 10.14 i s e s s e n t i a l i n p l a c i n g QQ fg R d e f i n e d o v e r Pf as i n (10.35)-(10.36)
i n t h e c o r r e c t space on which
can a c t .
He w i l l proceed i n 511 t o
p u t these i n g r e d i e n t s t o g e t h e r i n a more r i g o r o u s f a s h i o n .
11- EXPLZCIC C0WERUCCIOW OF GENERALIZED CRAWLACI0bL5 AND ERAWMllEAEZObL5 f O R SINGULAR 0PERAE0W. L e t us make some comments f i r s t about g e n e r a l i z e d translation.
T h i s came up i n 55 ( c f . (5.8)-(5.13))
t h e Cauchy problem (4.4) f o r Q o r
o*
where we worked f r o m
t o produce ~ ( x , y ) = S:f(x)
satisfying
Q(Dx)q = Q(Dy)q, p(x,O) = f ( x ) , and D y ( x , O ) = 0. An e x p l i c i t c o n s t r u c t i o n was i n d i c a t e d v i a Riemann f u n c t i o n s e t c . as i n §4. I n terms o f s p e c t r a l p a i r i n g s t h e formulas (5.10)-(5.11)
are relevant.
For s i n g u l a r o p e r a t o r s
t h e m a t t e r i s s i m i l a r b u t t h e a n a l y s i s and e s t i m a t e s become somewhat more d e l i c a t e ( c f . [Bx1,2; Cpl-3;
Fi1,2;
Lg1,2;
L12,3; Cgl-4;
Mml; Ge1,2; Sol; Dgl; C27,29,30,37,40; Ho2-4; Del-4;
Lpl-31).
Pcl;
F i r s t l e t us remark t h a t
f o r s i n g u l a r o p e r a t o r s we r e s t r i c t o u r s e l v e s t o C = 0 i n (4.4) b u t f o r any A w i t h say f such t h a t ( A f ) ' ( O ) l a t i o n S:f(x)
(S
%
S(A)).
= C f ( 0 ) = 0 one o b t a i n s a g e n e r a l i z e d t r a n s -
F o r t h e moment however we w i l l o n l y be concerned
w i t h A = 1 and w i l l w r i t e q ( x , y ) = S:f(x)
P or
? we w i l l
f o r t h i s case (when d e a l i n g w i t h
w r i t e T:f(x)).
RZmARK 11.1. I n o r d e r t o produce a g e n e r a l i z e d t r a n s l a t i o n S: o f t h i s t y p e for Q =
Qi o f Example 9.2
f o r example l e t us r e c a l l f i r s t some b a s i c f a c t s
t o a d j o i n t o t h e l i s t i n Example 9.2. (9.4) w i t h C!!
= AQqA. Q
Thus we have s p h e r i c a l f u n c t i o n s
Then w i t h Ro = 4wo = 1 / 2 n / c Q I 2 =
CmA 2 2m+l
EXPLICIT CONSTRUCTIONS
where dw ( A ) =
Q
Q (X)dh
81
( w i t h Q = Q-').
( = Ro(A)dX) a n d m = Q-'
Evidently
t h e i n v e r s i o n formulas a r e b a s i c a l l y a v e r s i o n o f t h e Hankel t r a n s f o r m ( c f . [C29,30;
L191).
(11.2)
V(x,y)
0: c o n s i d e r f o r m a l l y
I n o r d e r t o produce S z f ( x ) f o r Q = = S;f(x)
( ~ X0( x ) F ( X ) , PQX ( y ) ) w
=
where f ( X ) = Q f ( X ) and I QP ~i s g i v e n by (9.4) when Q = N
Qi. C l e a r l y t h i s con-
s t r u c t i o n i s p e r f e c t l y general ( i . e . Q can be any o p e r a t o r o f t h e t y p e we have been c o n s i d e r i n g w i t h i n v e r s i o n s as i n (11.1)) and f o r m a l l y QxV = Q V, Y V(x,O) = f ( x ) , and V (x,O) = 0. V(x,y) can a l s o be w r i t t e n as Y (11.3)
S;f(x)
Y ( x , Y , ~ ) = ( PO~ ( XQ ) P ~ (Q Y ) , ~ ~ ~ ( ~ ) ) ~
= ( y(x,y,n),f(n));
We c o n t i n u e t o t a k e m > - % a n d t h e k e r n e l y(x,y,n) 0 2m+l Q = ,Q, A,,, = x
By known formulas ( c f . [Fbl;
and rl > x+y w h i l e f o r I x - y l
2 2 2 where z = ( x +y -n )/2xy. a l s o [Cpl;
i n (11.3) becomes f o r
Bbel]) one has y(x,y,n) < t-
= 0 f o r 0 < r7 < I x - y l
< x+y
2 2 Hence s e t t i n g n = ( x +y -2xyz)'
we o b t a i n ( c f .
L121)
i?HEB)%?Zm 11-2- The g e n e r a l i z e d t r a n s l a t i o n S:
associated w i t h
Qi Qm has t h e =
form g i v e n i n (11.6) below
We r e c a l l a l s o t h e model s i t u a t i o n f o r 0 = CosiyCoshzdh ( f o l l o w i n g (11.3)).
+ 6(x-y+n) + S(x-y-rl)] (1/2)[f(x+y)
+ f(x-y)]
D2 w i t h y(x,y,n)
Thus y(x,y,n)
=
= (2/n)Jm CosXx 0
(1/4)[6(x+y+n)
+ 6(x+y-r7)
which upon a c t i o n on even f u n c t i o n s f g i v e s S;f(x)
=
( t h e w e l l known d'Alembert s o l u t i o n of t h e wave equa-
tion).
REmARK 11-3- The general s i t u a t i o n here a measure dw (A) =
Q
I:Q (A)dh -
-
f o r a w s p e c t r a l p a i r i n g g i v e n by
i n v o l v e s f o r m u l a s o f t h e t y p e ( c f . (11.3))
82
ROBERT CARROLL
(11.8)
= A i l (~)Y(x,Y,o) =
y(x,Y,rl) = Q 9 gQ ( x ) =
Now ;:(A)
m a l l y sinceZ$:(A)
1 ,ro Q (x)fiT(x)dx
‘
= rop;(x) O =
= 6 (A-5)
( A ) must h o l d f o r -
= 6(A-5)/$
0
w
1m -r o0 c ( A ) .Qp A ( x ) ~(A)dA.
I n f a c t more g e n e r a l l y
t h e e q u a t i o n Q q F = F f o r 9 determined 0 by R QQ as i n Theorem 12.12 o r (10.38) (and s u i t a b l e F ) g i v e s F(A) = (Cf(y),( R Q F(~),ro:(y))) = ( F ( V ) R 0 ,,(~~(Y), SO t h a t R?CA(y),roP(y)) Q Q roP(y))) Q
= ~(A-P)
i n terms o f a c t i o n o f
F. Hence
f o r m a l l y ( c f . a l s o Theorem 12.5 f o r a general p r e s e n t a t i o n )
” and t h i s equals r oQL ; ( x bQp L ; ( y ) . One d e f i n e s now a g e n e r a l i z e d c o n v o l u t i o n v i a
1m
(11.10)
(f
*
g)(X) =
U
U
and thus, f o r s u i t a b l e f,g, l i k e (11.9), SY ro Q ( x ) = ro Q ( x Im~ ( x , y , r l ) A ( O ) V‘Q (rl)dn a5 r e
4
0
‘
g(y)s~f(x)Aq(x)dY =
-
U
?.:
(f * g ) = We remark t h a t p r o d u c t formulas ) Q~( y ) , when w r i t t e n o u t as P Q ( x b Q ( y ) = ‘ 5 5 o f i n t e r e s t i n s t u d y i n g s p e c i a l f u n c t i o n s and
m o t i v a t e d some o f t h e work on g e n e r a l i z e d t r a n s l a t i o n s ( c f . [Ak1,5; D j l ; Ff5; Gdl; Kp2-8,11,12;
Sy1,2;
Cal;
Cgl-41).
Now we s h a l l c o n s i d e r t h e o p e r a t o r A
(11.11)
Qu = u ” + ( ( 2 m + l ) / x ) u ’
-
q q ( x ) u = Qmu
and g i v e a b r i e f d e s c r i p t i o n o f c o n s t r u c t i o n s v i a Riemann f u n c t i o n s e t c . which produce g e n e r a l i z e d t r a n s l a t i o n s and t r a n s m u t a t i o n s as i n 554-5.
The
techniques f o l l o w [ B x ~ ; S o l ] and were g i v e n w i t h t h e e s s e n t i a l d e t a i l s i n [C40].
One should a l s o r e f e r here t o [Ge1,2;
Fi1,2;
Cpl-3; Sz1,2;
f o r r e l a t e d work, some o f which i s reproduced i n [C40].
Vd1,2]
I n view of Remark
A
9.6 t h e o p e r a t o r 0 o f (11.11) w i l l be a p p r o p r i a t e f o r o u r g e n e r i c s i n g u l a r -
i t y (2m+l)/x i n t h e u ’ t e r m a r i s i n g from (A u ’ ) ’ / A
Q
Q’
The c o n s t r u c t i o n s here
w i l l p e r m i t c e r t a i n s i n g u l a r i t i e s i n q as i n d i c a t e d below b u t we exclude 2 2 s i n g u l a r i t i e s o f t h e t y p e B / x f o r now. L e t us r e c a l l some f a c t s about Riemann f u n c t i o n s t o expand upon t h e c o n s t r u c t i o n s of 94 where o p e r a t o r s
D2
-
q were t r e a t e d ( c f . Theorem 4.5 f o r example).
f o l l o w i n g [Cp2-4]
are collected i n
The general f a c t s here,
83
EXPLICIT CONSTRUCTIONS
L e t t h e e q u a t i o n be g i v e n i n t h e form
REmARfi 11.4.
LU = u
(11.12)
- u + 2gux + 2 f u YY Y
xx
L*V = v
- v
xx
YY
-
2gvx
cu =
F
The a d j o i n t o p e r a t o r i s
w i t h c h a r a c t e r i s t i c s x+y = c o n s t a n t . (11.13)
f
-
2fv
+ ( c - 2gx - 2fy)V
Y
- uv + Zguv w i t h K = -vu + uv + Zfuv one has t h e X x* Y Y L e t C be a n o n c h a r a c t e r i s t i c curve, standard formula vLu - uL v = Hx + K
and s e t t i n g H = vu A
( i , ; )a
P =
Y'
p o i n t n o t on C, and c o n s i d e r t h e r e g i o n
c h a r a c t e r i s t i c s from
*P A
$0
bounded by C and t h e
Thus l e t t h e c h a r a c t e r i s t i c y-x =
c u t t i n a C. 4
c u t C i n Q and y+x = y+x c u t C i n R so t h a t t h e boundary A
*
A
r
;-;
o f R consists o f
I f L v = 0 one has t h e n
t h e segment PQ, t h e a r c QR, and t h e segment RP.
vFdxdy = lr (-Kdx + Hdy) by t h e divergence theorem and hence standard
f,
A
h
c a l c u l a t i o n s ( u s i n 9 dy = dx on PO and dx = -dy on R P ) y i e l d
u(;,$)
(11.14)
=k[(uv),
provided t h a t (note A
on PQ and vx
);,;
-
v
Y*
=
$1
+ (uv),]
+
(-Kdx
f
Hdy) -
QR v ( x ,y ,?
R
6Q
,? A
F ( x ,Y) dxdy A
y - x = y - x and R F
%
+;
A
A
A
= yfx) A
( g + f ) v on R^P w i t h v(x,y,x,y)
=
1.
(6)
vx
vy = ( g - f ) v
f
The f u n c t i o n v(x,y,
satisfying L v = 0 with the characteristic conditions ( 6 ) i s called
t h e Riemann f u n c t i o n v = R and we n o t e t h e r e i s agreement w i t h t h e R of 54. Indeed i n 54 w i t h o p e r a t o r s Dz - q we have g = f = 0, c = q ( y ) F = 0 w i t h c o n d i t i o n s R = 1 on t h e c h a r a c t e r i s t i c l i n e s . s t i p u l a t e s here t h a t vx
n
+
v
=
0 on PQ and vx
-
-
q ( x ) , and
The c o n d i t i o n ( 6 ) A
v
= 0 on RP; t h e s e a r e ac-
Y Y A 4 t u a l l y d i r e c t i o n a l d e r i v a t i v e s and s p e c i f y t h a t v = c o n s t a n t ( = 1 = v(x,y, A
A
x , y ) ) on t h e c h a r a c t e r i s t i c s . "0 2 Now c o n s i d e r f i r s t o p e r a t o r s o f t h e f o r m (11.11) and w r i t e Om = D + ((2mf
We a r e p r i m a r i l y concerned here w i t h t h e equations f o r g e n e r a l i z e d l)/x)D. t r a n s l a t i o n s S i associated w i t h and thus c o n s i d e r
ti
(11.15)
^Qi(Dx)u = {i(Dy)u;
9 --/ \Qm 0
-
q; u(x,O) = f ( x ) ; uY (x,O)
=
0
The case q = 0 a l r e a d y t a k e s account o f t h e s i n g u l a r i t y i n u ' and once t h e Riemann f u n c t i o n R (C,n,x,y) A
function R (11.16)
9
0
-
f o r Q:(Dx)
Rq(S,n,x,y)
=
6:(Dy)
-
f o r ?:(Dx)
C:(Dy)
i s known t h e n t h e Riemann
has i n f a c t t h e form
Ro(C,n,x,y)
-
$f
Ro(S,n,s,t)Q(s,t)Rq(s,t,x,Y)dsdt
84
ROBERT CARROLL
= ( S n / ~ y ) ~ + ' f o r Ix-El = l y - n l , Q ( s , t ) = q ( s ) - q ( t ) , and t h e i n 9 < s+t < x+y w i t h x - y 5 s - t 5 S-n i n t h e ( s , t ) p l a n e t e g r a l i s o v e r 5 : E+n -
where R
which i s shown i n (11.17)
( c f . here [Bx2, Cp2-4, L12, S o l ] and t h e p r o o f o f Theorem 11.5 below f o r t h e method o f p r o o f ) .
Moreover u s i n g R
one can g i v e a " u n i f i e d " formula 9 f o r g e n e r a l i z e d t r a n s l a t i o n s a r i s i n g f r o m such s i n g u l a r problems. To see t h i s suppose u s a t i s f i e s (11.15),
where S c i s t h e
so t h a t u(x,y) = S:f(x)
generalized t r a n s l a t i o n associated w i t h
ti; t h e n
( f o r s u i t a b l e f), v =
u -
f satisfies
= 0. Now use Riemann's method f r o m Remark 11.4 t o Y s o l v e (11.18) where t h e i n i t i a l c u r v e i s t h e l i n e y = 0. L e t ,r2= D = D
w i t h v(x,O)
= v (x,O)
XY
be t h e t r i a n g l e w i t h v e r t i c e s (x-y,O), u s i n g (11.14) w i t h u = v and v = R (11.19)
V(X,Y)
(since v = v
-
(11.20)
Then
Rq(S,n,x,Y)ii(S,n)dEdn
Rqf(2m+l)/n and
W(X,Y,S)
again.
one o b t a i n s
Now i n f a c t ?(E,n)
= vx = 0 on t h e l i n e y = 0 ) .
0 9 ((2m+l ) / s ) $ - ((2m+l
and (x+y,O)
-%jD
= - L f so v(x,y)
?!i(Dn)]f(c) = (D R )f
Y
=
q
(x,y),
)/n)Dn). =
lim
S&
=
=
-[$i(DS);
4JaD (-cdg + z d n ) by Remark 11.4 where now K = R f ' - f D R + (2m+l)Rqf/5 ( n o t e L i n v o l v e s 9 Using
E 9
s+n = x i y
2mtl [yRq(S,n,xYy)
and s e t t i n g
- D n Rq ( E y n y X , Y ) I
(which w i l l be seen t o make sense) one o b t a i n s an e q u a t i o n (m > -%)
Here one needs m > -S i n o r d e r t o have R (xty,O,x,y) 2 9 E C implicit
=
0.
Hence f o r m a l l y ,
with f
&HE@REEI 11.5.
Generalized t r a n s l a t i o n s S:
as above f o r s i n g u l a r o p e r a t o r s
85
EXPLICIT CONSTRUCTIONS
o f t h e form (11.11) can be expressed i n t h e f o r m (11.21) f o r w as i n (11.20). N
Phoud:
L e t us check t h e passage from 4faD (Hdn - r d t ) t o (11.20)-(11.21).
On t t n = x+y one has dg = Tdn and dR
= DgRqdg + D R dn = (D R
D R )dg. 114 5.9 0 9 From ( 6 ) we have on ^PQ Q g-n = c o n s t a n t , D R + D R = +[(Zm+l)/g + (2m+l)/ 5 9 n 9 s+n = c o n s t a n t , D 5R 9 - Dn R 9 = & ( 2 m + l ) [ ( l / E ) - (l/n)]Rq. n]R w h i l e on RE q A Thus on PO, dR = ( m + % ) [ ( l / c ) + ( l / n ) ] R dg w h i l e on R;, dR = ( m + $ ) [ ( l / t ) q 9 9 (Kdn(l/n)]Rqdg. Consequently, w r i t i n g o u t Hdn - i?dc one has f i r s t &IaD
9
Q
N
Kdc) = 4faD [-f(t)DQRq + ( 2 m + l ) f ( ~ ) R ~ / n l d !+ [ f ’ ( c ) R q - f ( 5 ) D 5 R q + (2m+l) f ( 6 ) R /c]dn so on RP where dn = -dg t h e i n t e g r a n d i s 2 1 = [ f ( D R - D R )
5 9
9
n q
-
w h i l e dR = ( D R - DnRq)dg = (m+&)(l/g-l/n) 9 4 5 9 Rqdc. Hence 21 = -D ( f R ). The i n t e g r a l o v e r (x-y,x+y) on t h e a x i s r e 5 9 duces i m n e d i a t e l y t o (11.21) and f o r ?‘Q where do = dg we have 21 = [ - f ( D R
f ’ R q + f R (2m+l)(l/r1-1/5)]dg
+ DnRq) + f ’ R q + fRq(2m+l)(l/n+l/g)dg w h i l e dR = (D5Rq + D R )dc 9 n 9 (l/c+l/n)Rqdg. Hence on ?Q, 21 = D ( f R ) , and (11.19) becomes 5 9 (11.22)
V(X,Y)
=
x =
U(X,Y)
rty x-Y
+ 4fR
- 4fR
( i n obvious n o t a t i o n ) . t h e consequence.
IX-’
+
EHEOREN 11.6. ( 1 1 .23)
9,
-
But R (x+y,O,x,y) 9
+ 4fR
9
(x-y)
= 0 ( c f . below) and (11.21)
g i v e n i n [Bx2]
is
( c f . a l s o [CpZ-4;
Thus
Ro (5, n ,x ,y ) = ( ~ n / x y ) ~ + ’ (1 -z )-m-4F (5n/xy)m+’t?i-mF
- (s-n) 2 ][(x+y)
The f u r t h e r a n a l y s i s o f (11.21) lation.
X
D5(fRq)dg - 4jx+yDg(fRq)dr
f + 4fRq(x+y)
The Riemann f u n c t i o n Ro(~,n,x,y)
where z = [(x-y)’
(m+k)
X
u
=
L e t us r e c o r d here t h e form o f RO(g,n,x,y) De4; L11; Sol; F i l , Z ] ) .
$1
X -Y
w(x,y,c)f(c)dc
5 9
=
(+m,$-m, 2
-
for 6i(Dx)
-
^Oo(D ) i s m y
(m++ ,m+LL ,1 ,(z/z- 1 ) )
=
1 ,1- < )
(5+n)2]/16xycn
(and 5 = ( l - z ) - ’ ) .
r e q u i r e s many e s t i m a t e s and e x t e n s i v e c a l c u -
We r e f e r t o fBx2; S o l ] f o r d e t a i l s , many o f which a r e reproduced
i n [C40]. We w i l l be c o n t e n t here t o i n d i c a t e t h e main r e s u l t s . One obt a i n s e s t i m a t e s on Ro(g,n,x,y) and s o l v e s (11.16) by successive approximat i o n s i n a s t a n d a r d manner ( o b t a i n i n g e s t i m a t e s on Ra i n t h e process).
Then from (11.23) one can show t h a t as rl
-f
0 (*) C ( 2 m + l ) / ~ l R o ( ~ , n , x , ~ )-
Set
86
-
ROBERT CARROLL
DnRO(t,~,x,y)
+
2w0(x,y,s).
Thus w o ( x , ~ , s ) must be t h e k e r n e l Y(x,Y,E;)
determined i n Remark 11.1 and Theorem 11.2; we check t h i s as f o l l o w s . F i r s t 2 2 2 2 2 4 4 4 2 2 2 2 2 2 2 n o t e t h a t 4x y (1-2 ) = 2x y - x -y - 5 +2x 5 +2y 5 where z = ( x +y - 5 )/2xy. Hence i n (11.24) we have wo(x,y,s) = [ 2 1 - 2 v ( m + l ) / ~ ~ r ( m t l ? ) ] ~ ( x y ) - ~ ~ ( l - z ~ ) 2 2 m-+ 2 m-J-, ( 1 - ~ ~ ) ~ - % (y4 )x - (c/xy)r(mtl)(l-z ) /JTr(m+$) = y(x,y,s). Next we n o t e t h a t (11.16) can be w r i t t e n as
Using t h e d e f i n i t i o n s (11.20) and (*) and p r o p e r t i e s o f Ro i t f o l l o w s from (11.25) e a s i l y t h a t f o r m > -% (11.26)
= wo(x,~,s)
W{X,Y,C)
-
no
wo(s,t,s)Q(s,t)Rq(s,t,x,y)dsdt
%.
N
where
1-
r e f e r s t o t h e f i g u r e (11.17) w i t h
EHE6REM 11.7- For m
>
q =
0.
-4 t h e t r a n s m u t a t i o n k e r n e l w(x,y,s)
i s determineddby (11.16). q Simultaneously one o b t a i n s e s t i m a t e s f o r w(x,y,c)
has a representa-
t i o n (11.26) where R
-
wo(x,y,s)
and u = S:f(x)
d e f i n e d by (11.21) (we r e f e r t o [BxZ; C40; S o l ] f o r t h e d e t a i l s ) . t i o n q ( x ) can have s i n g u l a r i t i e s q we o m i t m = i n §§4-5.
-5 s i n c e
'L
O ( X - ~ - ~ )( E < 1
-
The f u n c -
c f . Remark 11.14) and
i t i s n o n s i n g u l a r and has t h u s a l r e a d y been covered
S: determined by (11.21) s t i l l r e p r e s e n t s a g e n e r a l i z e d t r a n s l a 2 t i o n when f C b u t u may become i n f i n i t e as y + 0. Y REMARK 11-8, The a n a l y s i s o f [ S o l ] extends t h e t e c h n i q u e o f t h i s s e c t i o n ,
+
w i t h some improvements and s i m p l i f i c a t i o n s , t o equations ( c f . (11.15)) (11.27)
$:l(Dx)u
=
tq2(D ) u ; P Y
where m and p a r e s u i t a b l e complex numbers. p r o v i d e d and o f course s i n c e p = compl i c a t e d .
-
(DX2 -DY2 + 2m+l + f y y ) u
[q;
-
qg]u = 0
Considerably more d e t a i l i s
m t h e p r o o f s and r e s u l t s a r e somewhat more
Formulas such as ( 1 1.20)- ( 1 1.21 ) a r e c o n s t r u c t e d and t h e r e -
l a t e d Cauchy problems f o r u i n v o l v e (11.27) w i t h i n i t i a l c o n d i t i o n s u(x,O) = f ( x ) and uy(x,y)
= o(y-')
as y
+
0 where
y =
1 + Rep
-
]Rep\ (so y = 1
f o r real p 2 0).
T h i s l a s t c o n d i t i o n on u can be improved when f i s s u i t Y a b l y d i f f e r e n t i a b l e t o u (x,O) = 0 ( c f . a l s o Theorems 11.10 and 11.13) Y
I n t h e l a s t s e c t i o n of [ S o l ] some o f t h e r e s u l t s a r e p a r t i c u l a r i z e d t o t h e
87
EXPLICIT CONSTRUCTIONS A
/
c o n t e x t o f t r a n s m u t a t i o n s Q2
\
+
Q, w i t h m = p and we w i l l i n d i c a t e some o f
t h e s e r e s u l t s here.
R e l a t e d r e s u l t s a r e c o n t a i n e d i n e.g. [Ge1,2; Sz1,Z; 2 Vd21. R e c a l l f i r s t ( c f . (9.26)) t h a t Om = = D + ((2m+l)/x)D i s r e l a t e d to = D2 - (m 2 -$)/x2 by a t r a n s f o r m a t i o n Gm(D)[xm"f] = xm+'Qm(D)f. We
Qi
&
2 c o n s i d e r t i 1 = D2 - (m -+)/x2 - q ( x ) and 6 i 2 = D2 corresponding o p e r a t o r s and 20, as i n (11.11).
ail
4
-
2 (m -+)/x* - q,(x) w i t h We n o t e t h a t i t i s na-
6;
on a subspace Dm o f Em = I f ; xm+'f E L 2 ) w i t h xrn+'$;f = tural t o define 2 ?)i[xmq'f] E L (i.e. E Em f o r f E Dm C Em corresponds t o mapping 2 s u i t a b l e f u n c t i o n s g = xm+'f E L i n t o L2). Then i f B i s a t r a n s m u t a t i o n
:6
6f:
B: a'2 + t i 1 ( i . e . v mm+' -m-+ B = x By (y
B$:2f
=
t:lBf
(y
-f
x) f o r f
Dm say)
E
it follows that
x ) transmutes Gq2 i n t o 6'1. Indeed xm+'4qlBf = 6:l[xm+' = ijqliYm!kf; xm+
-m-?i m+fl
6ii
and s e t
DEFINZCZBN 11-9, On an i n t e r v a l [o,a] a] (AC Dx[x-m-4g]
?);is
absolutely continuous); o(x-')
=
an o p e r a t o r
Pi -+ m
as x L
2
+
let E
E:i
ig E
=
2 L (0,a);
c 1 (0,al;
g'
E
A C ~ ~ ~ ( O ,
g = xm++[1 + o ( 1 ) l ;
6:i
0 where y = l+Rem-IRem\}.
i s t h o u g h t o f as
.
The k i n d o f theorem r e s u l t i n g f r o m t h e method o f a n a l y s i s i n [ S o l ] i s L e t n-% < Rem < n+4, m # 0 o r m = n+%, P = max(Z,n),
CHZ0REM ll,lO,
I n a d d i t i o n i f n = 1 assume
> 0.
P
Suppose qi E C (0,al and qi
(j)
> 3/2-Rem and i f n = 0 assume a > 4-Rem.
( x ) = O(x there e x i s t s a transmutation operator o n l y ) , ~ q 1 =i i4':2 and
g:
~ ( x + )
Em2
I,"
on
i22, i;
and a
a-j-1)
i: 26:
as x +
i s continuous L2
6'1
+
+
0 (0 5 j 5 L ) .
Then
( i n a sense used here
? (on
[o,al),
5-1 e x i s t s ,
E q l i s expressed v i a a c o n t i n u o u s k e r n e l z(x,y) as b ( x ) = m f o r o 5 y 5 x. i(x,y)q(y)dy. F u r t h e r I ~ ( x , Y ) ( 5 Mx'(y/x) +
REmARK 11-11. We want t o emphasize again t h a t g e n e r a l l y we do n o t want t o 2 work w i t h t r a n s m u t a t i o n o p e r a t o r s i n L t y p e spaces; t h e i r n a t u r a l h a b i t a t seems r a t h e r t o be i n spaces o f Cp f u n c t i o n s where i n v e r t i b i l i t y o f B does 2 n o t g e t t i e d i n w i t h t h e L t y p e s p e c t r a l t h e o r y ( a c t u a l l y and L:oc c o n t e x t 2 o r L (0,a) as i n Theorem 11.10, i s a c c e p t a b l e f o r some aspects o f t h e t h e o r y 2 t h e o r y ) . Note t h a t i n t h e c o n t e x t o f L ( 0 , m ) o p e r a t o r s , i f we have BP = QB w i t h B - l p r e s e n t t h e n Q = BPB-' o f s p e c t r a would be i m p l i c i t .
would be " s i m i l a r " t o P and some i d e n t i t y However we have seen i n 54-5 t h a t transmuta-
t a t i o n s e x i s t between o p e r a t o r s w i t h v a s t l y d i f f e r e n t s p e c t r a . One notes 2 2 a l s o t h a t i n an L o r Lloc c o n t e x t t h e q u e s t i o n o f domains and ranges would
88
ROBERT CARROLL
have t o be examined v e r y s e r i o u s l y a t e v e r y stage o f t h e a n a l y s i s and t h i s s i m p l y g e t s i n t h e way.
It i s much more n a t u r a l t o work i n a C p c o n t e x t
and subsequent passage t o l i m i t s i n s u i t a b l e weighted L be e n v i s i o n e d l a t e r i f needed o r d e s i r a b l e .
2
spaces can always
We w i l l however d i s c u s s l a t e r
and d i s p l a y v a r i o u s connections between t r a n s m u t a t i o n s and r e l a t e d t r a n s forms i n t h e c o n t e x t o f weighted spaces and maps s i m i l a r t o t h e s i t u a t i o n o f D e f i n i t i o n 11.9.
1
K y ( x y ~ ) ~ ( ~ ) l = [q2(x)-q1 ( x ) + 2 D x K ( x y x ) l ~ ( x )+ [K(x,O)v' (0)-Ky(x.O)v(O)l y= 0 Consequently one seeks K(x,y) (11.30)
?);l(Dx)K
= 6;2(Dy)K;
-
q,(x) Further for
B' =
satisfying ( f o r suitable
q,(x)
K(x,O)q'(O) =
Set B f ( x ) =
know g[ym+'h]
= xm+%h
(
E
K (x,O)v(O) Y
i:2) = 0;
2DxK(xYx)
X ~ ' ' B ~ - ~ - ' we have x"+'{;lBf
kGi2[ym+'f].
-
v
B(x,y),f(y))
= 6:li[ymt'f]
and xm+'Btq2f m
and gg(x) = ( g ( x , y ) , g ( y ) ) .
=
We
so a p p a r e n t l y f o r g = ymt4h
and f = h above one has -m-$ v = x ( B(x,y),h(y)) = x-"-'( E(x,y)ym+',h(y) ). B(X,Y) Note a l s o i n t h i s c o n n e c t i o n t h a t one expects ~ ( x , y ) (y x) t o saty""". 2m+lAq -2m-1 i s f y (cf.554-5) ( D x ) ~ ( x , y ) = ^ O q 2 ( D y ) * ~ ( x , ~ )= Y Q 2(Dy)[y B(x,Y)] s i n c e Q*(A v ) = A Qv. Thus y-2m-'~~l(Dx)[x-m-'~(x,y)y m&! ] = AQ i 2 ( D ) [ x - ~ - ' Q shows t h a t t h e f u n c t i o n ?(x,y) = ~ - ~ - ~ g ( x , y-m&) y s a t i s ~ ( ~ , y ) y - ~ - 'which ] Consequently B(X,Y)
-f
6l;
fies
5il ( D x ) 2 = ?$.2;
The p r o o f i s t h e n reduced t o s t u d y i n g t h e a p p r o p r i a t e
EXPLICIT CONSTRUCTIONS
89
M
There a r e many technical d e t a i l s ( c f .
Goursat problem f o r K = ( X ~ ) - ~ - ' K . [C40; Sol]).
The following theorem i s i n s t r u c t i v e i n several ways; in p a r t i c u l a r i t i n -m -% CJ] = o(x-') as x 0 can a r i s e . d i c a t e s how t h e condition Dx[x 1 EHE0RER 11-13- Let m E C , m f 0, q measurable on ( 0 , a l w i t h t Y q ( t ) E L (0,a) = 0 ; q = xm+'[l + O(X'-~)] where y = 1 + Rem - IReml. Then t h e problem 2 as x 0 = D2 - (m -%)/x2 - q ( x ) ) has a unique s o l u t i o n . This s a t i s f i e s -f
-f
6:~
(Gq
-4 o r even m
lem f o r
= -A2q
G,$
=
>
-f
o r eventually f o r
= -A2$
(q =
xm+%).
Prrooh: For q = 0 a fundamental s e t o f s o l u t i o n s i s x"+' by v a r i a t i o n of parameters (11.31)
q ( x ) = axm+'
2
6
0. Note t h a t f o r q = - A and s u i t a b l e - 1 ) we can deal here with an eigenfunction prob-
o(xmY)as x
a l s o Dx[x-m'5q] m (e.g. m >
+ Bx4-m
+
(1/2m)
i,x
and
xm+4t4-m-p+G;J-*
i'-m so t h a t mlq(t)v(t)dt
S e t t i n g q = xm+'$ one has $ ( x ) = a + ~ x + -(1/2m)JX ~ ~ t [ l - ( t / ~ ) ~ ~ ] q $and dt 0 = 0. Then J, $ = 1 + o(xl-') i s required as x + 0 so we want ~1 = 1 and s a t i s f i e s a Volterra i n t e g r a l equation with kernel ( 1 / 2 1 n ) [ l - ( t / x ) ~ ~ ] t q ( t ) 1 E L . There i s a unique s o l u t i o n $, continuous on [O,a], and i t is seen e a s i l y t h a t $ = 1 + o(x'-') as x 0 (note e.g. 1-y x ItYq(t)ldt 5 x lo I t Y q ( t ) l d t ) . Finally -f
(11.32)
$ ' ( x ) = x-2m-1r t2"+'q(t)J,(t)dt
IJx t q ( t ) d t l < JX tl-' 0
= o(x-')
0
as x
-f
0
' 0
Note here t h a t i f Rem > 0 then y = 1 whereas f Rem < 0 then y = 1 - 2IReml = 1 + 2Rem. T h u s in p a r t i c u l a r , taking m rea f o r s i m p l i c i t y i n i l l u s t r a t i o n , i f m > 0, y = 1 and ( t / x ) 2 m 5 1 w i t h t q t ) E L1 i n (11.32). I f m < 0, y = 1 + 2m i n (11.32) w i t h t Y q ( t ) E L'.
2 A s ' 2 Consider $ in t h e case q = q' - A so Qm$ - - A $ and f o r m > -%, 0 < y 5 1 , so t Y q ( t ) E L1 i s equivalent t o t Y { ( t ) E L1. Then $ = 1 + O ( X ' - ~ ) tends t o 1 as x 0 b u t J,' = O(X-') m i g h t become i n f i n i t e a s x 0. 1 However note from (11.32) t h a t i f 2m+l L O and q E L then $' = o ( 1 ) as x 2 1 0 and J/ will be a spherical function when q = q' - A w i t h q ' E L . We note t h a t f o r y = 1 f o r example a s i n g u l a r i t y $ = O ( l / t ' + € ) i s permitted f o r E < 1 . In p a r t i c u l a r i f one had an a n a l y t i c s i t u a t i o n w i t h 6 ( t ) = g/t + $ ( t ) the corresponding i n d i c i a 1 equation f o r A Q, q remains s(s-1) + (2m+l)s = 0
REEWRK 11-14.
-f
-f
-f
w i t h s = 0, o r s = -2m, and f o r s = 0 a s o l u t i o n w i t h J , ( O ) = 1 a r i s e s ; howe v e r $ ' ( O ) = ;/(2m+l) and t o produce a spherical function we would need
ROBERT CARROLL
90
= 0 (note t h a t i f d " ( 0 ) = 0 the d i f f e r e n t i a l equation i s n o t s a t i s f i e d a t
x = 0 unless - as would occur here - t h e s i n g u l a r terms can be c a n c e l l e d 1 o u t ) . Thus E L seems i n t i m a t e l y r e l a t e d t o t h e e x i s t e n c e o f s p h e r i c a l function type solutions.
12,
CAN0NZCAC F0RiWCACZ0N OF PAlGEVAC F'P)RI!IUCAS AND CRAWF@RW, We w i l l
c o n t i n u e here w i t h t h e development o f S e c t i o n 10 b u t f i r s t l e t us g i v e a summary k i n d o f p i c t u r e o f t h e v a r i o u s maps a s s o c i a t e d w i t h two o p e r a t o r s
?
P and Q l i n k e d by a t r a n s m u t a t i o n B: P -+ Q. Thus t a k e two o p e r a t o r s and A Q as i n (9.1) w i t h g e n e r a l i z e d s p e c t r a l f u n c t i o n s R P and R9 as i n (10.38) A
and l e t B: P (12.1)
A
+
P = Q be t h e t r a n s m u t a t i o n c h a r a c t e r i z e d by D X
Pf(A) =
1;
PF(x) =
(
f ( x ) n XP ( x ) d x ; q f ( X ) =
Q vX.
Then
f(x)q(x)dx; 0
qF(x)
= (
Pf(X) =
P P P R , F ( X ) P ~ ( X ) )=~ ( F(h),vX(x)),; R Q , F ( ~ ) QY J ~ ( X =) )( ~F(X),P,(X))~; Q
1"-
Qf(A) =
f ( x ) v XQ ( x ) d x
n
B F ( x ) = ( RP , F ( X ) ~ : ( X ) ) ~ = ~ F ( X )= (
RQ,F(X ) f ( x ) ) X
PF(X) =
F(X ),P). (XI),
(
j
m
f(x)P:(x)dx;
P
(
F(X ) , a : ( ~ ) ) ~ ;
=(
F(A ) , ~ : ( x ) ) ~ ; P
= ( RQ,F(X)qX
XI)^ ;
$F(X) = ( F ( X ) , VQ ~ ( X ) ) =~ ( R P , F ( X ) P Q~(X))~
Then, working on s u i t a b l e f and F, one has by c o n s t r u c t i o n
B
= p-',
4
= Q-',
etc.
P = P-',
P = Q-',
We w i l l p r o v i d e c o n s i d e r a b l e d i s c u s s i o n l a t e r t o
show t h a t t h e f o l l o w i n g ( f o r m a l l y e v i d e n t ) s p e c t r a l p a i r i n g s make sense and a r e c o r r e c t under n a t u r a l hypotheses ( c f . i n p a r t i c u l a r Theorem, 2.2.2, C o r o l l a r y 2.2.3, (12.2)
(12.3)
etc).
Thus ( B = B - l )
ker B = ~ ( y , x ) =
(nX P (x),v,
k e r B = y(x,y)
(vXP (x),aXQ (y)),
B =
pP; B
=
Q (y)),
=
( R p ,QXp (x)v, Q ( Y ) ) ~;
= ( R Q ,vXP ( X ) ? ~ ( Y ) ) ~
= IPQ
Now i n general we do n o t want t o s p e c i f y p r e c i s e domains f o r o u r transmutat i o n s s i n c e i n p a r t i c u l a r t h e y a c t on v a r i o u s t y p e s o f o b j e c t s a t v a r i o u s
CANONICAL FORMULATION
times.
91
S i m i l a r l y o u r t r a n s f o r m s P, P, P, e t c . can be d e f i n e d on v a r i o u s
t y p e s o f o b j e c t s and we do n o t want t o impose l i m i t a t i o n s on t h e i r a c t i o n We would have t o keep i n s e r -
b y a r t i f i c i a l l y s p e c i f y i n g some f i x e d domain.
t i n g n o t a t i o n a t a r a t e f a r exceeding t h e r a t e o f theorem p r o d u c t i o n .
On
t h e o t h e r hand o f course p r e c i s e domains can be s p e c i f i e d when i t seems des i r e a b l e and we r e c a l l e.g.
D e f i n i t i o n 11.9 i n t h i s d i r e c t i o n .
So, i n t h i s
s p i r i t , l e t us d e f i n e some n a t u r a l spaces whose c o n s t r u c t i o n i s m o t i v a t e d
^o
by t h e o p e r a t o r
REWRK 12-1- S e t =
[i; hm+'f"(h)
(12.4)
where
E
=
$
=
Qi and D e f i n i t i o n 11.9. Thus as o u r model c o n s i d e r Qi and s e t Em I f ; xm+'f(x) L2(0,-)}with Fm QEm =
L2(0,m)}.
Qf(h)hm+'
=
I n t h i s connection note t h a t
c m- l Hm [xm+'f(x)];
IQF(x)x"+'
H, denotes t h e Hankel t r a n s f o r m .
forms ( c f . [Dsl;
=
E
=
c mHm[km+'F(h)]
Standard theorems on Hankel t r a n s -
L19] f o r example) g i v e Hm: L2
m e t r i c ) f o r s u i t a b l e m (and hence xm+'f(x)
+
+
L2 as an isomorphism ( i s o -
hm+'Qf(x)
modulo a f a c t o r o f
I n s t e a d o f always w o r k i n g w i t h Em as a H i l b e r t space ( w i t h s c a l a r proc,). d u c t (f,g), = Imx 2 " + ' f ( x ) 6 ( x ) d x ) we w i l l f r e q u e n t l y use EA = Em = i f ; -m-+ 20 A f ( x ) E L 1 i n a n a t u r a l d u a l i t y . S i m i l a r l y Em has a n a t u r a l H i l b e r t x A . 4
structure with (f,g) E
{?; A
= Iml Z m + ' ? ( h ) i ( h ) d l as w e l l as a n a t u r a l dual space
z m 0 L 1 ; however
M
A
$, here w i t h ( f , g ) *
A
=
and $ E Em = Em f o r reasons i n d i c a t e d below. We r e c a l l m++ m++ 2 f ] and = {x f, f E Em} = L . Note a l s o t h a t Qm[x
(?,?j),,, for
f E E
t h a t xmyGif
=
g e n e r a l l y i f p:
A
we w i l l use EIF, = Em =
M
A
Em
v'6
A
i s a spherical function f o r
0 then
4"
AQq:
=
T7
i s a corres-
ponding fundamental o b j e c t f o r r e l a t i v e t o an L2 expansion t h e o r y ( i . e . "vQ 2vQ 0 vQ QpA = - A p h ) . However l e t us emphasize t h a t t h e p h and ppha r e themselves g e n e r a l i z e d e i g e n f u n c t i o n s and one c e r t a i n l y does n o t expect ( n o r have) pV x4 L2 f o r example. I n any event one has Qf = f m f ( x ) p h4( x ) d x = jm(k'f)$Q(x) 2 0 0 '2Q dx w i t h E L t h e n a t u r a l desideratum; we w r i t e i g ( x ) = Im g ( x ) ;h(x)dx
E
Lf'Q
w i t h Qf(ph) = z [ b f ] ( h ) .
Here
$!
xm+?i2"r(m+l)(hx)-mJm(~x)
Jm(hx) = ~ ~ ~ h - ~ - ' ( h x ) ~ J , , , ( h x % ) ^ , ~ 5 ( h x ~ J m ( x xwhich ) suggests t h a t t h e na-
t u r a l g e n e r a l i z e d e i g e n f u n c t i o n s a r i s i n q i n an L2 t r a n s f o r m t h e o r y when R Q
Q
=
:Qdh w i l l be $!(x)$;(l) ^ w z ( h ) i f ( h ) so t h a t Qf =
= $:(x).
{[k;f]
Then we w r i t e i f ( X ) = ir f(x)?:(x)dx
=
A
-4"
uQ
@J[L;f]o r
92
ROBERT CARROLL
A 2 The 9 transform theory i n L f o r example should then correspond t o the HanA kel transform theory f o r Q = and one i s led t o t h e general question of equiconverqence theorems f o r eigenfunction expansions ( c f . [ F f l ; Kpl] f o r " 2 t h e L isometry b f L'? f o r c e r t a i n n, T h u s f o r example i f one
6;
Q
-f
6
Q
6').
4
knows the Hankel theory and can transmute into ( s u i t a b l y ) then the transform theory should be "isomorphic" t o t h e Hankel theory. Conversely given an equiconvergence s i t u a t i o n one expects t o be a b l e t o construct a s u i t a b l e transmutation ( c f . f o r example [Bhl-3; Rsl]).
Now more generally we consider t h e following basic spaces (note t h a t t h e A operator Q f o r example i s t o be thought of as defined on a s u i t a b l e domain in EQ - c f . Definition 11.9).
DEFZNICI0N 12.2. Given % A as i n (9.1) s e t EC = { f ; supp f i s compact a n d Q Q kf'Q E L21 with EQ = { f ; L t f E L']. E Q i s not a good domain space in genera1 b u t since e.g. B does n o t map E F + EC one must use t h e l a r g e r format t o Q f i t things together. We r e a l l y do not want t o work in E unless we have Q e.g. a theory isomorphic t o the Hankel theory as i n Remark 1 2 . 1 ; i n p a r t i c u l a r we do not know a p r i o r i even t h a t q i s defined on a l l E and even i f i t Q w e r e , 9 , expressed via R Q , generally would not be defined on BE as such.
Q
One can work w i t h t h e obvious Hilbert s t r u c t u r e i n EC and expect t o t r a n s 4 port t h i s t o = QE;. We will eventually be dealing however w i t h countable Q AC unions of H i l b e r t spaces, EC = U E C ( o ) f o r example, and thus E i s not t o be Q Q Q thought of a s a p r e h i l b e r t space. Thus ( f , g ) Q = Im AQ(x)f(x)g(x)dx and t h e
tc
0
G0dA natural t r a n s p o r t i s ( f , g ) - ( f , g ) f o r i= Qf and $ = Qg. When R Q Q-, Q ,,PA A 1 t h i s corresponds by (12.5) t o f = 9f :$f = Q[A'f] and (?,<) = Im GQ?$dx = A A
Q
Im
A fgdx which
is t h e Parseval formula (10.28).
o Q (10.28) can be w r i t t e n when RQ (12.6)
1;
$:(A)Q%$X)gg"dA
n,
=
6QdA
4
0
Indeed Qf = Q[AQf] and
as
AQ(x)i(x)i(x)dx
tC
and i n f a c t (10.28) will determine a t r a n s p o r t of Hilbert s t r u c t u r e t o Q= QEc in general. Note here t h a t f o r iE EC ( i . e . A';€ L2 and s u p p f' i s comQ-b Q p a c t ) we have f = A,? E lE; C ( E c ) ' where = { f ; AO2f E L2; supp f compact] Q v Q, " m "v (note f o r F E EC g EE;, one has ( f , g ) = I f ( x ) g ( x ) d x = rU fgAQdx). Thus Q' 0 i n (10.28) Q a c t s on f , g E EC while Q a c t s on f",< E EG. Similarly when RQ Q 4c A A-+A 2 w" dA one has a dual notion ( E Q ) ' { f ; w Q f E L I which was useful when #(XI= nQ(X,x) was used i n t h e transform theory ( c f . [C30]). However we wQ 1 will f i n d i t more natural here t o use the Hilbert s t r u c t u r e on b A A X Q defined by "c Ac "c "c (12.6) and s e t lEQ = E (E C ( E Q ) ' ) w i t h ( f , g ) w = ( f , g ) = ( R " , ? G ) A f o r
ic
Q ,
fc
Q
Q
Q
93
CANONICAL FORMULATION
?,:
?,G)w
Im GQ ?{dX when RQ
Note t h a t we will eventually want t o c h a r a c t e r i z 2 Z C = QEc using general Paley-Wiener type theorems so Q Q that will be a space of even e n t i r e functions having c e r t a i n growth proQ p e r t i e s f o r r e a l X ( s e e [Ge1,2; C401 for t h e Bessel transform p l u s ' [ T j l ] , ((
E
=
'L
GQdX).
ic
Theorems 10.4, 10.7, 10.12, and 10.13).
In p a r t i c u l a r i f one r e s t r i c t s t h e
support of f by s u p p f C [0,13]and denotes t h e corresponding E space by E:(u) w i t h f;(o) = (1E:(u) then one has a general Hilbert s t r u c t u r e on Ec(o) "C Q and on E ( u ) . One t r e a t s EC = U E C ( a ) as a countable union of Hilbert spaces Q Q A Q a s in [Gfl] and s i m i l a r l y f o r EC = $:(u).
Q
CH€0RETil 12-3- One can c o n s t r u c t a p a t t e r n of spaces and maps r e l a t i v e t o opA
A
e r a t o r s P a c t i n g in E = Ep a n d ! Ia c t i n g i n F = F connected by t h e transmuA A @P 2 Q, B: E p F9, characterized by B p X = p: ( i n C s a y ) . Here t a t i o n B: P Ep and R a r e a s in Definition 1 2 . 2 and IE = E ' = E; = Cf; A$f E L2 1 w i t h B = F ' = c) F' = { f ; E L'}. We need consider only elements i n *C Ep = P E ~ -f
/I
-f
Q
Q
A
A
E p f o r example where E = E i s a generic notation f o r PEP as a Hi1 b e r t EC * M A A M space (e.g. take PEP = UEp as a Hilbert space) w i t h E ' = IE = E and ( f , g ) =
C
(?,j)p = (f,$)p
A
=:I A p ( x ) f ( x ) g ( x ) d x ( ? = Pf,
h
Similarly F = F = 01 QF i n generic notation. The r e l a t i o n s P = Prl q = Q-', P = P-', Q = Q- , Q B = 8, B = B-l = BQ, P* = P , Q* = m, B* = P, p* = Q, B* = PQ, B* = QP, Q- 1 = WPQ, and7p-l =
=
Pq).
QpP hold on s u i t a b l e domains.
This p a t t e r n can be arranged in diagramatic form a s i n [C40] ( c f . a l s o [C30]) b u t we simply make a few remarks here. One begins on domains EF = 2 EC, F i = Fc, EC = I f ; s u p p f i s compact and Ap'f E L } o r F C . Then we w i l l be in the context of general Paley-Wiener type theorems and PEC = for
^Ec
example will c o n s i s t of e n t i r e functions of exponential type having c e r t a i n growth p r o p e r t i e s f o r X real ( s e e below f o r t h e Bessel c a s e ) . The functions pA P ( x ) and p X Q ( x ) , being themselves e n t i r e functions of exponential type
2"
x,
FC
and normally bounded f o r A r e a l , will then a c t as m u l t i p l i e r s in or ( f o r f i x e d x ) so t h a t ! I ! and B (based on R P and R Q r e s p e c t i v e l y ) should be defined on AE c n A F c a s a natural domain. Note when R P and R Q a r e measures 4
A
A
i t obviously makes sense t o look a t p a n d P on E n F = { f ; w f E L2; G4+ E 2 Q PA L }. In any event one does not e x p e c t P and J.! t o be defined on a l l of F o r A E respectively and this i s i n accord w i t h B = P and B = Pq not being defined on a l l E o r F r e s p e c t i v e l y . Another type of domain problem involving PQ defined via R Q f o r example i s a l s o avoided by working on Fc so t h a t 3 Q f = f f o r f E Fc. As an example ( c f . a l s o Theorems 10.4, 10.7, and 10.12) we i n d i c a t e t h e framework from [Gel ,2] which was extensively t r e a t e d i n [C40].
94
ROBERT CARROLL
Then f o r Qo w i t h q $ x ) = c- 1 ( A X ) - ~ J(Ax) one d e f i n e s i n [Ge1,2] a F o u r i e r m m m Bessel t r a n s f o r m F B f ( A ) = c Q [ X ~ + ~ ~ One ] . t h i n k s o f Q d e f i n e d say on FC = 2 m+G 2 I g ; supp g compact and x-m-qg E L 1 so g = x f means f E L w i t h compact 2 2 s u p p o r t (one says f E K as i n §5). I n f a c t f o r f E K ( 5 ) , FBf(A) i s an even e n t i r e f u n c t i o n s a t i s f y i n g (12.7)
IF(A)I 5 C I A \
-m-%
exp(ol1mAl)
(lAl
large);
jOw
IF(A)12A2m+1dA <
m
2 Denote by Wm t h e s e t o f even e n t i r e f u n c t i o n s F(A) s a t i s 2 2 A sequence o f f u n c t i o n s Fn E Wm converges t o F i n W p r o v i d e d f y i n g (12.7). I F n ( A ) l 5 cnexp(o(ImA/) ( f i x e d 5 ) f o r a l l n and :1 IFn(A) - F ( A ) I 2 m2m+ldA A
DEFZNZCZBN 12.4,
2 . 2 2 i n (12.7) can v a r y f o r f E Wm ( i . e s Wm = uWm(u) i n an ob2 vious n o t a t i o n ) . The space W, can be c h a r a c t e r i z e d as t h e space o f Four2 1 ier-Bessel transforms FBf o f K The space Wm i s d e f i n e d as t h e space of
-f
0.
Note t h a t
0
.
even e n t i r e f u n c t i o n s s a t i s f y i n g ( f o r some (12.8)
5 IA1-2mexp(o(ImAl) ( 1 x 1 l a r g e ) ;
IF(A)I
1 A sequence Fn 5)
E
5)
W
f o r a ' l n and
1
Yw
converges t o F i n
0
IFn(X)
-
W
i f IFn(A)l
F(A)lA2m+'dA
-f
C
(F(A)IA2m+1dA
5 cnexp(olImAl) ( f i x e d
0.
-m-+
I n terms o f t h e Parseval formula (10.28) we have f o r f = x f, e t c . 2 Thus t h e general pro( x-m-4f,x-m-4g) = = ( R,QfQy)i = c- ( R,FBf,FBg). m2 2 2 cedure based on 55 i s t o observe t h a t FBfEWm and F B F E Wm f o r K and 1 hence (FB?)(F$) E tlm = W (W % Z i n 5 5 ) . The g e n e r a l i z e d s p e c t r a l f u n c t i o n
(7,;)
F,?.
R w i l l then be l o c a t e d i n b l ' .
F i n a l l y l e t us i n d i c a t e some o f t h e a d j o i n t -
ness r e l a t i o n s s t a t e d i n Theorem 12.3 f o r completeness. DC and T E E C = C
Thus e.g.
for f E
Ec 2'
(12.9)
(Pf,$)v
P
= ( R ,Pf(A)r(A))A = ( R
Similarly f o r suitable $ (12.10)
($!$,f' ) = =
((
E
^Ec
P
, $ (A)l
w
P PA(x)f(x)dx)A =
and f ' E HC c F '
R P , eA( A ) q QA ( x ) ) , , f l ( x ) )
(RP,:(A)Qf'(A))A
= ( R p , $ ( A ) ( qQA ( x ) , f ' ( x ) ) ) A
= ($,Qf')v
The o t h e r a d j o i n t r e l a t i o n s a r e proved i n a s i m i l a r manner w i t h a c t i o n on suitable objects.
CANONICAL FORMULATION
95
The f o l l o w i n g theorem on g e n e r a l i z e d t r a n s l a t i o n w i l l be u s e f u l i n t h e t h e The p r o o f i s a o e n e r a l i z a t i o n o f an argument i n
theory a t various places.
[L12] and was developed i n [C40]. version for
Qi b u t we f e e l
t e c h n i q u e o f Theorem 12.5.
The t e c h n i q u e o f [L12] l e d t o a s p e c i a l
t h e n a t u r a l h a b i t a t i s b e t t e r i l l u s t r a t e d by t h e We r e c a l l f i r s t t h a t a g e n e r a l i z e d c o n v o l u t i o n
was d e f i n e d i n Remark 11.3 as ( f
*
g ) ( x ) = fom a(y)S:f(x)AQ(y)dy
t h e g e n e r a l i z e d t r a n s l a t i o n a s s o c i a t e d w i t h Q.
where S:
is
One o f o u r requirements i n
p u r s u i n g t h e l i n e o f p r o o f o f general Parseval formulas i n d i c a t e d i n 510 i s t o use S;
i n v a r i o u s ways as i n (10.29) f o r example.
iE I€;. Q
Then
CHEOREm 12.5.
For
= A
f",;
EC and f = A
E
lo
4
Q ?,
g = A,$
E
P i c k now fvc EC so f
Q
IEc one has
9
m
(12.11)
Pkao6:
(
For
Syf",g) = X
?€
c
Si;(x)9Y(X)AQ(x)dx
f(x)S:i(~)4~(x)dx =
= (
(Sxf,g)Q y" 7 = (r,S:$),
=
f,S:$)
EC ( c f . here a l s o remarks b e f o r e Theorem 2.2.2)
Q
let
F
= -A2; f o r m a l l y w i t h ? ( O , h ) = Q ? ( X ) and Yy(O,A) = 0 ( s i n c e Dy Y S i f ( x ) = 0 a t y = 0 ) Indeed we r e c a l l here t h a t ( c f . ( 1 1 . 3 ) ) S:i(x) =
Then G(D
(r(x,y,S),fv(S))
EC ( a s
= ( R Q , Q i ( h ) q ~ ( x ) q ~ ( y )which ) i s well defined f o r
i n Theorem 12.3 t h e q 4 A ( x ) and q h4( y ) a c t as m u l t i p l i e r s i n Note a l s o t h a t f o r y f i x e d S:f'(x)
iC f o r x,y
4
fixed).
has compact s u p p o r t i n x s i n c e U(x,y) =
S z i ( x ) a r i s e s as t h e s o l u t i o n o f t h e h y p e r b o l i c Cauchy problem GxU = CyU, U(x,O) = f ( x ) (extended t o be even), and U (x,O) = 0. Hence QSzfv(x) = Y F u r t h e r we n o t e t h a t f o r m a l l y (S;f(x),%(x))Q q(y,A) i n (12.12) makes sense.
N
and f o l l o w i n p Remark 11.3 we have RFq;(x), so t h a t i n f a c t ( 4 f y ( c ) pQe ( y ) , 6 ( X - c ) ) = Q f v ( h bQA ( y ) = F(y,A).
= ( R ~ , Q i ( h ) p4, ( y ) ( q05 ( x ) , " 0 h(X)))
Sq(y)) 4 = A(X-e)
We a l s o n o t e t h a t t h e f o r m u l a (11.9) can be proved d i r e c t l y f o r a general A
A
$(x,O,X) SYq:(x),
= vA Q ( x ) and D $(x,O,X)
Y which i s (11.9).
6
Q
(12.13)
Q
Now w ( =
?)
can be w r i t t e n w(y,A)
F ( X ) , ~ ~ ( X ) S ~ ~( uYs(i nXg ) (11.9) )
Consequently, w r i t i n g w = (
S:fv(x),AQ(x)pA(x)) Q
Y
= 0; t h i s i m p l i e s q A ( x ) p X ( y ) = IL(x,y,A)
q A ( y ) f y ( ~ ) ~ ~ ~4( x ) p =~ (( x ) )
above).
4
= qQ A ( x ~ ;o( y ) s a t i s f i e s Qx$ = Q J, w i t h
Q p a i r i n g g i v e n by R Q s i n c e J,(x,y,A)
=
(
7
we have
?(X),~~(X)S~P~(X))
=
Q ( y ) Q"f ( A ) = = pA as g e n e r a l i z e d
96
ROBERT CARROLL
Now t a k e
)u = ( R Q ,G(h)vh(x)) Q
G(A) = BG, so G(x) = N G ( x ) = (G(x),v;(x)
,E;
E
Then m u l t i p l y (12.13) by G(h) and f o r m t h e w b r a c k e t t o o b t a i n (S:?(x), To see t h a t t h i s i s (x)S:g"(x)) (which i s (12.11)). Y Q v a l i d n o t e t h a t ( G ( A ) , S X v X ( x ) ) = S:(G(~),P:(X))~ = S:t(x) s i n c e i f we s e t Y Q wn 0 v ( x , y ) = ( G(A),SXvX(x) ) u t h e n Q(DX)v = 8(Dy)v w i t h v(x,O) = ( G(x),vh(x) )u = A
Q
(x)i(x)) = (i(x),A
G(x) and D v(x,O) = 0. Hence v ( x , y ) = S:G(x). Y (12.11) a r e b a s i c a l l y a m a t t e r o f d e f i n i t i o n .
The formula (12.11) e s s e n t i a l l y d i s p l a y s S: as a s e l f a d j o i n t
REflARK 12.6-
operator i n E AQ(X
- I duality with (2 Q *o t h e n i n p a r t i c u l a r (12.13) says t h a t ( S : ) !?i(x) =
( d e f i n e d on Ec).
5) = (A
1Sxv 8 Q(X 1.
'
f,S:{)
"0
Iz
We c o n s i d e r now again P = Q A
B: P
as i n (9.1)).
I f one t h i n k s o f E
Q
Q "
(SYf",A
The r e m a i n i n g e q u a t i o n s i n
w i t h Ro =
A
3,
and general 0
known ( c f . (10.26)
A -j
Q i s t o be a t r a n s m u t a t i o n c h a r a c t e r i z e d by Bp!
o b t a i n e d v i a a PDE t e c h n i q u e f o r example b u t i n any case known, and G(y)BA?(x)
as i n (10.32)
we needed Sy6 ( x ) = 6(x-y)/AQ(x)
=
F i r s t one w r o t e down (10.29) and While t h i s i s f o r m a l l y ob-
Note t h a t f o r m a l l y 9
vious we n e e d ' a p r e c i s e v e r s i o n . v hQ( x ) s o t h a t S:SC)(x)
RQ ).
( d o = 6/AQ).
X Q
(12.14)
Q
B" =
L e t us r e c a l l t h e i n g r e d i e n t s
( w i t h A. = Ap).
going i n t o (10.28) f o r example ( R
Q = (px
( v hQ( x ) v hQ( y ) , R Q ) = P9Q16(x-C)/AQ(S
Now t o make t h i s f i r s t q u e s t i o n more p r e c i s e l e t Sn be f u n c t i o n s 6n
;1
-t
En(x)dx = 1.
6 i n say
E' ,
An
2 0,
An = 0 n e a r 0 and f o r x > l / n ,
Then w r i t e Un(x,y) = SY6'(x) X Q
Cm w i t h compact s u p p o r t ( e x t e n d i t as even t o PR6: to
in
Fn =
(12.15)
(m)
a f t e r (10.31).
where $ ( x ) (-m,m)).
We w r i t e a l s o R;
=
I n p a r t i c u l a r t h e n Theorem 12.5 i s a p p l i c a b l e
6n E EC so t h a t f o r a r b i t r a r y G E EC one has
Q
Q
Q
(
SY6n(x),AQ~) x Q = (6:
*
<)(y) =
(
6:(x),A4S:i(x))
=
Consequently t o approach t h e l e f t s i d e o f (+) a f t e r (10.29 t i o n (10.28)) we can w r i t e (12.16)
and
En(x)/AQ(x) i s
=
Z
n
= ( ( SySn(x),g(x)),f(y))
x Q
( f ( y ) , ( 6~(x),AQ(x)S:f(x)))
=
(
= ( f(y),( S:6"QAQc))
f(y)(6n(x),Sz<(x)))
=
(s'*
6 p Y )
( c f . a l s o equa-
CANONICAL FORMULATION
5E
Now l e t us approximate
EC by continuous
t i n u o u s and lmdn((x)S{Gk(x)dx
Q
= (
0
((
denoting
)
El-E
duality).
ck
97
E;.
E
6n(x),~:ijk(x))
+
Then S;ik(x)
(6(X),s:ik(x))
Hence we have i n (12.16)
1.
i s con= Gk(y)
(gk = A
9" ) Q k
m
(12.17)
z kn
and f o r gk
IE (Gk Q
g in
-f
S:6:(X),qk(X)))
= ( f(y),(
5 in
+
-t
f(y)ik(y)dy =
E ) we o b t a i n t h e r i g h t s i d e o f (10.28).
Q
E m m A 12-7, The formal r e l a t i o n (12.14) makes good sense and can be estabI n p a r t i c u l a r if we EGy gk continuous, gk + g
l i s h e d as above by an argument based on Theorem 12.5. approximate d i n IEc
n - f - and k Next l e t
Q
Q
i t f o l l o w s t h a t Z:
Q'
6n/A
Q
by 6n as i n d i c a t e d t h e n f o r f,g
US
go t o t h e r i g h t s i d e o f (10.29) u s i n g t h e approximations 6; =
as above.
(10.31),
i n (12.17) tends t o t h e r i g h t s i d e o f (10.28) as
( i n t h a t order),
m
-f
E
Set t h e n R i f o r t h e corresponding o b j e c t i n
R i = PB6n
Q'
(m)
after'
The machinery has a l l been s e t up i n 910 and we w i l l
have t o show t h a t Tn =
RiV^p,qfO_g)x converges i n a s u i t a b l e manner ( c f . (+)
(
a f t e r (10.29)). n
The n a t u r a l analogue o f t h e dI;
DEFZNZCZ0N 12.8. t h e space
2;
= PE;
=PIEc where pAO
Indeed t a k i n g o p e r a t o r s
Q
in
space o f D e f i n i t i o n 12.4 i s
Go (A4 = A p ) w i t h a s u i t a b l e topology. (9.1) based on Laplace-Beltrami o p e r a t o r s as =
i n 559-10 we w i l l have Rp % $pdr w i t h i n f a c t GP = 1/2nlcp12. Then t h e na2 t u r a l analogue o f t h e W e s t i m a t e s a r i s e s as f o l l o w s . R e c a l l f r o m D e f i n i -
f^
G!
t i o n 12.2 t h a t = Pfv =m$:@[L;f] where $ i s t h e t r a n s f o r m based on = > p Thus working on E; w i t h 2 E L t h e model s i t u a t i o n i n v o l v e s $: 2 Lx + La ( i . e . E L A o r lm lF(2!pdA < m ) and t h i s i s e s t a b l i s h e d i n [ F f l ]
vF$ai
a4f
A&
?$;
0
f o r example ( a l t h o u g h s t a t e d d i f f e r e n t l y ) .
!?
1x1
Am+'
the estimate i n
f o r Ihl l a r g e , would have t h e analogue i n 5 c(~,'(a)lexp(alImXI) f o r ( X I l a r g e ( h e r e supp
i t makes sense)
f C [O,a]
%
5 cexP(olImX()/1Alm+'
IF(X)I
FP ( i.f
A!'
Since $;
and we r e f e r e.g.
large).
t o L e m a 10.5 f o r t y p i c a l b e h a v i o r o f
for
However we s i m p l y can i g n o r e such an e s t i m a t e f o r a complex and n
"C
u
=PIEc here as a space o f even e n t i r e f u n c t i o n s f = P f = "P = P f ( f = A f ) o f exponential type w i t h $ E ;: L; ( f o r h r e a l ) ( s o
deal w i t h Ep = PE;
$;$[L;?]
Cp
AP
t h a t i n p a r t i c u l a r If1 5 c$*
for
x
r e a l and l a r g e
-
c a r b i t r a r i l y small)
w i t h o u t c o n s i d e r a t i o n o f whether t h e s e p r o p e r t i e s c h a r a c t e r i z e PE;. crude e s t i m a t e w i t h supp
f" c
[O,r]
For a
we have ( c f . Theorems 9.8 and 9.12)
ROBERT CARROLL
98
P I v X ( x ) I 5 c ( x ) e x p ( x l I m X l ) w i t h c ( x ) continuous so (?(A) I ? ( x ) l e x p ( x l I m X l ) d x 5 cexp(ol1mXl). PE;
f^
converges t o
if
l$nl
<
I
5 'f c(x)A,(x) 0
f^
We w i l l say t h a t a sequence AbA
cnexp(al I m h l ) (same a ) and vp"fn
\F(x)\ 5
be t h e space o f even e n t i r e f u n c t i o n s F o f e x p o n e n t i a l t y p e ( i . e . cexp(al1mhl)) w i t h Irn IF(A)IGp(h)dA < 0
m.
W converges t o F i f I F n ( X ) l 5 cnexp(ol
We w i l l say t h a t a sequence Fn
Imxl )
( a f i x e d ) and FnCp
0
n o t e t h e n i n p a r t i c u l a r t h a t supp f i s compact f o r f want t o deal w i t h
PkuaB:
M
Assume
LZIXIIA 12.9-
?,g*
E
PW so t h a t PIK
= ApK =
> c > 0 f o r X r e a l and Ihl l a r g e . p -n* one has f g E W.
F t
7A$AA4
and f g v p = fupgvp
E
L1. 1 LA. 9
-
-f
Then W
C
2;
and
GP
§lo.
F i r s t one uses Lemma 10.13 a p p l i e d
t r i a n g u l a r i t y w i l l be discussed more c o m p l e t e l y v i a spec-
t r a l p a i r i n g s i n Chapter 2 ) . Ep
ble w i l l a l s o
assuming t r i a n g u l a r i t y o f t h e t r a n s m u t a t i o n k e r n e l s (see e.g.
Theorem 11.10
FQ so B*: lFQ
C [O,O]
K.
as i n d i c a t e d ) one A A Ac i s o f e x p o n e n t i a l t y p e f o r f,g E Ep
?;
Clearly
E
Now go t o t h e machinery sketched i n
IF;,
E
^v
has I F I z A < c l F l C P
E
1 FCP i n L A
= W.
Since F E 1?1 i s bounded on t h e r e a l a x i s ( f o r
AAA
+
P D e f i n e f i n a l l y K =IpW = { f ; f ( x ) = Im F(X)vX(x)$p(X)dX; F E W l ;
(A real).
to f
5 for
vp"f i n L,
+
-1 For an analogy t o Wm o f D e f i n i t i o n 12.4 we w i l l t a k e W = uW(0) t o
X real.
given
ic =
E
AbAn
+
*
Thus Qf = PB f and we t h i n k here a l s o o f B:
lEp L c f . Theorem 12.3).
then formally B f ( x ) =
/,"
Moreover i f f E Fc w i t h supp f
B(y,x)f(y)dy
=
f
Q
B(y,x)f(y)dy,
since
~ ( y , x ) = 0 f o r x > y, and t h u s B * f ( x ) = 0 f o r x > U. Consequently B*:FC Q "c Ac A c I : and PB*f = QfE = Ep = F = F T h e r e f o r e i n (+) a f t e r (10.29) we
E;
4
-f
9'
have ( a l s o i n Tn above b e f o r e D e f i n i t i o n 12.8) QfQg E W by Lemma 12.9 and one l o o k s f o r :pRi
= Rn = CpPgsn and
Q
R i n W'.
Here R = Ro + R
e v e n t u a l l y d e f i n e d as i n (10.36) o v e r elements P f
9
E
W.
w i l l be n
We a l s o assume l ( x )
i n (10.33) i s w e l l d e f i n e d . Thus w r i t e i n s t e a d o f (10.33) t h e approximation f o r m u l a f o r Sn E F;
4
=
EF
( c f . a l s o (10.35)) (12.18)
PRU = n
6"
Q
= 6"
Q
+
jr
L(x,y)$(y)dy
where tr a n g u l a r i t y of L i s a consequence o f assuming ~ ( y , x ) t r i a n g u l a r as Take t h e n ( y x,y) = 6 ( x - y ) + L(x,y) and a(y,x) = 6(x-y) + K(y,x)). f E lK,Pf = F E W, and a c t on t h i s f i n (12.18) t o o b t a i n ( c f . (10.35))
above
(12.19)
99
CANONICAL FORMULATION
L e t us t r e a t t h e s e terms s e p a r a t e l y . (12.20)
(6”,f)
m
(
jr
=
Q
an(x),I
f
Gn(x)A-lfdx =
Q
6
P F(h)qh(x)Cpdh) =
n
where FCP E L 1 f o l l o w s from F
E
W,
= c.
(12.21)
( R 0 ,Pf
0
Then i n (12.20) (12.22)
h)Apq,(x)^vpdhdx P
=
P F(X)~p<6n(x),q,(x)>dX
I( 6n(x),q$x)) I
=
11’ 6’(x)qA(x)dxl P
5
A o
we d e f i n e Ro ( = vp) i n W ’ v i a
As i n (10.36)-(10.37) = yjo 1i m
l,^i
’;6”
and, s i n c e I q p ( x ) I c c f o r X r e a l and x
bounded ( c f . D e f i n i t i o n 12.8) we have c i l 6”x)dx
P = P -1 , A p = A Q)
F i r s t (recal
f(y)/AQ(y) = (cP(’)Ypf)),
we s e t
( ~“(X),A-
which determines R:
Q
1f ) =
(
F(x),$P( 6n ,qA(x) P P
A
= vp(h)( 6n(x),qh(x))
= ( F(A),R;)~
i n W ’ ( s i n c e R;
5 cCp(h)).
Next we l o o k a t t h e second t e r m on th,e r i g h t s i d e i n (12.19) and w r i t e (reand l ( x ) = l i m L(x,y)/AQ(y)
c a l l L(x,y)
=
A?(x)i(x,y)Lt(y)
(12.23)
(
f ( x ) , [L(x,y)$(y)dy)
(
f(x)Ai’,f
= ( f(x)At’,[
= A?(x)ax))
i(x,y)A:(y)6n(y)dy)
=
L ~ ( x ) ~ ( x , y ) A ~ ( y ) E n d d =y )( f(x)A;’(x),$,,(x)) 0
where $,(x)
L e t us r e c o r d a g a i n ( f o r A 9 =
$(x)i(x,y)A;(y)an(y)dy.
=
Ap) t h e c o n t e n t o f (12.22) i n
1
m
(12.24)
f(x)/Ap(x)
=
Pf(h)q!(x)
0
P I f we r e s t r i c t x t o be bounded (say 0 5 x 5 a ) t h e n as above Iq,(x)l and
(0)
sup I f ( x ) / A p ( x )
I
5 cull?f$pll L1 ( 0 5 x 5 u).
i n p a r t i c u l a r t h a t i f Fn = P f n supp fn C [O,U]
(i.e.
Fn
f i n i t e i n t e r v a l [O,U~. t h e map F
+ (
f(x)A:(x),$(x))
o u t s i d e o f [O,U])
-f
0 i n L (vpdh) ( i . e .
The i n e q u a l i t y GPFn
-f
5c
shows 1 0 i n LA) with (0)
0 i n W) t h e n f n ( x ) / A p ( x ) 0 u n i f o r m l y on t h e 1 T h e r e f o r e i f + ( x ) i s any L f u n c t i o n ( o r i n -f
-f
Lie,)
i s c o n t i n u o u s ( F = P f , f/Ap E Lm s i n c e f
and determines an element R E W ‘ such t h a t $
(
,F) $
R
=
0
=
L e t us r e c a l l h e r e from D e f i n i t i o n 12.2 t h a t we a r e f(x)/Ap(x),$(x)). *C d e a l i n g w i t h c o u n t a b l e unions E: = UEC(u), = W E (u), e t c . and t h e t o p o l Qk 9 ogy i n t r o d u c e d i n D e f i n i t i o n 12.8 f o r Ep o r W i s t h e s t a n d a r d i n d u c t i v e
(
2:
l i m i t t o p o l o g y ( c f . [C19; G f l ; S j l ] .
Thus t o determine t h a t an element T
i s i n t h e dual of such a space one need o n l y check t h a t T i s continuous on
100
each
ROBERT CARROLL
~E(cI)o r bJ(u),
Conseand s e q u e n t i a l arguments s u f f i c e ( c f . a l s o §l).
q u e n t l y we can w r i t e (12.25)
(
f(x)A,'(x),$,(x))
= ( R:,F(h)
f o r some Rn E 14' s i n c e Gn w i l l q u a l i f y as a li, above. I n t h i s r e s p e c t l e t 9 us remark f i r s t (see below) t h a t $n w i l l be continuous under o u r assumptions V
A
about L, L, 1, e t c . which we e x p l i c i t l y s t a t e as
"
A
H@'@ZHHE5€$ 12-10, Assume t h e p o t e n t i a l q i n Q i s such t h a t = 2~(x)i(x,y)~:(y)
0 5 y 5 x.
= ~,(x)-e^(x,y) = 2z(x)i'(x,y)
(Ap = A
) L (x,y)
Q 1 i s continuous i n (x,y) f o r
Note f o r Ap = x2m+1 and reasonable q t h i s i s v e r i f i e d i n [Gel,
21 ( c f . [C40] f o r d e t a i l s and see a l s o Theorem 11.10). I n t h e s i t u a t i o n where Hypotheses 12.10 h o l d we c o n s i d e r Gn(x) = f x L:(x) V
L(x,y)A;'(y)b"(y)dy
=
0
ll (x,y)an(y)dy 0"
fx
and check immediately t h a t i t i s
continuous i n x ( s i n c e L (x,y) i s continuous and gn E L ' ) . T h e r e f o r e Rn i n 1 9 (12.25) above i s w e l l d e f i n e d . We can g i v e i t a formal e x p l i c i t e x p r e s s i o n ( c f . (10.34) and Theorem 10.15) b u t one s h o u l d r e c a l l Remark 10.16 i n t h i s Thus f o r m a l l y (supp f c [O,a])
connection. (12.26)
(
Rny,Pf(X)
q
:j (
J: A';
F ( 1 ) ,v ( 1 )
= ( Rn,F(X)
= ( f(x)Ai
9
I
=
m
(x,y)J"'y)
jOma;( x 1[ iy.'$x
P A p ( ~ ) 9 X ( ~ ) F ( h ) v p ( X ) d h d y d=x ,y 16" (y ) d y l dx )
which e x h i b i t s Rn f o r m a l l y , as a d i s t r i b u t i o n , b y q
REmARK 12.11.
We n o t e t h a t i t i s t e m p t i n g b u t i n c o r r e c t t o r u n t h e x i n t e The i n t e r c h a n g e o f x
g r a l i n (12.27) from 0 t o u ( s i n c e supp f c [O,u]).
and 1 i n t e g r a t i o n i s t h e n n o t j u s t i f i e d s i n c e t h e [O,u] valid a f t e r the A integration. supp f c [O,U],
F(X) = F C f =
range f o r x o n l y i s
As an example t o i l l u s t r a t e t h i s c o n s i d e r
fm
0
f(x)Cosaxdx w i t h R ( A ) = & ( A ) = (2/a)FC[1].
Then fa f ( x ) 1 dx = fm 1 ( 2 / T ) f m F(A)CosAxdh dx = fa F ( h ) ( 2 / v ) f m dh =
0
(
F(x),s(x))
0
= F(0).
0
0
i n t e r c h a n g e i n t e g r a t i o n s we o b t a i n 'f t h i s i s not correct.
0
1 Coshxdx
However i f we r u n t h e x i n t e g r a l f r o m 0 t o u and 0
f ( x ) d x = ( 2 / x ) f m F(h)[Sinhu/X]dX 0
and
Summarizing t h e above we can now s t a t e a r e f i n e d v e r s i o n o f Theorem 10.15
CANONICAL FORMULATION
$
101 A
A
Q = Q as i n (9.1) ( t h u s AQ = Ap) and l e t 8 : 4 P w i t h kernel y ( x , y ) = 6(x-y) + L(x,y) s a t i s f y Define t h e spaces E i , W, e t c . as i n Definition 1 2 . 2 and De= q!. f i n i t i o n 12.8 where Ro = i s presumed known. Then t h e Parseval formula (10.28) holds f o r f , p E IE; where R = G p R v E kr' i s defined by R = Ro + R q' which one determines by (10.36).
7lHZQ)REm 12-12, Assume Hypotheses 12.10 where A
&!
= ?lo with
A
-f
cp
$,
I t remains t o check t h e l i m i t operations Rn + R and R: Ro i n W ' A n P q A (weakly). F i r s t t h e passaoe of R: = v p ' 5 , q X ( x ) ) t o Ro = v p in W ' i s t r i v i a1 since ( F(A),R:)A = ( 6'(x),Aq1(x)f(x)) ( S ( x ) , A O 1 ( x ) f ( x ) ) = lim f ( x ) /
P400Q:
-f
-f
(There i s no need t o consider (x) = ( F ( A ) , R o ) X so :R Ro weakly i n W ' . any other topology in I d ' . ) . As f o r Rn R i n Id' weakly i t i s simplest t o q q ( c f . (12.25) and (10.36)). Recall $J,(x) = show ( fa: , i n+ ) f m L(x)f(x)dx A fo $ ( x ) L ( x , y ) A ~ ~ y ) 6 n ( y ) d iys continuous and A p ' ( x ) $ , ( x ) = A p l ( x ) J 0x (x,y) y ) . has by s n ( y ) d y = f X;(x,y)Gn(y)dy where ;(x,y) = A ~ * ( ~ ) ~ ( x , y ) A ~ (One 0 assumption t h a t < ( x , y ) = A,(x)L(x,y) i s continuous i n ( x , y ) and we know f ( x ) A p l ( x ) is continuous. In t h i s respect l e t us observe from (12.24) t h a t P f o r x bounded ( 0 5 x 5 IT) say with I q , ( x ) l L ~ C ,one has f o r f p ( x ) = f ( x ) /
A
9
-f
-f
rl
(fp(X+ X) - fp(x)l = Ifm Pf(A)Gp(h)[qA(X+X ) - q XP ( x ) ] d X [ 'J0 N IPfcpl P 0 140XldX + 2cufNmIPfGpldX. Given F pick N so t h a t I," IPf$pldX < E / ~ c , and 6 P so t h a t by uniform c o n t i n u i t y of q h ( x ) on C X E [O,N], x E [O,u]3 one has P 140Xl 5 42J"0 l P f v p l d h f o r \ A x 1 5 6. I t follows t h a t IAf p,-1 and f P i s con0 and L l ( x , y ) Ap(x) tinuous. Next r e c a l l t h a t f ( x ) = lim l?(x,y) a s y
AP(x),
-+
-+
A
L(x) = L l ( x , O ) i s then continuous. Mow f o r f fixed t h i n k o f t h e continuous 1 Lloc fApl i n Lm = ( L 1 ) ' w i t h s u p p o r t in [O,u] say and t h e continuous $,, 1 ( o r L over [O,o]). Then f o r x fixed $,(x) = f X r1(x,y)6'((y)dy = ( L l ( x Y y ) , 0 6 n ( y ) ) -+ r l ( x , O ) s i n c e d n 6 in E'. Further l + n ( x ) l Lsup I < ( x 7 y ) l I O x6 " ~ )
',"
-f
V
dy 5 s u p l r l ( x , y ) I L C ( s u p over 0 5 y 5 x ) by t h e c o n t i n u i t y of L1 i n ( x , y ) . +(x) = By bounded o r dominated convergence i n L1 i t follows t h a t $,(x) A L1 V (x,O) i n L 1 and consequently ( fh;' , G n ) -+ ( fAp' y(l (x,O) ) = ( fAp' ,ApL(x) ) = -f
(f,R).
This Page Intentionally Left Blank
1.
INCR0DUCCI0N.
We have seen i n Chapter 1 how c e r t a i n t r a n s m u t a t i o n s can
be c o n s t r u c t e d v i a Goursat problems and c h a r a c t e r i z e d v i a Cauchy problems. Some i n d i c a t i o n o f t h e c o n s t r u c t i o n o f t r a n s m u t a t i o n k e r n e l s v i a s p e c t r a l p a i r i n g s was a l s o g i v e n and we w i l l develop t h a t theme e x t e n s i v e l y i n t h i s chapter.
A l s o we w i l l d e s c r i b e a c h a r a c t e r i z a t i o n o f t r a n s m u t a t i o n s v i a
m i n i m i z i n g procedures which i s r e l a t e d t o l i n e a r l e a s t squares e s t i m a t i o n when t h e r e i s an u n d e r l y i n g s t o c h a s t i c process (as i n Chapter 3, 5 6 ) .
One
can a l s o t h i n k o f t r a n s m u t a t i o n s as a r i s i n g f r o m c o n n e c t i o n formulas between s p e c i a l f u n c t i o n s v i a t h e a p p r o p r i a t e Goursat problem and we w i l l show how t h e v a r i o u s approaches and ideas f i t t o g e t h e r .
F u r t h e r we w i l l g i v e an ex-
t e n s i v e development here o f general G e l f a n d - L e v i t a n (G-L) and MarEenko ( M ) equations.
The i n g r e d i e n t s ( a n a l y t i c i t y , Paley-Wiener ideas, e t c . ) needed
t o connect two l i n e a r second o r d e r d i f f e r e n t i a l o p e r a t o r s P and Q v i a t r a n s m u t a t i o n a r e i s o l a t e d and t h e i r r o l e i n d e t e r m i n i n g p r o p e r t i e s o f t h e connection i s indicated. As a preview o f t h i s c h a p t e r we n o t e t h e f o l l o w i n g .
§ 2 discusses s p e c t r a l
p a i r i n g s f o r t r a n s m u t a t i o n k e r n e l s i n a general way and a l s o g i v e s v a r i o u s examples. (Q,
=
The p r o t o t y p i c a l k e r n e l s f o r t r a n s m u t a t i o n s Bo: D2
D2 +
[(2m+l)/x]D)
+
Qm and B - l
Q
a r e o b t a i n e d and such t r a n s m u t a t i o n s a r e discussed
w i t h a view t o d i s c o v e r Ro.
53 i s about t h e general extended G-L e q u a t i o n I n t e r t w i n i n g i s discussed i n r e l a t i o n
and i n d i c a t e s s e v e r a l p o i n t s of view.
t o c o n n e c t i o n formulas and a p r o t o t y p i c a l G-L e q u a t i o n i s e x h i b i t e d f o r B above.
Q
§ § 4 - 5 g i v e a d i s c u s s i o n of c l a s s i c a l quantum s c a t t e r i n g t h e o r y f o l -
l o w i n g Fadeev and p r o v i d e a f i r s t e x t e n s i o n o f t h i s t e c h n i q u e t o connect t h e G-L and M equations i n terms of t r a n s m u t a t i o n ideas.
The r o l e o f a n a l y t i c i t y ,
Paley-Wiener ideas, t r i a n g u l a r i t y , e t c . i s discussed and a p p r o p r i a t e propert i e s o f k e r n e l s a r e p r o v i d e d i n a f a i r l y general s e t t i n g . new canonical i n t r i n s i c v e r s i o n of t h e G-L and
103
I n 56 we g i v e a
M connection v i a t r a n s m u t a t i o n
ROBERT CARROLL
104
f o r Fourier type operators P = D2 - q and f a i r l y general Q .
The operational
calculus f o r Fourier type eigenfunction transforms on t h e f u l l l i n e is developed and a generalized Kontorovi&Lebedev ( K - L ) inversion i s a l s o e x p l o i t ed on t h e half l i n e . Spectral i n t e g r a l s f o r t h e various kernels a r e exhibi t e d a n d t h e r o l e of G-L (resp. M) equations as lower-upper (resp. upperlower) f a c t o r i z a t i o n s of G-L data (resp. r e l a t e d PI d a t a ) appears i n a canonical manner. 57 i s about t h e c h a r a c t e r i z a t i o n of transmutation kernels via minimization procedures and one shows l a t e r in Chapter 3, 5 6 t h a t when t h e r e i s an underlying s t o c h a s t i c process this procedure i s equivalent t o e characterize l e a s t squares estimation t o determine the f i l t e r i n g kernel. W here b o t h the G-L and M equations as minimizing c r i t e r i a ( a s "Euler" equat i o n s of a v a r i a t i o n a l argument). 58 goes t o the study of transmutation f o r t h e Q type operators o f Chapter 1 , § 7 and a l s o c o n s t r u c t s kernels via Gours a t problems and successive approximations. A generalized K-L inversion N
theory i s developed (extending the c l a s s i c a l one) and various generalized t r a n s l a t i o n s , generalized convolutions, e t c . a r e discussed. 59 continues in t h e operator format and shows f i r s t how t h e Bergman-Gilbert ( B - G ) op-
5
e r a t o r a r i s e s i n s p e c t r a l form as a transmutation. Then some a p p l i c a t i o n s t o the construction of "canonical" generating functions ( f o r special functions) a r e given. General formulas f o r s p e c t r a l c h a r a c t e r i z a t i o n o f kernels and t h e construction of generating functions via residue calculus a r e g i v e n and some new applications ( e . g t o Glhittaker functions) a r e indicated. 510 involves some new work showing i n p a r t i c u l a r how one can c o n s t r u c t orthogonal functions (generalizing t h e idea of Krein f u n c t i o n s ) corresponding t o Transmutation methods a given measure of say polynomial growth on [O,m). provide t h e e s s e n t i a l i n t e r p e r t a t i o n and construction and t h e orthogonal functions are determined via a d i f f e r e n t i a l equation and a general G-L equat i o n . Some f u r t h e r i n s i g h t i n t o t h e minimization procedure of 57 i s proe wanted t o i n s e r t a secvided in the context of approximation theory. W t i o n on e l l i p t i c transmutation b u t instead r e f e r t o [C40,35]; one can show f o r example how generalized a x i a l l y symmetric potential theory (GASPT) can be constructed canonically via transmutation ideas and thus one represents GASPT a s a special case of a whole canonical family of such t h e o r i e s . General Hi1 b e r t transforms, t h e conjugate Hankel transform, Erd6lyi-Kober (EK ) operators, and i n t e r p o l a t i o n can be discussed from t h e transmutation point of view. 5l'l provides some general constructions r e l a t i n g transmutat i o n kernels t o t h e " p o t e n t i a l s " i n t h e operators from which t h e transmutat i o n s a r i s e . For example the r e l a t i o n A-'(y) = 1 - K(y,y) f o r Qu =
SPECTRAL PAIRINGS
105
(Au‘)’/A and p QX ( y ) = A-4(y)Cosxy + fy K (y,E)CoshgdE (needed i n Chapter 3, 0 5 557-8) i s obtained by a new method. SPECCRAG PAIRZNGl3 FOR GENERAflZED CRAGLACI0N AND CRANSPIllEAEl0N KERNELS. Let us t a k e operators (1.9.1) as before w i t h R Q a s i n Theorem 1.12.12 and w r i t e formally 2,
(2.1)
q6Q(A) = 1; S4(x) = S ( x ) / A (x);l!$[l](x) = 6 ( x )
Q
Q
= (
RQ,u!(x));
Similarly p[G(x-y)] = p X Q ( x ) and (A-’f(y),A-4s(x-y)) = A-’(x)f(x) in a f o r Q 4, 4 ma1 b u t j u s t i f i a b l e manner. Now l e t P and Q be qeneral operators of t h i s type based on ( A p , q p ) a n d (A ,q ) w i t h a common s p e c t r a l parameter. The Q Q main point here i s t h a t the spherical functions and J o s t s o l u t i o n s f o r both A A A 2 2 P and Q a r i s e from the equations Rp = -A p and Qp = -X p w i t h t h e same values of X . The s p e c t r a l parameter X e n t e r s in the same manner (as an eigenvalue) and since t h e “eigenfunctions” ( p0i e t c . will be defined f o r a l l 1 A
(and a n a l y t i c in r e g i o n s ) , a s long as we take s p e c t r a l i n t e g r a l s o f eigenfunctions over regions where t h e integrand has s u i t a b l e p r o p e r t i e s , t h e r e will be no problem. One need not f o r example be concerned a t a l l w i t h A 2 having i d e n t i c a l L type spectra f o r $ and Q (and generally such spectra a r e d i f f e r e n t ) . The use of the word “eigenfunction” f o r p 0i say is perhaps inappropriate s i n c e q : i s defined f o r a l l X and i s a n a l y t i c b u t we will cont i n u e t o use this terminology. Let us emphasize a l s o t h a t i n constructing transmutations via PDE techniques, Riemann f u n c t i o n s , e t c . as i n Chapter 1 , A n no i d e n t i t y of s p e c t r a f o r P a n d Q i s involved. In f a c t some of t h e main r e s u l t s (e.g. Theorems 1.5.5 a n d 1 . 1 2 . 1 2 ) involve producing a Parseval f o r mula f o r a f a i r l y general 0, with many s p e c t r a l p o s s i b i l i t i e s , i n terms of A some fixed P as base o b j e c t . We will see t h a t t h e r e s u l t i n g transmutation A A P kernel f o r say B: P -t Q : p X -t q Q can normally be expressed a s a s p e c t r a l i n t e g r a l over spec ? w i t h 8 = B” given by an i n t e g r a l over spec $ (both kernels can be considered as s o l u t i o n s of s u i t a b l e Goursat o r Cauchy probA A lems). We consider now again t h e construction of a transmutation B: P Q P characterized by &PA = p: and i n terms of PDE we a r e in the s i t u a t i o n of say Theorem 1 . 4 . 3 with operators P a n d 0 (q (x,O) = 0 i s natural because of Y fixed) s i n g u l a r i t i e s and A = 1 ) . Let us note f i r s t t h a t i f one s e t s ( f o r A P Q 2 P ( 0 ) V(X,Y) = P ~ ( X ) I P ~ ( Ythen ) ^P(Dx)p = Q ( D Y b ( = - A P ) while ~ o ( x , O ) = p X ( x ) P w i t h p (x,O) = 0. Hence formally ( t a k i n g ‘ p x ( x ) a s even i n x f o r example) Y A
-f
106
ROBERT CARROLL A
= and c o r r e s p o n d i n g l y e x t e n d i n g t h e P - f u n c t i o n s t o be even) ip(0,y) = ipA(y) Q P We can now determine t h e k e r n e l ~ ( y , x ) o f B i n terms o f s p e c t r a l (b,)(y).
p a i r i n g s and a l s o c h a r a c t e r i z e 8 = 6 - l i n t h e same way. We have been and w i l l c o n t i n u e t o be vague a t t i m e s i n s p e c i f y -
REIRARK 2.1.
i n g t h e domains o f t r a n s m u t a t i o n o p e r a t o r s such as B.
I n $ 5 5 and 12 o f
Chapter 1 one was q u i t e p r e c i s e i n d e s c r i b i n g i n v e r s i o n formulas b u t such concern w i t h domain i n general would impede t h e development o f t h e t h e o r y and b u r y e v e r y t h i n g i n a hopeless maze o f n o t a t i o n .
For example one can de-
f i n e o p e r a t o r s P, Q, B y e t c . on w i d e l y d i f f e r e n t c l a s s e s o f o b j e c t s depend-
ing on what you a r e s t u d y i n g .
F o r example we j u s t d e f i n e d B f r o m (.)
on
P
g e n e r a l i z e d e i g e n f u n c t i o n s 9 x and a l t h o u g h one can l o c a t e such o b j e c t s i n Sobolev spaces based on
(cf. [Bil;
Gf1,3;
Ral]) i t would o b v i o u s l y be P s i l l y t o w o r r y about t h i s now; one can t h i n k o f q A ( . ) i n Cp f o r example and t h e c o n s t r u c t i o n o f i n v e r s e s 8 = B - l i s o f t e n b e s t regarded i n t h a t l i g h t . Some i n d i c a t i o n o f spaces o f f u n c t i o n s where t h e t r a n s f o r m s and transmuta-
t i o n s a c t i s g i v e n l a t e r ( w i t h s u i t a b l e a t t e n t i o n t o m a t t e r s o f growth o f t h e o b j e c t f u n c t i o n f a t 0 and Now l e t T;
m
and t h e v a n i s h i n g o f f o r f ' a t 0).
be t h e g e n e r a l i z e d t r a n s l a t i o n a s s o c i a t e d w i t h
U(x,y) = T:f(x) extended t o
determined by
?(D )U; U(x,O) = f ( x ) ; Uy(x,O) = 0 ( f i s Y as an even f u n c t i o n ) . S i m i l a r l y l e t S: be t h e g e n e r a l i z -
where (+) ^P(Dx)U =
(-m,m)
A
ed t r a n s l a t i o n a s s o c i a t e d w i t h Q determined i n t h e same manner.
We w i l l
show now t h a t
(2.2)
B(Y,X)
P
Q
= ( f l A ( X ) d P X ( Y ) )" A
i s t h e k e r n e l o f t h e t r a n s m u t a t i o n B: P
A -f
Q c o n s t r u c t e d v i a Theorem 1.4.3
)" denotes t h e v - s p e c t r a l p a i r i n g as i n w i t h C = 0 and A = 1. Here ( P P 1.12.1 v i a R o r dvp ( n o t e t h a t when dvp = Cp(A)dX t h e n R 2r $(A) i s a func-
tion).
where
Thus c o n s i d e r t h e f u n c t i o n
(
,
)
denotes a s u i t a b l e d i s t r i b u t i o n p a i r i n g on (0,~). D e t a i l e d pro-
p e r t i e s o f such k e r n e l s B(Y,S) and g e n e r a l i z e d t r a n s l a t i o n s U(x,S) = TXf(S)
5
w i l l be discussed l a t e r ( c f . a l r e a d y Chapter 1) and f o r now we proceed a t t i m e s somewhat f o r m a l l y . U(x,c)) = A
A*
(
P B(Y,s),~(x,s))
5
One has 6(Dx)p = and from (2.2)
~ ( y , ~ ) ~ ? ~ U ( x=, (~ B) ( )Y . S ) , ? ~ 2 P 0 P S ~ ( y . s )= -( A nx(5),ipi(y) )" =
(
A*
Q y ~ ( y y ~T h) i.s k i n d o f c a l c u l a t i o n a r i s e s o c c a s i o n a l l y and t o j u s t i f y i t
SPECTRAL P A J R I N G S we n o t e t h a t t h e passage
107 A*
e ( y , ~ ) , ~ ~ U ( x , t~o) )( P E e ( y , ~ ) , U ( x Y ~)) i s s i m p l y P = (b;((<),q ( 5 ) ) ( a c t i n g on s u i t a b l e f u n c t i o n s ) . R e c a l l
(((E),bL(<))
(
M*
A*
A
so P Apq = ( a p q ' ) ' = Now an elementary c a l here P 4 = [ ( $ / A p ) ' A p ] l (Pqu,.A = (qp,,P )o T + A~W(P,,P~)(T) P P c u l a t i o n g i v e s f o r ( , )o = f
'?:*{
J)T
(W(f,g)
=
Poi,
-
fg'
f ' g and W(qx,qu) = 0 a t x = 0 ) .
On t h e o t h e r hand from t h e
2
A
d i f f e r e n t i a l o p e r a t o r Pu = ( A p u l ) l / A p + ppu - pu one o b t a i n s a Darboux2 T P P P P = ST(X,u). C h r i s t o f f e l t y p e formula ( A 2 - 11 )I % ( x ) q u ( x ) d x = ApW(q,,qu)(T) 0
But from Elf = I ( a c t i n g on s u i t a b l e f u n c t i o n s ) we have as i n Remark 1.11.3, P P P a P For convenience t h i n k o f R as a f u n c t i o n $ and R ( P x ( x ) , p P ( x ) )o = S ( X - u ) . 2 2 A m P n o t e t h a t sT(h,u) i s a n a l y t i c i n h , ~ . Thus &sT(h,p) + (A - p ) v f y ( x )
2
2
0
q P ( x ) d x = (A - p ) 6 ( x - p ) .
u
I t f o l l o w s t h a t i n i t s a c t i o n on s u i t a b l e o b j e c t s ?
" P
t h e o p e r a t o r sT(h,u) 0 f o r x # 1-1 , as w e l l as f o r = u, so t h a t ( P q u , P P A* P R ) = ( q ,P R ) i s confirmed i n t h i s c o n t e x t . Direct calculation using -f
x
F
i
x
t y p i c a l spherical functions w i l l also verify ;(Dx)q
the result.
Consequently
$(D )P (from above) and q(x,O) = ( e(O,c),U(x,~) ) w i t h q ( 0 , y ) = Y (a(y,c),U(O,c)) = ( B(y,S),f(c)) (U(x,y) = U(y,x) i n general here). Now as =
i n ( 2 . 1 ) B(O,S)
= ({(E),I
)v = 6 ( c ) so q(x,o)
f ( x ) ( a l s o qy(xyO) = ( B~(O.E),U(X,E)) = 0). n i t i o n o f B, and t h i s must agree w i t h q(0,y)
= (6(c),~(x,c)) = u ( ~ , o )=
Hence q ( 0 , y ) = B f ( y ) , by d e f i = ( ~ ( y , ~ ) , f ( c ) ) . It f o l l o w s
t h a t B(Y,E) g i v e n by ( 2 . 2 ) i s t h e k e r n e l o f B and we have A
KHE0REN 2-2, I f B i s t h e t r a n s m u t a t i o n B: P A
( w i t h A = 1 and C = 0, (P,Q)
%
Q determined b y Theorem 1.4.3 A
A
(P,Q)) where t h e P s p e c t r a l p a i r i n g v i s
known, t h e n B i s c h a r a c t e r i z e d by &p! g i v e n by ( 2 . 2 ) .
A -f
= q:
and t h e k e r n e l ~ ( y , x ) o f B i s
F u r t h e r one can w r i t e t h e s o l u t i o n 9 o f t h e Cauchy prob-
lem c h a r a c t e r i z i n g B i n t h e f o r m ( 2 . 3 ) where U(X,E) (2.4)
IP(X,Y) = ( v hP( x ) , f (" A ) q h4( y ) ) v ;
;(A)
= TXf(5) o r equivalently
5
= Pf(1)
Ptluod:
Only t h e l a s t a s s e r t i o n remains and ( 2 . 4 ) can be o b t a i n e d by r e a r 4 P ( a(y,s),U(x,5)) = (~x(y~y(~~(S),U(x,5)))V 4 P = ( q x ( y ) , ~ ( x , k ) )v. n ~ o w$(x,x) = ( n ~ ( c ) , ~ ( x , c ) )s a t i s f i e s PJ, = ( %(s), 4 P A* P 2 P PxU(x,s)) = (a,(c),P U ( x , s ) ) = ( P a ( s ) , U ( x , s ) ) = - h J, w i t h $ ( O , h ) = (Qx(5), 5 E x f ( 5 ) ) = ? ( A ) and $x(O,h) = 0 ( c f . ( + ) ) . Hence ( g i v e n unique s o l u t i o n s o f 2 " P P(Dx)J, = - A J , ) we have JI(x,A) = f ( h ) q x ( x ) and ( 2 . 4 ) f o l l o w s .
r a n g i n g ( 2 . 3 ) i n t h e form P(X,Y) =
L e t us r e c a l l now some t r a n s f o r m a t i o n s which mix t h e s p e c t r a l p a i r i n g and t h e g e n e r a l i z e d e i g e n f u n c t i o n . Thus s e t ( c f . 1 . 1 2 . 3 ) qF(y) = ( q x4( y ) , F ( X ) )v; P IPF(x) = ( q x ( ~ ) , F ( ~ ) ) u . Examining t h e p r o o f o f Theorem 2.2 we see t h a t g i v e n A
unique s o l u t i o n s o f ( 6 )
[Pxq
=
4Yq ,
q(x,O) = f ( x ) , qY(x,O)
=
01 (and of
108
ROBERT CARROLL
= - A 2$ ) t h e n from (2.41, v(x,O)
;;(Ox)$
P
(aA(5),1
required only that
)v =
=if(x).
f ( x ) = ( f "( x ) , v AP ( x ) ) ,
=
This
6( 5 ) and shows
COR@LLARM 2.3. Given unique s o l u t i o n s of ( 6 ) and o f Px$ = - A 2 $ w i t h a specP t r a l p a i r i n g v such t h a t ( P A ( 5 ) , l /= 6 ( S ) i t f o l l o w s t h a t P = P-' has t h e A
form P F ( x ) =
Pkooj:
(
P F(A),cpA(x) )v.
Also one can w r i t e B = @.
For t h e l a s t statement we have f r o m (2.4) and d e f i n i t i o n s above
B f b ) = v(OyY) =
(
"
Q
f(A)%(Y)
) v = !lf?i(Y) = ( @ f ) ( y ) .
It i s easy now t o c o n s t r u c t B = B - l by s i m i l a r procedures.
(2.5)
r(x,u)
Thus s e t
= (vP A ( x ) , qQ Y ) )w
and c o n s i d e r f o r V(y,n) = Syg(n)
n
(2.6)
$(XYY) =
{
v(x,n),v(Y,n))
Then as before one has a c a l c u l a t i o n ^a(Dy)$ = ( ~ ( x , n ) , ~ ~ V ( y ~ =n )( )y ( x y n ) , A
A*
A*
4 Q V(y,n)) = ( Q n y ( x , n ) y V ( y , n ) ) and from ( 2 . 5 ) Q,v(x,n) = - ( v XP( x ) , A 2RA(n)) = A n A Hence ? ( D x ) $ = Q(D ) $ w h i l e $(x,O) = (v(x,n),V(O,n))= ( y(x,n), PXv(xyd. )o = 6 ( n ) as i n ( 2 . 1 ) y we have $(O,y) =
g ( n ) ) and, g i v e n y ( 0 , n ) = ( %Q( nY) , l (y(O,n),V(y,n))
= ( 6 ( n ) , V ( y Y n ) ) = V(y,O)
= g(y).
Thus g i v e n g ( y ) extended A
to
as an even f u n c t i o n say one i s d e a l i n g w i t h a Cauchy problem Px$
(-my-) A
= Q $; $(O,Y) = g ( y j ; $,(O,Y) = 0 f o r x 2 0 ( n o t e ~ ~ ( 0 , n=) 0 so $,(O,Y) = Y Assuming unique s o l u t i o n s s e t Bg(x) = IL(0,x) = ( y ( x y n ) , g ( n ) ) and t h e n 0).
L e t g be extended t o
EHE0REllI 2.4.
A
Cauchy problem
Px$ = Q $; $(O,y)
(m)
!Yx
t i o n along w i t h
as an even f u n c t i o n and assume t h e
(-m,m)
A
=
-A2xY
= g(y);
$,(O,y)
= 0 has a unique solu-
spectral p a i r i n g w then $ i s given
Given t h e
A
by (2.6) and t h e k e r n e l o f t h e r e s u l t i n g t r a n s m u t a t i o n 8: Q i s g i v e n by t h e y(x,y)
@ ( x ) = $(O,x)
(2.7) where 6( Q) 8 =
$(XlY)
o f (2.5).
h
+.
P d e f i n e d by
One can w r i t e a l s o
= ( m y v A P( 4 v AQ( Y )) w
Given a s p e c t r a l p a i r i n g w such t h a t o n l y (C2A(n)yl Q )w = 0 Finally = 9-l where g G ( y ) = ( G ( A ) , v ~ ( y ) )w. i s known i t f o l l o w s t h a t = Qg( A).
PQ and
Pmud:
Q
BpA =
v PA .
We need check t h e d e t a i l s o n l y beyond (2.7).
o f Theorem 2.2 $(x X(~,A))~.
'Y, )
= ( y(x,n),V(y,n))
Q
"
Thus as i n t h e p r o o f
= (vA(x).(Q$(n),V(y,n)) P
C l e a r l y Q x = (c,(~),Q v(y,n)) Y Y
= (SIQh(n),Q(y,n))
=
) .*WQ
= (qA P(x),
(qnnA(n),
SPECTRAL P A I R I N G S
109
V(Y,TI) = -A 2x w i t h x(O,A) = ( a xQ ( n ) , V ( O , ~ ) ) = ( g Qx ( ~ ) , g ( n ) )= ? ( A ) and xy(O, x) = 0. Hence x ( y , h ) = < ( x ) q xQ( y ) and (2.7) f o l l o w s . F u r t h e r from (2.7)
P
and (1.12.3)
e v i d e n t l y 11,(x,O) = Rg(x) = ( q x ( ~ ) , z ( A ) ) o = P c ( x ) = (PQg)(x).
The i n v e r s i o n f o l l o w s from (2.7) by w r i t i n g P(0,y)
Q
F i n a l l y one checks t h a t R q X = (0)
q!
= g ( y ) = (r(A),q:(y))u. P O by c o n s i d e r i n a 11,(x,y) = q x ( x ) 9 p , ( y ) as i n
b e f o r e Remark 2.1.
To show t h a t 8 = B - l we have o f course t h e c h a r a c t e r i s t i c a c t i o n and &: = q ! ( e x t e n d i n g qy t o be even e t c . ) .
P = q xQ &PA
Another p o i n t o f view would
t a k e B f f r o m Theorem 2.2 and extend i t t o be even i n y ( t h i s i s o f t e n autom a t i c s i n c e terms l i k e q Then
5))
satisfies
q
=
(m)
and ( l / y ) q have a p p r o p r i a t e even p r o p e r t i e s ) . YY Y w i t h g(y) = B f ( y ) ( s i n c e a l s o qx(O,y) = ( ~ ( y , s ) , U ~ ( 0 ,
0 ) so by uniqueness q = 11, and f ( x ) = q(x,O)
= 11,(x,O) = B B f ( x ) .
Hence
BB = I and s i m i l a r l y BR = I which y i e l d s
C6ROLLARg 2.5, The t r a n s m u t a t i o n s B and €3 o f Theorems 2.2 and 2.4 a r e i n -
q-’
verse t o one a n o t h e r and
=
W Qw i t h P-’
=
QqP.
P / L U U ~ : The l a s t statements f o l l o w by w r i t i n g e.g. ’ - R )=
Pt?? = I B - l ! = (
=
p-lq-l = IPq-l. n
L e t us e x h i b i t n e x t t h e formulas a p p r o p r i a t e t o t h e t r a n s m u t a t i o n B
Q
=
(m > -%) c h a r a c t e r i z e d by P [Coshx] = q QA ( y ) .
Q,
rl
DL
4:
-+
We w i l l p u t a s u b s c r i p t A
A
Q on o p e r a t o r s and k e r n e l s r e f e r r i n g t o a t r a n s m u t a t i o n P -+ Q o r P Q when 2 2 P = D R e c a l l h e r e t h a t f o r Ap = 1,D has t h e form Pu = @ p u ’ ) ’ / A p and P P q P , ( x ) = Coshx, a k x ( x ) = exp(?iAx), cp(A) = 1/2, dvp(A) = Cp(X)dX = (2/?r)dh, -f
.
etc.
T h i s t r a n s m u t a t i o n B was s t u d i e d e.g.
Kdl-3;
Kel-9;
Consider f i r s t t h e s p e c t r a l k e r n e l s as i n Theorems 2.2 and 2.4.
Thus from (2.2) and Theorem 2.2 k e r B
Q
(cf.
i n [C30,33,40;
Q
Lpl-31.
[C2,3,30,36,40,63]
should have t h e form
f o r such c a l c u l a t i o n s ) .
w i l l be g i v e n by (2.5) as yQ (x,y)
(2.9)
!
W
m ‘
=
The k e r n e l y (x,y)
Q
(Cosh~,E!(y))~ = AQ(y)
=
k e r Bo
= U
( hy)m+l Jm( hy)Cosxxdx = ~ ~ ~ + % ~ [ h ~ + ~ C o s A x ]
0
where c,
=
1 / 2 v ( m + l ) and Hm denotes a ( g e n e r a l i z e d ) Hankel t r a n s f o r m ( c f .
110
ROBERT CARROLL
[Shl;
There a r e s e v e r a l ways t o d e s c r i b e (2.9) i n e x p l i c i t
Tkl; Zbl]).
terms and we w i l l do t h i s below.
CHEORET!! 2-6. The k e r n e l s B
4 and y 4 o f B9 and B4 a r e
g i v e n by (2.8)-(2.9).
The f o r m u l a (2.8) i s q u i t e u s e f u l e s s e n t i a l l y as i t i s . t o i t however goes as f o l l o w s .
(2.10)
(
p4(y,x),f(x))
=
One useful a d j u n c t 2 L e t km = 2r(m+l)/Jd'(m+%), x2 = 5, y =
kg-2m jy(y2
-
x2)m-?if(x)dx =
0
-
(1/2)km
c)m-4f(Jc)dc/Jc
0
We r e c a l l now t h e d e f i n i t i o n o f t h e pseudofunctions Y w i t h Y-n
E fm
Thus f i r s t w r i t e f o r p E
Sjl]).
p(k)(0)xk/k!]dx (
xy,p
DmT = Y-m
*
=
(
0
p ( k,
-
I!-'
Since fEmxap(x)dx ( 0 )/ k ! (a+k+l ) ] one
Di i s t h e n d e f i n e d by Y p = [ l / r ( B ) ] P f xB-' f o r a # !(n) f o r n 2 0 ( n = i n t e g e r ) . One has Y * Yq = Yp+q and E
*
T; ImT = Ym
B0(Y,x),f(x)
q
Yp
we go back t o (2.10) as
* I:f(JE )/Jc1 3 ( 0 )
"n+l )/JvI~-"IY,+%
) =
(where y2 *
Now b e f o r e
T i s a l s o a f r e q u e n t l y used n o t a t i o n .
CbROtGARy 2-7. The k e r n e l B form (2.12)
Jm x a [ p ( x )
as
g o i n g f u r t h e r w i t h o p e r a t i o n s on t h e (2.12)
In-' [E 0
-
p(k)(0)xk/k!]dx )
The d i s t r i b u t i o n Y -n o r 0 and Y-n
D, ( x y , ~ )=
when -n-1 < Rea < -n ( s o Re(n+a) > - 1 ) .
-
xa[p(x)
can w r i t e
= (l/r(B))Pf xB-l
= 6 ( n ) and some r e l e v a n t f a c t s which w i l l be needed l a t e r as w e l l
(cf. [Gfl; =
R
Q
of B
and x2
g i v e n by (2.8) can a l s o be w r i t t e n i n t h e
c).
REmARK 2-8, The f o l l o w i n g i n f o r m a t i o n w i l l be needed l a t e r and i t seems app r o p r i a t e t o r e c o r d i t now. i s given i n [ G f l ; =
Bbel].
The F o u r i e r t r a n s f o r m o f t h e pseudofunction Y
ble r e c a l l f i r s t t h a t x:
0 f o r x 2 0; thus ( x ~ , p ( x ) ) = (x'?,p(-x)
i 0 ) " by (x+iO)" = x y
+
exp(iua)x!;
).
One d e f i n e s d i s t r i b u t i o n s ( x &
( x - i 0 ) " = x+" + e x p ( - i a T ) x r .
f o l l o w i n g formulas h o l d (where F f = ( f ( x ) , e x p ( i s x ) ) , ~ ( x y )= i e x p ( + i a n ) r ( a + l ) (u+io)-a-l; F ( l x ( " ) = -2Sin+an I'(a+l)lsl-'-'
F(X:)
8
= \ x I a f o r x < 0 and x:
s =
u+iT,
Then t h e
.):
a # -1,-2,.
= - i e x p ( - + i a a ) r ( a + l )(u-io)-a-l
;
F(lxIaSgnx) = 2 i C o s h Note here i n p a r t i c u l a r t h a t t h e s e a r e c o n s i s t e n t ( f o r s = u) i n w r i t i n g 1x1' = x; + x,: 1 0 1 -a-1 -- u+-a-1 + u--a-1
r(a+l)ls/-"-lsgns
( a # -2,-4,...).
(a f -1,-3,...);
.
SPECTRAL P A I R I N G S
Also since Y formally
B
= [l/r(B)]x:-'
jmxaCosXxdx =
0
we have FYatl %[Jmx"exp(ixx)dx 0
111
iexp(%av)(otiO)-"-'
=
+ 1:
and w r i t i n g
+
( - g ) a e x p ( i h g ) d g = %[FxY
F x r ] = % F I X \ " ( x - 7 1 ) one o b t a i n s Jm xaCosXxdx = FC[xa] = -r(a+l)Sin%m 0 L e t us n o t e t h a t f o r i n t e g r a l ~ 1 , ~1 = n 2 0, one has F(xY) = in+' IA\-"-'. n! (o+iO)-"-'; F(X;) = -1.nt+ln! ( o - i o ) - n - l , Now g o i n g back t o (2.9) one e x p r e s s i o n f o r y (x,y) due t o [ L p l - 3 1 was l i s t e d
Q
b u t we o m i t i t here ( c f . a l s o [Kdl-3;
i n [C29,40]
more u s e f u l e x p r e s s i o n f o r y r y o f Euler-Poisson-Darboux
Q [ p QX ( y ) ] ( x ) = (yQ(x,y),q1(y) g i v e n by (1.9.4)
i n u s i n g a f o r m u l a o f W e i n s t e i n from t h e theo-
RQ
Thus CosXx =
(EPD) e q u a t i o n s (see [C63]).
)
lle can o b t a i n a
4
and one knows t h a t f o r - % < m < n - 4 and
Iph
1 0 2m+l 2 2 n-rn-3/2 CosXx = ~ i x ( ( s ; O ~j o) v~i ( Y ) Y (X -Y dY
(2.13) where
Q
Kel-91).
~1
=
r(%)/Zn-lr(m+l)r(n-m-~). Consequently ( t a k i n g n
> m+3/2
i f de-
s i r e d and s e t t i n g x2 = 5 , y2 = n )
'/2 = Y -m-$ (2.13) says t h a t (BQg)(J<)/J6
Since Dn Yn-,-
m+% g(Jn)/Jn] n EHEBRER 2-9,
which i s t h e n a t u r a l i n v e r s e t o (2.12) f o r g = B f.
Q
For -%
<
4
m < n-5 and BQ: D2
+
9
Q,
t h e transmutation characteriz-
ed by B [Coshx] = p X ( (PXas i n ( 1 . 9 . 4 ) ) w i t h 8 =
Q
(2.15)
= (Jn/r(m+l))[Y-m-vz*
Q
vm(BQf)(Jn) = [ r ( m + l )/JIT]
(BQg)(J5)/JS
=
r(m+l
[JT/
)I
*
[Y,++ D:
B-' one has ( x 2 ,y 2
Q
Pmol;:
y,(x,y)
& r
= 2J71s nx y
r
m+l
* nmg(Jn)l
[Yn-,,+
i s even i n x )
(x2-y2);m-3/2
-m--i
F o r t h e l a s t e q u a t i o n we n o t e t h a t
(
g(Jn)dn/2Jn so f r o m (2.15) +&J"yQ(Jc,Jn)n-m-4 and t h i s g i v e s (2.16)
5,n)
(f(J~)/J5)1;
The l a t t e r e x p r e s s i o n can a l s o be w r i t t e n as ( n o t e y,(x,y) (2.16)
%
y (x,y),g(y))
4
%
%
J; y Q ( J c , J n )
.
J~1(5-17)-~-~/~/r(m+l)r(-m~)
( a f t e r a d j o i n i n g a sgnx f a c t o r ) .
W i t h a view t o s i t u a t i o n s i n t h e study o f Parseval formulas as i n § § 1 . 1 0 and 1.12 where e x p l i c i t i n f o r m a t i o n about Ro may n o t be a v a i l a b l e ( o r where Ro i s more complex) l e t us show n e x t how one can " d i s c o v e r " Ro u s i n g techniques
112
ROBERT CARROLL
s i m i l a r t o those l e a d i n g t o Theorem 10.15. T h i s approach i n v o l v e s transmu" 2 t i n g D2 = into = when P = D we w r i t e BQ: D2 and use t h e sub-
6 p;
?
-f
s c r i p t Q as i n d i c a t e d above.
I n p a r t i c u l a r we w i l l want t h e p a r t i c u l a r
Q t r a n s m u t a t i o n 6 [Cosxx] = vp,(y) and as above one expects B Q
Q
t o be a "smooth-
i n g " f u n c t i o n and y Q t o be a d i s t r i b u t i o n o f o r d e r g r e a t e r t h a n zero.
First
l e t us connect Ro t o Sy6 ( x ) as i n (10.29) where S: i s t h e g e n e r a l i z e d x Q t r a n s l a t i o n associated w i t h = $' now). S i f ( x ) w i l l have t h e general form (cf. (11.3)) s:f(x) = (y(x,y,n),f(n)) w i t h V ( X , Y , ~ ) = (Q~ ~ XQX ) ~ ~ X Y ) ,
(6
8
CQp , ( n ) ) where w
sequently
2,
i s assumed t o be o f t h e f o r m dW
w Q
(note
(
Q
Q (n),ux(n))
0
= (,;A)dh
.
here.
Con-
= 1)
6
R e c a l l a l s o here t h a t ( C lQp , ( n ) , 6 ( n ) ) Q On t h e o t h e r hand, as i n d i c a t e d a f t e r (2.1), f o r m a l l y
f o r m a l l y ( r e c a l l 6 ( n ) = S ( n ) / A (11)). =
Q
1 as i n (2.1).
Q[~(X-Y)I
fl
= ( ~(x-~),q:(y))
f iQp , ( ~ ) = ) (6(x-c),v:(E))
(2.18) (cf.
= Ip:(x)
and q [ 6 ( x - c ) / A Q ( c ) I =
( ~(X-E)/A~(E),
= vhQ(x) so t h a t f r o m (2.17) we have f o r m a l l y
sZ6Q(x) = ( ~ [ s ( x - E ) / A Q ( 5 ) ' q ~ ( y ) )=~a q [ 6 ( X - c ) / A Q l = 6 ( x - y ) / A Q ( y ) As i n t h e passage (10.29)-(+)
(10.29) a l s o ) .
(2.19)
(
f(x)g(y),s(x-y)/AQ(y))
lom lo
we have ( f , g s u i t a b l e )
= (A-'f(x),A-'g(x)) Q Q
=
m
qf&ldWQ(x)
=
Qf@iQ(i)dx =
(
Ro,gf@))h
(6 = p ) l e a d s f o r m a l l y t o t h e Parseval
Thus t h e f o r m u l a (2.18) f o r S ~ s Q ( x ) formula (2.19)
( f o r s u i t a b l e f,g)
where Ro =
A
i s specified.
Now we t r y
WQ
t o f i n d a g a i n S i 6 Q ( x ) i n t h e form ( c f . (10.29))
s i n c e dv = (2/a)dX. A-'g)
Q
Then u s i n g (2.18) we o b t a i n f o r s u i t a b l e f,g,
= (2/n)(Rv,QfQg)
so t h a t Ro
=
(Z/IT)R'
(2.20) t o o b t a i n (10.30),
i.e.
Q Q
(2.21)
Rv = Pl3 6 = Q
Q
]
6 (x) =
Q
(
Q
(as i s a l s o c l e a r from (2.17)).
Now however we can proceed as i n t h e p r o o f o f Theorem 10.15. f o l l o w , i e. 8 6 ( y ) =3PRv.
(A-'f,
Rv,qx(x) Q
Set y = 0 i n
from which (10.31) w i l l
)",
Consequently one has (13Q6Q)(x)Cosixdx
0 V
We do n o t have recourse here t o such n i c e k e r n e l s
V
K and L f o r t h e o p e r a t o r s
SPECTRAL PAIRINGS
6
=
P and
6 however
113
and c a l c u l a t i o n s involving B 6 must be handled sorneA
Q Qo
0
G:
what d i f f e r e n t l y (we r e c a l l i n p a r t i c u l a r f o r Q = = t h a t t h e kernel In t h i s d i r e c t i o n we note a l s o Theorem y of R4 i s of t h e form ( 2 . 1 6 ) ) .
Q
2.4 which s p e c i f i e s t h a t y ( x , y ) = ( C O S A X , S ~Q~ ( Y ) ) , so t h a t
Q
(2.22)
( 8 6 )(x) =
Q Q
((
Coshx,flA(y) Q ),,SQ(y))
A
EHEB)REm 2-10.
The generalized spectral function Ro for Q where B
l y determined via Ro = (2/71)PB 6
case
t o=
=
Q Q
D2
Qo the computation gives Ro = cmA q:2mt1
m calculations.
+
Go
and
=
Q
A 0
Q
can be formal-
= B-'
Q'
In the
via standard distribution
P M J O ~ : From (2.14) we have
On the other hand from ( 2 . 9 ) we should have ( c f . a l s o ( 2 . 2 2 ) )
(2.24) m
CosAxRo(A)dh = 0
0
Now (2.23) and (2.24) should agree and r e f e r r i n g t o Remark 2.8 we obtain (a = 2rn+l, m - 1 , - 2 , . . . ) , cz.fm h2m+1CosAxdi = -cmr(2m+2)Sin4a 2 f o r (2.24) m 0 t.1) Ix/-zm-2. B u t from [Mbl] one knows r(2m+2)Jn = 22m+1r(m+l)r(m+3/2)
+
2 so -cJ( 2m+2)Sin (m++) TI = -2r (m+ On t h e other hand from (2.23) 6, = -(Zm+l)r(+)/ 3/2)Sin(m+4)n/J71r(m+l). r (m+l )r(+-m) = -2(m++)r (+)r(m+3/2 )Sin (m++)n/r (m+l ) n(m++) = -2r (m+3/2)Sin (m++)x/Jd'(m++) which agrees. Hence ( r e c a l l rn > -+) ( 2 . 2 3 ) and (2.24) agree w h i 1 e 1/r(+-m)
=
r (m+3/2 ) S i n (m++)
71/71
(m++)
and t h e computation f o r Ro could have been c a r r i e d out via P73Q&Qu s i n g standard techniques. Let us make here a few f u r t h e r general comments about constructing generalized t r a n s l a t i o n s a n d transmutations. First r e l a t i v e t o formulas l i k e 1.5. 10 f o r generalized t r a n s l a t i o n l e t us w r i t e more generally (2.25)
u ( x Y y )=
(
;(h)a(A)qh(x),vh(Y) P P ,)
- ( hl f ( ~ ) c ( ~ )P x A ( x ) , x ~ ) E( Y )
where P i s some f a i r l y general operator Pu = ( A p u ' ) ' / A p - pu f o r example, P q ! and ! x s a t i s f y (*) Pq = -12q with ~ P ~ ( =0 1), DxqA(0) = 0 , x!(O) = 0 , and
114
ROBERT CARROLL
P DxxA(0) = -1 ( c f . 51.8 and n o t e t h a t o u r s t a n d a r d s i n g u l a r o p e r a t o r s a r e excluded here).
F o r convenience t a k e a l s o A measures dv = d A / 2 a l c p l 2 and dc = 2X 2 d a / a l F I and 2.6);
thus ;(A)
= (f(x),rp!(x))
and
= 1 and s p e c t r a l p a i r i n g s v i a
!. ( c f . (1.8.43) F(A) = ( f ( x ) , x , ( xP ) ) .
and a l s o sQ.4 Now f o r m a l l y
EHHE0REI 2-11,
F o r s u i t a b l e f t h e e x p r e s s i o n (2.25) r e p r e s e n t s f o r m a l l y a n P g e n e r a l i z e d t r a n s l a t i o n w i t h PxU = P U, U(x,O) = ( f ( ~ ) a ( ~ ) , r p ~ ( x ) =) "A f ( x ) , P Y UY(X'O) = (f(A)c(x),xA(x))E = Cf(x). h,
Ptraoa: (Af)'(O)
C l e a r l y U i s symmetric w i t h U(0,y) = Af(y) and Ux(O,y) = Cf(y) w h i l e Cf(0).
The c o n d i t i o n t h a t A and C commute w i t h P ( c f . Theorem A A 2 P P cp )v = ( (pf)a,rpP)\, = A P f . But = Jcop A ( x ) A 2 i 0 P f ( x ) d x and t o o b t a i n P f = -A f we can s p e c i f y D ( P ) h e r e t o c o n s i s t o f func1.4.3)
=
6
r e q u i r e s P A f = (fa,-,
t i o n s f such t h a t W(p,f)10 = r p f ' - r p ' f (
0
= 0 (e.g.
f ' ( 0 ) = 0 and compact
Note however t h a t a s i m i l a r c o n d i t i o n f o r t h e x t r a n s -
s u p p o r t would do).
form r e q u i r e s t h e n f ( 0 ) = 0 a l s o .
Thus one wants e.g.
f o f compact s u p p o r t
w i t h f ( 0 ) = f ' ( 0 ) = 0 and such t h a t t h e v a r i o u s s p e c t r a l i n t e g r a l s i n v o l v i n g 2 2 a f , -A f, c f , and -A c f make sense. One c o u l d s i m i l a r l y t a k e Q o f t h e same t y p e and c o n s t r u c t f o r -
EMARK 2-12.
ma1 t r a n s m u t a t i o n s P (2.26)
~ ( X , Y )=
Then rp(x,O)
= Af(x),
-f
(
Q v i a formulas
P Q i(A)a(A)pA(x),rpA(Y)
-
(
P
F ( ~ ) c ( ~ ) x ~ ( x ) , x : ( y )) E
pY(x,O) = C f ( x ) , and Bf(y) = rp(0,y) = ( ? ( h ) a ( A ) , p AQ( y ) )
( o t h e r terms c o u l d a l s o be i n c l u d e d ) .
REmARK 2.13,
One can a l s o use c o n s t r u c t i o n s as i n 51.4 t o o b t a i n formulas
f o r t r a n s m u t a t i o n s determined by o p e r a t o r s A and C.
L e t us n o t e f i r s t t h a t
i f P and Q a r e o p e r a t o r s o f t h e f o r m D2 + ap(x)D + b p ( x ) f o r example one 2 2 can reduce t h e e q u a t i o n [D + apD + b ]p = [ D + a (y)D + b (y)]rp t o a form P Y Q Y Q q ( c f . a l s o Remark 1.9.6). Thus s e t t i n g a p i n v o l v i n g o n l y o p e r a t o r s D2 2 2 = exp[WX a p ( ~ ) d ~one ] has D [pap] = ap[D rp + a I& + % ( a,!, + +a2)q] and i f
-
B
0 ZP we w r i t e IL = a p ( x ) a Q ( y ) v w i t h qp = bp - %a; -+ap t h e n ( 0 0 ) [Dx - qp(x)]J' = 2 [ D - q (y)lJ,. F u r t h e r , boundary c o n d i t i o n s rp(x,O) = A f ( x ) and rp (x,O) = Y Q Y C f ( x ) become ( s i n c e a ( 0 ) = 1 and ~'(0) = %aO(O)), $(x,O) = a p ( x ) A f ( x ) =
Q
AQ
~1 ( x j k a (O)Af(x) + C f ( x ) ] . Thus Y QA A D - qQ (P -+ Q) and c l e a r l y i t s u f one i s l e d t o a t r a n s m u t a t i o n D2 - qp A 2 2 " 4 f i c e s t o t a k e P = D s i n c e from t r a n s m u t a t i o n s D Q and P D2 one o b t a i n s
z f ( x ) and
J,
(x,O)
= C f ( x ) where i\Cf(x) =
B
-f
-+
A
-f
A
a t r a n s m u t a t i o n P + Q. Now f o r
= D2
-+
= D2
-
q
Q
we have a Riemann f u n c t i o n as i n 51.4 and a
SPECTRAL P A I R I N G S f o r 11, o f
f o r m u l a (1.4.6)
w i t h f r e p l a c e d by i f and g b y c^f. Assuming
(00)
i f and ^cf a r e s u i t a b l y extended we have e.g.
and Rh(x,O,O,y) (2.27)
gf(y) = i f ( y ) + Af(
X)
- %J:*
^B
based on DX$ =
= $(x,O)
%joy ?f(x)[Kl(y,x)
I:K2 (Y
9
x
K2 (Y
+
4 One can transmute P =
2
( s e t t i n g R(x,O,O,y)
= K1(y,x)
K2(xYy))
=
E’NEORElil 2-14,
115
9
+ Kl(y,-x)ldx
-
Idx
-X
D2 i n t o
$
2
D2 -
=
qo v i a a t r a n s m u t a t i o n
[D - q ( y ) ] $ w i t h even extended i n i t i a l c o n d i t i o n s A^f(x) Y A9
^B
and $ (x,O) = C f ( x ) and Y
i s g i v e n by ( 2 . 2 7 ) .
There i s a n o t h e r approach t o s o l v i n q an e q u a t i o n o f t h e f o r m ( 0 0 ) o r s i m p l y 2 2 Px$ = Dx$ = Qy$ = ( D - q ( y ) ) $ which g i v e s more immediate i n f o r m a t i o n t h a t Y t h e method based on t h e Riemann f u n c t i o n ( c f . [L13] and e s p e c i a l l y [HoZ-41). Thus l e t
D be t h e t r i a n g l e w i t h v e r t i c e s (x-y,O),
w r i t e f o r h(x,y)
(x,y),
and (x+y,O)
and
given x+y-q jo jx-y+; ( 5 If( 5 n )dcdrl y
(2.28)
Hf(x,y)
=
41 h(S,ri)f(S,v)dcdn
=
4
3ri
Y
D (variations with c o u l d a l s o be e n v i s i o n e d here f o r c e r t a i n purposes). It y 2 2 i s e a s i l y seen t h a t [Dx - D ] H f = - h f w i t h Hf(x,O) = 0 and D Hf(x,O) = 0. Y Y Hence c o n s i d e r (2.29)
$(x,Y)
+ %(x+yCf($)d$ + HJ/(x,y)
[Af(x+y) + A f ( x - y ) ]
=
J
Ef(x,y)
+
=
x-y
H$(x,Y)
2 2 2 where h(x,y) = q ( y ) . It f o l l o w s t h a t [DZ - 0 ]$ = [Ox - D ]H$ = -q$ ( i . e . Y Y 2 - q ( y ) ] $ ) and $(x,O) = A f ( x ) w i t h Dy$(xyO) = C f ( x ) . F u r t h e r i t i s Dx$ = [D: shown i n [Ho2-41 ( c f . a l s o [C29])
t h a t t h e Neumann s e r i e s f o r ( I
-
H)-’
de-
f i n e s a c o n t i n u o u s map between v a r i o u s spaces. Thus w r i t e En f o r Cn func1 2 t i o n s i n R o r R w i t h t h e Schwartz t o p o l o g y o f u n i f o r m convergence o f D‘f
5 n ( c f . [C19; S j l ] ) .
on compact s e t s f o r t h e n H: Lyoc
Eo (resp. H: En
+
Lyoc (resp. En+’ + En+’)
CNEP)RER 2.15.
q ( y ) $ w i t h $(x,O)
=
t a t i o n B: D2
-
-
If h E
and ( I
a r e continuous.
-
H)-’:
E
As a t y p i c a l theorem we s t a t e
L e t n 2 2 and A: En
€n) w i t h q ( y ) = h(x,y)
= ( I
En+’)
-f
+
D2
H)-’Ef(O,y)
E
En-’.
+ Eny C : En + En-’ ( s o E f E En f o r f E 1 2 2 Then $ = (I- H ) - E f s a t i s f i e s Dx$ = D $
Y
A f ( x ) and $y(x,O)
=
q d e f i n e d b y $(O,y) =
1”0
HnEf(O,y);
-
The corresponding transmu-
Cf(x).
= B f ( y ) can be r e p r e s e n t e d as B f ( y )
Hy(0,y)
=
41’ q(o)/$: 0
y(c,n)dCdq.
116
ROBERT CARROLL
REWRK 2-16. I n terms of c l a s s i f y i n g " a l l " t r a n s m u t a t i o n s between say P = D2 and Q = D2 - q one t h i n k s e.g. o f t h e Bh i n Theorem 1.4.7 and Theorem 1.4.9
Q = ~ o s h y+ /Y Kh(y,x)Cos xdx ( h + a ) and t h e t r a n s m u t a t i o n w i t h (*) 'Ph,h(y) 0 Bm g i v e n v i a e,(y) Q = [Sinhy/h] + Jy K (y,x)[Sinhx/h]dx ( c f . (1.4.17) w i t h O Q = p Q ). A
plus
"0." e,(O)
iQ also that f o r h + 0
The boundary c o n d i t i o n s
( 0 ) = 1 and Dxv:,,(O) = h (h # m ) h,h -- 0 and Dxeh(0) 4 = 1 exhaust t h e p o s s i b l e domains determined by
boundary c o n d i t i o n s .
(Recall
m
r e a l l y t a k i n g Cos x + h[Sinhx/x]
-f
pX,h Q
t h e t r a n s m u t a t i o n Bh i s
s i n c e Kh c o n t a i n s a f a c t o r h).
On
t h e o t h e r hand i f we t h i n k o f Bh: Coshx -+ p @ t h e n we have an i n v e r t i b l e h,h t r a n s m u t a t i o n f o r any h f m w i t h k e r n e l Kh + 6 which mixes t h e boundary conditions.
However one has a d i f f e r e n t k i n d o f t r a n s m u t a t i o n s i t u a t i o n i f i t
i s r e q u i r e d t o m i x Coshx and
!e
and p h h.
o r [Sinhx/h]
1 L ( x , t ) p h4( t ) d c Coshx = p QX ( x ) + '
To see t h i s t a k e and L = Lo) and
f o r example (p: = 'pQ
A,O
0
integrate t o get
The k e r n e l A does n o t have t h e f o r m 6(x-c) + R ( x , t ) ;
i t i s a smoothing ker-
n e l ( c f . (2.8)) and i t s i n v e r s e w i l l i n v o l v e a d e r i v a t i v e . f o r m f o r a r e l a t e d i n v e r s e l o o k a t [Sinhx/x] = eh(x) 4 + 1' 0
and d i f f e r e n t i a t e t o g e t f o r m a l l y
(2.31)
Coshx = Dxeh(x) Q + Lm(x,x)ex(x) Q
+
c
-f
see what i s happening from l o o k i n g a t s p e c t r a l i n t e g r a l s . f o r (2.30) w i t h (2.32)
By:
[Sinxx/x]
+ pf
and
5-l:
L,(x,t)eh(t)dt Q
DxL,(x,E)eh(E)dS 4
(which s h o u l d i n v e r t t h e smoothing t r a n s m u t a t i o n Coshx =
To see a t y p i c a l
p!
0
+
Q Bh(y)).
One can
Thus f o r m a l l y
[Sinhx/h] 2
;(x,y)
= ( [ S i n h y / A ] , p ~ ( ~ ) ) ~ (du = ( 2 / 1 ~ ) hdh);
g(y,x)
=
( ~ pQ ~ ( x ) , [ S i n h y / h ] ) ~ ( d w = ( 2 / r ) d h + da)
2 = ( 2 / v ) J m [Sinhy/h] Thus t a k i n g e.g. P = Q = D (so do = 0 ) one has ;(x,y) 2 0 Coshxx dx = (2/v)lm hSinhyCoshxdh % ( 2 / ~ ) 6 ' ( x - y ) w h i l e g(y,x) = IT) 0
jOmCoshx[Sinhy/X]dh
= Y(y-x)
(= 0 f o r x > y).
RzmARK 2-17. Consider now t h e t r a n s m u t a t i o n s t h a t can be connected t o a g i v e n g e n e r a l i z e d t r a n s l a t i o n U o f t h e f o r m g i v e n e.g. Thus c o n s i d e r
i n Theorem 2.11 v i a (2.25).
SPECTRAL PAIRINGS
117
f o r some k e r n e l 5 which we t a k e f o r i l l u s t r a t i v e purposes t o be say ~ ( y , c ) P Q P = ( Qx(s),ipA(y)),. Since ~ ( 0 , s ) = ( R A ( c ) , l ) , = 6 ( t ) and B ~ ( O , E )= 0 one has p(x,O) = U(0,x) = Af(x) w h i l e ip (x,O) = 0. For BUf(y) = p ( 0 , y ) one has Y
(where B i s determined by
a).
I f we want t o d u p l i c a t e t h e i n i t i a l c o n d i t i o n
and C f ( x ) = p (x,O) we a d j o i n a t e r m based on x A Q ( y ) (assumed Y Thus s e t d i r e c t l y ( t a k e A p = 1 )
A f ( x ) = p(x,O) to exist). (2.35)
~(X,Y) = (
( n o t e e.g.
(
A P f(A)a(hbh(x),q:(Y)),
-
(
P Q F ( x ) c ( ~ ~ ~ ( x ) , x ~ ( ~ ) ) ~
P P o ( Y , E ) , u ( s , ~ ) ) = ( ;(x)a(Abh(x),( ~ ( y , s ) , i p ~ ( s ) ) ; ~= (fh(A)a(A) ). I t f o l l o w s t h a t again i p ( 0 , y ) = BUf(y) = (f(A)a(x),ip:(y))y
P px(x),q:(y)) AV = ( ~ ( y , t ) , ( fa,p;(S)),)
=
(B(y,t),Af(s))
=
BAf(y).
T h i s shows i n p a r t i c u l a r
t h a t t h e same t r a n s m u t a t i o n BU ( o r g e n e r a l i z e d t r a n s l a t i o n t r a c e U(0,y) i n ( 2 . 2 5 ) ) may a r i s e from two d i f f e r e n t Cauchy problems.
T h i s should come as
no s u r p r i s e s i n c e t h e wave e q u a t i o n p r o v i d e s a l r e a d y t h e example (2.36)
i
rn
U(x,y) = U1 + U2 = ( ~ / T T ) FCfCosAxCosxydx + 0
( Z / T T ) i m F s f Sinxx Sinxy c(A)dX/A 0
w i t h U(x,O) = f ( x ) and U (x,O) = ( 2 / v ) J m c(h)FSfSinxxdh = C f ( x ) ( t a k e a l s o Y 0 say f ' ( 0 ) = 0). But U(0,y) = f ( y ) i s u n a f f e c t e d by t h e U2 t e r m a l t o g e t h e r . I n any e v e n t t h e g e n e r a l i z e d t r a n s l a t i o n U(x,y)
i n i t s " e n t i r e t y " does de-
t e r m i n e t h e Cauchy problem and t h u s t h e r e i s some p o i n t i n a s k i n g f o r t r a n s m u t a t i o n s B: P + Q determined by g e n e r a l i z e d t r a n s l a t i o n s U f o r P.
In
making t h e q u e s t i o n more p r e c i s e however one does n o t seem t o o b t a i n an i n t e r e s t i n g development. 3.
&HE GENERAL EXCENDED CELFAND-CEDICAN EQUAEION,
T h i s e q u a t i o n arose i n
s t u d y i n g t h e i n v e r s e S t u r m - L i o u v i l l e problem and i n quantum s c a t t e r i n g theor y and we w i l l g i v e some p r a c t i c a l a p p l i c a t i o n s i n Chapter 3 o f v a r i o u s such
equations.
We were l e d t o s t u d y t h e G e l f a n d - L e v i t a n (G-L) and t h e Marzenko
(M) e q u a t i o n t o g e t h e r from a u n i f i e d t r a n s m u t a t i o n a l p o i n t o f view because o f Fadeev's t r e a t m e n t i n [ F a l l f o r t h e quantum mechanical s i t u a t i o n .
We
produced v a r i o u s general forms and r e f i n e m e n t s whose c o n t e n t w i l l be developed here and i n § 5 ( c f . [C31-33,43,47-49,53,66-73,75,78,80]). Thus l e t P Q and be o f t h e f o r m (1.9.1) w i t h s p h e r i c a l f u n c t i o n s i p x , i p h , J o s t s o l u -
8
6
118
tions L e t B:
ROBERT CARROLL P
^P
aQ s p e c t r a l p a i r i n g s A?A’ Q : q PA
+
+
qy
,
(
)v and
,
(
A
(2.2).
There a r e many p o s s i b l e t r a n s m u t a t i o n s P
Theorem 1.4.3)
(v
)W
Q
6, w t), e t c . 17~
Q P = (qA(y),RA(x)
be g i v e n v i a k e r n e l e(y,x)
A
+
>v as i n
Q o f course (see e.g.
d e f i n e d as
and we c o n s i d e r i n p a r t i c u l a r a t r a n s m u t a t i o n
follows.
One determines an a d j o i n t o p e r a t o r B# by t h e r u l e ( c f . [C38,401)
(3.1)
( A Q ( Y ) ~ ( Y ) , B L J ( Y ) )= (v(Y),Aq(Y)( 6 ( Y y x ) A p 1 ( x ) A , ( X ) , u ( X ) ) )
=
~ ~ p ~ x ~ u ~ x ~ , ~ ‘ ; ~ )x) , =Y( ~A , (vx )~u (Yx )~, ~ v ( x ) ) e
where (3.2)
= k e r B i s g i v e n by
Y(X,Y) = Ag(Y)Ap’ (X)B(Y,X)
We w r i t e here (3.3) (3.4)
UE@RE!J = (B-’)#
= ( I PPA ( X ) J $ Q ( Y ) )v
rv
B’
= % a n d a s i m i l a r c a c l u l a t i o n g i v e s 8’
( ~ ~ ( x ) u ( x ) , ~ v )( x= ) (
U,A+
=
where
y ( x , y ) ~ q l ~ Q , v ) ) = (aqv(y),( iY(y,x),u(x)
))
P 0 B(Y,X) = AQ1(Y)Ap(X)Y(X,Y) = ( . O A ( X ) A q Y ))W
N
P # For general s p e c t r a l p a i r i n g s RQ and R one can d e f i n e B = B # w i t h =: ?-’ = B . The k e r n e l s a r e q i v e n by (3.2) and (3.4) and
3.1.
e v i d e n t l y B f = (IpA(y),Pf Q
)W
=
Wf. can a l s o be c h a r a c t e r i z e d as a s o l u t i o n o f
Next we show ( c f . [C39]) t h a t
a Cauchy problem as i n Theorem 1.4.3.
Thus l e t TX be t h e s e n e r a l i z e d t r a n s -
5
A
l a t i o n a s s o c i a t e d w i t h P s a t i s f y i n g T X f ( c ) = f ( c ) and D T X f ( c ) = 0 a t x = 0. 5 X S Set q ( x , y ) = ( F ( y , c ) , T E f ( E ) ) ( c f . here Theorem 2.2). From (3.4) one checks A
f o r m a l l y t h a t P(Dx)q = G(D
)q
and D q(x,O)
f ( 5 ) ) = F f ( y ) w h i l e p(x,O) Y = (g(O,c),T;f(c;)) Y
=
0. =
C l e a r l y q(0,y)
=
(g(y,c),
( ( ~P( 5 ) , l ) u y T ~ f ( =~ )A)f ( x ) .
L e t us w r i t e A f as (3.5)
A f ( x ) = ( R Q y ( f $P , ( c ) y T ~ f ( c ) ) ) A P
= ( 0 ( E ) , T t f ( E ; ) ) ( c f . here t h e p r o o f o f Theorem 1.12.5)
Then c o n s i d e r $(x,x)
A A 2 P F o r m a l l y i t f o l l o w s t h a t P(Dx)p = -1 p w h i l e p ( 0 , h ) = ( , ~ ( ~ ) , f= (f (~ A )) ) 4 P T h e r e f o r e w i t h DxJ/(O,x) = 0 and consequently $ ( x , A ) = f ( A ) q A ( x ) .
(3.6)
Af(x) =
(
RQ,Pf(h)qA(x) P )A = (f(S),(
(A(x,C),f(C)
);
A(x,S)
=
R Q , ~P( s ) qPA ( x )A) ) =
Q P P ( R , f i A ( S ) ~ A ( x )A ) =
(
P P p A ( 5 ) ~ ~ A)W ( ~ )
GELFAND-LEV ITAN EQUATION
&HE@REIII 3 - 2 - The t r a n s m u t a t i o n
119
can be c h a r a c t e r i z e d as t h e s o l u t i o n o f a
A
Cauchy problem i ) ( D x ) q = Q ( D ) q y p(x,O) = A f ( x ) , and q (x,O) = 0 where t h e Y Y o p e r a t o r A i s determined by t h e k e r n e l ( 3 . 6 ) (and one extends A f ( x ) t o be even as needed).
PrrooB:
*P
It remains t o check t h a t A commutes w i t h A
4
A
Thus f o r s u i t a b l e f, P x A f = (PxA(x,c),f(c)>; A
A*
( c f . Theorem 1.4.3).
4
-
B u t P A = PEA f o r m a l l y so P A f = A p f .
A(x,c),f(<)).
X
A*
A
A P f = (A(x,<),P
5
f(c)) = (P
I n a s i m i l a r manner we can c h a r a c t e r i z e Fj v i a a Cauchy problem.
L e t S c be
A
t h e g e n e r a l i z e d t r a n s l a t i o n a s s o c i a t e d w i t h Q and w r i t e $(x,y) S;g(n))
DJ$(O,Y)
where
7 is
=
Y Ag(y) = ( ? ( o , n ) , ~ ~ g ( O ) )= 51
considers $ ( y , ~ ) =
Then f o r m a l l y Q(Dy)$ = P"(Dx)$ w i t h
(Y(x,n),g(11))
=
= i g ( y ) we have
P Q ( R ,(oA(n),s;g(n)
))A.
( QQA ( n ) , S Y g ( n ) ) and as above ( a f t e r ( 3 . 5 ) ) { ( D y ) T = 11
= 0, and ;(O,A)
<(A).
= Q ( x ) =
Consequently ;(y,x)
v
(3.7)
For $(O,y)
= Fg(x).
Q ( ( l , c A ( o ) )v,~ig(o) )
d
$'(O,A)
= (Y(X,~),
A
g i v e n by ( 3 . 2 ) .
0 and $(x,O)
=
5
P 4 Ag(Y) = ( R ,Qg(A)qA(Y)
)A =
(~(n),( R
P
=
One
-A'G Q z(~)q~(y and )
Q
Q
, p A ( l l ) q A () A~) ) =
" " ( A ( Y 9 n ) s g ( n ) ); A ( Y , ~ ) = ( R P , f lQA ( n ) q4A ( ~ ))A = ( ~ Ql ( n ) ~ qQx ( ~ ))u
&HEOREN 3-3- The t r a n s m u t a t i o n
=
z-'
can be c h a r a c t e r i z e d as t h e s o l u t i o n " $(O,y) = Ag(y), $x (0,y) = 0 where
o f a Cauchy problem ?(Dx)$ = :(Dy)$,
A'
i s determined by t h e k e r n e l (3.7) (extended t o be even as needed). "
The o p e r a t o r s A and A a r e i n f a c t v e r y i m p o r t a n t and t h e y a r i s e i n d e r i v i n g general G-L equations as f o l l o w s .
Thus s e t (*) q Qx ( x ) = ( 6 ( x , t ) , q p ( t ) )
and o p e r a t e on t h e s e w i t h RQq A P ( y ) and RQq,(x) Qx
q PA ( y ) = (y(y,t),q:(t))
with resp-
ectively t o obtain
Q
Q P
P
(3.8)
(
RQ,q;b)qA(x)
(3.9)
(
R Q Y ~ ! ( ~ Q) q A ( x = ) ) ( R Qq A Q (x),(y(Ylt).q~(t)
(v(Y,t).(
RQ,v:(x)qA(t) 4
Note here t h a t Q [ s ( x - t ) / A AQ(x).
(3.10)
= ( R q A ( ~ ) ,6(( x , t ) , p A ( t ) ) )
)
= ( y(Y,t),6(x-t)/AQ(x)
Q
( x ) ] = q Qp , ( t ) so
)
))
=
= y(Y,x)/AQ(x)
@pA(t) Q = (
RQ,q:(t)qA(x)) Q
=
6(x-t)/
I d e n t i f y i n g (3.8) and (3.9) we o b t a i n a general G-L e q u a t i o n (
B(x,t),
Since A(y,t)Apl(t)
= A(t,y)Apl(y)
)A)
=
V(Y3x)/AQ(x)
f r o m ( 3 . 6 ) we see t h a t = ( RQyq!(y)pA(t)) P
120
ROBERT CARROLL
(3.10) has t h e form
B(x,t),AF'(t)A(y,t))
(
= (
B(x,t),Apl(y)A(t,y))
y(y,x)/
=
I n t e r c h a n g i n g x and y i n o r d e r t o have t h e v a r i a b l e s i n t h e i r cus-
AQ(x). tomary p o s i t i o n s we can s t a t e ( c f . A
L e t B: P
CHE0REI;I 3.4,
(3.4))
A
0 be our t r a n s m u t a t i o n c h a r a c t e r i z e d by &PAP = q QA
-t
w i t h k e r n e l B and i n v e r s e B = B - l having k e r n e l y. (q;(x),v!(t)
)w =
A p ( t ) ( RQ,P!(x)qA(t) P
Define A(x,t)
Ap(t)Ap'(x)A(t,x)
)A =
A,(t)
=
(as i n ( 3 . 6 ) ) . N
Then t h e G-L e q u a t i o n a s s o c i a t e d w i t h B can be w r i t t e n BA = B o r (3.11)
(
B(y,t),A(t,x)) N
W
k e r B ( B = (B
where =;
= Ap(x)Agl (Y)y(x,Y)
=
~(Y,x)
-1 #
) ). -
#
Here e v e r y t h i n g i s d e f i n e d q u i t e g e n e r a l l y , B = 73 , e t c . and t h e s p e c t r a l p a i r i n g s a r e expressed i n terms o f general R P and R Q ( c f . a l s o Remark 5.18). We can w r i t e (3.11)as an e q u a t i o n i n s p h e r i c a l f u n c t i o n s , namely v i a
C0RP)LLARg 3-8, The general G-L e q u a t i o n (3.11) can be w r i t t e n as
P and R Pq,(x) ? L e t us observe t h a t i f we o p e r a t e i n ( * ) above w i t h R Pqp,(y) r e s p e c t i v e l y t h e a n a l y s i s above can be d u p l i c a t e d t o g i v e ( c f . (
R P . PP~ ( Y Q) ~ ~ ( =x )( )B(x,t),CR P , v PA ( Y h PA ( t ) ) > = B(x,y)/Ap(y)
P ( y ) ) = (y(y,t),( R P , q QA ( t ) q 4A ( x ) ) ) . vA (3.13)
-
= ( RP,q:(t)%(y)) Q
y(x,y)
It f o l l o w s t h a t
= A ~ ( Y ) A (~x' ) ~ ( y , x ) .
and r e c a l l from (3.2) t h a t rJ
Assume t h e hypotheses o f Theorem 3.4 w i t h 8 =
CHE0REfl 3.6. kernel
as i n (3.2).
operator
A' ( i d e n t i c a l
Define i(t,y) = t o (3.7)).
4 ( RP,q:(t)SIA(y))
s i n c e BA = B we have a l s o Now assume R P W(x)du. (3.14)
Q
Q ,
#
having
"
which can be w r i t t e n as B = BA.
g = (BA)-l
Gdh and RQ
= B
as t h e k e r n e l o f an Y
= (y(x,t),A(t,y))
hl
2-l
Then one has a " r e v e r s e " G-L e q u a t i o n o f
U
the formy(x,y)
RP , q Q A(x)
x ( t y y ) = ( R P , q QA ( t b i0( Y ) )
);
Set now i ( t , y ) = A ( y ) X ( t , y )
Q
(
I n t e r c h a n g i n g x and y again we o b t a i n
= (y(x,t),i(t,y)
B(y,x)/Ap(x)
and
(3.8)-(3.9))
"
=
A-lB = BA o r BA = i - ' B
ZdA on [0,m)
Then
(B = i B A ) .
and w r i t e W ( A ) = ;/< so t h a t dw =
I n t h i s s i t u a t i o n we n o t e f i r s t t h a t f o r m a l l y ( c f . Remark 1.11.3) (%J;)(Y)
= (
F(~,x),v!(x))
= ((
P
11 ( X ) , ~ ' (11Y )
P )u,~A(x))=
GEL FAN 0- L EV ITA N EOUAT I ON
(i.e.
P
one w r i t e s Jm
P
t o express t h e a c t i o n W = I
Q (x)pX(x)dx = 6(A-u)/$(A) 0 1 J .
on s u i t a b l e o b j e c t s ) .
121
F u r t h e r i n t h i s s i t u a t i o n c o n s i d e r A(x,<)
i n (3.6)
f o r example and w r i t e OD
(3.15)
G(x) =
W(X)p!(x)du 0
P
P
Now r e c a l l t h a t T:f(x)
= ( P f ( h ) p X ( x ) , p A ( y ) ) so w i t h PG =
W ( A ) we o b t a i n
A(x,E) = Ap(c)T:$(6)
(3.16)
&H€P)R€R 3-7. For R4
Gdx and R P
%
w”
and (3.16) h o l d s w i t h
%
Gdx w i t h W ( X ) = :/$
one has Pq! = WpX4
g i v e n by (3.15).
L e t us n o t e a n o t h e r d e r i v a t i o n o f t h e G-L e q u a t i o n
REmARK 3.8,
based d i r e c t l y on t h e Parseval f o r m u l a (1.10.28)
= BA
( c f . here [CSO;
Du7,8]).
We w i l l d i s c u s s f a c t o r i z a t i o n aspects o f t h e G-L e q u a t i o n l a t e r a f t e r est a b l i s h i n g s u i t a b l e t r i a n a u l a r i t y o f t h e o p e r a t o r s B and
$=
qf, A
g.
L e t us w r i t e ,-A
Qg, and f o r s u i t a b l e f , g one has ( A f , g ) = ( A f,A g ) = ( R , f g )
=
Q
P
n
= ( f,g)w.
Q
Q
Now p: = &p! = ( B ( y , x ) , p X ( x ) ) and i n o r d e r t o i n t r o d u c e a d j o i n t ness e a s i l y t a k e RQ ‘L 2dA o r s i m p l y use t h e n o t a t i o n ( , )w c r e a t i v e l y . Then, (3.17)
A
(
A
f,g)W =
((
Q 9 P f,l),( g,.(l, ) ) = ( ( f(y),Aq(y)( B ( Y , X ) , P ~ ( X ) W
J
I
(g(nl.AQ(n)( B ( ~ , E )P, ~ ~ ( c ) =) ) ) ~ AQ(n)8(n.E)Ap1 (S)A(x,<)dEdxdYdq
=
I
)),
f(Y)Ag(Y)8(Y,x)9(n)
A Q ( y ) f ( y ) ~ B ( Y . x ) J A’;
(S)A(X,S)
# # Now from (3.1) d e f i n e 8 = B as i n d i c a t e d t h e r e and we have ( B g,fAp) = gAQTBf) = ( ( g(n)AQ(n),B(qY6) ) , f ( E ) ) = ( ( !$Q,!3(ny<)a,’ (E)),Apf) so B# g =
(
A’;
(5)( gAQ, B ( q , S )
(3.18)
)
(f,g )u =
and consequently
I
A Q f ( Y ) j B ( Y , X ) ~A(x,c)B
1
#
a(S)dSdxdy =
( A Q ~( Y) ) [ B A B # s I (Y )dY
# T h e r e f o r e from t h e Parseval f o r m u l a we o b t a i n I = BAB and hence t h e G-L e q u a t i o n BA = (B#)-’
R m R K 3.9p l u s e.g.
= (B-’)‘
= R# =
E.
L e t us show here how a c o n n e c t i o n formula pp,(y) Q = ( 8(y,x),p~(x)) a s p e c t r a l f o r m f o r R(Y,X) l e a d s t o i n t e r t w i n i n g v i a t h e G-L
122
ROBERT CARROLL
equation.
We r e c a l l t h e c o n s t r u c t i o n i n 51.4 where a k e r n e l Kh was con-
s t r u c t e d v i a a Riemann f u n c t i o n and shown t o transmute because o f t h e Cauchy Then i n a d d i t i o n i t f o l l o w e d
problem c h a r a c t e r i z a t i o n i n Theorem 1.4.3.
t h a t Kh s a t i s f i e d a Goursat problem as i n Theorem 1.4.9 and p r o v i d e d a conn e c t i o n between Coshx and
Here we s t a r t w i t h a c o n n e c t i o n and f o r
9h,h.
s i m p l i c i t y t a k e t h e model ( q r e a l ) Qu = u"
-
q ( x ) u w i t h B: D2
+
Q: Coshx
+
A
qQ A ( y ) and B(Y,X) = k e r B = 6 ( x - y ) + k ( y , x ) where K(y,x) = 0 f o r x > y (such t r i a n g u l a r i t y p r o p e r t i e s a r e d e r i v e d i n 54 i n c o n s i d e r a b l e g e n e r a l i t y ) . Thus pp,(y) Q = Coshy + JY ?(y,S)CoshgdE and one o b t a i n s a G-L e q u a t i o n immed0
i a t e l y i n t h e form
Q
N
(3.19)
B(Y,x) = ( V ~ ( Y ) , C O S X X =) ~ A(y,x)
where A(y,x) = (Coshy,Coshx) on
+
loy
t(y,S)A(S,x)dS
6 ( x - y ) -+ sZ(y,x)
=
(assume dw = (2/v)dh
-+
du
Now by a n a l y s i s such as t h a t i n Theorem 1.4.9 one knows t h a t
[O,m)).
^K(y,y) = Wy q ( x ) d x ( t h i s i s dependent o n l y on t h e c o n n e c t i o n and on t h e 0
d i f f e r e n t i a l e q u a t i o n (0'
-
q)q!
Now f o r m a l l y i f one deals w i t h
= -h2q?).
N
N
f u n c t i o n s f ( x ) = ( f ( A ) , C o s h x ) v (dv = (2/v)dh) where f = F C f t h e n Q B f = " Q hl 2 Q 2 2 4(f(A),qX(y)), = ( f ( A ) , - A pp,(y)), w h i l e BD f = B ( 3 h ) , - A C O S A X ) ~ = (?(A), 2 4 - 2 - A ~ ~ ( y ) ) Thus ~ . f o r such f, g i v e n t h a t ( f , - A Coshx)" makes sense e t c . , B i s a t r a n s m u t a t i o n . We can a r r i v e a t t h i s c o n c l u s i o n a l s o i n another way v i a (3.19) and a Goursat problem.
Thus i n (3.19) one can deduce t h a t T(y,
x ) = 0 f o r x < y by s e v e r a l arguments (e.g. z ( y , x )
= y(x,y)
o r a contour
i n t e g r a l - P a l e y - W i e n e r argument based on t h e form o f F ( y , x ) as a s p e c t r a l pairing
-
Hence f o r x < y (3.19) becomes
see S4).
h A 2 2 + R + ? ' ( y , y ) n ( y , x ) + K(y,y)-Cy(y, E v i d e n t l y DxS = D 0 and one o b t a i n s K E A YY YY A x ) t iy(y,y)QA+ / Y K (y,S)fL(E,x)dS = 0 w i t h 0 = K + P + Iy t(y,c) 0 YY A xx XY, 0 R (S,x)dS = Kxx + ARxx + K(y,y)fiY(Y,x) - K(y,O)Pj,(O,x) - K,(Y,Y)E(Y,X)~+ ASS Kc(y,O)fL(O,x) + KSc(y,S)fL(t,x)dS. Now f? (0,x) = 0 and we w i l l s e t K (y, Y n E 0 ) = 0 (see below). Then s u b t r a c t t h e above two equations and s e t = K =
/d'
A
A
A
A
K - Kxx ( r e c a l l here ?'(y,y) = %q(y) and n o t e t h a t K'(y,y) = KY (y,y) + KE(y,y)). There r e s u l t s
AYY
(3.21)
0 =
=;
+
q(y)a(y,x)
-+
joy=c(y,S)n(c,x)dc
A
It f o l l o w s t h a t =K(y,x)/q(y)
s a t i s f i e s (3.20) which we can assume t o have a A
unique s o l u t i o n (see Chapter 3).
I\
Hence =K/q = K o r
GELFAND-LEVITAN EQUATION
Given a c o n n e c t i o n p QX ( y ) = CosXy
CHEOREDI 3.10,
-I-
123
f Y ?(y,x)Cosxxdx @
as i n d i -
A
c a t e d i t f o l l o w s t h a t B w i t h k e r n e l ~ ( y , x ) = 6 ( x - y ) + K(y,x)
i s a transmutaA
t i o n B: D2
Q ( a c t i n g on f u n c t i o n s w i t h f ' ( 0 ) = 0 ) .
-f
A
The k e r n e l K s a t i s f i e s
2^
t h e Goursat problem Q(D )K = DxK w i t h q ( y ) = 2D K(y,y) and Kx(y,O) = 0. Y Y A A Ptiuud: I n o r d e r t o deduce t h a t Kx(y,O) = 0 s i m p l y l o o k a t K(y,x) = (Z/IT) inim[ q X Q ( y ) - CosxylCoshxdA and d i f f e r e n t i a t e i n x. To see t h a t one has @ A t e r t w i n i n g l o o k a t Q B f and B f " t o o b t a i n r e s p e c t i v e l y O B f = f " -qf t K ' f f A
.
h
h
A
A
K f ' + K f - q i K f + f Kyyf and B f " = f " + K f ' Y Q B f - B f " = 0.
A
4
- K5f
f
f K f.
Consequently
55
We n o t e a l s o t h a t if i n f a c t we express ~ ( y , x ) = ( q Qp ( y ) y C o s x x ) v t h e n t ( y , x ) a u t o m a t i c a l l y s a t i s f i e s t h e d i f f e r e n t i a l e q u a t i o n i n Theorem 3.10 f o r y # x n
(and Kx(y,O)
=
I n any e v e n t we see t h a t connections o f t h e t y p e w i t h
0).
which we a r e d e a l i n g a u t o m a t i c a l l y a r e t r a n s m u t a t i o n formulas (see here a l so 52.12 f o r f u r t h e r i n f o r m a t i o n ) .
Note a l s o t h e assumption dw = ( 2 / 1 ~ ) d x
do i s n a t u r a l f o r i l l u s t r a t i v e purposes
t
-
see e.g.
t h e m a t e r i a l on geo-
p h y s i c a l i n v e r s e problems i n Chapter 3.
REmARK 3-11. One can develop a G-L t y p e e q u a t i o n f o r any s i t u a t i o n where, Q P P i n s t e a d o f q: = b P one begins w i t h ILx(y) = ( B $ ( y , t ) , p x ( t ) ) = B q where Q PA ' Q A $: = * ( A ) q x and v x ( x ) = ( y $ ( ~ , t ) , $ ~ ( t ) )f o r Y~ = k e r R$, B$ = BJ, (here
-?
B+(y,t) = ( $ Q x ( y ) , q xP( t ) ) v f o r example). F o l l o w i n g t h e procedure o f (3.8)(3.9) one o b t a i n s ( m u l t i p l y by R%-'qp(x) and R 0* -1 q Q ( y ) r e s p e c t i v e l y )
,*
+) - 2 P P (Y) = ( B$(y,t),A$(t,x)) where A$(t,x) = ( R Px(xk,(t)). SetN t i n g A$(t,x) = Ap(x)A ( t , x ) and ;$(y,x) = A p ( ~ ) A ~ l ( y ) y , ( ~ y y )we o b t a i n B$ = # -1 #$ B A w i t h R = (B ) = B$. $ $ $ J /
Y (x,Y)/A $
Q
L e t us g i v e now a model v e r s i o n o f t h e extended G-L e q u a t i o n which e x h i b i t s various t y p i c a l features f o r the singular situation. A
Q
= A
m
recall for B x2
Q ,
For t h e model problem
= xZm+' we a l r e a d y have numerous formulas (see 551.9 and 2.2).
5, and
:z
.
Qi
Thus
A
D2 Q
gl(JS) = [Jn/r(m+l
-z
n,
= Q one has e.g.
il
Theorem 2.9 where f o r -% < rn < n-%,
[ B Q f ] ( J q ) = [r(m+l)/h~][Y,+%
)lDn"un-m-+
*
nmg(v'n)].
w i t h 5-'[B0
Now r e c a l l t h a t t h e extended G-L
e q u a t i o n i s g i v e n by say (3.11) i n t h e form
(r
* f(Js)/Js]
(
BQ(y,t),A(t,x))
4'
= &(y,x)
(Y,x) = Ap(x)Aql ( Y ) Y ~ ( x , Y ) = ( Y ) Y ~ ( x , Y ) ) and A(t,x) = ( RQ,q;(t)Jf(x)) = ( QP v A ( t ) , qP( x ) ) W = (pPX(t),r$(x)W(X))v P P = (2/71)Jr CosxtCosxxW(x)dx where W(x) =
6
(W
4
/v
Q
(3.22)
P
) = %ITR ( A ) 0
A(t,x)
=
= + I T C ~ A ~ ~ +w ' ith
m
c, = 1 / 2 9 ( m + l ) .
% c i j;~~~+'[Cosx(x-t)
Thus
+ Cosx(x+t)]dx
124
ROBERT CARROLL
Now such i n t e g r a l s were discussed i n 52 f o r example and we r e c a l l (*)
ImA'CosxydA
Set B,
= 2 J ~ / r ( m + l ) r ( - + - m ) so t h a t we o b t a i n then
tEmmA 3-12, The G-L k e r n e l f o r B -2m-2
<8,[1x-t(
yYB + y I B i s a
+ F l ~ l " = - T ( a + l ) S i n ( ~ n a ) ( y l - a - l where l y l - '
=
0
convenient n o t a t i o n .
lx+tl-2m-2
+
1.
D2
Q:
+
Qi as above i s g i v e n by A ( t , x )
=
L e t us r e c a l l some c a l c u l a t i o n s i n 52 i n o r d e r t o s i m p l i f y t h e e x p r e s s i o n and (x!,p(x)) = ( x +B, p ( - x ) ) Since Y = (l/F(B))x!-' = ( (x-C)+6-1 , p ( - c ) ) = r ( B ) [ Y B * $ 1 ( x ) where $'(XI =
o f the A(t,x) action. we have ( ( x - ~ ) ! - ' , p ( c ) ) rp(-x).
Thus
(
hand, s e t t i n g J/(x) = V
*
= r(B)[YB
(
(x+5)!-',9(5))
~ 3 +: &"I
+
we r e c a l l t h a t ;(x)
S i m"i l a r l y i f R =
PI.
(p
(
(x+E;)!-',p(~))
G).
On t h e o t h e r
= ( (<-x)!-'
we have R = -2m-2
(
~ ( 5 ) )
B- 1 (x+c)+ ,
.nv = r(a)[v, * ;I. Consequently ( I ~ + E ; I , V P ( E ) ) = r(-2m-1 I = r(-2m-1)~-~~ * -(p~ + s i n c e ( S * T)V = S v * i.Hence ( r e c a l l Z Z z - l r ( z ) r ( z + ) / J T and r ( z ) r ( - z ) = -n/zSinaz)
p ( - s ) ) so
r(2z) =
*
I x - ~ I - ~ ~ - ~ , p ( c= )r(-2m-1)Y-2m-l )
z)
LEnDU 3-13. With t h e s t i p u l a t i o n s above, f o r 2m f i n t e g e r we have (A(E,x), p ( 5 D = BmCY-2m-l * (v + a l ( x ) = Bm[151 -2m-2 * p ] ( x ) where am = BJ(-2m-1) 2m w i l l be a c o n v e n i e n t a b b r e v i a t i o n l a t e r ( t h u s am = r(-m)/2 2r(m+l) = -IT ~ s c m v / 2 ~ ~ (m+l). +~? For 2m = i n t e g e r one can f i n d formulas f o r t h e t e r m i n v o l v i n g Jm 0
Cosxydh i n [Bbel] f o r example t o use i n p l a c e o f (*) b u t we o m i t t h i s .
Now
l o o k i n g a t Lemma 3.13 we l e t A(5,x) a c t on 5 (y,E) i n t h e same manner ( i . e . Then ( t h e f a c t o r o f
~ ~ ( y . 5%) p p ( c ) ) . (3.23)
loy
6Q(y,c)A('yx)dc
Q
4 arises
= [am/r(-2m-1)1
[+am/r(-2m-l)l[151
-2m-2 *
from B (y,-S) = B (y,S))
lo
Q
4
Ix-51 -2m-2 B ~ ( Y ~ s =) ~ S
@Q(Y,S)l(X)
2 &HE@Rm 3-14, The extended G-L e q u a t i o n f o r t h e above s i t u a t i o n D -2m-2 can be expressed as (2m C i n t e g e r ) [ % a m / r ( - 2 r n - l ) 1 [ ~ E ~
*
+
Q,
=
Q
BQ(Y.5)1(X) =
(Y)yQ(xYY).
R E ~ A R K 3-15. Note t h a t i n Theorem 2 . 9 i f one w r i t e s o u t Y-m-r/,* = f(JS)/&
the
*
nm(BQf)(Jn)
a c t i o n i s on t h e v a r i a b l e 17 i n B ~ ( J Q , J Ewhereas ;) i n Theo-
rem 3.14 we work on 5 i n 6 ( y , ~ ) .
Q
Thus i n p a r t i c u l a r Theorem 3.14 i s d i f -
f e r e n t t h a t t h e i n v e r s i o n o f Bo. L e t us w r i t e o u t Theorem 3.14 u s i n g (2.15). +c-+yQ(
J C ,411 n-"'-+
Thus f i r s t we have f o r m a l l y
[ i n / r (m+l) 1( 5-17 ) - m-3/2/r(-m-+)
and hence ( s i n c e y (x,y)
Q
GELFAND-LEVITAN EQUATION
s h o u l d be even i n x - c f . ( 2 . 1 6 ) ) y,(x,y)
125
= [EJlrsqnx y2m+1x/r(m+l)r(-m-k)1
( x 2 - y 2 ) i m - 3 / 2 w h i l e B ( y , ~ )i s i n a s i m i l a r form from (2.8). 3.14 becomes f o r m a l l y Q (AQ = y 2m+l) x sgnx ( x 2 -y2 )+ -m-3/2 =
(3.24) where
?m
=
yp[ 1 5 1
-2m-2
*
2 2 m-4
(Y - 5 )+
Hence Theorem
l(x)Y-2m
-CscmTr( -rn-k)/22m+2r(m+g)r(-2m-l) = r ( m t 1 )/Jlrr(m+%).
C(DR0CCARg 3.16,
The extended G-L e q u a t i o n o f Theorem 3.14 can be w r i t t e n i n
t h e form (3.24)
(2m # i n t e g e r ) .
REmARK 3-17, I t i s p o s s i b l e t o p l a y an i n t e r e s t i n g oame w i t h F o u r i e r t r a n s forms o f d i s t r i b u t i o n s i n o r d e r t o "check" (3.24). R e f e r r i n g t o [Bbel] f o r 2 2 x 2A+l F ( y - x )+ = A r( X+l ) y (ylsl/ formulas we n o t e f i r s t t h a t (A # + l , t 2 , . . . ) 2 2 x x++(y I s I ) and FLsgnx ( x -y )+I = iJTr( x+l )sgns ( I s I / ~ Y ) - ~ - ' J-A-+ ( Y l S l ) . Thus under F o u r i e r t r a n s f o r m (y2-x2)y-' Jlrr(m++)y2m(y1s1/2)-mJm(yls I ) and -f
sgnx (x2-y2);m-3/2 ihr(-m-k)sgns( I~l/2y)~+'J,,~(ylsl). we have a l s o ~ 1 x 1 '= - 2 S i n ( + T x ) r ( x + l ) l s l - A - l . , ~ ~ 1x sgnx] x 1 = 2i~os(klrx)r(x+l)lsl-~-'sgns. -f
x = 2iIom( x 2 -y 2 )+ 1 Consider now f o r m a l l y ( c f . S e c t i o n 2 ) F[sgnx ( x 2-y 2 )+I 2 2 2 2 1 Sinxsdx = I and F[sgnx ( x -y )+] = 2Jm x ( x -y )+Cosxsdx = J. Then some 0
m a n i p u l a t i o n o f I and J f o r s u i t a b l e A c o n f i r m s (3.24)
(the d e t a i l s are
s p e l l e d o u t i n [C40]). L e t us c o n s i d e r t h e extended G-L e q u a t i o n (B
Q
(y,t),A(t,x))
l i g h t o f Lemma 3.13 where i t was seen t h a t when Q = c o u l d be expressed t h r o u g h c o n v o l u t i o n as i n (3.23). w i t h RQ
'L
*w Q dh"
B
and
Q:
D2
-f
6 we have A(t,x)
=
Q
(y,x)
Qi t h e A(t,x)
i n the
action 4
Thus f o r general Q
= Im CosAtCosxx; 0
Q
(A)dh.
Set
as i n (3.15) W(t) = ( 2 / n ) I o tl(A)CoshtdA ( r e c a l l W(x) = w " g ( h ) / ' ; p ( h ) = ( ~ / 2 ) A
"9 JO
(1)).
Then A(t,x)
u
W(x-E)q(c)dc =
If i(x+S)cp(c)dc
Ymn
=
+ i ( x + t ) ] / 2 w i t h G(-t) = W ( t ) and e v i d e n t l y i ( x + c b ( c ) d e , Inm i(x+c)cp(c)dt = i: i ( x - c b ( c ) d c , and i(x-S)qp(c)dc. Thus f o r q even ($' = c p ) one has
= [i(x-t)
i: /:
[i(x+E) + ~(x-E)]cp(c)dc =
/:
i(x-cb(S)dc =
[w" * q I ( x ) .
CHEOREUt 3-18, The extended G-L e q u a t i o n f o r D2 and general Q w i t h RQ A
2.
dwQ
can be w r i t t e n as
REWRK 3-19, Now suppose t h e
s p e c t r a l t h e o r y i n v o l v e s a measure R
P Q ,
cpdA
A
and t h e Q s p e c t r a l t h e o r y i s determined as i n 551.10 and 1.12 v i a a Parsev a l formula tA-'f
Q
,A-'q)
Q -
= (
R,QfQg
4 rem reads f ( y ) = (RV,qf(A)cpl(y))V
)
= (RV,QfQg )
x =
so t h a t t h e expansion theo-
( q f ( x ) , q AQ V( y ) ) u ( i . e .
R
2.
RQ).
We can
126
ROBERT CARROLL
then make some c a l c u l a t i o n s based on t h e procedure used i n d e r i v i n g t h e Parseval formula which seem t o have a c e r t a i n complementary i n t e r e s t i n conn e c t i o n w i t h G-L equations (see a l s o Remark 5.18 f o r another p o i n t o f view). Thus w r i t i n g R f o r R4 and R" as above and o m i t t i n g t h e v a r i o u s l i m i t i n g procedures i n v o l v i n g R i e t c . we r e c a l l t h a t f o r m a l l y : 6(x-y)/AQ(y) = Sy6 ( x ) = x Q ( R V , qQX ( x ) Q ~ X ( y ) ) v ; 6 ( x ) = ( R " , P4~ ( x ) ) " ; SSq(y) = ( R",P!(Y))~ = BR"; R" = PB6Q. (3.26)
4
Now c o n s i d e r t h e expansion f o r m u l a above and a p p l y
B t o get formally
Bf(x) = (R",qf(h)v~(x)),~ = B[R"Qf(A)]
Here we t h i n k of t h e t r a n s f o r m p extended t o ( s u i t a b l e ) d i s t r i b u t i o n s and Hence f o r m a l l y PRf = P R"Qf as d i s t r i b u t i o n s and we w r i t e t h i s o u t i n t h e form ( b ) (C,(x),(y(x,y),
t r e a t t h e a n a l y t i c f u n c t i o n Q f ( X ) as a m u l t i p l i e r .
f ( y ) ) ) = R V ( 4a X ( y ) , f ( y ) )so Rvff(y) = ( P X P (x),y(x,y)) o t h e r hand c o n s i d e r A(E,x) i n t h e form (3.27)
A(E,x)
P
P
P
= Px[y(x,y)I.
On t h e
P
= ( R,\oA(E)aX(x))x = ( R " , P ~ ( E ) Q ~ ( x ) )=~ V
V P
P
= P[R ~ z A ( x ) l h + E = A p ( x b m PA(s)lX+x
Then w r i t e (Px P
6 'L
P: x
-f
V Q
A)
(m)
R .O.,(y)
P
= RVA ( y ) [ b A ] ( y ) = RVA (y)( ~ ( y ,
Q
Q
= PX[a4(y) Equating ( b ) and ( m ) we o b t a i n ( a f t e r a c t i n g w i t h Apl(x)( B(Y,S),A(<,X) )]. P) AQ(y)A;(x)( ~ ( y , c ) , A ( t ; , x ) ) = y ( x , y ) which i s t h e G-L e q u a t i o n (3.11)
t ; ) , q i A ( E ) ) = Ag(Y)( B(Y,E)sR"q!(E))
( r e c a l l B(Y,X)
=
= AQ(Y)( B(Y,F;),PXAp1 ( x ) A ( E , x ) )
~~(x)~i'(y)y(x,y)).
QUANClun SCACCERZNC CHEP1Rg- I n o r d e r t o p r o v i d e some background f o r our d i s c u s s i o n of G-L and M equations we g i v e some i n f o r m a t i o n here from i n 4.
verse quantum s c a t t e r i n g t h e o r y ( c f . [Adl; Consider t h e o p e r a t o r Q = D2 i s f y i n g e.g.
Im x l q ( x ) ( d x < 0
-
-.
C40; Cel; D c l ; F a l ; Nel-4,7]).
q ( x ) w i t h unknown r e a l p o t e n t i a l q ( x ) s a t 2 S o l u t i o n s o f 9p = - k q s a t i s f y i n g q(0,k) =
0 and ~ ' ( 0 , k ) = 1 a r e c a l l e d r e g u l a r s o l u t i o n s and i n deference t o t h e t r a -
d i t i o n i n p h y s i c s we develop t h i s s e c t i o n around t h e r e g u l a r s o l u t i o n . (For our purposes i n §§3,5,etc.
i t i s more n a t u r a l t o use as b a s i c i n g r e d i -
e n t s f o r G-L and M equations t h e s p h e r i c a l f u n c t i o n s P = 9 ; s a t i s f y i n g (&I = Those s o l u t i o n s @+(x) = @(x,+k) o f - A 2P w i t h ~ Q ~ ( =0 1 ) and DxqA(0) Q = 0.) 2 @ = - k @ a s y m p t o t i c t o e x p ( + i k x ) as x + m ( w i t h @: 'L + i k e x p ( + i k x ) ) w i l l be -
c a l l e d J o s t s o l u t i o n s and one shows e a s i l y t h a t W(@+,@-) -2ik.
One c a l l s F ( k ) = @(O,k) = @+(O) -F(k) w i t h
=
a+@-' - @'a +- =
t h e J o s t f u n c t i o n and ~ J ( P , @ + )
=
QUANTUM SCATTERING THEORY
(4.1)
ip(x,k) = ( l / Z i k ) [ F ( - k ) @ ( x , k )
127
- F(k)@(x,-k)]
For t h e f r e e problem ( q = 0 ) e v i d e n t l y
ip %
[Sinkx/k],
@+
-
%
e x p ( + i k x ) , and
The t h e o r y r e l i e s h e a v i l y on v a r i o u s p r o p e r t i e s o f
which a r e d e d u c i b l e f r o m w r i t i n g t h e a p p r o p r i a t e i n t e g r a l equations and making F ( k ) = 1.
estimates.
We m e r e l y i n d i c a t e t h i s here and r e f e r t o e.g.
ip
and
@+
[Cell f o r details.
Thus
(4.3)
@(x,k) = e
ikx
+
One s o l v e s t h e s e by i t e r a t i v e procedures and i n p a r t i c u l a r
LEiItiRA 4.1,
ip
i s an e n t i r e a n a l y t i c f u n c t i o n o f k of e x p o n e n t i a l t y p e x.
@(x,k) i s a n a l y t i c i n k f o r Irnk > 0 and i s continuous and bounded f o r Imk 0.
One has e s t i m a t e s
F u r t h e r w i t h q r e a l one has ip(x,-k) @(x,-I),
=
ip(x,k),
ip(x,-k)
= Z(x,k),
g(x,k) =
and F ( - C ) = F ( k ) .
Now t h e s p e c t r a l t h e o r y f o r an o p e r a t o r 0 = D2 - q, q r e a l , i s c l a s s i c a l ( c f . Chapter 1, §§5-8).
We assume F ( 0 ) = 0 f o r convenience and one o b t a i n s 2 a s e l f a d j o i n t o p e r a t o r i n L ( 0 , m ) r e l a t i v e t o boundary c o n d i t i o n s ip(0,k) = 2 0 w i t h ip'(0,k) = 1. There i s a continuous spectrum i n t h e energy o r E = k plane f o r E
0 and p o s s i b l y a f i n i t e number o f d i s c r e t e eigenvalues a t
2 p o i n t s E = - y j ( k k = i y j and F ( k . ) = 0 - t h e s e correspond t o what a r e c a l j J l e d bound s t a t e s i n p h y s i c s ) . One has t h e f o l l o w i n g t y p e o f theorem express i n g a symbolic completeness r e l a t i o n
&HE@REEI 4.2, (4.6)
Setting
j
=
J ( 2 / ~ ) rip(x,k)ip(y,k) 0
where c
ip.(x)
2
ip(x,k.) J k2dk
one has f o r m a l l y
I F(k) I*
+
c
Cjipj(X)ipj(Y)
= S(X-Y)
= '/lom I i p j ( x ) l dx. F o r s u i t a b l e f t h i s l e a d s t o an expansion
128
ROBERT CARROLL
and t j ( k ) = Jr f ( y ) v . ( y ) d y . J Now s e t F ( k ) = I F ( k ) l e x p ( - i S ( k ) ) which d e f i n e s a so c a l l e d phase s h i f t s ( k )
where ?(k) = Jm f ( y ) v ( y , k ) d y 0
(one can t a k e 6 ( - k ) = - & ( k ) f o r k > 0). IF(k)lSin(kx + s(k))/lkl
+ o(1).
Then f o r r e a l k, as x + m,q(x,k)
?J
The theme o f i n v e r s e s c a t t e r i n g t h e o r y i n
quantum mechanics i s t h a t i f one knows t h e phase s h i f t (measurable from s c a t t e r i n g experiments), t h e bound s t a t e energies E . ( i . e . t h e k j ) , and t h e J normalization constants c t h e n one can r e c o v e r t h e p o t e n t i a l q. I n f a c t jy
t h e passage f r o m 6 ( k ) and t h e b i n d i n g energies t o F ( k ) , which t h u s c o n t a i n s a l l t h i s i n f o r m a t i o n , can be achieved v i a a formula ( c f . [ C e l l ) F ( k ) =
n[l-(Ej/E)]exp[-(2/n)~om { 6 ( ~ ) ~ d ~ / ( ~ ~ - k I~n ) pl a] r. t i c u l a r i f t h e r e a r e no bound s t a t e s t h e n one can pass d i r e c t l y f r o m s ( k ) t o F ( k ) and hence t o t h e 2 2 s p e c t r a l measure d p ( k ) = 2k d k / a ( F ( k ) l . The a c t u a l machinery f o r r e c o v e r i n g t h e p o t e n t i a l i n v o l v e s two main procedures based on e i t h e r t h e G-L o r M equation.
L e t us s k e t c h some o f t h e
background and develop t h e m a t t e r here f o l l o w i n g s t i l l [Cel; F a l l .
We use
t h e c l a s s i c a l Paley-Wiener t y p e theorems f r o m Chapter 1, S3 as needed.
A
standard procedure now i s t o l o o k a t (4.4) f o r example and deduce t h a t t h e e n t i r e f u n c t i o n o f e x p o n e n t i a l t y p e x, q ( x , k ) = q ( x , k ) - [Sinkx/k], belongs 1 f o r k r e a l , and hence Theorem 3.9 o f Chapter 1 i m p l i e s t h e e x i s t e n c e
to L
o f a function $(x,t) (4.8)
q(x,k)
Here $ ( x , t )
=
such t h a t
:1
$(x,t)Cosktdt
i s continuous i n x and t w i t h $(x,+x)
Ik o f t y p e (4.4) jm *(x,k)Cosktdk
v(x,k)
= 0 and t h e e s t i m a t e s on
a l l o w one t o d i f f e r e n t i a t e t h e f o r m u l a $ ( x , t ) = ( l / a ) under t h e i n t e g r a l s i g n . Then one can produce a formula
0
(4.9)
= 2
rX$(x,t)eiktdt
= [Sinkx/k]
+
I"
K(x,t)[Sinkt/k]dt
'0
from (4.8) where K ( x , t ) = -2Dt$(x,t) t i c u l a r K(x,O) = 0 ) .
has reasonably n i c e p r o p e r t i e s ( i n par-
From o u r p o i n t o f view t h e formula (4.91,
called the
Povzner-Levitan r e p r e s e n t a t i o n f o r q , i s a t r a n s m u t a t i o n formula. It ex2 presses t h e a c t i o n o f a t r a n s m u t a t i o n o p e r a t o r B: 0 = P + D2 - q = Q c h a r a c t e r i z e d by i t s a c t i o n on e i g e n f u n c t i o n s ( i . e . k e r n e l r e p r e s e n t a t i o n k e r B = B(x,t)
=
B[Sinkt/kf
6(x-t) + K(x,t).
=
v)
through a
A p r i o r i such a
t r a n s m u t a t i o n o p e r a t o r B would be an i n t e g r a l o p e r a t o r w i t h a d i s t r i b u t i o n k e r n e l @ ( x , t ) a c t i n g on LO,..); e n f u n c t i o n s 7 and [Sinkx/k]
t h e a n a l y s i s based on p r o p e r t i e s o f t h e e i g a l l o w s one t o deduce t r i a n g u l a r i t y ( i . e .
~(x,y)
QUANTUM SCATTERING THEORY
=
129
0 f o r t > x ) t o g e t h e r w i t h o t h e r n i c e p r o p e r t i e s o f B.
This i s a t y p i c a l
s i t u a t i o n a l t h o u g h i n general f o r s i n g u l a r problems a decomposition B(x,t) = s(x-t)
+ K(x,t) i s n o t n a t u r a l (as i n d i c a t e d e a r l i e r ) .
Now l e t us i n d i c a t e a d e r i v a t i o n o f t h e G-L e q u a t i o n f o l l o w i n g [ F a l l which Thus f i r s t we i n -
s p e l l s o u t t h e d i s c r e t e spectrum i n t h e d e r i v a t i o n o f 53. v e r t (4.9) i n t h e s p i r i t o f V o l t e r r a o p e r a t o r s t o o b t a i n [ S i n k y / k l = Ip(y,k) +
(4.10)
f
L(y,t)cp(t,k)dt
0
where L i s j u s t a r e s o l v a n t k e r n e l o b t a i n e d i n a standard manner ( c f . f o r Now i n (4.6) we w r i t e cp (x,k)
example [ T i l l ) .
W (k) = 1/IF(k)I2, andWp(k)
Q
f o r p(x,k),
pP(x,k) f o r
1 where t h e completeness r e l a t i o n 2 ( k ) k We mulf o r qp(x,k) i s t h e n (+) 6(x-y) = ( 2 / n ) f m c p p ( ~ , k ~ p ( y , k ) ~ ~ p dk. 0 2 2 t i p l y t h e e q u a t i o n s (4.9) and (4.10) by vp(y,k)W ( k ) k and v (x,k)W ( k ) k
Sinkx/k,
=
Q
r e s p e c t i v e l y and i n t e g r a t e i n k.
4
4
rl
A f t e r some c a l c u l a t i o n s u s i n g (4.6) and
( 4 ) one o b t a i n s t h e G-L e q u a t i o n ( x > y )
(4.11)
0 = c ( x , y ) + K(x,y) +
K(x,t)n(t,y)dt
where t h e k e r n e l R i s g i v e n by
CHE0REm 4.3,
The G-L e q u a t i o n f o r P = D
and =;
D2
-
q i s g i v e n by (4.11)
K i s t h e t r a n s m u t a t i o n k e r n e l from (4.9) and
f o r x > y where (4.12).
2
,O.
i s defined by
It w i l l have a unique s o l u t i o n K and t h e p o t e n t i a l q can be r e -
covered f r o m t h e r e l a t i o n q ( x ) = 2DXK(x,x).
Pmal;:
We a c t u a l l y know t h a t K e x i s t s from (4.9) and t o show uniqueness we
suppose two s o l u t i o n s o f (4.11) e x i s t so t h a t f o r t h e i r d i f f e r e n c e K(x,y)
+
0 f o r x > y. M u l t i p l y by K(x,y) and x x i n t e g r a t e t o o b t a i n (*) E = lo K2(x,y)dy x + la lo o(t,y)K(x,t)K(x,y)dtdy = 0.
one has K(x,y)
Jx K ( x , t ) R ( t , y ) d t 0
Now w r i t e (4.12) as n(x,y)
=
=
~1cpp(x,k)cpp(y,k)dp(E)
-
s ( x - y ) = A(x,y)
2 &(x-y) where dp(E) = (2/n)W ( k ) k dk f o r E 2 0 and dp(E) Q 2
-
1
= c.s(E-E.) f o r J J E < 0 (where E = - y . w i t h k = i y . , and we s e t ( s ( E - E . ) q ( k ) ) = cp(k.) w i t h j~ j J J J some abuse o f n o t a t i o n ) . The p o i n t here i s t h a t dP i s a p o s i t i v e measure
and E i n (*) can be w r i t t e n as (4.13)
=
1; JY
1
m
A( t ,y 1K( x ,t 1K( x ,y ) d t d y =
m
dP ( E ) [ r K ( x ,Y 0
)q p
2 d1~
130
ROBERT CARROLL
By Paley-Wiener ideas, f i r s t t h e i n t e a r a l I = Ix K(x,y)p 0
t i r e f u n c t i o n o f k (and o f E s i n c e i t i s a f u n c t i o n o f =
(y,k)dy i s an en-
5 k -
r e c a l l qPp(y,k)
F u r t h e r , s i n c e I i s d e f i n e d f o r a l l E and i s r e a l f o r E r e a l
Sinky/k).
w i t h dp(E) a p o s i t i v e measure i t f o l l o w s t h a t I = 0 and thus f x K(x,y) 0
Consequently f o r each x, K(x,y) = 0 f o r a l l y E [0,
Sinkydy = 0 f o r a l l k. x],
which e s t a b l i s h e s uniqueness.
To prove t h e statement t h a t q ( x ) = 2Dx
K(x,x) p u t (4.9) i n t o (4.2) and t a k e F o u r i e r S i n e t r a n s f o r m s ( t h i s a l s o connects (4.9) t o t h e Schrodinqer e q u a t i o n
-
c f . a l s o Chapter 1, 94 and
Chapter 2 , 58, and Chapter 3, 58 f o r d i f f e r e n t t y p e s o f p r o o f s - we i n Thus f i r s t
c l u d e t h i s p r o o f here t o i l l u s t r a t e a v a l u a b l e t e c h n i q u e ) .
1
m
(4.14)
K(x,t)
NOW ( c f . [C40])
= (2/n)
for
a,@ >
Sinkt
Sink(x-<)q(c)v(c,k)d
0
One uses here Y ’ = 6 f o r Y t h e Heavyside f u n c t i o n ( Y ( x ) = 1 f o r x > 0 w i t h Y(x) = 0 f o r x < 0 ) and we know t h a t ( 2 / n ) f m CoskaCoskpdk = 6 ( a - @ ) . ble 0
think o f t
+
x ( 0 5 5 5 x, t 5 x ) and s e t J = ( 2 / n ) J m S i n k t S i n k ( x - < ) S i n k g
dk/k = ( l / ~ ) . f - [ S i n k ( x - c ) / k ] [ C o s k ( t - c ) 0
-
0
= 1/2 ( t -+ x ) and t h e
Cosk(t+c)]dk
f i r s t t e r m i n (4.14) becomes ( 1 / 2 ) f X q ( c ) d g (assume here q E L1 near 0
-
n o t , s u i t a b l e m o d i f i c a t i o n s o f t h e p r o o f can be p r o v i d e d as i n [ C e l l ) .
On
0
t h e o t h e r hand t h e second t e r m i n (4.14) i n v o l v e s ( 0 5 n 5 t
-f
x ) J = (2/v)fom SinktSink(x-<)[Sinkg/k]dk
k(t-c)
-
Cosk(t+c)]dk,
hence t h e i n t e g r a l
fX
0
=
(l/V)fm
0
<
if
5 x; t 5 x;
[Sink(x-c)/k][Cos
which can be shown t o be 0 almost everywhere and
fc
t e r m i n (4.14) vanishes as t
-f
x.
0
The o t h e r approach t o r e c o v e r i n g t h e p o t e n t i a l v i a t h e M e q u a t i o n goes as follows; we o n l y g i v e here a b r i e f s k e t c h ( f o l l o w i n g [ C e l l ) s i n c e a more det a i l e d v e r s i o n based d i r e c t l y on t r a n s m u t a t i o n t h e o r y w i l l be g i v e n l a t e r ( f o l l o w i n g [ F a l l ) and t h i s w i l l i n t u r n be g e n e r a l i z e d c o n s i d e r a b l y . one r e f e r s t o a theorem o f [Te2]
( c f . a l s o Chapter 1, 93)
EHE0REill 4-4, A necessary and s u f f i c i e n t c o n d i t i o n t h a t F ( x ) t h e l i m i t as y
+
E
0 o f a function F(z) analytic i n y > 0 w i t h
dx = O(exp(2Ay)) i s t h a t Now l o o k a t H(x,k)
=
/,fF ( x ) e x p ( - i t x ) d x
@(x,k)
-
Thus
L
2
(-m,m)
be
/I I F ( x + i y ) l 2
= 0 f o r x < -A.
e x p ( i k x ) i n (4.3)
w i t h ( 4 . 5 ) and one o b t a i n s
QUANTUM SCATTERING THEORY
@(x,k) = e ikx
(4.16)
[
t
131
V(x,t)eiktdt n
v a l i d f o r Imk > 0 where V ( x , t )
i s LL i n t f o r each x > 0 ( t 2 x ) .
Assume
f o r s i m p l i c i t y t h a t t h e r e a r e no bound s t a t e s and s e t S(k) = F ( - k ) / F ( k ) so
S(k) = exp(-Zis(k)).
t h a t t h e phase s h i f t i s 6 ( k ) = ( i / Z ) l o g S ( k ) ( i . e .
The
s c a t t e r i n g f u n c t i o n S ( k ) i s t h u s determined e x p e r i m e n t a l l y from t h e phase s h i f t 6(k).
Now w r i t e t h e completeness r e l a t i o n (4.6) i n t h e form m
(4.17)
~ ( x - Y )= ( 1 / 2 ~ ) *(X,k)[@(y,-k)
- S(k)@(y,k)]dk
m !
Then, as f o r (4.10) one has f r o m (4.16) (4.18)
e
ikx - @(x,k) +
m
i(x,t)*(t,k)dt
t o g e t f o r x < y, :-f @ ( x , k ) [ e x p ( - i k y )
Now combine (4.17)-(4.18) e x p ( i k y ) ] d k = 0.
Then p u t t h i s w i t h (4.16) t o o b t a i n f o r x < y
(4.19)
=
V(x,y)
=
S(k)
I
V(x,t)Vo(y+t)dt
c o u l d be d e f i n e d f o r m a l l y by e i t h e r V o ( t )
where V o ( t )
or Vo(t)
Vo(x+y) +
-
( 1 / 2 1 ~ ) i I[S(k) - l ] e x p ( i k t ) d k .
= (1/271)jm S(k)eiktdk -m
The second form i s used i n phy-
s i c s and d i f f e r s from t h e f i r s t by a t e r m ( 1 / 2 1 ~ ) j Ie x p ( i k t ) d k = B ( t ) so t h a t t h e g r a t u i t o u s l y added terms s ( x + y ) o r 6 ( y + t ) c o n t r i b u t e n o t h i n g i n
- 1
i s t h a t i t behaves b e t t e r as k + m 1 I n sumand V o ( t ) w i l l t h e n be i d e n t i f i e d w i t h an L f u n c t i o n ( c f . [ F a l l ) . (4.19).
The reason f o r u s i n g S ( k )
mary (and o m i t t i n g some f u r t h e r d e t a i l s ) The
&HEOREB 4.5,
M equation f o r P
= D
2
and Q = D2
-
q i s g i v e n by (4.19)
w i t h V t h e k e r n e l from (4.16) and V o ( t ) = ( 1 / 2 ~ ) i I [ S ( k )
-
l]exp(ikt)dk.
There w i l l be a unique s o l u t i o n and t h e p o t e n t i a l q can be recovered from t h e r e l a t i o n q ( x ) = -2DxV(x,x)
(we assume here no bound s t a t e s ) .
R€FRARK 4-6, L e t us denote t h e t r a n s m u t a t i o n B o f (4.9) by U so t h a t U f ( x ) = f ( x ) + :1
Then w r i t e t h e map determined by (4.16) as V so
K(x,t)f(t)dt.
that Vf(x) = f ( x ) +
I,” V ( x , t ) f ( t ) d t
i n g on s u i t a b l e o b j e c t s as a t r a n s m u t a t i o n ) . = 1/lF(k)I2.
-
( V w i l l a c t u a l l y be a t r a n s m u t a t i o n a c t -
which however d i f f e r from those on which U a c t s
Assume t h e r e a r e no bound s t a t e s and s e t a g a i n Wo(k)
2
R e c a l l dF(k) = dp(E) = (2/a)Wo(k)k dk and d e f i n e ( A = 6 tC2)
132 Set
ROBERT CARROLL N
i? = UWQ
$Sinkx/k]
and t h i s w i l l t u r n o u t t o be a t r a n s m u t a t i o n U: P =
?(x,k)
= W (k)q(x,k)
Q
(in fact
r~
from 5 3 ) .
+
Q satisfying
Further ;will
have an o p p o s i t e s o r t o f t r i a n g u l a r i t y p r o p e r t y from U i n t h a t m
N
Uf(x) = f ( x ) +
(4.21)
K(x,t)f(t)dt X
analogous t o V.
-
N
N
Moreover U l i n k s U and V v i a a r e l a t i o n U = LZ where:
*
is -1
an o p e r a t o r t o be discussed l a t e r and i t w i l l t u r n o u t a l s o t h a t U = ( U ) N
( c f . Theorem 3.1). i z e d as B and
I n p a r t i c u l a r t h e o p e r a t o r s U and U ( s u i t a b l y general-
r)w i l l
be o f g r e a t use i n e s t a b l i s h i n g c o n n e c t i o n formulas
between s p e c i a l f u n c t i o n s o f R i e m a n n - L i o u v i l l e ( R - L )
and Weyl t y p e ( c f .
r~Ak3; C40; F f l ; Kpl; T j l ] ) . E i t h e r t h e G-L o r M e q u a t i o n can be used t o determine t h e p o t e n t i a 7 i n t h e i n v e r s e s c a t t e r i n g problem b u t t h e y r e f l e c t somewhat d i f f e r e n t aspects o f t h e p h y s i c a l problem ( t h e ample).
M e q u a t i o n i n v o l v e s hypotheses on q a t
m
f o r ex-
The experimental i n f o r m a t i o n g o i n g i n t o t h e d e t e r m i n a t i o n o f e i t h e r
e q u a t i o n i s b a s i c a l l y t h e same however; e.g. t h e phase s h i f t s ( k ) determines S(k) i n t h e
i n t h e absence o f bound s t a t e s
M
method o r t h e s p e c t r a l mea-
sure dp(k) i n t h e G-L method ( t h e J o s t f u n c t i o n F ( k ) i s t h e common i n g r e d i ent).
Now one expects t h e methods t o be e q u i v a l e n t i n some sense and t h e r e
a r e v a r i o u s ways o f c o n n e c t i n g t h e two approaches.
I n particu!ar
one can
accomplish t h i s by l i n k i n g t h e two o p e r a t o r s U and V and t h i s was done i n a r e v e l a i n g way i n [ F a l l .
We w i l l s k e t c h Fadeev's t e c h n i q u e f o r t h e quantum
s i t u a t i o n and t h e n show how i t can be c o n s i d e r a b l y g e n e r a l i z e d and an i n t r i n s i c meaning can be e s t a b l i s h e d f o r such formulas.
The l i n k i n g t r a n s f o r -
0
N
mation U w i l l generalized t o
B ( c f . Theorem 3.1) which serves a l s o as a
Weyl t y p e i n t e g r a l i n p r o v i d i n g c o n n e c t i o n formulas f o r s p e c i a l f u n c t i o n s . We n o t e t h a t o f course an a d j o i n t t o
B s h o u l d have c e r t a i n i n t e r e s t i n g pro# .
perties.
However t h e m o t i v a t i o n f o r i n t r o d u c i n g U, and hence o u r eventual
w
B, a r i s e s from [ F a l l , and was q u i t e d i f f e r e n t t h a n mere a d j o i n t n e s s ; t h e o p e r a t o r has t r a n s m u t a t i o n a l s i g n i f i c a n c e and i s i m p o r t a n t i n c o n n e c t i n g d i f f e r e n t i a l o p e r a t o r s v i a s c a t t e r i n g i n p u t (cf. We work w i t h Q = D2
-
[C47,48]).
q as above a t f i r s t , assuming f o r convenience t h a t
t h e r e a r e no bound s t a t e s and t h a t F ( 0 ) # 0. so t h a t from Theorem 4.2 one can w r i t e
W r i t e $+(x,k)
= q(x,k)/F(k)
QUANTUM SCATTERING THEORY
*
*
and T+T+ = T+T+ = I.
Here we keep g r e a l b u t use complex L
t h e corresponding c o n j u g a t i o n i n s e r t e d i n T .:
2
IT)/:
and G E Lu = I G ;
lo
IG(k)I2k2dk < m l .
m
Tog(k) =
(4.23)
133
g(x)
Sinkx 7 dx;
2
spaces w i t h
Thus i n (4.22) t a k e g g L
2
S i m i l a r l y one w r i t e s m
T:G(x)
=
(2/71)
G(k)
Sinkx k2dk 7
0
2 one has ToPg = - k 2 Tog ( w h i l e T+Qg = - k 2 T+g) and TOT: .= * T T = I. L e t now x be any e i g e n f u n c t i o n o f 4 r e l a t i v e t o t h e i n i t i a l con0 0 so t h a t f o r P = D
d i t i o n x ( 0 , k ) = 0 and w r i t e ( c f . Remark 3.11)
lo m
(4.24)
Txg(k) =
g(x)x(x,k)dx
so t h a t i n f a c t x = X(k)J/+ by uniqueness (x(0,k)
Set X(k) = x'(O,k)/$;(O,k) #(k)$+(O,k)). - -1 o r T T* =
Then c l e a r l y T
=
f
1x1';
x x
*
*-
Tx = T X ( k ) ; I = T+TZ = X - l T T x x * x *--I -1 and I = T+T+ = TxX X Tx = T2x l X [ - 2 T In particular
.
x -
f o r x = rp w i t h v ' ( 0 , k ) k real.
*
= X(k)T+;
=
1 one has X ( k ) = F ( k ) and %(k) = F ( k ) = F ( - k ) f o r 2 = l / ( X l and we o b t a i n T T*W(k) = W(k)
W r i t e W(k) = [ F ( k ) F ( - k ) ] - l
T T* = I;T*W(k)Tq = I. Next one assigns an o p e r a t o r EX i n rp2p L t o an opera-
%
PIP
t o r Ek i n L
by t h e r u l e E~ = T~E~T:; E'
*
= ToEkTo.
For example t h e opera-
t o r W(k) above i n L2 i s a s s o c i a t e d w i t h
L e t us w r i t e h e r e ( r e c a l l W(k) = l / I F ( k ) l 2 )
and r e c a l l t h a t i n t h e absence o f bound s t a t e s ( c f . (4.12)) A(x,y) = iz ~ p ( x , k ) r p p ( y , k ) d p ( E ) = (2/71)1; rpp(xyk)rpp(y,k)WQ(k)k 2 dk where WQ = 1 / I F I 2 and pp(x,k)
= Sinkx/k.
Thus W(x,y)
=
A(x,y)
which i s t h e known i n g r e d i e n t
i n t h e G-L e q u a t i o n (4.11) (n(x,y) = A(x,y) - 6 ( x - y ) ) . We c o n s i d e r now t h e 2 t r a n s m u t a t i o n o p e r a t o r U o f (4.9) and w r i t e t h i s as U = Ux = T i T o i n L and * 2 Uk = T T ( = TOUT:) i n Lu. To c o n f i r m t h i s we n o t e f i r s t t h a t g e n e r a l l y O l p
(4.27)
T*Tof(y)
= ( 2 / n ) jom$+(y,k)?(k)k2
&F(x)
/omf(x)[Sinkx/k]dxdk
=
[ ( 2 / ~ ) jm[Sinkx/k]9(y,k)k 2 d k l dx 0
( r e c a l l IP =
7
f o r k real).
t i o n (*) To[Sinix/c]
^k]
=
=
F u r t h e r i n a formal and e a s i l y checked c a l c u l a -
10" [Sincx/z][Sinkx/k]dx
JF lp(y,k)k26(k-i)dk/kc
=
~(y,;).
= (n/2ki)6(k-<);
Since e v i d e n t l y QT,*T,g
=
T*T [Sin^kx/ 9* 0 2 T9(-k TP g )
134
=
ROBERT CARROLL
* 2 TyToD g we see t h a t T>o
same a c t i o n S i n k x / k
+
i s a t r a n s m u t a t i o n D2
9(y,k)
Q c h a r a c t e r i z e d by t h e
+
as U; consequently U = T T
Ip 0 '
EHEB)REEI 4-7- The t r a n s m u t a t i o n U o f (4.9), c h a r a c t e r i z e d by U[Sinkx/k] = * * 2 2 can be w r i t t e n as U = TqTo i n L o r Uk = T T i n L It s a t i s f i e s
v(y,k)
.
O P
U*UWx = I and UkW(k)Ui = I where Ker Wx = W(x,S)
i s g i v e n by (4.26).
The
Iu
e q u a t i o n U*UWx w r i t t e n as UWx = (U*)-'
Pmud:
*
*
*
*
*
T?F(k)T and U*UI/Ix =~,T,T,ToToWTo = To(TqT,W) us, 0 x *o To = I. S i m i l a r l y UkWUk = ToTqWT,To = To(T,*WTq)To = I. F i n a l l y i f we w r i t e W(x,y)
Note t h a t U = T*T
= U i s t h e G-L equation.
=
+ 6 ( x - y ) and U f ( y )
= n(x,y)
=
f ( y ) +
(since U = B i s
g i v e n by ( 4 . 9 ) ) t h e n
(n(y,E),f(S))
+
f(y)
+ (
K(Y,x),(
fi(x,c),f(E)
(K(y,x),f(x))
)) +
On t h e o t h e r hand ( r e c a l l K(y,x) = 0 f o r x > y ) (U*)-'
= ( I
+ K*)-l
=
I+
N
N
K i n t h e sense of Neumann s e r i e s and K(x,y) w i 1 have t h e same t r i a n g u l a r i t y
*
N
as K (x,y) = K(y,x) ( y + x ) . Thus K(y,x) = 0 f o r x > y and K(x,y) = 0 f o r y < x. We w r i t e t h e n = (U*)-' and have c f ( y ) = f ( y ) + C r ( y , n ) f ( n ) ). Equating t h i s w i t h (4.28) one o b t a i n s ( r ) [ y , ~ ) + K ( y , S ) , f ( S ) )
+
((
K(y,x),
N
S(x,S) ) , f ( S ) ) = ( K(y,n),f(n) 9. Consequently f o r 5 < y we have t h e standard G-L e q u a t i o n (4.11), namely, N y , 5 ) + K(y,5) + Jdy K(y,x)dx,S)dx = 0 ( n o t e t(Y,n)f(n)dn),
(K(YYn),f(n)
) =
REINARK 4.8,
It i s i m p o r t a n t t o n o t e t h a t t h e G-L e q u a t i o n UWx = U has i n
N
Iv
Ad
f a c t t h e form sdy,s) + K(Y,s) + J{ K(y,x)sl(x,S)dx
0 f o r 5 < y.
= K(y,c) where K(y,S)
=
T h i s v e r s i o n , which we sometimes c a l l an extended G-L equa-
t i o n , i s more u s e f u l i n t h e general t h e o r y i n v o l v i n g s p e c i a l f u n c t i o n s .
It
w i l l be s t u d i e d l a t e r more e x t e n s i v e l y f r o m v a r i o u s p o i n t s o f view ( c f .
Theorem 3.4). v
The o p e r a t o r U i s o f c o n s i d e r a b l e i n t e r e s t i n i t s e l f as i n d i c a t e d above. note f i r s t t h a t
= (U*)-'
have f o r m a l l y r[[Sin^kx/^k] = T A
*
*
We
= T T T W(k)To = T*W(k)To so from t h e above we
* q o o A b.l(k)[ 6N (k-t)/2kk] 9
q
=
1 ; q(y,k)I/l(k)[k26(k-i)dk/
knk] = W(?)q(y,t) = q(y,k). F u r t h e r U i s a t r a n s m u t a t i o n s i n c e as b e f o r e * 2 * 2 We n o t e t h a t i n general i f i s g i v e n as Q ( T F o ) = TQ(-k WTo) = ToWToD
.
X
C
2kAk] = ;+(y,E')X(k) = Tz/F(k)
A
A
w i l l be a t r a n s m u t a t i o n w i t h T:To[Sinkx/k]
above t h e n T*T (i.e.
A
= q ( y , ~ ) ~ ( ~ ) / ? ( ~Observe ). that
X ( k ) = l / F ( k ) = 1/F(-k) and
%J/?=
?
%
T4c
= T+g(k)[r6 ( k - t ) /
T*W(k) v = T:qk)W(k)
q/FF = W q ) .
QUANTUM SCATTERING THEORY
Czmm
4 - 9 - Any T as above g i v e s r i s e t o a t r a n s m u t a t i o n X
U [Sinkx/k]
c h a r a c t e r i z e d by t h e p r o p e r t y N
X
*
= p
U = TqWTo (corresponding t o X ( k ) = l / F ( - k ) ) /v
=
135
q(y,k)
N
f m E(k)exp(iky)dk/k =
-m
Q, U
x
= T*T
x
0'
In particular
i s c h a r a c t e r i z e d by c [ S i n k x / k ]
W
U now as was done i n (4.9) f o r K.
-iI E ( k ) [ e x p ( - i k y ) / k ] d k
y(x,k)
=
[T(x,k)
-
[Sinkx/k] +
I.
Sinkx
Thus ( n o t e
f o r E even)
m
(2/n)
+
= W(kb(y,k).
L e t us express t h e k e r n e l K o f
(4.29)
'0
(y,k)i( k)/F(k).
N
t(x,y)[Sinky/k]dy; k2dk =
K(x,y) =
ikx]
= ( -m
Now f o r x+y > 0 an i n t e g r a l o f t h e f o r m
-
( i / r ) f [my ( x , k )
F]kebikYdk
,-ikydk
/I exp - i k ( x + y ) ) d k
can be thought
o f i n terms o f a l a r g e s e m i c i r c u l a r c o n t o u r i n t h e l o w e r h a l f p l a n e where Imk 5 0 and can be equated t o zero. @(x,k)exp(-ikx)/F(k) f o r Imk dk =
F u r t h e r one knows ( c f . L e m a 4.1) t h a t
(resp. @ ( x , - k ) e x p ( i k x ) / F ( - k ) ) Hence one can s e t
0 ( r e s p . Imk < 0 ).
/I [ @ ( x , - k ) e x p ( i k x ) / F ( - k ) ] e x p ( - i k ( x + y ) ) d k
c o n t o u r i n t e g r a t i o n w i t h Imk 5 0.
i s a n a l y t i c and bounded
,I [@(x,-k)exp(-iky)/F(-k)]
= 0 b y a s i m i l a r recourse t o
D e t a i l s f o r such arguments w i l l be q i v e n
l a t e r and we emphasize t h a t we a r e working i n a d i s t r i b u t i o n c o n t e x t .
Thus
t h e p r o p e r t r e a t m e n t o f such i n t e g r a l s r e q u i r e s t e s t f u n c t i o n s (and ParseVal formulas). K(x,y)
I
m
N
(4.30)
@*
T h e r e f o r e (4.29) becomes = (1/21~)
-m
[
-
eikx]e-ikydk
Again c o n t o u r i n t e g r a t i o n , now i n t h e h a l f p l a n e Imk
2 0, l e a d s t o an ab-
s t r a c t proof o f the t r i a n g u l a r i t y r(x,y) = 0 f o r x > y (thus
-/f e x p ( i k ( x - y ) )
dk = 0 f o r x > y and i n t h e same s p i r i t
LI [ @ ( x , k ) e x p ( - i k y ) / F ( k ) ] d k
f m [@(x,k)exp(-ikx)/F(k)]exp(ik(x-y))dk
= 0 f o r x > y).
-03
=
Such a b s t r a c t
p r o o f s o f t r i a n g u l a r i t y w i l l be e s p e c i a l l y u s e f u l l a t e r i n a general cont e x t o f s p e c i a l f u n c t i o n s where t r i a n g u l a r i t y r e s u l t s had o n l y p r e v i o u s l y been d e r i v e d by e x p l o i t i n g f o r example s p e c i a l p r o p e r t i e s and f o r m u l a s f o r hypergeometric f u n c t i o n s .
4-10, The k e r n e l ? o f
Summarizing we have can be w r i t t e n as (4.29) o r as (4.30) and
f r o m t h e l a t t e r form, u s i n g a n a l y t i c i t y p r o p e r t i e s o f
@
and F one can de-
e
duce immediately t h a t K(x,y) = 0 f o r x > y. N
I n o r d e r t o r e l a t e U and V v i a U Fadeev i n [ F a l l p u t s t o g e t h e r a f a s c i n a t i n g
p a t t e r n o f F o u r i e r a n a l y s i s and o p e r a t o r t h e o r y t o produce t h e SO c a l l e d
136
ROBERT CARROLL
Marc'enko (M) equation.
Thus f o r y > x
I.
m
(4.31)
V(X,Y)
= V0(x+y) +
V(x,t)Vo(y+t)dt;
-A
ik t d k where S(k) = F ( - k ) / F ( k ) appears i n (4.16).
i s t h e one dimensional s c a t t e r i n g m a t r i x and V(x,t)
T h i s i s t h e same r e s u l t as (4.19)
proof i s very d i f f e r e n t .
(Theorem 4.5) b u t t h e
Furthermore t h e i m p o r t a n t f o r m u l a
i s a l s o proved i n [ F a l l by these t r a n s m u t a t i o n methods.
We have extended
these procedures i n two stages ( c f . [C31,32,40,47-49,80])
t o a canonical
general v e r s i o n which i s presented i n Sections 55-6 and t h u s we w i l l o m i t t h e d e t a i l s h e r e f r o m [ F a l l l e a d i n g t o (4.31)-(4.32) i n which we p r e s e n t t h e
( c f . [C40]).
The f o r m
M e q u a t i o n l a t e r (Theorem 6.23 f o r example) i s a l s o
i n t r i n s i c i n t h e sense t h a t i t a r i s e s as a m i n i m i z i n g c r i t e r i o n ( c f . 57).
5.
&HE M A R E N K @ EQI.lA&Z@N UZA &RAW~TIUCA&Z~N. We go now t o t h e M equation,
a f o r m o f which was i n d i c a t e d i n 54 f o r t h e quantum s c a t t e r i n g s i t u a t i o n . A f i r s t g e n e r a l i z a t i o n o f t h e Fadeev procedure was developed by t h e a u t h o r i n [C31,32,40]
and a subsequent f u r t h e r e x t e n s i o n was g i v e n i n [C47-49,801.
The l a t t e r p r e s e n t a t i o n , a l t h o u g h more general, d i s p l a y s t h e m a t e r i a l much more i n t r i n s i c a l l y and c a n o n i c a l l y and i n f a c t i t i s t h i s v e r s i o n which a l s o a r i s e s as a m i n i m i z i n g c r i t e r i o n ( c f . 57).
and t h e n w i l l g i v e t h e general method i n
b r i e f l y t h e method o f [C31,32,40] detail.
T h e r e f o r e we f i r s t s k e t c h
B e f o r e d o i n g t h i s however i t w i l l be u s e f u l t o r e c a l l some t y p i c a l
p r o p e r t i e s of s p h e r i c a l f u n c t i o n s , e s t a b l i s h some r e s u l t s o f t r i a n g u l a r i t y f o r kernels, develop some techniques f o r m a n i p u l a t i n g s p e c t r a l i n t e g r a l s , and prove c e r t a i n c o n n e c t i o n formulas.
I n p a r t i c u l a r the operator
studied
e a r l i e r p r o v i d e s a f a s c i n a t i n g complement t o B i n terms o f mapping propert i e s f o r special functions.
We w i l l see t h a t ~ ( y , x ) w i l l g e n e r a l l y be
t r i a n g u l a r i n t h e sense t h a t a ( y , x ) t h i s z(y,x) = AP(x)Ai1(y)y(x,y) type f r a c t i o n a l integrals.
= 0 f o r x > y and as a complement t o
= 0 f o r y > x.
T h i s l e a d s t o R-L and Weyl
We r e c a l l now some formulas f o r k e r n e l s i n t h e
general form ( f r o m 52) (5.1)
B(Y,x)
= ( " xP( x ) y v : ( ~ ) ) v ;
;(Y,X)
= (QP x(x)yv:(~))u;
MARCENKO EQUATION
(Standard p r o p e r t i e s )
REmARK 5.1,
137
L e t us r e c a l l t h a t H i s t h e space o f even
e n t i r e r a p i d l y d e c r e a s i n g f u n c t i o n s o f e x p o n e n t i a l t y p e w h i l e 3T c o n s i s t s o f even e n t i r e f u n c t i o n s o f e x p o n e n t i a l t y p e and o f slow growth ( c f . Chapter 1, The general r e s u l t o f Paley-Wiener t y p e which we developed i n
§§9-10).
Chapter 1 i s t h a t
q
i s an isomorphism 27
e r t i e s o f and e s t i m a t e s f o r pi,
@pi-X,
+
H and E’
A n a l y t i c i t y prop-
3T.
-f
and c (+A) were a l s o d e s c r i b e d t h e r e
4-
and i n a l l cases p 4x ( x ) w i l l be an e n t i r e f u n c t i o n o f e x p o n e n t i a l t y p e w i t h an e s t i m a t e [ p4A ( x ) I 5 K(x)exp( ( I m h l x ( x 5 0, K E Co[O,m) Kexp(-Repx) e.g.
$
i n the basic s i t u a t i o n
= Qo n~
-
K has a bound
w i t h AB:
+
%
P ~ Q
Q,).
How-
e v e r t h e development o f [ T j l ] does n o t e x p l o i t t h e @A o r c (A) and t h e o n l y
Q
4
i n f o r m a t i o n recorded so f a r i n t h i s d i r e c t i o n a p p l i e s t o t h e b a s i c case
Q
Qo +
=
gR
Qa,
o f [Ffl;
p2
f
$
for c
r e g i o n n (e.g.
Kpl] o r t o t h e [Cg3] hypotheses.
> 0 and x
in
complex a , i ~n A
aB’
e x c l u d ng c e r t a i n p o l e s (a r e g i o n
i n AclB where X = 5 + i n ) and Q,.,(x) 4
A l s o I+,(x)l 9
exp(-Zx)@(A,x)].
=
5 c e.g. we expect a 4A ( x ) t o be a n a l y t i c i n a
= C/{-iN})
i s used f o r r e a l ,B
4
Thus f o r t h e case
For r e a l
rl
-\E,(E
= exp(ix-p)x[1
+
I m h L 0 even f o r n 2 - / E , l c , I A c Q ( - h ) l 5 K ( l + l A l ) 1-?JP+9 1
5 Kexp -x(ImA + Rep)] f o r U,B
and
and IcQ(-A)1-’ -i[;,m)
< K(l+IAI)%(p+q) ( w i t h Xc ( - A ) a n a l y t i c i n n having zeros i n Q r e c a l l 2a+l = p+q and 2 ~ + 1= 9 ) . F o r complex n,B a s i m i l a r t y p e
-
o f estimate f o r c-’(-x)
holds i f one s t a y s away f r o m poles.
4
For more gen-
era1 a 9A ( x ) we can r e f e r t o [Cg3] however ( c f . Lemma 1.10.11);
f o r now we
exclude s i n g u l a r i t i e s i n t h e p o t e n t i a l which do n o t l e a d t o s p h e r i c a l funct i o n s o l u t i o n s . Thus p 4( x , ~ ) i n (1.10.23) w i l l be a s p h e r i c a l f u n c t i o n ( w i t h a bound Ip Q ( x , h ) I 5 kexp( I n l - p ) x f o r x 2 0 and I h l 2 N - T = 0, B
Q( x , ~ ) p l a y t h e r o l e p r o p e r t i e s f o r cb4( x , ~ ) and
The f u n c t i o n s a t e s and
@
o f @Jx) 4
i n t h i s case and one has e s t i m -
c ( A ) d e l i m i t e d i n L e m a 1.10.11.
4
g i v e n hypotheses H2 w i t h B~ = 0, f o r x 2 xo > 0 and I m x > -s,/2 A
4 Q (x)aP,(x)
a n a l y t i c i n h and as ( X I +m,aA(x) 4
;aq’hx)exp(iAx).
t h e s i s H2 holds w i t h B~ # 0 o r H1 h o l d s (and n1 + B~ # f o r ImA
0; as
1x1
-f
m
w i t h Imh
+ o(l)].
A:(x)exp(ihx)[l
Q x4 4A )
4 has @.,(x) =
5, > 0 and x ? x 0 > 0 one has a 4 A(x)
Q 4
%
rlAlyf o r
We r e c a l l a l s o t h a t c ( - x ) 2 i x = -A,(x)
s o hc (-A) i s a n a l y t i c where
Q
I f hypo-
F i n a l l y f o r ImA 5 0 one has I c ( A 1 I - l 5
[ A \ 2 N under h y p o t h e s i s H1 o r H2. W(p ,Q,
m+k) one
Thus
one has
where v i s holomorphic i n A f o r ImA > 0 and continuous
(-iA)YA-”I(x)v(x,A)
4
4 0).
Q (x,A)
@
i s analytic.
I n particular
i s a n a l y t i c f o r I m A > 0 except f o r a f i n i t e number o f poles (x,A)/c (-A) 4 where c (-A) = 0 (A = h = i y j ) . 4 j W i t h t h i s k i n d o f background i n f o r m a t i o n f r e s h i r , mind now l e t us go t o some
@
138
ROBERT CARROLL Q and w r i t i n g r ( x , y ) = Consider f o r example q PA = EipA
t r i a n g u l a r i t y theorems. y(x,y)/ag(y)
we express t h i s as
P (x) = qA
(5.2)
(
Y ( X ~ Y ) ~Q~ , ( Y ) )= Q.Y(x,.)
= w(x,-)
P P We know q A ( x ) i s e n t i r e i n A f o r x > 0 w i t h Iq ( x ) I < K(x)exp( l ~ l x )and A K( - ) continuous w i t h say I K ( x ) ( 5 r a s s u m e d here ( t h i s h o l d s under t h e hypotheses o f [Cg3] f o r example). IK(x) I (Kx
A c u t a l l y f o r any f i n i t e x we can say P Thus q A ( x ) i s o f ex-
so no a d d i t i o n a l hypotheses a r e necessary.
p o n e n t i a l t y p e x i n A ( o f s l o w growth) and consequently v i a q i t comes from a distribution r(x,-)
E ' w i t h supp r ( x , - ) c [O,x].
E
T h i s i s b a s i c Paley-
Wiener i n f o r m a t i o n f o l l o w i n g Chapter 1, 549-10 and [ F f l ; y(x,
0 )
Kpl; T j l ] .
Since
may be i n f a c t a f u n c t i o n o r a d i s t r i b u t i o n we w i l l have t o have a
convention here and t h u s we w i l l r e f e r t o y ( x , - ) as a d i s t r i b u t i o n i n E ' . I f i n f a c t y(x,y)
i s a f u n c t i o n t h e n t o say ~ ( x , . ) E E ' w i l l mean r ( x , * )
as a f u n c t i o n i s a d i s t r i b u t i o n (under t h e map r ( x , - ) a f u n c t i o n f determines a d i s t r i b u t i o n by t h e r u l e f o r A = Ap o r A
9
as i s a p p r o p r i a t e
CHE0REm 5-2- y(x, -)
E
El
-
Q
pp,(Y) =
(
w i t h supp y ( x , - ) c [O,x]
P B(Y,x),vA(x))
-f
r(x,=)A (-)
10"
Q
(i.e.
-
i.e.
f(x)p(x)A(x)dx Thus
c f . Theorem 1.10.13).
Now c o n s i d e r ~ ( y , x ) i n t h e same s p i r i t . (5.3)
q
-f
y(x,y)
= 0 f o r y > x).
One has
= PB(Y,*)
= P[A(Y,.)l
where A(y,x) = ~ ( y , x ) / A ~ ( x ) . E x a c t l y t h e same r e a s o n i n g as f o r Theorem 5.2 again i s a p p l i c a b l e ( w i t h f ' i d e n t i f i c a t i o n o f f u n c t i o n s i n v o l v i n g A p ) ; thus
CHEaREM 5-3- ~ ( y , . )
E
E ' w i t h supp B(Y,-) c [O,y]
(~(y,x) = 0 f o r x > y).
Now combine these r e s u l t s w i t h t h e formulas (5.1) ( t h u s r e c a l l i n p a r t i c u l a r i;iy,x)
= Ap(x)A;
(Y)Y(x,Y) and ~ ( X , Y ) = A';
COR0tLARij 5-4, Apl(x)A A,'(y)Y(.,y)
E
R€ARK 5.5, When R l c P l 2 and (5.4)
9
(-)r(.,x)
E ' w i t h ';(x,y) P Q
E
El
(x)AQ(Y)6(Y,x))
w i t h T(y,x)
= 0 f o r y > x and A,(-)
= 0 f o r x > y.
dvp = Gp(A)dA and RQ
Q
duQ = cQ(?,)dh
;Q=
1/2nlcQ12 we can w r i t e P B(Y,x) = 7 Ap(x) @$yA(Y)dA; 9
jrn
t o Obtain
Apb) B(Y,X)
N
-m
=
with
I
m
GP
=
1/2~
@.,(Y) Q p ~ ) q ~ ( x ) d A
-m
These formulas i l l u s t r a t e n i c e l y t h e r o l e r e v e r s a l between x and y i n B and A,
6 and w i l l be examined l a t e r i n more d e t a i l .
MARCENKO EQUATION
139
The n e x t k i n d o f formula we want t o examine i n v o l v e s a g e n e r a l i z a t i o n o f t h e r e l a t i o n G[exp(ikx)] = @(y,k)/F(k) o f (4.32). (4.32) w i l l f o l l o w as a s p e c i a l case. on [C40,64,65] take P =
We g i v e s e v e r a l v e r s i o n s and
The f i r s t two techniques a r e based
and t h e n a new p r o o f based on [C47,80]
2 D (and B: P
n
Q i s t h e n denoted by B ).
+
4
i s given l a t e r .
First
Then u s i n g a t e c h n i q u e
modeled on c o n t o u r i n t e g r a t i o n as i n 64 we w i l l p r o v e t h a t
,-.,
(5.5)
BQ[exp(i”x)/%l
=
0 @A(Y)/cQ(-’)
Then u s i n g a d i f f e r e n t t e c h n i q u e o f p r o o f we w i l l demonstrate a more generP P a1 f o r m u l a (u,(x) = *)I,h(x)/cp(-~)) “ P “X(-)l(Y)
(5.6)
= +Y)
F i n a l l y a new p r o o f o f ( 5 . 6 ) i s g i v e n i n 86. A
REIllARK 5-6, L e t us p o i n t o u t t h a t ( 5 . 6 ) was e s t a b l i s h e d i n [Kpl]
f o r P and
A
Q o f t h e f o r m PaB
%
w i t h no p o t e n t i a l , u s i n g known formulas f o r hyper-
AaB,
Indeed r e f e r r i n g t o Chapter 1, 559-10
geometric f u n c t i o n s (as i n [Ak3]). we r e c a l l ( c f . (1.9.37)-(1.9.38))
I
Y
(5.7)
qy+’”+’(y)
R e c a l l here t h a t
=
Ta8 =
2 J n c a 8 / r ( a + l ) so from (1.9.38)
A
Here we t h i n k o f P
80(y,x)v:B(x)dx;
A
A
and Q
and one has ~ ~ ( y , x= ) A
(x) aB . , (y)yo(x,y)i Then we want t o i d e n t i f y 6, w i t h B and To w i t h y where a+u, B+!J P To do t h i s s i m p l y compare t h e 6 = k e r B, €3: + Q w i t h &PA = q Q , e t c . P Q f i r s t e q u a t i o n i n (5.7) ( i . e . q + , ~ + v ( Y ) = P I B o ( Y A l ( h ) ) w i t h &Pi = By uniquew r i t t e n i n t h e f o r m ,p~+’lYB+’(y) = ( ~ ( y , x ) , q : ~ ( x ) ) = P[B(Y, * ) ] ( A ) . %
aB
%
Aa+u,8+!J
A-1
ness i n t h e P - P o r ?? - P t r a n s f o r m t h e o r y one has 6 = B, Taking
~1
=
6
=
-+
A
-
and hence =
i n (5.7) ( i . e . P % D2 ’ L A -$,-$’ c-+,-+ s i n c e ??’ = pQ w i t h k e r n e l yo = 7.
Q
yo = ?.
(1/2)) we o b t a i n
2 L e t us go now t o an a b s t r a c t p r o o f o f (5.5) when R 4 % dwQ = d h / 2 n l c o ( X ) I . A 2 P Here P = D w i t h ,ph(x) = C O S X X , A, = 1, e t c . so u s i n g yQ(x,y) = AQ(y)BQ(y,x) and (5.4) we can w r i t e
140
ROBERT CARROLL
A). We w i l l show i n Lemma 5.9 below
even i n
(5.10)
I
E =
['P:(y)/cQ(-x)]eihxdi
0
=
-02
so t h a t (5.9) becomes m
(5*11)
YQ(xYY) = [AQ(Y)/4711
[ ' 4 ~ ( Y ) / c Q ( ~ ) l e iXxdh -m
Lemna 5.9 ( o r Theorem 5.2) y
shows t h a t y (x,y)
2 0 i n o u r arguments) and changing
4
-x
h to
=
0 f o r y > x (note x
0 and
which i s c l e a r l y
i n (5.11),
p e r m i t t e d , we o b t a i n by F o u r i e r i n v e r s i o n (9: = @:/cQ(-h))
I
m
Yq(x,y)eiAxdx = 2 Bg[e * i x xI ( Y ) Y * One knows f u r t h e r ( c f . Theorem 1.12.3) t h a t 8 = qP and 'ij = IQP ( c f . a l s o A Q ( Y ) *Q~ ( Y ) = 2
(5.12)
Theorem 3.1). (E'(y,x),f(x))
4
Q
I n f a c t l e t us n o t e t h a t i n general ( c f . ( 3 . 4 ) ) Ef(y) = = ((RA(x),qA(y))u,f(x)) P Q = ~ ~Q P X ( yP ) , ~ ~ x ( ~ ) , fS(i m ~ i)l a~r ~ W .
c a l c u l a t i o n s h o l d f o r 7 3 ( c f . (3.2))
and we mention i n p a s s i n g (as an ad-
j u n c t t o Theorem 3.1)
LEiiUW 5.7.
= A
=WE' and % = PQ.
R P and RQ one has
F o r general
has B*[Apf]
cf and B*[A Qf] Q
F u r t h e r one
= A$f.
*
Q L e t us w r i t e o u t t h e a c t i o n as B f ( y ) = ( y ( x , y ) , f ( x ) ) = (n,(y), P A/ 4 P (qh(x),f(x)))w; Bg(Y) = ( g ( y , x ) , q ( x l ) = ( I p x ( y ) y ( ~ h A ( x ) , g ( x ) ) ) oHence . one has B*[Apf] = A S i m i l a r l y B*[AQf](x) = ( ~ ( y , x ) , A f ( y ) ) = (Qh(x), P Prraal;:
rf.
.
Q
( q Qh (Y) YAQ(Y)f(y) )),,,
Ap(x)gf(x).
= 'p(X
In t h e p r e s e n t s i t u a t i o n
)( q Ph ( x )
¶(
Q
A ' (!Q)
Ap = 1 and
P
,f(y)
=
(5.12) one can w r i t e A (y)['PX(y)/cQ(-A)] Q (5.5).
4
) )u
= Ap(x)(y(x,y) ,f(y)
*
P so we have BQ
=
N
= AQB.
= 2A (y)F[exp(iAx)](y)
4
)
Hence i n and t h i s i s
Thus, modulo Lemma 5.9 t o f o l l o w , we have proved
EHE0REm 5-8. The e q u a t i o n (5.5) i s v a l i d when RQ
%
d h / 2 n ] c Q ( h ) 1 * under t h e
hypotheses o f Lemma 5.9 below. LEllUllA 5-9- Assume s t a n d a r d hypotheses f o r y L C > 0 and Imh 0 o f t h e form and I@A(y) Q I 5 cexp(-yImh) w i t h ' ~Q ~ ( y ) / c ~ ( - ahn)a l y t i c IcO(-h) 1-l5 k ( l + l h l f o r Imh > 0.
Then X = 0 i n (5.10)
f o r x 5 0 and y > 0, and one can show
141
MARCENKO EQUATION
d i r e c t l y t h a t y ( x , y ) = 0 f o r y > x when yQ i s g i v e n by (5.11).
Q
Pmad:
We t a k e
x
= s+in,
0, and y > c > 0.
r~
The i n t e g r a n d I ( h , y ) = a QA(y)/
i n arguments below i n s t e a d o f x 5 0, y > 0. c (-A)
q xr) ( y ) i n (5.10) i s bounded by a polynomial i n 111 f o r A r e a l so we
=
Q
are i n t h e context o f Fourier transforms i n S ' . for
Imx
Then one c a l a l l o w x > -4c
F u r t h e r I(X,y)
i s analytic
5 p ( l x l ) e x p ( - n y ) (p a p o l y n o m i a l ) . To see i n t u i I 5 exp(-qx) and approximate
> 0 with lI(A,y)l
t i v e l y t h a t Z = 0 use t h e f a c t t h a t l e x p ( i x x )
a l a r g e s e m i c i r c u l a r c o n t o u r i n t h e upper h a l f p l a n e by a sequence o f cont o u r s w i t h base l i n e s
Q =
€ 1 ~ 1 so
More p r e c i s e l y s e t Z ( x , y ) = F I ( A , y ) a n y t h i n g about Z(x,y)
for x
<
= 0 f o r m a l l y tends t o E = % and n o t e t h a t we do n o t need t o know
t h a t ZE =
-4c i n t h e arguments below.
v a l f o r m u l a f o r F o u r i e r t r a n s f o r m s we have f o r 9 ip(x)> =
Lr
I(A,y)$(A)dA
( t r e a t y as a parameter).
makes sense f o r r e a l A s i n c e
D w i t h supp v
For 9
E
1x1
i,
=
€
$
C (-%c,R)
E
S and I ( . , y )
S,
From t h e Parse-
= Fp € S, CZ(x,y),
The i n t e g r a l on t h e r i g h t
has o n l y polynomial qrowth.
we have f o r II L 0 on a S e m i c i r c u l a r c o n t o u r
L$exp(+crI)(l+lA\)-N f o r N arbitrary.
1$(A)1
$
0.
Hence I I ( A , y ) $ ( X ) l
5
p ( I A l ) e x p [ - n ( y - 4 c ) l ( l + l h l )-N where y L c and t h e corresponding c o n t o u r i n t e g r a l vanishes. consequently ( Z ( x , y ) , q ( x ) ) = 0 and E ( * , y ) = 0 i n D l ( - + c ,
-) which means i n p a r t i c u l a r Z ( x , y ) = 0 f o r x 5 0 and y 5 c ( c b e i n g a r b i trary).
T h e r e f o r e Z ( x , y ) = 0 f o r x L 0 and y > 0.
F i n a l l y t o show t h a t
t h e f o r m u l a (5.11) i m p l i e s t r i a n g u l a r i t y use a c o n t o u r i n t e g r a l argument i n t h e l o w e r h a l f p l a n e where l a Q- A ( y ) l 5 cexp(ny) (rl 5 0) and l e x p ( i x x ) l 2 ( A ) w i l l be bounded by $(lXl) The i n t e g r a n d J(A,y) = @-,(y)/c Q exp(-nx). exp[n(y-x)] =
with
$
4
.
a polynomial and an argument as above w i l l y i e l d y ( x , y )
0 f o r y > x ( w h i c h o f course we a l r e a d y know from Theorem 5.2.
Q
We now develop an a b s t r a c t procedure f o r p r o v i n g (5.6) ( t h e above t e c h n i q u e 2 f o r (5.5) does n o t e x t e n d d i r e c t l y ) . We assume a g a i n Rp % dA/2alcp(X)I and RQ 1 ' , d x / 2 a l c Q ( x ) (2 . Since = ! x = W ( X ) q Xr) now ( c f . Theorem 3.7 -
&!
W(x)dvp = dwQ w i t h W(X) = I c p ( x ) / c
we have
4 2 P ~ ( x , y k ~ ( y ) d =y I c Q ( A ) / c p ( A ) l P P , ( ~ )
(5.13) (note
2
Q (A)])
&!
ru
= Mp!
andBq!
=
&!
where
$(A)=
W-'(A)).
Hence f o r X r e a l
142
ROBERT CARROLL
For t h e d i s c u s s i o n t o f o l l o w we t r e a t y ( x , y )
as a f u n c t i o n n o t a t i o n a l l y ( 6
f u n c t i o n components can a l s o be so w r i t t e n i n o u r standard manner); i n t h e event t h a t ?(x,y) i s a d i s t r i b u t i o n o f h i g h o r d e r we know t h a t ?(x,y) w i l l be a c o r r e s p o n d i n g l y smooth f u n c t i o n and one c o u l d work w i t h %! = WP, Q i n P stead o f = %!. Under s t a n d a r d hypotheses as i n Lemma 5.9, *,(x) and
&:
$(x,A)
a r e a n a l y t i c f o r I m h > 0 and p o l y n o m i a l l y bounded t h e r e ( u n i f o r m l y P i s bounded by p ( l X l ) e x p ( - x I m A ) b u t i n c > 0 ) . Note t h a t *,(XI
for x
$(x,A) we o n l y have t h e polynomial bound on I c ( - A ) I - '
Q
a t our disposal a f t e r
i n t e g r a t i o n . We assume t h e i n t e g r a l (5.15) converges s u i t a b l y (hypotheses P t o f o l l o w ) and w r i t e now J/(x,X) = J/+ and q X ( x ) = w i t h J/- = $(x,-A) and
*+
*-.
*+
Then (5.14) can be w r i t t e n as @+ = J/+ = - ( J / - - *-) = -0= *!,(x) f o r 1 r e a l , and t h i s i s r e m i n i s c e n t o f t h e Riemann problem f o r s e c t i o n a l l y Thus we have
holomorphic f u n c t i o n s ( c f . [Gal; Mpl]). > 0 and
and
a n a l y t i c f o r Imh
= -0- f o r
@+
means
@-
@+
@+
a n a l y t i c f o r ImA
0 ( w i t h polynomial bounds i n b o t h h a l f planes)
<
By s t a n d a r d theorems on a n a l y t i c c o n t i n u a t i o n t h i s
real.
and -0- a r e a n a l y t i c c o n t i n u a t i o n s o f each o t h e r and r e p r e s e n t a
holomorphic f u n c t i o n i n C which i s p o l y n o m i a l l y bounded ( i n d e p e n d e n t l y o f x for x
c > 0).
Consequently by a v e r s i o n o f L i o u v i l l e ' s theorem
i n A o f f i x e d degree f o r a l l x L c.
polynomial p(x,X) @
+
= 0
-
=
-@
+
so Re@+ = Re p(x,A) = 0 b u t we d o n ' t need t o use t h i s .
us s t a t e now ( n o t e A-'/yy) = exp(-pqy) i n t h e s i t u a t i o n o f [ F f l ;
Q
e.g.
@+
i n (5.8) ?(x,y)exp(-pY)
Q,
is a
(Further f o r
real
.
Kpl] and
exp[-(a+B+l)y]).
IIHEBREI 5.10, Assume hypotheses as i n Lemma 5.9 w i t h t h e bound on @,(y) a,P o r @A) Q expressed f o r y 2 c > 0 and I m A > 0 as l@,(y)I 5 '&-'(y)exp Q,
c
(-yImA) and suppose
Pmab:
Take A =
irl
5
(?(x,y)lb:(y)dy
I t remains t o prove t h a t
plying 8).
Let
@+
c^.
(@,
Then (5.6) i s v a l i d . = 0 which i s (5.6)
= p(x,A)
(upon ap-
f o r example and w r i t e
-4
. The exp(-nx) 5 cap ( x ) e x p ( - r l x ) / l c p ( - A ) l 5 Fexp(-nx)/lc,(-h) terms i n these e s t i m a t e s w i l l dominate t h e polynomial bounds on l c p ( - 1 ) ~ - ' c and on I c Q ( - X ) I - ' so b o t h and w i l l be bounded by ?exp(-Enx) f o r x
w h i l e I*!(x)
I
N
*+
> 0.
Hence Ip(x,A)l
*+
(?exp(-Erlx)
-
f o r A = in.
I f we w r i t e p(x,A)
cn(x)Xn ( w i t h cn r e a l by an e a r l i e r remark) t h e n l c ( x , n ) 1 =
n n 1 5 ?exp(-Enx)
+
0 as n
-+
f o r each x.
c n ( x ) must be i d e n t i c a l l y z e r o f o r each n.
=
'1,N
ll," i c n ( x ) i n
It f o l l o w s t h a t t h e c o e f f i c i e n t s
=
MARCENKO EQUATION
143
Connection formulas between s p e c i a l f u n c t i o n s r e a t e d t o these r e s u l t s app e a r from time t o time i n t h e t e x t . We turn now t o t h e M e q u a t i o n and s k e t c h f i r s t the approach of [C31,32,40]. T h u s c f . (4.16) and ( 4 . 1 8 ) ) one s e e k s an analogue f o r V-l in t h e form
Q
We c o n t i n u e t o write i n t e g r a l s f o r F o u r i e r t r a n s f o r m s even when d e a l i n g w i t h BC! has kernel d i s t r i b u t i o n s p a i r i n g s . Next BQ = N-1 given by ( E P, ( x ) , l 0p ~ ( y ) ) ~ P Q ( w i t h Ap(x) = 1 , q x ( x ) = Cosxx, e t c . ) and ( y , x ) = 0 f o r y > x. Hence lY
4
( c f . ( 5 . 5 ) ) . Now assume ( c f . Remark 5.1) @,(y) Q i s a n a l y t i c i n A f o r say -4 Imh > 0 and I@!(y)I 5 CA (y)exp(-yImX) f o r Imx 2 0 and y 2 c > 0. Then i n ,4 -b (5.18) the i n t e g r a l f o r V ( y , x ) has i n t e g r a n d bounded by cAQ’(y)exp[-n(y-x)] N
N
Q
( n = Imx) and r e f e r r i n g t o a contour i n t e g r a l i n the h a l f p l a n e Imx 2 0 we A Q o b t a i n V ( y , x ) = 0 f o r y > x. Hence i n (5.18) we have @,(y) = Ir ?n (y,x) Q Y Q e x p ( i h x ) d x . Now using t h i s with ( 5 . 1 9 ) one o b t a i n s
I f we can w r i t e now
1
m
(5.21)
(1/2)/c
Q (-A)=
Fq = Q
qQ(c)eihEdg
-m
t h e n from (5.20) we w i l l have ‘u
(5-22)
eg(Y3x) =
A
* v ~ ( Y , * ) l ( x )=
I n t h i s connection l e t us r e c o r d
c
A
qQ(x-E)Vg(y,<)d<
Assume s t a n d a r d hypotheses c - ’ ( - x ) a n a l y t i c f o r Imx > 0 and polynomially bounded f o r Imx L 0. Then Q-1 c ( - A ) E S ’ and E S ’ determined Q Q by (5.21) has s u p p o r t i n [ O , w ) . CERIMA 5-11,
*
Phoad:
W e r e f e r t o Remark 5.1 f o r s t a n d a r d hypotheses and t a k e lco(-h)I-’
ROBERT CARROLL
144
p(lX1) f o r Imh 0 where p i s a polynomial (e.4. p ( l h ] ) = k ( l + l h \ ) y ) , From (5.21) now we have
<
m
q Q ( x ) = ( 1 / 4 1 ~ )j:q1(-h)e
(5.23)
-ixxdh
-
But -ixx
so f o r x
we consider (5.23) as t h e l i m i t of contour i n t e g r a l s i n t h e halfplane Imh 0. For example approximate f i r s t a l a r g e semicircular contour C by a sequence C, w i t h base l i n e s n = 6151 so t h a t the polynomial growth of c - ' ( - x ) a t m i s controlled by n > 0 i n the exponent. 0 More rigorously set l / c ( - A ) = 4 s F i and work i n S' with the Parseval f o r = x(n-ic)
< 0
0
0
h)dh Now the i n t e g r a l makes sense f o r r e a l X by standard growth f e a t u r e s of d E S and i f we take ~p E D w i t h s u p p IP C [-R,-a] then f o r n = Imh > 0 on a semic i r c l e 1x1 = $(A)/ 5 cexp(-brt), and Ic-'(-h)$(h)l 5 p ( l h l ) e x p ( - s n ) . Q Consequently f o r such ~p t h e x i n t e g r a l in (5.24) vanishes so ( \ k ( x ) , q ( x ) )
Rh,
Q
= 0 and hence t h e d i s t r i b u t i o n rI, (x) has support in [O,-).
Q
Using now Lema 5.11 we can w r i t e (5.22) i n t h e form
( t h e i n t e g r a l i s formal of course) and t h i s y i e l d s again >
x.
We summarize i n
LEl!UW 5-12, The kernels
G Q and FQ a r e r e l a t e d
4 (y,x)
= 0 for y
by (5.25).
Now define an operator
I
a,
(5.26)
EQf(5) =
qQ(x-c)f(x)dx
5
Then, W r i t i n g out the
action from (5.25) we have
Q
I, m
(5.27)
(rQ(y,x),f(x))
C AVQ ( Y I S )
=
[Q
X
A
f ( x ) L*Q(x-<)Vp(.Y.")d
(x-S)f(x)dxdS
Consequently one has a s a c o r o l l a r y t o Lema 5.12 -
7EHEQ)RElIl 5.13.
A
BQ = VQ EQ. N
T h i s i s of course analogous t o U = E i n t h e quantum s i t u a t i o n .
Now l e t us
145
MARCENKO EQUATION -
consider B
A
Q
N
= V
i n c o n j u n c t i o n w i t h B Wx = B
TQ
4
A
(5.28)
B
= VQXQ
4
4
t o g e t f o r example
1
W-
- W-l
r
R e c a l l Wx = PW(X)P and P = Fc here 2 = ?(A) = I c Q ( X ) I /st and 1 As i n t h e d e r i v a t i o n o f Theorem 3.18 one has W- f ( y ) = < G y , x ) ,
L e t us examine t h e o p e r a t o r (Fourier cosine transform). iw
W = W-'.
f ( x ) ) = i x f ( y ) ; p(y,x)
4' We
(Z/IT)/;
=
=
4'
w i l l w r i t e W-'(h)
W r i t e as i n Theorem 3.18
r(h)CoshxCoshydX.
A
(5.29)
W(t) = ( 1 / 2 1 ~ ) A
N
A N
even i n t.
r
u
A
-
N
4
N
N
F o r W1 use W(x-y) t o o b t a i n FWlf =
W(y-x) and k e r W2 = W(x+y).
A
+ W2 where k e r W1 = W(x-y) =
Now go t o (5.28) and w r i t e W =
A
A
A,
Note here W(A) i s even i n X and W(t) i s
and t h e n W(y,x) = W(x+y) + W(x-y).
,z e x p ( i h y )
{ ( x - y ) f ( x ) d x d y = ~(ix)f~ f ( x ) e x p ( i h x ) d x = r ( h ) F f where we w i l l t h i n k o f
J:
f(x) = 0 for x t e n as
v
Jrn -w
U Q ( x - 5 ) f ( x ) d x = Uo
V
f ( g ( x ) = g ( - x ) ) and (5.21),
Q
fs
Q
stat-
V
2 ~ F - hwe have F g Q f = FLU * f ]
c ( h ) ) F f ( n o t e FG = v
*
V
i n g t h a t +/cQ(h) =
(5.30)
Now from (5.26) w r i t -
0 ( c f . [ F a l ; C40] f o r d i s c u s s i o n ) .
<
-Q f ( c ) =
= FU F f =
4
4
= 2 ~ F - l g ) . I n (5.28) now we m u l t i p l y b y '
QF f = to =4
(+/ get
d
BQ ZQ = VQ XQ W
"Q
V
where Z Q f = UQ * f, i . e . g Q f ( c ) =
iz JI(7 ( x - c ) f ( x ) d x
=
_:I 9 ( c - x ) f ( x ) d x . T h i s
Q
" i n t u i t i v e " step w i l l lead t o a formulation very close t o t h a t o f [ F a l l ( c f . [C40] and see e s p e c i a l l y 556-7 f o r an i n t r i n s i c v e r s i o n o f a l l t h i s ) . We have t h e r e f o r e F] = I V
s i n c e FX f = F[U n
Q
Q *- f ]
=
FZ F f = (%/c ( - x ) ) F f . Q
A
4
v
4
Y
and t h e n f r o m above we o b t a i n
Q 2
r
N
(5.32) N
(W
= W-')
V
XQ W Z Q f = f
+
W ( - x - y ) f ( x ) d x = [W 4 -
*
f ) v = FW F f =
Fi
V
f ] (y)
= %i)F?.
= F
v
f = F-l[Zc v
sQ(-A)Ff.
(-h)]F(ZQf) Q
Hence
v
(-A)lFf Q-1 = F [2
T h e r e f o r e we have shown
F-ls ( - x ) F ~
Q
where s ( - A ) o r s,,(x) i s a " s c a t t e r i n g " term.
Q
Ff
*
= F - ' [ + ~ ( X ) / c p ( h ) l F ~ = F-l[Zc 'VV
f = 7 W 4 1 4
c Q (-h)][GQf]-= F-'[cQ(-h)/cQ(h)]Ff
A
4
t h a t W(t) i s even, W2f(y) = J W(x+y)f(x)dx = where f ( t ) = f ( - t ) . Hence FW2f = F(W cv 1 we have f i r s t XQW2f = F- [+/c (?,)]F&f
On t h e o t h e r hand, r e c a l l inq
(1/21~)1: s Q ( h ) e x p ( i h t ) d h so ' t h a t s Q ( - h ) =
Lz
Now s e t s ( t ) =
S ( t ) e x p ( i h t ) d t = FB; t h e n
146
ROBERT CARROLL
(5.33) (cf.
F - l s (-A)Fr = F - l F b
4
[Fal; C401
-
w r i t i n g B f ( y ) = :J 4
N
m
V
B(y+x)f(x)dx
f] = 0
one t h i n k s o f f d e f i n e d o n l y on L O , - ) ) .
Consequently,
B ( y + x ) f ( x ) d x , we have ( c f . ( 5 . 3 0 ) )
The e q u a t i o n BQ =
&HE@REIII 5.14.
*
;gQW - l
o f (5.28) becomes (5.30) o r B v
V
VQ(EQW kQ), which i n t u r n can be w r i t t e n as B
T h i s formula w i l l produce a v e r s i o n o f t h e
4
$Q= V Q I I
+
$1.
V
$Q=
M e q u a t i o n which i s q u i t e p a r a l -
l e l t o t h e quantum s i t u a t i o n o f [ F a l l as o u t l i n e d i n 54; t h e s c a t t e r i n g t e r m $3 a r i s e s i n much t h e same manner.
We c o n s i d e r i n t h a t d i r e c t i o n t h e
*Q”( c - x ) f ( x )
V
k e r n e l s i n Theorem 5.14 and n o t e f i r s t BQZQf(y) = dx) =
JJ
BQ(y,e)[i q Q ( S - x ) f ( x ) d x d c .
whereAKQ(yyx) = :J
oQ(y,i)*Q(c-x)dc
(
B (y,c),[z
Q
Consequently we have k e r B g Q = KQ and K (y,x) = 0 f o r y < x.
Q
v Q I I + S]f(y)
On t h e o t h e r
+ 1 ; f(x)J;
= J; VQ(y,c)[f(c) + :1 ti(S+x)f(x)dx]dS = Jm (y,x)f(x)dx Y Q iQ(y,c)$(c+x)dcdx. Hence f r o m Theorem 5.14 f o r y < x
while f o r y
>
hand
x
&HE@REm 5-15, The M e q u a t i o n a s s o c i a t e d w i t h Theorem 5.14 can be w r i t t e n as (5.34) w i t h (5.35) as a complement. n
I n comparing w i t h (4.31) o r (4.19) we
n o t e t h a t V ( y , ~ ) = 6 ( y - c ) + V (y,c) i n t h a t s i t u a t i o n .
Q
Q
REmARK 5-16, The data c ( A ) / c (-1) = s ( A ) e n t e r i n g Theorems 5.14 - 5.15 Q Q Q a p p a r e n t l y d i f f e r s from t h e data e n t e r i n g t h e M e q u a t i o n o f 54, namely S ( k ) = F(-k)/F(k).
We n o t e however t h a t g i v e n an o p e r a t o r D2
-
q f o r example
where e v e r y t h i n g makes sense one o b t a i n s by c a l c u l a t i o n w i t h Wronskians c Q ( ~ ) F ( A )+ cQ(-A)F(-A) = 1.
Hence s ( A )
4
+
s(x)
= l/cQ(-A)F(A).
Given
standard p r o p e r t i e s as i n Remark 5.1 and no bound s t a t e s l / c (-A)F(A) i s ana l y t i c f o r I m x > 0 and s u i t a b l y bounded t h e r e so t h a t V o ( t ) exp(iAt)dA = -(1/21~)i; sQ(A)exp(iht)dx = -S(t). 4
be t h e same as (5.34) w i t h V
Q
=
V (and VQ = 6
+
Q
= (1/21~)J1 S ( A )
Hence (4.19) w i l l a c t u a l l y Vo).
RElURK 5.17. The use o f t h e F o u r i e r technique involv.i,ng e x p ( t i x x ) on (-m,m) i s v e r y h e l p f u l h e r e i n e x p e d i t i n g c a l c u l a t i o n and producing a f o r m u l a such as (5.34)
( c f . a l s o [DuS]).
However i t s v e r y u s e f u l n e s s tends t o obscure
t h e i n t r i n s i c n a t u r e o f t h e u n d e r l y i n g t r a n s m u t a t i o n a l s t r u c t u r e and we w i l l
FOURIER TYPE OPERATORS
147
see i n t h e n e x t s e c t i o n how t o develop t h e m a t t e r c a n o n i c a l l y .
REMARK 5.18,
L e t us n o t e here another way t o l o o k a t t h e g e n e r a l i z e d G-L
equation g(y,x) =
(
~ ( y , c ) , A ( ~ , x ) ) which proves t h e a p p r o p r i a t e t r i a n g u l a r i t y
v i a t h e t h e o r y of h y p e r b o l i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s r a t h e r t h a n v i a Paley-Wiener ideas o r c o n t o u r i n t e g r a t i o n i n t h e s p e c t r a l v a r i a b l e .
The
method i s r e m i n i s c e n t of a s p e c i a l case encountered i n geophysical i n v e r s e problems ( c f . Chapter 3, 558-9). has z ( y , x ) =
(
Ifwe use (3.16)
G-L e q u a t i o n one
~ ( y , c ) , T ; i ( ~ ) ) A ~ ( x )which reminds one o f formulas d e r i v e d i n
5 5 2 - 3 t o s o l v e Cauchy problems o f t h e form
f ( y ) , px(O,y) = 0. ( 9 AP ( x ) , p AQ ( y ) ) u
i n the
=
(a)
P(Dx)p = Q ( D
lip,
y-
p(0,y) =
I n t h e p r e s e n t s i t u a t i o n w r i t e p ( x , y ) = B(y,x)/Ap(x) Then f o r m a l l y p s a t i s f i e s
y(x,y)/A,(y).
(0)
=
w i t h 9(x,y) =
( ~ ( Y , E ) , T ~ ~ ( E so ) ) t h a t P ~ ( O , Y ) = 0 and ~ ( O , Y ) = ( 1 , ~Q ~ A y )= ) 6~( y ) / A g ( y ) .
5
CH€OREIII 5-19. X(y,x)/A,(x)
= ip(x,y)
can be t h o u g h t o f as t h e impulse r e -
sponse t o an i n p u t p ( 0 , y ) = 6 ( y ) / A g ( y ) and b y domain o f dependence argurv
ments ~ ( y , x ) = 0 f o r x
(6(c),Tii(5))
= w"(x).
P m ~ u l ; : Since
(a)
<
y.
=
i s h y p e r b o l i c one can draw a domain o f i n f l u e n c e h X
Thus ~ p ( x , y ) = 0 f o r y > x. 6.
The " r e a d o u t " p ( x , O ) i s ( ~ ( O , c ) , T i g ( , ) )
The l a s t statement f o l l o w s as i n 5 2 .
&HE mARCENK0 EQ11ACION FOR FOURIER CyPE OPERACOG,
.
We go now t o t h e gen-
M e q u a t i o n as developed i n [C40,47-49,801. We w i l l u s u a l l y use t h e symbol Pu = u " - q ( x ) u t o denote a F o u r i e r t y p e o p e r a t o r as
e r a l i n t r i n s i c canonical
A
A
i n Chapter 1, 58 w h i l e 0 r e f e r s t o a " s t a n d a r d " o p e r a t o r w i t h p r o p e r t i e s as A
d e s c r i b e d i n Remark 5.1 f o r example ( a l s o Q o f t h e form u:
= (Au')'/A
-
qu
as i n Chapter 1, 56 o r Chapter 3, s8 a r e a p p r o p r i a t e and w i l l be r e f e r r e d t o A
as s t a n d a r d ) .
We assume throughout however t h a t r) i s a b s o l u t e l y c o n t i n u o u s
i n t h e sense t h a t R Q
A
A
%
dwQ = wQ(h)dh on [0,m).
We w i l l f i r s t d e r i v e a Q
v e r s i o n o f a g e n e r a l i z e d Kontoroviz-Lebedev ( K - L ) t e c h n i q u e (developed i n
-
2
2
f o r o p e r a t o r s o f t h e form c u = x u " + 2xu' + X~[I,* - G(x)]u = (I, T h i s enables one t o g i v e a %)u w i t h s p e c t r a l v a r i a b l e v - cf. 558-9).
[C43,45]
new f o r m u l a t i o n o f t h e b a s i c c o n n e c t i o n formula
%(
=
$ f r o m Theorem 5.10
and suggests some i n g r e d i e n t s f o r e x t e n d i n g t h e G-L and M c o n n e c t i o n o f 55
ROBERT CARROLL
148 A
(for P
i:
=
+@!
A 2 D ) t o a l a r g e r c l a s s of P.
F i r s t one describes a transmutation
and then f o r Fourier type operators
( c f . Chapter 1 , e8) we de-
velop and e x p l o i t t h e analogues o f t h e c l a s s i c a l transforms and e s t a b l i s h some new technique using ideas of generalzied t r a n s l a t i o n and convolution. Once t h i s machinery i s i n place t h e general idea of the G - L and M connection follows t h e l i n e s s e t f o r t h i n 55 and i n f a c t t h e procedure i s somewhat i m proved and more " i n t r i n s i c " here. Thus t h e idea of the M equation i s t o rev via B. One obtains f i r s t 'ii'=kH and then t h e general extended l a t e B and
BX" =
v
N N
% = K*, K , and a r e described i n t h e t e x t . We remark a l s o t h a t t h i s same type of M equation a r i s e s n a t u r a l l y a l s o i n a d i f f e r e n t context where one c h a r a c t e r i z e s transmutations by minimizing pro-
M equation i s
B ( X W ) where
cedures ( c f . 97) and thus we f e e l t h a t i t s " i n t r i n s i c " nature i s well established ( s e e a l s o Chapter 3 f o r connections o f t h e general machinery t o l i n e a r s t o c h a s t i c e s t i m a t i o n ) . We will a l s o develop t h e complementary r o l e of t h e G-L (resp. M ) equations as 1 ower-upper ( r e s p . upper-1 ower) f a c t o r i z a t i o n s of G-L (resp. M) data. We would a l s o l i k e t o suggest t h a t t h e "transA form calculus" of Fourier type P and t h e techniques i l l u s t r a t e d by our procedures a r e of some independent i n t e r e s t and of potential use i n various contexts. Let us t a k e t h i s opportunity t o note t h a t t h e presentation of A Theorem 2.4 f o r Fourier type P in [Hol] ( f o r Imx 2 0 ) i s somewhat misleading and our hasty reading of t h e s i t u a t i o n led t o a discussion of t h e s e ope r a t o r s a s a n example i n [C40, Chapter 2, Remark 10.12land in [C343 which was badly phrased ( a l s o the i l l u s t r a t i v e material based on this example of A Fourier type P i n [C40, Chapter 3, p p . 325-3291 and in [C68, pp. 54-57]
must be appropriately modified).
W e have accordingly c l a r i f i e d such materi a l here i n the t e x t and have indicated t h e c o r r e c t version. There is a l s o a typographical e r r o r i n [C48] in t h e expression f o r the kernel g ( y , x ) , while t h e c o r r e c t i o n p 2 + p p - on p. 50 o f [C47] was incorporated in CC801 ( i n t h e c o e f f i c i e n t of ~ ( A + uin) l i n e -2 of [C47], p. 50); these matters a r e developed c o r r e c t l y here. A
For general Q a s indicated we now f i r s t r e c a l l t h e inversion formulas
1
m
(6.1)
Qf(A) =
;(A)=
0
f ( x ) a4 A ( x ) d x ;N f ( x ) =
2
lo m
;(x)q;(x)wnO(x)dh A
where G (A)= 1 / 2 v \ c (A)[ ( E ( A ) = c ( - a ) f o r A r e a l ) . Similarly f o r P of Q 4 4 Q 2 Fourier type one h a s transforms p a n d = w i t h dv = d v p = G p ( x ) d h = dx/2nlcpl . We r e c a l l a l s o t h a t B: p Px -+ q y and ,B:- qP x Ic /c I 2 p xQ have kernels ~ ( y , x )= P O -f
FOURIER TYPE OPERATORS
149
N
(<(x),v!(Y) a l l y as
ii
and i s c h a r a c t e r i z e d more generB(Y,x) = (((x) ,P;(Y) -1 # # = (B = B v i a a formula ($(y)f(y),Cju(y)) = (+(x)u(x),Bv(x) )";
We can w r i t e f o r t h e k e r n e l s o f %(y)$'(x)&',x)
and ?x,Y)
3
= B - l and
=
= %(y)~$,~(x)~(y,x).
E-'
t h e formulas y(x,y)
).
=
One r e c a l l s t h a t by Paley-
Wiener arguments i n general ~ ( y , x ) = 0 f o r x > y and z(y,x)
=
0 f o r y > x.
P = qA. Q Now F i n a l l y we d e f i n e q PA ( x ) = a PA ( x ) / c p ( - ~ ) as b e f o r e and r e c a l l -B'kA A
we g i v e a Q v e r s i o n o f some g e n e r a l i z e d K-L t e c h n i q u e developed i n [C43-461 for
t y p e o p e r a t o r s ( c f . Chapter 1, 57 and Chapter 2, 598-9).
Thus f i r s t A
we can r e w r i t e t h e i n v e r s i o n f o r m u l a ( 6 . 1 ) as f o l l o w s . and
o^Q ( A )
=
1 / 2 T I c (A)I
Q
2
Q
Since f ( A ) , ,ph(x),
a r e even i n A one has
q - 4 i n v e r s i o n . Next one can g i v e f o r Q as f o l l o w s . Thus combining (6.1) m a l l y a new p r o o f o f t h e f o r m u l a -B Pq A = qA which g i v e s a u s e f u l f o r m o f t h e
and (6.2) one has ( w i t h obvious n o t a t i o n )
U
A
Consequently one can w r i t e ( w i t h a c t i o n i n 1~ an s u i t a b l e even f u n c t i o n s f )
U
Now go t o t h e k e r n e l expressions and s e t T ( y , x ) (y).
P
Q
= (flA(x),qX(y)
)w =
P Z?[nA(x)]
Then u s i n g (6.2)
( t h i s can a l s o be d e r i v e d d i r e c t l y as i n ( 6 . 2 ) ) . Now m u l t i p l y (6.5) by P ( x ) and i n t e g r a t e , u s i n g (6.4) f o r m a l l y ( i . e . assume t h e s ( x - p ) a c t i o n on
*u p
i n (6.4) extends t o be ~ ( X - U ) a c t i o n i n
jm*;( Y 16(
x
Q w o r k i n g on qA). Then
A-lJ
-m
ZHZ0REm 6-1. The i n v e r s i o n (6.1 (modulo i n t e r p e r t a t i o n o f (6.4)
can be w r i t t e n i n K-L f o r m as i n (6.2) and t h e r e l a t i o n E[qA] P = qA Q follows formally.
ROBERT CARROLL
150
A
n
REIIIARK 6 - 2 - Let T ( X , p ) be a s i n ( 6 . 4 ) with Q = P and observe t h a t K-L inverP P sion says ( * ) 6(x-y) = ( 1 / 2 a ) i I *l(x)f?X(y)dA a c t i n g on some f a i r l y general
Now consider T ( X , v ) a c t i n g i n A on
c l a s s of f ( c f . however [JbZ]).
(-m,m).
P
Formally f o r any function say F(X) = 1 ; f ( x ) q X ( x ) d xone would have (using
fr
(*I), Lz
P
P
P
F(x)T(l,v)dx = f ( x ) d x J r * p ( ~ ) [ ( 1 / 2 n ) i z * X ( x ) v x ( ~ ) d l l =d ~10" f ( x ) P ( x ) d x = F ( v ) so T ( A , v ) a c t s as 6 ( x - v ) on such functions (note a l s o < F ( - A ) , v T(A,u)) = F ( p ) formally here b u t t h i s will be excluded below). In particu-
*
l a r such functions F ( X ) a r e a n a l y t i c f o r ImX > 0 and i n s o f a r a s they could a l s o be represented via F ( x ) = 1 ; g ( y ) qQX ( y ) d ywe could say t h a t T ( X , p ) a c t s as ~ ( X - U ) on q QX ( y ) . Another approach here (which will show t h a t we do want F ( h ) a n a l y t i c f o r ImX > 0 and which excludes F ( - A ) )
i s t o r e c a l l t h e analyn P
t i c continuation argument of Theorem 5.10. Thus ( ~ ( y y x ) , u p X ( x =) )&:(y) 4 Q P P so *,(y) + *-x(y) = ( B ( Y , x ) , * ~ ( x ) + Q - ~ ( X ) ) = * ( y , ~ )+ *(y,-x). One w r i t e s
4
- *(y,X)
Q
-0- = -[*&(y) - *(y,-X)] and by standard continuat i o n arguments ( p l u s some estimates on polynomials) one obtains q QX ( y ) =
0, = *,(y)
=
* ( y , l ) . This means t h a t T ( h , p ) a c t s as s(A-1~)( % I S ~ ( X - U ) = two sided 6 4 P function) when a c t i n g on *A(y) over ( - m y - ) ( s i n c e 1 ; F(y,x)*p(x)dx = One wants t o d i s if *:(y)[(l/Zn)Jr q ~ ( x ) * ~ ( x ) d x ] d h= E i *rh(y)T(h,v)dA). Q Note t i n g u i s h one and two sided d e l t a functions as in [C40,67,68,71,80]. in t h i s regard t h a t ( 2 / ~ ) 1 : CosAxCosvxdx = A = 6 , ( A - v ) b u t t h i s must be w r i t t e n as A = (l/n)[: CosAxCospxdx = (1/21~)!1 [exp(ix(A+p))+ e x p ( i x ( x - ~ ~ ) ) ] dx = 62(A+u) + 6 2 ( h - p ) f o r f u l l l i n e action. Generally ( 2 / a ) f t Coslxdx = 6 1 ( ~ =) ( 1 / 2 ~ l ) l z[exp(iXx) + exp(-iix)]dx = ( l / r ) L I exp(iAx)dx = 2 6 2 ( X ) and a f a c t o r of 2 must be adjusted i n c e r t a i n formulas. In t h e above s i t u a t i o n T ( x , ~ i) s already spread
REmARK 6.3,
o u t over
(-m,m)
so we obtain
When dealing w i t h F a c t i o n i n a f u l l l i n e theory we were a b l e
i n [C47,48] t o s t i p u l a t e t h a t F(y,x) ~ ( y , x )a t s u i t a b l e times w i t h
=
0 for
-m
<
x
<
y by i d e n t i f y i n g
rv
*
(see Section 1 . 8 f o r n o t a t i o n ) . Thus take now P of Fourier type and then n i n f a c t ( 6 . 7 ) i s t h e natural formula t o use in t h e f u l l l i n e theory w i t h P Q P ; qx(y)qX(x)dw = of Fourier type. Indeed w r i t i n g a s in [C80] (*) ?(y,x) = 1 ( 1 / 2 ~ ) QQ(yb!(x)dh l~ = (1/21~)jI PM1*:(y)[z!(x) + @PX ( ~ ) l d h we , can s e t ( = )
*
= 0 in (a)f o r x+y > 0 since i n the upper half plane 1pM 0 (y)aX(x)dx h p -m 4l A p ~ M ~ * ~ ( y ) a ~i s( xa n) a l y t i c and bounded by polynomials i n X times a term exp[ - Imx (x+y)] under standard hypotheses ( c f . Lemna 5.9 and Theorem 5.10
FOUR1 ER TYPE OPERATORS
151
A
and n o t e a l s o y
0 here because i t comes f r o m Q ) .
Moreover again t h e
a c t i o n ( K ( y , x ) , q XP( x ) ) = q QX ( y ) f o l l o w s immediately from (6.7) i n t h e f u l l l i n e t h e o r y and we have
&HE@RZrn 6.4, The n a t u r a l formula f o r i n the f u l l l i n e theory w i t h Fourier t y p e *P i s ( 6 . 7 ) ( f u l l l i n e a c t i o n i n x w i t h y 2 0) and [ k ! ( x ) ] ( y ) = qQ X(y) i s a consequence t h e n o f t h e i n v e r s i o n t h e o r y f o r P on
(-m,m).
A
P X U U ~ : Standard p r o p e r t i e s f o r t h e Q q u a n t i t i e s a r e i n d i c a t e d i n Remark 4
5.1 f o r example and p r o p e r t i e s o f
p,
d i c a t e d i n Theorem 1.8.12.
etc. f o r the Fourier type P are i n -
MIL p
Q
The r e s u l t €W, = qIxf o l l o w s from t h e i n v e r s i o n P theorem 1.8.13 as rephrased below. Thus f r o m (6.7) ( = ) (;(~,X),*~(X)) = Q P P P ( 1 / 2 n ) l I pM1qX(y)(ZX(x),YI (x))dh. But from Theorem 1.8.13 w i t h u1 = and u P P P u2 = EX one has ( f o r s u i t a b l e f , F ) f ( x ) = ( 1 / 2 1 ~ ) i zp Z X ( x ) I g f ( y ) @ X ( y ) d y d x P P and F(X) = @ X ( x ) ( 1 / 2 n ) i 1 p F ( u ) Z (x)dudx so t h a t f o r m a l l y
[I
(6.8)
1-1
(1/2n) l)!(x)Zu(x)dx P
= ~(X-U)/P;
P Hence i n ( = ) ( l / 2 n ) ( XPA ( x ) y ~ u ( x ) =) (1/M1)6(h-u)/p
and
n o t e a l s o t h a t (6.7) g i v e s F(y,x) = 0 f o r y > x >
-m
&:
= q!
follows.
We
d i r e c t l y (a c o n t o u r i n -
t e g r a l argument i n t h e upper h a l f p l a n e y i e l d s t h i s s i n c e M1p/c ( - A ) i s a n a l y t i c and say p o l y n o m i a l l y bounded w h i l e @.,(y) 4 P X,(x) plr [l + n ( x , x ) / x ] e x p ( - i x x ) - c f . [Hol]).
Q
%
a i Y ( y ) e x p ( i X y ) and
A
LElnMA 6-5.
For Fourier type P
J
m P P ( 1 ~ 7 1 ) zX(x)zu(x)dx = (1/2n)
(6.9)
(A/~)@:(x)ldx = (l/pp-)6(h+u)
Prraod:
1
P zX(x)[(l/p)@-p(x)
-
2 (A/P ) 6 ( X - u )
-P
-
m
40
I t i s t h i s f o r m u l a which caused t h e m i n o r computational problem men-
To check t h e f o r m u l a t i o n e d e a r l i e r i n [C47] ( p was used i n s t e a d o f p - ) . P P P f(x)@-,(x)dX = f ( - h ) a X ( x ) d X and hence (~,G!IT)I~ f ( A ) @ , _ X ( x ) f(-X)s(X-u)dX/p = f ( - u ) / p ( i . e . ( l l 2 n ) J I @,_X(x)Xu(x)dx P -mP =
/I/I
note t h a t dh,ZV(x) P =
( l / P - 1 6 (A+u).
/I
.
Note t h a t a K-L t y p e i n v e r s i o n can a l s o be e s t a b l i s h e d from t h e 2 2 t y p e i n v e r s i o n o f 1.8.43. Thus s e t t i n g dE = :dX w i t h 2 = 2 1 dx/.irlF(X)l
R€RARK 6.6,
x!
y(X)
It f o l l o w s t h a t , one has f ( x ) = J; f"(i)x,(x)dB P with = :I f ( x ) x XP ( x ) d x . P P P f o r Z!(x) = a A ( x ) / d p ( - X ) , where M ( h ) = ( 1 / 2 i x ) F ( h ) = dp(-X) so x A = dpQX +
152
ROBERT CARROLL
P
+ d p ( - A ) D A , we have
1
m
(6.10)
f(x) = (1/2~)
F((x)E!(x)dX
m
= ker
We r e c a l l n e x t t h a t i n [C47] ;(y,x)
i , g:
-+
was w r i t t e n as
@ ,;
( r e c a l l dw = GdA = dX/2nlcQ12 here f o r $ )
and t h e subsequent c a l c u l a t i o n s were c a r r i e d o u t i n a manner c o n s i s t e n t w i t h i(y,x)
= 0 for
-m
2 0 always when r e f e r r i n g t o $). The
< x < y (note y
formula (6.11 ) does n o t a c c u r a t e l y r e f l e c t t h i s s i t u a t i o n however f o r l a r g e n e g a t i v e x and i t i s b e t t e r t o w r i t e i n t h e f u l l l i n e t h e o r y ( r e c a l l Mi/FIl c P / c i = P - A ) , ;(Y,x) = (1/2n)j: lm @ A ( y ) ~ ( A ) [ B ! ( ~ )+ @!(x)]dA.
-? eA(x)dA =
@ ~ ( Y ) [ ( C ~ / CP ~ ) @+~@!,(x)ldA (X) Then f o r x+y > 0 we have (+)
i:
=
= (]/ZIT) @A(y)p(A)
Q
0 by a n a l y t i c i t y i n t h e upper h a l f p l a n e and a c o n t o u r i n t e g r a l
argument (as i n ( = ) above f o r
z)
so t h a t g(y,x)
T h i s f o r m u l a (6.12) r e p r e s e n t s g(y,x)
can be i d e n t i f i e d w i t h
= 0 f o r y - x > 0 and thus i s t h e n a t u r -
a l form t o use on t h e f u l l x a x i s i n o u r t h e o r y . Moreover t h e c a l c u l a t i o n g(y,x),@,(x) P ) = (1/2n)jm m Qh(y)p[: Q BAfx)@p(x)dxdh P P = G4W ( y ) f o l l o w s immedia-
(
t e l y from (6.8) i n t h e f u l l l i n e sense (whereas b e f o r e one used a K-L h a l f l i n e formula p l u s a s t i p u l a t i o n F(y,x) = o f o r x 5 0).
&%0RZm
!:
@'
A
6.7, -f
Thus
For f u l l l i n e a c t i o n i n x w i t h F o u r i e r t y p e
aQ and A
i(y,x)
=
ker
(x
-+
*P
we w r i t e
i:
+
y ) i s g i v e n by (6.12).
RZmARK 6-8, I t w i l l be necessary below i n c o n s t r u c t i n g
b-'
(y x, y 0, t o l o o k a t formulas o f t h e f o r m (6.11) and t h e corresponding K-L h a l f l i n e i n v e r s i o n . Thus c o n s i d e r ( ~ ( Y , X ) , @ P ~ ( X )=) @.,(y) Q when i s P F o r ( ~ ( y , x ) , @ ( x ) ) we must beware o f w r i t i n g t h i s as g i v e n by (6.11).
-m
< x <
-+
m)
IJ
(l/Zn)L: [ @QA ( y ) / c p ( - X ) ] [ 6 ( X - ~ ) / ~ ] d Xs i n c e one must spread o u t t h e 6 a c t i o n t o ( - = , m ) i n t h i s s i t u a t i o n ( t h e & ( A - I J ) / $ t e r m a r i s i n g from P - P i n v e r s i o n We can spread o u t t h e 6 a c t i o n i n two ways. i n v o l v e s o n l y A,IJ on [O,m)). P P P P P P E i t h e r one can s p l i t up q A ( x ) q ( x ) i n terms o f ZX + @ A and B + @ (which W
1.1
I
J
i s done l a t e r i n another c a l c u l a t i o n , b u t works o n l y when a f u l l l i n e t h e o r y i s a v a i l a b l e ) o r we can w r i t e (6.11) as (6.13)
;(Y,X)
=
(1/4n) ~~!(X)C;:(Y) m
+
~ ~ X ( ~ J l d ~
FOURIER TYPE OPERATORS
153
Then we can where?:(y) = @QA ( y ) / c p ( - A ) has t h e same p r o p e r t i e s as *,(y). Q P P use t h e h a l f l i n e f o r m u l a ( q X ( x ) , q H ( x ) ) = 6 ( ~ - l ~ ) / $b u t remember 6 = 6 2, 1 2 s 2 here. There r e s u l t s ( $ ( y , x ) , q P ( x ) ) = :/ ~ ( Y , X ) [ C P~ @ ~ +( XcL@rU(;)ldx ) =
-
( 1 / 4 ~ ) L : (Y :[) + ~ ~ X ( ~ ) 1 6 ( h= It- ~l c)p /l 2~[%(Y) -Q + "4 *-,-(Y)]. S e t t i n g *(Y,u) g ( y , x ) ' Q ( x ) d x we o b t a i n @+ = -Q ( Y ) - *(Y,u) = 43- = -[$!Qu(~) - $(Y,-U)]
= :1
lJ
*
!J
N
and by a n a l y t i c c o n t i n u a t i o n arguments as b e f o r e we obtain%'(y)
u
= *(y,u)
=
/"%f(y)T(A,p)dX ( c f . Remark 6.2, Theorem 5.10, e t c . ) . T h i s proves t h a t cmP Q B* = i n h a l f p l a n e a c t i o n when (6.11) i s used. The p o i n t here i s a g a i n U
l
J
t h a t T(A,u)
has
4 when w o r k i n g i n X on @,(y)/cP(-x)
~ ( x - u )a c t i o n
(as w e l l as
8"
or on on q QA ( y ) ) . C l e a r l y one does n o t have t o use such arguments f o r t h e f u l l l i n e s i n c e (6.12) and ( 6 . 7 ) a r e a v a i l a b l e w i t h a f u l l l i n e t h e o r y . Maps such as
REmARK 6.9,
6 were
denied t h e s t a t u s o f t r a n s m u t a t i o n i n [Fal;
C40] s i n c e t h e o b j e c t s on which t h e y a c t a r e d i f f e r e n t from those on which say B i s a t r a n s m u t a t i o n . @!(x)dx
Ggf
=
However f o r f say o f t h e form f ( x ) =
rI
one has from (6.12) ( i ( y , x ) , f ( x ) > = @:(y)F(h)dX 12@X(y)F(X)dX 4 = b6f ( c f . a l s o Remark 3.9).
-iI
/z
F(A)
and f o r m a l l y
REmARK 6-10, Using Theorem 6.1 we can compute a l s o B(y,x) = ( . ( ( x ) , ~ ~ (Qy ) ) ~ = Ap(xlE"ql(y)] Q
( 1 / 2 n ) i I q~(y)[@;(x)/cP(-X)]dh. By c o n t o u r i n t e g r a t i o n as above t h i s shows d i r e c t l y t h a t ~ ( y , x ) = 0 f o r x > y. =
There i s some i l l u s t r a t i v e m a t e r i a l i n [C40] c o n c e r n i n g t h e
REmARK 6.11.
s p l i t t i n g o f g X i n t o r e a l and i m a g i n a r y p a r t s ( c f . (1.8.29) form).
Thus
( generally
i s a n a l y t i c i n t h e upper h a l f p l a n e I m x > 0 and
i s s u i t a b l y bounded t h e r e (e.g.
The d i s t r i b u t i o n a l
as i n Remark 5.1).
H i l b e r t t r a n s f o r m t h e o r y o f e.g. one o b t a i n s e.g.
f o r the correct
[Od1,2]
t h e n a p p l i e s ( c f . a l s o [C40])
and
I T $ ~ ( X ) PV , ( X )= -H[2px P ( x ) + Z U ( A M / M ; ) P~ ~ ( X ) ] ( X ) w i t h H2 = -I. !J
Now we r e f e r t o Theorem 1.8.13 and r e c a l l
1
m
(6.14)
F ( A ) = @ ( f )=
P f ( x ) @ h ( x ) d x ; f ( x ) = (1/21~)
P
and we c o n t i n u e t o w r i t e u2 = gp.
also d e f i n e ( r e c a l l cp m P
=
M,),*(f)
(1/2r)Lm *(f)[z,(x)/4ixMld~
m
F(X)p(h)z!(x)dh
m
m
where u1 =
1
=
( 1 / 2 ~ ) L : *(f)[z;(x)/M;]p
=
I n t h i s c o n n e c t i o n we c o u l d
lI f ( x ) q APA( x ) d x
= @(f)/M1 w i t h f ( x ) =
IM1 I2dX b u t g e n e r a l l y
we p r e f e r t o work w i t h (6.14).
DEfZNZCI0)N 6-12, As a k i n d o f g e n e r a l i z e d t r a n s l a t i o n s e t now
I
m
(6.15)
C i f ( x ) = (1/21~)
*(f)@!(y)z!(x)p(A)dh
m
154
ROBERT CARROLL
and f o r a g e n e r a l i z e d c o n v o l u t i o n we s e t
*
I t i s immediate t h a t ( n o t e c c f ( x ) f E X f ( y ) however) @(f 9) = @ ( f ) @ ( g ) Y s i n c e i n d e a l i n g w i t h (6.14) as an i n v e r s i o n one has f o r m a l l y (6.8), i . e . P P (1/2a)l: @,,(x)xx( x ) d x = 6 ( X - P ) / P ( A ) .
Some c a l c u l a t i o n s based on (6.15)-(6.16)
and t h e i n t e r a c t i o n w i t h a~ and rk
t r a n s f o r m s w i l l o c c u r below a l t h o u g h we w i l l n o t always s p e l l o u t t h e notation via
*
Thus we w i l l o m i t becoming e n t a n g l e d i n a n o t a t i o n a l
and E;.
maze here b u t remark t h a t t h e n o t a t i o n i n d i c a t e d perhaps should be event u a l l y w r i t t e n o u t and used s y s t e m a t i c a l l y .
REmARK 6.13,
L e t us r e c a l l h e r e t h a t g e n e r a l i z e d t r a n s l a t i o n can be u s e f u l l y
expressed v i a k e r n e l a c t i o n . ( x ) = (T"(y,x,s),f(s))
I n keeping w i t h t h a t s p i r i t we can w r i t e
el[f
where f o r m a l l y m
(6.171
r(y,x,s)
= (1/2~)
@~(s)@~(~)~~(x)~(l)dh
m
M
We w i l l now develop a g e n e r a l
e q u a t i o n f o l l o w i n g t h e g u i d e l i n e s o f 55 b u t A
i n a more i n t r i n s i c manner.
6
L e t P be a F o u r i e r t y p e o p e r a t o r w i t h Q o f
standard t y p e and from Theorem 6.1 one has
I, m
(6.18)
(Z(Y,X),((X)) =
k,x)<(x)dx
=
qqy,.)]
= '$!(Y) A
?;
refer to f o r Q we s e t Q P e.g. Mi] = c Q ( - x ) ) :(y,x) = ( 1 / 2 ~ ) [ 1 rkx(y)M1(x)p(x)xX(x)dX ( i . e . ( 6 . 7 ) ) . On P t h e o t h e r hand from Theorem 6.7 we know ( c f . Remark 6.8) ( g ( t Y r ) , Q x ( - r ) ) = From remarks above we o b t a i n t h e n (My M1, and
.rtm ;(t,T)ax(T)dT P
=
@[g(t,-)]
=
p
It f o l l o w s t h a t
@.Q,(t).
Given @ ( f * g ) = @ ( f ) @ ( g ) f r o m above we ask now f o r a f u n c t i o n or d i s t r i b u t i o n H such t h a t @(H) = M1/Ml. Q (6.20)
H(s)
= (1/2~)
Thus
[ (M1/M1)P~xIS)dl; Q
P
=
( 1 / 2 ~ ) ~ ~ p @ ~ ( i ) M l d i /4M 1
cn
( G ( g ) = H(-E)
and r e c a l l u2(-E,)
= ul(~)).
Now i n a d d i t i o n t o b e i n g a n a l y t i c
f o r I m x > -H say one knows from [Hol; S t b l ] t h a t f o r I m l
>
0,
1x1
>
x0,
and
FOURIER TYPE OPERATORS
x E
155
P t h e r e i s a u n i f o r m e s t i m a t e u1 = @ x ( x ) = e x p ( i A x ) [ l t m(x,x)/h]
(-a,-),
A
Furthermore w i t h s t a n d a r d p r o p e r t i e s o f Q,
where m i s u n i f o r m l y bounded.
(M1/M7)p = 1/4ihMM? = 1/4ixMco(-h) should be a n a l y t i c i n t h e upper h a l f p l a n e so t h a t (6.20) makes sense f o r some reasonable c l a s s o f
= 0 f o r 5 > 0.
i n f a c t by a c o n t o u r i n t e g r a l argument H ( - S )
5.1);
EHE6RElll 6.14.
For standard
$
More d i r e c t l y we w r i t e
K(x,s) = ( 1 / 2 ~ )[ I [ c F / c i ]
P t ~ a o d : The composition F(y,s) (6.7),
(6.8),
=
* H](x) where k where SC(x,s)
Z!(s)@!(x)pdh
Ll i(y,x)SC(x,s)dx
=
f o l l o w s immediately f r o m Thus ( ~ ( y , x ) , l C ( x , s ) ) = ( 1 / 2 ~2) I-m@A(y) - Q
and (6.21).
(6.12),
Thus
we have f o r m a l l y r ( y , x ) = [ i ( y , * )
S(H) = M /MQ = cp(-X)/cD(-h). 1 1 ( s + x ) i s g i v e n by (6.21 )
( c f . Remark
pCc-Ic-1 ZPu ( ~ ) ( C P h ( ~ ) P, @ u )(d~u)d i = ( l / 2 n ) i m m @ Q, ( Y ) P [ C ~ / C ~ ]x!(s)dx P ( l / 2 n ) i a *,(Y)pMIC,(S)dX = ;(Y,X).
p(X)iI
- 6 Q
=
RENARK 6-15. We n o t e f r o m Chapter 1, S8 t h a t
-,
P Z-,(x) P u1- = Sp ( x ) = p Zxp ( x ) t AaA(x);
(6.22)
where p = 1/4ihMM1 and A = -[MMi
i-
M1M-]/2MM1
=
pSh(x) P
AZX(x) P
i-
and t h u s we do n o t have a d i r -
e c t c o u n t e r p a r t o f t h e c l a s s i c a l F o u r i e r t y p e formula i n v o l v i n g @(h)" and @(h). In any event however @(h")" = il h ( - x ) @P- x ( x ) d x = pK(x)Zx(x)dx P i-
iz
A<:
i(x)@!(x)dx
= p@(h) i- AZ(h).
REI?MRK 6-16, The c a l c u l a t i o n s l e a d i n g t o
=
B'*
H i n Theorem 6.14 were made
* o f (6.16). I n t h i s d i r P g = (1/271)11 @ ( h ) @ ( f ) @ ( g ) Z h ( x )
here m a i n l y t o e x h i b i t t h e use o f t h e c o n v o l u t i o n e c t i o n we have a l s o h
*
(f
*
g) = (h
*
f)
*
p ( h ) d h and (6.23)
*
g,h)
where we d e f i n e (;(XI
a(;).
= (1/2a)
I,
@(f)*(g)Z(h)p(A)dx
= h(-x)) Z(h) =
P lI h(x)Z,(x)dx
=
P iz h(-x)@,(x)dx
=
Thus i n ( 6 . 2 3 ) l e t us w r i t e
(note g
t f # f t 9).
D e f i n e t h e n an o p e r a t o r SC by 3B = H
t
0
f o r s u i tab1 e
i s g i v e n by (6.21) P i . e . [H t e l ( x ) = ( l / Z ~ ) i : @(H)Z(O)@!(x)pdh = ( ( 1 / 2 ~ ) j : [M /c-]pa! X)Z^ ( s 13 1 "0 e ( s ) ) d x s o (i?(y,x),e(x)) = t ' i ( y , - ) H , e ) = ($(y,-),H f- 8) = Bee.
0
( n o t e K e ( x ) = [H t e ] ( x ) = ( X ( x , s ) , e ( s ) ) w h e r e
*
X(x,s)
156
ROBERT CARROLL
The n e x t s t e p i s t o examine t h e general G-L e q u a t i o n Ap = 1 here) ;(Y,X) =
% where
where ( r e c a l l P P t" = ( v A ( t ) y v A ( x ) ) w= TxW(x)
and A ( t , x )
Here dw r e f e r s t o dw = d A / 2 r l c
(as i n (3.16)s. use B = ;AiiA-'
= (~(y,t),A(t,x)) N
A has k e r n e l
E = BA
2 QI .
P P P P A ( t , x ) = ( v x ( x ) , v x ( y ) )p = ( v x ( x ) c , ( t ) W - '
Now i n f a c t we want t o
N
(6.25)
A
( A ) ) ~ V
A
(dp = ("v/&)dh and W-l(A) = v/w).
N
The m i x t u r e o f n o t a t i o n A, W, e t c . occurs
here i n t r y i n g t o m a i n t a i n c o n t a c t w i t h [ F a l l v i a W w h i l e A has been used f r e q u e n t l y i n o u r papers. A
2
A
A
(1/4) = v/w,
D , cp
P =
Thus i n (5.29) f o r example ?(A)
=
(1/2),
= W-'(x)
.v
A
( 2 / ~ ) ,W(y,x)
vp =
= r(y,x),
etc.
=
Ic
2 QI /
I n the
s p i r i t o f (3.16) we can w r i t e a l s o ( c f . (5.29) and r e c a l l Ap = 1)
i
A
(6.26)
W(x) =
co
ru
W - ' ( x ) v ~ ( x ) d ~ ; A(t,x)
tA
= TxW(x)
0
i;mrmA 6.17,
The i n v e r s e o p e r a t o r
the kernel x ( t , x )
Pmad:
t o A o f (3.16)
(Ap = 1 ) i s determined by
g i v e n v i a (6.25)-(6.26).
Note t h a t ( r ( t , x ) , A ( x , s ) )
= ( ( v ~ ( t ) W - ' ( h ) , v S (Ps ) W ( S ) ( " XP( X ) , v p ( x ) ) ) 5
P P ( s i n c e ( v h ( x ) , v ( x ) ) = ~(A-C)/$). 5 Now t h e development i n 55 f o r t h e M e q u a t i o n i n v o l v e s t a k i n g
)
v v
= s(t-s)
2,
and a p p l y i n g another o p e r a t o r tion
$=
=
ir=
r e l a t e d t o X , so t h a t t h e o p e r a t o r M equa-
has a " n i c e " form.
i(Jc%)
B
One f e a t u r e o f t h e p r e s e n t development N
i s t o show t h a t t h e n a t u r a l "ad hoc" c h o i c e o f Jc (namely by c o n s i d e r a t i o n s o f t r i a n g u l a r i t y and " s i m p l i c i t y " ,
%=
X*), motivated
i s also the "intrinsic"
and " c a n o n i c a l " c h o i c e i n many ways (and a r i s e s a l s o i n m i n i m i z a t i o n p r o cedures as i n 5 7 ) .
One d e f i n e s t h e o p e r a t o r X
*
v i a Jc*(x,s)
= Jc(s,x) A
X(s,x)
*w i t h
g i v e n i n (6.21) and l e t us f i r s t compute t h e k e r n e l o f B = BJC d i r Y
ectly (recall
=
*
BJC* = E(JcP8 ) .
Thus
P For t h e a c t i o n <~(y,x),Z,(x)) ( w i t h ~ ( y , x ) an even f u n c t i o n v i a ~ ( y , x ) = Q P P P P B(y,x)z5(x)dx = f , B ( Y , X ) [ ~ ~ ( X ) + @ 5 ( ~ ) l =d ~ ( v A ( ~ ) , ~ A ( x ) > one has Consequently i n (6.27) one o b t a i n s 4i5M ~ , @ ( y , x vP ) ~ ~ ( x ) d x= 4igMp5(y). Q
,z
(6.28)
n
B(y,S) = ( 1 / 2 r )
m -m
[l/cQ(-A)l@~(5)@~(y)dX A
and b y c o n t o u r i n t e g r a t i o n w i t h standard p r o p e r t i e s B(y,S)
= 0 f o r 5 > y.
FOURIER TYPE OPERATORS
LEMMA 6-18. The k e r n e l o f W* i s $(y,c) ( 5 =
+
157
y ) g i v e n by (6.28) and i ( y , c )
0 f o r 5 > y.
(6.29) where
;(X,Y)
=
v
B' t o
&HEOREM 6-19. An i n v e r s e
B can be produced v i a t h e k e r n e l
(1 /2.ir)
= A p Q mi n p a r t i c u l a r Q A'
=
@!. 4
m
-P
Pxood: We r e f e r t o Remark 6.8 and observe t h a t (;(x,y),* (y)) = j qA(x) = izx(x)'?(1,u)dA = $'(XI where k* A P ( x ) = GTA ( x ) / Q Q ( 1 / 2 r ) f t .S21(y)*u(y)dydA u There i s no a p r i o r i f u l l l i n e c (-1) and ?((A,p) = ( 1 / 2 r ) f r C?,,(y)\Iu(y)dy. Q 4
t h e o r y f o r Q so t h e formal K-L f o r m u l a ? ( h , u ) = s ( 1 - p ) i s needed and by Re-P mark 6.8 t h i s i s c o r r e c t f o r a c t i o n on q A ( x ) . Thus, u s i n g t h e f u l l l i n e form o f
F((x,u)
g i v e n by (6.12) and t h e
i ( y , t ) d y = ( 1/ 2 r
T(x,y)
O!)m
)iz p (LJ
/I p(u)ZL(t)@'(x)du
a c t i o n j u s t described, : f
( X ) ( 1/ 2 a $(Y)'$(Y )dydxdu = (1 / 2 r t )c$," S i m i l a r l y iz g(y,x)T(x,t)dx = ( 1 / 2 v ) j m dx
= 6(x-t).
Ym
4
7
A ( x ) d A ( l /2a)iI @L(x)[a:( )/cQ(-LJ ) I d V = ( 1 / 2 V ) j I @A (Y) [ Q ~( t ) / - m @T(Y ) P ( x ) z P Q Q c$dA = (1/21r)L: QA(y)ClA(t)d1 = s(y-t). We n o t e a l s o by c o n t o u r i n t e g r a t i o n t h a t ;(x.y)
= 0 f o r x > y as d e s i r e d .
.
Now t h e k e r n e l o f t h e M e q u a t i o n w i l l i n v o l v e t h e f o l l o w i n g terms which we d i s p l a y here f o r reference (s (6.30)
S(t,x)
=
(1/2~)
Q
= c /c-)
Q Q
P P SQ(A)@l(t)@A(X)dA;
P P A(A)@l(t)@A(x)dA
=
J(t,x)
+
= 6(t-x)
6 ( x - t ) + M(t,x)
m
( n o t e by Remark 6.15 t h a t J ( t , x )
=
m P P ( l / 2 r ) f -m @ A ( t ) @ - A ( x ) d x ) . Next one can N
*
e x p l i c i t l y w r i t e o u t t h e upper l o w e r f a c t o r i z a t i o n k-': o f rrwJc. v-14 EHEOREI 6.20- The o p e r a t o r B B has k e r n e l S + J f r o m (6.30).
Pxood: We w r i t e r ( t , x )
=
($(t,c),;(c,x))
ft/f 9,P(t)[s2!(c)/cq]dx(l/Zr)~f
o u t t h e r(A,u) = (1/2r)(s2!(c),pQ(c)) lJ
Remark 6.8).
fi
action t o
-m
2 9
Q
r(t,X)
2
= (c0I [ ~ ( A - L J )
m
as b e f o r e ( c f .
~ Q( E , ) QV(E,)de = ( 1 / 2 1 ~ )
+ 6(A+u)]
u
(another approach
= (1/271) j m ~ ~ ( t ) ( l / c g ) [ c Q @ ! ( x )+ c$rA(x)]dA m
= (1/2r)
Now one must spread
< A,u <
One way t o do t h i s i s t o w r i t e (l/Zr)J;
4 ( 5 ) I c Q l [*p(S) + *-u(c)]dc i s i n d i c a t e d below). Then (6.31)
so t h a t f o r m a l l y r ( t , x )
(l/ci)pll(~)@u(x)dpdc. Q P
=
158
ROBERT CARROLL
Since
@rA
= @'/c
(-A)),
+ A@, P t h i s g i v e s (6.30). We n o t e i n passing t h a t another way t o spread o u t t h e r(A,u) a c t i o n i n v o l v e s w r i t i n g r ( t , x ) as ( r e c a l l = PZ!
r(t,x) = (l/Zw)LI
iz q ( t ) $ ( x ) z ( A , u ) d A d u
l:
(1/4n)i:
=
[ qNPA A ( t ) 9q Pp ( x ) + ~ ! ( t ) ~ ~ u ( x ) l ~ ( A , u ) d A d uThen . use 6(A,u) = ( c I 2 6 -(1-LI)= 2 Q 1 21c 1 6 ( A - p ) t o g e t (6.31) and (6.30) again. N
9
2
REmARK 6-21,
Comparing (6.29) and ( 6 . 2 8 ) we see t h a t ;(x,y) = AQ(y);(y,x). V* A V A V -1v* = A B and BB = B B and f o r A = 1 t h e M e q u a t i o n w i l l Hence f o r m a l l y
%
(I
vv*
v
have t h e upper l o w e r f a c t o r i z e d form BB
* Q
= JcpJc
*
t A
XTxW(x)Jc
=
( f r o m (6.26)).
On t h e o t h e r hand t h e l o w e r upper f a c t o r i z e d form o f t h e G-L e q u a t i o n i s (for
%=
1 ) B-':
=
A o r BB*
W(A) as G-L d a t a and
%
=
T i i ( 5 ) ( c f . (3.16)).
thus seen t o be p a r a l l e l i n s t r u c t u r e . a l s o emphasized i n [Du7,8]
One can t h i n k o f
w"
%
W-l(A) as M data and t h e G-L and M equations a r e The f a c t o r i z a t i o n p o i n t o f view i s
but the c a l c u l a t i o n s there f o r the M equation
D2 .
r e l y h e a v i l y on t h e F o u r i e r t r a n s f o r m as i n 65 and t h u s a r e s p e c i a l f o r L e t us c a l c u l a t e t h e k e r n e l o f
REfllAI'K 6-22.
d i l y t h a n i n [C47,48]
P
N
(6.32)
d i r e c t l y b u t much more hanThus
P
= ( V ~ ( ~ ) , V ~ ( ~ ) W - =~ ( A ) ) ~
A(5,n)
( 1 /4v ) I m p 2 [
&*
i n o r d e r t o compare w i t h (6.31).
I CQ I '/(Mi )'I [(
(5)
+ @!
( 5 ) 1[Z!
(Q
+ @!
(n ) I
-m
T h i s decomposition spreads t h e g e n e r a l i z e d t r a n s l a t i o n over t h e whole a x i s . rv
u *
We want t o compute now?;(t,x)
= k e r 3 0 4 ~ so F ( t , x )
F i r s t one has ( c f . Lemma 6.5)
(1/2n)lI
+ (l/pp-)G(A+u)
-
P [zA(n) +
(A/p2)S(X-p) = (l/pp-)G(A+u)
N
P(s,x) = ( A ( c , n ) , ~ c ( x , n ) ) has t h e form
(t)
= (X(t,c),(A(c,n),x(x,v))).
P P @A(n)lXu(n)dn = ( l / p ) S ( X - u )
+
2
( l / p )(M-/M l m
P(s,x) = (1/4v)C,
)~(A-u)
12 P
So
[~C~~*/(M;)~I
[z!(c ) + ( ( c ) ] i m (C-/C-)+'(X)P [~(X+U)/PP- + (M;/M1 1 6 (X-TJ )/p21dudA = ( 1 / 4 ~ ) lmp 2 [ \ C g l / ( M i ) 9 +Q@ P TA JI ( ~ ) [ ( M ; / P c - ) @ ~ ( x ) + ( M ~ / P C Q ) @ ~ ~ ( X Next ) I ~ ~we -
B
-m
form ( x ( t , c ) , P ( c , x ) )
LI
1 c 12/(M;)21[
= ?(t,x)
ILZ
which g i v e s ( [ ] as i n
/c0)3@~(t)[S(h+u)/Pp-
( t ) )r ( t , x )
= (1/4n)
( l / p 2 ) (M;/M1 )S(X-u)ldudA Qm 2 = (1/4n)/ P * [ ~ C ~ ~ ~ / ( MI[ ; )] ( t ) [ ](x)dh. Now one has terms ( c times P P-" P P 2 P P 2 P PQ 2 ( 1' A ( x / I cQ [a,),( t )@A ( ) / c i 2 + @- A ( )@-A ( t )/ CQ + @A ( x )@- A ( t)/ 1 C Q 1 + p2[
+
I
I
so changing o r d e r s o f i n t e g r a t i o n i n two terms we o b t a i n r ( t , x )
=
r(t,x)
as i n (6.31). A
EHEOREIII 6-23,
A,
Given P o f F o u r i e r t y p e and C) standard as i n Remark 5.1 t h e
canonical M e q u a t i o n has t h e form
6=
*
whl*
U
X
BJc = BAJc = i(Ja\Jc ) and can be view-
# V ed as a r e l a t i o n between t h r e e t r a n s m u t a t i o n s B, B = R , and B g i v e n v i a (6.21)).
(Jc
being
T h i s can a l s o be t h o u g h t o f v i a f a c t o r i z a t i o n as i n
FOURIER TYPE OPERATORS
Remark 6.21.
I n k e r n e l form, from $(y,x)
=
159
0 f o r x > y, we o b t a i n f o r x >
y, 0 = ( g ( y , t ) , S ( t , x )
+ J ( t , x ) > w i t h S and J g i v e n i n (6.30).
(6.33)
+
Thus (x > y )
m
0 = ;(Y,X)
REClARK 6.24,
D2 one has A
For P =
g = ??
o b t a i n s (5.34) w i t h S ( t + x ) as i n 55.
REmARK 6-25.
g(y,t)[S(t,x) =
+ M(t,x)ldt
0 and M ( t , x ) = 0 i n (6.33).
Hence one
m
since S(t,x) = ( 1 / 2 r ) i m s exp[ix(x+t)]dx
I n [Ne2,3,5,7-9]
?
=
( c f . a l s o [ C t l - 3 1 ) t h e r e i s some i m p o r t a n t
work on t h r e e dimensional i n v e r s e s c a t t e r i n g i n which t h e M e q u a t i o n i s f o r mulated i n terms o f a Riemann-Hilbert problem.
The survey a r t i c l e [Ne7]
g i v e s an e x c e l l e n t d e s c r i p t i o n and we o n l y i n d i c a t e here a n o t a t i o n a l conn e c t i o n t o o u r parameters.
I t would perhaps be i n t e r e s t i n g t o t r y t o phrase
o u r M e q u a t i o n i n terms o f such Riemann-Hilbert problems b u t we have n o t P pursued t h i s . Thus i n [Ne2,3] f o r example fl = f+ ( = o u r ul) = ah and f2 = N f - (= o u r u = Z! w h i l e u1 (= u1 i n [Nel,2]) = x 1 = pul and uy = x2 = pu2 2l r ( a l s o Tr = T = T = p and RR - S12 = sZ1 = R = -A). The J o s t m a t r i x i n [Ne2,3]
which p l a y s a ( n a t u r a l l y ) c r u c i a l r o l e i n t h e t h e o r y can i n f a c t be P P Indeed one t a k e s i n [Ne2,3], g1 = p A - i x x
expressed i n terms o f c b and F. and g2 = p; + ix! P). =
and w r i t e s
(a1 ’ g 2 )
=
(fl,f2)lF
with
JI
= F/T (det
F
P
P
(i= column i n d e x ) one computes (fl,f2) = ’J P P i n terms o f p h and x A t o o b t a i n fll = fZ2= [ ( l / F ) + ( l / c b ) ]
Setting F = ((f..)) (g1,g2)lF-l
and fZ1= g12 = (6.34)
= T =
JI
=
(where cp 2 F =
[
[(l/F) - (l/ci)]. cp + F
M1
-
cP
-
F
Writing
c , - +F F cp
P =
T = 1/4ixMM1 = 1 / 2 F c i
1
2ihM). Now r e c a l l t h a t p-A = M;/M, = cp/cp and i n a Using s i m i l a r a n a l y s i s w i t h F one o b t a i n s p+A = F-/F ( c f . Remark 5.16). +
t h i s we can a l s o check t h e i m p o r t a n t r e l a t i o n QSJI? = JI- f r o m [Ne2,3] 01 Q = ( ( l o ) ) ) which determines t h e H i l b e r t problem f r o m which JI i s d e r i v e d v i a t h e s c a t t e r i n g m a t r i x S.
Here S = ((fA-:))
and t h e c a l c u l a t i o n i s
straightforward. 7-
mmimIzAmN
uA
DZRECCIUE IN CHARACEERZZZNG C R A N ~ ~ U C A C IKERNELS. ~N
We have seen how t r a n s m u t a t i o n s a r i s e and can be c h a r a c t e r i z e d i n v a r i o u s ways (e.g. v i a PDE techniques, s p e c t r a l k e r n e l s , a c t i o n on e i g e n f u n c t i o n s , etc.).
I n t h i s s e c t i o n we w i l l i n d i c a t e another,perhaps more i n t r i n s i c ,
way t o c h a r a c t e r i z e t r a n s m u t a t i o n s v i a m i n i m i z a t i o n procedures.
There i s
a l s o some connection t o c l a s s i c a l work on orthogonal p o l y n o m i a l s ( c f .
160
ROBERT CARROLL
[Cdl-6;
C79,81;
Ghl-31 and we w i l l c o n s i d e r t h i s l a t e r ) .
More d i r e c t l y
t h e r e i s a c o n n e c t i o n t o l i n e a r s t o c h a s t i c e s t i m a t i o n which w i l l be d i s c u s sed i n Chapter 3.
I n f a c t , when t h e r e i s an u n d e r l y i n g s t o c h a s t i c process
o u r c h a r a c t e r i z a t i o n o f c e r t a i n t r a n s m u t a t i o n s v i a m i n i m i z a t i o n can be achieved v i a s t o c h a s t i c i n f o r m a t i o n and accomplishes t h e same r e s u l t i n s t o c h a s t i c geometry as l i n e a r l e a s t squares e s t i m a t i o n .
Historically i n
[ D a f l ] i t i s shown how G-L e q u a t i o n s can be o b t a i n e d by m i n i m i z i n g a c e r t a i n quadratic functional Q(t,K).
The m o t i v a t i o n t o c o n s i d e r Q(t,K) came
from a problem i n o p t i c s ( c f . [DafP])
i n v o l v i n g a feedback mechanism and
s t a t i s t i c a l a v e r a g i n g b u t no m o t i v a t i o n c o u l d be p r o v i d e d w i t h i n s c a t t e r i n g theory t o consider Q(t,K).
Thus t h e process p r o d u c i n g G-L equations ap-
peared t o s i m p l y i n v o l v e a mathematical t r i c k which was n a t u r a l l y c o n s i d e r ed t o be u n s a t i s f a c t o r y i n [ D a f l ] and t h e meaning o f such procedures seemed t o be worth p u r s u i n g f u r t h e r .
I n [C75] we p r o v i d e d an i n t e r p e r t a t i o n o f
such m i n i m i z i n g processes i n t h e c o n t e x t o f t r a n s m u t a t i o n t h e o r y which l e d e v e n t u a l l y t o m i n i m i z e a q u a d r a t i c f u n c t i o n a l e s s e n t i a l l y t h e same as Q ( t , K ) T h i s i n v o l v e s a c h a r a c t e r i z a t i o n o f t r a n s m u t a t i o n k e r n e l s themselves i n terms o f a m i n i m i z a t i o n procedure and we g i v e h e r e t h e development f o r v a r i ous s i t u a t i o n s ( c f . a l s o [C50,52,53,73,74,78]).
L e t us remark t h a t t h e r e i s
a d i s c r e t e v e r s i o n (which does n o t d i r e c t l y g e n e r a l i z e ) o f a r e l a t e d m i n i m i z a t i o n i n t h e c o n t e x t o f orthogonal polynomials, b u t w i t h o u t a c o n n e c t i o n t o Q(t,K)
n o r any e x p l i c i t l i n k t o t r a n s m u t a t i o n ( c f . [Cd4] and see a l s o
o u r t r e a t m e n t o f "orthogonal p o l y n o m i a l s " i n 110).
Although o u r c h a r a c t e r i -
z a t i o n o f transmutation kernels v i a minimization i s o f i n t e r e s t i n i t s e l f , and moreover p r o v i d e s " m o t i v a t i o n " f o r c o n s t r u c t i o n s as i n [Dadl],
there
a r e f e a t u r e s below t h e s u r f a c e (as seen i n Chapter 3 f o r example i n t h e cont e x t o f stochastic estimation).
Our procedure i s a t t i m e s f o r m a l , b u t de-
t a i l s can e v i d e n t l y be s u p p l i e d as needed, w h i l e hypotheses on c o e f f i c i e n t s , p r o p e r t i e s o f k e r n e l s , e t c . used h e r e a r e discussed elsewhere i n t h e book. I n c l a s s i c a l ( h a l f - 1 i n e ) i n v e r s e s c a t t e r i n g t h e o r y i n quantum mechanics ( c f . [Fal;
C e l l and 14) one connects e i g e n f u n c t i o n s o f t h e Schrodinger o p e r a t o r 2 Q = D - q ( q r e a l h e r e ) w i t h e i g e n f u n c t i o n s o f D v i a t r i a n g u l a r transmu2
t a t i o n k e r n e l s ~ ( y , x ) = 6 ( x - y ) + K(y,x)
and we w i l l c a l l K(y.x) w i t h K(y,x)
Thus l e t q A 9 ( x ) (resp. O9A ( x ) ) be s o l u t i o n s = 0 and Q = 0 (resp. .Q,(O) Q o f (*) Qu = -A2u s a t i s f y i n g ~ Q ~ ( =0 1 ) and OxqA(0) Dx.Q:(0) = 1). We w i l l w r i t e s(A,x) f o r q QA o r 0 : and t h i n k o f c o n n e c t i n g
= 0 f o r x > y a causal k e r n e l .
s(A,x)
t o a(A,x)
= Coshx
or a(A,x)
= Sinxx/h by a f o r m u l a
MINIMIZATION
(7.1)
s(A,y)
I"
( I + K)a = a(A,y) +
=
161
K(y,x)a(A,x)dx
0
which we know t o be v a l i d f o r t h e G-L k e r n e l K = K
We can assume KO
0'
e x i s t s h e r e and o u r procedure i s designed t o c h a r a c t e r i z e i t v i a minimization.
For now l e t us t h i n k o f s = 0: and a = Sinhx/x ( c f . 54).
One knows
as b e f o r e t h a t a s s o c i a t e d t o 0 and t h e e i g e n f u n c t i o n s 0: = s i s a s p e c t r a l measure dw = dw
Q
=
which we assume here f o r convenience t o be o f t h e form dw
tdA (no bound s t a t e s ) .
Thus one can suppose e.g.
Q ( $ ) /:OA(x)O
6(x-y) ( a c t i n g on s u i t a b l e f u n c t i o n s ) and we w r i t e dw = do
:J
a(A,x)a(A,y)do
= .Q(x,y).
lo
Q (y)dw(A)
Zx + 21 d x / r
=
with
Thus
m
(7.2)
A(x,Y)
=
a(A,x)a(A,y)dw
~ ( x - Y )+
=
Nx,Y) =
(1 + Q)(X,Y)
where a = Sinhx/x (we w i l l w r i t e 1 o r I f o r t h e i d e n t i t y o p e r a t o r w i t h k e r nel 6(x-y)).
Now c o n s i d e r t h e e x p r e s s i o n (T a r b i t r a r y and f i x e d )
'0
'0
Note t h a t when K i s t h e G-L k e r n e l KO (which makes (7.1) c o r r e c t ) t h e n f o r m a l l y Z(T,K)
= 0.
We can t h i n k h e r e o f
( c a u s a l ) k e r n e l K(y,x)
kHE(?Rfm 7.1-
0, s,
i n (7.3) as unknown.
a, and dw as g i v e n and t h e I t w i l l be shown t h a t
The k e r n e l K o b t a i n e d by m i n i m i z i n g Z(T,K) o v e r a s u i t a b l e
c l a s s of admissable causal k e r n e l s s a t i s f i e s t h e G-L e q u a t i o n and r e p r e s e n t s t h e t r a n s m u t a t i o n k e r n e l KO c o n n e c t i n g s and a v i a (7.1). We proceed f o r m a l l y and r e f e r t o Chapter 1, S e c t i o n s 4-5,
Chapter 3, 98,
e t c . f o r i n f o r m a t i o n about n a t u r a l p r o p e r t i e s o f K(y,x) e t c .
Thus from
(7.3) f o r causal K
'0
'0
' 0
Now one i n t e g r a t e s i n 1, u s i n g (7.2), and t h e c o n v e n t i o n JT Q(y,y)dy = T r fl 0
f o r example t o o b t a i n ( n o t e t h a t t r a c e T r depends on T ) A
(7.5)
Z(T,K) = Z ( T ) + 2TrK + 2
I'
[YK(y,x)al(x,Ydxdy
-
162
ROBERT CARROLL
where we have w r i t t e n Z ( T ) = I.T :I
T
s(X,y)] 2dwdy which we know
-
[a(A,y)
2
{I {I K o ( ~ , x ) K o ( y , ~ )
makes sense ( i n f a c t G(T) = Jo :1 [Koa] dwdy = id [6(x-S)
+
+
s 2 ( x , < ) l d ~ d x d y = Tr[Ko(l
Here t h e t e r m r ( y , x )
*
-
O)Ko]
= (s(A,y),a(X,x))
see c a l c u l a t i o n s below a l s o ) .
i s o u r standard o b j e c t i n general WN
t r a n s m u t a t i o n t h e o r y and i n p a r t i c u l a r @(y,x) = 0 f o r x
y (i.e.
<
a n t i c a u s a l ) w i t h a 6 ( x - y ) t e r m a r i s i n g a l o n g t h e diagonal. c o n t r i b u t e s -2IJ (7.6)
K(y,y)dy = -2TrK t o (7.5).
I’
W(Y) =
K(Y,x)
0
n(x,s)g(s)dsdx =
I;
since
x ,s 1d x l ds
(Y ,x
IJ [I{
( f o r s u i t a b l e g) so t h a t T r KC? = on [x,-)
We can w r i t e now
lorn 1[I: K )a(
lom g (s
= K(-,x)
it i s
Thus t h e ;term
g(y)J{
K(y,x)n(x,y)dx]dy.
Similarly ker
K*
= Jy h(x)/X” g(y)K(y,x)dydx,
K(y,x)h(x)dxdy
and consequently
1
min (y ,c (7.7)
KK*s(Y)
* T Hence T r KK = Jo [J{ (7.8)
g(c)
=
K(y,x)K(c,x)dxdC 0
0
K(y,x)K(y,x)dx]dy
mK*g(Y) =
g(C)[r
and f i n a l l y we have
K(Y,x) ~ C ~ ( x , s ) K ( ~ , s ) d s d x l d ~
0
O*
0
Now go back It f o l l o w s t h a t T r WK = I; [I{ K(y,x)J{ Sl(x,s)K(y,s)dsdx]dy. t o (7.5) and i n s e r t t h e i n f o r m a t i o n j u s t d e r i v e d from (7.6)-(7.8) p l u s t h e N
B contribution, t o obtain
LElltmA 7-2- The e x p r e s s i o n Z(T,K)
d e f i n e d i n (7.3) can be w r i t t e n
A
Z(T,K)
(7.9)
=
Z ( T ) + T r [ K ( l + n)K* + Ks, + nK*] A
Ptlood: K(l
One o b t a i n s from (7.5),
+ n)K* +
Z(T,K)
= E(T)
KK* + KnK* w i t h T r K!2 = T r
W r i t t e n i n t h e form (7.9), Z(T,K) Q(t,K) ( o r D) i n [Daf1,2]
nK*
*
*
+ Tr[2W2 + KK + WK 1.
(note
But
d = a).
es e s s e n t i a l l y i n t h e same f o r m as t h e
and we now f o r m a l l y examine a v a r i a t i o n a l argu-
ment t o m i n i m i z e Z = Z(T,K).
Thus ( n o t e Z > 0 f r o m ( 7 . 3 ) ) we know t h e r e i s
a m i n i m i z i n g k e r n e l K = KO i n some a d d i t i v e c l a s s K o f admissable ( c a u s a l ) kernels.
n
pendent o f K) f o r L E K and = 0.
A
Then c o n s i d e r K = KO + EL i n Z(T,K) = E ( T ) + E K ( T ) (Z(T) i s indeE
a r e a l number.
T h i s l e a d s t o T r [ L ( l + n)K;]
[ ( K o ( l + n ) + n)L*] = 0 f o r L E K. k e r n e l A(y,x)
+
F o r m a l l y we s e t DEZK(T)IE=O
T r [ K o ( l + a)L*]
+
T r L n + TmL* = 2Tr
I f we w r i t e now A = K o ( l +
t h e n e v i d e n t l y k e r AL* =
:I A(y,x)L(s,x)dx
a) + a w i t h
and TrAL* =
MINIMIZATION
= :f
[I{ A(y,x)L(y,x)dx]dy.
163
The statement t h a t T r AL* = 0 f o r a l l L
w i l l be t r u e i f A(y,x) = 0 f o r x
<
E
K
y and h e u r i s t i c a l l y one concludes t h e
converse s i n c e K w i l l c o n t a i n s u f f i c i e n t l y many s u i t a b l e L.
CHE@REI 7.3, The ( u n i q u e ) m i n i m i z i n g k e r n e l KO s a t i s f i e s t h e G-L e q u a t i o n Ko(y,x)
+
n(y,x)
+
ry Ko(y,c)a(E,x)dc 0
= 0 f o r x < Y.
One knows t h a t t h e G-L e q u a t i o n has a unique s o l u t i o n and t h i s i s t h e t r a n s m u t a t i o n k e r n e l o f (7.1) ( c f . 54 and Chapter 3, s8).
Thus t h e G-L e q u a t i o n
a r i s e s as a m i n i m i z i n g c r i t e r i o n and Theorem 7.1 i s v e r i f i e d .
REMARK 7-4- L e t us n o t e a l s o t h e f o l l o w i n g c a l c u l a t i o n which w i l l s p e c i f y ( a g a i n ) t h e minimum E o o f E(T,K)
achieved a t t h e G-L k e r n e l KO.
t h e G-L e q u a t i o n i n Theorem 7.3 we can say KO causal o p e r a t o r . (7.10)
It follows e a s i l y t h a t 1 + B
+
( 1 + B * ) ( l + K i ) = (1
which i s f o r m a l l y s e l f a d j o i n t .
+
*
R + K R = B
*
0 =
Thus g i v e n
where B i s a
(l+Ko)(l+Q) and t h u s
*
K o ) ( l + n)(l + KO)
But t h e l e f t s i d e o f (7.10) i s 1 + an a n t i -
causal o p e r a t o r so both*sides o f (7.10) must be 1 ( c f . [ D a f l ] ) .
Hence ( r e -
A
c a l l E ( T ) = Tr[Ko(l+s))Ko]) (7.11)
E o = minE(T,K)
- T r [ 2 n + 2Ko + 2K: ( s i n c e KO and B a r e causal
= g ( T ) + minE K (T) = T r [ 2 K o ( l + n ) K i
* *
+
KoR
-
cf. [Dafl]).
+
RK*] = Tr[B K0 0
+
+ Kon+ nKi]
=
K0 B] = 0
This i s t h e desired conclusion.
REMARK 7-5, The c h a r a c t e r i z a t i o n o f KO does n o t r e q u i r e t h e t r a c e argument (i.e. 1,2]
the y integral i n (7.3)).
T h i s was i n s e r t e d f o r comparison w i t h [Daf
and we w i l l show below how i t may be removed.
REMARK 7 - 6 , I n t h e same c o n t e x t o f i d e a s one can work w i t h 9: i n s t e a d o f O 4 x and k e r B = ~ ( y , x ) = 6(x-y) + K (y,x) w i t h Ko(y,x) w i t h B[Cosxx](y) = 9p,(y) Q Q0 = 0 f o r x > y. We w r i t e now a ( x , x ) = Coshx, s(x,y) = qP,(y), dw = do + ( 2 / 1 ~ ) d x , and as b e f o r e n ( x , y ) = fr a(x,x)a(A,y)du w i t h g(y,x) = <s(X,y), a(h,x)>w ( ~ ( y , x ) = 0 f o r x < y and One w r i t e s E(T,K) (7.9) where ;(T)
has a 6 ( x - y ) t e r m a l o n g t h e d i a g o n a l ) .
e x a c t l y as i n (7.3) and by t h e same arguments a r r i v e s a t makes sense as b e f o r e .
The unique m i n i m i z i n g k e r n e l KO
s a t i s f i e s t h e G-L e q u a t i o n o f Theorem 7.3 ( t h e e q u a t i o n has t h e same appearance) and thus Theorem 7.1 h o l d s f o r t h i s s i t u a t i o n . We go n e x t t o t h e o p e r a t o r s Qu = ( A u ' ) ' / A where 0 <
~1
5 A(x) 5 6
<
-, A(0)
=
164
ROBERT CARROLL
Am r a p i d l y as e t c . which a r i s e i n geophysical a p p l i c a t i o n s f o r example ( c f .
= 1 f o r n o r m a l i z a t i o n ( w i t h no l o s s o f g e n e r a l i t y ) ,
x
-+
m,
A E C',
A(x)
-+
G-L equations f o r such o p e r a t o r s a r e discussed t h e r e i n
Chapter 3, § § 8 - 9 ) .
Chapter 3, 558-9 and i n Chapter 2, §12 i n d e t a i l i n a u n i f i e d manner and we
w i l l s i m p l y e x t r a c t here a few f a c t s and s t r u c t u r a l f e a t u r e s as needed ( c f . Thus ~ ( y , x ) = (px(y),Coshx)v 4
a l s o 52.10).
=
A-4(y)6(x-y)
+ K2(y.x) where
and (2i/h)[p!(y) - Cosxy] = JY K(y,x)exp(ihx)dx -Y The G-L e q u a t i o n can be w r i t t e n as ( c f . Theorem 7.3)
1 - K(y,y) = A-'(y) x ) = Kx(y,x)).
joy?o(y,c)R(E,x)dc
A
(7.12)
Ko(y,x)
+
A-'(y)G(y,x)
t
(K2(y,
= 0
A
f o r x < y. where Ko(y,x) i n Remark 7.6,
= Kz(y,x)
+
dw = du
(K(y,x)
b e i n g d e f i n e d as above) and, as
( 2 / 1 ~ ) d hw i t h n(y,x)
= (Coshy,Co~hx)~.
REmARK 7-7- We n o t e here t h a t (7.12) corresponds t o t h e G-L e q u a t i o n (O(y, ~ , ) , A ( c , x ) ) = z(y,x)
w i t h A(c,x)
=
+ R(c,x)
6(x-F,)
and f o r purposes o f r e -
c o v e r i n g A one computes w i t h an i n t e g r a t e d v e r s i o n , namely ( c f . Chapter 3, 5 58-9 and [C40,66,67,71])
(7.13)
K(Y,x) + T(y,x)
=
T(y,x)
c lo
K(y,n)Tn(n,x)dn;
=
[Sinhx/x]Coshy
do(x)
(one should n o t confuse A(y), t h e a c o u s t i c impedance, w i t h t h e o p e r a t o r A determined by A(x,Y)).
T h i s e q u a t i o n (7.13)
(and (7.12)) can a l s o be ex-
pressed i n t h e t i m e domain, which i s more r e v e a l i n g and e f f e c t i v e f o r geop h y s i c a l problems ( c f . Chapter 3, Ss8-9).
Now f o l l o w i n g t h e approach above f o r c h a r a c t e r i z i n g t r a n s m u t a t i o n s v i a m i n i m i z a t i o n we t r y t o m i n i m i z e ( a = COSAX, s = q xQ ( x ) ) (7.14)
Z(T,K)
=
=
joT;1
[(A-%a
-
A
2
s ) t (K(y,x),a(x.x))] A
dwdy
A
over a c l a s s o f a d m i s s i b l e causal (= t r i a n g u l a r ) k e r n e l s K (K(y,x) A
4
We know t h e minimum i s achieved f o r K = K = K2
= 0 for
( t h e G-L k e r n e l of
x > y). t r a n s m u t a t i o n ) and we w i l l show t h a t i n f a c t t h e " E u l e r " e q u a t i o n f o r m i n i -
m i z i n g P i s t h e G-L equation. = &(x-t)
+ R(t,x),
a:
= a(A,c))
Thus one can w r i t e ( A ( t , x )
=
(a(h,t),a(h,x)
)w
MINIMIZATION
lo jr
165
T
(7.15) -2
1;
Z =
+ 2
(AJ’a-s)‘dwdy
JF(y,x)T(y,x)dxdy +
( r e c a l l t h a t F ( y , x ) = ( ~ Qx ( y ) , C o s x x ) =w AJ’(y)6(x-y) + K(y,x) with K(y,x) = term we get a contribution -21J AJ’(y)i(y,y)dy 0 f o r x < y ) . From the 2 which cancels o u t and one obtains ( n o t e t h a t E = 10’ :/ (Al’a-s) dwdy = T A 2 A 4* lo 1 ;
(7.16)
A
E = Z + Tr[A”’(y)(h+R^KX)
A*
A
+ K(l + f l ) K A
1 A
A
( t h e t r a c e depends on T of c o u r s e ) . Now s e t K = K O + E L (KO being a miniA mum value - e.g. K2(y,x) = K(y,x) will d o ) t o obtain “Euler equations” 0
(7.17)
=
DEI(T,?
0+ E L ) ]
E=O
=
2Tr[(go(l+i2) +
A-%)L*l
This holds f o r a l l admissable L and y i e l d s formally
( L causal).
A
(7.18)
; b ( y , x ) + (K0n)(y.x) + A-’(y)Q(y,x)
which i s t h e G-L equation (7.12).
= 0
One knows t h i s has a unique s o l u t i o n so
A
T h e solution KO of t h e minimizing problem f o r I i s uniquely determined as t h e s o l u t i o n Kh(y,x) of t h e G-L equation (7.18).
&HEBR€Iil 7.8.
W e can a l s o c h a r a c t e r i z e y ( x , y )
(p
B-l) v i a a s i m i l a r minimizing procedure by simply interchanging the r o l e s of P and Q. For completeness we will sketch this. T h u s s i n c e s = A% + ( L ( x , y ) , s ) = a we minimize (7.19)
[ ;1
”
” E(T$) = Z =
[ ;1
+ 2 [i’(x)
(/l’s-a)2dvdx T
x X
= ker R
[(i’s-a)
=
2 + ( t ( x , y ) , s ( X , y ) q dwdx =
f L ( x , y ) i ( x , y ) d y d x -2
loT lox;( 1
x ,y 6 ( y ,x 1dydx
A0
[ Z(x,Y)c(x,rl)ii(Y,r7)d~dydx
+
Here we r e c a l l t h e reverse G-L equation ( c f . [C40, p . 175 and 5 3 ) (7.21)
B(Y,X)
=
(z(t,x),i(t,y))
(recall y ( x , t ) = A(t)z(t,x)).
“ The expansion of A in (7.20) can be seen
166
ROBERT CARROLL
e.g.
by matchina A-%terms i n ( 7 . 2 1 ) . Now from (7.19) ( w r i t i n g 1: 10" 2 - a ) dwdx = 2 and r e c a l l i n g t h e f o r m o f f i ( y , x ) ) e
(7.22)
n
Z = Z
We w r i t e
5
+ 2 /Tk'(x)
+
r?(x,y)z(x,y)dydx
and t h e n as b e f o r e
f o r t h e o p e r a t o r w i t h symmetric k e r n e l :(x,y)
+
=
(7.23)
&
UA*
A v
Tr[A2(Cn + PL ) + ?(Ab' +
$)?*I
m i n (x,c ) - 1 A (y)t(x,y)?(c,y)dy).
(note ker
(A%
A
A
Now s e t L = Lo + E J f o r
= f
G
m i n i m i z a t i o n and we f i n d t h e E u l e r e q u a t i o n ( c f . (7.17)) (7.24)
+ to(A'l
2Tr[(/l%
+ ;))J*]
0
=
Arguing as b e f o r e we o b t a i n f o r x > y a " r e v e r s e " G-L e q u a t i o n (7.25)
+ ?o(x,y)A-l(y)
A'(x)$x,y)
+
1'
!?o(x,t)6(t,y)dt
=
0
0
One s h o u l d check t h i s w i t h (7.21) w r i t t e n o u t as ( r e c a l l F ( t , x ) = A - ' ( t ) y(x,y)
= A-'(t)G(x-t)
+ A - l ( t ) L ( x , t ) ) ; t h u s ( z ( t , x ) , 6 ( t - y ) + A(t)s((t,y)) + L ( X , ~ ) A -(y) ~ + ( L ( x , t ) , E ( t , y ) ) = B(Y,X) = o
=
A + ( Y ) ~ ( ~ - Y )+ ~'(x)E(x,y) f o r x > y.
Consequently we have f o r m a l l y proved ( n o t e t h a t uniqueness f o r
t h e r e v e r s e G-L e q u a t i o n h o l d s s i n c e L o r e q u i v a l e n t l y y i s k e r B-').
EHEoREm 7-9, The s o l u t i o n
z0 o f t h e m i n i m i z a t i o n problem f o r " i s (uniqueZ
l y ) determined as t h e s o l u t i o n L of t h e r e v e r s e hr
G-L e q u a t i o n (7.25).
CJ
We c o n s i d e r n e x t t h e t r a n s m u t a t i o n B where Ba = Ws ( W ( 1 ) = ;/$ = I c / c I P Q 2 = ( 1 / 4 ) / l c Q l 1, Z(y,x) = A - ' ( ~ ) ~ ( X - Y ) + 't?(y,x), e t c . F o r some s u i t a b l e
2
class o f anticausal kernels we t r y t o m i n i m i z e T m m 2 (7.26) E(T,g) = [A-+a-Ws + E(y,x)a(x,x)dx] dudy '0 '0 'Y 2 = ( ~ / I T ) ~ cdx~ \a r i s e s i n t h e t h e o r y o f t h e M e q u a t i o n where du = (;'/c)dx
[
[
N
( c f . 555-6).
= BA i n t h e form B = 'iiA"i n s t e a d o f 2 Thus ( f o r A,, = 1 when P = D ) one has W = A w i t h A(x,y) =
(a(x,x),a(x,y)
)w
when u s i n g t h e general G-L eq:ation
N
while
= A-l
has k e r n e l A(x,y)
= ( a(h,x),a(x,y))
v
t h e r f r o m A(x,y)
= 6(x-y)
t h e G-L e q u a t i o n fi(y,x) from (7.21) and (7.25))
+ n ( x , y ) one o b t a i n s A(x,y) cv
= (T(y,c),A(t,x))
= 6(x-y)
Nu
.
Fur-
+ n ( x , y ) and
l e a d s t o ( n o t e how t h i s d i f f e r s
167
M T 2 Now w r i t i n g forma l y E = fo Jr (A-'a-Ws) dudy = -* r,a12dudy = 1 ; lm Im~ ( y , x ) ~ ( y , s ) ~ c)dxdcdy (x = T r t ( l + f i ) K we have
which i s z e r o f o r x > y.
6 1;
N
(
Y
Y
S)dxdEdY
-
N
M
x)A(y,x)dxdy where
=
6(y,x)).
= E
*,,
+ T r izK
[n"(l+z) t A-15(y)2z] ( s i n c e ( Ws(A,y),a(A,x))u = ( s(h,y),a(h,x))v = The c a l c u l a t i o n s a r e formal b u t under s u i t a b l e hypotheses everyA v a r i a t i o n a l argument g i v e s then
t h i n g makes sense ( c f . Remark 7.11).
&HEe)REm 7-10. The s o l u t i o n
go o f
t h e m i n i m i z a t i o n problem f o r Z(T,K)
i s de-
t e r m i n e d as t h e s o l u t i o n o f t h e G-L e q u a t i o n (7.27) f o r x > y.
REmARK 7-11- The q u a n t i t y
rv
M
Z which a r i s e s i n m i n i m i z i n g Z i s n o t perhaps ob-
v i o u s l y meaningful and we w i l l make a few comments here t o show t h a t i t makes sense a t l e a s t f o r a l a r g e c l a s s o f problems. ple that A t o (**) W " as x + m ) .
Thus assume f o r exam2 C 2 w i t h A(0) = 1 and r e c a l l t h a t u = Au4w i n Ou = - A u leads - {W = -A 2 w w i t h = A-'(i')" (recall also that A' + 0 rapidly We s e t aQ = A%: w i t h *A '4 t h e s o l u t i o n o f (**) s a t i s f y i n g ah YQ %
E
A
e x p ( i A x ) and DXaA -4 % i A e x p ( i A x ) as x
+
m.
Note t h e n a!
%
Az5exp(ihx) and
A t 5 i x e x p ( i A x ) s i n c e A ' + 0 ) . Moreover i f A ' ( 0 ) = 0 f o r example we Dx@Y w i t h $?(O) = 1 and Dx$:(0) = 0 ( n o t e CxpA(0) 4 = A-'(O) can s e t v: = A-%! DxgY(0) - A'(0)A-3/2(O)$:(O)). We can t h e n i d e n t i f y cQ and c* where ( 1 ) = cq(A)aA Q + cQ(-A)@yA and ( 2 ) $Q = c' :A(;) + EQ(-h)6sA ( s i n c4 e A - + ( x ) ( l ) " A2 Now f o r t h e o p e r a t o r Q = D - q one has formulas f o r E as i n t h e = (2)). Q m case o f F o u r i e r t y p e o p e r a t o r s (namely, c* ( - A ) = ( 1 / 2 ) - ( 1 / 2 i x ) f o { ( y )
v!
3
4
c f . Chapter 1, 58 and Chapter 2, 96) showing t h a t c" ( - A ) 2 4 + 1/2 s t r o n g l y ( i n L ) as h m ( A real). T h e r e f o r e c ( - A ) + 1/2 ( a l o n g w i t h c p ( - h ) ) and W ( A ) = ;/$ = Icp/cQ12 + 1 w i t h du = ($ 42 /d)dA + dA/2nlcpl 2
-
$:(y)exp(iAy)dy
-f
=
(2/n)dA.
M
Hence f o r A l a r g e i n E we a r e t a l k i n g about 1
I (s-A-'a)
2
dhdy
and t h i s i s known t o make sense by c o n s i d e r i n q t h e t r a n s m u t a t i o n B w i t h k e r n e l 5 = A-%
REmARK 7.12.
+ K as b e f o r e .
We show now t h a t t h e y i n t e g r a l i n (7.26) f o r example may be
removed and we c o n s i d e r t h e problem o f m i n i m i z i n g (7.29)
' r( y, % ) =
fm
0
-
Ws + ( z , a l I 2 ( y ) d u
ROBERT CARROLL
168
Given a n operator A w i t h a (function) kernel A(y,x) l e t us w r i t e A(y,y)
=
Then t h e c a l c u l a t i o n s leading t o (7.28) y i e l d ( f o r y f i x e d )
Aly.
(7.30)
J .
N
Y*
T(y,K) = [Z(l+n)K
The v a r i a t i o n a l argument with (7.31)
Iy %
v
*,
+ [c(l+O)K =
Iy
+ 2A-'(y)%l
zo + EJ gives
2[(~o(l+~)+ A-''(Y)E)J*]~
Y
then
= 0
Let us note here t h a t f o r anticausal J w i t h J f ( y ) = JmJ ( y , x ) f ( x ) d x one has y J*g(x) = g(y)J(y,x)dy so e.g. (KoJ s)(Y)*= ly K0(y,x)$ g ( n ) J ( n , x ) d q d x = 10" s ( n ) ~ ~ x ( , ~ ~ ~ o ( ~ , x ) J ( n y x ) d Hence xdn. I = Jm ( y , x ) J ( y , x ) d x and m ,Y Y 0 -* N * s i m i l a r l y (JK,*)(Y) = g(n)hax(,,y)J(y.x)Ko(n,x)dxdn so JKoly = KoJ ly. In the same way JZ/ = OJ I f o r example s i n c e is formally s e l f a d j o i n t Y Y A(y,x)J(y,x)dx = and t h e conclusion (7.31) f o r admissable J in the form Im Y 0 implies A(y,x) = 0 f o r x > y (which i s t h e G-L equation of Theorem 7.10).
Jt
N
*
03,-
Z0J
A2
&I*
Thus t h e t r a c e s t e p i n our minimization theorems i s not necessary and i t was included b a s i c a l l y i n order t o compare with the formulation of [Dafl,2].
W e can now go t o t h e general M equation of 56 and show t h a t i t a l s o can be characterized as a minimizing c r i t e r i o n ( c f . [C52,53]). Thus l e t P be a Fourier type operator as i n Chapter 1 , 58 w i t h B: P + Q: q Px ( P = D2 - q here). For Q we take Qu = (Au')'/A w i t h A as above f o r a typical model A and i n order t o f a c i l i t a t e t h e inclusion o f operators Qu = Qu - $(x)u w i t h say ( l + x ) l t ( x ) l d x < m (and the a n a l y s i s o f kernels) we will assume A 6 2 ( f o r s i m p l i c i t y we will a l s o assume here t h a t QA is absolutely continuous C i n t h e sense t h a t dw = dw = Gdh on [ O , m ) ) . Hence s e t t i n g u = A-W ' an equaQ t i o n 4 u = -1'" becomes -+
fy
(7.32)
V
QW =
wll
- q'w
=
-x 2w ; q'
=
A-+(A')~' +
&!
q*
Q = 0 t h e n $! = A%! satisFurther i f = -h2q! w i t h q Qx ( 0 ) = 1 and Dxpx(0) f i e s g:(O) = 1 and D$!(O) = h = (l/Z)A'(O). On t h e o t h e r hand f o r J o s t = A%! % A-'(x)exp(ixx) and Dx(P! % s o l u t i o n s V Q of (7.32) one has e . g . A-'(x)ixexp(ixx) ( s i n c e A' + 0 as x -+ m ) . Between Fourier type operators 2 Pu = (D - q)u and operators one has a v a i l a b l e the Marrenko transmutation of Chapter 1 , 514-5 f o r example and standard s p e c t r a l i n t e g r a l s f o r kernels will be appropriate ( c f . a l s o §§2-3 of this chapter). In p a r t i c u l a r one v P VQ VQ P will have transmutations g: P Q: p x q A w i t h q (y) = q P , ( y ) + .f[ k(y.x) Consequently f o r p!(x)dx so t h a t q!(y) = A-'(y)v!(y) + {I K(y,x)px(x)dx. Ph
4"
-f
-f
MINIMIZATION
B: P
+
B
Q: L PP + ~ LQ P k~e r,
6 - l has k e r n e l v ( x , y )
=
=
169
+ K(y,x).
B(y,x) = A-'(y)6(x-y)
+ L(x,y)
A5(y)6(x-y)
e r a t o r ) and z ( y , x ) = A - l ( y ) y ( x , y )
=
Therefore R =
(by i n v e r s i o n o f a V o l t e r r a op-
+ r ( y , x ) ( c f . 552-3).
A-'(y)s(x-y)
Now l e t us use t h e m i n i m i z a t i o n (7.26) as a p o i n t o f d e p a r t u r e and reorgani z e i t i n terms o f t h e MarEenko t h e o r y i n 56.
We r e c a l l t h a t
(;i'= JC*).
The k e r n e l K(x,s)
(7.33)
JC(x,s) = (
(X(x,s)
= 0 for x >
E= .(
"yr
&where PJ,w
v
and t h e general M e q u a t i o n i s 6% = BAJC = B(JCAJC) = BK
JCf(x) = (JC(x,s),f(s))
i s g i v e n by
s and g f ( x )
= C%(x,s),f(s))
w i t h z(x,s)
= K(s,x).
?&!
Note
a l s o t h a t by s p e c t r a l forms f o r t h e k e r n e l s B and y we o b t a i n a g a i n = Q 2 Wp, where Id = G/v^ = c / c I . The i d e a now i s t o w r i t e = b C i n (7.26) P Q and rephrase t h e m i n i m i z a t i o n a c c o r d i n g l y so as t o t r e a t t h e Marc'enko k e r nel
as unknown.
From t h e s p e c t r a l f o r m u l a f o r g(y,x) one has a rough b u t
u s e f u l decomposition ( y > 0 ) (7.34)
;(Y,X)
=
(1/271) ~ m @ ~ ( ~ ) P[ w , ( x ) / c p ( - h ) 3 d =h -m
m
+ c(y,x)
A-'(y)eixy[CosXx/(?i)]dX
(1/2n)
=
+ t(y,x)
A-'(y)6(x-y)
-m
P P s i n c e e.g. wP,(x) = CosXx + (l/A)J: Sinh(x-y)q(y)qh ( y ) d y g i v e s an e s t i m a t e f o r / LPP ~ ( X- ) CosXx(, cp(-X) = k - ( l / Z i X ) f : q ( y ) w Ph ( y ) e x p ( i k y ) d y , @,(y) (I =
+ @(y,X)] w i t h cb(y,A) bounded f o r I m X 0 ( t h i s f o l l o w s A-'(y)exp(iXy)[l from t h e c o n s t r u c t i o n s i n Chapter 1, 585-6 f o r example), and L z @X(y)CosXxd Q =
im% m @QX ( y ) e x p ( - i h x ) d X .
there.
Note a l s o i ( y , x )
=
0 f o r x < y since g(y,x) = 0
Corresponding t o t h e expressions above f o r z a n d
t h a t 3c has t h e form JC(x,s)
= 6(x-s) + h(x,s)
B'
one can deduce
where h i s a n t i c a u s a l a l o n g
= b C i n k e r n e l form l o o k s l i k e A-'(y)6(y-s) + ~ ( ' ( Y , =s ) + z ( y , x ) , 6 ( x - s ) + h ( x , s ) ) x ) . . From t h i s one o b t a i n s a l s o 3% and one knows x ( x , y ) = 6(x-y) + fL(x,y))
w i t h Jc ( n o t e t h a t CA-'(y)s(y-x)
N
(recall K =
= 6(t-X)
+
K(t,x)
and we n o t e t h a t K ( t , x ) = J J i i ( s , t ; ) X ( t , s ) J c ( x , ~ ) d ~ d si s a symmetric k e r n e l Consequently t h e general M e q u a t i o n i n k e r n e l form may be w r i t t e n as k e r BK =
[A-%(y)s(y-s)
+ c(y,s)]o[6(s-x)
t K(s,x)]
= 0
for x > y or
170
ROBERT CARROLL
(7.36)
+ z(y,x)
A-'(y)K(y,x)
C'
+
K(y,s)K(s,x)ds
= 0
We w i l l a l s o have use f o r t h e e x p r e s s i o n N
(7.37)
k=
ker B = ker + N(y,x);
A-'(y)6(y-x)
+ l?(y,s)l[S(s-x)
[A-'(y)6(y-s)
[N = ?](y,x)
=
[z
+ h(s,x)]
:j
+
+ A-'(y)h](y,x)
=
?(y,s)h(s,x)ds
N
We go now t o t h e m i n i m i z a t i o n problem f o r E i n (7.26) and ( f o r F i n some c l a s s o f admissable a n t i c a u s a l k e r n e l s ) we c o n s i d e r a g a i n (7.28). here t h a t B(y,s) = 0 f o r 5 > y w i t h a t e r m A-'(y)b(y-s)
Recall
along t h e d i a g o n a l .
We r e w r i t e t h e l a s t e q u a t i o n i n (7.28) now as
'i: = 2
(7.38)
loT[
+ 2
A-'(y)
( t h e t r a c e depending on T).
#
Y
Here one notes t h a t
*,,,
ru*
+ T r %(l+CL)K
z(y,s)z(y,c)dcdy
%* i s
causal w i t h % * f ( x ) =
L e t us has k e r n e l Jm la, ii(y,s)x(s,x)"ic~,x)dxds. . - Y n t h i n k now o f our t r i a l o p e r a t o r s X as a r i s i n g f r o m a c o n s t r u c t i o n as i n and KAK
g(y,x)f(y)dy
(7.37),
i . e . :(y,x)
+ A-"(y)h(y,x)
= c(y,x)
+ i(y,-)oh(. ,x) w i t h t h e $(y,x)
as t h e fundamental o b j e c t s i n t h e m i n i m i z a t i o n .
+ g(y,x)
o p e r a t o r w i t h k e r n e l A-$(y)S(y-x) 6(y-x) + g(y,x).
Tr
(7.39)
We can w r i t e e.g.
and t h e n
5=
'i f o r
the
k X has k e r n e l A-'(y)
By an easy computation we n o t e now t h a t
v
"V*
NU
_*
T r BW =
=
JI
+
A-'(y);(y,y)dy
0
2 j)-&(y)
rz(y,t)z(y,t)dtdy + Y O so t h a t i n (7.38) one o b t a i n s N
(7.40)
M
B = E
~(y,t)z(y,T)~(t,~)dTdtdY Y
urv*
Y
..led
+ T r KK - T r
v*
+ Tr i ( X W ) B
Observe n e x t t h a t ( u s i n g t h e same symbol f o r o p e r a t o r s and k e r n e l s when no " ,"* + %]O[A-'s +%*I = + c o n f u s i o n can a r i s e ) ?3mB = %* has k e r n e l [A% u u* A-%C* i A - % + KeK so (7.40) becomes ( n o t e K = = %)
s+
+
N
(7.41)
v
M
v*
E = Z + Tr[BKB
- Am',
- A-'Z - A-'g*
- ZA-']
V
F i n a l l y t o p u t e v e r y t h i n g i n terms o f K we r e f e r t o (7.37) and w r i t e (7.42)
Tr[A-%?
+
%I =Tr[A-%? ']
+
iA-']
+5
N
Q TYPE OPERATORS
2
171
c.
I t i s important t o note here t h a t and h are both anticausal and hence ( c f . ( 7 . 3 7 ) ) ker $41= J X i ( y , c ) h ( c , x ) d c . This Y means t h a t :oh has t r a c e zero (along w i t h i t s a d j o i n t ) . Hence where
does not depend on
EHEBREIII 7-13. Under t h e hypotheses indicated the minimizing procedure f o r N
E reduces t o minimizing ( r e c a l l K
= 6
+ K w i t h K symmetric)
i.
over a s u i t a b l e c l a s s o f anticausal kernels on t h e kernel g.
Here
and
do not depend
Now s e t = io+ EC in a standard manner, where go designates a minimizing o b j e c t (e.g. ko = ?i where i i s t h e M a r h k o k e r n e l ) . Then d i f f e r e n t i a t i n g in E a n d s e t t i n g E = 0 one obtains (7.44)
2Tr [2,(6
+ K ) + A-%]C*
=
0
This i s t o hold f o r a s u i t a b l y l a r g e c l a s s of anticausal kernels I: so we conclude t h a t ( c f . ( 7 . 3 6 ) )
i0f o r E
N
CHEBREIII 7-14, The minimizing kernel
i s characterized as t h e (uni-
que) s o l u t i o n of t h e M equation A-'(y)K(y,x) + g o ( y , x ) + Jm Y" = 0 f o r x > y and thus coincides w i t h t h e Marzenko kernel K.
k
(y,s)K(s,x)ds 0
For f u r t h e r r e s u l t s on minimization s e e S52.10 and 3.6. 8- C ~ W C R U ~ I B OF N E R A W ~ U E A E ~F0R BW
5 E ~ P E0PERACBRB-
I t will be i n -
s t r u c t i v e t o consider f i r s t some constructions via Goursat problems of ext e r i o r and i n t e r i o r transmutations a r i s i n g in acoustic s c a t t e r i n g problems The operators which a r i s e a r e s i m i l a r t o those of following [Cnl-4,7]. Chapter 1 , 57 ( f o r which some corresponding transmutations were developed i n s p e c t r a l form) and t h e r e w i l l be connections t o t h e Bergman-Gilbert (BG) operator of 59 which i s useful in studying special functions as well. One considers (8.1)
Anu + k 2 [l
- q(r)]u
= 0;
1r i ~m m,4(n-1
- iku]
=
Here An = A i n Rn and t h e condition a t m i s t h e Somnerfeld r a d i a t i o n condit i o n which s p e c i f i e s the wave as outgoing. For convenience take f i r s t q = 0 f o r r > a. In t h e notation of Chapter 1 , 57 we w i l l be dealing with op-
172
ROBERT CARROLL
2 2 2 2 operators Qu = r u" + (n-1)ru' + r k [l - q ( r ) l u ( i . e . y ( r ) = k q ( r ) ) . One t r i e s now t o find a solution of (8.1) in the form (the represents spherical variables) m
u(r,-) = Be[h](r,-
(8.2)
h(r,-) +
=
~"~K(r,s)h(s,-)ds
2 where h s a t i s f i e s (An + k ) h = 0 (here Be refers t o "exterior"). The kernel K = Ke can be constructed by successive approximations as the solution of a Goursat type problem
-QrK(r,s)
(8.3)
-1 n- 2 Q,K(r,s); 2r K(r,r)
=
m
k2sq(s)ds
=
,.,
-1 2 2 2 2 where Q,u = s u" + (n-1)su' + s k u. Let us write = P and = k q for simplicity and we will show f i r s t how (8.3) arises i f (8.2) represents a transmutation (acting on functions h ( r ) ) . Thus consider Be: F + and for functions h = h ( r ) one wants t B h =
5'
5
5
-*
N
kr
(8.4)
= sn-'KrY
- s " - ~ K ~ ; D,.[-s"-~(
-Dr[rn-3K(r,r)q(r)] Consequently one obtains ( K N
(8.5)
V
QrK = s
n-3
= (
Q,
K(rYs)6(s-r),v(s))
1=
-(rn-3K(ryr)) '6 + rn-'K(r,r)6'
,'p)
K(r,r))
[Q,K(r,s)]Y(s-r) + rn-'K6'
-
- [r2(rn-3K)'+ rn-'Kr + (n-l)rn-'K]6 V
(here K ( r , r ) K r ( r y s ) l s = r ) . Since we t r e a t K(r,s) as a distribution in I* n-3s , for P,K = s P,[K(r,s)Y(s-r)] l e t us consider the term Q,
(8.6) =
( S
n-3 s 2 [ S n-1 (KY)']I/sn-',q) = - t s n-1 (KY)',lp') = - ( K 6 + K,Y,s n-1 l p ' )
-K(r,r)rn-lv'(r) +
(
(sn-'K,Y)',q) = ( s n-3 s 2 ( sn - l K s ) l y ~ s n ,-vl ) +
+ ( rn-'K(r,r)6' Hence ( r
E
s in the 6 terms)
t
rn-'KS(ryr)6,q)
TYPE OPERATORS
[qr-PS]K -*
(8.7)
v
sn-3 [QrK-psK]Y- [r2 ( r n-3 K ) ' + r n - ' ( Kr+Ks ) + ( n - 1 ) rn-'K] 6
=
= (n-2)r"'K Since Kr + Ks = K ' and (rn-'K)' + (n-1)rnb2K = r 2 [(n-3)rn-'K + r n - ' K ' ]
+ rn-'K'
+
rn-'K'
+
2rn-1K'
173
w h i l e r 2 ( rn - 3 K ) '
+
rn-'K'
(n-1)rn-'K
+
=
rnb2(2n-4)K we o b t a i n
[Cr
(8.8)
-
-*
v
PS]K = s
n-3
-
-
[QrK-FsK]Y
2r(rn-'K)'6(s-r)
Thus t h e d e s i d e r a t a f o r t r a n s m u t a t i o n a r e (as i n ( 8 . 3 ) ) N
'v
QrK(r,s)
(8.9)
= PsK(r,s);
-2r(rn-'K(r,r))'
=
r2c
The l a t t e r c o n d i t i o n can o b v i o u s l y be expressed as r"-'K(r,r) i n agreement w i t h [Cnl-4,7]. N
Y
-
Qru = Prh
(8.10)
-"v
,w
r 2 q h + QrI = Prh
.r*"
-r2{h +
(
pG(p)dp
1;
=
Our c a l c u l a t i o n s g i v e now ( u as i n ( 8 . 2 ) )
PsK, h ) t r2
-
h
V
v
r 2 q h + (QrK.h) = P h r
+(
-
tyPSh)
&HEBREm 8-1, Under t h e c o n d i t i o n (8.9) t h e map u = Beh = h + ( t ( r , s ) , h ( s ) ) n- 3 K(r,s)Y(s-r)) i s a t r a n s m u t a t i o n Be: P + i n t r o d u c e d i n (8.2) ( z ( r , s ) = s N
2 2 2 2 Q where P = x D + (n-1)xD t k x and
rJ
#. .
5=
-
x2T(x)
(y =
2 k 4).
i n t h e r a d i a l v a r i a b l e s r,s one 2 2 2 sees t h a t Be a u t o m a t i c a l l y determines a t r a n s m u t a t i o n p (An + k ) r (An 2 s 2 s n l U + Asu where an = r An depends ,rn-l + k ( 1 - q ( r ) ) s i n c e Anu = ( r n v one o n l y on s p h e r i c a l o r a n g l e v a r i a b l e s . Hence w r i t i n g Pn = P and On =
REmARK 8.2-
has Ben: (8.11)
Given a t r a n s m u t a t i o n Be:
= $,Be Be[p
-f
-
and 2
2
+ k )u] = Be[Pnu +
(An
2
= QnBeu + C?B n eu =
2
= r [An + k (1 - q ( r ) ] B e u
I n p a r t i c u l a r i f (An sired.
+
2 k ) u = 0 t h e n Beu = 0 i s a s o l u t i o n o f (8.1) as de-
Thus t h e s t u d y o f t r a n s m u t a t i o n s f o r o p e r a t o r s
5as
i n Chapter 1 ,
87 i s i n t r i n s i c a l l y connected w i t h t r a n s m u t a t i o n o p e r a t o r s of s e v e r a l v a r i 2 2 a b l e s (e.g. r (An + k ) ) and has a p p l i c a t i o n s n o t o n l y i n quantum s c a t t e r i n g t h e o r y b u t a l s o i n many problems i n say a c o u s t i c s c a t t e r i n g w i t h s p h e r i c a l symmetry i n p o t e n t i a l s o r o b s t a c l e s . I f one goes t o t h e c o n t e x t o f Chapter 1, 57 now ( w i t h n = 3 i n ( 8 . 1 ) here)
ROBERT CARROLL
174
we note f i r s t t h a t t h e r a d i a t i o n condition will hold in ( 8 . 1 ) - ( 8 . 2 ) from
the construction o f kernels below. T h u s u = B,h = h + frm K ( r , s ) h ( s ) d s s a t 0 when r ( h ' - ikh) + 0 s i n c e r ( u ' - iku) = r ( h ' - ikh) i s f i e s r ( u ' - iku) m 2 + r$ (Kr - ikK)hs - (h/2)irm k s q ( s ) d s (from ( 8 . 3 ) ) . For s u i t a b l e q , and K as constructed below, t h e condition a t m i s determined by t h e i s o l a t e d h term. NOW take h = g1 = f o ( v , - k , r ) / r with f o determined by (7.10) of Chap1 t e r 1 , 57 i n terms of H, ( t h e r a d i a t i o n condition i s s a t i s f i e d then). Heqce 1 f o r h = g we must have u = Beh = g as i n Theorem 1 . 7 . 1 2 a n d thus -+
EHE0REm 8.3, For s u i t a b l e ? t h e r e i s a formal equivalence between the transmutation Be of ( 8 . 2 ) f o r n = 3 and i n Theorem 1 . 7 . 1 2 (achieved via iden1 t i c a l action on the J o s t s o l u t i o n g ) and F ( r , s ) r\, 61s-r) + K ( r , s ) Y ( s - r ) .
REmARK 8.4,.
The c h a r a c t e r i z a t i o n of transmutations via action on eigenfunct i o n s i s r e l a t e d t o the following considerations. We know from Theorem 4 1.7.5 t h a t f o r s u i t a b l e f one can w r i t e p;f(v) = f ( v ) = :1 f ( s ) g ( v , - k , s ) d s and formally from ( 1 . 7 . 2 2 )
1
m
(8.12)
(
;(v),g(vy-k,r))
P
= f(r) =
f(s)(g(v,-k,r),g(",-k,s))
P
0
ds
which determines G - ' ? = ( ; ( v ) y g ( v , - k y r ) ) p ( c f . a l s o Theorem 8.14 f o r the K-L version of this inversion). For now we observe t h a t (8.12) will hold f o r some reasonably l a r g e c a l s s of functions f and l e t us suppose g = Egl A 1 For s u i t a b l e f we obtain then from f ( s ) = ( f l ( v ) , = Beg as in Theorem 8.3. g1 ( v , - k , s ) ) p l (where fA, ( v ) = G 1 f ( v ) ) , B f ( r ) = ( fAl ( v ) , B g 1 ( v , - k , * ) ( p ) ) = N
A
f l ( v ) , g ( v , - k y r ) ) = Bef(r) Thus Ff = B,f f o r a reasonably l a r g e c l a s s of hr f and t h i s w i l l imply t h a t B = Be as an operator i n a well defined sense. We note a l s o t h a t t h e f i n a a s s e r t i o n of Theorem 8.3 follows formally from
(
w r i t i n g ( c f . Theorem 1.7.5 again) (8.13) (
(
g(v,-k,r),g
1
(v,-k,s))l = ( ( ? ( r , t ) , g
1
P
1 1 a ( r , t ) , ( g (v,-k,t),g (u,-k,s))
N
P
1)
(v,-k,t)),g
1
(v,-k,s))
P
1
=
= (?(r,t),&(t-s)) = ?(r,s)
V
while on the other hand ( K ( r , s ) = K(r,s)Y(s-r)) (8.14)
(g(v,-k,r),g V
1
(v,-k,s)) 1
P
1
=(
gl(v,-k,s)) 1 + ( ( K ( r , t ) , g ( v , - k , t ) ) , g P
1 1 1 Beg ,g ) 1 = ( g ( v , - k , r ) , P
1
V
(v,-k,s))
P
1
=
6(r-s)
Let u s now show how t o construct K(r,s) i n (8:2) f o r n
+
K(r,s)
= 3 following [Cnl-4,
N
Q TYPE OPERATORS
71.
Change v a r i a b l e s by 5 = (rs)'
and
ri
175
= (r/s)'
and d e f i n e M(t,n,k)
=
S K ( c n , < / r i , k ) (we w i l l suppress t h e k dependence by w r i t i n g K(r,s) and M(5, Then f o r 0 < II < 1 and 0 < < < a, M s a t i s f i e s (q = 0 f o r r > a ) 17)). 2 McI- + k 51-[l
(8.15)
-
I-
-4
a
-
q(
= (k2/2)
sq(s)ds
5
c
w i t h M(~,I-) = 0 for M(5,n)
(8.16)
> a.
T h i s can be converted i n t o t h e i n t e g r a l e q u a t i o n
1;
= (k2/2)
and one l o o k s f o r a s o l u t i o n i n t h e form M = (8.17)
Mo(<,n) = ( 1 / 2 ) Mn(S,n)
=
-
[!",
/:~t[l-t-~-q(st)]M(~~t)dtds
1;
k2n+2Mn where
sq(s)ds; IIIst[l
- t - 4- q ( ~ t ) l M ~ - ~ ( s ~ t ) d t d s
L e t I q ( r ) l 5 ; f o r 0 5 r 5 a so I M o ( ~ , n ) ] 5 a 24 M/4 and f o r 5 > R,(Mn(c,n)l
/I:
< a(l+i+a2/R2)$
I Mn( 5 , n ) I
(8.18)
IMn-l ( s , t ) l d t d s ;
hence by i n d u c t i o n
5 [a2;/
1+i+(a2/R2) ( a % ) (1 -n)In
(n ! )'][a(
Consequently t h e i n f i n i t e s e r i e s f o r M converges u n i f o r m l y and one has Under t h e c o n d i t i o n s i n d i c a t e d t h e k e r n e l K ( r , s ) f o r Be w i t h
CHE0RER 8.5,
n = 3 can be c o n s t r u c t e d v i a t h e Goursat problem (8.15)
REmARK 8.6.
( o r (8.3) f o r n = 3)
A s i m i l a r c o n s t r u c t i o n can be used i n a s i t u a t i o n where e.g.
k2/o" s ( q ( s ) l d s <
( c f . [Cn3]).
m
More s p e c i f i c a l l y assume q ( r ) = O(exp(-y
2
r ) ) f o r y > 0 and t h e n t h e Mn s e r i e s above begins w i t h a d o m i n a t i o n ] M o t <
(c/4y)exp(-yc
<
?(rs)-'exp(-yrs
as r,s
-f
-
tains K E C
2
f and l e a d s t o 2
2 2
l M ( c , r ~ ) ]5 <exp(-yc +k /4yn
2
1.
Thus
[ K(r,s)t
+ k s/4yr). I n o r d e r t o o b t a i n e x p o n e n t i a l decrease i n K 1 one r e q u i r e s t h e n t h a t k < 2yR ( r , s 2 R ) . For q E C one ob-
2
and t h e a p p r o p r i a t e
K d e r i v a t i v e s a l s o decay e x p o n e n t i a l l y f o r
k < 2yR.
REmARK 8-7- I n [Cn3] a somewhat d i f f e r e n t change o f v a r i a b l e s i s used i n d e a l i n g w i t h t h e Goursat problem (8. 3) (q = 0 f o r r > a).
Since t h i s w i l l
be a u s e f u l s u b s t i t u t i o n l a t e r i n v a r i o u s c o n t e x t s we mention i t here. Thus l e t 5 = l o g r and I- = l o g s and s e t (8.19)
M(s,I-)
=
e% ( n - 2 ) ( < + 0 ) K ( e ~ , e ~ )
( o r e q u i v a l e n t l y K(r,s)
=
(rs)-4(n-2)M(logr,logs).
Then M s a t j s f i e s
(I> 5)
176
ROBERT CARROLL
w h i l e M(5,n) = 0 f o r (5+n)/2
>
loga (with M(E,TI)
= 0 for E >
To s o l v e (8.20) one makes a f u r t h e r change o f v a r i a b l e s x = y = (~-n)/2 w i t h M(c,n) = E ( x , y ) so t h a t
-
(8.21)
Mxy
-
n i n addition). (c+n)/2 and
2 k F(x+y,x-y)E = 0; K(x,O) = (k2/2) [eZTq(er)dT;
rJ
rJ
M(x,y) = 0 f o r x > loga; M(x,y) = 0 f o r y > 0 where F(c,n)
[
co
N
(8.22)
T h i s becomes t h e n (y 5 0 )
= -[22E-e2n-e25q(e5)].
M(x,y)
eZTq(eT)dT + k
= (k2/2)
&F(~+8,~-8)~i(n,B)doda
X
Then change v a r i a b l e s a g a i n i n (8.22) back t o ( 5 , n ) ( w i t h say and 8 =
(T-LI)/~)
~1
= (T+LI)/~
t o o b t a i n , a f t e r some s i m p l i f i c a t i o n m
(8.23)
M(5,n)
= (k2/2)
(k2/2) [q%(c+O)
E [Cn3] f o r t h e d e t a i l s .
+
d-T-E
+
n+T-S
I[F(r,u)M(~,u)dvd~
-5k+r()T
c)
by successive approximations and we r e f e r t o 1 2 I f q E C one f i n d s a l s o t h a t K(r,s) E C ( s 2 r > 0 )
L e t us mention here t h a t i n [Cn1,3,7]
t r a n s m u t a t i o n Bi: = x2D2
I
?lf6-r
T h i s can be s o l v e d ( r ~>
REmARK 8.8-
e2'q(eT)dT
kk+tl)
yo
rrl -f
Q i s c o n s t r u c t e d where
+ 2xD + x2k2 - x 2 y ( x )
(c = k2q).
f o r n = 3 an i n t e r i o r
yo = x 202
+ 2x0 + x 2ko2 and
Again successive approximations
were used t o c o n s t r u c t k e r n e l s and one n o t e s t h a t ko = 0 corresponds t o t h e B-G o p e r a t o r ( c f . 59) w h i l e ko = k g i v e s an i n t e r i o r analogue o f Be i n (8.2)
1
r
(8.24)
u(r,-)
= Bi[h](r,-)
= h(r,-)
+
Ki(r,s)h(s,-)ds
0
(8.25)
QrK i( r , s )
= NO PsK i( r , s ) ;
( c a l c u l a t i o n s as b e f o r e ) .
itly for 2xD w i t h (8.26)
y= 0
c=
r Ki(r,r) = ( 1 / 2 r ) jos?(s)ds + $ r ( k %
-
k2)
It i s i n t e r e s t i n g t o d i s p l a y t h e kernels e x p l i c -
w i t h ko = 0 ( c f . [C41,42]);
x2D2 + 2xD + k2x2.
t h u s we have?'
=
yo =
x202 +
It f o l l o w s t h a t ( 0 5 5 1x1
Kd(x,S) = - ~ ~ $ ( X - E ) -[kX4(x-E#] ~J~
i (we w i l l w r i t e KO t o d e s c r i b e t h i s s i t u a t i o n which corresponds t o t h e 6-G
-0 TYPE OPERATORS
177
operator). Similarly (recall I v ( z ) = e x p ( - i i n v ) J v ( i z ) ) setting k = 0 and q = 0 (with ko replaced by k ) one inverts the map determined by the kernel x i < 5 5 x ) u + h = u + lo L o ( x , c ) u ( c ) d g where (8.26) in the form ( 0 .-d
(8.27)
Loi (x, 5 )
=
%kt5( x-4)-’11
k<’(
x- 5 1 ’(
(see here [C41,42; SalO; Lrl; Val]). These kernels will play an important role in subsequent work involving generating functions in 59 (cf.[Mdl ;Wjl]). REI!MARK 8-8. Let us make a few remarks about adjointness here and pursue the matter more completely l a t e r . Thus take n = 3, Bi as in (8.24) with ko = k vi and Ki satisfying (8.25), and Be as in ( 8 . 2 ) - ( 8 . 3 ) . Writing K ( r , s ) = Ki(r,s)Y(r-s) and k e ( r , s ) = Ke(r,s)Y(s-r) one has as above ( c f . (8.4)-(8.10)) 2 [a”r - FIEe = 5r & ( s - r ) ; [Tr s
(8.28)
y
vi
- Ps]K
+ 2 qr 6 ( r - s )
vi + K we can also write Beh y ‘yv = ( ( i i ( r , s ) , h ( s ) ) with Q r ~= P,B for = gi o r *oe. i The origin of the jumps in K or Ke involves calculations yielding
ie=
(4“ =
Upon setting k’q). g e ( r , s ) y h ( s ) )and B i h =
6
+ “e K and
=
gi
= 6
-
i
(8.29)
2r(rK ) ‘ 6 ( r - s ) = r 2 c & ( r - s ) ; - 2 r ( r K e ) ’ 6 ( s - r ) = r2G6(s-r) N A - ,
where Ki = Ki(r,r) etc. in (8.29). Now Bi and Be are transmutations P and we consider f o r example a map Be = Bi# defined by (8.30)
g
(Bef,h) =
(
f,Bih) =
h ( s ) [ r f(r)Ki(r,s)dr]ds
=
+
Q
lom +dom lor f ( r )[
fhdr
(f(s) +
S
i,
K (r,s)h(s)ds]dr =
f(r)Ki(r,s)dr,h(s))
u h , “i Then Be: Q + P has kernel y e ( s , r ) = 6 ( r - s ) + K ( r , s ) ( r s , r s ) . Writ-e ‘i i Ae ing K ( s , r ) = K ( r , s ) = K ( r , s ) Y ( r - s ) = K ( s , r ) Y ( r - s ) one has from (8.28) N Ne 2[Ps - Qr]K ( s , r ) = -s q s ( r - s ) . The corresponding calculation of the type (8.29) t o determine the j u m p involves then - 2 s ( s t e ) , = -s2ywhere “e ^Ke(s,s) = K i ( s y s ) . This leads t o K ( r , r ) = - ( 1 / 2 r ) l F sq(s)ds which i s compatible with the relation Ki(r,r) = (l/Zr)J; s<(s)ds a f t e r possible adjustment o f constants. -f
N
ie
Q
REmARK 8.10- In connection with the adjointness discussed in Remark 8 . 9 l e t
us refer t o Chapter 1 , 57 and show how we can complete somewhat the discusN : + s a t i s f i e s Egl = 9 a n d sion of B and 8 as transmutations. Thus we define now “-1 * (8.31) B =?*= (B ) :
5’ 5
h)
5’3;
178
ROBERT CARROLL
( c f . (8.30)).
Then ( r e c a l l B f ( r ) = ( B ( s , r ) , f ( s ) )
w i t h B(s,r) = 0, r > s )
co
(8.32)
( B f , h ) = (f,;h)
= (f(r),
B(s,r)h(s)ds) = ( Irf(r)B(s,r)dr,h(s)) Jr ’0 Thus t h e a d j o i n t n e s s r e l a t i o n (8.31) i s determined by k e r n e l a c t i o n as i n (8.32) and k e r B i s B(s,r) w i t h a c t i o n i n t h e r v a r i a b l e .
Now g i v e n t h e
t r a n s f o r m G d e f i n e d i n Remark 8.4 w i t h i n v e r s e determined by (8.12) (based on Theorem 1.7.5)
l e t us g i v e a f o r m a l v e r i f i c a t i o n o f t h e r e l a t i o n 1 We w r i t e o u t gg = g and Egl = g as suggested by Theorem 1.7.12. (8.33)
(
Recall B = f(r)).
1
6(rYs),g(v,-k,r))
2’
= g (v,-k,s);
(F(r,s),g
from (8.31) and d e f i n e now
1
(v,-k,s))
=
?#
=
1 ( g (v,-k,s),f(s))
so t h a t g f ( s ) =
= (
ii‘= 2-l
g(v,-k,r) ;(r,s),
Then from (8.33) we o b t a i n f o r m a l l y
(8.34)
GBf =
Gl’if
((
B(r,s),g(v,-k,r)),f(s))
= ( ( ;(r,s),g
1
(v,-k,s)
) , f ( r ) )=
(
= Glf;
g(v,-k,r),f(r))
= Gf
L e t f = gh i n t h e f i r s t e q u a t i o n and one has GBgh = G1gh which by t h e second e q u a t i o n must be Gh.
S i m i l a r l y i f f = & i n t h e second e q u a t i o n we ob-
’ib = Cslp which i s Glv by t h e f i r s t equation. Given a s u f f i c i eV n t l y 1 r i c h supply o f f u n c t i o n s t o which these e q u a t i o n s apply we have t h e n B =
t a i n p;
B - l and consequently by a d j o i n t n e s s
CM0REnl 8.11, Glef
=
??’.
From Theorem 1.7.12 one o b t a i n s (8.34) ( i . e . GBf = G,f = B - l and
= G f ) which l e a d s t o
We w r i t e % = i-’.
and
V
now B = 8 f o r con-
s i s t e n c y i n n o t a t i o n and n o t e t h a t B and B a r e c l e a r l y t r a n s m u t a t i o n s . Now we r e c a l l t h e K-L i n v e r s i o n f r o m 96 (Theorem 6.1 and Remarks 6.2 and 6.8) which i n f a c t i s a h y b r i d v e r s i o n o f t h e c l a s s i c a l s i t u a t i o n t o f o l l o w . We r e c a l l t h e background n o t a t i o n and machinery from
91.7.
Thus we suppose
5
now t h a t corresponding t o two o p e r a t o r s and 3’ we have d p ( v ) = ^p(v)dv and 1 2 dp ( v ) = G1(v)dv where e.g. : ( v ) = 2 i v d v / T f ( v , - k ) f ( - v , - k ) on [0,im) ( c f . (1.7.21)).
We r e f e r t o such cases as h a v i n g a b s o l u t e l y continuous spectrum = 0 f u r n i s h e s an example ( c f .
and know t h a t t h e f r e e problem t h a t fo(v,-k)
has n o zeros f o r Rev > 0 ) .
91.7 t o see
Other examples c o u l d be p r o v i d e d
( c f . here [Bdl; Bel; F u l ; R f l ; Dcl; Ne6; Sa10-131 f o r i n v o r m a t i o n on Regge poles etc.). (8.35)
Consider now t h e f o r m a l c a l c u l a t i o n based on Theorem 1.7.12 1 g (v,-k,r)
= ( ( g ,g
s
1
)
r p
,g
s
)
1
= ( g r ,( gvs ’g’)) s p
N
Q TYPE OPERATORS
179
Such a f o r m u l a i s c o n s i s t e n t w i t h a formal i d e n t i f i c a t i o n g(p,-k,s))
f*
=
? to
=
( 0 )
(g(v,-k,s),
which a l s o a r i s e s i f we t a k e t h e c o m p o s i t i o n G 0 G - l
&(v-v)/$(v)
f*
be v a l i d f o r a s u i t a b l y l a r g e c l a s s o f f u n c t i o n s
Indeed ( c f . Remark 8.4) s e t t i n g T ( v , u ) =
(
(cf. [ K i l l ) .
g(v,-k,s),g(u,-k,s))
A
(8.36)
606-l? =
(
g(v,-k,s),(
f(u),g(u,-k,~))~) =
(
;(u),T(~,u))~
REmARK 8-12, As i t stands ( 0 ) i s somewhat u n s a t i s f a c t o r y because t h e hehavi o r o f g(v,-k,s) near s = 0 would r e q u i r e some d e l i c a t e c o n s i d e r a t i o n s i n o r d e r t o e s t a b l i s h a meaning f o r t h e l e f t s i d e .
We w i l l circumvent t h i s be-
l o w and p r e s e n t (*) i n a d i f f e r e n t f o r m i n c o n n e c t i o n w i t h a g e n e r a l i z e d Kontorovic-Lebedev (K-L) t h e o r y . L e t us use
h e u r i s t i c a l l y however ( f o r
( 0 )
5 and 5’)
and c o n s i d e r Bg
1
where
1
B i s g i v e n by (8.32)
( r e c a l l t h a t Egl = ( ? ( r , s ) , g (v,-k,s)) = g(v,-k,r) 1 where z ( r , s ) = ( g ( p , - k , r ) , g (p,-k,s)) 1 ) . Then w r i t e ( B ( r , s ) = 0 f o r s > r ) r,
(8.37)
Bg’ =
(
dr,s),g
1
(v,-k,s))
= ( g(u,-k,r),Tl
(v,u)
)p
= [P^/$llg(v,-k,r)
T h i s l e a d s t o t h e f o l l o w i n g f o r m a l c o n c l u s i o n based on t h e use o f Remark 8.19 f o r a p r o o f n o t i n v o l v i n g
E’: 5’
rr/
-+
Q i s c h a r a c t e r i z e d by Bg’ = ($/phl)g
Now t h e f u n c t i o n which p l a y s t h e r o l e o f t o be Wr where (**) @(v,k,r) be a n a l y t i c f o r Rev > 0).
(see
( 0 ) )
&HE(DREIII 8-13, Given a b s o l u t e l y continuous s p e c t r a f o r that B =
( 0 )
$’
it follows “1 (whereas Bg = 9 ) .
and
Q / c ( - k ) i n t h e QA t h e o r y i s g o i n g
@
k
Q
= q(v,k,r)/f(w,-k)
(which by Lemna 1.7.3 w i l l
T h i s a r i s e s i n s e v e r a l c o n t e x t s and we c o n s i d e r
f i r s t t h e i n v e r s i o n formulas o f Theorem 1.7.5 and Remark 8.4 when dp = $dw and use (1.7.11)
i n t h e form (+) f ( v , - k , x )
= -(1/2v)[f(-v,-k)p(v,k,x)
-
A
f(v,-k)q(-v,k,x)]
(we r e c a l l a l s o f ( - v , - k , x )
(f(s),g(v,-k,s))
i s even i n w and f o r m a l l y
ii la
=
-(i/T)
= f(v,-k,x)).
Thus f ( w ) =
A
vf(v)@(v,k,r)dv
W
Here we use (+) and observe t h a t
im 4 vf(v)@(-v,k,r)dv
-Liw
=
im4
limwf(v)@(w,k,r)dv.
A
Consequently we have ( f ( v ) = G f ( v ) )
EHE6REm 8.14.
( G e n e r a l i z e d K-L theorem).
Given a b s o l u t e l y continuous spec-
t r u m dp = G(v)dv t h e G 4 - l i n v e r s i o n o f Remark 8 . 4 has t h e f o r m (8.38).
ROBERT CARROLL
180
EXMIPLE 8.15.
In the c a s e
r =0 we have
t h e c l a s s i c a l K-L i n v e r s i o n and we
w i l l make further comments on this l a t e r ( c f . [ J b 2 , 4 ; Kil; S a l ] ) .
In t h i s 2 = [ - v dv/
2
c a s e the "free" measure i s d p o ( v ) = ( 2 i / n ) [ v d v / f o ( v , - k ) f o ( - v , - k ) ] k r ( v t l ) r ( - v t l ) ] = -[vSinawdv/nk]
( s i n c e r ( z ) r ( l - z ) = a / S i n a z ) and
@
0
(v,k,r)
Thus w r i t i n g x-'f(s) = G ( s ) and i n p l a c e 1 of ? ( v ) s e t t i n g r ( v ) = 10" G ( s ) H v ( k s ) d s we o b t a i n from ( 8 . 3 8 ) , r G ( r ) = im 2 Wim v g ( v ) J v ( k r ) d v . The t r a n s f o r m a l s o o f t e n a p p e a r s i n terms o f HV and i n this d i r e c t i o n s i m p l y write k -+ k e x p ( i n ) above ( r e c a l l J v ( z e x p ( i n ) ) = exp ( i a v ) J V( z ) and Hv1 ( z e x p ( i n ) ) = e x p ( - i n v + l ) ) H2v ( z ) ) . Then =
(nr/2k)'exp(-4in(v-Js))Jv(kr).
I G(s)H? k s ) d s ; m
(8.39)
z(v) =
rG r )
JO
=
-;Ii
im
vE(v)Jv(kr)dv m
Using Theorem 8 . 1 4 we can g ve a more s a t i s f a c t o r y v e r s i o n o f follows.
We combine ( 8 . 3 8 ) w i t h F ( v )
Hence our r e p l a c e m e n t f o r
(0)
=
P;f(v) a s (cf [Kill f o r
( 0 )
above a s A
;+
f
-+
f)
i s t h e following a s s e r t i o n .
Based on t h e i n v e r s i o n i n Theorem 8 . 1 4 one has f o r m a l l y ( i n n terms of a c t i o n on a s u i t a b l e c l a s s o f even f u n c t i o n s f ) , ~ ( u - v )= - ( i p / n )
EHE0REfl 8.16.
; 1 g(v,-k,r) @(u,k,r)dr/r. Let us use Theorems 8 . 1 4 and 8.16 t o g i v e now a f o r m a l p r o o f o f t h e f o l l o w i n g fundamental theorem ( a more r i g o r o u s d i s c u s s i o n a p p e a r s below i n Remark e assume here the a p p l i c a b i l i t y o f the G i n v e r s i o n i n Theorem 8.14 8.18). W 1 t o ; ( v , s ) = G [ ~ ( r , s ) ] ( v ) = B [ g ( v , - k , r ) ] ( s ) = g ( v , - k , s ) ( c f . Theorem 1 . 7 . 1 2 and n o t e by Remark 8.19 below t h a t t h i s can be viewed r o u t i n e l y ) .
T1
5
EHE0REfl 8.17, Given and with absolutely continuous s p e c t r a i t follows 1 1 t h a t B[@ ( v , k , s ) / s ] ( r ) = ( 6 ( r Y s ) , @ ( v , k , s ) / s ) = @ ( v , k , r ) / r .
w i t h B(r,s) = 0 f o r s > We r e c a l l B ( r , s ) = ( g ( v , - k , r ) , g ' ( v , - k , s ) ) P 1 r and one knows from Theorem 1.7.12 t h a t ( B ( r , s ) , g ( p , - k , r ) ) = g ( p , - k , s ) which we write i n t h e form s ( v , s ) = ~ [ ~ ( r , s ) ] ( v so ) t h a t by Theorem 8 . 1 4 one h a s f o r m a l l y ( s e e Remark 8 . 1 9 ) ) Ph006:
NOW m u l t i p l y ( 8 . 4 1 ) by
1
( p , k , s ) / s and i n t e g r a t e ( u s i n g Theorem 8 . 1 6 ) t o g e t
(7 TYPE OPERATORS
181
8.18, We s k e t c h here a n o t h e r p r o o f o f Theorem 8.17 based on a t e c h n i q u e developed i n [C50,64,65]. Thus from t h e c h a r a c t e r i z a t i o n o f B i n
RE!MRK
Theorem 8.13 we w r i t e (assume no zeros o f f ( v , - k )
f o r Rev > 0 i n c o n n e c t i o n Bg' = ($/Cl)g = [ f 1 ( v , - k ) f 1 ( - v ,
w i t h h a v i n g a b s o l u t e l y continuous spectrum), - k ) / f ( v ,- k ) f ( - v ,- k 19 = [ f 1 ( v, - k ) f 1 ( - v ,- k 1/ ( - 2 v r ) 1( CP ( v ,k ,r )/ f ( v
- k 11 -
L e t us w r i t e again @ ( v , k , r ) = q ( v , k , r ) / f ( v y - k ) , [p(-v,-k,r)/f(-v,-k)]). m u l t i p l y by a f a c t o r - 2 v / f 1 ( v , - k ) f 1 (-v,-k), and w r i t e o u t t h e B a c t i o n as (8.43)
(
B(r,s),[@
1
(v,k,s)-*
1
(-v,k,s)l/s)
We r e c a l l by Lemma 1.7.3 t h a t p ( v , k , r )
= [@(v,k,r)
and f ( v , - k )
-
@(-v,k,r)l/r
are analytic i n v f o r 1 ( B(r,s),@ ( v , k , s ) / s )
Rev > 0 (and continuous up t o Rev = 0 ) and we s e t now = *(v,k,r) = 0- =
with
@+
O(-v,k,r)
= 0(v,k,r)
= *(v,k,r)
- @(v,k,r)/r.
Now (8.43) says 0,
f o r v i m a g i n a r y and 0, ( r e s p . 0-)i s a n a l y t i c f o r Rev > 0
( r e s p . Rev < 0).
By standard theorems on a n a l y t i c c o n t i n u a t i o n ( c f . 56)
0, and 0- a r e a n a l y t i c c o n t i n u a t i o n s o f each o t h e r and r e p r e s e n t an e n t i r e
f u n c t i o n 0 i n C.
Bounds can be o b t a i n e d f o l l o w i n g [Bdl;
Ne6; R f l ] e t c . and
we o n l y g i v e a q u i c k i d e a here v i a t h e e s t i m a t e s o f §1.7 ( b e f o r e (1.7.19)) based on
f
'p - q o y
%
fo, e t c .
f o r m u l a we have @ ( v , k , r ) / r ev(kr/v)v.
0 for real v
Q
It f o l l o w s t h a t @ ( v , k , r ) / r -f
t o 0 f o r real B
m.
S i m i l a r l y @(-v,k,r)/r
+ -m.
-
Thus as IvI Q0(v,k,r)/r
+
>
0, f r o m S t i r l i n g ' s
-4v -4exp(-$iriv)
i s bounded f o r Rev
2 0 and tends t o
i s bounded f o r Rev 5 0 and tends
The same c o n c l u s i o n s a l s o f o l l o w f o r *(v,k,r)
one n o t e s t h a t 6 f u n c t i o n b e h a v i o r o f R(r,s)
-
-, Rev
+exp(kin)(kr)
Consequently t h e e n t i r e f u n c t i o n 0 i s c o n s t a n t and s i n c e 0, -+
and
a t r = s i s e a s i l y accomodated. +
0 f o r real v
f o r example we have 0 = 0, which y i e l d s Theorem 8.17.
REmARK 8.19,
L e t us show t h a t t h e c h a r a c t e r i z a t i o n Bg' = ($/;l)(v)g
rem 8.13 can be o b t a i n e d w i t h o u t u s i n g
(0);
o f Theo-
o u r d i s c u s s i o n a l s o shows t h a t
(8.41) i s e s s e n t i a l l y a r o u t i n e c a l c u l a t i o n . Thus (assuming a b s o l u t e l y con1 2 tinuous spectra f o r u s i n g t h e f o r m u l a f o r dp (u) = 2 i u du/ and 1 1 1 nf (u,-k)f (-u,-k) and ( + ) f o r f we have
5')
182
ROBERT CARROLL
R e f e r r i n g back t o t h e c l a s s i c a l s i t u a t i o n ( c f . Example 8.15)
REllIARK 8-20.
we w i l l make a few more comments about t h e K-L i n v e r s i o n ( i n t h e form (8. 39)).
We r e f e r here e s p e c i a l l y t o a p e n e n t r a t i n g a n a l y s i s i n [JbZ] where i t
i s shown how t o deal w i t h what a r e o c c a s i o n a l l y p u r e l y f o r m a l expressions, by i n t r o d u c i n g convergence f a c t o r s e s s e n t i a l l y t o j u s t i f y a s h i f t i n cont o u r , and s i t u a t i o n s a r e i n d i c a t e d where t h e i n v e r s i o n f o r m u l a s do n o t work The approach i n [JbZ] s t a r t s w i t h hypotheses on G i n (8.39) and
at all.
v e r i f i e s t h e passage G
+
-f
2
G when a convergence f a c t o r exp(ev ) i s i n s e r -
t e d i n t h e v - i n t e g r a l and a l i m i t as
E +
0 i s taken.
The approach i n [ K i l l
on t h e o t h e r hand makes hypotheses on 6 ( v ) and v e r i f i e s a passage v i a (8.39).
E
+ G
+
5
One problem t h a t a r i s e s i s t h a t " n i c e " f u n c t i o n s G sometimes
give r i s e t o
which do n o t s a t i s f y t h e hypotheses i n [ K i l l f o r example so
t h a t t h e i n v e r s i o n i n t e g r a l i n (8.39) i s f o r m a l .
We r e f e r t o [Jb2;
Kill
f o r a more complete d i s c u s s i o n and here we want t o s k e t c h a procedure i n [ K i l l which shows how a f o r m u l a ~ ( u - v )= 4vexp($in(v-v))/; H1v ( k r ) J v ( k r ) d r / r based on Theorem 8.16 r e p r e s e n t s a 6 f u n c t i o n o p e r a t i o n a l l y .
The hypotheses
i n [ K i l l a l l o w one t o work w i t h f u n c t i o n s w(v) i n a s t r i p [Rev1 < 6 and t h e i m
w(v) i n v e r s i o n formulas a r e w r i t t e n as ip(r) = -4[i,vw(v)exp(~iav)Jv(kr)dv; 2 = I ; ip(r)exp(-iilrv)Hv(kr)dr/r ( n o t e t h i s has t h e same form as (8.39) i f one V
w r i t e s G ( r ) = i p ( r ) / r and G = w ( v ) e x p ( + i n v ) ) . wv and w
P
L e t us observe now t h a t i f
a r e " c y l i n d e r " f u n c t i o n s o f kx s a t i s f y i n q t h e Bessel e q u a t i o n i n
t h e f o r m (sw;)'
t
-
(l/x)[k2x2
p2]wv = 0
then, m u l t i p l y i n g t h e v e q u a t i o n
and t h e v e q u a t i o n by w and s u b t r a c t i n g , one has a f t e r an i n t e g r a t i o n 1-I bV - xw;wy]la b + ( v 2 -v 2)I a wvwvdx/x = 0. Taking Rev > \ R e v \ and u s i n g [xw;wv
by w
asymptotic properties o f w
u
=
2
J ( k x ) and wv = Hv(kx) n e a r x = 0 and x =
v
m
one o b t a i n s a k i n d o f D a r b o u x - C h r i s t o f f e l f o r m u l a m
(8.46)
xW(wv,wv)
;1
= (2i/n)e4in(v-v)
=
(v2-v2)J
Ht(kx)Jv(kx)dx/x
0
Now from (8.39) one can w r i t e ( u s i n g (8.46))
The hypotheses i n [ K i l l a r e made on ;(v)
( v i a w ( v ) ) and a l l o w one t o s h i f t
t h e c o n t o u r t o t h e r i g h t so t h a t t h e i n t e g r a l i s o v e r t h e l i n e Rev = i n t h e p i c t u r e below and p u t t i n g (8.48)
T = -ie
4 i IW
~
2lr
I [&
L v-v
t
o1
= wexp($iau) we have ( r e c a l l w i s even)
---]w(u)dp 1 u+v
=
e+i TIU
-[ 2lrl
f w(v)dv L LJ - v
,
.-
Q TYPE OPERATORS
183
-6
T h i s procedure i s j u s t i f i e d by t h e hypotheses made on w i n [ K i l l p l u s some f u r t h e r e s t i m a t e s on t h e Bessel and Hankel f u n c t i o n s which a l l o w t h e i n t e r change i n i n t e g r a t i o n i n (8.47). L e t us add here a few c o n s t r u c t i o n s based on PDE techniques f o r t h e type o p e r a t o r s ( c f . [C44]). F o l l o w i n g c o n s t r u c t i o n s i n SSl.11 and 2.1 f o r gene r a l i z e d t r a n s l a t i o n s we s e t (compare w i t h U(x,y) = (8.49)
U(r,s) =
[?(v
)/ s (v
(
$(k),p;(x)pk(y)Q
,-k,l ) l s ( v , - k , r ) g ( ~ , - k , s ) d p
A
( t h u s U(r,s)
)u )
h
= ( Cf(v)/g(v,-k,l
)I,g(.,-k,r)s(v,-k,s))
( f o r s u i t a b l e f ) and one assumes g ( v , - k , l )
P
) where f ( v ) = P;f(v)
f 0 on t h e spectrum o f
6. The
p o i n t here i s t o i s o l a t e a p l a c e o f e v a l u a t i o n , i n t h i s case r = 1 o r s = 1 A
( f o r reasons t o appear below), and t h e n t o t r a n s p o r t t h e technique f o r Q type operators.
L e t us proceed f o r m a l l y t o observe t h a t e v i d e n t l y CrU(r,s)
v
=
A
QsU(r,s) and U ( r , l ) = ( f ( v ) , g ( v , - k , r ) )
w r i t e U(r,s) = ( y ( r , s , t ) , f ( t ) ) g(v,-k,s)g(v,-k,t)) f ( t ) )w i t h r ( s , t ) a r l y D,U(r,s)Is=l
P
=
f ( r ) w i t h U(1,x) = f ( s ) .
I f we
= ( [g(v,-k,r)/g(v,-k,l)],
i t f o l l o w s f o r m a l l y t h a t DrU(rys)lr=l
= ( [Dg(v,-k,l
= Cf(s) = (r(s,t),
)/g(v,-k,l)],g(v,-k,s)g(v,-k,t))
and s i m i l -
P
= Cf(r). A c t i n g on s u i t a b l e f an easy c a l c u l a t i o n shows
t h a t C commutes w i t h holds.
P
w i t h y(r,s,t)
'ii and
a c o m p a t i b i l i t y condition Cf(1) = f ' ( 1 ) also
Consequently U(r,s) = T F f ( s ) i s a general zed t r a n s l a t i o n i n a sense
i n d i c a t e d e a r l i e r and we s t a t e t h i s as EHE@REril 8-21,
F o r s u i t a b l e f, U(r,s) = T g f ( s ) d e f ned by (8.49) i s f o r m a l l y
a g e n e r a l i z e d t r a n s l a t i o n f o r r w i t h U(1,s) where C i s g i v e n as above w i t h k e r n e l The q u e s t i o n o f whether t h e e q u a t i o n
= f(s
and DrU(l,s)
=
Cf(s)
r.
FrU = FsU p l u s
U u n i q u e l y w i l l be discussed now v i a Theorem 1.4.3.
d a t a a t r = 1 determine Thus l e t A and C be
( s u i t a b l e ) l i n e a r o p e r a t o r s and c o n s i d e r t h e Cauchy t y p e problem ( 0 0 ) -1 Qsq(r,s) = Trp(r,s); ~ ( 1 , s ) = Af(s); Drp(l,s) = C f ( s ) . We t h i n k o f 0 < r,s c
m
so f, A f , and C f a r e t o be g i v e n on (0,~)( t h i s i s discussed below) and
184
ROBERT CARROLL
the situation f o r U =
r
5’
i s d e s c r i b e d when
q
m
Q, A
=
=
1, and C i s g i v e n v i a
Now i n o r d e r t h a t one may t r a n s p l a n t t h e p r e v i o u s methods i t
as above.
i s necessary t o have a uniqueness theorem f o r s o l u t i o n s o f
n
make t h e change o f v a r i a b l e s D5, e t c . and
(0.)
a l l y here A
= x
5
= l o g r and
(om).
L e t us
= l o g s so t h a t r D r = Dn,
sDS =
can be c o n v e n i e n t l y t r e a t e d as f o l l o w s ( t a k e more gener-
,Q
y(r)],
-
r 2 D 2 + (n-1)rD + r2[k2
=
etc.).
Then w r i t e q ( r ) = ~ ( T - I ) ,n o t e t h a t 0 < r,s <
= ( r s ) l - bZnp(n,5). A
Set q ( r , s ) m
corresponds
t o - m < TI,< < m , and f o r f u n c t i o n s o f one v a r i a b l e w r i t e p ( r ) = rl-’n$(n). ^In $ which reduces t o (AA) [D 25 + exp25 Then t h e e q u a t i o n ( 0 0 ) becomes Q q = 5 ( k 2 - 4 1 ( ~ ) ) ] $ ( n , ~ )= [Dn2 + exp2n(k2 - n 4 ( n ) ) ] $ ( n , ~ ) . L e t us t h i n k o f data
6
-
f, A f , and C f g i v e n on 0 < s < -m
5
<
<
(see below).
which g i v e s r i s e t o d a t a f, A f , and C f on
m
Note t h a t t h i s i s q u i t e d i f f e r e n t f r o m p r e v i o u s
problems where data g i v e n on [ 0 , m )
c o u l d be extended i n v a r i o u s ways t o (AA) w i t h n 5 0 5 1 ) s e p a r a t e l y ; by standard t h e o r y , f o r
L e t us t h i n k o f s o l v i n q t h e Cauchy problem f o r
(-m,m).
1% r 5 1 )
and w i t h
reasonable
T-I
50
(T,
0 < r
4, unique s o l u t i o n s
t r i b u t i o n s (depending on d a t a
e x i s t i n v a r i o u s spaces o f f u n c t i o n s o r d i s -
-
c f . [C63]).
We d e f i n e a t r a n s m u t a t i o n
A A
B f ( n ) = G ( n , O ) f o r q 5 0 and f o r
6
by
5 0 r e s p e c t i v e l y which determines a t r a n s -
T-
m u t a t i o n B f o r r 2 1 and 0 < r 5 1 r e s p e c t i v e l y ; t h e two p a r t s o b v i o u s l y
6
= 5 :n- 1 The c o n n e c t i o n o f B w i t h w i l l be Sn-lW l - % n = r Qr , e t c . S i m i l a r l y w r i t e = skn- 1AS 1-%n
w i l l f i t t o g e t h e r a t r = 1.
Bsl-%n w i t h
and
A n
A
QB, Q
=
;= s%n-lCsl-%n.
ii
I t i s e a s i l y seen t h a t e v e r y t h i n g f i t s t o g e t h e r and n A A 4 -1 A1 if A and C commute w i t h Q t h e n A and E = C - (1-4n)A commute w i t h Q ( n o t e
-
D~$(o,E) = i\f(E)
&HEOREm 8.22,
A
f ( E ) = skn-’f(s),
Suppose A and C commute w i t h
t h e u n d e r l y i n g Cauchy problem ( f o r suitable f). N
B’lj’
Q (i.e.
etc.).
= {B
Hence
5’
w i t h $(0,5)
(AA)
Then B f ( r ) = q ( r , l )
and assume unique s o l u t i o n s o f A A
= z f ( t ; ) and Dn$(O,E)
Ef(5) -1 i s a well defined transmutation Q + =
a c t i n g on such f ) .
REmARK 8-23, L e t us mention a g e n e r a l i z e d t r a n s l a t i o n f o r m u l a i n c o n n e c t i o n PLI = r Z ( r n - ’ u ’ ) ’ / r n - ’ ; f o r convenience we t a k e n = 3 b u t i n 59 one sees t h a t any n can be t r e a t e d i n t h e same way. We f o l l o w Theorem
w i t h the operator
8.21 and l o o k f o r U(r,s)
s a t i s f y i n g F ( D r ) U = F ( D s ) U w i t h say U(1,s)
Denote t h e M e l l i n t r a n s f o r m by M and s e t ? ( o ) = -1 -1 JI f ( p ) = p M [ f ( ~ )=] ( 1 / 2 n i ) I p-‘-’;(o)dU = I c-im
+
cti-).
p - 1 dw. N
It
f(p)p‘dp
Since ?(Dr)r-‘-’
=
u(u+l)r-‘-’
= M[pf(p)];
f(U)p-‘-’dw
As a g e n e r a l i z e d t r a n s l a t i o n c o n s i d e r U(r,s) = i*r-‘-’
= f(s).
=
(I has l i m i t s I f ( o ) r -0-1
we see t h a t U(r,s)
sat-
h)
i s f i e s P(Dr)U = P(Ds)U and U(1,s)
= f(s) with U(r,l)
=
f ( r ) . On t h e o t h e r
5 TYPE hand DrU(r,s)lr=l -(a+l)M[pf]
OPERATORS
- i ( a + l ) f ( a ) s -a-1 dw
=
185
2 Since however M[P f ' ] = 2 we o b t a i n C f ( s ) = ( l / s ) ( s f ' ) = s f ' ( s ) . Thus one
= -(a+l)?(o)
=
Cf(s).
has t h e c o m p a t i b i l i t y C f ( 1 ) = f ' ( 1 ) as b e f o r e and consequently
CHE@RETII 6-24, U ( r , s )
=
T g f ( s ) d e f i n e d by IJ(r,s)
=
f f(a)r-a-ls-a-ldw
g e n e r a l i z e d t r a n s l a t i o n f o r F w i t h U(1,s) = f ( s ) and DrU(l,s)
is a
Cf(s) = s f ' .
=
N
EXAIIIPLE 8-29, Consider t h e operator: Qo corresponding t o 7 = 0 ( i . e . Qou = 2 2 2 x u" + 2xu' + k x u ) . The fundamental q u a n t i t i e s v0, fo, e t c . a r e g i v e n i n 1 v2 v+4 Example 9.16 and i n p a r t i c u l a r one knows t h a t Hv(k) = g o ( v y - k , l ) / t 5 n k ) i N
w i l l n o t have zeros f o r i m a g i n a r y v so o u r c o n s t r u c t i o n s a r e p e r m i t t e d ( c f .
[Cvl;
MbZ]).
F o l l o w i n g t h e model o f Q t h e o r y one expects t o have a formula o f t h e form (T!f(s),h(s)
)
= (f(s),Trh(s))
We w i l l s k e t c h a p r o o f o f
f o r s u i t a b l e f,h.
t h i s by f o l l o w i n g t h e procedure developed i n Theorem 1.12.5. U(r,s)
as i n (8.49) and c o n s i d e r
one has $ ( l , v )
=
(0)
(g(v,-k,s),f(s))
from Theorem 8.21 (**) DrJ/(l,v)
#(r,v)
Take T g f ( s ) =
= ( g(v,-k,s),TLf(s)
=
(g(v,-k,s),DrU(l,s))
=
Evidently
).
= t ( v ) = P ; f ( v ) ( s i n c e U(1,s)
= f ( s ) ) and
(g(v,-k,s),Cf(s))
A
(g(v,-k,s)(r(s,t),f(t)
=
))
=
(g(v,-k,s),(ff~)G(u),g(u,-k,s)
where G ( u )
)p)
A
= Dg(v,-k,l)/g(p,-k,l)
fore),
(note ( r ( s , t ) , f ( t )
) =
(f(p),G(u)g(u,-k,s)
Now we suppose t h e i n v e r s i o n t h e o r y f o r A
i n t h e form h
(fG)(u)
€;
+
h
n -f
h to
A
be e s t a b l i s h e d f o r h i n some s u i t a b l e c l a s s o f f u n c t i o n s H . h
from be-
)p A
P;
I f we assume A
t h e n (**) y i e l d s Dr$(l ,v) = ?(v)G(v) = [Dg(v,-k,l)/g(v,-k,l
qr$ =
F u r t h e r from ( 0 ) one has (csg(v,-k,s),Trf(s)) = A2 $
(x 2
)If.
A/
(g(v,-k,s),crTgf(s)> = (g(v,-k,s)QSTrf(s)) - c f . remarks b e f o r e Theorem 2.2).
=
= v2 - k
S 2 Hence by uniqueness o f s o l u t i o n s t o Grd' = A 9 w i t h $(1) and $'(l) prescribed
(++) J/(r,v)
=
Now we w i l l need Lem-
[g(v,-k,r)/g(v,-k,l)](f(s),g(v,-k,s)>.
ma 8.26 whose p r o o f f o l l o w s .
Consider t h e f u n c t i o n R ( r , s ) = g(v,-k,r) N
g(v,-k,s)/g(v,-k,l).
Iv
E v i d e n t l y Qrn=QSn and n ( 1 , s ) = g(v,-k,s)
Dra(l , s ) = [ D g ( v , - k , l ) / g ( v , - k , l ) ] g ( v , - k , s ) . i n t h e f o r m C[g(v,-k,t)](s)
C[g(v,-k,t)]
with ( 6 )
L e t us compute CP(1 ,s) = = (g(v,-k,t),r(s,t))
= (g(v,-k,t),
) / g ( ~ > - k , l ) I ) ) = (S(v,-k,t),(g(p,-k,t), P Assume ( f o r f i x e d s ) where y ( p , s ) = G(u)g(u,-k,s).
(g(u,-k,t)g(u,-k,s),CDg(u,-k,l w
$(p,s) ) ) P
where p; a c t s and t h e n C[g(v,-k,t)](s)
I\
Y(V,S) H
=
T(v,s)
E
= [Dg(v,-k,l)/g(v,-k,l)]
I t f o l l o w s f r o m ( 6 ) t h a t Drn(l,s) = C[Q(l,-)l(s) and g i v e n s u i t g(v,-k,s). a b l e uniqueness i n t h e u n d e r l y i n g Cauchy problems as i n Theorem 8.22 we
have proved v i a Theorem 8.21
LEmA 8-26. Under t h e hypotheses i n d i c a t e d one has f o r m a l l y Q(r,s)
=
186
ROBERT CARROLL
= Tgg (v ,- k, s ) = g ( v ,- k ,r ) g ( v ,-k, s ) / g ( v ,-k, 1 )
.
Using Lemma 8.26 we o b t a i n now from (++) t h e r e l a t i o n ( = = ) ( T i f ( s ) , g ( v , - k , s ) ) r = $(r,v) = ( f ( s ) , n ( r , s ) ) = ( f(s),T,g(v,-k,s) ). Then l e t H(v) = Gh w i t h h = G-lH =
H(v),g(v,-k,s))p,
(
multiply
(.=I
by H, t a k e p brackets, and i n t e r We n o t e a l s o f r o m (-)
change o p e r a t i o n s t o o b t a i n Theorem 8.27 below. that
(
r
Tsg(v,-k,s),H(v))p
t),H(v))
P
=
((v(r,s,t),s(v,-k,t)),H(v))p
(v(r,s,t),h(t))
) =
=
= (v(r,s,t),(
EHE0REfl 8-27, With t h e hypotheses i n d i c a t e d one has ( f h(s)) = (f(s),TCh(s))
= (h
*
g(v,-k,
TCh(s).
*
h)(r) =
(
T';f(s),
f)(r).
From t h e d e f i n i t i o n o f g e n e r a l i z e d c o n v o l u t i o n i n d i c a t e d i n Theorem 8.27
Ti i n (8.49) one has now f o r s u i t a b l e f,h, ( f * h ) A h I h(s)C I [~(v)/g(~,-k,l)1g(~,-k,s)g(vy-k,r)d~1ds = I f ( v ) h ( v ) g ( v , - k , r ) d p /
and t h e c o n s t r u c t i o n o f =
M
g(v,-k,l).
Consequently, g i v e n s u i t a b l e f h / g ( v , - k , l ) For s u i t a b l e f , h w i t h
EHE0Rm 8.28,
f^ =
G f etc. (f
E
*
H etc. there follows *A
h)n = f h / g ( v , - k , l ) .
We showed i n 53 how t h e fundamental t r a n s m u t a t i o n s B and
i n the
-
theory
c o u l d be o b t a i n e d v i a p a r t i a l d i f f e r e n t i a l equations and we w i l l now use Theorem 8.22 t o s i m i l a r l y c h a r a c t e r i z e o u r 8 and
o f the
k e r n e l s a r e g i v e n i n 81.7 and e a r l i e r i n t h i s s e c t i o n . a g e n e r a l i z e d t r a n s l a t i o n o f t h e form (8.49) f o r
5'
4 theory
whose
Take U1(t,s) t o be
and c o n s i d e r f i r s t
-
y(r,
N
s) = (z(r,t),U 1(t,s)). F o r m a l l y f o r s u i t a b l e f one expects Qr; = ( T r F ( r , t ) , 1 1 -1 1 -1 1 U ( t , s ) ) = (?j$(r,t),U ( t , s ) ) = ('iS(r,t),QtU ( t , s ) ) = Os( R ( r , t ) , U (t,s)) = -1Qsq a n d ? ( r , l ) = ( x ( r , t ) , f ( t ) ) = zf(r) ( c f . remarks b e f o r e Theorem 2.2). 1 Now t h e corresponding Cauchy data i s 7 ( l , s ) = (F(l,t),U ( t , s ) ) = ( ( g(v,-k, 1 I t = z f ( s ) and we use Lemma 8.26 and Theorem 8.27 l ) , g ( v , - k , t ) ) 1, T,f(s)) 1 rp 1 1 a p p l i e d t o Ts t o w r i t e f o r m a l l y ( n o t e U ( t , s ) = U ( s , t ) e t c . ) ? ( l , s ) = r f ( s ) = ( r ( s , t ) , f ( t ) ) w i t h z ( s , t ) = ( [g(v,-k,l)/g 1 ( v , - k , l ) l g 1 (v,-k,s), 1 g (v,-k,t)) T,f(s)) t
S i m i l a r l y one has Dry(l,s) I s 1 = (Dg(v,-k,l),( Ttg ( v , - k , t ) , f ( t ) ) ) 1.
P
= ((
Dg(v,-k,l),g
1
(v,-k,t))pl,
u
P
1 = Cf(s) = t?(s,t),f(t)).
Assuming uniqueness i n t h e u n d e r l y i n g Cauchy problem we have
EHEOREm 8.29. terized via
W i t h t h e hypotheses i n d i c a t e d t h e t r a n s m u t a t i o n B i s charac1 = f o r ;(r,s) = (?(r,t),U ( t , s ) ) w i t h z ( l , s ) = A f ( s ) and
cT 5;:
-4
D$(l,s)
-
N
w
N
N
= C f ( s ) where A and C a r e g i v e n v i a k e r n e l s A and C as above.
The c h a r a c t e r i z a t i o n of 8 w i t h k e r n e l B(r,s) t h e same way.
Thus t a k e 9 ( r , s )
-1
f o l l o w s t h a t Frq = 4,q
= (B(r,t),U
can be c a r r i e d o u t i n e x a c t l y 1
(t,s))
instead o f
as b e f o r e and q ( r , l ) = ( B ( r , t ) , f ( t ) )
above.
= Bf(r).
It The
TYPE OPERATORS
187
1 1 ( t , s ) ) = Af(s) = ((g(v,-k,l),g (v,-k,t))?, I s 1 Ttg ( v , - k , t ) , f ( t ) ) ) 1 = ( A ( s , t ) , f ( t ) ) and A ( s , t ) = 'TZf(s)) = (g(v,-k,l),( P 1 1 1 ( [g(v,-k,l)/g (v,-k,l)]g (v,-k,s),g (v,-k,t) ) p . Thus A ( s , t ) has e x a c t l y t h e i n i t i a l d a t a i s ip(1,s)
same f o r m as Ah(s,t)
s)
=
p1
r e p l a c e d by p .
= (B(l,t),U
with
p1
Cf(s) = (C(s,t),f(t))
KHEBREM 8.30acterized via
r e p l a c e d by p.
Similar calculations give
where C ( s , t ) has t h e same form as ? ( s , t )
Drip(l,
but with
Thus
W i t h t h e hypotheses i n d i c a t e d t h e t r a n s m u t a t i o n B i s char1 = ?lip f o r 9 ( r , s ) = (a(r,t),U (t,s)) with ~ ( 1 , s ) = Af(s)
Trip
and D p ( 1 . s ) = C f ( s ) where A and C a r e g i v e n v i a k e r n e l s A and C as above. F o r t h e G-L complex o f ideas w r i t e g ( v , - k , r ) = r g l = (;(r,s),g 1 ( v , - k , s ) ) 1 w i t h g (v,-k,t) = B g = ( c(u,t),g(v,-k,r)). M u l t i p l y t h e f i r s t e q u a t i o n by 1 g ( v , - k , t ) and t h e second by g ( v , - k , r ) ; t h e n t a k e p b r a c k e t s and equate t o 1 1 = ( ( B(u,t),g(v,-k,u) ),g(v,-k,r)) o b t a i n ( ( z ( r , s ) , g (v,-k,s) ),g ( v , - k , t ) ) N
P
= ( a(u,t),(g(v,-k,u),g(v,-k,r))
P
) =
B(r,t).
P
Reorganizing we o b t a i n
CHEORZFII 8-31, The G-L e q u a t i o n a s s o c i a t e d w i t h 'ij and E has t h e f o r m a ( r , t ) = (F(r,s),A(s,t)) w i t h A ( s , t ) = ( g1 (v,-k,s),g 1 ( v , - k , t ) ) p . 9.
&HE BERGIIIAN-CZLBERC (B-pi)
BPERAEBA AND piENERA&ZNG FUNCKZBW.
There i s
a c o n s i d e r a b l e l i t e r a t u r e on i n t e g r a l o p e r a t o r s which t r a n s f o r m a n a l y t i c f u n c t i o n s ( o r harmonic f u n c t i o n s ) i n t o s o l u t i o n s o f e l l i p t i c equations. H i s t o r i c a l l y t h e p r i n c i p a l impetus seems t o have been Bergman's e x t e n s i v e work on t h e s u b j e c t and subsequently i m p o r t a n t c o n t r i u b t i o n s were made by numerous authors; we c i t e here o n l y t h e s u m a r y t r e a t m e n t s [Bcl;
3; Hdl; Val].
Cn1,Z;
Gjl-
I n p a r t i c u l a r c e r t a i n ( d i r e c t and i n v e r s e ) problems i n s c a t -
t e r i n g t h e o r y have been i n v e s t i g a t e d u s i n g such o p e r a t o r s ( c f . [Cn2-5,7; Gjl]).
I n t h e process o f comparing and u n i f y i n g v a r i o u s methods and p o i n t s
o f view i n t r a n s m u t a t i o n t h e o r y and a p p l i e d problems i n geophysics ( c f . [Bb1,2;
C40; S a l ] ) we were l e d t o l o o k f o r a complete t r a n s m u t a t i o n a l f o r -
m u l a t i o n f o r what we s h a l l c a l l t h e B-G o p e r a t o r . show ( c f . [C41,42]) transmutation
g:
Thus i n p a r t i c u l a r we
how t h e B-G o p e r a t o r can be c h a r a c t e r i z e d as a c e r t a i n
P"+ Qn ( d e f i n i t i o n s below) whose k e r n e l can be r e p r e s e n t e d
by a s p e c t r a l p a i r i n g o f s u i t a b l e e i g e n f u n c t i o n s o f Pn and Qn.
This places
t h e B-G o p e r a t o r i n t h e c o n t e x t o f a general t r a n s m u t a t i o n t h e o r y f o r operat o r s o f t h e f o r m Qn and i n p a r t i c u l a r t h i s a l l o w s one t o use known i n f o r m a t i o n about t h e B-G o p e r a t o r t o produce t r a n s m u t a t i o n s and c o n n e c t i o n formul a s between s p e c i a l f u n c t i o n s .
Such a t r a n s m u t a t i o n t h e o r y i s i m p o r t a n t i n
d e a l i n g w i t h t r a n s m u t a t i o n s o f Laplace o p e r a t o r s (and t h e a s s o c i a t e d
ROBERT CARROLL
188
s c a t t e r i n g problems in [Cnl-4,6,7; Gjl] f o r example) as well as in t r e a t i n g s c a t t e r i n g problems a t fixed energy i n quantum mechanics ( c f . [C43; Cel; Dc
1 ; Bbdl; Lrl; L17; Ne6,10,11; Sa10,13] and 551.7 and 2.8). The spectral variables which a r i s e i n t h e present case correspond t o complex angular momentum variables i n quantum mechanics. There a r e a l s o some i n t e r e s t i n g connections of t h e B-G theory w i t h c e r t a i n t o p i c s in generating functions and t h i s i s p a r t i a l l y developed here ( c f . a l s o [Bbgl; C541). We r e f e r t o t h e survey a r t i c l e s c i t e d f o r general background and s t a r t here with an equation ( c f . ( 1 . 7 . 2 ) )
where (9.2)
<
depends only on angle v a r i a b l e s .
pnu
The r a d i a l p a r t times r2 i s
2 n-1 2 r [ ( r u’)l/rn--’1= r urr + ( n - l ) r u r
=
Now when a ( r e a l valued) s o l u t i o n of ( 9 . 1 ) f o r n = 2 i s expressed i n terms of t h e Bergman i n t e g r a l operator of the f i r s t k i n d one has
1, 1
(9.3)
u(x,y)
=
E(r2,t)H(x(1-t2),y(l-t2))dt/(l-t
2
)
where H i s a harmonic function RENARK 9-1, There a r e many Bergman i n t e g r a l operators d i f f e r i n g by t h e in-
troduction o f an a r b i t r a r y a n a l y t i c function ~ ( z )i n t o t h e (complex) analysis. When v = 0 t h e Bergman representation and t h e Vekua representation based on a complex Riemann function a r e i d e n t i c a l and i t i s this Bergman operator ? where cp = 0 t h a t we r e f e r t o a s the Bergman operator ( c f . [ G j 2 ] ) . 2 2 Now following [Gj2,3] we r e w r i t e ( 9 . 3 ) as u(x,y) = h + /J ~ G ( r ~ 1 -) ho ( x u , 2 1 2 2 2 yo )do where h(x,y) = Ll H ( x ( 1 - t ) , y ( l - t ) ) d t / ( l - t ) i s harmonic ( c f . a l s o N Based on t h e appropriate d i f f e r e n t i a l equation of Bergman f o r E [CnZ]). one requires G(r,?) t o s a t i s f y the Goursat type problem
G i l b e r t ’ s method of ascent then shows t h a t s o l u t i o n s ( r e g u l a r around t h e o r i g i n ) of ( 9 . 1 ) f o r n 2 can be written as ( x = ( x , , . . . , x,)) (9.5)
u(x)
=
h(x) +
lo1
u
n-’ (note G does not depend on n ) .
G ( r , l - o 2 )h(xu2 )do This will be c a l l e d t h e B-G operator.
BERGMAN-GILBERT OPERATOR
REmARK 9-2.
189
We s h a l l f i n d i t more convenient t o work from t h e G f u n c t i o n
above r a t h e r t h a n t h e f u n c t i o n ?(r
2, t )
E(r,t).
There i s a c o n n e c t i o n w i t h 2 t h e complex Riemann f u n c t i o n o f Vekua expressed v i a G ( r , l - u ) = -2zR3(z,Z, za2,0),
=
t h e l a t t e r f u n c t i o n o f n e c e s s i t y b e i n g a f u n c t i o n o f r2 = zZ ( h e r e
R 3 denotes t h e p a r t i a l d e r i v a t i v e i n t h e t h i r d argument and R = R(s,t,u,-r)
s a t i s f i e s Rst
+ (1/4)F(st)R = 0).
Now i n ( 9 . 5 ) l e t u2 = u = h +
(9.6)
p/r
and w e . o b t a i n a V o l t e r r a t y p e o p e r a t o r
jr K ( r , p ) h ( p , - ) d p ;
N
K(r,p)
=
(p/r)4n-1(l/2r)G(r,l-(p/r
0
An easy c a l c u l a t i o n based on t h e G e q u a t i o n y i e l d s
LEMl!IA 9-3, The k e r n e l ??of (9.6) s a t i s f i e s ( f o r p < r ) 2 2 " 2[ ( n - 3 ) + r F ( r ) ] K = p K~~ + ( 5 - n ) p Z .
r2Krr
N
+ (n-l)rKr
+
P
I n keeping w i t h some formulas f o r e x t e r i o r problems developed i n [CnZ] ( c f . d , a l s o 58) f o r example one i s l e d t o w r i t e K ( r , p ) = ~ " ~ K ( r , p ) i n (9.6); t h e n LEmmA 9-4- K ( r , p ) s a t i s f i e s ( f o r p < r ) r2 Krr + (n-1)pK w i t h 2 r n - 2 K ( r , r ) = -Ir F(p 2 )pdp. P
f
(n-l)rKr
+
r 2 F ( r2 ) K = p 2 K
0
We w i l l deal w i t h K below as a d i s t r i b u t i o n w i t h s u p p o r t i n t h e s e t 0 < p < r and a d i s c o n t i n u i t y a t p = r . L e t us n o t e t h a t i f T i s a d i s t r i b u t i o n and P a s u i t a b l e t e s t f u n c t i o n w i t h
%
:/
Tpdx then ( i n t h e n o t a t i o n
of ( 9 . 2 ) ) (pn-3PnT,v) = ( p n-1 ( p n-1 T1)'/pn-',p) = - ( p n-lT',p' n-3 T,Pnp). This indicates the r o l e o f the f a c t o r
= (P
)
= ( T,(pn-lp')')
i n eventually
t r a n s m u t i n g pn i n t o
Q n = r2 D2 + (n-1)rD + r 2 F ( r 2 )
(9.7)
( c f . Lemma 9.5 below).
I n w o r k i n g w i t h f o r m u l a s such as (9.6) we w i l l see
t h a t one has a t r a n s m u t a t i o n B: Pn
+
Qn i n t h e r a d i a l v a r i a b l e s
p +
r and
t h e s p h e r i c a l v a r i a b l e s g e t c a r r i e d a l o n g s i n c e r2< =a: does n o t depend on r ( c f . Remark 8.2). Thus f o r s u i t a b l e f, B [ p2A n u ] = B[Pnu +f):u] + F ( r 2 )]Bu. +n:Bu = ,'[An
LElXM 9.5, B:
pZAn
-f
= Q'Bu
I f B: Pn -t Qn i s a t r a n s m u t a t i o n t h e n B[P 2An] = r2 [An + FIB ( i . e . 2 r An + r2 F ( r2 ) ) . Thus i f Anh = 0 t h e n [An + F ( r 2 )]Bh = 0.
Thus one wants t h e m u l t i p l i c a t i o n by r2 i n o r d e r t o extend t h e t r a n s m u t a t i o n t h e o r y f r o m r a d i a l o p e r a t o r s Pu = ( r n - ' u ' ) ' / r n - ' t o c e r t a i n operators i n 2 s e v e r a l v a r i a b l e s ( i n t h i s case r A,,). We w i l l e v e n t u a l l y i d e n t i f y t h e
ROBERT CARROLL
190
operator ( 9 . 6 ) based on the B-G theory, w i t h a p a r t i c u l a r transmutation Pn 2 Qn and we remark a l s o t h a t equations of t h e type ( 9 . 1 ) with terms H(r )ru
f o r example can be reduced t o t h e form ( 9 . 1 ) . The transmutation theory f o r operators of t h e form Qn i s developed in s p e c t r a l form via J o s t s o l u t i o n s f o r Qn as in 5 5 1 . 7 and 2.8 f o r n = 3. There a r e no spherical functions t o manipulate and asymptotic estimates a r e required in the spectral pairings. However we have a special s i t u a t i o n (of considerable importance) when dealing w i t h transmutations B: Pn + Q n . The B-G operator e n t e r s the p i c t u r e and t h e s p e c t r a l pairing can be e f f e c t e d v i a t h e Mellin transform ( c f . a l s o [C35] where an analogous procedure was used i n a d i f f e r e n t c o n t e x t ) . This allows considerably more d e t a i l t o emerge and y i e l d s d i r e c t l y various i n t e r e s t i n g connections between special functions. We show how t h e Mellin transform can be used t o construct a b u t the typical transmutation kernel 6. This will not be the B-G kernel
EXAIRPI;€ 9.6.
procedure i s i n s t r u c t i v e and i s employed l a t e r when we construct t h e kernel i;the kernels B a n d a r e compared l a t e r . Take n = 3 and F(r2 ) = k 2 ( t h i s 3 corresponds t o a natural s c a t t e r i n g s i t u a t i o n ) . Thus s e t = Pn = P = 2 2 2 x D + 2xD and { = Q3 = x2D2 t 2xD -t k 2 x 2 . The equation Fp = A p has solu2 21t i o n s x7 f o r y = y, = - ( $ n - l ) i [(kn-1) + A 1' ( n = 3 here) a n d we take P 2 4 e . g . \i, ( x ) = x T , T = -4 - ( A ++) . Set a l s o v = -T-+, u = - T - I = v-+ SO 2 2 The F e q u a t i o n becomes then x p " + 2xp' t h a t T(Tt1) = u ( u + l ) = 'A = w 2 t ( k 2 x 2 - A )p = 0. S e t t i n g x = xp we have a reduced Bessel equation X I ' + ( k 2 - A 2 / x 2 )x = 0 and we w r i t e p = $(I with \i, Q ( x ) = z-'jW(z) ( z = k x ) . Here j v could be any Bessel function of order v. Now we seek a transmutation
-+.
kernel in the form of an inverse Mellin transform, which will serve a s a T Q -0-1 Q e recall that i n ,$ ( r ) ) ! J . W s p e c t r a l pairing, B ( r , p ) = ( p ,$ ( r ) ) = ( p !J dealing w i t h transmutation kernels the general theory of §§1.7 and 2.8 i n d i c a t e s t h a t C r 6 ( r r p ) = ? * B ( r , p ) i s a natural condition. Here p* i s t h e P , ru* = Pn formal a d j o i n t defined by ( P f , g ) = ( f , P g ) f o r s u i t a b l e f , g and f o r .u* 2 2 2 one has P g = ( x g ) " - ( n - l ) ( x g ) ' = x [ c j " - ( ( n - 5 ) / x ) g ' - ( ( n - 3 ) / x )g]. For N k N n-3 n-3n = 3 evidently P = P and i n general -* P [x 41 = x P'p. Let us now take v Mellin transforms ( p + U ) d i r e c t l y in the equation Q r B ( r , p ) = P p B ( r , p ) A 2 2 where Mf(o) = f ( u ) = 1; f(p)pU-'dp a n d we r e c a l l t h a t M[p D f ] = u(u+l)M[f] f o r example (see here [Zbl] f o r generalized Mellin transforms). I t i s conN
A
venient now t o take p B ( r , p ) = e ( r , p ) with e = M[e] and t o note t h a t p ( p 6 ) " Hence [ e l = p 2 e P P and under Mellin transforms one obtains = p [ p ~ " + 2BI-j. - A r* t h e equation Qre = o(o+l)e. Therefore we obtain agian $ = z-'jW(z) ( z = kr)
5
BERGMAN-GILBERT OPERATOR where
= u(of1) = v
z
-k.
191
Now one has a v a i l a b l e v a r i o u s t a b l e s o f M e l l i n
t r a n s f o r m s (e.g.
[EbZ; Oa31) and we make t h e f o l l o w i n g change o f v a r i a b l e s 2 i n o r d e r t o use t h e t a b l e s . L e t a2 = P , y = r, a = y , b = ky, ab = ky2 =
k r , a/b = l / k , e t c . From [Oa3], p.221 o r [Eb2], M[Za-'(a 2 -a 2 ) k'J%[b(a 2 -a2 ) b'11 = (2a/b)'sr(s/2)Jb+,
p. 329 i t f o l l o w s t h a t (ab). Since J, ( z ) = (1/
2 2s & = (1/2)(Tab/2) 2 ( 2 a / b ) ' S J ~ ~-5S ( a b ) r ( s / 2 ) we have M[Sin(b(a 2 -a 2 ) b')I
2Tz)-'Sinz
2
(a
-f
s ) where 0 5 a 5 a and here M [ f ] ( s )
2
J F f ( a ) a S - l d u ( c f . a l s o [Mbl],
=
p. 79 and n o t e t h a t t h e f o r m u l a on p. 49 o r [Oa3] i s i n c o r r e c t by a f a c t o r 2 2 Consequently, from (9.8), w r i t i n g S i n b ( a -a )' = Sinkr(1-p/r)',
o r r(s/2).
e t c . one o b t a i n s from t h e M e l l i n t h e o r y c+im Sinkr(l-p/r)'
,9.9)
=
kr/2)'
a - s ( 2 / k ) S / 2 r ( s / 2 ) J ~ ? i s( k r ) d s jc-iw
Now t a k e s/2 = u = -T-1 (and j v = J
i n $Q ).
-(Tt')
We then c o n s t r u c t a
transmutation kernel i n t h e form (9.10)
= (P
B(r,p)
',$
( r ) ) u= f?(k,o)p-'-'
( kr)-'Jgt5
( k r ) d T = (1/2p ) P
(thus B(r,p) = k c(k.r)PT(kr)-~J-(Tf')
(kr)do
c'( k,s)a-S(kr)-'
J?i+s/2(kr)ds) where t h e i n t e g r a l s a r e upward along some c o n t o u r c-im im
i n t h e s p l a n e as i n (9.9)
f o r example 2niE(k,s)
=
( c may v a r y ) .
(2/k)s/2(71/2)'kr(s/2)
Comparing ( 9 . 9 ) - ( 9 . 1 0 ) and we have ($' =
EHEBREm 9-7, A f o r m a l t r a n s m u t a t i o n k e r n e l 8 ( r , p ) f o r B: + s t r u c t e d i n t h e form B ( r , p ) = ( P T , $ QT ( r ) ) u = ( l / r p ) S i n k r ( l - p / r ) ' , =
(kr)
-5T+$)
2J-(
( k r ) and t h e " s p e c t r a l
"
$2
-+
cf
we t a k e o r )$:
can be conwhere $ Q T
p a i r i n g r e p r e s e n t e d by 1~ i n v o l v e s a
c o n t o u r i n t e g r a l as i n d i c a t e d w i t h c(k,T) = ( n / Z ) ~ ( k / Z ) ~ ' ( k / Z ~ i ) r ( ~ - l ) .
A s i m p l e b u t t e d i o u s c a l c u l a t i o n a l s o c o n f i r m s d i r e c t l y t h a t t h i s E(r,p) N Iv s a t i s f i e s QrB = Q 8. P
REmARK 9-8- We c o n t i n u e t o work i n t h e c o n t e x t o f Example 9.6 i n o r d e r t o show how t h e i n g r e d i e n t s f i t t o g e t h e r . [Bcl;
Cn1,2;
Gj1,3]
and thus f o r K (= (9.11 )
t h a t G(r,T)
=
= -krJ.,(kr;-5)/:-5
(where
T Q
1-02 =
l-p/r)
h e r e ) we have f r o m (9.6)
K(r,p) = - ( k/2)(p/r)'J1
while K(r,r)
One knows f o r t h i s example f r o m
[kr(l-~/r)~]/(l-~/r)~
2 -k r / 4 r e p r e s e n t s t h e d i s c o n t i n u i t y a t p = r.
I n order t o
b u i l d t h i s d i s c o n t i n u i t y i n t o t h e d i f f e r e n t i a l e q u a t i o n f o r K i n Lemma 9.3 2 (where R = k and n = 3 ) we can proceed i n s e v e r a l ways. Thus f o r example, 2 take the M e l l i n transform ( P 5 ) o f H = p K u s i n g a g a i n o u r standard = p, -f
192
ROBERT CARROLL
etc.
From [Oa3],
where L
p. 106 one has ( a
s)
-f
.
denotes t h e Lommel f u n c t i o n s lJ,V
me1 f u n c t i o n L
We r e c a l l here t h a t t h e Lomv9v 2 ( z ) s a t i s f i e s t h e e q u a t i o n z L " + z L ' + ( z 2 - V 2 ) L = z lJ+1
v,v and f o r i n d i c e s ( ~ , l ~ - l has ) t h e form Lu,u-l ( n o t e t h i s i s 1F2 and n o t 2F1). (9.13)
=
( 2 ~ + 2= S-1). culation yields
a 2'+2 -k j n a
cri
= o(o+l)^H
-
k-OzUt2. =
^H
=
Now k
= r"-'.
5rH -p 2 HP P
H
=
M[H],
H =
pK
du = -k-' (kr)-CLa+3/2,0+% ( k r )
I n p a r t i c u l a r t h i s says t h a t
and H must s a t i s f y
PR0PBSZCZbN 9.9. 2 -k2r 6(r-p).
Hence'writing
J [b(a2-a2)$] 1 2 2 (a -a 1%
serve t h a t ( c f . [ Z b l l ) M [ 6 ( r - p ) ] 6(r-p)]
( z ) = ( ~ ' + ~ / 4 ~ ) ~;2,1Jt1 F ~ ( ,-+z2) l
-k-"z-+L(z)
-' z
and an easy c a l -
= k2r'+2
Ot2
Consequently -k2r'+2 -k2r2ps(r-p)
and we ob= M[-k
2r 3
( r z p i n 6(r-p))
The €3-G k e r n e l K f o r Example 9.6 s a t i s f i e s ?&K
-
P
K =
L e t us p o i n t o u t how such a s i t u a t i o n l e a d s d i r e c t l y t o a p r o o f t h a t (9.6) i s i n f a c t a t r a n s m u t a t i o n f o r m u l a ( r e c a l l i t s o r i q i n i n v o l v e d o n l y harmonic h). Thus observe f i r s t t h a t f o r m a l l y , w i t h ( K ( r , p ) , h ( p , - ) ) a s u i t a b l e d i s tribution pairing, K(r,p),h(p,-)) = (F K(r,p),h(p,-)) - k2r2h(r,-) = 2 2 P (K,?h) - k r h and consequently ( c f . Lemma 9.5) s e t t i n g u = i h = (K,h - k 2 r2 h)
c+
(9.14)
2 2 " 2 2 2 r [A3+k I B h = r A 3 h t r k h + i + K ( r , p ) , h ( p , - ) ) + r = r2A3h t ( K(r,p),p2A3h)
2 s
K(r,p),h(p,.))
= 8 [ p 2A3h]
PR0PWICI0N 9-10. Formula (9.6) f o r o u r model problem o f Example 9.6 r e p r e " 2 2 2 r [A, + k 1. sents a t r a n s m u t a t i o n B: p A3 -f
V
We would n e x t l i k e t o compare B w i t h t h e B o f Theorem 9.7 and t h i s can be accomplished by checking t h e i r r e s p e c t i v e a c t i o n on monomials pn f o r example. n n-1 A ) = (H(r,p),p ) = H(r,n) F i r s t simply r e f e r t o (9.13) t o o b t a i n ( K ( r , p ) , p n -n -?( i . e . o = n ) . Hence f o r z = k r , i [ p n ] = r - k z ZLn+3,2,n++ ( z ) . Now r e a f t e r (9.13) w i t h Gr[rn] = n ( n + l ) r n + k2r2+n so f o r u = ~n B[p 1, Qru call
-
tri
=
n ( n + l ) r n + k2rn+'
-
k-'[n(n+l)z-'L
+ zn+']
This implies t h a t 2 where n ( n + l ) = '1 = v -k. n B(r,p),p ) we have € 3 1 ~=~ 1 =
n(nt1)u.
u must be a l i n e a r combination o f terms z-'jv(z)
On t h e o t h e r hand i f one computes B[pn] = ( n-1 ) = $(r,n) (cf. (9.9)). Thus B[pn] (pB(r,p).p 2 j v ( z ) where n ( n + l ) = v -k (we want v = [n(n+l)+&
w i l l be o f t h e form z-' = n+% s i n c e G(r,n) must
BERGMAN-GILBERT OPERATOR
be f i n i t e as r (9.10) and
+
.
0
n)
(0
193
E x p l i c i t l y we p i c k up a m u l t i p l i e r as i n d i c a t e d i n Now
= (2/k)n-'J~r(n)r-4Jn+'(kr).
B[pn]
k[pn]
must a l s o
w i l l be a m u l t i p l e o f B[pn] -n -4 To determine c" we w r i t e (L = Ln+3/2yn+5 and z = k r ) E [ p n ] = rn - k z L ( z ) W r i t i n g t h i s o u t and t a k i n g = ?(kr)-'lz [ ( - 1 )P(z/2)n+'+2P/p!r(n+p+3/2)]. ;= 2n++ k -n r ( n + 3 / 2 ) we have t h e d e s i r e d i d e n t i f i c a t i o n and t h e n one compares be f i n i t e as r
and
B[pn]
(9.15)
+
0 and hence
Ez-'Jn+%(z)
=
6[pn]
t o o b t a i n ( r ( n + % ) = J7G?-2n(2n)!/n!))
E[pn]
a(n,k)B[pn];
=
;[pn]
a(n,k) = ( 2 n + l ) ! / k 2 2n n ! ( n - l ) !
&f(EOREm 9-11. The d i f f e r e n c e between t h e t r a n s m u t a t i o n s sed t h r o u g h t h e i r a c t i o n on monomials
pn
'i and
B i s expres-
as i n d i c a t e d i n (9.15).
L e t us now g i v e a " s p e c t r a l " r e p r e s e n t a t i o n f o r t h e k e r n e l
6
analogous
of
t o Theorem 9.7. Thus we w r i t e kf = ( g ( r , p ) , f ( p ) ) so t h a t from t h e f o r m u l a v n B[P ] = cz-'Jn+%(z) (which d o e s n ' t r e q u i r e n t o be an i n t e g e r ) one g e t s (9.16)
2u+4 k -a r(a+3/2)z-'JUq5(z)
=
;[P']
Now use v a r i a b l e s as i n (9.9)-(9.10) (9.17)
-i.
g(r,cJ) = ( 1 / 2 ~ i )
= k(k,a)z-'JU,,(z)
t o obtain (u = - ~ - l )
-0-1 -4 P z Ja+4(z)$(k,o)du
where $( k,a) = ( 2 / k ) ' h r ( a + 3 / 2 ) . has k e r n e l i ( r , p )
EHEOREm 9-12. The B-G t r a n s m u t a t i o n
g i v e n by (9.17).
We want t o l o o k more c l o s e l y a t t h e d i s c o n t i n u i t y i n K i n d i c a t e d i n Lemma 9.4 r e l a t i v e t o i t s k e r n e l a c t i o n and t o t h e d i f f e r e n t i a l e q u a t i o n f o r K. Thus one has (*) u = h + (9.2) and (9.7). (9.18)
r
I ~ ~ - ~ K ( r , p ) h ( ~ , . ) dTake ~ . Qn and Pn now as i n 0 r n-3 Then w r i t i n g I = I P K(r,p)h(p,-)dp we o b t a i n 0 2
QnI = -4r hF
-
r (4n-l)h
r
Fpdp
-
0
r
0
+ ((n-l)/r)Kr
+
Fpdp + r n - ' K P ( r , r ) h
4rhr
+ F(r2)K]dp
0 NOW
assuming
P"'K
-f
0 and P
n-1 -f
0 as
P
-+
0 the l a s t integral
z
i s (by
Lemma 9.4) z = 1 ; :n-3h~2[Kpp + ( ( n - l ) / p ) K p ] d p = 1 ; h(pn-lKp)pdp = hr"' Kp(r,r) - hrr n- 1K ( r , r ) t I; (pn-lhp)pKdP. However (Kr + K p ) ( r , r ) = D K ( r , r ) - ( l - 4 n ) r 1 - n i Fpdp - %r3-nF and upon i n s e r t i n g a l l t h i s r n-3 2 i n (9.18) one g e t s (*) QnI = 10 P K(r,p)Pnhdp - r hF. The c a l c u l a t i o n s 2 r show t h a t Q'u = Pnu + r Fu = Pnh t I c~"~KP"hdp and e x h i b i t t h e way i n
=
-4Dr[r2-nf
Fpdp] =
0
194
ROBERT CARROLL
2 which t h e jump c o n d i t i o n i n K produces t h e necessary v a l u e -r hF i n (+). L e t us redo t h i s i n a d i s t r i b u t i o n c o n t e x t and o b t a i n a d e r i v a t i o n o f t h e Thus w r i t e t h e k e r n e l i n ( * ) as K ( r , ~ ) p ~ - ~
jump c o n d i t i o n i n Lemma 9.4.
where Y i s t h e Heavyside f u n c t i o n .
Y(r-p)
(9.19)
-n+3
J = r
QnI = (J,h);
+
Since
( c f . (9.18)).
)
Y(pn-'h
P P
t i o n , as
6(r-p)Dr[r
+ P n-3 P 2 [KPP
rn-'Kr(r,r)6(r-P)
( (pn-lK
An easy c a l c u l a t i o n g i v e s
) ,Yh)
P P
=
2n-4
K(r,r)] +rn-'K(r,r)6'(r-p)
+ ((n-l)/~)K~lY(r-~) hrn-'K
P
(r,r)
-
h'rn-'K(r,r)
+ (K,
t h e d e s i r e d jump c o n d i t i o n can be w r i t t e n , a f t e r some c a l c u l a -
),
( 0 )
(rn-'K)'
from which Lemma 9 . 4 f o l l o w s .
= -irF,
I;E?ltNA 9-13, The jump c o n d i t i o n i n Lemma 9.4 needed t o have Qnu = Pnh + n-3 n J p KP hdp i n (*) can be d e r i v e d as above and y i e l d s K ( r , r ) v i a ( 0 ) .
Now we want t o determine t h e d i f f e r e n t i a l e q u a t i o n f o r K as i n P r o p o s i t i o n There i s a c e r t a i n amount o f s h i f t i n g back and f o r t h between " o r d i n -
9.9.
a r y " and d i s t r i b u t i o n d e r i v a t i v e s i n t h e t e x t b u t t h e d i s t i n c t i o n should be = pn-'PT. Now c o n s i d e r c l e a r . One checks e a s i l y t h a t f o r T E D', P*[pn-'T] -* PP[p n-3 K(r,p)Y(r-p)] (p = P n ) i n n o t i n g t h a t J = Q ~ [ p n - 3 K ( r , p ) Y ( r - p ) ] from
(9.19).
Thus ( n o t e Yp = - 6 )
(9.20)
( ? * [ ~ ~ - ~ K y ] , p=)
4P
n-1 [ K Y
P
-
K61,p'
( p n-3 P n [KY],p)
= ( ( p n - l K )'Y,p)
)
P
and t h i s equals ( P " ~ ( P ' K ) Y
- r"'K
P
6
+
= ( ( ~ ~ - ~ [ K y ] ' ) ' , p= )
-
( pn-'K
P
6,p)
(the calculation involves
rn-1K6',p)
a c e r t a i n abuse o f n o t a t i o n b u t can be j u s t i f i e d ) . (9.21)
[Q: -
(Pi)*][pn-3K(r,p)Y(r-p)]
+ rn-'K(r,r)p1(r)
Hence u s i n g
= 2r[rn-2K]'6
(0)
= -r2 F 6 ( r - p )
V
PR@P05ZCZ0N 9-14, The k e r n e l K = n e l i n (*), s a t i s f i e s (9.21). -r 5-n F ( r 2 ) 6 ( r - p ) .
~ ~ - ~ K ( r , p ) Y ( r - p ) where ,
E q u i v a l e n t l y [Q:
-
K i s t h e B-G k e r -
P~I[K(r,p)Y(r-p)l =
'j d e f i n e d by E[h] = u i n (*) i s a t r a n s m u t a t i o n + F] ( r e p e a t t h e c a l c u l a t i o n s l e a d i n g t o P r o p o s i t i o n 9.10 and
Thus we know as b e f o r e t h a t p2An
-+
r2[An
use P r o p o s i t i o n 9.14). v
"
L e t us w r i t e t h e n i [ h ] = ( g ( r , p ) , h ( p , * ) ) = r'
+(
2 One has Qnra = [ r 2 D 2 + ( n - 1 ) r D + r F]r'
=
(9.22)
u =
B[pa]
= M[pE(r,p)]
p
n-3
and s e t
K(r,p)Y(r-p),p')
u(u+n-2)r'
+ Fra"
and s e t t i n g
BERGMAN-GILBERT OPERATOR
I = ( P n-3 K ( r , p ) Y ( r - p ) , p ' ) , Y(r-p)],p') = -Fr'+' + ( Consequently one has (9.23)
QnG
=
i t follows t h a t Q"1 K(r,p)Y(r-p),(pn--'[Dp']')'
[r2D2 f ( n - 1 ) r D
f
r 2F];
=
=
195 n-3 n P [K(r,p) -Fro'' + o(cr+n-Z)I.
-FrU+' f ) =
( p
u(o+n-Z)ti
W e do n o t t r y here t o deal with functions F having s i n g u l a r i t i e s a t r = 0 and assume nice behavior t h e r e . Then one expects s o l u t i o n s of (9.23) t o behave l i k e ry near r = 0 where y 2 + ( n - 2 ) y - o(u+n-2) = 0 ( c f . [C40; Cg3] Now we and 51.10 - note y ( y + n - 2 ) = o ( u + n - 2 ) ) . T h u s y = u o r y = -o-n+2. w r i t e $ QG ( r ) f o r a s o l u t i o n of (9.23) behaving l i k e r' near r = 0 and normalized i n some way ( s e e here e . g . Theorem 9.7 where we simply picked $ Q without regard t o normalization). Thus we s e l e c t $:(r) a n d ( 6 ) lim ;:(r)r-' = 1 as r 0.
s a t i s f y i n g (9.23)
-f
tHEBRElll 9-15, The "extended" B-G kernel g ( r , p ) i s characterized by t h e '4 - 'Q -0-1"Q " s p e c t r a l " formula ( T = -o-n+2 with QU = $T) B ( r , p ) = ( 1 / 2 n i ) P p $u(r)du with a s in ( 6 ) .
;:
We go next t o t h e t o p i c of generating functions and r e f e r t o [Mbl; Mdl; Mnl; Eb3; Rtl; S t k l ; Tml; Wjl-31 f o r general information. There a r e many formul a s ( p r o t o t y p i c a l l y consider e . g . (*) (xy)'(x 2-2xy)-"Ju[(x 2- 2 ~ y ) ~= ] gnJu+n(s)y'+n as in [Whl; Wjl]) and some p a r t i a l u n i f i c a t i o n has been achieved. By u n i f i c a t i o n one means t h a t t h e r e a r e c e r t a i n guiding p r i n c i ples from which various generating function formulas can be derived systema t i c a l l y . Given t h e g r e a t d i v e r s i t y of s p e c i a l functions and t h e i r o r i g i n s i t i s perhaps not s u r p r i s i n g t h a t no one d i r e c t i v e ( o r u n i f i c a t i o n ) seems
t o be known from which " a l l " generating functions a r i s e . In t h i s section we will provide another g u i d i n g p r i n c i p l e , i n c e r t a i n resoects q u i t e general, from which many generating functions can be obtained ( a l s o c e r t a i n i n t e r e s t i n g g e n e r a l i z a t i o n s a r i s e n a t u r a l l y involving e.g. s e r i e s 1 G n J v + n ( ~ ) $ v , n ( y ) with known $",,(y) which a r e not powers of y ) . The background here mo-
t i v a t i n g our i n t e r e s t was a paper [SalO] on some i n t e r p o l a t i o n formulas in quantum s c a t t e r i n g theory a t fixed energy where e.g. one obtained genera-
t i n g functions r e l a t e d t o t h e c l a s s i c a l formula of Lome1 above (namely (*) - cf. a l s o [Cel; Ne6,10,11; Sa10,13]). One can i d e n t i f y t h e generating functions i n [SalO] as transmutation kernels and provide a s t r u c t u r e f o r obt a i n i n g such generating functions via s p e c t r a l pairings involving e.g. the Mellin transform. Given t h i s o r i g i n and some knowledge about the under-
196
ROBERT CARROLL
l y i n g d i f f e r e n t i a l o p e r a t o r s one has a v a i l a b l e c e r t a i n machinery (e.g. G-L techniques) t o a s s i s t i n t h e development.
We g i v e here an i n t r o d u c t i o n t o
t h i s p o i n t o f view, along w i t h some examples suggesting f u r t h e r e x t e n s i o n s o f t h e ideas ( c f . [Bbgl;
The p e r s p e c t i v e and em-
C54] f o r o t h e r r e s u l t s ) .
along w i t h various
p h a s i s here a r e q u i t e d i f f e r e n t t h a n those o f [SalO],
c o n s t r u c t i o n s , and we achieve much g r e a t e r g e n e r a l i t y by embedding t h e ideas i n a general t r a n s m u t a t i o n machine.
One n o t e s a l s o some c o n n e c t i o n t o ap-
p l i e d problems o f a d i f f e r e n t t y p e i n [Byll; Cn8];
general t r a n s m u t a t i o n
methods c o u l d be employed i n such c o n t e x t s e x p e d i t i o u s l y . 2 We c o n s i d e r o p e r a t o r s o f t h e form (1.7.1), i . e . Qu = x u" + 2xu' + x2[k2 2 2 q ( x ) ] u and t h e e q u a t i o n (*) Cu = 1 u w i t h '1 = v = u ( o + l ) ( u = v-4 c o r N
-
-+
responds again t o complex a n g u l a r momentum). It i s convenient t o s e t 9 = 2 2 xu and t r a n s f o r m (*) i n t o (1.7.3), i . e . x 7 ' ' + x2[k2 - q ( x ) ] v = A p where we deal w i t h r e g u l a r s o l u t i o n s q(v,k,x) f(v,+k,x)
e x p ( + i k x ) as x
Q
s u i t a b l e manner
-
m
-f
Q
xu+'
as x
= xvq'
and q(v,k,x)
fo(v,-k,x)
=
For
(nkx/2)4iwYH;(kx),
2" ( Z / n ) % ( v + l ) k
-
= x??(x)
( c f . 51.7).
EMNPLE 9.16,
-v++ .v-'i
(f(v,-lk)
i
0 and J o s t s o l u t i o n s 0 at
:-+
m
Dcl; Ne6; and s1.7 f o r hypotheses).
see [Cel;
a l s o by j1"(x) t h e s o l u t i o n o f ( * ) w i t h X-"$!(X) xu+'
-f
as b e f o r e (one assumes
+
1 as x
-f
i n some Me denote
0 ( t h u s x$!?(x)
Q
see h e r e Theorems 9.15 and 9.12).
= 0 we have q 0 = 2vr(v+l)k-vx?iJv(kx),
and f o ( v , - k )
= W(fo(v,-k,x),qO(v,k,x))
=
are c a l l e d Jost functions).
2 2 We denote by P t h e o p e r a t o r 'iu = x u" + 2xu' = ( x u ' ) ' as b e f o r e and s e t 2 2 2 Qoy = x u " + 2xu' + k x u ( i . e . q = 0 i n Q o ) . F o r g e n e r a t i n g f u n c t i o n s w i t h
N
N
monomials i n y as i n (*) one i s i n t e r e s t e d i n t r a n s m u t a t i o n s B: i n t h e B-G t h e o r y ) and we c o n s i d e r f i r s t t h e t r a n s m u t a t i o n ;:(r)
w i t h k e r n e l g i v e n by Theorem 9.15,
=
g(r,p)
T-f
i: F-+q:
(as pa
-f
-~-1vQ ( 1 / 2 1 ~ i )fi p $,(r)do
( f o r n = 3).
RENARK 9-17. Take v-%)
i(r,p)
F = To so
= vO(v,k,r from Example 9.16 $u(r) "Q
= (r-'/&i) P p-'-'
see a l s o 58)
K(r,p)
=
( c f . (9.17)).
(2/k)'%(a+3/2)Jaq3(kr)do
one w r i t e s i ( r , p ) = 6 ( r - p ) + K ( r , p ) Y ( r - p )
F i r s t although
We make a few g(r,p)
= K(r,p)
must have t h e d i f f e r e n t i a l e q u a t i o n o f P r o p o s i t i o n 9.9, 6(r-p)
(9.13).
and t h i s i s c o n s i s t e n t w i t h (9.11) where On t h e o t h e r hand from [Oa3],
(2a/b)Z/2r(z/2)JZ/2(ab).
If
(9.11) and
i t i s known t h a t ( c f
-(k/Z)(p/r?J,[kr(l-p/r)']/(l-p/r)'.
f u r t h e r remarks here on t h i s .
/r and ( u =
FrK
-
f o r p < r one 2 2 K = -k r P
i s g i v e n by 2 2 ?- 2-1 da = Jo[b(a -a )']a
M[pK(r,p)]
p. 221, 2$
W i t h t h e v a r i a b l e s i n d i c a t e d above t h i s becomes
GENERATING FUNCTIONS
(z
=
-
20+1
197
an e q u i v a l e n t formula i s deduced i n [SalO] by o t h e r means). Now
M [ P ~ ( ~ , P )=] $'Q 5 ( r ) s h o u l d h o l d s o one observes t h a t i f M(v) = A
$ / ( u + + ) t h e n x-%(x)
=
= - x -3/29. Hence f o r
v
( ] / h i ) F vx = pg(r,o)
But D,[Z-~J,(Z)]
i(r,p).
one o b t a i n s g(r,p)
(x
= K(r,p)
%
(*) D p J o [ k r ( l - ~ / r ) ' ]
P)
=
-
V+l ( u s i n g (9.11)) which i s c o r r e c t f o r
mula
6 ( r - p ) + (k/2)(1-~/r)'J,[kr(l-p/r)']Y(r-p)
;=
-(r/p)'
=
-J1(z) and f r o m ( * )
one a d j o i n s a t e r m Y ( r - p ) t o Jo so t h a t ( 6 ) becomes D,[J =
=
du/(u+%) f r o m which f o l l o w s Dx[x"4']
( z ) so DZJo(z)
= -z-'J
and M($)
-0-4
LO
P < r. 5-
If
[kr(l-~/r)~]Y(r-p)l
= -(r/P)'8(r,p)
then the f o r -
6 + K i s o b t a i n e d as d e s i r e d ( r :P i n m u l t i p l i c a t i o n by & ( r - P )
M [ P ~ - ~ 6 w1 i t h M [ P ~ ] = 2 2 2 2 ( z ) s a t i s f i e s [ z DZ + 2zDZ + ( z - v )]L = r' and s i n c e L,+3/2,u+% ( z ) = L 0 &"+I 9" .-" 2 2 zV+' we o b t a i n f o r x = -k- z ZLu+l,V(~), Qrx = x - k r"'. Hence Qrx = -Qr$, " Q - Qrr5and x = d~~ 'Q - r0 as r e q u i r e d f o r e v e r y t h i n g t o f i t t o g e t h e r here
and J o ( 0 ) = 1 ) .
L e t us n o t e a l s o t h a t
M[pK]
=
N
-
( c f . also[C40]where
S t r u v e f u n c t i o n s a r i s e i n Theorem 2.12.22).0ne
t h a t t h i s c a l c u l a t i o n i s s p e c i a l f o r LLl+,,";
notes
i n general t h e M e l l i n t h e o r y
( k r ) w i t h f u n c t i o n s J,,[kr( 1 -p/r)']/ 0+3~/2,0+1-~/2 b u t t h e n i c e c o n n e c t i o n t o JI: i s m i s s i n g u n l e s s LJ = 1. It i s
r e l a t e s Lommel f u n c t i o n s L (l-p/r)p'2
t h i s example which was i n d i c a t e d i n [SalO] as a g e n e r a t i n g f u n c t i o n ( v i a i n t e r p o l a t i o n formulas e t c . ) .
To see t h i s more r e a d i l y one can s i m p l y a p p l y Thus t h e gamna f u n c t i o n has s i m p l e p o l e s
some r e s i d u e c a l c u l u s i n (9.17).
a t u+3/2 = -n ( t h e r e s i d u e a t z = -n o f r(z) b e i n g ( - l ) n / n ! ) and J-,(z) = m ( - 1 ) J,(z) ( n o t e u+% = -n-1). Hence s i n c e i ( r , P ) = K ( r , p ) f o r P < r one has f o r m a l l y , f o r a s u i t a b l e c o n t o u r c - i m (9.25)
K(r,p) = -(rP)-'
1;
-+
c+im
(kP/2)mJm(kr)/(m-l)!
From (9.11) and (9.25) we see t h a t one has a s p e c i a l case o f t h e Lommel f o r m u l a (*) where u = 1, x = k r , y = kp/2,
(kJ~/2)r(v+)/r(u+l))
Sin[kr(l-~/r)']. (kr)
(0
=
[Mbl],
l/(m-l)!
= (l/ZTi)
a(r,p)
+ p-'-'J:(r)y(o,k)dn
W r i t e t h e i n t e g r a n d I as I = P-'-'JT(Z/k)
v-4) w i t h p o l e s a t
(k/2)%[J4(kr) cf.
=
(m 2 1 ) .
Consider t h e t r a n s m u t a t i o n B o f Theorem 9.7 w i t h k e r n e l (y(5,k)
REIIARK 9.18, =
and gm-l
+
1;
p. 721.
0
=
5-35
-n so t h a t f o r m a l l y , B(r,p) =
( k ~ / 2 ) ~ Y ~ + + ( k r ) / n (! sI i n c e
J-,,+(Z)
F u r t h e r one has f o r m a l l y B[p']
= (l/rp) -5-
r T(")Jf+%
-4-
JTr
= (-1 )m+lY,+!i(z)
= y ( u , k ) $ gQ( r ) ,
m a l l y B serves as a g e n e r a t i n g f u n c t i o n f o r t h e Yn+?,.
P
-
Thus f o r -
198
ROBERT CARROLL
REMARK 9-19, The o p e r a t o r
k
= 6 + K i n Remark 9.17 has an i n -
w i t h kernel
verse g i v e n by ( c f . [C43; Gj3; L r l ; SalO; Val]) (9.26)
I1 [ k(p/r)'(
L ( r , p ) = ( k / 2 ) (1 -p/r)-'
I f one had a v a i l a b l e a s p e c t r a l t h e o r y f o r
t i o n s J/u(r) '4
;(r,p)
= 6
+ LY
(p +
r)
1-P /r)']
co i n v o l v i n g t h e r e g u l a r s o l u -
( r a t h e r than J o s t s o l u t i o n s ) t h e n one c o u l d expect t o w r i t e a
v"
spectral formula f o r
and r e l a t e i t t o a k e r n e l
'
= ker
w i t h say
=
To
i s based on t h e J o s t s o l u t i o n s However t h e s p e c t r a l t h e o r y f o r v+4 H1v ( k r ) ( v = o+*) o r i n K-L f o r m on u o ( v , k , r ) =
(B-l)*.
go = fo/r = ( T k / 2 r ) i a0(v,k,r)/r
k -v+4 = ( n / 2 k r ) *i J v ( k r ) .
= 90(v,k,r)/rfo(v,-k)
Using t h e K-L f o r -
m u l a t i o n however we can i n f a c t produce f o r m a l l y an i n v e r s i o n k e r n e l and t h e Thus
method i s g e n e r a l i z e d i n Theorem 9.23 ( c f . a l s o Remark 9.24 and [CSO]). one has f o r ? ( v ) = G O f ( v ) =
(
f(s),go(v,-k,s))
t h e K-L i n v e r s i o n ( c f . Theo-
j m
rem 8.14) f ( r ) = - ( i / T ) l i m v f ( v ) q 0 ( v , k , r ) d v ( i . e . ( fn,go(v,-k,r)) = -(i/n) ( fh, ~ * ~ ( v , k , r ) ) ~where duo = dpo = ( 2 i / n ) v 2 d v / f o ( v , - k ) f (-v,-k) =P -vSinnvdv/ 0
nk on
S y m b o l i c a l l y one w r i t e s now (-iu/n)Jr go(v,-k,r)*o(u,kyr)dr
[O,m)).
= ~(V-P)
( t h i s e x p r e s s i o n i s examined i n more d e t a i l i n Remark 9.24).
"9 s e t q O / r = J/'(r)
Now
and c o n s i d e r f o r m a l l y ( v = & )
so Q0 = ; f ( r ) / f o ( v , - k ) -1 m
(9.27)
r'( - i v / T ) q o ( v ,
;( r, p ) =
- k,p
)dv/fo( v, -k)
l i m
= u-+ one has f o r m a l l y , (;(r,p),JIT(p)) '4 = J r ;(r,p)GT(p)dp '4 i m ro ( - iv / n ) 1 ; go ( v ,- k ,P Po( u ,k, P )dp [fo (u ,- k ) / f o ( v ,- k 11( v / u dv = Li
Then f o r i m
li r'
T =
G(v-p)dv = rT so t h a t
appears t o be a k e r n e l f o r
B" = 6-l
9.24 and [C80] f o r a d i s c u s s i o n o f t h e K-L t h e o r y ) . has from (9.27) ( v = o++)
Now w r i t e ( v
-f
= (r(l-v)/ai)[J-v(kp)
-v)
(1/2Iri)(rp)
-lij m m (2/k)vr(v+l)Jv(kp)r-u-1dv be z e r o f o r p < r.
- (rp)-'(l/Zni)li;
W r i t i n g t h i s o u t one
= (1/2psi)jiI (k/2)"rUH~(kp)dv/r(v).
;(r,p)
1 c a l l t h a t r ( z ) r ( l - z ) = v/Sinnz and Hv(x) = [ J - v ( x ) Then H:(kp)/r(v)
(see here Remark
-4
-
-
Jv(x)exp(-i~v)]/iSin~v.
J v ( k p ) e x p ( - i n v ) l and
im (kr/2)vr(l-v)J-v(kp)dv
;,m
= B(p,r)
Re-
= [p-'/Zni]
( c f . Remark 9.17) which we know t o
The r e m a i n i n g t e r m i n (9.28) g i v e s f o r p < r,
( k r / 2 ) v r ( l - v ) J v ( kp)exp( - i n v ) d v .
?(r,p)
F o r m a l l y now e v a l u a t e
t h i s by r e s i d u e s a t 1 - v = -n ( v = n + l ) as (9.29)
:(r,p)
= (rp)-'
1;
(kr/2)mJm(kp)/(m-1)!
= L(r,p)
(P <
r)
=
GENERATING FUNCTIONS
p. 364 ( w i t h kLol(x,y)
From [ L r l ] ,
t h e r i g h t side of (9.29) f o r has E ( r , p )
+ L(r,p)
p <
%
r.
199
L ( r , p ) i n (9.26)),
L ( r , p ) agrees w i t h
Thus ( n o t e f r o m (9.25) and (9.29) one
= 0 f o r p > r so T ( r , p )
i s t r i a n g u l a r and
g ( r r p ) con-
t r i b u t e s a term 6 ( r - p )
ZHE8REm 9 - 2 0 , F o r o u r model o p e r a t o r o f Remark 9.17 w i t h g ( r , p ) = k e r N
P
+
co, g i v e n as 6 ( r - p ) =
i-' can
as a g e n e r a t i n g f u n c t i o n f o r p < r and t h e k e r n e l be c o n s t r u c t e d v i a K-L t h e o r y i n t h e form (9.27)-[(rp)J'/2~i][is
(kr/Z)"r(l-v)exp(-ivv)
(9.28) from which
T(r,p)
Jv(kp)dp Y(r-p).
The l a t t e r i n t e g r a l r e p r e s e n t s y ( r , p )
function f o r
p <
v
+ K ( r , p ) Y ( r - p ) v i a (9.17), one has t h e expansion
(9.25) e x p r e s s i n g K(r,p) G(r,p) f o r
v
B, B:
= 6(r-p)
as a g e n e r a t i n g
r v i a (9.29).
E v i d e n t l y one can produce g e n e r a t i n g f u n c t i o n s almost a t w i l l by t a k i n g a t a b l e o f M e l l i n t r a n s f o r m s and e x t r a c t i n g s e r i e s v i a t h e r e s i d u e c a l c u l u s . However we have a somewhat more r e f i n e d s e l e c t i o n mechanism when we i n s i s t t h a t one deal w i t h t r a n s m u t a t i o n k e r n e l s .
Indeed, i n t h e f i r s t p l a c e , work-
i n g v i a f o r m u l a s as i n Remarks 9.17,
e t c . i n t h e model case one i s ob-
t a i n i n g t r i a n g u l a r kernels g(r,p), T h i s corresponds t o $"Q" ( r )
Q ,
9.18, o(r,p),
r" so ( r / p ) '
e t c . which v a n i s h f o r p > r. = exp[olog(r/p)]
and ifp > r one
c o u l d c l o s e t h e c o n t o u r i n t e g r a l t o t h e r i g h t and o b t a i n z e r o e v a l u a t i o n ( a n a l y t i c i t y t o the r i g h t being b u i l t i n here). t r a n s m u t a t i o n k e r n e l s between o p e r a t o r s be t r i a n g u l a r ( c f . [C29,40])
and
One notes o f course t h a t o f c e r t a i n types need n o t
A second f e a t u r e
and examples a r e g i v e n below. U
i s t h a t when t h e r e i s an u n d e r l y i n g t r a n s m u t a t i o n P N
t r a l i n f o r m a t i o n a v a i l a b l e f o r Q (as w e l l as f o r
N -+
Q one may have spec-
y) which
can be used as i n
Theorem 9.20 t o develop f u r t h e r t h e i n t e g r a l r e p r e s e n t a t i o n .
I n addition
when t h e t h e o r y i s developed v i a t r a n s m u t a t i o n i d e a s one can l e a v e t h e Melv
l i n t h e o r y e n t i r e l y and work w i t h s p e c t r a l i n t e g r a l s f o r t r a n s m u t a t i o n s Q
-+
N
Q
t o produce i n t e r e s t i n g extended g e n e r a t i n g f u n c t i o n t y p e formulas, e.g.
llan$Qn+a(r)$n+B(p), "P
REmARK 9-21,
which can be u s e f u l i n v a r i o u s ways.
L e t us n o t e t h a t i n Chapter 7 o f [ C s l ] a procedure a k i n t o
t r a n s m u t a t i o n i s employed i n c o n s t r u c t i n g v a r i o u s c o n t o u r i n t e g r a l express i o n s whose k e r n e l s t h e n sometimes serve as g e n e r a t i n g f u n c t i o n s .
Thus e.g.
v
g i v e n a Bessel o p e r a t o r w r i t t e n as z2D2 + Z D + z2 = Q(Dz), c o n s i d e r solu2 t i o n s o f C(DZ)u = A u w r i t t e n i n t h e form ( C beina some general c o n t o u r ) , u ( z ) = l C K ( z , c ) v ( c ) d c where K and v can be chosen i n v a r i o u s ways as f o l lows.
L e t M(Dg)
be a d i f f e r e n t i a l o p e r a t o r w i t h f o r m a l a d j o i n t
M
*
such t h a t
200 (A)
ROBERT CARROLL
5(DZ)K(z,5)
= M(D5)K(z,5).
Then choose v such t h a t M*(D ) v
= A 2v
and C
5
so t h a t "boundary terms" via i n t e g r a t i o n by p a r t s vanish. I t follows t h a t [c(DZ) - h 2 ]u = 0 = iC [ M ( D ) - 2 ]K(z,A)v(A)dX = iC K(z,<)[M*(D ) - x 2 ] v d c 5 2 25 For example i f M ( D ) = - D 2 with ( A ) in the form z KZz t zKZ + z K + K = 0 5 5 55 one can take K(z,c) = exp[+izSinc] so t h a t ic [D2 t x 2 ] K ( z , s ) v ( c ) d ~ = 2 2 5 One takes v = exp(+icx) and ic K(z,s)[Dc + X lv(c)dr, + Ic D5[K5v - Kv5]dc. s u i t a b l e C so t h a t [ K v - Kv ] vanishes a t t h e endpojnts of C. This leads 5 5 1 t o c e r t a i n standard i n t e g r a l r e p r e s e n t a t i o n s f o r Hankel functions, HX(z) = 2
exp[-izSinc + i x c f j d ~ ; H x ( z ) = - ( 1 / n ) i L exp[-izSing + i ~ c ] d cwhere 0 + -IT -t -IT + im and L2: v+i- -+ IT + 0 + -im. Adding these one ob1 2 t a i n s ( J x = (HA + HX)/2) J x ( z ) = - ( 1 / 2 r ) i L exp(-izSing + ixg)dg where L : n + i m -+ IT + -71 + - v + i m . For = n one has only a n i n t e g r a l IT + -IT here and -(l/n)JL L1: - i m
-+
exp(izSin5) i s exhibited a s a generating function f o r t h e J n in t h e form exp(izSin5) = J n ( z ) e x p (i n c ) . Other d i f f e r e n t i a l operators a r e a l s o used in [Csl] f o r t r e a t i n g t h e Bessel functions (along other contours). The theme should be c l e a r , A g r e a t deal of f l e x i b i l i t y i n choosing contours and d i f f e r e n t i a l equations f o r K and v i s allowed in order t o study eigenfunct i o n s u h of Z ( D z ) . In c e r t a i n s i t u a t i o n s t h e kernels K will serve as gene r a t i n g functions ( i n some sense) f o r say un. The d i f f e r e n c e with transmut a t i o n constructions i s f i r s t t h e f a c t t h a t t h e contour i n t e g r a l s a r e n o t
T.
d i r e c t l y r e l a t e d t o any s p e c t r a l theory o r transform theory f o r M o r Secondly the choice of eigenfunction v X ( s ) ( a n d u,(z)) i s n o t made according t o any d i r e c t i v e and t h u s t h e procedure, although very productive, i s somewhat "disorderly" and evidently "ad hoc". 9-22. One should perhaps ask in general what i t "means" t o have a generating function. For transmutation kernels such as g ( r , p ) : pU -+ 5: i n Remark 9.17 w i t h $ Q ( r ) a n a l y t i c f o r Rev > 0 (which i s a "generic" property
REmARK
U
type operators - c f . [C43,45 and 51.7) we use J v ( k r ) Q ( k r / Z ) " / r ( v t l ) so $!(r) 2. r -% r v and p -0-lvQ iL0(r) 'L (r/p)'p-' t o g e t t r i a n g u l a r i t y as indicated by closing t h e contour to t h e r i g h t f o r p z r. On t h e o t h e r hand given for
simple poles o f ;:(r) f o r Rev < 0 as i n d i c a t e d , a (formal) generating funct i o n follows immediately by residue calculus. Hence b o t h t r i a n g u l a r i t y and t h e existence of a formal generating function a r e natural i n t h i s s i t u a t i o n . One can generalize t h e s i t u a t i o n o f Theorem 9.20 as follows. r e f e r t o a general
;itype
operator as i n ( 1 . 7 . 1 ) ; s e t
Let f ,
p,
etc.
GENERATING FUNCTIONS
( c f . ( 9 . 2 7 ) and Remark 9.24). t h a t E(r,p) = 0 f o r p > r .
We r e c a l l f ( v , - k )
(0)
rv+' f o r l a r g e v we see
%
f(v,-k,x)
[f(-v,-k)q(w,k,x)
=
-
P u t t i n g t h i s i n (9.30) one o b t a i n s
f(v,-k)p(-v,k,x)]/(-2~).
Now however ( n o t e v-+ i&. m r-0-1 q(v,k,p)dv/p
Note from Y(v,k,r) Now r e c a l l
201
+
-v-4
= -0-1)
i(p,r).
(-i/Znp)J;:
r'q(-v,k,p)dv
=
(1/21~i)
Hence f o r P < r where g ( 0 . r ) = 0 we have
i s a n a l y t i c f o r Rev > 0 so f o r m a l l y (9.32) can be evalua-
-
t e d by r e s i d u e s upon c l o s i n g c o n t o u r s t o t h e r i g h t
provided f(v,-k)
# 0
f o r Rev > 0, which i s t h e requirement f o r a b s o l u t e l y continuous spectrum. R e c a l l here f ( - v , - k ) = by those o f p(-v,k,x)
W( f (-tl,-k,x)
,q (-v,
k,x) ) w i l l have p o l e s determined
f o r Rev > 0 ( s i n c e f ( - v , - k )
i s analytic i n
ous s i t u a t i o n s a r e p o s s i b l e ( c f . [Dcl; Ne6] e t c . ) .
a n a l y t i c a t x = 0 t h e n t h e o n l y p o l e s a r e a t v = 1/2, 3/2, o t h e r s i t u a t i o n s when e.g.
Vari-
Typical'ly (simple) poles
when 1-2v = - n ( n = O , l , . . . ) and i f e.g.
can occur f o r v(-v,k,x)
tl).
...
xG(x) i s
(there are
t h e o n l y p o l e s a r e a t v = 1, 2, . . . ) .
One needs
now f o r example a f o r m u l a f o r t h e r e s i d u e i n (9.32) a t such p o l e s v i a t h e a n a l y t i c function q(-v,k,r)r(l-Zv) directly.
( c f . [NeG])
o r more s i m p l y v i a f ( - v , - k )
Thus w r i t e f o r yn = (n+1)/2 ( o t h e r values f o r vn c o u l d be hand-
l e d i n a s i m i l a r manner) (9.33)
limf ( - v , - k ) ( v - v n )
vt"
= An f-
n V
&HEB)R€:111 9.23.
t h e k e r n e l (9.30),
$:
(9.30) w i t h L(r,p)
as i n (9.32)
for
p <
N
I n t h e s p i r i t o f Theorem 9.17 w i t h B: P
r, :(r,p)
pa +
z!(r),
the kernel and
y(r,p)
T(r,p)
= 6(r-p)
-f
for
5 given
f o r m a l l y by
8 = 6-l
i s g i v e n by
+ L(r,p)Y(r-p)
i s expressed v i a t h e i n t e g r a l f o r L ( r , p )
generating f u n c t i o n L(r,p) =
1"0
rn/'
^f:
q(vn,k,p)/pf(vn,-k)
so t h a t
i n (9.33) as a where n m i g h t
r u n o n l y o v e r even o r odd i n t e g e r s i n c e r t a i n cases (we c o n s i d e r o n l y t y p i c a l s i t u a t i o n s i n p h y s i c s where vn = (n+1)/2 here).
PhaaA: From ;(r,p)
= G(p,r)
+ L ( r , p ) we want t o show t h a t i n f a c t y ( r , p )
0 f o r p > r as i n Theorem 9.17,
so t h a t o u r f o r m u l a f o r y w i l l h o l d .
=
One
notes o f course t h a t as t h e i n v e r s e o f a V o l t e r r a t y p e t r i a n g u l a r o p e r a t o r T(r,p)
w i l l n e c e s s a r i l y by t r i a n g u l a r .
E(p,r)
= ( 1 / 2 n i ) p r"-\(-v,k,p)dv/p
To see t h i s i n another way w r i t e
and f o r
p >
r close t h e contour t o the
202
ROBERT CARROLL
right.
From
o r f-ro
- fv-
= f(v
-1;
r
f(v,-k)ro(-v,k,p)
=
-2vf(v,-k,p)
A t v = vn = (n+1)/2 we w r i t e l i m ( v - v n ) f ( - v , - k )
= -2vf.
as b e f o r e and l i m ( v - v n b ( - v , k , p ) f(v,-k)
-
we have f(-v,-k)ro(v,k,p)
( 0 )
=
=
?_"
$:.
Since f(v,-k,p), ro(v,k,p), and An nn n n we have f-ro, = f+p- where ron = ro(wn,k, ) and f, Qn = ronf-/f: and c a l c u l a t i n g g ( r , p ) by r e s i d u e s we o b t a i n
are a n a l y t i c a t v
-k). Ri2.n
Then
f-ron/pf:
$!
-L(r,p).
=
REmARK 9-24, L e t us make a few remarks h e r e about t h e use o f t h e formula T(v,p) = -(iv/v)$
g(v,-k,r)*(v,k,r)dr
a l s o [CSO] and Remark 8.18). ing that
(T =
tions
"Q ) dT( P 1 )
v-4, u
Recall t h a t v / r = i m
=
Li
= v-%).
?(u)=
Such a f o r m u l a i s used f o r m a l l y i n e s t a b l i s h -
d e f i n e d by (9.30) maps
y(r,p)
culations there). ( ;(r,p
= ~ ( v - u ) i n t h e K-L i n v e r s i o n ( c f .
$!
$:
+
and
r' (see here (9.27) and t h e c a l -
* = $:/f(v,-k)
so t h e r e f o r e
r'[ ( - ~ P / v 9 ( v , -k,p ,*(v, k, P 1 ) [ f ( u ,- k ) / f ( v ,- k ) I( v / p )dv Now i n t h e K-L t h e o r y T ( v , u ) = 6 ( v - v ) a c t i n g on funcwhich a r e even i n v .
(f(s),g(u,-k,s))
Note t h a t T ( v , v ) i s
even i n v i t s e l f b u t now symmetrical i n v , ~ . The a c t i o n we want i n d i f f e r e n t (namely ? ( v , p ) rv-%) N
and i t i s s i m i l a r t o t h e a c t i o n ( r e c a l l N
W
@
is
= 6 ( v - v ) a c t i n g on
= [f(v,-k)/f(v,-k)l(v/v)T(v,v)
= Ip/f(v,-k)
and
* = @/r)
N
W1 = * w h e r e B: Q, -+ Q, Bg' = ($/$l)g,
B(r,s) = ker B ( s
( c f . Remark 8.18). P - ( i / n ) l i I vg 1 (u,-k,s)*(v,k,r)dv and f o r m a l l y
= ( g(v,;k,r),g'(y,-k,s))
(
+
r ) , and p ( r , s )
Thus one can w r i t e a ( r , s ) = B(rYs),ql (v,k,s)) = i i z * ( v , k ,
Thus we want Tl(v,v)(w/v) = ~ ( v - P ) a c t i n g on *(v,k,r). r)'Tl(vyp)(v/p)dv. 2 Now modeled on Remark 8.18 we can w r i t e dp = $dv w i t h ^p = ( 2 i / T ) v / f ( v , - k ) f(-v,-k)
and u s i n g
( 0 )
one has Gg(v,-k,x)
L e t us r e p e a t t h e argument o f Remark 8.18.
Thus s e t t i n g
'u
=
*(r,v)
s)
-
k,r)
one has f r o m Bgl = (g/;l)g,
\~r (-v,k,s))
= G(r,v)
,1 - *(r,-v)]
-
f o r Rev = 0.
-
P(v,k,r)
-
o r 0, = *(v,k,r)
*(-v,k,x)]. (v,k,s))
B(r,s.),ql
(
*(-v,k,r)
Y
*(r,-v)
-
= (-iv/v)[*(v,k,x)
= ( B(r,s),*,(v,k,
-*(r,v)
= 0- = [*(-v,
Here 0, i s a n a l y t i c f o r Rev > 0 and 0- i s an-
a l y t i c f o r Rev < 0 so t h e y r e p r e s e n t p a r t s o f an a n a l y t i c f u n c t i o n 0. By such t h a t t h e a s y m p t o t i c beassumption here we a r e d e a l i n g w i t h o p e r a t o r s h a v i o r o f "wave" f u n c t i o n s i s t h e same as t h a t f o r Now q0(v,k,r) for a l l
V,
= (n/2kr)4i-v+4Jv(kr)
co ( c f .
Example 9.16).
and, a l t h o u g h t h i s i s i n f a c t a n a l y t i c
i t i s t h e e s t i m a t e f o r Rev > 0 which determines e s t i m a t e s f o r e .
One knows e.g.
Jv(z)
0 so l i v * o ( v , k , r ) /
2,
(z/Z)'/r(v+i)
2,
(2~v)-~(z/2)~exp[v-vlog~] f o r Rev 5
5 c f o r Rev > 0 (and say r
has s i m i l a r l y q0(-",k,r)
= (n/2kr)Jliv+35J-v(kr)
> 0 fixed).
so l;*'-il
For Rev < 0 one
2 c.
Hence iv*+ N
and i-%(resp. i%+ and i-%-) a r e bounded and we w r i t e iv@+ = @+ (resp. h
i-'0-
= 0-1.
We see t h a t t h e corresponding
6
w i l l be a bounded a n a l y t i c
GENERATING FUNCTIONS
203
To see t h a t
f u n c t i o n and hence a c o n s t a n t by L i o u v i l l e ' s theorem. look a t v
+ m
and hence T1(v,p)(w/u) *(v,k,r).
=
Iiv*oI
on t h e r e a l a x i s so t h a t
a c t i n g on *(v,k,r)
= a(w-1~)
= 0
It follows that 0 = 0
0.
+
with
(
o(r,s),*l(v,k,s))
T h i s v e r i f i e s Theorem 8.17 as i n Remark 8.18.
The same pro-
cedure can now be used t o check t h e a c t i o n on o t h e r f u n c t i o n s ( c f . [ C S O ] ) . Thus one w r i t e s
Jr
f(v,-k)f(-v,-k)
on [O,im).
It follows t h a t
(
-
-k)r'-'
Jo" ;(r,p)g(u,-k,p)dp
=
and r e c a l l t h a t *(u,k,p)
i n g G ( r , u ) = (T(r,p),*(u,k,p))
=
-
we o b t a i n 0, = ? ( r , p )
g+ i s
- G(r,-p)
0.
Hence t h e y a r e p a r t s o f an a n a l y t i c f u n c t i o n
f o r Reu = 0 where
i';(u,r)
Q
Li,
i m
&
= 0- = p ( r ,
G- f o r
Rep <
and one has bounds as
( i ~ ~ / ~ / 2 ) ( k r / 2 ) ' - 4 / r ( u t l ) CJ ( k r ) which i s Q
It f o l l o w s t h a t
IJ 0 and hence i n p a r t i c u l a r t h a t
G+ = G- =
(;(r,P),v(u,k,p)/p) = (:(r,o),$:(p)) F o r m a l l y t h i s amounts t o ? ( v , p ) = p-').
REFilARK 9.25,
-
- *(r,V)
a n a l y t i c f o r Reu > 0 and
,lJ-' = T
Hence d e f i n -
< c f o r Reu > 0 and r > 0 f i x e d as b e f o r e and,
Thus \ i ' G ( u , r ) l
bounded as b e f o r e .
Set now ? ( r , u )
p(p,k,p)/pf(u,-k).
-u)
from Example 9.16,
= -(1/2u)[f(-u,
- f(u,-k)p(-u,k,~)l/p). N
before.
2
(2iv /n)/
=
w h i l e on t h e o t h e r hand from (a) <;(r,p),g(U,-k,p))
v(r,p),[f(-u,-k)v(u,k,p)
r'-'/f(U,-k)
where ?I(")
a(v-vl/$
=
Then c o n s i d e r f r o m (9.30)
?(r,p),g(u,-k,p))
f(p,-k)r-'-']
= (-1/2u)( =
g(v,-k,r)g(u,-k,r)dr
(where ;:(PI = P ( ~ , ~ , P ) / Pw i t h = 6(v-u) a c t i n g on rub'.
The K-L t h e o r y g i v e s f a i r l y g e n e r a l l y a f o r m u l a 6 ( r - s ) = - ( i / n )
v*(v,k,r)g(v,-k,s)dv
( c f . however [Jb2])
and t h u s a c o m p o s i t i o n
can
m v
be w r i t t e n ( U = V-4, T = u-4)/, B(r,p)q(p,s)ds = ( - i / n ) ( l / & r i ) P [ v ( v , k , r ) / r l / j I u [ g (u,-k,s)/f (u,-k)lJ: pT-'-'dp = ( - i / n ) i i -i m *(u, k,r)ug(u,-k,s)du = a ( r - s ) ( s i n c e M;'[~(T-U)]
= p -U
and
= :/
M[p-"]
This formula a l -
pT-l-'dp).
so f o l l o w s d i r e c t l y f r o m (*) $"4u ( r ) = ( i ( r , p ) , p ' )
by composing w i t h
(-i/v)
vg (v,-k, s ) / f ( v , - k ) . One knows as b e f o r e ( * )
Another development o f G-L t y p e a r i s e s as f o l l o w s . f(v,-k,x)
=
[f(-v,-k)p(v,k,x)
- f(v,-k)v(-v,k,x)]/(-Zw).
j e c t of p r o d u c i n g an i n t e g r a l o f t h e form we c o n s i d e r ( u = V-4, $ = (9.35)
q(c,r)
Hence w i t h t h e ob-
i n a general G-L e q u a t i o n
p/r)
( i / 2 ~ ) lim$!(r)[cV-'(f(-w,-
k)/f(v,-k))
-
~ - " - ' l d w --
i( i / 2 1 ~ r ) [jzcv-'[f
(-v,-k)lp ( u , k , r ) / f
= -(i/n)
(v,-k)
/i~c'vg(u,-k,r)dv/f(w,-k)
-
p(-v,k,r)ldv = ;(S,r)
=
2 04
ROBERT CARROLL
Define then (-v-% = - u - 1 )
iTHE0)REM 9-26, From $!(r)
G-L equation ( f o r where A i s given by (9.36)
= ( g ( r Y p ) , p u )t h e r e i s a general
5
P and {) in t h e form ; ( c , r ) = 6 and given by (9.30).
( g(r,p),A(p,E))
with
RfillARK 9.27- Compare here with [Lrl], pp. 362-364 f o r
a G-L symnetric kernel F(x,y)
kr, y
= k p , e t c . ) a s follows.
6 = co.
One defines
( k L (x,y) ,L L ( r , p ) , kLlo(x,y) 21 K(r,p), x = 01 * Set Lo,(x,y) = Lol(y,x) a n d F(x,y) = Lol + (x,z)LOl ( y , z ) d z and one obtains f o r
Evidently we should our standard example Q = Qo, F(x,y) = - ( i / 2 ) J l [ i ( x y j 4 ] . have i n A above a s p e c t r a l i n t e g r a l f o r F (modulo a d e l t a function and in the appropriate v a r i a b l e s ) . Let us w r i t e t h i s out. The G-L equation of [Lrl], p. 363 is F(x,y) + L l o ( x y y ) + j f Llo(x,z)F(z,y)dz = L* ( x , y ) . Set-
ol
+ K ( r , p ) + fr K(r,s)F(s,p)ds = T h u s f o r = 6 + L and 6 = 6 + K L*(r,p) = L ( p , r ) ( L ( p , r ) = 0 for p < r). ( 6 ) w i l l agree w i t h Theorem 9.26 provided A ( s , p ) = ~ ( s - P ) + ?(s,p) = 6(s-p) + (k/2)11[k(sp)4] ( r e c a l l I 1 ( z ) i = J,(zi)). For A we have
t i n g kF(x,y)
= ?(r,p)
one has
( 6 ) ?(r,p)
pU-l6(s-p)dp = sU-', ( 1 / 2 n i ) f sU-'p-'do
The l a s t term i s ~ ( s - P ) s i n c e 6 ( s - p ) , etc.
(9.38)
Hence formally we want jrn -(sp)'(k/Z)
( k / 2 ) I l [ k ( s ~ ) 4 1=
=
2v e -inv r ( l - v ) d v
2 n i r (1 +v)
i-
This is e a s i l y p u t i n t h e Mellin framework ( ( s p ) = l / x ) i n t h e form ( k / 2 ) i m -u 2 I1 (kx-%) = - ( k / 2 n i ) L i m x ( k . 2 ) "exp(-inv)[r(l-v)/r(l+v)]d" and t h e contour integral in (9.38) y i e l d s t h e desired i d e n t i f i c a t i o n (poles a t 1-v = - n ) Now from (9.35)-(9.36) we have : ( r , p ) i(9.39) nut--'-' A(n,r) = ( l / Z T i ) iim
F ( n , r ) = - (1/2ri )
= ( ;(p,n),A(n,r))
with
dv + F ( n , r ) = s(n-r) + F ( n , r ) ;
imn'ru[f (-v,-k)/f ( v , - k)]dv i i m
Again i t i s t h e simple poles of f ( - v , - k ) f o r Rev s e r i e s representation f o r F ( n , r ) i n t h e form ( v n
> Q ,
0 t h a t give a formal
( n + 1 ) / 2 i n t y p i c a l cases)
GENERATING FUNCTIONS
( c f (9.33) f o r
?:).
205
Hence
CHEdREm 9-28, The symmetric k e r n e l A(n,r) o f t h e general G-L e q u a t i o n o f can be w r i t t e n f o r m a l l y as A ( 0 , r ) = 6 ( q - r ) + F(n,r) and Theorem 9.26 f o r
5
where
F has t h e f o r m g i v e n i n (9.39)-(9.40)
i n typical situations.
We w i l l show now t h a t t h e procedures l e a d i n g t o s p e c t r a l measures e t c . i n 51.7 a r e a l s o v a l i d when t h e a s y m p t o t i c b e h a v i o r i s modeled on t h e W h i t t a k e r f u n c t i o n s which a r i s e f r o m a Coulomb p o t e n t i a l hypotheses o f 51.7).
= a/x
(not included i n the
We o b t a i n a v e r s i o n o f t h e g e n e r a l i z e d K-L i n v e r s i o n
developed i n 58 and t h i s g i v e s a t r a n s f o r m t h e o r y f o r c e r t a i n W h i t t a k e r functions.
L e t us begin w i t h t h e W h i t t a k e r e q u a t i o n i n t h e form
uZz + [-%+ ( K / z ) + ( k - v 2 ) / z
(9.41)
2
]U
= 0
2 2 which has t h e f o r m x u " + x2[k2 - ( a / x ) ] u = x u w i t h z = Z i k x , K = - a / 2 i k , 2 = a/x and v = L++ as b e f o r e ( c f . [Cel; N e l l ) . A 2 = v -$, and u ' = ux; t h u s For s o l u t i o n s o f (9.41) we have W h i t t a k e r f u n c t i o n s (9.42)
F ( u G ~K- ,1+2U, Z ) ;
( z ) = e-4z zvq'
M K,'J
where lF1 denotes Kumner's f u n c t i o n .
One w r i t e s ( c f . " e l ] )
a/2k and V = 2nk/x = a/x, and v = L++, 50
V++K
=
K
= i n , SO n =
L + l - i n , w i t h 2v+l = 2L+2.
One has t h e n as r e g u l a r s o l u t i o n s q L = (Zik)-'-l
(9.43) (x-'-'qL(k,x) (9.44)
+
fL(k,x)
1 as x
Min,v ( Z i k x ) = (-2ik)-L-1M-in,V +
0).
(-2i kx)
For J o s t s o l u t i o n s we t a k e
= W-in,V(-2ikx);
xlim e-ikxfL(k,x)
= 1
Observe t h a t n = a/2k depends on k and s e t f i = Win,v(2ikx). ( z ) / r ( l + Z v ) and W K , v ( ~ ) a r e e n t i r e CEmA 9-29, ( c f . [ B b c l ] ) . N ~ , ~ ( Z=) M KY'J i n u with W (z) = W (z). For ( K , z ) f i x e d and l a r g v l < n/2, M (z) Q
K 3-V
K,V
K,V
zV++1 + o ( I ~ \ - ' ) I as I"\ + a. S e t t i n g W(f,g) = f g ' - fag, W ( W ~ , ~ ( ~ ) , M ~ , ~ ( z ) ) = r(1+2v)/r($+V-K); W(WK ( ~ ) , W - ~ ~ ~ ( z e x p ( k= i ~e x) p) ( + i i w ) ; W(MK . V ( z ) , ,V
( z ) ) = - 2 ~ ;and MK
M K,-V
+
( z ) = [r(2~+l)exp(+i~~)/r(v++~)]W-~,~(zexp(?in)) ,V
[r (2v+l )exp ( + i 'II ( K - v - % ) )/r ( v+%+K) l W K
,v
(z ) .
Now u s i n g these formulas w i t h z = 2 i k x and - 2 i k x = z e x p ( - i n ) one o b t a i n s
206
ROBERT CARROLL
(vL(k,x)
= (2ik)-L-1Min,v(2ikx)
W(fL,fi)
= -2ikexp(-an)
t h e zeros o f
For z = 2 i k x and z e x p ( - i T ) = - 2 i k x ,
by Lemna 9.29 so ( 6 ) FL = W(fL,vL)
and we can w r i t e now
+ FL
vP).
S i m i l a r l y F i = W(f-,v
r(Zv+l)/r(v+%+in). $-in)
=
vL
=
L 4
= (2k)
1
) = (2k)-v+'1(-i)v-%(2~+l)/r(v+
exp(TIn)[FLfi
-
Fifd]I/Zik.
One notes t h a t
occur a t t h e p o l e s o f r ( v + $ + i n ) o r V+%+in = -m (Rev < 0 ) .
F i n a l l y one w r i t e s t h e Coulomb Green's f u n c t i o n as G L ( k , r , r ' ) ( r < = min(r,r')
fL(k,r,)/Fp(k)
.
-v +% v -4
= -qL(k,r<)
and r> = m a x ( r , r ' ) as b e f o r e ) and i n w o r k i n g
w i t h t h i s i t w i l l be u s e f u l t o have fL expressed v i a (9.42) and (9.43) i n terms o f
as f o l l o w s .
We w r i t e vL(k,x) as v(-v,k,x).
( - 2 i k x ) and t h i n k o f
(7) '.k '+%(l-Zv)/r(-V+%+in). n )v ( V ,k ,x 11/2v.
= v(v,k,x)
= (-2ik)
-v-%
M-in,v + Set Fk = F(v,n) so t h a t F(-v,n) =
Then one has
(0)
fL
=
-
[F(v,n)v(-v,k,x)
F(-V,
I n keeping w i t h t h e program o f 9 1 . 7 we c o n s i d e r
I lo co
I =
(9.46)
h(r')[-Gl(kyr,r')/rr']dr'
d;v
( f o l l o w i n g [Bbdl) where
r
o f " i n f i n i t e " radius i n the
i s a semicircle
r i g h t h a l f p l a n e Rev > 0 w i t h v e r t i c a l s i d e t h e a x i s Rev = 0.
We c o n s i d e r
f i r s t t h e i n t e g r a l .h over a l a r g e s e m i c i r c l e o f r a d i u s R and l e t R We have seen t h a t
5
+-
m.
has n o zeros f o r Rev > 0 and s e t t i n g r ' = s c o n s i d e r
f i r s t r < s and t h e t e r m ( f r o m ( 9 . 4 6 ) ) J = p ~ [ v ~ ( k , r ) f ~ ( k , s ) / F ~ ( k ) ] d v . Let
J
be t h e i n t e g r a n d i n J and r e c a l l S t i r l i n g ' s formula r(z+a)
(-z)zz+a-4 f o r largzl <
TI.
Go t o [Kgl],
%
&exp(-z)
p . 316 now and t a k e x = 2 i k s and
-x = x e x p ( - i n ) as above ( t h e c h o i c e x e x p ( - i V ) i s c l e a r l y i n d i c a t e d throughout).
Take
K
= i n and we w i l l e s t i m a t e W
-K,Vb
(-x).
One s e t s z = l o g ( x / Z i v )
and from expz = ( k s / v ) we s e t 8 = (exp2z - 1 ) * = [ ( k s / v ) 2 - If'. Since I v / + we w r i t e 8 = i[l - ( k s / v ) 2 1'b 'L i - + ( k s / ~ ) ~ so i that (i-e)/(i+e) 2 Then k ( k s / v ) and 5 = ue i% i ~ l o g [ ( i - e ) / ( i + e ) ] % v i + i l o g [ 4 ( k s / v ) 2 j 5 v . from [Kgl] ( n o t e -TI+€ < argg = TI < TI-E so one r e f e r s t o '5 i n [Kgl]), -v+% v-4 v - V ~ ' . V - $ -in (-2iks) % s exp(-v)v 2 k i v (cf. also [Ofl]). Hence '-in,v f r o m - ( & ) and Lemma 9.29 one has
-
&HEP)RElIl 9.30, The a s y m p t o t i c e s t i m a t e f o r J i s IT = @(v,k i(r/s)"(rs)'
(r
<
s).
Correspondingly f o r r > s one w i l l
9 T d v a r i s i n g from (9.46) and 7 = v r e ( k , s ) f p ( k , r ) / F L
%
1
%
G EN ERAT I NG FUNCT I0NS
and 51.7 now a p p l y c o m p l e t e l y t o t h e J and J terms
The methods o f [Bbdl]
above and one can conclude t h a t I r = n i h ( r ) where (9.46)
207
a r i s i n g from 9 .
Consequently, u s i n g
(0)
9i s
the part o f I i n
( a l s o f, i s even i n
V)
EHEOEm 9-31, The completeness r e l a t i o n f o r t h e J o s t s o l u t i o n s i s 6 ( r - s ) = f J w [f,(k,r)/rl[f,(k,s)/s]dp w i t h dp = -2v 2 dv/niF(v,n)F(-v,n). We w r i t e d p ( v ) = $ ( v ) d v and s i n c e r ( Z v ) r ( l - Z v ) = n/SinZnv w i t h r ( % + v - i n )
r( -v+%+in) $-in).
=
T/Cosn(v-in) one has ;( v ) = ZkvSinZnvr(v+%+in)/TCosa( v- i n ) r ( v+
D e f i n e now a W h i t t a k e r t r a n s f o r m and i t s i n v e r s e by
1
m
n
(3.48)
Nf(v) = f ( v ) =
f(s)fR(k,s)ds/s;
rf(r) =
0
loimA
f(v)fR(k,r)$(v)dv
I n o r d e r t o use t h e g e n e r a l i z e d K-L t e c h n i q u e o f 58 now we n o t e t h a t p , n
f ( v ) , and f
R
a r e even i n v and w r i t e as b e f o r e @(v,k,r)
then using
(0)
(9.49)
r f ( r ) = (-i/n)
=
p(v,k,r)/F(v,n);
[imv?(v)@(v,k,r)dv Ljm
CHEOREm 9.32,
The g e n e r a l i z e d K-L theorem f o r t h e p r e s e n t s i t u a t i o n has t h e
form (9.49) and i n v e r t s t h e W h i t t a k e r t r a n s f o r m o f (9.48). L e t us w r i t e o u t (9.49) now i n terms of M
@( v, k , r )
=
r( v+$+in)M-i
COROCLARfl 9.33.
Kc,v
as f o l l o w s .
F i r s t note that
n, "( - 2 i k r ) / ( - 2 i k r ( 2 v + 1 ) ; t h e n one has
The W h i t t a k e r i n v e r s i o n has t h e form ( f o r s u i t a b l e f )
1
m
(9.50)
mf(v) = ? ( v ) =
- 2 i ks )ds/s;
f(s)W-in,v (v)M-i
J-2i
k r ) [ r ( v + % + i n ) / r ( Z v + l )]dv
Other transforms based on W h i t t a k e r f u n c t i o n s a r e a l s o known (see e.g. v
[Wt
2
-
q w h e r e 7; = (r u ' ) ' w i t h 11. " 2 -u-1 2 e i g e n f u n c t i o n s o f Pu = x u i n t h e f o r m u = r' o r r (A' = v -%, 0 = v-%) and Gu = (r2 u ' ) ' + r 2 [ k 2 - a / r ] u . Again s e t G:(r) = pu(k,r)/r ( u = R ) and One t h i n k s now o f a t r a n s m u t a t i o n B: P
-+
f o r m a l l y ( c f . (9.30)) (9.51)
v
B(r,p)
=
( 1 / 2 1 ~ i ).f'(2ikp)-'-1mKyu+4
We do n o t have an e x p l i c i t f o r m u l a f o r
g(r,p)
( 2 ik r )r( 2u+2 )do i n (9.51) b u t we can f o r m a l l y
r e p r e s e n t i t as a g e n e r a t i n g f u n c t i o n as f o l l o w s .
The i n t e g r a n d i s a n a l y t i c
208
ROBERT CARROLL Hence
except f o r t h e p o l e s o f r(2u+2) a t u = -1-n/2 w i t h r e s i d u e (-1)’/2n!.
&HEOREN 9-34, The t r a n s m u t a t i o n k e r n e l and f o r
(c
= 2 i k r ) g(r,p)
v i a t h e formula = Zikp, mK,%(n+l) (F)r(n/2+1 -K)/n!r(-n/Z-K). RK ,%(n + l )
Phaua:
o f (9.51) i s z e r o f o r
g(r,p)
P >
r
r i t serves as a g e n e r a t i n g f u n c t i o n f o r t h e W h i t t a k e r f u n c t i o n s
p <
= (1/2r)
10
n/2(-1)n
L e t us n o t e f i r s t t h a t ( c f . [ B b c l ] ) bi(mK,m/27m K,-m/2 ) = -Sinnm/n =
0 f o r m i n t e g r a l so t h e two f u n c t i o n s a r e l i n e a r l y dependent and i n f a c t ( z ) = r(%+m/2-~)rn~,,,/,(z). Now t h e r e s i d u e c a l c u l a t i o n ,-m/2 f o r (9.51) g i v e s B ( r , p ) = - ( l / r ) (2ikp)n/2mK,-+-n/2 ( Z i k r ) ( - l )‘/Zn! which
rf%-m/Z-K)m
K
2
t h e n y i e l d s t h e formula i n d i c a t e d .
I n terms o f convergence l e t us n o t e a l s o
(F)/(n+l)!. We see t h a t , s i n c e MK ( z ) % z’++ t h a t mK,%tn/2 (‘I = MK,$+D/2 .!J -+ m , t h e i n t e g r a n d i n (9.51) i n v o l v e s (F/:/a)“+l and hence f o r p > r as one can c l o s e t h e c o n t o u r t o t h e r i g h t t o g e t g ( r , p ) = 0.
10- 0RCH060NAt P ~ C # N ~ ~ I ~ ~AND I \ C $&RAWIU&ACZ(DN, One knows t h a t t h e r e a r e r e l a t i o n s between t h e t h e o r y o f orthogonal polynomials and methods o f i n v e r s e scattering (cf. [All;
C40,51;
Cd4,6;
Gh1,3;
Kn8; Kr9; L x l ] ) .
We work here
w i t h continuous analogues, e x t e n d i n g c o n s i d e r a b l y t h e ideas o f K r e i n f u n c t i o n s , and show how t r a n s m u t a t i o n methods p r o v i d e t h e c r u c i a l i n g r e d i e n t s and techniques f o r t h e t h e o r y .
F o r general m a t e r i a l on o r t h o g o n a l p o l y -
nomials l e t us c i t e [Akl; A l l ; Cul; F v l ; S t l l ] .
One way o f d e v e l o p i n g t h e
t h e o r y o f o r t h o g o n a l polynomials ( c f [ C u l l ) i s t o s t a r t w i t h a measure dw on an i n t e r v a l (a,b)
and d e f i n e a moment f u n c t i o n a l
b (10.1)
f(A)dw(A)
L(f) = a
The moments pn = L ( A ~ b) e i n g t h e n known one l o o k s f o r p o l y n o m i a l s pn(A) such b Various e q u i v a l e n t requirements can be u t t h a t (A) / , p n ( X ) p m ( x ) d ~ = .,6, i l i z e d . For example i t i s enough t o show (+) L(a(A)pn(A)) = 0 f o r polynomia l s ~ ( h o) f degreee m < n w h i l e L ( n ( A ) p n ( A ) ) = 0 f o r m = n. A l t e r n a t i v e l y one need o n l y show ( 6 ) L(Xmpn(A)) = Km”,
w i t h Kn # 0.
Now i n working w i t h
polynomials on t h e u n i t c i r c l e one d e a l s w i t h r e c u r s i o n r e l a t i o n s of t h e form ( c f [ A l l ] )
un+,
v o ( z ) = 1, an =
an,
= angun
+
-
b v ; v ~ =+ b~n m n + anvn w i t h say uo(z) = 1,
and an - lbnYzn> 0 ( z = e x p i e ) .
One can t r a n s f e r t h e
spectrum t o t h e r e a l a x i s h e r e and l e t n become a c o n t i n u o u s v a r i a b l e t o o b t a i n t h e e q u a t i o n s f o r K r e i n f u n c t i o n s ( c f . [Ku8; Kr91, A u
+
P, v
-+
P*)
dPdt = - i A P
-
b(t)P,;
dP,/dt
=
-b(t)P.
+
-A, b
+
-b,
Now one c o u l d d e p a r t
from t h i s p o i n t b u t we p r e f e r t o work w i t h what a r e ( e x t e n s i o n s o f ) essen-
ORTHOGONAL POLYNOMIALS
209
t i a l l y the real p a r t s of such functions ( c f . [C51; Lxl] - p r e c i s e l y we will be dealing with functions corresponding t o y+ = 2CosAt - (1/2)exp(iAt)[P + P*]
This goes back t o work in l i n e a r s t o c h a s t i c
f o r example w i t h b r e a l ) .
estimation and f i l t e r i n g a n d t h e functions b , P , a n d P, a l l have meaning in such a context ( c f . [C50,51,74; Cd4; Kr8; Dr9; Lxl] and 443.4 and 3 . 5 ) ; i n p a r t i c u l a r y+ corresponds t o a s p e c t r a l form of an even innovations process.
Q , h where p QA , h i s a soluIndeed i t was shown i n [C50,51; L x l ] t h a t Y+ % p A 2 t i o n of a d i f f e r e n t i a l equation Qu = - A u with u ( 0 ) = 1 and u ' ( 0 ) = h with l p4A I h ( y )= Coshy + {f K(y,x)CosAxdx where K(y,x) corresponds t o a f i l t e r i n g kernel (pQ f o r h = 0 i s denoted by p f a s u s u a l ) . Such a formula places A,h t h e material in t h e context of s c a t t e r i n g theory and more generally in the context o f general transmutation theory. We w i l l show now how c e r t a i n techniques in t h e theory of orthogonal polynomials have continuous analogues in the framework of transmutation theory and t h i s i n t r i n s i c connection leads t o some new r e s u l t s and points of view f o r general orthogonal functions ( c f . a l s o [Cd4,6; Gh1,3] f o r some r e l a t e d connections a t t h e d i s c r e t e level between s c a t t e r i n g theory and orthogonal polynomials - our methods a r e more general with q u i t e d i f f e r e n t focal points and deal w i t h l a r g e c l a s s e s of In p a r t i c u l a r we can allow the measures dw continuous analogues on [O,m)).
on [O,m) t o have polynomial growth and t h i s corresponds t o dealing w i t h cert a i n s i n g u l a r di f f e r e n t i a1 ooerators. Let t h e r e be given now a measure dw on to,..) which f o r the moment we assume t o be of t h e form dw = ( 2 / v ) d A + d u where do is f i n i t e . Extension of t h e theory t o measures of polynomial growth will be given l a t e r . We w i l l think of "polynomials" (of degree t ) as functions (10.2)
n(X,t)
=
CosAt +
I' 0
c(t,s)Coshsds
T h u s "polynomials" a r e e n t i r e functions o f exponential type t (and any even e n t i r e function of exponential type t has such a r e p r e s e n t a t i o n ) . The mome n t functional ( c f . ( 1 0 . 1 ) ) w i l l be given as (10.3)
L(Cosxt) =
J
m
Coshtdw(A)
=
g(t)
0
One recognizes g ( t ) as a readout impulse response in the theory of c e r t a i n geophysical inverse problems t r e a t e d by transmutation methods ( c f . [C40,66, 70-721 and Chapter 3, $ 8 ) . In f a c t i t i s convenient t o w r i t e
21 0
ROBERT CARROLL
(and extend gr t o be an even f u n c t i o n when needed). f o r "polynomials"
!
71
Now assume one l o o k s
= f such t h a t
m
(10.5)
f(h,t)f(l,s)dw(x)
= &(t-s)
0
and a c o n d i t i o n f o r o r t h o g o n a l i t y analogous t o say (+) c o u l d be
c
(10.6)
Cosxsf(h,t)dw
(the notation z(t,s) given f(A,t)
= g(t,s)
= 0
(s < t )
a r i s e s from general t r a n s m u t a t i o n t h e o r y ) .
o f t h e form (10.2) w i t h c f ( t , s )
= K(t,s)
f o r c e one o b t a i n s immediately a "G-L" equation. N
(10.7)
B(t,s) = 0 =
(
CosAt,Coshs)w
where ( C o ~ A t , C o s A s ) =~ A ( t , s ) =
R(t,S)
g
=
and g i v e n (10.6) i n
For s < t
lot
K(t,T)(
COSAS,COSXT)~~T
:1 CosxtCosxsdw can be expressed i n terms
o f t h e moment f u n c t i o n a l L o r g(.)
(10.8)
+
Indeed,
i n (10.3) as A ( t , s )
= 6(t-s) + R(t,s)
+ gr(
[ C o s x ( t + s ) + C o s A ( t - ~ ) ] d ~= l [ g r ( t + S )
It-SI)]
An i n t r i n s i c v e r s i o n o f (10.8) i s g i v e n below v i a g e n e r a l i z e d t r a n s l a t i o n .
iTHE@REl!l 10-1, Given f ( A , t )
+
= Cosxt
+ :1 K(t,s)Cosxsds w i t h (10.6) i t f o l l o w s + K(t,s)
s a t i s f i e s a G-L e q u a t i o n f o r s < t o f t h e form n ( t , s )
t h a t K(t,s)
fi K(t,T)fL(T,s)dT
= 0 with
a given
v i a t h e moment f u n c t i o n a l i n (10.8).
REMARK 10-2. W i t h f L expressed v i a (10.8) t h e G-L e q u a t i o n i n Theorem 10.1 i s i n t h e s o - c a l l e d t i m e domain v e r s i o n which i s u s e f u l i n a p p l i c a t i o n s ( c f . [C66,71,72]
and 83.8).
Such G-L e q u a t i o n s g e n e r a l l y have unique s o l u t i o n s
and can i n f a c t be s o l v e d n u m e r i c a l l y ( c f . [C40,66;
Cel; Se2,3]).
Now i n o r d e r t o c o n s t r u c t t h e a p p r o p r i a t e orthogonal f ( A , t )
L e t K ( t , s ) be t h e s o l u t i o n o f t h e G-L e q u a t i o n i n Theorem 10.1
&HE@R€lIl 10.3,
(s
one has
(*) f ( A , t )
< t ) and d e f i n e
=
Cosht + f$ K(t,y)CoshdT.
Then t h e f ( h , t )
s a t i s f y (10.5).
Pmod:
F o r m a l l y w r i t e o u t t h e l e f t s i d e o f (10.5),
C
(10.9)
f(h,t)f(x,s)dw
jOs K(s,c)A(E,t)dE
+
= I = A(t,s)
+
u s i n g (*), i n t h e form
lot
K(t,r)A(T,S)dT
jotlos K ( t , ~ ) K ( t Y ~ ) A ( ~ , r ) d 5 d Tz ( s , t ) =
+
+ a(t,s)
+
K(t,s)
S
+ K(s,t)
+
Jt K(t,T)fL(T,s)dr 0
K(s,E)a(C,t)dE
+
0
+ Jot
Jos K( t ,T ) K( t, 5 )a:d Ed=
ORTHOGONAL POLYNOMIALS
21 1
where E ( s , t ) = 5 ( t - s ) + fomin(s't)K(t,T)K(s,T)dT.
Now suppose s < t and use
Theorem 10.1 ( n o t e K ( s , t ) = 0 f o r s < t ) . One sees t h a t I = n ( t , s ) t K ( t , s ) S
Jot K(t,T)a(T,S)dT + SO K(s,c)[n(t,C) + K(t,S) + 1 ; K ( t , ~ ) s L ( ~ , t ) d ~ ] d =g 0. A s i m i l a r r e s u l t h o l d s f o r s > t and one o b t a i n s (10.5). +
Then a Vol-
has t h e form ( * ) i n Theorem 10.3. t t e r r a i n v e r s i o n a l l o w s one t o w r i t e Cosxt = f ( x , t ) + so L ( t , s
REMARK 10.4.
Suppose f ( A , t )
ds.
If
t h e f ( A , t ) a r e o r t h o g o n a l one o b t a i n s then (10.10)
z(T,t)
Consequently, f o r
CosAt,f(X,T))w
= ( T
> t, B(T,t)
=
&(t-T)
+ L(t97)
0 which i s (10.6).
=
Thus g i v e n o r t h o g o n a l -
i t y o f t h e f expressed i n t h e form ( * ) one o b t a i n s t h e G-L e q u a t i o n v i a
Theorem 10.1, and conversely, g i v e n t h e G-L e q u a t i o n , one c o n s t r u c t s o r t h o g Hence f o r f i n t h e f o r m (*) t h e G-L e q u a t i o n i s
onal f i n t h e f o r m (*).
equivalent t o orthogonality. REMARK 10-5. The G-L e q u a t i o n i s o f course analogous t o a c o e f f i c i e n t d e t e r m i n a t i o n procedure i n t h e d i s c r e t e case ( c f . [ A l l ;
Cd41).
Thus t o d e t e r -
such t h a t p o l y n o m i a l s p n ( x ) = 1 : a m n r are orthogonal r e l a t i v e t o mn k dw one uses ( 4 ) t o g e t L[X pn(X)] = Kmfirnn = 1, amnuk+m. T h i s i s a k i n d o f
mine a
d i s c r e t e G-L equation. r e p r e s e n t e d i n t h e f o r m (*) i n Theorem 10.3 w i t h K s a t i s f y -
Now g i v e n f ( x , t )
i n g t h e G-L e q u a t i o n o f Theorem 10.1 l e t us assume n ( t , s ) i s t w i c e c o n t i n u 2 2 o u s l y d i f f e r e n t i a b l e ( w i t h DSa = D p ) . Then K w i l l be d i f f e r e n t i a b l e i n Theorem 10.1 and we n o t e a l s o t h a t K(t,T) = ( Z / T ) / ; so t h a t K T ( t , O )
=
[f(A,t)-Cosht]CoSA~d~
A s t r a i g h t f o r w a r d c a l c u l a t i o n f o l l o w i n g [Lxl;
0.
C511
( c f . a l s o [Mc41) y i e l d s t h e n
UtEORElIl 10.6,
i n t h e form ( * ) w i t h K t h e unique s o l u t i o n o f t h e
Given f ( h , t )
G-L e q u a t i o n i n Theorem 10.1 and r2 t w i c e d i f f e r e n t i a b l e i t f o l l o w s t h a t K 2 2 s a t i s f i e s a Goursat t y p e problem Q(Dt)K(t,T) = D T K ( t , T ) where Q(Dt) = Dt q ( t ) , q ( t ) = 2DtK(t,t),
and K T ( t , O )
C O S ~ T ) = Cosxt + 1 ; K(t,T)Cosxrdr
=
0.
The c o n n e c t i o n f ( A , t )
= Ca(t,T),
2 then determines a t r a n s m u t a t i o n B: D
+
a c t i n g on f u n c t i o n s 9 w i t h g ' ( 0 ) = 0.
Pma6: (10.11)
S e t now DK
mK =
Ktt
-
KTT so a f t e r a c a l c u l a t i o n from t h e G-L e q u a t i o n
+ q(t)a(t,T) +
where q ( t ) = 2DtK(t,t).
.K(t,S)a(S,r)dS
jot
=
0
By uniqueness o f s o l u t i o n s f o r t h e G-L e q u a t i o n
Q
212
ROBERT CARROLL
2 one o b t a i n s t h e d i f f e r e n t i a l e q u a t i o n QtK = D K.
I n o r d e r t o show t h e i n -
: t e r t w i n i n g p r o p e r t y one s i m p l y l o o k s a t B g ( t ) = g ( t ) t J
computes QBg u s i n g t h e procedure which l e d t o (10.11). e s t a b l i s h e s t h e theorem (see a l s o [C51]).
K
and
Comparison w i t h Bg"
represented by (*) w i t h L2 t w i c e d i f f e r e n t i a b l e 2 as i n Theorem 10.6 i t f o l l o w s t h a t Q ( D t ) f ( x , t ) = - h f ( A , t ) and f ( A , O )
E0R@CCAR!.J10.7. and
K(t,T)g(T)dr
Given f ( A , t )
= 1 w i t h f'(h,O)
Phaa6:
= -n(O,O) =
-1; do(h)
=
-gr(0)
=
h.
The c a l c u l a t i o n i s r o u t i n e w h i l e f o r f ' ( h , t )
(10.12)
fl(h,t)
Hence f ' ( A , O )
= K(0,O)
-xSinht
-k
K(t,t)CosAt +
one has f r o m ( * )
lot
Kt(t,T)COShTdT
and t h e r e s t f o l l o w s f r o m t h e G-L equation.
.
REMARK 10.8,
I t i s c l e a r l y o f i n t e r e s t t o s t a r t i n general w i t h some " a r b i P t r a r y " f u n c t i o n s p A ( x ) i n s t e a d o f Cos x and form " p o l y n o m i a l s "
U
P One can t h e n begin w i t h minimal knowledge and s t r u c t u r e r e g a r d i n g b o t h p x
and f ( h , t )
and g r a d u a l l y i n s e r t v a r i o u s i n g r e d i e n t s such as measures dv P (resp. dw) under which t h e p A ( r e s p . f ( h , t ) ) a r e t o be o r t h o g o n a l , d i f f e r -
e n t i a l equations, e t c . i n o r d e r t o show p r e c i s e l y what depends on what. T h i s theme w i l l be p a r t i a l l y developed l a t e r ( c f . a l s o [Cd4]). The r o l e o f m i n i m i z i n g procedures i n c h a r a c t e r i z i n g t r a n s m u t a t i o n k e r n e l s
In this ( c f . a l s o [Cd4; D a f l ] ) . was developed i n S7 and [C51-53,74,78,80] 2 s p i r i t , f o r a t r a n s m u t a t i o n P = D + Q = D2 - q f o r example w i t h v!,h(t) = t h e G-L k e r n e l c o n n e c t i n g p Q and Cosht v i a (*) i n Theorem 10.3 can x,h be c h a r a c t e r i z e d as t h e m i n i m i z i n g k e r n e l f o r ( T = f h e r e ) f(h,t)
(10.14)
[T(A,t)
where K(t,T) for
T
- COSht
-
2 K ( t , ~ ) c O S h r d ~ ]dwdt
runs o v e r a s u i t a b l e c l a s s o f causal k e r n e l s ( i . e .
K(t,-r)
= 0
> t); we r e f e r t o Chapter 3 f o r f u r t h e r d e t a i l s i n t h i s p r e s e n t s i t u a -
4
The " E u l e r " e q u a t i o n f o r t h i s as a v a r i a t i o n a l problem i s T i n f a c t t h e G-L e q u a t i o n (we r e c a l l a l s o t h a t t h e i n t e g r a l lo d t i s n o t need-
tion with
ed i n (10.14)
and when t h e r e i s an u n d e r l y i n g s t o c h a s t i c process t h e m i n i m i -
zw i s e q u i v a l e n t t o t h e l e a s t squares e s t i m a t i o n t e c h n i q u e t o det e r m i n e a f i l t e r i n g k e r n e l - c f . Chapter 3 ) . I n t h i s s p i r i t l e t us t r y t o n o t n e c e s s a r i l y o f t h e form m i n i m i z e z f o r some general f u n c t i o n T ( x , t ) , w zation o f
ORTHOGONAL POLYNOMIALS
(10.2),
21 3
and a p r i o r i h a v i n g no p a r t i c u l a r r e l a t i o n t o dw except we r e q u i r e ( ~ ( x , t ) , C o S x S ) ~= F ( t , s ) = 6 ( t - S ) + Z ( t , s )
(10.15)
where g ( t , s ) = 0 f o r s < t.
I f V(X,t) = f ( A , t ) we r e f e r t o (10.6) and w r i t e
N
U(t,s) = ~ ( L - s ) + K ( t , s ) .
I f we w r i t e o u t now (10.14) one o b t a i n s (7.5) 2 T = JO :1 [ . ; r ( h , t ) - Cosxt] dwdt (which we as-
i n p l a c e o f %) where
(with
sume makes sense) and A(t,s) an obvious n o t a t i o n E w =
s ( ! - ~ ) + .Q(t,s). Using (10.15) we o b t a i n i n
=
Gw +
2Tr Kn + T r KK
*
+ TrKOX
*
(cf. (7.9)).
The
c r i t e r i o n f o r KO t o be a m i n i m i z i n g k e r n e l i s t h e n t h e G-L e q u a t i o n o f Theorem 10.1 and one has
CHE0REfl 10.9,
Given a general . ( X , t )
gw above
f o r which
makes sense (dw be-
i n g a measure as b e f o r e ) , and f o r which (10.15) h o l d s w i t h ;;7 a n t i c a u s a l , t h e best approximation t o V(x,t)
(= c(t,s))
Ko(t,s)
by f u n c t i o n s o f t h e form (10.2) r e q u i r e s
K i s t h e G-L k e r n e l ( i . e .
= K ( t , s ) where
o f Theorem 10.3 t h e b e s t a p p r o x i m a t i o n t o V ( h r t ) i s f ( x , t ) , :”I I [T ” ( x , t: ) - f ( x , t ) l 2 dwdt.
REmARK 10-10. The m i n i m i z i n q procedure o f [C52,53,74,75,78]
=
i.e.
(
z
~ =)
and 57 charac-
0 can be g i v e n a n o t h e r i n t e r p e r t a 2 We suppose f o r convenience Q = D2 - q and P = D w i t h
t e r i z i n g KO = K when t i o n as f o l l o w s . B: P + Q: cosxx
+ KO + KoR
r e l a t i v e t o dw a r e r e p r e s e n t e d by (*)
Thus s i n c e t h e orthogonal f ( x , t )
0).
.Q
+
II =
f and
qy ( ~ Y ( o )
=
=
1; ~
-
Q~
~ = ~0 ) . ( W0r i t e) ~ ( y , x ) = 6 ( x - y ) +
K(y,x) w i t h K causal, Bg(y) = ( B ( y , x ) , g ( x ) ) ,
B-l = B w i t h ker B = v(x,y) =
6(x-y) + L(x,y),
=
and g(y,x)
( q x4( y ) , C o s x x ) w ( 6 = R ). N
= ker B = y(x,y)
measure do can be a s s o c i a t e d t o t h e t r a n s f o r m t h e o r y f o r p! = :”I g ( x ) p x4( x ) d x
A
= g(x)
(g s u i t a b l e ) w i t h g(y) = 6
A
one has a Parseval f o r m u l a ( f , g ) w = ( f ( x ) , g ( x ) ) . w i t h integrand i n v o l v i n g
(T
Q
f
‘L
,, 9:) p ( X , t
*
The
i n t h e form Qg
( $ ( i ) , q4 x ( y ) ) w=l!4$(y)
and
Now i n an e x p r e s s i o n
= p Qx ( t )
-
COSht
-
(I{(t,T),
C O S ~ T ) we use t h e Parseval f o r m u l a f o r m a l l y t o w r i t e ($ = q q )
(10.16) N
8(X,t)
Ew
-
=
joT
(K(t,T),?(X,T))
(note q ( x , t )
Ip(x,t)l
2
dxdt; p ( x , t
= -L(t,X)
-
K(t,x)
= 0 automatically f o r x > t)
=(
-
&t),q$x)
)w = 6 ( x - t )
(K(~,T),L(T,X))
But (1+K)-’
= l + L which means
rt
(10.17)
0 = L ( t , x ) + K(t,x)
Setting K =
Ko+EJ
+
1,-
-
K(t,T)L(T,x)dT
f o r J causal we g e t ( c f . h e r e a l s o Remark 3.8)
~
~
~
21 4
ROBERT CARROLL
CHEBREIII 10.11- M i n i m i z a t i o n o f Zw v i a (10.16) c r i t e r i o n KO
f
f = q Qh ) l e a d s t o t h e
L + K L = 0 f o r x < t which c h a r a c t e r i z e s t h e G-L k e r n e l K. 0
For completeness l e t us c o n s i d e r ( f o r general
zv(t)
(10.18)
(II=
=
rm [ n ( A , t ) -
COSht
IT)
2 K ( t , ~ ) c O S h - r d ~ dv ]
-
where dv = (2/11)dh ( t h i s c o u l d c l e a r l y be g e n e r a l i z e d - c f . Remark 3.8). L e t (10.19)
(
II(X,t),Coshs)v
= s(t-s)
+ a(t,s)
where a p r i o r i a need n o t be t r i a n g u l a r .
Set now
2
( t ) = :/
2 [~~(h,t)-Cosxt]
dw which we assume t o make sense and w r i t e o u t Z v t o o b t a i n (10.20)
.,(t) c
=
gv(t) +
(note the s i m i l a r i t y t o c o e f f i c i e n t estimation i n Fourier series).
EHEBREN 10.12,
Given a general r ( X , t )
w i t h (10.19) (a n o t n e c e s s a r i l y t r i a n -
A
g u l a r ) and f o r which Z w ( t ) makes sense, t h e c o e f f i c i e n t s K o ( t , s ) = a ( t , s ) f o r s 5 t p r o v i d e t h e b e s t a p p r o x i m a t i o n o f t h e form (10.2) t o IT ( i n terms t 2 o f m i n i m i z i n g P ( t ) ) and one has a "Bessel" i n e q u a l i t y Jo a ( t , s ) d s 5 v 2 :J [ r ( A , t ) - Cosht] dv. P I n t h e s p i r i t o f Remark 10.8 t a k e f u n c t i o n s q h and qhQ w i t h Q P P qP,(y) = ( R ( y Y x ) , v ~ ( x ) )= &PA and v X ( x ) = (Y(X,Y),V:(Y)) (where R(Y,X) = s ( x - y ) + c ( y , x ) and y(x,y) = s ( x - y ) + L ( x , y ) - no t r i a n g u l a r i t y i s assumed).
REIIIARK 10.13,
Then v o r t h o g o n a l i t y o f t h e q PX i m p l i e s ~ ( y , x ) = ( q XQ ( y ) , q AP ( x ) ) and w o r t h o g P ,vv o n a l i t y o f t h e qhQ i m p l i e s y ( x , y ) = ( v X ( x ) y q h Q ( y ) ) u . D e f i n e B = ( B - l ) * w i t h k e r n e l F ( y , x ) = y(x,y) assumed) ;(Y,X)
= ((
and one o b t a i n s a G-L e q u a t i o n (no t r i a n g u l a r i t y i s P P ~ ( y , ~ ) , q h ( ~ ) ) , q X ( x )=) (~ B(Y,s),A(s,x)). Ifa c o n d i -
t i o n l i k e (10.6) h o l d s so t h a t g(y,x)
= 0 f o r x < y then y i s t r i a n g u l a r
and hence so i s 6 as a V o l t e r r a t y p e i n v e r s e (no s p e c t r a l form o f B i s needed here b u t t h e w o r t h o g o n a l i t y i s used i n going from t h e s p e c t r a l f o r m o f
) ) . Moreover f r o m t h e G-L e q u a t i o n one knows t h e n t o q pP , ( x ) = ( y(x,y),q,(y)Q t h a t c(y,x) = K(y,x) i s t h e G-L k e r n e l .
y
REmARK 10.14.
Given a causal i n (10.19) t h e n (zv(t))min
= 0 f o r K,
one has e q u a l i t y i n t h e Bessel i n e q u a l i t y o f Theorem 10.12.
=
~1
and
We n o t e t h a t
w o r t h o g o n a l i t y i s used i n Theorem 10.12 and w o r t h o g o n a l i t y i s i m p l i c i t i n
Theorem 10.11 b u t b a s i c a l l y no o r t h o g o n a l i t y i s i n v o l v e d i n Theorems 10.9-10. REIIIARK 10-15- Suppose g i v e n a general .(X,t)
and l e t CosXt + J$ a ( t , s )
ORTHOGONAL POLYNOMIALS
21 5
Cosxsds be the b e s t lu approximation as i n Theorem '10.12 (so ( ~ ( h , t ) , C o s A s ) ~ = 6 ( t - s ) f a ( t , s ) = ~ ~ ( t , (sn o) t r i a n g u l a r i t y is assumed). Further l e t anti(10.15) hold ( i . e . z I T ( t , s ) = ( n ( A , t ) , C o s h s ) w = 6 ( t - s ) + z ( t , s ) w i t h c a u s a l ) so t h a t f ( x , t ) i s t h e best zw approximation as i n Theorem 10.9. Then ( B , ( t , s ) , C o s h s ) = . i r ( A , t ) a n d one has a G-L type equation z I T ( t , s ) = (
t h a t for 6 1 T ( t , ~ ) , A ( ~ , ~I)t ) follows .
T c
t , a ( t , T ) i s the G-L kernel.
REmARK 10.16- We have been u s i n g t h e analogy (10.6) of ( 6 ) in o u r development b u t one could equally well use a version of (+). T h u s f o r "polynomials" IT of t h e form (10.2) a n d orthogonal "polynomials" f as in Theorem 10.3 one considers a condition ( = ) / , T ( x , s ) f ( x , t ) d u ( A ) = 0 f o r s < t. Indeed w i t h IT a s i n (10.2) ( n ( A , s ) , f ( A , t ) ) u = ( C o s h s , f ( x , t ) ) w + id c(s,.r)( C O S h , f ( h , t ) ) u dT. Hence (10.6) implies ( m ) . Conversely i n v e r t i n g (10.2) in the form S Coshs = . i r ( h , s ) + Jo R ( s , T ) n ( X , T ) d T we obtain f o r s c t, ( C o s A s , f ( X , t ) ) w = ( I T ( h , s ) , f ( A , t ) ) , + :1 R ( s , r ) ( a ( A , r ) , f ( X , t ) ) w d . r so t h a t ( = ) implies (10.6). REmARK 10-17- The r o l e of kernel polynomial Kn(z,x) =
played here by (10.21)
RT(X,u)
=
IT
1;
p m ( z ) p n ( x )i s
f(h,t)f(u,t)dt
0
where f ( A , t ) denotes the orthogonal functions from Theorem 10.3 ( c f . [All, 2 2 C51; Ku8; Lxl]). Note here t h a t i f Qf = ( D - q ) f = -A f a s i n Corollary 10.7 one has
(10.22)
RT(A,P)
= W(f(AyT)yf(pyT))/(A2
- v2)
where W denotes t h e Wronskian. I f one defines a transformation (p s u i t a b l e ) T $,(A) = Jo q ( t ) f ( h , t ) d t then R T a c t s as a reproducing kernel ~ ( W - P ) in the space of such Indeed i t i s c l e a r t h a t ( R T ( X , u ) , f ( u y t ) ) w= f ( A , t ) and If' Analogous t o the approximation of s u i t a b l e hence ( R T ( h , ~ ) , ~ T ( u)w) = G T ( A ) . functions g ( t ) by " p a r t i a l sums" g n ( t ) = J Kn(x,t)g(z)dz one t h i n k s here of formulas of t h e type ( $ ( A ) = Jr p ( t ) f ( A , t ) d t ) $(A) - G T ( h ) = ;/ [ $ ( A ) $(p)]RT(X,~)dw(u).
We note t h a t (10.22) i s a kind of Darboux-Christoffel
re1 a t ion. The above procedures apply when dw = (2/n)dA + do w i t h say du a s u i t a b l e bounded measure. In t h i s event n ( t , s ) i n say (10.8) i s a function and everything makes sense. I f now e . g . d w = wdA w i t h l~ = c2AZm+' (c, = l/Zm m r ( m + l ) ) then we are in t h e context of t h e d i f f e r e n t i a l operator Q = Q, w i t h = (x2m+l l l,x2m+l a n d t h e orthogonal functions f ( h , t ) a r e given by rn
21 6
ROBERT CARROLL
v:(t)
= (l/cm)Jm(Xt)/(At)m (spherical functions).
connecting Cosxx and B (Cosxx) = p xQ ( y ) (BQ: D2
Q
and 6 (y,x) does n o t have t h e form & ( x - y ) 8
Q
=
i-' Q
f
+
The t r a n s m u t a t i o n k e r n e l
Q = )9, i s cjiven by (2.8) ( c f . 52). The i n v e r s e
K(y,x)
has a k e r n e l y (x,y) = ( C O S ? , X , Q~ ~ ( ( Y ) ) ~(.Cf
= AQqx Q w i t h AQ = y 2m+l
Q
t h i s i s m a n i f e s t l y a d i s t r i b u t i o n g i v e n b y (2.16).
);
There i s a g e n e r a l i z e d
G-L e q u a t i o n Q (Y,x) = ( B Q ( Y ~ F ) , A ( E , X ) )where zQ(y,x1 = A p ( x ) A q l ( ~ ) y Q ( x , ~ ) ;Ap = 1 here) and t h i s i s g i v e n i n Theorem 3.14. One c o u l d now t r y t o dupl i c a t e some o f t h e p r e v i o u s machinery i n a d i s t r i b u t i o n c o n t e x t where d i s t r i b u t i o n a l o b j e c t s as i n Theorem 3.14,
(2.16),
etc. are prototypical.
We
p r e f e r however t o r e f e r a measure w i t h growth *w A2mf1 t o Q, = P ( i n s t e a d P 2 o f P = D ) as a p o i n t o f d e p a r t u r e and r e p l a c e Coshx by p A ( x ) = ( l / c m ) J m ( A x ) Q ,
AX)-^
(see a l s o e.g.
t h e t e c h n i q u e o f t r e a t i n g random f i e l d s i n [ L x ~ ] and
Thus g i v e n an u n d e r l y i n g d i f f e r e n t i a l problem we w i l l work
Chapter 3).
w i t h t r a n s m u t a t i o n s B: P
-f
Q: p!
To begin w i t h o f course we do n o t know Q,
as orthogonal f u n c t i o n s f o r dw. b u t we assume t h e r e i s a
where t h e f a r e t o be c o n s t r u c t e d
+ f(A,t)
0 ( c f . C o r o l l a r y 10.7); then s i n c e t h e G-L equa-
t i o n s r e q u i r e d t o c o n s t r u c t t h e f i n v o l v e now a t e r m f r o m A g i v e a deeper a n a l y s i s o f t h e s i t u a t i o n .
Q
we have t o
To do t h i s we w i l l be a i d e d by de-
v e l o p i n g an i n t r i n s i c and c a n o n i c a l f o r m u l a t i o n o f t h e problem u s i n g concepts from general t r a n s m u t a t i o n t h e o r y . Thus we r e c a l l f i r s t from 51.11 and (1.9.26)
t h a t i f B: P
+
Q: p PA + p A Q (Qu =
- .
qu; Pu = ( A u ' ) ' / A p where Ap = xZm+' and say A = A A t h e n P 1 Q. Q P . t h e r e i s a r e l a t e d t r a n s m u t a t i o n i: P + Q where e.9. A5Qu = Q[A%]; Qw = w" (AQu')'/AQ
+ 4w;
6
=
f
q
-
A-'(L')' .
Then
2Q Q2 has i ( x ) = - ( m - k ) / x ). general t h e k e r n e l
of
b
= A;(Y)B(X
-+
fi
and
Thus a l t h o u g h
bwill
where K(y,x)
B(Y,x)
4will
have t h e f o r m i ( y , x )
= A>(Y)"(x-Y)
9 P
-+
f)
Q
(note f o r
one
have s i n g u l a r i t i e s i n = &(x-y)
f
k(y,x)
where
It follows t h a t
i s a "reasonable" causal k e r n e l . (10.23)
y)xmm-':
+ K(y,x)
= A-'(y)y-m-'~(y,x)xm+'
( c f . 551.11,
Q
3.8 and [C39,40,66,70,71;
F u r t h e r by V o l t e r r a i n v e r s i o n f o r B = B - l , k e r 8 = y(x,y) = Az(y) Sol]). g(x-y) + L(x,y) and we r e c a l l t h a t F(y,x) = Ap(x)Aq'(y)y(x,y) (E = B#
,..B
= ker where t & ~ ( y ) , v ( y ) % ( y ) ) = ( u(x)Ap(x),Bv(x) )). Hence f r o m t h e P P general G-L e q u a t i o n g(y,x) = ( B(Y,s),A(s,x)) w i t h A(F,x) = ( p A ( ~ ) , p x ( x )
Ap(x) = A(S,x)Ap(x) (10.24)
;(Y,X)
we must have = A:(Y)&(X-Y)
+
T(Y,X); A(C,x)
= ~(X-S)+
Ns,x)AP(x)
21 7
ORTHOGONAL POLYNOMIALS
No comparison o f measures dw and dv f o r Q and P r e s p e c t i v e l y was needed here [dh + do] = dv + <do ( r e c a l l dv = Gdh b u t p r o t o t y p i c a l l y i f (*) dw = cmh
* "+'
P P and ( ~ ~ ( ~ ) , i ? ~ =( xs )( x)- ~ s ) ) t h e n A(5,x)
w i t h v = c$2m+'
xZm+'; n(S,x) = 1 ;
[J,(h~)/(hx)~]
=
( x ~ ) ~X2m+1do. ]
[Jm(hg)/
s ( x - 5 ) t R(c,x) Thus we assume
measures o f t h e f o r m (*) and t r y t o c o n s t r u c t o r t h o g o n a l f u n c t i o n s (10.25)
f(h,t)
+
A(t)q;(t)
=
P where q X ( x ) = ( l / c m ) J m ( h x ) / ( X x ) m r e f e r s t o t h e o p e r a t o r P = Q,
and A ( t ) =
A i % ( t ) r e f e r s t o an o p e r a t o r Qu = (A u ' ) ' / A Q t q ( x ) u t o be determined w i t h AQ = AQAp.
9
I n o r d e r t o express t h e moment f u n c t i o n a l and i t s r e l a t i o n t o
n(5,x) c a n o n i c a l l y ( c f . (10.3), c i t y ) dw = :dh (10.26)
(10.4),
A 4
+ vudh and w r i t e
g ( t ) = L[n!(t)]
W(X)
=
and ( 1 0 . 8 ) ) we assume ( f o r s i m p l i -
G/u^
=
1
w n,(t)dw(h) P
=
lt;.
c
=
0
= 6 ( t ) t A p ( t ) Jrnv!)(t)&iv
Ap(t)W(t)
Then s e t q!(t)W(X)dv(h)Ap(t)
= 6(t)
=
+ Ap(t)z(t)
n
( n o t e here t h a t (10.27)
(00)
A(C,x)
= 1).
P[s(t)/~(t)] = 1 ; [d(t)/A(t)]u!(t)dt P
P
= (qA(C),qA(x)W(h) ),,AP(x)
=
Then w r i t e
T;G(S)Ap(x)
where TX denotes a c e r t a i n g e n e r a l i z e d t r a n s l a t i o n a s s o c i a t e d w i t h P ( c f . 5 P P (3.16) and (6.26)). Using (10.26) we have ( n o t e ( q h ( c . ) , y ( x ) ) v = s i x - 5 ) ) (10.28)
A(5,x)
= : 6
+
P ( q X ( 5 ) , q ~ ( ~ ) G ) v A p (=~ 6(x-S) ) + T?(5)Ap(x)
P and we w i l l r e f e r t o Z ( t ) A p ( t ) = L [ n X ( t ) ] e n t f u n c t i o n a l (ApZ
%
- s(t)
6(t) = g(t)
as t h e mom-
gr i n ( 1 0 . 4 ) )
&HEOREM 10-18. Given (10.25) w i t h and t h e k e r n e l A(<,x)
-
(AA)
:I
P q,(s)f(h,t)do(X)
=
0 f o r s < t,
determined as i n (10.28) v i a t h e moment f u n c t i o n a l
i t f o l l o w s t h a t K i n (10.25) s a t i s f i e s a G-L e q u a t i o n f o r s < t t t o f t h e f o r m ( n ( t , s ) = T S z ( s ) ) 0 = A(t)n(t,s)A,(s) + K ( t , s ) + J0 K(t,T)fi(T,s)
Z(t)Ap(t), Ap ( s ) d.r
.
Phood:
P
Simply t a k e w s c a l a r p r o d u c t s i n (10.25) w i t h q h ( s ) and use (u) t w i t h (10.28) and a ( t , s ) = T,z(s). Now t h e G-L e q u a t i o n c o n t a i n s two unknowns A ( t ) and K(t,T).
( c f . [C66,70-72,78]
I n practice
and 53.8 and 3.9) i n such a s i t u a t i o n t h e r e i s an i n -
t e g r a t e d form o f t h e G-L e q u a t i o n w h i c h does n o t c o n t a i n A e x p l i c i t l y and
218
ROBERT CARROLL
which can be used t o determine a s u i t a b l e k e r n e l from which A i s t h e n i n We w i l l proceed somewhat d i f f e r e n t l y here how-
f a c t subsequently recovered. ever.
F i r s t we w r i t e
(10.29)
A(t)i(t,s)
= A(t)?(x,t)
Then w r i t e f ( x , t ) (10.30)
= K(t,s);
;(X,t)
= pg(t)
S e t t i n g P*J, = [Ap(J,/Ap)l]'
+
Ap(s)-O.(t,s) = ;(t,s) i n (10.25)
so t h a t
jotK(t,T)q,(T)dr P
one has P*(App) = Pp and e v i d e n t l y ( n ( t , s )
( t ) P(Dt)6(t,s)
(pF(t),p!(s)c)v)
Ai*(t);(A,t))
(%
P*(DS)6(t,s).
=
=
We can w r i t e t h e G-L equa-
t i o n o f Theorem 10.18 as ( s < t ) A
(10.31)
0 = n(t,s '0
We r e c a l l now Theorem 10.6 and i n d i c a t e t h e r e l e v a n t c a l c u l a t i o n s below.
t ) and (10.31) (based on (10.30) and Theorem 10.18),
iTHHE6RER 10,19, Given
i f (10.31) has unique s o l u t i o n s t h e n f o r
[P(Dt)
-
*
;(t)]?(t,s)
=
s" =
A
2Dt?(t,t),
A
Q(Dt)K(t,s)
=
A
P (Ds)K(t,s);
i ( t , O ) = 0; D T [ ~ ( t , ~ ) / A p ( ~ ) l ( t . o=) 0.
A
Hence [ K ^ ( t , ~ ) / A ~ ( ~ ) l , ( t , 0 ) = 0 and K ( t , O ) (10.33)
P u t t i n g (10.32)-(10.33) t a i n s from (10.311, = [P(Dt)
Further note t h a t
D t K ( t y t ) = ( D t + D T ) [ A p ( t ) K ( t , ~ ) / A ~ ( ~ ) l ( t , t ) = it(t,t)+
(A6/Ap (t (; t 5 t
=t?
= 0.
n
A
-
o
Ap ( t [ (( t 3
/Ap ( T
1, ( t
Y
t
i n t o t h e above c a l c u l a t i o n s and combining one obA
= 2il(t,t)&t,s)
P*(DS)]i?(t,s)
here.
i n Theorem 10.19 v i a .?(t,s)/G(t)
t =K(t,s)
A
A
+ :1 =K(t,r)n(T,s)dT
where
By uniqueness one o b t a i n s t h e e q u a t i o n =
c(t,s).
ORTHOGONAL POLYNOMIALS
21 9
Using Theorem 10.19 and repeatina some of t h e c a l c u l a t i o n s used in i t s demo n s t r a t i o n we obtain from (10.30) ( r e c a l l D i p P ( 0 ) = 0 ) P ( D t ) i p XP ( t ) + t " P P t " Consequently JO K ( t , ? ) v , ( T ) d r + $ ( t )v , ( t ) + JO K ( t , T ) P ( D T ) v A ( T ) d T .
t(t)
EHE0REIII 10-20, Under t h e hypotheses of Theorem 10.18 one has from (10.32) * 2" a n d Theorem 10.19 [ P ( D t ) - {(t)]; = Q(0,)f = - A f .
W e r e f e r now t o a r e s u l t in 8 2 . 1 1 which aoes as follows. Suppose we a r e i n t h e s i t u a t i o n described e a r l i e r via (10.23)-(10.24) ( Q u = (A,u')'/A + q u Q w i t h AQ = A A ). Assume Kx(y,O) = 0 and lim K(y,x)/x = 0 as x + 0 ( K as i n Q P ( 1 0 . 2 3 ) ) . This c e r t a i n l y h o l d s i f e.g. m > 0 since from (10.32) (with A = As') one has AQ(t)K(t,T) = Ap(-c)i; [ - ? ( l , t ) - v , (Pt ) ] i p , ( ~P ) d v . Then (10.34)
~ ; ' ( Y , Y =) 2[A$y)K(y,y)l' = -[q
t
= G(Y) =
(1/4)(A;/AqI2 - (1/2)(A;/AQ) - (Ab/Aq)((m+')/Y)I
This i s i n f a c t a r o u t i n e c a l c u l a t i o n s i m i l a r t o the proof of Theorem 10.19
*
(one uses (**) Q,(Ox)K(y.x) =Q(D )K(y,x) f o r x < y e t c . ) . T h u s (10.34) i s Y Q i s a transmutation as i n (10.23)a condition t h a t r e s u l t s when B: Qm (10.24). (Conversely i f (10.34) holds with (**) then the kernel (10.23) determines a transmutation a c t i n g on s u i t a b l e o b j e c t s via consideration o f -f
Goursat problems e t c . - assuming s u i t a b l e behavior of Kx(y,O) e t c . ) Now we assume (10.30) a r i s e s from some d i f f e r e n t i a l operator Q so t h a t A = A-'
Q '
Let Qou = ( A u ' ) ' / A = u" + ( % / A p ) u ' t (A'/A ) u ' ( A = A A ) and we comQ A -b A Q Q Q Q P pute ( r e c a l l f = A f = +)A ~ W= CQ, + q l f ; qo = ( A ' / A )(mA)/t + A0 9 4 (1/2)(A;/AQ) - (1/4)(A'/A )'. From $ = 2 D t K ( t , t ) i n Theorem 10.19 and (10. 4 Q 34) we have then (.) q ( t ) = -q t qo. Now use Theorem 10.20 and (") w i t h -?-?2 t h e formula f o r A 'Pf t o obtain Qof t q f = A 'Pf t (q-qo)f = - A f + ($-q-q,)f 2 Q Q = - A f . T h u s we assume given dw o r d o and solve (10.31) f o r K which y i e l d s Theorem 10.19 w i t h q^ determined. Assume now we have an underlying d i f f e r e n t i a l problem f o r some 0 = Oo t q so t h a t A 'A$: i n f10.25); then from (10. A There a r e two unknowns q and A a t our disposal 34) and ( ~ m ) q = -q + q 0' Q and e . g . , taking q = 0 (we leave open various questions about o t h e r choices )
-9
A
A
A
Our connection (10.25) w i t h A = Ad5 w i l l a r i s e from an underQ lying operator Q = 0, ( A = AoAp) w i t h B: ip! + f i n (10.25) representing a Q transmutation B: P Q ( P = Q,) provided A. can be found s a t i s f y i n g q^(y) = Z;'(y,y) = qo = + ( A ' / A )(m+%)/y where 4 i s known from solving the Q Q Q 9 equation (10.31).
CHE6REIII 10.21,
-f
A-'(L5)"
ROBERT CARROLL
220
We w r i t e now (A')'A-4
Q
Q
Q Q)
=*(A'/A
Theorem 10.21 becomes
and, s e t t i n g A'
C " + ( ( 2 m + l ) / y ) C ' -$C
(10.35)
4=
A - l = C t h e equation i n
= 0
L e t us n o r m a l i z e
which i s a l i n e a r ( s i n g u l a r ) d i f f e r e n t i a l e q u a t i o n f o r C.
w i t h say C(0) = 1 and t h e n C ' ( 0 ) = 0 i s i n d i c a t e d by t h e s i n g u l a r term i n (10.35) i f we want a r e q u l a r s o l u t i o n .
F o r reasonable
$
such equations can
be s o l v e d ( c f . [C29,51,63])
C0R0LLARU 10.22.
The A
4
r e q u i r e d t o connect (10.25) t o a d i f f e r e n t i a l prob-
lem as i n d i c a t e d can be o b t a i n e d by s o l v i n g (10.35) f o r C = A!! ing f(A,t)
Phaa::
o f (10.25) a r e o r t h o g o n a l r e l a t i v e t o dw.
The c a l c u l a t i o n s f o l l o w t h e p a t t e r n o f Theorem 10.3,
9'
The r e s u l t -
u s i n g t h e G-L
e q u a t i o n (10.31) o r Theorem 10.18.
11- RELACI0G 3EtU)EEN KERNEL$ AND PflEENCIALB,
We have seen i n Chapter 1,
§ 4 f o r example how i t i s p o s s i b l e t o c o n s t r u c t t r a n s m u t a t i o n s b y s o l v i n g Cauchy problems (as i n Theorem 1.4.3) o r v i a Riemann f u n c t i o n s and Goursat problems (as i n Theorem 1.4.7). We have a l s o seen how s p e c t r a l i n t e g r a l s I n 52.7 we have
a r i s e i n v a r i o u s c o n t e x t s i n §§1.9-1.12 and §§2.2-2.10.
shown how a m i n i m i z a t i o n procedure can a l s o be used t o g i v e an " i n t r i n s i c " I n t h e p r e s e n t s e c t i o n we w i l l
characterization o f transmutation kernels.
develop f u r t h e r some o f t h e m a t e r i a l r e l a t i v e t o t h e c o n s t r u c t i o n o f k e r n e l s and i n d i c a t e some s t r u c t u r a l f e a t u r e s ; i n p a r t i c u l a r r e l a t i o n s between k e r n e l s and c o e f f i c i e n t s ( o r p o t e n t i a l s ) a r e examined. suppose we have a t r a n s m u t a t i o n B: P
I n a general s p i r i t
Q w i t h t r i a n g u l a r k e r n e l B(y,x) where 2 P and Q a r e b o t h o f t h e form Qu = (A u ' ) ' / A + pQu - q ( x ) u (p, = A'/ -f
Q
A
Q
as x
-f
a).
klim 4
(2
We w i l l express a t y p i c a l such k e r n e l i n terms o f 6 f u n c t i o n s
and f u n c t i o n s K(y,x) w i t h a d i s c o n t i n u i t y i n o r d e r t o examine what t h e prope r t y o f transmutation e n t a i l s . (1.9.26),
F i r s t l e t us r e c a l l Remark 1.6.1,
remarks b e f o r e D e f i n i t i o n 1.11.9,
(1.9.25)-
and remarks b e f o r e (2.7.12)
and
expand t h i s as f o l l o w s .
REmARK f1,1,
I n o r d e r t o a v o i d e x p l i c i t mention o f f a c t o r s l i k e p 2 above
i n Q we w i l l w r i t e g e n e r i c a l l y
&I
= (Aqu')'/AQ
+ :(X)U
(4
Q
2 - 4). Q
pQ
Fur-
t h e r we w i l l w r i t e A ( x ) = xZm+'A ( x ) where f o r convenience we t a k e A E C Q Q Q 2 and p o s i t i v e (extend A as an even f u n c t i o n i n C when necessary). A l s o assume A
Q
A (a) = Am r a p i d l y as x e t c . as i n S1.6. Q r e p l a c e s Q used a t i s o l a t e d p l a c e s elsewhere)
4,
-f
-f
03
Now we have
(6
2
KERNELS AND POTENTIALS
(11.1)
o w = w" + {w;
AgQu = Q[A+u];
Q
Q
4=
q" -
221
A-+(A+)lI
Q
Q
We know f r o m 52.2 t h a t t h e r e a r e c a n o n i c a l t r a n s m u t a t i o n s B: D A
= xZm+' f o r Q,
Q
D2
and t h u s t o s t u d y t r a n s m u t a t i o n s
8
A
2
+
Q, where
A
P
Q one can l o o k a t
+
6
?
P^
Q, so t h a t o n l y + Pn and Q , + need be considered as new. ( T h i s p o i n t o f view i s perhaps most a p p r o p r i a t e i n cases where p o = p = Pn
+
+
+
-f
AP
-
c f . Remark 11.2). Hence we w i l l examine t r a n s m u t a t i o n s B: Q, + Q where A = x and AQ = xZm+'A have t h e same o r d e r o f s i n g u l a r i t y . F o r such m Q t r a n s m u t a t i o n s we c o n s i d e r (+) 'B = k + ( y ) B ~ - ~ - % : + E v i d e n t l y Q6[xm++ 0
"+'
f ( x ) ] = 4[A'Bf]
=
Q
(,
2 Q6 B f = .2 Q B Qm f
Gn, 4.
-m-+ m +%
LQ
Ab(y)Bx [x Qmf] = @ , [ ~ ~ +where ~f] 2 2 2 = w " - [(m - k ) / x ]w ( i . e . = -(m2-k)/x ). =
$,,
i s g i v e n as b e f o r e by Qmw 2 Now 6: D + D2 + w i l l have a t r i a n g u l a r k e r n e l i ( y , x )
$,
4
-f
by v i r t u e o f t h e a n a l y s i s i n Chapter 1, 514-5 and 9-12 (assume e.g.
l?(y,x)
i s modeled on B: q ;
-f
m+4 m
q!
-
+ Q
i.e. A
q X ( x ) ) ) . Consequently 8 = k-' which i s a V o l t e r r a t y p e i n v e r s e o f x
Bf(y) =
(
B(y,x),f(x))
f ( x ) ) ] = A:'(y)f(y) (11.2)
(y) = y
i.
(
K(y,x),f(x)).
= A?(y)[ym+'f(y)
REmARK 11.2. A
Q,
Q
=
When p
Q
or
pp
,
+
(
K(y,x),xm+'
Thus
+ K(y,x);
B(y,x) = A:(y)S(x-y)
-m-Lj
For B and 8 = B - l we o b t a i n t h e n
= A:(y)i[xm+'f(x)]
+
m+4 m
q A ( y ) + (L:(y)K(y,x)x has a k e r n e l ?(x,y) = S(x-y) + i ( x , y ) q
Q X
-m-%
K(y,x) = A:(y)y
S i m i l a r l y one o b t a i n s f o r 8 = B - l = (A:(y)ixm")-'
say Q,
= S(x-y) +
= x
-
K(y,x)xm+'
-m-+--1 Lj B AQ(y)
# 0 i t i s p o s s i b l y more a p p r o p r i a t e t o r e p l a c e
by a more " c a n o n i c a l " o p e r a t o r Qm h a v i n g a p 2 term. shZmc1xAQ(x) so t h a t A ' / A
Q
Q
Q
= (2rn+l)Cothx + ( A ' / A
Q
Q
)
-+
For example i f (2m+l) = 2p
w i t h Am = shZm+'x would p r o v i d e a b e t t e r adjustment o f s p e c t r a .
adjustment i s n o t e s s e n t i a l b u t i t may be convenient a t times.
Q
then
Such an
Recall t h a t
t r a n s m u t a t i o n s a r e c o n s t r u c t e d by PDE techniques f o r example w i t h o u t r e g a r d f o r matching s p e c t r a ( c f . a l s o Remark 1.9.6).
222
ROBERT CARROLL A
Now suppose B: Q,
-+
Q i s a t r a n s m u t a t i o n w i t h , f o r example,
B:
qm h - f q Qh
and where k e r B = 6 i s g i v e n by (11.2) w i t h K(y,x) a 2 reasonable f u n c t i o n (say C ) w i t h a d i s c o n t i n u i t y a t x = y. From another (spherical functions),
= ( T ( x ) , q AQ( y ) ) "
p o i n t o f view we w i l l expect a(y,x)
dv, e t c . a r e g i v e n i n Example 1.9.2
q:,
2 and
where Am = x2m+1 and
( c f . (1.9.4)
When m
and ( 1 . 9 . 9 ) ) A*
We r e c a l l t h a t ( f o r q* r e a l ) Q II, = [A ( $ / A Q ) ' ] ' Q '* Q Q - A Q ; ~ 2~ as and Q [Rh(x)] = A [& ] - - h Q h . Hence f o r m a l l y from a s p e c t r a l
=
-+,Q,
+
GJ,
D
=
A
-
Q
AX
Now t a k e t h e e q u a t i o n by =
above (*) Q i ( D x ) 6 ( y , x ) = Q(Dy)a(y,x).
qf
with
k e r B given b y (11.2) and s p e l l o u t t h e requirements f o r t r a n s m u t a t i o n as follows.
We know t h a t Q;(Dx)K(y,x)
f o r x < y by (*) above
= 4(Dy)K(y,x)
A-+(q'
-
Q
=
A and q: = q
(B)
$(A'/A)q) w i t h (A-\)"
+
Hence (A-'q)''
(A"/A))q].
-
q((1/4)(A'/A)'
(1/2)(A"/A)
-
Q Q
)(A-$)'
(K(y,y)q(y))' (11.5)
+ KY(y,y)v(y)
On t h e o t h e r hand (11 K(y,
- (m+%)(A'/A)/x)].
+
and
(Jdy
JJ Kyy(Y,x)lp(x)dx.
[4^(Dy) + A 2 ]qh(y) Q = A-'(y)[S"
=
+ ((3/4)(A'/A)* - (1/2) + ((2m+l)/x)q' +
(A'/A)q' = A-'[q"
x ) q ( x ) d x ) ' = K ( Y , Y ) ~ ( Y ) + f6y Ky(y,x)v(x)dx
K(y,x)qy(x)dx].
+ A ' / A and ( A % ) '
A4/AQ = ( ( 2 m + l ) / x )
= A4[q"
(A'/A
J6y
+
and we w i l l w r i t e o u t t h e e x p r e s s i o n t(Dy)[Aq4(y)qT(y) Thus s e t t i n g A
K(y,x)v(x)dx)"
=
It follows t h a t
+ (l/4)(A'/Al2
((m+%)/y)(A'/A)l~(y) + ( K ( Y , Y ) ~ ( Y ) ) ' + KY(y,yb(y)
+
-
(1/2)(A"/A)
((2m+l)/y)
+
-
(A'/A))
Y
K(Y,Y)~(Y) + Now K(y,x)
jo [Qi(Dx)
= AQ5(y)i(y,x)xm+'
+
~ 2 1 K ( ~ , x k ( x ) d x= 0
w i t h t? a reasonable f u n c t i o n ( c f . [C40] and
so f o r m > - ( 1 / 2 ) a t l e a s t one expects K (y,O) = 0 and K(y,x)/x x* 0. Then from t h e d e f i n i t i o n o f Jdy [Qm(D,)K(y,x)]q(x)dx = [ X ~ ~ + ' ( K ( Y , X ) X - ~ ~ - ~ ) ~ ] ~=~ x( 2m+l X ) ~ (K(Y,X)X X -2m-1 ) x q ( ~ ) l-i K(y,x)x -2m-1
551.9-1.12) + 0 as x
Qi,
-+
(x2m+l q ' ( x ) ) (11.6)
;1
:1
+ J{ K ( y , x ) ~ - ~ ~ - ' ( x ~ ~ ' ' q ' ( x ) ) ' d xConsequently . we o b t a i n [(Qi(Dx)
+
K(Y ,Y
A 2 ) K ( ~ . x ) k ( x ) d x = Kx(y,yk(y)
1~ ' ( Y ) -
( (2m+l ) / Y ) K(Y .Y
-
b (Y
Combining (11.5) and (11.6) we have ( n o t e K'(y,y) = (KY + Kx)(y,y)) (11.7)-
0
= A-'(Y)[~^
-
+ (1/4)(A'/A)'
+
ZK'(y,y)v(y)
+
Note here a l s o t h a t K(y,y) = A-'(y)k(y,y)
(1/2)(A"/A)
-((m+%)/y)(A'/A)]q(y)
(A'/A)K(y,y)v(y)
so t h a t I?(y,y)' = (1/2)A+'(y)
KERNELS AND POTENTIALS
[2K' (y,y)
+ (A'/A)K(y,y].
223
Consequently
CHE@Rm 11-3- Given a t r a n s m u t a t i o n B: Qm
+
6 with
k e r B = ~ ( y , x ) =' ; A
6 ( x - y ) + K(y,x) as i n (11.2) (K(y,x) = 0 f o r x > y ) i t f o l l o w s t h a t (A = A4) k ( y , y ) '
[A'(y)K(y,y)]'
=
=
-+[q"
i$(A'/A)2
-
$(A"/A)
-
(A'/A)(mt+)/y].
A more c a r e f u l a n a l y s i s o f o u r procedure g i v e s t h e f o l l o w i n g r e s u l t . let
BP?
=
Q w i t h B(y,x)
*
$(D )B(y,x)
Thus
= k e r B g i v e n i n s p e c t r a l form f o r example so t h a t
f o r x # y. F u r t h e r l e t an expression B(y,x) = h o l d as i n (11.2) f o r example. Then o f n e c e s s i t y
= Q,(Dx)~(y,x)
-g
AQ ( y ) b ( x - y ) + K(y,x) (11.5)-(11.7)
h o l d and hence Theorem 11.3 i s v a l i d . A
about i n t e r t w i n i n g o r t r a n s m u t a t i o n BQ,
QB.
=
Nothing need be assumed
F u r t h e r , once Theorem 11.3 i s
e s t a b l i s h e d one can e s s e n t i a l l y reproduce t h e c a l c u l a t i o n s (11.5)-(11.7) f o r g ( y ) = ( B f ) ( y ) = A-'(y)f(y) + f{ A-'(y)Qm(DY)f + f{ K(y,x)[Qm(Dx)f]dx -2m-1
)xf(x)
Kx(y,O) = 0 and m K(y,x)/x + 0 as b e f o r e w i l l d o ) . ( L e t us n o t e a l s o t h a t f ( x ) = ( F ( A ) , y A ( x ) ) m ?,qf), = ( ?,-A 2q Q A )m w h i l e BQf, = say w i t h b; = v f i m p l i e s f o r m a l l y G B f =
x
-f
+
0 as x
+
0 ( t h u s e.g.
6
-
B( f , - x 2qmx )m 2.3.9,
0 and K ( y , x ) f ' ( x )
K ( y , x ) f ( x ) d x t o o b t a i n GBf = {(Dy)g = BQ,f p r o v i d e d say x 2m+l (K(y,x)
=
(r,-A2q Qx ),,,.)
=
52.10,
51.7,
c@[email protected].
g3.6,
Consequently ( c f . a l s o §2.3, e s p e c i a l l y Remark 53.5,
and 52.8 f o r r e l a t e d i n f o r m a t i o n )
Given a map B: q y
-f
q:
as i n d i c a t e d i t f o l l o w s t h a t B i s a
t r a n s m u t a t i o n , a c t i n g on s u i t a b l e o b j e c t s .
RENARK 11-5, L e t us n o t e t h a t f o r m = 11.3 becomes (*) (A'(y)K(y,y))'
=
-+ and < = 0 t h e
(1/4)[(A"/A)
-
e q u a t i o n i n Theorem
(1/2)(A'/A)2]
=
(A')"A-'/2.
T h i s r e s u l t (*) i s n o t a t v a r i a n c e w i t h r e s u l t s f o r ( A u ' ) ' / A = Qu s p e c i f y i n g A-'(y)
=
1 - K(y,y)
( c f . 53.8 and Theorems 11.6,
11.7,
and 11.10 t o f o l -
l o w ) ; one i s s i m p l y t a l k i n g about d i f f e r e n t k e r n e l s K. L e t us go n e x t t o a new d e r i v a t i o n o f a r e s u l t o f t h e t y p e j u s t a l l u d e d t o i n Remark 11.5.
We r e f e r t o s1.6 f o r some background and begin w i t h a some-
what more general o p e r a t o r Qu = ( A u ' ) ' / A - qu. For s i m p l i c i t y one c o u l d 2 but f o r A E assume A E C and use c o n s t r u c t i o n s based on (1.6.21)-(1.6.23) 1 C t h e c o n s t r u c t i o n based on (1.6.5)-(1.6.6) w i l l be r e q u i r e d . We c o n s i d e r 2 moreover a s l i g h t e x t e n s i o n i n s p e c i f y i n g q Q as t h e s o l u t i o n o f Qu = - A u A,h = A ' / A one has e.g. s a t i s f y i n g q ( 0 ) = 1 and q ' ( 0 ) = h. Then s e t t i n g
4
224
ROBERT CARROLL
where we w r i t e A 4 f o r One assumes here e.g. 0 < ~1 5 A ( x ) 5 p < m , A 1 2 C , and A + Am r a p i d l y as x + m. For A E C one can use t h e technique o f Remark 1.6.4 t o o b t a i n ( c f . a l s o Remark 1.6.1) A%(y)@,(y) 4 = exp(ihy) + [Sinh (n-Y )/XI (i'(7-1) )It@)h Q (n)dn + f m [Sink ( n - y ) I A l q ( n ) @ ~ ( l ? ) A $ ()dn ~ = exp
-
( i 5 ( n ) ) [Sinh ( n - y ) / h I @ ~ & ) l'dn + f m [Sinh ( n - y ) / h l q ( n ) @ ~ ( n ) A ~ ( n ) dn = e x p ( i h y ) - f m (~4)'(n)[CosX(n-~)@h(n) Q + Y[ S i n X ( n - ~ ) / X ] D ~(2@ ~ ( n ) l d+n Note here f o r w = A% an e q u a t i o n Qu = [ S i n h ( n - ~ ) / h '] q ( nQ) @ ~ ( n ) ~ ~ ( n ) d n . 2 2 -X u l e a d s t o w " - (q+{)w = -A w where 6 = A-%(A$)" ( c f . (11.1) - here 4 = (iu)
I
F u r t h e r ( w i t h t h e n o r m a l i z a t i o n A(0) = 1 which can always be a c h i e -q-;). ved) w(0) = u ( 0 ) = 1 and w ' ( 0 ) = $A'(O) + h = h'. Given A ' + 0 as x m the -f
asymptotic b e h a v i o r w i5(x)$:(x)
=
e x p ( i x x ) and w '
+ ft
Q
( & ) I
ihexp(ihx) prevails. (5)[Cosh(x-c)ph(c) Q
Q Q I n any case one has as usual A(y)W(@h(y),@-,(y))
mulas.
-
Similarly [Sinh(x-5)/h]
[ S i n h ( x - ~ ) / A l q ( g ) ~ ~ ( 5 ) ( p ~ ( 5 ) db iu; t we w i l l n o t use these f o r -
D , o Q ( 5 ) l d ~+ f; S h
Q
Coshx + h[Sinxx/h]
Q = - 2 i h and A (ph(y) =
c Q ( h ) a4X ( y ) + C ~ ( - X ) @ ! ~ ( ~ ) .However a d i f f e r e n t e x p r e s s i o n f o r c v i a (A(0) = 1 )
arises
W ( Q~ ~ ( OQ) , ~ - ~=( O - 2 )i i)c Q ( h ) = D ~ @ - Q ~-( omYh(o) )
(11.10) (cf.
Q
[C40,66;
Af1,Z;
Sell).
T h i s a f f e c t s t h e f o r m o f t h e s p e c t r a l measure
e t c . ( t h e d e t a i l s f o r q = 0 a r e i n d i c a t e d i n [C40,66]
and c f . Remark 3.8.9).
We g i v e now a f i r s t d e r i v a t i o n o f a f o r m u l a f o r t h e G-L k e r n e l r e l a t i v e t o Q when q = h = 0 ( c f . a l s o Theorem 11.10 l a t e r and see 53.8 f o r a d i f f e r e n t
derivation).
From t h e c o n s t r u c t i o n s based on (11.8)-(11.9)
o b t a i n s an e n t i r e f u n c t i o n @ X (,.I4
"Q qh(x)
Q ( = (ph(x)
f o r example one
here) o f exponential type x w h i l e
f o r example w i l l be a n a l y t i c i n t h e upper h a l f p l a n e and bounded by Now w r i t e i n 2 By e s t i m a t e s as i n 51.6 $ E L f o r
exp(-yImh) t h e r e ( t h e c a l c u l a t i o n s a r e i n d i c a t e d i n §1.6). say (11.8) $ =
x
4
Q (2i/x)[qh(x) -
Coshx].
r e a l and by Paley-Wiener ideas ( c f . Theorem 1.3.8 f o r example) K(x,g)exp(ihE)dg
= 0).
Since
= 2i$
K(x,c)Sinhgdg
flhSinxgK(x,c)dg
For q = h = 0 we s e t K(x,g)
[l - K(x,x)]Coshx
+
J$
IL =
( n o t e K(x,c) i s odd i n 5 and K(x,O)
= -K(x,x)Coshx n
CHZBREIII 11.6.
(0)
=
+
ft K5 (x,<)Cosxgdg
we have
K ( x , ~ ) and one has q hQ ( x )
=
5
?(x,S)CoshCdc.
-
S e l l (where 1
d i s c u s s below i n Theorem 11.7).
For A = 1 ( q = 0 ) t h e r e s u l t i n Theorem
1.4.7,
K(x,x) = A-'(x)
-
T h i s r e s u l t i s t h e form i n [C40;
which we
o b t a i n e d v i a PDE techniques and Riemann f u n c t i o n s , has t h e form
(1.4.171,
narnelyG!(x)
= ~ o s h x+
Kh(x,c)Coshgdc,
where K ~ ( ~ , S =) h
+
KERNELS AND POTENTIALS
+
i?(x,c)
-
T ( X , - E ) + hJX [?(x,n)
F u r t h e r 2DxKh(x,x)
5
(m)
=
K(x,S)(A/2i)eiA5dc
X
[SinA(x-<)/A][;(
0 ( n o t e a l s o hSinhx/x = hf:
=
-
6 1:
[Sin~(x-~)/~l~~(5)D5~~(5)ld5 =
-hSinhg + hSinAgK( 5 , c ) +
One can f o l l o w [Mc4] o r use techniques o f [C40], l a t i o n s between K(x,x)
and
CosAgdg).
w i t h (11.8) t o o b t a i n
X
(11.11)
( r i n v o l v e s a Riemann f u n c t i o n ) .
J. ,
= q ( x ) and K(x,-x)
Now f o r q = h = 0 we use
I
?(x,-n)]dn
225
4.
K5(S,n) ( x / 2 i )eixndn)]dg p. 282 e t c . t o o b t a i n r e -
Since t h e l a t t e r t e c h n i q u e i s r a t h e r c o m p l i -
c a t e d we g i v e here a new d e r i v a t i o n o f t h e r e s u l t i n [C40,66;
S e l l when q =
h = 0 ( c f . a l s o [Mcl]). Thus [ S i n x ( x - ~ ) / A ] e x p ( i x n ) = i J nn+(x-5)exp( -(x-5) iAu)du; Hence f o r g e n e r i c f ( 5 ) and [ S i n x ( x - ~ ) / h ] e x p ( - i x n ) = i j ( x - 5 ) - n e x p ( i h u ) d u (X-L)-n -i(u+x) xiu S i n x ( x - 5 ) ,ihsd5 = (11.12) f(5) f(5)dCdu '0 '0 x-25 and s i m i l a r l y 1; f(~)[Sinh(x-~)/h]exp(-iA~)d< = if," f ( 5 ) i x exp( xu)dudg k i Xx exp(ihu)/o 4 ( x -u ) f ( c ) d g d u . I n t h e same manner f o r G(C,n) = 0 when In
I"
151 ( a s f o r K o r K5) (11.13)
(11.14)
.Further i n the l a s t
Q-S
i n t e g r a l i n (11.13) we c o n s i d e r t h e f o l l o w i n g p i c t -
u r e where G(5,n) = 0 i n r e g i o n s 1 and 2 (11.15)
ROBERT CARROLL
226
the 3 r e g i o n t a k e C+T- = 2a and 5-n = 2~ and o n e o b t a i n s then f o r ( 1 1 . 1 3 ) ) I = $ XL e~x p ( i x u ) ~ ~ ( u + x ~ ~ ( x - U ) f ( c r + 8 ) G ( c r + 8 , a - B ) d u = $1X e x p ( i A u ) -X
4
A
x,u)du where we n o t e t h a t G(x,x) = G ( x , - x )
=
0.
NOW go t o ( 1 1 . 1 1 ) w i t h
Sinxg = [ e x p ( i A c ) - e x p ( - i A c ) ] / 2 i t o o b t a i n 1; K ( x , S ) e x p ( i h c ) d S = 1; Q(x,u) e x p ( i x u ) d u ( Q ( x , u ) below) s o K(x,u) = Q(x,u) and i n p a r t i c u l a r K(x,x) = Q(x,x) where i n t e g r a l s o f t h e form ( b ) will n o t c o n t r i b u t e .
Thus
EHEBREIR 11-7- Under t h e h y p o t h e s e s i n d i c a t e d one o b t a i n s (h
= q = 0 and I t f o l l o w s t h a t 1 K ( x , x ) = A-'(x). A'/A) K(x,x) = -k$ ~ ( c ) [ K ( ~ , c ) - l ] d c .
Phaod: Dropping terms o f t h e form (i), we have from ( 1 1 . 1 1 ) FK 1 ; [ S i n X ( x - c ) / A ] ~ ( g ) [ K ( g , c ) - l]ASinXcdc = -+LXX exp(iAu)[fo'(x+u)
[G(c)(K(c,t) - 1)ldedu.
%
6=
-(2i/A)
- lyx-LJ)
1
The a s s e r t i o n o f the theorem f o l l o w s .
REmARK 11-8- Suppose we s t a r t w i t h Qu = ( A u ' ) ' / A - qu f o r A Au' we c o n s i d e r bw = w" + Gw = - h2w (6 = -q-;, q' = A-'(L5)").
2
so f o r w = Further t a k e v u ( 0 ) = 1 and u ' ( 0 ) = h so w(0) = 1 w i t h w ' ( 0 ) = h = h + A ' ( 0 ) . Based on = #9,4,, w h i c h we write a s 51.4 o n e has a f o r m u l a f o r w = 9 AYh E
C
O Q
(11.16)
$!(x)
= A-'(x)CosAx
c
+ A-'(x)
Kh(x,c)CosAcdc
For q = h = 0 w i t h ( 0 0 ) 2 0 x K h ( ~ , ~=) q ( x ) + c ( x ) = q ( x ) + A-'(x)(L'(x))''. ( w i t h A-'(x) = 1 - K(x,x)) ( 1 1 . 1 6 ) s h o u l d a g r e e w i t h Theorem 11.6 so t h a t i?(x,e) = ~ ~ ( x , =t )A-+(X)KK(X,E) (hy = $ A ' ( o ) ) .
- qu a g a i n a s i n Remark 1 1 . 8 b u t - Coshx - hSinAx/A = x ($! % 9h4,h)
REIIIARK 11-9- Suppose we t a k e Qu = ( A u ' ) ' / A
r e q u i r e o n l y A E C1. The f u n c t i o n $!(x) c a n b e c o n s t r u c t e d v i a ( 1 1 . 8 ) and w i l l be e n t i r e i n A of e x p o n e n t i a l t y p e x.
Hence by Paley-Wiener i d e a s
1
X
(11.17)
$!(x)
=
CosXx + h[Sinxx/x] +
i(x,e)eiAedg
-X
(for a suitable distribution
i).
Since
x
i s even i n A , k ( y , c ) w i l l be even
i n 5 and (11.17) can be w r i t t e n ( i h ( x , c ) = h + t ( x , g ) ) , $:(x) = CosXx + 10" th(x,c)CosAgdg. Thus f o r A = 1 , ih c o i n c i d e s w i t h t h e Marc'enko kernel Kh o f Theorem 1 . 4 . 7 ( c f . remarks a f t e r Theroem 1 1 . 6 ) . For A # 1 however a l i t t l e rough a n a l y s i s (which we o m i t ) o r s i m p l y p r e v i o u s results on k e r n e l s
(from Theorems 1 1 . 6 and 1 1 . 7 f o r example) i n d i c a t e s t h a t have 6 f u n c t i o n components and we set a c c o r d i n g l y (11.18)
4
i ( x , c ) = a ( x ) [ 6 ( x + c ) + a ( x - c ) ] + K(x,S)
K'
i n (11.17) will
KERNELS AND POTENTIALS
where
i s a function.
Thus (11.17) becomes
4
(11.19)
+
+ h[Sinhx/A]
9 h ( x ) = [l+a(x)]Cosxx
227
1
X
4?(xyg)CosA
X
and a ( 0 ) = 0 i s i n d i c a t e d .
We do n o t s p e c i f y a ( x ) a p r i o r i and i n f a c t i t
can be determined from t h e a n a l y s i s which f o l l o w s .
+r
We proceed now as i n
t h e p r o o f o f Theorem 11.7 and w r i t e from (11.8) and (11.17) ( w i t h (11.19)) i(x,5)eixgdg
(11.20)
1;
I
=
S i n h ~ x - g ) [ q ~ ~ ( 5 ) - ~ D g Q~ h ( 5 ) l d=5
=
X
0
Sinh/x-S)[q[(l+a(c))Cosh5+
h(Sinhg/h) +
$1
I - A (1 +a ($) ) S i nxg + (h+a +?(5, 5 ) )Cosh E; + I
$11
?(c,q)eixndq3
- t(5)
5,
K5 ( E; ,n)ei ndnl]dS
5
We use now t h e development f o r p r o v i n g Theorem 11.7 t o o b t a i n
I = J + '/4
(11.21)
e i ~ ~ ~ ( [ ( x ++ ~~ () X - u ) ) ( l + a ) q ( i ) d ' ] d u
(lo
+( x+u) r+(x-u7
kll eixu
0 +(X+U) + 14(X-U) ) q (a+B )?( a+@,a- B ) d Bdcldu - F L e i 4(x+u) % ( X - U l X 0 q(a+B)? (a+B,a-B)dBdadu 41: eihu 5
j
I, I,
0
0
:[ h+a I +?( 5, g ) ] d ~ d u -
where J = J1 + J2 as i n d i c a t e d below.
I
rS
J1 = ( h / 2 )
n+(x-s)
15 1n - ( x - 5 )
flu
q(~)[SinA(x-c)/hl
0
dudndg = (h/4) j:ei
e
We c o n s i d e r from (11.20)
1
5 . e'xndnd5 = (h/4) 5 joxq(5 ) f ( u x s )&du
X
(11.22)
+
1
X
q(5)
0
where f can be determined by i n s p e c t i o n o f a n expanded v e r s i o n o f (11.14) which we omit.
Thus f o r 5 > x/2 one has
i5Jq-fx-E) n++fx-S)exp(ihu)dudn
=
cix-25 p+(x-s) 2E-x /U+fx-S)+ xi 'f ]exp(ihu)dndu so f(u,x,S) = -x -5 + fx-25 U-(X-E) 25-x u-(x-E) x+u, 2 ( x - 5 ) , and x-u r e s p e c t i v e l y i n t h e 3 r e g i o n s f o r u i n t e g r a t i o n ( - x y x-25),
(x-25,25-x),
and (2<-x,x)
respectively.
e r a t i o n s p r e v a i l (which we m e r c i f u l l y o m i t ) . f ( x y x , 5 ) = 0. (11.23)
J2
J2
I n p a r t i c u l a r we n o t e t h a t
Next f o r J2 we have =
A lXqn(l+a)[Sinh(x-')/x]Sinhgdg
JLX '0 NOW s e t A(x) = J , ;(S)(l+a)dg (11.24)
For E; < x / 2 s i m i l a r c o n s i d -
=
'0
and i n t e g r a t e by p a r t s i n (11.23) t o o b t a i n
= - A(x)Coshx + (1/8)i:
eixu[A'(
X+U
+ A'(
)Idu
228
ROBERT CARROLL
where A ' ( 5 ) = 4(5)[1 + a ( 5 ) l .
The f i r s t t e r m on t h e r i g h t i n t h i s l a s t ex-
p r e s s i o n r e p r e s e n t s t h e 6 f u n c t i o n c o n t r i b u t i o n i n t h e f o r m -+A(x)Cosix =
+ S(x-u)]du and hence f r o m (11.22) we o b t a i n f i r s t
-+A(x) / z e x p ( i i u ) [ 6 ( x + u )
( e q u a t i n g t h e 6 f u n c t i o n c o n t r i b u t i o n s on b o t h s i d e s ) a ( x ) = -4A(x). f r o m which f o l l o w s 1 + a ( x ) = A-'(x)
a ' = - Q ' = -%(A'/A)(l+a) = 1 and a ( 0 ) = 0 ) .
+ a(E))d5 and express
=
1 ; :(5)(1
4
=
A ' / A and A(0) = 1 ) .
w i t h a(0) = 0 ( r e c a l l
k,
M
= h + K i n (11.19),
Eh(x,c) w i t h ?(x,u) 2)] +
=
:V
+
lo '('-')
k
as i n (11.18)
Then 1+ a ( x ) = A-'(x)
and
= ( ~ ( x , ~ ) , C o s X g )w i t h B ( X , S ) = A - ' ( x ) 6 ( x - ~ )
( h / 2 ) 4 q(E)f(u,x,E)dE
%Ji'(x+u ) /?('-' [ q (atB )?( at0 ,a- 8 )
4(/i5(x+u)
( r e c a l l A(0)
Thus sumnarizing ( c f . a l s o Remark 1 1 . 5 )
&€IEQ)REm11-10. Set A(x) for
Hence
)[q(c)(l+a(c))
-
-
+ (1/4)[A'(x+u)/2)
+
+ A'(x-u)/
M
{ ( a + ~Kg ) ( a + o , a- B ) I d Bda +
(h+a'+?(~,~)){(~)ldS where f is g i v e n M
= 0.
as above w i t h f(x,x,S)
%/$ t(S,S)(A'/A)(S)d5
=
S e t t i n g u = x i n (11.25) one o b t a i n s K(x,x)
H(x) = W ' ( 0 )
-
+(A-')'(X)
-
(h/Z)logA(x) +
M
$/$ [qA-'
-
2Dx?(x,x)
and f o r general A ( A ' # 0 ) one o b t a i n s ?(x,x)
Dx[A-'
(A')'(A'/A)]dE.
= %/o
I f A = 1 one o b t a i n s K(x,x:
( X) 1 ; H ( 5 ) ( A ' /2A? ( 5 ) d51.
=
X
qdS so q =
(2A/A')(x)
t
CHAPEER 3
APP LZCACZ(DN$
I.
ZNER(DDlltEZ6N.
I n t h i s c h a p t e r we w i l l g a t h e r t o g e t h e r v a r i o u s t e c h n i q u e s
and r e s u l t s concerning t r a n s m u t a t i o n methods i n t h e areas o f l i n e a r stochast i c e s t i m a t i o n and i n v e r s e problems i n geophysics ( o t h e r m i s c e l l a n e o u s a p p l i c a t i o n s a r e i n d i c a t e d i n 910).
The remarkable s i m i l a r i t y i n p a t t e r n s and
s t r u c t u r e between formulas and methods i n these areas i s d i s p l a y e d and s t u d i e d (and these c o n t e x t s a r e c o n s i d e r e d p r o t o t y p i c a l f o r o t h e r a p p l i c a t i o n s ) . Some new r e s u l t s on geophysical i n v e r s e problems a r e i n c l u d e d and, when t h e r e i s an u n d e r l y i n g s t o c h a s t i c process, t h e r o l e o f m i n i m i z a t i o n i n c h a r a c t e r i z i n g t r a n s m u t a t i o n k e r n e l s i s shown t o be e q u i v a l e n t i n s t o c h a s t i c geometry t o l e a s t squares f i l t e r i n g e s t i m a t i o n .
Given t h a t many n a t u r a l processes
a r e governed by second o r d e r l i n e a r d i f f e r e n t i a l equations ( a t l e a s t t o a f i r s t a p p r o x i m a t i o n ) i t i s c e r t a i n l y no s u r p r i s e t o see t h a t c e r t a i n mathem a t i c a l p a t t e r n s and s t r u c t u r e s r e c u r f r e q u e n t l y i n p h y s i c s and a p p l i e d mathematics. above.
We w i l l weave t h e theme o f t r a n s m u t a t i o n t h r o u g h t h e t y p i c a l areas Our main i d e a i s t o emphasize
p a t t e r n s and s t r u c t u r e common t o these
areas and t o u n i f y i n a c e r t a i n way t h e t r e a t m e n t o f such t y p i c a l problems. I n f a c t , t h e use o f t r a n s m u t a t i o n methods has a l s o been h e l p f u l , f o r example as a g u i d e and t o o l i n d e v e l o p i n g new r e s u l t s about geophysical i n v e r s e problems and thus t h e t r a n s m u t a t i o n machine goes beyond mere u n i f i c a t i o n i n i t s usefulness.
The i n t e r a c t i o n w i t h i n v e r s e problems i s p a r t i c u l a r l y " i n t i m a t e "
b u t i n h i g h e r dimensions t h e study o f i n v e r s e problems i s o n l y p a r t i a l l y amenable t o t r a n s m u t a t i o n techniques and o t h e r methods a r e necessary.
As a preview o f t h e c h a p t e r we mention t h e f o l l o w i n g .
Section 2 i s a c o l l e c -
t i o n o f i d e a s and c o n s t r u c t i o n s from p r o b a b i l i t y and s t o c h a s t i c a n a l y s i s . 593-5 p r o v i d e a survey o f some o f t h e i m p o r t a n t i d e a s and c o n s t r u c t i o n s from l i n e a r stochastic estimation.
The s t r u c t u r e o f v a r i o u s i n t e g r a l equations
which a r i s e f o r t h e f l t e r i n g and smoothing k e r n e l s a r e s t u d i e d (as G-
equa-
t i o n s , W-H equations, r e s o l v a n t equations, e t c . ) and v a r i o u s r e l a t i o n s and 229
230
ROBERT CARROLL
formu as are derived which have both theoretical and computational interest (e.9. Krein-Levinson-Shur relations, Krein-Bellman-Siegert formulas, Sobolev re ations, Darboux-Christoffel formulas, etc. ) . The innovations concept is treated in some detail and underlying differential problems are obtained as in [Lx1,2] for the even and odd innovations processes. In 556-7 the spectralized innovations processes are studied via transmutation in terms of eigenfunctions q Q as in 551.4 and 1.5 and the role of minimization as Ash in 52.7 to characterize the transmutation (filtering) kernel is shown to accomplish the same thing in stochastic geometry as linear least squares estimation. There is some technical information on the representation of functions in the K-L theory (to supplement §2.8) and there is a short section on random fields following [Lx~] in order to show the connections to transmutation for singular operators. §§8-9 are on inverse problems in geophysics where transmutation methods are particularly effective and revealing for the one dimensional problem. 57 is largely on the computation of acoustic impedance as a function of travel time via reflection data using G-L methods and follows the work of the author and F. Santosa as in [C40] (with some new proofs and insight). Layer stripping methods following [Lx 4-61 are briefly discussed as is the use of transmutation for three dirnensional problems following the author and Santosa. 59 involves some new work following [C71-73,78] on recovery of the impedance profile via transmission data. Some interesting new mathematical features arise (e.g. splitting of the spectral measure) which gave connections to filtering theory (e.9. Wiener filters). The extended G-L equation in the time domain gives a model where ideas of causality and triangularity interact naturally. In 5510-11 we collect miscellaneous information on transmutation for systems and for equations with operator coefficients and mention briefly some other topics within the limitations of space guiding the preparation of this book. 2. PROBABILZQI
E€lEP)R11 AND RANDOM PRP)CE$5E5. Stochastic analysis has burgeoned
in recent years and has both used and provided many mathematical techniques. The interactions with the differential equations of physics and engineering are legion and thus it is no surprise that we will be able to indicate some interesting connections with transmutation. Actually the interaction with transmutation is quite profound since for example many of the integral equations of linear filtering and estimation theory represent transmutation formulas (in the same manner as do many - corresponding - formulas in quantum scattering theory). Indeed one can link together a great deal of the
RANDOM PROCESSES
231
machinery o f i n v e r s e s c a t t e r i n g and l i n e a r e s t i m a t i o n t h e o r y w i t h transmutat i o n ideas and techniques.
I n t h i s s e c t i o n we want t o g i v e some minimal
I t would be excessive t o a t t e m p t
background f o r t h e s t o c h a s t i c machinery.
a t u t o r i a l i n p r o b a b i l i t y t h e o r y o r i n measure t h e o r y so we g i v e a s i m p l e o u t l i n e o f some ideas i n s t o c h a s t i c processes guided by v a r i o u s " a p p l i e d " p r e s e n t a t i o n s i n e.g.
[Kacl;
Pe2; Wpl (see e s p e c i a l l y [Wpl]).
For f u r t h e r
d e t a i l s , v a r i o u s p o i n t s o f view, e x t e n s i v e e l a b o r a t i o n , e t c . we c i t e e.g. [Dul,3;
Dxl; Dagl; L x l - 3 ;
Kvl; Kul-14;
D w l ; Mhl; Lwl; Pgl; Rql-3; J d l ; Wol;
Rpl; B b i l ; Ycl; B b j l ; I c l ; M i l ; Gw1,2;
K w l ; Phl; Ydl; Fml; Kacl].
One c o n s i d e r s s t o c h a s t i c processes X t ( w ) , w E R
t E T (usually T =
(-m,m)),
and
(where n i s an a p p r o p r i a t e measure space o r p r o b a b i l i t y space).
f o r t f i x e d Xt
Then
i s a random v a r i a b l e ( i . e . measurable f u n c t i o n ) r e l a t i v e t o
some p r o b a b i l i t y d i s t r i b u t i o n dP(w) on 52.
One r e c a l l s a l s o t h e i d e a o f
o f p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n f o r a random v a r i a b l e X; t h i s i s d e t e r mined by P x ( a ) = P{w; X ( W ) 5 a }
-
f u r t h e r P X ( A ) = P{w; X ( W )
t e r m i n e s a measure on Bore1 s e t s A C pt= mt = E(Xt) = EXt = fn Xt(w)dP(w)
A } which de-
€
One d e f i n e s a mean
R based on (dP,n).
(and we n o t e t h a t EX =
L:
gdPX(c) =
fa X(w)dP(w)). We u s u a l l y assume vt = 0 and suppose f u r t h e r t h a t t h e v a r i 2 2 ance o = E I X t = E I X t I Z < m. A typical probability distribution a f u n c t i o n would be t h e z e r o mean Gaussian d i s t r i b u t i o n P(X < a ) = 1, exp (-SiS2/cr2)ds/J2~02 =
i:
dP(s) ( i d e n t i f y here
and
(-my-)
r e f e r s t o an a l g e b r a A o f " e v e n t s " (measurable s e t s ) i n
f o r example).
a, about
One
which we
w i l l m e r c i f u l l y say p r a c t i c a l l y n o t h i n g , and we denote by L t h e a l g e b r a o f Lebesgue measurable s e t s i n T.
We r e c a l l a few b a s i c ideas now and c o l l e c t
some background i n f o r m a t i o n ( n o t e E
Q
expectation).
DEFZNZEZON 2-1, Xt i s c o n t i n u o u s i n p r o b a b i l i t y a t t i f f o r each E > 0 P{IXs-Xtl 5 €1 0 as s t. I f Xt i s continuous i n p r o b a b i l i t y a t each t -f
E
-f
T t h e n one says Xt
Xt i s separable i f t h e r e
i s continuous i n p r o b a b i l i t y .
e x i s t s a c o u n t a b l e ( s e p a r a t i n g ) s e t S c T and an event A ( A = A ( s ) ) f i x e d w i t h P ( A ) = 0 such t h a t f o r any c l o s e d K c s e t s {w;
Xt(u)
subset o f A.
K; t E I n T I and { w ;
E
E
and open i n t e r v a l I t h e
K; t
E
I n S 3 d i f f e r by a
c
(8 A.
i s measurable
One knows ( c f . [ D x l l ) t h a t i f Xt i s continuous i n
p r o b a b i l i t y t h e n t h e r e i s a process 'v
P(Xt = X t )
(--,a)
i s measurable i f Xt(W) as a f u n c t i o n o f (t,w)
Xt
w i t h respect t o
X,(W)
Yt
d e f i n e d on t h e same 0 such t h a t
N
= 1 f o r each t E T,
Xt i s separable and measurable, and any
c o u n t a b l e dense s e t S c T serves as a s e p a r a t i n g s e t . We w i l l primarily be concerned w i t h complex v a l u e d "second o r d e r " processes.
ROBERT CARROLL
232
l 2 < a ) w i t h EXt = p t = 0. Such a process i s c a l l e d wide sense t s t a t i o n a r y i f i n a d d i t i o n t h e a u t o c o r r e l a t i o n ( = c o v a r i a n c e here s i n c e p =
Xt
(i.e.
EIX
i s a f u n c t i o n o f t - s a l o n e (we w i l l w r i t e R ( t , s ) = R ( t -
0 ) E(XtXS) = R(t,s)
F u r t h e r one w i l l want Xt t o be continuous i n q u a d r a t i c means o r mean s)). square continuous i n t h e sense t h a t EIXt+h - X t I 2 + 0 as h -+ 0. By t h e Markov i n e q u a l i t y
ElXI2 2
(0)
E
2
P(Ixl
-
E),
mean square c o n t i n u i t y o f Xt
p l i e s t h a t Xt i s continuous i n p r o b a b i l i t y .
We t h e n use D e f i n i t i o n 2.1 t o
One sees t h a t R(t,s)
r e p l a c e Xt by Xt i f necessary.
im-
i s nonnegative d e f i n i t e
2 i n t h e sense t h a t 1 a . t i R ( t . , t ) = E l l a.X j l 2 0 and f r o m t h e e q u a t i o n J k J k - J t R(t+h,s+^h) - R(t,s) = EXt+hXs+; - EX X = E(Xt+h - X t2 ) js+h + EXt(Xs+fi-js)
ts_ and t h e Cauchy-Schwartz i n e q u a l i t y I E X Y l 5 ( E l X l E l Y l )
mean square c o n t i n u i t y o f Xt t h a t R ( t , s )
4
i t f o l l o w s from
i s continuous i n ( t , s )
(exercise).
One denotes b y HX t h e H i l b e r t space o f random v a r i a b l e s o b t a i n e d from X t v i a sums =
ElYl
2
.
1 a.X .(w) J t,
= Y(w)
and Cauchy sequences t h e r e f r o m i n t h e norm IIYII
2
That such Cauchy sequences y i e l d random v a r i a b l e s f o l l o w s from
t h e Markov i n e q u a l i t y
g i v i n g a Cauchy sequence i n p r o b a b i l i t y , and
(o),
hence a subsequence converges almost s u r e l y ( i . e . random v a r i a b l e .
almost everywhere) t o a
F u r t h e r one can d e f i n e mean square i n t e g r a l s i n HX by
f o r say continuous f, where to = a < tl <
.. .
< tn = b, tv 5 5”
5 tv+l, and
t h e l i m i t o f these Riemann t y p e sums (presumed t o e x i s t ) i s t a k e n i n HX. b b b f ( t ) X t d t e x i s t s i f and o n l y i f f(t)f(s)
One shows(exercise) t h a t
/a
/a /a
R ( t , s ) d t d s e x i s t s as a Riemann i n t e g r a l .
-
-
One n o t e s a l s o t h a t i f we d e f i n e
U X = Xt+s t h e n EU X U X = EXt+sXt+u = R(s-u) = E X s j t so Ut determines a t s t s t u u n i t a r y o p e r a t o r on HX (ifYn Y i n HX s e t UtY = l i m UtYn). C l e a r l y UtUs -f
= Ut+sy U i ’ = U-t,
and U,
=
I so t h a t Ut i s a t r a n s l a t i o n group.
One expects now t o be a b l e t o work w i t h a F o u r i e r t r a n s f o r m i n a n a l y z i n g and d e s c r i b i n g wide sense random processes Xt as above.
F i r s t we s k e t c h a
p r o o f o f a theorem o f Bochner ( c f . [Bu2; S j l ; Wpl]).
EBE@REM 2-2. A f u n c t i o n R ( T )
E
Lm i s t h e c o v a r i a n c e f u n c t i o n o f a mean
square continuous wide sense s t a t i o n a r y process i f and o n l y i f R ( T ) = ( 1 /
21~)i: e x p ( - i w ) d F ( v ) where dF(v)
7r
F(dv) i s a f i n i t e nonnegative ( B o r e l )
measure ( c a l l e d t h e s p e c t r a l measure).
Pkaaa:
To prove i m p l i c a t i o n we can t a k e R ( t - s ) c o n t i n u o u s and nonnegative
d e f i n i t e and d e f i n e R,(T)
= (l-\xI/Zn)R(T)
for
\TI
5 2n w i t h R,(T)
= 0
RANDOM PROCESSES
elsewhere.
Then Rn
E
1
L 1 n Co and i t i s a l s o nonnegative d e f i n i t e .
m
Sn(v) =
(2.2)
233
Define
A
Rn(r)eivTdT
= Rn(v)
m
i s nonnegative d e f i n i t e ) . dT.
Now l e t f E S and de-
Then u s i n g t h e Parseval f o r m u l a we w r i t e
T)F(T)dTl = l i m
1
Hence p can be extended t o a continuous l i n e a r f u n c t i o n a l on
Co(-m,m)
t h e sup norm which means by a theorem o f F. Riesz ( c f . [ R m l ;
Rol; Mc41)
that
p(f)
ite.
=
with
/: f ( w ) d F ( v ) w i t h dF nonnegative s i n c e R i s nonnegative d e f i n -
For f E S we have then m
p(f) =
(2.4)
[
I
m
f(v)dF(v) =
m
;(-r)R(T)dT
m
Set now f n ( v ) = e x p ( - + v 2 / n ) e x p ( - i v t )
t o get
e r c i s e - cf. [Wpl] f o r t h e procedure h e r e ) .
-,2 v R ( t )
and
iz
fn(v)dF(v)
m
.+
i,
in(T)
= mexp(-+n(t-.r)2
I t f o l l o w s t h a t /:
exp(-ivt)dF(v).
(ex-
;,,(T)R(+)dT
On t h e o t h e r hand one can
m
show e a s i l y t h a t any R ( t ) d e f i n e d by ( l / 2 n ) J a e x p ( - i w t ) d F ( v ) as i n t h e statement o f Theorem 2.2 w i l l be nonnegative d e f i n i t e and continuous; i t t h e n f o l l o w s t h a t i t determines t h e c o v a r i a n c e f u n c t i o n o f some mean square continuous wide sense s t a t i o n a r y process ( c f . [Wpl] f o r d e t a i l s ) . f u n c t i o n F i s d e s c r i b e d more c o m p l e t e l y below i n any case. Now g e n e r a l l y X t may n o t have a F o u r i e r i n t e g r a l , i . e . n o t e x i s t as a mean square i n t e g r a l .
The s e t
W
[I X t e x p ( i w t ) d t
may
One can i n t r o d u c e however a s p e c t r a l
4
process X,
w i t h o r t h o g o n a l increments such t h a t
F i r s t l e t us s p e c i f y t h e s e t f u n c t i o n F i n Theorem 2.2 more p r e c i s e l y .
Thus
l e t a and b be c o n t i n u i t y p o i n t s o f F and t a k e ( c f . t h e p r o o f o f Theorem 2 A 2 2.2) f n ( v ) = (n/2n)'lb e x p ( - n ( v - v ) /2)dp w i t h f n ( T ) = e x p ( - r / z n ) [ e x p ( i T b ) a - e x p ( i T a ) l / i r . NOW (n/2a)'exp[-n(v-u) 2 /21 6 ( v - u ) as n + m so f n ( w ) -+ -f
lab ( l a b = 1 on [a,b] F[a,b)
=
and 0 elsewhere) and consequently Fab = F[a,b]
F(a,b) = F(a,b]
= lim
r:
fn(v)F(dv) = l i m
/-IFn(T)R(T)dT.
o u t t h e l a s t e x p r e s s i o n y i e l d s ( f o r c o n t i n u i t y p o i n t s o f F)
=
Writing
2 34
ROBERT CARROLL
Since t h e p o i n t s o f c o n t i n u i t y o f F a r e dense i n
l y determined by (7.6) ( e x e r c i s e - c f [Wpl]).
(--,m)
F w i l l be complete-
We n o t e t h a t (2.6) i s c o n s i s -
m
t e n t w i t h R ( T ) = (1/2n)lm e x p ( - i v T ) d F ( v ) .
Now f o r such c o n t i n u i t y p o i n t s a
and b o f F s e t f o r m a l l y
4
w i t h Xa
-f
0 i n mean square as a
-f
and, a t t h e ( p o s s i b l y ) c o u n t a b l e s e t
-m
6
o f d i s c o n t i n u i t y p o i n t s o f F, X, left.
But
Lz
Then f o r m a l l y
(2.9)
b d 1 exp(iuT)6(u-p)dudu one o n l y a c = [c,b) o r [a,d). W r i t e t h i s as
e x p ( i s ( v - v ) ) d s = 2 ~ 6 ( v - u ) so i n f
n [c,d)
o b t a i n s c o n t r i b u t i o n s on [a,b) [a$)
i s t o be mean square c o n t i n u o u s from t h e
(which may be empty) and (2.8) y i e l d s
E = (l/h)~ , R ( T ) 4
$eiuTduck
A
W r i t i n g f o r m a l l y dX,
[c,d))
=
z;; 1
FaD
A
-
XAtd
=
= (l/Zn)F([a,b)n
X,
and F ( d A ) = F([A,XtdX))
we can express
t h e i d e a o f o r t h o g o n a l increments as (2.10)
Edd,;^X,
=
where 6,u = 1 i f A = EXtXS =
(2.11)
EHE0RBll 2.3.
6,,,F(d
u
A)/2a Then f r o m ( 2 . 5 )
and 0 o t h e r w i s e .
1, :1
e - i h t e i u s EdX,dXpA
( c f . Theorem 2 . 2 )
m
=
1
2n
im
e-ih(t-S)F(dx)
= R(t-s)
A mean square continuous wide sense s t a t i o n a r y process can be A
represented i n t h e f o r m (2.5) A 2 ments w i t h E I X A [ bounded.
Phoab:
where X,
i s a process w i t h o r t h o g o n a l i n c r e -
The converse i s a l s o t r u e ( e x e r c i s e
-
c f . [Wpl]).
To p r o v e t h e
n
theorem one d e f i n e s X, (2.12)
by (2.7)
and t h e n f o r f E S i t w i l l f o l l o w t h a t
_Izf(X)d?, = ( l / 2 n ) [ z f ( t ) X t d t
( t h e i n t e g r a l s b e i n g d e f i n e d v i a l i m i t procedures from sequences f,,
in as
235
RANDOM PROCESSES
LI labd?,
Indeed from ( 2 . 7 )
below).
s t e p f u n c t i o n s fn based on c o n t i n u i t y p o i n t s one has (*) m
,:
= ( 1 / 2 i ~ ) i Ij a b ( t ) X t d t
and hence f o r
f,(h)d?, = Such f u n c t i o n s fn w i l l be u n i f o r m l y and L1 dense and f
h
( 1 / h ) L w fn(t)Xtdt. A A f o r fn + f E S w i t h fn -f f u n i f o r m l y (and w i t h t h e i n t e g r a l s i n (2.12) de-
f i n e d as mean square l i m i t s i n HX) one has E l i : f(A)d^X - i : ?(t)Xtdt12 5 + 2 E / l m l?(t)--? n ( t j l X t d t l 2, = 2 i z If(,) - fn(X)l 2 2ElLZ I f ( A ) - f , ( ~ ) I d ~ , l -m F(dx)/ZT + 2 i I lz R(t-s)[;(t) - ? n ( t ) ] [ ? ( s ) - P , ( s ) ] d t d s and t h i s vanishes A
as n +
Now t a k e f n ( h ) = e x p ( - + i 2 / n ) e x p ( - i x t o ) and f n ( t ) = (2m)'exp 2 Then i n ( * ) t h e r i q h t s i d e [ - ( n / 2 ) ( t - t o ) ] as i n t h e p r o o f o f Theorem 2.2. goes t o Xto ( t o Q to; (n/21~)'exp[-(n/Z)(t-t~) 2] + s ( t - t o ) ) while the l e f t m.
rn
exp(-ihto)dih.
s i d e o f (*) goes t o
Using t h e s p e c t r a l r e p r e s e n t a t i o n ( 2 . 5 ) one o b t a i n s a r e p r e s e n t a t i o n o f HX. Thus l e t f i r s t 4
dX,
if
,Yn
=
1;
akXtk
(tk
t k ) so f r o m ( 2 . 5 ) Yn =
Q
[I [Ia k e x p ( - i h t k )
L:
qn(h)dXh and i f Yn i s Cauchy i n HX we have E I Y n - Y m I 2 = (1/21~) 2 2 q i n L (dF) and one o b t a i n s I q n ( x ) - nm(h)l dF(h) 0. Thus nn =
-f
-f
COROLLARY 2 - 4 - One has an i s o m e t r y between H X and LL(dF/2n) g i v e n by Y =
/l q(h)d?,
and EY1Y2 = ( 1 / 2 1 ~ ) [ 1 nl(h)G2(h)dF(X). A
REIRARK 2-5. Suppose R E L1 w i t h F(dh) = R(x)dx ( c f . Theorem 2 . 2 ) . 0 for
It1
(2.13)
Set XtT =
T and c o n s i d e r GT(x) = (1/2n)
m
XtT e i x t d t
-
-m
6)
*
,:
Thus g ) = F f F g so F ( f * = F f G (G(x) = g ( - x ) ) . T = f(t-T)g(-T)dT = f o r m a l l y from 2rGT(h) = FXt one can w r i t e ( n o t e f * One r e c a l l s t h a t F ( f
[:
f (t+S
19 ( 5 1d5 1
(2.14)
4nEIGT(h)l 2 =
1,
eiXtE
The i n n e r i n t e g r a l r u n s from -T
;(A) as T
+
+
:1
eixt
1
R(t)dcdt
T - t f o r t > 0 o r f r o m -T + I t [ + T f o r t
It(.
The o u t e r i n t e g r a l can o n l y r u n from 2 aT Consequently 4 ~ r E I G ~ ( h )/2T l = LzT R(t)(l-(ltl/ZT)exp(ixt)dt + 2 m. One r e f e r s t o E I G ~ ( A ) I /ZT as energy p e r u n i t e t i m e o r
< 0 and hence has l e n g t h 2T -
-2T t o 2T.
Xl+EX:dgdt =
power and thus R ( ~ ) / ~ T iI s r e f e r r e d t o as a power spectrum sometimes w h i l e
i s c a l l e d an a u t o c o r r e l a t i o n f u n c t i o n .
-
One goes n e x t t o t h e i d e a o f w h i t e n o i s e where R ( T ) = EX t+T X t = 6 ( ~ )(one
236
ROBERT CARROLL
can a l s o m u l t i p l y by a c o n s t a n t t o g e t d i f f e r e n t s t r e n g t h s ) .
This corres-
ponds t o dF(v) = 1 dv. To t r e a t t h i s k i n d o f " n o n p h y s i c a l " s i t u a t i o n we n say t h a t a sequence Xt of mean square c o n t i n u o u s processes converges t o a 2 w h i t e n o i s e Xt i f f o r each f E L , X n ( f ) = /f f(t)X!dt i s a mean square convergent sequence ( X ( f ) n t h i s event one w r i t e s
1
+
-
and l i m EXn(f)Xn(g) =
X(f))
/I f ( t ) g ( t ) d t .
In
m
(2.16)
X(f) =
f(t)Xtdt
m
and c a l l s Xt a w h i t e n o i s e .
We can i n f a c t r e p l a c e (2.16) by a genuine
s t o c h a s t i c i n t e g r a l as f o l l o w s . (m.s.1 l i m J~t Xsds n so t h a t zb -
D e f i n e (m.s. denotes mean square) ( 6 ) Zt = = l i m xn(lab) and E ( Z ~ - Z , ) ( ? ~ - Z ~ = )
za
Consequently Zt has o r t h o g o n a l increments w i t h EdZtdZS = lab(t)lcd(t)dt. Gstdt. One can t h e n d e f i n e i n t e a r a l s f ( t ) d Z t w i t h r e s p e c t t o dZt as i n
/f
rf
4
t h e p r o o f o f Theorem 2.3 f o r dX,.
For f a s t e p f u n c t i o n we have moreover i: f ( t ) d Z t . For f E L 2 one
from (6) and t h e comnents t h e r e a f t e r X ( f ) = t a k e s l i m i t s o f s t e p f u n c t i o n s fn t o o b t a i n I f X:
ICHE0RZm 2.6,
+
Xt as i n d i c a t e d w i t h Xt a w h i t e n o i s e t h e n f o r f
E
2 L
(2.16) can be r e p r e s e n t e d r i g o r o u s l y as a s t o c h a s t i c i n t e g r a l by X ( f ) =
/f
f(t)dZt. n
One d e f i n e s now ( f o r Xt a w h i t e n o i s e ) a n o t h e r w h i t e n o i s e X, 2 h,^h E L one has
1
m
(1/2n)
(2.17)
1
m
$ ( t ) X t d t = (1/2n)
h(t)dZt =
1
m
a,
A
m
m
I
such t h a t f o r
h(v)di\,
m
=
h(v)jivdv
m
A
where dZ
V
i s d e f i n e d as b e f o r e v i a A
(2.18)
Zb
-
I -
a,
4
Z
=
-a -?a)(?d-?c)
iab(t)dZt/2r
Am
SO t h a t E ( i
s
=
(1/4n),;
-
One u s u a l l y encounters (Gaussian) w h i t e n o i s e
e t c . (EdivdZU = 8vlldv/2~).
as a formal d e r i v a t i v e o f Brownian motion. i s a Gaussian process Xt
-
i a b ( t ) i c d ( t ) d t = (1/2n)jm m lZb(v)lcd(v)dv
Thus a ( r e a l ) Brownian m o t i o n
(t 2 0 ) w i t h EXt = 0 and EXtXs
= min(t,s)
=
R(t,s)
( n o t e t h e n EIXt-X,.i2 = I t - s l b u t Xt i s n o t s t a t i o n a r y ) . It follows f o r m a l l y t h a t E$is = DtDsmin(t,s) = a ( t - s ) so itr e p r e s e n t s a w h i t e n o i s e . We remark a l s o t h a t Xt i s Gaussian means t h a t e v e r y f i n i t e l i n e a r combination Z =
1 anXtn
increments X(tl)
i s a Gaussian random v a r i a b l e and one checks e a s i l y t h a t
- X(to),
random v a r i a b l e s ( X ( t )
X(t2)
Xt).
-
X(tl),
...,
X(tn)
-
X(tn-l)
a r e independent
2 37
RANDOM PROCESSES
Now t h e n o t i o n P(a1b) means t h e ( c o n d i t i o n a l ) p r o b a b i l i t y o f a g i v e n b. Any process w i t h independent increments i s Markov ( i . e .
I X(tn-,)
xu; u = 1 ,..,n-1) = P ( X ( t n ) 5 x n has t h e p r o p e r t y E(Xt]XT; 0 5 T 5 s ) = X, i s c a l l e d a martingale.
xnml).
=
a.s.
P ( X ( t n ) 5 xn
1 X(tv)
=
A Brownian m o t i o n a l s o f o r t 2 s and such a process
More g e n e r a l l y l e t Xt be a s t o c h a s t i c process and
At an i n c r e a s i n g f a m i l y o f event a l g e b r a s such t h a t Xt
Then Xt i s a m a r t i n g a l e i f t > s i m p l i e s E ( A s ) X t
=
i s At measurable.
Xs a.s.
(limitations of
space p e r m i t t i n g we w i l l d i s c u s s m a r t i n g a l e s and p r o g r e s s i v e m e a s u r a b i l i t y more l a t e r ) . Xt on
L e t us remark t h a t one can b e g i n w i t h a ( r e a l ) Brownian m o t i o n w i t h EXtXs = ( 1 / 2 ) ( l t l + I s /
(-m,m)
p a i r o f Brownian motions on a t t = 0. t h a t dXt
[O,m),
Yt = X-t
L e t us a l s o n o t e t h a t E I X t + h %
(dt)’
-
-
I t - s l ) and t h i s determines a and Xt
Xt12
(t
0 ) , patched t o g e t h e r
= ( h l , i n d i c a t e d by w r i t i n g
and t h i s f a c t i s i m p o r t a n t i n s t u d y i n g s t o c h a s t i c i n t e g r a l s The i n t e -
i n a general sense ( b r i e f l y discussed l a t e r i f space p e r m i t s ) .
g r a l s i n t h i s s e c t i o n a r e mean square i n t e g r a l s r e l a t i v e t o s u i t a b l e Xt ( i n p a r t i c u l a r white noise i n t e g r a l s are important) w i t h the integrand i n dependent o f
more general s t o c h a s t i c i n t e g r a l s (e.g.
W;
I t o integrals) arise
i n c o n n e c t i o n w i t h t r a n s m u t a t i o n and t h i s i s i n d i c a t e d l a t e r ) . t i o n w i t h dXt
‘ I ,
(dt)’
I n connec-
above and w h i t e n o i s e i n t e g r a l s l e t us n o t e t h e f o l -
2
I t - s l one sees t h a t f o r 0 < s i 5 < t, E I X t - X s 1 2 2 + E ( X - X I + 2E(X - X ) ( X e - X s ) = ( t - s ) = E ( ( X - X ) + ( X -X ) I = E ( X - X t 5 5 s t 5 5 s t c = t-S+E-s + 2E(Xt-X5)(X - X ). Hence Xt i s a process w i t h o r t h o g o n a l i n c r e 5 s ments ( c f . ( 2 . 1 0 ) ) and one can d e f i n e i n t e g r a l s f ( t ) d X t by mean square lowing.
From E I X t - X s 1 2
=
h
convergence as i n Theorem 2.3 (where X, crements
-
was a process w i t h o r t h o g o n a l i n -
n o t e s t a t i o n a r i t y i s n o t needed i n t h i s c o n t e x t ) .
d e n t l y EdXtdXS = gstdt (t-s = (t-5) +
One has e v i -
( n o t e t h e c a l c u l a t i o n above g i v e s f o r s < 5 <
(<-TI) + (n-s))
t h e c o n c l u s i o n E = E(Xt-X5)(X
n
-Xs)
=
T-
< t
n-s -
in-
- X ) = E(X - X ) ( X - X ) = - ( T I - E ) , E(X - X ) 5 r l n 5 E T I 5 n = E(X - X ) ( X - X ) = -(q-c), SO t - s t-c+n-C+n-S + ZE - 4 ( r , - c ) ) .
deed one notes t h a t E(Xt-X5)(X (X - X s )
/z
n 5 r l r l 5 I f we s e t now Wt = X f o r o u r Brownian m o t i o n ( o r Wiener process) t h e n f o r t s u i t a b l e f, X ( f ) = 1,” f ( t ) d W t d e f i n e d as i n Theorem 2.3 w i l l determine a (Gaussian) w h i t e n o i s e X ( c f . Theorem 2.6). We n o t e t h a t w h i t e n o i s e s need n o t be Gaussian. For example t h e s t a n d a r d Poisson process P(Xt-Xs = k ) = exp[-h(t-s)]h
k
k ( t - s ) / k ! g i v e s r i s e t o EXtXS = h m i n ( t , s ) so Xt generates a
w h i t e n o i s e as b e f o r e ( c f . [ K a c l ] ) .
CZNEAR SCWHA$CZa: E$ZZIllACZ@N, We w i l l b e g i n w i t h a survey o f some techn i q u e s and ideas i n t h e areas of l i n e a r s t o c h a s t i c e s t i m a t i o n , f i l t e r i n g , 3.
238
ROBERT CARROLL
and p r e d i c t i o n .
There i s a huge l i t e r a t u r e here and we c i t e i n a general
way f o r example [ B b i l ; B b j l ; Bb11,2; Dabl; Dacl-4; Gwl-3;
Krl-9;
K r l - 2 5 ; Kvl; Kyl; Kzl-4; Kaal,2;
1-3; Lwl; L z l ; Laal; Labl; Lacl,2; Wol-4;
Bbml; Bbnl; Bbol; Dul-8;
Dwl; Dxl; Dzl; Kacl; L y l ; Lx
Ladl; Pgl; Phl; Rpl; Rql; S t h l ; S t j l ; T h i s background survey w i l l a r -
Wpl-3; Wql-3; Wsl; Ycl; Ydl; Zcl].
r i v e a t v a r i o u s i n t e g r a l e q u a t i o n s and examine t h e i r s t r u c t u r e .
The con-
n e c t i o n o f these i n t e g r a l equations t o G-L equations and u n d e r l y i n g d i f f e r e n t i a l problems i s discussed and one o b t a i n s c o n s i d e r a b l e i n s i g h t i n t o t h e i n t e r a c t i o n between s c a t t e r i n g t h e o r y , l i n e a r f i l t e r i n g and e s t i m a t i o n , and transmutation.
L e t us assume we a r e d e a l i n g w i t h second o r d e r random v a r i -
EIXtIE <
ables Xt ( i . e .
m).
(t
s t o c h a s t i c process Xt
E
L e t HX be t h e H i l b e r t space generated by t h e T) as i n 52 t o which we r e f e r f o r n o t a t i o n .
Then
g i v e n a random v a r i a b l e Y one d e f i n e s 4
DEFINICZBN 3-1, The l i n e a r l e a s t squares e s t i m a t o r Y o f Y g i v e n HX i s de2 f o r Z E HX. f i n e d as t h e element E H X s a t i s f y i n g E l ? - Y 1 2 = min E I Z - Y I
?
I
Y
CHEaREM 3.2. t E
7,
Z
HX,
E
Phao6: A
E
HX i s a l i n e a r l e a s t squares e s t i m a t o r o f Y, g i v e n Xt f o r
i f and o n l y i f ( * ) E(?-Y)Xt = 0 f o r t E E(y-Y)? = 0 ) .
EIZ-Y+Y-Y12 n
?
e q u i v a l e n t l y f o r every
a r e unique.
^v-Z E H so from ( * ) t h e r e r e s u l t s ( 7 ) E I Z - Y I 2 = ax 2 so t h e minimum i s achieved f o r Z = ^v. = E\Z-?I2 + EIY-YI
For Z A
Such e s t i m a t o r s
'i (and
E
HX,
Con4
A
v e r s e l y i f Y s a t i s f i e s t h e c o n d i t i o n i n D e f i n i t i o n 3.1 s e t Z = Y - ( E ( Y - Y ) Then Z f HX and E / Z - Y / * = E l Y - i \ * - \ E ( ? - Y ) X t \ 2 / E / X t I 2
xt!Xt/;\Xti2. = 0.
It f o l l o w s t h a t E(?-Y)Xt
( t h e l a s t i n e q u a l i t y by D e f i n i t i o n 3 . i ) .
EIY-YI
The uniqueness i s c l e a r from ( 7 ) . A
BEmARK 3-3, E v i d e n t l y we a r e d e a l i n g w i t h a H i l b e r t space p r o j e c t i o n Y A
p r o j Y on HX which i s denoted by E ( Y I H X ) =
?.
( o r H(Xt)) f o r t h e H i l b e r t space generated by Xs, A
-m
<
s 5 t, i t w i l l be o f
4
i n t e r e s t t o s t u d y f o r example Y = E ( Y ( H ( X t ) ) ,
=
G e n e r a l l y , i f one w r i t e s H X t A
c h a r a c t e r i z e d by Y E H(Xt)
A
and Y-Y IH( Xt).
As background here l e t us i n d i c a t e a t y p i c a l s i t u a t i o n a r i s i n g i n f i l t e r i n g L e t Xt and Yt be wide sense s t a t i o n a r y processes and t h e o r y ( c f . [Wpl]). assume t h e r e e x i s t bounded f u n c t i o n s Sx, Sy, and Sxy such t h a t
239
LINEAR ESTIMATION
One r e c a l l s now an i m p o r t a n t f a c t o r i z a t i o n theorem ( c f . [Wpl; Du1,2;
Pfl;
Dyl; P i l ; Kxl]) whose p r o o f w i l l however be o m i t t e d s i n c e s i m i l a r r e s u l t s
a r i s e l a t e r i n 558-9. EHE0REIII 3.4- L e t S(x) there exists
0, S
L2 w i t h
?I E
1 L , and
E
li\I2
LI
IlogS(x)ldx/(l+x2) <
$(A)= ;(-A)f o r x
= S,
e x p ( i x t ) d t ( w i t h h r e a l when S i s even) so t h a t
+ 0 for
A
f o r I m k > 0, and i n a d d i t i o n h(A)
?I
m.
Then
A
r e a l , h ( h ) = ;/
h(t)
i s bounded and a n a l y t i c
I m x > 0.
T h i s k i n d o f f a c t o r i z a t i o n o r s p l i t t i n g o f a " s p e c t r a l measure" S ( A ) i s r e l a t e d t o s p l i t t i n g expressions o f t h e f o r m dw(A) = w"(x)dx w i t h ^w = 1 / 2 n l c 9 2 (X)l ( c f . 51.6). F u r t h e r d i s c u s s i o n o f t h i s occurs a t v a r i o u s p l a c e s l a t e r i n §8-9.
Now g i v e n (3.1) l e t us t h i n k o f Xt as t h e o u t p u t o f " f i l -
t e r i n g " a w h i t e n o i s e c t o f s t r e n g t h 2n w i t h a n o n - a n t i c i p a t i v e o r causal
2.
f i l t e r having t r a n s f e r f u n c t i o n
Thus assume Zt i s t h e process w i t h o r -
thogonal increments a s s o c i a t e d w i t h ct as i n 52 and w r i t e ( c f . (2.17))
I
[
m
00
Xt =
(3.2)
h(t-s)dZs =
~(h)e-ixtd?,
m
m
-
(note h ( t - s ) = [((x)exp(-ixt)]"). A
Then f o r m a l l y i f we assume EdZtdZS =
4
stsdt w i t h EdZvdZu = 6vudv/2.ir t h e n
A
which agrees w i t h (3.1) f o r I h l dZs = Xt =
t
I ,h ( t - s ) d Z s .
2
We n o t e here i n (3.2) t h a t
= S.
Lz
h(t-s)
F o r m a l l y ( c f . (2.17) and ( 2 . 5 ) ) one can w r i t e i n (3.2)
~1t(A);xexp(-iht)dx
so t h a t
i(x)tx
= ( 1 / 2 n ) j I Xtexp(iAt)dt = dix.
It
f o l l o w s t h a t f o r m a l l y ( c f 52) (3.4)
Zt =
lot lm cSds =
t
[l/hn(hJ][j
e-ixsds]d?A
m
0
which i n d i r e c t l y (modulo a s u i t a b l e a p p l i c a t i o n o f (2.17) p r e s e n t s t h e w h i t e n o i s e ct
%
-
c f . below) r e -
ZtAas t h e r e s u l t o f f i l t e r i n g Xt by a s u i t a b l e -4
i n v e r s e F o u r i e r t r a n s f o r m o f ( l / h = H (which g e n e r a l l y would have t o be computable i n a d i s t r i b u t i o n sense).
Note t h a t l / h ^ i s a n a l y t i c f o r I m x > 0
A
so g i v e n s u i t a b l e growth we expect H t o determine a n o n a n t i c i p a t i v e o r cau-
sal f i l t e r
-
7.e.
*H
= FH w i t h H ( t ) = 0 f o r t < 0.
One o f t h e p r i n c i p a l con-
s t r u c t i o n s i n Wiener f i l t e r i n g t h e o r y now goes as f o l l o w s (we c o n t i n u e t o f o l l o w [Wpl] here and r e c a l l t h e d e f i n i t i o n o f H(Xt)
i n Remark 3.3).
240
ROBERT CARROLL
EHEORE111 3-5. L e t Xt and Yt be two wide sense s t a t i o n a r y processes s a t i s f y i n g (3.1).
Let
^h
be o b t a i n e d as i n Theorem 3.4 w i t h Zt as i n ( 3 . 2 ) and (3.4).
Then i ( Y t ( H ( X t ) )
Ptrood:
=
2 g(t-s)dZs
and g f t ) = (1/21~)c [~xy(x)/~(A)]exp(-ixt)dx
One shows e a s i l y t h a t I S x y ( X)
I S x y ( 2/ S x
1'
5 Sx(X)Sy(X)
( e x e r c i s e ) so ISXy/h* I2
and t h u s g ( t ) i n t h e statement o f t h e theorem i s w e l l de2 f i n e d as a l i m i t i n L norm. To prove t h e theorem one needs t o v e r i f y t h a t =
[L g ( t - s ) d Z x T
H(Zt),
E
H(Xt) dnd
EYtXT = E L
(3.5) for
(Sy
(t.
t The f i r s t statement i s i m n e d i a t e s i n c e e v i d e n t l y /_,g(t-s)dZ, i s t h e H i l b e r t space generated by Zs f o r
where H ( Z t )
-m
<
s
E
zt,
w h i l e from (3.4) one sees t h a t Zt E H(Xt) so H(Zt) c H ( X t ) .
Indeed g i v e n
s u i t a b l e growth o f ?I =
/_f;(
l/c
we can w r i t e (H(x) = 0 f o r x < 0 )
e x p ( - i x s ) d A = h H ( s - S ) and u s i n g e.g.
X)exp(iAS)
(2.12) as a model (3.4) y i e l d s
where we t h i n k o f t > 0 f o r convenience.
Thus Zt E H ( X t ) .
Now i n o r d e r t o
prove (3.5) one observes f i r s t t h a t by (2.17) w i t h g t ( s ) = g ( t - s )
But from (3.2) we o b t a i n t h e n E[ i I g ( t - s ) d Z S ] F T = ( 1 / 2 ~ )~ ~ ~ X Y ( h ) e x p [ - i i ( t - ~ . ) ] d =~ E Y t i T
( n o t e i n (3.1) R X y ( s - t ) = EXSTt w i t h R X y ( s - t ) = EYtYs =
(1/2n) f ? x y ( h ) e x p ( i A ( s - t ) ) d A ) .
On t h e o t h e r hand s i n c e i n f a c t X T = m
/t
g(t-S)dZg]XT = 0 when w i t h E(dZ dZ ) = 6tsds one has E[ t- s t h a t E[ ~ 1 g ( t - E ) d Z ~ ] =X ~ g(t-E)dZg]yT f o r T I t .
j:h(r-s)dZs SO
T <
t
E[C
REmARK 3-6, F r e q u e n t l y one w r i t e s now G ( X ) = fom g ( t ) e x p ( i X t ) d t ( n o t e G ( A ) i s n o t $ ( A ) ) and t h e n u s i n g ( 3 . 4 ) f o r m a l l y as dZt
I
Q
21rF-~[d?~/t?(A)] we o b t a i n
m
(3.8)
i ( Y t IH(Xt)
=
m
[G(A)/;(
x)]e-ihtd^X
A
The f i l t e r w i t h t r a n s f e r f u n c t i o n G/$ i s r e f e r r e d t o as a Wiener f i l t e r .
RENARK 3.6; (3.9)
It i s i n s t r u c t i v e t o l o o k a t a r a t i o n a l f u n c t i o n Sx(')
= k 2 [ T (a-xk)(A-6k)/ny
(h-pk)(X-pk)
LINEAR ESTIMATION
241
Then i n o r d e r t o have h as i n Theorem 3 . 4
where say I m A k > 0 and Impk > 0. one takes (3.10)
;(A)
with IAI2 = k
2
A ny(i-xk)/ny
=
(~-fj~)
( v a r i o u s A would do).
When Xt
A
can choose A so t h a t h ( t ) i s r e a l .
i s r e a l w i t h SX(A) even one
somewhat more general s i t u a t i o n can
be covered by t h e f o l l o w i n g f o r m a l procedure ( c f . [Wpl]).
i:
so t h a t t h e i n t e g r a l c o n d i t i o n i n Theorem 3.4 becomes <
Consequently
m.
lr = S
1"1
c(e)
logS(-Tane/Z)
=
an
c(e)exp(-ine)de (note
W r i t e X = -Tane/2 IlogS(-Tana/Z)lde
= lmmanexp(ine) w i t h an = ( 1 / 2 ~ )
= a-n and e x p ( i e ) = ( l - i A ) / ( l + i X ) ) .
1*hI2
When
we have l o g S ( x ) = loghh(A) + log^h(x) and one t a k e s n h ( X ) = exp[(ao/2) a-n[(l+ix)/(l-i~)]n]
( n o t e f o r A = s+iu, n > 0, ( l + i A ) / ( l - i X )
+
i s analy-
tic). Now g e n e r a l l y speaking t h e r e a r e s e v e r a l s t a n d a r d procedures i n l i n e a r est i m a t i o n , e.g.
smoothing, f i l t e r i n g , p r e d i c t i n g , i n t e r p o l a t i o n , e t c .
Let
us f o l l o w [Kul-221 i n d e s c r i b i n g some background s i t u a t i o n s i n a semi-heuri s t i c manner.
Thus l e t us imagine a s i g n a l Zt p e r t u r b e d by a d d i t i v e w h i t e (0 5 t 5
n o i s e Vt and o b s e r v a t i o n s Yt = Zt t Vt
T).
One can e n v i s i o n com-
p l e x v e c t o r processes e t c . b u t we w i l l t h i n k o f r e a l valued s c a l a r s f o r simp l i c i t y f r o m which development a small amount o f n o t a t i o n a l adjustment l e a d s t o t h e more general s i t u a t i o n . (3.11)
+ VtZs)
E(ZtZs + ZtVs
L e t us w r i t e
= K(t,s)
We t h i n k o f Zt and Yt as second o r d e r processes w i t h mean 0 and assume K ( t , s ) i s continuous on [O,T]
x [O,T].
(3.12)
= 6(t-s)
= EYtYs
R(t,s)
i s however a covariance.
The f u n c t i o n K need n o t be a covariance.
+ K(t,s)
Two p a r t i c u l a r cases o f i n t e r e s t i n v o l v e
Zs f o r a l l s , t so t h a t K ( t , s )
i s a covariance
(B) V t I Z s f o r t
>
(A)
V t I
s which
a l l o w s causal dependence o f Z on Y o r feedback. The problem o f smoothing p r e s c r i b e s t h e o b s e r v a t i o n s Y,,
0 5 s 5 T, and
asks f o r
lo I
(3.13)
?(tlT) =
such t h a t E \ Z t
-
H(t,s)Ysds
A
Z(t\T)I
2 be a minimum.
We t h i n k o f a H i l b e r t space Hy gen-
e r a t e d by Yt as i n Theorem 3.2 so t h a t f o r t f i x e d ? ( t l T ) i s a l i n e a r l e a s t
242
ROBERT CARROLL
squares a p p r o x i m a t i o n t o Zt and t h e p r o o f o f Theorem 3.2 g i v e s t h e necessary and s u f f i c i e n t c o n d i t i o n ( * ) 0 = E(Zt - ? ( t l T ) ) Y s f o r a l l s
[O,T].
Now w r i t i n g o u t t h e o r t h o g o n a l i t y c o n d i t i o n ( * ) we o b t a i n ( E V s V T = 6 ( ~ - s ) ) E
rT (3.14)
H(t,s)E(ZsZT+VsZT+ZsVT+VsVT)ds
+ ZtVT) =
E(ZtZT
=
.T
’0
H(t,.r) +
]
’
H(t,s)K(s,T)ds
0
(A)
above h o l d s t h e n one o b t a i n s a Fredholm e q u a t i o n f o r H T K(t,T) = H(t,T) + Jo H(t,S)K(s,T)dS. This i s o f t h e form ( K ( ~ , T ) = K(T,s)) If
CHEOREIII 3.7.
o f t e n w r i t t e n K + H + HK o r ( I - H ) ( I + K ) = I and H i s c a l l e d t h e Fredholm r e s o l v a n t o f K. When T = t we have what i s c a l l e d a f i l t e r i n g problem and one w r i t e s
?(tit)
(3.15)
t
h(t,s)Y,ds
= 0
CHEOREM 3-8- Under c o n d i t i o n s (A) o r ( B ) h ( t , s ) s a t i s f i e s f o r 0 t K(t,T) = h ( t , T ) + f0 h(t,s)K(s,T)ds.
Pfiood:
T h i s f o l l o w s immediately f r o m (3.14)
i n g t h a t i n case ( B ) f o r
:t,
T
5 t,
( w i t h h r e p l a c i n g H) upon n o t -
= E(ZtZT
K(t,.r)
T
+ ZtVT) ( i . e . EVtZT
= 0).
=
The f i l t e r i n g i n t e g r a l e q u a t i o n i s thus a c o l l e c t i o n o f Fredholm equations (indexed by t ) and i s c a l l e d a Wiener-Hopf (W-H) equation.
Such equations
a r i s e i n many areas o f mathematical p h y s i c s and t h e r e i s an e x t e n s i v e l i t erature (cf.
[Bbpl;
Kr4,7,8;
Sthl-41).
It w i l l be i n s t r u c t i v e t o s k e t c h a rough procedure f o r s o l v i n g
REflARK 3.9,
t h e e q u a t i o n o f Theorem 3.8 as f o l l o w s ( c f . [ K u ~ ] ) . able) function ( 0 5 s,t < s
t and M+(t,s)
1; M ( t , s ) f ( s ) d s .
( t ) K,
=
a)
d e f i n e i t s causal p a r t M+(t,s)
i s a (suit-
as M ( t , s ) f o r
Then w r i t e M + f ( t ) = ft M + ( t , s ) f ( s ) d s
f o r s > t.
= 0
I f M(t,s)
=
The W-H e q u a t i o n o f Theorem 3.8 can now be w r i t t e n as
(hR)+ where R
%
~(S-T)
+ K = I + K and we can t a k e h = h+ w i t h no
*
Suppose we can f a c t o r R = TT where T = T i s causal +* -1 -1 and c a u s a l l y i n v e r t i b l e (T-’ = (T )+ = T+ - see below - and T ( t , s ) = loss o f generality.
*
T ( s , t ) SO T g w i t h g, hT = KT*-’
i s anticausal).
0 and hTT
= f
g(T*)-’.
*
=
Now i f h s o l v e s
hR = K + g ( i . e .
Now hT = hT ,+
(t)
g i s anticausal).
i s causal and gT*-’
one o b t a i n s hT = (KT*-l)+ w i t h h = (KT*-l)+T-l tion. (TT*
-
t h e r e must be a f u n c t i o n Then f o r m a l l y
i s a n t i c a u s a l so
which s o l v e s t h e W-H equaOne can a l s o r e f i n e t h i s i n u s i n g R = I + K o r K + R - I so KT*-1 = *-1 -1 I ) T * - l = T - T*-’ and hence h = ( I - T T ). However i t i s easy +
LINEAR ESTIMATION
243
t o see t h a t T *-’ = I and hence (**) h = I - T -1 . The f a c t o r i z a t i o n R = TT* with T = 1, e t c . i s c a l l e d canonical and when possible i s c l e a r l y unique because of t h e causal and causally i n v e r t i b l e requirement. One sees theref o r e formally (from ( * * ) ) t h a t f i l t e r i n g and canonical f a c t o r i z a t i o n a r e equivalent ideas. One f u r t h e r deduction from t h e above remarks i s t h e so c a l l e d Siegert-Krein-Bellman i d e n t i t y . Thus l e t H be the Fredholm r e s o l vant of K defined by Theorem 3.7 so t h a t given a canonical f a c t o r i z a t i o n R = TT* w i t h h = I - T - l , I - H = ( I t K)-’ = R - l = (TT*)-1 = T*-lT-l = +
( I - h * ) ( I - h ) . Consequently one has formally H sions of t h i s w i l l appear l a t e r in more d e t a i l .
=
h* + h - h*h; o t h e r ver
RENARK 3.10. Given wide sense s t a t i o n a r y processes we w r i t e R ( t , s ) = EYtYs * = R(t-s) a n d t h e f a c t o r i z a t i o n R = TT corresponds t o t h e s p e c t r a l factori z a t i o n discussed e a r l i e r in Theorem 3.4. T h u s l e t S ( 1 ) = S y ( x ) = FR(T) ( c f . ( 3 . 1 ) ) and w r i t e t h e s p e c t r a l f a c t o r i z a t i o n as Is^[* = S w i t h s ( t ) = F-’; causal a n d c a u s a l l y i n v e r t i b l e (2 i). Let us i d e n t i f y T and s then so i n (**) one o b t a i n s PI,
(3.16)
h
=
F-’[1
- (l/<(A))]
where h designates now t h e optimal f i l t e r . In order t o compare w i t h Theorem 3.5 a n d Remark 3.6 l e t us think of Xt + Y t and Yt + Zt in Theorem 3.5 A
A
4
so t h a t we a r e concerned w i t h E = E ( Z t l H ( Y t ) ) ( c f . ( 3 . 1 5 ) ) . Thus Z ( t [ t ) i s t o correspond t o E via an i n t e g r a l of t h e form (3.15). T h i s analogy can be obtained from ( 3 . 8 ) and ( 2 . 1 2 ) by w r i t i n g f i r s t F [ G ( x ) e x p ( - i x t ) / ~ ( h ) ] = i t ( c ) so t h a t i( s ) / ~ I=T F-’[G/<](t-t). Set then F-’[G/z] = h(T) and (3.8) A t Y, e t c . ) , i = iz h(t-S)Y dc which must be compared t o (3.15) becomes ( X x 5 and (3.16) ( i . e . one wants t o i d e n t i f y h in (3.16) w i t h h o r equivalently 1 - 1/$ w i t h G/; which means G = s^ - 1 ) . Now assume ( A ) f o r s i m p l i c i t y and with R EY t Y s e t c . one has in ( 3 . 1 ) R Y Z = EYt+TZt = F -1 Syz w i t h R y Z = Then from Theorem E(Zt+., + VttT)Zt = EZt+.,Zt = K ( T ) = R - 6 r e a l and even. “ A 3.5 w i t h Syz = Syz = R - 1 = \ $ 1 2 - 1 and h = s we obtain A
A
PI,
PI,
I
m
(3.17)
g(t) = (1/2~)
m
so t h a t f o r t
[:(A)
- &I1
e-ixtdx
-
t h e r e i s no contribution from t h e l/;(x) term; we can then w r i t e u p t o a 6 function g + ( t ) = F - l [ < ( h ) ] w i t h ;(A) = G ( x ) u p t o a constant We leave t h e v e r i f i c a t i o n t h a t g + ( t ) = F-’[s”(x)] - 6 ( t ) as an exercise. > 0
244
ROBERT CARROLL FICCERZNP; AND INiXGRAI: €e?UAEIDW.
4-
We c o n t i n u e t o f o l l o w [Ku2,3,6-8,11,
and w i l l t r y t o e x h i b i t some more o f t h e i m p o r t a n t ideas
12,14-16,20,23,25]
L e t us t a k e again Y ( t ) = Z ( t )
i n l i n e a r f i l t e r i n g and e s t i m a t i o n t h e o r y . Vft)
(Y(t)
2,
+
Yt e t c . ) where V ( t ) i s w h i t e Gaussian n o i s e o f u n i t s t r e n g t h
and z e r o mean and t h e s i q n a l process Z ( t ) i s say Gaussian w i t h E Z ( t ) = 0 and E Z ( t ) V ( s ) = 0 f o r t < s.
One d e f i n e s K ( t , s ) as i n (3.11) f o r 0 5 s,t 5
T and we assume say K i s continuous i n ( t , s ) .
The i n n o v a t i o n s approach goes
back t o Kolmogorov [Kz2] and t h e i d e a i s t o r e p l a c e t h e o b s e r v a t i o n s p r o cess Y ( t ) by a s i m p l e r w h i t e n o i s e J ( t ) ( t h e i n n o v a t i o n s process c o n t a i n s t h e same s t a t i s t i c a l i n f o r m a t i o n ) .
Y ( t ) and J ( t ) w i l l be connected by a
causal and c a u s u a l l y i n v e r t i b l e f i l t e r and each o b s e r v a t i o n J ( t ) b r i n q s new We want t o determine
i n f o r m a t i o n (hence t h e name i n n o v a t i o n s ) .
A
Z(tlt)
=
A
Z ( t ) as i n (3.15) and t h e f i l t e r i n g k e r n e l h w i l l a g a i n s a t i s f y Theorem
3.8.
One d e f i n e s now p r e c i s e l y
J(t)
(4.1)
-
Y(t)
=
N
-
where Z ( t ) = Z ( t )
? ( t ) = ?(t) + V ( t )
A
t h e instantaneous e r r o r , i s t h e p o r t i o n o f Z ( t )
Z(t),
t h a t cannot be p r e d i c t e d from p a s t o b s e r v a t i o n s Y(s) and i s u n c o r r e l a t e d w i t h such Y ( s ) .
Then ( c f . [ K u ~ ] )
CHE0REfR 4-1, J ( t ) i s a w h i t e Gaussian n o i s e w i t h E J ( t ) = 0 and E J ( t ) J ( s ) =
-
Further J = ( I
6(t-s).
-
h)Y w i t h Y = ( I
h ) - l J where h = h+ i s t h e f i l -
t e r i n g k e r n e l from (3.15).
Phood:
F i r s t we show t h a t E J ( t ) J ( s ) = EV(t)V(s).
Take t > s and t h e n N
E J ( t ) J ( s ) = E V ( t ) V ( s ) + EV(t)?(s)
n
L
Y
-.s
+ E?(t)y(s)
+ E?(t)V(s).
f o r s < t we have y ( t ) l Z ( s ) f o r s < t so E?(t)?(s)
= EZ(t)Z(s).
A l s o EV(t)?(s) = E V ( t ) Z ( s )
0 f o r t > s w i t h EV(t)Y(T) = 0 f o r t >
T
-
EV(t)?(s) = 0 since EV(t)Z(s) =
holds f o r t < s g i v i n g E J ( t ) J ( s ) = E V ( t ) V ( s ) (= 0).
EIJ-VI'
=
El?\*
<
m
= Y(t)
Hence
A similar calculation As t
+
s one can l o o k
and conclude h e u r i s t i c a l l y t h a t J i s indeed w h i t e
n o i s e (a more r i g o r o u s d i s c u s s i o n appears i n [KulO]). J ( t ) = (Y-:)(t)
= E?(t)(Z-i)(s)
( r e c a l l EV(t)V(s) = & ( t - s ) ) .
E J ( t ) J ( s ) = E^i(t)Y(s) + EV(t)V(s) = E V ( t ) V ( s ) ( = 0 ) . at
Now s i n c e Z ( t )
- 1 ; h(t,s)Y(s)ds
F i n a l l y the formula
gives formally J =
t h i s i s a V o l t e r r a t y p e e q u a t i o n so t h e i n v e r s e ( I - h)-' by t h e Neumann s e r i e s 1" hn = (I - h)-'.
(I -
h)Y and
i s w e l l determined
0
REIIIARK 4-2- L e t us make a few comnents here ( f o l l o w i n g [Ku2,3])
about Kalman
Bucy f i l t e r i n g and i n n o v a t i o n s ( c f . a l s o CAm2-5; L x ~ ] ) . F i r s t one s h o u l d
FILTERING
245
work f o r convenience i n t h e c o n t e x t o f r e c o v e r i n g a Gaussian s i g n a l Z ( t ) when t h e o b s e r v a t i o n s Y ( t ) = Z ( t ) + V ( t ) a r e p o l l u t e d by n o i s e V ( t ) (assume w h i t e Gaussian n o i s e w i t h E V ( t ) V ( s ) = 6 ( s - t ) f o r s i m p l i c i t y ) . one t h i n k s o f c o n s t r u c t i n g a f i l t e r .
To do t h i s
When Y i s a v a i l a b l e from t i m e
-m
and
some c o v a r i a n c e q u a n t i t i e s a r e known one t h i n k s of a Wiener f i l t e r and t h e procedure i s c o n s i d e r a b l y s i m p l e r i f Z ( t ) i s s t a t i o n a r y .
I f however Z ( t ) i s
t h e o u t p u t o f a system d r i v e n by w h i t e n o i s e (4.2)
i ( t ) = F(t)X(t) + G(t)U(t); Z(t) = H(t)X(t); Y = Z + V
where e.g. EU(t)U(s) = Q ( t ) s ( t - s ) , E Z ( t ) V ( s ) = 0 f o r s i m p l i c i t y as i n ( A ) o f § 3 ( g e n e r i c a l l y here E V ( t ) V ( s ) = 6 ( t - s ) , e q u i v a l e n t l y EU(t)J(s) = 0 f o r s
< t
s t r u c t a Kalman-Bucy (K-B) f i l t e r .
EU(t)Y(s) = 0 f o r s < t
- or
) , and E V ( t ) V ( s ) = 0 t h e n one can con(The n o t a t i o n here i s o f t e n phrased i n
v e c t o r - m a t r i x n o t a t i o n where one r e f e r s t o c o v a r i a n c e m a t r i c e s w r i t t e n i n -'T T ' t h e form E U ( t ) - U ( s ) = Q ( t ) s ( t - s ) where U denotes transpose and i s a column v e c t o r . )
Here s t a t i o n a r i t y i s n o t c r i t i c a l i n s i m p l i f y i n g t h e c a l c u l a -
t i o n s , somewhat more general n o i s e s can be t r e a t e d , and i n f o r m a t i o n i s n o t needed f r o m t =
The connection between t h e two f i l t e r i n g methods i s
-m.
discussed i n [Am2-51 and i t i s shown i n p a r t i c u l a r t h a t f o r g i v e n ( s u i t a b l e ) c o v a r i a n c e i n f o r m a t i o n one can c o n s t r u c t o p t i m a l l y a system d r i v e n by w h i t e n o i s e which produces t h i s i n f o r m a t i o n .
For t h e moment we assume (4.2) and A
w i l l f i n d a d i f f e r e n t i a l e q u a t i o n f o r t h e e s t i m a t o r X o f t h e s t a t e s , from 4
A
which by l i n e a r i t y Z ( t ) = H ( t ) X ( t ) .
-
process J ( t ) = Y ( t )
lo
We w r i t e ( c f . Theorem 4.1)
t
A
(4.3)
F i r s t r e p l a c e Y ( t ) by i t s i n n o v a t i o n s
? ( t )= Y ( t ) - H(t):(t).
X(t) =
g(t,s)J(s)ds
and t h e o r t h o g o n a l i t y (X
lo
-
n
X ) ( t ) l J(T) for 0 5
T
< t characterizes g v i a
t
(4.4)
EX(t)J(-r) =
g(t,s)EJ(s)J(T)ds
Note here i f Y were used i n (4.3) i n s t e a d o f J we would have a W-H e q u a t i o n i n (4.4) o f t h e f o r m g i v e n i n Theorem 3.8 b u t w i t h (4.4) one o b t a i n s immed< iately for 0 -
T <
Consequently ( J = Y
t
(0)
-
g(t,z)
= EX(t)J(-r) ( r e c a l l E J ( S ) J ( T ) = 6 ( ~ - T ) ) .
4
HX)
t
(4.5)
;(t)
=
E[X(t)J(s)](Y(s)
-
H(s)i(s)]ds
from which by d i f f e r e n t i a t i o n ( K ( t ) = E X ( t ) J ( t ) )
246
ROBERT CARROLL
t
A
(4.6)
;(t)
+ E[X(t)J(t)]J(t)
E[i(t)J(s)lJ(s)ds
=
'0
=
K(t)J(t) +
'0
Now by (4.3) and
A
t h e second i n t e g r a l on t h e r i g h t s i d e i s X ( t ) and t h e
( 0 )
l a s t i n t e g r a l vanishes by t h e hypotheses a f t e r (4.2).
Consequently one ob-
t a i n s t h e Kalman-Bucy e q u a t i o n
-
? ( t )= F ( t ) ? ( t ) + K ( t ) [ Y ( t )
(4.7)
H(t);(t)]
+ K(t)H(t)[X(t) - i ( t ) ] ;
= K ( t ) V ( t ) i- F ( t ) ? ( t )
+
$(O) = 0
iTHE@REI!I 4 - 3 , Given (4.2) w i t h (4.3) and E U ( t ) J ( s ) = 0 f o r s < t (and E V ( t ) V(s) = G ( t - s ) - g e n e r i c a l l y ) one has t h e K-B e q u a t i o n (4.7) which can a l s o be A
A
w
w
4
expressed as X = FX + KV + KHX where X = X - X. One can a l s o w r i t e ( r e c a l l J = Y
-
A
w
W
Z = HX + V where X = X
-
A
X and n o t e t h a t
E Z ( t ) V ( t ) = 0 i f and o n l y i f E X ( t ) V ( t ) = 0 p r o v i d e d H ( t ) i s nondegenerate) K(t) = EX(t)J(t) = H(t)EX(t)y(t) + EX(t)V(t) =
(4.8)
H(t)E[i +
y](t)y(t)=
H(t)Ely(t)l2 = H(t)P(t,t)
D i r e c t c a l c u l a t i o n now y i e l d s f r o m (4.2) and (4.7) N
X = [F(t)
(4.9)
W r i t i n g (4.9) as
where U(t,E,)
[I;
A(T)dT
-
-
K(t)H(t)]y(t)
? = A(t)y(t)+
-
K(t)V(t)
i-
G(t)U(t)
L ( t ) w i t h y(0) = X(0) = X o one has f o r m a l l y
i s t h e a p p r o p r i a t e e v o l u t i o n o p e r a t o r ( f o r m a l l y U(t,C) 2 NOW assume E V ( t ) U ( s ) = 0, E ~ X ~= I p0, EU
cf. [cig]).
= Q ( t ) s ( t - s ) , and E X o U ( t ) = 0.
Set P ( t , t ) = E l ' j i ( t ) 1 2
and t h e n from
w r i t i n g (a,b) = Eab) (4.11)
(
f
P
=
(?,?)
+ (U(t,O)?o,U(t,O)~o)
U ( t ,c ) L ( 5 )dc, U ( t ,O
)yo)
+
(jotu ( t , 5
i-
(U(t,O)?o,
dc) +
jotu ( t 1s ) L ( s ) ds
L ( t 1d ~ ,
0
We w i l l d e r i v e now a s c a l a r form o f t h e n o n l i n e a r m a t r i x R i c c a t i e q u a t i o n N
f o r P.
Thus (X,,X,)
U
=
(Xo.Xo)
= Po,
(L(c),yo)=
(L(E,),Xo) = ( G ( S ) U ( S )
-
FILTERING
-
= 0 ( s i n c e EXoU(S)
K(s)V(E),X~)
247
= 0 and EXoV(c) = 0 i f and o n l y i f EZo
Hence t h e two m i d d l e
V ( E ) = 0 f o r nondegenerate H which h o l d s by ( A ) ) . terms i n (4.11) v a n i s h and from ( L ( S ) , L ( s ) )
-
rot
-
= (G(c)U(s)
K(E)V(S),G(S)U(S)
K ( s ) V ( s ) ) = G ( s ) G ( s ) Q ( ~ ) 6 ( c - s ) + K ( E ) K ( s ) G ( s - s ) we o b t a i n P = U ( t , O f P o U(t,c)2[G2(E)Q(E) + K2(<)1dc.
(4.12)
2 Pt = 2AP + G ( t ) Q ( t )
( r e c a l l K = HP and n o t e U ( t , t )
+
Now Ut = [F
-
KH]U = AU so f o r m a l l y
2 K ( t ) = 2FP
-
2 2 K + G Q
+
1)
=
EMOREM 4 - 4 - Given t h e hypotheses o f Theorem 4.3 p l u s E Z ( t ) V ( s ) = 0 (as i n 2 ( A ) ) , EV(t)U(s) = 0, E / X o \ = Po, EXoU(t) = 0, and EU(t)U(s) = Q ( t ) & ( t - s ) i t f o l l o w s t h a t P ( t ) = P ( t , t ) = E l ? ( t ) I 2 s a t i s f i e s (4.12) ( w i t h P ( 0 ) = Po) 2 2 2 and t h i s can be expressed a l s o i n t h e form Pt = 2FP - H P + G Q where F, G,
H appear i n ( 4 . 2 ) .
This i s a scalar form o f t h e f o l l o w i n g nonlinear = Q ( t ) A ( t - s ) as i n d i c a t e d
m a t r i x R i c c a t i e q u a t i o n ( w i t h n o t a t i o n E;(t)-GT(s) e a r l i e r ) Pt(t,t),= where P ( t , t )
=
F(t)P(t,t)
+ P(t,t)FT(t) - K(t)KT(t) + G(t)Q(t)GT(t) f o r a derivation
E X ( t ) - B T ( t ) ( c f . [Ku2,3]
-
s c a l a r d i s c u s s i o n was e x t r a c t e d
-
from which o u r
which i n v o l v e s o n l y a r e l a t i v e l y s i m p l e
extension o f notation). L e t us go now t o some f u r t h e r d i s c u s s i o n o f i n t e g r a l e q u a t i o n s and r e l a t e d formulas which a r i s e i n f i l t e r i n g t h e o r y ( c f . [Ku6,8,14,16,25;
Kr7; Bbpl;
*
Consider f i r s t t h e K r e i n - B e l l m a n - S i e g e r t (K-B-S) f o r m u l a H = h + Stjl]). * h - h h which we can r e c a s t and study more t h o r o u g h l y . Thus r e f e r r i n g t o t h e Fredholm r e s o l v a n t H i n Theorem 3.7 (Theorem 3.7 can a l s o be w r i t t e n as K = H + KH) l e t us w r i t e more g e n e r a l l y f o r K ( s , t )
symmetric and c o n t i n u o u s
I
(4.13)
K(t,s)
( n o t e H(t,s,u,T)
K(I
= =
H(t,s,u,r)
- H)
=
K(t,T)H(T,S,u,T)dT
( I - H)(I
(Bellman-Krein-Siegert)
= 0 for t or s
H(t,s,u,T)
+ K)
=
I; K
=
H+
HK = H + KH)
The f o l l o w i n g f o r m u l a s hold, where
> r)
and f o r 0 5 t < s 5 T o r 0 5 s (4.15)
I,
and f o r u = 1 (4.13) says K = H + KH o r H =
H(s,t,u,T)
+ ~ 1 - ol r ( I + K)(I
&HEOREM 4.5,
+ u
H(t,s,u,T)
<
= H(t,s,u,t)
t 5 T + H(s,t,u,s)
-
u
H(r,t,u,r)H(t,s,u,r)dr
248
ROBERT CARROLL
I n o p e r a t o r f o r m (4.15) says Uu = hu + h
Pmoa:
*
*
-
U
uh h i n an obvious n o t a t i o n ) . u u
To prove (4.14) we d i f f e r e n t i a t e (4.13) i n T t o g e t
(4.16)
-
= -uK(t,T)H(T,S,u,T)
HT(t,S,U,T)
K(tyT)HT(T,S,U,T)dT
u
Suppose now t h a t (4.17)
HT(t,S,U,T
+ g(t,s,u,T)
= -uH(t,T,U,T)H(S,T,u,T)
T
Put (4.17) i n (4.16) and use (4.13) f o r s = u/d K(t,T)g(r,s,u,T)dT s e t equal t o zero.
0 which i s t h e same as (4.13) w i t h t h e l e f t s i d e
=
(4.15) s e t N(t,s,u,T) u,T)
-
=
H(t,s,u,t)
= 0 and (4.14)
-
+ H(s,t,u,s)
which we want t o show i s zero.
uH(T,t,u,T)H(T,s,u,T)
H(t,s,u,T)
follows. T
-
= 0
which vanishes by (4.14).
-
+ H(T,t,u,T)
H(t,T,u,T)
-
0 = 0.
s 5 T and a s i m i l a r argument a p p l i e s f o r 0 5 s REIARK 4.6.
U/O
H(r,t,u,
Hence N i s c o n s t a n t
< t
Hence
N
o f H(t,s,u,T),
= 0 for 0 5 t <
5 T.
We r e c o r d here a l s o i n c o n n e c t i o n w i t h Theorem 4.5 a r e s u l t o f
[Kul6] r e l a t i n g smoothing and f i l t e r i n g ( c f . here also Theorems 3.7 and Remark 3.9). (4.18)
To prove
F i r s t one has NT = -HT(t,s,
f o r a l l T and f o r t < s = T we have by t h e symmetry i n ( t , s ) N(t,s,u,T)
-u-l i s
Hence g i v e n unique s o l u t i o n s o f (4.13) ( i . e .
n o t an eigenvalue of K) we have g(-c,s,u,T) r)H(r,s,u,r)dr
+
t o o b t a i n g(t,s,u,T)
- 3.8
Thus w i t h n o t a t i o n as i n (3.13) e t c . one can prove
?(tit)+
?(tlT) =
1
T
-
h*(t,s)[Y(s)
?(s]s)lds
t
(use h y p o t h e s i s ( A ) f o r convenience) where h * ( t , s ) (3.15). and
H
= h(s,t)
w i t h h given i n
Indeed H(t,T) s a t i s f i e s Theorem 3.7 which i s (4.13) f o r u = 1 ( K S i m i l a r l y h(t,.r) = H ( t , ~ , l , t )
a r e symmetric) so H(t,T) = tl(t,T,l,T).
W r i t i n g (4.15) now f o r u = 1 we have H(t,s) = h ( t , s ) + ( c f . Theorem 3.8). L e t t i n g t h i s a c t on Y(s) and i n t e g r a t i n g f r o m - JoT h ( r , t ) h ( r , s ) d r .
h(s,t)
0 to
T
i n s we o b t a i n (4.18).
We go n e x t t o [Ku14]
i n o r d e r t o r e c o r d some general Sobolev and Krein-Levin-
son i d e n t i t i e s d e r i v e d t h e r e .
The i d e a i s t o e x p l o i t t h e a d d i t i v e s t r u c t u r e
a v a i l a b l e i n formulas such as (4.14)-(4.15)
when K(t,s)
= K(t-s)
(Toeplitz
o p e r a t o r ) a r i s e s from a s t a t i o n a r y process (K w i l l be symmetric here so K(t-s) = K(s-t)). (4.19)
The background i d e n t i t i e s a r e t h e Sobolev i d e n t i t i e s
(Dt+D,)H(t,s,T)
= a(T,t)a(T,s)
-
a(T,T-t)a(T,T-s)
FILTERING
a(T,t) +
(4.20)
,d
a(T,u)K(u-t)du
=
249
K(T-t)
Thus t h e r e s o l v a n t H(t,s,T) o f a T o e p l i t z k e r n e l (H(t,s,T) = H(t,s,l,T)). K ( u - t ) i s n o t T o e p l i t z b u t i t s a t i s f i e s (4.19) where a ( T , t ) can be computed In f a c t a(T,t)
f r o m (4.20).
can be r e c u r s i v e l y computed u s i n g t h e so c a l l e d
K r e i n Levinson r e l a t i o n s (4.21 )
( Ds+Dt)a( t, s ) = -a ( t , t - s )a ( t,O); a ( t ,O)=K( t ,O)-
it
a ( t , u ) K( u,O)du
0
The i d e n t i t y (4.19) i s i n f a c t t h e C h r i s t o f f e l - D a r b o u x f o r m u l a f o r t h e funct i o n s a(t,s)
(which a r e e s s e n t i a l l y t h e K r e i n continuous analogues o f o r We n o t e by comparing (4.20) and (4.13)
thogonal p o l y n o m i a l s - c f . 52.10). o r Theorem 3.7 t h a t K(t,T) a(T,t)
Q
H(t,T,T)
+ :J
= H(t,T,T)
K(t,T)H(t,T,T)&G
so one has
The r e s u l t s o f [Ku14] w i l l a p p l y t o more gen-
= H(T,t,T).
e r a l k e r n e l s t h a t T o e p l i t z b u t we w i l l c o n c e n t r a t e upon t h e T o e p l i t z case. ( w i t h u = 1 ) K = H + HK
One w r i t e s now f o r i n t e g r a l o p e r a t o r s as i n (4.13) where HK = KH here by symmetry ( i . e .
K(t,T)
T ) ) and as b e f o r e I - H = (I+ K)-’ KH
Q
6 q
Q
and H(T,s,T)
K(T,t)
( s t r i c t l y HK *: f
It i s convenient t o s e t
:1 K(t,-r)H(-r,s,T)&).
= JK + JL and J(KL)
( e x e r c i s e ) J(K+L)
=
= (-IK)L
= H(s,z,
H(s,r ,T)K(.r ,t)& and (m)
J
= Dt + Ds so t h a t
+ K(JL) + K(6,
-
ST)L where
6(x-q) and one d e f i n e s
(4.22)
KGqL =
joT K(t,u)a(u-q)L(u,s)du
E v i d e n t l y JK = 0 when K i s T o e p l i t z . K = H
+
ing (I
HK t o o b t a i n (JH)(I
-
H) = ( I + K)-’)
(4.23)
JH = ( I
-
= K(t,q)L(q,s)
Now a p p l y
J
t o t h e resolvant equation
+ K) = ( I - H)JK - H(60
-
6T)K,
from which (us-
we f i n d t h a t
H)(JK)(I
-
H)
-
H(60
- sT)H
I f K i s T o e p l i t z so t h a t JK = 0 t h e r e r e s u l t s
CHE@RETO 4.7,
The Sobolev i d e n t y (4.19) f o l l o w s f r o m (4.23) f o r JK = 0 (and
(4.20) h o l d s ) .
Phood: H(T,s,T)
R e c a l l H = H(t,s,T)
= H(t,s,l,T)
w i t h HsoH = H(t,O,T)H(O,s,T).
f o r H(t.T,T)
= H(T,t,T)
H(T-s,T-t,T)
50
= a(T,t)
t h a t a(T,T-t)
and from (4.22) H6TH = H(t,T,T) Then (4.23) i s i d e n t i c a l t o (4.19)
upon n o t i n g t h a t H(t,s,T)
= H(T,T-t,T)
=
H(t,O,T)
= H(s,t,T)
( = H(O,t,T)).
=
Indeed
one can t a k e t h e r e s o l v a n t e q u a t i o n (4.13) i n t h e f o r m K ( t - s ) = H(t,s,T)
+
250
ROBERT CARROLL
T
fo K(t-T)H(T,s,T)dr
and l e t t
-+
T-t,
s
-f
T-s,
T
-f
T-c t o g e t (K i s even)
loT
K ( t - S ) = H(T-t,T-S,T) + K(t-c)H(T-S,T-S,T)dc T Thus K ( t , s ) = K(s,t) = H1 + I0 HIK(t,T)dT and K ( t , s ) = Hp + (4.24)
by uniqueness of t h e r e s o l v a n t H1 = H2. directly.
Id H2K(t,r)dT;
F i n a l l y (4.20) f o l l o w s from (4.13)
m
The p o i n t of Theorem 4.7 and (4.19) mined by a ( T , t ) = H(t,T,T)
i s t h a t H(t,s,T)
Now f o r t h e Krein-Levinson r e l a -
= H(T,t,T).
t i o n s one defines f i r s t b ( T , t ) = a(T,T-t) from (4.13)
i s completely deter-
= H(t,O,T)
H(O,t,T).
=
Then
( o r (4.20)) I
(4.25)
K(t,O)
= b(T,t)
+
ICI
I,
K(t,T)b(T,T)dT
i n o p e r a t o r n o t a t i o n we have y = ( I + K)b so b = T ( I - H)? which can be w r i t t e n as b(T,t) = K(t,O) - io H(t,u,T)
Thus s e t t i n g K = K ( t , O )
( I + K)-’t
=
K(u,O)du. Thus, s i n c e H ( t , u , t ) = a ( t , u ) , b ( t , t ) = a(t,O) = K ( t , O ) t Now f r o m (4.25) io K(u,O)a(t,u)du which i s t h e second e q u a t i o n i n (4.21). T one o b t a i n s DTb(T,t) t K(t,T)b(T,T) + fo K(t,T)DTb(T,T),dT = 0 which i n ope r a t o r n o t a t i o n i s ( I + K)bT = -K(t,T)b(T,T) (since ( I
KJTb = -HSTb = -H(t,T,T)b(T,T) (4.26)
DTb(T,t)
= -a(T,t)b(T,T)
=
-
lo
Hence bT = - ( I
-KSTb.
-
H)
Consequently
-a(T,t)a(T,O)
Next one conputes Ja = aT + at f r o m (4.20); c a l c u l a t i o n g i v e s f o r A(T,t)
=
H ) K = H).
t h u s u s i n g J K = 0 on elementary
= J a = (DT+Dt)a(T,t)
T
(4.27)
A(T,t)
+
(recall K(t) = K(-t)).
A(T,u)K(t-u)du
= -a(T,O)K(t)
Now r e f e r r i n g t o (4.25) one concludes t h a t t h e f i r s t
equation i n (4.21) i s v a l i d .
Thus
CHE0R€m 4-8- The Krein-Levinson r e l a t i o n s (4.21) f o l l o w as i n d i c a t e d . We go now t o [Ku8] f o r some i m p o r t a n t r e l a t e d m a t e r i a l .
L e t us t h i n k o f
Y ( t ) = Z ( t ) + V ( t ) a g a i n w i t h E Z ( t ) Z ( s ) = K ( t - s ) and E Y ( t ) Y ( s ) = R(t,s) 6(t-s) + K(t-s) f o r 0 < s , t IT
( c f . Remark 3.9).
=
L e t us t h i n k o f t h e un-
d e r l y i n g F o u r i e r t h e o r y o f S2 w i t h R ( T ) = ( l / Z n ) L I e x p ( - i A r ) d F ( A )
(as i n
Theorem 2.2) and Yt = If exp(-iAt)d:A (as i n ( 2 . 5 ) ) . Thus ( c f . C o r o l l a r y 2 e x p ( - i A t ) ( b y (2.10) Ed:,djiP = 6AudF(A)/2n). 2.4) Hy % L (dF/2n) and Yt We w r i t e t h e i n n o v a t i o n s process a s s o c i a t e d w i t h Y as ( c f . (3.15) and (4.1))
FILTERING
(4.28)
J(t) = Y(t)
1
251
t
-
h(t,s)Y(s)ds
0
where h s a t i s f i e s t h e W-H e q u a t i o n o f Theorem 3.8 which we w r i t e h e r e as
+ Jot h ( t , r ) K ( ? - s ) d T .
K(t-s) = h(t,s)
Now under t h e map Y ( t ) H(t,s,t). f u n c t i o n s ) where (4.29)
-
P ( x , t ) = e -ixt
%
Recall also t h e i d e n t i t y h(t,s) e x p ( - i x t ) we have J ( t )
jt H(t,s,t)e-ihsds
P(x,t)
- jotb ( t , ) e-
e - At
=
%
=
(Krein
( t - T dT
0
(s
+ t-T
and H ( t , t - r , t )
=
H(O,T,t)
= b(t,r)
=
a(t,t--c)).
The o r t h o g o n a l i t y
o f t h e i n n o v a t i o n s g i v e s t h e n ( c f . C o r o l l a r y 2.4)
I,
m
(4.30)
E J ( t ) J ( s ) = 6 ( t - s ) = (1/2n)
P(A,t)P(A,S)dF(X)
D e f i n e now t h e " r e v e r s e " f u n c t i o n s ( n o t e b ( t , T ) (4.31)
P,(h,t)
From (4.26) b t ( t , T ) (4.32)
Pt(A,t)
= e-ihti(x,t)
=
= -a(t,T)b(t,t) = -ixP(A,t)
-
1
-
i s real)
jotb(t,-r)e - i
ATdT
-b(t,t)b(t,t-T)
=
b(t,t)P,(A,t);
DtP,(A,t)
and one has d i r e c t l y = -b(t,t)P(x,t)
Consider then the kernel
I, T
(4.33)
R T ( ~ , F L=)
P(h,s)P(FL,s)dS
From (4.30) we have formally t h e reproducing p r o p e r t y ( t 5 T) (4.34)
( 1 / 2 r ) rBT(A,V)p(V,t)dF(U) -m
=
P(Ayt)
and from the r e c u r r e n c e r e l a t i o n s ( 4 . 3 2 ) one o b t a i n s a Darboux-Christoffel formula ( n o t e D t [ P ( x , t ) P ( u , t ) - P , ( h , t ) P , ( u , t ) I d i r e c t c a l cul a t i o n )
( s i n c e P(x,O)
= 1 = P,(x,O)).
=
i ( p - A ) P ( h , t ) P ( p , t ) by a
I t f o l l o w s t h a t RT i s t h e " g e n e r a t i n g func-
t i o n " o f t h e r e s o l v a n t H i n t h e sense t h a t (4.36)
RT(x,u)
= JoT Joi [ 6 ( t - s )
-
H(t,s,T)le -isxeiutdsdt
252
ROBERT CARROLL
1 one has I h(t,T),
-
and h
*
H = %
*
*
+ h - h h b e f o r e Remark 3.10 and (4.15) f o r u * * * 1 - h - h + h h = (1-h ) ( l - h ) where H % H(t,T,T), h %
Indeed r e f e r r i n g t o H = h h(.r,t).
= (1-h)[exp(-ixs)].
Since H ( t , s , t )
(
[l - H(t,s,T)],[exp(iht)exp(-ixs)])
(
P ( ~ , T ) , ( [1
-
= h(t,s)
We r e c a l l a l s o H(t,T,T)
h(~,t)],eXp(iht)
t?H€0REm 4-9, With t h e
))
=
we have from (4.29) P(X,t)
= 0 f o r t o r T > T so f o r m a l l y
= ( [l -
h~t,r)l,[P(x,~)exp(ixt)l)
= ( p(x,T),p(x,t)
=
).
hypotheses i n d i c a t e d t h e i n n o v a t i o n s J ( t )
%
P(h,t)
which generate a r e p r o d u c i n g k e r n e l RT as i n (4.33) and t h i s can be r e p r e sented as i n (4.36) o r v i a t h e D a r b o u x - C h r i s t o f f e l f o r m u l a (4.35).
5. I N N @ V A C I 0 W AND SCACCERINC, and T s i t s i k l i s [Lx1,2],
We go now t o two b e a u t i f u l papers o f Levy
which connect t h e ideas o f t h e p a s t two s e c t i o n s
d i r e c t l y t o s c a t t e r i n g ideas; we w i l l expand upon v a r i o u s r e s u l t s and cons t r u c t i o n s and make t h e f u r t h e r connections t o t r a n s m u t a t i o n t h e o r y .
We
t h e n show how t h i s c o n n e c t i o n l e a d s t o a s t o c h a s t i c i n t e r p e r t a t i o n o f t h e m i n i m i z a t i o n c h a r a c t e r i z a t i o n o f t r a n s m u t a t i o n k e r n e l s from 22.7, t h e r e i s i n f a c t an u n d e r l y i n g s t o c h a s t i c process.
when
The c o n n e c t i o n between
i n v e r s e s c a t t e r i n g techniques and l i n e a r e s t i m a t i o n problems has a l s o been noted e.g. <
m)
i n [Cacl-3;
Cd4; Du1,7,8].
Thus l e t Y ( t ) = Z ( t ) + V ( t )
(-m
< t
w i t h s t a t i o n a r y mean square continuous zero mean Gaussian s i g n a l Z ( t )
h a v i n g covariance E Z ( t ) Z ( s ) = K ( t - s ) .
L e t V ( t ) be w h i t e Gaussian n o i s e o f
u n i t i n t e n s i t y and u n c o r r e l a t e d w i t h Z ( t ) ( c f . ( A ) a f t e r (3.12)).
One
w r i t e s Y-+ ( t ) = [ Y ( t ) f Y(-y)]/2, Z-+ ( t ) = [ Z ( t ) ? Z ( - t ) 1 / 2 , and V-+ ( t ) = [ V ( t ) f V ( - t ) ] / 2 so t h a t Y, = Z+ + V+ and Y = Z + V- ( f o r say 0 5 t 5 T). E v i d e n t l y EZ+(t)Z-(s) = 0 = EV+(t)V-(s).
L e t Z = HZ be t h e H i l b e r t space
generated by Z ( t ) f o r -m < t < m = H [ Z ( t ) ; -m < t < m] and, i n t h e same nof T T t a t i o n , Hy = H [ Y ( t ) ; - T 5 t 5 T I . S i m i l a r l y one can w r i t e e.9. Hy = [ Y +-( t ) ; + 0 < t < T] so t h a t t h e r e a r e o r t h o g o n a l decompositions HZ = HZ + H i and T- +-T + T - T + Hy = H + -H; w i t h H y I H ; and H y I H Z . Consequently i n e s t i m a t i n g one Y T has e.g. E ( Z ( t ) l H y ) = E(Z+(t)I+H;) + E ( Z - ( t ) l - t l yT) . Stationarity i s l o s t i n t h e even and odd processes b u t one has i n s t e a d (5.1)
EZ+(t)Z+(S) = K+(t,S) = [K(t-S)
*
K(t+s)]/2
(i.e.
K+(t,s) i s t h e sum o f T o e p l i t z ( K ( t - s ) ) and Hankel ( K ( t + s ) ) o p e r a t o r s ) 2 and we can assume e.g. t h a t K E L on 0 5 s , t 5 T. F u r t h e r , e v i d e n t l y Now l e t us t h i n k o f f i l t e r EV+(t)V+(s) = ( 1 / 2 ) 6 ( t - s ) and EV+(t)Z+(s) = 0. i n g e s t i m a t e s ( c f . (3.15) where h i s used i n t h e r o l e o f g+) -
253
INNOVATIONS
2'(TIT) =
(5.2) We w r i t e
7* ( T I T )
I
,
E(Z ( T ) ( ' H i )
g -+ ( T , t ) Y +- ( t ) d t
=
h
A
- Z+(TIT) and f o r Z t o be t h e b e s t l e a s t = Z+(T) -
= T*(T)
+ T squares e s t i m a t o r we have as usual ? + ( T I T ) I -Hy which l e a d s t o EZ,(T)Y+(s)
lo T g+(T,t)EY+(t)Y+(s)dt. <-T obtaini for 0 - s -
=
K (T,s)
(5.3)
*
Since E Yt- ( t -) Y ? ( s ) = K-+ ( t , s )
= (1/2)g+(T,s) -
+
-
-
+
?
one
-
so K + ( t , s ) = K ( s , t ) . r here t o f i l t e r a t l e v e l t f o r t < T w i t h k e r n e l g+(t,T)
K ( t y s ) = (1/2)g+(t,s) -
(1/2)6(t-s)
joTg + ( T , t ) K + ( t , s ) d t
One notes a l s o t h a t K ( E ) = K ( - s )
(5.4)
+
S0
I t i s more n a t u r a l
so t h a t (5.3)
is
g+(t,-r)K+(T,s)dT -
One s h o u l d compare h e r e w i t h Theorem 3.8 f o r example, so f o r each t (5.4) and one w r i t e s i n an i s a Fredholm e q u a t i o n (W-H e q u a t i o n ) w i t h k e r n e l K', -1 K+- ( n o t e K+- i s a co- (% + K,)g, w i t h 9, - = (% + K+) obvious n o t a t i o n K+= v a r i a n c e and t h u s symmetric and nonnegative d e f i n i t e so 4 + K, i s s e l f a d 2 j o i n t i n v e r t i b l e ) . L e t . = D2 - Ds now and o p e r a t e on (5.4) w i t h (noting
2
t h a t DK,,
=
t
2
DK,,
DsK+(t,O)
0, K - ( t , O )
=
= 0 = K-(O,s),
etc.) t o get
W i t h hypotheses as i n d i c a t e d and W+(t) = -2Dtg,(t,t) one has 2 W-+ ( t ) ) g + w i t h D,g+(t,O) = 0 and g-(t,O) = 0. - ( t , s ) = Dsg,(t,s)
CHE0REm 5.1, CD:
-
Prraad:
We i n d i c a t e some of t h e b a s i c c a l c u l a t i o n s even though r e l a t e d com2 t Thus e.p. D t h g+(t,T)K+(T,s)dT = t + g(t,t)Kt(t,s) + gt(t,t)K(t,s) + 10 gtt(t,T)K(T,s)dT (we g'(t,t)K(t,s) 2 t t 2 omit here the s i g n ) w h i l e Ds/o g(t,T)K(T,s)dT = 10 g(t,T)D,K(T,s)dT = t g ( t , t ) K t ( t , s ) - g(tyO)Kt(O,s) - g,(t,t)K(t,s) + g,(t,O)K(O,s) + 10 g T T ( t , y ) K( -i,s)dr. Consequently p u t a t i o n s can be found i n Chapters 1-2.
*
lo t
(5.5)
%=g,(t,s)
+
v+(t,T)Ki(.,s)dT
-g+(t,O)DtK,(O,s) Now DtK+(O,s)
= K'(-s)
+
+ K'(s)
= W,(t)K,(t,s)
-
DTg,(t,O)K,(OYs) =
0 with the natural stipulation that K'(T)
be an odd f u n c t i o n ( t h i s f o l l o w s f r o m t h e F o u r i e r r e p r e s e n t a t i o n s ) and hence g i v e n t h e c o n d i t i o n s DSg+(t,O) = 0 w i t h g-(t,O) ses ( t o g e t h e r w i t h K-(O,s)
w i l l vanish.
=
= 0 from t h e hypothe-
0 ) i t f o l l o w s t h a t t h e two l a s t terms i n (5.5)
*
Hence d i v i d i n g by W ( t ) i n (5.5),
['gJWJ - - s a t i s f i e s (5.4)
254
ROBERT CARROLL
.
which has t h e unique s o l u t i o n 9., t i o n o f t h e theorem.
T h e r e f o r e .g,
-
= W g,
which i s t h e asser-
The argument i n Theorem 5.1 i s a b i t l o o s e r e g a r d i n g t h e condi-
REMARK 5.2,
t i o n Dsg+(t,O)
=
0 and g-(t,O)
= 0 b u t t h i s can be e s t a b l i s h e d w i t h F o u r i e r
techniques (see 1a t e r s e c t i o n s on geophysi c a l i n v e r s e problems and r e 1 a t e d c a l c u l a t i o n s i n Chapter 2 ) .
REMARK 5.3- I f we d e f i n e P ( t ) = E l ?
(t)I2 (cf.
( 4 . 1 1 ) ) t h e n P + ( t ) = E? ( t ) c t Z -+ ( t ) = E Z + ( t ) Z + ( t ) - E Z-+ ( t ( t ) Z-+ ( t ) = K-+ ( t , t ) - o! 9 (t,T)EY+(T)Z ( t ) d r = f _ -t =$g,(t,t) by (5.4) ( r e c a l l Z + I - H y so Z ( t ) K + ( t , t ) - fo g+(t,T)K+(T,t)dT - 4 I Z + -( t l t ) and a l s o EZ,(t)V+(t) = 0 ) . Consequently W-+ ( t ) = - 4 0 t P f ( t ) . A
t
i
+t
~
-,
A
Next one c o n s i d e r s t h e even and odd i n n o v a t i o n s J + ( t ) = Y ( t ) - Z + ( t l t ) ? which a r e w h i t e Gaussian n o i s e processes w i t h E J + ( t ) J + ( s ) = ( 1 / 2 ) 6 ( t - s ) . + T IT E v i d e n t l y -HJ = Hy i n an obvious n o t a t i o n . Let-H (t;s,T) be t h e Fredholm ? r e s o l v a n t o f t h e k e r n e l K,- as usual so t h a t (5.6) (i.e.
+
K+(t,s) = %H+(t,s,T) -
(4 +
Kf)(l
- H -+ )
=
4 - cf. (4.13),
Theorem 3.7,
etc.).
It w i l l be
useful l a t e r (and i n s t r u c t i v e now) t o r e c o r d t h e f o l l o w i n g i n f o r m a t i o n . L e t A be a z e r o mean random v a r i a b l e whose j o i n t s t a t i s t i c s w i t h Y ( t ) a r e
+
t ) , A,(t) = Gaussian and s e t A e ( t ) = EY+(t)A ( t h u s i f e.g. A = Z ( s ) ( s K+(t,s) and one assumes say A, E L2 ). E v i d e n t l y E(AIHy) T = foT a+(T,s)Y+(s) T ds + Jo a-(T,s)Y-(s)ds
and, s e t t i n g K ( T ) = A
f i l t e r i n g k e r n e l s a+(T,t) (5.7)
-
T E ( A I H y ) ( s o K(T)L'H;),
the
s a t i s f y f o r 0 5 t i T ( c f . (5.3))
A f ( t ) = %a+(T,t) +
1
I
K+(t,s)a+(T,s)ds -
0
( i n o p e r a t o r n o t a t i o n A+ = (+ + K+)a+). - -
&€tEBREI 5.4- The f i l t e r i n g k e r n e l s a,
One has t h e n r e c u r s i o n s v i a
s a t i s f y DTaf(T,t)
= -a+(T,T)g+(T,t). -
Pmraud: Take d e r i v a t i v e s i n (5.7) t o o b t a i n +DTa,(T,t) + K+(t,T)a+(T,T) + foT K,(t,s)DTa,(T,s)ds = 0. Compare t h i s e q u a t i o n w i t h (5.3), which has a unique s o l u t i o n , t o o b t a i n DTa /a (T,T) = -g,, f
t h e theorem.
Now r e c a l l t h a t (5.8)
a (T,t) f
f
which i s t h e a s s e r t i o n o f
m
-
H+) = 4 and w r i t e a, = ($ tT = 2CA (t) H (t,s,T)A (sIds.1 i c f
(4+
K+)(1 -
+
K+)-lA+ -
-
as
10
D i f f e r e n t i a t e (5.8) i n T now and r e c a l l t h e (B-K-S)
i d e n t i t y H = h* + h - h * h
255
INNOVATIONS
o r , more g e n e r a l l y and e x p l i c i t l y (4.14),
-
i n the form
DTH, ( t S ,T) = -H+- (T, t T) H, (T, s 9 T) = -9, - (TI t )g+ - (T, s
(5 9)
9
9
There r e s u l t s t h e n ( u s i n g ( 5 . 8 ) a g a i n f o r t = T) DTa,(T,t) T A+(T) + 2f0 H+(T,t,T)H+(T,s,T) A+(s)ds = -a+(T,T)H+(T,t,T)
= -2H+(t,T,T) = -a+?T,T)g+(T,t)
which i s Theoiem 5.4. -On t h e o t h e r hand one can r e g a r d (5.9) as a conseIndeed t a k e A = Z ( s ) w i t h
quence ( a s p e c i a l case i n f a c t ) o f Theorem 5.4.
A + ( t ) = K?(t,s) and p u t t h i s i n (5.7) ( f r o m which Theorem 5.4 f o l l o w s by differentiation).
The r e s u l t i n g e q u a t i o n i s i d e n t i c a l t o (5.6) upon i d e n -
so t h a t f r o m Theorem 5.4 we would have
t i f i c a t i o n o f a -+ ( t , t ) = H,(t,s,T) DTH,(t,s,T)
,( t , t )
= -H,(T,s,T)g
which i s (5.9)
( r e c a l l H+(T,s,T) -
=
g -+ ( T , s ) ) .
CHE0RZM 5 - 5 , The r e c u r s i o n s o f Theorem 5.4 i m p l y t h e B-K-S formula i n t h e form (5.9). Now i n t h e s p e c t r a l domain we have as i n S4 Y ( t )
,z
exp(-ixt)
'L
e x p ( - i x t ) d ? x ) , R ( T ) = (1/2~)iIexp(-iXT)dF(A),
(Y(t) =
R(t,s) = R(t-s) = 6 ( t - s ) A
+ K ( t - s ) , e t c . and we assume dF(x) corresponds t o a s p e c t r a l d e n s i t y R(X)dh 1 * ( Q S y ( A ) i n Remark 3.10). One assumes e.g. t h a t K ( - ) E L so K ( A ) = FK i s A
A
w e l l d e f i n e d i n a c l a s s i c a l sense and e v i d e n t l y - t h e n R ( A ) = 1 + K ( h ) . E Y ( t ) Y ( s ) = R ( t - s ) = f 1 exp(-iht)exp(i~s)Ed?xd?u d F ( x ) ( c f . (2.10)).
Note
= ( l / Z ~ ) l exp(-ix(t-s))
L e t us a l s o n o t e e x p l i c i t l y h e r e t h a t one i s t h i n k i n g n
e t c . so R ( A ) f o r example w i l l be even.
o f real Y(t), Z(t), Y+(t)
'L
Y+(t).
Cosxt and Y-
Q ,
- i S i n h t and we w i l l devote o u r a t t e n t i o n p r i m a r i l y t o
Thus t h e i n n o v a t i o n s J + ( t ) = Y+(t)
(5.10)
y+(h,t)
I n t h i s context
= CoSht
-
S
-
A
Z(tlt)
' I ,
y+(h,t)
where
g+(t,S)CoSASds
0
(similarly y-(x,t)
=
-i[Sinxt
-
t fo g-(t,s)SinAsds).
Thus one w r i t e s Y + ( t )
=
h
J
CoshtdYx and f o r m a l l y
4
S i m i l a r l y one w r i t e s J + ( t ) = J y+(x,t)dYA e t c . and we w i l l g e n e r a l l y o m i t t h e r e l a t e d formulas i n v o l v i n g = $6(t-s)
J-,
y-, e t c .
Since E J + ( t ) j + ( s ) = E J + ( t ) J + ( s )
( c f . Theorem 4.1) we o b t a i n ( c f . (4.30)) m
CHEOREIR 5 - 6 . The f u n c t i o n s y+(A,t) s a t i s f y ( 1 / 2 v ) j m y+(x,t)?+(h,s)k((x)dA &6 ( t-S
REmARK
=
). 5.7-
We c a l l a t t e n t i o n here t o t h e K r e i n f u n c t i o n s P(A,t)
o f (4.29)
ROBERT CARROLL
256
d5
A
A
(where
dYA) and a l s o t o t h e Krein-Levinson recursions (4.21) where
'L
a ( T , t ) = H(t,T,T) = H(T,t,T) ( = h ( T , t ) ) , b ( T , t ) = a(T,T-t) = H(t,O,T) = H ( O , t , T ) , and H ( t , s ) 'L H(t,s,T) i s determined by say (3.13) so t h a t A
(5.12)
Z(T(T) =
i,'
H(T,s)Y(s)ds =
,d
a(T,s)Y(s)ds
T (note t h a t Theorem 3.8 o r Theorem 3.7 give K ( T - t ) = a ( T , t ) + fo a ( T , s ) K(s-t)ds which i s ( 4 . 2 0 ) ) . The a + ( T , t ) of (5.7) play the r o l e of g ( T , t ) ? f o r A = Z + ( T ) ( c f . ( 5 . 2 ) , ( 5 . 3 ) , a n d ( 5 . 7 ) ) . Now r e f e r r i n g t o [Kr7-91 f o r example ( i f . a l s o 16121) we note t h a t Krein uses the notation L ( t , s ) 'L K ( t , s ) = K(t-s) w i t h K even and r,(t,s) 'L H(t,s,T). In order t o r e l a t e t h e
a ( t , t ) and g ( T , t ) i t will be i n s t r u c t i v e and worthwhile f i r s t t o follow t h e 2
technique suggested by [Krl] a n d f i l l i n t h e necessary d e t a i l s (we modify Consider the i n t e g r a l equation
notation as needed).
1
r
(5.13)
Q ( t , r )+
K(t-s)Q(s,r)ds = 1
r
T h i s can obviously be rewritten as ( * ) 4 Q ( t , r ) +[f K + ( t , s ) O ( s , r ) d s = 4 so Q = ( L +K+)-l/2 or Q = 1 - H+ ( c f . ( 5 . 6 ) ) which can be w r i t t e n here as Q ( t , r )= 1 - H+(t,r,r) Q, 6 ( t - r ) - g + ( r , t ) ( 1 a c t s as 6 h e r e ) . On the o t h e r hand consider $ ( t , r ) = G(t+r,2r) where G ( t , a ) = 1 r a ( t , s ) d s . Recall now Theorem 3.7 (or (4.13)) i n t h e form
ft
(5.14)
r,(s,T) =
K(S-T)
-
K(s-c)ra(S,T)dS
joa
6r[iF
K(t-s)ds K(t-s)rZr(s+r, and observe t h a t K(t-s)G(s+r,Zr)ds = 2r 2r 2r .r)ds]d.r = fo K(t+r--r)dr - JO [fo K ( t + r - S ) r Z r ( S , ~ ) d S ] d ~ = rZr(ttr,T)dT = 1 - G(t+r,2r). Hence $ ( t , r ) s a t i s f i e s (5.13) and by uniqueness we can idso t h a t 6 ( t - r ) - g + ( t , r ) = 1 - fo2rr 2 r ( t + r , s ) d s ( t h i s equae n t i f y Q and t i o n does not have a productive form however). I f we take now (5.13) in t h
:?
t h e form ( * ) following (5.13) then d i f f e r e n t i a t i n g in r one obtains i Q r ( t y r ) + fr K+(t,s)Qr(s,r)ds + K+(t,r)Q(r,r)= 0 from which by (5.4) Q r / Q ( r , r )= - g + ( r , t ) o r ( c f . a l s o [Kr7]) (5.15) Now Q =
Q r ( t , r )= - Q ( r y r ) g t ( r , t )
5 and
we will show below ( c f . [Kr7]) t h a t
257
INNOVATIONS
(5.17)
g+(r,t)
rZr(r-t,0) + rZr(r+t,0)
=
To demonstrate (5.16) one can first check easily that (*) DaG(t,a) = -ra(t, Indeed since ra(t,s) = H(t,s,a) one has from Theorem 4.5, Dara a)G(a,a). Then DaG(t,s) = -ra(t,a) + 10” ra(a,s)ra(t,a)ds (t,s) = -ra(a,t)ra(a,s), from which (*) follows immediately (note also G(a,a) = G(0,a) from the definitions - using ra(a,s) = ra(Oya-s)). Further we will show below that (5.18)
DtG(t,a)
=
G(a,a)[ra(t,a)
- ra(t,O)l
Given (5.18) we obtain (5.16) directly since from y(t,r) = G(t+r,2r) results Qr = 2Ga + Gt = -2rZr(t+r,2r)G(2r,2r) + G(2r,Lr)[rzr(t+rY2r) - rZr (t+r,O)] = -G(2r,2r)[rZr(t+r,2r) + r2,(t+r,0)] (recall rZr(t+r,2r) = rZr(r-t,0) and c(r,r) = G(2rY2r)). In order to prove (5.18) take (5.13) in the form (*) again and differentiate in t to obtain Qt(t,r) + 21; DtK+(t,s) Q(s,r)ds = 0. But 2DtK+(t,s) = K’(t-s) + K’(t+s) = DsK(t+s) - D,K(t-s) SO integrating by parts one obtains Qt(t,r) + 1 ; [K(t-s) - K(t+s)]Qs(s,r)ds = Since K-(t,s) = (l/P)[K(t-s) K(t+s)] we have Q(r,r)[K(t-r) - K(t+r)]. by (5.4) Qt/Q(rYr) = 9- or N
(5.19)
Qt(t,r)
=
Q(r3r)g-(ryt)
On the other hand setting z(t,a) = 12 ra(t,-r)d-r and integrating in T in (5.14) one has ( 0 0 ) E(s,a) = 1, K(5T)d.r - 1 , K(s-S)c(S,a)dS (note that Now differentiate ( 0 0 ) formally in s and integrate G(t,a) = 1 - g(t,a)). + 1 ,K(s-S)ES(S,a)dS = -G(a,a)[K(t-a) - K(t)] by parts to obtain (A) <,(s,a) (thus from ( 0 0 ) gs = 1 D,K(s-r)d-r - 1 DsK(s-.g,)GdS, D,K(s-<) = -D K(s-S), 5 etc.). Since ( 6 + K)ra = K by (5.14) and ( A ) ( 6 + K)[zt/G(a,a)] = K(t) But Gs = -Gs and K(t-a) one can identify G,/G(a,a) with ra(s,O) - ra(s,a). hence (5.18) follows. Further from (5.19) with Qt(t,r) = Gt(t+r,2r) and (5.18) one obtains z
Y
N
In partial sunmary we can state Settin9 rT(t,s) = H(t,s,T) etc. define G(t,a) = 1 - :1 ra(t,s) ds and c(t,r) = G(t+r,2r). Then t(t,r) satisfies (5.13), (5.15), (5.16), and (5.19) from which follows (5.17) and (5.20).
CHE0RElll 5.8.
ROBERT CARROLL
258
R€IRARK 5-9, From ( 5 . 1 7 ) and (5.20) one o b t a i n s
(5.21)
g+(r,t) c g-(r,t)
2r2r(r
=
g -+ ( r , t ) = r 2 , ( r - t , 0 )
:t , O ) ; * rZr(r+t,0)
R e c a l l i n g the i d e n t i t y a ( T , t ) = H(T,t,T) = r T ( T , t ) we can w r i t e ( a ( 2 T , $ ) = H(2T,E,2T) = H(g,ZT,ZT) = H(O,ZT-g,ZT) so e . g . rZT(T-t,O) = H(T-t,0,2T) = H(T+t,2T,ZT) (5.22)
=
a(ZT,T+t))
g ? ( T , t ) = a ( 2 T , T + t ) +. a(ZT,T-t)
T h u s i t i s e q u i v a l e n t t o compute g o r the f u n c t i o n s a(2T, ). t o (5.10) f o r y + ( x , t ) we have ( w i t h a l i t t l e c a l c u l a t i o n )
Going then
r2t S i n i t l o a ( 2 t ,T)Si n k d r
/zt
R e f e r r i n g t h e n t o P ( X , t ) i n (4.29) d e f i n e d v i a H ( Z t , s , Z t )
2t)
= exp(-2ixt)
-
=
a ( Z t , s ) ) P(h,
a ( Z t , s ) e x p ( - i x s ) d s we see t h a t there w i l l be r e l a -
t i o n s between s a y the r e a l and imaginary p a r t s o f P ( h , Z t ) and y + ( i , t ) . For completeness l e t us write this o u t further. Thus from y- = - i S i n h t + t ifo g-(t,T)SinxTdT (y- % -iAeQA = ihx!) we have t o c o n s i d e r (from ( 5 . 2 2 ) ) t (5.24) g-(t,T)SinxTdT = [a(Zt,t+-r) - a ( z t , t - T ) ] S i n i - r d r = 2t a ( 2 t , 5 )Sin h ( 5 - t 1dg = Cosx trt: ( 2 t ,5 1S i nA 5 dg - Si n h tl0 a ( 2 t ,5 ) Cos A cdg
I'
lot
0
0
Now combine ( 5 . 2 3 ) and (5.24) t o o b t a i n f o r example (5.25)
y+ + y- =
e- i h t
+
I,"
a(2t,c)eix(5-t)d5
2t We r e c a l l from ( 4 . 3 1 ) ( b ( 2 t , ~ )= a ( 2 t , 2 t - ~ ) ) P,(h,2t) = 1 - fo b ( 2 t , ~ ) exp(-ihT)dT = 1 - e x p ( - 2 i x t ) J o2 t a ( Z t , s ) e x p ( i A s ) d s . Hence from ( 5 . 2 5 ) (5.26)
[Y+ + y-1/2 = Cosxt
- ( 1 / 2 ) e i x t P,(x,t)
S i m i l a r l y y+ - y- = e x p ( i x t ) [ l + f z t a ( 2 t , c ) e x p ( - i x g ) d c ] and (5.27)
[y+
- y-]/2
=
Cosxt - ( 1 / 2 ) e
A l t e r n a t i v e l y one can write y-
=
ixt
P(X,t)
(1/2)exp(iht)[P(h,t)
- P,(x,t)l w i t h
y+ =
INNOVATIONS
2Cosxt
-
259
+ P,(~,t)l.
(1/2)exp(iht)[P(A,t)
REmARK 5-10, L e t us f o l l o w a g a i n [ L x l ] and r e o r g a n i z e some o f t h e r e s u l t s i n Theorem 5.8 i n t o a d d i t i o n a l i n f o r m a t i o n about t h e Krein-Levinson r e c u r sions (4.21).
Thus f i r s t s e t p ( T ) = a(T,O)
i n (4.21) so t h a t
I
(5.28)
p(T) = K(T)
-
A(T,s)K(s)ds 0
R e c a l l (5.22) and r e w r i t e (4.21) as (DT f Dt)a(2T,T t).
t ) = -2p(ZT)a(ZT,T
k
It f o l l o w s t h a t
(5.29)
DTg+ + Dtg- = - 2 ~ ( 2 T ) g + ; DTg- + Dtg+ = zp(2T)g-
A l s o f r o m ( 5 . 2 2 ) and (5.28) 2p(2T) = q+(T,T)
-
g-(T,T).
Now t a k e d e r i v a -
t i v e s i n (5.29) i n T and t r e s p e c t i v e l y and s u b t r a c t t o o b t a i n Theorem 5.1
2
w i t h W+(T) = 4[p (2T) T ;(2T)] (6 means t h e d e r i v a t i v e w i t h r e s p e c t t o t h e argument). Thus p ( .) o r Wk(-) p r o v i d e two e q u i v a l e n t p a r a m e t r i z a t i o n s f o r t h e Y process. 6,
tRAN€imW&A'A&I0N AND LINEAR $TDCHAsiEIC E X I W E I 0 N .
We p i c k up f i r s t t h e
development o f S5 a f t e r Theorem 5.4 and f o l l o w [ L x l ] f o r a w h i l e .
Many o f
t h e formulas and r e l a t i o n s developed f o r l i n e a r e s t i m a t i o n have c o u n t e r p a r t s i n i n v e r s e s c a t t e r i n g t h e o r y (and r e p r e s e n t f e a t u r e s o f general transmutaSome connections a r e i n d i c a t e d as we go a l o n g and d i r e c t
t i o n theory).
l i n k s a r e e s t a b l i s h e d e.g.
i n Theorem 6.10.
F i r s t one e s t a b l i s h e s a r e s u l t
e x h i b i t i n g t h e even and odd s p e c t r a l i n n o v a t i o n s as s o l u t i o n s o f t h e n a t u r a l d i f f e r e n t i a l e q u a t i o n a s s o c i a t e d w i t h Theorem 5.1.
Thus ( c f . (5.10))
CHE0REfi 6-1. The f u n c t i o n s y,(h,t) s a t i s f y (W+ f r o m Theorem - = -2Dt[gi(t,t)] 2 2 - = -A Y,; y+(A,O) = 1; Dty+(X,O) = - 2 K ( O ) ; Y-(A,O) = 0; 5.1) EDt - W+(t)]y+ Dty-(X,O)
Phood:
= -iX.
Take e - g .
y+
g i v e n by (5.10),
d i f f e r e n t i a t e t w i c e i n t, and i n t e -
2 Dty+
2 = - A Cosht - g i ( t , t ) C o s h t + g + ( t , t ) x S i n h t g r a t e by p a r t s t o o b t a i n Dtg+(t,t)Cosht - J0t Dtg+(t,s)Coshsds 2 (where D g (t,t) means g t ( t , s ) f o r s t ) and f r o m Theorem 5.1 -J0 t Dtg+Coshsds=-JJ 2 +':[ W,(t)]g+(t,s)Coshsd~ = -D,g,(t,t)CoSht + Dsg+(t,O) - W+(t)/o t g+(t,S)COShSdS + A 2 Jot g+(t,S)CoShSdS
-
hg+(t,t)Sinht.
2
2
Dty+ = - A y+
+
Hence, s i n c e (DtfDS)g+(t,t) W+(t)y+
= gi(t,t)
w i t h W+ = - 2 g i ( t , t ) ,
( r e c a l l Dsg+(t,O) = 0 by Theorem 5.1).
Evidently
from t h e d e f i n i t i o n (5.10) y + ( h , O ) = 1 w h i l e by (5.4) and (5.1) Dty+(h,O)
-g+(O,O)
= -2K+(0,0)
= -2K(O).
=
S i m i l a r c a l c u l a t i o n s h o l d f o r y-.
=
260
ROBERT CARROLL
Now go t o (5.29)
REMARK 6.2.
( w i t h Zp(2T) = g+(T,T)
-
g-(T,T))
t o express
y+ and y- i n terms o f one another v i a
(6.1)
Dty+(h,t)
+
2 ~ ( 2 t h + ( h , t ) = -ihy-(X,t);
Dtv-(x,t)
-
2 ~ ( 2 t ) y - ( ~ , t )= - i h Y + ( h , t )
Thus ( r e c a l l g (t,O) = 0 f r o m Theorem 5.1) y i = - h S i n h t - g + ( t , t ) C o s h t Dtg+(t,s)CosAsds and t h e l a s t t e r m becomes -tIo Coshs[-D,g-(t,s) - Zp(2t)
I 0t
A r o u t i n e c a l c u l a t i o n g i v e s t h e f i r s t e q u a t i o n i n (6.1). Simg+(t,s)]ds. i l a r l y y l = -ihCosAt + i g - ( t , t ) S i n x t + if: Dtg-(t,s)Sinhsds w i t h t h e l a s t t e r m becoming if: S i n h s [ 2 ~ ( 2 t ) g - ( t , s ) equation i n (6.1) follows.
-
D,g+(t,s)]ds
It i s i n t e r e s t i n g
f r o m which t h e second
now t o w r i t e Z p ( 2 t )
=
-6/w
..
w i t h w(0) = 1 i n t h e R i c c a t i e q u a t i o n o f Remark 5.10. T h i s g i v e s e.g. w
-
W+(t)w = 0 and s i n c e w(0) = - 2 p ( O ) = -g+(O,O)
i d e n t i f y w ( t ) w i t h y+(O,t).
+ g-(0,O)
Denoting t h e Wronskian W(f,g)
= -2K(O) we can
by f g ’ - f ’ g as
usual we can combine say t h e f i r s t e q u a t i o n o f (6.1) w i t h t h e d e f i n i t i o n T h i s shows t h a t o f w t o o b t a i n - i X y - ( X , t ) = [W(y+(O,t),y+(h,t))/Y,(o,t)]. y+ and y- a r e dependent and one need o n l y s o l v e one o f t h e equations i n Theorem 6.1 ( c f . [Kr6,9]).
REMARK 6-3. The s i t u a t i o n t r e a t e d i n Theorem 5.2 ( c f . a l s o Theorem 5.3) a l s o 2 has a s p e c t r a l version. Thus i f A % IA(x)d^Yx w i t h say A E L ( i d h ) t h e esT t i m a t e E(AIHy) corresponds t o f i n d i n g t h e p r o j e c t i o n PTA o f A ( h ) on t h e sub2 ” 4 space ST = I e x p ( - i h t ) , -T 5 t 5 t l o f L (Rdh). W r i t i n g Y+(t) = 1 CoshtdY, and Y - ( t ) = -iJ SinhtdYx as b e f o r e one can conclude from t h e d e f i n i t i o n o f t h a t PTA(h) = G+(T,X) a+(T,s)
.I.
lo
with A
I
I,
a+(t,s)Coshsds; a-(T,h) = -i a-(t,s)Sinhsds A T ( n o t e t h a t f o r m a l l y E ( A I H y ) = I PTA(X)dYh). Now t r a n s f o r m t h e d i f f e r e n t i a l
(6.2)
i+(T,h)
+ $-(T,A)
=
equations i n Theorem 5.2 i n n o t i n g t h a t e.g. DT$+(T,h) = a+(T,T)CoshT + = a+(T,T)CoshT - I TD a+(T,T)g+(T,s)Coshsds = a+(T,T)
foT DTa+(T,s)Coshsds
y+(h,T).
S i m i l a r l y D $ (T,h) = -ia-(T,T)SinhT - iI0 T DTa-(T,s)Sinhsds = T - T Sumnarizing -+ ia_(T,T)Io g- (T,s)Sinxsds = a- (T,T)y-(X,T).
-ia-(T,T)SinhT
p l a y t h e same r o l e i n t h e s p e c t r a l domain as do t h e g+we see t h a t t h e y + i n t h e t i m e domain. CHE0R€TIl 6.4. v+(x,T). -
The
:+ - o f (6.2)
s a t i s f y ( a ^-+ ( O , X ) = 0 ) DT2i(T,h)
=
a+(T,T) -
TRANSMUTATION AND ESTIMATION
261
REmARK 6 - 5 - I f one w r i t e s C ( A , t ) = y,(x,t)/y+(O,t) = y(x(t),X) w i t h x ( t ) = t 2 JO ds/y+(O,s) t h e n t h e e q u a t i o n f o r y+ i n Theorem 6.1 i s t r a n s f o r m e d i n t o t h e s t r i n g e q u a t i o n o f Krein, Dym, McKean ( c f . [Kr6,9; D u l l ) . Thus y s a t 2 2 i s f i e s Dxy(x,A) + A v(x)y(x,A) = 0, y(0,x) = 1, and Dxy(O,x) = 0 where 0 5
4
x < P = x(m) and u ( x ( t ) ) = y+(O,t).
T h i s i s a so c a l l e d L i o u v i l l e t r a n s -
form and i t i s i s o s p e c t r a l i n t h e sense t h a t D,S(x)
*
= D A S (A) = ? ( A ) / I T where
2 S and S* denote t h e “ s p e c t r a l f u n c t i o n s ” o f A+ = -Dt + W+(t) and A = - * 2 2 - ( l / v ( x ) ) D x r e s p e c t i v e l y . To s p e l l t h i s o u t i e t f (resp. f ) belong t o L 2 on [ 0 , m ) (resp. L [ u d x l on [ O , L ) ) and w r i t e (+) F ( A ) = 10” f ( t ) y + ( x , t ) d t t - * w i t h F*(A) = If f * ( x ) y ( x , A ) v ( x ) d x . The s p e c t r a l f u n c t i o n s S and S a r e i n (6.3)
jm(fg)(t)dt =
lm
F+(A)G+(A)dS(x); -
m
Now from Theorem 5.4 one has dS(x) = ^R(A)dx/.ir and i n s e r t i n g t h e d e f i n i t i o n s o f LI e t c . i n (6.3) we have dS(A) = dS ( A ) .
Note h e r e e.g.
w i t h f * ( x ( t ) ) so t h a t Jf f ( x ) y ( x , x ) p ( x ) d x = F*(x) 4 2 [ f ( t ) l ~ + ( ~ , t ) l [ ~ + ( ~ , t ) / ~ + ~ ~ , t ) l ~=+ ~ ~f~( tth )+ (dAt, t/) d~ t+ ~=~ , t ~ * ** * L * * Then 1 F+G+dS = J F G dS = So f g dx = J; f ( t ) g ( t ) d t =
t o i d e n t i f y f(t)/y+(O,t) =
Jo”
F+(x).
t h a t one wants
*
Jo”
J F+G+dS.
Consider now t h e B-K-S t y p e r e l a t i o n (5.9). a v e r s i o n o f (4.15)
i n t h e form
(6.4)
= g+(t,s)
H+(t,s,T)
R e c a l l here g,(t,s) k e r n e l g+(t,s) -
(s
= -f
+ g -+ ( s , t )
-
Comparing t o (4.14) we o b t a i n
loT
g+(r,t)g+(r,s)dr -
0 f o r s > t and w r i t i n g
t ) one has (q:
g+)(t,s) -
g+ f o r t h e o p e r a t o r w i t h
(6.5)
1
-
H,- = ( 1
-
g:H1 -
*
= IT - g (r,t)g+(r,s)dr.
svt
(6.4) becomes
-
Hence
- 9), -
R e c a l l here t h e G-L e q u a t i o n f o r g+ i s (5.4) where g, = (% + K + ) - l K + w h i l e (% + K+)(I H+) = 4. Equation (6.5) can be considered as a s o r t o f nonl i n e a r G-L e q u a t i o n f o r g+.
I n t h i s same c o n t e x t we r e f e r t o t h e Sobolev
i d e n t i t i e s (4.19) which w i l l have a v e r s i o n here. t h a t DtK+(t,s)
+ D,K-(t,s)
=
0 and DtK-(t,s)
Thus one observes f i r s t
+ D,K+(t,s)
=
0.
Then
EHE0REM 6-6. I f K ( - ) i s d i f f e r e n t i a b l e t h e n t h e r e s o l v a n t H? s a t i s f i e s DtH+(t,s,T)
+
DsH-(t,s,T)
= g-(T,t)g+(T,s)
and DtH-(t,s,T)
+
D,(t,s,T)
=
262
ROBERT CARROLL
= g+(T,t)g- (T,s).
Pmol;: (6.6)
R e c a l l here ( 5 . 6 ) from which f o l l o w s
J
Dt Hf +
DtK+ =
T DtK+(t,u)H+(u,s,T)du;
0
D,K-
D H + s -
=
loT
K-(t,u)DSH-(u,s,T)du
S e t t i n g C = D H + DSH- we o b t a i n e.g. 10 T DtK+H+dU = -fo +T DuK-(t,u)H+(U,s,T)dU DUH+(u,s,T)du. H+(T,s,T)
0 =
= i C + I Dt K+H ++ J K-D9H -. But -K-(t,u)H+(u,S,T)lo Jo K-(t,u) f
= 0) 0 = i C ( t , s )
Consequently ( r e c a l l K-(t,O) T
Now H+(T,s,T)
+ fo C(u,s)K-(t,u)du.
o f s o l u t i o n s t o (5.6) one o b t a i n s C(t,s)/g+(T,s)
.
f i r s t e q u a t i o n i n t h e statement o f t h e theorem. i n a s i m i l a r way.
2
2
= g+(T,s)
-
K-(t,T)
and by uniqueness
= g-(T,t)
which i s t h e
The second e q u a t i o n f o l l o w s
2
C€t€0RERI 6.7. I f K ( - ) E C t h e n [Dt - DS]H+(t,s,T) = g+(T,t)DTg,(T,s) g+(T,s)DTgi(T,t) and H+(T,s,T) = g+(T,s) w i t h DtH+(O,s,T) = H-(O,s,T)
P/rood:
= 0.
D i f f e r e n t i a t e t h e e q u a t i o n s i n Theorem 6.6 i n t and s r e s p e c t i v e l y 2 2 (= = D t - Ds)
and s u b t r a c t t o o b t a i n e.g. (6.7)
.H+(t3s,T)
= Dtg-(T5t)gf(Tys)
-
DSg-(T,s)g+(Tyt)
Now r e f e r t o (5.29) t o r e w r i t e t h e r i g h t s i d e o f (6.7) as g+(T,s)[-2pg+(T,t) - DTg+(T3t)l
- g+(T,t)[-2Pg+(T5s) - D ~ g + ( T , s ) l = g+(T,t)DTg+(T,s) - Cl+(T,s) A s i m i l a r c a l c u l a t i o n h o l d s f o r .H- and t h i s e s t a b l i s h e s t h e
DTg+(T,t). d i f f e r e n t i a l e q u a t i o n i n Theorem 6.7.
F o r t h e r e m a i n i n g a s s e r t i o n s we know
= H,(T,s,T) and s i n c e DSKf(t,O) = K-(t,O) = 0 t h e r e s u l t s T f o l l o w from (5.6) ( t h u s 0 =dH-(t,O,T) + J0 K-(t,u)H-(u,O,T)du implies that H-(t,O,T) = H-(O,t,T) = 0 w h i l e 0 =IDsH+(t,O,T) + JoT K+(t,u)D,H,(u,O,T)du
a l r e a d y g,(T,s)
i m p l i e s DsH+(t,O,T)
= 0
%
UtH+(O,s,T)
= 0).
T h i s shows t h a t t h e s t r u c t u r e o f H,(t,s,T) i n t h e sense o f Theorem 6.7.
i s " c l o s e t o " T o e p l i t z + Hankel
Now f o l l o w i n g t h e d i s c u s s i o n o f t h e K r e i n
f u n c t i o n s P(x,s) a t t h e end o f s4 we d e f i n e ( c f . (4.36)) (6.8) (6.9)
T R+(h,u) RT -(A,p)
T
=
[6(t-s)
-Io lo '0
=
T
[ [
T'O T
[6(t-s)
Going t o (6.5) n e x t ( w i t h Cosht
-
- H+(t,s,T)]CosxtCosusdtds - H-(t,s,T)]SinxtSinpsdtds fofg+(t,s)Coshsds = y + ( A , t ) = (l*- g+)
Cosps) we can w r i t e f o r example f o r m a l l y (I- H+)(Cosus) = (1
-
g+)y+(u,-r)
TRANSMUTATION AND ESTIMATION
-
( n o t e (1
H+) = ( 1
-
*
-
g+)(l
C0sAtdtd.r = Similarly
y-(p,t)
=
g+), f r o m s
1,' -
-i[Sinut
+ T
-f
263
t ) so t h a t
y+(p,T)y+(X,T)dT = -i[ 1
Sot g - ( t , s ) S i n u s d s ]
-
g - ] ( S i n ~ s ) and
hence - ( 1 - H _ ) [ S i n u s S i n h t ] = ~ T- ( x , p ) = -JoT JOT (1 - g - ( T , t ) ) i y - ( u , T ) S i n X t foT Y - ( P , T ) Y - ( X , T ) ~ T . D e f i n e now t r a n s f o r m s
dtdT =
A
One t h i n k s here e.g.
o f f+ E -
A Sy c L Z (Rdh) where +
S:
i s spanned by {CosAtl
(resp. { S i n i t ) ) f o r 0 5 t 5 T; then t h e I y +-( X , t ) ; 0 5 t 5 T I span S.; (using (6.10))
Re-
c a l l i n g now Theorem 5.4 we have e.g.
1
m
(6.12)
RI(X,u)?+(h);(A)dX/a
= (l/n)
-m
I[
Y+(X,T)Y+(IJ,T)~T]~~~
=
[$ f,
( s )Y,
i,
f+(sh+(A,s)dsl
(IJ , ) 6 ( s-T
A
dsdT =
i,'
y,fd,s
= f, (11
T T EHE0REm 6-8, R -+ ( A , u ) g i v e n by ( 6 . 8 ) - ( 6 . 9 ) s a t i s f i e s R +-( X , P ) = lo Y +(IJ,T) y+(X,T)d-r and a c t s as a r e p r o d u c i n g k e r n e l f o r S F as i n d i c a t e d i n (6.12). T
Pnood:
The r e p r o d u c i n g p r o p e r t y f o r ST can be demonstrated as i n (6.12)
and we o m i t t h e d e t a i l s . Now observe t h a t from Theorem 6.1 t h e equations D;y,(h.t) - W+(t)y+(X,t) 2 2 2 -A v,(X,t) and DtY+(P,t) - W-+ ( t ) y-+ ( v , t ) = -v v + -(u,t) lead t o (6.13)
=
2 2 = ( A -11 ) Y + ( X , t ) y + -( P , t )
DtW(Y+(Ayt),Y,(p,t))
Hence from Theorem 6.8 we o b t a i n a D a r b o u x - C h r i s t o f f e l f o r m u l a ( c f . (4.35)) T C0RbCLA:ARM 6-9, W i t h hypotheses as i n d i c a t e d R +-( A , I J ) = W(Y+(A,T),Y+(P,T))/ 2 (A2 - IJ 1.
Pnood: One i n t e g r a t e s (6.13) from 0 t o T and notes t h a t t h e Wronskian vani s h e s a t t = 0.
=
We w i l l show n e x t how t h e c h a r a c t e r i z a t i o n o f t r a n s m u t a t i o n k e r n e l s v i a mini m i z a t i o n as i n 52.7 can be r e l a t e d t o l e a s t squares s t o c h a s t i c e s t i m a t i o n . Thus when t h e r e i s an u n d e r l y i n g s t o c h a s t i c process r e l a t e d t o t h e d i f f e r 2 2 e n t i a l e q u a t i o n Qu = D u - qu = - A u (as i n 355-6) t h e n t h e m i n i m i z a t i o n procedure c h a r a c t e r i z i n g B: D2
-+
Q: CosXx
+
q X ( y ) (qp,(y) AQ % qX,h(y) Q
AQ
Q
y,(A,y)
264
ROBERT CARROLL
i n Theorem 6.1) can be achieved v i a s t o c h a s t i c i n f o r m a t i o n and accomplishes t h e same t h i n k i n s t o c h a s t i c geometry as l i n e a r l e a s t squares e s t i m a t i o n . We t a k e Q as i n d i c a t e d w i t h $:(O) $(X)dh on
1, Dx$:(0)
=
= h, and assume dw = dw
(which w i l l be n a t u r a l f o r t h e s t o c h a s t i c problem).
[O,m)
4 --
The
t r a n s m u t a t i o n B w i l l have t h e form
Av A4 ( y )
(6.14)
= CosXy +
I'
k(y,x)CosAxdx
0
and we know f r o m 52.7 t h a t k = kh s h o u l d a r i s e from m i n i m i z i n g (6.15)
I'
E =
-
[$:(y)
0
-
CosAy
1;
K(y,x)CosAxdx] 2 dwdy
0
where K runs o v e r a s u i t a b l e c l a s s o f admissable causal k e r n e l s . here t h a t
B has k e r n e l ~ ( y , x ) = ( $ ; ( y ) , C o ~ A x ) ~ w i t h dv
and 6 ( x - y ) = ($:(y),$:(~))~ ( A9 4 ( y ) , C o ~ X x ) ~and
PA p h ( x ) = Coshx
-+
( c f . 951.4-1.5). where W = :/$
W(A)G:(y)
IT/^);.
=
equation associated w i t h t h i s transmutation i s where (*) A(t,x) N
a(y,x)
=
d(x-y)
= ( CosAt,Cosxx)U
+
F(y,x)
(
t i o n becomes ( s (6.16)
0 =
Q
t,s
S2(t,S)
'L
x, t
Then 'L
for x
= :(y,x)
We r e c a l l a l s o t h a t
+ n(t,x) with O(t,x) = a(x,t)
= 6(t-x)
i s t h e k e r n e l f o r t h e Vol-
( f r o m t h e G-L e q u a t i o n and t h e f a c t t h a t y ( x , y ) terra inverse o f p = 6 + k).
maps
The g e n e r a l i z e d G-L
B(y,t),A(t,x))
( c f . 992.2-2.3).
and A ( t , x )
= (Z/s)dX on LO,-)
B - l = 8 has k e r n e l y ( x , y ) =
w i t h k e r n e l F ( y , x ) = y(x,y)
t h e transmutation
We r e c a l l
v
< y,
K(y,x) = 0 and t h e G-L equa-
y)
i,"
+ k(t,s) +
k(t,r)n(r,s)dr
One assumes now t h a t t h e r e i s an u n d e r l y i n g s t o c h a s t i c model r e l a t e d t o Q, W, 'L
e t c . and w i l l be comparing t o t h e model f o r y+, Y+, 2K+(t,s)
+ K(t-s) w i t h k(t,s)
= K(t+s)
%
-g+(t,s).
U
e t c . SO t h a t G(t,s) Thus r e c a l l (5.4)
as
2
Also $!(t) Q y+(A,t) w i t h h = - 2 K ( O ) ( c f . Theorem 6.1 where (D - W+)y+ = 2 -A y+ so W+ = -2Dtg+(t,t) Q 4). F u r t h e r e q u a t i o n (5.10) i n t h e form (6.18)
y+(h,t)
represents p . hQ (t) =
= COSht (
-
g+(t,s)CoSASdS
jot
p(t,s),Coshs)
i n i t i a l c o n d i t i o n D,k(t,O)
= 0
'L
and s i n c e Dsp(t,s) D,g+(t,O)
= ( q44 h(t),(-ASinhs))
i n Theorem 5.1 makes sense.
from t h e Parseval r e l a t i o n o f Theorem 5.4 w r i t t e n again here as
an Next
265
TRANSMUTATION AND ESTIMATION
(6.19)
(1/21~)~ u + ( X , t ) G + ( X , s ) ~ ( x ) d h = (1/2)6(t-s) m
(Z/T);(A). R e c a l l t h a t ;(A) 2 1 ~ ) i :exp(-iXT)$(x)dX = IT)/: $(h)CosxTdh.
we see t h a t :(A)
(
i s even i n X so R ( t ) = (1/
PI,
Cosht,CosXs)u
A l s o we n o t e t h a t A(t,s)
becomes
jo CosXtCoshs(Z/T)~(x)dx
I
m
(6.20)
A(t,s)
=
m
=
IT)
[CosX(t+s) +
0
I\
t-s)]R(X)dX
R(t+S) + R ( t - S ) = 6(t+S) + 6 ( t - S ) + 2K+(t,s)
=
6 ( t - s ) ) s i n c e 6 ( t + s ) does n o t c o n t r i b u t e f o r - t , s
~1e x p ( - i h t
=
=
dC;h, Y+(t) = J Coshtd?X, Ed? d?
rz
> 0. =
PI,
6 + n(t,S)
Finally recall
(1/2a);(A)6
A1.I dX,
J+
Y + ( t ) - Z + ( t t ) y + ( A , t ) , E Z + ( t ) i + ( s ) = K-+ ( t , s ) = ( 1 / 2 ) [ K ( t - s ) f -+ - T K(t+s)], e t c . A l s o one denotes by Y y = +Hy t h e H i l b e r t space spanned by Q
Y ? ( t ) f o r 0 5 t 5 T w i t h Zf = H i t h e H i l b e r t space spanned by Z + ( t ) f o r 0 5 t <
m
( t h e s c a l a r p r o d u c t being ( f , g )
b e r t space spanned by Z ( t ) f o r E(Z-(t)lY;)
( a g a i n YT =
+ YT
=
< t <
-m
Then Z = Z+ + Z--is
Efg). m
the H i l -
+
and E ( Z ( t ) l Y T ) = E ( Z + ( t ) l Y T ) +
+ Y y and E ( Z ( t ) l Y T ) means i n s i m p l i s t i c language
t h e e x p e c t a t i o n o f Z ( t ) g i v e n Yr). F o r t h e s t o c h a s t i c problem one asks f o r t h e b e s t ( l e a s t squares) l i n e a r est i m a t i o n o f Z+- g i v e n Y; (6.21)
;+(TIT)
=
i n t h e form o f a f i l t e r i n g e s t i m a t e
E(Z,(T)IY;)
rv
= Z (T)
One wants Z+(T,T)
k C v
-
=
I
I
g+(T,t)Y,(t)dt
0
A
Z ( T I T ) t o be as s m a l l as p o s s i b l e i n a l e a s t !2
squares s e n i e so t h a t E I Z (T,T)I2 i s t o be minimal.
One t h i n k s h e r e o f
f
A
E Y;
Z,(TIT)
as t h e H i l b e r t space orthogonal p r o j e c t i o n o f Z+(T) on Y;
-
Iu
t h a t Z+(T,T)IY;.
Thus g ( T , t ) f
- +
n
serves t o l o c a t e Z+(T[T) i n YT.
t h o g o n a l i t y c o n d i t i o n can be expressed v i a EZ (T,T)Y f
(s) ? L
so
T h i s or-
= 0 for 0
5s 5T
and, changing T t o t, one o b t a i n s (6.22)
K+(t,s) =2g,(t,s)
+
which y i e l d s o u r G-L e q u a t i o n (6.17) as an e q u a t i o n f o r t h e f i l t e r i n g k e r n e l 9.,
Thus t h e i n g r e d i e n t s correspond and we c o n s i d e r n e x t t h e orthogon‘u
t
a l i t y Z+(T,T)IYT
i n t h e s p e c t r a l domain ( s e t t = T a g a i n ) .
One knows t h a t
n
EJ+(t)Y+(T) = ( 1 / 2 ) 6 ( t - T ) A
dYh one o b t a i n s f o r 0
5
T
so u s i n g Y + ( T )
5t
=
I CosxrdYx and J + ( t )
= J y+(A,t)
266
ROBERT CARROLL
(6.23)
I1
= 2
6(t-.r)
, - . A
Y,(x,t)CosuTEdY
d;
F(t,T) =
=
X 1 J -
(1/2a)2 /Iy+(X, t)CosA-r^R(A)dh = ~
-
Thus g(t,-r)
= 0 f o r T < t i s a consequence o f EJ+(t)Y+(T) = EV+(t)Y,(r)
(1/2)6(t-T)
( r e c a l l J+ = Z,
-
+
+ V+ and Z + _ L Y T ) .
=
On t h e o t h e r hand i f we con-
s i d e r E of (6.15) i n t h e p r e s e n t f o r m a t w i t h K % -G+, so t h a t one wants t o T :1 [y+(X,t) - Cosht + (g+(t,T),COsAT)] 2 dwdt o v e r some c l a s s m i n i m i z e E = lo o f causal k e r n e l s g,
t h i s amounts t o m i n i m i z i n g
u
* T Then, s e t t i n g E = I. and
T
:I
-
[d!(t)
2 CosXt] dwdt i n (6.15)
r e p l a c e s x ) one has, a f t e r i n t e g r a t i n g i n
(6.25)
E
+ 2
= E n
loT
jbK(t,-r)*(t,r)drdt
-
2
x
(where t r e p l a c e s y
( c f . 52.7)
loT
lotK(t,T)T(t,T)ddt
t
+ JOT:J It K(t,T)K(t,E)A(T,~)dTdgdt 0
As i n 52.7 t h i s l e a d s immediately t o A
E + T r [ K ( l + O)K* + W 2 +
(6.26)
E
where e.g.
T r KC&
=
*
T
= Jo I.
KO
i m i z i n g k e r n e l (e.g.
t
m*]
t
I. K(t,T)K(t,c)n(T,E)dTdCdt.
When
KO i s a min-
= t h e G-L k e r n e l k w i l l do) t h e n a s t a n d a r d v a r i a -
t i o n a l argument y i e l d s as b e f o r e EHE6REIII 6.10-
The e x p r e s s i o n E o f (6.15) can be w r i t t e n i n t h e form (6.26)
and t h e ( u n i q u e ) m i n i m i z i n g k e r n e l KO f o r E s a t i s f i e s t h e G-L e q u a t i o n (6.16)
(so t h a t KO = k ) .
-
REMARK 6-11, Note t h a t i n g o i n g from (6.25) t o (6.26) N
N
B(t,T)
= 6(t--r)
+ K(t,-r)
w i t h K(t,-r)
= 0 for
T
< t.
one used t h e f a c t t h a t This kind o f r e s u l t i s
o f course known as b e f o r e i n general t r a n s m u t a t i o n t h e o r y v i a Paley-Wiener t y p e theorems o r v a r i o u s c o n t o u r i n t e g r a l arguments ( c f . 52.5). however t h a t t h e r e s u l t (6.23),
which a r i s e s when
$!
'L
We see here
y+ i s a s s o c i a t e d t o
a s t o c h a s t i c model as i n d i c a t e d a l s o p r o v i d e s t h e r e q u i r e d i n f o r m a t i o n t o produce (6.26) y+(A,t)lY
v i a s t a t i s t i c a l considerations.
+ ( t - )=
{COSAT;
0 <
T
Note t h a t (6.23) says t h a t
< t } r e l a t i v e t o dw = (2/T)$dA;
thus i n
TRANSMUTATION AND ESTIMATION
(6.24
267
t h e m i n i m i z a t i o n k e r n e l g+ serves t o l o c a t e (y+(x,t)
-
"+
Cosxt)I Y
A+
( t - 1 n Yt = I C O S X T ; 0 5 T 5 t l . F u r t h e r t h e r e p r e s e n t a t i o n o f A(t,T) = i n t h e form n ( t , T ) = 2K+(t,-r), f o l l o w s from t h e s t o c h a s t i c 6 ( t - T + n(t,T), theory.
Thus
tHE0REm 6-12. 2K+(t,T),
Given a correspondence vA QX ( t )
(2/n)AR, f ? ( t , T ) % e t c . one can deduce t h e r e s u l t s o f Theorem 6.10 and t h e c o r r e s %
ponding G-L e q u a t i o n ( w i t h k ( t , r ) = -g+(t,T))
y+(x,t),
w
%
using o n l y stochastic i n f o r -
m a t i o n and t h e corresponding s t o c h a s t i c problem i s t h a t o f m i n i m i z i n g T 2 EJo [ J + ( t ) - Y + ( t ) + ( g + ( t , ~ ) , y + ( T ) ) ] d t o v e r a s u i t a b l e c l a s s o f causal A
k e r n e l s 9,.
T h i s serves t o l o c a t e Z + ( t l t ) = Y + ( t )
-
+
J + ( t ) i n Yt,
which i s
e x a c t l y what i s accomplished i n l i n e a r l e a s t squares e s t i m a t i o n . REmARK 6-13, L e t us emphasize h e r e t h a t one can e v i d e n t l y e s t a b l i s h v a r i o u s connections i n p a t t e r n and s t r u c t u r e between t h e s t o c h a s t i c model and t h e t r a n s m u t a t i o n t h e o r y (say v i a t h e i n t e g r a l r e p r e s e n t a t i o n s and t h e G-L equat i o n s ) b u t o u r d i s c u s s i o n shows a somewhat more d i r e c t and i n t i m a t e connect i o n between t h e t h e o r i e s by e x h i b i t i n g t h a t t h e m i n i m i z a t i o n o f (6.15) c h a r a c t e r i z i n g t h e t r a n s m u t a t i o n B " s i g n i f i e s " t h e same t h i n g i n " s t o c h a s t i c geometry" as does l i n e a r l e a s t squares e s t i m a t i o n . REmARK 6-14, L e t us g i v e a n o t h e r i n t e r p e r t a t i o n o f t h e m i n i m i z a t i o n process For s i m p l i c i t y work w i t h Q = D2
f o r I as f o l l o w s . 'P! m).
satisfying
=
Q+o
-A 2'P, ' P ! ( O )
=
-
q, s p h e r i c a l f u n c t i o n s
= 0, w h i l e dw = ;dx 1, and DxvX(0) Q
We r e c a l l ~ ( y , x ) = 6 ( x - y ) + K(y,x)
( f o r B: D2 + Q: Coshx
on [O,
+ ~ Qp ~ ( w y i)t h h.
K r e p l a c i n g k f o r n o t a t i o n a l purposes) and z ( y , x ) = y ( x , y )
= 6(x-y)
+ K(y,
Consider now f o r m a l l y an e x p r e s s i o n (6.15) x ) ( w i t h ?(y,x) = L ( x , y ) ) . a Parseval f o r m u l a - c f . Remark 2 . 3 . 8 ) i n t h e form
lo jo T
(6.27)
Z =
m
A
If(h,y)12dwdy =
c
where f o r m a l l y f ( A , y ) = Qf(x,y)
(9
joTjy Q)
If(x,y)12dxdy
so t h a t
(via
268
ROBERT CARROLL = 0 f o r K = K).
( t h u s f(x,y)
f
Consider t h e n f o r m a l l y ,
f o r (K(~,E),L(S,X)
) =
K(y, 5 ) L ( 5, x)dS,
loT
(6.30)
j>L
+ K + KL] 2dxdy = Z
Now f o r example 1 ; { 1 L(y,x)L(y,x)dsdy
= T r LL
*
e t c . so (6.30) becomes z =
2Tr[LK* + L(KL)* + K(KL)*] + Tr[LL* + KK* + (KL)(KL)*]
= 2 T r [ ( L t LL*) t + T r LL* + Tr[K+KLL*]K*. S e t t i n g K = K + EJ and making a v a r i a 0 t i o n a l argument as b e f o r e one o b t a i n s
KL*]K*
(6.31)
0 = 2 T r ( L + LL
* * )J
* *
+ KoL J 1 + Tr[(Ko
t 2Tr[JL*Ki
t
* *
**
*
t K,LL*)J*
JKo + JLL KO] = 2 T r [(KO + L + KoL) + (KO t L + KoL)L ]J
&HE@R€m 6.15. M i n i m i z a t i o n o f Z v i a (6.27) leads t o t h e c r i t e r i o n (6.29), KO + L + KoL = 0, which c h a r a c t e r i z e s K. Ptlao6:
Set A = KO + L + KoL i n (6.31) t o o b t a i n T r A(L
A i s causal ( c f . (6.29)) and i f k e r A = A(y,x)
(5
-+
y ) = 1~in(5’Y)A(y,x)L(E,x)dx
causal).
( t h u s A(y,S)
S e t now T ( Y , ~ )= A(Y,s)
+
+
L
* * )J
one has A ( t , t )
Now = k e r AL* = 0.
i s n e i t h e r causal n o r a n t i -
#
N Y , ~so):1
T(y,S)J(y,E)dSdy
= 0
f o r J i n a s u i t a b l e c l a s s o f causal k e r n e l s , which i m p l i e s T(y,c) = 0 f o r 5 < y. Thus A ( l +*I-*) = 0 and, s i n c e (1 + L) (1 + L*)-’ = 1 + K . Consequently A = 0. rn R€illARK 6.16. m
= 1
R e c a l l here (6.13) and C o r o l l a r y 6.9.
+ K e x i s t s , so does The s i t u a t i o n when T
+
w i l l be o f i n t e r e s t i n c o n n e c t i o n w i t h v a r i o u s i n v e r s i o n formulas o f K-L
t y p e ( c f iiii2.6 and 2.8).
We assume q,
s o l u t i o n s e x i s t and w r i t e (y, (6.32)
y+(x,t)
R.
‘ I ,
p:
-
=
w
,
-t
0 rapidly a t
m
so t h a t Jost
i f . Remark 8.8 f o r h # 0 )
c Q ( x ) eix t + cQ(-A)e-iAt
= c @4 + c-aQ ).
F u r t h e r y-(X,t) = -ixO,(t) Q (y-(A,O) = 0 and Q A 4-x D~-(A,O) = - i A w h i l e 0: i s g i v e n as -x: i n 5i.8). One has t h e n f r o m (1.8.42)
as t
-+ m
(6.33)
(p:
Y_(A,t)
= (1/2)CF(h)@!A(t)
-
F(-x)@;(t)l
We r e c a l l now t h e K-L t y p e i n v e r s i o n i n t h e f o r m (assuming dw(h) = dx/28 I C Q2~) Q f ( A ) = fA( A ) = (f(x),p!(x)> w i t h (6.34)
f ( x ) = ( 1 / 2 1 ~ )P ( p ) d ! ( x ) d p 03
A
where, a c t i n g on s u i t a b l e f,
269
TRANSMUTATION AND ESTIMATION
lo co
(6.35)
f(x)
=
(1/2~1)
Q v:(x)qp(x)dx
= ~(A-u)
Now one can give expressions f o r the Wronskian W i n Corollary 6.9 i n terms of phase s h i f t ( r e c a l l y - ( x , t ) % - i x l F ( x ) l S i n ( x x + 6(x))/lAI from quantum s c a t t e r i n g theory) b u t we do b e t t e r t o work w i t h a K-L version of Corollary 6.9. The computation (6.12) will of course a l s o apply, which makes t h e present argument unnecessary in terms of r e s u l t b u t t h e discussion should be of some h e u r i s t i c value. We note t h a t i f h # 0 t h e s p e c t r a l measure has a d i f f e r e n t form ( c f . Remark 8.8) and one could perhaps develop a K-L type theory f o r such s i t u a t i o n s ; t h i s m i g h t be of use a l s o in t h e sense t h a t h = 0 does not correspond t o a s t o c h a s t i c s i t u a t i o n s i n c e h = -2K(O). In any event working w i t h h = 0 we have W(t) = W(qp,qx)(t) Q Q with W(0) = q Qp ( 0 ) 0 = 2iucQ(-p). Hence WP(O)/cQ(-u). 4 B u t one knows from (1.6.27) t h a t &,(a) Q W(0) = -2ip. On t h e o t h e r hand by (6.13), rewritten f o r q! and q xQ , we have
(6.36)
W(T)
-
W(0) = W(T) + 2ip = (u2-A2)jnTq:(t)v:(t)dt
Now as t + m evidently (A) W(t) % [ e x p ( i p t ) / c Q ( - p ) l [ a P x4( t ) - i w QA ( t ) l . Since (6.32) holds obe obtains f o r the bracket [ ] i n (A), [ 1 % i c Q ( x ) Consequently W(t) + Z i p w C i e x p ( i p t ) e x p ( i x t ) ( x - p ) - ic,(-A)exp(-ixt)(x+p). -1 cQ ( - p ) ] [ ( x - p ) ~ (A)exp(iXt) - (x+u)c ( - x ) e x p ( - i x t ) + 2pc ( - p ) e x p ( - i p t ) ] . 9 Q Q Think of moving A say a l i t t l e o f f the real a x i s (Tmh > 0 ) and consider an i n t e g r a l ( f o r s u i t a b l e f*, which we can assume t o be even) I = LE f^(u)[(W(t) 2 2 3 We w r i t e I = 1 I . where t 2 i p ) / ( p -A )]du. 1 J
1
m
(6.37)
I1 = - i c ( h ) ei h t
Q
I2
C;(p)eivtdu/
03
=
- i c (-x)e- i At
Q
(A+U )CQ(-P
Im[
11;
i?(p)eipt d P / C ~ ( - p ) ( p - x
11;
m
Let now ( f o r example) f E Cm so t h a t ? i s e n t i r e of exponential type R 0 ( c f . Theorem 1 . 3 . 6 ) ( l ? ( p ) [ I c ( l + l p [ ) - N e x p ( R I I m u ( ) )a n d take t > R w i t h ( e x p ( i p t ) l 5 e x p ( - t h u ) f o r Imp > 0. I n t e g r a t e over a l a r g e semicircular contour in the half plane Imp > 0. Under s u i t a b l e standard hypotheses 1 / c ( - p ) will be a n a l y t i c f o r Imu > 0 and bounded by a polynomial in p . I t Q 4 n follows t h a t I1 = 0 a n d I 2 = 2 n f ( A ) while I3 = 0 s i n c e f is even. There r e s u l t s ( c f . Remark 2.8.20)
2 70
ROBERT CARROLL
The manner i n which (6.35) r e p r e s e n t s a 6 f u n c t i o n a c t i n g on
EHE0REIII 6.17.
suitable functions
?
i s shown v i a t h e above c a l c u l a t i o n s f o r f
.C:
E
7- RAND0III FIELD5 AND SINCLICAR 0PERAE(DIBc We i n c l u d e some m a t e r i a l here on problems i n s t o c h a s t i c e s t i m a t i o n based on [ L x ~ ] because o f t h e i n t e r e s t i n g correspondance o f formulas and techniques w i t h those a r i s i n g i n e n t i r e l y d i f f e r e n t ways from problems i n s c a t t e r i n g t h e o r y and from general transmut a t i o n theory i t s e l f .
F o r random f i e l d s we r e f e r t o [Wpl; Ycl].
Generally
speaking a c o l l e c t i o n o f random v a r i a b l e s d e f i n e d on a common p r o b a b i l i t y s p a c e n i s c a l l e d a random f i e l d i f t h e parameter space i s m u l t i d i m e n s i o n a l (a s t o c h a s t i c process a r i s e s when t h e parameter space i s one dimensional ) . Take t h e n Xz,
z E R",
t o be a f a m i l y o f second o r d e r random v a r i a b l e s de-
E(XZI2
f i n e d on f? ( i . e .
Xz i s homogeneous i f EX, EXZXzl
w),
=
w i t h say Xz mean square continuous.
u i s independent o f z (we w i l l t a k e
= E X Z + z l l ~ z l + z t l f o r a l l z, z ' ,
z"
E
Rn.
One says
1-1 = 0 )
It f o l l o w s t h a t E X z i z I
and =
R ( z - z ' ) w i t h R nonnegative d e f i n i t e . Corresponding t o Theorem 2.2 one has n R(z) = (1/2n) JRn e x p ( - i ( v , z ) d F ( v ) and a g a i n one w i l l have a s p e c t r a l family
:,( c f .
( 2 . 5 ) and Theorem 2.3) such t h a t ( f o r d?A = ? ( d x ) )
Ion
-i( V,Z)
(7.1)
XZ =
e
xL,
r\
where-iv i s a random s e t f u n c t i o n d e f i n e d on B o r e l s e t s i n Rn w i t h ( 2 ~ ) ~ L e t G denote t h e group o f r i g i d body motions i n Rn
E?(A)?(B) = F(A n 6 ) .
( t r a n s l a t i o n and r o t a t i o n ) and d e f i n e X z t o be a homogeneous i s o t r o p i c r a n = EXt(z)Xt(zl) = R(llz-z'II ) . dom f i e l d i f f o r a l l t E G, EXZX,, p o l a r c o o r d i n a t e s one o b t a i n s i n a s t a n d a r d manner
R(T),
EHEOREIII 7.1,
0 5
T
<
m,
Introducing
i s t h e c o v a r i a n c e f u n c t i o n o f an i s o t r o p i c
homogeneous mean square continuous random f i e l d i f and o n l y i f R ( r ) = m
JO J (n-2
(Xr)FO(dX)/ ( X r ) (n-2)/2 where Fo i s a f i n i t e B o r e l measure on [0,
-) ( f a c t o r s o f 2~ e t c . a r e absorbed i n t o Fo here).
Now one can w r i t e t h e Laplace o p e r a t o r i n Rn as Au r
2
where
'L
A(Sn--')
= (r
n- 1 ur),Jrn-'
+ $,u/
can be analyzed i n terms o f eigenspaces generated by
Gegenbauer p o l y n o m i a l s C t - 2 ) / 2 ( C o s o ) .
This allows the covariance f u n c t i o n
R t o be decomposed and s t u d i e d i n terms of components
RANDOM FIELDS
(n-2)/2,
where A n m ( i r ) = J (n-2 ) / 2 + m ( i r ) / and ,,K, a n o r m a l i z i n g c o n s t a n t .
271
dm i s an eigenspace dimension,
The d e t a i l s can be found i n [Wpl; Y c l ] f o r 2 Rn and we w i l l on l y be concerned here w i t h R as i n [ L x ~ ] . Thus we go t o 2 [ L X ~ ]and l e t Y(x) = Z ( x ) + N(x), x E R , be o b s e r v a t i o n s o f a two dimen-
s i o n a l i s o t r o p i c z e r o mean Gaussian random f i e l d Z w i t h c o v a r i a n c e
-
Z ( s ) = k ( L ) where R = IIx-sII. f i e l d w i t h (*) E N ( x ) N ( s ) and t h a t k ( - )
E
= S(x-s) = 6 ( 1 ) / 2 1 ~ . L .
EZ(x)
One assumes E Z ( x ) i ( s ) = 0
Then w r i t e
L1 (i'dR).
(see here Theorem 7.1 w i t h n = 2, R = k , and Fo(dX) = ;(A)kdX and
(e)
N(x) i s a 2 dimensional w h i t e Gaussian n o i s e
a r e Hankel t r a n s f o r m s ) .
- t h u s $k
One observes now Y(x) over a d i s c DR o f
r a d i u s R c e n t e r e d a t t h e o r i g i n and we d e f i n e YR t o be t h e H i l b e r t space generated by Y(x) f o r 0 5 IIxII 5 R. b =
(7.5)
1
b(x)Y(x)dv =
DR One w r i t e s now Y ( r , e )
N(r,e)
Elements o f YR have t h e form
loR
l;ITb(r,e)Y(r,3)rdrdh
Z(r,e)
Yn(r)exp(ine),
=
= lma,Vn(r)exp(ins)
where e.g.
=
Y n ( r ) = (1/2n)lo2nY(r,e)exp(-ine)de.
One o b t a i n s t h e n e s t i m a t i o n problems f o r Y n ( r )
= Zn(r)
rn we have f o r example EZn(r)Zm(s) = EVn(r)vm(s) = 0.
f o r any n and m. < R so YR
Z n ( r ) e x p ( i n e ) , and
+ V n ( r ) and f o r n
A l s o EZn(r)Vm(s) = 0
be t h e H i l b e r t space generated by Y n ( r ) f o r 0 5 r
L e t Y:
=@-I Yi (mean square l i m i t sum) and t h e n E ( Z ( r , e ) l Y R )
(r)l$))exp(ine).
+
-
Now ( c f . (7.3)
= IYmE(Zn
w i t h dm = 1 = Km) a,
(7.6)
EZn(r)Zn(s) = kn(r,s)
Jn(Xr)Jn(Xs);(A)Xdh
= 0
A l s o E V n ( r ) i n ( s ) = &(r-s)/Z.irL ( L = I r - s l ) so t h a t Vn and Zn a r e n o t s t a t i o n ary.
However kn(r,s)
2
o r e q u i v a l e n t l y i f Z ( - ) i s mean square d i f f e r e n t i 2 2 2 a b l e one has f o r Pn(Dr) = Dr + ( l / r ) D r - (n /r ), Pn(Dr)kn(r,s) = Pn(Ds)
EHE0)REFII 7-2-
If k E C
has s t r u c t u r e g i v e n by
0 and kn(O,s) = 0 (n # 0 ) .
kn(r,s)
w i t h Drko(O,s)
PmoB:
One r e c a l l s t h a t Pn(Dr)Jn(hr)
=
t i o n follows from (7.6). =
= -A
2
Jn(hr) so t h e d i f f e r e n t i a l equa-
The i n i t i a l c o n d i t i o n s a r e a consequence o f J o ( 0 )
0 and Jn(0) = 0 f o r n = 0.
Now w r i t e t h e f i l t e r i n g e s t i m a t e s as A
(7.7)
Zn(RIR) = E(Zn(R)IYR) = 1R gn(R,s)Y,(s)ds 0
272
ROBERT CARROLL
From Tn(R,R)
(7.8
= Zn(R)
kn(R,r)
-
b e i n g orthogonal t o Yn(s) f o r 0 5 s 5 R
Z*,,(RIR)
= ( l / 2 ~ ) g n ( R y r l+
gn(R,s)kn(r,s)sds
One notes t h a t Kn d e f i n e d by t h e k e r n e l kn i s s e l f a d j o i n t and 2 nonnegative d e f i n i t e so (1/21~) + K, i s i n v e r t i b l e (assume say k n ( - ) L (0 5 r 5 R).
( r d r ) on [O,R]). 2 the L theory.
tHE0Rfin 7.3,
I t f o l l o w s t h a t (7.8) w i l l have a unique s o l u t i o n gn i n Now f o l l o w i n g t h e development i n § § 5 - 6 one has
Under t h e hypotheses o f Theorem 7.2 one has [Pn(DR)
gn(R,r) = Pn(Dr)gn(R,r); = 0 ( n # 0).
Phood:
= -20R[Rgn(R,R)1;
Wn(R)
Drgo(R,O)
=
-
Wn(R)]
0; and gn(R,O)
The p r o o f i s s i m i l a r t o Theorem 5.1 where t h e e q u a t i o n s i n Theorem
-
7.2 a r e used i n s t e a d .
I f m n = Pn(OR)
(7.9)
= (1/2a)mncin(R,r)
Wn(R)kn(R,r)
D i v i d e by Wn(R)
Pn(Dr) +
,P
one o b t a i n s kn(r,s)mngn(R,s)sds
and use t h e uniqueness f o r (7.8) t o conclude t h a t mngn(R,r)/
The boundary c o n d i t i o n s i n Theorem 7.3 r e s u l t from t h e Wn(R) = gn(R,r). c o n d i t i o n s i n Theorem 7 . 2 f o r kn. One produces i n t h i s manner f i l t e r i n g k e r n e l s gn(r,s)
for 0 5 s 5 r
we d e f i n e i n n o v a t i o n s processes b y (yn i s used i n s t e a d o f J,
R and
here because
o f t h e Bessel f u n c t i o n s Jn which a r i s e ) A
(7.10) Then Y,
yn(r) =
Yn(r)
-
Zn(rlr)
i s a w h i t e Gaussian n o i s e w i t h Eyn(r)Tn(s) = (1/2aL)S(r-s)
- s \ ) which c o n t a i n s t h e same s t a t i s t i c a l i n f o r m a t i o n as Y,
( L = Ir
( c f . 555-6). The
machinery o f 553-6 g e n e r a l l y has a v e r s i o n here f o r t h e d e t a i l s o f which we r e f e r t o [LxZ]. (7.11 )
kn(r,s)
F o r example one has a Fredholm r e s o l v a n t H,(r,s,R) = ( l / 2 ~ ) H n ( r y s y R )+
( 0 5 r,s 5 R ) w i t h H,(R,s,R)
-
( 7 12
=
gn(R,s)
0
kn(r,u)Hn(u,s,R)du
and ( c f . ( 5 . 9 ) )
DRH, (r,s 9 R ) = -Rgn (R, r )9, (R,s)
T h i s i s a Krein-Bellman-Siegert (7.13)
jR
with
I - Hn = ( I - g:)(I
t y p e r e s o l v a n t i d e n t i t y w i t h i n t e g r a l form
-
gn)
A new f e a t u r e now i s t h e f o l l o w i n g breakdown o f say Theorem 7.3 i n t o a
RANDOM FIELDS
system.
Thus f i r s t one has
EHE@REFR 7.4, = 0 and EDs
Ptoad:
If k E C
-
1
[Dr
+
l e a d s t o Theorem 7.2.
EHE6RECl 7.5,
+ ((n+l)/~)]k~+~(r,s)
0.
=
( n / R ) l g n + [Dr
= AJn-l(Ar);
[Dr-(n/r)]Jn(Ar)
-
+ ((n+l)/r)][Dr
(n/r)]
= -AJn+l(Ar)
so t h a t Theorem 7,4
On t h e o t h e r hand
For k E C
+ ((n+l)/R)lgntl
Pkood:
( n / r ) ] k n ( r y s ) + [D,
+ EDr + ( ( n + l ) / r ) l k n + l ( r y s )
(n/r)]Jn(Ar)
One notes t h a t Pn(Dr) = [Dr
-
-
t h e n [Dr
(n/s)lkn(r,s)
T h i s f o l l o w s by elementary c a l c u l a t i o n s f r o m (7.6) u s i n g
(7.14)
['JR
2 73
1
+
t h e f i l t e r i n g k e r n e l s gn(R,r)
( ( n + l ) / r ) l c ~ ~ += ~-Pn(R)gn and [Dr
= Pn(R)gn+l
Operate w i t h Or
s a t i s f i e d by gn and gn+,
and gn+l(Ryr)
-
where
pn(R)
= R[gn(R,R)
-
-
(n/r)lgn
satisfy +
[DR
gntl(R,R)l.
(n/R) and Dr + ( ( n + l ) / r ) on t h e i n t e g r a l e q u a t i o n s Using Theorem 7.4 and i n t e g r a t i n g by
and add.
p a r t s one o b t a i n s (7.15)
0 = pn(R)kn(r,R)
+
+ (l/ZT)m(R,r)
f o r m(R,r) = [OR - (n/R)]gn(R,r)
i"
kn(r,s)m(R,s)sds
0
+ [Dr + ( ( r ~ + l ) / r ) ] g ~ + ~ ( R , r ) . D i v i d e by A
and use uniqueness i n (7.8) t o o b t a i n m ( R , r ) = -pn(R)gn(R,r). s i m i l a r c a l c u l a t i o n y i e l d s t h e second e q u a t i o n above. 9
-pn(R)
Combining t h e e q u a t i o n s i n Theorem 7.5 one o b t a i n s Theorem 7.3 w i t h R) =
R i c c a t i equation t o get
pn
Remark 5.8).
from Wn ( c f .
To go now i n t o t h e s p e c t r a l domain one
r e c a l l s (7.1) and we assume Y(x)
"u
We t h i n k o f
( m ) :(A)
-V
=
(A,e) and w r i t e
exp(-(V,x))
( c f . remarks b e f o r e (5.10)). A
= ( 1 / 2 1 ~ ) + k(A).
t h e c a l c u l a t i o n here f o r two dimensions l e a d i n g t o (=).
L e t us s k e t c h
Thus f i r s t l o o k a t
(7.1) f o r k i n t h e form ( - v = ( h , e ) )
lom 2a
(7.17)
k(L) = ( 1 / 2 ~ ) *
If one w r i t e s :(A)
=
(1/21~)Jom:(A)Jo(AL)AdA let X
Y, d^Xv
Q
joei'
CoseF(AdAde)
F k t h e n F(AdAd0) = r(A)AdAdO and (7.17) becomes k ( L ) = which means ;(A)
d?", e t c . w i t h F r ( b )
= 'i;(A)/Za = ?(A)
i n (7.4).
I n (7.1) now
t h e n f o r Ilx-sll = L
2 74
ROBERT CARROLL
EYxYs = r ( L ) =
(7.18)
+ i ( p , s ) EdiL)d)i,,
e-i(v,x)
-
and one takes Ed^Xvd2 = ( 1 / 2 ~ 12)GVUF(dv) = (1/2n)2;(x)AdAde
so t h a t r(L) =
!J
Now g i v e n r = ( 1 / 2 n L ) 6 ( l ) + k we have
(1/2~1)/; y(A)Jo(AL)AdA.
so t h a t
= ~ / Z T=
^k
7= F +
+ ( 1 / 2 ~ 1 )and a measure ^rxdxde/2~1z yxdxde/(2a)
2
.
1
Thus
i n v o l v e s an i s o m e t r y between t h e H i l 2 2 b e r t space Y generated by t h e Y(x) and L (FAdAde/(2a) ) (by t h e Parseval
t h e correspondence Y ( x ) z exp(-i
lo
One has t h e n
(-L)
=
(A,e))
m
(7.19)
EY(x)Y(s) =
,e i ( v y s ) ) L 2 ( rAx d x d e / 2 ~ 1 )
Jo(AL)P(A)hdA = (e-i(vyx)
Under t h i s i s o m e t r y t h e c o e f f i c i e n t process Y n ( r ) i s mapped i n t o (1/2n) -i( v ,x )exp( - i n e )de = inJn( h r ) e x p ( - i n @ ) ( c f . comnents a f t e r (7.5 ) )
$‘exp(
since exp(-i(v,x))
e).
i n J n ( A r ) e x p ( i n ( e - @ ) ) where - v = (A,@)
=
One has t h e n
(7.20) where , ,6
c
Jn(Ar)Jn(As)F(A)AdA EYn(r)Ym(s) = ,6, 2 = (1/2a)~ooexp(i(m-n)@)d@ i s 0 f o r m # n and 6nn = 1.
can c o n s t r u c t an i s o m e t r y Y n ( r ) + Jn(xr): Yn Y,
+
yn(r,A)
(7.21 )
-+
Thus one
A
L (rAdA) and from (7.10)
with
yn(r,A)
Since Eyn(r)y,,(s) (7.22)
2
and x = ( r ,
;1
=
Jn(hr)
-
16
= (1/2aL)6(r-s)
yn( r, A)yn(s
X);hdA
gn(r,s)Jn(As)sds one has = (1 /21d)6
(r-s )
2 ClE@R€m 7.6, For n > 0 y, s a t i s f i e s [Pn(Dr) - Wn(r)]yn(r,h) = -1 yn(r,A); n n l i m 2 n!(Ar)-ny ( r , k ) = 1 as r + 0; and f o r n < 0, y n ( r y h ) = (-1) y-.,(r,h). n. Phooa: Operate on (7.21) w i t h Pn(Dr) t o o b t a i n ( r e c a l l Wn = - Z D r ( r g n ( r , r ) ) ) (7.23)
Pn(Dr)yn(r,h)
2
= -[A
-
Wn(r)lJn(Ar) + rDSgn(r,s) ls=rJn(Xr)
-
rr
s)Jn (1s)sds
As i n Theorem 7.3 one w r i t e s [Pn(Dr) = Wn(r)gn(r,s)
by Theorem 7.3.
-
P,
Put t h i s
D s ) l g n ( r , s ) = =,g,(r,s) and mngn n (7.23) and i n t e g r a t e by p a r t s
t o o b t a i n t h e f i r s t e q u a t i o n i n Theorem 7 6.
The r e s t i s obvious.
rn
RANDOM FIELDS
REmARK 7.7.
In terms of c a l c u l a t i o n one should r e a l i z e t h a t the y, can a l l
be generated from each o t h e r . (7.24)
275
AY,,+~
=
-[Dr
To see t h i s note f i r s t from Theorem 7.5 t h a t
- (n/r)
+ p n ( r ) l y n ; AY,
= [Dr
+
n+l
7 -
P~(P)]Y,,+~
Define now wn a n d u n via ( 6 ) p, = n / r - \;m/w ; p = "n+l n( n + l ) / r + G n / u n w i t h i n i t i a l conditions lirn r-'wn(r) = 1 and lim r un(r) = 1 as r 0. Then one obtains (y,
= Yn(r,A)).
-f
(7.25) and putting
XYn+, (6)
=
w(Yn~wn)/wn;AYn
= -W(Yn+l,un)
i n t o the Riccati equations (7.16) one has [ P n ( D r ) - Wn]wn =
0 and [Pnt1(D,) - Wn+l]un = 0. Thus u, and wn s a t i s f y Theorem 7.6 with = 0. From (7.25) we see t h a t y, + yntl via w, and y n + y n - l via u,. In order t o use a s t e p u p procedure t o generate a l l y n from yo via wn one shows To do t h i s note t h a t wn(r) = lim Z n n ! t h a t w ~ can + ~ be computed from w,. y n ( r , X ) / A n a s A + 0 so taking l i m i t s i n (7.25) and u s i n g the r e l a t i o n s
2
yn(s,A)wn(s)sds one obtains
W(yn,wn) = ( A / r ) $
Similarly from un(r) = l / r w n ( r ) t h e un can a l s o be generated from w,. Transforms of the form (7.25) a r e r e l a t e d t o t h e C r u m transform used i n quantum s c a t t e r i n g theory ( c f . [Cel; Cwl; Sa141). REmARK 7-8- In order t o give an inverse s c a t t e r i n g i n t e r p e r t a t i o n t o the
above s e t $ n ( r , x )
=
(rh)'yn(r,h)
so t h a t
This is t h e Schrodinger equation f o r a p a r t i c l e w i t h angular momentum n a n d 2 energy E = A . There i s a standard G-L technique f o r recovering t h e potent i a l Wn from t h e s p e c t r a l d e n s i t y r = ( l / 2~) I F ( x ) I - * where F i s the standard J o s t function ( c f . [Cel; F a l l ) . Here t h e J o s t function i s t h e same f o r a l l n whereas i n quantum physics t h e p o t e n t i a l i s constant and one c o n s t r u c t s a sequence o f J o s t functions. 8.
P;Z0PH#ZCAL ZNUZWE PR0BLEmB (REFLECCZON DAEA),
We turn next t o a more
d e t a i l e d study o f t h e operator Qu = ( A u ' ) ' / A in the context of a geophysical inverse problem ( c f . 51.6 a n d 9 2 . 1 1 ) . This operator a c t u a l l y a r i s e s i n many applied problems (e.g. in the study of transmission l i n e s ) . T h u s we
276
ROBERT CARROLL
c o n s i d e r t h e problem o f one dimensional wave p r o p a g a t i o n through a s t r a t i f i e d e l a s t i c medium and f r o m experimental i n f o r m a t i o n a t a p o i n t we a r e a b l e t o determine t h e m a t e r i a l p r o p e r t i e s through t h e medium ( o r a t l e a s t somet h i n g about t h e m a t e r i a l p r o p e r t i e s ) . i n g manner. (8.1)
The problem i s posed i n t h e f o l l o w -
The governing e q u a t i o n f o r t h e SH shear wave i s
p(x)vtt
=
(u(x)vxIx; 0 5 x <
m
where p ( x ) i s t h e d e n s i t y and u ( x ) i s t h e shear modulus which a r e unknown. The system i s a t r e s t f o r t < 0, v ( t , x )
= 0 f o r t < 0, and we i n t r o d u c e an
e x c i t a t i o n a t t h e p o i n t x = 0 o f t h e form (8.2)
vx(t,O)
= -(p(0)/P(o))?i~(t)
( t h e minus s i g n i s e x p l a i n e d a f t e r ( 8 . 7 ) ) . sumed t o be known.
Here p ( 0 ) and ~ ( 0 )can be as-
We can t h e n r e a d o f f t h e (impulse) response a t t h e same
p o i n t and c o l l e c t i n f o r m a t i o n o f t h e form (8.3)
v(t,O)
= vo(t) = G(t)
The general i n v e r s e problem t h e n i s t o determine P ( X ) and u ( x ) f o r x
>
0,
which cannot be done; however we can determine t h e "impedance" (pu)'(y) A(y) as a f u n c t i o n o f " t r a v e l t i m e " y = :/
(p/u)'dE;
=
( t h i s i s t h e standard
and n a t u r a l i n v e r s e problem here and has been s t u d i e d i n v a r i o u s ways by a number o f a u t h o r s ) .
BlagovejEenski j [Bgl] f o r m u l a t e d some complicated non-
l i n e a r i n t e g r a l e q u a t i o n s and was a b l e t o e x t r a c t some i n f o r m a t i o n about t h e governing parameters i n t h i s and more general problems ( c f . [Bgl-41). Although he was a b l e t o r e q u i r e o n l y p , E~ C1 (as we do) t h e c a l c u l a t i o n s a r e f o r m i d a b l e and t h e method i s n o t t o o r e v e a l i n g t h e o r e t i c a l l y . 2; Ne4; Sa1,2;
In [Afl,
W f l ] f o r example one s t u d i e d v a r i o u s aspects o f r e l a t e d prob-
lems i n terms o f i n v e r s e quantum s c a t t e r i n g techniques under assumptions i n 2 ~ C . The most r e l e v a n t d i s c u s s i o n i n t h i s s p i r i t f o r o u r purvolving p , E poses i s perhaps t h a t o f [Af1,2]
f o r a r e l a t e d problem b u t t h e mathematical
procedure t h e r e r e q u i r e s some m o d i f i c a t i o n s ; t h e f i n a l r e s u l t s a r e neverthe1 l e s s c o r r e c t . We w i l l r e q u i r e o n l y t h a t p , E~ C and p r o v i d e a n o n t r i v i a l and r i g o r o u s g e n e r a l i z a t i o n o f A l e k s e e v ' s t e c h n i q u e t o determine t h e spect r a l function.
Then, i n s t e a d o f u s i n g K r e i n ' s method t o e v e n t u a l l y r e c o v e r
(OF), as done by Alekseev, we produce a new v e r s i o n o f t h e G-L e q u a t i o n ap-
p r o p r i a t e t o t h i s problem.
Various techniques o f i n v e r s e s c a t t e r i n g t h e o r y
a r e e x p l o i t e d and g e n e r a l i z e d and we r e f e r f o r background and o t h e r r e s u l t s
REFLECTION DATA
f o r r e l a t e d problems t o [Adl; 2; Gi1,2;
Bo1,2;
Lx4-6;
277
Sel-4;
Kr1,3;
Bp1,2;
Bbgl; S t m l ,
601; J a l ; B b r l ; S t f l - 9 1 . X
L e t now y ( x ) = 10 (P/u)'(S)dS (8.4)
V t t =
take t h e form
v (t,O)
= -6(t);
Y
= 0 f o r t < 0.
and v ( t , y )
that f t IA'IAldy < t i o n where A '
-+
w i t h A(0) = 1).
(8.1) becomes
(Avyly/A = TI(Dy)v
w h i l e (8.2)-(8.3) (8.5)
so t h a t , w i t h A ( y ) = (pv)'(y),
m;
v(t,O)
= G(t)
We assume
and
P
u belong t o C 1 and r e a l i s t i c a l l y
i n f a c t we w i l l be p r i m a r i l y concerned w i t h t h e s i t u a -
0 and A
+
Am r a p i d l y as y
.+
m
(we a l s o n o r m a l i z e as b e f o r e
Assume a l s o as b e f o r e 0 < a 5 A(y) 5 B <
-
f o r a l l y.
Taking F o u r i e r t r a n s f o r m s i n ( 8 . 4 ) one o b t a i n s ( c f . (1.6.1))
"v'
(8.6)
+ k2v^ = q ( y ) $ ' ; q ( y ) = - A ' / A
Here we w i l l use A and k i n t e r c h a n g a b l y s i n c e k i s customary i n p h y s i c s and
Fv
= G(k,y)
Jr v(t,y)exp(ikt)dt.
=
We w i l l c a l l r e g u l a r s o l u t i o n t h e func-
t i o n p ( k , y ) s a t i s f y i n g (8.6) w i t h p(k,O) = 1 and p ' ( k , O ) = 0 as i n (1.6.2). We w i l l c a l l J o s t s o l u t i o n s t h e f u n c t i o n s @(+k,y) s a t i s f y i n g (8.6) w i t h @(+k,y)
%
exp(*iky)A?
and @ ' ( f k , y )
%
?ikexp(kiky)A?
as y
-f
m
( c f . (1.6.2).
Equation (8.6) can now be c o n v e r t e d i n t o t h e i n t e g r a l e q u a t i o n s (1.6.5)(1.6.6)
which a r e s o l v e d by i t e r a t i o n t o y i e l d Theorem 1.6.2.
Thus we r e -
c a l l t h i s i n f o r m a t i o n i n t h e form
CHE0REm 8.1. =
Q @?,(y)
Given q
E
L1 , t h e f u n c t i o n s q ( k , y )
= p QA ( y ) ( A
can be d e f i n e d by s e r i e s as i n Theorem 1.6.2.
Imk > 0 I A 3 ( k , y ) l
5 exp(-yImk)exp[cJm
Q
k ) and @(+k,y)
One has t h e n f o r
< 0 \A$(-k,y)l Y < exp(yImk)exp[cJm l q ( ~ ) ] d n ] w h i l e @(k,y) (resp. @(-k,y)) i s a n a l y t i c f o r Y Imk > 0 ( r e s p . Imk < 0 ) . On t h e o t h e r hand p ( k , y ) i s e n t i r e w i t h I p ( k , y ) l
I e x p ( y l ImkI )exPC.#
I q ( n ) l d n ] and f o r Imk
Iq(n)ldnI.
We r e t u r n now t o t h e problem ( 8 . 4 ) - ( 8 . 5 )
and r e f e r r i n g t o [C40] f o r d e t a i l s ,
remark t h a t an e q u i v a l e n t problem a r i s e s upon r e p l a c i n g t h e impulse i n ( 8 . 5 ) by a c o n d i t i o n (8.7)
Vt(O,Y)
= 6(Y)
It i s i n f a c t somewhat more n a t u r a l t o work w i t h (8.7)
( o r w i t h an impulse
2 78
ROBERT CARROLL
i n s e r t e d d i r e c t l y i n ( 8 . 4 ) ) and we w i l l f o l l o w t h i s d i r e c t i o n ( c f . [C40;
An example w i l l p a r t i a l l y c l a r i f y t h i s equivalence and we w i l l
Stf2-41).
s i m p l y t h i n k of o u r problem subsequently as posed v i a ( 8 . 1 ) o r (8.4) w i t h = G(t).
impulse (8.7) and response v(t,O)
Take A = 1 and s t a r t w i t h i n p u t d a t a v ( 0 , t ) = - 6 ( t ) . The s o l u Y t i o n o f (8.4) i s t h e n v ( y , t ) = Y(t-y) ( f o r y , t 2 0 ) where Y denotes t h e
EHAl!lPCE 8.2.
Heavyside f u n c t i o n .
Thus v = - 6 ( t - y ) + - 6 ( t ) as y + 0 and v ( 0 , t ) = Y ( t ) . Y We n o t e t h a t t h e s o l u t i o n c o u l d a l s o a r i s e f r o m an impulse vt(y,O) = 6 ( y ) s i n c e vt = 6 ( t - y ) (6(y)
6(-y)).
3
e x p ( i A t ) d t and (8.6) becomes we must have
G
The F o u r i e r t r a n s f o r m i s FT =
+ A 2.v
YY
= 0 ( A = k).
= A ( A ) e x p ( i x y ) and w i t h i n p u t
= -exp(iAy)/iA
Now ( c f . [Bbel])
( A = 0).
-
vt = [ 6 ( t - y ) + s ( - t - y ) ] / Z .
Y(-t-y)]/Z;
t i p l y by 2 however and drop Y ( - t - y ) +
0.
F[Y(t-y)] corres-
v = -[6(t-y) - 6(-t-y)]/2; Y Working o n l y from t h e quadrant y , t 0 we mul-
o r y one i s l e d t o v = [ Y ( t - y )
6 ( y ) as t
=
More c o m p l e t e l y v i a t h e f u l l F o u r i e r the-
l/iA].
-
T(t)
*vY (0,A) = -1 i t f o l l o w s t h a t F [ Y ( t ) - Y ( - t ) ] = - 2 / i A (FY =
1 ~ 6 ( h )- l / i A ) and F 6 ( t - y ) = e x p ( i A y ) so i n some sense
ponds t o e x p ( i x y ) [ T s ( A )
if
Since v = 0 f o r t < 0
= 0 t o get v
+ - 6 ( t ) as y + 0 and vt + Y T h i s F o u r i e r p i c t u r e a l s o shows how a n a t u r a l odd and even
extension i n t o f v i s associated w i t h the s i t u a t i o n .
Moreover i n a l l prob-
lems o f t h e t y p e c o n s i d e r e d ( a r b i t r a r y A) t h e impulse response w i l l have a Y(t-y) t y p e f a c t o r
below.
-
t h e decomposition G ( t ) = 1 + G r ( t )
( t 1. 0) i s used
The f a c t o r o f 2' a r i s i n g i n v a r i o u s F o u r i e r r e p r e s e n t a t i o n s i s a l s o
c l a r i f i e d below. L e t us r e c a l l a few f a c t s about Riemann f u n c t i o n s f o l l o w i n g [C40]. g. c o n s i d e r (dw = $dA, (8.8)
S(Y,t,n)
2
= 1/2alc
4
4
12, 4
= (vA(Y)vA(n)yCosAt)o; R(y,tyn) =
Thus Rt = S and t h e s o l u t i o n o f (8.4), Vt(Y,O) (8.9)
=
vtt
Q
= Qv, w i t h v(y,O)
Q
SinAt ) 7 = f ( y ) and
g(Y) i s v(y,t) =
(
S(Y,t,n),A(n)f(n))
(up t o p o s s i b l e adjustment on y = 0 ) .
+
R(y,t,n),A(n)g(n))
Here one has S(O,t,n)
and R(O,t,n) = ( p AQ ( n ) , [ S i n A t / A ] ) w p a r t i c u l a r f o r f ( n ) = 0 and g ( n ) = 6(n)/Ao = 6 ( n ) we o b t a i n v ( y , t ) = R(y,t)
=
( v AQ ( n ) ,
( a g a i n Rt = S ) .
CosAt)w ( = ;(n,t))
(8.10)
Thus e.
and Qu = ( A u ' ) ' / A h e r e )
=
( v 0~ ( ~ ) , [ S i n A t / A ] ) ~
In
REFLECTION DATA For y = 0 one o b t a i n s t h e r e a d o u t G ( t ) =
(
279
l,[SinAt/A])W
f r o m which t h e spec-
t r a l d e n s i t y w i s determined by m
(8.11)
= ( ~ A / I T ) ~G~ ( t ) S i n A t d t
;(A)
tTHHZ6REm 8-3- The s p e c t r a l d e n s i t y :(A)
= l / 2 n l c p 1 2 can be o b t a i n e d d i r e c t l y
f r o m t h e impulse response G ( t ) v i a (8.11). Next we r e c a l l Theorem 2.11.7 which e x h i b i t s A(y) v i a a f o r m u l a A-'(y)
-
K(y,y) where K(y,x)
= 1
This is
i s t h e k e r n e l determined i n Theorem 2.11.6.
o f course a G-L t y p e k e r n e l and t h e r e w i l l be a corresponding G-L e q u a t i o n t o determine K.
T h i s was d e r i v e d i n [C40,66;
S e l l i n a r a t h e r ad hoc manner
and then a c a n o n i c a l d e r i v a t i o n was produced i n [C71,72]. t h e r e s u l t from [C40,66;
We s t a t e f i r s t
S e l l which i s u s e f u l f o r computation and t h e n we
w i l l g i v e d e t a i l s f o r t h e canonical d e r i v a t i o n .
Thus w r i t e ( + ) dw(k) =
(2/.ir)dk + do(k) and s e t [Sinkx/k]Coskydu(k)
(8.12)
T
= T(y,x);
Y
0
(y,x)
=
-1
SinkxSinkydo(k) 0
tTHEBREl?l 8-4- The a p p r o p r i a t e G-L t y p e e q u a t i o n f o r t h e d e t e r m i n a t i o n o f K(y, x ) (x
<
y ) i s g i v e n by (T b e i n g d e f i n e d by (8.12))
K(y,x) + T(y,x)
#
=
K(y,
n ITn ( n ,x )dn. T h i s G-L t y p e e q u a t i o n has a t i m e domain f o r m which i s v e r y v a l u a b l e and revealing.
Thus ( c f . ( 8 . 2 3 ) - ( 8 . 2 4 ) )
l e t us w r i t e G ( t ) = :f
+
[SinAt/A][do
(2/a)dA] = 1 + G r ( t ) ( t h e s u b s c r i p t r here r e f e r s t o r e f l e c t i o n d a t a ) . depending on whether y > x o r y
x one o b t a i n s ( c f . a l s o (8.23)-(8.24)
<
where more d e t a i l is g i v e n ) T(y,x) = [Gr(y+x)
-
Gr(y-s)]/2
It f o l l o w s t h a t Ty(y,x) = [G;(y+x) [Gr(y+x) + Gr(x-y)]/2. and t h e G-L e q u a t i o n i n Theorem 8.4 can be w r i t t e n ( x < y ) (8.13)
Then
o r T(y,x)
- G,'.(
=
ly-x1)1/2
I ~K(Y,s)CG~(X+S)-G~(~X-S~ Y
K(y,x)
+ +[Gr(y+x)-Gr(y-x)l
=
)Ids
0
ISHEBRElil 8.5,
The G-L e q u a t i o n o f Theorem 8.4 can be w r i t t e n d i r e c t l y i n
terms o f r e a d o u t data i n t h e f o r m (8.13) and g i v e n K one " s o l v e s " t h e i n v e r s e problem v i a Theorem 2.11.7
i n t h e f o r m A-'(y)
= 1
-
K(y,y).
The d e r i v a t i o n o f t h e G-L e q u a t i o n i n Theorems 8.4 and 8.5 i n [C40,66; was l a r g e l y ad hoc i n n a t u r e .
Sell
L e t us g i v e h e r e a c a n o n i c a l d e r i v a t i o n based
on general t r a n s m u t a t i o n procedures as i n Chapter 2. L e q u a t i o n has t h e f o r m ( c f . g2.3)
Thus t h e canonical G-
280
ROBERT CARROLL
w
(8.14)
B(Y,X)
where B and =
'ii a r e
= ( B(Y,t),A(t,x))
the kernels o f transmutations D
; 1 $(A)CosAxCosAtdA
= ( CosAx,CosAt )o.
0 f o r x < y and B ( y , t )
=
2 -f
C! as usual and A ( t , x )
I n f a c t F(y,x) =
(2/.rr)J;qp(y)CosxtdA. 4
0 C O S A X , ~ ~ ( Y ) )w =
Now f o r x < y we i n t e o r a t e
i n (8.14) f o r m a l l y t o o b t a i n ( c f . (8.11)) ( B ( y . t ) , A ( t , x ) ) =
1
(
0 where
X
d(t,x) =
(8.15)
A(t,S)dc = ( C o ~ A t , [ S i n h x / h ] ) ~=
0
+ ;/
1; Sinh(x+t)GdA/;i
[G(x+t) + G ( x - t ) ]
(X > t)
-
(X < t )
SinA(x-t)wdA/A = [G(x+t)
G(t-x)]
An a n a l y s i s o f k e r n e l s as i n 52.11 a l l o w s us t o w r i t e B ( y , t ) = A-'(y)G(y-t)
+
Kt(y,t) and t h e k e r n e l K a r i s e s i n t h e form ( r e c a l l K(y,y)
I
Y
0 qh(y) = A-'(y)CosAy
(8.16)
= 1 - A-'(y))
+
Kn(y,n)CosAndn
0
Consequently u s i n g (8.15) one o b t a i n s (B(y,t) = 0 f o r t > y ) Y
(8.17)
B(y,t)A(t,x)dt
0 =
-
= A-'(y)[G(x+y)
G(y-x)]
+
'0
K,(y,t)[G(x+t)+G(x-t)]dt
+
Kt(y,t)[G(x+t)
-
G(t-~)]dt
The l a s t i n t e g r a l s i n (8.17) a r e ( r e c a l l K(y,O) = 0 and G(0) = 1 )
X
K(y,t)[G'(x+t)-G'
(x-t)]dt
-
0
2K(y,x)
+ K(y,y)[G(x+y)-G(~-x)]
-
e
Y
K(y,t)[G' ( x + t )
K(y,t)[G'(x+t)
-
G' (t-x)]dt
-
=
G'(Ix-tl ) I d t
0
Using ~ ( y , y ) = 1
&HE0RElll 8.6.
-
A-+(Y),
i n s e r t (8.18) i n (8.17) t o g e t (8.13).
Hence
The G-L equat on (8.13) can be d e r i v e d i n a c a n o n i c a l manner
as i n d i c a t e d .
RZmARK 8-7. Going back t o 8.5) f o r a moment we n o t e t h a t i t may be d i f f i c u l t t o r e a l i z e a 6 function e x c i t a t i o n f o r v (t,O). Y an i n p u t v ( t , O ) = f ( t ) w i t h r e a d o u t v(t,O) = g ( t ) . Y known readout f o r a 6 f u n c t i o n i n p u t . Then i n f a c t
L e t us suppose i n s t e a d L e t g 6 ( t ) be t h e un(0)
g ( t ) = 1; g 6 ( t - r )
f(- r)dr (which w i l l say i n p a r t i c u l a r t h a t once g6 i s known any o t h e r g can be computed).
Indeed i f v 6 ( t , y )
i s the s o l u t i o n o f (8.4)-(8.5)
w i t h v (t,O) Y
REFLECTION DATA
281
t
v 6 (t-T,y)f(T)dT. For y > 0 we can w r i t e then t 6 6 v t ( t , y ) = fo v t ( t - T , y ) f ( T ) d r s i n c e v ( 0 , y ) = 0 (use (8.10) w i t h a minus t 6 s i g n ) ; s i m i l a r l y v t t ( t , y ) = f0 vtt(t-T,y)f(T)dT and t h e r e f o r e ( 8 . 4 ) i s sati s f i e d f o r y > 0 ( i . e . vtt = (Av ) /A. Clearly v ( t , y ) = 0 f o r t 5 0 by conY Y s t r u c t i o n and v ( t , O ) = 10" & ( t - r ) f ( . r ) d T= f ( t ) by a l i m i t argument as y + 0. Y Now t h e problem i s t o determine g6 from ( a ) , given f and 9, and t h i s may not have a unique s o l u t i o n ( s e e [Af1,2] f o r a discussion of this p o i n t ) . For example i f t ( s ) = (Ca)(s), t: denoting the Laplace transform, then $ ( s ) =
= 6 ( t ) consider v ( t , y ) = So
A
A
A
g 6 ( s ) f ( s ) and i f f ( s ) vanishes in an unpleasant manner t h e r e will perhaps not be a unique determination of G6(s). In some instances however g can be recovered in t h e form p 6 ( t ) = C-'[<(s)/?(s)]. Roughly one wants a l l frequencies t o be e x c i t e d by f f o r the recovery of 9,.
8.8. Let us consider now t h e s i t u a t i o n of Remarks 1.6.1 and 1.6.4 and 92.11 where A E C2. = Q ( y ) t h e equation ( 8 . 6 ) becomes Setting A-'(fi) YY f o r $ = A% ( m ) jyy+ k2$ = Q ( y $ ( c f . ( 1 . 6 . 3 ) ) a n d t h e condition v ( k , O ) Y = 1 becomes ( 6 ) $ ' ( k , O ) - hl$(k,O) = h 2 where h l = - Z - ' ( O ) Z l ( O ) and h 2 = Z-l(O) ( Z = A-') a r e known i n terms o f P,LI evaluated a t 0. This i s a stan-
RERARK
dard type of Schrodinger equation w i t h potential Q ( y ) and conditions o f t h e type ( 6 ) can be handled by dealing w i t h "eigenfunctions" IP = 9 x Q , h as in g51.5 and 1 . 4 where I p ( k , O ) = 1 and 9 ' ( k , O ) = h l . W e w r i t e again @(?k,y) f o r t h e J o s t s o l u t i o n s of ( m ) (renormalized by @ ( t k , y ) % exp(?iky) as y +
m
f o r convenience here in r e f e r r i n a t o o t h e r papers) and one can show t h a t j ( k , y ) = h2@(-k,y)/[@'(-k,0) - h l @ ( - k , O ) ] ( c f . (1.12.10)). The function @ ( - k ) = @'(-k,O) - hl@(-k,O) has nice p r o p e r t i e s , analogous t o kc(k) and examples show t h a t @ ( - k ) = 0 a t k = 0 ( s i m i l a r t o k c ( k ) ) . In [Af1,2] t h i s i s dismissed physically a s representing a s t a t i c s i t u a t i o n which does not a r i s e i n t h e dynamical problem. This i s c o r r e c t b u t t h e pole of ? ( k , y ) a t k = 0 cannot be so l i g h t l y dismissed i n t h e subsequent mathematical a n a l y s i s . One
3
can however handle this by working w i t h (k,y) and eventually a r r i v i n g a t Y an expression f o r J / ( t , y ) analogous t o the corresponding r e s u l t obtained from (8.10). T h u s we obtain f i r s t ( c f . [C40,66; S e l l )
f o r t > 0, y 2 0 or t
0, y > 0.
Now one shows e a s i l y ( c f . (1.12.10) and
preceeding equations) t h a t cp(k,y) = [@(k)@(-k,y) - @(-k)@(k,y)]/(2ik) and consequently
282
ROBERT CARROLL
An a n a l y s i s s i m i l a r t o t h a t o f Theorem 1.6.8 g i v e s t h e s p e c t r a l f u n c t i o n f o r
2
t h e $ e i g e n f u n c t i o n problem ( = ) i n t h e f o r m (+) dw(k) = 2k dk/.rrlo(k)I2 = c ( k ) d k ( c f . a l s o [Af1,2]).
Now an i n t e g r a t i o n i n (8.20) i n y i s permissable
and we o b t a i n an analogue o f (8.10) i n t h e form m
(8.21)
J,(t,y)
-
= $,(t)
Consequently i f v(t,O) ( r e c a l l h2 = Z - l ( O ) )
h2
io
-
b(k,y)
= Z(O)$(t,O)
lI[Sinkt/kldv(k)
= g ( t ) we have i n accord w i t h [Af1,2]
g ( t ) = -1; [ S i n k t / k ] d w ( k ) .
CHEBREM 8-9- The s p e c t r a l d e n s i t y $ ( k )
2 2 2k /.rrl@(k)l f o r t h e s p e c i a l prob-
=
lem based on ( = ) can be o b t a i n e d f r o m t h e r e a d o u t g ( t ) by t h e f o r m u l a w(k) = -(2k/1~)$ g(t)Sinktdt.
A uniqueness theorem f o r o u r G-L e q u a t i o n i n Theorem 8.4 can be modeled on a procedure i n [ C e l l . W(y,x)
=
One must show t h a t t h e homogeneous e q u a t i o n
{1 W(y,q)Tn(n,x)dq
has o n l y a t r i v i a l s o l u t i o n .
Multiply
:j :j
(8.22)
n
(AA)
n
(from
by W(y,x) and i n t e g r a t e i n x t o o b t a i n , u s i n g ( * )
W(y,~)W(y,x)G(n,x)dqdx
Hence f o r any y t h e e n t i r e f u n c t i o n
=
;1
d w ( k ) [ r W ( y , ~ ) S i n k x d x ] ~= 0 0
W(y,x)Sinkxdx
( s i n c e dw > 0 ) and one can conclude t h a t W(y,x) y.
Note t h a t T
SinkxSinkqdu + ~ ( Q - x )= -G(n,x)
(8.12)) can be w r i t t e n as (*) T (n,x) = -/; t ~(n-x).
(AA)
o f k i s zero f o r k r e a l
= 0 for 0
5 x 5 y f o r each
Hence we have
CHE0Rm 8.10-
S o l u t i o n s K(y,x) o f t h e G-L e q u a t i o n i n Theorem 8.4 a r e unique.
We w i l l s k e t c h now a few r e s u l t s o f s t a b i l i t y ( f o r d e t a i l s see [C70]).
Such
i n f o r m a t i o n i s c l e a r l y o f i n t e r e s t from a p h y s i c a l p o i n t o f view and n a t u r a l l y t h e s t a b i l i t y q u e s t i o n a r i s e s i n any numerical c a l c u l a t i o n . [Stf4,5]
Symes i n
shows t h a t t h e Chudov system r e s u l t i n g f r o m t h e n o n l i n e a r G-L equa-
t i o n possesses s t a b l e s o l u t i o n s (see a l s o [ S t f 3 ] f o r a d i f f e r e n t s t a b i l i t y analysis).
Gerver i n [Gil,2]
and Bamberger-Chavent-Lailly i n [Bol,2]
were
a b l e t o whow t h a t an o p t i m i z a t i o n f o r m u l a t i o n l e a d s t o s t a b l e s o l u t i o n s f o r a w i d e r c l a s s o f impedance f u n c t i o n s .
Here we w i l l show t h a t s t a b i l i t y r e -
s u l t s can a l s o be o b t a i n e d u s i n g t h e l i n e a r G-L equation.
Our r e s u l t s a l s o
g i v e some i d e a o f how t h e s e n s i t i v i t y i s dependent on y and show t h a t small
REFLECTION DATA
283
p e r t u r b a t i o n s i n data g l e a d t o small v a r i a t i o n s i n A.
Since most numerical
schemes i n v o l v e a p p r o x i m a t i o n o f t h e i n t e g r a l s i n t h e G-L method by f i n i t e sums such s t a b i l i t y i s r e f l e c t e d i n good numerical schemes and some impres-
s i v e g r a p h i c a l d i s p l a y s have i n f a c t been o b t a i n e d ( c f . [Se2,3]).
Since i t
w i l l be convenient a t v a r i o u s p l a c e s i n t h e a n a l y s i s t o f o l l o w t o have A.
A(0)
= 1 = (pu)'(O)
=
we remark e x p l i c i t l y t h a t t h i s can be achieved by a
s c a l e change 5 = ax a t t h e b e g i n n i n g w i t h u = A., change t o have been made and t h a t A.
= 1.
Thus assume such a s c a l e
Another o b s e r v a t i o n t h a t i s help-
f u l here i s t o n o t e t h a t t h e response G ( t ) f o r A(y) = 1 can be w r i t t e n as G ( t ) = Y ( t ) ( Y = 1 f o r t > 0 and Y = 0 f o r t < 0
-
c f . Example 8.2).
t h i s e v e n t t h e s o l u t i o n o f ( 8 . 4 ) w i t h (8.7) i s v ( t , y )
In
One can
= Y(t-y).
t h i n k o f t h i s s o l u t i o n v = Y ( t - y ) as an " i n c i d e n t " o u t g o i n g wave vi which
w i l l i n f a c t be p r e s e n t f o r a l l problems ( 8 . 4 ) when A(0) = 1 ( c f . (8.23)); t h e c o r r e s p o n d i n g 'lint-ident" response d a t a G ( t ) = Y ( t ) w i l l be denoted by
+ Gi(t)
Thus l e t us t h i n k a g a i n o f decomposing G ( t ) = G r ( t )
Gi(t).
where
G r ( t ) r e f e r s t o a r e f l e c t e d displacement component a t y = 0 ( o r r e f l e c t i o n d a t a ) and t h i s corresponds t o w r i t i n g ( t > 0 ) (8.23)
1;
G(t) =
( c f . a l s o [Bbgl;
[Sinkt/k][du
Bol; S t y l ] ) .
b e f o r e ( c f . (8.13);
=
(2/7i)dk] = 1
+
:1
[Sinkt/k]do
+ Gr
Gi
=
T h i s l e a d s t o an e x p r e s s i o n f o r T(y,x)
t h u s T(y,x)
Consequently f o r x 5 y o r x
+
= ; !$
-
[[Sink(y+x)/k]
as
[Sink(y-x)/k]]du(k).
y respectively
4[G (y+x) - Gr(y-x)]
r
o r = -%[Gr(y+x)
+ Gr(x-y)l
.
-
F o r m a l l y t h e n we can w r i t e a g a i n T (y,x) = %[G;(y+x) Y a l s o t h a t G h ( t ) = J t Cosktdo(k) i s an even f u n c t i o n ) . i s n o t u n r e a l i s t i c t o suppose t h a t G I
E
It
Co o r GA piecewise continuous ( c f .
[ G o l l ) , b u t i n f a c t one can develop s t a b i l i t y e s t i m a t e s based on weaker L t y p e measurements o f t h e a p p r o x i m a t i o n t o Gh.
Using (8.23)-(8.24)
1
we ob-
t a i n Theorem 8.5 and we w i l l use t h e G-L e q u a t i o n i n t h e f o r m (8.13) f o r stability.
Thus suppose one i s g i v e n approximate d a t a G
*
0 w i t h corresponding k e r n e l K (y,x) s a t i s f y i n g (8.13)
*
-
Gr(t)
GF
Co (so
E
= 1
Gr(t)
-
A(y).
K(y,y))
and assume data G; € ( a )
E Co).
*
1 and Gr' E Lloc
We w r i t e AK(y,x)
(so
= K*(y,x)
*
E'
-
*
= 1
etc. 1
E Lloc)
K(y,x)
*
+ Gr f o r t > Set & ( t )= with G
and
r-b
( r e c a l l A '(y)
so measurement o f AK(y,x) e s s e n t i a l l y determines AA = A*(y)
From (8.13) and (8.13)* we o b t a i n ( x < y )
-
ROBERT CARROLL
284
Now it will be useful to make explicit the nature of (8.13) as a Fredholm integral equation (cf. [Cjl] for integral equations). Thus think of y as a parameter and write (x 5 y) (8.26)
C(x,s)
=
%[Gb(x+s)
h
- G~(~s-x~)l; 6Yf(x)
1
Y
=
C(x,s)f(s)ds
n
A
T(y,x)
=
%[Gr(y-x)-Gr(y+x)];
AT
=
%[E(y-x)-E(y+x)];
A6
= %[E'(S+X)-E'(
Then one can write (8.13) and (8.25) in the respective forms
?;
(8.27)
[I-& ]K
(8.28)
[6 - ty]f(x)
*
Y
Y
=
[I-C*]*K = Y
A?
f
(C; - ty)K
=
An alternative form of (8.28-) would be [I - ty]AK = AT + [6; - Cy]K* but it seems more appropriate to introduce estimates in (8.28). We recall here that the existence o f a continuous K(y,x) satisfying (8.13) or (8.27) (and * of a corresponding K (y,x)) is assured by independent considerations (and uniqueness is known). The integral equation (8.27) can be thought of in various spaces depending on the nature of 6(x,s). Thus for C(x,s) E Ltoc one has a standard theory A for 6 in L2 (with T(y,-) considered in L2 ). Similarly for 6(x,s) E Co Y (as can be posited) we have a classical theory for ey in Co (with ?(y,-) E Co). In either theory there is a Fredholm alternative (cf. [Cjl; Rbl]) etc. so we can say that x = 1 is not an eigenvalue of 6 and for any y < m y Y (I - ~ ~ 1 -exists l as an operator in L2 or CO (similarly (1 - c;)-' exists). Given &(x,s) as in (8.26) with Gb E L1 we see also that tT f will be defined Y for f E Lm so EY: Lm + Lm. Let us think of 6 working in Co generally Y (with Gb E C o ) and we will see however that stability estimates can be ob1 estimates o f the approximation of G;' to Gb. In this restained for Lloc pect let us note that if IIfllm = suplf(s)lfor 0 5 s (y then 3Y Y (8.29) l[Ci - Cylf(x)I 5 IIfllm,Y IA6(xys)lds 5 411 fll
m3Y
~[IE 0
I
( I S- X I ) 1 + I E ( S+X ) I ]dS 5 11 f11
''1
yy
0
I
E
I
( 5 ) (dS
285
REFLECTION DATA
< IIfllm I I E ~ I I 1 which means f o r o 5 x 5 y. Consequently II[C* - C ~ I ~ I I * Y COSY*Y Y L (2Y)' t h a t IIAe II = IIC - E II < IIE'II 1 where Ile: - C II r e f e r s t o t h e o p e r a t o r Yo Y Y L (2Y) Y Y Now i n o r d e r t o e s t i m a t e AK i n (8.28) l e t us g i v e an norm i n C on [O,y]. -1 and e s t i m a t e f o r (I- e*)-l, which we know t o e x i s t , i n terms o f (I- Cy) * Y Thus d e n o t i n g by L(E) t h e space o f continuous l i n e a r . e s t i m a t e s on e Y - eY o p e r a t o r s i n a Banach space E we have ( c f . [Ogl])
I f E E L(E) w i t h (I- C ) - '
CEllMlA 8.11. then ( I
-
C*)-l
e x i s t s and II(1
-
L ( E ) and II&*
E
C*)-'Il
<
The p r o o f i s s t r a i g h t f o r w a r d upon w r i t i n g I
(e* - e ) ]
where II (I- E)-'(i?*
- e)ll
-
- e*
= ( I
- e)[I -
",Y
-
g)-lll-l
ll~*-~~lll(I-~)~lll].
-
(I
C)-'
The e s t i m a t e comes from e s t i m a t i n g rz
and, s e t t i n g I K ( y , x ) l 5 My w i t h I I ( 1 - t )-'I1 Y IIAK(y, *)I1
(8.30)
Ell < ll(1
C)-'Il/[l
Now i n (8.28) l e t us w r i t e ( t ) llAT(y,-)llm,y
t h e a s s o c i a t e d Neumann s e r i e s . < ll~(-)ll ",2Y
< 1.
-
-
II(1
< NY[ II E U
-
"12Y
+ M IIE'II 1 Y
L (2Y)
]/[1
= Nyy one o b t a i n s
-
NyIIACyII]
*
EHEOREm 8-12, F o r y f i x e d l e t approximate d a t a Gr s a t i s f y e.g. IIE'II 1 L (2Y) < +N-' = II ( I - C ) - l I l - l / Z . < 2N [ I l ~ l l + M llE111L1(2y)] Then llAK(y,-)ll ".Y - Y ",2Y Y - Y Y where M = sup1 K(y, - ) I on C0,Yl.
Y T h i s f o l l o w s i m m e d i a t e l y from (8.30) i n n o t i n g t h a t N IIAC II 5 N IIE'II 1 Y Y1 Y L (2Y) We n o t e a l s o t h a t a Co e s t i m a t e on E ' i m p l i e s an L e s t i m a t e . Furc 1/2. t h e r f r o m K(y,y) = 1 IAAl/I[A4
+ A*'ll.
-
A-'(y)
we have lAK(y,y)I
=
\A-'(Y) -
A*-4(~)l =
Hence f o r IAAI 2 A say one has lAAl 5 I A K l $ ( l + f i )
which g i v e s a rough comparison o f IAAI and lAKI.
RZmARK 8.13,
A d i s c r e t e v e r s i o n o f t h i s s t a b i l i t y r e s u l t f o r numerical s o l u -
t i o n s o f t h e G-L e q u a t i o n i s e s t a b l i s h e d i n [SeZ]. compare t h e impedance p r o f i l e s A and A
*
*
Graphical d i s p l a y s t h e r e
corresponding t o r e f l e c t i o n data
Gr and Gr and show e x c e l l e n t s e n s i t i v i t y o f t h i s method ( c f . a l s o [Stm1,2]).
REmARK 8-14, L e t us mention h e r e some r e c e n t work o f Levy, Yagle, B r u c k s t e i n , e t . a l . i n [Lx4-6;
B b s l ] d e a l i n g w i t h s e i s m i c i n v e r s e problems (and o t h e r
problems) by " l a y e r s t r i p p i n g " methods which l e a d t o f a s t numerical procedures.
One t a k e s v as displacement and P as p r e s s u r e so t h a t t h e b a s i c equa-
L e t y be t r a v e l t i m e and A be impedance -1 Then one o b t a i n s a system w = -A Pt as b e f o r e and s e t w = vt ( v e l o c i t y ) . Y W r i t e now = A-'P, @ = A%J, p = '(M), and q = +(*-@). w i t h P = -Aw Y t' Then w i t h " r e f l e c t i v i t y " (A) r = %D l o g A ( y ) one has py + pt = - r q and q Y Y qt = - r p . One notes h e r e t h e analogy t o a l o s s l e s s t r a n s m i s s i o n l i n e probt i o n i s pvtt = -Px w i t h P =
-UV
*
X'
286
ROBERT CARROLL
lem where =
(L/C)
i s e.a.
=
Z-%
, and y
=
and
@ =
2% w i t h
i = c u r r e n t , V = v o l t a g e , Z = impedance
:J (LC) dS a g a i n r e p r e s e n t s a t r a v e l t i m e .
The i n p u t now
P(0,t) = P o 6 ( t ) and one reads say w ( 0 , t ) = w0[6(t) + 2Ej'(t)Y(t)] w i t h
Po/wo = A(0) = 1 ( t h u s t a k e wo = 1, Po = 1, and G ' = 6 ( t ) + 2?j(t)Y(t) connect t h i s w i t h (8.4)-(8.5) p(0,t)
and q ( 0 , t )
and ( 8 . 7 ) ) .
t h e n have t h e f o r m p ( 0 , t )
The downgoing and upgoing waves =
6 ( t ) + :(t)Y(t);
q(0,t) =
F u r t h e r w r i t e now p ( y , t ) = 6 ( y - t ) + v ( y , t ) Y ( t - y )
-<(t)Y(t). CJ
q(y,t)Y(t-y)
to
and q ( y , t )
=
t o o b t a i n t h e s o - c a l l e d f a s t Cholesky r e l a t i o n s ( o r downward
c o n t i nuati o n recursions ) (8.31)
v
py +
Ft
=
-r(y)%
cy - Tt
When t h e measured waves p ( O , t )
= <(t)
= - r ( y ) E r ( x ) = 2y(x,x)
and V ( 0 , t )
=
-<(t)a r e
used as i n i t i a l
d a t a i n (8.31) one o b t a i n s , upon d i s c r e t i z a t i o n , a r a p i d " l a y e r s t r i p p i n g " I f F o u r i e r t r a n s f o r m s i n t a r e taken i n say (8.31)
numerical procedure.
one has a frequency domain c o u n t e r p a r t r e f e r r e d t o as t h e Shur r e c u r s i o n s . There i s a l s o a v a r i a t i o n o f (8.31) a r i s i n g i n l i n e a r e s t i m a t i o n t h e o r y (Krein-Levinson r e c u r s i o n s ) b u t t h e procedure i s somewhat d i f f e r e n t ( c f . Theorem 4.8).
I f one c o n s i d e r s an i m p u l s i v e pressure wave o b l i q u e l y i n c i -
dent t o t h e medium t h e l a y e r s t r i p p i n g technique can a l s o be used and d a t a from two i n c i d e n t angles a l l o w s one t o r e c o v e r p and 1-1 as f u n c t i o n s o f x ( c f . [C68,69;
REmARK 8.15. [C68,69,40;
891-4;
Ne4; Sel,4,5;
Stf2-6,8-101)
We mention b r i e f l y a l s o some r e s u l t s o f t h e a u t h o r and Santosa S e l l u s i n g t r a n s m u t a t i o n methods f o r s o l v i n g some t h r e e dimen-
s i o n a l i n v e r s e problems based on a f o r m u l a t i o n o f [Bgl-4]
(whose r e s u l t s i n
t h e form o f n o n l i n e a r i n t e g r a l equations seemed i n t r a c t a b l e ) .
Our r e s u l t s
a r e a l s o a b i t u n r e a l i s t i c f o r numerical computation b u t t h e y have a number o f i n t e r e s t i n g features.
F i r s t l e t us n o t e ( c f . Remark 8.7) t h a t i f i n p u t
i n t h e one dimensional problem ( 8 . 4 ) - ( 8 . 5 ) f ( t ) t h e n (**) v ( t , y ) = J,,t v 6 ( t - r , y ) f ( T ) d T wave t o a d e l t a f u n c t i o n i n p u t .
i s taken i n t h e form v (t,O) = where v 6 i s t h e impulseY response t
6
Then G ( t ) = Jo G ( t - T ) f ( T ) d T
and i f t h e i n -
p u t f does n o t e x c i t e a l l f r e q u e n c i e s t h e r e c o v e r y o f t h e impulse response 6 G ( t ) ( o u r G ( t ) p r e v i o u s l y ) from G ( t ) may be i m p o s s i b l e .
s i o n a l problem o f [Bg1-4] h a l f space x1 = x l 0.
Now t h e 3 dimeni s a s o r t o f Lamb wave problem f o r a s t r a t i f i e d
The equations f o r displacements ui,
w i t h impulsive
stresses, a r e ( P = d e n s i t y and ( A , u) r e p r e s e n t t h e Lam6 m o d u l i ) (8.32)
REFLECTION DATA
6(x2,x3)6(t)
a t x = 0 and ui(t,x)
where
T~~
= 0.
One d e f i n e s new q u a n t i t i e s vi(t,x)
uldx2dx3
=
w i t h t r a v e l times yl(x)
=
It
=
287
= gi(t,x2,x3)
I I uidx2dx3
(p/A+Zu)'dg
= readout a t x
and w(t,x)
and y,(x)
=
I I x2
(p/u)'dE.
= :/
I t i s enough t o c o n s i d e r two vi equations i n t h e form = AT1(A.v
(8.33)
Vj,tt
where A1 =
[P(A+~U)]',
the derivative i n y (8.34)
j
j
j
A2 =
1
yj
( j = 1,2);
v.(t,O) J
and v . .(t,O)
(pu)',
JYJ
= hj(t)
( v ~ ,denotes ~
= 6(t)/Aj(0)
The w e q u a t i o n i s
here).
W t t = (A,Wy
)
j,yj
-
)y /A1 1
B(Y1)V2(t9Y2)
-
D(Y1)v2,y2(t.Y2)
where D i s known b u t n o t B and one knows (+) w,(t,O)
=
A(0)h2(t)/A,(0)
with
= j(t). The vi problems a r e t h e same as b e f o r e and one f i n d s A.(y.) J J ( j = 1,2) w i t h dy2/dy1 = A1(y,)/A2(y2) d e t e r m i n i n g y2 = y2(y1). A l s o f r o m t h e G-L e q u a t i o n kerne s K.(y.,s) e t c . one c o n s t r u c t s v Q (y ) e t c . which ? J ~j l e a d t o v . e x p l i c i t l y . T h i s a l l o w s one t o determine D(y,) above b u t B(yl)
w(t,O)
J2
2
(P/A1)([A1 - 2A21/P), i s unknown. To s o l v e (8.34) one t h i n k s f i r s t o f w1 h ( t , O ) above as g e n e r a t ng a s o l u t i o n w t o t h e homogeneous e q u a t i o n (which
=
i s t h e v1 e q u a t i o n ) and t h e n from (**) t
(8.35)
w h ( t 'Y1) = A(0)
h Hence w ( t , O )
j
h2(T)vl (t-T,Yl 1d.r
0
= h(0)[hl
*
h 2 ) ( t ) and we w r i t e w = wh t wi where wi
t h e inhomogeneous w e q u a t i o n (8.34) w i t h w;'(t,O) x(0)(hl
*
(8.36)
-
= j(t)
-
A f t e r some c a l c u l a t i o n s ( u s i n g t h e p r i n c i p l e o f no i n -
h2)(t).
coming waves f r o m (F(X) i s known
= 0 and wi(tyO)
satisfies
m)
one a r r i v e s a t t h e f o l l o w i n g i n t e g r a l e q u a t i o n f o r B
n o t e h i s used as an eigenparameter here a t t i m e s )
F(A) =
jOm f(?)*!(y)B(y)Aqdy"
= (Dx(y)/c 4 (-A) and A (y)d? = A p ( y ) d y determines where e.g. 'I'A(y) 4
4
4
7 = y(y)
o r y = y ( y ) . Here A ?I A f o r t h e v1 o r v2 e q u a t i o n s . T h i s e q u a t i o n (8.36) can a c t u a l l y be handled q u i t e e f f e c t i v e l y by t r a n s m u t a t i o n methods and mo4 t i v a t e d a c e r t a i n amount o f work on i n t e g r a l t r a n s f o r m s w i t h k e r n e l s U,(y) (cf.
[C34,40]).
(8.37)
Indeed, t a k i n g F o u r i e r t r a n s f o r m s i n (8.36) we g e t
Inm
(BA,,)(y) j~e-i"t~~(~)*!(y)dAdy W " D2 -+ Q such From general t r a n s m u t a t i o n t h e o r y t h e r e i s a t r a n s m u t a t i o n f(t) =
B(y)2(y,t)dy = (1/21~)
9:
288
that
ROBERT CARROLL
% [2exp(ihx)] Q
-4
6 (7,~)=
Q
(
= f(y). (1-
E0 has t h e form ( = ) 9(y,x) - = k e r n e l (y",'x) (y)g(x-?) + = ) w i t h zQ(Y,
Also
C o s h x , q ~ ~ ( y)w) = At5(0)A4
x) = 0 f o r x
<
7
(anticausality).
Q
Thus e.g.
(w
w
4
m
*f(y")
(8.38)
=
2 izQ(?,x)eiAxdx
A
Q P = *h(?)qh(y)
From (8.37) FG(y,.) A
Usin
(m)
J;("
B(y)E(y,T)dy
*
-)I
F[2FQ(;,
(recall y =
G(Y,t) = ~ A ~ ( Y ) [ ? Q ( ? , * )
(8.39)
=
;p(Y,
~ ( 7 ) so)
i t follows that
- ) l ( t )= 4Ap(Y)
i:
one a r r i v e s a t a V o l t e r r a t y p e i n t e g r a l e q u a t i o n
^Bp(.Y,s)FQ(?.t-S)dS =
?'((r)
where T ( T ) i s a known monotone f u n c t i o n o f
T.
B(T) +
T h i s can
be s o l v e d i n v a r i o u s c o n t e x t s by v a r i a t i o n o f V o l t e r r a techniques and y i e l d s a unique s o l u t i o n 6. sess about A1,
Then g i v e n B(yl),
p(y,)
can be determined, and sub-
w i l l be c a l c u l a b l e from t h e i n f o r m a t i o n we a l r e a d y pos-
sequently P,P,A(x)
A2, y 2 ( y 1 ) , e t c .
REmARK 8-16, R e f e r r i n g back t o t h e one dimensional problem, f r o m (8.10) one has v t ( t , y )
*
= 6(y,t) = A - l ( y ) y ( t , y ) = (qA(y),Cos?,t)w 4
with kernel 6-l =
+ L ( t , y ) . Hence G ' ( t ) = vt(t,O) = 6 ( t ) + L(t,O) ( r e T h i s i s exc a l l A(0) = 1 ) and one can w r i t e $(?,) = (2/11)[1 t FCL(t,O)].
y ( t , y ) = A'(y)&(t-y)
a c t l y t h e same as t h e r e s u l t i n Theorem 1.5.5. 9, e;Ee)PH&3ICAI: INVER5E 4RP)BLEW (CRAEMI$sle)N DAIIA).
We c o n t i n u e t h e f o r -
) /A and vt(O,y) = 6(y) and we Y Y c o n s i d e r here some problems i n v o l v i n g r e c o v e r y o f A v i a " t r a n s m i s s i o n " data
m u l a t i o n ( 8 . 4 ) w i t h (8.7) ( c f . [C71,72,73,78]).
( t h u s vtt
= (Av
Thus we c o n s i d e r t h e problem o f r e c o n s t r u c t i n g t h e
c o e f f i c i e n t A(y) i n t h e PDE (8.4),
viz. A(y)vtt
> 0 ) from t h e measured response v ( t , y )
at y =
7
(A(y)v ) ( 0 z y < t Y Y ( t h i s corresponds t o x = ?
=
03,
say i n ( 8 . 1 ) ) due t o an i m p u l s i v e e x c i t a t i o n p l a c e d a t y = 0.
I t i s assumed
and A ( y ) = A- f o r y ~y ( i . e . x 2 ; ) w i t h again t h a t 0 < a 5 A(y) < 6 < 1 A E C . T h i s problem i s q u i t e d i f f e r e n t from those c o n s i d e r e d i n r e f l e c t i o n seismology, where t h e measurements a r e made a t y = 0. e.g.
The problem a r i s e s
as a subproblem i n an i n v e r s e problem f o r t h e r e c o n s t r u c t i o n of a
s p h e r i c a l l y symmetric s c a t t e r e r i n t h e t i m e domain.
Another a p p l i c a t i o n i n -
v o l v e s s t u d y i n g m a t e r i a l p r o p e r t i e s o f a l a y e r e d medium i n a water b a t h experiment; t h i s c o u l d a r i s e e.g. t i v e evaluations. (8.7), (9.1)
i n bio-medical tomography and non-destruc-
The boundary c o n d i t i o n s corresponding t o t h e problem a r e
v i z . vt(O,y) = &(y) and t h e r e a d o u t i s V(t,y)
= h(t)
TRANSMISS ION DATA
289
7
The condition A(y) = Am f o r y can a l s o be regarded as a r a d i a t i o n bounda r y condition a t y = y". Referring t o (8.10) we can w r i t e (9.2)
so t h a t
H(t)
v(y,t)
=
q XQ( y " ) G / A =
v!(y")
(9.3)
\
=
( ~ Q, ( ? ) , [ S i n x t / x ] ) ~
IT)/: H(t)SinAtdt and from (8.11)
m
lo m
G(t)Sinxtdt =
H(t)Sinxtdt
0
The function q:(y) is an even e n t i r e function of exponential type ? and t h e expression of G in terms of H in ( 9 . 3 ) can be regarded in t h e context of deconvolution ( c f . [RgZ; S t f l l ] ) . Indeed by Paley-Wiener ideas (a i s even)
A
(where
N
denotes t h e Fourier transform).
be odd extensions of G and H then
EHEOREM 9-1, The readouts G a t y
;(x)EA = 0 and
rJ
Similarly i f we take G and H t o = K" and
H at y
=
y" s a t i s f y
@
*
N
N
G = H.
EXNIPLE 9-2, We note f o r A = 1 as i n Example 8.2 we have v = Y(t-y) ( y , t >
0 ) , G ( t ) = Y ( t ) , and H ( t ) = Y ( t - ? ) = 6(t-?) * Y ( t ) . Since 6 ( t + ? ) * 6 ( t - y ) = 6 ( t ) t h e deconvolution here i s expressed by G ( t ) = 6 ( t + y ) * H ( t ) = H(t+y).
However working from Theorem 9.1 i s not too productive. rv
0 convenience) Ip,(l)
ble can w r i t e ( t a k -
a = + [ 6 ( t - 1 ) + s(-t-1)1, E = Y ( t ) - Y(-t), H = Y(t-1) - Y(-t-l), and in f a c t @ * g = F. However a natural s p l i t t i n g involving 6 ( t - 1 ) * Y ( t ) = Y(t-1) i s not v i s i b l e . Indeed cp * Y ( t ) = % [ Y ( t - 1 ) + Y ( t + l ) ] s o @ * G t H while t o deconvolute cp * r = Y(t-1) one obtains (using a Z-transform method a s i n [RgZ]) r = 2 C(-l)kt'Y(t-2k) ( k = 1 k = m ) which is a s t e p function of no apparent physical i n t e r e s t . T h u s t h e need t o s p l i t G and H simultaneously so t h a t G and H a r e involved d i r e c t l y presents some d i f f i c u l t i e s and we will proceed d i f f e r e n t l y below. ing y = 1 f o r -.,
= COSX,
-f
REIRA?W 9-3. Again taking y " = 1 f o r convenience l e t us w r i t e out t h e convolu-
t i o n in Theorem 9.1 as follows (a i s even w i t h supp @ c [-1,1], and r a r e odd), ';ict) = kjjl @(T)g(t-T)dT = @(c)i[c(t-c) + E(t+c)]dg and t h i s i s seen t o represent a c l a s s i c a l type domain of dependence s i t u a t i o n f o r the sideways Cauchy problem. The value of K ( t ) depends only on C ( c ) i n the region t-1 5 5 5 t + l and evidently one may remove the ?J in H and G f o r t > 1 .
/o'
N
-
Note H ( t ) = 0 f o r 0 5 t < 1 . One can a l s o derive t h i s s o r t of formula d i r e c t l y by working w i t h t h e sideways Cauchy problem and constructing appropr i a t e Riemann functions as before.
290
ROBERT CARROLL
L e t us use t h e t r a n s m u t a t i o n machine t o s p l i t up e v e r y t h i n g as we go along. R e c a l l t h a t ;(A)
1 / 2 n l c Q ( A ) 1 2 i s even and v pQ , ( y ) i s even i n A.
=
Also f o r
c a l c u l a t i o n i t w i l l be convenient t o remove t h e l / x f a c t o r i n (9.2). (9.5)
H ' ( t ) = (vf(y),CosAt)u
=
Thus
jOm
+f(y)eixtdx
F u r t h e r G ( h ) v f ( y ) = (1/21~)[*:(y) + *Qx(y)] where Qx(y) Q = @Qx ( y ) / c q ( - x ) i s ana l y t i c i n t h e upper h a l f p l a n e e t c . Hence s e t
1
1
m
(9.6)
Hl(t)
= (1/4n)
m
dQ,(7)eixtdA
= (1/4n)
m
*:(F)e-ihtdx
m
and i t f o l l o w s t h a t H ' ( t ) = H l ( t )
+ H1(-t).
Again we remark ( c f . Example
8.2) t h a t i n u s i n g t h e F o u r i e r t h e o r y , o r e q u i v a l e n t l y i n r e p r e s e n t i n g H by ( 9 . 2 ) and H ' by (9.5) etc.,
one a u t o m a t i c a l l y i n t r o d u c e s v a r i o u s odd and
even e x t e n s i o n s o f t h e q u a n t i t i e s G, H, e t c . ( c f . a l s o (8.11)). t h a t by formal c o n t o u r i n t e g r a l arguments Hl(t) deed by now standard arguments and p r o p e r t i e s
4
so *,(y")exp(-iAt)
Q
cexp(iA(?-t))
h a l f p l a n e Imx > 0 so f o r (9.6) i s zero.
Thus H l ( t )
7>
and f o r
7 as
-7 because
7 (and
H1(-t) i s
o f t h e r e p r e s e n t a t i o n (9.5) - i t Now from (9.6) we can w r i t e
? large
enough so t h a t
p
and 1-1 a r e
2 2 (as i n d i c a t e d above) and t h u s A(y) = Am (known) f o r y 2 But ax(y) Q w i s t h e J o s t s o l u t i o n @,(y) Q A?exp(ihy) as y + m Q
i n d i c a t e d we must have t h e n a,"(?) = A?exp(ixY).
CHEORETR 9-4, Under t h e hypotheses i n d i c a t e d , f o r (9.8)
In-
c e x p ( i h y ) f o r Imh > 0
on a l a r g e s e m i c i r c u l a r c o n t o u r i n t h e
F u r t h e r l e t us t a k e o u r r e a d o u t p o i n t
(y"= y ( z ) ) .
'L
t t h i s vanishes s t r o n g l y and t h e i n t e g r a l i n
c o n t r i b u t e s n o t h i n g t o H i f o r t > 0).
constant f o r x
0 i n (9.6) f o r t < y.
=
*:(?)
provides t h e readout H i f o r t >
simply tagging along f o r t <
We n o t e
l / c (-A)
Q
Note here t h a t H l ( t )
=
+
U
suitably large v
m
2Ame- i h y jvHl(t)eihtdt
y"
Hence
=
2Ame 4 - i h y 4H 1 ( ~ )
w i l l u s u a l l y have a d e l t a f u n c t i o n component A 2 6 ( t - ? )
( c f . Example 8.2) and t h e i n t e g r a t i o n symbol i n (9.8) i s i n t e n d e d t o t a k e t h i s i n t o account.
We see t h a t t h e l o c a t i o n o f
f a c t o r i n t o t h e readout ( f o r ? s u i t a b l e r e a l one o b t a i n s
t8R0LLARU 9.5.
large).
7 only
i n t r o d u c e s a phase
Since
FQ (A)= c Q (-A) for
Under t h e hypotheses above i t f o l l o w s t h a t
;(A) =
T R A N S M I S S I O N DATA
291
" 2 l / 2 a l c Q ( h ) / 2 = ( 2 / 1 ~ ) A ~ l H ~ ( h from )l which one can r e c o v e r A by t h e methods
o f 58. R€llIIIARK 9-6, T h i s f o r m u l a seems s t r i k i n g because i t d i r e c t l y e x h i b i t s t h e s p e c t r a l measure i n terms o f t h e F o u r i e r t r a n s f o r m o f an a u t o c o r r e l a t i o n type function X ( t ) =
rf Hl(ttT)Hl(T)dT.
As i n d i c a t e d e a r l i e r t h e r e i s an
i n t i m a t e and profound c o n n e c t i o n between v i b r a t i n g s t r i n g problems and problems o f e x t r a p o l a t i o n and i n t e r p o l a t i o n f o r s t a t i o n a r y t i m e s e r i e s and t h e r e s u l t s above f i t i n t o t h a t c o n t e x t v e r y n e a t l y .
I n f a c t t h e y seem t o p r o -
v i d e a new l i n k d i r e c t l y connected w i t h t h e geophysical problem and thus perhaps w i l l l e a d t o some new d i r e c t i o n s c o n n e c t i n g t h e t r a d i t i o n a l y t i m e s e r i e s a n a l y s i s i n geophysics w i t h e x a c t techniques f o r t h e i n v e r s e problem. I n t h e same s p i r i t as t h e t r a n s i t i o n (9.5)-(9.6)
we w r i t e now ( c f . (8.10)-
(8.11) and r e c a l l q QA ( 0 ) = 1 ) m
(9.9)
+p:(0)GeiXtdh
G'(t) =
+ G1(-t)
Gl(t)
=
Lm
(9.10)
1rm$A(0)eihtdh ,
G1 ( t ) = (1/4a)
where G l ( t )
= ( 1 / 4 1 ~ ) jm*:(0)e-i"dh m
vanishes f o r t < 0 (argue as b e f o r e ) .
1
Hence as i n (9.7)
m
(9.11)
= @y(0)/cQ(-l)
+f(O)
=
Gl(t)ei"dt
0
I n general aQh ( 0 ) i s n o t known b u t i t i s r e l a t e d t o c (with the present normalization f o r -2ixcQ(x).
9 a aA)
partial
For example we have 0 v i a N;,(O) =
Q' connection
I n any event one can w r i t e
i, m
(9.12)
Gl(t)
=
H 1 ( = ) K ( t - r ) d T = ( 1 / 4 1 ~ ) p:(0)e-iAtdh/c
One n o t e s by c o n t o u r i n t e g r a t i o n t h a t f o r m a l l y since
T
27
K(t-T)
= 0 f o r t - T - 7 > 0;
t h i s means K ( t - T ) = 0 f o r t < 0 as d e s i r e d and moreover
= 0 f o r T > t+y.
&HE@REW 9-7, Given (9.14)
Q (-A)
m
K(t-T)
Consequently we o b t a i n expressed as above ( i n (9.13))
K(t-T)
it follows that
h o l d s which g i v e s a f i n i t e domain o f dependence r e l a t i o n between H1
and G1.
*
Now f o r t h e s t a b i l i t y q u e s t i o n we f i r s t l e t H pedance A
*
.
W r i t e AW = w
*
"oh and n o t e t h a t A5 = Am.
-
W,
AG = G
*
-
* ,G ,
G, e t c .
etc. r e f e r t o the im-
L e t us w r i t e a l s o do =
Estimates on A 5 a r e t r a n s m i t t e d t o AGr by AGr =
292
ROBERT CARROLL
Now estimates on AGr and AG; on f i n i t e i n t e r v a l s a r e going t o involve estimates on AO in L 1 ( 0 , m ) and such estimates will be d i f f i c u l t t o verify i n p r a c t i c e ( i n terms of AH1 s a y ) .
=
1: Au[SinXt/A]dh and AG;
= f t AuCosxtdx.
Hence l e t us use t h e a u t o c o r r e l a t i o n type function K ( t ) = fz H1 ( t + . r ) H 1 (-r)dr A Y of Remark 9.6 (nC = (a/2Am)G(A) = IH1 12, H1 = 0 f o r t < 7). From ( 9 . 9 ) , w i t h G ' considered even because of t h e cosine r e p r e s e n t a t i o n , we obtain
1
m
(9.15)
G ' ( t ) = (Am/a)
lfi112e-ihtdh = Am3C(t)
m
A f a c t o r of 2 ( i . e . 2Arn3C(t) i n ( 9 . 1 5 ) ) a r i s e s because of the cosine representation and must be removed when considering G' via t h e f u l l Fourier t r a n s form formulas ( c f . CC401 and e a r l i e r remarks - note the i n t e r p l a y between one and two sided d e l t a functions v i a (2/71)f: Cosxtdh = 6+ while ( 1 / a ) /f e x p ( - i h t ) d h = 2 s ) . We conclude t h a t &€Ea)R€lll 9-8, For t > 0 one has (9.15) or G ' ( t ) = Am3C(t).
REI[IARK 9-9. This i s very nice in giving a d i r e c t r e l a t i o n between H ' and
GI
so t h a t s t a b i l i t y estimates can be made d i r e c t l y via properties of H' and H without intervention of t h e s p e c t r a l measure. Unfortunately i t does not e x h i b i t the nice dependence o f G ' on only a f i n i t e range of H ' a s i n Theorem 9.7 ( b u t of course Theorem 9.7 i s n o t s u i t e d t o c a l c u l a t i o n since ~ Q ~ ( 0 ) i s not determined). Let us f a c t o r out t h e d e l t a functions i n (9.15) formally a s follows. Again work w i t h G = 1 + Gr, = 6 ( t - 7 ) + h l , e t c . f o r t > 0 and one obtains formally (note
7-t
eH1
<
f o r t > 0 and h l ( T - t ) = 0 ) rn
(9.16)
Gk(t) = hl(y+t) +
To obtain estimates now on
Y(t-7) +
h(t), h ( t ) =
t fy
E
i
and
hl(T)dT
hl(t+T)hl(T)dT E'
(hl
we assume f i r s t t h a t f o r t =
1-
h ' ) , and Gr(t) =
7
7, A2H
t fo G;(.r)d.r.
=
Then
m
(9.17)
G r ( t ) = h(t+y') +
h(t+c)h'(c)dc Y 1 2 from (9.16) ( c f . [C71,72]) since h l ( c ) h ( c ) d c = - i h 2 (c)I; =zh (y) = 0 Y i f h ( - ) = 0. I t should be no problem t o assume h and hl E L1 n Lm say and
-Jz
TRANSMISSION DATA
Ah(t+c).
293
Consequently from (9.18)
IE'I
(9.19)
5 lAhl(t+Y)I
6
f
[Ih;
m
]El
CHEBRE111 9.10,
(9.20)
b
[Ih*(t+c)llAhl(S)
*
Assume II hl It co, II hl II -, and Then l A A l on [O,Y]
a b l y small. 1I Ahll co,, ;3
f
can be
and llAhllL1 v i a IIE'II 1
L (0,ZT)
< cllAh II 1
1 L
-
(7,~);
L e t us go back t o (9.3), m u l t i p l y by (2/a)SinhT, f i r s t t h a t ( 2 / ~ ) l : SinXTSinXtdX = 6 ( t - T ) and
and i n t e g r a t e .
We n o t e
N
( c f . 58).
-
Here we r e c a l l t h a t 1
f o r 11 > y, and K(y,O)
= 0 (cf.
d n t o a r r i v e a t K(y,O) = 0 ) .
lo
K(y,y) = A-'(y),
52.11 f o r K(y,n)
H(T) =
(9.23)
J
=
1t-T.l)
(2/a) jm%[Cosllt-Tl
-
11
CosX(t+-r)]
T >
y,
-
p
K,(y,n)CosAqdr,dx
= +A~[G(?+T)
+
K2(?,t+.r)
does n o t a r i s e ) .
G(r-7) -
G(~-T)] +
co
%jo
G(t)[K2(?,t-T)
+
[C71,721) =
K2(?,T-t)
=
K2(Tyt+-c)
(9.22) becomes ( c f . (9.36) a l s o )
H(r)
= 0
- ~(y-t-~)]
+ K2(T,T-t)
where K2(c,n) = K (5,171 ( n o t e f o r
(9.24)
K(y,n)
q!(?)SinhtSinhdx
0 %[Kz(?,t-T)
y,
[$(X,y)/2i]Sinhn
c'
I = (2/n)
G(t)I(t,T,y)dt;
J + %A:[&(?-
(2/~)/:
Then f r o m (9.3) i t f o l l o w s t h a t ( c f .
00
(9.22)
A = Am a t
=
-
K2(?,t+~)ldt
Hence
294
ROBERT CARROLL
Take now
T
>
7 so
G(?-T)
=
0 and
0.
=
K2(T,t+T)
We can w r i t e t h e i n t e g r a l
term i n (9.24) i n t h e form ( i n t e g r a t i n g by p a r t s )
[+'
(9.25)
+ [-?%G
kG(t)K2(Y,t-T)dt
( t ) K2
(y,- t ) d t
=
c
%K(y,y)[G(y+~) +
G(T-~)] -
Now use K(T,Y) = 1 For
CHE0REN 9-11.
- ' :A
T >
+
(y%G'(s+T)K(y",s)ds J
F%G'(r-s)K(y,s)ds J
0
0
t o obtain T o n e has
%v c
(9.26)
H ( T ) = % [ G ( ~ + T ) + G ( T - ~ )+]
K(F,s)[G'(T-s)
-
G'(T+s)]~s
'0
L e t us n o t e i n p a s s i n g t h a t f o r t h e G-L e q u a t i o n (8.13).
T <
f; (where H ( T )
= 0) (9.24)
reduces t o
Indeed G ( T - ~ ) = 0 i n (9.24) w h i l e -G(y"--r)
remains,
and i n a d d i t i o n t o (9.25) m o d i f i e d below, t h e i n t e g r a l t e r m c o n t r i b u t e s
-
(9.27)
QTid(t)K2(~,t+w T)dt =
+ ~G(O)K(F,T) + 4
e
-4G(y-~)K(?,y)+
G'(s-T)K(F,s)ds
The m o d i f i c a t i o n s r e q u i r e d i n (9.25) i n v o l v e
%lom
(9.28)
G(t)K2(p,t-T)dt
= $G(O)K(?,T)
Consequently we o b t a i n from (9.24), (9.29)
0 =
A~?G(?+T)
Using again K(?,?)
tHE0REM 9-12, For
= 1 T <
7
-
- Ai5
+
%IT
G'(r-s)K(y,s)ds
0
(9.25),
G(?-T)]
(9.27),
+ %K(yz,'j;)G(y+~)
we have (8.13).
and (9.28) (G(0) = 1 ) - G(~-T)K(T,~)%
Thus
(9.24) y i e l d s t h e G-L e q u a t i o n (8.13).
REWWC 9-13, The dependence i n d i c a t e d i n Theorem 9.11 between G and H again i n v o l v e s o n l y f i n i t e i n t e r v a l s ( b u t i n a d i f f e r e n t manner t h a n i n Theorem 9.7).
We n o t e t h a t t h e G-L e q u a t i o n i n v o l v e s G on [0,27]
71 w h i l e
(9.26) p l a y s o f f H on say [?,3?]
once G i s known on [ 0 , 2 7 ] , [0,4?]
a g a i n s t G on [0,4?].
d e t e r m i n i n g K and hence A on
by s o l v i n g t h e d i r e c t problem.
for
[O,y],
K(T,-)
on [O,
O f course we know G on
One hopes t o use (9.26) and (8.13) =
(9.29) i n c o n j u n c t i o n t o develop a numerical scheme f o r example based on f i x e d p o i n t ideas and t h i s i s discussed below.
TRANSMISSION DATA
295
L e t us t h i n k o f G now as odd and G ' as even (as i s n a t u r a l from t h e s i n e and c o s i n e r e p r e s e n t a t i o n s ) and w r i t e (9.26) w i t h (9.29) as f o l l o w s . v
T
> y,
for
H(T)
y,
T
=
(integrals 0 0 for (51 >
+ %!
% [ G ( T + ~ )+ G ( T - ? ) ]
+
Now t r e a t K(7,E) as an odd f u n c t i o n i n 5 w i t h K(Y,,S) = = 0 ( v i a t h e sine representation o f K before ( 9 .
;).
7 and K(7,O)
-
u
(9.30)
G'(~+s)]ds while
+ 4, K ( ~ , s ) [ G ' ( T - s ) - G ' ( r + s ) ] d s
The by an easy c a l c u l a t i o n
22)).
-
K(~,s)[G'(T-s)
= +[G(T+~)+ G ( T - ~ ) ]
-k(y,T)
[K(Y,
*
a )
I,'
G'](T) =
-
K(y,S)G'(.r-S)dS
loY
K(k,S)G'(T+S)dS
Consequently, s e t t i n g G ( ~ , T )= ~ [ G ( T + T ) + G ( T - ~ ) ] ,we o b t a i n
H(T)
(9.31)
=
-
T
rem 9.14,
G'
( T
(T
> 0)
'
> 0 one can combine t h e e q u a t i o n s i n (9.31) t o o b t a i n
*
K ( ~ , T ) = G ( ~ , T )+ ?iK(Y,.)
REmARK 9.19.
*
G(?,T) + +K(Y,*)
CHEOREIII. 9-14, F o r
H(T)
For
GI.
L e t us g i v e a somewhat n e a t e r d e r i v a t i o n o f t h e r e s u l t i n Theo-
and more p a r t i c u l a r l y o f (9.24),
f i r s t from v(y,t)
=
as f o l l o w s ( c f . [C78]).
>u w i t h v ( 0 , t )
=
Thus
10" SinXtC(h)dh/A
1
m
=
[ S i n x t / h ] q ~ ( y ) ( 2 x / ~ ~ ) G(T)Sinxrd-cdh =
;j
0
jOm G ( T ) ( ~ / I T ) l[ o m q ~ ( y ) S i n i t S i n i r d h ] d r
We w r i t e t h e n $ ( y ,t) = ( ~ / I T q!(y)Coshtdh )J~ t h a t f r o m (9.32)
%Io
=
>"
= B(y,t)
SO
m
(9.33)
v(Y,t)
W i t h G odd one has $(y,t)
=
-Jr
G(T)$(y,t+T)dT
$(Y,t+~)ld~ G(T)$(y,t-T)dT
=
and s i m i l a r l y
i s even i n t; one o b t a i n s t h e r e f o r e ( c f . Theorem 2.3.18)
In particular f o r t > (9.35)
-
G(T)[S(Y,lt-Tl)
H(t)
=
7
+[$(y",-)
*
If we w r i t e B(y,t) = A-%(y-t)
G]
+ K2(y,t)
=
S(y,t)
now and work w i t h (9.33)
296
ROBERT CARROLL
%lo m
(9.36)
v(y,t)
=
G(T)[A-~(y)s(y-lt-TI) + K 2 ( Y , l t - r l ) l d ~
-
m
+ K2(Y,t+~)]dr
G(T)[A-'(y)G(y-t-T) 0
%I
=
%A-+(y)[G(t-y)
+ G(y+t)
-
G(y-t)]
m
+
G ( ~ ) [ K ~ ( y , l t - ~- l )K 2 ( Y , t + r ) l d r
0
T h i s i s i n f a c t e q u a t i o n (9.24) d e r i v e d r a t h e r more n e a t l y and leads t o Theorems 9.11,
9.12,
and 9.14 (a d e t a i l e d a n a l y s i s o f Theorem 9.14 appears
below)
REIRARK 9.16. T <
The emergence o f t h e G-L e q u a t i o n from ( 6 ) i n Theorem 9.14 f o r
y" can be t h o u g h t o f i n terms o f c a u s a l i t y ( c f . [ B b s l ] ) .
t h i n k o f t h e k e r n e l K(y,x)
One can a l s o ( o r K?(y,x) perhaps) i n terms o f a downward con-
t i n u a t i o n o p e r a t o r , t a k i n g d a t a on t h e s u r f a c e and p r o o a g a t i n g them downward t o depth y.
I n t h i s d i r e c t i o n one c o n s i d e r s e q u a t i o n (9.26) f o r ex-
ample o r f r o m (9.34) and B ( y , t ) = S ( y , t ) (9.37)
v(y,t)
=
+ v(O,t+y)]
%A-'(y)[v(O,t-y)
!Ijy K,(y,x)[v(O,t-x)
+
+ v(O,t+x)ldx
0
L e t us r e t u r n now t o Remark 9.13 and r e f o r m u l a t e t h e m a t e r i a l i n t o t h e f o l l o w i n g computational scheme.
The general p l a n i s t o show t h a t t h e extended
G-L e q u a t i o n o f Theorem 9.14 a l l o w s one t o map G data on [0,2?] on [0,47]
v i a an e x t e n s i o n f o r m u l a f o r K(y,x)
t h e H e q u a t i o n i n Theorem 9.14 on [y",37]
t o G data
(Theorem 9.17) and t h e n v i a
one r e t u r n s t o G d a t a on [0,27].
One t h e n hopes f o r some s o r t o f convergence upon i t e r a t i o n ( o r a f i x e d p o i n t theorem) and we s k e t c h here some r e s u l t s i n t h i s d i r e c t i o n ; one expects m i g h t have t o be t a k e n v e r y small f o r convergence. showing t h a t knowledge o f K(y,x) (x.y)
(x c y ) .
y ) = A-'(y).
for 0 5 x 5 y 5
Q = Coshy R e c a l l t h a t pp,(y)
+
f{
7
We b e g i n w i t h a formula
7 determines
K(y,x)
K(y,q)ASinhndq w i t h 1
F u r t h e r B(y,t) =(qA(y),CosAt)v Q = A-%(y)&(y-t) + Kt(y,t)
for all
-
K(y,
so
f o r x < y (K(y,O) = 0 )
Consequently Q(D ) K = DZK and we w i l l a p p l y Green's theorem ( n o t e t h e i n t e r Y change o f c o o r d i n a t e d i r e c t i o n s ) Jfa (Q - Px)dydx = Jr Pdy f (jdx i n runY n i n g v a r i a b l e s ( q , c ) f o r (y,x) t o t h e r e g i o n D = D(y) shown below
297
TRANSMISSION DATA
'
-.,
(y-x,O) UB Y = K Thus we c o n s i d e r K + ( A ' / A ) K i n t h e form -Knn + KS5 = q(n)Kn,
+nn
55
d e a l i n g w i t h K(n,y-x-n)
fr
n
+
qKndSdn.
On AB we a r e
and dg = -dn; on BC, K = K(n,n-y+x)
w i t h dn = dS;
where q ( q ) = 0 f o r n > y, so
Kndt
Kgdn = -fD
on CE, K = K(n,y+x-n)
w i t h dg = -dn; and on EA, K = K(q,n) w i t h dn = d t . fr become r e s p e c t i v e l y B (Kg - K )dn = B D Kdn C C E n En DnK = (KA - KB); fB (Kn + K )dn = J D Kdq = KC - KB; $ (K - Kn)dn = 5 A5 B n A dn = - ( K E - K C ) ; and IE ( K + K )dn = fE DnKdq = KA - KE. Since KB = K(y5 0 x,O) = 0 we o b t a i n I, = 2(KA + KC - KE) and hence
/A
Hence t h e i n t e g r a l s f o r
CHEBRERI 9-17, F o r (y,x) (9.40)
-
K(y,x) =
1
-/A -/c
7 and
x 5 y ) one has
as shown i n (9.39)
(y >
4(A'/A)Kn(n,g)dgdn
+ %[A-'C%(y-x)I
- A-'[4(x+y)ll
D The i n t e g r a t i o n o v e r D o n l y i n v o l v e s t h e r e g i o n y 5 -
7) and
o f K(y,x)
t h i s f o r m u l a a l l o w s one t o compute K(y,x) for Y
y" ( r e c a l l
for
A = Am f o r Y
27 L y 2 7 i n
terms
5y.
Take now t h e G-L e q u a t i o n f o r
T <
y i n t h e form ( c f . ( 8 . 1 3 ) )
as known f o r 0 5 x 5 y 5 2yh v i a Theorem 9.17 ( r e c a l l G + Gr - t h e d e l t a f u n c t i o n s have t h u s been removed i n Gh). Now assume
and t h i n k o f K(y,x) = 1
G(t)
i s known f o r t <
27 and s e t y = 2y i n
N
(9.42)
-E(y,x)
= K(27,x)
2Y ~ G r ( 2 y ) K ( 2 ~ , 2 y - x ) + %iG;(
-
+I
(T =
x 5 27)
27- x
-0
G;(s+x)K(Zy,s)ds
+
N
\ s - x \ ) K ( 2 Y y s ) d s = -kA2Gr 2Y++x) - ?,,;~r(s+x)K2(2~,s)ds
2y-x a r e t h e n known w h i l e t h e G terms on t h e r i g h t Changing v a r i a b l e s ( s = 2?+ t - x ) we o b t a i n t h e n a V o l t e r r a
The terms on t h e l e f t Z(7,x) a r e unknown.
-%Gr(27-x)
(9.41) t o o b t a i n
i n t e g r a l equation for G(2Ytt)
2 98
ROBERT CARROLL
(9.43)
+4
E: ( 7 , ~ ) = %A?Gr(2?+x)
Gr(2y"+t)K2(2y",2y"+t-x)dt
for 0 < x < y" by t h e G-L e q u a t i o n and t h e n by Theorem 9.17 K(2y,x) i s known f o r 0 5 x 5 27) one
LEilUilA 9-18. Given G on [0,2y"]
295 u
can f i n d G ( 0 ) f o r Gr ( G = 1 + G
r
-
(which determines K(y,x)
< 4 y by s o l v i n g t h e V o l t e r r a e q u a t i o n (9.43) f o r
O< x <-Z y ) .
We go n e x t t o t h e H e q u a t i o n from Theorem 9.14 i n t h e form =
H(T)
-
-
y"
>
and ?(T)
N
H(T) = %[Gr(jh)+Gr(~-y)] + 4
(9.44)
K(~,s)[G~(~-s)-G;(~+s)]ds
which f o l l o w s immediately from equations (9.24)-(9.25).
7 5 t f 37;
now G data f o r 2 ? 5 t 5 4 7 and H d a t a f o r
g5
G data f o r
T-2F5
(T
1)
27.
t5
7) {I
Take f i r s t
K(F,s)Gl(T-s)ds_= ds = - K ( ? , s ) G r ( ~ z s ) I T - ~ y + I/-2j7
P
+$-:I
z-2T)Gr(2?) (9.45)
-
-
T - 2 7K(Y,s)G;(T-s)ds
1:-~7
Ids with K2(?,S)Gr(r-s)ds = -K(?,Y)G,.(T
+
%G,(?+T)
=
t h e n we w i l l c o n s t r u c t
?. 2 7 Ln (9.44) and wr-ite
[IDT -27
K2(y,~-u)Gr(u)du.
H(T) = H(T)
-$lo
T
We assume g i v e n
?5Gr(r-7)+
+
%r $?-
,The ., e q u a t i o n
5 3 7 so
(T
K(r,~)G,l.(~-s)
-7) + K(T,
(9.44) can be w r i t t e n
K(y,s)G;(r+s)ds
-~K(T,T-~T)G~(~Y)
0,
K2(r,T-")Gr(o)du
-%K(y",y)G,(~-y)
5
=
%[
= % [ l - K ( ~ , ~ ) ] G r ( ~ -+ ~)
7T-Y K2(Ty.r+y-t)Gr(t-y")dt
We see t h a t H(T) i n v o l v e s "known" i n f o r m a t i o n w h i l e t h e r i g h t s i d e o f (9.45)
-
i n v o l v e s (unknown) G data on [0,2y] o t h e r hand i f w%take
IT-' -
Gr(T-s)ds. Gr(T-s)ds
T-Y t o
5
27 i n
a c t u a l l y G d a t a on [~-?,2?&
(9.44)-(75
T
I$y-T K2iy,s)Gr(T+s)ds
Similarly =
5
;(T)
=
-
+ IJ Kz(yh,s)Gr(T-s)ds
%Gr(T+~) +
= %[l-K(y,y)]G,(~-y)
( r e c a l l here K(y,x)
u
+
5
then f i r s t =
T
;1
(note here
On t h e
{I
K(y,s)
L(7,S) + {I
Kz(Yys)
T-s
r u n s from
5 2 7 ( c f . [C78])
K(y"s)Gk(r+s)ds
+ %K(yy2y-~)Gr(27)
4
i s odd i n x w h i l e K2(y,s)
Hence t h e r i g h t s i d e o f (9.46)
27)
K ( ~ " , Z ~ - T ) G ~ ( Z -~ )$y-T_K2(Y,s)
-7
H(T)
5
= -K(~,s)G~(T-s)
Thus (9.44) becomes f o r =
T
K(F,s)Gb(.r+s)ds
I8 K(r,sLG;(T-s)ds
-K(F,?)Gr(~-y)
27).
'v
(9.46)
T
[Ify &+: I-: I d s w i t h
G;(T+S)dS: G,(T+s)
-
i s even i n x f o r x < y).
has e x a c t l y t h e same form as t h e r i g h t s i d e
TRANSMISSION DATA
299
27,
o f (9.45). We n o t e a l s o that- i n H ( T ) where T 5 [ K(y,s)Gk(r+s)ds I % -%I0T - 2 y K(T,s)GL(T-s)ds = K ( y , t ) G L ( T + t ) d t which c o i n c i d e s i n form w i t h a t e r m i n f ; ( ~ ) . I n f a c t H and f; a r e i d e n t i c a l . Assume G i s g i v e n on [27,4?]
LEl!tilFIIA 9.19.
'v
for_ o 5 x 5 Y ) . %I$-T K(?,s)G;(T+s)ds
Write
K2(y,x)
H(T)
=
;I(T)
for
y~
T
i s even i n x f o r x
<
=
H(T)
Hence
and H on [Y,37]
-
( w i t h K(7,x) known
~G,(T+Y) + +K(~",zT-T)G~(zT) +
5 3 7 ( r e c a l l K(y,x) i s odd i n x w h i l e
y ) ; thus H ( T ) i s known.
Then G(x) on [0,27]
can be o b t a i n e d by s o l v i n g t h e V o l t e r r a t y p e e q u a t i o n (9.45) : (9.46),
-%
namely M ( T ) = %Am G , ( T - ~ )
+ % I T K2(y",T+y"-t)Gr(t-?)dt.
Estimates o f v a r i o u s s o r t s can be e a s i l y o b t a i n e d f o r s o l v i n g t h e V o l t e r r a equations i n Lemmas 9.18 and 9.19.
22
t o r(Gr)
For a f i x e d A one maps d a t a Gr on [O,
on [0,27] and one knows t h e r e w i l l be a unique f i x e d p o i n t Gr
I f one can determine a f i x e d p o i n t Gr by an i t e r a t i v e cornputation-
= r(Gr).
a1 scheme as i n d i c a t e d , s t a r t i n g w i t h some guess Gry t h e n A can be d e t e r mined by G-L techniques. realistic; for
I t remains t o see i f t h e computational scheme i s
7 sufficiently
small one expects convergence i n some sense.
A sketch i s i n d i c a t e d o f t h e r e g i o n considered.
(9.47)
u
=
I
G(t)
\
i
/
1
,/'
t = 3y
/
I
t = 2Y
y=Y"
ROBERT CARROLL
300
10, S0mf flZXELLANE0LIS; C0PZCS. We will a c t u a l l y deal only w i t h two unrelated t o p i c s here, namely, random evolutions and some ideas involving Darboux transformations. I t seems appropriate t o mention both s u b j e c t s i n any book such as this on general transmutation theory. We will deal f i r s t with t h e Darboux transformation. T h u s we consider connection formulas between solut i o n s of d i f f e r e n t i a l equations of t h e form y " + qy = 0 which a r i s e in various physical problems ( i n p a r t i c u l a r i n t h e study of black holes) and c i t e here e.g. [Cwl; Cacl; Dd2; D11; Wx1,Z; Sa14; Ldl; Mj1,2; Adl; Lf4; Cadl; Anl]. We follow [Wx1,2] (where t h e matter a r i s e s i n the theory of black holes) and require t h a t s o l u t i o n s y and z of ( = ) Ply = y " + qy and P2z = z " + Qz = 0 be connected by a formula (+) y = az +
f o r s u i t a b l e funcT h i s almost t o o general an idea since i f y,? ( r e s p z,?) are
t i o n s a and B.
l i n e a r l y independent s o l u t i o n s of Ply
=
BZ'
0 and P2z = 0 r e s p e c t i v e l y then i t
i s always possible t o find a and B such t h a t (+) holds w i t h 7 = a7 + B?' i n addition. In f a c t i f one writes W(z,?) = z?' - z ' ? = k # 0 this will be satisfied for
(A)
w
- yz']/k and
a = [y'i'
B = [zy
ways do t h i s and we want t o examine r e l a t i o n s and t h e a , when ~ this is done. There will be t r a l theory and Darboux transformations. Now putes y ' and y" i n terms of z, z ' , and z " and
- y?]/k.
T h u s one can a l -
between t h e p o t e n t i a l s (q,Q) connections here t o isospecgiven ( = ) and (+) one comi n s e r t i n g this i n (=) we get
There is then an immediate f i r s t i n t e g r a l here of the form (note B[Q'B + 2 248' - a"] = -a[@" + 2 a ' ] o r [ Q B + a2 + ( a B I - a ' p ) ] ' = 0 ) (10.2)
x
= a
2
+
aB'
-
a'B
2 + B Q
( y , y ' ) (where y ' = a z ' + a l z + B I Z ' -BQZ = (a' - 6Q)z + (a + ~ ' ) z ' ) h a sdeterminant A = [a(a + 8') - B(a' - BQ)] and when A # 0 one can invert M i n t h e form (em) Z = [ ( a + B ' ) Y - By']/x Another r e l a t i o n which a r i s e s immediately w i t h z ' = [(8Q - a ' ) y + ay']/h. We note a l s o t h a t the map M:
(z,zl)
.+
from (+) is exp[ / ( a / ~ ) l =y B(zexp( 1 (a/@)))'from which (10.3) and z(xo) could be obtained from (0.) i f x # 0. I f f o r example xo = 0 w i t h z ( x o ) = 0 we could w r i t e (10.3) as ( 6 ) z(x) = Jf K(x,S)y(S)dS where K(x,E) = exp[-lgx ( a / B ) d d / ~ ( S ) and this has t h e appearance of a transmutational 2 A 2 formu 1a. However i f q = + v and Q = Q + 1-1 t h e s p e c t r a l parameter p
4
DARBOUX TRANS FORMAT I ON
301
w i l l u s u a l l y be bound up i n K s o t h a t we cannot t r e a t t h i s s i t u a t i o n accordI n s t e a d we have a d i f f e r e n t k i n d
i n g t o previous theory o f transmutations.
o f t r a n s m u t a t i o n a t a d i f f e r e n t i a l l e v e l as f o l l o w s .
Set
A = BDx - a - 6 ' ; B = BDx + a
(10.4)
2 2 Then e v i d e n t l y ABf = 6 f " + (Ba' - a' - 6 ' a ) f w h i l e BAf = 6 f " 2 2 a6' + 66" + a )f. Hence u s i n g (10.2) f o r f E C
-
(60,' +
2 2 2 [AB+xlf = 6 2 f " + 6 Qf;[BA+Alf = 6 f " + 6 q f
(10.5)
2 2 Consequently B[6 (D + Q ) ] = B[AB + A ] = [BA + h]B = b2(D2 + q)B and t h u s CHE@REl!I 10-1- Assume y and z a r e r e l a t e d v i a y = az n e c e s s a r i l y s a t i s f y (10.1) w i t h f i r s t i n t e g r a l L e t A and
x
+ gz'
where
a formal t r a n s m u t a t i o n a c t i n g on f
C
+
+ q] i s
62[D2
.
Now t o determine B one t a k e s t h e s i t u a t i o n o f
(A)
from (10.1).
so t h a t 6 w i l l s a t i s f y
zy
t h e d i f f e r e n t i a l e q u a t i o n determined by p r o d u c t s one c o u l d d i r e c t l y e l i m i n a t e
and
= c o n s t a n t g i v e n b y (10.2).
B be d e f i n e d as i n (10.4) and t h e n B: 62 [D 2 + Q] 2
~1
o r y?.
Alternatively
This leads t o a f o u r t h order
e q u a t i o n (assume q f Q ) (10.6)
(Q-q)BiV
-
+
(4-q)""'
+ [(Q-q)(Q+q)"
2 2 2(Q - q )6" + [ Q Q 1 - q q ' + 5 Q q ' - 5 q Q ' ] 6 '
+ (Q-qI3 + q I 2 -
4'
2
4
I6 = 0
One notes f r o m (10.1) t h a t a s o l u t i o n o f (10.6) i s enough t o c h a r a c t e r i z e t h e mapping (+) c o m p l e t e l y s i n c e (*) a = - 6 ' / 2 + (1/2)[6"' B(Q'+q')]/(q-Q).
+ 6'(3Q+q) +
The case 6 = c o n s t a n t (say B = 1 ) i s o f p a r t i c u l a r i n t e r -
e s t and we see t h a t (10.6) w i l l have a c o n s t a n t s o l u t i o n i f ( t ) (Q+q)" + 2 (Q-q) - [ ( Q ' - q ' ) ( Q ' + q ' ) / ( Q - q ) ] = 0 ( t h i s i s n o t a necessary c o n d i t i o n however).
I n t h i s s i t u a t i o n (6 = l )we have f r o m (*) a = %(q'+O')/(q-O)
f r o m (10.2) w i t h
(t), A
= a2
+
%(Q+q).
I n t h i s s i t u a t i o n t h e commutation
6
i n Theorem 10.1 can be "expanded" i n t h e f o l l o w i n g way. L e t Q = + + p 2 w i t h y = y and z = z For B = 1 w i t h ( T ) we have =
q =
11
(4-G)
. u
independent o f 1~ and B = Dx +
and
does n o t depend on
11,
11'
and
%({'+ti)/
Hence B(z ) = 11
yu connects e i g e n f u n c t i o n s as i n t h e t h e o r y o f i n t e g r a l t r a n s m u t a t i o n s .
Another p o i n t o f view h e r e would be t o observe t h a t g i v e n B i n t h i s s i t u a 2 2 2 t i o n as i n d i c a t e d , i f ( D + Q)z = - 1 ~ zU t h e n B(D + Q)zv = (D2 + q)Bzu = 1J 2 - p Bz so t h e o p e r a t o r s P, and P2 would be " i s o s p e c t r a l " i f i n f a c t Bz = !J
P
ROBERT CARROLL
302
2 l i e s i n a s u i t a b l e L t y p e space a l o n g w i t h z . I f D f c o n s t a n t one 2 2 2 2u 2 2 2 c o u l d say t h a t i f B [D + Q]zU = -LJ z t h e n B[D (D + Q)]zu = B [D + q] u 2 Bz = - P Bz so we a r e f o r m a l l y i n t h e c o n t e x t o f t r a n s m u t i n g t y p e opera-
y
11
5
P
!J
t o r s (where 6 = x ) .
However t h e p a r t i c u l a r p r o p e r t i e s (e.g.
d i t i o n s ) characterizing t h e eigenfunctions z l a t e d o r spelled out.
LJ
and y
u
= Bz
P
i n i t i a l con-
have t o be r e -
L e t us n o t e here a l s o ( c f . (10.1)-(10.2))
Summarizing some o f t h i s one can say
CHE0REm 10-2- The f u n c t i o n 6 s a t i s f i e s a f o u r t h o r d e r d i f f e r e n t i a l e q u a t i o n (10.6) and when ( i ) h o l d s so t h a t B = 1 i s a s o l u t i o n one o b t a i n s a = % ( q ' + Q ' ) / ( q - Q ) and A =
a2
then formally isospectral.
+ $(q
t
Q); f u r t h e r t h e commutation o p e r a t o r B i s
I n g e n e r a l (10.7) h o l d s and Bz
k.
= y
i s a for-
ma1 t r a n s m u t a t i o n c o n n e c t i n g ( s u i t a b l e ) e i g e n f u n c t i o n s o f P2 = L2P2 and
-P1 = 2 P1. One s h o u l d mention here,for
REmARK 10.3-
h i s t o r i c a l purposes a t least,the
procedure o f Darboux i n [ D l l ] which i s r e l a t e d t o a method o f changing pot e n t i a l s i n [Cwl;
Sa14; Cadl; L d l ; F a l l .
Thus one c o n s i d e r s y " = (Ip+h)y
t By' w i t h A and B en(*) A " + A(P-$) + 2B'(Ip+h) + b ' = 0
and z " = (J/+h)z w i t h t h e same h and assumes z = Ay t i r e i n h.
One o b t a i n s ( c f . (10.1))
and 2A' + B(q-$)
+ B"
B cannot be o f g r e a t e r degree i n h t h a n A 2 2 and one o b t a i n s a f i r s t i n t e g r a l as i n (10.2) (**) A + AB' - BA' - B Ip 2 B h = F(h).
= 0.
Here
c o n s t a n t (say B = 1 ) t h e n (**) i s a R i c c a t i e q u a t i o n 2 f o r A and one s e t s e.g. A = -y'/y"; t h e n A ' = -?"/y" + (y'/y") amd A' - A ' =
If B
(y""/y") -
9 = F(h)
+
h = k
+
h so t h a t
7'' =
[tptk+h]y
t h e y e q u a t i o n f o r a d i f f e r e n t parameter hl = k+h).
as i n d i c a t e d and c o n s i d e r z = y ' y(?'/y") + h - hl]z = [q t h -2(logy")"]z ( n o t e (logy")" = 2 - A ' = ?"/y- (y"'/y") and f r o m (*) 2A' + ( q - $ ) = 0 here - a l s o 2(y"'/y")' - y"/y" = A2 + A ' w i t h A' - A ' = p + hl S O A2 + A ' +
l e t t i n g y and
z " = [?(l/y")"
hl + 2 A '
+
h - h, = 9 + 2 A ' + h ) .
-
satisfies
Now go backwards i n
-
7 be
y"
(i.e.
t o obtain
(y"'/y")'
=
F(l/y")" = h - h l = ~ +
Consequently z s a t i s f i e s an e q u a t i o n
w i t h t h e same h as y b u t a p o t e n t i a l J/ = P
-
2(1og!)".
This procedure can
be used t o change a p o t e n t i a l i n o r d e r t o add an a d d i t i o n a l e i g e n v a l u e (bound s t a t e ) and a r i s e s i n s o l i t o n t h e o r y as w e l l as quantum s c a t t e r i n g theory (cf. also [Ial]).
REmARK 10-4. One s i t u a t i o n where formulas o f t y p e (10.3) o r
(6)
a r i s e more
DARBOUX TRANSFORMATIONS
30 3
o r l e s s n a t u r a l l y here (without binding u p a s p e c t r a l parameter i n K) i n volves one s t e p parameter s h i f t i n g in s c a l e s of special functions. Thus 2 2 2 = D2 - (m -+)/x (recall f o r example take Q, = D + ((2m+l)/x)D with Gm[xm+’u] = xm+’Qmu). Set gm = xm+%Am R where “ “ R ( p , t ) = 2?’(m+l)c-mJm(r;)
Gm
( r ; = u t ) . Based e.g. on formulas l i k e Cv-l = C; + (v/z)Cv f o r Bessel funct i o n s one has ^Rm = (2m/t)[$m-’ - im] and ;2 = -p2tkm+’/2(rn+l). Similarly R = [2r(m+l)t-2m/r(p+l)r(m-p)]Io t ^R P ( v , n ) n 2p+l ( t2 - n 2 )m-p-.l d n . ( c f . [C40,63]) fm In terms of Gm we have 6,km = -p2F? and (u) ‘Rm-’ = (l/Zrn)~~+[(m-4)/2mx] (**) i ? ” ( p , t ) = 2mJot R“m-1 ( u , T ) ( T / t ) ” ’ - % T . Here we can t h i n k of (AA) via (*) w i t h a = (m-%)/2mx and B = 1/2m w i t h y = km-’ and z = ’im so t h a t ej. 2 2 2 2 For (10.2) we obtain A = p /4m and B = (1/2m)D q = u2 - [(m-1) - k]/x
‘i” a n d
.
2 2 + (m-%)/Zmx: B ( D + Q) 8*(02 + 9 ) . The r e l a t i o n ( W ) i s a form of (10.3) or ( 6 ) expressing z = km = I Ky where K(x,4) = exp[-It ( a / ~ ) d n ] / ~= 2m -f
In t h i s case then t h e d i f f e r e n t i a l t r a n s exp[-I, (m+)dn/q] = 2m(S/x)m-’. mutation B leads t o an i n t e g r a l transmutation o f a more o r l e s s standard type
(**I.
W e go next t o a b r i e f discussion of “random e v o l u t i o n s ” following [Hfl,5; Rd1,2; G g l ; Kcl; Kb1,21. I t turns o u t t h a t formulas of the type v ( t ) = E [ u ( T ) ] where E denotes expectation and T ( t ) i s a “random time” can represent transmutations connecting s o l u t i o n s u and v of d i f f e r e n t p a r t i a l d i f e will sketch t h e f o r m a l i t i e s and give some d e t a i l s f e r e n t i a l equations. W b u t will concentrate on examples. First following [Kcl], given a non-negat i v e continuous function a ( t ) , defined on [0,m), one may a s s o c i a t e w i t h i t a Markov process, c a l l e d t h e Poisson process N ( t ) w i t h i n t e n s i t y a as f o l lows. S t a r t a t zero, i . e . N(0) = 0, and f o r t > s set (10.8)
P [ N ( t ) - N(s) = m] =
t a(‘)d?lrn m! exp[-L
with P = 0 f o r m < 0 and P = 1 f o r m = 0 and t = s.
a ( ~ ) d ~ ] (m 2 0) As in [Dal], pp. 159-
160, N(t) may be considered as a random v a r i a b l e , i . e . N ( t ) =
N(t,W),
w E
i s t h e s e t of a l l functions W : t + u ( t ) = N ( t , w ) from [0,m) t o t h e non-negative i n t e g e r s , which a r e zero f o r t = 0 , continuous from t h e r i g h t , and nondecreasing, and which have only f i n i t e l y many d i s c o n t i n u i t i e s i n each f i n i t e t i n t e r v a l . T h u s P i s a p r o b a b i l i t y measure on (n,A) where A i s t h e u-algebra generated by a l l s e t s of t h e form { w ; N ( t , w ) = k3 f o r t 2 0, k a non-negative i n t e g e r (E{ 1 is t h e associated expectation operat o r ) . Finally f o r t h e process N ( t ) we define the random v a r i a b l e T ( t ) = T(t,w) as T ( t ) = 1; ( - l ) N ( T ) d T ( t t ) . Now a prototypical theorem o f the
R, where C
304
ROBERT CARROLL
type indicated i s given i n [Kcl] a s Let v ( t ) be twice continuously d i f f e r e n t i a b l e i n (-T,T). I f we define u ( t ) = E [ v ( T ( t ) ) ] then u ( t ) s a t i s f i e s (*) u " ( t ) + 2 a ( t ) u ' ( t ) = v(0) and ( B ) lim u ' ( t ) = v ' ( 0 E [ v " ( T ( t ) ) ] , 0 < t < T , with ( A ) lim u ( t ) + ast+O. CHE0REIII 10.5.
Pkoob: Since I T ( t ) l 5 t , (A) i s immediate. For each w. T i s an absolute Y continuous function of t , and OtT i s bounded from above i n absolute value By t h e c h a i n r u l e one has u ' ( t ) = by 1 , and approaches 1 a s t + 0,. (T(t))DtT(t)]. Applying t h e bounded convergence theorem ( B ) follows. Finally we observe t h a t (*) i s now equivalent t o t h e i n t e g r a l i d e n t i t y
E[vl
(10.9)
u ( t ) = v(0) + v ' ( 0 )
t exp[-ZJ;
a(s)ds]d~t
By t h e Weierstrass approximation theorem i t s u f f i c e s t o prove (10.9) f o r k v(t) = t k = 0,1, .... For k = 0 i t i s immediate. For k = 1 , u ( t ) = E [ T ( t ) ] = Jot E [ ( - l ) N ( ' ) ] d ~ . B u t E [ ( - l ) N ( T ) ] = 1 ; (-lIkP[N(.r) = k] = exp[-Z/,' a ( s ) d s ] . Thus i t remains t o prove (10.9) f o r k 2 2. I f we i n t r o k duce o k ( t ) = E[T ( t ) ] / k ! then by Fubini's theorem ( c f . [Kbl] f o r t h i s " t r i c k " which f o r k = 2 amounts t o replacing an i n t e g r a l of a s y m e t r i c i n tegrand over a square by twice t h e i n t e g r a l over half of the square) u k ( t ) = Jo t d-ckJ;k d . r k - l - - - J ~ ~ d . r l E [ ( -Nl () T 1 ) + " * N(Tk']. B u t i f T~ 5
'
E[(-l)N(T1)+
. * *
+
N('k+2)]
=
N(Tk+l 1] s i n c e N ( . C ~ + ~ )- N ( . r k t l )
E [ ( - l ) N ( T 1 )+
**.
+
N(Tk)]E[(-1)N(Tk+2)-
i s independent of N(.r,),
...,
in our previous c a l c u l a t i o n one obtains E[(-l)N('k+2) - N ( ' k + l ) ]
N(.rk).
As
=
exp[-2JTk+2 a ( s ) d s ] . Thus (replacing T ~ and + ~T ~ by + ~T and e respectively 'k+lt ~ ~ + =~lo( d-r$ t ) exp[-Zz,' a ( s ) d s ] u k ( e ) d e which i s just (10.9) f o r t h e case The r e s t follows. I v ( t ) = tk+', k > 0. Suppose now v ( t ) takes values i n a l i n e a r topological vector space F and say vtt = Av f o r some s u i t a b l e closed densely defined l i n e a r operator A w i t h w i t h v ( 0 ) = vo E D(A) and vt(0) = v1 E F s u i t a b l e ( c f . [C19,29] f o r operat o r d i f f e r e n t i a l equations). Then i n reasonable s i t u a t i o n s A will commute w i t h t h e operator E o f taking expectations so t h a t E[v"(T(t))] = E[Av(T(t))] For example i f F i s a Banach space then E[v(T(t))] would = AE[v(T(t))]. normally be a Bochner type i n t e g r a l ; f o r more general spaces one can t h i n k
RANDOM EVOLUTIONS
o f v a r i o u s weak o r s t r o n g i n t e g r a l s here.
305
Consequently we o b t a i n
&HEOREl!l 10-6- Under hypotheses o f t h e t y p e i n d i c a t e d l e t v" = Av, v ( 0 ) = vo and v ' ( 0 ) = vl. =
Then u = E [ v ( T ( t ) ) ] s a t i s f i e s u"
+
P a ( t ) u ' = Au w i t h u ( 0 )
vo and u ' ( 0 ) = vl.
T h i s k i n d o f theorem i s developed more e x t e n s i v e l y i n [RdZ] f o r example f r o m which we e x t r a c t now a few r e s u l t s .
I n t h e background here i s an e a r -
l i e r paper [Rdl] i n which t h e Ito t h e o r y o f s t o c h a s t i c i n t e g r a l s e t c . i s used t o c o n v e r t a h y p e r b o l i c e q u a t i o n f o r h ( x , t ) i n t o a p a r a b o l i c e q u a t i o n f o r H ( x , t ) = E[h(x,yt)]
where yt i s a c e r t a i n s t o c h a s t i c process.
Thus one
w i l l t o u c h upon s t o c h a s t i c d i f f e r e n t i a l e q u a t i o n s and i n t e g r a l s l i g h t l y and
b r i e f l y here b u t we w i l l make no a t t e m p t t o g i v e a thorough d i s c u s s i o n o f t h e m a t t e r (see e.g.
[Kacl;
Kvl; Gn1,2;
Fgl; Wpl;
Icl; Idl]).
We w i l l em-
p l o y n o t a t i o n and concepts as needed and t h e n g i v e e x p l a n a t o r y comments l a t e r ; some o f t h e p r o b a b i l i s t i c ideas a r e discussed a l r e a d y i n 52.
Thus
l e t f o r convenience F be a Banach space and e.g.
A a g e n e r a t o r o f a con2 t i n u o u s semigroup ( s t r o n g l y ) ; suppose (==) ( 1 / 2 ) e ( t ) u t t + f ( t ) u t = Au. L e t
xt be a d i f f u s i o n process s a t i s f y i n g t h e s t o c h a s t i c d i f f e r e n t i a l e q u a t i o n (10.10)
dxt = f ( x t ) d t + e(xt)dbt
( x o = 0 ) where dbt i s t h e d i f f e r e n t i a l o f a s t a n d a r d Brownian m o t i o n ( t h e v a r i a n c e = 1).
2
Assume e.g. e2 + f2 5 K ( l + t ) so t h a t (10.10)
has a s o l u -
t i o n f o r a l l t 2 0. D e f i n e a d i f f u s i o n t r a n s f o r m (**) t(t) = E[u(xt)], t Now by t h e I t o c a l c u l u s du(xt) = u ( x )dxt + ( 1 / 2 ) u t t ( x t ) ( d x t ) 2 =
> 0. -
Zt
ut(xt)[f(xt)dt + e(xt)dbtl + (1/2)u ( x )e (xt)dt = Au(xt)dt + ut(xt)e(xt) Ztt t2 One assumes e.g. (***) El: ut(xt)e (xt)dt < m f o r s dbt. 0 and i t f o l lows t h a t Eu(xt) - u ( 0 ) = E l ot Au(xs)ds = lot AEu(x,)ds ( E l ot y ( w , t ) d b t = 0 general l y ) .
&HE@REN 10.7,
Hence f o r m a l l y Under t h e hypotheses i n d i c a t e d
determined by (==)-(10.10),
s a t i s f i e s $,
=A;
^u
= E[u(xt)],
w i t h u and xt
and G(0) = u ( 0 ) .
EXAIIIPCE 10-8. Take f = 0 and e = J2 so xt = J2bt = b ( 2 t ) and G ( t ) = _/fu ( x ) 2 exp[-x /4t]dx/(4at)'. A r e l a t e d example a r i s e s a l s o f o r e = 42 and f = 2 k / t ( k > 0) where xt i s t h u s a Bessel process i n 2k+l dimensions g i v e n by dxt = 2 k d t / x t + J2dbt
(xo = 0).
One knows f r o m [ I d l ] ,
p. 60 t h a t ( z > 0 )
2 (10.11)
P[xt E dz] = dPt(z)
= [e-'
/4tz2ktk-4 / Z Z k r ( k+4)]dz
306
ROBERT CARROLL
= A: where ;)(t)= and hence i f utt + ( 2 k / t ) u t = Au i t f o l l o w s t h a t u(x)dPt(x) = C t -k-4 /2 2kr(k+<)lf; u ( x ) x 2k exp(-x 2/t4 t ) d x . Such connection
C29; Dhl-41 b u t t h e d e r i v a t i o n
formulas a r e known f o r example from [Byl-12;
by p r o b a b i l i t y arguments i s o f i n t e r e s t . One a l s o o b t a i n s i n [RdZ] a prob a b i l i t y d e r i v a t i o n o f t h e connection T ( t ) = [r(k++)/Jd?(k)]il 1 (1-5 2 ) k-1
7" +
v(Et1d.t f o r v " = Av and
(2k/t)?'
=
AT ( w i t h t h e same Cauchy d a t a ) .
REMARK 10-9- The i d e a o f s t o c h a s t i c i n t e g r a l must be g e n e r a l i z e d beyond t h e elementary n o t i o n s of 92 when
t h e i n t e g r a n d i t s e l f i s a random v a r i a b l e .
Thus g i v e n Wt a ( r e a l ) Brownian m o t i o n one wants t o determine a meaning f o r t (om) I t ( q ) = /O q(w,s)dW, ( c f . Theorem 2.2.6). E x p l i c i t l y l e t EWt = 0, E(At)Wt+s = Wt ( m a r t i n g a l e p r o p e r t y ) , and E(At)[Wt+s - Wt] 2 = 0 2 s ( t a k e 5 = 1 f o r convenience).
Here At T >
One needs v a r i o u s hypotheses about ~ ( w , s ) o f course.
+
c A i s a r i g h t continuous f i l t r a t i o n
(A(t) = A ( t ) = n A(T) f o r
t ) , As c A t f o r s 5 t, and q ( - , t ) i s t o be measurable on A t
l e d nonanticipatory r e l a t i v e t o t h e f a m i l y At).
Generally A
t
(q
i s cal-
C A i s a fam-
( = a l g e b r a s ) and one can deal w i t h p r o g r e s s i v e l y meas u r a b l e s t o c h a s t i c processes i n t h e sense t h a t (t,w) + X t ( w ) ( 0 5 t 5 T) i s i l y o f sub 5 - f i e l d s
measurable on 1:(O,T) X AT.
Now f o r o u r f u n c t i o n s cp as above w i t h say cp t 2 measurable on 1: X A , and l e f t continuous, w h i l e fo Elq(w,s)l ds < m a.s. (almost s u r e l y ) , one can d e f i n e It(cp). =
1 q v ( w ) l AV ( t ) f o r
F i r s t take simple functions q ( w , t )
...
p a r t i t i o n s 0 5 to5 tl 5
a r e A ( t v ) measurable can approximate q ( w , t )
(Ia
tn = T say where t h e cpov
denotes t h e c h a r a c t e r i s t i c f u n c t i o n o f A").
as above by a sequence
such t h a t l i m 17 E l c p ( w , t )
<
- q n ( w , t ) l 2d t
-+
0
Ipn(w,t)
of s i m p l e f u n c t i o n s
(7 b e i n g whatever
For such s i m p l e f u n c t i o n s one d e f i n e s I t ( q ) =
needed here).
One
interval i s
1cpv(w)
-
I f qn(w,t) + q ( w , t ) as above one d e f i n e s I t ( q ) = l i m W(tv)]. 2 Note here E ( I ( c p n ) l It(qn) where t h e l i m i t i s taken i n a mean square sense. n n n n = E[q cp AvWA W] and f o r p # v , AnW i s independent o f AnW so t h a t E I I (uq nw) l '''2 = E[llp,l ' n 2 (AyW) n 21 = E1q812E(A(tn))(AnW)2 = l E l' i gn v 2l An v t = [W(tv+l)
11
1
1
/?
E l q n ( . , t ) l 2 d t ( r e c a l l E(A(A:))(AvM)n" 2 = An" y t = tu+l H - t:). S i m i l a r l y 2 2 - q n ( - , t ) I 2d t E[I(qrntn) - I(qn)l = E I I ( I ~ ~- +q~n ) I = [(cpm+n(.,t) t 0 s i n c e cpn -+ IP i n mean square. Consequently t h e d e f i n i t i o n I t ( v ) = fo q ( w ,
JT
s)dWs o f
(om)
makes sense f o r f u n c t i o n s q as i n d i c a t e d .
Now one can show t h a t such I t ( c p ) E(As)It(q)
=
-+
I s ( q ) ( c f . [Wpl;
determine a m a r t i n g a l e i n t h e sense t h a t
Kacl; I c l ; I d l ; K v l ] ) and i n p a r t i c u l a r t h i s
i s not a martingaleshows t h a t I t ( W ) = j0t WT(w)dWT(w) cannot be Wt/2 2 (Wt/2 2 e x e r c i s e ) . Thus a n c o r r e c t i o n ' ' t e r m has t o be added and t h i s l e a d s t o t h e
307
RANDOM EVOLUTIONS
I t o calculus. via d x t ( w )
One defines an I t o process r e l a t i v e t o a Brownian motion Wt at(w)dt + bt(w)dWt
=
xt(w)
(10.12)
= x0(w)
+
( ~ 4 )
as(w)ds +
jot
ib
bs(w)dWs
For s u i t a b l e nonanticipatory At measurable random processes a t ( w ) and b t ( w ) (10.12) w i l l make sense ( c f . remarks above and 52) and t h i s defines (A+). Note here t h a t (A+) i s not t h e same as d x t / d t = at(w) + bt(w)dWt/dt f o r dWt/dt a white noise ( c f . Remark 3.4.2 - f o r a good discussion of t h s point s e e [Kacl] - we will i n d i c a t e t h e d i f f e r e n c e below). Now f o r an I t o process as above one defines a s t o c h a s t i c i n t e g r a l ( i p , ( ~ ) a nonanticipa ory process a s before - q , ( w ) = ~ ( w , T ) , e t c . )
where i t i s s u f f i c i e n t t o assume t h a t I? [qT(w)aT(o)ldT<
03
a . s . and
2
IT
E l q t ( w ) b t ( w ) l d t < m , a n d one can proceed here i n t h e d e f i n i t i o n via approximating sequences cpn + q of simple functions a s before). For the I t o
formula used before i n proving Theorem 10.7 we assume now $ ( t , x ) i s continuous w i t h bounded continuous p a r t i a l d e r i v a t i v e s $t, $x, and GXx. Then t h e $ ( t , x t ( u ) ) s a t i s f i e s (*=) dyt(w) = $ t ( t , x t ) d t + 2 $,(t,xt)dxt + ( 1 / 2 ) 0 $ x x ( t , x t ) b t d t = f i t ( t , x t ) d t + $ , ( t , x t ) a t ( w ) d t + $,(t,xt)bt(w)dWt t ( 1 / 2 ) ~ ~ $ , , ( t , x , ) b2~ ( w ) d t(0’ = 1 here). To s e e t h i s h e u r i s t i c a l l y w r i t e formally $(t+dt,xttdt) = $ ( t , x t ) t Jltdt + $ dx + 2 ZX Zt 2 2 (1/2)$xxdxt + .... From dxt = a t d t + btdWt we obtain dxt2 = a d t + btdWt 2 2 Y t ZatbtdWt and s i n c e EdWt = u d t we can take f o r approximation purposes i n i n t e g r a t i o n dx: ‘L u 2b 2t d t from which (*=) follows. Finally l e t us i n d i c a t e s t o c h a s t i c process y,(w)
=
2
t h e d i f f e r e n c e between a white noise i n t e g r a l and a s t o c h a s t i c i n t e g r a l i n t h e special case yt(w) = I0t q T ( W T ( w ) ) z T ( w ) d ~and & ( w ) = lot q , ( W T ( w ) ) d W T . Formally dWT = z T ( w ) d , where W i s a Brownian motion and zT i s a white i s defined a s above a s a s t o c h a s t i c i n t e g r a l . However yt has noise and not been defined y e t s i n c e t h e integrands f o r white noise i n t e g r a l s i n 92 were not random functions. I t i s shown in [Kacl] t h a t t h e s t o c h a s t i c i n -
yt
t
2
t e g r a l version o f y t i s ( 0 = 1 here) yt(w) = 10 qT(WT(w))dWT + (1/2)u 2 DwpT(WT)d~. T h u s dyt = qt(Wt)dWt + (1/2)0 Dwpt(Wt)dt i s t h e s t o c h a s t i c d i f f e r e n t i a l equation corresponding t o t h e white noise equation dyt =
rt
q
(Wt 1q t .
ROBERT CARROLL
308
If. EQ?.HEZ@NSj UIEH 0PERAE0R CbEFFZCIENEti, In t h i s s e c t i o n we sketch f i r s t t h e development of transmutation operators f o r canonical equations in Hil-
bert space following [Apl; Mi1,2; Mhl].
This i s a natural background t o t h e
more d e t a i l e d work i n [Ail; Du81, t o which we r e f e r a t f i r s t f o r relevant c a l c u l a t i o n s and from which we subsequently e x t r a c t some main l i n e s . Thus l e t H be a separable Hilbert space and J an operator in H such t h a t (*) J* 2
S e t P,- = [ I 7 iJ)/2 w i t h P, + P = I and J = [iP, - i P - ] ; the P, a r e projections and we w r i t e H, = P+H. Consider (**) JDrx - Vx = f where x(r) E H , f ( r ) E H, and V(r) E BTH) =-bounded l i n e a r operators i n 1 H ( V E Lm(O,m;B(H)) and eventually a l s o V L ). One assumes e.g. x loca l l y absolutely continuous and thinks of say Bochner i n t e g r a l s ; t h u s x ( r ) = 1 x(ro) + Jr k ( s ) d s w i t h x l o c a l l y L . Assume a l s o V(r) t o be s e l f a d j o i n t r, and consider t h e operator (*) A. = JDr - V i n L2 (0,m;H) defined on D ( A o ) = = -J and J
=-I.
{absolutely continuous vector functions x with compact support such t h a t 2 Aox E L (0,m;H) and x ( 0 ) = 01. One knows e.g. t h e r e e x i s t s a J unitary ope r a t o r U(r) E B ( H ) s a t i s f y i n g (11.1)
JDrU - VU = 0; U(0) = I
*
( J unitary means U J U = UJU
*
= J o r -JUJU
*
2
w i t h comNote t h a t i f
= I ) and g E L (0,w;H)
pact support is in R ( A o ) i f and only i f :1 U * ( r ) g ( r ) d r = 0.
g = Aof = J f ' - Vf (supp f compact) then using U-l' = -U-lU'U-l with U -U-'J we have formally :/ U*g = 1; U-IJVf + 1; U*Jf' w i t h 1; U*Jf' =
*
=
= -1; (U-')'f = 1; U - l U ' U - 1f = 1: U-lJVUU-lf = -1: U-lJVf. We note t h a t i t can a l s o be assumed t h a t J V = -VJ without l o s s of g e n e r a l i t y
-1,(U*J)'f
*
since one can always pass t o an operator G AoG where G i s a unitary opera+ P-VP-IG w i t h G(0) = I ( c f . [Apl; 6121). t o r s a t i s f y i n g -JDxG = -[P,VP+ 2 I t is easy t o see t h a t A. i n ( + ) is symmetric i n Jc = L (O.m;H) ( i . e . (Aof, g ) = (f,Aog) f o r f , g E D ( A o ) ) and D(A:) = Cx E Jc which a r e l o c a l l y absolut e l y continuous w i t h Aox E X I . By standard procedures ( c f . [Dsl]) one finds
*
symmetric extensions A of A. as r e s t r i c t i o n s of A. t o domains D(A ) = { X E P P D(A:); PHx(0) = x ( 0 ) o r x ( 0 ) E PHH = 31 where H C H i s a ( - i J ) - n e u t r a l sub* space characterized by [x,yl (= i[(A:x,y) - (x,Aoy)]) = ( ( - i J ) x ( O ) , y ( O ) ) = 0 f o r x(O),y(O) E H. In order t o have a s e l f a d j o i n t extension of A. i t i s necessary and s u f f i c i e n t t h a t dim H, = d i m H- and then PH = ( 1 / 2 ) ( I t K + * * K ) = P where K: H, + H- i s an isometry onto ( P = P ) . Note a l s o JP t PJ = J ( i . e . JP = QJ = ( I - P ) J ) i n t h e s e l f a d j o i n t case w i t h K*K = P, and KK* =
P-.
In general H = PH is characterized by PJP = 0.
The operator A
P
can
OPERATOR COEFFICIENTS
309
) on D(C ) = f i u n c t i o n s w i t h a l s o be characterized a s the closure of A ( = * P P P compact support i n D ( A p ) s a t i s f y i n g i n addition Px(0) = ~ ( 0 ) ) . Further
one notes t h a t D(A*) involves y ( 0 ) E HOJPH and s e l f adjointness r e q u i r e s PH = H 0 JPH ((J*h,R) = 0 f o r ?I = P h ) . Consider now ( = ) [Ao - X]U(x,A) = 0; U(0,X) = I w i t h U(x,A) E B ( H ) and X real momentarily; thus U ' + XJU + JVU = 0. Evidently U*JU = UJU* = J ( a s f o r U = U(x,O) above). Now w r i t e
@(x,X) = U ( x , h ) P (so (11.2)
ax)
=
@
satisfies
@(f,x) = P
(m)
with @(O,h)
[- U* ( x , h ) f ( x ) d x = [
= m
P ) and s e t *
@
(x,x)f(x)dx
'0
'0
2 K2 = IL with compact supportl. This function @ ( f , X ) i s a d i r e c t i n g functional in t h e sense of Krein ( c f . [Ael; Lql; Mil]) s a f i s f y ing i n p a r t i c u l a r the condition t h a t (Ao - X ) g = f i f and only i f @(f,X) = 2 0. To check this consider f o r example f E K and set g ( r ) = U ( r , x ) J q U* ( t , l ) f ( t ) d t . Then g has compact support and (Ao - A)g = J g ' - Vg - Ag = * * * f ( s i n c e g ' = U'J I U f - UJU f = U'J I U*f - J f and hence J g ' = J U ' J I U f + f = [XU f VU]J I U*f + f = f + Xg + Vg). Now f o r g D ( K ) we need g ( 0 ) * P = Pg(0). B u t g ( 0 ) = J I r U * ( t , h ) f ( t ) d t = [PJ + QJII," U f so f o r Pg(0) = g ( 0 ) one r e q u i r e s QJ J U f = 0 = @ ( f , x ) (note JP = QJ and i n [Mil] one * * * takes @ = QJ I U f o r @ = P J U f , t h e l a t t e r instead of JP J U f - i t does f o r H valued f
E
not matter here of course).
The s p e c t r a l theory can be b u i l t u p from these
considerations as i n [Lql] and one obtains ( t a k i n g say ? = @ = QJ J U*f, (f,g) = [F(dh)?((A),G(X)) where F i s a nondecreasing l e f t continuous funct i o n e t c . We will r e f i n e t h i s below.
/_I
Now s e t U O ( x , ~ )= exp(-XJx) and n ( x , h ) = Uo-1 U - exp(XJx)U(x,A) ( t h i s i s c a l l e d a normalized matrizant i n t h e f i n i t e dimensional s i t u a t i o n - c f . [DUB; 6121). From JU' - VU = X U we have U' + JhU = -JVU = VJU (note a l s o exp(XJ)V = Vexp(-hJ)) and
a' =
lo
exp(2xJ)VJn.
Hence
X
(11.3)
+
O(X,A) = I
e2xJcV(c)Js2(c,x)dc
Jt
(note a l s o a*JR = J ) . One can s e t no = I w i t h ~ + l ( x y h=) exp(2XsJ)V(s) Jsl.(s,h)ds t o construct (n = lm n.) i n a standard manner and s e t t i n g (A) J J CL.(t,X) = 1 ; e x p ( 2 a s J ) w . ( t y s ) d s lj 2 1 ) w i t h w l ( t , s ) = V(s)J one has ( 0 ) J J t for 0 5 s 5 t w i t h ~ ~ + ~ ( =t I, s V(u)Jw.(u,u-s)du ) J
S
(11.4) (w
=
a(t,A)
1"I w J. ) .
=
I +
Note here
,d
e2xsJw(t,s)ds t
n j + l ( t y ~= )f0 e x p ( 2 h ~ J ) w ~ + ~ ( t , s =) dI$s exp(2xsJ)
31 0
ROBERT CARROLL
V(s)J$
= Jot
exp(2AgJ)wj(s,E)dgds
:J exp(ZAJ(s-t))V(s)Jw.(s,S)dtds = 1;
J t t exp(ZAJq)V(s)Jw .(s,s-q)dnds = fo exp(2XJn)I V(s)Jw.(s,s-n)dsdn. Jt rl J wj+,(tys) = is V(uJJ1" w.(u,u-s)ds and hence
1:
i
(11.5)
W(t,S)
+
JV(S)
Jd
Thus
J
=
I:
V(u)JW(u,u-s)dS
EHZtNEm 11.1- W i t h hypotheses as i n d i c a t e d one can w r i t e (11.4) w i t h (11.5) and a bound nU(t,x)ll dim
H
<
Ptraod:
m
) where
< v ( t ) e x p ( l I m h l t ) can be o b t a i n e d (as i n [ D u ~ ] when
v(t) =
e x p ( l t llV(s)llds).
Note t h a t from (11.4) U ( t , A )
= exp(-AtJ)
+
and bounds f o r llwll can be o b t a i n e d i t e r a t i v e l y v i a exp(21ImAjs)).
Jt e x p ( A ( 2 s - t ) J ) w ( t , s ) d s (0)
( n o t e llexp(2xsJ) ll
<
=
Now n o t e t h a t exp(uJ) = P+exp(ip) + P-exp(-iu) Jot exp(A(Zs-t)J)w(t,s)ds = Jot exp(ih(2s-t))P+w
and hence, f o l l o w i n g [ D u ~ ] , /$ exp(-iA(Zs-t))P-w =
+
P+w(t,(t+u)/Z)exp(iAu)du + (1/2)1: P-w(t, ( t + u ) / Z ) e x p ( - i x u ) d u = P+w ( t ( t + u )/ 2 [P+exp ( A uJ + P-exp ( -A uJ 11 + ( 1/2) ii P-w ( t ,( t + u / 2 ) (1 /2 [P+exp(-xuJ) + P - e x p ( ~ u J ) I = (1/2)_Zt w+(t,(t-u)/Z)exp(-xuJ)du + (1/2)ii (1/2)J:
w- ( t ,(t+u)/2) exp( -xuJ )du where (11.6)
W+(t,(t-U)/Z)
+ P_w(t,(t-U)/2)P-;
- P+W(t,(t-u)/Z)P,
w- (t,( t + u ) / 2 ) = P+w( t ,( t + u ) / Z ) P _ + P-w( t, (t+u)/Z)P,
EHE0REM 11.2. Under t h e hypotheses i n d i c a t e d one can w r i t e U ( t , A ) = Uo(t,h) + 1: K(tys)Uo(s,A)ds where K(t,s) = ( 1 / 2 ) [ w + ( t , ( t - s ) / 2 ) + w-(t,(t+s)/2)] where w+ (resp. w-)
*
a r e t h e J c o m u t i n g (resp. J anticomnuting) p a r t s o f w.
T h i s i s o f course a t r a n s m u t a t i o n t y p e f o r m u l a and i t can be expressed DuS]).
somewhat d i f f e r e n t l y as i n [ M i l ;
First l e t
US
i n d i c a t e a model s i t -
uation t o c l a r i f y the picture.
EXAmPLE 11-3- For i l l u s t r a t i v e purposes one can t a k e (1 c o u l d a l s o be In)
(1
-;),
'
and P - = T ( -1~ i ) s o I =
P+exp(-ihx) + P-exp(iAx) = cOsxx (Sinxx cosxx
-VJ.
Also e.g. V = (
S
r, with
r -s
r* =
r, s* = s, and t h u s JV =
*
F u r t h e r one checks e a s i l y t h a t PJP = 0 and JP = OJ w i t h P
PHI-JPH.
I n a d d i t i o n ( & ) (P
-
Q)Uo(-x,X)
= UO(x,A)(P
sume ( & ) h o l d s now i n t h e r e m a i n i n g d i s c u s s i o n .
-
Q).
= P and
We w i l l as-
It c l e a r l y extends t o 2n
OPERATOR COEFFICIENTS
31 1
dimensions and thence t o any separable H e s s e n t i a l l y as a c h o i c e o f b a s i s
-
Note a l s o t h a t H+ = (1/2)[H
vectors.
[ H t JHJ] = P+HP- + P-HP,
JHJ] = P+HP+
P-HP- w i t h H- = ( 1 / 2 )
f
g i v e s a decomposition i n t o J commuting and J a n t i -
JH+ = (1/2)[JH + HJ] = (1/2)[H - JHJIJ = H+J).
commuting p a r t s (e.g.
Now assume t h e p r o p e r t y (4) and w r i t e (++) ( c f . [ D u ~ ] ) K ( t , s ) = K(t,s)
- Q)
K(t,-S)(P
(1/2)[W(t, ( t + S ) / 2 ) + w ( t , ( t - s ) / Z ) ] P
=
w ( t , (t-s)/Z)]JQ. (11.8)
+
-
+ (1/2)J[w(t,(t+s)/2)
Then an elementary c a l c u l a t i o n y i e l d s
+
U(t,A) = U o ( t , h )
I
t, K(t,s)Uo(s,h)ds
0
L e t us n o t e i n ( M )t h a t one can w r i t e 2 ? ( t , s ) K2 = WP
-
JwJQ (w = w ( t y ( l / 2 ) ( - ) ) ) .
= K1 t , t + s )
E v i d e n t l y from P
*
= P,
and JP = QJ one has PJ = JQ and - P = JQJ. Thus JK1 = JwP -wPJ - JwJQJ = -wJQ
+ JwP and JK2
=
+
JwP
wJQ = K2J = wPJ
+ K ( t , t - s ) and *2 * Q
= Q, J
-J
=
- wJQ = -KIJ = - JwJQJ = wJQ+
We w i l l n o t check a l l t h e c a l c u l a t i o n s here b u t i t f o l l o w s now from
JwP.
[Du8; M i l ] t h a t
EHEBREIII 11-4, Under t h e hypotheses i n d i c a t e d p l u s
(4)
and smoothness on V
as needed one has (11.8) w i t h ( W ) and t h i s r e p r e s e n t s a t r a n s m u t a t i o n JD, +
JDt - V ( t ) w i t h V ( t ) = J ? ( t , t ) A
o f a "Goursat" problem JDtK
-
- t(t,t)J.
appears as t h e s o l u t i o n
Thus
n
A
A
V ( t ) K = -DSKJ w i t h K(t,O)
= 0. A
Ptaod: = -D,KJ
I JDtKUo
=
AU
A
VU = h U O + h I KUo t VUo t V f KU
o b t a i n ( u s i n g (*=)) J?(t,t)Uo -
-
V(t)K
1 KUo one o b t a i n s JDtUo + JK(t,t)Uo + A
+
4
-
A
A
and t h e n from U = Uo +
A
t)
Thus one expects (*=) JDtK
We s k e t c h some o f t h e d e t a i l s .
A
I DSkJUo =
A0
.
x 1 KUo
Since JDtUo = XUo we
+ VUo f r o m which [J^K(t, n
^K(t,t)J]Uo + ?(t,O)J
= 0 (cf.
[Du~]).
= V(t)Uo.
Various arguments t h e n produce K(t,O)J
The c a l c u l a t i o n can be f o r m u l a t e d a l s o w i t h (*=) n o t as-
sumed and one o b t a i n s [ J k ( t , t ) - ^K(t,t)J
-
V(t)]Uo + i(t,O)J + f
-
[(JDt
A
V)K + DsKJ]Uods = 0.
Riemann-Lebesgue t y p e arguments y i e l d t h e formula f o r
A
A
V i n terms o f K ( t , t )
p l u s K(t,O)J = 0 and subsequently one can deduce
REmARK 11.5- W r i t i n g A. that (I + =
( I + *K)
t)A:
-'
= Ao(I
= JDt
+
-
V and A:
t) working
(*=).m
= JDt one sees i n obvious n o t a t i o n
on s u i t a b l e o b j e c t s and we w r i t e I +
(Neumann t y p e s e r i e s f o r example) w i t h ( 1 + " L A o = A:(I
The s p e c t r a l t h e o r y can now be presented i n v a r i o u s ways.
I n [ A p l l for
ample ( c f . a l s o [Du8; Mhl; M i l ] ) one takes @ = UP w i t h R = U i ' U and s e t s
G ( x ) = l i m Q ( x , h ) as x (11.9)
G ( h ) = I+
-+
m
so by (11.4)
Im e2xsJw(m,s)ds 0
=
nm(X)=
A(h)
2
+ ?).
ex-
31 2
ROBERT CARROLL
1 L (H) a l s o ) . One can define on PH (Am) A(A) = [PG*(x)G(X!P]-' and note a l s o t h a t OIJn, = I . A Let L 2 ( H ) , H = PH, be determined by the norm IIfllA = [ ( l / ~ ) i z(A(A)f(A), 2 A f(i))HdA] ( i n f a c t L ( H ) = L2(H) s i n c e IIAII i s bounded above and below i n dependently of A ) . One has then ( s e e (11.2) f o r ?(A) = @ ( f , A ) )
where w ( m , s ) can be assumed t o make sense (assume here V
E
W i t h hypotheses a s indicated f ( x ) = (1/1~)i; @(x,A)A(A)?((X)dA
UE0REm 11.6,
f o r f E L2(H) and
fm
0
IIfl12dx = ( l / ~ ) j : (A(A)?,?)dA.
REmARK 11.7- We will i n d i c a t e here some of t h e ideas which can go i n t o a proof of this theorem; a l l d e t a i l s a r e not s p e l l e d out b u t t h e e s s e n t i a l i s present. I t i s p r o f i t a b l e here t o use the technique of [Du8; Ail] which r e f i n e s t h e approach of [Mil; Apl; Mhl] although dealing only w i t h f i n i t e dimensional s i t u a t i o n s . T h i s i s achieved i n p a r t i c u l a r by s p l i t t i n g o f f t h e space PH i n a 2n X 2n s i t u a t i o n t o deal w i t h 2 blocks of n X n matrices. T h u s in Example 11.3 t h i n k of P w i t h I n 2, 1 and U = so t h a t UP % ( AB ) Then one can work w i t h X i n H o r U i n PH equivalently. First however = X.
(i k)
l e t us record a few formulas. We r e c a l l JDxU ** J)VJst). Set now F# ( A ) = F ( A ) and one obtains t # # V;]: ,U, d s while fo (JU;) , U, = (JU)A U,,*\h # U, J Uu* + fot UA[u*Uu* + VUv,]ds ( s i n c e J" = -J #
J - U A JU1-I" = ( h - u * ) i
(11.10)
In p a r t i c u l a r f o r #
-JU J .
#
U, Up,
ds
# one has" (*) J - U (t,A)JU(t,A) = 0 and U-l = and u* = w one has a l s o
p* = A
Setting A =
W*
[J-UI JUU]/(w* -
(11.11)
t
VU = A U ( and 9 ' = exp(2Ax t A:/ Uf lJHAds = JO [JU' 1; (JU)x UIu* d s = J and (A*)* = A ) . Hence
W)
=
(S,w)U(S,w)dS
20
Consider now (11.12)
Au(A) t =
CJ -
UAJUu,]/2n(A-~*) #
One can c a l c u l a t e w i t h such o b j e c t s as reproducing kernels a n d r e l a t e the matter (following [Du8; Ail] d i r e c t l y t o t h e idea of deBranges spaces e t c . e will do this d i f f e r e n t l y below ( a s i n [ D u ~ ] ) b u t will ( c f . [Dkl; D u l l ) . W i n d i c a t e a few of the relevant formulas here h e u r i s t i c a l l y . T h u s one notes t h a t i f we s e t J = i J then s i n c e U i s a l i n e a r operator one has J U!J"UA = 0 while (11.11)' U c :Uw]/i(w*-w) 2 0. Then one can consider i n place of (11.12) N
N
(*)I
[T-
(11.13)
"t Ap(A)
-
= [J
- U,# JUu,]/2ai(X-~*) -
OPERATOR COEFFICIENTS
31 3
8
w r i t e ( c f . Example 11.3) ? = ( 1 / 2 ) ( I + % P- and = (1/2)(I % A C so t h a t i f one had a b l o c k decomposition U = ( B D) then, s e t t i n g E = A
i)
NOW
P,
iB, F = A + iB,
E F (1/2)(iE i r )
?=
C
-
F i D , F = C + i D , one has ’i;U = (l/2)(-iF v
4” -
G* = 3 w i t h ?#
-
-
Up and
p) = 6 G- = U t
(11.14)
= P.
kJu-)#* - # (GU -
kA)#(v-
(GU,,
-
F
-
-ir) and QU = Y
(we w r i t e b l o c k s t o compare w i t h t h e formulas i n [Du8] which r rrly -2 Note t h a t P - Q = J = i J , P = F, g2 = Q, PQ = 0 = GP,
i s f o l l o w e d below). and <# =
J”,
-
P + UA(P
-
Consider now ( n o t i n g t h a t (G#)* = G(w*)): -
#
-#*
w
P)A(QU - P )
-1-I
N
Q)Uu,
=
-[J
-
=
(f #-
-
U
~
optu*) ( ~ - (Ufr-p)
~- )
N
Hence w r i t i n g G,
UAJUu,].
Q
-
we have
- G#(A)Gx*(u)]/[-2.i(h-u*)]
W A ut ( 1 ) = [GZ(A)G!*(u)
Then f o r m a l l y one c o u l d c o n s i d e r c e r t a i n spaces o f v e c t o r f u n c t i o n s a scalar product
=
(
f,g)z =
(
Gt-1f,G!‘1g)L2
and x t ( A ) -t and h E H, (f(A),A,(A)h)-
7 under
i s s a i d t o be a r e p r o -
ducing kernel i f f o r f E = (f(u),h). We n o t e ,.. ## H# f i r s t t h a t s i n c e J - UJ,U, = 0 we must have G+G+ = G-G- (A = u* i n (11.14)) -1 #-1 - G-lG!-l and hence G, G+ . Consider t h e n f o r m a l l y ( t a k e u* = w and A i s r e a l so G# = G* f o r t h e
I
m
(11.15)
x
terms)
*-l-t (GT-’ f ,G, All (A ) h )dh =
)I
W
- (1 /hi
(G:-l
f ,G+( w ) h )dA/ ( A-w )
m
W
(G~-’f,G_(w)h)dh/(x-w) ( s i n c e GilGTmlG
# i n GT-’ o = p*)
(
- G*G - ( w )
= GIIG-
*-1
*
G-G-(w) = GIIGm(w)).
Now r e p l a c i n g
*
by
and G T - T one o b t a i n s by a c o n t o u r i n t e g r a l ( n o t e t h e p o s i t i o n o f f,xth>
u
= (f(u),h).
R€mAaK 11-8, L e t us r a t h e r go now t o [Du8] and use t h e n x n b l o c k s A,B, F A 2 2 2 A + iB, E = A - i B , and X = ( B ) . D e f i n e f o r s u i t a b l e f E K ( K = L ( H ) w i t h compact s u p p o r t - RZn (11.16)
A
f (A) =
%
H here and f
lom
X#(s,x)f(s)ds;
where Xo = UoP = (CoshxIn,SinAxIn) 0
?(A)
Q
(fl,f2) as a column v e c t o r )
=
as a column v e c t o r (Uo = exp(-AJx) w i t h
1 on)
- c f . Example 11.3). Note a l s o V ( R - SR, w i t h R* = R, S* = n S and f r o m (11.8) w i t h X = UP, X o = UoP one has e.g.
J
=
(-I
The i n v e r s i o n formula we w i l l o b t a i n below, f o l owing [ D u ~ ] , i s t h e n
=
314
ROBERT CARROLL
m
(11.18)
IT)
f(x) =
X(s,A)A_(A)?(h)dX -m
( = [F # ( t , ~ ) F ( t , ~ ) ] - l ) and Am = l i m At as t
w i t h At(A) = [E # ( t , ~ ) E ( t , h ) ] - ’
L e t us n o t e here i n t h e model s i t u a t i o n d e s c r i b e d i n Example 11.3, UP =
m.
A
+
*
0
( B O ), PU U*JU).
A*
Thus Am
notation (X,X)
*
B*
(o
=
A in
Q,
*
), and PU UP = E E (A=)
(note G
=
A *A + B*B ( s i n c e B*A
R and
Q,
n*s?= U*U).
o r X*X i s used i n t e r c h a n g a b l y a t times.
= A*B f r o m J =
We remark a l s o t h a t The Parseval formu-
l a a t l e v e l t i n t h e form
extends then t o t h e corresponding f o r m u l a w i t h t =
m.
One c o n s t r u c t s U e t c .
as b e f o r e and ( r e f e r r i n g t o Lou81 f o r d e t a i l s ) t h e e n t r i e s i n U(t,h)
a r e en-
t i r e f u n c t i o n s o f A o f e x p o n e n t i a l t y p e t w i t h t h e n x n b l o c k s A,B,C,D
in-
One r e f e r s t o Wm (Wiener a l g e b r a ) as t h e s e t o f m x m m a t r i x 1 f u n c t i o n s F ( A ) = c F + S F ( h ) where c F i s c o n s t a n t and kF E L~~ .(R) =
vertible.
(^kF
,f
I f cF = I Thus cF = F(o0) and kF = F - l [ F - cF]. I and bl, ( r e s p . W-) r e f e r s t o F such t h a t f - l F ( x ) = 0 f o r x I 1 c 0 (resp. x > 0). One w r i t e s a l s o W+ = W n W., Thus one i s d e a l i n g w i t h
kFexp(iAx)dx = f k F ) .
one r e f e r s t o W functions
F
E
W,
a n a l y t i c ?or Imh >
(resp. W-)
e a s i l y t h a t n(A,t)
= U’,
E
W
I
6 (resp.
f o r example and v a r i o u s p r o p e r t i e s o f t h e
m a t r i x blocks i n U a n d a n r e established i n [ D u ~ ] . notes I m x > 0, C-
Q,
EE ,+
#
I n p a r t i c u l a r (C,
de-
I m A < 0) one says t h a t a p a i r o f n x n m a t r i x valued
e n t i r e f u n c t i o n s (E,,E-) (11.20)
One shows
Imh < 0 ) .
i s a deBranges p a i r i f
#
# 0 on ;C,
= E-E- on C; d e t E,
L: = E;~E-
d e t E- # 0 on C-;
i s i n n e r on C,
..*
Here one says Z = Z m x m i s r i n n e r i f i t i s meromorphic w i t h ZJZ:
-*
(Tat
p o i n t s o f a n a l y t i c i t y w h i l e ZJZ = J on R - f o r J ” = I one speaks o f i n n e r . 2 (resp. K2 ) t h e Hardy spaces o v e r C, (resp. C-) o f nN
L e t us denote by H
vector functions (fi(x))
=
a n a l y t i c i n C,
Ilfi(c+in)l
and sup
2”o
exp(ihx)dx w i t h F E L ).
f ( i ) (i.e.
t h e e n t r i e s , say f o r H2, f i ( A )
2
dc <
m
-
are
e q u i v a l e n t l y , f j ( h ) = JII~J(X)
Now w i t h a deBranges p a i r (E,,E-)
as i n d i c a t e d
one a s s o c i a t e s a deBranges space B(E+,E-) o f n x l v e c t o r valued e n t i r e func 2 t i o n s f such t h a t E;f’ E H o m 2 . One has t h e n ( c f . [DuS])
OPERATOR COEFFICIENTS
31 5
LTHE6REm 11-9, Let ( E + , E - ) be a deBranges p a i r . Then B = B(E+,E-) i s a reproducing kernel space r e l a t i v e t o t h e inner product ( f , g ) = /: (E;lf,E;lg)
- E - ( x ) E ~ ( w ) ] / [ - P I( TX - ~W * ) ] B and f o r f E B,(f,Auh)B = ( f ( w ) , h ) ) .
d h w i t h reproducing kernel AW(X) = [ E + ( ~ ) E : ( w )
(i.e. for h
E
H
Q
Cn
1,
PH,AWh
E
# REflARK 11-10- In t h e present s i t u a t i o n one w i l l have a deBranges p a i r ( F , # # # # # E ) = ( A - iB , A t iB ) ‘7r ( E + , E - ) .
P J L V O0~6 T h m m 11.9: One r e f e r s here t o [Du8; Ail] and we note t h a t the
construction (11.15) i s based on t h e present proof (only a sketch of which seems necessary h e r e ) . One can show f i r s t t h a t (C = EilE-) E;’AW(X)h = [I - C ( X ) Z * ( W ) ] E : ( W ) ~ / [ - ~ I T ~ ( ~ - U * ) ] E H 2 a n d i s perpendicular t o W z f o r E
C+.
Indeed f o r
11 E
Cn
(q
z ( ~ ) C * ( ~ ) E : h l / [ - Z n i (h-w*)ldX
and g
E:(W)h)
‘L
=
if
H
E
2
one has
iz
w
(Zg(X),[I -
( [ I - z(~)z*(X)]/[2~ri ( x - ~ ) l Z g , r ~ ) d=x
(/z[[C(X) - z(w)l/[2.i(X-~)]gdX],h) = 0 f o r w E C+ and one can extend t h e 2 2 r e s u l t t o w E R. Next one shows ( c f . [ D u ~ ] ) t h a t E;’f E H Q W 2 = H n 2 2 2 i f and only i f f E E+H n E-K and arguing as above f o r E I I A W ( X ) h with # w E C- one obtains A W ( X ) h E B f o r w E C . F i n a l l y using E+Ef = E-E-, one obtains ( c f . (11.15))
(11.21)
(
f,AWh)B= (
[E;’(h)f(x)]/[2.i(x-w)ldx,E:(w)h)
(jrn[E--l ( x ) f ( x ) l / [ 2 n i (h-w)ldX,E*(w)h)
-
(f(w),h)
=
-m
That B is a Hilbert space i s e a s i l y v e r i f i e d . # # Now ( c f . Remark 11.10) one can use ( F , E ) a s ( E + , E - ) space Bt so t h a t ( r e c a l l F#* = Fp, 1-I
(11.22)
A:(X) [X#( t,
and c f . (11.10))
- E # ( t , A ) E #*( ~ , u ) ] / ( - ~ I T ~ ( ~ - L I=* ) ]
= [F#(t,X)F#*(t,p)
1J X # * ( t
t o define a deBranges
)I
t
,LJ )l/[-~r(X-u*)I
(l/v
=
X#(s ,A ) X(s , v * ) d S
0
( r e c a l l PJP = 0 ) . Define now f* as i n (11.16) and consider f of t h e form * # Then ( 1 / ~ I) X ( s , p j ) c j f o r s < T while f = 0 f o r s 2 T. (11.23)
# ( I ) = ( l / i ~ ) X#(s,x) r
1X #*( s , p j ) c j d s
=
1 AT
0 A
2
I t follows from Theorem 11.9 t h a t IIf IIB =
(1. A T J
(Ap T (pk)cjYck) =
j
f(s)ds,ck) =
T
v.f0
’5
(h)cj
T
1kA, k 5 1-1~ j’ 5
1j,k((l/T).fOT x # (Sy1-Ik)X#*(s,1-Ij)dsg.,cJ k 2 ( f ( s ) , f ( s ) ) d s = d f l l . One shows ( c f .
=
)
‘77
BT =
1k
1j , k
10T ( x # ( S , p k )
[ D u ~ ] ) t h a t such f
31 6
ROBERT CARROLL
a r e dense w i t h s u i t a b l e a p p r o x i m a t i o n p r o p e r t i e s and t h a t t h e range o f t h e map f
A
-+
f
i s BT so t h a t
A 2 ME6REM f L 1 1 . The map f -+ f determined by (11.16) maps L (0,T) + BT 1-1 2 2 o n t o w i t h ll?llB = d l f l l L 2 and t h e i n v e r s e map i s g i v e n by (11.18) w i t h Par-
One has a l s o A m ( A ) = I
seval f o r m u l a (11.19). 1 h e L .
Pkoob:
- :(A)
(> 0 f o r a
E
R) w i t h
To show t h a t (11.18) i s t h e c o r r e c t i n v e r s e one w r i t e s h e u r i s t i c a l -
l y , u s i n g (11.22) and Theorem 11.9
(fA(p),h) =
(11.24) =
/
(Ai*At?.h)dh
=
(F#-’bYF#-’At(h)h)dA IJ
1 ([(l/~)j
([F-lF*-’]f,A~~h)h)dl
t X #( s , h ) , X ( s , l l * ) d s ] * A t b , h ) d h
T h i s shows t h a t (11.18) extension f o r t
1
=
=
i s f o r m a l l y t h e c o r r e c t formula f o r fAE Bt and t h e
m i s immediate. For t h e l a s t statement see [ D U ~ ] . R e c a l l # # # here a l s o t h a t E E = F F, At = ( F F)-’ = F-lF#-’ , and # = * f o r A r e a l . -f
T h i s i n c i d e n t a l l y a l s o comp;etes
o u r d i s c u s s i o n o f Theorem 11.6.
The paper
[Ou8] c o n t a i n s many f u r t h e r r i c h developments r e l a t i v e t o t h e i n v e r s e spect r a l problem, s c a t t e r i n g t h e o r y f o r c a n o n i c a l e q u a t i o n s v i a t h e MarEenko equation, band extensions, entropy, L a x - P h i l l i p s s c a t t e r i n g , c h a r a c t e r i s t i c operator functions, etc.
It seems t o be t h e most complete and t h o r o u g h dis-.
c u s s i o n o f t h e m a t t e r and s p e c i a l i z e s t o o t h e r work on c a n o n i c a l equations F o r t h i s and o t h e r work on transmu-
w i t h a p p l i c a t i o n s i n many d i r e c t i o n s .
t a t i o n f o r equations w i t h o p e r a t o r c o e f f i c i e n t s , O i r a c equations, transmiss i o n l i n e problems, e t c . we r e f e r t o [Abl; K j l ; L14,9,10;
Gol; Gpl-3;
Ja1,2;
Adl; Ahl; B b s l ; C29,76;
Mc4; Rcl-3;
Sta1,Z;
Cx1,4;
W r l ; Wul; Sw1,2;
Yell.
We w i l l g i v e below a few comnents on some t r a n s m i s s i o n l i n e problems ( c f . [C76])
and i n t h i s d i r e c t i o n l e t us f i r s t d e r i v e a G-L e q u a t i o n i n t h e pre-
sent context (followin9 [ D u ~ ] ) f o r the Thus A r n ( h ) = 1 Set Hg = h
*
-
;(A)
from Theorem 11.11 and
?(A)=
F(Nf)/J2.
w i t h Xo(t,h)
= ($”,:)
(1/2)[$
-
(fl
(11.8)
*h
=
iE
( c f . a l s o Remark 2.3.8). h ( s ) e x p ( i A s ) d s = Fh.
g and ( 6 0 ) N f ( s ) i s d e f i n e d b y ( f = (fl,f2)) J Z N f ( s ) = f , ( s )
- i f 2 ( s ) f o r s > 0 w i t h &Nf(s) (11.16)
2 of
We w r i t e X ( t , s )
= fl(-s)
+ i f 2 ( - s ) f o r s < 0.
Then ( c f .
F o r example i f we have a 2 dimensional s i t u a t i o n t h e n ?(A)
if2)exp(ihs)ds + = k e r N HN = k e r
=
[t X.
; 1 [flCosAt + f 2 S i n h t ] d t w h i l e FNf//2 = (fl(-s) + i f 2 ( - s ) ) e x p ( i A s ) d s ( = F(A)). Then, r e c a l l i n g (11.8) i n t h e form
OPERATOR COEFFICIENTS
U = ( I + ?)Uo S O t h a t X 1 X # f = ( ( I + ?)Xo,f) =
31 7
+ ?)Xo as i n (11.17), one has f A ( k ) = ( X , f ) = Xo,(I + k * ) f ) = [ ( I + k*)fIw= “(1 + k*)fIA/J2.
= (I (
We w r i t e t h e Parseval formula determined by Theorem 11.11 i n t h e form (11.26)
I
m
m
( f , g ) d s = ( l / ~ ) / (fA,Amb)dA= ( 1 / 2 1 ~ ) / ([N(I+?*)flA,
(I-:)[N(I+k*)glA)dA
1
=
I
-m
-m
[N(I+k*)f,(I-H)[N(I+?*)]g)ds
=
( f , ( I + ?)N*(I - H)[N(I + ^K*)lg)ds A*
I t follows t h a t ( I + ?)“*(I - H)N](I + K ) = I which i s t h e G-L equation * in f a c t o r i z e d form. W r i t i n g N*(I- H ) N = I - N HN = I - 3C one has A
A
BHE0REIII 11-12. The G-L equation f o r K of (11.8) can be w r i t t e n as ( I + K)
*L
% ( I + ;*) = I o r ( I + l ) ( I + ?*) = SC which e x h i b i t s I + ( r e s p . I + ?*) as lower (resp. upper) t r i a n g u l a r f a c t o r s of t h e p o s i t i v e operator I - J€ ( r e l a t i v e t o a chain of projections PT: f + f ( 0 5 s 5 T ) and f 0 (s 2 T). -f
Let us show now how one can connect t h i s framework t o readout impulse responses a n d t h e s p e c t r a l representation of kernels a s i n t h e geophysical s i t u a t i o n . Take a standard model f o r transmission l i n e problems i n t h e form I = c u r r e n t , v = voltage, Z = impedance, and introduce normalized c u r r e n t and voltage V = v(x,t)Z(x)-’, I = I(x,t)Z(x)’. One s e t s a l s o r(x = ( 1 / 2 ) D,logZ(x) = Z-’Dx?’ f o r the “ r e f l e c t i v i t y ” . Then one has two equ valent 0 z v forms Dx(;) = -Dt(l/Z o ) ( l ) o r (A*) D x ( Iv) = - ( Dr D- r ) (VI ) ( 0 = D t ) - In terms
-
2 D i ) V - P ( x ) V = 0; ( D x2 - Dt)I -?-24Q(x)I = 0 where P = z’D2Z-’ = r2 - r ‘ and Q = Z ’D Z - r2 + r ’ . I f one w r i t e s WR = (V+I)/2 and WL = (V-I)/2 ( r i g h t and l e f t propagating waves) W then D ( W R ) = -(: ( D = Dt). T h i s formula leads t o numerically usewL f u l layer s t r i p p i n g techniques a s i n [ B b s l ; Lx4-61 ( c f . Remark 8.14). Let us w r i t e now (A*) i n the form
o f second order equations one obtains ( D C
ID)(,;)
W e will not deal e x p l i c i t l y here w i t h Dirac systems but r e f e r t o [ C x l ; Rcl3; L19] f o r t h i s . For (11.27) we can use t h e theory developed above f o r 0 1 Or Q = A 0 = JDX - V , J = (-, o), V = ( r o) and w i l l t r y i n p a r t i c u l a r t o provide transmutations via s p e c t r a l pairings. In p a r t i c u l a r l e t US look a t A t h e kernels I + ^K and I + L = ( I + ;)-’ based on (11.17). Thus formally go
318
ROBERT CARROLL
t o t h e s p e c t r a l formulas (11.16) and (11.18)
( n o t e we a r e d e a l i n g now w i t h
- (X(t,A), 2 - v e c t o r s X, Xo and Am i s a number) and w r i t e ( t ) G(s-t) = (l/r)II
(= ( l / ~ ) X*(t,h)X(s,h)A_dA) j: and (+) ~ G ( h - p ) / A ~ ( h )= # A COSAt) :f (X(s,A),X(s,u))ds ( = ( X (s,A),X(s,u))). Now X = ( B ) and Xo = (SinAt so we c o n s i d e r ( A ( x , A ) , C o ~ h s ) ~ ( A(x,x),SinAs)v (11.28) B(X,S) = B ( x , x ) , C ~ s A s ) ~ ( B(x,A),SinAs)w X(s,A))A-(A)dh
1
which can be w r i t t e n i n a more o r l e s s standard n o t a t i o n B(x,s) = (X(x,X),
*
X ( ~ ~ 1 ( h e)r e) t ~ a k e A r e a l w i t h dv = dh/T on 0
Edx/T on [O,-)). Xo(s,u)))v
Formally then
A(x,p)
=
and (B(x,A),(
X0( s , ~ ) ) = G ( x - p ) ~ (over (11.29)
y(s,x) =
so y ( s , x ) =
(
[
(
~(x,s),X,(s,p))
(--,a)
o r o c c a s i o n a l l y dw =
has terms (A(x,A),(
Xi(s.A),
X ~ ( S , A ) , X ~ ~ S , ~=) )B(x,u) )~ s i n c e (XE(s,X), S i m i l a r l y w r i t e do = A-(A)dA/v
(-my-)).
(
CosAs,A(x,A)
)o
(
Cos~s,B(x,h) )o
(
SinAs,A(x,A) )o
(
Sinhs,B(x,A)
and s e t
1
X o ( s , ~ ) , X * ( s , ~ ) )o and formally(y(s,x),X(x,u))
has terms
( X * ( x , ~ ) , X ( x , p ) ) ) ~ = Cosps and (Sinhs,( X * ( ~ , A ) , x ( x , p ) ) ) ~ = Sinus.
(
CosAs,
Hence n
EHEOREN 11.13. B: X o
-+
X and
S p e c t r a l k e r n e l s f o r (11.17) i n t h e form k e r B = B = I + K, y =
k e r B , B = B-’:
-+
Q = JDx
-
V and
X
-+
X o a r e determined by (11.28) and (11.
F o r m a l l y we a r e d e a l i n g w i t h t r a n s m u t a t i o n s B: JDx = Q,
29) r e s p e c t i v e l y .
a:
Q
-+
Q.,
o f (11.27), i . e . Note a l s o = A certain -J? and ?V = - V f .
We t u r n now t o t h e q u e s t i o n o f p r o d u c i n g a s o l u t i o n q ( x , t ) -?D :T
~p
= Qp = JDxp
-
Vq
where I,J,V
a r e as i n d i c a t e d t h e r e .
t, T = I,J - l = -J = J (T = t r a n s p o s e ) , i J =
i-’
amount o f e x p e r i m e n t a t i o n l e a d s one t o c o n s i d e r ( c f . [L19])
W
w
L
where w = (wl) i s i n d i c a t e d below,
(
, )o
‘L
f do, and f dg means
/I dg so
t h a t boundar? terms a r e n o t p r e s e n t upon i n t e g r a t i o n by p a r t s (see below 1 1 -;) and w r i t e w(x,t) = f o r :I dc). For w we s e t H+ = (1 l) and H- =
(1,
( l / E ) H - f ( x + t ) + ( l / P ) H + f ( x - t ) ; t h e n w s a t i s f i e s JDxw = -?Dtw w i t h w(x,O) = f f(x) = (fl). Now make some r o u t i n e c a l c u l a t i o n s u s i n g -?fl w = JD w i n t h e 2 A t 5 form -Dtwl = D w and Dtw2 = - D w and QX = x X , X = ( B ) , i n t h e form Bx 5 2 5 1 4 r B = A A and - A x - r A = AB, t o o b t a i n - 1 D p = Q(Dx)q, w h i l e
OPERATOR COEFFICIENTS
( r e c a l l w,(x,O)
= fl(x),
etc.).
31 9
Hence p r o v i d e d e v e r y t h i n g makes sense (11.
30) r e p r e s e n t s a s o l u t i o n o f - i D t q
Q(DX)q w i t h q(x,O) g i v e n by (11.31).
=
NOW from (11.31) i f we deal w i t h even e x t e n s i o n s o f t h e fi t h e n t h e second t e r m i n v(x,O)
I dg =
vanishes ( f o r
/z
([0,m) t o
dc).
(-m,m))
On t h e o t h e r
hand one can t a k e J dg as 1 ; dg i f p r o v i s i o n i s made t o have t h e "boundary" terms a t 5 = 0 v a n i s h upon i n t e g r a t i o n by p a r t s , and t h i s seems t o have It i s necessary f o r t h i s t h a t w2(t,0) = ( 1 / 2 ) [ ( f 2 ( t )
c e r t a i n advantages.
+
f 2 ( - t ) )+ ( f l ( t ) - f l ( - t ) ) ] = 0. Thus one would t a k e fl even w h i l e f2 s h o u l d be odd (we n o t e t h a t some e x t e n s i o n i s needed i n any case so t h i s i s
no problem).
Now w r i t e t h e terms i n q(x,O)
as
(
F(h)FCfl,A(x,A)
A
h2) (column v e c t o r ) one has h 0 ) and h
FCfl
=
2"
= ( hlyA)
A
t ( h2,B)
and
)w
(
F(X)
I f h = (h,,
FSf2,B(x,x) )w (Fc and Fs denote t h e F o u r i e r t y p e t r a n s f o r m s ) . A
= h,
t
h2 where h, =- (hly
(0,h2) and we want t h e n F = 1 w i t h fl and f2 chosen so t h a t A
hl and F S f 2 = h2 ( t h e p a r i t i e s , even-odd, w i l l t h e n match
x
t h a t A i s even i n f o r example).
A
A
so ( h , B ( x , X ) ) ~ A
A
=
one sees
and B odd v i a c o n n e c t i o n t o t h e second o r d e r e q u a t i o n s
Then h, = (X(x,A),hl)w
q(x,O) as q(x,O)
-
( h ,X(X,X))~
where h
'A
= hl
=
0 and we can w r i t e
A
t h
2 ( n o t e i n t h e same way
h ; , A ( x , ~ ) ) ~= 0)
(
EHEOREill 11.14,
The ( u n i q u e ) s o l u t i o n o f -?Dtq
h ( x ) can be r e p r e s e n t e d by (11.30) h2(x),B(x,x)),
=
( w i t h F = 1 and I dg = 1 ; d5) where t h e
f d e t e r m i n i n g w i s chosen so t h a t FCfl (
= O(Dx)v s a t i s f y i n g v(x,O)
A
= hl
= ( hl ( x ) ,A(X,A)),
A
F S f 2 = h2 =
and one extends fl t o be even and f2 t o be odd.
Consider now a problem f o r (11.27) w i t h i n i t i a l c o n d i t i o n s h ( x ) = (S(x),O) f o r example (one s i d e d 6 ) and t h e n t h e "impulse-response" follows.
A
F o r m a l l y hl = 6 so hl = A(0,h)
=
Hence our f o r m u l a f o r w g i v e s (**) w ( t , c )
){:;g6[
f(E-t) = ( 1 / 2 ) ( g 6 ~ ~ ~ ~ { Cosxgdc = fl(S)exp(iAg)dE
iI
1 so fl = 6 a l s o w h i l e f 2 = 0. = (1/2)(!1
Ip(x,t)
=
[
,I
(
Cosxt,A(x,x) )u
(
Sinxt,B(x,A)
)u
(-m,m)).
From (11.30) now
1
(which i s a l s o e a s i l y checked d i r e c t l y t o be a s o l u t i o n as r e q u i r e d ) . one now has a readout Ip(0,t)
i)
- i ) f ( g t t ) + (1/2)(;
( s i n c e I dc = dg and s i n c e 2J; fl(e) i n (11.32) we can i n f a c t w r i t e (**) and i n -
t e r p e r t t h e 6 f u n c t i o n s as two s i d e d a c t i n g on (11.32)
i s determined as
= G(t)
measure can be r e c o v e r e d f r o m
(00)
A m ( A ) even (see below) we have t h e n
(%
If
V ( t ) ) f o r example, t h e n t h e s p e c t r a l
G1 ( t ) = (1/r)Jm CosAtam(A)dh. -m
Given
320
ROBERT CARROLL
ME8REIII 11-15- As i n t h e geophysical s i t u a t i o n o f 598-9 t h e s p e c t r a l measure can be recovered f r o m t h e impulse response f o r (11.27) i n t h e f o r m A,(A)
=
10" G1 ( t ) C o s A t d t . REmARlc 11-16. One n o t e s t h a t (11.32) always g i v e s G 2 ( t ) = (Sinht,B(O,x))w = 0 and t h i s is due t o t h e B r e p r e s e n t a t i o n a t 0 b e i n g inadequate. T h i s i s
; 1 f ( x ) S i n A x d x where t h e r e p r e s e n t a t i o n f ( x ) fh(A)SinxxdA always produces f ( 0 ) = 0.
s i m i l a r t o ?(A)
=
L e t us r e t u r n now t o t h e 6-L e q u a t i o n o f Theorem 11.12.
(2/n)1;
=
F i r s t we t r y t o
mimic t h e procedure which works i n t h e s c a l a r case, u s i n g t h e m a t r i x k e r n e l s B and y o f (11.28)-(11.29).
Z ( X , ~ )=
(11.33)
(
T X(X,P),X~(E,P) )w = Y (E,x)
Ifwe c o n s i d e r now X(x,p) o b t a i n s (A(s,E) (11.34)
= (
A(s,c)
= ( ~ ( x , s ) , X ~ ( s , p ) ) and compose w i t h X:(c,p)
[
=
N
(
C o s s p , C o s ~ p )(Cossp,Singp) ~
(
Sinsu,Coscp)w (Sinsp,Singp )w
c ) )
-
one
with
@I
, X =~ )((8..))(Xo,Xo)m. ~ I f we w r i t e now A = 6, 'J = JC, B = 6, + K ( r e c a l l dv = dx/a) and n o t e t h a t (
v
r(,
2 s so A
0 for 5
c
x, t h e n one o b t a i n s 0 = K
and J C ) .
2s
* ~ )
Jc, 6,
'L
= ( ~(x,s),A(s,s))
g(x,s)
Xo(sy~),X:(~,v)
Note here t h a t ( ( ( B ~ ~
-
Thus d e f i n e
I n p a r t i c u l a r f r o m Am = 1
-
N
Jc
-
A
u
(K,K) as i n Theorem 11.12 ( f o r K h
^h
one has (we s e t h e r e h / s = u and
( , )U) JC(s,s) = ( X o ( s , u ) , X i ( ~ , p ) )U = ( ( h . . ) I . Now t h e elements o f 'J J C ( s , s ) a r e r e p r e s e n t e d i n sum and d i f f e r e n c e f o r m i n [Du81 f o r example and
write
we do t h i s a l s o b u t i n a d i f f e r e n t way. m
( l / a ) ~CosspCosguhdp ~
(ao)
as
t h a t hll
Gl(t)
(mm)
Thus f o r example (Cossv,Cosgp)
= ( l / Z n ) / _ f [Cos(s+s)u
= s+(t)
+ (l/n)j:
Cosxt^hdA = 6 + ( t ) + gl(t).
It follows
+ gl(s-s)I. On t h e o t h e r hand we do n o t y e t have a r e a d o u t term correspondS i m i l a r l y hZ2 = (1/2)[gl(s-c)
= (1/2)[g1(s+s)
gl(s+<)]. i n g t o (l/n)L:
SinhGdx.
terms (Sinps,Cosug ,,)
In f a c t f o r
?I even
4
.-+
K ( s , c ) where hij
-
= 0 f o r i = j and hll
g1(s+c)]/2,
such terms a r e zero, as a r e
and we have
%'HEtBEIII 11.17- Given h even t h e m a t r i x A(s,c) [gl(s-s)
=
+ C o s ( s - c ) ~ l ~ d u . Now w r i t e '
has t h e f o r m 6 + ( s - ~ ) I -
= [g,(s+~)
g1 b e i n g t h e r e a d o u t f r o m
We n o t e t h a t t h e formulas o f [ D u ~ ] g i v e now f o r even) 3C(t,s) = K , ( t - s ) + ? ( t + s )
(!('I- h ( u )
).
?I
+ gl(s-s)]/2
even (which i m p l i e s h i s
w i t h K , ( u ) = (o h ( u ) h(:))
Since h ( u ) = (l/Zv)L:
w i t h hZ2 =
( ~ m ) .
and Jc,(u) =
i e x p ( - i A u ) d x = (1/2n)I:
hoshudx =
OPERATOR COEFFICIENTS
=
(1/2)g1 ( u ) t h e e n t r i e s i n Jc and
2will
32 1
c o i n c i d e and o u r c o n t r i b u t i o n here
i s t o i d e n t i f y h ( u ) w i t h a r e a d o u t impulse response ( l / 2 ) g l ( u ) . though d i f f e r e n t d e l t a f u n c t i o n s were used i n f o r m i n g 6
-
Thus even
3c and 6 - % t h e h
A
r e s u l t i n g G-L equations f o r K and K a r e t h e same so one i d e n t i f i e s K w i t h K ( i . e . o p e r a t i o n a l l y t h e 6 f u n c t i o n s p l a y t h e same r o l e and l e a d t o t h e same equations).
L e t us w r i t e o u t now t h e e n t r i e s i n t h e G-L e q u a t i o n as f o l -
lows, u s i n g Theorem 11.17.
i k12h22ds, 1 kZlhllds, kll - hl, - f kllhlldS and kz2
-
h
h
-
= JK(t,t)
2;
- f
The t e r m I K H d s i n v o l v e s e n t r i e s
1 kllhllds, 1 kZ2hz2ds and we w r i t e o u t t h e equations as 0, k12 - I kl2hZ2dS = 0, kzl - f kZlhlldS = 0, and
=
k22h22ds = 0.
K ( t , t ) J so a t ( t , t ) ,
o n l y kZ2 and kll
On t h e o t h e r hand f r o m Theorem 11.4, V ( t ) Thus - kll.
0 = k21 + k12 and r = kZ2
a r e needed f o r computation o f r and we c o n s i d e r t h e n o n l y
(for 5 < x) (11.35)
0=k11(x,S)
k2z(xSS)
-
-
c c
[ g l ( ~ + S ) + g l ( ~ - S ) I / 2- %
4[g1 (x-SI-91 ( x + S ) I - 4
k l l ( x , s ) [ g 1 (s+S)+gl(s-S)Ids;
k 2 2 ( ~ , ~ ) C g(1~ - 5 )- 91 (s+E.)Ids = 0
CHEaREm 11-18. The t i m e domain G-L e q u a t i o n e n t r i e s (11.35) determine kll v i a t h e known readout i m and kZ2 (and hence r ( t ) = k Z 2 ( t , t ) - k l l ( t , t ) ) p u l s e response gl ( t ) . We see t h a t ( w i t h
?I
even) t h e i n v e r s e problem t o determine r (and hence Z )
i n a system c o n t e x t can be handled v e r y much as i n a s c a l a r c o n t e x t .
One
can a l s o t r e a t problems w i t h t r a n s m i s s i o n d a t a as r e a d o u t ( c f . 59) b u t we o m i t t h i s here ( c f . [C76]).
REmARK 11.19.
L e t us examine i n more d e t a i l t h e r e l a t i o n o f t h e canonical
system t o t h e corresponding second o r d e r problems and compare s p e c t r a l ideas. V V Thus c o n s i d e r (JDx - !)(,) = A(,) = ((vij))) i n t h e form Ix - r I = AV and - V x
-
r V = XI. Equivalently
terms o f v = V?*
and 7 = IZ-'
- X 2 7 w i t h Z ( Z - ' V ~ ) ~= - h 2 v.
(1 (VZ'),
=
-xIZ4
and (IZ-')
x = xVZ-~.
In
we have v x = - 1 Z 7 and 'I, = xvZ-l so (Z1x)x/Z = The c o n d i t i o n X(0) = ( AB ) ( 0 ) = ( o 1 ) corresponds
t o v ( 0 ) = 1 and 7(0) = 0 ( n o r m a l i z i n g w i t h Z(0) = 1) t o g e t h e r w i t h v x ( 0 ) = - h I ( O ) = 0 and 'Ix(0) = x v ( 0 ) = A . = 1 w i t h Vx(0) = - ( l / Z ) Z ' ( O )
Note however from V = Z-'v
and s i m i l a r l y I x ( 0 ) = A .
f o r v ( r e s p . 7 ) can be based on cp f o r Z - l §2.6 (assume h e r e Z c p e x p ( - i x x ) as x F(X)e-ihx]/2i
+
Zm r a p i d l y as x
-f
-f
m
and dv = d x / 2 n l c p l
as x
-f
m
m
we have V(0)
The s p e c t r a l t h e o r y
( r e s p . F f o r Z ) as i n §1.8 o r etc.).
2 while (I
w i t h du = 2 d h / n l F I 2 .
Thus Zz5v = c p e x p ( i x x ) + ihx % -AX) ? I': = [F(-h)e
We n o t e a l s o t h a t f o r V o r I
ROBERT CARROLL
322
t h e d i f f e r e n t i a l equations a r e d i f f e r e n t ( c f .
i f one wants t h e spec-
(A*));
t r a l t h e o r y f o r say V one can r e f e r t o 53.8,
Remark 3.8.8
and V ' ( 0 ) = h b u t I ( 0) = 0 w i t h I ' ( 0 ) = A ) .
Now based on p r e v i o u s h a l f l i n e
t h e o r y we have t r a n s f o r m s (u) F(A) = :/ v(x,A)dv;
/om
=
$(A)
2 .
g(x)Z(x)T(x,A)dx;
( n o t e V(0) = 1
f(x)Z-l(x)v(x,h)dx;
and g ( x ) =
f ( x ) = / , ?(A)
/0" ;(A)I(x,A)du
where dw
dA/2n1cpl i s based on t h e v e q u a t i o n ( w i t h 2-') and dp = 2 d X / \ F I 2 n i s based on t h e 'I e q u a t i o n ( w i t h w e i g h t Z). Now observe t h a t f ' = / , T v ' d v = /rF(-AZI)dv w h i l e f ( A ) = /om f Z - 1vdx = 10" f 7 dx/A = f'7dx = (-l/A)
-
(Z-1f')4.
-(l/A)/r
X Hence f ' Z - l = 10" ( f ' Z - 1 )" f d u and g i v e n t h a t f and g a r e general
/0" ( f ' Z - l f 7 d p .
f u n c t i o n s i n (u) we w i l l have a l s o ( f ' Z - l ) =
tHE@RZm 11-20. L e t dv
Hence
= dA/2nlcp12 be based on t h e v e q u a t i o n w i t h w e i g h t
2
= Z - l (and e i g e n f u n c t i o n s v) w h i l e dp = 2dX/n\FI i s based on t h e 7 equaP t i o n w i t h w e i g h t Ap = Z (and e i g e n f u n c t i o n s 7 ) . Then dv = dp.
A
Now c o n s i d e r t h e i n v e r s i o n f
R€mARK 11.21-
+
f
A +
A
f based on X = ( B ) and
Here A V = Z%, B I = f $ . I f one takes f = dw = Amdx/n on (-m,-). f A A ( o l ) t h e n we o b t a i n f l ( x ) = fl A(x,A)dw where fl = IF fl(x)A(x,A)dx. Q,
Q,
LI A
Thus s e t A = 2%
/I;f
vdw.
and we have fl =
/Om
(flZ')Z-'vdx
Consequently we can i d e n t i f y dw on
Am i s even w i t h
2
2Am(A)/n
.
=
2
1/2nlcpl ).
/f
= (flZ?i)(-m,m)
while
flfi
w i t h dv on [ 0 , m )
=
(i.e.
S i m i l a r l y by Theorem 11.20 ( 2 / n )
The way i n which fA(h)X(x,X)do d i s t i n g u i s h e s between Z/nIFl A A A A f, and f2 i s v i a t h e f a c t t h a t fl i s even a l o n g w i t h A(x,A) w h i l e f2 and
Am(A) =
B(x,A) a r e odd.
REFERENCES
AB AD AE
AF
AH
AK
AL
AJ AM
A1 AN
AP
A4 BB
ABDUKADYROV, E. 1. DAN SSSR, 195"(1970), 519-522 AGRANOVIF, Z. and MARCENKO, V . 1. The i n v e r s e problem o f s c a t t e r i n g t h e o r y , Gordon-Breach, 1963 AKHIEZER, N. and GLAZMAN, I. 1. The t h e o r y o f l i n e a r o p e r a t o r s i n H i l b e r t space, Moscow, 1950 ALEKSEEV, A. 1. Izves. Akad. Nauk SSSR, Ser. Geofiz., 11 (1962), 1514-1531 2. Some methods and a l g o r i t h m s f o r t h e i n t e r p e r t a t i o n o f geophysiv v c a l data, I z d . Nauka, Moscow, 1967, pp. 9-84 ANDROSCUK, A. 1. U k r a i n . Mat. Zur., 23 (1971), 52-55 ASKEY, R. 1. Orthogonal p o l y n o m i a l s and s p e c i a l f u n c t i o n s , S I A M Reg. Conf. Series, 1975 2. I l l i n o i s Jour. Math., 1 3 (1969), 583-590 ASKEY, R. and FITCH, J. 3. Jour. Math. Anal. Appl., 26 (19691, 411-437 ASKEY, R. and WAINGER, S. 4. I l l i n o i s Jour. Math., 1 0 (1966), 322-344 5. Amer. Jour. Math., 91 (1969), 463-485 ATKINSON, F. 1. D i s c r e t e and continuous boundary v a l u e problems, Academic Press, N.Y., 1964 ALLINGER, D. and MITTER, S. 1. S t o c h a s t i c s , 4 (1981), 339-348 ANDERSON, 6. and MOORE, J . 1. L i n e a r o p t i m a l c o n t r o l , P r e n t i c e - H a l l , 1971 2. IEEE Trans. SMC-1 (1971), 119-128 ANDERSON, 6. and KAILATH, T. 3. Jour. Math. Anal. Appl., 35 (1971), 659-668 ANDERSON, 6. and MOORE, J. 4. Math. Syst. Theory, 4 (19701, 10-23 ALPAY, D. and DYM, H. 1. I n t e g . Eqs. Oper. Theory, 7 (1984), 589-641 ABLOWITZ, M. and SEGUR, H. 1. S o l i t o n s and t h e i n v e r s e s c a t t e r i n g t r a n s f o r m , SIAM, 1981 ADAMYAN, V. 1. DAN SSSR, 178 (1968), 9-12 AROV, 0. 1. S i b i r s k . Jour. Math;, 16 (1975),. 440-463 2. Funkts. Anal. P r i l o z . , 15 (1981), 61-64 BAKER, G. 1. Jour. Acous. SOC. Amer., 71 (1982), 785-789
323
324
BB BC
BD BE
BG
BH
BJ BY
BZ
BBA BK BL BN
BO
ROBERT CARROLL
BAKER, G. and GAMMEL, J. 2. Jour. Appl. Physics, 52 (1981), 3729-3737 BERGMAN, S. 1. I n t e g r a l o p e r a t o r s i n t h e t h e o r y o f l i n e a r p a r t i a l d i f f e r e n t i a l 1961 equations, Springer, N.Y., BESSIS, D. 1. Nuovo Cimento, 33 (1964), 797-808 BOTTINO, A,, LONGONI, A., and REGGE, T. 1. Nuovo Cimento, 23 (1962), 954-1004 BOTTINO, A., and LONGONI, A. 2. Nuovo Cimento, 24 (1962), 353-368 BELTRAMI, E. and WOHLERS, M. 1. D i s t r i b u t i o n s and t h e boundary values o f a n a l y t i c f u n c t i o n s , 1966 Academic Press, N.Y., 2. Arch. Rat. Mech. Anal., 18 (1965), 304-309 3. S I A M Jour. Appl. Math., 15 (1967), 1077-1087 BENZINGER, H. 1. Trans. Amer. Math. SOC., 174 (1972), 333-344 2. Trans. Amer. Math. SOC., 231 (1977), 259-271 3. Proc. Amer. Math. SOC., 63 (1977), 259-271 BEREZIN, I. 1. Mat. Sbornik, 24 (1949), 301-320 BRAGG, L. 1. Jour. Math. Mech., 18 (1969), 607-616 2. A p p l i c a b l e Anal., 4 (1974), 161-189 3. S I A M Jour. Math. Anal., 7 (1976), 1-12 BRAGG, L. and DETTMAN, J. 4. Jour. Math. Anal. Appl., 22 (1968), 261-271 5. S I A M Jour. Appl. Math., 16 (1968), 459-467 6. Proc. Amer. Math. SOC., 21 (1969), 50-56 BRAGG, L. 7. S I A M Jour. Math. Anal., 12 (1981), 489-501 8. Trans. Amer. Math. SOC., 143 (1969), 319-336 9. I n d i a n a Univ. Math. Jour., 24 (1974), 183-195 BRAGG, L. and DETTMAN, J. 10. Duke Math. Jour., 36 (1969), 129-144 11. Rocky Mount. Jour. Math. , 13 (1983), 191-214 BREMERMAN, H. 1. D i s t r i b u t i o n s , complex v a r i a b l e s , and F o u r i e r transforms, Addison-Wesley, 1965 2. S I A M Jour. Appl. Math., 15 (1967), 929-943 BRESTERS, D. 1. S I A M Jour Math. Anal., 4 (1973), 31-41 2. S I A M Jour. Math. Anal., 9 (1978), 924-934 BERS. L. 1. Mathematical aspects o f subsonic and t r a n s o n i c gas dynamics, Wiley, N.Y., 1958 BITSADZE, A. 1. Equations o f mixed t y p e , MOSCOW, 1959 BERRYMAN, J. 1. I n v e r s e methods f o r e l a s t i c waves i n s t r a t i f i e d media, B e l l Labs. p r e p r i n t , 1979 BAMBERGER, A., CHAVENT, G., and LAILLY, P. 1. Rapport i n t e r n e 14, Centre Math. Appl., Ecole Polytech., 1979 2. Appl. Math. Optimiz., 5 (1979), 1-47
REFERENCES
BP BQ
BR BS
BT BU EV BX
BBC BED
BEE BBF BBG BB I BBJ BBL BBM BBN BBO
325
BARCILON, V. 1. Geophys. Jour. Royal SOC., 56 (1979), 399-408 2. Geophys. Jour. Royal A s t r . SOC., 38 (1974), 287-298 BLAGOVESFENSKIJ, A. 1. Topics i n Math. Phys., Ed. M. Birman, Vol. 3, 1979, pp. 55-67 2. Trudy Math. I n s t . S t e k l o v , 115 (1971), 57-69 3. Trudy Math. I n s t . S t e k l o v , 115 (1971), 8-38 4. Trudy Math. I n s t . S t e k l o v , 115 (1971), 39-56 BLUM, E. 1. Proc. Amer. Math. SOC., 5 (1954), 511-520 2. Duke Math. Jour. 21 (1954), 257-269 BOAS. R. ~. 1. E n t i r e f u n c t i o n s , Academic Press, N.Y., 1954 BOCHER. M. 1. Trans. Amer. Math. Sac., 1 (1900), 40-52 BDCHNER, S. 1. Proc. Conf. D i f f . Eqs., Univ. Maryland, 1955, pp. 23-48 BOERNER, W. 1. Dept. I n f o r . Engin. Corn. Lab. Rept. 78-3, Univ. I l l i n o i s Chicago, 1978 BRAAKSMA, B. 1. I n t . Conf. D i f f . Eqs., Academic Press, N.Y., 1975, pp. 40-52 BRAAKSMA, B. and DeSNOO, H. 2. S p r i n g e r L e c t . Notes 415, 1974, pp. 62-77 BRAAKSMA, B. and MEULENBELD, B. 3. Compos. Math., 18 (1967), 235-287 BRAAKSMA, B., MEULENBELD, B., and LEMEI, H. 4. Proc. Kon. Ned. Akad. Wet., 72 (1969), 77-88 BRAAKSMA, B. and SCHNITMAN, A. 5. S I A M Jour. Math. Anal., 7 (1976), 771-798 BUCHHOLZ, H. 1. The c o n f l u e n t hypergeometric f u n c t i o n , Springer, N.Y., 1969 BURDET, G., GIFFON, M . , and PREDAZZI, E. 1. Nuovo Cimento, 36 (1965), 1337-1347 BURDET, G., GIFFDN, M., and GOLDBERG, J. 2. Nuovo Cimento, 44A (1966), 138-146 BRYtKOV. Yu. and PRUDNIKOV. A. 1.. I n t e g r a l t r a n s f o r m s o f g e n e r a l i z e d f u n c t i o n s , Moscow, 1977 BUREAU. F. 1. Cornm. Pure Appl. Math., 8 (1955), 143-202 BURRIDGE, R. 1. Wave Motion, 2 (1980), 305-323 BENSDUSSAN, A. 1. F i l t r a g e o p t i m a l e des systhnes 1 i n g a i r e s , Dunod, P a r i s , 1971 BREMAUD, P . 1. P o i n t processes and queues - m a r t i n g a l e dynamics, Springer, N. Y., 1981 BALAKRISHNAN, A. 1. IEEE Trans. I T - 6 (1960), 490-500 BODE, H. and SHANNON, C. 1. Proc. IRE, 38 (1950), 417-425 BURG, J. 1. Maximum e n t r o p y s p e c t r a l a n a l y s i s , i n Proc. 37th Ann. Mtg. SOC. Explor. Geophys., 1967 BUCY, R. and JOSEPH, P. 1. F i l t e r i n g f o r s t o c h a s t i c processes ..., Wiley, N.Y., 1968
32 6 BBP
ROBERT CARROLL
BELLMAN, R. 1. Proc. Amer. Math. SOC., 8 (1957), 435-440 BBQ BERKOPEC, T. 1. Thesis, Univ. I l l i n o i s , 1985 BBR BUBE, K. and BURRIDGE, R. 1. S I A M Review, 25 (1983), 305-323 BBS BRUCKSTEIN, A., LEVY, B., and KAILATH, T. 1. D i f f e r e n t i a l methods i n i n v e r s e s c a t t e r i n g , S t a n f o r d Univ. Tech. Rept. , 1983 C CARROLL, R. 1. CR Acad. S c i . P a r i s , 246 (1958), 2560-2562 2. On some g e n e r a l i z e d Cauchy problems and t h e c o n v e x i t y o f t h e i r s o l u t i o n s , AFOSR-TN-59-649, Univ. Maryland, 1959 3. A n n a l i Mat. Pura Appl . , 56 (1961 ), 1-31 4. Jour. Math. Mech., 12 (1963), 69-102 5. Math. Z e i t . , 81 (1963), 135-154 6. Jour. Math. Mech., 15 (1,966), 1003-1018 7. Quelques p r o b l h e s d i f f e r e n t i e l s a b s t r a i t s , Eqs. D 6 r i v . P a r t . , Univ. Montr6a1, 1966, pp. 9-46 8. Rend. Accad. L i n c e i , 39 (1965), 170-174 9. P a c i f i c Jour. Math., 13 (1963), 471-485 10. Anais Acad. B r a s i l . Ciencias, 49 (1977), 209-211 11. Osaka Jour. Math., 14 (1977), 609-618 12. Jour. London Math. SOC., 42 (1967), 737-743 13. B u l l . Amer. Math. SOC., 72 (1966), 1068-1072 14. I l l i n o i s Jour. Math., 11 (1967), 506-527 15. Math. Annalen, 151 (1963), 272-282 and 160 (1965), 233-256 16. A n n a l i Mat. Pura Appl., 72 (1966), 305-318 and 81 (1969), 93110 17. Proc. Amer. Math. SOC., 15 (1964), 225-230 18. Rocky Mount. Jour. Math., 5 (1975), 61-74 19. A b s t r a c t methods i n p a r t i a l d i f f e r e n t i a l equations, HarperROW, N.Y., 1969 20. Proc. Japan Acad., 49 (1973), 233-238 21. Anal. Fonct. Appl., Hermann, Paris, 1975, pp. 71-90 22. A p p l i c a b l e Anal., 7 (1977), 15-18 23. A p p l i c a b l e Anal., 7 (1978), 147-151 24. Ricerche Mat., 27 (1978), 215-222 25. Jour. Math. Anal. Appl., 56 (1976), 41-54 26. Jour. Math. Anal. Appl., 63 (1978), 156-167 27. A p p l i c a b l e Anal., 8 (1979), 253-263 28. A p p l i c a b l e Anal., 9 (1979), 291-294 29. Transmutation and o p e r a t o r d i f f e r e n t i a l equations, North-Hol1and , Amsterdam, 1979 30. Osaka Jour. Math., 1 9 (19821, 815-861 31. A p p l i c a b l e Anal., 12 (19811, 153-157 32. Rocky Mount. Jour. Math., 12 (1982), 393-427 33. Jour. Math. Anal. Appl., 92 (1983), 410-426 34. Rev. Roumaine Math. Pures Appl., 29 (1984), 113-138 35. Proc. Royal SOC. Edinburgh, 91A (1982), 315-334 36. Corn. P a r t . D i f f . Eqs., 6 (1981), 1407-1427 37. S p e c t r a l Theory D i f f . Ops. , North-Holland, 1981, pp. 81-92 38. Anais Acad. B r a s i l . Ciencias, 54 (1982), 271-280 39. Rend. Accad. L i n c e i , 72 (1982), 65-70 40. Transmutation, s c a t t e r i n g t h e o r y , and s p e c i a l f u n c t i o n s , North-Holland, Amsterdam, 1982
REFERENCES
C
CARROLL, 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. CARROLL, 54. CARROLL, 55. CARROLL, 56. CARROLL, 57. CARROLL, 58. CARROLL, 59. CARROLL, 60. 61. 62. CARROLL, 63. CARROLL, 64. 65. CARROLL, 66. 67. 68. 69. 70. 71. 72. 73. CARROLL, 74. CARROLL, 75. 76. CARROLL, 77. CARROLL, 78.
32 7
R. CR Royal SOC. Canada, 4 (1982), 267-269 Jour. Math. Pures Appl., 63 (1984), 1-14 Math. Meth. Appl. S c i . , 6 (1984), 467-495 A p p l i c a b l e Anal., 17 (1983), 51-62 Proc. Japan Acad., 59 (1983), 51-54 A p p l i c a b l e Anal., 1 6 (1983), 85-90 A p p l i c a b l e Anal., 18 (19841, 39-54 CR Royal SOC. Canada, 5 (1983), 87-90 D i f f e r e n t i a l Equations, North-Holland, Amsterdam, 1984, pp. 87-1 04 A p p l i c a b l e Anal., 17 (1984), 217-226 P a t t e r n s and s t r u c t u r e i n systems governed by l i n e a r second o r d e r d i f f e r e n t i a l equations, Acta Appl. Math., t o appear Arch. Math., t o appear CR Royal SOC. Canada, 6 (1984), 85-88 R. and BERKOPEC, T. Funk. Ekvac., t o appear R. and NEUWIRTH, J. Trans. Amer. Math. SOC., 110 (1964), 459-472 R. and WANG, C. Canad. Jour. Math., 17 (1965), 245-256 R. and COOPER, J. Math. Annalen, 188 (1970), 143-164 R. and STATE, E. Canad. Jour. Math., 23 (1971), 611-626 R. and MAZUMDAR, T. A p p l i c a b l e Anal., 1 (1972), 381-395 R. and SILVER, H. CR Acad. S c i . P a r i s , 273 (1971), 979-981 Proc. Symp. Pure Math., AMS, 23 (1973), 97-104 A p p l i c a b l e Anal., 3 (1973), 247-266 R. and SHOG!ALTER, R. S i n g u l a r and degenerate Cauchy problems, Academic Press, N.Y., 1976 R. and GILBERT, J. Proc. Japan Acad., 57 (1981), 34-37 Math. Annalen, 258 (1981), 39-54 R. and SANTOSA, F. A p p l i c a b l e Anal., 11 (1980), 79-81 Math. Meth. Appl. Sci., 3 (1981), 145-171 Math. Meth. Appl. S c i . , 4 (1982), 33-73 CR Acad. Sci. P a r i s , 292 (1981), 23-26 A p p l i c a b l e Anal., 13 (1982), 271-279 Proc. Conf. I n v e r s e S c a t t e r i n g , SIAM, 1983, pp. 230-244 CR Royal SOC. Canada, 5 (1983), 223-228 ONR-SRO Tech. Rept. 12, C o r n e l l Univ., 1983 R. Proc. Japan Acad., 60 (1984), 82-85 R. and DOLZYCKI, S . Jour. Math. Physics, 25 (1984), 91-93 Transmutation f o r systems and t r a n s m i s s i o n l i n e s , t o appear R. and WHITING, B. Some remarks on t h e Darboux t r a n s f o r m a t i o n , t o appear R. and SANTOSA, F. Jour. Acous. SOC. Amer., 76 (1984), 935-941
32 8 C
CA
CB
CD
CE CF CG
CH
CJ CL CM
CN
ROBERT CARROLL CARROLL, R. 79. Some remarks on orthogonal p o l y n o m i a l s and t r a n s m u t a t i o n methods, B o l l . Un. Mat. I t a l i a n a , t o appear CARROLL, R. and DOLZYCKI, S. 80. A p p l i c a b l e Anal., (1985), CARROLL, R. 81. CR Royal SOC. Canada, 7 (1985), 39-43 CARLSON, B . 1. S I A M J o u r . Math. Anal., 2 (1971), 347-351 2. S p e c i a l f u n c t i o n s o f a p p l i e d mathematics, Academic Press, N.Y., 1967 CARMICHAEL, R. 1. Jour. E. M i t c h e l l Sci. SOC. ( N o r t h C a r o l i n a Acad. S c i . ) , 92 (1 976) , 87-97 2. S I A M Jour. Math. Anal., 4 (1973), 198-219 3. P a c i f i c Jour. Math., 56 (1975), 385-422 CASE, K. 1. Jour. Math. Physics, 15 (1974), 2166-2174 2. Theory and a p p l i c a t i o n s o f s p e c i a l f u n c t i o n s , Academic Press, N.Y., 1975, pp. 289-304 3. Jour. Math. Physics., 16 (1975), 1435-1440 4. Advances Math., Supp. Stud., 5 (19781, 25-43 CASE, K. and CHIU. S. 5. Jour. Math. Physics, 14 (1973), 1643-1647 CASE, K. and KAC, M. 6. Jour. Math. Physics, 14 (1973), 594-603 CASE, K. 7. Ann. Physics, 2 (1957), 594-603 CHADAN, K. and SABATIER, P. 1. I n v e r s e problems i n quantum s c a t t e r i n g t h e o r y , Springer, N.Y., 1977 CHAO, M. 1.. Thesis, Washinaton Univ., 1976 CHEBLI, H. 1. S p r i n g e r L e c t . Notes 404, 1974, pp. 35-59 2. Jour. Funct. Anal., 1 7 (1974), 447-461 3. Jour. Math. PUres Appl., 58 (1979), 1-19 4. Thhse, Strasbourg, 1974 CHERRY, T. 1. Proc. London Math. SOC., 51 (1945), 14-45 COCHRAN, J. 1. The a n a l y s i s o f l i n e a r i n t e g r a l equations, McGraw-Hill, N.Y., 1976 COLOJOARA, I.and FOIAS, C. 1. Theory o f g e n e r a l i z e d s p e c t r a l operators, Gordon-Breach, N.Y., 1968 CODDINGTON, E. and LEVINSON, N. 1. Theory o f o r d i n a r y d i f f e r e n t i a l equations, McGraw-Hill, N.Y., 1955 COLTON, D. 1. A n a l y t i c t h e o r y o f p a r t i a l d i f f e r e n t i a l equations, Pitman Press, London, 1980 2. S o l u t i o n o f boundary v a l u e problems by t h e method o f i n t e g r a l operators, Pitrnan Press, London, 1976 COLTON, D. and KRESS, R. 3. Quart. J. Mech.Appl.Math., 31 (1978),9-17 and 32 (1979), 53-62
REFERENCES
329
COLTON, D. and WENDLAND, W. 4. Proc. Royal SOC. Edinburgh, 75A (1975/76), 97-107 COLTON, 0. 5. Glasgow Math. Jour., 18 (1977), 125-130 6. Proc. Royal SOC. Edinburgh, 76A (1977), 345-350 COLTON, D. and KRESS, R . 71 I n t e g r a l e q u a t i o n methods i n s c a t t e r i n g theory, Wiley, N.Y. , 1983 COLTON, D. and WIMP, J. 8. Complex Vars. , 3 (1984), 397-41 2 co COOPER, J. 1. J o u r . Math. Anal. Appl., 49 (1975), 130-153 COOPER, J. and MEDEIROS, L. 2. Ann. Sc. Norm. Sup. Pisa, 26 (1972), 829-838 COOPER, J. and STRAUSS, W. 3. I n d i a n a Univ. Jour. Math., 25 (1976), 671-690 CP COPSON, E. and ERDELYI, A. 1. Arch. Rat. Mech. Anal., 2 (1959), 76-86 COPSON, E. 2. Arch. Rat. Mech. Anal., 1 (1958), 324-348 3. Arch. Rat. Mech. Anal 1 (1958), 349-356 4. P a r t i a l d i f f e r e n t i a l equations, Cambridqe Univ. Press, 1975 CR COUDRAY, C. and COZ, M. 1. Annals Physics, 61 (1970), 488-529 cs COURANT, R. and HILBERT, 0. 1. -Methods o f mathematical physics, Vol. 1, I n t e r s c i e n c e , N.Y., 1962 cx CONTE, S. and SANGREN, W. 1. Canad. Jour. Math., 6 (1954), 554-560 CAB COZ, M. 1. Jour. Math. Anal. Appl., 92 (1983), 66-95 cw CRUM, M. 1. Q u a r t . Jour. Math., 6 (1955), 121-127 CT CHENEY, M. 1. J o u r . Math. Physics, 25 (1984), 94-107 2. Jour. Math. Physics, 25 (1984), 1449-1455 3. Jour. Math. Physics, 25 (1984), 2988-2990 cu CHIHARA, T. 1. -An i n t r o d u c t i o n t o orthogonal polynomials, Gordon-Breach, N.Y. , 1978 cv COCHRAN, J 1. Numer. Math., 7 (1965), 238-250 CAC CHANDRASEKHAR, S. 1. The mathematical t h e o r y o f b l a c k h o l e s , Clarendon Press, Oxf o r d , 1983 CAD CALOGERO, F. and DEGASPERIS, A. 1. S p e c t r a l t r a n s f o r m and s o l i t o n s , North-Holland, Amsterdam, 1982 DC DeALFARO, V. and REGGE, T. 1. P o t e n t i a l s c a t t e r i n g , North-Holland, Amsterdam, 1965 DeALFARO, V., PREDAZZI, E., and ROSSETTI, C. 2. Nuovo Cimento, Supp. Vol. 11 (1964), 206-233 DEIFT, P. and TRUBOWITZ, E. DD 1. Comm. Pure Appl. Math., 32 (1979), 121-251 DEIFT, P. 2. Duke Math. Jour., 45 (1978), 267-310
CN
.,
.
330
DF
DG DH
DI
DK OJ
CL ON DS DU
ROBERT CARROLL
DELSARTE, J. 1. CR Acad. Sci. P a r i s 206 (1938), 1780-1782 2. Comm. Math. Helv., 32 (1957), 113-128 3. Jour. Math. Pures Appl., 17 (1936), 213-231 DeSNOO, H. 1. Proc. Kon. Ned. Akad. Wet., 73 (1970), 222-244 DETTMAN, 3. 1. F u n c t i o n t h e o r e t i c methods i n d i f f e r e n t i a l equations, Pitman Press, London, 1976, pp. 94-108 2. Proc. Royal SOC. Edinburgh, 79A (1977), 173-182 3. Jour. Math. Anal. Appl., 15 (1969), 341-349 4. Glasgow Math. Jour., 11 (1970), 117-125 DIAZ, J. 1. Theory o f d i s t r i b u t i o n s , Proc. Summer I n s t . Lisbon, 1964, pp. 75-1 31 2. Comm. Pure Appl. Math., 9 (1956), 383-390 D I A Z , J . and YOUNG, E. 3. Ann. Mat. Pura Appl., 94 (1972), 161-176 4. Ann. Mat. Pura Appl., 95 (1973), 115-129 DIAZ, J. and WEINBERGER, H. 5. Proc. Arner. Math. SOC., 4 (1953), 703-718 D I A Z , J. and WEINSTEIN, A. 6. Stud. Math. Mech. , Academic Press, N.Y., 1954, pp. 97-102 D I A Z , J. and LUDFORD, G. 7. Ann. Mat. Pura Appl. , 38 (1955), 33-50 8. Proc. Conf. D i f f . Eqs., Univ. Maryland, 1956, pp. 73-89 DeBRANGES, L. 1. H i l b e r t spaces o f e n t i r e f u n c t i o n s , P r e n t i c e - H a l l , 1968 DIJKSMA, A. and KOORNWINDER, T. 1. Indag. Math., 33 (1971), 191-196 DIJKSMA, A. and DeSNOO, H. 2. S I A M Jour. Math. Anal., 5 (1974), 888-892 DARBOUX, J . 1 . Lesons s u r l a t h g o r i e a&&rale des surfaces, Vol. 2, G a u t h i e r V i l l a r s , Paris, 1915 DONALDSON, J. 1. Proc. N a t ’ l . Acad. S c i . , 66 (1970), 269-274 DUNFORD, N. and SCHWARTZ, J . 1. L i n e a r o p e r a t o r s , Vols. 1-3, I n t e r s c i e n c e , N.Y. , 1958,1963,1971 DYM, H. and McKEAN, H. 1. Gaussian processes, f u n c t i o n theory, and t h e i n v e r s e s p e c t r a l problem, Academic Press, N.Y., 1976 2. F o u r i e r s e r i e s and i n t e g r a l s , Academic Press, N.Y., 1972 DYM, H. and KRAVITSKY, N. 3. Advances Math., Supp. 3 (1978), 45-90 DYM, H. and McKEAN, H. 4. I l l i n o i s Jour. Math., 14 (1970), 299-343 9. Ann. Math. S t a t i s t . , 41 (1970), 1817-1844 DYM, H. and GOKHBERG, I . 5 . I n t e g . Eqs. Oper. Theory, 3 (1980), 143-215 DYM, H. 6. Proc. I n t . Symp. Theory Networks Syst., D e l f t , 1979, pp. 188193 DYM, H. and IACOB, A. 7. T o e p l i t z Centen., B i r k h a u s e r , Basel, 1982, pp. 233-260 8. Topics Oper. Theory, Birkhauser, Basel, 1984, pp. 141-240
REFERENCES
DW DX
DY
DZ
DAA DAB
DAC
DAG DA F
EA
EB
FA
FB FC
FD FF
FG
331
DAVIS, M. 1. L i n e a r e s t i m a t i o n and s t o c h a s t i c c o n t r o l , Chapman-Hal 1 , London, 1969 DGOB, J 1. S t o c h a s t i c processes, Wiley, N.Y., 1953 DALETSKIJ, Yu. and KREIN, M. 1. S t a b i l i t y o f s o l u t i o n s of d i f f e r e n t i a l equations i n Banach space, AMS T r a n s l a t i o n s , Vol. 43, 1974 DOLPH, C. and WOODBURY, H. 1. Trans. Amer. Math. SOC., 72 (1952), 519-550 DEVINATZ, A. and SHINEROT, M. 1. Trans. Amer. Math. Soc., 145 (1967), 467-494 D A V I S , R. 1. Jour. Appl. Physics, 23 (1952), 1047-1053 DEWILDE, P. and DYM, H. 1. IEEE Trans. IT-27 (1981 ) , 446-461 DEWILDE, P., FOKKEMA, J., and WIDYA, 1. 2. S t o c h a s t i c systems ..., Reidel, Dordrecht, 1981, pp. 351-382 DEWILDE, P., V I E I R A , A., and KAILATH, T. 3. Trans. IEEE, CAS-25 (1978), 663-675 DURRETT, R . 1. Brownian m o t i o n and m a r t i n g a l e s i n a n a l y s i s , Wadsworth, 1984 DYSON, F. 1. Sudies Math. Physics, P r i n c e t o n Univ. Press, 1976, pp. 151-167 2. Jour. O p t i c . SOC. Amer., 65 (1975), 551-558 EHRENPREIS, i. 1. F o u r i e r a n a l y s i s i n s e v e r a l complex v a r i a b l e s , I n t e r s c i e n c e , N.Y., 1970 2. Annals Math., 63 (1956), 129-159 and Trans. Amer. Math. SOC., 89 (1958), 450-483 ERD~LYI, A. 1. S p r i n g e r L e c t . Notes 457, 1975, pp. 151-170 2. ( E d i t o r ) Bateman m a n u s c r i p t p r o j e c t , H i g h e r t r a n s c e n d e n t a l f u n c f u n c t i o n s , Vol. 1-3, McGraw-Hill, N.Y. , 1953 3. ( E d i t o r ) Bateman m a n u s c r i p t p r o j e c t , Tables o f i n t e g r a l t r a n s forms, Vol. 1-3, McGraw-Hill, N.Y., 1954 FADEEV. L. 1. Uspekhi Mat. Nauk, 14 (1959), 57-119 and I t o g i Nauki Tekh. Sov. Prob. Mat., T r a n s l a t i o n , 31 (1974), 93-180 FAIERMAN, M. and KNOWLES, I. 1. S p r i n g e r L e c t . Notes 846, 1981, pp. 109-118 2. Canad. Jour. Math. , 32 (1980), 1423-1437 FARAUT, J. 1. J o u r . Math. Pures Appl., 58 (1979), 369-444 2. Sem. Anal. Harmonique, Tunis, 1975 3. Sem. Anal. Harmonique, Tunis, 1976 FATTORINI, H. 1. The Cauchy problem, Addison-Wesley, 1983 FLENSTED-J ENSEN, M. 1. Ark. Mat., 10 (1972), 143-162 2. Amer. Jour. Math., 99 (1977), 341-361 3. Jour. Funct. Anal., 30 (1978), 106-146 FLENSTED-JENSEN, M. and KOORNWINDER, T . 4. Ark. Mat., 11 (1973), 245-262 FOIAS, C. and SZ. NAGY, B. 1. Analyse harm. opgr. l ' e s p a c e H i l b e r t , Masson, P a r i s , 1967
.
332
FH FI
FM FJ FL FU
FV
GA GB GD GE
GC GF
GG
GH
GI
ROBERT CARROLL
FOX, D. 1. Jour. Math. Mech., 8 (1959), 197-219 FRIEDLANDER, F. 1. Jour. D i f f . Eqs., 40 (1981), 121-154 FRIEDLANDER, F. and HEINS, A. 2. Jour. D i f f . Eqs., 4 (1968), 460-491 FRIEDMAN, A. 1. S t o c h a s t i c d i f f e r e n t i a l equations and a p p l i c a t i o n s , Vols. 1-2. Academic Press, N.Y. , 1975-76 FRIEOMAN, B. 1. Proc. Conf. D i f f . Eqs., Univ. Maryland, 1956, pp. 209-27h FUSARO, B. 1. Jour. Math. Mech., 1 8 (1969), 603-606 2. Proc. Amer. Math. SOC., 18 (1967), 381-382 FROISSART, M. 1. Jour. Math. Physics, 3 (1962), 922-927 FREUD, G. 1. Orthogonal polynomials, Permagon, N.Y., 1971 GAKHOV, F. 1. Boundary v a l u e problems, Moscow, 1963 GANGOLLI, R. 1. Annals Math., 93 (1971), 1%-165 GASPAR, G. 1. Annals Math., 93 (1971j, 112-118 GASYMOV, M. 1. Trudy L e t n e j S k . S p e k t r a l . Teor. Oper. ..., I z d . Elm, Baku, 1975, pp. 20-45 2. DAN SSSR, 165 (1965), 261-264 GASYMOW, M. and MAGGERRAMOV, A. 3. DAN SSSR, 235 (1977), 259-262 GASYMOV, M. 4. Trudy Mosk. Mat. ObgE., 19 (1968), 41-112 GORLICH, E. and MARKETT, C. 1. Indag. Math., 85A (1982), 161-171 GELFAND, I. and SILOV, G. 1. Generalized f u n c t i o n s , Vols. 1-3, Moscow, 1958 GELFAND, I.and LEVITAN, 8. 2. Izves. Akad. Nauk SSSR, 15 (1951), 309-360 GELFAND, I.and VILENKIN, N. 3. Generalized f u n c t i o n s , Vol. 4, Moscow, 1961 GERMAIN, P . 1. Comm. Pure Appl. Math., 7 (1954), 143-177 GERMAIN, P. and BADER, R. 2. CR Acad. S c i . P a r i s , 231 (1950), 265-270 3. Rend. C i r . Mat. Palermo, 2 (1953), 53-10 GERONIMO, J. 1. Trans. Amer. Math. SOC., 260 (1980), 65-82 GERONIMO, J. and CASE, K. 2 . Jour. Math. Physics, 201 (1979), 299-310 3. Trans. Amer. Math. SOC., 258 (1980), 467-494 GERVER, M. 1. An i n v e r s e problem f o r t h e one dimensional wave equation, I z d . Nauka, Moscow, 1974 2. Geophys. Jour. Royal A s t r . SOC., 21 (19701, 337-357
REFERENCES
GJ
GL
GN
GO
GP
GS GQ
GT GW
HB HC
HD HE
333
GILBERT, R. 1. F u n c t i o n t h e o r e t i c methods i n p a r t i a l d i f f e r e n t i a l e q u a t i o n s , Academic Press, N. Y., 1969 2. S I A M Jour. Math. Anal., 1 (1970), 96-114 3. C o n s t r u c t i v e methods f o r e l l i p t i c equations, S p r i n g e r Lect. Notes 365, 1974 GOKHBERG, I . and KREIN, M. 1. I n t r o d u c t i o n t o t h e t h e o r y o f l i n e a r n o n s e l f a d j o i n t o p e r a t o r s i n H i l b e r t space, Moscow, 1965 2. The t h e o r y o f V o l t e r r a o p e r a t o r s i n H i l b e r t space and a p p l i c a t i o n s , Moscow, 1967 GOKHBERG, I, and FELOMAN, L. 3. C o n v o l u t i o n equations and p r o j e c t i o n methods f o r t h e i r s o l u t i o n , T r a n s l a t i o n s AMS, 1974 GOLDSTEIN, J . 1. P a r t i a l d i f f e r e n t i a l e q u a t i o n s and dynamical systems, Pitman Press, London, 1984, pp. 164-180 2. Q u a r t . Jour. Math., 33 (1982), 303-307 GOPINATH, B. and SONDHI, M. 1. Proc. I E E E , 59 (1971), 383-392 2. B e l l Syst. Tech. Jour. 49 (1970), 1195-1214 GOPINATH, B. 3. J o u r . Acous. SOC. Amer., 49 (1971), 1867-1873 GORBAEUK, M. ?. Funkts. Anal. P r i l o 3 . , 5 (1971), 10-21 GORBACUK, V. and GORBAEUK, M. 2. Trudy L e t n e j 5k. S p e k t r a l . Teor. Oper. ..., I z d . E l m , Baku, 1975, pp. 90-129 3. U k r a i n . Mat. f u r . , 23 (1971), 3-14 GREENE, R. 1. Thesis, New York Univ., 1979 GRIEGO, R. and HERSH, R . 1. Trans. Amer. Math. SOC., 156 (1971), 405-478 GUNTHER, P. 1. B e r i c h t e Verh. Sachs. Akad. Wiss., L e i p z i g , 102 (1957), 1-50 2. Math. Nachrich., 22 (1960), 285-321 GIKHMAN, I. and SKOROKHOD, A. 1. C o n t r o l l e d s t o c h a s t i c processes, S p r i n g e r , N.Y., 1979 2. S t o c h a s t i c d i f f e r e n t i a l equations, Springer, N.Y., 1972 3. Theory o f random processes, Vols. 1-3, Moscow, 1971 HAR I SH-CHANDRA 1. Amer. Jour. Math., 80 (1958), 241-310 and 553-613 HELGASON, S. 1. Advances Math., 5 (1970), 1-154 and 22 (1976), 187-219 2. Jour. Funct. Anal., 17 (1974), 328-353 3. Math. Annalen, 165 (1966), 297-308 4. Amer. Jour. Math., 86 (1964), 565-601 5. Acta Math., 102 (1960), 239-299 6. D i f f e r e n t i a l geometry, L i e groups, and symmetric spaces, Academic Press, N.Y., 1978 7. Groups and geometric a n a l y s i s , Academic Press, N.Y., 1984 H E N R I C I , P. 1. Z e i t . Ang. Math. Phys., 8 (1957), 169-203 HELLWIG, G. 1. Math. Z e i t . , 58 (1953), 337-357 2. Jour. Rat. Mech. Anal., 5 (1956), 395-418
334
HF
HK
HL HM
HO
IA IC ID
JA
JB
JC JD
KB KE KF KG
KH KI
KJ
KL
ROBERT CARROLL
HERSH, R . 1. S p r i n g e r L e c t . Notes 446, 1975, pp. 264-282 2. Jour. D i f f . Eqs., 8 (1970), 570-579 3. Proc. N a t ' l . Acad. S c i . , 63 (1969), 648-654 4. Rocky Mount. Jour. Math., 4 (1974), 443-477 HOOGENBOOM, B. 1. Math. Centrum Amsterdam p r e p r i n t , 1980 HORMANDER, L. 1. The a n a l y s i s o f l i n e a r p a r t i a l d i f f e r e n t i a l o p e r a t o r s , I and 11, Springer, N.Y., 1983 HORVATH, J. 1. T o p o l o g i c a l v e c t o r spaces and d i s t r i b u t i o n s , Addison-Wesley, 1966 HUTSON, V . 1. J o u r . Math. Mech., 14 (1965), 807-819 HUTSON, V. and PYM, J. 2. Proc. London Math. Soc., 24 (1972), 548-576 3. Math. Annalen, 187 (1970), 241-258 4. J o u r . Funct. Anal., 12 (1973), 68-96 INFELD, L. and HULL. T. 1. Rev. Modern-Physics, 23 (1951), 21-68 IKEDA, N. and WATANABE, S. 1. S t o c h a s t i c d i f f e r e n t i a l equations and d i f f u s i o n processes, North-Holland, Amsterdam, 1981 ITO, K. and McKEAN, H. 1. D i f f u s i o n processes and t h e i r sample paths, S p r i n g e r , N.Y. ,1965 JAULENT, M. 1. Jour. Math. Physics, 17 (1976), 1351-1360 2 . Jour. Math. Physics, 23 (1982), 2286-2290 JONES, D. 4. The t h e o r y o f electromagnetism, MacMillan, N.Y., 1964 2. Jour. I n s t . Math. Appl., 26 (1980), 133-141 3. The t h e o r y o f g e n e r a l i z e d f u n c t i o n s , Cambridge Univ. Press,1982 1. Jour. I n s t . Math. Appl., 1 (1965), 226-240 JAZWINSKI, A. 1. S t o c h a s t i c processes and f i l t e r i n g , Academic Press, N.Y., 1970 JEAN, C. and SABATIER, P. 1. Nuovo Cimento, 18A (1973), 105-150 KAC, M. 1. Rocky Mount. Jour. Math., 4 (1974), 497-509 2. Rocky Mount. Jour. Math., 4 (1974), 511-537 KAPLAN, S. 1. B u l l . Amer. Math. SOC. , 70 (1964), 264-268 KAY, I.and MOSES, H. 1. I n v e r s e s c a t t e r i n g papers, 1955-1963, Math. Sci. Press, 1982 KAZARINOFF, N. 1. Trans. Amer. Math. SOC., 1 8 (1955), 305-328 KELLER, J., RUBINOW, S., and GOLDSTEIN, M. 1. J u r . Math. Physics, 4 (1963), 829-832 KONTORovJ , M. and LEBEDEV, N. 1. Zur. Eksp. Teor. Fis., 10 (1938), 1192-1206 KLEIMAN, E. 1. Vest. Mosk. Univ. Mat., 29 (1974), 47-53 KNOWLES, I. 1. Jour. D i f f . Eqs., 40 (1981), 193-216 2. Proc. Royal SOC. Edinburgh, 88 (1981), 329-343
REFERENCES
KL KP
335
KNOWLES, I. and RACE, 0. 3. Proc. Royal SOC. Edinburgh, 85 (1980), 263-289 KOORNWINDER, T. 1. Ark. Mat., 13 (1975), 145-159 2. S I A M Jour. Math. Anal., 5 (1974), 125-137 3. Indag. Math., 34 (1972), 188-191 4. S I A M Jour. Appl. Math. , 25 (1973), 236-246 5. Clebsch-Gordon c o e f f i c i e n t s . . , Math. Centrum Amsterdam prep r i n t , 1981 Fourier-Jacobi trans6. Special o r t h o g o n a l polynomial systems form, Math. Centrum p r e p r i n t , 1985 7. Special f u n c t i o n s ; Group t h e o r e t i c a l aspects and a p p l i c a t i o n s , R e i d e l , 1984, pp. 1-85 8. Theory and a p p l i c a t i o n s o f s p e c i a l f u n c t i o n s , Academic Press, N.Y., 1975, pp. 435-495 9. Indag. Math., 36 (1974), 47-66 and 357-381 KOORNWINDER. T. and SPRINKHUIZEN-KUYPER, I. 10. S I A M Jour. Math. Anal., 9 (1978), 457-483 KOORNWINDER, T. and GREINER, P. 11. Math. Centrum Amsterdam p r e p r i n t , 1983 KREIN, M. 1. DAN SSSR, 76 (1951), 21-24 2. DAN SSSR, 88 (1953), 405-408 3. DAN SSSR, 93 (1953), 617-120 4. Uspekhi Mat. Nauk, 13 (1958), 3-120 5. DAN SSSR, 94 (1954), 13-16 6. DAN SSSR, 97 (1954), 21-24 7. DAN SSSR, 100 (1955), 413-416 8. DAN SSSR, 104 (1955), 637-640 9. DAN SSSR, 105 (1955), 433-436 10. DAN SSSR, 111 (1956), 1167-1170 11. Izves. Akad. Nauk SSSR, 16 (1952), 293-324 KREIN, M. and LANGER, H. 12. DAN SSSR, 258 (1981), 537-541 KREIN, M. and MELIK-ADAMYAN, F. 13. Operator t h e o r y : Advances and a p p l i c a t i o n s , Birkhauser, Basel, 1983, pp. 295-302 14. Funkts. Anal. P r i l o ? , , 41 (1970), 73-75 KAILATH, T. 1. Lectures on Wiener and Kalman f i l t e r i n g , S p r i n g e r , N.Y., 1981 2. Proc. IEEE, 58 (1970), 680-695 3. IEEE Trans. AC-13 (1968), 646-655 KAILATH, T. and FROST, P. 4. IEEE Trans. AC-13 (1968), 655-660 and AC-16 (1971), 217-226 KAILATH, T. and GEESEY, R. 5. IEEE Trans. AC-16 (1971), 720-727 and AC-18 (1973), 435-453 KAILATH, T. 6. S t o c h a s t i c systems . . , R e i d e l , Dordrecht, 1981, pp. 307-350 KAILATH, T., GEESEY, R., and WEINERT, H. 7. IEEE Trans. IT-18 (1972), 341-348 KAILATH, T., V I E I R A , A., and MORF, M. 8. S I A M Review, 20 (1978), 106-119 KAILATH, T., LEVY, B., and LJUNG, L. 9. IEEE Trans. IT-24 (1978), 469-477 KAILATH, T. 10. I E E E Trans. IT-15 (1968), 350-361
.
...
KR
KU
.
336
KU
KV KZ
KAA
KAC LA LB LF
LL
ROBERT CARROLL
KAILATH, T. 11. I E E E Trans. IT-15 (1969), 665-672 '12. I E E E Trans. IT-17 (1971), 530-549 13. B e l l Syst. Tech. J o u r . , 50 (1971), 1487-1494 14. S I A M J o u r . C o n t r o l , 7 (1969), 68-74 15. I E E E Trans. AC-18 (1973), 588-600 16. S I A M Jour. C o n t r o l , 10 (1972), 477-486 KAILATH, T. and DUTTWEILER. D. 17: I E E E Trans. IT-18-(1972), 730-745; IT-19 (19731, 19-37 KAILATH, T. and SEGALL. A. 18: Proc. I E E E D e c i s i o n and C o n t r o l Conf., 1973 KAILATH, T. 19. I E E E Trans, IT-20 (1973), 146-181 KAILATH, T. and LJUNG, L. 20. I E E E Trans. AC-21 (1976), 385-388 KAILATH, T., LJUNG, L., and MORF, M. 21. Advances Math., Supp. 3 (1978), 169-184 KAILATH, T., LEVY, B., LJUNG, L., and MORF, M. 22. S I A M Jour. Appl. Math., 17 (1979), 467-484 KALL IANPUR , G. 1. S t o c h a s t i c f i l t e r i n g t h e o r y , S p r i n g e r , N.Y., 1980 KOLMOGOROV, A. 1. CR Acad. Sci. P a r i s , 208 (1939), 208 2. B u l l . Math., Univ. MOSCOW, 2 (1941), #6 3. DAN SSSR,. 5 (1941) . 4. Foundations o f t h e t h e o r y o f p r o b a b i l i t y , Springer, N.Y., 1933 KALMAN, R. Symp. Ena. Appl. Random Fn. Th. Prob., Wiley, N.Y., 1. Proc. lSt 1963, PD. 270-388 KALMAN, R. and' BUCY, R. 2. Trans. ASME, Ser. O.J. Basic Engin., 83 (1961), 95-107 KRISHNAN, V. 1. N o n l i n e a r f i l t e r i n g and smoothing, Wiley, 1984 LAGNESE, J. 1. S I A M Jour. Math. Anal., 4 (1975), 623-637 2. Jour. Math. Mech., 1 8 (1969), 1195-1201 LANG, S. 1. SL (R), Addison-Wesley, 1975 LAX, P. an$ PHILLIPS, R. 1967 1. S c a t t e r i n g t h e o r y , Academic Press, N.Y., 2. B u l l . Amer. Math. SOC., 2 (1980), 261-295 3. S c a t t e r i n g t h e o r y and automorphic f u n c t i o n s , P r i n c e t o n Univ. Press, 1976 LAX, P. 4. Comm. Pure Appl . Math., 21 (1968), 467-490 LEVITAN, B. 1. Uspekhi Mat. Nauk, 4 (1949), 3-112 2. Uspekhi Mat. Nauk, 6 (1951), 102-143 3. The t h e o r y o f g e n e r a l i z e d t r a n s l a t i o n operators, MOSCOW, 1973 4. Mat. Sbornib, 76 (1968), 239-270 5. Trudy L e t . Sk. S p e k t r a l . Teor. Oper. ..., I z d . E l m , Baku, 1975, pp. 161-169 6. Izves. Akad. Nauk SSSR, 17 (1953), 331-364 and 19 (1955), 3358 7. S e l e c t . Math. Sov., 2 (1982), 379-418
REFERENCES
LL
LN LP
L4 LR LV
MA MB
MC
337
LEVITAN, B. and GASYMOV, M. 8. Russ. Math. Surveys, 19 (1964), 1-63 LEVITAN, B. and SARGSYAN, I. 9. I n t r o d u c t i o n t o s p e c t r a l t h e o r y ..., Moscow, 1970 LEVITAN, 6. 10. I n v e r s e S t u r m - L i o u v i l l e problems, Moscow, 1984 LIEBERSTEIN, H. 1. J o u r . Anal. Math., 6 (1959), 357-379 2. P a c i f i c J o u r . Math., 7 (1959), 1623-1640 LrorJs, J. 1. B u l l . SOC. Math. France, 84 (1956), 9-95 2. Rend. Sem. Mat., F i s . Milano, 28 (1959), 3-16 3. Equations d i f f e r e n t i e l l e s o p & a t i o n n e l l e s , Springer, B e r l i n , 1961 4. J o u r . Math. Mech., 8 (1959), 873-888 LANGER, H. 1. Acta Math. Acad. S c i . Hungar., 21 (1970), 207-224 LOEFFEL, J. 1. Ann. I n s t . H. Poincare', 8 (1968), 339-447 LYANTSE, V . 1. Mat. Sbornik, 61 (1963), 80-120 2. Mat. Sbornik, 64 (1964), 521-561 and 65 (1964), 47-103 3. Rev. Roumaine Math. Pures Appl., 11 (1966), 921-950 and 11871224 MACAEV, V. 1. DAN SSSR, 130 (1960), 499-502 MAGNUS, W., OBERHETTINGER, F., and SONI, R. 1. Formulas and theorems f o r t h e s p e c i a l f u n c t i o n s o f mathematic a l p h y s i c s , Springer, N.Y., 1966 MAGNUS, W., and KOTIN, L. 2. Numer. Math. , 2 (1960), 228-244
MAREENKO, v.
1. Trudy Mosk. Mat. ObJE., 1 (1952), 327-420 and 2 (1953), 3-83 2. Mat. Sbornik, 52 (1960), 739-788 3. The s p e c t r a l t h e o r y o f S t u r m - L i o u v i l l e o p e r a t o r s , Kiev, 1972 4. S t u r m - L i o u v i l l e o p e r a t o r s and t h e i r a p p l i c a t i o n s , Kiev, 1977 LW LANNING, J. and BATTIN, R. 1. Random processes i n automatic c o n t r o l , McGraw-Hill, N.Y., 1956 LEVY, B. and TSITSIKLIS, J . LX 1. L i n e a r e s t i m a t i o n o f s t a t i o n a r y ..., MIT p r e p r i n t , 1983, I E E E Trans. IT2. An i n v e r s e s c a t t e r i n g procedure ..., MIT p r e p r i n t , 1983 LEVY, B., KAILATH, T., and LJUNG, L. 3. Trans. IEEE, AC-24 (1979), 770-774 LEVY, B. and YAGLE, A. 4. The Shur a l g o r i t h m ..., MIT p r e p r i n t 1984 5. A p p l i c a t i o n o f t h e Shur a l g o r i t h m t o t h e i n v e r s e problem ..., MIT p r e p r i n t , 1983 6. A l a y e r s t r i p p i n g s o l u t i o n ..., MIT p r e p r i n t 1983 LEVY, B. 7. A Kalman f i l t e r s o l u t i o n ..., MIT p r e p r i n t 1984 LZ LOEVE, M. 1. P r o b a b i l i t y t h e o r y , Van Nostrand, 1960 LAA LEVINSON, N. 1. Jour. Math. Physics, 25 (1947), 110-119
338
ROBERT CARROLL
LEE, Y. 1. S t a t i s t i c a l t h e o r y of communication, Wiley, N.Y., 1960 LAC LINDQUIST, A. 1. S I A M Jour. C o n t r o l , 12 (1974), 747-754 2. Appl. Math. Optimiz., 1 (1975), 355-373 LAD LJUNG, L. and KAILATH, T. 1. Automatica, 12 (1976), 147-157 MD McBRIDE, E. 1. O b t a i n i n g g e n e r a t i n g f u n c t i o n s , S p r i n g e r , N.Y., 1971 ME MAURIN, K. 1. General e i g e n f u n c t i o n expansions and u n i t a r y r e p r e s e n t a t i o n s of t o p o l o g i c a l groups, Warsaw, 1968 MAURIN, K. and MAURIN, L. 2. S t u d i a Math., 23 (1963), 1-29 MG McLAUGHLIN, J. 1. S I A M Jour. Math. Anal., 7 (1976), 646-661 2. S I A M Jour. Math. Anal., 9 (1978), 395-413 MK MIZONY, M. 1. T r a n s f o r m a t i o n de Laplace-Jacobi, Sem. Univ. Lyon, 1980 2. AlgGbres e t noyaus de c o n v o l u t i o n ..., Publ. Univ. Lyon, 1976 MJ MATVEEV, V. 1. L e t t . Math. Physjcs, 3 (1979), 213-216 and 217-222 2. E v o l u t i o n n o n l i n e a i r e , CNRS, P a r i s , 1980, pp. 247-264 ML MOSES, H. 1. Jour. Math. Physics, 20 (1979), 2047-2053 2. Jour. Math. Physics, 1 8 (1977), 2243-2250 3. S t u d i e s Appl. Math., 58 (1978), 187-207 4. Jour. Math. Physics, 21 (1980), 83-89 5. Jour. Math. Physics, 24 (1983), 2550-2552 MELIK-ADAMYAN, P. MH 1. Izves. Akad. Nauk Armen. SSR, 11 (1976), 291-313 MEL I K- ADAMY AN , F MI 1. Izves. Akad. Nauk Armen. SSR, 12 (1977), 10-13 2. DAN Armen. SSR, 12 (19771, 145-151 MARKETT, C. 1. Proc. Kon. Akad. Wet., 87A (1984), 299-313 2. I n t . S e r i e s Numer. Math., Vol. 65, Birkhauser, Base1 , 1984, pp. 449-462 MP MUSKHEL I S V I L I, N 1. S i n g u l a r i n t e g r a l equations, MOSCOW, 1946 MILLER, W. MN 1. L i e t h e o r y and s p e c i a l f u n c t i o n s , Academic Press, N.Y., 1968 NA NACHBIN, L. 1. L e c t u r e s on t h e t h e o r y o f d i s t r i b u t i o n s , I n s t . F i s . Mat., Univ. Recife, 1964 NAIMARK, M. NB nd 1. L i n e a r d i f f e r e n t i a l o p e r a t o r s , 2 e d i t i o n , Moscow, 1969 2. Trudy Mosk. Mat. Obsc., 3 (1954), 181-270 ND NAYLOR, 0. and CHANG, P. 1. S I A M Jour. Math. Anal., 13 (1982), 1053-1071 2. S I A M Jour. Math. Anal., 8 (1977), 402-411 NEWTON, R. NE 1. S c a t t e r i n g t h e o r y o f waves and p a r t i c l e s , McGraw-Hill, N.Y., 1966 2. Jour. Math. Physics, 21 (1980), 493-505 3. Jour. Math. Physics, 21 (1980), 1698-1715; 22 (1981),2191-2200 LAB
.
REFERENCES
NE
339
NEWTON, 4. 5. 6. 7. 8. 9.
R. Geophys. J o u r . Royal A s t r . SOC., 65 (1981), 191-215 Jour. Math. Physics, 2 3 (1982), 594-604 The complex J plane, Benjamin, N.Y., 1964 Conf. on I n v e r s e S c a t t e r i n g , SIAM, 1983, pp. 1-74 A Fadeev-MarEenko method . . . , p r e p r i n t I n d i a n a Univ. 1984 Remarks on t h e r e l a t i o n between t h e Schrodinger e q u a t i o n and t h e plasma ..., p r e p r i n t I n d i a n a Univ. 1984 10. Jour. Math. Physics, 8 (1967), 1566-1570 11. Jour. Math. Physics, 3 (1962), 75-82 12. Jour. Math. Physics, 23 (1982), 2257-2265 13. Remarks on i n v e r s e s c a t t e r i n g i n one dimension t o appear 14. Physica, 96A (1979), 271-279 OBERHETTINGER, F. 1. Tables o f Bessel t r a n s f o r m s , S p r i n g e r , N.Y., 1972 OBERHETTINGER, F . and H I G G I N S , T. 2. Tables o f Lebedev, Mehler, and g e n e r a l i z e d Mehler transforms, Math. Note 246, Math. Res. Lab., Boeing, 1961 OBERHETTINGER, F. 3. Tables o f M e l l i n t r a n s f o r m s , Springer, 1974 OLEVSKIJ, M 1. DAN SSSR, 93 (1956), 975-978 OVSYANIKOV, L. 1. DAN SSSR, 91 (1953), 457-460 OLVER, F. 1. Asymptotics and s p e c i a l f u n c t i o n s , Academic Press, N.Y., 1974 ORTEGA, J. 1. Numerical a n a l y s i s , Academic Press, N.Y., 1972 ORTON, M. 1. S I A M Jour. Math. Anal., 4 (1973), 656-670 2. Proc. Royal SOC. Edinburgh, 76A (1977), 193-208 PELLER, V . and KHRUSCEV, S . 1. Uspekhi Mat. Nauk, 37 (1982), 53-124 PAPOULIS, A. 1. The F o u r i e r i n t e g r a l and i t s a p p l i c a t i o n s , McGraw-Hill, 1962 2. P r o b a b i l i t y , random v a r i a b l e s , and s t o c h a s t i c processes, McGraw-Hill , N.Y., 1965 PAYNE, 1. 1. I n p r o p e r l y posed problems i n p a r t i a l d i f f e r e n t i a l equations, S I A M Reg. Conf. S e r i e s Appl. Math., 22, 1975 2. Q u a r t . Appl. Math., 19 (1952), 197-204 3. Jour. Math. Physics, 38 (1959), 145-149 PAYNE, L. and SATHER, 0. 4. Duke Math. Jour., 34 (1967), 147-162 POVZNER, A. 1. Mat. Sbornik, 23 (1948), 3-52 PROTTER, M. and WEINBERGER, H. 1. Maximum p r i n c i p l e s i n d i f f e r e n t i a l equations, P r e n t i c e - H a l l , 1967 PALEY, R. and WIENER, N. 1. F o u r i e r t r a n s f o r m s i n t h e complex domain, C o l l o q . Pub. AMS, 1934 PRIESTLY, M. 1. S p e c t r a l a n a l y s i s and t i m e s e r i e s , Vols. 1-2, Academic Press, N.y., 1981
...,
OA
oc OE
OF OG
OD PA
PE
PB
PC
PD PF
PG
340
PH RA RB RC
RE RF RD RG
RJ
RK
RM RN RP RQ
ROBERT CARROLL PINSKER, M. 1. Information ... random variables and processes, Holden-Day, San Francisco, 1964 RAMM, A. 1. Theory and applications of some new classes o f integral equations, Springer, N.Y., 1980 REED, M. and SIMON, B. 1. Methods of modern mathematical physics, Vols. 1-4, Academic Press, N.Y., 1975, 1978, 1979 ROOS, B. and SANGREN, N. 1. Jour. Math. Physics, 3 (1962), 882-890 2. Proc. Amer. Math. SOC., 12 (1961), 468-476 3. Jour. Math. Physics, 4 (1963), 999-1008 ROBIN, L. 1. Fonctions sphe'riques de Legendre et fonctions sph&oidales, Vols. 1-3, Gauthier-Villars, Paris, 1957-59 REGGE, T. 1. Nuovo Cimento, 14 (1959), 951-976 ROSENCRANS, S. 1. Proc. Amer. Math. SOC., 28 (1971), 223-228 2. Jour. Diff. Eqs. , 13 (1973), 457-467 ROBINSON, E. 1. Time series in geophysics, Survey article, 1981 2. Multichannel time series analysis with digital computer programs, Holden-Day, San Francisco, 1967 3. Physical applications of stationary time series, MacMillan, N.Y., 1980 4. Statistical communication and detection, Hafner, N.Y. , 1967 ROBINSON, E. and SILVIA, M. 5. Deconvolutions o f geophysical time series in the exploration for oil and natural gas, Elsevier, Amsterdam, 1979 ROBINSON, E. and TREITEL, S. 6. Geophysical signal analysis, Prentice-Hall , 1980 ROONEY, P. 1. Canad. Jour. Math., 6 (1972), 1198-1216 2. Applicable Anal., 8 (1978), 175-184 3. Bull. London Math. SOC., 11 (1979), 45-48 4. Canad. Jour. Math., 32 (1980), 1021-1044 5. Canad. Jour. Math., 2 3 (1980), 321-325 ROSENBLOOM, P. 1. Numerical analysis and partial differential equations, Wiley, N.Y., 1958 2. Proc. Symp. Fluid Dynam. Appl. Math. , Gordon-Breach, N.Y. , 1962, pp. 67-77 RUDIN, W. 1. Real and complex analysis, McGraw-Hill, N.Y., 1966 RICHTMYER, R. 1. Principles of advanced mathematical physics, Vols. 1-2, Springer, N.Y. , 1978 ROSENBLATT, M 1. Random processes, Springer, N.Y., 1974 ROZANOV, Yu. 1. Statistical random processes, Holden-Day, S.F. , 1967 2. Innovations processes, Halsted-Wiley, N.Y., 1977 3. Markov random fields, Springer, N.Y., 1982
REFERENCES
RO RS
RT SA
SE
SB SG
SJ
so SP
341
R I E S Z , F. and SZ. NAGY, B. 1. Leqons d ' a n a l y s e f o n c t i o n n e l l e , Budapest, 1953 RAPHAEL, L. 1. Equisummability o f e i g e n f u n c t i o n ..., t o appear RAPHAEL, L. and KON, M. 2. J o u r . D i f f . Eqs., 50 (1983), 391-406 RAINVILLE, E . 1. S p e c i a l f u n c t i o n s , MacMillan, N.Y., 1960 SABATIER, P. 1. CR Acad. S c i . P a r i s , 278 (1974), 545-547 and 603-606 2. J o u r . Math. Physics, 19 (1978), 2410-2425 1978 3. ( E d i t o r ) A p p l i e d i n v e r s e problems, Springer, N.Y., 4. Geophysics, 43 (1977), 115-137 5. Geoohys. J o u r . Royal A s t r . S O C . , 48 (1977), 415-441;443-469 6. Some t o p i c s on i n v e r s i o n t h e o r y ..., I n t . Symp. I 1 1 Posed Probs., t o appear 7. On some s p e c t r a l problems and i s o s p e c t r a l e v o l u t i o n s ..., L e t t . Nuovo Cimento, t o appear 8. I n v e r s e and i m p r o p e r l y posed problems ..., Akad. Verlag, Berl i n , 1979, pp. 223-231 9. ( E d i t o r ) P r o b l h e s i n v e r s e s ; 6 v o l u t i o n n o n l i n g a i r e , CNRS, P a r i s , 1980 10. J o u r . Math. Physics, 8 (1967), 1957-1972 11. Jour. Math. Physics, 7 (1966), 2079-2091 12. J o u r . Math. Physics, 12 (1971), 1303-1326 13. Jour. Math. Physics, 9 (1968), 1241-1258 14. Conf. I n v e r s e S c a t t e r i n g , SIAM, 1983, pp. 75-99 15. Jour. Math. Physics, 7 (1966), 1515-1531 16. Jour. Math. Physics, 8 (1967), 905-918 17. T h e o r e t i c a l c o n s i d e r a t i o n s f o r i n v e r s e s c a t t e r i n g , Radio Sci., t o appear 18. C r i t i c a l a n a l y s i s o f t h e mathematical methods ..., t o appear SANTOSA, F. 1. Thesis, Univ. o f I l l i n o i s , 1980 2. Geophys. J o u r . Royal A s t r . SOC., 70 (1982), 229-243 SANTOSA, F. and SCHWETLICK, H. 3. Wave Motion, 4 (1982), 99-110 SANTOSA, F. and SYMES, W. 4. Proc. IGARSS, 1983 5. D e t e r m i n a t i o n o f l a y e r e d a c o u s t i c ..., t o appear SANTOSA, F., SYMES, W . , and PAO, Y. 6. I n v e r s e problems o f a c o u s t i c and e l a s t i c waves, SIAM, 1984 SAKNOVI~. L. 1. Mat. Sbornik, 55 (1961), 347-360 2. Mat. Sbornik, 46 (1958), 61-76 SCHINDLER, S. 1. Trans. Amer. Math. SOC., 153 (1971), 257-291 SCHWARTZ, L. 1. T h e b r i e des d i s t r i b u t i o n s , Herrnann, P a r i s , 1966 2. Ann. I n s t . F o u r i e r , 7-8, 1957-58, 1-141; 1-209 3. Jour. Anal. Math., 4 (1954-55), 88-148 4. Ann. I n s t . F o u r i e r , 2 (1950), 19-49 SIERSMA, J. 1. Thesis, Groningen, 1979 SILVER, H. 1. Thesis, Univ. I l l i n o i s , 1973
342
SQ
SR
su
sw sx SY
sz STA
STB STE
STF
ROBERT CARROLL
SHOWALTER, R . 1. Indiana Univ. Math. J o u r . , 23 (1974), 655-677 2. H i l b e r t space methods f o r p a r t i a l d i f f e r e n t i a l equations, P i t man Press, London, 1977 SMIRNOV, M. 1. Degenerate e l l i p t i c and hyperbolic problems, MOSCOW, 1966 2. Equations of mixed type, Moscow, 1970 3. Linear equations o f mathematical physics, MOSCOW, 1964, Chap.7 SNEDDON, I . 1 . The use of i n t e g r a l transforms, McGraw-Hill , N . Y . , 1972 2. Springer Lect. Notes, 457, 1975, pp. 37-79 3. Mixed boundary value problems i n p o t e n t i a l theory, North-Holland, Amsterdam, 1966 4. Glasgow Math. J o u r . , 1968, pp. 67-77 SOLOLEV. A. l.-Trudy Let. S k . S p e k t r a l . Teor. Oper ...., Izd. Elm, Baku, 1975, DD. 72-77 2. Izves. Akad. Nauk Azerbai?. SSR, 3 (1972), 74-78 SOLOMON, J . 1. Jour. Diff. Eqs., 10 (1971), 219-239 2. US Naval Ord. Lab. , NOLTR 68-105, 1968 SPRINKHUIZEN-KUYPER, I . 1. Jour. Math. Anal. A p p l . , 72 (1979), 674-702 2. Math. Centrum Amsterdam p r e p r i n t 1979 3. SIAM Jour. Math. Anal., 7 (1976), 501-518 STA~EVSKAYA, v. 1. DAN SSSR, 93 (1953), 409-412yy 2. UE. Zapiski Kharkov. Mat. Obsc., 25 (1957), 49-86 SHARPE, C. 1 . Q u a r t . Appl. Math., 21 (1963), 105-120 SHARPE, C. and HEIM, D. 2. IEEE Trans. CT-14 (1968), 394-403 STONE, M. 1. Math. Zeit., 28 (1928), 654-676 SUSCHOWK, 0. 1. Arch. Rat. Mech. Anal., 11 (19621, 50-61 SYMES, W. 1. Jour. Math. Anal. Appl. , 71 (1979), 379-402 t o appear 2. I n v e r t i b i l i t y of the t r a c e o p e r a t o r 3. Jour. Math. Anal. A p p l . , 94 (1983), 435-453 4. SIAM Jour. Math. Anal., 12 (1981), 421-453 5. SIAM Jour. Numer. Anal., 17 (1980), 707-732 6. Math. Meth. Appl. S c i . , 5 (1983), 131-152 7. Jour. Math. Anal. A p p l . , 70 (1979), 101-110 8. Computational inversion of r e f l e c t i o n data . , t o appear 9. Deconvolution with nondecaying kernels, t o appear 10. Computational continuation f o r s o l u t i o n s of wave equations, t o appear SYMES, W. and COEN, S. 11. Complete inversion of r e f l e c t i o n d a t a t o appear SYMES, W. and SACKS, P . 12. Uniqueness and continuous dependence f o r a multidimensional hyperbolic i n v e r s e problem, t o appear SHINBROT, M. 1. IRE Trans. 11-3 (1957), 220-225 2. Arch. Rat. Mech. Anal., 37 (1970), 344-362
...,
..
...,
STH
REFERENCES
STH
343
SHINBROT, M. 3. Q u a r t . Appl. Math. , 28 (1970), 15-36 4. Jour. Math. Mech., 1 8 (1969), 587-601 STJ SIEGERT, A. 1. Trans. I R E , IT-3 (1957), 38-43 STK SRIVASTAVA, H. and MANOCHA, H. 1. A t r e a t i s e on g e n e r a t i n g f u n c t i o n s , Halsted-Wiley, N.Y., 1984 STL SZEGO, G. 1. Orthogonal polynomials, AMS C o l l o q . Pub 23, 1967 STM SARWAR, A. 1. A n a l y t i c a l r e c o n s t r u c t i o n o f a c o u s t i c impedance ..., t o appear 2. M o d i f i e d Gelfand-Levi t a n i n v e r s e s c a t t e r i n g t e c h n i q u e . . . , t o appear TAKAHASHI. R. TA 1. B u l l . SOC. Math. France, 91 (1963), 289-433 TYSSEN. M. TC 1. B u l l . SOC. Royal S c i . Liege, 26 (1957), 87-96 2. Mem. Sac. Royal Liege, 6 (1961), 7-32 TE TITCHMARSH, E. 1. I n t r o d u c t i o n t o t h e t h e o r y o f F o u r i e r i n t e g r a l s , Oxford, 1937 2. E i g e n f u n c t i o n expansions a s s o c i a t e d w i t h second o r d e r d i f f e r e n t i a l equations, Oxford, 1962 3. The t h e o r y o f f u n c t i o n s , Oxford, 1932 TF T K A ~ E N K O , v. 1. S i b i r s k . Mat. h-., 20 (1979), 152-163 TREVES. F. TH 1. I n t r o d u c t i o n t o p s e u d o d i f f e r e n t i a l and F o u r i e r i n t e g r a l operat o r s , Plenum Press, N.Y., 1980 2. T o p o l o g i c a l v e c t o r spaces, d i s t r i b u t i o n s , and k e r n e l s , Academi c Press. N.Y.. 1967 3. B a s i c 1 i n e a r p a r t i a l d i f f e r e n t i a l equations, Academic Press, N.Y.. 1975 TG TRAVIS, C. 1. Trans. Amer. Math. SOC , 216 (1976), 327-336 TJ TRIMECHE, K. 1. Jour. Math. Pures Appl , 60 (1981), 51-98 2. Rev. Fac. S c i . Tunis, (1981), 7-14 3. Sem. Anal. Harmonique, Tunis, 1979-80 TL TROMBI, P. and VARADARAJAN, V . 1. Annals Math. , 94 (1971 , 246-303 TM TRUESDELL, C . 1. A - u n i f i e d t h e o r y o f s p e c i a l f u n c t i o n s , P r i n c e t o n , 1948 TO TIWARI. U. and PANDEY. J. 1: Rocky Mount. Jour. Math., 10 (1980), 401-408 VA VEKUA. I . 1. New methods f o r s o l v i n g e l l i p t i c equations, North-Holland, Amsterdam, 1967 2. Mat. Sbornik, 31 (1952), 217-314 3. DAN SSSR, 100 (1955), 197-200 VD VOLK, V. 1. DAN SSSR, 152 (1963), 259-261 2. Uspekhi Mat. Nauk, 8 (1953), 141-151 VF VILENKIN, N. 1. S p e c i a l f u n c t i o n s and t h e t h e o r y o f group r e p r e s e n t a t i o n s , MOSCOW, 1965
344
WA WB
wc WE WF WG
WH WI
W J
WM
wo
WP
WR
ROBERT CARROLL WALKER , J . 1. Thesis, Univ. Texas, 1980 WALKER, W. 1. Proc. Amer. Math. SOC., 42 (1974), 495-500 2. Proc. Amer. Math. SOC., 54 (1976), 73-79 WALTER, W. 1. Math. Z e i t . , 67 (1957), 361-376 WANG, C . 1. Thesis, Rutgers Univ., 1964 WARE, J . and AKI, K. 1. Jour. Acous. SOC. Amer., 45 (1969), 911-921 WARNER, G. 1. Harmonic a n a l y s i s on semisimple L i e groups, Vols. 1-2, S p r i n ger, N.Y., 1972 WATSON, G. 1. A t r e a t i s e on t h e t h e o r y o f Bessel f u n c t i o n s , Cambridge, 1944 WEINSTEIN, A. 1. B u l l . Acad. Royal Belgique, 37 (1951), 348-358 2. Q u a r t . Appl. Math., 5 (1948), 429-444 3. Trans. Amer. Math. SOC., 63 (1948), 342-354 4. Naval Ord. Lab. Rept. 1132, 73-82, 1950 5. B u l l . Amer. Math. SOC., 59 (1953), 20-38 6. Corn. Pure Appl. Math., 7 (1954), 105-116 7. CR Acad. Sci. P a r i s , 234 (1952), 2584-2585 8. Proc. F i f t h Symp. Appl. Math., McGraw-Hill, 1954, pp. 137-147 9. Summa B r a s i l . Math., 3 (1955), 125-147 10. CR Acad. Sci. P a r i s , 243 (1956), 1193 11. Ann. Mat. Pura Appl. , 43 (1957), 325-340 12. Proc. Symp. F l u i d Dyn. Appl. Math., Gordon-Breach, N.Y., 1962, pp. 29-49 13. Ann. Mat. Pura Appl., 49 (1960), 349-364 14. Ann. Mat. Pura Appl , 60 (1962) , 87-91 WEISNER, L. 1. Canad. Jour. Math., 11 (19591, 148-155 2. Canad. Jour. Math., 11 (1959), 141-147 3. P a c i f i c Jour. Math., 5 (1955), 1033-1037 WHEELER, J. 1. S t u d i e s Math. Physics, Princeton, 7976, pp. 351-422 WIENER, N. 1. E x t r a p o l a t i o n , i n t e r p o l a t i o n , and smoothing o f s t a t i o n a r y t i m e s e r i e s , MIT Press, 1949 2. The F o u r i e r i n t e g r a l and c e r t a i n o f i t s a p p l i c a t i o n s , Cambridge Univ. Press, 1933 WIENER, N. and MASANI, P. 3. Acta Math., 98 (1957), 111-150; 99 (1958), 93-137 WIENER, N. and HOPF, E. 4. Proc. Pruss. Acad. Math. Physics Ser., 1931, 696 WONG, E. and HAJEK, B. 1. S t o c h a s t i c processes i n e n g i n e e r i n g systems, Springer, N.Y., 1984 WONG, E. 2. Annals Math. S t a t . , 40 (1969), 1625-1634 WONG, E. and ZAKAI, M. 3. Z e i t . klahrschein, ver. Geb., 29 (1974), 109-122 WILCOX, c. 1. S I A M Review, 6 (1964), 148-165
.
REFERENCES
ws WT
wx YA YB
YC YO
wu YE ZB
zc ZD
WONHAM, W. 1. SIAM J o u r . C o n t r o l , 2 (1965), 347-369 2. SIAM Jour. Control , 6 ( 1 9 6 8 ) , 681-697 WILLEMS, J. 1 . IEEE Trans. AC-16 (1971), 621-634 WIMP, J . 1. Glasnik Mat., 6 (1971), 67-70 2. Proc. Edinburgh Mat. S a c . , 14 (1964), 33-40 WHITING, B. 1 . D i f f e r e n t i a l Equations, North-Holland, Amsterdam, 1984, p p . 561-570 2. DAMTP p r e p r i n t , Cambridge, 1982 YOSIDA, K. 1. Functional a n a l y s i s , S p r i n g e r , N . Y . , 1965 YOUNG, E. 1 . J o u r . Math. Anal. Appl., 16 (1966), 355-362 2. J o u r . D i f f . Eqs., 3 (1967), 522-545 3. Compos. Math., 23 (1971), 297-306 4. Ann. Mat. Pura A p p l . , 85 (1970), 357-367 5. J o u r . Math. Mech., 1 8 (1969), 1167-1175 YADRENKO, M. 1 . S p e c t r a l t h e o r y o f random f i e l d s , Kiev, 1980 YAGLOM, A . 1 . S t a t i o n a r y random f u n c t i o n s , Prentice-Hall , 1962 WOHLERS, M. 1 . IEEE Trans. CT-13 (1966), 356-444 YOULA, D. 1. IEEE Trans. CT-11 (1964), 363-372 ZEMANIAN, A . 1 . Generalized i n t e g r a l t r a n s f o r m s , I n t e r s c i e n c e , N.Y. , 1968 2. SIAM Jour. Appl. Math., 1 4 (1966), 41-59 3. Math. Proc. Cambridge P h i l . S O C . , 77 (1975), 139-143 ZADEH, A. and RAGAZZINI, J . 1 . J o u r . Appl. Physics, 21 (1950), 645-655 ZHENG, W. 1. J o u r . Math. Physics, 25 (1984), 88-90
345
This Page Intentionally Left Blank
INDEX
Abel t r a n s f o r m , 69 a b s o l u t e l y continuous, 147 a n a l y t i c c o n t i n u a t i o n , 142, 150, 181, 202 a n a l y t i c p o t e n t i a l , 40 a n a l y t i c representation, 7 a n t i c a u s a l , 162, 291 a u t o c o r r e l a t i o n , 232 a u t o c o r r e l a t i o n f u n c t i o n , 235 Banach-Steinhaus theorem, 6, 22 band extension, 316 b a r r e l e d space, 6 Bateman i n t e g r a l , 67 B e l l m a n - K r e i n - S i e g e r t i d e n t i t y , 243, 247, 261 Bergman o p e r a t o r , 188 Bergman-Gil b e r t o p e r a t o r , 171 Bessel i n e q u a l i t y , 214 Bessel process, 305 b i n d i n g enercjies, 128 Bochner i n t e g r a l , 304 boundary values of a n a l y t i c f u n c t i o n , 3, 7 bound s t a t e , 33, 127 Brownian motion, 236 c a n o n i c a l equations, 308 c a n o n i c a l f a c t o r i z a t i o n , 243 Cauchy problem, 15, 119 Cauchy r e p r e s e n t a t i o n , 7, 12 causal, 161 causal ity, 296 causal f i l t e r , 239 Cholesky r e l a t i o n s , 286 Chudov system, 282 completeness, 42, 127 complex a n g u l a r momentum, 37 complex Riemann f u n c t i o n , 189 c o n d i t i o n a l p r o b a b i l it y , 237 continuous i n p r o b a b i l i t y , 231 continuous spectrum, 75, 127 convol u t i on, 5, c o u n t a b l e union topology, 22 Coulomb p o t e n t i a l , 205 covariance, 232 Crum t r a n s f o r m , 275 D a r b o u x - C h r i s t o f f e l formula, 107, 215, 249, 251, 263 347
348
ROBERT CARROLL
Oarboux transformation, 300 deBranges p a i r , 314 deBranges space, 314 deconvolution, 289 d e l t a function, 4 differential transmutation , 301 d i f f u s i o n transform, 305 d i s c r e t e Gelfand-Levitan equation, 211 Oirac system, 317 d i r e c t i n g f u n c t i o n a l , 309 d i s t r i b u t i on, 3 domain of dependence, 291 domain of influence, 147 downward continuation, 286, 296 d u a l i t y , 4, 5 eigenfunction, 105 Erdelyi-Kober operators, 104 entropy, 316 Euler equation, 164 Euler's i n t e g r a l , 68 Euler- Poi sson- Oarboux equation , 111 even innovations, 254 evolution operator, 246 expectation, 231 exponential type, 12 e x t e r i o r transmutation, 172 f a c t o r i z a t i o n , 121, 148, 157, 239 f i l t e r i n g , 238 f i l t r a t i o n , 306 Fourier i n t e g r a l , 8 Fourier-Jacobi transform, 69 Fourier type o p e r a t o r , 51, 147 Fredholm a l t e r n a t i v e , 289 Fredholm equation, 242 Fredholm resol vant, 242 f r e e J o s t s o l u t i o n , 39 f r e e measure, 180 fundamental system of neighborhoods, 4 Gaussian d i s t r i b u t i o n , 231 Gaussian process, 236 Gelfand-Levitan (G-L) equation, 120, 129, 187, 204, 279 generating function, 195 generalized convolution, 82, 148, 154, 186 generalized Fourier transform, 12 generalized a x i a l l y symmetric p o t e n t i a l theory, 104 generalized s p e c t r a l function, 22 generalized t r a n s l a t i o n , 23, 80, 106, 148, 153, 183 Goursat problem, 16, 18, 122, 175, 211, 311 Green's function, 16, 35, 40, 206 Hahn-Banach theorem, 1 3 Hankel operator , 252 Hankel transform, 60, 91, 109, 271 Hardy space, 314
INDEX
Harish transform, 70 harmonic representation, 7 Heavyside function, 4 Hi 1 bert problem, 159 Hi1 bert transform, 153 homogeneous, 270 hyperfunction, 3 impedance, 276, 317 impulse response, 147, 276, 317 indicia1 equation, 74 innovations, 244 interior transmutation, 177 interpolation, 195 intertwining, 21 inverse problem, 276 irregular singular point, 75 isospectral, 261 Ito calculus, 305 Ito process, 307 isotropic, 270 Jacobi functions, 61 Jost function, 56, 126, 196 Jost solution, 14, 29, 38, 60, 205 Kalman-Bucy equation, 246 Kalman-Bucy filtering, 244 Kontorovic-Lebedev (K-L) technique, 147, 149, 179, 207 kernel polynomial, 215 Krein functions, 208, 249, 251, 255 Krein-Levinson recursions, 248, 259 Kummer's function, 205 Lame moduli, 286 Laplace-Be1trami operator, 59 Laplace transform, 281 layer stripping, 285 Lax-Phillips scattering, 316 least squares estimator, 238 Lebesgue integral , 6 Legendre function, 62 Lie groups, 70 locally convex space, 4 Lornmel function, 192 Marcenko (M) equation, 136, 146, 158, 171 Markov inequality, 232 Markov process, 237 martingale, 237 matrizant, 309 measurable, 231 mean square continuous, 232 mean square integral, 232 Mehler theory, 2 Mcllin transform, 70, 140
349
350
ROBERT CARROLL
me t r izable, 5 moment f u n c t i o n a l , 209
Neumann series, 20 non -anticip ativ e f i l t e r , 239 non-destructive e v a l u a t i o n , 288 obse rv ation s , 241 odd in nov ation s , 254 one s ided d e l t a f u n c t i o n , 41, 44, 150, 292 order, 3 orthogonal increments, 233 Paley-Wiener theorem, 10 , 1 2, 71, 76 Parseval r e l a t i o n , 9 , 23, 73, 77, 314 phase s h i f t , 128 Poisson process, 237, 303 p o s i t i v e f u n c t i o n a l , 27 p o t e n t i a l , 14 Povzner-Levi tan r e p r e s e n t a t i o n , 128 power spectrum, 235 p r o b a b i l i t y d i s t r i b u t i o n , 231 q u a d r a t i c f u n c t i o n a l , 160 r a d i a t i o n boundary c o n d i t i o n , 289 Radon transform, 70 random evo lution , 303 random f i e l d , 270 random time, 303 random v a r i a b l e , 231 r a p i d l y decreas in g, 5 r e f l e c t i o n c o e f f i c i e n t , 54 Regge p oles, 40 regularization, 6 r e g u l a r s i n g u l a r p o i n t , 74 r e g u l a r g eneralized f u n c t i o n , 22 r e g u l a r s o l u t i o n , 14, 38 reproducing ker nel, 215, 251, 262, 312 r e so l vant k er nel, 35 r e v e r s e G-L equation , 120 Ri c c ati equation, 246, 260, 273, 302 Riemann fun ction , 16, 17, 82, 278 Riemann-Liouville i n t e g r a l , 132, 136 Riemann problem, 142, 159 s c a t t e r i n g matrix , 159 second o r d e r pro ces s, 231 seminorm, 4 se pa rable, 231 s h e a r modulus, 276 sideways Cauchy problem, 289 s i g n a l , 241 smoothing, 241 Sobolev i d e n t i t y , 248, 261 s o l i t o n , 302
INDEX
Sommerfeld r a d i a t i o n condition, 171 spectral d e n s i t y , 279 s p e c t r a l innovations, 259 s p e c t r a l measure, 2 7 , 37, 232 spherical functions, 14, 59 s p e c t r a l process, 233 spherical transform, 70 s p l i t t i n g , 290 s t a b i l i t y , 282, 292 standard p r o p e r t i e s , 137 s t a t i o n a r y , 232 s t o c h a s t i c d i f f e r e n t i a l equation, 305 s t o c h a s t i c geometry, 264 s t o c h a s t i c i n t e g r a l , 236, 306 s t o c h a s t i c process, 231 s t r i c t inductive l i m i t , 4 s t r i n g equation, 261 strong s i n g u l a r i t y , 59 Struve function , 7 97 support, 3 , 5 tempered d i s t r i b u t i o n , 5 t e s t function, 4 t h r e e dimensional problems, 159, 286 Toepl i t z kernel, 249 tomography, 288 t r a c e , 161 transmission c o e f f i c i e n t , 54 transmission d a t a , 288 transmission l i n e , 285, 316 transmutation, 15 t r a n s p a r a n t p o t e n t i a l , 57 t r a v e l time, 276 t r i a n q u l a r i t y theorems, 138 two sided d e l t a function, 41, 150, 292 unitary operator, 308 variance, 231 v a r i a t i o n a l argument, 162 Vekua r e p r e s e n t a t i o n , 188 Volterra operator, 20 weak convergence, 6 Hey1 f r a c t i o n a l i n t e g r a l , 136 white noise, 235 white noise equation, 307 white noise i n t e g r a l , 237 Whittaker transform, 207 wide sense, 232 Wiener algebra, 314 Wiener f i l t e r , 240 Wiener-Hopf equation, 242 Yukawa p o t e n t i a l , 40 2-transform, 289
351
This Page Intentionally Left Blank