Gharles
University
2nd International
of Prague
- Faculty
of Science
Symposium "Goleoid Gephalopods Through Time" Contents:
Abstracts Marek J. & Ko5t'6kM.: Coleoidresearchin Bohemia-a brief historicalview....... ............................2 Arkhipkin A. & Laptikhovsky V.: Allopatric speciation of the teuthid fauna on the shelf and slope of Bandel K.& StinnesbeckW.: Naefia WETZEL, 1930from QuriquinaFormationMaastrichtian),a relativeof t h e S p i r u l i d a( C o l e o i d aC, e p h a l o p o d a ) ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. 1. . . BaraboshkinE. & MutterloseJ.: The Late Hauterivian- Barremianbelemnitesuccessionof the Russian Bello G.: Cladisticanalysisof the Sepiolinae(Cephalopoda: Sepiolidae) basedon the hectocotylus........... ........24 Boletzky S. v: No hands but arms: The morphological and functional diversification of brachial appendages in the evolutionof coleoidcephalopods. ................26 Byern J.v., Rudoll L., Gruber D. & Klepal W.: Comparison of adhesiveorgan betweenldiosepius sp. and Euprmna Byern J.v.: Pharmacologicaland histochemical examination of the Vena cephalicaof Sepia fficinatis L. Byem J., Niirnberger, S. & Shigeno, S.: Distribution pattern of a minimalist new records for ldiosepius e ,e p h a l o p o d a ) . . . . . . . . . . . . . . . . . . b i s e r i a l i s( I d i o s e p i i d a C ......................38 DeickertA.: Multiple spawningin Sepiolaffinis (Cephalopoda:Sepiolidae)... .........44 DoguzhaevaL., DonovanD. & Mutvei H.: The rostrum,conothecaand pro-ostracumin the Jurassiccoleoid Belemnoteuth,s PEARCE from Wiltshire,England.... .............-.. 45 DoguzhaevaL. & Mutvei H.; The original compositionof the gladiusin the Aptian plesioteuhtid Nesisoteuthis, CentralRussia,basedon its ultrastructure.................. .............. 50 DoguzhaevaL., Mutvei H. & Summesberger H.: A late Triassiccoleoid from the AustrianAlps: The proDunca E. & DoguzhaevaL.:Analysis of growth incrementsin rostraof Middle Jurassicbelemnite M e g a t e u t h ifsr o m G e r m a n y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. .0. . Dzyuba O. S.: Systematicsand phylogenyof the boreal family Cylindroteuthidae:Problemssolvedand F u c h sD . : A b o u tt h ep h y l o g e n yo n t h e C o 1 e o i d e a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. .8. . FuchsD. & Wamke K.: Fossil recordand DNA-Sequences:a working hypothesisaboutthe time of origin of D e c a b r a c h iaan dV a m p y r o p o d a . . . . . . . . . . . . . . . . . . . . . . . . . . 7. .0. . Hern6ndez-GarciaV. & Caballero F. B.: Can the bathymetric distribution of cephalopodsbe studied with commercialfishinggears?........... ......j2 GiordanoD., BusalacchiB., ProfetaA .,PerdichizziF., PerdichizziA. & Rinelli P.:Abundancetrend of Octopus vulgaris CUVIER, 1797 andEledone cirrhosa (LAMARCK, I 798) in the southern l editerranean).................. TyrrheniaS n e a( C e n t r aM ...................77 Ko5t'6kM.: Phylogenyof PraeactinocamaxNAIDIN (Belemnitellidae,Upper Cretaceous).. .......80 Ko5t'6kM. & WieseF.: Cenomanian Coniacian(Upper Cretaceous)belemnitelliddistributionand belemniteeventsin the EastEuropeanProvince....... .................. 85 Kuba M., ZulloL. & HochnerB.: Non associativelearningin the common octopus(Octopusvulgaris)............89 MazuchM. & Ko5t'6kM.: Rareevidences of sharkpredationin UpperCretaceous belemnites.... ...................-..92 MutterloseJ. & RexfortA.: Stableisotopesignaturesof Cretaceousbelemnites:The approachof a Nitdl M.-T., GeyerS. & Miiller G.B.:The cephalopod embryo:Testing3D visualizationmethods..................... 95 Rexfort A. & MutterloseJ.: Oxygen isotopesof Sepiafficinalis implicationsfor fossil cephalopodsfudies..-..96 Rogov M. & Bizikow.: New dataon Middle Jurassic- Lower CretaceousBelemnotheutidaeof Russia. Their habit andpossiblemode of life.. ................... 97 SeibertzE. & SpaethCh.: Meso- and neohibolitidbelemnitesfrom the Albian (lower Cretaceous)of NE SchildhauerS., Fuchs D. & Warnke K.: New morphological and functional data on the fork in the cuttleboneof Sepiafficinalis..... .... 103 Strugnell J., JacksonJ., DrummondA.J. & CooperA.A.: Divergencetime estimatesfor major cephalopod groups:Evidencefrom multiple9enes............ .....105 SuwanmalaJ., Byern J.v. & NabhitabhataJ.: Observationof Idiosepiuspygmaeus (Cephalopoda, Idiosepiidae) at Klong Bangrong,PhuketIsland,Thailand....... ...................106 WarnkeK., Keupp H. & Boletzky S.v.:The < Fossil DibranchiateCephalopods> byAdolf Naef a Weis R. & DelsateD.: The mysteriousorigin of the belemnites:New recordsfrom the Hettangianof B e l g i u ma n dL u x e m b o u r g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .l.1. .l .
2"'tInternationalSltryp6sirnt- Coleoid cepl'Lalopods Tltrough Time - Prague 2005
Editorial Charles University was foundedon the 7th of April 1348 by a charterof CharlesIV, King of Bohemia and Emperor of the Holy Roman Empire. In this way one of the three great ideas of Christian medieval times - universita.r- was fulfilled. Thanks to Charles' foresight and his good relationswith PopeClementVI, the newly foundeduniversityhad four faculties- theological,law, to medievalconceptsof a completeuniversity.The medicaland arts- a patternwhich corresponded universitywas basedon the Sorbonnemodel and it is the oldestuniversityin CentralEurope. However,the Faculty of Scienceis not as old; it was establishedin 1920,when it becamequite obvious that it was no longer possibleto teach sciencesin the Faculties of Philosophyand Medicine. The enormous developmentand differentiationof the natural sciencessince the nineteenthcentury and their rapidly growing importancein the life of mankind necessitated the formationof independentinstitutionsprovidingfor educationand researchin this field; the Faculty is one of them.Therehavebeenmany changesin the life of CharlesUniversityduringthe turbulent At present,the entirefield twentiethcentury,accompaniedby variousorganizationaladjustments, of scienceis sharedby two faculties- the Facultyof Mathematicsand Physicsand the Facultyof Sciencewhich deals with Biology, Chemistry,Geology and Geographyand containsa speciaInstitutefor environmentalstudies. It is a compliment for us, that the 2"d International Symposium- ,,Coleoid CephalopodsThrough Time, Prague2005" is hostedby CharlesUniversitywhich combinestraditionwith the modernlife and living in Prague,one of the most beautifulcities in the world which has inspiredscoresof artistsand sensitivepeoplethroughouthistory. scientists,
Let's havea nice time in Prasue
Martin Koit'dk & JaroslavMarek
tr,'
":/-::F .-r-'l-''r- ' l1i
;:..".L.-.,(-i..
"'-':--
i-
{t,,,
'Lr. ,1 /'-
2"- Inrernationai St
- Coleoid Cephat
: Tltrouglt Tinte - Pragua 2005
Coleoid researchln Bohemia- a brief historical view Marek Jaroslavand Ko5t'6k Martin lnstituteof GeologyandPalaeontology, CharlesUniveristyPrague,Albertov 6,72g 43, Czech Republic ;
[email protected];
[email protected] uni.cz However',the coleoid fossils are not so common in Bohemian sedimentaryformations and units, they representa small but important stone in mosaic which cornpletes the data of their evolution. They were studied in deatil by very few authors in the past. The folowing part is dedicatedto them. Between 1521 - 1533, a famous Georg Bauer, known as Georgius Agricola (*24.3.1490in Glauchau - 121.11.1555in Chemnitz) worked as a medicine doctorin Jdchymov(Joachimsthal). Viktor Uhlig
K. A. Zittel
His research was concentrated into Geology and Tectonics of Alps and Carpathians and also to Palaeontology(ammonitesand also belemnites).He describeda quite rich Lower Cretaceousbelemnite fauna from Stramberk - Northern Moravia flgg3. 1902, 1902 - wirh A. Liebus; - Veiovice, Td5fn and Hradi5tdFormations,Ear.lyCretaceous). lljlft'l. Georgius Agricola
A. E. Reuss
He is consideredto be a father of mineralogy,however, fol palaontologists and biologistsis especiallyknown as an authol of rnanynamesof fossils.Insideof them, especially a tel'm ,,belemnite,, (De natura fossiliunt libri 1546,IV, cap. VIII: "Belentnon- a javelii shape,') is topicalfor coleoidworkers.
l 1 : ! t i u l l t [ ; r r iri lrl,,, r ti l r r : ; r i l L ( ' i ' i.,\,rr: l r i r : l r l u , , "Jr
iri -rl
August Emanuel Reuss (*8.7.1811 in Bflina 873 in Vienna) - professorof the Mineralogy 126.11.1 in Plague University (since 1849) and University of V i e n n a ( s i n c e 1 8 6 3 ) d e s c r i b e d( 1 8 5 4 ) a n u n i q u e discovely of strongly mineralized gladius of ornata"from Turonian deposits(Upper ,,Glyphiteuthis Cletaceous) of Bfl6 Hora in Prague.(plate2) Karl Alfred Zittel (*25.9.1939 in Bahlingen t 5 . 1 . 1 9 0 4 i n M u n i c h ) - p r o f e s s o ri n V i e n n a a n d Karlsruhe Universities (since 1863) and Munich University (since 1866). Since 1899 director of the BavarianAcademy of Science.He descdbeda Late Julassic and E,arly Cretaceousbelemnite fauna from Stramberk, NorthernMoravia (1868,1870).(Fig.l). V i k t o r U h l i g ( * 2 . 1 . 1 8 5 7i n L f s k o v e c- 1 4 . 6 . 1 9 1 1i n Kallovy Valy (Karlsbad)) - professor of the prague PolytechnicUniversity (since 1891) and the Vienna Univelsity(since 1900),and also the first pr.esident of the ,,Geologischen Gesellschaft"in Vienna.
( I
L
f
t-
\
t t I
r
2"'tInternational Symposiutn- Coleoid CephalopodsThrough Time - Prague 2005
A n t o n i n F r i i ( * 3 0 . 7 . 1 8 3 2i n P r a g u e- 1 1 5 . 1 1 . 1 9 1i3n Prague), professor of Zoology and Comparative Anatomy at Prague University (since 1862) and dir-ectorof the Geological-Palaeontological Collections of the National Museum Prague. He is an author of many monographiesand also a prize winner of the Cuvier na Lyell prizes.His very important studieswere concetratedinto Carboniferous- Permiancoal deposits (Vertebratesand Insects)in Central Bohemia and also to the Bohemian Cretaceoussedimentaryformations and palaeontology, especially to Crustaceans, Vertebratesand Cephalopods,Coleoid cephalopods werestudiedin detailsin his basicworks: Fritsch, A. - Schldnbach,U. (1872): CephaLopod.en der bohni sclten K r eideformation. Fritsclt, A. (1910): Miscellanea Palaeontologicca.II. Mesozoica. Pt. 2. Neue Cephalopoden aLts der K reidefonnatio n.Bc)hmens. (Plates1, 2).
- its systematics,taxonomy and stratigraphy (1929, 1 9 3 0 ,1 9 6 5 ,1 9 6 8 ) .
Vl. Zdzvorka VL Ztizvorka
Zdendk Vaifiek
ZdenEk Valiiek (*11.1.1931 in Frfdek-Mfstek) professorof the VSB Technical University Ostrava.He is an outstandingspecialist on the Lower Cretaceous ammonites, however, some his important works are concerningalso the Lower Cretaceousbelemnitesfrom NorthernMoravia and the Carpathians (1978 a,b; I996 - with P. Pemzaand A. Grmela). The Lower Cretaceous belemnites from Northern Moravia and the Carpathianswere also partly studiedby anotherauthors- i.e. H. Frajovd (1960)and J. Hordk (1988).
Antonin Frii G e o r g B r u d e r ( * 1 8 5 6i n I n n s b r u c -k 1 1 0 . 1 2 . 1 9 1i 6 n 6sti nad Labem) - assistantof GeologicalInstituteof German University in Prague ( 1882-1890), latel he wolked as a professorat Cymnasiumin Zatecand Ustf nad Labem. He described a vel'y rare Julassic fauna fr:ornnorthernBohemia(1888) includingalso a poorly preselvedbelemnites. Vlastislav Zizvorka (*3.10.1903 in Simferopol t4.12.1986 in Prague)- director of the GeologicalPalaeontological Collectionsof the National Museum Prague.He studiedespeciallya ,,ploblematic"Upper Cretaceous belemnitespeciesof ,,A,ctinocanmx plenus"
b Fig.2. Gladii of the BohemianCretaceous,,teuthoids" - a) Marekites and b) Eoteuthoides (After Kosrak, 2002; cf . Plate 2). The Upper Cretaceous coleoid cephalopods from the Bohemian CretaceousBasin (i. e. belemnites and ,,teuthids") were recently revised and studied in deatilsby M. Ko5fr{k (1996, 1991,2002,2003,2004) (Fig.2).
- Coleoid CephalopodsThrortghTinte - Pragtte 2005 2"'tInternational Sl,mposiunt
REFERENCES AcRICoLA,G. (1546):De naturafossiliumlibri X, IV, VIII, p. 618. Basel. BRuoeR,G. (1888): Palaeontologische Beitreigezur Kenntnisssder nordbcihmischen Juragebilde.Lotos,36. Neue F o l g e , 8 ,1 - 2 7 . FnnlovA, H. (1960): N6lez spodnokifdov6hodruhu PseLrclobelus bipartitusBlainville, 1827 v kopiivnick6mvlvoji viipencfrve Stramberku.-Vdst. Stramberskych Llsti. Ust.Geol.,35:32"1-328.Praha. A. andScHI-oNencFI, FRITSCH, U. (1872):Cephalopoden der bohmischenKreideformation.1-52.F. fuvndd.Pra-s. FRnscH, A. (1910): MiscellaneaPalaeontologica. II. Mesozoica,Pt.2. Neue Cephalopoden aus der Kreideformation B o h m e n s .l-2 - 1 6 ,F . R i v n i i dP , ra-e. FRICA, (1911): Studienim Gebieteder bohmischenKreideformation.IllustriertesVerzeichnissder Petrefacten der cenomanenKorycaner Schichten.(Ergiinzung zu Band I). - Archiv der Naturwissenschaftlic:hen Landesdurcltfurschung, 15, I :1-10i. Prag. FRIC A. (1911): Studie voboru desk6horitvaru kiidov6ho. Illustrovani seznamzkamendlincenomannichvrsrev korycanskych.(Doplndk k 1. dilu Archivu 1. sekceIL). - Archiv pro piirodovdd. Vjzk.Ceclr,15, l: l0t. Praha. Hstvtzt, P., GRMELA,A. and VnSieer, Z. (1996): Numerickdklasifikacendkterlch druhfrrodu DuvctliaBayle et Zelller - T U O s t r a v a , 2 . - 3 . 4 . 1 9 9 6l 0: 1 8 7 8 . -S e m i n A i k T 5 .v y r . n a r o z .P r o f .R N D r . B . R r i Z i d k yC, S c . , 1 G 1 V S B I l. Ostrava. HonAr, J. (1988): Die belernnitenaus del Unterkreide-Ablagerungen SteinbruchKotoud bei Stramberk(Silesische Einheit,iSSn).- Cas.M orc:. Muz, Brno, Vdch, piir., I 3, 2: 59-70. Brno. KoSiAr, M. (1996):Late Turonian- Coniacianbelemnites(generaActinocannxMiller and GonioteuthisBayle) fiom the BohemianCretaceous Basin.VdstnikCeskdhogeoLogickdho tistavu,71,2,p.97-105.Plaha. KoSiAr, M. and Pe'vltS,W. (1997): Biometric analysisof Praeactinocantax pLeruts(Blainv.) from the Bohernian Cretaceous Basin.Acta UniversitatisCarolinae,Geologica,4l, 1, p. 1-13.Praha. KoSTAr,M. (2002):Teuthoideafrom the BohemianCretaceous Basin (CzechRepublic)- A criticalreview.-Abh. Geot. B . ' A . ,5 l , 3 5 9 - 3 6 9W . ien. - a new family of Late Cretaceous KoSTAr,M. (2003):Eoteuthoidae dibranchiatecephalopods(Coleoidea,Decapoda, Teuthina?).Vdstnik Ceskdho g eo log i ckdho ristavu, 7 8, 2, 151- 1 60.Praha. KoSiAr, M., CecH, S., Exnr, B., MAZUCH,M., Wnse, F., and Vorcr, S., (2004): Belemniresof the Bohernian Cretaceous Basinin a globalcontext.Acta GeologicaPolonica,54,4, 511-533.Warszawa. LIEeus,A. and Uullc, V. (1902): Uber einigeFossilienaus der karpatischen Kreide.-Beitr. Palciont.Geol. )sterr. U n g .O r i e n t s , 1 4 , 1 - 2 I: l 3 - 1 3 0 .W i e n ,L e i p z i g . Reuss,A. E. (1854):Loliginidenreste in der Kreideformation. Abh. k. bc)hnt.Ges.Wiss.5,VI[, Prague,l-5. UHLlc,V. (1883):Die Cephalopodenfauna der WernsdorferSchichten.Denkschr.k. Akad. Wiss.,math.-naturwiss. Kl.. 46 121-290.Wren. UuLtc, V. (1902):Uber die CephalopodenfaunaderTetschener und GrodischterSchichten.-Denkschr.k. Akad. Wiss., nnth.-naturw^iss. K/., 72: l-87. Wren. VnSiegr, Z. (1978a): Untersuchungen _ an Kreide-Belemnitender schlesischenEinheit (Aussele Karpaten, Tschechoslowakei) I. Teil.- Cas.Slez.Mut. OpcLva, A,21 , l-2: 1-16.Opava. VeSicgrc, Z. (1978b): Untersuchungen._anKreide-Belemnitender schlesischenEinheit (Aussele Kar.paren, Tschechoslowakei) II. Teil.- irzs. Slez.Mtt:..Opctvct, A,21 , 1-2: 113-123.Opava. ZAzvor
PI
PI 5.
L :l
to
lf
l. ;
l'
F I
2noInternationalSltmpzsiam- Coleoid CephalopodsThrough Time - Prague 2005
PLATE EXPLANTIONS P L A T E1 ( p . 5 ) U. (1812): ,,Cephalopoden der bohmischen Reprintsfrom FRnscH, A. and ScHLoNBACH, Pras. Kreideformation". Fritsch'sindexes: plenus (Bmntv.). 6a-d. (original Plate 11) - "Belemniteslanceolatus,Sow." = Praeactinocamax UpperCenomanian. 10a-b, LLa-c, 1,2.(original Plate 16) - "BelemnitesStrehlensis,FR." = Praeactinocamaxstrehlensis (Fn.). *The holotypeseemsto be lost, anotherspecimensare not known. Upper Turonian.Strehlen. 14. (original Plate 16) - "Belemnites sp.?" - a phragmocone belonging probably to P r aeact inocamax bohemicus (SrolLnv). Upper Turonian.Lene5ice. 17. (original Plate 16) - "BelemnitesStrehlensis,FR." = (Praeactinocamaxbohemicus(Srolr-nv)), l7b - alveolarend. Upper Turonian.Ko5ticeu Loun.
PLATE 2 (p.6) Ar-Az. Glyphiteuthisornata Rpuss (x 0.5), Ar - detail of the keel, x2,5) - reprint from Rpuss, 1854, Lower Tufonian,Prague.B-G: reprintsfrom Fritsch 1910,Orig. Plate 5. B. Styoloteuthisconvexa Fn.(x2), Middle/Upper Turonian, Vinary near Vysok6 M!to. C. Paraglyphiteuthiscrenata (Fn.) - a detail of the keel, (x2), Middle/Upper Turonian, Vinary near Vysok6 Mjto. D. Eoteuthoides caudata (Fn.Xx2), Middle/Upper Turonian, Vinary near Vysok6 Mfto. E. Glyphiteuthis minor Fn.(x2), Middle Turonian, Zdltmcenear Kouiim. F. Glyphiteuthisornata Rsuss - a detail of the keel (x2), Middle/Upper Turonian, Vinary near Vysok6 Mfto. G. Marekites vinarensis(Fn.)(x3), Middle/UpperTuronian,Vinary nearVysok6 M!to.
ffi,
W
2"dInternationalSyntposium- Coleoid CephalopotlsTltrough Tirne- Prague 2005
L Tlr,
Fis
Isl z -{B l ^ ^
B
ilc5
Ke'
A t AI
of be thr lar oc co an Ct en
24 C
SC
fo TI ,
l
ol
1,, NI
e C
^+ :t
SI
S
ai
a
fr Ir
S
S
r
2'd InternationalSymposium- ColeoiclCephalopoclsThrough Tinte - Prague 2005
Allopatric speciationof the teuthid fauna on the shelf and slope of Northwest Africa Arkhipkin AlexanderandLaptikhovsky Vladimir FisheriesDepartment,Falkland Islands Government,FIPASS, Stanley, FIQQ 7ZZ, Falkland, islands;aarkhipkin@fisheries. gov.fk,vlaptikhovsky@fisheries. gov.fk ABSTRACT: Habitats and life cycle strategiesof nektonic squid occurring off the Northwest African coast are described. Evolutionarypathwaysoftheir allopatricspeciationon the shelfandcontinentalslopearediscussed.
Key wordsr Coleoidcephalopods, nektonicteuthids,depthdistribution,speciation, NW Africa
The shelf and slope of the Northwest African coastsbetween19" and 26'30 N is one of the most productiveregionsin the Atlantic becauseof a strong upwelling occurringhere throughout the year. Unlike rather uniform landscapeof the Sahara desert, the adjacent oceanic habitats are diverse including a complex of the different streams,meanders and gyres. The major regional current, the Canary Current, moves southwardalong the entireshelfand continentalslope,At about2224"5 it splits into two branches- the Saharan Current (inshore branch), which runs also southwardson the shelfbetween50 and 200-m depth contours, and the mainstream that follows the deeperpart of continentalslope. The convergencebetweenthe cold upwelling and warm waters of the Canary Current is known as the Oceanic Front. Northbound extension of the North Equatorial Countercurrent(NECC) runs over the depths rangingfrom 200 m to 900 m, with the main stream locating at - 50 m deep from the surfaceto - 300-m depth, wedges between Saharan Current and the mainstream,and achieves22-24"5(Mittelstaedt,1991). The nektonic squid fauna in the region consists of eight species belonging to two families, Loliginidae and Ommastrephidae. Interestingly, squid species seem to be segregatedby depth, with only one-two speciesdominatingnearthe bottom and in the water column between the certain deoth ranges.
Two sympatricspeciesof the loliginid genusAlloteuthis,A. subulata andA. africana are the shallowest squid of the local teuthofauna. They are encountered in the coastalwaters of SaharanCurrent, mostly at depths of about 15-100 m. These relatively small squid have a half-year life cycle and the lowest potential fecundity of hundreds or several thousand eggs of 1.5-2.3 mm (Arkhipkin and Nekludova, 7993; Laptikhovskyet al., 2002). Another loliginid squid, Loligo v. vulgaris, occupiesdeeperwatersof the same origin, mainly between 30 m and 130 m, penetratingdown to 400 m. Its maximum abundance was observed in the Saharan Current inflows on the shelf. Immaturesquid move offshore down the shelf, and upon their maturationreturn to shallow watersto spawn. Two main spawning peaks (autumn and spring) were observed.Squid belonging to both spawningcohortshave annuallife cycle (Arkhipkin,1995).Egg dimensions are2.0-2.2 x 1.5-1.6mm, the potential fecundity was estimatedas 28,500-14,200oocytesincluding 3,500-30,500 yolk oocytes (Laptikhovsky, 2000). Two ommastrephidsquid, Todaropsis eblanae and lllex coindetii, occupy the next depthrange.Both speciesmay be encountered over the wide depth range (between38 and 719 m), but T.eblanaeis more deep-water (mostly 150-300m vs 100-250,Hern6ndezGarcia,Castro,1995).Their main habitatis the
2"'tIn.ternationalSymposiunt- Coleoid CephalopodsThrough Tirne- Prague 2005
waters occupied by the Oceanic Front and Saharan Current. T. eblanae rs a demersal squid, spendingits entire life cycle near the coindeti is more pelagic bottom. L (=benthopelagic), making diel vertical migrations into the water column, but not raising to the surface.Life cycle of T. eblanae is one year (Arkhipkin, Laptikhovsky,2000). Spawningof T. ebktnaets all yearround,with peaks in spring and autumn. Eggs are about 7.2mm in diameter,potentialfecundityranges between103,000- 236,000eggs.1. coindetii also spawns throughout the year, with much less pronounced spring spawning peak (Hernifndez-Garcia,Castro, 1995). Two cohorts are presentoff the NW African coast, large squid with annual life cycle, and small squid having 0.5-year life cycle (Arkhipkin, 1996). Ripe egg size is 0.7-l mm, potential fecundity is 80,000-800,000(Laptikhovsky, Nigmatullin,1993). Another ommastrephidsquid, Todarodes sagittatusoccursmostly between250 and 800 m. Juveniles inhabit pelagic waters of the NECC (mostly above 300-800 m depths) undertaking diel vertical migrations to deepwater layers. Upon maturation, squid move to near-bottomlayers of the continental slope.Spawningis throughoutthe year, with the prominentwinter peak. Lifespanduration is 1 year (Arkhipkin et al., 1999).Ripe eggs are of 0.9-1.0 mm in diameter,the potential (Nigmarullin er fecundityis 215,000-950,000 a|.,2002). Sthenoteuthispteropus is an abundant oceanic ommasterphid squid, widely distributed in the tropical and subtropical Atlantic. Off the NW Africa, S. pteropus inhabits the waters of the Canary Current (above1000m depths).Paralarvae occurin the superficial water layers, whereas juveniles migrate to thermocline. Adults undertake extensive diel vertical migrations from mesopelagicwaters during the day to the surfaceat night. Lifespanis 1 year(Arkhipkin, Mikheev, 1992). Spawning takes place throughoutthe year, but mostly in summerautumn.Ripe egg size is 0.13-0.81mm, the potential fecundity increaseswith body size from 560,000 to 17,900,000(Laptikhovsky, Nigmatullin,in press).
700 800 Coasta upwe ling
100 200 300 E
aceantc
fi
lto//
ant a
NECC extension
SahaE Curent (southwardi
o 500
600 700 800
Figure caption Scheme of spatial and vertical distribution o1 nektonic squid (up) and main oceanographic features(down) off the Northwest African coasr al 21'N latitude.
Generally, the teuthofaunaoff the NW African coastconsistsof benthopelagic species belonging to the Lousitaine -Mediterranean faunisticprovince(Nesis, 1985),that appeared here with the Canary Current, and epimesopelagic tropicalS. pteropus.For shelfand slope squid this region is the southern periphery of their ranges in the Atlantic. It seemsthat speciationof squid fauna in the region happened'horizontally', with one-two dominant species occupying each depth habitat. Similar "stratification" could be observedbetween the local horse mackerel generaDecapterusand Trachurus.Similar to other areasof the world ocean(Nesis, 1985), loliginids dominated on the inner shelf, whereasthe watersof the outer shelf and slope were occupied by ommastrephids. From
- Coleoid CephalopodsThrough Time - Prague 2005 2"'tInternationalS1'mposium
inshore to offshore direction, squid species have smaller eggs and larger fecundity, possiblydue to higher non-selectivemortality
at early stagesin oceanic habitats related to increasingegg dispersal.
RBrnnBNcBs ARKHIPKIN, A. 1995. Age, growth and maturation of the Europeansquid Loligo vulgaris (Myopsida,Loliginidae)on the west Saharanshelf.J, Man Biol. Assoc.fJ.K.,l5:593604. ARKHIPKIN, A. 1996.Geographical variationin growth and maturationof the squidIllex coindetii (Oegopsida,Ommastrephidae) off the North-westAfrican coast.J. Mar. Biol. Assoc. U . K . , 7 6 1: 0 9 1 - 1 1 0 6 . ARKHIPKIN, A. and LAPTIKHOVSKY, V. 2000. Age and growth of the squid Todaropsis eblanae(Cephalopoda,Ommastrephidae)on the north-westAfrican shelf. "I. Mar. Biol. Assoc.U.K., 80: 747-748, ARKHIPKIN, A. I., LAPTIKHOVSKY, V. V. and GOLUB, A. N. 1999.Populationstructureand growth of the squid Todarodessagittatus (Cephalopoda,Ommastrephidae)in northwest African waters.J. Mar. Biol. Assoc.U.K.,19: 467-471. ARKHIPKIN, A. and MIKHEEV, A. 1992. Age and growth of the squid Sthenoteuthispteropus (Oegopsida:Ommastrephidae) from the Central-EastAtlantic.J. Exp. Mar. Biol. Ecol., 163:261-276. ARKHIPKIN, A. and NEKLUDOVA, N. 1993.Age, growth and maturationof the loliginid squids Alloteuthis africana and Alloteuthis subulata on the west African shelf. J. Mar. Biol. Assoc.U.K., 73: 949-961. HERNANDEZ-GARCIA, V, and CASTRO, J. J. 1995. Reproductivebiology of the subfamily Illicinae, Illex coindeti and Todaropsis eblanae (Cephalopoda: Ommastrephidae Steenstrup, 1857)off NorthwestAfrica.ICES C.M./K,|J:10 pp. LAPTIKHOVSKY V. V. 2000 Fecundityof the squid Loligo vulgarisLamarck, 1798 (Myopsida, Loliginidae)off NorthwestAfrica. ScientiaMarina, 64,3: 215-278. LAPTIKHOVSKY, V. V. and NIGMATULLUN, CH. M. 1993.Egg size,fecundity,and spawning in femalesof the genusIIIex (Cephalopoda: Ommastrephidae). ICES J. Mar..Scl., 50: 393-403. LAPTIKHOVSKY, V. V. and NIGMATULLUN, CH. M., in press.Femalereproductivebiology of the orange-back squid, Sthenoteuthispteropus (Steenstup) (Ommastrephidae: Oegopsidae) in the easterntropicalAtlantic.ScientiaMarina. LAPTIKHOVSKY,V., SALMAN, A., ONSOY,B. and KATAGAN,T.2002. Systematic position and reproductionof squid of the genusAlloteuthis(Cephalopoda:Loliginidae)in the easternMediterranean. J. Mar. Biol. Assoc.U.K..82 983-985.
2"'t International
situtt - Coleoid Cephalopods ThroLtgh Titrte
'.iITTELSTAEDT,E. 1991.The oceanboundaryalongthe northwestAfrican coast:circulationand propertiesat the seasurface . Progr. Oceanogr.,26: 307-355. oceanographic \ESIS, K. N. 1985.Oceaniccephalopods: Distribution,lifeforms, evolution Nauka,Moscow. 187 p. [In Russian]. \IGMATULLIN, CH. M., LAPTIKHOVSKY, V. V. and MOUSTAHFID, H. 2002.Brief review on ecology in the North African population of arrow squid Toclarodessctgitttttus (Cephalopoda: Bull. Mar. Sci.,J 7, 2: 581-590. Ommastrephidae).
r l( lr
K
AI Frl \.r lll
Kr
l.
tn
nt
l-
IS
rn
ln JT
;, l-'
nl r' lii
re
IS .lt
fr pr rr
lr
(S
F
T
l0
- Coleoid CephalopoclsThroLtgltTime - PragLte2005 2"'tInternationalSyntposiLrm
NaefiaWnrznr, 1930from Quriquina Formation (Maastrichtian), a relativeof the Spirulida(Coleoida,Cephalopoda)? (r) (2) Bandel Klaus and StinnesbeckWolfgang (l)Universitrit Hamburg,Geologisch-Paliiontologisches Institutund Museum,Bundesstrasse 55, D20146, Hamburg;
[email protected]. de (2)Universitiit Karlsruhe,Fachbereich Palztontologie/Historische Geologie,Kaiserstras se 12,I6131, Karlsruhe,Germany;wolfgang.stinnesbeck @bio-geo,uni-karlsruhe. de
ABSTRACT: The genus Naefia WETZEL, 1930 is based on Naefia neogaeia Werzrl,
1930 from Quiriquina
Forrnation,Maastrichtianof Quriquina Island, Concepci6n,southernCentral Chile. ltlaefia has been describedquite sometime ago (Wetzel, 1930),beforeGroenLandibelirs BtnxgLuno, 1956becameknown, but both fossil cephalopods havebeeninterpretedto representshellsof Spirula- like compositionbut straightorientation(Haas,1997,2003).The two generawereinterpretedto composethe Groenlandibelidae JelErzry, 1966.
Key words: Coleoidcephalopods, Naefict,UpperCretaceous, Chille,shellmorphology.
1. Redescription of Naefia The shell of Nctefia based on its type Naefia neogaeia from Quiriquina Formation in Chile consistsof a straight phragmocone with simple watch glasslike septa,a width of more than 12 mm and an apicalangleof about 14'. The aperturalmargin on the ventral side is straightand on the dorsal side it extends into a narrowprojection,the proostracum, The intermediatezone of sharplyforwardscurving growth increments on both sides of the proostracum is narrow. This dorsal pl'oostracum is part of the outer phragmocone layerforms that hasfine elongatestriationand represents the periostracalIayerof the shell.It is borderedby a marginal keel on each side and a doublekeel in its middle. Growth lines from the narrow dorsal projection of the proostracumare partly disconnected from the margin. Attachmentscars of tissue to the shell interior are well expressedon chamberfills (steinkern)in part of the phragmocone(Pl. 1, Figs B,C,E). The rectangularscarslie at the very end of the dorsal side of each chamber. The scar in the anterioroart of eachchamber
is surroundedby a groove, which the ridge that surroundedthe tissue attachmentto the shellinterior. The initial chamberis globularin shape and attachedto the tube of the shell a little inclined to the ventral side. In thin sectionit documentedno siphon indicating that the siphon as well as first chamberclosurewere organic in original composition. Later chambers are about three times wider than high. The siphonal tube lies marginal and consists of a tube with mineralized septal necks extending for about one third of chamberheight and remaining tube portions organic in composition.The largest shell is about 20 mm long and 5 mm wide and has about9 chamberspreserved. The median dorsal ribbon found in Naefianeogaeiarepresents a projectionof the aperture of unrecognizedlength and very narrow marginal zone, since growth lines of the phragmoconeotherwise are simple and straight(Pl. 1, Figs B,D,F). The apertr-rre of phragmocone the was, thereforeconnectedto a narow spine-likeprojectionalreadyfound on the shellof youngindividr-rals as well. ll
- Coleoid CephalopodsThrough Tinte - Prctgue2005 2"" InternationalS1tn1pe5i11m
Naefia neogaeia from Quiriquina Formation documentsthat the exterior of the phragmoconeis covered by a thin external layer differing from the underlyingwall of the shell. This underlying wall shows simple growth lines, and the thin outer layer has growth lines as well as fine longitudinal stripes,which areconnectedto a proostracum. Wetzel (1930) extracted two small phragmoconesfrom concretionscontaining many Baculites individuals which occur rather commonly in the upper portion of QuiriquinaFormation.There is no trace of a rostrum. Wetzel's (i930, PI.14, Fig.3) illustration shows two fragments of chamberedcones.Therefore,his description is not very detailed.Biro- Bagoczky (1982) addednew specimenand new informationon NaeJiafrom Quiriquina and the mainlandnear Lirqu6n and Cocholgue (both at the shore north of Concepci6n).He found specimenof up to 14 mm in length,which usuallyhad an apical angle of 15'. Biro- Bogoczky(1982) noted some depositson the outside of the phragmocone, which he considered transitional to Belemnoteuthis.Such layer could not be confirmed.He also noted that Naefia should probably be placed with the same genusas Groenlandibelusrosenkrantz,i (1986)noted Bnrnr-uNo, 1956.Stinnesbeck dorsallineson the phragmocone. 2. About other speciesdescribed to belong to Naefia A Naefia was described from the Ariyaloor Group of Pondicherry, southern India, by Doyle (1986). It belongedto the fossils collected in the Tiruchirappalliarea with obviouslyunknown exact locality. Here fossil bearing strata from Aptian to Maastrichtian may be encountered (for referencessee Bandel, 2000) so that the age of this fossil is in question. The three fragmentsof phragmoconescalled Naefia aff. neogaeiahave an apical angle of only up to 8,5" and the largestspecimen24,5 mm long and has 7 chamberspreserved.Their dorsal wall bearsa medianfield with a mediankeel. This proostracumresemblesthat found in Naefia neogaeia but differs in details. The later consists of two marginal longitudinal
ribs and a doublerib with a groovebetweenin the middle, while Naefia aff. neogaeia from India has no double keels. Naefia neogaeia hasnext to the dorsalribbon growth linesthat strongly curve forwards and connect to the ribbon margin without continuing in the ribbon.This zone appearsto be narrowerthan that describedfrom Naefia aff. neogaeiafrom India. The siphonal tube lies on the ventral side. As internal charactera median dorsal line was noted on the steinkernthat reflects the presenceof a furrow on the dorsal side of the phragmoconewall (Normallinie) (Doyle 1986, fig.2b). This differs from the situation in Nafia neogaeia and resemblesfeaturesas were noted in Naefia kabonovi. No further details were presented from these fossils which may be of Aptian to Maastrichtianin age.Doyle (1986) noted as differenceto Groenlandibelus the shape of the "proostracum" and suggested that one (Naefia)lived in the cold seaof the Southern Hemisphere during the Late Cretaceous, while Groenlandibelus preferred the NorthernHemisphereat aboutthe sametime. Naefia kabanovi as described by Doguzhaeva(1996,Textfig.4,P1.6,Figs.1-5, P 1 . 7 ,F i g s l, 2 , P l . 8 , F i g s . 1 - 4 ,P | . 9 , F i g s . 1 - 3 ) consistsof a phragmoconethat is wider at first (up to 14") and later may have an apical angle as narrow as 7o. The chambersare abouton third of their width in height.Septa aresimpleand interpretedto be constructed of Spirula-nacre (lamello-fibrillar-nacre).The siphonal tube is a little expanded in the chamberand lies ventral.The septumcurves into the siphonal tube but the mineralized portion of shell apparentlyis not continuous for long distanceinto the chamberspace.The constructionof the siphonaltube is described as consisting of two spherulitic-prismatic layers.The final chamberis short.The shell wall supposedly consists of a prismatic compositionlwith a thin outer coating layer which is thicker ventrally than dorsally.No nacre was found in the outer walls of the phragmocone. Elongateshell body attachment scars are found dorsally preservedon the inner mould of the phragmocone.These are longitudinal, slender, spindle-shaped,
12
\ . 1 L
.:k
--tt(
.,i .'|, ,lro
-1
+ I
:ro :l
\u: ku ha
lay be els
llel
sp
anl
SC
Th SE
rib n r "o
ch sc se se ch
SC
ar
SC
M
o1
th
- Coleoid CephalopodsThrough Tinte - Prague 2005 2n'tInternationalS1'mposium
to the "Normallinie" as may be corresponding notedin the phragmoconesof ratherunrelated cephalopods,especiallysuch with a conical shell. These attachmentscarsdiffers strongly from the rectangularonesof Naefia neogaeia. Doguzhaeva(1996) found in NaeJiakabanovi that the sutures are normal to the shell axis whereasshe supposedthat in Naefia neogaict they are oblique,which can not be confirmed. The proostracumin Naefia kabanovi is not known. Doguzhaeva(1996) suggestedthat the structureof the siphon of Naefia kabanovi ts like that described in Groenlandibelus,and interpretedthe outer layer of the siphon to representa structurallymodified continuation of the septal neck, and the inner layer to represent the remainsof a slightlycalcifiedor organiccomposition. Hewitt & Jagt(1999,Fig.3D) illustrated a fragment of a Campanian Naefia derived from the Royal Ontario Museum and found in it sheets of nacreousmicrostructure.They suggested,therefore, that the Aptian Naefia kabanovi Docuznasva, 1996 from Russia had Spirula-nacre as defined by Mutvei (1964, l9l0) composingits septa.The outer layer of the sameshell is describedas having been of prismatic structure,the inner layer also. A prominent differencebetweenNaefia neogaeia from Chile and the other two speciesplacedin the samegenusfrom Russia and India lies in the shapeof the attachment scarof tissueto the interior of the shell wall. These attachment scars in case of Naefia sensustrictu are as wide as the dorsal outer ribbon and as high as one third of a chamber positioned in the anterior part in each chamber.The shape is rectangularand the scaris surroundedby a furrow. It is found on severalof the individual fossils preservedin severalconsecutivefine grainedfillings of the chambers.The well developed attachment scarsof Naefia kabanoviDocuzsanvA, 1996 are quite different and consist of elongate scarsthat crossthe whole chamberheight, Hewitt et al. (1991) suggested that in Naefia the shell wall could be nacreouson the outsideand prismatic on the inner side and that the septa are of Spiruln- nacre
construction.This would than be as in caseof belemnites where such structure has been preservedand documented(Bandel & Kulicki Naefia nor But neither i988). are preservedwell enoughto Groenlandibelus documenttheir original shell structure.With the shell featuresof Naefia neogaeiataken as characteristicto the genus, the other two species described as Nctefia aff. neogaeia from the Cretaceous of India and Naefia kabanovi from Russia do not fit these characterssufficiently to include them in the same genus. Especially the rectangular attachment scar of NaeJia neogaeia is a characternot found in Naefia kabanovi, that has an elongate scar resembling that of modern Spirula. The "Normallinie" seen in Naefia aff. neogaeia from India indicatesits resemblance to the Russianfossil. While the Indian fossil had a proostracum,the Russian fossil did apparentlynot preserveone or had none. But the proostracum of the Indian coleoid is wider and of differentornamentto that of Naefiasensustrictu. 3. Comparison of Naefia with 1956, and Groenlandibelus BrRrBruNt evaluation of the family Groenlandibelidae The family Groenlandibelidae was erected by Jeletzky (1966) around Belemnoteuthis rosenkrcuttzl BrRxtLuNo, 1956and was placedwithin the orderSepiida. The shell of Groenlandibelusis essentially straight, and narrow with apical angle amountingto 12"-15'.The phragmocone has watch-glass-likesepta and simple suture. Accordingto Birkelund & Hansen(1974)the septaare like thoseof belemnites.Chambers are aboutone third as high as wide and walls of the phragmoconemay show corrugations. The apical shell is covered by a short, wrinkled cone representingdepositsonto the outside of the phragmoconereconstructedas shortrostrum.The dorsalsidecarriesa ridged elongate structure that is reconstructedas proostracum (see also Doyle, 1986 for schematicdrawing, Haas - 7991, 2003 for reconstruction).The proostracumis narrow and has sharpmargins,and was not notedto connectto growth lines (Birkelund, 1956). There may also be a dorsal keel on it.
13
- Coleoid CephalopodsThrough Tinte - Prague 2005 2"'t InternationalS1tn1p6slytn
Accordingto Jeletzky(1966) it resemblesthe Diplobelinaamongthe belemnites. The ventral siphonal tube is relatively wide, not mineralized,but may have been double walled accordingto the interpretation of Jeletzky (1966, P1.20-22).But if double walled, both walls were organic.The septal necks change during ontogenesis from relativelylong to shortand end on the margin of the siphonal tube. The begin of the siphonaltube is of blind sausage-likeshape extendinginto the bulbousfirst chamber.This earliestpart of the siphonal tube measures three-quarters of the heightof the chamberin length. It consiststotally of organicmaterial and is attachedto the insideof the chamberby a sheet (prosiphon)(Jeletzky,1966, P1.20, figs.1A,B). The siphonal tube of GroenlandibeLushas a different structurethan that of Spirulo, judging from the description providedby Jeletzky(1966)and Birkelund& H a n s e n ( 1 9 7 4 , P l s . 1 3 - 1 5 ) .T h e s e p t u m apparentlydid not continue into an outer mineral tube, but mineralized layers ended right in the margin to the hole throughwhich the siphonaltubepassed. Jeletzky (1966) suggested that Groenlandibelusas well as Naefia represent members of the Groenlandibelidae.But Groenlandibelus rosenkrantzi differs from NaeJia neogaeia in the compositionof the siphon, in the presenceof a rostrum in the first (Jeletzky,1966), and no rostrum in the later, in the shape of the dorsal shell projection(Doyle, 1986)and, especially, the attachmentscar of the visceral mass to the shell. Haas (1991, Fig.2) provideda model reconstructionof GroenlandibelusandNaefia united into one. According to this the proostracllmis reconstructed as short and the rostrumalso as short but present.Both these featurescannotbe confirmedfrom the restudy of Naefianeogaeiaas we know it now, which appearsto havehad a slendernarrowelongate proostracum and no rostrum. But the reconstruction could serve for Groenlandibelusas describedby Birkelund (1956), Birkelund &. Hansen (1974) and Jeletzky(1966).
4. Comparison of Naefia with Spirula Naef (1922)notedthat the siphonaltube if Spirula consistsof an externaltube that is the continuation of the septum. This mineralizedtube is coatedon the insideby an organictube.Gregoire(1961)was the first to note that the nacre of the septa of Spirula differs from the nacreseenin othermollusks, and also that of Nautilus. Dauphin (1916, Fig.23) noted that the siphon begins with a calcareoustube that continuesin a organic attachmentsheet (prosipho).Mutvei (1970) had identified the septum and the outer siphonaltube to consistsof nacre of a type that may not be found in Nautilus, but is characteristic of Spirula.It consistsof needles of about 0,2 micron in diameterarrangedin layers oriented along the growth surface insteadof platelets(Bandel 1990).This layer was called to consists of lamello-fibrillar structure.The layer on the interior of the outer mineral tube of the siphon is porousand has prismaticneedles(Dauphin 1976,Figs. 1821). The constructionof the siphonaltube of Spirula as double tube with a calcareousollter wall, a porous intermediatelayer and an organic inner wall was worked out in detail by Bandel & Boletzky (1919).A similar tube but with shorterfully calcifiedouter wall has beennotedto havebeenconstructedby in the late Triassic aulacoceridDiceoconites by Bandel(1985),and a doubletube with similar constructionbut Nautiltts-typenacrehas also beenproven in caseof Aturia (Nielsenet al.
200s). The siphonalsystemis responsiblefor buoyancy regulation and thus is very important in shell construction.The tube of Naefia differs from that of SpiruLa considerably.The septal neck of Spirula ts continuousfor the width of a whole chamber, so that the siphonal tube has a solid outer wall, while its outer wall is only solid for a part of the chamberwidth in Naefia. There is no dorsal projection on the aperturalmargin in case of Spirula, the shell is spirally arranged in Spirula and straight in Naefia. The initial chamberof Naefia is larger than that of Spirula,and the shell layer addedfrom the outsideto the phragmoconeis thicker in Spirula than that noted on Naefia. Attachment
t4
Rr
- Coleoid CephalopoclsThrough Titne - Progue 2005 2"'tInternational Sl,nrposium
to the inner sideof the shellresultsin a ribbon in caseof Spirulaand is quite differentto the rectangular scar found in Naefia. Visceral massconnectsto the shell of Spirula alons a
dorsalribbon and retractormusclesend in the tissue of the mantle lateral to it (Bandel, 1982).
RnrnnBucBs
BANDEL, K. 1982.Morphologieund Bildung der frtihontogenetischen Gehriusebei conchiferen -198. Facies, Mollusken.1: 1 BANDEL, K. 1985. Compositionand ontogenyof Dictyoconites(Aulacocerida,Cephalopoda). Pakiontolog i sche Zeitschrift, 59: 223-244. BANDEL, K. 1990. Cephalopodshell structureand generalmechanismsof shell formation.In SkeletalBiomineralization:PatternsProcessesand EvolutionaryTrends, Vol I, J.G. Carter,(ed.)Van NostrandReinolds,New York: lll-134. BANDEL, K. 2000. Some gastropodsfrom the TrichinopolyGroup Tamil Nadu, India and their relationto thosefrom the AmericanGulf Coast.Memoir GeologicalSocietyoJ'Ind.kr, 46: 65-111, Bangalore. BANDEL, K and BOLETZKY, S. v. 1919.A comparativestudyof the structure,developmentand morphologicalrelationshipof chamberedCephalopodshells.The Veliger.2l: 373-354, 1919. BANDEL, K. and BOLETZKY, S. v. 1988.Featuresof developmentand functionalmorphology required in the reconstructionof early coleoid cephalopods.In: Wiedmann, J. & - Presentand Past:229-246. Kullmann,J. (eds.)Cephalopods BANDEL, K., ENGESER,T. and REITNER, J. 1984.Die Embryonalentwicklung von Hibolirhes (Belemnitida,Cephalopoda)(The embryonicdevelopmentof Hibolithes,Belemnitida, Cephalopoda).Neues Jahrbuch ftir Geologie und Palciontologie. 161: 215-303, Stuttgart. BANDEL, K. and KULICKI, C. 1988.Belemnoteuthis polonica: A belemnitewith an aragonitic rostrum.In: WtppuANN,J. & Kur-I-uaNN,J. (eds.)Cephalopods- Presentand Past.
303-3r6. BIRKELUND, T. 1956. Upper Cretaceousbelemitesfrom West Greenland.Meddelelserom Groenland,137: 1-28. BIRKELUND, T. and HANSEN, H. J. 1914. Shell ultrastructuresof some Maastrichtian Ammonoideaand Coleoideaand their taxonomicimplications.Det KongeligeDanske Videnskabernes Selskab,BiologiskeSkrifter, 20, p.34. Kobenhavn. BIRO-BOGOCZKY,L. 1982.Contribucional concimientode Naefia neogaeiuWetzel,Coleoidea, en la FormationQuiriquina,Campaniano-Maastrichtiano, Region des Bio-Bio, Chile, Sudamerica(36'30' - 36'45' Lar.Sur).III CongresoGeologicoChileno, Concepci6n, Chile: All-A28. l5
2"'tInternational Symposium- Coleoid CephalopodsThrough Tinte - Prctgue2005
DAUPHIN, Y. 1916. Microstructure des coquilles de cephalopods,I. Spirula spiruia L. (Dibranchiata,Decapoda).Bulletin du MusdumNational D'Histoire Naturelle,3'oser., 382:197-238.
P[
DOGUZHAEVA, L. A. 1996. Two Early Cretaceousspirulid coleoids of the north-western Caucasus:Their shell ultrastructureand evolutionaryimplications.Palaeontology,39
B.
A.
68r-'t07. c DOYLE, P. 1986.Naefia (Coleoidea)from the late Cretaceousof southernIndia. Bull. Br. Mus. Nat. Hist. (Geol.),4}: 133-139.
D.
GREGOIRE, C. 1961. Sur la structurede nacre septal des Spirulidae,etudiee au microscop ArchivesIntern.Pysilogieet Biochimie,69: 374-311 . electronique. E HAAS, W. 1997. Der Ablauf der Entwickungsgeschichte der Decabrachia (Cephalopoda, (A), graphica . Palaeonto 245: 63-81. Coleoidea) F HEWITT, R. A. and JAGT, J. W .M. 1999.MaastrichtianCeratisepiaand Mesozoic cuttlebone homeomorphs.Acta Palaeontologicct Polonicct,44: 305-326. HEWITT, R. A., YOSHIIKE, T. and WESTERMANN, G. E. 1991. Shell microstructureand ecology of the Cretaceouscoleoid cephalopodNaefia from the Santonianof Japan. Research,12:47-54. Cretaceous JELETZKY, J, A. 1966. Comparativemorphology, phylogeny, and classificationof fossil Coleoidea.-Univ. KansasPalaeontoloeical Contributionsto Mollusca. Art. l: 1-162. Lawrence,Kansas. MUTVEI, H. 1910,Ultrastructureof the mineral and organiccomponentsof molluscannacreous layers.BiomineralisationResearchReports,2: 48-12. NAEF, A.1922. Die fossilenTintenfische.GustavFischerVerl., Jena,322pp. NIELSEN, S., BANDEL, K. and KROGER,B. 2005.Paleogeographic provenance, taphonomy,and mode of life of Aturia cubaensis(Lea, 1841) (Cephalopoda,Nautiloidea)from the Cenozoicdepositsof Chile.In press. STINNESBECK, W. 1986. Zu den faunistischenund paldkologischenVerhiiltnissenin der Palaeontographica(A), 194,4-6: QuiriquinaFormation(Maastrichtium)Zentral-Chiles. 99-231. WETZEL, W. 1930. Die Quiriquina-Schichtenals Sediment und paliiontologischesArchiv. Palaeontographica, 13 : 49- 106.
t6
- Coleoid CephalopodsThrough Time - Prague 2005 2"'tInternationalSymposium.
PLATE 1.. EXPLANATION A. Ventral sideof Naefio neogaeia(20 mm long). B. Dorsal side of Naefia neogaeia with attachmentscarsof tissue to the shell interior are well on chamberfills (steinkern)in part of the phragmocone. expressed C. The rectangularscarslie at the very end of the dorsalside of eachchamber. D. Dorsal side with attachmentscarsin some of the posteriorchambersof the phragmoconeand the median dorsal ribbon of the proostracumon the shell of the anterior chambersand the living chamber. E. The scar in the anterior part of each chamberis surroundedby a groove, which the ridge that to the shellinterior. surroundedthe tissueattachment F. The median dorsal ribbon found in Naefia neogaeiarepresentsa projection of the apertureof unrecognizedlength and very narrow marginal zone, since growth lines of the phragmocone otherwiseare simpleand straight.
t1
2"'tInternationalSyntposium- Coleoid CephalopodsTltrotLghTinte - Prctgue2()05
- Coleoid CephalopodsThrough Time - Prague 2005 2"'tInternational Sl,tnposium
The Late Hauterivian- Barremianbelemnitesuccessron of the RussianPlatform Baraboshkin EvgenijJ.
(r)
and Mutterlose Jdrg
(2)
(r)Geological Faculty,Moscow StateUniversity,LeninskieGory, 119992,Moscow,Russia; @geol.msu.ru Barabosh (2) Bochum,Universitiitsstrasse Institutftir Geologie,Mineralogieund Geophysik,Ruhr-Universitiit I 50, D-4480I Bochum,Germany;
[email protected]
from the Volga River Basin ABSTRACT: Recent studiesof Late Hauterivian- Barremianbelemnitesuccessions (RussianPlatform,RP) allowed for the first time to comparethe belemnitesuccessions of NW Europe (N Germany,NE England)and NE Europe.The new belemnitesuccessionof the RP differs from the late Hauterivianbelemnitezonation of NW Europe.Close similalities betweenNW Europeand NE Eulope, however',are indicatedfor the Barrerr.rian.
belemnites, Lower Creataceous, Russia,stratigraphy. Key words: Coleoidcephalopods,
1. Localities and material The Lower Cretaceoussuccessionof the Ulyanovsk- Saratovareais represented by an alternation of claystones and which crop out over a distance sandstones, of 400 km from Ulyanovsk in the north to Saratovin the south along the Volga River. Thirteen sections, which expose late Hauterivian- Barremian beds have been loggedand sampledfor belemnitesin three areas:Ulyanovsk,Syzran and SaratovCity regions(Fig.1).The compositelithological successionincludes XII Units and was described before (Guzhikov et al., 2003; Baraboshkin& Mutterlose2004). Belemnitesare overallquite rare in the studiedsections.Usually rostrafound in situ are replacedby gypsum. Neverthelesstheir preservationis sufficient for determination. Rostra, which were washed out from outcropsand found on the beach,are much better preserved.Both types of rostra were collectedand the original position (possible zonal intervals)of the removedbelemnites was defined in accordance with the distributionof belemnites in situ. Poorly
preserved rostra were not depositedin the collectionand the numbersof belemnitesin the description of the composite section reflect only a part of the materialavailable. About 200 guards were collected in total. The figured material is depositedin the Museum of the Earth (Moscow State University, Russia; = MSU, collections No,97,99,104).
2. Belemnite assemblages and zonation scheme The Upper Hauterivian-Barremian stratigraphyof the RP (Ulyanovsk - Saratov area) has been studied for more than 150 years, The Upper Hauterivian deposits contain lots of ammonites and their biostratigraphywas outlined in detail, while the Barremian stratigraphy has been the subjectof controversialdiscussionsfor three reasons.Ammonitesare essentiallyabsent,in situ findings of belemnites have been extremelyrare and extendedlandslidesalong the Volga River make it difficult to study the 19
2n"International Symposium- Coleoid CephalopodsThrough Time - Prague 2005
Fig. 1. Locality map of the studiedareas.
Barremian succession bed-by-bed. Recent works of the authors fills this gap (Baraboshkin,200 1;Mutterlose& B araboshkin, 2003; Baraboshkin & Mutterlose, 2004). The Hauterivian belemnite succession needs,however, further study. At the pfesent state, the belemnites were recognisedin the following succession: Uppnn HlutnnIvrnN. "Pseudoaulacoteuthisabsolutiformis" (sensu I.Sinzow) Zone: The belemnite assemblageconsistsof " Pseudoaulacoteuthis absolutiformis (Sntzow)", uP." tenebrosus GI-esuNovA, Acroteuthis (A.) sp. indet. and Acroteuthis (Boreioteuthis) aff. rawsoni (Platel). The distribution of the assemblage correspondsto the ammonite Speetoniceras versicolor Zone. The ventrally extremely displacedapical line of "Pseudoaulacoteuthis absolutiformis" suggests that this species should be included in the Cylindroteuthididae and re-named(for discussionsee Mutterlose & Baraboshkin, 2003).
Acroteuthis (A.) pseudopanderi Zone: A. (4.) pseudopanderi(Sntzow) (Platet). The Zone coincideswith ammoniteMilanowskia speetonensis- Craspedodiscusdiscofalcatus Zones. Lowpn Bennpvru.n. Praeoxyteuthis hibolitiformis Zone: The belemnite assemblage consists of P. hibolitifurmis, P. ex gr. jasicofiana, P. sp. (Platel). Praeoxyteuthis jasikofiana Zonez The belemnite assemblage is made up by P. jasikofiana, P. cf. & aff. jasikofiana, P. sp. (Plarel). Praeoxyteuthis pugio Zone: Typical belemnitesof this zone areP. pugio, P. cf . & aff. pugio, P. jasikofiana (at the baseonly), P. sp. (Platel). Aulacoteuthis descendens Zone: Belemnites of this assemblagearc A. cf. descendens, A. speetonensis and A. sp. Platel).
20
- Coleoid CephalopodsThrough Time - Pragu.e2005 2n'tInternationalSynlpesilsm
UppBnBAnnsvrrA.N. Oxyteuthis brunsvicensis Zonez The belemnite fauna includes O. brunsvicensis andO. sp. (Platel). Oxyteuthis germanica Zonez O. cf. germanicctand O. sp. are typical belemnites of this zone. Oxyteuthis lahuseni Zonez The assemblage of this zone containsO. lahuseni, O. barremicusand O. sp. (Platel). The zone is of latest Barremian age and extendsinto lowerpart of the Aptian succession. 3. Correlation The Upper Hauterivian belemnite assemblage of the RP is of low diversityand differs from NW Europeansignificantly.Only two belemniteZoneswere recognized,both of them are basedon the endemicspecies.Some resemblancewith European belemniteshas Acroteuthis (Boreioteuthis) aff. rawsorti
(Platel), but it is more depressed and characterisesthe basal part of the Upper Hauterivian, which strongly differs from Europeanssections. For the Barremianboth the RP and NW Europe are characterisedby an evolutionary lineage leading from ungrooved Praeoxyteuthisover groovedAulacoteuthisto ungrooved Oxyteuthis. Apart from early Barremian P. hibolitiformis and the latest Barremian/earlyAptian O. lahusenibelemnite Zone, all zones observed on the RP corresponds to belemnite zones in NW Europe.
Acknowledgements: We are grateful to Russian Foundation for Basic Research (grants 04-05-64503, 04-05-64420, 04-05-64424) and "Scientific schools" (grant 326.2003.5) for financial supporr of the i n v e s t is a t i o n .
RnrnnBNcBs BARABOSHKIN, E. J. 200i. Lower Cretaceousof the East-European platform and its southern frame (stratigraphy,paleogeography,Boreal-Tethyancorrelation). Unpublished Doctor Sc.Thesis,MoscowStateUniversity:l-573. [In Russian]. BARABOSHKIN, E. J. and MUTTERLOSE, J. 2004. Correlation of the Barremian belemnite successionsof northwest Europe and the Ulyanovsk - Saratov area (RussianPlatform). Acta Geologica Polonica,54,4: 499-510. GUZHIKOV, A. YU., BARABOSHKIN, E. J. and BIRBINA, A. V. 2003.New paleomagnetic data for the Hauterivian- Aptian depositsof the Middle Volga region:A possibilityof globa. correlation and dating of time-shifting of stratigraphicboundaries.Russian Journal of Earth Sciences. 5. 6: l-30. MUTTERLOSE, J. and BARABOSHKIN, E. J. 2003.Taxonomyof the Early Cretaceousbelemnite species Aulacoteuthis absolutifurmis (Sinzow, 1811) and its type status. Berliner Palciobiologische Abhandlungen, 3'. 179-181 .
21
- Coleoid CephalopodsThrougl'tTinrc - Prague 2005 2"" InternationalS1t177p651um
PLATE 1. . EXPLANATION Belemnitesfrom the Ulyanovsk-Saratov area (Russian Platform). Specimensare from the right bank of Volga River, S.yzranregion: Fig. 1, 2, 5,7 - Forfos Mt.; Ulyanovsk region: Fig. 3 - Zakhartevsky Rudnik; Fig. 4, IO, 72 - Bueraki Village; Fig. 8 KremenkiVillage; Fig. 9 - Novaya BedengaVillage; Fig. 11 - Polivna Village; Saratov region: Fig. 6 - TchernyZaton Village. Samples1-8, 10-12collectedby E.J.Baraboshkin, sample9 - by I.A.Shumilkin(Ulyanovsk). A. Praeoxyteuthis hibolitifurmis(SrollEY, 1811).No. MSU 10411.At - ventralview, Az - lateral view, venterto the left. L. Barremian,Praeoxyteuthis hibolitiformisZone,on a beach. B. Praeoxyteuthis .jasicofiana(LauusnN, 1814).No, MSU 91/2. Bt - ventral view, 82 - lateral jasicofianaZone,bed No.5. view, venterto the left. L. Barremian,Praeoxyteuthis C. "Pseudoaulacoteuthis absolutiforzls(Snvzow,1877)".No. MSU 99/1.Ct - ventralview, C2 lateralview, venterto the left. U. Hauterivian,Speetoniceras versicolorZone. (Pevlow,1892). No. MSU 104/2.Dl - ventral view, D2 - lateral D. Aulacoteuthisspeetonensis view, venterto the left. L. Barremian,Aulacoteuthisdescendens Zone,on a beach. pugio (SroLlrv, 1925).No. MSU 97/10. El -ventral view, Ez-lateral view, E. Praeoxyteuthis venterto the left. L. Barremian,Praeoxyteuthis pugioZone,on a beach. F. Praeoryteuthispugio (Srollrv, 1925).No. MSU 104/4.Ft - ventral view, Fz - lateral view, venterto the left. L. Barremian,Praeoxyteuthis pugio Zone,bed No.4. G. Praeoryteuthispugio (Srollrv, 1925).No. MSU 91/3. Gl- ventral view, G2 - lateralview, venterto the right. L. Barremian,Praeoxyteuthis pugio Zone,bed 19. H. OxyteuthisbarremicasGLaSuNovA,1969.No. MSU 104/5.Hl - ventral view, Hz - lateral view, venterto the left. U. Barremian,OxyteuthislahuseniZone,on a beach. I. Acroteuthis(A.) pseudopanderi(StNzow, 1877).No. 641. It - ventral view, 12- lateralview, venterto the right. U. Hauterivian,Craspedodiscus discofalcatus Zone,Unit IV. J. Oxyteuthis lahuseni(Pavlow, 1901).No. MSU 10411lY91-2114). Jt -ventral view, J2-lateral view, venterto the left. U. Barremian,OxyteuthislahuseniZone,on a beach. K. Acroteuthis(Boreioteuthis)aff. rawsoniPrNc
22
- Coleoid CephaLopods Through Time - Prague 2005 2n'tInternationalSymposi.um
\ll specimens havebeencoatedwith NHICI and arefigured 1 : 1.
LJ
- Coleoid CephalopodsThrough Time - PrcLgue2005 2"'tInternationalS1'tnposiunt
Cladisticanalysisof the Sepiolinae(Cephalopoda: Sepiolidae) basedon the hectocotvlus
B
Bello Giambattista
IstitutoArion, C.P.61,70042Mola di Bari,Italia
Peculiarities of the Sepiolinae, a subfamily of the Sepiolidae, are the bursa copulatrix in the female mantle cavity and the matching hectocotylus- modified left dorsal arm - in males.The Sepiolinaeincludesome 30 species distributed into five genera, namely Eurpymna, Inioteuthis, Rondeletiola, Sepietta, and Sepiola. The main characters which the genericsubdivisionis basedon are the hectocotylus morphologyand the presence and shapeof light organs inside the mantle cavity. Purposeof this paper is to contribute to the systematicrevision of the Sepiolinae based on the hectocotylus diversity. Three parts may be distinguished in the hectocotylized arm: the basal part that includesl-4 normal suckers,followed by the copulatory apparatus consisting of a few modified suckerstalks,followed by the distal part (Naef, 1923).The copulatoryapparatusis the part that undergoes most variations throughoutthe different speciesgroups(either genera or parts of them). An evolutionary trend in its morphology is quite evident. Within the Sepiolinae the plesiomorphic condition of the copulatoryapparatusis found in Euprymna,whereit consistsof 1-3 nipplelike papillae,i.e. modified stalksof the outer row of suckers,sometimesbearing a tiny sucker. Incidentally Naef (1923) placed Euprymna at the base of the Sepiolinae phylogenetictree;this opinionis corroborated by the cladograms in Bello (1998) and Vecchione & Young (2004). The closest apomorphic condition is representedby the rostrum-likemodified stalksof the 3'o and 4tn suckersof the outer row in the three Sepiola speciesfrom the Indo-PacificOcean,viz. S. parva, S. birostrata, and S. trirostrata. A further evolutionarystep is the rostrum-like
modificationof stalksinvolvine suckersfrom both the outer (3'd and 4th sucllers;and inner (two correspondingsuckers) rows. All of thesestalksare fused togetherwith eachother at their base in the generaRondeletiola and Sepietta, or throughout their length in the remaining species of Sepiola (all of them from the Atlanto-Mediterranean area). According to this analysis,the Indo-Pacific speciesof Sepiola share with Euprymna the synplesiomorphic character "copulatory apparatus made of modified suckers from outer row only", whereas the AtlantoMediterraneanspeciesof Sepiola display the "copulatory synapomorphic character apparatus made of modified suckers from both outer and inner rows" shared with Rondeletiola and Sepietta. Hence the genus Sepiola is indeed paraphyletic.In order to solve this situation, the Indo-Pacific and Atlanto-Mediterraneangroups of species currently ascribedto Sepiola shouldbe placed into two separate genera. Further analysis shows that Rondeletiola and Sepietta share certainfeaturesthat make them apartfrom the Atlanto-MediterraneanSepiola. To sum up, the Sepiolinaecladogrammay be summarized thus: (Euprymna (Indo-Pacific Sepiola (Atlanto-MediterraneanSepiola(Rondeletiola, Sepietta))). The genus Inioteuthis was not includedin this analysisbecauseof its quite different copulatory apparatus which seemingly does not pertain to the above reportedevolutionarycline; other characters, in additionto the hectocotylus,must be taken into accountto completethe cladisticanalvsis of the Sepolinae.
aA LA
2"' InternationalSltmp6silmt- Coleoid CephalopodsThrough Time - Prague 2005
RETnRnNCBS 3ELLO, G. 1998. Cladistic analysis of the Atlanto-Mediterranean sepiolines (Cephalopoda: Sepiolidae)based on morphological characters.Memorie del Museo Civico di Storia NaturalediVerona (2'serie),Sezione dellaVita,l3: 81-85. Scienze \AEF, A.1923. Die Cephalopoden. Fauna und Flora desGolfesvon Neapel,35, 1: 1-863. VECCHIONE, M. and YOUNG, R. E. 2004. Sepiolinae. The Tree of Life: tolweb.org/ tree?group=Sepiol inae&contgrouP=Sepiolidae. l
r: :: C
25
2n'tInternational SyTnp6tium - Coleoid Cephalopocls Througlt Titnt - Prugue 2005
No hands - but arms: The morphological and functional diversification of brachial appendagesin the evolution of coleoid cephalopods
- 1 1
.:l
von Boletzky Sigurd Oc6anologiquede Banyuls, LaboratoireArago, 66651 Banyuls-sur-Mer, C.N.R.S.,Observatoire France; boletzky@obs-banyuls. fr The arm crown is the most conspicuous part of the pedal complex (<molluscanfoot>) of cephalopods.Whereas Nautilzs has two concentricseriesof uniform, radially arranged brachial appendages(Naef, 1922, Fig. 3), coleoid cephalopodshave only one fully developedbrachial series; it is a supposed homologueof the outer seriesof Nautilus, the inner one (the so-calledbuccalarm crown, or buccal funnel) being vestigial (in Decabrachia)or lacking (in Vampyropoda; Boletzky, 1992), Compared to a Nautilus tentacle,which comprisesa proximal sheath and a distalcirrus with adhesiveridges(Kier, 1987), a coleoid arm (or a specialized decabrachian tentacle;see below) exhibits a greater number of variable structures that occupy well defined areas of the brachial surface(cf. Kier and Thompson,2003). Individual arms, and pairs or groupsof arms perform complex motor actionsthat are - to a certain degree - comparable to the performanceof the hand of primates (cf. Sumbreet al., 2005). In additionto the basic functionsof graspingand manipulatingfood, fending off would-be predators,or attaching themselvesto a hard substrate,the arms can producevisually effectivesignals,sometimes in combination with light emission by brachialphotophores(Hanlonand Messenger, 1996)or luminescentsuckers(Johnsenet a1., 1 9 9 9 ab, ) . The adhesive function (which is achievedby the ridgesof a brachialcirrus in Nautilus)is optimizedin the brachialsuckers of coleoid arms and tentacles. In some decabrachian squids of the taxon Oegopsida, certain suckers are transformedinto hookshapedclaws during juvenile development. Naef (1922, Fig. 68) compared oegopsid hooks with the fossil hooks of belemnoids.
The question whether they are really homologousstructures,i. e. horny structures derived from the "chitinous ring" of a normal sucker,was discussedby Engeserand Clarke (1988). The observationsof Donovan and Crane(1992)speakin favor of this homology. They alsodraw attentionto the possibilitythat simple muscular suckersdo not necessarily exhibit a distinct, permanent central depression(as in extant octopussuckels;cf. Schmidtberg,1999). When alluding to coleoid arms and tentacles,the term tentacle should only be used to designate the members of one particular pair of arms within the decabrachian arm crown (which is composed of a series of five pairs of brachial appendages). Traditionally,the arm pairs of a ten-armedcoleoid cephalopodare numbered from the "upper" or "anterior" arms (I) to the "lower" or "posterior" arms (V), and the tentacles then are number IV. They are characterized by the differentiation of a special"fast" musculaturein the stalk (Kier and Curtin, 2002). "IJpper" here alludesto the (horizontal)swimmingpositionof e. g. Sepia, and the upperpart of the animalis then called "dorsal" (in the so-called physiological orientation)."Anterior" alludesto the normal head-downdrifting position of e. g. SpirtLla, which also correspondsto the positionof the embryo cap (the epibolic gastrula)lying on top of the yolk mass,when viewed.fromabove (Boletzky,2003,Fig. 2). This is the so-called morphological or embryological orientation (Fioroni, 1918, Fig. 12) that permits a morphological comparison with other molluscs. The above-mentioned phl,siological orientation of living cephalopods,and the (pseudo) radial arrangement o.f' the anrrs
26
2"'tInternationalSyntposium- Coleoid CephalopodsThrough Time - Prague 2005
sllrroundingthe mouth in cephalopods,are rwo singularitiesthat tendto obscurethebasic dntero-posteriorpolarity of the embryonic armcrown. The problem of the pseudo radial becomesparticularlyacutewhen arrangement defining the orientationof the arm surfaces that bear suckers;one normally refersto the rnouthin talking about the adoral surfaceof the arm that bearssuckersor hooks.Likewise, the buccal arms (or buccal lappets) of decabrachiancoleoids appear to be adoral cierivatives of the (sessile)arms.Althoughthe rfinal) central position of the mouth is it is a secondarypositionwhich is undeniable, attained rather late in the course of The questionthus is how to en-rbryogenesis. reconcilea final "adoral" position with the previous,ostensibly"admedian" position of the "inner surfaces"of the arms.At first sight this questionmay appearfutile; it becomes more pressingonce the contrastbetweenthe
brachial appendagesproper and the dorsal extensions(in the morphologicalorientation) of the arm rudiments are recognized (Boletzky, 2003, Fig. 2). These dorsal extensionsprovide a series of paired pedal derivatives,startingwith the rudimentsof the funnel tube, continuing with the primary lid rudimentsand ending with the anteriorfolds coveringthe buccal complex.Although these structures ontogeneticallybecome increasingly distinct from the arm crown proper (at least in the coleoids), their respective positions may neverthelessbe indicative of someparticularfunctionalrelationships,e. g. with the hectocotylisation of certain arms in males. A thorough morphological and developmentalanalysisof the arm crown is necessaryfor a better understandingof the ftrnctional specializations of arms and associatedbrachial structuresthat must have occurredin the course of coleoid evolution.
RBnBRnNcBS life style,and reproductivemodein BOLETZKY, S. v. 1992.Evolutionaryaspectsof development, incirrateoctopods(Mollusca,Cephalopoda). Rev.SuisseZool.,99:155-'/70. BOLETZKY, S. v. 2003.Biology of early life stagesin cephalopodmolluscs.Aclv.Mar. Biol.,44 t43-203. DONOVAN, D. T. and CRANE, M. D. 1992. The type material of the Jurassiccephalopod gt, 35,2: 213-296. P nlaeontolo Belemnotheutis. ENGESER,T. S. and CLARKE, M. R. 1988.Cephalopodhooks, both recentand fossil. 1n: Paleontologyand Neontologyof Cephalopods(M. R. Clarke and E. R. Trueman,eds), vol. 12 of The Mollusca(K M. Wilbur, ed.),AcademicPress,SanDiego,pp. 133-i 51. Tintenfische. FIORONI,P. 1978.Cephalopoda, 1n:Morphogenese derTiere (F. Seidel,ed.).Erste Reihe:DeskriptiveMorphogenese, Lieferung2: G,-I. GustavFischerVerlagJena. HANLON, R. T. and MESSENGER,J. B. 1996.Cephalopodbehaviour.CambridgeUniversity Press.New York. JOHNSEN,S., BALSER, E. J. and WIDDER, E. A. 1999a.Light-emittingsuckersin an octopus. N a t u r e , 3 9 8 1: 1 3 - 1 1 4 . JOHNSEN,S., BASER, E. J., FISHER,E. and WIDDER, E. A. 1999b.Bioluminescence in the deep-seacirrateoctopodStattroteuthis syrtensisVerrill (Mollusca:Cephalopoda). Biol. Bull.. 197: 26-39.
21
- Coleoid CephalopodsThrough Time - Prague 2005 2"" International Sl,ntposium
KIER, W. M. 1987.The functionalmorphologyof the tentaclemusculatureof Nautiluspontpilius. In: Nautilus- The Biology and Paleobiologyof a Living Fossil (W. B. Saundersand N. H. Landman,eds).PlenumPress,New York andLondon, pp. 257-269. KIER, W. M. & CURTIN, N. A. 2002.Fastmusclein squid (Loligo pealei):contractileproperties of a specializedmusclefibre type."/.Exp.Biol.,205: 1907-1916. KIER, W. M. & THOMPSON, J. T. 2003. Muscle arrangement, function and specializationin recentcoleoids.In: Coleoidcephalopods throughtime (K. Warnke,H. Keupp and S. v. Boletzky,eds).BerlinerPakiobiol.Abh.,3: 141-162.
f
NAEF, A. 1922. Die fossilen Tintenfische- eine paliiozoologischeMonographie [English translation.B erliner Palciobiol. Abh., 5 (2004).
r1 SCHMIDTBERG, H. 1999. Ultrastructuralstudies of the suckersof newly hatchedEledone ntoschata and Octopusvulgaris (Mollusca, Cephalopoda).In: Advancing Researchon Living and Fossil Cephalopods(F. Oloriz and F. J. Rodriguez-Tovar,eds.), Kluwer Academic/Plenum Publishers, New York. pp. 203-222. SUMBRE, G., FIORITO, G., FLASH, T. and HOCHNER, B. 2005. Motor control of flexible octopusarms.Nature, 433: 595-596.
28
2ndInternational Symposium- Coleoid CephalopodsThrough Time - Prague 2005
Comparison of adhesiveorgan betweenldiosepius sp. and Euprymnq scolopes (t), (2), (l) von Byern Janek Rudou Livia Gruber Daniela(l)and Klepal Waltraud
Research,1090Vienna,Austria; "'University of Vienna,Cell ImagingandUltrastructure
[email protected] r) Universityof Vienna,Departmentof TheoreticalBiology, 1090Vienna,Austria; livia.rudoll @univie.ac.at
ABSTRACT: Histological, histochemicaland ultrastructuralmethods were applied to elucidate the nature of the secretionin the epithelial cells of three ldiosepius species(1. biserialis, L paradoxus and L pl,gmaeus).Previous scolopesby Singley(1981)revealsthat adhesionand deadhesion analysisof the adhesiveorganof EuprT,nrna is caused by a duo-glandadhesivesystem.The epitheliumof Idiosepiuswas studiesto elucidatetheir morphology and the nature of their secretion.The current results show that the adhesiveorgan of ldiosepius consistsof three different glandular cells.Histochemicalresultsindicatethat eachcell type containsits specificsugarunits, associated with proteins.The natureof the secretoryproductssuggeststhat all cell typesare responsiblefor adhesion.Acid proteinswere not found in the adhesiveorgan of ldiosepius.A duo-glandadhesivesystemas in Eupry,qmascolopescan thereforebe excludedfor' Idiosepius.The results indicate that ldiosepiusp),gnlaeusholds on to the substrateby Stefan-typeadhesion.This folm ofadhesionmaybethe resultofadaptionto habitatand behaviorof Idiosepius.
Keywords: Coleoid cephalopods,adhesion,adhesivegland,glue compounds,Idiosepius,EupryynnrscoLopes,duogland-system,Stefan-type-adhesion
Attachmentin cephalopodsis primarily achievedby reducedpressuresystemsas in sllckers on the arms, tentacles or defined dermalstructureson the mantle(von Boletzky and Roeleveld,2000). Two sepiolid genera of cephalopods (Euprymna, Sepiolidae; Icliosepius,Idiosepiidae) produce glue in adhesiveglands,also termed adhesiveorgan (Nesis,1982;Norman,2000). Euprvmna scolopes live in near-shore benthalhabitatsand hide duringthe day in the sediment (Moynihan, 2002). The animals secreteglue to coat themselvestotally with sand. In case of danger they releasesand instantaneously to deflect predators(Shears, 1988; Norman, 2000). Ultrastructural and
histochemical examinations show that Euprymna scolopeshas goblet and ovate cells in a duo-gland adhesivesystem all over the body. Between these cells are non-secretory interstitial cells (Figures 1 and 2, Singley, 1982).The gobletcells containlarge,electron densegranules(glucoseunits),responsible for adhesion. The finely granular secretory materialof the ovate cells, locatedin a large vesicle appearsto be basic proteins.During secretionthese proteins transform to highly sulphated acidic proteins. Singley (1982) assumesthat the rate of secretionof acidic mucoproteinsare secretedrelatively from the ovate cells and that thev are responsiblefor de-adhesion.
29
2"'t InternationalSymposium- Coleoid C,
Fig.l. closs section of dorsal epithelium at Euptlmna scolopes.sac-like ovate cells (oc) with fine granular material occur in the adhesive organ, presumably responsible for deadhesion.Interstitial cells (ic) possess intracellularfllaments(arlow). Figule fi'om Singley(1982).
Fig.2. Goblet cells (gc) have a long, tube-shapedform and are filled with large granules.Its secrerionproducr is responsiblefor adhesionat Euprymnascolopes.Figure from Singley(1gg}).
30
2"'tInternation{tlSltmpzsiam- Coleoid CephalopodsThrough Time - Prague 2005
Idiosepius lives in near-shoreshallow watersbetweensea grassand mangrovearea. It camouflagesduring the day, sticking to the underside of sea grass leaves or algae (Moynihan, Hylleberg and 1983; Nateewathana,1991; Jackson, 1992). Hiding there, the animals wait to capture prey swimming by, and females adherealso for spawning (Natsukari, 1970; Jackson, 1992; Lewis and Choat, 1993; Kasugai, 2000; Kasugai,2001). In contrastto Eupryntna,the adhesiveorgan of ldiosepills is restricted to the posterior part of the fin region of the dorsalmantleside(Figure3, Sasaki,1927).
Previous results of Sasaki (1921\ indicate that five different cell types can be distinguishedhistologically in the adhesive organ of trdiosepius paradoxus, namely columnar cells, granular cells, goblet cells, fusiform cells and basal cells. He assumes that the columnar cells are responsiblefor adhesion whereas the fusiform cells work pressure-induced and stimulatethe secretion of adhesive substancesfrom the columnar cells. Information about the function of the granularcells, goblet cells and basalcells the releasemechanismsaremlsslns.
sr,:W':
Fig.3. SEM pictuteof the adhesiveorganof ldiosepiusparadoxLts. Sasaki(1921,p. 210) describesthe adhesiveorgan as follows: "It is represented by a longitudinalcorrugatedareaextendingalong the posteriorthree-fourths of the back. The folds run quite illegularly without any definitemode of al'rangement, and show also fine furrows and pits".
31
2naInternation.alSymposium- Coleoid CephalopodsThrough Time - Prague 2005
d 1
E
e
I
a 3
,t:
Fig. 4. Schematicdrawing of the adhesiveorgan of Idiosepius sp. with its characteristiccells: co-columnarcells, grgranular cells, go-goblet cells and in-interstitial cells. The dermal layers below the basal membrane (bm) contain collagen,muscleand nerve fibres and chromaticelements.Image publishedwith permissionof Norbert Cyran.
Histological, histochemicaland ultrastructural methods were applied to elucidate the nature of the secretion in the epithelial cells of three ldiosepius species(1. biserialis, I. paradoxlzsand I. pygmaeus).The adhesive organ of all speciesconsistsof four different cell types (columnar cells, granular cells, goblet cells and interstitialcells), which can be distinguished morphologically and on account of their chemistry of their secretion (Figure 4). A furthpr fifth cell type (basal cells), postulatedby Sasaki (1921), seems doubtful.The vacuolesof the columnarcells are filled with fine granuleswhile the granular cells contain large spherical to polygonal granules.The secretorymaterial c'f the goblet cells is finely granularwhereasthe interstitial cells are free of secretorycomponents. Histochemicaltestsshow that the three glandularcell types (columnar,granularand goblet cells) contain periodate-reactive substances(neutral hexose sugars)and basic proteins. There is no difference in the composition of the secretory products between the species of ldiosepius. The different staining reactions indicate that the ratio of proteins and polysaccharides varies stronglybetweenthe glandularcells, forming different protein-polysaccharidecomplexes. Columnar cells have a high proportion of glucose sugar units and less I'ractionsof
protein(s). Granular cells have a balanced ratio of different sugar units and protein(s) while the goblet cells have higher proportion of proteinfractionsand a lower one of hexose sugar units other than glucose. Acidic and sulphated substances are absent in all Idiosepius species.The surface layer next to the glandular cells of the adhesive organ consistsof sugar units too, presumablyalso secretionproduct of thesecells. The histochemistry of the secretory products suggests that adhesion and deadhesionof ldiosepius is not based on a duo-gland adhesive system as found in Euprymnascolopes(Singley, 1982) and other molluscs (Grenon and Walker. 1918, Shirbhateand Cook, 1987) but follows rather a Stefan-typeadhesion. The different adhesivesubstancesand mechanismsof these two squid taxa serve different purposes and can be explained as ecological and behavioral adaptations. Euprymna scolopes uses the glue to cover itself with a coat of soft sedimentparts(sand, mud) and releasethe glue fast and over the whole-body. Idiosepius attaches with a small adhesive area to hard surfaces (seaweeds, seagrassleaves,roots). The three glandular cells with different compositionof secretory material give the strength necessaryfor the J/.
I
t\
- Coleoid CephalopodsThrough Time - Prague 2005 2"'tInternational Sl,mposium
attachment. It also enables an easy disconnection without special deadhesive The break of connectionmight be substances. effected by contraction or other mechanical release.So far observationsdo not allow any conclusions. Acknowledgments: We like to thank orrr partnersfor their help and cooperation during our stays. Their experienceand knowledgeenablesthe obtainingof the animals for the following research project: J. Suwanmala and J. Nabhitabhata from Kasetsart
University, Thailand; S. Shigeno from the Center for DevelopmentalBiology, Kobe and T. Kasugaifrom the Port of NagoyaPublic Aquarium, Nagoya,Japan. Our thanks go in particular to the Austrian Science Fund (FWF), Project No. P 17 193 - B 12, which enabled the obtaining of Idiosepius pygmaeus ftom Thailand and ldiosepius biserialis in MoEambiqueand provided us the possibility for the histochemicaland ultrastructural investigations. The foundation Japan Societyfor the Promotionof Science(JSPS),Grant No. 04567 promotedthe collection of ldiosepiusparadoxus in Japanesewaters. The first author likes to mention particularly Sylvia Niirnberger and Norbert Cyran for their helpful comments and constructive criticism.
RnrnnnNcBs GRENON,J. F. and WALKER, G. 1978.The histologyand histochemistryof the pedal glandular system of two limpets, Patella vulgata and Acmaea tessulata (Gastropoda: Prosobranchia). /. Man Biol. Assoc.U.K,58:803-816. HYLLEBERG, J. and NATEEWATHANA, A. 1991. Redescription of ldiosepius pygmaeus Steenstrup, 1881 (Cephalopoda: Idiosepiidae), with mention of additiona, PhuketMarine Biological CenterResearchBulletin,55: 33morphologicalcharacterc. 42. JACKSON, G. D. 1992.SeasonalAbundanceof the small tropical Sepioidldiosepiuspygmaeus (Cephalopoda:Idiosepiidae)at two Localities off Townsville, North Queensland, Australia.The Veliger,35,4'.396-401. KASUGAI, T. 2000. ReproductiveBehavior of the Pygmy Cuttlefish Idiosepiusparadoxus in an Aquarium.Venus,the JapaneseJournalof Malacology,59,I:37-44. KASUGAI, T. 2001. Feedingbehaviourof the Japanesepygmy cuttlefishldiosepiusparadoxus (Cephalopoda: Idiosepiidae)in captivity:evidencefor externaldigestion?J. Mar. Biol. Assoc.U.K. 81: 979-981. LEWIS, A. R. and CHOAT, J. H. 1993.SpawningMode and ReproductiveOutput of the Tropica. Cephalopodldiosepiuspygnxoeus.Can. J. Fish. Aquat. Sci. 50: 20-28. MOYNIHAN, M. 1983. Notes on the behavior of ldiosepius pygmaeus (Cephalopoda: Idiosepiidae). B ehavior,85: 42-57. MOYNIHAN, M. 2002.Notes on the Behaviorof Euprymnascolopes(Cephalopoda: Sepiolidae). Behavior,35: 25-41. NATSUKARI, Y. 1970.Egg-Layingbehavior,EmbryonicDevelopmentand HatchedLarva of the Pygmy cuttlefish, Idiosepiuspygmaeusparadoxus Ortmann.Bulletin of the Facultv oJ Fisheries,NctgasakiUniversity,30: 15-29. NESIS,K. 1982.AbridgedManualfor IdentificationCephalopods of the World Oceans.Moscow. NORMAN, M. D. 2000.Tintenfischfuehrer.Hamburg
33
_2n't
- ColeoiclCephalopodsThrough Tinte - Prr,tr, 2005 InternationalS)'nryosiunt
SHEARS,J. 1988.The Use of a Sand-coatin Relationto Feedingand Diel Activity in the Sepiolid SquidEuprymnascolopes.Malacologia,29, I: 121-133. SHIRBHATE, R. and COOK, A. 1987.Pedaland opercularsecretoryglandsof Pomaticts, Bitlrynia andLittorina. J. Moll. Stud.,53:19-96. SINGLEY, C. T. 1982. Histochemistryand fine structureof the ectodermalepithelium of the sepiolidSquidEuprymnascolopes.Malacologia,23,l: ljj-192. VON BOLETZKY,S. and ROELEVELD, M. A. C. 2000. "Ventraladhesion"to hard substrates: u thigmotacticresponsein sepiidcuttlefish(Mollusca,Cephalopoda). Vie et Milieu,50, 1: 59-64.
34
' i
2"'t Internatiot'tctl Sl,ntpositLnt- Coleoid CephctlopoclsThrough Tinte - PrcLgue2005
Pharmacological and histochemical examination of the Vena cephalica
of SepiaofficinalisL. (Cephalopoda) von Byern Janek
University of Vienna, Cell Imaging and Ultrastructure Research, 1090 Vienna, Austria:
[email protected]
ABSTRACT:This study reveals results on the mechanismsmodulatingperistalsisof the Vena cephalicain Sep officinalis(L.) (Cephalopoda). The pharmacological dataprovideevidencefor two antagonisticreceptorsystemsin t Vena cephalica.Cholinergictransmitters, like acetylcholine and nicotine,havea positiveeffecton peristalsisof the Ve cephalicawhereasaminergictlansmittelscausea standstillof pelistalsisin the Vena cephalica.Histochemicala: immunhistochemical testsconfirm the presenceof a cholinergictransmittersystem.The regulationof peristalsisin t,, Vena cephalicaresemblescloselythe neuroregulation of the gastrointestinal tract of other invelteblatesand vertebrat=,. thanto othel circulatory organsof Sepiaofficinctlis.
Key words: Coleoid cephalopods,cholinergic transmittel system. Circulatory system, nicotinergic acetylcholine receptor,peristaltis,Scpia officinalis,Vena cephalica.
Functionally, the circulation system of the dibranchiate cephalopods is subdividedinto a systemic and respiratory part (Tompsett, 1939r Schipp, 1987a).Like in vertebratesat cephalopodsthe thick-walledarteriesenablea high-pressurisecirculation by an air vesselfunction, (Shadwick and Nilsson, 1990). In cephalopods, however, the reflux of deoxygenatedblood towards the respiratory systemis effectedby largepropulsiveveins(de Wilde, 1956; Schipp, 1987a),Especiallythe Vena cephalicaof Sepia fficinalis produces powerful peristaltic waves posteriorly along this vein, driving the blood from the head region towards the Venae cavae (Tompsett, 1939).The peristalsis of the Vena cephalicain Sepia fficinalis is based on two muscle systemsof different function (Alexandrowicz, 1965).The periadventitial, longitudinalmuscle layer (PLM) effects cranial to caudal contractionwaves, while the circular muscle fibre layer of the Tunica media (cMF) is responsiblefor peristalticcontractionsof the vessel(Schipp,1987b). In addition,the Vena cephalicatakespart in regulating the hemodynamics of the
systemic and branchial hearts, the Bulbus cordis branchialis,the arterial systemand the contractilebranchialgill artery.Initial evidence for this is providedby studiesdemonstrating that this organtogetherwith nervefibers fbrm a neuronalplexus (NSV-system)which tends to produce transmitters such as hormons, FMRFamide and other cardioexcitatory peptides into the circulatory system (Alexandrowicz,7964; Alexandrowicz,1965: Martin, 1968; Young, 1969; Young, 1911 Martin and Voigt, 1987).This neurosecretofy system of the Vena cephalicais comparable with the adrenaline system in vertebrates ( W e l l s ,1 9 8 3 ) . The physiologicalresults of denervated vein preparations show that a myogenic automatismis responsiblefor the peristalsisof the Vena cephalicaof Sepiaofricinalis. .datapresentedhere The pharmacological provide evidencefor two antagonisticreceptor systems in the Vena cephalica.Cholinergic transmitter, like Acetylcholine (ACh) and nicotine, the nicotinic acetylcholinereceptor agonist dimethylphenylpiperaziniumiodide (DMPP) and FMRFamide induce a posirive
35
2n'tInternational Sl,ap6tiurtt - Coleoid Cephalopods ThroLtgh Tinrt - Prt;1Lte 2005
inotropic and chronotropic effect on Vena cephalica peristalsis. The neuromuscular blocking agent decamethoniumhas no effect on peristalsis, amplitude and frequency remains constant.Muscarine and cholinergic antagonistslike Tetraethylammonium(TEA), d-Tubocurarin and cr-Bungarotoxin (o-BTX) reversibly block the peristalsisin the Vena cephalica. Also aminergic transmitter (adrenaline,isoprenaline,noradrenaline)and serotonine (5-hydroxytryptamint:)cause a reversibleperistalsisstandstill. The histological results provide evidencethat nerve fibres in the longitudinal and circularmusclesof the Tunica media and Tunica periadventitiaform densenerveplexi. The function of these structures remains unknown, but the nerve plexi may be responsible for muscle contraction and involved in the neuroregulation of peristalsis by modulation the tonus of the circulatory system, The present histochemical data provide evidence for Acetylcholinesterase (AChE) in fibrous structures of the longitudinal muscle of the Tunica periadventitia and Nervus visceralis, indicating a cholinergic transmittersystem. The a7-subunit of a nicotinergic ACh receptor subunit (sc-5544) of vertebrates (SantaCruz BiotechnologyInc., 2001) show
clearbrown precipitations in the loneitudinal muscles of the Tunica periadrentitra and Nervus visceralis in the Vena cephalicaof Sepia fficinalis. The used toxin FITC crBungarotoxinallows no clear conclusrons about the presence of muscular nicotinic receptors in the Vena cephalica of Sepia fficinalis. This studysuccessfullydemonstrates that a cholinergic transmitter system or acetylcholine-catabolic system takes part in peristalsisof the Vena cephalica in Sepia fficinalis. The regulation mechanisms of Vena cephalica peristalsis apparently have great similarity with the peristalticwaves of the gastrointestinal tract of other rnvertebrates and vertebrates, which are regulatedby similar excitatorycholinergicand inhibitoryaminergic mechanisms(Jensen and Holmgren, 1985; Johnsonet al., 1987;Furnessand Costa,1987; SchmidtandThews. l99l\.
Acknowledgements: The author wishes to thank specially Prof. Dr. R. Schipp, Dr. Knut Beuerlein, and Tobias Lehr fi'om the University of Giessenfor their assisrance. the NCR workinggroupof Prof. Dr. FleiBner,Goethe-Univelsity of Frankfurt for providing facilities and Prof. Dr. W. Klepal from the University of Vienna, Cell Imeging and Ultrastructure for criticallyreadingthe manuscript.
RBrBRnNcns ALEXANDROWICZ, J. 1964.The Neurosecretory Systemof the Vena cava in CephalopodaL Eledoneciruosa.J. Man Biol. Assoc.UK*44 111-132. ALEXANDROWICZ, J. 1965.The Neurosecretory Systemof the Vena cava in Cephalopoda. II Sepiaoff. andOctopusvulgaris.Assoc.U.1C.,45:209-228. DE WILDE, J. 1956.Koordinationim GefiiBsystem von Octopusvulgaris L. Pubbticaz.ioni della StazioneZoologica: Marine Biology, 28: 359-366. FURNESS,J. B. and COSTA, M. 1987.The EntericNervousSystem.Edinburgh. JENSEN, J. and HOLMGREN, S. 1985. Neurotransmitters in the intestineof the atlantic coci. Gadusntorhua.Contp.Biochem.Physiol.(C),82, 1: 8l-89. JOHNSON,L., CHRISTENSEN,J., JACKSON, M., JACOBSEN,E., and WALSH. J. 1981. Physiologyof the Gastrointestinal Tract.New York
36
2"dInternationalSymposium- Coleoid CephalopodsThrough Time - Prague 2005
systemof Vena cava in Octopus.Brain MARTIN, R. 1968.Fine structureof the Neurosecretory Res.,8: 201-205, MARTIN, R. and VOIGT, K. 1987. The neurosecretorysystem of the Octopus vena cava: A neurohemalorgan.Experientia,43: 537-543. AChRaT(H-302): sc-5544. SANTA CRUZ BIOTECHNOLOGY INC., 2001.Datasheet SCHIPP, R. 1981a. General morphological and functional characteristicsof the cephalopod circulatorysystem.An Introduction.Experientia,43: 474-477. A comperativemorphologicaland functional SCHIPP,R. 1987b.The blood vesselsof cephalopods. survey.Experientia,43: 525-536. SCHMIDT, R. F. andTHEWS, G. 1997.PhysiologiedesMenschen.Berlin. SHADWICK, R. E. and NILSSON, E. K. 1990. The importanceof vascularelasticity in the circulatorysystemof the cephalopodOctopusvulgaris.J. Exp. Biol.,152: 471-484. TOMPSETT,D. H. 1939.Sepia.Liverpool, Part2,5:239-290. WELLS,M. J. 1983.Circulationin Cephalopods. PhiI. Trans.:Biological Science,25J: YOUNG, I.Z. 1969.Neurovenoustissuesin cephalopods. 309-321. YOUNG, J.Z.1911. The anatomyof the nervoussystemof Octopusvulgaris.Oxford.
31
2"'t In.ternational Sl,ntposittm- Coleoicl Cephctlopods Tl.,r, ., -
: ' . , - ' : t t2 0 0 5
Distribution pattern of a minimalist - new records for ldiosepiusbiserialis (Idiosepiidae,Cephalopoda) (r) von Byern Janek(r),NtirnbergerSylvia andShigenoShuichi : (1)
University of Vienna, Cell Imaging and UltrastructureResearch,1090 \'ienna. Austlia;
[email protected] 'r'RIKEN, Centerfor Developmental Biology, EvolutionaryMorphology Group. Kobe 650-0047, go.ip Japan @cdb.riken. ; shigeno
.\BSTRACT: New recordsof ldiosepiusbiserialis in Indonesiaand Japan indicatethat this specrcshas a rvider distlibutionthan assumedbefore. Its occurt'ence in "cooler" Jaipanese waters next to the relatcd specicsldiosepius puradoxusindicatesthat the distributionof lcliosepius biserialisis not limitedto tropicalwaters.
Key words: Coeloidcephalopods, behaviour,habitat,Idiosepiidae, Itliosepiuspl,gnweus,Thailand.PhuketIsland.
Idiosepiidaeare represented by a single genus with seven species.' Idiosepius biserialis(Voss, 1962),I. macrochelr(Voss, 1962),L rtotoides(Berry, 1921),I. paradoxus (Ortmann,1888),I. picteti (Joubin, 1894),I. pygnxaeus (Steenstrup, 1881) and L tltailandicus (Chotiyaputta, Okutani, and Chaitiamvong, 1991). Their distribution stretches from Japan, Thailand to South Australiaand MoEambique.Morphologically the species can be identified by the arrangementof suckerson the club (two or four rows) and the numberof suckerson the ventral arms (Hectocotylus)(Nesis, 1982). One conspicuousmorphologicalcharacterof this family is the adhesiveorgan(alsoknown as adhesivegland) located on the posterior partof the dorsalmantleside. Idiosepius biserialis differs from the other speciesof this genusby occurrenceat two distant geographical locations. Voss recordedit 1962 in Mogambiquebut not in South Africa and 1991 it was found in Thailandby HyllebergandNateewathana. Apart from ldiosepius biserialis a second species,Idiosepiusthailandicus,also has a biserial arrangement of suckers on the tentacles (Chotiyaputta, Okutani, and
Chaitiamvong,1991).Both speciesresemble each other. They differ only marginally in size (Idiosepiusthailandicus 5.03 mm males and 9.85 mm females- Idiosepiusbiserialis 6.5 mm malesand 9.05 mm females).Only scanning-electron-microscope (SE\{) images of the tentacle suckers point to a morphological difference beru'een both species (Chotiyaputta, Okutani. and C h a i t i a m v o n g1 ,9 9 1 ) . The new recordof IdiosepiusbisericLlis in Indonesiaconfirms that this specieshas a widespreaddistribution in the Indo-Pacific region. The finding in Japanesewaters may raise questions not only about the geographicaldistribution but also abour rhe habitat conditionsof this minimalist. This new record shows that the occurrenceof Idiosepiusbiserialisis not limited to seagrass and algae of "warm" tropical water (2530"C). Like other ldiosepius species (Kasugai, 2000; Nesis, Katugin, and Ratnikov, 2002: Kasugai and Ikeda, 2003) this pygmy squid can also be found in "cooler" ( I 5-20' C) climatic zones. This species possessesthe largest geographical distribution within the family Idiosepiidae
38
- ColeoiclCephalopoclsThr 2"'tInterttationalS:,nryosiunt
and, becauseof its size, presumablywithin the cephalopods. The recently collected specimen of Idiosepius biserialis from Indonesia and Japanwere identifiedfollowing Voss (1962) and comparedwith Idiosepius biserialis and Idiosepius thailandicus from Thailand by SEM-analysis. 1. Localities Idiosepius biserialis o Thailand: Bang Rong, Phuket Island ( 8 ' 0 2 . 1 5 6 ' N ;9 8 " 2 5 . 4 8 1 ' E )( J . v o n Byern unpubl. data); Ko Pratong, Ranong (Hyllebergand Nateewathana, 1991) . MoEambique: Inhaca Island (26' 00.215'S, 32 54.721'E and 26. 02.300'5, 32' 54.166E): Inhambane B a y ( 2 3 " 5 1 . 1 8 4 ' S ,3 5 ' 2 2 . 5 5 3 ' E ) ; Linga Linga (23' 42.911'5, 35" 2 3 . 6 8 4 ' E )M ; o n q u e( 2 3 " 4 1 . 3 3 1 ' S3, 5 " 22.281€) (J. von Byern unpubl.data); SanJoseMission Station,Morrumbene (Voss, 1962): Vilanculos (M. Roeleveldunpubl.data) I diosepius thailandicus o Thailand: Marine Station Ban phe, Rayong; Chantaburi River (12 32.424'N: 702' 02.842'E) (J. von Byern unpubl. data) and (Nabhitabhara,1998); Donsak Surartani,Ban PheRayong
New recordsof ldiosepius biserialis o Indonesia: 1 male and Z femalestaken from the surfaceby dip net on 2 May 2004; eastern part of Ekas-Bay, Lombok Island, Indonesia (08. 52.020'3;116' 27.541'E).Collector:J. von Byern o Japan: 7 males and 4 females taken from the surface by dip-net on 3 August 2000;Takasu,Japan.Collector: S. Shigeno 2. Description The morphology of the body and the presenceof an adhesiveorgan clearly place specimensinto the genusIdiosepius.The body size of all collected specimensagreeswell with the descriptionsof ldiosepius biserialis Voss, 1962; Hylleberg and Nateewathana, 1991a.The animalsare small (Table l), dorsoventrally compressedand cigar-shaped;the mantleendsin a blunt point. The body is spottedwith reddishbrown chromatophores.The fins are small and kidney-shaped. Both arms IV in the malesare hectocotylized, bearing3-4 suckerson the left respectively 4-6 suckerson the right basalarea of ventral arm. In the male, the hectocotyli arms are unequal in length contrary to the holotype specimen of Voss (1962). The suckers on the tentacles of all caught specimenshave aboutthe samesize (100 pm) in the basalarea,decreasing towardsthe tip of arms.
Tablel: Morpl.rornetric dataof the collectedspecimens
Indonesia Female1 Totallenqthlmm Mantlelenqthfmml W e i q h t[ s . ] Mantlewidth[mm] Headwidthlmml Fin lenoth[mml Fin widthlmml A r m sl l m m tl ill
IV Tentacles fmml
10 5.5
0.04 2.5 I
1.25 z J
t.c
2.5 4
Japan Males (n=7) Females(n=4) Mean Ranqe Mean Ranqe 7 11.8 9.2-13.4 16,70 14.2-18 5 a?a 6.3 4.7-7.6 8 . 11 0 0.02 0.01 o . 1 4 1 0 . 14 - 0 . 15 0 . 15 7 0 .1 5 - 0 . 1 6 2.5 3.1 424 2.4-4.O 3.7-4.4 z z 2,81 2.7-2.9 3 , 19 Z.Y-J.J 1.8 t.z 2.86 3.01 2.9-3.2 0.6 u.b 1,73 t.o- I.6 1.7-1.8 1.6 1 . 0 contracted contracted 1.85 t.J contracted contracted l.o contracted contracted 2 1 . 1 contracted contracted contracted contracted 1 . 6 5 contracted Female2
Male
39
2"'t International S1,6p6t1um- Coleoid Cephalopotl: 7';
Based on the biserial arrangementof suckerson the tentaclesthe specimensfrom the new locationsbelongeitherto the species Irliosepius biserialis and/or to Idiosepius thailandicus.The differencesbetweenthe two species are marginal and reduced to the arrangement of peg rows in the distal portion of tentacle suckers (Chotiyaputta, Okutani, and Chaitiamvong,1991). Comparisonof SEM photographsof arm and tentaclesuckers (Fig. l) with dataof ldiosepiusbiserialisfrom Thailand and Mogambique respectively Idiosepius thailandicus reveals that the recently collected specimenfrom Indonesia andJapanaremorphologicalcloselyrelatedto Id iosepius biserialis. 3. Distribution and habitat Idiosepiusbiserialis and the specimens from Japancan be caughteasily by handnets in shallow seagrass and algal beds of Mogambique and Thailand (Voss, 1962; Hylleberg and Nateewathana,1991). The
l ' , . il u e 2 0 0 5
specimensfrom IndonL'sri.t \\ erL' caughtat the water surfacein a sandr iirL'r ne\t to a small mangrovesapling.No seagrarrLrt--d: hare been reportedin the Ekas-bar.so ir rentainsunciear wherethe animalssta),at Ios rrdc. Currently no intorntarion ,rbout the origin of settlement r\loqarnbique or Thailand),the period and roure of migration (e.g. along the coast, directlr through the Indian Ocean or abductionr are ar ailable. Molecularbiological inr estisations are plannedto providenew insiehtsin the degree of relationshipof ldiosepius biserialis and Idi osepi us thailandicus.
Acknowledgments:We are vcrv gratciul ro Prof. Dr. W. Klepal, the headof the currenrrL-selrrch project.for' her kind supportand promotion o1'this studl and fol critically reading the manuscript.Our thanks go in particularto the AustrianScienceFund (F\\'F;. Ploject No. P 17 193 - B 12, and the JapanSocreryfol the Promotion of Science (JSPS), Grant No. 04561.
RnrnnBNcrs BERRY, S. S. 1921. Cephalopodsof the Genera Sepiolidea,Sepiadarium,and Idiosepius. PhilippineJournal of Science,4J, l: 39-55. CHOTIYAPUTTA, CH., OKUTANI, T., and CHAITIAMVONG, S. 1991.A new pygmy cuttlefish from the Gulf of ThailandIdiosepiusthailandicusn. sp. (Cephalopoda:Idiosepiidae). Venus,JapaneseJournalof Malacology,50,3: 165-114. HYLLEBERG, J. and NATEEWATHANA, A. 1991. Morphology, internal anatomy, and biometricsof the cephalopodIdiosepiusbiserialisVoss, 1962.A new record for the AndamanSea.PhuketMarine BiologicalCenterResearchBulletin, 56: 1-9. JOUBIN, L. 1894. C6phalopodesd'Amboine. Revue SuisseDe Zoologie et Annales du Mttsie d' HistorieNaturelle de Genve,2: 23-64. KASUGAI, T. 2000. ReproductiveBehaviorof the Pygmy CuttlefishIdiosepiusparadoxusin an Aquarium.Venus,JapaneseJournal of Malacology,59, 1: 31-44. KASUGAI, T. and IKEDA, K. 2003. Description of the egg mass of the pygmy cuttlefish, Idiosepiusparadoxus(Cephalopoda: Idiosepiidae), with specialreferenceto its multiple gelatinous layers.Veliger,46, 2: 105-I 10. NABHITABHATA, J. 1998.DistinctiveBehaviourof Thai pygmy Squid, Idiosepiusthailandicus Chotiyaputta,Okutani& Chaitiamvong,1991.PhuketMarine BioLogicalCenterSpecial Publication I8. 1: 25-40.
40
- Coleoid CephalopodsThrough Time - Prague 2005 2"dInternationaLS1t4p6si1tm
NESIS,K., 7982.Cephalopods of the World. Moscow NESIS, K., KATUGIN, O. N., and RATNIKOV, A. V. 2002. Pygmy cuttlefish ldiosepius paradoxus (Ortmann, 1888) (Cephalopoda)- first record of Idiosepiidaein Russian seas.Ruthenica.12. 1: 8 l-84. ORTMANN, A. 1888.Japanische Cephalopoden. ZoologischeJahrbilcher3: 639-670. STEENSTRUP,J. 1881.Sepiadariumand Idiosepiustwo new generaof the family of Sepia.With remarks on the two related forms Sepioloidea d'Orb. and Spirula Lmk. K.danske Vidensk. Selsk.SkrifterRaekke,6,Bd. 1:211-242. VOSS, G. L. 1962. South African cephalopods.Transactionof the Royal Societyof SouthAJrica, 36,4:245-272.
41
- Coleoid CephalopoclsThrough Tirne- Prague 2005 2"'tInternationaLS1,n1p65ism
-:..:\: - i",!Ai,
ffik
'1. ".p',-*.\
*iii;#$
2n'tInternationalSymposium- Coleoid CephalopodsThrough Time - Prague 2005
PLATEEXPLANATIONS PLATE| @.a2) A-B. Arm and tentaclesuckerof ldiosepiusbiserialis from Thailand. C-D. Arm and tentaclesuckerof ldiosepiusbiserialis from Mogambique. E-F. Arm and tentaclesuckerof ldioseoiusbiserialis from Indonesia. G-H. Arm and tentaclesuckerof ldiosepiusbiserialis from Japan. PLATE 2 @. a3) A-B. Arm and tentacle sucker of ldiosepius thailandicus from Thailand. Image of the tentacle sucker(x750)from Chotiyaputta, Okutaniand Chaitiamvong,1991.
A A
+J
2'"' International Syspe5l11m- Coleoid Cephalopods Tltrt,:,;'. .' .,',,
Prugue 2005
Multiple spawning in Sepiolaaffinis (Cephalopoda:Sepiolidaet Deickert Adrianne
13, Schriesheim, D-69198, Germany;Adrianne.Deickert Fensengrundweg @t-onIi ne.de
In order to gather information on the reproductivestrategy of the sepiolid squid Sepiola ffinis, direct observation of egglaying in the aquariumby 14 wild collected femaleswere combinedwith the examination of their ovariesand the ovariesof 21 females.
which did not spawn in the laboratory.The record of multiple spawninee\ents in five aquarium-kept females(tw'oto 1-1events)and the co-existencein the ovariesof oocytesat various stages of maturation. showed that Sepiolaffinis is a multiple spa\\'ner.
44
= _
2"" InternationalS)'mposiurn 2"'t S)'mposium- Co Coleoid CephalopodsThrough Time - Prague 2005 _
The rostrum, conothecaand pro-ostracum in the Jurassic coleoid
Belemnoteuthis PnancBfrom Wiltshire, England DoguzhaevaLarisa
(l),
(2) Donovan Desmond and Mutvei Harry (3)
(r)
Palaeontological Inst.,RussianAcademyof Sciences, Moscow;
[email protected] (2) Dept.of EarthSciences,UniversityCollegeLondon,LondonWClE 6BT;
[email protected] (3) Dept.of Palaeozoology, SwedishMuseumof NaturalHistory,Stockholm;harry,
[email protected]
ABSTRACT: Thlee specimensof BelemnotheutisPB,qRcr, 1842 from the Oxford Clay (Jurassic; Callovian) of ChristianMalford, Wiltshire, England,are studiedwith the goal of elucidatingthe structuralrelationshipof rostrum. conothecaand pro-ostlacumin this genus.SEM examinationhas revealedthe following ultrastructuraldata: ( l,1 the apicalpalt of the rostrumis composedof a dense,outerprismaticportionand a porous,inner prismaticportion;towards the aperturethe rostrum decreasesin thickness,losing first the porous innel portion and finally the outer densepor-tion; (2) in the middle part of the shellthe conothecaconsistsof outerprismatic,nacreousand inner prismaticlayers;towards the apertureit graduallydecreasesin thickness:first, the outer prismaticlayer disappearsand then the nacreouslayer; the most anterior portion of the conothecais solely formed by the thin, inner prismatic layer; (3) the pro-ostracumcliffers distinctly from the conothecaand rostrum in the following features:(a) it is mainly an organic fbrmation, consistingof horizontally laminated vertical columns; (b) the distal end of each column representsa polygonal field that in its periphery is composedof numerous,irregularly shaped,radially arrangedplates, and in its central portion of several angular, smaller elements separatedby interspacesof various widths. Delicate lamination of the pro-ostracumin Belemnotheutis is similarto the laminationof the chitinousmaterialin the gladiusof modernsquids(seeDoguzhaeva& Mutvei, 2003: Fig. 4a, b). Our SEM observationsdemonstratethat the pro-ostracumin Belemnotheutisis a shell elementwith unique structure without any similarity to that of the conothecaor rostrum. Key words: Coloeidcephalopods, Belemnoteuthls, Jurassic, England,shellmorphology,microstructures.
Introduction Since the erection of the genus Belemnotheutis Pnancp, 1842 it has been known that this coleoid has a pro-ostracum,in additionto a shortrostrumand a phragmocone (Huxley, 1864;Naef, 1922;Makowski, 1952; Jeletzky, 1966; Bandel & Kulicky, 1988; Donovan & Crane, 1992). The present paper containsresultsof the SEM examinationof the shellstructurein B. antiquusPeaRcE. 1. Material and preseryation Three specimensof B. antigrzzsfrom the Oxford Clay (Jurassic;Callovian)of Christian Malford,Wiltshire,England werestlldied with
the SEM. They are about 80 mm, 60 mm and 50 mm in length. All specimenshave been flattenedand the shell material is fracturedinto a mosaic of pieces that retain their original positions. A rostrum and a conothecawere originally aragonitic but have been diageneticallyreplacedby calcium phosphate. Two shellsare depositedin the British Museum (Natural History), and the third shell in rhe Swedish Museums of Natural History. The shells were examined without etching. The shellultrastructure was studiedin brokenpieces of the shell taken from different distancesfrom the apex.In two specimensthe hyperbolarzone of the pro-ostracum was exposedby removins A<
AJ
- Coleoid CephctlopoclsThrottgh Titn.e- Prctgue2005 2"'tIntentcfiionctlS1'nrposiunr
the shellacthat coversthe shellsin front of the wedged-outrostrum.. 2. Observations Rostrum.In the apicalpart of the shell the rostrumis solid and thereforeless compressed than the rest of the shell.The rostrumconsists here of an outer and an inner layer.The outer layer has a solid, simple prismatic structure with needle-shaped crystallites. The innerlayer is composedof similarprismaticunitsbut they are loosely packed.Towards the aperturethe rostrumlosesits inner layer and the outer layer becomes spherulitic-prismaticin that the crystallineunits form sectors in which they radiatetowards the shell surfaceand become loosely packed. Small interspacesare left between some of the crystalline units that indicate higher organic content. The outer surfaceof the rostrLlmis covered by a thin, possiblyoriginallyorganiclayer. Conotheca. In an apical part (r-rp to approximately50 mm from the shell apex),it consistsof a thin outer prismatic,a thick nacreolrsand a thin inner prismatic layer. Samples taken a somewhat greater distance from the apex show that the conothecais composedonly of the nacreousand the inner prismatic layers, both having the same thicknessof ca 0.6 mm. In our largestspecimen the samplestaken at a distanceof 65 mm from the shell apex show that the conothecais here con.iposed only of the inner prismaticlayerthat is about0.1 mm thick. Thus, at earliergrowth stagesthe conothecahas three layers but at older stagesfirst the outer prismaticlayer and finally the nacreouslayerwedgeout, Pro-ostracum(Pl. 1; Figs. A-F). The surfaceof the pro-ostracLlm is exposedlaterally in the anteriorpartsof two specimenswherethe rostrumhas wedgedout or beenremoved.The hyperbolar zone is clearly visible due to longitudinalstriation on its surface.in higher magnification the striae have a somewhat compact, plate like structure, and the interspaces betweenthem a porollsnet- or lacelike structure(Pl. 1; Fig. F). The surfaceof the pro-ostracumis penetrated,both verticallyand horizontally,by a great number of canals of boring organisms,with a diametersomewhat less than I L,m. The presence of these
organisms indicates that the pro-ostracum mainly consistedof organic substance that is only partially calcified. Immediately beneath the pro-ostracalsurface there follows a thin iayer,ca 15 prmthick, that is clearlyvisibleon vertical fracture surfacesof all three shells. Becauseit is rich in organicsubstance this layer shows a great difference in mode of preservation, in contrast to the calcified, uniformly well preserved prismatic and nacreouslayersin the sameshell.This layer of the pro-ostracumis in places composed of columnarunits about5 pm in diameter(Pl. 1, Fig. B). Thesecolumnsseemto be composed of predominantlyorganic,very thin laminae ( P l . 1 , F i g s .C , D ) , c a 0 . 0 5 p r mt h i c k .I n s u r f a c e view (Pi. 1, Fig. E) the distal end of each column forms a polygonalfield; its peripheryis composed of numerolrs, ilregularly shaped, radially arrangedplates in contact with each other;in its centralportion it consistsof severarl angular, smaller elements separated by interspacesof various wrdths. In other places the pro-ostracumconsistsof vertical elements of highly variable diameter sepalated by interspaces of irregularshapesand sizes.Some of these elementsseem to be plate-like and show series of deep, horizontal, narrow incisions(Pl. 1, Fig. A). Thus,rhepro-ostraclrm hasan uniquestructurethat hasno resemblance either to the adjacent,outer prismaticlayer of the conotheca,or to the prismaticlaversof the rostrum. 3. Discussion As describedabove,the pro-ostracumin Belemnotheutisconsistsof vertical columnsof predominantlyorganic lamellae,ca 0.05 prm thick. Their thicknesscorresponds to that of the lamellaeforming the chitinousgladii in living squids(Pl. 1, Fig. G). On rhebasisof our SEM observations on the pro-ostracum in Belentnotheutis we proposethe name "organic lamello-columnarultrastructure"as a new type of shellultrastructure in cephalopods. Huxley(1864,p, l8) observeda specimen of Belentnotheuthis in which "from one lip of the phragmoconethere obviouslyproceedsthe horny-looking plate (a, a), the two lateral contoursof which, obscurelydefinedfl.ornthe matrix, passinto one anotherat an acuteansle 46
- Coleoid Cephalctpods ThrotLgltTinrc - Prague 2005 2"'tInternational Sl,ntpositun
at b. A, narrow band of horny-lookingmatter, marked by oblique striae, is discernibleat c, and is quite distinct from the remainsof the mantle (fl, under which it seemsto pass."The ultrastructural features of the pro-ostracum, presented herein, agree with Huxley's interpretation of the pro-ostracumas a "horny" structure.The conceptof the pro-ostracumas
an innovation in coleoid cephalopodswas basedon SEM studiesof "ordinary"belemnites (Doguzhaeva et al. 2002,2003). Our presentresults support this idea. but they do not supportthe earlier view according to which the pro-ostracumis a dorsalremnant of the body chamber of coleoid precursors.
RBTBRBNcBS polonica: belemnite with an aragonitic BANDEL, K. and KULICKI, C. 1988. Belemnoteuthis (J. WIEDMANN, J. & I. KULLMANN, eds.),Cephalopods- Presentand rostrum.In: Past:303-316. in extinct DOGUZHAEVA, L. A. and MUTVEI, H. 2003. Gladiuscompositionand ultrastructure and Teudopsis.Rev. Pal4obiol,22:811squid-likecoleoids:Loligosepia,Trachy'teuthis 894, muscularmantle DOGUZHAEVA, L. A., MUTVEI, H. andDONOVAN, D. T.2002. Pro-ostracum, and conotheca in the Middle Jurassic belemnite Megateuthis. In: (H. - Presentand Past. SUMMESBERGER,K. HISTON & A. DAURER, eds.)Cephalopods -339. -A.. Abh. Geol.B. 51: 321 DOGUZHAEVA, L. A., MUTVEI, H. and WEITSCHAT, W. 2003. The pro-ostracumand primordial rostrum at early ontogenyof Lower Jurassicbelemnitesfrom north-western Germany.BerlinerPalciobiol.Abh., 3: 19-89, DONOVAN, D. T. and CRANE, M. D. 1992. The type material of the Jurassiccephalopod gy, 35: 213-296. B elemnotheutis. Palaeontolo HUXLEY, T. 1864. On the structureof the belemnitidae.Mem. Geol. Surv. UK: Figures and descriptionsof British organicrentains,'2:l-22. JELETZKY,J. A. 1966.Comparativemorphology,phylogeny,and classificationof fossil Coleoidea. Univ.Kansas,Paleont.Contr.Mollusca,l: 1-162. MAKOWSKI, H. 1952.Lafaunacalloviennede Lukov en Pologne.Palaeont.Pol., 4: 1-64. NAEF, A. 1922.Die FossilenTintenfische.322 pp. GustavFischer,Jena. PEARCE,J. C. 1842.On the mouthsof ammonites,andon fossilscontainedin laminatedbedsof the Oxford Clay, discoveredin cuttingthe GreatWesternRailway,nearChristianMalford in Wiltshire.Proc. Geol.Soc.London.3:592-594. PEARCE,J. C. 1841. On the fossil Cephalopoda constitutingthe genusBelemnotl'tezris, PEARCE. LondonGeoLJ., 2: 75-18.
47
- Coleoid CephalopodsThrough Time - Prague 2005 2"'tInternationctlS7,n7p6s1Ltm
PLATE 1. . EXPLANATION Pro-ostracum ultrastructure in Belemnotheutis antiquus; Oxford Clay, Jurassic; Callovian, Christian Malford, Wiltshire, England: A. SpecimenNo. SMNH 90284;B - F. Specimen.No. BMNH 31412.G. Laminationin chitinous gladius(crosssection)in living squidBerryteuthismagisterBeRRv;scalebar - 30 pm. A. Middle part of the shell; the pro-ostracum(pro) is situatedbetweenthe rostrum (r) and the nacreouslayer(n) oI the conotheca;scalebar - 3Upm. B. Columnarunits (cu) of the pro-ostracumseparatedby an organic membrane(m); anteriorpart of theshell;scalebar - 15 pm. C. Close-upof B to show thin laminationof the columnarunits;scalebar - 6 pm. D. Micro-laminae(ml) of the columnarunits;scalebar 1.2 pm. E. Surfaceview of the pro-ostracum; scalebar - 6 F,-. F. Close-upof striae(rd) and grooves(gr) of the hyperbolarzone ; scalebar - 60 prm.
48
2"'tInternationalSymposium- Coleoid CephalopodsThrough Time - Prague 2005
:
it.\ti:tl :,
lt)t
i),":i i'
^::
_w
2"'t Internationctl S),tttposiunt- Coleoicl CephctlopoclsThrough Time - PrctgtLe 2005
The original compositionof the gladius in the Aptian plesioteuhtidl/eslsoteuthis, Central Russia,basedon its ultrastructure (r) DoguzhaevaLarisa andMutvei Harry (2) Palaeontological Inst.,RussianAcademyof Sciences, Moscow;
[email protected] t
Dept.of Palaeozoology, SwedishMuseumof NaturalHistory,Stockholm;
[email protected]
\BSTRACT: A thin, delicate,small-sized(less than 30 nrm in length) gladius with an ink sac in Nesisoteuthis ':Dtbirskettsis DoGUZHAEVa. from the Lower Aptian of the ShilovkaLagerstcitle, Middle Volga, Central Russia,is 'rrtmined with the SEM with the aim of clarifyingthe originalcompositionof the gladius- whetherit was organicor :"rnred of calciumphosphate.Its ultrastructut'e is comparedwith the originallyolganic but secondarilyphosphatized .-:iles of pelagicfish and aptychiflom the samebeds.In addition,a gladiusof modern squrd, LoLigois also examinecl i.'r comparison.It is shown that the gladiusand ink in N. sintbirskensis, as well as fish scalesand aptichii,have a The gladiusin N. siniltirskertsis was oliginally a laminated,organicstructurelike that in livin.g -rl,rhularultt'astructure. :.1uidsbut becamesecondarilyphosphatized duringfossilization.
Ke1'rvords:Coloeidcephalopods, plesioteuthid, Nesisoteuthis, Early Cretaceous, CentralRussia,shellmorphology.
Introduction The paper deals with the SEM examinationof shell and ink substancein a small-sized, lessthan 30 mm in length,thinwalled, slender gladius, covering an r-rnderlying ink sac.The specimencomesfrom the Lower Aptian Lagerstcitte Shilovka, Uljanovsk region, near the village of Shilovka, Middle Volga region, Central Rr-rssia.It is described as a plesioteuthid: Nesisoteuthis simbirskensis DocuzsRpva, 2005. The locality has also yielded exceptionally well-preserved aragonitic ammonite shells exhibiting rarely observed morphologicalfeaturessuch as large ventrolateral muscle scars and buccal apparatus preservedin situ (Doguzhaeva& Mutvei, 1991, 1992). The ammonite shells from Shilovkacontainabout90 Voof aragonite( xray data); however,the aptychi and coleoid ink that were analysed with EDAX are (Doguzhaeva& al., 2004). The phosphatized gladius lies in a dense, dark-grey siderite concretion that has preservedthe detailed structureof this fraeile fossil. When the
concretionwas broken the gladius was split longitudinallyinto two halves Aptian gladius-bearing coleoidsare rare the world over, including Central Russia. Since the first find of a gladiusin lare 1940' (Hecker& Hecker, 1955)our specimenis the fifth recorded(Doguzhaeva,2005). The five specimensarethe only known Aptian gladiusbearingcoleoidsfi'om Russiaso far. 1. Material studied and method The gladius under examinationis the holotypeof N. simbirskensis (PN 387ll39t) consistingof two halvessplit longitudinally (Doguzhaeva, 2005,Figs. 1A-D). The larger, thicker half is 26 mm long and 6 mm broad. The thinnercounterpartis 23 mm long and4 mm in maximum width. Both halves show split surfaces.The ink sac is exposed in cracksof the gladius.For comparison,aptychi and scalesof pelagicfish from the samebeds, and a gladiusof a living squid Lolig,r, were studied with the SEM withour etching.The fish scalesare examplesof fossils that are known to have been originally of organic
50
- Coleoid CephalopodsThrough Tinrc - Prctgue2005 2"" International Sl,ntposium
composition but were phosphatizedpostmortem. 2. Observations Gladiusin N. simbirskensis.The gladir-rs consists of thin laminae, ca 1-2 pm in thickness, eachof which is composedof a set of thinnerlamellae(Pl.l A,B). The lamellae consist of globules that are more or less regularlyshaped(Pl.1B,C).The globulesare ca 0.05 - 0.2 prmin diameterand eachone is an aggregate of still smallerparticles.In some laminaethe globulesare loosely packed,in others the globules are distributedwithin a material that looks structureless,similar to pure organic substance. This probably dependson the degreeof coagulationof the particles into globules. Where the particles were not coagulatedinto globulesthey look like structurelessmatter. The laminae have micro-poreswith diametersof ca 0.05 - 0.2 prm,being close to the size of the globules. About 100poreswere countedon a squareof 5 Frn side in the central keel region. In the samelegion the globulesform aggregates that are larger and more compactlypacked than those outside the keel. However, in some other placesthe pores are less numerousor not visible. Numerouscracks in the gladius, caused by compaction, are filled by heterogeneous debris including angular and particles, the latter having diameters -qlobular o f c a0 . 3 F m , Ink saccontent.The ink sac,exposedin cracksof the gladius,containstwo dominant globulesof ca 0.3 1rm diameter substances: (Pl. I D), and a structureless massconsisting of small particles, not coagulated into globules. Besides, the ink sac contains undetermineddebris, and probablypiecesof gladius and remnantsof soft tissues.They might havepenetrated into the ink sacin early postmortemtime. Fish scales and aptychi. Both are laminated with a globular ultrastructurein eachiamina.The globulesare ca 0.03 pm in diameter(Pl. 1 E), and consequently aboutten times smallerthan the globulesin the gladius and ink sac. In the aptychi the globulesare arrangedin fibres.
Modern gladius. It is Iaminated and eachlamina has a fibrous ultrastructure (Pi. 1 F). Each fibre is ca 0.06 trrmin diameter.The gladius is perforatedby microporeswith a diameterof ca 0.3 - 0.6 pm. Thus, their diameter corresponds to that of the microporesin the gladius of the extinct N. simbirskensis. 3. Ultrastructural comparison with other fossil gladii previously studied The ultrastructureof the gladius has been describedin the JurassicLoligosepict, Trachyteuthisand Teudopsis(Doguzhaeva& Mutvei, 2003). All these gladii are mulrilaminated,each lamina being composedof globular, tablet-like or chain-like aggregates of tiny granuleswith a diameterof ca 0.3 - 0.4 pm. The globular chains in the laminae representfossilizedfibres, which revealsthe organic composition of the Jurassicgladii. The Aptian gladius of N. simbirskensis examined herein shows a similar ultrastructure: it is laminatedand eachlamina is composedof granulesthat are arransedin indistinctfibres(Pl. 1; Fig. B). 4. Palaeoenvironmentalconclusions N. simbirskensis lived in the epicontinentalEarly Aptian Sea on the EastEuropeanPlatform characterizedby dysoxic or anoxic environments(see Doguzhaeva, 2002). Existenceof the latter conditionscan be proved by analysis of the ink sac preservation.The deformationof the gladius givesthe impressionthat the ink sacwas solid and becamehardenedprior to the compaction of the sedimentand fracture of the gladius. The rapid solidificationof ink neededslightly acid or neutralconditionsthat existedin the dysoxic or anoxic marine environments(see Doguzhaeva& al., 2004). In an alkaline environmentthe ink is dispersedcolloidally (FOX, 1966). 5. Phylogeneticconclusions The ultrastructuralinvestigationof the gladius material in the Early Aptian plesiotetrthidNesisoteuthisrevealsthat it can be intelpretedas an initially organicsubstance that becamesecondarilyreplacedby calcium 5l
- Coleoitl CephalopodsThrough Tinte - Prague 2005 2n'tInternational S1,rp651um
phosphate.Thus, this is the fourth squid-like fossil, in addition to the three Jurassictaxa previouselystudied (Doguzhaeva& Mutvei, 2003),in which the gladiushasbeenshown to be of originally organic composition.This dataleadsto the conclusionthat eitherloss of mineralizationof the gladiusin extinct squidlike coleoidsoccurredin pre-Jurassic time, or
that the gladius in pre-Jurassictime was originallymainly organicin composition. Acknowledgements: We gratefully acknowledge that the International ScienceFoundationprovided support for a field trip to the Middle Volga region in 1995, and rhe Swedish Academy of Sciencesfbr providing a grant in 2005 supportingour research.
RBrBnnNcps DOGUZHAEVA, L. A. 2002. Pre-mortem septal crowding and pathological shell wall ultrastructureof ammonite younglings from the Lower Aptian of Central Volga (Russia).Aspectsof CretaceousStratigraphyand Palaeobiogeography.In: proc. of the 6tr'Intern.Cretaceous Symp.Vienna,2000(ed.M. WAGREICH).-)rtrrr. Akad. Wiss. Schriftenreiheder ErdwissenschaftlichenKommissionen,75: 17 I - 185. DOGUZHAEVA, L. A. 2005. A gladius-bearing coleoid cephalopodfrom the Aptian of Central Russia.Mitt. Geol.-Pakiont.Inst, Univ. Hamburg (in press). DOGUZHAEVA, L. A. and MUTVEI, H. 1991. Organizationof the soft body in Aconecercts (Ammonitina), interpreted on the basis of shell morphology and muscle-scars. Palaentographica,Abl A, 218: l1 -33. DOGUZHAEVA, L. A. and MUTVEI, H. 1992.Radulaof Early Cretaceous ammoniteAconecercts (Mollusca:Cephalopo da).Palaeontographica, Abt.A, 223: l6j -117. DOGUZHAEVA, L. A. and MUTVEI, H. 2003. Gladiuscompositionand ultrastructurein extinct squid-like coleoids: Loligosepia, Trachyteuthisand Teudopsis,Revue Pal6obiol., 22: 877-894. DOGUZHAEVA, L. A., MAPES, R. H. andMUTVEI, H.2004. Occurrenceof ink in Paleozoicand Mesozoic coleoids (Cephalopoda).Mitt. Geol.-Palciontol.Inst. Univ. Hamburg, 88: t45-156. HECKER,E. L. and HECKER, R. F. 1955.Teuthoideafrom UpperJurassicandLower Cretaceous of Volga Region.Voprosypalaeontologii,2:36-44.[In Russian]. FOX, D. L. 1966. Pigmentationof Molluscs. In: WILBUR, K.M. & YONGE, C.M. (eds.) Physiologyof Mollusca.Acad.Press,New-York, pp.249-274.London.
52
- Coleoid CephalopodsThrough Tinte- Prague 2005 2"'tInternation.alST,ntpositun
PLATE 1. - EXPLANATION
A-D. Nesisoteuthissimbirskensis,sp. nov. PIN 38711391;Lower Aptian; village of Shilovka, Uljanovsk region, Middle Volga area, Central Russia. A. Anterior part of the gladiusshowingcentral(cf) and lateral(lf) fields, median(mk) and lateral (1k)keels,andlaminationof gladiusmaterial;scalebar - 1. 5 mm. B. Enlargedview on the gladius to show two laminae (right top and left bottom corners)and infilling of a crackbetweenthem,scalebar - l2 pm. the upper has compactlypacked C. Two laminaeof the gladiusexposingglobularultrastructure, globulesand the lower haslooselypackedglobules;scalebar - 12 pm. of the ink: scalebar - 0. 6 um. D. Globularultrastructure of the fish scale,scalebar - 0. 6 um. E. Globularultrastructure F. Laminationof the gladiusin living squidLoligo, scalebar - 120pm.
53
- Coleoid Cephalopotls Throttgh Tinrc - Prcrgtte 2005 2"" Internati(tnal Sltn1ps5i1,nr
lk
- Coleoid CephalopodsThrough Tinte - Prague 2005 2'"tInternational ST,ntposium
A late Triassic coleoidfrom the Austrian Alps: The pro-ostracum viewpoint DoguzhaevaLarisa
(l),
Mutvei Harry
(2) (3) and SummesbergerHerbert
(l)Palaeontological Inst.,RussianAcademyof Sciences, Moscow;
[email protected] (2) SwedishMuseumof NaturalHist., Stockholm;
[email protected] Dept.of Palaeozoology, (3)Geol.-Palaeont. Dept.,Museumof NaturalHist,Vienna;
[email protected]
ABSTRACT: The discoveryof a new and as yet unnamedLate Triassiccoleoidwith a pro-ostl'acum fiom the Carnian bedsof Lowel Austriais leported.The new taxonis represented by a tiny (about10 mm bload and 5 rnm long) fi'agment jaws (about4 mm long) lying immediatelyin front of the anterioled-9e o1'asmall-sizedshelltogethelwith black or-9anic of the shelland slightlycontactingit. The shellis dorso-ventrally compressed and exposesthe dorsaland lateralsides.It comprisesthe phragmoconeand the pro-ostracum. Mural pal'tsof the septaare distinguishable but indistinct.The proostracumis narrow,about 1/7-li8 of the shellcircumf'erence. It hasa narrowmedianfield with convexgrowth lines,and hyperbolarzoneswith ribs converginganteriorly.The shapeis remarkablydifferentfrom the broad(aboutthree/quartels fanlike tripartitepro-ostl'acum of shellcircumference) in the contemporaneous Phragntoteutlris Molslsovtcs, 1882,and can be definedas of the "belemnoidtype" (Huxley, 1864).SEM examinationrevealedthat the pro-ostracum is formed by two layers:(l) the inner layer of verticalcolumnarunitsformed by micro-lamellae, and (2) the outerlayerof microplates alrangedparallel to the surface.Neither prismaticnor nacreouslayer is presentin the pro-ostracum.This ultrastructure is essentiallysimilarto that of the pro-ostracum (Doguzhaeva in the JurassicBelenmotheuris et al., 2005). In both casesthe fine laminationof the pl'o-ostracum materialshowsa closesimilarityto the laminationof the chitinous materialin the gladiusof living squids.Therefore,the pro-ostracumin the extinctcoleoidsis considetedto have been composedof partiallycalcifled,mostly organicmatelial.SEM examinationrevealedalso that the jaws of the specirnen studiedhavea laminatedultrastructut'e similar to that of chitinousjaws of living squids.Our study showsthat coleoids with a nat'row"belemnite"-like type of pro-ostracumand those with a broad pro-ostracumof Ihe PhragntotetLthis-type (Jeletzky,1966)are now known to occul'in Late Triassic.The micro-laminated ultrastructuleof the pro-ostracum in thc Carniancoleoiddescribedhereinsupportsthe conceptthat the pro-ostracum was originallya predominateiy organicand innovativemorphologicalstructurein coleoidevolution(Doguzhaeva,2002; Doguzhaeva et a|.,2002a,2003b,2005).
Key words: Coleoidcephalopods, Tliassic,AustrianAlps, shellmorphology,pro-ostracum.
Introduction. This is the first report of a new narrow, "belemnite"-like pro-ostracum.The as yet Llnnamedcoleoid specimenis from the Late TriassicAustrian Alps. It containsa crushed orthoconic phragmocone and jaws that apparentlybelonged to the same individual. The shell shows a narrow pro-ostracumwith well preservedshellmaterial.The shelland the jaws wereexaminedwith SEM. The specimen
was discoveredby splitting the shale around the shells of the ceratid ammonoid Austrotrachyceras. The Austrotrachyceras shells in the shale were collectedmore than hundredyearsago for the AustrianGeological Surveyand for the Museumof NaturalHistory in Vienna.The exceptionalpreservation of the shell material in these ammonoidsfrom this locality has been elucidated earlier (Doguzhaevaet al., 2004).
55
- CoLeoiclCepltalopod.s 2"'tInternation.alSl,mposiunt Through Time - Prague 2005
1. \Iaterial studied and method. The studiedspecimenrepresents a tiny , about l0 mm broadand 5 mm long) fragment of a small-sizedshell togetherwith black organic jaws (about 4 mm long) lying immediatelyin front of the anterioredgeof the shell. The specimencomes from the Lower Carnian - Austriacum Zone, Upper Triassic; locality Schindelberg,Lunz, Lower Austria. The specimenis compressed,flattened and split longitudinally into a main part and a counter-part. The externalsurfaceof the dorsal and lateral sides of the phragmocone are exposed,and the inner surfaceof the ventral sideof the phragmocone is alsopartly exposed (Pl. I, Fig. A). The deformationof the shellis similar to that of the recentlystudiedJurassic specimensof Belemnotheutis(Doguzhaevaet al.. 2005):both havelongitudinalfracturesand fracturesalong the mural rings that produce rectangular fragmentsin a mozaicpattern.The estimated diameter of the phragmoconeis about 5 mm. The preservedpro-ostracumis discernibleby its typical growth lines on the centralzone and by the longitudinalribs on its hyperbolarzone.The specimenwas examined without etching with SEM at the Swedish3. Museum of Natural History, Stockholm, Sweden and is repositedin the Museum of NaturalHistory,Vienna,Austria. 2. Morphology and ultrastructure of the pro-ostracum(Pl. 1, figs. A-E). The width of the pro-ostracumis about3 mm, which is approximately 1/6 - lll of the estimatedshellcircumference (Pl. 1, Fig. A). It has a narrow median field with narrowly rounded growth lines, and hyperbolarzones with longitudinally converging ribs. In the adoralpart of the medianfield the growthlines form an acute angle of ca 60' - 80". The glowth lines are of two orders.The preserved fragment has about 5 broad and 30 narrow growth lines. The pro-ostracumcovers5 or 6 cameraeof the phragmocone; the cameraeare about0. 8 mm in length.The thicknessof the pro-ostracumis ca 50 prm.It consistsof two layersof about the samethickness.The inner layer is composedof vertical columnarunits about4-5 prmin diameter(Pl. 1, Fig. B). The columns are separatedby interspacesand
composedof micro-laminaeof ca 0.05 pm in thickness(Pl. I, Fig. C). In a surfaceview the distal end of each column has an irregular polygonal shape.The outer layer consistsof horizontally arrangedmicro-platesthat are ca 0.2 - 0.3 prmin thickness(Pl. 1, Figs.B, D). They seemto have been originally organicas arethe lamellaein the chitinousjaws (compare Pl. 1, Fig.D and Fig.E). Thus,the ultrastructureof the pro-ostracumis unique and lacks any ultrastructuralresemblanceto either the prismaticor nacreouslayersof the phragmocone. The Jaws. The jaws of the specimen show thin laminationsthat are fracturedin a "step-like"pattern(Pl. 1, Fig. E). This fracture pattern is similar to that seen in the broken jaws and gladii of living squidsconsistingof organicmaterial.Similar fracturepatternshave also been observedin broken gladii of fossil squid-like coleoids (Doguzhaeva& Mutvei, 2003), The resemblance between the ultrastructureof the outer layer of the proostracumand the jaws indicatesthat both are composedof organicmaterial. 3. Discussion: Up-to-now Phragntoteuthishas been the only known Triassiccoleoid preservedwith a pro-ostracum. In this genLlsthe pro-ostracum is broad and different from the pro-ostracain Early Jurassicphragmocone-bearing coleoids. Therefore, Phragmoteuthis has been interpretedas an intermediatestagebetween the bactritoidswith a long body chamberand belemnoids with a narrow pro-ostracum (Jeletzky, 1966). This view is based on rhe assumptionthat there was a gradualreduction of the ventralside of the body chamberin the ancestral bactritoids that resulted in the formation of the initially broad pro-ostracum in early coleoids.Our study demonstrates that the morphologicalvariability of pro-ostracain Triassiccoleoidswas not restrictedto a single Phragmoteuthis-like type. Moreover, the newly discovered specimen gives a new information for discussion of the oossible origin and transformarionof the itr.lt in coleoid cephalopods.As described above, neither the prismatic nor nacreouslayer is presentin the pro-ostracum.The characteristic
56
2"'tInternation.alS
of the pro-ostracumin the new r-rltrastructure coleoid is the micro-lamination.The microlamellaeare arrangedin vertical columns in the inner layer and in micro-platesin the outer layer. The thickness of the micro-lamellae correspondsto that of the micro-lamellae forming the chitinous gladii in living squids and in the pro-ostracumof Belentnotheutis lDoguzhaeva et al., 2005, herein). This
observationleads to the conclusionthat the pro-ostracumin the specimen studied was originally mainly organic material. This conclusionprovides additional proof for the conceptthat the pro-ostracumoriginatedas an innovativemorphologicalstructurein coleoid evolution and not as a shell reduction feature from the ancestorialbactritoids (Doguzhaeva, 2002;Doguzhaevaet al, 2002,2003,2005).
RBnnRpNcBs DOGUZHAEVA, L. A. 2002. Evolutionarytrends of Carboniferouscoleoids:the ultrastructural view. ht: (H. KEUPP, F. RIEDEL & K. WARNKE, eds). Intern. symp. Coleoid throughtime: neontologicalapproaches to their palaeobiologyin the light of cephalopods Abh., 1:29-33. the fossil record.BerlinerPalciobiologische DOGUZHAEVA, L. A., MUTVEI, H. andDONOVAN, D, T.2002. Pro-ostracum, muscularmantle and conotheca in the Middle Jurassic belemnite Megateuthis. In: (H. - PresentandPast. SUMMESBERGER,K. HISTON & A. DAURER, eds.)Cephalopods Abh. Geol.B.-A.,57: 321-339. DOGUZHAEVA, L. A., MUTVEI, H. and WEITSCHAT, W. 2003. The pro-ostracumand primordial rostrum at early ontogeny of the Lower Jurassic belemnites from northgischeAbh., 3: l9-89. westernGermany.BerlinerPalciobiolo DOGUZHAEVA, L. A., MUTVEI, H., SUMMESBERGER,H. and DUNCA, 8.2004. Bituminous soft body tissuesin Late Triassic ceratitidAustrotrachyceras.Mitt. Geol.-Palciortt.Inst. Univ.Hantburg,88: 31-50. DOGUZHAEVA, L. A., DONOVAN, D. T and MUTVEI, H. 2005.The rostrum,conothecaand pro-ostracumin the JurassiccoleoidBelemnotheutis Pearcefrom Wiltshire, England.2"'t Intern.Symp."ColeoidCephalopods throughtime"Prague,Sept.26-28,2005. HUXLEY, T. 1864. On the structureof the belemnitidae.Mem. Geol. Surv. UK: Fipures uul descriptiortsof British organic rentains,2: 1-22. JELETZKY,J. A. 1966.Comparativemorphology,phylogeny,and classificationof fossil Coleoidea. Uttiv. Kansas,Paleont. Contr. Molluscct,T : 1-162. MOJSISOVICS,E. 1882.Die Cephalopoden der mediterranen Triasprovinz.trI. Dibranchiata. Abh. K.k. Geol.Reichsanst..X:295O7.
51
- Coleoid Cephctlopods 2"'' International S1'ntpositutt Througl.rTinte - PrcLgue2005
PI- {TE 1. - EXPLANATION.
L nnamed coleoid; sp. no. NHMW 200520005/0001; Lower Carnian, Upper Triassic; Lower .\ustria. \ Generalview on a dorso-ventrally compressed shell (ed - lateraledgeof the shell) showingthe dorsal side of the phragmoconewith the exposedexternal(eph) and internal (iph) surfaces, camera(ca), growth lines (gl) of the centraland ribs of the hyperbolar(hz) zonesof the proostracum(pro),andthicknessof the phragmocone wall (phw); scalebar - 1.2 mm. B Pro-ostracum composedof the two organiclayers:the innerone is of columnarunits (cu) and the ollterone is of micro-plates(pl) arrangedparallelto the surface;scalebar - 15 gm. C. Close-upof B to showmicro-lamination of the columnarunits(ml); scalebar - 6 um. D. The ultrastructnre of the micro-platesof the or,rter layer;scalebar - 3 Um. E. Thin laminationand step-likefracturepatternin a jaw; scalebar - 6 pm.
58
- CoLeoid CephcLlopodsThrottgh Time - PragLte 2005 2"'t International S1'n1p651unt
2"'t International S\mposiunt - Coleoid Ce
s Through Tinrc - Pra
Analysis of growth increments in rostra of Middle Jurassic belemnite Megateuthisfrom Germany (l) Dunca Elena andDoguzhaevaLarisa(2) (r) Dept.of Palaeozoology, SwedishMuseumof NaturalHistory,Stockholm;
[email protected] (2)Palaeontological Institute,RussianAcademyof Sciences., Moscow;
[email protected]
ABSTRACT: Seven rostra of Megateuthisgiganteus from the Middle Jurassicof Hannover area, Germany, were studiedwith the scanningelectronmicroscope(SEM) and energydispersivespectrometry(EDS) in order to elucidate the potentialities of usingbelemniterostrumas a dataarchiveof growthperiodicity.It is revealedthat (1) alternationof the dark and light larnellaeis coursedby regularchangesin densityof a tostrum materialratherthan alternations in organiccontent;(2) in dark regionsthe numberof incrementsis less(ca 30) while in light regionsit is higher(ca 110); (3) the rostracontain(in per cent to atomic weight):calcium (ca 35Vo),carbon (ca 15Vo)and oxygen(ca 50Vo)that indicatecalciumcarbonate,apparentlyin a calciteform; (4) the highercontentof carbon(ca 30Vo)is restrictedto the spacesbetweenthe calciumcarbonateprismsdominantlyneaf the outer surfaceof the rostr-awhile the dark and light regionsshow no diffelencesin carboncontent;(5) up to 700 incrementswere countedin the r-ostrawrth 40 mm in diarneter;(6) in large-sized rostrathereare up to six regionswith highergrowthrate (evidencedby broaderincrements) and the samenumberof periodsof low growthrate (evidencedby narrowincrements); (7) the relativelyhighestgrowth rateperiodcorresponds to the middlepart of the rostrum(thethird region).
Key words: Coleoidcephalopods, belemnites, Middle Jurassic, Germany,shellcompositionand growth.
Introduction Rostra of Megateuthis giganteus from Middle Jurassicof Hannoverarea,Germany (collectionsof Swedish Museum of Natural History) were examined using scanning electron microscopy (SEM) and energy dispersivespectrometry(EDS) in order to elucidatethe potentialof using the rostrumof belemnites as data archive of growth periodicityand life-spanestimationof the genus. To begin with, we concentratedon finding out whetherthe rostrain M. giganteus haveany periodicityin the width, densityand elemental composition of the growth increments.Next, in order to check the feasibilityof the idea of regularsecretionof organic matter as the primary causeof the alternation of light and dark lameliaewe paid special attentionto content in orsanic
matter in the rostra. For this purpose we selectedvery well preservedbelemniterostra in which earlierstudiesby Doguzhaevaet al., 2002, demonstratedthat there are tracesof an organiccontent. 1. Material and method of study. Growth incrementsof sevenlarse-sized rostrawith the maximum diameterof :O - +O mm were investigated in cross and longitudinalsections.All the rostra were cut through the protoconchin cross and median sections.In order to enhancethe visibility of the growth rings the crosssectionsweremade parallel to the c-axes of the calcite prisms (that are not preciselyperpendicr.rlar to the axis of the rostrum) and then the sections were treatedwith Mutvei's solution,(a l:1 mixture of glutaraldehyde 25Vo and acetic
2n'tInternationalSyntposium- Coleoid CephalopodsThrough Time - Prague 2005
acid 1Voto which alcian blue was added)for ca 2 hours.This is an etchingtechniqueused in structuralstudiesof recent bivalve shells (Mutvei, 1979, Dunca & Mutvei 2OO1; Schdneet al., 2003,2004,2005;Duncaet al., 2005). The etchedsectionsof the sevenrostra were then examined using the light microscope AxioCam HRc Zeiss and the scanningelectronmicroscopeHitachi S 4300. The elementaldistribution within the rostra was analysedusing the EnergyDispersiveXRay Microanalysis(EDS). Furthermore, the width of growth rncrementswas measuredin the ventral part of the rostra using Image J 1.33u,Wayne Rasband,National Institutesof Health, USA (http://rbs.info.nih.gov /ijl) anda growth curve wasestablished for evervspecimen. 2. Results ( 1) The ultrastructure of rostra in M. giganteusshows that alternationof the dark and light lamellae seen in light microscopecorrespondswith ridges and in SEM. The dark lamellaeor depressions the ridges are more etch resistantdue to more dense structure comprised of smallerprisms in comparisonto the light lamellaeor the depressions; (2) The number of growth increments(the distancebetween two dark lamellae)is less in the dark regionsof the rostra(ca 30) while in light regionsis much higher ( c a 11 0 ) ; (3) All sevenrostra of M. giganteusin this study show the following content(in per centto atomicweight):calcium(ca35Vo), carbon (ca 15Vo)and oxygen (ca 50Va) indicating a calcium carbonate (apparently composition in a calcite form): (4) The higher content of carbon (up-to ca 30Vo) is restricted to the interspaces between the calcium carbonateprisms dorninantlynear the outer surfaceof the
(5)
(6)
(7)
(8)
rostra. The dark and light lamellae show no differencesin carboncontent; Between 500 and 700 lamellae were countedin specimensof 30 to 40 mm in diameter. The growth measurementsrevealedup to six regionswith higher growth rate that are delimited by regions with lower growth rate and more denselamellae; The growth incrementsare the largestin middle part (the third region) in all the rostra; No correlation was found between the growthmeasurements of the sevenrostra.
3. Interpretations (l) Rostra in M. giganteuswere originally calciteratherthat aragonite; (2) Higher content of carbon in the interspaces betweenthe prismsof calcite, especiallynear the periphery of rostra seem to be traces of organic material originallycontainedin rostra; (3) The light regions of the rostra characterized by a larger number of lamellae and larger growth increments correspondsto periodsof intensiveshell growth while the dark regionswith fewer lamellaeand smaller growth increments corresponds to periodsof slow growth of the shell; (4) During the time of rostrumsecretionfive to six periods of intensive growth alternatedwith the samenumberof slow growthperiods; (5) In each intensivegrowth period ca 110 incrementswere added; (6) In periods of slow growth ca 30 incrementswere added.
Furtheranalysesof thesewell-preserved Megateuthisshells (as Sr levels and 018/016 ratios)are plannedto be carriedout this year in order to bring more detail to their growth scheme.
61
toid Capltulopods ThroLtgh Tinte - prague 2005
RBprRBncBs DOGUZHAEVA, L', MUTVEI, H. and DESMOND, T. D. 2002.Pro-ostracum, MuscularMantie and Conothecain the Middle JurassicBelemniteMegateutltis.Cephalopods- present and Past.Abhandlmtgen cler GeologiscltenB unclesanstilt, 57: 321-339. DUNCA' E' and MUTVEI, H. 2001. Comparisonof microgrowth patrern in Margaritffbra margaritifera shells from south and north Sweden.Antericai Malacological Bulletin, l6:239-250. DUNCA, E'' MUTVEI, H. andSCHoNE,B. R. 2005.Freshwater bivalvestell of pastclimates:Bur how clearlydo sheilsfrom poilutedrivers speak?pctraeogeograprty,, parcreocrintator.ogy, Palaeoecolog.tr, BR Schone& D Surge(eds)SpecialIssue:Looking back over Skeleral Diaries- High-resolutionEnvironmentalReconstructions from AccretionaryHard parts of AquaticOrganisms, (in print). MUTVEI' H' 1979.on the internalstructuresof the nacreollstablets in molluscanshells..Scan Electron.Microsc., 2: 457462. SCHONE,R., B., OSCHMANN, 'W., ROSSLER,J., FREYRE CASTRO, D., A., HOUK, D., S., KRONCKE, I., DREYER, W., JANSSEN,R., RUMOHR, H. ANd DUNCA, E.2OO3, North AtlanticOscillationdynamicsrecordedin shellsof a long-lived bivalvemollusk. Geology;December2003;31, 12:l03l _1040. SCHONE, R., 8., DUNCA, E., MUTVEI, H. ANdNORDLUND, U. 2004.A 217-YEAr rECOrd Of summer air temperaturereconstructedfrom freshwaterpearl mussels(M. margaritiJerct, Sweden).QuaternaryScience Reviews,23:l g03_lg 16, SCHONE' B. R., DUNCA, E,, FIEBIG, J, ANdPFEIFFER,M. 2005. MUtVEi,SSOIUIiON: ANidEA] agent for resolvingmicrogrowthstrllctllresof biogeniccarbonates.palaeogeogrcLphlt, Palaeoclimatology, Palaeoecolog-v, BR Schone& D surg. (eds)specialIssu"e: r-""li"g back over skeletal Diaries - High-resolutionEnvironmental Reconstructionsfi"om AccretionaryHard partsof Aquaticorganisms,(in press).
o/.
2'"t In.ternational S1,ntp65iam- Coleoid Cephalopods Through Tinte - PragLte 2005
A
0 20 40 60 B0'100120 (micror Lengthof growthincrements
0 50 100150200 Grayscale
PLATE1 . EXPLANATION: A. Diagramshowingmeasurements of the lengthof eachincrement(the distancebetweentwo dark lamellae)in micrones.Numbers1-6 arethe regionswith highergrowth rate. B. Profile of a cross-section(the ventral part of the rostrum and through the protoconch)of a belemniterostrumshowingthe growthlamellaeandthe incrementmeasurements. C. Diagram representingthe grey scaleprofile obtainedwith ImageJ program (0 is for black and 250 is for white).
- Coleoid CephalopodsThrough Time - Prague 2005 2"'tInternational Sl,mposiunt
Systematicsand phylogenyof the boreal family Cylindroteuthidae: Problemssolvedand unsolved Dzyuba OksanaS. Instituteof PetroleumGeology,SiberianBranchof the RAS, Acad. Koptyugpr. 3, Novosibirsk, 630090,Russia;
[email protected]
ABSTRACT: The systemof the belernnitefamily CylindroteuthidaeSrou-ny, 1919 and the problemsof origin of its genericand subgeneric taxaarediscussed basedon the resultsofrecentrevisionof its Jurassicrepresentatives. The mainchangesin systematics dealwith the subfamilyPachyteuthinae Srolmy, 1919.
Key words: Coleoidcephalopods, belemnites, Cylindroteuthidae, Systematics, Phylogeny.
Belemnites of the Cylindroteuthidae family have appearedin Bajocian age and inhabitedin the main Boreal seasright up to the earlier Aptian age. The notions of systematicsand phylogenesisof the family havebeendevelopedover the courseof more than a century.Investigationscarried out by E. Bayle, K. Zitttel, M. Neumayr, A. P. Pavlov, E. Stolley and othersplayed a great role. Modern concepts are determined prirnarilyby V. N. Saks,T. I. Nal'nyaevaand V. A.Gustomesovpublications.Currentlythe volume of Cylindroteuthidae and their systematicposition among belemnites are virtually commonly accepted.The principal disagreements include intrafamily classification of this coleoidgroupand special featuresof its evolution. We acceptthe following systemof the family CylindroteuthidaeStoLLey, 1919: subfamily CylindroteuthinaeStor-r-Ey,1919 genus Cylindroteuthis BAYLE, 1878 (sr-rbgenera Cylindroteuthis s.str. and Arctoteuthis Secns et NRLNRpva, 1964), genus Spanioteuthis Gustotraesov, 1958; subfamily PachyteuthinaeStoLLsy, 1919 genLrsPachyteuthisBAvLE, 1878 (subgenera Pachyteutltlss.str.,Microbelus Gusr., 1958, Boreioteuthis SacHs et NalN., 1966 and AcroteuthisSrolley, 1911),genusSimobelus Gusr., 1958 (subgeneraSintobeluss.str.and
Liobelus DzYUBA,2004), genus Lagonibelus GusT., 1958 (subgeneraLagonibelu,s' s.str., Communicobelus Gusr.. 1964.Holcobeloides Gusr., 1958andEulagonibelzs Gusr., 1989). In orderthat the subfamiliesbe recognized,it seems pertinent to use the differences in length of postalveolar part (stem+apical regions (Doyle, Kelly, 1988)) of juvenile cylindroteuthidrostra indicatedby V.N.Saks and T.I.Nal'nyaeva(1967): Cylindroteuthinae differs from Pachyteuthinaein elongaterostra of early stage of ontogenyand thereforein smallerdisplacementof axial (apical)line ro ventral side of rostrum of adult stage. Accomplishedinvestigationshave shownthat within subfamiliesthe most persistentfeature allowing the reconstructionof contlnuous phylogeneticlines is specificityof elongatron of postalveolarpart of rostrum in ontogeny (Dzyuba, 2004). The genera are well distinguishedbased on this feature(Fig.1). Such features as shape of rostrum and transverse section,specificityof ventralapical groove hold more low systematicrank in featureshierarchyof Cylindroteuthidae. They manifest themselvesin a similar way ernd independently in different phylolines of cylindroteuthids, however they are comparativelypersistentwithin small groups of closely allied species.Thesefeaturesmay serve good criteria of subgeneric rank.
64
- Coleoid CephalopotlsThrough Tinre- Prague 200j 2"'tInternationalS),ntposiuttt
r
I"t
d a, b - Subfamily Cylindroteuthinae:
t\
a - Spanioteuthis okschevensisGUST. b - Cylindrotq,thispuzosiana(d'One)
ili'
c-e - Subfamily Pachyteuthinae: c - Lagonibelusnmgnificus(d'Onn) d - Paclryteuthisexcentralls(Y. et B.) e - Simobelusbrevictxis(PAVL.)
Irl
Z i'r l
:)
U)
Fig.1. Internalstructureof rostra in Cylindloteuthidaegenera(longitudinalsectionsin dorso-ventralplane for-type *Black colourpointsto rostraat earlyontogenystages. species).
At present there is widely accepted genericstatusfor Acroteuthis.A greatnumber of researchers following V. N. Saksand T. I. Nal'nyaevaidentified three subgenerain its composition:Acroteuthi,s's.str., Microbelus and Boreioteuthisunited by common feature (dorso-ventrally depressed section of relativelyshort rostra).Nevertheless, the idea on developmentof thesetaxa from one stem was alreadysubjectedto question(Mutterlose et al., 1987). Based on revision of type species of Boreioteuthis (we consider the Acroteuthis (Boreioteutltis)niiga Sachs et Naln. as a synonymof the Pachyteuthis(P.) subregularis Sncus et NeLNaEva) and reconsideration of genetic relationsbetween some species of Pachyteuthinaewe have changed species composition in Jurassic Boreioterihis (Dzyuba, 2004). For example, suchspeciesasPachyteuthis(P.) subregularis
Secus et NelNaEyA., Belemnitestroslctycuxus D'ORBIGNv,B. explanatusPHil,l,. and others were includedin this subgenus.In diagnosis of the subgenusBoreioteuthissuch character as transversesection were refined: sections are depressed to slightly laterallycompressed, subquadrate to rounded subquadrate or pyriform. The subgenus is assumed to originatefrom Pachyteuthiss.str.ratherthan Microbelttsas it was believedbefore(Saks& Nal'nyaeva, 1966). It was establishedthat Microbelus (Bajocian-Callovianage range) and Boreioteuthis (Oxfordian-Barremian) have originated (independently of one another) from the representatives of Pachyteuthis s.str. Only the subgenus Acroteuthis s.str. (Tithonian-Aptian) in its origin is probably related to Boreioteuthis (Fig.2).
65
- Coleoid CepltaLo
2"'t Interttational
Age
's
Tl'Lrouglt Titrte
Sut:larnilv C'r,Ii ndrotcrrth iniic
Sublarnilv Pachvteuth inae
Aptian R X Xtr X 8 P{ D( X X X X X
Ilarremirln
Har-rterivian
kl L_l k-: ce
Vaianginian
L N t t \ N l "
ri
Bcrriasian Tithonian
N X
?.b4
L
i
" t
-;
N{. t \ 1
N'i
!
N \ t t"1
. i \
\
/
:
j-,
Kirnrnericlgian
ii L,,1
!
a*
Oxfbrdian Callovian Bathonian
Bajocian
/
*ar i
;-X r-l N iX tJH :)d .:X
t
,/:
;
. ?
'{ ?
H= =*n
v
fi*
I:fl
till Ii:l
Ei s.',-?!n n c P : H - . : U - . -
ii;tl
{ '2- H4 * i F ' / dH ! € !X :X
il
X X X P{
Pt X U
"1
fV
n
lI
: \
t
L
:* =E
r-r u4 t l t t
il;il
ii:il "n .j
iiii
3 il:il
L F
*
liill
ir
lii;l ll:i, il;ll r i:itl
=!
i
:- Fl* A u ni
itiil
3
\
wn-v
,v
iilll
!
it::l i:;ll
-: \ \
iiiil
iiiil i:iil
.:'. lllll 'j l;:il
iii:l li:ll
i X ": I'f
+q
j:iil ---rt
Clcrrcra:$ Sinroberlr rc fi Pac,h;,tetrthi^s Ii nrIrctteuthi.sI Spurti ore uthi.>fi Lugoni ltr:/usffiO.t; Fig. 2. Phylogenetic chartfor Cylindroteuthidae generaand subgener.a.
Consequently, depressed transverse section. i.e. the basic feature for genLls recognition, arose independently in the species of abovementioned taxa. The assignmentof Acroteuthis,Boreioteuthisand Microbelus to the genlls Acroteuthis is correspondinglyman-made.We treat these taxa as subgeneraof the genusPachyteuthis. The subgenusAcroteuthisas we seeit stands more close by its speciescompositionto Acroteuthi,s s.str.in the V. N. Saks and T. I. Nal'nyaevasense.It also includesBelenmites ntoscluensis Pnvr-. and B. souichei d'Orb., which were assignedby V. N. Saksand T. I. Nal'nyaeva to Acroteuthis (Microbelus). Somespecieswith very robustrostrumon the contrary were excluded from subgenus Acroteuthisand were assignedto Simobelus (Liobelus). The subgenusAcroteuthis thus unites the species with robust (not very lobust) or moderately elongate rostrum, flattened on ventral side, with a short, indistinct ventral apical groove. Transverse sectionsare depressedand subqr-radrateto lounded subquadrate. The volume of
subgenusMicrobelus is enlargeda little in comparisonwith thoseof proposedby V. A. Gustomesov (1964) at the sacrifice of Bajocian Bathonian pachytetihis (Pachltteuthis)parens Secgs et NaLi,l. and Cylinclroteuthis thentisCrick. assignedto it. There was distinguished the genlls SimobelusGusr. which apartfrom Simobelus s.str. includes also the speciescharacterizecl by robust or very robust rostra showing the sametype of growing in ontogenesis however beingstronglydepressed dorso-ventrally. This group of species is recognized as a new subgenus Liobelus Dzyuse (Tithonian_ Hauterivian age range), which is direct descendant of Sitnobelus s.str.: S.(f.) praecorpulentus(Ga*AS.),,S.(L.) rus.siensis (o'ORa.),S.(t.) uralensis(Sacus et NnlN.), .t. (f.) prolateralis (Gusr.), S (2.) pctrtne,-i (SwNN.),S.(4.) lindseyensis (SwrNN.), S (t.) latercLlis (Purll.), S.(t.) acrei (SwrNN.), .1.(1.) posterior(Sncns) and orhers. The volume of subgenera and phylogenetic chart within the genLls Lagonibelusare adoptedaccordingto those
66
2'"t InterncftionctlSl,ntposiunt- Coleoicl CephalopoclsThrough Tinta - Pru,qLt")ttrt5
:stablishedfor generawith the samenames (1971,1989) :dentifiedby V. A. Gustomesov in subfamily Lagonibelinae. Subgenus Lugotibelus is an exception.It includes a nurnberof speciessingled ollt by V. A. genLls Gustomesov as isolated Boreiolagonibelus. Thesespeciesdiffer from orherLagonibeluss.str.in more long ventral gfoove developedat late stagesof ontogeny. We arrived at the conclusionthat they were not independentgeneticallyallied group of \peciesbut ratherhave originatedat different time from different representatives of Lugonibelus s.str. The questionof descendant forms of the farnily is still an open one. The first
representatives of the generaCylinclroteuthis (C.(C.) conJessct Nar-N.) and Pachyteuthis (P.(P.) sp. indet. Sncss er NalNaEva) making their appearancein Early Bajocian time in North Pacific show significant morphologic differences and essential divergencein ontogeny.Conceivablythe idea of the origin of subfamiliesCylindroteuthinae and Pachyteuthinae frorn the samedescendant mieht be corrected.
Acknowledgements: Thc study was financirilly suppolted by grant 03-05-64780 fi'orn the Russian Foundationfor the Biisic Resealchand grant 1737lionr UIGGM, SiberianBrancl.r of the RAS.
RnnonnNcns GUSTOMESOV,V. A. 1964.Boreal Late Jurassicbelemnites(Cylindroter"rthinae) of the Russian Platform.1n: MIKHAILOV, N. P. and GUSTOMESOV, V. A.. Boreal Late Jurassic cephalopods: 89-216.Nauka;Moscow.[in Russian]. GUSTOMESOV,V. A. 1977. To the revisionof Jurassicbelemnites . Bvull. Mosk. O-va Isoyt.Prir.. O r d .G e o | . 5 , 2 ,2 : 1 0 3 - 1 7 .l i n R u s s i a n l . GUSTOMESOV, V. A. 1989. Phylogeneticrelationshipsand stratigraphicsignificance of (Belemnitida)with rostrapossesingventralfurrows.The revisionof Cylindroteuthidae genus Lagonibelus.Bvull. Mosk. O-va Ispyt. Prir., Otd. Geol., 64, 3: 65-15. lin Russianl. DOYLE, P. and KELLY, S. R. A. 1988.The Jurassicand Cretaceousbelemnitesof Kons Karls Land,Svalbard,pp. 1-77.NorskPolarinstitr-rtt; Oslo. DZYUBA, O. S. 2004. Belemnites(Cylindroter-rthidae) ahd biostratigraphyof the Middle and Upper Jurassicof Siberia: Publishing House of SB RAS, Department"Geo"; Novosibirsk.[in Russian]. MUTTERLOSE,J.. PINCKNEY, G. and RAWSON, P. F. 1987.The belemnitegenusAcroteuthis in the Hibolites-beds(Hauterivian-Barremian) of North-WestEurope.PaLaeontologv, 30: 635-645. SAKS, V.N. and NAL'NYAEVA, T. I. 1966.UpperJurassicand Lower Cretaceous belemnites of the northernUSSR.The generaPaclDtyslayllis andAcroteuthis,Nauka;Moscow. SAKS, V. N. and NAL'NYAEVA, T. L 1961. To the systematicsof Jurassicand Cretaceous belemnites. 1n: SAKS, V.N. (Ecl.),Problemsof paleontologic substantiation of detailed Mesozoicstratigraphyof Siberiaand the Far Eastof the USSR,.Nauka;Leningracl.[in Russianl.
67
ld Intentational Synryosium- Coleoid CephalopodsThrough Tirne- Prague 2005
About the phylogenyon the Coleoidea Fuchs Dirk
Instituteof GeologicalSciences, FreieUniversitiitBerlin,Malteserstrasse 74-100, D-12249Berlin. Germany;drig @zedat.fu-berlin.de
Reconstructionof the phylogenyof the Coleoideabasedsolelyon recentforms is still difficult. To some extent, this is due to problematic out-group comparisons with Nautilus (Young & Vecchione 1996, Vecchione,Young et aI. 2000). Thus, some significant character states within the Decabrachiaas well as the Vampyropodaare ambiguous. Becauseancestralcharacterstatescan be easily inferred from the fossil record neontologists shouldresortto fossil data.The aim of the present work was therefore to investigatethe phylogeneticalpotential of preservablecharactersin order to polarise ancestral characterstates. Within this context, a large number of fossil coleoids (more than 1000 specimens) from 25 collectionswere investigatedin order to find phylogenetically significantcharacters. Comprehensive morphological analyses suggestthat complexesof characterssuch as the embryonic shell, conotheca, rostrum, proostracum,gladius or arm crown are of notablephylogeneticsignificance.Combined, these fossil charactersreveal a surprising coleoidphylogeny. The presence of suckers is widely consideredto be an autapomorphyof the Neocoleoidea(Doyle, Donovan et al. 1994; Young, Vecchioneet al. 1998; Haas 2002, Haas 2003). However, Boletzky (2003) doubtsa sister-grouprelationshipbetweenthe Decabrachia and Vampyropoda.As shownby Donovan & Crane (1992), the supposed presenceof muscularstructureson the inner sulface of arms within extinct belemnoids may perhaps indicate that possessionof suckersis actually not an autapomorphyof neocoleoids. In addition, neontologists considerthe loss of tabular nacre(Nautilus-
nacre,Type 1) within the Vampyropodaand Decabrachiaas synapomorphic,but from the paleontologicalpoint of view, reduction of nacre must have occurred independentlyin these taxa. Hence, there is no reasonable apomorphic characterthat justifies the taxon Neocoleoidea. Apart from this, it is widely accepted that the vampyropodgladius originatedfrom a proostracum-bearingphragmoconeof a belemnoid through demineralisation(Haas 2002,Bizikov 2004).The assumptionthat all Mesozoic gladii without any exceprions belong to vampyropodcoleoids suggestsa sister-group relationship between the Belemnoideaand the Vampyropoda.On the other hand we have no evidence for the existence of a proostracum in fossil Decabrachia (Shimanskva, Adygeya). Socalled proostraca in Naefia and Groenlandibeluscan hardly be homologous with a belemnoidproostracumand are rather the result of allometric dorsal shell growth instead of a ventral opening of the living chamber.None of the Cenozoicspirulidsand sepiids(Spirulirostra, Beloptera, Ceratisepiu, Belosepia)possessesa proostracum.Recent Spirula definitely does not bear a proostracum.The chamberedcuttleboneof Sepiais often calledproostracumbut this is a terminological mistake. Hence, both paleontological and neontological data suggest that the decabrachianbody plan (banplan)doesnot includea proostracumand there is no reasonto regard the teuthid and sepiolid gladii as a derivation of a proostracum-bearing phragmocone. For these reasons Vampyropoda and Belemnoidea seem to be sister taxa. Vampyropodaand Decabrachiarepresenta monophylum only if fossil taxa were o6
- ColeoiclCe /'t InternationalSyttrposiutrr
exc.luded. Therefore, the taxon "Neocoleoidea"is paraphyletic.Additionally, within the Belemnoidea the Aulacocerida were commonly consideredto be the sister taxon of the Uncinifera.Becausethe hookbearing Uncinifera is treated as the sister taxon of the Vampyropoda, the taxon ''Belemnoidea" becomesalso a paraphylum. The synapomorphies of the Vampyropodaand Uncinifera mainly include mineralised phragmocone characters, which become secondarily lost in the course of demineralisationwithin the Vampyropoda. But the openingof the living chamberand the deveiopmentof a proostracumare sufficient to constitute a sister-group relationship betweenthe Vampyropodaand Uncinifera.
Through Time - Prague 2005
Until now, unambiguous fo.ssi.l representatives of recent Sepiolida or Teuthida are unknown in the fossil record. Therefore, information about ancestral characterstateswithin the Decabrachia cannot be obtained from the fossil record so far. Aside from phylogenetic aspects,the fossil record strongly implies that Decabrachia existed already in Carboniferous times (Shimanslcya) but played a minor role during Palaeozoicand Mesozoictimes in comparison with the "Belemnoidea" and Vampyropoda. Only the mass extinctionsin the context of the IVT-boundary enabled them to radiate remarkably and to develop their present diversity.
RnrBnBrucns BZIKOV' V. A. 2004.The shell in Vampyropoda(Cephalopoda): morphology,functionalrole and evolution.Ruthenicasupplenrent, 3: 1-88. BOLETZKY, S. v.2003. Biology of Early Life Stagesin CephalopodMolluscs. Advancesin marine Biology, 44: 143-203. DONOVAN' D. T. and CRANE, M. D. 1992.The Type Material of the JurassicCephalopod Belemnoteuthis. Palaeontology,35, 2: Zj3-296. DOYLE, P" DONOVAN, D' T. and ND(ON, M. 1994.Phylogenyand systematics of the Coleoida. Paleontological contributions, Universityof Kansas,5: 1_15. HAAS, W.2002. The evolutionaryhistoryof the eight-armedColeoidea.In: SuyMESBERGER, H., - Present& Past,Abh. Geol. Bundesanstalt,57: HtstoN, K. et al. (Eds.).Cephalopods
30s-326.
HAAS, W. 2003.Trendsin the Evolutionof the Decabrachi a. BerlinerPal. Abh.,3: 113-129. VECCHIONE, M., YOUNG, R. E. and CARLINI, D. B. 2000. Reconstructionof ancesrral character states in neocoleoid cephalopods based on parsimony. American Mctlacolo gical Bull.etin,75, 2: lj9-193. YOUNG, R. E. and VECCHIONE, M. 1996.Analysisof morphologyto determineprimary sistertaxon relationshipswithin coleoid cephalopods. AmericanMalacologicalBulletin, 12, 1/2:91-112. YOUNG, R. E., VECCHIONE, M. and DONOVAN, D. T. 1998.The Evolution of Cephalopods and their presentBiodiversityand Ecology.SouthAfrica Journal of Marin Siienci,20: 393-420.
69
2"" Irrternatiottols)'nryosium- Coleoid cepl'talopoclsThrough rime - prctgt.r.e 2005
Fossilrecord and DNA-Sequences:a working hypothesisabout the time of origin of Decabrachiaand Vampyropoda Fuchs Dirk andWarnke Kerstin FreieUniversitatBerlin, FR Palziontologie, Malteserstr74-100,HausD, 12249Berlin,Germany;
[email protected],
[email protected] The molecular clock hypothesis (Zuckerkandl and Pauling,1965)is basedon the neutralitytheory of molecularevolution (Kimura 1968).This theorypredictsthat the rate of molecularevolution is approximately constantover time. Thus the molecularclock czrnbe r-rsedfor approximatelytiming past evolntionaryevents.Although justifications for the hypothesisof a molecularclock are not beyond any doubt, the use is widely applied.Becausethepublishedopinionsabout the ageof Decabrachiaand Vampyropodaare ratherdifferent from one another,we should like to combine both molecularand fossil data. In the present work DNA-sequences coclingfor the nuclearl8S I'RNA genewere used.The sequencesare from the following Decabrachia:Spirula spirula, Histiotuuhis sp.. Heteroteuthis sp. Loligo vulgoris, Illex coincletii,Sepia fficinalis. Sepietta sp., and from the octopod Eledone cirrhosct as a memberof the Vampyropoda(Warnke et al. 2003). Additionally,Natttilus scrobicLtlatus (AFl20504) sequencesfrom the EMBL data bank wereusedas an outgrouprepresentative. Sequences werealignedwith ClustalW using MegAlign (DNAstar Lasergene; GATC, Konstanz)and checkedby eye.Analysiswas limited to reliably aligned regions, which included1694nucleotidepositions.Usingthe complrterprogramPAUP (Version4.0b10by D. L. Swofford 2002) uncorrected("p") and corrected ("Tajma-Nei") distances were studied.A relative rate test was enforcedto assess the relative rate of nucleotide sr,rbstitutionbetween two sequences, to determine whether one sequence is accumulatingmore substitutions than another. To calibrate the molecular clock for
estimating the divergence time between Decabrachiaand Vampyropodawe useclthe splitting away of the Spirulida lineagefrom t h eS e p i i d al i n e a g e . The fossil indicationsfor the sepiiclspirulid separation are thc following: Doguzhaeva(1996, 1999) showed rhat rhe absence of tabular nacre (type I-nacre, NcLutilus-nacre)in the conotheca of Shintan"'kt,u (Late Carboniferous, Upper Pennsylvenian, USA), AdygeycL (Early Cretaceous, Aptian, Russia),Groenlanclibelus (Late Cretaceolls,Maastrichtian,Greenland) as well as recentSpirula is a typicalfeatureof the Spirulida.However,neitherfossil sepiicls such as Ceratisepict (Danian), Belosepict (Eocene)nor recent Sepictpossesses tabular. nacre within their conotheca(Meyer 1993, Fuchs, this volume). Unambiguor-rs informationconcerningteuthids,sepiolidsor idiosepiidsis missingfor the Mesozoicfossil record (so-called "fossil teuthicls,, are consideredto be vampyropods)and most probablythis is not a preservationalartefact. Accordingto Haas(2003) reuthids,sepiolicls or idiosepiids are Cenozoic offshoots of sepiids.It is thereforelikely thal Shinnnslcycr as well as Adygeyd representstem-linea_{erepresentatives of the Decabrachia. Ceratisepiawithout any doubt alreacly is a sepiid (inclined septa,opening of the siphonalcanal).If Groenlunclibelus is reallya spirulid, branching apart of the sepiidspirulid-clademust have happeneclbetween the Albian (-100 mya) and rhe Campanian (-70 mya). Thus we are able to calibratethe molecularclock with a valuebetween70 and 100 mya. The resultsof the molecularclock calculationsreveal an averagetime span of 364 mya to 520 mya for an origin of
l0
- ColeoiclCephnlopodsThrouglt Tinte - Prcrgue2005 2"'tIntern(Ltion(tlSynryositail
Decabrachia and Vampyropoda. Earlier discussionson the origin of Decabrachiaand Vampyropodaconcentrated on the Triassic(-220 - 250 mya). However, recentfindings on Palaeozoiccoleoids(e.g. indicate that these Slintanskya, Jeletz,kv-ct) forms have occurred in the Late
Carboniferous (-300 mya) and therefore branchingapart of the Decabrachiaand the Vampyropoda should have been already completedat that time. Our presentcalcr-rlations suggesteven a much earlierorigin.The plausibilityof these results will be discussedon the Doster.
REFtrRENCES DOGUZHAEVA, L. 1996.Two early cretaceollsspin-rlidcoleoidsof the northwesternCaucasus: Their shellultrastrLrcture andevolutionaryimplications. Paleontologt,,39, 3: 681-701 . DOGUZHAEVA, L., MAPES, R. H. and MUTVEI, H. 1999.A late carboniferousspirulidColeoid from the southernrnid-continent(USA). In: OLORV, F. & RODRIGUEZ-TOVAR. F.J. (Eds.).Advancingresearchon living and fossil cephalopds47-57. New York, Kluwer Academic/ PlenumPublisher. HAAS, W. 2003. Trends in the Evolr.rtionof the Decabrachia.Berliner Paliiobiolopische Abhancllungen, 3: I 13-129. KIMURA, M. 1968.Evoh:tionary rateat the molecularlevel.Nature,21l:624-626. MEYER, J. C. 1993.Un nouveaucoleoideSepioideCeratisepiaelongatanov. gen.,nov. sp. du Paleocene inferieur(Danian)de Vigny. Implicationstaxonomiques et Phylogenetiques. Geobios,nrcrnoirespecial,15: 281-304, SWOFFORD,D. L. 2002.PAUP*. PhylogeneticAnalysisUsing Parsimony(r'andOtherMethods). Version4. SinauerAssociates, Sunderland, Massachusetts. WARNKE, K., PLOTNER,J., SANTANA, J. I., RUEDA, M. J. ANdLLINAS, O. 2003.RCflECtiONS on the phylogeneticpositionof Spinia (Cephalopoda): Preliminaryevidencefrom rhe 18SribosomalRNA gene.BerlinerPaltiobioliologische Abhanclh,Lngen, 3:253-260 ZUCKERKANDL, E. and PAULING, L. 1965. Evolutionary divergenceand convergencein proteins.97-166In:Evolvinggenesarndproteins.BRYSON,V. andVOGEL, H.J. (eds) AcademicPress.New York.
't 1
- ColeoiclCephalopoclsThrough Time - Prague 2005 2"l InterncttionulSt'ntposiunt.
Can the bathymetric distribution of cephalopodsbe studied with commercial fishing gears? (') [Ierndndez-GarciaVicente and CaballeroFernandoBordes(2) (')
SeaFisheries Institute(MR), ul. Kollqtaja,1, Gdynia,Poland.E-mail:
[email protected] (2)Instituto Canariode CienciasMarinas(ICCM), Telde,Spain.E-mail:
[email protected]
ABSTRACT: The speciescompositionandbathymetricdistributionof cephalopods closeto the islandof Fuerteventura tCanary Islands,Central-easternAtlantic) were investigated.For this purpose,a total of 27 trawlswere carried out in March 2002, includingtwo seriesof 4 tows in fbur discretedepth levels during day and night times,usrnga commercral fishing gear.Fishing depthsrangedbetween0-1000 rn. A total of 27 cephalopodsspecieswere identified;the sarnplewas dominatedby Oegopsida,being Sepiidaand Octopodaless numerous(2 and 3 speciesrespectively).Cephalopodswer.e mainly representedby their early life stages,post-larvaeand juveniles; capturedadults were of speciesreachingshor.t maximalsizes(i. e. the genusSpirula,Abraliopsis,Abralia, Pterygioteuthisand Pl,roteuthis). The most importantfamilies, in numberand frequencyof occurrence,were Pyroteuthidaeand Enoploteuthidaewith relatively low diversity (3 and2 speciesrespectively).The two fishing serieslet us verify tl.revertical migration of severalcephalopodspecies.Both, rhe numberof species( l3 and 20 respectively)and total numberof specimenswas largerfor the night hauls.The lastshowsthe considerable possibilitiesof the techniqueused.
Key words: Coleoidcephalopods, CanaryIslands,depthdistlibution,diversityandmethods.
Introduction Research on pelagic cephalopodsoff CanaryIslandsis scarce.Previousstudieswere carriedout during the 60's and 70's on board the Sond Cruise and R.R.S.Discovery(Clarke, 1969;Clarke and Lu, 1974);and, shorrnores have beenpublishedon strandedor accidental catchesof onespecimen(Lozano,1991). This studywas plannedas a complement of the researchprogramfocusedon the analysis and evaluationof the pelagicresourcesaround the CanaryIslands,a researchfinaricedby the Fisheries Department of the Canary Islands Government (Viceconsejeria de Pesca del Gobiernode Canarias).Thus, the aim of this work was to determineand study the pelagic cephalopodspeciesinhabitingaroundCanary Islands,with emphasison thosespeciesfound in the epipelagic,mesopelagicand the upper batipelagic layers.
1. Material and methods Between4 and 18 March 2002,in Southeastern waters off Fuerteventura (CentraleasternAtlantic), a fishing survey was carried out on-board the SN "La BOCAINA". The objectiveswere both the acousticalevaluation of the epipelagic fishery resources (i. e. Scontber japonicus, Trachurus picturcfitrs, Sardinellaaurita) and the studyof the specres compositionfrom the deepseascatteringlayer (DSL). A total of 27 trawls were carried out between0-1000 m, includingtwo seriesof 4 tows in different discretedepth levels. Out of the2l tows,l9 wereepipelagic. A commercial gear with an internalnet in the cod-endwith mesh-size10.4mm was used.The statr:sof the gear and its performancewere continuollsly monitoredby meansof a ScanmarNet Sounder and physicalparameterswere measuredwith a CTD. In order to analyzethe possibilitiesto
l2
2"dInternationalSymposium- Coleoid C'
Through Time - Prague 2005
study the cephalopod vertical migration as function of changesin light conditionswith the available infrastructure, the following sampling was designed: two series of 4 consecutivetows within the samegeographical zone(from 28'00' to 28'05' N and from 14' 08' to 14" 12' W) in the depthlevels 50, 200225,325-350 and 615-700 m during daylight anddarkness(Table 1). For interpretation purpose, the catch were combined with the oceanographic, data acoustic and meteorological data registered. All cephalopods,including free fragments, were considered.Dorsal mantle length (DML) was measured(in mm). The percentagein numberand the frequencyof occurrencewere calculatedfor eachspecies.
The most important families, in number and frequency of occurrence, were Pyroteuthidae (N = 36.24Vo,F=ll.llVo andEnoploteuthidae and N = 2J.29Vo,F = 85.l9Vo respectively); althoughwith a low speciesdiversity (3 and 2 y). speciesrespectivel
2. Results General results The initial numberof specimensestimatedwas 425. A total of 27 species were identified, belonging to 15 families and 3 orders. In general,all cephalopodswere of small size, by their early life they were mainly represented juveniles; also,adultsof stages,post-larvaeand speciesreachingshort maximal sizes (ca. 2-7 cm) were caught (i. e, of the genus Spirula, Abraliopsis, Abralia, Pterygioteuthis and Pyroteuthis).
However, in general,the consecutivefishing seriesshowedthe following: a) the concentrationof the cephalopod speciesin deep waters during day-light. The numberof specimensincreasedwith depth,from 3 in upper tow to 16 in the deepertow (Table2). b) the migration of several species toward the upper layers,which inhabited deeper waters during the daylight; and the presenceof other speciesat night in deeperwaters. c) an increase of the number of specimensand speciesat night: during were day-time,a total of 44 cephalopods caught,while at night they were as many as 91 and the species number passed from l3 to 20, respectively.
Table l. Data of the two sequencetrawls: FT= fishing time; sF'I=fishing time of the stable period; FD= fishing depth; sFD= fishing depth of the stableperiod; T= temperature;sT= temperatureof the stableperiod; S= speed.
Tour
Trawl
Date
15 t6 17 18
t5/03/02 1 0 : 5 5 r5/03/02 1 2 : 5 2 15t03/021 5 : 0 6 15/03/02l 6 : 5 0
FT/ sFT (min.)
3. Depth distribution and migration Due to the local weatherconditions,the last 3 tows of the second sequencewere carried out the next night. On the basisof the resultsobtained,the behaviourdisplayedby the cephalopodswas diverse: there were species keeping the distribution pattern along the day cycle (e. g. Belonella belone) while others changedfrom a definedlayer to be dispersein the watercolumn (e. g. Heteroteuthisdispar).
FD / sFD (m)
T/sT
("c)
S (knots)
DayligtuSeQuence
35/30 38/30 39/30 55/40
30-98/ 30-58 185-211 / 200-211 n.q(ts.q-ts.e) i:l? (12.9-13.6) 3.13 311-318t311-338 r3.2 410-695 / 671-695 9.07(8.9-9.2) 2.14
DarknessSeqVenCe
19 22 ZJ 1A
15/03/0221:09 16/03/022 2 : 1 4 r7/03/02 00:24 11/03t0202:41
36/30 36/30 4r/30 53/40
34-139/34-62 1 8 . 4( 1 8 . 3 - 1 8 . 6 )4 . 4 6 215- 26r 1 s . 0( 1 4 . 9 - 1 5 . 3 )3 . 6 1 /215- 230 310-427 /310-363 13.3(12.8-13.6) 3.18 56s-980 / 61r-691 9.3( 9.2- 9.4) 2.13 73
2'1'tInternational
The valuesshowedkeep the propoftions betweenboth sequences even when takingout the first tow (i. e. comparingonly the second, third and fourth tows). Thus, the number of specimens passedfrom 41 to 78. Theseresults show that the techniqueand methodsusedare useful for the study of the distributionand rniglation of thesespecies. The physical parametersdid not show relevant structures with depth. The water colunrndown to a depthof 900 m appearedto be as a homogeneous structureof layerswithin the studiedzone. The largestdifferenceswere observedin the surfacelayers.The temperature and salinitydecreased significantlybetween60 - 200 (to 3.4" C and 0.7 o/oorespectively)after which furlher decreaseswel'e slight. We considerthat suchchangesdo not imposeany significantbarriersto the vertical migration, mainlyfor the muscularspecies. 4. Discussion The sample may not be a complete representationof the cephalopod fatina inhabitingthe area,as an importantbiasis due to the catch method: large muscular cephalopodsare able to avoid the net. The samplesstudiedhereinmay be an intermediate representationbetween those obtained with RMT, IKMT or Bongo nets (Clarke and Lu, 1914,1975),catchesobtainedwith very large commercialnets (Rebik and Kukharev,1998) and other gears,and samplesfrom the stomach contents of large predators, as well (Herndndez-Garcfa, 1995). The speciesdiversity(N= 27) was close to that obtainedat 30" N - 23" W (N= 29, Clarke and Lu, 1974) and smallerthan the 40 speciesfound in the geographical rangeat 18. N - 25" W (Clarkeand Lu, 19i5). However, shor-rldbe stressed that species diversity gradually increasesas latitude decreasesand the sampling depth range from the referred studieswas from surface to 2000 m, i, e. it
nt - Coleoid Ce
Tltrottglt Tinte - Prague 200:
doubledthe depthrangein our study.The effort was considerably higher,76 tows anda totalof 160 hours.For a very closearea,the southern end of Fuerteventura, was identifieda total of 18 species(Clarke,1969),the differencecould be in part due to the masseffect of the islanci (seeSangr6,1995). In relation to the diel migration, the resultscannotbe comparedin detailasdifferent techniquesand a shorter-depth r.angewas considered.However, some of the results obtainedfor someof the speciesarecoincident with the ones observed by those authors. Moreover,a samplingbias may haveoccurred (particularly in the fourth tow) as some individuals may be caught during the time previous to the stabilization of the _qear. However,it is necessary to keep in mind that there were no superpositionof the fishing rangesin any of the series.In the sameway, the deptherror till the stabilizationof the gear for the first three tows in each of the series was small (15-35 m) as well as the stabilizationtime (3-5 minutes).Therefbre, we consideredthe catchesmainly from the plannedstrataor depthlayers.This showsthe considerablepotential of the techniqueused. Also, the observeddiversity (ca. 4Vo of the speciesof the Class)showedthe importanceof this researchas their ecologicalimplications and its socioeconomicvalues,as a potential resource, areconsidered. Acknowledgments:We thankto M. D. Oieda.D. Coello and J. Fraile (Viceconscjerfa de pesca,Gobiernocle Canarias)for their support,to thc pcrsonnelof the S/V "La Bocaina"fol their.helpdurin,qtlie surveyandto Dr.s. M. R. Clarke, R. Young and M. J. Sweeneyfbr the literature plovided. The fir.st author expresseshis gratitudeto MIR for facilitatingthe participation in this research.
* DnnIclttotl This work is dedicated to Enriquc Herninclcz-Garcia
'74
2"'t Intentational S1,n1p6sirnt- Coleoicl CepholopctclsThrouglt Titrte - PrugLte 2rttt5
RBrnnBNcBs
CLARKE, M. R. 1969.Cephalopodcollectedon the Sond Cruise.J. mar. Biol. Ass. U. K., 49: 961-916 at 30"N 23"W in the North CLARKE, M. R. and LU, C. 1914.Verticaldistributionof cephalopods Atlantic.J. mar.Biol. Ass.U. K..54:969-984. at 18"N 25'W in theNorth CLARKE, M. R. andLU, C. 1975.Verticaldistributionof cephalopods Atlantic.J, man Biol. Ass.U. K..55: 165-182. HERNANDEZ-GARCIA,V. 1995.The diet of the swordfish XiphiasglaclittsLinnaeus,1758,in the Atlantic,with emphasis centraleast on theroleof cephalopods. Fish.8u11.,93,2:403-411. LOZANO, F. 1991. Primera cita de Trenroctopusviolaceus Delle Chiaje, 1830 (Octopoda: (Nota).Sci.Mar.,55,3:541-549. Tremoctopodidae) en aguasde Canarias. REBIK, S. T. and KUKHAREV, N. N. 1998.Chubmackerelbiologyandstockassessment in the area of the Somali-Arabian upwelling. In: African Fishes ancl Fisheries Diversiv ancl - SouthAfrica. Utilisation.Coetzee,L., J. Gon and C. Kulongowski(eds.).Grahamstown FISA;PARADI: 163-164. SANGRA, P. 1995.Perturbaci6ndel flujo geofisicopor Lrnobstaculo:aplicaci5nen la Isla de Gran Canaria.TesisDoctoral,lJnlersidad de Las Palmasde Gran Canaria,Las Palmasde GranCanalia.
75
2n'tInternational Symposium- Coleoid CephalopodsThrough Time - Prague 2005
N N J N U 5 t'.J
d F { O \ u
\O
d E'6-
_:.
O
NJ
N
Fe; $&3 \ + 9 s 5 *
oo lr ;:i g ( !
-
o ii a
(!
a {
€ €
s s
J L
i:-
9
: - q :wi , 6
l'.J U
r
p
qt
;t
Fs-
o O
\
b.J
F = . i '
R <
=
d<= a^:'.q d'E o sF',l
a o
N
3
9 i N ) P Q { u N O O
6
* E 6
a
J
:sI '
.\
g
{
ii
€ €
,s \Jo i\=!
:E;.
FSE ilsfi
6 9p !..) ;
I = 5 o l oa R ' o r *
t'.,
>
s
d
c) - i '
E F
p
i e;' h
s
E
{
l.J uJ ' 6 q =
:
* -+
!
: , O \ { ; . \ o v * O
sS qao ' . =
s i E
*
5 N
5
m
E "s *a -
= a )
i.(D:1
P:J {o\ e\o
E {€ s l i =
6 t
=
8
r
\ ='E .a'64 5@ =-o :i-a R i i
6rr 6 E
o E i
o
iea
t
= O c = . _ . o
;
+gF
O
= t t
3 E ; Rq+ J
.
iqo q
-
s
O
'
p
i+
: i i p a o\ u
!
s: -,X
g
k
b\ G
G
a E ' ffiU) 8 ^ R X ii 6'
o
R
:
O
-
F X
-
3
5 o
S rr :',
Rr€ : ' @
{ 8
{ € s{
B E
N
e - 5 6 S ,
D0a o a =
s = i e
s ! p
\ ( D
F
uf,;ro
d 5
s
s $ > o
I.'
-! .E8 Ee
r o
8
8
Q.
o'
3 = .
o q 3
o
o
t.< s: : o:1 6
IJ
90
L! u uo\
-l
I q 6 + :.5 S s i x
si5
q
'
s K *f {: -\bo i
E - l*
h
u ei
a -o m
-6'
N - - { o \ o a o \ u \ o {
- N J U J \OUJAUJ
tJ
3 r E = -
E * * =
x ; x x
= f
a E = a
l6
2"'t International S
- Coleoid CephalopodsTltrou
Abundancetrend of OctopusvulgerisCuvInR,L797andEledonecirrhosa (LAnrlncK,1798)in the southernTyrrhenianSea(CentralMediterranean) (1), PerdichizziFrancesco(l), Profeta Adriana(2), Giordano Daniela BusalacchiBarbara(l), PerdichizziAnna(l)and Rinelli Paola(r)
'r)Istitutoper I'AmbienteMarino Costiero(IAMC-CNR), Sezionedi Messina,SpianataS. Raineri, 86 98100,MessinaItaly;
[email protected] (2)Dipartimento BiologiaAnimaleed EcologiaMarina,Universitddegli Studi di Messina,Salita di 3 1-98100Messina Sperone,
ABSTRACT: In this paper,the temporalabundancetrendsof two cephalopodspecies,Octopusvulgaris CUVER, 1797 andEledonecirrhosa (LAMARCK,1798) relatedto ten yearsof trawl surveyare shown.The data were recordedduring the GRUND (Evaluationof demersalresourcesin the Italian Sea)nationalproject from 1994-2004(Greco et al., 1998, 2003).
Key words: Coleoid cephalopods,Octopoda,MediterraneanSea,abundancetrend and biomassindex.
The common octopus Octopus vulgaris and the horned octopus Eledone cirrhosa are two of the most importantcommercialspecies Sea. in the Mediterranean O. vulgaris is a typical inhabitant of littoral waters,exsistingup to the limit of the continentalshelf (Mangold-Wirz,1963),while E. cirrhosa displays a wide bathymetrical distribution, generally down the 700m bathymetricline (Belcari et a1.,2002).In the Mediterranean Sea, octopods catches from trawlers that operate on the continental shelf constitute an important fraction of the total landingsof theseship (Relini and Orsi Relini, 1984;Tursi and D'Onghia, 7992;Belcari and Sartor;1993;Giordanoet al.,1998).The study area was comprisedbetween Suvero Cape (Calabria)and SanVito Cape(Sicily). Ten annual bottom trawl surveys that were mainly aimed to obtainingestimatesof abundanceindices for ten target specieswere carriedout in autumnfrom 1994 to 1998 and from 2000 to 2004. Selection of sampling stations was based on a depth-stratified sampling scheme, taking into account the
surface area of each stratum; five depth zone were considered:l0-50, 50,100,100-200,200500 and 500-800m. Specimenswere counted, weighed, measured (dorsal mantle length, DML) sexed and assignedto a maturity stage by macroscopicanalysisof the gonads. Catch data (number and weight of O. vulgaris and E. cirrhosct collected) were analysedby means of specificallydeveloped software (Souplet, 1996), taking into account the surface of each haul and depth stratum,in order to obtain estimatesof abundanceindices expressed in terms of both number of specimensand kg per km2. The abundance estimationsof the two specieswere calculated as a mean value per year of samplings, bathymetric stratum, shelf (10-200m) and slope (200-800m). The above estimates indicated that the abundanceof O. vuLgaris was negligible in waters deeper than 200m. For this reasonfurther analysisfor this species was confined to depth strata down to 200m. T'he results shown a decrealng trend of the overall annual abundance(r'=0.506; p<0.05; of O. vulgaris (fig.l), while E. cirrhosa abundance presents more fluctuations.
2tttInternationalS),mposium- Coleoid CephalopodsThrough Time - Prague 2005
-
Octopusvulgaris
Y=-0,5083x+1026 R" = 0,506
16,00 14,00 X q) 12,00 -v t . E10,00 a 8,00 a (-. 6,00 .ra 4,00 2,00 0,00 l.Y
F
S H H h H E E E g g g F
-
-
C
.
,
-
N
-
,
a
(
Years Fig. L - Temporaltrend of the biomassindex (kg/km2;in the overall strata(10-800m) for O. vulsaris.
The biomass indices values of the overall annual abundancefor O. vulparis decreasing from 13.55kg/km' (D.u. St.=l. t 3. CY=21.81Vo) in 1996 to 5.63 kg/kmt 1D"u. Sr.= 0.80, CY=39.50Va) in 2003.On a toral of 682 samples,the length-frequency distribution of O.vulgarisduring the ten yearsshown that the speciespresenta range of dorsal mantle lengththat rangedfrom 25 to 200 mm with a peakof percentage (13.49Vo) at 80mm DML. The densityindicesvaluesof the stratum A for Octopusvulgaris^shown an increment from 1994 (56 N/km'; Dev. St. = 4; CY=36Vo)to 2004 (127 N/km2; Dev. Sr. = 5; CY=35Vo). The biomass indices values of the overall annual abundance for E, cirrhosa decreasing from 6.35 kg/kmr (Dev. St.= 0.88, CY=35.75Vo) during the 1995 ro 0.35 kg/km2 (Dev. St.= 0.06,CV=43.86Vo) in rhel99gand from 4.39 kg/km' (Dev. St.= 0.50,
CY=30.61Vo)in 2003 to 0.g7 kg/km2 (Dev. sr.= 0.09, cY=30.75Vo)in the 2004. The density indices values of the shelf for Eledone cirrhosct shown an increment from 1994 (61 N/kmr; Dev. St. = 4, cY=22Vo)to 2003(111 N/kmr; Dev. St. = 6; CY=217o).While in the 2004 yearthis index decreasingto a value of 22 N/km2 (Dev. St.= 2; CY=3ZVo). A total of 717 samplesof E cirrhosa were analysed.The size-distributionshown a rangeof dorsalmantle length that rengedfrom 20 to 130 mm of DML, with a peak of percentage (14.09Vo)at 50 mm DML. The present results confirm the discontinuospatternin the catchespresented by both octopods.Apart from environmentai conditions that may markedly affect the stocks, annual fluctuations in abundance shouldbe relatedto the peculiaritiesof species dynamics and to fishing strategies.
78
2"" InternationalSymposium- Coleoid CephalopodsThrough Time - Prague 2005
REFERENCES
BELCARI, P., CUCCU, D., GONZALEZ, M., SRAIRI, A. and VIDORIS. P.2002. Distributionand abundance of Octopus vulgaris Cuvier, 1197 (Cephalopoda:Octopoda) in the Mediterranean Sea.ScientiaMarina. 66.2: 151-166. BELCARI, P. and SARTOR, P. 1993.Bottom trawlingteuthofaunaof the NorthernTyrrhenianSea. ScientiaMarina, 51,2-3: 145-152. BELCARI, P., TSERPES,G., GONZALEZ, M., LEFKADITOU, E.,MARCETA, 8., PICCINETTI MANFRIN, G. and SOUPLET,4.2002. Distributionand abundance of Eledonecirrhosa (Lamarck, 1798) and E.ntoschata(Lamark, 1798) (Cephalopoda:Octopoda)in the Mediterranean Sea. ScientiaMarina. 66. 2:134-155. GIORDANO, D., PERDICHIZZI, F., GRECO, S. 1998.Distribuzioneed abbondanzadr Eledone cirrhosa (Lamark, 1798)nel Tirreno Meridionale.Biologia Marina Meditercanea,5,2'. 349-354. GRECO, S., RINELLI, P,, GIORDANO, D., PERDICHVZI, F. 1998. Valutazionedelle risorse demersali da Capo Suvero a Capo S. Vito (Tirreno Meridionale). Biologia Marinu Mediterranea.5. 3: 14-84. GRECO S,, RINELLI P., PERDICHZZIF,, GIORDANO D., ROMEO T., BOTTARI T., FLORIO G., CONSOLI P., BUSALACCHI B. and FABRONI F. 2003. Valutazionedelle risorse demersalinel BassoTirreno (C.po Suvero-C.poSan Vito) Relazionefinale UO 6, ISTME CNR, MinisteroPoliticheAgricolee Forestali:142pp MANGOLD-WIRZ, K. 1963. Biologie des C6phalopodesbenthiqueset nectoniquesde la mer Supplement n.13.Vie et Milieu, 15-21,57-81 Catalane. . RELINI, G., ORSI RELINI, L. 1984.The role of Cephalopodsin the inshoretrawl fishing of the Ligurion Sea.Oebalia,10: 31-58. SOUPLET, A. 1996. Calculationof abundanceindices and length frequenciesin the MEDITS survey.In: J.A. Bertrandet al. (eds),Campagneinternationale de chalutagedemersalen M6diterran6e. Campagne1995.Rapportfinal Vol.Itr, TURSI, A. and D'ONGHIA, G. 1992.Cephalopods of the IonianSea(Mediterranean Sea).Oebalia, 18:25-43.
l9
- Coleoid CephalopodsThrough Titne- Prague 2005 2ndInternational S1,r71pssi11m
Phylogeny of Praeqctinocqma.rNAIDIN(Belemnitellidae, Upper Cretaceous) Koit'6k Martin Instituteof Geologyand Palaeontology, CharlesUniveristyPrague,Albertov 6, Prague2, 128 43, CzechRepublic;
[email protected]
ABSTRACT: The origin of Praeactittocamax Nnlow, 1964(1.e. Belemnitellidae Pe,vlow, 1914)hasnot beenexactly explainedto date.Jeletzky(1946) derived their origin from the Aptian Belemmnopseidae - probably ftomNeohibolites ewaldi (STROMBECK) or N. clava SrotrEY on the basis of a similar alveolar part structure.Doyle (198j,1gg2) supposedthat belemnitellidsare derived from some northern(boreat)endemics.Naidin and Alekseev (Igi5) supposed the origin of the first belemnitellid species - Praeactinocamaxprimus (ARKHANGELSKv) - trom Neohibolites repentinttsNAIDINet ALEKSEEV(early middle Cenomanian)with respect to the similar shape of the guard and the structureof the alveolar part. This opinion is incorrect- P. primus occursin the sametime interval and/or soonerthan N. repentinus.Christensen(1997) admitted a polyphyletic origin of the family Belemnitellidae.p. primu.sand N. repentin.us haveprobably a common ancestorin theNeohibolitesgroup. Key words: Coleoid cephalopods,belemnites,Belemnitellidae,Praeactinocamax,Upper Cretaceous,phylogeny.
Praeactinocamaxprimus (Anru.) is the earliest representativeof Belemnitellidae PAvLow, 1914. It occurs in the lower Cenomanian - at upper levels of the Mantelliceras mantelli Zone - and continues to lower parts of the Mantelliceras dixoni Zone in NW Europe. P raeactinocamaxplenus (BI-arNvIl-ln) is consideredto be a direct phylogenetic descendantof P. primzs. Christensen(1974, 1990) perfectly analysed the differences between these two species and confirmed a directevolutionary lineage. The rare and endemic lower Turonian species of Praeactinocamax contractus NaroN is widespreadin the CentralRussian Subprovince(CRS).In spiteof the opinion of (1914), Christensen I consider Praeactinocamaxcontractus an independent speciesespeciallywith respectto its specific moryhology:shorterand stoutmassiveguards and poorly calcified alveolar fracture. P. contractusis consideredto be a descendantof
the primus/plenus evolutionary lineage derivedand specializedspecies,respectively. This speciesis known from the Volga River region and easternBelarussia(Ko5t'iik,2004). P raeactinocamaxtriangulus NarorNhas recently been raised to rank of independent species (Ko5t'dk, 2004). This species is derivedfrom P. primus and/orespeciallyfrom P. aff. triangulus rather than from P. plenus, as suggestedby the guard shapeand partly by ontogeny(not so marked allometric growth as in P. plenus).The single completespecimen of P. aff. triangulus known has a similar triangular shallower pseudoalveolus. Hypotheticalevolutionarylineageis going to P. trictngulzsand can be possibly defined as follows: A common ancestorof P. primus (middle Cenomanian)and P. aff. triangulus (middle Cenomanian)- ? - P. triangulus (lower Turonian). During this evolution, a gradual calcification of alveolar part continued,a deeperpseudoalveolusformed, and the guardsizeincreased.
80
2ndInternational Symposium- Coleoid CephalopodsThrough Time - Prague 2005
Phylogeny of PraeactinocamaxNAlDlN,1964 iSuBsrAG
STAGE
PROVINCE NORTHAMERICAN
EASTEURoPEANPRoVINcE
NoRTH EURoPEANPRoVINcE
q
I
t
Santonian
s ,e lcD
:
UPPer
6 * l o t o
I
ConiacianI raioot" :
t
o t a i .F
: Lower
i Turonian
lE l' tI
'T1
t q
[4iddre
lc! !o :
lh I I
tI I
I 2 1
i
r
I
?
o
i
.t
i :
t
? i€ a
- Plit E
;i s
A t
I9 *
:O ;b,
r
Y
,
a *
X i
.
-
e!
P
2 : *
d
,t sx l| d . >0
l| u
l' I
I'
l-..''
5
rF l o
|
:: q
l*lul-l-l*
l I
l
Cenomanian r',riaore
IE
IN
l t
o I
lzt' ,!
. : I upper
o o
,3' ; - -e i S :I B E
. Lo*et
: e
: i
a.
?
i
l o
ex gr. pnhlus-p/enus
plenusgtoup'l
i . . . . I
: LOWer
Fig.l. PraeactinocamaxNADIN, 1964 species.Phylogeneticevolutionary lineages in the East- European, NorthAmericanand North- EuropeanProvinces(Modified after Ko5t'rik,2004),
A similar calcification trend was describedby Ernst (1964), and Christensen (1991)rn GonioteuthisBtYYe, 1819. Praeactinocamax The origin of (M,txuI-rN, 1973) with poorly sozhensis calcified alveolar fracture is not clear. This speciesprobably representsa lineageparallel to P. plenus or convergence. Some morphologicalsimilarities like the shapeand sizeof the guardcould provethis opinion. The late Turonian Praeactinocamax planus (MnxuI-rN) has probablyits origin also in the primus/plenus evolutionary lineage. The morphologyof P. plenus and P. planus rs conservativeand did not change during the Turonian. Middle Turonian species of North American Province (NAP) - P. manitobensis (Wurreevns), P. sternbergi (Jrlerzrv), P. walkeri (Jelerzrv), P. aff. groenlandicus a P. aff. plenus - are close to one anotherby having a similar alveolar fracture and partly also the shapeof the guard. They are typical inhabitants of the NAP (including North America and Greenland). Praeactinocamax phylogeny is poorly recorded here. Praeactinocamaxcobbani (CgzusreNSnN)is
known from the middle Coniacian and P. groenlandicas (BnreLUND) from the lower Santonian. P. groenlandicus is the last representativeof Praeactinocamax. Middle Turonian Praeactinocamaxgroup in the NAP may be derived from primus/plenusancestors, too. Their evolution passedindependentlyin the North European Province (NEP) and in the East European Province (EEP). This group representsa typical parallel model of belemnitellid evolution(Plate1). Speciesof the NEP - P. bohemicus (Srollev), P. aff. bohemicus and P. paderbornensls(Scru-Urrn) - probably have their evolutionary roots in this group. P. bohemicus,P. aff. bohemicus(Ko5t'6k, 1996) a P. paderbornensis are extremely rare in Europe: they were describedfrom the Upper Turonian through the lower Coniacian depositsof the CentralEuropeanSubprovince (CES) and Baltoscandia.They may prove a connectionbetweenthe NAP and NEP in the Turonian (Ko5t'6k et Wiese, 2002). On the other hand,the EEP was completelyisolated from the NEP during the whole Turonian stage. Several "transitive forms" existed between Praeactinocamax and Goniocan'Lax 81
- Coleoid CephalopodsThrough Time - Prague 2005 2n'tInternational Sl,mposium
NaIpn, 1964 during the early through late Turonian: P. matesovae (NelorN), P. coronatus (Merulw), and P. sp. I (Ko5t'iik, 2004). I supposetheir morphology to be the result of convergence with Goniocantax. Some representativesof Praeactinocamax resemblethe first species of Goniocemex, especiallyby having a similar shapeof the guard and by the depth of the pseudoalveolus. The origin of P. matesovae,P. coronatus,and P. sp. 1 is not clear. P. matesovaeshows marked similarities to Goniocamaxbut its very and well shallow calcified pseudoalveolus is typical for genus
Praeactinocamax. P. coronatus has a relativelydeep (about 6 mm) pseudoalveolus (typical for Goniocamax),but its slenderand subcylindrical to high conical guards somewhat resemble the middle Tulonian speciesof Praeactinocnmaxfrom the North American Province (P. manitobensis)and the rare upper Turonian belemnites from the Central European Subprovince and Baltoscandia (P. bohemicus, P. aff. bohemicus).P. matesovae,P. coronatus, and P. sp. I are very rare speciesof the Central Russian Subprovince. They show a high endemicity and diversity in this region.
RnrrnrNcBs CHRISTENSEN,W. K. 1991.The Late Cretaceous belemnitefamily Belemnitellidae:Taxonomy andevolutionary history.Bull. geol.Soc.Denmark,44:59-88. DOYLE, P. 1987.The CretaceousDimitobelidae(Belemnitida)of the Antarctic peninsularegion. gy, 30: 147-177. P alaeontolo DOYLE, P, 1992. A review of the biogeographyof Cretaceousbelemnites.Palaeogeography, Palaeoclimatology, PalaeoecoIogy, 92: 201-216. ERNST, G. 1964. Ontogenie,Phylogenieund Stratigrafieder BelemnitengattungGonioteuthis Bayle aus dem nordwestdeutchenSanton/Campan.Fortschritte in der Geologie von Rheinlandund Westfalen, 7 : I 13-114. JELETZKY, J. A. 1946. Zur Kenntnis der Oberkretazischen Belemniten.Geol. Fdreninsensi StockholmFdrhandlingar, 68: 87-105. IELETZKY, J. A. 1961.Actinocanxaxfrom the Upper CretaceousBenton and Niobrara Formations of Kansas.Journalof Paleontology,35,3: 505-531. fOSfAf,
fr4. 1996. Late Turonian - Coniacian belemnites(generaActinocamaxMiller and Gonioteuthis Bayle) from the Bohemian Cretaceous Basin. Vdstnik Ceskdho geologickdho tistavu,J 1,2: 91-102.
fOSTAt<, U. 2004: Cenomanianthrough the lowermost Coniacian BelemnitellidaePavlow (Belemnitida,Coleoidea)of the EastEuropeanProvince.Geolines,l8: 59-109. fOSTArc, M. andWIESE, F.,2002. Upper Turonianbelemnitellidoccurrencesin Europein the light of palaeobiogeography, sea-levelfluctuations,and palaeotemperature fluctuations. In: K. WARNKE (Editor) InternationalSymposiumColeoid CephalopodsThrough Time. BerlinerPalciobiologische Abhandlungen: 6l-65.
82
- Coleoid CephalopodsThrough Time - Prague 2005 2ndInternationaLSl,mposium
belemnitesfromthe RussianPlatform and adjacentareas. NAIDIN, D.P.1964: Upper Cretaceous Moskovskogo Gonioteuthis, Belemnellocamax. Izdatelstvo Actinocamax, Universiteta,190pp. Moscow.[in Russian]. Gosudarstvennogo NAIDIN, D.P. and ALEKSEEV, A. S., 1975.New speciesof Neohibolitesfrom Cenomanianof Crimea.Paleont.Zhumal, 3:42-45.[in Russian]. of the MAKHLIN,V.Z. 1973.SubclassEndocochlia.In: New speciesof plantsand invertebrates USSR,Trudy VNIGRI,318:87-92.[in Russian].
PLATE 1- EXPLANATION A-J, M: Praeactinocamax NlIuN from the East European Province; K-L: Praeactinocamax from the North European Province, N-P: Praeactinocamax from the North American Province. Index L - alveolar ends (x1,5), I (x2,5). Index 2 - dorsal views: (A-D, F-G, J, M-O), ventral views (E, H, K-L, P) (x1,2), A-J, M. - A. Praeactinocamaxprimus (AnxueNcELSKY),Middle Cenomanian, Ukraine; B. Upper Cenomanian, Kazakhstan; C. Praeactinocamax plenus (BI-emvrun), Uppermost Cenomanian, Russia; D. Praeactinocamax sozhensis (MnxulIN), Russia; E. Praeactinocamaxaff. Lower Turonian, NADTN, Praeactinocamaxcontractus triangulus, Middle Cenomanian,Russia; F. Praeactinocamaxtriangulus NADTN, Lower sp. 1, Lower Turonian,Russia;H. Praeactinocamax Turonian,Russia;G. Praeactinocamax sp. 2, Turonian/Coniacianboundary, Turkmenistan; I. Praeactinocamax coronatus (Mnxulnr), Upper Turonian, Russia; J. Praeactinocamax planus (Mexut-nt), Upper matesovae(Nenw), Upper Turonian,Russia.(after Turonian,Russia;M. Praeactinocamax Kost',rik.2004\. K-L.
Upper Turonian, Czech Republic; K. Praeactinocamax bohemicus (Srolllv), Praeactinocamaxaff. bohemicas,Upper Turonian, CzechRepublic.(after KoSt'5k,1996).
N-P. N. Praeactinocamox cobbani (CuRrsmusnN), Middle Coniacian, USA (reprint from Christensen,1997);O. Praeactinocamaxwalkeri (JElerzrv), Middle Turonian, USA (reprint manitobensls(WurreavEs),Middle Tulonian, from Jeletzky,1961); P2. Praeactinocantax (reprint 1961). from Jeletzky, USA
83
2"'tInternationalSymposium- Coleoid Ce
h Time - Prague 2005
- Coleoid Ce 2"d International S1,r71p6tirm
s Through
Cenomanian - Coniacian (Upper Cretaceous)belemnitellid distribution and belemnite eventsin the East European Province KoSt'6k Martin (')
(l)
and Wiese Frank
(2)
CharlesUniveristyPrague,Albertov 6, Prague2, 728 43, Instituteof Geologyand Palaeontology,
CzechRepublic;
[email protected] (2)Fachrichtung .74-100,D-12249Berlin, Germany; FU Berlin,Malteserstr Palliontologie,
[email protected] ABSTRACT: Belemnite (belemnitellid) geographicdistributions are establishedfor the East European Province, a biogeographicunit establishedand characterizedby endemic representativesof Praeactinocantax,subspeciesof of Goniocamax.Markedabundanceof index belemnitellidspeciesguards Actinocannx and by the first representatives insidetheir rangezonescombinedwith their wide geographicdistributioncan be understoodas belemniteevents.
Key word: Coleoid cephalopods,belemnites,Upper Cretaceous,palaeobiogeography.
Belemnitellids show a cosmopolitan distributionin middle to late Cenomanianin the whole European Paleobiogeographic Region(= NEP sensuChristensen,1916). prtmus Praeactinocamax (AnrsnNcELSKv, l9l2) is the earliest representativeof BelemnitellidaePAVLow, 1914. P. primus is widespread from the northern Caspian Sea area in the east to Northern Ireland in the west. Geographic distributionof this speciesrepresentsa belt 4000 km long and about 1000 km wide (Fie.l). Geographic distribution of P. plenus (BI-eINvlt-lE,1825), which is consideredto be a phylogeneticdescendantof P. primus, extendsmore than 1000 km to the east (to the border) and also to Afghanistan/Tadzhikistan the south (Tethyan Realm), central European basins, Crimea and southern Turkestan (Fig.2). The low belemnitelliddiversity in the Cenomanian/Turonianboundary interval is presumablyconnectedwith a major eustatic event.Only the highly Cenomanian/Turonian endemic species P. sozhensis (MRrcrLrN, 1913) survivedthis time interval in the area
and the betweenthe presentRussialBelarussia borders(Fig.3). Russia/Kazakhstan The eastern part of the European PaleobiogeographicRegion (East European Province,EEP) is consideredan independent province (Ko5t'dk et Wiese 20A2; Ko5t'riket al. 2004; Ko5t'6k 2004) with respect to the occurrenceof 100Voendemic taxa in the latest Cenomanian through the earliest Coniacian.This provinceexistedfor about 5 million years. The Russian Central Subprovinceis well distinguishablefrom the early Turonian to the earliest Coniacian. Communicationwith other areasis limited to the southeast (Transcaspian area), east (westernSiberia, Yenisei River), and north (RussianArctica - Taimyr Region, Norilsk District). Praeactinocamax triangulus NeIow, 1964 and P. contraclus NArDrN,1964 belong to taxa typical for the EEP in the early Turonian. Geographic distribution of P. triangulus extends from Belarussiain the west as far as to Uzbekistan and western Turkmenistanin the southeast(Figs4-5).
85
- Coleoid C
2"'t International
Time - Prague 2005
i!' c,6tr TETHYAN Fig.1..Palaeobiogeographic distribution of P, primus. Middle Cenomanian.BM - BohemianMassif, US UkrainianShield.
Fig.2. Palaeobiogeographic Late Cenomanian.BM Ukrainian Shield.
tii.,,t' '',,1i, M"'o"ll:i''l:l:""l,Ii'?i"^i ' i:., -, Fig.3. Palaeobiogeod;phildistribuiionof p. Fig.4. Palaeobiogeoglaphic distribution of solhensis. Cenomanian/Turonianboundary intervai. BM - BohemianMassif,US - UkrainianShield
{ )t4 a ,
P triangulus.Early Turonian. BM - BohemianMassif US - UkrainianShield.
{ s4v-
i
iT
"'--.---\---:".---...-__. T E T H Y A N R EA L M
TETHYAN r
j
Mediterrani:an Region Cciltrnl AsiDd Province
Fig.5. Palaeobiogeogr-aphic distribution of P. contractus.Early Turonian. BM - BohemianMassif, US - UkrainianShield.
{ ,a_
I
i? ' .)
TE - f
H y l ,i.,.:, frf AgALbl""-",.:--.i.:-
., ,,;
,
l 1
' . : tig.T. .Palaeobiogeographicdistribution of G. lundgreni.Early Coniacian,BM - BohemianMassif, US - Uklainian Shield. (Figs I -7 after KoSt'rik,2004).
Fis.6. P;6"bils;"gi"tniC-'di;ii-ib;iil;;i
G.'
intermedius (late middle to upper Turonian) and G. christenseni (A; upper Turonian - the base of the Coniacian). The upper Turonian distr.ibution of Praeactinocamax bohemicus (*) in Central and Northern Europe. BM - Bohemian Massif, US UkrainianShield.
Goniocamaxintermedius(Anru., 1912) and G. christenseni(Ko5t'6k,in prep.)are the middle Turonian through the lowermost ConiacianEEP endemicsof the CRS (Fig.6). Goniocamax lundgreni (Srolr_Ev, 1916) is the typical Coniacianspecies.The easternmostoccurrenceof G. lundgreni was recorded from the Azovsk Sea area and probablyfrom MangyshlakPeninsula(Fig.7).
86
- Coleoid CephaLopods Through Time - Prague 2005 2"'tInternational Sl,nrpctsium
Free belemnite migration continued during the Santonian, Campanian and Gonioteuthis, Maastrichtian - genera Belemnitella and Belemnella are almost cosmopolitan in the whole North European Region. Belemnite events Marked abundanceand frequencyof index belemnitellidspeciesguardsinsidetheir range zones combined with their wide geographic distributioncan be understoodas belemnite of P. primusevents(Fig.8).High abundance the primus event was recorded north of the CaspianSea (NW Kazakhstan)(lower part of the Acanthoceras rhotomagense Zone). Thrs event approximatelycorrespondsto those in NW Europe. Stratigraphicrangeof P. plenus is very short and correspondsto the Metoicoceras gesLinianumZone in central and NW Europe and the Inoceramus pictus bohemicusZone on the Mangyshlak Peninsula(betweenthe Acanthoceras jukesbrownei Zone and Zone) Neocardioceras juddii see Marcinowskiet al. (1996).This rangeand the wide geographic distribution have the characterof a separateevent - the plenus event. llelemrlitet zones l r d the rrhole ll l i R i
e l e n t s - p r i n r u s. ;.r; lrtlnt ru s a r r cllu n d g r e l i e r r n t s for for thc ljlfll'f'. t r i r n g r l u r e v e 0 tiiss ccs|lblishc(l sl
.* .: I
blt'tr
I
trcr,
(ior'ifrillLh[rildlrc$j
I
i
I
l
I
irppNl I
Ciorriocrnlrrrrlenwilil-r redu-(
l
| . ,,,,--...-....,...,....."...
1. rrtiilill<
5
.;
Acknowledgements: We thank Doc. Walter Kegel Christensent, who kindly provided us large literature,valuabletutolials and remarks. We are indebted to Prof. Dmitriy Pavlovich Naidin (Moscow State University) for providing the large material studied, literature and valuable tutorials and remarks.This paper is a part of projects supported by GACR: GP205l0llD129, 20510211516 and partly by MSMT CEZ:I:13198:1 13 100006.
-T-.*,-"*
t-
;--1-
Maximum geographicdistribution of P. triangulus (from Belarussia in the west to Uzbekistan and Turkmnenistan in the southeast)and high abundanceof guardswere recorded in the late lower Turonian (Mytiloides labiatus Zone and Mammites nodosoidesZone)- the triangulus event, Coniacianspeciesof G. lundgreni rarely penetratedalsoto the centralEuropeanbasins (Cremnoceramus crassus Zone; Ko5t'dk, 1996;Ko5t'iik et al., 2004).The appearance of this species finished the existence of the independent EEP. The belemnite fauna becamecosmopolitanagain.The easternmost occurrenceof G. Iundgreni was recordedfrom the Azovsk Sea area (Naidin, 1964), and probably from the lower Coniacian of the MangyshlakPeninsula(i. e. Actinocamaxcf. lundgreni; Marcinowski and al., 1996).The lundgreni event could be establishedfor the late lower Coniacian.
I
I
i lLiihNffilfflfiil i I
Pnclrcirrvrcrfinruilr:lrir ilr:iluur
tlfllllglrlllsi!cfil
I I
i tiijili;,itiiliritl.!.!.:i:::.::.::::;.aai:,t;i.Niltiilliiiiiiitl t ir:l :il
t"",",t,,,,",,,,,.i
l !FNr
i
l i
i =
: nrd.ll.
|
l
j
;"-"1
r p r c n t$r .i x , , i
Piigrclirlcaxilrrsp,anur
-::::;;--
iiirriirlrl
:;;:;
,
'
il
'.'l
rlrlilrri
c\clit
I
I
P,1",,.ti,n,r",r,".;r'i,,u,,
il IBWJ#,ilr,,ilr'il Fig.8. Belemnitellidbiozonesand eventsin the Eaest EuropeanProvince.Cenomanian through the lower Coniacian interval. (modified after Koit'6k, 2004).
81
- CoLeoidCephalopoclsThrough Tinte - PrcLgue2005 2"'tInterncLtionalSl,mposium
RerpnpNcBs of Late Cretaceousbelemnites of Europe. CHRISTENSEN, W. K. 1916. Palaeobiogeography Palciontolo gische Ze itschrift, 50: 113- 129. fOStAf,
Vt. 1996. Late Turonian - Coniacian belemnites (genera Actinocamax Miller and Gonioteuthis Bayle) from the Bohemian Cretaceous Basin. Vdstnik Ceskdho geologickdho rtstavu, J 7,2: 97-102.
fOSTerc, M., 2004: Cenomanianthrough the lowermost Coniacian BelemnitellidaePavlow (Belemnitida,Coleoidea)of the EastEuropeanProvince.Geolines,18: 59-109. fOStAf,
M. and WIESE, F.,2002. Upper Turonianbelemnitellidoccurrencesin Europein the light of palaeobiogeography, sea-levelfluctuations,and palaeotemperature fluctuations. In: K. WARNKE (Editor) InternationalSymposium Coleoid CephalopodsThrough gischeAbhandlungen: 6l-65. Time. BerlinerPalciobiolo
RoSTAK,M., CECH,s., EKRT,8., MAZUCH,M., WIESE,F., voIGT, S. andwooD, c. J. 2004:Belemnitesof the BohemianCretaceous Basinin a globalcontext.Acta Geologica P o l o n i c a5 4 ,4 : 5 11 - 5 3 3 . fOSfAf,
M., (in prep): Goniocamaxchristensenin. sp. (Belemnitida,Belemnitellidae)- a new belemnitefrom Upper Cretaceousof Russia,
theVolgaRiver.Paleontologicheskij MAKHLIN,V.Z.1965: NewUpperTuronianGoniocamaxof Zhurnal,4: 26-32.fin Russian]. MARCINOWSKI, R., WALASZCZYK,I. and OLSZEWSKA-NEJBERT,D., 1996.Stratigraphy (Upper Albian throughConiacian)of and regionaldevelopmentof the mid-Cretaceous Western the MangyshlakMountains, Kazakhstan. Acta Geol.Polonica,46,l-2: 1-60. NAIDIN, D. P. 1964: Upper Cretaceousbelemnitesfrom the RussianPlatform and adjacentareas. Actinocamax, Gonioteuthis, Belemnellocamax. Izdatelstvo Moskovskoso Universiteta,190pp. Moscow.[in Russian]. Gosudarstvennogo
88
- ColeoiclCephalopodsThrouglt Tine - Prugue 20()5 2"'tInternational Sl,ntposiunt
Non associativelearning in the common octopus (Octopusvulgaris) Kuba Michael J,(l),Zullo Letiziaand Hochner Binyamin (l)
Departmentof Neurobiology,Institute of Life Sciencesand InterdisciplinaryCenter for Neural
ComputationHebrewUniversity,Jerusalem91904,Israel;
[email protected]
of behavioralflexibility.In orderto document learningis one of the basicmanifestations ABSTRACT: Non associative this behavioraltrait in Octopusvulgaris we test the animal's habituationto a repeatedlypresentedprey-like stimulus. everyminutefor l5s. Experimentsare repeated During the l5 min experimenta plasticmodel of a lobsteris presented 6h and 24h after the first presentation.The animals habituatedto the stimulus during all experimental sessions, Habituationis f'asterin the experimentalsessionsrepeated6h and 24h after the initial trial. In order to undelstandthe singlecellsactivityis recordedat the level of the mediansuperiorfrontaL neuralmechanismunderlyingthis habituation, approachenablesdiscerningwhetherand which of the lobe (MSF) and the verticallobe (VL). This electrophysiological areinvolvedin mediationof behavioralhabituation. synapticconnections
Key words: Coleoid cephalopods,Octopttsvulgaris,behaviour.
The acquisitionof knowledgeaboutthe environmentand its changesis probablyone of the principal tasks each organismhas to face. There have been numerousstudieson learningand other cognitive abilities,in the genusOctopus(Boal 1996,Fiorito 1992,for reviews see: Hanlon & Messenger 1996, Nixon & Young 2003, Wells 1978). Nevertheless, studies on non-associative Iearningare scarce,includingWells & Wells (1957), Angermeier& Dassler(1992), and Mather & Anderson(1999).Wells & Wells (1956)concentrated on the tactilehabituation of blinded Octopus vulgaris to repeatedly presented objects. Angermeier & Dassler (1992) demonstratedinhibitory learning in Eleodone cirrhosa and the transfer of a learned inhibition to a natural feeding situation. Mather & Anderson (1999) documentedhabituationin Octopusdoffieinii and also investigatedthe relation to the influence of habituation on exploratory behaviorand objectplay. In additionto those studies Byrne et al. (2004) gave a first description of habituation to a prey-like stimuluspresentedoutsidethe tank.Given the importanceof the vertical lobe (VL) and
median superior frontal lobe (MSF) for learning and memory in Octopus vulguris (Nixon & Young 2003, Wells 1978) we investigatetheseareasbrain activity during a non associativelearning test. This is done r"rsingthe method for in vivo exlra cellular recording developed by Zullo (2004) and Zullo & Hochner(in prep). In the present study we focus on the subjects habituation to a prey stimulus presentedoutside the tank. Subjects(n=10) are chosenfor their generalresponsiveness to stimuli outsidetheir home tanks (seeBoycott 1954 for a descriptionof this behaviorof O. vulgaris in captivity).Once the animal reacts to human presence in the room by the front glassof its hometank it approaching is transferredto a different room where the experimentaltank is situated.The animalsare given a 24h period to adjust to the new environmentand are then tested.Each animal is testedthree times for 15min. Dr"rringthis 15min period a plastic lobster is presented outsidethe tank for 15s at the beginningof every minute. These l5min testing-periods are repeatedtwice, 6h and 24h afterthe initial oresentation.
89
2"'t Interttatiottal
In Figure 1, the performanceof animal 2 is shown. The three experimentalsessions are different in terms of qualitativechangesas the number of visual attacks on the target decreases significantly (Kendall's V/, p=0.004,N=15, X2 =10.889,).The total time spent at the front glass trying to get hold of the prey item also_significantly decreases from the first to the second and third experimentalsession(Chi-square, p=0.001,X2 =14.144,df=Z). The resultsof theseexperimentsshow that O. vulgaris does habituateto a visual stimulus.The single unites recordingduring habituationwill test whetherthe habituation processinvolvesdepression of the responseto
- Coleoid CephaL
Tltrough Tinrc - Pra
the prey stimulus at either the MSF, the VL or both levels. Further experiments are conducted in order to pin point the sites involved in this behavioral habituation.The possibility of combining a simple learning paradigm with in vivo rccording will enable us to get a better insight into the neuronal basesof behavioralprocesses.
Acknowledgements: This wor.kwas supportedby US_ DARPA, Islael Science Foundation and bv the E,uropean Commission's IHP Pr.ogram.
fo
I4
72
10
\ \,
r)'
\
-'J \
.r'i *
first *second "-** -''third
^
T
r \I
,
\ t
1
v
,
\ r
7
3
4
t
u*.oo,t,on" o?'..rjn.".,#
11
rz
13
L4
1s
Fig.l' Exemplary graphsof animal number 2 during the three experimentalsessions.The x axis shows the number of repeatedpresentationper session,while the y axis shows the total amount of time the animal spent on the fi.ont glass trying to catchthe prey item.
RnrBnrNcns ANGERMEIER' w. F. and DASSLER, K. 1992. Inhibitory learning and memory in the lesser octopus(Eleodonecirrhosa).Bulletin of thePsychonomic Sociee,30: 309-310. BITTERMANN, M' E. 1975. Critical commentaryIn: Invertebratelearning, Vol: 3: Cephalopods and Echinoderms.Corning W.C., Dyal J.A. and Willows e.O.O. (eds). New york: PlenumPress,139-145.
90
- Coleoid CephalopodsThrctughTinre- Prague 2005 2"'tIttternational Sl,mposium
BOAL, J. G. 1996. A review of simultaneousvisual discriminationas a method of training BiologicalReviews,T l: 157-190. octopllses. BOYCOTT, B. B. 1954.Learningin Octopus\)ulgarisand other cephalopods. Pubblicationedel Zoologico Napoli, 25: 61-93. Staz,ione BYRNE, R. A., KUBA, M. J., and MEISEL, D. V.2004.Laterahzedeye Llsein Octopwsvulgaris showsantisymmetrical distribution.AnimalB ehovior,68: 1107-l 114. FIORITO,G., and SCOTTO,P. 1992.Observational learningin Octopusvulgaris.Science,256: \/t\
\/t
/
HANLON. R. T. and MESSENGER,J. B. 1998. Cephalopodbehaviottr.New York: Cambriclge UniversityPress. KRALIK, J. D., DIMITROV, D. F., KRUPA, D. J., KATZ, D. B., COHEN, D, and NICOLELIS, M. A. 2001. Techniquesfor long-term multisite neuronal ensemblerecordingsin behavinganimals.Methods,25,2: 121-50. MATHER, J. A., and ANDERSON, R. C. 1999.Exploration,Play and Habituation.Jounrul ol Psychology, 113: 333-338. Contparative IXON, M, and YOUNG, J.2.2003. TheBrains and Livesof Cephalopods. Oxford UniversityPress WELLS, M. J. 1978. Octopus.Physiologyancl.Behaviourof an AdvancedInvertebrate.London: Chapmanand Hall. WELLS, M.J. and WELLS, J. 1951.Tactile discriminationand the behaviorof blind Octopr-rs. P ubbliccttionedel Stcrzione Zoologico Napoli, 28 94-126. ZULLO L. 2004, Functional organizationof the sensory-motorareasin the CNS of Octoptts vulgaris,PhD thesis,Universita'Degli Studi di Napoli FedericofI.
91
2"'t International Symposium- Coleoid CephalopoclsTltrough Tinte - Prague 2005
Rare evidencesof shark predation in Upper Cretaceousbelemnites Mazuch Martin and Ko5t'6k Martin
Instituteod Geologyand Palaeontology,Faculty of Science,CharlesUniversity Prague,Albertov 2, Praha2, I28 43;
[email protected] Introduction: The Upper Cretaceousbelemnitefamily BelemnitelliadePavlow, l9l4 is exclusively distributed in the Northern Hemisphere. Calcitic belemite rostra are known from various near shore facies. Belemnites were also a prey of severalpredators- i. e. larger fishes, sharks and marine reptiles. Some imprints (grazes and furrows) on the rostra surfacecould have been causedby a predator attack. Naidin (1969) showed also grazesand furrows on the rostra surface.Althoush their
origin seemsto be unknown, some of them could prove the predator attacks (fishes, sharks,marine reptiles).Theseimprints were classifiedby Naidin (1969) into four grolrps: 1. smallercircularto oval imprints. 2. largeirregularimprints. 3, longitudinalfurrows (Figs- 1,2) 4. double-facedgrazes(Figs - 3, 4) The last two mentioned groups may have originatedduring a sharkattack.
Figs 1-4. 1,2. longitudinalfullows (flom Naidin,1969),3,4. double-facedgrazes.Figs.2,4. Experimenralbites on plasticineguards.
92
- Coleoid CephalopodsThrough Tinte - Prague 2005 2"" International 51,n1p6tium
The belemnite rostrum model has been moulded from plasticine and an experimental
iharkjaw. byacomplete bitewasre-enacted The imprintson the surfaceare shownin Figs 3-4.
Acknowledgements: We thankProf' DrnitriyPavlovichNaidin (Moscow
,:T,'i?:, il::::l :,Tj:.Jil"i,','"'ll,"i.::rP#;iff
205t021516 supported by GAiR: cp2b5/01/Dl29, bvMSMTCEZ:J:13/98:I13100006. andoartlv
RnrBRBNcrs of UpperCretaceous belemnites.Izdatelstvo NAIDIN, D. P. 1969.MorphologyandPalaeobiology MoskovskogoUniversiteta:l-302. [in Russian].
rcOSfAf, M, 2004. Short ichnofossilsynopsisin Upper Cretaceousbelemnitefamily Workshop, Bioerosion from CentralandEastEurope.4'nInternational Belemnitellidae 3, 32-33.Abstract. Prague,August30 - September
YJ
2"'t IttlernationaL S
siunt- Coleoid Cephal
h Tinte- PragtLe2005
Stable isotopesignaturesof Cretaceousbelemnites: The approach of a palaeobiologist Mutterlose Jorg and Rexfort Andreas
Institutftir Geologie,Mineralogieund Geophysik,Ruhr-Universitzit Bochum, Universit;itsstr.150. 44801 Bochum,Germany; i oerg.mutterlose @rub.de, andreas.rexfort @rub.de
Introduction: Belemnite guards are currently being usedin two fields of geosciences: a) taxonomy, evolution and biostratigraphy areaspectsconsideredby palaeontologists. b) stable isotope studies are performed by geochemists. Only few studiescover aspects of both fields. For more than 50 yearsthe calcareous guardsof belemniteshave been used to gain 6180- and 613C data of the Cretaceous. Fluctuations of the 6180 data indicate variations of the ice volume and palaeotemperature, thoseof the 6l3C valueare explainedby changesin the biopoproductivity of the oceans.The observeddata have been used to postulate seasonal or secular temperatureor productivityvariationsof the sea water. All of these studieshave serious setbacks,in so far as they neglectbiological aspects. One of the problems is that taxonomically heterogeneousgroups have been used. Data derived from different speciesor even genera have been lumped together,ignoring possiblespeciesdependant fractionationof the stableisotopesignature.A second drawback is the neglection of ontogenetic and ecological aspects of belemnites. We have analysedtrace elementsand stable isotopesof belemnitesfrom the mid Jurassicof Germanyandthe early Cretaceous
of Germany and NE England in order to check ontogeneticand taxonomic var.iations of both parameters. The investigations of micl Jurassicmegateuthidsindicateno significant variationof the 618O-values during ontogeny, indicating no changes in the habitat throughoutlife. Observations on Cretaceous belemnites show, that a biofractionationof the stable isotopes and trace elements occurs on ir genericlevel. Various belemnitegenerafrom the Valanginian- Barremianshow different 5l80- and5l3c-signatures. The 618o-values of the endemicHibolite,.r,are higher (,,cooler,,) than those of the genus Acroteuthis.These differences may indicate either secular changesof the isotopesignatureor different modes of life for both genera. The latter implies a rathershallow water habitatfor the relatively thick Acroteuthis and a deeper habitatfor the slenderHibolites. Consequently stable isotope curves shouldbe solelybasedon one taxon only, if possible. Long ranging taxa should be preferred over short living species,several speciesfrom one genusover severalspecres of severalgenera.Ecologicalfactors(way of life, habitat,migration)haveto be considered.
94
2"'tInternationalSyntpositmt- ColeoiclCephcLlopocls TltrotLghTinte - Prague 2005
The cephalopodembryo: Testing 3D visualizationmethods ('''), (2) Niidl Marie-Therese Geyer Stefan andMiiller GerdB. (l'2) (l)
Departmentof TheoreticalBiology, UniversityVienna,Althanstrasse14, 1090Vienna,Austlia;
rnarietnoedl @hotmail.com (2)Integrative MorphologyGroup,MedicalUniversity,Wiihringerstrasse 9, 1090Vienna,Austria
Even in the era of moderngeneticsit is necessary to observe the anatomy and developmentof an organism for a better understanding of its function in the ecological context. Since cephalopods representimportantnutritionalresourcesand researchobjectsin appliedsciences,such as fisheriesand aquaculture,it is necessaryto provideexactdataof their development.It is importantthat suchdatacan be quantifiedfor statistical analyses of growth and other parameters. developmental This presentation aims to test the use of 3D reconstruction methods in the developmentalanalysis of Octopus vtilgoris and Loligo vulgaris embryos.Thirteendaysold Octopusvulgaris embryos(approximatelystageXIII of Naef) and eighteen days old Loligo vugaris embryos(approximatelystageXIX of Naef) were harvested, sectioned, and digitized accordingto the EFIC protocol (Weninger
and Mohun 2002),using a Voxelsizeof 1,09 x 1,09 x 2. JVision and EMVIS were used for 3D visualizationsof several stagesof thesecephalopodembryos. The histological preparation of the early embryonic stages was more complicatedthan the preparationof later stages,due to the largeexternalyolk sacand the inpenetrable chorion.Varioustreatments were applied to avoid poor fixation and embedding artifacts. The resulting images were of high quality and sufficiently complete for 3D reconstruction of external and internal embryonic structures.It was shown that modern imaging proceedures,such as the EFIC protocol,can be used for the analysis and quantificationof embryonic shapeand internalorganprimordiasuchas the nervous system and the circulatory system of cephalopodembryos.
RBnnRrNcn
WnNINceR,'W.J., MOHUN,T.2002. "Phenotyping transgenicembryos:a rapid 3-D screening methodbasedon episcopicflourescence imagecapturing." Naturegenetics,30: 59-65.
v)
2"'t International S1,rypssltm- Coleoid Cephalopocls ThroLLghTinte - PrcLgtre2005
Oxygen isotopesof Sepiaofficinalis - implications for fossil cephalopod studies Rexfort Andreasand Mutterlose Jcirs
Institutfi.irGeologie,Mineralogieund Geophysik,Ruhr-Universitzit-Bochum, Universitzitsstr. 150, 44801 B ochum,Germany;andreas.rexfort @rub.de, i oerg.mutterlose @rub.de
Studies of stable isotope ratios (d'O, d'C; on belemniteshave been widely used in palaeoenvironmental reconstructions. d*O ir usedas a proxy for paleotemperatures anclchangesin polar ice volumes,d3C as an indicator for the overall marine bioproductivityand metabolicactivity of the studied specimens. But these studies encollnter some problems. First of all, diageneticinfluence has a strong impact on isotoperatios and is able to causea serious shift in the results of paleoclimatological reconstructions. Secondly, these studies neglect possible biofractionation and ecologicaland ontogeneticfactors. On one hand metabolic functions might favor one isotope over another during intra-cell precipitationof CaCO3 on the other hand changesin the mode of living and associated changesof the environmentmight influence the results.
Specimensof wild and aquarium-reared Sepia fficinalis have been used for studies concerningthesefactors.Interpretationof the datais easy,becausediageneticeffectscan be neglectedand the ecologyof theseorganlsms is very well known. Results show no discernible biofractionationor ontogeneticinfluenceon the oxygen isotope ratios, the isotopic composition is in equilibrium with the seawaterand reflects the actual temperature conditions. On the other hand, migrational patterns and seasonalchanges are clearly visible and affectthe resultsstrongly. The carbon isotopesignatureshowsno direct correlationto the oxygensignatureand proofs difficult to be explained.
96
unt- Coleoid
2"'t Intentational
lopods Tltro
Tinte - Prapue 2005
New data on Middle Jurassic - Lower CretaceousBelemnotheutidae of Russia. Their habit and possiblemode of life RogovMikhail
(l)
andBizikov Vyacheslav(2)
(r)Geological Instituteof RussianAcademyof Science,119011Moscow, Pyzshevskystr.,7; rogov
[email protected] (2) (VNIRO), l0ll40, Moscow, V.All-RussianResearchInstituteof Fisheriesand Oceanography str, 17;
[email protected] Krasnoselskaya of the Russiaare reviewedfbl the first time. ABSTRACT: Middle Jurassic- Lower CretaceousBelemnoteuthidae Thesecoleoids are usually representedby phragmoconeremainsand cautiouslyassignedto generaAcanthoteuthisand Their spatialdistributionand rangechart as a rule slightlydiffers,but sometimesboth generaoccul'atthe Volgobelus. same level. On the basis of comparisonwith modern coleoidssome conclusionsconcet'ningfeaturesof soit body weresuggested. rnorphologyand ecologyof Belemnoteuthidae Russitr,Pzrlaeoecology. Jurassic- Crcttrceous, Belemnoteuthidae, Key words: Coleoidcephalopods,
the family Fossil coleoids of of the most one represent Belemnotheutidae mysteriousgl'oupsof MesozoicCephalopoda. From one hand, they are similar with other of the order Belemnitida in representatives having well-developed phragmocone with ventral siphuncle, tongue-shapedtri-partied proostracllmand peculiar hooks on the arms (Naef, 1922: Jeletzky, 1966, etc.). From the other hand, they lack the main distinctive feature of belemnoid shell, the rostrum. is very thin, Conothecaof Belemnotheutidae shell-like and usually lost in the course of fossilization,as well as fragile proostracum. Occurringmuch more rarelythanbelemnitids, by are usually represented Belemnotheutidae only. The later wele damagedphragrnocones generally ignored during field works by collectorswho often misinterpretedthem as phragmocones. belemnoid isolated Apparently it was the main reason why Belemnotheutidae remained a scarcely studied group until the latest time. Investigationsof the recent years marked substantialprogress in ollr knowledge on (Donovan& Crane, 1992l. Belemnotheutidae Doyle & Shakides, 2004). However, the
information on distribution and fauna of Russia is still Belemnotheutidae in fragmentary and is actually restricted by several brief mentions (Gustomesov,1976; Kiselev et al., 2003, among others). The material collected by the authors provided some new data on distribution of on the Russianplatform.The belemnotheutids aim of the presentstr-rdyis to describefauna and distribution of Belemnotheutidaein Russia and to attempt to reconstructsome featuresof their soft body morphologyand ecology basing on comparisonwith recent coleoids. As the conotheca is often lost in belemnotheutid phragmocones the main problem in their study is to distinguishther-n from isolated belemnitid phragmocones. Recently,Doyle and Shakides(2004) showed that the apical angle in belemnotheutidsis somewhatless than in belemnitids,though their rangesoverlap partly. Our data proved that this criterionis quite unambiguouswhile comparing belemnotheutid and belemnitid phragmoconesof similar size recordedfrom the samelevel.
91
2"'tInternationalSymposium- Coleoid C,
lopods Through Time - Prague 2005
llange chart offhc Belcmuothrutid colcoids in thc l\lirkltu lurlssic - l,orvtr Cre{act'ous tfltussia and irdj:rcenl areas
s
; ;
; )t
L jf pcr lirl!r
ilf il ((ll.t)o', o s.riiLr).
i$ikitini
Zor.
J \. I
llidrlle \{,lgn p1g111b1od:s.hi iccliol IA. \il, Kaslipil s(ctio0 [i\i): Sr!a:o'i voig! rxoi ((]r;o!kz scftjilu lAl)i O.rlhril-l JicliN (Khilnrk]:iir golr \cltj4,ir liriJ. lilrlCti lonc: lVcsi S:herie tih:n tlrclrrics. i ,All_ ,I1 \l.l!iix iarr'tr:i:rrrrrj:.il.- t,,,t6l
?
lflFl,Tl,
I'Lcijo I lrrisi
I- lalld ilasses ? - ucrurrtncc o:f IJelctrrnoltreulids. rangctl by the Stasrs. whcru l - C a l l o v i r n . 2 - O x f r x d i a n .i - \ t r l g i a n , -1- lJerriusian.,5- \'alanrinian, f: - lkuleriviau. T - Aptian
i,\rlzla,g
lzhjDr .i\ es j- I tllrr
Orinr r::iii l!.1
Bcli:nfod Ilctjioil tSLoilcn:ik niilc \c(rirrl lkinriDiirdriln Za,iic l.lj llnzdn' llcgion(Nikitrn*scctir:r)'i Srrrov li'lrr arca (l)rrhii $.l!rn), \lr
L4erOrJotlian
i$l
iic t-riilb.rli ;arnui IA]
4 lrkrriilc. {.i irltoi (viciri!!
nr Sodr; roqlrJ (ir:oilts -f o,:( | i. i
I](igorrJil Rr'gi.jn iSri,ililt\i rllin!. j(,olioil) lliiiitjlxo ldn. l J i d i l l ( \ i \ l ! j ; r c l I i r t , 1 5 ( l is ( o 1 i o j t t . { l l n i D r x aZ . I c | \, j *loclliLii:ru|ciubulernniie$rrrrjsnrc*iirclt
lAl
rbicillrlalkcriir.itstcilsks
Fig.l. Distribution of the Middle Jurassic- Lower CretaceousBelemnoteuthidaeof Russiaand adjacentareas in space and time.
The material collectedby the authorsas well as obtainedfrom publicationsshow that Belemnotheutidaeare widely spread in the Callovian - Lower Cretaceoussedimentsof Russiaand former USSR (Fig.).The fossilsin allthors'collectioncan be distinctlyclassified into three groups.The first group consistedof small (1-5 cm length; 2-3 cm width) crushed isolatedphragmocones with characteristic low v-shaped ridges in the apical part on the dorsal side. These fossils were tentatively identified as Acanthoteuthissp. The second group consistedof large (9-17 cm length; 710 cm width) uncrushed isolated phragmoconesfilled with sediments and lacking the dorsal ridges.These fossils were assigned to the genus Volgobelus. One specimenrepresented almostentireshell (only apicalpart was missing).It was 34 cm length; 10 cm width, and consisted of crushed phragmocone(18 cm length),tongue-shaped proostracum(16 cm length) and remainsof the ink sac.This fossil combinesomefeatures of the 1't and 2ndgroupsand was tentatively
identified as ? Acanthoteuthissp. Geographic and stratigraphic distribution of Acanthoteuthisand Volgobelusin Russia is different. Within the studied area only in the Middle Volgian they occurtogether. Comparison with living coleoids provides opportunity to reconstruct some featuresof soft body morphology and ecology of Belemnotheutidae. Dorsal v-shapedridges in the apical part of conotheca- one of the most distinctivefeaturesof Acanthoteuthisapparentlyrepresenta functional analogueto medial keel formed by the rachisin posrer.ior. part of the gladius in most recentsquids.In squids this part of the gladius ensures articr.rlation with the fins. presenceof similar keels in the shell of Accutthoteuthisindicates that in this form the fins apparentlyattached to dorso-lateral surface in apical pafi of conotheca.The basesof fins were separated. possibly merging apically. The fins were terminal,probablybroad-ovalor rhomboiclal. Their length could slightly exceedthe lengrh of the ridges: 3/5ths of the lenerh of the 98
2"'t Intenrationul Sl,ntposiunt- Coleoiel Cepltalopocls Through Tinte - PrctgLte2005
phragmocone(Donovan & Crane, 1992). Considerable width and flat profile of proostracumin Acanthotetftlisindicatesthat it was not covered by the mantle muscles from the dorsal side. Most probably, the mantle attachedto lateral edges (hyperbolar zones) of proostracum, oS in recent Thickening of hypelbolar Vantpv-roteuthis. zonesfound tn Acanthoteuthisas well as in other belemnite proostracaprovide another prove for this hypothesis. Tongue-like proostracum of belemnoids, including lacks Acanthoteurftis, broadenedvanes(lateral plates)that usually presentin the gladii of recentsquids providing place for the funnel retractorsattachment(Bizikov, 1996;Bizikov & Arkhipkin, 1991). Absence of similar structuresin belemnoidproostracaindicates that funnel retractorsin Belemnitidaattached either to the inner surface of thickened hyperbolarzones (like in recentSepiidae)or to the inner side of the mantle wall, like in recent squids (Ommastrephidae and Chiroteuthidae). In the latter casethere must be some strong ftrnnel locking-apparatlls of complex strlrcture,or fusion of the funnel col'nerswith the mantle.The presenceof the
ink sac in Acanthoteuthisindicatesthat this speciesinhabited upper layers of Mesozoic seas,apparentlyabove200 m. The arm length in Acanthoteuthis comprisesabout40Voof the total length (Donovan& Crane, 1992).It is considerablylonger than in recent nektontc (Ommastrephidae, Loliginidae, squids Thysanoteuthidae) but very close to planktonic species (some Gonatidae, Mastigoteuthidae, Octopoteuthidae). The absence of rostrum in the shell of Acanthoteurlzis signifiesthat living positionof this anirnal was vertical head-down,like in recent Spirulu and some planktonic squids, for example, MastigotetLthis. Taking into account all abovementioned considerationsit is possible to draw some conclusionson possibleway of life of Belemnotheutidae. Apparently,these were middle-to large-sized planktonicforms inhabiting epipelagic(possibly Lrppermesopelagic) horizons over shelf and slope of continentalseasin Mesozoicera. Acknowledgments: This study was supported by RFBR grants03-05-64291and 03-05-64964.
RBnBRBNcoS
BZIKOV, V.A. 1996.Atlas of morphologyand anatomyof the gladiusof squids.Moscow. [in Russianl. BZIKOV, V. A. and ARKHIPKIN, A. I. 1997.Morphologyand microstructureof the gladiusand statolith from the boreal Pacific giant squid Moroteuthis robusta (Oegopsida; Onychoteuthidae). J. Zool. Lond., 241:41 5-492. BRADUCHAN, YU. V., GURARI, F. G., ZAKHAROV, V. A. and orhers, 1986. Bazhenov Formationof theWestSiberia.Novosibirsk.fin Russian]. DONOVAN, D. T. and CRANE, M. D. 1992. The type material of the Jurassiccephalopod Belemnotheutis. Palaeontology, 35, 2: 213-296, DOYLE, P., and SHAKIDES, E. W. 2004. The JurassicbelemnitesuborderBelemnoteuthina. gy, 47, 4: 983-998. Polaeontolo JELETZKY, J. A. 1966. Comparative morphology, phylogeny and classification of fossil Coleoidea. Univ. KansasPaleont.Contrib.,1: 1-162.
oo
2"'t Interttational
- Coleoid Cephalopods Through Tinte - Prague 2005 S1tn1pa15lttm
GUSTOMESOV, V. A. 1976. Generalproblemsof systematicsand phylogenyof Belemnitida. Pakteontol.Journal,2: 64-75. [in Russian]. KABANOV, G. K. 1967.The skeletonof Belemnitida.Morphologyand biologicalanalysis.Trans. Paleont.Inst.AN USSR,114:101.[in Russian]. KISELEV, D. N., BARANOV V. N., andMURAVIN, E. S. 2003.Glebovo.Atlas of geological heritagesof Yaroslavl'region.Yaroslavl.[in Russian]. NAEF, A.1922. Die fossilenTintenfische.Eine paliizoologische Monographie.Jena.
100
2"tt International S
un - Coleoid CephalopodsThrou
Meso- and neohibolitid belemnitesfrom the Albian (lower Cretaceous) of NE Mexico (2) (l) SeibertzEkbert and SpaethChristian (l)Institut 3, D-38106Braunschweig, Pockelsstrasse TU Braunschweig, ftir UmweltGeologie, @web,de Germany;e.seibertz (2)Geologisch-Paliiontologisches 55, D-20146 Institut,Universitit Hamburg,Bundesstrasse @web.de Hamburg,Germany;chspaeth
The belemnitebearinglocalitySierrade Mexico in La Silla is situatedin northeastern the northern part of Nuevo LeSn between Monterreyin the north and Montemorelosin the south. The Sierra is a nauow anticline separatedfrom the easternfrontrange of the SierraMadle Oriental in the west by a wide valley of some ten km. The steeplyinclined flanksof the rangegenerallyconsistof Lower with a narrowstripeof carbonates Cretaceous of the Sierraand in the center Jurassicclastics Upper Cretaceous carbonates in its outer slopes.Some twenty km south of Monterrey the village of El Alamo is situatedwith an abandonedquarry nearby.In this sectionon the westernflank of the Sierra,the following regionallithostratigraphicunits are exposed: the upper part of the TamaulipasSuperior Formation(KiTS, Aptian to Middle Albian), the Cuesta del Cura Fm. (KiCC, Middle Albian to Cenomanian),the Agua NuevaFm. (KiAN, Cenomanian/Turonian), and a greater (KiSF, Turonianto part of the SanFelipeFm. lowermostConiacian). by The top of the KiTS is characterized thick-beddeddolomitic limestones,the beds from eachother by stylolithic being separated joints. The base of the overlying KiCC consists of a bundle of several erosion surfaces followed by flaser-bedded and undulatedlight and dark grey limestone.It is spalitic in the lower part of the formation where erosion and omission surfaces I hardgrounds dominate, and micritic and darkerin the upper part where flaser-bedding and undulationare lessdeveloped.Light grey
chert occursin nodulesor stratiformbandsof Thalassinoidesshape. The KiTS is assumedto be depositedin an open and deepersea, whereasthe KiCC was accumulated in a shallow water environmentat this location.In contradiction to the opinion of some authorsto represent entirely deep-water conditions, the KiCC showsherespecialdepositionalenvironments in accordance with its paleogeographic position.Thus, a coincidencewith inundated Jurassicland massesis obvious,the structures of which are strongly basementcontrolled. Biostratigraphic assignment of the Llpper KiTS is made by the occurrence of gr. ntinimus and Neohibolites ex mesohibolitidsgiving a basal undeterminable Mid-Albian age.The lower part of the KiCC is biostratigraphicallyfixed by belemnites, too, among which several species and subspeciesof the genus Neohibolites are diagnosticfor Middle and Upper Albian, and which are often accumulatedin condensation. and arrangedby currents.The same age is given by ammonites of the genera Mortoniceras, Worthoceras,Anisoceras, and Mariella. Other faunal content comprises brachiopods (Sellitlryris, Rectithyris, and Terebratulinas.1.),echinoids(Holoster, and Heniaster), inoceramids,and microcrinoids of Roveocrinus affinity. The Mid-Albian part of the KiCC is characterized by Neohibolitesex gr. nthirttus (Mrr-len), occurring in different formtypes, together with N. minimus clavaJorntis SpBERrz et BUITRoN, here representedby larger and thicker rostra than at its type l0l
2'"' lnternotionaSl,mprniunt- kthoid Cepl'tttlopocls T|tr6ugh Tinte - Prctgue2005
Iocality Tepexi de Rodrfguezin the Stateof Puebla (Seibertzand Buitron, 1987). In the basal beds of the KiCC two forms are cooccurringwith severalspecimensstrongly resemblingthe Upper Albian N. praeultimLts SPAETH,and the Lower Cenomanian N. ultinttts(D'OnetcNv) respectively, both being lookedupon as new subspecies of N. ninimus showing an iterativeradiation.Besidesthese neohibolitidstwo speciesof Mesohibolitesare cooccurring,M, semicanaliculatus (Br-arNv.) (Seibertz and Spaeth, 2002, 2005), and M.
spicatus(SwwNnnroN),Originally described by Swinnerton(1936-55)underreservatlon as Neohibolites,the Mexican specimensconfirm the doubts and lead to a generic change (Seibertzand Spaeth,in prep.). The lower Upper Albian part of the KiCC is characterized by Neohibolites oxycaudatusSpanru together with the last occurrencesof the N. minimus group. The higherUpper Albian parr of the KiCC can be determined by the real N. praeultinrrLs SplerH.
RBrnnnNcrs SEIBERTZ, E. andBUITRON, B. E. 1987.Paleontologia y estratigraffa de los Neohibolitesd,elAlbiano de Tepexi de Rodrfguez,Edo. de Puebla(Cret6cicoMedio, M6xico). RevistaSociecl.rLd ntexicanct Paleontologia,1,7: 285-299. SEIBERTZ, E. and Spnpru, C. 2002. Cretaceousbelemnitesof Mexico IIL The Albian Neo- and Mesohibolitesof the "Mexican Solnhofen"Tepexi de Rodrfguez(Stateof puebla)and their biostratonomy(Lower Cretaceous). NeuesJahrbuchGeologiepalciontologie Abh., 225,15 : 5-74. SpInBRtz,E. and SPAETH, C. 2005.Cretaceous belemnitesof Mexico IV. Mexican Mesohibolites and paleobiogeographical implicationson the distributionof the genus(Albian, Lower Cretaceous). NeuesJahrbuchGeologiePalciontologie Abh., 231: 95-113. SwmNrRtoN, H. H. 1936-1955.A monograph of British Lower Cretaceousbelemnites. Palaeontographical Society,part I : 1936,part2: 1937, part 3: 194g,part4: 1952,part 5: 1955.
t02
- ColeoiclCephalopoclsThrouglt Tinrc - Prague 20a5 2"'tInternational Sl,ntposiunt
New morphological and functional data on the fork in the cuttlebone of Sepia officinalis SchildhauerSven. Fuchs Dirk andWarnke Kerstin Wissenschaften, Institutfiir geologische FR Paliiontologie, FreieUniversit[t Berlin, Malteserstr. 74100,HausD 12249Berlin,Germany;sven
[email protected]
The fork (fig.l) of the sepiidcuttlebone hasbeeninvestigatedseveraltimes during the last centuryby many authors(Appelldff 1983, Naef 1922,Spiess 1912,Bandel & Boletzky 1919, Dauphin 1981, Haas 2003) and it seemedthat the main issuesseemto be well established.However, ultrastructuraldetails remainunclearsuchas: l. How does the fork expandwithin the cuttleboneand how does its structure change?
2 . Which connectionsexist betweenthe fork and the chamberwallsand is there a border layer between the two structures? 3 . How does the fork develop from the embryonic stage up to the adult animal? A - . What is the fork's possiblefunction in the organism?
Fig.1. Schemeof the fbrk in the cuttlebon e of Sepiaofficinalis
r03
- Coleoid CephalopoclsThrough Time - Prague 2005 2"'tInternationerlSl,ntposiunt
The investigated embryonic, juvenil and adult cuttlebones postembryonic, of Sepia fficinalis were collected in the Mediterranean Sea and were kindly provided by Sigurd v. Boletzky, Banyuls-sur-mer (France). Some cuttlebones were near the fork and analysedwith crossfractured SEM. Serial cross- and longitudinalsections through a freeze-driedand in resin embedded animalwere usedto detectthe relationshipof muscleand mantle tissueon the fork . Serial sectionsthrougha resin-embedded cuttlebone were used for observation with a lisht microscope. REM analysesclearly demonstratethat both chamber septa and fork septa are composed of lamello-fibrillar nacre (type II nacfe, Spirula nacre). Phylogenetic considerationssuggest the homolgy of the fork with the ventralpart of the phracmocone, this appearsin the structuralcomparisonwith the forklayers and the chamberseptum.
Especially the anterior part of each fork septum appearsto continue into the chamber septa. Serial cross sections support this assumption.Additionally, a distinct semiprismatic layer and a thin organic layer covering the ventral side of the fork were not mentionedin previousinvestigations. Although a one-chamberstagewas not avaiable, observations on a five to six chamber stage show, that the fork is already presentduring embryogenesis.The fork septa can clearlybe recognizedat this stage.In the longitudinalview, it looks as if the forksepta were moving on the wall of the first chamber duringembryogenesis. Viewing a dissectedadult animal, the fork doesnot appearas an attachementsite for the mantle musculature. Some of the observations made were previouslyunknown, others contradict previous investigations. Detailedillustrationsas well as interpretations of these findings will be given in a poster.
RnnBRnNcBs
AppsLLOr',A. 1883. Die Schalenvon Sepia, Spirula und Nautih.rs.Studien tiber den Bau und das Wachstum.Kongl. Svensk.Vetensk. Akad.Handl.,25 (7): I - 165. BnNner- & BorprzKY S. v. 1979. A comparative study of the struktur, developementand morphologigal relationship of chambered cephalopod shells.Veliger,2l:313-354. DauputN, Y. 1981. Microstrukturesdes coquilles de cdpalopodesII - La seiche (Mollusca, Coleoidea) . Paleontographika Abt. A Bd., 176Lfg., 7-3:35 - 51. HAAS,W.2003.Trendsin the evolutionof Decabrachia. BerlinerPakiobiol.Abh..3:113-129. NAEF,A. 1922. Die fossilenTintenfische.GustavFischerJena SPIESS, E. 1912 Organogenese des Schalendrtisenkomplexes bei einigencoleoidenCephalopoden desMittelmeeres. RevueSuissede Zoologie,'/9,1,5:161-226.
104
2"" InternationalSyntposiunt- Coleoid CephalopodsThrough Tinte - Prague 2005
Divergencetime estimatesfor major cephalopodgroups: Evidence from multiple genes
Drummond AlexeiJ.(r)andCooperA. Alan Strugnell Jan('''),JacksonJennifer(l),
(')
(r)
MolecularEvolution,Dept. of Zoology,SouthParksRd, Oxford,OXI 3PS,UK;
I @qub.ac.uk i .strr-r-enel (2)School of Biology andBiochemistry,MBC, 97 LisburnRd, Queen'sUniversity,Belfast,BT9 7BL. UK.
This is the first study to use both molecular and fossil data to date the divergence of taxa within the coleoid cephalopods(octopus,squid, cuttlefish). A dataset including sequences from three nuclearand three mitochondrialgenes(3415 bp in total) was used to investigatethe evolutionarydivergenceswithin the group. Divergence time analyseswere performed using the Thorne/Kishinornethodof analysis which allows multiple constraintsfrom the fossil record and permits rates of molecular evolution to vary on different branchesof a
phylogenetictree. The data supporta Paleozorc origin of the Orders Octopoda and Vampyromorpha,the majority of the extant higher level decapodiform taxa. These estimateddivergencetimes are considerably olderthanpaleontological estimates. The major lineages within the Order Octopodawere estimatedto have divergedin the Mesozoic,with a radiationof many taxa around the Cretaceous/Cenozoic boundary. Higher level decapodiform phylogenetrc relationshipsappearto have been obscured due to an ancientdiversificationof this group.
105
2"'tInternationals),nryositun- Coleoid CephalopodsTl.troughrinte - prague 2005
Observation of Idiosepiuspygmaezs(Cephalopoda,Idiosepiidae)at Klong Bangrong, Phuket IslandoThailand SuwanmalaJitima (l)
('),
von Byern Janek(2)and Nabhitabhata Jaruwat(3)
KasetsartUniversity,The GraduateSchool,Departmentof Marine ScienceBangkok,Thailand;
[email protected] (2) Universityof Vienna,Facultyof Life Science,Cell Imagingand Ultrastructure ResearchUnit, Althanstrasse 14, 1090Vienna,Austria;
[email protected] (3) KasetsartUniversity,Facultyof Science,Departmentof Zoology,Bangkok,Thailand ABSTRACT: This report revealsimpressionsand observationsabout samplinglcliosepiusp),gtlnettsrn a selected mangrovearea.IdiosepiLrs pygnneus is shown to inhabit the whole tidal rangeof a small tributary of the BangrongRiver PhuketIsland,Thailand.Mtrlesare pledominantlylocatedin the upperand lower reachesof the tributary.Females are observedin the lower part and at the mouth of the tributary,sometimestogetherwith males.Bank vesetationhas a greaterinf'luence on the presenceofspecimens,thancurrentspeeclor suddenweatherchanses.
Keywords: Behaviour;Cephalopoda; phuketIsland;Thailand. habitat;Idiosepiidae; Idiosepiuspygn'Laeus;
Severalstudieshave been publishedon the geographicaldistribution (Hylleberg and Nateewathana,1991), seasonal abundance (Jackson, 1992;Jackson,1993),behaviourand postures in captivity (Moynihan, 1983) of Idiosepiuspygmaeus.Less is known aboutthe behaviourof Idiosepiidaein its naturalhabitat. The following report will describe under which conditionsldiosepiuspygn.raeus may be found and to describeour impressionsand observationsduring sampling of Idiosepius pygnlaeus in a selected habitat (Bangrong River,PhuketIsland,Thailand).The collection site was restrictedto a smaller tributary of BangrongRiver (Fig. 1) becauseof the depth and current speed in the main stream (Kristensen et al.,2000;Holmeret al.,2001). The tributaryis about0.8 km long, hasa meanwidth of 15 m and a depthof about3 m. The tributary is lined on both sides by mangroves, mainly RhizophoraandAvicennia.
From April to May 2004, 9 females (meanmantle length 12.5 mm) and 46 males (meanmantle length 11.28 mm) of ldiosepius pygmaeuswere caughtin the small tributary of the Bangrong River (8" 02.945'N; 98' 25.030'E).The animalswere trappedwith dipnets downstreamduring falling tide and flood tide. Work on foot during high tide was impossiblebecauseof the waterdepth.At high tide animals were also caught occasionalby boat, but the dense mangrove macle his strategydifficult and ineffective. A recognizingof thesepygmy squidsin its natural habitat is difficult, althoughtheir unchangeableeye colour (blue-greenwith a white ring) simplify their localization. Moreover, during swimming ldiosepius pygnxaeus produceda clear big bow wave on the surface which provided possibility for interception.
106
- ColeoiclCephalopoclsThrough Tinte - Prague 2005 2"'tIttternational Sl,mposiunt
Fig.1. Klong Bangrongwith stud),areas.Scalebar: 500 m.
/:^fi !4lt '
-
MangroveForest
f * s$ *
-
SandBank
-
ShrimpFarm
-
Area 1 Tributary
-
Area 2 Tributary
-
Area 3 Tributary
:' .t1l: ttt
-'
n
'1,.|.
,
i: :!3'i;.:
Males were differentlydistributedin the tributary(Fig. 1). In the Lrpperpart (Area 1), pygmaeLts 19 malesof ldiosepiLts were caught. Fewer males (totally 6) were capturedin the middle part (Area 2), while in the lower part (Area 3) and at the mouth of the tributary many specimens (totally 21) were found. Femaleswere only observedin the lower part (totally 4) and at the mouth of the tributary (totally5), sometimes matingwith males.It is why clear males were only presentin low numbersin the middle part of the tributary. Unsuitable food (shrimps and mysids) or different bank vegetationcan be excludedas cause because all three sections of the tributary had obviously the same ecological conditions.Males and femalesretainthe same patternof distributionthroughoutthe complete tidalcycle. The animals were mainly caught near the mangrovebelt (distance10 cm to lm) in zones,characterisedby bank vegetation.No specimenswere collectedat riverbankswith Avicenniasp. roots and sandbanks.This type of habitat provides poor hiding-places.Most specimenswere caughtbetweenloopingaerial roots of Rhizophorasp. and under overhangs (distanceto watersurface10-20cm). The current speedhad no influenceon the distributionof ldiosepius pygntoeus.
Animals were caught both in strong currents (up to 10 km/h) and in almoststagnantareas. During cloudy or rainy periodsand/or"cooler" outdoor temperatures(28-30" C) the animals presumablyretreatedto deeperwater and were no longer visible in the muddy brown water (visibility: l0-20 cm). Short cloudy or rainy periods(up to 30 minutes)and suddenchanges in weatherhad less influenceon the catch.At higher temperatures(30-35'C), specimens were locatednearthe surfaceand could easily be netted. Idiosepius pygmaeus adapted their camouflageto prevailing light conditions.In bright sunlightthey took on a light brown to ochre colour. In dark areas their colour changedto black. Only their eye colour did not change(seeabove).During changesfrom clear to shady areas and back, the animals adaptedto prevailing light conditionswithin seconds. Our study showed that the distribution of ldiosepiuspygmaeasis restrictedto a small tributary of Bangrong River. Further investigationsare plannedto find out whether femalesspawnin mangrovesand whetherthis habitat servesas a nursery area for iuvenile stagesor hatchlings.
t0l
_
- ColeoiclCephalopodsThrough Tinte - Prague 2005 2"'t InternationalS)'nryositutt
Acknowledgments: The authorswish to thank KathaleeyaSataeyeefor her invaluableassistance during this study.We also like to thank Dr. S. Bussarawitfol his help at PhuketMarine Stationand with the publicationof this article.The first
author like to mention Prof. Dr. W. Klepal at the University of Vienna for lrer support of this research trip and for critically reading the manuscript.This project was funded by the Austrian Science Fund (FWF), Project No. P 11 193 B 12.
RnruRBNcBs
HOLMER, M., ANDERSEN, F. o., HOLMBOE, N., KRISTENSEN,E. and THONGTHAM, N. 2001. Spatialand temporalvariability in benthicprocessesalong a mangrove-seagrass transectnearthe BangrongMangrove,Thailand.WetlandsEcologycmclManagement,g.. 141-158. HYLLEBERG, J. and NATEEWATHANA, A. 1991. Redescriptionof ldiosepius pygtncreus' Steenstrup,1881(Cephalopoda: Idiosepiidae), with mentionof additionalmorphological characters. PhuketM arine B iological CenterResearchB ulletin,55: 33-42. JACKSON, G. D. 1992.SeasonalAbundanceof the small tropical Sepioidldiosepiuspygti.r(teus (Cephalopoda:Idiosepiidae)at two Localities off Townsville, North Queensland, Australia,The Veliger,35, 4'. 396-401. JACKSON,G. D. 1993.Seasonalvariationin reproductiveinvestmentin the tropicalloliginid squid Loligo chinesisand the small tropicalsepioidIdiosepiuspygntaeus.FisheryBttlletin,gl: 260-210. KRISTENSEN,E., ANDERSEN, F. o., HOLMBOE, N., HOLMER, M., and THONGTHAM, N. 2000.Carbonand nitrogenmineralizationin sedimentsof the Bangrongmangrovear-ea, Phuket,Thailand.AquaticMicrobial Ecology,22: 199-213. MOYNIHAN, M. 1983. Notes on the behavior of ldiosepius pygn'taeus(Cephalopoda: Idiosepiidae). B ehavior.85: 42-51.
108
2"'tInternational St,nnosittm- ColeoiclC'
Through Tinte - Prague 2005
The <
by Adolf Naef - a commentary (2) ('), Warnke Kerstin Keupp Helmut('),von Boletzky Sigurd (r)Freie Malteserstr.l4-100,HausD, 12249Berlin, Germany; UniversitiitBerlin, FR Paliiontologie, de [email protected],[email protected]' (') LaboratoireArago, 66651 Banyuls-sur-Mer,Francel C.N.R.S.,ObservatoireOc6anologique, [email protected]
The recentpublication of an English Eclitiott* of Naef's (1922) ,,Die fossilen TintenJische"off'ers an opportr,tniNto recall the generolbackgroundof this work,
Adolf Naef ( 1883-1949)was a zoologist who specializedin comparativeanatomyand embryology of molluscs, in particular cephalopods (before he moved on to vertebratezoology, see Boletzky, 1999). He becamemost widely known as the authorof a very large monographof cephalopods(Naef, 1921-1928)publishedin the series"Fauna and Flora of the Bay of Naples".His book on fossil coleoids appeared as a companion volume to this monograph,as emphasizedby the many quotations and reproduction of illustrations.While the Naplesmonographhas become a bible to cephalopodtaxonomists morphologists(who rarely and developmental cite the book on fossil coleoids), "Fossil DibranchiateCephalopods"is a true classic However, as for cephalopodpaleontologists. much as in cephalopodneontologya reading problem existed with the Naples monograph before it was translatedinto English, Naef's paleozoologicalprose was also difficult to understandfor paleontologistsnot familiar with the Germanlanguage.This difficulty no longer exists,and given the larger format of the English Edition, Naef's original figures are now more easily decipherablethan in the original book. Additionally, a list of synonyms was supplemented by Theo Engeser. We could conclude by simply emphasizingthat Naef's texts and figurescan by any (Englishspeaking) now be understood
neontologistor paleontologistinterestedin cephalopods- in other words, no longel is there any excusefor ignoringNaef's work as "unintelligible". A better conclusion may be recalling Naef's morphologicalapproach,highlighted as "systematic morphology": <Systematic morphology is the lational synthesis of comparative anatomy, paleomorphology, ernbryologyand natural systematics>(Naref, 1917). In particular, let us consider the following reminder: (Naef, 1919),and let us keep in mind what Naef said on the precedenceof the former: 1919). That Naef definitely aimed at robust hypotheseson phylogeneticsis sometimes such as: <...authors obscuredby statements like Naef... virtually returned to the principles of idealistic molphology" (Mayr, 1982). Fortunately recent Iiterature offers more instructive wavs of viewing Naef's
109
- Coleoid Cephctlopocls 7"t Internatiorul S),nryositurt Through Tinte - Pragtte 2005
approach:
be deducedfrom morphologyratherthan the (Reif, 1998).Certainlywe other way round>> are not wasting our time when considering Naef's work in earnest.
RonBnBNcns BOLETZKY, S. v. 1999. Systematische Morphologie und Phylogenetik- zur Bedeutungdes Werkes von Adolf Naef (1883-1949). Vierteliahrsschriftder NaturforschencJen Gesellschaftin Ziirich, 144,2: 7 3-82. MAYR, E.1982. The Growth of BiologicalThought.BelknapPressHarvard,CambridgeMA. NAEF, A. 1917. Die individuelleEntwicklung organischerFormen als Urkunde ihrer Stammesgeschichte. VerlagGustavFischer,Jena. NAEF, A. 1919.Idealistische Morphologieund Phylogenetik. VerlagGustavFischer,Jena. NAEF, A. 1921/23.Die Cephalopoden. I. Teil. 1. Band: Systematik.FaunaFlora Golf. Napoli, monogr. 35-1 [English translationavailablefrom SmithsonianInstitution Libraries. W a s h i n g t oD n . C . , 2 0 5 6 0U , SAI. NAEF, A. 1922.Die fossilenTintenfische- Eine paliiozoologische Monographie.Verlag Gustav Fischer,Jena[*EnglishtranslationBerlinerPalciobiologische Abhancllwtgen,Band,51. NAEF, A. 1928.Die Cephalopoden. I. Teil 2. Band: Embryologie.FaunaFlora Golf. Napoli, monogr. 35-2 fEng]ishtranslationavailablefrom SmithsonianInstitutionLibraries. WashingtonD. C,, 20560,USAI. REIF, W. E. 1998, Adolf Naefs IdealistischeMorphologie und das Paradigmarypologischer Makroevolutionstheorien. In: ,,Verhandlungenzur Geschichte und Theorie der Biologie",Berlin.Verlagfiir Wissenschaft und Bildurg, l: 411-424.
il0
2n'tInternational S1'nrposiunt- Coleoid Ceplnlopocls Tltrouglt Tirrte - Prut.q;t, )
j
The mysteriousorigin of the belemnites:I\ew records from the Hettangian of Belgium and Luxembourg Weis RobertandDelsateDominiaue
Mus6enationald'histoirenaturellede Luxembourg- SectionPal6ontologie 25,RueMiinster, L-2160 Luxembourg; [email protected]
ABSTRACT: The order Belemnitida,subolderBelernnitinaappearedin Europe not eallier than the basal Lower Hettangian. Theseancestralforms,presentin the Hettangianof SouthernGermany,NorthernIrelandand Belgium are so rare tl.ratevery single specimenmay bring new light on the dawn of the first true belernnites.New field researchby the authorsin the Lowel and Middle Hettangianof Belgiumand Luxembourgyieldedsomeisolatedrostraassignable to Sclnvegleria RrecRe.p and aff. Sublmstites Gusroltgsov.
This new material shows an extraordinary elevated
heterogeneity of morphologicalfeatures.
Key words: Coleoidcephalopods, belemnites. Lower Jurassic, Belgiumand Luxcmbourg,Phylogeny.
The origin of belemnites: some clues, little evidence The origin of belemnitesremains still uncertain. Following Riegraf (1996), belemnites s.str. appeared in the Lower Julassic.According to this author,they may descend from Triassic Aulacoceratida Srollny or PhragmoteuthididaJELETZKv,or a yet unknown ancestor.These Hettangian belemnites havebeenfiguredby Tate (1869), Schwegler(1939),Delsateand al. (2002) and Weis & Delsate (2005). Stratigraphically anteriorfindings have been reportedamongst others by Flower (1945), Flower & Mackenzie(1959), Johnsonand Richardson ( 1968). In a short review, Doyle and al. (1984)howeversupportthe opinionthatthese specimens lepresent either other coleoid grollps or are of doubtfr-rlprovenience,with exceptionof the Sinobelemnitidae described (1984) by Zhu & Bian from the Triassicof Sichuan,China: "Certainly,thesearethe only serious contendersin the search for preJurassicbelemnites"(p.8). These Chinese records however need further research in orderto confirm their phylogeneticposirion.
Another coleoid cephalopodfrom the Permian of Groenland, Permoteuthis groenlandica RossNxnnNrz has been classified by Riegraf (1995) amongst the BelemnoteuthididaZrrrs- and consequently excludedfrom the BelemnitidasensLlRiegraf. Thereis still somediscussion on the posrtion of the family BelemnotheutididaeZrctpr: Doyle and al. (1984) suggesta suborder Belemnotheutididina Srolr-ny inside the orderBelemnitida. In contrastto this opinion, Riegraf (1995) proposes to mainrain rhe Belemnoteuthididaas an outstandingorder distinctfrom the Belemnitidas.str. Currently,the only evidenceabout the first occurrenceof belemnitesappearsto be the presenceof the suborder Belemnitina SroLLEy, with the genlls Schweglerict RIpcRar in the HettangianLiasicus-zoneof Southern Germany and Belgir-rm(Weis & Delsate,2005). The first true belemnites in the European Lower Jurassic- a short synopsis In Europe, the order Belemnitida, representedby the suborderBelemnitina is first known in the Hettangianwith the genlis 111
- ColeoiclCephalopodsThrotLghTinte- Prague 2005 2"'tInternationalS1tryp6s11Lm
Schwegleria. Aside from some doubtful mentionsin literature,the first to figure a true belemnitefrom the Hettangianof Ireland was Tate (1869): "Belemnitespraenmturrl.r"from the Hettangian Angulata-Zone of Northern Irland. There was, however, little attention drawn to this isolated record and for many years, the unofficial title of "the oldest belemnite" was generally attributed to Ncutnobelusacutus (Muen) from the Lower Sinemurian.This picture changedwith the work of Schwegler (1939) who described three new species from the Hettangian Liasicus-Zone of Steinenbergbei Ntirtingen (SW-Germany).Riegraf (1980) cleated rhe genus Schwegleria for these dwarf ancestral forms. Later on, Riegraf (1996) described cephalopod arm hooks, Paraglycerites EISENACK, from the Planorbis-Zone of Ttibingen-Bebenhausen (SW-Germany) which he linked with the Schwegleriarostra.
Fig.l. "Belenuitespraematurus" TArE, I869 (original figure).Scale1cm.
New records of belemnites in the Hettangian of Belgium and Luxembourg During the last 10 years, the micropalaeontologicalresearch in marly Hettangiansedimentsof SE-Belgiumresulted in the discoveryof some isolatedbelemnite rostra and fragments.The site of Fontenoille, Liasicus-Zone,yielded 3 determinablerostra of Schwegleria belonging to S. fefeli (ScuweclnR, 1939) and S. psilonoti (ScuwncLen, 1939), I fragment of ?Schwegleria sp. and a belemnite phragmocone(Delsate et al., 2002). Further research in the Planorbis-Zone of Vance yielded a stem-fragment which diverges considerably from the conical Schwegleria shape an approaches the hastate genus Subhastites GusrouBsov from the Pliensbachian (Weis & Delsate, 2005). Additionally to thesefindings demonstrating
the presence of early belemnites in the Belgian Hettangian, Delsate & Thuy (2005) mention fragmentarycoleoid arm hooks from the Planorbis-Zone of Bourglinster, Luxembourg.All specimensare storedat the palaeontologicaldepartment of the Natural History Museum Luxembourg.
Fig.2 Nannobeltts acutr,ts(MTLLER,1826), from the Lower Sinemulianof Aspelt,Luxembour.g, Scalelcm.
These new fossil lecords from Belgium and Luxembourgconfirm: o the presence of true belemnites in marly sedimentsof middle Hettangian age(Liasicus-Zone): 2 of the 3 species present in SW-Germany have until now beenidentifiedin Belgium o the presenceof coleoid arm hooks as soon as the Planorbis-Zone,probably assignable to belemnites o the rarity of theseearly belemnitids(5 rostraand 1 phragmoconefound in 10 years) Further,theybroughtin somenew elements: o The heterogeneityof these ancestral forms is remarkablyelevated:beside forms with a ventral groove (Schwegleriafeifeli), dorsolaterals(S. psilonoti) and both ventral and 112
- Coleoid CephalopoclsThrouglt Tirrte' Prague ) 2"'tInternational S1,n1p6si1un
dorsolateral(5. praeco,x)there already shape existedforms with a subhastate (?S. praematura, ?SchwegleriaSP., aff. Subhastitessp.) Discussion The recordsof Schwegleriain the last 10 yearsin Belgium have been isolatedand mostly fragmentary. The 5 located rostra belongto 4 differentspecies.Thus eachsingle new specimenmay bring new evidence.To continue the research on these early belemnites,more field researchis needed. of the classicalGerman The disappearance site Ntirtingen under the effects of urban
developmentadds a supplementaryscientiftc value to the Belgian sites.Unfortunately,one is currently inaccessible them of (Fontenoille).Field researchis periodically set on by scientific collaborators of the Natural History Museum Luxembourg in order to gather new material as well as new sites in the NE of the Paris Basin (Lorraine, LuxembourgandBelgium). Concerning taxonomy, future findings should allow splitting the heterogeneous Schwegleria-groupinto some new genera. The genusSchwegleriawith the type species Schwegleria feifeli would conseqllently be restricted to forms with a ventral groove.
RBrBnnNcBs faunafrom the Middle DELSATE. D.. DUFFIN, C. andWEIS, R. 2002.A new microvertebrate Hettangian(EarlyJurassic)of Fontenoille(Provinceof Luxembourg,southBelgium). Royal Institute of Natural Sciences,Mentoirs of the GeologicalSurveyof Belgium, 48: 83pp. h quelquesaffleurements DELSATE, D. and THUY, B. 2005. Introductionbiostratigraphique hettangiens du Luxembourg belge et grand-ducal. In: DELSATE D. (6d.) Biostratigraphieet Pal6ontologiede l'Hettangienen Belgique et all Grand-Duch6de Luxembourg.Royal Institute of Natural Sciences,Memoirs of the Geological surve! of Belgiunt,5l 1-25. DOYLE, P., DONOVAN, D. T. and ND(ON, M. 1994. Phylogeny and systematicsof the 5: 1-15. Contributions, The Universityof KansasPaleontological Coleoidea. FLOWER, R. H. 1945.A belemnitefrom a Mississipianboulder of the Caney Shale.Journal cl' Paleontology, 19:490-503. FLOWER, R. H. and MACKENZIE, G. 1959. More Mississipian belemnites.Journal "J Paleontology, 33: 809-842. JOHNSON,J, H. and RICHARDSON,E. S. 1968.Ten-armedcephalopodfrom the Pennsylvanian of Illinois. Science,159: 526-528. Jura.Teil 7. Pctlaeontographicct, RIEGRAF, W. 1980.Revisionder Belemnitendes Schwiibischen (A), 169: 128-206. dibranchiatafossiles(Coleoidea).In WESTPHAL F., FossiLiunt RIEGRAF,W. 1995.Cephalopoda CatalogusI. Aninnlia. Kugler, Amsterdam/NewYork. (Cephalopoda, Coleoidea)aus der Psilonotenbank RIEGRAF, W. 1996.Belemniten-Fanghiikchen (Unterer Jura, tiefstes Hettangium) von Stidwestdeutschland. Stuttg. Beitr. z. Nctturkd. (B),2391 : -38. ll3
- Coleoid C, 2"'tInternational Sl,nwosiunt
Throuph Titne - Prcr
SCHWEGLER, E. 1939. Belemnitenaus den Psilonotentonen Schwabens.Cbl. Mineral. Geol. Palciont..1939: 200-208. TATE, R. 1869.On theoldestBritishbelemnite. GeoI.Mag.,1,6..166-167. WEIS, R. and DELSATE, D. 2005. Pr6sencede b6lemnitespr6cocesdans l'Hettangien de Belgique.In: DELSATE, D. (ed.) Biostratigraphie et Pal6ontologiede l'Hettangienen Belgique et au Grand-Duch6 de Luxembourg. Royal Institute of Natural Sciences, Mentoirsof the GeologicalsurveyoJ'Belgium,51: 27-31. ZHU, K.Y. and BIAN, Z. X. 1984.Sinobelemnitidae, a new family of Belemnitidafrom the Upper Triassic of Longmenshan,Sichuan. Aaa PalaentologicaSinica, 23: 300-319. In Chinese. PLATE 1 . EXPLANATION A, Schwegleriafeifeli (ScuwrcLER, 1939), complet rostrum, lateral view. Specimen eB26ga. Hettangian,Liasi cus-Zoneof Fontenoille, Belgium.
B . Idem,ventralview. C . Schwegleriafeifeli (ScuwrclnR, 1939), fragment,ventralview. SpecimenQB268b.Hettangian, Liasicus-Zoneof Fontenoille,Belgium.
D. Idem,transverse section. E. Scltwegleria psilonoti (Scuweclnn, 1939), fragment, lateral view. Specimen eB269. Hettangian , Liasicus-Zoneof Fontenoille,Belgium. F. Idem,transverse section. G. Belemnitidphlagmocone.SpecimenQB21l. Hettangian,Liasicus-Zoneof Fontenoille,Belgium. H. ?Schwegleriasp., fragment, lateral view. Specimen QB270. Hettangian , Lictsicus-Zoneof Fontenoille, Belgium. I. Idem,transverse section. J. Idem,ventralview. K' aff. SubhastitessP., fragment, lateral view showing the lateral line. Specimen HE366. Hettangian,probablyPlanorbis-Zoneof Vance,Belgium. L. Idem,transverse section. M. Idem,ventralor dorsalview.
114
- Coleoid CephalopodsThrough Time - Prague 2005 2"'tInternationalS1'r11p65\*n