This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
• ( V 2 ) d in the following way: E*rj is the solution to the mixed boundary value problem (with a Dirichlet boundary condition on T) :
(EZrjeVi ai(EiVi
(8.4.26)
^l)
. E{r) = r)
=
0
V >i <= V?
on T,
whereas M 2 r) is the solution to the mixed boundary value problem (with a Neumann boundary condition on T) (8.4.27)
A/"27? G (V 2 ) d :
S ;(A/ 2 t?,v 2 )
= J pVn-v2
Vv2G(V2)c
The Steklov-Poincare operators Si, i = 1,2, are defined as follows: (8.4.28)
(S^ti^aKEfaEln)
Vrj^eA
and (8.4.29)
(S2V,p)
=(3-1s*2{M2r],tf2lA
V r),(j,£ A.
Moreover, we set Sr] := Si77 + S2?7. We also introduce the functions crJ G Vf and u 2 G ( V 2 ) , as solutions to (8.4.30)
(8.4.31)
a? G V? : a l i a l ^ i ) = £1(^1)
u 2 G (V 2 ) d : s ^ ( u 2 , v 2 ) = £ 2 ( v 2 )
V >i G V?
V v 2 G (V 2 ) d .
If we define x G A' (the dual space of the trace space A) as
326
HETEROGENEOUS DOMAIN DECOMPOSITION METHODS
(8.4.32)
Ch. 8 ^
V p G A,
we can easily conclude that the couple <Ji = A + af, u 2 = M2 A + u 2 is a solution to (8.4.25) if and only if A € A is the solution of the Steklov-Poincare equation (8.4.33)
SX = x-
To solve (8.4.25) we propose the following iterative algorithm: given A0 G A, for each k > 0 solve (8.4.34) u * + 1 G (V2)d
:
S;(u2fc+1,v2)
= £ 2 ( v 2 ) + ^/3Afcn-v2
Vv2 G (V2)d,
then (8.4.35)
(J k + 1 G Vi : a j ( a k + 1 ,
) = A
) - J uk+1 • n
V
G Vi,
and finally set (8.4.36)
Xk+1
+ (1 -
=
9)Xk,
where 0 > 0 is an acceleration parameter. It must be noted that at each step we need t o solve two mixed (Dirichlet-Neumann) boundary value problems, one in fii and the other in fi2, associated with linear elliptic operators (a scalar Helmholtz operator in fii, and an elasticity-like operator in fi2). The boundary condition on the interface T is always of a Neumann type. The proof of the convergence of this algorithm is still based on Theorem 4.2.2 (interchanging the role of Si and S 2 ) . In fact, one can verify that it is equivalent t o the preconditioned Richardson method: xk+1
= xk
+eSi1{x-sxk).
Let us show that the operators Si and S 2 satisfy the assumptions of Theorem 4.2.2. For brevity, we will consider directly their finite element approximations. Define for r > 1 and s > 1 the following spaces of finite elements: V U = {
G C°(FI 2 ) I V2MT
ThN}
G P S V T G 7 ^ , v2ih = 0 on r 2 v D } .
Note that the polynomial degrees r > 1 and s > 1 are not related t o each other, and that the triangulations T^ of fii and T 2 of fi2 are not required to match on the interface T. Finally, denoting by
the decomposition of F induced by T f l, we define
Afc : = Wh\r I
= {Vh
G C°(T)
I
T)h]I
G P r ( J ) V I G E^}.
§8.4
COUPLING FUK COMPRESSIBLE STUKES EQUATIUJNS
327
Note that Ah is clearly a finite dimensional subspace of the trace space A. We consider this approximation of (8.4.25): find (<TI,/,, u 2> /,) € Vi,/, x {V2,h)d such that 01(01,/,, fi,h)
= Ci{
V tpi,h G V\th
(8.4.37) s${u2,h, v 2 ,h) = C2{\2th)
+ J (3ai,hn • v 2 ,/,
V v2,h
e
(V2,h)d.
We can then define the finite dimensional extension operators Ej* h and A/2,ft (the discrete counterpart of (8.4.26), (8.4.27)), the finite dimensional SteklovPoincare operators Si,/,, S 2 ,h and S/, = Si,/, + S 2 ,/, (the discrete counterpart of (8.4.28), (8.4.29)), and finally the functions a \ h G V® h , u 2 , A G (V 2 , h ) d and Xh e A'h (the discrete counterpart of (8.4.30)-(8.4.32)). The discrete Steklov-Poincare operators are symmetric. The coerciveness of the form a\ and the trace inequality (1.2.5) yield that Si,/, is coercive, uniformly with respect to h; moreover, S2th is non-negative. The uniform continuity of Si,/, is a straightforward consequence of the continuity of the form in H 1 ( f i i ) and the uniform continuity of the extension operator E^ h , proved in Section 4.1.1. Finally, the uniform continuity of S 2t h follows from the continuity of the form s*2 in (H1(Q2))d and the following estimate: (8.4.38)
\\M2,hVh\\i,n2 < C £ | M | a
V % G Ah,
for a suitable constant C3 > 0 independent of h. This last inequality can be verified as follows:
< ^|Hlo,r||(//'2,fc»7)|r||oJ 11^2,^111,11,
V/?gA,
where a 2 > 0 is the coerciveness constant of the bilinear form s ^ ' ; •) (see (5.4.5)), and C q 2 > 0 is the constant of the trace inequality from H 1 ^ ^ into H l / 2 ( d U 2 ) (see (1.2.3)). The convergence of the finite dimensional Dirichlet-Neumann iterative scheme corresponding to (8.4.34)-(8.4.36) is therefore a consequence of Theorem 4.2.2, because it again corresponds to a preconditioned Richardson iterative method for solving the discrete Steklov-Poincare equation (8.4.39)
S „ A,, =
Xh,
with Si,h as a preconditioner. The rate of convergence is independent of h.
328
8.5
HETEROGENEOUS DOMAIN DECOMPOSITION METHODS
Ch. 8 ^
The coupling for the time-harmonic Maxwell equations
The derivation of the time-harmonic Maxwell equations has been carried out in Section 5.7. Omitting from the complete set of equations (5.7.2) the terms —ieaE (which corresponds to considering a low-frequency problem), we are left with r rot H - oE = 0
in fi
I rot E + ifj.aH = 0
in fi,
(8.5.1)
where \i is the magnetic permeability coefficient and a is the electric conductivity. In a conductive medium, \i and a are assumed to be symmetric matrices, depending on the space variable x , and uniformly positive definite. On the other hand, in an insulator, n is a constant /j.q > 0 and a is vanishing. On the boundary, we impose the Dirichlet boundary condition for the electric field: (8.5.2)
n x E = $
on dfi,
where $ is a given tangential vector field defined on dfi. We are concerned here with a medium that is heterogeneous-, namely, composed of two parts, one that is a non-homogeneous, non-isotropic conductor, and another that is a perfect insulator. In other words, this means that we are assuming that the conductivity a is a symmetric, uniformly positive definite matrix a in a subset, say fi2, of fi, while it is equal to 0 in the complementary part, fii. We are thus naturally led to considering an appropriate equivalent twodomain formulation. Its main feature will be that in each subdomain we have to solve an equation of a simple type, the interaction between the two subdomains being governed by two interface conditions. This formulation yields a solver based on a domain decomposition iterative approach: one interface condition is assigned to a subdomain, the other to the complementary domain, and then an iterative procedure is employed, solving at each step the 'simple' problems in each subdomain, just by modifying step by step on the interface the value of the data that are related to the solution on the other domain. A first remark is now in order: once we have chosen a as we described above, for problem (8.5.1), (8.5.2) uniqueness clearly does not hold, because we can add to E the gradient of any function tp having compact support in fii. Therefore, we need to modify (8.5.1) by adding another equation to it. A perturbation argument suggests we add the constraint div(E|^ 1 ) = 0 in fii (which corresponds to the natural physical condition that no charge is present in the insulator fii). Furthermore, it is possible to find a vector field E* such that n x E ' = $ o n <9fi, and, moreover, divE* = 0 and rot rot E* = 0. Writing u : = E - E*, taking the rotation of (8.5.1) 2 and using (8.5.1)i, we can finally rewrite the problem as
§8.5
COUPLING FOR TIME-HARMONIC MAXWELL EQUATIONS
I
rot(/i
(8.5.3)
1
r o t u ) + iaau = — vot(p
1
rotE*) — iaaW
329
in fi
div(u|Qj) = 0
in fii
n x u= 0
on dfl.
The construction of such a vector field E* relies on suitable geometric assumptions on the domain fl (see Alonso and Valli 1996); for instance, it is true if fl is a convex polyhedron in R 3 . In Alonso and Valli (1997) it has been proved that this problem has a unique solution in a suitable Hilbert space, provided that the subdomain fii is also a convex polyhedron. We will not give the proof of this rather technical result here; we want only to show that (8.5.3) can be rewritten in terms of an equivalent two-domain formulation, which leads in a natural way to an iteration-bysubdomain procedure. It can also be shown that this iteration-by-subdomain procedure is equivalent to a preconditioned Richardson method applied to the Steklov-Poincare equation on the interface. Let us turn to the equivalent two-domain formulation. First, this requires us to determine the correct interface conditions on F for the solution u defined in fl. As we have already noted in Remark 1.1.1, these conditions are often determined by requiring that the solution u belongs to a space of functions defined over the whole of fi (this space embodies the regularity properties of u ^ in fii and U|q2 in fi2, together with a suitable matching on T); moreover, the solution u satisfies the equation in the sense of distributions in the whole fi; namely, through the interface F and not only in fii and fi2 separately. For the problem at hand, denoting by Uj the restriction of u to fii, i = 1,2, this means that we have to impose the following interface conditions on T:
(8.5.4)
n x ui = n x u 2 n x
(/j,0 1
r o t u i ) = n x (p
on F 1rotu2)
on T.
The first condition ensures that u G i?(rot; fi), and the second that u is a solution of (8.5.3)i in fi in the sense of distributions. The equivalent two-domain formulation is therefore
330
HETEROGENEOUS DOMAIN DECOMPOSITION METHODS ( rot rot ui = 0
(8.5.5)
in fii
divui = 0
in fii
n x ui = 0
on dfii \ T
< n x ui = n x u 2 n x (/i 0
1
r o t u i ) = n x (/i
Ch. 8 ^
on 1rotu2)
r
on F
n x u2 = 0
on dfi 2 \ T
„ rot(/u _1 r o t u 2 ) + iaau2 = F
in fi2,
where F := - r o t ^ - 1 rot E*) - ia&E*. The equation in fii can be rewritten in a simpler way. In fact, it can be seen that ui is the solution of rot Ui = Vwi,r((n x u 2)|r)
in
div Ui = 0
in fii
n x ui = (n x u2)|r
on dfii.
!
Here, Wi,r(7) is the solution of the Neumann problem:
(8.5.7)
' Awi ) r(7) = 0 o»wi,r(7) = —div r 7 dn
/
JQ.
in fii on <9fii
wi,r(7) = 0
where 7 is a tangential vector on T, 7 is its extension by 0 on dfii \ I1, and d i v r 7 is the tangential divergence of 7 (for a precise definition, see, for example, Begue et al. 1988; Alonso and Valli 1996). Therefore, we can rewrite the two-domain formulation (8.5.5) as
T
§8.5
COUPLING FOR TIME-HARMONIC MAXWELL EQUATIONS ' At-pi = 0
in fti
A • T (n ( x u 2 )|r ^ = —div
(8.5.8)
/
JQ!
331
on 5f2i
ipi = 0
n x u2 = 0
on d 0 2 \ T
n x
on T
r o t u 2 ) = / i ^ n x V
. r o t ( p _ 1 r o t u 2 ) + iao\i2 = F
in fi2,
and the iteration-by-subdomain procedure is easily derived as follows: given a tangential vector field A0 on T, for each k > 0 solve in Qi
f A
2{dO).
->• H(div; Q) such
Here we have denoted by n* the unit outward normal vector on 80. Let us note, moreover, that the normal trace of a vector function v e # ( d i v ; 0) over a Lipschitz continuous subset £ of 80 different from the whole boundary 80 does not belong in general to 7 J - 1 / , 2 ( £ ) , but to a larger space, which is usually denoted by i 7 ~ 1 / 2 ( £ ) (see, for instance, J.-L. Lions and Magenes 1972).
APPENDIX
340
Ch.
9
Now, let us introduce the space XQQ : = {> £ { H - ^ 2 { d n ) ) 3 \ $ • n* = 0, divrV> £ i T " 1 / 2 ^ ) } , where div r tf> denotes the tangential divergence of ip (see, for example, Begue et al. 1988). For three-dimensional vector functions belonging to i f (rot; ft) the following trace result can be proved (see Alonso and Valli 1996). Theorem 9.2.3 (Tangential trace theorem) Let ft be a bounded open set of R 3 with a Lipschitz continuous boundary 3ft. (a) There exists a unique linear continuous map yT : H{rot; ft) XQQ such that 7 r v = (n* x v)| 9n for each v £ H(rot; ft) n (C°(ft)) 3 . (b) If either the boundary dfl is smooth or ft is a convex polyhedron, then there exists a linear continuous map 1Z.T : XQQ, —> H(rot; ft) such that frUr^ = V" for each £ Xdn. By means of these trace operators it is possible to characterise the spaces ff^ft), Ho (div; ft) := (C 0 oo (ft)) d and # 0 ( r o t ; f t ) : = (C 0 °°(ft)) 3 (here the closure has to be intended with respect to the norms || • ||/f(div;n) a n d II • ||j?(rot;fi)> respectively). As a matter of fact, if the boundary dft is Lipschitz continuous, we have: = {v £ H1 (ft) 170U = 0 } Ho (div; ft) = { v £ ff (div; ft) | 7 « v = 0 } H0(rot; ft) = { v £ H(rot; ft) 17 r v = 0 } . A similar characterisation holds for the space
An important result is the so-called Poincare inequality (see (1.2.2)). Theorem 9.2.4 (Poincare inequality) Assume that ft is a bounded connected open set of R d and that S is a (non-empty) Lipschitz continuous subset of the boundary dfl. Then there exists a constant CQ > 0 such that (9.2.1)
f v2{x) dx
for each v £
[ |Vw(x)|2 dx Jn
H^(fl).
As a consequence of the density of C°°(ft) in i / 1 ( f t ) (under the assumption that 5ft is Lipschitz continuous), it is easily proved that for each w,v £ f f 1 ( f t ) the following Green formula holds: (9.2.2)
/ (Djw)vdx Jn
= -
/ wDjvdx+ Jn
/ (7ou>) (70 w) n* dy, Jan
j =
l,...,d,
§9.2
SOME PROPERTIES OF THE SOBOLEV SPACES
341
where we have denoted by Dj the partial derivative gfr and by d j the surface measure on <9fi. Similarly, if w G i?(div; fi) and v G Hl(fl), (9.2.3)
we find that
/ (div w ) v dx = - / w - V i > d x + / ( 7 „ w ) (-y0v) dy. Jn Jn Jan
Finally, if w G # ( r o t ; f i ) and v G ( f l ^ f i ) ) 3 , we find that (9.2.4)
/ (rot w ) • v dx = / w - r o t v d x - | - / ( 7 r w ) • (7 0 v) d-y. Jn Jn Jan
As we have already noted, the functions belonging to the Sobolev spaces l F s ' p ( f i ) are not univocally defined over subsets having measure equal to zero. However, if suitable restrictions on the indices s and p are assumed, these functions indeed turn out to be regular functions. This is made clear by the following theorem. T h e o r e m 9 . 2 . 5 (Sobolev embedding theorem) Assume that fl is a (bounded or unbounded) open set of Rd with a Lipschitz continuous boundary, and that 1 < p < oo. Then the following embeddings are continuous. (a) If 0 < sp < d, then Ws'p{fl) (b) If sp = d, then (c) Ifsp
Ws'p(fi)
> d, then Ws'p{fi)
C Lp* (fi) for p* =
C L9(fl)
dp/(d-sp).
for any q such that p < q < oo.
C C°(fi).
In the one-dimensional case, we have in particular that H1 (fi) C C° (fi), with continuous embedding.
REFERENCES 1. Achdou, Y., Kuznetsov, Yu.A. and Pironneau, 0 . (1995). Substructuring preconditioners for the Qi mortar element method. Numer. Math., 71, 419-449. 2. Achdou, Y., Maday, Y . and Widlund, O.B. (1996). Methode iterative de sousstructuration pour les elements avec joints. C. R. Acad. Sci. Paris Ser. I Math., 322,185-190. 3. Agoshkov, V.I. (1988). Poincare-Steklov's operators and domain decomposition methods in finite dimensional spaces. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 73-112. 4. Agoshkov, V.I. and Lebedev, V.I. (1985). Poincare-Steklov operators and the methods of partition of the domain in variational problems. In Computational Processes and Systems, No. 2, G.I. Marchuk, ed., Nauka, Moscow, pp. 173-227 [Russian]. 5. Agoshkov, V.I. and Ovtchinnikov, E. (1994). Projection decomposition method. Math. Models Methods Appl. Sci., 4, 773-794. 6. Aguilar, G. and Lisbona, F. (1994). Interface conditions for a kind of non linear elliptic hyperbolic problems. In Domain Decomposition Methods in Science and Engineering, A. Quarteroni et al. eds., American Mathematical Society, Providence, pp. 89-95. 7. Alonso, A. and Valli, A. (1995). A new approach to the coupling of viscous and inviscid Stokes equations. East-West J. Numer. Math., 3, 29-41. 8. Alonso, A. and Valli, A. (1996). Some remarks on the characterization of the space of tangential traces of i?(rot; ft) and the construction of an extension operator. Manuscr. Math., 89, 159-178. 9. Alonso, A. and Valli, A. (1997). A domain decomposition approach for heterogeneous time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng., 143, 97-112. 10. Alonso, A., and Valli, A. (1999). An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput., to appear. 11. Alonso, A., Trotta, R.L. and Valli, A. (1998). Coercive domain decomposition algorithms for advection-diffusion equations and systems. J. Comput. Appl. Math., 96, 51-76. 12. Auge, A., Lube, G. and Otto, F.C. (1997). A non-overlapping decomposition method with adaptive interface conditions for elliptic problems. In Proceedings of XIII GAMM-seminar, Friedr. Vieweg & Sohn, Braunschweig, to appear. 13. Auge, A., Kapurkin, A., Lube, G. and Otto, F.C. (1996). A note on domain decomposition of singularly perturbed elliptic problems. In Proceedings of IX Domain Decomposition Conference, P. Bj0rstad et al.. eds., John Wiley &
344
REFERENCES
Sons, New York, to appear. 14. Babuska, I. (1973). The finite element method with Lagrangian multipliers. Numer. Math., 20, 179-192. 15. Bank, R.E. and Xu, J. (1995). The hierarchical basis multigrid method and incomplete LU decomposition. In Domain Decomposition Methods in Scientific and Engineering Computing, D.E. Keyes and J. Xu, eds., American Mathematical Society, Providence, pp. 163-173. 16. Begue, C., Conca, C., Murat, F. and Pironneau, 0 . (1988). Les equations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. In Nonlinear Partial Differential Equations and Their Applications. College de France Seminar, Vol. IX, H. Brezis and J.-L. Lions, eds., Longman, Harlow, pp. 179-264. 17. Ben Belgacem, F. and Maday, Y. (1997). The mortar element method for three-dimensional finite elements. R.A.I.R.O. Model. Math. Anal. Numer., 31, 289-302. 18. Bernardi, C. and Girault, V. (1998). A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal., 35, 1893-1916. 19. Bernardi, C., Debit, N. and Maday, Y . (1990). Coupling finite element and spectral methods: first results. Math. Comput., 54, 21-39. 20. Bernardi, C., Maday, Y. and Patera, A. T. (1994). A new nonconforming approach to domain decomposition: the mortar element method. In Nonlinear Partial Differential Equations and Their Applications. College de France Seminar, Vol. XI, H. Brezis and J.-L. Lions, eds., Longman, Harlow, pp. 13-51. 21. Berselli, L.C. (1997). Neumann-Neumann Domain Decomposition Preconditioners for Non-symmetric Problems. Ph.D. Thesis, Dipartimento di Matematica, Universita di Pisa, in preparation. 22. Bj0rhus, M. (1995). On Domain Decomposition, Subdomain Iteration, and Waveform Relaxation. Dr Ing. Thesis, Department of Mathematical Sciences, University of Trondheim. 23. Bj0rstad, P.E., and Widlund, O.B. (1986). Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal., 23, 1097-1120. 24. Blum, H., Lisky, S. and Rannacher, R. (1992). A domain splitting algorithm for parabolic problems. Computing, 49, 11-23. 25. Boffi, D. (1994). Stability of higher-order triangular Hood-Taylor methods for the stationary Stokes equations. Math. Models Methods Appl. Sci., 4, 223236. 26. Borgers, C. and Widlund, O.B. (1990). On finite element domain imbedding methods. SIAM J. Numer. Anal., 27, 963-978. 27. Bossavit, A. (1993). Electromagnetisme, en Vue de la Modelisation. SpringerVerlag, Paris. 28. Bourgat, J.-F., Glowinski, R., Le Tallec, P. and Vidrascu, M. (1989). Variational formulation and algorithm for trace operator in domain decomposition calculations. In Domain Decomposition Methods, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 3-16.
REFERENCES
345
29. Bourgat, J.-F., Le Tallec, P., Perthame, B. and Qiu, Y. (1994). Coupling Boltzmann and Euler equations without overlapping. In Domain Decomposition Methods in Science and Engineering, A. Quarteroni et al. eds., American Mathematical Society, Providence, pp. 377-398. 30. Bourgat, J.-F., Le Tallec, P., Tidriri, D and Qiu, Y. (1992). Numerical coupling of nonconservative or kinetic models with the conservative compressible Navier-Stokes equations. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, D.E. Keyes et al. eds., SIAM, Philadelphia, pp. 420-440. 31. Bramble, J.H. and Pasciak, J.E. (1989). A domain decomposition technique for Stokes problems. Appl. Numer. Math., 6, 251-261. 32. Bramble, J.H., Pasciak, J.E. and Schatz, A.H. (1986a). An iterative method for elliptic problems on regions partitioned into substructures. Math. Comput., 46, 361-369. 33. Bramble, J.H., Pasciak, J.E. and Schatz, A.H. (19866). The construction of preconditioners for elliptic problems by substructuring. I. Math. Comput., 47, 103-134. 34. Bramble, J.H., Pasciak, J.E. and Schatz, A.H. (1989). The construction of preconditioners for elliptic problems by substructuring. IV. Math. Comput., 53, 1-24. 35. Bramble, J.H., Pasciak, J.E. and Vasiliev, A.E. (1997). Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J Numer. Anal., 34, 1072-1092. 36. Bramble, J.H., Pasciak, J.E. and Xu, J. (1990). Parallel multilevel preconditioners. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 341-357. 37. Bramble, J.H., Pasciak, J.E. and Zhang, X. (1996). Two-level preconditioners for 2m'th order elliptic finite element problems. East-West J. Numer. Math., 4, 99-120. 38. Bramble, J.H., Pasciak, J.E., Wang, J. and Xu, J. (1991). Convergence estimates for product iterative methods with application to domain decomposition. Math. Comput., 57, 1-21. 39. Brenner, S.C. (1998a). The condition number of the Schur complement in domain decomposition. Preprint. 40. Brenner, S.C. (19986). Personal communication. 41. Brezzi, F. (1974). On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrange multipliers. R.A.I.R.O. Anal. Numer., 8, 129-151. 42. Brezzi, F. (1998). Personal communication. 43. Brezzi, F. and Fortin, M. (1991). Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin. 44. Brezzi, F. and Marini, L. D. (1994). A three-field domain decomposition method. In Domain Decomposition Methods in Science and Engineering, A. Quarteroni et al. eds., American Mathematical Society, Providence, pp. 27-34.
346
REFERENCES
45. Brezzi, F., Douglas, J., Jr and Marini, L.D. (1985). Two families of mixed finite elements for second order elliptic problems. Numer. Math., 47, 217-235. 46. Bristeau, M.-O., Glowinski, R. and Periaux, J. (1987). Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible viscous flows. Comput. Phys. Rep., 6, 73-187. 47. Buzbee, B.L., Dorr, F.W., George, J.A. and Golub, G.H. (1971). The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal., 8, 722-736. 48. Cai, X.-C. (1990). An additive Schwarz algorithm for nonselfadjoint elliptic equations. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 232-244. 49. Cai, X.-C. (1991). Additive Schwarz algorithms for parabolic convectiondiffusion equations. Numer. Math., 60, 41-61. 50. Cai, X.-C. (1995). A family of overlapping Schwarz algorithms for nonsymmetric and indefinite elliptic problems. In Domain-based Parallelism and Problem Decomposition Methods in Computational Science and Engineering, D.E. Keyes et al. eds., SIAM, Philadelphia, pp. 1-21. 51. Cai, X.-C. and Sarkis, M. (1997). A restricted additive Schwarz preconditioner for general sparse linear systems. Technical report CU-CS-843-97, University of Colorado at Boulder. 52. Carlenzoli, C. and Quarteroni, A. (1995). Adaptive domain decomposition methods for advection-diffusion problems. In Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, I. Babuska et al. eds., IMA Volumes in Mathematics and its Applications, 75, SpringerVerlag, New York, pp. 165-199. 53. Carpenter, M.H., Nordstrom, J. and Gottlieb, D. (1997). A stable and conservative interface treatment of arbitrarily spatial accuracy. Technical report, Division of Applied Mathematics, Brown University. 54. Casarin, M. (1996). Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids. Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University. 55. Cazabeau, L., Lacour, C. and Maday, Y. (1997). Numerical quadratures and mortar methods. In Computational Science for the 21st Century, M.-O. Bristeau et al. eds., John Wiley & Sons, Chichester, pp. 119-128. 56. Chan, T.F. and Mathew, T.P. (1992). The interface probing technique in domain decomposition. SIAM J. Matrix Anal. Appl., 13, 212-238. 57. Chan, T.F. and Mathew, T.P. (1994a). Domain decomposition algorithms. Acta Numer., 161-143. 58. Chan, T.F. and Mathew, T.P. (19946). Domain decomposition preconditioners for convection diffusion problems. In Domain Decomposition Methods in Science and Engineering, A. Quarteroni et al. eds., American Mathematical Society, Providence, pp. 157-175. 59. Chan, T.F. and Resasco, D.C. (1985). A survey of preconditioners for domain decomposition. Technical report / D C S / R R - 4 1 4 , Yale University.
344 REFERENCES 60. Chan, T.F. and Smith, B.F. (1995). Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes. In Domain Decomposition Methods in Scientific and Engineering Computing, D.E. Keyes and J. Xu, eds., American Mathematical Society, Providence, pp. 175-189. 61. Ciarlet, Ph.G. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam. 62. Ciccoli, M.C. (1995). Adaptive domain decomposition algorithms and finite volume/finite element approximation for advection-diffusion equations. Technical report, CRS4, Cagliari. 63. Collino, F. (1993). High order absorbing boundary conditions for wave propagation models: straight line boundary and corner case. In Mathematical and Numerical Aspects of Wave Propagation, R. Kleinman et al. eds., SIAM, Philadelphia, pp. 161-171. 64. Dauge, M. (1988). Elliptic Boundary Value Problems on Corner Domains. Springer-Verlag, Berlin. 65. Dawson, C.N. and Du, Q. (1991). A domain decomposition method for parabolic equations based on finite elements. In Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 255-263. 66. Dawson, C.N., Du, Q. and Dupont, T.F. (1991). A finite difference domain decomposition algorithm for numerical solution of the heat equation. Math. Comput., 57, 63-71. 67. De Boeck, Y.-H. and Le Tallec, P. (1991). Analysis and test of a local domaindecomposition preconditioner. In Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 112-128. 68. Dryja, M. (1982). A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math., 39, 51-64. 69. Dryja, M. (1988). A method of domain decomposition for three-dimensional finite element elliptic problems. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 43-61. 70. Dryja, M. (1991). Substructuring methods for parabolic problems. In Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 264-271. 71. Dryja, M. and Widlund, O.B. (1989). Some domain decomposition algorithms for elliptic problems. In Iterative Methods for Large Linear Systems, L. Hayes and D. Kincaid, eds., Academic Press, San Diego, pp. 273-291. 72. Dryja, M. and Widlund, O.B. (1990). Towards a unified theory of domain decomposition algorithms for elliptic problems. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 3-21. 73. Dryja, M. and Widlund, O.B. (1992). Additive Schwarz methods for elliptic finite element problems in three dimensions. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, D.E.
348
REFERENCES
Keyes et al. eds., SIAM, Philadelphia, pp. 3-18. 74. Dryja, M. and Widlund, O.B. (1994). Some recent results on Schwarz type domain decomposition algorithms. In Domain Decomposition Methods in Science and Engineering, A. Quarteroni et al. eds., American Mathematical Society, Providence, pp. 53-61. 75. Dryja, M. and Widlund, O.B. (1995). Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems. Commun. Pure Appl. Math., 48, 121-155. 76. Dryja, M., Smith, B.F. and Widlund, O.B. (1994). Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal., 31, 1662-1694. 77. Duvaut, G. and Lions, J.-L. (1976). Inequalities in Mechanics and Physics. Springer-Verlag, Berlin. 78. Elman, H.C. and Golub, G.H. (1994). Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal., 31, 1645-1661. 79. Engquist, B. and Majda, A. (1977). Absorbing boundary conditions for the numerical simulation of waves. Math. Comput., 31, 629-651. 80. Faccioli, E., Maggio, F., Paolucci, R. and Quarteroni, A. (1997). 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. J. Seismology, 1, 237-251. 81. Faccioli, E., Maggio, F., Quarteroni, A. and Tagliani, A. (1996). Spectral domain decomposition methods for the solution of acoustic and elastic wave equations. Geophysics, 61, 1160-1174. 82. Farhat, C. and Roux, F.-X. (1991). A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng., 32, 1205-1227. 83. Farhat, C. and Roux, F.-X. (1994). Implicit parallel processing in structural mechanics. Comput. Mech. Adv., 2, 1-124. 84. Feistauer, M. and Schwab, C. (1996). On coupled problems for viscous flow in exterior domains. Research report No. 96-07, Seminar fur Angewandte Mathmatik, Eidgenossische Technische Hochshule Zurich. 85. Feistauer, M. and Schwab, C. (1998). Coupling of an interior Navier-Stokes problem with an exterior Oseen problem. Research report No. 98-01, Seminar fur Angewandte Mathmatik, Eidgenossische Technische Hochshule Zurich. 86. Fichera, G. (1972). Existence theorems in elasticity. In Handbuch der Physik, VIa/2, S. Flugge and C. Truesdell, eds., Springer-Verlag, Berlin, pp. 347-424. 87. Fischer, P.F. and R0nquist, E.M. (1994). Spectral element methods for large scale parallel Navier-Stokes calculations. Comput. Methods Appl. Mech. Eng., 116, 69-76. 88. Franca, L.P., Frey, S.L. and Hughes, T.J.R. (1992). Stabilized finite element methods, I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng., 95, 253-276. 89. Frati, A., Pasquarelli, F. and Quarteroni, A. (1993). Spectral approximation to advection-diffusion problems by the fictitious interface method. J. Comput. Phys., 107, 201-212.
REFERENCES
349
90. Funaro, D., Quarteroni, A. and Zanolli, P. (1988). An iterative procedure with interface relaxation for domain decomposition methods. SIAM J. Numer. Anal., 25, 1213-1236. 91. Garbey, M. (1996). A Schur alternating procedure for singular perturbation problems. SIAM J. Sci. Comput., 17, 1175-1201. 92. Garbey, M. and Kaper, H.G. (1997). Heterogeneous domain decomposition for singularly perturbed elliptic boundary value problems. SIAM J. Numer. Anal., 34, 1513-1544. 93. Gastaldi, F. and Gastaldi, L. (1994). On a domain decomposition for the transport equation: theory and finite element approximation. IMA J. Numer. Anal., 14, 111-136. 94. Gastaldi, F. and Gastaldi, L. (1995). Convergence of subdomain iterations for the transport equation. Boll. U.M.I., 9 - B , 175-202. 95. Gastaldi, F. and Quarteroni, A. (1989). On the coupling of hyperbolic and parabolic systems: analytical and numerical approach. Appl. Numer. Math., 6, 3-31. 96. Gastaldi, F., Gastaldi, L. and Quarteroni, A. (1996). Adaptive domain decomposition methods for advection dominated equations. East-West J. Numer. Math., 4, 165-206. 97. Gastaldi, F., Quarteroni, A. and Sacchi Landriani, G. (1990). On the coupling of two dimensional hyperbolic and elliptic equations: analytical and numerical approach. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 22-63. 98. Gear, C.W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs. 99. Gervasio, P., Ovtchinnikov, E. and Quarteroni, A. (1997). The spectral projection decomposition method for elliptic equations. SIAM J. Numer. Anal., 34, 1616-1639. 100. Girault, V. and Glowinski, R. (1995). Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Ind. Appl. Math., 12, 487514. 101. Girault, V. and Raviart, P.-A. (1986). Finite Element Methods for NavierStokes Equations. Springer-Verlag, Berlin. 102. Girault, V., Glowinski, R. and Lopez, H. (1997). Error analysis of a finite element realization of a fictitious domain/domain decomposition method for elliptic problems. East-West J. Numer. Math., 5, 35-56. 103. Glowinski, R. and Pan, T.-W. (1992). Error estimates for fictitious domain/penalty/finite element methods. Calcolo, 29, 125-141. 104. Glowinski, R., Pan, T.-W. and Periaux, J. (1994). A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng., I l l , 283-303. 105. Golub, G.H. and Mayers D. (1984). The use of pre-conditioning over irregular regions. In Computing Methods in Applied Sciences and Engineering, VI, R. Glowinski and J.-L. Lions, eds., North-Holland, Amsterdam, pp. 3-14.
350
REFERENCES
106. Golub, G.H. and Van Loan, C.F. (1989). Matrix Computations (2nd edn). The Johns Hopkins University Press, Baltimore. 107. Griebel, M. (1994). Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM J. Comput., 15, 547-565. 108. Hirsch, C. (1990). Numerical Computation of Internal and External Flows. Volume 2: Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons, Chicester. 109. Israeli, M., Vozovoi, L. and Averbuch, A. (1993). Parallelizing implicit algorithms for time-dependent problems by parabolic domain decomposition. J. Sci. Comput., 8, 151-166. 110. Johnson, C. (1987). Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge. 111. Kantorovich, L.V. and Krylov, V.I. (1964). Approximate Methods of Higher Analysis. P. Noordhoff, Groningen. 112. Keyes, D.E. and Gropp, W.D. (1987). A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation. SIAM J. Sci. Stat. Comput., 8, sl66-s202. 113. Klawonn, A. (1996). Preconditioners for Indefinite Problems. Ph.D. Thesis, Westfalische Wilhelms-Universitat Miinster. 114. Klawonn, A. (1998a). Block-triangular preconditioners for saddle point problems with a penalty term. SIAM J. Sci. Comput., 19, 172-184. 115. Klawonn, A. (19986). An optimal preconditioner for a class of saddle point problems with a penalty term. SIAM J. Sci. Comput., 19, 540-552. 116. Klawonn, A. and Pavarino, L. (1998a). Overlapping Schwarz methods for mixed linear elasticity and Stokes problems. Comput. Methods Appl. Mech. Eng., 165, 233-245. 117. Klawonn, A. and Pavarino, L. (19986). A comparison of overlapping Schwarz methods and block preconditioners for saddle point problems. Technical report 15/98-N, Schriftenreihe Angewandte Mathematik und Informatik, Westfalische Wilhelms-Universitat Miinster. 118. Klawonn, A. and Starke, G. (1999). Block-triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis. Numer. Math., to appear. 119. Kuznetsov, Yu.A. (1988). New algorithms for approximate realization of implicit difference schemes. Sov. J. Numer. Anal. Math. Modelling, 3, 99-114. 120. Kuznetsov, Yu.A. (1989). Matrix iterative methods in subspaces. In Proceedings of the International Congress of Mathematics, Warsaw 1983, NorthHolland, Amsterdam, pp. 1509-1521. 121. Kuznetsov, Yu.A. (1991). Overlapping domain decomposition methods for FE-problems with elliptic singular perturbed operators. In Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 223-241. 122. Kuznetsov, Yu.A. (1995). Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russ. J. Numer. Anal. Math. Modelling, 10, 187-211.
\
REFERENCES
351
123. Kuznetsov, Yu.A. (1997). Iterative analysis of finite element problems with Lagrangian multipliers. In Computational Science for the 21st Century, M.-O. Bristeau et al. eds., John Wiley & Sons, Chichester, pp. 170-178. 124. Ladyzhenskaya, O.A. (1969). The Mathematical Theory of Viscous Incompressible Flow (2nd edn). Gordon and Breach, New York. Russian edn: Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961. 125. Landau, L.D. and Lifshitz, E.M. (1959). Fluid Mechanics. Pergamon Press, Oxford. Russian 2nd edn: Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953. 126. Lesaint, P. and Raviart, P.-A. (1974). On a finite element method for solving the neutron transport equation. In Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor, ed., Academic Press, New York, pp. 89-123. 127. Lesieur, M. (1997). Turbulence in Fluids (3rd edn). Kluwer, Dordrecht. 128. Le Tallec, P. (1993). Neumann-Neumann domain decomposition algorithms for solving 2D elliptic problems with nonmatching grids. East- West J. Numer. Math., 1, 129-146. 129. Le Tallec, P. (1994). Domain decomposition methods in computational mechanics. Comput. Mech. Adv., 1, 121-220. 130. Le Tallec, P. and Patra, A. (1997). Non-overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields. Comput. Methods Appl. Mech. Eng., 145, 361-379. 131. Lie, I. (1992). Heterogeneous domain decomposition for acoustic bottom interaction problems. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, D.E. Keyes et al. eds., SIAM, Philadelphia, pp. 506-517. 132. Lions, J.-L. and Magenes, E. (1972). Non-homogeneous Boundary Value Problems and Applications 1, Springer-Verlag, Berlin. 133. Lions, P.-L. (1988). On the Schwarz alternating method I. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 1-42. 134. Lions, P.-L. (1989). On the Schwarz alternating method II: stochastic interpretation and order properties. In Domain Decomposition Methods, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 47-70. 135. Lions, P.-L. (1990). On the Schwarz alternating method III: a variant for non-overlapping subdomains. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 202-231. 136. Lube, G., Otto, F.C. and Miiller, H. (1998). A non-overlapping domain decomposition method for parabolic initial-boundary value problems. Appl. Numer. Math., to appear. 137. Maday, Y., Meiron, D., Patera, A.T. and R0nquist, E.M. (1993). Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations. SIAM J. Sci. Comput., 14, 310-337. 138. Mandel, J. (1993). Balancing domain decomposition. Commun. Appl. Numer. Meth., 9, 233-241.
352
REFERENCES
139. Marchuk, G.I., Kuznetsov, Yu.A. and Matsokin, A.M. (1986). Fictitious domain and domain decomposition methods. Sov. J. Numer. Anal. Math. Modelling, 1, 3-35. 140. Marini, L.D. and Quarteroni, A. (1988). An iterative procedure for domain decomposition methods: a finite element approach. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 129-143. 141. Marini, L.D. and Quarteroni, A. (1989). A relaxation procedure for domain decomposition methods using finite elements. Numer. Math., 55, 575-598. 142. Matsokin, A.M. (1972). Fictitious components and subdomain alternating methods. In Vychisl. Algoritmy v Zadachakh Mat. Fiz., V.V. Penenko, ed., Vychisl. Tsentr Sib. Otdel. Acad. Nauk USSR, Novosibirsk, pp. 76-88 [Russian]. English transl.: Sov. J. Numer. Anal. Math. Modelling, 5 (1990), 53-68. 143. Matsokin, A.M. and Nepomnyaschikh, S.V. (1985). A Schwarz alternating method in a subspace. Izv. VUZ Mat., 29 (10), 61-66 [Russian], English transl.: Sov. Math. (Iz. VUZ), 29 (10) (1985), 78-84. 144. Meurant, G.A. (1991). A domain decomposition method for parabolic problems. Appl. Numer. Math., 8, 427-441. 145. Mikhlin, S.G. (1951). On the Schwarz algorithm. Dokl. Akad. Nauk S.S.S.R., 77, 569-571 [Russian]. 146. Nataf, F. and Rogier, F. (1995). Factorization of the convection-diffusion operator and the Schwarz algorithm. Math. Models Methods Appl. Sci., 5, 67-93 147. Nedelec, J.-C. (1980). Mixed finite elements in R 3 , Numer. Math., 35, 3 1 5 341. 148. Nedelec, J.-C. (1986). A new family of mixed finite elements in R 3 , Numer. Math., 50, 57-81. 149. Nepomnyaschikh, S.V. (1984). On the application of the bordering method to the mixed boundary value problem for elliptic equations and on the mesh 1 /2 norms in W2 (S). Technical report 106, Computing Center of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk [Russian]. English transl.: Sov. J. Numer. Anal. Math. Modelling, 4 (1989), 493-506. 150. Nepomnyaschikh, S.V. (1986). Domain Decomposition and Schwarz Methods in a Subspace for the Approximate Solution of Elliptic Boundary Value Problems. Ph.D. Thesis, Computing Center of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk. 151. Oliger, J. and Sundstrom, A. (1978). Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math., 35, 419-446. 152. Ovtchinnikov, E. (1993). The construction of a well-conditioned basis for the Projection Decomposition method. Calcolo, 30, 255-271. 153. Ovtchinnikov, E. (1995). Projection decomposition method with a wellconditioned basis for the generalised Stokes problem. In Numerical Methods for Fluid Dynamics V, K.W. Morton and M.J. Baines, eds., Clarendon Press,
1
REFERENCES
«J«_>U
O x f o r d , pp. 515-521.
154. Pasciak, J.E. (1989). Two domain decomposition techniques for Stokes problems. In Domain Decomposition Methods, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 419-430. 155. Pavarino, L. (1998). Preconditioned mixed spectral element methods for elasticity and Stokes problems. SIAM J. Sci. Comput., 19, 1941-1957. 156. Pavarino, L. and Widlund, O.B. (1997). Iterative substructuring methods for spectral element discretizations of elliptic systems. II: mixed methods for linear elasticity and Stokes flow. Technical report n. 755, Courant Institute of Mathematical Sciences, New York University. SIAM J. Numer. Anal., to appear. 157. Perktold, K. and Rappitsch, G. (1995). Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech., 28, 845-856. 158. Pironneau, 0 . (1988). Methodes des Elements Finis pour les Fluides. Masson, Paris. 159. Prohl, A. (1997). Projection and Quasi-compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Teubner, Stuttgart. 160. Proskurowski, W. and Widlund, 0 . (1976). On the numerical solution of Helmholtz's equation by the capacitance matrix method. Math. Comput., 30, 433-468. 161. Przemieniecki, J.S. (1985). Theory of Matrix Structural Analysis. Dover, New York. 162. Quarteroni, A. (1989). Domain decomposition algorithms for the Stokes equations. In Domain Decomposition Methods, T. Chan et al. eds., SIAM, Philadelphia, pp. 431-442. 163. Quarteroni, A. (1990). Domain decomposition methods for systems of conservation laws: spectral collocation approximations. SIAM J. Sci. Stat. Comput., 11,1029-1052. 164. Quarteroni, A. and Sacchi Landriani, G. (1989). Domain decomposition preconditioners for the spectral collocation method. J. Sci. Comput., 3, 4 5 75. 165. Quarteroni, A. and Stolcis, L. (1995). Heterogeneous domain decomposition for compressible flows. In Proceedings of the ICFD Conference on Numerical Methods for Fluid Dynamics, M. Baines and W . K . Morton, eds., Oxford University Press, Oxford, pp. 113-128. 166. Quarteroni, A. and Valli, A. (1990). Domain decomposition for a generalized Stokes problem. In Proceedings of the Third European Conference on Mathematics in Industry, J. Manley et al. eds., Teubner, Stuttgart, pp. 59-74. 167. Quarteroni, A. and Valli, A. (1991a). Theory and applications of SteklovPoincare operators for boundary-value problems. In Applied and Industrial Mathematics, R. Spigler, ed., Kluwer, Dordrecht, pp. 179-203. 168. Quarteroni, A. and Valli, A. (19916). Theory and applications of SteklovPoincare operators for boundary-value problems: the heterogeneous operator case. In Fourth International Symposium on Domain Decomposition Methods
354
REFERENCES
for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 58-81. 169. Quarteroni, A. and Valli, A. (1994), Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin. 170. Quarteroni, A., Pasquarelli, F. and Valli, A. (1992). Heterogeneous domain decomposition: principles, algorithms, applications. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, D.E. Keyes et al. eds., SIAM, Philadelphia, pp. 129-150. 171. Quarteroni, A., Sacchi Landriani, G. and Valli, A. (1991). Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements. Numer. Math., 59, 831-859. 172. Quarteroni, A., Tuveri, M. and Veneziani, A. (1998). Computational vascular fluid dynamics: problems, models, methods. In preparation. 173. Raviart, P.-A. and Thomas, J.-M. (1977). A mixed finite element method for second order elliptic problems. In Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes, eds., Springer-Verlag, Berlin, pp. 2 9 2 315. 174. Raviart, P.-A. and Thomas, J.-M. (1983). Introduction a I' Analyse Numerique des Equations aux Derivees Partielles. Masson, Paris. 175. Rieder, A. (1997). On embedding techniques for 2nd-order elliptic problems. In Computational Science for the 21st Century, M.-O. Bristeau et al. eds., John Wiley & Sons, Chichester, pp. 179-188. 176. R0nquist, E.M. (1996). A domain decomposition solver for the steady Navier-Stokes equations. In ICOSAHOM.95, A.V. Ilin and R.L. Scott, eds., Houston Journal of Mathematics, Houston. 177. Saad, Y. (1996). Iterative Methods for Sparse Linear Systems. P W S Publishing Company, Boston. 178. Schenk, K. and Hebeker, F.K. (1993). Coupling of two dimensional viscous and inviscid incompressible Stekes equations. Preprint 93-68, Sonderforschungsbereich 359, Universitat Heidelberg. 179. Schwarz, H.A. (1869). Uber einige Abbildungsdufgaben. J. Reine Angew. Math., 70, 105-120. 180. Scroggs, J.S. (1990). A parallel algorithm for nonlinear convection-diffusion equations. In Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 373-384. 181. Secchi, P. and Valli, A. (1983). A free boundary problem for compressible viscous fluids. J. Reine. Angew. Math., 341, 1-31. 182. Seriani, G. and Priolo, E. (1994). Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des., 16, 337-348. 183. Seshaiyer, P. and Suri, M. (1997). Uniform hp convergence results for the mortar finite element method. Technical report, Department of Mathematics and Statistics, University of Maryland, Baltimore County. Math. Comput., to appear.
REFERENCES
355
184. Shakib, F. and Hughes, T.J.R. (1991). A new finite element formulation for computational fluid dynamics. IX. Fourier analysis of space-time Galerkin/least-squares algorithms. Comput. Methods Appl. Mech. Eng., 87, 35-58. 185. Smith, B.F. (1990). Domain Decomposition Algorithms for the Partial Differential Equations of Linear Elasticity. Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University. 186. Smith, B.F. (1991). A domain decomposition algorithm for elliptic problems in three dimensions. Numer. Math., 60, 219-234. 187. Smith, B.F. (1992). An optimal domain decomposition preconditioner for the finite element solution of linear elasticity problems. SIAM J. Sci. Comput., 13, 364-378. 188. Smith, B.F., Bj0rstad, P.E. and Gropp, W.D. (1996). Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge. 189. Sobolev, S.L. (1936). Schwarz algorithm in the theory of elasticity. Dokl. Akad. Nauk S.S.S.R., 4, 235-238 [Russian]. 190. Stefanica, D. (1998). On the L 2 -stability of the 1-D mortar projection. Preprint, Courant Institute of Mathematical Sciences, New York University. 191. Taylor, C.A., Hughes, T.J.R. and Zarins, C.K. (1998). Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng., 158, 155— 196. 192. Temam, R. (1984). Navier-Stokes Equations. Theory and Numerical Analysis (3rd edn). North-Holland, Amsterdam. 193. Tong, P. (1970). New displacement hybrid finite element model for solid continua. Int. J. Numer. Methods Eng., 2, 73-83. 194. Toselli, A. (1999). Domain Decomposition Algorithms for the Finite Element Approximation of Maxwell's Equations. Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University. 195. Trotta, R.L. (1996). Multidomain finite elements for advection-diffusion equations. Appl. Numer. Math., 21, 91-118. 196. Widlund, O.B. (1988). Iterative substructuring methods: algorithms and theory for elliptic problems in the plane. In First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski et al. eds., SIAM, Philadelphia, pp. 113-128. 197. Widlund, O.B. (1992). Some Schwarz methods for symmetric and nonsymmetric elliptic problems. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, D.E. Keyes et al. eds., SIAM, Philadelphia, pp. 19-36. 198. Wu, Y., Cai X.-C. and Keyes, D.E. (1998). Additive Schwarz methods for hyperbolic equations. In Domain Decomposition Methods 10, J. Mandel et al. eds., American Mathematical Society, Providence, pp. 468-476. 199. Xanthis, L. and Ovtchinnikov, E. (1994). Domain decomposition and the method of arbitrary lines for elliptic free boundary problems. In Proceedings of the Second Hellenic-European Conference on Mathematics and Informatics, Vol. I, E.A. Lipitakis, ed., Hellenic Mathematical Society, Athens, pp. 193-
356
REFERENCES
203. 200. Xu, C. (1996). A global algorithm in spectral methods for the coupled Navier-Stokes/Euler equations. In ICOSAHOM.95, A.V. Ilin and R.L. Scott, eds., Houston Journal of Mathematics, Houston, pp. 151-155. 201. Xu, J. (1992). Iterative methods by space decomposition and subspace correction. SIAM Review, 34, 581-613. 202. Xu, J. and Zou, J. (1998). Some nonoverlapping domain decomposition methods. SIAM Review, 40, 857-914. 203. Yosida, K. (1974). Functional Analysis (4th edn). Springer-Verlag, Berlin. 204. Zhang, X. (1992). Multilevel Schwarz methods. Numer. Math., 63, 521-539.
INDEX advection operator, 203, 268 advection-diffusion operator, 219, 239,287 agglomeration multi-grid, 100 Agoshkov-Lebedev iterative method, 16, 17 Banach space, 335, 337 Bernoulli equation, 304 (3- Robin-Neumann formulation, 223 iterative method adaptive, 228, 231 damped adaptive, 232 block-Gauss-Seidel iteration, 91, 93, 100 block-Jacobi iteration, 93, 100 Burgers equation, 295
Crank-Nicolson / Adams-Bashforth method, 273 Dirichlet-Neumann formulation, 221 iterative method, 5, 11, 13, 14, 17, 21, 65, 71, 74, 75, 77, 91, 118, 128, 133, 146, 147, 151, 153, 170-172, 177, 179, 184, 188, 194, 197, 201, 203, 214, 258, 302, 303, 314, 320, 327 adaptive, 228, 245 damped adaptive, 232, 246 for many subdomains, 24 preconditioner, 53, 54, 75, 79, 107, 110, 129, 178 for many subdomains, 86 distribution, 336 derivative of a, 336 dual space, 334 duality pairing, 334
Cauchy-Schwarz inequality, 115, 139 characteristic curve, 261, 269, 270, 279, 281, 308, 313, 315, 316 matrix, 269, 308, 311, 312, 316 variable, 268, 279, 281, 308, 312, 313
elasticity operator, 191 elliptic operator non-symmetric, 141 symmetric, 18, 28, 34, 133, 135, 252 "
Chorin-Temam method, 239, 274 coarse grid, 77, 86, 95, 257, 258, 268 compatibility condition, 20, 21, 149, 156, 159, 161 compatibility equations, 282 condition number, 51, 57, 107, 126, 257, 268 conjugate gradient method, 38, 51, 57, 66, 69, 76, 94, 99, 101, 118, 127, 178, 190, 322 conservation law, 261 Crank-Nicolson method, 260
equilibrium equations, 148 Euler equations for inviscid compressible flow, 273, 277, 286, 305-309, 311, 317 for inviscid incompressible flow, 305 for isentropic inviscid compressible flow, 279, 312, 314 extension harmonic, 3, 104
358
finite element, 46 matrix, 57, 88 operator, 7, 32, 44, 47, 71, 72, 104, 109, 112, 114, 115, 147, 237, 290, 325 uniform, 47, 105, 111, 113, 116, 247 Stokes, 162 finite element, 176 F E T I method, 45 fictitious domain method, 34, 36 finite element approximation, 41, 42, 46, 71, 101, 152, 174, 179, 181, 196, 210, 213, 244 full potential equation, 286, 301, 306, 309, 311-314, 317 G A L S stabilisation method, 249 7-Dirichlet-Robin iterative method, 234, 240, 246 7 - R o b i n - R o b i n iterative method, 240, 248 G M R E S method, 95, 99, 122-124, 249, 295 Green formula, 340 Green function, 257 Hilbert space, 61, 111, 114, 117, 138, 197, 204, 211, 295, 329, 334-336, 338 hyperbolic operator, 203, 261, 276 first-order, 268 inexact solver, 96 inf-sup condition, 67, 68, 156, 158, 159, 165, 173, 174, 177, 185, 189 integral matching conditions, 60 interface conditions, 2, 4, 19, 142, 148, 155, 191, 198, 203, 211, 217, 263-265, 276, 277, 285, 289, 296, 302-304, 307, 308, 318, 329
INDEX equation, 2, 5 interpolation error estimate, 106, 110 inverse inequality, 48, 106, 111 Korn inequality, 149, 151, 159, 163, 176 Krylov iterative method, 77, 95, 99, 272 Lagrange multiplier, 36, 38-40, 45, 66-68 Laplace operator, 1, 71, 104 Lax-Milgram lemma, 18, 43, 61, 108, 119, 192, 199, 211, 334, 335 leapfrog method, 271 linear elasticity operator, 147 Lp space, 335 LU decomposition, 52, 58 Maxwell equations, 114, 129, 210, 286, 328 mixed-type formulation, 111, 191, 198 mortar method, 60, 68 Nedelec finite elements div-conforming, 112, 202, 322 rot-conforming, 116, 213, 331 Navier-Stokes equations for compressible flow, 190, 191, 273, 275, 286, 305-308, 317 for incompressible flow, 155, 220, 239, 273, 300, 301, 303, 305 Neumann-Neumann iterative method, 5, 14, 22, 65, 72, 75, 77, 118, 128, 135, 146, 147, 151, 153, 172, 178, 180, 185, 195, 197, 201, 203, 216, 259 preconditioner, 75, 76, 79, 108, 110, 130, 178 for many subdomains, 84 Newton method, 272
INDEX n o r m , 333
orthogonal projection, 30, 89, 137, 168, 322 Oseen operator, 155, 286, 301, 303 parabolic operator, 252, 276 Poincare inequality, 6, 8, 18, 23, 47, 48, 61, 105, 149, 340 Poisson problem, 1, 2, 7, 41, 56, 59, 77, 274 polygonal domain, 41 preconditioner, 53, 57, 58, 74, 77, 98 additive Schwarz, 93, 257 balancing Neumann-Neumann, 85 block-Jacobi, 80 Bramble-Pasciak-Schatz, 82 Dirichlet-Neumann, 53, 54, 75, 79, 107, 110, 129, 178 for many subdomains, 86 Dryja, 78 Golub-Mayers, 78 interface, 79 multiplicative Schwarz, 95, 258 Neumann-Neumann, 75, 76, 79, 108, 110, 130, 178 for many subdomains, 84 optimal, 47, 51, 107, 108, 110 Probing, 79 restricted additive Schwarz, 96 scaleable, 79 Schwarz, 84, 99, 100 Vertex Space, 83 Wire-Basket, 84 predictor-corrector method, 259, 260, 272 pressure approximation continuous, 185 discontinuous, 173 Projection Decomposition method, 101 Raviart-Thomas finite elements, 112, 202, 322
restriction matrix, 57, 88 operator, 32 Reynolds number, 306 Richardson iterative method, 13-15, 31, 57, 74, 76, 77, 94, 118, 120-122, 124, 125, 127, 128, 130, 132, 146, 151, 153, 170, 172, 173, 178, 181, 184, 195, 197, 201, 203, 209, 214, 216, 237, 294, 295, 322, 326, 329 minimum-residual, 127 steepest-descent, 127 Riemann invariant, 280, 282, 312-315 Riesz theorem, 334 Robin iterative method, 5, 16, 17, 135 Robin-Neumann formulation, 222 iterative method adaptive, 228, 230, 244, 246 damped adaptive, 232, 246 saddle point problem, 65 scalar product, 333, 336, 338 Schur complement matrix, 50, 53, 56-58, 68, 77, 128, 258, 295 system, 51, 66, 68, 74, 77, 79 Schwarz inequality, 333 Schwarz method additive, 27, 30, 31, 90, 91, 93, 216, 267 for many subdomains, 33, 90 alternating, 26, 28, 31, 32, 76, 86, 137, 139 multiplicative, 27, 29-31, 86, 88, 90-92 for many subdomains, 33, 90 Schwarz preconditioner, 84, 99, 100 additive, 93, 257 multiplicative, 95, 258 restricted additive, 96
INDEX semi-discretisation continuous-in-space, 256 continuous-in-time, 254 seminorm, 333 Sobolev embedding theorem, 341 Sobolev space, 5, 337-339, 341 spectral approximation, 171, 305 spectral radius, 126, 130, 132, 134 splitting of operators, 117 static condensation, 51 Steklov-Poincare equation, 3, 9, 10, 14, 15, 22, 23, 74, 75, 101, 143, 150, 152, 167, 169, 170, 173, 176, 183, 194, 195, 197, 200, 201, 203, 206, 207, 214, 216, 290, 294, 295, 319, 326, 327, 329 operator, 2, 3, 5, 9, 22, 23, 38, 46-48, 50, 57, 66, 78, 104-107, 109-111, 118, 143, 144, 147, 150, 152, 161-164, 167, 169, 175, 182, 184, 194, 196, 200, 202, 207, 209, 237, 291, 292, 318, 320, 322, 325, 327 stiffness matrix, 45, 58 local, 57 Stokes operator, 153, 286, 297, 301 for compressible flow, 190, 317 for inviscid compressible flow, 197 subdomain colouring, 91 substructuring iterative method, 10, 71, 208, 224, 270, 280, 283, 289, 299, 308, 313-315, 326, 331 adaptive, 227 coercive, 234 SUPG stabilisation method, 249
three-field method, 38, 66, 68 time discretisation, 266 trace
inequality, 6, 8, 23, 47, 104, 106, 110, 112-115, 117, 144, 151, 163, 176, 194, 237, 321 of a function, 6, 23 space, 6 normal, 111 tangential, 114 theorem, 110, 339 normal, 339 tangential, 340 transmission conditions, see interface conditions two-level method, 96, 97, 99 preconditioner, 98 additive, 98 multiplicative, 98 Uzawa pressure operator, 189 wave acoustic, 262, 264, 267 elastic, 262, 265, 271 waveform relaxation, 255 weak convergence, 138, 334