BRAIN DEVELOPMEN T
This page intentionally left blank
BRAIN DEVELOPMEN T NORMAL PROCESSE S AND THE EFFECT S O F ALC...
12 downloads
843 Views
34MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
BRAIN DEVELOPMEN T
This page intentionally left blank
BRAIN DEVELOPMEN T NORMAL PROCESSE S AND THE EFFECT S O F ALCOHOL AND NICOTIN E
EDITED BY Michael W . Miller
OXPORD UNIVERSITY PRES S 2006
OXPORD UNIVERSITY PRES S
Oxford Universit y Press, Inc., publishes works that furthe r Oxford University' s objective of excellenc e in research, scholarship, and education . Oxford Ne w Yor k Auckland Cap e Town Da r es Salaam Hon g Kong Karach i Kuala Lumpu r Madri d Melbourn e Mexic o Cit y Nairob i New Delhi Shangha i Taipe i Toront o With offices i n Argentina Austri a Brazi l Chil e Czec h Republi c Franc e Greec e Guatemala Hungar y Ital y Japa n Polan d Portuga l Singapor e South Kore a Switzerlan d Thailan d Turke y Ukrain e Vietna m
Copyright © 200 6 by Oxford Universit y Press, Inc . Published b y Oxford University Press, Inc. 198 Madison Avenue, New York, New York 1001 6 www.oup.com Oxford i s a registered trademark of Oxford University Press All rights reserved. No par t of this publication may be reproduced , stored i n a retrieval system, o r transmitted, i n any form or by any means , electronic, mechanical, photocopying , recording , or otherwise, without the prio r permission of Oxford Universit y Press. Library of Congress Cataloging-in-Publication Data Brain development : normal processes and th e effect s o f alcohol an d nicotin e / edited b y Michael W. Miller. p. ; cm. Includes bibliographical references and index. ISBN-13 978-0-19-518313- 9
ISBN 0-19-518313-4
1. Developmenta l toxicology. 2 . Nenrotoxicology . 3 . Alcohol-Toxicology . 4 . Nicotin e —Toxicology. 5. Alcoholis m i n pregnancy—Pathophysiology. 6 . Pregnan t women—Tobacc o use —Physiological effect . [DNLM: 1 . Brain—dru g effects. 2 . Brain—growt h & development. 3 . Ethanol—pharmacology . 4 . Fetus—dru g effects . 5. Neurons-dru g effects. 6 . Nicotin e -pharmacology. WL 300 B8125 2006 ] I . Miller , Michael W. RA1224.45.B73 2006 616.8'6471-dc22 200501285 4
1 3 5 7 9 8 6 4 2 Printed i n the Unite d States of America on acid-fre e paper
Acknowledgments
As such, the present volume i s the produc t o f decades of work by teams o f neuroscientists and developmen tal biologists . I than k th e name d an d nameles s o f these dedicate d researcher s wh o hav e reache d m e through bot h ora l and/o r writte n communications . This volume build s o n the foundation of research described i n a boo k publishe d 1 3 year s ago , Development of the Central Nervous System, Effects of Alcohol and Opiates (Miller , 1992) . Since tha t boo k was published, ou r understandin g o f the mechanism s under lying norma l brai n developmen t an d th e effect s o f ethanol neurotoxicit y o n neura l ontogen y ha s grown exponentially. Interes t i n th e clinica l proble m o f nicotine exposure has also increased. Personally, m y researc h ha s bee n supporte d b y a host of postdoctoral trainees, graduate and undergraduate students, an d technicians . I am greatl y indebte d to them fo r working toward ou r commo n goa l o f un derstanding th e intricacie s o f brai n development . Some o f my current student s (Mari a Bruns and Juli e Siegenthaler) an d collaborator s (Sandr a Mooney )
contributed t o the writin g of this book. My career ha s been consistentl y an d substantivel y supporte d b y the federal government , notabl y the Nationa l Institute of Alcohol Abus e an d Alcoholis m an d th e Departmen t of Veterans Affairs. Without the suppor t of these agen cies I would no t hav e been abl e t o study normal an d abnormal brain development, no r woul d I have been able t o mee t th e peopl e wh o wrot e chapter s fo r this volume. These people hav e brought considerabl e expertise and kee n insight s to their contributions of outstanding chapters . The dua l sculptors, nature and nurture , have bee n essential factor s in m y development as a scientist. M y fascination wit h science—ho w thing s wor k an d ho w they fail—wa s fostere d b y m y parent s an d th e post Sputnik America n culture . I t i s m y grea t hop e tha t children of all ages, boys and girls , retain their wonder as to wh y things ar e a s they are . This sense o f marvel should b e celebrate d an d hel d i n aw e by society. My candle was stoked by high schoo l an d colleg e teacher s (including Willia m Harri s an d Willia m Tully , an d
vi ACKNOWLEDGMENT S Edward Hodgson an d Edwar d Maly, respectively), re- Finally , I would lik e to than k m y family , m y wif e search mentor s (includin g Pedr o Pasi k an d Ala n Pe - an d thre e children , fo r thei r continue d suppor t an d ters), and collaborator s (notably Richard Nowakowski goo d humor . The y ar e m y sustenance , grounding , and Rober t Rhoades). They encourage d m e t o thin k an d reaso n for being, broadly and not to be confined by dogma o r methods .
Contents
List of Abbreviations i x Contributors xii i 1. Model s o f Neurotoxicity Provide Uniqu e Insight into Normal Developmen t 3
5. Cel l Death 7 3 Stevens K Rehen Jerold J.M. Chun
Michael W. Miller
Part I. Norma l Developmen t 6. Intracellula r Pathways of Neuronal Death 9 1
2. Cel l Proliferatio n 9 Bernhard So ter Pradeep G . Bhide
Sandra M. Mooney George I. Henderson
3. Neurona l Migration 2 7 Huaiyu Hu
7. Developmenta l Disorder s an d Evolutionary Expectations: Mechanism s of Resilience 10 4
4. Neurona l Differentiation : From Axons to Synapses 4 5 C. David Mintz Iddii H. Bekirov Tonya R. Anderson Deanna L. Benson
Barbara L. Finlay Jeremy C. Yost Desmond T . Cheung
vii
viii CONTENT
S
Part IL Ethanol-Affecte d Developmen t 8. Prenata l Alcohol Exposure and Huma n Development 12 3 Claire D. Coles
9. Influenc e of Alcohol on the Structur e of the Developing Human Brai n 14 3 Susanna L, Fryer Christie L. McGee Andrea D. Spadoni Edward P. Riley
10. Prenata l Ethanol Exposur e and Feta l Programming: Implications for Endocrine and Immun e Developmen t an d Long-Term Healt h 15 3 Joanna H, Sliwowska Xingqi Zhang Joanne Weinberg
11. Earl y Exposure to Ethanol Affects th e Proliferation o f Neuronal Precursor s 18 2 Michael W. Miller 12. Effect s o f Ethanol o n the Regulatio n of Cell Cycle in Neural Ste m Cell s 19 9 W. Michael Zawada Mita Das
13. Mechanism s of Ethanol-Induce d Alterations in Neuronal Migration 21 6 Julie A. Siegenthaler Michael W. Miller
14. Effect s o f Ethanol on Mechanism s Regulating Neuronal Process Outgrowth 23 0 Tara A. Lindsley
15. Neurona l Surviva l Is Compromised b y Ethanol: Extracellula r Mediators 24 5 Michael W. Miller Maria B. Bruns Paula L. Hoffman
16. Intracellula r Events in Ethanol-Induce d Neuronal Death 26 7 Sandra M. Mooney Michael W . Miller George I. Henderson
17. Neura l Crest and Developmenta l Exposur e to Ethanol 27 9 Susan M. Smith Katherine A. Debelak-Kragtorp
18. Glia l Targets o f Developmental Exposur e to Ethanol 29 5 Consuelo Guerri Gemma Rubert Maria Pasqual
Part III. Nicotine-Affecte d Developmen t 19. Tobacco use During Pregnancy : Epidemiology an d Effect s o n Offsprin g 31 5 Jennifer A. Willford Nancy L . Da y Marie D. Cornelius
20. Prenata l Nicotin e Exposur e and Animal Behavior 32 9 Brenda M. Elliott Neil E. Grunberg
21. Neurona l Receptors for Nicotine: Functiona l Diversity and Developmental Change s 34 1 Huibert D. Mansvelder Loma W. Role
22. Neura l Precursor s as Preferential Targets for Dru g Abuse: Long Term Consequence s and Latent Susceptibilit y to Centra l Nervous System Disorders 36 3 Kurt F. Hauser Nazira El-Hage Shreya Buch Gregory N. Barnes Henrietta S . Bada James R. Pauly
23. Nicotini c Receptor Regulatio n of Developing Catecholamin e System s 38 1 Frances M. Leslie Layla Azam Kathy Goliardo Kathryn O'Leary Ryan Franke Shahrdad Lotfipour
Index 39 9
List of Abbreviations
ALC prenatall y exposed to alcohol, bot h wit h and without dysmorphic feature s
5-HT serotoni n 8-OH-DPAT 8-hydroxy-2-(di-n-propylamino)tetrali n
AMPA a-amino-B-hydroxy-S-methyM-isoxazole propionic acid
ABCG2 ATP-bindin g cassette protein otBgTx a-bungarotoxi n ACh acetylcholin e
AMPAR a-amino-3-hydroxy - 5-methyl-4-isoxazole propionic acid receptor
AChE acetylcholinesteras e
AP-1 activatin g protein-1
ACTH adrenocorticotropi c hormone
APAF apoptoti c protease activating factor
ADH alcoho l dehydrogenase
ARIA acetylcholin e receptor-inducin g protei n ARND alcohol-relate d neurodevelopmenta l disorder
ADHD attentio n deficit hyperactivity disorder ADNF activity-dependen t neurotrophic factor
ASD atria l septic defect
ADNP activity-dependen t neuroprotective protein
ASR acousti c startle reflex
ADP adenosin e diphosphate
Astn astrotacti n
ADX adrenalectom y
ATP adenosin e triphosphate
AHP adul t hippocampal progenito r
AVP arginin e vasopressin
AIDS acquire d immunodeficiency syndrome
BDNF brain-derive d neurotrophi c facto r
AI F apoptosi s inducing facto r
BEG bloo d ethano l concentratio n
ix
x LIS
T O F ABBREVIATION S
β-E P β-endorphi
n
DO I l-(2,5-dimethoxy-4-iodophenyl)-2 aminopropan e hydrochlorid e
-
bFG F basi c fibroblas t growth facto r (aka fibroblas t growth facto r 2 )
DO R δ-opioid
BH Bcl- 2 homolog y
DR G dorsa l roo t ganglia
BMP bon e morphogeni c protei n
DT I diffusio n tenso r imagin g
BSID Bayle y Scales o f Developmen t
EC 50 concentratio respons e
n effectin g a hal f maxima l
EC M extracellula
r matrix
BrdU bromodeoxyuridin [Ca ]i intracellula
e
r concentratio n o f Ca
2+
2+
receptor s
CAM cel l adhesio n molecul e
EG F epiderma
cAMP cycli c adenosin e monophosphat e
EGF r epiderma
CAP cel l adhesio n protei n
EG L externa
CBG corticosteron
EM electro
CC corpu
e bindin g globulin
s callosum
CC K cholecystokini
l growt h facto r l growth facto r recepto r
l granula r layer of the cerebellu m n microscop y
ER K extracellula r signal regulate d kinas e
n
ES embryoni
CD13 3 cel l determinan t 13 3 (hematopoieti c ste m cell marker , aka promini n cdk cyclindependen t kinas e Cd k cyclin-dependen
t kinase
c stem
ET S environmenta
l tobacc o smok e
FAD D Fas-associate
d deat h domai n
FAS feta l alcoho l syndrom e
cGM P cycli c guanosin e monophosphat e
FASD feta l alcoho l spectru m disorder s
ChAT cholin
FasL Fa
e acetyltransferas e
CK I cyclin-dependen CN S centra
t kinase inhibito r
l nervou s system
CO N A concanavali
nA
COR T corticosteron
e
CP cortica
s ligand
FCM D Fukuyama-typ dystroph y
FE E feta l ethanol-expose d FG F fibroblas t growth facto r FILI P filami n A-interactin g protei n
l plate
CRE B cycli c AMP respons e elemen t bindin g protein
fMR I functiona
CR H corticotropi
G gestationa
n releasin g hormon e
CRH-R 1 corticotropi recepto r CRM P collapsi CT compute
n releasin g hormon e typ e 1
r tomograph y
CYP2E 1 cytochrom CytO x cytochrom
e P450 2E 1 e C oxidas e
GABA γ-aminobutyri c aci d GD F growt h differentiatio n facto r y
G E ganglioni c eminenc e G F growt h fractio n GFA P glia l fibrillar y acidi c protei n GM C ganglio n mothe r cel l GnR H gonadotropin-releasin
Da b disable d d in colorecta l cance r
DHβ E dihydro-β-erythroidin DIABL O direc
l day
GD X gonadectom
a Verbal Learnin g Test- children' s
DA dopamin e DC C delete
l magneti c resonanc e imagin g
Gadd45 γ growt h arres t and DN A damage-inducibl e
n respons e mediato r protei n
CVLT- C Californi version
e congenita l muscular
e
t IAP bindin g protein
DI V day s in vitro DNA-PKc s DNA-dependen t protei n kinas e catalyti c subuni t
G R glucocorticoi
d recepto r
GR P glial-restricte GS H glutathion
d precursor
e
GTPas e guanosin HG F hepatocyt hn heteronuclea
g hormone
e 5'-triphosphatas e e growth facto r r
LIST OF ABBREVIATION S x i HNE 4-hydroxynonena l
MNTB media l nucleu s o f the trapezoi d body
hNSC huma n neura l stem cel l
MOR fl-opioi d receptor s
HPA hypothalamic-pituitary-adrena l
MR mineralocorticoi d recepto r
HPG hypothalamic-pituitary-gonada l
MRI magneti c resonance imaging
IAP inhibitor y apoptotic protei n
MZ margina l zon e
Ig immunoglobuli n IGF insulin-lik e growth factor IGF-lr insulin-lik e growth factor-1 receptor IGF-BP insulin-lik e growth factor bindin g protein IHZ intrahila r zone; or hippocampal field CA4 or the subgranular zone IL interleuki n IP intraperitonea l IP3 inosito l 1,4,5-triphosphat e IQ intelligenc e quotien t ISEL i n situ end-labelin g IZ intermediat e zon e KC1 potassiu m chlorid e Ki67 proliferation-associate d nuclear antige n
NAc nucleu s accumben s nACliR nicotini c acetylcholine receptor NAD nicotinamide-adenin e dinucleotid e NAP asn-ala-pro-val-ser-ile-pro-gl n NBL neuroblasti c layer nCAM neura l cel l adhesio n molecul e NE norepinephrin NGF nerv
e
e growth facto r
NgCAM neuron-gli a cell adhesio n molecul e NHEJ non-homologou s end-joinin g NMD neurona
l migration disorder
NMDA N-methyl-D-aspartat e NMDAR N-methyl-D-aspartat e recepto r NMJ neuromuscula r junction NO nitri c oxide
KOR K-opioi d receptor s
NOND naturall y occurring neuronal deat h
Large like-acetylglucosaminyltransferas e
NPC neura l progenitor cel l
LBW lo w birth weight
Nr-CAM NgCAM-relate d cell adhesio n molecul e
LC locu s coeruleus
NRT nicotin e replacemen t therap y
LC-NE locu s coeruleus-noradrenergic (sympathetic adrena l medullary )
NSC neura l ste m cel l NT neurotrophi n
LCN loca l circuit neuro n
NTS nucleus
LF leavin g fraction
NT-4 neurotrophi n 4
LHRH luteinizin g hormone releasin g hormone
OD ocula r dominance
tractus solitarius
LiglV ligasel V
ODC ornithin e decarboxylase
LPA lysophosphatidi c acid
OPPS Ottaw a Prospectiv e Prenata l Stud y
LPS lipopolysaccharid e
P postnata l day
LTP long-ter m potentiation
PA phosphatidi c aci d
LV laten t variable
PACAP pituitar y adenylyl cyclase activating polypeptide
mAChR muscarini c acetylcholine recepto r MAP microtubule-associate d protei n MAPK mitogen-activate d protein kinase
PAFAHIb platelet-activating facto r acetylhydrolas e isoform Ib , aka LISI
MDA malondialdehyd e
PARP poly-adenosin e diphosphate ribos e polymerase
MEB muscle-eye-brai n disease
PCD programme d cel l deat h
MHC majo r histocompatibility comple x
PDGF platelet-derive d growth facto r
MHPCD Materna l Healt h Practice s and Child Development
PET positro n emission tomograph y
PEE prenata l ethanol exposure
xii LIS T O F ABBREVIATION S PE t phosphatidy PF C prefronta
l ethanol
Smo Smoothene
l cortex
sMR I structura
PB К phosphatidylinosito
l З'-phosphokinas e
РК А protei n kinase A e
PL S partia l least square s analysis PM pia l membran e
SN substantia l nigr a
SNAP-2 5 synaptosom
l nervou s system
POMGnT l UDP-N-acetylglucosamin e protein-O mannos e ßl ,2-N-acetylglucosaminyltransferase POMC pro-opiomelanocorti n POMT1 protein-O-mannos e ßl,2-Nacetylglucosaminyltransferase
e associate d protein-2 5
SNR P stres s nonresponsiv e perio d SOD Superoxid
PN projectio n neuro n PN S periphera
l magnetic resonanc e imaging
SNARE S solubl e n-ethylmaleimide-sensitiv e fusion protein-attachmen t protei n receptor s
PK C protei n kinase С PLD phospholipas
d
e dismutas e
SPEC T singl e photo n emissio n compute d tomograph y SPP secondar y proliferativ e populatio n SV synapti c vesicle SynCAM synapti
c cel l adhesio n molecul e
SZ subventricula r zon e SZa anterio
r subventricula r zone
PPI prepuls e inhibitio n
T c tota l lengt h o f the cell cycl e
PSD post-synapti c densit y
TC R T
PSN principa l sensor y nucleu s of the trigemina l nerve
TER T telomeras e reverse transcriptas e
PSR phosphatidylserin e receptor РТ Е prenata
l tobacc o exposur e
PTV Piccolo-Bassoo
n transpor t vesicle
PVE pseudostratifie
d ventricula r epitheliu m
PVN paraventricula
r nucleu s
TGFßlr transformin g growt h facto r ßl receptor TGFßllr transformin g growt h factor ßll receptor TH tyrosin e hydroxylas e TNF tumo r necrosis facto r
TÚNEL termina l deoxynucleotidy l transferas e mediated deoxyuridine nick en d labeling
c aci d c acid recepto r
Rb retinoblastom
g growth facto r
Trk tyrosin e kinas e recepto r
Q probabilit y of cell cycl e exit RAR retinoi
TG F transformin
TRF telornerase-repeat-bindin g factor
PWM pokewee d mitoge n RA retinoi
cel l receptor s
UCS unconditione d stimulu s
a protei n
VB ventrobasa l nucleus of the thalamu s
RG radia l glia
VBM voxel-base d morphometry
RO S reactiv e oxygen specie s
VDCC voltage-dependen t Ca 24" channel
SC subcutaneou
VIP vasoactiv e intestinal polypeptide
SES socioeconomi
s c statu s
VLM ventrolatera l medulla
Shh soni c hedgeho g
VSD ventra l septi c defec t
SHR P stres s hyporesponsiv e perio d
VTA ventra l tegmental area
SKY spectra l karyotypin g
VZ ventricula r zone
SID S sudde n infan t deat h syndrom e
VLDLr ver y low density lipoprotei n recepto r
SIN- 1 3-morpholinosydnonimin
WCST Wisconsi n Card Sort Task
e
Smac secon d mitochondria-derive d activato r ofcaspase
WRAML Wid e Range Assessment of Memory and Learning
SMase sphingomyelinas
WWS Walker-Warbur g syndrom e
e
Contributors
TONYA R . ANDERSO N Mount Sinai School of Medicine New York NY
PRADEEP G . BHID E Massachusetts General Hospital Harvard Medical School Boston MA
LAYLA AZAM
MARLA B . BRUN S SI/NY- Upstate Medical University Syracuse NY
University of California College of Medicine Irvine CA HENRIETTA S . BADA University of Kentucky College of Medicine Lexington KY
SHREYA BUCH University of Kentucky College of Medicine Lexington KY
GREGORY N . BARNE S University of Kentucky College of Medicine Lexington KY
DESMOND T . CHEUN G Cornell University Ithaca NY
IDDIL H . BEKIROV Mount Sinai School of Medicine New York NY
JEROLD J.M. CHUN Scripps Research Institute La Jolla CA
DEANNA L. BENSO N Mount Sinai School of Medicine New York NY
CLAIRE D. COLE S
Emory University School of Medicine Atlanta GA xiii
xiv CONTRIBUTOR S MARIE D . CORNELIU S University of Pittsburgh School of Medicine Pittsburgh PA
PAULA L. HOFFMA N University of Colorado Health Sciences Center Denver CO
MITA DAS University of Colorado Health Sciences Center Denver CO
HUAIYU H u SUNY-Upstate Medical University Syracuse NY
NANCY L. DAY University of Pittsburgh School of Medicine Pittsburgh PA
FRANCES M . LESLI E University of California College of Medicine Irvine CA
KATHERINE A. DEBELAK-KRAGTOR P University of Wisconsin School of Medicine Madison WI
TARA A. LINDSLE Y Albany Medical School Albany NY
NAZIRA EL-HAGE University of Kentucky College of Medicine Lexington KY
SHAHRDAD LOTFIPOUR University of California College of Medicine Irvine CA
BRENDA M. ELLIOT T Uniformed Services University of the Health Sciences Bethesda MD
HUIBERT D . MANSVELDE R Vrije Universitat, Amsterdam, The Netherlands
BARBARA L. FINLA Y Cornell University Ithaca NY
CHRISTIE L. McGE E San Diego State University San Diego CA
RYAN FRANKE University of California College of Medicine Irvine CA SUSANNA L. FRYE R San Diego State University San Diego CA
MICHAEL W. MILLE R Department of Neuroscience and Physiology and Developmental Exposure Alcohol Research Center SUNY-Upstate Medical University Research Service Syracuse Veterans Affairs Medical Center Syracuse NY
KATHY GALLARD O University of California College of Medicine Irvine CA
G. DAVI D MINT Z Mount Sinai School of Medicine New York NY
Centro de investigacion Principe Felipe Valencia, Spain
CONSUELO GUERRI
SANDRA M. MOONEY SI/NY- Upstate Medical University Syracuse NY
NEIL E. GRUNBER G Uniformed Services University of the Health Sciences Bethesda MD
KATHRYN O'LEARY University of California College of Medicine Irvine CA
KURT F . HAUSE R University of Kentucky College of Medicine Lexington KY
MARIA PASCUA L Centro de investigacion Prìncipe Felipe Valencia, Spain
GEORGE I. HENDERSO N University of Texas Health Science Center San Antonio TX
JAMES R. PAUL Y University of Kentucky College of Medicine Lexington KY
CONTRIBUTORS x v STEVENS K . REHEN Scripps Research Institute La Jolla CA
ANDREA D . SPADON I San Diego State University San Diego CA
EDWARD P. RILE Y San Diego State University San Diego CA
BERNHARD SUTE R Massachusetts General Hospital Harvard Medical School Boston MA
LORNA W. ROL E Columbia University New York NY GEMMA RUBER T Centro de investigacion Principe Felipe Valencia, Spain
JOANNE WEINBER G University of British Columbia Vancouver BC JENNIFER A. WILLFORD University of Pittsburgh School of Medicine Pittsburgh PA
JULIE A. SlEGENTHALE R
SI/NY- Upstate Medical University Syracuse N Y
JEREMY C.YOS T Cornell University Ithaca NY
JOANNA H. SLIWOWSK A University of British Columbia Vancouver BC
XINGQI ZHAN G University of British Columbia Vancouver BC
SUSAN M. SMIT H University of Wisconsin School of Medicine Madison WI
W. MICHAE L ZAWADA University of Colorado Health Sciences Center Denver CO
This page intentionally left blank
BRAIN DEVELOPMEN T
This page intentionally left blank
1 Models of Neurotoxicity Provide Unique Insight into Normal Development Michael W . Miller
include changes cascading from a spontaneous muta tion i n th e genome . Externa l challenge s ca n b e sub tle (respons e t o a stress) or profound (change s cause d by exposur e t o a toxi n o r drug) . Alterations induce d by interna l an d externa l challenge s ca n b e superim posed an d change s ma y b e additiv e or synergistic . I n any case , a n understandin g o f th e response s o f th e nervous syste m provide s uniqu e insigh t int o it s nor mal developmen t an d it s plasticity . Doe s th e chal lenged nervou s syste m consistentl y respon d i n th e same fashion , o r doe s i t respon d usin g a variet y o f strategies? Tolstoy's comment on his own work was that Anna Karenina did not solve a single problem; rather, it presented the m all, beautifully. Environmental exposur e to substance s suc h a s ethano l an d nicotin e present s situations o f compellin g clinica l interest . Ethano l i s arguably the most full y studied teratogen . Unlike Tol stoy's self-critique , studie s o f ethano l toxicit y hav e not bee n restricte d t o phenomenologica l studies ; many mechanism s o f ethano l neurotoxicit y hav e
Happy familie s ar e al l alike ; ever y un happy family i s unhappy i n it s own way. Anna Karenina, Leo Tolstoy
The developin g nervou s system is comprised o f com plex set s o f element s tha t assemble int o a dynamic , interactive physical , chemical , an d electrica l mesh . In th e norma l animal , thi s assembl y proceeds i n a n orderly progression amountin g t o the su m o f additive (cell proliferation , migration , and neurit e outgrowth ) and subtractiv e processe s (prunin g of axons and den drites and neuronal death). Each o f these ontogeneti c processes involve s the timely , intricat e choreograph y of molecular an d cellula r players . That said, develop ment doe s not follow a rigid sequence . The developin g brai n ha s considerabl e flexibility and adaptability . Thi s adaptabilit y ca n b e overcom e by a multitud e o f challenges , an d th e variet y o f re sponses ca n be as diverse as the challenges . Th e chal lenges can be interna l or external. Internal alterations 3
4 INTRODUCTIO N been pursued . Indeed , wor k o n ethano l provide s a model o f ho w t o stud y the negativ e effect s o f othe r substances. Moreover , study of the effect s o f ethanol provides a uniqu e insigh t int o norma l development . The approac h of this book is to look at three contrast ing situations: normal development, an d th e effect s of two differen t type s of challenges. Examinatio n o f th e normal and abnormal situations informs eac h o f these situations. Thus, i t i s only throug h geneti c an d envi ronmental challenge s tha t a ful l appreciatio n o f th e complexity of brain development ca n be achieved.
NORMAL DEVELOPMEN T
Our understandin g o f norma l neura l developmen t has progressed by quanta during the las t dozen years . Not onl y hav e w e begu n t o understan d th e myria d genes tha t ar e expresse d i n th e developin g centra l nervous syste m (CNS) , bu t function s fo r th e tran scripts an d th e protein s have been ascribed . Two examples ar e rln an d dix, gene s tha t cod e fo r protein s important in stopping neuronal migration and i n promoting the migration of neocortical loca l circuit neurons from th e ganglion eminence . The compellin g abnorma l organizatio n o f th e brain an d th e associate d dysfunctio n o f th e reeler mouse hav e fascinate d developmenta l neurobiolo gists for more tha n five decades (e.g. , Falconer, 1951 ; Alter et al, 1968; Bruc k and Williams, 1970 ; Lamber t de Rouvroit and Goffinet , 1998) . Th e invers e organi zation o f th e reele r mous e ha s provide d uniqu e in sights int o mechanism s o f normal neurogenesi s an d the formatio n of neural networks . Yet it i s only since 1995 that the genetic basi s for this murine mutant has been discovered , the knockou t of the gen e rln (D'Arcangelo e t al. , 1995 ; Hirotsun e e t al. , 1995 ; Ogaw a et al. , 1995) . Th e functio n o f th e gen e product , reelin, continues to be debated. The gen e dix i s a ke y player i n cortica l develop ment (Mari n an d Rubenstein , 2003) . It i s critical for the generatio n o f loca l circui t neuron s i n th e gan glionic eminence. A dearth of local circuit neurons is evident i n dix knockou t mice . Thus , a ne w doo r t o understanding th e complexit y o f cortica l neurono genesis an d tangentia l pathway s o f neurona l migra tion has been opened . The sectio n on normal development describes our current understandin g o f cellula r an d molecula r events tha t defin e developmenta l phenomena . Fo r
convenience, neura l development ha s bee n divided into fou r phases : cel l proliferation , migration, differ entiation, and deat h (Chapter s 2, 3 , 4, an d 5 and 6 , respectively). Althoug h thes e ar e discret e phases , they are highly integrated. That is, the numbe r o f cycling cells ha s a direc t effec t o n th e wa y in whic h cells differentiate and o n the incidenc e o f cell death. Thus, these chapter s addres s a single developmental phase whil e placin g ontogeneti c event s i n th e con text o f th e continuu m o f neura l development . I n a provocative essa y (Chapter 7 ) at the en d o f this sec tion, basi c informatio n on ontogeneti c event s is discussed i n term s o f mammalian evolution , an d thei r ramifications o n th e respons e of the nervou s system are addressed.
ETHANOL-AFFECTED DEVELOPMEN T
The concep t that ethano l affect s th e developmen t o f the mammalia n (human ) brai n cam e t o th e for e i n 1973 wit h th e publicatio n o f paper s b y Jone s an d Smith (Jone s an d Smith , 1973 ; Jone s e t al , 1973) . These were not the first papers to identity fetal alcoho l effects. Thoug h les s celebrated , report s b y Lemoin e and colleagues (1968) and Ulleland (1972) had already described feature s o f feta l alcoho l syndrom e (FAS) . Although i t has been suggeste d tha t the first evidence linking alcoho l consumptio n durin g pregnanc y an d deleterious effect s o n offsprin g come s fro m Gree k and Roma n mytholog y an d fro m th e Bible , this no tion was debunked by Abel (1984). To the bes t of my knowledge, the first documentation o f someon e wit h FA S can b e attribute d t o th e artists Harvey Kurtzman i n 195 4 and Norma n Ming o in 1956 . The y dre w a perso n originall y know n as Melvin Coznowsk i o r Me l Haney , late r know n a s Alfred E . Neuman (also spelled Newman). 1 Mr. Neu man ha s al l o f the classi c pathomnemonic craniofa cial malformation s of FAS (thin uppe r lip , deficient , philtrum, narro w palpebrai fissures , flattene d bridge of th e nose , an d lo w se t ears) , alon g wit h acknowl edged menta l dysfunctio n and probabl e intrauterine growth retardation (a s evidenced b y microencephaly). Although verificatio n o f prenata l exposur e i s un known, such evidenc e i s not obligatory for a diagnosis of FAS (Stratton e t al. , 1996) . As is typical of accomplished artists , Kurtzman and Ming o were perceptive observers and mad e associations tha t wer e a s insightful a s thos e o f th e experience d pediatrician s wh o
NEUROTOXICITY AND NORMA L DEVELOPMENT 5 described FA S more tha n a doze n year s later . Kurtzman and Mingo did not associate the craniofacial malformations an d brai n dysfunctio n wit h prenata l exposure t o alcohol , bu t the y di d lin k th e diagnosti c features that characterize FAS. Ethanol ca n ac t through a number of mechanisms. This is not to say that ethanol is a "dirty drug". Indeed , evidence show s tha t i t affect s th e nervou s syste m i n very specifi c ways . Moreover , th e manne r i n whic h ethanol alter s developmen t instruct s u s abou t th e adaptability an d resilienc y of the developin g nervous system. Fro m a clinical perspective, a n understandin g of the consequence s o f early exposure to ethano l i s of paramount importance . Prenata l exposur e to alcoho l affects upward s o f 1 % o f al l liv e birth s an d i t i s th e prime cause of mental retardation in the Unite d States (Sokol e t al., 2003) . Furthermore, ou r appreciatio n o f ethanol-induced change s provide s a model o f and in sights int o th e etiolog y o f numerou s neurodevelop mental disorders, such as autism and schizophrenia . The firs t se t of chapters i n Par t II addresses global effects o f prenata l exposur e t o ethanol . Thes e in clude th e prevalenc e o f alcohol-induce d deficit s among human s (Chapte r 8) , th e structura l malfor mations cause d b y prenata l exposur e t o ethano l (Chapter 9) , an d th e effect s o f ethano l o n nervou s system-endocrine system interaction s (Chapte r 10) . Following this discussio n i s a serie s of chapters tha t focus o n th e fou r ontogeneti c phases : cel l prolifera tion (Chapter s 1 1 and 12) , migration (Chapte r 13) , differentiation (Chapte r 14) , and deat h (Chapter s 1 5 and 16) . The las t two chapters o f this sectio n exam ine th e effect s o f ethano l o n tw o population s o f neural-related cells : neura l cres t cell s (Chapte r 17 ) andglia (Chapte r 18) .
NICOTINE-AFFECTED DEVELOPMENT
The fina l sectio n o f the boo k examine s the respons e of th e nervou s syste m t o a nicotin e challenge . Whereas ethano l i s acte d upo n b y endogenou s enzymes—for example , catalas e an d alcoho l dehydrogenase —it does not ac t at a specific receptor . In contrast , nicotin e allegedl y act s thoug h a focused endogenous mechanis m a t receptor s fo r cholinergi c neurotransmission. An understanding o f the effect s of nicotine i s no t onl y importan t fo r appreciatio n o f a basic scienc e issue , i t i s o f critica l clinica l impor tance. A fetus i s exposed to nicotine thoug h increase d
blood concentration s in the pregnan t woman as nicotine freel y crosse s the placenta l "barrier, " and infant s are exposed to nicotine through secondhand smoke. The clinica l problem o f fetal nicotin e exposur e is discussed i n Chapte r 19 . Nicotine i s a rathe r ubiqui tous substanc e — for thos e wh o smok e an d fo r thos e who ar e expose d t o secondhan d smoke . Nicotin e ex posure i s often accompanie d b y exposure to other substances suc h a s alcohol . Thus , clinica l studie s hav e fostered th e nee d t o conduc t well-controlle d anima l studies to understand the behaviora l consequences of exposure t o nicotin e pe r s e (Chapte r 20) . Althoug h nicotine i s thought to act through specifi c cholinergic receptors, it has broader effects throug h catecholaminergic and othe r systems . These issues are examined i n Chapters 2 1 and 22 , respectively. Chapter 2 3 explores the effect s o f nicotine o n specific ontogenetic events . Separate studie s o f norma l developmen t an d o f development altere d b y ethano l o r nicotin e provide unique, thoug h limited , insigh t int o brai n develop ment. Eac h lin e o f inquiry opens window s of understanding tha t otherwis e migh t b e inaccessibl e fro m other vantag e points . B y consolidating th e informa tion gathered from th e three approaches, however, we can gai n a fuller appreciatio n (a ) of the complexit y of neural development , an d (b ) o f how i t can g o wrong during a disease process. Abbreviations CNS centra l nervou s system FAS feta l alcoho l syndrom e Note 1. I t wa s alleged that Harve y Kurtzma n an d Norman Mingo were no t th e first to dra w a fac e resemblin g Alfred E . Neuman . Indeed , two lawsuits (base d on copyrights file d i n 191 4 an d 1936 ) atteste d tha t Kurtzman and Mingo were not the originators of the caricature no w referre d t o a s Alfred E . Neuman . It was used in advertisements for dental practices (see a copy of the Manitob a Free Press in 192 8 [http://www .imagehosting.us/index.php?action = show&ident = 728813]) and a n imag e was even used by the Nazi s as par t o f their anti-Semiti c campaig n i n th e 1930 s (Djerassi, 1988 ; see http://garfield.library.upenn.edu/ essaysM2pl61yl989.pdf). [n.b. Th e nam e Alfred E . Neuman an d th e imag e o f the gap-toothe d person were first joined i n 1956. ] The principa l (winning ) defense was that earlier artists had themselves copied
6 INTRODUCTIO N a likenes s produced befor e 1914 , notabl y "Mickey Dugan, The Yello w Kid" drawn by Richard Felto n Outcault i n th e lat e nineteent h century , an d vari ous othe r cartoon s and advertisement s (see a cop y of th e Winnipe g Tribun e i n 190 9 [http://www r .imagehosting.iis/index.phpFaction = show&ident = 728816]). Interestingly , mos t o f th e earlie r versions depict a norma l uppe r lip , a distinc t philtrum , an d normal-appearing eyes. Therefore, it does appear that Kurtzman an d Ming o were the first to associate th e three characteristi c features o f FAS : facia l dysrnor phology, mental dysfunction , and microencephaly. References Abel E L (1984 ) Fetal Alcohol Syndrome an d Fetal Alcohol Effects. Plenum , Ne w York . (1995) An update on incidenc e of FAS: FAS is not an equa l opportunit y birt h defect . Neurotoxico l Teratol 17:437-443 . Alter M, Lieb o J , Desnick SO , Stromme r B (1968) Th e behavior of the reele r neurologica l mutan t mouse . Neurology 18:289 . Bruck RM , Williams TH (1970 ) Light and electro n microscopic stud y of the hippocampa l regio n o f normal and reele r mice. J Anat 106:170-171. D'Arcangelo G , Mia o GG, Chen SC , Soare s HD, Mor gan JI, Curran T (1995 ) A protein relate d to extracellular matri x proteins delete d i n th e mous e mutan t reeler. Nature 374:719-723. Djerassi C (1988 ) Th e ques t fo r Alfre d E . Neuman . Grand Stree t 8:167-174. Falconer D S (1951 ) Tw o ne w mutations , trembler an d reeler with neurological action i n the hous e mouse. J Genet 50:192-201 .
Hirotsune S , Takahara T, Sasak i N, Hiros e K, Yoshiki A, Ohashi T , Kusakab e M , Murakam i Y, Muramatsu M, Watanabe S , Nakao K, Katsuki M, Hayashizakiy (1995) Th e reeler gen e encode s a protei n wit h a n EGF-like moti f expresse d b y pioneer neurons . Na t Genet 10:77-83. Jones KL , Smit h D W (1973 ) Recognitio n o f th e feta l alcohol syndrom e i n earl y infancy . Lance t 2:999 1001. Jones KL , Smit h DW , Ullelan d CN , Streissgut h A P (1973) Patter n o f malformatio n i n offsprin g o f chronic alcoholic mothers . Lance t 1:1267—1271 . Lambert de Rouvrai t C, Goffine t A M (1998) The reele r mouse a s a model o f brain development. Ad v Anat EmbryolCellBioll50:l-106. Lemoine P , Haroussea u H , Borteyr u J-P , Menue t J- C (1968) Le s enfant s de parent s alcooliques : anom alies observées à propos de 12 7 cas. Ouest Me d 21 : 476-482. Marin O , Rubenstei n J L (2003 ) Cell migratio n i n th é forebrain. Annu Rev Neurosci 26:441-483. Ogawa M , Miyat a T , Nakajim a K , Yagy u K , Seik e M , Ikenaka K , Yamamoto H , Mikoshib a K (1995) Th e reeler gene-associated antigen o n Cajal-Retzius neu rons is a crucial molecule for laminar organization of cortical neurons . Neuro n 14:899-912 . Sokol RJ , Delaney-Blac k V , Nordstro m B (2003 ) Feta l alcohol spectru m disorder . JAM A 290:2996 2999. Stratton K, Howe C, Battagli a F ( 1996) Fetal Alcohol Syndrome: Diagnosis, Epidemiology, Prevention and Treatment. Nationa l Academy Science Press , Washington, DC . Ulleland CN (1972 ) The offsprin g o f alcoholic mothers. Ann N Y Acad Sci 197:167-169.
I NORMAL DEVELOPMENT
This page intentionally left blank
2
Cell Proliferatio n Bernhard Suter Pradeep G. Bhide
Cell proliferatio n i s the earlies t step in the protracted process of development o f the mammalia n brain , and the pac e o f cel l proliferatio n and th e numbe r an d types of cells produced ca n be modulated b y a variety of genetic an d environmenta l factors . The dynamic s of the proliferatio n o f precursor cell s i n th e develop ing mammalia n brai n ar e shape d b y various factors. This chapte r describe s th e spatiotempora l feature s of cell proliferatio n and effect s o f neurotransmitters, major constituent s o f th e chemica l environmen t o f the developin g brai n tha t modulat e th e proces s o f precursor cell proliferation. It focuses on three neurotransmitters tha t ar e among th e mos t abundan t one s in th e developin g brain : dopamine , y-aminobutyri c acid (GABA) , an d glutamate . Th e goa l i s to presen t an overview of the organizatio n and activit y of precursor cell populations and discuss the potential fo r modulation of precursor cell activity by neurotransmitters. The discussio n i s limited t o cel l proliferatio n i n tw o exemplary structure s i n th e centra l nervou s syste m (CNS): the cerebral cortex and neostriatum.
ORGANIZATION O F PRECURSOR CELL POPULATIONS I N THE EMBRYONIC TELENCEPHALON
Cells of the nervou s system arise from precurso r cell s lining th e inne r o r ventricula r surface o f the neura l tube. Th e precurso r cell s ar e organized a s a pseudos tratified columna r epithelium. The epitheliu m is commonly referre d t o a s th e pseudostmtified ventricular epithelium (PVE) , a s i t border s th e ventricula r cavi ties of the embryoni c nervous system (Boulder Committee, 1970 ; Takahash i e t al. , 1993) . Th e regio n of the neura l tub e o f the feta l nervou s system that con tains th e PV E i s called th e ventricular zone (VZ) , a histologically define d regio n surroundin g th e ventri cles. Most cells in the PVE are bipolar and span virtually the entir e distanc e betwee n th e pia i (outer ) an d the ventricular (inner) surfaces (Fig . 2-1A), especially during earl y neura l tub e stages . A small numbe r o f cells ar e roun d an d contac t only the ventricula r surface; most of these cells are mitotically active. 9
FIGURE 2- 1 Diagra m o f th e architectoni c an d cytokineti c compartment s i n the developin g mammalia n brain . The ventricula r surface is to the lef t an d th e piai surface t o the right . A. Four cytoarchitectonic compartments ca n be recog nized o n th e basi s o f cytologica l criteri a (Boulde r Committee, 1970 ; Smart , 1976): the ventricula r zone (VZ , o r the ependyma l layer), subventricular zone (SZ, o r th e subependyma l layer) , the intermediat e zon e (IZ , o r th e externa l sagittal stratum), and three differentiatin g fields—a subplate (SP), cortical plate (CP), and margina l zone (MZ). Cells in the VZ are organized a s a pseudostratified columna r epithelium , wherea s the S Z and SP/CP/M Z contain randoml y oriented, nonepithelial cells. The I Z consists predominantly of columnar arrays of bipolar cells and growin g axons (black lines). The border s of the S Z and I Z are ambiguous. Th e dashe d lines indicate the approximate borders between th e different compartments . B . Precursor cells can b e classifie d int o two groups on the basi s of their interkineti c nuclea r migratory pattern: a pseudostratified ven tricular epithelium (PVE ) and a secondary proliferati ve population (SPP) . PVE cells undergo interkineti c nuclea r migratio n (blac k arrows) such tha t nuclei of cells in M phas e of the cel l cycl e are located a t the ventricula r surface an d th e nuclei o f cells i n S phas e ar e farthes t fro m th e ventricula r surface. Nucle i o f cells i n Gl an d G 2 phase s ar e at intermediate distances . SP P cells do not un dergo interkinetic nuclear migration, and the nucle i of cells in the differen t cel l cycle phases are scattered throughou t the VZ and I Z (soli d blac k arrows). PVE cells that leave the cel l cycl e exit the VZ, migrate throug h th e S Z and I Z (broken, curved arrows) , and settl e i n the CP/MZ. SPP cells that exit the cel l cycl e also migrate to the CP/MZ. C. The spatia l distribution of PVE, SPP , and CP/MZ cells i s illustrated to sho w the overla p among th e proliferativ e and postmitoti c populations. Th e PV E nea r the ventricula r surface is a "pure" population; how ever, the S-phas e zone (wher e nuclei of cells undergoing S phase are located) of the PV E overlap s with the SPP . Th e CP/M Z i s a populatio n o f predominantly postmitotic cell s near the pia i surface (right-hand side of the figure); however, in the SZ/IZ area, some postmitotic cell s mi x with precursor cells of the SPP . Thus, the architectonic and cytokinetic compartments show considerable overlap in the developing nervous system. (Source: Modifie d from Bhide , 1996) .
10
CELL PROLIFERATION 1 1 At late r stage s o f feta l development , variou s re gions interpose betwee n th e VZ and th e piai surface . Thus, additiona l architectoni c subdivision s an d a n additional precurso r populatio n emerge . A n earl y population o f precurso r cell s tha t emerge s i s calle d the secondary? proliferative population (SPP) . The ar chitectonic subdivision in which the SP P comes to lie is called the subventricular zone (SZ ) (Boulde r Com mittee, 1970) . Around the sam e time , a preplat e ap pears betwee n th e S Z an d th e pia i surfac e (Boulde r Committee, 1970 ; Marin-Padilla, 1983) . Shortly thereafter, th e preplat e i s split int o a marginal zon e (MZ ) and subplat e b y the cortica l plat e (CP) . Thes e thre e zones (the subplate, CP, and MZ) ar e fields that con sist largel y of postmitotic o r differentiatin g cell s pro duced b y the PV E and SP P precursors. In some parts of the nervou s system such as the cerebra l cortex, another architectoni c subdivisio n called th e intermediate zone (IZ ) develops . Th e I Z lie s betwee n th e S Z and th e M Z an d contain s growin g axons, migrating postmitotic neurons , an d cell s i n glia l lineages. Not e that the VZ, SZ, CP, and MZ are architectonic subdi visions o f th e nervou s system whereas th e PV E an d SPP are cytokinetic subdivisions of the precursor populations. Th e architectoni c an d cytokineti c subdivi sions overlap extensively, as shown i n Figure 2-1C. The PV E i s a n interactiv e communit y o f cells , coupled t o on e anothe r vi a intercellula r junction s such as gap junctions (LoTurco and Kriegstein , 1991 ; Bittman e t al, 1997) . PV E cell s shar e biochemica l characteristics with radial glia (Hockfield and McKay, 1985; Mille r an d Robertson , 1993 ; Malatest a e t al , 2000, 2003; Noctor et al, 2001; Weissman et al, 2003). Until recently, radia l gli a wer e considere d onl y t o serve th e dua l function s o f guiding newl y generate d neurons t o thei r fina l destination s an d actin g a s a transitional stage i n astrocytic ontogeny (Rakic , 1972; Voigt, 1989 ; Takahash i e t al. , 1990 ; Misso n e t al , 1991; Mille r and Robertson , 1993) . The PV E cell s underg o interkineti c nuclea r mi gration, a hallmar k o f pseudostratifie d epitheli a i n general (Sidma n e t al. , 1959 ; Fujita , 1960) . Thus , nuclei of the PV E cells are distributed within the VZ in accordanc e with the cel l cycl e phase (Fig . 2-1B). Nuclei undergoing mitoses are located a t the ventricular border, whereas the nucle i in the DN A synthesis or S-phas e ar e i n abventricula r locations . Nucle i o f cells passing through Gl an d G2 ar e located at intermediate distance s between th e tw o poles. Th e inter kinetic nuclea r migrator y pattern distinguishe s th e
PVE from th e SP P (His , 1887; Sauer , 1936 ; Boulde r Committee, 1970 ; Takahash i e t al, 1993) . SPP cells are not organized into an epitheliu m an d d o not display interkineti c nuclea r migratio n (Raki c e t al. , 1974). The SP P is a major componen t of the precur sor cel l poo l i n som e part s o f th e nervou s system , such a s the neostriatu m and th e cerebra l cortex , an d not i n othe r parts , suc h a s the hippocampu s o r th e hypothalamus. The PV E i s a "pure" populatio n o f precursor cell s in th e sens e tha t daughte r cell s produce d b y i t an d that embark upon the path o f differentiation int o neu rons o r gli a exi t th e PV E rapidl y (Miller , 1999) . I n other words , a snapshot o f the VZ , whic h house s th e PVE, reveal s proliferatin g precurso r cell s an d virtu ally n o differentiatin g neuron s o r gli a (Fig . 2-1C) . The SZ , b y contrast , whic h include s th e SPP , i s a mixture o f proliferating SPP cell s an d differentiating daughter cell s generated fro m bot h th e PV E an d th e SPP. Thes e difference s i n th e cellula r environment s may bestow unique physiological features on the PVE and SP P precursors and their differential response s t o environmental substances such a s ethanol (see Chapter 11) . The intimat e cell-cell contact amon g precur sor cell s i n th e V Z ma y facilitat e contact-mediate d signaling betwee n proliferatin g cells , whic h i s les s likely t o occu r i n th e SZ , althoug h contac t amon g precursor cell s an d postmitoti c cell s ma y b e mor e likely in the SZ . Close proximity of the SP P to growing axons in th e I Z (Fig . 2-1A), i n som e part s of the nervous syste m suc h a s th e cerebra l wall , increase s the molecula r diversit y of the environmen t further . Neurons and glia arise from bot h the PV E and th e SPP. Contributions o f the PV E and the SP P to the total number s of cells i n differen t part s of the brai n vary significantly. Fo r example , i t ha s bee n suggeste d tha t the PV E an d SP P generat e neuron s primaril y in th e deep and superficial laminae o f neocortex, respectively (Miller, 1989 ; Miller and Nowakowski, 1991) (Chapte r 11). In the neostriatum, the SP P appears to be the ma jor contributor of neurons and glia, whereas in the hip pocampus proper , th e PV E generate s al l cel l types . The PV E i n the hippocampa l formatio n is the sourc e of pyramidal neurons of the hippocampu s and granule neurons o f the dentat e gyrus , earl y in the feta l perio d (Angevine, 1965 ; Stanfield an d Cowan , 1979 ; Altman and Bayer , 1990) . I n th e dentat e gyru s cells derive d from th e PV E earl y i n th e embryoni c period settle a t the border between th e granule cell layer and the hilar region an d continu e t o proliferate , formin g a secon d
12 NORMA L DEVELOPMENT and apparentl y permanen t precurso r poo l calle d th e subgranular, or intrahilar zone (IHZ) (Angevine, 1965 ; Stanfield an d Cowan , 1979 ; Altman and Bayer , 1990) . The IH Z i s the sourc e o f the majorit y o f granule neu rons of the dentat e gyru s later in development, including adult life (Angevine , 1965 ; Bayer , 1982 ; Camero n
et al, 1993 ; Gag e et al, 1998 ; va n Praag e t al, 2002 ; Kempermann et al., 2004). Although th e architectoni c an d cytokineti c subdivisions mentioned abov e appea r i n nearl y all parts o f the developin g telencephalon , considerabl e regiona l variation occur s i n term s o f the siz e o f the differen t
FIGURE 2- 2 Regiona l difference s i n the siz e of the cytoarchitectoni c compart ments i n th e developin g brain . A histologica l sectio n i n th e corona l plan e though th e hea d o f an 11-day-ol d mouse fetus i s shown. The fetu s was exposed to th e S-phas e marke r bromodeoxyuridine (BrdU ) fo r 6 hours ; Brd U wa s injected int o th e pregnan t da m an d th e fetu s wa s harvested 6 hour s later . Th e section wa s processe d immunohistochemicall y t o revea l th e distributio n o f BrdU i n proliferatin g cells. BrdU-labele d cell s appea r dar k and surroun d th e ventricular cavities of the brai n (empty space a t the cente r o f the micrograph) . The compartment s o f the telencephalo n visibl e a t thi s corona l leve l ar e th e hippocampus (HIP) , cerebra l neocortica l wal l (CX) , latera l ganglioni c emi nence (LGE) , an d medial ganglionic eminence (MGE) . O n the left-hand side , the broken lin e marks the approximate boundar y between th e ventricular zon e (VZ) and the subventricular zone (SZ) , and the soli d lin e marks the boundar y between th e S Z and th e intermediat e zon e (IZ) . The broke n lin e i s drawn on the basi s o f difference s i n th e packin g densit y an d dispositio n o f th e BrdU labeled cell s (highe r densit y i n th e VZ , aligne d i n compariso n t o th e SZ , which ha s a lower density of BrdU-labeled cell s that are randomly distributed) . The soli d line i s at the boundar y between BrdU-labele d (precursor ) and unla beled (nonproliferatin g o r differentiating) cells . A relatively large VZ, SZ , an d IZ area i s in th e ganglioni c regio n (LG E an d MGE ) compare d t o that i n th e dorsal C X an d hippocampa l anlag e (HIP) , eve n a t thi s earl y stag e o f brai n development. Th e higher-magnificatio n image s (right ) sho w th e histolog ical divisions of VZ, SZ, and PPZ in the differen t telencepahli c compartments . The primordi a o f eyes (EYE ) are also visible in thi s section. (Source: Modifie d from Shet h and Bhide, 1997 )
CELL PROLIFERATIO N 1 3 subdivisions an d th e tim e o f emergence o f each sub division i n th e cours e o f embryonic development . I n fact, these regiona l difference s distinguish th e precur sors o f the differen t telencephali c compartments . I n the telencephalon of the developin g mous e brain, regional variatio n is evident a s earl y as gestational da y (G) 1 1 (the day of conception i s designated a s GO). In coronal section s o f 11-day-ol d feta l mous e brain , a sizeable SZ can be seen i n the lateral ganglionic emi nence (GE ) an d media l GE . Thes e specialize d seg ments o f the S Z contain precursor s of neurons i n th e basal ganglia and a source o f neocortical G AB A neu rons (Fig . 2-2) . Th e murin e cerebra l cortex , hip pocampus, an d hypothalami c region s d o no t hav e a SZ at G11. In fact, an SZ does not develop i n the hippocampal and hypothalamic regions , although it does develop i n th e cerebra l corte x abou t 2- 3 day s later (Miller, 1999) . The V Z i s the earlies t structure i n the developin g nervous system , thu s i t contain s th e earlies t formin g precursor cel l populatio n (i.e. , the PVE) . Th e V Z is present i n al l part s o f th e Gi l telencephalo n (Fig . 2-2). A distinct and sizeabl e MZ , consisting o f newly generated differentiatin g cells, is evident i n the latera l and media l GEs by Gl 1, whereas the othe r region s of the telencephalon hav e a relatively smaller MZ at this age. Thus, the siz e and distributio n o f both proliferative and postmitotic subdivisions of the telencephalon show considerabl e variatio n i n th e feta l forebrain . The emergenc e o f heterogeneit y withi n th e telen cepahlic anlage reflect s influence s of transcription factors (Puelle s and Rubenstein , 1993 ; Rubenstein e t al., 1998) and/o r neurotransmitter s (Ohtan i e t al. , 2003 ) that distribute in a regionally specific manner . The re gional variation also foreshadows the structura l differ ences tha t emerg e i n thes e region s a s developmen t proceeds.
MOLECULAR REGULATIO N OF CELL PROLIFERATION
Cell proliferatio n in th e nervou s syste m i s a n intri cately regulated process . The regulatio n occur s by the concerted action s of a variety of genetic an d environ mental factor s a t th e leve l o f the cyclin g cell s i n th e PVE an d SPP . Ther e ar e a t leas t thre e interrelate d tiers o f regulation: (1 ) th e tota l numbe r o f cells pro duced b y the PVE and SPP , (2 ) the emergenc e o f specific phenotype s amon g th e daughte r cells , an d (3 )
FIGURE 2- 3 Rol e played b y the cyclin-dependen t kinase (Cdk ) inhibito r p27 KlP1 i n the regulatio n o f cell cycle a t th e Gl-to-S-phas e transition . Th e progres sion of the cel l cycle can be regulated at the transition from th e G 2 t o M phas e o r from th e G l t o S phase . Genetic an d environmenta l factor s tha t modulat e progression o f cell cycl e i n th e developin g brai n ap pear t o influenc e th e Gl-to-S-phas e transition . Thi s transition i s regulate d b y Cdk s (Cdk2 , Cdk4 , an d Cdk6) an d their cyclin partners (cyclins A, E, and D) . Association o f Cdks an d thei r cycli n partner s inacti vates the retinoblastom a protein (Rb ) by phosphorylation, which i n turn promote s th e transitio n fro m G l to S phase b y releasing th e transcriptio n facto r E2F . p27KlP1 inhibit s th e activit y of the Cdk-cycli n com plexes an d therefor e inhibit s th e transitio n fro m G l to S phase. Thus , geneti c an d environmenta l factor s that alte r th e expressio n an d activit y of p27 KlP1 ca n modulate cel l proliferation in the developin g brain.
the temporal sequenc e of cell productio n an d specification tha t i s unique t o eac h regio n o f the brain . A n understanding of the molecula r mechanism s that regulate these processe s i s important no t onl y for appreciating cytogenesi s durin g norma l developmen t bu t also fo r understanding (a ) the wa y in which cel l pro duction ca n b e induce d i n specifi c region s o f th e adult brain t o repai r injur y b y trauma o r diseas e an d (b) th e mechanism s b y which neoplasms i n the CN S originate. Genetic an d environmenta l factor s regulat e cel l proliferation b y actin g upo n th e molecula r machin ery that regulate s the cell cycle . This machinery con sists of protein kinase s and thei r regulator y subunits , known a s cyclin-dependen t kinase s (Cdks ) an d cy clins, respectively (Fig. 2-3). Essentially , Cdk activity
14 NORMA L DEVELOPMEN T depends o n the synthesis and destructio n o f cyclins as well a s on th e functio n o f Cdk-activating kinase s and Cdk inhibitor s (LaBaer et al. , 1997 ; Morgan , 1997 ; Cheng et al, 1999 ; Sher r and Roberts , 1999 ; Murray, 2004). Eac h Cd k ha s a preferre d cycli n partner(s) . For example , Cdk 2 associate s wit h cyclin s A and E , whereas Cdk 4 an d Cdk o associat e wit h D-typ e cy clins. Associatio n of Cdk s wit h cyclin s results i n th e regulation o f the cel l cycle at two principal transition points: th e transition s fro m th e G l t o S phase , an d from G 2 t o M (Murra y and Hunt , 1993 ) (Fig . 2-3) . Cdk2, Cdk4 , an d Cdk 6 ar e principall y involved i n the regulatio n of the transitio n from G l t o S, whereas Cdkl regulate s the G2- M transition . The transitio n from G l t o S phas e i s associate d wit h additiona l mechanisms o f regulatio n involvin g th e retinoblas toma protei n (Rb ) an d th e transcriptio n facto r E2F . Association o f Cdk s wit h cyclin s inactivate s R b b y phosphorylation, which i n tur n result s in th e releas e of E2F . E2 F promotes th e transitio n fro m G l t o S and DNA synthesis (Dyson, 1998 ; Frolov e t al, 2001 ). Control ove r cel l cycl e progressio n a t th e Gl-to S-phase transitio n i s exercise d b y Cd k inhibitors , which inhibi t th e activit y of th e Cdk-cycli n com plexes (Ferguso n e t al. , 2000) . Inhibitio n o f Cdk ac tivity b y specifi c Cd k inhibitor s suc h a s p27 KiP] o r p21Wafl suppresse s the entr y into the S phase (Zind y et al, 1997 , 1999 ; Delall e e t al. , 1999 ; Siegenthale r and Miller , 2005) (Fig . 2-3). Muc h o f the regulation of cytogenesi s i n th e developin g brai n i s thought t o occur a t th e Gl/ S transitio n (Cavines s e t al, 1996 ; Ross, 1996) . Transcriptio n factors , growt h factors , hormones, an d neurotransmitter s ar e amon g th e most commo n regulator s o f cel l proliferatio n i n the developin g brain . They are believe d t o act upo n the Gl/ S transitio n poin t t o increase o r decrease th e output of neurons or glia (Cavines s et al., 1996 ; Ross , 1996). Much o f ou r understandin g of cel l cycl e regula tion derive s from i n vitro studies. That said, the PV E and SP P cell s i n th e intac t mammalia n brai n diffe r from th e precurso r cells maintained i n a Petri dish i n one importan t aspect. PV E an d SP P cell s i n th e in tact brain serve a histogenetic agenda, which warrants generation o f a specific numbe r o f specific cel l type s in a spatiotemporal gradien t over a restricted perio d of time. Therefore, t o understand mechanism s tha t reg ulate CNS histogenesi s we need t o analyze cell prolif eration i n population s o f PV E o r SP P cell s i n th e intact brain . A challeng e face d b y developmenta l
neurobiologists i s to assimilat e mechanisti c insights , gained b y analysis of cell cycl e regulator y machiner y from studie s o f dissociated cells , int o analyse s of cel l cycle kinetic s an d cel l outpu t fro m population s o f PVE o r SP P cells i n th e intac t brain . Th e followin g section describe s recen t progress i n efforts alon g those lines. Complementary insigh t into these issue s is provided b y studyin g th e proliferativ e response i n th e developing brai n followin g ethano l exposur e (se e Chapters 1 1 and 12) . Much of our knowledg e o f th e kinetics of PVE and SP P cell cycle in the intac t brain is derive d fro m analyse s o f neocortica l PV E cells . Therefore, th e followin g section focuse s mainl y o n cell cycl e kinetics of neocortical PVE .
CELL CYCLE KINETICS
AND DYNAMIC S OF CELL PROLIFERATION I N THE NEOCORTE X
In an y tissue or organ system, the precurso r cell popu lation initiall y expands by producing large numbers of new precurso r cells . Th e precurso r cel l populatio n subsequently deplete s itsel f through (a ) the productio n of large number s o f daughter cells , which exi t the cel l cycle, differentiate , an d acquir e matur e phenotypes , and (b ) th e deat h o f cyclin g cell s (se e Chapte r 5) . This type o f biphasic growt h pattern ensure s the pro duction o f a larg e numbe r o f cells withi n a specifie d time interval . Th e neocortica l PV E follow s thi s growth pattern. It undergoes two phases of growth: an initial phas e o f expansion durin g which mos t daugh ter cell s retur n t o th e precurso r pool , an d a late r phase o f depletion whe n mos t o f the daughte r cell s differentiate int o neuron s o r glia (Smart , 1976 ; Cavi ness e t al, 1995 ; Mille r an d Kuhn , 1995 ; Takahash i et al, 1996 , 1997) . Interestingly , during the phas e of expansion, th e PV E grow s i n th e tangentia l dimen sion, and thi s growth result s in expansion o f the PV E such tha t i t cover s th e underlyin g subcortica l struc tures. There i s little expansio n o f the PV E i n th e ra dial dimension ; growt h i n th e radia l dimensio n i s seemingly reserve d fo r late r developmenta l period s when newbor n neuron s an d gli a ar e release d fro m a depleting PV E (Miller, 1989) . The us e o f th e S-phas e marke r [ 3H]thymidine (pH]dT) revolutionize d th e analysi s of neuroepithelial cel l cycl e kinetic s b y permitting identificatio n of nuclei i n S phase an d tracking the nuclei labele d i n S
CELL PROLIFERATIO N 1 5 phase a s they passed throug h G2 , M , and Gl phase s of the cel l cycl e (Sidma n e t al. , 1959 ; Angevine and Sidman, 1961 ; Fujit a an d Miyake , 1962 ; Sidman , 1970). I t becam e possibl e t o estimat e cel l cycl e pa rameters an d th e tim e o f generation o f different cel l types throug h cumulativ e o r puls e labelin g wit h [3H]dT. Recen t developmen t o f nonradioactiv e S-phase marker s bromodeoxyuridin e (BrdU ) an d iododeoxyuridine furthe r enhance d th e versatilit y of these method s (Mille r and Nowakowski , 1988, 1991 ; Takahashi e t al , 1992 ; Haye s an d Nowakowski , 2000; Tarui et al., 2005). S-phase labelin g methods hav e been exploited, often combinin g th e radioactiv e an d nonradioactiv e markers t o perfor m sophisticate d analyse s of cell cy cle kinetic s an d cel l outpu t function s o f PV E an d SPP cells in the embryoni c murine neocortex (Miller and Nowakowski , 1991; Cavines s e t al, 1995 ; Haye s and Nowakowski , 2000 ; Takahash i e t al , 2002 ; Siegenthaler an d Miller , 2005 ; inter alia) . This work shows that the neocortica l PVE cells in fetal mic e executed 1 1 cell cycle s throughout th e cours e of generation of neocortical neuron s ove r the week from Gi l to G17. During the 1 1 cell cycles, the length of the cel l cycle increase s (from abou t 8 to 1 8 hours) (Fig. 2-4) , the increas e bein g du e t o th e lengthenin g o f G l (from abou t 3 t o 1 2 hours). This patter n i s also de tected i n ra t neocortica l proliferativ e zone s (Mille r and Kuhn, 1995). The probabilit y that a new daughter cel l exit s th e cell cycl e (calle d Q ) increase d durin g th e perio d of cortical neuronogenesi s (Miller , 1993 , 1999 ; Mille r and Kuhn , 1995 ; Takahashi e t al, 1999) . I t was near zero fo r cel l cycl e 1 (o n Gi l fo r th e mouse ) an d nearly 100 % for cell cycle 1 1 (G16-17). Eac h cell cycle i s associated wit h specific values of Q an d cel l cycle length (i.e. , the lengt h o f the Gl-phase) , the tw o parameters that chang e (increase ) systematically over the cours e o f the 1 1 cel l cycle s (Fig . 2-4) . Th e Q value reache s th e halfwa y mar k durin g th e sevent h and eight h cel l cycles , o n approximatel y G1 4 (Fig . 2-4). Thi s probability value marks a significant mile stone i n the lif e histor y of neocortical PVE , a s it indicates th e switc h fro m th e expansiv e to th e depletiv e phase of growth and fro m tangentia l to radial expansion o f the neocortex . Furthermore , i t mark s a sig nificant mileston e i n neocortica l neuronogenesis : generation of neurons for the infragranula r layers (layers V an d VI ) cease s an d tha t fo r the granula r layer (layer IV ) and supragranula r layer s (layer s I I an d III )
begins (Fig . 2-4) . Thus , quantitative estimate s o f the values o f Q a t eac h intege r cell cycl e hav e enable d the linkag e of Q to laminar destination of the daugh ter cells . In other words , a novel concept emerges, i n which th e mechanism s regulatin g Q ar e linke d t o mechanisms regulatin g cel l fat e o r cel l clas s (Taru i et al, 2005). Neuronogenesis acros s th e cortica l mantl e doe s not procee d simultaneously ; i t abides b y various spatiotemporal gradients (Smart, 1961; Smar t and McSh erry, 1982 ; Miller , 1988a ; Baye r and Altman , 1991) . The transvers e gradients reflec t th e gradient s in cel l cycle kinetics, especially the valu e o f Q, i n th e PV E (Caviness et al., 2000, 2003; Tarui et al, 2005). Thus, PVE cell s are distribute d along a spatia l continuu m of cell cycl e parameters an d Q . PV E cell s located a t the rostrolatera l locatio n ar e mor e advance d tha n those a t the caudomedia l location with respect to cell cycle length and values of Q. That is, rostrolateral precursor cell s hav e longe r cel l cycl e time s an d highe r values of Q than those o f caudomedial precurso r cell s on any given day during the interva l Gil t o G17. For example, a given location i n the neocortical PV E contains precursor cell s passin g through th e entir e rang e of cell cycle times and Q values over the interva l Gil to G17. At any given time , th e neuroepitheliu m con tains a rang e o f cell cycl e time s an d Q values . Cells destined t o multiple layer s in multiple neocortica l ar eas aris e contemporaneousl y a t multipl e location s within the neuroepithelium . Apart fro m th e tangentia l neurogeneti c gradien t discussed above, neocortical neuronogenesis proceeds along a radial dimension, a characteristic commo n t o laminar structures throughout th e nervou s system. At any give n locatio n o f the neocortica l anlagen , neu rons are generated i n an inside-ou t pattern (Angevin e and Sidman , 1961 ; Berr y et al , 1964 ; Berr y and Rogers, 1965 ; Caviness , 1982 ; Miller , 1985) . Deep layer neuron s ar e generate d earlie r than th e superfi cial laye r neurons . Usin g a doubl e S-phas e labelin g method, Takahashi an d colleague s (1999 ) correlate d the lamina r position of a neocortica l neuron wit h its "birth hour. " Throug h th e us e o f this method , the y were able to correlate the time of generation and laminar destination of neocortical neurons with considerably higher spatiotempora l resolutio n tha n ha d bee n possible previously. A mode l correlatin g th e probabilit y o f cell cycl e exit (which is equivalent t o Q) with th e probabilit y of the destinatio n o f a neuro n i n a specifi c neocortica l
16 NORMA L DEVELOPMEN T
& Kfflitmt ttmmtt&gmêtâc $méfant aaà Sequential frìgia qfnêwwn* of ike Â9/feœnt g&ifical fayei$
FIGURE 2- 4 Spatiotempora l gradient s o f cell proliferatio n and neurogenesi s i n th e cerebra l cortex . Neurogenesis in th e cerebra l cortex progresses along tangential (A ) and radia l (B) gradients. A. Neo cortical neurogenesi s begin s at the rostroventrolatera l regio n o n gestationa l da y (G) 1 1 i n mic e an d proceeds towar d the caudodorsomedial regio n in a systematic gradient (curved arrow). This transverse neurogenetic gradien t translates into a correspondin g gradient in cel l cycle lengt h o f the precurso r population an d th e probabilit y of cell cycl e exi t (Q) for the daughte r cells . Thus, precursor cell s i n the pseudostratifie d ventricula r epithelium (PVE ) i n th e rostroventrolatera l region have longer cell cycle time and highe r values of Q compare d t o their counterparts in the caudodorsomedia l region. B. Neurogenesis als o proceeds alon g a radial gradient. Neurons o f the dee p layers are produced ear lier than those in the superficia l layers . Each neocortica l PVE cell in mice, on average, undergoes 1 1 cell cycles over a 7-day period fro m Gi l t o G17. Cell cycle length increase s with each cel l cycle and each cycl e is associated wit h a unique value of Q. Thus, the cel l cycle length increase s from abou t 8 to 1 8 hours over the cours e o f 1 1 cell cycles . The valu e of Q increase s from abou t 0. 1 t o 0.8 , ap proaching the maximal value of 1.0, during this interval and reaches th e halfwa y mar k (0.5) betwee n cell cycle s 7 and 8 on G1 4 (broke n line an d asterisk) . Each cel l cycl e produce s cell s destine d fo r specific neocortica l layer(s). Thus, cell cycle number, cell cycle length, Q , an d laye r destination are linked to one anothe r durin g normal development . (Source: Base d on data o f Takahashi et al., 1999 ; Tarili et al., 2005)
layer wa s the n develope d b y Takahash i an d col leagues (1999) . Theoretically , neuron s produce d a t any time point during the neurogenetic sequenc e ca n have som e probabilit y of occupying an y neocortica l layer. I n reality , however , durin g norma l develop ment neuron s generate d durin g cel l cycl e 1 hav e
nearly a 100 % probabilit y of occupying laye r VI an d 0% probability of occupying layer II—III, and neuron s generated durin g cel l cycl e 1 1 (th e fina l cel l cycle ) have a near 100 % probability of occupying laye r II—III and 0 % probabilit y of occupyin g laye r VI . Sinc e a given cell cycle number is associated wit h given values
CELL PROLIFERATION 1 7 of Q, anothe r wa y of interpreting these finding s i s that the probability that a cell arising from a given cell cycle will occupy a specific laye r is tightly linked t o the val ues of Q. Lower Q values predict destination to deeper layers and higher values predict destination t o more superficial layers . What factors set the probabilit y values? Overexpression o f the cd k inhibito r p27 kiP* i n th e PVE increases Q, and that the neurons produced during the cell cycles with the experimentally elevated Q values assum e superficia l lamina r position s tha t would be appropriate for the higher valu e of Q (Taru i et al. , 2005) . Therefore , Q an d lamina r destinatio n appear t o b e highl y correlated . Also , thes e finding s suggest that p27 klP* expression and activit y play a role in settin g the value s of Q. Recen t dat a sho w that an other cdk inhibitor , p21, i s also involved i n cell cycl e exit (Siegenthale r an d Miller , 2005) . Furthermore, a variety of genetic an d environmenta l factors , such as transcription factors , growt h factors , an d neurotrans mitters, influenc e intracellula r p27 kiPJ an d p21 wofl content. Th e combine d action s o f these factor s ma y regulate Q and , therefore , neocortica l neurona l fat e during normal development . The discussio n abov e pertains directl y to the regu lation o f cel l proliferatio n i n th e neocortica l PVE . Neocortical neuron s aris e not only from th e neocorti cal PVE but also from the proliferative cells in the GE . Neocortical PV E i s the sourc e o f neocortica l (gluta matergic) projection neurons (PNs) , which constitut e 70%-90% o f al l neocortica l neuron s (Peter s e t al , 1985; Re n e t al, 1992 ; Beaulieu , 1993) . I n rodents , the majorit y o f GABAergi c loca l circui t neuron s (LCNs) o f th e cerebra l cortex , whic h constitut e 10%-30% o f all neocortica l neurons , i s produced i n the media l an d cauda l GE s o f th e basa l forebrai n (Anderson e t al, 1997a ; Tamamaki e t al, 1997 ; Lavdas et al, 1999 ; Powel l e t al., 2001; Nery et al., 2002; Ang et al, 2003). These LCNs arrive in the cerebra l cortex via tangential migrator y pathways. In primates , however, i t appear s tha t mos t GABAergi c LCN s o f the cerebra l corte x derive from th e neocortica l PV E and only a minority come from th e GÈ (Letinic et al., 2002). Although neocortica l PN s an d LCN s ar e pro duced i n different locations , bot h types of neurons located i n th e sam e neocortica l laye r appea r t o b e produced o n the same day , at least i n rodents (Miller , 1985, 1988b ; 1999 ; Fairé n e t al , 1986 ; Goba s an d Fairén 1988 ; Valcanis and Tan , 2003). Neocortical gli a ar e generate d i n th e SP P (Smart, 1961 ; Smar t an d LeBlond , 1961 ; L e Vine
and Goldman , 1988a , 1988b ; Levison and Goldman , 1993). One notabl e exceptio n to this pattern is that of radial glia , which commonl y hav e cel l bodie s i n th e PVE, an d may undergo transformation into astrocytes near th e en d o f th e neuronogeneti c epoc h (Voigt , 1989; Takahash i e t al , 1990 ; Misso n e t al , 1991 ; Miller an d Robertson , 1993) . A distinguishable SP P (SZ) appear s i n th e neocortica l proliferativ e regio n soon afte r th e first cortical neuron s ar e generated, b y G13 i n th e mous e (Miller , 1989 ; Takahash i e t al , 1995). At this time, th e siz e of the SP P is <10% of the total neocortica l precurso r poo l (th e PV E bein g th e dominant population) , bu t th e SP P size increase s t o nearly 50 % until abou t G16 . Thus, a t late r stage s of gestation, a s th e PV E wane s th e SP P become s th e dominant population . Th e cel l cycl e lengt h o f th e SPP doe s no t appea r t o chang e systematicall y wit h age an d remain s relativel y constan t a t aroun d 1 5 hours, durin g th e interva l G1 3 t o G1 6 (Takahash i et al., 1995) . The SP P may also contain a population of precursor cell s that aris e from th e PV E an d "wait " in th e S Z for varying lengths o f time (u p to 48 hours) prior t o producin g daughte r cell s tha t differentiat e into neuron s (Baye r and Altman, 1991 ; Miller, 1999 ; Noctoretal, 2004) .
CELL CYCLE KINETIC S AND NEUROGENESI S IN THE NEOSTRIATUM
Unlike the cerebra l cortex , th e neostriatu m i s a non laminar structure . I t consist s o f the caudat e nucleu s and th e putame n an d i t i s th e inpu t cente r o f th e basal ganglia . I n histologica l section s o f th e roden t brain i t i s difficul t t o distinguis h th e boundar y be tween th e caudate nucleu s an d the putamen, makin g the ter m neostriatum o r caudoputamen particularl y useful. Nearl y 90 % o f neostriata l neuron s ar e GABAergic projectio n neuron s an d th e remainin g cells ar e cholinergi c LCN s (Gerfe n an d Wilson , 1996). Neostriata l projectio n neuron s ar e generate d in th e latera l GE (Hewitt , 1958 ; Smart , 1976 ; Smar t and Sturrock , 1979 ; Lammer s e t al, 1980 ; Fentres s et al., 1981) , and the LCN s are generated i n the medial G E o r th e preoptic/anterio r entopeduncula r ar eas (Marin et al, 2000). The latera l G E consist s of a larger SP P tha n tha t o f the neocortica l neuroepithe lium. Th e SP P i n th e latera l G E i s establishe d a s early a s Gil i n th e mous e (Bhide , 1996 ; Shet h an d
18 NORMA L DEVELOPMENT Bhide, 1997 ) (Fig . 2-2) . Therefore , th e SP P i s likely to b e a majo r sourc e o f neurons o f the neostriatum . This findin g concur s wit h tha t i n th e neocorte x (se e Chapter 11) . Studie s o n th e Distalless-relate d tran scription factor s dlxl, dlx2, an d dlxS, whic h regulate cell proliferatio n and migratio n i n th e GE , confir m the origi n of striatal projection neuron s from th e SP P of th e G E (Anderso n e t al, 1997b ; Stenma n e t al. , 2003). Furthermore , analyse s o f transgeni c mic e show that the radia l glia i n the PV E o f the latera l an d medial GE s giv e ris e t o nearl y all o f th e gli a i n th e neostriatum and onl y to a subset of LCNs (parvalbumin an d Er81-positiv e LCNs). Two studies using S-phase labelin g methods com parable t o thos e use d fo r th e neocortica l PV E esti mated th e cel l cycl e parameters and cel l outpu t fro m the PV E o f the latera l G E (Bhide , 1996 ; Shet h an d Bhide, 1997) . The cel l cycl e wa s longer an d th e val ues o f Q wer e greate r i n th e latera l G E o f mice o n Gil an d G12 compared t o the corresponding parameters i n the neocortica l PVE . Estimatio n o f cell cycl e kinetics of the PV E o f the latera l GE a t later stages of development i s complicated b y th e fac t tha t durin g the late r developmenta l stage s thi s regio n acquire s migrating cell s produce d i n the adjacen t media l G E (Anderson et al., 2001). The strikin g structura l and functiona l complexity of th e neostriatu m (Graybiel , 1990 ; Gerfen , 1992 ) has le d t o a numbe r o f investigation s of the tim e o f generation o f neostriata l neurons . Earl y studie s fo cused o n the tim e of generation o f neurons destine d for th e patc h (striosome ) an d matri x compartments . These can b e identified on the basi s of distribution of opioid receptor s o r neuropeptide conten t of the neu rons. Neuron s destine d fo r th e patc h compartmen t are generate d earlie r than thos e destine d fo r the ma trix i n rodents , carnivores , and primate s (Bran d an d Rakic, 1979 ; Graybie l an d Hickey , 1982 ; Fishel l an d van der Kooy, 1987 ; Fishel l e t al, 1990; Son g and Harlan, 1994) . Other studies, which examined the time of generation o f neostriata l neuron s regardles s o f loca tion o f a neuron withi n the patc h o r matrix compartments, foun d some overla p in th e tim e o f generation of PN s an d LCN s (Bran d an d Rakic , 1979 ; Fernan dez et al, 1979; Bayer , 1984). In rodents, striatal neu rons containing different type s of neurotransmitters or neuropeptides ar e generate d a t distinc t period s o f neurogenesis (Semb a e t al. , 1988 ; Sadiko t an d Sas seville, 1997) . Neostriata l neurogenesi s als o follow s spatiotemporal gradient s (Fernande z e t al. , 1979 ;
Marchand an d L a joie, 1986 ; Bayer and Altman, 1987 ) that ar e les s systematic than th e transvers e and radial gradients definin g neocortica l neuronogenesis . I n fact, gradient s o f neuronogenesi s ar e difficul t t o de fine in nonlaminar structures suc h a s the neostriatu m (Bayer and Altman, 1987) .
NEUROTRANSMITTERS AN D
CELL PROLIFERATION
Cell proliferatio n i s shape d b y a variet y of environ mental factor s suc h a s growth factor s an d neurotrans mitters. Growth factors , as the nam e indicates, tend t o be growth-promotin g agent s an d thei r influence s o n cell proliferatio n are no t unexpected . Som e growt h factors, such as transforming growth factor (3 , however, have a negative effec t o n cel l proliferation (see Chapter 11) . Neurotransmitter s hav e well-characterize d functions a t the synaps e i n the matur e brain. Neuro transmitters and thei r receptors appear in the nervous system earl y i n th e feta l period , befor e synapti c contacts develop . Thus, it can be inferred that neuro transmitters influenc e developmental processes . Non vesicular transpor t an d releas e o f neurotransmitter s (Démarque e t al. , 2002 ) an d paracrin e mechanism s for neurotransmitte r receptor activation (Owen s et al., 1999) hav e bee n propose d i n th e feta l brain . Suc h mechanisms ar e distinc t fro m thos e use d b y neuro transmitters i n th e matur e brain , a s are the composi tion an d activit y o f neurotransmitte r receptors . Fo r example, GAB A receptors i n th e feta l brai n diffe r i n their subunit composition, affinity , sensitivity , and sig nal transductio n mechanism s relativ e to thei r coun terparts i n th e matur e brai n (Owen s an d Kriegstein , 2002). Thus, a rol e fo r neurotransmitters in th e feta l brain tha t ma y b e separat e fro m thei r rol e a t th e synapse i n th e matur e brai n appear s likel y (Lander , 1988; Levit t et al, 1997 ; Nguye n e t al, 2001; Owen s and Kriegstein , 2002; Ohtani e t al, 2003). The influ ence of dopamine, GABA, and glutamate o n cell pro liferation an d neurogenesi s i n th e neocorte x an d th e neostriatum is discussed below . Dopamine Dopamine appear s in the developin g mouse brai n as early as G13 (Ohtan i e t al., 2003) . The cerebra l cor tex an d th e neostriatu m expres s amon g th e highes t amounts o f dopamin e receptor s i n th e feta l brai n
CELL PROLIFERATIO N 1 9 (Sales e t al , 1989 ; Guennou n an d Bloch , 1993 ; Schambra e t al, 1994 ; Bakowsk a and Morrell , 1995 ; Jung and Bennett , 1996 ; Dia z e t al., 1997 ; Shearma n et al., 1997 ; Ohtani et al., 2003). Dopaminergic axons originating in the midbrai n penetrat e th e VZ and S Z of th e prefronta l cortex an d latera l G E (precurso r of the neostriatum ) o f the mous e brai n a s early as G13, and growt h cone s of these axons are i n close proxim ity t o PV E an d SP P cell s i n thes e region s (Ohtan i et al., 2003; Popolo e t al., 2004) . Dopamine recepto r activatio n influences cell pro liferation i n th e latera l GE an d th e dorsomedia l pre frontal corte x (PFC) . I n th e latera l GE , Dl-lik e receptor activatio n reduce s entr y int o S (i.e. , an an timitogenic effect ) an d D2-lik e receptor activatio n in creases th e Gl/ S transitio n (i.e. , a mitogeni c effect ) (Zhang and Lidow, 2002 ; Ohtani et al, 2003 ; Popol o et al, 2004 ; Zhang et al, 2005) . Dopamine itself produces Dl-lik e effects , presumabl y becaus e o f th e
preponderance o f Dl-lik e bindin g site s i n th e feta l brain (Ohtan i e t al, 2003) . Dopamine recepto r acti vation influence s cel l proliferatio n i n th e neuroep ithelium o f the PF C i n a manner comparabl e t o tha t in the lateral GE . Activating dopamine receptor s differentiall y affect s precursor population s i n th e V Z an d S Z (Fig . 2-5) . Precursor cell s i n th e V Z respon d predominantl y t o Dl-like receptor activation , whereas the precursors in the S Z respond t o D2-like recepto r activatio n (Ohtani et al, 2003 ; Popol o e t al, 2004) . VZ cells i n the lat eral ganglionic region ar e more responsiv e to Dl-lik e receptor activatio n tha n thei r counterpart s i n th e PFC; a large r dos e o f th e Dl-lik e recepto r agonis t SKF 8129 7 is required t o elici t a significant respons e from th e PF C (Popol o e t al , 2004) . Furthermore , D2-like recepto r activatio n di d no t produc e change s in th e proliferatio n o f precursor cel l i n the neocorti cal VZ, althoug h i t produced effect s i n the V Z o f the
FIGURE 2- 5 Schemati c representatio n o f distributio n o f Dl-lik e an d D2-lik e receptors (R) . Dl-R and D2- R i n the ventricular an d subventricula r zone s (V Z and SZ , respectively ) of the telencepahli c neuroepitheliu m (A ) and th e effect s of dopamine recepto r activatio n on cel l proliferatio n (B ) are shown. A . On th e basis o f dat a o n incorporatio n o f th e S-phas e marke r bromodeoxyuridin e (BrdU), precurso r cell s i n th e V Z appea r t o respon d t o Dl- R activatio n t o a greater extent than D2- R activation , whereas the precursor cells in the S Z have an opposite respons e (Ohtan i e t al, 2003 ; Popolo e t al, 2004) . B. Activation of Dl-R decrease s th e Brd U labeling index , which i s a reflection o f a decrease i n the relativ e proportions of proliferating cells entering S phase. Activation of D2R produces th e opposit e effect (i.e. , increase s Brd U labelin g index) . Dopamine produces effect s simila r to thos e produce d b y Dl-R activation . (Source: Modi fied from wor k by Popolo e t al, 2004) .
20 NORMA L DEVELOPMEN T lateral ganglioni c region. Thus , significan t regiona l variation exist s in th e responsivenes s of progenitors i n the neuroepithelia l domain s of the dorsa l and ventra l forebrain of the mouse fetus. This pattern likel y reflects variation i n th e relativ e abundanc e o f dopamin e re ceptor bindin g site s or differences i n signa l transduction mechanisms . The Dl-lik e famil y o f dopamin e receptor s i s coupled to G proteins, which activate adenylate cyclase and increase intracellula r cyclic adenylate monophosphat e (cAMP) concentration s (Monsm a e t al. , 1990) . In creased intracellula r cAM P conten t leads t o increase s in the amount s of the Cd k inhibito r p27Kl P ] , which in turn inhibit s entry int o S (Kat o e t al. , 1994 ; L u an d DiCicco-Bloom, 1997) . Thus , th e antimitogeni c ef fects o f Dl-lik e recepto r activatio n ma y b e mediate d via th e cAMP-p27 KlP1 pathway. Other report s suggest that th e effect s o f Dl-lik e recepto r activatio n o n neocortical cel l proliferation is mediated vi a a cAMP independent pathway involving Raf-1, a component o f the recepto r tyrosin e kinase-mitogen-activate d kinas e pathway (Zhang et al., 2005). Therefore, dopamin e re ceptor activation may activate multiple second messen ger systems in neuroepithelial cells . GABA GABA receptors appear early in the neuroepitheliu m and M Z o f the feta l brai n (Huntle y et al, 1988 ; Lo Turco and Kriegstein , 1991 ; LoTurco e t al., 1995 ; Behar e t al., 1998 ; Hayda r et al., 2000). GABA receptors in th e feta l brai n ar e excitator y an d influenc e cell proliferation i n the VZ and SZ . Early studies indicate that GABA A recepto r activatio n decrease d entr y int o S (antiproliferative ) i n neocortica l precurso r cell s (LoTurco e t al., 1995) . These effects appea r to be me diated b y endogenously released GABA , as inhibition of the GABA A receptor s increase d Gl - to S entr y i n expiants o f neocortica l tissu e take n fro m ra t fetuse s (LoTurco e t al, 1995) . The effect s o f GABA A recep tor inhibition were developmentally regulate d i n tha t the effect s wer e pronounce d a t G19 , bu t no t a t G14-G16 (LoTurc o e t al , 1995) . Presumably , thi s finding reflects maturational changes i n the activity of the receptors . Th e effect s o f GABA A recepto r activa tion, lik e th e effect s o f dopamine recepto r activation , differ betwee n th e VZ and the SZ . GABAA receptor activation increase s Gl - t o S entr y i n th e V Z an d de creases i t i n th e S Z (Hayda r e t al , 2000) . Th e
intracellular signalin g cascad e tha t mediate s th e ef fects o f GAB A recepto r activatio n o n th e cel l cycl e machinery is not fully understood . The effect s ma y be secondary t o suppressio n o f the actio n o f mitogeni c factors suc h a s basic fibroblast growth factor (Antono poulosetal, 1997) . Glutamate Glutamate recepto r activatio n influences the prolifera tion o f precursor cell s i n th e cerebra l corte x an d th e neostriatum. Activatio n o f bot h N-methyl-D-aspartat e (NMDA) and a-amino-3-hydroxy-5-methyl-4-isoxazol e propionate (AMPA)/kainat e receptors influence s Glto-S entry in the precursor cells . Early studies indicate d that activatio n of AMPA/kainate receptors b y endoge nous glutamate decrease d entr y into S in the neocorti cal V Z (LoTurc o e t al. , 1995 ; Hayda r e t al , 2000) . Activation o f AMPA/kainit e receptors , however , pro duced th e opposit e effect s i n the S Z by increasing en try int o S (Hayda r e t al, 2000) . Although glutamat e receptor activatio n als o influence d proliferatio n o f neostriatal precursors , th e effect s wer e mediate d vi a the NMD A recepto r famil y rathe r tha n throug h th e AMPA/kainate receptor s (Lu k e t al. , 2003 ; Lu k an d Sadikot, 2004) . NMD A recepto r activatio n promote d entry into S among neostriata l precurso r cell s (Sadiko t et al, 1998 ; Luk et al., 2003; Luk and Sadikot , 2004).
CONCLUSIONS
The discussio n abov e presents a n overvie w of the ef fects o f neurotransmitters on th e proces s of cell prolif eration. A summary of the effect s o f dopamine, GABA , and glutamat e o n cel l proliferatio n in th e neocorte x and neostriatu m o f the developin g brain i s presented in Table 2-1 . Thes e data sho w that imbalanc e i n the neurochemical environmen t o f the developin g brai n can alte r th e proces s o f generatio n o f neuron s an d glia. Although th e directio n of the effect s ma y vary depending o n th e recepto r typ e activate d an d th e pre cursor populatio n involve d (i.e. , increas e o r decreas e in proliferation), it is reasonable t o assume tha t expo sure o f proliferatin g precurso r cell s t o therapeuti c or illici t drug s tha t targe t an d produc e imbalance s in th e neurotransmitte r system s ca n produc e signifi cant change s i n th e numbe r an d phenotyp e o f cell s generated.
CELL PROLIFERATION 2 1 TABLE 2- 1 Summar y of effects o f dopamine, GABA, and glutamat e receptor activation on S-phas e labeling indices in neocortical and neostriata l precursor populations of the feta l brain Dopamine
Neocortex
Glutamate
Receptor Subtype
Precursor Population
Dl
D2
GABAA
NMDA
AMPA/Kainate
VZ
Decrease*
No effect 1
No effect -
sz
Decrease1
Increase *
Increase** Decrease ft Decrease**
Increase** Decrease**-"'** Decrease** No effect * *
Decrease f f Decrease n
Increase fî Increase u
Not known Not known
Increase1 f No effec t
VZ
Neostriatum
GABA
sz
No effect * *
Noeffect u No effect 1 '
*Zhang and Lidow (2002); Popolo et al. (2004). f
Popolo et al. (2004).
'Ohtanietal. (2003). **Haydar et al. (2000); Owens and Kriegstei n (2002) . M
LoTurcoetal. (1995).
-Sadikot et al. (1998); Luk et al. (2003); Luk and Sadiko t (2004).
Abbreviations AMPA a-amino-34iydroxy-5-methyl-4-isoxazol e propionate
SZ subventricula r zone VZ ventricula r zon e
BrdU Bromodeoxyuridin e
References
e AMP cycli c adenylate monophosphat e
Altman J, Bayer SA (1990) Migration and distributio n of two population s of hippocampa l granule cell precursors durin g the perinata l an d postnata l periods . J Comp Neurol 301:365-381 . Anderson SA , Eisensta t DD , Sh i L , Rubenstei n JL R (1997a) Interneuron migration from basa l forebrai n to neocortex : dependence o n dix genes . Scienc e 278:474-476. Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL (2001) Distinc t cortical migrations from th e media l and latera l ganglioni c eminences . Development 128:353-363. Anderson SA , Qi u MS , Bulfon e A , Eisensta t DD , Meneses J , Pederse n R , Rubenstei n JL R (1997b ) Mutations o f the homeobo x genes dlx-1 an d dlx-2 disrupt th e striata l subventricula r zon e an d differ entiation o f lat e bor n striata l neurons . Neuro n 19:27-37. Ang ES Jr , Haydar TF, Glunci c V, Rakic P (2003 ) Fourdimensional migrator y coordinate s of GABAergi c interneurons i n th e developin g mous e cortex . JNeurosci 23:5805-5815. Angevine JB, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of the cerebral cortex in the mouse. Nature 192:766-768.
Cdk cyclin-dependen t kinas e CNS centra i nervou s syste m CP cortica l plat e G gestationa l day GABA y-aminobutyri c acid GÈ ganglioni c eminenc e [3H]thymidine [
3
H]dT
IHZ intrahila r zon e IZ intermediat e zon e LCN loca l circui t neuro n MZ margina l zone NMDA N-methyl-D-aspartat e PFC prefronta l cortex PN projectio n neuro n PVE pseudostratifie d ventricula r epitheliu m Q probabilit y of cell cycle exi t Rb retinoblastom a protei n SPP secondar y proliferative populatio n
22 NORMA L DEVELOPMEN T Angevine J B Jr (1965) Time of neuron origi n i n the hip pocampal region . An autoradiographic study in th e mouse. Exp Neurol Supp l 2:1—70. AntonopoulosJ, Pappas IS , Parnavelas JG (1997 ) Activation o f the GABA A recepto r inhibit s th e prolifera tive effects o f bFGF in cortical progenito r cells . Eur JNeurosci 9:291-298. Bakowska JC , Morrel l J I (1995 ) Quantitativ e autoradi ographic analysi s of Dl and D 2 dopamine receptor s in ra t brain i n earl y and lat e pregnancy . Brai n Res 703:191-200. Bayer SA (1982) Changes i n the total number o f dentate granule cells in juvenil e and adul t rats: a correlate d volumetric an d 3 H-thymidine autoradiographi c study. Exp Brain Res 46:315-323. (1984) Neurogenesi s i n th e ra t neostriatum . Int l JDevNeurosci 2:163-175. Bayer SA , Altman J (1987 ) Direction s i n neurogeneti c gradients and pattern s of anatomical connection s i n the telencephalon. Pro g Neurobiol 29:57-106. (1991) Neocortical Development. Rave n Press , New York . Beaulieu C (1993 ) Numerica l dat a o n neocortica l neu rons i n adul t rat , wit h specia l referenc e t o th e GABA population. Brai n Res 609:284-292. Behar TN , Schaffne r AE , Scot t CA , O'Connel l C , Barker J L (1998 ) Differentia l respons e o f cortica l plate an d ventricula r zone cell s t o GAB A as a mi gration stimulus . J Neurosci 18:6378-6387 . Berry M , Roger s A W (1965 ) Th e migratio n o f neurob lasts i n th e developin g cerebra l cortex . J Anat 99 : 691-709. Berry M, Roger s AW, Eayres JT (1964) Pattern o f cell migration durin g cortica l histogenesis . Natur e 203 : 591-593. Bhide P G (1996 ) Cel l cycl e kinetic s i n th e embryoni c mouse corpu s striatum . J Comp Neuro l 374:506 522. Bittman K, Owens DF , Kriegstei n AR, LoTurco J J (1997) Cell couplin g an d uncouplin g i n th e ventricula r zone o f developing neocortex. J Neurosci 17:7037 7044. Boulder Committee (1970) Embryonic vertebrat e nervou s system: revised terminology. Anat Ree 166:257-262 . Brand S , Rakic P (1979) Genesis o f the primat e neostriatum: [ 3 H]thymidine autoradiographi c analysi s o f the tim e o f neuro n origi n i n th e rhesu s monkey . Neuroscience 4:767-778. Cai L , Hayes NL, Nowakowsk i RS (1997a) Loca l homo geneity o f cel l cycl e lengt h i n developin g mous e cortex. J Neurosci 17:2079-2087 . (1997B) Synchrony of clonal cell proliferation and contiguity o f clonall y relate d cells : productio n o f mosaicism in the ventricula r zon e of developin g mouse neocortex . J Neurosci 17:2088-2100 .
Cameron HA , Woolle y CS , McEwe n BS , Gould E (1993) Differentiatio n o f newl y born neuron s an d glia i n th e dentat e gym s o f th e adul t rat . Neuro science 56:337-344. Caviness V S J r (1982 ) Neocortica l histogenesi s i n nor mal an d reele r mice : a developmental stud y base d upon (3H ) thymidin e autoradiography . De v Brai n Res 4:293-302. Caviness V S Jr , Got o T , Taru i T , Takahash i T , Bhid e PG, Nowakowsk i RS (2003) Cel l output , cel l cycl e duration and neurona l specification: a model o f integrated mechanism s o f th e neocortica l prolifera tive process. Cereb Cortex 13:592-598 . Caviness VS Jr, Sidman R L (1973) Time of origin of corresponding cel l classes in the cerebral corte x o f normal an d reele r mutan t mice : a n autoradiographi c analysis. J Comp Neurol 148:141-152 . Caviness V S Jr , Takahash i T , Miyam a S , Nowakowsk i RS, Delalle I (1996) Regulatio n o f normal proliferation i n the developin g cerebru m potentia l action s of trophic factors . Exp Neurol 137:357-366 . Caviness V S Jr , Takahash i T , Nowakowsk i R S (1995 ) Numbers, tim e an d neocortica l neuronogenesis : a general developmenta l an d evolutionar y model . Trends Neurosc i 18:379-383 . (2000) Neuronogenesi s an d th e earl y event s o f neocortical histogenesis . Result s Pro b Cel l Diffe r 30:107-143. Cheng M , Olivie r P , Dieh l JA , Fero M , Rousse l MF , Roberts JM , Sher r C J (1999 ) Th e p21(Cipl ) an d p27(Kipl) CD K 'inhibitors ' ar e essentia l activator s of cycli n D—dependen t kinase s i n murin e fibrob lasts. EMBOJ 18:1571-1583 . Gobas A, Fairén A (1988) GABAergi c neuron s o f differ ent morphologica l classe s ar e cogenerate d i n th e mouse barre l cortex. J Neurocytol 17:511-519 . Delalle I , Takahashi T , Nowakowsk i RS , Tsai LH , Cavi ness VS Jr (1999) Cyclin E-p2 7 opposition and regu lation of the Gl phase of the cell cycle in the murin e neocortical PVE : a quantitative analysi s of mRNA in situ hybridization. Cereb Corte x 9:824-832. Démarque M , Repres a A, Becq H , Khalilo v I, Ben-Ari Y, Aniksztejn L (2002 ) Paracrin e intercellula r com munication b y a Ca 2+- an d SNARE-independen t release of GABA and glutamat e prio r to synapse formation. Neuro n 36:1051-1061 . Diaz J , Ridra y S , Migno n V , Griffo n N , Schwart z JC , Sokoloff P (1997) Selective expressio n of dopamin e D5 recepto r mRN A i n proliferativ e zone s durin g embryonic development o f the ra t brain. J Neurosci 17:4282-4292. Dyson N (1998 ) Th e regulatio n o f E2 F b y pRB-famil y proteins. Genes Dev 12:2245—2262 . Fairén A , Gobas A, Fonseca M (1986 ) Times o f genera tion of glutamic acid decarboxylase immunoreactive
CELL PROLIFERATIO N 2 3 neurons i n mous e somatosensor y cortex . J Com p Neurol251:67-83. Fentress JC, Stanfiel d BB , Cowan W M (1981 ) Observa tions o n th e developmen t o f the striatim i i n mic e and rats . Anat Embryol 163:275-298 . Ferguson KL , Callagha n SM , O'Har e MJ , Par k DS , Slack R S (2000 ) Th e Rb-CDK4/ 6 signalin g path way is critical i n neural precurso r cel l cycl e regula tion. J Biol Chem 275:33593-33600 . Fernandez V , Bravo H, Kulji s R, Fuentes I (1979) Autoradiographic study of the developmen t o f the neostriatiim in the rabbit. Brain Behav Evol 16:113-128 . Fishell G , Rossan t J, van de r Koo y D (1990 ) Neurona l lineage in chimeric mouse forebrain are segregated between compartment s an d in the rostrocaudal and radial planes. Dev Biol 141:70-83. Fishell G, van der Kooy D (1987 ) Pattern formation i n the striatimi: developmental change s i n th e distribution of striatonigral neurons. J Neurosci 7:1969-1978. Frolov MV, Huen DS, Stevau x O, Dirnov a D , BalczarekStrang K , Elsdon M , Dyso n N J (2001 ) Functional antagonism betwee n E2 F famil y members . Gene s Dev 15:2146-2160 . Fujita S (1960 ) Mitoti c patter n an d histogenesi s o f th e central nervous system. Nature 185:702-703 . Fujita S , Miyak é S (1962 ) Selectiv e labelin g o f cel l groups and it s application t o cell identification . Exp Cell Res 28:158-161. Gage FH , Kemperman n G , Palme r TD , Peterso n DA , Ray J (1998 ) Multipoten t progenito r cell s i n th e adult dentate gyms. J Neurobiol 36:249-266 . Gerfen C R (1992 ) The neostriata l mosaic: multipl e lev els o f compartmenta l organization . Trend s Neu rosci 15:133-139 . Gerfen CR , Wilso n C J (1996 ) Th e basa l ganglia . In : Swanson L , Bjòrklun d A , Hôkfel t T (eds) . Handbook o f Chemical Neuroanatomy, Vol. 12 , Integrated Systems i n th e CNS , Part III. Elsevier . Amsterdam, pp 371-468. Graybiel AM (1990) Neurotransmitters and neuromodu lators i n th e basa l ganglia . Trend s Neurosc i 13 : 244-254. Graybiel AM , Hicke y T L (1982 ) Chemospecificit y o f ontogenetic unit s in the striatimi : demonstration by combining pHJthymidin e neuronograph y an d his tochemical staining . Pro c Nat i Aca d Sc i US A 79 : 196-202. Guennoun R , Bloc h B (1993 ) D 2 dopamin e recepto r gene expressio n i n th e ra t striatu m durin g on togeny: a n i n sit u hybridizatio n study . De v Brai n Res 60:79-87. Haydar TF, Wan g F , Schwartz ML , Raki c P (2000) Differential modulatio n o f proliferation in the neocor tical ventricular and subventricular zones. J Neurosci 20:5764-5774.
Hayes NL , Nowakowsk i R S (2000 ) Exploitin g th e dynamics o f S-phas e tracer s i n developin g brain : interkinetic nuclear migration for cells entering versus leaving the S phase. De v Neurosci 22:44-55 . Hewitt W (1958 ) Th e developmen t o f the huma n cau date and amygdaloi d nuclei . J Anat 92:377 . His W (1887) Zur Geschichte des menschlichen Rueckenmarks un d de r Nervenwurzeln . Ab h an d I g Saechs Ges Wissensch Mat h Phy s Kl 13:479-513 . Hockfield S , McKay R D (1985 ) Identificatio n o f majo r cell classe s i n th e developin g mammalia n nervou s system. J Neurosci 5:3310-3328 . Huntley GW , Hendr y SH , Killacke y HP, Chalupa LM , Jones EG (1988 ) Temporal sequenc e o f neurotransmitter expressio n b y developin g neuron s o f feta l monkey visual cortex. Brain Res 471:69-96. Jung AB , Bennet t J P J r (1996 ) Developmen t o f striatal dopaminergic function. 1 . Pre- and postnata l development o f niRNAs and bindin g sites for striatal Dl (Dia) an d D 2 (D2a ) receptors. De v Brain Res 94: 109-120. Kato J-Y , Matsuoka M , Polya k K, Massagué J , Sher r C J (1994) Cycli c AMP-induced Gl phas e arrest mediated b y an inhibito r (p27kipl ) o f cyclin-dependent kinase 4 activation. Cell 79:487-496. Kempermann G , Jessberge r S, Steiner B , Kronenberg G (2004) Milestone s o f neurona l developmen t i n the adul t hippocampus . Trend s Neurosc i 27:447 — 452. LaBaer J, Garrett M , Stevenson L , Slingerland J , Sandhu G, Chou H, Harlow E (1997) New functional activities fo r th e p2 1 famil y of CDK inhibitors . Gene s Dev 11:847-862. Lammers GJ, Gribnau AAM, Ten Donkelaa r H J (1980) Neurogenesis in the basa l forebrain in the Chinese hamster (Cricetululus griseus). II . Sit e o f neuro n origin: morphogenesi s o f ventricula r ridges . Ana t Embryol 158:193-211 . Lander J M (1988 ) Neurotransmitter s a s morphogens . Prog Brain Res 73:365-387 . Lavdas AA , Grigorio u M , Pachni s V , Parnavela s J G (1999) Th e media l ganglioni c eminence give s rise to a population o f early neurons i n th e developin g cerebral cortex. J Neurosci 99:7881-7888. Letinic K , Zoncu R , Rakic P (2002 ) Origi n o f GABAergic neuron s i n th e huma n neocortex . Natur e 417 : 645-649. Le Vine SM , Goldma n J E (1988a ) Embryoni c diver gence o f oligodendrocyte an d astrocyt e lineages i n developing rat cerebrum. J Neurosci 8:3992-4006. (1988b) Spatia l and tempora l pattern s of oligo dendrocyte differentiatio n i n ra t cerebru m an d cerebellum. J Comp Neurol 277:441-455 . Levison SW , Goldman J E (1993 ) Bot h oligodendrocyte s and astrocyte s develo p fro m progenitor s i n th e
24 NORMA L DEVELOPMENT subventricular zone of postnatal rat forebrain. Neu ron 10:201-212 . Levitt P, Harvey JA, Friedman E, Simansky K, Murphy E H (1997) New evidence for neurotransmitter influences on brain development. Trends Neurosci 20:269-274. LoTurco JJ , Kriegstei n A R (1991 ) Cluster s o f couple d neuroblasts i n embryoni c neocortex . Scienc e 252 : 563-566. LoTurco }J , Owens DF, Heath MJS , Davis MBE, Krieg stein A R (1995 ) GAB A an d glutamat e depolariz e cortical progenitor cells and inhibi t DNA synthesis. Neuron 15:1287-1298 . Lu NR , DiCicco-Bloo m E (1997 ) Pituitar y adenylat e cyclase-activating polypeptid e i s a n autocrin e in hibitor o f mitosi s i n culture d cortica l precurso r cells. Proc Nati Acad Sc i USA 94:3357-3362. Luk KG , Kenned y TE , Sadiko t A F (2003 ) Glutamat e promotes proliferatio n of striatal neurona l progeni tors by an NMD A receptor-mediate d mechanism . J Neurosci 23:2239-2250 . Luk KG, Sadikot AF (2004) Glutamate and regulatio n of proliferation i n th e developin g mammalia n telen cephalon. De v Neurosci 26:218-228. Malatesta P , Hac k MA , Hartfus s E , Kettenrnan n H , Klinkert W, Kirchhof f F , Gotz M (2003 ) Neuronal or glia l progeny : regional differences i n radia l glia fate. Neuron 37:751-764 . Malatesta P, Hartfuss E , Gotz M (2000 ) Isolation of radial glial cells by fluorescent-activate d cel l sorting reveals a neuronal lineage. Development 127:5253-5263 . Marchand R , L a joie L (1986 ) Histogenesi s o f th e stri opallidal system in th e rat . Neurogenesis of its neurons. Neuroscience 17:573-590 . Marin O , Anderso n SA , Rubenstein J L (2000 ) Origi n and molecula r specificatio n o f striata l interneu rons. J Neurosci 20:6063-6076. Marin-Padilla M (1983 ) Structura l organizatio n o f th e human cerebra l corte x prio r t o th e appearanc e o f the cortical plate. Anat Embryol 168:21-40 . Miller MW (1985) Cogeneration o f retrogradely labele d corticocortical projectio n an d GABA-immunore active loca l circui t neuron s i n cerebra l cortex . Brain Res 355:187-192. (1988a) Effec t o f prenatal exposur e t o ethanol on the developmen t o f cerebra l cortex : I . Neurona l generation. Alcohol Clin Ex p Res 12:440-449. • (1988b ) Maturation o f ra t visua l cortex . IV . Gen eration, migration, morphogenesis and connectivity of a typicall y oriented pyramida l neurons. J Comp Neurol 274:387-405. (1989) Effect s o f prenatal exposure to ethanol o n neocortical development : II . Cel l proliferatio n in the ventricula r and subventricula r zones o f the rat . J Comp Neurol 287:326-338 .
— (1993 ) Migration o f cortical neurons i s altered by gestational exposur e t o ethanol . Alcohol Cli n Ex p Res 17:304-314 . (1999) Kinetic s of the migratio n of neurons to rat somatosensory cortex. Dev Brain Res 115:111-122. Miller MW , Kuhn P E (1995 ) Cell cycle kinetics in fetal rat cerebral cortex: effects o f prenatal treatment with ethanol assesse d by a cumulative labeling techniqu e with flo w cytometry . Alcoho l Cli n Ex p Re s 19 : 233-237. Miller MW , Nowakowsk i R S (1988 ) Us e o f bromod eoxyuridine-immunohistochemistry to examine th e proliferation, migratio n an d tim e o f origin o f cell s in the central nervou s system. Brain Res 457:44-52. (1991) Effec t o f prenatal exposur e t o ethano l o n the cel l cycl e kinetic s an d growt h fractio n i n th e proliferative zone s o f fetal ra t cerebral cortex . Alco hol Clin Exp Res 15:229-232. Miller MW , Robertso n S (1993 ) Prenata l exposur e t o ethanol alter s the postnatal developmen t an d trans formation o f radia l gli a t o astrocyte s in th e cortex . J Comp Neurol 337:253-266 . Misson J-P , Austin CP, Takahash i T, Cepk o CL , Cavi ness VS Jr (1991) The alignmen t of migrating neural cell s i n relatio n to th e murin e neopallial radial glial fiber system. Cereb Corte x 1:221—229 . Miyama S , Takahash i T , Got o T , Bhid e PG , Cavines s VS Jr (2001) Continuity with ganglionic eminenc e modulates interkineti c nuclea r migratio n i n th e neocortical pseudostratified ventricula r epithelium. Exp Neurol 169:486-495 . Monsma FJ, Mahan LC , McVirtie LD, Gerfen CR, Sib ley DR (1990 ) Molecular cloning and expressio n of a Dl dopamin e recepto r linked t o adenylyl cyclase activation. Proc Nati Acad Sci USA 87:6723-6727. Morgan D O (1997 ) Cyclin-dependen t kinases: engines, clocks, an d microprocessors . Ann u Re v Cell De v Biol 13:261-291 . Murray A, Hunt T (1993 ) The Cell Cycle. WH Freeman, New York. Murray AW (2004) Recyclin g th e cel l cycle : cyclin s revisited. Cell 116:221-234 . Nery S , Fishel l G , Corbi n J G (2002 ) Th e cauda l gan glionic eminenc e i s a source o f distinct cortica l an d subcortical cel l populations. Na t Neurosci 5:1279 1287. Nguyen L , Rigo JM, Roche r V , Belachew S, Malgrang e B, Register B, Leprince P , Moonen G (2001 ) Neu rotransmitters a s earl y signal s fo r centra l nervou s system development. Cel l Tissue Res 305:187-202 . Noctor SC , Flin t AC , Weissma n TA, Dammerman RS , Kriegstein A R (2001 ) Neurons derive d fro m radia l glial cells establish radial units in neocortex. Nature 409:714-720.
CELL PROLIFERATION 2 5 Noctor SC , Martinez-Cerden o V , Ivi c L , Kriegstei n AR (2004) Cortica l neuron s aris e i n symmetri c an d asymmetric divisio n zone s an d migrat e throug h specific phases . NatNeurosci 7:136-144. Ohtani N , Got o T , Waebe r C , Bhid e P G (2003 ) Dopamine modulate s cel l cycl e i n th e latera l ganglionic eminence. J Neurosci 23:2840-2850. Owens DF, Kriegstei n AR (2002) Is there more to GABA than synapti c inhibition ? Na t Re v Neurosc i 3 : 715-727. Owens DF , Liu X, Kriegstein AR (1999) Changing properties o f GABA(A ) receptor—mediate d signalin g during earl y neocortica l development . J Neuro physiol 82:570-583. Peters A, Kara DA , Harriman K M (1985 ) The neurona l composition o f are a 1 7 o f ra t visua l cortex . III . Numerical considerations . J Com p Neuro l 238 : 263-274. Popolo M , McCarth y DM , Bhid e P G (2004 ) Influence of dopaniine on precursor cell proliferation and differentiation i n th e embryoni c mous e telen cephalon. De v Neurosci 26:229-244. Powell EM , Mar s WM , Levit t P (2001 ) Hepatocyt e growth factor/scatte r facto r i s a motoge n fo r in terneurons migratin g from th e ventra l t o dorsa l telencephalon. Neuro n 30:79-89 . Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox an d othe r putativ e regulator y genes i n the embryoni c mous e forebrai n suggest s a neu romeric organization . Trend s Neurosc i 16 : 472-479. Rakic P (1972 ) Mode o f cell migratio n t o the superficial layers o f feta l monke y neocorte x J Com p Neuro l 145:61-84. Rakic P , Stensa s LJ , Sayr e E , Sidma n R L (1974 ) Computer-aided three-dimensiona l reconstructio n and quantitativ e analysi s o f cell s fro m seria l elec tron microscopi c montage s o f foetal monkey brain . Nature 250:31-34 . Ren JQ, Aika Y, Heizmann CW, Kosaka T (1992 ) Quantitative analysi s of neuron s and glia l cell s in the rat somatosensor y cortex , wit h specia l referenc e t o GABAergic neuron s an d parvalbumin-containin g neurons. Exp Brain Res 92:1—14. Ross M E (1996 ) Cel l divisio n an d th e nervou s system: regulating the cycl e fro m neura l differentiaitio n t o death. Trends Neurosc i 19:62-68. Rubenstein JL , Shimamur a K , Martine z S , Puelle s L (1998) Regionalizatio n of the prosencephali c neu ral plate. Annu Rev Neurosci 21:445-477. Sadikot AF , Burha n AM , Bélange r MC , Sassevill e R ( 1998) NMD A receptor antagonists influence early development o f GABAergi c interneuron s i n th e mammalian striatimi. Dev Brain Res 105:35—42 .
Sadikot AF , Sassevill e R (1997 ) Neurogenesi s i n th e mammalian neostriatu m an d nucleu s accumbens : parvalbumin-immunoreactive GABAergi c inter neurons. J Comp Neurol 389:193-211 . Sales N , Martre s MP , Bouthene t ML , Schwart z J C (1989) Ontogen y o f dopaminergic D 2 receptor s in the ra t nervou s system : characterizatio n an d de tailed autoradiographi c mappin g wit h [ 125I]iodosulpiride. Neuroscience 28:673-700 . Sauer F C (1936 ) Th e interkineti c migratio n o f embry onic epithelial nuclei . J Morphol 60:1—11 . Schambra UB , Dunca n GE , Brees e GR , Fornarett o MG, Caro n MG, Fremea u R T Jr (1994) Ontogeny of DIA and D 2 dopamin e recepto r subtype s i n ra t brain usin g in situ hybridization and receptor bind ing. Neuroscience 62:65-85 . Semba K , Vincen t SR , Fibige r H C (1988 ) Differen t times o f origi n o f cholin e acetyltransferase - an d somatostatin-immunoreactive neuron s i n th e ra t striatimi. J Neurosci 8:3937-3944. Shearman LP , Zeitzer J , Weaver DR (1997 ) Widesprea d expression o f functional Dl-dopamine receptor s i n fetal ra t brain. Dev Brain Res 102:105-115 . Sherr CJ , Robert s J M (1999 ) CD K inhibitors : positive and negativ e regulator s o f Gl-phas e progression . Genes De v 13:1501-1512 . Sheth AN, Bhide PG (1997 ) Concurrent cellula r outpu t from tw o proliferative population s i n th e earl y embryonic mous e corpu s striatimi . J Com p Neuro l 383:220-230. Sidman R L (1970) Autoradiographic methods an d prin ciples fo r stud y o f th e nervou s syste m wit h thymi dine-Hl In : Naut a WJH , Ebbesso n SO E (eds) . Contemporary Research Methods in Neuroanatomy. Springer, Ne w York, pp 252-274. Sidman RL , Miale IL, Feder N (1959 ) Cell proliferation and migratio n i n the primitiv e ependymal zone : an autoradiographic stud y o f histogenesi s i n th e ner vous system. Exp Neurol 1:322—333 . Siegenthaler JA , Miller M W (2005 ) Transforming growth factor pi promote r cel l cycl e exit through th e cyclin dependent kinos e inhibito r p2 1 i n th e developin g cerebral cortex . J Neurosci 25:8627-8636. Smart I H (1961 ) The subependyma l laye r of the mous e brain and it s cell production as shown by radioautography afte r thymidine-H 5 injection . J Comp Neu rol 116:325-347 . Smart IH , LeBlon d C P (1961 ) Evidenc e for division and transformations o f neurogli a cell s i n th e mous e brain, a s derive d fro m radioautograph y after injec tion of thymidine-Hl J Comp Neurol 116:349-367 . Smart IH M (1976 ) A pilo t stud y of cel l productio n b y the ganglioni c eminences of the developin g mous e brain. JAnat 121:71-84 .
26 NORMA L DEVELOPMEN T Smart IHM, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological change s durin g and subsequen t to the perio d of isocortical neuron production. J Anat 134:415-442 . Smart IHM , Sturroc k R R (1979) Ontogen y o f the neos triatum. In : Diva c I , Ober g R (eds) . The Neostriatum. Plenum Press , Oxford, pp 127—146 . Song DD , Harla n R E (1994 ) Genesi s an d migratio n pat terns of neurons formin g the patc h an d matri x com partments o f th e ra t striatimi . De v Brai n Re s 83 : 233-245. Stanfield BB , Cowan W M (1979 ) Th e developmen t o f the hippocampu s and dentat e gym s i n normal an d reeler mice. ] Comp Neuro l 185:423-459 . Stenman J, Toresson H, Campbell K (2003) Identification of two distinc t progenitor population s i n th e latera l ganglionic eminence: implication s for striatal and olfactory bulb neurogenesis. J Neurosci 23:167-174. Takahashi T, Cavines s VS Jr, Bhide P G (2002 ) Analysis of cell generation i n the telencephalic neuroepithelium. Methods Mo l Biol 198:101-113. Takahashi T, Goto T, Miyama S , Nowakowski RS, Caviness V S J r (1999 ) Sequenc e o f neuro n origi n an d neocortical lamina r fate: relatio n to cell cycle of origin i n th e developin g murin e cerebral wall . J Neu rosci 19:10357-10371 . Takahashi T , Misso n J-P , Cavines s V S Jr . (1990 ) Glia l process elongatio n an d branchin g i n th e develop ing murin e neocortex : a qualitativ e an d quantita tive immunohistochemica l analysis . J Com p Neurol 302:15-28 . Takahashi T , Nowakowsk i RS , Cavines s V S J r (1992 ) BUdR as an S-phas e marke r for quantitative studie s of cytokineti c behaviou r i n th e murin e cerebra l ventricular zone. J Neurocytol 21:185-197. (1993) Cel l cycle parameter s an d pattern s o f nuclear movemen t i n th e neocortica l proliferativ e zone of the feta l mouse . J Neurosci 13:820—833 . (1995) Earl y ontogeny o f the secondar y prolifera tive populatio n o f the embryoni c murin e cerebra l wall. J Neurosci 15:6058-6068 . (1996) The leavin g or Q fraction o f the murin e cerebral proliferativ e epithelium : a genera l mode l o f neocortical neueonogenesis . J Neurosc i 16:6183 — 6196.
(1997) The mathematic s o f neocortical neurono genesis. Dev Neurosci 19:17-22. Tamamaki N , Fujimor i KE , Takauj i R (1997 ) Origi n and rout e o f tangentially migrating neurons i n th e developing neocortica l intermediat e zone . J Neu rosci 17:8313-8323 . Tarui T, Takahashi T, Nowakowski RS, Hayes NL, Bhid e PG, Caviness VS (2005) Overexpression o f p27Kipl, probability o f cell cycl e exit , an d lamina r destina tion o f neocortica l neurons . Cere b Corte x 15 : 1345-1355. Valcanis H , Ta n S S (2003 ) Laye r specificatio n of trans planted interneuron s i n developing mous e neocor tex. J Neurosci 23:5113-5122. van Praa g H, Schiude r AF, Christie BR , Toni N , Palme r TD, Gag e F H (2002 ) Functiona l neurogenesi s i n the adult hippocampus. Natur e 415:1030-1034. Voigt T (1989 ) Development o f glial cells in the cerebral wall of ferrets: direct tracing of their transformatio n from radia l gli a int o astrocytes . J Com p Neuro l 289:74-88. Weissman T , Nocto r SC , Clinto n BK , Honig LS , Kriegstein AR (2003) Neurogenic radia l glial cells in rep tile, roden t an d human : fro m mitosi s to migration . Cereb Corte x 13:550-559 . Zhang L , Bai J, Undie AS, Bergson C, Lido w MS (2005 ) Dl dopamin e receptor regulation of the levels of the cell-cycle-controlling proteins , cycli n D , p2 7 an d Raf-1, i n cerebra l cortica l precurso r cell s i s medi ated throug h cAMP-independen t pathways . Cereb Cortex 15:74-84 . Zhang L, Lidow MS (2002) Dl dopamin e recepto r regu lation o f cel l cycl e i n FGF - an d EGF-supporte d primary cultures o f embryonic cerebra l cortica l pre cursor cells. Int l J Dev Neurosci 20:593-606. Zindy F, Cunningham JJ , Sherr CJ, Jogal S , Smeyne RJ, Roussel M F (1999 ) Postnata l neurona l prolifera tion i n mic e lackin g Ink4d an d Kip l inhibitor s of cyclin-dependent kinases . Proc Nat i Acad Sc i USA 96:13462-13467. Zindy F , Soare s H , Herzo g KH , Morga n J , Sher r CJ , Roussel M F (1997 ) Expressio n of INK4 inhibitors of cycli n D-dependen t kinase s durin g mous e brain development . Cel l Growt h Diffe r 8:1139 1150.
3
Neuronal Migration Huaiyu Hu
During developmen t o f the mammalia n centra l ner vous syste m (CNS) , neuron s ar e commonl y gener ated at sites far from thei r final location (se e Chapters 2, 11 , and 12) . They migrate to a n anlag e before differentiating int o thei r fina l morpholog y an d makin g synaptic connection s (se e Chapte r 4) . Disturbance s of neurona l migratio n underli e brai n disorder s suc h as menta l retardatio n an d epileps y (Dobyn s an d Truwit, 1995 ; Raymon d e t al. , 1995 ; Dobyn s e t al, 1996). Neuronal migratio n i s widespread throughout th e developing periphera l nervou s system. Fo r example , neurons usin g luteinizin g hormon e releasin g hor mone (LHRH ) are generated i n the developin g olfac tory placode , a transien t structur e outsid e th e brain . They migrat e lon g distance s t o thei r fina l location s in th e media l basa l forebrai n an d hypothalamus . I n contrast, som e neuron s migrat e fro m th e CNS . A prime exampl e i s neural cres t cells . Thes e cell s ar e derived fro m th e dorsa l neura l tub e an d giv e ris e t o
the neurons an d glia of the periphera l nervou s system as wel l a s non-neural cells , fo r example , facia l skele ton, segment s o f the hear t an d great arteries, and pig ment cells in the ski n (see Chapter 17) . Most studie s o f neuronal migratio n hav e focuse d on neocortex . This is (a) because defect s in neuronal migration causing clinical disorders are commonly associated wit h corte x an d (b ) becaus e corte x ha s a highly defined structural an d functiona l organizatio n that derive s chiefly fro m a n orderl y neuronal migra tion. Cortica l neuron s ar e generated i n the neuroep ithelium surroundin g the latera l ventricles (Chapter s 2, 11 , and 12) . The rule s defining neuronal migratio n appear to be similar among mammalia n species. This present chapter focuse s on rodents . Neuronal migratio n involve s fou r coordinate d steps outlined below. 1. Th e proces s begins as cells pass through mitosis and permanentl y exi t fro m th e cel l cycl e (se e
27
28 NORMA L DEVELOPMENT Chapters 2 and 11) . I n th e rodent , thi s occur s during th e secon d hal f o f gestation (Angevin e and Sidman , 1961 ; Lun d an d Mustari , 1977 ; Gardette e t al, 1982; Miller, 1985) . 2. Postmitoti c neuron s prepar e t o migrate . The y remain i n th e proliferativ e zone s for up t o 18 26 hours , th e amoun t o f time increasin g wit h the age of the fetu s (Miller, 1999) . Durin g thi s time youn g neuron s exten d thei r leadin g pro cesses whic h boas t pioneerin g filopodi a an d laniellipodia tha t explor e th e environmen t an d define th e directio n o f movemen t (Rakic , 1972). They may move laterally within the pro liferative zones (Nocto r e t al., 2004) . 3. Th e neuron s actively move fro m th e prolifera tive zone s throug h th e intermediat e zon e and ente r th e immatur e gra y matter. Thi s ste p involves th e choreographe d movemen t o f the nucleu s toward the leadin g process and th e retraction o f th e trailin g proces s (Hatte n an d Mason, 1990 ; Raki c et al, 1996) . Neurona l migration i n th e neocorte x o f mic e an d rat s i s completed b y the end of the first postnatal wee k (Berry and Rogers , 1965 ; Miller, 1999) . 4. Whe n a neuron reaches it s final destination, its nucleus cease s th e forwar d movement . A t this site , th e neuro n differentiate s and elabo rates a characteristic morphology (Miller, 1981 , 1986). The migratio n o f neocortical neuron s ca n follo w a radial o r tangentia l pat h (Rakic , 1990; Miller , 1992 ; Nadarajah an d Parnavelas , 2002) (Fig. 3-1) . Th e former describes a process whereby neurons migrate in a direction perpendicula r t o th e surfac e o f th e latera l
FIGURE 3- 1 Multipl e migratio n route s o f cerebra l cortical neurons . Cerebra l cortica l projectio n neu rons ar e generate d i n th e ventricula r zon e (VZ ) and subventricula r zon e (SZ ) o f the developin g ce rebral wall . Th e migratio n rout e o f thes e neuron s is radia l (1) . Loca l circui t neuron s ar e generate d in th e media l ganglioni c eminenc e (GE) . The y undertake severa l migration routes (2 , 3 , and 4 ) that involve tangentia l migratio n an d radia l migration . CP, cortical plate ; IZ, intermediat e zone ; MZ, mar ginal zone .
ventricles (pathwa y 1) , wherea s th e latte r refer s t o neurons as they migrate along a pathway that parallels the surfac e o f th e latera l ventricl e (pathway s 2-4) . This chapter review s the basic principles o f radial and tangential migration , molecula r event s underlyin g normal neurona l migration , an d som e molecula r de fects tha t distur b neuronal migratio n to caus e neuro logical disorder s (Table 3-1) .
TABLE 3- 1 Genetic s of neuronal migration disorders in human s Protein and Function
Gene
Structural Phenotype
Filamin A, actin binding protein
FLNA
Peri ventricular heterotopia
Doublecortin, microtubule-associated protei n
Dcx
Double cortcortex syndrome s Subcortical ban d heterotopi a
LISl/PAFAHIb, interacts with tubulin, dynein, NUDEL, mNUDE
PAFAHIB
Type I lissencephaly
Reelin, ECM protei n
Rein
Lissencephaly
POMT1, presumed glycosyltransferas e
POMT1
Walker- Warburg syndrome Polymicrogyria
POMT2, presumed glycosyltransferase
POMT2
Walker- Warburg syndrome Polymicrogyria
POMGnTl, glycosyltransferas e
POMGnTl
Muscle-eye-brain disease Polymicrogyria
Eukutin, presumed glycosyltransferase
FCMD
Fukuyama congenital muscula r dystroph y Polymicrogyria
Large, presumed glycosyltransferas e
Large
MDC1D, Polymicrogyria
NEURONAL MIGRATION 2 9 PATHWAYS O F MIGRATIO N
Radial Migratio n Most cortica l neurons , notabl y projectio n neurons , are derive d fro m progenitor s i n th e ventricula r zon e (VZ) an d subventricula r zon e (SZ) . These zone s are located alon g the interna l aspec t o f the cerebra l wall . Most V Z an d S Z cell s migrat e t o corte x via a radial pathway. Radia l migration appear s t o involv e at leas t two mechanisms. The firs t cohor t o f neurons tha t move s ou t o f th e germinal are a forms th e preplat e (Marin-Padilla , 1978 ; Allendorfer and Shatz, 1994). Durin g the earliest stages of cortical development, neuron s take position s in th e preplate vi a somatic translocatio n (Britti s e t al. , 1995 ; Miyata e t al, 2001; Nadaraja h e t al, 2001; Nadaraja h and Parnavelas , 2002). Each o f these neuron s send s a long process toward the pia i surface a s it leaves the VZ . Subsequently, a migrating neuron release s it s ventricular attachments, but maintains its piai contacts. The second , an d large r cohor t o f migrating neu rons split s the preplat e int o tw o layers : th e margina l zone (MZ ) and the subplate (SP) , the anlage of layers I an d VIb , respectively. These newl y arrived neurons take a position betwee n th e MZ an d S P and form the cortical plate (CP). The C P i s laid down by an insideout sequenc e i n whic h early-generate d neuron s tak e a positio n i n th e deepe r C P an d wave s o f later generated neuron s migrat e t o positio n i n succeed ingly superficia l position s (Angevin e an d Sidman , 1961; Rakic , 1974 ; Miller , 1985 ; McConnell, 1995) . The C P differentiate s int o layers Il-VIa. Neurons mov e int o th e C P migrat e radiall y via a different mod e o f migratio n tha n tha t use d b y neu rons forming the preplate . Th e CP-destine d neuron s use radia l glia a s a physica l substrat e fo r their migration (Rakic, 1972,1990; Hatten, 1999) (Fig . 3-2). Dur ing migration , eac h neuro n ha s a shor t leadin g process tha t i s not attache d t o th e pia i surfac e and a trailing proces s tha t eventuall y lose s it s contact wit h the ventricular surface. Radial glial guidance provides a mechanism fo r later-generated neuron s to find positions beyond the postmigrator y neurons, hence estab lishing the inside-ou t patter n characteristi c of the CP . This migratio n is relatively fast. Apparently, regardless of when th e neuron s ar e generated, the y migrat e at a rate o f ~120|im pe r da y (Miller, 1999) . Simila r rate s are eviden t i n th e radia l migratio n o f hippocampa l neurons from th e VZ (Nowakowski and Rakic , 1981).
FIGURE 3- 2 Radia l migration durin g development o f the cerebra l cortex. Neurons migrate along the radial glia (RG ) t o the cortica l plate (CP ) wher e later-born neurons migrat e pas t th e early-bor n neurons . Reeli n (illustrated a s dots) secreted b y Cajal-Retzius neuron s (CR) i n th e margina l zon e (MZ ) i s required fo r th e inside-out patter n o f lamination . Withi n th e MZ , radial glia l endfee t (EF ) for m th e so-calle d glial limiting membrane. Togethe r wit h some Cajal-Retziu s cells, thes e endfee t appos e th e brai n surfac e base ment membrane. SP , subplate.
Radial gli a spa n th e ful l dept h o f the developin g cerebral wall . In th e intermediat e zon e (IZ) , the ra dial glia l fiber s ar e groupe d i n fascicle s (Gressen s and Evrard , 1993). I n the mouse , thes e cell s ar e evident durin g th e perio d o f neurogenesis an d beyon d the cessatio n o f neurona l migratio n i n neocorte x (Miller an d Robertson , 1993) . After neurona l migra tion i s complete , radia l gli a appea r t o transfor m t o astrocytes (Schmeche l an d Rakic , 1979 ; Misso n et al , 1988 ; Voigt , 1989 ; Mille r an d Robertson , 1993). Fo r many years, the identit y of radial glia ha s been considere d par t o f th e astrocyt e lineage . O n the basi s o f recent data , however , i t appears tha t radial gli a ar e no t gli a —rather, the y ar e neura l ste m cells (Malatest a e t al. , 2000 ; Miyat a e t al. , 2001 ; Noctor e t al , 2001) . The y expres s marker s for cytoskeletal protein s fo r immature (stem ) cells , fo r example, nesti n an d RC-2 , an d the y ca n generat e neurons an d glia .
30 NORMA L DEVELOPMEN T Tangential Migratio n Analyses o f forebrain neuron s with retrovira l markers show tha t a neurona l clon e derive d fro m a singl e founder i s dispersed fa r wider than woul d hav e heen predicted i f neuron s onl y migrate d radiall y (Luski n et al, 1988; Walsh and Cepko, 1988) . Although mos t neurons ar e tightl y distribute d i n radia l column s of -200 |Llm, a notabl e numbe r ar e locate d a s muc h as 2 mm fro m thi s column. I n these clones , cells tend to b e projectio n neuron s o r loca l circui t neuron s (LCNs) (Luski n et al., 1988 , 1993 ; Parnavelas e t al, 1991). Th e distributio n o f th e retrovirall y labele d cells i s equally broad fo r clones o f projection and lo cal circuit neurons. This dispersio n principally results from th e tangential movemen t o f cells within the proliferative zones before they ascend radially. On th e basi s of findings from trac t tracing studies, it appear s tha t neuron s generate d i n th e ganglioni c eminence (GE ) migrat e t o neocorte x (d e Carlo s et al., 1996) . Molecular an d anatomica l studie s show that thes e neuron s ar e LCN s (e.g. , Anderso n e t al. , 1997; Powel l e t al , 2001 ; Marin an d Rubenstein , 2003). Thes e LCN s migrat e throug h th e SZ , IZ , or MZ (Fig . 3-1) (Tamanak i e t al, 1997 ; Lavdas et al , 1999; Anderso n e t al , 2001 ; An g et al , 2003) . Accordingly, th e neuron s loo p aroun d th e latera l G È and cours e alon g th e VZ-SZ interface , in the I Z external t o th e SZ , o r throug h th e MZ . Afte r findin g their tangential position, the neuron s associate with a radial gli a an d migrat e radiall y t o thei r appropriat e laminar residence. Thi s is supported b y data showin g that LCNs migrate to cortex via an inside-ou t patter n (Miller, 1985 , 1986, 1992; Fairé n étal, 1986 ; Gobas and Fairén , 1988) . A n exceptio n i s a subpopulatio n of LCN s tha t expres s vasoactiv e intestina l polypep tide (Miller , 1992) . Fo r thes e neurons , ther e i s n o birthdate- or lamina-specific pattern o f the migration. The tangentia l pathway s ar e importan t becaus e many neocortica l LCN s migrat e vi a on e o f thes e pathways; dix knockout mice (mic e i n which n o neurons ar e generate d i n th e GE ) hav e les s tha n onequarter o f th e LCN s eviden t i n wild-typ e mic e (Anderson e t al , 1997) . Thi s findin g concur s wit h those fro m retrovira l tracin g studie s showin g tha t clones commonly consist of either projection neurons or LCN s (Luski n et al, 1988 , 1993; Parnavela s et al , 1991). Recen t evidenc e (An g et al , 2003 ; Nocto r et al , 2004 ) show s that LCN s derive d fro m th e G E that migrat e at the VZ-SZ interfac e can di p int o th e
VZ and re-ente r th e cell cycl e before they begin thei r radial migration . This observatio n contribute s t o th e finding that cells remain in the proliferative zones before the y commenc e thei r radia l migratio n (Miller , 1999). Nevertheless , th e tangentia l migratio n is suffi ciently fas t tha t LCN s generate d i n th e G E an d co hort projectio n neuron s generate d concurrentl y i n the V Z an d S Z migrat e t o cortex i n tande m (Miller , 1985, 1986 , 1988, 1997). Neurons migratin g tangentiall y rel y o n divers e substrates. LHR H expressin g neurons migrat e o n axons a s they mov e t o thei r targe t (Schwanzel-Fukud a and Pfaff , 1990) . Othe r migratin g neuron s migrat e over "resident " cells . Thes e includ e olfactor y LCN s migrating throug h th e anterio r subventriciila r zon e (SZa) o n thei r wa y t o th e olfactor y bul b (Luskin , 1993; Loi s e t al.,1996). The substrat e for the tangen tial migratio n of neurons from th e media l GE t o neocortex i s unknown; there i s no axona l or glia l syste m for guidance . Thus , thes e neuron s presumabl y mi grate ove r cell s i n th e variou s compartments o f th e developing cerebral wall (Anderson et al, 1997) .
FACTORS REGULATIN G
NEURONAL MIGRATION
Soluble Stimulatin g Factor s Soluble factors can modulate radial migration. Migrating cortical neuron s express TrkB, the high-affinit y re ceptor fo r brain-derived neurotrophi c facto r (BDNF ) and neurotrophin- 4 (NT-4 ) (Beha r et al, 1997) . Thi s suggests a role of BDNF and NT- 4 in their migration. Indeed, BDN F an d NT- 4 promote th e migratio n o f cortical neuron s i n vitro. Consistent wit h culture stud ies, BDNF or NT-4 infusion int o th e latera l ventricl e or applicatio n i n cultur e slice s induce s heterotopias , which result from th e overmigration of neurons (Brunstrom e t al, 1997) . Epiderma l growt h facto r recepto r (EGFr) an d it s ligands, includin g epiderma l growt h factor an d transformin g growth facto r (TGF ) a, ar e expressed i n th e developin g cor fex (Kornblu m e t al , 1997). Mic e lackin g EGF r exhibi t mor e cell s i n th e proliferative zones , a finding suggestin g inhibite d mi gration, wherea s hig h concentration s o f EGFr i n th e embryonic cortex enhance radia l migration (Threadgill et al, 1995 , Carie et al, 2001) . Tangential migratio n is stimulated by growth factors. One suc h ligan d i s hepatocyte growth factor (HGF). It
NEURONAL MIGRATIO N 3 1 is expresse d in th e teleneephalo n durin g LCN migra tion from the medial G E t o the pallium (Powel l et al., 2001). HG F increase s the numbe r o f cells migratin g away from th e subpallium , and neutralizatio n o f HG F by blocking antibodie s inhibit s this migration. In addi tion, BDNF an d NT-4 strongly stimulate the migratio n of LCNs that use y-aminobutyric acid (GABA) as a neurotransmitter (Polleux et al, 2002). TGFp promotes neuronal migration. TGFpl and 2 are expressed by cells in the developing cortex; TGFpl, by neurons ; an d TGFp2 , b y radia l glia , particularly their inner segments (Miller, 2003). Elements in developing corte x als o expres s TGF p receptors—TGFpI r predominantly by radial glia and TGFpIIr by neurons. Thus, developin g corte x contains th e component s needed fo r TGFp to mediate neuron—gli a interaction s through bidirectional paracrine mechanism. Also, it appears that TGFp is involved in early stages of neuronal migration (stage s 1 , 2 , an d 3) . These conclusion s are supported b y finding s fro m complementar y i n vitro studies. TGFpl inhibit s the proliferation of B104 neuroblastoma cell s (Lu o and Miller , 1999 ) an d culture d cortical neurons (Mille r an d Luo , 2002a) . In addition, TGFpl move s VZ cells i n slices of cerebral corte x out of th e cyclin g populatio n an d accelerate s th e rat e o f neuronal migratio n b y 70% (Siegenthaler an d Miller , 2005). Th e latte r effec t i s concentration-dependent . Migration i s maximall y potentiate d b y exposur e t o TGFpl a t a concentration of 10 ng/ml. In contrast, exposure to a higher o r lower concentration ha s little effect or it can even retard neuronal migration. Besides growt h factors , neurotransmitter s ar e in volved i n modulatin g neurona l migration . GAB A i s present i n th e developin g corte x (Rickman n e t al. , 1977; Miller , 1986) . I t promote s cortica l neuron s t o migrate throug h GAB A receptors (Beha r e t al. , 1996 , 2001). It appears that GABA A/C receptor s ar e involved in migratio n fro m th e proliferativ e zones t o th e I Z whereas GABA B receptor s ar e involve d i n migratio n from th e I Z t o th e CP . Anothe r neurotransrnitter , N-methyl-D-aspartate (NMDA), is also shown to modulate radial migration (Behar et al., 1999). Pharmacolog ical blockad e o f NMD A recepto r activit y decrease s migration whereas enhancemen t o f NMDA recepto r activity increases the rate of cell movement. Cell Adhesion Molecules Interactions betwee n migratin g neuron s an d thei r substrates ar e mediate d b y cel l adhesio n molecules .
Astrotactin (Astn ) 1 is a glycoprotein expressed by th e migrating neuron s (Fishel l an d Hatten , 1991 ; Zhen g et al., 1996) . Antibodies that block the functions of astrotactin abolis h th e adhesio n betwee n neuron s an d glia, thu s reducin g th e rat e o f migratio n (Stit t an d Hatten, 1990) . I n vivo , mice deficien t i n astrotacti n display slowed radial migration (Adams et al., 2002). Integrals are cell surface receptors tha t hav e been shown to regulate the migratio n of many cell types including neurons . The y mediat e essentia l cell-cel l and cell-extracellula r matri x interactions required for cell migration . Blocking of integrili oc ^ by specific antibodies reduce s th e rat e o f migration an d result s i n detachment of neurons fro m radia l glial fibers (Anton et al., 1999 ; Dulabo n e t al, 2000). In mic e deficien t in integrin OC 3, some neuron s appear to stop migrating prematurely an d fai l t o migrat e t o thei r appropriat e layer. Similarly , antibodie s agains t oc v integri n als o perturb neuron-glia interaction s and ma y affect neu ronal migration as well. The neural cell adhesion molecule (nCAM ) i s a member of the immunoglobuli n superfamil y of cel l adhesion molecule s though t t o pla y a rol e i n chai n migration. I t ha s a n unusua l carbohydrat e modifi cation calle d polysialic acid, a linear polymer of sialic acid (Finn e e t al , 1983 ; Rutishauser , 1996) . I n nCAM knockou t mice , man y olfactor y LCN precur sors are retarded i n the SZ a and fai l t o migrate to th e olfactory bul b (Tomasiewic z et al. , 1993 ; Grenie r et al. , 1994) . Interestingly , removal o f the polysiali c acid moiet y of nCAM b y a specifi c enzyme i n wild type animal s completel y mimicke d thi s knockou t phenotype (Ono e t al., 1994) . Cell migration in vitro is severel y abolishe d i n collage n culture s i n whic h polysialic acid is removed (H u et al., 1996) . Thus, the carbohydrate modificatio n of nCAM, polysialic acid , plays an importan t rol e i n th e migratio n o f olfactory LCNs. TGFpl induce s nCA M an d integri n expression. Studies o f cortica l slice s sho w tha t thes e effect s ar e concentration-dependent; nCA M an d integri n ex pression increas e wit h increase d TGFp l concen tration (Siegenthale r an d Miller , 2004) . Likewise , TGFpl potentiate s nCA M expressio n b y culture d cortical astrocyte s (Lu o an d Miller , 1999) , neurons , and neuroblastom a cell s (Mille r an d Luo , 2002b) . In ligh t o f the effec t o f TGFpl o n th e rat e o f neu ronal migratio n (se e above), i t appears that increase d nCAM an d integri n expression is facilitatory, but only to a certain point. I f the extracellula r space become s
32 NORMA L DEVELOPMEN T too rich in cell adhesion proteins, neuronal migration is impeded , possibl y because th e microenvironmen t becomes too sticky. Extracellular Matrix Molecule Reelin Modern mous e genetic s hav e provide d som e muta tions wit h neurona l migratio n disorder s (Tabl e 3-2) . The reeler mouse ha s receive d greate r attentio n fro m developmental neurobiologist s tha n ha s an y othe r mouse mutants . Thi s mous e exhibit s characteristi c lamination defect s of cerebral cortex , the hippocam pus, an d th e cerebellu m (Raki c and Caviness , 1995 ; Lambert de Rouvroit and Goffinet , 1998) . I n the mu tants, neocortica l neuron s ar e generate d i n th e V Z and S Z as in th e wild-typ e animals and initiall y their migration seems normal. A major differenc e i s that th e preplate i s never split into the M Z an d th e SP ; therefore, th e C P form s unde r th e so-calle d superplate . As the migratin g neurons approac h th e CP , neuron s i n the reeler mic e fai l t o for m norma l architectoni c or ganizations. Instea d o f forming b y a n inside-ou t pattern o f neuronogenesis , th e birthdat e o f neuron s i n the mutant cortex is reversed. Early-generated neurons are locate d superficiall y and late-generate d neuron s are distributed in deep cortex. Remarkably, despite the
positioning defects, neuron s do make correct connec tions, although the axonal pathways are distorted. The clonin g o f th e defectiv e gen e relin ha s in creased interes t i n thi s mutatio n (D'Arcangel o e t al. , 1995). Reelin is expressed by Cajal-Retzius neuron s i n the M Z o f the developin g cerebral wal l (D'Arcangel o et al., 1997) . How reelin function s in neuronal migra tion i s an are a o f intense research ; n o consensu s ha s been reached. Mos t results support the idea that reeli n controls laminatio n b y acting a s a sto p signa l fo r mi grating neuron s (Dulabo n e t al. , 2000) . Accordingly , neurons migrate past the previously deposited neurons in the lower CP wher e reelin is not expressed. The mi grating neurons proceed t o the superficia l edg e o f the CP borderin g th e M Z where reeli n i s expressed (Cur ran and D'Arcangelo , 1998) . Thi s finding implies tha t reelin tells the neuron s to stop migrating. Some o f the migration defects characteristic o f the reeler mice, such as th e lac k o f splittin g o f th e preplate , i s rescue d i n transgenic mic e i n which reeli n expressio n i s targeted in th e VZ and SZ . Thus, the role of reelin in developing cortex is more complicated tha n simply providing a migratory stop signal (Magdaleno et al., 2002). Reelin binds to two receptors expressed by migrating neurons , Apo E recepto r 2 an d ver y low-density lipoprotein recepto r (VLDLr ) (D'Arcangel o e t al. ,
TABLE 3- 2 Mous e mutations that affect neurona l migration Protein and Function
Gene
Structural Phenotype
Reelin, ECM protei n
rein
Astrotactin 1 , neuron-glia cell adhesion molecul e Integrin a^ subunit, cell surface receptor bind s to reelin Integrin oc 6 subunit, cell surface receptor bind s to laminin
astn
reeler mouse, inverted cortical layering , absence of preplate spli t Slowed radial migration Abnormal laminar positioning of projection neurons Basement membrane breac h Cortical layering perturbation
Integrin (3j , cell surface receptor interacts with reelin, laminin Laminin Y J subunit, ECM protei n
itgbl
Very low-density lipoprotei n receptor , reeli n recepto r Low-density lipoprotein receptor-related protein, reeli n receptor also known as ApoE receptor 2 Disabled homolog 1 , interacts with VLDLr/Lrp8 Cyclin-dependent kinase 5, phosphorylates Dabi and NUDE L
vldlr
LISl/PAFAHIb, binds to dynein, microtubule
PAFAHIb
Doublecortin, microtubule-associated protei n
dcx
itga3 itgao
lame I
Irp8 dabl cdkS
Basement membrane breach Cortical layerin g perturbation Basement membrane breac h Cortical layering perturbatio n Reeler phenotype in Vldlr/LrpS doubl e knockout Reeler phenotype in Vldlr /Lrp8 doubl e knockout Reeler phenotype, mutated in yotari and scrambler Inverted cortical layering Null is lethal, hypomorphic mutations caus e migration defec t No migration phenotyp e
NEURONAL MIGRATION 3 3 1999; Hiesberger et al, 1999) . Mice deficient i n both of these receptor s exhibi t phenotypes identical to that of the reeler mouse (Trommsdorf f e t al., 1999) . There may b e othe r receptor s involve d in transducin g the reelin signal . Reeli n als o bind s t o integri n oc 3pj an d cadherin-related neurona l receptor s (Senzak i e t al. , 1999; Dulabo n e t al , 2000) . Apparently , reelin integrin bindin g i s no t require d fo r reeli n functio n because integrin pj knockout mouse does not exhibit a ree/er-like phenotype. Downstream reelin-induce d signalin g involves the phosphorylation o f Drosophila disable d homologu e (Dab) 1 (Howell et al., 1999). Mice with mutations i n the gene s dabl, scrambler, and yotari exhibi t phenotypes similar to that of reeler mice. Dabi bind s to th e intracellular domain s o f lipoprotein receptor s an d i s tyrosine phosphorylate d upo n ligand-recepto r bind ing (Trommsdorf f et al, 1998 ; Keshvar a et al., 2001) . Surprisingly, reeli n ha s bee n show n t o posses s a serine proteas e activit y and can diges t extracellula r matrix molecules (Quattrocchi et al, 2002). Whether its enzymatic activit y regulate s neurona l migratio n re mains to be evaluated. The mous e knockou t of cyclin-dependent kinase (Cdk) 5 (a serine/threonine kinase ) o r o f its activator protein, p35 , exhibit s a reeler-like cortica l migratio n phenotype (Gilmor e e t al. , 1998 ; Kwo n an d Tsai , 1998). A major differenc e is that th e preplat e i s split into the MZ and the S P in these mutan t mice. Thus, Cdk5 and p3 5 ma y function in a different pathwa y to control neurona l migratio n fro m reelin . Cdk 5 ca n phosphorylate Dabi independen t o f reelin binding to its receptor s (Keshvar a et al. , 2002) . There ma y b e crosstalk betwee n th e reeli n signalin g pathwa y an d the Cd k 5 pathway.
MIGRATION DEFECTS
X-linked Periventricular Heterotopias: Failure to Initiate Migratio n X-linked periventricula r heterotopia s ar e nodule s o f neurons linin g the V Z o r SZ . Presumabl y there i s a failure o f neuron s t o migrat e ou t o f proliferat i ve zones. The geneti c defect in X-linked periventricular heterotopia i s mutations i n FLNA , a n X-linke d gen e encoding filami n A (Fox et al. , 1998) . Filami n A is a large actin-bindin g phosphoprotein wit h a molecular
weight of 280 kDa. I t i s necessary for the locomotio n of several cell types and i s expressed by cells in all layers o f th e developin g cerebra l cortex . Hemizygou s males with null mutation s di e during the embryoni c period. Heterozygou s female s have epileps y that ca n be accompanie d b y othe r manifestation s suc h a s patent ductus arteriosus. I t i s believe d tha t rando m X-chromosome inactivatio n result s i n inactivatio n o f FLNA expressio n in strande d neurons . Recently , affected male s with likely partial loss-of-function muta tions i n FLNA (e.g. , amino aci d 65 6 Leu t o Phe an d amino aci d 230 5 Tyr t o sto p codon ) hav e bee n re ported (Shee n e t al., 2001 ; Moro e t al, 2002) . Interestingly, male s wit h thes e mutation s hav e neuron s that eithe r migrat e normally or exhibit complete mi gratory arrest . Thi s dichotom y suggest s tha t othe r functionally relate d gene s can compensat e fo r filamin A deficiency . Indeed , a structurall y relate d gene , FLNB, i s als o expresse d i n th e developin g cerebra l cortical wall, and both proteins can form heterodimer s (Sheen et al., 2002). The mechanis m throug h which filamin A regulates the initiatio n of migration is unclear. Likely it involves the abilit y o f filami n A t o cross-lin k F-acti n int o isotropie, orthogonal arrays (Stossel et al., 2001). Crosslinking of F-actin increase s the viscosit y and stiffnes s of actin an d ma y b e involve d in th e initiatio n of migration. I n the V Z an d SZ , FLNA i s expressed by all cells —mitotic and postmitoti c cells. If filamin A regulates the initiatio n of neuronal migration, why do only postmitotic neuron s migrat e ou t o f the V Z an d S Z when all cells express FLNA? A potential mechanism involves filamin A-interacting protei n (FILIP) . FILIP is expressed in the VZ and SZ , but no t in postmitoti c migrating neuron s (Nagan o e t al. , 2002) . FILIP-fil amin A binding induces the degradatio n o f filamin A. Thus, the loss of FILIP expressio n in postmitotic neu rons may enabl e filami n A to contro l th e star t of migration. Double Cortex Syndrom e an d Type I Lissencephaly: Prematur e Cessatio n of Neuronal Migratio n Double cortex describe s a conditio n i n whic h a subcortical-band heterotopi a form s i n the subcortica l IZ, th e anlag e o f the whit e matter . Mutation s i n a n X-linked gene, doublecortin (dcx)y ar e a genetic caus e of the disorder (des Portes et al, 1998 ; Gleeso n e t al, 1998). Doublecortin i s a 40 kDa protein , expressed by
34 NORMA L DEVELOPMENT migrating an d man y differentiatin g neurons . I t i s a microtubule-associated protei n wit h n o know n ho mology wit h othe r microtubule-associate d protein s (Francis et al., 1999; Gleeso n e t al., 1999 ; Hores h et al., 1999). Doublecorti n stimulate s microtubul e polymer ization b y binding t o 1 3 protofilament microtubule s (Moores e t al., 2004). I t is principally localize d i n th e leading processe s o f migratin g neuron s (Friocour t et al., 2003). Thus, doublecortin ma y promote move ment by inducing microtubule polymerizatio n i n th e leading processes of migrating neurons. Classical lissencephal y (type I ) i s a brai n malfor mation characterize d b y absent o r reduce d gyratio n and a cortex that is thicker and ha s a rudimentary four layers. I t is associated with severe mental retardation , epilepsy, an d cerebra l palsy . Mos t case s ar e du e t o mutations o f lisi, encoding LIS I o r platelet-activatin g factor acetylhydrolas e isofor m I b (PAFAHIb , a non catalytic subunit o f the enzyme ) (Reine r e t al., 1993 ; Hattori et al., 1994). Besides being part of an enzyme , LISl/PAFAHIb ha s a nonenzymati c function . Th e homolog i n fungu s Aspergillus i s NudF, a n essentia l part of a signaling pathway that regulate s nuclea r mi gration (Wynshaw-Bori s an d Gambello , 2001) . Evi dence indicate s that LISl/PAFAHIb regulates nuclear movement b y an evolutionary-conserve d mechanis m similar to that of the fungus . It binds to and regulate s the functio n an d distributio n of dynein (mammalia n NudA homolog) , whic h function s a s a minu s end directed microtubule-associate d moto r protein . Thus , LISl/PAFAHIb ma y b e par t o f the protei n comple x that exert s force s o n th e microtubule s surroundin g the nucleu s i n migratin g neuron s an d pullin g th e nucleus into the leading process (Tanaka et al., 2004). A rol e fo r LISl/PAFAHI b i n nuclea r translocatio n i s also supported b y its binding t o two other dynei n in teracting proteins , NUDE L an d mNUD E (mam malian Nud E homologs ) (Fen g e t al. , 2000 ; Lian g et al, 2004). NUDEL and mNUDE colocalize a t the centromere tha t migrate s ahea d o f the nucleus . Th e distance betwee n th e centromer e an d th e nucleu s is enlarge d i n LISl/PAFAHIb-deficien t neuron s (Tanaka e t al, 2004) . Thus , LISl/PAFAHI b play s an important rol e i n nuclea r translocatio n durin g neu ronal migration. Type II Lissencephaly: Overmigration Several form s o f congenita l muscula r dystrophies — Walker-Warburg syndrome (WWS) , muscle-eye-brai n
disease (MEB) , an d Fukuyama-typ e congenita l muscular dystroph y (FCMD ) —are associate d wit h cortical dysplasia . These ar e autosoma l recessiv e dis orders characterize d b y congenita l muscula r dystro phy, ocula r abnormalities , an d cortica l dysplasi a (Santavuori e t al. , 1989) . Magneti c resonanc e imag ing of MEB patient s reveal s hydrocephalus associate d with polymicrogyra o r pachygyra caused b y ectopie lo cation o f neura l tissue s i n th e leptomeninges , als o known a s cobbleston e complexe s o r typ e I I lissencephaly (Valann e et al. , 1994 ; Corman d e t al. , 2001). Presumably , thes e abnormalitie s result whe n the neuron s migrat e to o far, passing through th e MZ , the glial-limiting membrane, th e piai basement mem brane (PM) , and th e pia (Ross and Walsh, 2001). Each o f th e congenita l muscula r dystrophie s ha s been associate d wit h mutatio n o f a spécifi e gene . In WWS , mutation s ar e i n th e gene s codin g fo r protein-O-mannosyl transferase s (POMT 1 an d POMT2) (Beltran-Valer o e t al, 2002 ; va n Reeuwij k et al. , 2005) . Th e defectiv e gen e fo r ME B map s t o chromosome lp32-3 4 (Corman d e t al. , 1999) , an d the mutated gen e is POMGnTl. Peopl e wit h FCMD have a retrotransposo n insertio n int o the 3 ' untrans lated regio n o f FCMD . Thi s insertio n result s i n a dramatic reductio n i n FCMD expression . The myodystroph y (myd) mous e ha s muscle , eye , and neurona l migratio n defects in the brai n similar to those i n humans wit h congenital muscula r dystrophie s (Holzfeind e t al., 2002) . This myd mous e ha s muscle , eye, an d brai n defect s associate d wit h overmigratio n (Holzfeind e t al, 2002). In the myd mouse, the geneti c defect i s a functional deletio n i n th e Large gene (like acetylglucosaminyltransferase) (Grewa l e t al. , 2001) . The my d mutatio n i s now designated Large myd. I n hu mans, mutation s i n Large gen e cause congenita l mus cular dystroph y MDC1 D (Longman , e t al , 2003 ) Thus, four ne w genes, POMT1, POMGnTl, FCMD, and Large, have bee n associate d wit h congenital mus cular dystrophies , an d eac h cause s simila r overmigra tion defects when mutated . The functio n of POMGnTl ha s been describe d in vitro. POMGnTl encode s a n enzym e involve d i n O-mannosyl glycosylatio n o f protein s calle d UDP N-acetylglucosamine: protein-O-mannos e p-l,2-N acetylglucosaminyl transferas e (POMGnTl), Th e enzyme catalyze s the following reaction: UDP-GlcNAc + Man-R -> GlcNAc(31-2Man-R + UDP
NEURONAL MIGRATION 3 5 where R is a protein an d Ma n i s anchored t o Ser/Thr residues (Takahashi et al., 2001; Yoshida et al, 2001). The function s o f POMTT, fukutin , an d Large , gen e products o f POMTI , FCMD , an d Large, hav e no t been determined . Bioinformatic s studies , however , show tha t eac h protei n ha s a glycosyltransferase-lik e domain (Aravin d an d Koonin , 1999 ; Jurad o e t al. , 1999; Peyrar d e t al. , 1999 ; Beltran-Valer o e t al , 2002). The implicatio n is that the dystrophies and migration defects result from abnorma l protein glycosyla tion. How can protei n glycosylatio n enzyme s regulate neuronal migration? Conceivably, migration involves glycosylation substrate proteins. A candidate substrate is a-dystroglycan , a heavily glycosylated membrane protein . The mucin like domain o f a-dystroglycan is heavily substituted b y O-linked mannosy l glycan s tha t contai n th e linkag e catalyzed b y POMGnTl (Chib a e t al, 1997) . Th e O-mannosyl glycans may play important role s in me diating a-dystroglyca n interaction s with lamini n (Er vasti and Campbell , 1993 ; Smalheiser , 1993), a majo r component o f th e basemen t membrane . Further , a-dystroglycan i n som e o f these disease s i s underglycosylated and bindin g to laminin is reduced (Hayash i et aì., 2001; Holzfeind e t al, 2002; Kano et al, 2002 ; Michele et al., 2002). These results suggest a connection between hypoglycosylatio n of a-dystroglycan an d neuronal migratio n defect s i n th e brain . A n impor tant rol e for a-dystroglycan i n this process is also supported b y finding s o f neurona l migratio n defect s i n the brain s of mice i n which dystroglyean is conditionally knocked ou t (Michel e e t al., 2002 ; Moore e t al. , 2002). Mechanisms o f overmigration may involve abrogation o f th e PM . Th e P M i s compose d mainl y o f laminin, collage n IV , nidogen , an d perlecan , al l o f which regulat e cel l proliferation , migration , an d dif ferentiation b y interactin g wit h mainl y tw o cel l sur face receptors : integrilis and a-dystroglycan. Th e PM , to whic h radia l glia l endfee t ar e attached , i s locate d between th e pi a mater an d th e MZ . Electro n micro scopic analyse s show breache s i n th e P M a t site s of ectopie neura l cluster s o f patient s wit h FCM D (Nakano e t al. , 1996 ; Ishi i e t al , 1997 ; Sait o e t al. , 1999). Laminin i s reduced o r abnormall y distribute d in th e brai n surfac e P M o f several mutan t mice wit h overmigration, includin g Lmxl a (Dreher) mic e (Sekiguchi e t al, 1994 ^ Costa e t al, 2001 ) and mic e lacking rnyristolate d alanine-rich C kinas e substrat e (Blackshear e t al , 1997) , integri n a 6 (Georges -
Labouesse e t al, 1998) , an d integri n p ] (Graus-Port a et al , 2001) . Interestingly , integrili (3 j nul l neuron s migrate to appropriate positions in the cerebral cortex in chimeri c mic e (Fassle r and Meyer , 1995) , imply ing tha t overmigratio n i s no t cause d b y a n intrinsi c defect o f the migratin g neuron s but b y a defective environment i n thi s mutant . Whethe r breache s i n th e PM ar e th e caus e o r th e resul t o f overmigratio n re mains to be clarified.
DIRECTIONAL GUIDANCE OF NEURONAL MIGRATIO N BY DIFFUSABLE FACTORS
LCNs o f th e olfactor y bul b (granul e cell s an d periglomerular cells ) ar e mainl y generate d postna tally, during th e first 2 to 3 weeks after birt h (Altma n and Das , 1966 ; Hinds , 1968) , althoug h som e neu ronogenesis continue s i n th e adul t (Corott o e t al , 1993; Loi s an d Alvarey-Buvlla , 1994) . Retroviral labeling studie s demonstrat e tha t mos t o f the LCN s are generate d i n th e S Z nea r th e anterio r forebrai n (SZa) an d migrat e t o th e olfactor y bulb throug h a n SZ pathwa y (Fig . 3-3 ) (Luskin , 1993 ; Zigova e t al , 1996). Apparently , olfactor y LCNs do not migrate o n radially oriente d glia l processes, a s the orientatio n o f the radia l glia l fiber s i s orthogona l t o th e migratio n trajectory (Kish i e t al, 1990) . Further , th e migratio n pathway i n th e S Z i s also devoi d o f axon projections (Kishi, 1987) . How d o olfactor y LC N migrate ? Immunohisto chemical studie s o f polysialic aci d an d Tu J 1 expression i n th e adul t S Z pathwa y sho w tha t migratin g cells tend to travel in chains o r streams o f cells (Rousselot e t al, 1995 ; Doetsc h an d Alvarez-Buylla , 1996 ; Jankovski and Sotelo, 1996 ; Loi s et al, 1996 ; Doetsc h et al , 1997 ; Garcia-Verdug o e t al , 1998) . Althoug h these chain s o f migrating cells cannot b e observe d in newborn animal s because man y cells are migrating at the sam e time , suc h chain s are often observed i n cul tures of SZ cell s plate d on collage n gel s (H u et al, 1996) o r Matrigel (Wichterle et al, 1997) . Therefore , chain migratio n of olfactory LCN precursor s seems to be mechanisticall y distinc t fro m radia l migration relying on radial glia. In vivo studies show that olfactory LCN precursor s migrate fro m th e SZ a to the olfactor y bulb in a unidirectional manner (Luskin , 1993; H u and Rutishauser, 1996). Thi s findin g implie s a n activ e guidanc e
36 NORMA L DEVELOPMENT
FIGURE 3- 3 Tangentia l migratio n o f olfactor y loca l circuit neuron s (LCNs) . A parasagitta l sectio n through th e middl e o f the olfactor y bul b (OB ) of the forebrain o f the mous e i s shown. Olfactory LCNs ar e generated i n the anterio r subventricular zone (SVZa ; shown betwee n arrows) . The y migrat e t o th e O B within the SVZa (show n in dotted areas) . After arriving in th e bulb , they migrate i n a radial fashion to reac h their fina l location s i n th e granul e cel l laye r an d glomerular layer . Th e septu m i s locate d media l t o this section . CC , corpu s callosum ; CP , caudoputa men; CTX , cerebra l cortex ; fmi , forceps mino r cor pus callosum .
mechanism. Th e olfactor y bul b ma y secret e a chemoattractant(s) (Li u an d Rao , 2003) . Further more, th e cauda l part s o f th e septu m an d th e choroid plexus , which li e behind th e migratio n pathway, secret e a chernorepulsiv e factor(s ) (H u an d Rutishauser, 1996) . Th e chernorepulsiv e activit y secreted fro m th e septum is a member of the Sli t family of protein s (Siiti , SlitZ , an d Slit3 ) (Hu , 1999 ; W u et al. , 1999) . Slit , first discovered i n Drosophila, an d also found in mammals, regulates the growth of axons crossing a t th e midlin e (Ba-Charve t e t al. , 1999 ; L i et al. , 1999 ) b y interactin g with roundabou t (Robo) receptors (Kidd et al, 1998) . Robo receptors are members of the immunoglobuli n superfamily of transmembrane molecule s (Zalle n e t al. , 1998 ; Kid d e t al. , 1999). Th e Slit/Rob o repulsiv e signa l i s mediated i n part by the protein s enable d an d abelson , Rh o famil y guanidine triphospotase s (GTPases) , an d Slit-Rob o GTPase activatin g proteins (srGAPs ) (Bashaw et al. , 2000; Wong et al, 2001). Soluble factor s ma y als o b e involve d i n activ e guidance i n th e migratio n o f cortical neurons . Thi s conclusion i s supported b y studies of LCN migratio n from th e GE to the cerebral cortex . In vitro, these migrating neurons are repelle d b y the Sli t protein s that
are expresse d b y th e G E (Zh u e t al. , 1999 ) an d at tracted by substances released by the developing cortex (Marin e t al. , 2003 ; Wichterl e e t al , 2003) . Neuropilins are transmembrane receptor s that mediate th e repulsive guidanc e activitie s o f class 3 semaphorins. Neuropilin 1 and 2 ar e expresse d by the LCN s tha t migrate from th e G E t o cerebral cortex (Marin et al., 2001). Neuropili n knockou t mic e hav e decrease d numbers of LCNs in neocortex. Successful navigatio n o f neuron s involve s mor e than attractio n an d repulsion. While e n route within the SZ a pathway , olfactor y LCN s d o no t deviat e from thei r rout e int o surroundin g region s (Luskin , 1993). Wha t confine s the cell s to th e SZ a pathway? The S Z migration pathway in adult mice i s rich in astrocytes, tenascin , and chondroiti n sulfat e proteogly can (Thoma s et al., 1996). Thus, it is possible that th e migrating cell s migh t hav e stronge r affinit y fo r th e SZ, becaus e th e S Z contain s differen t extracellula r matrix molecule s an d cel l type s fro m thos e i n sur rounding regions.
SUMMARY AND CONCLUSION S
Neuronal migration is a complex phenomenon regu lated b y man y factors . I n vitr o perturbatio n studie s and molecula r studie s i n bot h th e mous e an d hu mans identif y som e ke y molecules that are involved. Examples includ e factor s extrinsic an d intrinsi c to a migrating neuron . Thes e extrinsi c factors , suc h a s soluble an d extracellula r matri x molecule s (neu rotrophins, reelin , an d Slit) , an d intrinsi c factors, such a s cytoskeleta l proteins (filamin , doublecortin , and PAFAHIb) , work in concert. They likely interact with cel l surfac e receptor s an d signalin g pathways. Some o f th e mechanism s ar e jus t beginnin g t o emerge. I n addition , ther e ar e critica l interaction s between geneti c an d environmenta l o r epigeneti c factors. Abbreviations Astn astrotacti n BDNF brain-derive d neurotrophic facto r Cdk cyc l in-dependent kinase CP cortica l plate Dab disable d EGFr epiderma l growth factor recepto r
NEURONAL MIGRATIO N 3 FCMD Fukuyama-typ e congenita l muscula r dys trophy FILIP filami n A-interactin g protein GABA y-aminobutyri c acid GÈ gangliom a eminence GTPase guanidin e triphosphotase HGF hepatocyt
e growth facto r
IZ intermediat e zone Large like-acetylglucosaminyltransferas e LCN local
circuit neuron
LHRH luteinizin g hormone releasing hormone MEB muscle-eye-brai n disease MZ margina l zone nCAM neura l cell adhesion molecule NMDA N-methyl-D-aspartat e NT-4 neurotrophin- 4 PAFAHIb platelet-activatin g facto r acetylhydro lase isoform Ib , a.k.a. LISI PM pia i basement membrane POMGnTl UDP-N-acetylglucosamin e protein O-mannose ßl,2-N-acetylglucos a minyltransferase POMT1 protein-O-mannosy l transferas e SZ subventricula r zone SZa anterio r subventricular zone TGF transformin
g growth facto r
VZ ventricula r zone VLDLr ver y low-density lipoprotein receptor WWS Walker-Warbur g syndrome
ACKNOWLEDGMENTS Th e autho r thank s Dr . Eri c Olson fo r critica l readin g o f th e manuscript . Result s from th e author' s laborator y wer e supporte d b y grant s NS038877 an d HD04401 1 fro m th e Nationa l Institute s of Health. References Adams NC , Tomoda T, Cooper M, Dietz G, Hatten ME (2002) Mic e that lac k astrotacti n hav e slowe d neu ronal migration . Development 129:965-972 . Allendoerfer KL , Shatz C J (1994 ) Th e subplate , a tran sient neocortica l structure : it s role i n th e develop ment of connections between thalamus and cortex . Annu Rev Neurosci 17:185-218 .
7
Altaian J , Da s G D (1966 ) Autoradiographi c an d histo logical studies of postnatal neurogenesis. I. A longitudinal investigatio n o f the kinetics , migratio n an d transformation o f cells incorporating tritiated thymi dine i n neonat e rats , wit h specia l referenc e t o postnatal neurogenesi s i n som e brai n regions . J Comp Neurol 126:337-389 . Anderson SA , Eisenstat DD, Sh i L, Rubenstein JL (1997) Interneuron migratio n fro m basa l forebrai n t o neo cortex: dependenc e o n dix genes . Scienc e 278 : 474-476. Anderson SA, Marin O, Horn C, Jenning s К , Rubenstein JL (2001 ) Distinc t cortica l migration s from th e me dial an d latera l ganglioni c eminences . Develop men t 128:353-363 . Ang E S Jr , Hayda r TF , Glunci c V, Raki c P (2003 ) Four dimensiona l migrator y coordinate s o f GABAergi c interneuron s i n th e developin g mous e cortex . J Neurosc i 23:5805-5815 . Angevine J B Jr , Sidma n R L (1961 ) Autoradiographi c study o f cel l migratio n durin g histogenesi s o f cere bral corte x in th e mouse . Natur e 192:766-768 . Anto n ES , Kreidber g JA , Raki c P (1999 ) Distinc t func tion s o f Щ an d ot v integri n receptor s i n neurona l migratio n an d lamina r organizatio n o f th e cerebra l cortex . Neuro n 22:277-289 . Aravind L , Kooni n E V (1999 ) Th e fukuti n protei n family—predicte d enzyme s modifyin g cell-surfac e molecules . Cur r Bio l 9:R836-R837 . Ba-Charve t KTN , Bros e K , Marilla t V, Kid d T, Goodma n CS, Tessier-Lavign e M , Sotel o C , Chedota l A (1999) Slit2-mediate d chemorepulsio n an d collaps e of developin g forebrai n axons . Neuro n 22:463—473. Bashaw GJ , Kid d T, Murra y D , Pawson T, Goodma n С S (2000) Repulsiv e axo n guidance : abelso n an d en abled pla y opposin g role s downstrea m o f the round abou t receptor . Cel l 101:703-715 . Bayer S A (1983 ) 3 H-thymidine-radiographi c studie s o f neurogenesi s i n th e ra t olfactor y bulb . Ex p Brai n Res 50:329-340 . Beha r TN , Dugich-Djordjevi c MM , L i YX, M a W, Som ogyi R , Wen X , Brow n E , Scot t C , McKa y RD , Barker J L (1997 ) Neurotrophin s stimulat e chemo taxis o f embryoni c cortica l neurons . Eu r J Neurosc i 9:2561-2570 . Beha r TN , L i YX, Tra n HT , M a W, Dunla p V, Scot t C , Barker JL (1996 ) GAB A stimulate s chemotaxi s an d chemokinesi s o f embryoni c cortica l neuron s vi a calcium-dependen t mechanisms . J Neurosc i 16 : 1808-1818. Beha r TN, Scot t CA, Green e CL, Wen X, Smit h SV, Mari e D , Li u QY , Colto n CA , Barke r J L (1999 ) Glutamat e actin g a t NMD A receptor s stimulate s embryoni c cortica l neurona l migration . J Neurosc i 19:4449-4461.
38 NORMA L DEVELOPMEN T Behar TN , Smit h SV , Kenned y RT , McKenzi e JM , Marie I , Barke r JL (2001 ) GABA(B) receptors me diate motility signals for migrating embryonic cortical cells. Cereb Corte x 11:744-753 . Beltran-Valero DB, Currier S, Steinbrecher A, Celli J, Van Beusekom E , Va n De r ZB , Kayseril i H , Merlin i L, Chitayat D, Dobyns WB, Cormand B, Lehesjoki AE, Cruces J, Voit T, Walsh CA, van Bokhoven H, Brunner H G (2002 ) Mutation s i n th e Omannosyl transferase gen e FOMT I giv e ris e t o th e sever e neuronal migratio n disorde r Walker-Warburg Syn drome. Am J Hum Gene t 71:1033-1043 . Berry M, Roger s AW (1965) The migratio n of neuroblasts in the developing cerebral cortex. J. Anat 99:691-709. Blackshear PJ, Silver J, Nairn AC, Sulik KK, Squier MV, Stumpo DJ, Turtle JS (1997) Widespread neurona l ectopia associate d wit h secondar y defect s i n cere brocortical chondroiti n sulfat e proteoglycan s an d basal lamin a i n MARCKS-deficien t mice . Ex p Netirol 145:46-61 . Brittis PA, Meiri K , Dent E, Silve r J (1995) The earlies t patterns o f neurona l differentiatio n and migratio n in th e mammalia n centra l nervou s system . Ex p Neuroll 34:1-12. Brunstrom JE , Gray-Swai n MR , Osborn e PA , Pearlman AL (1997) Neuronal heterotopia s i n the developin g cerebral corte x produce d b y neurotrophin-4. Neu ron 18:505-517 . Carie D, Raphael H, Viti J, Feathers A, Wancio D, Lillien L (2001) EGFR s mediat e chemotacti c migratio n i n the developin g telencephalon . Developmen t 128 : 4203-4216. Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, Kanazawa I, Kobata A, Endo T (1997 ) Structures o f sialylate d O-linke d oligosaccharide s of bovine peripheral nerv e oc-dystroglycan. The rol e of a nove l O-mannosyl-typ e oligosaccharid e i n th e binding o f oc-dystroglyca n wit h laminin . } Bio l Chem 272:2156-2162. Gobas A, Fairén A (1988) GABAergi c neuron s o f differ ent morphologica l classe s are cogenerate d in the mouse barrel cortex. J Neurocytol 17:511—519 . Cormand B , Avela K , Pihko H , Santavuor i P , Talim B , Topaloglu H , d e l a Chapell e A , Lehesjok i A E (1999) Assignmen t o f the muscle-eye-brai n diseas e gene to Ip32-p3 4 by linkage analysis and homozy gosity mapping. Am J Hum Gene t 64:126-135. Cormand B , Pihko H, Bayes M, Valanne L, Santavuori P, Talim B , Gershoni-Baruc h R , Ahma d A , va n Bokhoven H , Brunne r HG , Voi t T, Topalogl u H , Dobyns WB, Lehesjoki AE (2001) Clinical an d genetic distinctio n betwee n Walker-Warbur g syn drome an d muscle-eye-brai n disease . Neurolog y 56:1059-1069.
Corotto FS , Henegar JA, Maruniak JA (1993) Neurogenesis persist s i n th e subependyma l laye r of the adul t mouse brain. Neurosci Lett 149:111-114 . Costa C , Hardin g B , Copp AJ (2001) Neuronal migra tion defect s in the Drehe r (Lmxla ) mutant mouse : role o f disorder s o f th e glia l limitin g membrane . Cereb Corte x 11:498-505 . Crandall JE, Hackett HE, Tobet SA , Kosofsky BE, Bhide PG (2004 ) Cocaine exposur e decreases GABA neuron migration from th e ganglioni c eminence t o th e cerebral corte x i n embryoni c mice . Cere b Corte x 14:665-675. Cremer H , Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brow n R, Baldwi n S, Kraeme r P , Schef f S (1994) Inactivation of the N-CA M gen e i n mice results i n siz e reductio n o f th e olfactor y bul b an d deficits i n spatial learning. Nature 367:455-459 . Curran T , D'Arcangel o G (1998 ) Rol e o f reelin i n th e control o f brai n development . Brai n Re s Re v 26 : 285-294. D'Arcangelo G , Homayoiin i R , Keshvar a L , Ric e DS , Sheldon M, Curran T (1999 ) Reelin i s a ligand for lipoprotein receptors . Neuro n 24:471-479 . D'Arcangelo G , Mia o GG , Che n SC , Soare s HD , Mor gan JI, Curran T (1995 ) A protein relate d to extracellular matri x protein s delete d i n th e mous e mutan t reeler. Nature 374:719-723 . D'Arcangelo G , Nakajim a К , Miyat a T , Ogaw a M , Mikoshib a K , Curra n T (1997 ) Reeli n is a secrete d glycoprotei n recognize d by th e CR-5 0 monoclona l antibody . J Neurosc i 17:23-31. de Carlo s JA, Lopez-Mascaraqu e L, Valverde F (1996) Dynamic s o f cell migratio n fro m th e latera l gang l ionic eminenc e in th e rat J Neurosc i 16:6146-6156. des Porte s V, Pinar d JM , Billuart P , Vinet MC , Koulakof f A, Carri e A, Gelo t A, Dupui s E , Mott e J, BerwaldNette r Y, Catal a M , Kah n A, Beldjor d C , Chell y J (1998) A nove l CN S gen e require d for neurona l migration an d involved in X-linke d subcortica l laminar heterotopi a an d lissencephal y syndrome . Cel l 92 : 51-61. Dobyn s WB, Anderman n E, Anderman n F, CzapanskyBeilma n D , Dubea u F , Dula c O , Guerrin i R , Hirsc h B , Ledbette r DH , Le e NS , Mott e J, Pinar d JM , Radtk e RA, Ross ME , Tempier i D , Walsh CA , Truwit C L (1996 ) X-linke d malformation s o f neu rona l migration . Neurology 47:331—339. Dobyn s WB, Truwi t CL (1995 ) Lissencephal y and othe r malformation s o f cortica l development : 1995 update . Neuropediatric s 26:132-147 . Doetsc h F , Alvarez-Buylla A (1996 ) Networ k o f tangentia l pathway s fo r neurona l migratio n i n adul t mam malia n brain . Pro c Nat i Aca d Sc i US A 93:1489514900.
NEURONAL MIGRATION 3 9 Doetsch F , Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular compositio n an d three-dimensiona l orga nization of the subventricula r germinal zon e i n th e adult mammalian brain. J Neurosci 17:5046-5061. Dulabon L, Olson EC, Taglienti MG , Eisenhut h S, McGrath B, Walsh CA, Kreidberg JA, Anton ES (2000) Reelin bind s a 3P1 integri n an d inhibit s neurona l migration. Neuron 27:33-44. Ervasti JM , Campbel l K P (1993 ) A rol e fo r th e dys trophin-glycoprotein comple x as a transmembrane linker between laminil i an d actin . J Cell Bio l 122 : 809-823. Fairén A, Gobas A, Fonseca M (1986 ) Times of origin of glutamic aci d decarboxylas e immunoreactive neu rons in mouse somatosensor y cortex. J Comp Neurol 251:67-83. Fassler R , Meyer M (1995 ) Consequence s o f lack o f $l integrin gen e expressio n i n mice . Gene s De v 9 : 1896-1908. Feng Y , Olso n EC , Stukenber g PT , Flanaga n LA , Kirschner MW, Wals h CA (2000 ) LIS I regulate s CNS laminatio n b y interactin g wit h mNudE , a central componen t o f th e centrosome . Neuro n 28:665-679. Finne J, Finne U , Deagostini-Bazin H, Goridis C (1983 ) Occurrence o f a 2- 8 linked polysialosy l units i n a neural cel l adhesio n molecule . Bioche m Biophy s Res Commun 112:482-487 . Fishell G , Hatte n M E (1991 ) Astrotactin provides a receptor syste m for CNS neurona l migration . Devel opment 113:755-765 . Fox JW, Lamperti ED , Eksiogl u YZ, Hong SE , Fen g Y, Graham DA , Scheffer IE , Dobyn s WB, Hirsc h BA, Radtke RA , Berkovic SF , Huttenloche r PR , Wals h CA (1998 ) Mutation s i n filami n 1 prevent migra tion of cerebral cortical neurons in human periven tricular heterotopia. Neuron 21:1315—1325 . Francis F, Koulakoff A, Boucher D , Chafey P , Schaar B, Vinet MC , Friocour t G , McDonnell N , Reiner O, Kahn A , McConnel l SK , Berwald-Nette r Y , De noulet P, Chelly J (1999) Doublecortin is a developmentally regulated , microtubule-associate d protei n expressed i n migratin g and differentiatin g neurons . Neuron 23:247-256 . Friocourt G , Koulakof f A , Chafe y P , Bouche r D , Fauchereau F , Chell y J , Franci s F (2003 ) Dou blecortin function s a t th e extremitie s o f growing neuronal processes . Cereb Corte x 13:620-626 . Garcia-Verdugo JM, Doetsc h F , Wichterle H , Lin i DA, Alvarez-Buylla A (1998) Architecture an d cel l types of th e adul t subventricula r zone: i n searc h o f th e stem cells. J Neurobiol 36:234-248. Gardette R, Courtois M, Bisconte JC (1982 ) Prenata l development o f mous e centra l nervou s structures :
time of origin and gradients of neuronal production . A radioautographic study. J Hirnforsch 23:415-431. Georges-Labouesse E , Mar k M , Messadde q N , Gans muller A (1998) Essentia l role of alpha 6 integrins in cortica l an d retina l lamination . Cur r Bio l 8 : 983-986. Gilmore EC , Ohshim a T , Goffine t AM , Kulkarn i AB, Herrup K (1998 ) Cyclin-dependen t kinas e 5— deficient mic e demonstrat e nove l developmenta l arrest in cerebral cortex. J Neurosci 18:6370—6377. Gleeson JG , Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I , Cooper EC , Dobyn s WB, Minnerath SR, Ros s ME , Wals h C A (1998 ) Doublecortin , a brain-specific gen e mutate d i n huma n X-linke d lissencephaly an d doubl e corte x syndrome , en codes a putative signaling protein. Cell 92:63-72 . Gleeson JG , Li n PT , Flanaga n LA , Walsh C A (1999 ) Doublecortin i s a microtubule-associate d protei n and i s expressed widely by migrating neurons. Neuron 23:257-271 . Graus-Porta D, Blaes s S, Senften M , Littlewood-Evan s A, Damsky C, Huang Z, Orban P , Klein R, Schittny JC, Millier U (2001 ) (3 rclass integrins regulate the de velopment o f laminae an d foli a i n the cerebra l an d cerebellar cortex. Neuron 31:367—379 . Gressens P , Evrard P (1993) The glia l fascicle: an onto genic an d phylogeni c uni t guiding , supplying an d distributing mammalia n cortica l neurons . De v Brain Res 76:272-277. Grewal PK , Holzfeind PJ , Bittner RE , Hewit t JE (2001) Mutant glycosyltransferas e an d altere d glycosyla tion o f oc-dystroglycan i n th e myodystroph y mouse . Nat Genet 28:151-154 . Hatten M E (1999 ) Central nervou s system neuronal migration. Annu Rev Neurosci 22:511-539. Hatten ME , Maso n C A (1990 ) Mechanism s o f glial guided neuronal migration in vitro and i n vivo. Experientia 46:907-916. Hattori M , Adach i H , Tsujimot o M , Ara i H , Inou e K (1994) Miller-Dicke r lissencephaly gene encode s a subunit o f brain platelet—activating factor acetylhy drolase. Nature 370:216-218. Hayashi YK, Ogawa M , Tagaw a K, Noguchi S , Ishihara T, Nonak a I, Arahata K (2001) Selective deficiency of ot-dystroglyca n in Fukuyama-typ e congenita l muscular dystrophy. Neurology 57:115-121 . Hiesberger T, Trommsdorf f M , Howel l BW , Goffinet A , Muniby MC, Coope r JA, Herz J (1999) Direct bind ing of Reelin to VLDL recepto r and ApoE receptor 2 induce s tyrosin e phosphorylatio n o f disabled- 1 and modulate s ta u phosphorylation . Neuro n 24 : 481-489. Hinds JW (1968 ) Autoradiographie study of histogenesis in th e mous e olfactor y bulb. I . Tim e o f origi n o f
40 NORMA L DEVELOPMEN T neurons an d neuroglia . J Com p Neuro l 134 : 287-304. Holzfeind PJ , Grewa l PK , Reitsame r HA , Kechva r J , Lassmann H , Hoege r H , Hewit t JE , Bittne r R E (2002) Skeletal , cardiac and tongu e muscl e pathol ogy, defectiv e retina l transmission , an d neurona l migration defects in the Large(myd ) mouse defines a natura l mode l fo r glycosylation-deficient muscle eye-brain disorders . Hu m Mo l Gene t 11:2673 2687. Horesh D , Sapi r T , Franci s F , Wolf SG , Casp i M , El baum M, Chelly J, Reiner O (1999 ) Doublecortin, a stabilize r of microtubules . Hum Mol Gene t 8: 1599-1610. Howell BW , Herric k TM , Coope r J A (1999 ) Reelin induced tryosine phosphorylation o f disabled 1 during neuronal positioning. Genes De v 13:643-648. Hu H (1999) Chemorepulsion of neuronal migratio n b y Slit2 in the developing mammalia n forebrain. Neuron 23:703-711. (2000) Polysiali c acid regulate s chai n formatio n by migratin g olfactor y interneuro n precursors . JNeurosci Res 61:480-492. Hu H , Rutishauser U (1996) A septum-derived chemore pulsive facto r fo r migratin g olfactor y interneuro n precursors. Neuron 16:933-940 . Hu H , Tomasiewic z H , Magnuso n T , Rutishause r U (1996) The rol e of polysialic acid in migration of olfactory bul b interneuro n precursor s i n th e subven tricular zone. Neuron 16:735-743 . Ishii H , Hayash i YK, Nonak a I , Arahata K (1997) Elec tron microscopi c examinatio n o f basa l lamin a i n Fukuyama congenita l muscula r dystrophy . Neuro musculDisord 7:191-197. Jankovski A , Sotel o C (1996 ) Subventricula r zone olfactory bul b migrator y pathwa y i n th e adul t mouse: cellula r composition an d specificit y a s de termined b y heterochroni c an d heterotopi c trans plantation. J Comp Neurol 371:376-396 . Jurado LA, Coloma A, Cruces J (1999) Identificatio n o f a huma n homolo g o f th e Drosophila rotate d ab domen gen e (POMTI ) encoding a putative protei n O-mannosyl-transferase, an d assignmen t t o huma n chromosome 9q34.1 . Genomic s 58:171-180. Kano H , Kobayash i K , Herrman n R , Tachikaw a M , Manya H, Nishino I, Nonaka I , Straub V, Talim B, Voit T, Topaloglu H , Endo T, Yoshikawa H, Toda T (2002) Deficienc y of oc-dystroglycan i n muscle-eye brain disease . Bioche m Biophy s Re s Commu n 291:1283-1286. Keshvara L , Benhayo n D , Magdalen o S , Curra n T (2001) Identificatio n o f reelin-induced site s of tyrosyl phosphorylatio n o n disable d 1 . J Bio l Che m 276:16008-16014.
Keshvara L , Magdalen o S , Benhayo n D , Curra n T (2002) Cyclin-dependen t kinas e 5 phosphorylate s disabled 1 independently o f reelin signaling. J Neurosci 22:4869-4877. Kidd T, Blan d KS, Goodman CS (1999 ) Sli t is the mid line repellen t fo r the rob o recepto r i n Drosophila. Cell 96:785-794 . Kidd T , Bros e K , Mitchel l KJ , Fette r RD , Tessier Lavigne M , Goodma n CS , Tea r G (1998 ) Round about control s axo n crossin g o f the CN S midlin e and define s a novel subfamily of evolutionarily conserved guidance receptors . Cel l 92:205-215. Kishi K (1987 ) Golg i studie s o n th e developmen t o f granule cells of the rat olfactory bulb with referenc e to migratio n i n th e subependyma l layer . J Com p Neurol 258:112-124 . Kishi K , Pen g JY , Kakut a S , Murakam i K , Kurod a M , Yokota S , Hayakawa S, Kuge T, Asayama T (1990 ) Migration o f bipola r subependyma l cells , precur sors o f th e granul e cell s o f th e ra t olfactor y bulb , with reference to the arrangement o f the radial glial fibers. Arch Histo l Cytol 53:219-226 . Kobayashi K , Nakahor i Y , Miyak e M , Matsumur a K , Kondo-Iida E , Nomur a Y , Segawa M , Yoshioka M, Saito K , Osawa M , Haman o K, Sakakihara Y, Nonaka I , Nakagom e Y , Kanazaw a I , Nakamur a Y , Tokunaga K , Toda T (1998 ) An ancient retrotrans posal insertio n cause s Fukuyama-typ e congenita l muscular dystrophy. Nature 394:388-392 . Kornblum HI , Hussain RJ , Bronstein JM, Gall CM , Le e DC, Seroog y K B (1997) Prenata l ontogen y o f th e epidermal growt h facto r recepto r an d it s ligand , transforming growt h facto r alpha , i n th e ra t brain . J Comp Neurol 380:243-261 . Kwon YT, Tsai L H (1998 ) A novel disruption of cortical development i n p35~ /~ mic e distinc t fro m reeler . J Comp Neurol 395:510-522 . Lambert d e Rouvrait C, Goffine t A M (1998) Th e reele r mouse a s a mode l o f brain development, Ad v Anat Embryol Cell Biol 150:1-106 . Lavdas AA , Grigorio u M , Pachni s V , Parnavela s J G (1999) Th e media l ganglioni c eminenc e gives ris e to a population o f early neurons in th e developin g cerebral cortex . J Neurosci 19:7881-7888 . Li HS , Che n JH , W u W , Fagal y T , Zho u L , Yua n W , Dupuis S, Jiang ZH, Nash W, Gick C , Ornitz DM , Wu JY , Ra o Y (1999 ) Vertebrat e slit , a secrete d ligand fo r the transmembran e protei n roundabout , is a repellen t fo r olfactor y bul b axons . Cel l 96 : 807-818. Liang Y, Yu W, L i Y , Yang Z, Ya n X , Huan g Q , Zh u X (2004) Nude l function s i n membran e traffi c mainly through associatio n wit h Lisi an d cytoplas mic dynein. J Cell Biol 164:557-566.
NEURONAL MIGRATIO N 4 1 Liu G , Ra o Y (2003) Neuronal migration fro m th e fore brain to the olfactor y bulb requires a new attractant persistent i n th e olfactor y bulb . J Neurosc i 23 : 6651-6659. Lois C, Alvarez-Buyll a A (1994) Long-distance neurona l migration i n th e adul t mammalia n brain . Scienc e 264:1145-1148. Lois C , Garcia-Verdug o JM , Alvarez-Buyll a A (1996 ) Chain migratio n o f neurona l precursors . Scienc e 271:978-981. Longman C , Brockingto n M , Torell i S , Jimenez Mallebrera C , Kennedy C, Khalil N, Feng L, Saran RK, Voi t T , Merlin i L , Sewr y CA , Brow n SC , Muntoni F (2003) Mutations i n the human LARG E gene caus e MDC1D , a nove l for m o f congenita l muscular dystroph y wit h serv e menta l retardatio n and abnorma l glycosylatio n o f alpha-dystroglycan . Hum Mol Genet 12:2853-2861. Lund RD , Mustar i M J (1977 ) Developmen t o f th e geniculocortical pathwa y i n rats . J Com p Neuro l 173:289-306. Luo J , Mille r M W (1999 ) Transformin g growt h facto r (31-regulated cel l proliferatio n an d expressio n o f neural cel l adhesio n molecul e i n B10 4 neuroblastoma cells : differentia l effect s o f ethanol . J Neu rochem 72:2286-2293 . Luskin MB (1993) Restricted proliferation and migration of postnatall y generated neuron s derive d from th e forebrain subventricula r zone. Neuron 11:173-189 . Luskin MB , Parnavela s }G, Barfield J A (1993) Neurons, astrocytes, an d oligodendrocyte s o f the ra t cerebra l cortex originat e fro m separat e progenito r cells : a n ultrastructural analysi s o f clonall y relate d cells . J Neurosci 13:1730-1750 . Luskin MB , Pearlman AL , Sanes J R (1988) Cell lineag e in th e cerebra l corte x o f the mous e studie d i n vivo and i n vitro with a recombinant retrovirus . Neuron 1:635-647. Magdaleno S , Keshvar a L , Curra n T (2002 ) Rescu e of ataxia an d preplat e splittin g b y ectopi e expressio n of reelin in reeler mice. Neuro n 33:573-586 . Malatesta P, Hartfuss E , Gotz M (2000 ) Isolation of radial glial cells by fluorescent-activate d cel l sorting reveals a neuronal lineage. Development 127:5253-5263 . Marin O , Plum p AS , Flames N , Sanchez-Camach o C , Tessier-Lavigne M , Rubenstei n } L (2003 ) Direc tional guidance of interneuron migration to the cerebral corte x relies on subcortica l Slitl/2-independent repulsion an d cortica l attraction . Developmen t 130:1889-1901. Marin O , Rubenstei n J L (2003 ) Cell migratio n i n th e forebrain. Annu Re v Neurosci 26:441-483 . Marin O , Yaro n A, Bagri A, Tessier-Lavigne M , Ruben stein J L (2001 ) Sortin g o f striata l an d cortica l
interneurons regulate d b y semaphorin—neuropili n interactions. Science 293:872—875 . Marin-Padilla M (1978 ) Dua l origi n o f the mammalia n neocortex an d evolutio n of the cortica l plate. Anat Embryol 152:109-126 . McConnell S K (1995) Constructing the cerebra l cortex: neurogenesis an d fat e determination . Neuro n 15 : 761-768. Michele DE , Barres i R, Kanagawa M, Saito F, Cohn RD , Satz JS , Dolla r J , Nishin o I , Kelle y RI , Some r H , Straub V, Mathews KD , Moor e SA , Campbell K P (2002) Post-translationa l disruptio n o f dystroglycan ligand interaction s i n congenita l muscula r dystro phies. Nature 418:417-421. Miller M W (1981 ) Maturatio n o f rat visua l cortex. I . A quantitative stud y of Golgi-impregnated pyramida l neurons. J . Neurocytol 10:859-878 . (1985) Co-generation o f projection an d loca l cir cuit neuron s i n neocortex . De v Brai n Re s 23 : 187-192. (1986) The migratio n and neurochemical differen tiation of y-aminobutyric acid (GABA ) immunoreactive neurons in rat visual cortex as demonstrated by a combined immunocytochemical-autoradiographi c technique. De v Brain Res 28:41-46. — (1987 ) Effec t o f prenatal exposur e t o alcoho l o n the distributio n and tim e o f origin of corticospinal neurons in the rat . J Comp Neurol 257:372-382 . (1988) Maturatio n o f ra t visua l cortex : IV . Th e generation, migration , morphogenesis , an d con nectivity of atypically oriented pyramidal neurons. J Comp Neurol 274:387-405. — (1992 ) Migratio n o f peptide-immunoreactiv e lo cal circui t neuron s t o ra t cingulat e cortex . Cere b Cortex 2:444-455. (1997) Effect s o f prenatal exposure to ethanol o n callosal projectio n neuron s i n ra t somatosensor y cortex. Brain Res 766:121-128. (1999) Kinetic s o f th e migratio n o f neuron s t o rat somatosensor y cortex. De v Brai n Res 115:111 — 122. (2003) Expressio n o f transforming growth factor beta in developing rat cerebral cortex: effects o f prenatal exposur e t o ethanol . J Com p Neuro l 460 : 410-424. Miller MW , Lu o J (2002a) Effects o f ethanol an d trans forming growt h facto r (TGFp ) o n neurona l prolif eration an d nCA M expression . Alcohol Cli n Ex p Res 26:1281-1285. (2002b) Effect s o f ethano l an d basi c fibroblas t growth facto r on th e transformin g growth factor-(3 1 regulated proliferatio n o f cortica l astrocyte s an d C6 astrocytom a cells . Alcoho l Cli n Ex p Re s 26 : 671-676.
42 NORMA L DEVELOPMEN T Miller MW , Robertso n S (1993 ) Prenata l exposur e t o ethanol alters the postnata l development an d transformation o f radia l gli a t o astrocyte s in th e cortex . J Comp Neurol 337:253-266 . Misson JP , Edwards MA, Yamamoto M, Cavines s VS Jr (1988) Mitotic cycling of radial glial cells of the fe tal murin e cerebra l wall : a combine d autoradi ographic an d immunohistochemica l study . Brai n Res 466:183-190. Miyata T, Kawaguch i A, Okan o H, Ogaw a M (2001 ) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727-741 . Moore SA , Saito F , Chen J , Michele DE , Henr y MD , Messing A , Coh n RD , Ross-Bart a SE , Westr a S , Williamson RA , Hosh i T , Campbel l K P (2002 ) Deletion o f brain dystroglycan recapitulates aspects of congenita l muscula r dystrophy . Natur e 418 : 422-425. Moores CA, Perderiset M, Francis F, Chelly J, Houdusse A, Milligan RA (2004) Mechanism o f rnicrotubule stabilization b y doublecortin . Mo l Cel l 14:833 839. Moro F , Carrozzo R , Veggiotti P , Tortorella G , Toniol o D, Volzone A, Guerrini R (2002) Familial periventricular heterotopia : missens e an d dista l truncat ing mutation s o f th e FLN1 gene . Neurolog y 58 : 916-921. Nadarajah B , Brunstrom JE , Grutzendle r J , Wong RO , Pearlman AL (2001) Two modes o f radial migration in earl y developmen t o f th e cerebra l cortex . Na t Neurosci4:143-150. Nadarajah B , Parnavela s JG (2002 ) Modes o f neuronal migration i n th e developin g cerebra l cortex . Na t Rev Neurosci 3:423-432 . Nagano T, Yoneda T, Hatanaka Y, Kubota C , Murakam i F, Sat o M (2002 ) Filami n A-interactin g protei n (FILIP) regulate s cortica l cel l migratio n ou t o f the ventricular zone. Na t Cell Biol 4:495-501. Nakano I , Funahashi M , Takad a K , Toda T (1996 ) Ar e breaches i n th e gli a limitan s th e primar y cause o f the rnicropolygyri a i n Fukuyama-typ e congenita l muscular dystroph y (FCMD) ? Pathologica l stud y of the cerebral cortex of an FCMD fetus. Acta Neu ropathol 91:313-321. Noctor SC , Flin t AC , Weissman TA , Dammerman RS , Kriegstein A R (2001) Neurons derive d fro m radia l glial cells establish radial units in neocortex. Nature 409:714-720. Noctor SC , Martinez-Cerden o V , Ivi c L , Kriegstei n AR (2004) Cortica l neuron s aris e i n symmetri c an d asymmetric divisio n zone s an d migrat e throug h specific phases. Nat Neurosci 7:136-144. Nowakowski RS , Raki c P (1981 ) Th e sit e o f origin an d route an d rat e o f migratio n o f neuron s t o th e
hippocampal region of the rhesu s monkey. J Comp Neurol 196:129-154 . Ono K , Tomasiewic z H , Magnuso n T , Rutishause r U (1994) N-CA M mutatio n inhibit s tangential neu ronal migratio n and i s phenocopied b y enzymatic removal of polysialic acid. Neuron 13:595—609 . Parnavelas JG, Barfiel d JA , Franke E, Luskin MB (1991 ) Separate progenitor cells give rise to pyramidal an d nonpyramidal neuron s i n th e ra t telencephalon . Cerebr Cortex 1:463-468 . Peyrard M, Serouss i E, Sandberg-Nordqvist AC, Xie YG, Han FY , Fransso n I , Collin s J , Dunha m I , Kost Alimova M, Imre h S , Dumanski JP (1999) The hu man LARG E gen e fro m 22ql2.3-ql3. 1 i s a new , distinct membe r o f th e glycosyltransferas e gen e family. Pro c Nati Acad Sci USA 96:598-603. Polleux F , Whitfor d KL , Dijkhuize n PA , Vitali s T , Ghosh A (2002 ) Contro l o f cortica l interneuro n migration b y neurotrophin s an d PI3-kinas e signaling. Development 129:3147-3160 . Powell EM , Mar s WM , Levit t P (2001 ) Hepatocyt e growth factor/scatte r facto r i s a motoge n fo r in terneurons migratin g fro m th e ventra l t o dorsa l te lencephalon. Neuro n 30:79-89 . Quattrocchi CC , Wannene s F , Persic o AM , Ciafr e SA, D'Arcangelo G, Farace MG, Keller F (2002) Reelin is a serine protease o f the extracellula r matrix. J Biol Chem 277:303-309. Rakic P (1972) Mode of cell migratio n t o the superficial layers o f fetal monke y neocortex . J Com p Neuro l 145:61-83. (1974) Neuron s i n rhesu s monke y visua l cortex : systematic relatio n betwee n tim e o f origi n an d eventual disposition . Scienc e 183:425-427 , (1990) Principles o f neural cell migration. Experi entia 46:882-891. Rakic P , Cavines s V S J r (1995 ) Cortica l development : view fro m neurologica l mutant s tw o decades later . Neuron 14:1101-1104 . Rakic P , Knyihar-Csilli k E , Csilli k B (1996 ) Polarit y of rnicrotubul e assemblie s durin g neurona l cel l migration. Pro c Nat i Aca d Sc i US A 93:9218 9222. Raymond AA , Fis h DR , Sisodiy a SM , Alsanjar i N , Stevens JM , Shorvo n S D (1995 ) Abnormalitie s o f gyration, heterotopias, tuberou s sclerosis , foca l cor tical dysplasia , microdysgenesis , dysembryoplastic neuroepithelial tumou r an d dysgenesi s o f th e archicortex i n epilepsy . Clinical , EE G an d neu roimaging features in 10 0 adult patients. Brai n 118 : 629-660. Reiner O, Carrozzo R , Shen Y, Wehnert M , Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephal y gene containin g
NEURONAL MIGRATIO N 4 3 G protei n beta-subunit-lik e repeats . Natur e 364 : 717-721. Rickmann M , Chronwal l BM , Wolff J R (1977) O n th e Ckevelopment o f non-pyramidal neurons an d axon s oi,tside th e cortica l plate : the earl y marginal zone as i, palliai anlage. Anat Embryol 151:285-307 . Ross M E Wals h C A (2001 ) Huma n brai n malforma tions and thei r lessons for neuronal migration. Ann Rev Nturosci 24:1041-1070. Rousselot P , Loi s C , Alvarez-Buyll a A (1995 ) Embryo nic (PSA ) N-CA M reveal s chain s o f migratin g neuroblasts between the lateral ventricle and the olfactory bul b o f adul t mice . J Com p Neuro l 351 : 51-61. Rutishauser U (1996 ) Polysiali c aci d an d th e regulation of cell interactions. Cu-r Opin Cel l Biol 8:679-684. Saito Y , Murayam a S , Kawi i M , Nakan o I (1999 ) Breached cerebra l glia lim:tans-basa l lamin a com plex in Fukuyama-type congenital muscula r dystrophy. Acta Neuropathol 98:330-^36. Sanes J R (1989) Analysin g cell lii:eag t wit h a recombi nant retrovirus. Trends Neurosc ; 12:21-28 . Santavuori P , Some r H , Saini o K , R^pol a J , Kruu s S , Nikitin T , Ketone n L , Leist i J (1989 ) Muscle-eye brain disease (MEB). Brain De v 11:147-153 . Schmechel DE , Raki c P (1979 ) A Golgi stud y o f radial glial cell s i n developin g monke y telencephMon : morphogenesis an d transformatio n int o astrocyte ^ Anat Embryol 156:115-152 . Schwanzel-Fukuda M, PfaffDW (1990 ) The migratio n of luteinizing hormone—releasin g hormon e (LHRH ) neurons fro m th e media l olfactor y placod e int o the media l basa l forebrain . Experienti a 46 : 956-962. Sekiguchi M , Ab e H , Shima i K , Huan g G , Inou e T , Nowakowski RS (1994) Disruption of neuronal migration i n th e neocorte x o f th e Dreher mutan t mouse. Dev Brai n Res 77:37—43. Senzaki K, Ogawa M, Yagi T (1999) Proteins of the CN R family ar e multipl e receptor s fo r reelin . Cel l 99 : 635-647. Sheen VL , Dixo n PH , Fo x JW , Hon g SE , Kinto n L , Sisodiya SM , Dunca n JS , Dubea u F , Scheffe r IE , Schachter SC , Wilne r A , Hench y R , Crin o P , Ka muro K, DiMario F, Berg M, Kuznieck y R, Cole AJ, Bromfield E , Bibe r M , Schome r D , Wheles s J , Silver K , Mochida GH, Berkovi c SF, Andermann F, Andermann E , Dobyn s WB, Wood NW, Walsh CA (2001) Mutation s i n th e X-linke d filami n 1 gen e cause periventricular nodular heterotopia i n males as well as in females. Hum Mo l Genet 10:1775-1783. Sheen VL , Fen g Y, Graham D , Takafuta T, Shapir o SS , Walsh C A (2002 ) Filamin A and filami n B are co expressed within neurons during periods of neuronal
migration an d ca n physicall y interact . Hu m Mo l Genet 11:28 4 5-2854. Siegenthaler JA ? Miller M W (2004 ) Transforming growth factor (3 1 modulate s cel l migratio n i n ra t cortex : effects o f ethanol. Cereb Corte x 14:791-802 . (2005) TGF(3 1 potentiate s cel l cycl e exi t i n de veloping cerebra l cortex . J Neurosc i 25:8627 8636. Smalheiser NR (1993 ) Crani n interact s specifically with the sulfatide-bindin g domain o f laminili. J Neurosci Res 36:528-538. Stitt TN , Hatte n M E (1990 ) Antibodie s tha t recogniz e astrotactin bloc k granul e neuro n bindin g t o as troglia. Neuron 5:639-649. Stessei TP , Condeeli s J , Cooley L , Hartwi g JH, Noege l A, Schleicher M, Shapir o SS (2001) Filamins as integrators of cell mechanic s and signalling . Nat Rev Mol Cell Biol 2:138-145. Takahashi S , Sasak i T, Many a H , Chib a Y , Yoshida A, Mizuno M , Ishid a H , It o F , Inaz u T , Kotan i N , Takasaki S , Takeuchi M , End o T (2001 ) A new p 1,2-N-acetylglucosaminyltransferase that may play a role in the biosynthesis of mammalian O-mannosyl glycans. Glycobiology 11:37-45 . Tamamaki N , Fujimor i KE , Takauj i R (1997 ) Origi n and rout e o f tangentially migrating neurons i n th e developing neocortica l intermediat e zone . J Neu rosci 17:8313-8323 . Tanaka T , Serne o FF , Higgin s C , Gambell o MJ , Wynshaw-Boris A , Gleeso n J G (2004 ) Lis i an d doublecortin function with dynein to mediate cou pling o f the nucleu s to the centrosom e i n neurona l migration. J Cell Biol 165:709-721. Thomas LB , Gates » MA , Steindle r D A (1996 ) Youn g neurons from th e adnl t subependymal zon e prolif erate an d migrat e along a n astrocyte , extracellular matrix-rich pathway . Glia 17:1-14 . Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U , Yee D, LaMantia C , Mourton T, Herru p K, Harri s RC (1995 ) Targeted disruptio n o f mous e EGF receptor : effec t o f genetic background o n mutant phenotype. Science 269:230-234 . Tomasiewicz H , On o K , Yee D, Thompso n C , Goridi s C, Rutishause r U , Magnuso n T (1993 ) Geneti c deletion o f a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects i n the cen tral nervous system. Neuron 11:1163—1174 . Trommsdorff M , Bor g JP, Margolis B, Herz J (1998) In teraction o f cytosoli c adapto r protein s wit h neu ronal apolipoprotei n E receptor s an d th e amyloi d precursor protein. J Biol Chem 273:33556-33560 . Trommsdorff M , Gotthard t M , Hiesberge r T , Shelto n J , Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999 ) Reeler/Disabled-lik e disruptio n o f
44 NORMA
L DEVELOPMEN T
neurona l migratio n in knockou t mice lackin g th e VLDL recepto r an d Apo E recepto r 2 . Cel l 97 : 689-701. Valann e L , Pihk o H , Katevu o K , Karttune n P , Some r H , Santavuor i P (1994 ) MR I o f th e brai n i n muscle eye-brai n (MEB ) disease . Neuroradiolog y 36 : 473-476. Van Reeuwij k J , Jansse n M , van de n Elze n C , Beltran Valero d e Bernab e D , Sabatell i P , Merlin i L, Boo n M, Scheffe r H , Brockingto n M , Munton i F , Huy nen M , Verrip s A , Walsh C , Bart h P , Brunne r H , van Bokhove n H (2005 ) POMT 2 mutation s cause alphadystroglyca n hypoglycosylatio n an d Walker Warbur g syndrome . J Me d Genet . In press. VoigtT (1989 ) Developmen t of glial cell s in th e cerebral wall o f ferrets : direc t tracin g of thei r transformatio n from radia l gli a int o astrocytes . J Com p Neuro l 289:74-88. Walsh C , Cepk o C L (1988 ) Clonall y relate d cortica l cells sho w severa l migratio n patterns . Scienc e 24Ы342-1345 . Wichterl e H , Garcia-Verdug o JM , Alvarez-Buylla A (1997 ) Direc t evidenc e fo r homotypic , glia-independen t neurona l migration . Neuro n 18:779-791 , Wichterl e H , Varez-Dolad o M , Erskin e L , Alvarez Buylla A (2003 ) Permissiv e corrido r an d diffusibl e gradient s direc t media l ganglioni c eminenc e cel l migratio n t o th e neocortex . Pro c Nat i Aca d Sc i USA 100:727-732 . Wong K , Re n XR , Huan g YZ, Xi e Y , Li u G , Sait o H , Tan g H , Wen L , Brady-Kalna y SM , Me i L , Wu JY, Xiong WC , Ra o Y (2001 ) Signa l transductio n in neurona l migration : rôle s o f GTPas e activatin g
proteins an d th e smal l GTPas e Cdc4 2 i n th e Slit Robo pathway . Cell 107:209-221 . Wu W, Wong K , Chen J, Jiang Z, Dupui s S, Wu JY, Rao Y (1999) Directiona l guidanc e o f neuronal migratio n in th e olfactor y system b y th e protei n Slit . Natur e 400:331-336. Wynshaw-Boris A , Gambell o M J (2001 ) LIS I an d dynein moto r functio n i n neurona l migratio n an d development. Genes Dev 15:639—651 . Yoshida A , Kobayash i K , Manya H , Taniguch i K , Kan o H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M , Herrman n R , Sträub V, Talim B , Voit T, Topaloglu H , Toda T , End o T (2001 ) Muscula r dystrophy an d neurona l migratio n disorde r cause d by mutation s i n a glycosyltransferase, POMGnTl . Dev Cell 1:717-724 . Zallen JA , Yi BA, Bargrnann C I (1998 ) Th e conserve d immunoglobulin superfamil y member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 92:217-227. Zheng C, Heint z N , Hatten M E (1996 ) CN S gen e encoding astrotactin , whic h support s neurona l migra tion alon g glia l fibers. Science 272:417-419 . Zhu Y, Li H, Zhou L , Wu JY, Rao Y (T999) Cellular an d molecular guidanc e o f GABAergic neurona l migra tion fro m a n extracortica l origi n t o th e neocortex . Neuron 23:473-485. Zigova T , Betarbe t R , Sotere s BJ , Broc k S , Baka y RA, Luskin M B (1996 ) A comparison o f the pattern s of migration an d th e destination s o f homotopicall y transplanted neonata l subventricula r zone cells and heterotopically transplante d telencephali c ventric ular zone cells . Dev Biol 173:459-474 .
4
Neuronal Differentiation : From Axons to Synapses C. David Mintz Iddii H. Bekirov Tonya R . Anderson Deanna L . Benson
are usually shorter, taper with distance from th e soma and generall y branch a t acute angles. Earl y in devel opment, neurite s ar e morphologicall y indistinguish able from on e another. Over the cours e of maturation they assume the characteristic s of axons and dendrites in a process known as polarization.
A newl y born neuro n generate s a singl e axo n an d a somatodendritic domain. As it matures, i t engages, by way o f synapses, a select populatio n o f the 2 0 billion other differentiatin g neuron s i n th e huma n centra l nervous syste m (CNS) . Amazingly , the connection s that ultimately form are stereotyped and , for the mos t part, faithfull y recapitulate d acros s individuals . Thi s chapter outlines major event s in differentiation, high lighting the key cellular events and molecular mecha nisms governing the process .
Stages of Neurite Maturatio n Time-lapse imagin g of individual neurons growin g in dissociated culture s reveals a stereotyped sequence of stages in neurite development, diagramme d in Figur e 4-1 (Dott i e t al., 1988) . I n Stag e 1 , the neuro n exist s as a round som a with lamellipodia an d filopodia , bu t without neurites . Immatur e neurites , whic h canno t be identified as either axons or dendrites, emerge dur ing Stag e 2 . I n Stag e 3 , a singl e proces s undergoe s rapid growth and becomes the axon . The shorte r processes develop int o dendrites i n Stage 4. During Stag e 5, there i s further elaboration an d maturatio n o f dendrites and axon s as synapses form. Though it is not yet
ACQUISITION O F NEURONAL POLARITY
The neuroanatomis t Jan Purkinje was the first to note that ther e ar e tw o morphologicall y distinc t type s of nerve fiber s i n th e adul t nervou s system, axons an d dendrites (Shepherd , 1991) . Axons traverse long distances, maintai n a constan t caliber , an d commonl y branch a t righ t angles . I n contrast , dendrites , which 45
46 NORMA L DEVELOPMEN T
FIGURE 4-1 Stage s of neurite development Th e Stag e 1 neuron lacks neurites entirely. In Stag e 2 , immature neurite s emerg e tha t are capabl e o f becomin g either axon s or dendrites . When on e o f the immatur e neurite s outgrows the others i t becomes th e axo n and th e neuro n reache s Stag e 3 . The remainin g immature processe s becom e dendrite s an d elaborat e an d branc h i n Stag e 4 . Synaptogenesis an d spinogensi s occur i n Stag e 5 , which i s not show n i n thi s diagram.
proven definitively , it i s generall y believe d tha t th e stages o f neurit e developmen t observe d i n cultur e also occu r i n situ . Nearl y all dat a tha t addres s ques tions about neuronal polarity are derived from experi ments i n whic h neuron s ar e grow n i n dissociate d cultures where individual processes can b e identified and followed over time. Polarization is Initiated b y Axon Specificatio n All earl y neurites o n a particular neuro n ar e capabl e of becomin g axon s or dendrites . On e ultimatel y acquires axona l characteristic s an d th e remainde r as sume a dendriti c fate . I n a Stag e 2 neuron , eac h process undergoe s cycle s o f extension an d retractio n until on e neurit e outgrow s th e other s b y a critica l length—lOjLim i n hippocampa l neurons—an d be comes th e axo n (Gosli n an d Banker , 1989) . I f a recently formed axo n is transected to a length compa rable to that of the other neurites, one of the other minor processe s typicall y become s th e axo n an d th e stump of the original axon adopts dendritic character istics (Dott i an d Banker , 1987) . Thus , ever y Stag e 2 proces s ha s the potentia l t o becom e th e axon , bu t the presenc e o f a specifie d axo n activel y promotes a
dendritic fat e fo r the remainin g neurites . Thi s mode l is supporte d b y dat a showin g tha t dendriti c matura tion ca n occu r onl y after axo n specification (Cacere s et al, 1991) . As one neurit e outgrows the other s b y virtue of interactions wit h loca l environmenta l factors , i t give s rise t o a positiv e feedbac k loo p tha t create s tw o dis tinct compartments (Crai g and Banker , 1994) . As development continues , som e protein s an d organelle s become segregate d int o on e o f th e tw o compart ments, an d th e differen t complement s o f proteins i n mature axon s an d dendrite s underli e th e functiona l and morphologica l difference s betwee n the tw o types of neurites . I n recen t years , some progres s ha s bee n made in elucidating the molecula r basis of axon specification an d subsequen t maturatio n events , bu t a complete mode l ha s not yet been formulated. Role of the Cytoskeleton in the Establishment of Polarity A considerabl e bod y o f evidenc e support s th e hy pothesis that microtubule s are involved in axon specification. Quantitativ e analyse s o f seria l electro n microscopy (EM ) reconstruction s o f minor processe s and axon s in Stag e 2 and Stag e 3 neurons revea l tha t
NEURONAL DIFFERENTIATION: FROM AXONS TO SYNAPSE S 4 7
axon specification coincides with a dramatic increase in microtubule number (Yu and Baas, 1994). This increase raises the possibilit y that selective transport of microtubules t o a singl e neurit e produce s rapi d growth and subsequen t acquisitio n o f axonal charac teristics (Baas, 1999) . The efficienc y o f microtubule assembl y and th e stability of microtubules once formed are inextricably linked t o th e loca l compositio n o f mierotubule associated proteins (MAPs). Data from culture d neu rons indicat e tha t MAP s suc h a s Tau an d MAPlb , which are enriched i n axons, may also play a role i n axon specification (Caceres and Kosik , 1990 ; DiTell a et al, 1996). Mice deficient in both Tau and MAPlb, however, have only modest defect s in axo n development (Takei et al., 2000), a finding suggesting that the dependence on MAPs is exaggerated in culture or compensated for over the long term in situ. At the very least, MAPs stabilize microtubules, and this stabilization contributes t o rapi d microtubule-dependen t neurit e out growth. Other proteins that regulate microtubules may play a more crucial role in axon specification. For example, collapsi n respons e mediator protein (CRMP ) 2 i s enriched i n th e dista l regio n o f Stag e 3 axons where i t apparently facilitates microtubule assembl y (Fukata e t al. , 2002a) . Supportin g thi s possibility , a dominant negativ e CRMP- 2 lackin g th e tubuli n binding sit e prevent s axon specificatio n in culture d neurons (Inagak i e t al. , 2001) . Also , recen t studie s have demonstrate d tha t glycogen synthas e kinase 3 $ and other signaling molecules directly upstream fro m CRMP-2 ca n influenc e axon formation (Jiang et al., 2005; Yoshimura et al, 2005). It must be noted, however, that CRMP- 2 an d th e axona l MAP s are multi functional proteins , makin g the precis e significanc e of microtubules in the establishmen t of neuronal polarity unclear. The acti n cytoskeleto n ha s bee n implicate d i n axon specification . Local applicatio n o f cytochalasin D, an actin-depolymerizing agent, to the growth cone of a single neurite o f a Stage 2 neuron increase s th e likelihood tha t thi s neurit e wil l becom e th e axon . Bath application of the sam e reagent results in an increase in neurons bearing multiple axons (Bradke and Dotti, 1999). It should be noted, however, that a subsequent study argues that this effect i s actually the re sult o f faste r growt h o f al l neurites , rathe r tha n aberrant polarization (Ruthel and Hollenbeck, 2000). In Aplysia growt h cones, actin depolymerization ca n trigger increase d microtubul e elongatio n (Forsche r
and Smith, 1988). Hence, it is likely that axon specification depends on the coordinated regulation of both actin depolymerization and microtubule assembly. Signaling Pathways That Control Polarization The emergenc e of polarity requires coordination between Stage 2 neurites, suggesting the existence of intracellular signalin g pathways . Th e Rh o famil y o f small GTPases , whic h include s Rho , Rac , an d Cdc42, are candidates to control polarization, as they can regulat e bot h acti n an d microtubule s (Burridg e and Wennerberg , 2004 ; Gunderse n e t al. , 2004) . Broad-based inhibitio n o f th e entir e Rh o famil y i n Stage 2 neurons results in the emergence of multiple axons (Bradke and Dotti, 1999). Additional work supports the notio n tha t Rho, Rac, and Cdc42 ca n each play distinc t roles . Expressio n o f a Ra c dominant negative mutant in Drosophila reduces axon outgrowth (Luo e t al. , 1994) , wherea s expression o f a constitu tively activ e Cdc42 mutan t i n culture d hippocampa l neurons induce s multipl e axon s (Schwambor n an d Puschel, 2004) . In contrast, Rho can induce the col lapse of the dista l ends o f neurites via phosphyorlyation of CRMP-2 (Arimur a et al, 2000). According to one model , the spee d of outgrowth of any given neurite i s determine d b y a balanc e betwee n retractio n and collaps e promote d b y Rh o an d outgrowt h pro moted by Rac and Cdc42 (Fukata et al, 2002b). This hypothesis, whic h ha s no t bee n full y validate d i n mammalian neurons, has the potential t o explain differential growth of axons and dendrites in terms of local Rho family activity. There ar e man y parallels betwee n neurona l an d non-neuronal cel l polarizatio n (Rodriguez-Boula n and Powell , 1992) , an d ther e i s evidence that some signaling pathway s related t o polarizatio n ar e con served amon g different cel l types. The Pa r complex, which consist s of Par3, Parò, and atypica l phosphokinase C , control s th e establishmen t o f polarit y i n a broad range of species and cel l types via regulation of actin an d microtubule s (Wodarz , 2002). Recent data suggest that the Pa r complex may control axon specification upstream from th e Rho family. Par3 and Parò are polarize d to th e axon s o f hippocampal neurons , and overexpressio n of ectopie Pa r prevents polarization (Sh i e t al. , 2004) . Segregatio n o f Pa r comple x members to a single neurite, which can occur as early as Stag e 2 , i s precede d b y polarizatio n o f Ra p IB,
48 NORMA L DEVELOPMENT a smal l GTPas e tha t i s a Ra s famil y membe r (Schwamborn and Puschel, 2004) . The dat a indicate that Ra p IB i s upstrea m o f bot h th e Pa r comple x and Cdc4 2 wit h respec t t o axo n specificatio n (Schwamborn an d Puschel , 2004) . I t i s thought tha t extracellular factors, a s yet unidentified, might medi ate th e effect s o f the loca l environmen t o n polariza tion b y acting upstrea m fro m intracellula r signaling molecules such as Rho, Par, and Ra p IB. Polarized Distribution of Proteins an d Organelles The difference s i n morphology and functio n that distinguish axons and dendrites reflect different comple ments o f protein s an d organelle s i n eac h typ e o f neurite. In the adult brain, certain proteins have a polarized distribution , meanin g tha t the y ar e concen trated or even exclusively present in either dendrites or axons. This asymmetr y must be created durin g development b y compartment-specifi c traffickin g an d re tention o f thes e proteins . Th e Stag e 2 neurit e tha t becomes th e axo n in Stag e 3 typically receives more organelles, cytosoli c proteins, and Golgi-derive d vesi cles than the processes that become dendrites (Bradke and Dotti , 1997) . Intac t traffickin g i s required for polarization, as it is possible to prevent axon specification by blockin g th e traffickin g o f Golgi-derive d vesicle s with brefeldin A (Jareb and Banker , 1997). The polar ized distribution of some proteins may either promote the emergin g difference s betwee n developin g axon s and dendrite s or simply reflect thos e differences . Th e details o f how eac h polarize d protei n reache s it s appropriate destination in one compartment bu t not the other remain largely speculative. The polarizatio n o f protein s ma y resul t fro m re tention specifi c t o the appropriat e compartment. Experiments with optical tweezers, which allow traction force t o b e applie d t o specifi c proteins, sho w that a barrier t o th e diffusio n o f som e axon-specifi c mem brane protein s exist s a t th e axo n initia l segmen t (Winckler et al, 1999; Fâche et al, 2004). The barrier appears to be an accumulation of actin-tethered mem brane proteins . Analysis of phospholipid diffusio n i n the membran e suggest s that the diffusio n barrie r does not exis t prio r t o axo n specificatio n (Nakad a e t al. , 2003), but it may play an important role in subsequent maturation. The exten t to which th e diffusio n barrie r is a cause or consequent of the establishmen t of neuronal polarity remains unknown.
NEURITE MOTILITY
The neuroanatomis t Santiag o Ramo n y Caja l (1894 ) observed tha t th e dista l exten t o f a growin g neurit e "end[s] in a spherical conical swelling . .. with a large number o f thick protrusion s and lamella r processes, " which he speculated wer e like "an amoebic mas s that acts as a battering ram to spread the elements alon g its path." H e name d thi s morphologica l specializatio n the growth cone, and decade s of subsequent researc h have supporte d hi s inferenc e tha t growt h cone s ar e highly motile structures required for the elongatio n o f both axon s and dendrites . Muc h i s known about th e structure and functio n of growth cones . Th e motilit y of growth cone s depend s o n acti n an d microtubule s and th e protein s tha t regulat e them . Additionally , growth cone s ar e th e sensor y organs for extracellular cues that guide axons to engage in the directed growth required for the establishmen t of correct connectivity. Though muc h wor k remain s t o b e done , a n under standing o f ho w growt h cone s functio n i n neurit e growth i s emerging. Growth Cone Structur e Although neuronal growth cones vary considerably in shape an d size , the y generall y share som e commo n structural features. Most investigators recognize thre e morphological zone s know n a s th e central , transi tional, an d periphera l domains , which ar e indicate d in Figur e 4- 2 (Forsche r and Smith , 1988 ; Bridgma n and Dailey , 1989) . Th e relativel y thic k centra l do main abut s th e neurit e an d i s enriched wit h micro tubules. The transitiona l domain, which lies between the centra l an d periphera l domains , contain s mesh work, arcs , and radia l ridge s o f F-actin. Th e periph eral domai n consist s o f th e lamellipodium , a wide , flat region, an d filopodia, which ar e fin e membran e protrusions tha t exten d distall y fro m th e lamel lipodium. The periphera l domain i s greatly enriched with F-actin , organized a s meshwork and arc s in th e lamellipodia. Filopodia contai n bundles o f filaments with th e barbe d end s pointing distally. Compared t o the centra l domain , th e periphera l domai n ha s a lower densit y o f microtubule s an d the y ar e notabl y more dynami c (Schaefe r e t al, , 2002) . Th e leadin g edge o f migratin g fibroblast s wa s thought t o hav e a structure similar to that of the neurona l growth cone . Recent findings, however, show that th e cytoskeletal configuration an d mechanic s o f motility in these tw o
NEURONAL DIFFERENTIATION : FRO M AXONS TO SYNAPSE S 4 9
FIGURE 4- 2 Structur e o f the growt h cone . Th e mor phological zone s o f a growt h con e ar e show n usin g a differential interferenc e contras t micrograp h o f a dendritic growth cone from a cultured ra t neocortical neu ron. Not e th e thic k centra l zon e (C) , separate d fro m the fla t periphera l zon e (P ) b y th e transitiona l zon e (T). Also , i n th e periphera l zone , th e lamellipodiu m and severa l filopodia are indicated by dashed lines.
structures diffe r considerabl y (Strasse r e t al. , 2004) . Thus, the presen t discussio n of growth con e motilit y is confined to models from experiment s don e o n neuronal growth cones . Growth Cone Motility The exac t relationship between filopodial, lamellipodial, an d neurit e motilit y i s no t completel y under stood. Filopodi a sampl e th e environmen t fo r cues t o determine th e directio n o f growth (O'Conno r e t al. , 1990), and thu s filopodial motility tends to reflect this scanning patter n rathe r tha n demonstratin g a tigh t link wit h neurit e growth . Th e movement s o f lamellipodia ar e better correlate d wit h neurite growt h tha n those o f filopodia , bu t lamellipodi a commonl y en gage i n extensio n an d retractio n tha t d o no t directl y correlate wit h alterations i n the trajector y of the grow ing neurite. Growth con e motilit y requires dynamic regulatio n of th e cytoskeleton . Th e treadmil l model , whic h i s based on observation s in filopodia, focuses o n the rol e of acti n (Fig . 4-3 ) (Li n e t al , 1994) . Filament s o f actin ar e simultaneously polymerized at the dista l tips of filopodi a an d retracte d proximall y b y myosi n
FIGURE 4- 3 Th e acti n treadmil l mode l o f motility. The tw o principle features of the treadmil l mode l ar e the retrograd e flo w o f actin, whic h i s due t o myosi n motors, and th e polymerization of actin at the leading edge o f the filopodi a (o n right) . I f polymerization i s faster tha t retrograd e flow , ther e i s forwar d move ment; i f it is slower, there i s retraction. Note tha t acti n is coupled t o the substrat e by linker proteins that bin d transmembrane CAMs .
motors (Li n e t al., 1996) . I f the rat e o f actin polymer ization a t th e leadin g edg e i s greater tha n th e rat e of actin retrograd e flow , th e filopodi a advances . I f polymerization is slower than retrograd e flow, the filopodia retracts. If polymerization and retrograd e flow are bal anced, ther e i s no ne t chang e i n th e positio n o f th e filopodia. The substrat e on which a neurite grow s can interact wit h transmembran e adhesio n molecules , which ar e attache d t o acti n indirectl y via linker pro teins. Th e couplin g o f the substrat e t o th e acti n cy toskeleton (a ) allow s fo r th e generatio n o f tensio n when force s are applie d t o actin an d (b ) accounts for the influenc e o f substrat e o n growt h con e motilit y (Suter an d Forscher , 1998) . Thi s mode l i s not com plete, a s axon s treate d wit h acti n depolymerizin g agents stil l demonstrat e ne t growt h (Bentle y an d Toroian-Raymond, 1986) , an d applicatio n o f rnicro tubule destabilizing reagents can preven t neurit e out growth (Bambur g et al., 1986) . I t should be noted tha t current model s o f growt h con e motilit y ar e largel y based o n experiment s i n unpolarized Aplysia neuron s or in spinal or sensory neurons isolate d from frog s an d chicks. Som e mechanism s o f growt h con e motilit y may differ amon g species , cell types, and neurit e type , but th e regulator y molecule s ar e likel y t o b e conserved. A larg e an d divers e grou p o f proteins tha t modu late cytoskeleta l dynamic s throug h intracellula r signaling o r direc t actio n i s involve d i n regulatin g growth con e motility . Th e Rh o famil y o f proteins ,
50 NORMA L DEVELOPMEN T which ca n influenc e bot h th e acti n an d microtubul e cytoskeleton, play s a n importan t rol e i n regulatin g growth con e motility . Th e contro l o f actin polymer ization a t the leadin g edge o f growth cones i s an are a of activ e study . Member s o f th e Ena/Vas p family , which preven t barbe d acti n capping , ca n regulate th e behavior o f filopodi a (Lebran d e t al. , 2004) . Othe r molecules tha t ma y pla y role s i n acti n dynamic s a t the leadin g edg e includ e profilin , fascili , an d acti n depolymerizing factor/cofili n (Will s e t al. , 1999 ; Meberg an d Hamburg , 2000 ; Coha n e t al , 2001) . Further wor k i s require d t o construc t a cohesiv e model o f ho w thes e an d othe r protein s regulat e cy toskeletal dynamics at the leadin g edge o f the growt h cone. Directed Growth Growth cone s ar e generall y considere d t o mediat e the respons e o f growin g axon s an d dendrite s t o th e myriad of guidance cue s that direct the establishmen t of appropriat e connectivity. It i s possible t o alte r th e trajectory o f neurite growt h b y applying a gradient of a chemotropi c molecul e t o a growt h con e i n vitr o (Zheng e t al. , 1994) . I n fact , thi s assa y i s now com monly use d t o tes t whether a protei n ca n serv e a s a guidance cue. Furthermore, many receptors for known guidance cues are expressed in the plasma membran e of growth cones. I t i s believed that gradient s of guidance cue s acros s the surfac e o f the growt h con e pro duce asymmetri c effect s o n receptor s tha t mediat e growth cone steerin g (Goodman, 1996) . The respons e o f growt h cone s t o guidanc e cue s depends o n bot h th e acti n an d microtubul e compo nents o f the cytoskeleto n an d th e effector s tha t regu late them downstrea m fro m guidanc e receptors . I t has been propose d that growth cone turnin g occurs when actin i s polymerize d asymmetricall y withi n th e growth cone an d whe n there i s a subsequent increase in microtubul e entr y int o an d polymerizatio n in th e actin ric h zon e (Den t and Gertler , 2003) . Consistent with this model, disruptions of regulators of either th e actin o r th e microtubul e cytoskeleto n ca n resul t i n defective axo n guidance. Example s include th e acti n interactors Arp2/3 and Ena/Vas p (Lanie r e t al. , 1999 ; Lee e t al, 2004 ; Strasse r e t al, 2004 ) a s well a s the microtubule interactors , plu s end-trackin g protein s (Lanier et al, 1999 ; Le e et al, 2004). The precis e significance o f these molecules in directed growth, however, remains a subject of active investigation.
Several molecule s tha t ca n signa l betwee n guid ance receptor s an d th e cytoskeleto n i n growt h cone s have been identified . Rho family members, which ca n regulate bot h acti n an d microtubules , hav e bee n im plicated i n signalin g downstrea m fro m guidanc e receptors (Gua n an d Rao , 2003) . Also, relativ e con centrations o f cycli c nucleotide s (cycli c adenosin e monophosphate [cAMP ] an d cycli c guanosin e monophosphate [cGMP] ) can modulate the respons e of growth cones t o guidance cues . Fo r instance, a gradient o f brain-derived neurotrophi c facto r (BDNF), a factor tha t i s usuall y attractiv e fo r Xenopus growt h cones, becomes repulsiv e if the growt h cone is treated with a cAM P inhibito r (Song e t al, 1997) . Anothe r potential signa l downstream from guidanc e receptor s is Ca 2+. Liv e imagin g o f growt h cone s i n cultur e shows tha t transien t increases in Ca 2+ o n on e sid e of the growt h con e correlat e wit h turnin g towar d th e contralateral sid e (Gomez e t al. , 2001) . Interestingly, larger Ca z+ transients can resul t in ipsilateral turning. This paradox i s explained b y data indicatin g tha t low concentrations o f Ca 2+ ac t primaril y throug h cal cineurin phosphatase, whereas higher concentration s act vi a calcium-calmodulin-dependen t protei n ki nase I I (We n e t al. , 2004) . Th e recen t findin g tha t Ca2+ concentrations i n the growth cone can be mod ulated by cAMP and cGMP control of calcium chan nels suggests that Ca 2+ acts on growth cone guidanc e downstream fro m th e cycli c nucleotide s (Nishiyam a et al., 2003). Though data on interactions between re ceptors, signals , effectors , an d th e cytoskeleto n ar e emerging, muc h remain s t o b e don e befor e a com plete mode l o f how a specific guidanc e cu e result s in a change i n growth cone motilit y can be constructed .
AXON GUIDANC E In th e lat e nineteent h century , Ramo n y Caja l pro posed tha t axon s coul d b e guide d chemotropically , but th e ide a fel l ou t of fashion and was untested unti l it was revisited by Roger Sperr y in th e 1940 s (Sperry, 1963). I n a serie s of classi c experiments, Sperr y severed a frog opti c nerve, rotated the ey e 180°, and the n allowed connections t o form again . These frogs mad e 180° error s i n their attempt s t o catch flies. In contra diction t o the popula r view, including that of his the sis advisor , Sperr y conclude d tha t th e regenerate d axons di d no t innervat e ne w targe t region s t o com pensate fo r th e ey e rotation , bu t projecte d t o thei r
NEURONAL DIFFERENTIATION : FRO M AXON S TO SYNAPSE S 5 1 original sites in the tectum . The outcome s o f this and other relate d experiment s le d Sperr y t o propos e tha t extending axon s ar e guide d b y "cytochemica l tags. " He furthe r propose d tha t neura l connectivity i s specified wit h onl y a fe w such tag s o r cue s distribute d in orthogonal gradient s (Sperry , 1963) . Severa l of thes e cues have no w been identified , validatin g these principles and indicatin g that axo n guidanc e i s best con sidered in their context . Guidance cue s ca n b e secrete d fro m a restricted source to form long-range, diffusible gradient s that act as molecula r beacons , wherea s membrane-attache d cues ca n for m short-range , standin g gradient s (se e Directed Growth , above) . Concurrently , adhesio n molecules expresse d alon g th e surfac e o f axon s ca n interact wit h othe r axon s o r particula r substrate s t o promote axo n fasciculation , extension , turning , o r stopping. Most cue s have differen t function s at differ ent stage s o f developmen t o r i n differen t pathways , and man y hav e multipl e receptor s an d co-receptor s that ca n mediat e differen t responses . Thi s hig h de gree of complexity make s it difficult t o sort out whic h interactions ar e importan t fo r th e generatio n o f particular connections , bu t i t supports Sperry' s ide a tha t a smal l numbe r o f guidanc e cue s ca n generat e th e diverse response s require d fo r high-fidelit y network development. I n ligh t o f thi s diversity , exemplar y cases o f axo n guidanc e hav e bee n selecte d t o illus trate how the challenge s o f directed growth and specificity are met. Many individua l growt h cone s appea r t o expres s all o f the receptor s require d a t th e appropriat e tim e and place t o respond t o the cue s necessar y for their final targeting. Some pathway s capitalize on the effort s of a fe w pionee r neurons . Pioneer s ar e bes t under stood in invertebrates, where it is well established that they differentiat e an d mak e connection s earl y in de velopment when distances are small. The connection s provide a pat h fo r axon s extendin g fro m later-bor n neurons. I n mammalian cerebra l cortex , th e develop ing cortical plate i s sandwiched between transien t layers called the marginal zone and subplate that contai n the earliest born neurons (Marin-Padilla, 1971) . Populations of subplate neurons send axons to the thalamus before th e laye r V and VI neurons that form th e adult projections are even born (McConnel l e t al., 1989) . In a very different way , Cajal-Retzius neurons i n the mar ginal zone pioneer local intracortical connections an d may b e importan t fo r generating a columna r organi zation o f cortical networks (Sarnat and Flores-Sarnat ,
2002). I n thi s way , pioneer neuron s produc e frame works that , fo r particula r networks , ar e critica l fo r specifying pathways. Midline Crossing in Vertebrate Ventral Spinal Cor d After closel y examinin g the appearanc e an d trajecto ries of Golgi-impregnated neuron s in the spina l cord , Ramon y Caja l hypothesize d tha t group s o f dorsally disposed neuron s giv e rise to axon s tha t ar e attracte d to th e ventra l midline . Th e proo f cam e nearl y 10 0 years later , whe n dissecte d midlin e expiant s wer e demonstrated t o b e attractiv e to commissurall y pro jecting axons (Tessier-Lavigne et al., 1988 ) (Fig . 4-4) . This system was used a s a bioassay to isolat e netrin-1 and -2 , whic h ar e solubl e cue s tha t ac t a s attractive proteins for commissural axons. Subsequent wor k ha s demonstrated tha t netrin' s attractiv e actio n i s medi ated b y binding t o it s receptor, delete d i n colorecta l cancer (DCC ) (Kenned y et al., 1994 ; Serafin i e t al, 1994; Keino-Mas u et al., 1996 ; Fazel i et al, 1997) . Interestingly, mutant mic e hypomorphi c fo r the netrin 1 allele or lacking DCC stil l show some commissura l axon crossing (Serafini e t al., 1996 ; Fazel i et al., 1997) . This findin g indicate s that netri n doe s no t ac t alone . Sonic hedgeho g (Shh) , a morphoge n secreted b y the floor plate , i s better know n fo r it s role i n neura l pro genitor specificatio n (Charron e t al., 2003; Yoshikawa and Thomas, 2004). Shh ca n also attract or influence the directio n o f polarizatio n o f commissura l axon s through it s receptor smoothened (Smo) . Assisting the actions o f both Sh h an d netrin , heterodimers of bone morphogenic protein 7 (BMP7) and growt h differenti ation facto r 7 (GDF7) secreted fro m dorsa l roof plat e cells repel th e incipien t commissural axons away fro m the dorsa l midlin e (Augsburge r et al. , 1999 ; Butle r and Dodd , 2003). Once attracte d t o the floor plate, commissural axons cross th e midlin e (Seege r e t al., 1993) . Othe r axons turn bac k and for m ipsilatera l longitudinal tracts. Crossing i s regulate d i n par t b y th e signalin g o f chemorepellants of the Sli t family which ar e secrete d by midlin e gli a an d bin d Rob o famil y receptor s o n commissurally projectin g growt h cone s (Rothber g et al , 1988 , 1990 ; Eros e e t al. , 1999 ; Lon g e t al , 2004). Unlike other Robo famil y members , th e recep tor Rig- 1 appear s t o attenuat e Sli t sensitivity , since commissural axon s neve r cros s th e midlin e i n Rig-1 deficient mic e (Sabatie r e t al. , 2004) . I n wild-typ e
52 NORMA L DEVELOPMEN T
FIGURE 4- 4 Midlin e guidance . Schemati c diagram s o f developin g mam malian spinal cord depic t the trajectorie s o f eommissurally projecting neurons relative to the roo f plate an d floor plate i n cross-section (A ) or molecular gradients i n longitudinal preparatio n through th e ventra l rnidline (B) . Pre-crossing axons are repelled fro m dorsa l midline b y BMP? in the roo f plate (no t shown) and attracte d ventrall y by netrin an d Sh h gradient s emanatin g from th e floor plate (shade d circles) . Post-crossing axons become sensitive to Slit - and Sema phorin 3 B an d F-mediate d repulsio n an d d o no t retur n t o th e floo r plate . (Source: Modifie d from William s et al, 2004)
animals, Rig- 1 concentration s decreas e an d Robo- 1 and - 2 amount s increas e soo n afte r crossing , whic h may serv e to expe l axon s from th e midlin e (Sabatie r et al. , 2004) . Thi s expulsio n i s probabl y aide d b y Robo-Ts abilit y t o silenc e DCC-mediate d attractio n to netrin b y binding directly to DCC i n the presenc e of Slit (Stein an d Tessier-Lavigne , 2001 ) or by growth cone desensitizatio n t o th e hig h concentration s o f netrin at the midline (Pipe r et al., 2005). Sema-3B, an additional solubl e repellan t secrete d b y th e floo r plate, prevent s axon s fro m returnin g t o th e midlin e via interactions with it s receptor neuropilin- 2 (Zou e t al., 2000) . Afte r crossing , th e positio n o f longitudi nally runnin g tract s appear s t o b e regulate d b y th e midline Sli t gradien t interactin g wit h Robo- 1 o r - 2 (Rajagopalan et al. , 2000 ; Simpso n et al. , 2000) . Concurrently, Wnt-4 , actin g throug h it s recepto r frizzled3, an d Shh , actin g throug h hedgeho g inter acting protein , hel p orien t axon s anteriorl y i n th e longitudinal axi s (Lyuksyutov a et al. , 2003 ; Bourikas er al., 2005) , but th e interactio n betwee n thes e cue s has ye t t o b e investigated . Collectively , thes e dat a support th e idea s tha t certai n guidanc e cue s ca n
trump th e other s an d sugges t that cue s ar e processe d hierarchically rather than bein g integrated. Generating Retinotectal Maps Once axon s reach thei r target region , they terminat e in highly organized pattern s tha t reflect their points of origin. Th e projection s extendin g fro m retina l gan glion cell s t o the tectu m i n fish and frog s an d t o th e superior colliculus in rodents has served as the canon ical syste m fo r studyin g the developmen t o f pattern ing. I n mos t mammals , a ligh t show n i n th e fa r lef t visual field projects o n th e ventronasa l part of the lef t retina, whic h i n tur n project s contralaterall y t o th e caudomedial regio n o f th e superio r colliculu s (Fig . 4-5). I f a n experimente r systematicall y move s a recording electrode rostrall y through th e superio r colliculus, th e stimulatin g ligh t sourc e need s t o b e moved i n a n orderl y progression fro m lef t t o righ t to activate th e neurons . Thus , th e superio r colliculu s contains topographic map s of the visual field. A larg e bod y o f dat a suppor t th e correlatio n o f ephrin gradient s i n the retin a an d superio r colliculus
NEURONAL DIFFERENTIATION : FROM AXONS T O SYNAPSE S 5 3 interactions (McLaughlin et al., 2003; van Horck et al., 2004). EphA receptor protein kinases are expressed in high i n temporal an d low in nasal retina. EphrinA ligands ar e expresse d mostl y in hig h cauda l t o lo w rostral gradient s in th e superio r colliculus. Th e ligand s guide the formatio n of retinotopic map s oriented i n a rostral-to-caudal progressio n b y repulsiv e eyes . Mice having targeted disruption s in both ephrinA 2 and A5 genes sho w a nea r complet e los s o f rostral-to-caudal patterning in the superio r colliculus (Feldheim e t al., 2000). Introducin g ne w gradient s b y overexpressing additional Eph A receptor s i n subpopulation s o f reti nal ganglio n cell s results in the creatio n o f two maps along th e rostral-to-cauda l axi s (Brow n et al. , 2000) . Orthogonal gradient s o f EphB Z i n th e retin a an d ephrin-Bl an d 2 in the tectu m labe l the dorsoventral axis (Braiste d et al. , 1997) . Member s o f the ephrin B subfamily appea r t o operat e principall y via attractiv e rather tha n repulsiv e interaction s (Hindge s e t al. ,
2002; Man n e t al. , 2002) . Th e mechanism s guidin g retinal ganglio n cel l axon s appea r t o follo w Sperry' s chemoaffinity mode l of targeting by orthogonal stand ing gradient s (Sperry, 1963) . I n a n importan t exten sion o n thi s model, recen t wor k indicate s that at low concentrations, EphA-ephrin A interaction s ar e at tractive fo r axo n extension , wherea s hig h concentra tions elici t a repulsiv e response . Thu s axon s wil l readily exten d int o th e superio r colliculus until the y reach a point where positiv e and negativ e influences are balanced (Hanse n et al, 2004). It is noteworthy that in mice lacking ephrinA2 an d A5, retinal ganglio n cel l axon s still target the superio r colliculus, an d thei r axona l arbors are evenl y distributed within the entir e space allotted (Feldhei m e t al., 2000). Th e mechanis m determinin g this interaxonal spacing remains unknown. Furthermore, i n the sam e mice, ther e i s evidenc e i n th e clusterin g o f opti c nerve terminal s tha t som e nearest-neighbo r relation ships, an d thu s som e topographi c ordering , i s maintained over small distances. Such clusterin g has been proposed t o be th e resul t o f correlated activit y (Feldheim e t al, 2000 ) and support s th e ide a tha t activity plays a majo r rol e i n th e prunin g an d shapin g o f the final map s tha t ar e generate d b y standin g Ep h an d ephrin gradients. Cues Are Bifunctional
FIGURE 4-5 Th e retinocollicula r map. Schemati c diagram depict s orthogona l gradient s o f Eph s an d ephrins tha t mediat e retinotopi c mappin g togethe r with the trajector y of a single projection i n the roden t projection fro m retin a t o superio r colliculus . Ligh t from a point in the fa r left visual field strikes the nasa l retina o f the lef t ey e (circle) in it s monocular region . Ganglion cell s i n thi s zon e projec t (dar k axon ) t o caudal-medial point s on the righ t superior colliculus (oval). Eph A tyrosin e kinase s bind an d ar e repelle d from hig h concentration s o f ephrinA ligands, whereas EphB tyrosin e kinases bind an d ar e attracted t o hig h concentrations of EphB ligand.
Netrins ar e generall y attractiv e an d EphA-ephrin A interactions, repulsive , but nearl y all guidanc e cue s can generat e diametricall y opposed response s in particular circumstance s (Fig . 4-6) . Differen t response s are sometimes th e functio n of different cel l types. For example, netrin-1 , secreted b y the ventra l floor plate, repels moto r axon s extending fro m th e trochlea r nu cleus such tha t they exit the dorsa l aspect of the brain at th e midbrain-hindbrai n border . Thi s stand s i n stark contras t to it s attraction for spina l commissura l axons (Colamarino an d Tessier-Lavigne, 1995) . More commonly, changes between attractio n and repulsion occur a t differen t stage s o f outgrowth an d appea r t o be employe d withi n individua l growt h cones . Suc h dynamic signalin g appear s t o b e require d fo r steady axon extensio n throug h transitio n zones, suc h a s th e ventral midline, and to titrate growth cone responsiveness withi n a targe t t o achiev e a smoot h representa tional map . Bifunctional response s resul t fro m differentia l activation o f downstrea m signalin g pathway s tha t
54 NORMA L DEVELOPMEN T
FIGURE 4- 6 Guidanc e cues . Example s of long- and short-rang e axon guidanc e proteins used i n vertebrates. Molecules are depicted acros s from on e anothe r a s they would be i n situ. Members o f the ephri n family generate topographic maps , such as that found in th e retinotectal projection . Integrins , an d immunoglobuli n (Ig ) superfamil y member s o f the calcium-dependen t (classi c cadherins) an d calcium-independen t classe s (e.g. , Ng CAM) mediat e short-rang e guidanc e throug h contact-dependen t mechanisms . Thre e major familie s o f long-range axo n guidanc e ar e indicate d here : netri n an d it s receptor , DCC; Sli t and it s receptor, Robo; an d clas s 3 Semaphorins and it s co-receptor complex , neuropilins an d plexins . (Source: Modifie d fro m Benso n e t al. , 2001 , an d Y u an d Bargmann, 2001)
ultimately regulat e acti n dynamic s (fo r review , se e Pasterkanip and Kolodkin , 2003). For instance, attractive growt h con e turnin g o f Xenopus spina l moto r growth cones to gradients of netrin-1 can be converte d to repulsio n upo n associatio n o f the cytoplasmi c do mains of the netri n DCC recepto r with a co-receptor, UNC5 (Hon g e t al , 1999) . Additionally , changing amounts o f cycli c nucleotide s ca n chang e growt h
cone response s t o BDNF , netrin-1 , an d Sema3 D (Ming et al, 1997 ; Son g e t al, 1998) , results suggesting that previous experience o r environment ca n alter responsiveness. I n suppor t o f this possibilty, Xenopus retinal ganglion cell axons grown on laminin have decreased ratios of cAMP/cGMP relative to those grow n on fibronectin, and ar e repulsed rathe r than attracte d by netri n (Hopke r e t al. , 1999) . Thes e example s
NEURONAL DIFFERENTIATION : FRO M AXONS TO SYNAPSE S 5 5 (a) suggest that the respons e to a cue ca n be modified by bot h outside-i n (recepto r t o signalin g pathway) and inside-ou t (signalin g molecule to altered stat e of receptor responsiveness ) mechanisms and (b ) support the ide a tha t growt h cone s hav e multipl e mean s by which to finely tune their responses . Adhesion and Guidance Growth cones explore their environment by regulating their attachment to other neurons, glia, or components of the extracellular matrix (ECM). Contact-dependent interactions betwee n cel l adhesio n molecule s (CAMs) o f th e immunoglobuli n superfamily , cad herin superfamily , integrins, an d th e EC M generat e traction sufficien t fo r growth cone extension . Interactions between CAMs and ECMs that are inhibitory to growth creat e boundarie s (Sno w an d Letourneau , 1992). It has long been suspecte d that standing gradients o f ECM s ma y als o b e abl e t o orien t o r stee r growth cones , bu t th e dat a directl y supportin g thi s role a s a guidanc e cu e ar e quit e recen t becaus e o f the difficult y o f generatin g continuous , substrate bound gradient s (Adam s et al. , 2005) . Cell-cel l an d cell-substrate interaction s can promote axon bundling (fasciculation) an d defasciculation , thereb y makin g the proces s o f guidance mor e efficient . O n th e othe r hand, there i s little evidenc e indicatin g that selective fasciculation serve s as a critica l guidanc e cu e (Ben son et al, 2001). Contact-dependent interaction s ca n sto p axo n extension when i t has reached it s final targe t region, preceding th e formatio n o f termina l branche s an d synapses. Axons usually terminate withi n small neural groups or a restricted number o f layers, greatly reducing th e numbe r o f potentia l individua l neura l targets. Homophilic N-cadherin adhesion appears to prevent thalamocortica l an d retinocollicula r axon s from extendin g pas t thei r targe t layer s (Inou e an d Sanes, 1997 ; Poskanzer et al., 2003) and can apically restrict mossy-fibe r terminal field s i n hippocampu s (Bekirov e t al. , 2002) . Similarly , attractive interactions betwee n axonin-1/transien t axona l glycopro tein 1 an d neuron-gli a CA M (Ng-CAM) , an d between Fll/contacti n an d Ng-CAM-relate d CA M (Nr-CAM) contribut e t o lamina-specifi c termina tions o f nociceptiv e an d proprioceptiv e fibers , re spectively, i n chic k spinal cord (Perri n et al., 2001). Thus, CAM s appea r t o encode lamina r recognitio n cues, bu t the y ma y als o provid e a sto p signal ,
preventing axon s fro m extendin g further . Whethe r recognition an d stoppin g ar e mediate d concomi tantly by a particular cue o r combination o f cues has yet to be investigated. Few experiments have addressed directly how adhesive cue s becom e integrate d wit h othe r guidanc e cues. Th e emergin g pictur e promise s a complicate d answer. The CAM L I can suppor t rapid axon extension, but in a cis complex with the receptor neuropilin1, i t als o appear s t o b e require d fo r repulsio n o f cortical axon s by the solubl e ligand Sema3 A (Castel lani et al., 2000). Additionally, soluble L I (whic h can be generate d b y metalloproteas e cleavage ) can convert a repulsive Sema3A response to attraction (Castellani et al., 2000) in a manner reminiscent o f laminin's ability to convert an attractiv e netrin response to on e of repulsio n (se e Cue s Ar e Bifunctional , above ) (Hopkeretal., 1999) . Interactions betwee n substrat e an d solubl e cue s may underli e ho w commissura l axon s ca n travers e the neutra l midlin e an d exten d laterall y toward longitudinal tracts . Rob o activatio n by Sli t ca n elimi nate N-cadherin-base d adhesio n tha t normall y promotes rapi d extensio n (Rhe e e t al. , 2002) . This activation correlates with the formatio n of a complex between Robo , N-cadherin , an d Abelso n kinas e an d is accompanie d b y phosphorylatio n o f p-catenin , a necessary cadheri n bindin g partner. Participatio n in this complex, i n turn, occludes interactio n o f N-cadherin wit h the acti n cytoskeleton . On e ca n imagin e that rapi d N-cadherin-mediate d outgrowt h concur rent with hig h Rig- 1 expression would suffic e t o permit progressio n throug h a n otherwis e neutra l midline t o th e poin t a t whic h Rob o concentration s increase, wher e axon s would disengag e fro m N-cad herin, turn , an d gro w longitudinall y by a differen t mechanism. Thus, severa l attractiv e and repulsive , short - and long-ranged cue s ac t hierarchicall y and occasionally collaborate t o generat e a fina l stereotype d targetin g outcome. Som e cue s ac t similarl y throughou t th e rostral-caudal exten t of the developing nervous system, but th e action s o f others appear t o diffe r acros s CN S regions. Additionally , certain molecule s ar e co-opte d during multiple epochs of development for slightly different purposes. The tempora l sensitivities of such cues are just beginning to be appreciated wit h the advent of conditional geneti c tool s an d improve d method s fo r transient transfections. These techniques ar e useful for determining th e virtuall y unknow n mechanisms tha t
56 NORMA L DEVELOPMEN T stop axon extension or stimulate the generatio n of terminal arbors for synapse formation.
and electrica l synapse s begin s wit h description s o f their matur e for m an d composition .
SYNAPTOGENESIS
Structure an d Composition of Mature Chemica l Synapse s
Sherrington coine d th e ter m synapse i n 189 7 t o de scribe the site s where axons contact th e dendrite s o r soma o f other neurons , i n keepin g wit h th e neuro n doctrine tha t nervou s tissue comprises separat e cells . Although thi s doctrine als o was espoused b y Ramon y Cajal ? Kôlliker , His, Forél, and severa l othe r contem poraries, Golgi an d other s ferventl y supported a n op posing reticular theory that the nervous system was an anastomosing network (Shepherd, 1991) . Sinc e arguments fro m bot h side s wer e base d mostl y o n Golgi impregnated sample s viewe d b y ligh t microscopy , unequivocal evidenc e supportin g the former doctrin e did not come unti l half a century later from a series of electrophysiological an d E M studies . Kuffle r (1942 ) and Fat t an d Kat z (1951 ) demonstrate d a t th e fro g neuromuscular junctio n tha t th e curren t underlyin g changes i n membran e potentia l a t th e postsynapti c muscle endplat e coul d no t deriv e directl y fro m th e presynaptic moto r axon , as the reticula r theory would have predicted . The n studie s b y Palad e an d Pala y (1954) an d D e Roberti s an d Bennet t (1955 ) i n th e mid-1950s provided clear, high-resolution EM image s of a cleft separatin g pre- and postsynapti c membrane s at chemica l synapses . Ironically , soli d evidenc e supporting th e existenc e o f a n electrotoni c synaps e came shortly thereafter, with the identificatio n o f gap junctions, wher e Bennet t (1963 ) an d other s demon strated tha t ioni c curren t ca n flow directly fro m on e neuron t o anothe r (Peter s e t al. , 1991 ; Shepherd , 1991). Subsequent electrophysiological , anatomical , an d biochemical findings continu e to challeng e our col lective notio n o f th e synaps e beyon d Sherrington' s general conceptualization . Thoug h characterizin g the matur e synaps e in differentiate d neura l networks has occupied neurobiologist s fo r more tha n a century, more recen t wor k indicate s tha t earlie r stage s o f assembly and differentiatio n ar e crucial for generating a normal network . I n thi s vein , the las t sections o f this chapter describ e ho w axona l and dendriti c morpho logies an d compositio n ar e modifie d t o assembl e synapses i n th e vertebrat e CNS . Sinc e maturatio n i s generally assesse d b y th e exten t t o whic h adul t fea tures are present, the following discussion of chemical
Ultrastructural Features The matur e chemica l synaps e is a polarized, adhesiv e junction formed mos t commonly between axon s and dendrites. In electro n micrograph s thi s synaps e (sometimes called a zonula adherens) i s characterized by rigidl y parallel pre - and postsynapti c membranes , separated b y a clef t o f 1 2 t o 2 0 nm, electron-dens e material withi n th e clef t and , i n most cases , thick , electron-dense materia l i n th e cytoso l subjacen t t o the postsynapti c membran e (Fig . 4-7) . Thi s synapse resembles othe r adhesive junctions , but can be distinguished b y th e presenc e o f synapti c vesicle s (SVs ) close t o the junctio n i n the presynaptic cytoso l (Gray , 1963). I n aldehyde-fixe d E M specimens , SV s ar e roughly 40-50 nm i n width , ca n appea r spherica l o r oblong (pleomorphic) , an d ca n hav e agranula r o r electron-dense core s (Grill o an d Palay , 1963 ; Val divia, 1971) . A t mos t synapse s the y ar e foun d i n a readily releasable poo l nea r the plasm a membrane or in a mor e remove d reserv e pool . Vesicle s within thi s pool ca n b e foun d docke d withi n a gridde d arra y of presynaptic cytomatri x component s or , i n photore ceptors, along a presynaptic ribbon that runs orthogo nal t o th e junctio n (Sjostrand , 1958 ; Gray , 1959a ; Bloom an d Aghajanian , 1966 , 1968) . Mitochondri a are ofte n foun d both pre - and postsynapticall y (Ibat a and Otsuka , 1968 ; Bodian , 1971) , an d a postsynapti c web of filaments is often subjacen t to the postsynapti c density (PSD ) (D e Roberti s e t al, 1961 ; Gray , 1963 ; Peters an d Kaiserman-Abramof , 1969 ; Stewar d an d Levy, 1982 ; Space k and Harris , 1997) . Although dendrodendritic , dendrosomatic, and all other conceiveable pairing s do occur in the vertebrat e CNS, th e larg e majorit y o f chemica l synapse s encountered ar e axosomati c o r axodendriti c (Peter s et al , 1991) . Axodendriti c synapses occur o n eithe r smooth dendriti c shaft s o r mushroom-shape d protru sions calle d spines tha t stu d th e dendriti c arbor s of most glutamatergi c neuron s (Nimchinsk y e t al , 2002). Spin e synapse s ar e typifie d b y a pronounce d PSD, a relativel y wide clef t (nea r 2 0 nm), polyribo somes i n clos e proximit y t o smoot h endoplasmi c reticulum, an d rounde d presynapti c vesicle s i n
NEURONAL DIFFERENTIATION: FROM AXONS TO SYNAPSE S 5 7
FIGURE 4- 7 Chemica l synapse . This electro n micro graph (left ) an d schemati c diagra m (right ) o f un stained tissu e section s take n fro m adul t ra t spina l cord depic t severa l ultrastructura l features typical of mature type I, asymmetric synapses. Among these features, abundant presynaptic vesicles and a pronounce d
postsynaptic densit y (PSD) ar e the mos t reliabl e an d conspicuous. Als o visible are th e electron-dens e col lection o f transmembran e an d matri x molecule s i n the synapti c clef t an d th e filamentou s we b subjacent to th e PSD . Mitochondri a ar e presen t i n bot h th e presynaptic terminal and the dendritic spine.
aldehyde-fixed tissues . By comparison, som e shaf t an d nearly all somal synapses have a much les s pronounced or absent PSD, a narrower cleft (near 12 nm), and con tain both rounde d and oblon g (pleomorphic ) vesicles. In Gray' s studie s o f cerebral cortex , h e terme d thes e synapses type s I an d II , respectively , althoug h Colon nier's distinctio n o f asymmetrica l an d symmetrica l synapses based o n the appearanc e o f the PS D i s more widely used (Gray , 1959b; Colonnier, 1968).
neurotransmitter an d neuropeptid e (Meiste r e t al. , 1986), an d som e 8 0 nm dense-cor e vesicle s can carr y catecholamines. Additionally , another typ e o f 8 0 n m dense-core vesicl e i s though t t o delive r protein s re quired a t nascen t synapse s (Ahrnar i e t al. , 2000 ; Bresler e t al. , 2001 ; Shapir a e t al, 2003) . Th e latte r also has been called a Piccolo-Bassoon transport vesicle (PTV) for the proteins use d t o identify it during purification (Zhai , 2001) . Converging technica l approache s hav e bee n use d to identif y an d characteriz e a bev y o f synapti c con stituents, suc h a s thos e involve d i n vesicl e traffickin g (Sudhof, 2004) . Synapsin s i n th e vesicl e membran e tether SV s to an acti n framewor k until the y ar e phos phorylated b y calcium-dependen t kinase s followin g Ca2+ influ x (Bahle r an d Greengard , 1987 ; Petrucc i and Morrow , 1987) . Membrane-boun d Rab 3 appear s to modulat e transpor t o f thes e liberate d vesicle s t o active zone s (Leender s e t al. , 2001) . SV s doc k a t these site s throug h th e bindin g o f solubl e N ethylmaleimide-sensitive fusio n protei n attachmen t protein receptor s (SNARES ) i n th e vesicl e mem brane t o target s a t th e plasm a membrane . Amon g these interactions , th e comple x forme d b y the vesicular SNARE S synaptobrevin/vesicle-associate d
Molecular Constituents Morphological distinction s betwee n synapse s reflec t functional differences : roun d SV s a t asymmetri c synapses usuall y release glutamate , an d pleomorphi c SVs a t symmetri c site s commonl y carr y inhibitor y neurotransmitters (Eccle s e t al , 1961 ; Uchizono , 1965). Smal l dense-cor e SVs , i n contrast , generall y carry catecholaminergi c neuromodulators , an d larg e dense-core vesicle s (-100-20 0 nm) carr y neuropep tides (D e Roberti s an d Pelligrin o d e Iraldi , 1961 ; Wolfe e t al. , 1962) . A s wit h mos t classificatio n schemes, thes e correlation s hav e notabl e exceptions . For instance , som e small , clea r SV s contai n neu ropeptides suc h a s oxytoci n o r a combinatio n o f
58 NORMA L DEVELOPMENT membrane protei n wit h it s target SNARES , synapto somal associated protein (SNAP) 25 and syntaxin , was the first identified and i s the most widely known (Sollner e t al. , 1993 ; Pevsne r e t al. , 1994) . Syntaxins , i n turn, ca n bin d t o eithe r Muncl S o r Muncl3 i n th e presynaptic gri d t o modulat e th e primin g event s for vesicle fusio n (Hat a et al., 1993 ; Asher y et al, 2000 ; Misura et al, 2000). SNAP-25 binding by synaptotagmin i n th e vesicl e membran e appear s t o regulat e subsequent fusio n por e openin g durin g calcium dependent exocytosi s (Jorgensen e t al. , 1995 ; Sugit a and Sudhof , 2000; Littleton e t al, 2001). ECM protein s such as laminins, collagens, and proteoglycans ar e found i n an d aroun d th e synapti c clef t (Dityatev an d Schachner , 2003) . As with othe r adhe sive junctions, the density within the synaptic cleft con tains CAMs such as Ng-CAM and N-cadherin (Chavi s and Westbrook , 2001; Phillips et al, 2001; Schuste r et al., 2001; Guan an d Rao , 2003). Members o f receptorligand families suc h a s Eph-ephrins and th e neurexin neuroligins ar e als o presen t (Scheiffel e e t al , 2000 ; Henderson e t al, 2001 ; Dean e t al, 2003; Grunwald et al. , 2004) . Transmembran e protease s suc h a s metalloprotease-disintegrins cleave the ectodomain s of these transynapti c molecule s t o attenuat e signalin g (Tanaka e t al , 2000 ; Matsumoto-Miya i e t al. , 2003) . Other extracellula r proteases such as plasminogen activators can degrade components o f the EC M i n a manner suspecte d t o permit morphological change s a t the synapse durin g development an d plasticit y (reviewed in Dityatev and Schachner, 2003 ; Berardi et al, 2004). In th e postsynapse , the PS D comprise s a numbe r of signaling and scaffoldin g molecule s for receptors in the plasm a membrane (Wals h and Kuruc , 1992 ; Walikonis et al, 2000; Kim and Sheng, 2004; Pen g et al, 2004; Phillip s et al, 2004 ; Collin s e t al, 2005). One quintessential componen t i s PSD-95 , a membe r o f the PSD/synapse-associate d protein/membrane associated guanylat e kinase family o f scaffolding mol ecules. I t is typically found at excitatory synapses an d directly bind s transmembran e component s suc h a s the N-methyl-D-aspartate receptor (NMDAR ) neuroligin, as well as molecules involve d in secondary signaling suc h a s neurona l nitri c oxid e synthetas e an d regulatory proteins suc h a s synaptic guanidine triphos photase activatin g protei n fo r Ra s (Iri e e t al. , 1997 ; Kim an d Sheng , 2004) . Similarly, glutamate receptor interacting protei n interact s with th e oc-amino 3-hydroxy-5-methyl-4-isoxazole propionat e recepto r (AMPAR) an d gephyri n wit h th e glycin e recepto r
(Meyer e t al , 1995 ; Don g e t al, 1997 ; Lev i e t al. , 2004). Th e cytoskeleta l protein s acti n an d spectri n concentrate a t bot h th e pré - and postsynapse . These proteins, alon g wit h tubulin , ar e though t t o under lie th e characteristi c filamentou s appearanc e o f th e postsynaptic we b an d ma y contribut e t o change s i n postsynaptic recepto r compositio n durin g develop ment and plasticit y (Matus et al., 1980 ; Fische r et al., 2000; Ki m an d Lisman , 2001 ; W u e t al , 2002 ; re viewed in Moss and Smart , 2001; Luscher and Keller, 2004; van Zundert e t al, 2004). Structural Correlates o f Synaps e Assembly and Maturatio n The pre - and postsynapti c elements o f developing cir cuits aris e principall y from interaction s betwee n ax onal an d somatodendriti c filopodia . Axona l growt h cones ma y for m termina l bouton s a s they d o a t th e neurornuscular junctio n (NMJ) , bu t predominantl y form e n passant ("i n passing") along the lengt h o f an axon (Bodian , 1968 ; Hind s an d Hinds , 1972 ; Skof f and Hamburger , 1974 ; Vaugh n et al, 1977 ; Vaugh n and Sims , 1978 ; Mason , 1982) . Coate d vesicle s an d smooth endoplasmi c reticulu m i n branchin g axon s and coate d pit s near the postsynapti c densitie s o f nascent contacts ma y participat e i n traffickin g o f synaptic component s o r membrane recyclin g durin g earl y periods o f synaptogenesi s (reviewe d i n Vaughn , 1989). Eighty-nanomete r granulate d PTV s als o hav e been foun d i n th e vicinit y of nascent synapse s (May and Biscoe , 1973 ; Ahmari et al, 2000). Another char acteristic featur e o f man y immatur e synapse s i s a reversed asymmetry, from th e earl y presence of presynaptic vesicle s i n th e absenc e o f a pronounce d PSD (Haye s and Roberts , 1973 ; Vaugh n e t al, 1977 ; Newman-Gage an d Westrum , 1984) . A s the synaps e differentiates, th e PSD thickens, a t least at type I sites, and presynapti c vesicle s steadil y increas e i n numbe r (Bloom an d Aghajanian , 1966 , 1968 ; Jones , 1983 ; Steward and Falk , 1986 ; Vaughn , 1989) . Mechanisms o f Synapse Initiatio n Spinal moto r neuro n dendrite s arboriz e extensively as they ente r th e margina l layer , a zon e occupie d pro fusely b y axonal terminal s (Vaugh n et al., 1988) . Ob servations suc h a s thi s on e an d th e branchin g o f dendritic filopodi a a t site s o f PSD-9 5 clusterin g suggest a "synaptotropic " branchin g o f dendriti c
NEURONAL DIFFERENTIATION : FRO M AXON S TO SYNAPSE S 5 9 arbors i n respons e t o presynapti c signal s (Vaugh n et al, 1988 ; Niel l e t al, 2004) . Axo n collateral s simi larly form a t sites of synaptobrevin II clustering during initial contact, consistent with a role for retrograde signaling i n presynapti c differentiation . Signal s promot ing earl y stages of synapse formation derive from bot h pre- an d postsynapti c sources , bu t th e sourc e an d identity o f the signa l initiatin g thi s cascad e o f event s are still the subjec t o f intense investigation. Som e initial clues have come fro m a series of biochemical an d genetic studie s a t th e NMJ , whic h demonstrat e tha t motor neuron-derive d agri n promote s clusterin g o f acetylcholine receptor s a t site s o f innervation , whereas a n unidentifie d retrograd e myotube-derive d signal i s required i n turn fo r normal differentiatio n of the presynapse (DeChiara et al., 1996 ; Gauta m et al., 1996). This bidirectional signaling during NMJ differen tiation i s recapitulated a t central synapses . Analogous to agri n a t th e NMJ , th e secrete d lecti n Nar p ca n cluster AMPA R an d promot e AMPAR-dependen t NMDAR clusterin g a t synapses i n culture s o f dissociated hippocampa l o r spinal neuron s (O'Brie n e t al, 1999; M i et al, 2004). Vesicles can be recruited to the presynapse either through th e bindin g of postsynaptic neuroligins t o presynapti c (3-neurexi n receptor s o r the presumabl y homophili c bindin g o f SynCA M (Scheiffele e t al, 2000 ; Biedere r e t al, 2002 ; Dea n et al. , 2003 ; Gra f e t al , 2004) . SynCA M signalin g also ca n promot e glutamatergi c transmissio n in non neuronal cell s partnere d wit h neuron s i n cultur e (Biederer et al, 2002). Whether the los s of SynCA M blocks o r attenuates synaps e inductio n remain s to b e demonstrated; down-regulatio n o r blockad e o f neu roligin isoform s attenuate s synaps e inductio n (Chi h et al., 2005). Additionally, blockade o f cadherin function o r ECM-integrin signalin g soon afte r synaps e assembly compromise s nascen t o r matur e synaps e structure, respectivel y (Togash i e t al. , 2002 ; Bozdagi et al., 2004). Blocking of ECM-integrin signaling similarly compromise s matur e synaps e structur e (Chavi s and Westbrook , 2001 ; Schuste r e t al , 2001 ; Cha n et al., 2003). Together these findings support th e ide a that severa l recognitio n an d adhesio n factor s initiat e and maintain synapses coordinately. Maturation of Synapse Composition Naive site s o f contact become competen t fo r neuro transmission throug h th e progressiv e transpor t an d
stable recruitmen t o f synapti c components . N-cad herin an d th e presynapti c gri d components Bassoon , Piccolo, an d Rab3-interactin g molecule appea r to be transported to presynaptic sites by PTVs (Wang et al., 1997; Richte r e t al , 1999 ; Ahma d e t al. , 2000 ; Bresler et al, 2001; Phillips et al., 2001; Altrock et al, 2003; Shapira e t al, 2003; Jontes et al, 2004). Postsy naptically, PSD-95 , NMDAR , an d AMPA R i n th è dendrite accumulat e at the synaps e ove r a more pro tracted tim e perio d covering a couple o f hours. Timelapse imagin g o f dissociate d hippocampa l neuron s grown fo r 8-1 2 day s i n cultur e shows tha t PSD-9 5 and NMDA R accumulat e a t synapse s gradually, implying tha t thes e component s ar e adde d piecewis e rather tha n i n large r increment s b y a fusio n particl e (Friedman e t al, 2000 ; Bresle r e t al , 2001 , 2004) . Similar work in dissociated cortical neurons grown for 2-4 day s suggest s tha t NMDA R an d AMPA R can b e delivered in packets akin to presynaptic transport vesicles, potentiall y implicatin g distinct mechanism s fo r receptor deliver y at different stage s of development o r in different neuro n types (Washbourne et al., 2002). Young synapse s exhibi t heterogeneit y i n recepto r composition. Fo r instance , man y immatur e gluta matergic site s contai n NMDA R cluster s bu t ar e thought t o lac k functiona l AMPAR . Ove r time , th e occurrence of these "silent " synapses diminishe s wit h the insertio n o f AMPAR a t thes e site s (Isaac , 2003). The NMDA R subuni t compositio n als o i s develop mentally regulated , a s th e NR2 A subuni t replace s NR2B a t synaptic sites (Shen g e t al, 1994) . Matura tion o f synapse receptor conten t an d recepto r subuni t composition i n thes e case s i s thought t o b e activity dependent (Ra o e t al. , 1998 ; Tova r an d Westbrook , 1999; Mos s an d Smart , 2001 ; Christi e e t al, 2002 ; Anderson e t al, 2004; Lusche r and Keller , 2004 ; van ZundertetaL, 2004) . Dale originally postulated tha t individua l neurons release onl y one typ e o f neurotransmitter t o accoun t for differentia l muscl e response s to preganglionic an d postganglionic sympatheti c fibe r stimulation . Thi s principle ha s been reinterprete d a s counterexamples , primarily in developing systems , have come to light. 1 Analogous t o th e aforementione d combinatio n o f neuropeptide- an d neurotransmitter-carryin g vesicl e populations in some adult terminals (De Robertis and Pellegrini d e Iraldi , 1961) , th e vesicula r glutamat e transporter-3 co-distributes wit h vesicular transporter s for glycine , y-aminobutyri c aci d (GABA) , acetyl choline, an d monoamin e neurotransmitter s durin g
60 NORMA L DEVELOPMEN T early brai n developmen t (Mclntir e e t al. , 1997 ; Chaudhry e t al, 1998 ; Takamor i e t al, 2000 ; Boul land e t al. , 2004) . I n a simila r vein , glycin e an d GABA are co-release d i n individua l vesicle s b y affér ents o f th e media l nucleu s o f th e trapezoi d bod y (MNTB) ont o th e latera l superio r olivar y nucleu s during a developmentally regulate d switc h i n neuro transmitter (Nabekur a e t al. , 2004) . Mos t o f thes e afférents ar e concurrentl y glutamatergi c durin g th e first postnatal week , bu t ove r tim e th e incidenc e o f this glutamatergic phenotype among MNTB neurons diminishes (Gillespi e e t al. , 2005) . Likewise , several lines o f evidence sugges t tha t glutamatergi c dentat e gyrus granule cell s ca n synthesiz e an d releas e GAB A and tha t th e appearanc e o f thi s GABAergi c pheno type is developmentally regulate d (Gutierrez , 2003) . Mechanisms of Synapse Maintenance and Disassembly AMuncl8-l nul l mutation abrogates vesicular neurotransmitter releas e (Verhage et al. , 2000 ; Voets et al. , 2001). Despit e th e apparen t rol e fo r presynapticall y derived signal s in earl y synaptogenesis , prenata l cytoarchitecture an d synaps e ultrastructure i n MunclS1 mic e appea r surprisingl y normal . Bu t b y birth , massive neurodegeneratio n ha s ensue d (Verhag e et al., 2000), which suggests that presynaptic release is not require d fo r synaps e formation bu t i s importan t for maintenance . Thyroi d hormon e deficiencie s similarly reduc e dendriti c spin e numbe r (Bicknell , 1998 ; Thompson an d Potter , 2000) . Th e augmentatio n o f spine numbe r b y estradic i an d termina l numbe r b y BDNF and glial-derive d factors is consistent with th e proposed role s fo r thes e factor s i n synaps e mainte nance a s well (McEwen , 1999 ; Mauc h e t al, 2001 ; Ullianetal.,2001,2004). An exuberanc e o f initial contact s i s thought t o b e pruned several-fol d ove r the cours e of normal develop ment (Knyiha r et al., 1978 ; Huttenlocher , 1979 ; Rakic et al. , 1986) , implicatin g mechanism s fo r selectiv e synapse maintenanc e an d elimination . Th e earl y F-actin dependenc e o f postsynaptic compositio n sug gests tha t synapse-specifi c factor s interactin g wit h th e actin cytoskeleto n ca n promot e th e maintenanc e o f a subset o f sites i n th e vertebrat e CN S (Alliso n e t al , 1998; Zhan g an d Benson , 2001) . Additiona l studie s suggest that stabilization of particular postsynaptic sites depends o n transmitter-evoke d recepto r activation , Ca2+ release , o r loca l protei n synthesi s (Fre y an d
Morris, 1997; Marti n et al, 1997 ; Engertand Bonhoeffer, 1999 ; Lohmann e t al., 2002; Hashimoto and Kano, 2003; Tashiro e t al, 2003 ; Nager l e t al, 2004) . Con versely, depressed o r blocked activit y leads to the elimi nation o f affecte d spine s i n developin g hippocampa l slices (Nagerl et al, 2004 ; Zhou et al, 2004) . Notably, th e effect s o f activity on synaps e numbe r in th e brai n appea r t o be developmentall y restricte d (Fiala et al, 2002 ; Gmtzendler et al, 2002 ; Nagerl et al, 2004) . Thi s windo w fo r activity-dependen t changes i n synaps e number, an d prunin g in general , has bee n propose d t o underli e critica l period s o f experience-dependent plasticit y in th e neocorte x an d cerebellum. Consisten t wit h thi s possibility , th e ef fects o f monocular deprivatio n o n ocula r dominanc e (OD) i n cortex ar e attenuated whe n protei n synthesi s is blocke d durin g th e critica l period . Furthermore , degradation o f chondroiti n sulfat e proteoglycan s i n the perisynapti c ECM, whic h ar e thought t o inhibi t axonal sprouting , reactivate s thi s O D plasticit y i n adult mic e (Berard i e t al, 2004) . Additionally, blocking of NMDAR activatio n during a critical period in creases climbing fiber innervation in the cerebellu m that correlate s wit h impaire d moto r coordinatio n (Kakizawa et al, 2000) . Cellular and Subcellula r Target Specificit y An axo n guide d t o it s target lamin a mus t b e abl e t o identify it s appropriate target cell typ e (e.g., GABAergic interneuro n vs . glutamatergic projectio n neuron ) and subcellula r domai n (e.g. , dista l vs. proximal den drite). This final stage o f axon guidance i s thought to be mediate d b y the cell - and domain-specifi c expres sion o f CAM s o r receptor-ligan d combination s wit h singular affinities . Fo r instance , GABAergi c basket cell axon s are guided alon g cerebella r Purkinje axons by a n ankyrinG-base d gradien t o f neurofasci n (als o called neurofilamen t 168) to form axo-axona l synapses at th e axo n initia l segmen t (Jenkin s an d Bennett , 2001; Ango e t al, 2004) . This hypothesis of subcellular targeting , thoug h widel y accepted , i s otherwis e untested excep t wit h N-cadherin , whic h appear s no t to function i n this capacity (Bozdagi et al, 2004) . A challenge fo r the developin g networ k i s how t o recruit o r selectivel y retai n synapti c component s a t specific sites of innervation. GluR6-containing kainate receptors ar e recruite d t o site s o f N-cadherin activa tion (Cousse n e t al , 2002) . Similarly , th e EphB 2
NEURONAL DIFFERENTIATION: FROM AXONS TO SYNAPSE S 6 1 receptor directl y clusters NMDAR when activate d by its cognat e ephrinB Z ligan d i n youn g hippocampa l neurons (Dalva et al., 2000). Neurexin can induce independent postsynapti c clustering of GABA receptor, NMDAR, gephyrin , an d PSD-95 , a s wel l a s neuroligins-1 and -2. In turn, neuroligin-2 can cluste r vesicles expressin g vesicula r transporter s fo r gluta mate, vesicula r GAB A transporter , o r th e GABA synthesizing enzym e glutamic aci d decarboxylas e 65 (Graf et al, 2004; Chih et al, 2005). The abundanc e of synapti c factor s wit h distinc t bindin g specificitie s and clusterin g activitie s suggest s that , i n combina tion, these factor s not only specify synaps e placemen t but als o encode synapse composition durin g matura tion and plasticity. Electrotonic Synapse s Whereas most of the literatur e on synapse s focuses o n the nature , modulation , an d assembl y o f chemica l synapses, ther e i s growing appreciation fo r th e func tional contributions o f electrical synapse s (also called gap junctions), Electrotoni c synapse s ar e forme d b y the abutmen t o f molecular hemichannel s called connexons (Fig. 4-8). Th e couple d connexons , which are integral membran e proteins , produc e a hermeti c
channel an d a synapti c ga p jus t 2 nm wid e (Goode nough, 1976) . Gap junction s often form betwee n th e same subcellula r domains , suc h as two dendrite s or two somata (Peinad o et al., 1993) . These synapses are commonly foun d i n lower vertebrates lik e the fro g o r chicken betwee n axon s an d dendrite s withi n th e spinal cor d an d som e brai n nuclei . I n mammals , these synapse s are widesprea d in th e retin a an d als o are foun d i n th e brai n an d spina l cor d (Paternostro et al, 1995 ; Ras h et al, 1998 ; Venanc e e t al., 2000) . Gap junction s ar e foun d wit h greate r frequenc y a t earlier developmental stages , and i t has been hypoth esized that strong electrical couplin g synchronizes activity an d stabilize s synapti c interaction s durin g development (Connor s e t al. , 1983 ; Peinad o e t al. , 1993). "Mixed" synapses, which contai n bot h electrotonic an d chemica l elements , ma y serve thi s stabilizing rol e i n lowe r vertebrates and th e ra t spina l cor d (Rash et al., 1998 , 2000) . Vertebrate connexon s ar e hexamer s o f connexi n isoforms (Goodenough , 1976 ; Segretai n an d Falk , 2004). Connexin compositio n determine s channe l gating properties and confer s gap junctions with selective permeabilities for distinct ion s and secon d messengers . Connexon compositio n i n th e nervou s system , a s i n other tissues, is cell-type specifi c an d developmentall y
FIGURE 4-8 Ga p junction . Gap junctio n connexons purified from mous e live r and visualize d by transmission electro n microscopy (left ) an d X-ra y diffractio n (middle) form orderl y lattices, indicative of their sixfold symmetry and composi tion. A schemati c representatio n o f ga p junction s i n th e plasm a membran e (right) depict s ho w th e abutmen t o f connexon hemichannel s i n th e lipi d bi layer o f each synapti c membran e produce s a hermeti c channe l an d a narrow synaptic gap. (Source; Image s modified from Caspa r and colleagues , 1977 , an d reprinted with permission from th e publisher.)
62 NORMA L DEVELOPMENT regulated (Bevan s et al, 1998 ; Suchyn a e t al, 1999 ; Bukauskas an d Verselis , 2004) . Thi s spatiotempora l control o f ga p junctio n gatin g an d permeabilit y i s likely to have consequences fo r nervous system assembly; however , the effec t o f connexin or ga p junction deficiencies on synapse formation, targeting, or stability have yet to be examined. The mechanism s guidin g spatial targeting of connexins or cell type-coupling specificity in the nervous system als o hav e ye t t o b e examined . Wor k i n non neural tissues , however , suggests that molecules typi cally associated with other types of junctions facilitate connexin targetin g to sites in th e plasm a membrane . For example , E-cadheri n overexpressio n ca n pro mote normal concentrations o f connexin targetin g to the plasm a membrane i n skin papilloma cells and alter couplin g preference s i n transfecte d melanoma s (Prowse e t al. , 1997 ; Hs u e t al , 2000 ; Hernandez Blazquez et al., 2001). Additionally, normal gap junction formatio n betwee n len s cell s i s disturbe d i n Nr-CAM-deficient mice an d b y antibodie s agains t N-cadherin (Frenzel and Johnson, 1996 ; Lustig et al., 2001). The tigh t junctio n component s zonula occludens 1 an d som e claudin s als o associat e wit h ga p junctions with as yet undetermined functional conse quences (Duffy e t al, 2002).
CONCLUSIONS
Neuroscientists hav e define d a serie s o f significant events o r stage s essentia l fo r norma l differentiatio n and integratio n of neurons into a functional network. Recent wor k links particula r stages of differentiation with the functio n of particular molecules o r molecular families, an d thi s work has provided the necessar y tools wit h whic h mechanism s ca n b e pursued . On e challenge fo r futur e experimenter s i s t o determin e how molecula r pathways of apparent overlappin g or converging functio n ar e parse d int o specifi c an d meaningful outcomes .
cAMP cycli c adenosine monophosphat e cGMP cycli c guanosine monophosphat e CNS centra l nervou s system CRMP collapsi n response mediator protei n DCC delete d i n colorectal cance r ECM extracellula r matrix EM electro n microscop y GABA y-aminobutyri c acid GDF growt h differentiation factor MAP microtubule-associate d protein MNTB media l nucleus of the trapezoid body Ng-CAM neuron—gli a cell adhesion molecule NMDAR N-methyl-D-aspartat e recepto r NMJ neuromuscula r junction Nr-CAM NgCAM-relate d cell adhesion molecule OD ocula r dominanc e PSD postsynapti c density PTV Piccolo-Bassoo n transport vesicle Shh soni c hedgehog S mo smoot h ened SNARES solubl e n-ethylmaleimide-sensitiv fusion protein-attachmen t protei receptors
e n
SNAP-25 synaptosom e associated protein-25 SV synapti c vesicle SynCAM synapti c cell adhesion molecul e
ACKNOWLEDGMENTS Th e author s than k loan a Carcea, Elizabet h Kichula , and Cynthi a Kwong for their careful readin g and critica l comments on this chapter and Alice Elste for her imag e of a chemical synapse. The au thors are supported by the Nationa l Institute s of Health (CDM, IHB , an d DLB) , Societ y fo r Neuroscienc e (TRA), and a n Irma T. Hirschl Award (DLB). Equal contribution s for th e writin g o f thi s chapte r from Mint z (polarity an d motility) , Bekiro v (guidance) , and Anderson (synaptogenesis) .
Abbreviations AMPAR ot-amino-3-hydroxy-5-methyl-4 isoxazole propionate recepto r BDNF brain-derive d neurotrophic facto r BMP bon e morphogeni c protein CAM cel l adhesion molecul e
Notes 1. "Dale' s principle/ ' base d o n argument s that transmitter functio n o f a neuron i s distinctive an d "un changeable" (Dale, 1935), actually was first defined by Eccle s (1957 ) t o state "that the sam e chemical transmitter is released from all the synaptic terminals
NEURONAL DIFFERENTIATION: FROM AXONS TO SYNAPSE S 6 3 of a neurone. " Durin g th e perio d o f Dale' s Nobe l prize-winning research, onl y two neurotransmitters (acetylcholine and adrenaline ) ha d been identified. A restatement of the principl e by Eccles (1982), that "at al l th e axona l branche s o f a neuro n th e sam e transmitter substance or substances are liberated," is consistent wit h the later finding that neurotransmitter and neuropeptide can be released from th e same nerve terminal (D e Robertis and Pelligrin i de Irai di, 1961) an d als o encompasses th e mor e recen t find ings described i n this chapter's discussion. References Adams DN , Ka o EY , Hypolite CL , Distefan o MD , H u WS, Letourneau PC (2005 ) Growth cones turn and migrate up an immobilize d gradient of the laminili IKVAV peptide. J Neurobiol 62:134-147. Ahmari SE , Buchana n J , Smit h S ] (2000 ) Assembly of presynaptic active zones from cytoplasmi c transport packets. Nat Neurosci 3:445-451. Allison DW , Gelfan d VI , Specto r I , Crai g A M (1998 ) Role of actin in anchoring postsynaptic receptors in cultured hippocampa l neurons : differentia l attach ment of NMDA versus AMPA receptors. J Neurosci 18:2423-2436. Altrock WD , tor n Diec k S , Sokolo v M , Meye r AC , Sigler A , Brakebusc h C , Fassle r R , Richte r K , Boeckers TM , Potschk a H , Brand t C, Losche r W, Grimberg D, Dresbach T , Hempelmann A, Hassan H, Balschu n D , Fre y JU , Brandstatte r JH , Garne r CC, Rosenmun d C , Gundelfinge r E D (2003 ) Functional inactivatio n o f a fractio n o f excitator y synapses i n mic e deficien t fo r the activ e zone pro tein bassoon. Neuro n 37:787-800 . Anderson TR , Sha h PA , Benson D L (2004 ) Maturation of glutamatergic and GABAergi c synapse composi tion i n hippocampal neurons . Neuropharmacology 47:694-705. Ango F , di Cristo G , Higashiyam a H , Bennet t V , Wu P, Huang Z J (2004 ) Ankyrin-based subcellular gradi ent o f neurofascin, a n immunoglobuli n famil y protein, direct s GABAergi c innervatio n a t purkinj e axon initial segment. Cell 119:257—272 . Arimura N , Inagak i N, Chihar a K , Ménager C , Naka mura N , Aman o M , Iwamats u A , Goshim a Y , Kaibuchi K (2000) Phosphorylation of collapsin response mediato r protein-2 by Rho-kinase. Evidenc e for tw o separate signaling pathways for growth cone collapse. J Biol Chem 275:23973-23980. Ashery U, Varoqueaux F, Voets T, Betz A, Thakur P, Koch H, Neher E , Brose N, Rettig J (2000) Muncl 3-1 acts as a primin g facto r fo r larg e dense-cor e vesicle s in bovine chromaffin cells . EMBO J 19:3586-3596.
Augsburger A, Schuchardt A, Hoskins S, Dod d J , Butler S (1999 ) BMPs as mediators of roof plate repulsion of commissural neurons. Neuro n 24:127—141 . Baas P W (1999 ) Microtubule s an d neurona l polarity : lessons from mitosis . Neuron 22:23—31 . Bahler M , Greengar d P (1987 ) Synapsi n I bundle s F-actin i n a phosphorylation-dependen t manner . Nature 326:704-707. Bamburg JR , Bra y D , Chapma n K (1986 ) Assembl y of microtubules a t th e ti p o f growin g axons . Natur e 321:788-790. Bekirov IH , Needlema n LA , Zhan g W , Benso n D L (2002) Identificatio n an d localizatio n o f multipl e classic cadherin s i n developin g ra t limbi c system . Neuroscience 115:213-227 . Benson DL , Colma n DR , Huntle y G W (2001 ) Mole cules, map s an d synaps e specificity. Na t Re v Neurosci 2:899-909. Bentley D , Toroian-Raymon d A (1986 ) Disoriente d pathfinding b y pionee r neuron e growt h cone s de prived of filopodia by cytochalasin treatment. Nature 323:712-715. Berardi N , Pizzoruss o T , Maffe i L (2004 ) Extracellular matrix an d visua l cortica l plasticity ; freein g th e synapse. Neuron 44:905-908. Bevans CG , Korde l M , Rhe e SK , Harris AL (1998 ) Iso forni compositio n o f connexin channel s determine s selectivity among second messenger s and uncharge d molecules. J Biol Chem 273:2808-2816. Bicknell R) (1998) Sex-steroid action s on neurotransmission. Curr Opin Neurol 11:667-671 . Biederer T , Sar a Y , Mozhayev a M , Ataso y D , Li u X , Kavalali ET, Sudho f TC (2002 ) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525-1531 . Bloom FÉ , Aghajania n G K (1966 ) Cytochemistr y o f synapses: selective stainin g for electron microscopy. Science 154:1575-1577 . (1968) Fin e structura l an d cytochemica l analysis of the stainin g of synaptic junction s with phosphotungstic acid. ] Ultrastruct Res 22:361-375. Bodian D (1968) Development of fine structure of spinal cord i n monke y fetuses . II. Pre-refle x perio d t o pe riod o f long intersegmenta l reflexes . J Cornp Neu rol 133:113-166 . (1971) Presynapti c organelle s an d functiona l in tegrity. J Cell Biol 48:707-711. Boulland JL, Qureshi T , Sea l RP, Rafiki A, Gundersen V, Bergersen LH , Fremea u R T Jr , Edward s RH , Storm-Mathisen J, Chaudhry FA (2004) Expression of th e vesicula r glutamate transporter s during de velopment indicate s th e widesprea d corelease o f multiple neurotransmitters . J Com p Neuro l 480 : 264-280.
64 NORMA L DEVELOPMENT Bourikas D, Pekarik V, Baeriswyl T, Grunditz À, Sadhu R, Nardo M , Stoeckl i E T (2004 ) Soni c hedgeho g guides commissura l axon s alon g th e longitudina l axis of the spinal cord. Nat Neurosci 8:297-304. Bozdagi O, Valcin M, Poskanzer K, Tanaka H, Benson D L (2004) Temporally distinct demands for classic cadherins i n synaps e formatio n an d maturation . Mo l Cell Neurosci 27:509-521. Bradke F , Dotti C G (1997 ) Neurona l polarity : vectorial cytoplasmic flow precedes axo n formation. Neuron 19:1175-1186. (1999) The rol e o f local acti n instabilit y in axo n formation. Scienc e 283:1931-1934 . Braisted JE , McLaughli n T , Wan g HU , Friedma n GC , Anderson DJ , O'Lear y D D (1997 ) Grade d an d lamina-specific distribution s o f ligands o f EphB re ceptor tyrosin e kinases in the developin g retinotec tal system. Dev Biol 191:14-28 . Bresler T, Ramati Y, Zamorano PL, Zhai R , Garner CC , Ziv NE (2001 ) The dynamic s of SAP90/PSD-95 recruitment t o ne w synapti c junctions . Mo l Cel l Neurosci 18:149-167 . Bresler T, Shapira M, Boeckers T, Dresbach T , Futter M, Garner CC , Rosenblu m K , Gundelfinger ED , Zi v NE (2004 ) Postsynaptic density assembly is funda mentally differen t fro m presynapti c activ e zon e as sembly. J Neurosci 24:1507-1520. Bridgman PC , Daile y M E (1989 ) Th e organizatio n o f myosin an d acti n i n rapi d froze n nerv e growt h cones. J Cell Bio l 108:95-109 . Brose K , Blan d KS , Wan g KH , Arnot t D , Henze l W , Goodman CS , Tessier-Lavign e M , Kid d T (1999 ) Slit proteins bin d Rob o receptor s an d hav e an evo lutionarily conserve d rol e i n repulsiv e axo n guid ance. Cell 96:795-806. Brown A, Yates PA, Burrola P , Ortuno D, Vaidy a A, Jessell TM , Pfaf f SL , O'Leary DD , Lemk e G (2000 ) Topographic mappin g fro m th e retin a t o th e mid brain i s controlled b y relative but no t absolut e levels of EphA receptor signaling . Cell 102:77-88 . Bukauskas FF, Verselis VK (2004) Gap junctio n channel gating. Biochi m Biophys Acta 1662:42-60 . Burridge K , Wennerber g K (2004 ) Rh o an d Ra c tak e center stage. Cell 116:167-179 . Butler SJ, Dodd } (2003) A role for BMP heterodimers in roof plate-mediate d repulsio n o f commissura l ax ons. Neuro n 38:389-401 . Caceres A, Kosik KS (1990) Inhibition of neurite polarity by ta u antisens e oligonucleotide s i n primar y cerebellar neurons. Natur e 343:461-463 . Caceres A , Potrebic S , Kosik KS (1991) The effec t o f tau antisense oligonucleotide s o n neurit e formatio n of cultured cerebella r macroneurons . J Neurosc i 11 : 1515-1523.
Caspar DL, Goodenough DA , Makowski L, Phillips W C (1977) Ga p junctio n structures. I . Correlated elec tron microscop y an d X-ra y diffraction. J Cel l Bio l 74:605-628. Castellani V , Chedotal A , Schachne r M , Faivre-Sarrail h G, Rougo n G (2000 ) Analysis o f th e Ll-deficien t mouse phenotype reveals cross-talk between Sem a 3A and L I signalin g pathway s i n axona l guidance . Neuron 27:237-249 . Chan CS , Weebe r EJ , Kuru p S , Sweat t JD , Davi s R L (2003) Integrili requirement for hippocampal synaptic plasticit y an d spatia l memory . ] Neurosc i 23 : 7107-7116. Charron F , Stei n E , Jeon g J , McMaho n AP , Tessier Lavigne M (2003 ) Th e morphoge n soni c hedge hog i s an axona l chemoattractant that collaborate s with netrin- 1 i n midlin e axon guidance . Cel l 113 : 11-23. Chaudhry FA, Reimer RJ, Bellocchio EE , Danbol t NC , Osen KK , Edwards RH , Storm-Mathise n J (1998 ) The vesicula r GABA transporter , VGAT , localize s to synapti c vesicles in set s o f glycinergic as well as GABAergic neurons. J Neurosci 18:9733-9750 . Chavis P, Westbrook G (2001 ) Integrin s mediat e func tional pre - an d postsynapti c maturatio n a t a hip pocampal synapse . Nature 411:317-321. Chih B, Engelman H, Scheiffele P (2005) Control o f excitatory an d inhibitor y synaps e formatio n b y neu roligins. Science 307:1324-1328 . Christie SB, Miralles CP, De Bia s AL (2002) GABAergic innervation organize s synapti c an d extrasynapti c GABAA recepto r clusterin g in culture d hippocam pal neurons. J Neurosci 22:684-697 . Cohan CS , Welnhofe r EA , Zha o L , Matsumtir a F , Yamashiro S (2001) Role of the actin bundling protein fascin i n growt h con e morphogenesis : localizatio n in filopodia and lamellipodia . Cell Moti l Cytoskele ton 48:109-120. Colamarino SA , Tessier-Lavigne M (1995 ) Th e axona l chemoattractant netrin- 1 i s also a chemorepellen t for trochlea r motor axons. Cell 81:621-629 . Collins MO , Y u L, Cob a MP , Hus i H , Campuzan o I , Blackstock WP , Choudhar y JS , Gran t S G (2005 ) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280:5972-5982. Colonnier M (1968 ) Synapti c pattern s o n differen t cel l types i n th e differen t lamina e o f the ca t visual cor tex. A n electro n microscop e study . Brai n Re s 9 : 268-287. Connors BW , Benardo LS, Prince D A (1983) Couplin g between neuron s o f th e developin g ra t neocortex . J Neurosci 3:773-782 . Coussen F, Normand E, Marchai C, Costet P , Choquet D , Lambert M, Mege RM , Mulle C (2002) Recruitment
NEURONAL DIFFERENTIATION; FROM AXONS TO SYNAPSE S 6 5 of the kainat e recepto r subuni t glutamat e recepto r 6 b y eadherin/cateni n complexes . J Neurosc i 22 : 6426-6436. Craig AM , Banke r G (1994 ) Neurona l polarity . Annu Rev Neurosci 17:267-310 . Dale H (1935 ) Pharmacology an d nerve-endings . Pro c R SocMed 28:319-332. ' Dalva MB , Takas u MA , Li n MZ , Shama h SM , H u L , Gale NW , Greenber g M E (2000 ) Eph B receptor s interact wit h NMD A receptor s and regulat e excita tory synapse formation. Cell 103:945-956 . Dean C , Schol l FG , Choi h J , DeMari a S , Berge r J , Isacoff E , Scheiffel e P (2003 ) Neurexi n mediate s the assembl y o f presynapti c terminals . Na t Neu rosci 6:708-716. DeChiara TM, Bowe n DC , Valenzuel a DM , Simmon s MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL , Roja s E , Par k JS, Smith C , DiStefan o PS , Glass DJ , Burden SJ , Yancopoulos GD (1996 ) Th e receptor tyrosin e kinase MuS K i s required for neuromuscular junctio n formatio n i n vivo . Cel l 85 : 501-512. Dent EW , Gertler F B (2003) Cytoskeletal dynamic s and transport i n growt h con e motilit y an d axo n guid ance. Neuron 40:209-227 . De Roberti s ED , Bennet t H S (1955 ) Som e feature s of the submicroscopi c morpholog y o f synapse s i n frog an d earthworm . J Biophy s Bioche m Cyto l 1 : 47-58. De Roberti s E, Pelligrin o de Iraldi A (1961) Plurivesicu lar secretor y processe s an d nerv e ending s i n th e pineal glan d of the rat . J Biophy s Bioche m Cyto l 10:361-372. De Roberti s E, Pelligrino de Iraldi A, Rodriguez de Lores Arnaiz G , Salganicof f L (1961 ) Electro n micro scope obervations in nerve endings isolated from ra t brain. Anat Ree 139:220-221 . DiTella MC , Feigui n F , Carr i N , Kosi k KS , Cacere s A (1996) MAP-1B/TA U functiona l redundanc y dur ing laminin-enhance d axona l growth . J Cel l Sc i 109(Pt2):467-477. Dityatev A , Schachne r M (2003 ) Extracellula r matrix molecules and synapti c plasticity. Nat Re v Neurosci 4:456-468. Dong H, O'Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL ( 1997) GRIP : a synaptic PDZ domain containing protei n tha t interacts wit h AMPA receptors. Nature 386:279-284 . Dotti CG , Banke r G A (1987 ) Experimentall y induce d alteration i n th e polarit y o f developin g neurons . Nature 330:254-256 . Dotti CG , Sulliva n CA , Banke r GA (1988 ) Th e estab lishment o f polarit y b y hippocampa l neuron s i n culture. J Neurosci 8:1454-1468 .
Duffy HS , Delma r M , Spra y D C (2002 ) Formatio n o f the ga p junctio n nexus : bindin g partner s fo r connexins. J Physiol Paris 96:243-249. Eccles J C (1957 ) Th e Physiology o f Nerve Cells. John s Hopkins Press, Baltimore. Eccles J C (1982 ) The synapse : from electrica l t o chemi cal transmission. Annu Re v Neurosci 5:325-339 . Eccles JC, Oscarsson O, Willis W D (1961 ) Synapti c ac tion o f group I an d I I afferen t fibre s o f muscle o n the cell s o f the dorsa l spinocerebella r tract . J Phys iol 158:517-543 . Engert F , Bonhoeffer T (1999) Dendriti c spine change s associated wit h hippocampa l long-ter m synapti c plasticity. Nature 399:66-70 . Fache MP, Moussif A, Fernandes F , Giraud P, Garrido JJ, Dargent B (2004 ) Endocytoti c eliminatio n an d domain-selective tetherin g constitut e a potentia l mechanism o f protein segregatio n a t the axona l initial segment. J Cell Biol 166:571-578 . Fatt P , Katz B (1951) An analysi s of the end-plat e poten tial recorded wit h an intracellula r electrode. J Physiol 115:320-370 . Fazeli A , Dickinso n SL , Hermisto n ML , Tigh e RV , Steen RG , Small CG , Stoeckl i ET, Keino-Masu K , Masu M , Raybur n H , Simon s J , Bronson RT , Gor don JI , Tessier-Lavign e M , Weinber g R A (1997 ) Phenotype o f mic e lackin g functiona l delete d i n colorectal cance r (Dec ) gene. Natur e 386:796—804 . Feldheim DA , Ki m YI , Bergeman n AD , Frise n J , Bar bacid M , Flanaga n J G (2000 ) Geneti c analysi s of ephrin-A2 and ephrin-A 5 shows their requirement i n multiple aspect s o f retinocollicular mapping . Neu ron 25:563-574. Fiala JC 7 Allwardt B, Harris KM (2002 ) Dendritic spine s do no t spli t durin g hippocampa l LT P o r matura tion. Nat Neurosci 5:297-298 . Fischer M , Kaec h S , Wagner U , Brinkhaus H , Matu s A (2000) Glutamat e receptor s regulat e actin-base d plasticity i n dendriti c spines . Na t Neurosc i 3 : 887-894. Forscher P , Smith S J (1988) Actions o f cytochalasins o n the organizatio n o f acti n filament s an d micro tubules in a neuronal growth cone. J Cell Bio l 107: 1505-1516. Frenzel EM , Johnso n R G (1996 ) Ga p junctio n forma tion betwee n culture d embryoni c len s cell s i s in hibited b y antibod y t o N-cadherin . De v Bio l 179 : 1-16. Frey U , Morri s R G (1997 ) Synapti c taggin g an d long term potentiation . Nature 385:533—536 . Friedman HV , Bresler T, Garner CC , Zi v NE (2000 ) Assembly o f new individua l excitatory synapses: time course an d tempora l orde r of synaptic molecule re cruitment. Neuro n 27:57-69 .
66 NORMA L DEVELOPMENT Fiikata Y ? Itoli TJ, Kimura T, Menage r C , Nishimur a T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H , Kaibuch i K (2002a ) CRMP-2 bind s t o tubulin heterodimer s t o promot e microtiibul e as sembly. Nat Cell Biol 4:583-591. Fiikata Y , Kimur a T , Kaibuch i K (2002b ) Axo n speci fication in hippocampa l neurons . Neurosc i Re s 43: 305-315. Gautam M, Noakes PG, Moscoso L , Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defectiv e neuromuscular synaptogenesi s i n agrin-deficien t mutan t mice . Cell 85:525-535 . Gillespie DC , Ki m G , Kandie r K (2005 ) Inhibitor y synapses i n th e developin g auditory system are glu tamatergic. Nat Neurosci 8:332-338. Gomez TM , Roble s E, Poo M, Spitzer NC (2001 ) Filopo dial calcium transients promote substrate-dependen t growth cone turning. Scienc e 291:1983-1987. Goodenough D A (1976) The structur e and permeability of isolate d hepatocyt e ga p junctions . Cold Sprin g Harb Sym p Quant Biol 40:37-43. Goodman C S (1996 ) Mechanism s an d molecule s tha t control growt h con e guidance. Ann u Rev Neurosc i 19:341-377. Goslin K , Banke r G (1989 ) Experimenta l observation s on th e developmen t o f polarit y b y hippocampa l neurons in culture. J Cell Bio l 108:1507-1516 . Graf ER , Zhan g X , Ji n SX , Linhof f MW , Crai g A M (2004) Netirexin s induc e differentiatio n o f GAB A and glutamat e postsynapti c specialization s vi a neuroligins. Cell 119:1013-1026 . Gray E G (1959a ) Electro n microscop y o f synaptic con tacts o n dendrit e spine s of the cerebra l cortex . Na ture 183:1592-1593 . (1959b) Axo-sornati c an d axo-dendriti c synapse s of th e cerebra l cortex : a n electro n microscop e study. JAnat 93:420-433. (1963) Electro n microscop y o f presynapti c or ganelles of the spina l cord. J Anat 97:101-106. Grillo MA , Palay S L (1963 ) Granule-containin g vesicle s in th e autonomi e nervou s system. In : Brées e J (ed). Fifth International Congress on Electron Microscopy, Philadelphia, Vol. 2 Ne w York , Academi c Press , p.U-1. Grunwald 1C, Körte M, Adelmann G, Plueck A, Kullander K , Adam s RH , Frotsche r M , Bonhoeffe r T , Klein R (2004 ) Hippocampa l plasticit y require s postsynaptic ephrinBs. Nat Neurosci 7:33-40. Grutzendler J , Kasthur i N, Ca n W B (2002 ) Long-ter m dendritic spine stabilit y in the adul t cortex. Natur e 420:812-816. Guan KL , Rao Y (2003) Signalling mechanisms mediat ing neurona l response s t o guidance cues . Na t Re v Neurosci 4:941-956.
Gundersen GG , Gome s ER , We n Y (2004 ) Cortica l control o f microtiibul e stabilit y an d polarization . Curr Opin Cell Bio l 16:106-112. Gutierrez R (2003 ) Th e GABAergi c phenotyp e o f th e "glntamatergic" granule cell s o f the dentat e gyms . Prog Neurobiol 71:337-358. Hansen MJ , Dallai GE, Flanaga n J G (2004) Retinal axo n response to ephrin-as shows a graded, concentration dependent transitio n from growt h promotion t o in hibition. Neuron 42:717-730 . Hashimoto K , Kano M (2003 ) Functional differentiation of multipl e climbin g fibe r input s durin g synaps e elimination i n the developin g cerebellum . Neuro n 38:785-796. Hâta Y, Slaughter CA , Sudho f TC (1993 ) Synaptic vesicle fusio n comple x contain s une-1 8 homologu e bound t o syntaxin. Nature 366:347-351 . Hayes BP , Roberts A (1973 ) Synapti c junctio n develop ment i n th e spina l cor d o f an amphibia n embryo : an electron microscop e study. Z Zellforsch Mikrosk Anat 137:251-269 . Henderson JT , Georgien J , Jia Z, Robertso n J , Elowe S, Roder JC, Pawso n T (2001 ) The recepto r tyrosin e kinase EphB 2 regulate s NMDA-dependen t synap tic function. Neuron 32:1041-1056 . Hernandez-Blazquez FJ , Joazeir o PP , Omor i Y , Ya masaki H (2001 ) Contro l o f intracellula r move ment o f connexin s b y E-cadheri n i n murin e ski n papilloma cells. Ex p Cell Res 270:235-247. Hindges R , McLaughlin T, Genoud N, Henkemeyer M , O'Leary D D (2002 ) Eph B forwar d signalin g con trols directiona l branch extensio n an d arborization required fo r dorsal-ventra l retinotopi c mapping . Neuron 35:475-487 . Hinds JW, Hinds P L (1972 ) Reconstruction o f dendriti c growth cone s i n neonata l mous e olfactor y bulb . JNeurocytol 1:169-187 . Hong K , Hinc k L , Nishiyam a M , Po o MM , Tessier Lavigne M , Stei n E (1999 ) A ligand-gated associa tion betwee n cytoplasmi c domain s o f UNC 5 an d DCC famil y receptor s convert s netrin-induce d growth con e attractio n t o repulsion . Cel l 97 : 927-941. Hopker VH, Shewan D, Tessier-Lavigne M, Poo M, Hol t C (1999 ) Growth-con e attractio n t o netrin- 1 i s converted t o repulsio n b y laminin-1 . Natur e 401 : 69-73. Hsu M , And i T , L i G , Meinkot h JL , Herly n M (2000 ) Cadherin repertoir e determine s partner-specifi c gap jiinctiona l communicatio n durin g melanom a progression.! Cell Sci 113(Pt9):1535-1542 . Huttenlocher P R (1979 ) Synapti c densit y i n huma n frontal cortex—developmenta l change s an d effect s of aging. Brain Re s 163:195-205 .
NEURONAL DIFFERENTIATION: FROM AXONS TO SYNAPSE S 6 7 Ibata Y , Otsuka N (1968 ) Fin e structur e o f synapse s in the hippocampu s o f th e rabbi t with specia l refer ence t o dar k presynapti c endings . Z Zellforsc h MikroskAnat 91-.547-553. Inagaki N, Chihara K, Arimura N, Ménager C, Kawano Y, Matsuo N , Nishimur a T , Aman o M , Kaibuch i K (2001) CRMP- 2 induce s axon s i n culture d hip pocampal neurons. Nat Neurosc i 4:781—782. Inoue A, Sanes JR (1997) Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates . Scienc e 276:1428-1431 . Irie M , Hât a Y , Takeuchi M , Ichtchenk o K , Toyoda A, Hirao K , Takai Y , Rosahl TW , Sudho f T C (1997 ) Binding o f neuroligin s t o PSD-95 . Scienc e 277 : 1511-1515. Isaac J T (2003 ) Postsynapti c silen t synapses : evidenc e and mechanisms . Neuropharmacolog y 45:450 — 460. Jareb M, Banker G (1997 ) Inhibition o f axonal growth by brefeldin A i n hippocampa l neuron s i n culture . J Neurosci 17:8955-8963 . Jenkins SM, Bennett V (2001) Ankyrin-G coordinates assembly o f th e spectrin-base d membran e skeleton , voltage-gated sodiu m channels , an d L I CAM s a t Purkinje neuro n initia l segments . J Cel l Bio l 155: 739-746. Jiang H, Gu o W, Lian g X, Rao Y (2005) Bot h th e estab lishment and th e maintenanc e o f neuronal polarity require active mechanisms: critical roles of GSK-3p and it s upstream regulators. Cell 120:123-135 . Jones D G (1983 ) Recen t perspective s on th e organiza tion o f centra l synapses . Anest h Anal g 62:1100 1112. Jontes JD, Emon d MR , Smit h S J (2004) In viv o traffick ing an d targetin g o f N-cadheri n t o nascen t presy naptic terminals. J Neurosci 24:9027-9034. Jorgensen EM, Hartwieg E, Schusk e K, Nonet ML , Jin Y, Horvitz H R (1995 ) Defectiv e recyclin g o f synapti c vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378:196-199 . Kakizawa S , Yamasaki M, Watanabe M , Kan o M (2000 ) Critical perio d fo r activity-dependent synaps e elim ination i n developin g cerebellum . J Neurosc i 20 : 4954-4961. Keino-Masu K , Masu M , Hinc k L, Leonardo ED , Cha n SS, Culotti JG , Tessier-Lavigne M (1996 ) Delete d in colorectal cance r (DCC ) encode s a netrin recep tor. Cell 87:175-185. Kennedy TE, Serafin i T, d e la Torre JR, Tessier-Lavign e M (1994 ) Netrins are diffusible chemotropi c factor s for commissura l axon s i n th e embryoni c spina l cord. Cell 78:425-435 . Kim CH, Lisrnan JE (2001 ) A labile component o f AMPA receptor—mediated synaptic transmission is dependent
on microtubule motors, actin, and nethylmaleimide— sensitive factor. J Neurosci 21:4188-4194. Kim E , Shen g M (2004 ) PD Z domai n protein s o f synapses. Nat Rev Neurosci 5:771-781. Knyihar E , Csilli k B, Rakic P (1978 ) Transient synapses in th e embryoni c primat e spina l cord . Scienc e 202:1206-1209. Kuffler S W (1942) Response s during refractory perio d at myoneural junctio n i n isolate d nerve-muscl e fibr e preparation. J Neurophysiol 5:199-209. Lanier LM, Gates MA , Witke W , Menzies AS, Wehman AM, Mackli s JD , Kwiatkowsk i D , Sorian o P , Gertler F B (1999) Mena i s required for neurulation and commissur e formation. Neuron 22:313—325 . Lebrand C , Den t EW , Strasser GA , Lanier LM , Kraus e M, Svitkin a TM , Boris y GG , Gertle r F B (2004 ) Critical rol e of Ena/VASP proteins fo r filopodia formation i n neuron s an d i n functio n downstrea m o f netrin-1. Neuron 42:37-49 . Lee H , Enge l U , Rusc h J , Scherre r S , Shear d K , Van Vactor D (2004 ) Th e microtubul e plu s en d track ing protei n Orbit/MAST/CLAS P act s downstrea m of the tyrosin e kinas e Abl i n mediatin g axo n guid ance. Neuron 42:913-926 . Leenders AG, Lopes da Silva FH, Ghijsen WE, Verhag e M (2001 ) Rab3a is involved in transpor t of synaptic vesicles to the activ e zone i n mouse brain nerve terminals. Mol Biol Cell 12:3095-3102 . Levi S, Logan SM , Tovar KR, Craig AM (2004) Gephyrin is critical for glycine receptor clusterin g but no t fo r the formatio n o f functional GABAergic synapses in hippocampal neurons . J Neurosci 24:207-217. Lin CH , Espreafic o EM , Mooseke r MS , Forsche r P (1996) Myosi n drive s retrograd e F-acti n flo w i n neuronal growth cones. Neuro n 16:769—782 . Lin CH , Thompso n CA , Forscher P (1994) Cytoskeleta l reorganization underlyin g growt h con e motility . Curr Opin Neurobiol 4:640-647. Littleton JT , Bai J, Vyas B, Desai R , Balms AE, Garmen t MB, Carlso n SD , Ganetzk y B , Chapma n E R (2001) Synaptotagmi n mutant s revea l essentia l functions fo r the C2 B domai n i n Ca 2+-triggered fusion an d recyclin g o f synapti c vesicle s i n vivo . J Neurosci 21:1421-1433. Lohmann C , Myh r KL , Wong R O (2002 ) Transmitter evoked loca l calciu m releas e stabilize s developin g dendrites. Natur e 418:177-181. Long H , Sabatie r C , M a L , Plum p A , Yuan W , Ornit z DM, Tamad a A , Murakam i F , Goodma n CS , Tessier-Lavigne M (2004 ) Conserve d role s for Sli t and Rob o protein s i n midlin e commissura l axo n guidance. Neuron 42:213-223. Luo L , Lia o YJ , Ja n LY , Ja n Y N (1994 ) Distinc t morphogenetic functions of similar small GTPases:
68 NORMA L DEVELOPMENT Drosophila Drac l i s involved i n axona l outgrowt h and myoblas t fusion. Genes Dev 8:1787—1802 . Luscher B , Kelle r C A (2004 ) Regulatio n o f GABA A re ceptor trafficking , channe l activity , an d functiona l plasticity o f inhibitor y synapses. Pharmaco l The r 102:195-221. Lustig M, Erskin e L, Mason CA , Grumet M, Sakura i T (2001) Nr-CA M expressio n i n th e developin g mouse nervou s system : ventra l midlin e structures , specific fiber tracts, and neuropila r regions. J Comp Neurol 434:13-28. Lynksyutova AI, Lu CC, Milanesi o N, King LA, Guo N , Wang Y , Nathan s ] , Tessier-Lavign e M , Zo u Y (2003) Anterior-posterior guidanc e of commissure! axons b y Wnt-frizzle d signaling . Scienc e 302 : 1984-1988. Mann F , Ray S, Harri s W , Hol t C (2002 ) Topographi c mapping i n dorsoventral axis of the Xenopus retino tectal syste m depends o n signalin g through ephrin B ligands. Neuron 35:461-473 . Marin-Padilla M (1971 ) Earl y prenata l ontogenesi s o f the cerebra l corte x (neocortex ) o f the ca t (Felis do mestica). A Golgi study . I. The primordia l neocortical organization . Z Ana t Entwicklungsgesc h 134 : 117-145. Martin KG , Casadi o A , Zh u H , Yapin g E , Ros e JC , Chen M , Baile y CH , Kande l E R (1997 ) Synapse specific, long-ter m facilitatio n o f aplysia sensory to motor synapses: a function fo r local protein synthesis in memory storage. Cell 91:927-938. Mason C A (1982 ) Developmen t o f termina l arbor s of retino-geniculat e axon s i n th e kitte n — II. Elec tron microscopica l observations . Neuroscienc e 7 : 561-582. MatsLimoto-Miyai K , Ninomiya A , Yamasaki H , Tamur a H, Nakamur a Y , Shiosak a S (2003 ) NMDA dependent proteolysis of presynaptic adhesion molecule L I i n th e hippocampu s b y neuropsin . J Neurosci 23:7727-7736. Matus A , Perilin g G , Ackerman n M , Maede r J (1980 ) Brain postsynaptic densities: the relationshi p to glial and neurona l filaments . J Cell Bio l 87:346-359. Mauch DH, Nagle r K, Schumacher S , Goritz C, Muller EC, Ott o A, Pfrieger F W (2001) CNS synaptogene sis promote d b y glia-derive d cholesterol . Scienc e 294:1354-1357. May MK , Bisco e TJ (1973 ) Preliminary observations on synaptic developmen t i n th e foeta l ra t spinal cord . Brain Res 53:181-186. McConnell SK , Ghos h A , Shat z C J (1989 ) Subplat e neurons pioneer the first axon pathway from th e cerebral cortex . Science 245:978-982. McEwen B S (1999 ) Stres s an d hippocampa l plasticity , Annu Rev Neurosci 22:105-122,
Mclntire SL , Reime r RJ , Schuske K , Edwards RH, Jorgensen E M (1997 ) Identificatio n an d characteriza tion o f th e vesicula r GAB A transporter . Natur e 389:870-876. McLaughlin T , Hindge s R , O'Lear y D D (2003 ) Regula tion o f axia l patternin g o f th e retin a an d it s topo graphic mapping in the brain. Curr Opin Neurobiol 13:57-69. Meberg P], Hamburg JR (2000) Increase i n neurit e out growth mediate d b y overexpression o f actin depoly merizing factor. J Neurosci 20:2459-2469. Meister B , Hokfel t T , Val e WW, Sawchenk o PE , Swan son L , Goldstein M (1986 ) Coexistenc e o f tyrosine hydroxylase an d growt h hormone-releasin g facto r in a subpopulatio n o f tubero-infundibular neuron s of the rat . Neuroendocrinology 42:237-247. Meyer G , Kirsc h J, Betz H , Langosch D (1995 ) Identification o f a gephyri n bindin g moti f o n th e glycin e receptor ( 3 subunit. Neuron 15:563—572 . Mi R , Sia GM, Rose n K , Tang X, Moghekar A, Black JL, McEnery M, Hugani r RL, O'Brien R J (2004) AMPA receptor—dependent clusterin g o f synapti c NMD A receptors i s mediated b y Stargazi n an d NR2A/ B i n spinal neurons and hippocampal interneurons . Neu ron 44:335-349. Ming GL, Song HJ, Berninger B, Holt CE, Tessier-Lavign e M, Po o MM (1997 ) cAMP-dependen t growt h con e guidance by netrin-1. Neuron 19:1225-1235 . Misura KM , Schelle r RH , Wei s W I (2000 ) Three dimensional structure of the netironal-Secl-syntaxi n la complex. Nature 404:355-362. Moss SJ , Smar t T G (2001 ) Constructin g inhibitor y synapses. Nat Rev Neurosci 2:240-250 . Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S , Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H (2004 ) Developmenta l switc h fro m GAB A t o glycine releas e in singl e central synaptic terminals. Nat Neurosci 7:17-23. Nagerl UV , Eberhorn N , Cambridg e SB , Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticit y i n hippocampa l neurons . Neuro n 44:759-767. Nakada C , Ritchi e K , Ob a Y , Nakamur a M , Hott a Y , lino R , Kasa i RS , Yamaguch i K , Fujiwar a T , Kusumi A (2003 ) Accumulation o f anchore d pro teins form s membran e diffusio n barrier s durin g neuronal polarization . Nat Cell Biol 5:626-632. Newman-Gage H , Westrum L E (1984 ) Independen t development o f presynapti c specialization s i n olfac tory corte x o f th e feta l rat . Cel l Tissu e Re s 237 : 103-109. Niell CM , Meye r MP , Smit h S J (2004) in viv o imagin g of synapse formation on a growing dendritic arbor . Nat Neurosci 7:254-260.
NEURONAL DIFFERENTIATION : FRO M AXON S TO SYNAPSE S 6 9 Nimchinsky EA , Sabatin i BL , Svobod a K (2002) Struc ture an d functio n o f dendriti c spines . Ann u Re v Physiol64:313~353. Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, Tessier-Lavigne M , Po o MM , Hon g K (2003 ) Cyclic AMP/GMP-dependen t modulatio n o f Ca 2+ channels set s th e polarit y o f nerv e growth-con e turning. Nature 423:990-995. O'Brien RJ , Xu D , Petrali a RS , Steward O , Hugani r RL, Worley P (1999 ) Synapti c clusterin g o f AMPA receptors b y the extracellula r immediate-earl y gen e product Narp . Neuron 23:309-323 . O'Connor TP , Duer r JS , Bentle y D (1990 ) Pionee r growth con e steerin g decision s mediate d b y singl e filopodial contacts i n situ. J Neurosci 10:3935-3946 . Palade GE, Pala y SL (1954) Electron microscop e observa tions of interneuronal an d neuromuscula r synapses. Anat Reo 118: 3 3 5-3 36. Pasterkamp RJ , Kolodkin A L (2003 ) Semaphori n junc tion: makin g track s towar d neura l connectivity . Curr Opin Neurobiol 13:79-89. Paternostro MA , Reyhe r CK , Brunje s P C (1995 ) Intra cellular injection s o f Lucife r yello w int o lightl y fixed mitra l cell s revea l neurona l dye-couplin g i n the developin g ra t olfactor y bulb . Brai n Re s De v Brain Res 84:1-10. Peinado A , Yust e R , Kat z L C (1993 ) Ga p functiona l communication an d th e developmen t o f local cir cuits in neocortex. Cereb Cortex 3:488—498 . Peng J , Ki m MJ , Chen g D , Duon g DM , Gyg i SP , Sheng M (2004) Semiquantitative proteomic analysis of rat forebrai n postsynapti c density fractions b y mass spectrometry. J Biol Chem 279:21003-21011. Perrin FE, Rathjen FG, Stoeckl i ET (2001 ) Distinct subpopulations o f sensor y afférent s requir e Fl l o r axonin-1 for growth to their targe t layers within th e spinal cord of the chick. Neuron 30:707-723 . Peters A , Kaiserman-Abramo f I R (1969 ) Th e smal l py ramidal neuro n o f th e ra t cerebra l cortex . Th e synapses upo n dendriti c spines . Z Zellforsc h Mikrosk Anat 100:487-506. Peters A, Palay SL, Webster H D (1991 ) Th e Fine Structure of th e Nervous System. Oxford University Press, New York. Petrucci TC , Morro w J S (1987 ) Synapsi n I : a n actin bundling protei n unde r phosphorylatio n control . J Cell Biol 105:1355-1363 . Pevsner J, Hsu SC , Brau n JE, Calakos N , Ting AE, Bennett MK , Schelle r R H (1994 ) Specificit y an d regu lation o f a synapti c vesicl e dockin g complex . Neuron 13:353-361 . Phillips GR, Anderson TR, Florens L, Gudas C, Magda G, Yates J R 3rd , Colma n D R (2004 ) Actin-binding proteins i n a postsynapti c preparation: lasp- 1 i s a
component o f central nervou s system synapses and dendritic spines . J Neurosci Re s 78:38-48. Phillips GR , Huan g JK , Wang Y, Tanaka H , Shapir o L , Zhang W, Shan WS, Arndt K, Frank M, Gordon RE , Gawinowicz MA , Zhao Y, Colman D R (2001 ) Th e presynaptic particl e web : ultrastructure , composi tion, dissolution , an d reconstitution . Neuro n 32 : 63-77. Piper M , Sali h S , Weinl C, Hol t CE , Harri s WA (2005) Endocytosis-dependent desensitizatio n an d protei n synthesis-dependent resensitization in retinal growt h cone adaptation. Na t Neurosci 8:179-186 . Poskanzer K , Needleman LA , Bozdagi O, Huntle y G W (2003) N-cadheri n regulate s ingrowt h an d lamina r targeting o f thalamocortica l axons . J Neurosc i 23 : 2294-2305. Prowse DM , Cadwallade r GP , Pitt s J D (1997 ) E-cad herin expressio n ca n alte r th e specificit y o f ga p junction formation. Cell Biol Int 21:833-843. Rajagopalan S , Vivanco s V , Nicola s E , Dickso n B J (2000) Selectin g a longitudina l pathway : Robo re ceptors specif y th e latera l positio n o f axons i n th e Drosophila CNS . Cel l 103:1033-1045 . Rakic P , Bourgeoi s JP , Eckenhof f MF , Zecevi c N , Goldman-Rakic PS (1986) Concurrent overproduc tion o f synapses in diverse regions of the primat e cerebral cortex. Science 232:232-235 . Ramon y Caja l S (1894 ) Ne w Ideas o n th e Structure of the Nervous System i n Ma n an d Vertebrates. MI T Press, Cambridge MA , p 149 . Rao A , Ki m E , Shen g M , Crai g A M (1998 ) Hetero geneity in the molecula r compositio n o f excitatory postsynaptic site s durin g developmen t o f hip pocampal neuron s i n culture . J Neurosc i 18 : 1217-1229. Rash JE, Staines WA, Yasumura T, Patel D, Furman CS , Stelmack GL , Nag y J I (2000 ) Immunogol d evi dence that neuronal gap junctions in adult rat brain and spina l cor d contai n connexin-3 6 bu t no t connexin-32 o r connexin-43 . Pro c Nat i Aca d Sc i USA 97:7573-7578. Rash JE, Yasumura T, Dude k F E (1998 ) Ultrastructure, histological distribution , an d freeze-fractur e im munocytochemistry o f ga p junction s i n ra t brai n and spinal cord. Cell Biol Int 22:731-749. Rhee J, Mahfooz NS, Arregui C, Lilie n J, Balsamo J, VanBerkum M F (2002 ) Activatio n of the repulsiv e receptor Roundabou t inhibit s N-cadherin-mediate d cell adhesion . Nat Cell Biol 4:798-805. Richter K , Langnaese K , Kreutz MR, Olia s G , Zha i R , Scheich H , Garne r CC , Gundelfinge r E D (1999 ) Presynaptic cytomatri x protein bassoon i s localized at bot h excitator y an d inhibitor y synapse s o f ra t brain. J Comp Neurol 408:437-448.
70 NORMA L DEVELOPMENT Rodriguez-Boulan E , Powel l S K (1992 ) Polarit y o f ep ithelial an d neurona l cells . Annu Re v Cell Bio l 8 : 395-427. Rothberg JM , Hartle y DA , Walthe r Z , Artavanis Tsakonas S (1988) Slit : an EGF-homologous locus of D. melanogaster involved i n th e developmen t o f the embryoni c centra l nervou s system . Cel l 55 : 1047-1059. Rothberg JM , Jacob s JR , Goodma n CS , Artavanis Tsakonas S (1990 ) Slit : a n extracellula r protei n necessary for development o f midline glia and commissural axo n pathway s contain s bot h EG F an d LRR domains. Gene s Dev 4:2169-2187. Ruthel G , Hollenbec k P J (2000) Growt h cone s ar e no t required fo r initia l establishmen t of polarity or differential axo n branc h growt h i n culture d hip pocampal neurons. J Neurosci 20:2266-2274. Sabatier C , Plum p AS , Le M , Eros e K , Tamad a A , Mu rakami F, Lee EY, Tessier-Lavigne M (2004 ) The di vergent Robo family protein rig-l/Robo3 is a negative regulator o f sli t responsivenes s required fo r midline crossing by commissural axons. Cell 117:157—169 . Sarnat HB, Flores-Sarnat L (2002) Role of Cajal-Retziu s and subplat e neuron s i n cerebra l cortica l develop ment. Semin Pediat r Neurol 9:302-308. Schaefer AW, Kabir N, Forsche r P (2002) Filopodia an d actin arc s guide th e assembl y and transpor t of two populations o f microtubules wit h uniqu e dynami c parameters i n neurona l growt h cones . J Cel l Bio l 158:139-152. Scheiffele P , Fan J, Choih J , Fetter R , Serafin i T (2000 ) Neuroligin expresse d i n nonneurona l cell s trigger s presynaptic developmen t i n contacting axons . Cell 101:657-669. Schuster T , Kru g M , Stalde r M , Hacke l N , Gerardy Schahn R , Schachne r M (2001 ) Immunoelectro n microscopic localizatio n o f the neura l recognitio n molecules LI , NCAM, and it s isoform NCAM180, the NCAM-associate d polysiali c acid , P t integri n and the extracellular matrix molecule tenascin- R in synapses of the adul t rat hippocampus. J Neurobiol 49:142-158. Schwamborn JC, Puschel AW (2004) The sequentia l activity of the GTPases Rap IB and Cdc42 determines neuronal polarity. Nat Neurosc i 7:923—929 . Seeger M , Tea r G , Ferrés-Marc o D , Goodma n C S (1993) Mutation s affectin g growt h con e guidanc e in Drosophila: gene s necessary for guidance toward or away from th e midline . Neuron 10:409-426 . Segretain D , Fal k M M (2004 ) Regulatio n o f connexi n biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 1662:3—21 . Serafini T , Colamarin o SA , Leonard o ED , Wan g H , Beddington R , Skarne s WC , Tessier-Lavign e M
(1996) Netrin- 1 i s require d fo r commissura l axo n guidance i n th e developin g vertebrat e nervous system. Cell 87:1001-1014. Serafini T , Kenned y TE, Galk o MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) Th e netrin s define a family o f axo n outgrowth-promotin g protein s ho mologous t o C. elegans UNC-6. Cell 78:409-424. Shapira M , Zhai RG , Dresbach T , Bresle r T, Torres VI , Gundelfinger ED, Ziv NE, Garner CC (2003 ) Uni tary assembl y o f presynapti c activ e zone s fro m Piccolo-Bassoon transpor t vesicles . Neuro n 38 : 237-252. Sheng M , Cumming s J , Rolda n LA , Ja n YN , Ja n L Y (1994) Changin g subuni t compositio n o f het eromeric NMD A receptor s durin g development of rat cortex. Nature 368:144-147 . Shepherd G M (1991 ) Foundations o f th e Neuron Doctrine. Oxford University Press, New York. Shi SH , Cheng T, Jan LY, Jan YN (2004) APC and GSK 3p ar e involve d i n mPar 3 targetin g t o th e nascen t axon an d establishmen t of neuronal polarity . Curr Biol 14:2025-2032 . Simpson JH , Kid d T , Blan d KS , Goodma n C S (2000 ) Short-range an d long-rang e guidanc e b y slit and it s Robo receptors. Rob o and Robo 2 play distinct roles in midline guidance. Neuron 28:753-766 . Sjostrand F S (1958 ) Ultrastructur e o f retina l ro d synapses of the guine a pi g eye as revealed b y threedimensional reconstruction s fro m seria l sections . JUltrastmctRes2:122-170. Skoff RP , Hamburge r V (1974 ) Fin e structur e o f den dritic an d axona l growt h cone s in embryonic chic k spinal cord . J Comp Neurol 153:107-147 . Snow DM, Letourneau PC (1992 ) Neurite outgrowth o n a ste p gradien t o f chondroitin sulfat e proteoglycan (CS-PG). J Neurobiol 23:322-336 . Sollner T , Bennet t MK , Whitehear t SW , Schelle r RH , Rothman JE (1993) A protein assembly—disassembl y pathway i n vitr o that ma y correspond t o sequentia l steps of synaptic vesicle docking , activation, and fu sion. Cell 75:409-418. Song H , Min g G , H e Z, Lehrnan n M , McKerrache r L, Tessier-Lavigne M , Po o M (1998 ) Conversio n o f neuronal growt h con e response s fro m repulsio n t o attraction b y cycli c nucleotides . Scienc e 281 : 1515-1518. Song HJ , Min g GL , Po o M M (1997 ) cAMP-induce d switching in turning direction of nerve growth cones . Nature 388:275-279 . Spacek J , Harri s KM (1997 ) Three-dimensiona l organi zation o f smoot h endoplasmi c reticulu m i n hip pocampal CA I dendrite s an d dendriti c spine s of th e immatur e an d matur e rat . J Neurosc i 17 : 190-203.
NEURONAL DIFFERENTIATION : FRO M AXON S TO SYNAPSE S 7 1 Sperry R W (1963 ) Chemoaffinity i n th e orderl y growth of nerv e fibe r pattern s an d connections . Pro c Nat i Acad Sci USA 50:703-710. Stein E , Tessier-Lavign e M (2001 ) Hierarchica l organization o f guidanc e receptors : silencin g o f netri n attraction b y sli t throug h a Robo/DC C recepto r complex. Science 291:1928-1938. Steward O, Falk PM (1986 ) Protein-synthetic machiner y at postsynaptic sites during synaptogenesis : a quan titative stud y o f th e associatio n between polyribo somes an d developin g synapses . J Neurosc i 6 : 412-423. Steward O , Lev y WB (1982 ) Preferentia l localization of polyribosomes under the base of dendritic spine s in granule cell s o f th e dentat e gyrus . ) Neurosc i 2 : 284-291. Strasser GA , Rahi m NA , VanderWaal KE , Gertle r FB , Lanier LM (2004 ) Arp2/3 is a negative regulato r of growth cone translocation. Neuron 43:81—94. Suchyna TM, Nitsch e }M, Chilton M, Harris AL, Veenstra RD, Nicholso n B J (1999) Different ionic selectivities fo r connexins 26 an d 3 2 produce rectifyin g gap junction channels. Biophy s J 77:2968-2987. Sudhof TC (2004 ) The synapti c vesicle cycle. Annu Rev Neurosci 27:509-547. Sugita S , Sudho f T C (2000 ) Specificit y o f Ca 2+dependent protei n interaction s mediate d b y th e C2A domain s of synaptotagmins. Biochemistr y 39: 2940-2949. Suter DM, Forsche r P (1998) An emerging link between cytoskeletal dynamic s and cel l adhesio n molecules in growth con e guidance . Cur r Opi n Neurobio l 8:106-116. Takamori S , Rhe e JS , Rosenmun d C , Jah n R (2000 ) Identification o f a vesicula r glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189-194. Takei Y, Teng J, Harada A, Hirokawa N (2000) Defects in axonal elongation an d neurona l migration i n mic e with disrupte d ta u an d MAPl b genes . J Cell Bio l 150:989-1000. Tanaka H , Sha n W , Phillip s GR , Arnd t K , Bozdagi O , Shapiro L, Huntley GW, Benson DL, Colman D R (2000) Molecular modification of N-cadherin in response t o synaptic activity. Neuron 25:93—107 . Tashiro A, Dunaevsky A, Blazeski R, Mason CA, Yuste R (2003) Bidirectiona l regulatio n o f hippocampa l mossy fiber filopodial motility by kainate receptors : a two-ste p mode l o f synaptogenesis . Neuro n 38 : 773-784. Tessier-Lavigne M, Placze k M , Lumsde n ACS , Dodd J , Jessell T M (1988 ) Chemotropi c guidanc e o f developing axon s i n th e mammalia n centra l ner vous system. Nature 336:775-778 .
Thompson CC , Potter GB (2000) Thyroid hormone action in neural development. Cere b Cortex 10:939-945 . Togashi H , Abe K, Mizoguchi A, Takaoka K, Chisaka O , Takeichi M (2002 ) Cadheri n regulate s dendriti c spine morphogenesis. Neuron 35:77-89 . Tovar KR , Westbroo k G L (1999 ) Th e incorporatio n o f NMDA receptor s with a distinc t subunit composi tion a t nascen t hippocampa l synapse s i n vitro . J Neurosci 19:4180-4188 . Uchizono K (1965) Characteristics of excitatory an d in hibitory synapse s i n th e centra l nervou s syste m of the cat. Nature 207:642-643. Ullian EM , Christopherso n KS , Barre s BA (2004) Rol e for gli a in synaptogenesis. Glia 47:209-216. Ullian EM , Sapperstei n SK , Christopherso n KS , Barres BA (2001) Control o f synapse number b y glia. Sci ence 291:657-661. Valdivia O (1971) Methods of fixation and the morphology of synaptic vesicles. J Comp Neurol 142:257-273. van Horc k FP , Weinl C , Hol t C E (2004 ) Retina l axon guidance: nove l mechanism s fo r steering . Cur r Opin Neurobiol 14:61-66. van Zunder t B , Yoshii A , Constantine-Pato n M (2004 ) Receptor compartmentalizatio n an d traffickin g a t glutamate synapses : a developmenta l proposal . Trends Neurosci 27:428-437. Vaughn J E (1989 ) Fin e structur e o f synaptogenesi s i n the vertebrat e centra l nervou s system . Synaps e 3 : 255-285. Vaughn JE , Barber RP, Sims TJ (1988 ) Dendriti c devel opment an d preferentia l growth int o synaptogeni c fields: a quantitativ e stud y o f Golgi-impregnate d spinal motor neurons. Synaps e 2:69-78. Vaughn JE, Sims TJ (1978) Axonal growth cones and de veloping axonal collaterals form synapti c junctions in embryoni c mous e spina l cord . J Neurocyto l 7 : 337-363. Vaughn JE, Sims T, Nakashima M (1977) A comparison of the earl y development o f axodendritic and axoso matic synapse s upo n embryoni c mouse spina l motor neurons. J Comp Neuro l 175:79-100 . Venance L , Rozo v A , Blato w M , Burnashe v N , Feld meyer D , Monye r H (2000 ) Connexi n expressio n in electricall y coupled postnata l rat brain neurons. Proc Nati Acad Sci USA 97:10260-10265. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF , Hammer RE , van den Berg TK, Missler M, Geuze HJ, Sudhof TC (2000 ) Synaptic assembl y o f th e brai n i n th e absenc e o f neurotransmitter secretion. Science 287:864—869 . Voets T, Toonen RF, Brian EC, d e Wit H, Moser T, Rettig J , Sudho f TC , Nehe r E , Verhag e M (2001 ) MunclS—1 promotes large dense-core vesicle docking. Neuron 31:581-591 .
72 NORMA L DEVELOPMEN T Walikonis RS , Jensen ON , Man n M , Provenc e D W Jr, Mereer }A , Kennedy M B (2000 ) Identificatio n o f proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20:4069-4080. Walsh MJ, Kuru c N (1992 ) Th e postsynapti c density: constituent an d associate d protein s characterize d by electrophoresis , immunoblotting , an d peptid e sequencing.} Neurochem 59:667-678 . Wang Y , Okamoto M , Schmit z F , Hofman n K , Sudhof TC (1997 ) Rim i s a putative Rab 3 effector i n regu lating synaptic-vesicle fusion. Natur e 388:593—598 . Washbourne P, Bennett JE, McAlliste r AK (2002) Rapid recruitment o f NMDA recepto r transpor t packets to nascent synapses. Nat Neurosci 5:751-759. Wen Z , Guirlan d C , Min g GL , Zhen g J Q (2004 ) A CaMKII/calcineurin switc h control s th e directio n of Ca(2+)-dependent growt h con e guidance . Neu ron 43:835-846. Williams SE , Maso n CA , Herrer a E (2004 ) Th e opti c chiasm a s a midline choice point . Cur r Opin Neu robiol 14:51-60 . Wills Z , Mar r L, Zinn K , Goodman CS , Va n Vactor D (1999) Profili n an d th e Ab l tyrosin e kinas e ar e re quired fo r motor axon outgrowth i n the Drosophila embryo. Neuron 22:291-299. Winckler B , Forsche r P , Mellman I (1999 ) A diffusio n barrier maintain s distributio n o f membran e pro teins in polarized neurons. Nature 397:698-701. Wodarz A (2002 ) Establishin g cell polarit y in develop ment. Na t Cell Biol 4:E39-44. Wolfe DE , Potte r LT , Richardson KG , Axelrod J (1962) Localizing tritiated norepinephrin e i n sympatheti c axons b y electro n microscopi c autoradiography . Science 138:440-442 .
Wu H , Nas h JE, Zamoran o P , Garner C C (2002 ) Interaction o f SAP97 with minus-end-directed acti n mo tor myosi n VI . Implication s fo r AMP A recepto r trafficking. J Biol Chem 277:30928-30934. Yoshikawa S , Thomas JB (2004) Secrete d cel l signalin g molecules i n axon guidance. Cur r Opin Neurobiol 14:45-50. Yoshimura T , Kawan o Y , Arimur a Y , Kawabat a S , Kikuchi A, Kaibuchi K (2005) GSK-3smal l ( 3 regulates phosphorylation of CRMP-2 an d neurona l polarity. Cell 120:137-149 . Yu TW , Bargman n C I (2001 ) Dynami c regulatio n o f axon guidance. Nat Neurosci 4 (Suppl): 1169-1176. Yu W, Baas PW (1994) Changes i n microtubule number and lengt h durin g axon differentiation . J Neurosci 14:2818-2829. Zhai RG , Vardinon-Friedma n H , Cases-Langhof f C ? Becker B , Gundelfinger ED , Zi v NE, Garne r C C (2001) Assemblin g the presynapti c activ e zone : a characterization o f an activ e one precurso r vesicle . Neuron 29:131-143 Zhang W, Benson D L (2001 ) Stage s of synapse development define d b y dependenc e o n F-actin . J Neu rosci 21:5169-5181. Zheng JQ , Felder M , Connor JA, Poo MM (1994 ) Turn ing o f nerv e growth cone s induce d b y neurotrans mitters. Nature 368:140-144 . Zhou Q, Homma KJ , Poo MM (2004 ) Shrinkage of dendritic spines associated with long-term depression of hippocarnpal synapses. Neuron 44:749-757. Zou Y , Stoeckli E , Che n H , Tessier-Lavign e M (2000 ) Squeezing axon s out o f the gra y matter : a rol e fo r slit and semaphori n proteins from midlin e and ventral spinal cord. Cell 102:363-375 .
5
Cell Death Stevens K. Rehen Jerold J.M. Chun
mechanism tha t plays a critical role i n specifi c stage s of development, sculptin g differen t organ s during the formation an d maturatio n o f tissue s (Elli s e t al. , 1991). Apoptosis is the bes t known form o f PCD, charac terized originall y by morphological change s observe d by microscopy (Kerr et al., 1994). Apoptosis is characterized by nuclear siz e reduction, blebbin g of the cel lular membrane, chromati n condensation , an d DN A fragmentation (Ker r et al, 1972 ; Wyllie et al, 1984) . In the absence of inflammation, the apoptotic corpses are usuall y eliminate d b y phagocytes (Arend s e t al, 1990), whic h us e th e phosphatidylserin e recepto r (PSR) to identify and remove the dying cells (Zhuan g et al, 1998 , Wan g e t al, 2003) . Apoptosis is considered a counterpoin t t o cel l deat h b y necrosi s (Ker r et al. , 1972) . Necrosi s i s distinguishe d b y earl y swelling and ruptur e o f both intracellula r organelle s and the plasma membrane. Although th e definitio n o f apoptosi s i s based o n morphological criteri a and PC D i s characterized as
Over the pas t several decades, the importanc e of cell death i n th e formatio n of the nervou s system has become wel l established . Indeed , understandin g cel l death i n th e developin g brai n ha s bee n on e o f th e most exciting areas of research in neuroscience . Th e present chapter focuse s on the mammalian fetal cerebral cortex as a paradigm of study.
HISTORICAL RECOGNITION O F PROGRAMMED CELL DEAT H AND APOPTOSI S
Embryologists hav e lon g recognize d tha t regressiv e events play a major rol e in shaping organ development (Clarke an d Clarke , 1996) . Abou t S O years ago , th e term programmed cell death (PCD ) wa s coined . I t evolved from detaile d studie s of the cellula r degenera tion durin g insec t metamorphosi s (Lockshi n an d Williams, 1965 ) and the morphogenesis o f avian limbs (Saunders, 1966) . PC D i s a geneticall y regulate d 73
74 NORMA L DEVELOPMEN T a physiologica l even t durin g development , bot h terms have been use d interchangeably sinc e thei r inception (Torne i étal., 1994) . This us e reflects an early consensus amon g scientist s abou t th e programme d nature o f apoptosis , eve n whe n triggere d b y a non physiological stimulus . I t i s important t o emphasiz e that the often-neglected distinctio n between apoptosi s and PC D ha s somewhat muddied th e field, delaying the appreciatio n o f other form s o f PCD tha t ar e also relevant to development of the nervou s system, such as autophagy (Dunn, 1994 ; Xu e et al., 1999 ; Guimarae s et al, 2003) . I n this chapter, the ter m PC D refer s t o all forms of cell death associate d with a developmen tal process .
contain fou r B H domain s (terme d BH1 , BH2 , BH3, and BH4) . There are two pro-death subgroup s o f the Bcl-2 family: the multidomai n subgrou p contains th e BH1 an d BH 2 domain s and include s Bax, Bak, Bok, and Bcl-xS ; th e BH3-onl y subgrou p include s Bini , Bid, Bcl-2-associate d deat h protei n (Bad) , death pro tein 5/hara-kiri , Puma, an d Noxa . Bcl-2 family mem bers ca n interac t wit h eac h othe r vi a thei r B H domains, and th e fina l fat e o f a cell ma y depend o n the intracellula r balance between anti- and pro-deat h proteins (Akhtar et al, 2004).
GENETIC CONTRO L O F PROGRAMMED CELL DEATH
During th e 1940s-1950s , Vikto r Hamburger , Rit a Levi-Montalcini, and Stanle y Cohen conducte d pio neering studies on mechanisms controlling cell death that culminate d wit h th e identificatio n o f nerv e growth facto r (NGF ; Cohe n an d Levi-Montalcini , 1957). I n 1986 , Levi-Montalcin i an d Cohe n wer e awarded th e Nobe l Priz e i n Physiolog y or Medicin e for thei r importan t discover y of NGF an d it s role i n both neurit e outgrowt h an d cel l survival . Researc h on the function of NGF lea d to the neurotrophi c theory, which postulate s tha t neurona l surviva l depends on competitio n fo r limite d amount s o f trophi c fac tor^) release d b y target s (Oppenheim , 1991) . Thi s early wor k ha s bee n th e impetu s fo r numerou s research group s investigatin g nove l neurotrophi c factors tha t regulate the surviva l of developing neural cells. Wit h th e clonin g o f the gen e fo r NGF (Scot t et al , 1983) , other relate d growt h factors wit h similar amino aci d sequence s hav e bee n discovered . This famil y o f proteins , collectivel y referre d t o a s neurotrophins, consist s o f NG F an d brain-derive d neurotrophic facto r (BDNF ; Scot t e t al , 1983) , neu rotrophin (NT)-3 (Ernfor s e t al, 1990) , NT-4/5 (Berkemeier e t al , 1991 ; Hallbroo k e t al , 1991) , an d NT- 6 and NT-7 (Gotz et al, 1994 ; Nilsson et al, 1998) . Two type s o f neurotrophi n receptor s hav e bee n identified o n th e basi s of their pharmacological properties: a low-affinity recepto r calle d p75 , and a famil y of high-affinit y receptor s (trks ) tha t ar e tyrosin e pro tein kinase s an d th e member s o f which bin d selec tively to differen t neurotrophin s (Barbacid , 1994) . I n general, NG F activate s trkA, BDN F and NT-4/ 5 ar e ligands fo r trkB , an d NT- 3 activate s trkC , althoug h there i s som e degre e o f cross-tal k amon g them .
The original concept of PCD suggests an event during normal developmen t tha t i s unde r geneti c control . Much o f what we kno w about thi s regulatio n arise s from th e pioneerin g wor k b y Sydne y Brenner, John Sulston, an d Rober t Horvitz , wh o wer e awarde d th e 2002 Nobel Priz e i n Physiolog y or Medicine fo r elucidating mechanism s o f cell deat h i n th e nematod e Caenorhabditis elegans. During nematode development, the generatio n of its 109 0 somati c cell s i s followe d b y th e deat h an d elimination o f 13 1 specified cell s (Ellis and Horvitz , 1986). Mos t o f these eliminate d cell s ar e neura l pre cursors. I n a serie s o f elegan t geneti c experiments , Horvitz an d colleague s define d the "centra l dogma " of PCD : tha t th e expressio n o f certai n gene s (ced-3 and ced-4 i n nematode ) i s require d fo r cel l death , whereas othe r gen e product s (ced-9) ca n bloc k th e phenomenon. In vertebrates, pro-death genes are the caspase family o f cystein e protease s an d th e apoptoti c protease activating factor (APAF) 1, and anti-apoptoti c protein s (including Bcl- 2 and Bcl-xL ) (se e Chapte r 6). The Bcl-2 family i s critically involved in th e regulatio n o f mammalian cel l deat h an d surviva l an d include s not only anti-apoptoti c proteins , bu t als o pro-apoptoti c proteins actin g throug h bot h caspase-dependen t and caspase-independent pathway s (Korsmeyer , 1999) . This famil y i s divide d int o thre e majo r subgroup s based o n th e patter n o f Bcl- 2 homolog y (BH ) do mains (Korsmeyer , 1999) . Anti-deat h Bcl- 2 famil y members, including Bcl-2, Bcl-xL, Bcl-w, and Mcl-1 ,
NEUROTROPHIC THEORY AND CLASSICAL CELL DEATH
CELL DEATH 7 5
FIGURE 5- 1 Zone s in the developin g cerebral cortex. The anatom y of the ce rebral corte x change s a s developmen t proceed s (increasin g age fro m lef t t o right). A. The earl y proliferative ag e consists of a pseudostratified epithelium . B, C. With development , th e cerebra l wal l increases in width. In some cells , neurites processes stretch fro m th e ventricula r surface (blac k bar) to the pia i surface. C , D . With further development , mor e matur e neuron s (blac k triangular cells) begin to differentiate superficiall y i n the cortica l plate (CP) , alon g with the ingrowt h and outgrowt h o f axons in the intermediat e zon e (IZ ; lines parallel t o the blac k bar) . MZ, margina l zone; SZ , subventricular zone; VZ , ventricular zone. (Source: Adapte d from Cowan , 1979 )
Activation o f tr k receptor s initiate s intracellula r sig naling cascades tha t can produc e rapid, long-term ef fects o n neuro n growt h an d survival . Bindin g wit h p75 ca n promot e eithe r apoptosi s o r survival . I t ca n facilitate neurotrophi n signalin g throug h tr k recep tors promotin g cel l survival . Interestingly , p7 5 i s structurally related to the tumo r necrosis factor recep tors tha t regulat e th e onse t o f cel l deat h i n th e im mune syste m (Majda n e t al , 1997) . Constitutiv e expression o f the intracellula r p75 domai n i n trans genie mic e lead s t o cel l deat h i n severa l neurona l populations. Reader s wishin g t o lear n mor e abou t neurotrophic factor s and thei r receptor s ar e referre d to some o f the man y excellen t recen t reviews on thi s topic (e.g. , Huang and Reichardt, 2001 ; Dechant and Barde, 2002; Hempstead, 2002) .
DEVELOPING CEREBRA L CORTE X AS A MODEL FO R STUDYIN G MAMMALIAN NEURA L CEL L DEAT H
Neurons o f the mammalia n cerebra l corte x first arise during embryoni c developmen t fro m neuroprolifera tive zones that surround the cavities, or ventricles, that contain cerebra l spina l fluid . I n th e cerebra l corte x these proliferative regions are known as the ventricular zone (VZ) , which line s the ventricle , and th e subventricular zone (SZ) , whic h i s immediately suprajacen t to the VZ (Fig. 5-1). Developmental events in the VZ serve a s an archetypa l exampl e o f neurogenesi s else where in the neural tube, includin g the spinal cord . During neurogenesis , cell s underg o on e o f thre e general fates. They can continue to proliferate, become
76 NORMA L DEVELOPMEN T postmitotie, or die. Those neurons tha t becom e postmitotic, a step referred t o as the birth of a neuron, migrate ou t o f th e VZ , throug h a superficia l regio n termed th e intermediate zone (IZ) , until they reach a position i n the superficia l aspec t o f the anlag e o f the cortical gra y matter know n as the cortical plate (CP) . Once i n th e CP , neuron s differentiat e an d mak e synaptic connection s (Miller , 1988 ; Baye r an d Alt man, 1991 ) o r di e (e.g. , Finla y an d Slattery , 1983 ; Miller, 1995) . Death of Post-Mitotic Cells Historically, on e reaso n th e contributio n o f PCD t o development ha s no t bee n well-recognize d i s tha t apoptotic bodie s ar e susceptibl e t o rapi d clearanc e and phagocytosi s in intac t tissue. Thus, i t i s difficul t to study the presenc e of cell death i n static (fixed) tissue. A real-time approach coul d unequivocall y determine th e prevalence an d distribution of dying cells in situ, however , thi s metho d i s not currentl y practica l since e x viv o system s produc e artifactua l change s in cellular behavior and induce premature cell death. Approximately one-third or more of the post-mitotic neuronal populatio n undergoe s naturall y occurrin g PCD during development relate d to insufficient acces s to trophi c signal s (e.g. , NG F an d BDNF ) fro m tar gets an d afférent s (Oppenheim , 1991 ; Linden , 1994). Th e amoun t o f neurona l deat h varie s wit h time, location , an d cel l typ e (e.g. , Miller , 1995) . I n cortex, fo r example , th e incidenc e o f deat h amon g different population s o f post-migrator y neurons ca n vary fro m 10 % to 60% . Neurons i n th e deepes t an d most superficia l corte x ar e mor e likel y t o di e tha n those i n mid-cortex . Moreover , loca l circui t neuron s within a particular layer are twice as likely to die relative to laminar-cohort projection neurons. PCD play s a crucia l par t i n th e developmenta l strategy o f the cerebra l cortex . An overabundanc e of neurons i s generated t o create a transient scaffol d fo r the developin g corte x and i s subsequently eliminate d as th e corte x matures . Durin g developmen t o f th e mammalian telencephalon , th e genesi s o f neuron s destined for the si x layers of the cerebra l cortex is preceded b y generation o f a populatio n o f neurons tha t reside in the subplat e (an anlage of the white matter ) and the margina l zone (the anlage of cortical layer I). These neuropeptide-containin g neuron s (Chu n et al, 1987 ; Al-Ghoul and Miller, 1989 ; Ghos h e t al, 1990) ar e presen t i n larg e number s durin g
development an d functio n i n earl y synaptic circuitry (Chun an d Shatz , 1989a ; 1989b) . A s the brai n ma tures, their disappearance through neuronal death occurs in concer t wit h the invasio n o f the cortica l plat e by axona l projection s an d wit h th e eliminatio n o f synapses i n th e subplate . Thes e observation s sugges t that during development the subplate (a) is a transient synaptic neuropi l (Chu n e t al., 1987) ; and (b ) serves as a guidepos t fo r ingrowin g thalamocortica l axons subsequently eliminate d b y cel l death . Thi s ide a o f sculpting the cortex through a n initial overproductio n of neurons followed by paring back is in concert wit h the neurotrophic theory. Most studie s on PC D i n th e centra l nervou s system (CNS ) hav e focuse d o n th e period o f target in nervation (se e below) , whe n differentiatin g neuron s are sendin g ou t axon s and makin g synapti c connec tions with postmitotic neurons (Hamburger and Levi Montalcini, 1949 ; William s and Smith , 1993 ; Miller , 1995). An implicit assumption o f many of these studie s was that PC D playe d a minor rol e durin g embryoni c CNS development . Indeed , elaborat e mathematica l models have been constructed that assume there is no PCD durin g neuronogenetic phase s of developmen t (Cavinessetal., 1995) . Death of Proliferating Cells Death ca n affec t proliferatin g populations of cells, a phenomenon representin g a distinct for m an d phas e of cell death i n the developing CNS. Thi s populatio n is bes t represente d b y neura l progenito r an d ste m cells (NPCs). These cells, which have morphological and molecula r characteristic s o f radia l gli a (Nocto r et al., 2001), are located i n the VZ and SZ . They also share similarities with mitotic immune cell s such a s T cells of the thymi c cortex (Chun, 2001). Importantly, NPCs d o no t hav e synapti c contacts a t thi s stag e of development, an d ar e still proliferative . Thymic T cells are notable a s a comparison popu lation t o NPCs. Developin g T cell s underg o severa l distinct cell selection mechanism s (positive selection, negative selection , an d deat h b y neglect) tha t resul t in eliminatio n of 97% of the developin g T-cell popu lation (Egerto n e t al, 1990 ; Shortma n e t al. , 1990 ; Shortman an d Scollay , 1994) . Nevertheless , fo r de cades controversy existed following the proposa l of intrathymic cel l deat h (Metcalf , 1966) , becaus e o f th e absence o f histological evidenc e fo r intrathymi c cell death (Post e an d Olsen , 1973) . I t wa s not unti l th e
CELL DEATH 7 7 development o f nove l hybridizatio n techniques col lectively termed i n situ end labeling, or ISEL, that intrathymic cel l deat h wa s convincingly demonstrated (Surh an d Sprent , 1994 ; Chun , 2001) . ISEL identi fies breaks in double-stranded DN A produced during PCD b y attaching labele d nucleotide s t o fre e DN A ends. The labe l ca n the n b e visualized in tissu e sections (Gavrieli et al., 1992 ; Abrams et al., 1993 ; Wijsman e t al. , 1993 ; Woo d e t al. , 1993 ; Homm a e t al, 1994; Whit e e t al, 1994) . I n sit u end-labelin g plu s (ISEL+) improves the sensitivit y of the original ISEL techniques t o visualize PCD i n th e developing ner vous system (Blaschke et al, 1996 , 1998 ; Stale y et al , 1997; Pompeiano e t al, 1998 , 2000 ; Zhu an d Chun , 1998). Th e increase d sensitivity of ISEL+ ha s bee n validated i n severa l establishe d mammalia n model s of PCD . Fo r example , ISEL + reveal s norma l PC D and quantitative increases in PCD withi n the thymic cortex following dexamethason e treatment o f the thymus (Wyllie , 1980 ; Egerto n e t al , 1990 ; Shortma n et al 1990 ; Surh and Sprent , 1994) . Moreover, studies using ISEL+ i n the smal l intestinal villus, a model of PCD wher e th e entir e populatio n o f cells turns over every tw o t o fou r days , demonstrat e tha t apoptoti c DNA fragmentation can be identified in at least some dying cell s severa l day s befor e thei r actua l elimina tion (Pompeiano et al, 1998) . The searc h fo r PCD i n th e developin g cerebra l cortex wa s prompte d b y th e superficia l similarities between thymocyt e development an d cortical neurogenesis, particularly in ligh t o f the lac k o f histological evidenc e fo r cel l deat h i n th e thymus . Th e patterns o f labele d cell s reveale d b y ÏSEL + i n th e embryonic rodent brai n suggest that PCD occur s on a large scale throughout th e neuraxi s (Blaschke et al, 1998). As expecte d fro m previou s studie s o n target dependent PCD , dyin g cells are present in the anticipated postmitoti c neurona l compartment s o f th e cerebral corte x (I Z an d CP). Strikingly , a larg e amount o f PCD i s also present i n th e VZ . Th e tim e course o f cell deat h i n mous e cortex varies across development and i s related to the progressio n of the cel l cycle (Blaschk e et al , 1996 , 1998 ; Thomaido u e t al , 1997). Most PCD i s observed between gestational day (G) 1 2 and G18, when 25% to 70% of cells in the feta l cerebral corte x die (Fig . 5-2) . Pea k incidence o f cell death occur s abou t G14 . Prio r t o G1 0 an d i n th e adult, less than 1 % of cortical cells are dying. This pattern show s that ther e i s a substantia l amoun t o f cel l
FIGURE 5- 2 Distributio n of dying cells in the embryonic mouse cortex. In situ end-labeling plus (ISEL+) from gestationa l day (G)10-G18 and in the adult cortex (A, C, E, G, I, and K), along with nuclear staining by 4,6-diamino-2-phenylindole o f the sam e fiel d (B , D, F, H, J, and L). A, B. G10. Fro m this age through G14 (A-F) , th e neuroepitheliu m consist s o f a homogeneous-appearing proliferativ e layer (ppl). C, D. G12. E, F. G14. G , H. G16. Th e cerebra l wall at G16 ha s stratifie d int o additiona l layer s (th e mar ginal zon e [MZ] , cortica l plat e [CP] , intermediat e zone [IZ] , an d ventricula r zone [VZ] ) tha t ar e also apparent at G18 (I , J). K, L. Adult (Ad) cortex. Th e ventricle (v) is at the lowe r edge of each photograph . Note th e spars e ISEL + labelin g a t G1 0 tha t in creases through G14, and then declines with furthe r development. From G1 2 to G18, note the extensiv e labeling i n th e proliferativ e zone s (ppl, VZ) a s well as in th e postmitoti c zone s (MZ , CP , and IZ) . Onl y rare dyin g cells ar e detecte d b y ISEL+ i n th e adul t cortex. Thus cortical PCD i s developmentally regulated an d cease s by adulthood. Scal e bar s = 50 mm. (Source: Modifie d fro m Blaschk e an d colleagues , 1996)
death withi n proliferatin g NPC populations . Thes e cells hav e no t ye t sen t ou t axon s t o synapti c targets, hence, classica l neurotrophi c theor y canno t accoun t for thi s earl y phase o f cell death . Thi s phenomeno n represents a novel form of PCD an d is discussed below.
78 NORMA L DEVELOPMENT to th e eliminatio n o f dead cell s i n th e brain . Phagocytes, from mic e lackin g the gen e encodin g PS R are defective i n removin g apoptoti c cells . Thes e PCR deficient mic e hav e developmenta l abnormalities , such a s in the accumulatio n o f dead cell s in the lun g and brain . Som e o f these animal s also present a hyperplasic brai n phenotyp e resemblin g tha t o f mic e deficient i n th e cel l death-associated gene s APAF-1 , caspase-3, an d caspase- 9 (Fig . 5-3 ) suggestin g tha t phagocytes ma y also be involve d in promotin g apop tosis (L i e t al. , 2003) . Actually , i n th e developin g cerebellum, th e deat h o f Purkinj e neuron s ca n b e promoted b y microglia . This findin g suggest s tha t a form o f engulfment-related cel l death ma y link PC D to th e clearanc e o f dea d cell s (Marin-Tev a e t al. , 2004).
DIFFERENT PHASES OF
DEVELOPMENT, DIFFERENT MECHANISMS O F PROGRAMMED
CELL DEATH
FIGURE 5- 3 Examinatio n of caspase-9 and caspase-3 knockout mice. Capase-9 +/~ (A ) and caspas e 9~ /- (B) fetuses a t G16.5 , showin g th e large r an d mor phologically abnorma l brai n i n th e knockout . Scal e bar= 1.0mm. C-F . Caspase- 3 mutant s hav e a n expanded proliferativ e zone. C, D. BrdU immunolabeling i n a sectio n throug h th e developin g cerebra l cortex o f a hétérozygot e an d mutan t embryo , respec tively. E, E DAP I staining of the adjacent section i n a series fro m C an d D , respectively . I n th e caspase- 3 knockout fetus , th e corte x i s distorte d int o fold s and th e latera l ventricle i s identifiable only as a thi n slit in the center of the cortical mass. The thicknes s of the proliferativ e laye r relativ e to th e corte x looks very much alike in the tw o embryos. Statistics showed that the percentag e o f BrdU-labeled cells was only slightly increased i n th e -/ - fetuse s compare d t o th e +/ fetuses, v , latera l ventricle . Scal e ba r = 50 0 Jim. (Source: A, B: adapted fro m Kuid a e t al., 1998 . C-F : adapted fro m Pompeian o e t al., 2000)
Glial Death within the Developing Brain The rol e o f astrocytes or othe r gli a i n neurona l cel l death i s poorly understood. Interestingly , phagocyte s of macrophage lineages such as microglia contribut e
Using an earl y molecular marke r for post-mitotic neu rons, Weine r an d Chu n (1997) , foun d tha t PC D i n neuroproliferative zones does not become pronounce d until NPC s begi n t o differentiat e int o postmitoti c cells. This correlation suggest s that the initia l generation o f postmitotic neuron s ma y trigger th e onse t of PCD i n a given proliferative zone . The natur e of this link; however, is currently unclear. Similar to the developin g cerebral cortex, the reti na of newborn mice and rat s is composed o f two strata containing cell s i n variou s stage s o f development . One laye r of differentiate d cell s i s the ganglio n cel l layer an d th e othe r i s the neuroblasti c laye r (NBL). Like the cortica l VZ, the NB L is comprised o f NPCs (Alexiades and Cepko , 1997) . During differentiation, NPCs that are exiting the cell cycle, migrate from th e NBL to form other layer s of postmitotic neurons (Linden et al, 1999) . PCD ca n b e induce d i n th e NB L following inhibition o f protein synthesis . Interestingly , as the retin a matures, retinal cell s become less sensitive to protei n synthesis inhibitors, and i n adul t retinal tissue , thes e inhibitors hav e n o effec t o n cel l deat h (Rehe n e t al, 1996). Whe n BrdU , a marke r o f proliferatin g cells (Miller an d Nowakowski , 1988), i s used i n conjunc tion wit h protein synthesi s inhibitors, the vas t majority of cells undergoing PCD ar e not labeled with BrdU (Fig. 5.4) . This resul t suggests that the populatio n o f
CELL DEATH 7 9 newly postmitoti c neuron s i s particularly sensitive to PCD throug h inhibitio n o f protein synthesis . Contin uous synthesis of anti-apoptotic proteins appears to be important i n the regulatio n o f PCD durin g neuronal migration an d differentiatio n i n th e retin a (Rehen s et al , 1999) . Consisten t wit h thi s hypothesis , mous e embryos deficient for Bcl-x L, an anti-apoptoti c mem ber o f the Bcl- 2 family , exhibi t massiv e cell deat h o f immature neurons i n the cerebra l corte x (Motoyama et al, 1995) . Bcl-xL is up-regulated i n early postmitotic neurons a s they migrat e fro m th e V Z an d thi s hig h level o f expression is maintained throug h adulthood . On th e othe r hand , Bcl-x L expressio n is low in NPCs (Motoyama et al, 1995) . In summary , ISEL+ result s indicat e tha t PC D i s a commo n cel l fat e fo r NPC s throughou t th e neural tube . Studie s involvin g inhibition o f protein
FIGURE 5- 4 Identificatio n of newly postmitotic cell s sensitive to apoptosis induced b y inhibition of protein synthesis. Immunolabelin g for BrdU in th e prolifera tive zone o f a retinal expian t (arrows ) afte r inhibitio n of protein synthesis. Notice tha t the majorit y o f dying cells (arrowheads) , identifie d a s globula r apoptoti c bodies under differentia l interferenc e contrast , i s unlabeled wit h BrdU . Scal e ba r = 20 \im. (Source: Adapted from Rehe n e t al., 1999 )
synthesis i n th e developin g nervou s system an d tar geted deletio n o f the anti-apoptoti c gen e Bcl-x L suggest that durin g migration an d initia l differentiation, the PC D machiner y i s controlle d b y suppresso r proteins.
PROLIFERATIVE CELL DEATH, DNA BREAKS AND END JOININ G Thymic PCD occur s during the selection o f functionally an d molecularl y distinc t thymocyte s (Sur h an d Sprent, 1994), based on somatic DNA rearrangements encoding T cell receptor s an d immunoglobulins in T and B lymphocytes, respectively . This process, known as V(D)J recombination (Weaver and Alt , 1997) , i s responsible for the unparallele d degre e of immunologicai diversit y tha t i s fundamenta l t o th e immun e response. A s describe d above , a paralle l exist s be tween PCD i n the thymu s and the feta l brain , where cell death take s place i n conjunction with cell prolif eration (Shortman et al, 1990 ; Chun , 2001). ISEL+ result s suggest that a form o f cell selectio n occurs i n th e neuroproliferativ e regions o f the brai n and that the occurrence o f PCD i s associated with the maturation proces s (Blaschk e e t al. , 1996 , 1998) . I n the feta l brain , th e pea k o f cell deat h coincide s wit h the perio d whe n th e firs t neuron s destine d t o com prise th e matur e corte x ar e bein g generate d (Cavi ness, 1982) . Thi s spik e i n PC D migh t allo w th e selection o f the firs t cortica l neuron s havin g desired phenotypes whic h woul d serv e a s a templat e fo r th e selection o f later-generate d cells . Thi s hypothetica l scenario leave s open th e questio n o f how cells migh t be mechanistically selected . Nearly a decade befor e geneti c recombinatio n was formally demonstrated in lymphocytes, Dreyer and colleagues (1967 ) postulate d tha t recombine d gene s en coding cell-surface proteins might play a part in guiding the correct re-innervation of the goldfish tectum by retinal axons . These recombine d protein s would act a s a kind o f molecular cod e t o ensur e tha t th e topographi cally correc t retinotecta l mappin g i s achieved . Sinc e this idea was put forward, however, no gene undergoin g the requisit e recombination i n the nervou s system has been found . Thi s i s perhap s no t surprising , a s th e reagents that were instrumental in the discovery of lymphocyte V(D)J recombination—DNA sequences fro m a known candidate locus, and clonal cell lines in which the rearrangemen t even t takes place—do not currently exist for the nervous system.
80 NORMA L DEVELOPMEN T An indirect approach to this issue is to ask whether genes involve d i n immunologica l V(D) J recombina tion ar e expresse d i n th e nervou s system . I n fact , a common featur e share d by cortical thymocytes (Turka et al, 1991 ) and V Z NPC s (Chu n e t al., 1991 ) is expression o f a rang e o f gene s involve d i n th e initia l cleavage of recombined genes and th e rejoinin g of the free DN A end s t o complet e th e recombinatio n reac tion. Par t o f th e initia l cleavag e reactio n i n lympho cytes is driven by recombination-activating genes 1 and 2 (RAG 1 an d RAG2) , which ar e involve d in V(D)J recombination (Schat z e t al, 1989) . Ragl - knockou t mice, however , hav e n o obviou s brai n phenotyp e (Mombaerts et al, 1992) , and Rag 2 is not expressed in the CNS. It is notable that broken DNA ends that exist in cells that, like those produced b y recombinase cleavage, hav e blun t end s tha t ar e 5'-phosphorylated , al though mos t of these ends appear to be predominantly associated with cell death (Stale y et al, 1997). After cleavage , DN A en d joinin g tak e plac e b y means of several nonhomologous end-joining (NHEJ)
proteins including Ku70, Ku80, DNA-dependent protein kinas e catalyti c subuni t (DNA-PKcs) , XRCC4 , and DN A ligas e IV (Lig IV). Throug h gene-targetin g in th e mouse , i t has been show n that XRCC4 or Lig IV deficiency causes growth defects, premature senes cence, immun e respons e sensitivity , and inabilit y to support V(D)J recombination in primary murine cell s (Lieber, 1999). Strikingly, XRCC4 o r Li g I V deficiency i n mic e causes lat e embryoni c lethalit y accompanie d no t only by defective lymphogenesis but also by defective neurogenesis, manifested by extensive apoptotic deat h of newly generated postmitoti c neuronal cells (Gao et al, 1998) . I n the contex t o f Lig IV and XRCC4 defi ciency, embryoni c lethalit y an d neurona l apoptosi s likely resul t fro m a p53-dependen t respons e t o unre paired DN A damage (Fran k e t al, 2000 ; Ga o e t al. , 2000). Ku7 0 and Ku8 0 deficienc y results in dramati cally increase d deat h o f developing neuron s i n mic e though DNA-PKcs deficiency does not lead to any neuronal death phenotype. The Ku-deficien t phenotype is
FIGURE 5- 5 Massiv e cel l deat h o f newl y postmitoti c neuron s i n XRCC 4 knockout mice. A-F. Hematoxyli n an d eosi n stainin g of littermate XRCC4 +/~ and XRCC4~ /~ brai n sections . Horizonta l brai n section s fro m G14. 5 XRCC4+/- (A-C) an d XRCC4-7- (D-F) mutants at a comparable leve l reveal severe acellularit y (cavitation , lon g arrow ) an d thinne r cortica l plat e (CP , small arrows) in the cerebra l hemispher e o f XRCC4~/~ brain. Higher magnifications sho w relativel y normal ventricula r zon e (VZ ) of th e mutan t corte x (A, B vs. D, E) , wherea s in th e intermediat e zon e (IZ ) extendin g t o th e C P there are numerous pyknotic nuclei (dense hernatoxylin stain) (E, F). CP, cortical plate; S , striatal analge or the ganglioni c eminence; v, ventricle. Original magnifications: A and D xlOO ; B , C , E , an d F , x400 . (Source: Adapte d fro m Gao et al, 1998)
CELL DEATH 8 1 qualitatively similar to, but les s severe, than tha t associated wit h XRCC4 and Lig IV deficiency (Gu et al, 2000). Th e lac k o f a neurona l deat h phenotyp e i n DNA-PKcs-deficient fetuses , alon g wit h th e milde r phenotype o f K u deficienc y (vs . XRCC4 - o r Li g IV-deficient fetuses) , is likely related t o relativ e low fidelity of DNA end-joinin g in the backgroun d strain of thes e mutants , show n b y a V(D) J recombinatio n end-joining assay. A intriguin g aspec t o f these studie s i s the consis tency of abnormal cell deat h pattern s i n th e developing cerebra l corte x o f mice deficien t in DN A ligas e IV, XRCC4 (Barne s et al, 1998 ; Fran k e t al, 1998 ; Gao et al, 1998) , and Ku (Gu et al, 2000). Aberrant death i s not observe d a t th e earlies t embryonic ages , and i t is not unti l th e perio d whe n mos t postmitoti c neurons ar e generated tha t dea d cell s ar e clearl y observed (Fig . 5-5) . Thi s genera l timin g i s seen i n al l examined region s o f the neura l tube , includin g th e spinal cord (Gao et al, 1998) . These studie s provide the first evidence that evolutionarily conserve d gene s require d fo r completion o f V(D)J recombination in lymphocytes are required for normal neura l cel l surviva l i n th e developin g brai n (Gao e t al , 1998 ; Chun , 1999 ; Chu n an d Schatz , 1999). Severa l NHEJ proteins have roles in NPC sur vival durin g the onse t o f neura l differentiation . Th e synthesis o f thes e protein s coul d b e crucia l fo r th e normal behavior of newly postmitotic neurons during their migration from proliferativ e zones to final destinations in the CMS (Rehen e t al, 1996 , 1999) . The absenc e o f proteins important for the process of immunologica l V(D) J recombinatio n promote s cell death i n newly postmitotic neurons. This findin g suggests th e operatio n o f a nove l for m o f cell selec tion that distinguishes between neurons that make advantageous DN A rearrangement s o r othe r genomi c alterations and thos e tha t d o not. What kin d of DNA alterations coul d occu r i n NPCs within th e develop ing brain?
ANEUPLOIDY, CEL L SELECTION, AND PROLIFERATIV E CELL DEATH IN TH E BRAI N
As discussed above, there i s indirect evidence fo r so matic alteratio n o f th e genom e i n neuron s durin g neurogenesis base d o n a growin g lis t o f molecule s that functio n i n DN A recombination , repair , an d
surveillance (Ga o e t al , 1998 , 2000 ; Chun , 1999 ; Chun an d Schatz , 1999 ; G u e t al , 2000 ; Le e e t al , 2000; Rolig and McKinnon , 2000; Allen et al, 2001). Many o f these molecule s ar e als o implicate d i n th e genetic alteration s tha t ar e foun d i n cancers . On e prominent geneti c abnormalit y i n cance r cell s i s aneuloidy, a deviation from th e norma l diploi d num ber of chromosomes. Th e associatio n between cance r and neurodevelopmen t le d t o th e searc h fo r aneu ploidy a s on e expressio n o f genomi c chang e i n neurons. Direct assessmen t o f chromosome s i n dividin g cells ca n b e performe d wit h spectra l karyotypin g (SKY) which uses fluorescent labels to uniquely identify eac h chromosome . Thi s technique reveal s that a large fractio n o f NPC s harbo r chromosoma l abnor malities. Remarkably , one-third o f mouse NPC s have gained o r los t a t leas t on e o f their 4 0 chromosome s (Fig 5-6 ; Rehe n e t al, 2001). NPCs isolated fro m th e VZ o f the feta l mous e cerebra l corte x ar e ofte n ob served wit h on e o r mor e chromosome s displace d from the mitotic spindle. Suc h chromosom e displace ment suggest s tha t NPC s frequentl y mis-segregat e their chromosomes , whic h ma y represen t on e wa y that neuron s ca n becom e aneuploi d durin g development (Yan g et al, 2003). Aneuploidy ha s als o bee n detecte d i n th e adul t cerebral cortex , usin g interphas e fluorescen t i n sit u hybridization (FISH ) t o visualize individual chromosomes. I n adult male cerebra l cortex , FISH fo r X and Y chromosomes show s that approximatel y 1 % of neurons gained or lost a sex chromosome (Fi g 5-7) . Thi s implies tha t a t least som e fractio n o f aneuploid cell s that ar e produce d durin g neurogenesi s surviv e t o adulthood. Theoretically , th e overal l percentag e o f aneuploid neuron s i n th e adul t coul d b e muc h higher than 1% , assuming the rat e of gain/loss is similar fo r al l chromosome s (Kausha l e t al , 2003) , al though furthe r studie s ar e require d t o addres s thi s issue. Although some aneuploid cells survive, Aneuploid cells may account fo r a significant proportion of PC D during neurogenesis . Cell deat h i s likely a commo n fate fo r aneuploi d cells . I n cancers , man y cell s tha t are thought t o be dying have an altered genome. Fur ther, the hig h amount s of PCD in neuroproliferativ e zones supports the ide a o f a selection proces s against undesirable geneti c abnormalities . A s a first approximation, aneuploid y appear s t o b e generate d i n a stochastic fashion . On e ca n speculat e tha t rando m
82 NORMA L DEVELOPMEN T
FIGURE 5-6 Aneuploi d neural progenitor cell s (NPCs ) in the embryonic mouse brain. A. Spectral karyotyping (SKY) fro m a representativ e aneuploi d embryoni c NPC. Spectra l (left ) an d invers e DAPI (center) images of the chromosom e sprea d are shown , along with th e karyotype tabl e (right) . Not e tha t eac h differen t chro mosome ha s a uniqu e spectra l colo r (indicate d b y shades of gray). Euploid chromosom e numbe r i n mic e
is 40. The sprea d ha s an extr a copy of chromosome 2 , but ha s only one cop y of chromosomes 1 5 and 1 7 (39, XY, +2, -15, -17). B . Graphs sho w the percentag e of loss (left ) an d gai n (right ) of specific chromosome s i n NPCs. Bar s are code d o n th e basi s of spectral color of each chromosome (excep t for sex chromosomes). Spe cific chromosome s ar e los t a t rate s o f 1.6%—8.4 % o f cells analyzed and are gained at rates of less than 2%.
aneuploidy impart s diversit y and complexit y t o neu ronal populations , an d tha t aneuploi d NPC s ar e selected o n th e basi s of their genomi c contents , with one probable fate being cell death. The pervasiveness of adul t neura l aneuploid y may indicat e a selectiv e advantage acquire d b y som e aneuploi d neurons , a s has bee n note d i n certai n aneuploi d cance r cell s (Lengauer e t al , 1997) . Thus , variatio n i n chromo some numbe r ca n b e considere d a ne w mechanis m for generating cellular diversity in the CNS . The mai n conclusion from thes e data is that aneuploid cell s are found in the developing and adult ner vous system, demonstrating tha t brai n cell s can diffe r at th e leve l o f thei r genome . Whethe r DN A re arrangements ar e als o present i n thes e cell s remains an ope n question . Thes e somati c change s i n th e DNA of a cell could affec t a significant portion o f the genome, alterin g hundred s o f gen e copie s whic h would hav e important consequences fo r the physiol ogy of that cell. The globa l effect o f this process could
result i n a mature brai n that i s a unique geneti c mo saic, characterize d b y a euploi d populatio n inter mixed with a diverse aneuploid population of neurons (Rehen e t al , 2001 ; Kausha l e t al , 2003 ; Yang et al , 2003).
LYSOPHOSPHATIDIC ACID, CELL CYCLE EXIT, DECREASED PROGRAMMED CEL L DEATH, AN D INCREASES I N BRAI N DIMENSION S
A variety of extracellular factors hav e been show n t o influence NPC s an d youn g neuron s o f th e cortex . Neurotransmitters (LoTurco et al., 1995 ) and peptid e factors (Drag o e t al. , 1991 ; Ghos h an d Greenberg , 1995; Temple and Qian , 1995 ) affec t neurogeni c parameters o f developin g cortica l cells , althoug h i t i s generally unclea r ho w thes e signal s influenc e th e growth an d morpholog y of the intac t cerebral cortex.
CELL DEATH 8 3
FIGURE 5- 7 Aneuploi d cell s i n th e adul t corte x are neurons. A . Th e presenc e o f bot h microtuble associated protein (MAP ) 2-positive (large arrow) an d MAPZ-negative (smal l arrows ) cells i n a 1 0 Jim sec tion throug h adul t cerebra l corte x demonstrate s th e specificity o f MAP 2 labelin g a s a neurona l marker . Nuclei wer e counterstaine d wit h DAPI . B-G . Cell s in 1 0 ^Lm sections through the adul t male cortex were hybridized wit h X and Y chromosome paints . C , E , G. Cell s i n these sam e 1 0 \im sections were then im munostained for MAP2. B. The cel l o n th e lef t con tains bot h a n X an d a Y chromosome (note d b y a n asterisk), whereas the cel l on the righ t has an extr a Y chromosome. C. The cel l with two Y chromosomes is MAP2-positive. D, E. A cell i n motor corte x contains an extr a X chromosom e (D ) an d i s MAP2-positiv e (E). F, G. A cell i n moto r corte x contain s a n extr a Y chromosome (F ) an d i s MAP2-positiv e (G) . Scal e bars =10 Jim (D , F ) an d 5. 0 Jim (H , J) . (Source: Adapted from Rehe n e t al., 2001)
Some trophi c factor s suc h a s fibroblast growth facto r 2 (FGF-2 ) an d NT- 3 ar e als o know n t o regulat e th e transition fro m dividin g NPCs to terminally differen tiated neuron s i n th e CNS , (Ghos h an d Greenberg , 1995). Tha t said , factor s abl e t o modulat e PC D within the VZ are less well understood . A lipid molecule, lysophosphatidi c acid (LPA), has been implicate d i n th e regulatio n o f neurogeneti c processes, including proliferative cell death. Man y of the effect s o f LPA are mediated b y G protein-coupled receptors tha t ar e member s o f the lysophospholipi d receptor gen e famil y (Fukushim a e t al., 2001 ; Chun et al , 2002 ; Anlike r an d Chun , 2004 ; Ishi i e t al , 2004). A role for LPA signaling in nervou s system development wa s initially suggested b y the discover y of the firs t lysophospholipi d receptor , LPA 1? whic h shows enriche d expressio n i n th e V Z (Hech t e t al. , 1996). Subsequen t studie s hav e identifie d LPA 2 ex pression i n postmitoti c cell s o f the embryoni c cortex (Fukushima e t al, 2002 ; McGiffert e t al., 2002 ) and LPA3 expressio n withi n th e earl y postnata l brai n (Contos e t al. , 2000) . LPA , i s als o presen t i n th e brain (Da s and Hajra , 1989 ; Sugiur a et al, 1999 ) an d can b e produce d b y postmitoti c neuron s an d Schwann cell s i n cultur e (Weine r an d Chun , 1999 ; Fukushima e t al.,2000). In a n e x vivo brai n cultur e system , LPA exposure rapidly alters the organizatio n o f the developin g cere bral corte x (Kingsbur y et al. , 2003) . Afte r jus t 1 7 hours, LPA-treated hemispheres displa y striking cortical fold s an d a widenin g o f the cerebra l wall , com pared t o untreate d opposit e hemisphere s obtaine d from th e sam e animal s (Fig . 5-8 ) (Kingsbur y et al. , 2003, 2004) . Thi s expansio n o f cortica l thicknes s i s due t o a n increas e i n cell s withi n bot h proliferative and postmitoti c region s withou t a correspondin g change i n cel l density . Whereas LP A is a mitogen fo r many cell type s in culture (Moolenaar , 1995 ; Moolenaar e t al. , 1997) , LP A exposure appears to decreas e proliferation i n a n e x vivo brain cultur e syste m in favor of terminal mitosi s (Kingsbury et al., 2003). In addition, LPA exposure in thi s e x vivo system promotes the surviva l o f VZ cells . Therefore , th e increas e i n cortical thicknes s followin g LP A treatmen t i s du e to (1 ) th e increase d surviva l of man y NPCs , whic h enlarges the proliferatin g pool, an d (2 ) the inductio n of termina l mitosis , which increase s th e numbe r o f postmitotic neurons . Mos t importantly from a mechanistic standpoint , neithe r foldin g no r increase s i n
84 NORMA
L DEVELOPMEN T
FIGUR E 5- 8 Effec t o f lysophosphatidi c aci d (LPA ) o n cortica l development . Intac t cerebra l hemisphere s ex posed t o (LPA ) e x viv o exhibi t cortica l foldin g an d widenin g of the cerebra l wall compare d t o contro l hemi sphere s fro m th e sam e animal . Whole-moun t view s (A) and sagitta l section s (B ) fro m gestationa l da y (G ) 1 4 hemisphere s sho w dramati c cortica l foldin g followin g cultur e with LPA, compare d t o contro l medium . D, dorsal; R , rostral ; Ctx , cortex ; GE , ganglioni c eminence . Scale ba r = 0.50 mm . C . G1 4 cortice s labele d wit h th e nuclea r stai n DAP I sho w increase d thicknes s followin g
LPA-treatment . CP , cortica l plate ; IZ , intermediat e zone ; SZ , subventricula r zone ; VZ , ventricula r zone . Scale bar= 100μm . LP A promote s termina l mitosi s throug h a n increas e i n M-phas e cell s immunolabele d with anti-phosphohiston e H 3 antibod y (D) , a decreas e in S-phas e cell s (dat a no t shown) , an d a n increas e i n differentiatin g neuron s immunolabele d wit h anti-β tubuli n II I antibod y (E) . LP A decrease s th e numbe r o f dying cells immunolabele d for anti-activ e caspase- 3 an tibod y (F) . (Source: Modifie d fro m Kingsbur y e t al , 2004)
cortica l thickness , mitosis , an d cel l surviva l ar e ob served i n LPA 1/LPA 2 recepto r nul l mic e (Kingsbur y et al., 2003) , result s demonstratin g tha t th e effect s o f LP A in an ex vivo syste m ar e recepto r mediated . Th e rapi d increas e i n cortica l siz e followin g LP A exposure i s consisten t wit h studie s showin g tha t res cue o f V Z cel l death—likel y multipl e round s o f death , given th e ~2-hou r clearanc e tim e estimate d for dying cell s i n th e corte x (Thomaido u e t al. , 1997 ) — can hav e majo r consequence s fo r cortica l growt h (Kuid a e t al. , 1996 ; Pompeian o e t al. , 2000) . More over, th e increase d presenc e o f postmitoti c neuron s (β-tubulin-III-labele d cells ) i n th e VZ followin g LPA treatmen t ma y represen t prematur e differentiatio n of NPC s tha t contribut e to increase d VZ thickness . Th e switch t o a postmitoti c statu s coul d trigge r th e pro ductio n o f suppressor protein s (i.e. , Bcl-x L) able t o abrogate PC D i n cells migratin g fro m VZ t o CP . LP A signalin g ca n hav e majo r effect s o n cell s within th e embryoni c cerebra l corte x tha t are distinct
from cel l proliferation . Interestingly , th e foldin g pat tern observe d i n brain s treate d wit h LP A are superfi cially reminiscen t o f thos e observe d i n hyperplasti c brain s fro m knockou t mic e fo r caspase s (Kuid a et al. , 1996; Rot h e t al., 2000) or PS R (L i et al., 2003) . De spite thes e similarities , LPA-mediate d cytoarchitec toni c change s diffe r fro m thos e o f caspase deletio n i n several aspects . Disruptio n o f cel l deat h b y caspas e deletio n result s i n reduce d NP C deat h an d increase d VZ siz e withou t a marke d increas e i n C P thicknes s (Kuid a e t al., 1996 ; Hayda r e t al. , 1999b ; Pompeian o et al. , 2000). Augmente d cel l cycl e re-entr y b y over expression o f β-cateni n produce s fold s vi a th e tan gentia l expansio n o f cortica l surfac e are a withou t increase s in cortica l width (Chen n an d Walsh, 2002 ; Zechne r e t al. , 2003) . B y comparison , receptor mediate d LP A signalin g increase s cortica l thicknes s by alterin g bot h proliferativ e an d postmitoti c popula tions , an d furthe r produce s regularl y arrange d corti cal folds .
CELL DEAT H 8 5 Future studie s that involv e the inhibitio n o f specific G-protein s an d downstrea m effector s i n cortica l progenitors should provid e insight int o how receptor mediated LP A signalin g promote s termina l mitosi s and cel l surviva l i n th e developin g cerebra l cortex . Such studie s may also reveal links between cel l deat h and suppresso r proteins , includin g thos e relate d t o V(D)]/NHEJ an d Bcl- 2 family molecules , fo r the survival an d prope r functio n o f newl y postmitotic neu rons within the developing brain .
CONCLUSIONS Tissue homeostasi s i s currentl y viewe d a s a carefu l balance betwee n proliferatio n and cell death . Th e number, compositio n an d distributio n o f cells withi n both adul t an d developin g organs , includin g th e CNS, criticall y depend o n this balance. The dramatic increase i n cerebra l cortica l siz e acros s mammalia n evolution i s paralleled by increased cell number s an d an expansio n of cortical surfac e are a du e t o change s in th e regulatio n o f proliferation, differentiatio n and PCD withi n th e feta l brai n (Raki c an d Caviness , 1995; Caviness et al, 1995 ; Kuda et al 1996 ; Ceccon i et al , 1998 ; Yoshid a et al , 1998 ; Hayda r et al, 1999b ; Pompeiano e t al, 2000 ; Rot h e t al, 2000; Chenn an d Walsh, 2003 ; Li et al, 2003) . The presen t chapte r focused o n th e rol e o f PC D i n shapin g th e develop ment of the cerebral cortex . Collectively, th e result s discusse d i n th e presen t chapter indicat e that in the developin g CNS, PC D i s a significant cell fate fo r proliferating NPCs, and thi s PCD coul d b e responsibl e fo r a selectio n proces s based o n alteration s o f DNA , particularl y involving chromosomal aneuploidy . During migratio n and ini tial differentiation, cell death i s prevented o r delayed by th e expressio n o f suppresso r proteins , includin g members o f th e Bcl- 2 famil y an d th e V(D)J/NHE J factors, thu s allowing these newly postmitotic cell s to find their final positions and differentiate . Afte r reach ing thei r fina l destination , neural cell s star t to com pete fo r limite d trophi c facto r suppor t t o surviv e another roun d o f PCD. A newly identifie d group o f factors tha t affec t NPC s ar e th e lysophospholipid s — small lipi d signal s actin g throug h cognat e G pro tein-coupled receptors . LP A signalin g result s i n decreased cel l deat h an d induce d cel l cycl e exit , which ca n b e considere d new influences on cerebral cortical growth and anatomy. Future studie s will better
define th e mechanism s o f selectio n an d cel l deat h during nervous system development. Abbreviations APAF apoptoti c protease-activatin g factor BDNF brain-derive d neurotrophic facto r BH bcl- 2 homolog y BrdU bromodeoxyuridin e CNS centra l nervous system CP cortica l plat e DNA-PKcs DNA-dependen t protei n kinas e cat alytic subunit FGF fibroblas t growt h factor G gestationa l day ISEL i n situ end-labeling IZ intermediat e zon e Lig I V ligas e IV LPA lysophosphatidi c acid MAP microtuble-associate d protei n NBL neuroblasti c layer NGF nerv e growth factor NHEJ nonhomologou s end-joining NPC neura l progenitor cell NT neurotrophi n PCD programme d cel l deat h PSR phosphatidylserin e receptor SKY spectra l karyotyping SZ subventricula r zone trk tyrosin e protein kinase VZ ventricula r zone
ACKNOWEDGMENTS W e ar e gratefu l t o Am y Yang , Marcy Kingsbury, Brigitte Anliker, Christine Paczkowski, and Suzann e Peterson for the critical reading of this manuscript. This work was supported by the National Institute of Mental Health, National Institut e for , and Pe w Latin American Program i n Biomedical Sciences. References Abrams JM , Whit e K , Fessler LI , Stelle r H (1993 ) Programmed cell death during Drosophila embryogenesis. Development 117:29-43.
86 NORMAL DEVELOPMENT Akhtar RS, Ness JM, Rot h K A (2004) Bcl- 2 family regu lation of neuronal development an d neurodegener ation. Biochim Biophy s Acta 1644:189-203 . Alexiades MR, Cepko C (1996 ) Quantitativ e analysi s of proliferation an d cel l cycl e lengt h durin g develop ment of the ra t retina. Dev Dyn 205:293-307. Alexiades MR, Cepk o C L (1997 ) Subset s o f retinal pro genitors displa y temporall y regulate d an d distinc t biases i n th e fate s o f thei r progeny . Developmen t 124:1119-1131. Al-Ghoul WM, Miller M W (1989 ) Transien t expressio n of Alz-50-immunoreactivity i n developin g ra t neo cortex: a marke r fo r naturall y occurrin g neurona l death? Brain Res 481:361-367. Allen DM , va n Praa g H , Ra y J, Weaver Z, Winro w CJ , Carter TA, Braque t R, Harringto n E, Rie d T , Brown KD , Gag e FH , Barlo w C (2001 ) Ataxi a telangiectasia mutate d i s essentia l durin g adul t neurogenesis. Genes Dev 15:554-566. Anliker B , Chun J (2004) Lysophospholipi d G protein coupled receptors . J Biol Chem 279:20 555-20558 . Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis; the role o f th e endonuclease . A m J Patho l 136 : 593-608. Barbacid M (1994 ) Th e Tr k famil y o f neurotrophin re ceptors. J Neurobiol 25:1386-1403 . Barnes DE, Stam p G , Rosewel l I , Denzel A, Lindahl T (1998) Targete d disruptio n o f th e gen e encodin g DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8:1395-1398. Bayer SA , Altma n J (1991 ) Neocortical Development. Raven Press, New York. Berkemeier LR , Winslo w JW , Kapla n DR , Nikolic s K , Goeddel DV , Rosenthal A (1991) Neurotrophin-5 : a nove l neurotrophi c facto r tha t activate s tr k an d trkB. Neuron 7:857-866. Blaschke AJ , Staley K, Chun J (1996 ) Widesprea d pro grammed cell death i n proliferative an d postmitoti c regions of the feta l cerebra l cortex . Developmen t 122:1165-1174. Blaschke AJ , Weine r JA , Chun J (1998 ) Programme d cell deat h i s a universa l feature o f embryonic an d postnatal neuroproliferativ e region s throughou t the centra l nervou s system . J Com p Neuro l 396 : 39-50. Boise LH , Gonzalez-Garci a M , Postem a CE , Din g L , Lindsten T , Turka LA, Mao X, Nunez G , Thompson CB (1993 ) bcl-x, a bcl-2-related gene tha t functions a s a dominan t regulato r o f apoptoti c cel l death. Cell 74:597-608 . Caviness V S J r (1982 ) Neocortica l histogenesi s i n nor mal an d reele r mice : a developmenta l stud y based upon pHjthymidin e autoradiography . Brai n Re s 256:293-302.
Caviness V S Jr , Takahash i T , Nowakowsk i RS (1995 ) Numbers, tim e an d neocortica l neuronogenesis : a general developmenta l an d evolutionar y model . Trends Neurosc i 18:379-383 . Cecconi F, Alvarez-Bolado G, Meyer BI , Roth KA , Gruss P (1998 ) Apaf l (CED- 4 homolog ) regulate s pro grammed cel l deat h i n mammalia n development . Cell 94:727-737. Chenn A, Walsh CA (2002) Regulation of cerebral cortical siz e b y control o f cell cycle exi t in neura l pre cursors. Science 297:365-369. (2003) Increase d neurona l production , enlarge d forebrains an d cytoarchitectura l distortion s i n p catenin overexpressin g transgenic mice. Cereb Cor tex 13:599-606. Chun J (1999 ) Developmenta l neurobiology : a geneti c Cheshire cat ? Curr Bio l 9:R651-R654. (2001) Selecte d compariso n o f immune an d ner vous syste m development . Ad v Immuno l 77 : 297-322. Chun J, Goetzl EJ , Hla T, Igarashi Y, Lynch KR , Moolenaar W , Pyn e S , Tigy i G (2002 ) Int l Unio n Pharmacol XXXIV . Lysophospholipi d recepto r nomenclature. Pharmacol Re v 54:265-269. Chun JJ, Nakamura MJ, Shatz CJ (1987) Transient cell s of th e developin g mammalia n telencephalo n ar e peptide-immunoreactive neurons . Natur e 325 : 617-620. Chun J , Schat z D G (1999 ) Developmenta l neurobiol ogy: alternative ends fo r a familia r story ? Curr Bio l 9:R251-253. Chun JJM, Schatz DG , Oettinge r MA, Jaenisch R , Baltimore D (1991) The recombinatio n activatin g gene1 (RAG-1 ) transcrip t i s presen t i n th e murin e central nervous system. Cell 64:189-200. Chun JJM , Shat z C J (1989a ) Th e earliest-generate d neurons o f the ca t cerebral cortex: characterizatio n by MAP2 and neurotransmitter immunohistochemistry during fetal life. J Neurosci 9:1648-1677 . (1989b) Interstitia l cell s o f the adul t neocortica l white matte r are the remnant o f the early generate d subplate neuro n population . J Comp Neuro l 282 : 555-569. Clarke PG , Clark e S (1996 ) Nineteent h centur y re search on naturally occurring cell death and relate d phenomena. Ana t Embryol 193:81-99 . Clarke PG , Roger s LA , Cowan WM (1976 ) The tim e of origin an d th e patter n o f survival of neurons i n th e isthmo-optic nucleu s o f the chick . J Comp Neuro l 167:125-142. Cohen S , Levi-Montalcin i R (1957 ) Purificatio n an d properties o f a nerv e growth—promotin g facto r isolated fro m mous e sarcoma . Cance r Re s 17 : 15-20.
CELL DEAT H 8 7 Contos JJ , Ishii I , Chu n J (2000 ) Lysophosphatidi c acid receptors. Mol Pharmacol 58:1188-1196 . Cowan W M (1979 ) Th e developmen t o f the brain . Sci Am 241:113-133. Cowan WM , Fawcet t JW, O'Leary DDM, Stanfiel d B B (1984) Regressiv e events i n neurogenesis . Scienc e 225:1258-1265. Danial NN , Korsmeye r S J (2004 ) Cel l death : critica l control points. Cell 116:205-219 . Das AK , Hajr a A K (1989 ) Quantification , characterization an d fatt y aci d composition o f lysophosphatidic acid i n different ra t tissues. Lipids 24:329-333. Davies AM (1994) Neurobiology. Tracking neurotrophin function. Natur e 368:193-194. Dechant G, Barde YA (2002) The neurotrophi n receptor p75(NTR): nove l function s an d implication s fo r diseases o f th e nervou s system . Na t Neurosc i 5 : 1131-1136. Dechant G , Rodriguez-Teba r A , Bard e YA (1994) Neu rotrophin receptors . Pro g Neurobiol 42:347—352. Denham S (1967) A cell proliferation study of the neura l retina i n th e two-da y rat. J Embryol Ex p Morpho l 18:53-66. Doetsch F , Caill e I , Li m DA , Garcia-Verdug o JM , Alvarez-Buylla A (1999) Subventricula r zone astro cytes are neural ste m cells in the adult mammalia n brain. Cell 97:703-716. Drago J, Murphy M, Carroll SM , Harvey RP, Bartlett PF (1991) Fibroblast growt h factor—mediate d proliferation o f central nervou s syste m precursor s depend s on endogenou s productio n o f insulin-lik e growt h factor I . Proc Natl Acad Sci USA 88:2199-2203. Dreyer WJ, Gray WR, Hoo d L (1967) The genetic , mo lecular an d cellula r basi s o f antibod y formation : some fact s an d a unifyin g hypothesis. Col d Sprin g Harbor Symp Quant Biol 32:353-367. Dunn W A Jr (1994) Autophagy and relate d mechanism s of lysosome-mediate d protei n degradation . Trend s Cell Biol 4:139-143. Egerton M , Scolla y R , Shortma n K (1990 ) Kinetic s o f mature T-cel l developmen t i n th e thymus . Pro c Natl Acad Sci USA 87:2579-2582. Ellis HM , Horvit z H R (1986 ) Geneti c contro l o f pro grammed cel l deat h i n th e nematod e C . elegans. Cell 44:817-829. Ellis RE , Yua n J , Horvit z R H (1991 ) Mechanism s an d functions o f cel l death . Ann u Re v Cel l Bio l 7 : 663-698. Ernfors P , Ibanez CF , Ebenda l T , Olso n L , Persso n H (1990) Molecula r clonin g an d neurotrophi c activities of a protein wit h structural similarities to nerve growth factor: developmental an d topographical expression i n th e brain . Pro c Nat l Acad Sc i USA 87: 5454-5458.
Finlay BL , Slatter y M (1983 ) Loca l difference s i n th e amount o f earl y cel l deat h i n neorcorte x predic t adult local specializations. Science 219:1349—1351 . Frank KM , Sekiguch i JM , Seid l KJ , Swat W, Rathbu n GA, Cheng HL , Davidso n L, Kangalo o L, Alt F W (1998) Lat e embryoni c lethalit y an d impaire d V(D)J recombinatio n i n mic e lackin g DNA ligase IV. Nature 396:173-177. Frank KM, Sharpless NE, Ga o Y, Sekiguchi JM, Ferguson DO, Zh u C , Mani s JP, Homer J , DePinho RA , Alt FW (2000 ) DNA ligase IV deficiency in mic e leads to defective neurogenesis and embryonic lethality via the P 53 pathway. Mol Cell 5:993-1002. Fukushima N , Ishi i I , Conto s JA , Weine r JA , Chu n J (2001) Lysophospholipid receptors. Annu Rev Pharmacol Toxicol 41:507-534 . Fukushima N , Weine r JA, Chun J (2000 ) Lysophosphatidic aci d (LPA ) is a nove l extracellular regulator of cortical neuroblast morphology. Dev Biol 228:6-18. Fukushima N , Weiner JA, Kaushal J, Contos JJA , Rehen SK, Kingsbur y MA , Ki m KY , Chu n J (2002 ) Lysophosphatidic aci d influence s th e morpholog y an d motility o f young , postmitoti c cortica l neurons . Mol Cell Neurosci 20:271-282. Gao Y , Ferguso n DO , Xi e W , Mani s JP , Sekiguch i J , Frank KM , Chaudhur i J , Horne r J , DePinh o RA, Alt F W (2000 ) Interpla y o f p5 3 an d DNA-repai r protein XRCC4 in tumorigenesis, genomic stability and development. Natur e 404:897-900. Gao Y , Sun Y , Frank KM , Dikke s P , Fujiwar a Y , Seid l KJ, Sekiguch i JM , Rathbu n GA , Swa t W, Wang J , Bronson RT , Malyn n BA , Bryan s M , Zh u C , Chaudhuri J , Davidso n L , Ferrin i R , Stamat o T , Orkin SH , Greenber g ME , Al t FW (1998 ) A critical rol e for DNA end-joinin g proteins i n both lym phogenesis and neurogenesis . Cel l 95:891—902. Gavrieli Y, Sherman Y, Ben-Sasson S A (1992) Identification o f programmed cel l deat h i n sit u vi a specific labeling of nuclear DN A fragmentation. J Cell Biol 119:493-501. Ghosh A , Antonini A, McConnell SK , Shatz C J (1990 ) Requirement fo r subplate neurons i n the formation of thalamocortica l connections . Natur e 347 : 179-181. Ghosh A , Greenberg M E (1995 ) Distinct role s for bFGF and NT- 3 i n th e regulatio n o f cortical neurogene sis. Neuron 15:89-103 . Gotz R , Koste r R , Winkle r C , Raul f F , Lottspeic h F , Schartl M , Thoenen H (1994 ) Neurotrophin-6 is a new member of the nerv e growth factor family. Nature 372:266-269. Gu Y, Sekiguchi J, Gao Y, Dikkes P, Frank K, Ferguson D , Hasty P , Chu n J , Al t F W (2000 ) Defectiv e embryonic neurogenesi s i n Ku-deficien t bu t no t
88 NORMA L DEVELOPMENT DNA-dependent protei n kinas e catalyti c subunit deficient mice . Pro c Nat i Aca d Sc i US A 97:26682673. Guimaraes CA , Benchimo l M , Amarante-Mende s GP , Linden R (2003) Alternative programs of cell deat h in developin g retina l tissue . J Bio l Cher n 278:41938-41946. Hallbook F , Ibanez CF , Persso n H (1991 ) Evolutionar y studies o f th e nerv e growt h facto r famil y revea l a novel membe r abundantl y expresse d i n Xenopus ovary. Neuron 6:845-858 . Hamburger V (1975 ) Cel l deat h i n th e developmen t o f the latera l moto r colum n o f th e chic k embryo . J Comp Neurol 160:535-546 . Hamburger V , Levi-Montalcin i R (1949 ) Proliferation , differentiation an d degeneratio n i n th e spina l ganglia o f the chic k embry o unde r norma l an d experi mental conditions . J Exp Zool 111:457-502 . Haydar TF, Bambric k LL, Krueger BK, Rakic P (1999a) Organotypic slic e culture s fo r analysis of proliferation, cel l death , an d migratio n i n th e embryoni c neocortex. Brain Res Prot 4:425-437. Haydar TF , Kua n CY, Flavell RA , Rakic P (199% ) Th e role of cell death i n regulating the siz e and shap e of the mammalian forebrain. Cereb Corte x 9:621-626. Hecht JH, Weiner JA, Post SR, Chun J (1996) Ventricular zone gene-1 (vzg-1) encode s a lysophosphatidic acid receptor expresse d in neurogeni c region s of the de veloping cerebra l cortex . J Cel l Bio l 135:1071 1083. Hempstead BL (2002) The man y faces of p75NTR. Curr Opin Neurobiol 12:260-267 . Homma S , Yaginuma H , Oppenhei m R W (1994 ) Pro grammed cel l deat h durin g th e earlies t stage s o f spinal cor d developemen t i n th e chic k embryo : a possible mean s o f earl y phenotypi c selection . J Comp Neuro l 345:377-395 . Huang EJ , Reichardt LF (2001 ) Neurotrophins: roles in neuronal developmen t an d function . Ann u Re v Neurosci 24:677-736. Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors : signalin g an d biology . Ann u Re v Biochem 73:321-354. Kaushal D , Conto s JJ, Treuner K , Yang AH, Kingsbur y MA, Rehe n SK , McConnel l MJ , Okab e M , Barlow C, Chu n J (2003) Alteration of gene expression b y chromosom e los s i n th e postnata l mous e brain. J Neurosci 23:5599-5606 . Kerr JF, Winterford CM, Harmo n B V (1994) Apoptosis. Its significance in cance r an d cance r therapy . Can cer 73:2013-2026 . Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon wit h wide-ranging implica tions in tissue kinetics. Br J Cancer 26:239—257.
Kerr JFR, Harmo n B V (1991) Definitio n and incidenc e of apoptosi s a n historica l perspective . In : Torne i LD, Cope FO (ed) . Apoptosis: The Molecular Basis of Cell Death. Cold Sprin g Harbor Lab, Ne w York, pp 5-29 . Kingsbury MA , Rehe n SK , Conto s JJ , Higgin s CM , Chun J (2003) Non-proliferative effects o f lysophosphatidic aci d enhanc e cortica l growt h an d folding . Nat Neurosci 6:1292-1299 . Kingsbury MA , Rehe n SK , Ye X, Chun J (2004 ) Genetics an d cel l biolog y o f lysophosphatidi c aci d receptor-mediated signalin g during cortical neuro genesis. J Cell Biochem 92:1004-1012. Korsmeyer S J (1999) Bcl- 2 gen e famil y an d th e regula tion o f programme d cel l death . Cance r Re s 59 : 1693s-1700s. Kuida K , Hayda r TF , Kua n CY , G u Y , Taya C , Kara suyama H , S u MS , Raki c P , Flavel l R A (1998 ) Reduced apoptosi s an d cytochrom e C-mediate d caspase activatio n i n mic e lackin g caspas e 9 . Cel l 94:325-337. Kuida K , Zhen g TS , N a S , Kua n C , Yan g D , Kara suyama H , Raki c P , Flavel l R A (1996 ) Decrease d apoptosis i n th e brai n an d prematur e lethalit y i n CPP32-deficient mice . Nature 384:368-372. Lee Y, Barnes DE, Lindah l T, McKinnon P J (2000) Defective neurogenesi s resultin g from DN A ligas e IV deficiency requires Atm. Genes De v 14:2576-2580. Lengauer C , Kinzle r KW , Vogelstein B (1997) Geneti c instability i n colorecta l cancers . Natur e 386:623 627. Levi-Montalcini R (1987 ) Th e nerv e growt h facto r 3 5 years later. Science 237:1154-1162 . Li MO , Sarkisia n MR, Meha l WZ , Raki c P, Flavell RA (2003) Phosphatidylserin e receptor i s require d fo r clearance o f apoptoti c cells . Scienc e 302:1560 1563. Lieber M R (1999 ) Th e biochemistr y and biologica l significance o f nonhomologous DNA en d joining : an essential repai r process in multicellula r eukaryotes . Genes Cells 4:77-85. Lim DA , Alvarez-Buyll a A (1999 ) Interactio n betwee n astrocytes an d adul t subventricular zone precursor s stimulates neurogenesis . Pro c Nat i Aca d Sc i US A 96:7526-7531. Linden R (1994) The surviva l of developing neurons: a review of afferent control . Neuroscience 58:671—682 . Linden R , Rehe n SK , Chiarini L B (1999 ) Apoptosi s i n developing retina l tissue . Pro g Reti n Ey e Re s 18 : 133-165. Lockshin RA , Williams C M (1965 ) Programme d cel l death—I. Cytology o f degeneration i n the interseg mental muscle s o f th e perny i silkmoth . J Insec t Physiol 11:123-133 .
CEL L DEAT H 8 LoTurc o JJ, Owens DF , Heat h MJ , Davis MB , Kriegstei n AR (1995 ) G ABA an d glutamat e depolariz e cortica l progenito r cell s and inhibi t DN A synthesis. Neuro n 15:1287-1298. Majda n M , Lachanc e C, Gloste r A, Aloyz R , Zeindler C , Bamj i S , Bhaka r A , Bellivea u D , Faweet t J , Mille r FD , Barke r P A (1997) Transgeni c mic e expressin g th e intracellula r domai n o f th e p7 5 neurotrophi n recepto r underg o neurona l apoptosis . J Neurosc i 17:6988-6998. Marin-Tev a JL , Dusar t I , Coli n C , Gervai s A , van Rooi jen N , Malla t M (2004 ) Microgli a promot e th e deat h o f developin g Purkinj e cells . Neuro n 41 : 535-547 . McGiffer t C , Conto s JJ , Friedma n B , Chu n J (2002 ) Embryoni c brai n expressio n analysi s o f lysophos pholipi d recepto r gene s suggests role s fo r slp(l) in neurogenesi s an d slp(l-3 ) i n angiogenesis . FEB S Lett 531:103-108 . Metcal f D (1966) Th e Structure o f th e Thymus. Springer Verlag, Berlin . Mille r M W (1988 ) Developmen t o f projectio n and loca l circui t neuron s i n cerebra l cortex . In : Peter s A , Jone s EG (eels) . Cerebral Cortex, Vol. 7. Development an d Maturation o f Cerebral Cortex. Plenum , Ne w York, pp 133-175 . (1995) Relationshi p of tim e o f origin an d deat h o f neuron s i n ra t somatosensor y cortex : barre l versu s septa l corte x an d projectio n versu s loca l circui t neurons . J Com p Neuro l 355:6—14. Mille r MW , Nowakowsk i R S (1988 ) Us e o f bromod eoxyuridine-immunohistochemistr y t o examin e the proliferation , migration , an d tim e o f origi n o f cells i n th e centra l nervou s system . Brai n Re s 457 : 44-52. Mombaert s P , lacomin i J , Johnso n RS , Herru p K , Tone gawa S , Papaioanno u V E (1992 ) RAG- 1 deficien t mic e hav e n o matur e В an d Т lymphocytes . Cel l 68:869-877. Moolenaa r WH (1995 ) Lysophosphatidi c aci d signalling . Cur r Opi n Cel l Bio l 7:203-210 . Moolenaa r WH , Kranenbur g O , Postm a FR , Zonda g GC M (1997 ) Lysophosphatidi c acid : G-protei n signallin g an d cellula r responses . Cur r Opi n Cel l Bio l 9:168-173. Motoyam a N , Wang F , Rot h KA , Saw a H , Nakayam a K , Nakayam a K , Negishi I , Senju S , Zhan g Q , Fuji i S , Loh D Y (1995 ) Massiv e cel l deat h o f immatur e hematopoieti c cel l an d neuron s i n bcl-x-deficien t mice . Scienc e 267:1506-1510 . Nilsso n AS , Fainzilbe r M , Falc k P , Ibane z C F (1998 ) Neurotrophin-7 : a nove l membe r o f th e neurotro phi n famil y fro m th e zebrafish . FEB S Let t 424 : 285-290.
9
Nocto r SC , Flin t AC , Weissma n TA , Dammerma n RS , Kriegstein A R (2001 ) Neuron s derive d fro m radia l glial cells establis h radia l unit s in neocortex . Natur e 409:714-720. Oppenhei m R W (1991 ) Cel l deat h durin g developmen t of th e nervou s system . Ann u Re v Neurosc i 14 : 453-501 . Pompeian o M , Blaschk e AJ , Flavel l RA , Srinivasa n A , Chu n J (2000) Decrease d apoptosi s i n proliferativ e and postmitoti c region s o f th e caspas e 3-deficien t embryoni c centra l nervou s system . J Com p Neuro l 423:1-12. Pompeian o M , Hval a M , Chu n J (1998 ) Onse t o f apop toti c DN A fragmentatio n ca n preced e cel l elimina tion b y day s i n th e smal l intestina l villus . Cel l Deat h Diffe r 5:702-709 . Poste ME , Olse n I A (1973) An investigatio n o f th e site s of mitoti c activitie s i n th e guinea-pi g thymu s usin g autoradiograph y an d colcernid-induce d mitoti c ar rest. Immunolog y 24:691—697. Raki c P , Cavines s V S J r (1995 ) Cortica l development : view fro m neurologica l mutant s tw o decade s later . Neuro n 14:1101-1104 . Rehe n SK , McConnel l MJ , Kausha l D , Kingsbur y MA , Yang AH , Chu n J (2001 ) Chromosoma l variatio n in neuron s o f the developin g and adul t mammalia n nervou s system . Pro c Nat i Aca d Se i US A 98 : 13361-13366. Rehe n SK , Neves DD , Fragel-Madeir a L , Britto LR , Linden R (1999 ) Selectiv e sensitivit y o f earl y postmi toti c retina l cells t o apoptosi s induce d b y inhibitio n of protei n synthesis . Eu r J Neurosc i 11:4349-4356 . Rehe n SK , Varella MH , Freita s FG , Morae s MO , Lin den R (1996) Contrastin g effect s o f protei n synthe sis inhibitio n and o f cyclic AMP o n apoptosi s i n th e developin g retina . Developmen t 122:1439—1448 . Roli g RL , McKinno n P J (2000 ) Linkin g DN A damag e an d neurodegeneration . Trend s Neurosc i 23 : 417-424. Rot h KA , Kuan C , Hayda r TF , D'Sa-Eippe r C , Shindle r KS, Zhen g TS , Kuid a K , Flavel l RA , Raki c P (2000) Epistati c an d independen t function s o f caspase- 3 an d Bcl-X(L ) i n developmenta l pro gramme d cel l death . Pro c Nat i Aca d Se i US A 97 : 466-471. Saunder s J W (1966 ) Deat h i n embryoni c systems . Sci enc e 154:604-612 . Schat z DG , Oettinge r MA , Baltimor e D (1989 ) Th e V(D)J recombinatio n activatin g gen e (RAG-1) . Cell 59:1035-1048. Scott J , Selby M , Urde a M , Quirog a M , Bel l GI , Rutte r WJ (1983 ) Isolatio n an d nucleotid e sequenc e o f a cDN A encodin g th e precurso r o f mous e nerv e growth factor . Natur e 302:538-540 .
90 NORMA L DEVELOPMEN T Shortman K , Egerto n M , Spangrud e GJ , Scolla y R (1990) Th e generatio n an d fat e o f thymocytes . Semin Immunol 2:3—12. Shortman K , Scolla y R (1994 ) Immunology . Deat h i n the thymus. Nature 372:44-45. Staley K, Blaschke AJ, Chun JJ M (1997) Apoptotic DN A fragmentation i s detecte d b y a semi-quantitativ e ligation-mediated PC R o f blunt DM A Ends . Cel l Death Diffe r 4:66-75. Sugiura T, Nakane S , Kishimoto S, Waku K, Yoshioka Y, Tokumura A , Hanaha n D J (1999 ) Occurrenc e o f lysophosphatidic aci d an d it s alky l ether-linke d analog in rat brain and compariso n of their biological activities toward cultured neural cells. Biochim BiophysActa 1440:194-204 . Surh CD , Spren t J (1994 ) T-cel l apoptosi s detecte d i n situ durin g positiv e an d negativ e selectio n i n th e thymus. Nature 372:100-103 . Temple S , Qian X (1995) bFGF, neurotrophins, and th e control o r cortica l neurogenesis . Neuro n 15:249 — 252. Thomaidou D, Mione MC, Cavanag h JF, Parnavelas JG (1997) Apoptosis and it s relation to the cel l cycle in the developin g cerebra l cortex . J Neurosc i 17 : 1075-1085. Tomei LD , Cop e FO , Bar r P J (1994) Apoptosis : agin g and phenotypi c fidelity. In: Cope FO (ed) . Apoptosis II: The Molecular Basis of Apoptosis in Disease. Cold Sprin g Harbo r La b Press , Plainvie w NY, pp 377-398. Turka LA, Schatz DG, Oettinge r MA, Chun JJM, Gorka C, Lee K, McCormack WT, Thompson C B (1991 ) Thymocyte expressio n o f RAG-1 and RAG-2 : termination b y T cel l recepto r cross-linking . Scienc e 253:778-781. Wang X, Wu FC , Fado k VA, Lee MC , Gengyo-And o K, Cheng LC , Ledwic h D , Hs u PK , Chen JY , Chou BK, Henson P , Mitani S, Xue D (2003 ) Cell corps e engulfment mediate d b y C . elegans phosphotidyl sevine recepto r throug h CED- 5 an d CED-12 . Sci ence 302:1563-1566 . Weaver DT, Alt FW (1997) V(D)J recombination . Fro m RAGs to stitches. Nature 388:428-429. Weiner JA, Chun J (1997) Png-1, a nervous system-specific zin c finger gene, identifie s region s containing postmitotic neurons during mammalian embryonic development. J Comp Neurol 381:130-142 . (1999) Schwann cel l survival mediated b y the signaling phospholipi d lysophosphatidi c acid . Pro c Natl Acad Sc i USA 96:5233-5238 .
White K, Grether ME , Abram s JM, Young L, Farrrel K, Steller H (1994 ) Geneti c contro l o f programme d cell deat h in Drosophila. Science 264:677-683. Wijsman JH , Jonker RR, Keijzer R , Van De Veld e CJH, Cornelisse CJ , Van Dierendonck J H (1993 ) A new method t o detec t apoptosi s i n paraffi n sections : i n situ end-labelin g of fragmented DNA. J Histochem Cytochem 41:7-12. Williams GT, Smit h C A (1993) Molecular regulatio n of apoptosis: geneti c control s o n cel l death . Cel l 74 : 777-779. Wood KA , Dipasqual e B , Youle R J (1993) I n sit u label ing o f granul e cell s fo r apoptosis-associate d DN A fragmentation reveal s different mechanism s o f cell loss i n developin g cerebellum . Neuro n 11:621 632. Wyllie A H (1980 ) Glucocorticoid-induce d thymocyt e apoptosis i s associated wit h endogenous endonucle ase activation. Natur e 284:555-556 . Wyllie AH , Morri s RG , Smit h AL , Dunlo p D (1984 ) Chromatin cleavag e i n apoptosis : association wit h condensed chromati n morpholog y an d depend ence o n macromolecula r synthesis . J Patho l 142 : 67-77. Xue L, Fletcher GC, Tolkovsk y AM (1999) Autophagy is activated b y apoptoti c signallin g i n sympatheti c neurons: an alternative mechanism o f death execu tion. Mol Cell Neurosci 14:180-198. Yang AH , Kausha l D , Rehe n SK , Kried t K , Kingsbur y MA, McConnell MJ , Chun J (2003) Chromosom e segregation defects contribute to aneuploidy in normal neura l progenito r cells . J Neurosci 23:10454 10462. Yoshida H , Kon g YY , Yoshida R , Eli a AJ , Hake m A , Hakem R, Penninger JM , Ma k TW (1998) Apafl i s required fo r mitochondria l pathway s of apoptosi s and brain development. Cell 94:739-750. Zechner D , Fujit a Y , Hulsken J , Mulle r T , Walthe r I , Taketo MM , Crensha w E B 3rd , Birchmeie r W , Birchmeier C (2003 ) p-catenin signal s regulate cel l growth and the balance betwee n progenito r cel l expansion an d differentiatio n i n th e nervou s system , DevBiol 258:406-418. Zhu L , Chu n J (1998 ) Apoptosis Detection an d Assay Methods. Eaton , Natick , MA. Zhuang J , Re n Y , Snowden RT , Zh u H , Gogvadz e V , Savill JS, Cohen GM (1998 ) Dissociation o f phagocyte recognition o f cells undergoin g apoptosi s fro m other feature s o f th e apoptoti c program . J Bio l Chem 273:15628-15632.
6
Intracellular Pathway s of Neuronal Death Sandra M. Moone y George I. Henderso n
these populations di e after the y serve their role in cortical development . Th e subplat e neuron s provid e a temporary targe t populatio n fo r thalamocortica l ax ons that arriv e i n th e subplat e befor e th e neuron s of their targe t layer (cortical layer IV) have migrate d t o their final position (Ghosh e t al., 1990) . Cajal-Retzius neurons expres s reelin, whic h i s vital for normal mi gration of cortical neurons (Lamber t de Rouvroi t and Goffinet, 1998 ; Rice and Curran, 2001). This association is indicated b y the disrupte d cortical organization that occur s i n reeler mic e (Lamber t d e Rouvroi t and Goffinet, 1998 ) an d whe n Cajal-Retziu s neuron s are prematurely los t (Frotscher , 1998 ; Hartman n e t al. , 1999; Saftigetal, 1999) . Target-dependent neurona l deat h ma y b e th e most important proces s controllin g neurona l deat h in the CNS . Throug h thi s mechanis m th e nervou s system sculpts itself , matching th e numbe r o f neurons i n communicating part s o f a syste m fo r optima l outpu t and maximizin g efficien t function . Neurona l deat h occurs i f (a ) ther e i s a lac k o f input/innervation ,
Cell death i s critical to normal development i n multiple orga n systems . For example , it i s required durin g the formatio n o f digits and durin g th e generatio n o f the middl e ea r spac e an d th e vagina l openin g (e.g. , Saunders, 1966 ; Rodrigue z e t al. , 1997 ; Robert s an d Miller, 1998) . Likewise, in the centra l nervous system (CNS) o f th e norma l developin g mammal , a n esti mated 20%-80 % mor e neuron s tha n th e fina l num ber ar e generate d befor e th e surplu s i s eliminate d (Miller, 1995 ; Sastry and Rao , 2000). This loss of neurons varies by brain structur e an d b y specific neuro n populations. In som e brai n structure s there i s a wholesal e loss of transien t neurona l populations . Suc h cullin g o f populations i s required for proper developmen t t o ensue. Two exemplary populations ar e subplate neuron s (e.g., Kostovic and Rakic , 1980 ; Chu n et al., 1987 ; AlGhoul and Miller , 1989) , and Cajal-Retziu s neuron s (e.g., Dere r an d Derer , 1990 ; Meye r e t al. , 1998 ) i n neocortex (Marin-Padilla , 1998 ; Supe r e t al. , 1998 ; Sarnat an d Flores-Sarnat , 2002) . I t i s believe d tha t 91
92 NORMA L DEVELOPMENT (b) axon s reac h th e wron g plac e withi n th e targe t area, (c ) axons project t o the wron g target , (d ) ther e are simply too many axons terminating within the target, or (e) no target exists. One exampl e o f the latte r is the damage d trigeminal-somatosensor y system ; tran section o f the infraorbita l nerv e causes a los s of neu rons i n th e trigemina l brai n ste m nucle i an d th e ventrobasal nucleu s o f th e thalamu s (Klei n e t al. , 1988; Mille r e t al. , 1991 ; Wait e e t al. , 1992 ; Miller , 1999; Sugimot o et al., 1999 ; Bald i et al., 2000). It is important to note tha t programmed neurona l death i s a phenomenon mainl y confined to developing invertebrates . As the ter m implies , neuron s ca n die a s a consequence o f a genetic program . The bes t examples are provided by Caenorhabditis elegans (see Apoptosis, below). Thus, programmed cel l death mus t be distinguishe d fro m naturall y occurrin g neurona l death, whic h principall y represents target-dependen t neuronal death . Many developin g neuron s di e soon afte r the y ar e generated (se e Chapter 5) , perhaps a s a consequence of an error in DNA replication. Thi s adaptive mechanism allow s an organism t o protect itsel f from basin g its circuitr y o n a cadr e o f neuron s wit h mutate d o r damaged DNA .
EXPERIMENTAL MODEL SYSTEMS
This chapte r consider s in vitr o and i n viv o studie s of neuronal death . Eac h experimenta l approac h ha s its own advantages and limitations . A major advantage of in vitr o studie s is that a homogeneou s populatio n o f cells i s addressed . Thi s settin g i s crucia l t o studie s of the inductio n of neuronal death by xenobiotics, because cells within th e brai n diffe r widel y in their susceptibility (Watts et al., 2005). Additionally, the entir e population i s likely to respond t o a manipulation i n a similar manne r an d develo p synchronously . Thi s means that small changes i n transcript and protein expression o r post-translational modification s ar e mor e likely to be detectable. Disadvantage s t o this method are tha t cultur e condition s ca n influenc e th e path way^) activated , an d th e model ma y not b e physio logically relevant . I n contrast , i n vivo studie s us e a highly heterogenou s syste m i n whic h ther e ar e mul tiple cel l type s i n divers e developmenta l stage s a t a give n time . Thi s tempora l asynchron y make s i t harder to differentiat e transcrip t and protei n change s from a background of ontogenetic noise . In addition,
changes tha t ar e see n ma y be difficul t o r impossibl e to interpret . O f course , th e majo r advantag e t o thi s method i s that it is the mor e physiologically and clini cally relevant model . Direct evidenc e o f neurona l deat h i s difficul t t o amass because th e degenerativ e process ca n b e rapi d and th e debri s can b e remove d quickl y (Reddien and Horvitz, 2004) . Thus, cell s ca n expres s death-relate d proteins (e.g. , activ e caspas e 3 an d bax ) fo r a lon g time befor e the y di e (e.g. , Chen g an d Zochodne , 2003), an d no t al l cells rely on caspas e as an effecto r of cell deat h (se e Caspase-Independen t Cel l Death , below). Anothe r widel y use d metho d o f identifyin g dying cell s i s termina l deoxynucleotidy l transferas e mediated deoxyuridin e nic k end labelin g (TUNEL) , in which free , adenylate d end s o f degenerating DN A are labeled . Unfortunately , TUNE L ca n generat e false positiv e results; in a t least one mode l syste m th e amount o f TUNEL exceed s cel l los s (Gordo n e t al. , 2002). The onl y incontrovertible proo f of neuronal deat h is documentation o f a decrease i n neuronal number s in a longitudinal, population-base d study . Fina l neu ronal numbers ar e a function of three developmenta l events: generation, migration , an d death. A study performed a t a single time-point i n a mature animal cannot determin e th e relativ e contribution s o f thes e developmental events . A s a resul t o f th e potentia l of generatin g fals e positiv e results , a mathematica l method wa s devised to determine th e number s o f dying neuron s (Miller , 2003) . The grea t advantag e o f this approac h i s tha t th e estimat e o f cell deat h de pends on the documente d cel l numbers and the pro liferative activit y of the population .
MODES O F CEL L DEAT H
The mode s o f cell deat h includ e apoptosis , necrosis , and autophag y (e.g. , Gree n an d Reed, 1998 ; Lock shin an d Zakeri , 2004) . Apoptosi s i s a highl y con trolled mechanism , durin g whic h specifi c transcrip t and protein change s occur . Apoptosis ha s been calle d cellular suicide , a s it only affects th e cel l undergoin g it. I n contrast , durin g necrosis , cell s an d thei r or ganelles swel l and burst , releasin g enzymes int o th e local environment . A resul t o f thi s typ e o f deat h i s damage to neighboring cells, thus causing a cluster of dying cells. Autophagy involves lysosymal engulfmen t of damage d cell s o r cel l fragments . In man y model s
INTRACELLULAR PATHWAY S O F NEURONA L DEATH 9
of disease or injury , dyin g cell neighbor s ma y exhibit different mode s o f cell deat h an d a n individua l cel l may exhibit features o f different modes . One importan t poin t t o conside r i n cel l deat h i s that the lif e o f a critically damaged cel l ma y be tem porarily maintained, but i t will likely die. That is, the blocking of one mod e o f cell death ma y merely cause a cell to shift to another mod e o f cell death. Thus, the outcome i s that the cel l still dies, but i t may do so by a different sequenc e o f event s (e.g. , D'Mell o e t al, , 2000; Denecker et al, 2001; Zhou et al., 2005). Alternatively, blocking of cell death ma y allow cell survival, which i s not necessaril y a good thing. Fo r example, in mice deficien t i n apoptosi s protease-activatin g facto r (APAF) 1 , caspase 3 , o r caspas e 9 , ther e i s a lac k o f cell deat h i n th e neura l tube , an d thi s prevent s normal closur e o f th e tub e (Kuid a e t al. , 1996 , 1998 ; Cecconi e t al , 1998 ; Hake m e t al , 1998 ; Yoshid a et al, 1998 ; Honarpou r et al, 2000). It should als o be considered tha t enhanced cel l deat h i s not th e etiol ogy of a pathological state, rather, neuronal death is a process or end poin t associated with a given disease. Apoptosis The ter m apoptosis wa s coined t o describe a series of morphological step s throug h whic h dyin g cell s pass (Kerr e t al. , 1972) . With furthe r study , apoptosi s has become associate d with a metabolically active process (e.g., Wyllie , 1997 ; Putch a an d Johnson , 2004) . Accordingly, chromosoma l DN A i s cleaved , th e chro matin condenses , an d th e nucleu s i s broke n int o small pieces . Eventuall y th e cel l shrink s and break s into small , membrane-boun d apoptoti c bodie s tha t are engulfe d b y neighborin g cell s o r macrophages . This mechanism ensure s that proteolytic enzymes are contained withi n membrane-boun d entitie s an d tha t the apoptoti c cel l die s withou t causin g deat h o f neighboring cells. Much o f the initia l fundamental informatio n on the pathway s of apoptosi s cam e fro m studie s o f th e nematode C. elegans (e.g. , Horvitz et al., 1983 ; Hent gartner an d Horvitz , 1994 ; Reddie n an d Horvitz , 2004). O f the 109 0 cell s produce d durin g the devel opment of C. elegans, 13 1 die. Products o f two genes are essentia l fo r this death: Ced 3 and Ced 4 (Horvitz et al., 1983 ; Ellis and Horvitz , 1986). Los s or inactivation o f eithe r o f these gene s prevent s cel l death . I n the 95 9 cells that d o no t die , th e produc t o f another gene, Ced9 , bind s t o Ced4 , an d prevent s i t fro m
3
activating Ced3. Mammalian homolog s of these critical gene s hav e been identified . Ced3 i s homologou s with th e caspas e family , Ced 4 wit h APAF-1 , an d Ced9 wit h th e Be l family . Althoug h th e gene s an d gene product s involve d i n apoptosi s ar e highl y con served acros s species , th e mammalia n pathway s ar e considerably mor e comple x an d convolute d tha n those identifie d in C . elegans. For example, differen t pathways o f apoptosis ar e invoke d in cerebella r gran ule cell s dependin g o n whethe r th e cell s ar e pre - or postmigratory (Lossi et al., 2004). As state d above , us e o f th e ter m apoptosis ha s changed ove r the years . Th e definitio n ha s been re worked fro m a se t o f morphologica l feature s t o in clude molecula r an d biochemica l features . Putch a and Johnson (2004 ) suggest that apoptosis b e reserved for a caspase-dependen t cel l deat h tha t cause s th e morphological feature s described b y Kerr et al. (1972; see above) . They conten d tha t caspase-independen t cell deat h i s nonapoptotic , despit e acknowledgin g that i t would b e possibl e t o see apoptoti c morpholg y without caspas e activation . Man y researcher s us e apoptosis an d programmed cell death interchange ably, bu t thi s i s inappropriat e becaus e a program connotes geneti c determination , a s i n th e cas e o f C. elegans. In mammalia n systems , this type of genetic deat h i s rare , an d mos t apoptoti c deat h result s from environmenta l factors . I n thi s case , apoptoti c death i s bes t considere d a s naturall y occurrin g cel l death. I n thi s chapter, apoptosis include s morpholgi cal and biochemical events . Major Component s of Apoptotic Pathways Bel Family Bel protein s play pivotal roles i n cel l death . I n contrast to C. elegans, which only expresses a single gene, Ced9, many organisms have multiple member s of this family. Ther e ar e tw o functionall y distinc t group s within th e Be l family : thos e tha t induc e deat h an d those that protect agains t death. Bel proteins can als o be subdivide d structurally: there ar e three subgroup s defined b y th e numbe r o r typ e o f Bcl- 2 homolog y (BH) domains. Anti-apoptotic members o f the family , including Bcl-2 , Bcl-x L, Bcl-w , Mcl-1 , an d Al/Bfl-1 , contain fou r B H motifs : BH1 , BH2 , BH3 , an d BH4 . Pro-apoptotic member s ma y b e i n on e o f tw o sub groups: (1 ) thos e tha t contai n multipl e B H domain s
94 NORMA L DEVELOPMENT but lac k BH4-e.g. , Bax , Bcl-x s, Bak , and Bok/Mtd , or (2) the BH3-only subgroup tha t include s Bid , Bini/ Bod, Bad, Bmf, Bik/Nbk , Blk, Noxa, Puma/Bbc3, an d Hrk/DP5. Bel famil y members form dimers . Homodimers of two anti-apoptotic members , o r heterodimers formed by one pro-apoptotic an d one anti-apoptotic member , for example , Bcl-2-Bax , ar e pro-survival . I n contrast , homodimers o f pro-apoptoti c members , o r het erodimers o f tw o pro-apoptoti c members , resul t i n death. The BH 3 domain appears to be the prime suspect fo r inducin g apoptosis . Protein s wit h th e BH 3 domain have two functions: (1 ) to bind t o and inacti vate the survival-inducin g Bel proteins, and (2 ) to activate th e pro-apoptoti c Be l protein s wit h multipl e B H domains, suc h a s bax and ba k (Desaghe r e t al, 1999 ; Wei et al, 2000, 2001; Degterev et al, 2001). According to on e mode l o f apoptosis , Ba k i s a trans-membran e protein i n the outer mitochondrial membran e an d Bax is i n th e cytoplas m (Lucken-Ardjomand e an d Marti nou, 2005) . An apoptoti c signa l cause s a conforma tional change in both proteins that results in exposure of thei r N terminal s an d translocatio n o f Ba x to th e mitochondrial oute r membrane . Onc e i n th e mem brane, Bak and Bax form oligomer s that induce mem brane permeabilit y an d thu s allo w movemen t o f molecules suc h a s cytochrorn e C , HtrA2/Omi , an d Smac/DIABLO. Caspases Caspases ar e a group of structurally related enzyme s in mammals . Genes fo r caspases have homology with the C. elegans gene Ced3 (e.g., Jiang and Wang, 2004; Shiozaki an d Shi , 2004) . Lik e th e gen e produc t o f Ced3, caspase s are importan t fo r cel l death . I n con trast t o Ced3 , however , caspases are no t require d for death (se e below) . Caspase s ar e proteases ; a t leas t 1 4 caspases hav e been identified . They have cysteine s i n their activ e site s an d cleav e thei r targe t protei n adja cent to an asparti c aci d residue . Caspase s ar e synthe sized a s inactiv e isoform s an d ar e cleave d int o larg e and small subunits. Active caspases are tetramers com posed of two large and tw o small subunits. Caspases ar e groupe d int o thre e subfamilies : interleukin-lp-converting enzyme-lik e caspases , ini tiator caspases (e.g., caspase 8 or caspase 9), and effec tor caspase s (e.g. , caspas e 3 ) (Shi , 2002) . Initiato r caspases ca n cleav e themselves and effecto r caspase s are cleave d b y othe r enzymes , includin g initiato r
caspases. Activatin g initiato r caspase s ca n induc e a caspase cascade i n which effecto r caspase s are cleave d and the n othe r apoptosis-relate d downstrea m mole cules are activated. Caspase s ca n cleave mor e tha n 40 target proteins ; o f particula r importanc e ar e a n in hibitor o f DNases, nuclea r laminins , and cytoskeletal proteins. Inactivatio n o f DNas e inhibitor s allow s DNases to cut DN A into fragments that are multiples of 180-200 bp. The resul t of this serial snipping is the stereotypical DNA ladder on a Southern blot that is associated wit h apoptosis. Cleavage o f nuclear laminins results i n nuclea r fragmentation . Similarly, cleavage of cytoskeleta l element s result s i n membran e bleb bing and, ultimately, cell fragmentation. The importanc e o f caspase s i n norma l develop ment i s reflected in mic e tha t lack effective caspas e 3 or 9 . Bot h mutant s hav e craniofacia l malformation s and abnorma l brai n morpholog y (Kuid a et al., 1996 , 1998; Ceccon i e t al , 1998 ; Hake m e t al , 1998) . Specifically, thes e animals exhibi t enlarged prolifera tive zones , heterotopi c cluster s o f neurons , an d in creased number s o f neurons. Interestingly , caspas e 3 deficiency ca n b e offse t b y deficienc y i n th e anti apoptotic gen e Bcl-x L (Rot h e t al. , 2000) , implyin g that Bcl-x L ca n ac t throug h a caspase-3-independen t mechanism. Apoptosis Protease Activating Factor 1 APAF-1, homologous to Ced4, exists in the cytoplas m as a n inactiv e protein (Ferrar o et al, 2003 ; Shiozaki and Shi , 2004). Interaction with cytochrome C i n the presence o f adenosine triphosphate (ATP) results in a conformational chang e i n APAF- 1 tha t allow s seven molecules o f APAF-1 t o assembl e an d for m th e cen tral portio n o f the apoptosome . I n addition , th e con formational chang e expose s th e caspas e recruitmen t domain, whic h bind s procaspase 9 . In the absenc e of an inhibitory apoptotic protei n (IAP ) such as X-linked IAP (XIAP) , caspas e 9 i s activate d vi a a n unknow n mechanism. Activ e caspase 9 recruits and activates effector caspases 3 and 7 . APAF-1 knockou t mic e ar e embryoletha l (Cec coni e t al, 1998) . The y hav e craniofacia l an d CN S malformations tha t appea r t o resul t from insufficien t cell deat h durin g development . Interestingly , thei r limbs ar e differentiall y affected . O n gestationa l da y (G) 15.5 , the limb s are less mature those than i n wildtype animals, as evidenced b y the persistenc e of interdigital webbing . B y G16.5 , however , thei r limb s
INTRACELLULAR PATHWAY S O F NEURONA L DEATH 9
appear normal; the webbin g is lost after undergoin g a caspase-independent form o f cell death . Thi s findin g implies tha t som e tissu e ca n overcom e th e los s o f APAF-1, but th e CM S cannot, an d tha t deat h vi a the caspase-independent pathwa y takes longer . Cytochrome C Cytochrome C i s normally found betwee n th e inne r and oute r mitochondria l membrane s an d i s used fo r transporting electrons between th e Cytochrome B-C1 and cytochrom e oxidas e complexe s i n th e electro n transport chain. When th e mitochondria l permeabil ity transition pore i s compromised, substances i n th e intramembrane space , includin g cytochrom e C , ar e allowed t o move int o the cytoplasm . Once in th e cytoplasm, cytochrom e C interact s wit h APAF-1, ATP, and caspase 9 to form the apoptosome. Poly-Adenosine Diphosphate Ribose Polymemse Poly-adenosine diphosphate (ADP ) ribose polymerase (PARP) 1 is found i n the nucleu s an d mitochondria . It can b e activated i n response to DNA damage o r to oxidative stress (e.g., Hong et al., 2004; Nguewa et al., 2005). Followin g DNA damage , PARP- 1 becomes ac tive an d synthesize s poly(ADP-ribose ) an d catalyze s the addition of ADP-ribose to the DNA (e.g., Bouchard et al, 2003) . Followin g poly(ADP-ribosyl)ation, DNA repair enzyme s ca n b e recruite d an d activated . Gas pases 3 and 7 cleave PAR P in it s nuclear localization sequence, resultin g in an inactive form o f the enzyme that canno t ad d ADP-ribose , thus , th e DN A canno t undergo repair . During th e synthesi s o f poly(ADP-ribose) , nicotinamide-adenine dinucleotid e (NAD ) i s cleaved into ADP-ribos e an d nicotinamide . T o restor e NA D levels (an d thus the NAD/NAD H ratio) , the cel l con verts nicotinamid e t o NA D b y mean s o f tw o mole cules o f ATP , thu s depletin g th e energ y pool . Following severe DNA damage, the loss of cellular energy is likely responsible for a necrotic cel l death afte r excessive DNA damage (Szab o and Dawson, 1998 ; H a and Snyder , 1999 ; Fuerte s et al, 2003). Interestingly , the los s of energy may be necessary , but i s unlikely to be sufficient, for cell death (Wan g et al, 2004). Mitochondrial PARP- 1 ma y be involve d i n apop tosis via release of apoptosis inducing factor (AIF ) (Yu et al , 2002 ; D u e t al , 2003) . Genomi c damag e
5
causes poly(ADP-ribosylation) in the nucleus, resultin g in cellular NAD depletion, activatio n of mitochondrial PARP, AIF release, and subsequent cell death. Apoptosis Inducing Factor In normal , undamage d cells , AI F i s importan t fo r protection agains t oxidativ e stres s (Klei n et al. , 2002 ; Lindholm et al, 2004; Vahsen et al, 2004). Following PARP activation , AIF i s released fro m th e mitochon dria into the cytoso l (see Poly-Adenosine Diphosphate Polymerase, above). AIF translocates into the nucleu s where i t i s involve d i n condensatio n o f chromati n and DN A fragmentatio n (Hon g e t al , 2004) . Th e PARP-dependent releas e o f AIF i s a caspase-indepen dent mechanis m o f cell deat h (se e Caspase-indepen dent Cel l Death , below) . I n addition , caspase s ca n cause release of AIF, as can changes in mitochondria l membrane permeability , fo r example , b y Ba x an d Bak. Bcl- 2 ca n interfer e wit h AIF-mediated apoptosi s by blockin g th e cellula r redistributio n o f AIF tha t is necessary for death (Susi n et al., 1996 , 1999 ; Dauga s et al, 2000). Apoptosis-Related Receptors Ligands (e.g. , tumor necrosi s factor [TNF]-a , Apo2/ TRAIL, FasL , an d possibl y growth factors ) tha t inter act with receptor s o f the TN F famil y activat e the extrinsic apoptoti c pathway . TNF-oc binds t o th e TN F receptor, Apo2/TRAIL binds t o TNF-related apopto sis inducin g ligand-recepto r 1 (TRAIL-R1)/death re ceptor (DR) 4 and TRAIL-R2/DR5, and FasL binds to Fas(CD95,APO-l). Effectors o f Apoptosis
p53 p53 i s a multifunctiona l housekeepin g protei n in volved i n cel l cycl e regulation , recognitio n o f DN A damage and consequent repair , and cell death (Mille r et al, 2000 ; Morriso n e t al, 2002) . Although i t i s a transcription factor , i t als o respond s t o genotoxi c stress (e.g . Bertran d e t al. , 2004) . p5 3 activatio n ca n halt the cel l cycle and initiat e DNA repair or apoptosis (Harms et al, 2004). p53 usuall y has a short half-life (Ki m et al, 2004) . When stabilized, for example, through phosphorylation on serin e residues , p5 3 accumulate s i n th e nucleus ,
96 NORMA L DEVELOPMEN T where i t ha s transcriptiona l activities . p53-regulate d genes critica l for normal brai n development includ e cell cycl e proteins p21 and murin e doubl e minut e 2 , the DN A repai r protei n growt h arres t an d DN A damage-inducible gen e 45 , an d th e apoptosis-relate d proteins insulin-lik e growth facto r bindin g protei n 3 and Ba x (Levine , 1997) . I n addition , p5 3 regulate s the Fa s receptor (Somasundaram , 2000) and th e hor mone polyadenylat e cyclase-activatin g polypeptid e receptor 1 (e.g. , Cian i e t al , 1999 ; Johnson , 2001 ) (see Chapters 1 5 and 16) . p53 can play a direct role i n cell death by interacting wit h th e Be l famil y o f protein s (Chipu k e t al. , 2003, 2004 ; Mihar a e t al , 2003) , APAF-1 , an d apoptosis-related receptors . Thes e interaction s ar e pro-apoptotic. p5 3 down-regulate s pro-survival Bcl-2 and Bcl-x , and up-regulate s Bax, Bid, and APAF-1 . I t also up-regulate s TRAIL-R2/DR5 , Fas , an d FasL . I n addition, p53 represses c-Fos (Kle y et al, 1992) , thu s potentially interferin g with activato r protei n 1 and , hence, transcription. Oxidative Stress Oxygen, thoug h centra l t o life , ca n b e toxic . I n it s ground state , i t possesses two unpaired electron s with parallel spi n states. This setting makes a two-electron reduction kineticall y unlikely ; however , sequentia l one-electron reduction s ca n occur , hence generatin g oxygen fre e radicals , reactive oxyge n specie s (ROS) . In th e biologica l setting , th e initia l one-electro n ex change generate s th e superoxid e anio n radical . Th e protonated two-electro n reductio n produce s H 2O2 (the protonated for m o f the peroxid e ion), with the final protonate d four-electro n produc t bein g water . The oxyge n radicals resulting from thi s process generate a plethor a o f reactiv e specie s wit h othe r mole cules, suc h a s nitroge n an d iron , al l o f whic h ca n produce a pro-oxidan t environment i n cells , terme d oxidative stress. The centra l role s for ROS in apoptosis, bot h as initiators an d a s signalin g event s withi n th e apoptoti c process, ar e wel l documente d (Curti n e t al. , 2002 ; Fleury e t al , 2002 ; Polste r an d Fisku m 2004) . Although th e specifi c mechanism s by which RO S elici t and/or maintai n apoptosi s remai n undefined , thes e compounds hav e a n effec t o n a variet y o f cellula r components: proteins , DN A base s an d sugars , polysaccharides, an d lipids . On e ROS-relate d pathwa y that has been connecte d t o ethanol-mediated neuro n
apoptosis i s th e productio n o f pro-apoptoti c prod ucts o f lipi d peroxidatio n withi n mitochondri a (Ra machandran e t al , 2001 , 2003) . RO S reac t wit h unsaturated fatt y acids , initiatin g a self-perpetuatin g peroxidation o f membrane lipid s (Kappus , 1985) . I n addition t o direc t damag e t o biomembranes , thi s ubiquitous proces s generate s highl y reactive aldehydes, th e mos t studie d an d th e mos t toxi c bein g 4 hydroxynonenal (HNE ) (Esterbaue r e t al , 1990 ; Uchida e t al , 1993) . Importantly , HN E formatio n generates apoptoti c deat h o f neurons, and it s production, secondar y t o oxidativ e stress , ha s bee n com pellingly linke d t o neuro n deat h i n a variet y o f neurodegenerative diseases (Zarkovic, 2003) .
APOPTOTIC PATHWAY S
Caspase-Dependent: Intrinsic vs. Extrinsic Pathways of Apoptosi s The pathway s of apoptosis can b e divide d into intrinsic an d extrinsi c on th e basi s of activation sit e (Budi hardjo e t al , 1999 ; Shiozak i an d Shi , 2004) . Th e intrinsic, mitochondria-associate d pathwa y depend s on Bel proteins. Th e extrinsi c pathway is mediated by activation o f an apoptosis-relate d receptor . Th e path ways ar e no t trul y independent , a s ther e i s muc h cross-talk, and bot h can activat e caspas e 3 (Fig. 6-1) . In addition, activation of the extrinsi c pathway can activate a feedback loop to the intrinsi c pathway. Intrinsic Pathways The fundamenta l featur e o f the intrinsi c pathwa y i s the releas e o f pro-apoptoti c compound s fro m mito chondria. Thi s pathwa y i s activate d b y intracellula r stress signal s includin g bu t no t limite d t o oxidativ e stress or DN A damage . Thus, majo r effector s ma y b e ROSandp53. Mitochondrial permeabilit y i s affected b y th e Be l family o f proteins . Ba x homodimer s allo w io n flu x through th e mitochondria l membrane , an d this some how allow s movemen t o f cytochrom e C , possibl y through enlargemen t o f the voltage-dependen t anio n channels (Banerje e an d Ghosh , 2004 ) o r by openin g the mitochondria l permeabilit y transition por e (e.g. , Marzo et al., 1998) . Breach of the membran e cause s a loss of membrane potentia l and releas e of cytochrome c, AIF, HtrA2/Omi, and/or second mitochondria-derive d
INTRACELLULAR PATHWAY S OF NEURONA L DEAT H 9 7
activator of caspase/direct IAP binding protein, which has a low isoelectri c poin t (Smac/DIABLO) . I n nor mal cells , thes e substance s ar e sequestere d betwee n the inne r an d oute r mitochondria l membranes . Re lease int o th e cytoplas m initiate s apoptoti c pathway s (Fig. 6-1). It should b e note d tha t permeabilization of the mitochondria l membran e doe s no t necessaril y allow dumping of all intermembrane substances. Instead, there i s som e selectivity . For example , applicatio n o f
n-methyl-D-aspartate t o culture d primar y mouse corti cal neurons can caus e release of AIF and cytochrom e c (Wang et al. , 2004) . In contrast , oc-amino-3-hydroxy-5 methyl-4-isoxazoleproprionic aci d ca n induc e th e re lease of cytochrome c, but no t AIF. In response to DNA damage or ROS, p53 accumu lates in the mitochondria (e.g., Marchenko e t al., 2000; Erster e t al. , 2004) , wher e i t interact s with Bel-famil y proteins i n a transcriptional-independen t manner .
FIGURE 6- 1 Pathway s underlying neural cell death. Three cell deat h pathways tracing the flow of information from externa l effects t o nuclear response ar e de picted: intrinsi c and extrinsi c caspase-dependent pathway s and a caspase-inde pendent pathway . Variou s player s involve d i n thes e pathway s ar e shown . Positive an d negativ e effector s ar e depicte d b y line s endin g i n arrow s an d blunted tips , respectively . FADD, Fas-associate d deat h domain ; FLIP , FADD like interleukin-1-convertin g enzyme inhibitor y protein fo r other abbreviations see Abbreviations list. See text for details.
98 NORMA L DEVELOPMENT This interactio n explain s the rapi d response of a cel l to a deat h signal . P5 3 alter s expression of Bel famil y members i n a pro-apoptotic manner , i.e. , expression of Ba x is increased an d concurrentl y Bcl- 2 i s down regulated. I n addition , p5 3 up-regulate s APAF- 1 expression. Release d cytochrom e C form s a comple x with seven APAF-1 molecules, an d i n the presenc e o f ATP, caspase- 9 i s recruite d int o thi s complex , th e apoptosome, an d activated . Active caspase 9 cleaves and activate s effecto r caspase s 3 , 6 , and/o r 7 . Not e that at this point, the intrinsi c and extrinsi c pathways merge a s caspase s 8 an d 10 , activate d b y receptor s (see below), cleave and activat e effector caspases . Extrinsic Pathways The extrinsi c pathway is activate d b y factor s outsid e the cell membrane via ligand-receptor binding (Muzi o et al, 1996 ; Almasan and Ashkenazi, 2003; Choi and Benveniste, 2004). Binding of the ligand to the recep tor cause s recruitment o f cytoplasmic element s suc h as Fas-associate d deat h domai n an d TN F receptor associated deat h domai n tha t for m th e death inducing signalin g complex. Thi s proces s result s i n recruitment and activatio n of initiator caspases 8 and 10 through proteolysis . Caspases 8 and 1 0 then acti vate effecto r caspase s 3, 6, and 7 , and ca n als o cleave a membe r o f the Be l famil y o f proteins, Bid. At this point, th e intrinsi c pathwa y also come s int o pla y as Bid translocate s to the mitochondrio n an d cause s insertion o f Bax-Bax homodimers int o the mitochondr ial membrane, thu s allowin g release o f cytochrome c and th e resultin g downstrea m events , an d effecto r caspase activatio n (L i e t al. , 1998 ; Lu o e t al. , 1998 ; Wei et al., 2001; Scorrano an d Korsmeyer , 2003). Substrates of Caspases Substrates o f effecto r caspase s ma y numbe r i n th e hundreds (e.g. , Earnshaw et al., 1999; Nicholso n et al., 1999; Fischer et al., 2003; Fuentes-Prior and Salvesen, 2004). Thre e ar e o f particula r interest—Bid, PARP , and DFF40/CAD . Activated , i.e. , cleaved , Bi d translocates t o th e mitochondria , wher e i t interact s with othe r pro-apoptoti c member s o f the Be l family , specifically Ba x an d Bak , thu s causin g membran e permeability, and leakag e of cytochrome C (L i et al., 1998; Lu o et al, 1998 ; We i et al, 2001). Cleavage of PARP b y caspase s 3 an d 7 inactivate s the DN A re pair mechanism (Lazebni k et al., 1994) . Activation of
DFF40/CAD by caspase 3 results in enzymatic cleavage of double-stranded DNA, the hallmar k characteristic o f fragmente d DNA . Thi s structur e ca n b e visualized on a n agaros e ge l as a ladder o r can b e labeled i n vivo by means of TUNEL. Caspase-Independent Cell Death There i s some debat e a s to whethe r caspase-indepen dent cel l deat h i s a for m o f apoptosi s (Chipu k an d Green, 2004 ; Putch a an d Johnson , 2004) , however, pathways o f caspase-independen t cel l deat h ar e fre quently activated concomitant with caspase-dependent pathways (Ramachandra n e t al. , 2003) . Caspase independent cell death i s initiated b y the sam e effec tors a s thos e i n typica l apoptosis—fo r example , p5 3 and ROS (Hill et al, 2000; Godefroy et al, 2004), but the morphological outcom e differs. Caspase-indepen dent deat h doe s no t resul t i n DN A fragmentatio n or cell blebbing , no r d o th e mitochondri a los e mem brane potential. I n addition, the caspase-independen t pathway may be initiate d by overactivation of PARP-1 (Hong et al, 2004). As wit h caspase-dependen t pathways , the releas e of mitochondrial intermembran e substance s AIF, endonuclease G , HtrA2/Omi , and/o r Smac/DIABL O appears t o b e pivota l fo r caspase-independen t deat h (Susin e t al., 1999 ; Crega n e t al, 2002 ; Hong e t al , 2004; Yakovle v an d Faden , 2004) . Releas e o f AI F from th e mitochondri a results in activation of DNases that cause DN A fragmentation. Endonuclease G i s a mitochondrial nucleas e necessar y fo r replicatio n o f mitochondrial DN A (Cot e an d Ruiz-Carrillo , 1993) . If released int o the cytoplasm , it translocates into th e nucleus wher e i t causes internucleosoma l DN A frag mentation (L i et al , 2001) . HtrA2/Om i an d Smac / DIABLO als o appear to induc e caspase-independen t death, althoug h th e exac t mechanis m i s unknow n (Yakovlev and Faden , 2004). CONCLUSIONS AN D SUMMARY
Misleadingly referre d t o a s a regressiv e process, neu ronal deat h i s essentia l fo r norma l CN S develop ment. Withou t it , th e nervou s syste m ca n becom e overpopulated wit h poorl y integrate d neuron s an d circuitry that produces functiona l deficits. This observation i s supported b y studies of knockout mice defi cient i n caspas e 3 or 9 (Oppenhei m e t al, 2001) . I n
INTRACELLULAR PATHWAY S O F NEURONA L DEAT H 9 9 these animals , th e amoun t o f neurona l deat h i s re duced and learnin g an d memor y is compromised. Although neurona l deat h ma y b e describe d a s apoptotic o r necrotic , dyin g cell s commonl y exhibi t features o f bot h (Eva n an d Littlewood , 1998 ; Gree n and Reed , 1998 ; Lockshi n and Zakeri , 2004) . More attention ha s been directe d t o understandin g apoptosis . The pathway s activated durin g apoptotic degeneratio n are comple x an d ofte n appea r t o b e conflicting . The y include so-calle d intrinsi c an d extrinsi c systems , bot h of whic h culminat e i n th e activatio n o f caspas e 3 . Some cells , however , di e throug h a caspase-indepen dent mechanism. The curren t and futur e understand ing o f neuronal deat h ha s been an d wil l b e garnere d from studie s o f the action s o f toxins (e.g. , ethano l an d neurotransmitter blockers) , radiation , stress , an d othe r challenges. Suc h studie s provid e valuabl e insigh t int o the interpla y betwee n th e variou s modes of cell deat h and th e pathway s underlyin g thes e degenerativ e events. Abbreviations ADP adenosin e diphosphate AIF apoptosi s inducing factor APAF apoptosi s protease-activatin g factor ATP adenosin e triphosphat e BH Bcl- 2 homology CNS centra l nervou s syste m DIABLO direc t IA P binding protei n HNE 4-hydroxynonena l IAP inhibitor y apoptoti c protein NAD nicotinamide-adenin e dinucleotide PARP poly-adenosin e diphosphat e ribos e poly merase ROS reactiv e oxyge n specie s SMAC secon d mitochondrial-derive d activato r of caspase TNF tumo r necrosis facto r TUNEL termina l deoxynucleotidy l transferas e mediated deoxyuridine nick end labeling
ACKNOWLEDGMENTS Wor k o n thi s chapte r was supported b y th e Nationa l Institut e o f Alcohol Abus e an d Alcoholism.
References Al-Ghoul WM, Miller MW (1989 ) Transient expression of Alz-50-immunoreactivity i n developin g rat neo cortex: a marke r fo r naturall y occurrin g neurona l death? Brain Res 481:361-367. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potentia l for cancer therapy. Cytokin e Growth Factor Rev 14:337-348. Baldi A, Calia E , Ciampini A, Riccio M, Vetuschi A, Persico AM, Kelle r F (2000 ) Deafferentation-induce d apoptosis of neurons i n thalamic somatosensor y nuclei o f the newbor n rat: critical period an d rescu e from cel l deat h b y peripherall y applie d neu rotrophins. Eur } Neurosci 12:2281-2290 . Banerjee J , Ghosh S (2004 ) Ba x increases the por e size of rat brain mitochondrial voltage-dependent anio n channel i n th e presenc e o f tBid. Biochem Biophy s Res Comm 323:310-314 . Bertrand P, Rouillard D , Boule t A, Levalois C, Scuss i T, Lopez B S (2004) p53's doubl e life : transactivation independent repressio n o f homologous recombina tion. Trends Ge n 20:235-243 . Bouchard VJ, Rouleau M, Poirie r GG (2003 ) PARP-1 , a determinant o f cel l surviva l i n respons e t o DN A damage. Exp Hematol 31:446-454. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathway s of caspase activatio n durin g apoptosis. Annu Rev Cell Dev Biol 15:269-290 . Cecconi F , Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998 ) Apaf l (Ced- 4 homolog ) regulate s pro grammed cel l deat h i n mammalia n development . Cell 94:727-737. Cheng C, Zochodn e D W (2003 ) Sensory neurons with activated caspase- 3 survive long-ter m experimental diabetes. Diabetes 52:2363-2371 . Chipuk JE, Green D R (2004) Cytoplasmic p53: Bax and forward. Cel l Cycle 3:429-431. Chipuk JE , Kuwan a T , Bouchier-Haye s L, Droi n NM , Newmeyer DD , Schule r M , Gree n D R (2004 ) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilizatio n an d apoptosis. Science 303:1010-1014. Chipuk JE , Maure r U , Gree n DR , Schule r M (2003 ) Pharmacologie activatio n o f p5 3 elicit s Bax dependent apoptosi s i n th e absenc e o f transcrip tion. Cancer Cel l 4:371-381. Choi C , Benvenist e EN (2004 ) Fas ligand/Fas system in the brain : regulato r o f immun e an d apoptoti c re sponses. Brain Res Rev 44:65-81. Chun JJ, Nakamura MJ, Shatz CJ (1987 ) Transient cell s of th e developin g mammalia n telencephalo n are peptide-immunoreactiv e neurons . Natur e 325: 617-620.
100 NORMA L DEVELOPMENT Ciani E , Hoffmann A , Schmidt P , Journet L, Spengler D (1999) Inductio n of the PAC1- R (PACAP-type I receptor) gen e b y p5 3 an d Zac . Mo l Brai n Re s 69: 290-294. Cote J, Ruiz-Carrillo A (1993) Primer s for mitochondrial DNA replication generate d b y endonuclease G. Sci ence 261:765-769. Cregan SP , Fortin A, MacLaurin JG, Callaghan SM, Cec coni F, Yu SW, Dawson TM, Dawso n VL, Park DS , Kroemer G, Slac k RS (2002) Apoptosis-inducing factor i s involved in th e regulatio n of caspase-independent neuronal cel l death. J Cell Biol 158:507-517 . Curtin JF , Donova n M , Cotte r T G (2002 ) Regulatio n and measuremen t o f oxidativ e stress i n apoptosis . J Immunol Meth 265 : 49-72. Daugas E, Susin SA, Zamzami N, Ferr i KF, Irinopoiilou T, Larochette N, Prevost MC, Lebe r B , Andrews D, Penninger J , Kroeme r G (2000 ) Mitochondrio nuclear translocation o f AIF in apoptosis an d necro sis. FASEB J 14:729-739 . Degterev A, Lugovskoy A, Cardone M , Mulle y B, Wagner G, Mitchiso n T , Yua n J (2001 ) Identificatio n o f small-molecule inhibitors of interaction between th e BH3 domain an d Bcl-xL. Nat Cell Biol 3:173-182. Denecker G , Vercammen D , Declerq W , Vandenabeele P (2001) Apoptotic and necrotic cell death induce d by deat h domai n receptors . Cel l Mo l Lif e Sc i 58 : 356-370. Derer P , Derer M (1990 ) Cajal-Retziu s cel l ontogenesi s and deat h i n mous e brai n visualize d wit h horse radish peroxidas e and electro n microscopy . Neuro science 36:839-856 . Desagher S , Ösen-Sand A , Nichols A, Eskes R, Montes suit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformationa l chang e of Bax is responsible fo r mitochondrial cytochrom e с releas e during apoptosis . J Cell Bio l 144:891-901 . D'Mell o SR , Kua n CY , Flavel l RA , Raki c P (2000 ) Caspase- 3 i s require d fo r apoptosis-associate d DN A fragmentatio n bu t no t for cel l deat h in neuron s deprived o f potassium . J Neurosc i Re s 59:24-31 . Du L , Zhan g X, Ha n YY , Burk e NA , Kochane k PM , Watkins SC , Graha m SH , Cardil o JA , Szab o C , Clar k R S (2003 ) Intra-mitochondria l poly(ADP ribosylation ) contribute s to NAD + depletio n and cell deat h induce d b y oxidativ e stress . J Bio l Che m 278:18426-18433. Earnsha w WC, Martin s LM , Kaufman n S H (1999) Mammalia n caspases : structure , activation , substrates , an d function s durin g apoptosis . Annu Re v Biochen i 68 : 383-424. Ellis HM , Horvit z H R (1986 ) Geneti c contro l o f pro gramme d cel l deat h i n th e nematod e C . elegans. Cell 44:817-829 .
Erste r S , Mihar a M , Ki m RH , Petrenk o O , Mol l U M (2004) I n vivo mitochondria l p5 3 translocatio n trig gers a rapi d firs t wave o f cel l deat h i n respons e to DN A damag e tha t ca n preced e p53 targe t gene activation . Mo l Cel l Biol 24:6728-6741 . Esterbaue r H , Zollne r H , Schau r R J (1990 ) Aldehydes forme d b y lipi d peroxidation : mechanism s o f formation , occurrence , and determination . In : VirgoPeifre y C (ed) . Membrane Lipid Oxidation. CR C Press, Boc a Rato n FL , pp 239-268 . Evan G , Littlewoo d T (2004 ) A matte r o f lif e an d cel l death . Scienc e 28:1317-1322 . Fische r U , Jänicke RU, Schulze-Osthof f К (2003) Man y cut s t o ruin : a comprehensiv e updat e o f caspas e substrates . Cel l Deat h Diffe r 10:76-100 . Fleur y C , Mignott e B, Vayssiere J L (2002 ) Mitochondr ial reactiv e oxyge n specie s i n cel l deat h signaling . Biochemi e 84: 131-141 . Frotsche r M (1998 ) Cajal-Retziu s cells , reelin , an d th e formatio n o f layers . Cur r Opi n Neurobio l 8:570 — 575. Ftientes-Prio r P , Salvesen G S (2004 ) Th e protei n struc ture s tha t shap e caspase activity, specificity , activa tion an d inhibition . Bioche m J 384:201-232 . Fuerte s MA , Castill a J , Alons o C , Pérez , J M (2003 ) Cisplatin biochemica l mechanis m o f action: fro m cytotoxicity t o inductio n o f cel l deat h throug h in terconnections betwee n apoptoti c an d necroti c pathways. Curr Med Che m 10:257—266 . Ghosh A , Antonini A , McConnell SK , Shatz C J (1990 ) Requirement fo r subplate neuron s i n th e formation of thalamocortica l connections . Natur e 347:179 181. Godefroy N , Boulea u S , Gruel G , Renau d F , Rincheval V, Mignott e В , Tronik-L e Rou x D , Vayssier e J L (2004) Transcriptiona l repressio n by p5 3 promote s a Bcl-2-insensitiv e an d mitochondria-independen t pathwa y o f apoptosis . Nuclei c Acid s Re s 32:4480 4490. Gordo n WC , Case y DM , Luki w WJ, Baza n N G (2002 ) DN A damag e an d repai r i n light-induce d photore cepto r degeneration . Inves t Ophtha l Vi s Sc i 43 : 3511-3521 . Gree n DR , Reed JC (1998 ) Mitochondri a an d apoptosis . Scienc e 281 .-1309-1312. Ha HC , Snyde r SH (1999) Poly(ADP-ribose ) polymerase is a mediato r of necroti c cell deat h b y ATP deple tion . Pro c Nat i Acad Sc i US A 96:13978-13982. Hake m R , Hake m A , Dunca n GS , Henderso n JT, Wo o M, Soenga s MS, Eli a A, de la Pomp a JL, Kägi D, Shoo W , Potte r J , Yoshid a R, Kaufma n SA , Low e SW, Penninge r JM , Ma k T W (1998 ) Differentia l requirement fo r caspase- 9 i n apoptoti c pathway s in vivo. Cell 94:339-352 .
INTRACELLULAR PATHWAY S OF NEURONA L DEAT H 10 1 Harms K , Nozel l S , Chen X (2004 ) Th e commo n an d distinct target genes o f the p5 3 famil y transcriptio n factors. Cell Mol Lif e Sc i 61:822-842. Hartmann D , D e Stroope r B , Saftig P (1999) Presenilin 1 deficienc y leads t o los s of Cajal-Retzius neuron s and cortica l dysplasi a simila r t o huma n typ e 2 lissencephaly. Curr Bio l 9:719-727. Hengartner MO , Horvit z H R (1994 ) Programme d cel l death i n Caenorhabditis elegans. Cur r Opi n Ge n Devel 4:581-586. Hill IE , Murra y C, Richar d ] , Rasquinh a I , MacManus JP (2000) Despite th e internucleosoma l cleavage of DNA, reactive oxygen species do not produce othe r markers of apoptosis in cultured neurons. Exp Neurol 162:73-88 . Honarpour N , D u C , Richardso n JA , Hamme r RE , Wang X, Herz J (2000) Adult Apaf-1 -deficient mic e exhibit male infertility . Dev Biol 218:248-258. Hong SJ , Dawso n TM , Dawso n V L (2004 ) Nuclea r and mitochondria l conversation s i n cel l death : PARP-1 an d AI E signaling . Trend s Phar m Sc i 25 : 259-264. Horvitz HR, Sternberg PW, Greenwald IS, Fixsen W, Ellis HM (1983 ) Mutations tha t affect neura l cell lin eages an d cel l fate s durin g th e developmen t o f the nematode Caenorhabditis elegans. Col d Sprin g Harb Symp Quant Biol 48:453-463. Jiang XJ , Wan g X D (2004 ) Cytochrom e C-mediate d apoptosis. Ann u Rev Biochem 73:87—106. Johnson S (2001) Micronutrient accumulation and deple tion i n schizophrenia , epilepsy , autis m an d Parkin son's disease? Med Hypothese s 56:641-645. Kappus H (1985 ) Lipid peroxidation: mechanisms, analy sis, enzymology and biologica l relevance . In : Sies H (ed). Oxidatìve Stress. Academi c Press , London , pp 273-303. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257 . Kim YY, Park BJ, Kim DJ, Kim WH, Ki m S, Oh KS , Lim JY, Kim J , Par k C , Par k S I (2004 ) Modificatio n o f serine 392 is a critical event in the regulatio n of p53 nuclear export an d stability . FEB S Letter s 572:92-98. Klein JA, Longo-Guess CM, Rossman n MP , Sebum KL, Hurd RE, Frankel WN, Bronso n RT, Ackerrnan SL (2002) Th e harlequi n mous e mutatio n dow n regulates apoptosis-inducin g factor . Natur e 419:367 374. Klein BG , Reneha n WE , Jacqui n ME , Rhoade s R W (1988) Anatomical consequence s o f neonatal infra orbital nerv e transectio n upo n th e trigemina l gan glion an d vibriss a follicl e nerve s i n th e adul t rat . J Comp Neurol 268:469-488 .
Kley N , Chun g RY , Fa y S , Loeffle r JP , Seizinge r B R (1992) Repressio n o f th e basa l c-fo s promote r b y wild-type p53. Nucl Acids Res 20:4083-4087. Kostovic I, Rakic P (1980) Cytology an d tim e o f origin of interstitial neuron s i n th e whit e matte r i n infan t and adul t huma n an d monke y telencephalon . JNeurocytol 9:219-242. Kuida K , Hayda r TF , Kua n CY , G u Y , Taya C , Kara suyama H , S u MS, Raki c P, Flavell R A (1998) Re duced apoptosi s an d cytochrom e c—mediate d caspase activatio n i n mic e lackin g caspas e 9 . Cel l 94:325-337. Kuida K , Zhen g TS , N a S , Kua n C , Yan g D , Kara suyama H , Raki c P , Flavel l R A (1996) Decrease d apoptosis i n th e brai n an d prematur e lethalit y i n CPP32-deficient mice. Natur e 384:368-372 . Lambert d e Rouvrait C, Goffine t A M (1998) The reele r mouse a s a model o f brain development . Ad v Anat Embryol Cell Biol 150:1-106. Lazebnik YA, Kaufmann SH , Desnoyer s S , Poirie r GG , Earnshaw WC (1994 ) Cleavage o f poly(ADP-ribose) polymerase b y a proteinas e wit h propertie s lik e ICE. Natur e 371:346-347. Levine AJ (1997) p53 ? the cellula r gatekeeper fo r growth and division. Cell 88:323-331. Li H , Zh u H , X u CJ , Yua n J (1998 ) Cleavag e o f BI D by caspas e 8 mediates th e mitochondria l damag e in th e Fa s pathwa y o f apoptosis . Cel l 94:491 501. Li LY , Luo X , Wan g X (2001 ) Endonucleas e G i s a n apoptotic DNas e whe n release d fro m mitochon dria. Nature 412:95-99. Lindholm D, Eriksson O, Korhonen L (2004) Mitochon drial protein s i n neurona l degeneration . Bioche m Biophys Res Commun 321:753-758 . Lockshin RA , Zaker i Z ( 2004 ) Apoptosis , autophagy , and more . In t J Bioche m Cel l Bio l 36:2405 2419. Lossi L , Gambin o G , Miolett i S , Merigh i A (2004 ) I n vivo analysis reveals different apoptoti c pathway s in pre- an d postmigrator y cerebella r granul e cell s o f rabbit. J Neurobiol 60:437-452 . Lucken-Ardjomande S , Martinou JC (2005 ) Newcomers in th e proces s o f mitochondria l permeabilization . J Cell Sci 118:473-483 . Luo X , Budihardj o I , Zou H , Slaughte r C , Wan g X (1998) Bid , a Bcl 2 interactin g protein , mediate s cytochrome c releas e fro m mitochondri a i n re sponse t o activation o f cell surfac e death receptors . Cell 94:481-490. Marchenko ND , Zaik a A , Mol l U M (2000 ) Deat h signal-induced localizatio n o f p53 protei n t o mito chondria. A potentia l role i n apoptoti c signaling . J Biol Chem 275:16202-16212 .
102 NORMA L DEVELOPMENT Marin-Padilla M (1998 ) Cajal-Retziu s cell s an d th e de velopment o f th e neocortex . Trend s Neurosc i 21:64-71. Marzo I, Brenner C, Zamzami N, Susi n SA , Beutner G , Brdiczka D, Remy R, Xie ZH, Ree d JC, Kroemer G (1998) The permeabilit y transition pore complex: a target fo r apoptosis regulatio n b y caspases an d bcl 2-related proteins. J Exp Med 187:1261-1271 . Meyer G , Sori a JM , Martinez-Gala n JR , Martin Clemente B , Fairen A (1998) Differen t origin s and developmental historie s of transient neurons i n th e marginal zon e o f the feta l an d neonata l ra t cortex. JCompNeurol 397:493-518 . Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P Moll U M (2003 ) p53 has a direct apop togenic rol e a t th e mitochondria . Mo l Cel l 11 : 577-590. Miller FD, Poznia k CD, Wals h GS (2000) Neuronal lif e and death : an essentia l role for the p5 3 family. Cell Death Diffe r 7:880-888 . Miller M W (1995 ) Relationshi p of tim e o f origi n an d death o f neurons in rat somatosensory cortex: barrel versus septal corte x and projectio n versus local circuit neurons. J Comp Neurol 355:6-14 . (1999) A longitudinal study of the effect s o f prenatal ethano l exposur e o n neurona l acquisitio n an d death i n th e principa l sensor y nucleu s o f th e trigeminal nerve: interaction wit h changes induce d by transection o f the infraorbita l nerve . J Neurocytol 28:999-1015. (2003) Balanc e o f cel l proliferatio n an d deat h among dynamic populations: a mathematical model . JNeurobiol57:172-182. Miller MW , Al-Ghou l WM , Murtaug h M (1991 ) Ex pression o f ALZ-50-immunoreactivity in th e devel oping principa l sensor y nucleu s o f th e trigemina l nerve: effec t o f transectin g th e infraorbita l nerve . Brain Res 560:132-138. Morrison RS , Kinoshit a Y , Johnson MD , Ghata n S , H o JT, Garde n G (2002 ) Neurona l surviva l an d cel l death signalin g pathways. Adv Ex p Me d Bio l 513 : 41-86. Muzio M , Chinnaiya n AM , Kischke l EC, O'Rourk e K, Shevchenko A, Ni J, Scaffidi C , Bretz JD, Zhang M , Gentz R, Mann M , Krammer PH, Peter ME , Dixi t VM (1996 ) ELICE , a nove l FADD-homologou s ICE/CED-3-like protease, i s recruited t o the CD9 5 (Fas/APO-1) death-inducin g signalin g complex . Cell 85:817-827 . Nguewa PA , Fuertes MA , Valladares B, Alonso C, Pere z JM (2005 ) Poly(ADP-ribose) polymerases: homol ogy, structural domains and functions . Novel thera peutical applications . Pro g Biophy s Mo l Bio l 88 : 143-172.
Nicholson D W ( 1999) Caspase structure, proteolytic substrates, an d functio n durin g apoptoti c cel l death . Cell Death Diffe r 6:1028-1042 . Oppenheim RW , Flavel l RA , Vinsan t S , Prevett e D , Kuan C-Y , Rakic P (2001 ) Programmed cel l deat h of developin g mammalia n neuron s afte r geneti c deletion o f caspases. J Neurosci 21:4752-4760 . Polster BM, Fiskum G (2004 ) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281-1289. Putcha GV , Johnson E M J r (2004) Men ar e but worms: neuronal cel l deat h i n C . elegans an d vertebrates . Cell Death Diffe r 11:38-48 . Ramachandran V, Perez A, Chen J, Senthil D , Schenke r S, Henderson G I (2001 ) In uter o ethanol exposur e causes mitochondria ] dysfunctio n which ca n resul t in apoptoti c cel l deat h i n feta l brain : A potentia l role fo r 4-hydroxynonenal . Alcoho l Cli n Ex p Re s 25:862-871. Ramachandran V, Watt LT , Maffi S , Chen JJ, Schenke r S, Henderso n G I (2003 ) Ethanol-induce d Oxida tive stress precedes mitochondrially-mediated apop totic deat h o f culture d feta l cortica l neurons . J Neurosci Res V74:577-588. Reddien PW , Horvit z H R (2004 ) Th e engulfmen t pro cess o f programme d cel l deat h i n Caenorhabditis elegans. Annu Rev Cell Dev Biol 20:193-221. Reed JC (1998 ) Bcl- 2 famil y proteins . Oncogen e 17:3225-3236. Rice DS , Curra n T (2001 ) Rol e o f the reeli n signalin g pathway i n centra l nervou s syste m development . Annu Rev Neurosci 24:1005-1039. Roberts DS , Mille r S A (1998) Apoptosis in cavitatio n of middle ear space. Anat Ree 251:286-289. Rodriguez I , Arak i K , Khati b K , Martino u JC , Vassall i P (1997 ) Mous e vagina l openin g i s a n apoptosis dependent proces s whic h can b e prevente d b y the overexpression ofBc!2 . De v Biol 184:115-121. Roth KA , Kuan C, Hayda r TF, D'Sa-Eippe r C, Shindler KS, Zhen g TS , Kuid a K , Flavel l RA , Raki c P (2000) Epistati c an d independen t function s o f caspase-3 an d Bcl-X(L ) i n developmenta l pro grammed cel l death . Pro c Nat i Acad Sc i US A 97: 466-471. Saftig P , Hartmann D , D e Stroope r B (1999) The func tion o f presenilin-1 in amyloid (3-peptide generatio n and brai n development Eu r Arch Psych Clin Neu rosci. 249:271-279. Sarnat HB, Flores-Sarnat L (2002) Role of Cajal-Retzius and subplat e neuron s i n cerebra l cortica l develop ment. Sem in Pediatr Neurol 9:302-308. Sastry PS, Ra o KS (2000) Apoptosis and th e nervou s system. J Neurochem 74:1-20 . Saunders JW Jr (1966) Deat h i n embryonic systems. Science 154:604-612 .
INTRACELLULAR PATHWAY S O F NEURONA L DEAT H 10 3 Scorrano L , Korsmeye r S J (2003 ) Mechanism s o f cy tochrome c releas e b y proapoptoti c Bcl- 2 famil y members. Bioche m Biophy s Re s Commu n 304 : 437-444. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459-470. Shiozaki EN , Sh i Y (2004 ) Caspases , lAP s an d Smac / DIABLO: mechanism s fro m structura l biology . Trends Biochem Sci 29:486-494. Somasundaram K (2000) Tumor suppresso r p53: regulation an d function. Front Biosc i 5:D424-D437. Sugimoto T , Xia o C , Takeyam a A , H e YF , Takano Yamamoto T, Ichikaw a H (1999 ) Apoptotic cascade of neurons in the subcortical sensor y relay nuclei following th e neonata l infraorbita l nerv e transection . Brain Res 824:284-290. Super H , Sorian o E , Uyling s HB (1998 ) Th e function s of the preplate i n development an d evolution o f the neocortex an d hippocampus . Brai n Re s Re v 27 : 40-64. Susin SA , Lorenzo HK , Zamzami N , Marz o I, Snow BE, Brothers CM, Mangion J , Jacotot E, Costantini P , Loeffler M , Larochett e N , Goodlet t DR , Aebersold R, Siderovski DP , Penninge r }M , Kroemer G (1999 ) Molecular characterizatio n o f mitochondria l apoptosis-inducing factor. Natur e 397:441-446. Susin SA , Zamzami N , Casted o M , Hirsc h T, Marchera ' P, Mach o A , Daugas E , Geusken s M , Kroeme r G (1996) Bcl-2 inhibits the mitochondria l releas e of an apoptogenic protease. J Exp Med 184:1331-1342 . Szabo C , Dawso n VL (1998 ) Rol e o f poly(ADP-ribose) synthetase in inflammatio n and ischaemia reperfusion. Trend s Pharmacol Sci 19 : 287—298. Uchida K , Szweda LI, Cha e H-Z , Stadtma n E R (1993) Immunochemical detectio n o f 4-hydroxynonena l protein adduct s i n oxidize d hepatocytes . Pro c Nat i Acad Sci USA 90:8742-8746. Vahsen N , Cand e C , Brier e JJ , Benit P , ]oza N , Laro chette N , Mastroberardin o PG , Pequigno t MO , Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S , Made o F , Piacentin i M , Penninge r JM, Schagge r H , Rusti n P, Kroemer G (2004 ) AIF deficiency compromise s oxidativ e phosphorylation. EMBOJ 23:4679-4689. Wang H , Yu SW , Kob DW , Le w J, Coombs C , Bower s W, Federoff HJ, Poirier GG, Dawso n TM, Dawso n
VL (2004 ) Apoptosis-inducin g facto r substitute s for caspas e executioners in NMDA-triggere d excitotoxic neurona l death . J Neurosc i 24:10963 10973. Waite PM , L i L , Ashwel l K W (1992 ) Developmenta l and lesion induced cell death in the rat ventrobasal complex. Neurorepor t 3:485-488 . Wang X , Abdel-Rahma n A A (2004) A n associatio n be tween ethanol-evoke d enhancemen t o f c-jun gen e expression i n the nucleu s tractu s solitarius and th e attenuation o f baroreflexes. Alcoho l Cli n Ex p Re s 28:1264-1272 Watts LT , Rathina m ML , Schenke r S , Henderso n G I (2005) Astrocyte s protec t neuron s fro m ethanol induced oxidative stress and apoptotic death. } Neurosci Res 80:655-666. Wei MC , Lindste n T , Mooth a VK , Weiler S , Gros s A, Ashiya M , Thompso n CB , Korsmeye r S J (2000 ) tBID, a membrane-targeted death ligand, oligomerizes BA K to releas e cytochrom e c . Gene s De v 14 : 2060-2071. Wei MC , Zon g WX , Cheng EH , Lindste n T , Panout sakopoulou V , Ros s AJ, Roth KA , MacGrego r GR , Thompson CB , Korsmeye r SJ (2001) Proapoptoti c Bax and Bak : a requisite gatewa y to mitochondria l dysfunction an d death. Scienc e 292:727—730 . Wyllie A H (1997 ) Apoptosis: an overview . Br Med Bul l 53:451-465. Yakovlev AG , Fade n A I (2004 ) Mechanism s o f neura l cell death : implication s for development o f neuroprotective treatment strategies. Neurorx 1:5-16. Yoshida H , Kon g YY , Yoshida R , Eli a AJ , Hake m A , Hakem R , Penninger JM , M a T W (1998 ) Apaf l i s required fo r mitochondria l pathway s o f apoptosi s and brain development. Cel l 94:739-750. Yu SW , Wang H , Poitra s MF , Coomb s C , Bower s WJ, Federoff HJ , Poirier GG, Dawso n TM, Dawso n VL (2002) Mediatio n o f poly(ADP-ribose) polyrnerase1-dependent cel l deat h b y apoptosis-inducin g fac tor. Science 297 : 259-263. Zarkovic K (2003) 4-hydroxynonenal and neurodegener ative diseases. Mol Aspects Med 24:293-303 . Zhou P , Qian L, ladecola C (2005 ) Nitric oxide inhibit s caspase activatio n an d apoptoti c morpholog y bu t does no t rescu e neurona l death . J Cere b Bloo d Flow Metab 25:348-357.
7
Developmental Disorders and Evolutionary Expectations: Mechanisms of Resilience Barbara L. Finlay Jeremy C. Yost Desmond T . Cheung
Every livin g organis m ca n trac e it s lineage bac k t o the unicellula r organisms that firs t populate d Earth . We are thu s th e descendant s o f creatures wh o hav e not onl y survive d but hav e successfull y reproduce d in the fac e o f gross atmospheric shifts, blast s of ionizing radiation, the impact s o f comets, ice ages, globa l warming, earthquake s an d hurricanes , plague s o f any numbe r o f viral an d bacteria l forms , prédation, starvation an d drought , th e toxin s of plants and ani mals, parasites, competing tribes, jealou s fathers, indifferent mothers , an d everyda y accident s o f al l kinds. Any survivor of this wildly improbable lineage is mad e of toug h stuff . The poin t of the presen t chapter i s t o tur n th e usua l discussio n o f develop mental vulnerability on its head and, rather than discuss the effect s o f an "environmenta l insult(s) " on a fragile infant , examin e th e desig n feature s o f th e tough stuf f o f whic h w e ar e made . W e argu e tha t only in this evolutionary context wil l the disorder s of development tha t sometime s d o emerg e mak e mechanistic sense.
EVOLUTIONARY DRIVES
Catastrophe Conservation o f th e buildin g block s o f th e embry o across the invertebrat e an d vertebrat e lineage s and th e resilience of that embryo have been part of a general rethinking of the characte r of the evolutionar y process to which ou r ancestors wer e subjected, along with greate r awareness of the effect s o f periodic globa l catastrophe s on th e natur e o f the genom e (Gerhar t an d Kirschner, 1997). Struggle for success among individuals in an evolutionary landscape o f potential niche s and thei r associated fitness peaks, success defined by better adaptatio n resulting i n greate r reproduction , i s the essentia l Dar winian view . The kind s of adaptations highlighte d b y this proces s ar e bot h increasingl y subtl e organis m an d environment fits and enhancement s importan t i n sexual selection, a central aspect of evolutionary change. Catastrophe, loca l o r global , provide s a forc e i n which all organisms, across radiations and species , ar e
104
DEVELOPMENTAL DISORDER S AND EVOLUTIONAR Y EXPECTATIONS 10 5 subjected t o a sever e filter ; succes s arise s fro m sur vival i n suddenl y change d environment s (Alvare z et al., 1980 ; Albritton , 1989) . Variation in gene trans mission durin g catastroph e ca n aris e from individua l competition a s well, but whole radiation s may be lost. The best-know n example , o f course, i s the extinctio n of the dinosaur s and surviva l o f mammals i n th e lat e Cretaceous period . Selectio n wil l favo r th e robus t and adaptabl e organism , able t o weathe r disaster , to relocate or create it s favored nich e o r get by in a ne w one, an d t o reproduc e a s muc h a s possible . Ou r genomes carr y th e histor y o f bot h type s o f change . Moreover, th e natur e o f geneti c chang e appear s t o make i t likel y tha t thi s histor y i s no t overwritte n i n such a way that it is inaccessible, but rathe r added to , as we will elaborate later. Evolvability "Evolvability" i s a related , bu t distinc t ide a tha t car ries impor t fo r ho w a genom e ca n respon d t o chal lenge. This idea has been used in two distinct ways in the allie d field s o f evolutionary biolog y an d artificia l intelligence an d robotic s b y mean s o f geneti c algo rithms. The first, and somewha t stricter , sens e o f this concept aros e fro m th e hypothesi s an d late r demon stration (in bacteria) that in times of extreme stress and crisis, "deliberate " additiona l variatio n and mutatio n would aris e as an adaptiv e mechanism, suppresse d i n favored environment s (Gerhart an d Kirschner , 1997 ; Radman e t al. , 1999) . Th e second , mor e general , sense is the observatio n that some types of genomic or informational structure s more readil y produce usable adaptive changes and the potentia l for evolution than others (Lipso n an d Pollack , 2000 ; Nolf i an d Flore ano, 2002 ; Baum , 2004) . Everythin g else equal , th e "evolvable" organism is more likel y to b e wit h u s today. Both the stric t and the genera l sense of evolvability will be importan t in understanding the respons e of organisms to developmental challenge .
the viru s a t th e cellula r leve l (antibodies) , make s its environment inhospitabl e (fever) , an d expel s i t (al l the variou s miseries o f flu) . Eac h o f these symptom s can be viewed as adaptive responses, no t as pathology. Of course , no t ever y response t o diseas e o r traum a is adaptation, an d th e urg e t o tell suc h "just-so " storie s must be strictly policed. Fo r example, exsanguination when a n arter y i s severed migh t cleans e th e woun d and quickl y lessen metaboli c load, but obviousl y it is not a n adaptiv e response. Conceptua l clarit y in thi s domain get s particularl y muddled whe n organism s are i n clos e competition . Fo r example , i t woul d ap pear that the enterprisin g rhinovirus has co-opted th e expulsion componen t o f the immun e respons e for its own adaptiv e purpose o f spreadin g itsel f around th e environment—whose adaptation is the sneeze? Evolutionary medicin e become s particularl y relevant t o the developmenta l respons e t o shortage s an d pathogens when the normal , tactical natur e of the response o f the adul t organis m t o challenges i s considered an d applie d t o developmen t (Bateso n e t al. , 2004; Gluckma n and Hanson , 2004) . The bes t and most elaborate d exampl e i n physiology is the balanc ing o f requirements fo r short- an d long-ter m surviva l in th e hypothalamic-pituitary-adrena l axi s i n re sponse to acut e and chroni c environmenta l stressor s (Sapolsky et al., 1986) . In order to survive an immedi ate threat , energy is mobilized b y metabolic change s that, if they persist long-term, will damage the animal. Alterations i n nervou s system s an d behavio r i n re sponse t o earl y environmenta l challenges , particu larly commonl y encountere d ones , migh t als o b e tactical adaptation s and shoul d no t automaticall y be construed a s pathology . Fo r example , perhap s i t i s a good be t to alter interest in foo d compare d t o general exploration i n perpetuit y i f earl y experienc e show s food t o be i n unusually short supply (Smart and Dob bing, 1977 ; Levitsky , 1979 ; Bateson e t al , 2004 ; Gluckman an d Hanson, 2004) . Environmental Expectatio n
Adaptive Response O r Pathology? The thir d conceptual thread t o be woven int o the argument for evolutionar y chang e is the recastin g of some state s usually viewed a s illnes s or patholog y a s adaptations b y th e emergin g fiel d o f evolutionary medicine (Ness e an d Williams , 1996) . A vim s co opting ou r genom e fo r it s ow n purpose s i s a ba d thing. Consequently , a n immun e respons e disables
The fourt h thread i s environmental expectation . Thi s is usually raised in the contex t o f predictable environ ments an d a genome predispose d t o lear n (Gree nough an d Black , 1992) : i f informatio n abou t th e future structur e of visual informatio n in th e worl d is well predicted b y present structure , and ther e i s time to learn it, why waste genome specifyin g it ? Considering on e o f th e classi c case s o f ethology , i f mother i s
106 NORMA L DEVELOPMENT the first large, moving thing any duck likely to survive sees, then learning the qualities of the first large, moving objec t i s an efficien t wa y to get th e information . On th e othe r hand , th e physiologica l armamentar ium availabl e indicate s tha t w e als o expec t trauma , infection, an d poo r nutritio n o f al l kinds . Ther e i s no reaso n to assum e tha t the brai n is not similarl y prepared. Recen t compariso n o f the genom e o f th e chimpanzee an d o f the human , showing rather mor e changes i n gene s involve d i n foo d metabolis m an d immune respons e tha n i n th e brain-relate d genes , has underline d tha t geneti c respons e t o often encountered challenge s may be fairly rapid, and "die t and pathogen s ar e dominan t selectiv e force s fo r al l species" (Olso n an d Varki , 2004) . Relevan t t o thi s chapter i s the cultura l history of alcohol. A s alcohol has served as a common sourc e of nutrition and foo d preservation i n Wester n Europe , thos e population s (compared t o Asian ones) have become equippe d t o metabolize alcohol , an d ther e i s some evidenc e tha t the incidenc e o f alcoholis m fall s th e longe r fer mented product s hav e been use d i n a particular cul ture (Goedd e e t al , 1992 ; Whitfield , 1997) . T o understand a developmental respons e t o an environ mental challenge , i t will make a great dea l o f differ ence whethe r th e challeng e i s "expected, " suc h a s alcohol, o r unprecedented—fo r example , a designe r drug such a s thalidomide that ma y mimic the for m of an early regulatory gene. A Warning and a Road Ma p In th e followin g section , we first examine a few cen tral cases of the developmenta l consequence s o f alcohol an d othe r substanc e abuse , an d tur n th e usua l style o f presentation upsid e down t o sho w the outra geous situations in which the typica l embryo can survive. A stron g cavea t i s necessar y here: a t n o poin t should a demonstration that th e "typical " infant ca n be born without defect—for example , following a persistent bath o f alcohol—be mistake n a s an argumen t endorsing alcoholis m i n pregnan t mothers . A sub stantial percentag e o f infants exposed t o ethano l d o have defects , a probabilit y n o prospectiv e paren t should ignore . No r ar e w e i n an y way attempting t o minimize the value of locating and ameliorating thos e defects cause d b y developmental insults described i n many of the other chapters of this volume. Rather, our point is that if we fail to appreciate the robus t nature of the developin g embry o an d consistentl y mislabe l
deviations as pathology instead o f adaptations (or jus t deviations), w e will b e i n a n explanator y real m tha t makes n o sens e i f we try to understan d th e patholo gies of development tha t can and do occur . Next, we will turn to some genera l desig n feature s of developmen t tha t ar e stabl e i n th e fac e o f chal lenge, and conside r som e particula r case s of nervou s system development tha t show those principles. Over all, the guidin g principal in this discussion is one tha t is true for all life sciences but i s often ignore d i n med icine: "nothin g i n biolog y makes sense except i n th e light of evolution." (Dobzhansky, 1973)
CONTEXTUALIZING TH E DEVELOPMENTAL EFFECT S OF ALCOHOL, NICOTINE , AND THALIDOMIDE
Alcohol The huma n bod y has a variety of mechanisms fo r the screening an d disposa l o f toxins. Alcohol i s no excep tion. The presenc e o f alcohol i n our evolutionary and developmental environmen t ha s le d t o specifi c en zymes responsibl e fo r it s metabolism : alcoho l dehy drogenase an d acetaldehyd e dehydrogenase . Ethano l is naturally encountered i n fermentation in fruit, an d also is a direct result of fermentation of starches in th e gut. I n man y huma n cultures , alcoho l i s sought no t only fo r th e obviou s psychoactiv e consequence s bu t also becaus e i t serve s a usefu l rol e a s a preservative and secondaril y as a source of calories (Goedde e t al., 1992; Whitfield, 1997 ; Dudley , 2000 , 2002). Alcohol can thus be considered not simply a completely alien disruptive element but also a normal part of the developmental environment . Thi s i s not t o downpla y th e dangers o f ethano l t o a developin g organis m bu t t o place it in the contex t of a regulating system. We not e in passin g tha t thi s evolutionar y histor y ma y hav e a significant impact o n the relevanc e o f animal mod els to human development , wher e frugivores an d omnivores migh t b e considerabl y bette r models tha n carnivores. With th e assumptio n o f the robustnes s o f the de velopmental syste m i n mind , w e tur n t o a recen t study fro m Martinez-Fria s an d colleague s (2004 ) o n the relationshi p betwee n alcoho l consumptio n dur ing pregnancy and congenita l anomalies , paying specific attentio n t o thos e anomalie s indicativ e o f feta l
DEVELOPMENTAL DISORDER S AND EVOLUTIONAR Y EXPECTATIONS 10 7 alcohol spectru m disorder s (FASD) . Fro m a corpu s of dat a collecte d ove r 2 4 years , Martinez-Fria s an d colleagues dre w a grou p o f 470 5 malforme d infant s and a comparable grou p of 4329 normal infant s whose mothers reporte d alcoho l consumptio n durin g preg nancy. These infant s wer e examine d i n th e firs t 3 days of lif e for a variet y of congenita l anomalies , including variou s nervou s syste m defect s an d a se t o f craniofacial anomalies. These facial anomalies, includ ing a hypoplastic nose , are indicativ e o f several cognitive impairment s (Swille n e t al. , 1999 ; Donna i an d Karmiloff-Smith, 2000) . In particular , they ar e typical of FAS D and , i n conjunctio n wit h materna l alcoho l consumption, ar e considered reliabl e predictor s o f the condition (Astle y and Clarren, 1997 ; Coles et al, 2000; Streissguth and O'Malley, 2000; Sood e t al, 2001). Subjects can be grouped b y maternal alcohol con sumption int o five categories, ranging from Grou p 1 , who experience d low , sporadi c exposur e throug h a range of daily doses, to Group 5 , who were exposed to over 92 g of absolute alcoho l per da y throughout ges tation, includin g severa l glasse s o f distille d spirits . Group 5 also included th e offsprin g o f those who self identified a s alcoholics. A n odd s rati o was calculate d for eac h birt h defec t t o indicat e th e effec t o f alcoho l consumption o n the ris k of developing that defect. To begin wit h the worst-cas e scenario, we shoul d expect infant s o f Grou p 5 mother s t o sho w sever e deficits. I n adults this level o f alcohol consumption i s associated wit h anoxia, the pathologica l deficienc y of oxygen, as well a s renal failure an d sever e nutritional deficiencies. As a result, it would be expected that this level of exposure would cause a variety of deficits i n a developing organism . Amon g 8 7 infant s expose d t o this amoun t o f ethanol, 6 7 had a t least on e physica l defect. Thus, only 23% were normal a t birth. Lookin g to th e nervou s system , however , 79 % o f th e infant s showed n o centra l nervou s system (CNS) defect s under standard infant neurologica l examinations . Given a level of alcohol exposur e known for its damaging effects on the physiolog y of adults, this is remarkable re silience. Becaus e th e neurologica l componen t of the suite of FASD-associated symptom s is not consistentl y detectable a t thi s age , facia l phenotype s alon e ar e used a s a proxy for FASD (Astle y and Clarren , 1997) ; fully 60 % of the infant s i n Group 5 had a normal facial phenotype. Although 40 % damage i s a tragic statistic, even i n thi s extrem e cas e o f shockingly irresponsibl e alcohol consumption , mor e tha n one-hal f o f the in fants show evidence o f being quit e normal .
Normality dominate s th e res t o f th e groups . I n Group 4 (th e second-highes t group), th e offsprin g of mothers wh o consumed betwee n 5 6 and 8 8 g ethanol per day , 95% of the infant s showed normal facia l phe notypes. According to the odds ratio, children of these mothers wer e twic e a s likel y t o develo p th e typica l FAS characteristics, but th e differenc e wa s not statistically significant . Onl y Grou p 3 , wit h lo w dail y con sumption, showe d a statistically significant relationshi p between alcoho l consumptio n an d thi s phenotype . At this consumption level , 97% of the infant s showe d the norma l phenotype . I n th e sporadi c alcoho l con sumption group s ( 1 an d 2) , no t onl y wer e FASD predictive anomalie s presen t i n onl y 3 % an d 2 % o f the infants , respectively , but the odd s ratio s suggeste d that alcohol consumptio n decrease d th e risk of anomalies, although thes e difference s wer e not statisticall y significant. An importan t consideration i n thi s study, and gen erally i n th e field , i s tha t o f socioeconomi c factors . Children of mothers o f lower socioeconomic statu s are at greate r risk , for a variety of reasons. Thes e mother s are mor e likel y to be expose d t o other ris k factors , in cluding lead (Malcoe et al., 2002; Morello-Frosch e t al., 2002), chemica l solvent s (Cordie r e t al. , 1992) , an d illegal drug s (Hans , 1999) . Thes e ris k factor s ar e als o associated with cognitive impairments. Hence, it is difficult to separate alcohol fro m othe r potential causativ e factors. Additionally , eve n give n equivalen t alcoho l and dru g exposure , childre n o f higher socioeconomi c status ar e mor e likel y to b e normal . A substantial re view o f neurobehaviora l studie s o f alcohol-expose d children (Mattson and Riley, 1998) confirms the prevalence o f low scores on cognitiv e tests in group s of low socioeconomic statu s (SES), bu t also includes startlin g examples of children who perform at normal levels and even abov e on cognitiv e tests (Streissgut h e t al, 1980 ; Fried an d Watkinson , 1988 , 1990 ; Frie d e t al., 1992) . Indeed, th e ter m low-risk group i s used synonymously with higher socioeconomic statu s in these studies. Notably, give n lo w to moderate consumptio n and a hig h level of maternal education , intelligenc e quotien t an d other cognitive scores fall well within the normal range , and occasionall y with mean scores a full standar d deviation above normal . Although thes e score s were lower than thos e achieved by children i n the sam e socioeco nomic leve l without fetal alcoho l exposure , i t i s clear that multipl e factor s i n th e developmenta l environ ment beyond alcoho l consumptio n ar e at work in chil dren who show substantial deficits .
108 NORMA L DEVELOPMENT Further, studie s o f th e effect s o f exposur e t o lo w (Forrest et al, 1991 ; Green e et al., 1991 ; Frie d e t al, 1992) or even moderat e (Man , 1980) amounts o f alcohol fail to find a cognitive deficit. Although thes e stud ies focu s o n exposur e t o lowe r amount s o f ethanol , they ar e significan t i n ligh t o f conventional wisdo m that an y an d al l alcoho l consumptio n durin g preg nancy is an unacceptable risk . Rather than being a silver bulle t capabl e o f derailin g norma l neurologica l development, alcoho l exposur e a t lo w level s ha s ef fects that are hard to demonstrate, which makes sense in term s o f the long-ter m presenc e o f alcohol i n ou r ancestry. Even at pathologically high levels it does no t have 100 % penetrance . Nicotine Nicotine i s certainl y les s commo n tha n alcoho l i n our evolutionar y history. Indeed, consumptio n o f any significant amoun t o f nicotin e i s a recen t develop ment i n huma n history . The suit e o f developmental effects cause d by smoking (the most typical way of using nicotine ) i s complex , involvin g respiratio n an d oxygen availabilit y directly, periphera l vasoactiv e ef fects, an d actio n o n centra l neurotransmitte r systems. Still, a numbe r o f it s effect s fal l withi n a well developed evolutionar y context i n development , tha t of reduced resourc e availability. Although w e canno t review this context and it s effects full y here , i t is well established tha t th e developmenta l progra m show s significant flexibility with regard to nutrient availability. Withi n limits , growth ca n b e scale d bac k o r de layed i n time s o f poo r nutrition , favorin g the brai n whose generatio n i s largely prenatal, an d caugh t u p when condition s ar e favorable (Lucas and Campbell , 2000). Tobacco exposur e restricts the availabilit y of nutrients t o th e developin g fetu s (Lamber s an d Clark , 1996). Carbo n monoxid e fro m tobacc o smok e binds with hemoglobin , th e oxygen-carryin g molecule i n blood, t o for m a stabl e carboxyhemoglobin, limiting oxygen transport in the mothe r an d thereby depriving the fetu s of oxygen a s well. Nicotin e increase s hear t rate an d cause s vasoconstriction , increasin g bloo d pressure i n the mother , reducin g uterin e bloo d flow, and therefor e decreasin g a fetus' s acces s t o al l nutri ents. Hypoxia , malnutrition , an d th e ensuin g meta bolic challenge s forc e th e fetu s t o mak e d o wit h inadequate resources. As such, it is not surprising that the mos t commo n effec t o f nicotine exposur e i s low
birth weigh t (Ellar d et al, 1996 ; Lamber s and Clark , 1996). Lo w birt h weigh t i s independently associate d with cognitiv e deficit s (Chaudhari e t al. , 2004 ; Cor bett and Drewett, 2004; Viggedal e t al, 2004), regard less o f th e causativ e agent . Indeed , a s a systemati c problem, i t is generally associated wit h growth deficits throughout th e body , includin g ostéopathi e effect s (Nelson et al., 1999) , yielding a generally underdeveloped organism . A s such , i t i s difficul t t o determin e whether an y cognitiv e deficit s ca n b e directl y attributed t o nicotine or tobacco o r if they secondarily stem from anoxi a and generall y decreased resources. The direc t effect s o f nicotine o n neurologica l de velopment ar e controversial, an d i n a way that is reminiscent o f th e comple x interaction s o f postnata l environment wit h prenata l malnutrition . A variety of studies indicat e n o cognitiv e deficit s i n infant s an d young children (Streissgut h et al., 1980 ; Forrest et al., 1991), an d ther e i s some evidenc e o f a transitiv e effect, with scores on the Bayle y Scales of Developmen t (BSID) tha t ar e lo w at 1 2 months comin g u p t o nor mal level s b y 2 4 month s (Frie d an d Watkinson , 1988). Ofte n test s tha t d o indicat e a n effec t i n chil dren of heavy smokers fai l to separate it from postna tal exposur e (Richardso n e t al. , 1995) , whic h ha s more reliabl y been associate d wit h decrease d score s on cognitiv e test s (DiFranz a e t al. , 2004) . Eve n so , this effect o n BSI D tes t scores is typically small when compared t o othe r factors , includin g number o f toys in th e household , SES , numbe r o f infan t illnesses , and eve n the identit y of the examiner . Essentially, the data indicat e tha t on e woul d b e bette r of f spending the cigarett e money o n toys , as a deficiency of toys in the child' s hom e i s a mor e reliabl e predicto r o f decreased cognitiv e score s tha n nicotin e an d tobacc o exposure. Embryological Silver Bullets In contras t to our relativel y robust developmental de fense agains t alcohol, fo r which we hav e evolved specific mechanism s dedicate d t o it s detoxificatio n and metabolism, an d agains t nicotine , whic h ma y be subsumed unde r mechanism s alread y available to buffe r resource limitations, there stands a new class of potential teratogens : designe r drugs . These drug s ar e ofte n evolutionarily novel , base d o n molecule s neve r en countered b y ou r ancestor s i n th e natura l environ ment. O r the y ca n b e simila r t o o r eve n base d o n molecules naturall y produced b y th e huma n body ,
DEVELOPMENTAL DISORDERS AND EVOLUTIONARY EXPECTATIONS 10 9 potentially bypassin g protective mechanisms, t o ma nipulate the developmenta l process directly. Though hardl y typical o f modern entrie s int o th e category, thalidomid e i s certainly the mos t infamou s example o f a designe r drug. Introduce d i n 195 7 as a sedative an d anti-nause a agent , i t wa s considered s o safe a s to b e regularl y prescribed t o comba t morning sickness an d insomni a i n pregnan t women . With drawn fro m th e marke t i n 1961 , i n les s tha n 4 years thalidomide ha d cause d a worldwid e epidemi c o f birth defects . Whil e n o accurat e censu s wa s eve r taken, it is estimated that between 10,00 0 and 20,00 0 babies wer e bor n disable d a s a resul t o f thalidomid e (Knightley e t al. , 1979 ; se e http://www.thalidomid e .ca, http://www.marchofdimes.com/professional/681 _ 1172.asp). Completely unknow n is the rat e of embryonic rejectio n i n th e fac e o f thi s drug . Thu s i t i s difficult t o estimate th e penetration o f the teratogeni c effects o f thalidomide. The method s o f action responsibl e for the terato genic effect s o f thalidomide ar e stil l unde r investigation nearl y 5 0 year s afte r it s introduction . Indeed , study has increase d drasticall y in recen t year s as ne w applications fo r th e dru g hav e bee n foun d i n treat ments fo r leprosy , lupus , rheumatoi d arthritis , an d other disorders. As a result, at least 3 0 different mech anisms have been propose d for the teratogeni c effect s (Stephens an d Fillmore , 2000) . Som e hav e been discredited, other s are contradictory, wherea s others ca n coexist handily. An affinity fo r DNA sequences rich in guanine has been established , suc h a s thos e i n th e GC-box , a hexanucleotide promote r i n th e huma n genom e (GGGCGG). Thalidomid e ca n inser t int o suc h se quences, interferin g wit h thei r functio n (Jonsson , 1972). Approximately 9% of the huma n genom e uses G-rich promoter s to the exclusio n of other commo n promoters such a s TATA and CCAA T boxe s (Bûcher , 1990). Additionally , thalidomid e ha s bee n linke d t o the fibroblas t growth factor (FGF ) famil y o f transcription factors . Wolper t (1976 , 1999 ) champion s th e idea tha t thalidomid e inhibits FGF-8 , a n initiato r of sonic hedgeho g (shh). Stephen s (1988 ) implicate d i t in th e insulin-lik e growt h facto r (IGF ) I/FGF-2 / angiogenesis pathway . A follow-u p t o thi s wor k (Stephens and Fillmore, 2000) details the interrupted pathway and it s promoter sequences, effectivel y tying together th e leadin g theorie s o n thalidomid e embry opathy to make a strong case for intersecting vulnera bilities in certain systems.
Within th e thalidomide-affecte d population , cer tain trend s i n th e abnormalitie s ar e relevan t t o ou r discussion. Som e defect s are much more commo n i n children tha t survive d to birth. Lim b outgrowt h defi ciencies ar e fa r and awa y th e mos t common , presen t in approximatel y 90% o f the group . Ea r an d ey e de fects ar e th e secon d mos t commo n pathologies , af fecting approximatel y 60 % of the grou p (Yan g e t al. , 1977; Quibell, 1981 ; Lenz , 1985) . In th e developin g limb , th e IGF-I/FGF-2/angi o genesis pathwa y i s necessar y fo r norma l outgrowth . Of 1 0 genes in the pathway , nine rel y on GC-box pro moters lacking TATA or CCAAT promote r sequences . This pathwa y i s particularl y vulnerabl e t o interca lation b y thalidomide . A simila r situatio n exist s fo r the vascula r endothelial growt h factor-integrin path way, whic h ha s bee n implicate d i n deformitie s o f the ear . Regardles s o f whic h o r ho w man y o f these mechanisms ar e eventuall y implicate d i n develop mental disorders , it i s notable tha t th e explanations , as a class , directl y implicate developmenta l contro l mechanisms.
FEATURES O F EVOLUTION AND DEVELOPMEN T THAT MAXIMIZE STABILITY
The prio r example s sho w tha t w e hav e a phenome non t o account for developmental stability of most infants i n th e fac e o f what woul d appea r t o b e sever e challenges, particularl y i n th e cas e o f "expected " challenges. Mos t o f the othe r chapter s i n this volum e give accounts o f abnormality; here we make some ar gument fo r forces fo r normality. A lis t o f the feature s o f the genom e an d develop ment tha t produc e "evolvability " and th e lis t of those that produc e stabl e solution s t o developmental chal lenges ar e quit e similar . Bot h problem s hav e th e defining featur e o f producin g a functiona l conse quence i n the even t of a deviation. In the cas e of evolution, the deviation to be assimilated comes from th e genome; i n th e developmenta l case s w e ar e dis cussing here, the deviatio n is introduced fro m the en vironment. The principa l difference i s that evolutio n lacks the tactica l nature of some developmenta l solu tions. Evolutio n ha s n o plan s fo r th e future , an d i n the genom e an d lif e historie s o f curren t organism s we se e the direc t evidenc e o f what i s evolvable. De velopment, however , mos t certainl y ha s intentio n
110 NORMA L DEVELOPMEN T and tactics , a s the y hav e bee n selecte d an d writte n into th e genome . N o developmenta l progra m ha s as its end poin t a perfect, nonreproductive infant. Trade offs an d fault s ca n b e gamble d o n t o produc e a n im perfect, reproductiv e adult. Duplicate and Vary An overal l quantitativ e feature of evolution i s that a s organisms becom e mor e complex , fro m prokaryote s to eukaryote s an d t o plant s an d animals , the y hav e more DN A an d mor e gene s (Lync h an d Conery , 2003). That an increas e in complexity should be partnered wit h an increas e i n genes a t first seems reason able o n it s face, unti l the amoun t o f conservatism in basic metaboli c pathway s is confronte d an d th e ac tual histor y of genetic chang e i s investigated (Szath mâry e t al. , 2001) . I t i s not clea r tha t increasin g th e number o f gen e product s pe r s e shoul d necessarily lead t o fancie r animal s —if Shakespear e ha d ha d a few mor e letter s o f th e alphabe t t o wor k with , fe w would argue that the plays would thereby b e deeper. The historica l record o f the genom e a s viewed in current animals does no t sho w linear increases of genetic materia l consisten t wit h th e notio n o f progressive additio n o f complexity . Rather , duplication s occur man y times over, gene duplicatio n followed by variation o f one o f the duplicate d genes , bot h a t th e level o f th e individua l gene an d a t th e leve l o f th e whole genome , a s wel l a s a t variou s intermediat e steps (Lync h an d Conery , 2000) . Below are a few examples. The trichomati c colo r vision of primates has arisen three separate times, by duplication of the "yel low" opsin followe d by one o r two minor amin o aci d changes i n on e o f th e gene s producin g a sligh t change i n wavelengt h selectivit y (Jacobs , 1998) . A whole-genome duplicatio n occur s a t th e chordate vertebrate boundary , implicate d particularl y i n th e subsequent elaboratio n of the cranium , jaw, and fore brain (Northcutt , 1996). The regulator y gene s controllin g bod y plan , which ar e conserve d acros s vertebrate s an d inverte brates, sho w evidenc e o f multipl e replication s i n evolutionary histor y (Gerhart an d Kirschner , 1997) . The us e o f this strateg y is clear—one gen e ca n con tinue it s essential roles , while a second ca n b e fre e t o vary, assum e ne w functions , or b e produce d i n different contexts . Th e abilit y t o duplicat e an d var y "semantic" aspects of the genome—tha t is, aspects of the genom e that relat e t o meaningful component s of
the organism s —is a featur e tha t allow s evolvability , and has been employed t o advantage in "genetic algorithms" i n compute r scienc e (Lipso n an d Pollack , 2000; Nolfi an d Floreano , 2002; Baum, 2004). Duplicate-and-vary b y it s natur e make s develop ment responsiv e t o local geneti c accident . On e frus trating aspect o f early genetic wor k (to geneticists ) i s that whe n i t becam e possibl e t o "knock out " singl e genes (i n th e cas e o f nonlethal omissions) , the usua l effect wa s often nil , largely because of the massiv e re dundancy o f gen e copies . I t shoul d b e emphasize d that extr a o r slightl y altere d gen e copie s di d no t evolve i n anticipatio n o f futur e accident . Onc e i n place, however , creature s wit h th e duplication s hav e had a developmenta l edge . Man y othe r version s of the duplicate-and-var y strateg y ca n b e see n i n addi tion t o gene duplicatio n an d variation . For example , the segmentai structure o f the vertebrat e an d inverte brate brai n an d bod y pla n i s anothe r versio n o f duplicate-and-vary, at a higher level of complexity. Large neura l structures , suc h a s th e corte x an d cerebellum, ma y als o b e case s o f duplicate-and-var y (or multiply-and-vary) , regardles s of whether the uni t duplicated i s a cel l assembly , a "cortica l column, " a region , o r a cortica l area . Cortica l area s hav e th e analogous strategi c feature s o f conserve d structur e throughout, suc h tha t cortical areas may be function ally substituted fo r each other , a s shown fro m myria d examples o f plasticity either earl y or lat e i n life , bu t particular cortica l areas , suc h a s visual or somatosensory cortex, appear to have functionally relevan t local features "wire d in " (reviewe d in Kingsbur y an d Fin lay, 2001 ; Pallas , 2001) . Finally , i t i s possibl e tha t some o f th e peculia r feature s o f ou r bilatera l bod y (and brain) plan migh t be placed i n this context. Th e exact calori c requirement s o f each bod y par t appea r to b e ver y tightly regulated . Fo r example , th e brai n size an d gu t lengt h (tw o metabolically expensiv e or gans) co-vary negatively with each othe r very precisely in primates with the resul t of keeping basal metaboli c rate unchange d (Aiell o and Wheeler , 1995) . Ye t the amount o f each organ we possess seems to be far from the bar e minimu m required , or eve n th e amoun t re quired fo r everyda y function. Jared Diamon d calcu lates from variou s successful surgeries in humans tha t we ca n ge t b y wit h on e kidney , hal f o f on e lung , a third of a liver, half the cerebra l cortex, and s o on (Di amond, 1994) . I t ha s no w bee n acknowledge d tha t creative use of brain lateralization, in the duplicate-and vary version, can b e found throughout th e invertebrat e
DEVELOPMENTAL DISORDERS AND EVOLUTIONAR Y EXPECTATIONS 11 1 and vertebrat e lineage , i n frui t fly , fish , birds , an d many arthropods , and , of course, ourselve s (Vallorti gara an d Rogers , 2005) . Humans d o quit e peculiarl y well with early, full-hemispheric deletions . Convergent Redundancy Frank duplication an d variatio n of identifiable devel opmental mechanism s see m t o hav e occurre d nu merous times , a s ca n b e see n i n th e man y isoform s and othe r variant s o f cel l recognitio n molecules , signaling molecules , an d trophi c molecules . A n ab solute hallmar k o f development , however , is redun dancy o f a differen t type , wher e multipl e distinc t mechanisms ar e al l directe d towar d th e sam e out come. Th e retinotecta l system , i n whic h th e twodimensional layou t o f cells i n th e retin a i s faithfull y transferred t o the two-dimensiona l surface o f the tecturn for the organizatio n of eye and bod y movements, has served as a "model system " for the investigatio n of axon guidance, synaptogenesis, and topographi c ma p formation sinc e Roge r Sperr y first investigated i t half a centur y ag o (Sperry , 1963) . Thi s mode l syste m provides th e cleares t instanc e o f mechanisti c re dundancy. Eac h propose d mechanis m ha s ha d it s researcher-champion, unti l th e realizatio n dawne d that evolution had take n no vow of mechanistic parsimony. There ar e a numbe r o f logica l possibilitie s o f mapping an arra y A-B-C-D ont o a secon d arra y A*-B*-C*-D*, eac h o f whic h alon e ca n solv e th e developmental puzzle . A could recogniz e A*; B recognize B*, and s o on, which is called "chemoaffinity, " Sperry's first hypothesis (Sperry, 1963) . Alternative to attraction, A could b e repelle d b y D*, and les s by C* (Bonhoeffer and Huf , 1992) . Or, A might stic k to B better than to C, preserving intrinsic order in the fiber array, and the n hav e some rul e about ho w to position itself relativ e to A*-D* (Fraser , 1980) . Or , tempora l order i n developmen t migh t b e exploited , havin g A and A* mature first, then B and B* , and s o on (Reese, 1996). Or , th e element s i n bot h array s could b e produced i n excess, connected at random, an d error s removed b y some secon d rule , a s cell deat h i s a majo r component of brain development (Oppenheim , 1991). Or, th e ma p coul d self-organiz e by a Hebbia n rule , using th e featur e that th e contras t leve l o f neighboring elements i n the visua l world is more highl y correlated tha n distan t element s (Schmidt , 1985 ; Wong, 1999). Th e answe r is, of course, tha t ever y single on e
of thes e logicall y separate mechanism s cooperate s t o produce orderl y maps. During development, i t is possible to disable one or more of these mechanism s alto gether, yet still preserve topographic map order, muc h as in gen e knockou t experiments , as residual mecha nisms rescue the map. These two separate forms of redundancy, duplicateand-vary and convergen t redundancy , contribut e t o a massively parallel , semimodula r architectur e o f de velopmental mechanism s livin g beneath th e surfac e of a n organis m maturin g ove r time . Startin g fro m scratch t o buil d a comple x organism , on e migh t b e predisposed t o a sequential , assembly-lin e mecha nism, producing one part at a time, and connectin g it up, bu t th e relativel y greater vulnerabilit y of such a system to loss of any component is obvious. I t is interesting t o observe the present-da y parallel evolutio n of manufacturing systems from th e strictl y serial Ford assembly lin e t o current , multiple-component "just-intime" manufacturing systems. The fac t tha t evolution must tinke r wit h existin g systems rather tha n desig n from scratc h i s ofte n give n a s a n argumen t fo r th e unique, redundan t natur e o f biological construction , but i t i s possible evolutio n ha s com e upo n solution s for efficien t biologica l constructio n tha t w e ma y no t yet be able to recognize. Catastrophe Curve s It will not d o to make a large fraction of an organism : it is a waste of energy for the parent s and certainl y n o good fo r th e offspring . Restated , partia l solutions ar e no goo d i n development—i f uncorrectabl e defect s are detected , n o mor e energ y shoul d b e spent o n th e embryo to compound th e metaboli c loss . For this reason, bailin g ou t i s perhap s th e mos t commo n re sponse t o developmenta l defect . Fo r man y species , particularly "reselected " animals who ar e specialize d for rapi d reproductio n i n challengin g environments , embryos ma y b e resorbe d unti l lat e developmenta l stages i n respons e t o ver y small change s i n environ mental stress , or the fetuse s may be aborte d an d cannibalized, a s an y researche r attemptin g t o stud y th e etiology of developmental disorder s in rodents knows. Even fo r primates , wh o spen d muc h energ y o n th e growth and car e of one o r two infants, a large proportion o f conception s ar e aborte d an d resorbe d i n th e first trimester; th e commo n figur e give n i n medica l advisories about pregnancy is "up to 50%," although i t is har d t o locat e th e empirica l basi s o f thi s claim .
112 NORMA L DEVELOPMEN T Even i f the numbe r i s muc h lower , th e recognitio n of developmenta l disorde r and terminatio n o f devel opment, particularl y i n earl y stages , ar e a s muc h an importan t face t o f developmen t a s constructiv e mechanisms. If a commitment t o the offsprin g i s unavoidable — for example , i f it is the onl y chance a t reproduction , or a life-threatenin g metaboli c commitmen t ha s al ready bee n made—the n ever y subsequent choic e t o preserve the offsprin g shoul d be mad e a s is physically possible. Particularl y in shortag e situations , clearl y strategic choice s ar e made—fo r example , t o preserve the brai n o f the infant , which i s generated onl y early in development, ove r and against the musculoskeletal system, whos e growt h ca n b e delayed , o r to favo r th e infant's nutritiona l need s ove r th e calori c require ments o f the mothe r (Marty n e t al., 1996 ; Luca s an d Campbell, 2000) . One "difficulty " i n researc h o n de velopmental disorders , which ma y not be entirely obvious to those workin g in well-establishe d paradigms, is to be abl e t o fin d jus t those regime s that li e on th e cusp betwee n th e plateau s o f embryoni c rejectio n and death , an d ful l normality . Analogous strategi c similaritie s can be seen in various developmenta l mechanism s i n th e nervou s sys tem, fo r example , a certai n numbe r o f neurons , a certain convergenc e rati o between neurons , or a feature o f physiology. Central mechanism s ca n gir d th e system agains t environmental stressors , but a t a critical value, this defense will suddenl y and catastrophi cally collapse. For example, if the numbe r o f neurons in th e corte x i s progressively depleted b y the mitoti c inhibitor methylazoxymethanol during earl y develop ment, the thalamus projectin g to that cortex will show no los s o f neuron s unti l mor e tha n 70%-80 % o f its target i s gone, an d the n collaps e itsel f (Wo o e t al. , 1996). Simila r event s ma y b e a t pla y wit h th e anti mitogen ethanol. Prenatal exposur e to ethanol cause s a <3S% reductio n i n th e numbe r o f cortical neuron s (Miller an d Potempa , 1990 ) an d n o los s o f thalamic neurons (Moone y an d Miller , 2000) . Unfortunately, no studie s hav e generate d feta l damag e sufficien t to caus e catastrophi c los s o f cortical neurons . I f th e convergence rati o i n th e retinotecta l syste m i s challenged, synapti c organizatio n reconform s t o simulta neously produc e norma l single-neuro n respons e properties and norma l gross topography, and a t a critical point , bot h aspect s o f organizatio n fai l togethe r (Xiong and Finlay , 1996) . The belie f that developin g organisms should pro -
duce a linea r respons e i n degre e o f malfunctio n t o linear increase s i n environmenta l stressor s is written very deepl y int o ou r experimenta l paradigms , an d a t best is a hypothesis to be demonstrated. Th e natur e of malfunction-functions wil l depend o n th e evolution ary expectation s an d consequen t strategi c develop mental choice s o f each separat e species. Self-Initiate, Self-Terminat e The natur e o f contro l an d monitorin g regime s t o move animal s through developmenta l stage s shoul d be evaluate d routinel y for developmental robustness . In the following sections, w e examine som e aspect s of early neura l development , particularl y neurogenesis , neuron typ e specification , critica l periods , an d th e features thes e period s appea r t o hav e t o stabiliz e de velopmental outcomes . Th e botto m lin e i s that mos t developmental mechanism s contai n numerou s (an d redundant) logica l checkpoint s t o determin e i f th e correct complemen t o f cell s i s bein g produced . Feedback-free, " I Love Lucy" assembly lines are virtually nonexistent . Developmental mechanism s ar e initiate d whe n multiple condition s fo r initiatio n ar e satisfied , an d are terminate d whe n th e proces s initiate d i s com pleted, not wit h respec t t o arbitrar y clocks. In evolu tion of mammals, in which the time take n to produc e a brai n scale s b y a facto r wel l ove r 10 , mechanism s like these simply allow graceful scalin g (Clancy et al., 2001). As brains enlarge durin g evolution, investigators begi n t o observ e "waitin g periods" i n th e devel opment o f certai n properties , a s a se t o f cell s o r axon terminal s g o quiescen t unti l appropriat e envi ronmental conjunction s appea r to be reached. In the case of developmental challenges , th e same abilit y to pause o r dela y ma y b e employe d t o amas s enoug h material o r wai t for th e righ t condition s t o occu r t o proceed.
ROBUSTNESS AND VULNERABILITIE S IN FUNDAMENTA L DEVELOPMENTAL PROCESSES
Having introduce d severa l feature s of developmen t through whic h evolutio n an d developmen t produc e stability, w e no w examin e i n detai l instantiation s of these principle s a t variou s developmenta l stage s i n the vertebrate nervous system.
DEVELOPMENTAL DISORDERS AND EVOLUTIONAR Y EXPECTATIONS 11 3 Neurogenesis and the Process of Cell Type Specificatio n Neurogenesis comprise s th e productio n o f neuron s and gli a tha t wil l resid e i n a structure ; thi s i s analogous to organogenesis, which is the productio n of cells that wil l constitut e a n organ . Thus, neurogenesi s in cludes th e proliferatio n o f neural precursors, the fat e decision, th e migration , differentiation , an d some times deat h o f th e cells . Mos t neurona l precurso r cells are generated i n the proliferativ e zone s that line the inne r surface o f the neura l tube (se e Chapters 2 , 11, an d 12) . In thes e zones , precurso r cells underg o mitosis, wit h "symmetric " divisions , producing more precursors. Eventually, some precursor s begin "asym metric" divisions , with on e daughte r cel l exitin g th e cell cycl e and the proliferativ e zone , and the n begin ning th e transformatio n into particula r types of neu rons o r gli a (Cavines s e t al. , 1995 ; Ohnum a an d Harris, 2003). The origina l size of the progenito r poo l combined wit h th e duratio n o f neurogenesi s o f an y given par t o f th e brai n predict s it s siz e (Finla y an d Darlington, 1995 ; Finlay et al, 2001). Not every precursor cel l i n the nervou s system differentiates. In some regions of the brain , stem cell s remain undifferentiate d throughou t th e lif e o f th e animal, an d recen t wor k suggests that these cell s can be presse d int o servic e to effec t repair s for damage d neural circuit s even i n th e adul t brain (e.g. , AlvarezBuylla and Garcia-Verdugo, 2002; Gage, 2002 ; PicardRiera e t al. , 2004) . That is , neuronal ste m cell s may provide a substrat e fo r compensator y plasticit y i n some systems of the brain s of adults. We concentrat e her e o n mechanism s tha t con trol th e assignmen t o f cel l identity , wit h particular attention pai d t o ho w th e proces s may regulat e itself if disturbance s occur . Researcher s firs t frame d th e question o f cel l specificatio n in term s o f wher e cel l specification occurs . Conceivably , thi s decision i s (a) intrinsic, suc h tha t specifi c precurso r population s give ris e t o particula r subpopulation s o f cell s only ; (b) determine d b y a cloc k producin g a certai n cel l type after a required number o f precursor cell subdivisions or with regard to some externall y specified stage; or (c ) extrinsic , defined b y the externa l milieu of th e precursor cells , i n eithe r th e proliferativ e zone s o r their eventua l destination. The answe r that ma y vary from on e brai n regio n t o anothe r i s likely th e usua l developmental answer: all of the above . We give a few specific examples , an d conside r th e implication s of
hybrid mechanism s fo r producing norma l structure s in response t o challenge. In vivo and i n vitro experiments demonstrat e tha t the orde r of neurogenesis and cel l type are correlated . For example , i n th e vertebrat e nervou s system, mos t glia ar e produce d afte r th e completio n o f neurona l generation (Ohnuma an d Harris , 2003). In the retina, the si x types of cells are produced i n order , although in al l cases , th e productio n o f cel l type s overlap s (Policy e t al , 1989) . Evidenc e suggest s tha t a com bination of clock-like initiation of specification o f particular cel l type s an d feedbac k processe s tha t asses s how man y cells o f a clas s have been produced . On e of these, p27 KiP1, a cel l cycl e inhibitor , gradually increases in progenitor s until a critical level is reached , whereupon cell s designate d a s oligodendrocyte s exi t the cel l cycl e and differentiat e (Freeman , 2000 ; Dyer and Cepko , 2001 ; Ohnuma and Harris , 2003). Thus, the gradua l accrua l o f p27KlP1 i s a negativ e feedbac k mechanism tha t tells precursor cell s when t o start differentiating into glia as opposed to neurons . Injury i s capabl e o f resettin g th e neurogeneti c mechanism. I n frog s an d fishes , fo r example, Mulle r glia ca n re-ente r th e cel l cycl e i n respons e t o retina l injury, an d ca n produc e progen y tha t differentiat e into neurons (Reh and Levine , 1998) . I n mature glia, p2yKipi j s expresse d a t hig h levels . Following retinal injury, however , p27 Klpl i s down-regulate d i n cells that re-ente r th e cel l cycle , allowin g for the genera tion o f ne w neurons . Regulatio n o f specificatio n of cell classe s ha s als o been show n t o occu r a t a mor e detailed level—fo r example , i f the retin a i s deplete d of a particular class of amacrine cells while retinogenesis is ongoing, the subsequen t production o f that cell type is up-regulated (Reh , 1987) . Negative feedback control of the rat e of histogenesis provide s flexibility and robustnes s in th e develop ing organis m relativ e t o mor e rigi d developmenta l schemes tha t migh t plausibl y hav e evolved . Fo r in stance, suppos e tha t onl y gli a ar e produce d o n a set day following the onset of neuronogenesis, or that glia are produce d onl y afte r a certai n numbe r o f cell cy cles wit h n o feedbac k regulation . I n eithe r o f these cases, if anything interfere s with cel l productio n at a certain tim e point , a n essentia l cel l grou p migh t never be generated. O n th e othe r hand, if progression through cel l classe s is regulated onl y by feedback, in the cas e o f lo w resourc e availability , neurogenesis could stal l a t a n earl y point an d neve r produc e late generated cel l groups . Intrinsi c clocks , overlappin g
114 NORMA L DEVELOPMENT distributions of cell production , an d feedbac k regula tion of the amoun t of eac h cel l typ e in concer t together virtually guarantee that some members of each cell clas s are generated , an d thei r norma l ratio s defended. Cell Migratio n The migratio n of developing neuron s to their adult positions in the brain is a critical step in the developmen t of the nervou s system. Severa l distinc t developmenta l mechanisms, suc h a s radia l an d tangentia l migratio n and cellular adhesion molecules, are thought to govern this proces s (Rosenwei g et al , 1999 ; Corbi n e t al , 2001). Thi s i s a proces s tha t ca n g o wrong , and "ec topia," cel l group s lyin g elsewher e tha n thei r norma l terminal site, is one o f the principa l morphological deviations associate d wit h retardatio n (Evrar d e t al. , 1989a, 1989b) . Eve n i f migration abnormalitie s resul t in misplaced cells, however, all is not lost. One o f the mos t striking demonstrations o f developmental robustnes s comes fro m on e mode l syste m of perturbed cell migration, in reeler mice. Reelin is a protein secreted b y several neuronal populations during development, an d i s vital fo r allowing neurons t o complete migratio n an d adop t thei r ultimat e posi tions i n a numbe r o f laminar structures in th e CN S (Rakic an d Caviness , 1995 ; Ric e an d Curran , 2001) . Mice lackin g reeli n (reeler mice , s o named fo r thei r staggering gait , whic h result s primaril y from a cere bellar anomaly ) sho w abnorma l pattern s o f cerebra l cortical lamination. The arrangemen t of the si x layers of the cerebra l corte x is inverted, so that th e earliest generated cell s form th e most superficial layer s of the cortex an d late-generate d neuron s ten d t o be distributed i n dee p cortex . Despit e thi s perturbation, affer ent projections to the visual, somatosensory, olfactory , and moto r cortice s fin d thei r correc t targe t cells . I n addition, th e overal l organizatio n o f majo r system s and the physiologica l response s o f individual neuron s in reeler mic e ar e comparable t o those in the norma l brain. Reeler mice have other anatomical abnormalities relative to wild-type mice. These include change s in synaptic density, distribution, and topology that are present in a number o f brain structures including the hippocampus, piriform cortex , and cerebellum . Nev ertheless, althoug h morpholog y i s grossl y abnormal, function i s spared. This result suggests cautio n i n any assumption tha t disturbe d morpholog y ha s negativ e functional consequences .
Reeler mic e provid e a n additiona l demonstratio n of the robustnes s of the "duplicate-and-vary " strategy. Only mic e homozygou s fo r the mutan t reelin allele show the neuronal abnormalities listed above. Studies of mice heterozygous for reelin have neuronal and be havioral phenotype s virtuall y indistinguishabl e fro m those o f wild-type mice (Salinger et al., 2003). Maturation o f Cell Types durin g Later Development The maturatio n o f neurona l morpholog y provides an example o f convergen t redundancy . I n vitr o experi ments sho w tha t granul e an d Purkinj e cell s isolate d from thei r norma l connections gro w in a typical manner (Sei l e t al, 1974) . This finding implies that signals intrinsic to cells can regulat e aspects of neuronal differ entiation. The neura l environment of developing cells, however, also influences cell morpholog y an d connec tivity. For instance, som e spinal cells are directed t o become moto r neuron s unde r th e influenc e o f cell s ventral to the notochor d (Roelin k et al., 1994) . I f a second lengt h o f notochord i s inserte d abov e th e spina l cord, cells begin to differentiate a s motor neurons on either side of the notochord. Cell-cel l interactions of this sort, in whic h cells influenc e the fate s o f adjacent precursor cells, are referred t o as induction, and have been documented extensivel y in the vertebrate brain (Rosenweig et al., 1999). The abilit y of extrinsic cell-cell interactions to regulate cel l fat e is not restricted t o precurso r cells. Cortical transplan t studie s consistentl y sho w tha t sensory and motor cortex cells grafted ont o distant cortical region s ca n assum e morphological , connectional , and functional properties appropriate to that region. For instance, fetal visua l corte x of rats transplanted into ra t neonatal somatosensor y cortex develops the barrel-like whisker representation s characteristi c o f primar y so matosensory cortex (Schlaggar and O'Leary, 1991), an d the expressio n o f the limbi c system-associate d mem brane protei n tha t mark s specific functional region s of the cerebra l corte x can b e regulate d b y environmental stimuli (Levitt et al, 1997) . Patterned sensor y activity can alte r cell fate. Cross modal rewirin g o f retina l axon s int o ferre t auditor y thalamus provides visually patterned activit y to the au ditory cortex (Pallas et al., 1999). Primary auditory cortex provide d wit h earl y visual input resemble s visual cortex topographicall y (Ro e e t al. , 1990) , physiologi cally (Roe et al., 1992) , and perceptuall y (vo n Melchner e t al. , 2000) . Neuron s i n thi s altere d auditor y
DEVELOPMENTAL DISORDER S AND EVOLUTIONARY EXPECTATIONS 11 5 cortex no t onl y assum e th e functiona l propertie s an d arrangement o f neurons i n th e visua l corte x but als o are capabl e o f mediatin g visuall y guide d behavio r (von Melchner et al, 2000). Hence, intrinsi c factors suc h a s gen e expressio n and extrinsi c factor s suc h a s induction , neuron neuron interactions , and patterne d activit y are all capable of regulating cell fate at various (and sometimes overlapping) point s i n development . No t al l o f thes e mechanisms ar e necessaril y invoke d o r eve n neces sary during the production o f any given neuron . Postnatal Development and Critical Period s Critical periods ar e tim e window s i n postnata l de velopment durin g whic h neuron s an d circuitr y ar e particularly receptive to acquiring certain kinds of information critica l fo r norma l developmen t (Hensch , 2004). Critica l period s hav e bee n extensivel y doc umented fo r sensor y systems , moto r systems , an d multimodal function s suc h a s imprinting , birdson g learning, soun d localization , an d huma n languag e learning. Ho w are critica l periods useful fo r ensuring normal development , when i t seems that the unlucky absence o f a particular experience at a particular time might permanently derai l normal development ? Th e answer i s that th e critical-perio d onset , duration , and termination ar e not regulated simpl y by age, but rathe r by experience . I f appropriate neura l activatio n i s no t provided a t all, then developing circuit s often remai n in a waiting state until such inpu t i s available. For instance, the segregatio n o f ocular dominance column s depends o n visua l experience . I f all visual experienc e is denied, the representatio n o f the tw o eyes does no t begin it s segregation an d th e specia l neurotransmit ters an d receptor s tha t ar e responsibl e fo r this struc tural chang e ar e hel d i n thei r initia l state (Kirkwoo d et al., 1995) . Within certai n constraints , whe n experi ence i s reinstated, anatomical , pharmacological , an d physiological event s then progress as they would hav e independent o f the ag e of the animals . A similar phenomenon ha s als o been observe d i n bird s tha t lear n their songs from tutors—fo r th e unfortunat e nestlings born to o lat e i n th e seaso n t o hear an y o f the sprin g songs that establish territory, the critica l period is held over unti l nex t spring , whe n singin g begin s agai n (Doupe an d Kuhl , 1999) . Critica l period s hav e vul nerabilities. I f activation i s only partial, i t may initiat e the progressio n o f the critica l period , stabilizin g a n
abnormal state , a s has been seen i n the productio n o f ocular dominanc e columns : i f both eye s ar e closed , the critica l period i s delayed. O n th e othe r hand , i f just on e ey e i s closed , th e critica l perio d proceeds , dedicating al l resource s t o th e ope n ey e (Kat z an d Shatz, 1996) .
ETHANOL AND THE DEVELOPING
NERVOUS SYSTEM: EVOLUTIONARY CONSIDERATIONS
Here we look at a few of the cases in which the effect s of ethanol o n developin g system s have been investigate d and consider them in the context of self-regulation. The effects o f ethanol o n th e nervou s system—at any stage of development—are know n t o be numerou s an d varied (se e Chapter s 11-18) . Fo r instance , ethano l ca n both inhibi t an d stimulat e neuro n proliferation , de pending o n th e physica l locatio n o f the cells , an d th e concentration an d eve n timin g (da y or night) o f expo sure (Luo and Miller , 1998; see Chapter 11) . Given tha t th e effect s o f ethanol o n th e develop ing nervous system are numerous, complex , an d con tingent upo n man y factors , ca n w e b e sur e tha t al l these effect s ar e malignant? To be sure , some ar e un ambiguously deleterious . Ethano l ca n induc e neu ronal deat h i n vitro and i n vivo, oxidative stress, an d excitotoxicity (Chapter s 1 5 an d 16) ; interfer e wit h glucose transpor t an d uptake ; an d reduc e th e expres sion an d adhesiv e propertie s o f cel l adhesio n mole cules (Chapter 13) . Other effects o f ethanol, however, may no t necessaril y be maladaptive . Fo r instance , i n addition t o causin g neurona l deat h i n developin g cerebellum (L i e t al. , 2002 ) an d corte x (Jacob s an d Miller, 2001) , ethano l ca n slo w th e productio n o f developing cerebella r (L i e t al. , 2002 ) an d cortica l (Miller an d Nowakowski , 1991 ; Miller , 2003 ) neu rons, an d i t can increas e th e tim e durin g which post mitotic cortica l neuron s remai n i n th e proliferativ e zone befor e commencin g thei r migratio n whil e als o decreasing th e rat e o f neurona l migratio n (Miller , 1993). Give n tha t developmen t i s dynamically regulated an d sensitiv e t o environmenta l cues , i t i s no t implausible that these delay s might be an adaptiv e response t o a hostile developmenta l environmen t (hig h concentrations o f ethanol ) i n whic h cel l productio n and migratio n ar e retarded unti l a more favorabl e environment becomes available. This interpretation gen erates testabl e predictions . I f cell-cycle an d migratio n
116 NORMA L DEVELOPMENT delays ar e a respons e t o a hostil e environment , then we should expec t t o se e a restoratio n o f these activi ties t o norma l (o r even above-normal ) rate s once th e normal developmenta l environmen t i s restored . I n practice, we migh t expec t t o se e resumptio n o f neu ron proliferation and migration after transient exposur e to ethanol (afte r the restoratio n o f normal cellular environment). Certainly , researc h ha s demonstrate d tha t the nervous system can and does recover from ethanol related developmenta l insult s (Ander s and Persaud , 1980; Riley, 1990 ; Popova, 1997 ) but the precise mech anisms mediatin g recover y are poorl y characterized . We suggest that some of the observe d ethanol-induced changes i n the developing nervous system may not be disorders, bu t remnant s o f processes tha t hav e medi ated recovery.
Finally, w e need to establish bette r causa l links in developmental model s tha t g o fro m fundamenta l physiology to morphology t o behavior, i n order to discriminate pathologica l chang e fro m compensator y change and from simpl e deviation. Evolutionar y mod els ca n provid e scaffoldin g fo r suc h understandin g that pathology-based researc h ca n never provide . Abbreviations BSID Bayle y Scales of Developmen t CNS centra l nervous system FASD feta l alcohol spectru m disorde r FGF fibroblas t growt h factor IGF insulin-lik e growth facto r References
SUMMARY AND CONCLUSION S Development ca n go wrong. One nee d onl y consider the appearanc e o f a poorl y placed o r underfertilize d garden plan t compare d t o it s well-nourished siblings to counteract th e ros y glow that thi s chapter , wit h its relentless underscorin g o f mechanism s designe d fo r developmental stability , may hav e produced . Never theless, ther e ar e man y reason s fo r takin g a vie w of pathology that begins with evolution, rather than with human developmen t i n isolation. First, althoug h du e cautio n shoul d b e employe d in advisin g pregnan t mothers , communicatin g th e wild improbabilit y o f gros s developmenta l disorder s from tin y infraction s in alcoho l consumptio n durin g pregnancy would reliev e unnecessar y anxiety . Second, animal "models " should b e examine d fo r their appropriateness t o understanding huma n pathol ogy. Vertebrate nervous systems are quite conservativ e in structure; curren t wor k comparing th e genome s of different specie s suggest s that thei r defensiv e packaging is quite different, dependin g o n such factors as "r" and "k " selection an d th e dietar y and pathoge n expo sure i n th e evolutionar y history o f th e species . Th e kind of modeling of development w e do must chang e and is , in fact, i n th e proces s of change—from th e assumption o f linear dose-response curve s to pathogens and teratogens , t o multicomponen t chaoti c system s in whic h "normality " i s the stronges t attractor , o r i n which severa l attractors, each representin g a developmentally stable strategy, may exist.
Aiello LC , Wheele r P (1995 ) Th e expensive-tissu e hy pothesis: th e brai n an d digestiv e syste m i n human and primate evolution. Curr Anthropol 36:199—221 . Albritton CC (1989 ) Catastrophic Episodes i n Earth History. Chapman and Hall, London. Alvarez LW, Alvarez W, Asaro F, Michel H V (1980 ) Extraterrestrial caus e fo r th e Cretaceous-Tertiar y ex tinction. Science 208:1095-1108. Alvarez-Buylla A, Garcia-Verdugo JM (2002 ) Neurogen esis i n adul t subventricula r zone . J Neurosc i 22 : 629-634. Anders K, Persaud TV (1980 ) Compensatory embryonic development i n th e ra t followin g materna l treat ment with ethanol. Anat Anz 148:375-383 . Astley SJ , Clarren SK (1997) Diagnostic Guide for Fetal Alcohol Syndrome an d Related Conditions. University of Washington, Seattle. Bateson P, Barker D, Glutton-Brock T, Deb D , D'Udine B, Foley RA, Gluckman P, Godfrey K , Kirkwood T , Lahr MM, McNamara J, Metcalfe NB7 Monaghan P, Spencer HG , Sulta n S E (2004 ) Developmenta l plasticity and human health. Nature 430:419-421. Baum E B (2004) What Is Thought? MI T Press , Boston. Bonhoeffer F , Hu f J (1992 ) Position-dependen t proper ties of retinal axons and thei r growth cones. Nature 315:409-410. Bucher P (1990 ) Weight matrix descriptions of four eu karyotic RNA polymerase II promoter elements derived from 50 2 unrelated promoter sequences. J Mol Biol 212:563-578. Caviness VS , Takahash i T , Nowakowsk i R S (1995 ) Numbers, tim e and neocortica l neuronogenesis : a general developmenta l and evolutionar y model . Trends Neurosci 18:379-383 .
DEVELOPMENTAL DISORDER S AND EVOLUTIONAR Y EXPECTATIONS 11 7 Chaudhari S , Oti v M , Chital e A , Pandi t A , Hog e M (2004) Piine low birth weight study—cognitive abilities an d educationa l performanc e a t twelv e years. Indian Pediatr 41:121-128. Clancy B , Darlington RB , Finla y BL (2001 ) Translating developmental tim e acros s mammalia n species . Neuroscience 105:7-17 . Coles CD , Kabl e JA , Drews-Botsc h C , Fale k A (2000 ) Early identification of risk for effect s o f prenatal alcohol exposure . ] Stud Alcohol 61:607-616 . Corbett SS , Drewett RF (2004 ) To what extent i s failure to thrive in infanc y associated with poorer cognitive development? A review and meta-analysis . J Chil d Psychol Psychiatry 45:641-654. Corbin JG 7 Nery S, Fishell G (2001 ) Telencephalic cells take a tangent : non-radia l migratio n i n th e mam malian forebrain . Na t Neurosc i 4 (Suppl):1177 1182. Cordier S , Ha MC , Aym e S , Goujard J (1992) Materna l occupational exposur e an d congenita l malforma tions. Scand J Work Environ Healt h 18:11-17 . Diamond J (1994 ) Bes t size an d numbe r o f body parts. Nat Hist 103:78-81. DiFranza JR , Aligne ÇA , Weitzman M (2004 ) Prenata l and postnata l environmenta l tobacc o smok e expo sure an d children' s health . Pediatric s 113:1007 1015. Dobzhansky T (1973 ) Nothin g i n biolog y make s sens e except i n ligh t o f evolution. America n Teache r 35 : 125-129. Donnai D , Karmiloff-Smit h A (2000) Williams syndrome: from genotyp e throug h t o the cognitiv e phenotype . Am J Med Gene t 97:164-171. Doupe AJ, Kuhl PK (1999) Birdsong and human speech : common themes and mechanisms. Ann u Rev Neurosci 22:567-631. Dudley R (2000 ) Evolutionar y origin s o f huma n alco holism in primate frugivory. Q Re v Biol 75:3-15. (2002) Fermenting frui t an d th e historical ecology of ethano l ingestion : i s alcoholism i n moder n hu mans a n evolutionar y hangover ? Addictio n 97 : 381-388. Dyer MA , Cepk o C L (2001 ) Regulatin g proliferatio n during retina l development . Na t Re v Neurosc i 2 : 333-341. Ellard GA , Johnston e FD , Prescot t RJ , Ji-Xian W, JianHua M (1996 ) Smokin g durin g pregnancy : th e dose dependenc e o f birthweight deficits . B r ] Ob stetGynecol 103:806-813 . Evrard P , de Saint-George s P , Kadhim HJ, Gadisseux J-F (1989a) Patholog y o f prenata l encephalopathies . In: Brooke s PH, (ed) . Child Neurology an d Developmental Disabilities. Pau l H Brookes , Baltimore, pp 1 5 3-176.
Evrard P, Kadhim HJ , de Saint-George s P , Gadisseux J- F (1989b.) Abnorma l developmen t an d destructiv e processes o f th e huma n brai n durin g th e secon d half o f gestation. In : Evrar d P , Minkowski A (eds). Developmental Neurobiology. Rave n Press , Ne w York, pp 21-41. Finlay BL , Darlingto n R (1995 ) Linke d regularitie s i n the developmen t an d evolutio n o f mammalia n brains. Science 268:1578-1584 . Finlay BL , Darlingto n RB , Nicastro N (2001 ) Develop mental structur e i n brai n evolution . Beha v Brai n Sci 24:263-307. Forrest F, Florey CD, Taylo r D, McPherson F , Young JA (1991) Reporte d socia l alcoho l consumptio n dur ing pregnanc y an d infants ' developmen t a t 1 8 months. BMJ 303:22-26. Fraser S E (1980 ) A differential adhesio n approac h t o th e patterning o f nerv e connections . De v Bio l 79 : 453-464. Freeman M (2000 ) Feedback contro l of intercellular signalling in development Nature 408:313-319. Fried PA , O'Connell CM , Watkinso n B (1992) 60 - and 72-month follow-u p of children prenatall y expose d to marijuana, cigarettes, an d alcohol : cognitiv e an d language assessment . J Dev Beha v Pediat r 13:383 391. Fried PA , Watkinson B (1988) 12 - and 24-mont h neurobe havioural follow-u p of childre n prenatall y exposed to marihuana , cigarette s an d alcohol . Neurotoxico l Teratol 10:305-313 . (1990) 36 - and 48-mont h neurobehaviora l followup o f childre n prenatall y expose d t o marijuana , cigarettes, an d alcohol . J De v Beha v Pediat r 11 : 49-58. Gage, F H (2002 ) Neurogenesi s i n th e adul t brain . J Neurosc i 22:612-613. Gerhart J , Kirschner M (1997 ) Cells, Embryos and Evolution. Blackwell , Maiden, MA. Gluckman PD, Hanso n M A (2004) Living with the past : evolution, development and patterns of disease. Science 305:1733-1739 . Goedde HW , Agarwal DP, Fritze G, Meier-Tackmann D , Singh S , Beckman n G , Bhati a K , Che n LZ , Fang B, Lisker R, Paik YK, Rothhammer F , Saha N , Segal B , Srivastava LM, Czeize l A (1992) Distribution o f ADH2 an d ALDH 2 genotype s i n differen t populations. Hum Genet 88:344-346. Greene T , Ernhart CB, Ager J, Sokol R, Martier S, Boyd T (1991) Prenatal alcoho l exposure an d cognitiv e de velopment i n th e preschoo l years . Neurotoxico l Teratol 13:57-68 . Greenough W, Black J (1992) Induction of brain structure by experience : substrat e fo r cognitiv e development . In: Gunna r MR , Nelso n C A (eds) . Developmental
118 NORMA L DEVELOPMEN T Behavioral Neuroscience. Lawrence Erlbaum , Hillsdale, NJ, pp 155-299 . Hans S L (1999) Demographic an d psychosocia l charac teristics of substance-abusing pregnant women. Cli n Perinatol26:55-74. Hensch TK (2004) Critica l perio d regulation . Ann u Rev Neurosci 27:549-579. Jacobs G H (1998 ) Photopigment s an d seeing—lesson s from natura l experiments. The Procto r Lecture . In vest Ophthalmol Vis Sci 39:2205-2216. Jacobs JS, Miller M W (2001 ) Proliferation an d deat h o f cultured fetal neocortica l neurons: effects o f ethanol on th e dynamic s o f cel l growth . J Neurocyto l 30 : 391-401. Jonsson N A (1972 ) Chemical structur e an d teratogeni c properties. IV . An outline o f a chemical hypothesi s for th e teratogeni c action o f thalidomide. Acta Phar macol Sin 9:543-562. Katz LC , Shat z CJ (1996 ) Synapti c activity and th e con struction o f cortica l circuits . Scienc e 274:1133 — 1138. Kingsbury MA, Finlay BL (2001) The corte x in multidimensional space : wher e d o cortica l area s com e from? De v Science 4:125-156. Kirkwood A, Lee HK , Bear MF (1995 ) Co-regulation o f long-term potentiatio n an d experience-dependen t synaptic plasticity in visua l corte x by age and expe rience. Nature 375:328-331 . Knightley P, Evans H, Potte r E, Wallace M (1979 ) Suffer the Children: Th e Story o f Thalidomide. Andr e Deutsch, London . Lambers DS , Clar k K E (1996 ) Th e materna l an d feta l physiologic effect s o f nicotine. Semi n Perinatol 20 : 115-126. Lenz W (1985 ) Thalidomide embryopath y in Germany, 1959-1961. Prog Clin Biol Res 163C:77-83. Levitsky DA (1979) Malnutrition and the hunge r to learn. In: Levitsk y D A (ed) . Malnutrition, Environment, and Behavior. Cornell Universit y Press , Ithaca , p p 161-179. Levitt P , Eagleso n KL , Cha n AV , Ferr i RT , Lillie n L (1997) Signalin g pathway s that regulat e specifica tion o f neurons i n developin g cerebra l cortex . De v Neurosci 19:6-8. Li Z, Mille r MW, Lu o J (2002) Effect s o f prenatal expo sure to ethanol o n the cyclin-dependen t kinas e system i n th e developin g ra t cerebellum . De v Brain Res 139:237-245. Lipson H , Pollac k J B (2000 ) Automati c desig n an d manufacture o f robotic lifeforms . Natur e 406:974 — 978. Lucas WD, Campbell B C (2000 ) Evolutionary and eco logical aspect s o f earl y brai n malnutritio n i n hu mans. Hum Nat 11:1-26.
Luo J, Miller M W (1998 ) Growth factor-mediate d neu ral proliferation : targe t o f ethano l toxicity . Brai n Res Rev 27:157-167. Lynch M , Coner y J H (2000 ) Evolutionar y fat e an d consequences o f duplicat e genes . Scienc e 290 : 1151-1155. Lynch M , Coner y J S (2003 ) Th e origin s o f genom e complexity. Science 302:1401-1404 . Malcoe LH , Lync h RA , Keger MC , Skagg s V J (2002) Lead sources, behaviors, and socioeconomic factor s in relatio n t o bloo d lea d o f nativ e america n an d white children: a community-based assessmen t o f a former minin g area . Enviro n Healt h Perspec t 11 0 (Suppl2):221-231. Martinez-Frias ML , Berm e jo E , Rodriguez-Pinill a E , Frias JL (2004) Risk for congenital anomalie s associ ated wit h differen t sporadi c and dail y doses o f alcohol consumptio n durin g pregnancy: a case-control study. Birth Defects Res Part A Clin Mo l Teratol 70 : 194-200. Martyn CN , Gal e CR, Saye r AA, Fall C (1996 ) Growt h in utero and cognitiv e function in adult life: followup stud y o f people bor n betwee n 192 0 an d 1943 . BMJ 312:1393-1396 . Mattson SN , Rile y E P (1998 ) A review of the neurobe havioral deficit s in childre n wit h feta l alcohol syndrome o r prenata l exposur e t o alcohol . Alcoho l Clin Ex p Res 22:279-294. Mau G (1980 ) Moderat e alcoho l consumptio n durin g pregnancy an d chil d development . Eu r J Pediat r 133:233-237. Miller M W (1993 ) Migratio n o f cortica l neuron s i s altered b y gestationa l exposur e t o ethanol . Alcoho l Clin Exp Res 17:304-314. (2003) Expressio n o f transforming growth factorbeta in developing ra t cerebral cortex : effect s o f prenatal exposur e t o ethanol . J Com p Neuro l 460 : 410-424. Miller MW, Nowakowsk i R (1991) Effec t o f prenatal exposure t o ethano l o n th e cel l cycle kinetic s an d growth fractio n i n th e proliferativ e zones o f feta l rat cerebra l cortex . Alcohol Cli n Ex p Re s 15:229 232. Miller MW, Potempa G (1990) Numbers of neurons and glia i n matur e ra t somatosensor y cortex : effect s o f prenatal exposur e t o ethanol . J Com p Neuro l 293:92-102. Mooney SM , Mille r M (1999 ) Effect s o f prenatal expo sure to ethanol on systems matching: the numbe r of neurons i n the ventrobasa l thalamic nucleu s o f the mature rat . Dev Brain Res 117:121-125. Morello-Frosch R, Pasto r M Jr, Porra s C, Sad d J (2002) Environmental justic e and regional inequal ity i n souther n California : implications fo r futur e
DEVELOPMENTAL DISORDERS AND EVOLUTIONARY EXPECTATIONS 11 9 research. Enviro n Healt h Perspec t 11 0 (Supp l 2) : 149-154. Nelson E , Jodschei t K , Gu o Y (1999) Materna l passiv e smoking durin g pregnanc y an d feta l developmen tal toxicity . Par t 1 : gros s morphologica l effects . Hum Ex p Toxicol 18:252-256 . Messe R, Williams G (1996 ) Why W e Get Sick: The Ne w Science o f Darwinian Medicine. Vintag e Books , New York. Nolfi S , Floreano D (2002 ) Synthesis of autonomous robots through evolution. Trends Cogn Sc i 6:31—37. Northcutt R G (1996 ) Th e agnatha n ark : the origi n o f craniate brains. Brain Behav Evol 48:237-247. Ohnuma S, Harris WA (2003) Neurogenesis and the cel l cycle. Neuron 40:199-208. Olson M , Vark i A (2004) The chimpanze e genome— a bittersweet celebration. Scienc e 305:191-192. Oppenheim RW (1991) Cell death durin g developmen t of th e nervou s system . Ann u Re v Neurosc i 14 : 453-502. Pallas S L (2001 ) Intrinsi c an d extrinsi c factor s tha t shape neocortica l specification . Trend s Neurosc i 24:417-423. Pallas SL , Littma n T , Moor e D R (1999 ) Cross-moda l reorganization o f callosa l connectivit y without al tering thalamocortical projections . Proc Nat i Acad Sci USA 96:8751-8756. Picard-Riera N , Nait-Oumesma r B , Baron-Va n Ever cooren A (2004 ) Endogenou s adul t neura l ste m cells: limits and potentia l to repair the injure d cen tral nervous system. J Neurosci Re s 76:223-231. Policy EH, Zimmerma n RP, Fortney RL (1989) Neuro genesis an d maturatio n o f cell morpholog y i n th e development o f the mammalia n retina . In : Finla y BL, Sengelaub DR (eds) . Development of the Vertebrate Retina. Plenum, Ne w York, pp 3-29 . Popova EN (1997 ) Dystrophic and reparative changes i n cortical neurons in the offsprin g o f rats with moderate prenata l alcoholism . Neurosc i Beha v Physio l 27:189-193. Quibell E P (1981 ) Th e thalidomid e embryopathy . An analysis from th e UK . Practitioner 225:721-726 . Radman M, Matic I, Taddei F (1999) Evolution of evolvability. Ann N Y Acad Sci 870:146-155. Rakic P , Cavines s V J r (1995 ) Cortica l development : view fro m neurologica l mutant s tw o decades later. Neuron 14:1101-1104 . Reese B E (1996 ) Th e chronotopi c reorderin g of opti c axons. Perspect De v Neurobiol 3:233-242 . Reh T (1987 ) Cell-specific regulation of neuronal production in the larva l frog retina. J Neurosci 7:3317-3324. Reh TA , Levin e E M (1998 ) Multipotentia l ste m cell s and progenitor s i n th e vertebrat e retina . J Neuro biol 36:206-220 .
Rice DS , Curra n T (2001 ) Rol e o f the reeli n signaling pathway i n centra l nervou s syste m development . Annu Rev Neurosci 24:1005-1039. Richardson GA , Day NL, Goldschmidt L (1995) Prena tal alcohol , marijuana , an d tobacc o use : infan t mental an d moto r development. Neurotoxico l Teratol 17:479-487 . Riley EP (1990 ) The long-ter m behaviora l effect s o f prenatal alcoho l exposur e i n rats . Alcoho l Cli n Ex p Res 14:670-673 . Roe AW, Pallas SL, Hah m JO , Su r M (1990 ) A map o f visual spac e induce d i n primar y auditor y cortex. Science 250:818-820. Roe AW, Pallas SL, Kwon YH, Su r M (1992 ) Visual projections route d t o th e auditor y pathway in ferrets : receptive field s o f visual neuron s i n primar y auditory cortex. J Neurosci 12:3651-3664 . Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM , Dod d } (1994) Floo r plat e an d moto r neuron inductio n b y vhh-1, a vertebrat e homolo g of hedgehog expresse d b y the notochord . Cel l 76 : 761-775. Rosenweig MR, Leiman AL, Breedlove M (1999 ) Biological Psychology. Sinaue r Associates, Sunderland, MA. Salinger WL , Ladro w P , Wheeler C (2003 ) Behavioral phenotype o f th e reele r mutan t mouse : effect s o f RELN gene dosage and social isolation. Behav Neurosci 117:1257-1275 . Sapolsky RM , Kre y LC , McEwe n B S (1986 ) Th e neu roendocrinology of stress and aging : th e glucocorti coid cascade hypothesis. Endocrinol Rev 7:284-301. Schlaggar BL, O'Leary DD (1991 ) Potential of visual cortex to develop an arra y of functional unit s unique to somatosensory cortex. Science 252:1556-1560 . Schmidt J T (1985) Formation o f retinotopic connections : selective stabilization by an activity-dependent mechanism. Cell Mol Neurobiol 5:65-84. Seil FJ, Kelly }M 3rd, Leiman AL (1974) Anatomical organization o f cerebra l neocorte x i n tissu e culture . Exp Neurol 45:435-450. Smart JL, Dobbing J (1977) Increased thirst and hunge r in adul t rats undernourished as infants: a n alterna tive explanation. Br J Nutr 37:421-429. Sood B , Delaney-Blac k V , Covingto n C , Nordstrom Klee B , Age r } , Templin T , Janiss e J , Martie r S , Sokol R J (2001 ) Prenata l alcoho l exposur e an d childhood behavio r a t ag e 6 t o 7 years : I . dose response effect . Pediatric s 108:E34 . Sperry R W (1963 ) Chemoaffinit y i n th e orderl y growth of nerve fiber patterns and thei r connections . Pro c Nati Acad Sci USA 50:703-710. Stephens T D (1988 ) Propose d mechanism s o f action i n thalidomide embryopathy . Teratology 38:229—239 .
120 NORMA L DEVELOPMENT Stephens TD , Fillmor e B J (2000 ) Hypothesis : thalido mide embryopathy-proposed mechanis m o f action . Teratology 61:189-195. Streissguth AP , Bar r HM , Marti n DC , Herma n C S (1980) Effect s o f materna l alcohol , nicotine , an d caffeine us e durin g pregnanc y o n infan t menta l and moto r developmen t a t eigh t months . Alcoho l Clin Exp Res 4:152-164. Streissguth AP , O'Malley K (2000 ) Neuropsychiatri e im plications and long-ter m consequence s o f fetal alco hol spectrum disorders. Semin Clin Neuropsychiatr y 5:177-190. Swillen A , Devriendt K , Legiu s E , Prinzi e P , Vogel s A, Ghesquiere P, Fryns JP (1999) The behavioura l phe notype in velo-cardio-facial syndrom e (VCFS) : fro m infancy to adolescence. Gene t Conns 10:79-88. Szathmâry E, Ferenc J, Csaba P (2001) Can gene s explain biological complexity? Science 292:1315—1316 . Vallortigara G, Roger s LJ (2005) Survival with a n asym metrical brain : advantage s an d disadvantage s o f cerebral lateralization . Behav Brai n Sc i 28 : 575 — 633. Viggedal G , Lundal v E , Carlsso n G , Kjellme r I (2004 ) Neuropsychological follow-up int o young adulthoo d
of term infant s bor n smal l fo r gestationa l age . Me d SciMonitlO:CR8-CR16. von Melchne r L , Pallas SL, Sur M (2000 ) Visual behaviour mediate d b y retinal projections directed t o th e auditory pathway. Nature 404:871-876. Whitfield J B (1997) Meta-analysi s o f the effect s o f alco hol dehydrogenas e genotyp e o n alcoho l depend ence an d alcoholi c live r disease . Alcoho l Alcoho l 32:613-619. Wolpert L (1976) Mechanisms of limb development an d malformation. B r Med Bul l 32:65-70. (1999) Vertebrate lim b developmen t an d malfor mations. Pediat r Re s 46:247-254. Wong RO L (1999 ) Retina l wave s an d visua l syste m de velopment. Annu Re v Neurosci 22:29—47 . Woo TU, Niedere r JK , Finla y BL (1996) Cortica l targe t depletion an d th e developin g latera l gemelliate nu cleus: implication s fo r trophic dependence . Cere b Cortex 6:446-456. Xiong M, Finlay BL (1996) What do developmental map ping rules optimize? Prog Brain Res 112:350-361. Yang TS, She n Chen g CC , Wan g C M (1977 ) A survey of thalidomide embryopath y i n Taiwan . Taiwan Yi XueHui Za Zhi 76:546-562.
II ETHANOL-AFFECTED DEVELOPMENT
This page intentionally left blank
8
Prenatal Alcohol Exposure and Human Development Claire D. Coles
Although a relationshi p betwee n materna l drinkin g and reproductiv e problem s ha d bee n suspecte d lon g ago (Warner and Rosett , 1975 ; Abel, 1984) , it was the description o f fetal alcoho l syndrom e (FAS ) in 197 3 (Jones and Smith , 1973 ; Jones et al, 1973 ) that initi ated comprehensiv e studie s o f the effect s o f prenatal alcohol exposur e o n huma n development . Researc h over th e las t 3 0 years ha s confirme d the origina l observations that affected childre n sho w growth retardation; birt h defects , particularly a characteristi c facia l dysmorphia; and behaviora l deficits indicative of central nervous system (CNS) damag e (Fig . 8.1). Animal models as well as epidemiological an d clinica l studies in human s hav e provide d evidence o f the effect s o n both physica l an d behaviora l characteristic s o f ex posed offspring , bu t th e CN S effect s an d thei r per sonal and social consequences hav e received the mos t study in human samples . There have been a number of comprehensive reviews of the result s of prenatal alcohol exposur e on development , particularl y in earl y childhood (e.g. , Coles , 1992 , Stratto n e t al. , 1996 ;
Streissguth, 1997 ; Mattso n an d Riley , 1998 ; U S De partment o f Health an d Huma n Services , 2000). Recently, publication s i n thi s are a hav e increase d s o much tha t it is now impossible to review the entir e literature in a single chapter. For that reason, this chap ter refer s briefl y t o earlie r findings and deal s i n mor e detail with recent studies. A decad e ago , th e followin g area s wer e amon g those tha t seeme d t o hav e th e mos t researc h poten tial: threshold effects , neuroimaging , long-term development i n affecte d individuals , specific versus global effects, an d wha t i s now calle d "translation " amon g the differen t discipline s studying this problem (Coles , 1992). These areas have remained active. In addition, several other issues have come to the fore. With better diagnosis and identificatio n of affected individual s by professionals an d increasin g demand fo r services and resources by families, th e nee d fo r improving education an d remediatio n o f affecte d individual s has be come evident . Also , a s clinica l an d longitudina l research cohort s hav e matured , differen t area s o f
123
124 ETHANOL-AFFECTE D DEVELOPMENT
FIGURE 8- 1 Rang e o f effects o f prenatal alcoho l exposur e o n th e centra l ner vous system.
behavior hav e becom e salient . Fo r instance , socia l and adaptiv e function s hav e bee n identifie d a s im paired i n individual s with FA S (Kell y e t al. , 2001) , and patient s fro m clinica l sample s ar e reporte d t o have a hig h frequenc y o f lega l an d menta l healt h problems (Streissgut h et al, 1996 ; Fam y et al, 1998 , Fast an d Conroy , 2004) . Thes e issue s ar e discusse d below, i n additio n t o recen t researc h o n neurodevel opmental outcomes in affected individuals .
METHODOLOGICAL CONSIDERATIONS
Despite 3 0 year s o f study , ther e remai n significan t disagreements i n the literatur e an d amon g th e pub lic and man y professionals about the effect s o f prenatal alcoho l exposure . Some of these discrepancie s can be accounte d fo r b y difference s i n methodologie s used to study this phenomenon. Before undertaking a review o f the researc h literatur e i n thi s area, i t is important t o understan d ho w methodolog y affect s out comes an d t o acknowledg e tha t thes e issue s are no t specific t o this field. It i s obviousl y impossible , ethicall y an d practi cally, to carry out tru e experimenta l studie s of the effects o f prenatal alcohol exposur e o n huma n growth , behavior, and cognition . For those aspects o f development tha t canno t b e modele d i n anima l studies , research mus t b e don e i n eithe r clinica l sample s o f already affected individual s o r i n cohort s of offsprin g
of wome n wh o drin k durin g pregnancy . Eithe r ap proach ha s rea l value an d rea l difficulties . A s experimental contro l o f the "independent " variabl e i s no t possible, suc h studie s mus t b e correlationa l an d de scriptive. In addition, it is usually not possibl e to con trol completely the confounder s o r effect modifier s in such situations . When conductin g studie s with sam ples o f individual s draw n fro m clinica l settings , re searchers mus t tak e int o accoun t systemati c biase s and confounders . Childre n diagnose d wit h FA S or other effect s o f prenatal alcoho l exposur e come to th e attention o f professionals because o f problems i n be havior or development. Thus, it is inappropriate to use such sample s t o evaluate the relationshi p betwee n al cohol exposure and these particular outcomes. Nevertheless, stud y o f suc h childre n ma y b e valuabl e fo r other researc h purposes . Also, many clinicall y identified alcohol-affecte d childre n hav e negativ e earl y caregiving histories resulting from materna l substanc e abuse, out-of-hom e placement , an d othe r caregiving failures, an d researc h wit h suc h group s mus t includ e similar contras t group s to avoi d confusing the effect s of pre- and postnata l environment s on th e outcome s of interest. In addition to being very expensive and tim e con suming, exposur e samples also have methodological limitations. Wome n wh o drin k durin g pregnanc y usually also smoke tobacco and ma y us e other drugs (Day e t al , 1993 ) (se e Chapte r 19) , introducin g other confounder s into the research . They may have
PRENATAL ALCOHO L EXPOSUR E AND HUMA N DEVELOPMEN T 12 5
a geneti c predispositio n to alcoholism an d associate d mental healt h problem s (Zucke r et al. , 1995) , have a family histor y characterized b y substance us e an d it s social correlates, and b e selected fro m a low socioeconomic status (SES) environment , a s such wome n ar e more likely to be availabl e for recruitment int o exposure studies. Another limitatio n o f the use of exposure samples i s tha t mos t sampl e population s ar e com posed o f wome n drinkin g i n th e lo w t o moderat e range (e.g. , Da y et al, 1993 ; Jacobso n e t al, 1998) . Although i t is valuable to have informatio n abou t th e effects o f lower amounts of ethanol exposure. The rel ative absence o f exposure studies of infants of heavier drinkers i s du e i n som e par t t o th e difficult y i n re cruiting such women . For these reasons , when tryin g to understan d th e effect o f alcohol exposur e on offsprin g development , it i s important to tak e int o consideratio n th e charac teristics o f the researc h sampl e an d th e resultan t im plications. An y singl e stud y ma y no t b e sufficien t to understan d thes e teratogeni c effects , wherea s th e body of literature as a whole ca n provid e considerable insight.
THRESHOLDS AN D DOSE-RESPONSE EFFECTS OF PRENATAL ALCOHOL EXPOSUR E
There i s a great deal o f interest i n th e questio n o f th e "dose" o f alcoho l necessar y t o caus e negativ e out comes. Fo r public health reasons, i t would be valuable to kno w i f there i s a "safe " level of prenatal exposure. This is a complicated question . Some researcher s posit that the construc t of threshold i s not usefu l becaus e i t oversimplifies th e rea l relationship between th e terato gen an d th e multipl e outcome s tha t ar e measure d (Sampson et al., 2000). Sampson an d colleague s argue in their review that there are no meaningful difference s in behavior , standard scores, academic outcomes , an d behavior betwee n thos e individual s labele d a s having FAS and thos e characterize d as having alcohol-related neurodevelopment disorder s (ARND) . The y believ e that behavioral outcome doe s not vary with variation in physical teratogeni c effects . I n addition , thes e re searchers present evidenc e from thei r large prospectiv e exposure stud y suggestin g tha t th e relationshi p be tween prenatal exposur e and neurodevelopmental outcomes i s monotonie, o r without meaningfu l threshol d
effects "whe n dos e an d behaviora l effect s ar e quanti fied appropriately" (p. 421). Other investigator s have identifie d threshol d ef fects in their samples. Jacobson and colleague s (1998) found tha t aspects of infant cognition sho w threshol d effects. A t 2 6 month s i n thei r cohort , psychomoto r functioning an d aspect s o f fin e moto r functionin g are affecte d onl y i n th e offsprin g o f heavie r drinker s (Kaplin-Estrin e t al, 1999) , althoug h non e o f these children exhibi t physica l dysmorphia . I n anothe r sample, Da y and colleague s (1991 , 1999 , 2002 ) show that growt h i s affecte d i n a dose—respons e fashion . Growth i s more affecte d i n individual s whose moth ers drank most heavily (>1 drink/day); they average 14 pounds les s tha n controls . Simila r relationship s ar e evident fo r cognitio n an d achievement . Whe n thi s cohort was 6 years old, a threshold o f exposure to on e drink dail y i s foun d fo r academi c achievemen t i n reading and spelling , whereas effects o n mathematic s skills are linear (Goldschmidt et al., 1996) . In addition, as discussed below, the morphologica l outcomes characteristi c of prenatal alcoho l exposur e appear t o b e affecte d i n a dose-respons e manne r (Lynch e t al. , 2004) . All of these report s sugges t that heavier drinkin g i s associate d wit h greate r physica l and neurodevelopmenta l effects . Th e exten t to which results can b e describe d a s monotonie or reflective of "thresholds" i n alcoho l us e ma y depend o n th e typ e of sample s recruite d an d th e amoun t o f exposure i n the sampl e a s wel l a s b y th e method s use d i n th e study and i n the data analysis.
PHYSICAL EFFECTS O F PRENATA L ALCOHOL EXPOSUR E
Facial Dysmorphi a The facia l dysmorphi a associate d wit h heav y expo sure is one o f the thre e diagnostic features use d to define FAS . These features include midface hypoplasia (anteverted nares) , shor t palpebra i fissures, and flattened o r indistinc t philtrtim , usuall y associated wit h a thi n o r flattene d uppe r vermillio n border . Othe r minor anomalie s als o ar e commonl y foun d i n af fected children , includin g epicanthal folds, lo w nasal bridge, ea r anomalie s (lo w set and rotated) , an d mi crognathia. The craniofacia l anomalie s ar e believe d to be the resul t of disturbances o f cell migration dur -
126 ETHANOL-AFFECTE D DEVELOPMENT ing organogenesi s (U S Departmen t o f Healt h an d Human Services , 2000; see Chapter 17) . In practice, assessment of these anomalies is complicated b y variance associate d wit h ag e an d ethnicity . Whe n af fected individual s are followe d ove r childhoo d int o early adulthood, som e o f the individua l features tha t are salien t durin g infanc y an d earl y childhoo d be come harde r t o identify , particularl y afte r pubert y (Streissguth, 1997) . Several differen t "systems " of diagnosis are use d i n clinical diagnosi s an d researc h o n FAS . Astle y an d Clarren (2001 ) hav e propose d a syste m tha t focuse s on "sentine l features, " whic h the y hav e identifie d through analysi s of a large sample o f children wh o applied for diagnostic services. In this large clinical sample, severa l facia l feature s hav e bee n foun d t o b e associated with the diagnosi s at each stag e of development. Thes e feature s ar e (1 ) a n absen t o r indistinc t philthrum, (2 ) a thinne d uppe r vermillion , an d (3) shortene d palpebra i fissures . I n thei r four-digi t code metho d for diagnosis, these facia l feature s consti tute on e dimensio n necessar y fo r diagnosi s (Astley , 2004). Othe r dimension s ar e growt h (les s than thir d percentile), materna l alcoho l use , an d evidenc e o f CNS involvement . The Collaborativ e Initiativ e o n Feta l Alcoho l Spectrum Disorders , sponsore d b y the Nationa l Insti tute o n Alcoholis m an d Alcoho l Abuse , ha s devel oped a Dysmorphia Cor e Physica l Exam that i s used in internationa l studie s to diagnosis participants of all ages and ethnicitie s (Ma y et al, 2000 ; Hoym e e t al, 2005). Thi s method , develope d b y Jone s an d col leagues (1973) , i s based o n th e origina l description s of FAS and i s a modification o f the criteri a offere d b y the Institut e of Medicine (Stratto n et al, 1996) . A s in other systems , th e chil d i s measure d an d examine d for physica l an d facia l anomalies , a s wel l a s height , weight, head circumference , and heart and neurolog ical problems . The n a determinatio n i s mad e a s t o whether th e chil d ca n b e rate d a s (1 ) havin g FAS , (2) no t having FAS, or (3) deferred. The classification "deferred" indicate s tha t som e characteristic s ar e present bu t tha t th e diagnosi s cannot b e mad e with out mor e informatio n (e.g., neurodevelopmenta l tes t results). Thi s methodolog y ha s bee n use d i n Russi a and Sout h Afric a a s well as the Unite d State s (Hoym e et al, 2005). Coles an d colleague s (Fernhoff e t al., 1980 ; Black ston e t al , 2004 ; Lync h e t al. , 2004 ) hav e use d a
slightly differen t methodology . I n a longitudinall y followed exposur e sample report , a dose-response pattern between alcoho l exposur e and physical characteristics can be identified both in the neonatal perio d an d later i n development . Th e sam e dysmorphi c features, however, ar e no t alway s salien t ove r development . Rather, it is the total "dysmorphia score" that is reliable from infanc y through middle adolescence. Mor e longi tudinal researc h is needed t o determine th e continuit y of physica l characteristics , particularl y facia l anom alies, to provide guidelines for making the diagnosi s in older childre n an d adults . This kind of research i s important als o because ther e may be ethnic differences in facial characteristics tha t can affect diagnosis. Finally, it is necessar y t o us e a longitudina l approac h becaus e use o f clinical sample s i n a cohor t desig n exaggerates the salienc e o f feature s tha t ar e expecte d t o b e par t of th e criteri a an d ignore s individual s whose features are not consistent with these expectations . Effect of Alcohol Exposur e on Growt h Growth retardatio n i s useful fo r the identificatio n of FAS during infanc y an d th e preschoo l period , bu t i t is les s consistentl y eviden t i n olde r childre n an d youth (Streissguth , 1997 ; Cole s et al, 2002). It is difficult t o evaluat e thi s facto r i n clinica l sample s because th e argumen t i s necessaril y circular . Thi s criterion i s use d i n makin g a clinica l diagnosis , hence suc h individual s ar e necessaril y growt h re tarded. Expose d individual s who presen t fo r diagno sis do no t receiv e i t i f they ar e no t growt h retarded . Long-term follow-u p o f childre n identifie d earl y i n life i s necessary to confir m persistent growt h deficits . For thi s reason , exposur e studie s provid e a bette r method fo r evaluatio n o f thi s outcome . Generally , children expose d t o alcohol appea r to be statistically smaller tha n control s o r tha n nationa l norm s (Da y et al, 1999 , 2002) . Ofte n mean s ar e withi n norma l ranges, however , s o althoug h thi s characteristi c i s statistically "real, " i t ma y o r ma y no t b e o f clinical significance, an d i t is not necessaril y helpful in iden tification o f specifi c individual s if prenata l alcoho l exposure i s no t known . I t i s no t ye t establishe d whether lowe r birt h weight , height , an d hea d cir cumference associate d wit h prenata l alcoho l expo sure (and , perhaps, associate d polydru g use) ar e ris k factors fo r other condition s occurring later in life .
PRENATAL ALCOHOL EXPOSUR E AND HUMA N DEVELOPMEN T 12 7 NEURODEVELOPMENTAL EFFECT S
OF PRENATAL ALCOHOL EXPOSURE
Effects on Brain Structure : Information fro m Neuroimaging studies The followin g sectio n briefl y review s neuroimagin g studies o f the effect s o f prenatal alcoho l exposur e o n brain structure. Brain morphology could b e described as a "physica l effect " o f prenata l exposure , a s well ; a fulle r discussio n o f thi s subjec t i s provide d i n Chapter 9 . Both huma n studie s of behavior and anima l mod els leave no doub t tha t alcoho l i s a teratogen that has toxic effects o n the brain . Until recently, it was impossible t o evaluat e directl y it s effec t o n huma n brai n structure an d functioning , but i n the las t decade, im aging studie s o f alcohol-affecte d patient s hav e bee n conducted. Severa l researc h group s usin g clinica l samples o f patients with feta l alcoho l spectrum disor ders (FASD ) hav e reporte d effect s o n th e brai n i n older childre n an d adults . Mos t o f thes e publishe d studies hav e use d structura l magneti c resonanc e im aging (sMRI ) an d hav e focuse d o n morphology . Sev eral studie s (Bookstei n e t al , 2001 , 2002 ; Sowel l et al , 200lb ) hav e correlate d structura l outcome s with neurobehaviora l data. Although functiona l magnetic resonanc e imagin g (fMRI ) i s being develope d as a researc h too l i n thi s area , n o studie s hav e been published a s of this writing. In sMR I studies , microcephal y ha s been th e mos t consistent finding , wit h FAS patients having a general reduction i n brai n volum e compare d t o tha t o f con trast groups (Riley et al, 1995 ; Archibald et al, 2001; Sowell e t al , 2001a , 2001b ; Bhatar a e t al , 2002) . More specifically , relativ e reductions i n whit e matte r have been noted th e corpus callosum and the parietal lobe (Riikone n e t al, 1999 ; Archibal d e t al , 2001 ; Sowell et al, 200lb ) in patients with FAS. The corpu s callosum ha s bee n a focu s o f interes t becaus e i t i s a midline structure an d i s readily identifiable. Agenesis and hypoplasi a o f thi s structur e hav e bee n reporte d repeatedly, particularly in extremel y dysmorphic individuals (Rile y e t al , 1995 ; Johnso n e t al , 1996 ; Swayze e t al , 1997 ; Riikone n e t al , 1999 ; Sowel l et al , 2001b ; Bhatar a e t al , 2002) . Sowel l an d col leagues (20 0 lb) reporte d reduction s an d displace -
ments i n th e anterio r regio n o f the corpu s callosu m as wel l a s i n th e splenium , whic h correlate d wit h deficits i n verba l learnin g an d memor y i n th e sam e patients. Bookstei n an d colleague s (2001 , 2002 ) re ported tha t ther e i s greater variabilit y in th e shap e o f the corpu s callosu m amon g alcohol-affecte d patient s and tha t thicke r o r thinne r structure s ar e relate d t o specific pattern s o f neurodevelopmenta l deficits : a thicker corpu s callosu m i s associated wit h deficit s i n executive functioning , whereas a thinner on e accom panies motor deficits . The cerebellu m ca n be affecte d b y prenatal expo sure t o ethanol . I t i s smalle r i n childre n wit h FA S (Riikonen e t al, 1999 ; Autti-Ram o e t al, 2002) , particularly i n th e anterio r vermis (lobule s I-V ) (Sowel l et al, 1996) . These findings are supported b y animal studies (e.g. , Goodlet t an d Lundahl , 1996) . Man y studies report other specifi c deficits i n CNS morphol ogy, although non e a s consistently as those o f the cor pus callosum an d the cerebellum . Studies o n th e structura l effec t o f prenata l expo sure on the brai n indicate that significant morphological change s ca n b e found . I t i s no t clear , however , that a specific area of deficit i s present i n all cases. This finding suggest s tha t th e teratogeni c effec t i s mor e general. Severa l candidate s fo r further researc h hav e emerged fro m thes e data , bu t eve n th e corpu s callo sum, whic h ha s been implicate d frequently , does no t show specific macrostructural patterns relate d to alcohol exposur e across all studies. For instance, althoug h callosal agenesis has been reporte d (Rile y et al, 1995 ; Johnson et al, 1996 ; Bhatar a et al, 2002) , other stud ies fin d thinnin g o f these area s o r posterio r displace ment (Sowell et al, 200lb) , and yet other studie s find macrostructural anomalie s onl y i n a minority of individuals with FAS (Autti-Ramo et al, 2002) . This situation i s further complicate d b y a stud y i n nonhuma n primates showin g that repeated , episodi c exposur e t o ethanol durin g pregnancy can result in an increas e i n the siz e o f the corpu s callosum , especiall y th e ante rior segmen t (Mille r e t al , 1999) . Thes e outcome s suggest that, particularl y in individual s whose alcoho l effects ar e subtle, gross anatomical studie s may not b e observable. A complementar y imagin g techniqu e t o sMR I i s diffusion tenso r imagin g (DTI) , whic h allow s th e measurement o f whit e matte r integrity . I n FA S pa tients, sMR I studie s frequentl y repor t effect s o n in tegrity o f whit e matte r tract s (Johnso n e t al , 1996 ;
128 ETHANOL-AFFECTE D DEVELOPMEN T Swayze e t al , 1997 ; Clar k e t al , 2000 ; Archibal d et al, 2001; Sowell et al, 2001b; Bhatara et al, 2002). Through DTI , M a an d colleague s (2005 ) foun d tha t fractional anistrop y in th e gen u an d spleniu m o f th e corpus callosum o f alcohol-affected youn g adults was significantly lowe r than tha t of age-matched controls . This suggest s a n associatio n o f teratogenic exposur e and white matter integrity. Although i n a n earl y stag e o f exploration , neu roimaging procedure s hol d promis e fo r understand ing th e teratogeni c effect s o f prenata l exposure . When fMR I studie s ar e publishe d an d functiona l outcomes ar e correlate d wit h behaviora l outcomes , knowledge o f structure-function-behavio r relation ships in these patient s will be greatly advanced. Motor and Neuromotor Effects Alcohol effect s o n psychomoto r functio n hav e bee n observed regularl y i n infant s an d toddler s (Cole s et al, 1985 ; Coles, 1993 ; Jacobson et al, 1993 ; see discussion o f Jacobson e t al., 1988 , above) . Problems i n motor functionin g in older children ar e less well doc umented bu t ar e reporte d (Aronso n e t al. , 1985 ; Kyllerman e t al, 1985 ; Janzen e t al., 1995) . Descrip tive studie s o f childre n wit h FA S consistentl y not e deficits i n motor skills and coordinatio n (Mattso n an d Riley, 1998) . Among quasi-experimenta l researc h de signs with children diagnose d with FAS are deficit s i n visual-motor integratio n (Conry , 1990 ; Cole s e t al. , 1991; Mattso n e t al, 1993 ) an d fine-moto r strengt h and coordinatio n (Bar r e t al. , 1990 ; Conry , 1990) . Kyllerman and colleague s (1985 ) found tha t childre n (mean ag e 70 months) bor n t o women wh o abuse alcohol ha d lowe r moto r developmen t score s an d di d more poorl y on test s o f motor coordinatio n tha n di d those i n a comparison grou p who were not prenatally exposed. Children wit h FAS also show deficits i n balance (Marcus , 1987 ; Roebuc k e t al, 1998a , 1998b) , increased clumsines s (Steinhause n e t al. , 1982) , ab normal gai t (Marcus, 1987 ; Conn-Blower , 1991 ) an d tremors (Aronso n e t al, 1985 ; Marcus , 1987) . Roe buck an d colleague s (Roebuc k e t al, 1998a , 1998b ) suggest tha t damag e t o th e cerebellu m fro m heav y prenatal alcohol exposur e may interfere with efficien t use o f visua l an d somatosensor y syste m cues . Usin g electromyography, thes e researcher s conclude d tha t this defici t wa s th e resul t o f damag e t o th e CN S rather tha n t o the periphera l nervou s system control ling muscles or vestibular system.
Peripheral systems are affected b y prenatal exposure to alcohol . Avari a an d colleague s (2003 ) examine d nerve conductio n i n median , ulnar , peroneal , an d tibial nerve s i n newborn s wh o wer e re-examine d a s toddlers at 1 2 and 1 4 months. Ulna r and tibia l moto r nerve velocitie s ar e slowe r an d dista l amplitude s are lowe r i n ethanol-expose d children . The observe d changes differe d fro m thos e i n alcoholi c periphera l neuropathy o f adult s an d reflecte d bot h myeli n in volvement (reduced velocity) and axona l damage (de creased amplitude) . In contrast, assessment of sensory nerve conductio n doe s no t identif y significan t differ ences betwee n alcohol-expose d infant s an d thos e i n the contro l group . N o clinica l correlates are noted i n either group of infants. Although researc h i n thi s are a i s limited , thes e studies and persisten t clinical report s suggest that further exploratio n o f effect s o n moto r an d sensory / motor developmen t i s warranted. Deficits in these areas hav e a significan t effec t o n earl y life, potentiall y affecting physical , cognitive, an d socia l development . In addition , earl y motor deficit s ar e ofte n correlate d with specifi c learnin g an d academi c problem s a t school ag e and later . Global and Specific Effects o n Neurocognitive Functioning Global Cognitive Effects Global intellectua l deficit s ar e th e primar y neurodevelopmental outcom e associate d wit h prenata l alco hol exposure . Thi s i s consisten t wit h th e result s o f other earl y neurologica l insult s that , contrar y t o th e adult pattern , ten d t o b e mor e globa l tha n specific . Deficits i n genera l intellectua l functio n (tha t is , scores on intelligence o r other abilit y tests) have been observed i n sampl e population s compose d o f chil dren diagnose d wit h FA S and i n thos e draw n fro m longitudinal studies of heavy gestational alcohol expo sure. Children meetin g the diagnosti c criteria for FAS show a relatively broad rang e of intellectual outcome s with sampl e estimate s rangin g fro m sever e intellec tual deficienc y to averag e levels o f functioning (e.g. , IQs rang e fro m 2 0 t o 120 ; Mattso n an d Riley , 1998 ; and fro m 1 6 to 105 ; Streissgut h e t al, 1978) . Mea n performance o n standardized measures of intellectual function typicall y hav e bee n i n th e borderlin e t o mildly deficien t rang e (IQ s rang e fro m 6 5 t o 75 ) (Stratton e t al. , 1996) . I n larg e retrospectiv e an d
PRENATAL ALCOHOL EXPOSURE AND HUMA N DEVELOPMEN T 12 9 prospective studies , hal f o f th e childre n wit h FA S meet criteri a for mental retardation , an I Q < 70 on a standardized measur e o f intelligenc e (Abel , 1998) . There has also been discussio n of the effec t o f prenatal exposur e to low or moderate level s of alcohol an d most researc h studie s hav e reporte d tha t i n suc h co horts there is a decrement o f several IQ points (4 to 6) attributable t o th e exposur e (e.g. , Streissgut h e t al. , 1993). Specific Cognitive Effects In additio n t o moto r problems , function s tha t hav e been examined an d appea r t o be affecte d b y prenatal alcohol exposur e includ e specifi c deficit s i n visual spatial processing, arousal and regulatio n of attention, w;orking memory , plannin g an d organizationa l skills, mathematical achievement , an d behaviora l regula tion. In reading the literature , it is important to examine th e exten t t o whic h globa l deficit s hav e bee n taken into consideration i n the interpretatio n o f "specific" deficit s i n outcome . Individual s showing mental retardatio n o r borderlin e intellectua l functionin g (IQ<85) canno t b e compare d t o norma l control s (IQ=100) o n specifi c neurocognitiv e task s withou t accounting fo r global deficits . Those studies that hav e controlled fo r overall IQ o r that have ascertained appropriate contras t group s ar e mor e convincin g tha n those that have not. Visual-Spatial Processing . Evidenc e fo r a specifi c deficit i n visual-spatial processin g (Spoh r et al., 1993 ; Ueckerer an d Nadel , 1996 ; Cole s e t al , 2002 ) ha s been found . Mattso n an d Rile y (1998 ) foun d tha t mean verba l I Q wa s 61.0 0 ±12.82, wherea s mea n performance I Q wa s 55.3 3 ±13.45. Thi s patter n i s similar t o tha t see n i n individual s wit h nonverba l learning disabilities (Rourke, 1995) . Deficit s in visual memory (Carmichael-Olso n e t al. , 1998 ; Kaeming k and Paquette, 1999 ; Platzma n et al., 2001), visual perceptual skill s (Steinhause n e t al. , 1982 ; Aronso n et al, 1985 ; Morse et al, 1992; Aronson and Hagberg, 1998), visual-moto r integratio n (Janze n e t al. , 1995 ; Mattson e t al, 1998 ; Kaeming k and Paquette , 1999) , and spatia l memory (Ueckerer and Nadel , 1998 ) have been reported . A specific deficit i n visua l processing, which is independent of the global intellectual deficit, is suggeste d by findings fro m a cohor t of alcohol exposed individual s seen durin g adolescenc e (Cole s et al, 2002). In this study, visual and auditory sustained
attention wer e compare d and adolescent s wit h dys morphic (i.e. , FAS ) and nondysmorphi c FAS D wer e less efficien t a t processin g visua l tha n auditor y in formation. Sensitivit y t o th e visua l stimul i wa s sig nificantly lowe r i n alcohol-affecte d youth, a findin g suggesting tha t th e neurocognitiv e impac t o f alcohol exposure i s more significan t fo r task s that involv e visual stimuli than fo r auditory stimuli. There ar e inconsistencie s i n reporte d outcome s on th e effect s o f ethanol o n sensor y processing . No t all studies have found a specific or consisten t impairment i n visua l o r spatia l processin g o f information , and som e repor t that auditory information processing is mor e impaire d (e.g. , Janze n e t al. , 1995 ; Kern s et al, 1997; Conno r et al, 1999) . Certainly, there may be a real difference a s a function o f exposure in differ ent group s o f individuals ; however, methodologica l differences amon g studie s an d i n analysi s strategies may also contribute t o the variability . On th e basi s of a revie w of retrospective and prospectiv e longitudinal studies and individua l case studies, Mattson an d Riley (1998) sugges t that relativ e deficits in visua l an d ver bal learning are equivalent. They compared studie s of children wit h FASD and studie s of children with low to moderate alcohol exposur e for whom n o diagnosis could b e made . Thes e group s o f children ma y have different pattern s o f deficits . Studie s of diagnosed in dividuals also vary in the exten t to which they attemp t to equat e th e discriminativ e powe r o f th e task s b y modality (auditor y or visual ) an d whethe r the y con trol fo r overal l ability in th e analyses . Differences in SES may also contribute t o discrepancies i n outcome across studies. Children wit h FAS from lo w SES environments hav e verba l IQ s tha t ar e lowe r tha n thei r performance IQ s (Conry , 1990 ; Kern s e t al, 1997) . Conry (1990) , wh o include d a lo w SE S contras t group, conclude d afte r examinin g discrepancy score s that "alcohol-involvemen t appeare d t o hav e greate r effects o n visual/spatia l problem solvin g than o n ver bal effects " (p . 654). Arousal an d Attention. Th e regulatio n of attention in prenatall y expose d childre n ha s bee n a matte r o f persistent interes t (Kopera-Fry e et al., 1997) . S o com monly i s attentio n defici t hyperactivit y disorde r (ADHD) diagnose d i n childre n wit h FA S and associ ated disorder s that som e hav e suggeste d tha t ADHD is a hallmar k o f a behaviora l phenotyp e associate d with exposure (O'Malley and Nanson, 2002). Leaving aside th e issu e of the existenc e o f such a phenotype ,
130 ETHANOL-AFFECTE D DEVELOPMENT the regulatio n o f attentio n i s o f grea t importance , as master y of arousa l and attentio n i s a prerequisit e for learnin g an d socia l developmen t (MacKintosh , 1975) and thus has the potential t o mediate a number of long-ter m neurodevelopmenta l outcomes . Man y children wit h FAS have difficulties wit h regulation of arousal; thi s proble m ma y b e associate d wit h thei r ADHD diagnosis (Streissguth e t al., 1986 , 1995 ; Nanson an d Hiscock , 1990 ; Kopera-Fry e e t al , 1997 ; Oesterheld an d Wilson , 1997 ) o r other alteration s i n attention (Streissgut h et al, 1984; Cole s et al, 1997) . Investigations int o th e effec t o f prenata l alcoho l exposure o n attentiona l regulatio n tha t hav e use d prospective longitudina l design s hav e produce d in consistent results . Streissgut h an d colleague s (1984 ) found tha t prenata l alcoho l exposur e resulte d i n more errors and slowe r reaction times on a task of vigilance an d sustaine d attention i n preschoo l childre n with moderat e alcoho l exposure . I n the sam e cohort , observations o f children' s behavio r b y traine d ob servers an d rating s b y parent s sugges t tha t expose d children ar e les s attentive, less compliant, an d mor e fidgety (Landesman-Dwyer and Ragozin, 1981) . These results hav e no t alway s bee n confirme d b y othe r prospective studie s using exposure samples (i.e. , Boyd et al, 1991; Cole s étal, 1997) . Brown and colleagues (1991) als o sho w an associatio n betwee n gestationa l alcohol exposur e and regulation of attention, but they attribute their results to the effect s o f the postnatal en vironment. A four-factor, multidimensiona l mode l o f attentional regulatio n (Mirsk y et al, 1991 ) wa s used to asses s 7-year-old s prenatall y expose d t o alcoho l (Coles et al., 1997). These children diffe r significantl y from a contras t grou p o f childre n diagnose d wit h ADHD i n thei r abilit y t o attend . Alcohol-affecte d children hav e mor e difficult y encodin g informatio n and in flexibility in problem solving, but they are similar t o control s i n thei r abilitie s to focu s an d sustai n attention. Th e childre n diagnose d wit h ADHD have a contrasting pattern. Hypothesizing that earl y difference i n arousa l levels note d i n alcohol-expose d infant s (Cole s e t al. , 1985) might be associated wit h later problems i n self regulation and attention , Kable and Cole s (2004 ) further examine d th e relationshi p o f alcoho l exposur e and informatio n processing i n a differen t sampl e o f high-risk, low-birth-weigh t infant s wh o ha d bee n ex posed t o moderate amount s o f alcohol. Behaviorally , at 6 and 1 2 months, these infant s sho w small but significant developmenta l difference s i n menta l an d
psychomotor development a s well as in behavior reg ulation (Coles et al., 2000). When they were 6 months old, th e infants ' attentio n wa s evaluated b y us e o f a habituation paradigm with cardiac orienting response as outcome . Infant s with mor e alcoho l exposur e re spond mor e slowl y than "low-risk " controls to presen tation o f bot h visua l an d auditor y stimul i an d ar e rated a s significantly higher i n arousal level. This difference i n information-processin g speed i s consistent with earlie r work (Jacobson e t al., 1994 ) showin g tha t fixation duration (lookin g time) i s longer i n alcohol exposed infants . The implicatio n i s that alcohol i s related to the spee d o f information processing. The relationshi p betwee n attentio n an d arousa l regulation i s suggestive. The abilit y to focu s an d sus tain attentio n depend s o n th e abilit y t o moderat e arousal to allow information to be processed efficientl y (Ruff an d Rothbart , 1996) . I t ma y b e tha t alcohol exposed infant s canno t modulat e arousa l effectivel y and ar e therefor e less efficient i n processin g environmental information . Findings amon g adolescents an d adults o f inefficiencie s i n informatio n processin g i n the visual modality (e.g., Coles et al., 2002) or in both auditory an d visua l modalities (Conno r e t al. , 1999 ) may be influence d by arousal leve l as well. This suggestion is supported by findings from a study of the ef fects o f maternal substanc e abus e on attention . Sues s and colleague s (1994 ) foun d tha t prenata l exposur e to alcohol , but no t opiates , influence d attention an d psychophysiology (cardiac functioning and vagai tone) at schoo l age . Ho w thi s compromise i s related t o de velopmentally later and more comple x cognitiv e functions and attentio n an d behaviora l regulation has no t yet been investigated . Executive Function Skills . Executiv e functio n i s a construct referre d t o as, "perhaps the mos t appealing , yet least understood, aspect of cognition and metacog nition" (Borkowsk i and Burke , 1996 , p . 235) . Executive function involve s higher-order cognitive processes that range from attentiona l regulation , workin g mem ory skills , planning an d organizationa l thinkin g an d problem solvin g (Lyon, 1996; Morris, 1996) . From an information-processing prospective , attention , mem ory, an d executiv e functio n ma y be interrelate d pro cesses that affec t cognitiv e functioning and th e ability to carr y out goal-oriente d behavior s (Borkowsk i an d Burke, 1996). Both clinica l description s o f childre n wit h FA S and longitudinal exposure studies implicate ethano l i n
PRENATAL ALCOHOL EXPOSUR E AND HUMA N DEVELOPMEN T 13 1 compromising executiv e function . Investigator s have approached thi s construc t fro m severa l theoretica l positions. Som e investigator s aggregate measure s t o obtain a n estimat e o f executive functio n (e.g. , Samp son et al, 1997 ; Conno r et al, 2000), whereas other s evaluate specifi c area s thought t o represent aspects of executive functio n (e.g. , Kern s et al, 1997 ; Mattso n et al, 1999 ; Schonfel d e t al, 2001) . It i s difficult t o compare studie s becaus e th e construc t pe r s e i s no t well defined. Therefore, th e followin g review will examine the effec t o f prenatal alcoho l exposur e o n various component s tha t ar e usuall y understoo d t o b e part of executive functioning . Memory an d Metamemory . Memor y i s a broa d field o f study, an d onl y som e aspect s o f memory ar e considered to be part of executive function. Childre n with FAS exhibit deficits in memory skills, but the im pairments are not always stable and their extent seems to be influence d b y modality of the tas k used an d b y the specifi c cognitive demands o f tasks (Mattson an d Roebuck, 2002) . Fo r instance , a n interactio n o f age and tas k characteristic s ma y determin e whethe r effects ar e shown . Usin g th e McCarth y Scale s o f Children's Abilitie s (McCarthy , 1972) , Janze n an d colleagues (1995 ) d o not fin d difference s i n memor y function betwee n youn g childre n diagnose d wit h FAS and a contrast group selecte d fro m day-car e settings. This finding contrasts with a study by Coles and colleagues (2004) , wh o use d a differen t test . The y find that childre n i n the sam e ag e range d o have spe cific memor y deficits. The effec t o f presentatio n modalit y (i.e. , visual auditory) on memory has been investigated. Learnin g and recal l o n task s presented visuall y o r i n narrative form w ;ere compared (Platzma n et al., 2001). Adolescents wit h FA S have poorer recal l o f visual element s than control s an d age mates i n special educatio n pro grams, wherea s long-ter m recal l o f auditoril y pre sented item s i s not impaired . Short-ter m memor y for auditorily presented item s (i.e., random string s of digits; Wechsler Intelligenc e Scal e for Children-Revised, Digit Span) is also similar to that of contrast groups. In a differen t sampl e o f clinically referre d children, age s 3 to 9 years old, wit h a diagnosi s o f FASD, a similar auditory tas k an d a visual/spatia l analo g wer e contrasted. Relativ e deficit s for spatia l spa n ar e evident , whereas performance on th e digi t span tas k is consistent wit h overal l abilit y leve l (Cole s e t al , 2004) . These findings suggest specific deficits in memory with
language-related o r auditorily presented material s relatively spared . Thi s patter n o f performanc e i s als o noted b y Mattson an d Roebuck (2002) among schoolaged an d adolescen t childre n diagnose d wit h FA S or having ha d heav y prenata l exposure . I n thi s group , memory performanc e is compared t o tha t o f normal controls o n fiv e standardize d measure s o f learnin g and memory : a verbal learning task (California Verbal Learning Test-Children' s Versio n [CVLT-C] ; Deli s et al., 1987) , the Biber Figure Learning Test, and three subtests fro m th e Wid e Rang e Assessmen t o f Memory and Learnin g (WRAML ; Sheslo w an d Adams , 1990) . These subtest s ar e Verba l Learning , Visua l Learning , and Soun d Symbol . The constructio n o f the CVLT- C is important for understanding the result s of these studies. This tes t i s a verbal learnin g tas k wit h orall y pre sented lists of words in several categories (i.e., clothing, fruits, an d toys) . Due t o the lis t structure, a n effectiv e memory strategy (grouping by semantic category ) can be used to aid learning and recall . Through th e us e of tests of verbal and visual memory, i t has been show n tha t alcohol-affected childre n learn fewe r item s (bot h word s an d figures ) overal l than control s (Mattso n an d Roebuck , 2002) . After a standard dela y period , however , th e percentag e re called (o f the materia l tha t ha d bee n learned ) i s no t different betwee n th e group s fo r verbal material . O n the nonverba l material , th e alcohol-affecte d grou p show7 relativ e deficit s in delaye d recall . Thus , verba l memory i s les s affecte d tha n nonverba l memory . Data fro m thes e studie s hav e bee n reanalyze d t o examine th e effec t o f stimulus differences i n tw o of th e verbal memory tasks (Roebuck-Spencer an d Mattson , 2004). Accordingly, children wit h FASD demonstrat e semantic clusterin g on th e CVLT-C , indicatin g tha t they are able to take advantag e o f the lis t characteris tics t o ai d recall . The y perfor m bette r o n thi s tas k than o n th e WRAM L verba l memor y task , whic h does no t offe r th e sam e opportunit y t o us e th e "im plicit" memor y strateg y inheren t i n the stimulu s ma terial. O n th e basi s o f thes e findings , th e author s argue tha t previousl y observe d difference s i n verba l and nonverba l memory ma y resul t from us e o f more effective memor y strategie s o n verba l learnin g tasks . Other wor k (i.e. , Platzma n e t al, 2001 ; Cole s e t al. , 2004, se e discussion above) does no t suppor t this explanation becaus e visuall y and auditoriall y presente d materials are equivalent in these studies. Various studie s repor t tha t childre n with FAS D have memory deficits on verbal learning tasks (Mattson
132 ETHANOL-AFFECTE D DEVELOPMENT et al, 1996; Kern s étal, 1997 ; Schonfel d étal , 2001; Willford e t al, 2004). A longitudinal follow-u p study of 14-year-old s shows that verbal-auditory rathe r tha n visuospatial memor y i s affected wit h learning ; short and long-ter m memor y deficit s on a paire d associat e task ar e detected (Willfor d e t al, 2004) . I n a sampl e of adolescent s an d youn g adult s classifie d a s having an "averag e IQ " o r "belo w averag e IQ, " Kern s an d colleagues (1997 ) show that individual s with FAS perform belo w expectation o n the CVLT-C. The greates t difference i s not o n initia l learnin g trials, bu t o n th e fifth trial. These results suggest tha t affected individu als are not able to use semantic memor y strategies appropriately t o maintai n a comparabl e learnin g slop e over repeate d trials . That is , the individual s with FAS do not use the categorie s inheren t i n the lists to organize an d facilitat e their recal l an d thei r response s do not sho w the clusterin g o f semantically relate d item s that i s usually found i f effective memor y strategies are used. Thi s findin g contrast s t o a lack of difference i n primacy effec t an d seria l clusterin g scores , whic h re lies less on strategy use . Mattson an d Rile y (1999) contras t intentiona l an d incidental memor y b y measurin g recal l o f informa tion (a ) whe n childre n wit h FA S ar e awar e o f th e memory tas k involved an d (b ) when the y lear n infor mation usin g effective memor y strategies provide d by the investigator s withou t bein g awar e o f the nee d t o learn the informatio n in expectation o f recall. The in vestigators conclude tha t incidenta l memor y i s not affected b y prenatal alcohol exposure . Coles an d colleague s (1997 ) gav e a n alcohol exposed an d a contras t grou p o f 7-year-olds a paire d associate tas k requirin g tha t th e childre n continu e with th e list-learnin g process unti l the y achiev e mas tery. At both immediat e an d delaye d recall , alcohol affected childre n ar e no t differen t fro m control s with this methodology . Th e numbe r o f repetition s re quired t o achiev e lis t mastery , however , i s signifi cantly higher for alcohol-affected children . Cumulatively, the abov e findings suggest that on e aspect o f th e memor y defici t observe d i n alcohol affected individual s involves employing strategies. That is, they may not be exhibiting effective "metarnemory " (an importan t aspec t o f executive functioning) in tha t they ma y hav e mor e difficult y i n selectin g an d em ploying effective learnin g strategies and the y ma y no t be aware of the leve l of effort require d t o achieve mas tery o n a particula r task. It ma y als o be tha t becaus e alcohol-affected individual s process informatio n mor e
slowly, learning time i s spent less efficiently an d mor e trials ar e required. Whethe r thes e deficit s are uniqu e to individual s with FAS D o r are characteristi c of slow learners i n general i s not clear and shoul d b e the sub ject of further study . An aspect o f memory tha t i s considered a factor i n executive processin g i s active workin g memory. Thi s process involve s menta l manipulatio n o f element s stored briefl y i n short-ter m memor y and ha s been re ferred t o as a "mental scratc h pad " (Ashcraft , 1995) . It requires tha t informatio n be store d an d processe d i n meaningful "units " at a given momen t in time. Man y of the cognitiv e task s comprising neurodevelopnien tal tes t batterie s includ e us e o f active workin g mem ory because higher-order processing or problem solving requires tha t severa l unit s o f informatio n b e main tained simultaneously . In alcohol-affecte d individuals , problems i n activ e working memor y hav e bee n identifie d earl y i n in fancy. Usin g a visua l expectanc y paradig m (Hait h et al. , 1988 ; Jacobson e t al. , 1992 ) as a measur e o f working memory, Was s and Hait h (1999 ) show that 3month-old infant s exposed t o alcohol prenatall y have more difficult y tha n nonexpose d control s i n main taining an d manipulatin g three item s o f information simultaneously, a result implying a reduction i n working memory capacity . On th e sam e task, these infant s have difficultie s shiftin g fro m on e rul e t o anothe r (that is , learning t o anticipat e wher e item s woul d b e presented next ) an d wit h masterin g comple x spatia l sequences. Kodituwakk u an d colleague s (1995 ) use d several neurodevelopmental tasks tapping activ e working memory in older individuals. They conclude tha t a problem i n managin g goal s i n workin g memory i s the mechanism underlyin g much o f the cognitiv e impairment see n i n childre n wit h FAS . I n practica l terms , such a defici t wil l affec t dail y functionin g an d academic performanc e a s well a s results o f neuropsychological tests. For instance, children diagnosed wit h FAS consistently sho w impairment s i n doin g mathematics , as demonstrate d b y performanc e o n th e arithmeti c subtests from the Wechsler series (e.g., Wechsler, 1991) of intelligenc e tests . Thes e test s rel y heavil y o n activ e working memor y skill s b y requiring th e manipulatio n of number s an d arithmeti c operation s i n short-ter m memory to generate correct answers . Planning an d Organization . Peopl e wit h FAS D are describe d a s having impairments i n planning , or ganization, an d problem-solvin g aspect s o f executiv e
PRENATAL ALCOHOL EXPOSURE AND HUMA N DEVELOPMEN T 13 3 functioning (Streissguth , 1997) . Tw o task s tha t hav e been use d to evaluate functioning in this area are progressive plannin g task s (e.g., Tower o f London; Shal lice, 1982 ) and task s assessing learning an d reversa l or shifts i n discriminativ e stimuli (i.e., Wisconsin Car d Sort Task [WCST] ; Heato n e t al, 1993) . Bot h kind s of tasks were originally used t o measur e th e effect s o f frontal lobe damag e i n adult s (Shallice , 1982) . Pro gressive plannin g task s requir e tha t th e perso n bein g tested replicat e a visuall y presente d desig n b y rear ranging circular disks or balls that are placed o n vertical pegs. There ar e rule s restraining the numbe r an d type o f move s permitted . Th e tas k require s tha t th e subject retai n thes e rule s a s well a s the sequenc e o f moves in working memory to correctly solve the prob lem. Initially , th e tas k i s simpl e an d require s littl e planning, bu t a s task complexit y increases , th e indi vidual mus t be abl e t o visualize a multistep sequence of moves to complete th e tas k successfully . Hie WCST and similar tasks require the individual to identif y o r sor t according to specifi c characteristics of the stimul i (i.e. , color, number , o r shape) presente d to them, wit h feedbac k provided to facilitat e learning. For th e initia l se t o f trials , th e correc t dimensio n may be color , so that all responses that matc h i n color are rewarded . Onc e th e correc t dimensio n i s reliably learned, a differen t dimension become s "correct " s o that, fo r instance , numbe r become s th e correc t solu tion an d i s rewarded. This task requires cognitive flexibility, becaus e th e individua l mus t inhibi t previously learned response s an d shif t set s o r rule s learne d fro m previous trials. Using both kinds of tasks, children wit h FAS have been foun d to perform more poorly than control s and to mak e perseveratio n error s (repetitio n o f response s that ar e incorrec t o r no t reinforced ) (Kodituwakk u et al , 1995 ; Cole s e t al. , 1997 ; Kern s et al, 1997) . These findings suggest tha t the y have difficulty incor porating environmental feedback to correct a response. Children wit h FA S typicall y hav e mor e difficult y learning th e shifts , particularl y reversa l shifts , tha n would b e expecte d (Kodituwakk u et al., 1995 ; Cole s et al, 1997 ; Kern s et al., 1997) , a pattern implying difficulties wit h inhibitio n o f learne d response s o r a n inattentiveness to new information. Kodituwakku an d colleague s (2001 ) used anothe r paradigm t o discriminat e emotion-lade n learnin g from conceptua l se t shiftin g (th e reversa l shif t task s discussed above ) t o furthe r document neurodevelopmental impairment s associate d wit h FAS . These au -
thors expecte d performanc e o f alcohol-exposed indi viduals to be impaire d i n tasks that involve d an emo tional component . I n thi s study, performance on th e WCST wa s contraste d wit h tha t o n a differen t tas k that assessed visual-discrimination reversal learning as well a s extinctio n o f reward-respons e association s (Rolls e t al., 1994) . This second tas k was assumed t o measure emotion-relate d learnin g becaus e a reward was provided rather than th e feedback provided in the WCST. Afte r controllin g fo r conceptua l se t shiftin g (performance on the WCST) and for general intellec tual abilities , school-age , alcohol-expose d childre n perform mor e poorl y tha n th e referenc e sampl e o n emotion-related learning; they achieve fewer reversal s and sho w mor e variabilit y in extinction . I n addition , there i s a significant relationship between thes e mea sures of emotion-related learnin g and conceptua l shift ing and parent-reported behavio r problems. Th e ability to regulat e arousal may hav e affecte d performanc e on this learnin g task , although thi s issu e i s not addresse d in this studv.
ACADEMIC ACHIEVEMENT
Given th e neurocognitiv e problem s identifie d i n exposed individuals , i t i s no t surprisin g tha t academi c achievement i s frequentl y affected . Learnin g prob lems, schoo l failure , repeatin g grades , an d droppin g out of school have all been cite d as negative outcome s associated wit h FA S in clinica l sample s (Streissgut h et al, 1996 ; Autti-Ramo , 2000). It is important to bear in min d tha t fo r alcohol-expose d a s well a s for othe r children, academi c achievemen t i s determine d b y complex interaction s betwee n th e child' s neurodevelopmental status, environmental supports for academic success, an d emotional stability. Overall academi c achievemen t i s predicted b y th e individual's genera l intellectua l abilit y an d b y SES . Academic problem s consisten t with globa l abilit y deficits ar e typically seen. There ma y also be specifi c areas of academic weaknes s for the chil d wit h FAS beyond those associate d with cognitive deficit an d social disadvantage. Researc h suggest s that , relativ e t o gen eral intellectua l ability , alcohol-exposed childre n an d adolescents hav e specific learning problems with mathematics (Spoh r an d Steinhausen , 1984 ; Streissgut h et al., 1994) . Deficit s in mat h achievemen t associate d with prenata l alcoho l exposur e hav e bee n identifie d regularly i n bot h longitudina l an d clinica l studie s
134 ETHANOL-AFFECTE D DEVELOPMENT (Streissguth e t al , 1994 ; Kodituwakk u e t al , 1995 ; Goldschmidt e t al , 1996 ; Mattso n e t al , 1996) . Streissguth an d colleague s (1993 ) repor t tha t arith metic disabilitie s are related t o prenatal alcoho l expo sure i n thei r longitudina l cohort , particularl y whe n there wa s "massed" o r heav y drinking. Thes e investigators also not e that thei r findings in the longitudina l cohort ar e consisten t wit h observation s fro m thei r older, clinical sample o f patients diagnosed wit h FAS. Other longitudinal sample s hav e also found evidenc e of specifi c deficit s in thi s area . Cole s and colleague s (Coles e t al, 1991 , 1997 ; Howel l e t al, 2006 ) not e specific deficit s i n mat h functionin g i n a cohor t o f African-American schoo l childre n eve n whe n globa l delays ar e controlled . I n thi s population , thes e prob lems appear to be related to deficits in visuospatial and visual-motor functioning . Jacobson (1999 ) note prob lems i n mat h i n a Detroit longitudina l cohor t a s well and attribut e these difficultie s t o problems with working memory and executive functioning skills. In a sampl e populatio n includin g bot h inner-cit y and suburba n 4V2-year-ol d childre n wit h lo w birt h weight, specific deficit s in preacademic mathematica l skills ar e identifie d among alcoho l expose d childre n (Kable e t al, 1999) . Highe r score s o n a cumulative risk inde x relate d t o alcoho l an d othe r dru g us e ar e significantly relate d t o poore r performanc e o n th e Test of Early Mathematics Ability , 2nd Editio n (Gins burg an d Baroody , 1990) , o n a numbe r o f specifi c preacademic skills , includin g cardinality , constancy , counting, an d visua l recognitio n o f numbers. Apparently, problem s wit h workin g memory , visua l per ception, an d executiv e functionin g underli e thes e functional problems . Adult s wit h FA S als o showe d mathematics-related difficulties , includin g computa tion, an d i n solving problems requirin g estimation o f magnitude (Kopera-Fry e et al. , 1996) . Thus , there i s considerable evidenc e tha t thi s academi c are a i s a problem i n affecte d individuals , due, n o doubt , t o deficits i n cognitiv e processe s tha t suppor t mat h achievement. Som e candidat e processe s are those areas discusse d abov e i n thi s chapter—i.e. , attention , executive functioning , and workin g memory a s well as visuospatial skills (Geary, 1993 ; Ashcraft, 1995) .
SOCIAL AND EMOTIONA L FUNCTIONING
Problems wit h behavior and emotiona l regulatio n ar e the most frequent reason for clinical referral of children
suspected o f fetal alcoho l exposur e (e.g. , Steinhause n et al, 1993;Janzenetal, 1995; Kopera-Frye et al, 1997 ; Oesterheld an d Wilson , 1997 ; Roebuc k e t al, 1999 ; Mattson an d Riley , 2000 ; Kodituwakk u et al, 2001) . Social an d emotiona l problem s ar e s o commonly re ported b y parents an d i n clinica l studie s i t has been suggested that "people wit h FAS appear to differ fro m the mentall y retarde d populatio n becaus e o f addi tional problem s i n th e socia l domain " (Kell y e t al. , 2001, p . 143) . In a survey of a clinica l populatio n of individuals with FAS and ARND, Streissgut h an d col leagues (1996 ) repor t a hig h frequenc y o f menta l health, legal , and social problems among the second ary disabilities in thi s group. Th e vas t majority (94% ) of individual s ar e reporte d t o hav e menta l healt h problems o f some kind , wit h th e mos t commo n psychiatric problem s bein g ADH D an d depression . These report s ar e certainl y a concern, but i t may be too earl y to interpret thes e outcome s a s the direc t results o f th e teratogeni c exposure , particularl y a s thi s survey di d no t includ e a compariso n grou p an d wa s drawn fro m a clinicall y referre d populatio n tha t should be expected t o have such problems . In interpretin g report s fro m clinica l sample s o r from sample s tha t ar e self-referre d (e.g. , O'Conno r et al., 2002), some othe r factors that migh t influenc e behavior shoul d b e take n int o account . Man y chil dren wit h FAS D experienc e environmenta l factor s known t o contribut e t o behavioral , social , an d emo tional problems, an d i t is disingenuous to ignore thes e issues t o attribut e problem s t o prenata l exposure . Children diagnose d wit h FA S often com e fro m low income or socially disadvantaged families an d usually have limited acces s t o educational o r other resources . Caregiving disruption s are the nor m rathe r tha n th e exception i n children referre d to clinical settings, an d many children ar e in foster car e following a history of neglect and abuse . To examine the frequenc y o f behavior concerns i n a clinica l sampl e o f alcohol-affected children , Cole s and Kabl e (unpublishe d results ) evaluate d 28 7 pa tients (mea n age , 4.5 years) referred for evaluation t o a FA S specialty clinic. Of the 10 9 children diagnose d with FAS , 54.7 % wer e describe d a s "to o active, " 30.5% had difficultie s wit h tantrums, and 41.1% were described a s having problems wit h aggression. Whe n these childre n ar e compare d t o those referre d t o th e same clini c wh o hav e n o evidenc e o f dysmorphia o r growth problem s an d t o those wit h no histor y of prenatal alcoho l exposure , th e frequenc y o f th e sam e
PRENATAL ALCOHOL EXPOSURE AND HUMAN DEVELOPMEN T 13 5 problems i s 53.1% , 25.0% , an d 43.8% , respectively . Upon furthe r examinatio n o f the clini c sampl e an d dividing it into four groups (FAS, ARND, nondysmorphic FASD , an d unexposed) , n o significan t relationship betwee n diagnosti c categor y an d behaviora l o r emotional outcome s i s evident . Thes e finding s sug gest that problems wit h emotional an d behavioral reg ulation, commo n i n childre n wit h FAS , is associated as muc h wit h clinica l referra l statu s o r advers e early experiences as with prenatal exposure. The relationshi p betwee n prenata l alcoho l expo sure and conduct disorde r and delinquency in adolescence i s an area of interest. Some researchers and FAS advocates hav e suggeste d tha t prenata l alcoho l expo sure i s associated wit h delinquen t o r criminal behav ior during adolescenc e (e.g. , Streissgut h e t al., 1996 ; Fast e t al. , 1999 ; Fas t an d Conry , 2004) . Thes e con clusions ar e ofte n base d o n studie s o f adolescents al ready referre d t o clinic s fo r treatmen t o r i n th e juvenile justic e system. I n a surve y o f secondary disabilities, Streissgut h an d colleague s (1996 ) describ e that caregiver s repor t tha t a majorit y o f yout h an d young adults with FASD are involved in "delinquent" or problematic behaviors. Of 25 3 patients 1 2 years of age o r older , 60 % have disruption s i n schoo l experi ence (e.g. , suspensions), 50 % have demonstrate d "in appropriate" sexua l behavior , an d 30% , alcohol an d drug problems. Fas t and colleague s (1999 ) als o repor t an associatio n betwee n prenata l exposur e and crimi nal behavior . In a sample of 287 adjudicate d adolescents remande d fo r inpatien t forensi c psychiatri c assessment, 23.3 % were found to have some prenata l alcohol-related diagnosis. In studie s of the relationshi p o f prenatal exposure and behavio r i n les s high-risk groups , th e result s ar e more mixed . The Achenbac h (1991 ) Child Behavio r Checklist an d th e teache r version , th e Teache r Re port Form, hav e often been used to measure behavio r problems. Elevate d score s o n proble m indice s hav e been reporte d in some studies (i.e., Olson e t al., 1997 ; Mattson and Riley , 2000) but no t others (Steinhausen et al. , 1993) . Eve n whe n score s fo r childre n wit h FASD ar e statisticall y highe r tha n thos e o f age matched contro l groups , th e score s d o no t alway s reach clinicall y significan t levels (e.g. , Brow n e t al, 1991). Lync h an d colleague s (2003 ) specificall y examine th e question o f delinquency an d conduct problems i n alcohol-expose d adolescent s compare d t o contrast group s fro m th e sam e populatio n o f low income, urba n youth . The y sho w wit h a sampl e o f
248 children , mea n ag e o f 1 5 years , male s ar e mor e likely than females to report delinquent behavior, but there i s no relationshi p between prenata l alcoho l exposure and outcomes . Delinquen t behavio r is related to parenting factor s an d environmenta l stress . In th e same grou p o f youn g people , examinatio n o f aca demic an d schoo l record s indicate s n o highe r inci dence of conduct problems, attendanc e problems , o r suspensions i n alcohol-expose d yout h (Howel l e t al. , 2006). Methodological factor s mus t be considere d whe n assessing th e result s o f research . Interpretatio n o f reports fro m clinica l studie s i s particularl y speculative i n th e are a o f behavio r an d social/emotiona l functioning. Investigator s mus t b e ver y carefu l t o identify appropriat e contras t group s a s well a s the ef fects o f confoundin g an d mediatin g factor s whe n attempting t o understan d observe d outcomes . Fo r the mos t part , thes e methodologica l restraint s have not bee n observe d i n thi s area of study, and fo r these reasons, i t i s to o earl y t o dra w conclusion s abou t the effec t o f prenata l exposur e o n thi s are a o f func tioning.
CURRENT ISSUES AND SUGGESTION S FOR FUTUR E RESEARC H
Despite greatl y increased understandin g o f the con sequences o f prenatal exposure , som e issue s are stil l being debated . These area s of controversy and explo ration sugges t th e directio n fo r researc h durin g th e next decade. Description of Characteristic s Over Time Although som e sampl e population s an d a number o f exposure studie s hav e bee n followe d longitudinally , there remain s limited informatio n about th e trajectories o f developmen t resultin g from prenata l alcoho l exposure amon g thos e wit h eithe r FA S o r ARND . Even objectiv e issues such a s facial dysmorphi a have not been studie d i n the sam e individuals over time to evaluate th e salienc y of features at different point s i n development. Outcome s from longitudina l cohort s i n which repeate d wave s of data hav e been collected o n the sam e individual s (Streissgut h e t al. , 1993 ; Da y et al, 2002) have often bee n reporte d by time period , as i f thes e wer e cross-sectiona l cohorts , instea d o f
136 ETHANOL-AFFECTE D DEVELOPMENT examining them ove r time to evaluate developmenta l trajectories. Sinc e thes e database s do exist , investigators hav e th e opportunit y t o investigat e th e longi tudinal aspect s o f developmen t i n alcohol-affecte d children and , whe n the y hav e don e so , to greatly increase understandin g in this area. Behavior and Conduct Disorder s A largel y unresolve d questio n i s that o f the relation ship betwee n prenata l exposur e an d late r behaviora l and emotiona l problems . Man y o f these problem s a s well a s psychiatri c disorder s (Fam y e t al. , 1998 ; O'Connor et al., 2002 ) have been identifie d i n clini cally referred samples. I t is likely that the nex t decad e will produc e a numbe r o f studie s o n thes e relation ships an d furthe r examinations o f the effec t o f expo sure o n th e ris k fo r lega l problem s an d substanc e abuse. I f studies are carrie d ou t wit h th e appropriat e methodologies and contro l fo r the multipl e confounding factors associate d wit h materna l substanc e abuse , the contributio n o f prenata l exposur e t o suc h out comes ma y be better understood . Behavioral Phenotypes In th e rea l world , i t i s ofte n difficul t t o ascrib e ob served outcome s t o materna l alcoho l use . Ther e ha s been a goo d dea l o f interest i n identifyin g a "behav ioral phenotype" that characterizes peopl e wh o are affected b y prenata l exposure . Suc h a constellatio n o f behavioral outcome s i s believed t o characteriz e bot h those wit h th e ful l FA S and thos e wh o d o no t hav e identifying facia l features . Clinician s woul d lik e t o have a checklist of such behaviors that can b e used by teachers, parents , an d othe r observer s to discriminate affected fro m unaffecte d children an d t o facilitate referral. Th e searc h fo r such a phenotype does no t take into accoun t th e multipl e factor s tha t affec t develop ment an d th e man y etiologie s tha t ca n hav e a final common pathwa y in behavioral terms. Intervention an d Standards o f Care The mos t neglecte d are a o f researc h o n th e behav ioral effect s o f alcohol i s on method s fo r interventio n to improve outcomes fo r affected individuals . Parent s and caregiver s o f affecte d childre n stat e tha t thei r most urgen t nee d i s appropriat e interventions . I n
1996, a repor t b y the Institut e o f Medicine (Stratto n et al , 1996 ) recommende d tha t studie s b e don e i n this are a an d tha t standard s of car e fo r affecte d indi viduals be written. To date, n o report s of intervention studies i n huma n sample s hav e bee n published , al though ther e are currently five such studies being car ried ou t unde r th e aegi s o f th e Center s fo r Diseas e Control an d Prevention . N o standard s o f car e hav e been propose d b y any agenc y o r professiona l organi zation. Althoug h i t is apparently difficul t t o carry ou t work in this area, i t seems likel y that as more information i s accumulate d abou t cognitiv e an d behaviora l consequences of prenatal exposure , interventio n an d treatment wil l be a focus of research i n the future.
Abbreviations ADHD attentio n deficit , hyperactivity disorder ARND alcohol-relate d neurodevelopmenta l dis order CNS centra l nervou s system CVLT-C Californi a Verba l Learnin g Test children's version DTI diffusio n tenso r imagin g FAS feta l alcohol syndrom e FASD feta l alcoho l spectru m disorder s fMRI functiona l magnetic resonance imagin g SES socioeconomi c status sMRI structura l magnetic resonanc e imagin g WCST Wisconsi n Car d Sort Task WRAML Wid e Rang e Assessmen t o f Memor y and Learnin g
ACKNOWLEDGMENTS Th e autho r woul d lik e t o ac knowledge th e continuin g contributions of th e facult y and staf f o f th e Materna l Substanc e Abuse and Chil d Development Laboratory, Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine, an d thos e o f th e researc h participant s an d thei r families wh o make research o n thes e problems possible. Some o f th e wor k referre d t o i n thi s chapte r was supported b y awards to the autho r fro m th e followin g agencies: th e Georgi a Departmen t o f Huma n Resource s (DHR), Maternal Substance Abuse Prevention Program, the National Institute of Alcohol Abuse and Alcoholism, and the Centers for Disease Control and Prevention.
PRENATAL ALCOHOL EXPOSURE AND HUMA N DEVELOPMEN T 13 7 References Abel E L (1984 ) Fetal Alcohol Syndrome an d Fetal Alcohol Effects. Plenum , Ne w York . (1998) Fetal Alcohol Syndrome. Plenum , Ne w York.
Achenbach T M (1991 ) Manual fo r the Child Behavior Checklist/4-18 an d 199 1 Profile. Universit y of Vermont, Burlington, VT. Archibald SL , Fennema-Notestin e C , Gains t A , Rile y EP, Mattson SN, Jernigan TL (2001 ) Brain dysmorphology i n individuals with severe prenatal alcoho l exposure. Dev Med Child Neuro l 43:148-154. Aronson M , Hagber g B (1998) Neuropsychologica l disorders i n childre n expose d t o alcohol durin g preg nancy: a follow-up study of 24 children o f alcoholic mothers i n Goteborg , Sweden . Alcoho l Cli n Ex p Res 22:321-324 . Aronson M, Kyllerman M, Sabel KG, Sandin B, Olegar d R (1985 ) Children o f alcoholic mothers . Develop mental, perceptua l an d behaviora l characteristics as compare d t o matche d controls . Act a Paediat r Scand 74:27-3 5. Ashcraft M H (1995 ) Cognitiv e psycholog y an d simpl e arithmetic: a revie w an d summar y o f ne w direc tions. Math Cognit 1:3-34 . Astley S] (2004) Diagnostic Guide for Fetal Alcohol Spectrum Disorders: Th e 4-Digit Diagnostic Code, 3r d edition. Universit y o f Washingto n Publi c Service , Seattle, WA. Astley SJ , Clarre n S K (2001 ) Measuring th e facia l phe notype o f individual s wit h prenata l alcoho l expo sure: correlation s wit h brai n dysfunction . Alcoho l Alcohol 36:147-159. Autti-Ramo I A (2000) Twelve-year follow-up of childre n exposed t o alcohol i n utero . De v Med Chil d Neu rol 421:406-411. Autti-Ramo IA , Autti T , Korkma n M , Kettune n S , Salo nen O , Valanne L (2002) MR1 findings in children with school problems who had been expose d prenatally to alcohol. De v Med Child Neurol 44:98-106. Avaria MD , Mill s }L , Kleinsteube r K , Aro s S , Conle y MR, Co x C , Klebanof f M , Cassorl a F (2003 ) Peripheral nerv e conductio n abnormalitie s i n chil dren expose d t o alcoho l i n utero . } Pediat r 144 : 338-343. Barr HM , Streissgut h AP , Darb y BL , Sampso n P D (1990) Prenata l exposur e t o alcohol , caffeine , to bacco, an d aspirin : effects o n fin e an d gros s moto r performance i n 4-year-old children. Dev Psychol 26: 339-348. Bhatara VS, Lovrei n F, Kirkeby J, Swayze V, Unru h E , Johnson V (2002 ) Brai n functio n i n feta l alco hol syndrom e assessed by single-photo n emissio n
computed tomography . Sout h Dakot a J Me d 55:59-62. Blackston RD, Coles CD, Kabl e JA, Seitz R (2004) Reliability an d validit y o f th e dysmorphi a checklist : relating severity of dysmorphia to cognitive and be havioral outcome s i n childre n wit h prenata l alco hol exposure . Poste r a t th e annua l meetin g o f th e American Clinical Genetic s Society . Bookstein FL, Sampson PD, Streissgut h AP, Connor P D (2001) Geometri c morphometric s o f corpus callo sum and subcortica l structure s i n the fetal-alcohol affected-brain. Teratolog y 64:4-32. Bookstein FL, Streissguth AP, Sampson PD , Connor PD , Barr H M (2002 ) Corpus callosu m shap e an d neu ropsychological deficit s i n adul t male s wit h heav y fetal alcohol exposure . Neuroimage 15:233—251 . Borkowski JG, Burk e JE (1996 ) Theories , model s and measurements of executive function: an information processing prospective. In : Lyon GR, Krasnego r NA (eds). Attention, Memory, an d Executive Function. Paul Brookes Publishing, Baltimore, pp 235-262. Boyd TA, Ernhart CB, Green e TH, Soko l RJ, Martier S (1991) Prenata l alcoho l exposur e an d sustaine d at tention i n the preschool period . Neurotoxico l Tera tol 13:49-55 . Brown RT, Coles CD, Smit h IE, Platzman KA, Silverstein J, Erickson S, Falek A (1991) Effects o f prenatal alco hol exposur e a t school age . II : Attention an d behav ior. Neurotoxico l Teratol 13:369—376 . Carmichael-Olson H, Feldman JJ, Streissguth AP, Sampson PD , Bookstei n F L (1998 ) Neuropsychologica l deficits in adolescence wit h fetal alcohol syndrome : clinical findings . Alcoho l Cli n Ex p Re s 22:19982012. Carmichael-Olson H , Streissguth AP, Sampson PD , Barr HM, Bookstei n FL, Thiede K (1997) Association of prenatal alcoho l exposur e wit h behaviora l an d learning problems i n earl y adolescence. J Am Acad Child Adoles c Psychiatry 36:1187-1194. Clark CM , L i D , Conr y J , Conr y R , Looc k C (2000 ) Structural an d functiona l brain integrit y of fetal al cohol syndrom e i n nonretarde d cases . Pediatric s 105:1096-1099. Coles CD (1992 ) Prenatal alcoho l exposur e an d huma n development. In : Miller M W (ed) . Development o f the Central Nervous System: Effects of Alcohol and Opiates. Wiley-Liss, New York, pp 9-36 . (1993) Impact of prenatal alcoho l exposur e on the newborn an d th e child . Cli n Obste t Gyneco l 36 : 255-266. Coles CD , Brow n RT, Smith IE , Platzma n KA , Erickson S, Falek A (1991) Effects of prenatal alcoho l exposur e at school age : I. Physical and cognitiv e development . Neurotoxicol Teratol 13:357-367.
138 ETHANOL-AFFECTE D DEVELOPMEN T Coles CD , Kabl e JA , Den t D , Le e D (2004 ) Socio cognitive habilitation with children wit h FAS. Alcohol Clin Ex p Res 28:719A. Coles CD , Kabl e JA , Drews-Botsch C , Fale k A (2000) Early identification of risk for effect s o f prenatal al cohol exposure. J Stud Alcohol 61:607—616. Coles CD , Platzma n KA , Lynch ME , Freide s D (2002) Auditory an d visua l sustaine d attentio n i n adoles cents prenatall y expose d t o alcohol . Alcoho l Cli n Exp Res 26:263-271. Coles CD , Platzma n KA, Raskind-Hood CL, Brown RT, Falek A, Smith IE (1997 ) A comparison of children affected b y prenatal alcoho l exposur e and attentio n deficit, hyperactivit y disorder . Alcoho l Cli n Ex p Res 21:150-161. Coles CD , Smit h IE , Fernhof f PM , Fale k A (1985 ) Neonatal neurobehaviora l characteristics a s correlates o f maternal alcoho l us e durin g gestation . Al cohol Cli n Ex p Res 9:1-7. Conn-Blower E A (1991) Nurturin g and educatin g chil dren prenatall y exposed t o alcohol : th e rol e o f the counselor. Int J Adv Counsel 14:91-103 . Connor PD , Sampso n PD , Bookstei n FL , Bar r HM , Streissguth A P (2000) Direct and indirec t effect s o f prenatal alcoho l damag e o n executiv e function . Dev Neuropsychol 18:331-354. Connor PD , Streissgut h AP, Sampson PD, Bookstein FL, Barr HM (1999 ) Individua l difference s in auditor y and visua l attentio n amon g feta l alcohol-affecte d adults. Alcohol Clin Exp Res 23:1395-1402. Conry J (1990) Neuropsychological deficits in feta l alco hol syndrom e an d feta l alcoho l effects . Alcoho l Clin Exp Res 14:650-655. Day NL, Cottreau CM, Richardso n G A (1993) The epi demiology o f alcohol, marijuana , and cocain e us e among wome n o f child bearin g ag e an d pregnan t women. Clin Obste t Gyneco l 36:232-245 . Day NL , Goldschmid t L , Roble s N , Richardso n GA , Cornelius M (1991) Prenatal alcoho l exposur e an d offspring growth at eighteen month s o f age: the pre dictive validity of two measures of drinking. Alcohol Clin Exp Res 15:914-918. Day NL , Leec h SL , Richardso n GA , Corneliu s MD , Robles N , Larkb y C (2002 ) Prenatal alcoho l expo sure predict s continue d deficit s i n offsprin g siz e at 1 4 years o f age. Alcohol Cli n Ex p Re s 26:15841591. Day NL , Zu o YU , Richardso n GA , Goldschmid t L , Larkby CA, Cornelius M D (1999 ) Prenatal alcoho l use an d offsprin g siz e a t 1 0 years o f age . Alcoho l Clin Exp Res 23:863-869. Delis DC , Krame r JH, Kaplan E, Obe r B A (1987) California Verbal Learning Test Psychologica l Corp , San Antonio, TX.
Famy C , Streissgut h AP, Unis AS (1998) Menta l illnes s in adult s with feta l alcoho l syndrom e o r fetal alco hol effects . Am J Psychiatry 155:552-554. Fast DK , Conr y J (2004) Th e challeng e o f fetal alcoho l syndrome i n th e crimina l lega l system. Addict Biol 9:167-168. Fast DK , Conr y J, Loock CA (1999 ) Identifyin g fetal alcohol syndrom e amon g yout h i n th e crimina l jus tice system. J Dev Behav Pediatr 20:370-372. Fernhoff PM , Smit h IE , Fale k A (1980 ) Dysmorphi a Checklist. Documen t fro m th e Maternal Substanc e Abuse an d Chil d Developmen t Project , Emor y University School o f Medicine, Atlanta . Geary D C (1993 ) Mathematica l disabilities : cognitive , neuropsychological, an d geneti c components . Psy chol Bull 114:345-362 . Ginsburg HP , Barood y AJ (1990 ) Test o f Early Mathematics Ability. Pro-ED , Austin. Goldschmidt L , Richardso n GA , Staffe r DS , Gev a D , Day N (1996 ) Prenata l alcoho l exposur e an d aca demic achievemen t a t age six: a nonlinear fit. Alcohol Clin Ex p Res 20:763-770. Goodlett CR , Lundah l K R (1996 ) Tempora l determi nants of neonatal alcohol—induce d cerebella r dam age an d moto r performanc e deficits . Pharmaco l Biochem Behav 55:531-540 . Grant DA , Berg EA (1980) Th e Wisconsin Card Sorting Test. Psychol Corp , San Antonio, TX. Haith MM , Hazan C, Goodman G S (1988) Expectatio n and anticipatio n o f dynami c visua l event s b y 3.5 month-old babies. Child Dev 59:467-479. Heaton RK , Chelune GJ , Talley JL, Kay GG, Curtis s G (1993) Wisconsin Card Sort Testing Manual: Re vised an d Expanded. Psychologica l Assessmen t Re sources, Odessa , FL . Howell KH, Platzman KA, Lynch ME, Smit h GH , Cole s CD (2006 ) Prenata l alcoho l exposur e an d aca demic functionin g i n adolescence . J Pediat r Psy chol. In press. Hoyme HE, Ma y PA, Kalberg WO, Kodituwakk u P, Gossage JP , Trujill o PM , Buckle y DG , Mille r JH , Aragon AS , Khaol e N , Viljoe n DL , Jone s KL , Robinson L K (2005 ) A practical clinica l approac h to diagnosi s o f feta l alcoho l spectru m disorders : clarification o f the 199 6 Institut e of Medicine crite ria. Pediatrics 115:39-47. Jacobson JL (1999) Cognitive processing deficits associated with poo r mathematica l performanc e i n alcohol exposed school-age d children. Alcohol Clin Exp Res 23(Suppl 5):4A. Jacobson JL , Jacobso n SW , Soko l RJ , Ager J W (1998 ) Relation o f maternal ag e and patter n o f pregnancy drinking to functionally significan t cognitiv e defici t in infancy . Alcohol Clin Ex p Res 22:345-351 .
PRENATAL ALCOHOL EXPOSUR E AND HUMA N DEVELOPMEN T 13 9 Jacobson SW, Jacobson JL, Sokol RJ (1994) Effects offe tal alcoho l exposur e o n infan t reaction time . Alcohol Clin Exp Res 18:1125-1132. Jacobson SW , Jacobson JL , Soko l RJ , Martier SS , Ager JW (1993) Prenatal alcohol exposur e and infan t information processin g ability . Child De v 64:1706 — 1721. Jacobson SW , Jacobso n JL , O'Neil l JM , Padget t RJ , Frankowski JJ, Bihun J T (1992 ) Visual expectatio n and dimension s o f infan t informatio n processing . Child Dev 63:711-724. Janzen LA , Nanso n JL , Bloc k G W (1995 ) Neuropsychological evaluatio n o f preschooler s wit h feta l alcohol syndrome . Neurotoxico l Terato l 17:273-279. Johnson VP, Swayze VW, Sato Y, Andreasen NC (1996 ) Fetal alcoho l syndrome : craniofacia l an d centra l nervous system manifestations. Am J Med Genet 61: 329-339. Jones KL, Smith D W (1973 ) Recognition o f the feta l al cohol syndrom e i n earl y infancy . Lance t 2:999 — 1001. Jones KL, Smith DW, Ulleland CN, Streissgut h AP (1973) Pattern of malformation i n offspring o f chronic alcoholic mothers. Lancet 1:1267-1271 . Kable JA, Coles CD (2004 ) The impac t of prenatal alcohol exposur e o n neurophysiologica l encodin g o f environmental event s a t si x months. Alcohol Cli n Exp Res 28:489-496. Kable JA , Coles CD , Drews-Botsc h C , Fale k A (1999 ) The effect s o f maternal drinking prenatally on patterns of pre-academic mathematical concep t development. Pape r presente d a t annua l meetin g o f Research Societ y on Alcoholis m as part o f symposium "Prenata l alcoho l exposur e and developmen tal dyscalculia : Neurocognitive implications, Santa Barbara CA. Kaemingk K, Paquette A (1999) Effect s o f prenatal alcohol exposur e o n neuropsychologica l functioning . Dev Neuropsychol 15:111-140 . Kaplan-Estrin M , Jacobso n SW , Jacobso n J L (1999 ) Neurobehavioral effect s o f prenata l alcoho l expo sure a t 2 6 months . Neurotoxico l Terato l 21:503 511. Kelly SJ, Day N, Streissgut h AP (2001) Effects o f prenatal alcohol exposur e on social behavior i n humans and othe r species . Neurotoxico l Terato l 22:143 149. Kerns KA , Do n A , Matee r CA , Streissgut h A P (1997 ) Cognitive deficit s i n nonretarde d adult s with feta l alcohol syndrome. J Learn Disabil 30:685-693. Kodituwakku PW , Handmake r NS , Cutle r SK , Weathersby EK , Handmake r SD (1995 ) Specifi c impairments i n self-regulatio n i n childre n expose d t o
alcohol prenatally . Alcohol Cli n Exp Res 19:15581564. Kodituwakku PW , Ma y PA , Clericuzi o CL , Weer s D (2001) Emotion-related learnin g in individual s prenatally exposed to alcohol: an investigation of the relation betwee n se t shifting, extinctio n o f responses, and behavior. Neuropsychologia 39:699-708. Kopera-Frye K , Dehaen e S , Streissgut h A P (1996 ) Impairments o f numbe r processin g induce d b y prenatal alcoho l exposure . Neuropsychologi a 34 : 1187-1196. Kopera-Frye K, Olson HC , Streissgut h AP (1997) Teratogenic effect s o f alcohol o n attention . In : Burac k J, Enns J T (eds) . Attention Development an d Psychopathology. Guilfor d Press , Ne w York , p p 171 204. Kyllerman M , Aronso n M , Sabe l KG , Karlber g E , Sandin B , Olegard R (1985) Children o f alcoholi c mothers. Acta Paediatr Scand 74:2-26. Landesman-Dwyer S, Ragozin AS (1981) Behavioral correlates o f prenata l alcoho l exposure : a four-yea r follow-up study. Neurobehav Toxicol Teratol 3:187193. Lyon G R (1996 ) The nee d fo r conceptual and theoreti cal clarit y in th e stud y of attention, memory , an d executive function . In : Lyo n GR , Krasnego r N (eds). Attention, Memory, and Executive Function. Paul Brookes Publishing, Baltimore, pp 3-10 . Lynch ME, Cole s CD, Corle y T, Falek A (2003) Examining delinquenc y i n adolescent s differentiall y prenatally exposed to alcohol: the rol e of proximal and dista l ris k factors . J Stu d Alcoho l 64:678 686. Lynch ME , Cole s CD , Fernhof f PD , Schmiedin g S (2004) Longitudina l effect s o f prenatal alcoho l ex posure o n growt h an d dysmorphia . Alcohol Cli n Exp Res 28(Suppl):42A. Ma X, Coles CD, Lync h ME, LaCont e SM , Zurkiya O , Wang D , H u X (2005) Evaluatio n o f corpus callosum anisotrop y i n youn g adult s wit h feta l alcoho l syndrome according to diffusion tenso r imaging. Alcohol Clin Ex p Res 29:1214-1222. MacKintosh N J (1975 ) A theory of attention: variations in th e associabilit y o f stimul i wit h reinforcement . Psychol Rev 82:276-298. Marcus JC (1987 ) Neurologica l finding s i n th e feta l al cohol syndrome. Neuropediatrics 18:158-160 . Mattson SN , Carlo s R, Riley E P (1993 ) The behavioral teratogenicity of alcohol i s not affecte d b y pretreatment with aspirin. Alcohol 10:51-57 , Mattson SN , Goodman AM, Gaine C, Deli s DC , Riley EP (1999 ) Executiv e functioning in childre n with heavy prenatal alcohol exposure. Alcohol Clin Exp Res 23:1808-1815.
140 ETHANOL-AFFECTE D DEVELOPMEN T Mattson SN , Rile y E P (1998 ) A review of the neurobe havioral deficit s i n childre n wit h feta l alcho l syn drome o r prenata l exposur e t o alcohol . Alcoho l Clin Exp Res 22:279-294. (1999) Implici t an d explici t memor y functionin g in childre n wit h heav y prenatal alcoho l exposure . J Int Neuropsychol Soc 5:462-471. (2000) Parent rating s of behavior in children wit h heavy prenata l alcoho l exposur e an d IQ-matche d controls. Alcohol Clin Ex p Res 24:226-231. Mattson SN , Rile y EP , Deli s DC , Ster n C , Jone s K L (1996) Verba l learnin g an d memor y i n childre n with fetal alcohol syndrome . Alcohol Cli n Ex p Res 20:810-816. Mattson SN , Riley EP, Gramling L, Delis DC , Jone s KL (1998) Neuropsychological compariso n o f alcohol exposed childre n wit h o r without physical feature s of feta l alcoho l syndrome . Neuropsycholog y 12 : 146-153. Mattson SN , Roebuck TM (2002 ) Acquisition and reten tion o f verba l an d nonverba l informatio n i n chil dren with heavy prenatal alcoho l exposure . Alcohol Clin Ex p Res 26:875-882. May PA , Brooke L , Gossage JP, Croxford J , Adnams C, Jones KL , Robinson L , Viljoen D (2000 ) Th e epi demiology o f feta l alcoho l syndrom e i n a Sout h African communit y i n the Wester n Cap e Province . Am J Public Healt h 90:1905-1912 . McCarthy D (1972 ) Th e McCarthy Scales of Children s Abilities. Psychologica l Corp , New York. Miller MW , Astle y SJ, Clarre n S K (1999 ) Numbe r o f axons i n th e corpu s callosu m o f th e matur e Macaca nemestrina: increase s cause d b y prenata l exposure t o ethanol . J Com p Neuro l 412 : 123 131. Mirsky AF, Anthony BJ, Duncan CC , Ahern MB, Kellam SG (1991 ) Analysi s of the element s o f attention: a neuropsychological approach . Neuropsycho l Re v 2: 75-88. Morris R D (1996 ) Relationship s an d distinction s amon g the concept s o f attention , memor y an d executiv e function: a developmenta l perspective . In : Lyo n GR, Krasnegor N (eds). Attention, Memory, an d Executive Function. Pau l Brooke s Publishing , Balti more, p p 11—16 . Morse BA , Adams J, Weiner L (1992) FAS : neuropsycho logical manifestations. Alcohol Clin Exp Res 16:380. Nanson JL , Hiscoc k M (1990 ) Attentiona l deficit s i n children expose d t o alcoho l prenatally . Alcoho l Clin Exp Res 14:656-661. O'Connor MJ, Shah B , Whaley S , Cronin P , Graham J, Gunderson B (2002) Psychiatric illness in a clinical sample o f children with prenatal alcohol exposure . Am J Drug Alcohol Us e 28:743-754.
Oesterheld JR , Wilson A (1997) ADHD and FAS . J Am Acad Child Adolesc Psychiatry 36:1163. O'Malley KD , Nanso n J (2002) Clinical implication s of a lin k between feta l alcoho l spectrum disorder and attention-deficit hyperactivit y disorder . Ca n J Psy chiatry 47:349-354. Platzman KA , Friede s D , Lync h ME , Fale k A (2001 ) Narrative and visual—spatia l memory i n adolescent s prenatally exposed to alcohol. Alcohol Clin Exp Res 25(Suppl 5):122A . Riikonen R , Salone n I , Partane n K , Verb o S (1999 ) Brain perfusio n SPECT and MRI in foetal alcoho l syndrome. De v Med Child Neuro l 41:652-659. Riley EP , Mattso n SN , Sowel l ER , Jerniga n TL , Sobe l DF, Jone s K L (1995 ) Abnormalities of th e corpu s callosum i n children prenatall y exposed t o alcohol. Alcohol Clin Ex p Res 19:1198-1202. Roebuck TM, Mattso n SN , Riley EP (1998a ) A review of the neuroanatomical findings in children wit h fetal alcohol syndrom e o r prenatal exposur e to alcohol . Alcohol Cli n Exp Res 22:339-344. Roebuck TM , Simmon s RW , Mattso n SN , Rile y E P (1998b) Prenata l exposur e t o alcoho l affect s th e ability t o maintai n postura l balance . Alcoho l Cli n Exp Res 22:1992-1997. Roebuck TM, Mattso n SN , Rile y EP (1999 ) Behavioral and psychosocia l profile s o f alcohol-expose d chil dren. Alcohol Cli n Ex p Res 23:1070-1076. Roebuck-Spencer TM , Mattso n S N (2004) Implicit strategy effects learnin g i n children wit h heavy prenatal alcohol exposure . Alcohol Cli n Ex p Re s 28:14241431. Rolls ET , Hornac k J , Wad e D , McGrat h J (1994 ) Emotion-related learnin g i n patient s wit h socia l and emotiona l change s associate d wit h frontal lob e damage. J Neuro l Neurosur g Psychiatr y 57:1518 — 1524. Rourke B P (1995 ) Syndrome o f Nonverbal Learning Disabilities: Neurodevelopmental Manifestations. Guilford, New York. Ruff HA , Rothbart MK (1996 ) Attention in Early Development: Themes an d Variations. Oxford University Press, New York. Sampson PD , Ker r B, Carmichael-Olson H , Streissgut h AP, Hun t E , Bar r H (1997 ) Th e effect s o f prena tal alcoho l exposur e o n adolescen t cognitiv e pro cessing: a speed-accuracy tradeoff . Intelligenc e 24 : 329-353. Sampson PD , Streissgut h AP , Bookstein FL , Bar r H M (2000) O n categorization s i n analyse s o f alcoho l teratogenesis. Enviro n Healt h Perspec t 108(Supp l 3):421-428. Schonfeld AM, Mattson SN , Lang A, Delis DC, Rile y EP (2001) Verba l an d nonverba l fluenc y i n childre n
PRENATAL ALCOHOL EXPOSURE AN D HUMA N DEVELOPMEN T 14 1 with heav y prenatal alcoho l exposure . J Stud Alco hol 62:239-246. Shallice T (1982) Spécifie impairments i n planning. In: Broadbent DE , Weiskrant z L (eds) . Th e Neuropwchology o f Cognitive Function. Th e Roya l Society , London, p p 199-209. Sheslow D , Adam s W (1990 ) Manual fo r th e Wide Range Assessment o f Memory an d Learning. Jasta k Associates, Wilmington, DE . Sowell ER , Jerniga n TL, Mattso n SN , Rile y EP , Sobe l DF, Jones KL (1996) Abnormal development o f the cerebellar vermi s in childre n prenatali} ' exposed t o alcohol: siz e reductio n i n lobule s I—V . Alcoho l Clin Ex p Res 20:31-34. Sowell ER , Mattso n SN , Thompso n PM , Jerniga n TL, Riley EP , Toga A W (2001a ) Mappin g callosa l morphology an d cognitiv e correlates : effect s o f heav y prenatal alcoho l exposure . Neurolog y 57:235-244 . Sowell ER , Thompso n PM , Mattso n SN , Tessne r KD , Jernigan TL , Rile y EP , Tog a A W (ZOOlb ) Voxel based morphometri c analyse s of the brai n i n chil dren and adolescent s prenatall y exposed t o alcohol. Cognit Neurosci Neuropsychol 12:515—523 . (2002a) Regiona l brai n shap e abnormalitie s per sist int o adolescenc e afte r heav y prenata l alcoho l exposure. Cereb Cortex 12:856-865 . Spohr HL , Steinhause n J C (1984 ) Clinical , psycho pathological, an d developmenta l aspect s i n chil dren wit h th e feta l alcoho l syndrom e (EAS) . CIB A Found Sym p 105:197-217 . Spohr HL , Willms J, Steinhausen J C (1993 ) Prenatal alcohol exposur e an d long-ter m developmenta l con sequences. Lance t 32:990-1006 . Steinhausen HC , Nestle r V , Spoh r H L (1982 ) Devel opment an d psychopatholog y o f childre n wit h the feta l alcoho l syndrome . De v Beha v Pediat r 3 : 49-54. Steinhausen HC , Willm s J, Spohr H L (1993 ) Long-ter m psychopathology an d cognitiv e outcom e o f chil dren with fetal alcohol syndrome . J Am Acad Chil d Adolesc Psychiatr y 32:990-994. Stratton K , How e C , Battagli a F (1996 ) Fetal Alcohol Syndrome: Diagnosis, Epidemiology, Prevention and Treatment. Nationa l Academ y Press , Washington, DC . Strcissguth A P (1997 ) Fetal Alcohol Syndrome: A Guide for Families an d Communities. Pau l Brook s Pub lishing, Baltimore, MD . Streissguth AP , Barr HM , Carmichael-Olso n H , Samp son PD , Bookstei n FL , Burges s DM (1994 ) Drink ing durin g pregnanc y decrease s wor d attac k an d arithmetic score s o n standardize d tests : adolescen t data from population-base d prospectiv e study . Alcohol Cli n Ex p Res 18:248-254.
Streissguth AP , Barr HM , Koga n ], Bookstei n F L (1996 ) Understanding the occurrenc e o f secondary disabilities i n client s wit h feta l alcoho l syndrom e (FAS ) and feta l alcoho l effect s (FAE) . Centers fo r Disease Control an d Preventio n (CDC) , Technica l Repor t #96-06, Seattle, WA. Streissguth AP , Barr HM, Sampso n PD , Parrish-Johnso n JC, Kirchne r GL, Martin D C (1986 ) Attention, distraction an d reactio n tim e a t 7 year s and prenata l alcohol exposure . Neurobeha v Toxico l Terato l 8 : 717-725. Streissguth AP , Bookstein FL , Sampso n PD , Bar r H M (1993) The Enduring Effects o f Prenatal Alcohol Ex posure on Child Development: Birth Through Seven Years, a Partial Least-Square Solution. University of Michigan Press , Ann Arbor. (1995) Attention: prenata l alcoho l an d continuities of vigilance and attentional problems from 4 throug h 14 years. Dev Psychopathol 7:419-446. Streissguth AP , Herman CS , Smit h D W (1978 ) Intelli gence, behavio r an d dysmorphogenesi s i n th e feta l alcohol syndrome : a report on 2 0 patients. J Pediatr 92:363-367. Streissguth AP , Marti n DC , Bar r HM , Sandma n B M (1984) Intrauterin e alcohol an d nicotin e exposure : attention an d reactio n tim e i n 4-year-ol d children . Dev Psychol 20:533-541 . Suess PE, Porge s S , Plude D J (1994) Cardia c vaga i ton e and sustaine d attentio n in school-age children . Psy chophysiology 31:17-22 . Swayze VM , Johnso n VP , Hanso n JW , Pive n J , Sat o Y, Giedd JN , Mosnik D , Andreason N C (1997 ) Mag netic resonance imagin g of brain anomalies in feta l alcohol syndrome . Pediatrics 99:232—240. Ueckerer A, Naclel L (1996) Spatia l location s gon e awry: object an d spatia l memory deficit s in children wit h fetal alcoho l syndrome . Neuropsychologi a 34:209 223. US Departmen t o f Healt h an d Huma n Service s (2000) Prenatal exposur e to alcohol. In : Tenth Special Report to the US Congress on Alcohol and Health: Highlights from Current Research, pp 283 — 322. Warner RH , Roset t H L (1975 ) Th e effect s o f drinking on offspring : a n historica l surve y of th e America n and Britis h literature . J Stu d Alcoho l 36:1395 1420. Wass TS, Hait h M M (1999 ) Executiv e function deficit s in 3-month-ol d huma n infant s expose d t o alcoho l in utero . Alcohol Cli n Ex p Res 23(Suppl):31A. Wechsler D (1991 ) Wechsler Intelligence Scale fo r Children—Revised. Psychologica l Corp , New York. Willford JA , Richardson GA , Leech SL , Da y NL (2004 ) Verbal an d visuospatia l learnin g an d memor y
142 ETHANOL-AFFECTE D DEVELOPMEN T function i n childre n wit h moderat e prenata l holisms alcohol exposure . Alcohol Cli n Ex p Re s 28:497 - theor 507. Cohe Zucker RA , Fitzgeral d HE , Mose s H M (1995 ) Emer - Risk, gence o f alcoho l problem s an d th e severa l alco - York
: a developmental perspective on etiological y an d lif e cours e trajectory . In : Cicchett i D , n D J (eds) . Developmental Psychopathology: Disorder, an d Adaption, Vol . 2. Wiley , Ne w , pp 677-711.
9
Influence of Alcohol on Structur e of the Developing Human Brain Susanna L . Fryer Christie L. McGee Andrea D. Spadon i Edward P. Riley
A diagnosis of fetal alcohol syndrome (FAS) requires a combination o f three cluster s o f symptoms: (1 ) a distinct craniofacia l appearance, (2 ) growt h deficiency , and (3 ) centra l nervou s syste m (CNS ) dysfunction . Characteristic FAS-relate d craniofacia l dysmorphol ogy includes short palpebrai fissures (eye openings), a smooth philtru m (th e area above the upper lip) , a flat nasal bridge an d mid-face , and thinnes s o f the uppe r lip. Th e growt h deficienc y related t o FA S manifests either prenatall y and/o r postnatally , and ca n necessi tate neonatal car e for failure to thrive. The thir d clas s of symptoms , CN S dysfunctio n an d accompanyin g structural brai n changes , ar e th e subjec t of the pres ent chapter . The effect s o f prenatal alcoho l exposur e on cognitio n an d behavio r ar e variabl e an d wide reaching. Commo n difficultie s includ e attentio n deficits; decrement s i n genera l intelligenc e quotien t (IQ); behaviora l problems ; visual , auditory, and per ceptual disturbances ; fin e an d gros s motor problems ; and learnin g disabilitie s (Streissgut h an d Connor , 2001). Indeed , th e syndrom e ha s bee n cite d a s th e
leading preventable caus e of mental retardatio n (Pulsifer, 1996) . The stud y o f brai n structur e i n alcohol-expose d individuals offer s a means t o understand th e etiologi cal relationship s tha t underli e th e neurobehaviora l abnormalities observed i n thes e individuals . By examining relationships between brai n structure and behavior, we gain insight s int o th e mechanism s underlyin g alcohol teratogenicity . Before delving into a discussion of brain structura l changes arisin g from feta l alcoho l exposure, i t i s important t o ad d a not e o n terminol ogy. In recognitio n of the wide-rangin g effect s of prenatal alcohol exposure , the term fetal alcohol spectrum disorders (FASD ) ha s bee n adopte d t o describ e the entir e rang e o f outcome s fro m prenata l alcoho l exposure (Bertran d e t al. , 2004) . Thes e effect s var y from th e pronounced facial , growth, and CN S abnor malities traditionall y ascribed t o FAS , to subtl e neu robehavioral, growth , o r physica l deficit s tha t ma y also occu r a s a resul t o f suc h exposure . Usin g thi s classification, FA S corresponds t o dysmorphi c FAS D
143
144 ETHANOL-AFFECTE D DEVELOPMEN T (i.e., al l thre e o f the diagnosti c criteri a ar e met , in cluding th e combinatio n o f spécifi e dysmophi a re quired t o mee t FA S criteria) . Therefore, individual s with a history of prenatal alcohol exposur e and deficits thought to be related t o the alcohol exposure , bu t without th e necessar y criteria for an FA S diagnosis, would be considere d a s nondysmorphi c FASD . Th e termi nology use d throughou t th e presen t chapter refer s to alcohol-exposed individual s as having FAS when the y meet th e thre e majo r criteri a fo r th e diagnosis , an d nondysmorphic FAS D whe n the y do not . I t is important to note that although there is a general consensu s on th e wide-rangin g an d variabl e effect s o f feta l alcohol exposure , diagnosti c an d classificatio n terminology remain s controversial . Thus , honing the diag nostic criteri a tha t describ e feta l alcoho l effect s i s currently a priority for the fiel d (Rile y et al., 2003).
AUTOPSY STUDIES
Dysmorphic Fetal Alcohol Spectrum Disorde r Autopsy, which literall y means, "t o see for oneself," in volves examinatio n t o determin e th e exac t caus e o f death. Autopsies are usefu l i n the stud y of brain disease processes. Postmorte m examinatio n permit s a mor e direct stud y of neuroanatomy tha n i n vivo techniques . Examination of expired tissue, however, presents a confound whe n attemptin g t o generaliz e th e finding s t o live cases. In other words, autopsies allow for a detailed description no t possibl e wit h les s invasiv e techniques, but the data they provide are not necessarily representative o f living cohorts. Historically , autops y cas e report ing wa s on e o f th e initia l method s use d t o examin e teratogenic effect s o f alcohol o n brai n structure. In th e autopsy case s o f children wit h FAS , death usuall y occurred because of major CNS o r cardiac dysfunction. The handfu l o f subsequent autops y report s sho w that developing brain s sufficiently expose d t o alcoho l have a host of structural abnormalities. These include gross microcephaly , cellula r disorganization , an d anomalies of specific brain structures such a s the cor pus callosu m an d cerebellum . Th e firs t autops y o f a FAS case wa s o f a n infan t wh o die d a t 5 days of ag e (Jones, 1975) . Th e infant' s brain exhibite d enlarge d lateral ventricles an d agenesis (absence ) o f the corpu s callosum. I n addition , neuroglial heterotopias , a type of microdysplasia i n which abnormal neural and glia l
tissue cover parts of the brai n surface, were described . Notably, suc h microdysplasia s ar e though t t o resul t from aberran t cortical neura l migratio n and ar e com mon i n autops y case s o f prenata l alcoho l exposure . For instance , i n a n autops y repor t o f five cases, het erotopias wer e note d i n eac h case , althoug h th e amount o f abnormal tissu e wa s variable among indi viduals (Wisniewsk i e t al. , 1983) . Anothe r autops y study tha t examine d brain s fro m fetuses , infants, an d one chil d corroborate d th e presenc e o f microdys plasias and commente d o n th e diversit y of malformations observed (Peiffe r e t al., 1979) . Furthermore , th e authors suspecte d tha t dosage , i n additio n t o tim e course o f exposure, likel y influences the degre e an d nature o f structural damag e t o the developing brain. Recent neuropathologica l studie s associat e FA S with specific types of complex cerebral malformations (Coulter et al., 1993) . Evaluatio n o f a 2-month-old infant expose d t o a bing e patter n o f alcoho l exposur e during th e firs t trimeste r o f pregnanc y wa s th e firs t observation associatin g feta l alcoho l exposur e wit h midline cerebral dysgenesis. Due t o elements o f septooptodysplasia, midlin e cerebra l dysgenesi s i s a typ e of midlin e malformatio n characterize d b y a lac k o f the septum pellucidum, optic nerv e damage , an d endocrine abnormalities . I n additio n t o thi s midlin e damage, th e cas e showe d genera l microcephal y an d cerebellar Purkinj e neuro n disruption . Specifically , the cerebellar neurons were unusually positioned an d had abnormal dendritic structure. Non-Dysmorphic Feta l Alcohol Spectru m Disorde r An earl y cas e stud y tha t examine d th e brain s o f four neonates include d case s o f bot h dysmorphi c an d nondysmorphic FAS D (Clarre n e t al., 1978) . Disrup tions t o brain structur e wer e note d i n addition t o microcephaly, includin g heterotopia s an d histologica l structural aberration s associate d wit h error s i n neu ronal an d glia l migration . Th e degre e o f structura l damage t o th e alcohol-expose d brain s prompted th e authors to conclude "tha t problem s o f brain morpho genesis can occur a s the predominan t effec t o f ethanol exposure i n utero" (p . 67). Brain alterations may more directly indicat e damag e fro m alcohol-relate d effect s than facia l dysmorphia . As th e consensu s o f initia l autops y report s indi cating extensiv e an d diffus e damag e throughou t th e alcohol-exposed brai n mounted , investigator s bega n
ALCOHOL AN D THE DEVELOPIN G HUMA N BRAI N 14 5
Medical imagin g technologie s detec t inheren t differ ences i n biological tissu e density (e.g., gray brain matter vs. white brain matter vs. bone), displayin g them a s images with contrast differences. Imagin g technologie s offer th e abilit y to examine structural brain damage i n vivo an d includ e larger , more representativ e sample s than th e descriptions of brain structure provided by autopsy. Give n tha t CN S deficit s ar e a hallmark feature of FASD, brain matter quantification through imagin g studies provide s a crucia l insigh t int o specifyin g ho w normative brain-behavio r relationship s migh t b e af fected b y alcohol exposure. In contrast to autopsy, magnetic resonanc e imagin g (MRI ) an d othe r i n viv o techniques provid e information, albeit indirectly, of living tissue. Moreover , a s there i s no inheren t selectio n bias, the findings of these studies ar e likely more repre sentative of the populatio n o f interest . Structural brai n imag e analyse s revea l tha t chil dren an d adolescent s prenatall y expose d t o alcohol , with o r withou t dysmorphi c facia l features, hav e pat terns of brain structure malformation s consistent with the neuropsychologica l an d behaviora l effect s foun d in thi s population . Mos t o f the existin g researc h o n neurostructural change s associate d wit h prenata l al cohol exposur e relies on structural MRI techniques .
Reliably, quantitativ e volumetri c analyse s hav e con firmed th e overal l reductions i n siz e of the brai n an d the cerebra l vaul t (Swayz e e t al. , 1997 ; Archibal d et al, 2001 ; Autti-Ramo e t al, 2002) . Analytic tech niques examining regional variations in brain size and shape hav e suggested tha t feta l alcoho l exposur e pro duces a pattern o f differential brai n damage . Specifi cally, th e corpu s callosum , cerebella r vermis , basa l ganglia, and parietal regions may show particular sensitivity to th e effect s o f prenatal alcohol . A discussion of findings from specifi c studies follows. A series o f imaging studies from a group o f collab orators in San Diego has focused on image s collected from a sample o f children an d adolescent s prenatall y exposed t o alcohol , bot h wit h an d withou t dysmor phic feature s (ALC ) (Archibal d e t al., 2001). Analysis of total brain volume show s that there are lobar differ ences betwee n AL C and contro l groups . After statisti cally controllin g fo r overal l brai n reduction s i n th e ALC group , the parieta l lobe i s disproportionately reduced, suggestin g tha t thi s regio n i s particularly vulnerable t o alcoho l exposur e durin g development . Such dat a parallel findings in the mature rat, in which parietal corte x i s reduced b y one-thir d followin g prenatal exposure to ethanol (Mille r and Potempa, 1990 ; Mooney an d Napper , 2005) , but occipita l corte x i s unaffected. The regiona l tissue composition i s affected b y prenatal exposure to ethanol. Ra w volume reduction s are evident for both gra y and whit e matte r whe n FA S individuals are compared with controls . Yet , when over all reduction s i n brai n volum e wer e statisticall y accounted for , only white matte r reduction s reache d statistical significance . Thus, global whit e matte r hy poplasia appear s t o b e mor e sever e tha n globa l gra y matter hypoplasi a i n brain s o f individual s wit h FAS . In addition, exploratio n o f proportional tissu e composition i n eac h lob e reveale d tha t parieta l gra y an d white matte r volume s ar e disproportionatel y reduce d in individual s with FA S relative t o controls , wherea s occipital lob e whit e matte r i s proportionally larger in FAS subjects. These finding s sugges t relativ e sparing of white matter i n this region.
Total Brain Volume and Shape
Voxel-Based Morphometry
to speculat e tha t n o particula r patter n o f behavioral or intellectual functioning is characteristic of individuals with FAS (Clarren, 1986) . Yet, neuropsychological studies suggest a syndrome-specific pattern o f cognitive and behaviora l deficits associated with fetal alcoho l exposure (Mattso n an d Riley , 1998) . Th e subject s tha t comprise autops y studie s likely represen t th e mos t severe cases of prenatal alcohol exposure, i.e. , those with damage incompatibl e with life . Thus , finding s fro m autopsy studies may not be representative of the major ity of individuals with fetal alcohol effects. This is especially true in the case of FAS, because mos t of the brai n damage cause d b y fetal alcoho l exposur e doe s not pre clude viability (Clarren, 1986) .
IMAGING STUDIE S
Early MR I Studies Most MRI studies of individuals prenatally exposed t o alcohol hav e focuse d o n measure s o f brain volume .
Whole-brain voxel-base d morphometr y (VBM ) aim s to localiz e cortica l abnormalitie s by examining eac h voxel, o r point, o n th e brai n image . Thi s methodol ogy avoid s th e nee d t o defin e boundarie s o n eac h
146 ETHANOL-AFFECTE D DEVELOPMENT image, as is often necessar y with standard volumetri c brain imagin g methods . Thus , VB M allow s for th e study of brain regions without clear gyral or structural boundaries. As voxel intensity values are considered t o be a proxy for tissue density, in VBM, statistica l parametric map s depictin g average d tissu e densitie s are created fo r both gray and white matter. Results from a VBM analysi s of children an d ado lescents with prenatal alcoho l exposure (Sowell et al., 200 lb) complemen t earlie r volumetri c finding s o n the sam e sampl e (Archibal d et al, 2001) . The VBM study reveal s prominen t abnormalitie s i n th e peri Sylvian cortice s o f th e lef t tempora l an d parieta l lobes. Specifically , alcohol-exposed subject s have excess gra y matte r densit y and decrease d whit e matte r density i n thes e regions , compare d t o age-matche d controls. Shape Analysis Shape analysi s determines th e siz e o f th e brai n b y measuring th e distanc e fro m th e cente r t o variou s landmark point s o n th e brai n surface . Accordingly, the averag e brai n surfac e exten t i s smalle r fo r th e alcohol-exposed subject s tha n fo r control s (Sowel l et al. , 2002a) . This resul t i s consisten t wit h myria d studies showin g tha t prenata l exposur e t o alcoho l causes microcephaly . Furthe r examinatio n reveal s prominent regiona l pattern s i n alcohol-induce d siz e and shap e differences. Specifically , large group differ ences ar e eviden t i n th e peri-Sylvia n an d parieta l regions, wit h characteristi c narrowin g observe d i n th e alcohol-exposed subject s and increase s in gray matter density. I n addition , portion s o f the anterio r an d or bital fronta l cortex , particularl y i n th e lef t hemi sphere, ar e affecte d i n ALC subjects . These pattern s confirm tha t alcohol-induce d abnormalitie s ar e spe cific rathe r tha n reflectin g diffus e damag e o r globa l microencephaly. The surfaced-base d analyti c method s use d b y Sowell and colleagues (2002a) allow researchers to locate relatively small regions of gray matter volume in creases masked by reductions i n gray matter. I n othe r words, gros s volumetri c studie s hav e misse d subtl e anomalies b y taking the tota l brai n volum e int o ac count. Regiona l shap e abnormalitie s ma y occu r i n alcohol-exposed subject s because of abnormal myeli n deposition tha t (a ) prevent s norma l growt h an d (b) leads to cortical thinnin g in select areas. Evidence of fronta l lob e abnormalitie s ar e consisten t wit h
findings from th e cognitiv e an d behaviora l literatur e citing deficit s i n executiv e function s suc h a s plan ning, cognitive flexibility, and respons e inhibitio n following prenata l exposur e t o alcohol (Mattso n e t al, 1999; Conno r et al, 2000; Kodituwakku et al, 2001). Brain shape has been explore d with surface-based image analysis techniques designe d t o match cortica l anatomy betwee n hemisphere s base d o n delineate d landmarks (Sowel l e t al, 2002b) . From thi s stud y of differences i n brain shape and gray matter density, the authors not e tha t th e lef t hemispher e appear s t o b e more affecte d tha n th e righ t hemispher e an d specu late tha t AL C subject s migh t hav e altere d hemi spheric symmetr y compare d t o th e patter n see n i n typically developing subjects. Specifically, gray matter asymmetry i s mor e prominen t i n th e tempora l lob e for nonexpose d controls , wit h th e righ t hemispher e having more gra y matter tha n th e left . Thi s asymmetry i s significantl y reduce d i n alcohol-expose d sub jects. The suggestio n o f altered brai n asymmetry as a consequence of prenatal alcoho l exposur e is provocative, althoug h furthe r studie s ar e neede d befor e thi s claim ca n b e substantiate d an d it s implication s fo r possible behavioral effects understood . Taken together , dat a fro m th e Sa n Dieg o grou p show tha t asid e fro m globa l reduction s i n brai n volume, parieta l region s ar e disproportionatel y af fected an d whit e matte r i s mor e affecte d tha n gra y matter. Cerebellum Several MRI studies describe cerebellar hypoplasia in individuals prenatall y expose d t o alcoho l wit h an d without FA S (Mattson e t al, 1996 ; Riikone n e t al, 1999; Archibald et al, 2001; Autti-Ramo et al, 2002). Both cerebella r gra y and whit e matter are reduced i n alcohol-exposed individual s (Archibald et al, 2001) . Reductions ar e particularl y evident i n verma l corte x of earlier maturing lobules (Sowel l et al., 1996) . Th e methodology use d t o generat e thes e result s i s as follows. For each subject, the midsagitta l section i s identified an d the vermis is divided into three regions : the anterior vermis (lobules I-V), lobules VI and VII, and lobules VIII-X. Alcohol-induced difference s ar e only evident i n th e anterio r vermis , wher e th e alcohol exposed childre n showe d significan t reductions. Thi s pattern o f cerebellar vermal dysmorphology is distinct from th e pattern s foun d in childre n wit h other disorders, suc h a s autism, Willia m syndrome , an d Dow n
ALCOHOL AND THE DEVELOPIN G HUMAN BRAI N 14 7
syndrome (Ra z et al, 1995 ; Courchesn e e t al, 2001; Schmittetal.,2001). Animal model s o f feta l alcoho l exposur e consis tently sho w abnormalitie s o f th e cerebella r vermi s and hemispheres . Variou s investigator s hav e exam ined th e effect s o f episodic ethano l exposur e during the firs t postnata l wee k (se e Goodlet t e t al. , 1990 ; Light e t al. , 2002) . Followin g suc h exposure , th e number of Purkinje neurons is reduced. As in huma n studies, the greates t differences ar e apparent in earlymaturing region s o f th e cerebella r vermis . Thus , ethanol-induced change s i n th e anima l studie s no t only concu r wit h th e finding s i n human s bu t als o show that th e Purkinj e cel l i s a key target of ethano l toxicity. Corpus Callosum The corpu s callosu m i s a bundle o f fibers that con nects th e tw o cerebral hemispheres . I t develops dur ing the secon d trimester of gestation. Autopsy reports document agenesi s o f thi s structur e i n infant s ex posed t o alcohol i n utero. Partial or complete agene sis i s describe d i n severa l imagin g studie s (Rile y et al, 1995 ; Johnson et al, 1996 ; Swayz e et al, 1997 ; Riikonen e t al, 1999 ; Clar k e t al, 2000) , and i t is suggested tha t prenatal alcoho l exposure is a leadin g cause o f this condition (Jere t et al., 1986) . Mos t indi viduals expose d t o alcoho l prenatall y d o no t hav e such sever e alterations. Careful evaluation indicates that alcohol induce s subtle yet significant changes i n the siz e an d shap e o f this structure . Studie s o n th e morphology of the corpus callosum reveal that anomalies within specific cortica l regions often correspon d to particular callosal subregion s through whic h thos e regions send white matter fibers (Barkovich and Nor man, 1988) . Authors of the first study to systematically evaluate the corpu s callosum divid e a midsagittal are a sectio n of th e callosu m int o fiv e subregion s (Rile y e t al. , 1995). Afte r excludin g tw o subject s with complet e agenesis and controllin g for overall brain size, group differences emerge i n three callosa l subsections . Th e alcohol-exposed grou p display s disproportionate are a reductions i n th e gen u (mos t anterio r section ) an d two areas that correspond to the spleniu m (mos t posterior region) . These data ar e consistent wit h a study by Autti-Ramo and colleague s (2002) , who show that the spleniu m o f corpus callosum i s reduced i n area , length, an d diamete r i n childre n prenatall y exposed
to alcohol . Strikin g differences ar e eviden t o n map s charting th e averag e corpus callosu m displacemen t in alcohol-expose d subject s (Sowel l e t al. , ZOOla) . Specifically, the posterior portion o f the corpu s callo sum i s the sectio n mos t significantl y displaced , lying more inferio r an d anterio r i n th e alcohol-expose d subjects. Thi s alcohol-induce d chang e i n callosa l placement correlate s wit h performanc e o n a verba l learning task . Indeed , displacemen t i s a bette r pre dictor o f performanc e than testin g o f verbal IQ . I n other words , individual s wit h greate r callosa l dis placement exhibi t increase d verba l learnin g impair ments. A series of studies on a large sample of adolescents and adults exposed to alcohol prenatally evaluates the corpus callosu m b y mean s o f landmar k strategie s (Bookstein et al, 2001, 2002a , 2002b). This work develops usefu l discriminatio n protocols t o distinguis h ALC fro m contro l subjects , a goa l distinc t fro m tha t of othe r imag e analysi s research , whic h analyze s mean grou p difference s fo r th e purpos e o f descrip tion. Variabilit y in th e corpor a callos a i s greate r i n adolescents (Bookstei n e t al. , 2002a ) an d adult s (Bookstein e t al, 2001 ) tha t wer e prenatally expose d to alcohol tha n i n age-matched controls . The author s suggest tha t hypervariatio n i n callosa l shap e withi n the AL C grou p i s a functio n o f th e timin g an d amounts o f exposure durin g th e developmen t o f this structure. Thus, differences i n the manne r of the feta l alcohol exposur e may explain the numerou s patterns deviating from norma l callosa l variation . In addition , the dysmorphi c an d nondysmorphi c FAS D group s are indistinguishabl e wit h regar d t o callosa l hyper variance. Thi s findin g i s consisten t with researc h i n the behaviora l domai n (Mattso n an d Riley , 1998 ; Connor e t al., 2000 ) and speak s to the utilit y of augmenting the us e of facial features associated with FAS with MRI findings as markers of alcohol-related brain damage. Two callosa l summar y score s an d fou r land mark point s ca n b e use d t o creat e a classificatio n algorithm tha t discriminate s th e sampl e (alcohol exposed vs . nonexposed ) wit h hig h sensitivit y (10 0 out o f 11 7 subjects ) an d specificit y (4 9 ou t o f 6 0 subjects) (Bookstei n et al. , 2002a) . This typ e o f discrimination protoco l ma y b e especiall y usefu l a s a diagnostic too l fo r th e ag e rang e studie d a s man y conventional sign s used i n th e diagnosi s o f youn g children becom e les s apparen t by adolescence an d adulthood.
148 ETHANOL-AFFECTE D DEVELOPMEN T A subsampl e fro m th e Seattl e studie s wa s use d to examin e th e relationshi p betwee n th e alcohol induced callosa l hypervarianc e an d decrease d neu ropsychological performance (Bookstein et al., 2002b). The relatio n o f callosal shap e an d neuropsychologi cal performanc e wa s analyze d usin g partia l least squares (PLS) analysis . Briefly , a PLS analysi s applies traditional multipl e regression methods t o latent variables (LVs), which are variable s created fro m a facto r analytic procedure to combine an d summarize multiple measure s o f a construct . Th e dat a reductio n ca pabilities o f PL S ca n b e use d t o comba t bot h th e complexity brough t abou t b y larg e number s o f out come variables and the statistical problems (e.g. , multicollinearity) associate d wit h multiple , indirec t measurement o f complex constructs . On th e basi s of this analysis , exces s shap e variatio n correlate s wit h two different profile s of cognitive deficit that are unre lated t o I Q o r th e dysmophic/nondysmoprhi c grou p distinction. A relativel y thick callosa l trac t i s associ ated with deficits in executive function, whereas a relatively thin callosum i s related to motor deficits . The effec t o f ethanol o n th e corpu s callosu m ha s been examine d in nonhuman primate s (Miller et al., 1999). MRI studies and analyse s of postmortem tissue show tha t th e callosu m i s large r i n som e ethanol exposed animals, the mos t affected segmen t being the anterior par t (includin g th e rostrum) . This segmen t interconnects th e fronta l cortice s an d i s involved in executive function . Moreover , th e numbe r o f axons in th e anterio r callosu m i s increase d i n ethanol exposed monkeys . I t i s importan t t o not e (a ) tha t these ethanol-inducec l change s ar e dose-dependen t and (b ) that they are evident in monkeys with dysmorphic and nondysmorphi c FASD .
Hippocampus The hippocampu s i s associated wit h short-term mem ory an d learning . Accordin g t o neuropsychologica l studies of children with FASD, i t appears that the hip pocampus i s damaged by prenatal alcohol exposure. In a recent study, evaluating spatial learning and memor y in childre n wit h feta l alcoho l exposur e (Hamilto n et al. , 2003) , a virtual Morri s maz e tas k based o n ap proaches routinel y used in animal studies was used as a measure o f hippocampal functio n (Sutherlan d e t al. , 2001; Johnso n an d Goodlett , 2002) . Alcohol-exposed children hav e impaired place learnin g relative to con trols bu t ar e equall y proficien t durin g th e cue navigation phase . Thu s th e result s o f th e huma n studies, like those with animals, implicate tha t ethano l interferes with hippocampal-mediated place learning . Imaging studie s sho w hippocampa l damag e i n alcohol-exposed subjects , althoug h no t al l studie s confirm thi s finding . I n a smal l sampl e o f Finnis h adolescents prenatall y exposed to alcohol, som e chil dren hav e hippocampa l abnormalitie s includin g hy poplasia an d regiona l thinnin g (Autti-Ram o e t al , 2002). Moreover , i t appear s tha t th e hippocamp i i n these individuals is asymmetrical; specifically, the right hippocampus are significantly larger than the lef t hip pocampus (Riikone n e t al., 1999) . N o lateralizatio n i s evident in controls. In contrast, another study describes relative sparing of the alcohol-exposed hippocampu s i n an otherwise hypoplastic brain (Archibald et al., 2001). Attempts to replicate existin g MRI studies are neede d to clarify suc h conflicting findings. Particularly, longitudinal studie s will assis t i n assessin g developmental trends; i t i s difficul t t o meaningfull y compare cross sectional sample s that differ o n crucia l variables such as age.
Basal Gangli a MRI studies show that the volume of the basal ganglia is reduce d i n individual s prenatally expose d t o alco hol (Mattson et al, 1996) . Although both th e caudat e and the lenticular nuclei are reduced i n volume, only the caudat e i s reduced afte r brai n siz e i s taken int o account. A larger study that further delineate s subcortical structure s (Archibal d et al. , 2001 ) describe s sig nificant difference s i n childre n wit h FAS . N o differences ar e eviden t i n childre n wit h nondysmor phic FASD . Th e latte r dat a concu r wit h findings of a MR I analysi s o f th e basa l gangli a showin g n o abnormalities i n childre n wit h dysmorphi c an d nondysmorphic FASD (Autti-Ramo et al., 2002).
Optic Nerv e Eye abnormalities are frequently documented i n individuals wit h FAS . Optic nerv e hypoplasia i s the mos t frequent for m o f ocula r dysmorpholog y associate d with prenata l alcoho l exposur e (Stròmlan d an d Pinazo-Durân, 2002) . Ten o f 1 1 childre n diagnose d with FA S showed evidenc e o f optic nerv e hypoplasia when evaluated wit h MRI, ophthamological examinations, an d electroretinogra m (ERG ) (Hu g e t al. , 2000). In additio n to the structura l damage to the optic nerve , visua l acuit y was decreased i n al l bu t on e subject. Report s o f th e frequenc y o f visio n problem s in FA S vary ; ove r hal f o f th e childre n studie d i n
ALCOHOL AND THE DEVELOPIN G HUMA N BRAI N 14 9 a Swedis h sampl e ha d visua l impairment, an d >10 % showed sever e acuit y problems (Strômland , 1985 , i n Strômland an d Pinazo-Durân , 2002) . Thi s findin g indicates tha t prenata l alcoho l exposur e ha s detri mental consequence s o n th e developin g visua l system, a conclusion corroborate d b y ERG results . Ten of 1 1 subject s i n th e stud y b y Hu g an d colleague s (2000) ha d abnorma l ER G results , attributabl e t o a lack o f sufficien t retina l sensitivity . Data fro m oph thalmological studie s o f FA S subject s sugges t tha t ocular deficit s shoul d b e considere d amon g th e con stellation o f presentin g symptom s o f a n alcohol exposed individual . Thus, a n ey e examinatio n ma y be o f diagnosti c us e i n identifyin g individuals wit h prenatal alcoho l exposur e (Strômlan d an d Pinazo Durân, 2002).
OTHER IMAGING APPROACHES Ultrasonography In ultrasonography , sound wave s are recorde d t o pro duce image s of internal organ s and bod y tissues. This imaging modality 7 has been use d t o examine the con sequences o f prenata l alcoho l exposur e o n th e feta l development o f the fronta l cortex (Was s et al., 2001). The sampl e consist s o f 16 7 women , almos t hal f o f whom consume d varyin g amounts o f alcoho l whil e pregnant. Result s fro m thi s stud y represen t th e spec trum of fetal alcohol exposure effects; th e prospectively identified sampl e relie s o n neithe r spontaneousl y aborted fetuse s nor severel y affected childre n identi fied throug h retrospectiv e methods , scenario s tha t overrepresent case s o f heav y exposure . Th e fronta l lobe measuremen t wa s operationalized a s th e linea r distance fro m th e posterio r cavu m septu m pellu cidum to the inne r surface o f the calvarium . It should be note d tha t this measuremen t i s logically less com prehensive and precis e tha n are a or volume measure ments o f brai n structure . Regressio n analyse s wer e used t o determin e whic h o f several variable s studie d were predictiv e o f i n viv o feta l fronta l lob e size . I n general, alcoho l exposur e i s a significant predictor o f reduced fronta l lob e size . Interestingly , othe r brai n measurements take n fro m th e ultrasonographs , suc h as th e distanc e betwee n th e posterio r thalamu s an d the inne r calvarium, are less sensitive to alcohol exposure than th e fronta l cortex . There is an interaction between th e effec t of alcohol exposure on the developing frontal corte x and materna l
age (Was s e t al. , 2001) . Withi n th e alcohol-expose d women, a maternal age of greater tha n 30 years old increases the ris k of a fetus having a significantly smaller frontal lobe . Thi s findin g i s consistent wit h previou s research identifyin g advance d materna l ag e a s a ris k factor for having a child born with FAS (May and Gos sage, 2001) . Thus , i t appear s tha t th e deleteriou s ef fects o f alcoho l exposur e o n th e developin g fronta l cortex are exacerbated with increased materna l age. Emission Computed Tomography Emission compute d tomograph y (CT ) technologies , such a s positron emissio n tomograph y (PET ) an d sin gle photon emissio n compute d tomograph y (SPECT) , can b e use d t o measure cerebra l metabolism . Accord ingly, a radiotracer i s injected int o a subject's body an d images o f a nonsedate d individual , wh o migh t b e asked to perform a behavioral task, are taken. The im ages are reconstructed t o appreciate th e activity within nuclei o f the brain . Fo r the purpose s o f the researc h discussed i n th e presen t chapter , measurement s ob tained in this way are a proxy for brain function in that increased metaboli c rate s withi n a brai n regio n indi cate more neura l activity in that region . The effec t o f prenatal alcoho l exposur e o n brai n function wa s assesse d vi a PE T analysi s i n 1 9 youn g adults diagnose d wit h FA S (Clark e t al, 2000) . Glu cose metabolis m i n subcortica l areas , includin g th e thalamic an d caudat e nuclei , i s decreased . I n th e most sever e situations, ethanol cause s gros s structural deficits, wherea s othe r case s sho w subtl e effect s tha t vary b y regio n o r cel l type . These change s ar e remi niscent o f ethanol-induced reduction s i n glucose uti lization amon g specifi c subcortica l structure s i n th e rat brai n (Vinga n e t al. , 1986 ; Mille r an d Dow Edwards, 1993) . Thus , feta l alcoho l exposur e cause s a continuum o f damage to the developin g brain. SPECT has been use d t o evaluate th e brain func tion o f 1 1 childre n (mea n age , 8. 6 years ) wit h FA S (Riikonen e t al. , 1999) . Thes e childre n exhibi t mod erate decrease s i n cerebra l bloo d flo w i n th e lef t parieto-occipital region . Thi s i s consisten t wit h th e abnormalities identified by structural MRI studies. Altered functio n withi n thi s regio n ma y b e relate d t o difficulties tha t childre n wit h FA S hav e wit h arith metic an d speech . Additionally , th e sampl e o f chil dren wit h FA S show s a n asymmetrica l patter n o f frontal lob e perfusion, or the patter n i n which th e radiotracer i s incorporate d b y th e tissue . Specifically , the righ t frontal region showe d sligh t hyperperfusio n
150 ETHANOL-AFFECTE D DEVELOPMEN T compared t o the patter n i n the lef t region . This differ ence ma y relat e t o th e attentio n deficit s commonl y seen i n chidren wit h FAS ? although thi s findin g con trasts wit h th e hypoperfusio n i n th e lef t fronta l an d prefrontal lobe s o f children wit h attention defici t hy peractivity disorde r (Sie g e t al. , 1995 ; Ame n an d Carmichael, 1997 ; Langlebe n e t al. , 2001) . Notably , structural imagin g i n th e childre n wit h FA S showed that the brain s of 6 of the 1 1 subjects ha d gros s struc tural abnormalities , includin g cortica l atroph y an d anomalies of the corpu s callosum and cerebellum . A recen t SPEC T stud y evaluate d cerebra l bloo d flow i n thre e individual s diagnosed wit h FA S (on e child, on e adolescent , an d on e adult ) (Bhatar a et al., 2002). All three case s no t onl y have structura l abnor malities bu t als o reduce d cerebra l bloo d flo w i n th e temporal cortex . Simila r t o th e finding s o f Riikone n and colleague s (1999), the case study report noted lef t hemisphere hyperfusion , whic h i s consistent wit h lef t hemisphere dysfunction.
how structura l deficit s i n th e alcohol-expose d brai n relate t o neurobehaviora l outcome . Accordingly , a recent meetin g o f internationa l collaborator s high lighted th e critica l importanc e o f researc h focusin g on the relationship between brai n structure and func tion i n FAS D (Rile y et al., 2003). In particular, func tional imagin g studies will provide an i n vivo accoun t of ho w prenata l alcoho l exposur e affect s neura l re source allocation , o n a cognitiv e task-by-tas k basis. I t is possibl e tha t futur e researc h wil l sho w tha t a pathognomonic FAS D brai n doe s no t exist . Regard less of the wide-rangin g neura l complication s tha t fetal alcoho l effect s ma y exhibit , th e keyston e o f effective interventio n rests on explicatin g how behav ioral sequelae resul t from teratogeni c alteration o f the brain. Abbreviations ALC prenatall y expose d t o alcohol , bot h wit h and without dysmorphic features CNS centra l nervou s system
SUMMARY AND CONCLUSION S
Teratogenic exposur e t o alcoho l (1 ) cause s perma nent change s i n brai n structur e and (2 ) differentiall y affects specifi c components and region s o f the brain . These structura l change s likel y underli e deficit s i n the cognitiv e abilit y and adaptiv e functioning o f exposed individuals . Structura l brai n deficit s reveale d by quantitative imag e analyse s of alcohol-exposed in dividuals includ e reduction s i n overal l brain volum e and alteration s i n brai n shape , density , an d bilatera l symmetry. Additionally, some structures are especially vulnerable t o th e teratogeni c effect s o f alcohol , no tably the cerebellum , corpu s callosum , an d th e vari ous structures that make up the basal ganglia. From a neurobehaviora l poin t o f view, fetal alco hol effects compris e a continuum, resultin g in a range of devastatin g behaviora l an d cognitiv e disabilities . Targeted researc h definin g the degre e o f insul t t o a structure an d th e continuu m o f neurobehaviora l ef fects wil l be of great clinical utility. Given that individuals with historie s of heavy prenatal alcoho l exposur e face long-lastin g deficits affectin g multipl e aspect s o f cognitive and behaviora l functioning, identification of brain areas likely associated wit h such deficit s will improve diagnostic and treatment strategies. Multidisciplinary researc h i s needed t o fil l i n th e gaps in our current knowledge an d open new light on
CT compute d tomograph y FAS feta l alcohol syndrom e FASD feta l alcohol spectru m disorder s IQ intelligenc e quotien t LV laten t variable MRI magneti c resonanc e imaging PET positro n emission tomograph y PLS partia l least squares analysis SPECT singl e photo n emissio n compute d to mography VBM voxel-base d morphometry
ACKNOWLEDGMENTS Thi s wor k wa s supporte d b y the Nationa l Institutes of Heat h (AA01352 5 an d AA01 0417). References
Abel E L (1984 ) Fetal Alcohol Syndrome an d Fetal Alcohol Effects. Plenum , New York, pp 1-28 . (1995) An update on incidence of FAS: FAS is not an equa l opportunit y birt h defect . Neurotoxico l Teratol 17:437-443 . Amen DG , Carmichae l B D (1997 ) Hig h resolutio n brain SPEC T imagin g and ADHD. Ann Clin Psychiatry 9:81-86.
ALCOHO L AN D TH E DEVELOPIN G HUMA N BRAI N 15 Archibal d SL , Fennema-Notestin e C , Gams t A , Rile y EP , Mattso n SN , Jernigan T L (2001 ) Brain dysmorpholog y i n individual s with sever e prenata l alcoho l exposure . De v Me d Chil d Neuro l 43:148-154 . Autti-Ram o I , Autti T , Korkma n M , Kettune n S , Salone n O, Valanne L (2002) MR I finding s in childre n wit h schoo l problem s wh o ha d bee n expose d prenatall y to alcohol . De v Me d Chil d Neuro l 44:98-106 . Barkovich AJ , Norma n D (1988 ) Anomalie s o f th e cor pus callosum : correlatio n with furthe r anomalie s of the brain . Am Roentge n 151:171-179 . Bertran d J , Floy d RL , Weber MK , O'Conno r M , Rile y EP , Johnso n KA, Cohe n D E (2004 ) National Task Force on FAS/FAE: Guidelines for Referral and Diagnosis. Center s fo r Diseas e Contro l an d Preven tion , Atlanta , G A. Bhatar a VS, Lovrei n F , Kirkeby J, Swayze V 2nd , Unru h E, Johnso n V (2002 ) Brai n functio n i n feta l alcoho l syndrom e assessed b y singl e photo n emissio n com pute d tomography . Sout h Dakot a J Med 55:59-62 . Bookstei n FL , Sampso n PD , Conno r PD , Streissgut h AP (2002a) Midlin e corpu s callosu m is a neuroanatom ical focu s o f feta l alcoho l damage . Ana t Re e 269 : 162-174. Bookstei n FL , Sampso n PD , Streissgut h AP, Conno r P D (2001) Geometri c morphometric s o f corpu s callo sum an d subcortica l structure s i n th e fetal-alcohol affected brain . Teratolog y 64:4-32 . Bookstei n FL , Streissgut h AP , Sampso n PD , Conno r PD , Barr H M (2002b ) Corpu s callosu m shap e an d neuropsychologica l deficit s i n adul t male s wit h heavy feta l alcoho l exposure . Neuroimag e 15 : 233-251 . Clar k CM , L i D , Conr y J , Corn y R , Looc k C (2000 ) Structura l an d functiona l brain integrit y of feta l al coho l syndrom e i n nonretarde d cases . Pediatric s 105:1096-1099. Clarre n S K (1986 ) Neuropatholog y i n feta l alcoho l syn drome . In : West J R (ed) . Alcohol an d Brain Development. Oxfor d Universit y Press , Ne w York , p p 158-166. Clarre n SK , Alvor d E C Jr , Sum i SM , Streissgut h AP , Smit h D W (1978 ) Brai n malformation s relate d t o prenata l exposur e t o ethanol . J Pediat r 92:64-67. Conno r PD , Sampso n PD , Bookstei n FL , Bar r HM , Streissguth AP (2000 ) Direc t an d indirec t effect s o f prenata l alcoho l damag e o n executiv e function . De v Neuropsycho l 18:331-354 . Coulte r CL , Leec h RW , Schaefe r GB , Scheithaue r BW , Brumbac k R A (1993 ) Midlin e cerebra l dysgenesis , dysfunctio n o f th e hypothalamic-pituitar y axis , an d fetal alcoho l effects . Arc h Neuro l 50:771-775 . Courchesn e E , Karn s CM , Davi s HR , Ziccard i R , Carpe r RA , Tigue ZD , Chisu m HJ , Moses P , Pierce K, Lor d C , Lincol n AJ , Pizz o S , Schreibma n L ,
1
Haa s RH , Akshoomof f NA , Courchesn e R Y (2001 ) Unusua l brai n growt h pattern s i n earl y lif e i n pa tient s wit h autisti c disorder : an MR I study . Neurol ogy 57:245-254 . Goodlet t CR , Marcusse n BL , West J R (1990 ) A singl e day o f alcoho l exposur e durin g th e brai n growt h spurt induce s brai n weight restrictio n an d cerebel lar Purkinj e cel l loss. Alcohol 7:107-114 . Hamilton , DA , Kodituwakku , P , Sutherland , RJ , Savage , D D (2003 ) Childre n with fetal alcoho l syndrom e are impaire d a t plac e learnin g bu t no t cued-navigatio n in a virtua l Morri s wate r task . Beha v Brai n Re s 143 : 85-94. Hu g TE , Fitzgeral d KM , Cibis G W (2000 ) Clinica l an d electroretinographi c finding s i n feta l alcoho l syn drome . J AAPOS 4:200-204 . Jeret JS , Seru r D , Wisniewski K , Fisc h C (1986 ) Fre quenc y o f agenesi s o f th e corpu s callosu m i n th e developmentall y disable d populatio n as determine d by computerize d tomography . Pediat r Neurosc i 12 : 101-103. Johnso n ТВ , Goodlett C R (2002 ) Selectiv e an d endur ing deficit s in spatia l learnin g afte r limite d neonata l binge alcoho l exposur e i n mal e rats . Alcoho l Cli n Exp Re s 26:83-93. Johnso n VP , Swayz e V W 2nd , Sat o Y , Andrease n N C (1996) Feta l alcoho l syndrome : craniofacia l an d centra l nervou s syste m manifestations . Am J Me d Gene t 61:329-339 . Jone s K L (1975 ) Aberran t neurona l migratio n i n th e fe tal alcoho l syndrome . Birt h Defect s 11:131-132 . Kodituwakk u PW , Kalber g W , Ma y P A (2001 ) Th e ef fects o f prenata l alcoho l exposur e o n executiv e functioning . Alcoho l Re s Healt h 25:192-198 . Langlebe n DD , Austin G , Krikoria n G , Ridlehube r HW , God s ML , Straus s H W (2001 ) Interhemispherei c asymmetr y o f regiona l bloo d flo w i n prepubescen t boys wit h attentio n defici t hyperactivit y disorder . Nucí Med Commun 22:1333-1340 . Light KE , Belcher SM , Pierc e D R (2002 ) Tim e cours e and manne r o f Purkinje neuro n deat h followin g a single ethano l exposur e o n postnata l da y 4 i n th e developing rat. Neuroscience 114:327-337 . Mattson SN, Goodman AM, Gaine C , Deli s DC , Rile y EP (1999 ) Executiv e functionin g i n childre n wit h heavy prenata l alcohol exposure . Alcoho l Clin Exp Res 23:1808-1815. Mattson SN , Rile y E P (1998 ) A review o f the rieurobe havioral deficit s i n childre n wit h feta l alcoho l syn drome o r prenata l exposur e t o alcohol . Alcoho l Clin Exp Res 22:279-294. Mattson SN, Riley EP, Sowell ER , Jernigan TL, Sobe l DF, Jones K L (1996) A decrease i n the siz e o f the basa l ganglia in children with feta l alcohol syndrome. Alcohol Clin Exp Res 20:1088-1093.
152 ETHANOL-AFFECTE D DEVELOPMEN T May PA, Gossage JP (2001) Examining the prevalenc e of fetal alcoho l syndrome . Alcoho l Re s Healt h 25 : 159-167. Miller MW, Astley SJ, Clarren S K (1999) Number of axons i n th e corpu s callosu m o f the matur e Macaca nemestrina: increase s caused b y prenata l exposur e to ethanol. J Comp Neurol 412:123-131. Miller MW , Dow-Edward s DL (1993 ) Vibrissal stimulation affect s glucos e utilizatio n i n th e ra t trigemi nal/somatosensory syste m bot h i n norma l rat s an d in rats prenatally exposed to ethanol. J Comp Neu rol 335:283-294 . Miller MW, Potempa G (1990) Numbers of neurons and glia i n matur e ra t somatosensor y cortex : effect s o f prenatal exposur e to ethanol . J Comp Neuro l 293 : 92-102. Mooney SM , Napper RM , West JR (1996) Long-term ef fect of postnatal alcoho l exposure o n the numbe r of cells i n th e neocorte x o f th e rat : a stereologica l study. Alcohol Cli n Exp Res 20:615-623. Mooney SM , Nappe r RM A (2005 ) Earl y postnatal expo sure t o ethano l affect s ra t neocorte x i n a spatio temporal manner. Alcohol Clin Exp Res 29:683—691. Peiffer J , Majewsk i F , Fischbac h H , Bieric h JR, Vol k B (1979) Alcoho l embryo - an d fetopathy . Neu ropathology o f 3 childre n an d 3 fetuses . J Neuro l Sci 41:125-137. Pulsifer M B (1996 ) The neuropsycholog y o f mental re tardation. J Int Neuropsychol Soc 2:159-176. Raz N, Torres IJ, Briggs SD, Spence r WD , Thornto n AE, Loken WJ , Gunnin g FM , McQuai n JD , Driese n NR, Acke r JD (1995 ) Selectiv e neuroanatomi c ab normalities in Down's syndrome and their cognitive correlates: evidence fro m MR I morphometry . Neu rology 45:356-366. Riikonen R , Salone n I , Partane n K , Verb o S (1999 ) Brain perfusio n SPEC T and MR I i n foeta l alcoho l syndrome. De v Med Child Neurol 41:652-659 . Riley EP , Guerri C , Calhou n F , Charness ME , Forou d TM, L i TK , Mattso n SN , Ma y PA , Warre n K R (2003) Prenatal alcoho l exposure: advancing knowledge throug h internationa l collaborations . Alcoho l Clin Exp Res 27:118-135. Riley EP , Mattso n SN , Sowel l ER , Jerniga n TL, Sobe l DF, Jone s K L (1995 ) Abnormalities of the corpu s callosum i n children prenatally exposed to alcohol. Alcohol Cli n Exp Res 19:1198-1202. Schmitt JE , Elie z S , Warsofsk y IS , Bellug i U , Reis s AL (2001) Enlarged cerebella r vermi s in Williams syn drome. J Psychiatr Res 35:225-229 . Sieg KG , Gaffne y GR , Presto n DF , Helling s J A (1995) SPECT brai n imagin g abnormalitie s i n attentio n deficit hyperactivit y disorder . Cli n Nuc l Me d 20 : 55-60.
Sowell ER, Jernigan TL, Mattson SN, Riley EP, Sobel DF , Jones K L (1996 ) Abnorma l developmen t o f th e cerebellar vermis in childre n prenatall y exposed t o alcohol: siz e reductio n i n lobule s I-V . Alcoho l Clin Exp Res 20:31-34. Sowell ER , Mattso n SN , Thompso n PM , Jerniga n TL , Riley EP, Toga AW (200la) Mapping callosa l mor phology an d cognitiv e correlates : effect s o f heav y prenatal alcoho l exposure . Neurology 57:235—244 . Sowell ER , Thompso n PM , Mattso n SN , Tessne r KD , Jernigan TL , Rile y EP , Tog a A W (200Ib ) Voxel based morphometri c analyse s of the brai n i n chil dren an d adolescents prenatally exposed to alcohol. Neuroreport 12:515-523 . (2002a) Regiona l brai n shape abnormalitie s persist int o adolescenc e afte r heav y prenata l alcoho l exposure. Cereb Cortex 12:856—865 . Sowell ER , Thompso n PM , Peterso n BS , Mattson SN , Welcome SE , Henkeniu s AL , Rile y EP , Jernigan TL, Tog a A W (2002b) Mappin g cortica l gra y matter asymmetr y pattern s i n adolescent s wit h heav y prenatal alcoho l exposure . Neuroimag e 17:1807 1819. Streissguth AP , Conno r P D (2001 ) Feta l alcoho l syn drome an d othe r effec t o f prenatal alcohol : devel opmental cognitiv e neuroscienc e implications . In: Nelson ÇA , Lucian a M (eds) . Handbook o f Developmental Cognitive Neuroscience. MIT Press , Cam bridge, MA, pp 505-518 . Strômland K , Pinazo-Durâ n M D (2002 ) Ophthalmi c involvement i n th e feta l alcoho l syndrome : clini cal and anima l model studies . Alcohol Alcohol 37 : 2-8. Sutherland RJ, Weisend MP , Mumby D, Astur RS, HanIon FM , Koerne r A, Thomas MJ , Wu Y, Moses SN , Cole C , Hamilto n DA , Hoesing JM (2001 ) Retrograde amnesi a afte r hippocampa l damage : recen t vs. remot e memorie s i n tw o tasks . Hippocampu s 11:27-42. Swayze VW 2nd, Johnson VP , Hanson JW , Piven J , Sato Y, Gied d JN , Mosni k D , Andrease n NC . (1997 ) Magnetic resonanc e imaging of brain anomalies in fetal alcoho l syndrome. Pediatrics 99:232-240. Vingan RD , Dow-Edward s DL , Rile y E P (1986 ) Cere bral metaboli c alterations in rats following prenatal alcohol exposure : a deoxyglucos e study . Alcoho l Clin Exp Res 10:22-26. Wass TS, Persutt e WH, Hobbin s JC (2001 ) The impac t of prenatal alcoho l exposur e o n fronta l corte x de velopment i n utero . A m J Obste t Gyneco l 185 : 737-742. Wisniewski K , Dambska M , She r JH , Qaz i Q (1983 ) A clinical neuropathological study of the fetal alcoho l syndrome. Neuropediatrics 14:197-201 .
10
Prenatal Ethanol Exposure and Fetal Programming: Implications for Endocrine and Immune Development and Long-Term Health Joanna H. Sliwowska Xingqi Zhang Joanne Weinberg
Ethanol us e and abuse result in clinical abnormalities of endocrin e functio n an d neuroendocrin e regula tion (Morgan, 1982 ; Adler, 1992) . Direct and indirect effects o f ethanol o n man y hormone systems , including th e adrenal , gonadal, and thyroi d axes, as well as on aldosterone , growt h hormone , parathyroi d hor mone, calcitonin , insulin , and glucagon , hav e bee n reported. Secondar y complication s suc h a s live r disease, malnutrition , and othe r medica l condition s often presen t i n alcoholic s ma y i n an d o f themselves have endocrine consequences an d ca n potentially exacerbate the advers e effects o f ethanol. Whether ethanol-induce d endocrin e imbalance s contribute t o th e etiolog y o f feta l alcoho l spectru m disorders (FASD) is unknown, but i t is certainly a possibility (Anderson , 1981) . Th e effect s o f ethano l o n interactions betwee n th e pregnan t femal e an d fetu s are comple x (Rudee n an d Taylor , 1992 ; Weinberg , 1993a, 1993b , 1994) , and bot h direc t and indirec t effects o f ethanol o n feta l developmen t occur . Ethano l readily crosse s th e placenta , thu s directl y affectin g
developing feta l cell s and tissues , including those re lated t o endocrin e function . I n addition , ethanol induced change s i n endocrin e functio n ca n disrup t the hormona l interaction s betwee n th e pregnan t female an d feta l systems , altering the norma l hormon e balance an d indirectl y affecting th e developmen t o f fetal metabolic , physiological , an d endocrin e func tions. Ethanol-induce d change s i n metaboli c and/o r endocrine functio n can als o affect a female's ability to maintain a successful pregnancy , resulting in miscarriage or , i f the fetu s i s carried to term , possibl e con genital defects. Of particular relevance to the presen t Chapter i s the notio n tha t disturbance s of the recip rocal interconnection s betwee n (a ) th e pregnan t female an d fetu s o r (b ) th e materna l an d neona tal hypothalamic-pituitary-adrena l (HPA ) axes, ma y provide a common pathway by which perinatal exposure t o differen t agent s result s i n feta l programmin g (Angelucci e t al. , 1985) . Fetal o r early programming refers to the concept that earl y environmental or nongenetic factors , includin g pre - o r perinata l exposur e
153
154 ETHANOL-AFFECTE D DEVELOPMEN T to drugs or other toxic agents, ca n permanentl y organize o r imprin t physiologica l and behaviora l systems and increas e vulnerabilit y t o illnesse s o r disorder s later i n lif e (Matthews , 2000 , 2002 ; Bakke r e t al , 2001; Welberg and Seckl , 2001). The presen t Chapte r focuse s o n th e advers e ef fects of prenatal ethanol exposur e on neuroendocrin e and immun e function , wit h particula r emphasi s o n the concep t of fetal programmin g and th e HP A axis, a key playe r i n th e stres s response . Th e HP A axi s i s highly susceptibl e t o programmin g durin g feta l an d neonatal developmen t (Matthews , 2000 , 2002 ; Wel berg an d Seckl , 2001) . Earl y environmenta l experi ences, includin g exposure t o ethanol, ca n reprogra m the HP A axi s suc h tha t HP A ton e i s increase d throughout life . Thi s chapte r present s dat a demon strating tha t gestationa l ethano l exposur e increase s HPA activity in bot h th e pregnan t femal e and th e off spring. Evidenc e suggestin g tha t increase d exposur e to endogenou s glucocorticoid s ove r th e lifespa n ca n alter behavioral and physiologica l responsiveness an d predispose th e organis m t o developmen t o f certai n diseases late r i n lif e i s als o described . Alteration s i n immune functio n may be one o f the consequence s o f fetal HP A programming. Th e chapte r discusse s stud ies demonstratin g tha t ethano l i s a n immunoterato genic agen t an d tha t programmin g o f HP A activity may mediat e som e o f the advers e effect s o f prenata l ethanol exposur e o n immun e competenc e i n late r life.
THE CONCEP T O F STRESS
The ter m stress, used i n the biologica l sense, was popularized b y Hans Selye , who propose d tha t stres s ca n be understoo d withi n th e contex t o f th e "genera l adaptation syndrome. " Thi s concep t gre w ou t o f Selye's observation s tha t a wid e variet y of physically noxious stimuli , suc h a s col d o r hea t exposure , sur gery, muscula r exercise , bacteria, toxins , o r X-irradiation, resulted in essentially the same triad of symptoms: (1) adrena l cortica l enlargement , (2 ) thymi c involu tion o r atrophy, and (3 ) gastrointestinal ulcer s (Selye , 1936, 1950) . The respons e tria d hold s despit e th e fac t tha t a highly specific adaptiv e response exist s for any on e o f these agent s by itself. These symptoms are considere d a nonspecific adaptive response o f the bod y to a physical stresso r and par t o f the "alar m reaction, " th e first
stage o f the genera l adaptatio n syndrome . This stag e is characterized b y activation o f the HP A system, an d the correspondin g change s i n immun e functio n an d gastric ulcération ar e thought to be mediated t o som e extent b y this HPA activation. I f the stressfu l stimulu s persists, the organis m enters the second, o r resistance, phase o f th e genera l adaptatio n syndrome , durin g which adrenocortica l activatio n i s maintained . Afte r repeated o r constan t exposur e t o th e stresso r th e or ganism enter s th e thir d phase , whe n th e capacit y o f the adrena l corte x t o synthesize , store , an d secret e glucocorticoids i s exceede d (Selye , 1946) . Althoug h not all aspects of the general adaptatio n syndrom e ar e supported b y subsequent experimenta l evidence , thi s concept has provided a powerful context fo r stress research fo r many years. The concep t o f nonspecificity (Sely e 1936 , 1950 ) has raise d a critica l question : throug h wha t mecha nisms coul d s o man y divers e agent s transmi t th e common "message " of stress ? Sely e speculate d tha t there mus t b e som e physiologica l "firs t mediator " o f stress, i.e. , som e nonspecifi c chemica l o r byproduc t of biological reaction s tha t produced thes e symptom s indicative o f stres s (Mason , 1975) . Th e searc h fo r physiological firs t mediator s wa s largel y unproduc tive. B y the 1960s , stres s researchers becam e increas ingly awar e tha t (a ) psychologica l an d socia l factor s had effect s simila r to an d perhap s eve n mor e poten t than thos e o f physical stressor s and (b ) that th e HP A axis wa s particularl y sensitive t o thes e psychologica l stimuli (Mason , 1968) . Thi s growin g understandin g of th e rol e o f psychologica l variable s le d Maso n (1975) t o sugges t tha t th e unrecognize d firs t media tors i n man y o f Selye' s experiment s ma y hav e bee n the substrat e i n the centra l nervou s system (CNS ) in volved i n emotional arousal . That HPA activation frequently occurred durin g novel o r aversive stimulation is no t surprisin g because th e HP A axis i s an excellen t indicator o f arousa l (Henness y an d Levine , 1979) . This understandin g altere d th e concep t o f nonspeci ficity, at least in terms of the HP A response. Instea d of viewing hormona l response s a s bein g elicite d b y a great diversit y of stimuli, they coul d b e viewe d as being elicited largel y by the emotiona l arousa l or activation commo n t o mos t i f no t al l nove l an d aversiv e situations. A concept o f stress emphasizing th e "emergency " function o f the sympatheti c nervou s syste m an d th e adrenal medull a an d thei r role s i n maintainin g in ternal homeostasi s come s fro m th e wor k of Cannon
ETHANOL EFFECT S O N ENDOCRIN E AND IMMUNE FUNCTIO N 15 5
FIGURE 10- 1 Schemati c representatio n o f circuitry of the stress system. The tw o major system s central to the stress respons e ar e th e hypothalamic-pituitary-adrena l (HPA) axis and the locus coeruleus noradrenergi c sympathetic adrena l medullary (LC-NE) system , which in teract t o maintain homeostasis . Th e HP A axis consists of a cascade o f responses. Corticotropin-releasin g hor mone (CRH) , secrete d b y th e hypothalamus , stimu lates th e releas e o f adrenocorticotropi c hormon e (ACTH) fro m th e anterio r pituitary , whic h i n tur n stimulates release of the glucocorticoid hormone s fro m the adrena l cortex . Th e glucocorticoid s fee d bac k a t multiple levels of the axi s to inhibit activity. In the LC NE system , norepinephrin e (NE) , release d primarily from sympatheti c nerv e terminals , an d epinephrine , released primaril y from th e adrena l medulla , activat e sympathetic responses. Homeostasis is restored by activation of the parasympatheti c system. The LC-N E system allow s th e organis m t o reac t rapidly , whil e th e HPA hormones act over a longer time frame. There are intimate reciproca l interaction s between th e HP A axis and th e LC-N E system , a s well a s reciproca l neura l connections betwee n th e tw o systems. CR H an d N E stimulate each other , and the two systems are regulated by similar neurotransmitter s and b y mesocortical an d mesolimbic influences . Glucocorticoid s ar e though t to restrai n both system s to preven t th e consequence s of prolonge d o r excessiv e activation . Finally , activit y and sensitivit y of both system s are modulate d b y stress and circadia n influences . AVP, arginin e vasopressin; BZD, benzodiazepine ; GABA , y-aminobutyri c acid ; NPY, neuropeptid e Y ; POMC, proopiomelanocortin ;
and colleague s (Canno n 1914 , 1929 ; Canno n an d de l a Paz, 1911) . Accordingly, homeostasi s i s viewed as th e operatio n o f coordinate d physiologica l pro cesses that maintain the stead y state of the organism . These authors also recognize th e importanc e o f psychological ove r physica l stimul i i n elicitin g a stres s response. In moder n stres s research , i t i s no w widel y ac cepted tha t th e respons e t o stress is mediated b y both the HP A axis and th e locu s coeruleu s noradrenergi c sympathetic adrena l medullar y system (referre d t o as the LC-N E system) and tha t these system s interact to maintain homeostasi s (Fig . 10-1) . Th e LC-N E system i s involve d i n th e "fight-or-flight " respons e an d enables th e organis m t o reac t rapidly . Tw o majo r players i n thi s rapi d respons e ar e norepinephrin e (NE), secreted fro m sympatheti c nerve terminals, and epinephrine, release d fro m th e adrena l medulla . I n contrast, th e HP A axis act s ove r a longe r tim e fram e and help s orchestrat e th e respons e an d adaptatio n of the bod y to the stresso r through variou s physiological and metabolic changes . The ter m stress ha s prevaile d ove r decade s be cause i t attempt s t o addres s a basi c principl e o f na ture: (1 ) the maintenanc e o f balance, equilibrium , or harmony i n th e fac e o f disturbin g stimul i an d (2 ) the counteracting , re-establishin g response s tha t re establish homeostasi s (Chrouso s e t al. , 1988) . Man y definitions an d meaning s hav e bee n an d stil l ar e ascribed t o the term stress, largely because the ter m ha s been use d t o refe r t o the disturbin g stimuli, the stat e of disturbe d equilibrium , and/o r th e result s o f th e counteracting responses . Thi s chapte r use s th e fol lowing definition s (Johnso n e t al. , 1992 ; Mille r an d O'Callaghan, 2002). Stress is a state of threatened in ternal balance o r homeostasis. The threatenin g or disturbing force s ar e define d a s stressors. Thes e ca n range from rea l threats to survival (e.g., immune chal lenges o r physical stressors) to perceived threat s (e.g. , psychological o r socia l stressors) . The counteractin g forces activate d t o neutraliz e th e effect s o f a stressor are adaptive responses, which ca n b e both behaviora l and physica l o r physiological , an d serv e t o re establish homeostasis.
SP, substanc e P . Activatio n i s represente d b y soli d lines, inhibitio n b y dashe d lines . (Source: Reprinte d from Chrouso s (1998) with permission fro m Ne w York Academy of Sciences)
156 ETHANOL-AFFECTE D DEVELOPMENT In recen t years , th e concept s o f allostasis and al lostatic loa d hav e been adde d t o the stres s literatur e and hav e extende d ou r thinkin g about homeostasi s (McEwen, 1998 ; McEwe n an d Wingfield , 2003) . In this framework , th e ter m homeostasis refer s t o th e stability o f physiologica l system s tha t ar e essentia l for lif e an d applie s strictl y to a limite d numbe r o f systems, suc h a s pH , bod y temperature , glucos e contents, an d oxyge n tension , tha t ar e maintaine d within narro w ranges optimal fo r current lif e condi tions. I n contrast , th e ter m allostasis mean s th e achieving o f stability throug h chang e an d refer s t o systems suc h a s th e HP A axis, catecholamines , an d cytokines tha t maintai n homeostati c system s in bal ance. Thes e system s ar e typicall y no t require d fo r immediate surviva l an d hav e muc h broade r bound aries tha n thos e o f homeostatic systems . Further, a s environments o r lif e circumstance s change , th e se t points o r boundaries o f these allostati c systems ma y also change . Allostatic system s enabl e u s t o respon d t o ou r physical state s —for example , awake , asleep , exer cising, etc . —and t o cop e wit h challenge s suc h a s noise, crowding , isolation, extremes o f temperature, danger, an d infectio n (McEwen , 1998) . Th e bod y responds t o challenge s b y turnin g o n allostati c re sponses (mos t commonly , fo r example , activatio n of th e HP A axi s and/o r LC-N E system ) tha t initi ate comple x adaptiv e response s an d the n shuttin g off these response s when th e threa t i s past. The ter m allostatic state refer s t o altere d an d sustaine d ac tivities o f the primar y respons e mediators , th e HP A and catecholamin e hormones , tha t integrat e phys iological an d behaviora l response s t o challenge . Allostatic state s ca n b e sustaine d fo r limite d peri ods, however , i f inactivation i s inefficient o r th e or ganism i s exposed repeatedl y t o intens e challenges . The cumulativ e resul t o f a n allostati c stat e i s allo static load , whic h ca n hav e pathophysiologi c con sequences. The HP A Axis and p-Endorphin Syste m The HP A axi s include s a numbe r o f brai n areas , such a s the paraventricula r nucleus o f the hypothal amus (PVN) , the anterio r pituitary, and adrena l cortex, that act together t o produce a hormonal cascad e in respons e t o stressor s (Fig . 10.1) . Corticotropin releasing hormone (CRH ) an d arginin e vasopressin
(AVP) are synthesized in th e parvocellula r PVN an d released int o th e media n eminence , reachin g th e anterior pituitar y via the hypophysia l portal system. CRH an d AV P act synergisticall y at th e anterio r pituitary t o stimulat e th e synthesi s o f proopiome lanocortin (POMC) , a large precursor hormone tha t when cleave d result s i n th e subsequen t releas e o f adrenocorticotropic hormon e (ACTH ) an d th e en dogenous opioi d p-endorphi n (p-EP ) (Guillemi n et al, 1977 ; Gillie s e t al., 1982) . ACTH the n act s at the adrena l corte x t o stimulat e th e synthesi s an d release o f glucocorticoid s —cortisol i n human s an d corticosterone (CORT ) i n rats . In additio n to a variety o f importan t physiologica l an d metaboli c func tions, th e glucocorticoid s hav e a negativ e feedbac k action, causin g inhibitio n o f HP A activit y b y act ing a t th e anterio r pituitary , th e PVN , an d othe r brain regions , particularl y th e hippocampu s an d prefrontal cortex . Durin g norma l endocrin e adapta tion t o stressors , CRH , ACTH , an d glucocorticoi d concentrations ar e kep t withi n level s tha t promot e health. Whe n copin g fails , a n imbalanc e develop s between driv e an d feedbac k mechanisms , result ing i n th e releas e o f too muc h o r to o littl e o f thes e hormones an d increase d vulnerabilit y t o diseas e (Chrousosetal, 1988) . The Concept of Fetal Programmin g Both epidemiologica l dat a an d experimenta l stud ies sugges t tha t environmenta l factor s operatin g early in lif e markedl y affect developin g systems , per manently alterin g structur e an d functio n through out lif e (Fig . 10-2) . Althoug h th e ide a tha t earl y experiences ca n hav e long-ter m effect s i s no t new , it i s reall y onl y i n th e pas t decad e o r s o tha t th e concept o f fetal o r earl y programming ha s emerge d as a ke y concep t i n development . Thi s concep t arises fro m a larg e bod y o f dat a showin g tha t lo w birth weigh t an d othe r indice s o f feta l growt h ar e associated wit h increase d biologica l ris k fo r coro nary hear t disease , hypertension , an d typ e I I dia betes o r impaire d glucos e toleranc e i n adul t life . Adult lifestyl e factor s suc h a s smoking , ethano l consumption, an d exercis e appea r t o b e additiv e to earl y lif e influences , thu s th e earl y lif e effect s may hav e distinc t role s an d causes . Thes e find ings hav e le d t o th e hypothesi s tha t commo n adult disease s migh t originat e durin g feta l devel -
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 15 7 opment, i.e. , th e "feta l origin s o f adul t disease " hypothesis. The biologica l significanc e o f physiological an d behavioral programmin g i s not known . I t ha s bee n suggested tha t environmenta l factor s actin g o n th e pregnant femal e an d fetu s ca n alte r th e se t point o r responsiveness of physiological systems and thu s prepare th e organis m fo r the environmen t int o whic h it will be bor n an d develop . If , however, this process is initiate d b y advers e factor s durin g pregnanc y (e.g., placenta l insufficienc y o r prenata l ethano l exposure) o r i f th e environmenta l circumstance s later i n lif e diffe r fro m wha t wa s anticipated , the n the physiologica l adaptation s migh t alon e resul t i n maladaptive response s an d ultimatel y predispos e the organis m t o diseas e (Welber g an d Seckl , 2001 ; Matthews, 2002). The underlyin g processe s tha t lin k earl y growth restriction with these long-ter m healt h consequence s are no t full y understood . I t i s generall y accepte d that lo w birt h weigh t pe r s e i s unlikel y t o caus e
these increase d risks for disease. Rather, birth weight likely serve s as a marke r fo r th e effect s o f earl y lif e events, an d commo n factor s probabl y underlie bot h the intrauterin e growth retardation and altered phys iological responsivenes s (Welber g an d Seckl , 2001) . The resettin g of key hormonal system s by early environmental event s ma y be on e mechanis m linkin g early lif e experience s wit h long-ter m healt h conse quences. Studie s have identified the HP A axis as one of th e ke y system s likel y involve d (Fig . 10-2) . Th e HPA axis is highly susceptible t o programming during development (Phillip s e t al. , 1998 , 2000 ; Matthews , 2000, 2002 ) an d studie s demonstrat e stron g correla tions betwee n birt h weight , plasm a cortiso l concen trations, an d th e developmen t o f hypertensio n an d type I I diabetes. Thus , i t has been suggeste d tha t in trauterine programmin g o f the HP A axis i s a mechanism underlyin g th e observe d association s betwee n low birth weigh t an d increase d ris k for disease. I n or der t o understan d feta l programmin g mor e fully , it is important to describe how the HP A axis develops.
FIGURE 10- 2 Route s b y whic h th e feta l an d earl y neonata l environmen t can progra m adul t hypothalamic-pituitary-adrena l (HPA ) functio n an d behavior. Th e developin g linibi c system , hypothalamus , an d pituitar y synthesize hig h level s of corticosteroid receptor s and ar e sensitive t o glucocorti coids (GCs) . Earl y exposure to GC s alter s th e developmen t an d subsequen t activity an d functio n o f bot h th e limbi c syste m an d th e HP A axis . I n th e periphery, th e overal l effec t o f programmin g durin g developmen t i s al tered exposur e t o endogenou s GC s throughou t life . Increase d exposur e ha s long-term effect s o n behavior , cognition , learning , an d memory , an d pre disposes th e individua l t o neurological , metabolic , an d immun e disease s and disorder s i n late r life . Conversely , i f programming reduce s exposur e t o GCs ove r th e lifespan , thi s migh t ac t t o protec t agains t thes e pathologica l changes. (Source: Reprinte d fro m Matthew s (2002 ) wit h permissio n fro m Elsevier)
158 ETHANOL-AFFECTE D DEVELOPMEN T DEVELOPMENT OF TH E HP A AXIS
The HPA Axis in Human Developmen t As a result of the difficult y o f sampling an d measurin g ACTH, few data exis t on regulatio n o f ACTH secre tion i n the huma n fetus . By 9 weeks of gestation, th e human feta l pituitar y contain s measurabl e corti cotropic activit y and the content and concentration o f ACTH increase s wit h gestationa l ag e (Kasti n e t al. , 1968; Pavlov a et al, 1968) . B y 12 weeks of gestation, ACTH is detectable b y radioimmunoassay in huma n placenta. ACT H concentratio n i s hig h prio r t o 3 4 weeks an d the n fall s significantl y i n lat e gestatio n (Winters e t al, 1974) . Infusio n o f ACTH to the preg nant female at term doe s not affect the concentration s of plasma ACTH in the fetus, providing evidence tha t this hormone doe s no t cros s the placent a (Miyakaw a et al, 1976) . In contras t t o ACTH , concentration s o f cortiso l are hig h i n th e bloo d o f th e pregnan t woma n an d there i s transplacental transfe r o f cortisol (Pasqualini et al. , 1970) . Feta l exposur e t o cortiso l i s minimized , however, because cortiso l is rapidly inactivated by the placental enzym e 1 1 p-hydroxysteroid dehydrogenas e type 2 (Seckl , 2004a , 2004b) . Abou t 80 % o f cortisol derived fro m th e pregnan t femal e i s converte d t o CORT (Beitin s e t al. , 1973 ; Murph y e t al , 1974) . The remainin g fractio n make s a n importan t contri bution t o feta l plasm a cortisol . Childre n expose d t o dexamethasone ( a syntheti c glucocorticoid ) durin g early pregnancy becaus e o f a ris k of congenital adre nal hyperplasia show increased emotionality , unsociability, avoidance, and behavioral problem s (Trautma n et al. , 1995) . Th e rol e o f prenatal glucocorticoid s i n animal model s o f FAS D i s discusse d i n th e sectio n Prenatal Ethano l Exposur e Alters th e Immun e Sys tem o f Offspring (below) . The HP A Axis in Rodent s Studies on rat s show that CORT secretion i n respons e to stressor s i s ver y hig h durin g th e lat e feta l perio d (Milkovic and Milkovic , 1963) . I n contrast, beginnin g on abou t postnata l da y (P) 2 and continuin g int o th e second wee k of life, the HP A response i s markedly suppressed i n ra t pups. The pioneerin g wor k of Schapir o (1962) identifie s thi s developmenta l stag e an d call s it th e "stres s nonresponsiv e period " (SNRP) . Late r
studies sho w tha t HP A responsivenes s i s no t actuall y abolished durin g thi s perio d bu t simpl y suppressed , and thi s perio d ha s bee n rename d th e "stres s hypo responsive period " (SHRP) . Th e SHR P i s character ized b y blunte d adrena l COR T secretion , despit e normal pituitar y ACTH response s to a variety of stressors. Hypothalamic CRH conten t is decreased t o about 20% o f that foun d i n 21-day-ol d animals , and ther e i s also a decrease i n functionally active glucocorticoid re ceptors t o about 20 % of those foun d i n adult s (Levine et al, 1967; Meane y e t al, 1985a, 1985b ; Walker et al, 1986a, 1991 ; Witek-Janusek, 1988) . This blunted basal and stimulate d COR T secretion i s believed t o be du e in par t t o a decreas e i n adrena l sensitivit y to ACTH (Levine et al., 1967 ) an d increas e in sensitivity to HPA feedback (Walke r e t al, 1986b) . Th e lo w circulatin g glucocorticoid concentration s durin g th e SHR P ap pear to have a protective functio n and are essential for normal brai n and behaviora l development (Rosenfel d et al , 1992 ; Walke r e t al , 2002) . Fo r example , rat s treated wit h glucocorticoid s durin g th e firs t wee k o f life hav e reduce d brai n weights , alteration s i n neu rons (e.g. , reduced number s o f dendritic spines), glia, and myelin , an d behaviora l change s (Sapolsk y an d Meaney, 1986) . Similarly, CORT treatment durin g the first postnata l wee k result s i n lowere d adul t basa l CORT concentrations (Turne r an d Taylor , 1976 ) an d neonatal treatmen t wit h ACTH o n P7-P9 an d P I 7P19 suppresses th e COR T circadia n rhyth m i n adul t rats (Taylo r e t al. , 1976) . Th e presenc e o f th e da m appears t o b e critica l fo r maintaining th e SHRP , an d separation fro m th e mothe r "releases " th e pu p HP A axis from inhibition . I n 10-day-ol d pups , fo r example , maternal separatio n (removin g activ e sensory stimula tion, food , an d passiv e contact ) enhance d basa l an d stimulated ACTH and CORT secretion afte r exposur e to ethe r vapor s an d insulin-induce d hypoglycemi a (Walker, 1995) . Thu s i t appear s tha t th e firs t 2 post natal weeks represent a critical period correspondin g to specific stages in the normal developmen t o f hypothalamic an d forebrai n structure s tha t modulat e ACT H and COR T secretio n a s wel l a s CN S structure s in volved in circadian regulation. By weaning age (P21-P25), the plasma ACTH and CORT responses t o stressors appear to be at essentially adult concentrations. Measures o f CRH hav e shown a similar developmenta l pattern , with adul t responsive ness bein g reache d b y weanin g ag e (Hiroshig e an d Sato, 1970) . I n contrast , negativ e feedbac k mecha nisms continu e t o increas e i n effectivenes s betwee n
ETHANOL EFFECTS ON ENDOCRINE AND IMMUNE FUNCTIO N 15 9 weaning ag e and adulthood . Whe n expose d t o ethe r or shock, for example, the plasm a CORT response of the weanling shows a later peak and delaye d return t o resting concentration s compare d with th e patter n i n adulthood (Goldma n et al, 1973). In summary, in the rat , the postnatal perio d i s critical fo r the developmen t an d integratio n of the CN S and peripheral nervous system mechanisms necessary to maintai n homeostasis. I n contrast , man y o f thes e systems reach a greater degree o f organization at birth in guine a pigs , sheep, nonhuma n primates , and hu mans (Weaver et al., 2004).
GESTATIONAL ETHANOL
EXPOSURE AND HP A ACTIVITY
Human Studies Compared t o the fairl y larg e literature o n th e effect s of ethanol consumption on th e HP A axis of adults following acut e o r chroni c ethano l intake , onl y a fe w human studie s have examined the effect s o f drinking during pregnanc y o n th e HP A axi s o f th e develop ing child . I n cas e studie s b y Roo t an d colleague s (1975), plasma cortisol concentrations are within normal rang e i n childre n wit h FASD . B y contrast, dat a from Jacobso n and colleague s (1999 ) sho w that heavy 7 drinking during pregnancy and a t conception ar e associated with higher basal and post-stress (blood draw) cortisol concentrations i n 13-month-ol d infants . Basal cortisol concentrations are also higher in 2-month-old infants expose d i n uter o t o ethano l o r cigarette s (Ramsay et al., 1996) . Animal studies strongly support this finding that ethano l exposur e i n uter o ca n hav e major effect s o n developmen t an d functio n o f th e offspring HP A axis. Not surprisingly , HPA activity in the pregnan t femal e i s als o altere d b y ethano l consumption. Animal Studie s Effects of Ethanol Consumption on HPA Activity of the Pregnant Female Data fro m roden t model s indicat e tha t gestationa l ethanol consumptio n increases adrenal weights, basal CORT concentrations , th e COR T stres s response , and the CORT stress increment i n the pregnant dam (Weinberg and Bezio , 1987) . Thi s occur s a s early as
gestational da y (G) 11 , persists throughout gestation , may increase as gestation progresses, and occur s even with low concentrations o f ethanol i n the die t (Wein berg and Bezio , 1987 ; Weinber g and Gallo , 1982) . Importantly, thi s activatio n appear s t o b e relate d t o ethanol rathe r tha n t o nutritional factor s a s materna l nutritional status has no major impac t on these effect s (Weinberg and Bezio , 1987) . The stimulator y effect s of ethanol o n basa l hormone concentration s and th e corticoid response to stressors also can extend throug h parturition, eve n whe n ethano l administratio n i s discontinued prio r t o parturitio n (Weinberg , 1989) . Thus regula r consumptio n o f high dose s o f ethano l during pregnancy no t only raises the se t point of HPA function i n th e pregnan t femal e b y increasin g bot h basal an d stres s concentration s of CORT but als o results in HPA hyperresponsiveness to stressors. The ad ditional finding that binding capacity of corticosterone binding globuli n (CBG ) i n ethanol-consumin g fe males is similar to or less than tha t in control females, both durin g pregnanc y an d a t parturition , indicate s that the elevate d CORT concentrations are functionally importan t an d support s th e conclusio n tha t pre natal ethano l exposur e results in both hypersécrétio n and hyperresponsivenes s of the HP A axi s (Weinber g and Bezio , 1987 ; Weinberg, 1989) . The pregnan t femal e an d th e fetu s constitut e a n interrelated functiona l unit. Hence , ethanol-induced alterations i n HP A activit y i n th e pregnan t femal e have implication s for fetal HPA development. COR T crosses the placenta , a t least to some extent (Eguchi , 1969), resultin g i n suppressio n o f endogenou s feta l HPA activity. At the sam e time, ethano l ca n cros s the placenta an d directl y activate the feta l HP A axis. Together thes e influence s may have permanen t organi zational effect s o n neura l structure s tha t regulat e HPA activit y throughou t lif e (Levin e an d Mullins , 1966). Whether th e increased plasma CORT concen tration i n pregnan t female s plays a role i n mediatin g HPA hyperresponsivenes s i n feta l ethanol-expose d (FEE) offsprin g i s as yet unresolved . Adrenalectom y (ADX) o f the pregnan t da m ha s n o effec t o n th e in creased CORT responses to restraint stress in FEE fe male offsprin g (Slon e an d Redei , 2002) . Similarly , CORT treatmen t o f ADX dams doe s no t mimi c th e effect o f prenatal ethano l exposure on HPA activity of offspring (Le e and Rivier , 1992 ) On th e basi s of these data, i t appear s tha t th e increase d stres s responsive ness of FEE offsprin g i s not mediate d primaril y by increased COR T concentration s i n pregnan t females .
160 ETHANOL-AFFECTE D DEVELOPMENT In contrast , ADX of the pregnan t femal e can reverse the effect s o f prenatal ethanol exposur e o n pituitar y POMC mRN A concentrations in FE E offsprin g (Re dei e t al. , 1993) . Furthermore , Trit t an d colleague s (1993) have suggested that removal of the adrena l cortex, but no t the medulla , in the pregnan t femal e prevents th e growth-retardin g effect s o f prenatal ethano l and ma y reverse the dela y in postpartu m weight gain in FE E offspring . Thu s the advers e effect s o f ethano l on birth weight are mediated at least partially through the adrenal gland. Further studie s must be done to resolve the rol e of corticosteroids derive d fro m th e preg nant female in mediating the adverse effects o f ethanol on thei r offspring. I t is likely, however, that a comple x interaction betwee n direc t an d indirec t effect s o f ethanol mediates the adverse consequences o f ethanol consumption durin g pregnancy on fetal developmen t and programmin g of fetal HP A activity. Effects of Prenatal Ethanol Exposure on HPA Activity in Offspring The Preweanin g Period . Th e comple x interactio n of direct and indirec t effect s o f ethanol i s apparent i n the offsprin g followin g parturition. FE E fetuse s exhibit decrease d COR T concentration s compare d t o control fetuse s on G19 (Revsko y et al., 1997) . I n con trast, a t birth , FE E neonate s hav e elevate d plasm a and brai n content s o f CORT, decrease d CB G bind ing capacity, elevated plasma and pituitary concentrations of p-EP, and reduce d pituitary concentrations of p-EP (Kakihan a et al, 1980 ; Taylor et al, 1983; Weinberg et al., 1986; Angelogianni and Gianoulakis, 1989; Weinberg, 1989). Throughout the preweaning period, FEE offsprin g exhibi t blunte d HP A an d p-E P re sponses t o a wid e range o f stressors, including ether , novelty, saline injection, and col d stres s (Taylo r et al., 1986; Weinber g e t al , 1986 ; Angelogiann i an d Gi anoulakis, 1989 ; Weinberg , 1989) . In addition, prenatal ethano l exposur e alters the ontogeneti c expressio n of mRNA s fo r CRH an d POMC , delayin g and exag gerating the rise in CRH expressio n in female (but not male) pups, and suppresses POMC mRNA concentrations i n mal e (bu t no t female ) pup s throughou t th e preweaning period (Aird et al, 1997) . The implicatio n is that sexually dimorphic effects o f prenatal ethanol exposure on these two important glucocorticoid-regulated genes contribute to both the immediate an d the longterm effect s o f prenatal ethano l o n stres s responsive ness of the offspring .
The significanc e o f the reduce d hormonal responsiveness described i n FEE pup s during early development remain s to b e determined . Evidenc e indicate s that i n additio n t o th e reduce d adrenocortica l re sponses t o stressors , plasma CBG bindin g capacity is also reduced i n FE E compare d to that in controls, a t least durin g th e firs t wee k o f lif e (Weinberg , 1989) . Thus i t is possible that althoug h th e COR T stress response i s reduced i n FEE pups , the rati o of bound-to free steroid s ma y no t b e altered . Th e reductio n i n CBG bindin g capacity may represent a compensatory response t o maintai n norma l neuroendocrin e func tion i n FE E offspring . Thi s possibilit y remains to b e tested. Long-Term Effect s o f Prenata l Ethano l Exposure . Importantly, th e reduce d HP A an d p-E P respon siveness i n FE E ra t pup s earl y i n lif e i s a transien t phenomenon. Followin g weaning , FE E rat s are typically hyperresponsive to stressors and t o drugs such as ethanol and morphin e (Taylor et al., 1988 ; Weinberg, 1993a, 1993b ; Ki m e t al , 1996 ; Le e e t al , 1990 , 2000). Simila r result s hav e bee n describe d i n non human primate s (Schneide r e t al. , 2004) . I n rhesu s monkeys, prenatal exposur e to moderat e amount s of ethanol induce d highe r plasm a ACT H an d margin ally highe r plasm a cortiso l response s t o th e stres s of maternal separation. An interestin g findin g fro m roden t model s i s that the sexua l dimorphis m i n th e effect s o f prenata l ethanol exposur e see n durin g th e ontogen y o f th e HPA axis (Aird et al, 1997 ) extend s int o adulthood . Sex differences i n response s of male an d femal e offspring compare d t o thos e o f thei r contro l counter parts ar e ofte n observe d an d ma y var y depending o n the natur e o f th e stresso r an d th e tim e cours e an d hormonal en d poin t measure d (Weinberg , 1988 , 1992a, 1995 ; Halas z e t al , 1993 ; Le e an d Rivier , 1996). Fo r example , i n adulthood , FE E male s an d females exhibi t increase d CORT , ACTH, and/o r p EP response s t o stressors , such a s repeated restraint , footshock, an d immun e challenge s (Taylo r e t al. , 1988; Weinberg, 1993b ; Ki m et al, 1996 , 1999b ; Lee and Rivier , 1996 ; Weinber g e t al, 1996 ; Le e e t al. , 2000). Bot h male s an d female s sho w increase d ex pression o f mRNA s fo r immediat e earl y genes an d CRH followin g stressors (Le e e t al. , 2000 ) a s well as deficits i n habituatio n t o repeate d restrain t (Wein berg e t al , 1996) . I n contrast , i n respons e t o pro longed restrain t o r col d stress , HP A hyperactivit y is
ETHANOL EFFECTS O N ENDOCRIN E AND IMMUNE FUNCTIO N 16 1 seen primarily in FEE male s (Weinberg , 1992a ; Kim et al. , 1999a) , wherea s i n respons e t o acute restrain t or acut e ethano l o r morphin e challenge , increase d CORT and ACTH concentrations occur primarily in FEE female s (Taylo r e t al , 1982 , 1988 ; Weinber g et al. , 1986 ; Weinberg , 1988) . Similarly , altered re sponses i n a consummator y tas k (Weinberg , 1988 ) and t o predictable an d unpredictabl e restrain t stres s (Weinberg, 1992b ) sugges t deficit s i n th e abilit y of FEE female s but no t males to use or respond to environmental cues. Possible Mechanisms Mediating Ethanol-Induced HPA Hyperresponsiveness The mechanism s underlyin g HP A hyperrespon siveness i n FE E offsprin g ar e unknow n a t presen t but coul d reflec t change s a t all levels of the axis . In creased HP A activit y coul d resul t fro m increase d secretion o f secretagogues (e.g. , POMC, CRH , an d AVP), increase d pituitar y and/o r adrena l respon siveness t o thes e secretagogues , increase d driv e t o the hypothalamus , deficit s in feedbac k regulation of HPA activity , and/o r alteration s i n centra l neuro transmitters regulatin g th e HP A axis . Indeed , i t i s likely tha t multipl e mechanism s pla y a role . Fur thermore, the finding that prenatal ethano l exposur e differentially alter s HP A responsivenes s i n male s and females compare d t o that in their contro l coun terparts suggest s tha t th e gonada l hormone s o r al tered adrenal-gonadal interaction s play a significan t role i n mediatin g prenata l ethano l effect s o n HP A activity. This chapter focuses on fou r possibl e mechanisms considere d importan t i n mediatin g HP A hyperresponsiveness in FE E animals : (1 ) alterations i n HPA drive , (2 ) alteration s i n HP A feedback regula tion, (3 ) altered neurotransmitte r regulatio n o f HPA activity, an d (4 ) possibl e interaction s betwee n th e HPA an d hypothalamic-pituitary-gonada l (HPG )
Altered HPA Drive and/or Feedback A numbe r o f studie s sho w tha t stimulator y inputs o r drive to the PVN of the hypothalamus are enhanced by prenatal ethano l exposure . Weanling FE E mal e an d female pup s exhibi t increased basal concentrations of CRH mRN A in the PV N (Lee et al., 1990) , and adul t FEE male s hav e increase d basa l concentration s o f both hypothalami c CRH mRN A and pituitary POMC
mRNA (Redei et al., 1993 ) compare d t o those of controls. Not all studies, however, show these alterations i n central HP A regulation o f basal activity. Kim an d col leagues (1996) reported no differences i n basal CRH o r AVP mRN A concentration s amon g adul t FE E an d control animals. Lee and colleagues (2000) showed n o differences i n basa l CR H heteronuclea r (hn ) RN A or in basal CRH an d AVP median eminenc e protein con centrations i n FE E rat s compared t o controls. Impor tantly, however, the latter investigators also showed that in respons e to bot h footshoc k and lipopolysaccharid e (LPS; an endotoxin used to mimic infection or inflam mation) challenge, FE E animal s exhibit enhanced hypothalamic neurona l activit y compare d t o tha t i n controls, reflecte d i n increase d mRN A concentration s of two immediate earl y genes (c-fos an d NGFI-B) , as well as significantly increase d CRH hnRN A content. Thus, although ther e is some controvers y in the literatur e as to whethe r HP A regulatio n i s altere d i n FE E ani mals unde r basal conditions, the dat a o f Lee an d col leagues (2000 ) provide the first evidence o f a selective stress- and cytokine-induce d increas e i n activit y of hypothalamic CR H neuron s in FEE animals , indicating a potentia l hypothalami c mechanis m throug h whic h ethanol up-regulates the HP A axis. Weinberg an d colleague s (Glava s e t al. , 2001 ; Zhang e t al. , 2005b ) undertoo k studie s t o resolv e conflicting finding s o n whethe r FE E animal s sho w changes in centra l HPA regulatio n unde r basa l or nonstressed conditions . Steady-stat e HP A functio n and th e rol e o f CORT in mediatin g changes i n HPA regulation wer e examine d i n AD X rat s with o r without COR T replacement . I n additio n t o hormona l concentrations, thes e investigator s assesse d th e con centrations o f mRNA for (a) hypothalamic CR H an d AVP a s measures o f hypothalamic activity , (b ) CR H type 1 receptor (CRH-R ^ an d POM C a s indice s of pituitary activity, and (c ) hippocampal mineralocorticoid receptor (MR ) and glucocorticoid receptor (GR) mRNA concentration s a s measures of feedback regulation. As expected , followin g ADX, animal s exhibi t a n increase i n basal plasma ACTH concentration s com pared t o thos e i n sham-operate d animal s (Glava s et al, 2001, Zhang et al., 2005b). Importantly, ACTH elevations ar e greater in FE E male s but no t females, compared t o thos e i n thei r contro l counterparts . These dat a sugges t tha t a CORT-independen t alter ation i n HP A regulation i s unmasked b y remova l o f the COR T feedbac k signal , a t leas t i n males . ADX
162 ETHANOL-AFFECTE D DEVELOPMEN T also reveal s significant alterations in gen e expressio n in FEE animals . Followin g ADX, hypothalamie CRH mRNA concentrations ar e significantly higher i n FE E males an d female s than i n thei r contro l counterparts , despite th e finding that plasm a ACTH concentration s are elevate d onl y in FEE males . FEE male s also have blunted AVP mRNA responses to ADX and lower pituitary CRH-R j mRN A expression overall compared t o controls, but there are no significant differences amon g groups i n pituitar y POMC mRN A levels. In addition , CORT replacemen t i s les s effectiv e i n normalizin g ADX-induced alteration s i n FEE tha n in control ani mals a t several level s of the HP A axis, including hip pocampal M R mRN A concentration s i n bot h male s and females , hippocampa l G R an d hypothalami e AVP mRNA in males , and anterio r pituitary CRH-R! mRNA i n females . The alteration s i n M R an d G R mRNA concentrations ar e particularly noteworthy, as previous studie s have found n o ethanol-induce d differences i n M R an d G R recepto r concentration s o r binding affinit y i n th e hippocampu s an d othe r brai n regions amon g FE E an d contro l animal s (Weinber g and Petersen , 1991 ; Ki m et al, 1999c) . Thes e dat a are th e firs t t o provid e direc t evidenc e fo r possibl e deficits i n sensitivit y t o COR T regulatio n o f HP A feedback i n FE E animals . They suggest an alteratio n in th e balanc e betwee n HP A drive and COR T feedback and exten d previous work supporting alterations in feedbac k sensitivit y in th e intermediat e (Osbor n et al, 1996) , bu t no t the fas t (Hofman n e t al, 1999 ) feedback time domain. An altere d balanc e betwee n HP A drive an d feed back i n FEE compare d t o control animals i s also suggested b y dat a o n HP A responsivenes s followin g glucocorticoid recepto r blockade (Zhan g et al, 2005). Adult female offspring fro m FE E an d contro l group s were injected with the MR antagonist spironolactone, the G R antagonis t RU38486 , o r vehicle . Followin g collection o f basal blood samples, rats were subjected to a 1 hr restrain t stress, and additiona l samples were collected durin g an d followin g stress. Both M R an d GR blockades increase d basa l ACTH concentration s in FE E bu t no t contro l animals , compare d t o vehi cle injection . Furthermore , M R blockad e increase d ACTH concentration s i n contro l bu t no t FE E fe males during restraint, whereas GR blockade increased ACTH concentration s i n FE E female s durin g re straint an d i n contro l female s durin g restrain t an d recovery, compared t o their vehicle-injected counterparts. This differential patter n of responses under both
basal an d stres s condition s suggest s tha t prenata l ethanol exposure enhance s HP A drive and alter s sen sitivity to feedback regulatio n b y MR an d GR , possi bly reflectin g an altere d balanc e betwee n HP A drive and feedback. In summary, ethanol-exposed animals exhibit HPA dysregulation unde r basa l conditions , eve n i n th e face o f similar basal hormone levels , and difference s are furthe r unmaske d followin g perturbation s o f th e system by stress, ADX, or receptor blockade . Dysregulation occur s a t multipl e sites , includin g th e hip pocampus, hypothalamus , an d pituitary , and reflect s changes both i n HP A drive and COR T feedback reg ulation and/or i n the balance betwee n driv e and feedback. Althoug h FE E animal s initiat e compensator y mechanisms to maintain norma l basal hormone con centrations unde r mos t circumstances , perturbation s of the syste m revea l that toni c o r basa l HPA tone in creases an d likel y play s a ke y rol e i n raisin g the se t point o f responsivenes s following stress. The altere d CRH-Rj mRN A responses and th e lac k of difference s in POM C mRN A concentration s i n FE E animal s suggest compensator y mechanisms , probabl y a t th e level o f th e pituitary , suc h tha t th e enhance d ac tivation i n th e hypothalamu s doe s no t translat e di rectly int o enhance d pituitar y activity. This ma y b e protective fo r FE E animals , minimizin g enhance d basal pituitar y activity in th e fac e o f enhanced hypo thalamie drive. Finally, prenatal ethanol exposur e has sexually dimorphi c effect s o n HP A regulation . Thi s finding implies a role for the gonadal steroids or possibly an alteratio n i n adrenal-gonadal interactions me diating thes e effect s o f ethanol o n HP A activity an d regulation. Ethanol Effects on Neurotransmitters Regulating HPA Activity Fetal ethano l exposur e may alter HPA responsiveness through effect s o n centra l neurotransmitte r system s that regulat e HP A function. Data indicat e tha t CR H release i s stimulated b y acetylocholine an d epineph rine in a dose-dependent manner, b y low doses of NE, and b y serotonin (5-HT) , an d i s inhibited b y |3-EP, yaminobutyric acid (GABA) , dynorphin, and substanc e P (Assenmache r e t al, 1987 ; Plotsky , 1987) . Prenata l ethanol exposur e alter s th e developmen t o f centra l neurotransmitter system s i n offsprin g (Druse , 1992) . Of particular relevance to this review are data demon strating long-term change s i n NE , 5-HT , nitri c oxide
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 16 3 (NO), glutamate, and GAB A in FEE rat s in brain regions critical for HPA regulation. Norepinephrine. Ethanol-induce d change s i n steady-state concentration s o f N E appea r t o var y b y brain regio n a s wel l a s th e timin g o f th e exposure . Basal concentrations of hippocampal NE wer e not altered b y prenata l ethano l exposur e (Rudee n an d Weinberg, 1993), whereas exposure through both prenatal an d earl y postnatal development (equivalen t of all thre e trimesters ) increase d hippocampa l N E content in males and females i n adulthood (Tra n and Kelly, 1999) . Whethe r prenata l ethanol exposur e alters hypothalamic N E concentration s i s not ye t resolved. N o difference s i n hypothalami c N E concen trations wer e detected betwee n FE E an d control s of either se x (Rudee n an d Weinberg , 1993) . O n th e other hand , Deterin g an d colleague s (1980 , 1981 ) showed that hypothalamic NE concentration s ar e decreased i n bot h youn g an d adul t rat s expose d t o ethanol eithe r pre - o r postnatally . Uniqu e t o th e three-trimester mode l (Tra n an d Kelly , 1999) , however, ethanol-induce d increase s i n basa l hypothala mic NE are found in females, but not males. Exposure t o stressor s differentiall y alter s NE con centrations i n FE E compare d t o contro l animals . Ethanol exposur e increase s hippocampa l N E i n females (Kelly , 1996b ) an d decrease s cortica l an d hypothalamic N E concentrations , bu t i t increase s hippocampal N E conten t in both male s and female s (Rudeen an d Weinberg , 1993) . Thes e dat a sugges t that the NEergi c syste m in the hippocampu s and hypothalamus i s particularly vulnerable t o ethano l an d that alteration s i n N E regulatio n i n thes e area s may contribute to the ethanol-induce d alterations in HPA activity observed in FEE animals . Serotonin. Th e effect s o f prenata l ethano l expo sure o n th e 5-HTergi c syste m hav e receive d special attention becaus e 5-H T als o acts a s a neurotrophic factor an d earl y insul t t o thi s syste m ma y affec t it s own development as well as that of other neurotransmitter systems . Prenatal ethano l exposur e result s in decreased concentration s of 5-H T o r it s metabolites during feta l lif e an d i n weanlin g animal s (Drus e et al , 1991 ; Rathbu n an d Druse , 1985) . Impor tantly, prenata l administratio n o f buspiron e o r ip sapirone, partia l 5-HT 1A agonists , i n conjunctio n with ethanol , ameliorate d som e o f thes e deficit s (Tajuddin an d Druse , 1993) . O n th e othe r hand ,
postnatal ethano l exposur e increase d hypothalami c 5-HT content s i n adul t rat s o f bot h sexes , with fe males showin g greate r overal l concentration s tha n males (Kelly, 1996a). Exposure during pre- and postnatal lif e di d no t differentiall y alte r hypothalamic 5HT concentration s (Tra n an d Kelly , 1999) . Feta l ethanol exposure also increased the numbe r of binding sites for the serotoni n transporter in some areas of the developin g ra t brai n bu t decrease d transporte r binding site numbers in other areas. This finding indicates that ethano l exposur e i n uter o permanentl y al ters 5-H T transmission in discrete brain regions (Zafar et al., 2000). In addition, Sari and Zhou (2004) show that prenatal ethano l exposur e results in long-lasting 5-HT deficit s i n mic e an d propos e tha t ethano l o r its metabolite s caus e los s o f serotonergi c neuron s through apoptosis. Animals prenatally exposed to ethanol exhibit physiological an d behaviora l abnormalitie s consisten t with altered 5-HT function, includin g lack of response inhibition an d increase d anxiet y an d aggression . FEE animal s have altere d hypothermi e response s to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) , a 5-HT 1A receptor agonist, and FE E females , but no t males, show an increase d rate o f "wet dog shakes" to l-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropan e hydrochloride (DOI), a ^-HT^c recepto r agonist. These effects ar e consisten t wit h ethanol-induce d alter ations i n 5-H T recepto r functio n (Hofman n e t al. , 2002). Furthermore , FE E female s exhibi t blunte d ACTH responses to 8-OH-DPAT bu t increased ACTH responses t o DO I compare d t o controls , which sug gests an altered interaction between the HP A axis and the 5-HTergi c syste m i n FE E animal s (Hofman n et al, 2001). Nitric Oxide . Alteration s in NO concentration s induced by prenatal ethano l exposur e may pla y a rol e in mediatin g HP A hyperresponsiveness i n FE E ani mals. N O i s an intercellula r gaseous signaling molecule that has multiple biological functions, including regulation o f vascula r tone , modulatio n o f neuro transmission, involvemen t i n cell—cel l communica tion an d killin g of pathogens in nonspecifi c immune responses (Lama s e t al. , 1998 ; Moncada , 1997a , 1997b). NO i s generated fro m L-arginin e by NO syn thase (NOS) , a n enzym e foun d i n magnocellula r neurons o f the PV N an d t o som e exten t als o i n th e parvocellular divisio n (Le e an d Rivier , 1993 ; Siau d et al, 1994 ; Hatakeyam a et al., 1996) . NO act s within
164 ETHANOL-AFFECTE D DEVELOPMEN T the hypothalamu s to activat e the HP A axis , with specific stimulator y effect s exerte d o n CRH-producin g neurons (Rivier, 1999). Ethanol-induced brai n damag e i s closel y re lated t o glutamate-induce d exitotoxicity , mediate d through N-methyl-D-aspartat e (NMDA ) receptors . Chronic ethano l exposur e increase s NMD A re ceptors an d Ca 2+ channe l activity , event s associated with seizure s durin g alcoho l withdrawa l (Lancaster , 1992). It has also been postulated that chronic prenatal ethano l exposur e change s glutamate-NMD A receptor-NOS signal transduction i n the developing guinea pi g brai n (Kimur a et al. , 2000) . Kimur a an d coworkers (Kimur a e t al. , 1996 , 1999 ; Kimur a an d Brien, 1998 ) reporte d decrease d feta l hippocampa l NOS activit y and , consequently , decrease d forma tion o f NO, bu t thos e change s are not accompanie d by a los s o f NOS-containin g neuron s i n th e hip pocampal CA I o r CA3 areas or change s i n localization o f hippocampal NO S protei n i n th e near-ter m guinea pig . The critica l period for prenatal ethanol induced los s o f hippocampa l CA I neuron s i n th e guinea pig brain appears to be between G6 2 and PI2 (McGoey e t al, 2003). Glutamate an d NMDA binding site s decrease i n th e hippocampu s o f near-term fetal guine a pigs chronically exposed t o ethanol (Abdollah an d Brien , 1995) . Thus i t has been propose d that chronic prenata l exposure to ethanol suppresses the function o f the glutamate-NMDA receptor-NO signal transductio n syste m i n th e developin g hip pocampus. Furthermore , i t has been postulate d tha t persistent suppressio n o f thi s signalin g syste m dis rupts or delays normal neuronal development, which temporally precede s th e los s o f hippocampa l CA I pyramidal cells in postnatal lif e (Gibso n e t al., 2000; Kimura et al, 2000; McGoey e t al, 2003). In view of the importan t role of the hippocampu s i n HPA feedback, suc h alteration s coul d underli e th e ethanol induced change s i n HP A feedbac k regulatio n tha t have been observed. Changes i n N O synthesi s in FE E animal s ma y mediate th e altere d HP A responses t o immun e sig nals reporte d i n FE E rat s compare d t o thos e i n controls. Gottesfel d (1998 ) repor t increased N O for mation i n respons e t o LP S i n FE E rats . Further more, blockade of NO synthesi s prevents the blunte d sympathetic respons e to LPS or interleukin (IL)- l i n FEE rat s bu t no t i n contro l rat s (Gottesfeld , 1998) . Similarly, changes i n hypothalami c responsivenes s to NO ma y mediate the increased HPA responsiveness of
FEE animal s to stressors . Intracerebroventricula r in jection o f th e N O dono r 3-morpholinosydnonimin e (SIN)-l increase s the ACT H respons e and th e con centration o f mRN A fo r th e immediat e earl y gen e NGFI-B i n FE E male s (Lee e t al., 2003). Moreover, blockade o f NO formatio n abolishe s difference s be tween FE E an d contro l animal s i n respons e t o IL- 1 (Rivier, 1995) . I n norma l (no ethano l exposure ) rats, SIN-1 als o up-regulate s CRH , AVP , an d CRH-R L gene expressio n in th e PVN . Th e functiona l impor tance o f the increase d concentration s o f CR H an d AVP transcript s is evidence d b y immunoneutraliza tion o f endogenous CR H an d AVP , which abolishe s or blunts, respectively, the ACTH respons e to SIN-1 (Lee e t al. , 1999) . I t woul d b e fascinatin g to stud y these relationship s i n animal s prenatall y expose d t o ethanol. Altered HPA-HPG Interactions There ar e bidirectiona l interaction s betwee n th e stress syste m and the HPG axi s (Fig . 10-3) . Hor mones o f th e HP A axi s hav e inhibitor y effects o n HPG activity . In turn, the gonadal steroids feed back to activat e (estradiol ) or inhibi t (testosterone ) HP A activity. Recen t studie s hav e investigate d a possibl e role o f ethanol-induce d alteration s i n HPA-HP G interactions i n mediatin g th e sexuall y dimorphi c effects o f ethano l o n mal e an d femal e offspring . Studies hav e examine d th e effect s o f gonadectom y (GDX), wit h o r withou t hormon e replacement , o n concentrations o f the HP A hormones i n bot h sexe s under basal condition s and followin g stress. Preliminary data sho w that FE E male s have higher plasma ACTH concentration s tha n control s followin g re straint stress , an d tha t GD X eliminate s th e dif ferences amon g group s (La n e t al. , 2004) . Thus , HPA hyperresponsivenes s i n FE E male s appear s t o be mediated , a t leas t i n part , b y ethanol-induce d changes i n testosteron e regulatio n o r i n HP A sensitivity to testosterone . That is , the suppressiv e effect s of testosterone and/o r th e stimulator y effects o f GDX on stress-induce d ACTH releas e are altered i n FE E compared t o contro l males . I n contrast , th e rol e of the gonada l hormone s i n HP A regulatio n i n FE E females i s mor e complex . Preliminar y dat a (Ya mashita et al., 2004) show that overall, FEE female s are les s responsiv e tha n control s t o th e effect s o f estradiol o n bot h reproductiv e an d nonreproduc tive measures . Furthermore, FE E female s appear to
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 16 5 PRENATAL ETHANOL EXPOSURE ALTERS
THE IMMUN E SYSTE M OF THE OFFSPRING
Impairments in immune competenc e o f children with FAS have bee n demonstrate d broadl y in bot h innat e and adaptiv e immunity. Innate immunit y is not majo r histocompatibility comple x (MHC ) restricted . I t provides a firs t lin e o f defens e agains t man y commo n pathogens throug h phagocyte s such a s monocytes , macrophages, polymorphonuclear leukocytes, natural killer cells , an d solubl e mediator s suc h a s comple ment an d C-reactiv e protein . Adaptiv e immunit y is MHC restricte d and classifie d a s cellular or humoral, mediated b y T o r B lymphocytes , respectively . Im mune response s agains t microorganisms ar e mediate d by multipl e cel l types , an d interaction s betwee n th e innate an d adaptiv e immun e system s are necessary to launch a n effective immun e response . An understanding of the timeline an d events in normal developmen t of the immune system, a complicated an d multisystem process, is important to an understandin g o f the effec t of ethanol o n the developing immune system. FIGURE 10- 3 Interaction s betwee n th e stres s system and reproductiv e axis . Th e stres s syste m consist s o f the hypothalamic-pituitary-adrena l (HPA ) axi s an d the locu s coeruleu s noradrenergi c sympatheti c ad renal medullar y (LC-NE ) syste m (describe d i n de tail i n Fig . 10.1) . Th e reproductiv e axi s consist s o f gonadotropin-releasing hormon e (GnRH ) neuron s which stimulat e secretio n o f luteinizin g hormon e (LH) an d follicl e stimulatin g hormon e (FSH ) fro m the pituitary , which i n tur n stimulat e secretion o f estrogens (mainl y estradiol ) an d androgen s (mainl y testosterone) fro m th e gonads . Th e reproductiv e axi s is stimulated b y the LC-NE system, primarily through oc-noradrenergic (oc rNE) receptors , an d i s inhibite d at al l level s by component s o f th e HP A axis . Activa tion is represented by solid lines, inhibition by dashed lines. ACTH , adrenocorticotropi c hormone ; CRH , corticotropin releasin g hormone ; E ?, estradiol ; T , testosterone. (Source: Reprinte d fro m Strataki s an d Chrousos (1995 ) wit h permissio n fro m Ne w Yor k Academy of Sciences )
have decreased tissu e responsiveness to estradiol and altered HP G sensitivit y to acute stress . Further stud ies ar e neede d t o elucidat e th e effect s o f prenata l ethanol exposur e o n interaction s betwee n th e HP A and HP G axes .
Normal Timing of the Ontogeny of the Immune Syste m Although developmen t o f the immun e syste m take s place throughou t life , th e basi c framewor k of immunity develop s befor e birth . Th e misconceptio n tha t the newbor n i s immunologically naiv e ha s been cor rected with data demonstrating that neonatal T and B cells ar e mature d t o a stag e tha t the y ca n moun t a n antigen-specific immun e respons e t o antigen s en countered i n utero , suc h a s the parasit e Ascaris an d tetanus toxoi d vaccinatio n (Gil l e t al. , 1983 ; Kin g étal, 1998) . Hematopoietic ste m cell s for m an d develo p i n the yolk sack until 4 weeks of gestation, migrat e to the liver 3 to 4 weeks later, and then further migrat e to the thymus and spleen. Ste m cell s are in the bone marrow at 11-1 2 week s of gestation (Migliacci o e t al, 1986 ; Holt and Jones , 2000). Susceptibility of early lympho hematopoiesis an d cel l migratio n t o environmenta l influences ca n occu r a s early as 7-10 week s postcon ception (West , 2002) . As early a s 1 4 weeks o f gesta tion, differentiate d T an d B cells can be identifie d in fetal bloo d (Goldblatt , 1998 ) an d splee n (Peakma n et al., 1992) . The splee n i s considered completel y im munocompetent b y 1 8 week s o f gestation . A t thi s
166 ETHANOL-AFFECTE D DEVELOPMEN T time, splenic T cells have adult levels of expression of CD3, CD4 , an d CDS and are able to respond t o mitogens (Ka y et al., 1970) , an d spleni c accessor y cell s are full y functiona l i n deliverin g co-stimulatory sig nals (Hol t an d Jones , 2000) . Fetuse s stil l hav e fewe r memory T cell s than adult s do at this time (Hol t and Jones, 2000). Yolk sack-derived pro- B cells develop in the liver and acquire surface immunoglobulin (Ig ) M, IgD, and CD2 0 expressio n b y 10-1 3 weeks of gestation (Hofma n et al. , 1984) . B cells ar e detectabl e i n lymph node s fro m 16-1 7 weeks , in splee n a t 16-2 1 weeks, an d ar e abundan t i n bon e marro w at 16-2 0 weeks of gestation (West , 2002). The structur e of the thymu s develops as a result of epitheliomesenchymal interactions. Endoderm of the third pharyngea l pouch differentiate s int o thymic epithelium. Neural crest cells then migrat e through th e branchial arche s an d becom e th e mesenchym e tha t will form the layers around the epithelial primordium of the thymus and the connective tissu e framework. T cell progenitor s arriv e i n th e thymu s fro m th e live r during the nint h wee k of gestation, an d th e structur e of th e thymu s differentiate s int o a corte x an d a medulla at 10-1 2 week s (West, 2002). Prothymocytes express CD 7 i n th e feta l live r at 7 week s and CD 3 at 8- 9 week s o f gestation, whe n thes e cell s migrat e to the thymus (Holt and Jones, 2000). Gene rearrangement start s a t aroun d wee k 11 , an d expressio n o f the T cel l receptor s (TCR) , CD4 , an d CD 8 fol lows. Thymi c "education " o f immature CD4 +/CD8+ (double-positive) T cell s take s plac e i n th e secon d trimester b y positiv e selection , wit h th e abilit y o f TCR t o bin d t o polymorphi c part s o f nonagonis t MHC-encoded molecules on nonlymphoid cells, and by negativ e selectio n of TCR , wit h hig h affinit y to self-antigens t o avoi d autoimmunit y (vo n Boehme r et al, 2003). Export of mature CD4+ or CD8+ (single positive) cell s begin s afte r wee k 13 , an d a rapi d ex pansion o f th e T cel l poo l happen s durin g 14-1 6 weeks (Ka y et al., 1970 ; Berr y et al, 1992) . At 13-14 weeks, thymocytes acquire proliferative ability to most mitogens. During th e second trimester , susceptibility to environmenta l factor s cause s disruptio n o f th e thymic educatio n processe s an d cel l proliferation , leading to a defective T cell repertoire. As roden t gestatio n (~ 3 weeks ) i s substantiall y shorter tha n tha t o f human s (~4 0 weeks) , immun e system developmen t o f newbor n ra t an d mous e pups occurs at a time equivalent to the end of the sec ond trimeste r i n human s (Zaja c an d Abel , 1992) .
Therefore, studie s i n roden t model s o f prenata l ethanol exposur e have focused primarily on th e early events in ontogeny of the immun e system, i.e., durin g the late gestational period an d early postnatal life . Impaired Immunit y following Prenatal Exposure t o Ethanol Children prenatall y expose d t o alcoho l hav e a n in creased incidenc e o f bacteria l infections , suc h a s meningitis, pneumonia , recurren t otiti s media , gas troenteritis, sepsis , urinar y trac t infections , an d fre quent uppe r respirator y trac t infection s (Johnso n et al, 1981 ; Churc h an d Gerkin, 1988) . These chil dren als o have lowe r cell count s o f eosinophil s an d neutrophils, decrease d circulatin g E-rosette-formin g lymphocytes, reduce d mitogen-stimulate d prolifera tive response s b y periphera l bloo d leukocytes , an d hypo-y-globulinemia (Johnson et al., 1981). Research usin g anima l model s t o investigat e im mune function of FEE offsprin g ha s (a) substantiated the clinica l evidenc e o f impaire d immunit y associ ated wit h FASD and (b ) greatly increased ou r under standing of these immune deficits in terms of both th e spectrum of effects i n differen t orga n systems and th e mechanisms mediatin g th e immunoteratogeni c ef fects o f ethanol . Deficit s i n innat e immunit y hav e typically no t bee n observe d i n anima l studies . Fo r example, on e larg e stud y o n nonhuma n primate s (Macaco, nemestrina) show s that i n uter o ethano l ex posure doe s no t resul t i n significant differences i n total numbers of white blood cells, leukocyte subsets, or monocyte phagocyti c activit y compare d t o tha t i n control subjects (Grossmann et al., 1993). In contrast, marked deficit s in adaptiv e immunity involving both cell-mediated an d humora l immunit y ar e eviden t in FE E animals . Furthermore , a s describe d i n th e discussion below , a marke d sexua l dimorphis m i n ethanol effect s ha s bee n observed , wit h th e majorit y of deficits occurring in male offspring . Deficits i n Adaptive Immunit y Inborn error s of immunocompetent cells in childre n with FASD result in immunodefienc y disorders or increased susceptibilit y to infections . Recurrent oppor tunistic infectio n and infectio n caused b y ubiquitous microorganisms, suc h a s bacteria, viruses , and fungi , typically occu r wit h deficit s in cell-mediate d immu nity, wherea s deficit s i n B cells , immunoglobulins ,
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 16 7 complement, an d phagocyte s usuall y lea d t o infec tion b y encapsulated and pyrogeni c bacteria, such as Haemophilus influenzae, Streptococcus pneumoniae, and Staphylococcus aureus. I n childre n wit h FAS D both types of recurrent infections have been reported, suggesting tha t bot h T an d B cell-mediated immu nity are compromised (Johnso n et al., 1981) . Work with animal models confirm s the findings in human subjects . For example, th e immun e respons e of FEE neonate s t o the intestina l parasit e Trichinella spiralis indicate s a diminished capacit y to respond t o the pathogen , demonstrate d b y a n increase d intes tinal wor m coun t (Steve n e t al. , 1992 ; Seeli g e t al. , 1996). Th e abnormalitie s involve depressed T an d B cell-mediated response s suc h a s lowe r seru m IL- 2 and tumor necrosis factor (TNF ) contents , an d lower IgM an d Ig G antibod y titers. Interestingly , th e detri mental effect s o f ethano l appea r t o increas e acros s generations. Tha t is , FEE pup s (secon d generation ) mothered b y FE E adul t offsprin g (firs t generation ) who themselves consumed ethanol during pregnancy show reduce d proliferativ e response s t o T . spiralis antigen and stimulation with concanavalin A (Con A), lower titer s o f seru m Ig M an d Ig G anti-T . spiralis, and lower percentages of T cells and cytotoxic T cells, compared t o th e first-generatio n FE E an d pair-fe d groups (Seelig et al., 1999) . The nex t two sections reviewr studie s tha t describ e specifi c deficit s i n eithe r cell-mediated o r humoral immunity. Deficits in Cell-Mediated Immunity Prenatal ethano l exposur e alter s development o f the thymus i n rat s an d mice . Delaye d thymi c ontogen y (Ewald an d Walden, 1988) , decreased tota l number s of thymocytes, and diminishe d mitogen-induce d cel l proliferation hav e been reporte d i n near-term fetuse s (Ewald an d Frost , 1987) . Decrease d thymu s weight, size, and cel l count s have also been observe d at birth (Redei et al., 1989) . These changes persisted through the preweanin g perio d an d eve n int o adolescenc e (Ewald an d Frost , 1987 ; Ewald , 1989 ; Giberso n an d Blakley, 1994 ; Taylo r e t al , 1999a) , althoug h on e study o f mic e foun d tha t tota l thymocyt e number s could retur n t o contro l level s as early as P6 (Ewald , 1989). Similarly , mitogen-induce d proliferativ e re sponses o f thymic cell s was suppressed i n FEE male s at weaning (Redei et al, 1989) , but may be increased in adolescen t (44-day-old ) rat s (Chiappell i e t al , 1992; Wong et al., 1992) . This increase i n thymocyte
proliferation durin g adolescenc e doe s no t appea r t o be mediate d b y change s i n numbe r o f GR s o n th e thymocytes; furthe r studie s ar e neede d t o elucidat e the mechanism s underlyin g these varyin g effect s o f ethanol. The advers e effects o f ethanol on thymic develop ment hav e bee n confirme d by in vitr o studies usin g organotypic cultures . Tota l cel l number s an d per centages of immature fetal thymocytes (CD4+/CD8+) decrease i n a concentration-responsiv e manne r i n ethanol-treated orga n culture s (Bra y e t al , 1993) . This decrease is a consequence o f accelerated apopto sis, which the n result s in a n increase d percentag e o f more mature thymocytes expressing CD4+/CD8~ and Y/8 TC R (Ewal d an d Walden , 1988 ; Ewal d e t al , 1991; Bra y et al., 1993 ; Ewald and Shao , 1993) . Similar outcome s ar e observe d i n 20 - to- 40-day-old FE E animals. That is , thymic cel l count s an d tota l num bers of CD4+ and CD8 + cells are decreased through out thi s period , an d immatur e CD8 +/TCR+ an d CD8+/CD4SRC+ thymocyte s ar e reduce d b y P3 5 (Taylor e t al. , 1999a) , finding s suggestin g tha t pre natal ethano l treatmen t alter s the late r stage s of thymocyte maturation , suc h a s afte r double-positiv e (CD4+/CD8+) thymocytes acquire TCR expression. Prenatal ethano l exposur e ha s long-ter m advers e effects o n the immune syste m that last well into adulthood. FE E animal s hav e decrease d number s o f Thyl.2+, CD4+, CD8+, and IgG+ splenocytes (Ewald and Huang, 1990 ; Giberson and Blakley, 1994; Giber son e t al. , 1997) . Decrease d percentage s o f Thyl.2+ splenocytes ar e also evident i n pup s born t o mother s consuming ethano l durin g pregnanc y an d lactatio n or durin g lactation alone , indicatin g direct effect s of ethanol o n postnatal developmen t o f the immun e system (Giberso n an d Blakley , 1994) . Similarly , roden t and primat e studie s indicat e tha t spleni c lympho cytes from FE E male s have decreased proliferative responses to mitogens from adolescenc e throug h youn g adulthood (Norma n et al, 1989 ; Rede i e t al, 1989 ; Gottesfeld e t al , 1990 ; Weinber g an d Jerrells , 1991 ; Grossmann et al, 1993 ; Jerrells and Weinberg, 1998 ) and tha t th e respons e normalizes by 8 months o f age (Gottesfeld an d Ullrich , 1995 ; Norman et al, 1991) . Furthermore, deficit s no t onl y i n th e respons e o f freshly isolate d splenic T cells but also in the response of T blas t cell s (obtaine d followin g treatment wit h Con A ) to IL- 2 o r furthe r Co n A stimulatio n (Got tesfeld e t al , 1990 ; Norma n e t al , 1991 ; Weinber g and Jerrells , 1991; Jerrell s and Weinberg , 1998 ) hav e
168 ETHANOL-AFFECTE D DEVELOPMEN T been observed . I n contrast , th e change s i n mitogen induced proliferation of thymocytes observed in FE E animals normalized i n young adulthoo d (Chiappell i et al, 1992). Deficits in Humoral Immunity Humoral immunit y i s les s affecte d b y feta l ethano l exposure than is cell-mediated immunity . Prepubertal FEE rat s d o no t diffe r fro m control s i n seru m im munoglobulin conten t afte r primar y an d secondar y immunization (Gottesfel d an d Ullrich , 1995) . Simi lar result s ar e eviden t i n nonhuma n primate s afte r immunization wit h tetanu s toxi n (Grossman n e t al. , 1993). On th e other hand, deficits i n humoral immu nity do occur . Abnormal development o f B cell line ages in murine hernatopoietic organs, including bone marrow, spleen , an d liver , occu r fro m feta l age s through adolescence . The tota l numbe r of splenic B cells an d thei r proliferativ e respons e t o LP S i s de creased a t birt h an d throughou t th e preweanin g period (Wolcott et al, 1995). In addition, B cell matu ration i n fetal live r is delayed (Bibe r et al., 1998 ) an d the numbe r o f B220-positiv e hernatopoietic cell s i n liver is decreased i n rat fetuses at the en d o f gestation (Robinson and Seelig , 2002). At birth, the numbers of both immatur e (IgM+/IgD~) and mature (IgM +/IgD+) B cells in spleen and bone marro w are decreased, bu t most recove r to norma l level s by 3 to 4 week s afte r birth, excep t fo r pre- B cell s (B220 +/IgM~) i n bon e marrow, which remai n a t low levels through 5 weeks of life (Moscatell o e t al, 1999) . Ethanol Exposure an d Vulnerability to Stress-Induced Suppression of Immune Function The nervous , endocrine, an d immun e system s exist within a comple x regulator y network in whic h bidi rectional communicatio n occurs via shared receptors and hormona l mediator s t o maintai n homeostasi s (Fig. 10-4) . Th e CM S ca n modulat e bot h th e en docrine an d immun e system s through releas e of neurotransmitters an d throug h direc t innervatio n o f organs. Feedbac k t o th e CN S occur s throug h hor mones an d cytokines , many of which ar e simila r o r even identica l in structure . Immune signal s can acti vate the HP A axis and th e glucocorticoid s play a ma jor rol e in th e stress-induce d suppression of immune and inflammator y reactions.
FIGURE 10- 4 Interaction s betwee n th e stres s system and immun e system. The long-ter m stres s response is maintained vi a secretio n o f stres s hormone s (corti cotropin releasin g hormon e [CRH] , adrenocorti cotropic hormon e [ACTH] , an d glucocorticoids) . The locu s coeruleu s noradrengergi c (LC-NE ) sys tem participate s i n th e effect s o f stres s o n th e im mune respons e through bot h it s interaction wit h th e hypothalamic-pituitary-adrenal (HPA ) axi s an d it s ability t o transmi t neura l signal s from th e peripher y to th e immun e system . Activatio n o f th e HP A axi s occurs durin g th e stres s o f infection , inflammation , or autoimmun e processes , a s wel l a s accidenta l o r operative trauma . Durin g thi s activation , cytokines , neuropeptides, platelet-activatin g facto r (PAF)/prosta noids ar e secrete d an d caus e stimulatio n o f the HP A axis. Th e glucocorticoids , en d hormone s o f the HP A axis, play a major role in the stress-induced suppression of immun e an d inflammator y reactions. Activatio n is represented b y solid lines , inhibition b y dashed lines . (Source: Reprinted from Strataki s and Chrousos (1995) with permission from Ne w York Academy of Sciences)
Chronic stress in adulthood provide s a challenge to the immun e system that differentially affect s FE E an d control animals. Similar to the data demonstrating that basal hormon e concentration s are typically normal i n FEE animals , specific deficit s in the immun e syste m
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 16 9 may no t b e observe d unde r nonstresse d conditions , and become apparen t only when FEE animal s are exposed t o stressors . In addition , sexually dimorphic ef fects of prenatal ethano l exposure may be observed, In FE E males , exposur e t o chroni c intermitten t stressors selectivel y down-regulates th e number s o f thymic and periphera l bloo d CD43 + cell s as well as peripheral bloo d CD4 + T cells , an d marginall y decreases th e numbe r o f peripheral bloo d MH C Clas s II Ia + (antige n presenting ) cells . I n contrast , CD4 3 antigen expressio n o n periphera l bloo d T cell s i s selectively up-regulate d (Giberso n an d Weinberg , 1995). Stres s doe s no t differentiall y alte r thes e im mune measure s i n FE E females . Th e findin g tha t FEE male s exhibit greater stress-induced immun e abnormalities tha n FE E females , despit e showin g less adrenal hypertrophy , suggest s tha t male s ar e mor e sensitive t o smal l change s i n glucocorticoi d con centrations tha n females . Role s fo r estroge n a s a n immunoprotective hormon e an d testosteron e a s a n immunosuppresive hormone i n these sexually dimorphic immun e responses remain to be determined . One o f the first demonstrations tha t stres s differen tially alters immune functio n i n FE E an d contro l females is the finding of an interaction between prenata l ethanol an d chroni c col d stres s i n femal e offsprin g (Giberson et al., 1997) . After 1 day of cold stress, FE E females exhibi t increase d lymphocyt e proliferatio n in response t o pokewee d mitoge n (PWM ; a T cell dependent B cell mitogen) an d Con A challenge. No ethanol-induced difference s i n immun e responsive ness ar e detecte d amon g males . I n contrast , FE E males expose d t o 1 or 3 days o f col d stres s have in creased basa l COR T concentration s compare d t o those o f FEE male s no t expose d t o cold. These findings ar e consisten t wit h dat a fro m Halas z an d col leagues (1993) , wh o foun d tha t th e challeng e o f chronic ethano l exposur e i n adulthoo d selectivel y in creased Co n A-induce d lymphocyt e proliferatio n i n FEE females but not in males. These data have important implication s fo r understandin g th e mechanism s underlying immune deficit s induce d by prenatal exposure to ethanol, because defective interactions between T an d B cells woul d significantl y hinder th e develop ment of a normal immune response . Cytokines and the HP A Axis Prenatal ethano l exposur e blunt s th e LPS-induce d febrile respons e i n mal e rat s (Taylo r e t al. , 1999b ,
2002a). Thi s effec t o f ethano l ma y b e mediate d b y a decrease d respons e o f centra l thermoregulator y systems t o IL-1(3 , whic h coul d b e mediate d b y a de creased hypothalami c IL-1( 3 respons e t o LP S ad ministration, possibl y throug h a n impaire d releas e of endogenou s pyrogen s (Ylikorkala e t al. , 1988 ; Yirmiya e t al, 1993 , 1996) . Interestingly , both ADX and sham surger y i n th e pregnan t femal e abrogat e th e effect o f ethanol o n th e febril e respons e o f femal e offspring t o IL-1(3 , bu t onl y AD X ha s a n effec t o n male offspring . Thi s observatio n implie s tha t mater nal adrena l mediator s play a n importan t rol e i n th e blunted febrile response of FEE male s and that nonadrenal mediator s participat e in modulatio n of ther moregulatory system s in FE E female s (Taylo r et al. , 2002a, 2002b). Parallel to blunted hormona l responses to stressors observed i n FEE animal s during th e preweanin g period, FE E preweanling s exhibi t reduce d ACTH , (3EP, an d TNF-o c response s t o immun e challenge s (IL-1(3, LPS) , Thi s reductio n persist s int o adoles cence i n FEE male s but no t in females (Lee and Rivier, 1993 , 1996 ; Chiappell i e t al. , 1997 ; Ki m et al, 1999b). A n altere d abilit y of IL-1 t o stimulat e secre tion o f POMC-relate d peptide s ma y underli e thi s reduced responsiveness (Lee and Rivier , 1993). Interestingly, ovariectom y prio r t o puberty eliminates th e difference i n ACTH response between FE E an d con trol females (Lee and Rivier , 1996), a finding suggesting tha t ethano l an d femal e se x hormones regulat e HPA activity through a common pathway. In contras t to the preweanin g period, ACTH an d CORT response s t o immun e signal s such a s LPS o r IL-1 (3 increase i n FE E animal s b y adulthoo d (Ki m et al. , 1999b) . Thi s respons e parallel s thei r HP A hyperresponsiveness to stressors. The finding that prenatal ethano l exposur e doe s no t alte r cytokin e re sponses to immune challenge s suggest s that cytokine s probably d o no t mediat e th e ethanol-induce d in crease i n HPA responsiveness to immune signals . O n the othe r hand , FE E male s exhibit increase d plasma concentrations o f pro-inflammatory cytokine s to LP S challenge followin g repeate d restrain t stres s (Eske s and Weinberg , 2003 ; Eske s e t al , 2004) . Wherea s CORT response s t o LP S ar e comparabl e amon g groups, FE E animal s hav e greate r an d mor e sus tained elevation s o f IL-1(3 , TNF-ot , an d IL- 6 tha n those i n controls. These data support an d exten d pre vious studie s suggestin g tha t although FEE animal s may no t diffe r i n cytokin e response s unde r basa l o r
170 ETHANOL-AFFECTE D DEVELOPMEN T nonstressed conditions, the y may in fac t be more vulnerable t o th e advers e effect s o f stres s o n immun e function (Eske s et al., 2004). Mechanisms Underlyin g the Effects of Ethanol on the Developing Immune Syste m Direct and Indirect Effects of Ethanol on the Fetus Ethanol ca n directl y disrup t the developmen t o f th e fetal thymus . The highl y specified microenvironment of the thymu s provide d by epithelial an d mesenchy mal cell s i s pivotal i n attractin g immatur e lymphoi d precursors to enable them t o be selected and differen tiated int o matur e T cells . Exces s ethano l exposur e during th e developmen t o f the thymu s inhibit s th e ontogeny o f the thymi c epitheliu m an d disrupt s th e microenvironment fo r maturatio n o f T cells , whic h leads to impaired T cel l immunit y (Bockman, 1997) . These data are interesting in light of the share d clinical characteristic s o f FASD and DiGeorg e syndrome (Ammann et al., 1982) . The latte r is a congenital im mune deficienc y syndrome involvin g mainly T cell s and cause d by an abnormalit y in the developmen t of neural crest-derive d component s o f the thymu s an d parathyroid gland s (Kirb y and Bockman , 1984) . Tar geted effect s o f ethanol o n neura l cres t ar e describe d in Chapter 17 . Selective effect s o f ethano l o n thymi c CR H an d POMC gene expression in male fetuses have been reported. Significan t increase s i n thymi c CR H an d a decrease i n thymi c POM C gen e expressio n hav e been observe d o n G1 9 (Revsko y et al., 1997) . Thes e changes d o no t appea r t o b e relate d t o COR T con centrations i n the fetu s o r pregnant female, but possibly ar e induce d b y th e feta l testosteron e surge . Similarly, the ontogen y o f GR site s per thymocyt e i n FEE animal s i n the first 2 months o f life differ s fro m that in control animal s (Chiappelli e t al., 1992) . This indicates a rol e fo r th e glucocorticoi d hormone s i n the differentia l thymi c developmen t describe d i n FEE an d control animals. Altered IL-2/IL- 2 receptor interaction s ma y play a role in the developmen t of altered immun e function in FE E animal s (Weinberg and Jerrells , 1991; Taylor et al., 1993 ; Chang et al, 1994). For example, despite showing a reduced proliferativ e response to mitogens,
FEE animal s hav e norma l amount s o f IL- 2 produc tion, IL- 2 recepto r expressio n an d distribution , cal cium influ x i n T cells , an d bindin g o f IL- 2 t o it s receptor. Th e internalizatio n and/o r utilization of IL2 by lymphoblasts, however, is reduced, an d th e half time fo r dissociatio n o f IL- 2 fro m it s recepto r i s increased i n T cell s fro m FE E animals . Therefore , impaired intracellula r signalin g events , mediate d b y IL-2/IL-2R interactions , ma y underli e th e immun e deficits observe d i n FE E animals . In contrast , direc t treatment o f lymphocyte s wit h acetaldehyde-seru m protein, whic h form s i n viv o a s a metabolit e o f ethanol consumption , result s i n decrease d IL- 2 pro duction bu t no t IL- 2 recepto r expressio n (Brau n et al. , 1995) . This resul t suggest s that, a t least unde r some conditions , decrease d IL- 2 productio n con tributes to impaired proliferative responses. Altered neurotransmitte r regulatio n o f immun e function ma y play a role i n altered immun e function of FE E animals . Prenata l exposur e t o ethano l de creases concentration s o f NE an d (3-adrenoreceptor s in the lymphoid organs and diminishes synaptic transmission i n th e splee n an d thymus , but no t th e hear t (Gottesfeld e t al. , 1990) . Altere d NEergi c synapti c transmission, includin g a higher rat e o f NE turnove r leading to reduced NE concentratio n and reduce d (3adrenoreceptor density , could affec t immun e capacit y in terms of NE-mediated IL-2 secretion an d cytotoxi c T cell responses . Immunity at the Fetoplacental Interface Immunity a t th e fetal-placenta l interfac e i s biase d toward humoral immunity ; cell-mediated immunit y is suppressed t o preven t feta l rejection . Cell-mediate d immunity i s skewe d towar d Th 2 response s an d pro duction o f cytokine s suc h a s IL-3 , IL-4 , an d IL-5 , rather tha n towar d Thl response s and productio n of cytokines such a s IL-2 and IFN-y (Lin et al, 1993) . It has been suggested tha t progesterone an d CD4 + regulatory T cell s are the key factors enablin g the fetu s to evade immune rejectio n by the pregnant female , thus allowing th e femal e t o maintai n pregnancy . Proges terone suppresse s cytotoxi c activit y o f lymphocyte s from pregnan t wome n vi a progesteron e receptor s (Szekeres-Bartho e t al, 1990) . A timely increas e i n CD4+/CD25+ regulator y T cells , systematicall y and locally at the interface between the fetus and pregnan t
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 17 1 female, play s a n importan t rol e i n maintainin g tolerance vi a suppressio n o f a n allogenei c respons e directed agains t th e fetu s (Szekeres-Barth o e t al. , 1990; Aluvihar e e t al. , 2004) . I n uter o exposur e t o ethanol coul d alte r th e balanc e betwee n regulator y T cells and T effecto r cells , an d thu s contribute s to the increase d incidenc e o f spontaneou s abortion s and prematur e births. This conclusio n i s supported by observation s of elevated cor d bloo d Ig E concen trations i n ethanol-expose d infants , indicatin g in creased activit y o f Th2-typ e response s (Somerse t et al. , 2004) . Long-ter m alteration s i n CD4 + regu latory T cell s in FEE male s may play a role in medi ating deficit s i n T cel l functio n (Zhan g e t al. , 2005a). Dexamethasone-induce d apoptosi s an d res cue b y IL-2 of CD4+/CD25+ T regulator y cells fro m FEE animal s an d control s hav e bee n examined . CD4+/CD25+ regulator y T cell s fro m FE E male s were more resistant to dexamethasone-induced apoptosis i n th e presenc e o f IL-2 , resulting i n increase d survival o f T regulator y cells . A s T regulator y cell s are suppressiv e i n nature , th e increase d number s of surviving T regulator y cell s coul d pla y a rol e i n ethanol-induced immun e deficits . Neuroendocrine-Immune Interaction s The CN S i s critica l fo r th e developmen t an d mat uration o f th e feta l immun e syste m throug h bot h sympathetic activit y an d neuroendocrin e mediators , such as growth hormone an d the HP A and HPG hor mones (Fig . 10.4) . Th e sympatheti c nervou s system innervates lymphoid organs, and lymphocyte s express receptors fo r CRH , ACTH , cortisol , NE , an d epi nephrine. Th e glucocorticoi d hormone s ca n exer t profound influence s on T cel l function throug h their interaction with GRs on T cells, which modulate traf ficking an d homing , proliferation , activation , an d apoptosis (Gonzal o e t al , 1994 ; Dhabha r e t al , 1996). Fo r example, transgeni c mic e wit h decrease d GR binding capacity but normal basa l concentration s of ACT H an d COR T sho w a partia l blockag e o f T cell differentiatio n and decrease d apoptosi s in the fetal period but no t i n adult lif e (Sacedo n e t al. 7 1999) . In addition, glucocorticoids cause a shift fro m Thl t o Th2 responses and a change from a pro-inflammatory cytokine patter n (e.g. , IL-1 an d TNF-ot ) t o a n anti inflammatory cytokin e patter n (e.g. , IL-1 0 an d IL-4 ) (DeRijk e t al. , 1997 ; Elenko v an d Chrousos , 1999) .
Growth hormon e increase s IFN- y productio n an d MHC clas s I an d I I expressio n b y thymic epithelia l cells, macrophages , dendriti c cells , fibroblasts , an d extracellular matri x (Savin o an d Dardenne , 2000) . These results suggest that growth hormone facilitate s MHC-mediated influence s o n thymocyt e differentia tion. Thymic epithelia l cells and lymphocyte s in rat s express estroge n an d androge n receptor s fro m G1 6 (Tanriverdi et al., 2003) and thus are influenced by circulating sex steroid hormones. Furthermore, adminis tration o f gonadotropin releasin g hormon e (GnRH ) restores fetal thyrnic and liver-derived T cell proliferative response s afte r surgica l ablation o f the forebrain or th e entir e brai n includin g th e hypothalamu s an d pituitary in 18-day-ol d fetuses (Zakharova et al., 2000). Thus, GnRH appear s to be involve d in regulatio n of T cel l developmen t eve n durin g prenata l ontogene sis. These examples show how closely development of the thymus is regulated by the neuroendocrine system. Cytokines secreted by immune cells , such a s IL-1, IL-2, IL-4 , an d IL-6 , influenc e th e functio n o f hypothalamic neurosecretor y an d thermoregulator y neu rons and pituitary cells (Cunningha m an d De Souza, 1993; Rivier , 1994; Zalcma n e t al., 1994 ; Dun n an d Wang, 1995) , resultin g i n activatio n o f the HP A axis and inducing "sickness behavior" (Watkins and Maier, 2000; Dantzer, 2001). IL-1, IL-6, and TNF-oc are also produced i n th e hypothalamu s b y microgli a an d macrophages (Hetie r et al., 1988 ; Sebir e e t al, 1993 ) and thus can directly influence neuroendocrine func tion. For example, IL-1 stimulates the releas e of CRH and AV P from th e hypothalamu s (Sud a e t al, 1990 ; Chover-Gonzalez e t al. , 1994) , an d IL-1 , IL-6 , an d TNF-oc stimulate ACT H secretio n fro m th e anterio r pituitary (Kehre r e t al. , 1988 ; Shar p e t al , 1989 ; Lyson and McCann, 1991) . Given th e intimat e interaction s between th e neu roendocrine an d immun e system s (Fig. 10.4 ) durin g development and in adulthood , feta l ethanol-relate d developmental change s i n neuroendocrin e activit y could affec t immun e competency . I n turn , feta l ethanol-induced change s i n cytokine secretion b y immune cell s can affec t neuroendocrin e activity . Therefore, th e altere d HP A response s t o immun e signal s (Lee and Rivier , 1993 ) and differentia l vulnerabilit y to stress-induced immun e suppressio n (Giberso n an d Weinberg, 1995; Giberson et al, 1997) shown by FEE rats compared to that of controls could be mediated by the altered neuroendocrine-immune interactions .
172 ETHANOL-AFFECTE D DEVELOPMEN T PRENATAL ETHANOL EXPOSUR E REPROGRAMS FETA L HP A
AND IMMUNE FUNCTIO N
The route s b y which the feta l an d earl y neonatal en vironment ca n progra m adul t HP A function an d be havior ar e describe d eloquentl y b y Matthews (2002 ) (Fig. 10.2 ) and Welberg and Seck l (2001). The devel oping limbic system, primarily the hippocampus , hypothalamus, an d anterio r pituitary , synthesiz e hig h amounts o f GRs and ar e highly sensitive to glucocorticoids. Exposure to high concentration s o f glucocorticoids durin g earl y lif e ca n alte r th e developmen t and subsequen t functio n o f bot h th e limbi c syste m and the HPA axis. The limbi c system, particularly the hippocampus, regulates HPA activity, and in turn, endogenous glucocorticoid s modif y numerou s limbi c system functions . Mechanisms underlyin g these mu tual effects involv e modification of developing neuro transmitter systems , thei r transporte r mechanism s in th e brain stem, th e developmen t o f GR expressio n in th e hippocampus , an d th e developmen t an d re sponsiveness o f the hypothalami c PVN , whic h regu lates glucocorticoid secretion. Prenata l events that can program HP A functio n includ e stres s durin g preg nancy, exposure to synthetic glucocorticoids, and nutrient restriction . Postnata l event s tha t ca n progra m HPA function includ e earl y handling, alteration s i n maternal behavior, and exposur e to exogenous glucocorticoids and infection. The overal l effec t o f earl y developmenta l pro gramming i s altered exposur e t o endogenou s gluco corticoids throughout life (Li u et al., 2001; Matthews, 2002). This altered exposur e i n tur n modifie s behavior, cognition , learning , memory, an d emotion , an d predisposes th e individua l t o cardiovascular , meta bolic, and immune disorders. Although environmental factors pla y an importan t rol e i n feta l programming , it i s likely tha t perinata l environmenta l an d geneti c factors mutuall y influence each othe r i n determinin g HPA activity and behavio r later i n life . Moreover , al though th e effect s o f programmin g ar e ofte n long lasting, postnatal an d late r environmental events can modulate the effect s o f prenatal programming . What is the mechanism underlying fetal o r neona tal programmin g b y earl y lif e experiences ? Earl y experiences resul t i n long-ter m consequence s fro m the behaviora l to the molecula r level through epige netic processes (Weaver et al., 2004). In the mode l of Weaver and colleagues , naturally occurring variations
in materna l behavio r ar e associate d wit h th e devel opment o f individua l differences i n behaviora l an d HPA response s to stressors . Thus, offsprin g of moth ers showin g hig h level s o f maternal behavio r (larg e amounts of licking, grooming, an d arched-back nurs ing o f their young ) ar e les s fearfu l an d sho w better modulated HP A responses t o stressor s than offsprin g of mothers showin g low levels of maternal behavior . This outcome i s not due t o a change i n the underly ing geneti c profile ; i f pup s ar e cross-fostere d fro m low- t o high-materna l behavio r mother s a t birth , the offsprin g profil e i s associated wit h th e adoptiv e rather tha n th e biologica l mother . Therefore , varia tions in maternal behavior can serv e as a mechanism for nongenomi c transmissio n o f individua l differ ences i n stres s reactivity across generations. At least two majo r epigenomi c mechanism s ar e though t t o be involved : demethylatio n o f on e ke y sit e i n th e NGFI-A bindin g sequenc e o f th e firs t exo n o f th e GR gene , an d increase d acetylatio n o f the histone s surrounding th e G R gen e (Weave r e t al. , 2004) . These tw o alterations result in increase d expression of GRs an d increase d acces s o f transcription factor s to GRs , thu s increasin g HP A feedbac k regulatio n and alterin g th e physiologica l an d behaviora l pro files o f the offspring . In ou r model , prenata l ethano l exposur e i s an en vironmental variable that causes long-term alterations in th e physiologica l and behaviora l profile o f the offspring (e.g. , Weinber g an d Jerrells , 1991 ; Giberso n and Weinberg , 1995 ; Ki m et al, 1996 ; Glava s e t al , 2001; Hofmann e t al, 2002 ; Lan et al, 2004 ; Zhan g et al, 2005b) . We hypothesize tha t prenata l ethano l exposure reprogram s th e feta l HP A axis, resultin g i n long-term alteration s in HP A regulation an d respon siveness under basal and stress conditions and increasing HPA tone throughout life. In view of the evidenc e (Phillips e t al , 1998 , 2000 ) tha t feta l programmin g of the HP A axis, at least in part, underlies the connection betwee n th e earl y environment an d adul t stressrelated an d behaviora l disorder s i n humans , furthe r studies are essential to elucidate the mechanism s underlying prenatal ethano l effect s o n programmin g of HPA activity.
SUMMARY AND CONCLUSION S
The presen t chapte r discusse s the advers e effect s o f prenatal exposur e to ethanol o n neuroendocrine an d
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 17 3 immune functio n i n th e offspring , wit h particula r emphasis o n th e HP A axi s an d th e concep t o f feta l programming. Ethanol-induce d disturbance s o f th e reciprocal interconnection s betwee n th e pregnan t female an d th e fetu s ma y provide a common pathway by which perinatal exposure to different agent s results in feta l programming . Th e feta l HP A axi s i s repro grammed by ethanol exposur e such tha t HP A tone i s increased throughou t life . HP A activit y is increased and HP A regulation i s altered unde r bot h basa l an d stress conditions . Increase d exposur e t o endogenou s glucocorticoids over the lifespa n ca n alte r behavioral and physiological responsiveness and increas e vulnerability t o illnesse s late r i n life . Deficit s i n immun e competence ma y b e on e o f th e long-ter m conse quences of fetal HP A programming. Prenatal ethanol exposure compromise s offsprin g immun e functio n and increases vulnerability to the immunosuppressiv e effects o f stress. It i s now essential t o explor e possibl e epigenomi c mechanisms mediatin g altere d physiologica l an d be havioral functio n followin g prenata l ethano l expo sure. Th e fac t tha t ethano l cause s alteration s i n th e methylation stat e withi n cell s support s th e possibil ity tha t mechanism s simila r t o thos e describe d b y Weaver an d colleague s (2004 ) mediat e th e change s induced b y ethano l exposur e i n utero . Dat a fro m such investigation s will hav e importan t implication s for th e developmen t o f therapeutic intervention s focused o n reversin g th e long-ter m advers e effect s o f prenatal alcohol exposure .
8-OH-DPAT 8-hydroxy-2-(di-n-propylamino) tetralin FASD feta l alcoho l spectrum disorders FEE feta l ethanol-exposed S-HT serotoni n G gestationa l day GABA y-aminobutyri c acid GDX gonadectom y GnRH gonadotropin-releasin g hormone GR glucocorticoi d receptor hn heteronuclea r HPA hypothalamic-pituitary-adrena l HPG hypothalamic-pituitary-gonada l Ig immunoglobuli n IL interleuki n LC-NE locu s coeruleu s noradrenergi c (sympa thetic adrenal medullary) LPS lipopolysaccharid e MHC majo r histocompatibility comple x MR mineralocorticoi d receptor NE norepinephrin
e
NMDA N-methyl-D-aspartat e NO nitri c oxide NOS nitri c oxide synthase P postnata l day POMC pro-opiomelanocorti n
Abbreviations ACTH adrenocorticotropi c hormon e ADX adrenalectom y AVP arginin e vasopressin J3-EP p-endorphi n CBG corticosterone-bindin g globulin CNS centra l nervou s system
PVN paraventricula r nucleus PWM pokewee d mitogen SHRP stres s hyporesponsive period SIN-1 3-morpholinosydnonimin e SNRP stres s nonresponsive period TCR T cell receptor s TNF tumo r necrosis factor
CON A concanavali n A CORT corticosteron e CRH corticotropin-releasin g hormone CRH-R! corticotropin-releasin g hormone type 1 receptor DO! l-(2 , 5-dimethoxy-4-iodophenyl)-2-amino propane hydrochloride
ACKNOWLEDGMENTS Th e researc h from ou r laboratory tha t i s reporte d i n thi s revie w wa s supporte d by grants fro m th e Nationa l Institut e o f Alcoho l Abus e and Alcoholis m and fro m th e Universit y o f British Co lumbia Huma n Earl y Learnin g Partnershi p t o J.W . J.H.S. wa s supported by a Blum a Tischle r postdoctoral fellowship.
174 ETHANOL-AFFECTE D DEVELOPMEN T References Abdollah S , Brie n J F (1995 ) Effec t o f chroni c mater nal ethano l administratio n o n glutamat e an d N methyl-D-aspartate binding sites in the hippocampu s of the near-ter m fetal guine a pig. Alcohol 12:377 382. Adler RA (1992) Clinical review 33: clinically important effects o f alcohol on endocrine function . J Clin En docrinol Metab 74:957-960 . Aird F, Halasz I, Redei E (1997) Ontogeny o f hypothalamic corticotropin-releasing factor an d anterio r pituitary pro-opiomelanocortin expressio n in mal e an d female offsprin g o f alcohol-expose d an d adrena lectomized dams. Alcohol Clin Ex p Res 21: 15601566. Aluvihare VR , Kallikourdi s M , Bet z AC (2004 ) Regulatory T cells mediate materna l tolerance t o the fetus. Natlmmunol 5:266-271 . Ammanii A], Wara DW, Cowan MJ , Barrett DJ, Stieh m ER (1982 ) The DiGeorg e syndrom e an d th e feta l alcohol syndrome. Am J Dis Child 136:906-908 . Anderson R A Jr (1981) Endocrin e balance as a factor i n the etiolog y of the feta l alcoho l syndrome . Neu robehav Toxicol Teratol 3:89-104 . Angelogianni P, Gianoulakis C (1989 ) Prenatal exposure to ethano l alter s the ontogen y o f th e (3-endorphi n response t o stress . Alcoho l Cli n Ex p Re s 13 : 564-571. Angelucci L , Patacchioli FR, Scaccianoc e S , Di Sciull o A, Cardillo A, Maccari S (1985) A model fo r laterlife effect s o f perinatal drug exposure: maternal hormone mediation . Neurobeha v Toxico l Terato l 7 : 511-517. Assenmacher I , Szafarczy k A , Alons o G , Ixar t G , Bar banel G (1987 ) Physiolog y of neura l pathway s affecting CR H secretion . An n N Y Aca d Sc i 512 : 149-161. Bakker JM, va n Bel F, Heijnen C J (2001 ) Neonatal glu cocorticoids an d th e developin g brain : short-ter m treatment wit h life-lon g consequences ? Trend s Neurosci 24:649-653. Beitins ÏZ, Bayar d F, Ances IG, Kowarski A, Migeon C J (1973) Th e metaboli c clearanc e rate , bloo d pro duction, interconversion and transplacenta l passage of cortiso l an d cortison e i n pregnanc y nea r term . Pediatr Res 75:509-519. Berry SM , Fin e N , Bichalsk i JA , Cotto n DB , Dom browski MP , Kapla n J (1992 ) Circulatin g lympho cyte subset s i n second - an d third-trimeste r fetuses: comparison with newborns and adults . Am J Obstet Gynecol 167:895-900 . Biber KL, Moscatello KM , Dempsey DC , Chervena k R, Wolcott R M (1998 ) Effect s o f i n uter o alcoho l
exposure on B-cell development i n the murine feta l liver. Alcohol Clin Exp Res 22:1706-1712. Bockman D E (1997 ) Developmen t o f the thymus . Mierose Res Tech 38:209-215 . Braun KP, Pearce RB, Peterson CM (1995 ) Acetaldehydeserum protein adducts inhibit interleukin-2 secretion in concanavali n A-stimulated murin e splenocytes: a potential commo n pathwa y fo r ethanol-induce d immunomodulation. Alcoho l Cli n Ex p Re s 19 : 345-349. Bray LA, Shao H , Ewal d S J (1993) Effect o f ethanol o n development o f feta l mous e thymocyte s i n orga n culture. Cell Irnmunol 151:12-23 . Cannon W B (1914 ) Th e interrelatio n o f emotion s a s suggested b y recen t physiologica l researches . A m JPhysiol 25:256-282 . (1929) Bodily Changes i n Pain, Hunger, Fear and Rage. Applegate, Ne w York. Cannon WB , de l a Pa z D (1911 ) Emotion l stimulatio n of adrenal secretion. Am J Physiol 28:64-70. Chang MP, Yamaguchi DT, Yeh M, Taylor AN, Norman DC (1994 ) Mechanism o f the impaire d T-cell proliferation i n adul t rat s expose d t o alcoho l i n utero . Int J Immunopharmacol 16:345-357 . Chiappelli F , Kun g MA , Tio DL , Trit t SH , Yirmiy a R , Taylor A N (1997 ) Feta l alcoho l exposur e aug ments th e bluntin g o f tumo r necrosi s facto r pro duction i n vitro resulting from i n vivo priming with lipopolysaccharide i n young adult mal e bu t no t female rats. Alcohol Clin Ex p Res 21:1542-1546. Chiappelli F , Ti o D , Trit t SH , Pilat i ML , Taylo r A N (1992) Selective effects o f fetal alcoho l exposure on rat thymocyte development . Alcoho l 9:481-487. Chover-Gonzalez AJ , Lightman SL , Harbuz M S (1994 ) An investigatio n of the effect s o f interleukin-l p o n plasma arginin e vasopressin i n th e rat : role of adrenal steroids. J Endocrinol 142:361-366 . Chrousos GP (1995 ) The hypothalamic-pituitary-adrena l axis an d immune-mediate d inflammation . N Eng l JMed 332:1351-1362 . Chrousos GP , Loriau x DL , Gol d P W (1988 ) Th e con cept o f stres s an d it s historica l development. Ad v ExpMedBiol245:3-7. Church MW , Gerki n K P (1988 ) Hearin g disorder s i n children with fetal alcoho l syndrome: findings from case reports. Pediatrics 82:147-154. Cunningham E T Jr , De Souz a E B (1993) Interleukin 1 receptors i n th e brai n an d endocrin e tissues . Im munol Today 14:171-176. Dantzer R (2001 ) Cytokine-induce d sicknes s behavior : where do we stand? Brain Behav Immun 15:7-24 . DeRijk R , Michelso n D , Kar p B , Petride s J , Gallive n E , Deuster P, Paciotti G, Gold PW, Sternberg EM (1997) Exercise and circadian rhythm—induce d variations in
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 17 5 plasma cortiso l differentiall y regulat e interleukin 1(3 (IL-lp) , IL-6 , an d tumo r necrosi s factor- a (TNFcx) productio n i n humans : hig h sensitivit y of TNF a an d resistanc e o f IL-6. J Clin Endocrino l Metab 82:2182-2191. Detering N , Collin s R , Hawkin s RL, Ozand PT , Karahasan A M (1980 ) The effect s o f ethanol o n devel oping catecholamin e neurons . Adv Exp Me d Bio l 132:721-727. Detering N , Collin s R M Jr. , Hawkins RL , Ozan d PT , Karahasan A (1981) Comparative effect s o f ethanol and malnutritio n o n th e developmen t o f cate cholamine neurons : a long-lasting effect i n th e hy pothalamus. J Neurochem 36:2094-2096. Dhabhar FS , Mille r AH , McEwe n BS , Spence r R L (1996) Stress-induce d change s i n bloo d leukocyt e distribution. Rol e o f adrena l steroi d hormones . J Inuminoli 57:163&-1644. Druse MJ (1992) Effect s o f in utero ethanol exposure on the developmen t o f neurotransmitte r systems . In : Miller M W (ed) . Development o f th e Central Nervous System: Effects o f Alcohol and Opiates. WileyLiss, New York, pp 139-167. Druse MJ , Kuo A, Tajuddin N (1991 ) Effect s o f in uter o ethanol exposur e o n th e developin g serotonergic system. Alcohol Clin Ex p Res 15:678-684. Dunn AJ , Wang J (1995 ) Cytokine effect s o n CN S bio genie amines. Neuroimmunomodulation 2:319-328. Eguchi Y (1969 ) Interrelationship s betwee n th e foeta l and materna l hypophysia l adrena l axe s in rat s an d mice. In : Bajus z E (ed) . Physiology an d Pathology of Adaptation Mechanisms. Pergamo n Press , Ne w York, pp 3-27 . Elenkov IJ , Chrouso s G P (1999 ) Stres s hormones , Thl/Th2 patterns , pro/anti-inflammator y cytokines and susceptibilit y t o disease . Trend s Endocrino l Metab 10:359-368 . Eskes J, Weinberg J (2003) Prenatal ethanol exposure differentially alter s cytokin e releas e i n chronicall y stressed male rats. Abs Soc Neurosci 33:927.3. Eskes J , Y u WK , Elli s L , Weinber g J (2004 ) Prenata l exposure t o ethano l differentiall y affect s cytokin e release bu t no t pituitar y c-Fo s level s i n chroni cally stresse d male rats . Alcohol Cli n Ex p Re s 28: 165A. Ewald S J (1989 ) T lymphocyt e population s i n feta l alcohol syndrome . Alcoho l Cli n Ex p Re s 13 : 485-489. Ewald SJ , Frost WW (1987 ) Effec t o f prenatal exposure to ethanol o n development o f the thymus . Thymus 9:211-215. Ewald SJ, Huang C (1990 ) Lymphocyte populations and immune response s i n mic e prenatall y expose d t o ethanol. Prog Clin Biol Res 325:191-200.
Ewald SJ , Huan g C , Bra y L (1991 ) Effec t o f prenatal alcohol exposur e o n lymphocyt e population s i n mice. Adv Exp Med Bio l 288:237-244. Ewald SJ , Sha o H (1993 ) Ethano l increase s apoptoti c cell deat h of thymocytes in vitro. Alcohol Clin Exp Res 17:359-365 . Ewald SJ, Walden S M (1988) Flow cytometric and histological analysi s of mous e thymu s i n feta l alcoho l syndrome. J Leukoc Biol 44:434-440. Giberson PK , Blakle y B R (1994 ) Effec t o f postnata l ethanol exposur e o n expressio n o f differentiation antigens o f murin e spleni c lymphocytes . Alcoho l Clin Exp Res 18:21-28. Giberson PK , Ki m CK , Hutchiso n S , Yu W, Junke r A, Weinberg J (1997) The effec t o f cold stres s on lymphocyte proliferatio n i n feta l ethanol-expose d rats . Alcohol Clin Exp Res 21:1440-1447. Giberson PK , Weinber g J (1995 ) Effect s o f prenata l ethanol exposur e and stres s in adulthoo d o n lym phocyte population s in rats . Alcohol Clin Ex p Res 19:1286-1294. Gibson MA , Butters NS, Reynold s JN, Brie n JF (2000) Effects of chroni c prenata l ethano l exposur e on locomotor activity , and hippocampa l weight , neu rons, and nitri c oxide synthase activity of the young postnatal guinea pig. Neurotoxicol Teratol 22:183192. Gill T J 3rd , Repett i CF , Metla y LA , Rabin BS , Taylor FH, Thompso n DS , Cortes e A L (1983) Transpla cental immunization of the huma n fetu s to tetanus by immunizatio n o f th e mother . J Cli n Inves t 72:987-996. Gillies GE , Linto n EA , Lowry PJ (1982 ) Corticotropi n releasing activit y o f th e ne w CR F i s potentia ted severa l times b y vasopressin. Nature 299:355 357. Glavas MM, Hofman n CE, Y u WK, Weinberg J (2001 ) Effects o f prenatal ethano l exposur e on hypothalamic pituitary-adrenal regulatio n afte r adrenalectom y an d corticosterone replacement . Alcoho l Cli n Ex p Re s 25:890-897. Goldblatt D (1998 ) Immunisatio n an d th e maturatio n of infan t immun e responses . De v Bio l Stan d 95 : 125-132. Goldman L , Winge t C , Hollingshea d GW , Levin e S (1973) Postweanin g development o f negative feedback in the pituitary-adrenal system of the rat. Neuroendocrinology 12:199—211 . Gonzalo JA, Gonzalez-Garcia A, Baixeras E, Zamzami N, Tarazona R , Rappuoli R , Martinez C , Kroeme r G , Terezone R (1994 ) Pertussi s toxi n interfere s with superantigen-induced deletion o f peripheral T cells without affectin g T cel l activatio n i n vivo . Inhibi tion o f deletio n an d associate d programme d cel l
176 ETHANOL-AFFECTE D DEVELOPMEN T death depend s o n ADP-ribosyltransferas e activity . JImmunol 152:4291-4299 . Gottesfeld Z (1998 ) Sympatheti c neura l respons e t o immune signal s involves nitric oxide : effect s o f exposure to alcohol in utero. Alcohol 16:177-181 . Gottesfeld Z , Ullric h S E (1995 ) Prenata l alcoho l expo sure selectivel y suppresse s cell-mediate d bu t no t humoral immun e responsiveness . Int l J Im munopharmacol 17:247-254 . Gottesfeld Z , Christi e R , Felten DL , LeGru e S J (1990) Prenatal ethano l exposur e alter s immun e capacit y and noradrenergi c synapti c transmissio n i n lym phoid organ s of the adul t mouse. Neuroscience 35 : 185-194. Grossmann A, Astley SJ, Liggitt HD, Clarren SK , Shiota F, Kenned y B , Thoules s ME , Maggio-Pric e L (1993) Immune function i n offsprin g o f nonhuman primates (Macaca nemestrina) expose d weekl y t o 1.8 g/kg ethanol durin g pregnancy: preliminar y observations. Alcohol Clin Exp Res 17:822-827. Guillemin R, Vargo T, Rossie r J, Minick S, Ling N, Rivier C , Val e W , Bloo m F (1977 ) p-endorphi n an d adrenocorticotropin ar e selecte d concomitantl y b y the pituitary gland. Scienc e 197:1367-1369 . Halasz I , Aird F 7 L i L , Prystowsk y MB , Rede i E (1993 ) Sexually dimorphi c effect s o f alcoho l exposur e i n utero on neuroendocrine an d immune functions in chronic alcohol-expose d adul t rats . Mol Cel l Neu rosci 4:343-353. Hatakeyama S , Kawai Y, Ueyama T, Senb a E (1996) Ni tric oxid e synthase-containing magnocellular neu rons o f th e ra t hypothalamu s synthesiz e oxytoci n and vasopressi n an d expres s Fo s followin g stres s stimuli. J Chem Neuroanat 11:243-256. Hennessy JW , Levine S (1979 ) Stress , arousal , an d th e pituitary-adrenal system : a psychoendocrin e hy pothesis. In: Sprague JM, Epstein AN (ed). Progress in Psychobiology an d Physiological Psychology. Aca demic Press , New York, pp 133-178 . Hetier E, Ayala J, Denefle P, Bousseau A, Rouget P , Mallat M, Prochiantz A (1988) Brain macrophages synthesize interleukin- 1 an d interleukin- 1 mRNA s in vitro. J Neurosci Re s 21:391-397. Hiroshige T , Sat o T (1970 ) Circadia n rhyth m an d stress-induced change s i n hypothalami c conten t o f corticotropin-releasing activit y during postnata l de velopment i n the rat. Endocrinology 86:1184-1186. Hofman FM , Danilov s J, Husmann L, Taylor CR (1984 ) Ontogeny o f B cel l marker s i n th e huma n feta l liver. J Immunol 133:1197-1201 . Hofmann C , Glavas M, Yu W, Weinberg J (1999) Glucocorticoid fas t feedbac k is not altere d i n rat s prena tally exposed t o ethanol. Alcoho l Cli n Ex p Res 23: 891-900.
Hofmann CE , Simm s W, Yu WK, Weinberg J (2002) Prenatal ethano l exposur e i n rat s alter s serotonergic mediated behaviora l an d physiologica l function . Psychopharmacology 161:379-386. Hofmann CE , Y u W, Ellis L, Weinberg J (2001) Prenata l ethanol exposur e alter s hormona l response s t o 5 HT1A an d 5-HT2A/ C agonist . Ab s So c Neurosc i 31:732.12. Holt PG , Jone s CA (2000) The developmen t o f the im mune syste m durin g pregnanc y an d earl y life. Al lergy 55:688-697. Jacobson SW , Bihu n JT , Chiod o L M (1999 ) Effect s o f prenatal alcoho l an d cocain e exposure o n infan t cortisol levels. Dev Psychopathol 11:195-208 . Jerrells TR, Weinberg J (1998) Influence of ethanol con sumption o n immune competenc e of adult animals exposed t o ethanol i n utero . Alcohol Clin Ex p Res 22:391-400. Johnson EO , Kamilari s TC , Chrouso s GP , Gol d P W (1992) Mechanisms o f stress: a dynamic overview of hormonal an d behaviora l homeostasis . Neurosc i BiobehavRevl6:115-130. Johnson S , Knight R, Marnier DJ, Steele RW (1981) Immune deficienc y in fetal alcoho l syndrome . Pediat r Res 15:908-911 . Kakihana R , Butt e JC , Moor e J A (1980) Endocrin e ef fects o f maternal alcoholization : plasm a an d brai n testosterone, dihydrotestosterone, estradici , and corticosterone. Alcohol Clin Ex p Res 4:57-61. Kastin AJ , Gennse r G , Arimur a A , Mille r M C 3rd , Schally AV (1968) Melanoeyte-stimulatin g and cor ticotrophic activitie s i n huma n foeta l pituitar y glands. Acta Endocrinol 58:6-10 . Kay HE , Do e J , Hockle y A (1970 ) Respons e o f huma n foetal thymocytes t o phytohaemagglutini n (PHA) . Immunology 18:393-396 . Kehrer P, Turnill D, Daye r JM, Muller AF, Gaillard RC (1988) Human recombinan t interleukin- 1 p and -a, but not recombinant tumo r necrosi s factor a stimu late ACTH releas e fro m ra t anterio r pituitar y cells in vitr o in a prostaglandin E 2 an d cAM P indepen dent manner. Neuroendocrinolog y 48:160-166. Kelly S J (1996a) Alcohol exposur e durin g developmen t alters hypothalami c neiirotransmitte r concentra tions. J Neural Transm 103:55-67 . (1996b) Effect s o f alcohol exposur e an d artificia l rearing durin g developmen t o n septa l an d hip pocampal neurotransmitter s i n adul t rats . Alcoho l Clin Exp Res 20:670-676. Kim CK , Giberso n PK , Y u W, Zoelle r RT , Weinber g J (1999a) Effect s o f prenata l ethano l exposur e o n hypothalamic-pituitary-adrenal responses to chronic cold stres s i n rats . Alcoho l Cli n Ex p Re s 23 : 301-310.
ETHANOL EFFECTS ON ENDOCRIN E AND IMMUNE FUNCTIO N 17 7 Kim CK , Osborn JA , Weinberg J (1996) Stres s reactivity in feta l alcoho l syndrome . In: Abel E (ed) . Fetal Alcohol Syndrome: From Mechanism to Behavior. CRC Press , Boca Raton, FL, pp 215-236. Kim CK , Turnbul l AV , Lee SY , Rivier CL (1999b ) Ef fects o f prenatal exposure to alcohol o n th e releas e of adenocorticotropi c hormone , corticosterone , and proinflanimator y cytokines . Alcohol Cli n Ex p Res 23:52-59 . Kim CK , Yu W, Edin G, Elli s L, Osborn JA , Weinberg J (1999c) Chroni c intermitten t stress does no t differ entially alter brai n corticosteroi d recepto r densitie s in rat s prenatall y expose d t o ethanol . Psychoneu roendocrinology 24:585-611. Kimura KA, Brien JF (1998) Hippocampal nitri c oxide synthase in the feta l guinea pig: effects o f chronic prenatal ethanol exposure . Dev Brain Res 106:39-46. Kimura KA, Chin J, Reynolds JN, Brien JF (1999) Effec t of chroni c prenata l ethano l exposur e o n nitri c oxide synthase I and II I proteins in the hippocampu s of the near-ter m feta l guinea pig . Neurotoxicol Terato!21:251-259. Kimura KA , Parr AM, Brie n JF (1996 ) Effec t o f chronic maternal ethano l administratio n o n nitri c oxid e synthase activit y in th e hippocampu s o f th e ma ture feta l guine a pig . Alcoho l Cli n Ex p Re s 20 : 948-953. Kimura KA , Reynold s JN , Brie n J F (2000 ) Ethano l neurobehavioral teratogenesis and the role of the hippocampal glutamate-N-methyl-D-aspartat e receptor nitric oxid e synthas e system . Neurotoxico l Terato l 22:607-616. King CL , Malhotr a I , Munga i P , Wamachi A, Kioko J, Ouma JH, Kazura JW (1998) B cell sensitizatio n to helminthic infectio n develops in uter o i n humans . JImmunol 160:3578-3584 . Kirby ML, Bockman DE (1984 ) Neural crest and norma l development: a new perspective. Anat Ree 209:1—6. Lamas S, Perez-Sala D , Moncad a S (1998) Nitri c oxide: from discover y to the clinic . Trends Pharmaco l Sci 19:436-438. Lan N , Yamashita F , Halpert AG, Yu WK, Elli s L, Weinberg J (2004 ) Th e modulator y rol e o f testosteron e in th e HP A responsivenes s of mal e rat s prenatally exposed to ethanol. Alcoho l Cli n Exp Res 28:165A. Lancaster FE (1992)Alcohol , nitric oxide, and neurotoxicity: i s there a connection ? a review. Alcohol Cli n Exp Res 16: 5 39-541. Lee S , Blanto n CA , Rivie r C (2003 ) Prenata l ethano l exposure alter s th e responsivenes s o f th e ra t hypothalamic-pituitary-adrenal axi s t o nitri c oxide . Alcohol Clin Ex p Res 27:962-969. Lee S, Imaki T, Vale W, Rivier C (1990 ) Effec t o f prenatal exposur e t o ethano l o n th e activit y o f th e
hypothalamic-pituitary-adrenal axis of the offspring : importance o f the tim e o f exposure to ethano l an d possible modulatin g mechanisms . Mol Cel l Neu rosci 1:168-177 . Lee S , Kim CK, Rivier C (1999 ) Nitric oxide stimulate s ACTH secretion an d th e transcriptio n of the gene s encoding fo r NGFI-B , corticotropin-releasin g fac tor, corticotropin-releasin g facto r recepto r typ e 1 , and vasopressi n in th e hypothalamu s o f the intac t rat. J Neurosci 19:7640-7647 . Lee S , Rivie r C (1992 ) Administratio n o f corticos terone t o pregnan t adrenalectomize d dam s doe s not alte r th e hypothalamic-pituitary-adrena l axi s activity of the offspring . Mo l Cell Neurosci 3:118 123. (1993) Prenata l alcoho l exposur e blunt s interleukin-1-induced ACT H an d (3-endorphi n secretion b y immatur e rats . Alcoho l Cli n Ex p Re s 17:940-945. (1996) Gender difference s i n the effec t o f prenatal alcohol exposur e o n th e hypothalamic-pituitary adrenal axis response to immune signals . Psychoneuroendocrinology 21:145-155. Lee S , Schmidt D , Tilders F , Rivier C (2000 ) Increase d activity o f th e hypothalamic-pituitary-adrena l axi s of rats exposed t o alcohol i n utero: role of altered pi tuitary an d hypothalami c function. Mol Cel l Neu rosci 16:515-528 . Levine S , Clic k D , Nakan e P K (1967 ) Adrena l an d plasma corticosteron e and vitami n A in ra t adrenal glands durin g postnata l development . Endocrinol ogy 80:910-914. Levine S , Mullin s R F J r (1966 ) Hormona l influence s on brai n organizatio n i n infan t rats . Scienc e 152 : 1585-1592. Lin H , Mosmann TR, Guilbert L, Tuntipopipat S , Wegmann T G (1993 ) Synthesi s o f T helpe r 2-typ e cytokines a t th e maternal—feta l interface . J Immunol 151:4562-4573. Liu L , L i A, Matthews S G (2001 ) Maternal glucocorti coid treatmen t program s HP A regulation i n adul t offspring: sex-specifi c effects . A m J Physio l En docrinol Meta b 280:E729-739 . Lyson K , McCann S M (1991 ) Th e effec t o f interleukin6 on pituitary hormone releas e i n vivo and in vitro. Neuroendocrinology 54:262-266 . Mason JW (1968) A review of psychoendocrine research on th e pituitary—thyroi d system . Psychoso m Me d 30(Suppl):666-681. (1975) A historical vie w of the stres s field. J Hu m Stress 1:22-36 . Matthews S G (2000 ) Antenatal glucocorticoid s an d pro gramming o f th e developin g CNS . Pediat r Re s 47:291-300.
178 ETHANOL-AFFECTE D DEVELOPMEN T (2002) Earl y programming o f th e hypothalamo pituitary-adrenal axis . Trend s Endocrino l Meta b 13:373-380. McEwen B S (1998 ) Protectiv e an d damagin g effect s o f stress mediators. N Engl J Med 338:171-179 . McEwen BS , Wingfiel d J C (2003 ) The concep t o f allostasis i n biolog y an d biomedicine . Hor m Beha v 43:2-15. McGoey TN , Reynold s JN , Brie n J F (2003 ) Chroni c prenatal ethano l exposure-induce d decreas e o f guinea pi g hippocampa l CA I pyramida l cel l an d cerebellar Purkinj e cel l density . Ca n J Physio l Pharmacol 81:476-484. Meaney MJ , Sapolsk y RM , McEwe n B S (1985a ) Th e development o f the glucocorticoi d recepto r system in the rat limbic brain. I. Ontogeny an d auto regulation. Brain Res 350:159-164. (1985b) Th e developmen t o f the glucocorticoi d receptor syste m i n th e ra t limbi c brain . II . An au toradiographic study. Brain Res 350:165-168. Migliaccio G , Migliacci o AR, Petti S , Mavili o F, Russo G, Lazzar o D , Test a U , Marinucc i M , Peschl e C (1986) Human embryoni c hemopoiesis. Kinetic s of progenitors an d precursor s underlying the yol k sac liver transition. J Clin Invest 78:51-60. Milkovic K , Milkovi c S (1963 ) Functionin g o f th e pituitary-adrenocortical axi s i n rat s a t an d afte r birth. Endocrinology 73:535-539 . Miller DB , O'Callaghan J P (2002 ) Neuroendocrine aspects o f th e respons e t o stress . Metabolis m 51 : 5-10. Miyakawa I , Iked a I , Maeyam a M (1976 ) Transpor t o f ACTH acros s huma n placenta . J Clin Endocrino l Metab 39:440-442 . Moncada S (1997a ) Nitri c oxid e i n th e vasculature : physiology and pathophysiology. Ann N Y Acad Sci 811:60-69. (1997b) "Ottorin o Rossi " Award 1997 . Th e biol ogy of nitric oxide. Funct Neurol 12:134-140 . Morgan M Y (1982) Alcohol an d th e endocrin e system . Br Med Bull 38: 3 5-42 . Moscatello KM , Bibe r KL, Jennings SR, Chervena k R , Wolcott R M (1999 ) Effect s o f in uter o alcoho l ex posure o n B cel l developmen t i n neonata l splee n and bone marrow. Cell Immuno l 191:124—130 . Murphy BE , Clark SJ , Donal d IR , Pinsky M, Vedady D (1974) Conversion o f maternal cortisol to cortisone during placental transfe r to the huma n fetus . Am J ObstetGynecol 118:538-541 . Norman DC , Chan g MP , Castl e SC ? Va n Zuyle n JE , Taylor A N (1989 ) Diminishe d proliferativ e re sponse of Con A-blas t cells to interleukin 2 in adul t rats expose d to ethano l i n utero . Alcohol Cli n Ex p Res 13:69-72 .
Norman DC, Chang MP, Wong CM, Branch BJ, Castle S, Taylor AN (1991) Changes wit h age in the prolifer ative respons e o f splenic T cell s fro m rat s expose d to ethano l i n utero . Alcoho l Cli n Ex p Re s 15 : 428-432. Osborn JA, Kim CK, Yu W, Herbert L, Weinberg J (1996) Fetal ethano l exposur e alters pituitary-adrenal sen sitivity to dexamethasone suppression. Psychoneuroendocrinology 21:127—143. Pasqualini JR, Marfil J , Gamier F , Wiqvist N, Diczfalus y E (1970 ) Studie s o n th e metabolis m o f corticos teroids i n th e huma n foeto-placenta l unit . 4 . Me tabolism o f deoxycorticosterone an d corticosteron e administered simultaneously into the intact umbilical circulation. Acta Endocrinol 64:385-397. Pavlova EB , Pronin a TS , Skebelskay a Y B (1968 ) His tostructure o f adenohypophysi s o f huma n fetuse s and content s o f somatotropi c an d adrenocorti cotropic hormones . Gene t Com p Endocrino l 10 : 269-276. Peakman M , Buggin s AG, Nicolaides KH , Layton DM , Vergani D (1992 ) Analysi s o f lymphocyte pheno types i n cor d bloo d fro m earl y gestatio n fetuses . Clin Ex p Immunol 90:345-350 . Phillips DI , Barke r DJ , Fal l CH , Seck l JR , Whorwoo d CB, Woo d PJ , Walker B R (1998) Elevate d plasma cortisol concentrations : a lin k betwee n lo w birt h weight and th e insuli n resistance syndrome? J Clin Endocrinol Metab 83:757-760 . Phillips DI , Walke r BR , Reynold s RM , Flanaga n DE , Wood PJ , Osmon d C , Barke r DJ, Whorwoo d C B (2000) Lo w birt h weigh t predict s elevate d plasm a cortisol concentration s i n adult s fro m 3 popula tions. Hypertension 35:1301-1306 . Plotsky P M (1987 ) Regulatio n o f hypophysiotropi c fac tors mediatin g ACTH secretion . Ann N Y Acad Sci 512:205-217. Ramsay DS , Bendersk y MI, Lewi s M (1996 ) Effec t o f prenatal alcohol and cigarette exposure on two- and six-month-old infants ' adrenocortica l reactivit y t o stress. J Pediatr Psychol 21:833-840 . Rathbun W, Druse MJ (1985) Dopamine, serotonin, and acid metabolite s i n brain regions fro m th e develop ing offsprin g o f ethanol-treate d rats . J Neuroche m 44:57-62. Redei E , Clark WR, McGivern R F (1989) Alcohol expo sure i n uter o result s in diminishe d T-cell function and alteration s i n brain corticotropin-releasing fac tor and ACT H content . Alcohol Cli n Ex p Res 13 : 439-443. Redei E , Halas z I , Li LF, Prystowsky MB, Aird F (1993 ) Maternal adrenalectomy alters the immune and endocrine functions of fetal alcohol-expose d male off spring. Endocrinology 133:452—460 .
ETHANOL EFFECTS O N ENDOCRIN E AND IMMUNE FUNCTIO N 17 9 Revskoy S , Halas z I , Rede i E (1997 ) Corticotropin releasing hormone an d proopiomelanocorti n gen e expression i s altered selectively in the mal e rat feta l thymus b y materna l alcoho l consumption . En docrinology 138:389-396 . Rivier C (1994 ) Stimulator y effec t o f interleukin-lp o n the hypothalamic-pituitary-adrena l axi s o f th e rat : influence o f age , gende r an d circulatin g se x ste roids. J Endocrinol 140:365-372 . (1995) Adult male rat s exposed t o an alcoho l die t exhibit a blunted adrenoeorticotropi c hormon e re sponse to immune o r physical stress: possible role of nitric oxide. Alcohol Clin Exp Res 19:1474-1479. (1999) Gender, sex steroids, corticotropin-releasin g factor, nitri c oxide, an d th e HP A response to stress. Pharmacol Biochem Beha v 64:739-751. Robinson RS , Seeli g L L J r (2002 ) Effect s o f materna l ethanol consumption o n hematopoietic cell s in the rat fetal liver. Alcohol 28:151-156 . Root AW , Reiter EO , Andriol a M , Ducket t G (1975 ) Hypothalamic—pituitary function i n th e feta l alco hol syndrome . J Pediatr 87:585-588. Rosenfeld P , Suchecki D , Levine S (1992) Multifactoria l regulation o f th e hypothalamic-pituitary-adrena l axis durin g development . Neurosc i Biobeha v Re v 16:553-568. Rudeen PK , Taylo r J A (1992 ) Feta l alcoho l neuroen docrinopathies. In : Watso n R R (ed) . Alcohol an d Neurobiology: Brain Development and Hormone Regulation. CR C Press , Boc a Raton , FL , pp 109 138. Rudeen PK , Weinber g J (1993 ) Prenata l ethano l expo sure: changes in regional brain catecholamine con tent following stress. J Neurochem 61:1907-1915. Sacedon R , Vicente A , Varas A, Morale MC , Barde n N , Marchetti B , Zapata A G (1999) Partial blockade o f T-cell differentiatio n durin g ontogen y an d marke d alterations o f th e thymi c microenvironmen t i n transgenic mic e wit h impaire d glucocorticoi d re ceptor function . J Neuroimmunol 98:157-167. Sapolsky RM , Meane y M J (1986 ) Maturatio n o f th e adrenocortical stress response: neuroendocrine con trol mechanism s an d th e stres s hyporesponsive period. Brain Res 396:64-76. Sari Y , Zho u F C (2004 ) Prenata l alcoho l exposur e causes long-term serotoni n neuro n defici t i n mice . Alcohol Cli n Exp Res 28:941-948. Savino W, Dardenne M (2000 ) Neuroendocrine contro l of thymus physiology. Endocrinol Re v 21:412-443. Schapiro S (1962 ) Pituitar y ACT H an d compensator y adrenal hypertroph y in stress-non-responsiv e infan t rats. Endocrinology 71:986-989 . Schneider ML, Moore CF , Kraemer GW (2004 ) Moderate leve l alcoho l durin g pregnancy , prenata l
stress, o r bot h an d limbic-hypothalamic-pituitary adrenocortical axis response to stress in rhesus mon keys. Child De v 75:96-109. Sebire G , Emili e D , Wallo n C , Her y C , Devergn e O , Delfraissy JF , Galanau d P , Tardie u M (1993 ) I n vitro production o f IL-6, IL-1J3, and tumo r necrosi s factor-a b y human embryoni c microglia l an d neu ral cells. JImmunol 150:1517-1523 . Seckl JR (2004a) Prenatal glucocorticoid s an d long-ter m programming. Eur J Endocrinol 151:U49-U62 . (2004b) 1 1 (3-hydroxysteroid dehydrogenases : changing glucocorticoi d action . Cur r Opi n Phar macol 4:597-602. Seelig L L Jr , Steve n WM , Stewar t G L (1996 ) Effect s of materna l ethano l consumptio n o n th e subse quent development o f immunity t o Trichinella spiralis i n ra t neonates . Alcoho l Cli n Ex p Re s 20 : 514-522. (1999) Second-generatio n effect s o f materna l ethanol consumptio n o n immunit y t o Trichinella spiralis i n female rats. Alcohol Alcohol 34:520-528 . Selye H (1936 ) A syndrome produced b y diverse noxious agents. Nature 138:32-44 . (1946) Th e genera l adaptatio n syndrom e an d the disease s o f adaptation . J Cli n Endocrino l 6 : 117-230. (1950) The Physiology an d Pathology o f Exposure to Stress. Acta Ine Medical Publishing , Montreal. Sharp BM , Matt a SG , Peterso n PK , Newton R , Chao C , McAllen K (1989) Tumor necrosi s factor-a i s a potent ACTH secretagogue : compariso n t o interleukin-lp . Endocrinology 124:3131-3133 . Siaud P, Mekaouche M, Ixart G, Balmefrezol M , Givalois L, Barbane l G , Assenmacher I (1994) A subpopulation o f corticotropin-releasing hormone neurosecre tory cell s i n th e paraventricula r nucleu s o f th e hypothalamus als o contai n NADPH-diaphorase . Neurosci Lett 170:51-54. Slone JL , Rede i E E (2002 ) Materna l alcoho l an d adrenalectomy: asynchron y o f stres s respons e an d forced swi m behavior . Neurotoxico l Terato l 24 : 173-178. Somerset DA , Zhen g Y , Kilb y MD , Sanson i DM , Drayson M T (2004 ) Norma l huma n pregnanc y is associated wit h a n elevatio n i n th e immun e sup pressive CD25+ CD4+ regulatory T-cell subset . Immunology 112:38-43 . Steven WM , Stewar t GL , Seeli g L L (1992 ) Th e effect s of materna l ethano l consumptio n o n lactationa l transfer o f immunit y t o Trichinella spiralis i n rats . Alcohol Clin Exp Res 16:884-890. Stratakis C A, Chrousos GP (1995 ) Neuroendocrinolog y and pathophysiolog y o f the stres s system . NY Acad Sci 711:1-18.
180 ETHANOL-AFFECTE D DEVELOPMEN T Suda T , Tozaw a F, Ushiyama T, Sumitom o T , Yamada M, Demur a H (1990 ) Interleukin- 1 stimulate s corticotropin-releasing factor gen e expressio n in ra t hypothalamus. Endocrinology 126:1223—1228 . Szekeres-Bartho J, Philibert D , Chaoua t G (1990 ) Prog esterone suppressio n o f pregnanc y lymphocyte s is not mediated by glucocorticoid effect. Am J Reprod Immunol 23:42-43. Tajuddin NF , Drus e M J (1993 ) Treatmen t o f pregnan t alcohol-consuming rat s with buspirone : effect s o n serotonin an d 5-hydroxyindoleaceti c aci d conten t in offspring. Alcohol Clin Exp Res 17:110-114. Tanriverdi F , Silveir a LF , MacCol l GS , Boulou x P M (2003) The hypothalamic-pituitary-gonada l axis : immune functio n an d autoimmunity . J Endocrino l 176:293-304. Taylor AN, Ben-Eliyahu S , Yirmiya R, Chang MP, Norman DC , Chiappell i F (1993 ) Action s o f alcoho l on immunity and neoplasia in fetal alcohol expose d and adult rats. Alcohol Alcohol Suppl 2:69-74. Taylor AN , Branc h BJ , Kokk a N , Polan d R E (1983 ) Neonatal an d long-ter m neuroendocrin e effect s of feta l alcoho l exposure . Monog r Neura l Sci 9: 140-152. Taylor AN, Branc h BJ , Liu SH , Kokk a N (1982 ) Longterm effect s o f fetal ethano l exposur e o n pituitaryadrenal respons e t o stress . Pharmaco l Bioche m Behav 16:585-589. Taylor AN, Branch BJ, Nelson LR, Lane LA, Poland R E (1986) Prenata l ethano l an d ontogen y of pituitaryadrenal response s to ethano l an d morphine . Alcohol 34:255-259 . Taylor AN, Branc h BJ , Van Zuylen JE , Rede i E (1988 ) Maternal alcoho l consumptio n an d stres s respon siveness i n offspring . Ad v Exp Me d Bio l 245:311 317. Taylor AN , Loren z RJ , Turne r BB , Ronneklei v OK , Casady RL , Branc h B J (1976) Factor s influencin g pituitary-adrenal rhythmicity : it s ontogeny an d cir cadian variation s in stres s responsiveness . Psych o neuroendocrinology 1:291-301. Taylor AN , Ti o DL , Chiappell i F (1999a ) Thymocyt e development i n male feta l alcohol-exposed rats . Alcohol Clin Exp Res 23:465-470. Taylor AN, Tio DL , Hen g NS, Yirmiya R (2002a) Alcohol consumptio n attenuate s febril e response s t o lipopolysaccharide an d interleukin-l p in male rats. Alcohol Clin Ex p Res 26:44-52. Taylor AN , Ti o DL , Yirmiy a R (1999b ) Feta l alcoho l exposure attenuate s interleukin-lp-induce d fever : neuroimmune mechanisms . J Neiiroimmuno l 99 : 44-52. Taylor AN , Trit t SH , Ti o DL , Rome o HE , Yirmiy a R (2002b) Materna l adrenalectom y abrogate s th e effect o f fetal alcoho l exposur e on th e interleukin -
lp-induced febril e response : gende r differences . Neuroendocrinology 76:1 8 5-192. Tran TD , Kell y S J (1999 ) Alteration s i n hippocampa l and hypothalami c monoaminergi c neurotransmit ter system s afte r alcoho l exposur e during all thre e trimester equivalent s in adult rats. J Neural Trans m 106:773-786. Trautman PD , Meyer-Bahlbur g HF , Postelne k J , Ne w MI (1995 ) Effects o f early prenatal dexamethason e on th e cognitiv e an d behaviora l developmen t o f young children: results of a pilot study. Psychoneuroendocrinology 20:439-449. Tritt SH , Ti o DL , Bramme r GL , Taylo r A N (1993 ) Adrenalectomy but not adrenal demedullation during pregnancy prevents the growth-retardin g effect s of feta l alcoho l exposure . Alcoho l Cli n Ex p Re s 17:1281-1289. Turner BB , Taylo r A N (1976 ) Persisten t alteratio n o f pituitary—adrenal functio n i n the ra t by prepuberal corticosterone treatment. Endocrinolog y 98:1-9. von Boehme r H , Aifanti s I , Gounar i F , Azogu i O , Haughn L, Apostolou I , Jaeckel E, Grassi F, Klein L (2003) Thymi c selectio n revisited : how essentia l is it? Immunol Rev 191:62-78. Walker C D (1995 ) Chemica l sympathectom y an d ma ternal separatio n affec t neonata l stres s response s and adrena l sensitivity to ACTH. Am J Physiol 268 : R1281-1288. Walker CD , Perri n M , Val e W, Rivie r C (1986a ) On togeny o f the stres s response i n th e rat : rol e o f th e pituitary and the hypothalamus. Endocrinology 118: 1445-1451. Walker CD, Sapolsk y RM, Meane y MJ, Vale WW, Rivie r CL (1986b) Increased pituitary sensitivity to glucocorticoid feedback during the stress nonresponsive period in the neonatal rat. Endocrinology 119:1816-1821 . Walker CD , Scribne r KA , Casci o CS , Dallma n M F (1991) The pituitary-adrenocortica l system of neonatal rats is responsive to stress throughout developmen t in a time-dependent and stressor-specific fashion. En docrinology 128:1385-1395 . Walker CD , Welber g L , Plotsk y P (2002 ) Glucocorti coids, stress, and development. In : Pfaff D (ed). Hormones, Brain and Behavior. Academic Press , Ne w York, pp 487-5 34. Watkins LR, Maier S F (2000) The pai n of being sick: implications o f immune-to-brai n communicatio n fo r understanding pain. Annu Rev Psychol 51:29—57 . Weaver 1C , Cervon i N , Champagn e FA , D'Alessio AC , Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigeneti c programmin g b y materna l be havior. NatNeurosci 7:847-854. Weinberg J (1988 ) Hyperresponsivenes s to stress : differ ential effect s o f prenatal ethano l o n male s an d fe males. Alcohol Clin Ex p Res 12:647-652.
ETHANOL EFFECTS O N ENDOCRIN E AND IMMUNE FUNCTION 18 1 (1989) Prenata l ethano l exposur e alter s adreno cortical developmen t o f offspring . Alcoho l Cli n Exp Res 13:73-83. (1992a) Prenata l ethano l effects : se x difference s in offsprin g stres s responsiveness . Alcohol 9:219 223. (1992b) Prenata l ethanol exposur e alters adrenocortical respons e t o predictabl e an d unpredictabl e stressors. Alcohol 9:427-432. (1993a) Prenata l alcoho l exposure : endocrin e function o f offspring . In : Zakhar i S (ed) . Alcohol and th e Endocrine System. NI H Press , Bethesda , MD, pp 363-382. (1993b) Neuroendocrine effect s o f prenatal alco hol exposure. Ann NY Acad Sci 697:86-96. (1994) Recent studie s on the effect s o f fetal alco hol exposur e o n th e endocrin e an d immun e sys tems. Alcohol Alcohol Supp l 2:401-409. (1995) In utero alcohol exposure and hypothalamicpituitary-adrenal activity : gende r difference s i n out come. In: Zakhari S , Hunt WA (eds). Stress, Gender and Alcohol-Seeking Behavior. NIH Press , Bethesda, MD,pp 343-353. Weinberg J, Bezio S (1987) Alcohol-induced change s i n pituitary-adrenal activity during pregnancy. Alcohol Clin Exp Res 11:274-280. Weinberg J , Gall o P V (1982 ) Prenata l ethano l expo sure: pituitary-adrena l activit y i n pregnan t dam s and offspring . Neurobeha v Toxicol Terato l 4:515 — 520. Weinberg J , Jerrells TR (1991 ) Suppressio n o f immun e responsiveness: se x differences i n prenata l ethano l effects. Alcoho l Clin Exp Res 15:525-531. Weinberg J, Nelson LR , Taylor AN (1986 ) Hormonal ef fects o f fetal alcoho l exposure . In: W fest JR (ed). Alcohol an d Brain Development. Oxfor d Universit y Press, New York, pp 310-342 . Weinberg J , Peterse n T D (1991 ) Effect s o f prenata l ethanol exposur e o n glucocorticoi d receptor s i n rat hippocampus . Alcoho l Cli n Ex p Re s 15:711 — 716. Weinberg J , Taylo r AN , Gianoulaki s C (1996 ) Feta l ethanol exposure : hypothalamic-pituitary-adrena l and p-endorphi n responses t o repeated stress . Alcohol Clin Exp Res 20:122-131. Welberg LA, Seckl JR (2001) Prenatal stress , glucocorticoids an d th e programmin g o f th e brain . J Neu roendocrinol 13:113-128 . West LJ (2002) Defining critical windows in the develop ment o f th e huma n immun e system . Hu m Ex p Toxicol 21:499-505 . Winters AJ, Oliver C, Colston C , MacDonald PC , Porter JC (1974) Plasma ACTH levels in the human fetu s and neonat e a s relate d t o ag e an d parturition . J Clin Endocrinol Metab 39:269-273 .
Witek-Janusek L (1988 ) Pituitary-adrena l respons e t o bacterial endotoxin in developing rats. Am J Physiol 255:E525-530. Wolcott RM , Jennings SR, Chervenak R (1995) In utero exposure t o ethano l affect s postnata l developmen t of T - an d B-lymphocytes , bu t no t natura l kille r cells. Alcohol Clin Exp Res 19:170-176. Wong CM , Chiappell i F , Chan g MP , Norma n DC , Cooper EL, Branc h BJ, Taylor AN (1992) Prenatal exposure to alcohol enhance s thymocyte mitogenic responses postnatally . In t J Immunopharmacol 14 : 303-309. Yamashita F , Lan N , Y u W, Elli s L , Halper t AC , Weinberg J (2004) Role of estradici in stress hyperresponsiveness see n i n femal e rats prenatally exposed t o ethanol. Neurotoxico l Teratol 26:502. Yirmiya R, Pilati ML, Chiappell i F , Taylor AN (1993) Fetal alcoho l exposur e attenuate s lipopolysaccharide induced feve r i n rats . Alcoho l Cli n Ex p Re s 17 : 906-910. Yirmiya R , Tio DL , Taylo r AN (1996) Effect s o f fetal al cohol exposur e o n fever , sicknes s behavior , an d pituitary-adrenal activation induced b y interleukinlp i n youn g adul t rats . Brai n Beha v Immu n 10 : 205-220. Ylikorkala O , Stenma n UH , Halmesmak i E (1988 ) Testosterone, androstenedione , dehydroepiandros terone sulfate , an d sex-hormone-bindin g globuli n in pregnan t alcoho l abusers . Obste t Gyneco l 71 : 731-735. Zafar H , Shela t SG, Redei E, Tejani-Butt S (2000) Fetal alcohol exposur e alters serotonin transporter sites in rat brain. Brain Res 856:184-192. Zajac CS , Abe l E L (1992 ) Anima l model s o f prenata l alcohol exposure . In t J Epidemio l 2 1 (Suppl 1) : S24-32. Zakharova LA, Malyukova IV, Proshlyakova EV, Potapova AA, Sapronova AY, Ershov PV, Ugrumov MV (2000) Hypothalamo-pituitary contro l o f the cell-mediate d immunity i n ra t embryos : role o f LHRH i n regula tion o f lymphocyte proliferation. J Reprod Immuno l 47:17-32. Zalcman S , Green-Johnson JM , Murray L, Nance DM , Dyck D , Anisma n H , Greenber g A H (1994 ) Cytokine-specific centra l monoamin e alteration s induced b y interleukin-1, -2 and -6 . Brain Res 643: 40-49. Zhang X , Y u W , La m J , Jitratkoso l M , Weinber g J (200 5a) Effec t o f prenata l ethano l exposur e o n CD4+CD25+ regulatory T cells. Alcohol Clin Exp Res. 29:87A. Zhang X , Sliwowsk a JH, Weinber g J . (2005b ) Prenata l alcohol exposur e an d feta l programming : Effect s on neuroendocrin e an d immun e function . Ex p Biol Med 230:376-388.
11 Early Exposure t o Ethanol Affects the Proliferation o f Neuronal Precursor s Michael W. Miller
The numbe r o f neurons constitutin g the brai n is a direct reflection o f the numbe r of cells produced during early development . Th e presen t chapte r explore s th e effects o f ethano l o n spatiotempora l pattern s an d systems regulatin g cell proliferation . During develop ment mor e neuron s ar e generate d tha n th e numbe r comprising th e matur e brain . A "correction " occur s through the natural death of many neurons (se e Chapter 5) . Thi s proces s i s als o affecte d b y exposur e t o ethanol. Th e consequen t effect s ar e addresse d i n Chapters 15 , 16, and 17 .
SPATIOTEMPORAL PATTERN S
The proliferatio n o f neuronal population s occur s i n defined site s ove r restricte d period s o f time . Thes e spatiotemporal pattern s ar e affected b y early exposure to ethanol. Variou s structures involved have been examined, includin g segment s o f th e telencephalo n
(the neocorte x an d hippocampa l formation ) an d brain stem (cerebellu m and pons). Telencephalic Structures Neocortex Patterns o f Neurona l Generation . Neocortica l neurons ar e largel y generated ove r a protracted, bu t defined prenata l period. It has also been argue d tha t neocortical neuron s continu e t o b e generate d a t a low rate i n the matur e corte x (see Gould an d Gross , 2002; Rakic , 2002) . For the purpose s o f this review , any potential contributio n fro m adul t neuronogene sis in neocortex can be considere d to be too low as to have a n impac t o n neurona l number . A possibl e model o f postnatal neurona l generatio n ma y be th e proliferative activit y in the intrahila r zone (IHZ ; also known a s hippocampa l fiel d CA4 ) o f hippocampa l formation wherei n the generation of granule neurons
182
ETHANOL AND PROLIFERATION O F NEURONA L PRECURSORS 18 3 continues throughou t lif e (se e Hippocampal Forma tion, below). In th e rat , afte r productio n o f the pallia i preplate cortical neuronogenesis begins on gestational day (G) 11 and ends on G21 (Bruckner et al, 1976; Lund and Mustari, 1977 ; Miller , 1985 , 1988 ; Al-Ghou l an d Miller, 1989) . Thi s proces s i s orderly and follow s a well-defined inside-ou t sequence . Accordingly , th e first neurons generate d becom e laye r Vi a neurons ; later generations of neurons ar e destine d for progressively more superficial laminae. Ethanol exposur e alter s th e numbe r an d se quence o f neuronogenesi s (Miller , 1986 , 1988) , delaying and extending the period of neuronal generation b y 1 day eac h (Fig . 11-1) . O n eac h day , th e number of neurons with a particular time of origin is reduced. The exceptio n to this pattern is the substantial increas e i n neurona l generatio n a s cortical neu ronogenesis i s winding down (afte r G19) . Th e earl y depression i n neurona l generatio n i s followed b y a late surg e i n term s o f a s neurona l density ; o n G2 0 and succeedin g days, neuronal generation is signifi cantly greate r i n th e cortice s o f ethanol-treate d rat s than i n controls. Interpretatio n o f these dat a leads to four conclusions. The firs t i s that the delaye d onset of cortical neuronal generation suggests an ethanol-related retardin g effect o n th e acquisitio n of critical number s of proliferating cells required to initiate neuronal generation. That is, the population o f proliferating neural precursors has to reach a threshold siz e before neuronal precursors begin t o pas s through thei r fina l cell divisio n and th e youn g neurons begi n t o leav e th e prolifera tive population . Thi s patter n i s consisten t wit h th e concept of founder cell s (see Chapter 2) . The secon d conclusio n i s that ethano l ha s com plex effects o n cell proliferation. Initially, the prolifer ation o f neuronal precursor s is depressed an d late r it is promoted. This conclusion is supported by various studies discusse d belo w (se e Site s o f Proliferation , below). The thir d observation , fro m th e comple x time dependent effect s o f ethanol o n th e numbe r o f neu rons being generated, i s that the lat e surge may be an effort o f the proliferativ e population to compensate for the earl y depression . Indeed , th e densit y of neurons generated ove r the entir e perio d o f neuronogenesis is unaffected b y ethanol exposure . This is an interestin g finding in that the total number of cortical neurons, at
FIGURE 11- 1 Neurona l generatio n i n moto r cortex . These dark-fiel d micrograph s sho w tha t i n contro l rats, neurons generated on gestational day (G) 1 6 and on G20 are distributed in deep and superficia l cortex, respectively. I n ethanol-treated rats, neurons born o n G16 ar e als o distribute d i n dee p cortex , althoug h their number s ar e fewe r an d the y ten d t o b e mor e deeply disposed. Neurons generated o n G20 that are properly distribute d i n superficia l cortex ar e als o of fewer number . Man y late-generate d neurons , how ever, ar e ectopicall y distribute d i n dee p cortex . (Source: Image s taken, with permission, from Mille r (1986), Scienc e 233:1308-1311.) least in somatosensory cortex, is significantly lower in ethanol-treated rats (Miller and Potempa, 1990) . Th e implication i s that ethano l doe s no t affec t th e num ber o f neuron s produce d fro m a n ontogeneti c col umn; rather , it reduces the numbe r o f columns. An
184 ETHANOL-AFFECTE D DEVELOPMENT ontogenetic column i s a hypothetical uni t of developing cortex that includes the proliferative cell s and th e radial arra y of the progen y (e.g. , Rakic , 1978, 2000). This conclusion i s supported b y data showing that the density o f radia l glia l fiber s (th e guides commonl y used t o coordinate neurona l migration ) is unaffected by prenata l exposur e t o ethano l (Mille r an d Robert son, 1993). Finally, th e inside-ou t sequenc e i s largely maintained unti l the en d o f cortical neurona l generation . At thi s time , man y neuron s destine d fo r superficial cortex en d u p i n dee p corte x because o f a defec t i n neuronal migratio n (se e Chapter 13) . Th e effect s o f ethanol o n neuronal generation ma y be best appreci ated b y tracing the ontogen y o f select populations of cortical neurons , fo r example, corticospina l (Miller , 1987) an d callosa l projectio n (Miller , 1997 ) neu rons. I n general , they are distributed in lamina e that are norma l for their phenotype , with the notabl e exception o f the late-generate d callosa l neurons. Man y of thes e neuron s resid e i n infragranula r laminae . Thus, in addition to the conclusions described above, it appears that (a) ethanol doe s not affect th e connectional phenotype of a particular neuron (regardles s of a migratio n defect ) and (b ) th e decisio n abou t neuronal lineag e occur s a t the tim e o f neuronal origin . Similar cortica l disorganizatio n o f neurona l pheno types occur s i n cortice s in whic h cell s i n th e proli ferative zone s ar e heterochronicall y transplante d (McConnell, 1988) . Sites o f Proliferation . Th e proliferatio n o f neuronal precursor s occur s i n specifi c site s generall y located proxima l t o th e ventricula r syste m (se e Chapter 2) . For neocortex, cell proliferation occurs in three sites (Fig. 11-2). The ventricula r zone (VZ) is a pseudostratified epitheliu m linin g th e latera l ventri cles (Sauer , 1936 ; Watterso n e t al. , 1956 ; Saue r an d Chittenden, 1959 ; Jacobson, 1991) . The subventricu lar zone (SZ ) is a stratified epitheliu m externa l to th e neocortical V Z (Ramo n y Cajal , 1909-1911 ; Rakic et al, 1974 ; Shoukimas and Hinds , 1978) . Th e ganglionic eminenc e (GE ) generates som e loca l circui t neurons (Tamamaki et al, 1997 ; Zhu et al, 1999 ; Anderson étal, 2001; Wichterle étal, 2001). The tw o primar y neocortica l proliferatio n zone s are th e V Z an d SZ , an d ther e i s som e controvers y about the contributio n of the VZ an d S Z in the generation o f neocortica l neurons . Som e investigator s
FIGURE 11- 2 Effect s o f ethanol o n the thre e sources of neocortica l neurons . Neuron s tha t populat e th e cortical plat e (CP ) are derive d from th e ventricular zone (VZ) , subventricular zone (SZ) , and ganglioni c eminence (GE) . In norma l rats , V Z an d S Z cell s principally giv e ris e to infra - an d supragranula r neurons, respectively (soli d lines). The G E generate s lo cal circui t neuron s tha t ar e distribute d throughou t neocortex. Followin g prenata l exposur e t o ethanol , many late-generate d neuron s (originatin g largely i n the SZ ) complet e thei r migration s i n dee p corte x (dashed line) . IZ , intermediat e zone ; MZ , margina l
argue tha t th e V Z i s the sit e o f neuronal origi n an d that th e S Z generate s gli a an d glia l precursor s (Gomes e t al, 2003 ; Samuelson et al, 2003) . In contrast, other s argu e tha t al l neuron s ar e derive d fro m the S Z and that the VZ is merely a self-replacing population (Doetsc h e t al , 1997 , 1999; Alvarez-Buylla and Garcia-Verdugo , 2002 ; Marten s e t al , 2000 , 2002). Other studies support a different mode l o f cortical development, that both th e VZ and S Z give rise to cortica l neuron s (Miller , 1992 ; Luo an d Miller , 1998). Studies o n th e consequence s o f prenatal exposure to moderate amounts of ethanol (sufficien t t o produce
ETHANOL AND PROLIFERATIO N O F NEURONA L PRECURSOR S 18 5 peak blood ethano l concentrations o f 15 0 mg/dl) provide unique insigh t into the controversy over the con tribution o f th e V Z an d S Z t o th e populatio n o f neocortical neurons . Dail y neuronal production dur ing th e firs t hal f o f the perio d o f neuronongenesis is depressed b y prenata l exposur e t o ethano l (Miller , 1986, 1988) . Durin g thi s time , th e V Z i s the promi nent neocortica l proliferativ e zone . Change s i n cell proliferation withi n th e V Z paralle l the earl y reduc tions i n neurona l generation . Prenata l exposur e t o ethanol reduce s th e tota l numbe r o f cell s an d th e number of cycling cells in the VZ (Miller , 1989) an d it increase s the tim e cell s need t o transit through th e cell cycle (Miller and Nowkowski , 1991). The ethanol-induce d late surge in neuronal generation occur s when th e S Z becomes th e predominant proliferative zone . Th e S Z i s affected b y ethanol i n a way opposit e tha t o f th e VZ . Th e tota l numbe r o f cells i n th e S Z an d th e numbe r o f cycling cells ar e increased b y ethano l (Miller , 1989 ; Mille r an d Nowakowski, 1991) . Taken together , th e correlativ e dat a o n th e birt h dates o f cortica l neuron s an d characteristic s o f V Z and S Z cells sho w that bot h the VZ and S Z produc e neurons. Thi s thesi s wa s tested i n a n experimen t i n which fetuses were exposed t o ethanol for only 4 days during th e perio d o f (a ) S Z prominenc e (betwee n G18 an d G21) , (b ) VZ prominenc e (betwee n G1 2 and G15) , o r (c ) ste m cel l productio n (betwee n G 6 and G9) (Miller, 1996a). SZ cell proliferation and th e production o f late-generate d neuron s ar e onl y af fected whe n th e ethano l exposur e occur s betwee n G18 an d G2 1 (Fig . 11-3) . Moreover , this lat e exposure t o ethano l increase s both cel l proliferatio n an d production. VZ cel l proliferation and early-generated neurons, b y contrast , ar e maximall y affected b y ex posure t o ethano l tha t occur s betwee n G1 2 an d Gl 5, i.e., when the VZ is most prominent. This exposure t o ethano l inhibit s VZ cel l proliferatio n an d re duces th e numbe r o f neuron s generate d o n G15 . Exposure to ethanol between G6 an d G 9 doe s not affect th e proliferatio n o f cell s i n eithe r proliferativ e zone o r th e numbe r o f early- or late-generate d neu rons. Furthermore , base d o n timing , i t appear s tha t the VZ gives rise to neurons distributed in infragranu lar corte x an d th e S Z generate s supragranula r neurons. This conclusion i s supported b y the tracin g of derivative s of cell s tha t expres s transcript s fo r th e genes Svetl (Tarabyki n e t al. , 2001 ) an d eux (Niet o
et al. , 2004 ) fro m th e S Z t o th e supragranula r laminae. Radial Glia. Radia l glia, thought to serve as guides for neurona l migratio n (Rakic , 1971 , 1978) , ar e among th e first cortical cell s t o be generated . Tradi tionally, radial glia have been considere d transitiona l astrocytes (e.g. , Schmeche l an d Rakic , 1979 ; L u et al, 1980 ; Voigt , 1989 ; d e Lima e t al, 1997) , how ever, mor e recen t evidenc e show s tha t som e radia l glia ca n differentiat e int o neuron s (Malatest a e t al. , 2000; Hartfuss e t al, 2001; Levers et al, 2001; Noctor et al , 2001 , 2002 ; Alvarez-Buyll a an d Garcia Verdugo, 2002 ; Gôtz e t al., 2002; Sanai et al, 2004). This dual lineage is consistent with glial expression of nestin, a cytoskeleta l protei n associate d wit h neura l stem cell s (Hockfiel d an d McKay , 1985 ; Mille r an d Robertson, 1993) . Althoug h n o studie s have directly assessed th e effect s o f ethanol o n th e proliferatio n of radial glia , i t appear s tha t th e periodicit y of the net work o f radia l glia l fiber s i s unaffecte d b y ethano l (Miller an d Robertson , 1993 ; Vallè s e t al , 1996 ; Minana e t al., 2000) . This finding implies that thes e cells proliferat e t o maintai n a consisten t densit y within the expandin g telencephalic vesicle. A discussion o f the effect s o f ethanol o n radia l glia an d thei r role in neuronal migratio n is provided in Chapter 3. Hippocampal Formation Neurons in the hippoeampal formation ar e generated over a protracted period of time: i n the rat , from G1 5 to adulthoo d (Altman , 1962 ; Angevine , 1965 ; Sch lessinger e t al , 1978 ; Bayer , 1980 ; Miller , 1995a) . Most neuron s i n th e thre e hippoeampa l fields , CA1-CA3, an d th e dentat e gyru s ar e generate d pre natally. The sit e o f origin of these neuron s is the VZ . A notable exception is that most (-85%) granule neu rons i n th e dentat e gyru s ar e generate d postnatally . Postnatal granule cell generation occurs in the IHZ. Hippocampal cel l number s ar e substantiall y af fected b y ethanol exposure. These effects ar e spatially and temporall y defined. Total DN A and protei n con tent i n hippoeampa l formatio n i s lowe r i n animal s exposed to ethanol prenatally (Miller, 1996b). I n con trast, postnatal exposur e increases both DN A and protein content . Anatomical studie s hav e provided mor e detailed informatio n o n thes e ethanol-induce d effects. Animal s expose d t o ethano l prenatall y hav e
186 ETHANOL-AFFECTE D DEVELOPMEN T
FIGURE 11- 3 Time-dependen t effects o f ethanol on the tw o neocortical prolif erative zones . A . Exposure t o ethano l durin g three prenata l tim e period s was examined: durin g th e perio d o f neocortical ste m cel l generatio n (gestationa l day [G ] 6 to G9), prominenc e o f the ventricula r zone (VZ ) (G12-G15) , an d prominence o f the subventricula r zone (SZ ) (G18-G21). B. Exposure during the period o f stem cel l generation doe s not affec t th e proportio n o f cells prolif erating o n G1 5 an d G2 1 (whe n th e V Z an d S Z predominate , respectively) . Later exposures , by contrast, hav e specific effects o n th e zon e most active during the tim e o f exposure, i.e. , the V Z betwee n G1 2 an d G1 5 and th e S Z between G1 8 an d G21 . (Source: Image s taken , wit h permission , fro m Mille r (1996a), Alcohol Clin Ex p Res 20:139-143.)
fewer neuron s in the pyramida l cell layer of CAI an d granule cel l laye r of the dentat e gyru s than d o con trols (Miller , 1995a) . Interestingly , whereas postnata l exposure generall y has littl e effec t o n th e numbe r of these neurons , it can increas e the numbe r of granule neuron s i n th e dentat e gyru s (Miller , 1995b ; Pawlak et al., 2002). This effec t o n granule neurons is concentration-dependent Moderat e amount s o f ethanol ar e stimulator y and hig h concentration s of ethanol are depressive. The ethanol-induced changes in neuronal number directly reflect alterations in neuronal generation . Fo r example, the generatio n o f dentate granul e neurons is reduced b y prenatal ethano l exposur e an d promote d by postnatal exposure . Thus, ethano l affect s develop ing hippocampal formatio n in th e sam e manne r tha t it affect s th e generatio n o f neocortica l neurons . As postnatal generation of granule neurons occurs in th e IHZ, i t appear s that ethano l affect s al l telencephali c auxiliary (derived) proliferative zone s similarly.
Brain Ste m The effec t o f chronic gestationa l exposur e t o ethano l on th e principa l sensor y nucleu s o f th e trigemina l nerve (PSN) and cerebellum has been examined . The PSN i s a simple structure. All of its neurons are derived from th e pontin e VZ. Prenatal exposure to ethanol reduces the numbe r o f neuons i n th e PS N (Mille r and Muller, 1989 ; Miller , 1995b) . This reductio n i s partially (two-thirds ) du e t o decreased cell generation an d partially (one-third ) to exacerbatio n of mechanisms of naturally occurring neuronal death (Miller, 1999a). The reduction in cell generation appears to be equivalent for neurons and gli a and neurona l generation i s delayed by about 1 day (Miller and Muller, 1989) . The cerebella r corte x is also vulnerable to ethano l toxicity. A gross indication that ethanol affect s cel l generation i n the cerebellu m i s the effec t o f ethanol o n its size (Bauer-Moffett an d Altman, 1975; Kornguth et al., 1979; Dia z an d Samson , 1980 ; Pierc e an d West ,
ETHANOL AND PROLIFERATION O F NEURONA L PRECURSOR S 18 7 1986; Bonthiu s and West, 1988) . Exposur e t o moder ate amounts of ethanol (bloo d ethano l concentration s of-150 mg/dl ) causes reductions (15%-20%) in cerebellar siz e simila r to tha t eviden t fo r cerebra l corte x (Miller, 1996b) . Followin g exposur e t o high amount s (sufficient t o produc e bloo d ethano l concentration s of >250 mg/dl), the siz e of the cerebellu m i s more adversely affected . Cerebellar neuron s ar e generate d i n tw o site s — the VZ and a derived proliferative zone, th e externa l granular layer (EGL). Attention ha s been directed to ward the EG L becaus e i t is most prominent i n the rat postnatally an d i t give s birt h t o a populou s neuro n type i n th e centra l nervou s syste m (CNS) , th e cere bellar granul e neuron . Postnata l exposur e t o hig h amounts o f ethano l prolong s th e existenc e o f th e EGL an d delay s its depletion (Bauer-Moffet t an d Altman, 1977 ; Korngut h e t al. , 1979) . Moreover , cel l proliferation i n th e EG L i s reduced. These dat a suggest that the EG L i s different fro m othe r derive d proliferative zone s i n tha t it s proliferative activity is no t stimulated by ethanol. Th e EG L differ s fro m th e S Z and IH Z insofar as it is the sol e source of granule neurons, whereas the S Z and IH Z produc e neuron s tha t can be generated i n the VZ. Nonetheless, thi s conclu sion remain s unconfirme d unti l dose-respons e dat a analysis of the EG L i s performed.
CELL CYCLE KINETICS
In vivo and In Situ Studies As cells proliferat e the y pass through a defined se t of steps, cumulativel y known a s the cell cycle. The cel l cycle ha s four phases : Gl, S, G2, and M. During th e Gl phas e th e cell s eithe r prepar e fo r anothe r pass through the cell cycle or exit from th e cell cycle. Durings, cells replicat e their nuclear DNA . G 2 i s a short period whe n preparatio n fo r mitosi s take s place , which occur s durin g M . Dat a o n th e cel l cycl e ar e best appreciated for VZ cells . The somat a o f VZ cell s move rhythmicall y as the cell s pass through th e fou r phases (Sauer , 1936 ; Watterso n e t al. , 1956 ; Saue r and Chittenden , 1959 ; Atla s an d Bond , 1965) . Through thi s process , calle d interkinetic nuclear migration, mitoti c cell s tha t ar e a t th e ventricula r surface reconstitute and mov e their nuclei to positions in the external third of the VZ where they replicate their DNA during S.
Ethanol doe s no t affec t th e patter n o f interkinetic nuclear migration in the VZ per se (Kennedy and El liott, 1985 ; Miller, 1989) . On th e other hand, ethano l does affec t th e tim e a VZ cel l take s t o pas s throug h the cell cycle. For example, i n the neocortical V Z of a 21-day-old rat fetus (Miller and Nowakowski, 1991) or a slic e o f corte x explante d fro m a 17-day-ol d fetu s (Siegenthaler an d Miller , 2005a) , th e tota l lengt h o f the cel l cycl e (T c) i s increased 26%-29% . Thi s in crease ha s a direc t negativ e effec t o n th e numbe r o f cells produce d i n th e VZ . An increase i n th e T c is also eviden t i n th e EG L o f the cerebellu m (Borge s and Lewis , 1983) . Ethanol-induce d increase s in Tc primarily resul t from a lengthening o f Gl. Thes e effects o f ethanol ar e no t th e sam e fo r all proliferative populations. Fo r example, th e Tc of the neocortica l SZ i s not affecte d b y moderat e exposure s t o ethano l (Miller and Nowkowski , 1991). In addition to cell cycle kinetics, the production of new cells i s defined by three othe r feature s of proliferating populations: th e growt h fractio n (GF), th e pro portion of cells that exit the cell cycle, and the leaving fraction (LF) . The G F i s the proportio n o f total cel l population tha t i s activel y cycling. Overall , th e G F for th e cerebra l wal l extend s ove r th e perio d o f neo cortical neuronongenesi s (Mille r an d Kuhn , 1995 ; Takahashi e t al, 1995 , 1996) . Althoug h ther e i s no ethanol-induced differenc e i n th e G F a t th e begin ning of this period, as neuronal generation proceeds a significant differenc e takes place . Ethano l cause s a n increase i n the GF. The effec t o f ethanol on the over all G F i s largely due t o ethanol-induce d increase s in the SZ . Both th e specifi c G F fo r the S Z (Mille r and Nowkowski, 1991 ) and th e numbe r o f cells in the S Z (Miller, 1989 ) ar e increase d b y ethanol. Th e G F fo r the VZ i s either unaffecte d by ethanol in vivo (Mille r and Nowkowski , 1991) or subtly, but significantly , reduced i n th e V Z o f an organotypi c slic e preparation (Siegenthaler an d Miller , 2005a) . The effec t o f th e increases i n GF i n the S Z is accentuated wit h time as the S Z become s th e majo r neocortica l proliferativ e zone. After cells pass through M, the daughter cells either re-enter the cycle or exit the cell cycle. The numbe r of cells tha t exi t th e cel l cycl e ca n b e determine d b y tracing the proportio n o f cells tha t hav e incorporate d a DN A precursor during S relative to the tota l popu lation o f cycling cells, for example , cell s tha t express Ki-67 (Chen n an d Walsh , 2002 , 2003 ; Siegenthale r and Miller , 2005a ; 2005b) . Accordingly , a n i n sit u
188 ETHANOL-AFFECTE D DEVELOPMEN T study show s tha t ethano l increase s th e numbe r o f cells that exit the cel l cycl e (Siegenthale r an d Miller , 2005a). A thir d featur e contributin g to neurona l produc tion i s th e LF . Thi s differ s fro m th e exi t fractio n i n that i t encompasses cel l cycl e exi t and th e proces s of moving fro m th e proliferativ e zones . Th e L F rise s steadily over the period of neuronal generation (Miller, 1993, 1999b ; Takahashi et al, 1996) . Ethanol does not affect th e L F durin g this period (Miller , 1993) . Inasmuch a s ethano l doe s affec t th e numbe r o f exitin g cells, thi s lac k o f increas e i n th e L F implie s tha t ethanol induce s postmitoti c cell s t o remai n i n th e proliferative zones for a longer time before commenc ing their migration. Various cell cycle-relate d protein s ar e affecte d b y ethanol: th e expressio n o f cycli n A ( a regulato r o f S and G2) , cycli n Dl, and cdk 2 (proteins that regulate the progressio n of cells fro m G l t o S ) i s reduced b y ethanol exposur e (Li et al, 2001, 2002; Siegenthale r and Miller , 2005a) . Cerebella r expressio n o f cycli n D2, cdk4, and cdk 6 (regulator s of Gl) ar e unaffected by ethano l (L i et al, 2002) . By contrast, p2 7 ( a protein involve d in movin g cells from G l ou t o f the cycle) i s depresse d b y ethano l i n th e V Z o f cortica l expiants (Siegenthale r an d Miller , 2005a ) an d i n developing rat cerebellum (L i et al., 2002). Thus, the effects of ethanol o n cell cycle-related protein s not only corroborate, bu t provid e a mechanis m fo r ethanol induced increase s in the Tc and cell cycle exit and a decrease i n the GF. Cell Culture Studies Studies i n cel l cultur e model s replicat e th e i n viv o data an d provid e systems in which t o explore cellular and molecula r mechanism s underlyin g th e ethanol induced changes . Variou s cell s hav e bee n use d a s models o f proliferatin g neura l precursors—primar y cultures of neurons (Jacobs and Miller , 2001; Miller, 2003a) an d astrocyte s (Kenned y and Mukerji , 1985 ; Guerri e t al. , 1990 ; Snyde r e t al, 1992 ; Kòtte r an d Klein, 1999 ; Lu o an d Miller , 1999a ; Cost a an d Guizzetti, 2002 ; Mille r an d Luo , 2002a ) an d neu ronal (Lu o an d Miller , 1997a , 1999b ; Mille r an d Luo, 2002b ) o r glia l (Wazir i e t al , 1981; Isenber g et al. , 1992 ; Resnicof f et al, 1994 , 1996b ; Lu o an d Miller, 1996 ) cance r cel l lines . Ther e i s consensu s that ethanol increase s the time these neural cells take to double the siz e of their populations.
Doubling tim e i s a comple x yardstic k reflectin g the su m o f simpler parameters. On e o f these parame ters is an increase in the Tc, and mos t of this increase is from a lengthened G l (Guerr i et al., 1990 ; Luo an d Miller, 1997a ; Jacobs and Miller , 2001). Remarkably, the effect s o f ethano l o n th e proliferatio n o f dissoci ated neuron s an d B10 4 neuroblastom a cell s strongl y parallel thos e o f V Z cell s i n viv o (cf . Mille r an d Nowakowski, 1991 ; Lu o an d Miller , 1997a ; Jacob s and Miller , 2001). Another factor i s the GF . Alteration in the GF has an invers e effect on doubling time . For example, a s i n th e cas e o f B10 4 cells , a n ethanol induced decreas e i n th e numbe r of cycling cells con tributes t o a n increas e i n doublin g tim e (Lu o an d Miller, 1997a) . A thir d facto r definin g th e doublin g time i s the incidenc e o f cel l death . Deat h normall y occurs amon g proliferatin g population s (Blaschk e et al., 1996; Thomaidou et al, 1997; Jacobs and Miller, 2000) (se e Chapter 5) . Ethanol affect s th e balanc e between cel l proliferation and deat h (Jacob s and Miller , 2001; Miller , 2003a) . Fo r example , ethano l cause s a steady decreas e i n th e numbe r o f primar y culture d cortical neurons . Mos t (two-thirds ) of the decreas e i s due t o compromised cell proliferation, whereas the remainder i s from ethanol-induce d cel l death . Ethano l affects neurona l generatio n an d deat h i n th e imma ture PSN in a similar manner (Miller , 1999a).
LIGAND-MEDIATED SYSTEM S
Many factors may contribute t o the differentia l effec t of ethano l o n specifi c population s o f proliferating cells. A majo r playe r is the myria d of growth factor s that tightly regulate cell proliferation. This sectio n focuses o n a smal l numbe r o f growt h factor s tha t ha s been studie d i n relatio n t o th e effect s o f ethanol . These factor s includ e platelet-derive d growt h facto r (PDGF), basi c fibroblas t growt h facto r (bFG F o r FGF-2), insulin-lik e growth factor (IGF)- l an d IGF 2, an d transformin g growth facto r (TGF ) pi . The y can b e classifie d a s mitogeni c (FGF-2 , IGF-1 , an d PDGF) or anti-mitogenic (TGFp). Mitogenic Factors Platelet-Derived Growth Factor The cyclin g activit y o f neura l cell s i s potentl y pro moted by PDGF. It is noteworthy that PDGF receptors
ETHANOL AND PROLIFERATION O F NEURONA L PRECURSOR S 18 9 are expresse d i n th e S Z o f normal rodent s (Sasahara et al, 1991 ; Yeh et al, 1991) . Th e growth-promoting effect o f PDGF has also been described fo r astrocytes (Luo an d Miller , 1999a ) an d B10 4 neuroblastom a cells (Luo and Miller, 1997a) . PDGF i s active as a dimer , forme d as a combina tion o f th e tw o isoforms , PDGF- A an d PDGF-B . PDGF-BB i s the mos t potent ligand , doubling or trebling the growt h o f B104 cells an d astrocytes , respec tively, ove r 3 days (Lu o and Miller , 1997a , 1999a) . In contrast, PDGF-A A onl y increase s cel l growt h b y -50% (B104 neuroblastoma cells ) or -70% (astrocytes) over the sam e period. Although the tota l length o f the cell cycl e i s reduced, mos t o f the growt h result s fro m the recruitmen t o f cells int o the cyclin g population— i.e., throug h a n increas e i n th e GF . Thi s patter n i s reminiscent o f th e respons e o f S Z cell s t o ethano l (Miller an d Nowakowski , 1991 ; Mille r an d Kuhn , 1995). The PDGF-mediate d increase in cell proliferation is mediated throug h tw o intracellular signal transduc tion cascades : the ras-raf pathwa y and th e protei n kinase C (PKC ) pathwa y (Fig . 11-4 ) (Lu o an d Miller , 1999a). Th e ultimat e effect s o f PDGF ar e th e tran sient (phasic ) activation o f mitogen-activate d protei n kinase and extracellula r signal regulated kinase (ERK) and th e transcriptio n of proliferation-associated genes . PDGF-mediated growt h i s compromise d b y ethanol, th e growt h amon g B10 4 cell s (Lu o an d Miller, 1997a) and astrocytes (Luo and Miller, 1999a ) being reduced i n a concentration-dependent manner . Interestingly, the effect s o f ethanol o n th e tw o ligand isoforms are cell type-specific . The actio n of PDGFBB on B10 4 cells i s twice as sensitive to ethano l a s it is to PDGF-AA (Lu o and Miller , 1997a) , an d th e in verse situatio n i s eviden t fo r neocortica l astrocyte s (Luo and Miller, 1999a) . This may mean tha t PDGF differentially affect s cel l lineage s i n vivo . Moreover , the variatio n i n effect s ma y underli e th e differentia l activity o f SZ cells , whic h i n th e ra t ar e largel y neu ronogenetic prenatally and gliogenetic postnatally. The effec t o f ethanol o n ligand-mediate d activity apparently reflects ethanol-induced changes in recep tor expression and activation . Two receptors can bind PDGF ligands : PDGF-a r an d PDGF-pr . I n B10 4 cells, ethanol target s the PDGF-ar, which ultimately leads to a change in ERK activation (Luo and Miller, 1999a). Ethano l doe s not sto p ERK phosphorylation; rather, i t induce s a sustained ER K activation, which in turn can lead to changes in gene transcription.
Fibroblast Growth Factor-2 FGF-2 i s an importan t regulato r o f cell proliferatio n in th e V Z an d derive d zone s o f developing rodents . An immunohistochemical study shows that FGF-2 receptors ar e predominantl y expresse d i n V Z durin g normal, cortical development (Weis e et al., 1993) . SZ cells in the neonata l rat brain are also FGF-2 responsive (Bartlet t et al, 1994 ; Gritt i e t al, 1999 ; Wagne r et al , 1999 ; Decke r e t al. , 2002) . Fo r example , in traperitoneal injection of FGF-2 stimulates the prolif eration o f neuronal precursor s in the S Z (Lachapell e et al. , 2002) . Similarly , intraventricula r administra tion of FGF-2 expands the populatio n of SZ neuronal progenitors (Kuh n e t al., 1997 ) an d increase s mitoti c activity in the SZ and IH Z in adul t rat s (Wagne r et al, 1999) .
FIGURE 11- 4 Signa l transductio n triggere d b y ethanol-sensitive growt h factors . Cel l proliferatio n is regulated b y platelet-derive d growt h facto r (PDGF ) and transforming growth factor (TGF ) pi . PDGF acts as a dime r o f A o r B isoforms . Thes e growt h factor s bind t o specifi c trans-membran e receptor s tha t au tophosphorylate. Thi s proces s trigger s a cascad e o f phosphorylation event s throug h variou s intermedi aries. Interestingly , although PDG F an d TGFp l in duce opposit e effect s (mitogeni c an d anti-mitogeni c actions, respectively) , they bot h stimulat e extracellular signal-related kinase (ERK). The circle d plu s and minus sign s identif y th e action s o f ethanol . Briefly , ethanol ha s a specific effec t o n a single PDGF receptor isofor m (PDGF-ar ) and , throug h bot h pro - an d antimitogenic factors , ethanol stimulates ER K activ ity. This i n turn ca n alte r nuclear gene transcription. MEK, methylethylketone ; nCAM , nerv e cel l adhe sion molecule; PKC , protein kinase C.
190 ETHANOL-AFFECTE D DEVELOPMENT Dissociated cultures provide model systems to illuminate th e effect s o f FGF-2 o n proliferatin g populations. Cell cycle kinetics among B104 cells is affected by FGF-2 (Lu o and Miller, 1997a) . The Tc and G F are equally affected b y FGF-2. These data are consis tent with the mixe d expression of FGF-2 response by VZ and S Z cells. Other preparation s that presumably model V Z an d S Z cells impl y that FGF- 2 promote s the proliferation o f VZ and S Z derivatives (Martens et al., 2000, 2002). The effect s o f ethano l o n FGF-2-mediate d cel l proliferation ar e no t well understood. Studie s explor ing thi s interactio n hav e examine d C 6 gliom a cell s (Luo an d Miller , 1996 ; Mille r an d Luo , 2002a ) an d telencephalic neuroepithelial cell s (M a et al., 2003). They sho w tha t ethano l eliminate s th e FGF-2 promoted increas e i n cell proliferatio n such tha t th e effects o f FGF-2 and ethano l nullif y eac h other . The depressiv e effect s o f ethano l ar e mediate d through th e FGF- 2 receptor , fl g (Lu o an d Miller , 1996b, 1997b) . ER K phosphorylation, a downstream event o f flg activation, increase s i n cortica l astrocyte s (Smith an d Navratilova , 2003 ) an d ste m cell s (M a et al. , 2003 ) treate d with ethanol . Althoug h ethano l does not alter protein expressio n of FGF-2 receptors , ERK activity remains elevated, implying that ethano l affects recepto r phosphorylation . Insulin-like Growth Factor-1 Prenatal exposure to ethanol inhibition of intrauterine and earl y postnatal growth correlates with the effec t of ethanol o n the IGF system (Breese et al, 1993 ; Sing h et al., 1994) . Ethanol halves plasma IGF-1 content i n the pregnant dam (Singh et al., 1994; Breese and Son ntag, 1995 ) and in the fetal brai n (Singh et al, 1996) . Data o n the effect s o f prenatal exposur e to ethanol o n IGF-2 are mixed. One repor t states that the amount of IGF-2 is doubled (Brees e and Sontag , 1995) , whereas others sho w tha t IGF- 2 expressio n i s halve d (Sing h et al., 1994 , 1996) . Likewise , the effec t o f ethanol o n binding protei n (IGF-BP ) i s als o mixed . Som e evi dence show s tha t IGF-B P expressio n i s reduce d (Breese an d Sontag , 1995) , an d othe r studie s sho w that it is increased (Singh et al, 1994, 1996) . Although the reason s for thes e disparat e data ar e unclear , i t is agreed tha t (1 ) ethano l affect s circulatin g plasma an d fetal expressio n of IGF-2 an d IGF-B P an d (2 ) ethano l causes opposing effects o n the expressio n of these two proteins. The reductio n in IGF-1 persist s in the young
offspring (u p t o 3 weeks old), but i t abates by 40 day s of ag e (Brees e e t al , 1993) . I n contrast , IGF- 2 an d IGF-BP ar e unaffected in preweanling rats. The effec t o f IGF-1 ha s been studie d in C6 gliom a cells (e.g. , Resnicof f e t al , 1994 , 1996a , 1996b) . These cells have the advantage of being able to proliferate i n a serum-free medium an d i n th e absenc e o f any priming growth factors (e.g. , Isenberg et al., 1992 ; Resnicoff e t al, 1994 ; Lu o and Miller , 1996) . IGF- 1 is a potent mitoge n fo r proliferating C6 cell s (Resni coff e t al., 1994 , 1996a , 1996b) . Thi s effec t i s at least partially growt h factor-specific , a s proliferatio n o f these cell s i s unaffected b y PDGF (Resnicof f et al. , 1994). It is worth noting that this differential respons e to growth factors may be a quality of the cell s becaus e primary cultur e astrocyte s and B10 4 neuroblastom a cells are highly regulated b y PDGF (Luo and Miller , 1997a, 1999a ) (se e Platelet-Derive d Growt h Factor , above). Ethanol inhibit s th e proliferatio n o f C 6 cell s (Waziri e t al, 1981 ; Isenber g e t al, 1992 ; Resnicof f et al, 1994 , 1996a , 1996b ; Luo and Miller, 1996) , and it has been suggested that this inhibition i s mediated by ethanol-induced disruption s of IGF-1 recepto r (IGF lr; Resnicof f e t al , 1994 , 1996a , 1996b) . Ethano l blocks th e mitogeni c effec t o f the ligan d (IGF-1 ) an d interferes wit h receptor (IGF- 1 r) activation. Autophos phorylation o f the IGF- 1 r is inhibited b y low concentrations o f ethanol . Also , ethano l inhibit s th e anti-apoptotic effect s o f IGF-1 (Gu i étal, 1997) . Anti-mitogenie Facto r TGFp ligand s ar e intracortica l factor s tha t tur n of f neural cel l growt h (Camero n e t al. , 1998 ; Bôttne r et al, 2000) . Exogenou s TGFpl inhibit s the growth of variou s cells , includin g C 6 cells , astrocyte s (Ro zovsky e t al , 1998 ; Ric h e t al. , 1999 ; Rob e e t al , 2000; Mille r an d Luo , 2002a) , B104 neuroblastom a cells (Luo and Miller, 1999b) , an d neural progenitor s (Miller an d Luo , 2002b) . TGFp l doe s thi s b y removing cell s fro m th e proliferativ e population, i.e. , reducing th e G F (Siegenthale r an d Miller , 2005b) . Interestingly, it does not affec t cel l cycle kinetics. Transforming Growth FactorMediated Signal Transduction The effec t o f TGFpl o n cel l proliferatio n is medi ated throug h ER K activatio n (Fig . 11-4) . TGFp l
ETHANOL AND PROLIFERATION O F NEURONA L PRECURSORS 19 1 induces sustaine d (>9 0 min ) activatio n (Lu o an d Miller, 1999b) , a n anti-intuitiv e resul t i n that ER K is generally associate d with mitogenic activity . A recent study o f proliferating cells i n organotypi c culture s of fetal corte x shows that cycling cells in the VZ respond to TGFpl (Siegenthale r an d Miller , ZOOSb) . As with the dissociated cells, TGFpl inhibit s VZ cell prolifer ation in situ by increasing the exi t of cells from th e cycling populatio n an d concomitantl y decreasin g the GF. Combined treatmen t o f cortica l slice s wit h ethanol and TGFp 1 affects the expressio n of cell cycle-related protein s (Siegenthale r an d Miller , 20 0 5b) . For example , tota l cycli n D l expressio n i s reduce d in th e VZ , an d becaus e ethano l an d TGFpl d o no t affect th e frequenc y o f cyclin Dl-positiv e cells , i t ap pears tha t th e amoun t o f cycli n D l pe r cel l i s reduced. A simila r decremen t i n p2 7 expressio n ha s been detected . A s for p21, co-treatment wit h ethano l and TGFp l eliminate d th e increas e i n p2 1 expres sion promoted b y TGFpl alone . Thus, three proteins involved in the transition o f cells from Gl (t o either S or GO ) ar e depresse d b y combine d exposur e t o ethanol an d TGFpl. It appears that ethanol interferes with TGFpl regulatio n o f cell cycle activity. In Vivo Transforming Growth Factor Systems Various immunohistochemica l analyse s hav e show n that th e developin g nervou s system contain s a n en dogenous TGFp system (Flanders e t al., 1991 ; Pelto n et al , 1991 ; Miller , 2003b) . TGF p ligand s ar e expressed i n th e V Z an d S Z o f th e cerebra l vesicl e in vivo (Fig . 11-5) . TGFp l i s expresse d i n th e V Z pre- an d postnatall y and TGFp 2 i s expressed during the firs t postnata l week . Potentiall y mor e importan t than ligan d expressio n i s the distributio n o f the tw o chief TGF P receptors , TGFpI r an d TGFpIIr . Th e TGFpIr i s expressed in bot h neocortica l proliferativ e zones throughou t life , wherea s th e TGFpII r i s only expressed i n th e VZ . Moreover , bot h TGFp 2 an d TGFpIr are expressed by radial glia. Prenatal exposur e t o ethano l affect s endogenou s TGFP syste m expressio n i n viv o (Miller , 2003b) . TGFpl expressio n falls i n immature an d mature rats, whereas TGFp 2 expressio n rise s onl y i n perinates . Changes i n recepto r expressio n ar e mos t eviden t for the TGFpIr ; it s expressio n i s significantly highe r i n ethanol-treated rats , regardless o f age. These ethanol -
FIGURE 11- 5 Transformin g growth facto r (TGF ) P ligands an d receptor s i n th e developin g ventricula r and subventricula r zones . Pair s of images depict th e distribution o f immunolabeling for TGFpl (to p left) , TGFp2 (to p right) , TGFpIr (botto m left) , an d TGF pIIr (bottom right ) in control (Ct ) and ethanol-treate d (Et) perinates . Ethano l markedl y affect s ligan d an d TGFpIIr expressio n in the subventricula r zone (SZ) . Open and solid arrows identify immunolabelin g i n the ventricular zone (VZ ) and SZ , respectively. Curved arrows labe l radia l gli a i n th e intermediate zon e (IZ) . Scale bars = 10 0 jlm. (Source; Images taken, with permission, fro m Mille r (2003b) , J Com p Neuro l 460:410-424.)
induced change s ar e associate d wit h alteration s i n the distributio n o f cell s tha t ar e TGFpl , TGFp2 , TGFpIr, an d TGFpII r immunoreactive . Th e mos t marked change s ar e increase s i n S Z expressio n o f TGFp ligands an d especiall y receptors . Thi s finding may underli e th e increas e i n gliosi s tha t occur s fol lowing early postnatal ethanol exposure (Fletcher an d Shain, 1993 ; Goodlett et al, 1993) . Lineage Specificity Studies o f th e effect s o f exogenou s TGFp l impl y that the endogenous TGFp system in the developin g and/or adul t brai n i s affected b y ethanol. I n general ,
192 ETHANOL-AFFECTE D DEVELOPMEN T ethanol block s TGFpl inhibition , however , thi s ef fect is lineage-dependent Fo r astrocytes and C 6 cells , the combine d effec t o f ethanol an d TGFp l i s competitive (Mille r and Luo , 2002a) , that is , in th e pres ence o f ethano l an d TGFpl , th e proliferatio n o f either of these cel l types is the sam e as that occurring in untreate d cultures . I n contrast , th e individua l inhibitory effect s o f ethanol an d TGFp l i n B10 4 cells (Luo an d Miller , 1999b ) an d cell s determined t o b e neurons (Mille r and Luo , 2002b ) are additive. Treatment o f B10 4 cell s wit h a n agen t tha t block s ER K activity largely eliminates the inhibition of [3H]thymidine incorporation . Thi s resul t implie s tha t bot h ethanol an d TGFpl-mediated inhibitio n of neuronal progenitors is transduced through ERK. Interestingly, th e T c fo r in situ V Z cell s treate d with TGFp l an d ethano l i s the sam e a s the T c for untreated preparations . The sam e effect i s evident for the GF: TGFpl an d ethanol cancel the inhibitory action o f th e othe r anti-mitogen . Thus , V Z cell s i n organotypic cultures behave the same way as cultured cortical astrocytes . This findin g i s particularly interesting in light of data showing that radial glia, at least in cortex, are stem cells that can give rise to neurons or astrocytes (see Radial Glia, above). This phenomeno n begs th e questio n o f ho w astrocyte s are identifie d — i.e., is the commonl y use d marker , glia l fibrillary acidic protein, astrocyte-specific (se e Chapters 1 3 and 18)? Equally , i f no t mor e important , i s th e findin g that afte r a cell i s determined a s becoming a neuron , even though i t may retain mitotic ability (Jacobs and Miller, 2000), its reaction to its environment, such as combined TGFp l an d ethanol , ha s changed . Th e implications o f thi s shif t i n responsivit y ma y fram e our understandin g of stem cell s an d progenitor s an d their future utilit y in transplantation. Interactions amon g Growth Factor s Growth factor s d o no t ac t i n vivo i n isolation . They are multiply expressed, and cell s express multiple re ceptors. Th e effect s o f PDGF , FGF-2 , IGF-1 , an d TGFpl ar e affecte d b y th e mediu m i n whic h th e cells ar e raised . The actio n o f each facto r i s amplified, or onl y expressed , when th e mediu m contain s fetal seru m (Lu o an d Miller , 1997a , 1999b ; Mille r and Luo , 2002a) . (Seru m i s ric h i n a plethor a o f growth factors. ) A specific exampl e o f an interactio n among growt h factor s i s tha t betwee n FGF- 2 an d TGFpl (Mille r an d Luo , 2002a) . I n culture s o f
neocortical astrocyte s and C 6 cells , these two factors effectively cance l ou t th e actio n o f each other . Like wise, ethanol inhibits the primar y action of each factor. Th e amoun t o f cel l growt h tha t occur s amon g cells treate d wit h FGF- 2 an d TGFpl, wit h o r without ethanol , i s the sam e as that eviden t in untreate d cultures. The multipl e effect s o f ethano l and/o r growt h factors o n cel l proliferatio n appea r t o depen d o n a single gatekeeper , ERK . Wit h ou r curren t under standing, however , it is difficul t to deciphe r the action o f this transduction funnel . Ethano l ca n inhibi t cell proliferatio n by altering ER K activit y (Lu o an d Miller, 1999a , 1999b) . Furthermore , bot h mitogeni c (e.g., PDGF and IGF-1) an d antimitogenic (TGFpl) growth factors activate ERK. It seems parsimonious to conclude tha t ERK is not a simpl e switc h tha t is either o n o r off ; ERK i s activate d b y a mitoge n an d turned of f by an anti-mitogen . Instead, ERK i s a complex switc h tha t ca n b e activate d b y substances with opposing effects , an d th e characte r o f that activatio n (acute o r sustained) defines th e effec t o n subsequen t transcription. The effect s o f ethanol ar e not ubiquitous , they are quite specific. For example, ethanol affect s th e expres sion and activit y of the PDGF-oer , but no t the PDGF pr. Potentially , thi s differentia l effec t o f ethano l depends o n the distribution of the receptors. Could it be tha t on e recepto r i s associate d wit h a lipi d raft , whereas another is not?
WHAT CONTROLS CELL NUMBER?
Ethanol studie s sugges t that , a t leas t i n som e telen cephalic structures, there is a dynamic interaction between th e tw o proliferativ e zones . A t lo w an d moderate exposure s t o ethanol , cel l proliferatio n in the V Z i s reduced , bu t proliferatio n i n th e S Z an d IHZ i s increase d (Miller , 1989 , 1995a) . Hence , th e implication is that there i s a set point, an implicit goal for cel l number , and tha t the stimulate d proliferatio n in th e S Z an d IH Z i s compensating for the earl y depression of VZ proliferation. The numbe r o f neurons i n a define d cylinder of neocortex i s unaffecte d b y moderat e ethano l expo sure (Miller and Potempa, 1990) . Nevertheless, cortex is smaller (Miller , 1987 , 1996b) . Thi s decrease i n size likely results from th e ethanol-induce d eliminatio n of ontogenetic columns . Presumably , this alteration i s a
ETHANOL AND PROLIFERATION O F NEURONA L PRECURSOR S 19 3 result of the goa l of the developin g nervous system to maintain th e integrit y of ontogenetic columns , even if th e numbe r o f column s i s reduced . Exposure s t o high concentration s of ethanol overwhel m the com pensatory response. The change s i n th e telencephalo n contras t with those i n region s o f the brai n derive d from onl y th e VZ. In the absence of a derived proliferative zone, no compensatory respons e i s possible an d reductio n i n cell numbe r occur s regardless of ethanol concentra tion. Th e depressio n o f proliferativ e activit y i n th e VZ ca n occu r throug h tw o nonmutuall y exclusiv e mechanisms. Ethanol ca n inhibi t the actio n of mitogenie growt h factor s and/o r ethano l potentiate s the actio n o f anti-mitogeni c factors . Empirica l evidence fro m cel l cultur e studie s support s both o f these theses. Derived proliferatin g populations , fo r example , the SZ , are affected b y ethanol in a complex, bimodal fashion. This provides a mechanism fo r the S Z to off set primary damage to the VZ in an attempt to generate a structure with "proper" cell density . The abilit y of the S Z t o compensate fo r reductions i n VZ prolif eration ma y resul t from th e differentia l sensitivit y o f the tw o cell populations to ethanol. A s such, i t would reflect differentia l responsivit y t o particula r growth factors. Ke y support for this conclusion i s that the tw o zones respon d t o differen t combination s o f growt h factors and they express different receptors . By pulling together al l o f the dat a o n th e effect s o f ethanol o n growth facto r activity , w e postulat e tha t ethano l af fects S Z cells in defined ways. Take th e exampl e o f cell proliferatio n i n th e SZ . The S Z contain s receptor s fo r PDG F an d TGFp . Ethanol block s PDG F bindin g wit h a n ED 50 o f 100-200 mg/dl, dependin g o n th e recepto r isofor m (Luo an d Miller , 1999a) . Thi s result s i n a reduce d mitogenic effec t o f PDGF . Ethano l interfere s with TGFp-induce d inhibitio n wit h a n ED 50 o f <50 mg/dl (Lu o and Miller , 1999b) . The interactio n of ethanol an d TGF p result s in a los s of the inhibi tion. Thus , th e combine d effect s o f ethanol, PDGF , and TGF p are a s follows. First , at relatively low con centrations, ethano l inhibit s TGFp-mediated inhibi tion i n th e relativ e absenc e o f ethanol-induce d interference wit h PDGF-promote d cel l proliferation . Second, at high concentrations, ethanol eliminate s the mitogenic effect s o f PDGF that supersed e the los s of TGFp-mediated inhibition . Finally , a t intermediat e concentrations, ethano l produce s a mixe d response .
Thus, the concentration-dependen t effect s o f ethanol on two growth factor system s can explai n the bimodal response of ethanol o n S Z cells in vivo. Abbreviations bFGF (FGF-2) basi c fibroblast growth factor EGL externa l granular layer of the cerebellum ERK extracellula r signal regulated kinase G gestationa l day GE ganglioni c eminence GF growt h fraction IGF insulin-lik e growth facto r IGF-BP insulin-lik e growth factor binding protein IGF-lr insulin-lik e growth factor- 1 receptor IHZ intrahila r zone, or hippocampal field CA4 LF leavin g fraction PDGF platelet-derive d growt h factor PKC protei n kinase C PSN principa l sensory nucleus of the trigemina l nerve SZ subventricula r zone Tc tota l length of the cell cycle TGF transformin
g growth factor
TGFpIr transformin g growth factor p i receptor TGFpIIr transformin g growth factor pi i recepto r VZ ventricula r zone
ACKNOWLEDGMENTS Thi s wor k wa s supporte d b y the National Institute on Alcohol Abuse and Alcoholism and th e Departmen t of Veterans Affairs .
References Al-Ghoul WM, Miller MW (1989 ) Transient expression of Alz-50 immunoreactivit y i n developin g ra t neo cortex: a marke r fo r naturall y occurrin g neurona l death? Brain Res 481:361-367 . Altman J (1962) Are new neurons formed i n the brain s of adult mammals? Science 135:1127-1128 . Alvarez-Buylla A, Garcia-Verdugo JM (2002 ) Neurogenesis i n adul t subventricula r zone . J Neurosc i 22 : 629-634. Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL (2001 ) Distinc t cortica l migration s fro m th e
194 ETHANOL-AFFECTE D DEVELOPMEN T medial an d latera l ganglionic eminences. Develop ment 128:353-363 . Angevine J B Jr (1965 ) Time o f origin i n th e hippocam pal region: an autoradiographic study in the mouse . ExpNeurolSuppl2:l-70. Atlas M, Bond VP (1965) The cel l generation cycle of the eleven-day mouse embryo . J Cell Biol 26:19-24. Bartlett PF , Dutto n R , Likiardopoulo s V , Brooke r G (1994) Regulatio n o f neurogenesi s i n th e embry onic and adult brain by fibroblast growth factors. Alcohol Alcohol 2(Suppl):387-394. Bauer-Moffett C , Altaia n J (1975 ) Ethanol-induce d re ductions i n cerebella r growt h o f infan t rats . Ex p Neurol 48:378-382. (1977) Th e effec t o f ethanol chronicall y administered to preweanling rat s on cerebellar development : a morphological study. Brain Res 119:249-268. Bayer S A (1980) Developmen t o f th e hippocampa l re gion o f th e rat . I . Neurogenesi s examine d wit h 5 H-thymidine autoradiography. J Comp Neurol 190 : 87-114. Blaschke AJ , Staley K , Chun J (1996 ) Widesprea d pro grammed cell death i n proliferative and postmitotic regions o f th e feta l cerebra l cortex . Developmen t 122:1165-1174. Bonthius DJ , West JR (1988 ) Bloo d alcoho l concentra tion and microencephaly : a dose-response study in the neonatal rat . Teratology 37:223-231 . Borges S, Lewis PD (1983 ) The effec t o f ethanol o n th e cellular compositio n o f th e cerebellum . Neu ropathol Appi Neurobiol 9:53-60 . Bôttner M , Krieglstei n K , Unsicke r K (2000) The trans forming growt h factor-betas : structure , signaling , and role s in nervous system development an d func tions. J Neurochem 75:2227-2240 . Breese CR , D'Cost a A, Ingram RL , Lenham J, Sonnta g WE (1993 ) Long-ter m suppressio n o f insulin-lik e growth factor- 1 i n rat s afte r i n uter o ethano l expo sure: relationshi p t o somati c growth . J Pharmaco l Exp Ther 264:448-456. Breese CR , Sonnta g W E (1995 ) Effec t o f ethano l o n plasma an d hepati c insulin-lik e growth factor regu lation i n pregnan t rats . Alcoho l Cli n Ex p Re s 19: 867-873. Bruckner G, Mares V, Biesold D (1976) Neurogenesis in the visual system of the rat . An autoradiographic in vestigation. } Comp Neurol 166:245-255 . Cameron HA , Hazel TG, McKa y RD (1998) Regulation of neurogenesi s b y growt h factor s an d neurotrans mitters. J Neurobiol 36:287-306 . Chenn A, Walsh C A (2002) Regulation of cerebral corti cal siz e b y control o f cell cycl e exi t i n neura l pre cursors. Science 297:365-369. (2003) Increase d neurona l production , enlarge d forebrains an d cytoarchitectura l distortion s i n (3 -
catenin overexpressing transgenic mice . Cereb Cor tex 13:599-606 . Costa LG , Guizzett i M (2002 ) Inhibition of muscarinic receptor-induced proliferatio n o f astroglial cell s by ethanol: mechanism s an d implication s for the feta l alcohol syndrome. Neurotoxicology 23:685—691. Cui SJ , Tewari M, Schneider T , Rubin R (1997) Ethanol promotes cell death b y inhibition of the insulin-like growth facto r I receptor. Alcoho l Cli n Ex p Re s 21 : 1121-1127. Decker L , Picard-Rier a N, Lachapell e F, Baron-Va n Evercooren A (2002) Growth facto r treatmen t pro motes mobilizatio n o f youn g bu t no t age d adul t subventricular zon e precursor s in respons e t o de myelination. J Neurosci Res 69:763—771. de Lim a AD , Merten MD , Voig t T (1997 ) Neuriti c differentiation an d synaptogenesi s i n serum-fre e neu ronal culture s o f th e ra t cerebra l cortex . J Com p Neurol 382:230-246 . Diaz J , Samso n H H (1980 ) Impaire d brai n growt h i n neonatal rat s expose d t o ethanol . Scienc e 208 : 751-753. Doetsch F , Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular compositio n an d three-dimensiona l orga nization o f the subventricular germinal zone in th e adult mammalian brain. J Neurosci 17:5046—5061 . (1999) Regeneratio n o f a germina l laye r i n th e adult mammalia n brain . Pro c Nat i Aca d Sc i USA 96:11619-11624. Flanders KG , Ludeck e G , Engel s S , Cissel DS , Robert s AB, Kondaiah P, Lafyatis R , Sporn MB , Unsicke r K (1991) Localizatio n an d action s o f transformin g growth factor-p s i n the embryoni c nervou s system. Development 113:183-191. Fletcher TL, Shai n W (1993 ) Ethanol-induce d change s in astrocyt e gene expressio n during rat central ner vous syste m development . Alcoho l Cli n Ex p Re s 17:993-1001. Gomes WA , Mehler MF , Kessle r J A (2003) Transgeni c overexpression o f BMP4 increases astroglial and de creases oligodendroglia l lineag e commitmen t De v Biol 255:164-177. Goodlett CR , Le o JT , O'Callagha n JP , Mahone y JC , West J R (1993 ) Transien t cortica l astrogliosi s in duced b y alcoho l exposur e durin g th e neonata l brain growt h spur t i n rats . De v Brai n Re s 72 : 85-97. Gôtz M, Hartfuss E , Malatesta P (2002) Radial glial cells as neurona l precursors : a ne w perspective s o n th e correlation o f morphology an d linag e restrictio n i n the developin g cerebra l corte x o f mice . Brai n Re s Bull 57:777-788 . Gould E , Gross C G (2002 ) Neurogenesis i n adult mam mals: som e progres s an d problems . J Neurosc i 22:619-623.
ETHANOL AND PROLIFERATION O F NEURONA L PRECURSORS 19 5 Gritti A , Frolichsthal-Schoelle r P , Gall i R , Parat i EA , Cova L , Pagan o SF , Bjornso n CR , Vescov i A L (1999) Epiderma l an d fibroblas t growt h factor s behave as mitogenic regulators for a single multipotent stem cell-lik e population fro m th e subventric ular region of the adult mouse forebrain. ] Neurosci 19:3287-3297. Guerri C, Sâe z R, Sancho-Tell o M, Marti n d e Aquilera E, Renau-Piqueras J (1990) Ethanol alter s astrocyte development: a stud y of critical period s usin g primary cultures. Neurochem Res 15:559—565 . Hartfuss E , Galli R , Heins N, Gotz M (2001) Characterization o f CNS precurso r subtypes and radia l glia . DevBiol 229:15-30. Hockfield S , McKa y RD (1985 ) Identificatio n o f majo r cell classes i n th e developin g mammalia n nervou s system. J Neurosci 5:3310-3328. Isenberg K, Zhou X, Moore B W (1992) Ethanol inhibit s C6 cel l growth : feta l alcoho l syndrom e model. Alcohol Cli n Ex p Res 16:695-699. Jacobs JS, Miller MW (2000 ) Cell cycle kinetics and im munohistochemical characterizatio n o f dissociated fetal cortica l cultures : evidenc e tha t differentiate d neurons hav e mitotic capacity. De v Brain Res 122: 67-80. (2001) Proliferatio n and deat h o f culture d feta l neocortical neurons : effect s o f ethano l o n th e dy namics of cell growth. J Neurocytol 30:391-401. Jacobson M (1991 ) Developmental Neurohiology, 3r d edition. Plenum Press , New York. Kennedy LA , Elliot M J (1985 ) Cell proliferation in th e embryonic mouse neocortex following acute maternal alcoho l intoxication . In t J De v Neurosc i 3 : 311-315. Kennedy LA, Mukerji S (1986) Ethanol neurotoxicity. 1 . Direct effect s o n replicatin g astrocytes . Neurobe hav Toxicol Teratol 8:11-15 . Kornguth SE, Rutledge JJ, Sunderland E, Siegel F, Carlson I, Smollens J, Juhl U, Young B (1979) Impede d cerebellar development and reduce d serum thyroxine levels associated with fetal alcoho l intoxication. Brain Res 177:347-360. Kôtter K , Klein J (1999) Ethano l inhibit s astroglia l cel l proliferation b y disruptio n o f phospholipas e D mediated signaling. J Neurochem 73:2517—2523 . Kuhn HG , Dickinson-Anso n H, Gage F H (1996 ) Neurogenesis i n th e dentat e gyru s o f th e adul t rat : age related decrease of neuronal progenitor proliferation. J Neurosci 16:2027-2033. Kuhn HG, Winkler J, Kempermann G, Thai LJ, Gage F H (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820-5829 . Lachapelle F , Avellana-Adali d V , Nait-Oumesma r B , Baron-Van Evercoore n A (2002) Fibroblast growth
factor-2 (FGF-2 ) an d platelet-derive d growt h factor AB (PDGF AB) promote adul t SVZ-derive d oligo dendrogenesis i n vivo . Mo l Cel l Neurosc i 20 : 390-403. Levers TE, Edga r JM, Price D J (2001) The fate s o f cells generated a t the en d o f neurogenesis in developin g mouse cortex. J Neurobiol 48:265-277. Li Z, Lin H, Zhu Y , Wang M, Luo J (2001) Disruption of cell cycl e kinetics and cyclin-dependen t kinas e system b y ethanol i n culture d cerebella r granul e pro genitors. Dev Brain Res 132:47-58. Li Z, Miller MW , Lu o J (2002) Effects o f prenatal exposure to ethanol o n the cyclin-dependen t kinas e system i n th e developin g ra t cerebellum . De v Brai n Res 139:237-245 . Lu EJ , Brown WJ, Col e R , deVellis J (1980) Ultrastruc tural differentiation an d synaptogenesi s in aggregating rotation culture s of rat cerebral cells . J Neurosci Res 5:447-463. Lund RD , Mustar i M J (1977 ) Developmen t o f th e geniculocortical pathwa y i n rats . J Com p Neuro l 173:289-306. Luo J , Miller M W (1996 ) Ethano l inhibit s basic fibroblast growt h factor—mediate d proliferatio n of C6 as trocytoma cells. J Neurochem 67:1448-1456 . (1997a) Basi c fibroblas t growt h factor - an d platelet-derived growt h factor—mediated cel l prolif eration i n B10 4 neuroblastom a cells : effec t o f ethanol o n cel l cycl e kinetics . Brai n Re s 770 : 139-150. (1997b) Differentia l sensitivit y of human neurob lastoma cell lines to ethanol: correlations with their proliferative response s t o mitogeni c growt h factors and expressio n o f growth facto r receptors . Alcoho l Clin Exp Res 21:1186-1194. (1998) Growt h factor-mediate d neural proliferation: targe t o f ethano l toxicity . Brai n Re s Re v 27 : 157-167. (1999a) Platelet-derive d growt h factor-mediate d signal transductio n underlyin g astrocyt e proliferation: sit e o f ethano l action . J Neurosc i 19:10014 10025. (1999b) Transforming growth factor pi-regulate d cell proliferation and expression of neural cell adhe sion molecul e i n B10 4 neuroblastoma cells: differ ential effect s o f ethanol . J Neuroche m 72:2286 2293. Ma W, Li BS, Marie D, Zhao WQ, Li n HJ, Zhang L, Pant HC, Barke r JL (2003) Ethanol block s bot h basi c fibroblast growth factor—and carbachol-mediate d neu roepithelial cel l expansio n wit h differentia l effect s on carbachol-activate d signalin g pathways. Neuro science 118:37-47 . Malatesta P , Hartfus s E , Got z M (2000 ) Isolatio n o f radial glia l cell s by fluorescent-activate d cel l sorting
196 ETHANOL-AFFECTE D DEVELOPMENT reveals a neuronal lineage. Development 127:5253 5263. Martens DJ, Seaberg RM, van der Kooy D (2002) In vivo infusions o f exogenou s growt h factor s int o th e fourth ventricl e of the adul t mouse brai n increase the proliferatio n of neura l progenitor s aroun d th e fourth ventricl e and th e centra l cana l o f the spinal cord. EurJNeurosci 16:1045-1057 . Martens DJ, Tropepe V, van der Kooy D (2000) Separate proliferation kinetic s o f fibroblas t growt h factor responsive and epiderma l growth factor-responsiv e neural ste m cell s withi n th e embryoni c forebrain germinal zone. J Neurosci 20:1085-1095. McConnell S K (1988) Fates of visual cortical neurons in the ferre t afte r isochroni c and heterochroni c trans plantation. J Neurosci 8:945-974. Miller M W (1985 ) Co-generation o f projection an d lo cal circuit neurons in neocortex. De v Brain Res 23: 187-192. (1986) Effect s o f alcohol o n th e generatio n an d migration o f cerebra l cortica l neurons . Scienc e 233:1308-1311. (1987) Effect of prenatal exposure to alcohol on the distribution an d tim e of origin of corticospinal neurons in the rat. J Cornp Neurol 257:372-382 . (1988) Effec t o f prenatal exposur e t o ethano l o n the developmen t o f cerebra l cortex : I . Neurona l generation. Alcohol Clin Exp Res 12:440-449. (1989) Effect s o f prenatal exposure to ethanol o n neocortical development : II . Cel l proliferatio n in the ventricula r and subventricula r zones of the rat . J Comp Neurol 287:326-338. (1992) Effect s o f prenatal exposure to ethanol o n cell proliferatio n an d neurona l migration . In : Miller M W (ed) . Development o f th e Central Nervous System: Effects o f Alcohol and Opiates. WileyLiss, New York, pp 47-69. (1993) Migration of cortical neuron s i s altered b y gestational exposur e t o ethanol . Alcoho l Cli n Ex p Res 17:304-314 . (1995a) Generation o f neurons i n the ra t dentat e gyrus an d hippocampus : effect s o f prenata l an d postnatal treatment with ethanol. Alcohol Clin Ex p Res 19:1500-1509 . (1995b) Effec t o f pre - o r postnata l exposur e t o ethanol on the total number of neurons in the principal sensor y nucleus o f the trigemina l nerve: cel l proliferation an d neuronal death. Alcohol Clin Exp Res 19:1359-1363 . (1996a) Limite d ethano l exposur e selectivel y alters th e proliferatio n o f precurso r cell s i n th e cerebral cortex. Alcohol Clin Ex p Res 20:139-143. (1996b) Effect s o f earl y exposur e t o ethano l o n the protei n an d DN A contents o f specific brain regions. Brain Res 734:286-294.
— (1997 ) Effects o f prenatal exposure to ethano l o n callosal projectio n neuron s i n ra t somatosensor y cortex. Brain Res 766:121-128. — (1999a ) A longitudinal study of the effect s o f prenatal ethanol exposure on neuronal acquisition and death i n th e principa l sensor y nucleu s o f th e trigeminal nerve : interaction with changes induce d by transection o f the infraorbita l nerve . J Neurocy tol 28:999-1015. — (1999b ) Kinetics of the migratio n of neurons to ra t somatosensory cortex. Dev Brain Res 115:111—122 . — (2003a ) Balanc e o f cel l proliferatio n an d deat h among dynami c populations : a mathematica l model. J Neurobiol 57:172-182 . (2003b) Expressio n o f transforming growth factor P in developing rat cerebral cortex: effect s o f prenatal exposur e t o ethanol . J Com p Neuro l 460 : 410-424. Miller MW, Kuhn PE (1995) Cell cycle kinetics in fetal rat cerebral cortex: effects o f prenatal exposure to ethanol assessed by a cumulative labeling technique with flow cytometry. Alcohol Clin Exp Res 19:233-237 . Miller MW , Lu o J (2002a) Effects o f ethanol an d basi c fibroblast growth factor o n th e transformin g growth factor p i regulate d proliferatio n of cortica l astro cytes an d C 6 astrocytom a cells . Alcohol Cli n Ex p Res 26:671-676. (2002b) Effect s o f ethano l an d transformin g growth facto r p (TGFp ) o n neurona l proliferatio n and nCA M expression . Alcohol Cli n Ex p Re s 26: 1281-1285. Miller MW, Muller SJ (1989) Structure and histogenesis of th e principa l sensor y nucleu s o f the trigemina l nerve: effect s o f prenata l exposur e t o ethanol . J Comp Neurol 282:570-580. Miller MW , Nowakowsk i RS (1991 ) Effec t o f prenatal exposure to ethanol o n th e cel l cycl e kinetic s and growth fractio n i n th e proliferativ e zones o f feta l rat cerebra l cortex . Alcoho l Cli n Ex p Re s 15 : 229-232. Miller MW, Potempa G (1990) Numbers of neurons and glia in matur e rat somatosensor y cortex : effect s of prenatal exposur e t o ethanol. J Comp Neurol 293 : 92-102. Miller MW , Robertso n S (1993 ) Prenata l exposur e t o ethanol alter s the postnata l developmen t and transformation o f radia l glia t o astrocyte s in th e cortex . J Comp Neurol 337:253-266 . Minana R , Climent E , Barettin o D , Segu i JM , Renau Piqueras J, Guerri C (2000 ) Alcohol exposure alters the expression pattern of neural cell adhesion molecules during brain development. J Neurochem 75 : 954-964. Nieto M , Monuk i ES , Tan g H , Imitol a J , Haubs t N , Khoury SJ , Cunningha m J , Got z M , Wals h C A
ETHANOL AND PROLIFERATION O F NEURONA L PRECURSORS 19 7 (2004) Expressio n o f Cux- 1 an d Cux- 2 i n th e subventricular zon e an d uppe r layer s II-IV o f th e cerebral cortex. J Comp Neurol 479:168-180 . Noctor SC , Flin t AC , Weissman TA, Dammerman RS, Kriegstein A R (2001 ) Neuron s derive d fro m radia l glial cells establish radial units in neocortex. Natur e 409:714-720. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstei n AR (2002) Dividing precurso r cell s of th e embryoni c cortica l ventricula r zon e hav e morphological an d molecula r characteristic s o f radial glia. J Neurosci 22:3161-3173 . Pawlak R , Skrzypie c A, Sulkowsk i S , Buczk o W (2002 ) Ethanol-induced neurotoxicit y i s counterbalance d by increase d cel l proliferatio n i n mous e dentat e gyrus. Neurosci Lett 327:83-86. Pelton RW , Saxen a B , Jone s M , Mose s HL , Gol d L I (1991) Immunohistochemica l localizatio n o f TGFpl, TGFpZ, and TGFP3 in the mouse embryo : expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091-1105 . Pierce DR , Wes t J R (1986 ) Alcohol-induce d microen cephaly durin g the thir d trimeste r equivalent : relationship t o dos e an d bloo d alcoho l concentration . Alcohol 3:185-191 . Rakic P (1971 ) Neuron-gli a relationshi p durin g granule cell migratio n i n developin g cerebella r cortex . A Golgi an d electronmicroscopi c stud y i n Macacus rhesus.} Comp Neurol 141:283-312 . (1978) Neuronal migratio n an d contact guidanc e in th e primat e telencephalon . Postgra d Me d J 5 4 (Suppl 1):25-40 . (2000) Radia l uni t hypothesi s o f neocortica l ex pansion. Novarti s Found Sym p 228:30-42. (2002) Neurogenesi s i n adul t primates . Pro g Brain Res 138:3-14. Rakic P , Stensaa s LJ , Sayr e E , Sidma n R L (1974 ) Computer-aided three-dimensiona l reconstructio n and quantitativ e analysi s of cell s fro m seria l elec tron microscopi c montages o f foetal monke y brain. Nature 250:31-34. Ramon y Cajal S (1909-1911) Histology of th e Nervous System. (Trans , b y Swanso n N , Swanso n LW ) Oxford Universit y Press, New York. Resnicoff M, Cui S, Coppola D , Hoek JB, Rubin R (1996a) Ethanol-induced inhibitio n o f cel l proliferatio n i s modulated b y insulin-lik e growt h factor- I recepto r levels. Alcohol Clin Exp Res 20:961-966. Resnicoff M, Li W, Basak S, Herlyn D, Baserga R, Rubin R (1996b) Inhibitio n o f ra t C 6 glioblastom a tumo r growth b y expression o f insulin-like growth facto r I receptor antisens e mRNA . Cance r Immuno l Im munother 42:64-68. Resnicoff M , Rubin i M , Baserg a R , Rubi n R (1994 ) Ethanol inhibit s insulin-like growth factor-1-mediated
signalling an d proliferatio n o f C 6 ra t glioblastom a cells. Lab Invest 71:657-662. Rich JN , Zhan g M , Datt o MB , Bigne r DD , Wan g X F (1999) Transformin g growt h factor-beta—mediate d pi5 (INK4B ) inductio n an d growt h inhibitio n i n astrocytes i s SMAD3-dependen t an d a pathwa y prominently altere d i n huma n gliom a cel l lines . J Biol Chem 274:35053-35058 . Robe PA , Registe r B , Mervill e MP , Bour s V (2000 ) Growth regulatio n o f astrocyte s an d C 6 cell s b y TGFpl: correlatio n wit h ga p junctions . Neurore portl 1:2837-2841. Rozovsky I , Finc h CE , Morga n T E (1998 ) Age-relate d activation o f microglia an d astrocytes : i n vitro studies sho w persistent phenotypes o f aging, increase d proliferation, an d resistanc e t o down-regulation . Neurobiol Aging 19:97-103. Samuelsen GB , Larse n KB , Bogdanovic N , Laurse n H , Graem N , Larse n JF , Pakkenber g B (2003 ) Th e changing numbe r o f cells i n th e huma n feta l fore brain an d it s subdivisions : a stereologi c analysis . Cereb Cortex 13:115-122 . Sanai N, Tramontin AD , Quiiiones-Hinojosa A, Barbara NM, Gupt a N , Kunwa r S , Lawto n MT , McDer mott MW , Pars a AT , Garcia-Verdug o JM , Berge r MS, Alvarez-Buyll a A (2004) Uniqu e astrocyt e rib bon i n adul t huma n brai n contain s neura l ster n cells bu t lack s chai n migration . Natur e 427 : 740-744. Sasahara M, Frie s JW, Raines EW, Gown AM , Westrum LE, Frosc h MP , Bonthron DT , Ros s R , Collins T (1991) PDG F B-chai n i n neuron s o f th e centra l nervous system , posterio r pituitary , and i n a trans genie model. Cell 64:217-227. Saner F C (1936 ) Th e interkineti c migratio n o f embryonic epithelial nuclei . J Morphol 60:1-11. Saner ME , Chittende n A C (1959 ) Deoxyribonticlei c acid content o f cell nucle i i n the neura l tube o f the chick embryo : evidenc e fo r intermitoti c migratio n of nuclei. Exp Cell Res 16:1-6. Saner ME , Walke r B E (1959 ) Radiographi c stud y of interkinetic nuclea r migratio n i n th e neura l tube . Proc So c Exp Biol 101:557-560 . Schlessinger AR , Cowan WM , Swanso n L W (1978) Th e time of origin of neurons i n Ammon's horn an d th e associated retrohippocampa l fields . Ana t Embryo l 154:153-173. Schmechel DE , Raki c P (1979 ) A Golgi stud y of radial glial cell s i n developin g monke y telencephalon : morphogenesis an d transformatio n into astrocytes . Anat Embryol 156:115-152 . Shoukimas GM, Hind s J W (1978) Th e developmen t o f the cerebra l corte x i n th e embryoni c mouse : a n electron microscopi c seria l sectio n analysis . J Comp Neurol 179:795-830 .
198 ETHANOL-AFFECTE D DEVELOPMEN T Siegenthaler JA , Mille r M W (2005a ) Ethano l disrupt s cell cycl e regulatio n i n developing ra t cortex: inter action wit h transformin g growth facto r (31 . J Neu rochem 95:902-912. (200 5b) TGFpl promote s cel l cycl e exi t throug h the CK I p21i n th e developin g cerebra l cortex . J Neursci 25:8627-8636. Singh SP , Ehman n S , Snyde r A K (1996 ) Ethanol induced change s i n insulin-lik e growth factor s and IGF gen e expressio n i n th e feta l brain . Pro c So c ExpBiolMed212:349-354. Singh SP , Srivenugopal KS , Ehmann S , Yuan XH, Snyder A K (1994 ) Insulin-lik e growth factor s (IGF- I and IGF-II) , IGF-bindin g proteins , an d IG F gen e expression in th e offsprin g o f ethanol-fed rats . J Lab ClinMed 124:183-192 . Smith TL, Navratilova E (2003) The effec t o f ethanol exposure o n mitogen-activate d protei n kinas e activity and expressio n in culture d ra t astrocytes. Neurosci Lett 341:91-94 . Snyder AK, Singh SP, Ehmann S (1992) Effects of ethanol on DNA , RNA, and protei n synthesi s in ra t astrocyte cultures. Alcohol Clin Exp Res 16:295-300. Takahashi T , Nowakowsk i RS, Cavines s V S J r (1995 ) The cel l cycl e o f th e pseudostratifie d ventricula r epithelium o f the embryoni c murine cerebral wall. J Neurosci 15:6046-6057 . (1996) The leaving or Q fraction of the murine cere bral proliferative epithelium: a general model o f neocortical neuronogenesis. J Neurosci 16:6183—6196 . Tamamaki N , Fujimor i KE , Takauj i R (1997 ) Origi n and rout e of tangentially migratin g neurons i n th e developing neocortica l intermediat e zone . J Neu rosci 17:8313-8323 . Tarabykin V, Stoykova A, Usman N, Gruss P (2001) Cor tical uppe r laye r neuron s deriv e fro m th e subven tricular zone a s indicated b y Svetl gen e expression . Development 128:1983-1993 . Thomaidou D, Mione MC , Cavanag h JF , Parnavelas JG (1997) Apoptosis and its relation to the cel l cycle in the developin g cerebra l cortex . J Neurosc i 17 : 1075-1085.
Valles S , Sancho-Tell o M , Mifian a R , Climen t E , Renau-Piqueras J , Guerri C (1996 ) Glia l fibrillary acidic protei n expressio n i n ra t brain an d i n radia l glia cultur e i s delaye d b y prenata l ethano l expo sure. J Neurochem 67:2425-2433. Voigt T (1989 ) Development o f glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radia l glia into astrocytes. J Comp Neurol 289 : 74-88. Waechter R , Jaensc h B (1972 ) Generatio n time s o f th e matrix cell s durin g embryoni c brai n development : an autoradiographi c stud y i n rats . Brai n Re s 46 : 235-250. Wagner JP, Black IB, DiCicco-Bloom E (1999) Stimula tion o f neonata l an d adul t brai n neurogenesi s b y subcutaneous injectio n o f basi c fibroblas t growt h factor. J Neurosci 19:6006-6016 . Watterson RL , Veneziano P, Bartha A (1956) Absence o f a true germinal zone in neural tubes of young chick embryos a s demonstrate d b y th e colchicin e tech nique. Anat Rec 124:379 . Waziri R , Kamat h SH , Sah u S (1981 ) Alcoho l inhibit s morphological an d biochemica l differentiatio n of C 6 glia l cell s i n culture . Differentiatio n 18 : 55-59. Weise B , Jane t T , Groth e C (1993 ) Localizatio n o f bFGF and FGF-receptor in the developing nervou s system o f the embryoni c an d newbor n rat . J Neu rosci Res 34:442-453. Wichterle H , Turnbull DH , Nery S, Fishell G , AlvarezBuylla A (2001 ) In utero fat e mappin g reveal s distinct migrator y pathways and fate s o f neurons bor n in th e mammalia n basa l forebrain . Developmen t 128:3759-3771. Yeh HJ , Rui t KG , Wan g YX , Park s WC, Snide r WD , Deuel TF (1991 ) PDGF A-chain gene is expressed by mammalia n neuron s durin g developmen t an d in maturity . Cell 64:209-216. Zhu Y, Li H, Zhou L, Wu JY, Rao Y (1999) Cellula r an d molecular guidance of GABAergic neuronal migration fro m a n extracortica l origi n t o th e neocortex . Neuron 23:473-485.
12
Effects of Ethanol on the Regulatio n of Cell Cycle i n Neural Ste m Cells W. Michael Zawada Mita Das
The effect s o f early exposure to ethanol o n th e pro liferation o f neurona l precursor s ar e describe d i n Chapter 11 . Th e presen t chapte r discusse s the ef fects o f ethanol on th e cel l cycl e with the particular reference t o neura l ste m cell s (NSCs ) i n th e devel oping brain . Relativel y littl e i s know n abou t th e mechanism b y which ethano l affect s th e cel l cycl e machinery i n NSC s becaus e mos t studie s focu s on the effect s o f ethanol on other cel l types . Understanding ho w ethano l affect s th e cel l cycl e o f NSCs migh t be valuable i n the contex t of treatment of ethanol-induce d developmenta l defects , suc h as those observed in fetal alcohol spectru m disorders (FASD). Befor e delvin g int o th e effect s o f ethano l on th e progressio n o f th e cel l cycle , NSC s an d the majo r molecula r component s o f cel l cycl e ar e defined.
DEFINITION O F NEURAL STEM CELLS
Origin of Neural Ste m Cells Stem cell s mak e the developmen t an d maintenanc e of mammalia n tissue s an d henc e organ s possible. Embryonic stem (ES) cells reside in the inne r mass of a blastocyst, are pluripotent, and are capable of generating cells o f all three primar y germ lineages (endo derm, mesoderm , an d ectoderm. ) A subdivisio n of the ectoderm , neuroectoderm , give s rise to th e cen tral nervous system (CNS). In the developing CNS, a subset of stem cells known as NSCs shape s the struc tural and functional layout of the brain. Neural stem cells ar e define d a s cells with a high proliferative capacit y tha t allow s fo r self-renew 7al, retention o f multilineag e potentia l (multipotency) ,
199
200 ETHANOL-AFFECTE D DEVELOPMEN T and clonality , which permit s a single NS C t o gener ate progeny with the sam e multi-lineag e potentia l a s its own. In contrast, neurona l precursors are probably best define d a s a type of stem cel l tha t i s oligopotent, that is, capable o f generating onl y a few selected type s of cells , i n thi s cas e neurons . Althoug h adul t brai n NSCs ar e less abundant an d generall y characterize d by a reduce d proliferativ e potential (se e Cel l Cycl e of Ste m Cells) , the y maintai n th e homeostasi s o f cell pool s wit h hig h turnove r rates , suc h a s granule cell neuron s o f th e hippocampu s an d granul e an d periglomerular interneurons of the olfactory bulb. Characteristics of Neural Stem Cells During development o f the CNS, tw o distinct populations o f NSC s exist . Th e firs t populatio n consist s o f relatively homogenous populatio n tha t participate s i n neural tub e formation . Thes e cell s ar e primaril y located in the ventricular zone (VZ) and lack expression of markers typical of differentiated neura l cells . Their proliferation an d surviva l are controlled b y transmissible protein s suc h a s basi c fibroblas t growt h facto r (bFGF or FGF-2) (Kilpatrick and Harriett , 1995) . Mitotically activ e cell s derive d fro m th e V Z con tribute t o derive d proliferativ e zones suc h a s the sub ventricular zone (SZ ; also known as the subependymal zone) i n th e cas e o f th e telencephalon . Thi s zon e grows as the VZ diminishes in thickness (Miller, 1989) . With th e ris e of the SZ , a second identifiabl e population o f NSC s appear s (Reynold s an d Weiss , 1992 , 1996). These stem cells proliferate in response to both bFGF an d epiderma l growt h facto r (Vescov i e t al. , 1993). Thus , during the secon d hal f o f telencephali c generation, tw o populations o f NSCs exist, a principal population i n th e V Z an d a growin g populatio n i n the SZ. Despite differences i n the VZ and SZ, both popu lations shar e similaritie s in protei n expression . Cell s in thes e zone s expres s nestin , ATP-bindin g cassett e protein (ABCG2) , telomeras e revers e transcriptas e (TERT), telomerase-repeat-bindin g facto r (TRF ) 1 , and TRF 2 (Klappe r e t al, 2001) . Moreover , telom erase activit y is detectable i n bot h th e V Z and SZ . A fuller descriptio n o f telomerase i s provided i n the sec tions Stem Cells , and Telomerase . In addition t o the VZ and SZ , NSCs, some radial glia, and cell s expressing glial fibrillary acidic protein (GFAP) hav e bee n postulate d t o b e ste m cell s (Doetsch e t al. , 1997 ; Garcia-Verdug o e t al. , 1998 ;
Hartfuss e t al. , 2001 ; Alvarez-Buyll a an d Garcia Verdugo, 2002) . I t shoul d b e note d tha t expressin g GFAP doe s no t necessaril y mean tha t a cell i s an astrocyte. Rather , it means that a cell expresses an inter mediate filamen t als o expresse d b y astrocytes . Fo r example, radia l gli a ca n expres s GFAP , bu t the y d o not appea r t o b e astrocytes . Instead , the y hav e trait s associated wit h NSCs, such a s the abilit y to generat e neurons an d glia . Consequently , th e effect s o f ethanol exposur e o n GFAP-positiv e cell s an d radia l glia during development also have wide-ranging consequences fo r NSCs (see Chapters 1 3 and 18) . In adul t rodents, four distinc t cell type s have bee n identified in the SZ (Doetsch e t al., 1997). They can be discriminated on th e basis of the lengt h o f their cell cycle and ultrastructural characteristics. These are (1) proliferating migratory neuroblasts (type A cells), (2) slowly dividing astrocyte s (typ e B cells) , (3 ) rapidl y dividing progenitors (typ e C cells) , and (4 ) ependyma (typ e D cells) tha t lin e th e ventricula r wall. Whether ependy mal cells themselves ar e stem cells is contested (Chias son e t al. , 1999 ; Johansson et al. , 1999 ; Spassky et al. , 2005). Furthermore , parenchyma l cell s positiv e fo r neural cel l adhesio n molecul e an d transdifferentiate d cells are candidates for NSCs (Pevny and Rao, 2003). Symmetric and Asymmetric Cell Division among Neural Stem Cells Like othe r type s o f stem cells , NSC s underg o eithe r symmetric o r asymmetri c cel l division s (Zhong , 2003). During a symmetric cel l divisio n both daugh ter cell s shar e th e sam e fate . Accordingly , bot h cell s remain in the proliferative population o r both exi t the cell cycle . I n contrast , a n asymmetri c divisio n pro duces tw o cells wit h different fates . For example, on e remains a stem cel l an d th e othe r assumes a defined phenotype such as that of a neuronal progenitor. Ho w is this fate determination possible ? Although mitoti c cel l divisio n produce s tw o daughter cell s containin g identica l geneti c material , the epigeneti c molecule s withi n th e cytoplas m ca n be distribute d unequall y betwee n th e tw o daughte r cells. Such differentia l distributio n of cytoplasrnic determinants i s postulate d t o affec t cel l fat e decision s (Zhong, 2003) . Asymmetric cel l divisio n is indeed a fundamental attribut e o f ste m cells , becaus e fo r a stem cell both t o self-renew and to produce differenti ated progeny , th e cel l mus t hav e an abilit y to divide asymmetrically. A specifi c exampl e o f asymmetri c
EFFECT OF ETHANO L ON NEURA L STE M CELL S 20 1 cell divisio n come s fro m th e Drosophila CN S i n which a neuroblas t give s ris e t o a smalle r daughte r cell know n a s th e ganglio n mothe r cel l (GMC) . A GMC i n turn produces two neurons or glial/neuronal siblings (Doe et al., 1998), Among severa l componen t protein s tha t partici pate i n asymmetri c division s in Drosophila, prosper o and Num b are retained in the basa l region of a dividing neuroblast at metaphase and preferentiall y segregate int o th e ganglio n mothe r cel l (Knoblic h e t al. , 1995). Although tracing cell lineage trees is currently impossible in vertebrates in vivo, it is feasible to trace the progen y of single cells labeled retrovirally . Other methodologies fo r tracing stem cell s i n vivo , suc h a s transplantation o f labeled cells , ar e discusse d belo w in th e sectio n Us e of Neural Ster n Cel l Transplanta tion to Examine the Effect s o f Ethanol o n Cell Regulation In Vivo . A discussion on the asymmetri c cel l division i s particularly relevan t here , becaus e asym metric distributio n o f cytoplasmi c determinant s i s cell-cycle dependent . Althoug h i t i s no t know n whether ethanol ca n disrupt this distribution, the possibility exists because th e asymmetri c cell divisio n occurs early in the proces s of fate determination . Thus , even small changes during this period might result in substantial abnormalities later in development. Markers of NSC Populations No discussio n o f NSC s i s complet e withou t a n at tempt t o defin e the m b y mean s o f unique ste m cel l markers. Although n o absolut e marke r fo r NSCs exists, th e presenc e o f a hematopoieti c ste m cel l marker, C D (cel l determinant ) 13 3 (know n a s prominin i n rodents) , i s require d fo r th e clonogeni c NSCs tha t self-rene w and retai n niultilineage differ entiation propertie s (Uchid a e t al. , 2000) . Suc h clonogenic NSC s ca n b e derive d fro m huma n feta l brain tissue s by fluorescence-activate d cel l sortin g for cells that are GDI33% CD34-, CD45~, and CD23-710. These cell s appea r t o be th e onl y huma n feta l brain cells that display clonogenic characteristics , retain th e ability t o differentiat e int o bot h neuron s an d glia , and participat e i n a neurogeneti c progra m following transplantation int o th e roden t CN S (Uchid a e t al. , 2000; Tamaki et al., 2002). Evidence o f the importanc e o f CD 133 as an indi cator o f "sternness" (i.e., their proliferative an d differ entiative potential ) wa s discovered whe n testin g th e cancer ste m cel l hypothesis . A s few as 10 0 CD133 +
cells isolate d fro m huma n brai n tumor s giv e ris e t o phenotypically identica l tumor s whe n transplante d into brain s o f immunodeficien t mic e (Sing h e t al. , 2004). B y contrast, th e CD133 " cells fai l t o produc e tumors in these transplants, even when engrafte d as a bolus of 10 5 cells. These findings do not imply that all NSCs are tumorigenic, but that stem cells introduce d into th e brai n ectopicall y and/o r a t a n inappropriat e time hav e a capacity for tumor generation . Althoug h GDI33 labelin g ha s been use d mostl y fo r detectio n of human NSCs , expressio n of other potentiall y useful marker s fo r NSC s suc h a s Sox-1 , Sox-2 , nestin , musashi, Hu , neuralstemnin , Le X (trisaccharid e 3 frucosyl-N-acetyllactosamine)/stage-specific embryoni c antigen 1 , an d ABCG 2 ha s bee n use d t o identif y NSCs i n a variet y o f specie s (Capel a an d Temple , 2002; Pevny and Rao , 2003).
CELL CYCLE
The mos t fundamenta l property of living organisms is their abilit y to reproduc e themselves . This property is based upo n th e featur e that cell s ar e able t o duplicat e by a process known as the cel l o r mitotic cycle. Mammalian brai n developmen t depend s o n a precis e sequence o f cell division s controlle d b y th e cel l cycle . Sculpting of the CN S an d othe r organ s in the embryo is greatly affected b y the kinetic s o f the cel l cycl e an d the qualit y o f chromosoma l replicatio n tha t occur s during this process. Alterations in the amount s of necessary trophic factor s (e.g., glucose and growth factors), mutations in the genes that control th e cell cycle (e.g., cyclins and cyclin-dependent kinases [Cdks]), and various biophysica l stresse s (e.g. , excessiv e hypoxi a an d acidemia) occur naturally . These alterations ca n affec t the cel l cycl e and resul t in stunted o r abnormal development, an d they cannot b e easily controlled. Cel l cycle regulation , an d hence , developmen t ca n b e als o affected b y unnatural causes such a s excessive ethanol consumption. Befor e discussin g the specifi c effects o f ethanol o n the cel l cycle , it is important to review the components o f cel l cycl e machiner y an d th e differ ences between th e cell cycle s of somatic and ES cells. Cell Cycle of Somatic Cells As mentione d above , th e cel l cycl e i s th e mean s b y which organism s reproduce themselves . I n virtually all cells, the cel l cycle is composed o f four discrete phases :
202 ETHANOL-AFFECTE D DEVELOPMEN T (1) the DNA synthesis phase (the S phase), (2) the cel l division phase (the M phase), and tw o gap phases, (3 ) the Gl phas e between M and S and (4) the G2 phase between S and M (Fig. 12-1). During Gl, the cell prepares for DNA replication that results in duplication of the chromosome s durin g S . The secon d ga p period , G2, i s the post-DNA synthetic phase during which the cell prepares for mitosis. The ter m cell cycle checkpoint refers t o a mechanism b y which th e cel l activel y halts the progression of the cell cycle until it can ensure that an earlier process, such as DNA replication o r mitosis, is complete. Suc h cell cycle checkpoints are mediate d by p53 at the end of Gl an d during G2 (Tabl e 12-1) . P53 is also known as a tumor suppressor and whe n inactivated permits oncogenes to promote transformation and tumorigenesis (Lowe et al., 2004). Cyclins and their partners, the Cdks, constitute th e basis o f the molecula r mechanis m tha t control s cel l cycle regulation (Fig. 12-1) (Murray , 2004). Cdks are serine/threonine protei n kinase s that requir e bindin g of a cycli n t o becom e activated . Mammalia n cell s contain multipl e Cdk s tha t ar e activate d b y multiple cyclins. Much o f the differenc e betwee n the behavior of different cyclin s reflects their location an d timin g of expression rathe r than thei r direct effects o n substrate specificity. Th e activit y of Cdks i s highly regulated b y a number of mechanisms: (1 ) the leve l of their respec tive partne r proteins , the cyclins , (2) the amount s of inhibitory proteins of the Cip/Ki p (e.g., p21, p27, and p57) and Ink4 (e.g., pi5, p!6, p!8, and p!9) familie s (Cdk inhibitors or CKIs), and (3 ) inhibitory and stim ulatory phosphorylatio n o f variou s Cd k residue s (Table 12-1 ) (Cheng , 2004 ; Siegenthale r an d Miller , 2005). High concentrations of cyclins therefore generally stimulat e cell-cycl e progressio n an d proliferatio n through activatio n of Cdks, wherea s high amount s of CKIs antagonize these processes. Cyclins ar e activatin g subunit s tha t interac t wit h specific Cdk s t o regulat e their activit y and substrat e specificity. I n mammals , thes e complexe s include : (1) the D-type cyclin s (cyclins Dl, D2, an d D3 ) tha t activate Cdk4 and Cdk6 to execute critica l regulatory events i n Gl ; (2 ) the E - and A-typ e cyclin s that activate Cdk2 to affec t event s in S including DNA replication; and (3 ) the A-typ e cyclins and B-typ e cyclins that activate Cdk l t o direct structura l and regulator y events in M (Fig . 12-1) . Inactivation o f Cdkl i n late M contributes to progression into G L In somati c cells , movemen t throug h G l an d int o S is driven by the activ e forms o f the cycli n Dl, D2 ,
or D 3 complexin g with Cdk 4 or Cdk6. This triggers an intricat e cascad e o f events. Formatio n o f a cycli n D-Cdk comple x induce s th e phosphorylatio n o f retinoblastoma (Rb ) protein (Fig . 12-2 ) (Classo n an d Harlow, 2002). Before a cell prepares to ente r a ne w cell cycl e durin g the Gl/ S transition, a critica l tran scription factor , E 2F-1 i s inactive and boun d t o Rb . Once the new cell cycle begins, Rb is phosphorylated and E 2F-1 i s partiall y release d fro m R b inhibition . This activates cell cycle regulators including cyclin A and cycli n E tha t comple x wit h Cdk 2 an d Cdc25 A phosphatase. Cdc25 A phosphatas e remove s phos phates tha t inhibi t Cdk 2 an d th e resultan t cyclin E/Cdk2 comple x furthe r phosphorylate s Rb . The re sult is a complete release of E2F and the transcriptio n of a series of genes essential for progression into S and DNA synthesis . Parallelin g thi s activit y is the direc t contribution o f the c-myc pathway to the Gl/ S transi tion b y elevatin g the transcriptio n fo r cycli n E an d Cdc25A(Fig. 12-2). In additio n t o th e positiv e regulatio n b y cyclins, Cdks ar e regulate d (1 ) b y multipl e phosphorylatio n and dephosphorylation events and (2 ) by several CKIs that physicall y associat e wit h th e cyclin-Cd k com plexes to inhibit their activities and promote cell cycle arrest or delay. Since phosphorylatio n i s fundamental to the regulation of cell cycle progression, a large subset ofDrosophila protei n kinases (kinome) studied for their necessity in the norma l cell cycle was examined by silencin g genes wit h RNA-mediate d interferenc e (Bettencourt-Dias e t al. , 2004) . O f 22 8 protei n ki nases that are down-regulated by this silencing, downregulation o f 8 0 o f the m ca n induc e cel l cycl e dysfunction. Man y o f thes e enzyme s wer e alread y known to phosphorylate microtubules , actin , an d associated proteins , but a s a consequence o f these studies, th e protei n kinase s hav e bee n assigne d ne w functions i n cel l cycle . Thes e finding s underscor e the complexit y of cell cycle regulation and the multi tude o f potentia l target s tha t ethano l migh t affec t during development. Cell cycle progression is regulated by growth factors (see Chapter 11) , the extracellular matrix, and cell-cel l contacts. Upo n deprivatio n o f cells fro m a n essentia l component (nutrient s o r growt h factors ) th e cell s become quiescen t an d ente r th e so-calle d GO-phase . This exit from th e cel l cycle can be reversible in astrocytes (L i e t al. , 1996 ; MacFarlan e an d Sontheimer , 2000) or irreversible, as evident in man y types of postmitotic neurons (Zawada et al., 1996) . In mammalian
SOMATIC CELLS
ES CELLS
FIGURE 12- 1 Cel l cycle o f embryonic ste m (ES ) an d somati c cells . Not e tha t ES cell s hav e greatl y shortene d ga p phases, exhibi t constan t expressio n o f cyclins A, E , and D , and lac k p53 checkpoints tha t allow for rapid cel l division . bFGF, basi c fibrobals t growt h factor ; IGF, instilin-lik e growt h factor ; PDGF , platelet-derived growth factor; TGFpl, transforming growth factor (31 .
203
204 ETHANOL-AFFECTE D DEVELOPMENT TABLE 12- 1 Endogenou s cel l cycl e inhibitor s slo w dow n cel l cycl e at differen t stage s by actin g on variou s cyclin-CDK complexes . Ink4 Family Cell Cycle Stage
Cyclin-Cdk Complexes plS
Gl
cyclinD-Cdk4/6 + cyclinE-Cdk2 cyclinA-Cdk2 cyclinB-Cdk2 -
Gl/S S
G2/M
pi
+
cells, th e cel l cycl e machiner y tha t determine s whether cell s continu e proliferatin g or ceas e dividing and differentiate appear s to operate mainl y in the Gl. Cell Cycle of Stem Cells Embryonic Cells In stem cells , there i s a distinct cell cycle control tha t operates i n orde r t o maintai n thei r sternness . Th e need for higher rate s of proliferation i s met b y minimizing the lengt h o f time tha t ES cell s spend i n G l and G 2 (Fig . 12-1) . Mouse E S cells have a defective Rb pathwa y an d a nonresponsiv e p5 3 pathwa y
6 pl8
+
Cip /Kip Family
p!9 p2l ++ -+
+ +
P27
pS7
+1+ -
+/+ + -
pS3 — + +
(Savatier and Malashicheva, 2004). Furthermore , ES cells hav e constitutiv e phosphatidyl-inositol-3-kinas e activity an d ectopi c cycli n E/Cdk 2 kinas e activity , features ofte n eviden t i n tumor s (Sherr , 1996) . Th e uncoupling o f G l fro m th e influenc e o f extrinsi c stimuli migh t explai n i n par t th e rapi d proliferation rate o f E S cells . Anothe r metho d throug h whic h stem cells ar e abl e t o maintai n a hig h rat e o f self renewal i s reduction i n expressio n o f CKIs, particu larly p2 1 an d p2 7 (Chen g an d Scadden , 2004 ; Siegenthaler an d Miller , 2005) . I t i s likely tha t th e distinct cell cycle profil e i n ste m cell s is mediated either b y distinc t upstrea m intracellula r mediator s o r by uniqu e combinatoria l relationship s o f commo n
FIGURE 12- 2 Majo r regulator s of cell cycl e initiatio n i n Gl . Se e tex t fo r details. Cdk, cyclin-dependent kinase , RB, retinoblastoma.
EFFECT OF ETHANO L ON NEURA L STE M CELL S 20 5 biochemical mediator s that limi t the intensit y of signals to exit the cell cycle. Stem cell s are not only key building blocks in normal developmen t bu t the y ar e als o candidates as the cell o f origin for cancer becaus e o f their pre-existing capacity o f self-renewa l an d unlimite d replicatio n (Beachy e t al. , 2004) . Cance r mos t ofte n emerge s i n those tissues undergoing constant renewal by the proliferation o f ste m cells . B y retaining o r re-acquirin g stem cell behavior, malignant cell s may be able to recreate a tumor durin g metastasis o r after therapeuti c elimination o f th e bul k o f th e tumo r populatio n (Beachy et al., 2004). Neural Stem Cells During normal developmen t o f the CNS, th e division rates o f NSC s withi n th e germina l zone s var y wit h brain regio n an d wit h tim e (se e Chapter s 2 an d 11) . The principl e of the cel l cycl e o f ES cell s (described above) composed solely of S and M no longer applies. By contrast, as the developmen t o f CNS progresses , a multitude a cel l cycl e "types " emerge s (Fig . 12-1) . These cell cycle s differ i n length , whic h i s most com monly determined by the period of time that the cel l is in Gl and/o r G2. Studies o f murine cortical neurogenesi s detail th e cell cycle over the 6-da y long process (Caviness et al., 1999). Founde r cell s an d thei r progen y underg o 1 1 cell cycles . The proportio n o f the cells becoming post mitotic increases with eac h successiv e cel l cycl e an d the length o f the cycl e increase s due to a gradual prolongation o f Gl. Gl i s characterized by two main enzymatic activities : Cdk4 i n mid-Gl an d Cdk 2 i n lat e Gl jus t prio r t o initiatio n o f S (Fig . 12-2) . A s described abov e i n Origi n o f Neura l Ste m Cells , th e SZ cells ca n b e subdivide d int o slowl y dividin g GFAP-positive (typ e B) cells , rapidly dividing transitamplifying progenitors (type C cells), and proliferating migratory neuroblast s (typ e A cells) . On e propose d model o f neurogenic program defines th e flowin g lineage progression : typ e B t o typ e C t o typ e A cell s (DoetschetaL, 1997) . The CK I p27 is an inhibito r of Cdk2 tha t can pro long th e entr y o f a proliferatin g cel l int o S . Durin g neurogenesis, loss of p27 ha s n o effec t o n th e numbe r of stem cells (type B cells), but selectivel y increases the number o f transit-amplifying typ e C cells , whil e con comitantly reducing the numbe r o f type A neuroblasts (Doetsch e t al., 2002). By contrast, NSC s i n transgenic
mice over-expressin g p27 have longer Gl (Mitsuhash i et al., 2001). The lengt h o f cell cycle (Tc) in germinal zones is under temporal and spatia l control. Fo r example, i n th e mouse , divisio n rate s ca n b e a s rapi d a s 7-10 hr i n earl y gestation an d u p t o 1 8 hr long at th e end o f cortica l neuronogenesi s (Takahash i e t al. , 1995). Likewise , the lengt h o f the cel l cycl e increases in rat cortex from 1 1 to 1 7 hr acros s the perio d o f neuronogenesis (Miller and Kuhn, 1995) . Cell cycle varies by location, too. The Tc for the rat neocortical VZ on G21 i s 1 9 hr an d 1 6 hr fo r S Z cell s (Mille r an d Nowakowski, 1991) . In the adul t brain , th e frequency of cel l proliferatio n can b e a s infrequen t a s day s o r months (Garcia-Verdug o et al., 1998 ; Morshea d e t al., 1998; Doetsch e t al., 1999) . In addition to the apparen t differences i n cell cycle lengths, the details of molecular control s dictatin g characteristics o f various cell cy cles of NSCs are speculative .
EFFECTS O F ETHANOL ON CEL L CYCLE
Somatic Cell s Reports on the effect s o f ethanol o n cell cycl e regulatory molecule s sugges t tha t th e ethanol-mediate d effects o n ke y regulator s o f cel l cycl e ar e tissue specific an d cell type dependent. Fo r example, in hu man lymphocytes , ethanol-induce d inhibitio n o f mitosis i s mediate d throug h G2/ M blockad e (Ahluwalia e t al. , 1995) . I n huma n epithelia l cells , ethanol delays cell cycle progression by up-regulating the expressio n of transcripts for p21 ( a key CKI) an d inhibiting Cdk 2 kinas e activit y i n G l (Gu o e t al. , 1997). I n epithelia l cells , thes e ethanol-mediate d ef fects on the cell cycl e are independent o f the cellula r status of a checkpoint mediator , p53. Other studies in a variet y o f tissues corroborat e th e finding s tha t spe cific CKI s serve as targets o f ethanol actions . Fo r example, a n increas e i n p2 l gen e expressio n upo n ethanol infusio n ha s bee n reporte d i n th e isolate d perfused hear t (Jankal a et al., 2001) . Hepatocyte proliferation afte r partia l hepatectom y i s als o inhibite d by ethano l throug h amplificatio n o f Gl checkpoin t mechanism involvin g inductio n o f p21 gen e an d in hibition o f cyclin D (Koteis h et al., 2002) . Yet the ef fects o f ethano l migh t no t influenc e onl y a singl e phase o f the cel l cycle . Transient blockade o f cell cycle a t G2/ M an d preventio n o f the cel l fro m exitin g the cycl e b y ethanol exposur e hav e been show n i n a
206 ETHANOL-AFFECTE D DEVELOPMENT fibroblastic cel l lin e derive d fro m activel y dividing mouse connectiv e tissu e (Mikami etal., 1997) . Ethanol intak e by pregnant rat s inhibits growth of the intestina l epitheli a (Pere s e t al. , 2004) . Ethano l substantially attenuates cryp t cell proliferatio n in bot h the jejunu m an d ileu m an d prolong s cel l cycl e tim e among crypt cells. In ethanol-fe d rabbits , neo-intima l hyperplasia i n coronar y arteries following balloo n an gioplasty is diminished (Merrit t et al., 1997) . Similarly , local deliver y o f ethano l b y balloo n catheter s i n balloon-injured coronar y arterie s inhibit s intima l hy perplasia (Liu et al., 1997). In cultured vascular smooth muscle cells , ethano l inhibit s the progressio n o f cells from th e Gl t o S by modulating the expression/activity of key regulatory molecules of the cycl e (Sayeed et al., 2002). I n particular , ethano l induce s th e expressio n of p21 , inhibit s Cdk 2 activity , and halt s th e induc tion o f cycli n A , resultin g i n a decreas e o f hyper phosphorylation of Rb and failure to initiate a new cell cycle. Cumulatively , report s o n ethanol-mediate d ef fects on the cell cycle of somatic cells suggest that p21, the ke y negative regulator of mammalian cell cycle, is an important target of ethanol. Despite a n overwhelmin g number o f reports sup porting th e anti-proliferativ e rol e o f ethanol, instea d of perturbin g th e cel l cycl e progression , it s action s can actually induce the cell cycle in certain cell types under particula r conditions . I n suc h cases , reduce d expression o f cel l cycl e inhibitor s upo n exposur e t o ethanol accelerate s progressio n from th e G l t o S. Indeed, ethanol-mediate d inhibitio n o f pi8, pi9 , an d p21 expression, increased R b phosphorylation and in creased proliferation have been reported i n squamous cell carcinoma cell lines of the head and nec k (Hager et al., 2001; Kornfehl e t al., 2002). Increased hepato cyte proliferation in rat s after chroni c ethanol feedin g has als o bee n demonstrate d b y severa l investigator s (Chung e t al., 2001). Immortalized NSCs , grown under proliferation-encouragin g conditions , als o re spond t o ethano l b y increasin g th e rat e o f thei r division (Morgan et al., 2003) (described i n mor e detail below) . Likewise, following prenata l exposur e to moderate amount s o f ethanol , S Z cel l proliferatio n increased (Mille r and Nowakowski , 1991) becaus e of recruitment o f cells int o th e cyclin g population, no t because o f a decrease i n the Tc or the lengt h o f the Gl. Take n together , thes e findings indicate tha t th e effects o f ethanol o n cel l cycle progressio n are highly variable an d depen d o n th e molecular , cellular , and system contexts under which they occur .
Stem Cells Neural Stem Cells Mechanisms o f neuronogenesis durin g developmen t (Miller, 1986 ) an d adulthoo d (Herrer a e t al. , 2003 ) are affecte d b y ethano l (se e Chapter s 1 1 an d 13) . Much of the followin g discussion is based on findings from adul t NSCs, as studies examining molecular de tails of cell cycl e modulatio n b y ethanol durin g brain development ar e few . Nonetheless , approache s an d findings presented her e should b e usefu l i n studying effects o f ethanol o n th e characteristic s o f cell cycl e in the cours e of neurogenesis. Both bing e (Nixo n an d Crews , 2002) an d chroni c (Miller, 1995; Rice etal., 2004; He etal, 2005) ethanol consumption reduc e the postnatal proliferation of neural progenito r cell s i n th e S Z o f the latera l ventricl e and th e intrahila r zone (IHZ ; also known a s the sub granular zone) o f the dentat e gyrus. Adult rats receiving liquid diet containing ethanol (6.5 % v/v) for 3 days reduced thei r neura l progenito r proliferatio n i n th e IHZ a s evidenced b y a decrease i n the numbe r of cells that incorporat e bromodeoxyuridin e (BrdU ) (Ric e et al., 2004). I n contrast, animal s receiving an ethano l diet fo r 1 0 or 3 0 days n o longe r displa y reduced pro genitor proliferation , indicating activation o f a com pensatory respons e t o th e actio n o f ethanol . A t leas t during the early postnatal period, the effect s o f ethanol are concentration-dependen t (Miller , 1995) ; hig h doses inhibi t cel l proliferatio n an d lowe r dose s ar e stimulatory. Durin g feta l development , ethano l migh t also stimulate proliferatio n of neural progenitor s a s illustrated by enhanced proliferatio n of cerebral cortical neuroepithelial precursor s upo n exposur e t o alcoho l (Miller an d Nowakowski , 1991 ; Miller , 1995 ; Santil lano e t al. , 2005) . Treatment wit h ethano l fo r 4 days increases th e size , variation , an d numbe r o f cortica l precursor neurospheres , induces S , and increase s pro gression through G2/ M (Santillano et al., 2005). Analysis of the effect s o f ethanol o n postnata l neu rogenesis shoul d b e conducte d i n term s o f the fina l numbers of cells generated an d retained. This measure is affected b y not only the rat e of cell proliferation, but also b y the rat e o f cell deat h (Miller , 2003) . The im portance o f thi s approac h ha s been documente d b y studies reportin g tha t ethano l actuall y increase s cel l proliferation an d concomitantl y increases cell death as determined wit h terminal deoxynucleotid e transferasemediated deoxyuridin e triphosphate nick-en d labelin g
EFFECT OF ETHANO L ON NEURAL STEM CELLS 20 7 (TUNEL) (Pawlak et al., 2002; Miller, 2003). TUNEL identifies nucleosome-sized products of DNA degradation. These finding s underscor e the complexit y of the effects o f ethanol o n cel l cycl e and cel l survival . On e study explores the effect s o f a 24 hr exposure to ethanol on C17.2 cells, a line of NSCs derived from a postnatal mouse cerebellu m (Morga n e t al. , 2003) . Exposure to ethano l double d th e numbe r o f survivin g NSCs when grown under proliferation-favoring culture conditions (10% serum/uncoated culture plate). In contrast, ethanol reduces the number of NSCs grown under dif ferentiating condition s (1.0 % serum/poly-L-lysine coated cultur e plate) . A s thi s NS C lin e ha s bee n immortalized with v-myc, it is conceivable tha t the in crease i n proliferatio n of C17. 2 durin g exposur e t o ethanol i s related t o the effect s o f ethanol o n the activity of the oncogene , v-myc. Oncogenes ar e known activators of telomerase, which in turn maintains telomere length necessar y for unabated proliferatio n (see Ste m Cells, and Telomerase, below). Mechanisms Underlying Cell Cycle Despite th e abundance o f literature describing the effects o f ethano l o n neura l progenito r proliferatio n during neurogenesis , onl y a fe w studie s hav e exam ined th e molecula r mechanism s mediatin g thes e changes. One o f the few models used to date is that of cerebellar neurogenesis . Cerebella r granul e neuron s represent a majo r neurona l typ e i n th e cerebellu m and aris e fro m th e proliferatin g externa l germina l layer durin g th e firs t 2- 3 postnata l week s i n th e ra t (Miale an d Sidman , 1961 ; Altman , 1972) . Cycli n A and Cdk2 , tw o positiv e regulator s o f th e cel l cycle , exert contro l ove r neurogenesi s i n th e developin g cerebellum (L i et al., 2002) . Cerebellar granul e pro genitors expres s predominantly Cdk 2 (Courtne y an d Coffey, 1999 ; L i e t al. , 2001) . L i an d colleague s (2002) repor t tha t i n cerebella r granul e progenitor s derived from 3-day-ol d rat pups, ethanol exposure decreases th e expressio n o f Cdk 2 an d cycli n A . Thi s ethanol-mediated reduction o f Cdk2/cyclin A expression ma y induce cell cycl e arrest in neuronal precursors by increasing the duration of Gl an d S. P27, a negative regulator of the cell cycle, plays an important role during neurogenesis of the developin g cerebellum. I n th e neonata l cerebellum , p2 7 i s severely down-regulated after earl y postnatal exposure to ethanol (L i et al., 2002). P27 induces cell cycle arrest in neuronal precursors and accelerate s differentiatio n
of neurons (Perez-Juste and Aranda, 1999; Farah et al., 2000; Miyazaw a et al. , 2000) . Repressio n o f p2 7 b y ethanol exposur e may reactivat e postmitotic neurons and evok e apoptoti c cel l death . Collectively , report s on the effect s o f ethanol o n neurogenesis suggest that p27, Cdk2 , an d cycli n A ar e primar y targets o f th e ethanol i n the developing cerebellum. Unfortunately, such detailed analysis of cell cycle proteins during prenatal exposure to ethanol i s unavailable. Different neurona l population s fro m divers e locations in the developing brain exhibit different degrees of susceptibilit y t o ethano l toxicit y (Maie r e t al. , 1999). Ethano l als o inhibits carbachol-induced DN A synthesis o f astrogli a (Guizzett i e t al. , 2003) . Mus carinic agonist-drive n progression from th e G l t o S also ca n b e affecte d b y ethano l i n thes e cell s (Guizzetti an d Costa , 1996 ; Guizzett i e t al. , 2003). Taken together , thes e report s o n ethanol-induce d ef fects o n th e cel l cycl e o f differen t neurona l an d as troglial population s sugges t tha t S an d G l ar e th e primary targets of ethanol-induced effects . Not onl y ca n cel l cycl e pathway s b e studie d i n vitro and i n vivo (see Use of Neural Stem Cell Transplantation t o Examine the Effect s o f Ethanol on Cell Cycle Regulation In Vivo), but gene array technology makes i t possibl e t o scree n ste m cell s fo r ethanol niediated gene expressio n patterns in a n effor t t o discover ne w ethanol-responsiv e genes . A repor t b y Treadwell and Sing h (2004), who used microarrays of adult mous e brai n gen e expressio n followin g acut e ethanol exposure , suggest s that a significan t proportion of ethanol-responsive gene s have roles in cell cycle transitio n an d arrest . Th e genes , p2 l an d th e growth arres t an d DN A damage-inducibl e gen e (Gadd45r), ar e up-regulate d i n respons e t o ethanol . P21 an d Gadd45 r ar e implicate d i n bot h p53 mediated an d p53-independen t inductio n o f G l growth arres t i n respons e t o ethano l an d oxidativ e stress (Guo et al., 1997; Kitamur a et al., 1999). The molecula r mechanism s o f ethanol-induce d effects o n cel l cycl e involv e ethanol-responsiv e ele ments o n promoter s o f targe t genes . Ethano l alter s the expressio n an d DN A bindin g activit y of various transcription factors , suc h a s activatin g protei n 1 (AP-1), nuclear facto r K-B , an d earl y growth response gene (Beckman n e t al. , 1997 ; Ceber s e t al. , 1999 ; Fried e t al, , 2001 ; Acquaah-Mensa h e t al. , 2002) . These transcriptio n factors regulat e the transcriptio n of genes encoding cyclins , Cdks, and CKI s (Sylvester et al., 1998 ; Beie r et al., 2000; Milde-Langosch et al.,
208 ETHANOL-AFFECTE D DEVELOPMENT 2000; Passegu e an d Wagner, 2000 ; Henniga n an d Stambrook, 2001) . AP- 1 bind s t o th e cAMP responsive elemen t i n th e promote r o f cyclin A gene (Sylvester e t al. , 1998 ; Beie r e t al. , 2000 ) an d en hances transcription of cyclin A. Suppression of AP-1 activity b y prenata l ethano l exposur e (Acquaah Mensah e t al. , 2002 ) inhibits the transcriptio n of cyclin A in developin g cerebellum . Give n th e critica l role of Cdks and CKI s in neurogenesis , disruption of the Cdk/CKI system may be the mechanis m underly ing ethanol-induce d damag e o f man y developin g CNS nuclei, includin g the cerebellum . Telomerase A potential opportunit y for ethanol t o influence stem cell proliferatio n i s t o affec t th e chromosoma l ter mini, the telomeres . In all vertebrates, telomeres con sist o f non-coding G-rich DN A repeat s (TTAGGG) . These specialized chromati n structure s are necessar y for successfu l cel l divisio n an d ar e shortene d wit h each roun d o f DN A replication . The y ca n als o b e preserved b y elongatio n mediate d b y a n enzym e called telomerase. I n norma l huma n somati c cells , consecutive round s o f telomer e shortenin g induc e replicative senescence, particularl y in the absenc e o f telomerase. Los s o f TTAGG G sequence s lead s t o telomere dysfunctio n characterize d b y end-to-en d chromosome fusio n tha t result s i n genomi c instabil ity. Telomere s ar e protecte d b y a collectio n o f pro teins that , i n additio n t o telomerase , includ e several other protein s regulatin g telomer e length , includin g protection o f telomeres 1 (Lei et al., 2004) and other s (Bekaert et al., 2004). Telomerase activit y requires (1 ) the revers e transcriptase TERT and (2 ) an RN A component tha t add s TTAGG G repeat s t o th e end s o f chromosomes to prevent chromosomal shortening . Telomerase activit y in the developing rodent brain is high on gestational day (G) 1 3 but declines by G18 , remains low until postnata l da y (P) 3 , and finall y be comes undetectabl e b y P1 0 (Klappe r e t al. , 2001) . These observations are consistent with a role of telomerase i n proliferatio n o f NSCs. Interestingly, accelerated shortenin g o f telomere s i n mic e deficien t i n telomerase abrogate s proliferation of adult NSCs isolated fro m th e SZ , however , it does no t hav e that effect i n th e NSCs isolated from th e feta l brai n despite severe telomere erosio n resulting in chromosomal ab normalities and nuclea r accumulation of p53 (Ferro n et al. , 2004) . Thi s observatio n parallel s th e findin g
that mous e E S cells lac k p53-dependent checkpoint s (Savatier an d Malashicheva , 2004) . Whethe r feta l NSCs a t variou s stage s o f developmen t shar e inde pendence i s not clear , bu t variou s "types" o f cell cycles diffe r i n lengt h an d differin g expressio n pattern s of cell cycl e regulator y proteins hav e been identifie d both i n somatic cells and ES cells (Fig. 12-1) . At least som e NSC s display cell cycl e characteris tics like those o f somatic cells. This is evident in adult NSCs, whic h ca n hav e a prolonge d G O (Takahashi et al. , 1995 ; Garcia-Verdug o e t al. , 1998 ; Morshea d et al., 1998; Doetsc h etal., 1999) and those dependent on the p53 checkpoints (Meleti s et al., 2005). In neurospheres derive d fro m th e S Z o f p53-null mice , th e number of BrdU-positive cells is increased as much as 20%, whereas p2 1 conten t i s reduced (Meleti s e t al. , 2005). Concomitan t wit h thi s increase d capacit y fo r self-renewal i s a reduction i n cell death, evidence d by reduced caspase 3 activity and annexin V staining. When examining neurogenesis, it is important no t to presume tha t the protein s involve d share the sam e function a t all stages of development. Suc h i s the cas e for caspas e 3 , a pro-apoptotic protease , i n late r stages of brai n organogenesi s an d adulthood . Caspas e 3 is necessary for normal growth of morula and blastocys t embryos, a s it s inhibitio n stall s th e growt h o f suc h embryos (Zwaka etal., 2005). NSCs undergoing telomere shortening, invariabl y enter an irreversible growth arrest, an d eventuall y senesce . Developmen t o f per petual NS C line s fo r studies o n huma n feta l NSC s has bee n successfull y attempte d usin g transfectio n with a proto-oncogene, v-myc (Vill a e t al, 2004) . I n such immortalize d NSCs , v-myc maintain s hig h telomerase activit y and allow s culturing of NSCs for up to 4 years with preservation of short, but stable and homogenous telomeres . Ethanol affect s th e expression of a proto-oncogene , c-myc, but i t fails to change th e amounts of p53 in th e skeletal muscl e o f rat s expose d t o chroni c ethano l (Nakahara e t al., 2003). Prenatal exposur e to ethanol increases gestational expression of p53 in the cerebra l cortex (Kuh n an d Miller , 1998) . Thi s findin g paral lels th e effect s o f ethano l o n S Z cells , bu t whethe r ethanol alter s th e expressio n an d activit y o f onco genes and p53 in NSCs remains to be examined. Ionic an d Metabolic Homeostasis Calcium an d magnesiu m ar e bot h believe d t o pla y an importan t rol e i n cel l proliferatio n (Wol f an d
EFFECT OF ETHANO L ON NEURA L STE M CELL S 20 9 Cittadini, 1999 ; Ziesch e e t al. , 2004) . Ethano l ca n cause a decrease i n cytosolie-fre e Ca 2+ (Zhang e t al., 1992) and a rapi d depletion of intracellular Mg 2+ in vascular smooth muscl e cell s (Altur a et al., 1995) . In addition, ethano l ca n adversel y affec t mitochondria l cytochrome oxidas e (Kennedy, 1998 ) an d AT P synthesis (Dev i e t al. , 1994) . Therefore , th e effect s o f ethanol o n io n distributio n and/o r cellula r bioener getic metabolis m should no t b e overlooke d as possible modulators of cell cycle regulatory molecules an d cellular proliferation.
vivo. I n suc h labeled , transplante d ste m cell s an d their progeny , one ca n asses s the effect s o f ethanol in take o n cel l cycl e regulator y proteins . A suitabl e model o f neurogenesi s tha t i s as clos e a s possibl e t o human neurogenesi s (i.e. , transplantatio n o f huma n NSCs into a pregnant primate that i s available for examination o f effects o f ethanol o n cel l cycl e o f stem cells) has been develope d (Ouredni k e t al., 2001) (for details see section below).
USE O F NEURA L STE M CELL
It has been hypothesize d that multipl e bonafid e ste m cell pool s exis t an d represen t descendant s o f a com mon NS C (Ouredni k e t al. , 2001) . Thes e cell s emerge, b y design, in the contex t of a single developmental proces s o f allocatio n an d segregatio n during the earliest stages of eerebrogenesis and then establis h a lifelong reservoir, presumably for use i n homeostasis and repair . This phenomeno n coul d represen t a de velopmental strateg y i n whic h plasticit y i s "pro grammed" into the CN S a t the singl e cell leve l fro m the earlies t stage s o f embryogenesis . Thi s progra m depends o n both progenito r proliferatio n and differen tiation. A clon e o f NSCs o f huma n derivatio n (hNSCs ) was grafte d int o developin g brain s o f feta l bonne t monkeys (Macaca radiatd), a n Ol d Worl d monke y species (a s close a s feasible experimentally to the hu man condition ) (Ouredni k e t al., 2001) . Unilaterally injected hNSC s distribut e themselve s evenl y throughout bot h cerebra l hemisphere s an d a t all levels of the neura l axis, settling in diverse widespread regions o f the telencephalon , principally at th e fronta l and frontoparietal levels. Although individua l hNSCs are clonally related, they appear to segregate into two subpopulations. Cells i n subpopulatio n 1 traverse great distance s through th e developin g cerebru m b y migrating from the periventricula r germina l zone s alon g hos t radial glia t o terminate a t developmentally an d temporall y appropriate cortica l lamina e an d differentiat e ac cordingly int o severa l neurona l an d glia l cel l types . Those hNSC s tha t migrate d to the mor e distan t superficial neurogeni c lamina become neurons , identified b y dua l immunoreactivit y t o antibodie s agains t neuron-specific nuclea r protein , calbindin , and neu rofilament, intermixe d seamlessly with the monkey' s own neurons .
TRANSPLANTATION TO EXAMINE
THE EFFECTS O F ETHANOL ON CELL CYCLE REGULATION I N VIVO
Labeling Neura l Ste m Cell s for In Vivo Studie s Cultured cell s are much more amenabl e t o the study of cel l cycl e regulator s than ar e cell s i n situ . Therefore, mos t studie s hav e examine d NSC s tha t hav e been derive d fro m th e CN S an d experimentall y manipulated i n culture . Bot h th e remova l o f cell s from thei r natural surroundin g in the brain and artifi cial cultur e condition s contribut e t o a degre e o f un certainty a s t o whethe r observation s fro m tissu e culture truly reflect the natural responses of stem cell s in th e intac t brain. This issu e can onl y be addresse d through examinatio n of NSCs i n liv e animals. Many novel technique s ar e currentl y availabl e t o stud y NSCs i n situ. The initia l ste p o f any suc h stud y is to develo p a method fo r identifying the cell s o f interest i n vivo . A review o f these method s i s beyond th e scop e o f this chapter. Nonetheless , one approac h i s to use genetic techniques tha t allo w creatio n o f transgeni c mic e with expressio n of marker genes under NS C promot ers such a s nestin o r CD 133. Viral vectors delivering a labe l suc h a s green fluorescen t protei n o r Lac Z (3galactosidase, or the exhaustivel y used BrdU-labelin g can b e use d a s well (Zawada et al. , 1998 ; Ouredni k et al. , 2001) . Another approac h i s transplantation o f NSCs int o th e brain , following thei r e x vivo labeling and/or geneti c modification . Potentia l advantage s of this approach includ e th e abilit y to control th e num ber o f cell s t o b e studied , thei r placement , an d th e ability to follow their movement an d differentiation i n
Transplanted Huma n Neural Ste m Cells Participate i n Brain Development
210 ETHANOL-AFFECTE D DEVELOPMEN T Most hNSC-derive d neuron s are found i n superfi cial cortica l layer s II/III (which , a t th e tim e o f trans plant, profite d fro m a n intensiv e suppl y o f newl y formed neurons ) (Frant z an d McConnell , 1996) . hNSC-derived cells , that stop and integrate within the cortical layer s IV-VI, differentiat e appropriatel y int o glia, a s identifie d b y immunoreactivit y t o GFA P (fo r astrocytes) o r t o 2 /,3/-cyclic-nucleotide phosphodi esterase (fo r oligodendrocytes). Gli a o f dono r origi n are als o observe d i n th e margina l zon e (MZ ; laye r I) and i n subcortical regions. Som e donor cell s also con tribute to the populatio n o f radial glia. Cells i n subpopulatio n 2 are small , non-processbearing, undifferentiate d BrdU-positiv e cell s dis persed throughou t th e S Z a s single cell s o r a s small clusters intermingle d wit h th e germina l cell s o f th e host. When double-staine d for cell type-specifi c antigens, thes e cell s expres s vimenti n (a n immatur e progenitor/stem cel l marker) , but ar e negativ e fo r all other marker s o f differentiation . A smal l numbe r o f subpopulation 2 cells , however , ar e presen t withi n the striatu m an d cortex , intermixe d wit h the differen tiated cell s appropriate t o the specific lamina. The transplantatio n experimen t answers a numbe r of important questions concerning NSC s an d provides a model fo r studying individual NSCs during neurogenesis. (1) The dat a provid e a plausible explanatio n fo r the generatio n o f multiple, disparate stem cel l populations as part of a unitary strategy of NSC allocation . (2) The clona l progen y o f a given NSC segregat e t o yield differentiated cell s fo r organogenesis (e.g. , subpopula tion 1) , whereas others (e.g. , subpopulation 2) are de posited i n germina l zones (e.g. , the SZ ) as a reservoir. (3) Grafte d hNSC s ca n integrat e int o th e morphoge netic program of the developing primate host brain. FIGURE 12- 3 Transplante d neura l ste m cell s (NSC) . Neural ste m cell s ca n b e grow n i n vitr o and success fully transplanted int o mammalian brain for studies examining thei r survival , proliferation , differentiation , and migration. A. C17.2 murine NSCs cultured in low serum differentiate int o astrocytes (large GFAP-positive cells), whereas some remain undifferentiated an d positive fo r nesti n (fou r cell s abov e th e asterisks) . B. En largement o f the tw o nestin-positive C17. 2 ste m cell s from pane l A . C . Te n day s afte r transplantatio n int o striatum an d nucleu s accumben s o f adul t C57BL/ 6 mice, C17. 2 NSC s surviv e an d expres s activ e p galactosidase as evidenced by staining this 40 jam-thick coronal sectio n fo r 5-bromo-4-chloro-3-indoly l p d-galactopyranoside (X-gal) . D. Enlargemen t o f X-galpositive cell s i n boxe d are a i n pane l C . E . Fou r markers of various stages of cell cycle. Shown here are:
Examination o f Cell Cycle Machinery I n Vivo Although th e mode l o f neurogenesis described abov e is instructive, it is very labor intensive and costly . Simpler model s hav e bee n developed . A prototypica l NSC-line, C17.2 , ha s bee n derive d fro m postnata l murine cerebellum . Thes e cell s ar e nestin-positiv e and differentiat e int o neurons, astrocyte s (Fig. 12-3) , and oligodendrocyte s i n culture . C17. 2 cell s ar e proliferating cel l nuclea r antige n (PCNA ) tha t label s the entir e cel l cycle , Ki-6 7 (nearl y entire cycle) , bro modeoxyuridine (BrdU) (a marker for DNA synthesis), and phosphorylated histone H 3 (pHisH3, for G2/M).
EFFECT OF ETHANO L ON NEURA L STEM CELL S 21 1 highly engraftabl e i n th e brai n and ca n b e identified by their expression of (3-galactosidase (Fig. 12-3) . Immunocytochemical determinatio n o f th e particula r phase i n whic h NSC s ar e presen t i s als o possible . Four commo n cel l cycl e markers , proliferatin g cell nuclear antigen that labels the entir e cell cycle , Ki-67 (nearly entir e cycle) , Brd U (DN A synthesis) , an d phosphorylated histone H3 (pHisH3, for G2/M), have been commonl y use d (Fig . 12-3) . I n on e elegan t study, these markers were used to determine that morphine induce s premature mitosi s in proliferating cells in the adult mouse S Z (Mandyam et al., 2004). Commercially availabl e antibodie s agains t cyclins , Cdks , and CKI s ar e usefu l fo r exploratio n o f expressio n of cell cycle mediators in even greater detail .
CKI cyclin-dependen t kinas e inhibitor CNS centra l nervous system ES embryoni c stem FASD feta l alcoho l spectru m disorders G gestationa l day Gadd45 growt h arres t an d DN A damag e in ducible GFAP glia l fibrillary acidic protein GMC ganglio n mothe r cel l hNSC huma n neura l stem cel l IHZ intrahila r zone Ki-67 proliferation-associate d nuclear antigen MZ margina l zone NSC neura l stem cel l
SUMMARY AND CONCLUSION S Prenatal exposur e t o ethano l ca n lea d t o FASD . Ethanol in the developin g brain not only triggers cell death, bu t als o negativel y affect s cel l division . Sinc e the lengt h o f the cel l cycle differs fo r ES cells , NSCs , and somati c cells , th e effec t o f ethanol o n cel l cycl e progression varies in these cel l populations and i s developmentally controlled . Take n together , ethano l generally reduces proliferatio n of NSCs during brain development b y affectin g th e expressio n of Cdks, cyclins, and CKIs such a s p21 and p27 . Although thes e complex response s are cell-typ e dependent , an d spa tially and temporarily controlled, th e net result generally i s prolongatio n o f ga p phase s o f th e cel l cycle , particularly Gl . Othe r potentia l cel l cycle-alterin g targets o f ethano l i n NSC s migh t b e telomerases , transcription factors , and protein s regulatin g cellula r bioenergetics. With th e adven t of novel technologies, many ne w cel l cycl e regulator s are bein g discovere d and wil l become importan t player s i n futur e studie s examining how ethanol affect s NS C proliferatio n and differentiation i n vivo. Abbreviations ABCC2 ATP-bindin g cassett e protei n AP-1 activatin g protein-1 bFGF basi c fibroblast growth factor (als o known as FGF-2 ) BrdU bromodeoxyuridin e CD 13 3 cel l determinan t Cdk cyclin-dependen t kinase
P postnata l day Rb retinoblastom a SZ subventricula r zon e Tc tota l length o f the cell cycl e TERT telomeras e revers e transcriptase TRF telomerase-repeat-bindin g factor TUNEL termina l deoxynucleotid e transferase mediated deoxyuridin e triphosphat e nick-end labeling VZ ventricula r zone
ACKNOWLEDGMENTS Th e author s thank Andy Poc zobutt for figure design an d th e Nationa l Institut e o f Alcohol Abuse an d Alcoholis m an d th e Integrativ e Neuroscience Initiative on Alcoholism for support of our research. References Acquaah-Mensah GK , Kehre r JP , Leslie S W (2002 ) I n utero ethano l suppresse s cerebella r activato r protein-1 and nuclea r factor- 6 B transcriptional activation i n a ra t feta l alcoho l syndrom e model. J Pharmacol Exp Ther 301:277-283 . Ahkrwalia BS, Westney LS, Rajguru S U (1995) Alcohol inhibits cell mitosis in G2-M phase in cell cycle in a human lymphocytes in vitro study. Alcohol 12:589-592. Altman J (1972) Postnatal development of the cerebellar cortex in the rat . I. The externa l germinal layer and the transitiona l molecula r layer . J Com p Neuro l 145:353-397. Altura BM, Zhang A, Cheng TP, Altura BT (1995) Alcohols induc e rapid depletio n o f intracellula r fre e
212 ETHANOL-AFFECTE D DEVELOPMEN T Mg2+ i n cerebra l vascula r muscl e cells : relatio n t o chain lengt h an d partitio n coefficient . Alcoho l 12 : 247-250. Alvarez-Buylla A, Garcia-Verdugo JM (2002 ) Neurogenesis i n adul t subventricula r zone . J Neurosc i 22 : 629-634. Beachy PA , Karhadkar SS , Herma n D M (2004 ) Tissu e repair and ste m cell renewa l in carcinogenesis. Nature 432:324-331. Beckmann AM , Matsurnot o I , Wilc e P A (1997 ) AP- 1 and Eg r DNA-binding activities are increased in rat brain durin g ethano l withdrawal . J Neuroche m 69:306-314. Beier R , Burgi n A , Kiermaie r A , Fer o M , Karsunk y H , Saffrich R , Moroy T , Ansorg e W , Robert s J , Eiler s M (2000 ) Inductio n o f cyclin E-cdk 2 kinas e activity, E 2F-dependent transcription an d cel l growt h by Myc ar e geneticall y separabl e events . EMB O J 19:5813-5823. Bekaert S, Derradji H , Baatou t S (2004) Telomere biol ogy in mammalia n germ cell s and durin g develop ment. De v Biol 274:15-30. Bettencourt-Dias M, Gie t R, Sink a R, Mazumda r A, Lock WG , Balloti x F , Zafiropoulo s P] , Yamaguchi S, Winte r S , Carthe w RW , Cooper M , Jone s D , Frenz L , Glove r D M (2004 ) Genome-wid e surve y of protei n kinase s require d fo r cel l cycle progres sion. Nature 432:980-987. Capela A , Temple S (2002 ) LeX/ssea- 1 i s expresse d b y adult mous e CN S ste m cells , identifyin g them as nonependymal. Neuron 35:865-875 . Caviness V S Jr , Takahash i T , Nowakowsk i R S (1999 ) The G l restrictio n poin t a s critica l regulato r o f neocortical neuronogenesis . Neuroche m Re s 24 : 497-506. Cebers G , Ho u Y , Cebere A , Terenius L , Liljequis t S (1999) Chroni c ethano l enhance s muscarini c receptor-mediated activato r protein- 1 (AP-1 ) DN A binding i n cerebella r granul e cells . Eu r J Pharma col 383:203-208 . Cheng T (2004 ) Cell cycle inhibitor s i n normal an d tumor stem cells. Oncogene 23:7256-7266 . Cheng T , Scadde n D T (2004 ) Cell cycl e regulator s in stem cells . In : Lanz a R (ed) . Handbook o f Stem Cells. Academic Press, New York, pp 73-82. Chiasson BJ , Tropepe V, Morshead CM , va n der Koo y D (1999 ) Adult mammalian forebrai n ependymal and subependyma l cell s demonstrat e proliferativ e potential, bu t onl y subependymal cell s hav e neu ral ste m cel l characteristics . J Neurosc i 19:4462 4471. Chung J , Li u C , Smit h DE , Seit z HK , Russel l RM , WangXD (2001) Restoration of retinoic acid concen tration suppresses ethanol-enhanced c-Jun expression
and hepatocyt e proliferatio n i n ra t liver . Carcino genesis 22:1213-1219. Classon M , Harlo w E (2002 ) Th e retinoblastom a tu mour suppresso r i n developmen t an d cancer . Na t Rev Cancer 2:910-917 . Courtney MJ , Coffey E T (1999 ) Th e mechanis m o f AraC-induced apoptosi s o f differentiatin g cerebella r granule neurons. Eu r J Neurosci 11:1073-1084. Devi BG , Henderson GI , Frosto TA , Schenker S (1994) Effect o f acute ethano l exposur e o n culture d feta l rat hepatocytes: relatio n to mitochondrial function . Alcohol Cli n Exp Res 18:1436-1442. Doe CQ , Fuerstenber g S , Peng C Y (1998) Neura l ste m cells: from fly to vertebrates. J Neurobiol 36:111-127. Doetsch F , Caill e I , Li m DA , Garcia-Verdugo JM , Alvarez-Buylla A (1999) Subventricula r zone astro cytes are neural ste m cell s i n the adult mammalia n brain. Cell 97:703-716. Doetsch F , Garcia-Verdugo JM, Alvarez-Buyll a A (1997) Cellular compositio n an d three-dimensiona l orga nization o f the subventricula r germinal zone i n th e adult mammalian brain . J Neurosci 17:5046-5061 . Doetsch F , Verdug o JM , Caill e I , Alvarez-Buyll a A , Chao MV, Casaccia-Bonnefil P (2002 ) Lac k of the cell-cycle inhibito r p27Kip l result s i n selectiv e in crease o f transit-amplifying cell s for adult neurogenesis. J Neurosci 22:2255-2264 . Farah MH, Olso n JM , Sucic HB , Hume RI , Tapscott SJ, Turner D L (2000 ) Generatio n o f neurons b y transient expressio n o f neural bHL H protein s i n mam malian cells. Development 127:693-702 . Ferron S , Mira H, Franc o S , Cano-Jaimez M , Bellmun t E, Ramirez C , Farina s I, Blasco MA (2004) Telom ere shortenin g an d chromosoma l instabilit y abro gates proliferatio n o f adul t bu t no t embryoni c neural stem cells . Developmen t 131:4059-4070 . Frantz GD, McConnel l S K (1996) Restriction of late cerebral cortica l progenitor s t o a n upper-laye r fate . Neuron 17:55-61 . Fried U , Kotarsk y K , Ailin g C (2001 ) Chroni c ethano l exposure enhance s activatin g protein- 1 transcrip tional activity in human netiroblastom a cells . Alcohol 24:189-195 . Garcia-Verdugo JM , Doetsc h F , Wichterle H , Li m DA , Alvarez-Buylla A (1998) Architecture and cel l types of th e adul t subventricula r zone : i n searc h o f th e stem cells . J Neurobiol 36:234-248 . Guizzetti M, Cost a L G (1996 ) Inhibitio n of muscarinic receptor-stimulated glia l cel l proliferatio n b y ethanol. J Neurochem 67:2236-2245 . Guizzetti M , Molle r T , Cost a L G (2003 ) Ethano l in hibits muscarinic receptor-mediated DN A synthesis and signa l transductio n i n huma n feta l astrocytes . Neurosci Lett 344:68-70 .
EFFECT OF ETHANO L ON NEURA L STEM CELLS 21 3 Guo W, Balud a MA, Park NH (1997 ) Ethano l upregu lates th e expressio n o f p2 1 WAF1/CIP 1 an d pro longs Gl transitio n via a p53-independent pathway in huma n epithelia l cells . Oncogen e 15:1143— 1149. Hager G, Formane k M, Gedlicka C , Knere r B, Kornfehl J (2001 ) Ethano l decrease s expressio n o f p2 1 an d increases hyperphosphorylated pR b i n cel l line s of sqiiamons cel l carcinoma s o f th e hea d an d neck . Alcohol Clin Exp Res 25:496-501. Hartfuss E , Galli R, Heins N, Gotz M (2001) Characterization o f CNS precurso r subtype s and radia l glia. DevBiol 229:15-30. He J, Nixon K, Shetty AK, Crews FT (2005 ) Chronic al cohol exposur e reduces hippocampal neurogenesis and dendriti c growt h o f newbor n neurons . Eu r J Neurosci 21:2711-2720. Hennigan RF , Stambrook P J (2001) Dominant negative c-jun inhibits activation of the cyclin Dl and cyclin E kinase complexes. Mol Biol Cell 12:2352-2363 . Herrera DG , Yagu e AG , Johnsen-Sorian o S , Bosch Morell F , Collado-Morent e L , Muriac h M , Romero FJ , Garcia-Verdug o J M (2003 ) Selectiv e impairment o f hippocampa l neurogenesi s b y chronic alcoholism: protective effects o f an antioxidant. Proc Natl Acad Sci USA 100:7919-7924. Jankala H, Eklund KK, Kokkonen JO, Kovanen PT, Linstedt KA , Harkonen M , Maki T (2001 ) Ethanol in fusion increase s ANP an d p2 1 gen e expressio n in isolated perfuse d ra t heart . Bioche m Biophy s Re s Commun 281:328-333 . Johansson CB , Momm a S , Clark e DL , Rislin g M , Lendahl U , Frisen J (1999) Identification of a neu ral ste m cel l i n th e adul t mammalia n centra l ner vous system. Cell 96:25-34. Kennedy J M (1998 ) Mitochondria l gen e expressio n i s impaired b y ethano l exposur e i n culture d chic k cardiac myocytes. Cardiovasc Re s 37:141-150. Kilpatrick TJ , Bartlet t P F (1995 ) Clone d multipotentia l precursors from th e mouse cerebrum requir e FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J Neurosci 15:3653-3661. Kitamura Y, Ota T , Matsuok a Y, Tooyama I , Kimura H , Shimohama S , Nomur a Y , Gebicke-Haerte r PJ , Taniguchi T (1999 ) Hydroge n peroxide-induced apoptosis mediate d b y p5 3 protei n i n glia l cells . Glia 25:154-164. Klapper W, Shin T, Mattson MP (2001 ) Differential reg ulation of telomerase activity and TERT expression during brain development i n mice . J Neurosci Res 64:252-260. Knoblich JA, Jan LY , Jan YN (1995) Asymmetric segregation o f Num b an d Prosper o durin g cel l division . Nature 377:624-627.
Kornfehl J , Hager G , Gedlick a C , Formane k M (2002) Ethanol decrease s negativ e cell-cycle-regulatin g proteins i n a hea d an d nec k squamou s cel l carci noma cell line. Acta Otolaryngol 122:338-342 . Koteish A , Yang S, Li n H , Huan g J , Diehl A M (2002) Ethanol induce s redox-sensitiv e cell-cycl e in hibitors an d inhibit s liver regeneration afte r partia l hepatectomy. Alcoho l Clin Exp Res 26:1710-1718. Kuhn PE, Miller MW (1998) Expressio n of p53 and ALZ50 irnmunoreactivity in ra t cortex: effect o f prenatal exposure to ethanol. Ex p Neurol 154:418-429 . Lei M, Podell ER , Cech TR (2004) Structure o f human POT1 boun d t o telomeri c single-strande d DN A provides a mode l fo r chromosom e end-protection . Nat Struc t Mol Biol 11:1223-1229. Li V, Kelly K, Schrot R , Langan TJ (1996 ) Cell cycle kinetics and commitmen t i n newborn, adult, and tumoral astrocytes. Dev Brain Res 96:138-147. Li Z, Lin H , Zhu Y, Wang M, Luo J (2001) Disruption of cell cycl e kinetics and cyclin-dependen t kinas e system b y ethanol i n culture d cerebella r granul e progenitors. Dev Brain Res 132:47-58. Li Z, Mille r MW , Lu o J (2002) Effects o f prenatal expo sure to ethanol o n the cyclin-dependen t kinas e system i n th e developin g ra t cerebellum . De v Brai n Res 139:237-245 . Liu MW , Anderson PG , Lu o JF, Roubin GS (1997 ) Local deliver y of ethanol inhibit s intima l hyperplasi a in pi g coronary arteries after balloo n injury . Circu lation 96:2295-2301 . Lowe SW , Cepero E , Eva n G (2004 ) Intrinsi c tumou r suppression. Nature 432:307-315. MacFarlane SN , Sontheime r H (2000 ) Changes i n io n channel expressio n accompan y cel l cycl e progression of spinal cord astrocytes. Glia 30:39-48 . Maier SE, Miller JA, Blackweil JM, West JR (1999) Feta l alcohol exposur e an d tempora l vulnerability : regional difference s i n cel l los s a s a functio n o f th e timing of binge-like alcoho l exposur e durin g brain development. Alcoho l Clin Ex p Res 23:726-734. Mandyam CD , Norri s RD , Eisc h A J (2004 ) Chroni c morphine induce s prematur e mitosi s o f proliferating cell s i n th e adul t mous e subgranula r zone . J Neurosci Res 76:783-794. Meletis K , Ber g SM , Frise n J , Niste r M (2005 ) Neu rosphere characteristics in p53 null mice . Keyston e Symp Abs Mol Regu l Stem Cells , 86 . Merritt R, Guruge BL, Miller DD, Chairma n BR, Bora PS (1997) Moderate alcoho l feedin g attenuate s postinjury vascular cell proliferatio n in rabbit angioplasty model. J Cardiovasc Pharmacol 30:19—25 . Miale IL, Sidman RL (1961) An autoradiographic analysis o f histogenesi s i n th e mous e cerebellum . Ex p Neurol 4:277-296.
214 ETHANOL-AFFECTE D DEVELOPMEN T Mikami K , Haseb a T , Ohn o Y (1997) Ethano l induce s transient arres t of cell divisio n (G2 + M block ) followed b y GO/G 1 block : dos e effect s o f short - an d longer-term ethano l exposur e on cell cycle and cel l functions. Alcohol Alcohol 32:145-152 . Milde-Langosch K , Bamberger AM , Methne r C , Riec k G, Lonin g T (2000 ) Expressio n o f cel l cycle regulatory protein s rb , p!6/MTSl, p27/KIPl , p21 / WAF1, cyclin Dl an d cyclin E in breast cancer: correlations with expression of activating protein-1 family members. Int J Cancer 87:468-472. Miller M W (1986 ) Effect s o f alcohol o n th e generatio n and migratio n of cerebral cortical neurons. Scienc e 233:1308-1311. (1989) Effect s o f prenatal exposur e to ethanol o n neocortical development : II . Cel l proliferatio n i n the ventricula r and subventricula r zones of the rat . J Comp Neurol 287:326-338 . (1995) Generatio n o f neurons i n th e ra t dentat e gyrus an d hippocampus : effect s o f prenata l an d postnatal treatment with ethanol. Alcohol Clin Exp Res 19:1500-1509. (2003) Describin g th e balanc e o f cel l prolifera tion and death: a mathematical model. J Neurobiol 57:172-182. Miller MW, Kuhn PE (1995 ) Cell cycle kinetics in feta l rat cerebra l cortex : effect s o f prenatal exposur e t o ethanol assesse d b y a cumulativ e labelin g tech nique wit h flow cytometry. Alcoho l Cli n Ex p Res 19:233-237. Miller MW , Nowakowsk i RS (1991 ) Effec t o f prenata l exposure t o ethano l o n th e cel l cycl e kinetic s and growth fractio n i n th e proliferativ e zone s of the fe tal ra t cerebra l cortex . Alcoho l Cli n Ex p Re s 15:229-232. Mitsuhashi T, Aoki Y, Eksioglu YZ, Takahashi T, Bhide PG, Reeves SA, Caviness VS Jr (2001) Overexpression of p27Kipl lengthen s the Gl phase in a mouse model tha t target s inducibl e gen e expressio n t o central nervou s system progenitor cells . Pro c Nat l Acad Sci USA 98:6435-6440. Miyazawa K , Him i T , Garci a V , Yamagishi H, Sat o S , Ishizaki Y (2000) A role for p27/Kipl i n the contro l of cerebella r granul e cel l precurso r proliferation. JNeurosci 20:5756-5763 . Morgan MA , Jone s SM , Zawad a W M (2003 ) Neura l stem cells ' respons e t o chroni c alcoho l exposur e in vitro. Abs Soc Neurosci 29:632.2. Morshead CM , Craig CG , va n de r K D (1998 ) I n vivo clonal analyses reveal the propertie s of endogenou s neural ste m cel l proliferatio n i n th e adul t mam malian forebrain. Developmen t 125:2251-2261 . Murray AW (2004) Recycling the cel l cycle : cyclin s re visited. Cell 116:221-234 .
Nakahara T , Hashimot o K , Hirano M , Kol l M , Marti n CR, Preedy VR (2003) Acute and chroni c effects of alcohol exposur e o n skeleta l muscl e c-myc , p53 , and Bcl- 2 mRN A expression . A m J Physio l En docrinol Metab 285:E1273-E1281 . Nixon K , Crews F T (2002 ) Binge ethano l exposur e de creases neurogenesi s i n adul t ra t hippocampus . JNeurochem 83:1087-1093. Ourednik V, Ourednik }, Flax JD, Zawada WM, Hutt C , Yang C, Par k KI, Kim SU, Sidman RL , Freed CR , Snyder E Y (2001 ) Segregatio n o f huma n neura l stem cell s i n the developing primate forebrain. Science 293:1820-1824. Passegue E , Wagner EF (2000 ) JunB suppresses cel l pro liferation by transcriptional activation of p!6(INK4a) expression. EMB O J 19:2969-2979. Pawlak R , Skrzypie c A, Sulkowsk i S , Buczk o W (2002 ) Ethanol-induced neurotoxicit y i s counterbalance d by increase d cel l proliferatio n i n mous e dentat e gyrus. Neurosci Lett 327:83-86. Peres WA, Carmo MG, Zucolot o S , Iglesias AC, Braulio VB (2004) Ethanol intak e inhibits growth of the epithelium i n th e intestin e o f pregnant rats . Alcohol 33:83-89. Perez-Juste G , Arand a A (1999 ) Th e cyclin-dependen t kinase inhibito r p27(Kipl ) i s involve d i n thyroi d hormone-mediated neurona l differentiation . J Bio l Chem 274:5026-5031. Pevny L , Ra o M S (2003 ) Th e stem-cel l menagerie . Trends Neurosc i 26:351-359 . Reynolds BA, Weiss S (1992) Generation o f neurons an d astrocytes from isolate d cells of the adult mammalian central nervous system. Science 255:1707-1710 . (1996) Clona l and populatio n analyse s demonstrate tha t a n EGF-responsiv e mammalia n embry onic CN S precurso r is a ste m cell . De v Bio l 175 : 1-13. Rice AC , Bulloc k MR , Shelto n K L (2004 ) Chroni c ethanol consumptio n transientl y reduce s adult neu ral progenito r cel l proliferation . Brai n Re s 1011 : 94-98. Santillano DR, Kumar LS, Prock TL, Camarillo C, Tin gling JD, Miranda R C (2005) Ethanol induce s cellcycle activity and reduce s stem cell diversity to alter both regenerativ e capacit y an d differentiatio n potential o f cerebra l cortica l neuroepithelia l precur sors. BMC Neurosci 6:5-9. Savatier P , Malashicheva A (2004) Cell-cycl e contro l i n embryonic stem cells . In : Lanza R (ed). Handbook of Stem Cells. Academi c Press , Ne w York , p p 53-62. Sayeed S , Culle n JP , Coppag e M , Sitzman n JV , Red mond E M (2002 ) Ethanol differentiall y modulate s the expressio n an d activit y of cell cycl e regulator y
EFFECT OF ETHANO L ON NEURA L STEM CELLS 21 5 proteins i n ra t aorti c smoot h muscl e cells . Eu r J Pharmacol 445:163-170. Sherr C J (1996 ) Cance r cel l cycles . Scienc e 274 : 1672-1677. Singh SK , Hawkin s C, Clark e ID , Squir e JA , Bayani J, Hide T, Henkelman RM , Cusimano MD , Dirks PB (2004) Identificatio n of human brai n tumour initiating cells. Nature 432:396-401. Spassky N , Merkl e FT , Flame s N , Tramonti n AD , Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cell s ar e postmitoti c an d ar e derive d from radia l glial cells during embryogenesis. J Neurosci 25:10-18. Sylvester AM , Che n D , Krasinsk i K, Andre s V (1998 ) Role o f c-fos an d E 2 F in th e inductio n o f cyclin A transcription an d vascula r smooth muscl e cel l pro liferation. J Clin Invest 101:940-948. Takahashi T , Nowakowsk i RS, Cavines s V S J r (1995 ) The cel l cycl e o f th e pseudostratifie d ventricula r epithelium o f the embryoni c murine cerebral wall. JNeurosci 15:6046-6057 . Tamaki S , Eckert K, He D, Sutto n R , Doshe M , Jain G , Tushinski R , Reitsm a M , Harri s B, Tsukamoto A , Gage F , Weissman I, Uchida N (2002) Engraftrnen t of sorted/expande d huma n centra l nervou s system stem cell s fro m feta l brain . J Neurosc i Re s 69 : 976-986. Treadwell JA , Sing h S M (2004 ) Microarra y analysi s of mouse brai n gen e expressio n followin g acut e ethanol treatment . Neurochemical Res 29:357—369. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissma n IL (2000 ) Direct isolatio n o f huma n centra l nervou s syste m stem cells. Proc Natl Acad Sci USA97:14720-14725. Vescovi AL , Reynold s BA , Fraser DD , Weis s S (1993 ) bFGF regulate s the proliferativ e fat e o f unipotent
(neuronal) an d bipoten t (neuronal/astroglial ) EGF-generated CN S progenito r cells . Neuron 11 : 951-966. Villa A , Navarro-Galve B , Buen o C , Franc o S , Blasc o MA, Martinez-Serrano A (2004) Long-term molec ular an d cellula r stabilit y o f huma n neura l ste m cell lines. Exp Cell Res 294:559-570. Wolf FI, Cittadini A (1999) Magnesium in cell prolifera tion an d differentiation . Fron t Biosc i 4:D607 D617. Zawada WM , Cibell i JB , Cho i PK , Clarkso n ED , Golueke PJ , Witta SE , Bel l KP , Kane J, Ponce d e Leon FA , Jerry DJ , Rob l JM , Free d CR , Stic e S L (1998) Somati c cel l clone d transgeni c bovine neu rons fo r transplantatio n i n parkinsonia n rats . Na t Med 4:569-574. Zawada WM , Kirschma n DL , Cohe n JJ , Heidenreic h KA, Freed C R (1996 ) Growth factors rescue embryonic dopamin e neuron s fro m programme d cel l death. Exp Neurol 140:60-67 . Zhang A , Chen g TP , Altur a B M (1992 ) Ethano l de creases cytosolic-fre e calciu m ion s i n vascula r smooth muscl e cell s a s assesse d b y digita l imag e analysis. Alcohol Clin Exp Res 16:55-57. Zhong W (2003 ) Diversifying neura l cell s through orde r of birt h an d asymmetr y o f division . Neuro n 37 : 11-14. Ziesche R , Petko v V , Lumber s C , Ern e P , Bloc k L H (2004) The calciu m channel blocker arnlodipine exerts it s anti-proliferative actio n vi a p21(Wafl/Cipl ) gene activation. FASEB J 18:1516-1523. Zwaka TP , Smuga-Ott o K , Murph y KR , Ludwi g TE , Jones JM , Thomso n J A (2005 ) Programme d cel l death pathway s ar e essentia l fo r maintainin g pluripoteney. Keystone Symp Abs Mol Regul Ste m Cells, 115.
13
Mechanisms of Ethanol-Induced Alterations i n Neuronal Migratio n Julie A. Siegenthale r Michael W . Miller
Neuronal migration i s the proces s b y which postmi totic neuron s translocat e fro m thei r birthplace i n proliferative zone s t o th e appropriat e target structur e where th e neuron s integrat e int o th e emergin g net work. I n th e cerebra l cortex , fo r example , neuron s generated i n one o f two germinal zone s adjacen t to a lateral ventricle , th e ventricula r an d subventricula r zones (se e Chapters 2 and 11) , migrate i n a n orderl y fashion t o a defined laminar residence (Angevine an d Sidman, 1961 ; Berr y and Rogers , 1965 ; Rakic , 1972 , 1974;Rakicetal., 1994) . The inabilit y of neurons to properly migrate is one cause of neurological disorders. The cerebra l cortex is the brai n region most frequently described as exhibiting malformation s designated a s neuronal migratio n disorders (NMDs). Tw o likely reasons fo r this are (1 ) its immense siz e and th e larg e numbe r o f constituen t neurons and (2 ) its highly laminated structure. These features mak e morphologica l disruption s more read ily identifiable.
Structural Malformation s i n Human Brain Two type s o f cortica l malformation s are eviden t i n humans wit h NMDs : lissencephal y o r heterotopias . Both malformation s are ofte n associate d wit h debili tating cognitiv e defect s i n individual s who ar e men tally retarde d and/o r epilepti c (Anderrnann , 2000 ; Pilzetal.,2002). The ter m lissencephaly, meanin g "smoot h brain, " is derived from the eve n appearance o f the surfac e of the brai n cause d b y a reductio n (pachygyria ) or absence (agyria ) of cortica l gyri . Othe r defect s associ ated wit h lissencephal y includ e increase d cortica l thickness an d reduce d o r poorl y define d cortica l lamination (Crome , 1956 ; Friede , 1989) . Heterotopia refer s to a cluster of neurons tha t is abnormally distribute d relativ e to neuron s wit h a com mon phenotype , suc h a s birthdat e o r connectivity . Heterotopias ca n b e detecte d a t fou r sites . Cluster s
216
ETHANOL AFFECTS NEURONAL MIGRATION 21 7 of ectopic neuron s may be distributed withi n the cor tical gra y (Miller, 1986 ; Anto n e t al. , 1999) . Hetero topias can als o be distribute d in the subcortica l white matter. A common exampl e i s a subcortical band het erotopia, a thick strip of ectopic cells beneath the cor tex. A ban d heterotopi a i s ofte n associate d wit h lissencephaly (Chevassus-au-Loui s and Represa , 1999 ; Kato and Dobyns , 2003) . Heterotopias are also found outside th e corte x beyon d th e ventricula r (Eksiogl u et al , 1996 ) o r pia l surfac e (William s e t al, 1984 ; Saito et al., 1999 ; Taked a e t al, 2003). Ethanol-Induced Malformation s Neuronal migratio n disorder s in human s hav e gene tic and/o r epigeneti c roots . Mutation s i n gene s tha t transcribe protein s regulatin g neurona l migratio n lead t o a spectru m o f defects , includin g cortica l lissencephaly an d heterotopias (Mochid a an d Walsh , 2004). Exposur e t o drug s o f abuse , i n particula r ethanol, ca n lea d t o NMDs. Feta l brain s expose d t o ethanol i n uter o ma y exhibi t a diminutio n o f gyr i and sulc i an d disruption s i n cortica l laminatio n (Fig. 13-1) (Clarre n e t al. , 1978 ; Wisniewsk i e t al. , 1983; Konovalo v et al, 1997 ; Roebuc k e t al, 1998) . Morphological defect s cause d b y gestational ethano l exposure likely contribute t o the cognitiv e defects and mental retardatio n associate d wit h feta l alcoho l syn drome (FAS) . Several brai n region s i n anima l model s o f FA S display morphologica l defects , includin g hetero topias an d structura l disorganizatio n (Fig . 13-2A) , similar t o thos e reporte d i n humans . Thes e region s include the cerebra l corte x (Miller , 1986 ; Kotkoski e and Norton , 1988 ; Komats u e t al. , 2001 ; Moone y e t al, 2004) , striatu m (Heato n e t al, 1996) , midbrai n (Sari et al., 2001; Zhou e t al, 2001), and cerebellu m (Kornguth e t al , 1979 ; Borge s an d Lewis , 1983 ; Quesada e t al, 1990a , 1990b) . Th e similaritie s between human s an d laborator y animal s establis h th e utility o f anima l model s fo r examinin g th e effec t o f ethanol o n neurona l migration . Rigorou s measure s of all aspect s of cell migratio n ar e require d to evaluate the effec t o f ethanol o n neurona l migration . Du e to th e obviou s limitation s o f human studies , anima l models o f FA S have bee n use d (a ) t o furthe r docu ment th e phenomenon of ethanol-induced defects in neuronal migratio n an d (b ) t o stud y underlyin g mechanisms.
FIGURE 13- 1 Brai n malformations in humans exposed to ethanol in utero. The gyra l pattern of the normal human infan t brain A. contrasts with the smoother cortical surface i n the brain of an infan t with FAS B. The brai n is marke d b y it s smal l size , whic h i s likely caused b y ethanol-induced defect s in both neurona l proliferatio n and cel l death. The brai n also exhibits a paucity of gyri, and these gyri tend to be broad. These features are signs of lissencephaly . Moreover , th e brai n i s covere d b y sheets of heterotopic cells over the surfac e o f the brain. The lissencephal y and heterotopia s are consistent with defects i n neurona l migration . C . Ethano l exposur e can also induce heterotopias t o form i n other regions of the brain , includin g th e brai n stem . Arrow s depict th e breach i n pia l surfac e throug h whic h th e migratin g neurons presumabl y streame d t o form th e heterotopia . D. Heterotopia s ar e als o collection s o f cells tha t pre sumably terminate thei r migrations i n inappropriate locations. Suc h neuron s ar e ofte n foun d i n th e cerebra l cortex. Cells with large (arrow ) and smal l (arrowhead) somata form a heterotopia withi n a portion o f layer I, a region of the cortex that is normally cell-sparse. (Source: Images provided courtesy of Sterling Clarren.)
MIGRATION DEFECT S I N ANIMAL MODELS OF FETAL ALCOHOL SYNDROM E
A metho d commonl y use d t o stud y neurona l migra tion i s mappin g o f spatiotempora l change s o f cell s with [ 3 H]thymidine autoradiography . Throug h thi s
218 ETHANOL-AFFECTE D DEVELOPMEN T method, proliferating cells can b e permanently radio labeled an d th e migratio n o f tagged cell s traced fro m their "birth " through th e completio n o f their migra tion. Durin g norma l development , mos t neuron s la beled with pHjthymidin e earl y i n corticogenesi s eventually ar e distribute d i n dee p layers , wherea s neurons labele d late r in development occup y superficial layer s (Angevin e and Sidman , 1961 ; Berr y an d Rogers, 1965 ; Rakic , 1974 ; Mille r an d Nowakowski , 1988). Thus, cortica l layer s are forme d in a n orderl y inside-out manner , durin g which migratin g neuron s move pas t those tha t have already completed cel l mi gration. Migration ca n b e divide d int o thre e phases . Th e first is the onset of migration, which occurs in the proliferative zones . Second , youn g neurons activel y migrate throug h th e intermediat e zon e (IZ ; th e anläg e of the whit e matter) to the superficia l limi t of the cor tical plate, the predecessor of the cortica l gray matter. The fina l ste p i s the terminatio n of neuronal migra tion in the developing structure . Although th e basi c inside-ou t developmen t o f th e cortex i s largel y preserve d i n roden t model s o f FAS , each phas e o f migratio n i s affecte d b y ethanol . Th e birth of cells that will occupy analogous site s in corte x is 1 to 2 days later i n ethanol-treate d rat s than i n con trols (se e Fig. 11-1 , Chapte r 11 ) (Miller , 1986 , 1987 , 1993). Par t o f this dela y (as much a s 3 1 hr) i s due t o postmitotic cell s lingerin g longe r i n th e proliferativ e zones befor e initiatin g thei r migrations . Thi s likel y contributes to the increase in size of the subventricular zone, which contain s many young neurons beginning their migrations (Miller, 1989). On the other hand, the number o f neuron s beginnin g migratio n a t an y on e time, the leavin g fraction, i s not affected b y ethanol. Ethanol als o reduce s th e rat e o f migratio n throughout development (Fig. 13-2B ) (Miller , 1993). For example, in the cortice s of 17-day-old fetuses, the mean rat e o f migratio n i s 138u,m/day , wherea s i n ethanol-treated fetuse s th e mea n rat e i s 8 2 jilm/day. Studies usin g slic e culture s o f corte x sho w tha t ethanol ha s a simila r effec t i n vitr o (Siegenthale r and Miller, 2004 ) and the rat e of migration is reduced in a concentration-dependen t manne r (Hira i e t al. , 1999b). The findin g tha t th e rat e o f migration i n situ is th e sam e a s tha t i n vivo suggest s tha t neurona l migration i s regulated b y loca l microenvironment — i.e., tha t extracortica l signal s (monoamines) ma y no t be critical regulators.
G13
G17
G20
TIME OF ORIGIN FIGURE 13- 2 Anima l model s o f feta l alcoho l syn drome (FAS) . A. Malformations incidental t o prena tal alcoho l exposure , includin g cortica l heterotopia s (box indicates area magnified in B), can be replicate d in anima l model s o f FAS. B. Thi s particula r hetero topia appear s to be caused by cells streaming through layer 1 at multiple sites (arrows), forming a layer of ectopic cell s outsid e th e cortex . C . Th e rat e o f migration throughou t corticogenesi s i s particularl y vulnerable to ethanol. Pulse-chas e experiment s usin g [ 3 H] thymidin e sho w tha t ethano l cause s significant decreases i n th e rat e o f migration o f cells generate d on gestational da y (6) 13 , G17, and G20 . Th e migra tion o f cell s generate d o n G1 7 i s mos t effecte d b y ethanol. O n Gl 3 and G17, the cells that begin migra tion first (outermost 10 ) and the total migratin g population (mea n population ) ar e similarl y slowe d b y ethanol. I n contrast , migratio n o f th e outermos t 1 0 cells generate d o n G2 0 i s les s sensitiv e t o alcoho l than tha t o f th e tota l population . (Source: Image s A and B provided courtesy of William Shoemake r an d Gordon Sherman. ) During late r stage s o f cortica l development , ethanol cause s migratin g neuron s t o finis h thei r migration i n inappropriat e locations . Fo r instance , neurons i n the corte x o f mature, norma l rat s that ar e generated o n gestationa l da y (G ) 2 0 are destine d fo r
ETHANOL AFFECTS NEURONA L MIGRATIO N 21 9
layer II/III. Followin g prenata l exposur e t o ethanol , however, most of these neuron s eithe r terminat e thei r migrations i n dee p laminae (layer s IV, V, and VI ) o r they overmigrat e int o laye r I (Miller , 1986 , 1993) . Other studie s sho w tha t ethano l ca n caus e th e production o f suprapial heterotopias , o r warts (Kotkoskie and Norton , 1988 ; Komatsu e t al , 2001 ; Mooney et al. , 2004) . The implicatio n i s that ethano l disrupts mechanisms involved in stopping neuronal migration.
MIGRATION MACHINERY : PROTEIN TARGETS O F ETHANOL TOXICIT Y
The thre e phases of neuronal migratio n are regulated by a numbe r o f differen t protei n complexe s an d signaling pathways that wor k in concer t t o mov e young neurons fro m th e proliferativ e zone s t o thei r targets. Each phase of neuronal migration is vulnerable to the effects o f ethanol . Therefore , protein s tha t regulat e migration, includin g cel l adhesio n protein s (CAPs) , cytoskeletal proteins, extracellula r matri x (ECM) proteins, an d growt h factors , ar e likel y candidates a s targets of ethanol toxicity .
cytoskeleton reorganizatio n (Panicker et al., 2003). Integrin receptor s bin d integrin s and ECM component s (e.g., laminin , fibronectin , an d glycoproteins) . Inte grin bindin g trigger s cytoskeleta l change s throug h a cascade of phosphorylation events (Juliano, 2002). Up-regulating expression of CAPs i s an importan t part o f initiating and propellin g neurona l migration. CAPs ar e richl y expresse d i n region s of the cerebra l wall, th e IZ , an d th e cortica l plat e (CP) , containin g migrating neurons (Edmondso n e t al., 1988 ; Seki and Arai, 1991; Anton e t al, 1999 ; Siegenthaler an d Miller , 2004). Disruptio n o f normal cel l adhesio n slow s th e progression o f glial-guided migratio n an d ca n lea d t o detachment o f neurons fro m th e glia l fibe r (Chuon g etal, 1987 ; Antonetal, 1996, 1999). Ethanol-lnduced Changes in Cell Adhesion Proteins
Ethanol exposur e reduce s th e rat e o f migration an d causes neurons t o be marooned i n ectopic cortical locales (Miller , 1986 , 1987 ; Mille r an d Robertson , 1993). A likel y mechanis m underlyin g ethanol induced defect s i n neurona l migratio n i s disrupte d cell adhesion . Fo r example , ethano l inhibit s LI-L I mediated cel l adhesio n by physically blocking LI-LI Cell Adhesion Proteins homophilic bindin g (Charnes s e t al , 1994 ; Ra The migratio n o f most cortica l neuron s begin s soo n manathan et al, 1996 ; Wilkemeyer et al, 1999 , 2000, after thei r birth i n a zone proxima l to the latera l ven- 2002a, 2002b) . Ethano l treatmen t als o inhibit s Li tricle (see Chapter 3) . The neuro n migrate s out of the mediated neurit e outgrowt h b y culture d cerebella r germinal are a usin g radia l fibers that spa n th e widt h granule cells ; however , ethanol apparentl y doe s no t of the cerebra l wal l and remain s apposed t o the guid - affect LI-L I bindin g per se (Bearer et al, 1999) . The ing fiber throughou t its migratory tre k (Rakic , 1971, implications o f this findin g ar e tha t ethano l ca n dis1972; Edmondso n an d Hatten , 1987) . Appropriat e rupt LI-mediated cell adhesio n throug h mechanism s adherence t o the glia l guide is regulated by cell adhe - other than th e LI protein-protei n interaction. sion receptor s tha t lin k th e neura l cytoskeleto n t o Unlike LI , th e effect s o f ethano l o n nCA M ap CAPs, component s o f th e ECM , an d membrane - pear to be a t the leve l of protein expression . Ethano l treatment increase s nCAM protei n expression in pribound moitié s of the glia l fiber. mary cortical neurons and i n slice s from feta l corte x (Fig. 13-3A ) (Mille r an d Luo , 2002a ; Siegenthale r Cell Adhesion Proteins Regulate Neuronal and Miller , 2004) . Specifically , ethanol-induce d Migration in Normal Animals increases i n nCAM expressio n ar e note d o n th e surAdhesion protein s fro m bot h th e cel l adhesio n mole - face o f migratin g neuron s i n cortica l expiant s (Fig. cule (CAM ) and integri n families are particularly im- 13-3B, 3C ) (Hira i e t al , 1999b ; Siegenthale r an d portant fo r neurona l migratio n (Ron n e t al. , 1998; Miller, 2004) . Th e expressio n and post-translationa l Clegg et al, 2003; Schmid an d Anton, 2003). Neural processing o f th e thre e isoform s o f nCAM i n th e CAM (nCAM ) an d L I mediat e neurona l migration postnatal brain are differentiall y affecte d b y prenatal through homophili c binding and consequen t activa- ethanol exposure , however , ther e ar e n o significan t tion o f intracellula r signalin g cascade s centra l t o changes i n nCA M niRN A expressio n wit h ethanol ,
220 ETHANOL-AFFECTE D DEVELOPMENT
FIGURE 13- 3 Expressio n o f cel l adhesio n protein s i s effecte d b y ethanol . A. Expressio n o f three isoform s (120 , 140 , an d ISOkD a isoforms ) o f neura l cell adhesio n molecul e (nCAM ) i s increase d i n primar y cortica l culture s (top) and organotypi c slice cultures (18 0 kDa only ) (bottom). B . Cells i n th e intermediate zon e (IZ ) fro m untreate d organotypi c slices immunolabel with nCAM antibody. nCAM expression is highest proximal to the cel l membrane and appear s to localize to patches (arrows) . C. Patche s o f nCAM immunore activity appear to be larger , denser, and mor e frequen t i n I Z cell s exposed to ethanol. Ethano l exposur e also increases the expressio n of integrin subunits a?, oc v, and ß j i n organotypi c cortical cultures D. Larg e increase s in nCA M and integri n receptors, like those observed with ethanol exposure , may cause a migrating cell to adhere too tightly to the surrounding environ and thus slow motility. (Source: Fro m Siegenthaler an d Miller , 2004 , wit h permission).
suggesting a defec t i n nCA M translatio n (Minan a et al., 2000). Ethanol-induced changes i n integri n expressio n and function are only beginning to be investigated. A compelling reaso n t o explore integrin s is the similarities betwee n cortica l migratio n defects i n mic e lack ing specifi c integri n subunit s an d anima l model s o f FAS. I n mic e lackin g integrin oc 3 an d i n animal s exposed prenatally to ethanol, cortica l neurons destine d for superficia l layer s li e i n ectopic , deep-laye r posi tions (Miller, 1986 , 1993 ; Anton etal, 1999). Neural specific integri n ß } knockou t mic e als o displa y abnormal neuronal migration . Ectopi c cell s are com mon i n the margina l zone an d th e pia l surfac e i s disrupted, analogou s t o th e heterotopia s see n wit h prenatal ethanol exposur e (Graus-Porta etal., 2001). Despite th e similarities between anima l models of FAS and integri n knockou t animals , i n vitro studies indicate that ethanol potentiate s integri n protein con tent (Fig . 13-3D ) (Siegenthale r an d Miller , 2004) . Interestingly, thi s findin g i s similar t o th e effec t ob served wit h nCA M expressio n (Hira i e t al. , 1999b ; Luo and Miller, 1999 ; Miller and Luo, 2002a; Siegen thaler an d Miller , 2004) . Ethano l increase s th e ex pression of integrin subunit s OC 3, ot v, and ß j i n cortica l
expiants (Siegenthaler and Miller , 2004) . In culture d neurophils (Bautista , 1995 ) an d hepatocyte s (Schaf fert et al., 2001), integrin oCj , oc 5, and ß ! are increase d following treatmen t wit h ethanol , settin g u p th e possibility tha t to o muc h integrin , lik e to o muc h nCAM, is detrimental t o neuronal migration . Indeed , neurons tha t overexpres s integri n receptor s hav e im paired migratio n (Palece k e t al. , 1997) . Presumably , excess CA P cause s increase d cel l adhesio n an d pre vents migratin g neuron s fro m breakin g adhesion s a t the rea r o f the cell . Essentially , th e adhesio n i s too sticky. Alterations i n integri n expressio n ma y als o con tribute t o ethanol-induce d defect s i n th e radia l glia l scaffold. Radia l glial fibers traverse the migratio n path way in th e developin g corte x and provid e a guide for neurons durin g thei r migratio n t o their ultimat e resi dence. Afte r neurona l migratio n i s complete , radia l glia transfor m into stellate astrocyte s (Schmeche l an d Rakic, 1979 ; Voigt , 1989 ; Culica n et al, 1990 ; Mille r and Robertson , 1993) . Ethano l exposur e i n uter o leads t o th e prematur e differentiatio n o f radia l gli a into astrocytes in both th e corte x (Mille r and Robert son, 1993 ; Miller , 2003) and cerebellu m (Shett y and Phillips, 1992) . Neuron s activel y migrating o n thes e
ETHANOL AFFECTS NEURONAL MIGRATIO N 22 1 transforming radia l glia ar e strande d i n dee p cortica l layers, unable t o complete thei r migration. This finding i s further supporte d b y [ 3H]thymidine studies in which neuron s intende d fo r superficia l layer s ar e found i n dee p corte x followin g ethano l exposur e (Miller, 1986 , 1993) . Incidentally, absence of integrin OC3 also causes premature transformation of radial glial (Anton e t al , 1999 ) an d attachmen t o f radia l glia l endfeet i s disrupte d i n integrin-ß } knockou t mic e (Graus-Porta e t al., 2001) . Thus, ethanol-induced disruptions i n integri n functio n o r expressio n may pre cede the prematur e withdrawal of radial glia. Disruptions in Ca2+ channel flux during neuronal migration ma y contribute t o the ethanol-induce d re duction i n the rat e of migration. Ca2+ currents in migrating neurons are mediated by N-methyl-D-aspartate (NMDA) subtype of glutamate receptors . Cel l migration decrease s followin g treatment wit h NMD A an tagonists (Komur o an d Rakic , 1992 , 1993 ; Hira i e t al., 1999a) . Ethano l affect s bot h th e expressio n an d function o f NMDA receptors . Chronic ethano l expo sure up-regulate s specifi c subunit s of the NMD A re ceptor i n feta l cortica l neuron s (Kumari , 2001) . I n contrast, acut e treatmen t wit h ethano l block s NMDA-dependent Ca 2+ current s i n culture d hip pocampal neuron s an d slice s (Lovinger e t al. , 1989 , 1990). Ca2+ currents ar e particularly important at the trailing edg e o f migratin g cells . Los s o f integrin dependent cel l adhesio n a t th e rea r edg e o f motil e cells depend s o n increase s i n intracellula r Ca 2+ (Marks an d Maxfield , 1990 ; Lawso n an d Maxfield , 1995). Thus , ethanol-dependen t change s i n norma l Ca2+ currents might slo w neuronal migratio n by preventing normal separation at the rea r edge of the cell . Extracellular Matrix The pia l membran e (PM ) (o r pia l basemen t mem brane) is an ECM-rich region. The EC M contribute s to the rol e of the P M in the norma l developing cortex as a barrier (chemical and physical ) around develop ing neura l tissu e and a n attachmen t poin t fo r radial glia (Siever s e t al, 1994) . Breache s in th e P M allo w neurons to migrat e beyond th e pia l surface an d for m heterotopias (Marin-Padilla, 1996) . Prenatal ethano l exposur e ca n induc e formation of heterotopia s i n human s expose d prenatall y t o ethanol (Clarre n e t al., 1978) . Roden t model s o f prenatal ethanol exposure also show heterotopias i n both the cerebellu m an d corte x (Kotkoski e an d Norton ,
FIGURE 13- 4 Ethanol-induce d heterotopia s ar e associated wit h disruption s i n th e margina l zon e (MZ ) o f organotypic cortica l cultures . A . Severa l cel l som a oc cupy a breach (ope n arrows) in calretinin-positive fibers within th e MZ . Th e cell s appea r t o b e streamin g through th e brea k and contributin g t o the heterotopia , or "wart, " formin g outsid e th e cerebra l wall . Cajal Retzius cel l bodie s (close d arro w wit h line ) an d pro cesses (closed arrows) that occupy the MZ immunolabel with calretini n antibodie s (close d arrows). CP , cortica l plate. B. Breaches in the MZ (* ) contain nestin-positive radial glial fibers (arrows). These fibers normally terminate a t the pia l membran e (PM ) adjacen t to the MZ . Ethanol-induced disruption s i n th e M Z and/o r P M likely allow the fibers to course inappropriately into the heterotopia. (Source: Fro m Moone y e t al. , 2004 , wit h permission).
222 ETHANOL-AFFECTE D DEVELOPMENT 1988; Komats u e t al, 2001; Sakata-Haga et al, 2001 ; Mooney e t al., 2004). In rodents, breaches in the glial limitans an d margina l zone , a superficia l cortica l region adjacen t t o th e PM , ar e ofte n foun d a t th e base o f ethanol-induce d heterotopia s (Fig . 13-4 ) (Komatsu e t al , 2001 ; Sakata-Hag a e t al , 2001 ; Mooney e t al, 2004). Despite repeated report s of heterotopias associate d with prenata l ethano l exposure , a clea r lin k betwee n defects i n th e EC M constituent s o f th e P M an d ethanol ha s not been made . Nevertheless, the appear ance o f heterotopia s i n animal s i n whic h specifi c ECM protein s ar e dysfunctiona l strongl y indicate s that these protein s are disrupted b y ethanol. Deletio n or dysfunction of PM protein s lamini n (Halfte r et al., 2002), perlecan (Costel l e t al., 1999) , an d chondroitin sulfate proteoglyeans (Blackshear et al, 1997 ) leads to overmigration o f neuron s an d formatio n o f ectopia s reminiscent of ethanol-induced heterotopias . Integri n receptors bin d t o an d organiz e EC M proteins . Mic e lacking the integrin a6 or integrin ßj feature defect s in the cortica l pia l membran e tha t lea d t o th e appear ance o f ectopic cel l bodie s (Georges-Labouess e e t al, 1998; Graus-Porta et al, 2001). As noted above, ethanol does affec t th e expressio n o f integrin subunits , includ ing ß j (Siegenthale r an d Miller , 2004) . Conceivably , ethanol targetin g of these integrins is key to the gener ation o f heterotopia s and , b y deduction , thes e inte grins are key to the integrit y of the PM . Reelin, a larg e glycoprotei n componen t o f th e marginal zon e ECM , i s produce d an d secrete d b y Cajal-Retzius cell s (D'Arcangel o e t al, 1995 ; Hirot sune e t al , 1995 ; Ogaw a e t al , 1995 ; Sod a e t al , 2003). Reeli n i s believed to ac t a s a sto p signa l causing migratin g neuron s t o en d migratio n an d detac h from thei r glia l guide s (Pearlma n an d Sheppard , 1996; Marin-Padilla , 1998 ; Dulabo n e t al , 2000 ; Hack e t al. , 2002) . Immunohistocheniistr y studie s show tha t reeli n i s abnormally distributed i n ethano l induced-heterotopias (Moone y e t al. , 2004) . I t i s absent directly below heterotopias, but i t is distributed toward th e perimete r o f a heterotopia . Conceivably , the periphera l displacemen t o f reelin underlie s con tinued migration of neurons into a heterotopia . Cytoskeleton Successful cel l adhesion an d releas e during neurona l migration depends o n th e rapi d reorganization of the cytoskeleton. Thi s reorganizatio n i s essentia l fo r th e
initiation an d maintenanc e o f neurona l migratio n (Lambert de Rouvroi t and Goffinet , 2001 ; Marin an d Rubenstein, 2003) . Th e tw o mai n cytoskeleta l ele ments in neurons are actin and microtubules, proteins that ca n polymeriz e int o lon g chain s o f individua l subunits tha t compris e th e intracellula r scaffold . Actin filament s ar e enriche d a t th e leadin g edg e o f migrating neurons . Microtubules , in contrast , for m a cage-like structur e withi n th e cel l somat a an d ar e aligned longitudinall y i n th e leadin g proces s (Riva s and Hatten , 1995) . The importanc e of both actin and microtubule assembl y is emphasized b y finding s tha t several geneti c NMD s ar e cause d b y defect s i n pro teins tha t bin d an d organiz e cytoskeleta l protein s (Sapir et al, 1997; Gleeso n et al., 1999) . Ethanol negativel y affects th e cytoskeleton i n neu ral and non-neura l cells . Actin assembly is aberrant i n cultured neura l cres t cell s treate d wit h ethano l out growth (Hassle r and Moran , 1986a , 1986b) . Ethanol induces th e formatio n of thick bundles o f actin fibers that prevent the norma l process . The acti n cytoskele ton i n astrocyte s i s als o sensitiv e t o treatmen t wit h ethanol (se e Chapter 18) . The norma l organization of actin filament s i n culture d astrocyte s i s severely disrupted b y ethanol i n a concentration-dependent man ner (Allansso n e t al. , 2001 ; Guasc h e t al. , 2003 ; Tomas e t al, 2003) . Ethano l promote s th e transfor mation o f actin stres s fiber s int o dysfunctiona l acti n rings. Interestingly , the effec t o f ethanol o n th e acti n cytoskeleton i s alleviated b y overexpressio n o f RhoA, a smal l GTPase that induce s actin stres s fiber assembly (Guasc h e t al , 2003) . This effec t suggest s tha t ethanol exposur e may disrupt signaling pathways regulating cytoskeleta l reorganization . Microtubul e polymerization i s also affected b y ethanol exposur e i n astrocytes an d hepatocyte s (Yoo n et al. , 1998 ; Toma s et al. , 2003) . Afte r treatmen t wit h th e microtubule disrupting agen t nocodazole , th e spee d o f micro tubule repolymerizatio n is reduced i n the presenc e of ethanol. Growth Factors Role in Neuronal Migration Growth factors are proteins tha t regulate cel l ontogen y via extracellula r mechanisms . Growt h factor s tha t affect neurona l migratio n includ e member s o f th e transforming growt h facto r (TGF ) ß superfamil y (TGFßl an d bon e morphogeni c protei n [BMP ] 4 )
ETHANOL AFFECTS NEURONA L MIGRATIO N 22 3 and brain-derive d neurotrophi c facto r (BDNF) . Several studies imply that these factor s are active endogenously. Eac h ligan d an d th e relevan t receptor s are expresse d i n proliferativ e zone s durin g cortica l development (Flander s et al, 1991 ; Fukumitsu et al, 1998; L i et al, 1998; Miller, 2003). Functional studie s relyin g o n exogenou s growt h factor furthe r indicat e tha t TGFßl , BMP-4 , an d BDNF ar e involve d i n th e initiatio n and/o r mainte nance o f neurona l migration . Bot h TGFß l an d BMP-4 decrease cel l proliferatio n and promot e neuronal migratio n (L i e t al. , 1998 ; Lu o an d Miller , 1999; Siegenthale r an d Miller , 2004 , 2005a) . Complimentary line s o f evidenc e indicat e tha t BDNF, though no t classicall y associate d wit h neurona l mi gration, promote s th e initiatio n o f neurona l migra tion. First , studie s sho w tha t cerebella r granul e cell s from BDNF~ f~ mic e ar e abl e t o attac h t o glia l fiber s but fai l t o begi n migratin g (Borghesan i et al. , 2002). Also, addition of exogenous BDN F enables BDNF~ /granule cells to migrate properly . Finally, injectio n o f BDNF int o th e latera l ventricle s o f embryoni c animals induces the prematur e initiatio n of migration of neurons destine d fo r dee p corte x (Ohmiy a e t al. , 2002). Effect ofEthanol on Growth Factor-Mediated Neuronal Migration Ethanol effect s bot h th e expressio n o f th e endoge nous TGFß system and th e functio n of exogenously applied TGFß l i n vitro . Rat s prenatall y exposed t o ethanol exhibi t altere d TGF ß ligan d an d recepto r expression (Miller , 2003 ) Specifically , ethano l in creases TGFßl an d TGFß2 content i n the prolifer ative zone s prenatally , bu t i t diminishe s perinata l TGFß2 expressio n i n th e interna l segment s o f ra dial glia. In contrast, ethanol increase s TGFß recep tor typ e 1 expressio n i n radia l glia l fibers . Th e presence o f an endogenous TGF ß system in the proliferative an d intermediat e zone s suggest s tha t TGFß i s importan t fo r a t leas t th e initiatio n an d propagation o f neurona l migratio n throug h th e in ner half of the cerebral wall. Further, th e vulnerability o f thi s portio n o f th e TGF ß syste m t o ethano l may contribut e t o ethanol-induce d defect s i n neuronal migration. Ethanol disrupts TGFßl-mediated neuronal migration. I n slic e culture s o f cerebra l cortex , ethano l im pedes th e effect s o f exogenousl y applie d TGFß l o n
both cel l migratio n and CA P expression (Siegenthaler and Miller , 2004 , 2005b) . In vitro studies o f dissociated cortica l cell s an d neura l tumorgeni c cell s de scribe a simila r effec t o f TGFß l an d ethano l o n a specific CAP , nCAM. nCAM expressio n is increased with TGFß l treatmen t alon e bu t i s reduced t o control level s b y combine d treatmen t wit h ethano l (Luo an d Miller , 1999 ; Mille r an d Luo , 2002a , 2002b). Collectively , thes e studie s sho w tha t (1 ) ethanol interfere s with TGFßl-mediated promotion of cell migratio n an d (2 ) i t ma y d o s o b y blockin g TGFßl-dependent increase s i n expressio n o f nCAM and othe r CAPs . BMP signalin g is involved in the initiatio n of cell migration i n th e developin g cerebra l corte x (L i et al., 1998) . BMP- 4 specificall y is expressed by cells about to begin migratio n (e.g., at the ventricula r surface). Althoug h th e effec t o f ethano l o n BMP mediated initiatio n o f migratio n i s no t establishe d per se , ethano l doe s bloc k BMP-4-induce d cel l ad hesion amon g culture d neuroglioblastom a cell s (Wilkemeyer e t al. , 1999) . Presumably , suc h inhibi tion ma y be involved in delay of the initiatio n of neuronal migration. BDNF promotes th e initiatio n o f glial-guided mi gration (Borghesan i e t al. , 2002) . Incidentally , th e endogenous BDN F syste m i s perturbed b y ethanol . Perinatal ethano l exposur e down-regulate s BDN F mRNA and it s receptor, trkB , in the developin g cere bellum (Heato n e t al, 2000 ; Ligh t e t al, 2001 ) and olfactory bul b (Maie r e t al. , 1999) . A similar downregulation o f BDN F protei n accompanie d b y a ethanol-induced decreas e i n BDN F signalin g i s evident i n prenata l corte x (Climen t e t al. , 2002) . An ethanol-induced reductio n i n BDN F activit y i n the developin g brai n likel y affect s BDNF-regulate d processes includin g th e initiatio n o f neurona l migration.
SUMMARY AND CONCLUSION S
Neuronal migratio n i s a uniqu e an d critica l compo nent o f neural development . I t provides a bridg e be tween th e birt h o f a cel l an d it s prope r integratio n into a n evolvin g structure . NMD s ar e cause d b y breakdowns i n th e commencement , completion , and/or cessatio n o f neuronal migration . Th e NMD s detected in case s of FAS are likel y caused by ethanol interfering with each phas e o f neuronal migration .
224 ETHANOL-AFFECTE D DEVELOPMEN T
FIGURE 13- 5 Ethano l disrupt s cortical migratio n a t many levels. A. Ethanol reduce s the rat e of neuronal migration i n th e developin g cerebra l cortex . Migrat ing neuron s depen d o n prope r cell adhesio n (e.g. , cell adhesio n molecule s an d integrins ) and cytoskeletal reorganizatio n (e.g. , microtubule s an d actin ) fo r motility alon g glia l guides . Ethanol-dependen t in creases in cell adhesion protein expression and abnor mal cytoskeleta l organizatio n ar e a likel y caus e o f reduced cortica l cel l motility . B. Heterotopi a forma tion ha s been linke d t o disruptions i n both the extra cellular matri x component s o f th e pia l membran e (PM) an d thei r organizatio n b y integri n receptors . The resultin g "holes" i n th e P M an d adjacen t M Z permit overmigratio n o f neuron s tha t woul d nor mally sto p an d incorporat e int o th e cortica l plate . In particular , absenc e o f th e stop-signa l reeli n within th e breache s likel y contribute s t o hetero topia formation . Evidenc e o f radia l glia l fiber s coursing into the heterotopia ma y mean tha t migrating neuron s migrat e int o th e war t on overextende d glial fibers . C . Ethano l exposur e cause s prematur e transformation o f radial glia int o astrocytes. Neurons still migratin g o n thes e retractin g fiber s woul d b e stranded inappropriatel y i n deepe r cortica l layers . This phenomeno n ma y explai n th e appearanc e o f layer II/III neurons are foun d i n layers IV, V, and V I in ethanol-expose d brains . D. Variou s growth factor s (e.g., TGFßl , BMP-4 , an d BDNF ) ar e involve d i n
Ethanol-induced defect s i n neurona l migratio n have seriou s consequence s fo r downstrea m develop mental events . For example, exposure to ethanol dur ing th e perio d o f neurona l migratio n ca n caus e neurons t o lan d i n th e wron g cortical layer s (Miller, 1986, 1987) . Despite this, the neurons may retain their destined phenotype , fo r example , a s corticospina l (Miller, 1987 ) o r callosa l (Miller , 1997 ) projectio n neurons. As the cell bodies are distributed in inappropriate locations , the y integrat e int o th e synapti c web incorrectly (Al-Rabia i an d Miller , 1989) . Conse quently, abnormalitie s i n cortica l metabolis m an d activity occu r (Vinga n e t al, 1986 ; Mille r an d Dow Edwards, 1988 , 1993) . Flawe d synapti c connection s due t o heterotopia s ca n caus e a myria d of problems , the foremos t being epileps y (Chevassus-au-Louis an d Represa, 1999) , a neurological symptom prevalen t in children with FAS (Burd et al, 2003). Over th e las t two decades, studie s of neuronal mi gration hav e identifie d a number o f possible mecha nisms fo r ethanol-induce d defect s i n migration . Ethanol alter s bot h th e microenvironmen t encoun tered by the migratin g neuron (e.g. , radial glial fibers, CAPs, EC M proteins , an d growt h factors ) an d th e motility o f neuron s withi n tha t environmen t (e.g. , CAPs an d cytoskeleta l proteins ) (Fig . 13-5) . The di versity of cellular pathways affected b y ethanol speak s to the complexit y of ethanol-induced disturbance s i n neuronal migration. Abbreviations BDNF brain-derive d neurotrophic facto r BMP bon e morphogenic protei n CAM cel l adhesion molecul e CAP cel l adhesio n protei n CP cortica l plat e ECM extracellula
r matrix
FAS feta l alcohol syndrome G gestatio n day IZ intermediat e zon e
the initiatio n o f neuronal migration . Ethano l disrupts the norma l function of these growth factors. The dela y in initiatio n o f migration see n wit h ethano l exposur e likely result s fro m inhibitio n o f growt h factor-medi ated activities.
ETHANOL AFFECTS NEURONAL MIGRATIO N 22 5 nCAM neura l cell adhesion molecule NMD neurona l migration disorde r NMDA N-methyl-D-aspartat e PM pia l membrane TGF transformin
g growt h facto r
References Allansson L, Khatibi S, Olsson T, Hansson E (2001) Acute ethanol exposur e induce s [Ca 2+]i transients , cel l swelling an d transformatio n o f acti n cytoskeleto n in astroglia l primar y cultures . J Neuroche m 76 : 472-479. Al-Rabiai S , Miller M W (1989 ) Effec t o f prenatal expo sure t o ethano l o n th e ultrastructur e o f layer V of mature ra t somatosensor y cortex . J Neurocytol 18 : 711-729. Andermann F (2000 ) Cortica l dysplasia s and epilepsy : a review o f th e architectonic , clinical , an d seizur e patterns. Adv Neurol 84:479-496. Angevine J B Jr , Sidma n R L (1961 ) Autoradiographi c study of cell migratio n durin g histiogenesi s o f cere bral cortex in the mouse . Natur e 192:766-768 . Anton ES, Cameron RS , Rakic P (1996) Rol e of neuronglial functiona l domai n protein s i n th e mainte nance an d terminatio n o f neurona l migratio n across th e embryoni c cerebra l wall . J Neurosci 16 : 2283-2293. Anton ES , Kreidber g JA , Raki c P (1999 ) Distinc t func tions o f oc3 an d oc(v ) integri n receptor s i n neurona l migration an d lamina r organization of the cerebra l cortex. Neuro n 22:277-289 . Bautista A P (1995 ) Chroni c alcoho l intoxicatio n en hances th e expression of CD 18 adhesion molecule s on ra t neutrophils and releas e of a chemotactic fac tor b y Kupffe r cells . Alcoho l Cli n Ex p Re s 19 : 285-290. Bearer CF, Swic k AR, O'Riordan MA , Cheng G (1999 ) Ethanol inhibit s LI-mediate d neurite outgrowth i n postnatal ra t cerebella r granul e cells . J Biol Che m 274:13264-13270. Berry M , Roger s A W (1965 ) The migratio n o f neurob lasts i n th e developin g cerebra l cortex . J Anat 99 : 691-709. Blackshear P , Silve r J, Nair n A , Suli k KK , Squie r MV , Stumpo D , Turtl e J (1997 ) Widesprea d neurona l ectopia associate d wit h secondar y defect s i n cere brocortical chondroite n sulfat e proteoglycan s an d basal lamin a i n MARCKS-deficien t mice . Ex p Neurol 145:46-61 . Borges S, Lewis PD (1983 ) The effec t o f ethanol o n th e cellular compositio n o f th e cerebellum . Neu ropathol Appl Neurobiol 9:53-60.
Borghesani PR , Peyrin JM, Klei n R , Rubin J, Carter AR, Schwartz PM, Luste r A, Corfas G, Sega l R A (2002) BDNF stimulate s migratio n o f cerebella r granul e cells. Development 129:1435-1442 . Burd L, Cotsonas-Hassler TM, Martsol f JT, Kerbeshian J (2003) Recognitio n an d managemen t o f feta l alcohol syndrome . Neurotoxico l Terato l 25:681 688. Charness ME, Safra n RM , Perides G (1994 ) Ethano l in hibits neura l cell-cell adhesion . J Biol Chem 269 : 9304-9309. Chevassus-au-Louis N, Represa A (1999) The righ t neu ron a t the wron g place : biolog y of heterotopic neu rons i n cortica l neurona l migratio n disorders , with special referenc e t o associate d pathologies . Cel l Mol Life Se i 55:1206-1215 . Chuong CM , Crossi n KL , Edelma n G M (1987 ) Se quential expressio n an d differentia l functio n o f multiple adhesio n molecule s durin g the formation of cerebella r cortica l layers . J Cel l Bio l 104 : 331-342. Clarren SK , Alvor d E C Jr , Sum i SM , Streissgut h AP , Smith D W (1978 ) Brai n malformation s relate d t o prenatal exposure to ethanol. J Pediatr 92:64-67. Clegg DO, Winger d KL, Hikita ST, Tolhurst EC (2003 ) Integrins i n th e development , functio n an d dys function o f th e nervou s system . Fron t Biosc i 8 : 723-750. Climent E , Pascua l M , Renau-Piquera s J , Guerr i C (2002) Ethanol exposur e enhance s cel l death i n the developing cerebra l cortex : rol e o f brain-derive d neurotrophic facto r an d it s signalin g pathways . J Neurosci Re s 68:213-225. Costell M , Gustafsso n E , Aszod i A, Morgelin M , Bloc h W, Hunzike r E , Addick s K , Timp l R , Fassle r R (1999) Perleca n maintain s the integrit y of cartilage and som e basemen t membranes . J Cel l Bio l 147 : 1109-1122. Crome L (1956 ) Pachygyria . J Patho l Bacterio l 71 : 335-352. Culican SM , Baumrin d NL , Yamamot o M , Pearlman AL (1990) Cortical radia l glia: identification i n tissu e cultur e an d evidenc e fo r their transformation t o astrocytes. J Neurosci 10:684—692 . D'Arcangelo G, Miao GG , Che n SC , Scares HD, Mor gan JI , Curra n T (1995 ) A protein relate d t o extracellular matri x protein s delete d i n th e mous e mutant reeler . Nature 374:719-723 . Dulabon L , Olson EC , Taglient i MG, Eisenhut h S , McGrath B, Walsh CA , Kreidberg JA, Anton E S (2000) Reelin bind s oc^ß j integri n an d inhibit s neurona l migration. Neuron 27:33-44 . Edmondson JC , Hatte n M E (1987 ) Glial-guide d gran ule neuro n migratio n i n vitro : a high-resolutio n
226 ETHANOL-AFFECTE D DEVELOPMEN T time-lapse vide o microscopi c study . J Neurosc i 7 : 1928-1934. Edmondson JC, Liem RK , Küster JE, Hatten M E (1988 ) Astrotactin: a nove l neurona l cel l surfac e antige n that mediate s neuron—astroglia l interaction s i n cerebellar microcultures. J Cell Bio l 106:505-517 . Eksioglu YZ, Scheffer IE , Cardenas P, Knoll J, DiMario F, Ramsby G, Ber g M, Kamuro K, Berkovic SF, Duyk GM, Paris i J, Huttenloche r PR , Wals h C A (1996 ) Peri ventricular heterotopia : a n X-linke d dominan t epilepsy locus causing aberrant cerebral cortical development. Neuro n 16:77—87 . Flanders KG , Ludecke G , Engel s S , Cissel DS , Robert s AB, Kondaiah P, Lafyatis R , Sporn MB , Unsicke r K (1991) Localizatio n an d action s o f transformin g growth factor- ß i n th e embryoni c nervou s system . Development 113:183-191. Friede R (1989) Developmental Neuropathology. Berlin , Springer. Fukumitsu H , Furukaw a Y , Tsusak a M , Kinukaw a H , Nitta A , Nomot o H , Mim a T , Furukaw a S (1998 ) Simultaneous expressio n o f brain-derive d neurotro phic factor and neurotrophin-3 in Cajal-Retzius, subplate an d ventricula r progenito r cell s durin g earl y development stages of the rat cerebral cortex. Neuroscience 84:115-127. Georges-Labouesse E , Mar k M , Messadde q N , Gans muller A (1998) Essentia l rol e o f oc 6 integrin s i n cortical an d retina l lamination . Cur r Bio l 8:983 986. Gleeson JG , Li n PT , Flanaga n LA , Walsh C A (1999 ) Doublecortin i s a microtubule-associate d protei n and i s expressed widely by migrating neurons. Neu ron 23:257-271. Graus-Porta D , Blaes s S , Senfte n M , Littlewood-Evan s A, Damsky C, Huan g Z, Orban P , Klein R, Schittny JC, Müller U (2001) ß rclass integrins regulat e th e development o f lamina e an d foli a i n th e cerebra l and cerebellar cortex. Neuron 31:367-379 . Guasch RM, Tomas M , Minambre s R , Vallès S, RenauPiqueras J , Guerr i C (2003 ) Rho A an d lysophos phatidic acid ar e involve d in thé actin cytoskeleto n reorganization o f astrocyte s expose d t o ethanol . J Neurosci Res 72:487-502. Hack I , Bancil a M , Loulie r K , Carrol l P , Creme r H (2002) Reeli n i s a detachment signal i n tangentia l chain-migration during postnatal neurogenesis. Nat Neurosci 5:939-945 . Halfter W, Suçai D, Yip Y, Willem M , Mayer U (2002) A critical functio n o f the pial basement membrane in cortical histogenesis. J Neurosci 22:6029-6040. Hassler JA, Moran D J (1986a ) The effect s o f ethanol o n embryonic actin : a possibl e rol e i n teratogenesis . Experientia 42:575-577 .
(1986b) Effect s o f ethanol o n th e cytoskeleto n o f migrating and differentiatin g neural cres t cells: possible rol e i n teratogenesis . J Craniofac Gene t De v BiolSuppl2:129-136. Heaton MB , Mitchel l JJ , Paiva M , Walke r D W (2000 ) Ethanol-induced alteration s i n th e expressio n o f neurotrophic factor s i n th e developin g ra t centra l nervous system. Dev Brain Res 121:97-107. Heaton MB , Swanson DJ, Paiva M, Walker DW (1996) Influence o f prenatal ethano l exposur e on cholinergi c development i n th e ra t striatum . J Com p Neuro l 364:113-120. Hirai K , Yoshioka H, Kihar a M , Hasegaw a K, Sakamoto T, Sawad a T , Fushik i S (1999a ) Inhibitin g neu ronal migratio n b y blockin g NMD A receptor s i n the embryoni c ra t cerebra l cortex : a tissu e cultur e study. Dev Brain Res 114:63-67. Hirai K, Yoshioka H, Kihar a M, Hasegaw a K , Sawada T , Fushiki S (1999b ) Effect s o f ethano l o n neurona l migration an d neura l cel l adhesio n molecule s i n the embryoni c ra t cerebra l cortex : a tissu e cultur e study. Dev Brain Res 118:205-210. Hirotsune S , Takahara T, Sasak i N, Hiros e K , Yoshiki A, Ohashi T, Kusakabe M, Murakami Y, Muramatsu M, Watanabe S , Naka o K , Katsk i M , Hayashizak i Y (1995) Th e reeler gen e encode s a protei n wit h a n EGF-like moti f expresse d b y pioneer neurons . Na t Genet 10:77-83 . Juliano R L (2002 ) Signa l transductio n b y cel l adhesio n receptors an d th e cytoskeleton : function s o f inte grins, cadherins , selectins , an d immunoglobulin superfamily members . Ann u Re v Pharmaco l Toxicol 42:283-323. Kato M, Dobyn s WB (2003 ) Lissencephaly an d th e mo lecular basi s o f neurona l migration . Hu m Mo l Genet 1 2 (Spec No 1) : R89-96. Komatsu S , Sakata-Haga H , Sawad a K , Hisano S , Fukui Y (2001) Prenatal exposur e to ethanol induce s leptomeningeal heterotopi a i n th e cerebra l corte x o f the ra t fetus. Acta Neuropathol 101:22-26 . Komuro H , Raki c P (1992 ) Selectiv e rol e o f N-type cal cium channels i n neuronal migration. Science 257: 806-809. (1993) Modulatio n o f neurona l migratio n b y NMDA receptors. Scienc e 260:95-97 . Konovalov HV , Kovetsk y NS , Bobryshe v YV , Ashwel l KW (1997 ) Disorder s o f brain developmen t i n th e progeny of mothers wh o use d alcoho l durin g pregnancy. Early Hum De v 48:15 3-166. Kornguth SE, Rutledge JJ, Sunderland E , Siegel F, Carlson I , Smollens J, Juhl U, Young B (1979) Impede d cerebellar developmen t an d reduce d seru m thyroxine levels associate d wit h fetal alcohol intoxication . Brain Re s 177:347-360.
ETHANOL AFFECTS NEURONAL MIGRATION 22 7 Kotkoskie LA, Norton S (1988) Prenatal brai n malformations followin g acut e ethano l exposur e i n th e rat . Alcohol Clin Ex p Res 12:831-836. Kumari M (2001 ) Differentia l effect s o f chronic ethano l treatment o n N-methyl-D-aspartat e R l splic e vari ants i n feta l cortica l neurons . J Bio l Che m 276 : 29764-29771. Lambert d e Rouvrai t C, Goffine t A M (2001 ) Neurona l migration. Mech Dev 105:47-56. Lawson MA , Maxfiel d F R (1995 ) Ca (2+>- an d calcineurin-dependent recyclin g o f a n integri n t o the fron t o f migratin g neutrophils . Natur e 377 : 75-79. Li W, Cogswel l CA , LoTurco JJ (1998) Neurona l differ entiation o f precursors in the neocortical ventricula r zone i s triggere d b y BMP . J Neurosc i 18:8853 8862. Light KE , G e Y , Belche r S M (2001 ) Earl y postnata l ethanol exposur e selectivel y decrease s BDN F and truncate d TrkB-T 2 recepto r mRN A expres sion i n th e ra t cerebellum . Mo l Brai n Re s 93 : 46-55. Lovinger DM , White G, Weigh t F F (1989 ) Ethano l in hibits NMDA-activate d io n curren t i n hippocam pal neurons. Science 243:1721—1724 . (1990) NMD A receptor—mediate d synapti c excitation selectivel y inhibite d b y ethano l i n hip pocampal slic e fro m adul t rat . J Neurosc i 10 : 1372-1379. Luo J , Mille r M W (1999 ) Transformin g growt h facto r ßl-regulated cel l proliferatio n an d expressio n o f neural cel l adhesio n molecul e i n B10 4 neuroblastoma cells : differentia l effect s o f ethanol . J Neu rocheni 72:2286-2293 . Maier SE , Crame r JA , West JR, Sohrabji F (1999 ) Alcohol exposur e during the first two trimesters equivalent alter s granul e cel l numbe r an d neurotrophi n expression i n th e developin g ra t olfactor y bulb . JNeurobiol 41:414-423. Marin O , Rubenstei n J L (2003 ) Cell migratio n i n th e forebrain. Annu Rev Neurosci 26:441-483. Marin-Padilla M (1996 ) Developmental neuropatholog y and impac t o f perinata l brai n damage : hemor rhagic lesion s o f neocortex . J Neuropatho l Ex p Neural 55:758-773 . (1998) Cajal-Retzius cells and th e development o f the neocortex . Trend s Neurosc i 21:64—71 . Marks PW , Maxfiel d F R (1990 ) Transien t increase s i n cytosolic free calciu m appear to be require d for the migration o f adheren t huma n neutrophils . J Cel l Biol 110:43-52 . Miller M W (1986 ) Effect s o f alcohol o n th e generatio n and migratio n o f cerebral cortica l neurons . Scienc e 233:1308-1311.
— (1987 ) Effec t o f prenata l exposur e t o alcoho l on th e distributio n an d tim e o f origi n o f corti cospinal neuron s i n th e rat . J Com p Neuro l 257 : 372-382. — (1989 ) Effect s o f prenatal exposur e to ethano l o n neocortical development : II . Cel l proliferatio n in the ventricula r and subventricula r zones o f the rat . J Comp Neurol 287:326-338 . — (1993 ) Migration o f cortical neuron s i s altered b y gestational exposur e t o ethanol . Alcoho l Cli n Ex p Res 17:304-314 . — (1997 ) Effect s o f prenatal exposur e to ethano l o n callosal projectio n neuron s i n ra t somatosensor y cortex. Brain Res 766:121-128. (2003) Expressio n o f transforming growth factor- ß in developin g ra t cerebral cortex : effect s o f prenatal exposure to ethanol. J Comp Neurol 460:410-424. Miller MW , Dow-Edward s D L (1988 ) Structura l an d metabolic alterations in rat cerebral cortex induced by prenata l exposur e t o ethanol . Brai n Re s 474 : 316-326. (1993) Vibrissa l stimulatio n affect s glucos e uti lization i n th e trigeminal/somatosensor y syste m o f normal rat s and rat s prenatally expose d t o ethanol . J Comp Neurol 335:283-284 . Miller MW , Lu o J (2002a ) Effect s o f ethanol an d trans forming growt h facto r ß (TGFß ) o n neurona l pro liferation an d nCA M expression . Alcohol Clin Ex p Res 26:1281-1285. (2002b) Effect s o f ethano l an d basi c fibroblas t growth facto r on th e transformin g growth factor- ß l regulated proliferatio n o f cortica l astrocyte s an d C6 astrocytom a cells . Alcoho l Cli n Ex p Re s 26 : 671-676. Miller MW , Nowakowsk i RS (1988 ) Us e o f bromode oxyuridine-immunohistochemistry t o examin e th e proliferation, migratio n an d tim e o f origi n o f cells i n th e centra l nervou s system . Brai n Re s 457: 44-52. Miller MW , Robertso n S (1993 ) Prenata l exposur e t o ethanol alters the postnatal development and transformation o f radia l glia t o astrocyte s in th e cortex . J Comp Neurol 337:253-266 . Minana R , Climent E , Barettin o D , Segu i JM , Renau Piqueras J, Guerri C (2000 ) Alcohol exposur e alters the expression pattern o f neural cell adhesion mole cules durin g brai n development . J Neuroche m 75:954-964. Mochida GH , Wals h C A (2004 ) Genetic basi s of developmental malformation s o f th e cerebra l cortex . Arch Neuro l 61:637-640. Mooney SM, Siegenthaler JA, Miller MW (2004 ) Ethanol induces heterotopias i n organotypic cultures of rat cerebral cortex. Cereb Cortex 14:1071-1080 .
228 ETHANOL-AFFECTE
D DEVELOPMEN T
Ogawa M , Miyat a T , Nakajim a K , Yagyn K , Seik e M , Ikenak a K , Yamamoto H, Mikoshib a К (1995) Th e reeler gene-associate d antige n o n Cajal-Retziu s neuron s i s a crucia l molecul e fo r lamina r organization o f cortica l neurons . Neuro n 14:899-912 . Ohrniy a M , Shuda i T, Nitt a A, Nomot o H , Furukaw a Y, Furukaw a S (2002 ) Brain-derive d neurotrophi c factor alter s cel l migratio n o f particula r progenitor s i n th e developin g mous e cerebra l cortex . Neurosc i Lett 317:21-24 . Palece k SP , Loftu s JC , Ginsber g MH , Lauffenburge r DA, Horwit z A F (1997 ) Integrin-ligan d bindin g propertie s gover n cel l migratio n speed throug h cell substratu m adhesiveness . Natur e 385:537-540 . Panicke r AK , Buhus i M , Thele n K , Manes s P F (2003 ) Cellula r signallin g mechanism s o f neura l cel l ad hesion molecules . Fron t Biosci 8:d900-911. Pearlma n AL, Sheppar d AM (1996 ) Extracellula r matrix in earl y cortica l development . Pro g Brai n Re s 108 : 117-134. Pilz D , Stoodle y N , Golde n J A (2002 ) Neurona l migra tion , cerebra l cortica l development , an d cerebra l cortica l anomalies . J Neuropatho l Ex p Neuro l 61 : 1-11. Quesad a A, Prad a FA, Espina r A, Genis-Galve z JM (1990a ) Effec t o f ethano l o n th e cerebella r cor tex o f th e chic k embryo . Histo l Histopatho l 5 : 315-324 . (1990b) Effec t o f ethano l o n th e morphohistogen esis an d differentiatio n o f cerebella r granul e cell s in the chic k embryo . Alcoho l 7:419-428 . Rakic P (1971) Neuron-gli a relationshi p durin g granul e cell migratio n i n developin g cerebella r cortex . A Golg i an d electronmicroscopi c stud y i n Macaca rhesus. ] Com p Neuro l 141:283-312 . (1972) Mod e o f cel l migratio n t o th e superficia l layers o f feta l monke y neocortex . J Com p Neuro l 145:61-83. (1974) Neuron s i n rhesu s monke y visua l cortex : systemati c relatio n betwee n tim e o f origi n an d eventua l disposition . Science 183:425—427 . Rakic P , Bourgeois JP , Goldman-Raki c P S (1994 ) Synap tic developmen t o f the cerebra l cortex : implication s for learning , memory , an d menta l illness . Pro g Brain Re s 102:227-243 . Ramanatha n R , Wilkemeye r MF , Mitta l B , Peride s G , Charnes s M E (1996 ) Alcoho l inhibit s cell-cel l adhesion mediate d b y huma n LI . J Cel l Bio l 133 : 381-390. Rivas RJ , Hatte n M E (1995 ) Motilit y an d cytoskeleta l organizatio n o f migratin g cerebella r granul e neurons . J Neurosc i 15:981-989 . Roebuc k TM , Mattso n SN , Rile y E P (1998 ) A revie w of th e neuroanatomica l finding s i n childre n with feta l
alcoho l syndrom e o r prenata l exposur e t o alcohol . Alcoho l Cli n Ex p Re s 22:339-344. Ron n LG , Hart z BP , Bock E (1998 ) Th e neura l cel l ad hesion molecul e (NCAM ) i n developmen t an d plasticit y o f th e nervou s system . Ex p Geronto l 33 : 853-864. Saito Y , Murayam a S , Kawa i M , Nakan o I (1999 ) Breache d cerebra l gli a limitans-basa l lamin a com plex i n Fukuyama-typ e congenita l muscula r dystro phy. Acta Neuropatho l 98:330-336 . Sakata-Hag a H , Sawada K , Hisano S , Fuku i Y (2001 ) Abnormalitie s o f cerebella r foliatio n in rat s prenatall y exposed t o ethanol . Act a Neuropatho l 102:36—40 . Sapir T , Elbau m M , Reine r О (1997 ) Reductio n o f microtubul e catastroph e event s b y LIS1 , platelet activatin g facto r acetylhydrolas e subunit . EMB O J 16:6977-6984. Sari Y, Powroze k T , Zho u F C (2001 ) Alcoho l deter s th e outgrowt h o f serotonergi c neuron s a t midgestation . JBiome d Se i 8:119-125 . Schaffer t CS , Sorrel l MF , Turn a D J (2001 ) Expressio n and cytoskeleta l associatio n o f integri n subunit s i s selectively increase d i n ra t perivenou s hepatocyte s after chroni c ethano l administration . Alcoho l Cli n Exp Re s 25:1749-1757. Schmeche l DE , Raki c P (1979 ) A Golg i stud y o f radial glial cell s i n developin g monke y telencephalon : morphogenesi s an d transformatio n int o astrocytes . AnatEmbryoll56:115-152 . Schmi d RS , Anton ES (2003 ) Rol e of integrin s in th e de velopmen t o f the cerebra l cortex . Cere b Corte x 13 : 219-224. Seki T , Arai Y (1991 ) Expressio n o f highly polysialylate d NCA M i n th e neocorte x an d pirifor m corte x o f th e developin g an d th e adul t rat . Ana t Ernbryo l 184 : 395-401. Shett y AK , Phillip s D E (1992 ) Effect s o f prenata l ethano l exposur e o n th e developmen t o f Bergman n glia an d astrocyte s i n th e ra t cerebellum : a n im munohistochemica l study . J Com p Neuro l 321 : 19-32. Siegenthale r JA , Mille r M W (2005a ) Transformin g growth facto r ß l promote s cel l cycl e exi t throug h the cyclin-dependen t kinas e inhibito r P2 1 i n the developin g cerebra l cortex . J Neurosc i 25 : 8627-8636. (2005b) Ethano l disrupt s cel l cycl e regulatio n i n developing rat cortex: interaction with transformin g growth factor ßl . J Neurochem. (2004) Transformin g growth facto r ß l modulate s cell migratio n i n ra t cortex : effect s o f ethanol . Cereb Cortex 14:791-802 . Sievers J , Phleman n F , Gud e S , Berr y M (1994 ) Meningeal cells organiz e th e superficia l glial limitans
ETHANOL AFFECTS NEURONAL MIGRATIO N 22 9 of th e cerebellu m an d produc e bot h th e interstitial matrix an d basemen t membrane . J Neurocyto l 23:135-149. Soda T, Nakashima R, Watanabe D, Nakajima K, Pastan I, Nakanishi S (2003) Segregatio n an d coactivatio n of developin g neocortica l laye r 1 neurons. J Neu rosci 23:6272-6279. Takeda S , Kondo M, Sasak i J, Kurahashi H, Kano H, Arai K, Misak i K, Fukui T , Kobayash i K, Tachikawa M , Imamura M, Nakamura Y, Shimizu T, Murakami T, Simada Y , Fujikado T , Matsumur a K , Terashima T , Toda T (2003 ) Fukutin i s required for maintenance of muscle integrity , cortical histiogenesis and norma l eye development. Hu m Mol Genet 12:1449-1459. Tomas M , Lazaro-Diegiie z F , Dura n JM , Mari n P , Renán-Piqueras J, Egea G (2003 ) Protective effect s of lysophosphatidic aci d (LPA ) on chroni c ethanol induced injurie s to the cytoskeleto n an d on glucos e uptake i n ra t astrocytes. J Neurochem 87:220—229 . Vingan RD , Dow-Edward s DL , Rile y E P (1986 ) Cere bral metaboli c alteration s i n rats following prenatal alcohol exposure : a deoxyglucos e study . Alcoho l Clin Ex p Res 10:22-26. Voigt T (1989 ) Development o f glial cells in the cerebra l wall of ferrets: direc t tracing of their transformation from radia l glia into astrocytes. J Comp Neurol 289 : 74-88. Wilkemeyer MF , Menkar i CE , Charnes s M E (2002a) Nove l antagonist s o f alcohol inhibitio n o f
Ll-mediated cel l adhesion : multipl e mechanism s of action. Mol Pharmaco l 62:1053-1060 . Wilkemeyer MF , Menkari CE , Spon g CY, Charness M E (2002b) Peptide antagonist s of ethanol inhibitio n o f 11-mediate cell-cel l adhesion . J Pharmaco l Ex p Ther 303:110-116. Wilkemeyer MF, Pajerski M , Charness M E (1999 ) Alcohol inhibitio n o f cel l adhesio n i n BMP-treate d NG108-15 cells . Alcoho l Cli n Ex p Re s 23:1711 1720. Wilkemeyer ME , Sebastia n AB , Smit h SA , Charnes s ME (2000 ) Antagonist s o f alcoho l inhibitio n o f cell adhesion . Pro c Nat i Aca d Se i US A 97:36903695. Williams RS , Swishe r CN , Jenning s M , Amble r M , Caviness V S J r (1984 ) Cerebro-ocula r dysgenesi s (Walker-Warburg syndrome) : neuropathologic an d etiologic analysis. Neurology 34:1531-1541. Wisniewski K , Dambska M , She r JH , Qaz i Q (1983 ) A clinical neuropathological study of the feta l alcoho l syndrome. Neuropediatrics 14:197-201. Yoon Y , Torok N , Kruege r E , Oswal d B , McNive n M A (1998) Ethanol-induce d alteration s o f th e micro tubule cytoskeleto n i n hepatocytes . A m J Physio l 274:G757-766. Zhou FC , Sar i Y, Zhang JK, Goodlett CR, L i T-K (2001) Prenatal alcoho l exposur e retard s the migratio n an d development o f serotoni n neuron s i n feta l C57B L mice. Brain Res Dev Brain Res 126:147-155.
14
Effects of Ethanol on Mechanisms Regulating Neuronal Proces s Outgrowth Tara A. Lindsley
Establishment o f normal neura l circuitr y in the cen tral nervou s syste m (CNS ) require s spatia l an d tem poral contro l o f th e outgrowt h o f neuntes . Thi s outgrowth an d th e specificatio n of axon s an d den drites ar e amon g th e earlies t event s i n th e develop ment of postmigratory neurons. Three decade s o f researc h sho w tha t exposur e t o ethanol disrupt s th e developmen t o f axon s an d den drites an d alter s neura l circuitr y i n divers e brai n re gions. Th e primar y actions o f ethanol o n developin g neurons are still largely unknown, however, in part, because th e endogenou s mechanism s an d extracellular signaling pathway s regulating proces s outgrowt h an d guidance during normal development ar e not fully un derstood (se e Chapter 4) . Fo r comprehensive descriptions of effects o f ethanol o n th e microscopi c structure of the developing brain, the reader is referred to reviews by Pentney and Miller (1992) and Berma n and Hanni gan (2000), respectively. The presen t chapte r summarize s th e effect s o f ethanol on the outgrowth and maturation o f dendrites
and axons , focusin g o n CN S neuron s developin g in vivo or in vitro. The selecte d observation s highlight both well-establishe d an d emergin g insight s regarding th e effect s o f ethano l o n axona l an d dendriti c growth. Althoug h not exhaustive , one sectio n describes how recent advances in developmental neural cell biology are informing work aimed at understanding th e mechanism s underlyin g disruptio n o f neu ronal development b y ethanol.
EFFECTS O F ETHANOL O N DEVELOPMENT OF DENDRITES In Vivo Studies The comple x an d characteristi c shap e o f a dendriti c arbor, where neurons receive and integrate inpu t fro m multiple synapti c partners , i s a critica l determinan t of th e electrophysiologica l propertie s o f a neuron . Ethanol-induced change s i n dendriti c morpholog y
230
ETHANOL AND PROCESS OUTGROWTH 23 1 could severel y affec t neurona l function . Result s o f morphometric studie s in rodent s expose d t o ethano l during development sugges t that regions of the brai n are no t equivalentl y affected b y ethanol. Eve n withi n a brain region vulnerable to ethanol-induced change s in dendriti c shape , th e spécifi e parameter s o f th e dendritic arbo r (e.g. , lengt h o f dendriti c segments , number o f primary dendrites, o r branching ) ma y b e differentially affected . The expans e o f dendritic arbor s i s determined b y the numbe r an d lengt h o f it s primar y dendrite s (which exten d directl y fro m th e cel l body ) an d den dritic branches . I n youn g mic e expose d t o ethano l pre- an d perinatally , pyramida l neuron s i n th e CA 1 region o f th e hippocampu s hav e shorte r basa l den drites, but th e lengt h o f apical dendrites is unaffecte d (Davies an d Smith , 1981 ; Smit h an d Davies , 1990) . Parallel results have been reporte d for the dendrite s of pyramidal neuron s i n the sensorimoto r corte x (Ham mer an d Scheibel , 1981 ; Fabregue s et al., 1985) . The number o f primary dendrites an d th e exten t o f their branching are also decreased in other areas including chick spina l cor d serotonergi c neuron s (Mendelso n and Driskill , 1996) , ra t dopaminergi c neuron s o f the substantia nigr a (Shett y et al., 1993) , an d ra t cerebel lar granul e neuron s (Smit h an d Davies , 1986) . Tha t ethanol may differentially affec t distinc t parameters of dendritic morpholog y i s a potentiall y importan t ob servation give n evidenc e tha t th e number , length , and branchin g o f dendrite s ma y b e independentl y regulated (Scott and Luo, 2001). Although man y report s emphasiz e th e inhibitor y effects o f prenata l ethano l exposur e o n th e siz e o f dendritic arbor s i n variou s region s o f immatur e ro dent brain, studies indicat e tha t ethano l ca n increase the siz e o f dendritic arbors. For example, ethanol in creases th e numbe r an d lengt h o f apical an d basila r dendritic branche s o f callosa l projection neuron s i n the ra t (Qiang et al., 2002) . The stimulator y effec t o f ethanol o n dendrite s appear s t o involv e N-methyl-Daspartate (NMDA ) receptors , sinc e dendrite s are nor mal i n ethanol-expose d transgeni c mice wit h deletio n of the NR 1 subtype of NMDA recepto r (Den g and El berger, 2003). Notably, th e dat a cite d abov e exemplif y effect s o f developmental exposur e t o ethano l observe d whe n neonatal or immature animals are examined. In some cases, however , whe n prenata l ethanol-expose d ani mals ar e examine d a t othe r youn g ages, o r a s adults, areas that had stunted dendrite s are found to be eithe r
normal (Pentne y e t al , 1984 ) o r hav e significantl y larger an d mor e comple x dendrite s tha n control s (Miller e t al. , 1990) . Thes e dat a ar e generall y be lieved t o indicat e tha t ethanol-induce d reductio n i n dendritic arbo r siz e reflect s delayed dendriti c devel opment o r that initial inhibition o f growth is followed by an abnorma l compensatory growth response when the anima l is no longe r expose d to ethanol . Anothe r possibility i s tha t ethano l interfere s wit h dendriti c pruning, a proces s associate d wit h a glutamatergic NMDA recepto r mechanism (Kozlowsk i et al., 1997) . This concep t i s supported b y evidenc e tha t ethano l can caus e axona l hypertroph y as well (se e Effect s o f Ethanol on Development of Axons). That dendriti c morpholog y coul d chang e s o significantly i s not surprising , given that dendrit e development i s a highl y dynami c process . Dendriti c growth i n viv o i s characterized by extensive remodeling, as exemplified by the postnata l retractio n o f th e apical dendrite s o f some laye r V callosa l projection neurons, fro m cortica l laye r I to layer IV (Koester and O'Leary, 1992) . Thus, assessment of prenatal ethano l effects o n dendrite s ove r extende d development , an d after withdrawa l fro m ethanol , i s important . Mor e studies are neede d to explor e the possibilit y tha t ethanol affects th e cellula r event s whereby exuberan t early growth is followed b y partial pruning, or initially stunted developmen t i s later reverse d b y compensa tory growth. Dendritic remodelin g ca n b e directl y visualize d by time-lapse imaging , as performed on neuron s fro m frog opti c tectum , in which rapi d addition an d retrac tion o f ne w branche s an d remodelin g o f existin g branches, a s well as the differentia l regulatio n o f these events during maturation, has been documente d (W u et al. , 1999) . I t i s now possibl e t o imag e neuron s i n complex environment s ove r extende d tim e period s (Danuser an d Waterman-Storer , 2003) . Suc h time lapse studie s coul d hel p distinguis h whethe r ethano l delays o r alter s on e o r mor e feature s o f dendriti c growth in the intac t developing brai n (e.g., outgrowth, elongation, branching, or remodeling). In Vitro Studies Several neuron cultur e systems have been used t o examine th e effect s o f ethanol o n developin g neurons . Some cell cultur e models ar e poorly suited to exploring effect s o f ethano l specificall y o n dendrite s o r axons. Fo r example , i n som e dissociate d cultures ,
232 ETHANOL-AFFECTE D DEVELOPMEN T (1) the neuron s are too dense or there are various cell types present , limitin g bot h morphometri c an d mo lecular analyses ; (2) th e neuron s d o no t surviv e o r develop long enoug h fo r researchers to investigate th e persistence o f ethano l effect s o r th e capacit y o f th e neuron to recover normal morphology, or (3) the neu rons are no t th e type s sensitive to ethanol damag e i n vivo. No t surprisingly , a n inconsisten t pictur e o f ethanol effect s o n neuromorphogenesis has emerged. Some report s sho w that ethano l inhibit s proces s out growth (Do w an d Riopelle , 1985 ; Kentrot i an d Ver nadakis, 1991 ; Heato n e t al. , 1994 ; Saunder s e t al. , 1995; Beare r e t al. , 1999) , wherea s other s repor t a stimulatory effec t (Messin g e t al. , 1991 ; Woote n an d Ewald, 1991 ; Roivaine n e t al , 1993 ; Zo u e t al , 1993). The followin g discussion focuses o n studies for which ther e is reasonable certaint y that th e processe s being studied are either dendrites or axons. Unique characteristic s o f low-densit y culture s o f fetal ra t hippocampal pyramida l neurons mak e the m a valuable model fo r examining the molecula r mech anism^) b y whic h ethano l interfere s wit h dendriti c and axona l growth. These cultures, detailed in Chapter 4, are th e mos t extensivel y characterized primar y culture o f mammalian CNS neurons , and numerou s studies hav e been conducte d comparin g the m t o pyramidal neuron s developin g i n sit u (Crai g an d Banker, 1994 ; Gosli n e t al, 1998) . Neuron s i n thes e cultures ar e nearl y homogeneous ; typicall y 94% ar e readily distinguished as pyramidal neurons. They live for u p t o 4 weeks , undergoin g stereotypical , nearl y synchronous development , each neuron havin g a single axo n an d severa l dendrites of well-defined shap e and characteristi c molecula r constituents . Th e cul tured neuron s for m synapti c relationship s tha t ar e representative o f thos e normall y present i n th e hip pocampus (e.g. , Schaffe r collateral s interconnectin g pyramidal neurons). This pattern parallels hippocampal developmen t i n situ, which i s largely complete by the en d o f th e thir d postnata l wee k (Minkwit z an d Holz, 1975). Moreover, the developmental progression that occurs during the elaboratio n o f axons, dendrites, and synapse s can b e readil y quantified by time-laps e microscopy o f individua l neurons (Dott i e t al. , 1988 ; Goslin an d Banker , 1989). Some of the inhibitory effects o f ethanol on dendrite development ar e supporte d b y results from studie s using these cultures, in which definitive dendrite s can b e identified b y their characteristi c proximal-dista l tape r and b y immunolocalization o f microtubule-associated
protein (MAP ) 2, a protein distribute d in th e somato dendritic compartmen t (Gosli n e t al. , 1998) . I n hip pocampal cultures , quantitativ e morphometri c analyses o f MAP2-stained, pyramidal neuron s 6 days in vitro (DIV) , expose d continuousl y t o 43-8 7 mM ethanol, sho w concentration-dependent decrease s i n total dendriti c length , in the numbe r o f primary den drites and dendritic branches, and in the length o f individual dendrite s (Yann i an d Lindsley , 2000 ; Yanni et al. , 2002) . Ethano l als o decrease s th e numbe r o f synapses forme d by these neuron s (Yann i an d Linds ley, 2000) . Nevertheless , synapti c densit y i s no t af fected. Hence , i t i s likel y secondar y t o effect s o n dendrites an d no t a direct effec t o n synapse formation per se . Delaying th e additio n o f ethanol unti l 1 DIV, when mos t neuron s hav e develope d a n axon , results in significantl y shorter, less-branche d dendrite s a t 6 DIV, relative to the neuron s exposed to ethanol a t the time of plating (Lindsley et al., 2002). Thus the matu rity of hippocampal neuron s influences their vulnerability to morphoregulatory effects o f ethanol. The duratio n o f ethanol exposur e an d th e timin g of withdrawal have variable effects o n dendrit e devel opment i n hippocampa l culture s (Lindsle y an d Clarke, 2004). When ethanol i s added to the mediu m shortly after plating , continuous exposure for up t o 14 DIV decrease s th e lengt h an d numbe r o f dendrite s formed, but i t has no effect o n neuron survival . When ethanol exposur e is limited to the first day post-plating and withdrawa l occurs befor e dendrites elongate , in dividual dendrite s achieve normal length b y 1 4 DIV. The arbors , however , ar e stil l smalle r tha n control s because o f a persisten t reductio n i n th e numbe r o f primary dendrites. Thes e findings are consistent wit h in vivo observations that inhibitor y effects o f prenatal ethanol o n dendriti c lengt h ma y no t endur e afte r withdrawal from ethanol (Pentne y et al., 1984; LopezTejero e t al. , 1986) , but th e effec t o n th e numbe r o f primary dendrites may persist even after limite d expo sure to ethanol (Duran d et al, 1989). The additio n of ethanol a t any time point prior to 6 DIV does no t affec t neuro n survival . In contrast , addi tion of ethanol on Day 6 (after rapid growth of dendrites and synapses has begun) triggers cell death, despite th e shorter duratio n o f ethano l exposur e (Lindsle y e t al. , 2002). Developmenta l stage-dependen t sensitivit y to ethanol-induced cel l deat h ha s also been reporte d fo r cerebellar neuron s i n vivo an d i n vitro (Goodlet t an d Johnson, 1999 ) and may involve the nitric oxide-cyclic guanosine 5 /-nionophosphate-dependent protei n
ETHANOL AND PROCESS OUTGROWTH 23 3 kinase pathwa y (Bonthiu s e t al, 2004) . Elucidatin g the mechanisms b y which the timing of ethanol exposure influences the natur e and severit y of its effects o n dendrites and o n neurona l surviva l is a goal o f ongo ing research.
EFFECTS O F ETHANOL O N DEVELOPMENT O F AXONS
In Vivo Studies The effec t o f prenata l ethano l o n axona l growt h i n various brain regions is less well characterized than its effects o n dendrites . I t i s mos t ofte n reporte d a s a n overall hypertroph y o f axon s fro m projectio n neu rons, such a s those comprisin g the corticospina l trac t and th e moss y fiber tract i n th e hippocampus . Thi s hypertrophie effec t o f ethano l i s no t a s consistentl y observed i n axo n tract s that cros s the midlin e i n th e brain, such a s the corpu s callosum an d anterior com-
Axons of Projection Neurons Prenatal exposur e t o ethano l markedl y alter s th e number an d distributio n of axons of projection neu rons in various brain regions. I n mos t cases , change s in the numbe r of axons cannot be attributed to corresponding change s i n th e numbe r o f neurons i n th e brain regio n fro m whic h th e trac t extends . Fo r example, prenatal exposur e to ethanol increase s the num ber o f neuron s projectin g fro m ra t somatosensor y cortex t o the spina l cor d (Miller , 1987) , th e numbe r of axons in the cauda l pyramida l tract (Miller and Al Rabiai, 1994) , an d th e tota l axoplasmi c volum e i n layer V o f th e somatosensor y corte x (Al-Rabia i an d Miller, 1989) . Although the absolut e number of corticospinal neuron s i s no t affected , becaus e th e tota l number of neurons in layer V is reduced by one-third (Miller an d Potempa , 1990) , th e relativ e numbe r i s substantially increased . I t ha s bee n suggeste d tha t these exuberan t projections are persistent , immatur e connections an d ma y indicat e tha t ethano l inhibit s the prunin g of axons that normall y refines ove r time (Miller, 1987) . A hypertrophi e axona l projectio n ha s bee n ob served i n axon s extendin g fro m granule cell s i n th e dentate gym s (moss y fibers ) t o apica l dendrite s o f the pyramida l neuron s i n th e CA 3 regio n o f th e
hippocampus. Adul t rats prenatally exposed to ethano l have a conspicuous abnorma l ban d of infrapyramida l mossy fibers in hippocampal subfiel d CA3 a a t middl e and temporal levels (West et al., 1981). In addition, th e band o f suprapyamidal moss y fibers in the stratu m lucidum is disorganized. This exposure period coincide s with th e birt h o f pyramidal neurons i n CA3 , bu t i t is before mos t granule cell s or their axons appear. Therefore, it has been postulated that alterations in the terminal field induce hypertrophie growt h of mossy fibers. As with the corticospina l tract, moss y fibers in th e hippocampus underg o stereotype d prunin g o f axonal branches tha t sculpts the connection s int o the matur e pattern. Althoug h th e mechanism s controllin g moss y fiber axon pruning are not fully understood, recen t evidence points to a role for the repulsiv e guidance mole cule Sem a 3 F (Bagri et al., 2003). There are intriguing similarities between the abnorma l mossy fiber trajectories of prenatal ethanol-exposed rats and mice deficient in the axon guidance molecule semaphorin 3 F (Sahay et al. , 2003 ) o r i n member s o f th e holorecepto r fo r semaphorins, neuropilin- 2 (Che n e t al. , 2000 ) an d plexin A3 (Cheng et al., 2001). It is appealing to speculate that ethanol interferenc e with mossy fiber pruning is mediated by altered semaphorin signaling. Axons That Cross the Midline During brai n development , axon s fro m specifi c re gions within each cerebral hemispher e ar e guided by extracellular signal s t o gro w acros s th e midlin e t o synapse on neurons in the opposit e hemisphere . Th e largest axo n trac t crossin g th e midlin e i s the corpu s callosum. I t consist s of axon s projecting to th e con tralateral cortex , thereb y allowin g sensory and moto r integration betwee n th e lef t an d righ t side s o f th e brain. A higher tha n normal incidenc e o f corpus cal losum abnormalities has been reporte d for individuals with feta l alcoho l syndrom e (FAS ) (Rile y e t al , 1995). Magnetic resonanc e imagin g an d autops y stud ies i n human s expose d prenatall y t o ethano l sho w that ethano l decrease s the cross-sectiona l area of the corpus callosum, especiall y the posterio r region (sple nium), an d displace s i t relativ e to othe r brai n struc tures (e.g. , Clarre n e t al , 1978 ; Peife r e t al, 1979 ; Pratt an d Doshi , 1984 ; Schaefe r e t al , 1991 ; Rile y et al, 1995; Roebuck et al, 1998 ; Swayz e et al., 1997 ; Sowell e t al., 2001). In contrast, prenatal ethano l ca n increase th e siz e o f the corpu s callosu m i n childre n
234 ETHANOL-AFFECTE D DEVELOPMENT prenatally exposed t o ethanol (Bookstei n et al, 2002) and i n a nonhuma n primat e (Macaca nemestrina) (Miller et al, 1999) . Indeed, th e tota l numbe r o f axons i s increased. The mos t labile segment i s the ros tral portion (genii) , without affecting th e thicknes s of axons o r their myelin sheaths . The difference s i n th e primates ma y reflect concentration-dependent effect s of ethanol: a t lower exposures, ethanol leads to hypertrophic effects , wherea s a t highe r exposure s i t i s full y depressive. Result s in roden t model s ar e similarl y in consistent, with some studies showing ethanol-induced decreases in variou s measures of corpus callosum size (Chernoff, 1977 ; Zimmerber g an d Mickus , 1990 ; Moreland e t al. , 2002 ) and other s showin g no effec t (Livy and Elberger , 2001 ) or an increas e i n the num ber of callosal projection neurons (Miller, 1997). Noncallosal axo n tract s tha t cros s the midlin e are vulnerable t o disruption by ethanol. Prolonged expo sure to relatively high dose s of alcohol ca n reduc e th e size o f th e hippocampa l commissur e (Liv y an d El berger, 2001) . Th e midsagitta l are a o f th e anterio r commissure i s reduced b y prenatal ethanol exposur e in som e inbre d mic e (Cassell s et al., 1987) , however , this effec t ha s no t bee n observe d i n studie s o f rat s (Zimmerberg an d Mickus , 1990 ; Liv y and Elberger , 2001). Granat o e t al. (1995 ) reported reduce d termi nal axona l arbor s o f corticothalami c projections , i n which th e mos t sever e damage i s in th e selectiv e absence o f corticothalami c projection s tha t cros s th e midline, a characteristi c o f ra t corticothalami c sys tems that is not seen i n humans . Some o f thes e inconsistencie s ma y reflec t differ ences in species, strain differences i n the developmen tal sensitivit y of commissural axons, differences i n th e dose o r timin g o f ethano l administration , o r othe r méthodologie factors (Mille r et al, 1999). In any case, the susceptibilit y o f crossin g fiber s t o disruptio n b y ethanol has some important mechanistic implications because the midlin e is a uniqu e developmenta l field where the respons e of axons to attractive and repulsive cues i s finely regulated b y precise molecula r mecha nisms no w bein g identifie d (Tessier-Lavign e an d Goodman, 1996 ; Hube r et al, 2003). In Vitro Studies Partial t o complet e agenesi s o f the corpu s callosum , as seen i n FAS , is also common i n people wit h mutations in LI, the so-called CRAS H syndrom e (Franse n
et al , 1995 ; Bearer , 2001) . Thi s findin g le d t o th e hypothesis tha t disruptio n o f L I functio n ma y con tribute t o neuropathologi c effect s o f prenatal ethano l exposure (Charnes s e t al. , 1994) . L I i s a neura l cell adhesion molecul e expresse d o n axon s that facilitates axon growt h throug h bot h heterophili c an d ho mophilic binding (Brummendor f and Rathjen, 1996) . Some i n vitr o evidenc e is consistent with ethano l disruption o f Ll-mediated axon outgrowth fro m CN S neurons. Ra t cerebella r granule neuro n culture s extend neunte s whe n culture d o n substrate s coate d with LI . Ethano l inhibit s Ll-mediated outgrowt h o f the longes t neurit e forme d 1 2 hr afte r platin g (pre sumably the axon ) in thes e cultures , even a t concen trations a s lo w a s 3- 5 m M (Beare r e t al. , 1999) . Apparently, thi s i s no t du e t o inhibitio n o f Ll mediated adhesio n pe r se, because th e sam e effec t o f ethanol on axon growth is observed when the cell s are plated o n poly-lysine substrates and treate d wit h a soluble for m o f the extracellula r domain o f LI. This re sult wa s take n t o indicat e tha t ethano l disrupt s signaling downstream of LI tha t influences organization of the growth cone cytoskeleton. There i s growin g evidenc e fro m i n vitro experi ments tha t second messenge r cascade s an d cytoskele tal reorganizatio n are triggere d b y LI, eithe r directly or vi a it s interaction s wit h co-receptor s (Burden Gulley et al., 1997 ; Castellan i et al, 2000; Watanabe et al, 2004). Other subsets of axons in the developin g CNS expres s LI i n hig h amounts , includin g pyramidal trac t axon s (Jooste n an d Gribnau , 1989) , whic h are sensitiv e t o ethano l disruptio n durin g develop ment (se e Axon s o f Projectio n Neurons , above) . Thus, elucidating the mechanism s by which ethano l disrupts LI regulate d axo n growth i s an importan t focus o f future studies . Various studies have shown that LI i s but on e o f many cell adhesio n protein s affecte d by ethano l (Lu o an d Miller , 1999 ; Mille r an d Luo , 2002; Siegenthaler an d Miller , 2004). These protein s are regulate d b y factor s suc h a s transformin g growth factor ßl , whic h i s know n t o promot e neurit e out growth (Ishihar a et al., 1994) and i s a target of ethanol (e.g., Lu o an d Miller , 1999 ; Mille r an d Luo , 2002 ; Siegenthaler and Miller , 2004). Although studie s i n vivo have no t focuse d o n th e effects o f ethanol on early stages of process outgrowth, some i n vitro studies point to effects o f ethanol o n th e timing of initial axon outgrowt h (axo n specification) . In culture s o f hippocampa l pyramida l neurons , th e
ETHANOL AND PROCESS OUTGROWTH 23 5 proportion o f neuron s tha t reac h Stag e 2 (extende d neuntes, bu t befor e axo n specification ) an d th e proportion that reac h Stag e 3 (axon specification) are both increase d when ethanol is added to the medium, beginning shortl y after platin g (Clam p an d Lindsley , 1998). Subsequen t time-laps e studies , which includ e only cells that achieved Stag e 3 , show that ethanol de lays axonal outgrowth (Lindsley et al., 2003). Both observations indicate that the increas e in the proportion of cell s wit h undifferentiate d neunte s i s responsibl e for th e fina l increas e i n th e proportio n o f polarized cells at 1 DIV, and that ethanol ma y increase the likelihood of forming an axon even as it decreases the rate at which this occurs. Some caution is required when interpreting studies of ethanol effect s o n proces s outgrowt h tha t compar e neurite morpholog y a t a selecte d tim e afte r plating . Differences i n th e lengt h o f processes measure d a t a single tim e poin t d o no t tak e int o accoun t effect s o n the time it takes for a neuron to initiate axon extension and th e rat e of elongation onc e the axo n i s formed. A time cours e o f ethanol effect s durin g initial stage s of neurite outgrowth, or time-lapse analyse s on live cells, is needed to make this distinction. An eve n higher-resolution tim e cours e i s required to asses s th e effect s o f ethano l o n th e rat e o f axo n growth afte r a n axo n emerges . Thi s i s because onc e axons ar e formed , the y gro w i n a saltator y manne r characterized b y cyclin g betwee n period s o f growth (when length increases ) an d period s of relative quiescence ("non-growth" ; whe n shor t retractio n occurs ) (Fig. 14-1) . Molecula r an d pharmacologi e treat ments ca n selectivel y alter specific aspects of process outgrowth, suc h a s the relativ e duration o f periods of growth, the timin g of axon establishment, o r the mag nitude o f retraction durin g pauses (Esc h e t al., 1999 ; Ruthel an d Banker , 1999 ; She a an d Beerman , 1999 ; Walker et al, 2001; Lindsley et al., 2003). These findings sugges t tha t these feature s of process growt h dynamics ar e independentl y regulate d unde r norma l conditions an d coul d b e differentiall y sensitiv e t o ethanol. Time-lapse analysi s of living neuron s ha s demon strated saltator y axonal growt h i n dissociate d culture s (Katz et al., 1984; Aletta and Greene, 1988; Ruthe l and Banker, 1999 ; Lindsle y et al., 2003), tissue slices (Halloran an d Kalil , 1994) , an d th e intac t brain (Kaethner and Stuermer , 1992) . I n som e axons , suc h a s thos e comprising th e corpu s callosum , thi s ca n b e quit e
FIGURE 14- 1 Axona l growt h o f a hippocampa l py ramidal neuron . Phase-contras t image s o f a ra t hip pocampal pyramida l neuron , capture d a t variou s times postplatin g (show n i n hr). The dista l ti p o f the axon advance s an d retract s durin g elongation . Scal e bar= I S |im.
dramatic, with extensive lengths o f axon retracting or sprouting rapidl y (Den t e t al. , 1999) . Dendrite s als o undergo significan t retraction s durin g outgrowth an d remodeling, a s demonstrate d b y withdrawa l o f th e apical dendrit e fro m subset s of pyramidal neurons i n the developin g corte x (Koeste r an d O'Leary , 1992) . Aside from affectin g ne t growt h rate , saltator y growth is associate d with othe r importan t feature s o f neura l development, includin g branc h formatio n (Szebeny i et al. , 2001) , branc h growt h alternatio n (Futerma n and Banker , 1996) , an d growt h con e response s t o attractive an d repulsiv e guidance cue s (Son g an d Poo , 1999; Min g et al, 2002). Time-lapse analysi s of the effect s o f ethanol o n th e saltatory growt h dynamic s i n hippocampa l culture s shows that ethano l increase s th e overal l rat e o f axon elongation b y decreasin g th e exten t o f retraction s
236 ETHANOL-AFFECTE D DEVELOPMENT during pause s i n growth . Ethano l doe s no t increas e the rat e o f extension durin g growth spurts or the rela tive time axon s spend growin g and pausin g (Lindsley et al., 2003).
MECHANISMS UNDERLYING ETHANOL-INDUCED CHANGE S IN DENDRITI C AN D AXONAL MORPHOLOGY
As described above, in vivo and i n vitr o data indicat e that specifi c morphologi c feature s tha t mak e u p th e overall shape o f dendrites an d specifi c features of axonal growth dynamics may not be equall y affected b y ethanol. The y als o indicat e tha t th e morphoregula tory effects o f ethanol ma y be correlated wit h the ear liest stage s o f proces s outgrowth . Mor e studie s ar e needed t o identif y th e molecula r basi s fo r such spe cific vulnerabilit y t o ethanol-induce d damage . Ad vances i n understandin g ke y cellula r regulator s o f growth con e motilit y provid e ne w opportunitie s t o speculate o n ho w ethano l exposur e migh t modulat e morphogenesis o f axons an d dendrite s durin g devel opment. Tw o o f these emergin g idea s ar e discusse d below. Small Rho Guanosine Triphosphatases Although regulator y mechanism s underlyin g den dritic remodeling ar e not full y understood , the mole cules an d signal s involve d ar e though t t o influenc e the acti n an d microtubul e cytoskeleton, sinc e signifi cant cytoskeleta l rearrangemen t occurs . Th e Rh o family, smal l guanosin e triphosphatase s (GTPases) , Rac, Cdc42, and RhoA , ar e essentia l component s o f signaling pathways that transduce a variety of extracellular signal s (e.g. , neurotrophin s an d integrins ) int o morphological changes . Rh o guanosin e S'-triphos phatases (GTPases) d o this by regulating downstream kinases tha t alte r th e activit y o f acti n an d tubuli n binding protein s involve d i n actin-base d cytoskeleta l remodeling i n growt h cone s (Lu o e t al. , 1997 ; Mackay an d Hall , 1998 ; Luo , 2000 ; Redmon d an d Ghosh, 2001; Lundquist, 2003). Different member s o f Rho-famil y GTPase s regu late distinct features of dendritic development, including initia l outgrowth, rat e o f growth , numbe r o f primary dendrites, and extent of branching (Redmond
and Ghosh , 2001). For example, results of experimentally altere d Rac l o r Cdc4 2 expressio n i n cortica l neurons indicate s tha t thes e protein s ar e importan t for dendritic branching and remodeling, but that they have littl e effec t o n dendriti c growt h rat e pe r s e (Threadgill e t al, 1997 ; L i et al, 2000) . I n contrast , overexpression o r activatio n o f Rho A inhibit s den dritic growt h an d underexpressio n o r inactivatio n o f RhoA lead s t o a n increas e i n dendriti c lengt h (Le e et al, 2000; Li et al, 2000). Studies focuse d o n the cellula r mechanism s regu lating extension and retractio n behavior of axons during growth an d i n respons e t o guidance factor s (e.g., semaphorins) als o poin t t o Rh o famil y GTPase s an d their downstrea m effector s (Lu o e t al. , 1997 ; Küh n et al, 2000; Luo , 2000 ; Redmon d an d Ghosh, 2001). In general , proces s extensio n i s correlate d wit h in creased formation of lamellipodia and filopodia at the leading edg e o f the growt h cone , which require s acti vation o f Cdc42 an d Racl , wherea s retraction i s correlated wit h increase d Rho A signalin g (Hall , 1998 ; Luo, 2000) . Two studies show that ethano l ca n dramaticall y rearrange F-acti n structure s in some non-neurona l cells and that activation of small Rho GTPases may mediate these effects. Ethano l induce s actin reorganization and shape chang e i n astrocyte s in vitro, and i t ha s bee n suggested tha t these effect s ar e mediated b y decreased RhoA activity, since they could b e reverte d by expression o f constitutivel y activ e Rho A (Guasc h e t al. , 2003). In the endothelial cell line, SVEC4-10, ethano l induces actin reorganization and motility. Since thes e effects ca n be blocked b y expression of dominant neg ative Cdc42, it has been suggested tha t they are medi ated b y activation of Cdc42 (Qia n e t al, 2003) . O n the othe r hand , th e effec t o f ethanol o n F-actin distri bution i n the growt h cones of developing neurons has not been reported . Som e preliminar y data are consistent wit h altere d F-acti n organizatio n i n axona l growth cones of hippocampal neurons maintained for 1 DIVwith ethanol (Sha h and Lindsley, unpublished observations). Figur e 14- 2 contain s example s o f confocal image s showing F-actin ric h structures in axonal growth cone s o f contro l an d ethanol-treate d hip pocampal neuron s 1 DIV tha t ar e fixed and staine d with phalloidin-Alex a 568 . Continuou s exposur e t o low doses of ethanol induce s extensive elaboration of lamellipodia an d numerou s thickene d filopodi a i n axonal growt h cones , an d hig h dose s onl y increas e
ETHANOL AND PROCESS OUTGROWTH 237
FIGURE 14- 2 Effec t o f ethanol o n F-acti n distribution i n growth cones . Repre sentative confoca l image s o f F-acti n distributio n i n axona l growt h cone s o f 1-day-old hippocampa l neuron s culture d fo r 1 da y i n vitr o withou t o r wit h ethanol (concentration s shown) . Images were captured a t 0.20 \im intervals using 8-image jump averaging. Each imag e i s the lowes t section fro m th e z-serie s stack. The lo w dose o f ethanol increase d the exten t of lamellipodia an d filopodia compare d t o controls , an d th e hig h dos e increase d filopodi a only . Scal e bar= 5.0 Jim.
filopodia formation . Moreover , th e involvemen t o f small GTPase s i n reorganizatio n o f growt h con e actin i n neuron s expose d t o ethano l i s indicate d by pull-dow n experiment s showin g change s i n Rac l activation i n whole-cel l lysate s o f hippocampa l cultures expose d t o ethano l fo r 1 da y durin g axo n elongation. Important advance s i n understandin g th e effect s of ethano l o n growth-relate d signalin g i n axon s an d dendrites ca n b e expected , give n th e availabilit y o f appropriate mode l system s amenabl e t o measurin g the effect s o f expressio n o f relevan t dominant negative or constitutively active mutant Rh o GTPases on ethanol-induce d disruptio n o f morphogenesis . Interestingly, man y o f the signalin g pathway s known to contro l growt h con e extension-retractio n an d at traction-repulsion behavior s appea r t o b e differen tially regulate d i n axon s an d dendrites . Som e evidence suggest s that Rh o GTPase s ar e differentiall y distributed i n growt h cone s (Renaudi n e t al. , 1999) , and experimenta l manipulations t o over - or underexpress Rho-famil y protein s hav e differentia l effect s o n the number and length o f dendrites compared to their effects o n axona l growth (Threadgil l e t al., 1997 ; Lee et al., 2000 ; Luo, 2000). Thus, if Rho-family GTPase modulation i s indeed involve d in th e morphoregula tory effect s o f ethanol, the n differentia l effect s o f th e various Rho-famil y member s o n axona l vs . dendritic effects ma y help explain the various effects o f ethanol on these distinct process types.
If ethanol-induce d change s i n growt h dynamic s and/or cytoskeleta l reorganizatio n d o indee d involv e altered GTPas e signaling , the n on e coul d as k what upstream modulator s o f Rho GTPases are particularly important i n morphoregulator y effect s o f ethanol. I n NIH 3T 3 cells , growt h factor-induce d Rac l activa tion i s sensitive to protein kinase C (PKC ) inhibition , placing PK C upstrea m o f Ra c i n tha t syste m (Buchanan e t al. , 2000) . Th e relationshi p betwee n Rho GTPas e signalin g and PKC s i s potentially quit e interesting. I n P C 12 cells, exposur e t o 25-20 0 mM ethanol fo r 2-8 day s stimulates neurite growth via upregulation o f PKC e (Messin g e t al , 1991 ; Hundle étal, 1997) . What rol e migh t downstrea m effector s o f Rho GT Pases have i n mediatin g th e effect s o f ethanol o n neuronal proces s growth ? Amon g a numbe r o f know n effectors, severa l are of particular interest. In hippocam pal neuron cultures , axon specification is linked to activation o f Cdc42 and Ra c 1 in a positive feedbac k loo p involving a highly localized comple x o f mPar3/mPar6, PKC, an d phosphoinositid e 3 kinas e (PI3K) , whic h modulates actin and microtubule cytoskeletal dynamics in th e growt h con e o f the nascen t axo n (Sh i et al. , 2003). It is not yet clear, however, whether PI3 K initiates signal s that activat e Racl/Cdc42 downstrea m o r whether Racl/Cdc4 2 are upstream signal s for PI 3K in this cascade . Othe r know n downstrea m effector s o f potential interes t includ e acti n cytoskeleton-regulating proteins, suc h a s ezrin , radixin , an d moesin , an d
238 ETHANOL-AFFECTE D DEVELOPMEN T regulators of mitogen-activated protein kinase pathways (Hall, 1998 ; Redmon d an d Ghosh, 2001). Some insigh t int o th e regulatio n o f neurit e out growth may come from studie s of neuronal migration , as commo n protein s ar e involve d i n bot h processe s (see Chapters 3 and 13) . Reduced F-acti n at the lead ing edg e o f migratin g neuron s i s associate d wit h modulation of RhoA, Racl, and Cdc42 activity (Kholmanskikh e t al., 2003) . Since abnorma l neurona l mi gration i s a ke y neuropathologi c featur e o f prenata l alcohol exposur e (Miller , 1986 , 1993 ; Hira i e t al , 1999; Moone y et al, 2004 ; Siegenthale r an d Miller , 2004), a n understandin g o f the effect s o f ethanol o n Rho GTPas e signaling in neuron s may shed ligh t on cellular mechanisms contributin g to prenatal ethanol induced neuronal migration errors. Intracellular Calcium Results o f numerou s studie s o f th e molecula r path ways linkin g activatio n o f specifi c Rho-famil y pro teins and thei r effector s poin t t o involvement of Ca2+ influx (Küh n e t al , 1998) . Thu s i t i s likely tha t ef fects o f ethano l o n dynami c growt h con e behavio r might ultimatel y b e linke d mechanisticall y throug h Rho-family effector s actin g o n th e growt h con e cytoskeleton, eithe r directl y o r indirectly , t o Ca 2+ sig naling. It ha s lon g bee n appreciate d tha t intracellula r Ca2+ i s a critica l secon d messenge r tha t modulate s growth con e behavior durin g neuronal developmen t by communicatin g growth-relate d signal s to th e cy toskeleton an d vesicula r apparatu s o f th e growt h cone (Kate r an d Mills , 1991 ; Letournea u an d Cypher, 1991 ; Neel y an d Nicholls , 1995) . Ethano l can alte r the functio n and expressio n of L-type Ca 2+ channels i n neura l cells (Walter and Messing , 1999) . The effect s o f ethanol o n Ca 2+ signalin g i n neuron s have focused primarily on mature neurons, i n which Ca2+ channels an d receptor s figur e importantl y int o cellular adaptation s t o ethano l an d t o withdrawal induced neurona l damag e (Fadd a an d Rossetti , 1998). Ethano l affect s Ca 2+ homeostasi s i n matur e neurons b y alterin g th e expressio n o r functio n o f voltage-dependent Ca 2+ channel s (VDCCs) , iono tropic receptors , and Ca 2+-induced Ca 2+ release fro m intracellular stores (Leslie et al., 1990 ; Bergamasch i et al., 1993) . Unfortunately, far fewer studie s hav e pur sued th e ide a tha t ethano l disrupt s Ca 2+ signalin g
regulating neuronal development. Th e potentia l importance o f this distinction i s suggested b y evidenc e that th e effec t o f ethano l o n VDCC s ma y no t b e constant durin g neurona l differentiatio n (Berga mashi et al, 1995 ; Webb e t al., 1997) . The "set-poin t hypothesis " propose s tha t proces s growth occur s withi n a narro w range o f intracellular Ca2+ concentratio n [Ca 2+]j, an d tha t sustaine d in creases o r decrease s i n [Ca 2"1"^ lea d t o growt h con e collapse and/o r cel l damage (Kate r and Mills , 1991) . In contrast , oscillation s o r transien t increase s i n [Ca2+]j are associated with signaling induced b y effec tor pathways , similar to those though t t o be involve d in effect s o f ethanol o n proces s growth. Some o f these transient Ca 2+ signals are highly localized. Fo r example, growt h cone s generat e transien t increase s i n [Ca2+]j as they migrat e i n viv o (Gome z an d Spitzer , 1999) an d i n vitro (Gome z e t al , 1995 ; Ciccolin i et al, 2003 ; Tang e t al, 2003) . The frequencie s and amplitudes o f these [Ca 2+]j transients are inversely related t o th e rat e o f axo n elongatio n an d increas e several-fold whe n axon s pause durin g periods o f nongrowth. Thes e transient s ar e likel y t o alte r growt h cone extension b y reorganizing the cytoskeleton , per haps b y disassemblin g local acti n an d microtubul e networks. I n cortica l neurons , thes e transient s ar e spontaneous an d Ca 2+-dependent an d ac t primaril y through L-typ e VDCCs (Tang et al, 2003). Signaling to the cytoskeleto n appears , at least in part, to involv e the phosphatase calcineri n (Lautermilc h and Spitzer , 2000). The result s o f time-series , confoca l imagin g o f Ca2+ flux in axon s o f hippocampal neuron s expose d to ethano l unde r condition s tha t alte r axona l growth dynamics hav e bee n recentl y reporte d (Gilli s an d Lindsley, 2004) . I n thes e studies , th e frequenc y an d kinetics o f spontaneou s [Ca 2+]j transient s i n axona l growth cone s o f hippocampa l neuron s a t 1 DIV i n control mediu m wer e compared t o thos e o f neuron s maintained i n mediu m t o whic h ethano l (22 , 43, or 87 mM) was added a t the time of plating. Figure 14- 3 illustrates typica l time-series image s o f axonal growt h cones from contro l and ethanol-expose d cultures, and corresponding plot s o f relative fluorescenc e intensit y in th e subscribe d regio n o f th e growt h con e ove r a 10 min recordin g period . A s describe d b y Gome z and colleague s (1995) , a transient i s define d b y a n increase in [Ca 2+]i of >200% of baseline, slow kinetics (~20 sec to peak), and retur n t o baseline.
ETHANOL AND PROCESS OUTGROWTH 23 9
FIGURE 14- 3 Time-serie s confoca l image s of axona l growt h cones . The growth cone s o f 1-day-ol d neuron s wer e loade d wit h Fluo-3 . A growth con e from a contro l cultur e (to p row ) and one fro m a cultur e expose d to 87 mM ethanol (botto m row ) are shown . Fo r each growt h con e tw o images from th e time serie s are presented, on e depictin g baselin e fluorescenc e (left) , an d th e other, peak fluorescenc e durin g a spontaneous calcium transient (right). Peak calcium elevation s are image d i n white. The plot s on th e righ t show the rela tive fluorescenc e intensit y as a percent o f baseline for the growt h cones i n th e panels (left). Scal e bar =5.0 iim.
Results of recording more than 10 0 neurons fro m 10 cultures showed that only 18 % of axons in contro l cultures exhibite d one o r more transient s during the 10 min recordin g period . Exposur e t o lo w dose s o f ethanol reduce d th e numbe r o f neurons with one o r more transients to 8% (p < 0.005), but exposur e to th e highest dos e o f ethano l increase d th e proportio n o f growth cone s wit h transient s t o 39 % (p < 0.005) . Ethanol, at any concentration tested , had no effect o n the peak amplitude, time to peak, or total duration of the transients . Thes e finding s sugges t tha t ethano l modulates th e frequenc y of spontaneou s Ca 2+ tran sients i n axona l growt h cones . I t i s yet t o b e deter mined whethe r dendriti c growth dynamics and Ca 2+ transients ar e similarl y altere d b y ethanol . I n hip pocampal cultures , a globa l increas e i n [Ca 2+]j ca n inhibit dendritic growth but promotes or has no effec t on axona l growt h (Mill s an d Kater , 1990 ; Mattso n et al, 1988 ; Mattso n an d Kater , 1987) . Thi s finding indicates potentia l difference s i n Ca 2+-dependent, growth-related signalin g in axon s and dendrites . Th e modulation o f transient Ca2+ flux in the growt h cone could b e a n importan t cellula r target of ethanol tha t mediates it s differentia l effect s o n axon s an d den drites, considerin g the sensitivit y o f growth cone s t o elevated fre e Ca 2+ and th e numbe r o f Ca2+-activated
proteins expresse d differentiall y b y axon s an d den drites.
SUMMARY AND CONCLUSIONS
Descriptive studie s detailin g specifi c morphologica l features o f neuronal development that are sensitive to disruption by ethanol in a variety of neuronal cell cultures are essential in laying the groundwork for identifying cellula r mechanism s underlyin g th e effect s o f ethanol o n neurona l morphogenesis . Man y ethanol sensitive developmenta l phenomen a discovere d s o far—the altere d growt h dynamic s an d stage-specifi c effects o f ethanol — could no t hav e been so readily derived fro m fixed sections taken fro m animal s expose d to ethanol i n utero. Neuronal development in vivo involves a diversity of interactions between neuron s and their environmen t tha t experimenta l condition s i n vitro cannot fully reproduce . Therefore, a n importan t goal for the futur e shoul d be to test specific mechanis tic hypothese s arisin g from cel l cultur e experiment s in mode l system s tha t preserv e th e endogenou s spatiotemporal expressio n o f extracellula r growth regulating molecules. Such model systems might provide opportunitie s t o manipulat e th e expressio n o f
240 ETHANOL-AFFECTE D DEVELOPMEN T specific molecule s throug h th e us e o f geneticall y modified animal s an d optica l method s tha t enabl e the visualizatio n o f axon s an d dendrite s growin g in situ. Abbreviations [Ca2+]j intracellula r concentration of Ca2+ CNS centra l nervous syste m DIV day s in vitr o FAS feta l alcoho l syndrom e GTPase guanosin e 5'-triphosphatas e PBK phosphoinositid e 3 kinase PKC protei n kinas e C MAP microtubule-associate d protein NMDA N-methyl-D-aspartat e VDCC voltage-dependen t Ca2+ channel ACKNOWLEDGMENTS Th e autho r thanks Samit Shah and Jessica Gillis for their assistance in preparing the figures for this chapter an d agreein g t o share their unpub lished observations . Thi s wor k wa s supporte d b y th e National Institute of Alcohol Abuse and Alcoholism. References Alerta JM, Greene L A (1988) Growt h con e configuration and advance: a time-lapse study using video-enhanced differential interferenc e contras t microscopy . J Neu rosci 8:1425-1435. Al-Rabiai S , Miller MW (1989 ) Effec t o f prenatal exposure t o ethano l o n th e ultrastructur e o f layer V of mature ra t somatosensor y cortex . J Neurocyto l 18 : 711-729. Bagri A , Chen g HJ , Yaro n A , Pleasur e SJ , Tessier Lavigne M (2003 ) Stereotyped pruning of long hippocampal axo n branche s triggere d b y retractio n inducers o f th e semaphori n family . Cel l 113 : 285-299. Bearer CF (2001 ) LI cel l adhesion molecul e signa l cascades: targets for ethanol developmental neurotoxicity. Neurotoxicology 22:625-633 . Bearer CF, Swic k AR, O'Riordan MA , Cheng G (1999 ) Ethanol inhibit s LI-mediated neurit e outgrowt h in postnatal ra t cerebella r granul e cells. J Biol Che m 274:13264-13270. Bergamaschi S , Battain i F , Trabticch i M , Parent i M , Lopez CM , Govon i S (1995) Neuronal differentia tion modifie s th e effec t o f ethano l exposur e o n
voltage-dependent calcium channels in NG 108-1 5 cells. Alcohol 12:497-503 . Bergamaschi S, Govoni S, Battaini F, Parenti M, Trabucchi M (1993 ) Effec t o f ethanol exposur e on voltage dependent calciu m channel s i n i n vitro cellula r models. Alcohol Alcohol Suppl 2:403-407. Berman RF , Hanniga n J H (2000 ) Effect s o f prenata l alcohol exposur e o n th e hippocampus : spatia l be havior, electrophysiology , and neuroanatomy . Hip pocampus 10:94-110 . Bonthius DJ , Karaca y B , Da i D , Hutto n A , Pantazi s J (2004) Th e NO-cGMP-PK G pathwa y plays an es sential rol e i n th e acquisitio n o f ethanol resistanc e by cerebella r granul e neurons . Neuroto x Terato l 26:47-57. Bookstein FL , Streissgut h AP , Sampso n PD , Conno r PD, Bar r H M (2002 ) Corpus callosu m shap e an d neuropsychological deficit s i n adul t male s wit h heavy feta l alcoho l exposure . Neuroimag e 15 : 233-251. Brummendorf T, Rathjen F G (1996 ) Structure/functio n relationships o f axon-associated adhesio n receptors of th e immunoglobuli n superfamily . Cur r Opi n Neurobiol 6:584-593. Buchanan FG , Ellio t CM, Gibb s M , Exto n J H (2000 ) Translocation o f the Rac l guanin e nucleotid e exchange facto r Tiam l induce d b y platelet-derived growth facto r an d lysophosphatidi c acid . J Bio l Chem 275:9742-9748 . Burden-Gulley SM , Pendergas t M, Lemmo n V (1997 ) The rol e of cell adhesion molecule LI i n axonal extension, growt h cone motility , and signa l transduction. Cell Tissu e Res 290:415-422. Cassells B , Wainwright P , Blom K (1987) Heredit y an d alcohol-induced brai n anomalies: effects o f alcohol on anomalou s prenatal development of the corpus callosum an d anterio r commissur e i n BALB/ c and C57BL/6 mice . Exp Neurol 95:587-604. Castellani V, Chedotal A , Schachner M , Faivre-Sarrailh C, Rougo n G (2000 ) Analysi s o f th e Ll-deficien t mouse phenotype reveals cross-talk between Sema 3A and L I signalin g pathway s i n axona l guidance . Neuron 27:237-249. Charness M , Safra n R , Peride s G (1994 ) Ethano l in hibits neural cell—cel l adhesion . J Biol Chern 269 : 9304-9309. Chen H , Bagr i A, Zupicich JA , Zou Y, Stoeckli E, Plea sure SJ, Lowenstein DH , Skarne s WC, Chedota l A, Tessier-Lavigne M (2000 ) Neuropilin- 2 regulate s the developmen t o f selectiv e crania l an d sensor y nerves an d hippocampa l moss y fibe r projections . Neuron 25:43-56 . Cheng HJ , Bagr i A , Yaro n A , Stei n E , Pleasur e SJ , Tessier-Lavigne M (2001 ) Plexin-A 3 mediate s
ETHANOL AND PROCESS OUTGROWTH 24 1 semaphorin signalin g an d regulate s th e develop ment o f hippocampal axona l projections . Neuro n 32:249-263. Chernoff G F (1977 ) Th e feta l alcoho l syndrom e i n mice: an animal model. Teratology 15:223-230. Ciccolini F , Collins TJ , Sudhoelte r J , Lip p P , Berridge MJ, Bootma n MD (2003 ) Local an d global sponta neous calciu m event s regulat e neurit e outgrowt h and onse t o f GABAergic phenotyp e durin g neura l precursor differentiation. J Neurosci 23:103—111 . Clamp PA , Lindsley TA (1998) Early events in the devel opment o f neuronal polarit y in vitr o ar e altere d by ethanol. Alcohol Clin Ex p Res 22:1277-1284. Clarren SK , Alvor d EC , Sum i SM , Streissgut h AP , Smith D W (1978 ) Brai n malformation s relate d t o prenatal exposur e to ethanol. J Pediatr 92:64-67. Craig AM , Banke r G (1994 ) Neurona l polarity . Ann u Rev Neurosci 17:267-310 . Danuser G , Waterman-Store r C M (2003 ) Quantitativ e fluorescent speckl e microscopy: where it came fro m and wher e it is going. J Microsc 211:191-207 . Davies DL , Smit h D E (1981 ) A Golgi stud y o f mous e hippocampal CA 1 pyramida l neuron s followin g perinatal ethano l exposure . Neurosc i Let t 26 : 49-54. Deng J , Elberger AJ (2003) Corpu s callosu m an d visua l cortex of mice with deletion of the NMDA-NR 1 re ceptor. II . Attenuation o f prenatal alcoho l exposur e effects. De v Brain Res 144:135-150. Dent EW , Callawa y JL , Szebeny i G , Baa s PW , Kali l K (1999) Reorganizatio n an d movemen t o f micro tubules i n axona l growth cones an d developin g interstitial branches. J Neurosci 19:8894-8908 . Dotti CG , Sulliva n CA, Banke r G A (1988) Th e estab lishment o f polarit y b y hippocampa l neuron s i n culture. J Neurosci 8:1454-1468 . Dow KE , Riopell e R J (1985 ) Ethano l neurotoxicity : effects o n neurit e formatio n and neurotrophi c facto r production i n vitro. Science 228:591—593 . Durand D , Saint-Cy r JA, Gurevich N , Carle n P L ( 1989) Ethanol-induced dendriti c alternation s i n hippo campal granul e cells. Brai n Res 477:373-377. Esch T , Lemmo n V , Banke r G (1999 ) Loca l presenta tion o f substrat e molecule s direct s axo n specifica tion b y cultured hippocampa l neurons . J Neurosci 19:6417-1626. Fabregues I , Ferre r I , Gair i JM , Cahuan a A , Gine r P (1985) Effect s o f prenata l exposur e t o ethano l o n the maturatio n o f the pyramida l neurons i n the ce rebral cortex of the guinea-pig : a quantitative Golg i study. Neuropathol Appl Neurobiol 11:291-298 . Fadda F , Rossetti ZL (1998 ) Chroni c ethano l consump tion: fro m neuroadaptatio n t o neurodegeneration . Prog Neurobiol 56:385-431 .
Fransen E, Lemmon V , Van Camp G, Vits L, Coucke P, Willems P J (1995 ) CRAS H syndrome : clinica l spectrum o f corpu s callosu m hypoplasia , retarda tion, adducte d thumbs , spasti c paraparesis and hy drocephalus du e t o mutation s i n on e singl e gene , LI. Eur J Human Gene t 3:273-284. Futerman AH , Banke r G A (1996 ) Th e economic s o f neurite outgrowt h —the addition o f new membran e to growing axons. Trends Neurosc i 19:144-149 . Gillis J , Lindsley TA (2004 ) Ethano l modulate s growt h cone calciu m treatment s i n ra t hippocampa l neu rons in vitro. Alcohol Clin Ex p Res 28:167A. Gomez TM , Sno w DM, Letourneau PC (1995) Charac terization o f spontaneou s calciu m transient s i n nerve growth cones an d thei r effec t o n growth cone migration. Neuron 14:1233-1246 . Gomez TM , Spitze r N C (1999 ) I n viv o regulatio n o f axon extension and pathfinding by growth-cone cal cium transients. Nature 397:350-355. Goodlett CR , Johnso n TB (1999 ) Tempora l window s of vulnerability withi n th e thir d trimeste r equivalent : why "knowin g when " matters . In : Hanniga n J , Spear LP , Spea r NE , Goodlet t C R (eds) . Alcohol: Effects o n Brain an d Development. Lawrenc e Erl baum Associates, Mahwah NJ , pp 59-91. Goslin K , Assumssen H ? Banker G (1998) Rat hippocampal neuron s i n lo w density culture. In : Banke r G , Goslin K (eds). Culturing Nerve Cells. MI T Press , Cambridge, MA , pp 339-390. Goslin K , Banke r G (1989 ) Experimenta l observation s on th e developmen t o f polarit y b y hippocampa l neurons in culture. J Cell Biol 108:1507-1516 . Granato A , Santarell i M , Sbriccol i A , Minciacch i D (1995) Multifacete d alteration s o f th e thalamo cortico-thalamic loo p i n adul t rat s prenatall y ex posed t o ethanol. Ana t Embryol 191:11-23 . Guasch RM , Tomas M, Minambres R, Vallès S , RenauPiqueras J , Guerr i C (2003 ) Rho A an d lysophos phatidic acid are involve d in the acti n cytoskeleton reorganization o f astrocyte s expose d t o ethanol . J Neurosci Res 72:487-502 . Hall A (1998) Rh ô GTPases and th é actin cytoskeleton . Science 279:509-514. Halloran MC , Kali l K (1994 ) Dynami c behavior s o f growth cone s extendin g i n th e corpu s callosu m o f living cortica l brai n slice s observed wit h vide o microscopy. J Neurosci 14:2161-2177 . Hammer RP , Scheibel AB (1981) Morphologic evidenc e for a delay o f neuronal maturatio n i n feta l alcoho l exposure. Exp Neurol 74:587-596. Heaton MB , Paiv a M, Swanso n DJ , Walker D W (1994 ) Responsiveness of cultured septa l and hippocampa l neurons t o ethano l an d neurotrophi c substances . J Neurosci Res 39:305-318 .
242 ETHANOL-AFFECTE D DEVELOPMEN T Hirai K , Yoshioka H, Kihar a M, Hasegaw a K , Sawada T , Fushiki S (1999) Effect s o f ethanol o n neuronal mi gration an d neura l cel l adhesio n molecule s i n th e embryonic ra t cerebra l cortex : a tissu e cultur e study. Dev Brain Res 118:205-210. Huber AB, Kolodkin AL, Ginty DD, Cloutier J- F (2003) Signaling at the growt h cone: ligand-recepto r com plexes an d th e contro l o f axo n growth an d guid ance. Annu Rev Neurosci 26:509-563 . Hundle B , McMahon T , Dadga r J , Chen CH , Mochly Rosen D, Messing RO (1997) An inhibitory fragment derived fro m protein kinas e C-e prevent s enhance ment of nerve growth factor responses by ethanol an d phorbol esters. J Biol Chem 272:15028-15035. Ishihara A, Sait o H, Ab e K (1994) Transforming growth factor-ßl an d -ß 2 promot e neurit e sproutin g an d elongation o f culture d ra t hippocampa l neurons . Brain Res 639:21-25. Joosten EA , Gribna u A A (1989) Immunocytochemica l localization o f cell adhesio n molecul e L I i n developing rat pyramidal tract. Neurosci Let t 100:94-98. Kaethner RJ, Stuermer CA (1992) Dynamics o f terminal arbor formation and targe t approach o f retinotectal axons i n livin g zebrafis h embryos : a time-laps e study of single axons. J Neurosci 12:3257-3271 . Kater SB, Mills LR (1991) Regulation of growth cone behavior by calcium. J Neurosci 11:891—899 . Katz MJ , Georg e EB , Gilber t L J (1984) Axonal elonga tion as a stochastic walk. Cell Moti l 4:351-370. Kentroti S , Vernadaki s A (1991 ) Correlatio n betwee n morphological an d biochemica l effect s o f ethano l on netiroblast-enriche d cultures derived from three day-old chick embryos. J Neurosci Res 30:484-492. Kholmanskikh SS , Dobri n JS , Wynshaw-Bori s A, Le tourneau PC, Ross ME (2003) Disregulated RhoGTPases an d acti n cytoskeleto n contribut e t o th e migration defec t i n Li s 1-deficient neurons . J Neu rosci 23:8673-8681. Killisch I , Dott i CG , Lauri e DJ , Ludden s H , Seebur g PH (1991 ) Expressio n pattern s o f GABA A recepto r subtypes in developing hippocampal neurons . Neu ron 7:927-936 . Koester SE , O'Lear y D D (1992 ) Functiona l classe s o f cortical projectio n neuron s develo p dendriti c dis tinctions by class-specific sculpting of an early common pattern . J Neurosci 12:1382-1393 . Kozlowski DA , Milliar d S , Schauer t T (1997 ) Ethano l consumption followin g recover y fro m unilatera l damage t o th e forelim b are a o f th e sensorimoto r cortex: reinstatemen t o f deficit s an d preventio n of dendritic pruning. Brain Re s 763:159—166. Krahl SE, Berman RF, Hannigan JH (1999) Electrophysiology of hippocampal CA 1 neuron s afte r prenata l ethanol exposure. Alcohol 17:125-131.
Kühn TB , Meber g PJ , Brow n MD , Bernstei n BW , Minamide LS , Jense n JR , Okad a K , Sod a EA , Bam burg J R (2000 ) Regulatin g acti n dynamic s i n neuronal growt h cone s b y ADF/cofili n an d rh o family GTPases. J Neurobiol 44:126-144. Kühn TB, Williams CV, Don P, Kater SB (1998) Laminin directs growt h con e navigatio n vi a tw o temporall y and functionall y distinct calciu m signals . J Neu rosci 18:184-194 . Lautermilch NJ , Spitze r N C (2000 ) Regulatio n o f cal cineurin b y growt h con e calciu m wave s control s neurite extension. J Neurosci 20:315—325. Lee T, Winter C , Martick e SS, Lee A, Luo L (2000) Essential role s o f Drosophila Rho A i n th e regulatio n of neuroblast proliferation an d dendriti c but no t axonal morphogenesis. Neuro n 25:307-316 . Leslie SW , Brown LM, Dild y JE, Sims JS (1990) Ethano l and neuronal calciu m channels. Alcohol 7:233-236. Letourneau PC , Cyphe r C (1991 ) Regulation o f growth cone motility. Cell Motil Cytoskeleton 20:267-271 . Li Z, Van Aelst L, Cline HT (2000) Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci 3:217-225. Lindsley TA, Clarke S (2004) Ethano l withdrawa l influ ences surviva l an d morpholog y o f developin g ra t hippocampal neuron s i n vitro . Alcohol Cli n Ex p Res 28:85-92. Lindsley TA , Comstoc k LL , Risin g LJ (2002 ) Morpho logic an d neurotoxi c effect s o f ethano l var y wit h timing of exposure in vitro. Alcohol 28:197-203. Lindsley TA , Kerli n AM, Risin g LJ (2003 ) Time-laps e analysis of ethanoPs effects o n axo n growth in vitro. Dev Brain Res 147:191-199. Livy DJ , Elberge r A J (2001 ) Effec t o f prenata l alcoho l exposure o n midsagitta l commissur e siz e i n rats . Teratology 63:15-22 . Lopez-Tejero D, Ferrer I, Llobera M , Herrera E (1986) Effects of prenatal ethano l exposur e on physical growth, sensory refle x maturatio n an d brai n development i n the rat. Neuropathol Appl Neurobiol 12:251-260 . Lundquist EA (2003) Rac proteins and the control o f axon development. Cur r Opin Neurobio l 13:384-390. Luo J, Miller MW (1999 ) Transforming growth factor ßl (TGFßl) mediate d inhibitio n o f B10 4 neuroblas toma cel l proliferatio n an d neura l cel l adhesio n molecule expression : effec t o f ethanol . J Neuro chem 72:2286-2293 . Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1:173-180 . Luo L , Jan LY , Jan Y N (1997 ) Rh o famil y GTP-bindin g proteins in growth cone signalling . Curr Opin Neu robiol 7:81-86. Mackay DJ , Hal l A (1998) Rh o GTPases . J Biol Chem 273:20685-20688.
ETHANOL AND PROCESS OUTGROWTH 24 3 Mattson MP , Do n P , Kate r S B (1988 ) Outgrowth regulating actions of glutamate i n isolated hippocam pal pyramida l neurons. J N eurosei 8:2087-20100 . Mattson MP, Kater SB (1987) Calcium regulatio n ofneu rite elongation an d growt h cone motllity. J Neurosci 7:4054-4043. Mendelson B , Driskill A (1996) Ethano l exposur e alters the developmen t o f sertonergi c neuron s i n chic k spinal cord. Alcohol 13:431-441 . Messing RO , Hentelef f M , Par k J ] (1991 ) Ethano l en hances growth factor-induced neurit e formation i n PC12 cells. Brain Res 565:301-311 . Miller M W (1986 ) Feta l alcoho l effect s o n th e genera tion an d migratio n o f cerebra l cortica l neurons . Science 233:1308-1311 . (1987) Effec t of prenata l exposur e to alcoho l on the distribution and tim e of origin of corticospinal neurons in the rat . J Comp Neurol 257:372—382. (1993) Migration o f cortical neuron s i s altered b y gestational exposur e t o ethanol . Alcohol Cli n Ex p Res 17:304-314 . (1997) Effect s o f prenatal exposur e t o ethanol o n callosal projectio n neuron s i n ra t somatosensor y cortex. Brain Res 766:121-128. Miller MW, Al-Rabiai S (1994) Effects of prenatal exposure to ethano l o n th e numbe r o f axons in th e pyramidal tract of the rat Alcoho l Clin Exp Res 18:346-354. Miller MW , Astley SJ, Clarren S K (1999) Numbe r o f axons i n th e corpu s callosum o f the matur e Maccica nemestrina: increase s caused b y prenata l exposure to ethanol. J Comp Neurol 412:123-131 . Miller MW, Chiaia NL, Rhoades RW (1990) Intracellular recording an d injectio n stud y o f corticospinal neu rons in the ra t somatosensory cortex: effect o f prenatal exposure to ethanol. J Comp Neurol 297:91-105. Miller MW , Lu o J (2002 ) Effect s o f ethano l an d trans forming growt h facto r ß (TGFß ) o n neurona l pro liferation an d nCA M expression. Alcohol Cli n Exp Res 26:1073-1079. Miller MW, Potempa G ( 1990) Number s of neurons an d glia i n matur e ra t somatosensor y cortex : effect s o f prenatal exposur e t o ethanol . J Comp Neuro l 293 : 92-102. Mills LR , Kate r S B (1990 ) Neuron-specifi c an d state specific difference s i n calciu m homeostasi s regu late th e generatio n an d degeneratio n o f neuronal architecture. Neuron 4:149-163. Ming GL , Won g ST , Henle y J , Yua n XB , Son g HJ , Spitzer NC , Po o M M (2002 ) Adaptatio n i n th e chemotactic guidanc e o f nerve growt h cones . Na ture 417:411-418. Minkwitz HG , Hol z L (1975) The ontogeneti c develop ment o f pyramida l neuron s i n th e hippocampu s (CA1) of the rat . J Hirnforsch 16:37-54 .
Mooney SM, Siegenthaler JA , Miller M W (2004) Ethano l induces heterotopias in organotypic cultures of rat cerebral cortex. Cereb Cortex 14:1071-1080 . Moreland N , L a Grang e L , Montoy a R (2002 ) Impac t of in uter o exposur e t o EtO H o n corpu s callosu m development an d pa w preferenc e i n rats : pro tective effect s o f silymarin . BM C Comp l Alter n Med2:10. Neely MD , Nieholl s J G (1995 ) Electrica l activity , growth con e motilit y an d th e cytoskeleton . J Ex p Biol 198:1433-1446 . Peifer J , Majewsk i F , Fischbac h H , Beiric h JR , Vol k B (1979) Alcohol embryo- and fetopathy : neuropathology o f 3 childre n an d 3 fetuses . J Neuro l Se i 41:125-137. Pentney RJ , Cotte r JR , Abe l E L (1984 ) Quantitativ e measures o f matur e neurona l morpholog y afte r i n utero ethano l exposure . Neurobehav Toxicol Tera to!6:59-65. Pentney RJ , Mille r M W (1992 ) Effect s o f ethano l o n neuronal morphogenesis . In : Mille r M W (ed) . Development of the Central Nervous System: Effects o f Alcohol an d Opiates. Wiley , Ne w York , pp 71-107. Pratt OE , Dosh i R (1984 ) Rang e o f alcohol-induce d damage i n th e developin g centra l nervou s system. CIBA Found Sym p 105:142-156 . Qian Y , Luo J , Leonar d SS , Harri s GK , Millecchi a L , Flynn DC, Sh i X (2003) Hydrogen peroxid e formation an d acti n filamen t reorganizatio n by Cdc4 2 are essentia l for ethanol-induced i n vitr o angiogenesis. J Biol Chem 278:16189-16197. Qiang M , Wan g MW , Elberge r A J (2002 ) Secon d trimester prenata l alcoho l exposur e alters develop ment o f rat corpu s callosum. Neurotoxico l Terato l 24:719-732. Redmond L , Ghosh A (2001) The rol e of Notch an d Rh o GTPase signalin g i n th e contro l o f dendritic devel opment. Cur r Opin Neurobiol 11:111-117 . Renaudin A , Lehman n M , Giraul t J , McKerrache r L (1999) Organizatio n o f point contact s i n neurona l growth cones . J Neurosci Re s 55:458-471. Riley EP , Mattso n SN , Sowel l ER , Jerniga n TL , Sobe l DF, Jone s KL (1995 ) Abnormalities of the corpu s callosum i n children prenatall y exposed to alcohol. Alcohol Clin Ex p Res 19:1198-1202. Roebuck TM, Mattso n SN , Rile y EP (1998 ) A review of the neuroanatomica l findings in children with feta l alcohol syndrom e or prenata l exposur e to alcohol . Alcohol Clin Exp Res 22:339-344 . Roivainen R , McMahon T , Messin g RO (1993 ) Protei n kinase C isozyrne s tha t mediat e enhancemen t o f neurite outgrowth by ethanol an d phorbo l ester s in PC 12 cells. Brain Res 624:85-93.
244 ETHANOL-AFFECTE D DEVELOPMEN T Ruthel G, Banker G (1999) Role of moving growth conelike "wave " structures in th e outgrowt h of cultured hippocampal axon s an d dendrites . J Neurobiol 39 : 97-106. Sahay A, Molliver ME, Ginty DD , Kolodki n AL (2003) Semaphorin 3 F i s critical for developmen t o f limbic syste m circuitry an d i s required in neuron s for selective CN S axo n guidanc e events . J Neurosc i 23:6671-6680. Saunders DE, Zajac CS , Wappier NL (1995) Alcohol inhibits neurit e extensio n an d increase s N-myc an d c-myc proteins. Alcohol 12:475-483 . Schaefer GB , Shuma n RM , Wilso n DA , Salee b S , Domek DB , Johnso n SF , Bodensteine r J B (1991 ) Partial agenesi s o f th e anterio r corpu s callosum : correlation betwee n appearance, imaging , and neuropathology. Pediatr Neurol 7:39. Scott EK , Lu o L (2001 ) Ho w d o dendrite s tak e thei r shape? Nat Neurosci 4:359-365. Shea TB, Beermann ML (1999 ) Neurona l intermediat e filament protei n oc-internexi n facilitates axonal neurite elongatio n i n neuroblastom a cells . Cel l Moti l Cytoskeleton 43:322-333 . Shetty AK, Burrows RC, Phillip s DE (1993 ) Alterations in neurona l developmen t i n th e substanti a nigr a pars compacta followin g in utero ethanol exposure : immunohistochemical an d Golg i studies . Neuro science 52:311-322 . Shi SH , Ja n LY , Jan Y N (2003 ) Hippocampal neurona l polarity specified by spatially localized mPar3/mPar6 and P I 3-kinase activity. Cell 112:63-75 . Siegenthaler JA, Miller MW (2004 ) Transforming growth factor ß l regulate s cel l migratio n i n ra t cortex : effects of ethanol. Cereb Cortex 14:602-613 . Smith DE, Davie s DL (1990) Effect o f perinatal administration o f ethanol o n the CA 1 pyramidal cell o f the hippocampus an d Purkinj e cel l o f the cerebellum : an ultrastructura l survey. J Neurocytol 19:708—717 . Smith DE , Founda s A, Canales J (1986) Effect o f perinatally admisistere d ethano l o n th e developmen t o f the cerebellar granule cell. Exp Neurol 92:491-501. Song HJ , Poo MM (1999 ) Signa l transductio n underlying growt h con e guidanc e b y diffusibl e factors . Curr Opin Neurobiol 9:355-363. Sowell ER , Mattso n SN , Thompso n PM , Jerniga n TL, Rile y EP , Tog a A W (2001 ) Mappin g callosa l morphology and cognitiv e correlates: effec t o f heavy prenatal alcohol exposure. Neurology 57:235-244 . Swayze VWII, Johnson VP, Hanson JW, Piven J, Sato Y, Giedd JN , Mosnik D , Andreasen NC (1997 ) Mag netic resonance imaging of brain anomalies in feta l alcohol syndrome. Pediatrics 99:232-240. Szebenyi G , Den t EW , Callaway JL, Seys C, Luet h H , Kalil K (2001) Fibroblast growt h factor-2 promotes
axon branchin g of cortical neurons by influencin g morphology an d behavio r o f th e primar y growth cone. J Neurosci 21:3932-3941. Tang F , Dent EW, Kali l K (2003) Spontaneou s calcium transients i n developin g cortical neurons regulate axon outgrowth. J Neurosci 23:927—936. Tessier-Lavigne M , Goodma n C S (1996 ) Th e molecu lar biolog y of axo n guidance . Scienc e 274:1123 — 1133. Threadgill R , Bob b K , Ghos h A (1997 ) Regulatio n o f dendritic growth and remodelin g by Rho, Rac, and Cdc42. Neuron 19:625-634 . Walker KL, Yoo HK, Undamatla J, Szaro BG (2001) Loss of neurofilament s alters axona l growt h dynamics . J Neurosci 21:965 5-9666. Walter HJ , Messin g R O (1999 ) Regulatio n o f neurona l voltage-gated calciu m channel s b y ethanol . Neu rochem hit 35:95-101. Watanabe H , Yamazak i M , Miyazak i H , Arikaw a C , Itoh K , Sasak i T , Maeham a T , Frohma n MA , Kanaho Y (2004 ) Phospholipas e D 2 function s a s a downstrea m signalin g molecul e o f MA P kinas e pathway i n LI-stimulate d neurit e outgrowt h o f cerebellar granul e neurons . J Neurochem 89:142 151. Webb B , Suare z SS , Heato n MB , Walke r D W (1997 ) Cultured postnata l ra t septohippocampa l neu rons chang e intracellula r calciu m i n respons e t o ethanol an d nerv e growt h factor . Brai n Re s 778 : 354-366. West JR , Hodge s CA , Blac k AC (1981 ) Prenata l expo sure to ethanol alters the organization of hippocampal mossy fibers in rats. Science 211:957-958 . Wooten MW , Ewal d S J (1991 ) Alcohol s synergize with NGF t o induc e earl y differentiation o f PC 12 cells. Brain Res 550:333-339. Wu GY , Zou DJ , Raja n I , Cline H (1999 ) Dendriti c dynamics in vivo change during neuronal maturation. J Neurosci 19:4472-4483 . Yanni PA , Lindsley TA (2000) Ethanol inhibit s development o f dendrites and synapse s in rat hippocampa l pyramidal neuro n cultures . De v Brai n Re s 120:233-243. Yanni PA , Rising LJ, Ingraham CA , Lindsle y TA (2002) Astrocyte-derived factor s modulat e th e inhibitor y effect o f ethano l o n dendriti c development . Gli a 38:292-302. Zimmerberg B , Micku s L A (1990 ) Se x difference s i n corpus callosum : influenc e of prenatal alcoho l exposure an d materna l undernutrition . Brai n Re s 537:115-122. Zou J , Rabin RA, Pentney R J (1993) Ethanol enhance s neurite outgrowt h i n primar y cultures o f ra t cere bellar macroneurons. Dev Brain Res 72:75-84.
15 Neuronal Survival Is Compromised by Ethanol: Extracellular Mediator s Michael W. Miller Maria B. Bruns Paula L. Hoffma n
A salient characteristi c o f fetal alcoho l spectru m dis order (FASD ) is microcephaly an d th e associate d mi croencephaly (Lemoin e e t al. , 1968 ; Jone s an d Smith, 1973 ; Stratton et al. , 1996 ; se e Chapter s 1 , 8, and 9). Major contributors to this microencephaly are ethanol-induced reductions i n the additive ontogenetic processe s (cel l proliferatio n an d neurona l migration) and increase s in the amoun t o f neuronal death. The effect s o f ethano l o n th e additiv e processe s ar e addressed i n Chapter s 11 , 12 , an d 13 . The presen t and followin g chapte r (Chapte r 16 ) describe th e ef fects o f ethano l o n neurona l deat h and , conversely, neuronal survival . This chapter deal s with the effect s of ethano l o n th e incidenc e o f neurona l deat h an d the extracellular mediators that define this death, and the next chapter covers intracellular mechanisms that underlie this death. Neuronal deat h i s a natura l proces s i n th e devel oping nervous system (Jacobson, 1991; Martin , 2001; Lossi an d Merighi , 2003). It affect s proliferatin g an d postmitotic, postmigrator y neuron s (se e Chapte r 5) .
The amoun t o f neuronal deat h i n the nervous system can var y from 20 % to 80% . Factors that contribut e t o the amount of death ar e the location and the maturational stat e of the vulnerabl e neurons. One exampl e is the cerebra l cortex , in which the incidenc e o f neuronal deat h i s lamina- an d neuro n type-dependen t (Miller, 1995a) . Two- to threefol d mor e neuron s die in superficia l laye r VI (o r laye r Via) than i n laye r IV and local circuit neurons (which, in part, differentiate on a later tim e line ) ar e twic e as likely to di e a s projection neurons in the same layer.
245
EFFECTS O F ETHANOL O N BRAIN STRUCTURE S I N VIVO
In viv o studie s sho w tha t ethano l affect s the spa tiotemporal patter n of neuronal deat h throughout th e nervous system. Most studies have focused on the outcome, i.e. , th e effec t o f ethano l o n tota l neurona l number. Fe w have teased ou t the effect s o n neurona l
246 ETHANOL-AFFECTE D DEVELOPMEN T death fro m th e effect s o f ethano l o n othe r develop mental events . The presen t review describes the limitations an d advance s i n ou r understandin g o f suc h effects o n fou r structures : th e principa l sensor y nu cleus of the trigeminal nerve (PSN), cerebellum, hip pocampal formation , and neocortex . Eac h structur e has a differen t developmenta l histor y that provide s a distinctive platfor m fo r understandin g th e mecha nism of ethanol toxicity. Principal Sensor y Nucleus of the Trigeminal Nerv e Documentation o f neuronal death in vivo has consisted of two challenges: difficulties i n identifyin g dyin g neurons an d distinguishin g the effect s o f ethano l o n cel l proliferation from thos e on neuronal death. The PS N is an idea l structure for separating these issue s because i t is a small, pontine nucleus that lends itself to quantitative studies . Th e PS N i s largel y surrounded b y fibe r bundles, facilitatin g th e delineatio n o f border s an d comprises a relatively homogeneous population of neurons (Miller and Muller , 1989) . Furthermore , th e rol e of the PS N i n neurona l developmen t implicate s i t in FASD because it is a key site for the passag e of information fro m somatosensor y afférents arisin g i n facia l ski n to highe r centers— a primar y characteristi c o f FAS D is craniofacia l malformation s (Lemoine e t aL , 1968 ; Smith and Jones, 1973; Sulik et al., 1988 ; Johnston and Bronsky, 1995; Astley etal, 1999) . The PS N i n th e norma l ra t has 28,00 0 neurons . Following prenatal exposure to ethanol , the nucleu s has onl y 19,60 0 neuron s (Mille r and Muller , 1989) . This exposur e occur s durin g th e period s whe n PS N neurons proliferate and migrat e (Nornes and Morita , 1979; Miller and Muller, 1989 ; Al-Ghoul and Miller, 1993a). A longitudinal study of the tempora l effect s of prenatal exposure to ethanol showed that one-third of this differenc e i s a laten t effec t o n neurona l surviva l (Miller, 1999 ) (Fig . 15-1) . Thi s findin g wa s docu mented b y two changes in the neonate: (1) a decreas e in th e tota l numbe r o f neurons an d (2 ) increase s in the numbe r o f pyknotic and silver-staine d cells. PS N neurons als o di e whe n exposur e occur s durin g th e periods o f primar y synapse formation an d naturall y occurring neuronal death (NOND) (Miller , 1995b) — i.e., postnatall y before postnatal da y (P ) 1 0 (Ashwell and Waite, 1991 ; Al-Ghoul and Miller, 1993b ; Miller and Al-Ghoul , 1993) . I n contrast , ethano l exposur e during adolescenc e doe s no t hav e a significant effect
on neurona l number (Miller, 1995b) . Thus, the criti cal window for ethanol-induced neuronal death i n th e PSN i s framed by the period s o f neuronal generatio n and synaptogenesis. A prim e afferen t o f th e PS N i s th e infraorbita l nerve. A neonatal lesio n of this nerve causes massive neuronal death, confine d to the ventral portion o f the PSN wher e th e infraorbita l nerv e terminates (Miller et al., 1991) . Exposure to ethanol doubles the amoun t of thi s frans-synapti c deat h (Miller , 1999) . Further more, thi s death is rapid, as the expressio n of Fos (a marker o f cellular activity) an d ALZ-5 0 ( a marke r of dying neurons) increases within 2 hr of placing the lesion (Miller and Kühn , 1997) . Cerebellum The cerebellu m i s susceptibl e t o ethanol-induce d damage in a dose-dependent manner ; ethanol-exposed rats hav e smalle r cerebell a tha n control s (Dia z an d Samson, 1981 ; Wes t e t al, 1989) . A key factor con tributing t o th e degre e o f damage i s the pea k bloo d ethanol concentratio n (BEG ; Pierce an d West, 1986 ; Bonthitis et al., 1988) . Ra t pups expose d t o the sam e amount o f ethano l dail y d o no t hav e th e sam e amount of damage if the schedul e of ethanol delivery differs. Exposure s t o relativel y large bol i o f ethano l are significantl y mor e deleterious than a constant de livery of low doses of ethanol. The stud y of neuron number s i n th e cerebellu m has centere d o n Purkinj e neuron s (Goodlet t an d Horn, 2001 ; Light et al, 2002) . Adult rats exposed to ethanol durin g the perio d fro m P 4 to P10 have signif icantly fewe r neuron s tha n controls . Th e amoun t o f Purkinje cel l loss can var y from 10 % to 70 % depend ing on the developmental history and cerebellar compartment (Fig . 15-2) . Fo r example, lobule s I-V , IX, and X are mor e vulnerabl e to ethano l exposur e than lobules V I an d VI I (Pierc e e t al. , 1989 ; Goodlet t et al., 1990) . Th e developmen t o f neurons i n lobule s I, II , IX, and X precedes that o f neurons i n th e inter vening lobules VI and VII (Miale and Sidnian , 1961 ; Altman and Das , 1966 ; Altaian and Bayer , 1978). Exposure to ethanol during the restricted period of P4 or P5 cause s a s muc h o f a differenc e a s does exposure between P4 and P1 0 (Light et al, 2002). This effec t is concentration-dependent. Thus , exposur e t o a hig h BEG, eve n fo r a shor t time, ca n resul t i n th e los s of vulnerable neuron s i n th e cerebellu m (Wes t e t al. , 1989; Miller, 1996b ; Thomas et al, 1996) .
EXTRACELLULAR MEDIATOR S OF NEURONA L DEAT H 24 7
FIGURE 15- 1 Neurona l deat h i n th e developin g principa l sensor y nucleus o f the trigemina l nerv e (PSN). A. The number s o f neurons i n the PS N rises prenatally an d fall s durin g th e firs t 2 postnatal week s (left) . Thi s decreas e coin cides wit h a n increas e i n th e frequenc y o f pyknoti c cell s (right) . Prenata l exposure to ethanol delays the period o f neuronal death . B . Presumptive dyin g neurons (arrows ) can be identified in a silver-stained section fro m th e pon s of a 3-day-old rat . They are distributed throughou t th e PSN . C . Mor e argyrophili c neurons are evident in the PS N o f an ethanol-treate d 3-day-ol d pup. D . An argyrophilic cel l (arrow ) ha s a dens e cor e an d ofte n i s surrounded b y granules. These are presumed t o be blebs and release d nucleosomes . E. A pyknotic cell is characterized b y a condensed nucleu s tha t ofte n is broken int o small bodies . Scale bar s = 10 0 ujn ( B and C ) an d 1 0 Jim ( D an d E) . (Source: Dat a i n A are taken with permission fro m Miller , 1999. )
Ethanol-induced difference s i n cel l numbe r ma y result from reduction s i n neuronal number and/o r increases i n neurona l death . Th e cerebell a o f rat s ex posed to ethanol durin g gestation alone o r during the pre- and earl y postnatal period weigh less and have no fewer Purkinj e neurons tha n rat s expose d durin g th e postnatal perio d alon e (Wes t e t al. , 1994 ; Miller ,
1996b; Light e t al, 2002) . These dat a hav e bee n in terpreted a s evidenc e tha t ethano l doe s no t affec t neuronal generation . Thi s ma y i n par t b e true , a s ethanol ma y not affect th e generation of Purkinje cell s which occur s prenatall y (Mial e an d Sidman , 1961 ; Altman an d Bayer , 1978) . Th e possibilit y stil l exists , however, tha t ethano l doe s reduc e th e generatio n o f
248 ETHANOL-AFFECTE D DEVELOPMEN T
FIGURE 15- 2 Effec t o f ethano l exposur e o n number s o f Purkinj e neurons . Rats were exposed t o ethanol b y gavage on postnata l da y 4. Th e number s of Purkinje neuron s in various cerebellar lobule s were determined. Th e dat a for two pairs of lobules ar e presented: lobule s I and IX , which ar e earl y developing lobules, and lobules VI and VII, which develo p relativel y late. Each poin t describes th e chang e i n the numbe r o f Purkinje neurons relativ e to the num ber identified in controls on P4. No significant changes were detected for latedeveloping lobules . Bot h o f th e early-developin g lobules , however , wer e vulnerable to ethanol toxicity. Significant differences ( p < 0.05; noted b y asterisks) were detected onl y 24 hr o r 1 0 days after exposure . (Source: Dat a take n from Ligh t and colleagues , 2002. )
granule neurons produced postnatally, which ca n secondarily lead to the degeneration o f Purkinje neuron s dependent o n thei r afférent s (Reza i an d Yoon , 1972 ; Herrup and Trenkner, 1987) . Recent evidence, from studie s of restricted ethano l exposure, supports the notio n tha t ethanol cause s th e death of Purkinje neurons. It is unlikely that a 1-da y exposure to ethanol affect s granul e cel l generatio n s o profoundly an d rapidl y a s t o caus e th e short-ter m death o f Purkinje neurons . Moreover, various studies show that ethanol increase s th e expressio n o f two indices of apoptotic deat h b y Purkinje neurons (Ligh t et al., 2002)—th e expressio n of activate d caspase-3 , a n enzyme involved in the clippin g of DNA into packets during apoptoti c death , an d evidenc e o f termina l uridylated nick-en d labelin g (TUNEL) , a n inde x of DNA fragments . Moreover, exposur e t o ethano l o n P4 lead s t o a n increas e i n whol e cerebella r catalas e and reactiv e oxygen species (Horn , personal comm.) .
Activated caspase- 3 expressio n is markedly increased in man y Purkinj e cell s an d i n a smatterin g o f small cells in the interna l granul e cel l layer. The sensitivity of th e granul e neuron s pe r s e t o ethanol-induce d death remain s a question , a s does th e mechanis m o f ethanol-induced los s of Purkinje neuron s (West et al., 1994; Goodlet t and Horn , 2001) . Suffice i t to say that ethanol ca n compromis e neurona l survival . Intracel lular event s underlyin g thi s deat h ar e reviewe d i n Chapters 6 an d 16 . Th e molecula r mechanis m o f Purkinje cel l deat h deserve s mor e detaile d analysis, given recen t evidence that Purkinj e neurons ma y die by a proces s o f autophag y followin g remova l o f trophic support (Florez-McClure e t al., 2004). Hippocampal Formatio n The hippocampa l formatio n i s a comple x structur e containing a t leas t tw o majo r subdivisions , th e
EXTRACELLULAR MEDIATOR S OF NEURONA L DEATH 24 9 hippocampus an d th e dentat e gyms . Th e axon s of granule cells in the dentat e gyru s synapse with pyramidal neuron s i n th e hippocampus . Thes e neurona l populations develo p differently . Fo r example , hip pocampal pyramida l neuron s ar e generate d prena tally i n th e ventricula r zone , wherea s mos t (85% ) granule neuron s ar e generate d postnatall y in th e in trahilar zon e (Schlessinge r e t al. , 1978 ; Nowakowski andRakic, 1981). Prenatal an d postnata l exposur e t o ethano l ha s differential effect s o n th e number s o f cells i n th e hip pocampal formation . Th e amoun t o f DNA i n the hip pocampal formation is not affecte d followin g prenatal exposure; however, postnatal exposur e leads to an in crease in DNA content (Miller, 1996a) . Although thi s result suggest s tha t ethano l doe s no t affec t neurona l survival, these biochemical measure s do not discriminate betwee n neuron s an d gli a o r differentiat e th e specific effect s o f ethano l o n th e hippocampu s o r dentate gyrus. Careful anatomica l studies have shown that prenatal exposure to ethanol reduce s the numbe r of neurons in th e hippocampu s (Miller , 1995c) . I t is likely tha t som e o f this reductio n result s fro m a de crease i n cel l proliferation . Earl y postnata l exposur e does no t affec t neurona l numbe r unles s th e ethano l exposure i s high (BE G >30 0 mg/dl; Miller , 1995c) . Thus, i t appear s tha t ethano l doe s no t induc e th e death o f neuron s i n th e hippocampa l formatio n be yond that occurring naturally. Neocortex In Vivo Studies Cortex contrast s wit h th e cerebellu m an d hippocam pus i n tha t th e generatio n o f it s neuronal subpopula tions, suc h a s projectio n an d loca l circui t neurons , occurs concurrently (Miller, 1985) . Likewise, the periods of NOND and synaptogenesi s are largel y synchronized for all cortical neurons (Rakic et al., 1986; Miller, 1988). In these aspects, neocortex is more like the PS N than the cerebellum and hippocampal formation . Pre- an d postnata l exposure s to ethano l induc e a difference i n the numbe r o f cortical cells . Overall , total DN A conten t i s 29 % lowe r i n th e cortice s o f ethanol-treated rat s tha n tha t o f control s (Miller , 1996a). If the same mechanisms are at work in the de veloping corte x a s i n th e PS N (Miller , 1999) , one third o f the differenc e cause d b y prenatal exposure to ethanol i s due t o laten t death . Prenata l exposur e t o
ethanol cause s a -33 % differenc e i n th e numbe r o f neurons in somatosensory cortex (Miller and Potempa , 1990) and n o differenc e i n the numbe r o f neurons i n visual cortex (Moone y e t al., 1996 ; Mooney and Nap per, 2005). Apparently, not all parts of the pallium are equally affecte d b y ethanol . Postnata l exposur e t o ethanol als o cause s a significan t differenc e i n DN A content, althoug h thi s difference i s only 13 % (Miller, 1996b), a differenc e expecte d t o have equal effec t o n neurons an d gli a (Mille r and Potempa , 1990) . Inter estingly, the amoun t o f neuronal deat h (estimate d a t 29% x 1/ 3 = 10% ) caused b y exposur e during the pe riod o f neuronogenesis (betwee n gestationa l da y [G ] 11 and G2 1 ) is similar to that caused by exposure during early synaptogenesis (betwee n P 4 and P10). Does this mea n tha t ethano l cause s an equivalen t amount of cel l deat h regardles s of the tim e o f exposure, i.e., that ther e i s n o critica l perio d fo r ethano l toxicity ? No. Exposur e to ethanol afte r th e en d o f the period s of NON D an d synaptogenesi s doe s no t affec t th e number o f cortica l neuron s (Miller , unpublishe d results). Changes i n cel l numbe r ar e parallele d b y alter ations i n th e expressio n o f protein s associate d wit h neuronal death . Thes e includ e ALZ-5 0 (Küh n an d Miller, 1998) , be l proteins , an d activate d caspase- 3 (Mooney an d Miller , 2000) . Th e expressio n o f eac h of these markers rises during the first and second post natal weeks . Ethano l significantl y affect s eac h marker, mostl y by delayin g the perio d o f expression (Kühn and Miller, 1996; Moone y and Miller, 200la). A prim e sourc e o f cortical afférent s an d targe t of cortical efferent s i s the thalamus . I t is noteworthy that although ethanol-induce d neurona l deat h occur s i n the neocortex , apparentl y n o such deat h occur s in at least some thalamic nuclei (Liv y et al., 2001), includ ing th e ventrobasa l thalamu s (VB ; Moone y an d Miller, 1999a) . No t onl y i s the numbe r o f VB neu rons the sam e i n matur e ethanol-treate d an d contro l rats, but ther e appear s to be n o differenc e i n the tem poral chang e i n number s durin g th e period s o f NOND an d synaptogenesi s (Moone y an d Miller , 200 Ib). Thi s phenomeno n i s particularly interesting in that the differential effec t o f ethanol sets up a potential mismatc h i n thalamocortica l afférent s an d thei r target an d wit h corticothalami c afférent s an d thei r target. A series of studies b y Olne y an d colleague s (e.g. , Ikonomidou et al., 1999 , 2000) describe the effect s of early postnata l exposur e t o ethano l o n th e deat h o f
250 ETHANOL-AFFECTE D DEVELOPMEN T cortical cells . Th e author s clai m tha t earl y develop mental exposur e t o ethano l cause s massiv e neurona l death whe n th e exposur e selectivel y occur s durin g synaptogenesis. I n cortex , thi s proces s begin s o n P 3 and peak s afte r P3 0 (Miller , 1988) . Allegedly , tran sient exposur e t o ethano l cause s a wav e o f neurona l death tha t i s initiall y greates t i n dee p lamina e an d progresses superficially . Thei r wor k suggests tha t th e vast majority of cortical neurons di e as a consequenc e of earl y postnata l exposur e t o ethanol . Thes e dat a are i n conflic t with a wealt h o f data (som e o f whic h are reference d above ) an d mus t b e interprete d wit h caution. As th e dat a o f Olne y an d colleague s hav e re ceived considerabl e attention, the y deserve comment. The dat a ar e base d o n a silver-stainin g method (d e Olmos an d Ingram , 1971 ; Friedma n an d Price , 1986) that purportedly identifie s dyin g neurons. I t is difficult t o assess the applicabilit y of this method be cause section s fro m th e brain s o f contro l animal s have virtuall y n o label . Thi s lac k o f labelin g i s disturbing becaus e th e consensu s i s that th e firs t post natal wee k i s par t o f th e perio d o f NON D i n th e normal ra t brai n (e.g. , Finla y an d Slattery , 1983 ; Ferrer e t al, 1990 ; Miller , 1995a ; Spreafic o e t al, 1995). Th e dat a fro m th e ethanol-treate d rat s ar e equally disturbing . Massiv e number s o f neuron s i n the cortice s o f ethanol-treate d rat s ar e argyrophili c (Ikonomidou e t al. , 1999) . Recen t evidenc e show s that neuron s tha t exhibi t a "marker " o f cel l deat h (e.g., TUNEL o r caspase immunoreactivity ) ar e no t obliged t o di e (Gordo n e t al. , 2002 ; Cheng and Zo chodne, 2003 ; Ishid a e t al, 2004 ; Oomma n e t al. , 2004). Furthermore , i f al l o f th e cortica l neuron s that exhibi t ethanol-induce d silve r stainin g indee d do die , the n earl y postnata l exposur e t o ethano l would caus e a collaps e o f the cerebra l wall . Careful studies show, however, that less than one-sixt h o f all cortical neuron s di e a s a resul t o f ethano l exposur e (Miller, 1996a ; Moone y e t al , 1996 ; Moone y an d Napper, 2005). According to Olney an d colleagues , th e ravage s of ethanol are not confined to cerebral cortex. For example, variou s thalamic nucle i als o exhibi t widesprea d neuronal degeneratio n followin g earl y postnata l ex posure t o ethanol. I t appears that most neuron s in th e anterior nucle i an d ventra l thalamus o f 8-day-old rat s are argyrophilic . Studie s o f mature ra t thalami , how ever, sho w tha t rat s expose d t o ethano l pre - o r post natally hav e robus t anterio r nucle i an d stereologica l
data sho w that ethano l doe s no t affec t th e numbe r o f neurons i n thalami c nucle i (Moone y an d Miller , 1999a;Livy et al, 2001,2002). Finally, Olne y an d colleague s conclude , incor rectly, that the tempora l window of ethanol toxicit y is restricted t o the perio d o f synaptogenesis. Indeed , exposure t o ethano l durin g thes e ontogeneti c event s can caus e neurona l deat h durin g the perio d o f synaptogenesis (Miller , 1995b , 1999 ; Küh n an d Miller , 1998; Moone y an d Miller , 1999b). Prenatal exposur e to ethanol ca n als o cause neuronal deat h (se e above). Furthermore, ethano l ha s profoun d effect s o n cel l proliferation (se e Chapters 1 1 an d 12 ) and neurona l migration (se e Chapter 13). Cell Culture Studies Cultured cortica l neuron s obtaine d fro m 17-day-ol d fetuses exhibi t a 25 % los s ove r th e firs t 2 day s post plating (Fig . 15-3 ) (Seabol d e t al. , 1998 ; Jacob s an d Miller, 2001 ; Mille r e t al. , 2003 ; Ramachandra n et al. , 2003) . This los s is equivalent to th e amoun t o f natural deat h occurrin g amon g post-migrator} ' neu rons i n corte x i n vivo (Finlay and Slattery , 1983 ; Fer rer e t al., 1990 ; Miller , 1995a ; Spreafic o et al, 1995) . Ethanol exposur e cause s a n additiona l 25 % loss . In terpretation o f thes e dat a i s confounde d becaus e a t least som e o f th e neuron s i n feta l cortica l culture s have th e abilit y t o proliferat e (Jacob s an d Miller , 1999). Thi s confoundin g variabl e ca n b e addresse d by applyin g a mathematica l mode l tha t determine s the tota l amount s o f cel l proliferatio n an d deat h (Miller, 2003) . A particular strength o f this mode l i s that i t does not rel y on a method fo r identifying dyin g cells, which ca n bia s the results . Accordingly, ethano l causes a 30 % differenc e i n th e numbe r o f culture d cortical neuron s or B104 neuroblastoma cells. Of this difference, two-third s resul t fro m decrease s i n cel l proliferation an d one-thir d fro m ethanol-induce d cel l loss. Thus, the i n vitro studies of cortical neurons con cur wit h the i n vivo data.
SURVIVAL-PROMOTING FACTORS
Evidence tha t neurona l deat h occur s durin g the pe riod o f synaptogenesi s support s th e hypothesi s tha t neuronal deat h i s driven b y neuron s failin g t o com pete fo r a n entit y ( a growt h facto r and/o r synapti c sites) i n limite d supply . Among th e factor s tha t hav e
EXTRACELLULAR MEDIATOR S O F NEURONA L DEAT H 25 1
FIGURE 15- 3 Effec t o f ethano l o n neurotrophin supported neurona l survival . Cortical neuron s derive d from 17-day-ol d fetuse s wer e culture d i n th e presenc e of a neurotrophi n ( 0 o r 1 0 ng/ml) an d ethano l ( 0 o r 400 mg/dl). Over 3 days postplating, one-quarter o f the untreated cortical neurons were lost. Nerve growth factor (NGF ) prevente d thi s loss , wherea s brain-derived neurotrophic facto r (BDNF ) an d neurotrophi n 3
(NT-3) di d not . Ethano l exacerbate d th e "natural " death observe d i n untreate d cultures . Ethano l als o eliminated th e abilit y o f NG F t o maintai n viability . Asterisks an d poun d sign s denot e significan t differ ences relativ e t o the untreate d control s o n da y 0 an d day 3, respectively. A single sign identifies data that are different a t a level oïp < 0.05 and a double sig n designates difference s a t the p < 0.01 level o f significance.
most commonl y bee n implicate d a s promotin g neuronal surviva l ar e nerv e growt h facto r (NGF) , brain-derived neurotrophi c facto r (BDNF) , insulin like growt h factor- 1 (ÏGF-1) , N-methyl-D-aspartat e (NMDA), an d pituitar y adenyly l cyclas e activatin g polypeptide (PACAP).
associated wit h trkA or trkB in certai n populations . A low-affinity receptor , p75, may also bind t o any of the neurotrophins. Thi s recepto r ma y act i n cooperatio n with o r independently o f the trks. The tyrosin e kinase associated with the high-affinit y trks can activat e a t least thre e differen t signalin g path ways to support differentiation , proces s outgrowth, cell survival, an d activity-dependen t plasticit y (Bibel an d Barde, 2000). The p7 5 receptor ha s no kinase activity associated wit h i t per se , but i t is now known t o hav e signaling capability . The mechanism s o f p7 5 signal ing are far less characterized. Depending o n th e extracellula r environmen t an d the compositio n an d abundanc e o f receptors o n th e membrane surface , neurotrophin s ca n hav e benefi cial o r deleteriou s effect s o n neurons . Th e trk s an d p75 for m homo - an d heterodimer s wit h eac h other , and thes e dynamic complexe s ca n cooperat e to exer t varied effect s (Chao , 2003 ; Huan g an d Reichardt , 2003). Receptor interaction s can als o be antagonistic, depending on which ligand s are available. The expressio n o f neurotrophin s change s i n a time-dependent manne r durin g development . Tha t is, certai n population s o f neuron s ar e dependen t o n
Neurotrophins Neurotrophins ar e secreted , diffusibl e signalin g pro teins know n t o exer t neuromodulator y effect s o n adaptive processes such as synaptic plasticity, required for learnin g and memory , and neurona l survival. This family o f protein s act s i n a n autocrin e an d antero grade fashio n simila r t o tha t o f neurotransmitter s (Pitts and Miller , 1995 , 2000; Mille r and Pitts , 2000; Neet an d Campenot , 2001) . A numbe r o f neu rotrophic factor s hav e bee n identified , includin g NGF, BDNF, neurotrophi n (NT)3 , and NT-4/5, each of which supports distinct populations of neurons. To perform thei r functions, the neurotrophin s bind t o tyrosine kinase receptors (trks) . NGF bind s to trkA with high affinity , wherea s BDN F an d NT-4/ 5 bin d t o trkB. NT-3 binds primarily to trkC, bu t ha s also bee n
252 ETHANOL-AFFECTE D DEVELOPMEN T one neurotrophi n fo r a perio d o f time. Then , afte r a critical period , thes e neuron s becom e dependen t o n another neurotrophin(s) . Fo r example, Purkinj e cell s switch from BDN F dependence t o NT-3 dependenc e between P 4 an d P 6 (Davies , 1997) . Coincidentally , this i s the perio d o f highest vulnerabilit y o f Purkinj e cells t o ethano l (Ligh t e t al. , 2002 ; se e above) . Ethanol neurotoxicity may be mediated by changes in neurotrophin systems. The distributio n o f neurotrophi n ligand s i n vari ous brain tissues during norma l developmen t i s critical t o appropriat e signa l transductio n fo r survival . Alterations in the abundanc e o f the neurotrophi n ligands and receptor s ma y result after ethano l exposure . In othe r words , withdrawa l fro m o r a n inadequat e supply o f neurotrophins ma y underlie decrease d cel l survival. Conversely , ethano l ma y down-regulat e re ceptor expressio n below a threshold require d t o initiate signals, interfere wit h ligand-receptor binding , or render neurotrophi n receptor s nonfunctional . Mos t likely, severa l mechanisms ar e a t play , depending, o f course, on the populatio n o f neurons an d the tim e of ethanol exposure . The differentia l effect s o f ethano l on distinc t populations of neurons ca n offe r valuabl e insight t o th e norma l interaction s o f neurotrophin s during development . Nerve Growth Factor NGF prevent s NOND—i.e. , i t i s an anti-thanatopi c factor (e.g. , Majda n an d Miller , 1999 ; Bibe l an d Barde, 2000 ; Morriso n e t al, 2002) . This i s particularly evident among cultures of cortical cells in which NGF uniquel y support s cel l surviva l (Fig . 15-3 ) (Seabold e t al., 1998 ; Mille r e t al, 2003) . NGF ca n also affec t othe r developmenta l phenomena , notabl y the cel l cycl e and th e surviva l of cells that exit the cycling population (Lopez-Sanche z an d Frade , 2002). Ethanol ca n interfer e wit h NGF-mediate d func tion bot h i n vitr o an d i n vivo . I t disrupt s th e NGF mediated surviva l o f primar y culture d cortica l neurons (Seabol d e t al., 1998 ; Mille r e t al, 2003). A neuroprotective rol e o f NGF i s supported b y studies of NG F over-expressio n i n mic e (Heato n e t al , 2000b). Earl y postnata l exposur e t o ethano l kill s fewer Purkinj e cell s i n thes e mic e tha n i n wild-type controls. Altered NGF abundanc e coul d hav e patho logical consequences, fo r example, NGF ca n potenti ate fre e radical-induce d apoptosi s i n vitro (Spea r etal, 1998) .
The effect s o f gestationa l ethano l exposur e o n NGF expressio n hav e als o bee n examine d i n vivo. The amoun t of NGF protei n was measured at PI an d P10 afte r gestationa l ethano l exposure . NG F i s in creased i n the corte x and striatum of ethanol expose d animals a t PI , bu t doe s no t diffe r fro m control s a t P10. No other neurotrophin s are affected i n any brain region a t P I (Heato n e t al. , 2000e) . Expressio n o f NGF protei n i s als o increase d i n th e hippocampa l formation transientl y a t PI5 afte r gestationa l ethano l exposure (Angelucci etal., 1997) . In additio n t o affectin g neurotrophi n ligan d ex pression, ethano l ca n alte r recepto r expression . Ethanol-induced cel l deat h i n vitro i s associated with a selective decreas e i n p75 expression; the expressio n of al l tr k isoform s i s unaffecte d b y ethano l (Seabol d et al. , 1998) . Thi s pattern reverberate s in othe r cells , including septohippocampa l neuron s (Angelucc i et al. , 1997 ) an d P C 12 pheochromocytom a cell s (Luo e t al., 1996 , 1999) . In cerebellar Purkinj e cells, following earl y postnatal ethano l exposure , there i s a significant decreas e i n trk A and p7 5 recepto r expres sion f? 7 vivo, despit e ther e bein g n o chang e i n th e amount o f NGF (Dohrma n e t al , 1997) . Selectiv e down-regulation o f th e neurotrophi n receptor s b y ethanol durin g th e earl y postnata l developmen t pe riod i s fatal t o Purkinje cell s (Light et al, 2002). Th e differential effec t o f ethanol o n receptor s ma y reflec t the distributio n of these receptors in the plasma mem brane. Conceivably , p7 5 i s distribute d i n lipi d raft s (Higuchi et al., 2003), the fluidit y o f which i s affecte d by ethanol (People s e t al., 1996) , whereas trks are relatively protected fro m ethano l becaus e they appear no t to be dispersed within rafts (Muto h et al., 2004). In addition , gli a offe r a critica l suppl y o f neu rotrophins. Unde r norma l homeostati c conditions , glia d o no t expres s NGF, however , they ma y elevat e NGF unde r pathological conditions (Pitts and Miller, 1995; Miller and Pitts , 2000). This glial production of neurotrophins ma y be an attempt a t neuroprotection . For example , astrocyte s increas e NG F expressio n after ethano l exposur e in vitro (Vallès et al. , 1994) . C6 glioma cell s secret e increase d amount s o f NGF an d BDNF, quantitie s tha t ar e sufficien t t o protec t cere bellar granul e neuron s fro m ethano l insul t (Pantazi s et al., 2000). Antibodies specific t o neurotrophins and trk receptors block this ethanol-induced neuroprotec tion o f the granul e cells . Interestingly, trkA receptor s are no t localized i n cerebellar granule cells, and the y express onl y low amounts o f p75. The implicatio n i s
EXTRACELLULAR MEDIATOR S OF NEURONA L DEATH 25 3
that NG F mus t b e actin g through a promiscuous trk isoform. A downstream effec t o f ethanol toxicity in cortica l cultures i s the quashin g o f the expressio n o f a gen e up-regulated b y NGF , ne g (nerv e growt h factor stimulated, ethanol-depresse d gene ) (Mille r e t al, , 2003). The functio n of the gene produc t is unknown, although i t appear s tha t Ne g i s involve d i n NGF mediated cel l survival . The gen e product ha s protein domains suggestin g tha t i t i s a niitochondria l trans membrane protei n (Nagas e et al., 1996) . This finding is intriguin g in ligh t o f evidence tha t ethano l affect s other niitochondria l protein s tha t regulat e cel l sur vival, fo r example , bcl- 2 an d ba x (Moone y an d Miller, ZOOla) (see Chapter 16) . Brain-Derived Neurotrophic Factor BDNF promote s cel l surviva l i n viv o an d i n vitro. During critica l period s o f norma l development , BDNF i s necessar y fo r bot h neurit e outgrowt h an d synaptic pruning . Developin g neurona l processe s compete fo r a limite d suppl y o f BDNF . Thos e neu rons that ar e unabl e t o obtai n a sufficient amoun t o f BDNF o r tha t hav e insufficien t trk B receptor s un dergo cell death . Like NGF, BDN F i s also thought t o play a neuroprotective rol e i n respons e t o ethano l exposure . In deed, BDN F ma y pla y a rol e i n th e tissue - an d age-dependent component s of ethanol-induced neu ronal cel l death . Th e striatu m i s a good example . I n the normal striatum, NOND is more commo n o n P3 than P1 4 (Heato n e t al., 2003) . This sequence i s the inverse o f the patter n o f endogenous BDN F expres sion; striata l BDN F conten t i s highe r o n P1 4 (Fig. 15-3) . Earl y postnata l exposur e to ethano l increases striatal BDNF content (Heato n e t al, 2000e). Cerebellar Purkinj e cell s revea l a contrastin g situa tion: Purkinj e cell s decrease BDN F expressio n afte r early postnata l ethano l exposur e (G e e t al. , 2004) . Within hour s o f ethano l exposure , there i s also de creased expressio n o f cerebella r trkB . Afte r P9 , ethanol exposur e doe s no t affec t BDN F o r trk B expression. Compromised , time-dependen t BDN F support i n cerebellu m ma y underli e hig h rate s o f Purkinje cel l apoptosi s durin g it s perio d o f ethano l sensitivity (P4 to P5). Manipulation o f availabl e BDN F suppor t i n vivo can furthe r demonstrat e neurotrophi n system-specifi c vulnerability t o ethanol . Transgeni c mic e lackin g
BDNF expressio n in the cerebellu m sho w significant losses o f Purkinj e cell s afte r earl y postnata l ethano l exposure (Heato n e t al. , 2002) . There ar e als o con current decreases i n anti-apoptotic factor s (e.g. , bcl-2) in these mice , suggestin g that BDN F signals mediate neuronal survival . The contrastin g results observed in cerebellum an d striatu m illustrat e tha t ethano l ca n exert tissue-specific effects dependen t o n BDNF 1 regulation. In cortica l tissue , the effect s o f ethanol o n BDN F and trk B expression are also specific to the time of exposure. Earl y postnata l exposur e cause s significan t increases i n neocortica l BDN F abundance , simila r to change s observe d i n hippocampu s an d striatu m (Heaton e t al. , 2000e) . I n contrast , gestationa l expo sure result s i n significan t decrease s i n BDN F an d trkB recepto r expressio n i n cortex , whic h correlat e with significant increase s in apoptosis of cortical neu rons (Climent e t al., 2002). Both of these observations support th e hypothesi s tha t a sufficien t amoun t o f BDNF mus t be present to promote cel l surviva l in response t o ethanol . Insulin-Like Growth Factor- 1 IGF-1 i s another survival-promotin g factor tha t i s target of ethanol (Zhan g e t al, 1998) . Activatio n of the IGF-1 recepto r ca n inhibi t cel l deat h i n vitr o (W u et al, 1996 ) an d in vivo (Resnicoff et al., 1995) . An in vivo model i n which transplante d tumo r cell s overex pressed IGF- 1 receptor s show s that IGF- 1 play s a major protectiv e role . I n contrast , a decreas e i n IGF- 1 receptor expression results in heavy amounts of apoptosis i n vivo. The cytotoxi c effects ar e mor e dramati c than when tumor cell s are manipulated i n vitro. Like th e neurotrophins , IGF- 1 expressio n fluctu ates durin g development . Norma l change s o f IGF- 1 receptor distributio n indicat e tha t differen t popula tions of cells have different period s of IGF-1 depend ence durin g the postnata l period o f brain maturation (Breese e t al. , 1991) . Norma l neonate s expres s th e greatest abundanc e o f IGF- 1 protei n a t birth ; IGF lcontentfalls61%byP20. Gestational ethano l exposur e alter s IGF- 1 abundance an d distributio n durin g postnata l brai n development (Brees e e t al. , 1994) . I n offsprin g o f ethanol-exposed mothers, the decrease in IGF-1 expression i s attenuated, fallin g onl y by 25 % during the firs t 20 day s afte r birth . Localizatio n o f IGF-1 an d IGF- 1 receptors, however , i s not affected . Thus , ethanol ma y
254 ETHANOL-AFFECTE D DEVELOPMEN T disrupt th e regulatio n o f IGF-1 availabilit y (i.e., pro duction an d secretion ) rathe r than th e ligand-receptor signals. Ethanol ca n revers e th e anti-apoptoti c effect s o f IGF-1 recepto r signalin g (Resnicof f e t al , 1996) . Fi broblasts lacking IGF-1 receptor s are completely insensitive to ethanol-induced cell death in vitro. Cerebellar granule neurons can normally be rescued from apopto sis i n th e presenc e o f IGF- 1 (D'Mell o e t al. , 1993) . Ethanol ca n inhibi t this neuroprotectio n eve n whe n excess IGF-1 i s available (Zhang et al., 1998) . The amoun t o f IGF- 1 i n materna l plasm a i s reduced afte r ethano l exposur e (Brees e an d Sonntag , 1995). Insufficien t IGF- 1 ligan d o r receptor s ca n cause massiv e amounts o f apoptosis. Thus, the conse quences o f insufficient plasm a IGF- 1 o n metabolis m and hormon e physiolog y ma y contribut e t o bod y growth deficiencie s tha t compoun d th e pathologica l microcephalic brain development associated with FAS. The vulnerabilit y of an individua l IGF-1 recepto r to ethanol ca n var y in that the affinit y o f the recepto r for it s ligan d ma y b e altered . Th e enzym e activit y of the IGF- 1 recepto r ca n als o be disrupted . Several subclones o f 3T 3 cell s generate d t o expres s equa l amounts of IGF-1 recepto r demonstrate d tha t no t all IGF-1 receptor s are created equal (Seiler et al., 2000). IGF-1 receptor s in some subclones resisted the effect s of ethanol; ethano l di d no t inhibi t the autophospho rylation of the IGF- 1 receptor . Like the tissue-specific distribution o f neurotrophi n receptor s an d variabl e expression of trk isoforms, relative abundance of IGF1 receptor s an d thei r variabl e resistanc e t o ethano l may explain the differentia l effect s o f ethanol o n various cell populations . N-Methyl-D-Aspartate Glutamate i s a majo r excitator y neurotransmitte r i n the mammalia n nervous system. Its actions ar e medi ated b y interactio n wit h bot h metabotropi c an d ionotropic receptors (Hollman and Heinemann, 1994 ; Ozawa et al., 1998) . The NMD A subtype of ionotropic glutamate receptor plays an importan t role in synaptic plasticity (e.g., learning and memory) , but hyperactivation of NMDA receptors can lead to excitotoxic, primarily necrotic, death of mature neurons (Choi, 1992). During neurona l development , NMD A recepto r function i s necessary for the activity-dependen t organization of synapses (Collingridge and Lester , 1989; Mc Donald and Johnston, 1990). In addition, activation of
NMDA receptors can hav e a trophic o r protective effect on developing neurons. This protective effect ha s been mos t extensivel y studied wit h cultured cerebel lar granul e neurons. Cerebellar granul e neurons iso lated fro m 7-day-ol d rat s requir e a growt h mediu m containing a depolarizing concentration of K+ (25 mM KC1) fo r surviva l (Gall o e t al , 1987 ; Balâz s e t al , 1988). Th e dependenc e o f cel l surviva l o n depolar ization develop s ove r a narro w time frame . Thi s pe riod include s the tim e when the glutamatergic mossy fibers innervat e postmitoti c granul e neurons . Treat ment of cerebellar granul e neuron s wit h NMDA also can protect thes e postmitotic neuron s fro m cel l death when they are grown in medium containin g a physiological concentratio n o f K + ( 5 mM KC1 ) (Balâz s et al, 1988 ; Burgoyn e e t al, 1993 ; Bhav e an d Hoff man, 1997) . Thi s neuroprotectiv e actio n o f NMD A apparently mimic s th e effec t o f innervatio n o f th e granule neurons by mossy fiber afférents i n vivo. Two model s o f culture d cerebella r granul e cell s have been use d t o explor e the neuroprotectiv e prop erty of NMDA. In th e first model, neuron s from post natal rat s ar e culture d i n a mediu m containin g a physiological concentration o f KC1 (see above). These cells underg o spontaneou s death . I n th e secon d model, th e cell s ar e grow n i n mediu m containin g 25 mM KC 1 an d afte r severa l day s i n culture , th e medium i s replaced wit h mediu m containin g a lo w KC1 concentration and ofte n i s serum-free (Yan et al , 1994). Unde r bot h o f thes e conditions , neuron s di e over a period o f 1 or 2 days, and ca n b e protecte d b y the additio n o f NMDA (Ya n et al , 1994 ; Bhav e an d Hoffman, 1997 ) o r polyaniine s (Harad a an d Sugi moto, 1997) . Polyaniine s modulat e th e functio n o f NMDA receptors (Dod d e t al, 2000 ) and act in part through a n NMD A receptor-dependent mechanis m (Harada an d Sugimoto , 1997) . I n bot h instances , NMDA ha s a neuroprotectiv e effec t o n cerebella r granule neurons, however , the molecular mechanis m of cel l deat h differ s i n th e tw o model s (Kharlamo v et al, 1995 ; Bhave et al, 1999 ; Bonn i et al, 1999) . It i s well-established tha t ethano l acutel y inhibits NMDA recepto r function . Thi s actio n ha s bee n demonstrated i n viv o an d i n vitro , and i n recombi nant systems where the NMD A recepto r i s expressed in heterologou s cell s (Hoffman , 2003) . These find ings led to the proposa l that ethanol ca n promote th e death o f cerebella r granul e neuron s b y interferin g with th e protectiv e effec t o f NMDA . Interestingly , ethanol no t onl y reduce s th e protectiv e effec t o f
EXTRACELLULAR MEDIATOR S O F NEURONA L DEAT H 25 5 NMDA o n cerebella r granul e neuron s grow n i n th e presence o f a lo w concentratio n o f K + bu t als o re duces th e toxi c effec t o f NMDA o n cerebella r gran ule neuron s grow n i n a hig h concentratio n o f K + (Wegelius an d Korpi , 1995) . Neuron s grow n i n lo w K+-containing medium ar e thought t o have the char acteristics o f immatur e neurons , thu s cerebella r granule neurons grown under these condition s represent a mode l i n whic h th e effect s o f ethano l an d NMDA o n neurona l surviva l durin g developmen t can b e assesse d in a mechanistic manner . Cerebellar granul e neuron s grow n i n lo w K +, o r subjected t o remova l o f high KC1 , exhibi t apoptoti c features, suc h a s DN A fragmentation , nuclea r con densation, somati c blebbing , an d caspas e activation (Yan e t al. , 1994 ; Bhav e an d Hoffman , 1997 ; Bhav e et al. , 1999) . Th e deat h o f these neuron s i n cultur e appears to mimic the apoptosi s observed in the developing ra t cerebellu m i n vivo betwee n P 5 an d P l l (Wood e t al., 1993) . Man y factors , such a s activation of variou s caspases , th e proteasom e an d accumula tion o f ubiquinated proteins, mitochondrial function, Bel-family proteins , and oxidativ e stress , hav e bee n implicated i n apoptoti c cel l los s (Atabay et al., 1996 ; Alavez e t al, 2000 ; Can u e t al, 2000 ; Vogel , 2002 ; Konishi an d Bonni , 2003) . Treatment o f cerebella r granule neuron s wit h NMD A prevent s thi s apoptoti c death (Ya n et al. , 1994 ; Bhav e an d Hoffman , 1997 ; Bhave et al, 1999) . Ethanol promote s apoptosi s b y interferin g wit h the protectiv e effec t o f NMDA (Bhav e and Hoffman , 1997). Neurons grown in low KCl-containing medium for 4 days prior to addition o f ethanol and/or NMD A for 2 4 h r experienc e th e sam e amoun t o f apoptoti c death a s neurons treated wit h ethanol alone . Ethano l also inhibit s th e neuroprotectiv e effec t o f NMD A when cerebella r granul e neuron s ar e switche d fro m high- t o low-KC l mediu m (Castold i e t al , 1998) . NMDA protect s cerebella r granul e neuron s fro m apoptosis b y increasin g th e expressio n o f BDNF , which i n tur n activate s phosphatidylinosito l 3 phosphokinase (PI3K ) an d Ak t phosphorylatio n (Bhave e t al., 1999) . Ethano l inhibit s th e first step of this pathway , th e NMDA-stimulate d increas e i n BDNF expression , whic h i s mediate d b y NMDA induced increases in intracellular calcium (Zafra e t al., 1990, 1991 ; Ghosh et al, 1994). This action of ethanol is specific , i.e. , ethano l doe s no t affec t late r step s i n the neuroprotectiv e pathwa y (Bhav e e t al. , 1999) . Thus, ethano l apparentl y doe s no t interfer e wit h th e
protective effec t o f BDN F (Hoffma n e t al , 1994 ; Seabold e t al., 1998) . The sit e of action o f ethanol a t the NMD A recepto r i s further supporte d b y studies of cerebellar granul e neuron s showin g tha t th e in hibitory effec t o f ethano l o n NMD A recepto r func tion (measure d a s a n increas e i n intracellula r calcium) an d tha t o n th e protectiv e rol e o f NMD A are both attenuate d i n the presenc e of a high concen tration o f glycine, the co-agonis t at the NMD A recep tor (Bhave and Hoffman , 1997) . Although ethano l acutel y inhibit s NMD A recep tor function , chroni c exposur e of mature neuron s t o ethanol up-regulate s NMDA recepto r functio n (Hoff man, 2003) . This change , i n vivo, is thought t o con tribute t o ethano l withdrawa l hyperexcitabilit y an d the brai n damag e associate d wit h long-ter m ethano l ingestion. By contrast, chroni c treatmen t o f culture d "immature" cerebella r granul e neuron s (grow n i n 5.0 mM KC1) with ethanol decreases the neuroprotec tive effec t o f NMDA , simila r t o th e effec t o f short term ethano l treatmen t (Bhav e e t al. , 2000) . Th e effect o f chronic ( 3 day) exposure to ethano l persists even afte r ethano l i s removed (Castold i e t al. , 1998 ; Bhave et al., 2000), attributed to decreased expressio n of NMD A recepto r subunit s b y th e ethanol-treate d "immature" neurons , resultin g i n decrease d NMD A receptor-mediated stimulatio n o f BDN F expressio n (Bhave e t al. , 2000) . Similarly , chroni c prenata l ethanol treatmen t i n vivo reduce s th e expressio n of NMDA recepto r subunit s i n th e offsprin g (Hughe s etal, 1998). The ag e o f th e culture d cerebella r granul e neu rons defines the respons e to ethanol an d NMDA . Fo r example, ethano l exposur e induce s th e deat h o f cerebellar granul e neuron s harveste d o n P1 0 an d treate d with ethano l (5 0 o r 20 0 mM) fo r 1 da y (Pantazi s et al., 1995) . This death ca n b e prevente d b y adding NMDA t o the cultures (Pantazis et al, 1995) . In contrast, i f cell s ar e maintaine d i n cultur e (5. 0 mM o r 25 m M KC1 ) fo r 7 days and the n expose d t o ethano l for 2 4 hr, there i s no evidence o f increased cel l death . The underlyin g mechanism o f thi s phenomeno n i s unknown. I t mus t b e considere d tha t th e ethanol induced deat h o f neurons o n th e first day in cultur e could reflec t interferenc e with cellula r adhesio n t o the cultur e dishe s and thu s b e a n artifac t o f the cul ture system . Nevertheless, unde r condition s i n whic h ethanol alon e produce s neuronal death , a number of anti-apoptotic agent s (e.g. , NMDA , neurotrophins , and PACAP ) ca n preven t ethanol-induce d deat h
256 ETHANOL-AFFECTE D DEVELOPMENT (Pantazis e t al , 1995 ; Beato n e t al. , 1999 ; 2000a , ZOOOb; de la Monte et al, 2000; Vaudry et al, 2002). Whether thes e result s ar e indicativ e o f th e mecha nism b y which ethano l itsel f induces neurona l deat h or reflec t algebraicall y additive effects o f ethanol an d protective agents has yet to be determined. Suc h studies of the tempora l vulnerabilit y of cultured cerebel lar granul e neuron s t o ethanol-induce d deat h ar e reminiscent o f the i n vivo studies demonstrating windows o f vulnerabilit y of th e cerebellu m t o ethanol induced neurona l los s durin g developmen t i n viv o (e.g., Hamre and West, 1993) . An i n viv o interactio n o f ethanol an d th e NMD A receptor wit h respect t o neuronal deat h i s not wel l established. Studie s reporte d b y Olne y an d colleague s (2002b) suggest such an interaction. They found tha t a single treatmen t wit h ethano l produce s apoptoti c de generation i n mous e o r ra t brain (Ikonomido u e t al. , 2000). On th e basi s of patterns o f neurodegeneration and comparison s with th e effect s o f NMDA recepto r antagonists, the y propose d tha t th e pro-apoptoti c ac tion o f ethano l i s mediate d throug h NMD A (an d yaminobutyric aci d A ) receptor s (Ikonomido u e t al , 1999, 2000 ; Olne y e t al, 2002a) . In th e cerebellum , the fact that cerebellar granule neurons undergo apoptosis at a specifi c tim e durin g developmen t (Woo d et al., 1993 ) an d th e possibilit y that this apoptosis i s a consequence o f the lac k o f innervatio n b y the gluta matergic mossy fiber afférents (Balâz s et al., 1988) sug gest tha t inhibitio n o f NMD A recepto r functio n b y ethanol a t thi s critical perio d o f development i n vivo would resul t i n inappropriat e cel l loss . Although th e mechanism o f cell deat h propose d b y Olney an d col leagues i s consistent with results from th e i n vitro studies, th e caveat s raised earlie r in thi s chapter , tha t th e massive amoun t o f cell deat h reporte d b y Olney an d colleagues is not consistent with studies of the numbe r of neurons i n adul t animals treate d pre - or postnatally with ethanol, cas t doubt on the interpretatio n o f the in vivo studies. Pituitary Adenylyl Cyclas e Activating Polypeptid e Activation of the transcription factor cycli c adenosine monophosphate (cAMP ) respons e elemen t bindin g protein (CREB ) ma y b e a downstrea m mediato r o f stimulus-dependent neurona l surviva l (Fig . 15-4 ) (Shaywitz an d Greenberg , 1999 ; Finkbeiner , 2000 ; Walton an d Dragunow , 2000) . Persisten t phosphory -
lation of CREB is considered necessary to increase the expression o f gene s neede d fo r cel l survival . Therefore, activation of several signal transduction pathway s that contribut e t o CRE B phosphorylatio n ma y pro vide optima l condition s fo r survival . On e suc h path way i s th e cAMP/protein kinas e A (PKA ) pathway . Activation o f the intracellula r messenge r cAM P ca n increase neurona l proliferation , differentiation , an d survival (Tojim a e t al , 2003 ; Fujiok a e t al , 2004) . Many studie s o f th e rol e o f th e cAMP/PKA/CRE B pathway in neuronal death hav e used cerebellar granule neuron s a s a model. Raisin g cAMP concentratio n in cerebellar granule neurons in many (D'Mello et al., 1993; Chan g e t al, 1996 ; Kienle n Campar d e t al , 1997; Mora n e t al. , 1999 ; L i e t al. , 2000 ) bu t no t al l (Yan et al., 1995 ) instances has prevented apoptosis . PACAP, a cAMP generator, i s a neuropeptide originally isolate d fro m a n ovin e hypothalami c extrac t (Miyata e t al. , 1989) . Thi s peptid e exist s in tw o isoforms (PACAP-2 7 an d PACAP-38 ) tha t ar e member s of th e vasoactiv e intestina l polypeptid e (VIP) / secretin/glucagon family . Bot h isoform s o f PACA P have simila r biochemica l effects . The y interac t wit h high-affinity PAC j receptor s (whic h hav e hig h spe cific affinit y fo r PACAP) and wit h two forms o f VPAC receptors (whic h hav e equa l affinit y fo r PACA P an d VIP; Harma r e t al. , 1998) . Bot h PACA P an d severa l splice variant s of the PAC j recepto r (Spengle r e t al, 1993) ar e found i n th e cerebellu m an d expresse d b y cultured cerebella r granul e neuron s (Basill e e t al. , 1995; Favit et al, 1995 ; Tabuchi et al, 2001) . In these neurons, activation of the PAC j receptor leads both t o cAMP accumulatio n an d polyphosphoinositid e hy drolysis (Basill e et al, 1995 ; Favit et al, 1995) . Treatment o f cerebella r granul e neuron s wit h PACA P attenuates apoptosi s produced eithe r b y growing th e neurons in low KCl-containing medium or by switching them from a high to low KCl-containing mediu m (Cavallaro et al, 1996 ; Campar d e t al, 1997 ; Villalba et al , 1997 ; Bhav e an d Hoffman , 2004) . PACA P i s likely an endogenou s facto r tha t promotes cerebella r granule neuron surviva l because treatmen t of granule neurons grow n i n a hig h KCl-containin g mediu m with a PACA P recepto r antagonis t reduce s neurona l survival (Tabuchi etal, 2001). The mechanis m b y whic h PACA P promote s cerebellar granul e neuro n surviva l ha s bee n evalu ated in severa l studies. Th e cAMP/PK A pathway an d the mitogen-activate d protei n kinas e (MAPK ) path way (Villalb a e t al , 1997 ) hav e bee n implicate d
Casuases
FIGURE 15- 4 Neuroprotectiv e pathways in cerebellar granule neurons. Cerebel lar granul e neuron s fro m postnata l rats , culture d i n mediu m containin g 5 mM KC1, undergo spontaneou s apoptosis . These neuron s ca n b e protecte d b y addition o f n-methyl-D-aspartat e (NMDA) , brain-derive d neurotrophi c facto r (BDNF), insulin-lik e growth factor 1 (IGF-1), or pituitary adenylyl cyclase activating polypeptide (PACAP) to the cultur e medium . Th e anti-apoptoti c effect of NMDA depend s o n NMDA-induced expressio n of BDNF, which i s inhibited b y ethanol. The protectiv e effect s o f NMDA an d BDNF are mediated throug h acti vation o f phosphatidylinositol-3' hydroxy kinase (PBK) , which i n tur n activate s Akt. NMDA ha s also been suggeste d to activate Akt directly via Ca2+/calrnodulindependent protein kinas e kinase (CaM-KK ) (dotte d line) . BDN F can als o promote cerebella r granul e neuron surviva l by activation of microtubule-associated protein kinas e (MAPK ) extracellula r signal-related kinas e (ERK) 1/2 . Activation o f this pathway results in phosphorylation o f the pro-apoptoti c protei n Bad on th e Ser 112, whic h i s mediated b y Rsk-2 , a membe r o f the MAPK-activate d pp90 ribosoma l S6 kinase family. Phosphorylation o f Bad results in dissociation of Bad from th e anti-apoptoti c Bcl- 2 protein, allowin g the surviva l function of Bcl-2 to be expressed. Activation of the PBK/Ak t pathway results in phosphorylation o f Bad o n Ser 136, an d phosphorylatio n o n bot h site s ma y be necessar y t o reduc e apoptosis (Bonni et al., 1999) . Although treatmen t o f cells with NMDA activate s MAPK, a n inhibito r o f thi s pathwa y doe s no t bloc k th e protectiv e effec t o f NMDA. Ther e is also evidence tha t the anti-apoptoti c actions of the MAP K and PI 3-kinas e pathways may converge at the leve l of cyclic AMP respons e elemen t binding protei n (CREB) . CREB activatio n can increas e th e expressio n o f bcl-2 mRNA. The overal l effect o f activation of these pathways is to release Bcl-2 fro m dimerization wit h Ba d an d t o increas e Bcl- 2 levels. The anti-apoptoti c effec t o f PACAP in cerebella r granul e neuron s i s mediated throug h activatio n o f PKA by cAMP and by activation of the PBK pathway via a pertussis toxin-sensitive G protein. Ethanol enhance s bot h o f these PACAP-stimulated pathways. Protein Kinas e A (PKA) can phosphorylate Bad at Ser 112 while Akt phosphorylates Bad at Ser 136, as discusse d above . Activation of PKA and PB K als o leads t o CRE B activation . Therefore, the protective effect o f PACAP may depend o n the convergence of two signaling pathways at the level of phosphorylation of Bad and/or CREB.
257
258 ETHANOL-AFFECTE D DEVELOPMEN T (Campard e t al, 1997 ; Vaudr y et al, 1998) . Ethano l acutely enhance s receptor-stimulate d cAM P produc tion i n variou s neurona l an d non-neurona l system s (Tabakoff an d Hoffman , 1998) . I f ethano l als o en hances PACAP-stimulate d cAM P production , on e could postulat e tha t ethano l ha s a neuroprotective effect when granule neuron s ar e treated simultaneousl y with ethanol and PACA P The signalin g pathway s tha t mediat e th e anti apoptotic effec t o f PACAP on cerebella r granule neu rons hav e bee n examined . I n cell s grow n i n th e absence o r presence o f ethanol i n a medium contain -
ing 5 mM KC1 , th e anti-apoptoti c effec t o f PACA P was reduced b y inhibitors of the cAMP/PK A pathway and th e PB K pathwa y (Bhav e and Hoffman , 2004) . The anti-apoptoti c effec t o f PACAP is evident within 4 hr . Ethano l (lOOmM ) accelerate s thi s proces s a s the anti-apoptoti c effec t o f PACA P i s maxima l afte r only 1 hr o f exposure t o ethanol an d PACAP . The ef fect of ethano l is blocke d by inhibitor s of bot h the cAMP/PKA an d th e PB K pathways , an d ethano l stimulates PACAP-induced productio n o f cAMP an d phosphorylation o f Akt (Bhav e an d Hoffman , 2004) . In addition , ethano l enhance s PACAP-induce d
FIGURE 15- 5 Schemati c o f th e relationshi p o f neurotrophi n expressio n an d neuronal ontogeny . Ther e ar e tw o period s o f cel l deat h durin g neura l on togeny: during the perio d o f cell proliferatio n (in the germina l zone [GZ] ) an d during th e perio d o f neuronal differentiatio n (i n th e gra y matter). At least th e latter i s associated wit h neurotrophi n expression . Neurotrophin expressio n increases durin g the perio d o f neuronal differentiatio n t o suppor t th e growt h o f neuntes an d promot e synaptogenesis . Nevertheless, neurotrophi n expressio n is limited, hence it defines the numbe r o f neurons tha t can successfull y compete for enoug h neurotrophi n t o maintai n thei r survival . Ethanol delay s th e num bers o f neurons tha t are generated an d successfull y migrate t o the CN S struc ture an d reduce s th e amoun t o f available neurotrophin . Th e consequenc e of this reductio n i s tha t fewe r neuron s survive . Soli d an d broke n line s identif y changes for control an d ethanol-treate d subjects, respectively. Thicker line s depict change s i n the number s o f neurons i n a CN S structur e and thinne r line s describe changes i n neurotrophin expression . The graph s at the botto m depic t changes i n the number s of cells involved in a particular ontogenetic event (for a control subject) .
EXTRACELLULAR MEDIATORS OF NEURONA L DEATH 25 9 CREB phosphorylation . These result s indicate d tha t ethanol treatmen t o f cerehellar granul e neuron s ca n increase neuroprotection induce d by PACAP. Although exposur e o f th e developin g brai n t o ethanol i s associate d wit h a n overal l los s o f neurons , and th e cerebellu m i s particularly sensitive to ethanolinduced neurona l los s (Goodlet t e t al. , 1990 ; Wes t et al, 1990 ; Miller , 1992 , 1996b ; Maier e t al, 1999) , the finding s fo r PACA P offe r a possibl e approac h fo r amelioration o f th e overal l deleteriou s effec t o f ethanol. Sinc e PACA P i s endogenousl y presen t i n cerebellar granul e neurons , th e presenc e o f ethanol a t critical time s o f development coul d enhanc e the pro tective effec t o f this endogenous factor . Neurona l survival durin g development depend s o n th e interpla y of various neurotrophi c factors . Ethano l ca n affec t th e balance amon g th e effect s o f thes e factors . On e ap proach t o alleviatin g the damagin g effect s o f ethano l during centra l nervou s syste m developmen t i s t o in crease th e contributio n o f neuroprotectiv e pathway s that are targeted b y ethanol.
the developin g periphera l nervou s syste m (Davies , 1997). Potentially, neurons ar e more susceptible whe n only a singl e neurotrophi n syste m i s active, but the y become more resistant to ethanol toxicit y as additional intercellular communicatio n system s are established . How thi s affect s intracellula r processin g i s currentl y unknown. A n alternativ e bu t no t mutuall y exclusive mechanism i s that ethanol target s receptors (e.g. , p75, but no t tr k isoform content) . Recepto r selectivit y may reflect th e differentia l distributio n o f p75 an d trk s i n the plasm a membrane, for example, in lipid rafts . In summary, ethanol vulnerability is determined by extracellularly initiate d events . Th e effect s o f ethano l on ligand s and receptor s may be additiv e or synergistic. Regardless , th e differentia l effect s ar e instructiv e about th e rol e o f neurotrophin system s during early development. Abbreviations BDNF brain-derive d neurotrophic facto r BEC bloo d ethanol concentratio n
SUMMARY AND CONCLUSION S
Ethanol-induced neurona l deat h occur s durin g defined period s o f th e developmenta l tim e lin e (Fig. 15-5) . These time period s coincid e wit h thos e of neuronogenesi s an d primar y synaptogenesis , which ar e periods of NOND (se e Chapter 5) . Exposure to ethanol a t this time ma y exacerbate processes involved i n NOND . This pattern applie s t o part s of the brai n i n whic h th e developmen t o f th e con stituent neuron s i s relatively synchronized, as in th e PSN an d cerebra l cortex . A n interestin g counter point i s th e cerebellum , i n whic h population s o f neurons follo w nonoverlappin g ontogeneti c tim e lines. Fo r example , th e proliferatio n of granule cel l precursors coincide s wit h th e synaptogenesi s o f Purkinje neurons . I n thi s case , th e windo w o f vulnerability t o ethano l i s narrow; i t i s only 2 days (P 4 and P5) , early during the perio d o f Purkinje neuron synaptogenesis. Ethanol ha s multiple targets , includin g extracellu lar component s o f growth facto r systems , i.e., ligand s and receptors . Ethano l i s no t a promiscuou s toxin ; rather, it affects th e action s of spécifie ligand s (e.g., for fetal cortica l neurons , NGF , bu t no t BDNF or NT-3). Ligands ma y b e temporall y expresse d an d overlai d upon pre-existin g systems. This situation i s evident i n
cAMP cycli c adenosine monophosphat e CREB cAM P response element bindin g protein ERK extracellula r signal-related kinase FASD feta l alcoho l spectru m disorders G gestationa l day IGF-1 insulin-lik e growth factor- 1 MAPK mitogen-activate d protein kinase NGF nerv e growth facto r NMDA N-methyl-D-aspartat e NOND naturall y occurring neuronal death NT neurotrophi n P postnata l day PACAP pituitar y adenyly l cyclas e activatin g polypeptide PI3K phosphatidylinosito l 3'-phosphokinas e PKA protei n kinas e A PSN principa l sensory nucleus of the trigemina l nerve trk tyrosin e kinase receptor TUNEL termina l uridylate d nick-end labelin g VB ventrobasa l nucleus o f the thalamu s VIP vasoactiv e intestinal polypeptid e
260 ETHANOL-AFFECTE D DEVELOPMENT ACKNOWLEDGMENTS Thi s chapte r wa s written with the suppor t o f the Nationa l Institute s o f Alcohol Abus e and Alcoholis m (MBB , PLH, an d MWM ) an d th e De partment of Veterans Affairs (MWM) . References Alavez S , Pedroza D, Mora n J (2000) Rol e of heat shock proteins i n th e effec t o f NMDA an d KC 1 on cere bellar granul e cell s survival . Neuroche m Re s 25:341-347. Al-Ghoul WM , Mille r M W (1993a ) Orderly migration of neurons t o th e principa l sensor y nucleus o f th e trigeminal nerv e o f th e rat . J Com p Neuro l 330 : 464-475. Al-Ghoul WM, Miller MW (1993b) Development o f the principal sensory nucleus of the trigemina l nerv e of the ra t and evidenc e for a transient synaptic field in the trigemina l sensory tract. } Comp Neuro l 330 : 476-490. Altaian J , Bayer S A (1978) Prenata l developmen t of th e cerebellar system in the rat . I. Cytogenesis an d his togenesis o f the dee p nucle i an d th e corte x o f th e cerebellum. J Comp Neurol 179:23-48 . Altaian J , Da s C D (1966 ) Autoradiographi c an d histo logical studies of postnatal neurogenesis. I. J Conip Neurol 126:337-390 . Angelucci F , Cimino M, Balduin i W, Piltillo L , Aloe L (1997) Prenata l exposur e t o ethano l cause s differ ential effects i n nerve growth factor and it s receptor in the basa l forebrain of preweaning an d adul t rats. J Neural Transplant Plast 6:63-71. Ash well KW , Waite PM (1991 ) Cell deat h i n th e devel oping trigemina l nuclea r comple x o f the rat . De v Brain Res 63:291-295. Astley SJ, Magnuson SI, Omnell LM , Clarren S K (1999) Fetal alcoho l syndrome : change s i n craniofacia l form wit h age, cognition , and timin g of ethanol ex posure in the macaque . Teratology 59:163—172 . Atabay C, Cagnoli CM, Kharlamo v E, Ikonomovic MD, Manev H (1996 ) Remova l o f serum fro m primar y cultures o f cerebellar granul e neuron s induce s ox idative stres s an d DN A fragmentation : protectio n with antioxidant s and glutamat e recepto r antago nists. J Neurosci Res 43:465-475. Balâzs R , Jorgense n OS , Hac k N (1988 ) N-methyl-D aspartate promote s th e surviva l o f cerebella r granule cells in culture. Neuroscienc e 27:437-451. Basilic M , Gonzale z BJ , Leroux P , Jeandel L , Fournie r A, Vaudry H (1993 ) Localization and characteriza tion o f PACAP receptors in th e ra t cerebellum during development : evidenc e fo r a stimulator y effec t of PACA P o n immatur e cerebella r granul e cells . Neuroscience 57:329-338 .
Bhave SV , Hoffman P L (1997 ) Ethanol promotes apop tosis i n cerebella r granul e cell s b y inhibitin g th e trophic effec t o f NMDA . J Neuroche m 68:578 586. Bhave SV , Ghoda L , Hoffma n P L (1999 ) Brain-derived neurotrophic facto r mediates th e anti-apoptoti c ef fect of NMDA in cerebellar granule neurons: signal transduction cascade s an d sit e o f ethano l action . J Neurosci 19:3277-3286 . Bhave SV , Hoffma n P L (2004 ) Phosphatidylinosito l 3' OH kinas e and protei n kinase A pathways mediate the anti-apoptoti c effect o f pituitary adenylyl cyclaseactivating polypeptide i n culture d cerebella r gran ule neurons : modulation by ethanol. J Neurochem 88:359-369. Bhave SV , Snel l LD , Tabakof f B, Hoffma n P L (2000 ) Chronic ethano l exposur e attenuate s th e anti apoptotic effec t o f NMD A i n cerebella r granul e neurons. J Neurochem 75:1035-1044. Bibel M, Bard e YA (2000) Neurotrophins: key regulators of cell fat e an d cel l shap e in the vertebrat e nervous system. Genes De v 14:2919-2937. Bonni A , Brune i A , Wes t AE , Datt a SR , Takas u MA , Greenberg M E (1999 ) Cel l surviva l promoted b y the Ras-MAP K signaling pathway by transcriptiondependent an d independen t mechanisms. Scienc e 286:1358-1362. Bonthius DJ , Goodlet t CR , Wes t JR (1988) Bloo d alco hol concentratio n an d severit y of microencephal y in neonata l rat s depen d o n th e patter n o f alcoho l administration. Alcohol 5:209-214 . Breese CR, D'Cost a A, Booze RM, Sonntag WE (1991 ) Distribution o f insulin-like growth facto r 1 (IGE-1) and 2 (IGF-2) receptors i n the hippocampa l forma tion o f rat s an d mice . Ad v Ex p Me d Bio l 293 : 449-458. Breese CR, D'Cost a A, Sonntag WE (1994 ) Effec t o f in utero ethano l exposur e o n th e postnata l ontogen y of insulin-like growth factor-1, an d type- 1 and type 2 insulin-lik e growth facto r receptor s i n th e ra t brain. Neuroscience 63:579-589 . Breese CR , Sonnta g W E (1995 ) Effec t o f ethano l o n plasma an d hepati c insulin-lik e growth factor regu lation i n pregnan t rats . Alcohol Cli n Ex p Re s 19 : 867-873. Burgoyne RD, Graham ME, Cambray-Deakin M (1993) Neurotrophic effect s o f NMDA recepto r activation on developin g cerebella r granul e cells . J Neurocytol 22:689-695. Campard PK , Crochemor e C , Ren e F , Monnie r D , Koch B , Loeffler J P (1997 ) PACA P type I recepto r activation promote s cerebella r neuro n surviva l through th e cAMP/PK A signalin g pathway . DN A Cell Bio l 16:323-333 .
EXTRACELLULAR MEDIATORS OF NEURONA L DEATH 26 1 Canu N , Barbat o C , Ciott i MT , Serafin o A , Du s L , Calissano P (2000 ) Proteasom e involvemen t an d accumulation o f ubiquitinated proteins i n cerebel lar granul e neuron s undergoin g apoptosis . J Neu rosci 20:589-599. Castagne V, Gautschi M , Lefevr e K , Posad a A, Clark e PG (1999 ) Relationship s between neurona l death and th e cellula r redo x status . Focu s o n th e devel oping nervou s system . Pro g Neurobio l 59:397 423. Castoldi AF , Barni S, Randine G , Cost a LG , Manz o L (1998) Ethano l selectivel y interfere s wit h th e trophic actio n o f NMD A an d carbacho l o n cul tured cerebella r granule neurons undergoin g apoptosis. Dev Brain Res 111:279-289. Cavallaro S , Copani A , D'Agata V, Musco S , Petralia S, Ventra C, Stival a F, Travali S, Canonico PL (1996 ) Pituitary adenylat e cyclas e activatin g polypeptid e prevents apoptosi s i n culture d cerebella r granul e neurons. Mol Pharmacol 50:60-66. Chang JY , Korolev W, Wan g J Z (1996 ) Cycli c AM P and pituitar y adenylate cyclase-activatin g polypep tide (PACAP ) preven t programme d cel l deat h o f cultured ra t cerebellar granul e cells . Neurosc i Let t 206:181-184. Chao M V (2003 ) Neurotrophins an d thei r receptors : a convergence poin t fo r man y signallin g pathways. Nat Rev Neurosci 4:299-209. Cheng C, Zochodn e D W (2003 ) Sensory neurons with activated caspase- 3 survive long-ter m experimental diabetes. Diabetes 52:2363-2371 . Choi D W (1992 ) Excitotoxi c cel l death . J Neurobio l 23:1261-1276. Climent E , Pascua l M , Renati-Piquera s J , Guerr i C (2002) Ethanol exposur e enhances cel l death i n the developing cerebra l cortex : rol e o f brain-derived neurotrophic facto r an d it s signalin g pathways . ) Neurosci Res 68:213-225. Collingridge GL , Leste r R A (1989 ) Excitator y amino acid receptors i n the vertebrat e central nervou s system. Pharmaco l Re v 41:143-210. Davies AM (1997) Neurotrophi n switching : where does it stand? Curr Opin Neurobio l 7:110-118. de l a Mont e SM , Ganj u N , Banerje e K , Brow n NV , Luong T, Wands JR (2000) Partial rescue of ethanolinduced neuronal apoptosis by growth factor activa tion o f phosphoinositol-3-kinase. Alcohol Cli n Ex p Res 24:716-726. de Olmo s JS , Ingra m WR (1971 ) A n improve d cupricsilver method fo r impregnation o f axonal and terminal degeneration. Brain Res 33:523-529. Diaz ] , Samso n H H (1980 ) Impaire d brai n growt h i n neonatal rat s expose d t o ethanol . Scienc e 208 : 751-753.
D'Mello SR , Galli C , Ciott i T , Calissan o P (1993 ) In duction o f apoptosis i n cerebella r granul e neuron s by lo w potassium : inhibitio n o f deat h b y insulin like growth factor I and cAMP . Proc Nat l Acad Se i USA 90:10989-10993. Docld PR , Beckman n AM , Davidso n MS , Wilc e P A (2000) Glutamate-mediate d transmission , alcohol, and alcoholism . Neurochem Int 37:509—533 . Dohrman DP , West JR , Pantazis NJ (1997 ) Ethano l re duces expressio n of the nerv e growth factor recep tor, but not nerve growth factor protein levels in the neonatal ra t cerebellum. Alcohol Clin Ex p Res 21: 882-893. Favit A , Scapagnin i U , Canonic o P L (1995 ) Pituitar y adenylate cyclase-activatin g polypeptid e activate s different signa l transducin g mechanism s i n cul tured cerebellar granul e cells . Neuroendocrinology 61:377-382. Ferrer I , Berne t E , Sorian o E , De l Ri o T , Fonsec a M (1990) Naturall y occurring cell deat h i n th e cere bral corte x o f th e ra t an d remova l o f dea d cell s by transitory phagocytes. Neuroscience 39:451-458 . Finkbeiner S (2000 ) CRE B couple s neurotrophi n sig nals to survival messages. Neuron 25:11-14 . Finlay BL , Slatter y M (1983 ) Loca l difference s i n th e amount o f earl y cel l deat h i n neocorte x predic t adult local specializations. Science 19:1349-1351 . Florez-McClure ML , Linsema n DA , Chu CT , Barke r PA, Bouchard RJ , Le SS , Laessi g TA, Heidenreic h KA (2004 ) The p7 5 neurotrophi n recepto r ca n in duce autophag y an d deat h o f cerebella r Purkinj e neurons. J Neurosci 24:4498-4509. Friedman B , Price J L (1986 ) Age-dependen t cel l deat h in the olfactor y cortex: lack of transneuronal degen eration. J Comp Neurol 246:20-31. Fujioka T , Fujiok a A , Duman R S (2004 ) Activatio n of cAMP signaling facilitates the morphological matu ration o f newborn neuron s i n adul t hippocampus . I Neurosci 24:319-328. Gallo V , Kingsbur y A , Balaz s R , Jorgense n O S (1987 ) The rol e of depolarization in the surviva l and differ entiation o f cerebella r granul e cell s i n culture . J Neurosci 7:2203-2213. Ge Y, Belcher SM , Ligh t K E (2004) Alterations of cere bellar mRN A specific fo r BDNF, P 75NTR, and trkB receptor isoforms occu r within hours of ethanol ad ministration t o 4-day-ol d ra t pups . De v Brai n Res 151:99-109. Ghosh A , Carnahan } , Greenberg M E (1994 ) Require ment fo r BDN F i n activity-dependen t surviva l o f cortical neurons. Scienc e 263:1618-1623 . Goodlett CR , Hor n K H (2001 ) Mechanisms o f alcoholinduced damag e to the developin g nervou s system. Alcohol Re s Health J NIAAA 25:175-184.
262 ETHANOL-AFFECTE D DEVELOPMEN T Goodlett CR , Marcusse n BL , Wes t J R (1990 ) A single day o f alcoho l exposur e durin g th e brai n growt h spurt induce s brai n weight restrictio n an d cerebel lar Purkinje cel l loss. Alcohol 7:107-114. Gordon WC , Casey DM , Luki w WJ, Bazan NG (2002) DNA damage an d repai r i n light-induced photore ceptor degeneration . Inves t Ophtha l Vi s Se i 43 : 3511-3521. Hamre KM, West JR (1993) The effect s o f the timin g of ethanol exposur e during the brai n growth spur t on the numbe r o f cerebellar Purkinj e and granul e cel l nuclear profiles. Alcohol Clin Exp Res 17:610-622. Harada J, Stigimoto M (1997 ) Polyamines prevent apop totic cell deat h i n cultured cerebella r granul e neu rons. Brain Res 753:251-259 . Harmar AJ, Arimtira A, Gozes I, Journot L, Laburthe M , Pisegna JR , Rawling s SR , Robberech t P , Sai d SI , Sreedharan SP, Wank SA, Waschek JA (1998) International Unio n o f Pharmacology . XVIII . Nomen clature of receptors for vasoactive intestinal peptide and pituitar y adenylate cyclase-activatin g polypep tide. Pharmaco l Re v 50:265-270. Heaton MB, Kim DS, Paiva M (2000a ) Neurotrophic factor protection agains t ethanol toxicity in rat cerebellar granule cell culture s requires phosphatidylinositol 3kinase activation. Neurosci Lett 291.T21—125 . Heaton MB , Madorsk y I, Paiva M, Maye r J (2002) Influence of ethanol o n neonata l cerebellu m o f BDNF gene—deleted animals : analyses o f effect s o n Purk inje cells , apoptosis-relate d proteins , an d endoge nous antioxidants. J Neurobiol 51:160-176 . Heaton MB , Mitchel l JJ , Paiva M (2000b ) Overexpres sion o f NG F ameliorate s ethanol neurotoxicit y i n the developing cerebellum . J Neurobiol 45:95-104. Heaton MB , Mitchel l JJ , Paiva M, Walke r D W (2000c ) Ethanol-induced alteration s i n th e expressio n o f neurotrophic factor s in th e developin g ra t centra l nervous system. Dev Brain Res 121:97-107. Heaton MB , Moore DB , Paiva M, Gibb s T, Bernar d O (1999) Bcl- 2 overexpressio n protect s th e neonata l cerebellum fro m ethano l neurotoxicity . Brain Res 817:13-18. Heaton MB , Paiv a M, Madorsk y I, Mayer J, Moore D B (2003) Effect s o f ethano l o n neurotrophi c factors , apoptosis-related proteins , endogenou s antioxidants, and reactiv e oxyge n specie s i n neonata l striatum : relationship t o period s o f vulnerability. Dev Brain Res 140:237-252. Herrup K, Trenkner E (1987) Regional differences in cytoarchitecture o f the Weave r cerebellu m sugges t a new mode l fo r Weaver gene action . Neuroscienc e 23:871-885. Higuchi H , Yamashit a T , Yoshikaw a H , Tohyam a M (2003) PK A phosphorylate s th e p7 5 recepto r an d
regulates it s localizatio n t o lipi d rafts . EMB O J 22:1790-1800. Hoffman P L (2003) NMDA receptor s in alcoholism. Int Rev Neurobiol 56:35-82 . Hoffman PL , Snel l LD , Bhav e SV , Tabakoff B (1994 ) Ethanol inhibitio n of NMDA recepto r functio n i n primary cultures of rat cerebellar granule cell s an d cerebral cortical cells. Alcohol Alcohol 2:199-204. Hollmann M , Heineman n S (1994 ) Clone d glutamat e receptors. Annu Rev Neurosci 17:31-108. Huang EJ , Reichard t L F (2003 ) Tr k receptors : role s i n neuronal signa l transduction . Ann u Re v Bioche m 72:609-642. Hughes PD , Ki m YN, Randall PK, Leslie SW (1998) Effect o f prenata l ethano l exposur e o n th e develop mental profil e of the NMD A recepto r subunit s i n rat forebrai n and hippocampus . Alcoho l Cli n Ex p Res 22:1255-1261 . Ikonomidou C , Bittiga u P , Ishimar u MJ , Woznia k DE , Koch C , Gen z K , Price MT, Stefovsk a V , Horster F, Tenkova T, Dikrania n K, Olney JW (2000) Ethanolinduced apoptoti c neurodegeneratio n and fetal alco hol syndrome. Science 287:1056—1060 . Ikonomidou C , Bosc h F , Miksa M, Bittiga u P, Vockler J, Dikranian K , Tenkov a TI , Stefovsk a V , Tursk i L , Olney J W (1999 ) Blockad e o f NMD A receptor s and apoptotic neurodegeneratio n i n the developing brain. Science 283:70—74 . Ishida K, Shimizu H, Hid a H, Urakaw a S, Ida K, Nishino H (2004 ) Argyrophilic dar k neuron s represent various states of neuronal damage in brain insults: some come t o di e an d other s survive . Netiroscienc e 125 : 633-644. Jacobs JS, Miller MW (1999 ) Expression of nerve growth factor an d neurotrophi n receptor s i n the trigemina l system: evidence fo r autocrine regulation. J Neurocytol 28:571-595. Jacobs JS , Mille r M W (2001 ) Proliferation an d deat h o f cultured fetal neocortica l neurons: effects o f ethanol on th e dynamic s o f cel l growth . J Neurocyto l 30 : 391-401. Jacobson M (1991) Developmental Neurohiology. Plenum , New York. Johnston MC , Bronsk y PT (1995 ) Prenata l craniofacia l development: ne w insight s on norma l an d abnor mal mechanisms . Crit Re v Oral Bio l Med 6:25—79 . Jones KL, Smith DW ( 1973) Recognition of the feta l alcohol syndrome in early infancy. Lancet 2:999—1001. Kharlamov E , Cagnol i CM , Ataba y C , Ikonomovi c S , Grayson DR , Mane v H ( 1995) Opposite effec t o f protein synthesi s inhibitor s o n potassiu m deficiency induced apoptoti c cel l deat h i n immatur e an d mature neurona l cultures . J Neuroche m 65:1395 1398.
EXTRACELLULAR MEDIATOR S OF NEURONA L DEATH 26 3 Kienlen Canipar d P , Crochemore C , Ren e F , Monnier D, Koc h B, Loeffler J P ( 1997) PACAP type I receptor activation promote s cerebella r neuro n surviva l through th e cAMP/PK A signalin g pathway. DN A Cell Bio l 16:323-333 . Konishi Y , Bonn i A (2003 ) Th e E2F-Cdc 2 cell-cycl e pathway specificall y mediate s activit y deprivationinduced apoptosi s o f postrnitoti c neurons . J Neu rosci 23:1649-1658. Kühn PE , Mille r M W (1998 ) Expressio n o f p5 3 an d ALZ-50 immunoreactivit y i n ra t cortex: effec t o f prenatal exposur e t o ethanol . Ex p Neuro l 154 : 418-429. Lemoine P , Haroussea u H , Borteyr u J-P , Menue t J- C (1968) Le s enfant s d e parent s alcooliques : Anom alies observées à propos de 12 7 cas. Ouest Médical 21:476-482. Li M , Wang X, Meintzer MK , Eaessig T, Birnbau m MJ, Heidenreich KA (2000) Cyclic AMP promotes neu ronal surviva l b y phosphorylatio n o f glycoge n syn thasc kinase 3ß.*Mol Cell Biol 20:9356-9363. Light KE , Belcher SM , Pierc e D R (2002 ) Time cours e and manne r of Purkinj e neuro n deat h followin g a single ethano l exposur e o n postnata l da y 4 i n th e developing rat . Neuroscience 114:327—337 . Light KE , Brow n DP , Newto n BW , Belcher SM , Kan e CJM (2002 ) Ethanol-induce d alteration s o f neu rotrophin recepto r expressio n o n Purkinj e cell s i n the neonatal rat cerebellum. Brai n Res 924:71-81. Livy D) , Maie r SE , Wes t JR (2001 ) Feta l alcoho l expo sure an d tempora l vulnerability : effect s o f binge like alcoho l exposur e o n th e ventrolatera l nucleu s of the thalamus. Alcohol Clin Ex p Res 25:774-780. Lopez-Sanchez N , Fracl e } M (2002) Contro l o f the cel l cycle b y neurotrophins: lessons fro m th e p7 5 neu rotrophin receptor . Hist Histopathol 17:1227-1237 . Lossi L , Merighi A (2003) In vivo cellular and molecular mechanisms o f neurona l apoptosi s i n th e mam malian CNS. Pro g Neurobiol 69:287-312. Luo J, West JR, Cook RT , Pantazis NJ (1999) Ethanol induces cell deat h and cel l cycl e delay in cultures of pheochromocytoma P C 12 cells. Alcohol Cli n Ex p Res 23:644-656. Luo J , West JR, Pantazis NJ (1996 ) Ethano l exposur e reduces the density of the low-affinit y nerv e growth factor recepto r (p75 ) o n pheochromocytom a (P C 12) cells. Brai n Res 737:34-44. Maier SE , Mille r JA, Blackwell JM, West JR ( 1999) Feta l alcohol exposur e an d tempora l vulnerability : re gional difference s i n cel l los s a s a functio n o i th e timing of binge-like alcoho l exposur e during brain development. Alcohol Clin Exp Res 23:726-734. Majdan M , Mille r FD (1999 ) Neurona l lif e an d deat h decisions functiona l antagonis m betwee n th e Ir k
and p7 5 neurotrophi n receptors . In t J De v Neu rosci 17:153-161 . Martin L J (2001) Neuronal cell death i n nervous system development, disease , an d injury . In t J Mo l Me d 7:455-478. McDonald JW , Johnston M V (1990 ) Physiologica l an d pathophysiological role s o f excitator y amin o acid s during central nervou s syste m development. Brai n Res Rev 15:41-70. Miale IL, Sidman RL (1961) An autoradiographic analysis o f histogenesi s i n th e mous e cerebellum . Ex p Neurol 2:277-296. Miller M W (1985 ) Co-generatio n o f projection and lo cal circui t neuron s i n neocortex . De v Brai n Re s 23:187-192. Miller M W (1988 ) Effec t o f prenatal exposur e to ethano l on th e developmen t o f cerebral cortex: L Neuronal generation. Alcohol Clin Exp Res 12:440-449. Miller M W (1992 ) Effect s o f prenata l exposur e t o ethanol o n cel l proliferatio n and neurona l migra tion. In: Miller M W (ed) . Development o f the Central Nervous System: Effects of Alcohol and Opiates. Wiley-Liss, New York, pp 47-69. Miller M W (1995a ) Relationshi p o f time o f origin an d death of neurons in rat somatosensory cortex: barrel versus septal corte x and projectio n versus local circuit neurons. J Comp Neurol 355:6-14. Miller MW (1995b ) Effec t o f pre- or postnatal exposur e to ethano l o n th e tota l numbe r o f neurons i n th e principal sensor y nucleu s o f th e trigemina l nerve : cell proliferatio n versu s neurona l death . Alcoho l Clin Exp Res 19:1 3 59-1364. Miller M W (1995c ) Generatio n o f neuron s i n th e ra t dentate gym s and hippocampus : effect s o f prenatal and postnatal treatmen t wit h ethanol. Alcohol Cli n Exp Res 19:1500-1509 . Miller M W (1996a ) Effect s o f early exposure to ethano l on th e protei n an d DN A content s o f specific brain regions. Brain Res 734:286-294. Miller M W (1996b ) Mechanism s o f ethanol-induce d neuronal deat h durin g development: fro m th e mol ecule t o behavior . Alcoho l Cli n Ex p Re s 20 : 128A-132A. Miller M W (1999 ) A longitudinal stud y of the effect s o f prenatal ethano l exposur e o n neurona l acquisitio n and deat h i n th e principa l sensor y nucleus o f th e trigeminal nerve : interaction wit h changes induce d by transection o f the infraorbita l nerve . J Neurocytol 28:999-1015. Miller MW (2003 ) Describing the balanc e o f cell prolif eration and death : a mathematical model . J Neurobiol 57:172-182 . Miller MW , Al-Ghoul WM (1993 ) Numbers of neurons in th e developin g principa l sensor y nucleus o f the
264 ETHANOL-AFFECTE D DEVELOPMEN T trigeminal nerve : evidence o f naturall y occurrin g neuronal death.} Comp Neurol 330:491-501. Miller MW , Al-Ghou l WM , Murtaug h M (1991 ) Ex pression o f ALZ-50-immiinoreactivity in th e devel oping principa l sensor y nucleus o f th e trigemina l nerve: effec t o f transectin g th e infraorbita l nerve. Brain Res 560:132-138. Miller MW, Jacobs JS, Yokoyama R (2003) Neg, a nerve growth factor-stimulate d gen e expresse d b y feta l neocortical neuron s tha t i s down-regulate d b y ethanol. J Comp Neurol 460:212-222. Miller MW, Kühn PE (1997) Neonatal transection of the infraorbital nerv e increases the expression of proteins related to neuronal death in the principal sensory nucleus of the trigeminal nerve. Brain Res 769:233-244. Miller MW, Muller SJ (1989) Structure and histogenesi s of th e principa l sensor y nucleu s o f the trigemina l nerve: effect s o f prenata l exposur e t o ethanol . J Comp Neurol 282:570-580. Miller MW , Pitt s AF (2000 ) Neurotrophin receptor s i n the somatosensor y corte x o f th e matur e rat : co localization o f p75, tr k isoforms , an d c-neu. Brain Res 852:355-366 . Miller MW, Potempa G (1990) Numbers of neurons and glia i n matur e ra t somatosensor y cortex: effect s o f prenatal exposur e t o ethanol . J Com p Neuro l 293:92-102. Milligan CE, L i L, Barnes NY, Urioste AS (2000) Mechanisms o f neurona l deat h durin g development insights from chic k motoneurons. In Vivo 14:61—82. Miyata A, Arimura A, Dahl RR, Minamino N , Uehara A, Jiang L, Culler MD , Co y DH (1989) Isolation o f a novel 3 8 residue-hypothalami c polypeptid e whic h stimulates adenylat e cyclas e i n pituitar y cells . Biochem Biophys Res Commun 164:567-574 . Mooney SM , Miller M W(1999a ) Effect s o f prenatal exposure to ethanol o n systems matching: the numbe r of neurons in the ventrobasal thalamic nucleus of the mature rat thalamus. Dev Brain Res 117:121-125. (1999b) Processes associated with naturally occurring neurona l deat h ar e exacerbate d b y ethano l treatment. Rec Res Dev Neurochem 2:573-586. (2000) Expressio n of bcl-2, bax, and caspase- 3 in the CN S o f th e developin g rat . De v Brai n Re s 123:103-117. (200la) Effect s o f prenata l exposur e o n th e ex pression of bcl-2, bax, and caspase- 3 in the develop ing ra t cerebra l corte x an d thalamus . Brai n Re s 911:71-81. (200 Ib) Effec t o f prenatal exposure to ethanol on the ventrobasa l nucleus of the thalamus : a longitudinal study. Alcohol Clin Ex p Res 25.-72A. Mooney SM , Nappe r RM A (2005 ) Earl y postnata l exposure t o ethano l affect s ra t neocorte x i n a
spatio-temporal manner . Alcohol Clin Ex p Res 29: 683-691. Mooney SM , Napper RM, West JR (1996) Long-term effect of postnatal alcohol exposure on the numbe r of cells i n th e neocorte x o f th e rat : a stereologica l study. Alcohol Clin Ex p Res 20:615-623. Moran J, Itoh T, Reddy UR, Chen M, Alnernri ES, Pleasure D (1999 ) Caspase- 3 expressio n by cerebella r granule neuron s is regulated b y calcium an d cycli c AMP. J Neurochem 73:568-577. Morrison RS , Kinoshita Y, Johnson MD , Ghata n S , H o JT, Garde n G (2002 ) Neurona l surviva l an d cel l death signalin g pathways . Ad Ex p Me d Bio l 513 : 41-86. Mutoh T , Yano S, Yamamoto H (2004 ) Signal transduction mechanism s for the surviva l and deat h of neu rons an d muscl e cells : modulatio n b y membran e lipid raft s an d thei r abnormality in th e disorder s of the nervou s system. Nihon Shi n Seis h Yak Zass 24: 199-203. Nagase T, Seki N, Ishikawa K, Ohira M, Kawarabayashi Y, Ohara O , Tanak a A , Kotan i H , Miyajim a N , No mura N (1996 ) Predictio n o f the codin g sequence s of unidentifie d huma n genes . VI . The codin g se quences o f 8 0 ne w gene s (KIAA0201-KIAA0280 ) deduced b y analysis of cNDA clones fro m cel l lin e KG-1 and brain. DNA Res 3:321-329. Neet KE , Campenot R B (2001) Receptor binding, internalization, and retrograde transport of neurotrophic factors. Cel l Mo l Lif e Se i 58:1021-1035 . Nornes HO , Morita M (1979) Time of origin of the neu rons i n th e cauda l brai n ste m o f rat . An autoradi ographic study. Dev Neurosci 2:101-114. Nowakowski RS , Raki c P (1981 ) Th e sit e o f origin an d route an d rat e of migration of neurons to th e hip pocampal regio n o f th e rhesu s monkey . J Com p Neurol 196:129-154 . Olney JW , Tenkov a T , Dikrania n K , Mugli a LJ , Jer makowicz WJ , D'Sa C , Rot h K A (2002a ) Ethanolinduced caspase- 3 activatio n i n th e i n viv o developing mouse brain. Netirobiol Dis 9:205—219. Olney JW , Wozniak DE, Farbe r NB , Jevtovic-Todorovic V, Bittiga u P , Ikonomidou C (2002b ) The enigm a of feta l alcoho l neurotoxicity . An n Me d 34:109 — 119. Oomman S, Finckbone V , Dertien J, Attridge J, Henne W, Medina M , Mansouri B, Singh H , Strahlendor f H , Strahlendorf J (2004 ) Activ e caspase- 3 expression during postnatal developmen t o f rat cerebellu m i s not systematicall y or consistentl y associate d wit h apoptosis. J Comp Neurol 476:154-173. Ozawa S , Kamiy a H , Tsuzuk i K (1998 ) Glutamat e re ceptors i n th e mammalia n central nervou s system. Prog Neurobiol 54:581-618 .
EXTRACELLULAR MEDIATOR S O F NEURONA L DEAT H 26 5 Pantazis NJ, Dohrman DP , Luo J, Thomas JD, Goodlett CR, Wes t J R (1995 ) NMD A prevent s alcohol induced neurona l cel l deat h o f cerebellar granul e cells in culture. Alcoho l Cli n Exp Res 19:846-853. Pantazis NL, Zaheer A, Dai D, Zaheer S, Green SH, Lim R (2000 ) Transfection o f C6 gliom a cell s wit h gli a maturation facto r upregulate s brain-derive d neu rotrophic facto r an d nerv e growth factor: trophi c effects an d protectio n agains t ethano l toxicit y i n cerebellar granule cells. Brain Res 865:59—76. Peoples RW , Li C , Weigh t F F (1996 ) Lipi d v s protein theories o f alcoho l actio n i n th e nervou s system. Annu Rev Pharmacol Toxicol 36:185-201 . Pierce DR , Goodlet t CR , Wes t J R (1989 ) Differentia l neuronal los s following early postnatal alcoho l ex posure. Teratology 40:113-126 . Pierce DR , Wes t J R (1986 ) Alcohol-induce d microen cephaly durin g th e thir d trimeste r equivalent : rela tionship t o dos e an d bloo d alcoho l concentration . Alcohol 3:185-191 . Pitts AF, Miller M W (1995 ) Expression o f nerve growth factor, p75 , and trk i n the somatosensory-moto r cortices o f mature rats: evidence for local cortica l support circuits. Somatosensory Motor Re s 12:329—342. (2000) Expressio n o f nerv e growt h factor , brain derived neurotrophic factor, an d neurotrophin- 3 in the somatosensor y corte x o f th e rat : co-expressio n with hig h affinit y neurotrophi n receptors . J Comp Neurol 418:241-254. Rakic P , Bourgeoi s JP , Eckenhof f MF , Zecevi c N , Goldman-Rakic P S (1986 ) Concurren t overpro duction o f synapse s i n divers e region s o f th e pri mate cerebral cortex. Science 232:232—235 . Ramachandran V , Watt s LT , Maff i SK , Che n J , Schenker S , Henderson G (2003 ) Ethanol-induce d oxidative stres s precedes mitochondriall y mediated apoptotic deat h o f culture d feta l cortica l neurons . JNeurosci Res 74:577-588. Resnicoff M , Abraha m D , Yutanawibooncha i W , Rot man HL , Kajstur a J , Rubin R , Zoltick P , Baserga R (1995) Th e insulin-lik e growt h facto r I recepto r protects tumo r cell s fro m apoptosi s i n vivo. Cancer Res 55:2463-2469 . Resnicoff M , Cu i S , Coppol a D , Hoe k JB , Rubi n R (1996) Ethanol-induced inhibitio n of cell prolifera tion i s modulated b y insulin-like growth factor-I re ceptor levels. Alcohol Clin Ex p Res 20:961-966. Rezai Z , Yoon C H (1972 ) Abnormal rate of granule cell migration i n th e cerebellu m o f "weaver " mutan t mice. DevBiol 29:17-26. SchlessingerAR, Cowa n MW , Swanso n L W (1978) Th e time o f origin of neurons i n Ammon's horn an d th e associated retrohippocampa l fields . Ana t Embryo l 154:153-173.
Seabold G , Lu o J , Miller M W (1998 ) Effec t o f ethano l on neurotrophin-mediate d cel l surviva l an d recep tor expressio n i n cortica l neurona l cultures . De v Brain Res 128:139-145. Seiler AE, Ross BN, Green JS, Rubin R (2000) Differential effect s o f ethanol o n insulin-lik e growth factor-I receptor signaling . Alcoho l Cli n Ex p Re s 24:140 — 148. Shaywitz AJ , Greenberg M E (1999 ) CREB : a stimulus induced transcriptio n facto r activate d b y a divers e array o f extracellula r signals . Annu Re v Bioche m 68:821-861. Spear N , Esteve z AG , Johnso n GV , Bredese n DE , Thompson JA , Beckman J S (1998 ) Enhancemen t of peroxynitrite-induced apoptosi s i n PC 12 cells by fibroblast growt h factor- 1 an d nerv e growt h facto r requires p21Ras activation and i s suppressed b y bcl2. Arch Biochem Biophy s 356:41-45. Spengler D , Waeber C , Pantalon ! C, Holsboer F , Bockaert J , Seebur g PH , Journo t L (1993 ) Differentia l signal transductio n b y fiv e splic e variant s o f th e PACAP receptor. Nature 365:170-175 . Spreafico R , Frassoni C, Arcelli P, Selvaggio M, De Bias i S (1995 ) I n sit u labeling of apoptotic cel l deat h i n the cerebra l corte x and thalamu s o f rats during development. J Comp Neurol 363:281-295 . Stratton K , How e C , Battagli a F (1996 ) Fetal Alcohol Syndrome: Diagnosis, Epidemiology, Prevention and Treatment. Nat l Aca d Se i Press , Washingto n DC. Sulik KK, Cook CS, Webster W S (1988 ) Teratogens and craniofacial malformations : relationship s t o cel l death. Developmen t 103(Suppl):213-231 . Tabakoff B , Hoffma n P L (1998 ) Adenyly l cyclases an d alcohol. Ad v Secon d Messenge r Phosphoprotei n Res 32:173-193. Tabuchi A, Koizumi M, Nakatsubo J, Yaguchi T, Tsuda M (2001 ) Involvement o f endogenous PACA P ex pression in the activity-dependen t survival of mouse cerebellar granul e cells . Neurosc i Re s 39:85-93. Thomas JD , Wasserma n EA , Wes t JR , Goodlet t C R (1996) Behavioral deficits induced b y bingelike ex posure t o alcoho l i n neonata l rats : importanc e o f developmental timin g an d numbe r o f episodes . Dev Psychobiol 29:433-452. Tojima T , Kobayash i S , Ito E (2003 ) Dua l rol e of cyclic AMP-dependent protei n kinas e i n neuritogenesi s and synaptogenesis during neuronal differentiation . J Neurosci Res 74:829-837. Vallès S , Lind o L , Montoli u C , Renau-Piquera s JR , Guerri C (1994 ) Prenata l exposur e t o ethano l in duces change s i n the nerv e growth facto r and it s receptor i n proliferating astrocytes in primary culture. Brain Res 656:281-286.
266 ETHANOL-AFFECTE D DEVELOPMENT Vaudry D, Gonzale z BJ , Basili c M , Anoua r Y, Foumier A, Vaudr y H (1998 ) Pituitar y adenylat e cyclase activating polypeptid e stimulate s bot h c-fo s gen e expression an d cel l surviva l i n ra t cerebella r gran ule neuron s throug h activatio n o f th e protei n ki nase A pathway. Neuroscience 84:801-812. Vaudry D , Rousselle C, Basili c M , Falluel-More l A, Pamantung TF , Fontain e M , Foumie r A , Vaudry H , Gonzalez B J (2002 ) Pituitar y adenylat e cyclase activating polypeptid e protect s ra t cerebella r gran ule neuron s agains t ethanol-induce d apoptoti c cel l death. Pro c Natl Acad US A 99:6398-6403. Villalba M, Bockaert J, Journot L (1997) Pituitary adenylate eyclase-activating polypeptide (PACAP-38) protects cerebella r granul e neuron s fro m apoptosi s by activating th e mitogen-activate d protei n kinas e (MAP kinase) pathway. J Neurosci 17:83-90 . Vogel M W (2002 ) Cell death , Bcl-2 , Bax , and th e cere bellum. Cerebellu m 1:277-287 . Walton MR , Draguno w I (2000) Is CREB a key to neu ronal survival? Trends Neurosc i 23:48-53. Wegelius K , Korpi E R (1995 ) Ethano l inhibit s NMDA induced toxicit y and trophis m i n culture d cerebel lar granule cells. Acta Physiol Scand 154:25—34 . West JR, Chen WJ, Pantazis NJ ( 1994) Fetal alcoho l syndrome: th e vulnerabilit y of th e developin g brai n and possibl e mechanism s o f damage. Meta b Brain Dis 9:291-322. West JR , Goodlett CR , Bonthiu s DJ , Hamr e KM , Mar cussen B L (1990) Cell populatio n depletio n associ ated wit h feta l alcoho l brai n damage : mechanism s of BAC-dependen t cell loss . Alcohol Cli n Ex p Re s 14:813-818. West JR , Goodlett CR , Bonthiu s DJ , Pierc e D R (1989 ) Manipulating pea k blood alcoho l concentration s i n
neonatal rats : revie w o f a n anima l mode l fo r alcohol-related developmenta l effects . Neurotoxi cology 10:347-365 . Wood KA , Dipasquale B, Youle RJ (1993) In situ labeling of granul e cell s fo r apoptosis-associate d DN A frag mentation reveal s differen t mechanism s o f cell los s in developing cerebellum. Neuro n 11:621—632 . Wu Y , Tewari M , Cu i S , Rubi n R (1996 ) Activatio n of the insulin-lik e growth factor- I recepto r inhibit s tu mor necrosi s factor-induced cell death . J Cell Physiol 168:499-509 . Yan GM , Li n SZ , Irwi n RP , Paul S M (1995 ) Activation of G protein s bidirectionall y affect s apoptosi s o f cultured cerebella r granule neurons . J Neurochem 65:2425-2431. Yan GM , N i B , Weller M , Woo d KA , Paul S M (1994 ) Depolarization o r glutamat e recepto r activatio n blocks apoptoti c cel l deat h o f culture d cerebella r granule neurons. Brai n Res 656:43-51. Zafra F , Castre n E , Thoene n H , Lindhol m D (1991 ) Interplay betwee n glutamat e an d gamma aminobutyric acid transmitte r system s i n the physi ological regulatio n o f brain-derive d neurotrophi c factor an d nerv e growt h facto r synthesi s i n hip pocampal neurons . Pro c Nat l Aca d Se i US A 88 : 10037-10041. Zafra F , Hengerer B , Leibrock J , Thoenen H , Lindhol m D (1990 ) Activit y dependent regulatio n o f BDNF and NG F mRNA s i n the ra t hippocampus i s mediated b y non-NMDA glutamate receptors . EMB O J 9:3545-3550. Zhang FX , Rubin R, Rooney TA (1998) Ethanol induce s apoptosis i n cerebella r granul e neuron s b y inhibit ing insulin-lik e growth facto r 1 signaling. J Neurochem 71:196-204.
16
Intracellular Events in Ethanol-Induced Neuronal Death Sandra M. Mooney Michael W . Miller George I . Henderso n
Developmental exposur e to ethanol ca n significantly reduce th e numbe r o f neurons i n specific areas of the brain. This may result fro m a decrease i n the additive processes o f cell generatio n an d migratio n (Chapters 11, 12 , and 13) and/o r a n increas e in th e subtractiv e process o f cel l deat h (se e Chapte r 15) . The presen t Chapter explore s the effect s o f ethanol o n intracellular pathways involved in neuronal death . Before embarkin g on a description o f the various pathways and th e effect s o f ethanol o n them , it is important t o acknowledge caveat s tha t ma y affect inter pretation o f the relevan t data . Exposur e t o ethano l alters expressio n and/o r activatio n o f man y protein s involved i n apoptosis . Evidenc e show s tha t ethano l can trigger intrinsic and extrinsi c apoptotic pathways. For example, ethanol-induced cel l deat h i n viv o ca n be mediate d b y Be l proteins , i.e. , th e intrinsi c pathway (Moone y and Miller , 2001 ; Young et al, 2003). Studies wit h organotypi c cultures , b y contrast , show that Fa s receptor expressio n ca n als o b e affecte d b y ethanol (e.g. , Cheema e t al., 2000 ; de l a Monte an d
Wands, 2002) , thu s implicatin g th e extrinsi c path way. Par t o f th e resolutio n o f thi s riddl e i s tha t ethanol ma y trigge r deat h throug h bot h pathways . The relevan t research is thus based on a variety of (in vivo an d i n vitro ) model s tha t encompas s multipl e variables, such a s the pea k concentration o f ethanol , the duratio n of the exposure , the typ e of cell or tissue being examined, and the time afte r exposur e that th e cells o r tissue s wer e examined . Althoug h thes e different model s ma y provid e complementar y ap proaches, the y ma y als o generat e nonphysiological , model-dependent responses . Thus , i t i s challengin g to reconstruc t the mechanism s of ethanol-induce d apoptosis. When reviewin g th e literatur e o n th e effect s o f ethanol o n neurona l death , i t mus t b e kep t i n min d that developmenta l exposur e t o ethano l interfere s with othe r developmenta l events , notabl y cel l prolif eration an d migratio n (se e Chapter s 11 , 12 , and 13) . Without includin g th e effect s o f ethano l o n thes e early ontogenetic events the data ma y be confounde d
267
268 ETHANOL-AFFECTE D DEVELOPMENT and misinterpretation s ma y result . Fo r example , longitudinal studies of the effect s o f ethanol on neural cell number in vitro (Jacobs and Miller , 2001; Miller, 2003) o r i n viv o (Miller , 1999 ) documen t a signifi cant reductio n i n cel l number . Two-third s o f thi s change i s due t o a depression in cell proliferation ; the remaining thir d result s fro m ethanol-induce d cel l death. Th e consequen t lesso n mus t be heede d b y alcohol investigator s examinin g cel l number : reduc tions i n cel l numbe r ar e no t necessaril y due t o cel l death.
CELL DEAT H PATHWAYS
The effect s o f ethano l o n thre e pathway s of neuronal death ar e discusse d below : (1 ) th e intrinsi c caspase dependent pathway , (2) the extrinsic caspase-dependen t pathway, an d (3 ) th e caspase-independen t pathwa y (Fig. 16-1) . These pathway s are describe d i n greate r detail i n Chapte r 6 , bu t a brie f outlin e i s included below. The intrinsi c pathwa y i s mitochondriall y medi ated, typically in response to an apoptotic signal such as DN A damag e o r reactiv e oxyge n specie s (ROS) . An initia l even t i s releas e o f proapoptoti c protein s from th e niitochondria l intermembran e space . Per meabilization o f the mitochondrial oute r membran e appears t o be mediate d b y Bcl-2 famil y protein s an d may includ e direc t bindin g o f p5 3 t o on e o r mor e anti-apoptotic proteins , suc h a s Bcl-X L o r Bax . Up regulation of Bax may allow insertion of Bax-Bax ho modimers into the mitochondria l membrane, which alters membrane permeabilit y and allows intermembrane substance s t o escape int o the cytoplasm . On e such substance , Cytochrom e C , associate s wit h apoptotic proteas e activatin g facto r 1 and caspase- 9 in th e presenc e o f adenosin e triphosphat e (ATP ) to for m a n apoptosome . Thi s activate s caspase-9 , which i n tur n activate s caspase-3. Activ e caspase- 3 inactivates poly-adenosin e diphosphat e ribos e poly merase (PARP ) 1 , thus repressing DNA repai r mechanisms. I n combinatio n wit h activatio n o f enzymes such a s DN A fragmentatio n factor 40 , th e resul t is DNase-mediated fragmentatio n o f DN A an d cel l death. The extrinsi c pathwa y is activated b y binding of a ligand t o a cel l surfac e receptor . On e exampl e i s the bindin g o f Fa s ligand (FasL ) to it s recepto r Fas . This bindin g cause s recepto r oligomerization , an d
FIGURE 16- 1 Schemati c of three pathway s leading to cell death . Thre e pathway s o f cel l death , outlinin g the flow of information fro m externa l effects t o nuclear response, are depicted : intrinsi c and extrinsi c caspasedependent pathway s an d a caspase-independen t path way. A subse t o f th e molecule s involve d i n thes e pathways is shown; a mor e comprehensiv e figur e de tailing the pathways is shown i n Figure 6- 1 i n Chapter 6 . Factor s know n t o b e affecte d b y ethano l ar e identified. Smal l arrow s sho w th e effec t o f develop mental exposur e t o ethano l o n eac h factor . Th e blunted lin e signifie s a n inhibitor y effect. AIF , apopto sis inducin g factor ; PARP , poly-adenosin e diphos phate ribose polymerase; ROS, reactive oxygen species. See text for details.
recruitment o f th e Fas-associate d deat h domai n (FADD) and procaspase s 8 and 1 0 (Benn and Woolf, 2004). Th e FADD-caspase-8/1 0 comple x form s th e death-inducing signalin g comple x tha t cleave s an d activates caspase-3 . As with the intrinsi c pathway, active caspase-3 inactivates PAR P and allow s DNA frag mentation. I n addition , activ e caspase- 8 cleave s th e Bel family protein, Bid. Truncated Bi d translocates to the mitochondri a wher e i t ca n activat e the intrinsi c pathway b y promotin g insertio n of Bax-Ba x homod imers into the mitochondrial membrane. Like th e intrinsi c pathway , the caspase-indepen dent pathwa y is mitochondria-dependent . Followin g release o f apoptosi s inducin g facto r (AIF ) fro m th e mitochondrial intermembran e space , it can eithe r directly up-regulate DNase activity or cleave and inacti vate PARP, thus repressing DNA repair and promotin g cell degeneration.
INTRACELLULAR EVENT S I N ETHANOL-INDUCE D NEURONAL DEATH 26 9 EFFECT O F ETHANOL ON APOPTOSIS
Intrinsic Pathway s Bel Family Proteins Exposure t o ethano l alter s th e i n viv o expressio n o f members o f the Be l protein family . This is apparent i n changes of the mRNAs and the proteins. Changes ma y be rapid , as in the cas e of the mRN A (Moor e et al. , 1999; Inoii e et al, 2002), or occur later , as detected i n protein expressio n (Mooney an d Miller , 2001) . Corti cal expressio n of Bcl-2 , a prosurviva l membe r o f th e family, i s lowe r i n th e cortice s o f rat s expose d t o ethanol prenatally , most notabl y i n the perio d aroun d postnatal day (P) 6. This finding is particularly interesting i n ligh t of the lac k of change i n th e expressio n of bax in cerebral cortex , the ne t result being a reductio n in th e rati o of Bcl-2 to Ba x on gestationa l day (G) 16 , P6, an d P12 . Thes e times , prenata l an d postnata l week, coincid e with th e period s o f both naturall y occurring and ethanol-induced cell death i n the prolifer ative zone s an d i n th e immatur e corte x (Küh n an d Miller, 1998 ; se e Chapter 5) . It is noteworthy that an other immunoblottin g study of the cortice s of rats prenatally exposed to ethanol showed an increase in Bcl-2 expression on PI an d n o change betwee n P 7 and P3 5 (Climent e t al. , 2002) . Th e difference s i n reporte d Bcl-2 expressio n i n th e tw o studie s ma y reflec t th e feeding paradigms . Although fetuse s were expose d t o ethanol i n bot h studies , i n the stud y by Climent and colleagues ethanol exposur e continued int o the postnatal period. The chang e i n corte x contrast s wit h th e lac k o f a change in the relative amounts o f bcl-2 and bax in the thalamus. The thalamu s i s a structure that exhibit s no neuronal deat h followin g prenata l exposur e t o ethanol (Moone y an d Miller, 1999 ; Liv y et al, 2001). Thus, these dat a indicat e tha t th e chang e i n the bal ance o f bcl- 2 an d ba x i s a ke y determinan t o f neu ronal death an d survival. The expressio n o f Be l protein s i s altere d i n th e murine cerebellu m followin g earl y postnatal exposure to ethanol (Heato n et al, 2002a, 2003a). Expression of the anti-apoptoti c protei n Bcl- 2 decrease s an d o f proapoptotic Ba x an d Bcl-x s increase s i n concomitan t temporal manner s tha t correlat e wit h th e perio d o f Purkinje cel l vulnerability (Heaton e t al., 2003a). That is, during the perio d of vulnerability, on P4, expression of Ba x and Bcl-x s increase s within 2 hr o f exposure to
ethanol. I n contrast, ethanol exposur e on P7, a time of relative invulnerability , causes a n earl y up-regulatio n of th e survival-promotin g proteins, Bcl- 2 an d Bcl-xl , and a down-regulation o f the pro-apoptotic Bcl-xs. The change s i n protei n expressio n apparentl y follow earlie r change s i n transcrip t expression. Fo r ex ample, exposur e t o ethano l induce s a n immediat e change i n th e expressio n o f bd famil y transcript s i n the cerebra l corte x an d cerebellu m (Moor e e t al. , 1999; Inou e et al., 2002). Ethanol up-regulate s the expression o f pro-apoptotic genes , ba x and bcl-xs, in th e cerebellum. Interestingly , however, the up-regulatio n of hax i n th e cerebellu m occur s in th e absenc e o f an effect o n cel l survival . This finding concurs with data from a strain of bax knockout animal s i n which ther e was n o increas e i n cell deat h followin g exposur e to ethano l (Youn g e t al. , 2003) . Overexpressio n o f bcl-2, by contrast , confer s invulnerabilit y t o ethanol induced deat h o f cerebella r Purkinj e cell s (Heato n etal, 1999) . Cytochrome C Release of cytochrome C fro m mitochondri a i s a central even t i n th e intrinsi c apoptoti c pathwa y (Polste r and Fiskum , 2004). This release, combined wit h that of othe r proapoptoti c proteins , elicit s activatio n o f initiator caspase s tha t ultimatel y produce s effecto r caspase activation . Thus , mitochondria l releas e o f Cytochrome C i s a n early , feed-forwar d ste p i n th e apoptotic process , an d combined wit h subsequent ac tivation o f effecto r caspases , i s compellin g evidenc e that apoptotic deat h i s a work in progress. Several laboratorie s hav e use d Cytochrom e C re lease to address ethanol-mediated apoptotic brai n cell death followin g i n viv o ethano l exposure . Appropriately, thes e observation s have bee n linke d t o activation o f caspase-3 . Mitochondri a isolate d fro m feta l brains, that have been expose d to ethanol i n utero (on G17 an d G18) , exhibi t enhanced releas e of both cy tochrome C an d AI F (Ramachandra n e t al. , 2001) . This resul t parallel s th e activatio n o f caspase- 3 i n whole feta l brai n homogenates . Simila r response s have been reporte d followin g ethanol treatmen t o f 4to 10-day-ol d ra t pup s (Ligh t e t al. , 2002 ; Carlon i et al, 2004) or infant mic e (Youn g et al, 2003). The ethanol-induce d i n viv o releas e o f Cyto chrome C ha s bee n replicate d i n vitro. Exposure o f cultured feta l ra t cortical neurons to ethanol generates enhanced releas e o f Cytochrom e C withi n 2 hr o f
270 ETHANOL-AFFECTE D DEVELOPMENT exposure (Ramachandra n e t al. , 2003) . Thi s i s followed b y activation o f caspase-3 withi n 1 2 hr o f treatment. Thus, neurons exposed to ethanol eithe r i n vivo or i n cultur e ca n elici t mitochondria l releas e o f Cytochrome C in some, as-yet, undetermined manner . Caspases The researc h community has focused on the effects of developmental exposur e t o ethano l o n tw o caspases : caspase-3 and caspase-8 . These are of interest because (a) the y ar e fro m tw o differen t molecula r subgroup s and (b ) they ar e involve d i n tw o pathways; caspase- 3 is associated wit h the intrinsi c apoptoti c pathwa y an d caspase-8 with the extrinsi c pathway (Fig. 16-1) . There i s considerable i n vitro (Sait o e t al. , 1999 ; Jacobs an d Mille r 2001 ; Jan g e t al , 2001 ; Sohm a et al, 2002; Vaudry et al, 2002; Ramachandran e t al., 2003) an d i n vivo (Moone y an d Miller , 2001 ; Ra machandran e t al, 2001 ; Climent e t al, 2002; Ligh t et al., 2002; Olney et al, 2002a, 2002b; Mitchell an d Snyder-Kelly, 2003 ; Ragjopa l e t al. , 2003 ; Youn g et al., 2003; Carloni e t al, 2004) evidenc e tha t exposure t o ethano l increase s the activatio n o f caspase-3. This activation ma y be model-dependent . Fo r exam ple, Sohm a an d colleague s (2002 ) repor t tha t al though bot h C 6 ra t gliom a cell s an d A54 9 huma n adenocarcinoma cell s show evidence of apoptosis following exposure to ethanol th e C6 cells increas e thei r caspase activity, whereas the A549 cells do not . Ethanol cause s apoptosi s (a t leas t i n vitro ) whe n trophic factor s ar e i n limite d suppl y (Oberdoerste r and Rabin , 1999) . Cerebellar granul e neuron s grow n in serum-containin g mediu m supplemente d wit h high concentration s o f potassium chlorid e d o not un dergo apoptosi s i n respons e t o ethanol . Remova l o f the seru m result s i n increase d activatio n o f caspase- 3 and apoptosis i n response t o ethanol . To date, ther e ar e few data regardin g the effec t o f ethanol o n othe r caspases . One i n vitr o stud y shows that ethanol-induced deat h of cerebellar granul e neu rons i s accompanied b y a n increas e i n activatio n o f initiator caspase s 2, 8, and 9, and effecto r caspase s 3 and 6 (Vaudry et al, 2002). This deat h i s abrogated by the additio n o f pituitary adenylate cyclas e activat ing polypeptid e (PACAP ; se e Chapte r 15) . Additio n of exogenou s PACA P ameliorate s th e activatio n o f caspases 3 an d 6 , bu t no t caspase s 2 , 8 , o r 9 . Thi s implies that activation of an initiato r caspase does no t oblige a cell to die.
Extrinsic Pathway s Although littl e i s known about th e effec t o f develop mental exposur e to ethanol o n tumor necrosis facto r a or Apo2/TRAIL systems i n the brain , th e Fas L syste m has been studie d i n viv o and i n vitro. Fas and Fas L are transiently expresse d i n developin g corte x durin g th e time o f naturally occurrin g neurona l deat h (Cheem a et al., 2000). Exposure t o ethanol induce s Fa s mRNA expression in vitro, but onl y at subapoptotic concentra tions an d no t a t concentrations tha t induc e apoptosis . Similarly, there i s an increas e i n Fa s receptor an d lig and i n cultures o f cerebellar granul e cell s taken i n th e postnatal perio d fro m rat s expose d t o ethano l prena tally (de la Monte an d Wands, 2002) . Other evidence showing tha t ethano l activate s extrinsi c pathway s i s that th e ethanol-induce d deat h o f cultured cerebella r granule cells is accompanied b y an increase in the ac tivity of caspase-8 (Vaudr y et al., 2002). Caspase-Independent Pathway In a numbe r o f neurona l cel l deat h paradigm s i n which caspase s ar e normall y activated , inhibitio n o f caspase activity delays but doe s not prevent cell deat h from occurrin g (Mille r e t al. , 1997 ; Stefani s e t al. , 1999; D'Mell o e t al, 2000 ; Keramari s e t al, 2000 ; Selznick e t al., 2000) . Suc h dat a impl y that prenata l exposure to ethanol affect s caspase-independen t pathways, bu t fe w dat a directl y addres s thi s possibility . Ethanol exposur e doe s induc e th e releas e o f Cy tochrome C and AIF from mitochondri a (Ramachan dran e t al. , 2001) . Consequently , AI F ca n initiat e a feedback loo p that furthe r induce s Cytochrome C release fro m th e mitochondri a (Porter , 1999) . Thus , ethanol-induced initiatio n o f caspase-independen t death ca n be a self-perpetuating phenomenon .
EFFECTORS OF CEL L DEAT H
p53-Related Factors p53 i s a critica l fulcru m definin g th e fat e o f cells : whether the y di e o r surviv e (Mille r e t al. , 2000 ; Morrison e t al, 2002). The teeter-totter i s pushed on e way or the othe r b y the phosphorylatio n of serines on p53, and particularl y by the position s of the phospho rylated serines . Although a n effec t o f ethanol o n thi s process ha s been surmise d (Küh n an d Miller , 1998) ,
INTRACELLULAR EVENT S IN ETHANOL-INDUCE D NEURONA L DEAT H 27 1 direct data ar e lacking. Nonetheless, i t is known that ethanol ca n affec t kinas e activit y i n othe r system s (e.g., Resnicoff et al, 1994 ; Lu o and Miller, 1999) . In additio n to potential effect s o f ethanol on posttranslational modificatio n of p53, the effectivenes s o f p53 can be affecte d b y an ethanol-induced change i n the amoun t o f p53 available. Indeed, p5 3 expression in vivo is affected b y prenatal exposure to ethanol i n a spatiotemporal manne r (Küh n an d Miller , 1998) . Ethanol increase s p53 expression in the fetu s an d re duces it in the first and second postnatal weeks . Interestingly, followin g chroni c gestationa l exposur e t o ethanol, expression of p53 is increased in the ra t cerebellum durin g th e earl y postnata l perio d (d e l a Monte an d Wands , 2002) . The increas e i n p5 3 oc curs concurren t with increase s in Fa s ligand an d re ceptor, implyin g that the increas e i n p53 is related to cell death. Although many ethanol-susceptible activities occu r coincidentall y i n th e developin g cere bellum, tw o are wort h noting : th e reductio n i n th e population o f proliferatin g granul e cell s (Bauer Moffett an d Altman, 1977; Kornguth et al., 1979 ) and the death o f Purkinje neuron s (e.g., Light et al, 2002; see Chapter 15) . Thus, the ethanol-induce d increas e in cel l mortalit y among th e proliferatin g neurona l precursors i n th e corte x and cerebellu m ma y be signaled by an increase in p53 expression. A phosphorylated form o f p53 may be recognize d by th e antibod y ALZ-5 0 (Küh n an d Miller , 1998) . ALZ-50 immunoreactivit y i s associate d wit h dyin g central nervou s syste m (CNS ) neuron s (Al-Ghou l and Miller , 1989 ; Valverd e et al., 1990 ; Mille r e t al, 1991). Interestingly, the expressio n profile o f ALZ-50 in the developin g corte x parallel s that of p53 expression (Kühn and Miller , 1998) . Moreover, prenatal exposure t o ethano l affect s bot h protein s similarly . I t reduces the amoun t o f peak ALZ-50 and p5 3 expression an d induce s this pea k to occur earlier . The im plication i s that ethano l alter s the timin g of neuronal death i n the developing cortex. Oxidative Stress Basic Findings Over the last four decades, studies have linked ethano l intake to oxidative stress (D i Luzio , 1963 ; Sha w et al., 1983). The earlies t reports connecting maternal drinking t o feta l oxidativ e damage wer e b y Dreost i (1987 ; Dreosti and Patrick, 1987), who reported that maternal
ethanol intak e increased malondialdehyde (MDA ) in fetal ra t live r mitochondria . Thi s increas e ha s als o been describe d i n culture d feta l hepatocyte s (Dev i et al. , 1994 , 1996) . Likewise , ethano l ca n increas e both MD A an d conjugate d diene s i n feta l brain . Chronic prenata l ethano l exposur e ca n reduc e glu tathione (GSH ) conten t o f feta l brai n (Reye s e t al, 1993) an d ethano l produce s fre e radica l damag e i n neural cres t cell s (Che n an d Sulik , 1996) . Thus , ethanol-mediated oxidativ e damag e t o feta l cell s occurs in vivo and this can be reproduced i n culture d fetal cells . These data sets laid the conceptual groundwork fo r numerou s subsequen t report s o n ethanol related oxidativ e damag e t o feta l cells . The y ar e reviewed below in the context of mechanisms underlying ethanol-mediated apoptotic death of neurons. Ethanol induces oxidative stress and activates apoptotic pathways in the developin g brain and i n cultured neurons (d e l a Mont e e t al, 2001 ; d e l a Mont e an d Wands, 2001 ; Ramachandra n e t al. , 2001 , 2003 ; Heaton et al, 2002b, 2003a, 2003b, 2003e). The parallel observation s of these tw o ethanol-related phenom ena are correlative and do not establish oxidative stress as a causative factor for neuronal death. Extensive documentation o f suc h concomitan t events , combine d with the effectivenes s o f anti-oxidant interventions and time lines illustrating that onse t of oxidative stress ca n precede apoptosis , i s convincing evidence tha t oxidative damage is one mechanism underlyin g the ethanol mediated loss of neurons in the developing brain. In utero exposure to ethanol o n G17 and G18 can elicit bot h oxidativ e damage t o brai n mitochondria , such a s 4-hydroxynonenal (HNE ) formation , an d in duction of markers of mitochondria-mediated apopto sis. Th e latte r include s change s o f mitochondria l permeability transition , activation o f caspase-3 , an d mitochondrial releas e of Cytochrome C and AIE (Ramachandran e t al. , 2001) . A mechanism underlying the ethanol-mediate d leakag e o f pro-apoptoti c pro teins from mitochondri a i s activation of mitochondri ally generated HNE . Mitochondri a isolate d from th e brains o f fetuse s treate d wit h HN E mimi c th e re sponse observe d i n th e brain s o f rodent s expose d t o ethanol. Th e abilit y o f HN E t o elici t apoptosi s i n neurons make s it an attractiv e mechanism, however, a clear causative link remains to be established . Ethanol-related increase s in RO S hav e been examined in young rats acutely exposed to ethanol presented as a binge exposure . Increased amount s o f ROS wer e detected in the cortices of these rats on P7 and i n their
272 ETHANOL-AFFECTE D DEVELOPMENT cerebella o n P4 , P7 , o r P1 4 (Heato n e t al , 2002b , 2003c). Thi s ethano l exposur e als o increase d cortica l Bax, pAkt, and pJN K expression. Taken together , thes e data strongl y suppor t th e occurrenc e o f enhance d apoptotic deat h concomitan t wit h oxidativ e stress . Cerebella o f 2-day-old rat s exposed to ethanol i n utero are hypoplastic and exhibit increased amounts ofapop tosis, beyond that occurring naturally (de la Monte and Wands, 2002) . I n culture d granul e neuron s isolate d from thes e cerebella , th e previou s ethano l exposur e generated increase d oxidativ e stress (dihydrorosarnin e fluorescence) an d apoptosi s (evidence d by phosphorylation of GSK-3ß, Akt, and Bad) , along with inhibitio n of insulin-stimulate d viabilit y an d pro-apoptoti c gen e expression (e.g. , increase d ba d expression) . Thus, ges tational ethano l exposur e impair s neurona l surviva l systems and insuli n signaling mechanisms durin g th e early postnatal period . These ethano l effect s appea r t o be mediated b y oxidative stress. The abov e reports document tha t ethano l ca n con comitantly elicit oxidative stress and enhance apoptosi s in the developin g brain . Using in vitro models, several laboratories have shown that oxidative stress can pla y a direct rol e in ethanol-mediated neuro n death . On e ap proach probe d th e causalit y of oxidative stress by determining i f thi s phenomeno n precede d o r followe d evidence o f apoptosis and/o r decrease d neuro n viabil ity (Ramachandra n e t al, 2003) . In culture d feta l ra t cortical neurons, confoca l microscopy of live cells preloaded wit h dichlorofluorescei n diacetat e illustrate d that ethano l ca n stimulat e RO S productio n withi n minutes o f exposure. Thi s initia l RO S burs t persisted for 2 hr an d wa s followed b y increased HN E i n neu ron mitochondria (withi n 2 hr; Fig. 16-2) . By 2 hr, an
FIGURE 16- 2 Ethanol-induce d oxidativ e stress originating in mitochondria. Feta l cor tical neurons , grow n on coverslips , were exposed t o ethano l (4. 0 mg/ml) fo r 2 hr a t 37°C. Afte r ! 3 /4hr, hydroethidiu m (Het ) (400 nM) , whic h detect s generatio n o f Superoxide anio n radicals , an d 5 0 nm Mi totracker Gree n (MG) , whic h label s mito chondria, wer e added t o the medium . Liv e
cell image s were acquired through confoca l microscopy wit h a n argo n lase r t o excit e MG an d an He-Ne543 laser to excite Het. A. This imag e identifie s enhance d generatio n of Superoxide anion radical s in discrete areas in th e cel l bod y an d i n th e processes . Th e Het fluorochrom e freel y crosse s th e plasm a membrane, i t is very specific for the superox ide anio n radical , and , a t nanomola r con centrations, i t preferentiall y localize s i n mitochondria. B . Mitochondri a ar e distrib uted i n th e perinuclea r regio n a s well a s i n the processes . C . Th e exten t o f the neurite s can b e appreciate d i n a differentia l interfer ence contrast imag e o f the neuron .
INTRACELLULAR EVENT S IN ETHANOL-INDUCE D NEURONA L DEATH 27 3 increase in annexi n V binding i s seen, along with increased Cytochrom e C release . Thes e event s wer e followed b y caspase-3 activation. This time course of ethanol responses , wit h increase d RO S conten t oc curring a s a n upstrea m event , suggest s causality . More convincin g evidenc e i s th e mitigatio n o f ethanol-mediated apoptosis by prevention o f oxidative stress vi a normalizatio n o f neuro n glutathion e con tent (Ramachandra n e t al. , 2003 ) and b y other antioxidant interventions (see Anti-oxident Interventions, below). Potential Role for Mitotoxic Effects of Ethanol The specifi c mechanism(s ) underlyin g ethanol induced apoptosi s and oxidativ e stress remains undetermined an d ar e likel y rnultifactoria l an d cel l type-dependent. One consisten t finding from numer ous laboratories , however , i s that ethano l i s a mito toxin, and mitochondrial damage may be an important player i n bot h th e enhance d productio n o f ROS an d apoptotic deat h associate d with ethanol exposur e (Hirano et al., 1992 ; Kukielka et al., 1994 ; Garcia-Rui z et al., 1995 ; Dev i e t al. , 1996 ; Che n e t al. , 1998 , 2002 ; Goodlett and Horn, 2001; Mooney and Miller, 2001 ; Bailey and Cunningham , 2002). With respec t t o th e fetus , there i s abundant evi dence tha t ethano l negativel y alter s mitochondria l function i n liver and brain . Among th e earlies t fetal related studie s ar e report s that , i n culture d feta l ra t hepatocytes, th e ethanol-relate d increase s i n RO S (H2O2, Superoxid e anio n radical ) an d membran e lipid peroxidatio n ar e parallele d b y morphologica l and biochemica l mitochondria l damag e suc h a s reduced comple x I an d I V activitie s an d decrease d synthesis of ATP (Devi et al, 1993, 1994) . Sinc e inhibition o f respirator y chai n component s stimulate s production o f ROS , i t ha s bee n propose d tha t thi s could be the origi n of the increase d RO S levels. More recently, this phenomenon ha s been reporte d i n feta l brain an d i n culture d cerebellar and cortica l neurons exposed to ethanol. Followin g an i n utero binge expo sure to ethanol (G1 7 and G18), mitochondria isolated from feta l ra t brain hav e elevate d level s o f the highl y pro-apoptotic produc t of lipid peroxidation, HNE (Ramachandran e t al., 2001). This i s accompanied by increased mitochondria l permeabilit y transitio n an d release o f pro-apoptotic proteins . Likewise, cerebellar neurons isolate d fro m ethanol-expose d 2-day-ol d ra t
pups exhibit signs of oxidative stress and activate pathways o f apoptosi s alon g wit h altere d mitochondri a morphology and decreased cel l number (d e la Monte and Wands , 2002) . Furthermore , i n vitro exposure of insulin-sensitive immatur e huma n PNET 2 neurona l cells t o ethano l produce s a variet y o f mitotoxi c re sponses, includin g a strikin g reductio n o f comple x IV/Cytochrome C oxidas e (CytOx ) expression . Although n o measures of CytOx activitie s have been reported, inhibitio n of this complex ha s been shown to stimulate formation of ROS (Shigenag a et al., 1994) . Parallel to impaired mitochondrial function is evidence of apoptosis. Similarly , following 24 hr of exposure t o ethanol , ra t postmitoti c cerebella r granular neurons sho w an inhibitio n o f multiple measure s of insulin-stimulated mitochondria l function , sign s o f apoptosis, an d generatio n o f H 2O2 (d e l a Mont e et al, 2001). Thus, disruption o f mitochondrial func tion i s a central even t in th e apoptoti c deat h o f cells, and oxidativ e stress, which i s often a product of mitochondrial damage , i s a prove n initiator of apoptosis. There i s compelling evidenc e tha t th e mitotoxi c effects of ethanol play a role in ethanol-mediated apop totic death o f neurons in the developing brain. Anti-oxidant Interventions Many anti-oxidan t intervention s aimed a t ameliorat ing th e effect s o f ethano l o n th e developin g brai n have use d vitami n E (oc-tocopherol) , a lipid-solubl e anti-oxidant that preferentiall y concentrates i n lipoid compartments o f the cell , wher e i t can bloc k mem brane lipid peroxidation . I t is present i n mitochondr ial membrane s (approximatel y 1 molecule pe r 210 0 molecules o f phospholipid) an d i s a highl y effectiv e peroxyl radica l tra p wit h a one-electro n oxidatio n product tha t ca n underg o several reactions that con sume (bu t ca n als o generate ) radical s (Lieble r an d Burr 1992) . As such, i t is a late-stage defense against the formatio n o f toxi c lipi d peroxidatio n product s such as HNE. This capability, combined wit h its relative low toxicity, makes its use an alluring anti-oxidant intervention strategy. Ethanol-induced deat h o f culture d neonata l ra t hippocampal cell s can be mitigated by treatment wit h vitamin E o r ß-caroten e (Mitchel l e t al. , 1999a , 1999b). Ethano l activate s caspase-3 and increase s at least on e marke r o f apoptosi s (annexi n V binding) . Both vitami n E an d th e anti-oxidan t Pycnogeno l (a bioflavonoi d mixture ) bloc k thes e response s
274 ETHANOL-AFFECTE D DEVELOPMENT (Siler-Marsiglio e t al , 2004) . Likewise , vitami n E enhances th e surviva l o f ethanol-expose d culture d cerebellar granule cells. This surviva l occurs concomitantly wit h increase d amount s o f th e anti-apoptoti c proteins Bcl-2 , Bcl-x l an d activate d Ak t kinas e (Heaton e t al. , 2004) . Th e mechanism s underlyin g the protectiv e effects o f vitamin E remain to be estab lished, bu t i t is tempting t o propose tha t blockad e o f membrane (possibly mitochondrial) lipid oxidation is an importan t factor . The settin g i s complex an d vitamin E treatmen t ca n normaliz e cellula r GS H con tent as well as prevent an ethanol-related reductio n of neurotrophin secretio n (Heato n e t al., 2004). The former manipulatio n can , b y itself , bloc k th e ethanol mediated apoptosi s o f culture d cortica l neuron s (Ramachandran etal., 2003). The ultimat e clinica l valu e o f anti-oxidan t treat ment fo r the neurotoxi c effects o f ethanol i n th e de veloping brai n remain s t o be determined . A possible insight int o th e futur e o f suc h intervention s i s re flected b y a study in whic h behavioral alterations induced b y ethanol wer e at best only partially alleviated by vitami n E treatmen t (Marin o e t al. , 2004 ; Tra n et al. , 2005) . Th e pathogenesi s o f FA S behavioral deficits i s complex an d oxidativ e damage t o neuron s is likely only one underlyin g mechanism. The abov e reports, however , d o suppor t th e concept s tha t ethanol ca n induc e oxidativ e stress i n neuron s fro m the developin g brai n an d tha t thi s i s one mean s b y which apoptotic deat h i s induced.
Although beyon d th e scop e o f this chapter, i t also must be kept in mind tha t ethanol-induced cel l death may also occur by other mechanism s such a s necrosis (Obernier e t al, 2002) . Awareness of the diversit y of death mechanism s i s important whe n conceptualiz ing possibl e interventions . It i s nonetheless unrealis tic t o expec t tha t blockin g th e activit y o f a singl e protein ca n rescu e a cel l fro m death . Indeed , i t ha s been show n tha t blockin g one mechanis m o f deat h may alter the time line and pathway of cell death, but not th e outcom e (Mille r e t al. , 1997 ; Stefani s e t al. , 1999; D'Mell o e t al , 2000 ; Keramari s et al. , 2000 ; Selznick et al, 2000) . Progress i n establishin g a causal link between ox idative stress and cel l death has been made . Throug h documentation o f relevant tim e lines , th e upstrea m effectors o f ethanol-mediate d oxidativ e stress i n th e neuron ca n b e pinpointed an d opportunitie s create d for reversin g or preventing th e relate d apoptosi s with anti-oxidant treatments. The latte r venture is an espe cially excitin g researc h direction , a s i t ma y b e on e path t o an intervention tha t does not have an advers e impact o n norma l brai n development . A s laboratories narro w thei r focu s o n th e underlyin g mecha nisms o f ethanol-mediate d deat h o f neurons , i t i s hoped tha t mor e potentia l therapeuti c intervention s will evolve.
Abbreviations AIF apoptosi s inducin g factor
SUMMARY AND CONCLUSION S
Evidence i s abundant that exposure to ethanol i n vivo or in vitro ca n caus e neurona l deat h an d tha t i t does so vi a multipl e pathways : the caspase-dependen t in trinsic an d extrinsi c pathways, and th e caspase-inde pendent pathway . Th e integration , o r cross-talk , among thes e pathway s i s extensive . Nevertheless , there i s compelling evidenc e tha t eac h o f the thre e pathways i s targete d b y ethanol . Furthe r analyse s of the effect s o f ethanol migh t b e bes t focuse d o n ke y upstream players such as p53 and receptors that medi ate death-relate d signals , a s wel l a s PARP , a playe r presumed t o be commo n t o all three pathways . Th e factors that define the effect s o f ethanol ar e the devel opmental stat e o f the cell s an d th e concentratio n o f ethanol. Thes e issue s ar e addresse d i n th e previou s chapter.
ATP adenosin e triphosphate CNS centra l nervou s system CytOx cytochrome
C oxidase
FADD Fas-associate d death domain FasL Fa s ligand G gestationa l day GSH glutathion e HNE 4-hydroxynonena l MDA malondialdehyd e P postnata l day PACAP pituitar y adenylat e cyclas e activatin g polypeptide PARP poly-adenosin e diphosphat e ribos e poly merase ROS reactiv e oxygen specie s
INTRACELLULAR EVENTS IN ETHANOL-INDUCE D NEURONA L DEATH 27 5 ACKNOWLEDGMENTS Wor k on thi s chapte r wa s supported by the Nationa l Institute o f Alcohol Abuse and Alcoholism an d th e Departmen t o f Veterans Affairs . References Al-Ghoul WM, Mille r M W (1989 ) Transien t expressio n of Alz-50-immunoreactivity i n developin g ra t neo cortex: a marke r fo r naturall y occurrin g neurona l death? Brain Res 481:361-367. Bailey SM, Cunningham C C (2002 ) Contribution o f mitochondria t o oxidativ e stress associated wit h alco holic liver disease. Free Radie Biol Med 32:11-16 . Bauer-Moffett C , Altma n J (1977) Th e effec t o f ethano l chronically administere d t o preweanlin g rat s o n cerebellar development : a morphologica l study . Brain Res 119:249-268. Benn SC , Wool f C ) (2004 ) Adul t neuro n surviva l strategies—slamming on th e brakes . Nat Re v Neurosci 5:686-699. Carloni S , Mazzon i E , Balduin i W (2004 ) Caspase- 3 and calpai n activitie s afte r acut e an d repeate d ethanol administratio n durin g the ra t brain growth spurt. J Neurochem 89:197-203 . Cheema ZF , Wes t JR , Miranda R C (2000 ) Ethanol in duces Fas/Apo [apoptosis]-l mRNAand cell suicide in th e developin g cerebra l cortex . Alcoho l Cli n Exp Res 24:535-543 . Chen J , Schenke r S , Frost o TA , Henderson G I (1998 ) Inhibition o f Cytochrome C oxidas e activit y b y 4hydroxynonenal: rol e o f HN E adduc t formatio n with enzyme subunits. Biochim Biophys Acta 1380: 336-344. Chen J , Schenker S , Henderson G (2002 ) HNE degra dation b y mitochondrial glutathion e S-transferase is compromised b y short-term ethano l consumption . Alcohol Clin Exp Res 26:1252-1258 . Chen, SY , Sulik K K (1996) Fre e radical s an d ethanol induced cytotoxicit y i n neura l cres t cells . Alcoho l Clin Exp Res 20:1071-1076. Climent E , Pascua l M , Renau-Piquera s J , Guerr i C (2002) Ethanol exposur e enhances cel l death i n the developing cerebra l cortex : rol e o f brain-derive d neurotrophic facto r an d it s signalin g pathways . JNeurosci Res 68:213-22 5. de la Monte SM , Neely TR, Canno n J , Wands JR (2001) Ethanol impair s insulin-stimulate d mitochondria l function i n cerebella r granul e neurons . Cel l Mo l Life Se i 58:1950-1960 . de la Monte SM, Wands JR (2001) Mitochondrial DN A damage an d impaire d mitochondrial functio n contribute t o apoptosi s o f insulin-stimulate d ethanol exposed neurona l cells . Alcohol Cli n Ex p Re s 25: 898-906.
(2002) Chroni c gestationa l exposur e t o ethano l impairs insulin-stimulate d surviva l an d mitochon drial function in cerebella r neurons. Cell Mol Lif e Sei 59:882-893 . Devi BG , Henderso n GI , Frost o TA, Schenker S (1993) Effect o f ethanol o n rat fetal hepatocytes: studies on cell replication, lipi d peroxidation an d glutathione . Hepatology 18:648-659 . (1994) Effec t o f acut e ethano l exposur e o n cul tured feta l ra t hepatocytes: relation t o mitochondr ial function. Alcohol Clin Exp Res 18:1436-1442. Devi BG , Schenke r S , Mazlou m B , Henderso n G I (1996) Ethanol-induce d oxidativ e stres s an d enzy matic defense s in cultured feta l rat hepatocytes. Alcohol 16:1—6 . Di Luzi o N R (1963 ) Preventio n o f the acut e ethanol induced fatt y live r b y antioxidants . Physiologis t 6 : 169-173. D'Mello SR , Kua n CY , Flavel l RA , Raki c P (2000 ) Caspase-3 i s required fo r apoptosis-associated DN A fragmentation bu t no t for cell deat h in neurons de prived o f potassium. J Neurosci Re s 59:24-31. Dreosti I E (1987 ) Micronutrients, Superoxide and th e fetus. Neurotoxicology 8:445-450. Dreosti IE , Patric k E J (1987 ) Zinc , ethanol , an d lipi d peroxidation i n adult and feta l rats . Biol Trace Ele ment Res 14:179-191. Garcia-Ruiz C , Morale s A, Colell A, Ballesta A, Rodes J, Kaplowitz N , Fernandez-Chec a J C (1995 ) Feedin g S-adenosyl-L-methionine attenuate s bot h ethanol induced depletio n o f mitochondria l glutathion e and mitochondria l dysfunctio n i n periporta l an d perivenotis rat hepatocytes. Hepatology 21:207-214 . Goodlett CR, Hor n K H (2001 ) Mechanism s o f alcohol induced damag e t o the developin g nervou s system . Alcohol Re s Health 25:175-184 . Heaton MB , Madorsk y I, Paiva M, Maye r J (2002b ) In fluence o f ethano l o n neonata l cerebellu m o f BDNF gene-deleted animals: analyses of effects o n Purkinje cells , apoptosis-relate d proteins , an d en dogenous antioxidants . J Neurobiol 51:160-176 . Heaton MB , Madorsk y I , Paiv a M , Siler-Marsigli o KI . (2004) Vitamin E amelioration o f ethanol neurotoxi city involves modulation o f apoptosis-related protei n levels i n neonata l ra t cerebella r granul e cells . De v Brain Res 150:117-124 . Heaton MB , Moore DB , Paiva M, Gibb s T , Bernar d O (1999) Bcl- 2 overexpressio n protect s th e neonata l cerebellum fro m ethano l neurotoxicity . Brai n Re s 817:13-18. Heaton MB , Moor e DB , Paiv a M, Madorsk y I, Mayer J, Shaw G (2003a ) Th e rol e o f neurotrophic factors , apoptosis-related proteins, and endogenou s antioxi dants i n th e differentia l tempora l vulnerabilit y of
276 ETHANOL-AFFECTE D DEVELOPMEN T neonatal cerebellu m t o ethanol. Alcoho l Cli n Exp Res 27:657-669. Heaton MB , Paiv a M, Madorsk y I, Mayer J, Moore D B (2003b) Effect s o f ethanol o n neurotrophi c factors , apoptosis-related proteins, endogenous antioxidants, and reactiv e oxygen species in neonatal striatum: relationship to periods of vulnerability. Dev Brain Res 140:237-252. Heaton MB , Paiv a M , Madoesk y I , Sha w G (2003e ) Ethanol effect s o n neonatal ra t cortex: comparativ e analysis o f neurotrophi c factors , apoptosis-relate d proteins, an d oxidativ e processes during vulnerable and resistant periods. Dev Brain Res 145:249-262. Heaton MB , Paiv a M , Maye r J , Mille r R (2002a ) Ethanol-mediated generatio n o f reactiv e oxyge n species in developing rat cerebellum. Neurosci Lett 334:83-86. Hirano T , Kaplowit z N , Tsukamot o H , Kamimur a S , Fernandez-Checa J C (1992 ) Hepati c mitochondr ial glutathione depletion an d progressio n o f experimental alcoholi c live r diseas e i n rats . Hepatolog y 16:1423-1427. Inoue M , Nakamur a K , Iwahashi K, Ameno K, Itoh M , Suwaki H (2002 ) Changes o f bcl-2 and ba x mRNA expressions in the ethanol-treate d mouse brain. Nihon Arukoru Yakubutsu Igakkai Zasshi 37:120-129. Jacobs JS, Miller MW (2001 ) Proliferatio n and deat h o f cultured fetal neocortical neurons: effects o f ethanol on th e dynamic s o f cel l growth . J Neurocyto l 30 : 391-401. Jang MH, Shi n MC , Ki m YJ, Chung JH, Yim SV , Kim EH, Ki m Y , Ki m C J (2001 ) Protectiv e effect s o f puerariaeflos agains t ethanol-induced apoptosi s o n human neuroblastom a cel l lin e SK-N-MC . Jp n J Pharmacol 87:338-342. Keramaris E , Stefani s L , MacLauri n J , Harad a N , Takaku K , Ishikawa T, Taketo MM , Robertso n GS , Nicholson DW , Slac k RS, Park D S (2000 ) Involvement o f caspas e 3 i n apoptoti c deat h o f cortica l neurons evoke d b y DNA damage . Mo l Cel l Neu rosci 15:368-379 . Kim YY, Park BJ, Kim DJ, Kim WH, Ki m S, Oh KS , Lim JY, Kim J , Park C , Par k S I (2004 ) Modificatio n o f serine 392 is a critical event in the regulatio n of p53 nuclear export and stability. FEBS Let t 572:92-98. Kornguth SE, Rutledge JJ, Sunderland E, Siegel F, Carlson I, Smollens J, Juhl U , Young B (1979) Impeded cerebellar development and reduce d serum thyroxine levels associated with fetal alcoho l intoxication . Brain Res 177:347-360. Kühn PE , Mille r M W (1998 ) Expressio n o f p5 3 an d ALZ-50 immunoreactivit y i n ra t cortex : effec t o f prenatal exposur e t o ethanol . Ex p Neuro l 154 : 418-429.
Kukielka E , Diche r E , Cederbaum AI (1994) Increase d production o f reactiv e oxyge n specie s b y ra t live r mitochondria after chroni c ethanol treatment . Arch Biochem Biophys 309:377-386. Liebler DC, Bur r JA (1992) Oxidation of vitamin E during iron-catalyze d lipid peroxidation : evidence fo r electron-transfer reaction s o f th e tocoperoxy l radi cal. Biochemistry 31:8278-8284. Light KE , Belcher SM , Pierc e D R (2002 ) Time cours e and manne r o f Purkinje neuro n deat h followin g a single ethano l exposur e o n postnata l da y 4 i n th e developing rat. Neuroscience 114:327-337 . Livy DJ , Maie r SE , Wes t JR (2001 ) Fetal alcoho l expo sure an d tempora l vulnerability : effects o f binge like alcoho l exposur e o n th e ventrolatera l nucleus of the thalamus. Alcohol Clin Ex p Res 25:774-780. Luo J, Miller MW (1999 ) Platelet-derived growth factormediated signa l transductio n underlyin g astrocyt e proliferation: sit e o f ethano l action . J Neurosc i 19:10014-10025. Marino MD , Akseno v MY, Kelly S J (2004 ) Vitami n E protects against alcohol-induced cel l loss and oxidative stres s i n th e neonata l ra t hippocampus . In t J Dev Neurosci 22: 363-377. Miller FD, Poznia k CD, Wals h GS (2000 ) Neuronal lif e and death : an essentia l role for the p5 3 family. Cel l Death Diffe r 7:880-888 . Miller M W (1999 ) A longitudinal study of the effect s o f prenatal ethano l exposur e o n neurona l acquisitio n and deat h i n th e principa l sensor y nucleu s o f th e trigeminal nerve : interaction wit h changes induce d by transection o f the infraorbita l nerve. J Neurocy tol 28:999-1015. (2003) Describin g th e balanc e o f cel l prolifera tion an d death : a mathematical model. J Neurobiol 57:172-182. Miller MW , Al-Ghou l WM , Murtaug h M (1991 ) Ex pression o f ALZ-50-immunoreactivity i n th e devel oping principa l sensor y nucleu s o f th e trigemina l nerve: effec t o f transectin g th e infraorbita l nerve . Brain Res 560:132-138. Miller MW , Küh n P E (1997 ) Neonata l transectio n o f the infraorbita l nerv e increase s th e expressio n of proteins relate d t o neurona l death i n th e principal sensory nucleu s o f the trigemina l nerve. Brai n Res 769:233-244. Miller TM , Moulde r KL , Knudso n CM , Creedo n DJ , Deshmukh M , Korsmeye r SJ , Johnso n E M J r (1997) Ba x deletion furthe r order s th e cel l deat h pathway i n cerebella r granul e cell s an d suggest s a caspase-independent pathwa y to cel l death . J Cell Biol 139:205-217 . Mitchell ES , Snyder-Kelle r A (2003 ) c-fo s an d cleave d caspase-3 expressio n afte r perinata l exposur e t o
INTRACELLULAR EVENTS IN ETHANOL-INDUCED NEURONAL DEAT H 27 7 ethanol, cocaine , or the combination o f both drugs. Dev Brain Res 147:107-117. Mitchell JJ , Paiva M , Heato n M B (1999a ) Th e antioxi dants vitami n E an d beta-caroten e protect agains t ethanol-induced neurotoxicit y i n embryoni c ra t hippocampal cultures. Alcohol 17:163—168 . (1999b) Vitami n E an d beta-caroten e protec t against ethano l combine d wit h ischemi a i n a n embryonic ra t hippocampa l cultur e mode l o f fetal alcoho l syndrome . Neurosc i Let t 263:189 192. Mooney SM , Mille r MW (1999 ) Effect s o f prenatal exposure to ethanol on systems matching: the number of neuron s i n th e ventrobasa l thalami c nucleu s of th e matur e ra t thalamus . De v Brai n Re s 117 : 121-125. (2001) Effect s o f prenatal exposur e to ethanol o n the expressio n of bcl-2, bax and caspas e 3 in the de veloping ra t cerebra l corte x an d thalamus . Brai n Res 911:71-81. Moore DB , Walke r DW , Heato n M B (1999 ) Neonata l ethanol exposur e alter s bcl-2 famil y mRN A levels in th e ra t cerebellar vermis . Alcohol Cli n Ex p Res 23:1251-1261. Morrison RS , Kinoshita Y, Johnson MD , Ghata n S , Ho JT, Garde n G (2002 ) Neurona l surviva l an d cel l death signalin g pathways. Adv Exp Me d Bio l 513 : 41-86. Oberdoerster J , Rabi n R A (1999 ) Enhance d caspas e activity durin g ethanol-induce d apoptosi s i n ra t cerebellar granul e cells . Eu r J Pharmaco l 385 : 273-282. Obernier JA , Bouldi n TW , Crew s F T (2002 ) Bing e ethanol exposur e i n adul t rat s causes necroti c cel l death. Alcohol Clin Exp Res 26:547-557. Olney JW , Tenkov a T , Dikrania n K , Mugli a LJ , Jer makowicz WJ , D'S a C , Rot h K A (2002a) Ethanol induced caspase- 3 activatio n i n th e i n viv o developing mouse brain. Neurobiol Dis 9:205—219. Olney JW , Tenkova T, Dikrania n K, Qin YQ , Labruyere J, Ikonomido u C (2002b ) Ethanol-induce d apop totic neurodegeneration in the developing C57BL/6 mouse brain. Dev Brain Res 133:115-126. Polster BM , Fisku m G (2004 ) Mitochondria l mecha nisms o f neura l cel l apoptosis . J Neuroche m 90 : 1281-1289. Porter A G (1999 ) Protei n translocatio n i n apoptosis . Trends Cell Biol 9:394-401. Rajgopal Y , Chetty CS, Vemur i MC (2003 ) Differentia l modulation o f apoptosis-associate d protein s b y ethanol i n ra t cerebral cortex and cerebellum . Eu r J Pharmaco l 470:117-124. Ramachandran V, Perez A, Chen J, Senthil D, Schenker S, Henderson G I (2001 ) I n uter o ethano l exposure
causes mitochondrial dysfunction which ca n resul t in apoptoti c cel l deat h i n feta l brain : a potentia l role fo r 4-hydroxynonenal . Alcoho l Cli n Ex p Re s 25:862-871. Ramachandran V , Watt s LT , Maff i SK , Che n J , Schenker S , Henderson G (2003 ) Ethanol-induced oxidative stres s precedes mitochondriall y mediate d apoptotic deat h o f cultured feta l cortica l neurons . J Neurosci Res 74:577-588. Resnicoff M , Rubin i M , Baserg a R , Rubi n R (1994 ) Ethanol inhibit s insulin-lik e growt h factor 1—mediated signallin g and proliferatio n of C 6 ra t glioblastoma cells. Lab Invest 71:657-662. Reyes E , Ot t S , Robinso n B (1993 ) Effect s o f i n uter o administration o f alcoho l o n glutathion e level s in brai n an d liver . Alcoho l Cli n Ex p Re s 17 : 877-881. Saito M, Sait o M, Ber g MJ, Guidotti A, Marks N (1999 ) Gangliosides attenuat e ethanol-induce d apoptosi s in ra t cerebellar granul e neurons . Neuroche m Re s 24:1107-1115. Selznick LA , Zheng TS , Flavel l RA , Rakic P, Roth KA (2000) Amyloi d beta-induce d neurona l deat h i s bax-dependent bu t caspase-independent . J Neu ropathol Exp Neurol 59:271-279 . Shaw S, Rubin KP, Lieber CS (1983 ) Depressed hepati c glutathione an d increased diene conjugate s in alco holic live r disease. Evidenc e o f lipid peroxidation . Dig Dis Sei 28:585-589. Shigenaga MK, Hagen TM, Ame s BN (1994) Oxidativ e damage an d mitochondria l deca y i n aging . Pro c Natl Acad Sei USA 91:10771-10778, Siler-Marsiglio KI , Sha w G , Heato n M B (2004 ) Pyc nogenol® an d vitami n E inhibi t ethanol-induce d apoptosis in rat cerebellar granule cells. Neurobiology 59:261-271. Sohma H , Ohkaw a H , Hashimot o E , Saka i R, Sait o T (2002) Ethanol-induce d augmentatio n o f annexi n IV expressio n in ra t C 6 gliom a an d huma n A54 9 adenocarcinoma cells . Alcoho l Cli n Ex p Re s 26-.44S-48S. Stefanis L , Par k DS , Friedma n WJ , Green e L A (1999 ) Caspase-dependent an d -independen t deat h o f camptothecin-treated embryoni c cortica l neurons . J Neurosci 19:6235-6247. Tran TD , Jackso n HD , Hor n KH , Goodlett C R (2005 ) Vitamin E doe s no t protec t agains t neonata l ethanol-induced cerebella r damag e o r deficit s i n eyeblink classical conditioning in rats. Alcohol Clin Exp Res 29:117-129. Valverde F, Lopez-Mascaraque L, de Carlos JA (1990) Distribution and morpholog y of Alz-50-immunoreactive cells in the developing visual cortex of kittens. J Neurocytol 19:662-671 .
278 ETHANOL-AFFECTE D DEVELOPMEN T Vaudry D , Roussell e C, Basili e M , Falluel-More l A, Pa- Youn g C , Klock e BJ , Tenkov a T , Cho i J , Labruyer e J , mantung TF, Fontain e M , Fournie r A , Vaudr y H , Qi n YQ , Holtzma n DM , Rot h KA , Obe y J W Gonzalez B J (2002 ) Pituitar y adenylat e cyclase - (2003 ) Ethanol-induced neurona l apoptosis in vivo activating polypeptid e protect s ra t cerebella r gran - require s BAX in th e developin g mous e brain . Cel l ule neuron s agains t ethanol-induced apoptoti c cel l Deat h Diffe r 10:1148-1155 . death. Proc Nati Acad Sei USA 99:6398-6403.
17
Neural Crest an d Developmental Exposure t o Ethanol Susan M. Smit h Katherine A. Debelak-Kragtor p
The realizatio n that th e developin g neura l cres t i s a target o f ethanol date s t o the origina l description s o f the feta l alcoho l syndrom e (FAS ; Lemoin e e t al. , 1968; Jone s et al. , 1973) . A key observatio n wa s th e finding o f a characteristi c facia l dysmorpholog y tha t often, bu t no t necessarily , accompanies th e neurobe havioral an d neurocognitiv e deficits . Earl y evidenc e that ethanol target s the neura l cres t comes fro m a series o f mous e mode l studie s (Suli k e t al. , 1981).Ye t neural cres t encompasses man y mor e structure s tha n the face , includin g ke y components o f the periphera l nervous system. The presen t chapte r summarize s the literature on neura l cres t and ethanol , an d highlight s issues that can benefi t from furthe r research.
OVERVIEW O F NEURAL CREST DEVELOPMEN T
The neura l crest , sometime s know n a s th e fourt h germ layer , i s a transien t ye t critica l contributo r t o
embryogenesis. I t i s of neuroectodermal origin , yet i t differentiates int o populations a s diverse as peripheral neurons, glia , chondrocytes , melanocytes , an d con nective tissue . It s accessibility an d migrator y properties hav e mad e i t attractiv e fo r stud y fo r ove r 10 0 years, especially in avia n and amphibia n model s an d more recentl y i n mouse . Recen t wor k has greatl y expanded ou r understandin g o f neura l cres t develop ment a t th e cellula r an d molecula r levels . Befor e addressing ho w alcoho l affect s th e developmen t o f this comple x population , it is first helpful to under stand ho w thes e originat e an d t o appreciat e wher e their progeny may be found in the adult . An in-dept h summary o f neural cres t ca n b e foun d i n th e excel lent book by Le Douarin an d Kachie m (1999). Neural cres t arise s at the borde r betwee n th e pre sumptive neura l plat e an d latera l ectoderm . I t ap pears quit e earl y i n development , shortl y afte r th e onset o f neurulation. It s specification an d inductio n involve signal s betwee n ectoder m an d neura l plat e and th e underlyin g mesendoderm. These signal s are
279
280 ETHANOL-AFFECTE D DEVELOPMENT incompletely understoo d an d appea r t o includ e members o f the Wnt, fibroblast growth factor (FGF) , and bone morphogenic protein (BMP ) families (Basch et al., 2004). Their induction occurs in a rostrocaudal manner commensurat e wit h overal l developmen t along tha t axis . Figur e 17- 1 illustrate s these popula tions as defined by the expressio n of the transcriptio n factor slug. The upwar d rollin g o f th e neura l plat e durin g early somitogenesis place s neura l crest populations at the dorsa l lip o f the neura l folds. Shortl y before this, or as the neural folds fuse t o form the neura l tube (depending o n the species), the neura l crest undergoe s a transformation fro m epitheli a to mesenchyme. Subsequently, the cells delaminate an d migrate int o the periphery o f th e embryo . Thei r migrator y route s ar e defined b y extracellula r matri x protein s suc h a s fi bronectin an d specifi c integrin s (notabl y oclß4 ) o n the neura l crest Onc e neura l cres t cell s reac h thei r targets they differentiate int o appropriate cel l types.
Three distinctiv e population s o f neural cres t ar e defined: crania l (o r cephalic) , cardiac , an d truncal . Cranial neura l cres t originate s fro m th e forebrain , midbrain, an d selecte d hindbrai n segment s (rhom bomeres 1/2 , 4, 6, 7/8). Transplantation studie s show that their rostrocaudal identity (for example, mandible vs. hyoid) is dictated b y the leve l of the neuraxi s fro m which they originate, a s defined by their expression of segment polarit y gene s (hox, emx, otx). Recen t evi dence suggest s ther e i s some plasticit y in thi s aspect (Trainor e t al. , 2002) . Crania l neura l cres t cell s have th e mos t divers e fates, and , dependin g o n thei r level o f origi n an d tim e o f emergence , the y differ entiate t o for m th e facia l bone s an d cartilage , melanocytes, toot h papilla , sensor y component s o f certain crania l nerves , an d othe r feature s (Tabl e 17-1). Cell s formin g the connectiv e tissue s emerg e first, followed b y neuronal an d melanocyti c lineages . Thus bot h th e positiona l identit y and differentiatio n fate o f crania l neura l cres t cell s ar e determine d
FIGURE 17- 1 Morphogeneti c sequenc e o f neura l crest inductio n an d migration . Step s describin g chick neural cres t development ar e exemplifie d by changes in th e expressio n o f th e transcriptio n facto r slug. A . Prechordal plat e stage . At this time, neura l cres t cell s are slug negative . Arrow s indicate thei r locatio n (als o see Fig . 17-2A) . Slug expressio n a t thi s stag e i s re stricted t o migratin g cells of the primitiv e streak. B. 3 somite stage . The first pre-migratory neural cres t cell s have appeared at the dorsal margin of the folding neural plate (arrow) . C. 6 somite stage. As the neura l fold s fuse, neura l cres t cells receive their cues to begin mi gration. Younger populations ar e being induced mor e caudally, and these have a low slug expression (arrow). D. 1 0 somite stage. Neural cres t migration occurs i n a
rostral-to-caudal sequence. Cell s tha t are rostral to the otic vesicle have commenced migration. E. 1 5 somite stage. The segmenta i natur e of neural crest migration is depicted. Arrow s indicate th e migrator y waves tha t emerge fro m rhombomere s 2 , 4 , an d 6 . Thes e cell s are fated to form facial bones and cartilage. Within th e hindbrain, neural cres t cells that migrat e slightl y later will attai n neurona l fates . Rostra l neura l cres t cell s have entere d th e mesenchym e tha t form s th e uppe r facial region . F. 1 8 somite stage. Neural cres t populations have reache d thei r targets within the face . With their cessatio n o f migration , the y down-regulat e slug (arrow) and begi n to differentiate. Migration o f neural crest from trun k and cardia c regions is still on-going at this stage.
NEURAL CREST AN D EARL Y DEVELOPMENTAL EXPOSURE TO ETHANO L 28 1 TABLE 17- 1 Neura l crest contributions to the adult Cranial Bones and cartilag e o f the face and skull* Cartilaginous bones: nasal capsule (ect-, mesethmoid, interorbita l septum), basipresphenoid, scleroti c ossicles, ethmoid, pterygoid, Meckel's cartilage, quadratoarticular, hyoid (basihyal, entoglossum, basi- , epi-, ceratobranchial), otic capsule (pars cochlearis [partly] , parotic process ) Membranous bones: nasal, vomer, maxilla, jugal, quadratojugal, palatine, mandibular Membranous bones of skull: frontal (partly) , parietal, squamosal, columell a Cranial nerves * Sensory ganglia: portions of nerves V (posterior portion o f trigeminal ganglion), VII (facial , root ganglion), IX (glossopharyngeal superior ganglion), X (vagal, jugular ganglion) Neurons o f the sympathetic an d parasympathetic ganglia : superior cervical, ciliar y (otic, submandibular, lingual , ethmoid , spheropalatine) Glia and Schwan n cells for all cranial ganglia and nerves Other crania l tissues Melanocytes of skin and internal organs (except the retinal pigmented epithelium ) Dermis of scalp Dermis, smooth muscle, an d adipose tissue of skin in face and ventral neck region Méninges of the forebrain (pachymeninx and leptomeninx) ; not its blood vessels Connective tissu e of cranial glands: lacrimal, pituitary, parathyroid, salivary, thymus, thyroid Connective tissues associated wit h facial muscle s Calcitonin-producing C cells Type I chemoreceptor cell s and type II supporting cells of the caroti d body Portions o f the teeth: odontoblasts, cementoblast s Eye: stromal and endothelia l cells of cornea and orbit* Ciliary muscles Cardiac * Smooth muscl e o f the outflow tract Mesenchymal cell s of the outflo w tract Conotruncal cushion s of the outflo w tract Cardiac gangli a Truncal Sensory neurons and glia l cells of the dorsa l root ganglia1 The entiret y of the autonomie nervou s system: Catecholaminergic an d noncatecholaminergic neuron s and satellite cell s of the sympathetic ganglia and plexuses Cholinergic an d noncholinergic neuron s and satellite cells of the parasympathetic ganglia and plexuses Enteric gangli a Schwann cells of the peripheral nerve s Neuroendocrine (adrena l chromaffin an d small intensely fluorescent) cells of the adrenal medulla t Parasympathetic gangli a of the pancrea s Merkel cells (mechanoreceptor cell s of the mammalian whisker follicle) Melanocytes of skin and interna l organs * Affected b y ethanol, evidence based on in vivo work in animal models or humans. * Affected b y ethanol, evidence based on cell culture work. Source: Adapted from Le Douarin and Kacheim (1999); this list may be incomplete.
predominantly prior to their emigration from the neu- smoot h muscl e an d connectiv e tissu e mesenchym e ral tube. o f the outflo w trac t and aorti c arches. They also par Thé cardia c neural cres t is a relatively small, spe- ticipat e i n th e remodelin g o f thes e earl y structure s cialized subpopulatio n tha t emerge s fro m neura l int o the aorta , pulmonary aorta, and affiliate d vascu tube at the level between the oti c vesicle and somite lature . Deficits i n this neural crest population lead to 4, includin g rhombomere s 6- 8 (Kirb y 1999) . Lik e sever e cardia c defects , suc h a s double-outle t righ t cranial crest , they migrate into the third , fourth, an d ventricle , paten t truncu s arteriosus , an d tetralog y of sixth pharyngeal arches, but instead contribute to the Fallot .
Z82 ETHANOL-AFFECTE D DEVELOPMEN T Neural cres t population s cauda l t o somit e 5 con tribute t o muc h o f th e periphera l nervou s syste m (both sympatheti c an d parasympatheti c neuron s an d their supportin g Schwan n cells) , the enteri c nervou s system, and rnelanocytes . Cells tha t follow ventromedial migratory routes contribute to the peripheral nervous system . Thes e cell s onl y migrat e throug h th e rostal hal f o f eac h sclerotome , an d thi s restrictio n contributes t o th e segmentatio n o f th e sympatheti c and dorsa l roo t ganglia . Cell s fate d t o becom e rnelanocytes follo w a dorsolatera l rout e an d migrat e somewhat later . Trun k neura l cres t cell s appea r t o have a much greater plasticity with respect to fate an d identity and henc e see m t o have a greate r regenera tive capacit y than tha t o f cranial and cardia c populations; whe n on e regio n i s ablated, neighborin g cell s migrate i n an d replac e th e missin g cells . I n general , fairly larg e losse s must occu r befor e anatomica l an d physiological changes are seen. A preponderance o f genetic and experimenta l dat a show that th e basi c rules and signal s governing neural crest development ar e largel y conserved amon g vertebrates. This is best shown in the numerous human neu rocristopathies that are recapitulated b y specific mous e null mutants . Ther e ca n als o b e smal l difference s i n the timin g or identity of regulatory molecules; fo r these finer details investigators are encouraged t o consult the primary literature on their species of interest.
NEURAL CREST POPULATION S AFFECTED B Y ETHANOL
For obvious reasons, the best evidence tha t ethanol exposure disrupt s neural crest development come s fro m animal models. As discussed below, the critical window for huma n neura l cres t development i s between week s three an d eight postconception , an d embryo s tha t young ar e generall y unavailabl e fo r study . A furthe r limitation i s the apparen t lac k of systemic description s of neural crest derivatives and thei r fate i n human s exposed to heavy gestational alcohol exposure . Thus, this section emphasize s anima l models , incorporate s hu man observation s whe n possible , an d highlight s in stances wher e th e huma n evidenc e i s suggestive an d would benefit from clarifying work. The reade r should further not e tha t findings in rodent and chick , the two most popular models for this work, are largely in agree ment. Their concurrence enhance s thei r applicability and relevance for human development.
Ethanol Targets Crania l Skeletal Derivative s The facia l change s observe d i n human s wit h heav y gestational alcohol exposur e are similar to known neu rocristopathies, promptin g th e firs t hypothese s tha t neural crest was targeted by ethanol exposure (Lemoine et al, 1968 ; Jone s et al, 1973) . The facia l change s i n humans includ e midfacia l flattening , shortene d nos e with upturne d nares , micrognathia , an d hypoplasti c maxilla (Clarre n an d Smith , 1978 : Pria s e t al, 1982 ; Johnson e t al., 1996 ; Mattso n e t al, 1997) . Midfacial clefting an d degree s o f holoprosencephaly ar e some times seen . Anthropométri e studie s (Moor e e t al. , 2001, 2002) report that facial dimension s are reduce d overall i n childre n wit h FA S (also know n a s dysmorphic fetal alcohol spectrum disorde r [FASD]) and to a similar, but lesser extent, in those with alcohol-related neurodevelopmental disorde r (ARND; also known as nondysmorphic FASD) . Diagnostic s emphasiz e sof t tissue changes , particularl y the tri o of thin uppe r lip , reduced o r absen t philtrum , an d smal l palpebra l fissures in affected individuals. The grea t valu e of these changes arise s from thei r ease of assessment and thei r relative uniquenes s t o alcoho l (an d toluene ) expo sure. No t surprisingly , the y ar e importan t compo nents of diagnostic screens for ARND and FA S (Astley and Clarre n 1996) . This emphasi s o n sof t tissu e may seem contradictor y because facia l skeleta l muscl e i s not neura l cres t derived . Sof t tissu e shape, however , is dictated b y the underlyin g skeletal element s (proof of thi s i s in th e forensi c scientist' s abilit y t o recreat e a person' s likenes s fro m th e bar e skull) . Thus , th e size and shap e o f the philtrum , lip , and palpebra l fissures ar e a direc t consequenc e o f dysmorpholo gies i n th e underlyin g neural crest-derive d skeleta l elements. Several othe r conclusion s ca n b e draw n from th e human evidence . Th e facia l appearanc e transcend s racial characteristics, reinforcin g the robus t natur e of ethanol-induced changes . Second , i n n o instanc e does ethano l exposur e alte r the segmenta l identit y of the face . Effect s instea d are manifested in dimensional shifts i n otherwis e norma l structures , indicatin g tha t ethanol target s aspect s o f neural cres t cellularit y an d outgrowth, a finding that provide s important clue s to locating the molecular targets of ethanol action . Animal studie s confir m th e hypothese s tha t alco hol targets the developin g neural crest. Studies of rats prenatally expose d t o ethano l hav e th e constellatio n
NEURAL CREST AND EARL Y DEVELOPMENTAL EXPOSUR E T O ETHANO L 28 3
of malformation s i n th e craniofacia l skeleton tha t i s characteristic o f human s wit h FA S (Edward s an d Dow-Edwards, 1991) . Murin e studie s hav e refine d the tempora l windo w o f vulnerabilit y (Suli k e t al. , 1981; Webste r e t al , 1983) . I n mic e o n gestationa l day (G ) 7 , i.e., at the tim e o f gastrulation, ethanol exposure (as two acute dose s 4 hr apart) causes craniofa cial defect s consisten t wit h huma n FAS . Thes e defects includ e midlin e reductions , reduce d midface , and hypoplasti c primordi a o f th e maxill a an d mandible. Ethanol exposur e one da y later (G8, head fold stage ) also affects th e face , but cause s a facial ap pearance more simila r to that o f DiGeorge syndrome (Sulik e t al. , 1986) . Fo r bot h treatmen t windows , these morphologica l change s ar e precede d b y signifi cant cel l deat h withi n thei r respectiv e neura l cres t precursors a s well a s i n adjacen t regions (Kotc h an d Sulik 1992a , 1992b ; Dunt y e t al, 2001) . These two critical windows for mouse correspon d t o weeks 3 and 4, respectively, in human pregnancy. Identical ethano l doses at G9 or G10 d o not appreciably affect facia l appearance (Webste r et al., 1983) , reinforcing the obser vation that ethanol target s early events i n neural crest induction, expansion , and/o r migration , rathe r tha n later events of differentiation . A simila r phenotype occur s i n chic k embryo s exposed t o acute ethanol . A s with mouse, the precis e facial changes depend o n stage of treatment (Cartwrigh t and Smith , 1995b) . Gastrulation-stag e (HH4 ) o r neurulation-stage (HH6 ) exposur e produce s a wider, taller chic k fac e wit h a shorte r maxill a an d nasa l bone, wherea s exposur e a t th e onse t o f migratio n (HH10-12) produces a n overal l hypoplastic fac e (De belak-Kragtorp, Moyers , an d Smith , unpublishe d results). The facia l appearanc e i s preceded b y signifi cant cel l deat h i n region s includin g th e crania l chondrogenic precursors of neural crest, and immunos taining corroborates the los s of these neura l crest populations (Cartwrigh t an d Smit h 1995a ; Cartwrigh t et al. , 1998) . Pretreatmen t o f chic k embryo s wit h a caspase-3 antagonis t prevente d bot h th e ethanol induced cel l deat h an d th e change s i n bea k lengt h (Debelak-Kragtorp, Moyers , an d Smith , unpublishe d results). Thi s finding reinforce s th e concep t tha t cel l death contribute s t o th e facia l dysmorphology . Sus ceptibility to ethanol-induced apoptosi s i s greatest for premigratory neura l crest ; migrator y an d postmigra tory cell s ar e mor e resistan t (Cartwrigh t an d Smith , 1995b). Thi s timin g suggest s tha t uniqu e develop mental event s prio r t o neura l cres t migratio n ma y
govern thei r sensitivity ; some o f these target s ar e dis cussed below . These animal data predict that human s a t weeks 3 and 4 of gestation ar e th e mos t sensitiv e to the facia l teratogenic effects . A stud y i n pregnan t macaque s reinforces thi s prediction . Onc e weekl y dose s o f alcohol (mea n bloo d ethano l concentratio n [BEG ] -220 mg/dl) are associated with facial dysmorpholog y in the offspring onl y when th e exposure coincide wit h G19 o r G20 (Astle y et al, 1999) . Thes e findings suggest that a sufficiently hig h BE G during a critical window i s require d t o induc e th e characteristi c facia l changes o f FAS. The implicatio n i s that i f a pregnan t woman ha s restricte d o r n o acces s t o alcoho l durin g the critica l window, her chil d ma y lack the facia l dysmorphology, despit e havin g profound nervous system deficits fro m late r exposure . The diagnosti c implica tions of this are obviou s for professionals and affecte d families. Ethanol Targets Neuronal Derivatives of Neural Crest The literatur e on this point i s sadly scant with respec t to humans. I n mice , ethano l cause s significan t apoptosis i n th e oti c regio n an d i n th e neura l cres t an d placodal component s o f th e crania l sensor y gangli a (Dunty e t al. , 2001) . Ethanol-expose d chic k embryo s display reductions in cranial nerve cellularity and aberrant migratio n o f their neurona l branche s (Cartwrigh t and Smith , unpublishe d results) . The functiona l con sequences o f suc h losse s hav e no t bee n studied . There are hints, however , that thes e population s als o are targete d i n humans . Fo r example, a n infan t wit h FAS often ha s a reduced rootin g reflex when nursing , a behavio r partl y dependen t o n th e abilit y o f facia l cranial nerve s to sense an d proces s a tactile stimulus. This tactil e los s ca n b e s o significan t tha t som e affected individual s requir e sof t o r liqui d diet s be cause the y hav e troubl e sensin g foo d textur e an d when i t i s appropriate t o swallow . There ca n als o b e significant hearin g losse s and persisten t ear cana l in fections tha t ar e partl y attribute d t o change s i n th e neural crest-derive d bon e an d cartilag e structure s and i n the acoustica l nerves , which ar e supported b y glia an d Schwan n cell s originatin g from neura l cres t (Church e t al , 1996 , 1997) . Furthe r investigatio n into crania l an d periphera l nerves , an d th e conse quences o f any suc h dysfunctions , shoul d b e a hig h priority.
284 ETHANOL-AFFECTE D DEVELOPMEN T The situatio n regardin g neural cres t precursors of the periphera l nervou s system i s even les s clear. Em bryos treated a t G7 and G8 hav e increased cel l deat h within region s populated b y trunk neural cres t (Suli k et al , 1988 ; Kotc h an d Sulik , 1992b) . Th e conse quences o f such losse s hav e ye t to b e detailed . Seg mentation o f the dorsa l roo t gangli a appear s norma l by gros s inspection, althoug h cultur e studie s sugges t that ethano l impair s th e surviva l an d outgrowt h o f DRG neuron s (Do w an d Riopelle , 1990) ; reduce d synthesis of and response s to trophic factor s ar e note d (Dow and Riopelle, 1990 ; Beaton et al, 1992; Bradley et al. , 1995) . Advers e affect s o n th e sympatheti c an d parasympathetic nervou s syste m hav e no t bee n re ported fo r humans an d i n anima l models . Impaire d balance i s observed , bu t follow-up testin g impli cates targets in the centra l nervou s system rather tha n the neura l crest-derive d periphera l nervou s syste m (Church e t al, 1997 ; Roebuc k e t al, 1998) . More over, obstructive bowel problems characteristi c o f impaired enteri c nervou s syste m developmen t ar e no t widely reported. Whereas gli a an d supportin g cells of the brain are appreciated a s a target of ethanol (Chap ter 18) , littl e attentio n ha s bee n pai d t o supportin g cells o f the periphera l nervou s system . I n summary , our bes t answe r t o this questio n i s that these populations ca n b e targete d b y ethanol, bu t th e functiona l consequences ar e essentially unexplored. Ethanol Targets Cardiac Neura l Crest Derivative s Outflow trac t anomalie s ar e mor e frequen t i n chil dren wit h FA S than i n th e genera l populatio n (Abel , 1990), promptin g studie s int o potentia l effect s o f ethanol o n th e cardia c neura l crest . I n mous e an d chick models , ethano l exposur e cause s apoptosi s o f cardiac neura l cres t precursor s (Kotc h an d Sulik , 1992b; Cartwright et al, 1995b) . On th e basis of extirpation studie s (Kirby, 1999) , suc h losse s should resul t in aorticopulmonar y defect s suc h a s persistent trun cus arteriosus , double-outle t righ t ventricle , an d tetralogy o f Fallot . Indeed , ethano l cause s suc h de fects i n bot h mous e (Daf t e t al. , 1986 ) an d chic k (Fang e t al. , 1987 ) wit h a n incidenc e o f 10%-20% . These dysmorphologies are preceded by the expecte d malpositioning an d reduction s o f the cona l cushion s (Daft e t al., 1986) and hypoplasi a of the proxima l bulbar ridge s (Fan g e t al. , 1987 ; Bruyèr e an d Stith , 1993). The critica l window for these effect s i s during
the tim e o f cardiac cres t migration , invasion , and ex pansion int o th e outflo w trac t and pharyngea l arche s (G8.5 fo r mouse, Daf t e t al. , 1986 ; 72-8 0 hr incuba tion in chick, Fang et al., 1987) . But are these change s actually du e t o th e neura l cres t losses ? Ou r vie w is that the heart defects represent defect s in cardiac pop ulations othe r tha n neura l crest . W e expose d chic k embryos to ethanol a t critical times o f cardiac neura l crest an d outflo w trac t development ; despit e signifi cant losse s o f cardia c crest , inspectio n a t late r tim e points foun d normal neura l crest distribution s within the outflo w tract , an d n o aorticopulmonar y o r septa l defects (Caviere s and Smith , 2000) . Bruyère an d colleague s (1994a ) not e inconsisten cies between th e hear t defects commonly see n i n hu man prenata l alcoho l exposur e an d thos e cause d i n the laborator y b y neura l cres t ablation . I n ethanol exposed humans , th e mos t commo n cardia c defect s are no t aorticopulmonary . Rather , the y ar e isolate d ventricular septal defect s (VSDs) and atria l septal de fects (ASDs ; -75 % o f congenital cardia c anomalies) . These tw o septa ar e no t neura l cres t derived . VSD s and ASD s ar e generall y secondar y response s t o pri mary change s i n flow dynamics (Kirby , 1999 ; Firull i and Conway , 2004) . Significant effects i n cardiac output, heart rate , metabolism, an d cardiomyocyte differ entiation ar e documente d i n model s o f prenata l ethanol exposur e (Nyquist-Batti e an d Fréter , 1988 ; Ruckman e t al, 1988 ; Adicke s et al, 1993 ; Bruyèr e and Stith , 1994a ; Bruyèr e e t al , 1994b) . Fan g an d colleagues (1987 ) suggest that ethano l ha s a biphasi c effect o n the developing heart, with lower BECs caus ing VSD s (perhap s targetin g cardiomyocytes ) an d higher concentration s targetin g aorticopulmonar y events (an d cardia c crest) . Lower ethano l exposures , though deletin g som e cardia c crest , ma y allo w th e survivors t o repopulat e an d replac e thei r missin g neighbors. Determinin g th e exten t t o whic h neura l crest losse s contribut e t o cardia c defect s i n FA S will require additiona l research . Carefu l morphologica l studies using , fo r example , th e lacZ-wnf l reporte r mouse (i n whic h neura l cres t ca n b e followe d b y merit o f lac Z expression ) coul d nicel y resolv e thi s question. Ethanol Targets Melanocyte Derivative s Alcohol likel y ha s n o long-ter m consequence s o n melanocyte development , althoug h thi s conclusio n
NEURAL CREST AND EARL Y DEVELOPMENTAL EXPOSUR E TO ETHANO L 28 5 rests o n negativ e data . Melanocyte s ar e th e pig mented cells within the dermis, and to our knowledge there ar e n o report s o f reduce d pigmentatio n o r al tered pigmenta l pattern s in eithe r individual s prenatally exposed t o alcoho l o r expose d mice. Melani n i s still synthesize d i n salamande r neura l cres t culture d with ethanol , an d it s unusual perinuclea r depositio n may b e secondar y to microfilament dysarrangement s (Hassler an d Moran , 1986) . Th e pigmente d chick s we have hatched sho w no sig n of altered feather col oration (Smith , Tessmer, an d Debelak-Kragtorp , un published results) . This lack of effect ma y reflect th e lack of segmental identit y within melanocytes, which facilitates thei r abilit y to expan d an d compensat e fo r losses, Other Neural Cres t Populations Targeted b y Ethanol There ar e hints i n the literatur e that additional neu ral cres t subpopulations may be affecte d b y ethanol . Carones an d colleague s (1992 ) an d Mille r an d Beauchamp (1988) document multiple case s of ocular defect s involving the corne a endothelia , a neural crest-derived populatio n that contributes to the anterior segmen t o f th e eye . Toot h problem s ar e men tioned, althoug h i t wa s no t indicate d whethe r thi s involves th e neura l crest-base d papilla . Similarly , it is no t know n whether problem s o f thymocyte matu ration an d thyroi d hormone productio n are linked to aberrant strom a o f their respectiv e glands. A similar question ca n be raise d with the altere d signal s of the hypothalamic-pituitary-adrenal (HPA ) axis . I n tha t light, i t i s worth notin g tha t a cel l lin e popula r for studies o f ethanol-mediate d neurona l signaling , PC12 cell s (Messing et al, 1986 ; Luo et al, 1999) , is an adrenochromaffi n tumo r originatin g from neura l crest lineage of the adrenal medulla. Again, a systematic stud y o f neura l cres t derivative s i n human s (Table 17-1 ) would provide important clues as to the effects o f ethanol o n nonclassi c neura l cres t populations.
EVENTS OF NEURA L CREST DEVELOPMENT AFFECTED BY ETHANOL
Data fro m anima l models , a s discussed above, poin t to earl y event s of neural cres t induction , determina-
tion, an d migratio n a s th e majo r target s for ethano l teratogenicity (Fig . 17-2) . Evidenc e summarize d be low indicate s tha t n o singl e even t i s affected; rather , multiple target s likely lead t o a cumulativ e effect o n this cell population .
Neural Induction A key, early event of embryogenesis is the anterio r extension o f the prechorda l plat e and it s subsequent in duction o f the neura l plate, includin g neural crest, at the midlin e o f th e overlyin g ectoderm . Prechorda l plate siz e affect s neuronal—an d neura l crest — population size . Ethano l reduce s th e migrator y ca pacity o f thes e anterio r mesoderma l cell s i n bot h chick (Sander s et al. , 1987 ) and zebrafis h embryo s (Blader and Strahle , 1998) . Unfortunately, any consequences fo r neura l cres t population siz e hav e yet t o be tested . Reduce d prechorda l plat e migratio n ma y also contribut e t o th e holoprosencephali c aspect s o f acute prenata l alcoho l exposur e (Suli k e t al. , 1988 ; Blader and Strahle , 1998) , althoug h a major midlin e mediator, sonic hedgehog (shh), does not appea r to be a direct target of ethanol i n this model .
Neural Cres t Migratio n Rovasio an d colleague s hav e detaile d ho w ethano l impairs neura l cres t migration . Co-cultur e o f chic k embryos ( 3 somites ) wit h 0.25 % ethanol cause s significant reduction s i n th e numbe r o f crania l an d truncal neura l cres t cell s exitin g the neura l tube , as visualized i n cross-section vi a immunostainin g wit h the neura l crest-specifi c antibod y NC- 1 (Rovasi o and Battiato , 1995) . Primary cultures o f neural crest cells treate d wit h 15 0 m M ethano l los e thei r mes enchymal appearanc e an d becom e spindl e shaped . They hav e fewe r filopodia , increase d surfac e bleb bing, an d pronounce d rearrangement s o f th e acti n cytoskeleton tha t ar e accompanie d b y dramati c re ductions i n thei r migrator y capacit y (Rovasi o an d Battiato, 2002) . Cranial an d trunca l population s ar e similarly affected . Lowe r BEC s (100-20 0 mg/dl) d o not affec t migration , but the y d o lea d t o thickene d actin and tubulin filaments in cultured primary neural cres t (Hassle r an d Moran , 1986) . Cell-cel l con tacts ar e disrupted . Migrator y pathway s in th e trun k are directed by the somites; the segmenta l anomalie s in alcohol-expose d somite s (Sander s an d Cheung ,
286 ETHANOL-AFFECTE D DEVELOPMEN T
A. Induction events
1990) ma y hav e deleteriou s effect s o n neura l cres t migration and fate .
Reduced prêcherai plate extension would reduce the number of neural crest ceils induced at the neuroepithelial margin.
B. Apoptotic events Apoptosis due to: - oxidative stress; - altered Ça** signals; - loss of L1-mediated cell-cell interactions; - loss of retinoid signals; - loss of trophic signals
C. Migration and differentiation Altered identity „ and/or delayed emergence from neural tube.
Impaired migration and/or cellular expansion into target tissues Delayed or arrested - differentiation within target tissue regions.
FIGURE 17- 2 Candidat e target s o f ethano l durin g neural cres t development . A . Targets durin g the win dow of neural cres t induction . A chick embry o a t th e prechordal plat e stag e (HH5+ ) wa s prepare d t o vis ualize slug transcript s b y i n sit u hybridization . Th e presumptive neura l crest-formin g regio n (shaded ) lies at the boundar y o f the neuroectoder m an d ectoderm . B. Targets tha t coul d caus e neura l cres t apoptosi s are summarized. Show n i s a chic k embry o o f th e 1 7 somite stage . Apoptotic cell s are visualized by the vita l dye acridine orange . Thi s embryo was exposed t o -60 mM ethanol a t gastrulation, as described b y Cartwright and colleague s (1998) . C . Target s durin g th e windo w of neural cres t migratio n and differentiation . Thi s im age depict s a transvers e vie w throug h th e hindbrai n (level o f rhombomer e 6 ) o f a chic k embry o a t th e
Neural Crest Expansion Reduced prechorda l plat e siz e and increase d apopto sis could reduc e th e populatio n size of neural crest. I t should b e noted , however , tha t embryo s hav e robus t repair mechanisms; autoregulator y signals and group effect response s ca n restor e populatio n siz e i n re sponse t o additio n o r loss . Signal s tha t regulat e th e size of the neura l cres t population includ e shh, bmp, fgf, an d wnt. The degre e t o whic h thes e ar e ethano l targets likely depends o n the timin g and dos e of exposure. The homeoti c selecto r gene , msxl, is expressed in premigrator y and migrator y neural crest and i s associated wit h bot h expansio n and apoptosis . On e repor t notes nea r ablatio n o f msx2 expressio n i n ethanol treated mous e embryos and ca l variai osteoblasts (Rifa s et al, 1997) , however , the BECs i n this study are very high. Preparation s expose d t o mor e physiologicall y relevant exposure s d o no t affec t msxl (Cartwrigh t et al , 1998) . Ethano l ma y affec t shh, a mediato r o f directional outgrowth , an d suc h suppressio n migh t contribute t o neura l cres t reduction s (Ahlgre n e t al, 2002). Sh h withi n th e fac e i s transiently reduced b y ethanol exposur e commensurat e wit h reduce d mes enchymal proliferatio n an d elevate d fg f an d ms x expression (Smit h e t al , 2001) . Thes e change s are proportionat e t o late r shift s i n directiona l out growth. Ye t ther e i s n o evidenc e tha t an y suc h changes ar e associate d wit h neura l cres t apoptosi s a t these time s (se e below) . Much mor e wor k is neede d to understan d th e effect s o f ethano l o n thes e mor phoregulatory cues . Apoptosis Cell deat h i s an importan t componen t o f ethanol ter atogenicity. Sando r (1968 ) observe d a prominen t cellular "necrosis " withi n th e neuroepitheliu m o f ethanol-exposed chick embryos, a region that includes neural cres t precursors . Suli k an d colleague s (1981 ) documented cytoplasmi c an d nuclea r extrusion s fro m
36 somite stage . The pharny x lies ventral to the hind brain. Neura l cres t cell s ar e visualize d b y i n sit u hy bridization for slug.
NEURAL CREST AND EARL Y DEVELOPMENTAL EXPOSURE TO ETHANO L 28 7 neural folds of mice treated with ethanol at G8. Similar foci of necrotic and degenerating cells were observed in neuronal population s o f the mous e o n G 9 (Banniga n and Burke , 1982; Banniga n and Cottell , 1984) . Sulik' s work using vital dye s and high-magnificatio n histology had establishe d tha t thi s "necrosis" actually represents pyknosis (Suli k e t al. , 1986 , 1988 ; Kotc h an d Sulik , 1992a, 1992b) . Thi s pyknosi s i s par t o f a n ethanol induced apoptoti c death ; caspas e inhibito r pretreatment prevents it (Cartwright et al, 1998 ) and the DNA is labele d b y termina l transferas e (TUNEL^positive ) (Cartwright et al, 1998; Dunty et al., 2001). Apoptosis i s a well-described , active , energy dependent process that is a mechanism for the removal of unwanted cells (Reed, 2000). It is prominent i n th e developing embryo, for example, i n removing interdigital webbing. It also is used to eliminate cells that have aberrantly activate d thei r proliferativ e machinery , such a s self-recognizin g T cells ; tumor s represen t cells that fai l t o apoptose whe n promitoti c signals become activated . Teratogens frequentl y act by expanding existin g domain s o f endogenou s cel l death . Under thi s model , th e teratoge n recruit s susceptibl e populations by merit of their latent capacit y for apoptosis. This certainl y is the cas e for acute ethanol . Suli k and colleague s (Suli k et al. , 1988 ; Kotc h an d Sulik , 1992b; Dunt y e t al. , 2001 ) hav e comprehensivel y mapped the cell death patterns for normal mouse embryogenesis an d followin g ethano l treatment . Thi s work elegantl y shows that ethanol-induce d apoptosis is selective . Populations ar e no t affecte d uniforml y and th e precis e targe t depends o n th e stag e o f treatment. Region s o f cel l deat h coincide d wit h tissue s and structure s affected b y ethanol treatment , includ ing neural crest of cranial, cardiac, and trunk popula tions. A critical implicatio n o f this work is that ther e are inheren t propertie s withi n certai n cel l popula tions that govern their susceptibility to ethanol. These properties are reviewed in detail below . Our recen t work with chic k embryo s emphasize s the mechanisms underlying ethanol-induced deat h of neural cres t cells . Crania l neura l cres t apoptosi s i n the chic k coincide s wit h th e endogenou s deat h o f neural cres t precursor s i n rhombomere s 3 an d 5 . Thus, we hypothesize that ethanol exposur e might activate thos e endogenou s signals . Thes e signal s ar e well described and involv e the wnf-dependen t activation o f bmp4 synthesi s within rhombomeres 3 and 5 . Bmp4 act s i n a n autocrine-paracrin e manne r t o
stimulate msxl expressio n and the apoptosi s sequenc e (Graham e t al , 1994) . Neithe r bmpi no r msxl, however, ar e elevate d i n th e hindbrain s o f ethanol exposed chic k embryo s (Cartwrigh t e t al. , 1998) . Thus the initia l machinery of ethanol-induced apop tosis mus t lie upstrea m o f the endogenou s deat h signals. We recently ascertained that these signals involve the activatio n by ethanol o f a pertussis toxin-sensitive G protei n an d intracellula r Ca 2+ transient s (Garic Stankovic, et al., 2005; see below).
HOW DOES ETHANOL KILL NEURAL CREST CELLS?
Four majo r mechanism s hav e receive d considerabl e scrutiny: oxidative stress, LI-mediated cell adhesions , induction o f Ca2+ transients, an d retinoid-dependen t signals. It should be stressed that evidence for the first three i s quit e good . Ethano l ha s pleiotropi c effects , and i t is quite likely that ultimately these mechanism s will prove to be interrelated . Oxidative Stress Ethanol exposur e leads to oxidative stress in the neu ral crest . Migrator y an d postmigrator y neura l cres t cells lac k appreciabl e Superoxid e dismutas e (SOD ) activity (Davi s e t al. , 1990) , an d exposur e o f neura l crest t o a free-radica l sourc e (suc h a s xanthin e oxi dase) i s sufficient t o impede their survival (Che n an d Sulik, 1996) . Superoxide , hydroge n peroxide , an d hydroxy radical concentrations all increase after expo sure to 50-100 mM ethanol, an d upo n supplementa tion with SOD thos e concentrations return to normal (Davis e t al. , 1990 ; Che n an d Suli k 1996) . I n whol e embryos treate d wit h ethanol , lipi d peroxidase s an d Superoxide radical s ar e selectivel y enriche d withi n the neura l cres t an d neuroepitheliu m (Kotc h e t al. , 1995). Co-cultur e o f whol e embryo s (Kotc h e t al. , 1995) or postmigratory neural crest (Davi s et al., 1990 ; Chen an d Sulik , 1996 ) wit h free-radica l scavenger s (SOD o r catalase) improve s cell surviva l and reduce s ethanol-induced cytotoxicity . I t shoul d b e noted , however, that thes e treatment s provid e onl y a partial rescue. Iro n chelator s suc h a s deferoxamin e an d phenarthroline als o offe r protectio n agains t ethanolinduced cel l deat h (Che n an d Sulik , 2000) . This is an interestin g finding because ethano l exposur e can elevate iro n concentration s a s i n th e brai n ste m
288 ETHANOL-AFFECTE D DEVELOPMENT (Miller et al., 1995) . In two separate studies, however, vitamin E is less effective a t ameliorating these effects , a surprisin g outcome give n tha t thi s free-radica l scav enger preferentially acts on lipi d an d membran e com partments (Davis et al, 1990; Chen and Sulik, 1996) . There is little question that free radical s contribute to neura l cres t death , jus t a s oxidativ e stres s con tributes t o man y instance s o f neuronal deat h i n th e fetus. Les s clear i s the precis e rol e o f oxidative stress in the sequenc e o f events. Does ethanol itsel f directly cause this stress? Neural crest at these stages does no t express CypZE l (Deltou r e t al , 1996) , bu t i t doe s have a n ADH 4 capable o f metabolizin g ethano l a t high concentration s (Deltou r et al., 1996 ; Haselbec k and Duester , 1998) . Th e resultin g imbalance s i n NADP/NADPH ratio s woul d invok e a metaboli c stress, an effec t wel l documented fo r adult heart an d liver. Alternatively, these increase d free-radica l levels could simpl y reflect tha t the cell s ar e dying, perhaps through changes in the mitochondria l transition por e that ar e par t o f apoptosis itself . Studie s t o dat e hav e emphasized tim e point s o f 1 2 hr an d late r followin g ethanol treatment. Additional studies looking at much earlier times would clarify thi s question. Our curren t view i s that th e pro-oxidan t effects ar e likel y secondary t o th e primar y action o f ethanol, becaus e o f this lack o f earlier time poin t dat a an d becaus e o f the ef fects on Ca2+ signaling detailed below. Cell Adhesion and LI Ethanol also disrupts the development o f neural crest cells and promote s their apoptosis through LI , a cell adhesion molecul e (CAM ) o f th e immunoglobuli n CAM superfamily. Ethano l inhibit s LI-mediated cel l adhesion (Charnes s e t al. , 1994 ; Ramanatha n e t al. , 1996; Wilkemeyer and Charness, 1998) . LI i s strongly expressed b y neural crest (Chen e t al., 2001), and i n this context i t is noteworthy that disruptions of neural crest cell-cel l adhesion , a t leas t a t th e leve l o f gap junctions, result s i n thei r apoptosi s (Bannerma n et al, 2000). LI deficit s caus e craniofacial dysgenesis in human s (CRASH syndrome) that shares aspects of that wit h alcoho l exposur e (Franse n e t al. , 1995) . Ethanol likel y act s o n L I throug h it s abilit y t o si t within hydrophili c pocket s o f membran e proteins , stabilizing protei n structur e an d enhancin g o r re pressing its activity (Mihic et al., 1997). In this model, ethanol woul d bind LI to disrupt crucial trophic cue s that the protein supplies to neural crest.
Low concentrations o f n-octanol block the action s of LI; they block LI-mediate d cel l adhesio n (Wilke meyer e t al. , 2000) . Furthermore , n-octano l amelio rates th e toxi c consequence s o f ethanol o n culture d mouse embryo s (Che n e t al , 2001) . Thei r appear ance i s mor e norma l an d the y exhibi t significantl y less cel l death , includin g neura l crest-populate d re gions. N-octanol ma y act by competitively inhibiting ethanol fro m bindin g t o th e hydrophili c pocket s of LI. Ethanol antagonism o f LI i s prevented by the pep tides NAPVSIPQ (NAP ) and SALLRSIP A (SAL), frag ments o f th e large r glial-derive d activity-dependen t neuroprotective protei n (ADNP ) an d activity dependent neurotrophi c facto r (ADNF) , respectively. These peptide s confe r protectio n agains t numerou s neuronal insults , includin g ethano l (Spon g e t al. , 2001). NA P reduce s severa l of the advers e actions o f ethanol, suc h a s th e antagonis m o f L I adhesio n (Wilkemeyer et al., 2002, 2003), the depletio n of glutathione (Spon g e t al., 2001) , an d th e growt h inhibi tion of embryos, including craniofacial regions (Spong et al, 2001; Wilkemeyer et al, 2003). How NAP does this is unclear . Charnes s and colleague s speculat e that disruptio n of LI adhesion s may trigger an oxidative deat h proces s calle d anoikis (Wilkemeye r e t al. , 2000, 2003). NAP may override these death signal s as part o f its broader neuroprotection . I t may als o have direct effects o n LI action . Further investigation s into LI wil l provide additional, important insights into the molecular mechanisms that underlie the sensitivity of neural crest to ethanol . Ca2+ Signaling The earl y mous e blastocys t respond s t o ethano l (0.10%) wit h immediat e generatio n o f an intracellu lar Ca 2+ transient , th e sourc e o f whic h i s throug h PLC-mediated inosito l 1,4,5-triphosphat e (IP3 ) re lease (Stacheck i e t al, 1994 ; Rou t et al, 1997) . IP3 dependent Ca 2+ transient s occu r spontaneousl y i n neural crest, and thes e ar e essential for the neura l differentiation o f neura l cres t cell s (Care y an d Mat sumoto 1999 , 2000) . Ethanol treatmen t of HH8 chick embryos stimulates an immediate ( < 5 sec) intracellular Ca 2"1" transient. Moreover, this transient is essential to induce neural crest apoptosis, because pretreatmen t with a n intracellula r Ca 2+ chelator (BAPTA-AM ) prevents th e ethanol-induce d bu t no t endogenou s cel l death (Debelak-Kragtor p et al., 2003) . Generation o f
NEURAL CREST AND EARLY DEVELOPMENTAL EXPOSURE TO ETHANO L 28 9 this transien t require s th e activit y o f a pertussi s toxin-sensitive G protein , PLCß , an d ÏP 3 releas e (Garic-Stankovic et al, 2005). Gai2, but not Gail or Gaio, i s expressed i n thes e cells . Extracellula r Ca 2+ contributes abou t 30 % of this Ca 2+ signa l (Debelak Kragtorp e t al. , 2003) . We recentl y detecte d a Ca 2+ oscillation i n ethanol-treate d neura l crest , wit h a repeat ever y 1 5 t o 2 0 sec ove r 1 t o 2 min (Garic Stankovic, Hernandez , an d Smith , unpublishe d results). A potentia l contributio n o f thi s oscillatio n is unde r investigation . Thes e event s ar e sensitiv e to inhibitio n b y decano l (Garic-Stankovi c e t al. , 2006). The sourc e o f thi s Ca 2+ transien t involve s th e Gi/oßy stimulatio n o f a phosphoinositidyl-PLCß . Ethanol-mediated amplificatio n of endogenous Giß y and phosphoinositidyl-PLC ß signal s i s implicated i n the dopaminergi c rewardin g properties o f ethanol i n neurons (Ya o et al. , 2002 , 2003) . Ethano l enhance s the activatio n of Gas, protei n kinase A, and cAM P response elemen t bindin g protei n signals , a s wel l a s Gißy, and synergis m throug h thes e pathways permit s intracellular signalin g a t ligan d level s tha t normall y would no t transduc e signal . Th e identit y o f th e G-protein couple d recepto r an d othe r participant s in this transient is actively being investigated . It i s of in terest that tw o different cellula r target s and outcome s of ethanol, addiction/rewar d an d apoptosis , us e over lapping signaling pathways. Retinoic Acid Signaling One mechanis m propose d fo r ethanol-induced cran iofacial dysmorpholog y involve s th e perturbatio n o f retinoic aci d (RA ) signaling . Some isoform s o f alco hol dehydrogenas e (ADH) , notabl y ADH4, wil l me tabolize bot h ethano l an d retinol , a precursor o f RA (Chou e t al. , 2002) . Severa l group s hav e postulate d that ethano l compete s wit h retino l metabolism , an d thus R A production , i n th e developin g embry o (Duester, 1991 ; Grumme r et al., 1993 ; Deltour et al, 1996). R A signaling through th e nuclea r retinoi c aci d receptors (RARs ) directl y regulate s th e expressio n o f genes critical for the development of numerous embryonic structure s including neura l crest . These includ e the ho x genes, whic h defin e rostral-caudal patternin g of the embry o (Längsten and Gudas , 1994) ; the los s of retinoid signalin g leads t o ablatio n o f posterior hind brain regions , including thei r neura l cres t derivatives (Maden e t al , 1996) . R A also sustain s th e identit y
(Plant e t al. , 2000 ) an d outgrowt h (Schneide r e t al. , 2001) o f the frontonasa l primordial , i n par t throug h its support o f fgß an d sh h pro-proliferativ e cues . R A deficiency a t thes e stage s lead s t o failur e o f fron tonasal an d forebrai n outgrowth a s well a s apoptosis in craniofacial precursors (Zile, 2001). Until recently , thi s hypothesi s wa s challenging t o investigate, becaus e o f the lo w circulating concentra tions o f R A (K d o f R A fo r RAR s i s i n th e 0. 5 n M range) an d th e hig h retino l store s of standard roden t models. To circumvent these difficulties , Dueste r an d colleagues generate d null-mutan t mic e t o identif y ADH1 as a major ethanol dehydrogenase an d ADH4 as a majo r retino l dehydrogenas e (Deltou r e t al. , 1999). Clinicall y relevant ethanol concentration s can compete fo r retino l oxidatio n fo r bot h enzymes ; Molotkov an d Dueste r (2002 ) cit e K { value s o f 0.040-3.8 mM fo r ADH1 an d 6-1 2 m M fo r ADH4. They furthe r sho w tha t bot h ethano l an d adhl nul l mutation prolong s retino l half-lif e throug h suppres sion o f RA synthesis rather tha n R A catabolism. On e hundred m M bu t no t 1 0 mM ethano l inhibit s R A synthesis i n G7. 5 bu t no t G8. 5 mous e embryos , a s measured b y a lacZ-RAR E reporte r construc t (Del tour e t al. , 1996) . I n ra t whole-embry o cultures , retinol and ethano l ha d synergisti c effects o n dysmorphology, bu t n o effec t o n tissu e R A and retina l con tent (Che n e t al , 1996a) . Usin g liqui d diet s (36 % calories as ethanol; BE G ~260 mg/dl) and i n utero exposure, however, Zachman and colleagues report that tissues fro m 12-day-ol d mous e fetuse s ha d two - t o three-fold highe r retino l an d lowe r R A expression, a s well a s altered RA R and cellula r retino l bindin g pro tein transcrip t level s (Zachma n an d Grummer , 1998). In the developin g quail, 1 0 nM R A rescued the cardiac dysmorpholog y cause d b y exposur e t o 1.0 % ethanol (Twal and Zile, 1997) . Evidence o f a specific interaction betwee n ethanol and endogenou s retinoi d signalin g i n neura l cres t is lacking. ADH ma y be expresse d in premigratory neural cres t cells , althoug h thi s particula r expressio n is not alway s observed an d doe s no t appea r t o correlat e with RA production (An g et al., 1996 ; Haselbeck an d Duester, 1998) . Mor e certai n i s th e expressio n o f ADH4 (an d the subsequen t productio n o f RA) in migratory neura l cres t an d th e developin g craniofacial mesenchyme (Ang et al, 1996) . I t is likely, therefore, that any effects o f ethanol on retinoid signaling would act o n th e migrator y and postmigrator y neural crest , rather tha n affectin g premigrator y populations wit h
290 ETHANOL-AFFECTE D DEVELOPMEN T respect t o thei r survival . Indeed , ethanol-exposed , RARE-lacZ reporter mice have reduced expressio n of this RA-dependent construct, an outcome mos t likely explained b y a reductio n o f RA-mediate d signalin g (Deltouretal., 1996) . A major cavea t is that endogenous R A specifically acts o n frontonasa l development . Onc e patterned , there is no apparent retinoid requiremen t for maxilla, mandible, an d hyoi d outgrowt h (e.g. , Wedden , 1987 ; Dickman et al., 1997 ; Schneide r e t al, 2001). At this time, the retinoid hypothesi s doe s no t adequately explain the sensitivity of neural crest to ethanol-induced apoptosis, nor doe s i t wholly account for the change s in maxillar y an d lowe r ja w development . Nonethe less, this remains an attractive hypothesis and i t merits additional, careful investigation . GENETIC FACTORS
Genetic factor s modulat e neura l cres t sensitivit y t o ethanol, jus t a s they modulat e th e ris k o f other con genital anomalie s an d neurobehaviora l outcomes . We screene d 1 1 leghor n chicke n strain s and foun d that they differed widel y in their sensitivity to ethanolinduced apoptosi s withi n neura l cres t an d th e subse quent craniofacia l outcom e (Debela k an d Smith , 2000; S u e t al , 2001) . Culture d neura l cres t cell s from inbre d C57B1/6 J mic e ar e mor e sensitiv e t o ethanol-induced toxicit y tha n thos e fro m outbre d ICR mice (Che n e t al., 2000). Their sensitivit y correlates positivel y with indicator s of membran e fluidit y and negativel y with GM1 gangliosid e content . Moreover, GM 1 applicatio n attenuate s ethanol-induce d damage t o C57B1/6 J neura l cres t (Che n e t al. , 1996b). Chick strain s also differ wit h respect to aorticopulmonary defects associated with the cardia c neural cres t (Bruyèr e an d Stith , 1993) . I n al l thre e models, ethano l metabolism i s not appreciabl y differ ent, whic h suggest s tha t factor s intrinsi c t o th e em bryo and neural crest are responsible . Maternal an d feta l capacit y fo r ethano l metabo lism affect s ris k fo r ethanol-induce d malformation s of th e fetus . Th e mor e efficien t alcoho l dehydroge nase allele IB * 3 confers increase d protection against teratogenic effect s o f ethano l i n a huma n cohor t (McCarver e t al. , 1997) , an d contribution s o f Cy tochrome P45 0 2E 1 ma y b e protectiv e (Rashee d et al., 1997) . These findings extend to facial dysmor phology and reinforc e the notio n tha t alcoho l rathe r
than acetaldehyd e i s th e proximat e teratoge n (Da s et al., 2004) .
FUTURE DIRECTIONS
It i s now clea r that the effect s o f ethanol on facia l ap pearance represen t a respons e a t a relatively narro w developmental window . Facial appearance remain s a highly useful diagnosti c tool, and th e stud y of its neural crest precursors continues to provide important insights int o th e molecula r mechanism s tha t underli e neurotoxic effect s o f ethanol. On e suc h avenu e i s to investigate whethe r ethano l exposur e ultimatel y affects common signaling pathways within otherwise diverse cell types. It i s disconcertin g tha t th e consequence s o f ethanol exposur e t o neura l crest-derive d structure s other tha n th e fac e remai n largel y unstudied , because thes e population s contribut e t o critica l activities suc h a s hearing , vision , textur e sensation , chewing, th e autonomi e nervou s system , an d hor monal action s tha t includ e th e adrena l medulla , pi tuitary, parathyroid , an d thyroi d glands . Studie s o f these less-appreciate d neurochristopathie s an d thei r consequences fo r healt h i s an importan t gap i n FA S research. Th e addressin g of this questio n shoul d be come a high priority in the assessmen t of affected in dividuals an d i n detaile d investigatio n usin g anima l models.
ABBREVIATIONS ADH alcoho l dehydrogenas e ADNF activity-dependen t neurotrophi c facto r ADNP activity-dependen t neuroprotective protein ARND alcohol-relate d neurodevelopmenta l disorder ASDs atria l septal defects BEG bloo d ethano l concentratio n BMP bon e morphogeni c protein CAM cel l adhesion molecul e FAS feta l alcohol syndrom e FASD feta l alcoho l spectru m disorder FGF fibroblas t growt h factor G gestationa l day
NEURAL CREST AND EARLY DEVELOPMENTAL EXPOSURE TO ETHANO L 29 1 HPA hypothalamic-pituitary-adrena l IP3 inosito l 1,4,5-triphosphat e RA retinoi c acid RAR retinoi c acid recepto r SOD Superoxid e dismutas e VSDs ventricula r septa l defect s ACKNOWLEDGMENTS Thi s work was supported by the National Institut e of Alcohol Abuse and Alcoholis m and National Institute for Environmental Health Sciences, and the March of Dimes Birth Defects Foundation. References Able E L (1990 ) Fetal Alcohol Syndrome. Medica l Eco nomics Books, Oradell, NJ. Adickes ED , Mollne r TJ , Makoi d M C (1993 ) Terato genic effect s o f ethanol during hyperplastic growth in cardia c myocyte cultures . Alcohol Clin Ex p Res 17:988-992. Ahlgren SC , Thakur V, Bronner-Fraser M (2002 ) Sonic hedgehog rescue s crania l neura l cres t fro m cel l death induce d b y ethanol exposure . Proc Natl Acad Sei US A 99:10476-10481. Ang HL, Deltou r L, Hayamizo TF, Zgombic-Knight M, Duester G (1996 ) Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development linke d t o clas s IV alcoho l dehydrogenas e gene expression. ]Biol Chem 271:9526-9534. Astley SJ , Clarren S K (1996) A case definitio n and pho tographic screening tool for the facia l phenotype of fetal alcoho l syndrome . J Pediatr 129:33-41 . Astley SJ, Magnuson SI, Omnell LM, Clarren S K (1999) Fetal alcoho l syndrome : change s i n craniofacia l form wit h age, cognition, an d timin g of ethanol exposure in the macaque . Teratology 59:163—72 . Bannerman P , Nichol s W , Puhall a S , Olive r T , Herman M , Pleasur e D (2000 ) Early migratory rat neural cres t cell s expres s functional gap junctions: evidence that neural crest cell surviva l requires gap junction function. J Neurosci Res 61:605-615 . Bannigan J, Burke P (1982) Ethanol teratogenicity in mice: a light microscopic study. Teratology 26:247—254. Bannigan J , Cottell D (1984 ) Ethano l teratogenicit y i n mice: an electro n microscop y study. Teratology 30: 281-290. Basch ML , Garcia-Castro MI , Bronner-Frase r M (2004) Molecular mechanism s o f neura l cres t induction. Birth Defects Res Part C 72:109-123. Blader P, Strahle U (1998) Ethanol impair s migration of the prechorda l plat e i n the zebrafis h embryo . De v Biol 201:185-201.
Bradley DM, Paiv a M, Tonjes LA, Beaton MB (1995) In vitro compariso n of th e effect s o f ethano l an d ac etaldehyde o n dorsa l roo t ganglio n neurons . Alco hol Clin Exp Res 19:1345-1350. Bruyère HJ , Stit h C E (1993 ) Strain-dependen t effec t o f ethanol o n ventricula r septa l defec t frequenc y i n white leghor n chic k embryos . Teratology 48:299303. Bruyère HJ , Stith C E (1994a ) Ethy l alcoho l reduce s cardiac output, stroke volume, and end diastolic volume in the embryonic chick. Teratology 49:104-112. Bruyère HJ , Stith CE , Thor n T A (1994b) Cardioteratogenic dose o f ethanol reduce s bot h lacti c dehydro genase an d succini c dehydrogenas e activit y i n th e bulbar ridge s of the embryoni c chic k heart . J Appl Toxicol 14:27-31 . Carey MB, Matsumoto SG (1999) Spontaneous calciu m transients ar e require d fo r neuronal differentiation of murine neural crest. Dev Biol 215:298-313. Carey MB, Matsumoto S G (2000) Calcium transien t activity i n culture d murine neural crest cells is regulated at the IP(3 ) receptor. Brain Res 862:201-210. Carones F , Brancat o R , Venturi E , Bianch i S , Magni R (1992) Corneal endothelia l anomalies in the fetal alcohol syndrome . Arch Ophthalmol 110:1128-1131 . Cartwright MM, Smith SM (1995a) Increased cell death and reduce d neura l cres t cell number s i n ethanolexposed embryos : partial basis for the feta l alcoho l syndrome phenotype . Alcoho l Cli n Ex p Re s 19 : 378-386. Cartwright MM, Smit h S M (1995b) Stage-dependent effects of ethanol o n cranial neural crest cell develop ment: partia l basi s fo r th e phenotypi c variation s observed i n feta l alcoho l syndrome . Alcoho l Cli n Exp Res 19:1454-1462 . Cartwright MM , Tessme r LL , Smit h S M (1998 ) Ethanol-induced neura l cres t apoptosi s i s coinci dent with their endogenous death, but i s mechanistically distinct. Alcohol Clin Exp Res 22:142-149. Cavieres MF , Smit h S M (2000 ) Geneti c an d develop mental modulatio n o f cardia c deficit s i n prenata l alcohol exposure . Alcohol Cli n Ex p Re s 24:102 109. Charness ME , Safra n RM , Perides G (1994 ) Ethano l in hibits neural cell-cell adhesion . J Biol Chem 269 : 9304-9309. Chen H, Yang JV, Namkung MJ, Juchau MR ( 1996a) In teractive dysmorphogenic effect s o f all-trans-retinol and ethano l o n cultured whol e ra t embryos during organogenesis. Teratology 54:12-19. Chen SY , Periasamy A, Yang B, Herman B , Jacobson K, Sulik K K (2000 ) Differentia l sensitivit y of mous e neural cres t cell s t o ethanol-induced toxicity . Alcohol 20:75-81.
292 ETHANOL-AFFECTE D DEVELOPMEN T Chen SY , Sulik K K (1996 ) Fre e radical s an d ethanol induced cytotoxicit y i n neura l cres t cells . Alcoho l Clin Exp Res 20:1071-1076. (2000) Iron-mediate d fre e radica l injur y i n ethanol-exposed mous e neura l cres t cells . J Phar macol Exp Ther 294:134-140. Chen SY , Wilkemeyér MF, Suli k KK , Charnes s M E (2001) Octano l antagonis m o f ethanol teratogene sis.FASEBJ 15:1649-1651 . Chen SY , Yang B , Jacobso n K , Suli k K K (1996b ) Th e membrane disorderin g effect o f ethanol o n neura l crest cell s i n vitr o and th e protectiv e rol e o f GM1 ganglioside. Alcohol 13:589-595 . Chou CF, Lai CL, Chang YC, Duester G , Yin SJ (2002) Kinetic mechanis m o f human clas s I V alcohol de hydrogenase functionin g as retinol dehydrogenase . JBiolChem 277:25209-25516 . Church MW , Abe l EL , Kaltenbac h JA , Overbeck G W (1996) Effect s o f prenatal alcohol exposur e and ag ing on auditor y function i n th e rat : preliminary results. Alcohol Cli n Exp Res 20:172-179. Church MW , Eldi s F , Blakle y BW , Bawl e E V (1997 ) Hearing, language , speech , vestibular, and dentofa cial disorder s i n feta l alcoho l syndrome . Alcoho l Clin Exp Res 21:227-237. Clarren SK , Smit h D W (1978 ) Th e feta l alcoho l syn drome. N Engl J Med 298:1063-1067 . Daft PA, MC Johnston , K K Sulik (1986) Abnormal hear t and grea t vesse l developmen t followin g acut e ethanol exposur e in mice. Teratology 33:93-104 . Das UG , Cron k CE , Martie r SS , Simpso n PM , Mc Carver D G (2004 ) Alcohol dehydrogenas e 2* 3 affects alteration s i n offsprin g facia l morphologica l associated wit h materna l ethano l intak e i n preg nancy. Alcohol Clin Ex p Res 28:1598-1606. Davis WL, Crawford LA, Cooper OJ, Farmer GR, Thomas DL, Freeman P B (1990) Ethanol induces the generation o f reactive free radicals by neural cres t in vitro. J Craniofac Genet Dev Biol 10:277-293. Debelak KA , S M Smit h (2000 ) Avia n geneti c back ground modulate s th e neura l cres t apoptosi s in duced b y ethanol exposure . Alcohol Cli n Ex p Res 24:307-314. Debelak-Kragtorp KA , Arman t DR , Smit h S M (2003 ) Ethanol-induced cephali c apoptosi s require s phopholipase C—dependen t intracellula r calciu m signaling. Alcohol Cli n Ex p Res 27:515-523 . Del tour L , Ang HL, Dueste r G (1996 ) Ethano l inhibi tion o f retinoic aci d synthesi s as a potential mecha nism for fetal alcoho l syndrome . FASEB J 10:10501057. Deltour L , Foglio MH, Dueste r G (1999 ) Metabolic de ficiencies in alcoho l dehydrogenas e Adhl, Adh3, and Adh4 nul l mutan t mice . J Bio l Che m 274 : 16796-16801.
Dickman ED , Thalle r C , Smit h S M (1997) Temporall y regulated retinoi c aci d depletio n produce s specifi c neural crest , ocular , an d nervou s syste m defects . Development 124:3111-3121 . Dow KE , Riopell e R J (1990) Specifi c effect s o f ethano l on neurite-promotin g proteoglycan s o f neurona l origin. Brain Res 508:40-45. Duester G (1991 ) A hypothetical mechanis m fo r fetal alcohol syndrom e involvin g ethano l inhibitio n o f retinoic acid synthesis at the alcohol dehydrogenas e step. Alcohol Clin Ex p Res 15:568-572. Dunty WC, Chen SY , Zucker RM , Dehart DB , Suli k KK (2001) Selective vulnerability of embryonic cell populations to ethanol-induced apoptosis: implication s fo r alcohol-related birt h defects and neurodevelopmenta l disorder. Alcohol Clin Exp Res 25:1523-1535. Edwards HG , Dow-Edward s D L (1991 ) Craniofacia l alterations in adult rats prenatally exposed to ethanol . Teratology 44:373-378. Fang T-T, Bruyèr e HJ, Kargas SA, Nishikawa T, Takagi Y, Gilbert E F (1987 ) Ethy l alcohol-induce d cardio vascular malformation s in th e chic k embryo . Tera tology 35:95-103. Firulli AB, Conway S J (2004) Combinatoria l transcriptional interactio n withi n the cardia c neura l crest : a pair o f HAND s i n hear t formation . Birt h Defect s Res PartC 72:151-161. Fransen E , Lemmo n V, Vancamp G , Vit s L, Coucke P, Willems P J (1995 ) CRAS H syndrome-clinica l spectrum o f corpu s callosu m hypoplasia , retarda tion, adducte d thumbs , spasti c paraparesi s an d hy drocephalus du e t o mutation s i n on e signa l gene, LI. Eur J Hum Gene t 3:273-284. Frias JL , Wilson AL , Kin g GF (1982 ) A cephalometri c study o f feta l alcoho l syndrome . J Pediat r 191 : 870-873. Garic-Stankovic A , Hernandez MR , Chian g PJ , Debelak Kragtorp KA , Flentke GR , Arman t DR , Smit h S M (2005) Ethanol triggers neural crest apoptosis through the selective activation of a pertussis toxin-sensitive G protein an d a phospholipas e Cß-dependen t Ca 2+ transient. Alcohol Clin Exp Res 29:1237-1246. Garic-Stankovic A, Hernandez MR , Flentk e GR , Smit h SM (2006 ) Structura l constraint s fo r alcohol stimulated Ca 2+ releas e i n neura l crest , an d dua l agonist/antagonist properties o n n-octanol. Alcohol Clin Exp Res in press. Graham A , Francis-Wes t P , Brickel l P , Lumsde n A (1994) Th e signalin g molecul e BMP 4 mediate s apoptosis i n the rhombencephalic neural crest . Nature 372:684-686 . Grummer MA , Langhoug h RE , Zachma n R D (1993 ) Maternal ethano l ingestio n effect s i n feta l ra t brain vitamin A as a model for fetal alcoho l syndrome. Alcohol Cli n Ex p Res 17:592-597.
NEURAL CREST AND EARLY DEVELOPMENTAL EXPOSURE TO ETHANO L 29 3 Haselbeck RJ , Duester G (1998 ) ADH4-lac Z transgenic mouse reveal s alcoho l dehydrogenas e localizatio n in embryoni c midbrain/hindbrain , oti c vesicles , and mesencephalic , trigeminal, facial and olfactory neural crest . Alcohol Cli n Exp Res 22:1607-1613. Hassler JA , Moran D J (1986 ) Effect s o f ethanol o n th e cytoskeleton of migrating and differentiatin g neura l crest cells : possible rol e i n teratogenesis . J Cranio fac Gene t De v Biol 2(Suppl) : 129-136. Heaton MB , Swanso n DJ , Paiv a M, Walke r D W (1992 ) Ethanol exposure affects trophic factor activity and responsiveness in chick embryo. Alcohol 9:161-166. Johnson VP, Swayze VW, Sat o Y, Andreasen N C (1996 ) Fetal alcoho l syndrome : craniofacia l an d centra l nervous system manifestations. Am J Med Gene t 61: 329-339. Jones KL , Smit h DW , Ullelan d CN , Streissgut h A P (1973) Patter n o f malformatio n i n offsprin g o f chronic alcoholic mothers . Lancet 1:1267—1271 . Kirby M L (1999 ) Contributio n o f neural cres t t o hear t and vessel morphology. In: Harvey RP, Rosenthal N (eds). Heart Development. Academi c Press , Lon don, pp 179-193. Kotch LE , Che n SY , Sulik K K (1995 ) Ethanol-induced teratogenesis: fre e radica l damag e a s a possibl e mechanism. Teratolog y 52:128—136 . Kotch LE , Suli k KK (1992a) Experimental feta l alcoho l syndrome: propose d pathogeni c basi s fo r a variety of associated facia l an d brai n anomalies . A m J Me d Genet 44:168-176. Kotch LE, Suli k KK (1992b) Patterns of ethanol-induced cell death i n the developing nervous system of mice: neural fol d state s through th e tim e o f anterior neu ral tube closure. Int J Dev Neurosci 10:273-279 . Längsten AW, Gudas LJ (1994) Retinoic acid and home obox gene regulation . Curr Opi n Ge n De v 4:550555. Le Douarin NM , Kalchei m C (1999 ) The Neural Crest, 2nd Edition . Cambridg e Universit y Press , Cam bridge, UK. Lemoine P , Harroussea u H , Borteyr u JP , Menue t J C (1968) Le s enfant s d e parent s alcooliques : anom alies observée s a proposo s de 12 7 cas. Oues t Me d 21:476-482. Luo J, West JR, Cook RT , Pantazis NJ (1999) Ethanol in duces cell deat h an d cel l cycl e delay in culture s of pheochromocytoma P C 12 cells. Alcohol Cli n Ex p Res 23:644-656. Maden M , Gale E , Kostetski I, Zile M (1996) Vitamin A deficient quai l embryo s have hal f a hindbrai n an d other neural defects. Curr Bio l 6:417-426. Mattson SN , Riley EP, Gramling L , Delis DC , Jone s KL (1997) Heav y prenata l alcoho l exposur e wit h o r without physical features of fetal alcohol syndrom e leads to IQ deficits. J Pediatr 131:718-721 .
McCarver DG , Thomasso n HR , Martie r SS , Soko l RJ, Li T K (1997 ) Alcoho l dehydrogenase-2* 3 allel e protects agains t alcohol-related birt h defects amon g African Americans . J Pharmaco l Ex p The r 283 : 1095-1101. Messing RO , Carpenter CL , Diamon d I , Greenberg D A (1986) Ethano l regulate s calciu m channel s i n clonal neura l cells . Pro c Nat l Aca d Se i US A 83 : 6213-6215. Mihic SJ , Ye Q, Wic k MJ , Koltchin e W , Krasowsk i MD, Fin n SE , Masci a MP , Valenzuela CF , Han son KK , Grennblatt EP , Harri s RA , Harriso n N L (1997) Site s o f alcohol an d volatil e anaesthetic ac tion o n GABA a and glycin e receptors. Nature 389 : 385-389. Miller MT , Beaucham p G R (1988 ) Th e rol e o f neural crest cell s i n feta l alcoho l syndrom e children with anterior segmen t anomalie s o f the eye . Am J Me d Genet 4-5(Suppl): 180-181. Miller MW, Roskams AJI, Connor J R (1995) Iron regulation i n th e developin g ra t brain : effect o f in uter o ethanol exposure . J Neurochem 65:373-380 . Molotkov A, Duester G (2002 ) Retinol/ethanol dru g interaction durin g acute alcoho l intoxicatio n in mic e involves inhibition o f retinol metabolis m t o retinoi c acid b y alcoho l dehydrogenase . J Bio l Cher n 277 : 22553-22557. Moore ES , Ward RE , Jamison PL, Morris CA, Bader PI, Hall B D (2001 ) The subtl e facia l sign s of prenatal exposure t o alcohol : a n anthropométri e approach . J Pediatr 139:215-219 . Moore ES , Ward RE , Jamison PL, Morris CA, Bader PI, Hall B D (2002) New perspectives o n the fac e i n fetal alcoho l syndrome : what anthropometry tells us. Am J Med Gene t 109:249-260 . Nyquist-Battie C, Fréte r M (1988) Cardia c mitochondrial abnormalities in a mouse mode l o f the feta l alcoho l syndrome. Alcohol Clin Ex p Res 12:264-267. Plant MR , MacDonal d ME , Gra d LI , Ritchie SJ , Richman J M (2000) Locally released retinoic acid repatterns the first branchial arc h cartilage s in vivo. Dev Biol 222:12-26 . Ramanathan R , Wilkemeyer MF , Mitta l B , Peride s G , Charness ME (1996 ) Ethanol inhibit s cell-cell adhesion mediate d b y huma n LI . J Cel l Bio l 133 : 381-390. Rasheed A , Hines RN , McCarve r D G (1997 ) Variation in induction o f human placenta l CYP2E1: possible role i n susceptibilit y t o feta l alcoho l syndrome ? Toxicol Appl Pharmacol 144:396-400 . Reed J C (2000 ) Mechanisms o f apoptosis. A m J Patho l 157:1415-1430. Rifas L, Towler DA, Avioli LV (1997) Gestational exposur e to ethano l suppresse s msx2 expressio n i n developin g embryos. Proc Natl Acad Sei USA 94:7549-7554.
294 ETHANOL-AFFECTE D DEVELOPMENT Roebuck TM , Simmon s RW , Richardso n C , Mattso n SN, Rile y E P (1998 ) Neuromuscula r response s t o disturbance o f balanc e i n childre n wit h prenata l exposure t o alcohol . Alcoho l Cli n Ex p Re s 22 : 1992-1997. Rout UK , Krawet z SA , Arman t D R (1997 ) Ethanol induced intracellula r calcium mobilizatio n rapidl y alters gene expressio n i n the mous e blastocyst . Cell Calcium 22:463-474 . Rovasio RA , Battiato NL (1995 ) Role o f early migratory neural cres t cell s i n developmenta l anomalie s in duced b y ethanol. Int J Dev Bio l 39:421-422 . (2002) Ethano l induce s morphologica l an d dy namic change s on i n viv o an d i n vitr o neural cres t cells. Alcohol Clin Ex p Res 26:1286-1298. Ruckman RN , Messersmit h DJ , O'Brie n SA , Getson PR , Boeckx RL, Morse DE (1988 ) Chronic ethanol exposure in the embryoni c chick heart: effect o n myocardial function an d structure. Teratology 37:317-327. Sanders EJ , Cheun g E (1990 ) Ethano l treatmen t in duces a delayed segmentation anomaly in the chick embryo. Teratology 41:289-297. Sanders EJ , Cheun g E , Mahmu d E (1987 ) Ethano l treatment inhibit s mesoderm cel l spreadin g in th e gastrulating chick embryo. Teratology 36:209-216. Sandor S (1968) The influenc e of aethyl alcohol o n th e developing chick embryo. II. Rev Roum d'Embr et de Cyt Série d'Embr 5:167-171. Schneider RA , Hu D , Rubenstei n JL, Maden M , Helm s JA (2001) Local retinoi d signalin g coordinates fore brain an d facia l morphogenesi s b y maintainin g FGF8 and SHH. Developmen t 128:2755-2767 . Smith SM , S u B, Tessmer LA, Debelak KA, Flentke GR , Hahn S H (2001 ) Prenata l alcoho l exposur e redi rects soni c hedgeho g signalin g during craniofacia l morphogenesis. Alcohol Clin Ex p Res 25:35A. Spong CY , Abebe DT , Goze s I , Brennema n DE , Hil l JM (2001 ) Prevention o f feta l demis e an d growt h restriction i n a mous e mode l o f feta l alcoho l syn drome. J Pharmacol Exp Ther 297:774-779. Stachecki JJ, Yelian FD , Schult e JF , Leach RE , Armant DR (1994 ) Blastocys t cavitation i s accelerate d b y ethanol- o r ionophore-induce d elevatio n o f intra cellular calcium. Biol Reprod 50:1—9 . Su B, Debelak KA , Tessmer LL , Cartwright MM, Smit h SM (2001 ) Genetic influence s on craniofacia l outcome i n a n avia n model o f prenatal alcoho l expo sure. Alcohol Clin Ex p Res 25:60-69. Sulik KK, Cook CS , Webste r WS (1988 ) Teratogens and craniofacial malformations : relationship s t o cel l death. Development 103(Suppl):213-232 . Sulik KK , Johnston MC , Daf t PA , Russell WE, Dehar t DB (1986 ) Feta l alcoho l syndrom e an d DiGeorg e anomaly: critica l ethano l exposur e period s fo r
craniofacial malformation s as illustrated i n a n ani mal model . Am J Med Gene t 2(Suppl):97- l 12. Sulik KK, Johnston MC, Web b MA (1981) Fetal alcohol syndrome: embryogenesi s in a mous e model . Sci ence 214:936-938. Trainor PA , Ariza-McNaughton L , Krumlau f R (2002 ) Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning . Sci ence 295:1288-1291. Twal WO, Zil e MH (1997 ) Retinoic acid reverses ethanolinduced cardiovascula r abnormalities in quai l em bryos. Alcohol Clin Exp Res 21:1137-1143. Webster WS , Wals h DA , McEwe n SE , Lipso n A H (1983) Som e teratogeni c propertie s of ethanol an d acetaldehyde i n C57B1/6 J mice : implication s fo r the stud y of the feta l alcohol syndrome . Teratolog y 27:231-243. Wedden S E (1987 ) Epithelial-mesenchyma l interactions in the development of chick facial primordia and th e target of retinoid action. Development 99:341-351. Wilkemeyer MF, Charness ME (1998 ) Characterization of alcohol-sensitiv e an d insensitiv e fibroblas t cel l lines expressin g huma n LI . J Neuroche m 71 : 2382-2391. Wilkemeyer MF , Che n SY , Menkari CE , Brennema n DE, Suli k KK , Charnes s M E (2003 ) Differentia l effects o f ethanol antagonism and neuroprotectio n in peptid e fragmen t NAPVSIP Q preventio n o f ethanol-induced developmenta l toxicity . Pro c Nat l Acad Sei USA 100:8543-8548. Wilkemeyer MF , Menkar i C , Spon g CY , Charness M E (2002) Peptid e antagonist s o f ethanol inhibitio n of LI-mediated cell-cel l adhesion . J Pharmaco l Ex p Ther 303:110-116. Wilkemeyer MF, Sebastian AB, Smith SA , Charness M E (2000) Antagonists of alcohol inhibitio n of cell ad hesion. Proc Natl Acad Sei USA 97:3690-3695. Yao L, Arolfo MP, Dohrman DP , Jiang Z, Fan P, Fuchs S, Janak PH , Gordon AS , Diamon d I (2002 ) ßy Dimers mediat e synerg y o f dopamin e D 2 an d adenosine A 2 receptor-stimulate d PK A signalin g and regulat e ethano l consumption . Cel l 109:733 743. Yao L , Fa n P , Jiang Z, Mailliar d WS, Gordo n AS , Dia mond I (2003 ) Addicting drug s utiliz e a synergistic molecular mechanis m i n common requirin g adenosine an d Gi-ß y dimers . Pro c Nat l Aca d Se i US A 100:14379-14384. Zachman RD , Grumme r M A (1998) The interactio n of ethanol and vitami n A as a potential mechanism for the pathogenesi s of fetal alcoho l syndrome. Alcohol Clin Exp Res 22:1544-1556. Zile M H (2001 ) Function o f vitamin A in vertebrate em bryonic development. J Nutr 131:705-708 .
18 Glial Targets o f Developmental Exposure t o Ethanol Consuelo Guerri Gemma Ruber t Maria Pascual
The wor d glia i s derived fro m th e Gree k wor d gliok, meaning glue , whic h Vircho w (Letterer , 1958 ) ap plied i n the sens e of nerve glue. The traditiona l point of view of glia a s a passive component of the centra l nervous system (CNS) has changed drasticall y during the pas t decade . Gli a ar e no w recognize d a s activ e partners wit h neuron s a s participant s i n neurotrans mission and they play essential roles in axonal conduction, synapti c plasticity , an d informatio n processin g (Nagler et al, 2001; Ullian e t al., 2001, 2004 ; Fields Graham, 2002) . Further , gli a ca n respon d t o insults and ar e capabl e o f proliferatin g throughou t lif e (Chen and Swanson, 2003). In th e adul t huma n brain , gli a outnumbe r neu rons by one order of magnitude. There are two classes of glia : microgli a (whic h mediat e inflammator y re sponses i n th e CNS ) an d macroglia . The latte r cell s are oligodendrocyte s (whic h for m th e insulatin g niyelin sheaths) and astrocytes, the most paradigmatic glia (whic h are abundan t an d ubiquitou s withi n th e CNS). The presen t chapte r focuse s on astrocytes.
ROLE OF GLI A IN THE DEVELOPIN G CENTRAL NERVOUS SYSTE M
Glia ar e presen t an d integra l throughou t CN S de velopment. Glial-neurona l interaction s play critical roles in multiple developmenta l events . For example, radial glia (RG ) provide physical an d chemica l guid ance fo r th e migratio n o f young neuron s fro m th e embryonic proliferativ e zone s int o th e developin g cortex (Rakic , 1972 ; Hatte n an d Mason , 1990 ) (se e Chapter 3) . When th e migratio n is completed, mos t RG transform into astrocytes. RG als o serve as a rnultipotential precurso r cell , a s the y ar e abl e t o self renew an d generat e neuron s (Malatest a e t al. , 2000 ; Noctor e t al, 2001 , 2002 ; Göt z e t al. , 2002 ; Sana i étal., 2004). Astroglia an d glial-derive d factors ar e key to synaptogenesis, since they promote th e formation of mature functional synapse s (Nagler et al., 2001; Ullian e t al., 2001, 2004). Disturbances o f glia or of neuronal-glial communication durin g th e well-establishe d critica l
295
296 ETHANOL-AFFECTE D DEVELOPMEN T periods o f brain developmen t ca n caus e irreversibl e deficits i n CN S functio n (Hatten , 1999 ; Lammens , 2000; Ros s an d Walsh , 2001 ; Crespe l e t al, 2002). Such findings strongly support the crucia l role of glia in development an d the notion tha t their dysfunction underlies anomalies in brain development . An increasin g number o f studies shows (a) that a prime target of ethanol withi n the developing brain is astrocytes (Guerr i and Renau-Piqueras , 1997 ; Guerr i et al, 2001) and (b) that ethanol impairs astrogliogenesis. The presen t chapte r reviews clinical, experimen tal, and i n vitro evidence about the actions of ethanol on astrogli a and thei r functions . Specia l attentio n i s paid t o the effect s tha t prenatal ethano l exposur e has on neura l ste m cell s (e.g. , RG ) an d t o the action s of ethanol o n astroglia l proliferatio n an d cel l survival . Since astrogli a regulat e synaptogenesi s and synapti c transmission, the potentia l effect s o f ethanol o n thes e processes are also discussed.
GLIAL ABNORMALITIES CAUSE D BY ETHANO L
Since th e first neuropathological studies on childre n with feta l alcoho l syndrom e (FAS ) (Clarre n et al , 1978), abnormalitie s in glial development hav e been suspected a s contributin g t o th e advers e effect s o f ethanol o n th e developin g brain . Ethanol-expose d brains exhibit abnormal glial placement primaril y associated wit h th e méninge s (meningea l neuroglia l heterotopias) (Clarre n e t al., 1978 ; Peiffe r e t al, 1979 ; Clarren, 1986) , gyra l malformations, cerebral dysgenesis, and, in some cases, reactive gliosis (Peiffer e t al., 1979; Wisniewski et al, 1983) . White matter, a repository o f glia , appear s t o b e affecte d b y prenata l ethanol exposur e (PEE) . Severa l studie s usin g mag netic resonanc e imagin g and singl e photo n emissio n computed tomograph y have shown that children with FAS have hypoplasia of the corpu s callosum an d an terior commissure (the anläge of which are formed by glia) (Rile y et al., 1995 ; Johnson e t al., 1996 ; Swayz e et al. , 1997) . PE E ca n lea d t o a reductio n i n whit e matter an d delaye d myelinatio n (Riikone n e t al. , 1999;SowelletaL, 2001b). Animals expose d t o ethano l durin g brai n devel opment exhibi t alteration s i n glia-relate d develop ment, includin g aberrant neuronal migration , delayed astrogliogenesis, an d a reductio n o f cortica l astro cytes (Miller, 1986, 1988 ; Mille r and Potempa , 1990 ;
Gressens e t al , 1992 ; Mille r an d Robertson , 1993 ; Vallès e t al. , 1996) . Moreover , studie s o f a primat e model o f FA S implicate glial involvement . Ethanol exposed monkey s hav e glia l heterotopia s (Clarre n and Bowden , 1984 ) an d dysgeni c corpor a callos a (Miller e t al., 1999) . Thes e alterations ar e consisten t with th e concep t tha t on e o f th e developmenta l stages most vulnerabl e to ethanol i s the brain-growt h spurt (Bonthius and West , 1991) . This period i s characterized b y majo r developmen t o f gli a an d myeli n structures.
ETHANOL AFFECT S ASTROGLIAL ONTOGENY
Radial Glia Normal Ontogeny of Radial Glia Among th e firs t cell s t o differentiat e fro m th e neu roepithelium are RG (Misson et al, 1991) , which appear befor e th e onse t o f neuronogenesi s (Cavines s et al., 1995). RG have a bipolar morphology: each RG has a soma i n th e ventricula r or subventricular zon e and bear s a lon g apica l proces s tha t extend s toward the pia l surfac e an d a shorter basa l proces s tha t con tacts the ventricular wall. The ter m radial glia was introduced b y Rakic (1972) in hi s classic description of neural migration in the feta l primat e neocortex. Most R G transform into mature, stellate-appearin g astrocytes afte r th e neurona l migratio n i s complete d (Schmechel an d Rakic , 1979 ; Pixle y an d DeVellis , 1984; Voigt , 1989; Camero n an d Rakic , 1991; Misson et al, 1991 ; Mille r and Robertson, 1993) . Changes i n the morpholog y of RG are linked to changes in the expression of specific proteins. Vimentin an d nesti n (in cluding its immunorecognized antigenic determinant s RC1 and RC2 ) are prenatally present in RG of rodent CNS, wherea s glia l fibrillar y acidi c protei n (GFAP ) appears in neonates (e.g. , Hockfield and McKay, 1985 ; Millerand Robertson, 1993; Sancho-Tello etal, 1995; Chanas-Sacreetal.,2000). Effects of Ethanol on Radial Glia Development Cerebral Cortex . Ethano l exposure during embryogenesis induce s irreversibl e alteration s i n th e CN S (Guerri, 1998 , 2002). The first suggestion that ethano l
GLIAL TARGETS OF DEVELOPMENTA L EXPOSURE TO ETHANO L 29 7 impairs migratio n originate s fro m neuropathologica l examination a t autops y o f brains fro m childre n wit h FAS (Clarre n e t al, 1978 ; Wisniewsk i e t al, 1983) . Most notable amon g the findings were neuroglial heterotopias located nea r th e pia l surfac e o f the cerebra l cortex. Alteration s observe d i n human s hav e bee n reproduced i n studie s o f animals expose d t o ethano l in utero . Prenata l exposur e t o moderat e amount s o f ethanol (100-20 0 mg/dl) cause s leptomeningea l het erotopias wit h breache s i n th e gli a limitan s an d re duces th e numbe r an d alter s the morpholog y o f RG (Kotkoskie an d Norton , 1988 ; Gressen s e t al. , 1992 ; Komatsu et al, 2001; Moone y e t al, 2004). At least in the rat , heterotopia s persis t into adulthoo d (Komats u et al., 2001). Cultured R G harveste d fro m 12-day-ol d fetuses are affected b y pre - an d postconceptio n exposur e t o ethanol (Vallè s e t al, 1996) . Thes e R G exhibi t shor t glial processes, reduce d number s o f cells, and delays in their transformation int o GFAP-positive astrocyte s (Vallés et al., 1996 ) (Figs . 18- 1 an d 18-2) . A developmen tal dela y in GFA P expressio n ha s als o been describe d in rat whole brains in vivo. During norma l rat brain development, GFA P mRN A appear s o n gestationa l da y (G) 14 , then bot h GFA P transcript and protein expression increas e durin g lat e feta l an d earl y postnata l development. Prenata l ethano l exposur e delays the appearance o f GFA P mRN A unti l G1 9 an d decrease s GFAP expression (Vallès et al., 1996 , 1997) . A compa rable delay is evident among astrocyte s proximal to th e dorsal and medial raphe (Tajuddi n e t al, 2003). An in vivo study focusing on the R G and astrocytes in th e cortica l plate-derive d lamina e o f cortex , i.e. , layers II—Via , show s that GFA P expressio n i s ubiquitously delayed (Mille r an d Robertson , 1993) . I n con trol rats , nestin-positiv e R G ar e presen t throug h th e period o f neuronal generatio n (pas t postnatal da y [P] 8). GFAP-positiv e astrocytes , thoug h common i n th e intermediate zon e (th e anläg e o f the whit e matter) , only appear i n deep layer Via on P3. With time, they progressively appear i n mor e superficia l positions . I n contrast, i n ethanol-treate d rat s R G begi n t o regres s by P 5 an d GFA P immunoreactivit y appear s i n corti cal gray matter o n PI . From th e effect s o f ethanol o n the paire d change s i n nesti n an d GFA P expression , the compellin g conclusio n i s that ethano l cause s th e premature transformatio n o f R G int o astrocyte s i n cortex—this underlies the migratio n of late-generated neurons t o ectopi c site s (Miller , 1986 , 1988 , 1997) . The differen t timin g o f GFA P expressio n i n whol e
control
PEE
FIGURE 18- 1 Effec t of ethanol on nestin and glia l fibrillary acidi c protei n (GFAP ) expression . Corona l sections o f 21-day-ol d contro l (A ) an d prenata l ethanol-exposed (PEE ) (D ) fetuses , staine d wit h hematoxilin-eosin. B, C, E, F . Higher magnificatio n of boxed regions to show nestin-positive glia (RG) and GFAP-positive astrocytes . Brain sections from PE E fe tuses show a reduction i n the corpu s callosu m (CC) , alternations i n th e morpholog y o f RG fibers, and re duction i n the generation of astrocytes.
brain vs . cortex an d th e effec t o f ethanol on tha t tim ing (cf . Mille r an d Robertson , 1993 ; Vallè s e t al , 1996) likel y reflect the effec t o f ethanol on astrocyte s in th e intermediat e zone , th e primar y (sole ) sit e o f GFAP expressio n i n the fetus . Cerebellar Cortex . Th e cerebellu m i s anothe r brain regio n tha t i s sensitive to ethano l toxicit y dur ing developmen t (Guerri , 1998) . Th e cel l bodie s o f Bergmann glia , th e cerebella r subpopulatio n o f R G (Sievers e t al, 1994 ; Yuasa , 1996) , initiall y assum e a position periventricula r t o th e Purkinj e cel l layer . Postnatally, thei r cel l bodie s translocat e peripherall y so that the y ca n guid e th e inwar d migratio n o f granule neurons.
298 ETHANOL-AFFECTE D DEVELOPMEN T
control
PEE
vermis an d th e disruptio n o f th e cerebella r cortical structure.
FIGURE 18- 2 Radia l glia a t 2 an d 7 days of culture. Radial gli a wer e isolate d fro m th e brain s o f 12-day old contro l o r prenata l ethanol-expose d (PEE ) fe tuses. A, B. During the initia l days of culture, control cells expresse d mainl y nesti n (R G marker ) an d formed aggregate s resemblin g neurosphere s (A ) composed o f newly born neuron s (Tujl + ) an d radia l glia (nestin +). C-F. Th e neurosphere-lik e aggregate s increased i n number and siz e with culture time (C) , and radia l gli a wer e transforme d into mor e matur e neurons (MAP2+ ; D , arrowheads ) an d int o GFAP positive astrocyte s (E , F) . Culture d radia l glial cell s isolated fro m PE E fetuse s displaye d morphological alterations an d impaire d neurogeni c potential , a s demonstrated by the decreas e i n numbe r o f neurons and astrocyte s generated . Nucle i wer e staine d wit h Hoechst ( g Rubert, r Miïlana, and c Guerri, unpub lished results) .
Factors Regulatin g Radia l Glia l Transformation . Our curren t understandin g o f mechanism(s) and factors that regulate the transformatio n of RG into astro cytes o r neuron s developmen t i s limited . Extrinsi c cues suc h a s ciliar y neurotrophi c factors , epiderma l growth factors , neureguli n l-erbB 2 signalin g an d members o f the bon e morphogeneti c protei n famil y may induc e cortica l progenitor s t o differentiat e int o astrocytes (Hughe s e t al , 1988 ; Gros s e t al , 1996 ; Johe e t al. , 1996 ; Küh n an d Miller , 1996 ; Burrow s étal., 1997 ; Schmid et al, 2003). Critical determinant s of GFAP expressio n and as trocyte differentiatio n i n feta l brai n ar e change s i n DNA methylation and chromatin structur e (Takizawa et al, 2001 ; Son g and Ghosh , 2004) . These change s are regulate d b y hormone s an d growt h factors . Th e methylation o f genomic DN A a t Cp G dinucleotide s regulates cell - o r tissue-specifi c gen e expressio n (Razin,1998; Bird and Wolffe, 1999) . During embryogenesis an d differentiation , mos t tissue - an d cell specific genes are almost fully methylated and undergo programmed demethylatio n at the momen t of activation and transcriptio n (Barresi et al., 1999) . Chronic i n uter o ethano l exposur e decrease s th e demethylation o f GFAP gene , affectin g bot h it s transcription and expressio n (Vallès et al., 1997) . Ethano l exposure interfere s wit h th e releas e an d actio n o f growth factor s (Luo an d Miller , 1998) , whic h migh t affect th e developmentally regulated epigeneti c mod ifications, leadin g t o th e change s i n bot h DN A methylation and GFA P expression.
Ethanol, given eithe r acutel y o r chronicall y dur ing fetal and neonatal development , delay s the matu ration o f Bergman n glia , decrease s th e numbe r o f GFAP-positive fibers , an d induce s the growt h o f abnormal glia l processe s (e.g. , shorter, thinner, an d ir regular) (Shett y e t al. , 1994 ; Perez-Torrer o e t al. , 1997). Moreover , gestationa l exposur e t o ethano l causes defect s i n th e cerebella r glia l limitan s (formed b y Bergmann glia l en d fee t o n th e cerebel lar surface ) o f the ra t an d th e appearanc e o f solitary or clustered ectopi c granule cells (Sakata-Haga et al., 2001). Damag e t o th e glia l limitan s ma y underli e the fusio n o f th e foli a V an d V I o f th e cerebella r
Cell Adhesion Proteins . Ethano l affect s glia l elab oration o f cel l adhesio n protein s an d growt h factors (e.g., transforming growth factor [TGF ] ßl ) mediatin g neuronal-glial interactions . Among the cel l adhesio n proteins, neural cell adhesion molecule s (nCA M an d LI), integrins , and astrotacti n mediat e neuronal-glia l attachments an d communicatio n (Edelman,1994 ; Hatten, 2002 , Nadaraja h an d Parnavelas , 2002 ; Schmid an d Anton, 2003). Ethanol affects th e expressio n and functio n of several neural cell adhesion proteins both in vitro (Miller and Luo , 2002; Minana et al, 1998 , 2000 ) and in situ (Siegenthaler an d Miller , 2004) . Ethano l als o dis rupts (a) LI-dependent cell adhesion and homophilic interactions among LI molecule s (Wilkemeye r et al.,
GLIAL TARGETS OF DEVELOPMENTA L EXPOSUR E T O ETHANO L 29 9 1999, 2000 ; Bearer , 2001 ) an d (b ) integri n expres sion i n feta l brai n organotypic cultures (Siegenthaler and Miller , 2004). Likewise , TGFßl, which promote s neuronal migratio n i n corte x an d increase s expres sion o f adhesio n proteins , i s profoundl y affected b y ethanol (Mille r an d Luo , 2002 ; Siegenthale r an d Miller, 2004) . Radial Gli a a s Neuronal Precursors . Th e recentl y described rol e o f RG a s neurona l precursor s (Malatesta etal, 2000; Noctor etal. , 2001, 2002; Götz etal., 2002) dramaticall y change s ou r understandin g o f CNS developmen t unde r norma l an d pathologica l conditions. Takin g int o accoun t th e contributio n o f RG a s a neurona l progenito r cell , i t i s plausibl e t o speculate tha t alteratio n o f R G b y ethano l migh t cause dysgeneratio n o f both astrocyte s and neurons . The numbe r o f neuron s an d astrocyte s generate d from culture d R G isolated fro m ethanol-expose d fe tuses is reduced (Rupert , Minana and Guerri , unpublished results ) (Fig. 18-2) . In vivo studies have shown that prenata l exposur e t o ethano l cause s a reductio n in neuronogenesis and gliogenesis (e.g., Miller, 1986 , 1988; Gressen s e t al , 1992 ) (se e Chapte r 13) . Although i t has been interprete d tha t thi s reduction re sults fro m ethanol-induce d change s i n th e outpu t from th e cortica l proliferativ e zones, a contributio n from R G must be considered . It has been suggeste d tha t R G (a ) comprise a het erogeneous population , (b ) var y i n growt h facto r ex pression accordin g to their location withi n the CNS , and (c ) diffe r i n th e type s o f cell s the y generat e (Kriegstein an d Götz , 2003). In contrast , othe r inves tigators argue that RG i n all parts of the CN S serv e as neuronal progenitors (Anthony et al., 2004). In either case, controlle d studie s o f th e potentia l effec t o f ethanol o n th e ste m cel l rol e o f RG ar e require d t o clarify whether ethanol decrease s the pool of stem cell s or onl y induce s abnormalitie s i n th e RG-astrocyte lineage. Astroglial Proliferation Effects of Ethanol on Cell Cycle The mos t activ e perio d o f glia l proliferatio n i s th e brain growth spurt, a time when the brai n undergoes its mos t rapi d growt h (Dobbin g an d Sands , 1993) . In humans , thi s perio d occur s durin g th e fina l trimester o f gestation an d earl y infancy, wherea s i n
the ra t i t occur s durin g th e firs t 2 postnata l weeks. During th e brai n growt h spurt , neura l developmen t is particularl y sensitiv e t o th e toxi c effect s o f envi ronmental agent s suc h a s methylmercury , lead , and ethano l (Cost a e t al. , 2004) . A n implicatio n i s that gli a ar e a targe t fo r thi s neurotoxicity (Aschner etal., 1999) . Ethanol exposure durin g gestatio n ca n impai r th e proliferation an d differentiatio n o f astroglia. The cor tices o f rat s prenatall y expose d t o ethano l hav e one third fewe r gli a (an d als o o f neurons ) tha n control s (Miller an d Potempa , 1990) . Prenata l exposur e t o ethanol reduces th e expressio n o f the astrocyte marke r GFAP durin g postnata l brai n developmen t (Vallè s et al , 1996 ; Tajuddi n e t al , 2003) . Culture d astro cytes fro m th e pup s o f ethanol-fe d rat s exhibi t re duced [ 3H]thymidine and [ 3 H]leucine incorporatio n and GFAP-positiv e cell s (Guerr i e t al. , 1990 ; Guerr i and Renau-Piqueras , 1997) . These data are consistent with a n ethanol-induce d decreas e i n glia l prolifera tion and differentiation . Direct demonstratio n tha t ethano l affect s th e pro liferation o f astroglia l cell s come s fro m experiment s using primary cultures of astrocytes prepared from th e brains of neonatal rats . Ethano l (110-88 0 mg/dl) im pairs cell proliferation , inhibit s th e increas e i n th e astrocyte number , an d reduce s [ 5H]thymidine incorporation (Kenned y an d Mukerji , 1986 ; Davie s an d Cox, 1991 ; Snyde r e t al. , 1992 ; Aroo r an d Baker , 1997; Guizzett i e t al, 1997 ; Lu o an d Miller , 1998 , 1999; Mille r and Luo , 2002) . Ethanol affect s th e cy cling population i n multipl e ways : it inhibits the cel l cycle i n th e GO/G 1 phas e o f the cel l cycle , impede s the progressio n o f cell s int o S phase , an d decrease s the numbe r o f mitoti c cell s (Guerr i e t al. , 1990 ; Mikami e t al, 1997 ; Lu o an d Miller , 1999) . Impair ment o f cel l proliferatio n throug h ethano l exposur e has als o bee n show n i n glia l tumo r cells , principall y C6 astrocytom a cell s (Wazir i e t al. , 1981 ; Isenber g et al, 1992 ; Lu o an d Miller , 1996 , 1998 ; Guizzett i et al , 1997 ; Mille r an d Luo , 2002) . Thi s effec t i s concentration-dependent. Mechanisms of Ethanol Toxicity among Proliferating Astroglial Populations Astrocytic proliferatio n i s regulate d b y mitogeni c growth factor s and growt h inhibitor y agents (Lu o an d Miller, 1998 ) (se e Chapte r 11) . I n turn , thes e pro teins trigge r signalin g pathway s involvin g tyrosin e
300 ETHANOL-AFFECTE D DEVELOPMENT kinases, protei n kinas e C (PKC) , an d mitogen activate protein kinas e (MAPK). Ethanol inhibit s the proliferative effect s o f severa l growth factors , includ ing basi c fibroblas t growt h factor , platelet-derive d growth facto r (PDGF) , an d insulin-lik e growth facto r 1 (Resnicof f e t al , 1994 ; Lu o an d Miller , 1996 , 1999). Thes e factors affec t bot h MAP K and PKCs . I n addition, ethano l potentiate s th e antiproliferativ e activity of TGFßl (Mille r an d Luo , 2002) . Neural cell s actively stimulated b y growth factors are more suscep tible t o th e antiproliferativ e effect s o f ethanol , al though ethano l doe s not affec t th e actio n of all growth factors equivalently (Luo and Miller , 1998 , 1999) . Ethanol potentl y inhibit s mitogeni c signal s initi ated by binding (by carbachol o r acetylcholine) to astroglial muscarinic receptors, particularly M3 subtype (Catlin e t al , 2000 ; Cost a an d Guizzetti , 2002) . Binding o f M3 receptor s increase s DN A synthesi s by glia (Costa e t al, 2001). Ethanol (46-46 0 mg/dl) pre vents thes e mitogeni c effect s i n th e huma n 1321N 1 astrocytoma cells, fetal huma n astrocytes , and ra t cortical astrocyte s (Guizzett i e t al , 1998 , 2003 ; Cost a et al., 2001). Ethanol affect s a t least two pathways triggered by activation of M3 receptors. First, ethanol targets the activatio n of phospholipase D (PLD) , whic h hydrolyzes phosphatidylcholin e t o cholin e an d PA . Thus ethano l decrease s phosphatidi c aci d (PA ) concentration. P A stimulates downstrea m target s suc h a s protein kinases , includin g PKC , an d i s a mitogeni c signaling cascade i n astrocytes (Schatte r et al., 2003). When ethano l i s present, PL D ca n catalyz e a transphosphatidylation reactio n generatin g phosphatidy l ethanol (PEt ) rathe r tha n P A (Kotte r an d Klein , 1999). Thi s diversio n essentiall y block s th e signa l transduction cascad e becaus e PE t doe s no t activat e the downstrea m target s of PA (Schatter e t al, 2003). The secon d pathwa y affected b y ethanol i s the inhibi tion o f atypica l PKCÇ , Subsequently , thi s down regulates th e activatio n o f both the p70s 6 kinas e an d the nuclea r facto r KB (Costa an d Guizzetti , 2002) . A prime metabolite o f ethanol, acetaldehyde , ca n inhibit cel l growt h (Holowni a e t al. , 1996) . Astro cytes expose d t o ethano l ca n produc e acetaldehyd e (Eysseric e t al. , 1997) . Ethano l ca n b e metabolize d into acetaldehyde via alcohol dehydrogenas e (ADH), catalase, and cytochrom e P45 0 2E 1 (CYP2E1) . Th e effects o f ethano l ma y no t b e transduce d throug h ADH, a s ethanol-induce d cel l growt h inhibitio n is observe d i n gli a treate d wit h th e AD H inhibito r 4-methylpyrazole (Isenber g e t al. , 1992) . O n th e
other hand , catalas e an d CYP2E 1 ar e presen t i n astrocytes (Montoliu e t al, 1995 ; Eysseric et al, 2000). These enzymes may be key players in the toxi c effect s of ethanol o n the developing CNS . Astrocytic Death Cell deat h i s a norma l featur e o f CNS developmen t (e.g., Oppenheim, 1991 ; Raffe t al, 1993) . I t is regulated b y growth factors , cytokines, neurotransmitters , and cell-cel l signaling , includin g glial-neurona l in teractions (Johnson and Deckwerth , 1993 ; Raffetal. , 1993). Althoug h mainl y ascribe d t o neurons , deat h among developin g astrocyte s i s als o commo n (Sori ano et al, 1993). Developmental ethano l exposur e affects mos t nor mal regulator y factors, exacerbatin g the processe s associated wit h naturall y occurring neura l deat h i n the ra t developing cortex (Mooney and Miller, 2001; Climent et al., 2002; see Chapters 1 5 and 16) . This ethanol ex posure increases the numbe r of neurons and astroglial cells tha t di e b y necrosi s an d b y apoptosi s (Climen t et al., 2002). Ethanol ca n also induce necrotic (Holownia et al., 1997) or apoptotic (Pascual et al., 2003) death in cultured astrocytes . These effects ar e concentration dependent. Astrocytes die as a result of ethanol-induced activa tion o f sphingomyelinas e (SMase ) (Pascua l e t al. , 2003), leadin g t o th e hydrolysi s of sphingomyelin t o ceramide (Ohania n an d Ohanian , 2001) . Treat ment wit h lo w o r moderat e ethano l concentration s (46-230 mg/dl) eithe r i n vitr o o r in vivo increases astrocyte susceptibilit y to cel l deat h vi a tumor necrosi s factor (TNF)-o t (D e Vit o e t al, 2000) . Conceivably , ethanol shift s the balance of the sphingolipid metabolism b y decreasing the mitogeni c signal s in favo r o f a pathway (SMase/ceramide ) tha t increase s astrocyt e susceptibility to the cytotoxi c effec t o f TNFot. Sphingomyelins ar e cel l membran e phospho lipids that contains ceramid e an d phosphorylcholine . Ceramide i s an importan t regulato r o f cell prolifera tion, differentiation , an d apoptosis . I t ha s trophi c ef fects a t lo w concentration s an d trigger s apoptosi s a t high concentration s (Hannu m an d Luberto , 2000) . Increased ceramid e productio n participate s i n th e cell deat h occurrin g durin g earl y neural differentia tion (Herge t e t al. , 2000 ) an d i n neurona l apoptosi s induced b y nutrient deprivatio n (Toma n e t al., 2002). A variet y o f stimul i an d Stressor s (e.g. , oxidant s and cytokines ) stimulat e SMas e (Andriu-Abadi e and
GLIAL TARGETS OF DEVELOPMENTA L EXPOSUR E TO ETHANO L 30 1 Levade, 2002) , leadin g t o ceramid e generation . Ethanol induce s a stres s respons e (e.g. , oxidativ e stress) b y astrocytes (Montoli u e t al. , 1995) . Stimula tion o f SMas e activit y an d ceramid e generatio n appears t o be a key event i n th e subsequen t ethanol induced cel l deat h (Pascua l e t al., 2003) . Further in vestigation i s require d t o evaluat e th e quantitativ e participation o f thi s mechanis m i n ethanol-induce d astroglial cell death durin g in vivo brain development (Climent e t al., 2002 ) an d t o clarif y i f other mecha nisms are involved.
GLIA AND NEURONA L SYNAPSIS
Pivotal Rol e of Glia in Synaptogenesis It ha s bee n suggeste d tha t gli a pla y a rol e i n synapse formation becaus e astrocyte s an d synapti c terminal s are intimatel y relate d (Ventur a an d Harris , 1999 ; Schikorski an d Stevens , 1999 ; Grosch e e t al, 2002) and glia l developmen t an d synaptogenesi s ar e spa tiotemporally relate d (Aghajania n an d Bloom , 1967 ; Miller and Peters , 1981 ; Parnavela s et al, 1983) . For example, i n ra t cortex , neuron s for m mos t o f thei r synapses during the thir d postnatal wee k after th e differentiation o f astrocytes is largely complete. Further more, culture d retina l ganglio n cells , hippocampa l neurons, an d spina l moto r neuron s for m several-fold more functional synapses when astrocyte s are presen t (Ullian etal, 2001, 2004; Song et al, 2002). Thus, astrocytes appea r t o promot e synaps e formation . In deed, astrocyte s ar e considere d activ e partner s tha t participate with the pre- and postsynaptic terminals in tripartite synapti c structure s (Araqu e e t al. , 1999 , 2001;Haydon,2001). Various glial-derived factor s mediat e synaptogene sis. One suc h factor i s cholesterol, whic h i s produce d by astrocyte s an d secrete d i n apolipoprotei n E-con taining lipoprotein s (Mauc h e t al. , 2001) . Anothe r glial factor , activity-dependen t neurotrophi c facto r (ADNF), i s released b y astrocyte s i n respons e t o va soactive intestina l polypeptide . ADN F ma y pla y a role in synaptic development an d neurona l differenti ation (Blonde l et al., 2000) and i s also a neuroprotector (Gozes and Brenneman, 2000). Not onl y are glia important for synapse formation, they ar e als o key players in synapti c function . The y enhance postsynapti c responsiveness and help to maintain efficient synapti c connectivity. In the presenc e of
glia, retina l ganglio n cell s hav e large r glutamate induced miniatur e postsynapti c current s (Ullia n e t al., 2001, 2004). Experiments conducte d o n both cul tured an d intact-tissu e preparation s hav e demon strated tha t transmitter s release d fro m neuron s ca n stimulate an d caus e th e gli a t o releas e glutamate , ATP, an d othe r neuroactiv e substance s (Bezz i an d Volterra, 2001 ; Field s an d Stevens-Graham , 2002) . These neuroactive substances can fee d bac k onto th e presynaptic terminals , enhancin g o r depressin g fur ther releas e o f neurotransmitters . Moreover , astro cytes ca n respon d t o electrica l neurona l activity , elevating thei r intracellula r Ca 2+ concentratio n an d hence triggerin g glutamat e releas e (Araqu e e t al. , 1998; Innocent i e t al , 2000 ; Pascua l e t al , 2001 ; Pasti e t al. , 2001 ) throug h a Ca 2+-dependent exocy totic proces s (Araque et al, 2001; Bezzi et al, 2004) . Confirmation tha t this release occurs through suc h a process i s provided b y the abolitio n o f glutamate re lease b y tetanu s toxi n (e.g. , Pascua l e t al. , 2001) . Glutamate releas e fro m nerv e terminal s an d astro cytes ca n b e triggere d b y potassiu m chlorid e (KC1 ) and brain-derive d neurotrophi c facto r (BDNF ) (Fig. 18-3) . Glia ca n indirectl y modulat e synapti c transmis sion b y regulatin g th e ioni c extracellula r environ ment, clearin g neurotransmitter s fro m th e synapti c cleft (Bergle s and Jahr, 1998; Anderson an d Swanson, 2000), an d respondin g t o th e metaboli c demand s o f synaptic transmission (Shulman et al., 2001). Glia ca n also affec t glutamatergi c neurotransmissio n b y releasing co-factors. Glia (astrocyte s in the brain and Mülle r cells i n th e retina ) ar e th e onl y source o f D-serine in the CNS . D-serine , rather than glycine , appears t o be the endogenou s agonis t tha t activate s th e glycine binding site a t the N-methyi-D-aspartat e (NMDA ) re ceptors (Wolosker et al, 1999; Steve n et al, 2003). Effects of Ethanol Ethanol exposur e durin g brai n ontogen y alter s brai n synaptology, decrease s synapti c formation , an d im pairs development an d maturation o f synapses in both the hippocampa l formatio n an d neocorte x (Guerri , 1987; Al-Rabiai and Miller , 1989 ; Tanaka etal., 1991 ; Kuge e t al, 1993 ; Sutherlan d e t al, 1997) . Althoug h specific studie s have not ye t broached the rol e of glia in these ethanol-induced synaptogenesis , various data compel u s to consider glial-mediate d synapti c formation as a target o f ethanol.
302 ETHANOL-AFFECTE D DEVELOPMENT /y..
FIGURE 18- 3 Induce d glutamate release from synaptosome s and cortical astrocytes. A spectrofluorimetric assa y wa s used t o determin e th e Ca 2+-dependent release o f glutamat e evoke d b y potassiu m chlorid e (KC1 ; 30 mM) o r brain derived neurotrophi c facto r (BDNF ; 10 0 ng/ml) fro m nerv e terminal s an d from contro l or prenatal ethanol-exposed (PEE) astrocytes (4-day-old cultures). Data ar e means ± standard deviations (n = 3). An asterisk signifies a significant (p < 0.01) difference betwee n PE E an d contro l astrocyte s treated with KC 1 or BDNF.
Astrocytes from prenatall y ethanol-exposed fetuse s release less glutamate after being stimulated with KC1 (Fig. 18-3) . This finding indicates that PEE compro mises th e KCl-stimulate d elevatio n o f intracellula r Ca2+. Thu s prenata l ethano l exposur e likel y affect s the glia l respons e to neuronal activity and cause s abnormalities i n bot h synapti c functio n an d synapti c stabilization. Severa l studie s hav e show n tha t feta l and/or neonata l ethano l exposur e not onl y alter s ligand bindin g t o the NMD A receptor s but als o affect s NMDA receptor function (Savage et al., 1991 ; Vallès et al., 1995; Spuhler-Phillips e t al, 1997; Gruol et al., 1998). Th e compellin g inferenc e i s tha t ethanol induced alteration s i n gli a affec t D-serin e release , thereby altering the function of the NMDA receptors during brain development.
GLIAL DEVELOPMENT IN TH E CORPUS CALLOSUM
The corpus callosum (CC ) i s a larg e fibe r trac t formed fetall y tha t interconnect s neuron s i n th e right an d lef t cerebra l hemispheres . I n humans , th e CC appear s durin g th e sixt h prenata l wee k an d grows i n a rostral-to-cauda l direction . Midlin e glia l populations a s wel l a s axona l guidanc e molecule s
play critica l role s i n C C developmen t (Richards , 2002). Agenesis , dysgenesis , an d change s i n th e shape o f the C C ar e observe d in 7 % of children prenatally expose d t o alcoho l (Rile y e t al. , 1995 ; Book stein étal., 2001, 2002; Sowell étal, 2001a) which is more tha n 20-fol d tha t fo r th e genera l population . Since th e midlin e gli a ar e involve d in th e develop ment o f the CC , ethano l targeting of these cells may initiate CC dysrnorphology . Glia positione d a t the midlin e produc e a number of different molecule s that regulate axonal pathfinding at th e midlin e an d determin e whic h axon s projec t ipsilaterally an d whic h projec t contralaterall y (Fig. 18-4). Thes e gli a ar e hypothesize d t o participat e i n the adhesio n an d closur e o f the interhemispheri c fissure (Silve r et al, 1993) . Concurrently , the y secret e repellent an d growth-suppressive molecules tha t cause callosal axons to turn awa y from th e midline . Th e im portance o f the midlin e glial populations i n the development of the CC i s further supporte d by experiments showing tha t whe n thes e glia l structure s are excise d and replace d b y cortica l graft s tha t d o no t contai n midline glia, the callosal axons actually fail to turn and cross the midlin e (Sh u and Richards , 2001; Richards, 2002). Hypothetically, ethano l alter s glia l productio n and secretion of chemoattractive and chemorepellent
GLIAL TARGETS OF DEVELOPMENTA L EXPOSURE TO ETHANO L 30 3 and changes i n shape) reported i n children prenatally exposed t o alcohol .
GLIAL-DERIVED FACTOR S AND THE NEURON : TH E POTENTIA L
EFFECTS O F ETHANOL
FIGURE 18- 4 Midlin e glia l populations . Thi s schematic vie w o f a corona l sectio n represent s th e various population s o f gli a a t th e leve l o f th e septa l nuclei. GS , glia l sling ; GW , glia l wedge ; IGG , gli a within indusiu m griseum , MG , midlin e zippe r glia. Source: Adapted from Richards , 2002.
molecules tha t affec t th e guidanc e o f midline callosa l axons tha t lead s t o disrupte d C C formation . Thes e molecules ar e secrete d i n th e glia l wedg e an d indu sium griseu m an d mediat e pre - an d postcrossin g axonal guidance ; thei r depletio n ha s bee n foun d t o cause axon s t o defasciculat e o r t o ente r th e septu m aberrantly (Shu e t al., 2003). We have recently found abnormalities in the glia l wedge an d i n indusiu m griseum glia l cel l populations , alon g wit h hypoplasi a of th e CC , i n th e brai n o f 21-day-ol d fetuse s fro m ethanol-fed mother s (Ruber t et al., 2003). Alterations in th e CC wer e accompanied b y cortical atroph y and microcephaly (Fig. 18-1) . In contras t wit h thes e findings , studie s o f rats an d nonhuman primate s sho w tha t th e numbe r o f axons in the CC i s increased following ethanol exposur e between Gl 1 and G2 1 (Qian g et al., 2002) or 1 day per week throughou t gestatio n (Mille r e t al. , 1999) , re spectively. Result s fro m thes e studie s contras t wit h the agenesi s an d dysgenesi s note d i n childre n wit h FAS. Thi s discrepanc y likel y reflect s the pea k bloo d ethanol concentratio n i n th e childre n (estimate d at >3Ö Ö mg/dl) vs . tha t obtaine d i n th e animal s (100-300 mg/dl). In fact, a dose-response relationship in th e amoun t o f hypertrophy ha s bee n describe d fo r monkeys (Mille r e t al. , 1999) . Difference s i n th e amount o f ethano l exposur e and/o r nutritiona l defi ciencies occurrin g durin g critica l stage s of CC devel opment (e.g. , embryogenesis ) ma y als o contribut e t o the variabilit y of effect s (e.g. , agenesis , dysgenesis .
Astrocytes synthesiz e an d releas e a larg e variet y o f compounds, includin g growt h factor s (Lafon-Caza l et al., 2003). These substances have myriad effects o n neurons an d CN S function . Proliferatin g astrocyte s release mor e growt h factor s tha n d o differentiatin g glia (e.g. , Vallès e t al., 1994) , perhaps becaus e o f th e considerably highe r (two-fol d higher ) numbe r o f genes expresse d b y neonatal tha n b y adult astrocyte s (Nakagawa an d Schwartz , 2004) . A particularly interesting factor released b y glia i s the activity-dependen t neuroprotective protein (ADNP ) (Bassa n et al., 1999). This protein, its active fragment NAP (asn-ala-pro-valser-ile-pro-gln), an d th e activ e fragment s o f ADNF are strongly protective against neural insult s (Brenneman e t al, 1998 ; Goze s et al, 2000 ; Beni-Adani et al , 2001), includin g ethanol-induce d insult s (Spon g et al, 2001 ; Wilkemeyer e t al, 2003) . Given th e actions o f ethanol o n glia and the num ber an d importanc e o f th e trophi c an d signalin g functions o f glia , i t i s reasonabl e t o propos e tha t a t least som e o f the detrimenta l developmenta l effect s of ethanol ar e mediated b y defects i n the productio n of glial factors , suc h a s S100B (Erikse n e t al , 2002 ) and ADN P (Pascua l e t al , 2004) . SIOO B i s a glia l trophic facto r tha t i s essentia l fo r th e developmen t of serotonergic neuron s (Li u an d Lauder , 1992) , an d ADNP ha s poten t growth-promotin g an d neuropro tective action s (Bassa n e t al , 1999 ; Goze s e t al , 2003). Astrocytes raise d i n a mediu m conditione d b y ethanol-treated astrocyte s stun t proces s outgrowt h b y neurons an d reduce th e surviva l of serotoninergic neu rons (Ki m an d Druse , 1996 ; Erikse n an d Druse , 2001). Moreover , astrocyte s treate d wit h ethano l ca n increase or reduce the secretio n o f soluble factors tha t influence dendriti c growt h (Yanni et al, 2002) . Secretion o f growt h factor s i s reduce d i n astro cytes isolate d fro m fetuse s o f ethanol-fe d femal e rats (PEE ) an d culture d i n th e absenc e o f ethanol . Ethanol alter s th e intracellula r vesicula r transpor t in astrocyte s (Guerr i e t al, 2001) , leading to impairment o f both th e expressio n o f neurotrophic factor s
304 ETHANOL-AFFECTE D DEVELOPMEN T
FIGURE 18- 5 Co-cultur e of cortical neurons with control or prenatal ethanol exposed (PEE) astrocytes. Neurons grown on control (A , C) or PEE (B , D) astrocytes were staine d th e neurona l marke r MAP 2 an d wit h the synapti c vesicle protein marke r SNAP2 5 (arrows , A, B) . Neuron s co-culture d wit h PE E astrocyte s (B, D) showed a marked reduction in neuronal differentia tion and synaptic connections compared to co-cultures with contro l astrocyte s (A, C). Scal e bar s = 50jlm (A , B) and 1 0 |im (C, D) .
receptors an d th e productio n an d releas e o f growt h factors suc h a s nerv e growt h facto r (NGF ) (Vallè s et al , 1994 ; Climen t e t al , 2000) . PE E astrocyte s also exhibit a remarkable reduction i n cellular NG F (Vallès et al, 1994 ) an d ADNP (Pascua l et al, 2004) mRNA. Co-cultur e o f PE E astrocyte s wit h cortica l neurons fro m contro l rat s lead s t o a reductio n i n neuronal differentiatio n an d synapti c connection s (Fig. 18-5). Interestingly, these effect s ar e blocked b y NAP (Pascual et al, 2004). ADNP and it s active peptide NA P antagoniz e ethanol-induce d inhibitio n of L I adhesio n an d protec t agains t ethano l embry otoxicity (Spon g e t al , 2001 ; Wilkemeye r e t al , 2003). These finding s may for m th e basi s for future therapeutic approache s t o t o protec t neuron s fro m the toxi c effects o f ethanol b y means o f glial-derived factors.
SUMMARY AND CONCLUSION S
Clinical an d experimenta l studie s provid e com pelling evidenc e tha t feta l and/o r neonata l exposur e to ethano l profoundl y affect s astroglia . Amon g th e critical period s o f brain developmen t i n whic h glia l
cells are particularly susceptible to ethanol i s embryogenesis. Ethano l exposur e durin g embryogenesis , a stage durin g whic h R G ar e generated , no t onl y im pairs neuronal migratio n bu t als o can affec t th e gen eration an d maturatio n of astrocytes. Importantly, the novel rol e o f RG a s neural ste m cell s (Nocto r e t al. , 2001; Göt z e t al, 2002 ; Anthony e t al, 2004 ) raises questions as to whether th e effect s o f ethanol o n R G underlie th e reductio n i n numbers o f neurons an d astrocytes generated . The secon d critica l perio d durin g whic h ethano l can affec t gli a i s the brai n growt h spurt . Ethanol an tagonizes th e proliferativ e effect s o f astroglia l mito gens, interfering with signaling transduction pathways associated wit h th e activatio n o f growt h factor s an d neurotransmitters importan t fo r glia l proliferation . Exposure t o ethano l durin g thi s perio d ca n als o en hance neurona l an d astrocyti c apoptotic death . Th e ability of ethanol t o interfer e wit h astroglial mitogens and th e increas e i n cel l deat h ma y contribut e t o ethanol-induced microencephaly . Exposur e t o hig h concentrations o f ethano l durin g th e brai n growt h spurt can induc e reactiv e astrogliosis (Goodlett et al., 1993), thereb y activatin g gli a t o releas e toxi c com pounds tha t damag e neuron s (Lu o e t al. , 2001 ; Blanco e t al., 2004). Ethanol-induced astroglia l damage ca n affec t man y developmenta l process , such a s guidance an d availabilit y o f trophi c suppor t mole cules; modulatio n o f the formation , maturation, an d maintenance o f synapses; an d regulatio n o f synapti c transmission (Field s an d Stevens-Graham , 2002 ; Nedergaardetal.,2003). We are just starting to understand the rol e of glia in many processe s o f th e adul t an d developin g brai n (Ransom et al., 2003 ). The importanc e of glia is illustrated b y th e severit y of th e mor e commo n for m o f Alexander disease, a rare disorder that results from mu tations i n th e gen e fo r GFA P (Brenne r et al. , 2001) . The geneti c modificatio n of Drosophila melanogaster resulting i n glia l ablatio n cause s dramati c defect s in neurona l proliferatio n and differentiation , axona l growth, and neurona l deat h (Jones et al., 1995 ; Boot h et al. , 2000) . This findin g stresse s th e importanc e o f glia fo r neuronal ontogeny . Mor e studie s ar e neede d to confir m th e roles o f astrocyte s an d t o identif y molecular target s o f ethano l o n astroglia . Recen t advances i n thes e topic s hav e relie d o n studie s performed i n cel l culture , wher e glial networ k organization ma y no t exactl y mirro r tha t i n th e intac t brain.
GLIAL TARGETS OF DEVELOPMENTA L EXPOSUR E T O ETHANO L 30 5 Abbreviations ADNF activity-dependen t neurotrophic facto r ADNP activity-dependen t neuroprotectiv e protei n ADH alcoho l dehydrogenas e BDNF brain-derive d neurotrophic factor CC corpu s callosu m CNS centra l nervou s syste m CYP2E1 cytochrom e P450 2E1 FAS feta l alcohol syndrom e G gestationa l day GFAP glia
l fibrillary acidic protein
KC1 potassiu m chlorid e MAPK mitogen-activate d protein kinas e NAP asn-ala-pro-val-ser-ile-pro-gl n nCAM neura l cel l adhesion molecul e NGF nerv e growt h facto r NMDA N-methyl-D-aspartat e P postnata l day PA phosphatidi c acid PDGF platelet-derive
d growt h facto r
PEE prenata l ethanol exposure PEt phosphatidy l ethano l PKC protei n kinas e C PLD phospholipas e RG radia l glia SMase sphingomyelinas e TGF transformin
g growt h facto r
TNF tumo r necrosis facto r
ACKNOWLEDGMENTS Th e author s than k Dr . Vi cente Rubi o for his valuable hel p i n the critica l readin g of this manuscript . Researc h wa s supported b y Spanis h MCYT (project s BF I 2001-0123-01 ) an d SA F (2003 06217) an d b y Conselleria Sanida d (Direc . Gen . Aten cion a la Dependencia). References Aghajanian GK , Bloo m F E (1967 ) Th e formatio n o f synaptic junctions in developing rat brain: a quantitative electro n microscopi c study . Brai n Re s 6 : 716-727.
Al-Rabiai S , Miller M W (1989 ) Effects o f prenatal expo sure t o ethano l o n th e ultrastructur e o f layer V i n somatosensory corte x o f matur e rats . J Neurocyto l 18:711-729. Anderson CM , Swanso n R A (2000) Astrocyte glutamat e transport: review of properties, regulation , an d physiological functions. Glia 32:1—14 . Andriu-Abadie N , Levad e T (2002 ) Sphingomyelin hydrolysis durin g apoptosis . Biochi m Biophy s Acta 1585:126-134. Anthony TE , Klei n G , Fishel l G , Heint z N (2004 ) Radial glia serve as neuronal progenitors in al l regions of the central nervous system. Neuron 41:881-890. Araque A, Carmignoto G, Haydo n P G (2001 ) Dynami c signaling betwee n astrocyte s an d neurons . Ann u Rev Physiol 63:795-813. Araque A , Parpur a V, Sanzgir i RP , Haydo n P G (1998 ) Glutamate-dependent astrocyte modulation of synaptic transmissio n betwee n culture d hippocampa l neurons. EurJNeurosc i 10:2129-2142 . (1999) Tripartit e synapses : glia , th e unacknowl edged partner . Trends Neurosc i 22:208-215. Aroor AR, Baker RC (1997 ) Negative and positiv e regulation of astrocyte DNA synthesis by ethanol. ] Neurosci Res 50:1010-1017. Aschner M , Alle n JW , Kimelber g HK , LoPachi n RM, Strei t W J (1999 ) Glia l cell s i n neurotox icity development . An n Re v Pharmaeo l Toxico l 39:151-173. Barresi V , Condorell i DF , Gluffrid a Stell a A M (1999 ) GFAP gen e rnethylatio n i n differen t neura l cel l types from ra t brain. Int J Dev Neurosci 17 : 821-828. Bassan M , Zamostian o R , Davidso n A , Pinhasov A, Gi ladi E , Per l O , Bassa n H , Bla t C , Gibne y G , Glazner G, Brennema n DE , Goze s I (1999) Com plete sequenc e of a nove l protei n containin g a femtomolar-activity-dependent neuroprotectiv e pep tide. J Neurochem 72:1283-1293. Bearer CF (2001 ) LI cel l adhesion molecule signa l cascades: targets for ethanol developmental neurotoxi city. Neurotoxicology 22:625—633. Beni-Adani L , Gozes I , Cohen Y, Steingart RA , Brenneman DE , Eizenber g O, Trembolver A, Shohami E (2001) A peptid e derive d fro m activity-dependen t neuroprotectiva protein (ADNP ) ameliorates injur y response i n clos e hea d injur y mice . J Pharmaeo l ExpTher 296:57-63. Bergles DE, Jah r CE (1998 ) Glial contributio n t o glutamate uptak e a t Schaffe r collateral—commissura l synapses in the hippocampus . J Neurosci 18 : 77097716. Bezzi P , Gunderse n V , Galbet e JL , Seifer t G , Stein häuser Ch , Pilat i E , Volterr a A (2004 ) Astrocyte s contain a vesicular compartment tha t is competen t
306 ETHANOL-AFFECTE D DEVELOPMEN T for regulate d exocytosis of glutamate. Na t Neuros a 7:613-620. Bezzi P , Volter a A (2001 ) A neuron-glia signalin g net work in the activ e brain. Curr Opin Neurobiol 11 : 387-394. Bird AP , Wolff e A P (1999 ) Mediation-induce d repression—belts, braces , an d chromatin . Cel l 99 : 451-454. Blanco AM , Pascua l M , Valle s LS , Guerr i C (2004 ) Ethanol-induced iNO S an d COX- 2 expressio n i n cultured astrocyte s vi a NF-kB . Neurorepor t 15 : 681-685. Blondel O, Collin C , McCarran WJ, Zhu S, Zaniostiano R, Cozes I, Brenneman DE , McKa y RD (2000 ) A glia-derived signa l regulatin g neuronal differentia tion. J Neurosa 20:8012-8020. Bonthius DJ, West JR (1991) Permanent neurona l deficit s in rat s exposed t o alcoho l durin g th e brai n growt h spurt. Teratology 44:147-163. Bookstein FL, Sampson PD, Streissgut h AP, Connor P D (2001) Geometri c morphometric s o f corpus callo sum an d subcortica l structures in the fetal-alcoholaffected brain . Teratology 64:4-32. Bookstein FL , Streissgut h AP , Sampso n PD , Conno r PD, Bar r HM (2002 ) Corpu s callosu m shap e an d neuropsychological deficit s i n adul t male s wit h heavy feta l alcoho l exposure . Neuroimag e 15 : 233-251. Booth GE, Kinrad e EF, Hidalgo A (2000) Glia maintai n follower neuro n surviva l durin g Drosophila CN S development Development 127:237—244 . Brenneman DE , Hause r J, Neale E , Rubinrau t S , Frid kin M , Davidso n A , Goze s I (1998 ) Activity dependent neurotrophi c factor : structure—activit y relationships o f femtomolar-acting peptides. J Pharmacol Exp Ther 285:619-627. Brenner M , Johnso n AB , Boespflug-Tangu y O , Ro driguez D , Goldma n JE , Messing A (2001) Muta tions i n GFAP , encodin g glia l fibrillar y acidi c protein, ar e associate d with Alexander disease. Na t Genet 27:117-120. Burrows RC , Wanci o D , Levit t P , Lillie n L (1997 ) Re sponse diversity and the timing of progenitor cell maturation ar e regulate d b y developmenta l change s i n EGFr expression in the cortex. Neuron 19:251—267 . Cameron RS , Rakic P (1991) Glial cel l lineage i n the cerebral cortex: a review and synthesis. Glia 4:124—137. Catlin MC , Guizzett i M , Cost a L G (2000 ) Effec t o f ethanol o n muscarini c receptor—induce d calciu m responses in astroglia. J Neurosa Res 60:345-355. Caviness V S Jr , Takahash i T , Nowakowsk i R S (1995 ) Numbers, tim e an d neocortica l neurogenesis : a general developmenta l an d evolutionar y model . Trends Neurosa 18:379-383 .
Chanas-Sacre G , Registe r B , Moone n G , Leprinc e P (2000) Radia l gli a phenotype : origin , regulatio n and transdifferentiation . J Neusoci Res 61:357-363. Chen Y, Swanson R A (2003) Astrocytes and brai n injury . J Cereb Bloo d Flow Metab 23:137-149. Clarren S K (1986) Neuropatholog y in feta l alcoho l syn drome. In : West JR (ed). Alcohol an d Brain Development. Oxfor d Universit y Press , Ne w York , p p 158-166. Clarren SK , Alvor d EC , Sum i SM , Streissgut h AP , Smith D W (1978 ) Brai n malformation s relate d t o prenatal exposure to ethanol. J Pediatr 92:64-67. Clarren SK , Bowde n D M (1984 ) Measure s o f alcoho l damage i n utero i n the pigtailed macaqu e (Macaca nemestrina). In : O'Conno r M (ed) . Mechanisms of Alcohol Damage i n Utero. Pitman , London , pp 157-175 . Climent E , Pascua l M , Renán-Piquera s J , Guerr i C (2002) Ethanol exposur e enhances cell death i n the developing cerebra l cortex : rol e o f brain-derive d neurotrophic facto r an d it s signalin g pathways . J Neurochem Re s 68:213-225. Climent E , Sancho-Tell o M , Miñan a R , Barettin o D , Guerri C (2000 ) Astrocyte s i n cultur e expres s th e full-length Trk- B receptor an d respon d t o brain derived neurotrophi c factor b y changing intracellular calcium levels : effec t o f ethano l exposur e i n rats . Neurosa Lett 288:5 3-56 . Costa LG , Aschne r M , Vitalon e A , Syversen T , Soldi n OP (2004 ) Developmental neuropatholog y of environmental agents . Annu Rev Pharmacol Toxico l 44: 87-110. Costa LG , Guizzett e M (2002 ) Inhibition o f muscarinic receptor-induced proliferatio n of astroglial cells by ethanol: mechanism s an d implication s fo r the feta l alcohol syndrome. Neurotoxicology 23:685-691. Costa LG , Guizzett i M , Oberdoerste r J , Yagle K , CostaMallen P , Tita B, Bordi F, Vitalone A , Palmery M, Valeri P (2001 ) Modulatio n o f DN A synthesi s b y muscarinic cholinergi c receptors . Growt h Factor s 18:227-236. Crespel A, Coubes P, Rousset MC , Alons o G , Bockaer t J, Baldy-Moulinie r M , Lerner-Natol i M (2002 ) Irnmature-like astrocyte s ar e associate d wit h den date granule cell migratio n in human tempora l lob e epilepsy. Neurosc i Lett 330:114-118. Davies DL, Cox WE (1991 ) Delaye d growt h an d matu ration o f astrocyti c cultures followin g exposure t o ethanol: electro n microscopi c observation . Brain Res 547:53-61. De Vit o WJ , Ston e S , Shamgochian M (2000 ) Ethano l increases th e neurotoxi c effec t o f tumo r necrosi s factor-a i n culture d ra t astrocytes . Alcoho l Cli n Exp Res 24:82-92.
GLIAL TARGETS OF DEVELOPMENTA L EXPOSUR E TO ETHANO L 30 7 Dobbing J, Sands J (1993) The quantitativ e growt h an d development o f the huma n brain . Arch Di s Chil d 48:757-767. Edelman G M (1994 ) Adhesio n an d counte r adhesio n morphogenetic function s o f the cel l surface . Pro g Brain Res 101:1-14. Eriksen JL , Drus e M ] (2001 ) Potential involvemen t of S100B in the protectiv e effect s o f a serotonin-la ag onist o n ethanol-treate d astrocytes . De v Brai n Res 128:157-164. Eriksen JL , Gillespi e R , Drus e M J (2002 ) Effect s o f ethanol an d 5-HTj A agonist s o n astroglia l S100B . Dev Brain Res 139:97-105. Eysseric H, Gonthier B, Soubeyran A, Bessard G, Saxo d R, Barret L (1997) Characterization o f the production of acetaldehyde by astrocytes in culture after ethanol exposure. Alcohol Clin Exp Res 21:1018-1023. Eysseric H , Gonthie r B , Soubeyran A, Richard MJ, Daveloose D , Barre t L (2000) Effects o f chronic ethano l exposure o n acetaldehyd e an d fre e radica l produc tion by astrocytes in culture. Alcohol 21:117—125 . Fields RD , Stevens-Graha m B (2002) New insight s int o neuron-glia communication. Scienc e 298:556-562. Goodlett CR, Leo JT, O'Callaghan JP, Mahoney JC, West JR (1993 ) Transient cortical astrogliosis induced b y alcohol exposur e durin g th e neonata l brai n growth spurt in rats. Brain Res Dev Brain Res 72:85-97. Götz M, Hartfus s E , Malatesta P (2002) Radial glial cells as neurona l precursors : a ne w perspective s o n th e correlation o f morphology an d linag e restrictio n i n the developin g cerebra l corte x o f mice. Brai n Res Bull 57:777-788 . Gozes I , Brennema n D E (2000 ) A new concept i n th e pharmacology o f neuroprotection. J Mol Neurosc i 14:61-68. Gozes I , Divinsky I, Pilzer I, Fridkin M, Brenneman DE , Spier AD (2003). From vasoactive intestinal peptid e (VIP) throug h activity-dependen t neuroprotectiv e protein (ADNP ) t o NAP: a view o f neuroprotectio n and cel l division. J Mol Neurosci 20:315-322 . Gozes I , Gilad i E , Pinhaso v A , Brenneman D E (2000 ) Activity-dependent neurotrophi c facto r intranasa l administration o f femtomolar-actin g peptide s im prove performanc e i n a wate r maze . J Pharmaco l Exp Ther 293:1091-1098. Gressens P , Lammen s M , Picar d JJ , Evrar d P (1992 ) Ethanol-induced disturbance s o f gliogenesi s an d neurogenesis in the developing murine brain: an in vitro an d i n viv o immunohistochemica l an d ultra structural study. Alcohol Alcohol 27:219-226. Grosche J , Kettenman n H , Reichenbac h A ( 2002 ) Bergmann glia l cell s for m distinc t morphologica l structures t o interac t wit h cerebella r neurons . J Neurosci Re s 68:138-149.
Gross RE , Mehle r MF , Mabie PC , Zan g Z, Santsch i L, Kessler J A (1996 ) Bon e morphogeneti c protein s promote astroglia l lineag e commitmen t b y mam malian subventricula r zon e progenito r cells . Neu ron 17:595-606 . Gruol DL , Ryabini n AE , Parson s KL , Cole M , Wilso n MC, Qi u Z (1998 ) Neonata l alcoho l exposur e reduces NMD A induce d Ca 2+ signaling in developin g cerebellar granul e neurons. Brain Res 793:12—20. Guerri C (1987 ) Synapti c membran e alteration s in rat s exposed t o alcohol . Alcoho l Alcohol Supp l 1:467 472. (1998) Neuroanatomica l an d neurophysiologica l mechanisms involve d i n centra l nervou s syste m dysfunctions induce d b y prenatal alcoho l exposure . Alcohol Cli n Exp Res 22:304-312. (2002) Mechanism s involve d i n centra l nervou s system dysfunction s induce d b y prenata l ethano l exposure. Neurotoxicol Re s 4:327—335. Guerri C, Pascual M, Renau-Piqueras J (2001) Glia and fetal alcohol syndrome. Neurotoxicology 22:593—599. Guerri C , Renau-Piquera s J (1997 ) Alcohol , astroglia , and brai n development. Mo l Neurol 15:65—81 . Guerri C , Sâe z R , Sancho-Tello M, Marti n d e Aguilera M, Renau-Piquera s J (1990 ) Ethano l alter s astrocyte development : a stud y of critical period s usin g primary cultures. Neurochem Res 15:559-565 . Guizzetti M , Catli n M , Cost a L G (1997 ) Effect s o f ethanol o n glial cel l proliferation : relevance t o th e fetal alcoho l syndrome . Front Biosci 2:e93—98. Guizzetti M , Molle r T , Cost a L G (2003 ) Ethano l in hibits muscarinic receptor—mediated DN A synthesis and signa l transductio n i n huma n feta l astrocytes . Neurosci Let t 344:68-70. Guizzetti M, Wei M, Cost a L G (1998 ) The rol e of protein kinas e C alph a an d epsilo n isozyme s i n DN A synthesis induced b y muscarinic receptor s i n a glial cell line. Eur J Pharmacol 359:223-233 . Hannun YA , Luberto C h (2000 ) Ceramid e i n th e eu karyotic stress response. Trend s Cell Biol 10:73-80 . Hatten M E (1999 ) Centra l nervou s syste m neurona l migration. Annu Rev Neurosci 22:511—539. (2002) Ne w direction s i n neurona l migration . Science 297:1660-1663. Hatten ME , Maso n C A (1990 ) Mechanism s o f glial guided neurona l migration in vitr o and i n vivo. Experientia 46:907-916. Haydon P G (2001 ) Glia: listenin g an d talkin g t o th e synapse. Nat Rev Neurosci 2:185-193. Herget T, Esdar Ch, Oehrlei n SA , Heinrich M, Schütz e S, Maelicke A , Van Echten-Deckert G (2000 ) Pro duction o f ceramides cause s apoptosis during early neural differentiatio n i n vitro . J Bio l Che m 275 : 30344-30354.
308 ETHANOL-AFFECTE D DEVELOPMEN T Hockfield S , McKa y R D (1985 ) Identificatio n of majo r cell classe s i n the developin g mammalia n nervou s system, J Neurosci 5:3310-3328 . Holownia A , Ledi g M , Mapole s J , Mene z } F (1996 ) Acetaldehyde-induced growt h inhibitio n i n cul tured rat astroglial cells. Alcohol 13:93-97 . Holownia A , Ledi g M , Mene z J F (1997 ) Ethanol induced cel l deat h i n cultured ra t astroglia. Neurotoxicol Teratol 19:141-146 . Innocenti B , Parpur a V , Haydo n P G (2000 ) Imagin g extracellular wave s o f glutamat e durin g calciu m signaling i n culture d astrocytes . J Neurosc i 20 : 1800-1808. Isenberg K, Zhou X, Moore B W (1992) Ethanol inhibit s C6 cel l growth : feta l alcohol syndrom e model . Alcohol Cli n Exp Res 16:695-699. Johe KK, Hazel TG, Mulle r T , Dugich-Djordjevic MM , McKay R D (1996 ) Singl e factor s direc t th e differ entiation of stem cell s from th e feta l an d adul t central nervous system. Genes Dev 10:3129-3140. Johnson EM , Deckwert h T L (1993 ) Molecula r mecha nisms o f developmental neurona l death . An n Re v Neurosci 16:31-46 . Johnson VP , Swayz e V W II , Sat o Y , Andrease n N C (1996) Feta l alcoho l syndrome : craniofacia l an d central nervou s syste m manifestations . A m J Me d Genet 6:329-339. Jones BW , Fette r RD , Tea r G , Goodma n C S (1995 ) Glial cell s missing : a geneti c switc h tha t control s glial versus neuronal fate . Cell 82:1013-1023. Kennedy LA, Mukerji S (1986) Ethanol neurotoxicity . I. Direct effect s o n replicatin g astrocytes . Neurobe hav Toxicol Terato l 8:11—21 . Kim JA , Druse M J (1996 ) Deficienc y of essentia l neu rotrophic factors i n conditioned media produced by ethanol-exposed cortica l astrocytes . De v Brai n Res 96:1-10. Komatsu S , Sakata-Haga H, Sawad a K, Hisano S , Fukui Y (2001) Prenatal exposur e to ethanol induce s lep tomeningeal heterotopi a i n th e cerebra l corte x of the ra t fetus. Acta Neuropathol 101:22-26 . Kotkoskie LA, Norton S (1988) Prenata l brai n malformations followin g acut e ethano l exposur e i n th e rat . Alcohol Clin Ex p Res 12:831-836. Kötter K , Klei n J (1999 ) Ethano l inhibit s astroglia l cell proliferatio n b y disruptio n o f phospholipas e D-mediated signaling. J Neurochem 73:2517-2523 . Kriegstein AR , Göt z M (2003 ) Radia l gli a diversity : a matter of cell fate. Gli a 43:37-43 . Kuge R , Asayama T , Kakut a S , Murakami K, Ishikawea Y, Kurod a M , Ima i T, Sek i K , Omoto M , Kish i K (1993) Effec t o f ethano l o n th e developmen t an d maturation o f synapse s in th e ra t hippocampus : a quantitative electron-microscopic study . Environ Res 62:99-105.
Kühn PE, Miller MW (1996) Developmental expression of c-neu protein s i n cerebra l cortex : relationshi p t o epidermal growt h facto r receptor . J Comp Neuro l 372:189-203. Lafon-Cazal M , Adjali O , Galeotti N, Ponce t J , Jouin P, Homburger V , Bockaer t J , Mari n P (2003 ) Pro teomic analysis of astrocytic secretion in the mouse . Comparison wit h the cerebrospinal fluid proteome. J Biol Chem 278:24438-24448. Lammens M (2000 ) Neurona l migratio n disorder s i n man. Eu r J Morphol 38:327-333 . Letterer E (1958 ) Virchow s contributio n to moder n pathology; on the 100t h anniversary of cellular pathology, August 20,1858. Hippokrates 29:505-511. Liu JP , Länder JM (1992 ) S-100 and insulin-lik e growt h factor-II differentiall y regulat e growth of developing serotonin an d dopamin e neuron s i n vitro . J Neu rosci Res 33:248-256. Luo J, Lindström CLB , Donahu e A , Miller M W (2001 ) Differential effect s o f ethanol o n th e expressio n o f cyclooxygenase i n culture d cortica l astrocyte s an d neurons. J Neurochem 76:1354—1363 . Luo J , Mille r M W (1996 ) Ethano l inhibit s bFGF mediated proliferatio n o f C 6 gliom a cells . J Neu rochem 67:1448-1456 . (1998) Growt h factor-mediate d neura l prolifera tion:target o f ethano l toxicity . Brai n Re s Re v 27 : 157-167. (1999) Platelet-derived growth factor-mediated sig nal transductio n underlyin g astrocyt e proliferation : site of ethanol action. J Neurosci 19:10014-10025. Malatesta P , Hartfus s E , Göt z M (2000 ) Isolation o f radial glia l cell s b y fluorescent-activate d cel l sortin g shows a neurona l lineage . Developmen t 127 : 5253-5263. Mauch DH , Nägler K , Schumacher S , Göritz C , Mülle r EC, Ott o A, Pfrieger F W (2001) CNS synaptogene sis promote d b y glia-derive d cholesterol . Scienc e 294:1354-1357. Mikami K , Haseba T , Ohn o Y (1997) Ethano l induce s transient arres t o f cell divisio n (G 2 + M block ) followed b y GO/G 1 block : dos e effec t o f short - an d longer-term ethano l exposur e on cell cycle and cel l functions. Alcohol Alcohol 32:145-152. Miller M W (1986 ) Feta l alcoho l effect s o n th e genera tion an d migratio n o f cerebra l cortica l neurons . Science 233:1308-1311 . (1988) Effec t o f prenatal exposur e t o ethano l o n the developmen t o f cerebra l cortex : I . Neurona l generation. Alcohol Clin Ex p Res 12:440-449. (1997) Effect s o f prenatal exposur e t o ethanol o n callosal projectio n neuron s i n ra t somatosensor y cortex. Brain Res 766:121-128. Miller MW , Astley SJ, Clarren S K (1999) Numbe r o f axons i n th e corpu s callosu m o f the matur e Macaca
GLIAL TARGETS OF DEVELOPMENTA L EXPOSURE TO ETHANO L 30 9 nemestrina: increase s cause d b y prenata l exposur e to ethanol. J Comp Neurol 412:123-131. Miller MW, Lu o J (2002) Effects o f ethanol an d basi c fibroblast growt h facto r o n th e transformin g growth factor 1 regulated proliferation of cortical astrocytes and C 6 astrocytom a cells . Alcoho l Cli n Ex p Re s 26:671-676. Miller M , Peter s A (1981 ) Maturatio n o f th e ra t visual cortex. II . A combine d Golgi-electro n microscop e study o f th e pyramida l neuron . J Com p Neuro l 203:555-573. Miller MW, Potempa G (1990 ) Numbers of neurons and glia i n matur e ra t somatosensor y cortex: effect s o f prenatal exposur e to ethanol . J Comp Neuro l 293 : 92-102. Miller MW , Robertso n S (1993 ) Prenata l exposur e t o ethanol alter s the postnatal developmen t an d transformation o f radial gli a t o astrocyte s i n th e cortex . J Comp Neurol 337:253-266 . Mifiana R , Climent E , Barettin o D , Segu i JM , Renau Piqueras J, Guerri C (2000 ) Alcohol exposur e alters the expressio n pattern of neural cell adhesion mole cules during brain development . J Neurochem 75 : 954-964. Miiiana R , Sancho-Tell o M , Climen t E , Segu i JM , Renau-Piqueras J, Guerri C (1998 ) Intracellular location, tempora l expression , an d polysialylatio n of neural cel l adhesio n molecul e i n astrocyte s in pri mary culture. Gli a 24:415-427. Misson JP , Takahash i T , Cavines s V S } r (1991 ) On togeny of radial and othe r astroglia l cells in murine cerebral cortex. Glia 4:138-148. Montoliu C, Sancho-Tell o M , Azorin I, Burgal M, Vallès S, Renau-Piquera s J, Guerr i C (1995 ) Ethano l in creases cytochromo P4502E1 and induce s oxidative stress in astrocytes. J Neurochem 65:2561-2570 . Mooney SM , Mille r M W (2001 ) Effect s o f prenatal ex posure t o ethano l o n th e expressio n o f bcl-2, ba x and caspas e 3 in th e developin g rat cerebral cortex and thalamus . Dev Brain Res 911:71-81. Mooney SM , Siegenthale r JA , Mille r M W (2004 ) Ethanol induce s heterotopia s i n organotypi c cul tures o f ra t cerebra l cortex . Cere b Corte x 14:1071-1080. Nadarajah B , Parnavelas J G (2002 ) Modes o f neurona l migration i n th e developin g cerebra l cortex . Na t Rev Neurosci 3:423-432. Nagler K , Mauc h DH , Pfriege r P W (2001 ) Glial derived signal s induc e synaps e formatio n i n neu rons o f th e ra t centra l nervou s system . J Physio l 533:665-679. Nakagawa T , Schwart z J P (2004 ) Gen e expressio n pat terns i n i n vivo norma l adul t astrocyte s compare d with cultured neonatal an d normal adult astrocytes. Neurochem Int l 45:203-242.
Nedergaard M , Ranso m B , Goldma n S A (2003 ) Ne w roles for astrocytes: redefining the functiona l architecture o f the brain. Trends Neurosc i 26:523-530 . Noctor SC , Flin t AC , Weissma n TA , Dammerman RS , Kriegstein A R (2001 ) Neuron-derive d radia l gli a cells establis h radia l unit s i n neocortex . Natur e 409:714-720. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinto n BK, Kriegstei n AR (2002 ) Dividing precursor cell s of th e embryoni c cortica l ventricula r zon e hav e morphological an d molecula r characteristic s of radial glia. J Neurosci 22:3161-3173 . Ohanian J , Ohania n V (2001 ) Sphingolipid s i n mam malian cel l signalling . Cel l Mo l Lif e Se i 58 : 2053-2068. Oppenheim R W (1991 ) Cel l deat h durin g develop ment o f the nervou s system. Ann Re s Neurosc i 14 : 453-501. Parnavelas JG, Lude r R , Pollar d SG , Sulliva n K, Liberman A R (1983) A qualitative and quantitativ e ultrastructural stud y o f glia l cell s i n th e developin g visual corte x o f the rat . Phi l Tran s R So c Lon d B Biol Sei 301:55-84 . Pascual M, Climent E , Guerri C (2001 ) BDNF induces glutamate releas e i n cerebrocortica l nerv e termi nals an d i n cortica l astrocytes . Neurorepor t 12 : 2673-2677. Pascual M , Vallès S, Renau-Piqueras J, Guerri C (2003) Ceramide pathway s modulat e ethanol-induce d cell deat h i n astrocytes . J Neuroche m 87:1535 1545. Pascual M , Garcia-Minguilla n MC , Guerr i C (2004 ) Antioxidants prevent ethanol-induce d cel l deat h i n developing brai n an d i n culture d cells . Alcoho l Clin Ex p Res 28 (Suppl 8):61A. Pasti L , Zont a M , Poza n T , Vicin i S , Carmignot o G (2001) Cytosoli c calciu m oscillatio n i n astrocyte s may regulat e exocytoti c releas e o f glutamate . J Neurosci 21:477-484. Peiffer J , Majewsk i F, Fischbac h H , Bieric h JR , Volk B (1979) Alcohol embryo- and fetopathy . J Neurol Se i 41:125-137. Perez-Torrero E , Dura n P , Granado s L , Gutierrez Ospina G , Cintr a L , Diaz-Cintr a S (1997 ) Effect s of acut e prenata l ethano l exposur e o n Bergman n glia cell s earl y postnata l development . Brai n Re s 746:305-308. Pixley SKR, DeVellis J (1984) Transitio n betwee n inma ture radia l glia and matur e astrocyte s studies with a monoclonal antibod y t o vimentin . De v Brai n Res 15:201-209. Qiang M , Wan g MW , Elberge r A J (2002 ) Secon d trimester prenata l alcoho l exposur e alter s develop ment o f rat corpu s callosum . Neurotoxico l Terato l 24:719-732.
310 ETHANOL-AFFECTE D DEVELOPMEN T Raff MC , Barre s BA, Burne JF, Coles HS , Ishizak i Y, Jacobson M D (1993 ) Programmed cel l deat h an d the control o f cel l survival : lesson s fro m th e nervou s system. Science 262:695-700 . Rakic P (1972) Mode of cell migratio n t o the superficia l layers o f feta l monke y neocortex . J Com p Neuro l 145:61-84. Ransom B, Behar T, Nedergaar d M (2003 ) New role s for astrocytes (star s a t last) . Trend s Neurosc i 26:520 522. Razin A (1998 ) Cp G methylation , chromati n structur e and gene silencing a three-way connection. EMB O J 17:4905-4908. Resnicoff M , Rubin i M , Baserg a R , Rubi n R (1994 ) Ethanol inhibit s insulin-lik e growt h facto r I — mediated signallin g an d proliferatio n o f C 6 ra t glioblastoma cells . Lab Invest 71:657-662. Richards L J (2002 ) Axona l pathfindin g mechanism s at th e cortica l midlin e an d i n th e developmen t o f the corpu s callosum . Bra z J Me d Bio l Re s 35 : 1431-1439. Riikonen R , Salone n I , Partane n K , Verh o S (1999) Brain perfusion SPECT and MR I i n foetal alcoho l syndrome. Dev Med Child Neuro l 41:652-659. Riley EP , Mattso n SN , Sowel l ER , Jerniga n TL , Sobe l DF, Jone s K L (1995 ) Abnormalities o f th e corpu s callosum i n children prenatall y expose d t o alcohol . Alcohol Clin Ex p Res 19:1198-1202. Ross ME, Walsh C A (2001) Human brai n malformation s and thei r lessons for neuronal migration . Annu Re v Neurosci 24: 1041-1070. Rubert G, Vallès S, Guerri C (2003 ) Fetal alcoho l expo sure alter s radia l gli a an d ma y affec t corpu s callo sum formation. Alcohol Alcohol 38:462 . Sakata-Haga H , Sawada K, Hisano S, Fukui Y (2001) Abnormalities o f cerebellar foliatio n in rat s prenatally exposed to ethanol. Acta Neuropathol 102:36-40 . Sanai N , Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N , Kunwar S, Lawton MT, McDermott MW, Pars a AT , Garcia-Verdug o JM , Berge r MS , Alvarez-Buylla A (2004) Unique astrocyt e ribbon i n adult huma n brai n contain s neura l ste m cell s bu t lacks chain migration . Nature 427:740-744. Sancho-Tello M , Vallès S, Montoliu C , Renau-Piquera s ], Guerr i C (1995 ) Developmenta l patter n o f GFAP an d vimenti n gen e expressio n i n ra t brai n and i n radial glial cultures. Glia 15:157-166 . Savage DD, Montan o CY , Otero MA, Paxton LL (1991) Prenatal ethano l exposur e decrease s hippocampa l NMDA-sensitive (^H)-glutamat e bindin g sit e den sity in 45-day-old rats. Alcohol 8:193-201 . Schatter B , Walev I , Klei n J (2003) Mitogenic effect s o f phospholipase D an d phosphatidi c aci d i n tran siently permeabilize d astrocytes : effect s o f ethanol . J Neurochem 87:95-100 .
Schikorski T , Steven s C F (1999 ) Quantitativ e fine structural analysis of alfatory cortica l synapses. Proc Natl Acad Se i USA 96:4107-4112. Schmechel DE , Raki c P (1979 ) A Golgi stud y of radial glial cell s i n developin g monke y telencephalon : morphogenesis an d transformatio n int o astrocytes . Anat Embiyol 156:115-152 . Schmid RS, Anton E S (2003) Role of integrins in the de veloping o f th e cerebra l cortex . Cere b Corte x 13:219-224. Schmid RS , McGrat h B , Berechi d BE , Boyle s B, Mar chionni M , Sestan N , Anton E S (2003) Neuregulin l-erbB2 signalin g i s required fo r the establishmen t of radial glia and thei r transformatio n int o astrocyte s in cerebra l cortex . Pro c Nat l Aca d Se i US A 100 : 4251-4256. Shetty AK , Burrow s RC, Wal l KA , Phillip s D E (1994 ) Combined pre - an d postnata l ethano l exposur e alters th e developmen t o f Berman n gli a i n ra t cere bellum. In t J Dev Neurosci 12:641-649 . Shu T , L i Y, Keller A, Richards LJ (2003) The glia l sling is a migrator y populatio n o f developin g neurons . Development 130:2929-2937 . Shu T , Richard s L J (2001 ) Cortica l axo n guidanc e b y the glia l wedge durin g the developmen t o f the cor pus callosum . J Neurochem 21:2749-2758 . Shulman EG , Hyde r F , Rothma n D L (2001 ) Cerebral energetics an d th e glycoge n shunt : neurochemica l basis o f functiona l imaging . Pro c Nat l Aca d Se i USA 98:6417-6422. Siegenthaler JA, Miller M W (2004 ) Transforming growth factor ß l modulate s cel l migratio n i n ra t cortex: effects of ethanol. Cereb Corte x 14:791-802 . Sievers J, Pehlemann FW , Gude S , Hartmann D , Berry M (1994 ) Th e developmen t o f the radia l glial scaf fold o f th e cerebella r corte x fro m GFAP-positiv e cells i n th e externa l granula r layer . J Neurocyto l 23:97-115. Silver J , Edward s MA , Levit t P (1993 ) Immunocyto chemical demonstratio n o f earl y appearin g as troglial structure s tha t for m boundarie s an d pathways alon g axo n tract s i n th e feta l brain . J Comp Neurol 328:415-436 . Snyder AK, Singh SP, Ehmann S (1992) Effects o f ethanol on DNA , RN A and protei n synthesis in ra t astrocyte cultures. Alcohol Clin Ex p Res 16:295-300. Song H , Steven s CF , Gag e F H (2002 ) Astroglia induc e neurogenesis fro m adul t neura l ste m cells . Natur e 417:29-32. Song M-R , Ghos h A (2004 ) FGF2-induce d chromati n remodeling regulate s CNTF-mediate d gene expres sion an d astrocyt e differentiation . Na t Neurosc i 7 : 229-235. Soriano E , De l Ri o JA, Auladell C (1993 ) Characteriza tion o f th e phenotyp e an d birthdate s o f pyknoti c
GLIAL TARGETS OF DEVELOPMENTA L EXPOSUR E TO ETHANO L 31 1 dead cell s i n th e nervou s system by a combinatio n of DNA stainin g and immimohistochemistr y for 5' bromodeoxyuridine an d neura l antigens . J His tochem Cytochem 41:819-827 . Sowell ER , Mattso n SN , Thompson PM , Jerniga n TL, Riley EP , Tog a A W (200la ) Mappin g callosa l morphology an d cognitiv e correlates . Effect s o f heavy prenata l alcoho l exposure . Neurolog y 57 : 235-244. Sowell ER , Thompso n PM , Mattso n SN , Tessne r KD , Jernigan TL , Rile y EP , Tog a A W (20 0 Ib) Voxel based morphometri c analyse s of the brai n i n chil dren an d adolescents prenatall y exposed t o alcohol. Neuroreport 12:515-523 . Spong CY , Abebe DT , Goze s I , Brennema n DE , Hil l JM (2001 ) Preventio n o f feta l demis e an d growt h restriction i n a mous e mode l o f feta l alcoho l syn drome. J Pharrnacol Exp Ther 297:774-779. Spuhler-Phillips K, Lee YH, Hughes P, Randoll L, Leslie S W (1997 ) Effect s o f prenatal ethano l exposur e on brain regio n NMDA-mediated increas e in intracellular calciu m an d th e NMDAR 1 subuni t i n fore brain. Alcohol Clin Ex p Res 21:68-75. Steven ER , Esguerra M, Kim PM, Newma n EA, Snyder SH, Zah s KR , Miller RF (2003 ) D-serine an d ser ine racemas e ar e presen t i n th e vertebrat e retin a and contribut e t o th e physiologica l activatio n of NMDA receptors . Pro c Nat l Aca d Se i US A 100 : 6789-6794. Sutherland RJ, McDonald RJ , Savage DD (1997 ) Prena tal exposur e t o moderate levels of ethanol ca n hav e long-lasting effect s o n hippocampa l synapti c plas ticity in adult offspring. Hippocampu s 7:232-238 . Swayze VW , Johnso n VP , Hanso n JW , Pive n J , Sat o Y, Giedd JN , Mosnik D , Andreasen N C (1997 ) Mag netic resonance imagin g of brain anomalies i n feta l alcohol syndrome . Pediatric s 99:232—240. Tajuddin NF , Orric o LA , Eriksen JL , Drus e M J (2003) Effects o f ethano l an d ipsapiron e o n th e develop ment of midline raphe glial cells and astrocytes . Alcohol 29:157-164. Takizawa T, Nakashim a K , Namihira M, Ochiai W, Uemura A, Yanagisawa M, Fujita N , Nakao M, Taga T (2001) DN A methylatio n i s a critica l cell-intrinsic determinant of astrocyte differentiatio n i n th e feta l brain. Dev Cell 1:749-758 . Tanaka H , Nas u F , Inomat a K (1991 ) Feta l alcoho l ef fects: decrease d synapti c formation s i n th e fiel d CA3 o f fetal hippocampus . Int l J De v Neurosc i 9 : 509-517. Toman RE , Movsesya n V , Murth y SK , Milstie n S , Spiegel S , Faden AI (2002) Ceramide-induced cell death i n primary neuronal culturesrupregulatio n of ceramide level s during neurona l apoptosis . J Neu rosci Res 68:323-330.
Ullian EM, Harri s BT, Wu A, Chan JR, Barres BA (2004) Schwann cells and astrocytes induce synaps e formation b y spinal motor neuron s in culture . Mol Cel l Neurosci 25:241-251 . Ullian EM , Sapperstei n SK , Christopherson KS , Barres BA (2001 ) Contro l o f synapse number b y glia. Sci ence 291:657-661. Vallès S, Felipo V, Montoliu C, Guerri C (1995 ) Alcohol exposure during brain development reduces ^H-M K 801 bindin g and enhance s metabotropic-glutamat e receptor-stimulated phosphoinositid e hydrolysi s i n rat hippocampus. Lif e Se i 56.T373-1383. Vallès S , Lind o L , Montoli u C , Renau-Piquera s J , Guerri C (1994 ) Prenata l exposur e t o ethano l in duces change s i n the nerv e growth facto r and it s receptor in proliferating astrocytes in primary culture . Brain Res 656:281-286. Vallès S , Pitarc h J , Renau-Piquera s J , Guerr i C (1997 ) Ethanol exposur e affect s glia l fibrillar y acidi c pro tein gen e expressio n an d transcriptio n durin g ra t brain development. J Neurochem 69:2484-2493 . Vallès S , Sancho-Tell o M , Minan a R , Climen t E , Renau-Piqueras J , Guerri C (1996 ) Glia l fibrillary acidic protei n expressio n i n ra t brai n an d i n radia l glia cultur e i s delaye d b y prenata l ethano l expo sure. J Neurochem 67:2425-2433 . Ventura R, Harri s K M (1999 ) Three-dimensiona l rela tionships between hippocampa l synapses and astrocytes. J Neurosci 19:6897-6906 . Voigt T (1989 ) Development of glial cells in the cerebra l wall of ferrets: direc t tracin g of their transformation from radia l glia into astrocytes. J Comp Neurol 289 : 74-88. Waziri R , Kamat h SH , Sah n S (1981 ) Alcohol inhibit s morphological an d biochemica l differentiatio n of C6 glial cells in culture. Differentiatio n 18:55-59 . Wilkemeyer MF , Che n S-Y , Menkari CE , Brennema n DE, Suli k KK , Charnes s M E (2003 ) Differential effects o f ethanol antagonis m an d neuroprotectio n in peptid e fragmen t NAPVSIP Q preventio n o f ethanol-induced developmenta l toxicity . Pro c Nat l Acad Se i USA 100:8543-8548. Wilkemeyer MF, Pajersk i M , Charness ME (1999 ) Alcohol inhibitio n o f cel l adhesio n i n BMP-treate d NG108-15 cells . Alcoho l Cli n Ex p Re s 23:1711 1720. Wilkemeyer MF , Sebastia n AB , Smit h SA , Charnes s ME (2000 ) Antagonist s o f alcoho l inhibitio n of cel l adhesion . Pro c Nat l Aca d Se i US A 97 : 3690-3695. Wisniewski K , Dambska M , She r JH , Qaz i Q (1983 ) A clinical neuropathologica l study of the fetal alcoho l syndrome. Neuropedia 14:195—201 . Wolosker H , Blacksha w S , Snyde r S H (1999 ) Serin e racemase: a glia l enzym e synthesizin g D-serin e
312 ETHANOL-AFFECTE D DEVELOPMEN T to regulat e glutamate-n-methyl-D-aspartat e neuro - effec t o f ethano l o n dendriti c development . Gli a transmission. Pro c Nat i Aca d Se i US A 96:13409- 38:292-302 . 13414. Yuas a S (1996 ) Bergman n glia l developmen t in the Yanni PA , Rising LJ, Ingraha m ÇA, Lindsley TA (2002) mous e cerebellu m a s reveale d b y tenasci n expres Astrocyte-derived factor s modulat e th e inhibitor y sion . AnatEmbryol 194:223-234 .
Ill NICOTINE-AFFECTED DEVELOPMENT
This page intentionally left blank
19
Tobacco Use During Pregnancy : Epidemiology and Effect s on Offsprin g Jennifer A. Willford Nancy L. Day Marie D. Corneliu s
Tobacco us e durin g pregnanc y affect s feta l develop ment o n multipl e levels. Nicotine readil y crosses th e placenta, concentratin g i n feta l tissue , an d result s in fetal concentration s o f nicotin e tha t ca n b e 15 % higher than those in the pregnant woma n (Luc k et al., 1985). Th e direct action s o f nicotine o n th e fetu s affect growt h an d neura l developmen t durin g th e in trauterine period an d hav e long-term effect s o n brain function, cognition , and behavior (Abreu-Villaca et al , 2004a, 2004b). Tobacco us e durin g pregnanc y ha s indirec t effects o n feta l development . Prenata l tobacc o us e affects th e nutritiona l status of the mother , leadin g to an increase d ris k o f having an infan t wit h lo w birth weight (LBW ) (Hast e e t al , 1990) , an d cause s in creased vascula r resistance i n the placenta , resultin g in reduce d oxyge n flo w t o th e fetu s (Lamber s an d Clark, 1996) . Intermitten t feta l hypoxia , secondary to exposure to carbon monoxid e an d th e metabolit e carboxyhemoglobin, ma y als o affec t oxyge n flo w t o the fetus .
The presen t chapte r review s the epidemiolog y o f tobacco us e durin g pregnanc y an d the n focuse s o n the effect s o f prenatal tobacc o exposur e (PTE).
SCOPE O F THE PROBLE M
Epidemiology of Tobacco Use During Pregnancy In genera l population s surveys , 10 % t o 20 % o f women repor t tha t the y smoke d durin g pregnanc y (National Institut e o n Dru g Abus e [NIDA] , 1996 ; LeClere and Wilson, 1997 ; Center s for Disease Con trol and Preventio n [CDC] , 2002 , 2003) . Dat a col lected o n th e U.S . Standar d Certificate s o f Liv e Births sho w tha t th e proportio n o f wome n wh o smoked durin g pregnanc y decline d fro m 19.5 % t o 11.4% between 198 9 an d 200 2 (Marti n e t al, 2003). This decrease mirror s a general decreas e i n smokin g among wome n o f reproductiv e age , althoug h on e
315
316 NICOTINE-AFFECTE D DEVELOPMENT group, young women aged 18-20 , increased their use slightly fro m 198 7 t o 1996 (Ebrahim e t al , 2000) . This overall decline i n smoking during pregnancy results fro m lo w rates of smoking initiation i n women , rather tha n change s i n smokin g befor e o r durin g pregnancy (Wisbor g e t al. , 1996 ; Cnattingiu s an d Haglund, 1997 ; Department o f Health an d Huma n Services [DHHS], 2001). Smoking durin g pregnanc y i s mor e prevalen t among Caucasia n wome n tha n amon g African American o r Hispani c wome n (NIDA , 1996 ; CDC, 2002). The rate s vary by age (Cornelius e t al., 1999b ; Kahn e t al. , 2002) , wit h younge r wome n smokin g more cigarettes . Us e als o varies by trimester o f pregnancy. A Maternal Health Practices and Child Development (MHPCD ) stud y of teenage mother s report s that th e rat e o f smoking during pregnanc y i s 47% i n the first trimester and 58 % in the third trimester (Cornelius e t al. , 2004) . I n general , wome n wh o smok e during pregnanc y ar e younge r an d les s likel y t o b e married, have less education an d lower incomes, an d attend fewe r prenata l visit s compare d wit h wome n who do not smok e durin g pregnanc y (Da y et al. , 1992; Corneliu s e t al. , 1994 ; DHHS , 2001 ; CDC , 2003). Wome n wh o smok e durin g pregnanc y als o have highe r rate s o f antisocia l behavior , mate s tha t have mor e antisocia l behaviors , highe r rate s o f de pression, an d lowe r socioeconomi c statu s (SES) (Maughanetal., 2004). Women ar e less likely to decrease their tobacco us e during pregnancy than they are to decrease othe r sub stance use, including alcohol, marijuana, and other illicit drug s (Corneliu s e t al, 1995 ; Day et al, 2000), and ar e more likely to continue t o smoke i n the post partum perio d (Corneliu s e t al. , 1999a ; Leech e t al. , 1999). I n a Nationa l Pregnanc y an d Healt h Stud y (NIDA, 1996), approximately two-thirds of the wome n who smoke prior to their pregnancy continue smoking through th e las t trimester . B y contrast , onl y onequarter o f the wome n wh o us e alcoho l prio r t o conception continu e t o drin k i n th e thir d trimester . Women who continue to smoke during pregnancy are more likely to have had previous pregnancies, to have a younger age at smoking onset, to be heavy smokers, and to have less education (Cnattingius, 2004). Women wh o smok e durin g pregnanc y als o continue to smoke in the postpartum period. This mean s that th e offsprin g o f a woman who use s tobacco during pregnanc y ar e expose d continuousl y t o tobacc o smoke i n th e household . Thi s environmental , o r
passive, exposur e als o affect s chil d development . I n the MHPC D cohor t o f adult mothers , fo r example , the correlatio n betwee n prenata l tobacco us e and tobacco us e 1 0 years later wa s 0.63 (Cornelius e t al. , 2000). I n addition , a s man y as 60 % o f wome n wh o quit smokin g durin g pregnanc y bega n agai n withi n 6 months o f delivery (Mullen e t al., 1997; Hajek et al., 2001). Significan t predictor s o f relaps e afte r preg nancy include living with another smoker, less education, and lower income (Kah n et al., 2002). Women who smoke during pregnancy have higher rates of other substance use as well. Among women in the MHPCD project, 76% of the women ove r the age of 1 8 who smoke d durin g the firs t trimeste r o f pregnancy dran k alcoho l durin g thi s perio d (Da y et al. , 1992). Among pregnant teenagers , 61 % of those wh o smoked i n the first trimester drank alcohol (Corneliu s et al , 1995) . Tobacc o us e i s als o highl y associated with th e us e o f illici t drug s durin g pregnancy . I n the Nationa l Pregnanc y an d Healt h Surve y (NIDA , 1996), wome n wh o smoke d cigarette s durin g preg nancy reporte d usin g illicit drug s (26%) , drinkin g (16%), o r bot h (32%) . Therefore , i t i s importan t t o control fo r the covariate s of PTE an d othe r prenata l substance exposures , as well a s curren t materna l tobacco an d othe r substanc e use . In th e absenc e o f considering thes e othe r ris k factors, it i s not possibl e to identif y accuratel y the uniqu e effect s o f prenatal tobacco exposure. Mortality and Morbidity A meta-analysi s estimate s tha t PT E wa s responsibl e for u p t o 480 0 infan t deaths , 61,00 0 infant s wit h LBW, and 26,00 0 neonata l intensiv e care admissions per year (DiFranza and Lew , 1995) . An earlier report estimates tha t materna l smokin g was responsible fo r approximately 10 % of fetal an d infan t death s (Kleinman e t al. , 1988) . Thi s report , alon g wit h anothe r (Singleton et al., 1986) , find that the impac t of PTE is greater amon g Africa n American s tha n fo r Cau casians an d i s greate r amon g th e offsprin g o f olde r mothers (Cnattingius et al., 1988) . PTE i s a significan t risk facto r fo r sudde n infan t death syndrom e (SIDS ) (Nationa l Cance r Institut e [NCI], 1999) . SID S result s fro m th e PTE-relate d chronic hypoxi a (Bulterys et al., 1990) . Postnatal passive exposure of the infan t als o significantly increases the ris k of SIDS (Klonoff-Cohe n e t al., 1995 ; Dwye r étal, 1999) .
EPIDEMIOLOGY OF MATERNA L TOBACC O US E 31 7 GROWTH AN D MATURATION
Human Studie s PTE ha s lon g bee n identifie d a s a significan t ris k factor fo r intrauterin e growt h restrictio n (DHHS , 1980, 2001 ; Stillman e t al., 1986 ; Floy d e t al., 1993 ; NCI, 1999 ; CDC , 2003) . Birt h weigh t decrease s i n direct proportio n t o the numbe r o f cigarettes smoke d (Yerushalmy, 1971 ; Persso n e t al. , 1978) , an d off spring of smokers are 15 0 to 250 g lighter than th e off spring of non-smokers (DHHS , 1980) . Th e effect s o f PTE ca n b e see n eve n a t lower levels of exposure: in one report , 11.5 % o f infant s bor n t o ligh t smoker s (<six cigarettes/day) have LBW, compare d t o 7.5 % of those born t o non-smokers (Marti n e t al., 2003) . Th e reduction i n infan t weight i s not du e t o earlie r gesta tion, a s infants o f smokers exhibit growt h retardation at all gestational ages (NCI, 1999) . Birth lengt h an d hea d an d ches t circumference s are reduce d i n infant s wh o ar e prenatall y exposed t o tobacco (Klin e e t al , 1987 ; Da y e t al , 1992 ; Cor nelius e t al. , 1995) . I n a cohor t o f 151 3 Caucasia n women, infants o f smokers are shorter and hav e lower pondéral indice s an d smalle r mea n uppe r ar m cir cumferences tha n d o th e offsprin g o f non-smoker s (Haste et al, 1991) . In a study of neonatal bod y com position, PT E i s significantly related t o reduce d fat free mas s (Lindsa y e t al. , 1997) , an d th e author s conclude tha t th e lowe r birt h weigh t o f infant s ex posed t o prenatal smoking is primarily due to reduce d fat-free mas s or lean tissue . In a MHPC D stud y o f pregnant teenager s (Cor nelius e t al , 1995 , 1999h) , PT E i s significantl y related t o reduce d birt h weight , length , an d hea d an d chest circumference. These reductions are more pro nounced tha n the effect s of PTE in a similar cohor t of pregnant adul t wome n an d thei r offsprin g a t birth (Day et al., 1992) . The increase d problems associated with younger materna l ag e and poorer feta l outcome s (Ketterlinus et al, 1990 ; Frase r e t al, 1995) , couple d with the hig h prevalence of smoking among pregnan t teenagers (Corneliu s et al., 1994), magnify the risk s to offspring o f pregnant teenagers who smoke . The duratio n and timin g of tobacco exposur e during pregnanc y ar e importan t i n determinin g growt h outcomes. Smokin g onl y durin g th e firs t trimeste r produces a n averag e 5 5 g reductio n i n birt h weight , whereas continuou s smokin g throughou t pregnanc y leads t o a reductio n i n birt h weigh t o f 18 9 g (Cliver
et al. , 1995) . On e stud y report s n o relatio n betwee n PTE an d LB W amon g th e offsprin g o f women wh o stopped smokin g earl y in pregnanc y (MacArthu r and Knox, 1988) . Fo x and colleague s (1990 ) studie d th e height and weight of 714 three-year-old children. Th e children o f wome n wh o qui t smokin g durin g preg nancy ar e heavie r an d talle r tha n thos e o f wome n who do not quit. Adjustment for postpartum exposur e to tobacco smok e reduce s th e differenc e i n th e chil dren's weight , bu t ha s littl e effec t o n th e difference s in height . Anothe r stud y describe s n o difference s i n head circumferenc e amon g childre n whos e mother s stopped smokin g befor e 3 2 weeks o f gestation com pared t o children whos e mother s di d not smoke (Vik et al, 1996) . The Nationa l Healt h Intervie w Survey describes an increased relativ e risk (1.6 times) of having a LBW infant amon g wome n wit h hig h level s of exposure to passive smok e (Mainou s and Hueston , 1994 ) a s have other researcher s (Haddo w e t al., 1986 ; Rubi n e t al. , 1986; Matha i e t al , 1990) . Marti n an d Bracke n (1986) find that passive exposure correlates with LBW among offsprin g o f nonsmoking women , resultin g i n newborns who are, on average, 24 g lighter. The effect s o f PTE o n growth over the longe r term are les s clear. At 8 years of age, there is an associatio n between PT E an d growt h i n expose d childre n (Jone s et al. , 1999) . Childre n wit h PT E hav e lowe r bon e mass at the lumba r spine and femora l neck, althoug h not in the total body. Naeye (1981) detects a small difference i n height an d head circumferenc e i n expose d 7-year-old offspring , usin g dat a fro m th e Collabora tive Perinata l Project . Rantakalli o (1983 ) show s tha t exposed offsprin g ar e shorter at age 14 , and Fogelma n and Mano r (1988 ) repor t decrease d heigh t a t 7 , 11 , and 2 3 years of age tha t i s mediated b y birth weight . These studies do not control fo r the offsprings ' passiv e exposure to tobacco smok e or for other prenatal expo sures. In a MHPCD study of adult mothers an d thei r off spring (Da y e t al. , 1992 ) whic h control s fo r prenata l alcohol an d othe r dru g exposures and curren t mater nal tobacc o an d othe r substanc e use , ther e i s a sig nificant invers e relatio n betwee n PT E an d weight , length, an d hea d circumferenc e at birth. At 8 months of age , onl y lengt h continue s t o b e associate d wit h PTE. B y 1 8 months o f age, ther e ar e n o association s between PT E an d siz e o f the offsprin g afte r control ling fo r the appropriat e covariate s (Da y e t al. , 1992) . Other studie s also have no t foun d growt h retardation
318 NICOTINE-AFFECTE D DEVELOPMENT over the lon g ter m (Hard y and Mellitus , 1972 ; Frie d and O'Connell , 1987 ; Vi k e t al , 1996) . Mor e re cently, i t ha s bee n argue d tha t th e associatio n be tween PTE an d reduced heigh t a t 6.5 and 1 3 month s postpartum i s attributable to prenata l exposure to alcohol (Jacobson et al., 1994) , highlighting th e impor tance o f controlling for the effect s o f other drugs. Recent reports demonstrate that PTE leads to an increase in weight at older ages. Power and Jefferi s (2002) note that althoug h PT E i s associated wit h lower birth weight, thi s relatio n reverse d by adolescence , an d b y age 33 , exposed offsprin g hav e 1. 5 greater odd s of be ing obese . I n a MHPC D cohor t o f teenage mother s and thei r offspring, a positive association is evident between PT E an d increase d skinfol d thickness , an d higher body mass index an indication that the childre n are overweight for their height (Corneliu s e t al, 2002). Similar finding s hav e bee n reporte d b y othe r author s (Vik e t al , 1996 ; Frie d e t al. , 1999 ; Toschk e e t al , 2003). Thus , th e preponderanc e o f evidenc e fro m longitudinal studie s that have controlled fo r passive tobacco exposur e and othe r covariate s of pre- and post natal tobacc o exposur e i s that th e growt h deficit s that are eviden t a t birth ar e no t maintained , an d ove r th e long term there appears to be an increase in weight. The mea n ag e a t menarch e i s approximatel y 6 months earlier among the female offspring expose d to a pac k or more o f cigarettes per da y during gestatio n than that of girls unexposed during pregnancy (Windham e t al, 2004) . Girls with bot h hig h prenata l an d childhood passiv e exposur e to tobacc o hav e onse t o f menarche 4 months earlie r than th e girls who are not exposed a t eithe r time . Earl y onse t o f menarch e i s present afte r adjustin g fo r alcohol, coffee , an d te a exposure, mothers' age at menarche, parity , race, education, and income . The complexit y of relations between prenata l nico tine exposure and growt h are demonstrated i n animal models. Navarr o and colleague s (1989 ) repor t effect s of PTE o n viability, growth, and nervou s system development o f th e offsprin g a t hig h dose s o f nicotin e (>6mg/kg/day). A t lower dose s ( 2 mg/kg/day), whic h are approximatel y equivalent t o
Using osmotic minipumps, nicotine wa s administered to pregnant rats three time s during the pregnancy : on gestational day (G) 8 to G13, G8 to G21, and G 8 to postnatal da y (P) 17 . Nicotine exposur e early in gesta tion doe s not affec t materna l weigh t gain or offsprin g growth outcomes. Continuou s exposur e through much of the pregnanc y an d int o th e earl y postnatal perio d (G4 t o P17 ) cause s significan t growth deficits . Thus, the effect s o f prenata l nicotin e exposur e o n growt h occur later in gestation . The effect s o f prenatal nicotin e exposur e occur in parallel wit h a n increas e i n ornithin e decarboxylas e (ODC) activit y i n th e fetu s (Slotki n e t al , 1986 , 1993). OD C i s a sensitiv e marker of the initia l steps in polyamin e formation , whic h regulate s cellula r development (Heby , 1981 ; Slotki n an d Bartalome , 1986). Thus, the effect s o n growth of prenatal nicotin e parallel th e developmen t o f the nicotini c receptor system an d a t a time o f increased cellula r development , as reflected i n ODC activity . Central Nervous System PTE produce s neonata l centra l nervou s system (CNS ) defects, includin g poore r auditor y orientatio n (Pi cone e t al. , 1982) , autonomi e regulatio n (Picon e e t al., 1982 ; Franc o e t al., 2000) , and increase d tremors and startle s (Frie d an d Makin , 1987) . Usin g dat a from th e Neonata l Intensiv e Car e Uni t Networ k Neurobehavioral Scale , on e stud y demonstrate s dose-response relation s betwee n PT E an d stress/ab stinence sign s and higher excitability scores i n infant s (Law et al., 2003). PTE i s also significantly related t o muscle tone abnormalities after controllin g for prenatal cocain e an d alcoho l exposures , hea d circumfer ence, an d th e qualit y o f prenata l car e (Dempse y et al, 2000). In a sampl e o f predominantly young , unmarried , and lower-SE S mothers , PT E i s associate d wit h a four-point decreas e o n th e Stanford-Bine t Intelli gence Scale at 3 and 4 years of age (Olds et al., 1994). Another stud y shows that cognitive functioning a t age 3 is higher among children whose mothers quit smoking durin g pregnanc y tha n i n childre n whos e moth ers smok e throughou t pregnanc y (Sexto n e t al. , 1990). The Ottaw a Prospective Prenatal Stud y (OPPS ) reports that lower cognitive scores are associated with PTE amon g 2- , 3- and 4-year-ol d childre n (Frie d an d Watkinson, 1988) . This association between PT E an d
EPIDEMIOLOGY OF MATERNA L TOBACCO USE 31 9 IQ i s also evident at age s 9 t o 1 2 years (Fried, 2002 ) and 1 3 to 1 6 years (Frie d e t al, 2003 ) for the OPP S cohort. Anothe r prospectiv e stud y (Streissgut h e t al. , 1989), however , show s n o effec t o f PT E o n I Q i n 4-year-olds. PTE produce s deficits in visual memory and verbal learning o n th e Wid e Rang e Assessmen t o f Memory and Learnin g (Sheslow and Adams, 1990) amon g th e 10-year-old offsprin g o f adult mother s i n a study fro m the MHPCD (Cornelius e t al, 2001). These findings are significan t afte r controllin g for SES, materna l psychological status , hom e environment , othe r prenata l substance exposures , an d curren t materna l substanc e use. I n th e OPP S cohort, whe n th e offsprin g ar e 9 to 12 years old, PTE produce s visua l perceptual deficit s (Fried and Watkinson, 2000). A later report on this cohort a t age s 1 3 t o 1 6 years shows that PT E produce s poorer auditory functioning (Fried e t al., 2003). Poor languag e developmen t i s reporte d i n 2 (Fried and Watkinson , 1988) , 3-, and 4-year-old s with PTE (Frie d an d Watkinson , 1990) . Amon g 9 - to 12 year-old children i n this study, PTE i s negatively associated wit h languag e an d readin g abilitie s (Frie d et al., 1997) . Smokin g during pregnancy is also significantly relate d t o poore r performanc e o n spelling , reading, an d arithmeti c assessment s amon g 5 - to 11 year-olds in another stud y (Batstra et al., 2003). In animals, learning and memor y deficits ar e seen on a numbe r o f comple x cognitiv e behaviora l tasks , including decreased performanc e on a two-way avoidance tas k (Vaglenov a et al. , 2004) , deficit s i n spatia l learning and memor y (Sorenso n e t al., 1991 ; Yanai et al, 1992 ; Levi n e t al, 1993 , 1996) , opéran t learnin g (Martin an d Becker , 1971) , and discriminatio n learning (John s et al., 1982) . These impairment s in cogni tive functio n ar e consisten t wit h th e learnin g an d memory deficits observe d in children with PTE . Behavior Associations between PT E an d error s of omission and commission, measures o f inattention an d impulsivity , respectively, are detectable in 4-year-olds (Streissgut h et al , 1984) . Ther e i s a significan t relation betwee n PTE an d impulsivit y among 6-year-old s in the OPP S cohort (Frie d e t al, 1992) . In a MHPCD study of off spring o f adult mothers , PT E significantl y predicte d increased error s of commission , o r inattention , o n a continuous performanc e tes t i n 6-year-old s (Leec h
et al, 1999) . I n the MHPCD, however , the mother' s current tobacc o us e i s so highly correlate d wit h th e prenatal exposur e tha t th e effect s o f the prenata l an d current exposure s coul d no t b e separated . Kristjans son an d colleague s (1989 ) sho w tha t PT E produce s impulsivity and increase s overal l activit y among 4 - to 7-year-olds. A prospectiv e stud y o f 900 0 childre n i n Finland (Kotima a e t al , 2003 ) found a 30 % higher rate in hyperactivity among 8-year-old s who had PTE than i n thos e wh o di d not , afte r controllin g fo r gen der, family structure, SES, maternal age, and prenatal alcohol exposure . I n th e OPP S cohor t o f 9 - t o 12 year-olds, there was a dose-dependent associatio n be tween PT E an d impuls e contro l (Fried , 2002) . Eskenazi an d Trupi n (1995) , however , repor t tha t there i s no associatio n betwee n PT E an d activit y levels at 5 years of age in their study. In a case-control stud y of children with and with out attentio n defici t hyperactivit y disorde r (ADHD) , Mick an d colleague s (2002 ) repor t tha t 6 - to 7-year old children with ADHD are 2.1 times more likel y to have been expose d t o tobacco during gestation, eve n after controllin g fo r prenatal alcoho l an d dru g expo sures. There i s a positiv e associatio n betwee n mater nal smoking during pregnancy and th e ris k of ADHD in stud y childre n betwee n th e age s o f 6 an d 1 7 (Milberger e t al , 1996) . Materna l smokin g durin g pregnancy i s significantl y associate d wit h ADH D symptoms i n twins , controlling fo r the heritabilit y of ADHD (Thapar et al, 2003) . The effect s o f prenatal nicotin e exposur e o n mo tor activity in laboratory animals are equivocal. Som e studies sho w increase d activit y (John s e t al , 1982 ; Fung an d Lau , 1988 ; Richardso n an d Tizabi , 1994 ; Tizabi e t al , 1997 ; Ajare m an d Ahmad , 1998 ; Thomas e t al, 2000) , wherea s other s sho w n o effec t (Martin an d Becker , 1970) . O n th e othe r hand , pre natal nicotin e exposur e i s linked to abnorma l devel opment o f spontaneous alternation , a behavior that is associated with cholinergic neurotransmitter function and hyperactivit y (Fung, 1989 ; Shack a e t al , 1997 ; Tizabi e t al , 2000) . Studie s als o sho w tha t prenata l nicotine exposur e change s cellula r communicatio n (Maggi e t al, 2003) , electrophysiology (Ehlers e t al , 1997; Slaweck i e t al , 2000) , an d neurotransmitte r function (Tizab i e t al , 2000 ) i n th e hippocampus , changes that could affec t activit y levels. There is consistent evidence that children expose d to tobacco durin g pregnanc y ar e at a n increase d ris k
320 NICOTINE-AFFECTE D DEVELOPMEN T for behaviora l problems, specificall y externalizin g behaviors. I n a n MHPC D cohor t o f adul t mothers , 3-year-old offspring expose d prenatally to tobacco hav e significantly mor e oppositiona l an d aggressiv e behaviors and are more immatur e (Day et al., 2000). These effects persis t after controllin g for SES , factor s in the current hom e environment , materna l psychologica l status, and other prenatal and current drug exposures. In anothe r stud y o f 3-year-old s (Orlebek e e t al. , 1997), there is a significant effec t o f PTE o n external izing behaviors, primaril y higher aggression , i n bot h genders. In a prospective study of 5-year-olds, Williams and colleague s (1998 ) describ e a relativ e risk o f 2. 6 for externalizin g behavior in children wit h PTE com pared t o unexpose d children . Anothe r stud y report s a significan t positiv e associatio n betwee n PT E an d externalizing behavior s i n 5 - to 11-year-old s (Batstr a et al. , 2003) . B y contrast, Weitzma n an d colleague s (1992) d o not fin d significan t effect s o f PTE o n chil dren wh o ar e expose d onl y durin g gestation . The y show that childre n whos e mother s smoke d bot h during an d afte r pregnanc y hav e mor e behavio r prob lems. I n th e latte r group , th e rat e o f behavio r problems i s increased by 1.1 7 times amon g thos e ex posed t o less than on e pac k of cigarettes per da y and 2.04 times among thos e expose d t o one pack or more per day. These behaviora l effect s persis t int o th e adoles cent and adult years. Among children whos e mother s smoked a t leas t 1 0 cigarette s pe r da y durin g preg nancy, ther e i s a fourfol d increas e i n th e rat e o f prepubertal onse t o f conduct disorde r amon g boy s (<13 years old), a twofold increas e in the rat e of ADHD in girls (<13 years old), and a fivefold increase i n the ris k of dru g dependenc e i n girl s age s 13-1 7 (Weissma n et al, 1999) . Thi s associatio n is significant afte r con trolling for the othe r covariate s o f maternal smokin g however, the study does not control for other prenatal substance exposure s o r postnata l environmenta l to bacco exposures . Fergusso n an d colleague s (1993 ) report tha t PT E i s relate d t o childhoo d behavio r problems at 1 2 years of age, whereas current maternal smoking i s not . PT E i s predictive o f higher rate s o f conduct disorder among 16 - to 18-year-old s in this cohort (Fergusso n e t al. , 1998) . Wakschla g an d col leagues (1997 ) als o sho w a significan t relationshi p between PT E an d conduc t disorde r a t age s 13-1 8 years. Materna l smokin g durin g pregnanc y predict s persistent crimina l outcome s i n adul t mal e offsprin g in a Danish prospectiv e study (Brennan et al., 1999) ,
and i n a prospective study in Finland, maternal smoking durin g pregnancy i s significantly associate d with an increas e i n violent offense s amon g adul t mal e off spring (Rasanen et al., 1999) . A significan t relatio n betwee n materna l smokin g during pregnanc y an d conduc t disorde r i s found i n boys 1 2 to 1 7 years ol d (Silber g e t al, 2003) . When maternal conduc t symptom s ar e considered , how ever, that associatio n i s no longer significant . Simila r conclusions are reached b y Maughan an d colleague s (2004), who show that the association s between PT E and childhoo d conduc t problem s ar e confounded b y other risk s for the developmen t o f behavior problems, including parenta l antisocia l behavior , materna l de pression, SES , an d geneti c influences . Th e highe r rates of antisocial behavior in childre n could als o result fro m th e geneti c transmissio n o f anti-social trait s and/or th e effect s o f parenta l trait s o n th e pre - an d postnatal environmen t (Wakschlag et al., 2003) . In a recent twi n study, although nearl y half of the associa tion betwee n PT E an d conduc t problem s i s ex plained by genetic heritability, PTE ha s a direct effec t on conduct problem s eve n after th e genetic contribu tion t o antisocia l behavio r i s controlle d (Maugha n et al, 2004).
TOBACCO US E
Direct Exposur e In a n MHPCD cohor t o f adult women , th e 10-year old offsprin g expose d t o half a pac k or mor e pe r da y during gestation hav e a 5.5-fol d increase d ris k of early tobacco experimentation, controllin g fo r other prena tal substanc e exposures , mothers ' curren t smoking , and othe r covariate s (Corneliu s e t al., 2000). A retrospective stud y report s a comparabl e four-fol d in creased ris k o f tobacco us e amon g girl s 9 to 1 7 years old prenatall y expose d t o tobacc o (Kande l e t al. , 1994). I n follow-u p to th e latte r study , Griesle r an d colleagues (1998 ) confirm th e link between PT E an d offspring behavio r problem s an d demonstrat e tha t these behavior problems mediate the increase d rate of smoking amon g th e adolescen t girl s with PTE . I n a study o f youn g adults, thos e wit h PT E ar e signifi cantly mor e likel y to mee t DSM-I V criteri a fo r life time tobacco dependence , althoug h this analysis does not contro l fo r other prenata l substanc e exposur e o r environmental exposures (Buka et al., 2003).
EPIDEMIOLOGY OF MATERNA L TOBACCO US E 32 1 Abnormalities i n cel l developmen t an d respon sivity associate d wit h prenatal nicotin e exposur e ma y lead t o permanent functiona l deficits whe n brai n re gions and the relate d circuitr y mature i n adolescenc e and adulthoo d (Erns t et al. , 2001) . An up-regulatio n of nicotinic acetylcholine receptor s i s evident amon g adult rat s expose d t o nicotin e i n th e immediat e neonatal period , a tim e comparabl e t o th e thir d trimester i n human s (Slotki n e t al. , 1991) . A recen t study (Klei n e t al. , 2003 ) show s tha t peri-adolescen t male mic e expose d t o gestationa l nicotin e hav e in creased nicotin e preference . Prenata l nicotin e expo sure lead s t o cholinergi c hypoactivity , decrease d cel l numbers i n th e midbrain , an d increase d cel l siz e i n the hippocampu s i n adolescen t animal s (Abreu Villaca e t al , 2004a , 2004b) . Kan e an d colleague s (2004) sho w decrease d responsivit y t o dopamin e i n the nucleu s accumbens , a brai n regio n associate d with rewar d an d th e reinforcin g effect s o f drugs , i n adolescent rats . Thus, there ar e direct biological associations tha t parallel the smokin g behavio r outcome s in human studies . Psychological Status There are few reports of effects of PTE on psychologi cal symptoms . Mother s wh o smoke d durin g preg nancy ar e significantl y mor e likel y t o hav e toddler s who display negativity than mother s who only smoked after deliver y (Brook et al , 2000) . Among 16 - to 18year-olds in another cohort , PT E predict s higher rates of depression (Fergusso n etal., 1998) . Recent anima l studie s identif y link s between pre natal nicotin e exposur e an d anxiety . The open-fiel d and elevate d plus-maz e test s have been use d to evaluate activity, anxiety, and emotionalit y in animals. Pre natal nicotin e i s associated wit h poo r adaptatio n an d anxiety i n a nove l environmen t (Vaglenov a e t al. , 2004). Femal e offsprin g wit h prenata l nicotin e expo sure d o no t sho w a norma l increas e i n activit y in a n open-field tes t across multiple days of testing (Romero and Chen , 2004) . Thi s suggest s an inabilit y to adap t to a novel environment , lear n contextua l cues , o r retrieve learne d informatio n o n th e familiarit y o f th e testing environment. I n an open-fiel d test, male mic e exposed i n uter o t o nicotine sho w increased locomo tor hyperactivity, whereas females have a n attenuate d behavioral respons e (Paul y e t al, 2004) . Thes e ani mal studies demonstrate a link between prenata l nicotine exposur e and anxiety , or the inabilit y to adapt to
new environments, and the y may provide an explana tion fo r some o f the mechanism s underlyin g the be havioral outcomes i n humans . Exposure t o Environmental Tobacco Smoke Pregnant wome n wh o liv e wit h o r spen d tim e wit h smokers expos e thei r childre n t o environmenta l to bacco smok e (ETS) . The level s of newborn exposur e correlate significantl y wit h th e level s of nicotine an d cotinine i n th e mother s (Eliopoulo s e t al. , 1994 ; Os treaetal, 1994) . As with PTE , ther e ar e growth, cognitive , and be havioral effect s fro m exposur e t o ET S durin g preg nancy. ET S exposur e i n earl y pregnanc y (20-2 4 weeks) lead s t o a decreas e i n biparieta l diameter , a measure usefu l i n predictin g feta l weigh t (Hank e et al., 2004) . Kharraz i an d colleague s (2004 ) demon strate a dose-respons e relatio n betwee n ET S expo sure an d birt h weight ; increasin g level s o f materna l cotinine ar e associate d wit h declinin g birt h weight . Other studies have also found that birth weight is negatively associated wit h ET S exposur e (Marti n an d Bracken, 1986 ; Rebagliat o e t al, 1995) . The relativ e risk for LB W i s 2.17-fold highe r amon g th e offsprin g of nonsmoking mothers wh o are exposed to ETS, an d the expose d infants , o n average , are 2 4 g lighter tha n nonexposed infant s (Marti n and Bracken , 1986) . Another study , however , describe s effect s o f ET S o n birth weigh t an d preter m deliver y onl y i n infant s o f older mothers (Ahluwali a et al., 1997) . Makin an d colleague s (1991 ) examine d th e long term effect s o f ETS durin g gestatio n o n 6 - to 9-year olds. They show that on test s of speech an d languag e skills, intelligence , visual/spatia l abilities and o n th e mother's rating s o f offsprin g behavior , th e perfor mance o f offspring o f passive smokers is intermediate to tha t o f th e childre n o f activ e smoker s an d non smokers. Exposure t o ETS i s prevalent i n the postnata l pe riod an d ca n negativel y affec t chil d outcomes . I n one study , 71 % o f inner-cit y childre n o f lo w SE S lived i n household s wit h smoker s (Corneliu s e t al. , 2003). Postnata l exposur e t o ET S increase s th e ris k of SIDS, asthma, respirator y problems, an d otiti s media (DHHS, 1999) . Postnata l ET S i s associated with a reduction i n I Q scores i n 3-year-old s (Johnson e t al. , 1999) an d developmenta l languag e impairment s i n kindergartners (Tomblin et al., 1997) . Note, however,
322 NICOTINE-AFFECTE D DEVELOPMEN T that neither of these analyses controlled fo r the effect s of PTE. ET S i s also associated with decreased perfor mance o n measure s o f receptive vocabulary and rea soning abilit y in a stud y o f 10-year-old s (Bauma n e t al., 1991) . Among 6 - to 11-year-ol d childre n o f non smoking mothers , postnata l exposur e t o ET S result s in deficit s o n centra l auditor y processing task s (Mc Cartney et al., 1994) . Two studie s evaluate the relation s betwee n expo sure to ETS an d chil d outcomes controllin g fo r PTE . In th e MHPC D cohor t o f adolescen t mother s an d their 6-year-old children , the children' s current urin e cotinine level s inversel y correlat e wit h score s o n a measure o f receptiv e languag e controllin g fo r PT E (Cornelius et al., 2000). Five-year-olds wit h postnata l ETS hav e significantly lower scores on the Raven Test and Peabod y Pictur e Vocabular y Test , measure s o f cognitive development , an d ar e rate d a s more activ e by thei r mothers , compare d t o childre n wh o ar e no t exposed to ETS (Eskenaz i and Trupin, 1995) . SUMMARY AND CONCLUSION S
There ar e significan t effect s o f PT E o n th e growth , cognitive development, an d behavio r of exposed chil dren. Children wit h PTE ar e smaller at birth, and recent researc h reports suggest that these childre n hav e a greate r ris k o f obesit y a s the y reac h adolescence . Cognitive deficit s i n reasonin g an d memor y hav e been describe d an d th e expose d children d o less well on test s o f language , reading , an d vocabular y tha n nonexposed children . PTE predict s higher rates of activity, inattention, an d impulsivity . Increases i n oppo sitional an d aggressiv e behavio r an d highe r rate s o f delinquency an d criminalit y i n adolescenc e an d adulthood have been foun d i n a number o f studies. In general, thes e outcome s ar e consisten t whethe r th e mother i s a smoke r o r th e exposur e t o th e mothe r i s through ETS. I n addition, there appear to be differen tial effect s tha t depend on duratio n an d patter n o f exposure and o n whether the offsprin g ar e exposed only during gestation , durin g gestatio n an d afte r birth , o r only afte r birth . Fo r mos t o f the identifie d outcome s of PTE, ther e are parallel data from laborator y studies on animals that lend credenc e t o the human data . Women wh o us e tobacc o durin g pregnanc y ar e often differen t fro m wome n wh o d o no t i n man y ways, includin g i n thei r SES , race/ethnicity , us e o f other substances , an d psychiatri c disorders . I n addi tion, even women wh o do not smoke tobacco ca n b e
exposed t o ETS , resultin g i n exposur e t o th e fetus . Many o f the studie s currently in th e literatur e fai l t o control fo r these significan t covariate s of tobacco us e or for ETS, makin g definitiv e conclusions abou t th e effects o f exposur e mor e difficult . Ther e ar e severa l studies, however , tha t ca n asses s th e competin g effects o f other substanc e us e during pregnancy a s well as the rol e o f the othe r covariate s and ETS . Th e gen eral conclusion s ar e validate d b y the result s o f thes e studies. Characteristics o f th e rearin g environmen t ar e also significantly associate d wit h both PT E an d ETS , as well as with the outcome s i n the offspring . Wome n who smok e durin g pregnanc y ar e highl y likel y t o smoke afte r delivery . Thi s mean s tha t childre n wh o are prenatally exposed to tobacco ar e at higher risk for continued exposur e du e t o ET S exposur e fro m th e mother and/o r othe r househol d smokers . Heredit y is another importan t factor to consider in the interpreta tion o f these findings . A s the mothe r an d chil d shar e genetic components , the y shar e factor s tha t migh t predict thei r respons e t o exposur e o r coul d increas e vulnerability for specific outcomes . Studie s tha t hav e controlled for role of heredity, nonetheless , find independent effect s o f PTE . For al l o f the abov e reasons , i t i s difficult t o enu merate definitivel y th e effect s o f PT E whethe r i t b e from a smokin g mothe r o r fro m exposur e t o ETS . Nevertheless, i t is imperative that the short - and long term effect s o f both prenata l and postnatal exposur e to tobacco o n th e growt h an d neurobehaviora l develop ment o f children b e identified . Although man y of the effects o f PTE ar e subtle , the y hav e importan t effect s on the long-term functionin g of the expose d offspring . Future studie s mus t evaluat e th e separat e an d combined effect s o f exposur e t o tobacc o an d othe r substance exposure s durin g gestation. I t is also critica l to measure the othe r factor s tha t coexist with tobacc o use, a s well a s to evaluat e th e co-occurrenc e o f PT E and ET S bot h durin g pregnancy an d i n the postpar tuni period . Studie s tha t measur e al l o f these factor s across time allows a more specifi c definitio n of the ef fects o f prenata l an d postnata l tobacc o exposur e o n the offspring . Abbreviations ADHD Attentio n Defici t Hyperactivit y Disorde r CNS centra l nervou s system ETS environmenta l tobacco smok e
EPIDEMIOLOGY OF MATERNA L TOBACCO USE 32 3 G gestationa l da y LBW lo w birth weigh t MHPCD Materna l Healt h Practice s an d Chil d Development ODC ornithin e decarboxylase OPPS Ottawa
Prospectiv e Prenata l Stud y
P postnata l da y PTE prenata l tobacco exposur e SES socioeconomi c statu s SIDS sudde n infan t death syndrom e
ACKNOWLEDGMENTS Thi s wor k wa s supporte d b y the Nationa l Institute of Alcohol Abuse and Alcoholism (JAW, NLD) , th e Nationa l Institut e o f Dru g Abus e (NLD, MDC) , an d th e Nationa l Institut e o f Chil d Health an d Human Developmen t (NLD) . References Abreu-Villaca Y , Seidle r F , Slotki n T (2004a ) Doe s prenatal nicotin e exposur e sensitiz e th e brai n t o nicotine-induced neurotoxicit y i n adolescence ? Neuropsychopharmacology 29:1440-1450. Abreu-Villaca Y , Seidle r FJ , Tät e CA , Cousin s MM , Slotkin T A (2004b ) Prenatal nicotin e exposur e al ters the respons e to nicotine administratio n in ado lescence: effect s o n cholinergi c system s durin g exposure an d withdrawal . Neuropsychopharmacology 29:879-890. Ahluwalia IB , Grummer-Straw n L , Scanlo n S K (1997 ) Exposure to environmental tobacco smoke and birth outcome: Increase d effects o n pregnant women aged 30 years of older. Am J Epidemiol 146:42-47 . Ajarem JS , Ahmad M (1998 ) Prenatal nicotin e exposure modifies behavio r o f mic e throug h earl y development. Pharmacol Biochem Beha v 59:313-318. Batstra L , Neelema n J , Haddars-Algr a M (2003 ) Ca n breast feedin g modify th e advers e effect s o f smoking durin g pregnanc y o n th e child' s cognitiv e development? J Epidemio l Commu n Healt h 57 : 403-404. Bauman K , Flewelling R, LaPrelle J (1991) Parental cigarette smokin g and cognitiv e performance of children. Health Psycho l 10:282-288 . Brennan P, Grekin E, Mednick S (1999) Maternal smoking during pregnancy and adult mal e criminal out comes. Arch Gen Psychiatr y 56:215-219. Brook J, Brook D, Whiteman M (2000) The influenc e of maternal smokin g durin g pregnanc y o n th e tod dler's negativity . Arch Pediat r Adoles c Me d 154 : 381-385.
Buka S , Shenassa E, Niaura R (2003) Elevate d risk of tobacco dependenc e amon g offsprin g o f mother s who smoked ruing pregnancy: a 30-year prospective study. Am J Psychiatry 160:1978-1984. Bulterys MG, Greenlan d S , Kraus JF (1990) Chronic feta l hypoxia and sudde n infan t death syndrome : interac tion betwee n materna l smoking and lo w hematocrit during pregnancy. Pediatric s 86:535-540. Centers fo r Diseas e Contro l an d Preventio n (CDC ) (2002) Prevalenc e o f selecte d materna l behavior s and experiences , pregnancy ris k assessmen t moni toring system . MMW R Mor b Morta l Wkl y Re p 5KSS-2). Cliver SP , Goldenber g RL , Cutte r GR , Hoffma n HJ , Davis RO , Nelso n K G (1995 ) The effec t o f ciga rette smokin g o n neonata l anthropométri e mea surements. Obstet Gyneco l 85:625-630 . Cnattingius S (2004) The epidemiolog y o f smoking dur ing pregnancy: smoking prevalence, maternal characteristics, an d pregnanc y outcomes . Nicotin e To b Res 6:125-140. Cnattingius S , Haglun d B (1997 ) Decreasin g smokin g prevalence durin g pregnanc y i n Sweden : th e ef fect on small-for-gestational-ag e births . Am J Public Health 87:410-413 . Cnattingius S , Haglun d B , Meiri k L (1988 ) Cigarett e smoking as risk factor fo r late fetal an d earl y neonatal death . BM J 297:258-261. Cornelius M , Da y N , Richardso n G , Taylo r P (1999a ) Epidemiology of substance abuse during pregnancy. In: Ott P, Tarter R, Ammerman R (eds). Sourcebook on Substance Abuse: Etiology, Epidemiology, Assess ment an d Treatment. Ally n an d Bacon , Needha m Heights, MA, pp 1-13 . Cornelius M , Gev a D , Da y N (1994 ) Pattern s an d co variates o f tobacco us e i n a recen t sampl e o f pregnant teenagers. J Adolesc Health 15:528-535 . Cornelius M , Goldschmid t L , Day N, Larkb y C (2002 ) Prenatal substanc e us e among pregnan t teenagers : a six-yea r follow-u p o f effect s o n offsprin g growth . Neurotoxicol Teratol 24:703-710. Cornelius M , Goldschmidt L , Dempsey D (2003 ) Environmental tobacc o smok e exposure in lo w income six-year-olds: parent-report and urin e cotinine mea sures. Nicotine Tob Res 5:147-154. Cornelius M , Goldschmid t L , Taylor P, Day N (1999b ) Prenatal alcoho l us e amon g teenagers : effect s o n neonatal outcomes . Alcohol Clin Ex p Res 23: 1238 -1244. Cornelius M , Leec h S , Goldschmidt L (2004 ) Charac teristics o f persisten t smokin g amon g pregnan t teenagers followe d t o youn g adulthood . Nicotin e Tob Res 6:1-11. Cornelius M, Leech S , Goldschmidt L , Lebow H, Day N (2000) Prenata l tobacco exposure : is it a ris k facto r
324 NICOTINE-AFFECTE D DEVELOPMEN T in préadolescen t tobacc o experimentation ? Nico tine Tob Res 2:45-52. Cornelius M , Rya n C, Da y N, Goldschmid t L , Willford J (2001 ) Prenatal tobacc o effect s o n neuropsycho logical outcome s amon g préadolescents . De v Be havPediatr 22:217-225 . Cornelius M , Taylor P, Geva D (1995 ) Prenata l tobacc o and marijuan a us e amon g adolescents : effect s o n offspring gestationa l age , growt h an d morphology . Pediatrics 95:438-443. Day N, Cornelius M , Goldschmidt L (1992) The effect s of prenatal tobacco an d marijuan a us e on offsprin g growth fro m birt h throug h ag e 3 years. Neurotoxi col Teratol 14:407-414 . Day N , Richardso n G , Goldschmid t L , Corneliu s M (2000) Prenata l tobacc o exposur e an d preschoole r behavior. J Behav Dev Pediat r 21:180-188. Dempsey D , Hajna l B , Jacobson S , Jones R , Ferrier o D (2000) Tone abnormalities are associated with maternal cigarett e smoking during pregnancy i n i n uter o cocaine-exposed infants . Pediatrics 106: 79-85. Department o f Health and Huma n Service s (USDHHS) (1980) Th e Health Consequences o f Smoking fo r Women: A Report o f th e Surgeon General. HH S 396. Publi c Healt h Service . Offic e o f the Surgeo n General, Rockville, MD. Department o f Health an d Huma n Service s (USDHHS) (1999) Health Effects o f Exposure t o Environmental Tobacco Smoke: The Report of the California Environmental Protection Agency. Smokin g and Control Monograph No . 10 , NIH #99-4645. National Can cer Institute, Bethesda, MD . Department of Health and Human Service s (USDHHS ) (2001) Women an d Smoking: A Report o f th e Surgeon General Offic e o f th e Surgeo n General , Washingon, DC. DiFranza J , Le w R (1995 ) Effec t o f materna l ciga rette smokin g o n pregnanc y complication s an d sudden infan t deat h syndrome . J Family Prac t 40 : 385-394. Dwyer T, Ponsonby AL, Couper D (1999 ) Tobacco smok e exposure a t on e mont h o f ag e an d subse t ris k o f SIDS—a prospectiv e study . A m J Epidemio l 149 : 603-606. Ebrahim SF , Floy d R , Merrit t RK , Decoufl e P , Holtz man D (2000 ) Trend s i n pregnancy-relate d smok ing rate s i n th e Unite d States , 1987-1996 . JAMA 283:361-366. Ehlers CL, Some s C , Thomas J, Riley EP (1997 ) Effect s of neonata l exposur e t o nicotin e o n electrophysio logical parameter s i n adul t rats . Pharmaco l Bio chem Beha v 58:713-720. Eliopoulos C , Klei n J, Phan MK , Kni e B, Greewald M , Chitayat D , Koren G (1994) Hair concentrations of
nicotine and cotinin e in women an d their newborn infants. JAM A 271:621-623. Ernst M , Moolcha n E , Robinso n M (2001 ) Behaviora l and neura l consequence s o f prenata l exposur e t o nicotine. J Am Aca d Chil d Adoles c Psychiatr y 40: 630-641. Eskenazi B, Trupin L (1995) Passive and activ e materna l smoking durin g pregnanc y a s measured b y seru m cotinine an d postnata l smok e exposure . II . Effec t on neurodevelopmen t a t ag e 5 years . A m J Epi demiol 142:S19-S29 . Fergusson D , Horwoo d L , Lynske y M (1993 ) Materna l smoking befor e an d afte r pregnancy : effect s o n be havioral outcome s i n middl e childhood . Pediatric s 92:815-822. Fergusson D, Woodward L, Horwood L (1998) Materna l smoking durin g pregnancy an d psychiatri c adjust ment in lat e adolescence . Arch Ge n Psychiatr y 55: 721-727. Floyd R , Rime r B , Giovin o G , Mulle n P , Sulliva n S (1993) A revie w o f smokin g i n pregnancy : effect s on pregnancy outcomes an d cessatio n efforts. Ann u Rev Public Healt h 14:379-411 . Fogelman K , Mano r O (1988 ) Smokin g i n pregnanc y and developmen t int o earl y adulthood . BM J 297 : 1233-1236. Fox N, Sexto n M , Hebe l J (1990 ) Prenata l exposur e t o tobacco: I. Effect s o n physica l growt h a t age three. Int J Epidemiol 19:66-71 . Franco P , Chabansk i S , Szliwowks i H , Drarnai x M , Kahn A (2000 ) Influence o f maternal smokin g o n autonomie nervou s syste m in health y infants . Pédi atrie Res 47:215-220. Fraser A, Brockert J, Ward R ( 1995) Association of young maternal ag e wit h advers e reproductiv e outcomes . N E n g l J M e d 332:1113-1117 . Fried P A (2002) Adolescents prenatally exposed t o marijuana: examination facet s of complex behavior s an d comparisons wit h th e influenc e o f i n utero ciga rettes. J Clin Pharmacol 42:97S-102S . Fried P , Makin J (1987) Neonatal behavioura l correlates of prenata l exposur e t o marihuana , cigarette s an d alcohol i n a low risk population. Neurotoxico l Tera tol 9:1-7. Fried PA , O'Connell C M (1987 ) A comparison o f th e effects o f prenata l exposur e t o tobacco , alcohol , annabis an d caffein e o n birt h siz e and subsequen t growth. Neurotoxicol Terato l 9:79—85 . Fried P , Watkinso n B (1998 ) 2 - an d 24-mont h neuro behavioral follow-up of children prenatall y expose d to marihuana, cigarettes and alcohol . Neurotoxico l Teratol 10:305-313 . Fried PA, Watkinso n B (1990 ) 36- and 48-mont h neurobehavioral follow-u p o f childre n prenatall y
EPIDEMIOLOGY O F MATERNA L TOBACC O USE 32 5 exposed t o marijuana, cigarettes an d alcohol . J Dev BehavPediatr 11:49-58 . Fried PA , Watkinson B (2000) Vistioperceptual functioning differ s i n 9 - t o 12-yea r olds prenatall y expose d to cigarette s an d marihuana . Neurotoxico l Terato l 22:11-20. Fried P , Watkinson B , Gra y R (1992 ) A follow-up study of attentiona l behavio r i n 6-year-ol d childre n ex posed prenatall y to marihuana, cigarettes, and alco hol. Neurotoxicol Terato l 14:299-311 . Fried PA , Watkinso n B , Gra y R (1999 ) Growt h fro m birth t o earl y adolescenc e i n offsprin g prenatall y exposed t o cigarette s an d marijuana . Neurotoxicol Teratol 21:513-525 . Fried PA , Watkinson B , Gra y R (2003 ) Differentia l ef fects o n cognitiv e functioning in 13 - to 16-year-old s prenatally expose d t o cigarette s an d marijuana . Neurotoxicol Teratol 25:427-436 . Fried P , Watkinson B , Siegel L (1997 ) Readin g and lan guage i n 9 - t o 12-yea r old s prenatall y exposed t o cigarettes an d marijuana . Neurotoxicol Terato l 19 : 171-183. Fung Y K (1989 ) Postnata l effect s o f materna l nicotin e exposure o n th e striata l dopaminergi c syste m i n rats. J Pharm Pharmaco l 41:576-578. Fung YK , La u Y S (1988 ) Recepto r mechanism s o f nicotine-induced locomoto r hyperactivit y in chronic nicotine-treated rats . Eur J Pharmacol 152:263-271 . Griesler P , Kandel D , Davie s M (1998 ) Materna l smok ing in pregnancy, chil d behavior problems an d ado lescent smoking. J Res Adolesc 8:159-185. Haddow J, Palmaki G , Knigh t G (1986 ) Us e of cotinin e to assess the accurac y of self-reported non-smoking. BMJ 293:1306-1309. Hajek P , West R , Le e A , Fould s J , Owe n L , Eise r J R , Main N (2001 ) Randomize d controlle d tria l o f a midwife-delivered brie f smokin g cessatio n inter vention i n pregnancy. Addiction 96:485-494. Hanke W, Sobala W, Kaiinka J (2004) Environmental tobacco smok e exposur e amon g pregnan t women : impact o n feta l biometr y a t 20—2 4 week s o f gestation an d newbor n child' s birt h weight . In t Arc h Occup Environ Health 77:47-52 . Hardy J, Mellitus E (1972 ) Does maternal smokin g during pregnancy hav e a long-term effec t o n the child? Lancet 2:1332-1336 . Haste F, Brooke O, Anderson H, Bland J, Shaw A, Griffi n J, Peacoc k J (1990 ) Nutrien t intake s durin g preg nancy: observation s o n th e influenc e o f smokin g and socia l class. Am J Clin Nutrition 51:29-36 . Haste FM , Anderso n HR , Brook e OG , Blan d JM , Pea cock JL (1991) The effect s o f smoking and drinking on th e anthropométri e measurement s o f neonates . Paediatr Perinat Epidemiol 5:83-92 .
Heby O (1981 ) Rol e of polyamines in the contro l o f cell proliferation an d differentiation . Differentiatio n 19:1-20. Jacobson J , Jacobson S , Sokol R (1994) Effect s o f prenatal exposure to alcohol, smoking and illici t drugs on postpartum somati c growth . Alcoho l Cli n Ex p Res 18:317-323. Johns JM, Louis TM, Becker RF , Means LW (1982) Behavioral effect s o f prenatal exposur e t o nicotin e i n guinea pigs . Neurotoxicol Terato l 4:365-369 . Johnson DL , Swan k PR , Baldwi n CD, McCormic k D (1999) Adul t smokin g i n th e hom e environmen t and children' s IQ . Psychol Rep 84:149-154. Jones G , Rile y M , Dwye r T (1999 ) Materna l smokin g during pregnancy, growth, and bone mass in prepubertal children. J Bone Minera l Res 14:146-151. Kahn R , Certain L , Whitaker R (2002 ) A reexamination of smoking before, during, and afte r pregnancy . Am J Public Healt h 92:1801-1808 . Kandel D, Wu P, Davies M (1994 ) Maternal smoking during pregnanc y an d smokin g b y adolescen t daugh ters. Am J Public Healt h 84:1407-1413 . Kane V , F u Y , Matt a S , Shar p B (2004 ) Gestationa l nicotine exposur e attenuate s nicotine-stimulate d dopamine releas e i n th e nucleu s accumben s shel l of adolescen t Lewi s rats . J Pharmaco l Ex p The r 308:521-528. Ketterlinus R , Henderso n S , Lamb M (1990 ) Materna l age, sociodemographics , prenata l healt h an d be havior: influence s o n neonata l risk status. J Adolesc Health Car e 11:423-331 . Kharrazi M , DeLorenz e GN , Kaufma n FL, Eskenaz i B, Bernert JT, Graham S , Pearl M, Pirkl e J (2004) En vironmental tobacc o smok e an d pregnanc y out comes. Epidemiology 15:660—670 . Klein LC , Stin e MM , Pfaf f DW , Vandenberg h D J (2003) Materna l nicotin e exposure increase s nico tine preferenc e i n periadolescen t mal e bu t no t female C57B1/6 J mice. Nicotin e Tob Res 5:117-124. Kleinman JC , Pierr e MB , Madan s JH , Lan d GH , Schramm W F (1988 ) The effect s o f maternal smok ing o n feta l an d infan t mortality . Am J Epidemio l 127:274-282. Kline J 7 Stei n Z , Hutzie r M (1987 ) Cigarettes , alcoho l and marijuana : varyin g associations in birthweight. Int J Epidemio l 16:44-51 . Klonoff-Cohen H , Edelstei n S , Sefkowit z I , Srinivasa n I, Kaegi D, Chang J , Wiley K (1995) The effec t o f passive smokin g an d tobacc o exposur e throug h breas t milk o n sudde n infan t deat h syndrome . JAM A 273:795-798. Kotimaa A , Moilanen I , Taanila A , Ebeling H , Smalle y S, McGoug h J , Hartikaine n A, Jarveli n M (2003 ) Maternal smokin g an d hyperactivit y i n 8-year-ol d
326 NICOTINE-AFFECTE D DEVELOPMENT children. J Am Aca d Chil d Adoles c Psychiatr y 42: 826-833. Kristjansson E , Frie d P , Watkinso n B (1989 ) Mater nal smokin g durin g pregnanc y affect s children' s vigilance performance . Dru g Alcoho l Depen d 24 : 11-19. Lambers D, Clark K (1996) The materna l an d feta l physiologic effect s o f nicotine . Semi n Perinato l 290 : 115-126. Law KL, Stroud LR , LaGasse LL , Niaura R, Liu J, Lester BM (2003 ) Smokin g durin g pregnanc y an d new born neurobehavior . Pediatrics 111:1318-1323 . LeClere FB , Wilson J B (1997) Smokin g behavio r o f recent mothers , 18—4 4 year s o f age , befor e an d afte r pregnancy: Unite d State s 1990 . A d Dat a Vita l Health Sta t #288 . Nationa l Cente r fo r Health Sta tistics, Hyattsville, MD . Leech S , Richardson G , Goldschmid t L , Da y N (1999 ) Prenatal substanc e exposure : effect s o n attentio n and impulsivit y of 6-year-olds. Neurotoxicol Terato l 21:109-118. Levin ED , Brigg s SJ , Christophe r NC , Ros e J E (1993) Prenata l nicotin e exposur e an d cognitiv e performance i n rats . Neurotoxico l Terato l 15 : 251-260. Levin ED , Wilkerso n A , Jone s JP , Christophe r NC , Briggs S J (1996) Prenata l nicotin e effect s o n mem ory i n rats : pharmacologica l an d behaviora l chal lenges. Dev Brain Res 97:207-215. Lindsay C , Thoma s A, Catalano P (1997 ) Th e effec t o f smoking tobacc o o n neonata l bod y composition . Am J Obstet Gynecol 177:1124-1128 . Luck W, Nau H , Hanse n R , Steldinge r R (1985) Exten t of nicotin e an d cotinin e transfe r t o th e huma n fe tus, placent a an d amnioti c flui d o f smoking moth ers. Dev Pharmacol Ther 8:384-395. MacArthur C , Kno x EG (1988 ) Smokin g i n pregnancy : effects o f stoppin g a t differen t stages . B r J Obste t Gynecol 95:551-555 . Maggi L , Le Magueresse C, Changeu x JP, Cherubini E (2003) Nicotin e activate s immatur e "silent " con nections in the developing hippocampus. Pro c Natl Acad Se i USA 100:2059-2064. Mainous A , Hueston W (1994 ) Passiv e smok e an d lo w birth weight . Evidenc e o f a threshol d effect . Arc h Family Med 3:875-878 . Makin J , Frie d P , Watkinson B (1991 ) A comparison o f active and passive smoking during pregnancy: long term effects . Neurotoxico l Teratol 13:5-12 . Martin JA , Hamilton BE , Sutto n PD , Ventur a SJ , Men acker F , Munso n M L (2003 ) Births : fina l dat a fo r 2002. Natl Vita l Sta t Rep t 52:1-116 . Martin JC, Becke r RF (1970 ) The effect s o f nicotine ad ministration i n utero upo n activit y i n th e rat . Psy chol Sei 19:59-60 .
Martin JC , Becke r R F (1971 ) Th e effect s o f materna l nicotine absorptio n o r hypoxi c episode s upo n ap petitive behavio r o f ra t offspring . De v Psychobio l 4:133-147. Martin T , Bracke n M (1986 ) Associatio n o f lo w birth weight wit h passiv e smoke exposur e i n pregnancy . Am J Epidemiol 124:633-642 . Matthai M , Skinne r A , Lawto n K , Weindling A (1990 ) Maternal smoking , urinary cotinine levels and birthweight. Aust NZJ Obstet Gynecol 30:33-36 . Maughan B , Taylor A, Caspi A , Moffitt T (2004 ) Prena tal smoking and earl y childhood conduct problems . Arch Gen Psychiatr y 61:836-843. McCartney J , Fried P , Watkinson B (1994) Central audi tory processin g i n school-ag e childre n prenatall y exposed t o cigarett e smoke . Neurotoxico l Terato l 16:269-276. Mick E , Biederma n J , Faraone SV , Sayer J, Kleinman, S (2002) Case-contro l stud y o f attention-defici t hy peractivity disorder an d materna l smoking , alcohol use, an d dru g us e durin g pregnancy . J A m Aca d Child Adoles c Psychiatr y 41:378-385. Milberger S , Biederma n J , Faraon e S , Che n L , Jone s J (1996) I s maternal smoking during pregnancy a risk factor fo r attentio n defici t hyperactivit y disorde r i n children? Am J Psychiatry 153:1138-1142 . Mullen PD , Richardso n MA , Quin n VP , Ershof f D H (1997) Postpartum retur n to smoking: who i s at risk and when . Am J Health Promo t 11:323-330 . Naeye R (1981) Influenc e of maternal cigarette smoking during pregnanc y o n feta l an d childhoo d growth . Obstet Gyneco l 57:18-21 . National Cance r Institut e (NCI ) (1999) Health effect s of exposure t o environmenta l tobacc o smoke : th e re port o f th e Californi a Environmenta l Protectio n Agency. Smokin g an d Tobacc o Contro l Mono graph no . 10 . NIH Pu b # 9904645. Nationa l Can cer Institute, Bethesda, MD . National Institut e o n Drug Abuse (NIDA) (1996) Nationa l pregnancy an d healt h survey . NI H Pu b #96-3819 . National Institut e of Drug Abuse, Rockville, MD . Navarro HA , Seidler FJ , Schwart z RD , Bake r FE, Dob bins SS , Slotki n T A (1989 ) Prenata l exposur e t o nicotine impair s nervou s syste m developmen t a t a dose which does not affec t viabilit y or growth. Brain Res Bull 23:187-192. Nordstrom ML , Cnattingiu s S (1994 ) Smokin g habit s and birthweight s i n tw o successiv e birth s i n Swe den. Earl y Hum De v 37:195-204. Olds D, Henderso n C , Tatelbau m R (1994) Intellectua l impairment i n children of women wh o smoke ciga rettes durin g pregnancy . Pediatric s 93:221-227 . Orlebeke J , Knol D , Verhuls t F (1997 ) Increas e i n chil d behavior problem s resultin g from materna l smokin g during pregnancy. Arch Environ Health 52:317-321 .
EPIDEMIOLOGY OF MATERNA L TOBACCO US E 32 7 Ostrea EM , Knap p DK , Romer o A , Montes M , Ostre a AR (1994 ) Meconiu m analysi s to asses s fetal expo sure t o nicotin e b y activ e an d passiv e manterna l smoking. J Pediatr 124:471-476 . Pauly JR , Spark s JA , Häuse r KF , Paul y T H (2004 ) I n utero nicotin e exposur e cause s persistent , gender dependent change s i n locomoto r activit y an d sensitivity t o nicotin e i n C57B1/ 6 mice . In t J De v Neurosci 22:329-337. Persson P , Grenner t L , Gennse r G (1978 ) A stud y o f smoking an d pregnanc y wit h specia l referenc e t o fetal growth . Acta Obste t Gyneco l Scand 78:33-39. Picone T, Alle n L , Olsen P (1982 ) Pregnanc y outcom e in Nort h America n women. II . Effects o f diet, cigarette smoking , stress, and weigh t gain o n placentas , and o n neonata l physica l and behaviora l characteristics. Am J Clin Nutrition 36:1214-1224. Power C , Jefferi s B (2002) Fetal environmen t an d subse quent obesity : a stud y o f materna l smoking . In t J Kpidemiol 31:413-419 . Rantakallio P (1983) Family background t o and persona l characteristics underlyin g teenage smoking . Scan d J Socia l M e dl 1:17-22. Rasanen P , Hakk o H , Isohann i M , Hodgin s S , Jarveli n M, Tihone n J (1999 ) Materna l smokin g durin g pregnancy an d ris k o f crimina l behavio r amon g adult male offspring i n Northern Finland 196 6 birth cohort. Am J Psychiatry 156:857-862. Rebagliato M , Flore y C , d u V, Bolumar F (1995 ) Expo sure to environmental tobacco smok e i n nonsmok ing pregnant women i n relation to birth weight. Am JEpidemiol 142:531-537 . Richardson SA , Tizabi Y (1994 ) Hyperactivit y i n th e off spring of nicotine-treated rats : role of the mesolimbi c and nigrostriata l dopaminergic pathways. Pharmacol Biochem Behav47:331-337 . Romero R , Chen WJ (2004) Gender-related respons e i n open-field activit y followin g developmenta l nico tine exposure in rats. Pharmacol Bioche m Beha v 78: 675-681. Rubin D , Krasilnikof f P , Leventhal J , Weile B , Berge t A (1986) Effect s o f passive smoking o n birt h weight . Lancet 2:415-417 . Schacka J , Fennel l O , Robinso n S (1997 ) Prenata l nico tine sex-dependentl y alter s agonist-induced locomo tion an d stereotypy . Neurotoxico l Terato l 19:467 476. Sexton M , Fo x N, Hebe l J (1990 ) Prenata l exposur e t o tobacco: II . Effect s o n cognitiv e functio n a t ag e three. In t J Epidemiol 19:72-77 . Sheslow D , Adam s W (1990 ) Manual fo r th e Wide Range Assessment o f Memory an d Learning. Jasta k Associates, Wilmington, DE . Silberg J, Parr T, Neale M, Rutter M, Angold A, Eaves L (2003) Maternal smokin g during prgnancy and risk
to boys' conduct disturbance : a n examination of the causal hypothesis. Biol Psychol 53:130—135 . Singleton EG , Harrel l JP, Kelly LM (1986 ) Racial differ entials in the impac t o f maternal cigarett e smokin g during pregnanc y o n feta l developmen t an d mor tality: concerns fo r black psychologists. ] Black Psychol 12:71-83 . Slawecki CJ , Thoma s JD , Rile y EP , Ehler s C L (2000 ) Neonatal nicotin e exposur e alter s hippocarnpa l EEC an d event-relate d potential s (ERPs ) i n rats . Pharmacol Bioche m Beha v 65:711-718. Slotkin TA , Bartolome J (1986) Rol e o f ornithine decar boxylase and th e polyamine s i n nervou s system development: a review. Brain Res Bull 17:307-320 . Slotkin TA , Gréer N , Faus t J , Cho H , Seidle r F (1986 ) Effects o f maternal nicotin e injection s on brai n development i n the rat : ornithine decarboxylase activity, nuclei c acid s an d protein s i n discret e brai n regions. Brain Res Bull 17:41-50 . Slotkin TA, Lappi S , Seidler F (1993) Impact o f nicotin e exposure o n developmen t o f rat brain regions : criti cal sensitiv e periods o r effect s o f withdrawal? Brain Res Bull 31:319-328 . Slotkin TA , Lapp i SE , Tayye b MI , Seidle r F J (1991 ) Chronic prenata l nicotin e exposur e sensitize s ra t brain t o acut e postnata l nicotin e challeng e a s assessed wit h ornithin e decarboxylase . Lif e Se i 49 : 665-670. Sobrian SK , Ali SF , Slikker W, Holson RR (1995) Inter active effect s o f prenata l cocain e an d nicotin e exposure o n materna l toxicity , postnata l devel opment an d behavio r in the rat . Mol Neurobio l 1 1 : 121-143. Sorenson CA , Raski n LA , Su h Y (1991 ) Th e effect s o f prenatal nicotin e o n radial-ar m maz e performanc e in rats . Pharmacol Bioche m Beha v 40:991-993. Stillman R , Rosenberg M , Sac h B (1986) Smokin g an d reproduction. Fertil Steri l 46:545-566. Streissguth A, Martin D, Bar r H (1984) Intrauterine alcohol an d nicotin e exposure : attentio n an d reactio n time i n 4-year-ol d children . De v Psycho l 20:533 541. Streissguth AP, Sampson PD , Barr HM (1989 ) Neurobe havioral dose—respons e effect s o f prenata l alcoho l exposure i n human s fro m infanc y t o adulthood . Ann N Y Acad Sei 562:145-158 . Thapar A, Fowler T, Ric e F , Scourfield J , Van den Bre e M, Thomas H, Harol d G , Ha y D (2003 ) Materna l smoking during pregnancy and attentio n defici t hyperactivity disorde r symptom s i n offspring . A m J Psychiatry 160:1985-1989 . Thomas } , Garriso n M , Slaweck i C, Ehler s C , Rile y E (2000) Nicotine exposur e during the neonatal brai n growth spurt produces hyperactivit y in preweanlin g rats. Neurotoxicol Terato l 22:695-701 .
328 NICOTINE-AFFECTE D DEVELOPMEN T Tizabi Y, Popke E , Rahma n M , Nespo r S , Grunberg N (1997) Hyperactivit y induce d b y prenatal nicotin e exposure i s associated wit h a n increas e i n cortica l nicotinic receptors. Pharmacol Bioche m Beha v 58: 141-146. Tizabi Y, Rüssel L, Nspor S, Perry D, Grunberg N (2000) Prenatal nicotin e exposure : effect s o n locomoto r activity an d centra l bindin g i n rats . Pharrnaco l Biochem Behav 66:495-500. Tomblin J , Smit h E , Zhan g X (1997 ) Epidemiolog y o f specific languag e impairment : prenatal and perina tal ris k factors. J Commun Disor d 30:325-344 . Toschke AM , Montgomer y SM , Pfeiffe r U , von Krie s R (2003) Earl y intrauterin e exposur e t o tobacco inhaled products and obesity . Am J Epidemiol 158 : 1068-1074. Vaglenova J , Bimi S , Pandiell a N , Brees e C (2004 ) An assessment o f the long-term developmenta l an d behavioral teratogenicit y o f prenata l nicotin e expo sure. Behav Brain Res 150:159-170. Vik T, Jacobsen G, Vatten L, Bakketeig L (1996) Pré- and post-natal growt h i n childre n o f wome n who smoke d i n pregnancy . Earl y Hu m De v 45 : 245-255. Wakschlag L , Lahey B , Loeber, R, Green S , Gordon R, Leventhal B (1997) Maternal smokin g during pregnancy an d th e ris k o f conduc t disorde r i n youn g boys. Arch Gen Psychiatr y 54:670-676. Wakschlag LS, Pickett KE, Middlecamp MK, Walton LL, Tenzer P , Leventha l B L (2003) Pregnan t smoker s who quit, pregnant smokers who don't: doe s history
of problem behavio r mak e a difference? Social Se i Med 56:2449-2460 . Weissman M , Warne r V , Wickramaratn e P , Kande l D (1999) Materna l smokin g durin g pregnanc y an d psychopathology i n offsprin g followe d t o adult hood. J A m Aca d Chil d Adoles c Psychiatr y 38 : 892-899. Weitzman M , Gortmake r S , Sobo l A (1992 ) Materna l smoking an d behavio r problems o f children. Pedi atrics 90:342-349. Williams GM , O'Callagha n M , Najma n JM , Bo r W , Andersen MJ , Richards D, Chunle y U (1998 ) Ma ternal cigarett e smoking and child psychiatri c mor bidity: a longitudinal study. Pediatrics 102:ell. Windham GC , Bottomle y C, Birner C, Fenster L (2004) Age at menarch e i n relatio n t o materna l us e o f tobacco, alcohol , coffee , an d te a durin g pregnancy . Am] Epidemiol 159:862-871 . Wisborg K , Henrikse n TB , Hedegaar d M , Seche r N J (1996) Smokin g amon g pregnan t wome n an d the significanc e o f socio-demographi c factor s on smokin g cessation . Ugeskrif t Laege r 158: 3784-3788. Yanai J, Pick CG, Rogel-Fuch s Y, Zahalka EA (1992) Alterations i n hippocampal cholinergic receptors an d hippocampal behaviors after earl y exposure to nicotine. Brain Res Bull 29:363-368. Yerushalmy J (1971 ) Th e relationshi p o f parent' s ciga rette smokin g t o outcom e o f pregnancy complica tions a s to the proble m o f inferring causation fro m observed associations. Am J Epidemiol 93:443-456.
20
Prenatal Nicotin e Exposure and Animal Behavio r Brenda M. Elliott Neil E. Grunber g
Cigarette smokin g affect s prenata l brai n develop ment an d subsequen t behavior . Mother s wh o smoke cigarettes durin g pregnanc y ar e mor e likel y tha n nonsmoking mother s t o bea r childre n wh o ar e hy peractive, impulsive, and hav e impairments in learning, memory, and attentio n (Naeye , 1992 ; DiFranz a and Lew , 1995 ; Eskenaz i an d Trupin , 1995 ; Erns t et al, 2001 ; Thapar e t al, 2003) . Children expose d to tobacc o smok e durin g pregnanc y ar e als o mor e likely to smok e cigarette s late r i n lif e (Kande l e t al. , 1994; Abreu-Villac a e t al , 2004a ; 2004b) . Thes e effects ar e i n additio n t o th e retarde d feta l growth , premature births , stillbirths , and increase d neona tal mortalit y associated wit h cigarett e smokin g during pregnancy (Butler and Goldstein , 1973 ; Denso n et al. , 1975 ; Kristjansso n e t al. , 1989 ; Buk a e t al. , 2003). Although cigarette s contai n roughl y 40 0 chemi cals an d cigarett e smok e contain s >400 0 chemicals ,
nicotine is the mos t widely studied chemical . Various properties o f nicotine mak e i t a neurotoxin. Nicotine crosses th e blood-brai n barrier , bind s t o specifi c receptors i n th e brain , an d affect s man y behaviors , including addiction, appetite, stress responses, and attention (Grunberg , 1982 , 1985 ; Luck and Nau , 1985 ; Levin, 1992 ; Scheufel e e t al , 2000 ; Traut h e t al , 2000; Slaweck i an d Ehlers , 2002 ; Slotkin , 2002 ; Slawecki e t al , 2003 ; Farada y e t al , 2003) . Anima l models o f nicotin e an d tobacc o exposur e provid e valuable informatio n on the behaviora l effects of prenatal smoking. The presen t chapte r discusse s knowledge gaine d from studie s of the effect s o f prenatal nicotin e and to bacco exposur e on th e behavio r and developmen t o f the offspring . I t focuse s o n rodent s becaus e mos t o f the researc h on th e effect s o f prenatal nicotine expo sure has been don e i n these animal s and th e findings parallel research o n humans.
329
330 NICOTINE-AFFECTE D DEVELOPMEN T VALUE O F ANIMAL MODELS TO ASSESS THE EFFECT S O F PRENATA L SMOKIN G
Animals hav e bee n studie d fo r centurie s t o lear n about anatom y an d physiology . I n ancien t Greece , Galen dissecte d goats , pigs , an d monkey s t o explor e the structur e o f the bod y and to test specifi c hypothe ses about ho w the bod y worked (Nutton , 2002) . Dur ing the eighteent h an d nineteent h centuries , anima l experimentation contributed to our knowledge of physiology, pharmacology , bacteriology , and immunolog y (Nutton, 2002). Darwin's landmar k Origin of th e Species (1859 ) in cluded several concepts that further expande d the study of animals: (1) the continuit y of species, (2 ) natural selection, an d (3 ) spontaneous mutation . Darwi n argued that the senses and intuitions, variou s emotions, an d aspects o f cognition suc h a s memory, attention , curiosity , and reason (attribute s once thought to be unique to humans) migh t b e foun d i n a well-developed for m i n lower animals . Darwin' s compellin g argument s le d t o the stud y of animal biology and behavio r to learn mor e about humans . Animal s were use d t o stud y attention, learning, emotions, and social interaction. Darwin's argumen t tha t ther e i s a continuit y of specie s i n th e anima l kingdo m provide s th e ra tionale fo r studyin g infrahuma n specie s t o lear n about huma n behavior . Ethologists , includin g Lorenz an d Tinbergen, observed th e behavio r o f animals i n thei r natura l habitat s an d provide d com pelling evidenc e tha t supporte d Darwin' s idea s (Dewsbury, 2003) . Pavlov, Thorndike, an d Skinne r separately examine d anima l behavio r i n controlle d laboratory setting s i n a n attemp t t o understan d hu man learnin g an d provide d empirica l evidenc e tha t the stud y of animal behavior i s relevant to the huma n condition. Pavlov (1927 ) develope d th e concep t o f classica l conditioning o n th e basi s o f hi s stud y o f gastri c re flexes i n dog s (Kimbl e an d Schlesinger , 1985) . H e observed tha t dog s respon d t o cue s othe r tha n food , cues tha t ha d bee n previousl y associated wit h food . He labele d thes e ne w response s conditioned (o r conditional) responses , to distinguis h them fro m th e naturally occurrin g responses , tha t occu r withou t prior training . Classica l conditionin g i s a pilla r o f learning principle s an d applie s t o human s a s well as to animals. Around th e sam e tim e tha t Pavlo v wa s experi menting wit h dogs , Thorndik e (1911 ) wa s studying
cats to explore how animal s learn tricks. As part of his investigation, Thorndike constructe d th e puzzl e box , a bo x containin g severa l lever s an d handle s fro m which a ca t mus t lear n ho w t o escape . Fro m carefu l observations o f th e cats ' behaviors , Thorndik e pro posed th e La w o f Effect . Thi s behaviora l la w state s that an anima l wil l repeat a n actio n tha t bring s desirable consequences , bu t i t wil l no t repea t a n actio n that bring s undesirabl e consequences . Thi s la w als o holds for humans. Skinner studie d th e behavio r of rat s an d pigeon s and expande d Thorndike' s finding s (Skinner , 1935) . Building on the concept tha t animals operate on their environment t o obtai n desirabl e consequences o r t o avoid negativ e consequences , Skinne r propose d th e concept o f opéran t conditioning . Specifically , Skin ner foun d tha t th e frequenc y o f a give n behavio r could b e increased b y following the occurrence o f the behavior wit h positiv e consequence s (reinforcement ) or decrease d b y following th e behavio r with negativ e consequences (punishment) . Together, th e studie s by Pavlov, Thorndike, an d Skinne r laid th e groundwork for modern-da y theories of learning and provid e con vincing evidenc e tha t anima l model s ar e a usefu l representation o f human behaviora l an d psychologi cal processes. Animal studie s ar e valuabl e fo r assessin g dru g effects, includin g th e effect s o f nicotin e o n devel opment an d behavior . Anima l model s allo w inves tigators t o evaluat e an d manipulat e separatel y th e components o f tobacco smokin g (e.g. , nicotine ) tha t might affec t prenata l development . Investigator s can control aspect s o f drug deliver y (e.g., dosage , timin g of exposure , duratio n o f exposure , rout e o f administration, and environmenta l context). In addition, the y can isolat e variable s t o focu s o n nicotin e an d avoid variables, suc h a s prenata l care , socioeconomi c sta tus, nutrition , o r us e o f othe r substances , tha t con found huma n studies . Anima l model s offe r uniqu e advantages fo r studying drug effects , includin g thos e of nicotine, on behavior.
ANIMAL MODELS OF NICOTINE AND TOBACCO ADMINISTRATION It i s well establishe d tha t tobacc o smokin g ha s dele terious effect s o n health . A single cigarette , a n objec t smaller tha n a standar d pencil , deliver s mor e tha n 4000 chemical s tha t separatel y o r togethe r ma y
PRENATAL NICOTIN E EXPOSUR E AND ANIMA L BEHAVIOR 33 1
contribute t o thes e effect s (Dub e an d Green , 1982 ; Department o f Healt h an d Huma n Service s 'DHHS], 1989) . Nicotin e ha s been identifie d a s the addictive componen t i n tobacc o smokin g and i s th e centra] dru g contributin g t o th e maintenanc e o f tobacco us e (DHHS , 1988 ; Fieldin g e t al. , 1998 ; Center fo r Diseas e Contro l an d Prevention , 2002) , Nicotine act s i n th e brai n an d result s i n man y be havioral an d psychologica l action s includin g en hancement o f reward , decrease d appetite , focuse d attention, an d change s i n activity . Further , nicotine and it s metabolites readil y cros s th e placenta l mem brane, penetrat e th e preimplantatio n blastocyst , an d cross th e blood-brai n barrie r (Fabr o an d Sieber , 1969; Shiverickand Salafia , 1999) . In rodents , tobacc o ca n b e administere d i n man} ' different ways : through tobacco-extrac t administration, tobacco-smoke exposure , an d topica l applicatio n o f tobacco tars . Tobacco-extract administration refer s t o daily subcutaneou s injection s (SC ) o f nicotine-free tobacco. Som e studie s usin g thi s metho d hav e re ported significan t degenerativ e change s i n variou s organs, includin g th e thyroid , pituitar y gland , an d pancreas (Suematsu, 1931) , or gangrene i n the toe s of male rat s (Friedlande r e t al , 1936 ; Harkavy , 1937) . The tobacco-smoke exposure model involve s exposing rats to cigarett e smoke fo r days o r years and ha s bee n used t o simulat e th e huma n smokin g experience . Kulche and colleague s ( 1952) report that rats exposed to tobacc o smok e exhibi t increase d tea r secretion , salivation, an d copiou s bowe l movements . Othe r studies sho w tha t rodent s expose d t o tobacc o smok e either los e weigh t o r gro w les s tha n contro l animal s (Pechstein and Reynolds , 1937; Passey, 1957) . Tobacc o tar, whe n applie d topicall y t o rats , retard s growth , slows weigh t gain , an d cause s gastri c lesion s (Mc Nallv, 1932 ; Roffo, 1942) . Although tobacco-smok e exposur e i s mean t t o simulate th e huma n smokin g experience, nicotin e i s the actual substanc e i n tobacco smok e that exert s the addictive an d psychobiologica l effect s an d maintain s self-administration (DHHS , 1988 ; Stolerma n an d Jarvis, 1995) . Therefore, nicotin e administratio n paradigms have been th e focu s of animal studies in recen t decades. Nicotin e ca n b e administere d b y oral nico tine administratio n (e.g., nicotine i n drinkin g water), single o r repeate d nicotin e injection s (S C o r intra peritoneal [IP]) , intravenou s self-administration , or sustained nicotin e administratio n (e.g. , a n osmoti c pump). Th e effect s o f nicotin e var y wit h dosage ,
timing, duration of exposure, route o f administration, and chemica l for m o f nicotin e (Levi n e t al. , 1996 ; Slotkin, 1998 ; Phillip s et al, 2004). Oral Nicotine Administration Nicotine i s ingested b y animals via drinking fluids or forced ora l administration . Som e studie s repor t tha t consumption o f nicotin e retard s th e growt h o f mic e and rat s (Nice, 1913 ; Wilson an d D e Eds , 1936 ) o r reduces litte r siz e o f pregnan t mic e (Wilson , 1942) , but othe r studie s report n o suc h effect s (Nice , 1912). The utilit y o f oral-administratio n metho d i s limite d by th e difficult} 7 i n gettin g rat s an d mic e t o drin k nicotine-containing solution s (Murrin et al., 1987 ; Le Houezec e t al. , 1989) . Anothe r disadvantage of using this metho d i s tha t nicotin e i s poorl y absorbe d through th e gastrointestinal tract , leading to lower con centrations of nicotine in th e blood . Therefore , mor e nicotine ma y be neede d t o obtain desirabl e amount s of nicotin e t o serv e a s a mode l o f huma n consump tion. S C injection s and deliver y via a subcutaneously implanted pum p ar e more commonly use d tha n oraladministration paradigm s becaus e th e amoun t o f nicotine administere d ca n b e bette r controlle d an d the absorptio n o f th e dru g i s no t limite d b y passag e through the gastrointestinal tract. Repeated Nicotine Injection s Most studie s examinin g the effect s o f chroni c expo sure t o nicotin e o n behavio r hav e use d on e o f tw o methods: (1 ) repeate d dail y injection s o r (2 ) sus tained nicotin e release . Repeate d dail y injections in volve parentera l injection s —SC o r I P a fe w times a day o r once a da y for several days (Pietila and A h tee, 2000). Thi s approac h ha s bee n widel y use d t o ex amine th e effec t o f nicotine o n behavio r (e.g. , loco motion, acousti c startl e respons e (ASR) , prepuls e inhibition [PPI ] o f the ASR , socia l interaction , ele vated plus maze, an d nociception ) and generate s reli able an d reproducibl e result s (Levi n e t al. , 1997 ; Hahn an d Stolerman , 2002 ; Farada y e t al , 2003 ; Elliott e t al. , 2004 ; Olausso n e t al. , 2004) . Whe n nicotine i s injecte d repeatedl y int o pregnan t dams , similar behavioral disruptions in offsprin g ar e observed (Slotkin, 2004) . I t i s possibl e tha t thes e behaviora l changes reflec t th e consequence s o f uteroplacenta l vasoconstriction an d feta l hypoxi a associate d wit h th e high pea k plasm a concentration s o f nicotin e tha t
332 NICOTINE-AFFECTE D DEVELOPMEN T occur wit h repeate d injection s (Jonsso n an d Hall man, 1980 ; Seidle r an d Slotkin , 1990 ; Carlo s e t al. , 1991; Slotkin, 2004) . That is, nicotine injection s may result in high peak plasma concentration s o f nicotine accompanied b y brie f hypoxi c episode s associate d with eac h dos e (McFarlan d e t al , 1991 ; Slotkin , 1992). These episodi c hypoxi c events ca n alte r brai n development (Jonsso n an d Hallman , 1980 ; Slotkin , 1986; Seidle r an d Slotkin , 1990) . Consequently , an y observed effect s canno t b e full y attribute d t o nicotin e per se . The osmoti c pum p provide s an alternat e an d preferable way of administering nicotin e prenatally . Osmotic Pump Osmotic pump s ar e miniature , subcutaneousl y im plantable pump s use d t o continuousl y delive r drug s or other agents a t controlled rates up to 4 weeks. Th e pump i s a smal l object , resemblin g a pil l capsul e i n shape but large r in size. The pum p ha s two compartments: a n inne r capsul e an d an oute r chamber . Th e inner capsul e i s filled with th e dru g or control liqui d to be delivered. The oute r chamber, whic h surround s the capsule , contain s a sal t an d i s referred to a s th e salt sleeve. When placed underneath th e ski n or in an aqueous medium , a n osmoti c pressur e differenc e de velops between thi s outer salt filled chamber an d th e tissue environment, pullin g water from th e tissu e into the pum p throug h a semipermeable membran e tha t forms th e surfac e o f the pump . Th e pressur e o f th e water i n thi s outsid e chambe r put s pressur e o n the impermeabl e capsule , displacin g th e dru g fro m the inne r cor e int o th e bod y a t a controlle d an d steady rat e muc h lik e th e slo w squeezing o f a tooth paste tube . This method produce s a constant admin istration of nicotine an d a steady-state level o f plasma nicotine (Car r et al, 1989 ; Paul y et al, 1992 ; Slotkin , 1998), therefore , avoiding th e stres s associate d wit h and th e hypoxi a induced b y repeated nicotin e injec tions (Levin etal, 1996 ; Slotkin , 1998) . Grunberg (1982 ) wa s the firs t t o us e a n osmoti c minipump to subcutaneously administer nicotine con tinuously to rats for a week and t o examine their bod y weight and food consumption . Th e findings fro m thi s experiment paralle l result s fro m a stud y o f cigarett e smoking i n humans . Suc h parallel s betwee n dat a generated fro m osmoti c pump-delivere d nicotin e models an d finding s fro m researc h o n huma n ciga rette smokin g hav e bee n describe d i n variou s othe r studies a s well (Bowe n e t al. , 1986 ; Grunber g e t al. ,
1986; Murri n e t al. , 1987 ; Richardso n an d Tizabi , 1994; Levi n e t al. , 1996 ; Farada y et al, 2001 ; Irvine et al., 2001; Malin, 2001) . The osmoti c pum p i s now widely use d t o examin e long-ter m effect s o f nicotin e in rodents. Prenatal Nicotin e Models Studies examinin g prenata l effect s o f nicotin e hav e used mos t o f the method s describe d above. Th e tw o most commo n approache s t o evaluatin g prenata l smoking effect s ar e repeated injection s of nicotine int o the pregnan t da m an d S C administratio n of nicotin e in the pregnant dam via an osmotic pump. Administration o f nicotine t o pregnan t dam s b y repeate d injec tions ha s provide d consisten t evidenc e tha t prenata l nicotine exposur e cause s cellula r damage i n th e feta l brain that may explain subsequen t behaviora l an d cog nitive deficit s (Slotki n et al., 1986) . Repeate d nicotin e injections, however , als o caus e pea k plasm a concen trations o f drug tha t ar e associate d wit h ischemia , a n effect tha t has the potentia l to disrupt fetal brai n development (McFarlan d e t al, 1991 ; Slotkin , 1992) . The osmoti c pum p ha s becom e th e standar d choice for examining prenatal effects o f nicotine (Murrin e t al, 1987 ; Ulric h et al, 1997) . I t delivers drugs or other agents at controlled rate s for up to 4 weeks, avoids peak plasm a concentration s associate d wit h repeate d injections, allow s for better contro l over nicotine delivery, an d eliminate s th e ris k o f hypoxic episodes. Th e continuous infusio n o f nicotine via osmotic minipum p is analogou s t o nicotin e patc h deliver} ' bu t differ s markedly fro m nicotin e self-administratio n throug h smoking tobacco . Overview o f Behavioral Assessmen t in Animals The stud y of animal behavio r ha s become commo n practice an d behaviora l model s ar e frequentl y in cluded i n studie s o f psychology , pharmacology , an d behavioral an d cognitiv e neuroscience . Anima l mod els provid e informatio n abou t norma l behavio r an d responses t o drugs, disease, or adverse environmenta l conditions. Th e behaviora l pattern s observe d rang e from studie s o f basic sensory (e.g., olfactory, taste, au ditory, and tactile) , motor (e.g. , balance), an d neuro logical (e.g. , eye blink, righting reflex, and ea r twitch) functions t o unconditioned behaviors (e.g. , food con sumption, locomotor activity, and sexua l behavior), to
PRENATAL NICOTINE EXPOSUR E AND ANIMAL BEHAVIOR 33 3 more comple x assessments of attention, learning , and memory (e.g., Morris water maze, T-maze , radial arm maze, an d PPI) . The followin g section discusse s key findings from prenata l nicotine studies in which some of thes e behaviora l paradigm s wer e use d an d offer s suggestions for future studies.
EFFECTS O F PRENATA L EXPOSURE TO NICOTINE IN ANIMAL MODELS Outcome measure s o f prenatal effect s includ e birt h weight and feta l liability , locomotor activity, and cog nition. Th e effec t o f nicotin e o n thes e variable s is a function o f th e amoun t o f nicotin e administered , route of administration, timing of administration, and animal specie s (Erns t e t al., 2001) . Prenatal nicotin e exposure compromises th e health of the newbor n an d can hav e long-lasting deleteriou s effect s o n offsprin g behavior. Studies o f prenata l nicotin e effect s dat e bac k t o the earl y 1900 s (Nakasawa , 1931 ; Sodano , 1934 ; Grumbecht an d Loeser , 1941) . Mos t o f thes e earl y studies wer e conducte d i n rabbit s an d dogs . Gener ally, thes e studie s focuse d o n effect s o f nicotin e o n pregnancy duratio n an d th e siz e an d viabilit y o f th e young. Earl y studie s i n th e rabbi t repeatedl y sho w that dail y injection s o f tobacco-smok e solutions , chronic nicotine infusions , or nicotine administration caused spontaneou s abortions or premature deliveries (Guillain and Gy, 1907 ; Benigni , 1911 ; Perazzi , 1912). Tissue s fro m fetuse s o f rabbit s tha t receive d daily SC injection s of nicotine fo r up t o 1 2 weeks are damaged (Var a an d Kinnunen , 1951) . Hofstatte r (1923) note s that pregnancie s occurring durin g nicotine administration frequently abort. Body Weight Animals expose d t o nicotin e prenatall y consistentl y weigh les s than animal s not expose d t o nicotin e pre natally (Bass i e t al. , 1984 ; Paulso n e t al , 1993 ; Ajarem and Ahman , 1998 ; Vaglenov a et al , 2004) . Animals receivin g 4. 0 mg/kg/day o f nicotin e prena tally (ora l administration ) weig h les s tha n controls , and thes e effect s persis t unti l postnata l da y (P ) 2 9 (Paulson e t al, 1993) . Ajarem an d Ahmed (1998 ) administered nicotin e (0.5 0 mg/kg) or saline to pregnan t mice via SC injection s for 9-10 day s and assesse d offspring development . Th e nicotine-expose d animal s
gained weigh t a t a slowe r rate tha n tha t o f controls . Such findings are interesting because they parallel reports from human s an d sugges t that prenatal smokin g affects prenata l an d postnata l development . Specifi cally, wome n wh o smok e durin g pregnanc y hav e a greater numbe r o f spontaneous abortions , premature births, an d infant s with low-birt h weight s (Eskenaz i etal, 1995; Hofhuis etal, 2003). In addition, nicotineinduced reductio n i n postnata l weigh t gai n als o has been reporte d i n huma n offsprin g (Marti n e t al. , 1977). Hyperactivity Several studies have reported hyperactivit) ' in th e offspring o f nicotine-treate d animal s (Marti n e t al. , 1976; Lichtensteige r e t al, 1988; Ajarem and Ahmad, 1998; Fun g and Lau, 1998 ; Newma n e t al, 1999 ; Ti zabi and Perry , 2000). In rats , hyperactivity is indexed by measurin g open-field activit y o r activit y i n othe r novel environments such as the elevate d plus maze. Open-field activity refers to the behavio r of an animal whe n i t i s place d i n a nove l environment . Ini tially, activity levels are high whe n an animal explores its ne w environment . A s th e environmen t become s familiar, ambient activity decreases. Persistent heightened activit y is interpreted a s evidence o f hyperactivity, a behavior frequentl y observed i n th e offsprin g o f mothers who smoked during pregnancy. Rats exposed to nicotine (1. 5 mg/kg/day via SC in jections) throughout gestatio n hav e increased sponta neous locomoto r activit y compare d t o tha t o f saline-exposed control s (Fun g and Lau , 1988) . Simi larly, Tizabi an d colleague s (1997), who administered nicotine (9. 0 mg/kg/day) vi a osmoti c minipump s t o pregnant dam s throughout gestation, show that 20-24day-old offsprin g prenatall y expose d t o nicotin e ex hibit mor e locomoto r activit y tha n tha t o f salin e controls. The elevate d plu s maze i s used t o test anxiety and to measur e activit y and impulsivity . Accordingly , a n animal is placed i n the center of an elevate d four-arm maze tha t include s tw o ope n an d tw o close d arms . The tota l numbe r of times an animal enters any of the four arm s provides an inde x of activity and impulsiv ity. Ajarem an d Ahma d (1998 ) administered nicotine (0.50 mg/kg) or saline to pregnant mic e for 9-10 days and measure d activit y on th e elevate d plu s maz e of weaned offspring . Nicotine-expose d offsprin g mad e more entrie s in the arm s of the maz e tha n di d saline
334 NICOTINE-AFFECTE D DEVELOPMENT controls. This finding suggests that prenata l exposure to nicotin e promote s hyperactivit y an d impulsivity . Sobrian an d colleague s (2003 ) repor t simila r effect s of prenata l nicotin e exposur e o n activit y i n a n ele vated plu s maze . The y administere d nicotin e (2. 5 or 5.0 mg/kg) or saline via an osmotic pump t o pregnant dams throughout gestation . Adult rats exposed to high doses o f nicotine prenatall y ar e les s timi d an d mor e impulsive than controls. These findings are consistent with reports from huma n studies , that prenatal smoking t o nicotin e result s i n hyperactivit y i n offsprin g (Milberger e t al , 1996 ; Mic k e t al , 2002 ; Thapa r et al, 2003). Attention Prenatal smokin g disrupt s attentio n i n expose d offspring (Kristjansson e t al., 1998) . In rats, attention ca n be measure d usin g the PP I of the ASR . PPI refer s t o the reductio n o f a startle respons e whe n th e startlin g stimulus is preceded b y a nonstartling stimulus. Con trol animal s exhibi t a reduce d startl e respons e t o a sudden, loud nois e if the nois e i s preceded b y a softe r sound. Disorders that disrupt attention, suc h as schizophrenia an d attentio n defici t hyperactivit y disorder (ADHD), disrup t PP I (Swerdlo w et al, 2000 ; Geye r et al., 2001). Reports o f prenata l nicotin e o n attentio n i n rat s are limited , but dat a tha t ar e available show that rat s respond to prenatal nicotine exposure . Prenatal nicotine exposur e (6mg/kg/da y vi a osmoti c minipump ) throughout gestatio n reduce s th e PP I of the ASR to a 98 dB stimulu s i n femal e offsprin g (Popk e e t al. , 1997). Thes e finding s ar e consisten t wit h th e ob served attentiona l deficit s reporte d i n human s ex posed t o nicotin e prenatally . Futur e studie s usin g other attentional paradigms (e.g., five-choice serial reaction tim e test ) will furthe r hel p t o characteriz e the attentional domain s affecte d b y prenata l nicotin e exposure. Learning an d Memor y Prenatal nicotin e exposur e alter s learnin g an d mem ory (Cornelius et al., 2000). In rats , the effect s o f prenatal exposur e to nicotin e o n learnin g and memor y have been evaluate d primaril y by use o f a radial arm maze, whic h present s a challeng e tha t assesse s th e ability o f an anima l t o learn an d remembe r multipl e
spatial locations . Th e anima l i s placed i n th e cente r of a maz e containin g eigh t o r mor e radiatin g arms. Food i s placed a t th e en d o f four arms . Th e anima l must ente r a n arm to retrieve the food . Th e number s of repeat entries by a rat into the arm s already entered are recorde d as working memory errors (Olton, 1987 ; Hodges, 1996) . Th e number s o f reentries int o arm s never havin g containe d foo d ar e recorde d a s refer ence memor y errors. Several studie s repor t impairment s o n th e radia l arm maz e followin g prenatal nicotin e exposure . Fol lowing administration o f nicotine (6. 0 mg/kg) to pregnant dam s i n thei r drinkin g wate r throughou t gestation, offsprin g exhibi t impaired performanc e i n the radia l arm maz e (Sorenso n e t al., 1991) . Severa l other studie s describ e simila r finding s (Yana i e t al. , 1992; Levin et al., 1996) . Levin and colleague s used a radial arm maz e t o assess the effect s o f prenatal nico tine exposur e (2.0mg/kg/da y via osmotic minipump ) on learnin g an d memory . The y repor t tha t nicotine exposed animals do not diffe r fro m control s in the ac quisition o f the task , but thes e rat s make mor e errors when spatia l cue s ar e changed , henc e addin g t o th e demands o f the task. Prenatal effect s o f nicotin e hav e bee n evaluate d using the two-wa y active avoidance (shuttle box) task. In thi s task , classica l conditionin g procedure s ar e used t o asses s learnin g an d long-ter m memory . Th e apparatus consist s of two equall y divide d compart ments connecte d b y a cente r opening . Durin g th e training th e anima l i s presente d wit h a combine d light an d ton e (conditione d stimuli) , followed by the presentation o f shock o n a grid floo r (unconditione d stimulus [UCS]) . Followin g presentatio n o f the con ditioned stimulus , th e anima l ca n avoi d th e UC S by passing fro m on e compartmen t t o another . Thi s avoidance behavio r i s evidence o f learning, wherea s failure t o avoi d th e UC S i s evidence o f no learning . Memory i s assessed b y re-exposing th e anima l t o th e apparatus severa l days later an d measurin g avoidanc e activity. Greate r avoidanc e behavio r is evidenc e of long-term memory . Two-month-old mal e offsprin g o f dam s injecte d with nicotin e (0.50mg/kg/day ) durin g pregnanc y exhibit deficit s i n learnin g th e avoidanc e respons e (Genedani e t al. , 1983) . Mor e recently , Vaglenova and colleague s (2004 ) administere d nicotin e (6.0 mg/kg/day) vi a osmoti c minipum p t o pregnan t dams an d measure d activ e avoidanc e behavio r o f
PRENATAL NICOTINE EXPOSUR E AN D ANIMA L BEHAVIO R 33 5 offspring o n P45 . Animals of both sexes prenatally exposed t o nicotin e hav e a significantl y lowe r numbe r of avoidance behavior s durin g all days of training an d during the retentio n test . These data are indicative of impaired learnin g an d memory . Th e result s of thes e animal studie s parallel report s of memory an d learn ing problems i n human s an d provid e further suppor t for th e valu e o f animal s fo r investigatin g prenata l smoking effects o n memor y an d learnin g in offsprin g (Naeye an d Peters , 1983 ; Rantakalli o an d Koiranen , 1987; DiFranz a an d Lew , 1995 ; Slotkin, 1998) . Addiction Liability Prenatal tobacco smokin g increase s the likelihoo d of smoking amon g expose d offsprin g (Kande l e t al. , 1994; Niaur a et al, 2001; Chassin et al, 2002; AbreuVillaca et al, 2004a, 2004b). In humans, prenata l exposure to nicotine is an important predictor of smoking in adolescents . (Corneliu s e t al., 2000 ; Niaur a et al. , 2001). Interestingly , thi s vulnerabilit y exists , regard less of whether parents continue t o smoke. Recent anima l studie s examinin g th e effect s o f prenatal nicotin e o n late r biologica l response s t o nicotine paralle l th e finding s o f huma n studie s an d provide underlying mechanisms fo r these observed effects (Abreu-Villac a et al, 2004a, 2004b) . I t has been suggested tha t th e increase d likelihoo d o f smokin g among exposed offsprin g reflect s long-lasting changes in neural cell number, neural cell size, and cell surfac e area. These changes are evident in the neonate an d become exaggerate d whe n nicotin e i s re-administere d during adolescence . Anothe r propose d mechanis m for th e relationshi p between prenata l nicotin e expo sure and adolescen t smokin g is that prenatal nicotin e exposure disrupt s th e programmin g o f cholinergi c function (Abreu-Villac a et al., 2004b). After prenata l nicotin e exposure , ther e i s impairment o f nicotin e acetylcholin e recepto r (nAChR ) up-regulation an d recepto r desensitizatio n whe n nicotine i s administere d durin g adolescence . Thes e factors ma y contribute to increased cigarett e smokin g by adolescent s (Abreu-Villac a e t al, 2004b) . A rela tionship betwee n gestationa l nicotin e exposur e an d nicotine preferenc e i n peri-adolescen t offsprin g ha s also been examine d i n mice (Klei n et al., 2003). Pregnant female s wer e administere d saccharin-flavore d water containin g 5 0 [Ig/ml nicotin e o r saccharin flavored water without nicotine fro m th e nint h da y of
gestation throug h P21 . Th e nicotin e preferenc e o f adolescent mal e offsprin g expose d t o nicotin e prena tally i s increase d compare d t o tha t i n age-matche d controls. The mechanis m fo r this effec t ha s not bee n established.
CONCLUSIONS AND FUTURE IMPLICATIONS
Animal models of nicotine administratio n and animal studies o f behavior provide investigators wit h valuabl e ways t o examin e th e relationshi p betwee n prenata l smoking (especiall y prenatal nicotine ) an d cognitiv e and behaviora l outcome s i n affecte d offspring . Th e fact that findings from prenata l nicotin e studies in animals parallel and predic t findings from human s sup port th e validit y o f thes e studies . These model s ar e well establishe d an d hav e provide d reliabl e result s that hel p expan d ou r understandin g o f the effect s o f tobacco. Despit e thi s knowledge , man y question s re main unanswered . Fo r example , althoug h w e no w have a better understandin g o f specific brai n region s affected b y prenata l nicotin e exposure , th e mecha nisms b y which thes e effect s occu r ar e poorl y under stood. Littl e researc h ha s bee n conducte d o n higher-animal species ; mos t studie s examinin g th e effects o f prenata l exposur e t o nicotin e hav e bee n conducted i n rodents . Studie s conducte d i n anima l species that more closel y parallel human s (i.e. , mon keys) ma y provide additiona l informatio n about rele vant mechanisms . Ou r understandin g ma y offe r opportunities fo r th e developmen t o f intervention s that reverse damaging effects o f nicotine o n the fetus . Future studie s shoul d includ e othe r behaviora l measures. I n humans , prenata l nicotin e exposur e results i n attentio n deficit s i n offspring , however , mod eling anima l studie s tha t examin e attentio n ar e limited. Comple x measure s of attention d o exis t and should b e include d i n futur e studie s of the effect s o f prenatal exposur e to nicotine. Examination o f sensor y an d moto r function s would b e instructive , bu t fe w animal studie s hav e in cluded suc h behaviora l measure s (Ajare m an d Ah mand, 1998) . Huma n offsprin g prenatall y exposed t o nicotine exhibi t impairment s i n sensor y processin g and basi c moto r function s tha t persis t eve n a yea r postdelivery. Saxto n (1978) , fo r example , examine d babies born to mothers who smoked with the Brazelton
336 NICOTINE-AFFECTE D DEVELOPMEN T Neonatal Behavioral Assessmen t Scale . These infant s have reduce d auditor y acuit y compare d t o tha t of infants of nonsmokin g mothers . Further , Gusell a and Fried (1984) report a decrease i n motor scores, a s mea sured b y the Bayle y Mental and Moto r Scales, among 13-month-old offspring whose mother s smoked in dur ing pregnancy. Thes e findings are importan t because they sugges t tha t prenata l smokin g affect s no t onl y complex behaviors suc h a s learning an d memory , bu t also fundamenta l sensor y an d moto r processes . Fur ther studie s examinin g thes e relationship s ar e impor tant, a s disruption s i n sensor y an d moto r processin g can explai n learnin g problems , behaviora l problem s such a s hyperactivity, an d perhap s eve n sensitivit y t o drug exposur e i n adolescence or adulthood. Abbreviations ADHD attentio n deficit hyperactivity disorde r ASR acousti c startl e respons e IP intraperitonea
l
nAChR nicotin e acetylcholine receptor P postnata l da y PPI prepuls e inhibition SC subcutaneou
s
UCS unconditione d stimulu s
ACKNOWLEDGMENTS Thi s wor k wa s supporte d b y the Rober t Wood Johnso n Foundatio n an d the U.S . De partment of Defense. References Abreu-Villaca Y , Seidle r FJ , Slotki n T A (2004a ) Doe s prenatal nicotin e exposur e sensitiz e th e brai n t o nicotine-induced neurotoxicit y in adolescence? Neu ropsychopharmacology, 29:1440-1450. Abreu-Villaca Y , Seidle r FJ , Tät e CA , Cousin s MM , Slotkin T A (2004b ) Prenata l nicotin e exposur e alters th e respons e t o nicotin e administratio n i n adolescence: effect s o n cholinergi c system s durin g exposure an d withdrawal . Neuropsychopharmacology, 29:879-890. Ajarem JS , Ahmad M (1998 ) Prenatal nicotine exposur e modifies behavio r o f mic e throug h earl y develop ment. Pharmaco l Biochem Beha v 59:313-318. Bassi JA, Rosso P, Moessinger AC, Blan c WA, James LS (1984) Feta l growt h retardatio n du e t o materna l
tobacco smok e exposur e i n th e rat . Pediat r Re s 18:127-130. Benigni P F (1911 ) Sull e alterazion i anatomich e indott e dairintossicazione cronic a sperimentale da tabacco . Riv Pat Nerv 16:80-100. Bowen DJ, Fury SE, Gmnberg NE (1986 ) Nicotine's effects on female rats' body weight: caloric intake and physical activity . Pharmaco l Bioche m Beha v 25 : 1131-1136. Buka SL, Shenassa ED, Niaur a R (2003) Elevated risk of tobacco dependenc e amon g offsprin g o f mother s who smoke d durin g pregnancy: a 30-yea r prospec tive study. Am J Psychiatry 160:1978-1984. Butler NR , Goldstei n H (1973 ) Smokin g in pregnanc y and subsequen t chil d development . BM J 4:573 — 575. Carlos RQ, Seidle r FJ , Lappi SE , Slotki n TA (1991) Fetal dexamethasone exposur e affects basa l onrnithin e decarboxylase activit y i n developin g ra t brai n re gions and alter s response s t o hypoxia and materna l separation. Biol Neonate, 59:69-77 . Carr LA , Rowel l PP , Pierc e W M (1989 ) Effect s o f sub chronic nicotine administration on central dopamin ergic mechanism s i n th e rat . Neuroche m Re s 14 : 511-515. Center fo r Diseas e Contro l (CDC ) (2002 ) Annua l smoking-attributable mortality , years o f potential lif e lost, and economic costs—Unite d States, 1995-1999. Morbid Mortal Wkly Rpt (MMWR) 51:300-303. Chassin L , Pressen C, Ros e J, Sherman SJ , Prost J (2002) Parental smokin g cessatio n an d adolescen t smok ing. J Pediatr Psychol 27:485-496. Cornelius MD , Rya n CM , Day , NL , Goldschmidt , L , Willford, JA (2000). Prenatal tobacco exposure : is it a ris k facto r fo r earl y tobacc o experimentation ? Nicotine Tob Res 2:45-52 . Darwin C (1859 ) Origin of th e Species, 2nd edition. Joh n Murray, London . Denson R , Nanson JL , McWatter s M A (1975 ) Hyperkinesis and materna l smoking . Can Psychiatri c Assoc J 20:183-187. Department o f Health an d Huma n Service s (DHHS ) (1988) The Health Consequences of Smoking; Nicotine addiction: A Report of the Surgeon General. DHHS Publ . # 88-8406. CDC Publications , Rockville, MD . Department o f Healt h an d Huma n Service s (DHHS ) (1989) Reducin g the healt h consequence s o f smoking: 2 5 year s of progress. A repor t o f th e Surgeo n General. DHH S Publ . #89-8411 . CD C Publica tions, Washington, DC, 11:125-133 . Dewsbury DA (2003) The 197 3 Nobe l priz e for physiology o r medicine : recognitio n fo r behaviora l sci ence? Am Psychol 58:747-752 .
PRENATAL NICOTINE EXPOSURE AND ANIMA L BEHAVIO R 33 7 DiFranza JR , Le w R A (1995 ) Effec t o f materna l ciga rette smokin g o n pregnanc y complication s an d sudden infan t deat h syndrome . J Far n Prac t 40 : 385-394. Dube M , Gree n G R (1982 ) Method s o f collectio n o r smoke for analytical purposes. Rec Adv Tobacco Se i 8:42-102. Elliott BM , Farada y MM , Phillip s JM , Grunber g N E (2004) Effects o f nicotine on elevate d plus maze an d locomotor activit y i n mal e an d femal e adolescen t and adult rats. Pharmacol Biochem Behav 77:21—28. Ernst M , Moolcha n ET , Robinso n M L (2001 ) Behav ioral and neura l consequences o f prenatal exposure to nicotine . } Am Aca d Chil d Adoles c Psychiatr y 40:630-641. Eskenazi B , Trupin L S (1995 ) Passive and activ e maternal smokin g durin g pregnancy , a s measure d b y serum cotinine , an d postnata l smok e exposur e II : effects o n neurodevelopmen t a t ag e 5 years. Am J Epidemiol 142:S19-S29 . Fabro S , Sieber S M (1969 ) Caffein e an d nicotin e pene trate th e pre-implantatio n blastocyst . Natur e 223 : 410-411. Faraday MM, Elliot t BM, Grunberg N E (2001 ) Adult vs. adolescent rat s diffe r i n biobehaviora l response s t o chronic nicotine . Pharmaco l Bioche m Beha v 70 : 475-489. Faraday MM , Elliot t BM , Phillip s JM , Grunber g N E (2003) Adolescent and adul t male rat s differ i n sensitivity to nicotine' s activit y effects . Pharmaco l Bio chem Beha v 74:917-931. Fielding JE , Huste n CG , Erikse n M P (1998 ) Tobacco : health effect s an d control . I n Maxc y KF , Rosenau MJ, Las t JM , Wallac e RB, Doebblin g B N (eds) . Public Health an d Preventive Medicine. McGraw Hill, New York, pp 817-845. Friedlander M , Silber t S , Laske y N (1936 ) To e lesion s following tobacc o injection s in rats . Pro c So c Ex p Biol34:156-157. Fung YK , La u Y S (1988 ) Recepto r mechanism s o f nicotine-induced locomoto r hyperactivit y in chroni c nicotine-treated rats . Eur J Pharmacol 152:263—271 . Genedani S , Bernardi M , Bertolin i A (1983) Sex-linke d differences i n avoidance learning in the offsprin g of rats treate d wit h nicotin e durin g pregnancy . Psy chopharmacology 80:93-95. Geyer MA , Krebs-Thomson K , Braff DL , Swerdlo w N R (2001) Pharmacologica l studie s of prepulse inhibition models o f sensorimtor gating deficits i n schizophrenia: a decad e i n review . Psychopharmacol y 156:117-154. Grumbrecht P , Loese r A (1941 ) Nicoti n un d inner e Sekretion. II. Arbeitsschaden de r Fra u i n Tabakfabriken? Arch Exp Pathol 195:143-151 .
Grunberg N E (1982 ) Th e effect s o f nicotin e an d ciga rette smokin g on foo d consumptio n an d tast e pref erences. Addict Behav 7:317-331. (1985) Nicotine , cigarett e smoking , an d bod y weight. Br J Addict 80:369-377. Grunberg NE , Bowe n DJ , Winders S E (1986 ) Effect s o f nicotine o n bod y weigh t and foo d consumptio n i n female rats . Psychopharmacology 90:101—105. Gulillan G , G y A (1907) Recherches expérimentale s sur l'influence de l'intoxification tabagiqu e sur la gestation. C Ren d So c Biol 63:583-584. Gusella JL , Frie d P A (1984) Effect s o f materna l socia l drinking an d smokin g o n offsprin g a t 1 3 months . Neurobehav Toxicol Teratol 6:13-17. Hahn B , Stolerma n I P (2002 ) Nicotine-induce d atten tional enhancement i n rats: effects o f chronic expo sure to nicotine. Neuropsychopharmacolog y 27:712722. Harkavy J (1937) Tobacco sensitization i n rats . J Allergy 9:275-277. Hodges H (1996 ) Maz e procedures : th e radial-ar m an d water maze compared . Cogni t Brain Res 3:167-181. Hofhuis W, Jongste JC, Merku s PJ (2003) Adverse health effects o f prenata l an d postnata l tobacc o smok e exposure o n children . Arc h Di s Chil d 88:1086 1090. Hofstatter R (1923) Experimentell e Studi e über die Ein wirkung des Nicotin s au f die Keimdruse n un d au f der Frotplanzung. Virchow s Arch 244:183-213. Irvine EE, Cheeta S, Marshall M, File SE (2001) Differ ent treatment regimen s and th e development o f tolerance t o nicotine' s anxiogeni c effects . Pharmaco l Biochem Beha v 68:769-776. Jonsson G , Hallma n H (1980 ) Effect s o f neonatal nico tine administratio n o n th e postnata l developmen t of centra l noradrenalin e neurons . Act a Physio l ScandSuppl 479:2 5-26 . Kandel DB , Wu P , Davies M (1994 ) Materna l smokin g during pregnanc y an d smokin g b y adolescen t daughters. Am J Public Health 84:1407-1413 . Kimble GA , Schlesinge r K (1985) Topics i n th e History of Psychology, Vo l 2. Hillsdale NJ, Erlbaum . Klein LC , Stin e MM , Pfaf f DW , Vandenberg h D J (2003) Materna l nicotin e exposur e increase s nico tine preferenc e i n periadolescen t mal e bu t no t female C57B1/6 J mice . Nicotin e To b Re s 5:117 124. Kristjansson EA , Frie d PA , Watkison B (1989 ) Materna l smoking durin g pregnanc y affect s children' s vigi lance performance. Drug Alcohol Depend 24:11—19 . Kulche H , Loesse r A , Meyer G , Schmid t C , Sturme r E (1952) Tabakarauch . Ei n Beitra g zur Wirkun g von Tabakfeuchthaltemitteln. Zeitsch r Ges t Ex p Me d 18:554-572.
338 NICOTINE-AFFECTE D DEVELOPMEN T Le Houeze c J , Martin C , Cohe n C , Molimar d R (1989) Failure of behavioral dependence inductio n and oral bioavailablity in rats. Physiol Behav 45:103-108. Levin E (1992 ) Nicotini c system s an d cognitiv e func tion. Psycopharmacology 108:417—431 . Levin E , Wilkerson A, Jones JP, Christopher NC , Brigg s SJ (1996 ) Prenata l nicotin e effect s o n memor y i n rats: pharmacologica l an d behaviora l challenges . Dev Brain Res 97:207-215. Levin ED , Kapla n S, Boardman A (1997) Acute nicotin e interactions wit h nicotini c an d mtiscarini c antago nists: workin g an d referenc e memor y effect s i n the 16-ar m radial arm. Behav Pharmacol 8:236-242 . Luck W , Nau H (1985 ) Nicotin e an d cotinin e concen trations i n seru m an d urin e o f infant s expose d vi a passive smokin g o r mil k fro m smokin g mothers . JPediatr 107:816-820 . Lichtensteiger W , Ribar y U, Schlump f M , Odermat t B , Widmer H R (1988) Prenatal adverse effects o f nicotine o n th e developin g brain . Pro g Brai n Re s 73: 137-157. Malin D H (2001 ) Nicotin e dependence : studie s wit h a laboratory model . Pharmaco l Bioche m Beha v 70 : 551-559. Martin JC , Marti n DC , Rado w B , Sigma n G (1976 ) Growth, development , an d activit y in ra t offsprin g following materna l dru g exposure . Ex p Agin g Res 2:235-251. Martin J , Martin DC , Lun d CA , Streissgut h A P (1977) Maternal alcoho l ingestio n an d cigarett e smokin g and thei r effect s o n newbor n conditioning . Alcoho l Clin Exp Res 3:243-247. McFarland BJ , Seidler FJ , Slotki n TA (1991 ) Inhibitio n of DN A synthesi s i n neonata l ra t brai n region s caused b y acute nicotin e administration . Dev Brain Res 58:223-229 . McNally WD (1932) . The ta r i n cigarette smok e an d its possible effects . A m J Cancer, 16:1502-1514 . Mick E , Biderma n J, Faranone SV , Sayer J, Kleimans S (2002) Case-control stud y of attention-deficit hyperactivity disorde r an d materna l smoking , alcoho l use, and dru g use during pregnancy. J Am Ac Child Adolesc Psychiatry 41:378-385. Milberger S , Biederman J, Faranone SV , Chen L , Jones J (1996 ) I s materna l smokin g durin g pregnanc y a risk factor fo r attention defici t hyperactivity disorder in children ? American Journa l o f Psychiatry , 153: 1138-1142. Murrin LC, Ferre r JR, Zeng WY, Haley NJ (1987) Nico tine administratio n to rats : methodologica l consid erations. Life Se i 40:1699-1708. Nakasawa R (1931) De r Einflus s de r chronische n Nicot invergiftung au f di e funktio n de r geschlechtsfunk tion der weiblichen ratten . Jpn J Sei Phar 5:109-111 .
Naeye R L (1992 ) Cognitiv e an d behaviora l abnormalities i n childre n whos e mother s smok e Cigarette s during pregnancy . J De v Beha v Pediat r 13:425 428. Naeye RL , Peter s E C (1984 ) Materna l developmen t o f children whos e mothers smoke d durin g Pregnancy. Obstet Gynecol 64:601-607 . Newman MB , Shytle RD, Sandberg P R (1999) Locomotor behavioral effect s o f prenatal and postnata l nico tine exposur e in rat offspring. Beha v Pharmacol 10 : 699-706. Niaura R , Bock B, Lloyd EE , Brow n R, Lipsitt LP, Buka S (2001) Maternal transmissio n of nicotine depend ence: psychiatric , neurocognitiv e an d prenata l factors. Am J Addict Dis 10:16-29 . Nice L B (1912) Comparative studie s on th e effect s o f alcohol, nicotine , tobacc o smok e an d caffein e o n white mice . I . Effect s o n reproductio n an d growth . JExpZool 12:135-152 . (1913) Studie s on th e effect s o f alcohol, nicotine , tobacco smoke , an d caffein e o n whit e mice . II . Effects on activity . J Exp Zool 14:123-151 . Nutton V (2002) Logic, learnin g and experimenta l med icine. Scienc e 295:800-801 . Olausson P , Jentsc h JD , Taylo r J R (2004 ) Repeate d nicotine exposur e enhances respondin g with condi tion reinforcement . Psychopharmcolog y 173:98 104. Olton D S (1987 ) Th e radia l arm maz e a s a tool i n be havioral pharmacology . Physio l Beha v 40:793 — 797. Passey R D (1957 ) Carcinogenicit y o f cigarett e tars . B r Empire Cancer Camp Annu Rpt 35:65-66. Paulson RB , Shanfel d J , Vorhees CV , Sweaz y A, Gagn i S, Smith AR , Paulson J O (1993 ) Behavioral effect s of prenatally administered smokeles s tobacco o n ra t offspring. Neurotoxico l Teratol 15:183-192 . Pauly JR , Grü n EU , Collin s A C (1992 ) Toleranc e t o nicotine followin g chroni c treatmen t b y injections: a potentia l rol e fo r corticosterone . Psychopharma cology 108:33-39 . Pavlov, I. P. (1927) Conditioned Reflexes. London , Rout ledge an d Kega n Paul. Pechstein LA , Reynold s W R (1937 ) Th e effec t o f to bacco smok e o n th e growt h an d learnin g behavior of the albin o rat and it s progeny. J Comp Psychol 24: 459-469. Perazzi P (1912 ) Studi o sperimental e su i rapport i fr a tabagismo e gravidanza. Folgynsec 7:295-334. Pietila K, Ahtee L (1999) Chronic nicotin e administration in the drinkin g water affects th e striata l dopamine i n mice. Pharmacol Bioche m Beha v 66:95—103. Phillips JM, Schechte r LE , Grunber g N E (2004 ) Nico tine abstinenc e syndrom e i n rat s depend s o n for m
PRENATAL NICOTINE EXPOSURE AND ANIMA L BEHAVIOR 33 9 of nicotine . Presente d a t th e Societ y o n Researc h Nicotine an d Tobacco, Scottsdale, AZ. Popke EJ, Tizabi Y, Rahman MA , Nespor SM , Grunberg NE (1997 ) Prenatal exposur e to nicotine: effect s o n prepulse inhibitio n an d centra l nicotini c receptors . Pharmacol Bioche m Beha v 58:843-849. Rantakallio P , Koirane n M (1987 ) Neurologica l handi caps amon g childre n whos e mother s smoke d dur ing pregnancy. Prev Med 16:597-60 6 Richardson SA , Tizabi Y (1994) Hyperactivit y in th e offspring o f nicotine-treate d rats : rol e o f mesolimbi c and nigrostriata l dopaminergic pathways . Pharma col Biochem Beha v 47:331-337. Roffo A H (1942 ) Cancerizacio n gâstric a po r ingestiönd e alquitrân tabâquico. Prens a Me d Argent 29:18-35. Saxton D W (1978 ) The behavio r of infants whos e moth ers smoke in pregnancy. Early Hum De v 2:363-369. Scheufeie PM , Farada y MM , Grunber g N E (2000 ) Nicotine administratio n interacts with housing con ditions t o alte r socia l an d non-socia l behavior s i n male an d femal e Long-Evan s rats . Nicotin e To b Res 2:169-178. Seidler FJ, Slotkin TA (1990) Effects o f acute hypoxia on neonatal ra t brain: regionally selective long-term alterations i n catecholamin e level s an d turnover . Brain Res Bull 24:157-161. Shiverick KT , Salafi a C (1999 ) Cigarett e smokin g an d pregnancy. I : Ovarian , uterin e an d placenta l ef fects. Placent a 20:265-272 . Skinner B F (1935) Two types of conditioned reflex and a pseudo type. ] Gen Psycho l 12:66-77 . Slawecki CJ , Ehler s C L (2002 ) Lastin g effect s o f ado lescent nicotin e exposur e o n the electroencephalo gram, even t relate d potentials , an d th e locomoto r activity in the rat . Dev Brain Res 138:15-25. Slawecki CJ , Gilde r A , Rot h J , Ehler s C L (2003 ) In creased anxiety-lik e behavior i n adul t rat s expose d to nicotine a s adolescents. Pharmaco l Bioche m Behav 75:355-361 . Slotkin TA (1986) Endocrine contro l o f synaptic development i n th e sympatheti c nervou s system : th e cardiac-sympathetic axis. In: Gootman PM (ed) . Developmental Neurobiology of the Autonomie Nervous System. Human a Press , Clifton, NJ, pp 97-133. Slotkin T A (1992 ) Prenata l exposur e t o nicotine : wha t can w e lear n fro m anima l models ? In : Zago n IS , Slotkin T A (eds) . Maternal Substance Abuse an d the Developing Nervous System. Academi c Press , San Diego , p p 97—124 . (1998) Fetal nicotine o r cocaine exposure : which one i s worse? J Pharmacol Ex p Ther 285:931-945. (2002) Nicotine an d the adolescent brain: insight s from a n anima l model . Neurotoxico l Terato l 24 : 369-384.
(2004) Cholinergic system s in brain developmen t and disruptio n b y neurotoxicants : nicotine , envi ronmental tobacc o smoke , organophosphates. Toxi col Appl Pharmacol 198:132-151 . Slotkin, TA , Gréer , N , Faust , J. , Cho , H . an d Seidler , FJ (1986) Effect s o f maternal nicotin e injection s on brain developments i n the rat : ornithine decarboxylase activity , nucleic acid s an d protein s i n discret e brain regions. Brain Res Bull 17 : 41-50. Sobrian SK, Marr L, Ressman K (2003) Prenatal cocain e and/or nicotin e exposur e produce s depressio n an d anxiety i n agin g rats . Pro g Neuropsychopharmaco l Biol Psychiatry 27:501-518. Sodano A (1934 ) Ricerch e sperimental i sull ' influenç a délia nicotin a sull a funzion e genita l dell a donna . Arch Oste Gin 41:559-569. Sorenson CA , Raski n LA , Su h Y (1991 ) Th e effect s o f prenatal nicotin e o n radial-ar m maze performanc e in rats. Pharmacol Bioche m Beha v 40:991-993. Stolerman IP , Jarvis M J (1995 ) Th e scientifi c cas e tha t nicotine i s addictive . Psychopharmacolog y 117 : 2-10. Swerdlow NR, Braf f DL, Geye r MA (2000) Animal mod els of deficient sensorimotor gating : what we know, what we think we know, and wha t we hope to know soon. Behav Pharmacol 11:185-204 . Thapar A, Fowler T, Ric e F , Scourfield J , Van den Bre e M, Thomas H , Harol d G , Ha y D (2003 ) Materna l smoking during pregnancy and attentio n defici t hyperactivity disorde r symptom s i n offspring . A m J Psychiatry 160:1985-1989. Thorndike E L (1911 ) Animal Intelligence. Macmillan , New York . Tizabi Y , Perry DC (2000 ) Prenatal nicotin e exposur e is associated with an increase i n 12 5 epibatidine binding i n discret e cortica l region s i n rats . Pharmaco l Biochem Beha v 67:319-323. Tizabi Y, Popke EJ , Rahman MA , Nespor SM, Grunber g NE (1997 ) Hyperactivit y induced b y prenatal nico tine exposure is associated with an increas e in cortical nicotinic receptors . Pharmacol Bioche m Beha v 58:141-146. Trauth JA , Seidler FJ , Slotki n T A (2000 ) Persistent an d delayed behavioral changes after nicotin e treatmen t in adolescent rats . Brain Res 880:167-172. Ulrich YA, Hargreaves, KM, Flores , C M (1997) . A com parison o f multiple injections versus continuous in fusion o f nicotin e fo r producin g up-regulatio n o f neuronal [3H]-epibatidin e bindin g sites . Neu ropharmacology, 36 , 1119-1125. Vaglenova J , Birr u S , Pandiell a NM , Brees e C R (2004 ) An assessment of the long-ter m developmenta l an d behavioral teratogenicit y of prenatal nicotin e expo sure. Behav Brain Res 150:159-170.
340 NICOTINE-AFFECTE D DEVELOPMEN T Vara P , Kinnune n O (1951 ) The effec t o f nicotin e o n Wilso n J R (1942 ) The effec t o f nicotine o n lactatio n i n the femal e rabbi t and developin g fetus . An experi - whit e mice. Am J Obstet Gyneco l 43:839-844 . mental study . Ann Med Ex p Biol Fenn 29:202-213. Yana i J, Pick CG, Rogel-Fuch s Y, Zahalka EA (1992) AlWilson RH , De Ed s F (1936 ) Chronic nicotin e toxicity : ternation s i n hippocampa l cholinergi c receptor s I. Feedin g o f nicotin e sulfate , tannate , an d ben - an d hippocampa l behavior s after earl y exposure t o tonite. J Industr Hyg Toxicol 18:553-564 . nicotine . Brai n Res Bull 29:363-368.
21
Neuronal Receptors for Nicotine: Functional Diversity and Developmental Changes Huibert D. Mansvelder Lorna W. Role
The nicotini c acetyleholin e recepto r (nAChR ) i s the principal target-mediato r o f nicotin e fro m smokin g and chewin g of tobacco (Hog g et al., 2003; Picciotto, 2003; Gott i an d dementi , 2004 ; Wonnacot t e t al, 2005). Th e effect s o f nicotin e o n offsprin g o f preg nant smoker s ar e widespread , rangin g fro m altere d neural developmen t t o increase d susceptibilit y t o addiction i n adolescenc e (Kande l e t al. , 1992 ; Broide and Leslie , 1999 ; Everitt e t al , 2001 ; Frank e t al , 2001; Walsh e t al, 2001; Slotkin , 2002, 2004; AbreuVillaca e t al , 2004a , 2004b ; Cohe n e t al , 2005 ; Slotkin e t al. , 2005) . Thes e facts , couple d wit h epidemiological finding s tha t >20 % o f pregnant wome n smoke, underscor e th e importanc e o f understanding nAChR function s i n th e prenata l mammalia n brai n (Chassin e t al , 1996 ; Ebrahim e t al, 2000 ; Wals h et al, 2001; Cohen et al, 2005). Intrinsic cholinergi c signalin g participates i n be haviors a s fundamenta l a s memory , motivation , an d movement (Picciott o an d Corrigall , 2002 ; Picciotto , 2003; Gott i an d dementi , 2004 ; Laviolett e an d van 341
der Kooy , 2004 ; Wonnacot t e t al, 2005) . Alterations in nACh R number s an d profile s ar e associate d wit h numerous disorders , includin g Alzheime r demen tia, schizophrenia , and , not surprisingly , addictio n (Cordero-Erausquin e t al. , 2000 ; Marubi o an d Changeux, 2000 ; Changeu x an d Edelstein , 2001; Sabbagh e t al, 2002 ; Freedma n e t al, 2003 ; Hog g et al , 2003 ; Gott i an d Clementi , 2004 ; Newhous e et al, 2004b ; Sacc o e t al, 2004). I n view of the central role of nAChRs in such divers e conditions, i t may seem surprisin g that mor e i s not know n o f th e precise composition , localization , an d overal l rol e o f nAChRs i n synapti c signalin g in th e centra l nervou s system (CNS) . A majo r obstacl e t o advancin g th e fiel d i s tha t CNS cholinergi c synapses , i n contras t t o thei r cousins i n th e periphera l nervou s syste m (PNS) , have largel y elude d direc t electrophysiologica l scrutiny. I n defens e o f efforts t o date , several difficul ties shoul d b e noted . First , centra l cholinergi c neurons ar e fe w i n numbe r an d thei r projection s ar e
342 NICOTINE-AFFECTE D DEVELOPMEN T diffuse (Woolf , 1991) . Second , ther e ar e multipl e subunit-combination variant s of nAChRs. This structural medle y i s reflected i n a comparabl e functiona l diversity that include s differences i n nACh R sensitiv ity t o both endogenou s agonist s and exogenousl y ad ministered nicotin e (L e Novere e t al. , 2002a , 2002b ; Hogg e t al, 2003 ; Gott i an d Clementi , 2004) . Th e cellular targetin g o f nAChR s i s als o diverse . Som e nAChRs ar e shippe d t o presynapti c o r pretermina l sites, other s t o postsynapti c an d perisynapti c locales , and al l nAChR subtypes are expressed at strikingly low amounts compare d wit h ionotropi c receptor s fo r glutamate o r y-aminobutyri c aci d (GABA ) (Colquhou n and Patrick, 1997; Tembumi et al, 2000; Le Novere et al., 2002a, 2002b; Hogg et al, 2003). Perhaps most discouraging i s how quickl y nAChRs transi t int o close d (desensitized) state s i n respons e t o eve n minut e con centrations o f agonist . Thi s trait , too , varie s amon g neurons and amon g nAChR subtype s (Lu et al., 1999 ; Quick an d Lester , 2002 ; Wooltorto n e t al , 2003 ; Alkondon and Albuquerque, 2004, 2005). Although suc h feature s presen t seriou s obstacle s to investigators , thes e sam e characteristic s underli e the importan t contributio n of nAChRs t o the compu tational flexibilit y o f circuit s wher e signalin g is sub ject t o modulation, rathe r than jus t "on/off " control . Recent molecula r biological , biochemical, an d phar macological studie s have generated a powerful armamentarium o f ne w probe s an d approache s fo r analyzing nAChR subuni t compositions an d subtypes (Gotti an d Clementi , 2004 ; Laviolett e an d va n de r Kooy, 2004 ; Nick e e t al , 2004 ; Wonnacot t e t al , 2005). Th e challeng e no w i s to advanc e th e curren t understanding o f ho w cholinergi c synapses , i n gen eral an d pre - and postsynapti c nAChR s i n particular , contribute t o th e function s an d dysfunction s of th e developing nervous system. The las t decad e ha s witnesse d considerabl e ad vances i n basi c knowledg e o f th e function , develop ment, an d plasticit y o f nAChRs . Severa l recen t reviews hav e presente d nove l perspective s on nACh R signaling mechanism s an d o n emergen t view s o n nAChR involvemen t i n neuropsychiatri e disorder s (Jones e t al, 1999 ; Picciott o et al, 2001 ; Hogg e t al, 2003; Picciotto, 2003 ; Dajas-Bailador an d Wonnacott , 2004; Fucile , 2004 ; Gotti and Clementi , 2004 ; Laviolette and van der Kooy, 2004; Lester et al, 2004; Newhouse e t al , 2004a , 2004b ; Sacc o e t al , 2004 ; Wonnacott e t al. , 2005) . The presen t chapte r focuse s on fundamenta l aspect s o f th e acetylcholin e (ACh )
receptors with which nicotine interacts in the context of potential effects o n neura l development and plasticity.
STRUCTURAL DIVERSIT Y OF NEURONA L NÏCOTINIC ACETYLCHOLINE RECEPTORS Twelve separat e gene s encodin g distinc t neurona l nicotinic recepto r subuni t proteins have bee n identi fied an d iterativel y labeled a s oc2 , ot3, cc4, oc5 , ot6 , Ot7 , cx8, cc9 , an d oclO , o r ß2 , ß3 , an d ß 4 (L e Nover e an d Changeux, 1995 ; L e Nover e e t al , 2002b ; Hog g et al., 2003 ; Gott i an d Clementi , 2004) . Each o f the five subunits that compris e the assemble d oligomeri c complex i s a four-transmembran e domai n protei n with considerabl e homolog y amon g th e membran e spanning regions (Fig. 21-1 A, B). All nicotinic recep tor subunit s are characterize d b y a tw o C-loop con taining N-termina l domain , th e signatur e o f thei r membership i n th e broade r famil y o f ligand-gate d ion channels , alon g wit h GABA A, glycine, an d mus cle nicotini c recepto r subunit s (L e Nover e an d Changeux, 1995 ; Le Novere et al, 2002a; Hogg et al., 2003; Gotti an d Clementi , 2004 ; Leste r e t al, 2004). Similar t o th e muscl e nicotini c Ot l recepto r subunit , neuronal a subunit s are identified by the presence of vicinal cystein e residue s withi n th e N-termina l do main, a uniqu e ta g o f th e ligand-bindin g regio n (Brejc e t al , 2001 ; Karlin , 2002 ; L e Nover e e t al , 2002a, 2002b) . The assemble d recepto r protei n i s a pentamer wit h a hydrophili c cor e line d primaril y by the secon d transmembran e domai n o f eac h subuni t (Fig. 21-1B , C) . Th e contributio n o f specifi c sub units t o assemble d receptor s an d ke y feature s of th e ligand-binding domains an d io n channel por e ar e being scrutinize d wit h "knock-down, " single - an d double-iiAChR subuni t gen e knockou t mic e (L e Novere e t al., 2002b ; Champtiau x e t al, 2003 ; Hog g et al, 2003 ; Leste r e t al. , 2003) . The ligand-bindin g domain i n neurona l nAChRs , lik e muscle-typ e nAChRs, i s formed b y th e N-termina l domain s o f o e subunits an d a t th e interfac e of adjacent subunit s i n the assemble d pentamer . Th e identificatio n o f se quences involve d i n th e ioni c "gate " o f nAChRs ha s emerged fro m studie s usin g ingeniou s combination s of mutagensi s t o incorporat e cystein e residue s at key sites, an d subsequen t biochemica l an d biophysica l probing wit h specia l cysteine-reactiv e reagent s (Karlin, 2002; Jensen et al, 2005).
DEVELOPMENT OF NICOTIN E RECEPTOR S 34 3
FIGURE 21- 1 Curren t model s o f neuronal nicotini c receptor (nAChR ) subuni t complexes. Panel s A and B illustrate singl e a - o r ß-type nicotinic recepto r sub unit protein in the membran e bilayer . A. Each o f the neurona l nicotini c recep tor subuni t gene s encode s a protei n tha t traverse s the membran e fou r time s (labeled 1-4) . Th e N-termina l domain is on the external face of the membrane , the first and secon d transmembran e domain s (TM ) ar e linke d by short amin o acid sequence s o n th e interna l face , an d th e secon d an d thir d T M ar e con nected b y a short external linker . The cytoplasmi c loop betwee n T M 3 and 4 is the mos t variabl e portion o f the subuni t sequences . I t has bee n implicate d i n both th e modulatio n an d membran e targetin g o f assemble d nACh R com plexes. Th e C termina e ar e short extracellula r domains . B . Dispositio n o f the TM withi n a single o c subunit relative to each othe r an d t o the Hydrophobi e surrounds. Th e linke r betwee n TM 1 an d TM 2 an d th e intracellula r sid e TM 2 amino acids comprise th e io n channe l gat e (se e tex t and Karlin , 2002) . Panels C an d D sho w model s o f the arrangemen t o f five nAChR subunit s (e.g. , oc 7 alone o r a an d ß subunits) assembled as neuronal nACh R complexes . C . This simplified structura l mode l o f a neuronal-typ e nACh R pentame r i s largely inferred fro m studie s of the muscl e an d torped o electropla x nAChR. Ke y features include th e "stave s o f a barrel " arrangemen t o f eac h subuni t aroun d th e hy drophilic pore , an d th e contributio n o f the TM 2 t o the linin g of the channel . D. Example s o f propose d subuni t composition s o f neurona l nACHR s an d experimentally derive d difference s i n Ca 2+:Na permeabilit y o f th e illustrate d subtypes.
The multiplicit y of nAChR-subunit types beg s the question, "wh y so many ?" . Thi s issu e received a con siderable researc h effor t ove r the las t decad e resultin g in th e conclusio n tha t differen t subuni t combination s are functionall y an d pharmacologicall y distinc t fro m one anothe r (Fig . 21—ID ; se e Diversit y o f Nicotini c Acetylcholine Receptors, below). The physiologica l justification fo r th e subuni t diversity, however , raise s th e difficult questio n o f how t o identif y th e combination s
and stoichiometrie s o f subunit s tha t compris e native nAChRs (Colquhou n an d Patrick , 1997 ; Champtiau x et al , 2003 ; Na i e t al , 2003 ; Alkondo n an d Albu querque, 2005) . Despit e a concerte d effort , thi s issue remain s largel y unresolved. Nevertheless , sev eral generalization s abou t nACh R compositio n have hel d u p t o scrutiny : ther e i s reasonable agree ment tha t th e oc4 , ß2, and oc 7 subunits ar e the majo r players i n nAChR s expresse d i n th e CNS , wherea s
344 NICOTINE-AFFECTE D DEVELOPMEN T oc3, ß4 , an d a ? subunit s ar e mor e typica l compo nents o f PN S nAChR s (Cordero-Erausqui n e t al. , 2000; Picciotto et al, 2001; Le Novere et al, 2002b; Hogg et al, 2003; Gotti and démenti, 2004). Likewise, i t i s generally agreed tha t (1 ) a2 , oc3 , an d oc 4 require co-assembl y with a ß subuni t t o mak e func tional channels ; (2 ) ß 2 an d ß 4 requir e co-assembl y with a n a subuni t to make functiona l channels; (3) oc5, ot6 , an d ß 3 requir e co-assembl y with bot h an other a an d ß subunit to make functional channels; and (4 ) onl y oc7 , oc8 , oc9 , an d ocl O ca n for m func tional homopentamers (Wang et al., 1996 ; Cordero Erausquin e t al. , 2000 ; Changeu x an d Edelstein , 2001; Ber g an d Conroy , 2002 ; L e Nover e e t al , 2002b; Hogg et al, 2003; Gotti an d Clementi, 2004; Nicke, 2004). This i s what nAChR subunit s can d o i n term s of co-assembly. Wha t happen s i n viv o i s les s clear , al though a cleare r pictur e i s emergin g a s nativ e nAChRs becom e bette r define d throug h combine d molecular, pharmacological , an d biophysica l ap proaches (Sivilott i e t al, 1997 ; Y u and Role , 1998a , 1998b; Cueva s et al, 2000; Champtiaux e t al, 2003; Nai et al, 2003; Fucile, 2004 ; Fischer e t al, 2005). In recognition o f compositiona l uncertainty , a consor tium o f "nicotinologists " hav e adapte d a nomencla ture in which the inclusio n of a subunit in an nACh R complex i s indicate d b y a n asteris k (Luka s e t al , 1999) Fo r example, the designatio n oc4ß2* i s used for nAChR complexe s tha t includ e oc 4 an d ß 2 subunits , regardless o f stoichiometry , i.e. , (oc4) 2 (ß2) 3 o r (oc4) 3 (ß2) 2 , and allows for the possibility that other subunits may participate in th e nativ e complex. S o far, reports on nativ e nACh R compositio n includ e everythin g from th e simples t configuratio n (i.e. , homopen tameric, suc h a s (oc7) 5 t o th e mos t complicate d ver sions (i.e., different a an d ß subunits) of nAChRs (Le Novere e t al., 2002b). Mercifully, studies of the over laps in nAChR-subuni t gene expressio n pattern s sug gest that the subuni t composition o f native nAChRs is not as horrific as the simple mathematical calculatio n with 1 2 subunits in groups of five would predict (>10 5 possible outcomes!) . I n addition , th e expressio n pat terns for several subunits are relatively restricted (e.g., oc5, a6, and ß3 ) (Le Novere et al., 1996 ; Klin k et al, 2001; Le Novere e t al, 2002b ; Zoli e t al, 2002) ; cx8 has no t bee n identifie d i n mammalia n system s an d oc9 an d ocl O appea r t o b e largel y restricte d t o inner vated sensory epithelia (Elgoyhe n et al., 2001; Keiger et al. , 2003) . I n sum , th e subuni t compositio n an d
stoichiometry o f nativ e neurona l nAChR s i s mor e complicated tha n ca n be resolved with any one o f the current analyti c techniques , bu t i s probabl y les s baroque tha n straigh t combinatoria l analyse s migh t suggest.
DIVERSITY OF NEURONA L NICOTINI C ACETYLCHOLINE RECEPTORS
Functional Group s The functiona l distinctions among nAChR s of differ ent compositio n ar e no t trivial . Eac h i s an importan t determinant o f ho w th e gatin g o f a particula r nico tinic receptor coul d contribute to synaptic excitability and/or be affecte d b y exogenously delivered nicotine. In th e beginnin g o f the 1990s , biochemica l an d bio physical analyse s combined t o rescue oc5 , oc6 , and ß 3 from thei r orpha n statu s (L e Nover e e t al. , 1996 ; Ramirez-Latorre e t al , 1996 ; Wan g e t al , 1996 ; Groot-Kornielink et al, 1998; Lena et al, 1999 ; Kury atov et al., 2000) . More recen t wor k has honed thes e techniques t o bette r defin e the functiona l properties that distinguis h on e nACh R subtyp e fro m anothe r (Nai e t al., 2003). It is now clear that the inclusio n of each o f thes e subunit s i n nACh R complexe s ca n change th e kinetics , unitar y conductance , an d cal cium permeabilit y o f th e resultan t channel s (Ramirez-Latorre e t al., 1996 ; Wan g e t al, 1996 ; Yu and Rôle , 1998a , 1998b ; Nai et al, 2003). For example, biophysica l studie s sho w tha t Ot3ß4 * an d a3oc5ß4* nAChRs , whic h ar e presen t a t man y pe ripheral site s an d involve d in th e cardiovascula r effects o f nicotine pass more picoamp s per millisecon d than Ot4ß2 * nAChR s (Gerzanic h e t al, 1998) . Th e activation profile s an d desensitizatio n rate s o f thes e nAChRs are also dissimilar from on e another an d ar e very differen t fro m oc 7 homomeri c nAChR s (Ber g and Conroy , 2002 ; Quick an d Lester , 2002 ; Khiroug et al, 2004). Rectification propertie s o f th e variou s channe l subtypes a s wel l a s agonis t an d antagonis t bindin g properties are distinct, but perhaps the most functionally importan t differenc e amon g nACh R subtype s is in their relative Ca2+ permeability (e.g., Fig. 21-1D) . The subjec t o f Ca 2+ conductanc e an d nAChR s re quires an extra comment on <x7 * nAChRs, th e poster child equivalen t for decades o f "grind an d bind " an d autoradiographic assay s o f CN S oc-bungarotoxi n
DEVELOPMENT OF NICOTIN E RECEPTOR S 34 5 (otBgTx) sites . The dogge d effort s o f severa l investigators brough t th e beguilin g finding that th e arche typal muscl e aBgTx-bindin g sit e wa s peppere d al l over the CNS, to the ultimat e resolutio n o f a unique set of nicotine-gated io n channel s (Wonnacot t e t al., 1982; Clark e e t al, 1985 ; Dajas-Bailador an d Wonnacott, 2004 ; Fucile , 2004 ; Nick e e t al, 2004). Th e calcium permeabilit y o f oc7 * nAChR s i s greate r than tha t o f othe r neurona l nAChR s an d muc h larger tha n tha t o f the muscl e nAChR . I n fact , th e fractional curren t throug h a? * nAChR s tha t i s attributable t o Ca 2+ i s comparabl e t o N-methyl-D aspartate (NMDA)-typ e glutamat e receptors , bu t without the extr a control afforde d b y the voltag e an d Mg-dependent gatin g that constrain s NMDA recep tors (Dajas-Bailado r and Wonnacott , 2004). I n othe r words, a7* nAChR s ar e essentiall y Ca2+ flood gate s just waiting for ligand to happen! Judiciou s targeting of suc h receptor s t o presynapti c domain s ca n (and apparently does ) provid e a loca l trigge r fo r Ca 2+dependent transmitte r release . Mor e subtl e t o a n electrophysiologist, bu t no t t o th e nAChR-bearin g neurons, ar e th e man y downstrea m molecula r targets o f calciu m influ x (Dajas-Bailado r and Wonna cott, 2004) . Thes e sort s o f Ca 2+-dependent tuning , by bot h oc 7 an d non-oc 7 nAChRs , appea r t o b e im portant loc i o f nicotine' s effect s o n th e developin g nervous syste m (se e Nicotinic Acetylcholin e Recep tors, Synapti c Plasticity , an d Brai n Development , below). The essentia l contributio n o f oc2ß4 * nAChR s a t synapses an d circuit s relate d t o nicotine-elicite d re sponses ha s bee n repeatedl y an d compellingl y demonstrated (Picciott o an d Corrigall , 2002 ; Leste r et al , 2003 ; Picciotto , 2003 ; Gott i an d dementi , 2004; Laviolett e an d va n der Kooy , 2004; Wonnacot t et al. , 2005) . Sinc e Changeu x an d colleague s (Picciotto et al., 1995 ) first reported th e altere d avoidance learning i n knockou t mic e o f th e high-affinit y ß2 * nAChRs, th e choru s ha s mounte d o n th e ke y role of these nAChR s i n CN S function , culminatin g wit h the recen t identificatio n of a singl e sit e deeme d es sential t o Ot2ß4*-mediate d addictio n (Tappe r e t al , 2004). The rol e of changes i n the numbe r o f nAChRs (not confined to, but exemplifie d by, oc2ß4* nAChRs) in th e effect s o f long-ter m nicotin e exposur e i s stil l under debat e (Gentr y an d Lukas , 2002 ; Wonnacot t et al., 2005). In additio n to compositional diversit y in nAChRs , other factor s an d condition s that ma y diffe r fro m cel l
to cell an d fro m synaps e to synapse regulate the func tional efficac y o f nAChRs. Thus , marke d difference s in the physiologica l profile o f native nAChRs vs. their recombinant version s expressed i n heterologou s systems underscor e th e potentia l rol e o f loca l o r cell specific regulator y molecule s in determinin g nACh R function i n vivo. Extracellular modulators of nAChRs abound, includin g endotoxins , endocannabionoids , and neuropeptide s (Miw a e t al., 1999 ; Di Angelanto nio e t al , 2003 ; L e Foi l an d Goldberg , 2004 ; O z et al, 2004). A striking example o f native receptors being mor e functionally comple x tha n thei r heterologous equivalents ha s emerge d fro m studie s o f oe7-containin g nAChRs (Y u an d Role , 1998b ; Ber g an d Conroy , 2002; Khirou g e t al. , 2002 ; Drisde l e t al , 2004) . Comparison o f many i n vitro expression studies with neuronal studie s has led t o the conclusio n tha t mos t native oc7 * nAChR s ar e homopentameri c complexe s with ver y rapi d desensitization , lo w agonis t affinity , and long-lastin g otBgT x binding . Othe r wor k indi cates that a subset of native a7* nAChRs may include other subunits , o r oc 7 subunit s tha t hav e bee n subjected t o post-translationa l modifications , yieldin g nAChRs wit h ver y differen t agonist-induce d activa tion an d desensitizatio n fro m (oc7) 5 (Y u an d Role , 1998a; Cueva s et al, 2000; Khiroug et al, 2002; Drisdel étal, 2004). Diversity in Targeting o f Nicotinic Acetylcholine Receptors i n the Central Nervous System The developmen t o f better pharmacologica l tool s and new molecula r probe s t o nAChR s hav e unveile d impressive intricacie s in the cellula r traffickin g of nAChRs (William s e t al. , 1998 ; Temburni e t al , 2000, 2004; Ber g and Conroy, 2002; Brumwell et al, 2002; Blank et al., 2004; Liu et al., 2005). Dependin g on subuni t compositio n (an d in th e cas e o f oc3 , o n identified subuni t sequences ) a n nACh R comple x can b e selectively targeted t o somatic-dendritic vs. axonal domains , a s well a s t o synaptic , pre-, or perisy naptic subdomains within a neuron . As ACh an d nicotin e ca n influenc e synaptic transmission vi a pre- and postsynapti c nAChRs , and sinc e "extrasynaptic" nAChR s ma y exert importan t regula tory effect s o n neurona l activity , the traffickin g t o al l loci i s likely important (Fig. 21-2) (Hogg et al., 2003; Dajas-Bailador an d Wonnacott , 2004 ; Gott i an d
346 NICOTINE-AFFECTE D DEVELOPMENT A. POSTSYNAPTIC NiCOTINIC ÄChRs
B. PRE-SYNÄPTIC NICOTINiC AChRs
FIGURE 21- 2 Propose d dispositio n and physiological effects o f pre-, post - and perisynapti c nicotini c recep tors. A . Thi s imag e depict s neuron-neuro n connec tions where postsynaptic nAChRs participate i n direc t transmission. Acetylcholin e (ACh ) act s a s a primar y synaptic transmitte r i n periphera l autonomi e gangli a and a t som e CN S sites . ACh i s released fro m closel y apposed presynaptic elements, leadin g to the direc t activation o f postsynapti c nAChRs . Not e tha t despit e their perisynaptic location o n ciliary ganglion neurons , oc7* nAChR s participat e i n direc t synapti c responses . Administration of nicotine could activate and/or desensitize receptor s a t both peri - an d directl y postsynapti c locales. B . Presynapti c (and/o r preterminal ) nAChR s contribute t o the modulatio n o f synaptic transmission. ACh ma y be released from nearby cholinergic projec tions, leading to the activatio n of nAChRs localize d a t or near presynaptic terminals. Depending o n the posi tion an d subtyp e of nAChR, as well as the ambien t vs. stimulated concentratio n o f ACh , th e spontaneou s and/or evoked release of transmitter is facilitated o r depressed b y adde d nicotine . Th e ambiguit y o f thes e statements, and thos e in the text, as well as the fancifu l nature of the diagram reflect the very real difficulties i n assessing the actions of nicotine in vivo.
Clementi, 2004) . Man y group s hav e advance d th e proposal that , despit e th e relativel y lo w concentra tions of nAChRs i n the CNS, nAChR s do play an important role in fine-tuning CNS synapti c transmission because o f their strategi c localizatio n t o presynapti c sites (Dani, 2001; Fucile, 2004 ; She r et al, 2004).
Early demonstration s o f presynapti c effect s o f nicotine recepto r activatio n cam e fro m studie s o f synaptosome preparation s b y Wonnacott , Collins , and colleague s (Rapie r e t al , 1988 ; Wonnacot t et al, 1989 ; Grad y e t al, 1992 ) an d fro m electro physiological studie s o f Changeu x an d colleague s (Vidal an d Changeux , 1993 ; Gioann i e t al, 1999) . The presynapti c modulatio n o f central glutamater gic transmissio n by nAChR s a t severa l sites was initially distinguishe d b y it s ocBgT x sensitivit y and it s ablation followin g knock-dow n o f oc 7 subunit s (McGehee e t al, 1995 ; Gra y et al, 1996) . The hig h Ca2+ permeabilit y o f th e oc7 * nAChR s serve s t o escort Ca 2+ into axon terminals, thus facilitating spon taneous an d stimulus-evoke d transmissio n at numer ous site s o f glutamat e release . Non-ot7-containin g presynaptic nAChR s ha s bee n implicate d i n th e regulation o f glutamat e an d GAB A releas e (Vida l and Changeux , 1993) . Th e cumulativ e literatur e suggests tha t th e recepto r pharmacolog y an d pre sumed compositio n o f presynaptic nAChR s appea r to b e jus t a s elaborat e a s those o f peri- an d postsy naptic nAChR s (Mull e e t al. , 1991 ; Jone s e t al , 2001; Jone s an d Wonnacott , 2004 ; Fische r e t al , 2005). Despite evidenc e tha t nAChR s ca n participat e i n the modulatio n o f transmitte r releas e i n th e CNS , one shoul d no t get too carried away. There is increasing evidenc e fo r direc t synapti c transmissio n (i.e. , mediated b y AC h releas e an d postsynapti c nACh R activation) i n severa l CN S regions , includin g th e hippocampus, nigrostriata l system , an d i n sensor y cortex (Jone s an d Yakel , 1997 ; Alkondo n an d Albu querque, 2004 ; Matsubayash i e t al, 2004) . The vari ety o f nACh R subtype s tha t hav e bee n accuse d o f mediating postsynapti c transmissio n i n th e CN S i s also ver y broad , includin g bot h Ot7 * an d non-a7 * nAChRs. Last , bu t no t least , regardles s o f whethe r the nACh R populatio n densit y i s sufficien t t o sup port a synaptic current, activation of pre- and/or post synaptic nAChRs ma y be sufficient t o elicit importan t downstream signalin g and metaboli c response s (Ber g and Conroy , 2002 ; Dajas-Bailado r an d Wonnacott , 2004). The mechanism s underlyin g th e release , an d th e ambient vs . stimulated concentrations , o f ACh i n th e CNS remai n a bi t o f a mystery . Both publishe d an d unpublished report s hint at less than classica l mecha nisms o f ACh releas e (d e Rove r et al. , 2002 ; Lester , Jo, an d Role , persona l communication) . Electro n
DEVELOPMENT OF NICOTIN E RECEPTOR S 34 7 microscopy studie s examinin g th e localizatio n o f cholinergic synapti c terminal s hav e reveale d consid erable distanc e fro m cholinoceptiv e terminals , consistent wit h a volume mod e o f cholinergic trans mission (Descarrie s e t al. , 1997 ; Zol i e t al. , 1999 ; Jones and Wonnacott, 2004) . Suc h vagarie s in the local concentration s o f AC h a t pre - o r postsynapti c cholinocepetive site s i n th e CN S mus t b e addresse d before th e contributio n o f nAChR activatio n (and inactivation) t o th e developin g nervou s syste m ca n b e understood.
DEVELOPMENTAL EXPRESSION OF NICOTINI C ACETYLCHOLINE RECEPTOR S
Prenatal Expressio n o f Neuronal Nicotinic Acetylcholine Receptor s Constituents of the Cholinergic System Acetylcholine an d nAChR s pla y critica l role s i n virtually al l phase s o f brai n maturation , durin g embryogenesis a s wel l a s postnata l development . Choline acetyltransferas e (ChAT), the syntheti c en zyme fo r ACh, appear s very earl y during embryoge nesis (Smit h e t al , 1979) , an d AC h influence s development a s early as gastrulation (Fig. 21-3). Initially, AC h promote s cel l divisio n a t a stag e when ACh synthesi s occur s i n preneura l undifferentiate d cells. Durin g gastrulatio n an d postgastrulation , ACh regulate s cel l movement s tha t ar e blocke d b y ACh antagonist s i n se a urchi n embryo s (Falugi , 1993; Laude r an d Schambra , 1999) , and se a urchin oocytes an d earl y embryo s contai n nAChR s (Ivon net an d Chambers , 1997 ; Buzniko v an d Rakich , 2000). Thi s findin g suggest s tha t i n additio n t o ChAT, other protein s involve d in cholinergic signaling ar e expresse d b y embryoni c cell s durin g thes e stages. Indeed, acetylcholinesteras e (AChE), the en zyme tha t break s dow n ACh , i s present durin g se a urchin gastrulatio n (Falugi , 1993) . Messenge r RN A coding for nAChR subunit s i s detected in cultures of premigratory neura l cres t cell s (Howar d e t al. , 1995), which i n th e fetu s will give rise to most neu rons in th e PNS . Thus, eve n befor e neuronal differ entiation, cholinergi c signalin g throug h nAChR s occurs an d ma y eve n contribut e t o developmen t o f non-neuronal cells .
In prenata l neura l tissue , bot h muscarini c acetyl choline receptor s (mAChRs ) an d nAChR s ar e de tected, bu t nAChR s ar e expresse d earlie r tha n mAChRs (Laude r an d Schambra , 1999) . nACh R ex pression as well as ChAT immunoreactivity and ACh E activity show a caudorostra l gradien t o f appearance i n the fetal brain (Zoli et al., 1995; Lauder and Schambra , 1999). Functiona l nACh R expressio n ha s bee n de tected i n ste m an d progenito r cell s o f the ra t cerebral cortex at gestational day (G) 1 0 (Atluri et al., 2001) and in mesencephalon of developing brai n at Gil (Zol i et al., 1995) . Earl y expression o f subunit mRNA s seem s characteristic o f nAChR, sinc e othe r ligand-gate d io n channels becom e expresse d somewha t later . GAB A and NMD A receptor mRNA s ar e no t detecte d i n ra t brain unti l G14-G15 (Lauri e e t al, 1992 ; Monye r e t al., 1994) . Durin g thi s stage, ACh promote s the switch from cel l divisio n to neurona l differentiatio n (Slotkin , 1998), an d guidanc e o f nerve growth cones appear s to be on e o f th e role s o f cholinergi c signalin g throug h nAChRs (Hum e e t al. , 1983 ; Zheng e t al, 1994) . At the onse t o f neurona l nAChR-subuni t expression , innervation-independent factor s ar e responsibl e fo r neuronal differentiatio n before cholinergic projection s arrive (Zol i et al., 1995) . Indeed, althoug h cholinergi c neurons are among the first neurons to differentiate i n the CNS , i n ra t fetuses , cholinergi c neuron s ar e no t generated befor e Gi l an d ar e generate d firs t i n th e spinal cord , brai n stem , an d basa l ganglia . I n mos t other brai n regions , cholinergi c neuron s ar e no t de tected until G12 to G16 (Lauder and Schambra, 1999) . ChAT-immunoreactive nerv e terminal s ar e de tectable during the first postnatal weeks , especially i n the forebrain . Th e majo r cholinergi c innervatio n originating fro m th e nucleu s basali s o f Meynert en ters th e cerebra l corte x a t abou t postnata l da y (P ) 0 (Hohmann an d Berger-Sweeney, 1998) , bu t i s ini tially confine d t o th e subplate , a transient , synapse rich laye r o f neuron s locate d directl y unde r th e cortical plate . Thus , th e initia l profil e o f nACh R ex pression may be induced by local endogenous differen tiation signals rather tha n b y cholinergic input s per se. This contrast s wit h finding s o n cholinergi c synapse s in th e developin g autonomi e nervou s syste m (Deva y et al. , 1999) . Here , nAChR-subuni t expressio n i n neuronal cholinergi c synapse s is regulated b y signals from th e autonomi e targe t tissu e tha t i s innervated . Depending o n th e innervate d tissu e type , differen t types of nAChRs ar e expresse d tha t hav e differen t ki netic properties (Devay et al., 1999) .
348 NICOTINE-AFFECTE D DEVELOPMEN T
FIGURE 21- 3 Developmenta l expressio n of nicotinic acetylcholine receptors (nAChRs) i n ra t forebrai n and cortex . nACh R subunit s ar e expresse d i n ra t forebrain an d corte x a t differen t site s an d a t differen t time s durin g develop ment. Interestingly , the expressio n of nAChRs precedes th e birt h o f cholinergic cell s wit h a neurona l phenotype , suggestin g tha t cholinergi c signalin g through nAChR s ma y be involve d i n th e differentiatio n o f neurons. Durin g early postnatal development, when cholinergi c projections arrive in the cortex, different nACh R subtype s show differen t expressio n dynamics , indicatin g that cholinergic signalin g through nAChR s i s involved in synapti c refinement of the neuronal circuitry.
Spatiotemporal Patterns Expression of nAChRs i s not constant durin g fetal development; i t varie s amon g region s an d subunit . At G10, when the mouse corte x consists of dividing stem and progenito r cells, thes e cortica l cell s expres s oc3, oc4, an d oc 7 recepto r subunit s that giv e ris e to ACh evoked inward currents (Atlur i et al., 2001). Although these nAChR subunits can be detected fro m G1 0 un til birth, the incidenc e o f these subunits declines with increasing gestational age . I n feta l ra t brain , oc3 , oc4 , ß2, an d ß 4 nACh R subuni t mRNA expression is detectable in the hindbrain and midbrain , but no t fore brain, at Gl 1 (Zoli et al, 1995) . In forebrain, mRNA for oc3 , oc4 , an d ß 2 subunit s become s detectabl e a t G12. ß 2 mRN A seem s t o b e th e mos t widel y expressed an d a t relatively stable level s throughout th e remaining prenatal development. oc4-subuni t mRNA is at lower levels than ß 2 mRNA throughout gestation,
but show s a similarl y wid e distribution . In contrast , Ct3 and ß 4 mRNA are less abundantly distributed and expression can be transient in some brain regions. For instance, oc 3 mRNA is present in th e ra t forebrain o n G12, G13 , an d G15 , bu t i s not detecte d ther e any more a t G17 , G19 , an d P O (Zoli e t al , 1995) . ß 4 mRNA i s absent fro m forebrai n durin g embryogenesis, but show s transien t expressio n in othe r brai n areas. It is detected i n midbrain on G12 and G15 , but is not detecte d i n midbrain nucle i a t G19 and P O (Zoli et al. , 1995) . I n developin g chic k brain , simila r regional specificit y an d transien t expressio n occu r throughout gestationa l stage s (Torra o e t al. , 2000) . oc2, oc3 , oc5 , an d ß 2 mRNA s are expresse d very early on i n gangli a a t embryoni c da y 4, and ar e expresse d throughout th e chic k brai n a t G18 . oc 7 mRN A was detected i n Purkinj e neuron s o f chick cerebellum a t G12, bu t expressio n decrease d afte r G1 8 (Kanek o et al., 1998) . Taken together, the earl y onset, regional
DEVELOPMENT OF NICOTIN E RECEPTOR S 34 9 specificity, an d transien t nature o f nAChR expression suggest that they may play important role s during embryonic developmen t o f rodent an d chic k brain. This theory i s underscored b y finding s i n transgeni c mic e with inducibl e expression o f oc2 subunits. Restoratio n of ß2 subunit expression durin g development i n thalamocortical projection s of ß2 knockout mice normal izes passive-avoidanc e learnin g i n thes e animals , suggesting that ß2 expression in these projections during developmen t i s critical fo r norma l developmen t of this behavior (King et al, 2003). In fetal huma n brain , nAChR gen e transcripts and proteins ar e als o detecte d a t ver y earl y gestationa l stages. nACh R protei n an d gen e transcript s are read ily detecte d b y 4 t o 5 weeks o f gestation (Hellstrom Lindahl et al, 1998) . Messenger RNA s of a3, a4? a5, oc7, ß2 , ß3 , an d ß 4 ar e foun d widel y distribute d over the feta l brai n betwee n 4 an d 1 2 weeks o f gestation . In mos t brai n areas , radio-ligand bindin g of nAChR s by [ 5H] epibatidine and [ 3 H] cysteine increase d fro m weeks 4 t o 12 . The highes t specifi c bindin g of thes e ligands wa s detecte d i n spina l cord , pons , an d medulla oblongata , wherea s bindin g b y th e oc 7 subunit-specific prob e [ 125I]aBgTx was found t o b e strongest i n pons , medull a oblongata , an d midbrai n (Hellstrom-Lindahl and Court , 2000) . Periods of transient hig h nACh R densit y were found i n fronta l cortex, hippocampus , cerebellum , an d brainste m o f humans durin g mid-gestatio n an d neonata l period s (Kinney et al, 1993; Court et al, 1997) . A significant positive correlatio n betwee n gestationa l ag e an d th e expression o f oe7 mRNA was observed i n al l brai n re gions excep t corte x (Fal k e t al., 2002). From th e lat e fetal stage , human brai n nAChR expressio n has bee n shown t o fal l wit h increasin g ag e (Hellstrom-Lindah l etal, 1998; Hellstrom-Lindahl an d Court, 2000; Falk et al, 2003) . Thus , nAChR s als o appea r t o pla y a n important role in human development , neurogenesis , and synaptogenesis .
to exogenou s nicotin e exposure . A substantia l percentage o f pregnant woman continu e smokin g during pregnancy. I n th e Unite d States , nearl y hal f o f al l women smoker s continue t o smoke during their pregnancies (Ebrahi m e t al, 2000) , o r abou t 12 % of all women wh o giv e birt h (Mathews , 2001) . Mor e tha n 500,000 infant s eac h yea r ar e expose d t o cigarett e smoke i n utero . Fetal exposur e t o nicotin e damage s th e develop ing brain, interferin g wit h cel l replicatio n an d differ entiation. I t als o evoke s apoptosis , culminatin g i n reduced cel l numbe r an d aberran t cel l proportion s (Slotkin, 2002; Abreu-Villaca e t al, 2004a). I n ra t fetus, durin g neurulatio n i n th e neura l tub e stag e a t G9.5, nicotin e exposur e cause s cytotoxicit y i n al l brain area s an d incidence s o f apoptosi s sharpl y in crease (Ro y et al. , 1998) . Prenata l exposur e t o nico tine increase s cortica l mRN A expressio n o f oc4 , ß2 , and <x 7 nACh R subunit s i n rat s (Shack a an d Robin son, 1998a ; Frank e t al., 2001) . Also, when pregnan t primates are exposed to nicotine a t concentrations experienced b y smokers, feta l brai n damag e i s induced (Slotkin e t al., 2005). Nicotine exposur e durin g 3 0 to 160 days of gestation induce d a4ß 2 an d oc 7 nACh R upregulation i n severa l brai n areas , includin g cortex . In addition , cel l loss , reductio n i n cel l siz e an d re duced neuriti c outgrowt h wa s observed. I n humans , these prenata l nicotin e effect s lea d t o behaviora l deficits durin g late r lif e (Slotkin , 2004) . Nicotin e treatment o f primar y neurona l culture s o f huma n prenatal brai n increase s expressio n o f Ot 3 an d oc 7 nAChR subunit s (Hellstrom-Lindah l e t al., 2001) . In longitudinal studie s o f prenatally expose d infants , fetal tobacco exposur e affects attentio n an d impulsivit y behavior (Leec h e t al., 1999) , and ca n lea d t o lowe r intelligence quotien t an d conduc t disorde r i n late r life (Erns t et al, 2001; Wakschlag et al, 2002). Postnatal Expressio n o f Neuronal Nicotinic Acetylcholine Receptor s
Response to Prenatal Nicotine Exposure Depending o n th e developmenta l phase , AC h promotes o r prevent s neurona l apoptosis : whe n cell s are poorl y differentiated , th e effec t i s primaril y proapoptotic, wherea s i n differentiate d cells , i t i s anti apoptotic (Hohman n an d Berger-Sweeney , 1998) . The earl y expression of nAChRs during fetal develop ment give s rise to a vulnerability of the huma n fetu s
Expression Patterns and Integration with Other Neurotransmitter Systems In human s a s well as in rodent s an d othe r mammals , brain developmen t i s far from complet e a t birth, an d many neuronal systems need t o mature i n response to ongoing interactio n wit h th e e x uter o environment . Indeed, neuroproliferation , apoptosis , an d synapti c
350 NICOTINE-AFFECTE D DEVELOPMEN T rearrangement persis t int o adolescence . Cholinergi c signaling continues to play an importan t role in postnatal brai n development , whic h i s emphasize d b y brain region-specific an d transient expression profiles of nAChR subunits (Fuchs, 1989 ; Broide et al, 1995 , 1996; Zhan g e t al., 1998) . Disruptio n o f cholinergi c innervation durin g earl y postnata l developmen t re sults i n delaye d cortica l neurona l developmen t an d permanent change s i n cortica l cytoarchitectur e an d cognitve behavior s (Hohmann an d Berger-Sweeney , 1998). oc3 , a.7, an d ß 4 subuni t mRN A expressio n is low durin g mid-gestatio n an d increase s durin g lat e gestation and earl y postnatal life (Winzer-Serha n an d Leslie, 1997) . Durin g th e firs t fe w postnata l weeks , various subunit s ar e transientl y expresse d i n selec t sites i n th e brain : a 2 i n th e hippocampu s an d i n brain stem ; cx 3 i n th e striatum , cerebellum, an d cor tex; cc 4 i n hippocampus , striatum , an d cerebellum ; oc7 i n the cerebellu m an d cortex ; and ß 2 i n the striatum (Broid e et al, 1995 , 1996 ; Zhang e t al, 1998) . In rat cortex , oc 4 mRNA is maximal b y P14 after whic h its expressio n remain s high. ß 2 mRN A is low o n P 7 but peak s a t P14 . ot 7 mRN A expressio n reache s a maximum o n P 7 (Shack a an d Robinson , 1998b) . These expressio n pattern s sugges t tha t nACh R sub units pla y specifi c role s durin g postnata l develop ment. Geneti c silencin g o f oc4 , ß2 , an d ß 3 nACh R subunits shows that each subunit is involved in particular neurona l an d behaviora l phenotypes, hintin g a t their uniqu e role s i n brai n developmen t (Cordero Erausquin e t al. , 2000) . Only th e oc3-subuni t knockout mice have a high fractio n of mortality during th e first postnatal wee k (Xu et al, 1999) , mos t likel y because thi s subuni t i s a n essentia l componen t o f nAChRs that mediate fas t synaptic transmission i n the autonomie nervou s system, and, a s such, i s essential for perinata l survival. T o illustrat e the contribution s of cholinergi c signalin g t o postnata l brai n develop ment, developmenta l change s i n nACh R expression and functio n in primary sensory cortex are describe d below. Cholinergic transmissio n is presen t i n th e earl y developing ra t parieta l corte x a t birt h (Descarrie s et al., 1997 ; Mechawa r and Descarries , 2001). In th e first 2 week s afte r birth , th e cholinergi c innervatio n increases greatl y in numbe r o f varicosities and num ber o f branche s pe r axon . Th e associatio n o f thes e new cholinergic terminals with postsynaptic densities is lo w (<15%) , b y contrast , an d remain s constan t
throughout adulthoo d (Mechawar et al., 2002). Ultrastructural analyse s o f som e monoaminergi c nerv e terminals i n th e corte x (Aude t e t al , 1988 , 1989 ) and hippocampu s (Viz i an d Kiss , 1998 ) sho w tha t most o f these nerv e terminal s do no t mak e contac t with structurall y identifiable postsynaptic elements . These terminals are equippe d fo r vesicle release despite no t makin g direc t synapti c contact s (Seguel a et al, 1989 , 1990 ; Descarrie s and Mechawar, 2000) . This phenomeno n suggest s tha t the y communicat e with postsynapti c target s throug h volum e transmis sion (Zol i et al., 1999) . By comparison, th e percent age o f GABAergi c an d glutamatergi c axon s tha t terminate o n a postsynapti c sit e approache s 100 % (Seguela e t al, 1990 ; Umbriac o e t al, 1994 , 1995) . Cholinergic innervatio n i s almos t exclusivel y ex trasynaptic i n severa l areas of the ra t brain , includ ing th e parieta l corte x (Umbriac o e t al. , 1994 ; Mechawar e t al., 2002) , hippocampus (Umbriac o et al, 1995) , neostriatu m (Contan t e t al, 1996) , an d visual, sensory , an d parieta l cortice s (Avendan o et al, 1996 ; Turrin i e t al, 2001) . Cholinergic com munication throug h volum e transmissio n has wideranging implications fo r nAChR impac t on neurona l function, especiall y whe n on e take s difference s i n activation an d desensitizatio n propertie s o f nAChR s into accoun t (Mansvelde r e t al, 2002 ; Quic k an d Lester, 2002). Functionality of the Cholinergic Receptors During postnata l developmen t o f sensor y cortice s there i s a dramatic , transient increas e i n th e expres sion of AChE (Robertso n etal., 1991) . Concurrently, nAChR oc 7 subuni t gen e expressio n als o transientl y increases i n sensor y cortices. Binding of [ 125I]ocBgTx in ra t sensor y cortex start s a t PO , peaks a t P10 , an d then decline s to adult concentratio n by P20 (Fuchs, 1989). Expression of oc7 subunit mRNA follows a similar time course (Broide et al., 1995) . During fetal de velopment, oc 7 mRNA is expressed i n low amounts o n G13 in the ventricula r zone o f the neocortex , and o n G15 i n the thalami c neuroepithelium . A marked in crease i n ot 7 mRN A concentrations i s observed dur ing th e lat e prenata l perio d i n bot h sensor y an d nonsensory regions of the corte x and thalamus . Mod erate to high levels of messenger RNA are maintained into th e firs t postnata l week , followe d b y a declin e into adulthoo d (Broid e et al., 1995) . The increas e i n
DEVELOPMENT OF NICOTIN E RECEPTOR S 35 1 cortical oc 7 mRN A follow s th e arriva l o f AChE labeled thalamocortical afférents . Preventin g these afférents fro m reachin g th e corte x strongly reduces th e a? subuni t mRN A and [ 125I]ocBgTx binding i n layers I V and V I (Broid e et al, 1996) . Thes e dat a sug gest tha t th e expressio n o f oc 7 subunit-containin g nAChRs i s regulate d b y thalami c inputs . Thes e oc 7 subunit-containing nAChR s coul d b e located postsynaptically as well as presynaptically on thalami c affér ents. I t ha s bee n hypothesize d tha t presynapti c oc 7 nAChRs i n primar y auditory corte x ar e involve d i n the maturatio n o f glutamat e synapse s by facilitatin g the conversio n o f "silent synapses " (define d a s thos e containing onl y NMD A receptors ) int o matur e ot amino-3-hydroxy-5-methyl-4-isoxazole-propionic aci d (AMPA) an d NMD A receptor-containin g synapse s (Metherate an d Hsieh , 2003 ; Metherate, 2004) . Th e authors o f thi s hypothesi s sugges t tha t throug h thi s mechanism o f nAChR-induce d maturatio n o f glutamate synapses , the expressio n o f oc 7 subunit s i n th e auditory corte x coul d defin e a critica l perio d o f sensory corte x developmen t i n whic h synapti c refine ment of cortical circuitry and tuning to sensory inputs takes place. nACh R activation has been show n to alter synapti c strength o f glutamatergic synapti c transmission i n othe r brai n area s a s well , a s describe d below. In developin g hippocampus , nAChR s containin g <x7 subunits can als o activate silent synapses that show a lo w probability of being activ e an d tur n the m int o high-probability synapses (Maggi et al., 2003) . Schaf fer collatera l to CA1 synapses that have a high proba bility o f bein g activ e durin g developmen t ca n b e down-regulated b y a 7 an d ß 2 subunit-containin g nAChRs (Magg i et al, 2004). These findings suggest that nicotini c receptor s als o ca n pla y a rol e durin g postnatal developmen t o f excitator y glutamatergi c connections an d can contribute t o shaping of the hip pocampal neuronal circuitry. To understand th e physiologica l effect o f the acti vation of nAChRs by neuronal activit y during postna tal development , i t i s importan t t o conside r thei r cellular an d subcellula r distribution . A s mentione d above, nAChR s modulat e presynapti c glutamat e re lease (McGehe e e t al , 1995 ; Gra y e t al , 1996 ; McGehee an d Role , 1996 ; MacDermot t e t al. , 1999). I n addition , nAChR s ca n modulat e GABAer gic transmissio n in multipl e brai n areas , suc h a s th e ventral tegmenta l are a (VTA) , thalamus , neocortex ,
and hippocampus (Len a e t al., 1993 ; Alkondon e t al., 1997, 2000 ; Lena an d Changeux, 1997 ; Fishe r e t al, 1998; Radcliff e e t al, 1999 ; Mansvelde r and McGe hee, 2002) . Modulatio n o f GABAergi c neuron s b y nAChRs ha s bee n mos t extensivel y studie d i n th e hippocampus, wher e GABAergi c loca l circui t neu rons (LCNs ; als o know n a s interneurons ) expres s multiple nACh R subtype s (Alkondo n e t al. , 1997 , 1999; Jone s an d Yakel , 1997 ; Frazie r e t al , 1998 ; McQuiston an d Madison , 1999 ; J i and Dani , 2000 ; Alkondon an d Albuquerque , 2004) . Ther e i s evi dence fo r nAChR expressio n at two sites: (1) at presynaptic terminal s (wher e the y directl y modulat e GABA release , independen t o f actio n potentia l fir ing) (Fishe r e t al, 1998 ; L u e t al, 1999 ; Radcliff e et al. , 1999 ) an d (2 ) awa y fro m synapti c terminals (where modulation o f GABA release is dependent o n action potentia l firing) (Alkondon et al, 1997 , 1999 ; Frazier e t al. , 1998) . Th e expressio n of nAChRs de pends o n th e typ e o f LC N (McQuisto n an d Madi son, 1999 ; Alkondo n an d Albuquerque , 2004 ; se e below). Activation of nAChRs o n cortical and hippocam pal LCN s result s i n eithe r inhibitio n o r disinhibi tion o f projectio n neuron s (PNs ) (Alkondo n e t al. , 2000; J i and Dani , 2000 ; Ji et al, 2001) . Inhibitio n is likel y t o b e induce d vi a nAChR-mediate d in crease i n th e GABAergi c transmissio n directl y ont o PNs. Disinhibitio n o f PNs result s fro m a n increas e of inhibitor y GABAergic transmissio n t o GABAer gic LCN s b y activatio n o f nAChRs . Consequently , PNs ma y receiv e les s GABAergi c inpu t an d ar e dis inhibited. Effect on Neuronal Subpopulations There are few data o n nicotini c modulatio n o f differ ent type s of neurons i n th e prefronta l corte x (PFC) . As in other part s of the neocortex , th e PF C ha s a layered structure i n which most of the neuron s ar e PNs . PNs an d LCN s ca n b e distinguishe d o n th e basi s of distinctive physiological , morphologically , an d im munocytochemical criteri a (Peter s an d Jones , 1984 ; Kawaguchi, 1993 , 1995 ; Gabbot t e t al, 1997 ; Con nors an d Telfeian , 2000 ; Kawaguch i an d Kondo , 2002; Gabbott e t al, 2003). In rat , among th e target s of thalamocortica l afférent s ar e PN s wit h somat a i n layers III, IV, or V of the PFC . Thes e inputs are mod ulated b y a4ß2-containin g nAChR s (Vida l an d
352 NICOTINE-AFFECTE D DEVELOPMEN T Changeux, 1993 ; Gil etal, 1997; Gioanni etal., 1999; Lambe e t al., 2003) . Nieotinic modulatio n o f thalamocortical projection s by oc4ß2-containing nAChRs ap pears t o b e a genera l phenomeno n throughou t th e cortex (Metherate , 2004) . An elegant stud y in the ra t motor cortex identified distinct LC N subtype s tha t bot h expres s nACh R mRNA for oc4, a5, and ß 2 subunits and sho w somatic nicotinic currents (Porter et al., 1999) . PNs, as well as LCNs expressing either parvalbumin or somatostatin , showed n o effec t o f agonist applicatio n i n thi s study. LCNs expressin g vasoactive intestinal peptide (VIP) and cholecystokini n (CCK) , b y contrast , di d sho w nicotinic currents , and pharmacologica l analysis implicated non-oc 7 nAChRs. I n human cerebra l cortica l slices, bipola r an d multipola r LCNs exhibite d eithe r a? o r a4ß 2 nAChR-rnediate d current s (Alkondo n etal., 2000). An interestin g bu t seldo m addresse d aspec t o f cholinergic signalin g in the cortex is the role of cholinergic LCNs i n cortical microcircuit function. Cholinergic LCN s i n th e nucleu s accumben s (NAc ) can affect GABAergi c transmissio n within th e NA c itsel f via nACh R activatio n (de Rover et al, 2002) . In addition, these cholinergic LCN s could be important i n the productio n o f lasting changes i n microcircuitries that affec t anima l behavior, since their intrinsic firing properties ar e altere d durin g behavioral sensitization to amphetamin e (d e Rove r e t al. , 2004) . Further more, immunohistochemica l dat a sho w tha t a smal l fraction o f bipolar LCNs i n laye r II/II I o f the roden t sensory and moto r cortice s are cholinergic (House r et al., 1985) . A mor e recen t stud y usin g single-cel l reverse-transcriptase polymeras e chai n reactio n found a subgrou p o f cortica l LCN s tha t ar e im munopositive for VIP an d calretini n and als o express ChAT transcript s (Caul i e t al. , 1997) . Thes e sam e VIP-positive cells are the mai n LCN subtyp e expressing nicotini c current s an d nACh R mRN A (Porte r et al. , 1999) . Th e Nationa l Institut e o f Neurological Disorders an d Strok e (NINDS ) GENSA T BA G Transgenics Projec t show s tha t ChAT-positlv e stain ing i s eviden t i n almos t ever y par t o f th e cortex , including th e PF C (http://www.gensat.org/makecon nection.jsp). Th e putativ e presenc e o f cholinergi c LCNs in the corte x introduces the possibilit y of cortical nAChR activatio n independent o f cholinergic terminals tha t originat e fro m lowe r brai n areas . Sinc e the PF C i s implicated in behavioral sensitization (see
below), intrinsi c properties o f cholinergic LCN s an d ACh releas e i n the PF C coul d als o be modifie d during behaviora l sensitizatio n followin g th e intak e o f drugs o f abuse , a s describe d i n th e NA c (d e Rove r et al, 2004) .
NICOTINIC ACETYLCHOLINE RECEPTORS, SYNAPTI C PLASTICITY, AND BRAI N DEVELOPMEN T
Activation o f oc 7 nAChR s i n primar y sensory cortex during postnata l developmen t ma y alte r synapti c strength of glutamatergic synapses (Metherate, 2004) . In recent years, several studies i n differen t brai n area s have reveale d lastin g effect s o f nicotin e o r AC h o n synaptic connection s (Mansvelde r an d McGehee , 2000; Dan i e t al. , 2001 ; Girod an d Role , 2001 ; J i e t al., 2001; Mansvelder et al., 2002). Long-term modu lation o f glutamatergi c an d GABAergi c synapti c connections by nAChRs ca n alter functioning of neuronal circuit s for many days and possibl y induce lasting change s tha t coul d b e importan t fo r postnata l development o f these brai n areas. These properties of cholinergic signalin g throug h nAChR s ar e discusse d in th e contex t o f findings on nicotini c modulatio n o f the mesolimbic DAergi c system. In rat , the D A rewar d system show s considerabl e plasticity during postnatal lif e an d doe s no t complet e maturation unti l lat e adolescence or early adulthood (Benes et al., 2000) . Since this system exhibits a similar make-u p i n th e huma n brain , adolescence migh t well represen t a time windo w prone t o aberrations by exposure to drugs of abuse. The mammalia n brai n is particularly sensitive t o developing addiction s durin g adolescence. Th e uniqu e behaviora l feature s of adolescence ar e drive n largel y by maturationa l change s in th e CNS , a process prone t o environmenta l influ ences suc h as drug exposure. Epidemiological studie s show that exposur e t o addictiv e drug s durin g adoles cence increase s th e ris k o f becomin g a dru g addic t later i n lif e (Kande l et al, 1992 ; Grant an d Dawson , 1997). Adolescen t smokin g i s clearly correlated wit h smoking i n late r life . Moreover , adolescen t smokin g is a strong predictor o f the occurrenc e of adult depression (Chassi n et al., 1996) . In th e VTA , nAChRs ar e expresse d o n DAergi c neurons, GABAergi c neurons , an d glutamatergi c terminals (Fig . 21-4 ) (Pidoplichk o e t al. , 1997 ;
DEVELOPMENT OF NICOTIN E RECEPTOR S 35 3 Charpentier e t al., 1998 ; Mansvelde r an d McGehee , 2000; Klin k e t al , 2001 ; Champtiau x e t al , 2002 ; Mansvelder e t al. , 2002 ; Pidoplichk o e t al , 2004) . VTA DAergi c neuron s expres s thre e pharmacologi cally identifiable nAChRs—one that i s likely a homomeric oc 7 nAChR an d tw o that d o not contai n th e oc 7 subunit. Mos t DAergi c neuron s expres s nAChR tha t can b e blocke d b y mecamylamine, whereas less tha n half of the DAergi c neuron s expres s a7 nAChRs (Pi doplichko et al., 1997 ; Klin k et al, 2001; Wooltorto n et al , 2003 ; Pidoplichk o e t al. , 2004) . GABAergi c neurons i n th e VT A expres s a simila r variet y o f
FIGURE 21- 4 Nicotini c modulatio n o f synaptic com munication i n ra t ventra l tegmenta l are a (VTA) . I n the VTA , nAChR s ar e presen t o n dopamin e (DA)er gic neurons , GABAergi c neurons , and glutamatergi c terminals. Arrival of low concentrations o f nicotine, as experienced b y smokers, rapidl y activates and desen sitizes non-cc 7 nAChRs , wherea s al nAChR s o n glutamatergic terminal s ar e activate d bu t suffe r muc h less fro m desensitization . (Source: Modifie d fro m Mansvelder and McGehee, 2002)
nAChR subunits . A s wit h D A neurons , onl y a mi nority o f GABAergi c neuron s expres s oc 7 nAChR s (Wooltorton e t al, 2003) . Th e majorit y o f the VTA GABAergic neuron s expres s nAChRs tha t mos t likel y contain a 4 an d ß 2 subunits , whic h ar e blocke d b y dihydro-ß-erythroidine (DHßE ) (Mansvelde r e t al. , 2002). Glutamatergic transmissio n ont o DAergi c neuron s is enhance d b y activatio n o f presynapti c nAChR s (Mansvelder an d McGehee , 2000 ; Jone s an d Wonna cott, 2004). Interestingly, cholinergic synaptic terminals are no t foun d i n clos e vicinit y to glutamatergi c termi nals expressing Ot7-containing nAChR, consisten t wit h a "volume " mode of cholinergic signalin g (Descarrie s et al. , 1997 ; Zol i e t al. , 1999 ; Jone s an d Wonnacott , 2004). Whe n nicotine arrives in the VTA, i t stimulates glutamatergic terminal s as well a s dopamine neurons , thereby favorin g condition s o f pre - an d postsynapti c paired activation and a Hebbian typ e of synaptic plasticity7. Nicotine-induce d pairin g resulted i n long-ter m po tentiation (LTP ) o f glutamatergi c input s (Mansvelde r and McGehee , 2000) . Nicotin e als o induce d LT P i n vivo, measured a s an increase i n AMPA/NMDA recep tor rati o (Saal et al., 2003) . Taken together , thes e find ings suggest tha t synapti c plasticit y in the VT A may be induced afte r smoking a single cigarette and mos t likely underlies th e persistent effect s o f the dru g o n D A re lease in the NAc and PFC . The oc7-containin g nAChR s involve d i n thi s mechanism ar e no t desensitized b y low nicotine con centrations associate d wit h tobacc o smokin g (Mans velder et al, 2002; Wooltorton e t al, 2003). However, the non-ot 7 nAChRs on GABAergi c neurons underg o rapid desensitizatio n withi n minute s afte r th e star t of nicotine exposur e and, a s a consequence, reduc e th e inhibitory inpu t t o th e D A neuron s (Mansvelde r et al, 2002 ; Wooltorton e t al, 2003). Desensitizatio n of the nAChR s o n GABAergi c neuron s no t onl y pre vents further activatio n by nicotine bu t als o precludes the contributio n o f thes e receptor s t o endogenou s cholinergic transmissio n (Mansvelde r e t al. , 2002) . VTA dopamine neuron s ar e thu s disinhibite d by desensitization o f non-oc7-typ e nAChR s (Mansvelde r et al., 2002). Despite rapi d desensitization properties , genetically engineere d mice lacking ß2 subunits (Pic ciotto e t al. , 1998 ) o r expressin g oc 4 subunit s hyper sensitive t o nicotin e (Tappe r e t al. , 2004 ) hav e bee n used t o sho w tha t thes e subunit s ar e ke y in nicotin e addiction.
354 NICOTINE-AFFECTE D DEVELOPMENT NICOTINIC ACETYLCHOLINE RECEPTORS AND SYNAPTI C PLASTICIT Y IN OTHE R BRAIN AREAS
Currently, i t is unknown whether long-term modula tion o f synapti c connection s b y nicotin e occur s within th e PFC . Dat a o n long-ter m modulatio n o f synaptic contact s b y nicotine anywher e i n th e neo cortex are lacking. On th e othe r hand , nicotin e doe s modulate synapti c plasticity in brain areas other than the VTA . I n ra t spinal cord , the tx 7 subunit contain ing nACh R affect s th e inductio n o f synaptic plasticity (Genzen an d McGehee , 2003). In the absenc e of nicotine, pairin g of pre- an d postsynapti c activit y in dorsal hor n neuron s induce s LT P i n som e o f th e neurons. Wit h nicotine , th e prevalenc e o f LT P in duction i s enhanced . I n th e hippocampus , i n a minority o f th e glutamatergi c synapse s nicotin e in duces LT P b y itself , bu t i n mos t o f glutamatergi c synapses nicotin e modulate s th e inductio n o f synaptic plasticit y (Fujii e t al, 1999 ; J i et al., 2001; Man n and Greenfield , 2003) . Activatio n o f postsynapti c nAChRs o n CA 1 PNs ca n boos t short-term plasticity into LT P i n Schaffe r collatera l synapse s (J i e t al. , 2001). Activation of nAChRs o n LCN s tha t synaps e on PN s ca n preven t LT P i n glutamatergi c synapses (Ji e t al. , 2001) . Thus , timin g an d localizatio n o f nAChR activit y in th e hippocampu s ca n determin e whether LT P will occur o r not . These type s of nicotinic mechanism s o n LT P inductio n ma y contribut e to the well-know n effects o f nicotine o n learning an d memory.
axon guidanc e t o fine-tunin g neurona l circuits , ac tivating silen t synapses , an d modulatin g synapti c strength. Th e sam e hold s tru e fo r nicotine exposur e during development: dependin g o n the developmen tal stage , th e magnitud e o f damage induce d an d th e specific target s affected b y smoking during pregnancy will vary. The finding s reviewe d i n thi s chapte r describ e part of what is surely a much bigge r picture of the rol e of nAChR-signalin g i n development ; man y gap s i n this picture remain . Molecular and electrophysiological techniques, despit e their great sensitivity, still lack the flexibility to precisely define whic h combination s of nACh R subunit s combin e t o determin e th e ful l spectrum o f responses to ACh. Cholinergi c signalin g during developmen t i s th e culminatio n o f th e inte grated actio n o f different nAChRs , actin g i n somato dendritic vs . axona l domains , transducin g eithe r electrical informatio n o r calciu m signaling . Futur e studies wil l nee d t o addres s thes e question s befor e sketches of cholinergic signaling in development ca n emerge i n more vibrant detail. Abbreviations ACh acetylcholin e AChE acetylcholinesteras e OcBgTx oc-bungarotoxi n AMPA a-amino-3-hydroxy-5-methyl-4-isoxazole propionic aci d CCK cholecystokini n ChAT cholin e acetyltransferas e
SUMMARY AND CONCLUSION S
Over the past 30 years, research o n cholinergic signal ing in the developin g nervous system has shown tha t nAChR pla y a n importan t rol e i n shapin g neurona l circuits. The subuni t compositio n of nAChR s expressed i n different brai n regions changes during preand postnata l development ; th e subuni t mRN A profiles are highl y dynami c durin g thi s time . Give n th e variety of biophysical and pharmacologica l properties conferred b y differences in nACh R composition , th e types o f signals mediated b y nAChR s ar e mos t likely subject t o important change s throughou t normal de velopment. I n thi s regard , cholinergic signalin g during gestatio n an d postnata l developmen t change s from facilitatin g cell division , cell differentiation , an d
CNS centra l nervou s system DA dopamin e DHßE dihidro-ß-erythroidin e G gestationa l day GABA y-aminobutyri c acid LCN loca l circuit neuron LTP long-ter m potentiatio n mAChR muscarini c acetylcholine recepto r NAc nucleu s accumbens nAChR nicotini c acetylcholine recepto r NMDA N-methyl-D-aspartat e P postnata l day PFC prefronta l cortex
DEVELOPMENT OF NICOTIN E RECEPTORS 35 5 PN projectio n neuron PNS periphera l nervou s syste m VIP vasoactiv e intestina l peptide VTA ventra l tegmenta l are a
ACKNOWLEDGMENTS Thi s wor k wa s supporte d b y grants from th e Netherland s Roya l Academy of Arts and Sciences (KNAW ) an d th e Netherland s Counci l fo r Medical Researc h (Zon-MW ) t o H.D.M . an d fro m th e National Institut e of Neurological Disorder s an d Strok e to L.W.R . References Abreu-Villaca Y , Seidle r FJ , Slotki n T A (2004a ) Doe s prenatal nicotin e exposur e sensitiz e th e brai n t o nicotine-induced neurotoxicit y i n adolescence ? Neuropsychopharmacology 29:1440-1450. Abreu-Villaca Y, Seidler FJ, Täte CA, Cousins MM, Slotkin TA (2004b) Prenatal nicotin e exposur e alter s th e re sponse to nicotin e administratio n i n adolescence : ef fects o n cholinergi c system s durin g exposur e an d withdrawal. Neuropsychopharmacology 29:879-890. Alkondon M , Albuquerqu e E X (2004 ) Th e nicotini c acetylcholine recepto r subtype s an d thei r function in th e hippocampu s an d cerebra l cortex . Pro g Brain Res 145:109-120. (2005) Nicotinic recepto r subtype s in rat hippocampal slices are differentially sensitiv e to desensitization and earl y i n viv o functiona l upregulatio n b y nico tine an d t o bloc k b y bupropion. J Pharmaco l Ex p Ther 313:740-750. Alkondon M , Pereira EF , Barbos a CT, Albuquerque E X (1997) Neurona l nicotini c acetylcholin e recepto r activation modulate s y-aminobutyri c aci d releas e from CA 1 neuron s o f ra t hippocampa l slices . J Pharmaco l Ex p Ther 283:1396-1411. Alkondon M , Pereir a EF , Eisenber g HM , Albuquerqu e EX (1999 ) Cholin e an d selectiv e antagonist s iden tify tw o subtype s o f nicotini c acetylcholin e recep tors tha t modulat e GAB A releas e fro m CA 1 interneurons i n ra t hippocampa l slices . J Neurosci 19:2693-2705. (2000) Nicotinic recepto r activatio n in human ce rebral cortica l interneurons : a mechanism fo r inhibition an d disinhibitio n o f neurona l networks . J Neurosci 20:66-75. Atluri P, Fleck MW , Shen Q , Mah SJ , Stadfelt D, Barnes W, Goderi e SK , Templ e S , Schneide r A S (2001) Functional nicotinic acetylcholin e recepto r expres sion in stem and progenitor cells of the earl y embryonic mouse cerebra l cortex. Dev Biol 240:143—156.
Audet MA , Descarries L , Douce t G (1989 ) Quantifie d regional an d lamina r distributio n o f th e serotoni n innervation in the anterio r half of adult rat cerebral cortex. J Chem Neuroanat 2:29-44. Audet MA, Doucet G, Oleskevich S, Descarries L (1988) Quantified regiona l an d lamina r distribution o f the noradrenaline innervatio n i n th e anterio r hal f o f the adul t ra t cerebra l cortex . J Comp Neuro l 274 : 307-318. Avendano C , Umbriac o D , Dyke s RW , Descarrie s L (1996) Acetylcholine innervatio n of sensory and mo tor neocortica l area s i n adul t cat : a cholin e acetyl transferase immunohistochemica l study . J Che m Neuroanat 11:113-130 . Benes FM, Taylor JB, Cunningham M C (2000 ) Convergence an d plasticit y of monoaminergi c system s i n the media l prefronta l corte x durin g th e postnata l period: implication s fo r th e developmen t o f psy chopathology. Cere b Cortex 10:1014-1027 . Berg DK , Conro y W G (2002 ) Nicotini c oc 7 receptors : synaptic option s an d downstrea m signaling in neu rons. J Neurobiol 53:512-523 . Blank M , Triana-Baltze r GB , Richard s CS , Ber g D K (2004) A-protocadherin s ar e pre-synapti c an d ax onal i n nicotini c pathways . Mol Cel l Neurosc i 26 : 530-543. Brejc K , van Dij k WJ , Klaassen RV, Schuurmans M, va n Der OJ , Smi t AB, Sixma T K (2001 ) Crysta l struc ture o f a n ACh-bindin g protei n reveal s the ligand binding domain o f nicotinic receptors . Nature 411 : 269-276. Broide RS , Lesli e F M (1999 ) Th e a 7 nicotini c acetyl choline recepto r i n neuronal plasticity. Mol Neuro biol 20:1-16. Broide RS , Robertson RT , Leslie F M (1996 ) Regulatio n of a7 nicotinic acetylcholine receptor s in the developing ra t somatosensor y corte x b y thalamocortica l afférents. J Neurosci 16:2956-2971 . Broide RS , O'Connor LT , Smit h MA , Smith JA , Leslie FM (1995 ) Developmenta l expressio n o f oc 7 neu ronal nicotini c recepto r messenge r RN A i n rat sensory cortex and thalamus . Neuroscience 67 : 83-94. Brumwell CL , Johnso n JL , Jaco b M H (2002 ) Extrasy naptic a7-nicotini c acetylcholin e recepto r expres sion i n developin g neuron s i s regulated b y inputs , targets, an d activity . J Neurosci 22:8101-8109 . Buznikov GA , Rakic h L (2000 ) Cholinoreceptor s o f early (preneural) sea urchin embryos . Neurosci BehavPhysio!30:53-62. Cauli B , Audinat E , Lambole z B , Angulo MC , Roper t N, Tsuzuk i K , Hestrin S , Rossier J (1997) Molecular an d physiologica l diversit y o f cortica l nonpyra midal cells. J Neurosci 17:3894-3906 .
356 NICOTINE-AFFECTE D DEVELOPMEN T Champtiaux N , Gott i C , CorderoErausqui n M , Davi d DJ, Przybylsk i C, Len a C , Clement i F , Moretti M , Rossi FM , L e Mover é N , Mclntos h JM , Gardie r AM, Changeu x J P (2003 ) Subuni t compositio n o f functional nicotini c receptor s i n dopaminergi c neurons investigate d with knock-ou t mice . J Neu rosci 23:7820-7829. Champtiaux N , Ha n ZY , Bessis A , Ross i FM , Zol i M , Marubio L , Mclntos h JM , Changeu x J P (2002 ) Distribution an d pharmacolog y o f oc6-containin g nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22:1208-1217 . Changeux J , Edelstein S J (2001) Allosteric mechanism s in norma l an d pathologica l nicotini c acetylcholin e receptors. Curr Opin Neurobiol 11:369—377 . Charpantier E , Barneou d P , Moser P , Besnard F , Sgar d F (1998 ) Nicotini c acetylcholin e subuni t mRN A expression i n dopaminergi c neuron s o f the ra t substantia nigr a an d ventra l tegmenta l area . Neurore port 9:3097-3101. Chassin L , Presso n CC , Ros e JS , Sherma n S J (1996 ) The natura l histor y o f cigarett e smokin g fro m adolescence t o adulthood : demographi c predic tors o f continuit y an d change . Healt h Psycho l 15 : 478-484. Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic bindin g i n ra t brain : autoradiographi c comparison o f [ 3H]acetylcholine, [ 3H]nicotine, an d [125I]-a-bungarotoxin. J Neurosci 5:1307-1315. Cohen G , Rou x JC, Grailh e R , Malcolm G , Changeu x JP, Lagercrant z H (2005 ) Perinata l exposur e t o nicotine cause s deficit s associate d wit h a los s o f nicotinic recepto r function . Pro c Nat i Aca d Se i USA 102:3817-3821 . Colquhoun LM , Patric k J W (1997 ) Pharmacolog y o f neuronal nicotini c acetylcholin e recepto r subtypes. AdvPharmacol 39:191-220. Connors BW , Telfeian AE (2000) Dynamic propertie s of cells, synapses , circuits , and seizure s i n neocortex . AdvNeurol84:141-152. Contant C , Umbriac o D , Garci a S , Watkin s KG , Descarries L (1996 ) Ultrastructura l characteriza tion o f th e acetylcholin e innervatio n i n adul t ra t neostriatum. Neuroscience 71:937—947 . Cordero-Erausquin M , Marubi o LM , Klin k R , Changeux J P (2000 ) Nicotini c recepto r function : new perspectives from knockou t mice . Trends Phar macol Sei 21:211-217. Court JA , Lloyd S , Johnson M , Griffith s M , Birdsal l NJ, Piggott MA , Oakley AE, Inc e PG , Perr y EK, Perry RH (1997 ) Nicotini c an d muscarini c cholinergi c receptor bindin g i n th e huma n hippocampa l for mation durin g developmen t an d aging . Brai n Re s Dev Brain Res 101:93-105.
Cuevas J, Roth AL, Berg DK (2000 ) Two distinct classes of functiona l 7-containin g nicotini c recepto r o n rat superio r cervica l ganglio n neurons . J Physio l 525(Pt3):735-746. Dajas-Bailador F , Wonnacott S (2004 ) Nicotini c acetyl choline receptor s an d th e regulatio n o f neurona l signalling. Trend s Pharmacol Se i 25:317-324. Dani JA (2001) Overview of nicotinic receptor s and thei r roles in the centra l nervou s system . Bio l Psychiatr y 49:166-174. Dani JA , Ji D, Zho u F M (2001 ) Synapti c plasticit y an d nicotine addiction . Neuron 31:349-352 . de Rove r M , Lodde r JC , Kit s KS , Schoffelmee r AN , Brussaard A B (2002 ) Cholinergi c modulatio n o f nucleus accumben s mediu m spin y neurons. Eu r J Neurosci 16:2279-2290 . de Rove r M , Mansvelde r HD , Lodde r JC , Warde h G , Schoffelmeer AN , Brussaard AB (2004) Long-lastin g nicotinic modulatio n o f GABAergic synaptic transmission i n th e ra t nucleu s accumben s associate d with behavioura l sensitizatio n t o amphetamine . Eur J Neurosci 19:2859-2870 . Descarries L, Gisiger V, Steriade M (1997 ) Diffuse trans mission b y acetylcholine i n the CNS . Pro g Neuro biol 53:603-625 . Descarries L , Mechawa r N (2000 ) Ultrastructura l evi dence fo r diffus e transmissio n b y monoamin e an d acetylcholine neuron s o f th e centra l nervou s system. Pro g Brain Res 125:27-47. Devay P, McGehee DS, Yu CR, Rol e LW (1999) Target specific contro l o f nicotini c recepto r expressio n a t developing interneurona l synapse s i n chick . Na t Neurosci 2:528-534 . Di Angelantonio S , Giniatullin R , Costa V , Sokolova E , Nistri A (2003 ) Modulatio n o f neurona l nicotini c receptor functio n b y the neuropeptide s CGRP and substance P o n autonomi e nerv e cells . B r J Phar macol 139:1061-1073 . Drisdel RC , Manzan a E , Green WN (2004 ) The rol e of palmitoylation i n functional expression of nicotini c al receptors . J Neurosci 24:10502-10510. Ebrahim SH , Floy d RL , Merrit t R K 2nd , Decoufl e P , Holtzman D (2000 ) Trend s i n pregnancy-relate d smoking rate s i n th e Unite d States , 1987-1996 . JAMA 283:361-366. Elgoyhen AB , Verier DE , Kat z E , Rothli n CV , Heine mann SF , Boulte r J (2001 ) alO : a determinan t o f nicotinic cholinergi c recepto r functio n i n mam malian vestibula r an d cochlea r mechanosensor y hair cells. Pro c Nat i Acad Sei USA 98:3501-3506. Ernst M , Moolcha n ET , Robinso n M L (2001 ) Behav ioral and neura l consequences o f prenatal exposure to nicotine. J Am Acad Child Adolesc Psychiatr y 40: 630-641.
DEVELOPMENT OF NICOTIN E RECEPTORS 35 7 Everitt BJ , Dickinson A , Robbins TW (2001 ) The neu ropsychological basi s o f addictive behaviour . Brai n Res Brain Res Rev 36:129-138. Falk L, Nordberg A, Seiger A, Kjaeldgaard A , HellstromLindahl E (2002) The a7 nicotinic receptor s in human feta l brai n and spina l cord. J Neurochem 80 : 457-465. (2003) Highe r expressio n o f oc 7 nicotini c acetyl choline receptor s i n huma n feta l compare d t o adult brain. Brain Res Dev Brain Res 142:151-160. Falugi C (1993 ) Localization an d possibl e role of molecules associated with the cholinergi c syste m during "non-nervous" developmenta l events . Eu r J His tochem 37:287-294 . Fischer H , Orr-Urtreger A, Role LW, Huck S (2005) Selective deletio n o f th e Ct 5 subuni t differentiall y af fects somatic-dendriti c versu s axonall y targete d nicotinic AC h receptor s i n mouse . J Physio l 563 : 119-137. Fisher JL , Pidoplichk o VI , Dan i J A (1998 ) Nicotin e modifies th e activit y o f ventra l tegmenta l are a dopaminergic neuron s an d hippocampa l GABAer gic neurons. J Physiol Paris 92:209-213. Frank MG , Srer e H , Ledezma C , O'Har a B, Heller H C (2001) Prenata l nicotin e alter s vigilance states an d AchR gene expressio n in th e neonata l rat : implications fo r SIDS . Am J Physio l (Regu l Integ r Com p Physiol) 280:R1134-1140. Frazier CJ , Rollin s YD, Brees e CR , Leonar d S , Freed man R , Dunwiddie T V (1998 ) Acetylcholine acti vates a n oc-bungarotoxin-sensitiv e nicotini c curren t in rat hippocampal interneurons , but not pyramidal cells. JNeurosci 18:1187-1195 . Freedman R , Olinc y A , Ros s RG , Wald o MC , Steven s KE, Adle r LE, Leonar d S (2003 ) Th e genetic s o f sensory gatin g deficit s i n schizophrenia . Cur r Psy chiatry Rep 5:155-161 . Fuchs J L (1989) [ 125I]oc-bungarotoxin binding marks primary sensor y area developin g ra t neocortex . Brai n Res 501:223-234 . Fucile S (2004 ) Ca 2+ permeabilit y o f nicotini c acetyl choline receptors. Cell Calcium 35:1—8 . Fujii S , Ji Z, Morit a N , Sumikaw a K (1999) Acut e an d chronic nicotin e exposur e differentiall y facilitat e the inductio n of LTP. Brai n Res 846:137-143. Gabbott PL , Dicki e BG , Vai d RR, Headla m AJ , Bacon SJ (1997) Local-circuit neurones in the media l prefrontal corte x (areas 25, 32 and 24b ) in the rat : morphology an d quantitativ e distribution . J Com p Neurol 377:465-499 . Gabbott PL , Warner TA, Jays PR, Bacon S J (2003) Areal and synapti c interconnectivit y o f prelimbi c (are a 32), infralimbic (are a 25) and insula r cortices in th e rat. Brain Res 993:59-71.
Gentry CL , Luka s R J (2002 ) Regulatio n o f nicotini c acetylcholine recepto r number s an d functio n b y chronic nicotine exposure . Curr Drug Targets CN S Neurol Disord 1:359-385 . Genzen JR , McGehee D S (2003 ) Short- and long-ter m enhancement o f excitator y transmissio n i n th e spinal cor d dorsa l hor n b y nicotini c acetylcholin e receptors. Pro c Natl Acad Sei USA 100:6807-6812. Gerzanich V , Wan g F , Kuryato v A , Lindstro m J (1998 ) oc5 subuni t alter s desensitization , pharmacology , Ca++ permeability and Ca ++ modulation of human neuronal oc 3 nicotini c receptors . J Pharmaco l Ex p Ther 286:311-320. Gil Z, Connors BW , Amitai Y (1997) Differential regula tion o f neocortica l synapse s b y neuromodulator s and activity . Neuron 19:679-686 . Gioanni Y , Rougeot C , Clark e PB , Lepouse C , Thierr y AM, Vidal C (1999 ) Nicotini c receptor s i n the ra t prefrontal cortex : increase i n glutamate releas e and facilitation o f mediodorsa l thalamo-cortica l trans mission. Eu r J Neurosci 11:18-30 . Girod R , Role LW (2001 ) Long-lastin g enhancement o f glutamatergic synapti c transmissio n b y acetyl choline contrast s wit h respons e adaptatio n afte r exposure t o low-leve l nicotine . J Neurosc i 21 : 5182-5190. Gotti C , Clement i F (2004 ) Neurona l nicotini c recep tors: from structur e to pathology. Prog Neurobiol 74: 363-396. Grady S , Mark s MJ , Wonnacot t S , Collin s A C (1992 ) Characterization o f nicotini c receptor—mediate d [ 5 H]dopamine release from synaptosome s prepared from mous e striatum. J Neurochem 59:848—856 . Grant BF, Dawson D A (1997) Age at onset of alcohol use and it s association with DSM-IV alcohol abuse an d dependence: result s fro m th e Nationa l Longitudi nal Alcoho l Epidemiologi e Survey . J Subs t Abus e 9:103-110. Gray R , Raja n AS , Radcliff e KA , Yakehiro M, Dan i J A (1996) Hippocampa l synapti c transmissio n en hanced b y lo w concentrations o f nicotine . Natur e 383:713-716. Groot-Kormelink PJ , Luyte n WH , Colquhou n D , Sivilotti L G (1998 ) A reporte r mutatio n approac h shows incorporatio n o f th e "orphan " subuni t ß 3 into a functiona l nicotini c receptor . J Bio l Che m 273:15317-15320. Hellstrom-Lindahl E , Cour t JA (2000) Nicotinic acetyl choline receptors during prenatal developmen t an d brain patholog y in huma n aging . Beha v Brain Res 113:159-168. Hellstrom-Lindahl E , Gorbounova O, Seige r A, Mousavi M, Nordber g A (1998 ) Regiona l distributio n o f nicotinic receptors durin g prenatal development of
358 NICOTINE-AFFECTE D DEVELOPMEN T human brai n an d spina l cord . De v Brai n Re s 108 : 147-160. Hellstrom-Lindahl E, Seiger A, Kjaeldgaard A , Nordberg A (2001 ) Nicotine-induce d alteration s i n th e ex pression o f nicotinic receptor s i n primar y cultures from huma n prenata l brain . Neuroscienc e 105 : 527-534. Hogg RC , Raggenbas s M , Bertran d D (2003 ) Nicotini c acetylcholine receptors : fro m structur e t o brai n function. Re v Physio l Bioche m Pharmaco l 147 : 1-46. Hohmann CF , Berger-Sweene y J (1998 ) Cholinergi c regulation o f cortica l developmen t an d plasticity . New twist s to an ol d story . Perspect De v Neurobiol 5:401-425. Houser CR , Crawfor d GD , Salvaterr a PM , Vaugh n J E (1985) Immunocytochemica l localizatio n o f choline acetyltransferas e i n ra t cerebra l cortex : a study of cholinergic neurons an d synapses . J Comp Neurol234:17-34. Howard MJ , Gershon MD , Margiott a J F (1995 ) Expression o f nicotini c acetylcholin e receptor s an d sub unit mRN A transcript s i n culture s o f neura l cres t cells. Dev Biol 170:479-495 . Hume RI , Rol e LW , Fischbac h G D (1983 ) Acetyl choline releas e fro m growt h cone s detecte d wit h patches of acetylcholine receptor-ric h membranes . Nature 305:632-634 . Ivonnet PI , Chamber s E L (1997 ) Nicotini c acetyl choline receptor s o f th e neurona l typ e occu r i n the plasm a membran e o f sea urchi n eggs . Zygot e 5:277-287. Jensen ML , Schousbo e A , Ahring PK (2005 ) Charg e se lectivity o f the Cys-loo p famil y o f ligand-gate d io n channels. J Neurochem 92:217-225. Ji D , Dan i J A (2000) Inhibition an d disinhibitio n of pyramidal neurons by activation of nicotinic receptor s on hippocampa l interneurons . J Neurophysio l 83 : 2682-2690. Ji D , Lap e R , Dan i J A (2001) Timin g an d locatio n o f nicotinic activit y enhances o r depresses hippocam pal synaptic plasticity. Neuron 31:131-141 . Jones IW , Bola m JP , Wonnacott S (2001 ) Pre-synapti c localisation of the nicotini c acetylcholine recepto r ß2 subuni t immunoreactivit y i n ra t nigrostriata l dopaminergic neurones. J Comp Neurol 439:235247. Jones IW, Wonnacott S (2004) Precise localization of oc7 nicotinic acetylcholin e receptor s o n glutamatergi c axon terminal s i n th e ra t ventra l tegmenta l area . JNeurosci 24:11244-11252. Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptor s in th e brain : correlatin g physiology with function . Trends Neurosc i 22:555-561.
Jones S , Yakel JL (1997 ) Functiona l nicotini c AC h re ceptors o n interneurone s i n th e ra t hippocampus . J Physiol 504:603-610. Kandel DB, Yamaguchi K, Chen K (1992) Stages of progression i n dru g involvemen t fro m adolescenc e t o adulthood—further evidenc e fo r th e gatewa y the ory. J Stud Alcohol 53:447-457 . Kaneko WM , Britt o LR , Lindstro m JM , Karte n H J (1998) Distribution of the oc 7 nicotinic acetylcholine receptor subuni t i n th e developin g chic k cerebel lum. Dev Brain Res 105:141-145. Karlin A (2002 ) Emergin g structur e o f th e nicotini c acetylcholine receptors . Na t Re v Neurosci 3:102 114. Kawaguchi Y (1993) Groupings of nonpyramidal and pyramidal cell s wit h specifi c physiologica l an d mor phological characteristic s i n ra t fronta l cortex . J Neurophysiol 69:416-431 . (1995) Physiologica l subgroup s o f nonpyramidal cells with specifi c morphologica l characteristic s i n layer II/II I o f ra t fronta l cortex . J Neurosc i 15 : 2638-2655. Kawaguchi Y , Kond o S (2002 ) Parvalbumin , somato statin an d cholecystokini n a s chemical marker s for specific GABAergi c interneuro n type s i n th e ra t frontal cortex . J Neurocytol 31:277-287. Keiger CJ , Prevett e D , Conro y WG , Oppenhei m R W (2003) Developmenta l expressio n o f nicotini c re ceptors i n th e chic k an d huma n spina l cord . J Comp Neurol 4 5 5:86-99. Khiroug SS, Harkness PC, Lamb PW, Sudweeks SN, Khiroug L , Milla r NS , Yake l J L (2002 ) Ra t nicotini c ACh recepto r oc 7 an d ß 2 subunit s co-assembl e t o form functiona l heteromeri c nicotini c recepto r channels. J Physiol 540:425-434 . Khiroug SS , Khirou g L , Yake l J L (2004 ) Ra t nicotini c acetylcholine recepto r oc2ß 2 channels : compariso n of functional propertie s with cc4ß2 channels in Xenopus oocytes. Neuroscience 124:817-822 . King SL , Mark s MJ , Grad y SR , Caldaron e BJ , Kore n AO, Mukhi n AG , Collin s AC , Picciott o M R (2003) Conditiona l expressio n i n corticothalami c efferents reveal s a developmenta l rol e fo r nico tinic acetylcholin e receptor s i n modulatio n o f passive avoidanc e behavior . J Neurosc i 23:3837 3843. Kinney HC , O'Donnel l TJ , Krige r P, White WF (1993 ) Early developmenta l change s i n [ 3H]nicotine binding in the human brainstem. Neuroscience 55:1127 1138. Klink R, de Kerchove dEA, Zoli M, Changeux J P (2001) Molecular an d physiologica l diversit y of nicotini c acetylcholine receptor s in the midbrain dopaminergic nuclei. J Neurosci 21:1452-1463.
DEVELOPMENT OF NICOTIN E RECEPTORS 35 9 Kuryatov A , Olal e F , Coope r J , Cho i C , Lindstro m J (2000) Human cc 6 AChR subtypes: subunit composition, assembly , an d pharmacologica l responses . Neuropharmacology 39:2570-2590 . Lambe EK , Picciotto MR , Aghajania n G K (2003 ) Nico tine induces glutamate release from thalamocortical terminals in prefrontal cortex . Neuropsychopharmacology 28:216-225. Lauder JM , Schambr a U B (1999 ) Morphogeneti c rôle s of acetylcholine . Enviro n Healt h Pers p 107(Supp l l):65-69. Laurie DJ , Wisden W , Seeburg P H (1992 ) The distribu tion of thirteen GABA A receptor subunit niRNAs in the rat brain. III. Embryonic and postnatal develop ment. J Neurosci 12:4151-4172. Laviolette SR, van der Koo y D (2004 ) The neurobiolog y of nicotine addiction: bridging the ga p from mole cules to behaviour. Nat Rev Neurosci 5:55—65 . Leech SL , Richardso n GA , Goldschmid t L , Da y N L (1999) Prenata l substanc e exposure : effect s o n at tention and impulsivit y of 6-year-olds. Neurotoxicol Teratol21:109-118. Le Foi l B , Goldber g S R (2004 ) Rimonabant , a CB 1 antagonist, block s nicotine-conditione d plac e pref erences. Neuroreport 15:2139-2143. Lena C , Changeu x JP (1997) Role of Ca2+ ion s in nico tinic facilitation of GABA release in mouse thalamus. J Neurosci 17:576-585 . Lena C , Changeu x JP , Mull e C (1993 ) Evidenc e fo r "preterminal" nicotinic receptors on GABAergic axons i n th e ra t interpeduncular nucleus . J Neurosci 13:2680-2688. Lena C , d e Kerchov e D'Exaerde A, Cordero-Erausquin M, L e Nover e N , de l Ma r Arroyo-Jimene z M , Changeux J P (1999 ) Diversit y and distributio n of nicotinic acetylcholin e receptor s i n th e locu s ceruleus neurons . Pro c Nat l Aca d Se i US A 96:12126-12131. Le Novere N, Changeu x JP (1995) Molecular evolution of the nicotini c acetylcholin e receptor : a n exampl e of multigen e famil y i n excitabl e cells. J Mo l E vol 40:155-172. Le Nover e N , Corringe r PJ , Changeux J P (2002a ) Th e diversity of subunit composition i n nAChRs: evolu tionary origins , physiologi e an d pharmacologi e consequences. J Neurobiol 53:447-456. Le Nover e N, Grutte r T, Changeu x J P (2002b ) Model s of the extracellula r domai n o f the nicotini c recep tors an d o f agonist - an d Ca 24-binding sites . Pro c Natl Acad Sei USA 99:3210-3215. Le Nover e N , Zol i M , Changeu x J P (1996 ) Neurona l nicotinic recepto r a 6 subunit niRN A i s selectively concentrated i n catecholaminergic nuclei of the rat brain. Eur J Neurosci 8:2428-2439.
Lester HA , Dibas MI , Daha n DS , Leit e JF , Doughert y DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27:329-336 . Lester HA , Fonck C , Tappe r AR , McKinney S, Dama j MI, Balog h S , Owen s J , Wehner JM , Collin s AC , Labarca C (2003 ) Hypersensitiv e knocki n mous e strains identif y receptor s and pathway s for nicotine action. Cur r Opin Drug Disc De v 6:633-639. Liu Z, Tearle AW, Nai Q, Berg DK (2005) Rapid activitydriven SNARE-dependen t traffickin g o f nicotini c receptors o n somati c spines . J Neurosc i 25:1159 — 1168. Lu Y , Marks MJ, Collin s A C (1999 ) Desensitizatio n o f nicotinic agonist-induce d [ 3H]y-aminobutyric acid release fro m mous e brai n synaptosome s i s pro duced b y subactivating concentration s o f agonists . J Pharmacol Ex p Ther 291:1127-1134. Lukas RJ, Changeux JP, Le Novere N , Albuquerque EX, Balfour DJ , Ber g DK , Bertran d D , Chiappinell i VA, Clark e PB , Collin s AC , Dan i JA , Grady SR , Kellar KJ , Lindstrom JM, Mark s MJ, Qui k M, Taylor PW, Wonnacott S (1999) International Unio n of Pharmacology. XX . Current statu s o f th e nomen clature fo r nicotini c acetylcholin e receptor s an d their subunits. Pharmacol Rev 51:397-401. MacDermott AB, Role LW, Siegelbaum S A (1999) Pre synaptic ionotropi c receptor s an d th e contro l o f transmitter release. Annu Rev Neurosci 22:443—485 . Maggi L , Le Magueresse C, Changeu x JP, Cherubini E (2003) Nicotin e activate s immatur e "silent " con nections in the developing hippocampus. Proc Natl Acad Sei USA 100:2059-2064. Maggi L , Sol a E , Minnec i F , L e Magueress e C , Changeux JP , Cherubin i E (2004 ) Persisten t de crease i n synapti c efficac y induce d b y nicotin e a t Schaffer collateral-CA l synapse s i n th e immatur e rat hippocampus. J Physiol 559:863-874. Mann EO , Greenfiel d S A (2003 ) Nove l modulator y mechanisms reveale d by the sustaine d application of nicotine i n the guinea-pig hippocampus i n vitro. J Physiol 551:539-550. Mansvelder HD, Keat h JR, McGehee DS (2002) Synaptic mechanism s underli e nicotine-induce d ex citability o f brai n rewar d areas . Neuro n 33 : 905-919. Mansvelder HD , McGehe e D S (2000 ) Long-ter m po tentiation o f excitatory inputs to brain reward areas by nicotine. Neuro n 27:349-357 . (2002) Cellular and synapti c mechanisms of nicotine addiction. J Neurobiol 53:606—617 . Marubio LM , Changeu x J (2000 ) Nicotini c acetyl choline recepto r knockou t mic e a s animal model s for studyin g recepto r function . Eu r J Pharmaco l 393:113-121.
360 NICOTINE-AFFECTE D DEVELOPMEN T Mathews T J (2001 ) Smokin g durin g pregnanc y i n th e 1990s. Nat l Vital Sta t Rep 49:1-14. Matsubayashi H , Aman o T , Sek i T , Sas a M , Saka i N (2004) Post-synapti c oc 4 ß 2 an d oc 7 typ e nicotini c acetylcholine receptor s contribut e t o the loca l an d endogenous acetylcholine-mediate d synapti c transmissions in nigral dopaminergic neurons. Brain Res 1005:1-8. McGehee DS, Heat h MJ , Gelber S , Devay P , Role L W (1995) Nicotin e enhancemen t o f fas t excitator y synaptic transmissio n i n CN S b y pre-synapti c re ceptors. Scienc e 269:1692-1696. . McGehee DS , Rol e L W (1996) Pre-synapti c ionotropi c receptors. Curr Opin Neurobio l 6:342-349. McQuiston AR , Madison D V (1999 ) Nicotini c recepto r activation excite s distinc t subtypé s o f interneuron s in the rat hippocampus.} Neurosci 19:2887-2896 . Mechawar N , Descarrie s L (2001 ) The cholinergi c in nervation develops early and rapidl y in the ra t cerebral cortex : a quantitativ e immunocytochemica l study. Neuroscience 108:555-567 . Mechawar N , Watkin s KG , Descarrie s L (2002 ) Ultra structural feature s o f the acetylcholin e innervatio n in th e developin g parieta l corte x o f rat . J Com p Neurol 443:250-258 . Metherate R (2004) Nicotinic acetylcholine receptor s in sensory cortex. Learn Mem 11:50-59 . Metherate R , Hsieh CY (2003) Regulation of glutamate synapses b y nicotini c acetylcholin e receptor s i n auditory cortex . Neurobio l Lear n Me m 80:285 290. Miwa JM , Ibanez-Tallo n I , Crabtre e GW , Sanche z R , Sali A , Rol e LW , Heint z N (1999 ) iynxl , a n en dogenous toxin-lik e modulato r o f nicotini c acetyl choline receptor s in the mammalian CNS. Neuron 23:105-114. Monyer H , Burnashe v N, Lauri e DJ , Sakman n B , Seeburg P H (1994 ) Developmenta l an d regiona l expression i n th e ra t brai n an d functiona l proper ties of four NMD A receptors . Neuro n 12:529-540 . Mulle G , Vida l G, Benoi t P , Changeux J P (1991 ) Existence of different subtypes of nicotinic acetylcholin e receptors i n th e ra t habenulo-interpeduncula r system. J Neurosci 11:2588-2597 . Nai Q, Mclntosh }M, Margiotta }F (2003) Relating neuronal nicotini c acetylcholin e recepto r subtype s defined b y subuni t compositio n an d channe l function. Mo l Pharmacol 63:311-324 . Newhouse PA , Potter A , Singh A (2004a) Effect s o f nicotinic stimulatio n o n cognitiv e performance . Cur r Opin Pharmacol 4:36-46 . Newhouse P , Sing h A , Potte r A (2004b ) Nicotin e an d nicotinic recepto r involvemen t in neuropsychiatri e disorders. Curr Top Med Chem 4:267-282.
Nicke A (2004) Learning about structure and function of neuronal nicotinic acetylcholin e receptors . Lesson s from snails . Eur J Biochem 271:2293. Nicke A, Wonnacott S , Lewis RJ (2004) A-conotoxins a s tools for the elucidatio n of structure and functio n of neuronal nicotini c acetylcholine receptor subtypes . Eur} Biochem 271:2305-2319 . Oz M , Zhan g L , Ravindra n A, Morales M , Lupic a C R (2004) Differentia l effect s o f endogenous an d synthetic cannabinoid s o n a7-nicotini c acetylcholin e receptor-mediated response s i n Xenopus oocytes . J Pharmacol Ex p Ther 310:1152-1160. Peters A, Jones EG (1984 ) Cerebral Cortex. Vol. 1. Cellular Components o f th e Cerebral Cortex. Wiley-Liss, New York. Picciotto M R (2003 ) Nicotin e a s a modulato r o f behavior: beyon d th e inverte d U . Trends Pharmaco l Se i 24:493-499. Picciotto MR , Caldaron e BJ , Brunzell DH , Zachario u V, Stevens TR, Kin g SL (2001) Neuronal nicotini c acetylcholine recepto r subuni t knockou t mice : physiological an d behaviora l phenotype s and possi ble clinica l implications . Pharmaco l The r 92 : 89-108. Picciotto MR , Corrigal l W A (2002 ) Neurona l system s underlying behaviors related t o nicotine addiction : neural circuit s and molecula r genetics . J Neurosci 22:3338-3341. Picciotto MR , Zol i M , Len a C , Bessi s A, Lallemand Y, Le Nover e N , Vincen t P , Pic h EM , Brule t P , Changeux JP (1995 ) Abnormal avoidanc e learnin g in mice lacking functional high-affinity nicotin e receptor i n the brain. Nature 374:65-67. Picciotto MR , Zol i M , Rimondin i R , Lena C , Marubi o LM, Pic h EM , Fux e K , Changeu x J P (1998 ) Acetylcholine receptor s containin g th e ß 2 subuni t are involve d i n th e reinforcin g propertie s o f nico tine. Nature 391:173-177. Pidoplichko VI , DeBias i M , William s JT , Dan i J A (1997) Nicotine activate s and desensitizes midbrai n dopamine neurons . Nature 390:401-404. Pidoplichko VI , Noguch i J , Areola OO , Lian g Y, Peterson J, Zhang T , Dani JA (2004) Nicotinic choliner gic synapti c mechanism s i n th e ventra l tegmenta l area contribut e t o nicotin e addiction . Lear n Me m 11:60-69. Porter JT , Caul i B , Tsuzuki K , Lambolez B , Rossie r J, Audinat E (1999) Selectiv e excitation of subtypes of neocortical interneuron s b y nicotini c receptors . J Neurosci 19:5228-5235 . Quick MW , Leste r R A (2002) Desensitizatio n o f neuronal nicotinic receptors. J Neurobiol 53:457-478 . Radcliffe KA , Fishe r JL , Gra y R , Dan i J A (1999) Nico tinic modulatio n o f glutamate an d GAB A synaptic
DEVELOPMENT OF NICOTIN E RECEPTORS 36 1 transmission o f hippocampa l neurons . An n N Y Acad Se i 868:591-610. Ramirez-Latorre J, Yu CR, Q u X, Perin F, Karlin A, Role L (1996 ) Functional contribution s of oc5 subunit to neuronal acetylcholin e recepto r channels . Natur e 380:347-351. Rapier C , Lun t GG , Wonnacot t S (1988 ) Stereoselec tive nicotine-induce d releas e o f dopamin e fro m striatal synaptosomes : concentratio n dependenc e and repetitiv e stimulation. J Neurochem 50:1123 1130. Robertson RT , Mostamand F , Kageyama GH , Gallard o KA, Yu J (1991) Primar y auditory cortex in th e rat : transient expressio n o f acetylcholinesterase activity in developin g geniculocortica l projections . De v Brain Res 58:81-95. Roy TS , Andrew s JE , Seidle r F] , Slotki n T A (1998 ) Nicotine evoke s cel l deat h i n embryoni c ra t brain during neurulation . J Pharmaco l Ex p The r 287:1136-1144. Saal D , Don g Y , Bonci A, Malenka R C (2003 ) Drug s of abuse an d stres s trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577-582 . Sabbagh MN , Luka s RJ , Spark s DL , Rei d R T (2002 ) The nicotini c acetylcholine receptor , smoking, and Alzheimer's disease. J Alzheimers Dis 4:317—325. Sacco KA , Bannon KL, George T P (2004 ) Nicotinic receptor mechanism s an d cognitio n i n norma l state s and neuropsychiatri e disorders. J Psychopharmacol 18:457-474. Seguela P , Watkins KG, Descarrie s L (1989 ) Ultrastructural relationship s o f serotoni n axo n terminal s i n the cerebra l cortex of the adul t rat. J Comp Neurol 289:129-142. Seguela P , Watkins KG, Geffar d M , Descarrie s L (1990) Noradrenaline axo n terminal s i n adul t ra t neocortex: an immunocytochemica l analysi s in seria l thin sections. Neuroscienc e 35:249-264 . Shacka JJ , Robinso n S E (1998a ) Exposur e t o prenata l nicotine transientl y increases neurona l nicotini c re ceptor subuni t oc7 , ce 4 an d ß 2 messenge r RNA s in th e postnata l ra t brain . Neuroscienc e 84:1151 1161. (1998b) Postnata l developmenta l regulatio n o f neuronal nicotini c recepto r subuni t oc7 an d multi ple oc 4 and ß 2 mRNA species i n the rat . Dev Brain Res 109:67-75 . Sher E , Che n Y, Sharpies TJ , Broa d LM , Benedett i G , Zwart R , McPhie GI , Pearso n KH , Baldwinso n T, De Filippi G (2004) Physiological role s of neuronal nicotinic recepto r subtypes : ne w insight s o n th e nicotinic modulatio n o f neurotransmitte r release , synaptic transmission and plasticity . Curr To p Med Chem 4:283-297.
Sivilotti LG , McNei l DK , Lewi s TM , Nassa r MA , Schoepfer R , Colquhou n D (1997 ) Recombinan t nicotinic receptors , expresse d i n Xenopus oocytes , do not resemble native rat sympathetic ganglion receptors i n single-channe l behaviour . J Physio l 500:123-138. Slotkin T A (1998 ) Feta l nicotin e o r cocain e exposure : which on e i s worse ? J Pharmaco l Ex p The r 285 : 931-945. (2002) Nicotine and the adolescent brain: insights from a n anima l model . Neurotoxico l Terato l 24 : 369-384. (2004) Cholinergic system s in brain development and disruptio n b y neurotoxicants : nicotine , envi ronmental tobacco smoke , organophosphates. Toxicol Appl Pharmacol 198:132-151 . Slotkin TA , Seidle r FJ , Qia o D , Aldridg e JE, Tät e CA , Cousins MM , Proskoci l BJ , Sekhon HS , Clar k JA, Lupo SL , Spinde l E R (2005 ) Effect s o f prenata l nicotine exposur e o n primat e brai n developmen t and attempte d amelioratio n wit h supplementa l choline o r vitami n C : neurotransmitte r receptors , cell signalin g and cel l developmen t biomarker s in fetal brai n region s o f rhesu s monkeys . Neuropsy chopharmacology 30:129-144. Smith J , Fauquet M , Zille r C , L e Dotiari n N M (1979 ) Acetylcholine synthesi s b y mesencephali c neura l crest cell s i n th e proces s o f migration i n vivo . Nature 282:853-855 . Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P , Labarc a C , Whiteake r P , Mark s MJ , Collins AC , Leste r H A (2004) Nicotin e activatio n of Ot4 * receptors : sufficien t fo r reward , tolerance , and sensitization. Scienc e 306:1029-1032. Temburni MK, Blitzblau RC, Jacob MH (2000 ) Receptor targeting an d heterogeneit y a t interneurona l nico tinic cholinergi c synapse s in vivo . J Physio l 525(P t l):21-29. Temburni MK , Rosenberg MM , Patha k N , McConnel l R, Jacob MH (2004 ) Neuronal nicotini c synapse assembly requires the adenomatou s polyposis coli tumor suppressor protein. J Neurosci 24:6776-6784 . Torrao AS, Carmona FM , Lindstro m J, Britto LR (2000) Expression o f cholinergic syste m molecules durin g development o f th e chic k nervou s system . De v Brain Res 124:81-92. Turrini P , Casu MA , Wong TP , D e Koninc k Y, Ribeiroda-Silva A , Cuell o A C (2001 ) Cholinergi c nerv e terminals establish classical synapses in the rat cerebral cortex : synapti c patter n an d age-relate d atro phy. Neuroscience 105:277-285 . Umbriaco D, Garcia S , Beaulieu C, Descarrie s L (1995) Relational features o f acetylcholine, noradrenaline, serotonin an d GAB A axon terminals i n the stratu m
362 NICOTINE-AFFECTE D DEVELOPMEN T radiatum o f adul t ra t hippocampu s (CA1) . Hip pocampus 5:605-620 . Umbriaco D, Watkins KG, Descarries L, Cozzari C, Hartman B K (1994 ) Ultrastructura l an d morphometri c features o f the acetylcholin e innervation in adult rat parietal cortex : an electro n microscopi c stud y in serial sections. J Comp Neurol 348:351—373 . Vidal C , Changeu x JP (1993) Nicotinie and muscarini c modulations o f excitator y synapti c transmissio n i n the ra t prefrontal corte x in vitro . Neuroscience 56 : 23-32. Vizi ES, Kis s JP (1998) Neurochemistry and pharmacol ogy of the majo r hippocampa l transmitte r systems: synaptic an d nonsynapti c interactions . Hippocam pus 8:566-607. Wakschlag LS , Picket t KE , Coo k E Jr , Benowit z NL , Leventhal B L (2002 ) Materna l smokin g durin g pregnancy an d sever e antisocia l behavio r i n off spring: a review. Am J Public Health 92:966-974. Walsh RA , Lowe JB , Hopkins P J (2001 ) Quittin g smok ing in pregnancy. Med J Aust 175:320-323 . Wang F , Gerzanic h V , Well s GB , Anan d R , Pen g X , Keyser K , Lindstrom J (1996 ) Assembl y of huma n neuronal nicotini c recepto r a 5 subunit s wit h a3 , ß2, an d ß 4 subunits . } Bio l Che m 271:17656 17665. Williams BM , Temburn i MK , Leve y MS , Bertran d S , Bertrand D , Jaco b M H (1998 ) Th e lon g interna l loop o f th e oc 3 subuni t target s nAChR s t o subdo mains withi n individua l synapse s o n neuron s i n vivo. NatNeurosci 1:557-562 . Winzer-Serhan UH , Leslie FM (1997 ) Contribution of nicotinic acetylcholin e receptor subuni t oc3 and ß 4 mRNAs durin g ra t brai n development . J Com p Neurol 386:540-554. Wonnacott S , Harrison R , Lunt G (1982 ) Immunologi cal cross-reactivit y betwee n th e ot-bungarotoxin binding componen t fro m ra t brai n an d nicotini c acetylcholine receptor. J Neuroimmunol 3:1—13 . Wonnacott S , Iron s J , Rapie r C , Thorn e B , Lun t G G (1989) Pre-synapti c modulatio n o f transmitte r release b y nicotini c receptors . Pro g Brai n Re s 79 : 157-163.
Wonnacott S , Sidhpur a N , Balfou r D J (2005 ) Nicotine : from molecula r mechanism s t o behaviour . Cur r OpinPharmacol5:53-59. Woolf NJ (1991 ) Cholinergi c system s in mammalia n brain and spina l cord. Prog Neurobiol 37:475-524 . Wooltorton JR , Pidoplichk o VI , Broid e RS , Dan i J A (2003) Differentia l desensitizatio n and distributio n of nicotinic acetylcholine recepto r subtypes in midbrain dopamine areas . J Neurosci 23:3176—3185 . Xu W, Gelber S , Orr-Urtreger A, Armstrong D, Lewis RA, Ou CN , Patric k J, Role L, De Bias i M, Beaudet AL (1999) Megacystis , mydriasis, an d io n channe l de fect i n mic e lackin g th e oc 3 neurona l nicotini c acetylcholine receptor . Pro c Nat l Aca d Se i US A 96:5746-5751. Yu CR, Rol e LW (1998a) Functional contributio n o f the oc7 subuni t to multipl e subtype s of nicotinic recep tors i n embryoni c chic k sympatheti c neurones . JPhysiol 509:651-665 . (1998b) Functiona l contributio n o f th e Ct 5 sub unit t o neurona l nicotini c channel s expresse d b y chick sympathetic ganglion neurones . J Physiol 509 : 667-681. Zhang X, Liu C, Miao H , Gong ZH , Nordberg A (1998) Postnatal change s o f nicotinic acetylcholin e recep tor a2 , oc3 , oc4 , a 7 an d ß 2 subunit s gene s expres sion in rat brain. Int J Dev Neurosci 16:507-518 . Zheng JQ , Felder M , Connor JA , Poo MM (1994 ) Turning o f nerve growt h cone s induce d b y neurotrans mitters. Nature 368:140-144. Zoli M, Jansso n A, Sykova E, Agnati LF, Fuxe K (1999 ) Volume transmission in the CN S an d it s relevance for neuropsychopharmacology . Trend s Pharmaco l Sei 20:142-150. Zoli M , L e Nover e N , Hil l J A Jr, Changeux J P (1995 ) Developmental regulatio n o f nicotini c AC h re ceptor subuni t mRNA s i n th e ra t centra l an d peripheral nervou s systems . J Neurosc i 15:1912 1939. Zoli M, Moretti M, Zanardi A, Mclntosh JM, Clementi F, Gotti C (2002 ) Identificatio n o f th e nicotini c receptor subtype s expressed o n dopaminergic termi nals in the ra t striatum. J Neurosci 22:8785-8789.
22
Neural Precursors a s Preferential Target s for Drug Abuse: Long-Term Consequences and Latent Susceptibility to Central Nervous System Disorders Kurt F. Hauser Nazira El-Hage Shreya Buc h Gregory N. Barnes Henrietta S . Bada James R. Pauly The productio n o f ne w neuron s an d gli a occur s throughout lif e an d i s exceedingly sensitive to disruption b y drug abuse. Ne w neural cells originate within specialized region s o f th e centra l nervou s syste m (CNS) tha t maintain an environmental milie u neces sary for cell proliferation, and they appear to be essen tial fo r th e maintenanc e o f ste m cell s (Fig . 22-1) . The germina l zone s als o provid e spatial cues tha t establish cel l polarit y an d organization . Th e appear ance o f germinal zone s i s highly ordered an d follow s precise spatiotempora l guideline s tha t aris e i n th e ventricular zon e (VZ ) an d ar e sustaine d i n th e sub ventricular zone (SZ) , cerebellar external granular (or germinal) laye r (EGL), an d intrahila r zone (IHZ ) of the dentat e gyru s (Ramo n y Cajal , 1960 ; Boulde r Committee, 1970 ; Goldman , 1998 ; Alvarez-Buyll a and Garcia-Verdugo, 2002; Taupin an d Gage, 2002). Considerable evidenc e indicate s tha t drug s wit h abuse liabilit y disrupt developmen t b y affectin g th e production o f new neuron s an d glia . Moreover , th e effects o f dru g abus e ar e no t limite d t o a particula r
cell type , germinal zone, or stage of development, bu t rather the y uniquel y affec t individua l neuronal an d glial precurso r type s withi n variou s germina l zones . Germinal zone s ar e targete d t o varyin g degree s b y most substance s wit h abus e liabilit y (Laude r e t al. , 1998; Lu o and Miller , 1998 ; Hildebrand t et al., 1999 ; Teuchert-Noodt e t al, 2000 ; Buzniko v e t al, 2001 ; Duman e t al, 2001; Radle y and Jacobs, 2002 ; Crew s and Nixon , 2003 ; Lin an d Rosenthal , 2003 ; Gordo n and Hen , 2004 ; se e Chapter s 1 1 an d 12) . Like thei r progeny, neura l precursor s expres s a n inexplicabl y rich variet y o f recepto r an d neurotransmitte r types , which seemingl y contribute s t o thei r pronounce d sensitivity to multipl e neurotransmitter s and drug s of abuse that mimic the endogenou s neurochemica l systems. Drug s o f abus e tha t effec t th e genesi s o f ne w neural cell s likel y includ e cocaine , methampheta mine, opiates , nicotine , alcohol , an d perhap s ecstas y (via serotonergi c actions ) (Hause r an d Mangoura , 1998; Laude r e t al, 1998 ; Hildebrand t e t al, 1999 ; Teuchert-Noodt e t al, 2000 ; Buzniko v et al, 2001 ;
363
364 NICOTINE-AFFECTE D DEVELOPMEN T
FIGURE 22- 1 Schemati c diagra m showin g site s o f neural precurso r productio n throughou t roden t on togeny. Neura l cells are initially produced i n the ven tricular zon e (VZ ) an d the n i n th e subventricula r zone (SZ) . Th e cerebella r externa l granula r (o r germinal) laye r (EGL ) i s a secondar y proliferativ e zon e that arise s from th e brai n stem an d exclusivel y generates neurons (Hauser et al., 2003). The S Z becomes a major source of supragranular neurons an d macrogli a relatively earl y durin g maturatio n (approximatel y a t birth i n rodents an d durin g the thir d trimeste r i n hu mans), wherea s th e intrahilala r zone (IHZ ) o f th e dentate gyru s is a majo r sit e of adult neuronogenesis. There i s compelling evidenc e tha t opiate s an d nico tine affect germina l cell s i n all four o f the zones .
Duman et al., 2001; Radley and Jacobs , 2002; Hauser et al. , 2003 ; Li n an d Rosenthal , 2003 ; Gordo n an d Hen, 2004) . Although w e will focu s o n th e effect s o f opiates an d nicotin e o n th e genesi s o f neura l cells , most othe r drugs with abuse potential also seem t o affect neura l developmen t t o varyin g degrees throug h direct actions o n the CNS . As noted earlier , it i s assumed tha t drug s of abuse disrupt th e genesi s o f neurons an d gli a b y disruptin g the endogenou s neurochemica l system s tha t nor mally regulat e maturatio n (Hause r et al. , 2003) . I t is also importan t to conside r that , beside s mimicry , the unique pharmacologica l action s o f drug s o f abus e may activate novel signaling events and genes , resulting i n qualitativel y differen t response s fro m thos e seen with normal neurotransmitte r systems.
OPIATES Opiates, whic h w e wil l defin e as being derive d fro m the opiu m popp y (e.g., heroin an d morphine) , act by mimicking endogenous "opioid " peptide s an d prefer entially activatin g (i-opioid receptor s (MOR) . Opiat e
exposure can modulat e th e production o f neural cells in th e V Z an d S Z (Dodg e Mille r e t al , 1982 ; Reznikov et al, 1999 ; Stiene-Marti n et al, 2001) and the EG L (Zago n an d McLaughlin , 1983 , 1987 ) dur ing maturation i n experimental anima l models. Mor e recently, opiates have been additionally implicated i n affecting neurogenesi s i n the adult IH Z (Eisc h e t al, 2000; Mandyam et al, 2004), which suggest s that th e ability o f opiates t o disrup t the genesi s o f neural pre cursors i s lifelong . Th e exten t t o whic h cellula r changes in the germinativ e zone s translate s int o neu rocognitive defect s i n opiate-expose d childre n i s un certain. Exposur e t o opiate s i n utero , however , i s highly correlate d wit h lo w infan t birt h weigh t an d length, reduce d hea d circumference , a s well as alterations i n cognitive , motor , and/o r behaviora l mile stones during the first 3 years (Messinger et al., 2004 ; Shankaranetal., 2004). Although providin g essentia l evidenc e tha t opi ates effec t CN S developmen t irrespectiv e of a variety o f psychosocia l factors , whole-anima l studie s present som e limitation s i n approachin g certai n mechanistic questions . Fo r example, th e endogenou s opioid syste m —i.e., endogenou s peptide s an d MOR , 0- (DOR ) an d K-opioi d receptors (KOR)—regulate s a variety of physiological functions that ma y secondarily effect developmen t (Hause r an d Mangoura , 1998) . Besides direc t effect s o n opioid-recepto r expressin g neural progenitors , opioi d exposur e ca n induc e changes in , fo r example , respiration , nutrition , an d endocrine functio n (Martin , 1983 ; Aki l e t al, 1984 ; Simon, 1991 ; Simo n an d Hiller , 1994 ; Roger s an d Peterson, 2003) , whic h ma y i n tur n affec t neura l development. Dissociatin g th e direc t fro m indirec t effects o f opiate s i n vivo ca n b e quit e challengin g (Hammer, 1993) . Fo r thi s reason , tissu e cultur e ha s been prove n a n invaluabl e too l i n isolatin g differen t neural cel l type s an d studyin g the rol e o f opioids i n the regulatio n o f the proliferation , differentiation, o r death o f neura l cell s (Hause r an d Stiene-Martin , 1993; Hauser an d Mangoura , 1998) . Endogenous opioid s and opiate drug s have marke d effects o n cel l neurona l differentiatio n (Zago n an d McLaughlin, 1986a , 1986b ; Vernadaki s e t al, 1990 ; Mangoura an d Dawson , 1993) . I n particular , Ham mer ha s show n tha t morphine , th e majo r bioactiv e form o f heroi n i n th e brain , inhibit s pyramida l cel l differentiation i n th e cerebra l cortica l pyramida l neurons (Hamme r e t al. , 1989 ; Ricald e an d Ham mer, 1991) . Althoug h th e effect s o n differentiatio n
NICOTINE, OPIATES , AND THE GENESI S O F NEURA L CELLS 36 5 during developmen t ar e significant , man y aspects of the effect s o f opioid on CNS maturatio n ha s been extensively reviewe d i n th e pas t (Zagon , 1987 ; Ham mer an d Hauser , 1992 ; Hammer , 1993 ; Hause r an d Stiene-Martin, 1993 ; Hause r e t al, 2003 ; Eisch an d Mandyam, 2004 ; Slotkin , 2004). For this reason , the present chapter focuses on the effect s o f opiates as related to the genesi s of neurons an d gli a i n the CNS. Neuronogenesis Alterations i n th e endogenou s opioi d system , eithe r by manipulatin g the endogenou s opioid s themselve s or throug h opiat e dru g treatment , caus e profoun d changes i n th e developin g nervou s system . Opioid s affect multipl e regions , includin g th e cerebellu m (Zagon an d McLaughlin, 1986a , 1987 ; Hause r étal, 1989; Lorbe r et al, 1990 ; Hause r and Stiene-Martin , 1991) an d forebrai n region s such a s the cerebra l cortex an d hippocampu s (Zago n an d McLaughlin , 1986b; Hause r et al., 1989; Hause r and Stiene-Martin , 1991). In excess, opiates reportedly inhibit the prolifer ation o f neuroblasts and/o r glia (Steel e an d Johannes son, 1975 ; Vertes et al., 1982 ; Zagon and McLaughlin , 1986a, 1986b , 1987 ; Kornblu m etal., 1987b ; Hamme r et al, 1989 ; Schmah l e t al., 1989 ; Lorbe r e t al, 1990; Seatriz an d Hammer , 1993) , althoug h thes e initia l studies relie d o n labelin g indice s wit h thymidin e analogs t o asses s cel l proliferation , which ma y onl y yield a partia l understandin g o f cel l cycl e change s (Mandyam e t al. , 2004) . B y contrast , continuou s treatment with opioid receptor antagonist s during development generall y ha s th e opposit e effect s o f con tinuous agonis t treatment . Continuou s opioi d receptor blockad e increase s (1 ) the rat e o f thymidine incorporation int o DNA , (2 ) the are a an d volum e o f cortical cel l layers , (3 ) neurona l an d glia l numbers / unit area, (4) dendritic size and the numbe r of spines/ unit length , an d (5 ) increase d differentiatio n an d synaptogenesis (Zago n an d McLaughlin , 1986a , 1986b, 1987 ; Hauser etal., 1987, 1989) . Many o f th e abov e developmenta l studie s suggested tha t opiate drugs could modulat e the genesis of neurons an d gli a i n th e V Z o r SZ . Initia l studie s showed that opiate exposure (morphine or methadone) markedly reduced cel l numbers i n the forebrai n whe n the genesi s o f th e cell s originate s fro m th e VZ/S Z (Steele and Johannesson, 1975 ; Zagon and McLaugh lin, 1977b , 1982b) . Initially, it was uncertain whethe r neural progenitor s expresse d opioi d receptor s o r
whether th e effect s o f opioids were direct. Later studies used radioligan d binding (Kornblum et al., 1987a ; Leslie an d Loughlin , 1993) , i n sit u hybridizatio n (Leslie et al, 1998 ; Zh u et al, 1998) , and immunocy tochemistry (Rezniko v e t al. , 1999 ; Stiene-Marti n et al , 2001 ) t o identif y MOR , DOR, and KO R o n germinal cell s i n th e VZ/SZ . Conversely , i t was later shown tha t chroni c opioi d recepto r blockad e in creased thymidin e incorporatio n an d cel l number s (Zagon an d McLaughlin , 1983 , 1986b, 1987) , whic h was generally the opposit e effec t o f opiate drug treatment Importantly , the findings from opioi d antagonist studies additionally provided circumstantial evidenc e that th e endogenou s opioi d syste m i s tonically active and inhibit s development. Opioid peptide s an d receptor s ar e highl y ex pressed b y immatur e EG L cells , whic h consis t o f neuroblasts an d immatur e post-mitoti c neurons , bu t are no t expresse d b y mor e matur e granul e neuron s derived fro m thi s germinativ e laye r (Zago n e t al. , 1985;KinneyandWhite, 1991; Osborne étal, 1993). This finding suggests that the expressio n of the opioi d system b y EG L cell s i s unrelate d t o th e onse t o f expression of adult neurochemical systems and there fore likel y t o b e involve d i n maturationa l processe s (Hauser e t al. , 2003) . I n th e cerebellum , manipula tion o f th e opioi d syste m alter s th e proliferatio n o f cerebellar EG L neuroblast s and/or their granule neuron progen y (Zago n an d McLaughlin , 1983 , 1986a, 1987; Hause r e t al, 1987 , 1989; Lorbe r e t al, 1990) , as well as their differentiation (Zago n an d McLaugh lin, 1986a ; Hause r e t al. , 1989 , 2000) an d surviva l (Hauser et al., 2000). Similarly, exposure to preferential MOR-actin g opiate s suc h a s morphin e o r methadone cause s decreased thymidin e incorporation and/or reduction s i n cel l number s (Zago n an d McLaughlin, 1977a , 1977c , 1982a) . I n cell s isolate d from th e murin e EGL , morphine exposur e signifi cantly reduce s neuroblas t number s an d DN A synthe sis an d th e effect s o f morphin e ca n b e prevente d b y the selectiv e MOR antagonis t ß-funaltrexamine , find ings suggesting that MOR regulate s cell proliferation. By contrast , DO R agonist s selectively reduce neurit e outgrowth fro m granul e neuron s a s they differentiat e from EG L precursors , while morphin e ha s n o effec t on this measure (Häuse r et al., 2000). This action suggests tha t individua l opioi d recepto r type s ma y regu late different aspect s of development i n the sam e cell. The deat h o f neuronal precursor s i s an occasion ally reporte d consequenc e o f exposur e t o opiate s
366 NICOTINE-AFFECTE D DEVELOPMEN T alone (Merine y e t al. , 1985) . Opioid s ca n modulat e the effect s o f existing apoptotic signal s (especiall y in immune cell s [Singha l e t al. , 2001 , 2002]) , an d opiates may be co-factor s i n regulating neural cell deat h (Gurwell e t al, 2001 ; Khurdaya n et al, 2004) . Cel l death i s evident in culture d Purkinj e cell s with mor e chronic exposur e (Hauser et al., 1994) . Purkinje cell losses hav e bee n reporte d i n chroni c heroi n abuser s who are HIV seronegative (Oehmichen e t al., 1996) . Although the mechanisms underlying opiate-induce d cell deat h ar e incompletely understood an d likel y differ amon g cell types , opiate-induce d modulatio n o f cell deat h ha s been proposed t o involve phosphoinos itol 3-phosphokinas e an d extracellula r signa l regu lated kinase (ERK) (Polakiewicz etal, 1998). Singhal and coworker s report tha t p3 8 mitogen-activate d pro tein kinase (MAPK), p53, and caspase s 3 and 8 medi ate morphine-induced deat h i n macrophages (Singha l et al, 2002), whereas morphine-induced T cell losses involve c-jun-N-terminal kinase activation and reduc tions i n ER K phosphorylation (Singha l e t al. , 2001) . By contrast, cell death i s not seen with concentration s of morphine exceedin g 1 jim in cultured mous e EG L cells (Hause r e t al. , 2000 ) o r i n astrocyte s (Gurwel l and Hauser , 1993) . Thus , i n som e instances , opiate s may affec t cel l surviva l i n additio n to thei r effect s o n proliferation, although thi s is not a consistent observa tion. Gliogenesis There are considerable indication s that glial-restricte d precursors (GRPs) , a s wel l a s thei r astroglia l an d oligodendroglial progeny, are a direct target of opiates during maturation . Mos t glia l type s i n th e forebrai n arise from th e S Z and gliogenesis typically follows th e production o f neuron s i n a particula r brai n regio n (Fig. 22-2). Many hav e propose d tha t astrogli a ar e target s for drugs wit h abus e liabilit y (Eriksso n e t al. , 1991 ; Stiene-Martin an d Hauser , 1991 ; Beitner-Johnso n e t al, 1993 ; Hauser and Mangoura, 1998 ; Fattor e et al, 2002; Belchev a e t al, 2003) . Astroglial growt h i s inhibited b y opioid s i n cell cultur e an d i n vivo (Schmahl e t al , 1989 ; Stiene-Marti n an d Hauser , 1990, 1991 ; Hause r and Stiene-Martin , 1991 ; Stiene Martin e t al, 1991 , 2001 ; Zago n an d McLaughlin , 1991; Hause r e t al. , 1996 ; Hause r an d Mangoura , 1998). Astrogli a ca n expres s MOR , DOR , and/o r
FIGURE 22- 2 Presenc e o f opioid and nicotini c acetylcholine receptor s (nAChRs ) o n neurona l an d glia l precursors, fi- , Ô- , an d K-opioi d receptor s (MOR , DOR, an d KOR , respectively ) ar e variably expresse d (±) o n neurona l an d astroglia l precursors , an d nAChRs ar e variabl y expressed b y neurona l precur sors (±). IHZ, intrahilar zone; O2A , oligodendrocyte type 2 astrocyte progenitor; SZ, subventricular zone.
KOR (Eriksso n et al, 1990 , 1991 ; Stiene-Marti n an d Hauser, 1990 , 1991 ; Ruzick a e t al., 1995 ; Gurwel l e t al, 1996 ; Hause r e t al. , 1996 ; Stiene-Marti n e t al , 1998, 2001 ; Thorlin et al., 1998) , and opioid recepto r expression is developmentally regulated and/o r differ s among brai n region s (Hause r an d Stiene-Martin , 1991; Eriksso n e t al , 1992 ; Ruzick a e t al , 1994 , 1995; Gurwel l e t al, 1996; Stiene-Marti n e t al, 1998 ; Thorlin e t al, 1999) . Activatio n o f MOR , KOR , o r DOR cause s reduction s i n cel l proliferatio n an d in creased cellula r hypertroph y (Stiene-Marti n an d Hauser, 1991 ; Gurwel l e t al , 1996 ; Hause r e t al , 1996). Th e inhibitio n o f cel l proliferatio n an d as troglial hypertroph y are mediate d b y opioid-induce d increases i n intracellula r concentratio n o f Ca 2+ ([Ca2+]i) (Gurwel l e t al, 1996 ; Hause r e t al, 1996) . The "reactive " cellula r hypertroph y i s accompanie d by increased glia l fibrillary acidic protei n (GFAP ) immunoreactivity an d aspect s ma y mimi c reactiv e gliosis in vivo (Hauser et al, 1996 , 1998) . Unlike in neurons an d astroglia , where MOR acti vation inhibits cell replication, i n immature oligoden droglia, MO R activatio n i s mitogeni c (Knap p e t al. , 1998). By contrast to MOR, KO R is expressed in more mature, nondividin g oligodendroglia . KO R blockad e increases th e deat h o f culture d oligodendrocytes ,
NICOTINE, OPIATES , AND THE GENESI S OF NEURA L CELLS 36 7 inferring tha t KO R couple s t o enhance d surviva l i n this cell typ e (Knap p et al., 2001). Similar to granul e neurons, differen t aspects o f oligodendroglia l devel opment appea r t o b e independentl y regulate d b y MOR an d KOR . A s mentioned, unlik e granul e neu rons and thei r EG L precursors , which d o not express KOR in vitro (Hauser et al, 2000), MOR activatio n is mitogenic i n oligodendrogli a (Knap p e t al. , 1998) . Collectively, th e findings in neuron s an d gli a suggest that opioi d effect s ar e highl y complex—affecting th e maturation of each cel l type differently . Adult hippocampa l progenitor s (AHPs ) fro m th e rat IH Z expres s ß-endorphi n ( a post-translationa l product o f th e proopiomelanocorti n gene ) (Persso n et al., 2003a) . ß-endorphi n stimulate s the maturatio n and perhap s cel l fat e decision s o f IHZ cell s throug h autocrine/paracrine mechanisms o f action (Persso n et al, 20 0 3a). Interestingly , AHP s expres s MO R an d DOR, an d blockad e o f thes e receptor s b y naloxon e increases the AHPs, resultin g in increase s in neurob last replicatio n wit h apparen t compensator y reduc tions i n th e genesi s o f astrogli a an d oligodendrogli a (Persson et al., 2003a , 2003b) . These findings suggest that, i n additio n t o modulatin g th e proliferatio n and death o f neurona l an d glia l precursors , opioid s ma y influence cel l fat e decision s o f bi - o r multipotentia l neural cell precursors. Importantly, opioids can modulate basi c fibroblast growth factor (bFGF ) and/or epiderma l growt h facto r (EGF) activatio n of ERK in C6 gliom a cells or in primary astrocyte s (Boh n e t al. , 2000 ; Belchev a e t al. , 2002, 2003) . The proliferativ e effect s o f ß-endorphi n in adul t hippocampa l progenitor s wa s mediate d through a signalin g pathwa y involvin g PI3-kinase , [Ca2+]j, and MAP K activation (Persso n et al, 2003a), which overlap s wit h event s associate d wit h MOR mediated cel l deat h i n Chines e hamste r ovar y cells (Polakiewiczetal, 1998) .
NICOTINE In adults, acetylcholine is a significant neurotransmitter i n severa l neura l pathway s (Rand , 1989 ; Luetj e et al, 1990 ; Heineman n e t al. , 1991a ; Albuquerqu e et al., 1995) . During development, acetylcholin e (and perhaps relate d substances ) additionall y provide s trophic suppor t t o guide th e maturatio n an d surviva l of incipien t cholinergi c neuron s (Zahalk a e t al. ,
1992; Rol e and Berg , 1996) . Nicotin e i s known t o alter adul t neura l function . I n th e maturin g nervou s system, ther e i s considerabl e evidenc e tha t nicotin e exposure (as a component of cigarette smoke ) disrupts the norma l interaction s betwee n acetylcholin e an d the cellula r targets that expres s subtypes of nicotini c acetylcholine receptors (nAChRs) . Cigarette smokin g durin g pregnanc y ca n hav e multiple direc t an d indirec t effect s o n feta l develop ment an d i s strongly associate d wit h developmenta l and behaviora l abnormalitie s i n newborn s (Econo mides an d Braithwaite , 1994 ; Mclntos h e t al, 1995 ; Shu et al., 1995; Lambers and Clark, 1996) . Epidemi ological studie s sugges t tha t lo w infan t birt h weight , delayed feta l development , an d prematur e birth s ar e closely correlate d wit h smokin g (Opanashu k e t al. , 2001). Neurobehaviora l developmen t i s also altered . In addition , childre n bor n t o smokin g mother s hav e an increase d incidenc e o f attention defici t hyperactiv ity disorde r (Mclntos h e t al. , 1995) . Smok e exposur e may als o increas e th e incidenc e o f sudde n infan t death syndrom e (Slotki n et al., 1995) . Although ciga rette smoke contains over 4000 chemical compounds , many studie s have show n tha t nicotin e i s the princi pal insulting agent in development . In anima l models , prenata l exposur e to tobacco o r nicotine disrupt s somati c (Paulso n e t al. , 1991 ) an d CNS developmen t an d cause s defect s in morphologi cal, neurochemical, an d behaviora l indices (Slotki n et al., 1987 , 1993 ; Fuxe étal, 1989; Paulso n étal., 1994a, 1994b; Penningto n e t al, 1994 ; Witsch i e t al, 1994 ; Court e t al, 1995 , 1997 ; Ro y et al., 1998 ; Paul y et al, 2004). Interestingly , nicotine ca n affec t brai n develop ment i n the absenc e o f overt changes i n body weight, which suggest s that effec t o f nicotine o n th e brai n is direct (Zahalka et al, 1992) . Additional evidence sug gests tha t th e effect s o f nicotin e ar e gender-specifi c (Pauly e t al, 2004) . Althoug h assessin g the effec t o f in uter o exposur e t o cigarett e smok e i s potentiall y confounded b y reduced maternal-placental-feta l cir culation (Birnbau m e t al. , 1994 ) o r amin o aci d up take (Sastry , 1991) , studie s in chic k embryo s sugges t that nicotin e retard s neurobehaviora l developmen t (Pennington e t al. , 1994) ; studie s i n vitr o similarl y suggest tha t nicotin e ca n directl y affec t developin g neural cell s (Opanashuk e t al., 2001). Perinatal expo sure t o nicotin e cause s lastin g change s eviden t i n adult brains (Nordberg et al, 1991 ; Mia o e t al, 1998 ; Eriksson et al, 2000).
368 NICOTINE-AFFECTE D DEVELOPMENT Epidemiological and/o r experimenta l studie s o f Parkinson an d Alzheime r disease s hav e show n tha t nicotine alon e (o r fro m cigarett e smoking , chewin g gum, and/o r derma l patches) ma y have neuroprotec tive properties (Baron, 1986; Sershe n e t al., 1987 ; van Duijn and Hofman, 1991 ; Jones et al., 1992 ; Ishikawa and Miyatake , 1993) . Som e interes t originate s fro m studies showin g that ther e i s a selectiv e reductio n i n neuronal nAChRs , i n compariso n t o age-matche d controls, i n severa l neurodegenerative disease s (Perry et al. , 2002) . Acute exposur e t o nACh R agonist s en hances som e measure s o f cognitiv e function , an d chronic exposur e t o nicotin e agonist s paradoxically increases th e numbe r o f neuronal nAChR s (Jone s e t al, 1992 ; Wilso n e t al. , 1995) . Nicotin e ca n protec t against ß-amyloi d toxicit y i n vitr o (Kihar a e t al. , 1997), prompting a n interes t i n attemptin g t o under stand interaction s betwee n nAChR s an d th e patho physiology of these neurodegenerative diseases. In th e aging nervous system, nicotine appear s t o be trophi c in neuron s that express nAChRs an d perhap s second arily in other non-nAChR-expressin g cells . Although the trophi c effect s o f nicotine i n aging may be neuro protective, th e developmenta l trophi c action s o f nicotine may be detrimental to the fetus , an d i t is important to note that an inappropriat e blockade o f normal programme d cel l deat h o r a n abnormall y hig h rate o f cell proliferatio n is also likely to b e detrimen tal (Opanashuk et al, 2001). Nicotine ha s lon g bee n propose d t o modulat e neural developmen t b y influencing the proliferation and/or surviva l o f neura l precursor s (Slotki n e t al. , 1987, 1993 ; Slotkin , 2004). Recen t findings that perinatal exposur e t o nicotin e ha s long-lastin g conse quences o n behavio r i n rats , combined wit h clinica l observations o f low infant birth weight , th e potentia l for psychiatric problems, and predilection towar d substance abus e (Lamber s and Clark , 1996 ; Erns t e t al., 2001), underscor e th e importanc e o f examinin g effects o f nicotine i n development . Targete d deletio n of specifi c nACh R subuni t genes , includin g oc3 , ß2 , and ß 4 subunits , can b e letha l earl y during development, wherea s deletio n o f man y othe r nACh R subunits significantl y modifie s adul t behavior s (Cordero-Erausquin e t al. , 2000) . Finally , nicotin e decreases neurogenesi s in th e IH Z o f adult male rats (Abrous e t al. , 2002) , a findin g suggesting tha t nico tine's abilit y to influence the productio n o f new neu ral cells is lifelong.
Neuronogenesis The appearanc e o f cholinergi c syntheti c enzyme s and multipl e nACh R subtype s in the germina l zone s of th e developin g CN S suggest s tha t acetylcholin e might potentiall y influenc e CN S maturatio n i n th e VZ/SZ an d EG L (Goul d an d Butcher , 1987 ; Clo s et al , 1989 ; Perr y e t al , 1993 ; Cour t e t al , 1995 ; Atluri e t al, 2001 ; Opanashu k e t al, 2001 ; Hause r et al, 2003; Gai et al, 2004). For example, thé matu ration o f cholinergi c system s i n th e cerebellu m (Brooksbank e t al, 1989 ; Perr y et al, 1993 ; Cour t et al., 1995 ; Jaarsma et al., 1997 ) coincide s with critical periods o f neurogenesi s i n thi s brai n regio n i n ro dents (Mial e an d Sidman , 1961 ; Altman , 1972a , 1972b). Th e mechanism s b y which nicotin e modu lates maturatio n ar e likel y to b e comple x an d diffe r among cel l types . nAChR s ar e member s o f th e ligand-gated io n channel recepto r superfamily . Binding t o nAChR s induce s a conformationa l chang e i n an intrinsi c ion channel, whic h increase s Na + influ x (Heinemann e t al. , 1991b ; Dan i an d Heinemann , 1996). Althoug h nicotin e ma y acutely activate cells , desensitization and/o r possibl y permanen t inactiva tion follow s th e activatio n o f th e recepto r (Collin s and Marks , 1996) . I t has been show n tha t individual neurons ca n expres s multipl e nACh R subtype s (i.e. , differing subuni t composition) , wit h eac h servin g unique function s (Conro y an d Berg , 1995) . I t ha s long bee n know n tha t nicotin e induce s inwar d Ca2+ currents, especiall y throug h oc 7 nACh R subunit containing complexes, as well as through som e othe r nAChR subtype s (Dajas-Bailado r an d Wonnacott , 2004). [Ca^J i ha s well-documente d effect s o n cel l proliferation, differentiation , and survival . Interest ingly, th e expressio n o f som e nicotini c recepto r types ma y b e linke d t o ke y regulator s wit h neura l cell development . So x 10, an importan t transcription regulator o f neura l maturatio n an d cel l fat e deci sions, activate s ß 4 an d oc 3 subunit s i n a cel l type-specific manner , and So x 10 directly affects reg ulatory regio n o f th e ß 4 nACh R subuni t promote r (Liu et al, 1999) . Nicotine increase s the rat e of proliferation o f neuroblasts in the EGL (Opanashu k e t al, 2001), which are predecessor s o f granule neurons . Whe n isolate d EGL precursor s ar e continuousl y expose d fo r 7 days to selectiv e oc3/oc 4 (epibatidine ) o r ct 4 (cytisine ) nAChR agonist s or to partial agonists, epibatidine, but
NICOTINE, OPIATES, AND THE GENESI S O F NEURA L CELL S 36 9 not eytisine , concentration-dependen t increase s i n DNA synthesis and content are produced (Opanashu k et al , 2001) . Thi s resul t indicate s tha t Ot 3 iiACh R stimulation is mitogenic to cerebellar granule neuroblasts. Moreover , significan t effect s wer e significantl y attenuated b y concurren t administratio n o f th e iiAChR antagonis t dihydro-ß-erythroidin e (DHßE) , suggesting th e involvemen t o f specifi c nAChRs . I n summary, thes e dat a provid e nove l evidenc e tha t nAChRs directl y affec t th e developmen t o f granul e cell precursor s an d furthe r sugges t tha t th e effect s are mediate d throug h specifi c oc 3 nACh R subtype s (Opanashuk e t al , 2001) . Importantly , oc 7 nACh R subunits ar e expresse d b y differentiatin g granul e neurons, thu s othe r nACh R subtype s ma y regulat e alternative aspect s o f development suc h a s differen tiation, includin g synaptogenesi s and/o r surviva l (Didier e t al. , 1995 ; Fucil e e t al , 2004) . Th e rol e of nicotin e i n th e EG L o f th e developin g cerebel lum ha s bee n reviewe d i n detai l elsewher e (Hause r et al., 2003). Importantly, beside s regulatin g cel l proliferation , nicotine can modulat e programme d cel l deat h (Ren shaw et al, 1993 ; Ro y et al, 1998 ; Opanashu k e t al, 2001; Prendergas t e t al, 2001 ; Abrou s e t al, 2002) . Chronic nicotin e exposur e i s neuroprotectiv e i n organotypic culture s o f th e ra t hippocampu s b y up regulating calbindi n expression , whic h buffer s toxi c increases i n intracellula r Ca 2+ (Prendergas t e t al. , 2001) an d modulate s nAChR-specifi c membran e currents i n neura l ste m cell s (Ca i e t al., 2004) . Similarly, i n culture d cerebella r EG L neuroblast s (Opanashuk e t al. , 2001 ) o r thei r progen y (Fucil e e t al., 2004), chroni c activatio n o f oc3 nAChRs prevent s cell deat h an d th e activatio n o f oc 7 nACh R subunit s protects spina l cor d neuron s agains t arachidoni c acid-induced deat h (Garrid o e t al. , 2003) . B y contrast, th e activatio n o f <x 7 nACh R subtype s permit s Ca2+ influ x an d cause s cel l deat h i n dissociate d hip pocampal neuron s (Delbon o e t al. , 1997 ; Berge r et al, 1998 ; Ferchmi n e t al. , 2003) , feta l ra t neura l cells (Ro y e t al , 1998) , an d vascula r cell s (Vill ablanca, 1998). Taken together, thes e findings suggest that nicotin e ca n modulat e th e proliferatio n an d death o f neuron s an d thei r precursors , an d thes e ef fects ma y diffe r markedl y amon g differen t cel l type s and subtypes . Like opioids , nicotine ca n elici t highly individualized an d divers e intracellula r responses . The varie d responses are likely determined b y varying
nAChR subuni t composition s an d b y nACh R cou pling to particular intracellula r effectors . Gliogenesis There is emerging evidenc e tha t the maturation o f astroglia, oligodendroglia , an d potentiall y GRP s i s directly affected b y nicotine. As noted earlier , most glia arise fro m th e SZ . Importantly , glia l precursor s iso lated largel y from th e S Z express nicotini c receptors , and suggestin g immatur e gli a ar e importan t target s for nicotin e i n neura l developmen t (Layer , 1991) . Despite recen t finding s tha t astrogli a ca n expres s nicotinic receptor s (Hosl i et al., 2000; Mesulam e t al., 2002; Lim an d Kim , 2003; Gahring e t al., 2004), few studies have assessed the rol e o f nicotine i n astroglial function an d especiall y durin g development . As troglia expres s a4 and ß4 nAChRs, an d likely express other nACh R subuni t type s (Hosl i e t al. , 2000) . Iso lated astrocyte s treated wit h nicotin e i n cultur e sho w disruptions i n glutamat e uptak e tha t wa s influenced by th e duratio n o f nicotine exposure , an d precondi tioned astrocyte s displaye d sensitizatio n t o nicotine . Glutamine synthetas e activit y wa s als o disrupte d in astroglia , a s wa s sodium/potassium-dependen t ATPase activity , which tende d to respond inversel y to glutamine synthetas e activit y (Li m an d Kim , 2003). Butyrylcholinesterase, which ma y pay play an impor tant ancillar y rol e t o acetylcholinesterase i n nicotin e degradation, i s predominantly expresse d b y astrogli a (Mesulam e t al. , 2002) . Collectively , thes e result s suggest that astrocytes, in addition to neurons, may be direct target s fo r the action s o f nicotine. Thi s target ing ma y hav e importan t consequence s durin g CN S development. Oligodendrocyte precursor s (O2 A progenitors ) can expres s oc3 , a4, oc5 , oe7 , ß2 , an d ß 4 nicotini c re ceptors subunit s (Roger s e t al. , 2001) . Activatio n o f nAChRs cause s long-lastin g oscillator y increase s i n intercellular calcium , althoug h i t i s not entirel y cer tain whic h subunit(s ) mediate d thi s effect . A s note d elsewhere, Ot 7 nAChRs permi t sustaine d inwar d Ca2+ currents followin g exposur e to nicotine . Man y o f the Ca2+ current s i n thes e cell s coul d b e reverse d b y DHßE an d ar e no t mimicke d b y th e activatio n o f L-type calciu m channel s or carbachol . Interestingly , acetylcholine receptor-inducin g protei n (ARIA) , a member o f the neureguli n famil y (Falls , 2003; Corfas et al. , 2004) , i s widely expressed b y oligodendroglial
370 NICOTINE-AFFECTE D DEVELOPMEN T progenitors in the S Z and triggers nAChR expression in skeleta l muscl e an d neura l cell s (Vartania n et al. , 1994). ARIA exposure causes O2A progenitors t o develop along an oligodendroglial fat e i n vitro, althoug h the maturationa l change s resul t fro m neureguli n sig naling and i t is unclear whether ARIA drives nAChR expression i n oligodendroglia . Taken together , thes e findings sugges t tha t nicotin e ma y hav e a profound influence o n th e maturatio n o f GRP s an d direc t them t o a n oligodendroglia l fate . Importantly , un timely exposur e t o nicotin e ma y disrup t gliogenesi s and, in particular, the production of oligodendroglia.
DRUG INTERACTION S WITH DISEASE OR TRAUMA
Considerable evidenc e her e an d elsewher e suggest s that drug abuse can influenc e neurogenesis and gliogenesis an d affec t long-ter m organizationa l change s in the brain. On th e basi s of this insight, we question whether th e maladaptive , organizationa l change s might predispose the CN S t o failure whe n confronte d with non-drug-relate d insults . A remarkable aspec t of the CN S i s that despite significan t insults during critical developmenta l periods , opposin g neuroadaptiv e processes ar e capabl e o f considerabl e recovery . Th e neuroplastic respons e t o perinatal dru g exposure may itself be maladaptive when the CNS i s challenged wit h other insult s unrelate d t o dru g abuse . Fo r example , does exposure to nicotine or opiates before disease onset or concurrently increase the risk and/or severity of diseases not typically attributed to deficits i n the gene sis o f ne w cells , suc h a s Alzheime r o r Parkinso n disease, neurological acquired immunodeficienc y syndrome (AIDS) , o r neurotrauma ? As with dru g abuse , disruptions i n adul t neurogenesi s hav e bee n impli cated i n Alzheime r diseas e (Haughe y e t al. , 2002) , traumatic brai n injur y (Brau n e t al. , 2002 ; Chiru mamilla e t al. , 2002) , neuropsychiatrie disorders (Jacobs, 2002 ; Kempermann , 2002 ; McEwen , 2002) , and us e of psychotropic drugs (Duma n e t al., 2001) , as well a s in schizophreni a (Corfa s et al. , 2004 ; Ste fansson e t al., 2004), depressio n (Jacob s et al., 2000) , and seizur e disorder s (Parent and Lowenstein , 2002 ; Ribak an d Dashtipour , 2002) . Moreover , althoug h neural progenitor s may be vulnerabl e t o a singl e in sult, whe n multipl e insult s ar e combined , suc h a s drug abuse and disease, this combination ma y exacerbate losses in neural progenitors .
Assuming dru g abus e modulate s CN S organiza tion and plasticity , might the developmenta l effect s of opiates and/o r nicotin e exposur e o n CN S organiza tion b e reveale d o r exaggerate d b y aging, disease , o r environmental Stressors ? Although thi s i s an impor tant issue , i t i s difficul t t o addres s becaus e o f chal lenges i n modelin g dru g abuse an d CN S disease s in the laboratory. HIV-Drug Interaction s To addres s whether dru g exposur e migh t exacerbat e CNS disorders , we have bee n explorin g opiate-HIV interactions i n several murine and huma n model s of HIV. There ar e several key reasons for choosing HI V as a diseas e t o explor e dru g abuse-diseas e interac tions. First , dru g abus e an d HI V are interlinke d epi demics. I n th e Unite d States , AID S i s no w largel y spread throug h injectio n dru g use or through th e exchange o f sex for drugs (Nath et al, 2000, 2002). Second, opiat e drug s exacerbat e th e pathogenesi s an d neurological complication s o f HIV (Bel l et al., 1998 ; Nath e t al., 2002) . Opiates likel y exacerbate th e neu ropathogenesis o f HIV indirectl y b y modulatin g im mune functio n (Peterso n e t al. , 1998 ; Roger s an d Peterson, 2003 ; Donahoe, 2004) and directly by modulating th e intrinsi c respons e o f neuron s an d gli a to HI V and/o r vira l product s (Gurwel l e t al. , 2001 ; Khurdayan et al, 2004; Ei-Hage e t al, 2005). The HI V gene regulatory protein Tat has been implicated a s a mediato r o f HIV-induced neurotoxicity . Tat i s a transactivating , nonstructura l vira l nuclea r regulatory protei n compose d o f 10 1 amino acid s en coded b y tw o exon s (Atwoo d e t al. , 1993) . Ta t i s released by infected lymphoid cells (Ensoli et al, 1993) and glia (Tardieu et al, 1992). Tat is intrinsically cytotoxic t o neurons (Sabatie r e t al, 1991 ; Magnuson e t al, 1995 ; Week s e t al. , 1995 ; Marago s e t al, 2002 ; Singh e t al., 2004). Extracellular Tat is neurotoxic, i n part throug h interaction s wit h excitator y amino aci d receptors (Magnuso n e t al, 1995 ; Nat h e t al., 1996 ; Haughey an d Mattson , 2002) , whic h ar e accompa nied b y increase s i n [Ca 2+]j an d reactiv e oxyge n species (Nat h e t al , 1996 ; Kruma n e t al , 1998 ; Bonavia et al, 2001). Neuronogenesis Although HIV- 1 infectio n result s i n neurodegenera tion, the neurons themselve s ar e not directly infected .
NICOTINE, OPIATES , AND THE GENESI S O F NEURA L CELL S 37 1 Instead, HIV-1 affects microgli a and astroglia , subsequently contributin g t o neurodegeneratio n throug h inflammatory signalin g and th e releas e o f toxic viral products b y gli a (Brack-Werner , 1999 ; Nath , 1999 ; Kaul e t al, 2001; Garden , 2002) . A novel findin g is that multipotentia l neura l progenitor s ca n becom e infected an d serv e as a reservoir for HIV-1 (Lawrence et al., 2004). Interestingly , if the infecte d neura l pro genitors ar e allowe d t o differentiat e towar d a n as troglial phenotype , ther e ar e marke d increase s i n viral production . Thi s resul t suggest s tha t neurona l progenitors ca n becom e infected , bu t commitmen t to a neurona l fat e i s incompatible wit h vira l expres sion. Beside s bein g a sit e fo r vira l infection , neura l precursors expres s severa l ke y chemokin e receptor s that ar e co-factor s involve d i n HI V binding , fusion , and infectio n (Lazarin i e t al. , 2000 ; Ka o an d Price , 2004; Pen g e t al. , 2004) , includin g CXCR 4 an d CCR5 (Pen g e t al , 2004) . I n addition , immatur e neurons expres s majo r histocompatibilit y comple x (MHC) clas s I and othe r key immune signalin g molecules tha t blu r distinctions between neuroplasticit y and neuropatholog y (Boulange r an d Shatz , 2004) . Interestingly, bot h monotropi c an d T-tropi c strain s of HIV, respectively , inhibit the proliferatio n of neural progenitors through CCR5 - or CXCR4-mediate d activation o f ER K (Krathwoh l an d Kaiser , 2004) . Although ther e i s evidence tha t neuroblast s are a target for HIV, no studies have examined the combine d effects o f opiates an d HI V o n neurogenesis . Gliogenesis Unlike neurona l precursors , preliminar y i n vitro evi dence suggest s tha t opiate s ca n exacerbat e th e cyto toxic effect s o f HI V i n glia l precursor s (Khurdaya n et al., 2004). O n th e basi s of findings that neura l pro genitors ar e target s o f HIV , w e hav e bee n assessin g whether dru g abuse migh t furthe r disrup t the action s of HIV i n neura l progenitors . Interestingly , glia l pro genitors appea r t o b e especiall y vulnerabl e t o th e combined effec t o f opiates an d HIV , resultin g i n in creases i n activate d caspase- 3 an d increase d cel l death a s assessed by a failure o f cells to exclude ethid ium monoazide (Khurdayan et al., 2004). Most of the dying cell s ar e glia l precursors having characteristic s of O2 A glia l progenitor s (Raf f e t al. , 1983 ; Fulto n et al., 1992) , wherea s there i s a tendency fo r some im mature oligodendrocyte s an d immatur e astrocyte s t o be preferentiall y lost . A vast majority o f cultured O2 A
progenitors woul d hav e develope d int o oligoden droglia wit h furthe r maturation , thus , i t appear s tha t cells committe d t o a n oligodendroglia l fat e ma y b e preferentially vulnerabl e t o combine d opiate-HIV- 1 toxicity (Khurdaya n et al. , 2004) . Interestingly , ther e tended t o b e greate r number s o f dyin g oligodendro cytes wit h combine d morphine-Ta t exposure , al though thi s tren d wa s no t statisticall y significan t a t 96 hr. Since morphine an d Tat in combination prefer entially kil l O2 A cells , significan t oligodendrocyt e losses migh t becom e apparen t wit h exposur e tha t i s more prolonged. I t can be predicted tha t gliogenesis is affected an d tha t oligodendroglia l progenitor s ar e especially vulnerabl e i n HIV-infecte d individual s wh o abuse opiates. The consequence s o f losin g glia l precursor s ar e uncertain. Fate d glia l precursor s ma y hav e lifespan s lasting years, so that deficits i n gliogenesis would only become eviden t with time. A tentative notion i s that a sustained destruction o f glial precursors wit h chroni c opiate abus e i n HIV-infecte d individual s and subse quent los s in tota l glia l numbers migh t contribut e t o accelerated neurocognitiv e defects . Thus , chroni c opiate abuse may have debilitating effects o n the long term stabilit y of glial population s an d CN S functio n in HIV-infected individuals.
SUMMARY AND CONCLUSION S
Collectively, th e abov e findings suggest that glia l pre cursors are novel targets for HIV and opiate abuse, an d disruptions in th e genesi s and fat e o f new neura l cell s may contribut e t o th e pathogenesi s o f neuro-AIDS . The exten t t o which finding s i n opiat e an d HI V Tat treated gli a can b e generalize d to other drugs of abuse or disease s i s uncertain, however , considerin g th e ap parent susceptibilit y o f neura l progenitor s t o sub stances with abuse liability and pathologi c insults , it is likely that precursors will be affected . Furthermore , as suming the los s of precursors inevitabl y contributes t o the pathology of the disease , the prognosis for slow, progressive cognitive decline may be assured. Abbreviations AHP adul t hippocampal progenito r AIDS acquire d immunodeficienc y syndrome ARIA acetylcholin e receptor-inducing protei n
372 NICOTINE-AFFECTE D DEVELOPMEN T bFGF basi c fibroblast growth facto r 2+
2+
[Ca ]A intracellula r concentration o f Ca CNS centra l nervou s syste m DHßE dihydro-ß-erythroidin e EGF epiderma l growth facto r DOR 0-opioi d receptor s
EGL externa l granula r laye r of the cerebellu m ERK extracellula r signa l regulate d kinas e GFAP glia l fibrillary acidic protein GRP glial-restricte d precursor IHZ intrahila r zone KOR K-opioi d receptor s MAPK mitogen-activate d protei n kinas e MHC majo r histocompatibity complex MOR ji-opioi d receptors nAChR nicotini c acetylcholine receptor SZ subventricula r zon e VZ ventricula r zon e ACKNOWLEDGMENTS Thi s wor k wa s supporte d b y the Nationa l Institut e o f Dru g Abus e (KFH) , th e Na tional Institut e o f Chil d Healt h an d Huma n Develop ment (HSB), and th e Nationa l Institut e o f Neurologica l Disorders and Strok e (JRP). References Abrous DN , Adrian i W, Montaron MF , Auroussea u C , Rougon G , L e MM , Piazz a P V (2002 ) Nicotin e self-administration impair s hippocampal plasticity . J Neurosci 22:3656-3662 . Akil H , Watso n SJ , Young E, Lewi s ME, Khachaturia n H, Walker JM (1984 ) Endogenous opioids : biology and function . Annu Rev Neurosci 7:223—255. Albuquerque EX, Pereira EF, Castro NG , Alkondo n M , Reinhardt S, Schroder H, Maelicke A (1995) Nicotinic recepto r functio n i n th e mammalia n centra l nervous system. Ann NY Acad Sei 757:48-72. Altman J (1972a) Postnatal development of the cerebellar cortex in the rat . III. Maturation o f the component s of the granular layer. } Comp Neurol 145:465-514 . (1972b) Postnata l developmen t o f the cerebella r cortex in the rat . I. The externa l germinal layer and the transitiona l molecula r layer . J Com p Neuro l 145:353-398. Alvarez-Buylla A, Garcia-Verdugo JM (2002 ) Neurogenesis i n adul t subventricula r zone . J Neurosc i 22:629-634.
Atiuri P, Fleck MW, Shen Q , Mah SJ , Stadfelt D, Barnes W, Goderi e SK , Templ e S , Schneide r A S (2001 ) Functional nicotini c acetylcholin e recepto r expres sion in stem and progenitor cells of the earl y embryonic mous e cerebra l cortex . Dev Biol 240:143-156. Atwood WJ, Tornatore CS , Meyer s K, Major E O (1993 ) HIV-1 mRN A transcripts from persistentl y infected human feta l astrocytes . An n N Y Aca d Se i 693 : 324-325. Baron J A (1986) Cigarett e smokin g and Parkinson' s disease. Neurology 36:1490-1496. Beitner-Johnson D, GuitartX, Nestler EJ (1993) Glial fibrillary acidic protein an d th e mesolimbi c dopamin e system: regulatio n by chronic morphine an d Lewis Fischer strai n differences in the ra t ventral tegmen tal area. J Neurochem 61:1766-1773. Belcheva MM, Haa s PD, Tan Y, Heaton VM, Cosci a C J (2002) Th e fibroblas t growt h facto r recepto r i s a t the sit e o f convergence betwee n ^,-opioi d recepto r and growt h facto r signalin g pathway s i n ra t C 6 glioma cells. J Pharmacol Exp Ther 303:909-918. Belcheva MM, Ta n Y, Heaton VM , Clar k AL, Coscia C J (2003) JJ , opioid transactivation and down-regulatio n of the epiderma l growth factor receptor in astrocytes: implications fo r mitogen-activated protei n kinase signaling. Mol Pharmacol 64:1391-1401. Bell JE , Brettl e RP , Chiswic k A , Simmond s P (1998 ) HIV encephalitis , provira l loa d an d dementi a i n drug user s and homosexual s with AIDS. Effec t o f neocortical involvement . Brai n 121:2043-2052 . Berger F , Gag e FH , Vijayaraghava n S (1998 ) Nicotini c receptor-induced apoptoti c cell death of hippocampal progenitor cells. J Neurosci 18:6871-6881. Birnbaum SC , Kie n N , Martucc i RW , Gelzleichter TR , Witschi H , Hendrickx AG, Last JA (1994) Nicotine or epinephrine-induced uteroplacental vasoconstriction and fetal growth in the rat. Toxicology 94:69-80. Bohn LM, Belchev a MM, Cosci a C J (2000) ^i-opioid agonist inhibition of K-opioid receptor—stimulate d extracellular signal—regulate d kinase phosphorylation is dynamin-dependen t i n C 6 gliom a cells . J Neu rochem 74:574-581 . Bonavia R , Bajetto A, Barbero S, Albini A, Noonan DM , Schettini G (2001 ) HIV-1 Tat causes apoptotic death and calciu m homeostasi s alteration s i n rat neurons . Biochem Biophys Res Commun 288:301-308 . Boulanger LM , Shat z C J (2004 ) Immun e signallin g i n neural development, synapti c plasticity and disease. Nat Re v Neurosci 5:521-531. Boulder Committe e (1970 ) Embryoni c vertebrat e cen tral nervou s system: revised terminology. Anat Rec 166:257-261. Brack-Werner R (1999 ) Astrocytes : HIV cellula r reser voirs and importan t participants in neuropathogen esis. AIDS 13:1-22 .
NICOTINE, OPIATES, AND THE GENESI S OF NEURA L CELLS 37 3 Braun H , Schafe r K , Höll t V (2002 ) ßll l tubiilin expressing neuron s revea l enhance d neurogenesi s in hippocampa l an d cortica l structure s afte r a contusion traum a i n rats . J Neurotraum a 19:975 983. Brooksbank BW , Walke r D , Balaz s R , Jorgense n O S (1989) Neurona l maturatio n i n th e foeta l brai n i n Down's syndrome . Early Hum De v 18:237—246 . Buznikov GA , Lamber t HW , Laude r J M (2001 ) Sero tonin an d serotonin-lik e substance s a s regulators of early embryogenesis an d morphogenesis . Cel l Tis sue Re s 305:177-186. Cai J, Cheng A, Luo Y, Lu C, Mattso n MP, Rao MS, Fu rukawa K (2004) Membrane propertie s of rat embryonic multipoten t neura l ste m cells . J Neuroche m 88:212-226. Chirumamilla S, Sun D , Bullock MR, Colello RJ (2002) Traumatic brai n injury—induce d cel l proliferatio n in th e adul t mammalia n centra l nervou s system . J Neurotrauma 19:693-703 . Clos J, Ghandour S , Eberhart R, Vincendon G, Gombo s G (1989 ) Th e cholinergi c syste m i n developin g cerebellum: comparativ e stud y of normal, hypothy roid and underfe d rats. Dev Neurosci 11:188—204 . Collins AC, Marks MJ (1996) Are nicotinic receptors activated o r inhibite d followin g chroni c nicotin e treatment? Dru g De v Res 38:231-242. Conroy WG , Ber g D K (1995 ) Neuron s ca n maintai n multiple classes of nicotinic acetylcholine receptor s distinguished b y differen t subuni t compositions . JBiolChem 270:4424-4431. Cordero-Erausquin M, Marubio LM, Klink R, Changeu x JP (2000) Nicotinic recepto r function : ne w perspec tives fro m knockou t mice . Trend s Pharmaco l Se i 21:211-217. Corfas G , Ro y K , Buxbau m J D (2004 ) Neureguli n 1 erbB signalin g and th e molecular/cellula r basi s of schizophrenia. Nat Neurosci 7:575-580 . Court JA, Lloyd S , Johnson M , Griffith s M , Birdsal l NJ, Piggott MA , Oakley AE, Inc e PG , Perr y EK, Perr y RH (1997 ) Nicotini c an d muscarini c cholinergi c receptor bindin g i n th e huma n hippocampa l for mation durin g developmen t an d aging . De v Brain Res 101:93-105 . Court JA, Perry EK, Spurden D, Griffiths M, Kerwin JM, Morris CM , Johnso n M , Oakle y AE , Birdsal l NJ , dementi F (1995 ) The rol e of the cholinergi c system i n the development o f the huma n cerebellum . Dev Brain Res 90:159-167. Crews FT , Nixo n K (2003) Alcohol, neura l ste m cells , and adul t neurogenesis . Alcoho l Re s Healt h 27 : 197-204. Dajas-Bailador F , Wonnacott S (2004 ) Nicotini c acetyl choline receptor s an d th e regulatio n o f neurona l signalling. Trends Pharmaco l Se i 25:317—324.
Dani JA , Heinemann S (1996 ) Molecula r an d cellula r aspects of nicotine abuse. Neuron 16:905—908 . Delbono O , Gopalakrishna n M, Renganathan M, Mon teggia LM , Mess i ML , Sulliva n J P (1997 ) Activation o f th e recombinan t huma n a 7 nicotini c acetylcholine recepto r significantl y raise s intracellular fre e calcium . J Pharmaco l Ex p The r 280 : 428-438. Didier M , Berma n SA , Lindstrom J , Bursztajn S (1995) Characterization o f nicotini c acetylcholin e recep tors expresse d i n primar y culture s o f cerebella r granule cells. Mol Brain Res 30:17-28. Dodge Mille r CR, O'Stee n WK, Deadwyle r SA (1982) Effect o f morphine o n 5 H-thymidine incorporatio n in the subependym a of the rat : an autoradiographic study. J Comp Neurol 208:209-214 . Donahoe R M (2004 ) Multipl e way s tha t dru g abus e might influenc e AID S progression : clue s fro m a monkey model. J Neuroimmunol 147:28-32 . Duman RS , Malber g J , Nakagaw a S (2001 ) Regulatio n of adul t neurogenesi s b y psychotropi c drug s an d stress. J Pharmacol Ex p Ther 299:401-407. Economides D , Braithwait e J (1994 ) Smoking , preg nancy and th e fetus . J R Soc Health 114:198-201 . Eisch AJ , Barro t M , Scha d CA , Sel f DW , Nestle r E J (2000) Opiates inhibi t neurogenesis in the adult rat hippocampus. Pro c Nat l Aca d Se i US A 97:75797584. Eisch AJ , Mandyam C D (2004 ) Dru g dependenc e an d addiction, II : Adult neurogenesi s an d dru g abuse . Am J Psychiatry 161:426. Ei-Hage N , Gurwell JA, Singh IN , Sulliva n PG, Nat h A, Hauser K F (2005) Synergistic increase s i n intracel lular Ca 2+, an d th e releas e o f MCP-1, RANTES , and IL- 6 by astrocytes treated with opiates and HIV 1 Tat. Glia 50:91-106 . Ensoli B, Buonaguro L, Barillari G , Fiorell i V, Gendel man R , Morga n R , Wingfiel d P , Gall o R (1993 ) Release, uptake , an d effect s o f extracellula r hu man immunodeficienc y viru s type-1 Tat protein o n cell growt h an d vira l replication . J Viro l 67 : 277-287. Eriksson P, Ankarberg E, Fredriksso n A (2000) Exposure to nicotine durin g a defined period i n neonatal lif e induces permanen t change s i n brai n nicotini c re ceptors an d i n behaviou r of adult mic e Brai n Re s 853:41-48. Eriksson PS , Hansso n E , Rönnbäc k L (1990 ) ô an d K opiate receptor s i n primar y astroglial cultures fro m rat cerebral cortex . Neurochem Res 15:1123-1126. (1992) 8 and K opiate receptor s in primar y astroglial cultures . Par t II : Recepto r set s i n culture s from variou s brain region s an d interaction s with ßreceptor activate d cycli c AMP . Neuroche m Re s 17:545-551.
374 NICOTINE-AFFECTE D DEVELOPMEN T (1991) |1 and ô opiate receptor s i n neurona l an d astroglial primar y cultures fro m variou s region s of the brain-couplin g wit h adenylate cyclase , localisa tion o n th e sam e neurone s an d associatio n wit h dopamine (D L ) recepto r adenylat e cyclase , Neu ropharmacology 30:1233-1239 . Ernst M , Moolcha n ET , Robinso n M L (2001 ) Behavioral and neura l consequences o f prenatal exposure to nicotine . J A m Aca d Chil d Adoles c Psychiatry 40:630-641. Falls DL (2003) Neuregulins and the neuromuscula r system: 1 0 years o f answers and questions . J Neurocytol 32:619-647. Fattore L , Pudd u MC , Piccia u S , Cappa i A , Fratta W , Serra GP, Spiga S (2002) Astroglial in vivo response to cocain e i n mous e dentat e gyrus : a quantitativ e and qualitativ e analysi s b y confoca l microscopy . Neuroscience 110:1-6 . Ferchmin PA , Perez D , Eterovi c VA, de Velli s J (2003) Nicotinic receptors differentially regulat e N-methylD-aspartate damag e i n acut e hippocampa l slices . J Pharmacol ExpTher 305:1071-1078 . Fucile S , Renzi M, Laur o C, Limatola C, Ciott i T, Eu sebi F (2004) Nicotinic cholinergic stimulatio n promotes surviva l an d reduce s motilit y o f cultured ra t cerebellar granul e cells. Neuroscience 127:53-61 . Fulton BP , Burn e JF , Raf f M C (1992 ) Visualizatio n o f O-2A progenito r cell s i n developin g an d adul t ra t optic nerv e b y quisqtialate-stimulate d cobal t up take. J Neurosci 12:4816-4833. Fuxe K , Andersson K , Enerot h P , Jansson A , vo n EG , Tinner B , Bjelke B, Agnati LF (1989) Neurochemical mechanisms underlying the neuroendocrine actions o f nicotine: focu s o n th e plasticit y o f central cholinergic nicotini c receptors . Pro g Brai n Re s 79:197-207. Gahring LC , Persiyano v K, Rogers SW (2004) Neurona l and astrocyt e expressio n o f nicotinic recepto r sub unit ß 4 i n th e adul t mous e brain . J Comp Neuro l 468:322-333. Garden G A (2002 ) Microgli a i n huma n immunodefi ciency virus-associate d neurodegeneration . Gli a 40:240-251. Garrido R , Springe r JE , Menni g B , Tobore k M (2003 ) Apoptosis o f spina l cor d neuron s b y preventin g depletion nicotin e attenuate s arachidoni c acid induced o f neurotrophi c factors . J Neurotraum a 20:1201-1213. Goldman S A (1998) Adul t neurogenesis : fro m canarie s to the clinic. J Neurobiol 36:267-286. Gordon JA , He n R (2004) The serotonergi c syste m an d anxiety. Neuromol Med 5:27-40 . Gould E , Butche r L L (1987 ) Transien t expressio n o f choline acetyltransferase—lik e immunoreactivit y i n
Purkinje cell s o f th e developin g ra t cerebellum . Brain Res 431:303-306. Gurwell JA , Duncan MJ , Maderspach K , Stiene-Martin A, Eid e RP , Hause r K F (1996 ) K-Opioi d recepto r expression defines a phenotypically distinct subpop ulation o f astroglia: relationship to Ca 2+ mobiliza tion, development , an d th e antiproliferativ e effect of opioids. Brain Res 737:175-187 . Gurwell JA, Hauser KF (1993) Morphine does not affec t astrocyte survival in developing primary mixed-glial cultures. Dev Brain Res 76:293-298. Gurwell JA, Nath A, Sun Q , Zhang J, Martin KM, Chen Y, Hause r K F (2001 ) Synergisti c neurotoxicit y o f opioids and huma n immunodeficienc y virus- 1 Tat protein in striata l neuron s in vitro . Neuroscienc e 102:555-563. Hammer R P Jr (1993) Effect s o f opioids o n th e develop ing brain. In: Hammer RP Jr (ed). The Neurohiology of Opiates. CRC Press , Boca Raton FL, pp 1-21 . Hammer R P Jr, Hauser KF (1992) Consequences o f early exposure t o opioid s o n cel l proliferatio n and neu ronal morphogenesis. In : Miller MW (ed) . Development of the Central Nervous System: Effects of Alcohol an d Opiates. Wiley-Liss , Ne w York , p p 319-339. Hammer R P Jr, Ricalde AA, Seatriz J V (1989) Effect s o f opiates o n brai n development . Neurotoxicolog y 10:475-484. Haughey NJ, Liu D, Nath A, Borchard AC, Mattson M P (2002) Disruptio n o f neurogenesi s i n th e subven tricular zon e o f adult mice, an d i n huma n cortica l neuronal precurso r cell s i n culture , b y amyloi d ß-peptide: implication s fo r th e pathogenesi s o f Alzheimer's disease. Neuromol Me d 1:125—135 . Haughey NJ, Mattson M P (2002 ) Calcium dysregulation and neurona l apoptosi s b y th e HIV- 1 protein s Ta t and gp!20 . J Acqui r Immun e Defi c Synd r 3 1 (Suppl2):S55-S61. Hauser KF , Gurwel l JA , Turbek C S (1994 ) Morphin e inhibits Purkinj e cell surviva l and dendriti c differ entiation i n organotypic cultures of the mouse cere bellum. Ex p Neurol 130:95-105 . Hauser KF , Harris-Whit e ME , Jackso n JA , Opanashuk LA, Carney J M (1998 ) Opioids disrup t Ca2+ homeostasis and induc e carbonyl oxyradical production in mouse astrocyte s i n vitro : transien t increase s an d adaptation t o sustaine d exposure . Ex p Neuro l 151 : 70-76. Häuser KF , Houdi AA, Turbek CS , Eid e RP, Maxson W III (2000 ) Opioid s intrinsicall y inhibi t th e genesi s of mouse cerebella r granul e cel l precursors in vitro: differential impac t of ji and ô receptor activatio n o n proliferation an d neurit e elongation . Eu r J Neu rosci 12:1281-1293 .
NICOTINE, OPIATES , AND THE GENESI S O F NEURA L CELLS 37 5 Häuser KF, Khurdayan VK, Goody RJ , Nath A, Pauly JR, Saria A (2003) Selective vulnerabilit y of cerebellar granule neuroblasts and thei r progeny to drugs with abuse liability. Cerebellum 2:184-195 . Hauser KF , Mangoura D (1998) Diversity of the endogenous opioi d syste m i n development : nove l signa l transduction translate s multipl e extracellula r sig nals into neural cel l growth and differentiation. Perspect Dev Neurobiol 5:437-449 . Hauser KF, Mclaughlin PJ, Zagon IS (1987 ) Endoge nous opioid s regulate dendriti c growt h an d spin e formation i n developin g ra t brain . Brai n Re s 416 : 157-161. (1989) Endogenou s opioid system s an d th e regu lation o f dendriti c growt h an d spin e formation . J CompNeurol 281:13-22. Hauser KF , Stiene-Martin A (1991) Characterizatio n o f opioid-dependent glia l developmen t i n dissociate d and organotypi c culture s o f mouse centra l nervou s system: critica l period s an d targe t specificity . De v Brain Res 62:245-255 . (1993) Opiate s an d th e regulatio n o f nervous system development : evidenc e fro m i n vitr o studies . In: Hamme r R P J r (ed) . Neurobiology o f Opiates. CRC Press , Boca Rato n FL, pp 23-61. Hauser KF, Stiene-Martin A, Mattson MP, Eide RP, Ryan SE, Godleske C C (1996 ) u-Opioid receptor-induced Ca2+ mobilization and astroglial development: mor phine inhibits DNA synthesis and stimulates cellular hypertrophy throug h a Ca 2+-dependent mecha nism. Brain Res 720:191-203. Heinemann SF , Boulte r J, Connoll y J , Deneri s E , Dti voisin R , Hartle y M , Hermans-Borgmeye r I , Holl niann M , O'Shea-Greenfiel d A , Papk e R (199la ) Brain nicotini c receptor genes . NID A Res Monogr 111:3-23. Heinemann S , Boulte r J , Connoll y J , Deneri s E , Du voisin R , Hartle y M , Hermans-Borgmeye r I , Holl mann M , O'Shea-Greenfiel d A , Papk e R (1991b ) The nicotini c recepto r genes . Cli n Neuropharma col 14(Supp l 1):S45-S61 . Hildebrandt K , Teuchert-Noodt G, Dawir s RR (1999) A single neonata l dos e o f methamphetamin e sup presses dentat e granul e cel l proliferatio n i n adul t gerbils which i s restored t o control value s by acute doses o f haloperidol . J Neura l Trans m 106:549 558. Hosli E , Ruh l W , Hosl i L (2000 ) Histochemica l an d electrophysiological evidence for estrogen receptor s on culture d astrocytes : colocalizatio n wit h cholin ergic receptors. In t J DevNeurosci 18:101—111 . Ishikawa A, Miyatake T (1993 ) Effect s o f smoking in patients with early-onset Parkinson's disease. J Neurol Sei 117:28-32 .
Jaarsma D , Ruigro k TJ , Caff e R , Cozzar i C , Leve y AI, Mugnaini E , Voog d J (1997 ) Cholinergi c innerva tion an d receptor s i n th e cerebellum . Pro g Brai n Res 114:67-96 . Jacobs B L (2002 ) Adult brain neurogenesi s an d depres sion. Brain Behav Immun 16:602-609 . Jacobs BL, Praag H, Gage FH (2000 ) Adult brain neuro genesis an d psychiatry : a nove l theor y o f depres sion. Mol Psychiatry 5:262-269. Jones GM , Sahakia n BJ, Levy R, Warburton DM , Gra y JA (1992 ) Effect s o f acut e subcutaneou s nicotin e on attention, informatio n processing and short-ter m memory i n Alzheimer's disease . Psychopharmacol ogy 108:485-494. Kao AW, Price RW (2004) Chemokine receptors , neura l progenitor cells , an d th e AIDS dementi a complex . J Infect Dis 190:211-215 . Kaul M, Garden GA , Lipton S A (2001) Pathways to neu ronal injur y an d apoptosi s i n HIV-associate d de mentia. Nature 410:988-994. Kempermann G (2002 ) Regulation o f adult hippocam pal neurogenesis—implication s fo r nove l theorie s of major depression. Bipolar Disord 4:17—33 . Khurdayan VK , Buch S , Ei-Hag e N , Lut z SE , Goebe l SM, Sing h IN , Knap p PE , Turchan-Cholew o J , Nath A , Hauser K F (2004 ) Preferential vulnerability of astroglia and glial precursors to combined opi oid and HIV- 1 Tat exposure in vitro. Eur J Neurosci 19:3171-3182. Kihara T, Shimoham a S , Sawada H, Kimur a J, Kume T, Kochiyama H, Maeda T , Akaike A (1997) Nicotini c receptor stimulatio n protect s neuron s agains t ß amyloid toxicity . Ann Neurol 42:159-163. Kinney HC, White W F (1991 ) Opioid receptor s localiz e to the externa l granular cell layer of the developin g human cerebellum . Neuroscienc e 45:13-21 . Knapp PE , Itki s OS , Zhan g L , Spruc e BA , Bakalkin G , Hauser KF (2001) Endogenous opioid s and oligodendroglial function: possible autocrine/paracrin e effect s on cell survival and development. Gli a 35:156—165 . Knapp PE , Maderspac h K , Hauser K F (1998 ) Endoge nous opioi d syste m i n developin g norma l an d jimpy oligodendrocytes : u , an d K opioid receptor s mediate differentia l mitogeni c an d growth re sponses. Glia 22:189-201 . Kornblum HI , Hurlbti t DE , Lesli e F M (1987a ) Postna tal developmen t o f multiple opioi d receptor s i n ra t brain. Dev Brain Res 37:21. Kornblum HI , Loughlin SE , Leslie F M (1987b ) Effect s of morphin e o n DN A synthesi s i n neonata l ra t brain. Dev Brain Res 31:45-52. Krathwohl MD, Kaise r JL (2004) HIV- 1 promotes quies cence i n huma n neura l progenito r cells . J Infec t Dis 190:216-226 .
376 NICOTINE-AFFECTE D DEVELOPMENT Kruman II , Nat h A , Mattson M P (1998 ) HIV- 1 protei n Tat induces apoptosis of hippocampal neuron s by a mechanism involvin g caspas e activation , calciu m overload, an d oxidativ e stress . Ex p Neuro l 154 : 276-288. Lambers DS , Clar k K E (1996 ) Th e materna l an d feta l physiologic effect s o f nicotine . Semi n Perinata l 20:115-126. Lauder JM , Liu J , Devaud L , Morrow AL (1998) GABA as a trophic factor fo r developing monoamine neu rons. Perspect Dev Neurobiol 5:247-259 . Lawrence DM , Durha m LC, Schwart z L , Seth P, Marie D, Majo r E O (2004 ) Huma n immunodeficienc y virus type 1 infection o f human brain—derive d pro genitor cells. J Virol 78:7319-7328. Layer PG (1991 ) Cholinesterases durin g development o f the avia n nervou s system . Cel l Mo l Neurobio l 11:7-33. Lazarini F , Casanov a P , Tham TN , D e CE , Renzana Seisdedos F, Baleux F, Dubois-Dalcq M (2000 ) Differential signallin g o f th e chemokin e recepto r CXCR4 b y stroma l cell-derive d facto r 1 and th e HIV glycoprotein in rat neurons and astrocytes. Eur JNeurosci 12:117-125 . Leslie FM , Che n Y, Winzer-Serhan U H (1998 ) Opioi d receptor an d peptide mRNA expression i n proliferative zones of fetal ra t central nervous system. Can J Physiol Pharmacol 76:284-293 . Leslie FM, Loughli n S E (1993) Ontogeny an d plasticity of opioi d systems . In : Hamme r R P J r (ed) . Th e Neurobiology o f Opiates. CR C Press , Boc a Rato n FL,pp 85-123. Lim DK , Kim HS (2003 ) Opposite modulatio n o f glutamate uptak e b y nicotin e i n culture d astrocyte s with/without cAM P treatment . Eu r J Pharmaco l 476:179-184. Lin JC, Rosenthal A (2003) Molecular mechanism s con trolling the developmen t o f dopaminergic neurons . Semin Cel l Dev Biol 14:175-180 . Liu Q , Melnikov a IN , H u M , Gardne r P D (1999 ) Cel l type-specific activatio n o f neurona l nicotini c acetylcholine recepto r subuni t gene s b y So x 10. J Neurosci 19:9747-9755 . Lorber BA , Freitag SK , Bartolome JV (1990) Effect s o f ßendorphin o n DN A synthesi s i n brai n region s o f preweanling rats. Brain Res 531:329-332. Luetje CW , Patric k J, Seguela P (1990 ) Nicotine recep tors i n th e mammalia n brain . FASE B J 4:2753 2760. Luo J, Miller MW (1998 ) Growt h factor-mediate d neu ral proliferation : targe t o f ethano l toxicity . Brai n Res Rev 27:157-167. Magnuson DS , Knudse n BE , Geige r JD , Brownston e RM, Nat h A (1995 ) Huma n immunodeficienc y
virus typ e 1 tat activate s non-N-methyl-D-aspartate excitatory amin o aci d receptor s an d cause s neuro toxicity. Ann Neurol 37:373-380 . Mandyam CD , Norri s RD , Eisc h A J (2004 ) Chroni c morphine induce s prematur e mitosi s o f proliferat ing cell s i n th e adul t mous e subgranula r zone . J Neurosci Res 76:783-794. Mangoura D, Dawson G (1993) Opioid peptides activate phospholipase D and protein kinas e C-e in chicke n embryo neuro n cultures . Pro c Nat l Aca d Se i US A 90:2915-2919. Maragos WF , Young KL, Turchan JT, Guseva M , Paul y JR, Nath A , Cass W A (2002) Human immunodefi ciency vims- 1 Ta t protei n an d methamphetamin e interact synergistically to impair striatal dopaminer gic function. J Neurochem 83:955-963 . Martin W R (1983 ) Pharmacolog y o f opioids. Pharmaco l Rev 35:283-323 . McEwen B S (2002) Sex, stress and the hippocampus : al lostasis, allostatic loa d an d th e agin g process. Neu robiol Aging 23:921. Mclntosh DE, Mulkin s RS, Dean RS (1995) Utilizatio n of maternal perinata l risk indicator s in the differen tial diagnosi s of ADHD an d UAD D children . In t J Neurosci 81:35-46 . Meriney SD , Gra y DB , Pila r G (1985 ) Morphine induced dela y of normal cell deat h i n the avia n ciliary ganglion. Science 228:1451-1453 . Messinger DS , Baue r CR , Da s A , Seife r R , Leste r BM , Lagasse LL , Wrigh t LL , Shankara n S , Bad a HS , Smeriglio VL , Langer JC , Beeghl y M , Pool e W K (2004) The Materna l Lifestyle Study : cognitive, motor, an d behaviora l outcome s o f cocaine-expose d and opiate-expose d infant s throug h thre e year s o f age. Pediatric s 113:1677-1685 . Mesulam MM , Guilloze t A , Sha w P , Levey A, Duyse n EG, Lockridg e O (2002 ) Acetylcholinesteras e knockouts establis h centra l cholinergi c pathway s and ca n us e butyrylcholinesteras e t o hydrolyz e acetylcholine. Neuroscienc e 110:627-639 . Miale IL, Sidman R L (1961) An autoradiographic analysis o f histogenesi s i n th e mous e cerebellum . Ex p Neurol 4:277-296 . Miao H , Li u C , Bisho p K , Gon g ZH , Nordber g A , Zhang X (1998) Nicotine exposure during a critical period o f development lead s t o persisten t change s in nicotini c acetylcholin e receptor s o f adul t ra t brain. J Neurochem 70:752-762 . Nath A (1999 ) Pathobiolog y o f huma n immunodefi ciency virus dementia. Semi n Neurol 19:113—127 . Nath A , Hause r KF , Wojna V , Booz e RM , Marago s W , Prendergast M, Cass W, Turchan J T (2002) Molecular basis for interactions o f HIV and drug s of abuse. J Acquir Immune Defi c Synd r 31(Suppl 2):S62—S69 .
NICOTINE, OPIATES, AND THE GENESI S O F NEURA L CELLS 37 7 Nath A , Jone s M , Marago s W , Booz e R , Mactutu s C , Bell J, Hauser KF , Mattson M (2000 ) Neurotoxicity and dysfunctio n o f dopamin e system s associate d with AID S dementia . Psychopharmacolog y 14 : 222-227. Nath A, Psooy K, Martin C , Knudse n B, Magnuson DS , Haughey N , Geige r J D (1996 ) Identificatio n of a human immunodeficienc y virus type 1 Tat epitop e that i s neuroexcitatory an d neurotoxic . J Virol 70 : 1475-1480. Nordberg A , Zhan g XA , Fredriksso n A , Eriksso n P (1991) Neonata l nicotin e exposur e induce s per manent change s i n brai n nicotini c receptor s an d behaviour i n adul t mice . De v Brai n Re s 63 : 201-207. Oehmichen M , Meissne r C , Reite r A , Birkhol z M (1996) Neuropathology in non-human immunode ficiency virus—infecte d dru g addicts : hypoxic brai n damage afte r chroni c intravenou s drug abuse. Acta Neuropathol 91:642-646. Opanashuk LA , Paul y JR , Hause r K F (2001 ) Effec t o f nicotine o n cerebella r granul e neuro n develop ment. Eu r J Neurosci 13:48-56 . Osborne JG , Kind y MS , Spruc e BA , Hauser K F (1993 ) Ontogeny o f proenkephalin mRN A and enkephali n peptide expressio n i n th e cerebella r corte x o f th e rat: spatia l an d tempora l pattern s o f expressio n follow maturationa l gradients in the externa l granular laye r an d i n Purkinj e cells . De v Brai n Re s 76:1-12. Parent JM, Lowenstein DH (2002 ) Seizure-induced neurogenesis: are more new neurons goo d fo r an adul t brain? Prog Brain Res 135:121-131 . Paulson RB , Shanfeld J , Mulle t D , Col e J , Paulso n J O (1994a) Prenata l smokeles s tobacc o effect s o n th e rat fetus. J Craniofac Genet Dev Biol 14:16-25 . Paulson RB , Shanfel d J , Praus e L , Iranpou r S , Paulson JO (1991 ) Pre - an d post-conceptiona l tobacc o ef fects o n th e CD- I mous e fetus . J Craniofac Genet Dev Biol 11:48-58. Paulson RB , Shanfeld J, Vorhees CV, Cole J, Sweazy A, Paulson JO (1994b ) Behavioral effects o f smokeless tobacco o n the neonate an d young Sprague Dawley rat. Teratology 49:293-305. Pauly JR , Spark s JA , Hause r KF , Paul y T H (2004 ) I n utero nicotin e exposur e cause s persistent , gender dependant changes i n locomotor activity and sensi tivity t o nicotin e i n C57B1/ 6 mice . In t J De v Neurosci 22:329-337. Peng H, Huang Y, Rose J, Erichsen D, Herek S , Fujii N , Tamamura H, Zheng J (2004) Stroma l cell—derive d factor 1-mediate d CXCR 4 signaling in ra t and hu man cortica l neural progenitor cells. J Neurosci Res 76:35-50.
Pennington SN , Sandstro m LP , Shible y IAJ , Long SD , Becker KR , Smit h CPJ , Le e K , Jone s TA , Cum rnings KM, Means LW (1994) Biochemical changes, early brain growth suppression and impaire d detour learning i n nicotine-treate d chicks . De v Brai n Re s 83:181-189. Perry DC , Xia o Y , Nguyen HN , Musachi o JL , Davila Garcia MI , Kella r K J (2002 ) Measuring nicotini c receptors wit h characteristic s o f oc4ß2 , oc3ß 2 an d oc3ß4 subtype s i n ra t tissue s b y aut o radiography. JNeurochem 82:468-481. Perry EK , Cour t JA , Johnson M , Smit h CJ , Jame s V, Cheng AV , Kerwin JM, Morri s CM , Piggot t MA, Edwardson JA (1993) Au to radiographie compariso n of cholinergi c an d othe r transmitte r receptor s i n the norma l human hippocampus . Hippocampu s 3 : 307-315. Persson AI , Thorli n T , Bul l C , Eriksso n P S (2003a ) Opioid-induced proliferatio n throug h th e MAP K pathway i n culture s o f adult hippocampa l progeni tors. Mol Cell Neurosci 23:360-372 . Persson AI, Thorlin T, Bull C, Zarnegar P, Ekman R, Terenius L, Eriksson PS (2003b) ji- and 0-opioi d recepto r antagonists decreas e proliferatio n and increas e neu rogenesis i n culture s o f rat adul t hippocampa l pro genitors. Eur J Neurosci 17:1159-1172. Peterson PK , Molito r TW , Cha o C C (1998 ) Th e opioid—cytokine connection . J Neuroimmuno l 83 : 63-69. Polakiewicz RD, Schieferl SM , Gingras AC, Sonenberg N, Comb M J (1998 ) jil-Opioi d recepto r activate s signaling pathway s implicate d i n cel l surviva l an d translational control . J Bio l Che m 273:23534 23541. Prendergast MA, Harris BR, Mayer S, Holley RC, Hauser KF, Littleton J M (2001 ) Chronic nicotine exposur e reduces N-methyl-D-aspartat e receptor—mediate d damage i n th e hippocampu s withou t alterin g calcium accumulatio n o r extrusion : evidenc e fo r calbindin-D28K overexpression . Neuroscience 102 : 75-85. Radley JJ, Jacobs BL (2002) 5-HT1 A recepto r antagonist administration decrease s cel l proliferatio n i n th e dentate gyrus. Brain Res 955:264-267. Raff MC , Mille r RH, Noble M (1983 ) A glial progenitor cell tha t develop s i n vitr o int o a n astrocyt e o r a n oligodendrocyte dependin g o n cultur e medium . Nature 303:390-396 . Ramon y Cajal S (1960) Studies o n Vertebrate Neurogenesis (translate d b y L Guth) . Charle s C . Thomas , Springfield, IL, p 448 . Rand M J (1989 ) Neuropharmacologica l effect s o f nico tine i n relatio n t o cholinergi c mechanisms . Pro g Brain Res 79:3-11.
378 NICOTINE-AFFECTE D DEVELOPMENT Renshaw G , Rigb y P, Self G, Lam b A, Goldie R (1993) Exogenously administered a-bungarotoxin bind s to embryonic chic k spina l cord : implication s fo r th e toxin-induced arres t o f naturall y occurrin g mo toneuron death. Neuroscience 53:1163-1172 . Reznikov K , Hause r KF , Nazarevskaj a G , Trunov a Y , Derjabin V , Bakalki n G (1999 ) Opioid s modulat e cell division in the germinal zone of the late embryonic neocortex. Eur J Neurosci 11:2711-2719 . Ribak CE , Dashtipou r K (2002) Neuroplasticit y i n th e damaged dentat e gyrus of the epilepti c brain . Prog Brain Res 136:319-328. Ricalde AA, Hammer RP Jr (1991) Perinatal opiate treatment delay s growth of cortical dendrites. Neurosc i Lett 115:137-143. Rogers SW, Gregori NZ, Carlson N , Gahring LC , Nobl e M (2001 ) Neuronal nicotinic acetylcholin e recep tor expressio n b y O2A/oligodendrocyt e progenito r cells. Glia 33:306-313 . Rogers TJ , Peterso n P K (2003 ) Opioi d G protein coupled receptors : signal s a t th e crossroad s o f in flammation. Trend s Immunol 24:116—121. Role LW, Berg DK (1996) Nicotinic receptors in the de velopment and modulatio n of CNS synapses . Neuron 16:1077-1085 . Roy TS , Andrew s JE , Seidle r F] , Slotki n T A (1998 ) Nicotine evoke s cell deat h i n embryoni c ra t brain during neurulation . J Pharmaco l Ex p The r 287 : 1136-1144. Ruzicka BB, Fox CA, Thompson RC , Aki l H , Watson SJ (1994) Opioi d recepto r mRN A expressio n i n pri mary culture s o f glia l cell s derive d fro m differen t rat brain regions. Regul Pept 54:251-252 . Ruzicka BB , Fox CA, Thompson RC , Men g F , Watson SJ, Aki l H (1995 ) Primar y astroglia l culture s de rived from severa l rat brain regions differentially express Jl, ô and K opioid receptor mRNA . Mol Brain Res 34:209-220. Sabatier JM, Vives E, Mabrouk K, Benjouad A, Rochat H , Duval A , Hu e B , Bahraou i E (1991 ) Evidenc e for neurotoxicity of tat fro m HIV . J Virol 65:961-967. Sastry B V (1991 ) Placenta l toxicology : tobacc o smoke, abuse d drugs , multipl e chemica l interac tions, and placenta l function . Repro d Ferti l De v 3: 355-372. Schmahl W , Fun k R , Miaskowsk i U, Plend l J (1989 ) Long-lasting effects o f naltrexone, a n opioi d recep tor antagonist , o n cel l proliferatio n i n developin g rat forebrain. Brain Res 486:297-300. Seatriz JV , Hammer R P J r (1993 ) Effect s o f opiates o n neuronal developmen t i n th e ra t cerebra l cortex . Brain Res Bull 30:523-527 . Sershen H , Hashi m A, Lajth a A (1987 ) Behaviora l an d biochemical effect s o f nicotine in an MPTP-induced
mouse mode l o f Parkinson' s disease . Pharmaco l Biochem Behav 28:299-303. Shankaran S , Da s A , Baue r CR , Bad a HS , Leste r B , Wright LL , Smerigli o V (2004 ) Associatio n be tween pattern s o f materna l substanc e us e an d in fant birt h weight, length, an d hea d circumference . Pediatrics 114:e226-e234 . Shu XO , Hatc h MC , Mill s J , Clemen s J , Susse r M (1995) Materna l smoking , alcoho l drinking , caf feine consumption , an d feta l growth : results fro m a prospective study. Epidemiology 6:115-120. Simon E J (1991) Opioid receptor s and endogenou s opi oid peptides. Med Re s Rev 11:357-374. Simon EJ , Hiller JM (1994) Opioid peptide s and opioi d receptors. In : Siege l GJ , Agranoff BW, Albers RW, Molinoff P B (eds) . Basic Neurochemistry. Rave n Press, New York, pp 321-339 . Singh IN , Good y RJ , Dean C , Ahma d NM , Lut z SE , Knapp PE , Nat h A , Hause r K F (2004 ) Apoptotic death o f striatal neurons induce d b y HIV-1 Tat and gp!20: differentia l involvemen t o f caspase- 3 an d endonuclease G. J Neurovirol 10:141—151 . Singhai P , Kapasi A, Reddy K, Franki N (2001 ) Opiate s promote T cel l apoptosi s through JN K and caspase pathway. Adv Exp Med Bio l 493:127-135. Singhal PC, Bhaskara n M, Patel J, Patel K, Kasinath BS, Duraisamy S, Franki N, Reddy K, Kapasi AA (2002) Role o f p38 mitogen-activate d protein kinase phosphorylation an d Fas—Fa s ligan d interactio n i n morphine-induced macrophag e apoptosis . J Im munol 168:4025-4033 . Slotkin T A (2004) Cholinergic system s in brain develop ment an d disruptio n b y neurotoxicants : nicotine , environmental tobacc o smoke , organophosphates . Toxicol Appl Pharmacol 198:132-151 . Slotkin TA, Lappi SE, McCook EC , Lorbe r BA, Seidler FJ (1995 ) Los s of neonatal hypoxi a tolerance afte r prenatal nicotin e exposure : implication s fo r sud den infan t deat h syndrome . Brai n Re s Bul l 38 : 69-75. Slotkin TA , Lappi SE , Seidle r F J (1993 ) Impact of fetal nicotine exposur e o n developmen t o f rat brai n re gions: critica l sensitiv e period s o r effect s o f with drawal? Brain Res Bull 31:319-328. Slotkin TA , Orband-Mille r L , Quee n KL , Whitmor e WL, Seidle r F J (1987 ) Effect s o f prenatal nicotin e exposure o n biochemica l developmen t o f rat brain regions: materna l dru g infusion s vi a osmoti c min ipumps. J Pharmacol Ex p Ther 240:602-611. Steele WJ , Johannesso n T (1975 ) Effect s o f prenatall y administered morphin e o n brain development an d resultant toleranc e t o th e analgesi c effec t o f mor phine i n offsprin g o f morphine-treate d rats . Acta Pharmacol Toxicol 36:243-256 .
NICOTINE, OPIATES, AN D THE GENESI S O F NEURA L CELLS 37 9 Stefansson H , Steinthorsdotti r V , Thorgeirsso n TE , Gulcher JR, Stefansson K (2004) Neuregulin 1 and schizophrenia. Ann Med 36:62-71 . Stiene-Martin A , Gurwel l JA , Häuser K F (1991 ) Mor phine alter s astrocyt e growt h i n primar y culture s of mouse glia l cells : evidenc e fo r a direc t effec t o f opiates o n neura l maturation . De v Brai n Re s 60 : 1-7. Stiene-Martin A , Hause r K F (1990 ) Opioid-dependen t growth o f glia l cultures : suppressio n o f astrocyt e DNA synthesi s b y Met-enkephalin . Lif e Se i 46 : 91-98. (1991) Glial growth i s regulated by agonists selective fo r multipl e opioi d recepto r type s i n vitro . J Neurosc i Res 29:538-548. Stiene-Martin A , Knap p PE , Marti n KM , Gurwel l JA , Ryan S , Thornto n SR , Smit h FL , Hause r K F (2001) Opioi d syste m diversit y in developin g neu rons, astroglia , and oligodendrogli a i n th e subven tricular zone and striatum: impact o n gliogenesis i n vivo. Glia 36:78-88 . Stiene-Martin A , Zhou R , Hauser K F (1998 ) Regional , developmental, an d cel l cycle—dependen t differ ences i n jut , 0 , an d K-opioi d recepto r expressio n among culture d mous e astrocytes . Gli a 22:249 259. Tardieu M , Hery C, Peudenie r S , Boespflug O , Montag nier L (1992 ) Huma n immunodeficienc y viru s type 1-infected monocyti c cell s can destro y human neu ral cell s afte r cell-to-cel l adhesion . An n Neuro l 32 : 11-17. Taupin P , Gage FH (2002 ) Adult neurogenesis an d neu ral stem cells of the centra l nervous system in mam mals. J Neurosci Res 69:745-749. Teuchert-Noodt G , Dawir s RR , Hildebrand t K (2000) Adult treatmen t wit h methamphetamin e tran siently decrease s dentat e granul e cel l proliferatio n in th e gerbi l hippocampus . J Neura l Tran s 107 : 133-143. Thorlin T, Eriksson PS, Persson PA, Aberg ND, Hansso n E, Rönnbäc k L (1998 ) ô-opioi d receptor s o n as troglial cells i n primary culture: mobilizatio n of intracellular fre e calciu m vi a a pertussi s sensitive G protein. Neuropharmacology 37:299-311. Thorlin T, Persson PA, Eriksson PS, Hansson E, Rönnbäck L (1999 ) ô-opioi d recepto r immunoreactivit y o n astrocytes i s upregulated durin g mitosis. Gli a 25:370 378. van Duij n CM , Hofma n A (1991 ) Relatio n betwee n nicotine intak e an d Alzheimer' s disease . BM J 302 : 1491-1494. Vartanian T, Corfas G, L i Y, Fischbach GD , Stefansso n K (1994 ) A rol e fo r th e acetylcholin e receptor inducing protei n ARI A in oligodendrocyt e devel -
opment. Pro c Nat l Aca d Se i US A 91:11626 11630. Vernadakis A , Sakellaridi s N , Geladopoulo s T , Man goura D (1990 ) Functio n o f opioid s earl y i n em bryogenesis. Ann N Y Acad Sei 579:109-122 . Vertes Z, Melegh G, Vertes M, Kovâcs S (1982) Effect of naloxone an d D-Met z-Pro5-enkephalinamide treat ment o n th e DN A synthesi s i n th e developin g ra t brain. Life Se i 31:119-126. Villabianca A C (1998) Nicotine stimulate s DN A synthesis and proliferatio n in vascula r endothelial cells in vitro. J Appl Physiol 84:2089-2098 . Weeks BS, Lieberman DM, Johnso n B, Roque E, Gree n M, Lowenstei n P , Oldfiel d EH , Kleinma n H K (1995) Neurotoxicit y o f th e huma n immunodefi ciency viru s type 1 Tat transactivator to PC 12 cells requires th e Ta t amino acid 49-58 basic domain . J Neurosci Re s 42:34-40. Wilson AL, Langley LK, Monley J, Bauer T, Rottunda S, McFalls E , Kover a C , McCarte n J R (1995 ) Nico tine patche s i n Alzheimer' s disease : pilot stud y on learning, memory , an d safety . Pharmaco l Bioche m Behav 51:509-514. Witschi H , Lundgaar d SM , Rajin i P , Hendrick x AG , Last J A (1994) Effect s o f exposur e t o nicotin e an d to sidestream smok e o n pregnanc y outcome i n rats. Toxicol Lett 71:279-286. Zagon I S (1987 ) Endogenou s opioids , opioi d receptors , and neurona l development . NID A Re s Monog r 78:61-71. Zagon IS , McLaughlin P J (1977a) Effect o f chronic ma ternal methadon e exposur e o n perinata l develop ment. Bio l Neonate 31:271-282 . (1977b) Methadon e an d brai n development . Ex perientia 33:1486 . (1977c) Morphin e an d brai n growt h retardatio n in the rat. Pharmacology 15:276-282 . (1982a) Comparativ e effect s o f postnata l tinder nutrition an d methadon e exposur e on protei n an d nucleic aci d content s o f the brai n an d cerebellu m in rats . Dev Neurosci 5:385-393 . (1982b) Neuronal cel l deficit s followin g materna l exposure t o methadon e i n rats . Experienti a 38 : 1214-1216. (1983) Increase d brai n siz e an d cellula r conten t in infant rats treated wit h an opioi d antagonist . Sci ence 221:1179-1180. (1986a) Opioi d antagonis t (naltrexone ) mod ulation o f cerebella r development : histologica l and morphometri c studies. J Neurosci 6:1424-1432. (1986b) Opioi d antagonist-induce d modulatio n of cerebra l an d hippocampa l development : histo logical an d morphometri c studies . De v Brai n Res 28:233-246.
380 NICOTINE-AFFECTE D DEVELOPMEN T — (1987 ) Endogenou s opioi d system s regulate cel l proliferation i n the developin g rat brain. Brain Res 412:68-72. (1991) Identification of opioid peptides regulating proliferation o f neurons and gli a i n th e developin g nervous system. Brain Res 542:318-323. Zagon IS , Rhode s RE , McLaughli n P J (1985) Distribu tion o f enkephali n immunoreactivit y i n germina tive cell s o f developin g ra t cerebellum . Scienc e 227:1049-1051.
Zahalka EA , Seidler FJ, Lappi SE, McCook EC , Yana i J, Slotkin T A (1992) Deficit s i n developmen t o f cen tral cholinergi c pathway s caused b y feta l nicotin e exposure: differential effect s o n cholin e acetyltrans ferase activit y an d [ 3 H]hemicholinium-3 binding . Neurotoxicol Teratol 14:375-382 . Zhu Y , Hsu MS , Pinta r J E (1998 ) Developmenta l ex pression o f the \Ji, K , and 0 opioid recepto r mRNA s in mouse. J Neurosci 18:2538-2549 .
23
Nicotinic Receptor Regulation of Developing Catecholamine System s Frances M . Leslie Layla Azam Kathy Gallardo Kathryn O'Leary Ryan Frank e Shahrdad Lotfipou r
Central catecholamin e systems , consisting of dopaminergic, noradrenergic , and adrenergi c cell groups , serve numerous integrativ e neura l function s an d criticall y regulate action , emotion , motivation , an d cognitio n (Berridge an d Robinson , 1998 ; Berridg e and Water house, 2003 ; Nieoullon an d Coquerel , 2003) . These neural pathway s ar e functiona l a t a n earl y stag e o f brain developmen t an d hav e importan t role s i n neu ronal maturatio n an d behavior s tha t ar e critica l fo r neonatal surviva l (Levit t et al., 1997 ; Sullivan , 2003). Dysregulation of these systems has been implicate d in numerous diseas e states , particularl y those i n whic h there ar e cognitive , emotional , and/o r moto r deficit s (Aston-Jones e t al. , 2000 ; Nieoullo n an d Coquerel , 2003). Numerous clinical studies have shown that smoking during pregnancy can lea d to long-standing neurobehavioral deficit s in th e offsprin g tha t ma y resul t from catecholaminergi c dysfunction , includin g at tention defici t hyperactivit y disorde r (ADHD) , con duct disorder, cognitive deficits, an d substanc e abuse
(Ernst et al. , 2001 ; Fried an d Watkinson , 2001 ; Buka et al, 2003 ; Kah n e t al., 2003 ; Thapar e t al, 2003). Whereas tobacc o smok e contain s ove r 400 0 con stituents, many of which may be harmful to the developing fetus , anima l studie s hav e focuse d o n an d confirmed a neuroteratogeni c rol e fo r nicotin e (Slotkin, 1998) . Gestationa l nicotin e exposur e in ro dents result s i n cognitiv e impairment s (Levi n e t al. , 1996), enhance d spontaneou s locomoto r activit y (Fung, 1988 ; Newman et al., 1999 ; Paul y et al, 2004), and increase d nicotine-induce d locomotio n (Shack a et al. , 1997) . Neurochemica l studie s provide furthe r evidence o f a n advers e effec t o f prenata l nicotin e exposure o n centra l catecholamin e developmen t (Ribary and Lichtensteiger , 1989 ; Slotkin , 1998 ; Mu neoka e t al, 1999) , wit h norepinephrin e (NE ) mor e highly affected tha n dopamine (DA). Route of administration is a critical variable in such studies , however , with continuou s administratio n producing result s opposite to those of intermittent injection (Navarro et al., 1988). Suc h findings have led Slotki n and colleague s
381
382 NICOTINE-AFFECTE D DEVELOPMEN T to propos e tha t nicotine-induce d hypoxi a ma y pro duce man y o f the observe d deficit s i n catecholamin e development (Slotkin, 1998) . Nicotine bind s to specfic cholinergi c receptors , A nicotinic acetylcholin e receptor (nAChR ) i s a ligand gated catio n channel . Eac h recepto r consist s o f five subunit proteins surroundin g a channel por e tha t me diate man y o f th e biologica l effect s o f acetylcholin e (ACh) (Leonar d an d Bertrand , 2001 ; Picciott o e t al., 2001). Radioligan d bindin g an d mRN A expressio n studies have show n substantia l expression o f nAChRs in feta l huma n an d roden t brai n (Naef f e t al, 1992 ; Zoli e t al , 1995 ; Ospin a e t al. , 1998 ; Hellstrom Lindahl an d Court , 2000) . Therefore, thes e receptor s may pla y a critica l physiologica l rol e i n regulatin g brain developmen t (Rol e and Berg , 1996 ; Broid e and Leslie, 1999 ; Metherat e an d Hsieh , 2004 ) an d ma y also serv e a s a targe t fo r th e neurotoxi c action s o f nicotine on developing brain . As outlined i n the pres ent chapter , a combination o f biochemical, anatomi cal, an d behaviora l approache s hav e bee n use d t o evaluate th e hypothesi s tha t functiona l nAChR s ar e expressed o n catecholamin e neuron s durin g critica l phases of brain development .
DOPAMINE NEURONS
Adult
The forebrai n dopaminergi c syste m arise s fro m tw o main cel l group s locate d i n th e midbrain , th e sub stantial nigr a (SN ) and ventra l tegmental area (VTA). The nigrostriata l system , arisin g fro m th e SN , con trols sensorimoto r integratio n an d moto r output . Mesolimbic an d mesocortica l projections , arisin g from th e VTA , regulat e rewar d an d motivate d behav ior. A wid e variet y o f nACh R subunits , oc3-ot 7 an d ß2-ß4, are expressed on DAergic neuron s bot h in the SN an d VT A o f adul t rodent s (Klin k e t al , 2001 ; Azam et al., 2002), giving rise to a rich pharmacologi cal complexity . At least two classe s of nAChR are expressed o n DAergi c terminal s withi n th e striatum , which ar e discriminate d o n th e basi s of their affinit y for th e antagonis t a-CtxMI I (Kula k e t al , 1997 ; Kaiser e t al, 1998 ; Gu i e t al, 2003 ; Marubi o e t al, 2003). oc-CtxMII-sensitive nAChRs consis t of Ot6ß2ß3 and oc4oc6ß2ß 3 subunits . Thos e no t blocke d b y oc CtxMII contai n oc4ß 2 an d oc4oc5ß 2 subunit s (Salmi nen e t al. , 2004) . A separat e populatio n o f a ?
FIGURE 23- 1 Expressio n o f nicotini c recepto r sub units i n dopaminergi c (DAergic ) neurons . Th e pho tomicrographs sho w expressio n o f oc 3 (A ) and oc 4 (B ) nAChR subuni t mRN A within substantial nigr a (SN) and ventral tegmental are a (VTA ) at Gl 5. mRNAs for nAChR subunit s (silve r grains ) are expresse d i n bot h DAergic cell s expressin g tyrosin e hydroxylas e (TH ) mRNA (dar k cells ) an d non-DAergi c neurons . Not e the differentia l distributio n o f cc 4 mRN A withi n S N and VT A at this age.
NICOTINIC RECEPTO R REGULATIO N OF CATECHOLAMIN E 38 3
nAChRs ha s als o bee n identifie d o n DAergi c cel l bodies (Pidoplichko et al, 1997 ; Klink et al, 2001). Perinatal Period DA-containing neurons of the S N and VT A are born between gestationa l da y (G ) 1 2 an d G1 4 (Voorn et al. , 1988) , wit h nACh R bindin g appearing i n th e anläge shortly thereafter (Naeffet al. , 1992 ; Zoli et al, 1995). B y G15, severa l nACh R subuni t mRNA s ar e expressed b y DAergic neuron s includin g a3, a4, oc5 , oc7, ß2, and ß4 (Fig . 23-1, Table 23-1) . At this age, both high-affinit y [ 3H]nicotine bindin g an d oc 4 mRNA expressio n are highe r i n th e S N tha n i n th e VTA. A t late r stage s o f feta l an d postnata l develop ment, however, no differences ar e detectable betwee n nAChR expressio n i n DAergi c neuron s o f these tw o nuclei (Aza m e t al., 2002) . The postnata l declin e i n [ 3 H] nicotine binding to lower adult concentrations in the S N an d VT A parallels a decreas e i n th e expres sion o f mRNAs for oc3 , oc4 , an d ß 2 subunits . I n con trast, ot6 and ß 3 mRNAs are expressed at low amounts in feta l DAergi c neurons , wit h transcrip t level s in creasing durin g th e postnata l period . Suc h finding s suggest tha t th e type s o f nAChR s expresse d o n D A ergic neuron s chang e wit h age . Functiona l studie s support this view (Azam et al., 2005). By examinin g i n vitr o neurotransmitte r releas e from striata l slices , th e presenc e o f functiona l nAChRs o n ra t striatal DA terminals a s early as G17 has bee n show n (Aza m e t al. , 2005 ) (Tabl e 23-2) .
Maximal nicotine-stimulate d [ 3 H]DA releas e de clines b y 50 % at birth , then graduall y increases during th e postnata l perio d t o reac h adul t level s b y postnatal day (P) 21. There is a concomitant increas e in nicotine potency, as indicated by the concentratio n inducing a half maximum response (EC 50 ) at P21 being almost an order of magnitude lowe r than tha t observed i n feta l brain . Thus, during the first postnatal month ther e i s a switc h i n th e typ e o f nAChR(s) expressed on striata l DAergic terminals from thos e with low affinity fo r nicotine to those wit h high affinity . Data on the functional influence of a4-containing nAChRs on developing DAergi c neuron s are consis tent wit h thos e fro m studie s o n a mutan t mous e model i n whic h th e a 4 subuni t wa s modified to b e hypersensitive t o nicotin e an d endogenou s ligand s (Labarca e t al., 2001). Whereas fetuses of these transgenie mice hav e the same number o f midbrain DAergic neurons as wild-type controls on G14, they exhibit a dramati c declin e i n D A cel l numbe r b y G1 6 an d G18. Thus, fetal DAergi c neurons in these transgenic lines degenerate followin g hyperactivation of the mu tant <x4* nAChRs by endogenous ACh o r choline. Adolescence Adolescence, define d a s P28 t o P4 2 i n rodents , i s a time a t whic h youth s star t t o execut e higher-leve l cognitive function s an d establis h independenc e (Spear, 2000) . Novelt y seekin g an d impulsivit y are hallmark s o f thi s developmenta l period , a s i s
TABLE 23- 1 Nicotini c acetylcholin e recepto r subuni t mRNAs and bindin g sites in th e developing substantial nigra and ventral tegmental area Prenatal
oc3 oc4 06 oc6 al ß2 ß3 [*H]NIC [125I]a-BgTK
++++ -H-+/I 1 1 1 * -H-/+ + +++ +
++ÂH-H-* -
Early Postnatal
Late Postnatal Adolescence
+++
-H+ + + ++
+/++ +++ +
Adult +
++ +
++ + ++ +/+ ++ +/+
++ + ++ +
++ ++ + ++
+ +
+ + + + + + + +
a-BgTX, a-bungarotoxin; NIC, nicotine ; 4-H-, concentrations a t least threefold over those i n adults; -H-, concentrations about twofol d ove r adult; +, concentrations similar to adult; -/+, concentrations below adult; -, concentrations at background. *Higher in substantia nigra than in ventral tegmental area on Gl 5.
384 NICOTINE-AFFECTE D DEVELOPMEN T TABLE 23- 2 Nicotine-induce d [ 5 H] dopamin e re lease fro m striata l slice s durin g th e firs t 3 postnata l weeks Age
G17-G18
PI P4 P7 P14 P21
EC50 fmM ) 92*** (5.7-15) 4.0 (0.4-42) 3.09 (1.5-6.6) 5.78** (2.0-17) 2.48 (1.3-4.8) 1.65 (0.8-3.3)
Maximum Release (%)
4.8410.55 2.50 ±0.58**
<£ Qo
F*
2.59 ±0.30** 3.15±0.56** 3.76 ±0.48* 6.19 + 0.86
EC50 values (95% confidence intervals) and maximum release (mean± SEM) ar e fro m thre e t o fou r independen t experiments . G , gesta tional day; P, postnatal day. */> < 0.05, **p < 0.01, ***p < 0.001 values significantly different o n P21.
initiation o f addictive behaviors. There i s increasing evidence fro m bot h roden t an d primat e studie s tha t DAergic systems continue t o mature throughou t thi s developmental period . DAergi c innervatio n o f pre frontal corte x increase s unti l youn g adulthoo d (Benes e t al, 2000 ; Lamb e e t al, 2000) , with som e evidence o f a n "overshoot " a t pubert y an d subse quent prunin g o f nonspecifi c innervatio n (Lewis , 1997). Bot h D l an d D 2 recepto r level s in prefrontal cortex reac h pea k concentration s i n youn g mal e adult rats , the n declin e substantiall y (Anderse n e t al., 2000 ; Taraz i an d Baldessarini , 2000). Overpro duction o f Dl an d D 2 receptor s als o occur s i n th e caudate nucleu s an d putamen , wit h pea k conten t reached a t puberty followed by substantial declines . A gende r differenc e ha s bee n note d i n thi s effect , with striata l recepto r prunin g occurrin g onl y i n males an d no t i n female s (Anderse n an d Teicher , 2000). Whereas th e majorit y o f nACh R mRNA s i n th e SN an d VT A reach matur e expressio n prior t o ado lescence, transcrip t amount s fo r oc5 , Ot6 , an d ß 4 subunits continu e t o decreas e towar d lowe r adul t concentrations (Tabl e 23-1) . Nicotine-stimulate d DA releas e i n th e ventra l striatum , whic h include s the nucleu s accumbens , i s also highe r durin g early adolescence (P30 ) tha n durin g lat e adolescenc e (P40) o r adulthoo d (Fig . 23-2) . Thi s transien t
FIGURE 23- 2 Releas e of dopamine (DA ) from striatal slices. Thes e dose-respons e curve s depic t nicotine stimulated [ 3 H]DA release fro m dorsa l (A ) and ventral (B ) striata l slice s fro m adolescen t mal e rat s o n P30 an d P4 0 an d fro m adults . Maximal release i s significantly highe r fro m ventra l striatum at P30 than a t P40 or in adults . *p < 0.05, Dunnett's post-hoc analysis with adult as control.
increase i n nicotin e efficac y i s no t observe d i n th e caudoputamen. Suc h finding s suggest a n enhance d sensitivity o f motivationa l circuitr y to th e activatin g effects o f nicotin e durin g earl y adolescence . Al though a recen t microdialysi s study suggest s tha t a similar enhance d effec t o f nicotine o n th e releas e of DA fro m th e nucleu s accumben s i s no t detectabl e in viv o (Badanic h an d Kirstein , 2004), othe r neuro chemical finding s ar e consisten t wit h evidenc e tha t
NICOTINIC RECEPTO R REGULATIO N OF CATECHOLAMIN E 38 5
early adolescenc e i s a perio d o f uniqu e sensitivit y to the rewardin g effects o f nicotine (Vastol a et al., 2002; Laviola e t al, 2003 ; Belluzzi et al, 2004, 2005 ; Rezvani and Levin , 2004).
TABLE 23. 3 Nicotin e EC 50 value s fo r stimulatio n o f [ 3 H] norephinephrine release from brai n slices in th e neonate and adul t Nicotine EC 50 (|lM) Brain region
NOREPINEPHRINE NEURON S Adult
The noradrenergi c system projects extensively throughout the central nervous system (CNS) and modulates a variety of cognitive and viscera l functions. NE projec tions stem fro m nucle i in the pons an d medulla , eac h with a rol e i n regulatin g response s t o sensor y inpu t and t o environmental an d viscera l Stressors. Nicotinic receptors ar e widely expressed throughou t thes e cate cholamine nuclei . Locus Coeruleus A dorsa l pontin e tegmenta l nucleus , th e locu s coeruleus (LC) , i s the CN S structur e wit h th e mos t widespread projection s (Loughli n e t al. , 1986) . I t gives ris e to a networ k o f fiber s that exten d through out the neuraxis . The L C provide s th e exclusiv e N E input t o th e majorit y o f brai n structures , includin g the neocortex , hippocampus , an d cerebellum , an d plays a critical role in attention an d arousal. A wealth o f nAChR subunit s ar e expresse d i n th e adult L C (Len a e t al, 1999) . I n sit u hybridization studies sho w hig h expressio n o f several nACh R sub unit mRNAs , includin g a6, ß2 , an d ß3 , wit h lowe r levels o f expressio n o f oc4 , oc5 , an d oc 7 (Gallard o et al. , 2005) . Consistent wit h th e lo w expressio n o f oc4 and ot 7 subunits , ver y low amount s o f [ 3 H]nicotine an d [ 125I]oc-bungarotoxin binding , respectively , are present in the adul t LC. Bot h oc 3 and ß 4 mRNA s are topographicall y distributed , wit h muc h highe r expression i n dorsa l tha n i n ventra l cells . Thes e findings ar e consisten t wit h a single-cell reverse transcriptase-polymerase chai n reactio n stud y i n which ot 3 and ß 4 mRNAs were found to be expressed in les s tha n hal f o f al l L C cell s teste d (Len a e t al. , 1999). LC efferen t projection s are organize d topographi cally, with dorsal cells projecting to more rostral brain regions (Loughli n e t al, 1986) . Th e topographi c dis tribution o f nAChR mRNA s in LC cell s suggests that different termina l field s expres s nAChR s wit h differ -
Cortex Cerebellum Hippoeampal formation Hypothalamus
neonate
adult
1.4 9.1
14.1 10.3 39 75
26 20
ing pharmacologica l properties . Thi s issu e ha s no t been examine d systematically . A preliminary comparison o f nicotine potenc y t o stimulate [ 3 H]NE release in slic e preparation s fro m fou r brai n region s suggests that ther e ma y b e pharmacologica l difference s i n nAChR regulatio n (Tabl e 23-3) . Immunoreactivit y for oc 6 an d ß 3 subunit s ha s bee n show n i n th e hip pocampal formation , leadin g t o th e suggestio n tha t the nACh R o n L C terminal s i n thi s structure consis t of a n oc6ß2ß 3 subuni t combinatio n (Len a e t al. , 1999). O n th e othe r hand , nAChR s regulat e hip pocampal [ 3 H]NE release b y both direct an d indirec t mechanisms, wit h nicotine-stimulate d GAB A releas e leading t o a n anomalou s excitatio n o f LC terminal s (Leslie e t al. , 2002) . I n organotypi c slic e culture s of parieta l cortex , i n contrast , nicotine-stimulate d [ 3 H]NE releas e i s mediate d entirel y b y nAChR s lo cated o n LC terminals (dat a not shown) . Medullary Nuclei Medullary catecholamin e neuron s cell s ar e foun d within th e nucleu s tractu s solitariu s (NTS) an d th e ventrolateral medulla (VLM ) an d consis t of both NE and epinephrine-containin g cells . Th e NT S i s th e initial site of integration fo r central an d peripheral au tonomie systems , with afférent s projectin g from mul tiple visceral modalities (Andrese n and Kunze, 1994) . The NT S send s reciproca l projection s to numerou s brain ste m nucle i tha t mediat e periphera l autonomi e outflow an d t o th e hypothalamus , wher e i t serve s a critical rol e i n regulatin g plasm a glucos e vi a activation o f the hypothalamic-pituitary-adrena l (HPA ) axis and food intake (Ritter et al, 2001, 2003). The cauda l and rostra l VLM generall y hav e opposin g effect s o n autonomie output , suc h a s centra l flui d an d cardio vascular homeostasis (Heslop et al, 2004). The NEer gic neurons of the rostra l VLM als o provide the major
386 NICOTINE-AFFECTE D DEVELOPMENT inhibitory input t o the LC, thus providing coordinate regulation o f cognitiv e an d autonomi e response s t o external stimul i (Aston-Jones et al., 1992) . Data fro m i n situ hybridization studies provide evidence fo r expression of nAChRs o n adul t medullar y catecholamine neurons (Gallard o e t al., 2005). Unlik e
the LC , wher e mos t neuron s exhibi t a rich complex ity of subunit mRNAs, fewe r nACh R subunits ar e expressed withi n thes e neuron s (dat a no t shown) . I n contrast to the LC , ther e i s no expression of oc6 and ß 3 subunits i n th e NTS . Th e predominan t subunit s expressed i n catecholaminergi c neuron s o f this nucleu s
FIGURE 23- 3 Quantitativ e analysi s of nicotine bindin g site and nACh R sub unit mRN A expressio n i n the locu s coemleus a s a function o f age. A . Spe cific [ ?H]nicotine bindin g (fmol/m g tissue) . B . oc 4 (triangles ) an d ß 2 (squares) mRNA expression. C. a5 mRNA expression . D. oc 6 (triangles) and ß3 (squares) mRNA expression. E. Ot 3 mRNA expression, dorsal (d; triangles) and ventra l (v; squares) subdivisions. F. ß4 in dorsal (d; triangles) and ventral (v; squares) subdivisions. The da y of birth wa s G22.
NICOTINIC RECEPTO R REGULATIO N O F CATECHOLAMIN E 38 7 are Ot3 , oc5, and ß2/4 . I n th e VLM , ther e i s expression of ß 3 mRN A i n scattere d cells , wit h a mor e wide spread expressio n o f oc 6 mRN A i n -50 % o f cate cholamine neurons. I n contrast to both LC and NTS , almost al l cell s o f the VL M expres s both a? an d ß 2 subunit mRNAs , wit h 30%-50 % als o expressin g Ot3-a5. Suc h finding s ar e consisten t wit h functional studies i n whic h nicotin e microinjection s int o brain stem nuclei have been reported t o increase NE releas e in th e hypothalamu s (F u e t al., 1997 ) an d t o regulate both HP A axi s (F u e t al. , 1997 ) an d cardiovascula r functions (Ferreir a et al., 2000). Ontogeny Locus Coeruleus Neurons o f the L C ar e bor n betwee n G1 0 an d G1 3 in rat , and first exhibit the biosyntheti c enzym e tyrosine hydroxylas e (TH ) o n G1 2 (e.g. , Lande r an d Bloom, 1974 ; Spech t et al, 1981 ; Koni g et al, 1988) . These neuron s rapidl y extend axon s int o immatur e brain structures , wher e the y ar e believe d t o serv e a n
important morphogeneti c rol e (Rui z e t al. , 1997 ; Naqui e t al, 1999) . L C cell s are also highly sensitive to earl y sensory inpu t (Nakamur a e t al. , 1987 ; Mar shall e t al. , 1991 ) an d regulat e function s critica l t o the surviva l o f the neonat e suc h a s olfactory imprinting (Sullivan , 2003). A numbe r o f studies sho w tha t the hyper-reactivit y of the L C t o innocuou s sensor y stimuli decrease s afte r birth , an d tha t thes e change s are accompanie d b y alteration s i n th e propertie s o f adrenoceptors expresse d b y LC neuron s (Kimur a an d Nakamura, 1987 ; William s an d Marshall , 1987 ; Nakamura e t al. , 1988) . Interestingly , littl e attentio n has been give n t o date t o possible change s i n th e ex pression of other recepto r types . Anatomical an d functiona l studie s demonstrat e major change s i n th e expressio n o f nAChR subunit s in th e L C ove r the cours e o f development (Gallard o et al. , 2005) . Feta l L C neuron s exhibi t high-affinit y [ 3 H]nicotine bindin g tha t decrease s t o lo w adul t amounts durin g th e earl y postnata l perio d (Figs . 23-3, 23-4 , an d 23-5) . Consisten t wit h earlie r findings tha t high-affinit y [ 3 H]nicotine binding site s ar e comprised o f a4 and ß 2 subunit s (Zoli e t al. , 1998) ,
Age FIGURE 23- 4 Stimulatio n o f norepinephrin e (NE ) i n developin g forebrain. Developmental change s i n nicotine-stimulate d [ 3 H]NE fro m slice s o f hip pocampus (A) , cerebellum (B) , parieta l corte x (C) , an d hypothalamu s (D) . Significant difference s ( p < 0.01, Dunnett's test) relativ e to the adul t are signi fied by asterisks.
NICOTINE-AFFECTED DEVELOPMEN T
FIGURE 23- 5 Propertie s o f nAChR s tha t stimulat e [ 3 H]norepinephrine (NE ) releas e fro m locu s coeruleus terminals i n developin g parieta l cortex . A. Nicotine concentration-respons e curve s on P I (triangles), P 4 (diamonds) , an d P6 0 (adult ; circles). Nico tine potenc y an d maxima l releas e value s diffe r wit h age. B . DHß E inhibitio n o f nicotine-induce d [ 5 H]NE release from cortica l slice s on P 4 (diamonds) and P6 0 (adult; squares). Antagonist inhibition o n P 4 is biphasic, indicatin g that nicotine act s a t two differ ent type s of nAChR. I n contrast , th e antagonis t inhi bition curv e is monophasic i n adults. high amount s o f expression of ot4 and ß 2 mRNA s occurs i n th e L C durin g th e perinata l period , alon g with ot3 , a5 , an d ß 4 mRNA s (Fig . 23-3 ) (Gallard o et al , 2005) . Expressio n o f a4 an d a 5 mRNA s de clines during the first postnatal week , in parallel with the los s of high-affinity [ 3H]nicotine binding. Wherea s perinatal expressio n o f oc 3 an d ß 4 subuni t mRNA s is
homogeneously distribute d throughout th e entire nu cleus, there i s an emergenc e o f a topographic expres sion durin g th e earl y postnata l period , wit h highe r levels of expression in the dorsa l LC. At the sam e time, the phenotyp e o f th e matur e L C nACh R emerges , with increasin g postnata l expressio n o f ot 6 an d ß 3 mRNAs. Fetal L C cell s dissecte d fro m dorsa l rhomben cephalon o n G14 and culture d fo r 4 days have bee n shown t o tak e u p an d releas e [ 3 H]NE i n respons e to appropriat e physiologica l stimul i (Raymo n an d Leslie, 1994) . Nicotin e stimulate s [ 3 H]NE releas e from feta l culture d L C cell s vi a activatio n o f a re ceptor wit h hig h affinit y fo r nicotine an d propertie s consistent wit h tha t o f an a4ß2 * nACh R (Gallard o and Leslie , 1998) . The EC 50 value for nicotine stim ulation o f thi s nACh R wa s foun d t o b e < 1 jilM, which i s withi n th e rang e o f bloo d nicotin e level s found i n moderat e t o heav y smoker s (Benowitz , 1990). In orde r to evaluat e possibl e postnata l change s i n the propertie s o f nAChR s tha t regulat e N E release , similar studie s wit h slice s take n fro m L C termina l fields were conducted (Fig . 23-4) (Lesli e et al, 2002). Using thi s approach , a remarkabl e regiona l hetero geneity i n nACh R regulatio n o f transmitte r releas e from L C terminal s durin g th e postnata l perio d wa s shown. I n th e hippocampus , a late-maturin g struc ture, ther e i s n o majo r developmenta l switc h i n nAChR regulatio n o f NE releas e (Lesli e et al, 2002). There is a monotonie increas e in nicotine-stimulate d NE releas e fro m hippocampa l slice s durin g th e first postnatal wee k to reac h adul t concentration s b y P10. There i s als o n o chang e i n th e pharmacologica l profile o f hippocampa l nAChRs , wit h majo r contri butions o f both direc t an d indirec t pathway s at eac h postnatal stag e (Lesli e e t al, 2002) . I n contrast , an other structur e tha t mature s largel y durin g th e post natal period i n rat, the cerebellum, exhibit s substantial postnatal change s i n nAChR regulation of NE releas e (O'Leary and Leslie, 2003) . During th e first postnatal week, nicotin e i s highly efficacious , releasin g almos t 40% o f cerebella r N E store s a t a maxima l effectiv e concentration. Ther e i s a gradual decline i n nACh R efficacy durin g the nex t month to reach lo w adult levels. Pharmacologica l analysi s has show n tha t neona tal an d adul t nAChR s o n cerebella r L C terminal s have differen t subuni t compositions , wit h decreasin g involvement o f ß 2 subunit s i n th e adul t recepto r (O'Leary and Leslie , 2003).
NICOTINIC RECEPTO R REGULATIO N O F CATECHOLAMIN E 3 8 In parieta l cortex , ther e i s increase d maxima l nicotine-induced releas e in the neonatal perio d with a subsequent declin e t o lowe r adul t concentration s b y P7 (Fig. 23-4C) (Gallardo etal., 2005). More detaile d pharmacological analysi s ha s show n tha t ther e i s a switch in the properties of nAChRs on cortical LC ter minals durin g th e firs t postnata l wee k (Fig . 23-5 ) (Gallardo e t al , 2005) . Wherea s a t birt h nicotin e stimulates cortical NE releas e with high affinity , ther e is a n orde r o f magnitude decreas e i n potenc y b y P4 . At this age, nAChRs o n cortica l LC terminal s are in a period o f transitio n betwee n th e neonata l recepto r that ha s hig h affinit y fo r th e Ot4ß2-selectiv e antago nist, DHßE, and the adult low-affinity form . Hypothalamus wa s examined because , unlik e th e other brai n region s studied , i t ha s substantia l inpu t from th e medullar y catecholamin e nucle i a s well a s the LC . Thi s regio n als o shows enhanced efficac y o f nicotine t o releas e [ 3 H]NE during th e first postnatal week (Fig . 3-4D) . Subsequently , ther e ar e comple x changes i n nicotine-induce d transmitte r release , with adult profile s no t reache d unti l adolescenc e (P30) . Pharmacological comparison s o f nACh R propertie s at P 7 and adul t hav e show n that , simila r t o the cere bellum an d neocortex, the neonata l recepto r i n hypothalamus ha s distinc t propertie s fro m tha t o f adult . The neonata l for m o f th e recepto r i n al l thre e ter minal field s appear s t o hav e a predominanc e o f ß 2 subunits compare d t o adul t amounts , however , th e neonatal recepto r i s no t identica l acros s regions . I n the hypothalamu s and cerebellum , unlik e neocortex , the neonata l recepto r doe s no t hav e hig h affinit y fo r nicotine (Tabl e 23-3) . Althoug h hypothalamu s re ceives mixed inputs from NEergi c neurons o f both th e pons and medulla , lesio n studies in adult show that hypothalamic nAChR s selectivel y regulat e N E releas e from L C terminal s (Sperlag h e t al. , 1998) . Similarly , nAChRs are exclusively localized on hypothalamic LC terminals i n th e neonate , sinc e nicotine-stimulate d pH]NE release is abolished by the LC-selective neurotoxin DSP-4 (O'Leary and Leslie , 2005). These finding s ar e consisten t wit h a n importan t and changin g rol e of nAChRs i n regulating release of NE fro m L C terminal s throughou t development . Unique pattern s o f nicotinic regulatio n o f individual LC termina l field s indicat e tha t th e specifi c rol e o f nAChRs may vary by brain region. Despite thes e individual differences , ther e i s a consistent tren d i n mos t brain region s fo r enhance d nACh R efficac y durin g the perinata l perio d whe n L C i s hyperreactiv e t o
external stimuli. Thus cholinergic input s may provide an importan t mechanis m fo r regulatin g L C respon siveness during this critical neonatal period . Medullary Nuclei The VLM , whic h provides the majo r inhibitor y input to the L C (Aston-Jone s e t al, 1992) , exhibit s coordi nated developmenta l regulatio n o f nACh R subuni t expression. Ther e i s high perinata l expressio n o f oc 4 and oc 5 mRNAs , with a slow decline t o adult concentrations after birth . There is also a parallel increase i n oc6 and ß 3 mRNA expression during the postnata l pe riod, indicatin g tha t som e cell s o f th e VL M ma y switch their nAChR phenotype . In contrast to the L C and VLM , th e NT S exhibit s less dynami c alteration s in nACh R subuni t expressio n throughou t develop ment. Other than a brief up-regulation o f oc4 mRN A in feta l NTS , n o transien t nACh R expressio n ha s been observed. Rather, there i s a slow maturation dur ing the postnata l perio d to adult concentrations . The absenc e o f nAChRs o n medullar y hypothalamic terminal s precludes th e typ e o f functional analysis o f developmenta l change s i n th e propertie s o f nAChRs describe d for the L C (Gallard o e t al, 2005). More comple x i n vivo studies are required to evaluate this issue. Whereas nicotin e administratio n in vivo activates the HP A axis via stimulation o f nAChRs withi n the medull a (F u e t al. , 1997) , n o suc h stimulatio n is evident durin g earl y adolescenc e (dat a no t shown) . Such finding s sugges t tha t ther e i s a lat e postnata l maturation o f nACh R regulatio n o f HP A function , consistent wit h the lat e developmenta l maturatio n of nAChR expression withi n th e NTS .
DEVELOPMENTAL EXPOSURE
Gestation Although ther e ar e functionally active nAChRs o n fetal D A terminals , the y hav e relativel y lo w affinit y fo r nicotine (~10|iM ) (Aza m e t al. , 2005) . Thus , give n the lo w concentratio n o f nicotin e i n bloo d (-500 nM), one would expect there to be minimal occupancy o f these sites . I n contrast , nAChR s o n feta l LC neuron s an d neonata l cortica l terminal s expres s nAChRs wit h high affinit y fo r nicotine tha t woul d b e activated b y blood concentration s o f nicotine i n pregnant femal e smokers . Suc h finding s predic t tha t
390 NICOTINE-AFFECTE D DEVELOPMEN T prenatal exposure to nicotine has a more harmfu l effect o n developin g NEergi c system s than o n DAer gic systems . Althoug h a numbe r o f studie s sugges t that gestationa l nicotin e treatmen t doe s affec t th e development o f the striata l DAergic pathwa y (Olif f and Gallardo , 1999) , chroni c prenata l infusio n o f nicotine i n moderat e dose s mor e profoundl y affect s postnatal ontogen y o f NEergi c system s (Slotkin , 1998). Gestational treatmen t wit h nicotin e infusio n (3 mg/kg/day) induces a long-term chang e i n the effi cacy of nAChRs on cortica l LC terminal s (Fig. 23-6 ) (Gallardo e t al. , 2005) . Maximal nicotine-stimulate d [ 3 H]NE releas e i s greatl y increase d durin g th e firs t postnatal month and , although reduced , i s still signif icant in the adult. This does not result from a n overall increase i n th e excitabilit y o f L C terminals , sinc e
potassium-stimulated transmitte r releas e i s un changed b y gestationa l nicotine . No r doe s i t resul t from a delayed transition in the propertie s of terminal nAChRs; bot h anatomica l an d functiona l studie s have demonstrate d tha t ther e i s a norma l postnata l switch i n nACh R phenotype o n L C cell s an d corti cal terminal s i n gestationall y treate d animals . On e change i n nACh R properties , however , i s a muc h greater acut e nicotine-induce d recepto r desensitiza tion, tha t i s most eviden t a t lo w drug concentration s (data no t shown) . This finding may explain an appar ent discrepancy between i n vitro data (Gallardo et al., 2005) an d thos e o f a n earlie r i n viv o stud y (Seidle r et al, 1992 ) o f N E turnover , whic h foun d prenata l nicotine treatmen t t o induc e hypoactivit y i n th e re sponse o f N E system s t o acut e postnata l nicotin e treatment.
FIGURE 23- 6 Effec t o f gestationa l treatmen t wit h o f nicotine - (triangles ) o r saline - (squares ) treate d nicotine (3. 0 mg/kg/day) o n subsequen t nicotine - dam s o n P 4 (A) , P1 4 (B) , P3 0 (C) , o r P6 0 (adult ) induced [ 3 H]norepinephrine (NE ) releas e fro m (D) . Significan t difference s relativ e t o th e saline locus coeruleu s terminal s i n parieta l cortex . Nico - treate d grou p ar e identifie d b y **(£<0.01 ) an d tine concentration-respons e curve s ar e fro m pup s * * * ( / > < 0.001).
NICOTINIC RECEPTO R REGULATIO N O F CATECHOLAMIN E 39 1 Adolescence
Physiological Implications
It is well established that catecholamine systems, particularly DA , ar e no t full y mature d b y adolescenc e (Spear, 2000 ; Chamber s e t al , 2003) . Functiona l studies sho w tha t nACh R regulatio n o f mesolimbi c DAergic an d medullar y NEergic system s has no t yet fully mature d i n adolescen t rat s (Aza m e t al. , 2005). Such finding s sugges t tha t brai n catecholamin e systems ar e vulnerable to nicotin e exposur e durin g adolescence. A growin g bod y o f evidenc e support s thi s view. Exposur e t o dru g fo r relativel y shor t period s during adolescenc e i n roden t induce s permanen t changes i n behavior s mediate d b y forebrai n D A systems, includin g locomotio n an d rewar d (Slotkin , 2002; Adrian i e t al. , 2003 ; Farada y et al, 2003 ; Bel luzzi e t al. , 2004) . Simila r change s ar e no t observe d following equivalen t exposure in adult . Neurochemical studie s confir m tha t chroni c nicotin e treatmen t during adolescenc e produce s permanen t alteration s in D A an d N E system s i n ra t brai n (Traut h e t al. , 2001). Thus , catecholamin e system s withi n adoles cent brai n may be particularly vulnerable to the neu roteratogenic effects o f nicotine.
nAChRs are expressed on immature DA and NE neu rons and functio n to regulate transmitte r release in fetal brain . Suc h finding s sugges t a critica l interaction of cholinergic an d catecholamin e brai n system s during the earlies t phase o f brain development . Ther e is a lat e postnata l maturatio n o f mos t cholinergi c sys tems (Hohman n and Ebner , 1985 ; Dinopoulo s e t al., 1989; Kis s and Patel , 1992) , however, a brief perinatal phase o f cholinergi c neurona l expressio n ha s bee n described i n severa l brain regions, includin g neocor tex and cerebellu m (Goul d an d Butcher , 1987 ; Dor i and Parnavelas, 1989) . Thus, transient cholinergic innervation ma y provid e critical regulatio n o f developing catecholamine system s via activation of nAChRs. Although ther e ar e regiona l difference s i n th e properties o f nAChR s tha t regulat e termina l cate cholamine releas e durin g th e perinata l period , ther e are som e commonalities . Mos t feta l catecholaminer gic cells , bot h DAergi c an d NEergic , expres s hig h amounts o f [3H]nicotine binding and a4/ß2 mRNAs. Many cell s als o expres s th e oc 5 structura l subunit , which combine s wit h othe r subunit s t o alte r agonis t affinity, calciu m permeability , an d agonis t desensiti zation (Wan g et al, 1996 ; Gerzanic h et al, 1998) . Although quit e rar e in adul t brain , nAChR s comprise d of oe4oc5ß 2 subunit s ar e highl y expresse d durin g th e perinatal perio d an d ma y serv e uniqu e functiona l roles (Conro y an d Berg , 1998) . Afte r birth , ther e i s a declin e i n oc 4 an d oe 5 subuni t expressio n an d o f [3H]nicotine binding. During thi s period , ther e i s increased expressio n of oe6 and ß 3 subunits . These subunits do not appear to contribute to fetal nAChR s bu t are importan t constituent s o f nAChRs i n adul t cate cholamine termina l field s (Len a e t al. , 1999) . Concomitant change s i n th e pharmacologica l propertie s of nAChR s tha t regulat e termina l catecholamin e re lease ar e observed . Thus , i n bot h N E an d D A neu rons ther e i s a postnata l switc h i n th e propertie s o f terminal nAChR s t o th e matur e phenotype . Thes e findings suggest that nAChR s serv e critical regulatory roles fo r catecholamin e pathway s at al l stage s of on togeny bu t tha t th e natur e o f the functiona l interac tion changes with age.
PHYSIOLOGICAL AND CLINICAL IMPLICATIONS
Methodological Issue s Whereas earl y i n viv o studie s hav e show n lastin g changes induce d b y gestationa l nicotin e treatmen t (Slotkin, 1998 ; Erns t e t al , 2001) , th e underlyin g mechanisms ar e unclear . A systematic i n vitr o analysis wa s performe d t o clarif y mechanism s underlyin g nAChR regulatio n o f developin g catecholaminergi c neurons. Accordingly, it was demonstrated tha t nAChR are ke y regulator s o f developin g catecholaminergi c neurons. Interpretation o f these data mus t be qualifie d because nACh R pharmacolog y i s extremely complex, and subuni t composition o f native receptors is difficult to asses s (Cordero-Erausquin e t al. , 2000 ; Whiteaker et al. , 2000) . Furthermore , severa l type s o f nACh R may b e expresse d withi n a singl e cell , wit h differen tial localizatio n o f receptor subtype s in termina l an d somatodendritic region s (Champtiau x e t al , 2003) . Given thes e caveats, it is difficult t o draw conclusions about the natur e of nAChR regulatio n of somatodendritic area s tha t hav e bee n show n t o hav e critica l functional roles .
Clinical Implication s Fetal L C neuron s an d thei r cortica l terminal s hav e nAChRs wit h sufficiently hig h affinit y fo r nicotine t o
392 NICOTINE-AFFECTE D DEVELOPMEN T be activate d b y materna l smoking . Chroni c gesta tional exposure to nicotine, at concentrations approximating bloo d concentration s i n smokers , induce s long-term change s i n th e propertie s o f nAChR s o n cortical L C terminal s suc h tha t thei r efficac y i s in creased, but the y are more readil y desensitized by agonist exposure . Given th e critica l role o f central N E in modulatin g cognitiv e an d viscera l function s an d the apparen t functiona l importanc e o f nAChR s i n regulating NEergic system s throughout development , such findings have substantial implications for understanding the etiolog y of many of the advers e effect s o f maternal smoking . In particular , altered sensitivit y of central NEergic systems to nAChR stimulation and to perinatal hypoxia has been implicate d i n the etiolog y of sudde n infan t deat h syndrom e (Slotki n e t al. , 1995). Give n th e critica l role o f the L C i n cognitio n and attentio n a t al l stage s o f developmen t (Aston Jones et al, 1999 ; Moricea u an d Sullivan , 2004), i t is likely that disrupte d developmen t o f forebrain NEer gic system s may also contribut e t o the cognitiv e dys function an d ADHD that are associated with maternal smoking. DA system s ar e les s severel y disrupted b y gesta tional nicotin e exposure , however , ther e i s evidenc e for long-ter m alteration s i n forebrai n DAergi c func tion (Slotkin , 1998 ; Muneok a e t al, 1999) . Striata l DAergic terminal s expres s a lower-affinit y nACh R during the feta l period , which would no t be activated by blood-born e nicotin e i n th e pregnan t femal e (Azam e t al., 2005) . Som e type s of nAChR, however , are desensitize d b y nicotin e a t fa r lowe r concentra tions than thos e require d to activate the recepto r (L u et al , 1999 ; Wooltorto n e t al, 2003) . Furthermore , somatodendritic nAChRs , whic h ar e criticall y implicated i n the effect s o f systemic nicotine on D A release (Champtiaux e t al., 2003) , have no t bee n evaluated . Thus, gestationa l nicotin e exposur e ma y directl y in fluence th e ontogen y of DAergic system s via modula tion of nAChR function. Adolescence i s also a critica l tim e fo r maturatio n of forebrai n limbi c system s an d thei r afferen t cate cholamine input s (Spear , 2000 ; Chamber s e t al. , 2003). DAergi c systems , i n particular , are stil l quit e immature an d termina l nAChR s i n ventra l striatu m are more highly activated by nicotine a t this age tha n in the adult . Biochemical and behavioral studies indicate tha t bot h acut e an d chroni c nicotin e hav e unique effect s o n catecholamin e systems during adolescence tha t ar e no t observe d i n adul t (Slotkin ,
2002). Thus, early smoking i n adolescence may rein force subsequen t addiction , a s has been suggeste d b y epidemiological studie s (Kande l an d Logan , 1984 ; Kandel e t al. , 1992) , b y modifyin g forebrai n cate cholamine development . Tobacco smok e contain s thousand s o f chemicals , many o f which disrup t development. Thi s has le d t o the recommendatio n tha t nicotin e replacemen t ther apy (NRT ) b e use d extensivel y a s a n alternativ e t o smoking by pregnant women (Dempse y and Benowitz, 2001). Some studies , however, have questioned th e efficacy of NRT a s a smoking cessation ai d for pregnant women an d adolescent s (Hur t e t al, 2000 ; Wisbor g et al , 2000) . Furthermore , a growin g bod y o f evi dence show s (a ) tha t nAChR s pla y a critica l rol e i n modulating neura l developmen t an d (b ) tha t expo sure o f immatur e brai n t o nicotin e ca n disrup t nor mal cholinergi c regulatio n o f ontogenetic processes . Thus, the safet y of NRT as a therapeutic regimen dur ing pregnancy and adolescence need s to be evaluated more thoroughly . Abbreviations ACh acetylcholin e ADHD attentio n defici t hyperactivit y disorder CNS centra l nervous syste m DA dopamin e EC 5o concentratio n effectin g a half maximal response G gestationa l day HPA hypothalamic-adrenal-pituitar y LC locu s coeruleus nAChR nicotini c acetylcholine recepto r NE norepinephrin e NRT nicotin e replacemen t therap y NTS nucleu s tractu s solitarius P postnata l day SN substantia l nigra TH tyrosin e hydroxylase VLM ventrolatera l medull a VTA ventra l tegmental are a
ACKNOWLEDGMENTS Thi s wor k wa s supported by a grant from th e Nationa l Institute of Drug Abuse and b y
NICOTINIC RECEPTO R REGULATION O F CATECHOLAMIN E 39 3 graduate fellowship s fro m th e Californi a Tobacco Related Diseas e Researc h Program . W e woul d lik e t o thank Drs . Tilin g Chen , Ursul a Winzer-Serhan , an d Sandra Loughli n fo r their helpful contributions. References Adriani W , Spijke r S , Deroche-Gamonet V, Laviol a G , Le Moa l M , Smi t AB, Piazza P V (2003 ) Evidenc e for enhanced neurobehavioral vulnerability to nicotine durin g periadolescenc e i n rats . J Neurosc i 23:4712-4716. Andersen SL , Teiche r M H (2000 ) Se x difference s i n dopamine receptors an d thei r relevanc e t o ADHD. Neurosci Biobehav Rev 24:137-141. Andersen SL , Thompson AT, Rutstein M , Hostette r JC , Teicher M H (2000 ) Dopamine recepto r prunin g in prefrontal corte x durin g th e periadolescen t perio d in rats . Synapse 37:167-169 . Andresen MC , Kunz e D L (1994 ) Nucleu s tractu s solitarius- gatewa y t o neura l circulator y control . Annu Rev Physiol 56:93-116. Aston-Jones G , Astie r B, Enni s M (1992 ) Inhibitio n o f noradrenergic locu s coeruleu s neuron s b y C l adrenergic cells in the rostral ventral medulla. Neuroscience 48:371-381. Aston-Jones G , Rajkowsk i J , Cohen J (1999 ) Rol e o f locus coeruleu s i n attentio n an d behaviora l flexibility. Biol Psychiatry 46:1309-1320. (2000) Locu s coeruleu s an d regulatio n o f behavioral flexibilit y an d attention . Pro g Brai n Re s 126 : 165-182. Azam L, Chen Y, Leslie F M (2005 ) Developmental reg ulation of nicotinic acetylcholine receptors on mid brain dopamine neurons . Submitted . Azam L, Winzer-Serhan UH , Chen Y, Leslie FM (2002) Expression o f neuronal nicotini c acetylcholin e re ceptor subuni t mRNAs within midbrain dopamin e neurons.} Comp Neurol 444:260-274. Badanich KA , Kirstei n C L (2004 ) Nicotin e administration significantl y alter s accumba l dopamin e i n th e adult bu t no t i n th e adolescen t rat . An n N Y Acad Sei 1021:410-417 . Belluzzi JD , Le e AG , Olif f HS , Lesli e F M (2004 ) Agedependent effect s o f nicotine o n locomoto r activit y and conditione d plac e preferenc e i n rats . Psy chopharmacology 174:389-395 . Belluzzi JD , Wan g R , Lesli e F M (2005 ) Acetaldehyde enhances acquisition of nicotine self-administratio n in adolescen t rats . Neuropsychopharmacolog y 30 : 705-712. Benes FM, Taylor JB, Cunningham M C (2000 ) Convergence an d plasticit y o f monoaminergi c system s i n the media l prefronta l corte x durin g th e postnata l
period: implication s fo r th e developmen t o f psy chopathology. Cere b Cortex 10:1014-1027 . Benowitz NL (1990 ) Pharmacokineti c consideration s i n understanding nicotin e dependence . Cib a Foun d Symp 152:186-200 . Berridge CW , Waterhous e B D (2003 ) Th e locu s coeruleus-noradrenergic system: modulation o f behavioral stat e an d state-dependen t cognitiv e pro cesses. Brai n Res Rev 42:33-84. Berridge KG , Robinso n T E (1998 ) Wha t i s the rol e o f dopamine i n reward : hedonic impact , rewar d learn ing, o r incentiv e salience ? Brai n Re s Re v 28:309 — 369. Broide RS , Lesli e F M (1999 ) Th e oc 7 nicotini c acetyl choline recepto r i n neuronal plasticity. Mol Neurobio!20:l-16. Buka SL, Shenassa ED , Niaur a R (2003) Elevated ris k of tobacco dependenc e amon g offsprin g o f mother s who smoke d durin g pregnancy : a 30-yea r prospec tive study. Am J Psychiatry 160:1978-1984. Chambers RA, Taylor JR , Potenza M N (2003 ) Developmental neurocircuitr y o f motivatio n i n adoles cence: a critica l perio d o f addictio n vulnerability. Am J Psychiatry 160:1041-1052. Champtiaux N , Gott i C , Cordero-Erausqui n M , Davi d DJ, Przybylski C, Len a C , dementi F , Moretti M , Rossi FM , L e Nover e N , Mclntos h JM , Gardie r AM, Changeu x JP (2003 ) Subuni t compositio n of functional nicotini c receptor s i n dopaminergic neu rons investigate d with knock-ou t mice . J Neurosc i 23:7820-7829. Conroy WG , Ber g D K (1998 ) Nicotini c recepto r sub types i n th e developin g chic k brain : appearance o f a species containing the oc4 , ß2 , an d cc 5 gene prod ucts. Mol Pharmacol 53:392-401 . Cordero-Erausquin M , Marubio LM, Klink R, Changeu x JP (2000 ) Nicotini c recepto r function : ne w per spectives fro m knockou t mice . Trend s Pharmaco l Sei 21:211-217. Gui C , Booke r TK, Alle n RS , Grad y SR , Whiteaker P , Marks MJ , Salmine n O , Tritt o T , But t CM , Alle n WR, Stitze l JA , Mclntosh JM , Boulte r J , Collin s AC, Heineman n S F (2003 ) Th e ß 3 nicotini c receptor subunit: a component o f a-conotoxin Mil binding nicotinic acetylcholine receptors tha t mod ulate dopamin e releas e an d relate d behaviors . J Neurosci 23:11045-11053 . Dempsey DA , Benowitz NL (2001 ) Risk s and benefit s of nicotine t o ai d smokin g cessatio n i n pregnancy . Drug Safety 24:277-322. Dinopoulos A , Eadi e LA , Dor i I , Parnavela s J G (1989) The developmen t o f basal forebrain projec tions t o th e ra t visua l cortex . Ex p Brai n Re s 76 : 563-571.
394 NICOTINE-AFFECTE D DEVELOPMEN T Dori I , Parnavela s } G (1989 ) Th e cholinergi c innerva tion o f th e ra t cerebra l corte x show s tw o distinc t phases in development. Ex p Brain Res 76:417-423. Ernst M , Moolcha n ET , Robinso n M L (2001 ) Behav ioral and neura l consequences o f prenatal exposure to nicotine . ] A m Aca d Chil d Adoles c Psychiatr y 40:630-641. Faraday MM , Elliot t BM , Phillip s JM , Grunber g N E (2003) Adolescent and adul t male rat s differ i n sensitivity to nicotine' s activit y effects . Pharmaco l Bio chemBehav 74:917-931. Ferreira M , Sing h A , Dretchen KL , Kellar KJ , Gillis R A (2000) Brainste m nicotini c recepto r subtype s tha t influence intragastri c and arteria l bloo d pressures . J Pharmacol Ex p Ther 294:230-238. Fried PA , Watkinso n B (2001 ) Differentia l effect s o n facets of attention i n adolescents prenatally exposed to cigarette s an d marihuana . Neurotoxico l Terato l 23:421-430. Fu Y, Matta SG, Valentine JD, Sharp BM (1997) Adrenocorticotropin response and nicotine-induced norepi nephrine secretion i n the rat paraventricular nucleus are mediate d throug h brainste m receptors . En docrinology 138:1935-1943 . Fung Y K (1988 ) Postnata l behavioura l effect s o f mater nal nicotin e exposur e i n rats . J Phar m Pharmaco l 40:870-872. Gallardo KA , Chen Y, Leslie, F M (2005 ) Developmen tal switc h i n nicotini c receptor s tha t regulat e cortical norepinephrine release . Submitted . Gallardo KA , Lesli e F M (1998 ) Nicotine-stimulate d release o f [ 3 H]norepinephrine fro m feta l ra t lo cus coeruleu s cell s i n culture . J Neuroche m 70 : 663-670. Gerzanich V , Wang F , Kuryato v A, Lindstro m ] (1998 ) oc5 Subuni t alter s desensitization , pharmacology , Ca++ permeability and Ca ++ modulation o f human neuronal Ot 3 nicotini c receptors . J Pharmaco l Ex p Ther 286:311-320. Gould E , Butche r L L (1987 ) Transien t expressio n o f choline acetyltransferase-lik e immunoreactivit y i n Purkinje cell s o f th e developin g ra t cerebellum. Brain Res 431:303-306. Hellstrom-Lindahl E , Cour t J A (2000) Nicotinic acetyl choline receptors durin g prenatal developmen t an d brain patholog y i n huma n aging . Beha v Brain Res 113:159-168. Heslop DJ , Bandle r R , Kea y K A (2004) Haemorrhage evoked decompensatio n an d recompensatio n me diated b y distinc t projection s fro m rostra l an d caudal midlin e medulla i n th e rat . Eur J Neurosci 20:2096-2110. Hohmann CF , Ebne r F F (1985 ) Developmen t o f cholinergic markers in mouse forebrain. I . Cholin e
acetyltransferase enzym e activit y an d acetyl cholinesterase histochemistry . Brai n Re s 355 : 225-241. Hurt RD, Croghan GA, Beede SD , Wolter TD, Crogha n IT, Patten C A (2000) Nicotine patch therap y in 10 1 adolescent smokers : efficacy , withdrawa l symptom relief, an d carbo n monoxid e an d plasm a cotinin e levels. Arch Pediatr Adolesc Med 154:31-37 . Kahn RS , Khoury J, Nichols WC, Lanphea r B P (2003) Role o f dopamine transporte r genotype an d mater nal prenata l smokin g i n childhoo d hyperactive impulsive, inattentive , an d oppositiona l behaviors . J Pediatr 143:104-110 . Kaiser SA , Soliakov L, Harve y SC, Luetj e CW , Wonna cott S (1998) Differential inhibitio n b y oc-conotoxinMII o f th e nicotini c stimulatio n o f pHjdopamin e release fro m ra t striata l synaptosome s an d slices . J Neurochem 70:1069-1076 . Kandel DB , Loga n J A (1984) Pattern s o f drug us e fro m adolescence t o youn g adulthood : I . Period s o f ris k for initiation , continue d use , an d discontinuation . Am J Public Healt h 74:660-666 . Kandel DB , Yamaguchi K, Chen K (1992) Stages o f progression i n dru g involvemen t from adolescenc e t o adulthood: furthe r evidenc e fo r the gatewa y theory. J Stu d Alcohol 53:447-457 . Kimura F , Nakamura S (1987) Postnata l development of oc-adrenoceptor—mediated autoinhibitio n i n th e lo cus coeruleus. Brain Res 432:21-26. Kiss J, Patel AJ (1992) Development o f the cholinergi c fibres innervatin g th e cerebra l corte x o f the rat . In t J Dev Neurosci 10:153-170 . Klink R , d e Kerchov e d'Exaerde A, Zoli M , Changeu x JP (2001 ) Molecula r an d physiologica l diversit y of nicotini c acetylcholin e receptor s i n th e mid brain dopaminergi c nuclei . J Neurosc i 21:1452 1463. Konig N, Wilkie MB, Lander JM (1988) Tyrosine hydroxylase an d serotoni n containin g cell s in embryoni c rat rhombencephalon : a whole-moun t immunocy tochemical study . J Neurosci Res 20:212—223 . Kulak JM , Nguye n TA , Oliver a BM , Mclntos h J M (1997) ot-Conotoxin Mil blocks nicotine-stimulate d dopamine releas e i n ra t striata l synaptosomes . J Neurosci 17:5263-5270 . Labarca C, Schwar z J, Deshpande P , Schwarz S, Nowak MW, Fonc k C , Nashm i R , Kofuj i P , Dang H , Sh i W, Fidan M , Khak h BS, Chen Z, Bowers BJ, Boulter J , Wehner JM , Leste r H A (2001 ) Poin t mutan t mice wit h hypersensitiv e oc 4 nicotini c receptor s show dopaminergi c deficit s an d increase d anxiety. Proc Natl Acad Se i USA 98:2786-2791. Lambe EK , Krime r LS , Goldman-Rakic P S (2000 ) Dif ferential postnata l developmen t o f catecholamin e
NICOTINIC RECEPTOR REGULATION OF CATECHOLAMIN E 39 5 and serotoni n input s t o identifie d neuron s i n pre frontal corte x o f rhesu s monkey . J Neurosc i 20 : 8780-8787. Lander JM, Bloo m F E (1974 ) Ontogen y o f monoamine neurons i n th e locu s coeruleus , raph e nucle i an d substantia nigr a o f th e rat . I . Cel l differentiation , J Comp Neurol 163:251-264 . Laviola G , Macr i S , Morley-Fletche r S , Adrian i W (2003) Risk-takin g behavio r i n adolescen t mice : psychobiological determinant s an d early epigeneti c influence. Neurosc i Biobehav Rev 27:19-31. Lena C , d e Kerchov e D'Exaerd e A, Cordero-Erausquin M, L e Nover e N , de l Ma r Arroyo-Jimene z M , Changeux J P (1999 ) Diversit y and distributio n of nicotinic acetylcholin e receptor s i n th e locu s ceruleus neurons . Pro c Nat l Aca d Se i US A 96 : 12126-12131. Leonard S , Bertrand D (2001 ) Neuronal nicotini c recep tors: fro m structur e t o function . Nicotine To b Re s 3:203-223. Leslie FM , Gallard o KA , Par k M K (2002 ) Nicotini c acetylcholine receptor—mediated releas e of [3 H]norepinephrine fro m developin g an d adul t ra t hippocampus: direc t an d indirec t mechanisms . Netiropharmacology 42:653-661. Levin ED , Wilkerso n A , Jone s JP , Christophe r NC , Briggs S J (1996) Prenata l nicotin e effect s o n mem ory i n rats : pharmacologica l an d behaviora l chal lenges. Dev Brain Res 97:207-215. Levitt P , Harvey JA, Friedman E , Simansk y K, Murphy EH (1997 ) Ne w evidenc e fo r neurotransmitte r in fluences o n brai n development . Trend s Neurosc i 20:269-274. Lewis D A (1997 ) Developmen t o f the prefronta l corte x during adolescence: insight s into vulnerable neural circuits i n schizophrenia . Neuropsychopharmacol ogy 16:385-398 . Loughlin SE , Foot e SL , Bloo m F E (1986 ) Efferen t projections o f nucleus locus coeruleus : topographi c organization o f cell s o f origi n demonstrate d b y three-dimensional reconstruction . Neuroscience 18 : 291-306. Lu Y , Marks MJ , Collin s A C (1999 ) Desensitizatio n o f nicotinic agonist—induce d [ 3 H]y-aminobutyric acid release fro m mous e brai n synaptosome s i s pro duced b y subactivating concentrations o f agonists. J Pharmacol Exp Ther 291:1127-1134. Marshall KG , Christi e MJ , Finlayso n PG , William s J T (1991) Developmenta l aspect s o f th e locu s coeruleus-noradrenaline system . Pro g Brai n Re s 88:173-185. Marubio LM, Gardie r AM, Durie r S , David D , Klin k R, Arroyo-Jimenez MM , Mclntos h JM , Ross i F , Champtiaux N, Zoli M, Changeux J P (2003) Effect s
of nicotin e i n th e dopaminergi c syste m o f mic e lacking the oc 4 subunit of neuronal nicotini c acetylcholine receptors . Eu r J Neurosci 17:1329-1337 . Metherate R , Hsie h C Y (2004 ) Synapti c mechanism s and cholinergi c regulatio n i n auditor y cortex. Pro g Brain Re s 145:143-156 . Moriceau S , Sulliva n R M (2004 ) Uniqu e neura l cir cuitry fo r neonata l olfactor y learning . J Neurosc i 24:1182-1189. Muneoka K , Nakatsu T , Fuj i J , Ogaw a T , Takigaw a M (1999) Prenatal administratio n of nicotine results in dopaminergic alteration s i n th e neocortex . Neuro toxicol Teratol 21:603-609 . NaeffB, Schlump f M , Lichtensteiger W (1992 ) Pré- and postnatal development o f high-affinity [ 3H]nicotine binding site s i n ra t brai n regions : a n autoradio graphie study . Dev Brain Re s 68:163-174. Nakamura S , Kimur a F , Sakaguch i T (1987 ) Postnata l development o f electrica l activit y i n th e locu s ceruleus. J Neurophysiol 58:510-524 . Nakamura S, Sakaguchi T, Kimura F, Aoki F (1988) Th e role o f otl-adrenoceptor-mediated collatera l excita tion i n the regulatio n o f the electrica l activity of locus coeruleus neurons . Neuroscience 27:921—929 . Naqui SZ , Harri s BS , Thomaido u D , Parnavela s J G (1999) Th e noradrenergi c syste m influence s th e fate o f Cajal-Retziu s cell s i n th e developin g cere bral cortex . De v Brain Res 113:75-82. Navarro HA , Seidle r FJ , Whitmor e WL , Slotki n T A (1988) Prenata l exposur e t o nicotin e vi a materna l infusions: effect s o n developmen t o f catecholamin e systems. J Pharmacol Ex p Ther 244:940-944. Newman MB , Shytl e RD , Sanber g P R (1999 ) Locomo tor behavioral effects o f prenatal and postnata l nico tine exposur e i n rat offspring. Beha v Pharmacol 10 : 699-706. Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion , motivatio n and cog nition. Cur r Opin Neurol 1 6 (Suppl 2):S3-9. O'Leary KT , Lesli e F M (2003 ) Developmenta l regula tion o f nicotini c acetylcholin e receptor-mediate d [ 3 H]norepinephrine releas e fro m ra t cerebellum . J Neurochem 84:952-959 . (2005) Enhance d nicotini c acetylcholin e receptor-mediated [ 3 H]norepinephrine release fro m neonatal ra t hypothalamus. Submitted . Oliff HS , Gallard o K A (1999) The effec t o f nicotine o n developing brai n catecholamin e systems . Fron t Biosci4:D883-897. Ospina JA, Broide RS, Acevedo D , Robertso n RT 7 Lesli e FM (1998 ) Calciu m regulatio n o f agonist bindin g to oc7-typ e nicotini c acetylcholin e receptor s i n adult and feta l ra t hippocampus. J Neurochem 70 : 1061-1068.
396 NICOTINE-AFFECTE D DEVELOPMEN T Pauly JR , Spark s JA , Hause r KF , Paul y T H (2004 ) I n utero nicotin e exposur e cause s persistent , gender dependant change s i n locomotor activit y and sensitivity t o nicotin e i n C57B1/ 6 mice . In t J De v Neurosci22:329-337. Picciotto MR , Caldaron e BJ , Brunzell DH , Zachario u V, Steven s TR , Kin g S L (2001 ) Neurona l nico tinic acetylcholin e recepto r subuni t knockou t mice: physiologica l an d behaviora l phenotype s and possibl e clinical implications. Pharmacol Ther 92:89-108. Pidoplichko VI , DeBias i M , William s JT , Dan i J A (1997) Nicotine activate s and desensitizes midbrai n dopamine neurons. Nature 390:401-404. Raymon HK , Lesli e F M (1994 ) Opioi d effect s o n [ 3 H] norepinephrine releas e fro m dissociate d em bryonic locus coeruleu s cultures. J Neurochem 62 : 1015-1024. Rezvani AH, Levin ED (2004 ) Adolescent an d adul t rats respond differentl y t o nicotin e an d alcohol : moto r activity an d bod y temperature. In t J De v Neurosc i 22:349-354. Ribary U , Lichtensteiger W (1989 ) Effect s o f acute an d chronic prenata l nicotin e treatmen t o n centra l catecholamine system s of male and femal e ra t fetuses and offspring . J Pharmacol Exp Ther 248:786-792. Ritter S , Bugarit h K , Din h T T (2001 ) Immunotoxi c destruction o f distinc t catecholamin e subgroup s produces selectiv e impairmen t o f glucoregulator y responses an d neurona l activation . J Comp Neuro l 432:197-216. Ritter S, Watts AG, Dinh TT , Sanchez-Watt s G , Pedrow C (2003 ) Immunotoxi n lesio n o f hypothalami cally projectin g norepinephrine an d epinephrin e neurons differentiall y affect s circadia n an d stressor stimulated corticosteron e secretion. Endocrinolog y 144:1357-1367. Role LW, Berg DK (1996) Nicotinic receptors in the de velopment and modulatio n o f CNS synapses . Neuron 16:1077-1085 . Ruiz S , Fernandez V , Belmar J, Hernandez A , Perez H , Sanhueza-Tsutsumi M, Alarcon S , Soto-Moyano R (1997) Enhancemen t o f centra l noradrenalin e re lease during development alters the packing density of neurons in the ra t occipital cortex. Biol Neonat e 71:119-125. Salminen O, Murphy KL , Mclntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit compo sition an d pharmacolog y o f tw o classe s o f striatal presynaptic nicotini c acetylcholine receptors mediating dopamin e releas e i n mice . Mo l Pharmaco l 65:1526-1535. Seidler FJ, Levin ED, Lapp i SE, Slotkin TA (1992) Fetal nicotine exposur e ablate s th e abilit y o f postnata l
nicotine challeng e t o release norepinephrin e fro m rat brain regions. Dev Brain Res 69:288-291. Shacka JJ , Fennel l OB , Robinso n S E (1997 ) Prenata l nicotine sex-dependentl y alter s agonist-induced lo comotion an d stereotypy . Neurotoxico l Terato l 19 : 467-476. Slotkin T A (1998) Feta l nicotin e o r cocain e exposure : which on e i s worse ? J Pharmaco l Ex p The r 285 : 931-945. Slotkin TA (2002) Nicotine an d the adolescent brain: insights from a n anima l model . Neurotoxico l Terato l 24:369-384. Slotkin TA, Lappi SE , McCook EC, Lorbe r BA , Seidler FJ (1995 ) Loss o f neonata l hypoxi a toleranc e afte r prenatal nicotine exposure : implications for sudden infant death syndrome . Brain Res Bull 38:69-75. Spear L P (2000 ) The adolescen t brai n an d age-relate d behavioral manifestations . Neurosc i Biobeha v Re v 24:417-463. Specht LA , Pickel VM , Jo b TH , Rei s DJ (1981 ) Light microscopic irnmunocytocheniica l localizatio n o f tyrosine hydroxylas e in prenata l ra t brain . I . Early ontogeny. J Comp Neurol 199:233-253 . Sperlagh B , Sershe n H , Lajth a A , Vizi E S (1998 ) Co release o f endogenous AT P and [ 3H]noradrenaline from ra t hypothalami c slices : origi n an d modula tion b y oc2-adrenoceptors . Neuroscienc e 82:511 520. Sullivan R M (2003 ) Developin g a sens e o f safety : th e neurobiology o f neonata l attachment . An n N Y Acad Sei 1008:122-131 . Tarazi FI , Baldessarin i RJ (2000) Comparative postnata l development o f dopamine D(l) , D(2 ) and D(4 ) receptors i n ra t forebrain . In t J De v Neurosc i 18 : 29-37. Thapar A , Fowler T, Ric e F , Scourfiel d J , van den Bre e M, Thomas H , Harol d G , Ha y D (2003 ) Maternal smoking during pregnancy and attentio n defici t hyperactivity disorde r symptom s i n offspring . A m J Psychiatry 160:1985-1989 . Trauth JA , Seidler FJ , Ali SF, Slotki n TA (2001) Adolescent nicotin e exposur e produce s immediat e an d long-term change s i n CN S noradrenergi c an d dopaminergic function. Brain Res 892:269-280. Vastola BJ , Douglas LA , Varlinskaya El, Spea r L P (2002 ) Nicotine-induced conditione d plac e preferenc e i n adolescent and adult rats. Physiol Behav 77:107-114. Voorn P , Kalsbeek A, Jorritsma-Byham B , Groenewege n HJ (1988 ) Th e pre - an d postnata l developmen t o f the dopaminergi c cell groups in the ventral mesen cephalon an d th e dopaminergi c innervatio n of the striatum o f the rat . Neuroscience 25:857-887. Wang F , Gerzanic h V , Well s GB , Anan d R , Pen g X , Keyser K , Lindstro m J (1996 ) Assembl y of huma n
NICOTINIC RECEPTOR REGULATION O F CATECHOLAMIN E 39 7 neuronal nicotinic receptor oc 5 subunits with oc3, ß2 , and ß 4 subunits. J Biol Chem 271:17656-17665. Whiteaker P, Marks MJ, Grad y SR , Lu Y, Picciotto MR , Changeux JP, Collins A C (2000 ) Pharmacological and nul l mutatio n approache s revea l nicotini c re ceptor diversity. Eur ] Pharmacol 393:123—135 . Williams JT, Marshall K C (1987 ) Membran e propertie s and adrenergi c response s i n locu s coeruleu s neu rons of young rats. J Neurosci 7:3687-3694. Wisborg K , Henrikse n TB , Jesperse n LB , Seche r N J (2000) Nicotin e patche s fo r pregnan t smokers : a randomized controlle d study . Obste t Gyneco l 96 : 967-971.
Wooltorton JR , Pidoplichk o VI , Broid e RS , Dan i J A (2003) Differentia l desensitizatio n and distributio n of nicotini c acetylcholin e recepto r subtype s i n midbrain dopamin e areas . } Neurosc i 23:3176 3185. Zoli M , Len a C , Picciott o MR , Changeu x J P (1998 ) Identification o f fou r classe s o f brai n nicotini c re ceptors usin g ß 2 mutan t mice . J Neurosc i 18 : 4461-4472. Zoli M , L e Nover e N , Hil l J A Jr, Changeu x J P (1995 ) Developmental regulatio n o f nicotinic ACh recep tor subuni t mRNA s i n th e ra t centra l an d periph eral nervous systems. J Neurosci 15:1912-1939 .
This page intentionally left blank
Index
apoptosis protease-activating facto r (APAF) , 74, 78, 93-98, 268 neural crest, 286-290 tumor necrosi s factor (TNF) , 95, 97, 98, 167 , 169 , 171 , 268, 269 , 272 , 300 Arginine vasopressin (AVP), 156 , 161, 162 , 171 Astrocyte. See Glia Astrotactin, 31 Attention, 129 , 130 , 134 , 319 , 320 Attention deficit hyperactivit y disorder (ADHD), 129 , 130 , 134,319,367,381,392 Autophagy, 74, 92, 246 Axon bundling, fasciculation , 51 , 55 effect o f ethanol, 233, 23 4 fate, specification , 46, 48, 23 4 growth, 47, 49, 50 , 58, 111, 233, 235, 238 growth con e chemotaxis, directed growth, 50, 54 filopodia, 28, 45,48-50,58, 236, 237 lamellipodia, 28, 45, 48, 49, 236, 237 motility, 48, 49 structure, 48, 347 guidance, 50-56,233,235 , 354 pruning, 60, 233, 384
Academic performance, 13 3 mathematics, 133 , 134 Acetylcholine (ACh), 155 , 300, 346, 347 , 352 , 367, 36 8 acetylcholinesterase, 347, 351 , 369 cholinergic neurotransmission , 341-354 receptors. Se e Receptor s Acquired immunodeficienc y syndrom e (AIDS ) 370-371 . See also Human immunodeficienc y virus (HIV) Actin. See Cytoskeleton Activity-dependent neurotrophic protei n (ADNP) , 303 Activity-dependent neurotrophic facto r (ADNF), 301,303 Adolescence, 126 , 131 , 134, 135 , 316, 341 , 350, 352 Adrenalectomy (ADX), 159-162 , 169 Adrenal gland, 153-155 , 159 , 160,281,28 5 Adrenocorticotrophic hormone (ACTH) , 156 , 158 , 160-165, 168 , 169 , 17 1 Alcohol dehydrogenase (ADH) , 106, 288-290, 300 Alfred E . Newman, 4- 6 Anxiety. See Mood disorders Apoptosis (programmed cel l death), 73 , 73, 76-79, 81, 85, 92-99, 163 , 171 , 206, 207, 248, 253-255 , 267-274, 349, 366 , 368 , 369 . See also DNA , fragmentation apoptosis inducing factor (AIF) , 95-98, 268-271
399
400 INDE X Basal forebrain, 17 Basal ganglia (including caudate nucleus, putamen, and striatum), 9, 17-21, 145 , 148-150, 210, 346, 347 , 350, 382-384 Basement membrane, 32 bel, 74, 79, 84, 93,96-98 bax isoform, 74, 94-97, 255 bcl-2 isoform, 74, 85, 93, 97, 98, 249, 253, 255, 257 bcl-2 homology (BH), 74, 93, 94 Behavior cognition. See Cognitio n conduct disorder, 134-136, 320 aggression, 320 externalizing, 320 oppositional, 320 delinquency, 13 5 executive function, 130-132 , 134 impulsivity, 319 motor, 128 , 319, 321 sensory, 128 , 129 social, 134 emotional functioning, 134 Bergmann glia. See Cerebellu m Brain-derived neurotrophic factor. See Neurotrophins Bromodeoxyuridine (BrdU), 15 , 19 , 78, 206-211 Cadherin. Se e Cell adhesion molecul e Caenorhabditis elegans, 74, 92-94 Cajal-Retzius neuron, 50 , 57, 60, 91, 222 Calcium, 208 , 209, 222, 238, 239, 288, 289 , 301 , 302, 344-346, 353, 366-368 Cancer cell line, 300 B104 neuroblastoma cell, 188-190, 192 C6 astrocytom a cell, 188 , 189 , 192 , 270, 299, 367 PC 12 pheochromocytoma cell, 252 Caspase, 74, 84, 92-99, 208, 248-250, 255, 257, 268-271, 273, 283, 289, 366, 371 Catecholamine, 59 , 15 6 dopamine (DA), 231, 352, 353, 381-384, 389-392 epinephrine, 155 , 171 norepinephrine (NE), 155 , 162, 163 , 171 , 381, 385-392 Catenin, 62 , 95 Caudate nucleus . See Basal ganglia CD133. SeePromini n ced, 74, 93, 94, Cell adhesion molecule (CAM) , 49, 55 , 114, 219, 224 cadherin, 55 , 58-60,62 integrin, 31-33, 35, 55, 59, 109, 220-222, 224, 236,299 LI, 55,219,234,288,29 9 neural cell adhesion molecule (nCAM) , 31, 219, 220,299 Cell cycle, 77 GO phase, exit, 10, 13, 15-17, 187 , 188 , 202, 208, 218,299 Gl phase , 10 , 11, 14 , 15, 19, 20, 187 , 188 , 202-207, 211,299 kinetics, 10 , 14-18, 187-192, 201, 205, 299 M phase, mitosis, 14, 15, 83, 84, 187 , 202-206, 210, 211,299
S phase, 10 , 11, 14, 15, 19,20,84,187, 188 , 202-207, 299 Cell fate, 15 , 74, 75, 79, 113 , 114 , 200, 201, 347, 366, 371 Cerebellum, 114 , 127 , 144-147, 150 , 208, 217, 269, 271-273, 297, 298, 348-350 , 365-369, 385, 387, 390 Bergmann glia, 298 external granular layer (EGL), 187 , 207 , 363-366, 368, 36 9 granule neuron, 114 , 187 , 248, 207, 231, 234, 254-257, 271,272,297,367-369 neuronogenesis, 186—18 7 Purkinje neuron , 78, 114 , 144 , 147 , 246, 247 , 252, 253, 259,269,271,272,297,348,366 Cerebral cortex , 9, 11 , 13 , 17, 18, 20, 76, 78, 81, 83-85, 91, 146 , 205 , 206, 210, 231, 233, 269, 271-273, 296, 297, 301 , 346-352, 385, 387, 389, 391 . For developmental references, se e also Cerebral wall death, 246 , 249-250, 252 neuronogenesis, 187 , 249 Cerebral wall cortical plate (CP) , 10 , 11, 28, 29, 32, 24, 75, 76, 80, 84, 297, 348 intermediate zone (IZ) , 10 , 11, 28, 30, 75, 76, 80, 84, 218,220,297 marginal zone (MZ) , 10 , 11, 13 , 20, 28-30, 32, 34, 35, 51,75,76,91,220-222,224 preplate, 29, 32 subplate, 29, 32, 51,76,91 subventricular zone (SZ) normal, 10 , 11, 13, 17, 19-21, 28-30, 33, 35, 36, 75, 76 , 84 ethanol-affected, 184-193 , 200, 205, 206, 208, 210, 211,216,297 nicotine-affected, 363-366 , 368, 369 ventricular zone (VZ) normal, 9, 10 , 13, 19-21, 28, 29, 33, 75, 76, 80, 84 ethanol-affected, 184-193 , 200, 205, 216, 297 nicotine-affected, 350 , 363-365, 368 Chemotaxis Cholinergic receptor. See Receptor, acetylcholine Cobblestone complex, 3 4 Cocaine, 363 Cognition, 107 , 108 , 143 , 148 , 150 , 315, 381, 383, 364 , 385, 386, 392 intelligence quotien t (IQ), 128 , 129 , 132 , 143 , 148 , 318,349 learning, 129 , 143,319,32 2 memory, 130-132, 319, 322, 341 intentional, 13 2 metamemory, 131 , 13 2 working, 132 , 13 4 test California Verbal Learning Test, 131 , 132 Continuous Performance Test, 31 9 McCarthy Scales , 131 Peabody Picture Vocabulary Test, 322 Ravens Test, 32 2 Stanford Bine t Intelligence Scale , 31 8 Tower of London, 13 3
INDEX 40 1 Wisconsin Car d Sor t Task, 13 3 Wide Range Assessment of Memory and Learning , 131,319 visuospatial, 129 , 13 4 Collapsin respons e mediato r protein (CMRP) , 47 Conduct disorder . See Behavior Congenital muscula r dystrophy, 34 Corpus callosu m fiber bundle, 127 , 144, 145 , 147 , 148 , 150 , 233, 234, 297, 302, 303 neuronogenesis, 18 4 neurons of origin, 18 4 Cortical plate. See Cerebral wall Cortisol, 156-160 , 162 , 171 Corticosterone (CORT), 156 , 158-162, 169 , 170 , 171 Corticotropin releasing hormone (CRH) , 155 , 156, 158, 160-162, 164 , 165 , 168,170 , 171 Cotinine 321 , 322 Craniofacial malformation . See Facial dysmorphia Critical period, 60, 115 , 252, 282-284, 286, 351 , 368, 37 0 Cyclic nucleotide (cAM P and cGMP), 20, 50, 54, 208, 256 Cyclin. 13 , 14, 188, 191 , 201-205, 207, 208, 21 1 Cyclin-dependent kinase (cdk), 13 , 14, 17, 32, 33 , 188 , 201,202,204-208,211 Cyclin-dependent kinas e inhibitor "p!7,pl8,p57, 202, 204, 206 P21, 14,17 , 96, 191 202, 204-208, 211 P27, 13 , 14, 17, 20, 113 , 188 , 191 , 202 , 204, 205 , 207,211 Cytochrome C, 94-98, 268-271, 273 Cytochrome P450, 290, 300 Cytokine, 156 , 168-171 Cytoskeleton, 285 "actin, 33, 47-50, 54, 58, 60, 202, 222, 224, 236-238 microtubule, 34, 47-50, 202, 224, 236, 238 regulation, 236-238 Death ethanol-induced in vitro, 232, 250, 252-259, 267 , 268, 270, 271-274, 286-290 in vivo, 188, 245-250, 252-259, 267-274 , extracellular regulation, 288 intracellular regulation, 255-258, 287-289 naturally occurring, 92, 246, 249, 250, 253, 259, 269, 270,287 nicotine-induced, 368 , 369 opiate-induced, 364-36 7 pathway intrinsic, 96-99, 267-269, 274, 287 extrinsic, 96-99, 267, 268 , 270 , 274 caspase-independent, 97-99 Dendrites effect o f ethanol, 230-23 3 fate, specification, 46 growth, 58,235,239 remodelling, 231, 236 Depression. Se e Mood disorder s Disabled, 32 , 33 Distalless, dix, 4, 18 , 30
DNA aneuploidy, 81, 82 endjoining, 79-8 1 fragmentation, 73 , 77, 79, 80, 81-92, 94-96, 98, 206, 207,248,250,255,268 Dopamine. See Catecholamine s Dose-response, 124 , 126 Doublecortex syndrome, 33, 34 Doublecortin (dcx), 32-34 , 36 Endocrine, 153 , 364 Ephrin, 52 , 53, 58,61 Epidermal growth factor. Se e Growth factor s Epigenetic/epigenomic, 172 , 173 Epilepsy, 2 7 Epinephrine. Se e Catecholamine s Ethanol metabolism, 10 6 threshold o f consumption, 123 , 12 4 genetic influences , 290 Evolution, 104-106 , 109-112, 115 , 116 duplicate and vary , 110—111 redundancy. 11 1 Excitotoxicity, 115 , 254 Extracellular matrix (ECM), 55 , 58-60, 171 , 202, 219, 221,222,224 chondroitinsulfate proteoglycan , 36 , 58, 60 dystroglycan, 3 5 filamin A , 3 3 fukutin, 3 5 laminin, 32 , 35 mannosyl glycans, 35 polysialic acid, 3 1 reelin (r/n) , 4, 32, 33, 36, 114,224 Extracellular signal-regulated kinase (ERK). See Mitogen activated-protein kinase External granular layer. See Cerebellu m Facial dysmorphia , 4, 94, 107 , 109 , 123-126 , 143 , 148 , 246, 282-29 0 Fasligand,97,98,268,270,271 Fetal alcoho l spectrum disorder s (FASD) 126 , 129 , 131 , 134, 135 , 143-150,153, 156 , 158 , 159, 166 , 167 , 199,211,282 alcohol-related neurobehaviora l disorder (ARND), 124 , 134,135 fetal alcoho l syndrome (FAS), 4-6, 107 , 123 , 124 , 126,130,132-135, 143-146, 148-150, 217, 223, 233,234,274,296 Fetal programming , 153 , 154 , 157 , 162 , 172 , 173 Filopodia. Se e Axon, growth con e 4-hydroxynonenal, 96, 271-273 Fukuyama congenital muscula r dystrophy, 34 Gl phase . See Cell cycle y-aminobutyric acid (GABA) , 9, 13 , 17, 18, 20, 21, 31, 59-61, 155 , 162, 163 , 342 , 346, 350-35 4 Ganglionic eminenc e (GE), 12 , 13, 17-19, 28, 30, 36 Ganglioside, 290 , 300 Gap junction , 1 1
402 INDE X Glia, 113,252,281,283,28 4 astrocyte, 17 , 29, 31, 78, 184 , 188-190 , 200, 210 , 223, 236, 295-304, 366 , 367 , 369, 371 ependyma, 200 glial-derived factor, 60 oligodendrocyte, 369—37 1 radial glia, 191,200,209,21 0 Bergmann cell . See Cerebellum guides for migration, 29, 31 , 51, 55, 219, 220, 224, 295, 296, 29 8 Müller cell. See Retina neural stem cell. See Stem cel l transformation t o astrocytes, 29, 220-224, 295, 297, 298 Gliogenesis effects o f ethanol, 29 6 effects o f nicotine, 369, 37 0 effects o f opiates, 366 , 367 , 37 1 Glucocorticoid, 154,155 , 158 , 167-173 Glutamate, 60 , 164 , 301 , 302, 342, 346, 350 , 351, 353, 354 a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) 20 N-methyl-D-aspartate (NMDA) 20, 31, 221, 231, 254-256 receptors. See Receptor Gonadotropin releasin g hormone (GnRH) , 165 , 171 Growth cone . See Axon Growth factors bone morphogeni c protei n (BMP) , 222, 223, 280, 286,287 epidermal growth factor (EGF), 30 , 200, 298, 367 fibroblast growth factor (FGF), 83, 109, 188-190 , 192 , 200,203,280, 286, 300, 367 hepatocyte growt h factor (HGF), 30 , 31 insulin-like growth factor (IGF) , 109 , 188 , 190 , 192 , 203,251,253-254,300 platelet-derived growth factor (PDGF) , 188 , 189, 192, 193,203,300 transforming growth factor (TGF ) a 30 TGF ß 18, 31,188-193, 203, 222-224, 234, 298, 300 Growth obesity, 318, 322 retardation, low birth weight, 123, 126 , 134 , 315 , 317 Hippocampal formation, 246, 248-249, 301 , 364 death, 24 9 dentate gyrus , 60, 186 , 249, 364 normal, 47, 60, 12 , 114 ethanol-affected, 148 , 156 , 162-164, 172 , 185, 186 , 200,231,233,236,237,239,249 nicotine-affected, 319 , 321, 346, 349-351, 365, 385,387 neuronogenesis, 182 , 185 , 186 hippocampus, 24 9 intrahilar zone (IHZ) , 12 , 182, 185 , 192, 206, 249 , 363, 364 , 36 7 Homeostasis, 155 , 156, 158, 168, 238, 385 Human immunodeficienc y virus (HIV), 370 , 371 neuronogenesis, 370 , 371 gliogenesis, 37 1
Hypothalamus, 153, 154, 156, 158, 160, 162-164 , 171 , 172,385,387, 389 hypothalamic-pituitary adrenal (HPA) axis, 153-165 , 168, 169 , 171-173 , 285, 385, 387 , 389 hypothalamic-pituitary gonadal (HPG) axis, 161, 164 , 165 paraventricular nucleus (PVN) , 156 , 161 , 163 , 164 , 17 2 Imaging, 12 7 confocal, 238 , 239, 272 diffusion tenso r imagin g (DTI), 12 7 computed tomography , 149 , 150 magnetic resonanc e imaging (MRI), 34, 127, 145 , 147-149,233,296 positron emissio n tomograph y (PET) , 149 , 29 6 ultrasonography, 149 voxel-based morphometry , 145 , 146 Immune cells B cells, 165-16 9 T cells, 76, 165-167, 169-171 Immune response , 154 , 163 , 165 , 168 , 17 1 Immunity, adaptive, 166 cell-mediate (CMI), 166-168, 170 humoral, 166 , 168 , 17 0 In situ end labeling (ISEL) . See DNA fragmentation Insulin-like growth factor. See Growth facto r Integrin. Se e Cell adhesion molecul e Interleukin (IL), 94, 164 , 169-17 1 Intelligence quotient . Se e Cognition Intermediate zone. See Cerebral wall Ki-67,187,210,211 LI. See Cell adhesion molecule s Lamellipodia. See Axon, growth cone Leading process, 28, 34 Lipopolysaccaharide (LPS) , 161 , 164 , 168 , 16 9 Lisl, 32, 34 Lissencephaly, Se e Migration, defect s Local circuit neuron (LCN) , 17 , 18, 30, 31, 35, 76, 245,351 Locus coeruleus, 155 , 156, 165, 168, 385-39 2 Luteinizing hormone (LH), 165 Luteinizing hormone releasin g hormone (LHRH) , 27, 30 Lysophosphatidic aci d (LPA) , 83-85 Major histocompatibility complex (MHC) , 165 , 169 , 171,371 Marginal zone . Se e Cerebral wal l Mental retardation , 27, 128 , 13 4 Microtubules. Se e Cytoskeleton Microtubule-associated protein (MAP), 34, 47, 232 Migration, 124,238,24 6 defect ectopia/heterotopia, 33 , 34, 114, 144 , 216 , 217 , 220-224, 296, 297 lissencephaly, 216 , 217 neural crest, 27, 166 radial, 29, 114 , 115 rate, 29, 218, 219 tangential, 3 0
INDEX 40 3 Mitogen-activated protein kinas e (MAPK), 300 , 36 6 extracellular signal regulated kinase , 189 , 190 , 192 , 256-257, 366 jun kinase, 366 Monoamines. See Catecholamines Mood disorder s anxiety, 32 1 depression, 32 1 Motor activity , 128 M phase. See Cell cycle Müller cell. See Retina Muscle-eye-brain disease, 34 Necrosis 73, 92, 99, 254, 274, 28 6 Neostriatum. See Basal ganglia Nerve growth factor. See Neurotrophi n Neural cell adhesion molecule . Se e Cell adhesio n molecules Neural cres t cardiac development , 281, 284 derivatives, 166 , 170,280-28 5 effects o f ethanol, 222 , 271, 279-290, also see facial dysmorphia homeobox genes, 280 , 282 , 286, 287 , 289 neural induction, 285 origin, 280-282 peripheral nervou s system (PNS), 280-284 Neuroblastic layer. See Retin a Neuroendocrine, 153 , 154 Neurogenesis, 17 , 18, 112, 113, 205, 206, 209 , 21 0 Neuromuscular junction. 5 9 Neuronogenesis, 365 , 366, 368 , 36 9 effects o f ethanol, 218 , 249, 29 9 effects o f nicotine, 368 , 36 9 effects o f opiates, 364-36 6 Neuropilin, 36 , 52 Neurotrophin, 236 , 251-253 , 258 , 274, 28 8 nerve growth factor (NGF) , 74, 76, 251-253 brain-derived neurotrophic factor (BDNF) , 30 , 50,54, 60, 74, 76, 223, 224, 251-253, 255, 301,302 neurotrophin 3 (NT-3), 74 , 83, 251, 252 neurotrophin 4 (NT-4), 30 , 74, 251 Neurotrophin receptor . See Receptor Nicotinamide-adenine dinucleotid e (NAD), 95 Nicotine, 4, 108 , 341-354 , 367-370 Nicotinic receptor . Se e Receptor, acetylcholin e Nitric oxide (NO), 162-164 , 232 N-methyl-D-aspartate (NMDA). Se e Glutamat e Norepinephrine. Se e Catecholamine Nucleus tractus solitarius (NTS), 385, 386-389 Olfactory bulb , 35 , 36, 200 Opioids, 15 6 ß-endorphin, 156 , 160 , 162 , 169 , 36 7 effects o n neurona l developmen t death (apoptosis) , 365-367, 371 differentiation, 36 5 proliferation, 211 , 365-367 Optic nerve, 111 , 148 , 14 9
Ornithine decarboxylase , 318, 321 Oxidative stress , 95, 96, 108 , 115 , 271-274, 287, 28 8 P 53,
80, 95-98, 202-204, 207, 208, 268 , 270 , 271 , 274, 36 6 Phosphotidylinositol 3 /-phosphokinase (PI3K), 237, 255, 257,258,367 Pial basement membrane , 32 , 34, 35, 221, 222, 224 Pituitary adenylyl cylcase activating polypeptide (PACAP) , 251,255-259,270 Placenta, 153 , 156, 158, 159 enzymes, 15 8 feto-placental unit , 159 , 170 Platelet-activating factor acetylhydrolas e isoform Ib . See Lis l Polarity, 45-48, 234, 235 Poly-adenosine diphosphate ribos e polymerase (PARP) , 95, 97, 98, 268, 27 4 Poly-drug use, 124,316,32 2 Preplate. See Cerebral wall Principal sensory nucleus of the trigemina l nerve, 186 , 188,246,247,249 Process outgrowth , 230-24 0 axon, 45, 48 dendrite, 45, 48 Proliferation. See Cell cycle ; Ste m cell s neuronal site s of origin. See Cerebral wall; Cerebellum ; Hippocampus Programmed cell death. See Apoptosi s Projection neuron , 17 , 18, 60, 76, 231-234, 245, 351, 354 Proliferation, 182-193 , 246, 250 , 363-371, See also Cell cycle; Cerebellum; Cerebral wall ; Hippocampal formation, Neuronal site s of origin; Ste m cell s Pro-opiomelanocortin (POMC), 155 , 156, 160-162 , 169, 17 0 Protein kinas e A (PKA), 256-258 Protein kinas e C (PKC) , 189 , 237 Protein-O-mannosyl transferase (POMT), 34 Pseudostratified ventricula r epithelium (PVE) , 9-1 8 Pyknosis, 246 Pyramidal (corticospinal) tract 184 , 23 3 Pyramidal neurons . See Projection neuron s Radial glia, 200, 209 , 21 0 guides for migration. Se e Gli a neural stem cell . See Stem cel l Reactive oxygen species (ROS) , 96-98, 248, 268 , 271 , 273, 287, 28 8 Receptor desensitization, 344 , 345 , 350 , 353, 368, 390 , 39 1 growth factor epidermal growt h factor (EGFr), 3 0 insulin-like growt h factor , 191 , 253 , 254 platelet-derived growt h factor , 189 , 192 , 19 3 transforming growt h factor , 189 , 191 , 19 3 neurotransmitter acetylcholine, 59 , 367 muscarinic (mAChR), 207, 300 , 321 , 347, 382-39 2 nicotinic (nAChR), 341-354 , 368-370 acetylcholine receptor-inducin g protein , 369 , 37 0
404 INDE X Receptor (continued) dopamine (DI and D2), 19-21 , 384 y-aminobutyric acid, 20,21, 347 glutamate a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), 20, 21,58,59, 351, 353 N-methyl-D-aspartate (NMDA), 20, 21, 58-61, 164 , 221, 231, 301, 302 , 345, 347 , 351 , 353 opioid 5-opioid receptors (DOR) , 364-367 K-opioid receptors (KOR), 364-367 H-opioid receptors (MOR) , 364-367 neurotrophin p75, 74, 75, 251-253, 25 9 trk30, 74,75, 223,251-253,259 others corticotropin releasin g hormone typ e l (CRH-R1) , 161,162,171 glucocorticoid (GR) , 161, 162 , 170, 172 mineralocorticoid (MR), 161 , 162 phosphatidylserine, 73, 78, 84 very low density lipoprotein (VLDL) , 3 2 Reeler mouse, 32,91 , 11 4 Retina, 79 , 111,113, 149 ganglion cells, 301 Müller cells , 113,301 neuroblastic layer topographic maps , 50-53 , 79 Retinoblastoma protein (Rb) , 13, 14 , 202, 204, 20 6 Retinoic acid, 289, 290 Robo, 36,51 , 52,5 5 Schwann cells , 280-284 Secondary proliferative populatio n (SPP) , 10-15, 17, 18, 36 4 Serotonin, 155 , 162, 163, 36 3 Slit, 36,51,52 , 55 Socioeconomic status (SES), 107 , 108 , 124 , 129 , 133,134 , 316,318-320,322 Sonic hedgehog , 51,286 , 289 S phase. See Cell cycle Stem cell , 76, 79-83, 85 embryonic stem cell, 199 , 203-205 , 208 , 211 marker nestin, 29 , 185 , 200, 201, 209, 210 , 296, 297 prominin(CD133), 201,209 vimentin, 210,296 neural stem cell (NSC) , 11 , 17 , 18, 29, 185 , 192 , 199-211,295-299,347,363,369 Stress, 154 , 155 , 162, 164 , 168-17 3 concept, 15 4 response, 154 , 160 Subplate. See Cerebral wall
Substantiel ragra , 231 , 346, 38 2 Subventricular zone. See Cerebral wall Sudden infan t deat h syndrom e (SIDS), 316, 321 , 367 , 392 Superior colliculus , 52 Sympathetic adrena l medullary system, 15 5 Synapse chemical, 56-61 , 342 electrotonic, 56 , 61, 62 extra-synaptic communication, 35 0 formation, synaptogenesis , 56-62, 76, 111 , 232, 246, 249, 250 , 259, 295, 296 , 301 , 351 , 354 molecular constituents, 57 , 58 post-synaptic density , 56-5 8 "silent," 59, 351,354 structure, 56 , 61 synaptosome associated protein, 58 vesicular traffic, 57 , 58 Telomerase, 200, 207, 208, 211 Teratogen, 109 , 127,315-32 2 Terminal deoxynucleotidy l transferase mediate d deoxyuridine nick end labeling . See DNA fragmentation Thalidomide, 109 Thalamus, 149 , 349 , 35 0 death, 92, 109,249,250 cortical connections, 51,55 , 249, 350 , 351 Thymidine, 14 , 192, 217 , 218 , 221 , 299, 36 5 Thymus, 154 , 165 , 167 , 170 Tobacco, 108 , 124 , 315-322 , 341 , 349 , 35 3 composition, 329-331 , 367 effect o n growth, 317 , 318, 367 effect o n behavior, 318-32 2 environmental exposure , 316, 317, 321 , 322, 367 Topographic maps , 52 , 53 Transcription factor s activating protein 1 , 207, 20 8 nuclear factor KB , 207, 30 0 sox, 201,368 Transforming growth factor. Se e Growth factor s Transplantation, 114 , 201, 209, 210 Trapezoid body , 60 Tumor necrosi s factor. Se e Apoptosis UDP-N-acetylglucosamine protein-O-mannos e ßl ,2-N-acetylglucosaminyltransferase, 34 Vasoactive intestinal polypeptide , 3 0 Ventral tegmental area , 351-354, 382-384 Ventricular zone. See Cerebral wall Vitamin E , 288 Walker-Warburg syndrome, 34