Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W...
75 downloads
847 Views
15MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen
Group IV: Physical Chemistry Volume 19
Thermodynamic Properties of Inorganic Materials compiled by SGTE Subvolume A Pure Substances Heat Capacities, Enthalpies, Entropies and Gibbs Energies, Phase Transition Data
Part 4 Compounds from HgH to ZnTe Editor Lehrstuhl für Theoretische Hüttenkunde, Rheinisch-Westfälische Technische Hochschule Aachen Authors Scientific Group Thermodata Europe (SGTE)
13
Editors I. Hurtado and D. Neuschütz Lehrstuhl für Theoretische Hüttenkunde Rheinisch-Westfälische Technische Hochschule Aachen D-52056 Aachen, Germany http://www.lth.rwth-aachen.de/
Authors Scientific Group Thermodata Europe (SGTE) Chairman: P.J. Spencer Grenoble Campus 1001 Avenue Centrale, BP 66 F-38402 Saint Martin d'Hères, France http://www.sgte.org/
Member Organisations of SGTE: The present series of books is the result of a collective work carried out during many years by many individuals. Since a complete list of all contributors is an impossible task, only a contact person is mentioned under each member organisation. AEA Technology plc Materials and Chemical Process Assessment P.K. Mason 220, Harwell Laboratory, Didcot, Oxfordshire, United Kingdom, OX11 0RA http://www.aeat.co.uk/mcpa/ GTT Technologies Gesellschaft für Technische Thermochemie und -physik mbH K. Hack Kaiserstraße 100 D-52134 Herzogenrath, Germany http://gttserv.lth.rwth-aachen.de/gtt/ Institut National Polytechnique de Grenoble Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques I. Ansara F-38402 Saint Martin d'Hères, France http://www.inpg.fr/LTPCM/ IRSID Department of Physical Chemistry J. Lehmann Voie Romaine - BP 30320 F-57283 Maizières-lès-Metz, France
Max-Planck-Institut für Metallforschung und Institut für Nichtmetallische Anorganische Materialen der Universität Stuttgart Pulvermetallurgisches Laboratorium H.J. Seifert Heisenbergstraße 5 D-70569 Stuttgart, Germany http://wwwmf.mpi-stuttgart.mpg.de/abteilungen/aldinger/aldinger.html National Physical Laboratory Centre for Materials Measurement and Technology A.T. Dinsdale Queens Road, Teddington, Middlesex, United Kingdom, TW11 0LW http://www.npl.co.uk/npl/cmmt/mtdata/mts.htm Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl für Theoretische Hüttenkunde E. Münstermann D-52056 Aachen, Germany http://www.lth.rwth-aachen.de/ Royal Institute of Technology Department of Materials Science and Engineering J. Ågren S-10044 Stockholm, Sweden http://www.met.kth.se/tc/ Thermo-Calc AB B. Sundman Björnnägen 21 S-11347 Stockholm, Sweden http://www.thermocalc.se/ THERMODATA B. Cheynet Grenoble Campus 1001 Avenue Centrale, BP 66 F-38402 Saint Martin d'Hères, France http://www.thermodata.asso.fr/ Université Paris-Sud XI Faculté de Pharmacie Laboratoire de Chimie Physique Minérale et Bioinorganique, EA 401 Y. Feutelais 5 rue J.B. Clément F-92296 Châtenay-Malabry, France http://www.u-psud.fr/
In preparing the data for publication in this Series, the editors have been assisted particularly by: A.T. Dinsdale (Data Manager for Elements), I. Ansara (Data Manager for Pure Substances), B. Sundman (Data Manager for Solutions), J.A.J. Robinson (SGTETab software).
ISSN 1615-2018 (Physical Chemistry) ISBN 3-540-41025-2 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Vol. IV/19A4: Editor: Lehrstuhl für Theoretische Hüttenkunde, Rheinisch-Westfälische Technische Hochschule Aachen At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag Includes bibliographies. 1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables. I. Börnstein, R. (Richard), 1852-1913. II. Landolt, H. (Hans), 1831-1910. III. Physikalisch-chemische Tabellen. IV. Title: Numerical data and functional relationships in science and technology. QC61.23 502'.12 62-53136 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH © Springer-Verlag Berlin Heidelberg 2001 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature. Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness by consulting other relevant sources of information. Cover layout: Erich Kirchner, Heidelberg Typesetting: Authors and Redaktion Landolt-Börnstein, Darmstadt Printing: Computer to plate, Mercedes-Druck, Berlin Binding: Lüderitz & Bauer, Berlin SPIN: 10688868
63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper
Preface
Thermodynamic data for inorganic materials are fundamental for the optimisation of existing process parameters and for investigating suitable parameters for carrying out potential new processes. With the aid of such data, considerable time and costs can be saved by calculating the conditions necessary to produce a material of the required composition and specified purity, with a minimum usage of energy and input materials and with a minimum release of harmful substances to the environment. The reliability of such calculations depends, of course, on the accuracy of the thermodynamic data used and one difficulty facing the user of published thermodynamic tables has been the wide selection of such compilations available. A further difficulty in using such tabulations is the need to maintain compatibility if it is found necessary to use values from more than one compilation. Different standard states, different tabulated functions and even different values for the same substance can quickly lead to uncertainty and errors in application of the numbers. Nearly all currently available compilations of thermodynamic data relate to pure substances. Very few publications of solution properties for inorganic materials exist. There are very, very few processes however, for which the reactants and products can be regarded as simple stoichiometric compounds. Even very small amounts of dissolved gases or other impurities in a product material can seriously impair its properties. On the other hand, many materials in use today are comprised of several deliberately alloyed constituents to achieve desired mechanical and physical properties. Only by including the thermodynamic solution properties of the dissolved species can full account be taken of reactions such as those between an alloy melt and a slag phase, or those involved in forming precipitated phases in a multicomponent alloy, or in vapour deposition of complex coatings on an alloy substrate, etc.. For almost 20 years, members of SGTE have been working together to try to overcome some of these problems by together producing self-consistent and compatible thermodynamic datasets, not only for pure inorganic substances, but also for mixtures of substances in the form of alloys, slags, salt systems, aqueous solutions, etc. Major advantages of the SGTE data are their self-consistency, the fact that they are produced with careful attention to a well-defined quality procedure and that the expertise of SGTE members in various areas of inorganic chemistry and materials science (ferrous and non-ferrous metallurgy, ceramics, slags, nuclear, aqueous, etc.) allows review of the numbers by highly qualified scientists in the fields concerned. The SGTE evaluated data forming this series provide a self-consistent progression from elements and stoichiometric compounds (Volume A) to binary systems including solution phases (Volume B). The possibility to continue to ternary and multicomponent systems is also forseen. The data in the latter would be so presented as to correspond to potential application themes (steels, light alloys, nickel-base alloys, etc.). The fundamental equations used in evaluating the data are given in the introduction to the volumes and the models used in representing the data are described. Each book is accompanied by a CD-ROM allowing computer tabulation of any required function at any temperature, or for selected temperature ranges, for the substances or systems in that volume. Graphical representations are also possible, including phase diagrams for the systems. The first set of four books (subvolume A) will be accompanied by software which also allows calculation, tabulation and plotting of the thermodynamic properties of reaction of substances selected from any of the Parts 1 to 4.
Information on more comprehensive software, allowing complex equilibrium calculations involving not only pure substances, but also solution phases of different types, can be obtained from SGTE members. A list of the SGTE membership is presented in the cover pages of this Volume. In presenting the data in this Series, SGTE would like to give sincere acknowledgement to the contributions of a number of scientists whose efforts have been invaluable in establishing the present SGTE databases. The names are as follows: Prof. E. Bonnier, Dr. M.H. Rand, Prof. O. Kubaschewski, Dr. M. Olette, Prof. O. Knacke, Prof. M. Hillert, Prof. I. Barin, Dr. H.L. Lukas, Dr. C. Bernard, Dr. T.I. Barry, Dr. T.G. Chart and Dr. G.P. Jones. The skilled evaluations originating from members of THERMOCENTER, Russian Academy of Science, are also gratefully acknowledged.
Dr. P.J. Spencer Chairman of SGTE
Ithaca, October 2000
Survey of volume IV/19 Thermodynamic Properties of Inorganic Materials compiled by SGTE Pure Substances Elements and Compounds from AgBr to Ba3N2 Compounds from BeBr to ZrCl2 Compounds from CoCl3 to Ge3N4 Compounds from HgH to ZnTe
Subvolume A Part 1 Part 2 Part 3 Part 4
(tentative)
Binary Systems From Ag- to AuFrom B- to CoFrom Cr- to GeFrom Hf- to Y-
Ternary and multicomponent Systems (application oriented, i.e. Light Alloys, Solders, Steels,...)
Subvolume B Part 1 Part 2 Part 3 Part 4
Introduction
XI
Introduction
The data presented in this series, dealing with pure inorganic substances (IV/19A), binary systems (IV/19B) and ternary and multicomponent systems (IV/19C) have been evaluated and compiled by SGTE. SGTE is a consortium of European laboratories working together to develop high quality thermodynamic databases for a wide variety of inorganic and metallurgical systems [87Ans, 91Din]. The SGTE element data [91Din] conform to the 1990 International Temperature Scale and over the last years have formed the basis for most assessments of binary, ternary and higher order systems appearing in the open literature. Members of SGTE have played a principle role in promoting the concept of “computational thermochemistry“ as a time and cost-saving basis for guiding materials development and processing in many different areas of technology. At the same time, through organisation of workshops and participation in CODATA Task Groups, SGTE members have contributed significantly to the broader international effort to unify thermodynamic data and assessment methods. The SGTE data can be obtained via members and their agents world-wide for use with commercially available software developed by some of the members, to enable users to undertake calculations of complex chemical equilibria efficiently and reliably. The SGTE Member organisations are (January 1999):
France:
- Institut National Polytechnique (LTPCM), Grenoble - Association THERMODATA, Grenoble - IRSID, Maizières-lès-Metz - Université de Paris Sud (LCP)
Germany: - Rheinisch-Westfälische Technische Hochschule (LTH), Aachen - MPI für Metallforschung (PML), Stuttgart - GTT-Technologies, Aachen
Sweden:
- Royal Institute of Technology (MSE), Stockholm - Thermo-Calc AB, Stockholm
United Kingdom:
Landolt-Börnstein New Series IV/19A
-National Physical Laboratory (CMMT), Teddington -AEA Technology plc, Harwell
SGTE
Introduction
XII
1 Basic equations and functions used
1.1 Heat capacity The heat capacity of the elements and the pure substances in a defined state is represented by a power series of the form C p = a + b ⋅ T + c ⋅ T 2 + d ⋅ T −2
(1)
It is often necessary to use several temperature ranges, without discontinuities, in order to represent the assessed Cp values as accurately as possible. Plots of Cp are presented for each substance, whilst calculated values for selected temperatures or temperature intervals can be obtained using the software accompanying the volumes. It can sometimes be necessary to extrapolate the thermodynamic properties of the solid phases of an element beyond the temperature ranges where the phases are stable. In the SGTE treatment of such data for the liquid phase, it has been assumed that the heat capacity of the liquid should approach that of the SER-phase (Standard Element Reference-phase, which is usually the phase stable at 298.15 K) and similarly, that the heat capacity of all solid phases above the melting temperature should approach that of the liquid. This excludes a proper treatment of glass transformations, but represents a pragmatic solution to the difficulties associated with necessary extrapolations and removes the possibility of phases becoming incorrectly stable at high or low temperatures. The resulting additional T 7 and T –9 temperature terms used are presented in equation (7) below. Alternative extrapolation methods have been used for some elements and new methods are being reviewed for incorporation into the SGTE databases shortly [95Sun].
1.2. Enthalpies of formation and transition and standard entropy The enthalpy of formation at 298.15 K, ∆f H0 (298 K), and the standard entropy at 298.15 K, S0 (298 K), are presented for each substance, together with the enthalpies and temperatures of polymorphic transformations, ∆ trs H and Ttrs. A reference pressure of 100 kPa is used. In addition, the value of H(298.15 K)-H(0 K) is given when available.
1.3. Gibbs energy As most thermodynamic calculations relating to reactions and phase equilibria involving inorganic materials are made assuming constant temperature and pressure, the Gibbs energy is often the most suitable function to describe the thermodynamic properties of the substances involved. The molar Gibbs energy of a pure element i, reference state at 298.15 K,
0
0
Gi (T ) , referred to the enthalpy of its standard
H i (298.15K ) , is denoted by GHSERi. This quantity is described as a
function of temperature by the following equation:
SGTE
Landolt-Börnstein New Series IV/19A
Introduction
XIII
GHSER i = 0 Gi (T)− 0 H i (298K ) = a + b ⋅ T + c ⋅ T ⋅ lnT + d ⋅ T 2 + e ⋅ T 3 + f ⋅ T −1
(2)
The same basic equation is also used to describe the Gibbs energy of pure stoichiometric substances. N.B. It is important to recognise that GHSER (normally shortened to G) is not the Gibbs energy of formation at a particular temperature. ∆ f G includes contributions from the entropy of the elements at T and changes in the enthalpy of the elements between 298.15 K and T. From the Gibbs energy, all important thermodynamic properties can be calculated by combining appropriate partial derivatives. In particular the first and second derivatives of equation (2) with respect to temperature are related to the absolute entropy and heat capacity of the substance at the temperature concerned. Experimental values for heat capacity can thus be directly correlated with the coefficients c, d, e and f. S = −b − c − c ⋅ lnT − 2d ⋅ T − 3e ⋅ T 2 + f ⋅ T −2
Using
G = H −T ⋅S
(3) (4)
H = a − c ⋅ T − d ⋅ T 2 − 2e ⋅ T 3 + 2f ⋅ T −1
(5)
C p = −c − 2d ⋅ T − 6e ⋅ T 2 − 2f ⋅ T −2
(6)
Taking into account the need to extrapolate the data for a phase to metastable ranges, as discussed in Section 1.1., equation (2) is modified to give: GHSER i = 0 Gi (T )− 0 H i (298K ) = a + b ⋅ T + c ⋅ T ⋅ lnT + d ⋅ T 2 + e ⋅ T 3 + f ⋅ T −1 + g ⋅ T 7 + h ⋅ T −9
(7)
1.3.1. Influence of magnetic behaviour For substances which display a magnetic ordering (e.g. the elements Cr, Fe, Ni, Mn), the term GHSER is considered for a paramagnetic state and the magnetic contribution is treated explicitly. Thus an additional term is added to the molar Gibbs energy of the magnetic phase. This is equal to: G mag = RTln(β + 1) ⋅ f(τ)
(8)
where τ is T/Tc, Tc being the critical temperature for magnetic ordering and ß the average magnetic moment per atom expressed in Bohr magnetons. The function f(τ) is given as: τ < 1:
f(τ) = 1-[79 τ-1/140p+(474/497)(1/p-1)(τ 3/6+ τ9/135+ τ 15/600)]/A
τ > 1:
f(τ) = -[ τ -5/10+ τ-15/315+ τ-25/1500]/A
(10)
A = 518/1125+(11692/15975)(1/p-1)
(11)
(9)
with
These equations were derived by Hillert et al. [78Hil] from an expression of the magnetic heat capacity, C pmag , proposed by Inden [81Ind]. The value of p depends on the structure. For example, p has a value of 0.28 for fcc and hcp metals and 0.40 for bcc metals [81Ind]. Gibbs energy equations for the pure elements, of the form given in equation (7), have been published previously as the SGTE data for the pure elements by Dinsdale [91Din].
Landolt-Börnstein New Series IV/19A
SGTE
Introduction
XIV
1.4 Gibbs energy of formation 1.4.1 Binary compounds The Gibbs energy of formation of a binary compound AaBb is expressed as: GA a Bb − a⋅0 H A (298.15K) − b⋅0 H B (298.15K) = f(T )
(12)
The expression for f(T) is identical to that given by equation (7). Equation (12) can be transformed by applying equation (2) for each component f (T ) = GA
a Bb
= ∆ f GA The term ∆ f G A
a Bb
(T ) − a⋅0 GA (T ) − b⋅0 GB (T ) + a GHSERA + b GHSER B = a Bb
(T ) + a GHSERA + b GHSERB
(13)
(T ) is the Gibbs energy of formation of the compound referred to the stable elements
at temperature T. 1.4.2 Gaseous species An expression identical to equation (12) is used to describe the Gibbs energy of formation of gaseous species, with an additional term RT lnP, where P is the total pressure. The reference state for each vapour species is taken to be the pure component at 0.1 MPa pressure.
2 Definitions and reference information The definitions given here, which are relevant to the volumes of tabulated data and accompanying software, are intended to explain the meaning of words commonly used in metallurgical and inorganic thermochemistry; they are not necessarily generally used definitions in all cases. Atom An atom is the smallest possible state of division of an element. Component (see System) Compound A compound is composed of at least two different elements. The phase is not defined. A compound in crystalline form may be made up of individual molecules or it may have extended ionic, covalent or metallic bonding. For example the overall composition of rock salt is governed by the fact that there are equal numbers of Na+ and Cl– ions on two sublattices. The use of the word compound normally implies a stoichiometric composition (i.e. the amounts of the elements are in simple ratio). Element An element cannot be broken down to a simpler chemical form by non-nuclear processes. The phase is not defined and the element may be present as atoms or molecules, e.g. gaseous O, O2 and O3 are different molecular forms of the element oxygen. SGTE
Landolt-Börnstein New Series IV/19A
Introduction
XV
Equilibrium At chemical equilibrium the phases present, their composition and internal speciation is such as to minimise the Gibbs energy at a fixed pressure or the Helmholtz energy at fixed volume. When the Gibbs energy is minimum the chemical potentials (partial molar Gibbs energies with respect to composition) of the components are equalised throughout the system, i.e. in every phase. Thus equilibrium can be computed either by minimisation of Gibbs energy or equalisation of chemical potentials. Ion An ion is an atom or molecule carrying electric charge. Isomer Isomers are molecules with the same formula but different structures. SGTE distinguishes between isomers by appending a tag to the formula, e.g. C2Cl2H2_trans and C2Cl2H2_cis. Isotope Isotopes of the same element have the same atomic number but differing atomic weights. For most elements, and for most purposes, the differences in chemical behaviour are insignificant. Hydrogen is an exception and the SGTE substance database incorporates data for deuterium, tritium and some of their compounds using the symbols D and T. Model The word "model", as used in conjunction with the SGTE data, applies to any mathematical description of the properties of a phase, a unary or an interaction as a function of one or more variables such as temperature, pressure, composition and internal distribution of components. The mathematical model is strongly linked to the phase and takes account of structural features of phases for example multiple sublattices and solution on individual sublattices. Within a single phase the same model must be used to describe the mixing between all binary and, if necessary, higher order combinations of unaries. This entails that care must be taken when developing data for a multicomponent system that models and reference states are consistent. "Model" may also have a more restrictive definition in which the parameters in the mathematical description are given definite numerical values. Molecule A molecule is a chemically bonded group of similar or different atoms, eg Cl2 or NH3. The word molecule is most often used for species in the gas phase, but it can be used for species (q.v.) in other phases, including crystalline phases, provided the molecule behaves as a single entity. Phase A phase is chemically and structurally homogeneous and is distinguishable from other phases by its name, structure and properties (mechanical, physical and chemical). Crystalline phases have a definite periodic structure, often with sublattices. In order to define phases uniquely, phase names like fcc and alpha are insufficient. For this reason SGTE has coupled the Pearson symbol to the crystal class for metallic phases, e.g. Fe. Reference state Enthalpy data for all substances are ultimately referred to the enthalpy of the elements in their standard reference states. This corresponds to the stable phase at 1 atm. (101325 Pa) and 298.15 K. (Phosphorous, for which the red allotrope is more easy to prepare and define in a chemically pure form than is the stable white form, is an exception). Thus, for example, the enthalpy of liquid water is referred to gaseous O2 and H2, both at 101325 Pa, via the equation: H2 + 0.5 O2 = H2O
Landolt-Börnstein New Series IV/19A
(14) SGTE
Introduction
XVI
However, the entropy and heat capacity of liquid water are properties of water itself. The enthalpy and entropy of liquid water are defined by: T
H(H2O) = ∆fH298.15(H2O) + ∫298.15 C p (H2O)dT T
S(H2O) = S298.15(H2O) + ∫298.15 C p (H2O)/T dT
(15) (16)
Solution A solution is a homogeneous mixture within a single phase. Local ordering may be present. A phase that includes a variable proportion of unoccupied sites is also a solution but the vacancies do not constitute a component. The data for solutions are defined by reference to the unaries from which they are constituted using the model and data describing the ideal and non-ideal mixing between these unaries. Species A species is an atom, ion or molecule and corresponds to an identifiable constituent of a phase, for example a gaseous molecule or an ion occupying a sublattice. State of matter The states of matter relevant to these tables are solid, liquid and gas. Substance "Substance" denotes any quantity of material having a definite identity. Thus the term comprises anything from an atom or ion upwards. In the SGTE data presented here, a more restricted sense is implied, namely a unary, a stoichiometric compound or a pure gas. System and component A chemical system is defined by a set of chemical entities known as components. In the simplest case these are the elements comprising the system. However, they may also be compounds of these elements, in which case they may be fewer or, less commonly, greater in number than the number of elements. For the example of the three elements C, H and O, the number of components might be 1, ethanol; 2, ethanolwater; 3, C-H-O; or 4, methanol-ethanol-water-benzene, etc. Systems may be closed or open. In closed systems the total amount of the components is fixed, whereas in open systems the composition can adjust to meet some external constraint. Unary The word "unary" is used to define the constituents of a phase. For example in a liquid phase the unaries might be H2O and C2H5OH. The data for these unaries are those of the pure liquids. Unaries are not necessarily experimentally accessible. For example Ni is unstable but data for it are required to model the solution of nickel in the bcc phase of steels. Moreover, to meet the requirements of models for ionic phases with sublattices a unary may carry charge. For example the formation of an inverse spinel AB2O4 might be modelled by the mixing of the four unaries, A3+(A3+)2O4<spinel>, A3+(B2+)2O4<spinel>, B2+(A3+)2O4<spinel> and B2+(B2+)2O4<spinel> which respectively have charges of +1 –1, 0 and -2 only one of which, even in principle, could have an independent existence. Vacancies Sites in crystalline structures are not always 100% populated, indeed interstitial sites may have a very low occupancy. SGTE modelling considers the unoccupied sites as vacancies, which are denoted by Va.
SGTE
Landolt-Börnstein New Series IV/19A
Introduction
XVII
3 Content of the tables 3.1 Tabulated values The following standard format has been used to present the evaluated thermodynamic values for all inorganic substances: At the head of the page on the left hand side is the chemical formula and name for the substance concerned and on the right hand side a reference or references to the major source of the evaluated data contained in the table below. The table itself contains the following: T (Temperature in K) So (Standard entropy in J K-1 mol-1) - the entropy of the substance at 298.15 K and 100 kPa. H298-H0 (Enthalpy in J mol-1) - the difference in the enthalpy of the substance between 298.15 K and 0 K (when available) ∆f Ho (Standard enthalpy of formation in J mol-1) - the change in enthalpy resulting from the formation of the substance at 298.15K from the appropriate proportions of its pure elemental components in their standard reference states, also at 298.15K ∆f So (Standard entropy of formation in J K-1 mol-1) - the change in entropy resulting from the formation of the substance at 298.15 K from the appropriate proportions of its pure elemental components in their standard reference states, also at 298.15 K ∆f Go (Standard Gibbs energy of formation in J mol-1) - the change in Gibbs energy resulting from the formation of the substance at 298.15 K from the appropriate proportions of its pure elemental components in their standard reference states, also at 298.15 K ∆trs Ho (Enthalpy of transition in J mol-1) - the enthalpy difference between two different stable phases of the substance at the transition temperature corresponding to the value of T in the first column ∆trs So (Entropy of transition in J K-1 mol-1) - the entropy difference between two different stable phases of the substance at the transition temperature corresponding to the value of T in the first column type (nature of the transition) abbreviated information on the nature of the phase transition concerned S-S - solid/solid transition S-L - solid/liquid transition For the elements the information is more detailed including the name of the phases.
Landolt-Börnstein New Series IV/19A
SGTE
XVIII
Introduction
3.2 Figures There are generally two figures accompanying the tabulated values. These are - a plot of the heat capacity, Cp , (in J K-1 mol-1) as a function of temperature (K) for the complete range of temperature for which data are available. The plot comprises curves for the different phases of the substance if phase transitions occur in the temperature range concerned. - a plot of the enthalpy of formation, ∆fH , and Gibbs energy of formation, ∆fG , (in kJ mol-1 or MJ mol-1) as a function of temperature. Phase transitions in the substance and in the elemental components of the substance are reflected in the different curves. The maximum temperature may be limited by the maximum temperature of one of the component of the substance. For the elements in its reference state the second figure is replaced by a table with several properties, including a short version of the SGTE phase designation (i.e. A_MON_Pu instead of ALPHA_MONOCLINIC_Pu) the Strukturbericht, prototype, Pearson symbol and space group [86Mas, 91Din] the atomic number and atomic weight [96IUPAC, 97IUPAC]. The number in parentheses indicates the uncertainty in the last digit. the density [98Pre]
4 Accompanying software, SGTETab SGTETab is a program for tabulating and plotting the thermodynamic properties for pure substances or a chemical reaction using data stored in the SGTE pure substance database. It has been designed for use under the Windows9x or Windows NT operating systems as a full Windows program providing dialogue boxes, menus and context sensitive help in order to guide the user to ask for the table or plot required. As a Windows program it provides printer support. On executing SGTETab first click the ∆H button which opens the tabulation window containing various simple dialogue boxes allowing you to define: -
the substance (in a compact way, e.g. Be6Li2O10 instead of Li2O.3B2O3) or equation the units of temperature, pressure and energy the thermodynamic function to be plotted the range of temperatures to be covered by the calculations the fixed pressure for the calculations the name of the file where tabulated results are to be saved
The substance or equation is defined using the standard chemical nomenclature for the element names, eg mixture of upper and lower case characters Ag, B, Na, AgCl, CaBr2. If the substance is entered without a phase identifier a crystalline state is assumed with no defined phase name. However if data for a particular phase are to be used, the phase name should be entered immediately after the substance within angular brackets e.g. C. If data for gaseous species are required the phase identifier g is used e.g. H2, CH2. Equations are entered with the list of reactants and products separated by an equals sign e.g.:
SGTE
Landolt-Börnstein New Series IV/19A
Introduction
XIX
Ca + Cl2 = CaCl2 The amount of each of the reactants or products could be a fraction or a non-integer if required e.g.: C +0.5O2 = CO Na + 1/2Cl2 = NaCl SGTETab also provides a facility to balance chemical equations automatically. e.g.: Fe2(SO4) 3 = Fe3O4 + SO2 + O2 will auto-balance to give the chemical equation: Fe2(SO4) 3 = 2/3Fe3O4 + 3SO2 +5/3O2 Both tabular and graphical output is provided on clicking the PLOT button. The graphical output may be minimised for comparison with other graphical output, saved on disk or printed out on a connected printer. Optionally the printed information may be sent to a file as specified in the results file dialogue box. By default SGTETAB assumes that the units of energy are joules, temperature in K and pressure in Pa but alternative units may be selected using by clicking on the arrow in the appropriate dialogue box. The default temperature range over which calculations are carried out is 300 to 3000 K in steps of 50 K but this may be truncated depending on the upper temperature range of one or more of the compounds in the chemical equation. The user may, however, select a range of temperatures and step size depending on his own interest. The default pressure is 105 Pa but again this may be changed by the user if he/she wishes to investigate the properties of a chemical reaction or a pure substance at other pressures. A number of different thermodynamic functions may be plotted as a function of temperature including the heat capacity at constant pressure, Cp (the default), enthalpy, H, entropy, S, the Gibbs energy, G, and a function beta. When looking at data for individual substances the heat capacity and entropy represent absolute values while the values of the enthalpy and Gibbs energy are relative to the SGTE defined reference, Hser, the enthalpies of the elements in their standard reference state at 298.15 K. If a chemical reaction is being considered these functions become the change in properties arising from the chemical reaction ie ∆Cp, ∆S, ∆H and ∆G. The function beta for a pure substance is defined as: G/RTln10 where G is the Gibbs energy relative to HSER as defined above. For a chemical reaction the function beta now represents ∆G/RTln10 or the logarithm (base 10) of the equilibrium constant at constant pressure i.e. log10Kp. While SGTETab gives useful information about the stability of individual substances under ranges of conditions it is worth remembering that more powerful facilities are also available from SGTE members to use the data to model chemical and phase equilibria of much greater complexity.
Landolt-Börnstein New Series IV/19A
SGTE
Introduction
XX
References 78Hil 81Ind 87Ans 91Din 95Sun 98Pre
87Mas 96IUPAC 97IUPAC
SGTE
M. Hillert and M. Jarl: CALPHAD 2 (1978) 227-238. G. Inden: Physica 103B (1981) 82-100. I. Ansara and B. Sundman: in "Computer Handling and Dissemination of Data", P. Glaeser (ed.), CODATA, Elsevier, 1987, p. 154-158. A.T. Dinsdale: CALPHAD 15 (1991) 317-425. B. Sundman, F. Aldinger: 1995 Ringberg Workshop on Unary Data, CALPHAD 19 (1995) 433. B. Predel: "Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Pu-Re ... Zn-Zr", O. Madelung (ed.), Landolt-Börnstein New Series IV/5J, Springer-Verlag, Berlin Heidelberg (1998) T. Massalski (ed.): "Binary Alloy Phase Diagrams", ASM International, Materials Park, Ohio, USA. IUPAC, Pure Appl. Chem. 68 (1996) 2339-2359. IUPAC, Pure Appl. Chem. 69 (1997) 2471-2473.
Landolt-Börnstein New Series IV/19A
References
LVII
References 67Kub 73Bar
74Mil 85JANAF
91Kna
93Kub 94SGTE 94TCRAS 94THDA 95Bar 95SGTE 96TCRAS 98JANAF
99SGTE
Landolt-Börnstein New Series IV/19A
"Metallurgical Thermochemistry" (Fourth edition), O. Kubaschewski, E.LL. Evans and C.B. Alcock, Pergamon Press Ltd. (1967). "Thermochemical Properties of Inorganic Substances", I. Barin, O. Knacke (1973), and 'Supplement 1977', I. Barin, O. Knacke and O. Kubaschewski, Springer-Verlag Berlin, Heidelberg and Verlag Stahleisen mbH, Düsseldorf. "Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides", K.C. Mills, Butterworths & Co. Ltd. London (1974). "JANAF Thermochemical Tables" (Third edition), M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, Journal of Physical and Chemical Reference Data, vol. 14, Supplement No. 1, The American Chemical Society and American Institute of Physics for the National Bureau of Standards (1985). "Thermochemical Properties of Inorganic Substances", Eds. O. Knacke, O. Kubaschewski and K. Hesselmann, Springer-Verlag Berlin, Heidelberg and Verlag Stahleisen mbH, Düsseldorf (1991). "Materials Thermochemistry", O. Kubaschewski, C.B. Alcock and P.J. Spencer, Pergamon Press Ltd. (1993). Scientific Group Thermodata Europe (SGTE), Grenoble Campus, 1001 Avenue Centrale, BP 66, F-38402 Saint Martin d'Hères, France. Glushko Thermocenter of the Russian Academy of Sciences, IVTAN Association, Izhorskaya 13/19, 127412 Moscow, Russia. THERMODATA, Grenoble Campus, 1001 Avenue Centrale, BP 66, F-38402 Saint Martin d'Hères, France. "Thermochemical Data of Pure Substances" (Third edition), I. Barin, Wiley-VCH Publish., Weinheim (1995). see [94SGTE] see [94TCRAS] "NIST-JANAF Thermochemical Tables" (Fourth edition), M.W. Chase, Jr., Journal of Physical and Chemical Reference Data, Monograph n° 9, The American Chemical Society and American Institute of Physics (1998). see [94SGTE]
SGTE
2 Compounds
HgH (Mercury Monohydride gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
219.711
8711.1
69.064
215709.0
238488.0
HI (Hydrogen Iodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
206.588
8656.0
83.178
1700.3
Landolt-B¨ornstein New Series IV/19A
26500.0
1
SGTE
2
2 Compounds
HIO (Hydrogen Monoiodide Monoxide gas)
T
S
f H
f S
f G
298.15
254.773
–79400.0
28.790
–87983.7
[90Cor]
Sr(OH)I (Strontium Hydroxide Iodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
335.580
16608.0
53.903
–456205.0
SGTE
–440134.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
SiHI3 (Triiodosilane gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
375.004
19133.4
116.645
–109253.0
–74475.2
InH (Indium Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
207.663
8684.0
84.673
189771.0
Landolt-B¨ornstein New Series IV/19A
215016.0
3
SGTE
4
2 Compounds
In(OH) (Indium Monohydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
243.705
10737.0
18.142
–129856.0
–124447.0
[94TCRAS]
KH (Potassium Hydride)
T
S
- H H298 f H 0
f S
f G
298.15 892.00
51.300
7800.0
–78.720
–34349.6
SGTE
–57820.0
trs H trs S
type
21000.0
S!L
23.543
Landolt-B¨ornstein New Series IV/19A
2 Compounds
5
KH (Potassium Hydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
198.027
8795.0
68.007
105122.0
125398.0
[97JPCRD]
K(OH) (Potassium Hydroxide)
T
S
- H H298 f H 0
f S
f G
298.15 517.00 679.00
81.250
12600.0
–151.343
–379457.0
Landolt-B¨ornstein New Series IV/19A
–424580.0
trsH trsS
type
5600.0 7900.0
S!S S!L
10.832 11.635
SGTE
6
2 Compounds
K(OH) (Potassium Hydroxide gas)
[97JPCRD]
T
S
- H H298 f H 0
f S f G
298.15
238.287
11674.0
5.694
–232000.0
–233698.0
HK2PO4 (Hydrogen Dipotassium Phosphate)
T
S
f H
f S
f G
298.15
179.075
–1775773.0
–467.007
–1636530.0
SGTE
[95Bar]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
7
[94TCRAS]
LiH (Lithium Hydride)
T
S
- H H298 f H 0
f S
f G
298.15 965.00
20.600
3883.0
–73.860
–68628.6
–90650.0
LiH (Lithium Hydride gas)
S
- H H298 f H 0
f S
f G
298.15
170.905
8686.0
76.445
116471.0
Landolt-B¨ornstein New Series IV/19A
type
21800.0
S!L
22.591
[94TCRAS]
T
139263.0
trs H trs S
SGTE
8
2 Compounds
[96JPCRD]
Li(OH) (Lithium Hydroxide)
T
S
- H H298 f H 0
f S
f G
298.15 746.00
42.810
7414.0
–154.224
–441518.0
–487500.0
Li(OH) (Lithium Hydroxide gas)
S
- H H298 f H 0
f S
f G
298.15
214.375
11337.0
17.341
–234170.0
SGTE
type
20900.0
S!L
28.016
[96JPCRD]
T
–229000.0
trsH trsS
Landolt-B¨ornstein New Series IV/19A
2 Compounds
MgH (Magnesium Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
193.194
8682.0
95.183
201407.0
229786.0
Mg(OH) (Magnesium Monohydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
232.617
11124.0
32.033
–142000.0
Landolt-B¨ornstein New Series IV/19A
–132450.0
9
SGTE
10
2 Compounds
MnH (Manganese Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
213.693
8683.0
116.133
163260.0
197885.0
Mn(OH) (Manganese Monohydroxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
250.365
10869.0
50.231
2338.5
SGTE
17315.0
[94TCRAS]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
11
MnO(OH) (Manganese Monohydroxide Monoxide)
T
S
- H H298 f H 0
f S
f G
298.15
65.000
11000.0
–237.707
–567128.0
–638000.0
Mo(OH) (Molybdenum Monohydroxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
255.927
10869.0
59.453
322274.0
Landolt-B¨ornstein New Series IV/19A
340000.0
[94TCRAS]
[94TCRAS]
SGTE
12
2 Compounds
MoO(OH) (Molybdenum Monohydroxide Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
291.443
12750.0
–7.604
–127733.0
–130000.0
HNO (Nitroxyl gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
220.914
9942.0
–42.805
114795.0
SGTE
[94TCRAS]
102033.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
13
HNO3 (Nitric acid gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
266.875
11876.0
–201.991
–73689.4
–133913.0
N3 H (Hydrogen azide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
239.331
10948.0
–113.426
327818.0
Landolt-B¨ornstein New Series IV/19A
294000.0
SGTE
14
2 Compounds
[94TCRAS]
NaH (Sodium Hydride)
T
S
- H H298 f H 0
f S
f G
298.15 911.00
40.000
6259.0
–76.640
–33529.8
–56380.0
NaH (Sodium Hydride gas)
S
- H H298 f H 0
f S
f G
298.15
188.388
8731.0
71.748
119442.0
SGTE
type
26000.0
S!L
28.540
[94TCRAS]
T
140834.0
trs H trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
15
[96JPCRD]
Na(OH) (Sodium Hydroxide)
T
S
- H H298 f H 0
f S
f G
298.15 400.00 568.00 594.00
64.430
10490.0
–154.783
–379651.0
–425800.0
Na(OH) (Sodium Hydroxide gas)
S
- H H298 f H 0
f S f G
298.15
228.975
11396.0
9.762
Landolt-B¨ornstein New Series IV/19A
type
5400.0 6360.0 6360.0
S!S S!S S!S
13.500 11.197 10.707
[96JPCRD]
T
–191000.0
trsH trsS
–193910.0
SGTE
16
2 Compounds
NiH (Nickel Monohydride gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
201.724
8536.0
106.588
350733.0
382512.0
Ni(OH) (Nickel Monohydroxide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
241.944
11214.0
44.235
79665.5
SGTE
92854.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
17
[96TCRAS]
NiO(OH) (Nickel Monohydroxide Monoxide)
T
S
- H H298 f H 0
f S
f G
298.15
55.000
9700.0
–245.283
–316869.0
–390000.0
OH (Hydroxyl gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
183.737
8813.0
15.823
34631.2
Landolt-B¨ornstein New Series IV/19A
39349.0
SGTE
18
2 Compounds
HPO (Phosphorus Monohydride Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
235.680
10065.0
26.677
–64822.6
–56869.0
[94TCRAS]
[97JPCRD]
Rb(OH) (Rubidium Hydroxide)
T
S
- H H298 f H 0
f S
f G
298.15 508.00 658.00
94.000
13500.0
–150.690
–373872.0
SGTE
–418800.0
trsH trsS
type
5500.0 8000.0
S!S S!L
10.827 12.158
Landolt-B¨ornstein New Series IV/19A
2 Compounds
Rb(OH) (Rubidium Hydroxide gas)
[97JPCRD]
T
S
- H H298 f H 0
f S f G
298.15
248.502
11760.0
3.812
–238000.0
–239137.0
Sr(OH) (Strontium Monohydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
248.657
11046.0
25.049
–201567.0
Landolt-B¨ornstein New Series IV/19A
–194098.0
19
SGTE
20
2 Compounds
Tl(OH) (Thallium Monohydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
252.422
10894.0
20.208
–116072.0
–110047.0
W(OH) (Tungsten Monohydroxide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
263.648
10849.0
63.117
452182.0
SGTE
471000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
Zn(OH) (Zinc Monohydroxide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
242.020
10926.0
32.475
–42987.6
–33305.0
HO2 (Hydrogen Dioxide gas)
[94TCRAS]
T
S
- H H298 f H f S 0
f G
298.15
229.102
10003.0
22027.9
Landolt-B¨ornstein New Series IV/19A
9689.0
21
–41.385
SGTE
22
2 Compounds
WO(OH) (Tungsten Monohydroxide Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
298.485
12754.0
–4.620
24377.5
23000.0
PH (Phosphorus Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
196.379
8648.0
89.950
203933.0
SGTE
230752.0
[94TCRAS]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
PbH (Lead Monohydride gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
220.761
8677.6
90.621
209168.0
236186.8
PtH (Platinum Monohydride gas)
[95SGTE]
T
S
- H H298 f H 0
f S
f G
298.15
216.965
8681.1
109.994
414205.0
Landolt-B¨ornstein New Series IV/19A
447000.0
23
SGTE
24
2 Compounds
[94TCRAS]
RbH (Rubidium Hydride)
T
S
- H H298 f H 0
f S
f G
298.15 858.00
63.700
9100.0
–78.416
–28920.3
–52300.0
RbH (Rubidium Hydride gas)
S
- H H298 f H 0
f S
f G
298.15
208.723
8820.0
66.607
99464.1
SGTE
type
22000.0
S!L
25.641
[94TCRAS]
T
119323.0
trs H trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
SH (Sulphur Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
195.552
9098.0
98.142
111161.0
140422.0
SbH (Antimony Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
216.251
8663.0
105.389
187019.0
Landolt-B¨ornstein New Series IV/19A
218441.0
25
SGTE
26
2 Compounds
SeH (Selenium Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
204.942
8519.0
97.636
116600.0
145710.0
SiH (Silicon Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
198.052
9145.0
113.902
334676.0
SGTE
368636.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
SrH (Strontium Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
212.749
8723.0
91.715
191882.0
219227.0
HT (Protium Tritium gas)
[94TCRAS]
T
S
- H H298 f H f S f G 0
298.15
148.337
8529.0
Landolt-B¨ornstein New Series IV/19A
724.0
27
6.333
–1164.3
SGTE
28
2 Compounds
TeH (Tellurium Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
218.835
8720.0
104.274
132693.0
163782.0
TlH (Thallium Monohydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
215.203
8698.0
85.563
179291.0
SGTE
204802.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
YbH (Ytterbium Monohydride gas)
[95SGTE]
T
S
- H H298 f H 0
f S
f G
298.15
220.461
8715.3
95.290
152589.0
181000.0
ZnH (Zinc Monohydride gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
204.115
8675.0
97.144
233652.0
Landolt-B¨ornstein New Series IV/19A
262615.0
29
SGTE
30
2 Compounds
ZrH (Zirconium Monohydride gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
216.163
8690.2
111.642
483020.0
516305.6
SiH2 I2 (Diiodosilane gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
326.792
14916.0
61.163
–56310.1
SGTE
–38074.4
Landolt-B¨ornstein New Series IV/19A
2 Compounds
31
[95Bar]
H2 KPO4 (Dihydrogen Potassium Phosphate)
T
S
f H
f S
f G
298.15 444.00
134.850
–1568331.0
–511.884
–1415710.0
trsH trsS
type
4602.0
S!S
K2 (OH)2 (Dipotassium Dihydroxide gas)
[97JPCRD]
T
S
- H H298 f H 0
f S
f G
298.15
342.859
22385.0
–122.328
–604528.0
Landolt-B¨ornstein New Series IV/19A
–641000.0
10.365
SGTE
32
2 Compounds
[94SGTE]
LaH2 (Lanthanum Dihydride)
T
S
f H
f S
f G
298.15
51.672
–201250.4
–135.910
–160729.0
Li2 (OH)2 (Dilithium Dihydroxide gas)
[96JPCRD]
T
S
- H H298 f H 0
f S
f G
298.15
270.723
15578.0
–123.344
–700225.0
SGTE
–737000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
33
[94TCRAS]
MgH2 (Magnesium Hydride)
T
S
- H H298 f H 0
f S
f G
298.15 600.00
31.100
5310.0
–132.251
–36269.4
–75700.0
T
S
- H H298 f H 0
f S
f G
298.15
63.180
11410.0
–305.318
–833319.0
Landolt-B¨ornstein New Series IV/19A
type
14000.0
S!L
23.333
[94TCRAS]
Mg(OH)2 (Magnesium Hydroxide)
–924350.0
trsH trsS
SGTE
34
2 Compounds
Mg(OH)2 (Magnesium Hydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
271.592
17131.0
–96.906
–523124.0
–552017.0
3MgO4SiO2H2 O (Magnesium Oxide—Silicon Oxide—Water (3/4/1); Talc)
T
S
f H
f S
f G
298.15
260.697
–5922498.0
–1274.120
–5542620.0
SGTE
[95Bar]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
35
7MgO8SiO2H2 O (Magnesium Oxide—Silicon Oxide—Water (7/8/1);
Anthophyllite)
T
S
f H
f S
f G
298.15
558.982
–12086405.0
–2412.640
–11367100.0
[94TCRAS]
Mn(OH)2 (Manganese Dihydroxide)
T
S
- H H298 f H 0
f S
f G
298.15
99.000
15500.0
–269.047
–615784.0
Landolt-B¨ornstein New Series IV/19A
–696000.0
[95Bar]
SGTE
36
2 Compounds
Mo(OH)2 (Molybdenum Dihydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
297.610
15099.0
–66.777
–40090.4
–60000.0
MoO(OH)2 (Molybdenum Dihydroxide Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
327.484
17309.0
–139.477
–438415.0
SGTE
–480000.0
[94TCRAS]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
37
MoO2 (OH)2 (Molybdenum Dihydroxide Dioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
335.554
20179.0
–233.980
–781239.0
–851000.0
NH2 (Nitrogen Dihydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
194.991
9938.0
–31.494
199390.0
Landolt-B¨ornstein New Series IV/19A
190000.0
[94TCRAS]
SGTE
38
2 Compounds
NH2 NO2 (Aminyl Nitrite gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
268.543
12164.0
–258.895
51189.5
–26000.0
Na2 (OH)2 (Disodium Dihydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
319.287
20835.0
–119.140
–553713.0
SGTE
–589235.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
39
[94SGTE]
NdH2 (Neodymium Dihydride)
T
S
f H
f S
f G
298.15
58.911
–202087.2
–142.855
–159495.0
[96TCRAS]
Ni(OH)2 (Nickel Dihydroxide)
T
S
- H H298 f H 0
f S
f G
298.15
80.000
12620.0
–285.623
–447842.0
Landolt-B¨ornstein New Series IV/19A
–533000.0
SGTE
40
2 Compounds
Ni(OH)2 (Nickel Dihydroxide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
287.864
16374.0
–77.759
–220376.0
–243560.0
NpO3 H2 O (Neptunium Trioxide—Water (1/1))
T
S
f H
f S
f G
298.15
137.235
–1390762.0
–454.198
–1255340.0
SGTE
[95Bar]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
41
[94TCRAS]
H2 O (Water)
T
S
- H H298 f H 0
f S
f G
298.15
69.950
13273.0
–163.303
–237141.0
–285830.0
H2 O (Water gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
188.832
9905.0
–44.422
–228582.0
Landolt-B¨ornstein New Series IV/19A
–241826.0
SGTE
42
2 Compounds
[93THDA]
H2 O2 (Dihydrogen Dioxide)
T
S
f H
f S
f G
298.15
109.621
–187861.6
–226.206
–120418.0
H2 O2 (Dihydrogen Dioxide gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
232.991
10853.3
–102.836
–105445.0
SGTE
–136105.5
Landolt-B¨ornstein New Series IV/19A
2 Compounds
43
Rb2 (OH)2 (Dirubidium Dihydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
366.587
23354.0
–122.792
–617164.0
–653774.0
W(OH)2 (Tungsten Dihydroxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
303.817
15049.0
–64.628
79268.8
Landolt-B¨ornstein New Series IV/19A
60000.0
SGTE
44
2 Compounds
Zn(OH)2 (Zinc Hydroxide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
273.472
16440.0
–103.986
–345362.0
–376365.0
WO(OH)2 (Tungsten Dihydroxide Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
324.655
17348.0
–146.364
–344362.0
SGTE
–388000.0
[94TCRAS]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
45
[93THDA]
H2 SO4 (Sulfuric acid)
T
S
f H
f S
f G
298.15
156.904
–813988.8
–416.140
–689917.0
H2 SO4 (Sulfuric acid gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
298.797
16338.5
–274.247
–653362.0
Landolt-B¨ornstein New Series IV/19A
–735128.8
SGTE
46
2 Compounds
UO3 H2O (Uranium Trioxide—Water (1/1))
T
S
f H
f S
f G
298.15
134.306
–1537620.0
–456.868
–1401400.0
[85JANAF]
H2 WO4 (Dihydrogen Tungsten Tetraoxide)
T
S
f H
f S
f G
298.15
144.766
–1131722.0
–428.826
–1003870.0
SGTE
[93THDA]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
47
WO2(OH)2 (Tungsten Dihydroxide Dioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
341.525
20250.0
–232.067
–766809.0
–836000.0
PH2 (Phosphorus Dihydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
212.606
9981.0
40.838
107377.0
Landolt-B¨ornstein New Series IV/19A
119553.0
[94TCRAS]
SGTE
48
2 Compounds
[94SGTE]
PrH2 (Praseodymium Dihydride)
T
S
f H
f S
f G
298.15
56.777
–199995.2
–147.834
–155918.0
[95Bar]
PuH2 (Plutonium Dihydride)
T
S
f H
f S
f G
298.15
59.831
–139327.0
–125.310
–101966.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
H2 S (Hydrogen Sulphide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
205.803
9957.0
43.053
–33436.3
–20600.0
H2 S2 (Dihydrogen Disulphide gas)
T
S
f H
f S
f G
298.15
266.463
15731.8
71.643
–5628.6
Landolt-B¨ornstein New Series IV/19A
49
[74Mil]
SGTE
50
2 Compounds
H2 Se (Hydrogen Selenide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
219.095
10001.0
46.449
16151.2
30000.0
SiH2 (Silicon Dihydride gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
207.480
10018.0
57.990
256043.0
SGTE
273333.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
51
[94TCRAS]
SrH2 (Strontium Hydride)
T
S
- H H298 f H 0
f S
f G
298.15 1128.00 1323.00
52.00
8000.0
–134.374
–139936.0
–180000.0
T
S
- H H298 f H 0
f S
f G
298.15
228.455
10083.0
48.554
85123.6
Landolt-B¨ornstein New Series IV/19A
type
7200.0 23000.0
S S
6.383 17.385
! !
S L
[94TCRAS]
H2 Te (Hydrogen Telluride gas)
99600.0
trsH trsS
SGTE
52
2 Compounds
[95Bar]
ThH2 (Thorium Dihydride)
T
S
f H
f S
f G
298.15
50.710
–139704.0
–131.770
–100417.0
[85JANAF]
TiH2 (Titanium Dihydride)
T
S
- H H298 f H 0
f S
f G
298.15
29.711
4945.5
–131.689
–105085.0
SGTE
–144348.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[91Kna]
YH2 (Yttrium Dihydride)
T
S
f H
f S
f G
298.15
38.409
–221752.0
–137.059
–180888.0
[85JANAF]
SiH3 I (Monoiodosilane gas)
T
S
- H H298 f H 0
f S
f G
298.15
271.019
12079.2
–1.880
–1531.3
Landolt-B¨ornstein New Series IV/19A
53
–2092.0
SGTE
54
2 Compounds
[93THDA]
La(OH)3 (Lanthanum Hydroxide)
T
S
f H
f S
f G
298.15
117.821
–1412100.0
–442.821
–1280070.0
[94TCRAS]
NH3 (Ammonia gas)
T
S
- H H298 f H 0
f S
f G
298.15
192.768
10043.0
–99.058
–16406.0
SGTE
–45940.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
55
[94TCRAS]
NH2 (OH) (Hydroxylamine gas)
T
S
- H H298 f H 0
f S
f G
298.15
236.177
11236.0
–158.222
–2826.1
–50000.0
[85JANAF]
H3 PO4 (Phosphoric acid)
T
S
- H H298 f H 0
f S
f G
298.15 315.50
110.541
16978.7
–536.838
–1124300
Landolt-B¨ornstein New Series IV/19A
–1284362.5
trs H trs S
type
13388.8
S L
42.437
SGTE
56
2 Compounds
PH3 (Phosphorus Trihydride; P hosphine; gas)
T
S
- H H298 f H 0
f S
f G
298.15
210.243
10136.0
–26.867
30894.4
22884.0
[95Bar]
PuH3 (Plutonium Trihydride)
T
S
f H
f S
f G
298.15
64.852
–138072.0
–185.629
–82726.7
SGTE
[94TCRAS]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[94TCRAS]
SbH3 (Antimony Trihydride gas)
T
S
- H H298 f H 0
f S
f G
298.15
232.958
10511.0
–8.584
147359.0
144800.0
[94TCRAS]
SiH3 (Silicon Trihydride gas)
T
S
- H H298 f H 0
f S f G
298.15
216.854
10439.0
2.024
Landolt-B¨ornstein New Series IV/19A
204520.0
57
203917.0
SGTE
58
2 Compounds
[93THDA]
UH3 ( – Uranium Trihydride)
T
S
f H
f S
f G
298.15
63.597
–127193.6
–182.623
–72744.6
[91Kna]
YH3 (Yttrium Trihydride)
T
S
f H
f S
f G
298.15
41.924
–265684.0
–198.884
–206387.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[85JANAF]
NH4 I (Ammonium Iodide)
T
S
f H
f S
f G
298.15
112.968
–202087.2
–302.267
–111966.0
[85JANAF]
N2 H4 (Hydrazine)
T
S
f H
f S
f G
298.15
121.544
50626.0
–331.427
149441.0
Landolt-B¨ornstein New Series IV/19A
59
SGTE
60
2 Compounds
[94TCRAS]
N2 H4 (Hydrazine gas)
T
S
- H H298 f H 0
f S
f G
298.15
238.464
11449.0
–214.507
159135.0
95180.0
[94TCRAS]
NH4 NO3 (Ammonium Nitrate)
T
S
- H H298 f H 0
f S
f G
298.15 305.38 357.25 399.00 442.85
150.81
23662.0
–609.881
–183764.0
SGTE
–365600.0
trsH trsS
type
1700.0 1350.0 4435.0 5860.0
S S S S
5.567 3.779 11.115 13.232
! ! ! !
S S S L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
61
[93THDA]
H2 SO4 H2 O (Sulphuric acid—Water (1/1))
T
S
- H H298 f H 0
f S
f G
298.15
211.510
41866.0
–594.787
–950286.0
–1127621.5
UO3 2H2 O (Uranium Trioxide—Water (1/2))
T
S
f H
f S
f G
298.15
167.000
–1826700.9
–657.427
–1630690.0
Landolt-B¨ornstein New Series IV/19A
[93THDA]
SGTE
62
2 Compounds
[85JANAF]
SiH4 (Silane gas)
T
S
- H H298 f H 0
f S
f G
298.15
204.653
10539.5
–75.517
56824.2
34308.8
[95Bar]
SnH4 (Tin Tetrahydride gas)
T
S
f H
f S
f G
298.15
228.765
162758.0
–83.775
187736.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
63
[93THDA]
H2 SO4 2H2 O (Sulphuric acid—Water (1/2))
T
S
- H H298 f H 0
f S
f G
298.15
276.362
51038.0
–763.189
–1199550.0
–1427099.6
[93THDA]
Si2 H6 (Disilane gas)
T
S
f H
f S
f G
298.15
272.660
80300.0
–157.000
127110.0
Landolt-B¨ornstein New Series IV/19A
SGTE
64
2 Compounds
(NH4 )2 SO4 (Ammonium
[94SGTE]
Sulphate)
T
S
f H
f S
f G
298.15
220.078
–1180850.2
–936.617
–901598.0
H2 SO4 3H2 O (Sulphuric acid—Water (1/3))
T
S
f H
f S
f G
298.15
345.373
–1720402.0
–927.431
–1443890.0
SGTE
[98JANAF]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[93THDA]
HfI (Hafnium Monoiodide)
T
S
f H
f S
f G
298.15
97.738
–143092.8
–3.891
–141933.0
[93THDA]
HfI (Hafnium Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
281.818
10125.3
180.188
345430.0
Landolt-B¨ornstein New Series IV/19A
65
399153.6
SGTE
66
2 Compounds
[93THDA]
HfI2 (Hafnium Diiodide)
T
S
f H
f S
f G
298.15
151.921
–279491.2
–7.778
–277172.0
[93THDA]
HfI2 (Hafnium Diiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
332.235
15773.7
172.536
77007.2
SGTE
128448.8
Landolt-B¨ornstein New Series IV/19A
2 Compounds
67
[93THDA]
HfI3 (Hafnium Triiodide)
T
S
f H
f S
f G
298.15
206.062
–394132.8
–11.707
–390643.0
[93THDA]
HfI3 (Hafnium Triiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
409.179
20878.2
191.410
–198070.0
Landolt-B¨ornstein New Series IV/19A
–141000.8
SGTE
68
2 Compounds
[94SGTE]
HfI4 (Hafnium Iodide)
T
S
f H
f S
f G
298.15
269.868
–493712.0
–5.970
–491932.0
[93THDA]
HfI4 (Hafnium Iodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
447.379
26388.5
171.541
–422266.0
SGTE
–371120.8
Landolt-B¨ornstein New Series IV/19A
2 Compounds
69
[93THDA]
HfN (Hafnium Mononitride)
T
S
- H H298 f H 0
f S
f G
298.15 3583.00
44.769
7418.2
–94.596
–340992.0
–369196.2
T
S
- H H298 f H 0
f S
f G
298.15
235.623
8786.0
89.490
45701.7
Landolt-B¨ornstein New Series IV/19A
type
62760.0
S
17.516
!
L
[94TCRAS]
HfO (Hafnium Monoxide gas)
72383.0
trsH trsS
SGTE
70
2 Compounds
[94TCRAS]
HfO2 (Hafnium Oxide)
T
S
- H H298 f H 0
f S
f G
298.15 2100.0 2793.0 3073.0
59.400
9810.0
–189.307
–1059160
–1115600
T
S
- H H298 f H 0
f S
f G
298.15
272.687
10846.0
23.980
–221714.0
SGTE
type
12000.0 18000.0 96000.0
S S S
5.714 6.445 31.240
! ! !
S S L
[94TCRAS]
HfO2 (Hafnium Oxide gas)
–214564.0
trs H trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
71
[85JANAF]
HgI (Mercury Monoiodide)
T
S
f H
f S
f G
298.15 563.00
120.646
–59542.5
–13.323
–55570.1
trs H trsS
type
15690.0
S
T
S
- H H298 f H 0
f S
f G
298.15
280.722
10589.7
146.752
89715.3
Landolt-B¨ornstein New Series IV/19A
!
L
[85JANAF]
HgI (Mercury Monoiodide gas)
133469.6
27.869
SGTE
72
2 Compounds
[94TCRAS]
HgI2 (Mercury Diiodide)
T
S
- H H298 f H 0
f S
f G
298.15 401.00 529.00
170.000
18790.0
–22.039
–98829.1
–105400.0
T
S
- H H298 f H 0
f S
f G
298.15
324.899
15871.0
132.860
–55512.2
SGTE
type
2600.0 15560.0
S S
6.484 29.414
! !
S L
[94TCRAS]
HgI2 (Mercury Diiodide gas)
–15900.0
trs H trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[94TCRAS]
HgO (Mercury Monoxide red)
T
S
- H H298 f H 0
f S
f G
298.15
70.250
9117.0
–108.223
–58613.2
–90880.0
[93THDA]
HgO (Mercury Monoxide gas)
T
S
f H
f S
f G
298.15
238.597
41840.0
60.124
23914.2
Landolt-B¨ornstein New Series IV/19A
73
SGTE
74
2 Compounds
HgOSeO2 (Mercury Monoxide—Selenium Dioxide (1/1))
T
S
f H
f S
f G
298.15
162.323
–365263.2
–263.263
–286771.0
[95Bar]
HgSO4 (Mercury Monosulphate)
T
S
f H
f S
f G
298.15
140.164
–707502.0
–378.100
–594771.0
SGTE
[95Bar]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
75
[94TCRAS]
HgS (Mercury Monosulphide)
T
S
- H H298 f H 0
f S
f G
298.15 618.00 1093.00
85.340
10590.0
–22.630
–52252.9
–59000.0
type
2000.0 40000.0
S S
3.236 36.597
! !
S L
[93THDA]
HgS (Mercury Monosulphide gas)
T
S
f H
f S
f G
298.15
254.329
127194.0
146.359
83557.1
Landolt-B¨ornstein New Series IV/19A
trsH trsS
SGTE
76
2 Compounds
[85JANAF]
Hg2I2 (Dimercury Diiodide)
T
S
f H
f S
f G
298.15 563.00
241.291
–119085.0
–26.648
–111140.0
type
27196.0
S
48.306
!
L
[95Bar]
Hg2SO4 (Dimercury Monosulphate)
T
S
f H
f S
f G
298.15
200.832
–743120.0
–393.332
–625848.0
SGTE
trs H trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
77
[94TCRAS]
HoO (Holmium Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
245.694
9862.0
68.102
–80993.5
–60689.0
[94TCRAS]
Ho2O3 (Holmium Oxide)
T
S
- H H298 f H 0
f S
f G
298.15 2688.0
158.67
21000.0
–299.088
–1791930
Landolt-B¨ornstein New Series IV/19A
–1881100.0
trsH
trsS
type
130000.0
48.363
S L
SGTE
78
2 Compounds
[94TCRAS]
InI (Indium Monoiodide)
T
S
- H H298 f H 0
f S f G
298.15 637.50
120.100
13354.0
4.380
–102500.0
17260.0
S
27.075
!
L
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
267.443
10271.0
151.723
–18819.4
SGTE
type
–103806.0
InI (Indium Monoiodide gas)
26417.0
trs H trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
79
[95Bar]
IrI (Iridium Monoiodide)
T
S
f H
f S
f G
298.15
108.784
–46024.0
15.210
–50558.7
[94TCRAS]
KI (Potassium Iodide)
T
S
- H H298 f H 0
f S
f G
298.15 954.00
106.050
12700.0
–16.699
–324321.0
Landolt-B¨ornstein New Series IV/19A
–329300.0
trsH trsS
type
24020.0
S
25.178
!
L
SGTE
80
2 Compounds
[94TCRAS]
KI (Potassium Iodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
258.287
10244.0
135.537
–168867.0
–128456.0
[94TCRAS]
LiI (Lithium Iodide)
T
S
- H H298 f H 0
f S
f G
298.15 742.00
86.710
11360.0
–0.479
–273057.0
SGTE
–273200.0
trsH trsS
type
14640.0
S
19.730
!
L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[94TCRAS]
LiI (Lithium Iodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
232.217
9290.0
145.027
–128510.0
–85270.0
[94TCRAS]
MgI (Magnesium Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
252.812
9741.0
162.071
12885.4
Landolt-B¨ornstein New Series IV/19A
81
61207.0
SGTE
82
2 Compounds
[95SGTE]
MnI (Manganese Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
268.416
10025.5
178.126
54891.6
108000.0
[94TCRAS]
MoI (Molybdenum Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
277.659
10043.0
191.029
443045.0
SGTE
500000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
83
[85JANAF]
NIO (Nitrogen Monoiodide Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
282.868
12108.5
26.420
104254.0
112131.2
[94TCRAS]
NaI (Sodium Iodide)
T
S
- H H298 f H 0
f S
f G
298.15 934.00
98.560
12260.0
–10.809
–286407.0
Landolt-B¨ornstein New Series IV/19A
–289630.0
trs H trs S
type
23680.0
S
25.353
!
L
SGTE
84
2 Compounds
[94TCRAS]
NaI (Sodium Iodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
248.978
9952.0
139.608
–132262.0
–90638.0
[96TCRAS]
NiI (Nickel Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
266.335
10687.0
178.469
191214.0
SGTE
244425.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[96JPCRD]
IO (Iodine Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
239.636
9003.0
78.993
102464.0
126016.0
[95Bar]
PuOI (Plutonium Monoiodide Monoxide)
T
S
f H
f S
f G
298.15
126.357
–827595.0
–88.747
–801135.0
Landolt-B¨ornstein New Series IV/19A
85
SGTE
86
2 Compounds
[96JPCRD]
IO3 (Iodine Trioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
292.970
13505.0
–72.820
263592.0
241881.0
[94TCRAS]
PbI (Lead Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
280.410
10339.0
157.540
61934.3
SGTE
108905.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
87
[94TCRAS]
RbI (Rubidium Iodide)
T
S
- H H298 f H 0
f S
f G
298.15 929.00
118.800
13340.0
–16.045
–328816.0
–333600.0
T
S
- H H298 f H 0
f S
f G
298.15
268.868
10459.0
134.022
–178440.0
Landolt-B¨ornstein New Series IV/19A
type
22050.0
S
23.735
!
L
[94TCRAS]
RbI (Rubidium Iodide gas)
–138481.0
trsH trsS
SGTE
88
2 Compounds
[85JANAF]
SiI (Silicon Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
253.852
9937.0
176.973
260864.0
313628.5
[94TCRAS]
SnI (Tin Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
272.293
10177.0
163.043
124114.0
SGTE
172725.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[94TCRAS]
SrI (Strontium Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
271.887
10283.0
158.123
–54995.5
–7851.0
[94TCRAS]
TI (Tritium Iodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
215.786
8700.0
81.053
2082.1
Landolt-B¨ornstein New Series IV/19A
89
26248.0
SGTE
90
2 Compounds
[95SGTE]
ThI (Thorium Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
288.487
10435.7
178.617
294854.0
348109.0
[94TCRAS]
TiI (Titanium Monoiodide)
T
S
- H H298 f H 0
f S
f G
298.15
88.000
11500.0
–0.789
–129687.0
SGTE
–129922.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
91
[94TCRAS]
TiI (Titanium Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
267.073
10069.0
178.284
213655.0
266810.0
[95Bar]
TlI (Thallium Monoiodide)
T
S
f H
f S f G
298.15 451.00 714.80
127.696
–123846.0
5.326
Landolt-B¨ornstein New Series IV/19A
trs H trs S
type
912.0 14707.0
S S
–125434.0 2.022 20.575
! !
S L
SGTE
92
2 Compounds
[94TCRAS]
TlI (Thallium Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
275.101
10382.0
152.731
–29594.9
15942.0
[94TCRAS]
WI (Tungsten Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
284.326
10047.0
193.638
538267.0
SGTE
596000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[96TCRAS]
ZnI (Zinc Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
263.514
10087.0
163.813
78912.0
127753.0
[94TCRAS]
ZrI (Zirconium Monoiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
273.468
10917.0
176.217
358420.0
Landolt-B¨ornstein New Series IV/19A
410959.0
93
SGTE
94
2 Compounds
[94TCRAS]
InI2 (Indium Diiodide)
T
S
- H H298 f H 0
f S f G
298.15 428.00
173.900
19197.0
0.111
–176000.0
1290.0
S
3.014
!
L
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
349.833
14913.0
176.044
–91947.5
SGTE
type
–176033.0
InI2 (Indium Diiodide gas)
–39460.0
trs H trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[94TCRAS]
In2 I2 (Diindium Diiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
416.351
22058.0
184.912
–82945.5
–27814.0
[95Bar]
IrI2 (Iridium Diiodide)
T
S
f H
f S f G
298.15
158.992
–83680.0
7.348
Landolt-B¨ornstein New Series IV/19A
95
–85870.8
SGTE
96
2 Compounds
[94TCRAS]
K2 I2 (Dipotassium Diiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
393.947
21456.0
148.448
–463176.0
–418916.0
[94TCRAS]
Li2 I2 (Dilithium Diiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
334.600
17658.0
160.221
–410572.0
SGTE
–362802.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
97
[94TCRAS]
MgI2 (Magnesium Iodide)
T
S
- H H298 f H 0
f S
f G
298.15 906.00
134.000
17000.0
–14.810
–365584.0
–370000.0
T
S
- H H298 f H 0
f S
f G
298.15
313.814
15294.0
165.004
–220902.0
Landolt-B¨ornstein New Series IV/19A
type
26000.0
S
28.698
!
L
[94TCRAS]
MgI2 (Magnesium Iodide gas)
–171706.0
trsH trsS
SGTE
98
2 Compounds
[93THDA]
MnI2 (Manganese Diiodide)
T
S
f H
f S f G
298.15 911.00
150.624
–242672.0
2.265
trs H trs S
type
41840.0
S
–243347.0
T
S
- H H298 f H 0
f S f G
298.15
150.000
24000.0
5.301
SGTE
!
L
[94TCRAS]
MoI2 (Molybdenum Diiodide)
–104000.0
45.928
–105580.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
99
[94TCRAS]
MoI2 (Molybdenum Diiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
332.089
15591.0
187.390
204130.0
260000.0
[94TCRAS]
Na2 I2 (Sodium Diiodide gas)
T
S
- H H298 f H 0
f S
f G
298.15
368.724
20246.0
149.985
–401588.0
Landolt-B¨ornstein New Series IV/19A
–356870.0
SGTE
100
2 Compounds
[93THDA]
NbI2 (Niobium Diiodide gas)
T
S
f H
f S
f G
298.15
335.750
98324.0
183.341
43660.9
[96TCRAS]
NiI2 (Nickel Diiodide)
T
S
- H H298 f H 0
f S
f G
298.15 1073.00
138.700
18040.0
–7.235
–94242.9
SGTE
–96400.0
trsH trsS
type
48000.0
S
44.734
!
L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
NiI2 (Nickel Diiodide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
335.413
15750.0
189.478
59817.1
116310.0
[95Bar]
ThOI2 (Thorium Diiodide Monoxide)
T
S
f H
f S
f G
298.15
159.000
–1000800.0
–111.513
–967553.0
Landolt-B¨ornstein New Series IV/19A
101
SGTE
102
2 Compounds
WO2I2 (Tungsten Diiodide Dioxide gas)
[94SGTE]
T
S
f H
f S
f G
298.15
377.088
–430115.2
23.184
–437028.0
[85JANAF]
PbI2 (Lead Diiodide)
T
S
- H H298 f H 0
f S
f G
298.15 683.00
174.837
19501.6
–6.102
–173574.0
SGTE
–175393.3
trs H trs S
type
23430.4
S!L
34.305
Landolt-B¨ornstein New Series IV/19A
2 Compounds
103
PbI2 (Lead Diiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
352.606
15247.0
171.667
–61435.5
–10253.0
Rb2 I2 (Dirubidium Diiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
416.278
22217.0
146.587
–476662.0
Landolt-B¨ornstein New Series IV/19A
–432957.0
SGTE
104
2 Compounds
SiI2 (Silicon Diiodide gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
320.972
13790.5
186.023
37003.6
92466.4
[95Bar]
SnI2 (Tin Diiodide)
T
S
f H
f S f G
298.15 593.00
168.490
–143888.0
1.171
SGTE
trs H trs S
type
17991.0
S!L
–144237.0 30.339
Landolt-B¨ornstein New Series IV/19A
2 Compounds
105
SnI2 (Tin Diiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
342.701
14883.0
175.382
–60357.1
–8067.0
[94TCRAS]
SrI2 (Strontium Iodide)
T
S
- H H298 f H 0
f S
f G
298.15 811.00
159.100
18920.0
–12.733
–564204.0
Landolt-B¨ornstein New Series IV/19A
–568000.0
trsH trsS
type
19700.0
S!L
24.291
SGTE
106
2 Compounds
SrI2 (Strontium Iodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
341.639
16701.0
169.806
–328847.0
–278219.0
TeI2 (Tellurium Diiodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
346.109
–105000.0
180.749
–158890.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
107
ThI2 (Thorium Diiodide gas)
[95SGTE]
T
S
- H H298 f H 0
f S
f G
298.15
355.473
15443.6
187.534
5591.5
61504.8
[94TCRAS]
TiI2 (Titanium Diiodide)
T
S
- H H298 f H 0
f S
f G
298.15
130.000
16700.0
–16.859
–256293.0
Landolt-B¨ornstein New Series IV/19A
–261320.0
SGTE
108
2 Compounds
TiI2 (Titanium Diiodide gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
323.679
15514.3
176.820
–72383.7
–19664.8
Tl2 I2 (Dithallium Diiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
432.631
22424.0
187.892
–110456.0
SGTE
–54436.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[93THDA]
VI2 (Vanadium Diiodide)
T
S
f H
f S
f G
298.15
146.440
–263592.0
–0.589
–263416.0
VI2 (Vanadium Diiodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
276.160
–21756.8
129.131
–60257.2
Landolt-B¨ornstein New Series IV/19A
109
SGTE
110
2 Compounds
WI2 (Tungsten Diiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
340.178
15926.0
191.421
327928.0
385000.0
[96TCRAS]
ZnI2 (Zinc Iodide)
T
S
- H H298 f H 0
f S
f G
298.15 723.00
152.000
18000.0
–5.770
–210280.0
SGTE
–212000.0
trs H trs S
type
17000.0
S!L
23.513
Landolt-B¨ornstein New Series IV/19A
2 Compounds
111
ZnI2 (Zinc Iodide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
316.429
15476.0
158.659
–123828.0
–76524.0
[94TCRAS]
ZrI2 (Zirconium Diiodide)
T
S
- H H298 f H 0
f S
f G
298.15 1100.00
150.000
18000.0
–5.320
–276414.0
Landolt-B¨ornstein New Series IV/19A
–278000.0
trsH trsS
type
28000.0
S!L
25.455
SGTE
112
2 Compounds
ZrI2 (Zirconium Diiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
334.238
16009.0
178.918
69945.6
123290.0
[94TCRAS]
InI3 (Indium Iodide)
T
S
- H H298 f H 0
f S
f G
298.15 480.00
223.100
29888.0
–8.759
–221389.0
SGTE
–224000.0
trs H trs S
type
18480.0
S!L
38.500
Landolt-B¨ornstein New Series IV/19A
2 Compounds
113
InI3 (Indium Iodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
398.633
20852.0
166.774
–155160.0
–105436.0
[95Bar]
LaI3 (Lanthanum Iodide)
T
S
f H
f S
f G
298.15 1051.00
214.221
–666930.0
–16.889
–661894.0
Landolt-B¨ornstein New Series IV/19A
trsH trs S
type
56066.0
S!L
53.345
SGTE
114
2 Compounds
LaI3 (Lanthanum Iodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
412.752
–387856.8
181.641
–442013.0
Li3 I3 (Trilithium Triiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
425.282
27232.0
163.713
–661269.0
SGTE
–612458.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[94TCRAS]
MoI3 (Molybdenum Triiodide)
T
S
- H H298 f H 0
f S
f G
298.15
200.000
29000.0
–2.769
–123175.0
–124000.0
MoI3 (Molybdenum Triiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
399.116
20030.0
196.347
121459.0
Landolt-B¨ornstein New Series IV/19A
180000.0
115
SGTE
116
2 Compounds
NbI3 (Niobium Triiodide gas)
[93THDA]
T
S
- H H298 f H 0
f S
f G
298.15
384.410
19807.1
173.931
–76961.7
–25104.0
NbOI3 (Niobium Triiodide Monoxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
418.823
23582.0
105.771
–427536.0
SGTE
–396000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
117
[95Bar]
NdI3 (Neodymium Iodide)
T
S
f H
f S
f G
298.15 847.00 1060.00
230.538
–639298.0
–14.757
–634898.0
NdI3 (Neodymium Iodide gas)
type
13807.0 41505.0
S!S S!L
16.301 39.156
[93THDA]
T
S
f H
f S
f G
298.15
430.639
–366518.0
185.344
–421778.0
Landolt-B¨ornstein New Series IV/19A
trsH trs S
SGTE
118
2 Compounds
NiI3 (Nickel Triodide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
398.031
19956.0
194.026
80971.0
138820.0
TaOI3 (Tantalum Triiodide Monoxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
424.521
23957.0
106.267
–407270.0
SGTE
–375586.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
VOI3 (Vanadium Triiodide Monoxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
405.380
22599.0
97.708
–352976.0
–323844.0
PI3 (Phosphorus Triiodide gas)
[95Bar]
T
S
f H
f S
f G
298.15
374.368
–17991.0
159.069
–65417.5
Landolt-B¨ornstein New Series IV/19A
119
SGTE
120
2 Compounds
PbI3 (Lead Triiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
411.525
21065.0
172.516
–29678.8
21757.0
[95Bar]
PrI3 (Praseodymium Triiodide)
T
S
f H
f S
f G
298.15 1011.00
228.865
–654378.0
–19.274
–648631.0
SGTE
trsH trs S
type
53137.0
S!L
52.559
Landolt-B¨ornstein New Series IV/19A
2 Compounds
121
PrI3 (Praseodymium Triiodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
430.187
–379070.0
182.047
–433347.0
[95Bar]
PuI3 (Plutonium Triiodide)
T
S
f H
f S
f G
298.15 1050.00
214.221
–579902.0
–14.448
–575594.0
Landolt-B¨ornstein New Series IV/19A
trsH trs S
type
50208.0
S!L
47.817
SGTE
122
2 Compounds
[93THDA]
SbI3 (Antimony Triiodide)
T
S
f H
f S
f G
298.15 444.00
215.476
–96232.0
–4.254
–94963.5
SbI3 (Antimony Triiodide gas)
S
f H f S
f G
298.15
404.995
6694.0
–48542.6
SGTE
type
22802.8
S!L
51.358
[93THDA]
T
185.264
trsH trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
SiI3 (Silicon Triiodide gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
378.305
18577.0
185.286
–19930.2
35313.0
SnI3 (Tin Triiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
398.021
20309.0
172.633
–59487.4
Landolt-B¨ornstein New Series IV/19A
123
–8017.0
SGTE
124
2 Compounds
ThI3 (Thorium Triiodide gas)
[95SGTE]
T
S
- H H298 f H 0
f S
f G
298.15
429.835
21412.5
203.826
–248214.0
–187443.0
[94TCRAS]
TiI3 (Titanium Triiodide)
T
S
- H H298 f H 0
f S
f G
298.15
192.000
23800.0
–12.929
–341145.0
SGTE
–345000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
125
TiI3 (Titanium Triiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
391.248
20014.0
186.319
–192666.0
–137115.0
TmI3 (Thulium Triiodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
429.794
–329699.2
181.570
–383834.0
Landolt-B¨ornstein New Series IV/19A
SGTE
126
2 Compounds
[91Kna]
UI3 (Uranium Triiodide)
T
S
f H
f S
f G
298.15
221.999
–460700.0
–2.409
–459982.0
[93THDA]
VI3 (Vanadium Triiodide)
T
S
f H
f S
f G
298.15
202.924
–280328.0
–2.174
–279680.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
WI3 (Tungsten Triiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
403.937
20246.0
197.110
238232.0
297000.0
[93THDA]
YI3 (Yttrium Iodide)
T
S
f H
f S
f G
298.15
207.108
–616721.6
–11.889
–613177.0
Landolt-B¨ornstein New Series IV/19A
127
SGTE
128
2 Compounds
[94TCRAS]
ZrI3 (Zirconium Triiodide)
T
S
- H H298 f H 0
f S
f G
298.15 1000.00
195.00
23000.0
–18.389
–386517.0
–392000.0
ZrI3 (Zirconium Triiodide gas)
S
- H H298 f H 0
f S
f G
298.15
400.040
20620.0
186.650
–181347.0
SGTE
type
33000.0
S!L
33.000
[94TCRAS]
T
–125697.0
trsH trsS
Landolt-B¨ornstein New Series IV/19A
2 Compounds
129
In2 I4 (Diindium Tetraiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
529.936
33469.0
182.358
–253513.0
–199143.0
[94TCRAS]
MoI4 (Molybdenum Tetraiodide)
T
S
- H H298 f H 0
f S
f G
298.15
242.000
34000.0
–18.838
–117383.0
Landolt-B¨ornstein New Series IV/19A
–123000.0
SGTE
130
2 Compounds
MoI4 (Molybdenum Tetraiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
485.339
27112.0
224.501
58065.0
125000.0
NbI4 (Niobium Tetraiodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
435.162
–64852.0
166.614
–114528.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
Ni2 I4 (Dinickel Tetraiodide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
499.167
30687.0
207.297
–20082.6
41723.0
PbI4 (Lead Tetraiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
463.798
27520.0
166.720
–90932.6
Landolt-B¨ornstein New Series IV/19A
–41225.0
131
SGTE
132
2 Compounds
Pb2 I4 (Dilead Tetraiodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
540.808
–138687.0
178.930
–192035.0
[95Bar]
PtI4 (Platinum Tetraiodide)
T
S
f H
f S
f G
298.15
180.749
–72802.0
–93.160
–45026.3
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
133
[85JANAF]
SiI4 (Silicon Iodide, Tetraiodosilane)
T
S
f H
f S f G
298.15 398.65
258.153
–189535.0
7.065
trs H trs S
type
19665.0
S!L
–191641.0
SiI4 (Silicon Iodide, Tetraiodosilane gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
416.443
24200.3
165.355
–159758.0
Landolt-B¨ornstein New Series IV/19A
–110457.6
49.329
SGTE
134
2 Compounds
[2000TCRAS]
SnI4 (Tin Tetraiodide)
T
S
- H H298 f H 0
f S
f G
298.15 418.00 675.00
282.700
31600.0
–0.758
–207274.0
–207500.0
SnI4 (Tin Tetraiodide gas)
S
- H H298 f H 0
f S
f G
298.15
448.730
26746.0
165.272
–168130.0
SGTE
type
18999.0 155.0
S!S S!L
45.452 0.230
[94TCRAS]
T
–118854.0
trs H trs S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
135
Sn2 I4 (Ditin Tetraiodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
528.168
–107169.0
193.530
–164870.0
[95Bar]
ThI4 (Thorium Iodide)
T
S
f H
f S
f G
298.15 839.00
255.199
–664800.0
–28.879
–656190.0
Landolt-B¨ornstein New Series IV/19A
trs H trs S
type
48116.0
S!L
57.349
SGTE
136
2 Compounds
ThI4 (Thorium Iodide gas)
[95SGTE]
T
S
f H
f S
f G
298.15
468.592
–466098.0
184.514
–521111.0
[94TCRAS]
TiI4 (Titanium Tetraiodide)
T
S
- H H298 f H 0
f S
f G
298.15 379.00 428.00
246.020
29140.0
–16.978
–377938.0
SGTE
–383000.0
trsH trsS
type
9920.0 19830.0
S!S S!L
26.174 46.332
Landolt-B¨ornstein New Series IV/19A
2 Compounds
137
TiI4 (Titanium Tetraiodide gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
433.066
25811.1
170.068
–327979.0
–277273.7
[91Kna]
UI4 (Uranium Tetraiodide)
T
S
f H
f S
f G
298.15 779.00
263.600
–512100.0
–18.878
–506472.0
Landolt-B¨ornstein New Series IV/19A
trs H trs S
type
42091.0
S!L
54.032
SGTE
138
2 Compounds
UI4 (Uranium Tetraiodide gas)
[93THDA]
T
S
f H
f S
f G
298.15
494.001
–301699.9
211.523
–364765.0
WI4 (Tungsten Tetraiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
482.561
27515.0
217.665
144103.0
SGTE
209000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
139
Zn2 I4 (Dizinc Tetraiodide gas)
[96TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
494.865
31855.0
179.325
–309317.0
–255851.0
[94TCRAS]
ZrI4 (Zirconium Tetraiodide)
T
S
- H H298 f H 0
f S
f G
298.15 773.00
250.000
29500.0
–21.459
–480802.0
Landolt-B¨ornstein New Series IV/19A
–487200.0
trsH trsS
type
32000.0
S!L
41.397
SGTE
140
2 Compounds
ZrI4 (Zirconium Tetraiodide gas)
[85JANAF]
T
S
- H H298 f H 0
f S
f G
298.15
446.555
26309.0
175.096
–414539.0
–362334.4
MoI5 (Molybdenum Pentaiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
477.304
29687.0
158.396
102774.0
SGTE
150000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
141
[95Bar]
NbI5 (Niobium Pentaiodide)
T
S
f H
f S
f G
298.15 600.00
343.088
–268600.0
16.471
–273511.0
trsH trs S
type
37656.0
S!L
NbI5 (Niobium Pentaiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
499.401
32015.0
172.783
–166515.0
Landolt-B¨ornstein New Series IV/19A
–115000.0
62.760
SGTE
142
2 Compounds
[95Bar]
TaI5 (Tantalum Iodide)
T
S
f H
f S
f G
298.15 769.00
343.088
–292880.0
11.269
–296240.0
trsH trs S
type
7740.0
S!L
TaI5 (Tantalum Iodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
506.955
32617.0
175.135
–170455.0
SGTE
–118238.0
10.065
Landolt-B¨ornstein New Series IV/19A
2 Compounds
143
VI5 (Vanadium Pentaiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
490.213
31113.0
168.975
–157022.0
–106642.0
WI5 (Tungsten Pentaiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
485.573
30412.0
162.607
102519.0
Landolt-B¨ornstein New Series IV/19A
151000.0
SGTE
144
2 Compounds
In2 I6 (Diindium Hexaiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
644.755
45087.0
181.038
–373697.0
–319721.0
MoI6 (Molybdenum Hexaiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
528.657
37097.0
151.680
224777.0
SGTE
270000.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
WI6 (Tungsten Hexaiodide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
530.981
37515.0
149.946
53293.6
98000.0
[95Bar]
InN (Indium Mononitride)
T
S
f H
f S
f G
298.15
43.514
–17154.0
–109.941
15625.1
Landolt-B¨ornstein New Series IV/19A
145
SGTE
146
2 Compounds
InO (Indium Monoxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
238.911
9042.0
78.688
122537.0
145998.0
[95Bar]
InP (Indium Monophosphide)
T
S
f H
f S
f G
298.15
63.920
–74487.0
–34.820
–64105.4
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
147
InP (Indium Monophosphide gas)
[94SGTE]
T
S
- H H298 f H 0
f S
f G
298.15
252.666
9377.7
153.925
312807.0
358700.0
[74Mil]
InS (Indium Monosulphide)
T
S
f H
f S
f G
298.15 965.00
69.036
–133888.0
–20.684
–127721.0
Landolt-B¨ornstein New Series IV/19A
trsH trs S
type
35982.4
S!L
37.287
SGTE
148
2 Compounds
InS (Indium Monosulphide gas)
[74Mil]
T
S
f H
f S
f G
298.15
251.777
233048.8
162.057
184732.0
[95Bar]
InSb (Indium Monoantimonide)
T
S
f H
f S
f G
298.15 797.00
86.199
–30501.0
–16.973
–25440.5
SGTE
trsH trs S
type
47739.0
S!L
59.898
Landolt-B¨ornstein New Series IV/19A
2 Compounds
InSb (Indium Monoantimonide gas)
[94SGTE]
T
S
- H H298 f H 0
f S
f G
298.15
239.681
9970.6
136.509
316640.0
357340.0
InSb2 (Indium Diantimonide gas)
[94SGTE]
T
S
- H H298 f H 0
f S
f G
298.15
323.586
15337.8
174.892
292456.0
Landolt-B¨ornstein New Series IV/19A
344600.0
149
SGTE
150
2 Compounds
In2 O (Diindium Monoxide gas)
[94TCRAS]
T
S
- H H298 f H 0
f S
f G
298.15
301.922
12796.0
84.049
–59823.1
–34764.0
[94TCRAS]
In2 O3 (Indium Oxide)
T
S
- H H298 f H 0
f S
f G
298.15 2186.0
101.8
16600.0
–321.220
–827228.0
SGTE
–923000.0
trs H
trs S
type
105000.0
48.033
S!L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
151
[95Bar]
In2 (SO4 )3 (Indium Sulphate)
T
S
f H
f S
f G
298.15
272.002
–2787000.0
–1170.390
–2438050.0
[74Mil]
In2 S3 (Indium Sulphide)
T
S
f H
f S
f G
298.15 660.00 1100.00
163.594
–355640.0
–47.916
–341354.0
Landolt-B¨ornstein New Series IV/19A
trsH trs S
type
1087.8 4016.6
S S
1.648 3.651
! !
S S
SGTE
152
2 Compounds
[74Mil]
In5 S6 (Pentaindium Hexasulphide)
T
S
f H
f S
f G
298.15
374.468
–774040.0
–106.202
–742376.0
[94SGTE]
IrO (Iridium Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
240.259
8819.6
102.181
458735.0
SGTE
489200.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
153
[94SGTE]
IrO2 (Iridium Dioxide)
T
S
- H H298 f H 0
f S
f G
298.15
51.099
8642.8
–189.553
–192855.0
–249370.0
[94SGTE]
IrO2 (Iridium Dioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
263.514
11622.2
22.862
200584.0
Landolt-B¨ornstein New Series IV/19A
207400.0
SGTE
154
2 Compounds
[94SGTE]
IrO3 (Iridium Trioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
303.644
15165.5
–39.582
33801.2
22000.0
[74Mil]
IrS2 (Iridium Disulphide)
T
S
f H
f S
f G
298.15
69.036
–133051.2
–30.609
–123925.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
155
[74Mil]
IrS3 (Iridium Trisulphide)
T
S
f H
f S
f G
298.15
121.336
–210036.8
–45.884
–196356.0
[94TCRAS]
KNO2 (Potassium Nitrite)
T
S
- H H298 f H 0
f S
f G
298.15 314.70 711.00
152.1
22940.0
–213.533
–302235.0
Landolt-B¨ornstein New Series IV/19A
–365900.0
trs H trs S
type
750.0 16700.0
S S
2.383 23.488
! !
S L
SGTE
156
2 Compounds
[94TCRAS]
KNO2 (Potassium Nitrite gas)
T
S
- H H298 f H 0
f S
f G
298.15
302.349
15342.0
–63.284
–173631.0
–192499.0
[94TCRAS]
KNO3 (Potassium Nitrate)
T
S
- H H298 f H 0
f S
f G
298.15 402.00 607.70
132.9
18750.0
–335.306
–394029.0
SGTE
–494000.0
trs H trs S
type
5040.0 9800.0
S S
12.537 16.126
! !
S L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
157
[94TCRAS]
KNO3 (Potassium Nitrate gas)
T
S
- H H298 f H 0
f S
f G
298.15
311.467
15917.0
–156.739
–269102.0
–315834.0
[94TCRAS]
KO (Potassium Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
241.195
9481.0
73.941
42680.3
Landolt-B¨ornstein New Series IV/19A
64726.0
SGTE
158
2 Compounds
[2000TCRAS]
KO2 (Potassium Dioxide)
T
S
- H H298 f H 0
f S
f G
298.15 808.00
125.40
16820.0
–144.427
–240539.0
–283600.0
trsH trsS
type
20600.0
S
25.495
L
[94TCRAS]
K2 O (Potassium Oxide)
T
S
- H H298 f H 0
f S
f G
298.15 590.00 645.00 1013.0
96.00
13700.0
–135.933
–321171.0
SGTE
!
–361700.0
trs H trs S
type
700.0 4000.0 27000.0
S S S
1.186 6.202 26.654
! ! !
S S L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
159
[94TCRAS]
K2 O (Potassium Oxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
286.543
13858.0
54.610
–90375.8
–74094.0
[94TCRAS]
K2 O2 (Dipotassium Dioxide)
T
S
- H H298 f H 0
f S
f G
298.15 818.00
117.00
17000.0
–217.507
–378150.0
Landolt-B¨ornstein New Series IV/19A
–443000.0
trsH trsS
type
20500.0
S
25.061
!
L
SGTE
160
2 Compounds
[94TCRAS]
K2 O2 (Dipotassium Dioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
306.455
16290.0
–28.052
–183204.0
–191568.0
[95Bar]
K2 SO3 (Potassium Sulphite)
T
S
f H
f S
f G
298.15
171.544
–1126751.0
–297.607
–1038020.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
161
[94TCRAS]
K2 OSiO2 (Potassium Oxide—Silicon Oxide (1/1))
T
S
- H H298 f H 0
f S
f G
298.15 1249.0
146.0
21860.0
–309.891
–1450610.0
–1543000.0
trs H trs S
type
20000.0
S
16.013
L
[98JANAF]
K2 SO4 (Potassium Sulphate)
T
S
f H
f S
f G
298.15 857.00
175.544
–1437710.0
–396.180
–1319590.0
Landolt-B¨ornstein New Series IV/19A
!
trsH trsS
type
8452.0
S
9.862
!
L
SGTE
162
2 Compounds
[85JANAF]
K2 SO4 (Potassium Sulphate gas)
T
S
- H H298 f H 0
f S
f G
298.15
366.151
22463.9
–205.573
–1032820.0
–1094116.0
[94TCRAS]
K2 O2SiO2 (Potassium Oxide—Silicon Oxide (1/2))
T
S
- H H298 f H 0
f S
f G
298.15 510.00 867.00 1318.0
190.58
28820.0
–489.268
–2359120
SGTE
–2505000
trs H trs S
type
1200.0 1600.0 35200.0
S S S
2.353 1.845 26.707
! ! !
S S L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
163
[95Bar]
K2 O4SiO2 (Potassium Oxide—Silicon Oxide (1/4))
T
S
f H
f S
f G
298.15 865.00 1043.00
265.684
–4315796.0
–862.077
–4058770.0
trs H trs S
type
3222.0 48953.0
S S
3.725 46.935
!
S L
[98JANAF]
K2 S (Potassium Sulphide)
T
S
f H
f S
f G
298.15 1221.00
115.060
–376560.0
–46.370
–362735.0
Landolt-B¨ornstein New Series IV/19A
!
trsH trs S
type
16150.0
S
13.227
!
L
SGTE
164
2 Compounds
[93THDA]
K3 PO4 (Potassium Phosphate)
T
S
f H
f S
f G
298.15
211.710
–2005696.8
–433.736
–1876380.0
[95SGTE]
LaMnO3 (Lanthanum Manganese Trioxide)
T
S
f H
f S
f G
298.15 675.00
130.500
–1425100.0
–266.343
–1345690.0
SGTE
trsH trsS
type
4000.0
S
5.926
!
S
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[95Bar]
LaN (Lanthanum Mononitride)
T
S
f H
f S
f G
298.15
44.350
–303340.0
–108.358
–271033.0
[94TCRAS]
LaO (Lanthanum Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
239.835
8895.0
80.359
–144936.0
Landolt-B¨ornstein New Series IV/19A
165
–120977.0
SGTE
166
2 Compounds
[94TCRAS]
LaO2 (Lanthanum Dioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
278.326
11147.0
16.277
–585136.0
–580283.0
[74Mil]
LaS (Lanthanum Monosulphide)
T
S
f H
f S
f G
298.15
71.128
–456056.0
–17.844
–450736.0
SGTE
Landolt-B¨ornstein New Series IV/19A
2 Compounds
[93THDA]
LaS (Lanthanum Monosulphide gas)
T
S
- H H298 f H 0
f S
f G
298.15
252.530
9359.6
163.558
86545.8
135310.6
[94SGTE]
LaS2 (Lanthanum Disulphide)
T
S
f H
f S
f G
298.15
89.956
–623416.0
–31.086
–614148.0
Landolt-B¨ornstein New Series IV/19A
167
SGTE
168
2 Compounds
[95SGTE]
La2 NiO4 (Dilanthanum Nickel Tetraoxide)
T
S
f H
f S
f G
298.15 640.00
178.000
–2037700.0
–375.894
–1925630.0
T
S
- H H298 f H 0
f S
f G
298.15
301.059
12468.0
84.682
–77434.8
SGTE
type
300.0
S
0.469
!
S
[94TCRAS]
La2 O (Dilanthanum Monoxide gas)
–52187.0
trsH trsS
Landolt-B¨ornstein New Series IV/19A
2 Compounds
169
[94TCRAS]
La2 O2 (Dilanthanum Dioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
310.288
13969.0
–8.663
–620444.0
–623027.0
[94TCRAS]
La2 O3 (Lanthanum Oxide)
T
S
- H H298 f H 0
f S
f G
298.15
127.320
19840.0
–294.205
–1706480.0
Landolt-B¨ornstein New Series IV/19A
–1794200.0
SGTE
170
2 Compounds
La2 O3 2ZrO2 (Lanthanum Oxide—Zirconium Oxide (1/2))
T
S
f H
f S
f G
298.15
238.080
–4082900.0
–672.100
–3882510.0
[95Bar]
La2 S3 (Lanthanum Sulphide)
T
S
f H
f S
f G
298.15
164.975
–1221728.0
–45.039
–1208300.0
SGTE
[95SGTE]
Landolt-B¨ornstein New Series IV/19A
2 Compounds
171
La4 Ni3 O10 (Tetralanthanum Trinickel Decaoxide)
[95SGTE]
T
S
f H
f S
f G
298.15
390.000
–4478600.0
–952.731
–4194540.0
[93THDA]
LiN (Lithium Mononitride gas)
T
S
- H H298 f H 0
f S
f G
298.15
208.243
8998.9
83.317
309858.0
Landolt-B¨ornstein New Series IV/19A
334699.1
SGTE
172
2 Compounds
[85JANAF]
LiNO (Lithium Nitroxyl gas)
T
S
- H H298 f H 0
f S
f G
298.15
245.325
11301.0
17.826
174597.0
179912.0
[94TCRAS]
LiNO2 (Lithium Nitrite)
T
S
- H H298 f H 0
f S
f G
298.15 369.00 495.00
88.000
12100.0
–242.073
–296126.0
SGTE
–368300.0
trsH trsS
type
1700.0 9200.0
S S
4.607 18.586
! !
S L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
173
[94TCRAS]
LiNO2 (Lithium Nitrite gas)
T
S
- H H298 f H 0
f S
f G
298.15
265.009
13369.0
–65.063
–182633.0
–202032.0
[94TCRAS]
LiNO3 (Lithium Nitrate)
T
S
- H H298 f H 0
f S
f G
298.15 526.00
104.00
12800.0
–328.646
–384714.0
Landolt-B¨ornstein New Series IV/19A
–482700.0
trsH trsS
type
25000.0
S
47.529
!
L
SGTE
174
2 Compounds
[94TCRAS]
LiNO3 (Lithium Nitrate gas)
T
S
- H H298 f H 0
f S
f G
298.15
278.282
13915.0
–154.364
–265562.0
–311586.0
[85JANAF]
LiNaO (Lithium Sodium Oxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
256.463
10966.3
73.469
–126505.0
SGTE
–104600.0
Landolt-B¨ornstein New Series IV/19A
2 Compounds
175
[94TCRAS]
LiO (Lithium Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
211.120
9362.0
79.426
49226.0
72907.0
[94TCRAS]
LiT (Lithium Tritide)
T
S
- H H298 f H 0
f S
f G
298.15 968.00
26.100
4870.0
–79.684
–67442.4
Landolt-B¨ornstein New Series IV/19A
–91200.0
trs H trs S
type
22000.0
S
22.727
!
L
SGTE
176
2 Compounds
[94TCRAS]
LiT (Lithium Tritide gas)
T
S
- H H298 f H 0
f S
f G
298.15
181.439
8830.0
75.656
119222.0
141779.0
[94TCRAS]
Li2 O (Dilithium Monoxide)
T
S
- H H298 f H 0
f S
f G
298.15 1726.0
37.610
7251.0
–123.204
–561147.0
SGTE
–597880.0
trsH trsS
type
35600.0
S
20.626
!
L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
177
[94TCRAS]
Li2 O (Dilithium Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
232.981
12792.0
72.168
–188856.0
–167339.0
[94TCRAS]
Li2 O2 (Dilithium Dioxide)
T
S
- H H298 f H 0
f S
f G
298.15
58.000
10500.0
–205.387
–571264.0
Landolt-B¨ornstein New Series IV/19A
–632500.0
SGTE
178
2 Compounds
[94TCRAS]
Li2 O2 (Dilithium Dioxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
258.638
13548.0
–4.749
–277982.0
–279398.0
[85JANAF]
Li2 OSiO2 (Lithium Oxide—Silicon Oxide (1/1))
T
S
- H H298 f H 0
f S
f G
298.15 1474.0
80.295
14556.1
–304.476
–1558720.0
SGTE
–1649500.2
trsH trsS
type
28032.8
S L
19.018
Landolt-B¨ornstein New Series IV/19A
2 Compounds
179
[98JANAF]
Li2 OTiO2 (Lithium Oxide—Titanium Dioxide (1/1))
T
S
- H H298 f H 0
f S
f G
298.15 1485.0 1820.0
91.755
16493.0
–304.926
–1579760
–1670671
Li2 OZrO2 (Lithium Oxide—Zirconium Oxide (1/1))
T
S
f H
f S
f G
298.15
91.630
–1759790.4
–313.512
–1666320.0
Landolt-B¨ornstein New Series IV/19A
trs H
trs S
type
11520.0 110165.0
7.758 60.530
S S
! !
S L
[93THDA]
SGTE
180
2 Compounds
[95Bar]
Li2 SO4 (Lithium Sulphate)
T
S
f H
f S
f G
298.15 851.00 1133.00
115.102
–1436489.0
–385.502
–1321550.0
trs H trs S
type
25650.0 8990.0
S S
T
S
- H H298 f H 0
f S
f G
298.15
322.821
19652.2
–177.783
–988810.0
SGTE
! !
S L
[85JANAF]
Li2 SO4 (Lithium Sulphate gas)
–1041816.0
30.141 7.935
Landolt-B¨ornstein New Series IV/19A
2 Compounds
181
[91Kna]
Li2 OWO3 (Lithium Oxide—Tungsten Trioxide (1/1))
T
S
f H
f S
f G
298.15 948.00 1013.00
112.968
–1603727.2
–388.184
–1487990.0
trs H trs S
type
2719.6 28451.2
S S
2.869 28.086
S
f H
f S
f G
298.15 1209.00 1307.00
125.520
–2560901.0
–483.208
–2416830.0
Landolt-B¨ornstein New Series IV/19A
!
S L
[93THDA]
Li2 O2SiO2 (Lithium Oxide—Silicon Oxide (1/2))
T
!
trs H trs S
type
941.4 53806.2
S S
0.779 41.168
! !
S L
SGTE
182
2 Compounds
[85JANAF]
Li3 N (Lithium Nitride)
T
S
f H
f S
f G
298.15
37.656
–197484.8
–145.510
–154101.0
[95Bar]
SiO2 2Li2 O (Silicon Oxide—Lithium Oxide (1/2))
T
S
f H
f S
f G
298.15 1528.00
121.336
–2330070.0
–424.248
–2203580.0
SGTE
trs H trs S
type
31129.0
S
20.372
!
L
Landolt-B¨ornstein New Series IV/19A
2 Compounds
183
[94TCRAS]
LuO (Lutetium Monoxide gas)
T
S
- H H298 f H 0
f S
f G
298.15
242.089
8857.0
88.554
–27428.5
–1026.0
[94TCRAS]
Lu2 O3 (Lutetium Oxide)
T
S
- H H298 f H 0
f S
f G
298.15 2763.0
109.96
17540.0
–299.682
–1788850
Landolt-B¨ornstein New Series IV/19A
–1878200
trs H
trs S
type
133000.0
48.136
S
!
L
SGTE
184
2 Compounds
MgOMoO3 (Magnesium Oxide—Molybdenum Tetraoxide (1/1))
T
S
f H
f S
f G
298.15
118.826
–1400803.2
–352.699
–1295650.0
[85JANAF]
MgN (Magnesium Mononitride gas)