ENVI R 0 N M ENTA L B IOTEC H N0LOGY
This Page Intentionally Left Blank
Studies in Environmental Science 42
E NVI ...
385 downloads
1179 Views
13MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
ENVI R 0 N M ENTA L B IOTEC H N0LOGY
This Page Intentionally Left Blank
Studies in Environmental Science 42
E NVI R 0 N M E NTA L BIOTECHNOLOGY Proceedings of the International Symposium on Biotechnology, Bratislava, Czecho-Slovakia, June 27-29, 1990 edited by
A. Blaiej and V. Privarova Institute of Biotechnology, Slovak Technical University, Bratislava, Czech0-Slovakia
ELSEVIER Amsterdam-Oxford-New
York-Tokyo,
1991
Distributors for the United States and Canada: ELSEVIER SCI ENCE PUB LIS H IN G CO M PANY I NC. 655 Avenue of the Americas New York, NY 10010, U S A . for the East European Countries, Democratic Republic of Vietnam, Mongolian People's Republic, People's Republic of Korea, People's Republic of China, Republic of Cuba: ALFA, Hurbanovo nhm. 3, 81 5 8 9 Bratislava, Czechoslovakia for all remaining areas: ELSEVIER SCIENCE PUBLISHERS B. V. Sara Burgerhartstraat 25 P. 0. Box 21 1, 1000 AE Amsterdam, The Netherlands
Library of Congress Cataloging-in-Publication Data International Symposium on Biotechnology (1 990: Bratislava, Czecho-Slovakia) Environmental biotechnology: proceedings of the International Symposium on Biotechnology, Bratislava, Czecho-Slovakia, June 27-29,1990 / edited by A. Blaiej and V. Privarovh. 446 p. (Studies in environmental sciences; 42) ISBN 0-444-98720-7 1. Environmental biotechnology - Congresses. 2. Microbial biotechnology - Congresses. 3. Biotechnology - Environmental aspects - Congresses. 4. Biomass energy - Environmental aspects - Congresses. I . Blaiej, Anton. II. Privarovh, V. Ill. Title. IV. Series. TD192.5.157 1990 628-dc20 90-29865 CIP ISBN 0-444-98720-7 (Vol. 42) ISBN 0-444-41696-X (Series)
0A.
Blaiej and V. Privarova, Bratislava 1991
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owners. Printed in Czecho-Slovakia
PREFACE
F o r t h e l a s t f o u r y e a r s we h a v e r e g u l a r l y o r g a n i z e d t h e i n t e r n a t i o n a l symposium INTERBIOTECH, technology.
devoted t o selected t o p i c s o f b i o -
The symposium i s a c o n c o m i t a n t s c i e n t i f i c e v e n t sccom-
p a n y i n g t h e I n t e r n a t i o n a l C h e m i c a l F a i r INCHEBA i n B r a t i s l a v a . The firqt I n t e r b i o t e c h ' 8 7 (Progress i n Biotechnology,
was d e v o t e d t o Enzyme T e c h n o l o g i e s
Volume 4,
E l s e v i e r Amsterdam 1 9 0 8 ) .
The s e c o n d I n t e r b i o t e c h '88 was d e v o t e d t o B i o c h e m i c a l s . The t h i r d I n t e r b i o t e c h ' 8 9 was d e v o t e d t o M a t h e m a t i c a l M o d e l l i n g i n Biotechnology
(Progress i n Biotechnology,
volume
6, ~
1
v i e r Amsterdam 1 9 9 0 ) . The f o u r t h I n t e r b i o t e c h ' 9 0 was d e v o t e d t o B i o t e c h n o l o g y a n d t h e Environment.
The symposium l e c t u r e s a r e d i v i d e d i n t o t h r e e s u b -
j e c t areas: M i c r o b i a l waste t r e a t m e n t and p r o c e s s i n g P o s s i b l e p o s i t i v e a n d n e g a t i v e i m p a c t s o f b i o t e c h n o l o g y on the environment B i o e n e r g y and t h e e n v i r o n m e n t The g r o w i n g a w a r e n e s s o f e n v i r o n m e n t a l p r o b l e m s h a s s t i m u l a t e d o u r a t t e n t i o n t o devote t h i s I n t e r b i o t e c h '90 t o t h e r e l a t i o n between b i o t e c h n o l o g y and t h e e n v i r o n m e n t .
We a r e e n t e r i n g a new age,
a g e o f a c i e n c e and s c i e n c e b a s e d i n d u s t r y . a g e o f ENVIRONMENTALISM.
the
We a r e a l s o e n t e r i n g t h e
The p r o s p e r i t y i n t h e n e a r f u t u r e p s r t i c u -
l a r l y i n t h e d e v e l o p e d i n d u s t r i a l c o u n t r i e s d e p e n d s on how we s h a l l b e a b l e t o c r e a t e a new l i v i n g s t y l e a n d a new " c o n s u m e r c u l t u r e " b a a e d on r a t i o n a l c o n s u m p t i o n o f g o o d s ,
environmental q u a l i t y o f
p r o d u c t i o n and e n v i r o n m e n t a l q u a l i t y o f p r o d u c t s .
Advances i n s c i e n -
c e a n d t e c h n o l o g y a n d t h e wisdom o f man c a n s h a p e an o r d e r l y h e a l t h y q u a l i t y o f l i f e o f s o c i e t y and i n d i v i d u a l s . B i o t e c h n o l o g y has a chance t o accept t h e c h a l l e n g e o f t h e f u t u r e and p o s i t i v e l y i n f l u e n c e and i m p r o v e t h e q u a l i t y o f t h e human e n v i r o n m e n t s i n c e b i o t e c h n o l o g y w i l l b e a new n a t i o n a l s e c t o r b a s e d on :
~
~
- 6 -
-
renewable raw m a t e r i a l s
- more e n v i r o n m e n t a l l y sound t e c h n o l o g y and p r o c e s s e s
-
very h i g h environmental q u a l i t y o f bioproducts
- b i o p r o d u c t s as biodegradable n o n - t o x i c m a t t e r s
-
r e c y c l a b l e wastes from t h e m a n u f a c t u r e r and consumer Many e s s e n t i a l human g o a l s ,
through processes,
n e e d s and demands c a n o n l y b e met
goods and s e r v i c e s p r o v i d e d b y b i o t e c h n o l o g y
.
This i n d u s t r i a l s e c t o r i s a t y p i c a l sample f o r s u s t a i n a b l e developm e n t a n d w i l l b e p o w e r e d b y a c o n t i n u i n g f l o w o f human w e a l t h f r o m bioindustry.
Biotechnology o f f e r s p o t e n t i a l p o s s i b i l i t i e s t o con-
t r i b u t e t o t h e i m p r o v e m e n t o f t h e human e n v i r o n m e n t .
We b e l i e v e
t h a t t h e s y m p o s i u m I n t e r b i o t e c h ' 9 0 h a s s h o w n how b i o t e c h n o l o g y c a n h e l p t o s o l v e some e n v i r o n m e n t a l p r o b l e m s .
CONTENTS
Preface
.......................................................
R e l a t i o n b e t w e e n t h e economy, t h e environment A. Blafej
5
b i o t e c h n o l o g y and
................................................
11
I. M i c r o b i o l o g i c a l w a s t e t r e a t m e n t a n d p r o c e s s i n g M i c r o b i a l waste water and waste t r e a t m e n t J . H o l l b , P. M i h d l t z , L . Czakb a n d L .
Morvai
.............
A n a e r o b i c t r e a t m e n t o f e f f l u e n t f r o m epoxy r e s i n s p r o d u c t i o n units P . Senna, E . D ’ A d d a r i o and A . R o b e r t i e l l o
................
Anaerobic treatment o f e f f l u e n t s : process monitoring C. S o r l i n i
use o f b i o i n d i c a t o r s
............................................... ...................... -
47
for
Simultaneous n i t r i f i c a t i o n - d e n i t r i f i c a t i o n i n a c t i v a t e d s l u d g e p r o c e s s combined w i t h b i o f i l m c u l t i v a t i o n M. D r t i l , J. T G l g y e s s y a n d I. B o d f k Hexamethylenetetraamine removal i n s i n g l e system I . B o d f k , J . D e r c o a n d M. D r t i l
27
55
65
sludge a c t i v a t i o n
..........................
71
E x p e r i m e n t a l and m a t h e m a t i c a l m o d e l l i n g o f a c t i v a t e d s l u d g e process P . F a r k a S o v A , J. D e r c o a n d M . K r A l i k
77
Aerobic thermophilic M. B o m i o
85
..................... ................................................. sludge treatment
E l i m i n a t i o n o f s p e c i a l b a c t e r i a from treatment e f f l u e n t by ciliates M. Macek a n d P. H a r t m a n
113
M i c r o b i o l o g i c a l t r e a t m e n t o f m u n i c i p a l sewage s l u d g e a n d r e f u s e as means o f d i s i n f e c t i o n p r i o r t o r e c y c l i n g i n agriculture D. Strauch
121
Modeling o f organic matter d e s t r u c t i o n by microorganisms community V.A. Vavilin
137
E f f e c t o f p r o t o z o a on b a c t e r i a l d e g r a d a t i o n o f a r o m a t i c hydrocarbons Yu.L. G u r e v i c h a n d V.P. L a d y g i n a
147
P h e n o l and n a p h t h a l e n e d e g r a d a t i o n b y m i x e d c u l t u r e o f microorganisms N . S . M a n u k o v s k i , M. I . Teremova,. Yu.L. G u r e v i c h a n d I.M. Pan’kovs
155
S p e c i f i c a d s o r p t i o n o f m e t a l c a t i o n s on t h e s u r f a c e o f l i p i d membrane s y s t e m s A.M. Omel’chenko
.........................................
165
The i n v e r s e f l u i d i z a t i o n a new a p p r o a c h t o b i o f i l m r e a c t o r d e s i a~. n, t o a e r o b i c wastewater t r e a t m e n t L . N i k o l o v a n d D. Karamanev
177
..................................
............................................... .............................................
.........................
............................................ -
..............................
- 8 -
P r o d u c t i o n o f sugars from l i g n o c e l l u l o s i c wastes b a s i c r e s e a r c h and p i l o t s t u d i e s H . E s t e r b a u e r , M . Hayn, W . S a t t l e r , W . S t e i n e r , H . S t e i n m h l l e r , Th. S t e i n e r a n d M . S i n n e r The
............... f u t u r e o f t h e l i q n o c e l l u l o s i c wastes b i o c o n v e r s i o n I. S p i l d a , A . B l a f e j a n d M. K o 3 i k .......................
183 20 1
D e t o x i f i c a t i o n o f p h e n o l p o l l u t e d s o i l b y some N o c a r d i a a n d Basidiomycetes E . M a l a r c z y k , 2 . L e w i c k a - K r b l , J. Kochmahska-Rdest, R . A p a l o v i c , M. S t a s z c z a k a n d A . L e o n o w i c z
209
The d e t o x i f y i n g r o l e o f f e r r o - p h e n o l i c c o m p l e x e s p r o d u c e d by Nocardia E . M a l a r c z y k , J. Kochmahska-Rdest, M . W o j t a s - W a s i l e w s k a and A . Leonowicz
215
M i c r o b i a l t r e a t m e n t o f i n d u s t r i a l wastes L.I. V o r o b j e v a , L . V . Modyanova, P . B . F.M. Chasaeva a n d E . V . D o v g i l e v i c h
221
..............
........................................ Terentijev,
......................
H i g h e r f u n g i as a p o t e n t i a l f e e d a n d f o o d s o u r c e f r o m l i g n o c e l l u l o s i c wastes A . L e o n o w i c z , M. W o j t a s - W a s i l e w s k a , J. R o g a l s k i a n d J. L u t e r e k
.............................................
2 29
11. B i o e n e r g y a n d e n v i r o n m e n t I m m o b i l i z e d p h o t o s y n t h e t i c systems f o r t h e p r o d u c t i o n o f f u e l s and c h e m i c s l s D.O. H a l l , K . K . Rad a n d I . H . P a r k
......................
Anaerobic t r e a t m e n t o f excrements from l a r g e - s c a l e animal farms J . K e r e k r b t y , B . P e t r o v i E o v B , K . Boaa a n d 0. Adamec
259
.....
277
I n t e n s i f i c a t i o n and e c o l o g i c a l a s p e c t s o f m e t h a n e f e r m e n t a t i o n o f a g r i c u l t u r a l wastes M.J. B e k e r , A.P. G r i n b e r g s , V.E. D a v i d s , L . J . L a b a n e , J.E. Blumbergs and M . K . Marauska
287
........................
Economic and b i o e n e r g e t i c a s p e c t s o f methanogenesis quantitative investigations S . V a s s i l i e v a , M. Robeva a n d 5. M u t a f o v
-
.................
297
Recovery o f energy from m u n i c i p a l s o l i d waste i n f a b r i c a t e d digesters J . Coombs a n d Y . R . Coombs
305
L a n d f i l l gas f u e l and e c o l o g i c a l p r o b l e m s 2. P i e t r z y k
317
............................... ............................................. Biomass and t h e p r o b l e m s o f e c o l o g y , a g r o c h e m i s t r y and e n e r g y E.S. P a n t s k h a v a .........................................
329
111. P o s s i b l e p o s i t i v e a n d n e g a t i v e i m p a c t s o f b i o t e c h n o l o g y on e n v i r o n m e n t P o s i t i v e a n d n e g a t i v e i m p a c t s o f b i o t e c h n o l o g y on t h e e n v i r o n m e n t Dr. L. H u b e r 341
............................................
Release o f g e n e t i c a l l y - engineered microorganisms i n t h e environment: r i s k of h o r i z o n t a l g e n e t i c - t r a n s f e r W.P.M. Hoekstra
.........................................
351
- 9 -
The r o l e o f c u l t u r e c o l l e c t i o n s t o s a f e g u a r d n a t u r e ’ s m i c r o b i o l o g i c a l resources K.A. Malik
359
I s biotechnology a blessing i n disguise? R. K o k k e
369
.............................................. ................................................ Improvements o f a g r i c u l t u r a l c r o p s by g e n e t i c e n g i n e e r i n g J. B o t t e r m a n ............................................
379
The c y c l o d e x t r i n s a n d t h e i r a p p l i c a t i o n i n e n v i r o n m e n t a l biotechnology J. Szejtli
387
B i o t e c h n o l o g y o f m e t a l s and t h e e n v i r o n m e n t F. S p a l d o n , M. K u b n i e r o v B , D. Kupka, E . J. E e c h o v s k B a n d V . S e p e l d k
399
..............................................
A small A.
PastirikovB,
............................. s i m u l a t i o n system and e c o l o g i c a l f o r e c a s t i n g G. Degermendzky ......................................
413
A s t e r i l i z a b l e c e n t r i f u g a l s e p a r a t i o n system f o r a s e p t i c and c o n t a i n e d c e l l h a r v e s t and r e c y c l e G. K r o o k , H. A x e l s s o n a n d C. T h o r s s o n
...................
427
This Page Intentionally Left TBlank
RELATION BETWEEN THE E C O N O M Y ,
11
-
BIOTECHNOLOGY AND
THE ENVIRONMENT A.
BLATEJ
Slovak Technical U n i v e r s i t y ,
Bratislava
The g r o w i n g a w a r e n e s s o f e n v i r o n m e n t a l p r o b l e m s h a s s t i m u l a t e d a t t e n t i o n t o t h e r e l a t i o n s h i p between economic development and i t s i m p a c t on t h e human e n v i r o n m e n t .
I n the p a s t 50 years world-wide
t e n d e n c i e s have been d i r e c t e d towards:
-
speeding-up economic and s o c i a l development s t i m u l a t i n g consumption a c t i v i t i e s forming
m a t e r i a l and f i n a n c i a l r e s o u r c e s t h a t m a i n l y
ensure t h e increase o f the m a t e r i a l wealth o f populations. S t r e s s has been and i s s t i l l p l a c e d on economic growth.
The c u l t o f
e c o n o m i c g r o w t h i s deep i n t h e s o c i a l c o n s c i o u s n e s s a s t h e m a i n s o u r ce o f m a t e r i a l w e a l t h o f an
i n d i v i d u a l a s w e l l as s o c i e t y .
t i o n , economic t h i n k i n g and t h e l o n g - t e r m ture
y e a r s i n many c o u n t r i e s i s b a s e d on t h e t h e o r y o f m a t e r i a l
production growth.
T h i s a l s o r e s u l t s i n an i n c r e a s e o f i n n o v a t i v e
a c t i v i t y end b o t h s c i e n t i f i c - t e c h n o l o g i c a l subordinated t o t h i s fact. ggle
I n addi-
economic s t r a t e g y f o r f u -
f o r spheres o f i n f l u e n c e ,
markets are p r i o r i t i e s .
and t r a d e p o l i c i e s a r e
A t present, global competition, raw m a t e r i a l ,
the stru-
e n e r g y s o u r c e s and
The g r o w t h o f t h e g r o s s n a t i o n a l p r o d u c t i s
s t i l l t h e m a i n i n d i c a t o r o f t h e s u c c e s s o f t h e n a t i o n a l economy. higher the inter-annual
growth o f the gross product,
The
t h e more r e a l
a r e t h e p o s s i b i l i t i e s f o r s a t i s f y i n g t h e n e e d s o f an i n d i v i d u a l a n d society.
This development i s a p p r o p r i a t e ,
the natural ecological equilibrium.
p r o v i d e d i t does n o t a f f e c t
I n the past,
n a t u r e was a b l e t o
c o u n t e r b a l a n c e man’s n e g a t i v e i n f l u e n c e s b y s e l f - r e g u l a t i o n . highly-developed i n d u s t r i a l c o u n t r i e s today,
man’a
In
i n f l u e n c e on t h e
environment has reached such a l e v e l t h a t n a t u r e l o s e s i t s s e l f - r e gulating ability.
T h i s i s why t h e w h o l e s o c i e t y i s a n d w i l l b e
negatively affected.
12
-
Anthropogenic s t r e s s o f n a t u r a l systems r e s u l t s
i n r e d u c i n g t h e p o t e n t i a l s o u r c e s o f economic development, v i t y o f b i o t i c resources i s lowered, vironment accelerates, ned, that,
c o n d i t i o n s f o r s o c i a l development a r e worse-
m o r b i d i t y and m o r t a l i t y a r e i n c r e a s i n g l y h i g h e r ,
evidence of
t h e decreased q u a l i t y o f t h e environment.
a t present, however,
and t h e r e i s We c a n s a y
t h e economic g r o w t h and t h e e n v i r o n m e n t a r e two
phenomena s t a n d i n g a t c o n t r a d i c t o r y p o s i t i o n s . ment,
producti-
d e s t r u c t i o n o f t h e manmade en-
An e x p e c t e d d e v e l o p -
i s very c l o s e l y connected with t h e problem o f t h e
r e a l e x i s t e n c e o f man a n d h i s s u r v i v a l . The e x i s t i n g d e v e l o p m e n t o f e c o n o m i c g r o w t h i s a c c o m p a n i e d b y a n immense s q u a n d e r i n g o f r a w m a t e r i a l a n d e n e r g y s o u r c e s a n d s i m u l t a n e o u s l y by h i g h e c o l o g i c a l s t r e s s i n n a t u r e caused by p r o d u c t i o n a n d consumer w a s t e . cological,
Man's
v a l u e o r i e n t a t i o n s were i n essence a n t i e -
connected w i t h m a t e r i a l w e l f a r e t h a t g r e a t l y exceeds r a -
t i o n a l consumption i n t h e h i g h l y developed c o u n t r i e s .
P r a c t i c a l wis-
dom ( l i f e p h i l o s o p h y ) i s b a s e d on t h e k n o w l e d g e t h a t h e h o l d s much
i n possession,
w a n t s e v e n more a n d s i m u l t a n e o u s l y h a s a d e q u a t e means
and energy t o o b t a i n more.
T h a t i s why t h e d i s t r i b u t i o n o f w e a l t h
p r o c e e d s e v e n more i l n e v e n l y ;
w e a l t h y men g r o w w e a l t h i e r a n d p o o r
men become p o o r e r . The p r o g r e s s o f s o c i e t y i s i d e n t i f i e d o n l y w i t h m a t e r i a l w e l f a r e a n d n o t w i t h an i n c r e a s e o f l i f e q u a l i t y . m u s t b e d i r e c t e d a t a new q u a l i t y ,
Development o f s o c i e t y
where e n v i r o n m e n t a l q u a l i t y i s
a p r i m a r y f a c t o r t o which economic g r o w t h i s s u b o r d i n a t e d .
T h i s me-
ans t h a t r e g e n e r a t i o n o f t h e environment i s t h e b a s i s and economic p r o d u c t i o n muat b e d e r i v e d f r o m i t . I n t h e economy, luate factor
coats,
i.e.
we m a i n l y e v a -
r a w m a t e r i a l and e n e r g y c o s t s a n d t h e i r
conversion t o the f i n a l product.
We a r e n o t v e r y i n t e r e s t e d i n t h e
n a t u r a l resources renewal costs,
n o r i n t h e l o s s e s caused by e n v i -
ronmental contamination,
air,
water,
f o r e s t s and s o i l p o l l u t i o n .
Ig-
norance o f t h e s e l o s s e s and n o n - a c q u a i n t a n c e w i t h t h e m a r g i n o f " a d m i s s i b l e l o a d i n g " o f n a t u r e h a v e i r r e v o c a b l y d e s t r o y e d some e c o systems. ciency,
Enterpriae i s not i d e n t i f i e d with social production e f f i and l a c k o f e c o l o g i c a l knowledge g i v e s no p o s s i b i l i t y t o
objectively quantify
consequences,
r e s u l t o f t h e i n f l u e n c e o f man.
damage a n d l o s s e s a r i s i n g a s a
T e c h n o l o g i c a l p r o g r e s s has i t s r o o t s
i n t h e i n d u s t r i a l r e v o l u t i o n and,
l a t e r on,
technical o r i e n t a t i o n o f production,
i t developed i n t o t h e
a n d t o t h e maximum u t i l i z a t i o n
and c o n t r o l o v e r n a t u r a l r e s o u r c e s and f o r c e s .
Problems connected
-
-
13
w i t h t h e b i o s p h e r e , e c o l o g y a n d human e n v i r o n m e n t w e r e a l w a y s s e condary.
An a p p r o a c h t o t h e phenomena a n d new p r o b l e m s , introduced by scientific-technological ture,
w h i c h have been
p r o g r e s s i n r e l a t i o n t o na-
r e q u i r e s a new s t r a t e g y o f s o c i o e c o n o m i c d e v e l o p m e n t . T h e r e f o r e i t i s n e c e s s a r y t o t a k e measures,
de a n d i n t h e f u t u r e
beyond t h e year
l e r a t e environmental problem s o l v i n g ,
2000.
f o r t h e 90 s deca-
I t i s i m p o r t a n t t o acce-
from t h e v i e w p o i n t o f
investment
i n t h e s o - c a l l e d e c o l o g i c a l s t r u c t u r e s a n d e c o l o g i c a l m e a s u r e s as w e l l as t h e p r o d u c t i o n o f needs.
technological
devices f o r environmental
A c c e l e r a t i o n o f t h e s o c i a l - e c o n o m i c a l development i s condi-
t i o n e d by t h e d i s c o n t i n u a t i o n o f d e t e r i o r a t i o n and by g r a d u a l ,
plan-
ned r e c o v e r y o f t h e environment. We h a v e t o a t t e m p t ' a n e l a b o r a t i o n o f t h e s c i e n t i f i c a l l y
deter-
m i n e d l o a d s t a n d a r d s o f - t h e i n d i v i d u a l b r a n c h e s o f n a t i o n a l economy on t h e environment.
The" sum o f t h e damage p l u s t h e c o s t s c o v e r i n g
environmental protection represents the basis f o r ascertaining the o b j e c t i v e e c o l o g i c a l consequences o f economic development o f t h e i n d i v i d u a l branches.
We m u s t r e a l i z e t h e n e c e s s i t y o f c o s t s f o r t h e
p r o t e c t i o n and f o r m a t i o n o f t h e environment n o t as t h e s o c i e t y ' s loss,
b u t v i c e versa,
nomic development.
a s an a l l - s o c i e t y
contribution t o social-eco-
I t w i l l become o b v i o u s s i m u l t a n e o u s l y w h i c h b r a n -
ches cause c o n t a m i n a t i o n ,
w h i c h a r e t o o e x p e n s i v e f o r s o c i e t y and
which p r o d u c t i o n a c t i v i t i e s a r e uneconomical from such a complex viewpoint. The r e a l c h a l l e n g e i n t h i s f i e l d i s t o make i n d u s t r i a l t e c h nologies
-
more e n v i r o n m e n t a l l y sound
-
more e n v i r o n m e n t a l l y
-
l e s s d i s r u p t i v e t o the environment
friendly
I n d u s t r y i s c e n t r a l t o t h e economies o f modern s o c i e t i e s a n d dispensable engine o f growth.
an i n -
Many e s s e n t i a l human n e e d s c a n b e m e t
o n l y t h r o u g h g o o d s a n d s e r v i c e s p r o v i d e d by t h e i n d u s t r y .
There has
been remarkable t e c h n o l o g i c a l p r o g r e s s s i n c e t h e i n d u s t r i a l r e v o lution.
I n many f i e l d s ,
extraordinary technological breakthroughs
have been a c h i e v e d and o t h e r s w i l l
follow.
In fact,
one o f t h e g r e a t
paradoxes o f technology i s t h a t p r i n c i p a l l y i t has c o n t r i b u t e d t o human p r o g r e s s ,
m o d e r n c i v i l i z a t i o n e n d t o human w e a l t h b u t may c a u -
s e t h e d e g r a d a t i o n o f t h e human e n v i r o n m e n t a s w e l l aa a c t i n g aga-
i n s t man.
Take, ture.
f o r instance,
14
-
the application o f pesticides i n agricul-
U s i n g more p e s t i c i d e s and s i m i l a r c h e m i c a l s has caused u n p r e -
cedented growth o f crop production.
They h a v e u n q u e s t i o n a b l y i m p r o -
ved t h e w e l f a r e o f m i l l i o n s o f p e o p l e .
However,
s c i e n t i s t s and t h e
p u b l i c a r e concerned about t h e r e s i d u e s o f p e s t i c i d e s i n food,
owing
t o t h e i r n e g a t i v e i m p a c t on human h e a l t h . Take a n o t h e r p r o b l e m ,
that o f chlorofluorcarbons.
S o many p e o p -
l e have b e n e f i t e d f r o m t h e i r a p p l i c a t i o n i n r e f r i g e r a t i o n , d i t i o n i n g and i n s u l a t i o n .
a i r con-
B u t t h i s t e c h n o l o g i c a l m a r v e l has a l s o
c r e a t e d a s e r i o u s e n v i r o n m e n t a l t h r e a t t o t h e ozone l a y e r , t h i n n i n g and c r e a t i n g t h e s o - c a l l e d ozone h o u l s
which i s
/l/.
A good d e a l o f r e s e a r c h h a s a l r e a d y b e e n done t o d e s i g n t e c h nologies which p r o t e c t t h e environment.
However,
e x p e r i e n c e shows
X o r more o f caX i n running costs.
t h a t e n v i r o n m e n t a l s a f e g u a r d s c a n a d d up t o 1 5 - 1 8 p i t a l i n v e s t m e n t c o s t a and up t o 10
A t p r e s e n t we a r e f a c i n g some g l o b a l p r o b l e m s ( T a b l e 1). The m o s t i m p o r t a n t i s t h e e n v i r o n m e n t .
Similarly,
a t present i n
t h e environment there a r e g l o b a l problems as w e l l (Table 2 ) .
TABLE 1 Global problems
Peace a n d s e c u r i t y Environment Food s e c u r i t y Raw m a t e r i e l s Population growth Energy r e a o u r c e s Economic and s o c i a l development
TABLE 2 Global environmental problems Pollution
-
wastes
G l o b a l warming D e p l e t i o n o f ozone l a y e r Acid r a i n Deforestation Disappearing o f b i o l o g i c a l species
-
15
-
HUMAN E N V I R O N M E N T
The human e n v i r o n m e n t i s a c o m p l e x m u l t i c o m p o n e n t
system crea-
t e d b y some p a r t s / 2 / : a) biosphere
-
i t s phyaical,
c h e m i c a l and b i o l o g i c a l c o m p o s i t i o n ,
where man i s i n i n t e r a c t i o n w i t h h i s s u r r o u n d i n g a b ) socioeconomic environment, material,
w h e r e man r e a l i z e s h i s b i o l o g i c a l ,
a o c i s l and c u l t u r a l needs
c ) man-made e n v i r o n m e n t - c o n s t r u c t e d b y human a c t i v i t i e a
d ) w o r k i n g e n v i r o n m e n t - man-made o r c o m b i n e d n a t u r a l s y s t e m a n d man-made m a t e r i a l c o m p o n e n t s a n d p r o c e s s e s w i t h human s o c i o e c o nomic a c t i v i t i e a T h e i r i n t e r a c t i o n i a shown i n F i g .
1. The human e n v i r o n m e n t becomes
t h e m a i n component o f q u a l i t y o f l i f e a n d t h e r e f o r e m u s t h a v e p r i o r i t y o v e r a l l o t h e r human p r i o r i t i e s ( F i g .
2).
NATURAL ENVIRONMENT
t
SOCIOECONOMIC ENVIRONMENT
ENVIRONMENT
Fig.
ENVIRONMENT
1. Human E n v i r o n m e n t .
L I F E STYLE
\ MATERIAL WEALTH
SOCIAL S E C U R I T Y
/ QUALITY OF L I F E
ENVIRONMENT
F i g . 2.
Quality o f Life.
-
16
-
INDUSTRIAL BIOTECHNOLOGY T h e r e a r e many d i f f e r e n t d e f i n i t i o n s o f b i o t e c h n o l o g y .
What
concerns i n d u s t i a l b i o t e c h n o l o g y can be d e f i n e d as t e c h n o l o g y which uses b i o l o g i c a l organisms,
i n t h e man-made
t h e i r components and b i o l o g i c a l p r o c e s s e s
environment f o r i n d u s t r i a l manufacture.
I n d u s t r i a l b i o t e c h n o l o g y i s i n t e g r a t e d t e c h n o l o g y which u s e s s c i e n t i f i c and t e c h n o l o g i c a l knowledge from b i o l o g i c a l , and t e c h n o l o g i c a l s c i e n c e s
chemical
3).
(Fig.
CHEMICAL
BIOLOGICAL
SCIENCES
SCIENCES
INDUSTRIAL BIOTECHNOLOGY
I TECHNOLOGICAL SCIENCES
Fig.
3 . I n d u s t r i a l Biotechnology.
The m o s t i m p o r t a n t s c i e n c e s a r e :
-
from biology-
genetics,
mol
e t i
ula
enzymology,
protein engineering
-
from chemistry-
biochemistry,
organic chemistry,
bioorganic
c h e m i s t r y and p h y s i c a l c h e m i s t r y
-
from technology-
bioengineering,
computer sciences, engineering,
chemical engineering,
microelectronics,
automation,
system
c y b e r n e t i c s and o p t i m a l i s a t i o n .
B i o t e c h n o l o g y i s very i m p o r t a n t management o f t h e g l o b a l e c o s y s t e m .
f o r human p r o g r e s s a n d f o r t h e B i o t e c h n o l o g y w i l l b e one o f t h e
m o s t i n t e r e s t i n g i n d u a t r i a l a e c t o r s a n d w i l l g r a d u a l l y c r e a t e a new i n d u s t r i a l c o m p l e x o f t h e n a t i o n a l economy, (Fig.
the so-called bioindustry
4).
BIOTECHNOLOGY AND THE E N V I R O N M E N T I n d u s t r i a l b i o t e c h n o l o g y has p o t e n t i a l t o c o n t r i b u t e t o s o l v i n g many e n v i r o n m e n t a l p r o b l e m s :
Biometallurgy
a Renewable r a w m a t e r i a l s a P l a n t s and A n i m a l s
a Bioenergy a Biofood
a New k i n d s o f m i c r o o r g a n i s m s
a Biotechnological treatment
a Biofodder
a Agriculture
o f wastes
I
0
Biotechnological mechanical engineering
0
Forest products industry
I-
4
a Food i n d u s t r y
a Bioinformatics 0
Biocybernetics a Bioelectronics a Biochemical industry
F i g . 4. B i o l o g i z a t i o n o f n a t i o n a l economy ( b i o i n d u s t r y ) .
a Pharmaceutical i n d u s t r y a Microbiological industry
I
-
18
-
c o m p l e x u t i l i z a t i o n o f r a w m a t e r i a l s on t h e b a s e o f c a r b o n r e sources
-
u t i l i z a t i o n o f organic solids,
l i q u i d s and gas wastes f r o m t r a d i -
t i o n a l t e c h n o l o g i e s and c o n v e r t i n g them t o u s e f u l p r o d u c t s
-
s u b s t i t u t i o n o f aome t r a d i t i o n a l c h e m i c a l p r o c e s s e s ,
c h e m i c a l s and
c h e m i c a l man-made m a t e r i a l s
-
p r o d u c t i o n o f many b i o c h e m i c a l s a n d b i o m a t e r i a l s w h i c h c a n b e ma-
-
p r o d u c t i o n o f new s u b s t a n c e s t h a t h a v e n e v e r b e e n m a n u f a c t u r e d
de i n e x p e n s i v e l y w i t h h i g h e r v a l u e a d d e d p r o d u c t s before
-
-
a l l b i o c h e m i c a l s a n d b i o m a t e r i a l s aa b i o d e g r a d a b l e p r o d u c t s p r o v i d i n g low wastes o r wasteless processes enabling manufacture o f higher e c o l o g i c a l q u a l i t y o f products b e t t e r e c o l o g i c a l p r o p e r t i e s o f goods high index o f r e c y c l i z a t i o n
I n t h e c a s e o f t h e c h e m i c a l i n d u s t r y we c a n show a g o o d e x a m p l e o f how many p r o d u c t s a n d p r o c e s s e s c a n be s u b s t i t u t e d t h r o u g h b i o t e c h nology.
The c h e m i c a l i n d u s t r y h a s a s p e c i a l p o s i t i o n i n t h i s a r e a .
The e n v i r o n m e n t i s o v e r l o a d e d b y c h e m i c a l s a n d c h e m i c a l m a t e r i a l s . The number o f i n d i v i d u a l c h e m i c a l s i s a b o u t 4.5 t u r a l e n d s y n t h e t i c compounds).
m i l l i o n ( b o t h na-
A t t h e p r e s e n t t i m e commercial che-
m i c a l p r o d u c t s r e p r e s e n t s about 100.000
c h e m i c a l s . Each y e a r about
1 0 0 0 new p r o d u c t s s r e a d d e d t o t h e m a r k e t . I n d u s t r i a l c h e m i c a l processes a r e based on i n c o m p l e t e c h e m i c a l r e a c t i o n s w h i c h depend on t h e s t a t e o f c h e m i c a l e q u i 1 i b r i u m . A duct,
pro-
r e s c t i o n s u b s t a n c e s and i m p u r i t i e s need s e p a r a t i o n and p u r i -
f i c a t i o n during or a f t e r reaction.
A l l t h e s e o p e r a t i o n s make was-
tes. The s e c o n d s o u r c e o f c h e m i c a l p o l l u t i o n a r i s e s f r o m t h e a p p l i c a t i o n o f chemicals,
c h e m i c a l m a t e r i a l s and c h e m i c a l p r o c e s s e s i n
o t h e r s e c t o r s o f t h e n a t i o n a l economy.
P o l l u t i o n problems o f t h i s
k i n d a r e v e r y o f t e n caused by a m i s a p p l i c a t i o n o f t h e c h e m i c a l s o r chemical m a t e r i e l s by users. S p e c i f i c problems o f chemical p o l l u t i o n :
-
chemical substances are u s u a l l y t o x i c ,
mutagenic and even can-
c e r o g e n i c compounds
-
many p r o d u c t s o f s y n t h e t i c o r g a n i c c h e m i s t r y a r e x e n o b i o t i c s ,
-
p o l l u t i o n problems o f t e n c o m p l i c a t e h i g h odor and s m e l t even i n
t h e i r b i o d e g r a d a b i l i t y i s very low very low concentration
HOW
-
can b i o t e c h n o l o g y c o n t r i b u t e t o i m p r o v i n g c h e m i c a l po-
Ilutj.on? I n the future
t h e s y n t h e t i c o r g a n i c c h e m i s t s h a v e t o use
mnre b i o l o g i c a l p a t h w a y s f o r
-
19
b i o s y n t h e s i s o f new compounds t o a v o i d :
high temperatures high pressures the p r o d u c t i o n o f t o x i c wastes
The c h e m i s t s have t o l e a r n t o u s e s u b s t r a t e - s p e c i f i c ,
high turnover
number c a t a l y s t s s u c h as enzymes a n d h i g h l y r e a c t i v e ,
but specific
s u b s t r a t e s s u c h as coenzymes.
T a b l e 3 shows some c o m p a r i s o n s b e t -
ween c h e m i c a l i n d u s t r y a n d i n d u s t r i a l b i o t e c h n o l o g y .
T a b l e 4 shows
p o t e n t i a l p o s s i b i l i t i e s o f s u b s t i t u t i o n o f t r a d i t i o n a l p r o d u c t s by biotechnological products i n agriculture, food industry.
Fig.
energy,
t r a n s p o r t and t h e
5 shows t h e t e n d e n c y o f how t o r e d u c e w a s t e s .
R e d u c t i o n o f w a s t e s has t o b e m a i n s t r e a m l i n e i n i n d u s t r y .
Wasteless
a n d l o w w a s t e t e c h n o l o g y t h r o u g h w a s t e r e c y c l i n g a n d r e u s e have g r a d u a l l y become a c c e p t e d p r a c t i c e s i n mnny i n d u s t r i a l s e c t o r s .
i t i s n o t p o s s i b l e t o reuse o r g a n i c waste,
I f
i t can be p r o c e s s e d b i o -
technologically f o r biogas production ( i n anaerobic reactors or land-
fills y s t e m ) o r b i o c o m p o s t f o r a g r i c u l t u r e . New p o t e n t i a l f o r b i o t e c h n o l o g y h a s b e e n opened b y r e c o m b i n a n t
DNA t e c h n i q u e s and c e l l f u s i o n .
These gene m a n i p u l a t i o n t e c h n i q u e s
h o l d t h e p r o m i s e f o r d e v e l o p m e n t o f new b i o p r o c e s s i n g s y s t e m s t h r o ugh t h e b i o c h e m i c a l m o d i f i c a t i o n o f e x i s t i n g organisms,
f o r the i n -
creased production o f u s e f u l metabolites o f "the manufacture"
of
new s u b s t a n c e s . T h e r e i s no s p e c i f i c r e a s o n f o r s p e c i a l s a f e t y i n b i o t e c h n o l o g y
/4/
a n d no b a s i s f o r d e v e l o p i n q s p e c i f i c l e g i s l a t i o n f o r r e c o m b i n a n t
DNA o r g a n i s m s . Dn t h e one h a n d , of
the e x i s t i n g l e g a l p r o v i s i o n s i n d i f f e r e n t areas
t h e economic and s o c i a l a c t i v i t i e s can be a p p l i e d t o work w i t h
these organisms.
On t h e o t h e r h a n d ,
t o prevent p o t e n t i a l r i s k ,
guidelines elaborated purposely
a r e i n use i n most c o u n t r i e s .
The h a z a r d s a r i s i n g f r o m r D N A o r g a n i s m s a r e i n g e n e r a l o f t h e same n a t u r e a s t h o s e o f c o n v e n t i o n a l o r g a n i s m s . Any r i s k s a s s o c i a t e d w i t h t h e a p p l i c a t i o n o f r D N A o r g a n i s m s may be a s s e s s e d i n g e n e r a l l y t h e same way a s t h o s e a s s o c i a t e d w i t h non-recombinant
DNA organisms.
I n d u s t r y h a s a l o n g e x p e r i e n c e a n d a good s a f e t y r e c o r d i n hand l i n g l i v i n g organisms,
i n c l u d i n g pathogens.
The i n t r i n s i c a l l y l o w
r i s k organisms used i n most cases i n i n d u s t r i a l p r o d u c t i o n r e q u i r e o n l y a minimum l e v e l o f c o n t a i n m e n t .
TABLE 3 Comparison o f p r o d u c t s m a n u f a c t u r e d by c h e m i c a l
i n d u s t r y and i n d u s t r i a l ~
PRODUCT OR PROCESS
Raw m a t e r i a l s
biotechnology ~
CHEMICAL INDUSTRY
INDUSTRIAL BIOTECHNOLOGY
TREND
Crude o i l
Organic carbon-sources
S u b s t i t u t e f o s s i l raw
N a t u r a l gas
(starch,
m a t e r i a l s by renewable
Coal
lulose,
Synthetic organic
M i c r o b i a l organic chemicals
I n c r e a s i n g o f biodegra-
c e l l u l o s e , hemicelsaccharides)
resources
chemicals
Fine biochemicals
d a b i l i t y and d e c r e a s i n g
Fine chemicals
Biochemical s p e c i a l i t i e s
o f t o x i c i t y , mutagenity
Specialities
B u l k b i o c h e m i c a l commodities
and c a n c e r o g e n i t y I
Bulk commodities
N
D
Chemical
S y n t h e t i c polymers
Biopolymers
Increasing o f
materials
Synthetic f i b r e s
Biofibres
biodegradability
Synthetic rubbers
Biorubbers
Chemical d r u g s
Microbial products
Natural products
Chemical c a t a l y s e
Biocatalyse
Low t e m p e r a t u r e
Processes
Low p r e s s u r e Transformation
Chemical pathways
B i o c h e m i c a l pathways
I n many cases much more e f f e c t i v e
I
TABLE 4 Some I n s t a n c e s o f S u b s t i t u t i o n o f T r a d i t i o n a l P r o d u c t s b y B i o t e c h n o l o q i c a l ones
SECTOR
BIOTECHNOLOGICAL
TRADITIONAL PRODUCTS
TREND
PRODUCTS ~
Agriculture
Energy
Reduction o f chemicals
Pesticides
Biopesticides
Industrial pesticides
Biofertilizers
i n agriculture
Synthetic plastics
Bioplastics
S o i l improvement
Naphtha
Bio-oil
Reduction of a i r
Heavy o i l
Biogas
P o l l u t i o n c a u s e d by
N a t u r a l gas
Hydrogen (biopho-
pollutants (acid rain)
t o l y s i s o f water)
I N I-
I
Transport
Petrol Naphtha
Alcohols
Reduction o f a i r
Natural o i l s
p o l l u t i o n c a u s e d by
Hydrogen (biopho-
pollutants (acid rain)
t o l y s i s o f water) Foodstuff
Meat o f a n i m a l s ( e n e r -
Single c e l l proteins
Higher n u t r i t i o n value
g e t i c a l l y very inten-
Decreasing o f n a t u r a l
sive)
fat Energy s a v i n g processes
Lo
a, Lo 10
0 .-i
t
-c
x f-l
m
Lo 4 '4
E
m
a,
r4-
'CI
U
m
0 0 P)
0
22 -
I
w
r 3
z
0
v)
u
P) 10
m
Lo
U
3
?!
v ) 4 02= z
I
a, 3
m
n
-
23
-
The s a f e t y o f o r g a n i s m s i n t r o d u c e d i n t o t h e e n v i r o n m e n t m u s t be e v a l u a t e d o n a c a s e - b y - c a s e
basis,
r e a i s n o t y e t w e l l developed.
The c a s e - b y - c a s e
as r i s k assessment
i n t h i s a-
a p p r o a c h may n e v e r -
t h e l e s s n o t n e c e s s a r i l y be a p p l i e d t o a l l a p p l i c a t i o n s .
CONCLUSIONS A l l around us,old ment,
forms and methods o f socioeconomic d e v e l o p -
organizational structures,
o f human w e a l t h ,
s y s t e m s o f management,
philosophy
and t h e o l d c o n v e n t i o n s o f t h i n k i n g a b o u t n a t u r e
a r e u n d e r g o i n g r a d i c a l changes.
People a r e awakening t o t h e u r g e n t
n e e d f o r a f u n d s m e n t a l r e v i s i o n i n t h e r e l a t i o n s h i p b e t w e e n man s n d nature.
The g l o b a l e n v i r o n m e n t a l
planet Earth.
c r i s i s now f a c e s m a n k i n d a n d t h e
The t i m e h a s now come t o r e s o l v e t h o s e c r i s e s i n t h e
1 9 9 0 s on t h e b a s i s o f s u r v i v a l o f a l l l i v e s on t h e E a r t h . succeed i n e n s u r i n g e c o l o g i c a l s e c u r i t y . ternational,
We c a n
A series o f action i n in-
r e g i o n a l and n a t i o n a l frameworks c o u l d be t a k e n :
i t m u s t be r e c o g n i z e d t h a t i n t h e d e v e l o p e d w o r l d ,
First,
the
o v e r c o n s u m p t i o n o f g o o d s a n d s e r v i c e s m u s t d e c l i n e a n d a new c o n s u mer c u l t u r e i s n e e d e d .
On t h e o t h e r h a n d ,
poverty i n the developing
w o r l d i s one o f t h e g r e a t e s t t h r e a t s t o t h e g l o b s 1 e n v i r o n m e n t a s w e l l /l/. The c e n t r a l p r o b l e m i s i n r e d u c i n g o v e r c o n s u m p t i o n o n t h e one h a n d a n d r e m o v i n g p o v e r t y on t h e o t h e r hand. Second,
we m u s t r e s p e c t t h e d i f f e r i n g e n v i r o n m e n t a l p r i o r i t i e s
o f i n d u s t r i a l countries.
One may h a v e a s h o r t a g e o f d r i n k i n g w a t e r ,
w h i l e t h e o t h e r i s more c o n c e r n e d w i t h w a t e r p o l l u t i o n a n d s t i l l o t h e r c o u n t r i e s concerned w i t h r a p i d s o i l d e g r a d a t i o n or a i r p o l l u t i o n etc.
A u n i f y i n g c o n c e r n f o r t h e e n v i r o n m e n t does n o t mandate a
search f o r uniform environmental p r i o r i t i e s or uniform environmental standards.
B u t t h e g l o b a l e n v i r o n m e n t a l c r i s i s must seek t o i n t e g -
r a t e d i f f e r i n g national perceptions,
s e n s i t i v i e s and p r i o r i t i e s w i t -
h i n a new f r a m e w o r k o f c o o p e r s t i o n i n e n v i r o n m e n t a l l y s o u n d d e v e l o p ment. Third,
t h e v i s i o n a n d p e r c e p t i o n o f o u r common f u t u r e e x i s t s
i n a wide-ranging
agreement t h a t s u s t a i n a b l e development s t r a t e g i e s
a h o u l d meet t h e n e e d s o f t h e p r e s e n t g e n e r a t i o n w i t h o u t c o m p r o m i s i n g t h e a b i l i t y o f t h e f u t u r e g e n e r a t i o n t o meet t h e i r own n e e d s / 3 / .
The c o n c e p t o f s u s t a i n a b l e d e v e l o p m e n t h a s n o t y e t b e e n r i g o r o u s l y and s c c e p t a b l y d e f i n e d ,
I t must i n c l u d e t h e p r o t e c t i o n o f f u t u r e eco-
n o m i c g r o w t h r a t e s a s w e l l a s f u t u r e human
development l e v e l s .
Fourth, re-thinking
24
-
t h e s e r e a l i t i e s i n t h e human e n v i r o n m e n t r e q u i r e s t h e o f people.
They m u s t a d j u s t t h e i r b e h a v i o r t o t h e e n v i -
ronment and f o r m u l a t e a s o c i o - e c o n o m i c a l
s y s t e m t h a t f o c u s e s a s much
a t t e n t i o n on t h e p e o p l e a s i t d o e s o n t e c h n o l o g y .
I t m u s t f o c u s on:
-
n a t u r a l r e s o u r c e s as much a s o n p r o d u c t i o n
-
t h e l o n g t e r m d e v e l o p m e n t a s much a s on t h e s h o r t - t e r m lopment / 3 / .
deve-
O n l y s u c h a s y s t e m c a n meet t h e c h a l l e n g e o f t h e
f u t u r e development o f mankind. age o f s c i e n c e ,
We a r e e n t e r i n g a new age,
the
h i g h t e c h n o l o g y and s c i e n c e based i n d u s t r y .
We a r e a l s o e n t e r i n g t h e age o f e n v i r o n m e n t a l i s m a n d t h e age o f b i o l o g i s a t i o n o f t h e n a t i o n a l economy. We c o n c l u d e t h a t i m m e d i a t e l y t a r g e t e d r e d u c t i o n s o f a l l t y p e s o f p o l l u t a n t s and wastes a r e r e q u i r e d .
I n d u s t r i a l b i o t e c h n o l o g y can
c o n t r i b u t e t o s o l v i n g many g l o b a l e n v i r o n m e n t a l p r o b l e m s o v e r t h e c o m i n g decade.
REFERENCES
1 2
3 4
W.H. D r a p e r , T e c h n o l o g y , I n d u s t r y a n d t h e E n v i r o n m e n t , P a p e r o n t h e G l o b a l Forum on E n v i r o n m e n t a n d D e v e l o p m e n t f o r S u r v i v a l , Moscow 1 9 9 0 . A . B l a f e j a n d c o - w o r k e r s : The C h e m i c a l A s p e c t s o f Human E n v r i r o n ment, A l f a B r a t i s l a v a 1981 ( i n S l o v a k ) . G.H. B r u n d t l a n d , Our common f u t u r e , O x f o r d U n i v e r s i t y P r e s s , O x f o r d 1987. R e c o m b i n a n t -DNA S a f e t y C o n s i d e r a t i o n , OECD P a r i s , 1 9 8 6 .
1. Microbiological Waste Treatment and Processing
This Page Intentionally Left Blank
MICROBIAL WASTE W A T E R AND W A S T E T R E A T M E N T
J. HOLLb, P. MIHALTZ,
L.
C Z A K b and L.
MORVAI
U n i v e r s i t y o f T e c h n i c a l Sciences, I n s t i t u t e o f A g r i c u l t u r a l C h e m i c a l T e c h n o l o g y , H-1521 B u d a p e s t , G e l l g r t t 6 r 4 , H u n g a r y
A common f e a t u r e o f t h e m a j o r i t y o f t h e s e t r e a t m e n t p r o c e s s e s i s that the substrate i s a non-specified dingly,
organic matter.
Correspon-
t h e a i m o f t h e t e c h n i q u e s t o be e v a l u a t e d i s b i o d e g r a d a t i o n
f o r e n v i r o n m e n t a l c o n t r o l p u r p o s e s and sometimes f o r g a i n i n g marketable products. T h i s p a p e r b r i e f l y summarizes a c t u a l t r e n d s o f e n v i r o n m e n t a l biotechnologies.
More s p e c i f i c a l l y ,
r e s u l t s from three main areas
a r e d i s c u s s e d w i t h a r e s e a r c h and development c o n t r i b u t i o n f r o m t h e authors’
institute:
-
communal sewage t r e a t m e n t w i t h s p e c i a l r e g a r d t o n u t r i e n t removal
-
h i g h l y i n t e n s i v e d e n i t r i f i c a t i o n and n i t r i f i c a t i o n o f d r i n k i n g - and waste w a t e r s
-
a n a e r o b i c t r e a t m e n t o f c o n c e n t r a t e d waste w a t e r s and s o l i d wastes.
Communal sewaqe t r e a t m e n t w i t h n u t r i e n t r e m o v a l The a c t i v a t e d s l u d g e p r o c e s s i s , me d e c a d e s ,
and w i l l s u r e l y r e m a i n f o r so-
t h e m o s t i m p o r t a n t means o f communal sewage t r e a t m e n t .
C o n s i d e r i n g t h e huge volumes t r e a t e d ,
t h e most i m p o r t a n t p r o b -
lems o f a p p l i c a t i o n are:
-
-
e f f i c i e n t oxygenation, together with r e l i a b l e modelling and p r o c e s s c o n t r o l f o r d e s i g n and o p e r a t i o n enhanced i n t e g r a t i o n o f n u t r i e n t r e m o v a l s t e p s i n t o t h e process.
The r e v i e w ( 1 )
i n c l u d i n g the f i r s t statement,
underlines this
b y t h e 1 3 0 0 MW a e r a t i o n power c o n a u m p t i o n a t US a c t i v a t e d s l u d g e plants,
r e s p o n s i b l e f o r 40 % o f t o t a l o p e r a t i n g c o a t s .
Aerstion effi-
c i e n c i e s under process c o n d i t i o n s i n t h e UK proved t o be as low as 1,l-2,2 systems,
kg02/kWh a n d 0,5-1,7 respectively.
kg02/kWh a t d i f f u s e d a n d m e c h a n i c a l
-
-
28
With f i n e b u b b l e p o r o u s s p a r g e r s , tained.
much b e t t e r r e s u l t s w e r e ob-
-
P e r h a p s t h e r e c e n t l y d e v e l o p e d Messner p a n e l s
n i q u e hydrodynamic f e a t u r e a v o i d i n g l i q u i d c i r c u l a t i o n best o f t h i s type.
An a e r a t i o n e f f i c i e n c y o f 5 , 6
t e d under i n d u s t r i a l c o n d i t i o n s ( 2 ) ,
are the
kg02/kWh was r e p o r -
a s s u r i n g some a d d i t i o n a l a d v a n -
tages,
as i n s i t u s l u d g e t h i c k e n i n g a n d s e p a r a t i o n .
depths
-
A t high aeration
as i n t h e s u c c e s s f u l Hoechst and Bayer systems
g r a d i e n t s o f oxygen s o l u b i l i t y ,
w i t h t h e u-
-
-
important
t o g e t h e r w i t h l i q u i d d i s p e r s i o n may
l e a d t o s u p e r f i c i a l O2 desorption,
w h i c h may a f f e c t e n e r g e t i c c o n -
d i t i o n s as p o i n t e d o u t i n ( 3 ) . Oxygenation economics i s perhaps t h e most i m p o r t a n t p r a c t i c a l g o a l o f t h e Water Research C e n t e r (UK)
a c t i v a t e d s l u d g e model,
con-
s i d e r i n g a l s o t a n k b a c k m i x i n g b e h s v i o u r and t h e d i f f e r e n t i a t i o n b e t ween v i a b l e a n d n o n - v i a b l e m i c r o b e s i n s l u d g e .
From p l a n t dimensio-
n i n g a s p e c t s K r o i s s e v a l u a t e s 3 methods p r e f e r r i n g t h e I A W P R C dynam i c s i m u l a t i o n model t o g e t h e r w i t h i t s f u r t h e r N e c e s s i t y f o n u t r i e n t ( N a n d P compounds) a major goal f o r f u r t h e r From t h e e a r l y 7 0 s on, s e r t i n g a mixed,
r e s e a r c h needs ( 4 ) . r e m o v a l h a s become
development o f t h e a c t i v a t e d s l u d g e system.
the so-called
non-aerated
load n i t r i f i c a t i o n plant,
e n s u r e d an ammonia-and
ent with r e l a t i v e l y l i t t l e d i f f i c u l t y .
nitrate-free
p h o r o u s r e m o v a l b y a b i o l o g i c a l one
c h e m i c a l phos-
a t a s k s o l v e d b y t h e 3 r d ge-
From t h e f i r s t ,
solution without n i t r i f i c a t i o n ,
of
-
efflu-
The m o r e d i f f i c u l t p r o b l e m
was t o r e p l a c e c o s t l y a n d e x c e s s i v e s l u d g e - p r o d u c i n g n e r a t i o n systems i n t h e 80s.
in-
2nd g e n e r a t i o n p r o c e s s e s ,
anoxic step i n t o t h e t r a d i t i o n a l low
s t i l l "chemical
l i k e Phostrip,
hybride"
an impressive t r e n d
development can be observed. Environmental f a c t o r s favoring the overgrowth o f P sccumulating
Acinetobacters,
together with those o f n i t r i f i c a t i o n ,
and o r g a n i c removal a r e o f t e n c o n t r a d i c t o r y .
denitrification
The p r o b l e m i s s o l v e d
by a s o p h i s t i c a t e d s e r i e s o f a n a e r o b i c a n o x i c and a e r o b i c t r e a t m e n t s t e p s i n t e r l i n k e d by m u l t i p l e r e c i r c u l a t i o n ( 7 ) .
Our m e t h o d c o m b i n e d a n a e r o b i c a n d a n o x i c s p a c e s i n a s i n g l e v e r t i c a l s l u d g e bed r e a c t o r ,
as can be seen i n F i g .
t a k e s p l a c e i n t h e a e r o b i c (AER),
(ANOX)
reactor sections
(5).
1. N i t r i f i c a t i o n
d e n i t r i f i c a t i o n i n the anoxic
The e f f i c i e n c y
T N o f t h e l a t t e r de-
p e n d s m o s t l y o n t h e r e c i r c u l a t i o n r a t i o R w h i c h i s t h e r a t i o o f recirculated/influent
flow rates,
a s shown i n t h e f i g u r e .
E x p e r i m e n t a l r e s u l t s a r e g i v e n i n F i g . 2. With t h e i n f l u e n t N 3 t h e e f f i c i e n c i e s were f o u n d t o be s u p e r i o r c o n t e n t l e s s t h a n 80 g/m
,
t o theoretical
29
values (dotted l i n e ) ,
s u g g e s t i n g as an e x p l i c a t i o n
a f t e r - d e n i t r i f i c s t i o n under a n o x i c c o n d i t i o n s i n t h e s e t t l i n g tank.
IR+llO
lR111
a
RECRCULATION RATE R 1-1
F i g . 1. F l o w s h e e t o f b i o l o g i c a l organics-N-P removal.
F i g . 2. D e n i t r i f i c a t i o n e f f i c i e n cy i n f u n c t i o n o f t h e r e c i r c u l a t i o n rate.
Perhaps t h e most c o m p l i c a t e d p r o b l e m i s t o t h o r o u g h l y undera t a n d t h e mechanism o f b a c t e r i a l P r e l e a s e a n d u p t a k e . p o t e n t i a l and r e a d i l y degradable o r g a n i c s u b s t r a t e a c i d ) a n d i n h i b i t i n g NO;
c o n c e n t r a t i o n i n t h e a n a e r o b i c t a n k seemed
t o be t h e most i m p o r t a n t e n v i r o n m e n t a l
factors.
enough i n f o r m a t i o n f o r c o n t r o l l i n g t h e p r o c e s s , batch sludge t e s t .
The r e d o x
(volatile fatty
I n order t o gain we i n t r o d u c e d a
F o r t h e s u b s t r a t e we u s e d a c e t i c p r o p i o n i c - o r
b u t y r i c a c i d as p r e c u r s o r s o f b e t a - h y d r o x y - b u t y - r a t e
t y p e compound
f o r m a t i o n ( 6 ) . F i g u r e s 3 , 4 a n d 5 show t h e t i m e d e p e n d e n c e o f aubstrste,
phosphorous c o n c e n t r a t i o n and r e d o x p o t e n t i a l ,
under a n a e r o b i c and a e r o b i c c o n d i t i o n s .
a n d p h o s p h o r o u s r e l e s a e were s t r i c t l y p r o p o r t i o n a l . w i t h the redox p o t e n t i a l ,
respectively,
Fluxes o f substrate uptake Both,
together
followed f i r s t order kinetics.
From t h e a p p l i e d m a t h e m a t i c a l m o d e l
we o b t a i n e d k r e a c t i o n r a t e c o n s t a n t s a n d C tions,
depicted i n Fig.
6.,as
oo
terminal P concentra-
a function o f the s p e c i f i c organic
a c i d dose.
P r e l e a s e and d e n i t r i f i c a t i o n a r e c o m p e t i n g f o r o r g a n i c substrates.
The l a t t e r b e i n g an e n e r g y p r o d u c i n g p r o c e s s ,
a t l o w COD/N
r a t i o s may i n h i b i t P r e l e a s e w h i c h l e a d s t o a r e d u c e d u p t a k e u n d e r
- 30 -
a e r o b i c c o n d i t i o n s ( 6 ) . T h i s e f f e c t i s shown i n F i g . s u l t s gained w i t h laboratory-scale
equipment,
7 . w i t h re-
accordinq t o Fig.
1.
F i g . 3. Batch anaerobic s u b s t r a t e depletion i n time.
TIME [ min 1
F i g . 5. Batch redox p o t e n t i a l decrease i n time.
F i g . 4. B a t c h a n a e r o b i c p h o s p h o r o u s r e l e a s e and a e r o b i c u p t a k e i n time.
I
a 1
7
F i g . 6. K i n e t i c parameters o f P release i n function o f specific s u b s t r a t e dose.
I
n
17 CODlN RATIO
[-I
F i g . 7 . Dependence o f P r e m o v a l e f f i c i e n c y on o r g a n i c s / n i t r o g e n ratio.
-
31
-
The i n d u s t r i a l p r o c e s s d e v e l o p e d a p p l i e s s u p p l e m e n t a r y s e p a r a t i o n o f a e r o b i c end s n o x i c - a n a e r o b i c
p r o c e s s s t e p s by a p e r i o d i -
t h u s e c o n o m i z i n g more o r g a n i c
cal aeration shut-off
t i m i n g program,
matter f o r P release.
That helped us t o maintain a h i g h P removal
e f f i c i e n c y down t o a COD/N Fig.
8.
r a t i o a s low a s 5 : l .
shows t h e s k e t c h o f a p r e f a b r i c a t e d p a c k a g e p l a n t .
A u n i q u e f e a t u r e o f t h e common a n o x i c a n d a n a e r o b i c s p a c e i s t h a t t h e r e l a t i v e s e t t l i n g v e l o c i t y o f t h e sludge i n t h e upflow stream p e r f o r m s a t h i c k e n i n g e f f e c t 2-3
t i m e s as h i g h s t s t r i c t l y e q u a l
i n - and o u t l e t s u s p e n d e d s o l i d c o n c e n t r a t i o n s .
T
u EXCESS SLUDGE
Fig.
8.Disgrammatic view o f t h e p r e f a b r i c a t e d equipment.
The s o l u t i o n r e q u i r e s ,
i n addition t o the i n t e n s i f i c a t i o n effect,
no m e c h a n i c a l s t i r r i n g a s i n any o t h e r known p r o c e s s e s ( 7 ) .
Fig.
9.
shows e q u i p m e n t l i k e t h i s made o f p l a s t i c . The p r o c e s s was r e a l i z e d o n l a r g e s c a l e b y t r a n s f o r m a t i o n o f a conventional activated sludge p l a n t
3
c i t y o f 600 m 3 t r e a t s 1000 m / d
(Fig.
10).
The t o t a l t a n k c a p a -
communal w a s t e w a t e r w i t h c o m p l e t e
n i t r i f i c a t i o n a t s l u d g e r e s i d e n c e t i m e a s l o w a s 6 d, f i c a t i o n e f f i c i e n c y and approx.
90
X
denitri-
0,3 g/m3 e f f l u e n t P c o n c e n t r a t i o n .
H i q h l y i n t e n s i v e d e n i t r i f i c a t i o n and n i t r i f i c a t i o n Although the t e c h n i c a l l y simple modifications o f the a c t i v a t e d . sludge process y i e l d h i g h l y valuable supplementary performances, s e a r c h h a s b e e n c o n d u c t e d f o r b a s i c a l l y new s o l u t i o n s .
re-
Mainly i n the
-
32
-
Fig. 10. A modified l a r g e scale a c t i v a t e d sludge plant. f i e l d o f d e n i t r i f i c a t i o n a n d n i t r i f i c a t i o n t w o t r e n d s seem t o a t t r a c t most i n t e r e s t :
n o v e l p r o c e s s p r i n c i p l e s i n m i c r o b i o l o g y and b i o c h e -
m i s t r y , a n d t h e u s e o f new b i o r e a c t o r c o n f i g u r a t i o n s . D e n i t r i f i e r s are mostly p r o c a r i o t e t a x o n s ; mainly h e t e r o t r o p h s . Among c h e m o l i t o t r o p h s t h e r e a r e s few d e n i t r i f i c a n t s ,
s u c h as T h i o -
b a c i l l u s , which o x i d i z e s u l p h u r , o r t h e p r o c e s s r e q u i r e s t h e u s e o f m o l e c u l a r H 2 a s e l e c t r o n d o n o r w i t h A l c a l i g e n e s e u t r o p h a ( 8 , 9 ) Mo d est p r o d u c t i v i t i e s ( 2 - t o 8 kg N03/m 3 d ) may b e a t t r i b u t e d t o h i g h e x i g e n c i e s t o w a r d s u b s t r a t e mass t r a n s f e r s .
The p r o c e s s e s ,
33
-
c o m b i n i n g t h e two c o n s e c u t i v e N r e m o v a l s t e p s ,
m i g h t o f f e r c o n s i d e r a b l e s d v a n t s g e s i f s p e c i a l c o n d i t i o n s were filled tion,
(i.e.
simultaneous methanogenic o r g a n i c s removal,
ful-
reduc-
SO4
w i t h T h i o s p h a e r a p a n t o t r o p h a ( 1 0 ) o r an a n o x i c ammonium
etc.)
oxidation process with s t i l l u n i d e n t i f i e d c u l t u r e (11).
As f o r w a s t e w a t e r n i t r i f i c a t i o n , a f t e r o v e r l o a d e d m u n i c i p a l plants,
c l a s s i c t r i c k l i n g f i l t e r s a r e r u n n i n g i n t h e US, a l t h o u g h 3 kgNH3/m d (14). R e a l l y
t h e i r p r o d u c t i v i t y h a r d l y exceeds 0,3-0,4
i n t e n s i v e f l u i d bed systems w i t h a h i g h e r c a p a c i t y e x h i b i t s e v e r a l disadvantages,
l i k e t h e h i g h p r i c e and s h o r t l i f e t i m e o f a c t i v a t e d
carbon support, abrasion,
or the excessive costs o f a pure O2 supply, b i o f i l m
p r o c e s s i n s t a b i l i t y w i t h 3-phase f l u i d i z a t i o n ,
etc.
On t h e b a s i s o f f l u i d i z e d b i o r e a c t o r c o n c e p t i o n and o p e r a t i o n e x p e r t i s e g a i n e d d u r i n g a decsde o f d e n i t r i f i c a t i o n r e s e a r c h ,
we
r e a l i z e d a h i g h l y s a f e and e c o n o m i c a l p o s t - n i t r i f i c a t i o n system. 3 W i t h a r o u g h s a n d s u p p o r t we r e a c h e d 2 kgNH3/m d a t a maximum o f
1 5 g/kg
s u p p o r t biomsss c o n c e n t r a t i o n .
n a t i o n system assures, mass t r a n s f e r
The s p e c i a l f r e e a i r o x y g e -
on t h e p i l o t s c a l e ,
coefficients,
about 3 times as h i g h
as a t t a i n e d i n b u b b l e columns (31,
duced r e c i r c u l a t i o n r a t e s and v e r y s i m p l e c o n s t r u c t i o n . method, o v e r l o s d e d n o n - n i t r i f y i n g
p l a n t s r e q u i r e o n l y 10-20
m e n t a r y r e a c t o r volume compared t o 200-400
re-
With t h i s
X supple-
% necessary f o r t r a d i t i o -
n a l methods.
I n s p i t e o f numerous r e s e a r c h r e p o r t s on b i o l o q i c a l f l u i d bed denitrification,
p r a c t i c a l l y no i n d u s t r i a l r e a l i z a t i o n has been
a t t s i n e d so f a r .
I n d u s t r i a l scale d e n i t r i f i c a t i o n plants are b u i l t
on t h e b a s i s o f a f i x e d b e d r e a c t o r d e s i g n ( 1 2 1 , 3 mum p r o d u c t i v i t y t o a b o u t 3 k g N O 3 - N / m d ( 1 3 ) . C o n s i d e r i n g t h e above,
l i m i t i n g t h e maxi-
we t h i n k s p e c i a l d i f f i c u l t i e s may b e
associated with:
-
-
s a f e a n d u n i f o r m m i c r o b i a l a d h e s i o n on s u p p o r t f o r m a t i o n o f a dense b i o f i l m s t r u c t u r e , non-denitrifying contsminetion,
t e c h n i c a l l y f e a s i b l e bed r e g e n e r a t i o n p r o c e d u r e , f o r m removal o f excess biomass.
Therefore,
As f o r effects
surface,
p o s s i b l y f r e e from
our research e f f o r t s the physico-chemical
uni-
h a v e b e e n f o c u s e d on t h e s e p r o b l e m s . aspect,
we t h o r o u g h l y s t u d i e d t h e
o f support surface characteristics
t o h y d r a u l i c shear,
i.e.
and m i c r o b i a l r e s i s t a n c e
and e l a b o r a t e d a n a p p r o p r i a t e p r e t r e a t m e n t met-
hod f o r t h e sand c a r r i e r p a r t i c l e s ( p s t e n t e d ) .
I n principle,
-
34
v a r i o u s o r g a n i c compounds c a n be a p p l i e d a s e l e c -
t r o n donors f o r d e n i t r i f i c a t i o n .
Accordingly,
s e l e c t i o n seems t o b e
governed b y economic and p u b l i c h e a l t h c o n s i d e r a t i o n s . out,
however,
a t an e a r l y s t a g e o f t h e e x p e r i m e n t s ,
I t turned
that organic
s u b s t a n c e s h a v e a s i g n i f i c a n t e f f e c t on b i o f i l m s t r u c t u r e , quently,
conse-
a l s o on f l u i d b e d e x p a n s i o n we f i n a l l y c h o s e Pseudomonas
d e n i t r i f i c a n s as an i n o c u l a t i n g c u l t u r e .
11. P r e s u m a b l y ,
the wider
This i s presented i n Fig.
t h e r a n g e o f b a c t e r i a c a p a b l e o f metabo-
l i z i n g t h e o r g a n i c compound,
the looser i s the structure o f the bio-
film. Fig.
12.
O
shows an e l e c t r o n m i c r o g r a p h o f a b i o c o a t e d p a r t i c l e .
lo
30
Lo
5o
~xhrrn95slgl
F i g . 11. Bed e x p a n s i o n a t d i f f e r e n t C sources, i n f u n c t i o n o f biomass c o n c e n t r a t i o n .
F i g . 12. E l e c t r o n m i c r o g r a p h o f a biocoated particle.
F o r k i n e t i c s t u d i e s we f o l l o w e d tion profile.
Fig.
13.
the a x i a l n i t r a t e concentra-
m o s t l y shows l i n e a r d i s t r i b u t i o n s ,
which
means t h a t t h e r e i s n o d i f f u s i o n l i m i t a t i o n o f t h e i n t r i n s i c z e r o o r d e r r e a c t i o n , as a l s o s t a t e d by Harremoes ( 1 5 ) . r a m e t e r s and c a l c u l a t e d v o l u m e t r i c
E n v i r o n m e n t a l pa-
( r N ) a n d s p e c i f i c (pN) d e n i t r i -
f i c e t i o n r a t e s are also given.
A b a s i c requirement f o r d r i n k i n g water d e n i t r i f i c a t i o n i s t o minimize e f f l u e n t organic matter flux, e x a c t dosage o f t h e C source.
C and N b a l a n c e i n t h e p r o c e s s ,
t h e C/N
w h i c h c a n b e p r o v i d e d b y an
For t h i s purpose,
we e s t a b l i s h e d
full
i n o r d e r t o s t u d y t h e dependence o f
r a t i o on p r o c e s s p a r a m e t e r s .
Fig.
14.
shows t h e e f f e c t o f X
biomass c o n c e n t r a t i o n s ,
i.e.
35
age.
-
As e x c e s s C 0 2 i s g e n e r a t e d f r o m
endogeneous o x i d a t i o n o f t h e b i o m a s s ,
t h e C s o u r c e c a n be " s a v e d "
a t higher X levels.
-E
P)
"
'h 120 -
am
uf = 28 mlh t = 14 ' C CSOUKES:PROP~ONC ACID
ImgKs/gl Icml 1 2Q +
3.4 4 5 6m
*
60
-
PN
V '
25,6 26.2 325 37.7 46.2 66.6
131 141 147 158 176 198
0.021 0,022 0,023 0,026 0,026 0,017
16,O 17.2 18,6 20.4 228 31.3
40.6 41,2 458
525 63.6 581
Lcl-
20
0 10 Fig.
13.
-
'[
0 1.3
40
55
77
85
100 115 I30 145 160
OF BED
hf
1.1' 10
N i t r a t e c o n c e n t r a t i o n p r o f i l e s i n t h e f l u i d i z e d bed.
20
I
I
30
40
14. Carbon/nitrogen
After satisfactory
50 xh[mg/gl r a t i o a t d i f f e r e n t biomass c o n c e n t r a t i o n s .
laboratory experience,
a f u l l y automated p i -
l o t p l a n t f o r d r i n k i n g w a t e r was b u i l t and t e s t e d .
3
p h o t o o f t h e 50 m /d
Fig.
1 5 shows t h e
c a p a c i t y equipment.
S i n c e d r i n k i n g w a t e r q u a l i t y had t o be a t t a i n e d ,
the reactor
was c o m p l e t e d w i t h e f f l u e n t a f t e r t r e a t m e n t f a c i l i t i e s , Fig.
[cml
REKTRON DONOR: PROPONIC Q + ETANOL OINF. Sw,o = CONSTANT
a
Fig.
25
as shown i n
16. S p e c i f i c n i t r a t e r e m o v a l d a t a were measured
-
i n order o f higher
-
36
-
magnitude.
The r e s u l t s a r e g i v e n i n F i g .
17.
e t two d i f f e r e n t tem-
peratures,
a s a f u n c t i o n o f h f b e d h e i g h t ( r e a c t o r d i a m e t e r was
300 m m ) .
F i g 15. F u l l y automated p i l o t s c a l e d r i n k i n g w a t e r d e n i t r i f i c a t i o n . plant.
1. FLUID-BED DENlTRlFlCATlON COLUMN 2.FILTER CARTRIDGE 3.AIRING AND N2 STRIPPING COLUMN 4 . SAND FILTER 5.ACTlVE -CARBON FILTER
6. SAND REGENERATOR 7. CHEMICAL FEEDER Fig.
(C AND P I
16. Flow sheet o f f l u i d i z e d bed d e n i t r i f i c e t i o n p l a n t .
-
37
-
A t a p p r o p r i a t e a d j u s t m e n t o f t h e C/N i n c r e a s e a o n l y by 1-1,2
g/m
3
.A
ratio,
t h e e f f l u e n t TOC
v e r y l o w l e v e l o f suspended s o l i d s
d i s c h a r g e c a n b e f u l l y r e t a i n e d on t h e s a n d f i l t e r . e n t l i v i n g c e l l c o u n t o f 5.103-5.10
4
Typical efflu-
can be e l i m i n a t e d by a d d i t i o n
o f 3 mg c h l o r i n e . T o t a l o p e r a t i n g c o s t s o f t h e d r i n k i n g w a t e r p l a n t were c a l c u l a t e d t o be r o u g h l y mose p r o c e s s e s ,
1/10
mental p o l l u t i o n aspects. about 3-6
o f c o n c u r r i n g i o n e x c h a n g e a n d r e v e r s e os-
n o t t o mention c r u c i a l advantages r e g a r d i n g e n v i r o n The r e g e n e r a t e d e x c e s s b i o m a s s r e p r e s e n t s
X o f t h e t r e a t e d w a t e r ( w i t h max. 30 kgVSS/m3 b e i n g abso-
l u t e l y h a r m l e s s and r e a d i l y d i s p o s a b l e m a t e r i a l ) .
-
110. U m E I r n 100 -
-
0
z
9080 -
/'
60
HIGH OF BED hf[cml F i g . 17. height.
V o l u m e t r i c d e n i t r i f i c a t i o n r a t e s i n f u n c t i o n o f t h e bed
The p i l o t p l a n t r e a c t o r t o g e t h e r w i t h a n o v e l r e g e n e r a t i o n s y s t e m was a l s o t e s t e d f o r w a s t e w a t e r .
A n i t r i f y i n g activated slud-
ge m u n i c i p a l sewage t r e a t m e n t p l a n t s u p p l i e d i t s e f f l u e n t as r e a c t o r feed (Fig.
18).
After a f a i r l y short start-up period,
3
the r e a c t o r reached a
8 5 m / d c a p a c i t y w h i l e t h e i n i t i a l 8 5 - 1 0 0 g/m3 was r e d u c e d p r a c t i c a l l y t o z e r o . very low r e s i d u a l organic matter,
n i t r a t e concentration
As t h e t r e a t e d sewage c o n t a i n e d
a 0,57
g methanol/gNO;
e l e c t r o n d o n o r d o s e was f o u n d t o b e an o p t i m a l s o l u t i o n , m i c a l aspects,
specific f r o m econo-
aa w e l l .
Anaerobic waste t r e a t m e n t
I n highly concentrated ( i n d u s t r i a l )
waste water,
severe l i m i -
t a t i o n s impede t h e a p p l i c a t i o n o f a e r o b i c p r o c e s s e s f o r o r g a n i c s
- 38 -
Fig.
18.
F l u i d i z e d b e d sewage d e n i t r i f i c a t i o n p l a n t .
removal (excessive oxygenation costs, sludge production,
diffusion limitations,
high
etc.).
P r o d u c t s o f t h e a n a e r o b i c d e g r a d a t i o n a r e e n e r g y r i c h compounds (biogas)
-
c o m p a r e d t o t h o s e o f t h e a e r o b i c p r o c e s s where o x y g e n i s
the terminal e l e c t r o n acceptor
i n s t e a d o f COz.
Such b a s i c b i o e n e r g e -
t i c a l differences manifest i n the o v e r a l l C balance,
i.e.
i n the
d i s t r i b u t i o n o f i n p u t C f l u x between c e l l s y n t h e s e s and gaseous p r o ducts:
50-50
pectively
X i n a e r o b i c and 5-95 % i n a n a e r o b i c p r o c e s s e s , r e s -
(16).
On t h e o t h e r h a n d ,
technical feasibility
o f the process requi-
r e s c o s t l y and s o p h i s t i c a t e d s o l u t i o n s t o e n s u r e h i g h enough r e a c t i o n rates,
-
e.g.:
h e a t e d and t h e r m a l l y
insulated reactors,
important increase o f X c e l l concentration, i . e . t o a v o i d wash-out from c o n t i n u o u s r e a c t o r s .
The l a t t e r c a n b e p r a c t i c a l l y e n s u r e d b y c e l l i m m o b i l i z a t i o n . p r o c e s s can o n l y be promoted o r c o n t r o l l e d i n d i r e c t l y , s t e r i l e mixed c u l t u r e c o n d i t i o n s ; factors.
i.e.
by i n f l u e n c i n g e n v i r o n m e n t a l
As t h i s j o b h a s b e e n c a r r i e d o u t o n l y e m p i r i c a l l y ,
a systematic study o f physico-chemical,
The
under nonwe made
p h y s i o l o g i c a l and e c o l o g i c a l
-
39
-
f a c t o r s a f f e c t i n g m i c r o b i a l a d h e s i o n and a g g r e g a t i o n .
The g r e a t e s t
e f f o r t s h a v e b e e n d e v o t e d t o d e v e l o p i n g o b j e c t i v e e x p e r i m e n t a l meth o d s . The s l u d g e g r a n u l a t i o n p r o c e s s w a s f o l l o w e d i n 5 p a r a l l e l UASB b i o r e a c t o r s o f e q u a l h y d r a u l i c s b u t ,
f r o m No.1.
t o 5.,
reduced
o r g a n i c a c i d l o a d s ( F i g . 19.).
1 9 . 5 p a r a l l e l l a b o r a t o r y UASB r e a c t o r s .
C a p i l ary s u c t i o n t i m e ( C S T )
is a rapid f i l t e r a b i l i t y test
i f y i n g a g g r e g a t i o n a g a i n s t time ( F i g . 20.). c
100
? ; E U A !
61,
80
LO
/;A00
20
I
0
I
I
20
LO
60
80
I
100 120
140
TIME [ d 1
F i g . 20. C a p i l l a r y s u c t i o n time e v o l u t i o n a t d i f f e r e n t o r g a n i c loads of the 5 reactors.
-
40
With dynamic f r a c t i o n i n g sedimen-
- 100 E
s
+
tation,
particle size distribu-
t i o n can be d e s c r i b e d w i t h m i c -
80 60
roscopic calibration,
LO
The l o w e s t
g r a p h shows t h i s i n t h e c a s e o f
20
a non-granulated
0
3
0 -
inoculum.
The u p p e r a n d m i d d l e o n e s a r e made o f s m a l l and h i g h l o a d g r a -
I
60
3 40
nulated sludges (Fig.
g
5 m/h u p f l o w v e l o c i t y ,
20
n
7
3
A t
21).
8 8 and
5 % o f t h e t o t a l s l u d g e mass we-
50 100 80 60
r e washed o u t ,
a t raw and g r a n u -
l a t e d sludges,
respectively (17).
On t h e s c a n n i n g e l e c t r o m i c -
40 20
rographs (Fig.
22. a n d 2 3 . ) t h e
7
0
granule forming r o l e o f filamen-
10 20 30 LO 50 UPFLOW VELOCITY [mlhl
t o u s o r g a n i s m s ( p r o b a b l y Methanot r i x sp.)
F i g . 21. S e t t l i n g v e l o c i t y d i s t r i b u t i o n o f raw ( l o w e r ) and g r a n u l a t e d ( u p p e r and m i d d l e ) sludges.
c a n b e seen.
As g r a n u l a t i o n i s m a i n l y a
m i c r o b i a l s e l e c t i o n process, F420 c o f a c t o r
sity)
level
-
the
(fluorescence inten-
w h i c h i s n o t o n l y c h a r a c t e r i s t i c o f methanogens b u t
a l s o s e r v e s a s a means f o r d i f f e r e n t i a t i n g M e t h a n o t r i x and M e t h a n o -
-
s a r c i n a type organisms system,
as seen i n F i g .
d e s c r i b e s q u i t e w e l l t h e change i n t h e eco24.
As t h e o r g a n i s m s a l s o e x h i b i t d i f f e r e n t
(Ks h a l f - r a t e ,
k i n e t i c parameters
i n h i b i t i o n c o n s t a n t s and n e x p o n e n t ) ,
Ki
a disconti-
nuous methanogenic a c t i v i t y t e s t h e l p e d t o f u r t h e r q u a n t i f y t h e d i s tinctions,
as s e e n i n F i g .
25.
With t h e m o d i f i e d Haldane k i n e t i c s (18) evolution)
r a t e s determined: q
--
1
1 + Ks/S
qmax
+ (S/KiIn
gave m a r k e d l y d i f f e r e n t c o n s t a n t s ( K s a n d 4,38 resp. )
s p e c i f i c growth (gas
kg/m3;
n
=
4,08
and 1,0
=
0,125
and 0,036;
Ki
=
2,Ol
f o r raw and g r a n u l a t e d s l u d g e s ,
.
I n a d d i t i o n t o proving the reduced i n h i b i t i o n s e n s i t i v i t y o f the granulated sludge,
the f i n d i n g s helped us t o conceive a novel
start-up strategy (19).
41
-
I t s most important f e a t u r e i s t h e substan-
t i a l l y higher i n i t i a l organic load, a s reported before.
F i g . 23. Filamentous structure o f a granule.
-
42
TIME [dl F i g . 24. F 4 2 0 c o f a c t o r c o n t e n t evolution a t d i f f e r e n t organic loads o f the 5 reactors.
-
SUBSTRATE CONCENTRATlONIgCm31 F i g . 25. D i f f e r e n t s u b s t r a t e i n h i b i t i o n e f f e c t on r a w a n d granulated sludges.
A t a UASB-fixed bed h y b r i d e r e a c t o r c o n f i g u r a t i o n ( F i g .
26.)
b i o f i l m e v a l u a t i o n waa a l s o q u a l i t a t i v e l y f o l l o w e d b y t h e p r o p o r t i o n o f a c i d o g e n e a n d m e t h a n o g e n e o r g a n i s m s e x p r e s s e d by t h e e f f l u ent/influent (Fig.
27.).
6 kg/m3
organic a c i d r a t i o evolution,
as a f u n c t i o n o f t i m e
The s t e r i c c o n c e n t r a t i o n o f t h e f i x e d b i o f i l m g r e w t o
(see F i g .
28.1,
b u t f l o a t i n g sludge r e t e n t i o n o f the c a r r i e r
seemed t o b e a t l e a s t a s i m p o r t a n t .
TIME [ d l F i g . 26. U A S B de r e a c t o r
-
f i x e d bed h y b r i -
F i g . 27. E v o l u t i o n o f t h e m e t h a n o g e n / a c i d i f y i n g a c t i v i t y i n t h e fixed b e d p a r t o f t h e h y b r i d e r e a c t o r
As a p r a c t i c a l a p p l i c a t i o n ,
43
-
we s t u d i e d m a i n l y t h e t r e a t m e n t
o f p o l y s a c c h a r i d e c o n t a i n i n g i n d u s t r i a l waste w a t e r s
tillery,
pharmaceutical industries).
(canning,
dis-
With t h e e x c e p t i o n o f c a n n i n g ,
h i g h s u l p h a t e c a u s e s s e r i o u s p r o b l e m s by t h e i n h i b i t i o r o f m e t h a n o g e n e s i s . We f o u n d t h a t t h e r a t e o f s u l p h a t e r e d u c t i o n is much mo-
r e f a v o u r a b l e under c o n d i t i o n s o f t h e a c i d i c phase. T o x i c and c o r r o s i v e e f f e c t s o f t h e r e s u l t i n g H 2 S c a n b e m i n i m i z e d by i n e r t g a s s t r i p p i n g and c h e m i c a l a b s o r p t i o n ( 2 0 ) .
Fig.
28. B i o f i l m coated p l a s t i c c a r r i e r .
F u r f u r a l p r o d u c t i o n from p l a n t pentosanes i n v o l v e s t h e format i o n o f waste water
c o n t a i n i n g up t o 3 0 kg/m3
acetic acid.
The t o -
x i c e f f e c t s o f 0,6-1,4
kg/m3
t i o n o f l o w c o s t waste
( a c i d i f i e d p i g manure) a s s u r i n g a l s o enough
N,
P and g r o w t h f a c t o r l e v e l .
f u r f u r a l were e l i m i n a t e d b y t h e a d d i -
A h i g h l y economical i n s i t u n e u t r a l i -
z a t i o n p r o c e d u r e was e l a b o r a t e d , lation
-
NaOH a d d i t i o n
-
applying a combination o f recircu-
and Cog s t r i p p i n g ( Z l . ,
22.
As a r e s u l t o f r e s e a r c h c o n d u c t e d o v e r a d e c a d e ,
23). we e l a b o r a t e d
a n d t e s t e d on p i l o t p l a n t s c a l e (24,251 a c o m p l e t e p i g manure t r e a t 3 ment s y s t e m ( 1 5 m , F i g . 2 9 , 3 0 1 . T h i s c o n s i s t s o f a n a n a e r o b i c t r e atment o f 6 - 9 d r e s i d e n c e t i m e ,
mechanical s o l i d - l i q u i d separation
h e l p e d by t h e r m a l a n d c h e m i c a l e f f e c t s .
NH3 d i s t i l l a t i o n a n d t e r t i a -
r y b i o l o g i c a l t r e a t m e n t f o r r e s i d u a l o r g a n i c s a n d N,
P r e m o v a l was
-
Fig.
29-30.
44
-
P i l o t p l a n t p i g manure t r e a t m e n t p l a n t .
c o m p l e t e d i n o r d e r t o meet s u r f a c e w a t e r q u a l i t y r e q u i r e m e n t s .
In-
d i v i d u a l l y o p t i m i z e d process s t e p s a r e o r g a n i z e d so as t o m u t u a l l y support e f f i c i e n c y . tion,
S p e c i a l a t t e n t i o n i s devoted t o avoid a i r p o l l u -
t o a t t a i n v a l u a b l e p r o d u c t s (NH3
tilizer)
solution,
concentrated fer-
and t o combine p r o c e s s e s b y a most e c o n o m i c a l e n e r g y s a v i n g
method ( 2 6 ) . An application o f increasing interest
senohold wastes,
i s extended t o s o l i d hou-
m a i n l y i n EC c o u n t r i e s (27).
Classic low i n t e n s i t y
c o v e r e d d e p o s i t s a r e s u b s t i t u t e d by m o d e r n h e a t e d r e a c t o r s e n s u r i n g c o n s i d e r a b l e volume r e d u c t i o n and gas y i e l d ,
with reduced residence
times (28).
REFERENCES Healey: Improvements i n t h e a c t i v a t e d sludge process i n t h e U.K. a n d U.S., J o u r n a l WPCF., V.61, No.4, 4 4 7 - 4 5 1 ( 1 9 8 9 ) H. B u r k h a l t e r ; E r g e b n i s a e v o n S a u e r s t o f f z u f u h r v e r s u c h e n i n A l t e h e i n . I n : W i e n e r M i t t e i l u n g e n . Wasser Abwasser-Gewasser B d 6 4 . ,
M.J.
69-84, Wien, 1 9 8 6 . J. H o l l b , P. M i h d l t z , L . Czak6 a n d J . T b t h : C o r r e l a t i o n o f liq i u d d i s p e r s i o n and oxygen t r a n a f e r i n b u b b l e column, s p p l . M i c r o b i a l B i o t e c h n o l . 27:260-264 (1987). H. K r o i a s , Neue B e m e s s u n g s v o r s c h r i f t e n b e i B e l e b u n g s a n l a g e n h i n s i c h t l i c h S t i c k s t o f f - und P h o s p h o r e n t f e r n u n g i n Proc. UTEC ' 8 9 , 3 2 8 - 3 3 4 , T r e n d Commerz GmbH, L i n r , 1 9 8 9 . L . Czakb, P. M i h d l t z a n d J. Tbth, P r o c e s s a n d e q u i p m e n t f o r b i o l . t r e a t m e n t o f o r g a n i c c o n t a i n i n g , s p e c i f i c a l l y f o r communal wast e w a t e r . Hung. P a t e n t , 1 8 8 5 0 2 , 1 9 8 5 . Y . Comeau e t a l . , B i o c h e m i c a l m o d e l f o r e n h a n c e d b i o l o g i c a l p h o s p h o r u s r e m o v a l w a t e r r e s . 20, 1 2 , 1 5 1 1 - 1 5 2 1 , 1 9 8 6 .
7 8 9 10
11 12 13 14 15 16
17
18 19 20
21
22
23 24
25 26 27 28
45
-
J. P i n n e k a m p , G r u n d l a g e n , V e r f a h r e n u. L e i s t u n g s f a h i g k e i t d e r Erhbhten biologischen Phosphorelimination, Abwassertechnik 39, 4 , 2 1 - 2 6 , 1 9 8 8 . G. B l e c o n e t e l . , P r o c B d 6 de d e n i t r i f i c a t i o n b i o l o g i q u e a u t o t r o p h e p a r T h i o b a c i l l u s d e n i t r i f i c a n s s u r s o u f r e - m a e r l , Revue f r a n c a i s e d e s S c i e n c e s de l ' e a u , 2, 2 6 7 - 2 7 9 , 1 9 8 3 . C. Reisinger; Die b i o l o g i s c h e Trinkwasseraufbereitung i n F l i e s s b e t t r e a k t o r e n - k y b e r n e t i s c h e und t e c h n i s c h e Aspekte Proc. U T E C ' 8 9 , 1 9 3 - 1 9 7 , T r e n d Commerz GmbH, L i n z , 1989. C . M . H o o i j m a n s e t a l . , N i t r i f i c a t i o n - d e n i t r i f i c a t i o n by i m m o b i l i z e d Thiosphaera p a n t o t r o p h a i n r e l a t i o n t o oxygen p r o f i l e s . To b e p r e s e n t e d a t ECB 5, Coppenhague, 1 9 9 0 . A.A. v a n de G r a a f e t a l . , A n o x i c ammonium o x i d a t i o n . To b e p r e s e n t e d a t ECB 5 , Coppenhague, 1 9 9 0 . G . l e Puang: N i t r a t e s , a t t e n t i o n , d a n g e r , Le n o u v e l B c o n o m i s t e -1, 158-162, 1 9 8 9 . W . Kopp, B i o l o g i s c h e V e r f a h r e n z u r N i t r a t e n t f e r n u n g , W i s s e n s c h a f t u n d Umwelt 1. 2 3 - 3 1 . 1 9 8 7 . R.W. Okey a n d O.E. A l b e r t s o n : D i f f u s i o n ' s r o l e i n r e g u l a t i n g r a t e e n d mask n g t e m p e r a t u r e e f f e c t s i n f i x e d f i l m n i t r i f i c a t i o n , J o u r n a l WPCF, 61, 4 , 5 0 0 - 5 0 9 , 1 9 8 9 . P. H a r r e m o e s , The s i g n i f i c a n c e o f p o r e d i f f u s i o n t o f i l t e r den i t r i f i c a t i o n J o u r n a l WPCF, 4 8 , 3 7 7 - 3 8 1 , 1976. H. Sahm, Adv. i n B i o c h e m . E n g r g / B i o t e c h n o l . , 29, 84, E d . : A . F i e c h t e r , S p r n g e r - V e r l a g B e r l i n , H e i d e l b e r g , New Y o r k , T o k y o 1984. L . M o r v a i , P. M i h B l t z and L . Czakb: P a r t i c l e - s i z e d i s t r i b u t i o n o f a n a e r o b i c g r a n u l a r s l u d g e . P r o c . PORANAL ' 8 9 , Symp. P a r t i c l e S i z e A n a l . , Powder T e c h n o l . , 2 0 7 - 2 1 8 , Szeged, H u n g a r y , 1 9 8 9 . Y.C. Wu e t a l . , B i o t e c h n o l . B i o e n g . , 31, 2 5 7 , 1 9 8 8 . L. M o r v a i , P . M i h B l t z , L . Czakb, M. P B t e r f y a n d J. H o l l L : The i n f l u e n c e o f o r g a n i c l o a d on g r a n u l a r s l u d g e d e v e l o p m e n t i n a c e t a t e f e d system, Accepted f o r A p p l . M i c r o b i o l . B i o t e c h n o l . 1990. L . C z a k 6 , P. M i h 6 l t z a n d L . M o r v a i : B i o l . s u l p h a t e r e m o v a l i n t h e a c i d i c p h a s e o f a n a e r o b i c d i g e s t i o n , P r o c . 5 t h I n t . Symp. on A n a e r o . D i g e s t i o n , 833-837, B o l o g n a M o n d u z z i E d i t o r e , 1 9 8 8 . L . C z a k b , P . M i h B l t z , L . M o r v a i a n d J. H o l l b : D e v e l o p m e n t o f new n u t r a l i s a t i o n p r o c e d u r e o f h i g h l y a c i d i c w a s t e w a t e r s d u r i n g anaer. t r e a t m e n t . Proc. 4 t h Eur. Congr. B i o t e c h n o l . V I , 6 9 - 7 1 , E l s e v i e r , Amsterdam, 1 9 8 7 . L . Czakb, T . Cseh, P . M i h B l t z a n d J. T 6 t h : P r o c e s s f o r a n a e r o b i c b i o l . t r e a t m e n t o f t o x i c waste w a t e r s c o n t a i n i n g a c e t i c a c i d a n d f u r f u r a l , 1 9 6 . 0 4 3 . Hung. p a t e n t , 1 9 8 8 . As a b o v e . DE 3617 686 A 1 West German P a t e n t , 1 9 8 7 . T . Cseh, L. Czakb, J. T b t h a n d R . P . T e n g e r d y : Two-phase a n a e r o b i c f e r m e n t a t i o n o f l i q u i d s w i n e waste methane. B i o t e c h n o l . B i o e n g . 26, 1 4 2 5 - 1 4 2 9 , 1 9 8 4 . T. Cseh, L . Czakb, P. M i h B l t z a n d J. H o l l 6 : I n v e s t i g a t i o n b i o g a s v e r s u s y e a s t S C P p r o d u c t i o n f r o m p i g manure. P r o c . I n t . Symp. B i o t e c h n o l . Food I n d u s t r y , 617-623, Budapest, 1988. L . C z a k b , T . Cseh, P. M i h B l t z , J. G y b r y a n d F. N y i t r a i : P r o c e s s and equipment f o r two-phase a n a e r o b i c t r e a t m e n t o f s o l i d s cont a i n i n g w a s t e s , 200308 Hung. P a t e n t , 1 9 8 9 . F . C e c c h i e t a l . A n a n e r . d i g e s t i o n o f o r g a n i c f r a c t i o n o f munic i p a l s o l i d w a s t e s d i g e s t e r p e r f o r m a n c e , The s c i e n c e o f t h e t o t a l e n v i r o n m e n t , 56, 183-197, 1986. W . Stegmann: A n a e r o b i c B e h a n d l u n g v o n A b f a l l e n - Neue V e r f a h r e n , P r o c . UTEC ' 8 9 , 1 6 9 - 1 7 4 , T r e n d Commerz. GmbH V e r l a g , L i n z , 1 9 8 9 .
This Page Intentionally Left Blank
A N A E R O B I C T R E A T M E N T OF EFFLUENT FROM E P O X Y R E S I N S P R O D U C T I O N U N I T S
P.
SAN N A ,
D ' A D D A R I O and A .
E.
E n i r i c e r c h e S.p.A
v i a E.
ROBERTIELLO
Ramarini,
32
-
M o n t e r o t o n d o (Roma)
-
ITALY
INTRODUCTION Anaerobic d i g e s t i o n has found a d e f i n i t i v e p l a c e i n w e s t e r n c o u n t r i e s a f t e r t h e 1973 e n e r g e t i c c r i s i s . T h i s t e c h n i q u e had been g e n e r a l l y r e g a r d e d as k i n e t i c a l l y s l o w and o n l y a p p l i c a b l e t o t h e d e c o n t a m i n a t i o n o f h i g h l y p o l l u t e d , inhibitory,
low
non t o x i c wastewater.
Therefore,
through the years,
i t h a s h a d an i n c r e a s i n g d i f f u -
s i o n i n t r e a t i n g a g r i c u l t u r a l and a g r o - i n d u s t r i a l I n t h e s e cases,
effluents.
t h e a n a e r o b i c t e c h n i q u e i s v e r y o f t e n more ad-
v a n t a g e o u s t h a n t h e a e r o b i c one, i s more f a v o r a b l e e c o n o m i c a l l y
and f o r l a r g e s c a l e a p p l i c a t i o n s ,
(1, 2 ) .
I n the present world energetic-economical
context,
the biogas
r e c o v e r y v e r y o f t e n p l a y s a m a r g i n a l r o l e when compared t o o t h e r a d v a n t a g e s o f f e r e d by a n a e r o b i c p r o c e s s e s ,
namely:
1. t r e a t m e n t o f h i g h p o l l u t e d w a s t e w a t e r ,
2.
low sludge production,
3- s m a l l o p e r a t i v e c o s t s . F o r t h e s e reasons huge r e s e a r c h e f f o r t s a r e p r e s e n t l y i n p r o gress t o enlarge the a p p l i c a t i o n o f the anaerobic d i g e s t i o n t o t h e t r e a t m e n t o f wastewater c o n t a i n i n g i n h i b i t o r y , l e s o r h a v i n g l o w o r g a n i c l o a d . F o r example,
r e c a l c i t r a n t molecu-
t h i s i s t h e case o f i n -
d u s t r i a l e f f l u e n t s and o f m u n i c i p a l wastewater. I n the f i r s t a p p l i c a t i o n chemical,
b i o c h e m i c a l and m i c r o b i o l o -
g i c a l p r o b l e m s must be f a c e d ( 3 1 , w h i l e i n t h e second,
r e s e a r c h ac-
t i v i t i e s on r e a c t o r i s t i c a n d e n g i n e e r i n g s u b j e c t s a p p e a r t o p l a y a more p r o m i n e n t r o l e . As an e x a m p l e o f t h e e x t e n t i o n o f t h e a n a e r o b i c t e c h n i q u e t o t h e treatment
o f i n d u s t r i a l wastewater,
anaerobic process for
t h i s w o r k a i m s t o show a new
t h e p u r i f i c a t i o n o f e f f l u e n t s o r i g i n a t i n g from
t h e epoxy r e s i n s p r o d u c t i o n .
-
48
-
O V E R V I E W AND W A S T E W A T E R C H A R A C T E R I S T I C S The e p o x y r e s i n s a r e p r o d u c e d f r o m t h e s y n t h e s i s b e t w e e n e p y s u c h as 4 , 4 ’
c h l o r o h y d r i n and d i f f e r e n t monomers, diphenol (bisphenol A),
4,4’-isopropylidene-bis
-
isopropylidene-
(tetrabromophenol).
The i n d u s t r i a l p r o c e s s e s a r e c h a r a c t e r i z e d b y o p e r a t i o n s c o n c e r n i n g b o t h t h e s y n t h e s i s and p u r i f i c a t i o n o f t h e raw p r o d u c t . Most o f t h e s e p r o c e s s e s o p e r a t e b a t c h w i s e . The e f f l u e n t o r i g i n a t i n g f r o m t h e s y n t h e s i s r e a c t i o n c o n t a i n s m o s t o f t h e p o l l u t i n g compounds, e n t COD) a n d f o r t h i s r e a s o n ,
(approx.
85 % o f t h e t o t a l e f f l u -
i n t h e p r e s e n t work o n l y t h e e f f l u e n t
was e x p e r i m e n t e d . Wastewater from t h e epoxy r e s i n s s y n t h e s i s c o n t a i n s :
1, b i o d e g r a d a b l e m o l e c u l e s ( e s s e n t i a l l y g l y c e r o l ) , 2.
b a c t e r i o s t s t i c - b a c t e r i c i d e compounds ( o r g a n i c s o l v e n t s a s i s o p r o p y l a l c o h o l and a c e t o n ,
sodium c h l o r i d e ,
etc.)
and,
3 . t o x i c m o l e c u l e s ( e p y c h l o r o h y d r i n and d e r i v a t i v e s o b t a i n e d from i t s p a r t i a l h y d r o l y s i s ) . The e f f l u e n t u s e d i n t h e e x p e r i m e n t s a n d d e s c r i b e d i n t h i s w o r k o r i g i n a t e s f r o m t h e s y n t h e s i s between e p y c h l o r o h y d r i n and b i s p h e no1 A.
I t h a s t h e c h a r a c t e r i s t i c s s u m m a r i z e d i n T a b l e 1. TABLE 1 C h a r a c t e r i s t i c s o f wastewater o r i g i n a t i n g f r o m epoxy r e s i n s p r o d u c t i o n ( d i s c o n t i n u o u s u n i t ; s y n t h e s i s : s t r e a m s 1-3; p u r i f i c a t i o n : s t r e a m s 4-6, n o t t e s t e d ) .
ECH
IPA
GLY
CHL
[%I
[x 1
L% 1
0.44
1.62
1.05
0.34
0.74
1.92
1.40
0.38
0.68
2.20
-
-
ix]
28.9 7.8 6
-
ECH:
Epichlorohydrin;
IPA:
Isopropyl alcohol;
CHL:
1.62
I
I I
0.12
-
Chloridrine;
TOL:
Toluene;
[!?;]
0.22
I
-
1
0.02
I I
-
GLYC:
GLY:
0.08
Glycerol
Glicidol
The numerous a p p r o a c h e s t o t h e r e c o v e r y o f t h e m a i n p r o d u c t c o n t a i n e d i n t h e “epoxy”
w a s t e w a t e r are i n d i c a t e d i n t h e c u r r e n t
literature.
Among t h e s e ,
49
-
those r e l a t e d t o g l y c e r o l recovery
(4,
5)
and t h o s e c o n c e r n i n g t h e sodium c h l o r i d e r e m o v a l ( 6 ) a r ? mentioned. M e t h o d s b a s e d on t h e u s e o f t h e a n a e r o b i c p r o c e s s a r e a l s o d e s c r i bed.
-
These m e t h o d s c o n s i d e r t-he f o l l o w i n g m a i n s t e p s ( 7 ) :
Pretreatment,
c a r r i e d o u t i n o r d e r t o remove r e s i n o u s r e s i d u a l
m a t e r i a l s and r e f r a c t o r y o r n o n - b i o x i d a b l e m o l e c u l e s ;
-
Strong d i l u t i o n with low p o l l u t i n g effluent;
-
Biological oxidation. T h i s a p p r o a c h a l l o w s good p e r f o r m a n c e s (81, b u t o f f e r s t h e
t y p i c a l disadvantages o f the aerobic treatment ( h i g h production o f sludge,
h i g h o p e r a t i v e c o s t s ) and,
quantities o f diluted effluents.
i n addition,
requires large
I n o r d e r t o overcome t h e s e draw-
b a c k s a new a l t e r n a t i v e p r o c e s s b a s e d on t h e a n a e r o b i c d i g e s t i o n was s t u d i e d ( 9 ) . I n t h e f o l l o w i n g ,
t h e main e x p e r i m e n t s p e r f o r m e d
i n order t o develop t h i s process are described,
and t h e p r o c e s s
i t s e l f i s showed and d i s c u s s e d .
EXPERIMENT The maximum c o n c e n t r a t i o n s o f e a c h t o x i c o r i n h i b i t o r y comp o u n d t o l e r a b l e b y a t y p i c a l a n a e r o b i c i n o c u l u m ( d i g e s t e d p i g manure;
T S 4,5
I;V S 3 , 5 %;
micro-reactors d i t i o n s (35
(Fig.
COO
4,8 g / l ) have been d e t e r m i n a t e d u s i n g
1, 6 0 m l t o t a l v o l u m e ) u n d e r m e s o p h i l i c c o n -
OC).
@ WATER BATH OMAGNETIC STIRRER @MICROREACTOR @ CYLINDER (GAS MEASURMENT) 0BOTTLE (WATER -SODIUM CHLORIDE, 10°/o 1 Fig.
1. M i c r o r e a c t o r s a r r a n g e m e n t . The e f f e c t o f e a c h o f t h e s e compounds on t h e a n a e r o b i c m i c r o
f l o r a was o b s e r v e d by a d d i n g t h e m d i r e c t l y t o t h e i n o c u l u m ,
as w e l l
as by u s i n g them i n m i x t u r e w i t h a p r o p e r s y n t h e t i c medium.
The
strongly t o x i c organo-chlorinated
50
-
compounds h a v e b e e n c o n v e r t e d t o
glycerol v i a alkaline h y d r o l i t i c reactions.
The h y d r o l y s i s c o n d i -
t i o n s have been s e l e c t e d s t u d y i n g t h e e f f e c t o f : t i o n (sodium hydroxide,
5-15
g/l),
a l k a l i concentra-
t e m p e r a t u r e (60-130
OC),
and t i -
me ( 5 - 6 h o u r s ) on t h e c h l o r i n a t e d p r o d u c t s r e s i d u a l c o n c e n t r a t i o n . The s o d i u m c h l o r i d e was r e m o v e d b y e v a p o r a t i o n / c r y s t a l l i z a t i o n , and by f i l t r a t i o n .
The p r e t r e a t e d e f f l u e n t ,
a f t e r a proper .dilution,
was d i g e s t e d u n d e r m e s o p h i l i c c o n d i t i o n s ( 3 5 filter
OC)
h a v i n g t h e f o l l o w i n g main c h a r a c t e r i s t i c s :
h e i g h t 2 m;
s o l i d support:
i n an a n a e r o b i c d i a m e t e r 1 0 cm;
small r i v e r stones (average diameter
5 cm). The a n a e r o b i c f i l t e r was i n o c u l a t e d w i t h t h e same e f f l u e n t u sed f o r t h e m i c r o - r e a c t o r s
tests.
I n order t o f a c i l i t a t e the support colonization,
the anaerobic
f i l t e r was s t a r t e d u s i n g a s y n t h e t i c medium s i m i l a r t o t h e one obtained a f t e r the pretreatment operations ( s p e c i f i c organic load 3 Kg C O D / m d ) . The a c c l i m a t i z a t i o n was c a r r i e d o u t s u b s t i t u t i n g
,
5-6
i n c r e a s i n g amounts o f t h e r e a l p r e t r e s t e d e f f l u e n t t o t h e s y n t h e t i c medium. Before the feeding, t h e wastewater.
p r o p e r amounts o f n u t r i e n t s were added t o
F o r t h i s purpose,
t e c h n i c a l g r a d e ammonium h y d r o x i -
d e a n d p h o s p o r i c a c i d were u s e d .
A t the beginning o f acclimatization,
t h e aame s p e c i f i c o r g a n i c
l o a d u s e d f o r t h e c o l o n i z a t i o n was m a i n t a i n e d . H o w e v e r ,
observed d u r i n g c o l o n i z a t i o n , t o a b o u t 4 KgCOD/m3,
d.
t h e s p e c i f i c o r g a n i c l o a d was r e d u c e d
After colonization,
i n order t o observe t h e
maximum p e r f o r m a n c e s o f t h e a n a e r o b i c f i l t e r , experiments
a t t h e end
i n o r d e r t o r e a c h t h e same l e v e l o f COD r e m o v a l
o f acclimatization,
6 months o f c o n t i n u o u s
a t i n c r e a s i n g f e e d i n g f l o w r a t e s were c a r r i e d o u t .
RESULTS A N D DISCUSSION The r e s u l t s o f t h e a n a e r o b i c d e g r a d a b i l i t y t e s t s o f e a c h comp o u n d c o n t a i n e d i n t h e e f f l u e n t a r e s u m m a r i z e d i n T a b l e 2. The r e a c t i o n s e q u e n c e r e l a t e d t o t h e a l k a l i n e h y d r o l y s i s o f organo-chlorinated shown
compounds a n d a t y p i c a l e x p e r i m e n t a l k i n e t i c s a r e
i n F i g u r e 2.
The s e q u e n c e o f t h e u n i t o p e r a t i o n s o f t h e s t u d i e d p r o c e s s i s s c h e m a t i z e d i n F i g u r e 3. The c h a r a c t e r i s t i c s (spprox.
o f t h e p r e t r e a t e d and d i l u t e d e f f l u e n t
1:4 w i t h tap water)
a r e s u m m a r i z e d i n T a b l e 3.
-
51
-
TABLE 2 Main r e s u l t s o f p r e l i m i n a r y " t o x i c i t y " Inhibition'
Recalcitrance'
Toxicity3
[PPd
[p pml
[PPml
75
150
Epichlorohydrin Glycidol
3 C1 1 - 2 p r o p a n e d i o l 1200
Isopropyl alcohol
tests.
-
600
-
-
2400
1200
1500
-
7200
-
1) Acclimatization required;
evidence o f biodegradation; other degradative processes scarcely influenced.
2) Acclimatization required;
no e v i d e n c e o f b i o d e g r a d a t i o n ; other degradative processes s i g n i f i c a n t l y retarded.
3 ) No e v i d e n c e o f a n a e r o b i c a c t i v i t y .
.GLYCEROL +
3 CL PROPANEDIOL GLYCIDOL
'iE
12
4 20
2
4
6
HOURS
Na OH
NaOH C+-CH-CYb CHz-CH-Cb I
OH Fig.
\ /
0
'
&i AH AH
2 . Alkaline hydrolysis o f organo-chlorinated The a n a e r o b i c f i l t e r s r e a c h e d s a t i s f a c t o r y
o r g a n i c l o a d (max.
6 . 5 Kg COD/m3,d)
as COD r e m o v a l (80-85
compounds.
values o f s p e c i f i c
and gave good p e r f o r m a n c e s b o t h
%) and as energy r e c o v e r y (30-35
3
Nm /m3
of
t r e a t e d wastewater). These p e r f o r m a n c e s were o b t a i n e d w i t h a r e s i d u a l c o n c e n t r a t i o n o f e p i c h l o r o h y d r i n and 3 - c h l o r o - p r o p a n e d i o l
(Table 2) t a n g i b l y lower
t h a n t h o s e o b s e r v e d f o r t h e p u r e compound ( T a b l e 3). T h i s c a n b e a s c r i b e d t o t h e combined e f f e c t o f t h e r e s i d u a l o r g a n o - c h l o r i n a t e d
-
-
52
compounds on t h e a n a e r o b i c m i c r o f l o r a .
From t h i s p o i n t o f v i e w i t
was o b s e r v e d t h a t r e s i d u a l c o n c e n t r a t i o n s o f e p i c h l o r o h y d r i n ,
gly-
c i d o l a n d s o d i u m c h l o r i d e a p p e a r t o p l a y t h e c r i t i c a l r o l e on t h e e f f i c i e n c y o f the acclimatized anaerobic microflora.
I n fact,
the
e x p e r i m e n t a l r e s u l t s showed t h a t t h e e f f i c i e n c y o f t h e p r o c e s s i s s t r o n g l y r e d u c e d for c o n c e n t r a t i o n s o f e p y c h l o r o h y d r i n , and sodium c h l o r i d e h i g h e r t h a n 5,
glycidol
1 2 0 0 a n d 1 5 0 0 ppm r e s p e c t i v e l y .
EFFLUENTS
1
HYDROLrjlS WATER
1
-
EVAPORATION CRYSTALLIZATION
ISOPROPYL ALCOHOL (RECCWW OPTIONAL)
MIXING -DILUTED
WASTEWATER
1
ANAEROBIC DIGESTION
BIOGAS Fig.
1
FINAL TREATMENT
3.
Treatment o f w a s t e w a t e r f r o m epoxy r e s i n s p r o d u c t i o n .
TABLE 3 Composition o f the e f f l u e n t feeding
the anaerobic f i l t e r .
Glycerol
8.5
g/l
Isopropyl alcohol
4.1
g/l
NaCl
12.5
g/l
X) H3P04 ( 8 5 X )
2.2
ml/l
1.1
ml/l
Epichlorohydrin
5
ppm max
Glycidol
800
ppm
3-chloro-propanediol
20
PPm
1-1 D i c h l o r i d r i n e
20
PPm
1-2 D i c h l o r i d r i n e
20
PPm
COD
19.8
g/l
PH
7
911
NH40H ( 3 0
- 53
-
i t m u s t be s t r e s s e d t h a t no s i g n i f i c a n t s l u d g e p r o -
Finally,
d u c t i o n waa o b s e r v e d ( t o t a l s o l i d s c o n c e n t r a t i o n i n t h e t r e a t e d e f f l u e n t are approximately equal t o the anaerobic f i l t e r i n f l u e n t ) .
CONCLUSIONS E f f l u e n t s o r i g i n a t i n g from t h e epoxy r e s i n s p r o d u c t i o n c o n t a i n i n h i b i t o r y a n d t o x i c m o l e c u l e s w h i c h do n o t a l l o w t h e i r d i r e c t b i o l o g i c a l treatment. F o r t h i s reason t h e c u r r e n t p u r i f i c a t i o n processes a r e based on chemical-
p h y s i c a l p r e t r e a t m e n t s f o l l r a e d by b i o l o g i c a l o x i d a t i o n
steps. The a n a e r o b i c s o l u t i o n d e s c r i b e d i n t h i s w o r k o v e r c o m e s t h e drawbacks o f these processes ( s t r o n g d i l u t i o n , e l e c t r i c power,
h i g h consumption o f
h i g h s l u d g e p r o d u c t i o n ) and o f f e r s t h e f o l l o w i n g
main advantages:
-
S t r o n g r e d u c t i o n o f t h e r e q u i r e d d i l u t i o n s ( i n l e t COD c o n c e n t r a t i o n f o r aerobic processes 0.5-1 f o r the experimented anaerobic
-
g/l, i n l e t COD c o n c e n t r a t i o n process spprox.
20 9 / 1 1 .
A l m o s t n e g l i g i b l e c o n s u m p t i o n o f e l e c t r i c p o w e r and s i g n i f i c a n t 3 p r o d u c t i o n o f b i o g a s ( 3 0 - 3 5 Nm / m 3 o f t r e a t e d w a s t e w a t e r , C H 4 60-65
-
X v).
Recovery o f sodium c h l o r i d e p u r i t y 95-97
76,
( 2 0 0 - 2 5 0 Kg/m3
o f treated effluent,
m a r k e t a b l e as b u l k p r o d u c t ) a n d t h e c o n s e q u e n t
e l i m i n a t i o n o f t h e l e g a l p r o b l e m s r e l a t e d t o t h e s a l t and c h l o r i d e c o n t e n t s i n t h e t r e a t e d wastewater.
REFERENCES
1 2
3
4 5 6
7 8 9
P . Sanna, Acqua A r i a , 4, 4 8 3 , 1 9 8 1 . P . Sanna, M. C a m i l l i a n d L . Degen, G l o b a l B i o c o n v e r s i o n s , Volume 2 n d , 49, 1 9 8 7 , C R C P r e s s D . L . Wise E d i t o r . C . H o l l i n g e r e t e l . , 5 t h I n t . Symp. on A n a e r o b i c D i g e s t i o n , Boloona i 9 8 8 . 211 E . V . > R u d n e k o ’ e t a l . , P l a s t . M a s s . , 1, 5 4 , 1 9 8 7 106-107405). N . V . Ozumedzei e t e l . , L a k o k r a s . M a t e r . I k h . P r i m e n . , 3 , 107-120489). 65, 1987 R . A . F r i m a n e t a l . , P l a s t . Massy., 3 , 5 6 , 1 9 8 2 &. 96-186735). T.F. Gumbatova e t e l . , K h i m . T e k h n o l . Vody, 4, 3 7 6 , 1 9 8 2 (Chem. Ab. 9 7 - 1 6 8 2 6 9 ) . G . A . B y s t r o v e t e l . , P l a s t . Massy., 2 , 4 7 , 1 9 8 4 (Chem. Ab. 100-161350). A . R o b e r t i e l l o e t a l . , A p p l i c a t i o n p a t e n t N . 22221A/88, 7 Oct. 1988, I t a l y .
(e. fi.
(e. m.
(w.
This Page Intentionally Left Blank
ANAEROBIC T R E A T M E N T OF EFFLUENTS:
U S E OF BIOINOICATORS FOR
PROCESS M O N I T O R I N G C.
SORLINI
D i p a r t i m e n t o d i Scienze e Tecnoloqie A l i m e n t a r i e M i c r o b i o l o g i c h e , Sezione M i c r o b i o l o g i a A g r a r i a , A l i m e n t a r e , E c o l o g i c a , U n i v e r s i t a d e g l i S t u d i d i M i l a n o , V i a C e l o r i a , 2, 20133 M i l a n o , I t a l y
Anaerobic treatment Anaerobic treatment, a n d d o m e s t i c sewage, i n origin,
used i n t h e p a s t o n l y f o r a n i m a l s l u r r i e s
has been a p p l i e d l a t e l y t o e f f l u e n t s v a r y i n g
p o l l u t i o n l e v e l s and c h e m i c a l c o m p o s i t i o n ,
w i t h interes-
t i n g r e s u l t s c o n c e r n i n g t h e decrease i n p o l l u t i o n and t h e product i o n o f methane.
Anaerobic d i g e s t i o n i s o f p a r t i c u l a r i n t e r e s t f o r
o l i v e o i l m i l l s waatewater, wood p r o c e s s i n g p l a n t s ,
d i s t i l l a r y sloaps,
cheese-whey,
Among t h e new t e c h n o l o g i e s , blanked digesters),
digesters,
h a v e become o f p r i m a r y i m p o r t a n c e . w i t h a m e t h a n e p r o d u c t i o n f r o m 0.3 1989).
These d i g e s t e r s c a n o p e r a t e a t t a l i k e whey,
t o 0.35
c a n r e a c h 95 %
mc/Kg C O D r e m
(Schroder
Good r e s u l t s h a v e a l s o b e e n o b t a i n e d e v e n i n
t h e case o f e f f l u e n t s ,
generally d i f f i c u l t t o treat,
o i l m i l l wastewater and p y r o l y a e w a t e r , microorganisms,
used a l s o on a r e a l s c a l e ,
u s e d on a n e x p e r i m e n t a l s c a l e ,
i n i n g a C O D r e m o v a l t h a t i n some c a s e s ,
a n d De H a a a t ,
etc.
a f t e r UASB ( u p f l o w a n a e r o b i c s l u d g e
f i x e d bed d i g e s t e r s ,
h y b r i d and expanded-bed
papermill effluents,
petrochemical wastewater,
s u c h aa o l i v e
r i c h i n t o x i c compounds f o r
where C O D r e m o v a l h a s r e a c h e d s a t i s f a c t o r y
values
r a n G i n g f r o m 7 5 t o 8 5 % a n d s p e c i f i c m e t h a n e y i e l d a b o u t o f 0,3 rnc/CgCODrem
(Laveni e t a l . ,
1984;
Andreoni
P h y s i c a l and c h e m i c a l p a r a m e t e r s (pH, t o t a l solids,
a l k a l i n i t y and methane y i e l d )
f o r the monitoring o f the digesters,
e t al.,
COD,
1989).
volatile solids,
a r e g e n e r a l l y used
w h i l e m i c r o b i o l o g i c a l and en-
zym<.tic parameters are u s u a l l y neglected ( S o r l i n i ,
B o n f a n t i 1989).
D e t e r m i n a t i o n o f t h e number o f m i c r o o r g a n i s m s c a n be done b y t r a d i t i o n a l t e c h n i q u e s s u c h a s c o u n t i n g o f c o l o n i e s on p l a t e s , d e t e r m i n a t i o n i n t h e l i q u i d medium ( S o r l i n i e t e l . ,
19831,
MPN
direct
c o u n t by o p t i c a l m i c r o s c o p e , o r ,
-
56
f o r methanogenic b a c t e r i a ,
by
f l u o r e s c e n t m i c r o s c o p y and by i m m u n o l o g i c a l t e c h n i q u e s based on t h e use o f monoclonal and p o l y c l o n a l a n t i b o d i e s 1988;
Koornneef e t al.,
1990).
Not a l l b a c t e r i a ,
i n f i x e d and e x p a n d e d - b e d d i g e s t e r s , ces;
(Dubouriger e t a l . , normally present
adhere t o t h e support m a t r i -
a c o n s i d e r a b l e number r e m a i n s s u s p e n d e d i n t h e c i r c u l a t i n g
f r a c t i o n and o t h e r s a r e d e p o s i t e d a t t h e b o t t o m o f t h e d i g e s t e r . The c a p a b i l i t y o f m e t h a n o g e n i c b a c t e r i a t o a d h e r e t o s u p p o r t s v a ries significantly;
f o r example,
M e t h a n o s p i r i l l u m h u n q a t e i JF1 has
a b e t t e r adherence t o h y d r o p h i l o u s s u r f a c e s ,
whereas M e t h a n o t h r i x
soehnqenii t o hydrophobic surfaces ( V e r r i e r e t al.,
I t h a s a l s o been n o t e d t h a t ,
1988).
i n anaerobic digesters,
contrary
t o what h a s b e e n o b s e r v e d i n rumen a n d mammalian i n t e s t i n e ,
aceto-
t r o p h i c methanogens a r e more abundant t h a n h y d r o g e n o t r o p h i c b a c t e r i a ( D o l f i n g and M u l d e r ,
1985).
I n v e s t i g a t i o n s on m i c r o b i a l p o p u l a t i o n i n d i g e s t e r s a n d i t s d i s t r i b u t i o n on s u p p o r t s u r f a c e a r e i m p o r t a n t t o about t h e p r o c e s s and f o r i t s o p t i m i s a t i o n .
deepen k n o w l e d g e
However, t h e d a t a o b t a -
i n e d f o r d i f f e r e n t r e a s o n s a r e n o t much u s e f u l f o r m o n i t o r i n g t h e running o f the digesters.
Coenzyme F420 a s b i o i n d i c a t o r o f m e t h a n o q e n i c p o t e n t i a l i t y I n an a t t e m p t t o s e l e c t b i o i n d i c a t o r s c a p a b l e o f r e v e a l i n g p r o m p t l y t h e p o t e n t i a l i t y f o r a s l u d g e t o produce methane, t e n t i o n h a s b e e n f o c u s e d on coenzyme F 4 2 0 a f a c t o r p r e s e n t , anaerobic microorganisms,
o n l y i n methanogenic b a c t e r i a .
the atamong
This fac-
t o r is r a p i d t o e x t r a c t a n d e a s y t o d e t e r m i n e by means o f a s p e c trofluorimeter.
I t c o n s i s t s o f a 7,8-didemethyl-8-hydroxi-5-deazo-
flavin-5-phosphate a c i d chain,
w i t h an N - ( N - L - l a c t y l -
t h a t a c t s as c o - f a c t o r
7-L-glutamy1)-L-glutamic
o f v a r i o u s enzymes f o r t h e i n -
c o r p o r a t i o n o f C O P i n t o o r g a n i c c a r b o n and p l a y s a key r o l e i n m e t h a n e p r o d u c t i o n as i t t r a n s f e r s e l e c t r o n s t o t h e CoM r e d u c t a s e s y s t e m i n t h e f i n a l s t e p s o f r e d u c t i o n o f C02 i n t o m e t h a n e . The r e s u l t s on t h e p r e d i c t a b l e r o l e o f f a c t o r F420 on m e t h a nogenic p o t e n t i a l i t y are s t i l l c o n t r a d i c t o r y . P u r e c u l t u r e o f Methanobacterium a r b o r i p h i l u s and Methanobacte-
r i u m thermoautotrophicum (Taya e t a l . ,
1 9 8 6 ) h a v e shown a s t r o n g
c o r r e l a t i o n b e t w e e n F420 c o n t e n t e n d m i c r o b i a l b i o m a s s . A c l o s e c o r r e l a t i o n was a l s o e v i d e n c e d i n p u r e c u l t u r e o f M e t h a n o b a c t e r i u m
-
m. b r i a n t i i
arboriphilus,
and
-
57
&.
b a r k e r i (Heine-Oobbernach
et
sl., 1 9 8 8 1 , b u t t h e r e was n o c o r r e l a t i o n b e t w e e n F 4 2 0 c o n t e n t a n d methane p r o d u c t i o n .
were c o n d u c t e d i n b a t c h .
These e x p e r i m e n t s
Other e x p e r i m e n t s c a r r i e d o u t w i t h mixed c u l t u r e s o b t a i n e d by i n o c u l a t i n g g r a n u l a r s l u d g e i n s y n t h e t i c media added s e p a r a t e l y w i t h d i f f e r e n t c a r b o n s o u r c e s h a v e shown a g o o d c o r r e l a t i o n b e t w e e n
F 4 2 0 a n d methane p r o d u c e d o n l y i n c u l t u r e a d d e d w i t h f o r m a t e , w i t h hydrogen, However,
a c e t a t e and e t h a n o l ( O o l f i n g end Mulder,
not
1985)
t h e r e s u l t s o b t a i n e d by t h e s e A u t h o r s c o u l d have been
i n f l u e n c e d by unfavourable c o n d i t i o n s i n the s t a t i o n a r y c u l t u r e l e a d i n g t o an e x h a u s t i o n o f t h e s u b s t r a t e and t o an i n c r e a s e o f catabolites,
I t can
c o n d i t i o n s n o t found i n c o n t i n u o u s d i g e s t e r s .
be presumed t h a t ,
i n such d i g e s t e r s ,
most o f t h e carbom d i o x i d e
t h a t i s reduced f o l l o w s t h e pathway o f b i o s y n t h e s i s l e a d i n g t o t h e p r o d u c t i o n o f a c e l l u l a r biomass,
n o t t h e way o f t h e m e t h a n e p r o -
The f i r s t s t e p s o f C02 r e d u c t i o n a r e ,
duction.
b o t h processes.
i n fact,
common t o
T h i s c o u l d e x p l a i n t h e l s c k o f c o r r e l a t i o n between
F 4 2 0 c o n t e n t and m e t h a n e p r o d u c t i o n . Other Authors (Zabranska e t a l . ,
1985) have a l s o n o t e d t h a t
F420 c o n t e n t i n b a t c h c u l t u r e s as w e l l i n semi-continuous
and con-
t i n u o u s l a b o r a t o r y d i g e s t e r s was d e p e n d e n t u p o n t h e c u l t u r e c o n d i t i o n s a d o p t e r and d i d n o t appear t o be s u i t a b l e t o e v a l u a t e t h e l e v e l o f methanogenic b a c t e r i a l a c t i v i t y .
However,it
c o u l d be used
A hig-
t o e v a l u a t e t h e number o f t h e s e b a c t e r i a i n m i x e d c u l t u r e s . h e r F420 c o n t e n t i n t h e s t a r t - u p
phase c o u l d be due t o t h e p r e s e n -
ce o f hydrogenotrophic b a c t e r i a ,
which p r e v a i l i n g d u r i n g t h a t pha-
se and w h i c h a r e r i c h e r i n F420 c o n t e n t t h a n a c e t o t r o p h i c b a c t e r i a p r e v a i l i n g d u r i n g t h e subsequent phase. E x p e r i m e n t s c a r r i e d o u t by o t h e r A u t h o r s w i t h s e m i c o n t i n u o u s a n d UASB d i g e s t e r s f e d w i t h d i f f e r e n t i n p u t s h a v e i n d i c a t e d , contrary,
on t h e
a s i g n i f i c a n t c o r r e l a t i o n between F 4 2 0 c o n t e n t and metha-
ne y i e l d e s p e c i a l l y d u r i n g t h e s t a r t - u p
phase.
A s l i g h t decrease
i n F420 c o n t e n t , evidenced d u r i n g t h e s t e a d y - s t a t e
phase i s i n con-
t r a d i c t i o n w i t h what i s p r e d i c t e d b y s t e a d y - a t a t e
k i n e t i c s and w i t h
q u a n t i t y o f methane produced.
I n s p i t e o f t h i s small discrepancy,
t h e A u t h o r s c o n s i d e r e d t h a t F420 c o n t e n t c o u l d be used as an i n d i c a t o r o f methanogenic a c t i v i t y ( O e l a f o n t a i n e e t e l . , e t el.,
1979;
Schulze
198’8).
Some o t h e r A u t h o r s ( v a n B e l e e n ,
1984) have found a p o s i t i v e
c o r r e l a t i o n between F420 c o n t e n t and methane p r o d u c t i o n depending
-
58
-
o n t h e t y p e o f p r o c e s s a p p l i e d . The F420 c o n t e n t h a s r e s u l t e d t o be p a r t i c u l a r l y s i g n i f i c a n t o f t h e methanogenic p o t e n t i a l i t y i n plug-flow
and h y d r a u l i c d i g e s t e r s (Withmore e t al.,
For a b e t t e r understanding o f t h i s subject,
1986). we h a v e c a r r i e d
o u t a a e r i e s o f e x p e r i m e n t s w i t h t h r e e 62 1 f i x e d - b e d d i g e s t e r s : up-flow,
down-flow
and down-up-flow.
The d i g e s t e r s w e r e p a c k e d w i t h P V C empty c y l i n d e r s 35/mm)
and f e d w i t h d i l u t e d s w i n e s l u r r y .
thane y i e l d ,
COD,
VS,
TS,
( 0 33,h
D i f f e r e n t p a r a m e t e r s (me-
pH) were c o n s t a n t l y m o n i t o r e d .
During
the steady-state
phase,
t h e t h r e e d i g e s t e r s had a d i f f e r e n t metha-
ne y i e l d (22.50,
33.20,
27.15
were
l/day,
fed under i d e n t i c a l conditions.
respectively),
although they
Supports were t h e r e f o r e drawn
a t e q u a l d e p t h s a n d F420 c o n t e n t a n d t h e number o f m e t h a n o g e n i c b a c t e r i a were d e t e r m i n e d on t h e biomass a t t a c h e d . The r e s u l t s o b t a i n e d i n d i c a t e d t h a t F420 c o n t e n t , t o volume u n i t ,
referred
i s r e l a t e d t o methane y i e l d f o r each d i g e s t e r ,
b u t n o t t o t h e number o f m e t h a n o g e n i c b a c t e r i a ( T a b l e 1 ) .
TABLE 1 F i x e d - b e d d i g e s t e r s ( 6 2 1) CH4 [l/day]
Param. Digesters
CH4 dig]
ji/i
F420 [Clmol/g SV]
F420 [pmol/l dig]
1 CH4/’m F420/day
Methan.Bact. [logN/gdw]
UP-FLOW
22.50
0.362
0.370
0.230
1.57
8.36
DOWN-FLOW
33.20
0.534
0.570
0.384
1.39
8.36
0.437
0.430
0.283
1.54
9.79
DOWN-UP FLOW I
27.15 I
I
The v a l u e s o f coenzyme F 4 2 0 a n d m e t h a n o g e n i c b a c t e r i a a r e t h e a v e r a g e o f t h r e e d i f f e r e n t samples.
Other e x p e r i m e n t s were c a r r i e d o u t w i t h a 1200 1 u p - f l o w bed p i l o t p l a n t packed w i t h PVC empty c y l i n d e r s .
fixed-
The same p a r a m e t e r s
were c o n s t a n t l y m o n i t o r e d . S u p p o r t s were drawn t h r e e t i m e s ,
(Tl,
T2,
T3)
a t t h e t h r e e months i n t e r v a l
a t t w o d i f f e r e n t d e p t h s ( 5 0 a n d 2 0 0 cm) a n d F 4 2 0 c o n -
t e n t a n d t h e number o f m a t h a n o g e n i c b a c t e r i a biomass a t t a c h e d .
w e r e d e t e r m i n e d on t h e
The d i g e s t e r was i n a s t e a d y - s t a t e
w o r k i n g phase
a t T 1 a n d T2 a n d i t was i n a f i n a l p h a s e w i t h i r r e g u l a r
feeding a t
73.
59
-
The r e s u l t s showed t h a t F420 c o n t e n t was h i g h e r i n t h r e e s u p -
p o r t s d r a w n a t 200 cm,
a c c o r d i n g t o Koeff-Bank
and S c h r a e w e r ( 1 9 8 7 )
and i n c o n t r a s t w i t h R e y n o l d s and C o l l e r a n f i n d i n g s ( 1 9 8 7 ) . more,
F420 c o n c e n t r a t i o n ,
a s w e l l a s methane p r o d u c t i o n ,
Further-
was h i g h e r
i n t h e s u p p o r t s d r a w n a t T2 w i t h r e s p e c t t o t h o s e d r a w n a t T 1 .
There
was a s h a r p d e c r e a s e i n m e t h a n e p r o d u c t i o n due t o d i s c o n t i n u o u s f e e d i n g a t T3,
w h e r e a s F420 c o n t e n t was h i g h e r .
The number o f m e t h a -
n o g e n i c b a c t e r i a were g r e a t e r a t t h e T2 t h a n a t 11 ( T a b l e 2 ) .
TABLE 2 F i x e d - b e d p i l o t d i g e s t e r s ( 1 2 0 0 1)
Param.
CH4
CH4
Phases
[l/dayl
[l/l d i g ]
F420 S”
T1
290
12
447
13
351
0.241
0.372
0.292
I
dig1
h+
0.085
I++
0.334
h
0.099
1
0.393
h
0.470
1
0.500
1
1 C H 4 / p n o l Methan-. B[ l oUg N. / g d w ]
F420
[ pmo 1e s / g ~flmoles’llF 4 2 0 / d a y 0.138
h+
1.74
8.36
1++ 9.36 0.159
2.33
h+
10.36
1++ 10.36 0.326
0.895
h+
7.79
1++ 8.20
The v a l u e s o f coenzyme F420 a n d m e t h a n o g e n i c b a c t e r i a a r e t h e a v e rage o f t h r e e d i f f e r e n t samples. h+
=
at a
50 cm d e p t h
1++ = a t a 200 cm d e p t h The r e s u l t s showed t h a t b o t h F420 c o n t e n t
(pmoles/l
dig)
and
t h e d a i l y p r o d u c t i o n o f methane ( 1 / 1 d i g ) a r e s l i g h t l y h i g h e r i n t h e t h r e e 62 1 d i g e s t e r s t h a n i n t h e p i l o t d i g e s t e r . The v a l u e s o b t a i n e d f o r those o f Delafontaine e t e l .
F420 ( p m o l e s / l (1979)
dig)
a r e comparable t o
and o f S c h u l z e e t a l .
b u t a r e l o w e r t h a n t h o s e o f van B e l e e n e t a l .
(1983)
(1988)
and t h e v a l u e s
f o r m e t h a n e p r o d u c t i o n a r e o f t h e same o r d e r o f m a g n i t u d e t h a n t h o se o f Zabranska e t e l .
lafontaine e t al.
(1985)
b u t s l i g h t l y h i g h e r t h a n t h o s e o f De-
(1979) and G o r r i a e t a l .
Other’experiments
(1988).
conducted w i t h a 6 1 expanded bed d i g e s t e r
packed w i t h m a r l have a l s o i n d i c a t e d a c o r r e l a t i o n between methane y i e l d a n d F420 c o n c e n t r a t i o n .
With t h i s d i g e s t e r ,
F420 c o n t e n t and
-
60
-
methane y i e l d r e f e r r e d t o volume o f d i g e s t e r as w e l l t o F420 moles a r e h i g h e r t h a n i n t h e f i x e d bed d i g e s t e r ,
a confirmation o f the
b e t t e r e f f i c i e n c y o f t h i s d i g e s t e r (Table 3).
TABLE 3 Expanded b e d r e a c t o r
Phase
I
F420
1
lCH4/,umol/
Meth.
[l/day]
[ l / lCdHi 4g ]
0.480
0.080
0.0343
2.330
3.846
0.641
0.1410
0.445
nd
2.040
0.340
0.1026
3 310
6.79
2.124
0.354
0.4300
0.820
7.79
4.842
0.807
0.5600
1.440
6 79
T4
[,umoles/ldigJ
F420/day
[logN/g
Bact. inert]
nd
The v a l u e s o f coenzyme F420 a n d m e t h a n o g e n i c b a c t e r i a a r e t h e average o f t h r e e d i f f e r e n t samples.
The r e s u l t s o b t a i n e d a r e i n a g r e e m e n t w i t h t h o s e i n d i c a t i n g F420 c o n t e n t o f s l u r r y a s a b i o i n d i c a t o r
capable o f p r e d i c t i n g
methanogenic p o t e n t i a l i t y .
Analogs o f F420 T o g e t h e r w i t h t h e s t u d i e s on t h e r o l e o f F 4 2 0 c o n t e n t a s a bioindicator
f o r methanogenic p o t e n t i a l i t y , i n v e s t i g a t i o n s were
done o n t h e c h e m i c a l s t r u c t u r e o f t h i s coenzyme i n v a r i o u s p h y s i o l o g i c a l groups o f methanogenic b a c t e r i a . e t el.,
1983;
G o r r i s and v a n d e r D r i f t ,
These s t u d i e s
1 9 8 7 ) h a v e l e d t o t h e c o n c l u s i o n t h a t F420-2
i s the only form o f
t h i s coenzyme f o u n d i n h y d r o g e n o t r o p h i c b a c t e r i a , t r o p h i c b a c t e r i a F420-5
i s p r e v a i l i n g ( 2 a n d -5
the glutamic acid residues i n the side chain).
i n hydrogenotrophic bacteria, but functionally
t h e c a r r i e r o f C1
identical
whereas i n a c e t o are indicating
I n addition t o that
while i n acetotrophic bacteria i s sarcinapterin, different
(van Beleen
1 9 8 6 : Peck a n d A r c h e r ,
i s methanopterin, which i s chemically
I
More r e c e n t s t u d i e s h a v e shown t h a t t h e a b o v e - m e n t i o n e d c o f a c t o r c o n t e n t i n g r a n u l a r s l u d g e can be used t o measure t h e methanogenic p o t e n t i a l o f hydrogenotrophic r i s e t al.
1988).
and a c e t o t r o p h i c b a c t e r i a (Gor-
I n a subsequently study,
61
-
Peck ( 1 9 8 9 )
showed t h a t t h e c o n c e n t r a -
t i o n o f v a r i o u s a n a l o g s o f F420 p r e s e n t i n t h e c e l l s o f and
&.
&. b a r k e r i
mazei v a r i e d i n f u n c t i o n o f g r o w t h s t a g e ( h i g h e r i n he f i r s t
phase) and t y p e o f s u b s t r a t e .
The F420 c o n t e n t i n t h e c e l l s o f d i f f e -
r e n t m e t h a n o g e n i c b a c t e r i a was e x t r e m e l y v a r i a b l e . However,
many p r o b l e m s a r e s t i l l t o b e s o l v e d .
The d e t e r m i n a -
t i o n o f F420 c o n t e n t i n h y d r o g e n o t r o p h i c a n d a c e t o t r o p h i c b a c t e r i a l g r o u p s s h o u l d b e e x a m i n e d more c l o s e l y ,
s i n c e r e c e n t s t u d i e s on va-
r i o u s s p e c i e s o f methanogens i n p u r e c u l t u r e have i n d i c a t e d t h a t t h e F420 c o n t e n t i n b o t h g r o u p s i s v e r y v a r i a b l e a n d t h a t t h e h y p o t h e s i s t h a t hydrogenotrophic
b a c t e r i a have a h i g h e r c o n t e n t appears t o
be d o u b t f u l .
I t remains,
however,
t h a t t h e F420 c o n t e n t i n s l u r r y o r i n p u r e
c u l t u r e s varies according t o the chemical c h a r a c t e r i s t i c s substrate.
o f the
I t i s t h e r e f o r e p r o b a b l e t h a t F420 c a n be u s e d a s a n i n -
d i c a t o r o f m e t h a n o g e n i c p o t e n t i a l i t y when t h i s f a c t o r i s i n v e s t i g a t e d i n d i f f e r e n t d i g e s t e r s f e d w i t h t h e same s l u r r y or i n one d i g e a t e r d u r i n g d i f f e r e n t phases b u t n o t i n d i g e s t e r f e d w i t h d i f f e r e n t inputs.
The F420 c o n t e n t h a s t h e r e f o r e a r e l a t i v e ,
not absolute,
predicting role. F i n a l l y i t has t o be u n d e r l i n e d t h a t t h e e x t r a c t i o n methods used by d i f f e r e n t A u t h o r s a r e n o t s t a n d a r d i s e d and o f t e n t h e i r res u l t s c a n n o t be compared (Reynolds and C o l l e r a n ,
1987).
Given t h e importance o f anaerobic d i g e s t i o n f o r t h e t r e a t m e n t of
sludges,
more a t t e n t i o n s h o u l d b e p a i d t o a n a e r o b i c d i g e s t e r a i n
order t o improve t h e i r performance t o reach t h e l e v e l o f h i g h technology. gas,
The e f f l u e n t s f r o m t h e s e d i g e s t e r s t r e a t e d w a t e r s a n d b i o -
do n o t h a v e a h i g h m a r k e t v a l u e ,
but they c o n t r i b u t e s i g n i f i -
c a n t l y t o p r o t e c t t h e e n v i r o n m e n t w h i c h i s a r e s o u r c e b e y o n d any market value.
REFERENCES
1
2
3
.
V. Andreoni, P B o n f a n t i , D. D s f f o n c h i o , G. R a n a l l i , C . S o r l i n i , M. V i l l a , A n a e r o b i c d i g e s t i o n o f s w i n e s l u r r y a n d a g r o i n d u s t r i a l w a s t e s i n f i x e d - b e d up f l o w d i g e s t e r s . I n : T e c h n i c a l a d v a n c e s i n b i o f i l m r e a c t o r s . N i c e 4 - 6 a p r i l 1 9 8 9 , 553-554. A . A v e n i , B i o g a s r e c o v e r y f r o m o l i v e - m i l l w a s t e w a t e r b y anaer o b i c d i g e s t i o n . I n A n a e r o b i c d i g e s t i o n and c a r b o h y d r a t e h y d r o l y s i s o f w a s t e (C.L. F e r r e r o , M . P . F e r r a n t i , H. Nouveau Eds.) E l s . A p p l . Sc. P u b l . ( U . K . ) 1984. M . J . D e l a f o n t a i n e , H . P . Naveau, E . J . Nyna, F l u o r i m e t r i c m o n i t o r i n g o f methanogenesis i n anaerobic d i g e a t o r s . Biotech. L e t t . , -1, 71-74 ( 1 9 7 9 ) .
- 62
4
5
6
7
8
9
10
11
-
J.
D o l f i n g , J.W. M u l d e r , C o m p a r i s o n o f m e t h a n e p r o d u c t i o n r a t e a n d coenzyme F 4 2 0 c o n t e n t o f m e t h a n o g e n i c c o n s o r t i a i n a n a e r o b i c granular s l u d g e . A p p l . E n v i r o n . M i c r o b i o l . 49, 1 1 4 2 1145 ( 1 9 B 5 ) . H . C . D u b o r g i e r , D.B. A r c h e r , G. A l b a g n a c , G. P r e n s i e r , S t r u c t u r e a n d m e t a b o l i s m o f m e t h a n o g e n i c m i c r o b i a l c o n g l o m e r a t e s . I n : AnaH a l l and P . N . Hobson E d s . ) , May 22-26, e r o b i c d i g e s t i o n (E.R. 1988, 1 3 - 2 3 . L.G. G o r r i s , T.M. De K o k , B.M. K r o o n , C . Van d e r D r i f t , G.D. Vog e l s , R e l a t i o n s h i p between Methanogenic C o f a c t o r C o n t e n t and Maximum S p e c i f i c M e t h a n o g e n i c A c t i v i t y o f A n a e r o b i c G r a n u l a r S l u d g e s , A p p l . E n v i r o n . M i c r o b i o l . 54, 1 1 2 6 - 1 1 3 0 ( 1 9 8 8 ) . L.G. G o r r i s , C . Van d e r D r i f t , M e t h a n o g e n i c c o f a c t o r s i n p u r e c u l t u r e o f m e t h a n o g e n s i n r e 1 a t i o . n ~t o s u b s t r a t e u t i l i z a t i o n . Ouborguier e t a l . I n B i o l o g y o f A n a e r o b i c B a c t e r i a . Eds. H.C. E l s e v i e r Sc. P u b b l . , pp. 1 4 4 - 1 5 0 , Amsterdam 1986. E. H e i n e D o b b e r n a c k , S . M . S c h o b e r t , H. Sahm, R e l a t i o n s h i p o f i n t r a c e l l u l a r coenzime F 4 2 0 c o n t e n t t o g r o w t h and m e t a b o l i c a c t i v i t y o f M e t h a n o b a c t e r i u m b r y a n t i i a n d M e t h a n o s a r c i n a &A p p l . E n v i r o n . M i c r o b i o l , 54, 454-459 ( 1 9 8 s ) . H . J . Koepp-Bank, R . S c h r a e w e r , A n a e r o b i c d i g e s t i o n o f c h e e s e whey t o m e t h a n e i n f i x e d - b e d , f i x e d - b e d - l o o p and f i x e d - f i l m r e a c t o r s . I n : Technology o f B i o l o g i c a l Processes-Safety i n B i o t e c h n o l o g y . A p p l i e d G e n e t i c E n g i n e e r i n g 5 t h Dchema. A n n u a l a M e e t i n g o f B i o t e c h n o l o g i s t s . p p . 4 0 3 - 4 0 8 , May 1 2 - 1 3 1 9 8 7 E. K o o r n n e e f , A.J.L. M a c a r i o , J.T.C. G r o t e n h u i s , E.C. de M a c a r i o , Methanogens r e v e a l e d i m m u n o l o g i c a l l y i n g r a n u l e s f r o m f i v e upf l o w a n a e r o b i c s l u d g e b l a n k e d b i o r e a c t o r s g r o w n on d i f f e r e n t s u b s t r a t e s . Fems M i c r o b i o l . E c o l o g y , 73, 225-230 ( 1 9 9 0 ) M.W. P e c k , Changes i n c o n c e n t r a t i o n s o f c o e n z i m e F 4 2 0 a n a l o g s d u r i n g b a t c h growth o f Methanosarcina b a r k e r y and Methanos a r c i n a m a z e i A p p l . a n d E n v i r o n . M i c r o b i o l o g y , 55, 9 4 0 - 9 4 5
m.
(19a97112
13
14 15
16
17 18 19
M.W. P e c k , D.B. A r c h e r , Improved assay o f coenzime F420 analogues from methanogenic b a c t e r i a . Biotechn. Techniques, 279-284 (1987). P.J. Reynolds, E . C o l l e r a n , E v a l u a t i o n o f improvement methods f o r coenzyme F 4 2 0 a n a l y s i s i n a n a e r o b i c s l u d g e s . J o u r n . o f M i c r o b i o l . Methods, 7, 115-130 (1987). E.W. S c h r o d e r , J . 6 e H a a s t , A n a e r o b i c d i g e s t i o n o f d e p r o t e i n a t e d c h e e s e whey i n an u p - f l o w s l u d g e b l a n k e d r e a c t o r . J. o f D a i r y R e s e a r c h , 59, 1 2 9 - 1 3 9 ( 1 9 B 9 ) . 0. S c h u l z e , M. Menkhaus, R . F i e b i g , H. D e l l w e g , A n a e r o b i c t r e a t ment o f p r o t e i n - c o n t a i n i n g w a s t e - w a t e r s : c o r r e l a t i o n b e t w e e n coenzyme F 4 2 0 a n d m e t h a n e p r o d u c t i o n . A p p l . M i c r o b i o l . B i o t e c h 506-510 ( 1 9 B 8 ) . nol., 2, C. S o r l i n i , P. B o n f a n t i , D i g e s t i o n o f a n i m a l s l u r r y . T e c h n o l o g i c a l , c h e m i c a l , m i c r o b i o l o g i c a l and m a n a g e r i a l a s p e c t s . I n B i o l o g i c a l Waste T r e a t m e n t ( A . M i z r a h i e d . ) , 1 9 8 9 , 2 0 3 - 2 3 4 , A l a n R . L i a s , I n c . New Y o r k . C . S o r l i n i , M.E. Cosmai, A . F e r r a r i , P r e v a l e n c e o f o x i g e n i n t o l e r a n t methanogenic b a c t e r i a i n f e c e s and a n a e r o b i c wastes. C u r r e n t M i c r o b i o l o g y , 2 , 355-358 ( 1 9 8 3 ) M. Taya, N. Aoky, T . K o b a y a s h y , K i n e t i c e v a l u a t i o n a n d m o n i t o r i n g o f methanogen c u l t u r e b a s e d u p o n f l u o r i m e t r y . A p p l . E n v i r o n . M i c r o b i o l . , 2 3 , 342-347 ( 1 9 8 6 ) . P. Van B e l e e n , A . C . D i j k s t r a , G.D. Vogels, Q u a n t i t a t i o n o f coenzyme F420 i n m e t h a n o g e n i c s l u d g e b y t h e u s e o f r e v e r s e d p h a s e h i g h performance l i q u i d chromatography and a f l u o r e s c e n c e detect o r . E u r . J. A p p l . M i c r o b i o l . B i o t e c h n o l . , l8, 67-69 ( 1 9 8 3 ) .
I,
20
21 22
63
-
D. V e r r i e r , B. M o r t i e r , H.C. D o u b o u r q i e r , G. A l b a g n a c , A d h e s i o n o f a n a e r o b i c b a c t e r i a t o i n e r t s u p p o r t s and development o f H a l l and m e t h a n o g e n i c b i o f i l m a . I n : A n a e r o b i c d i g e s t i o n (E.R. P . N . Hobson E d a . ) , May 22-26 1 9 8 8 , 61-67. T . N . W h i t m o r e , S . P . E t h e r i d g e , D.A S t a f f o r d , U.E.A. Leroff, 0. Hughes, The e v a l u a t i o n o f a n a e r o b i c d i g e s t e r p e r f o r m a n c e b y coenzyme F420 a n a l y s i s , B i o m a s s , 2 , 29-35 ( 1 9 8 6 ) . J. Z a b r a n s k a , K. S c h e i d e r o v a , M. Dohanyos, R e l a t i o n o f coenzyme F420 t o t h e a c t i v i t y o f m e t h a n o g e n i c m i c r o o r g a n i s m a . B i o t e c h ; L e t t . , 1, 545-552 ( 1 9 8 5 ) .
This Page Intentionally Left Blank
- DENITRIFICATION I N ACTIVATED SLUDGE P R O C E S S COMBINED W I H BIOFILM CULTIVA I O N SIMULTANEOUS NITRIFICATION
M.
DRTIL,
J. TiLGVESSY and I. B O D f K
Department o f e n v i r o n m e n t a l c h e m i s t r y and t e c h n o l o g y , Chemical-technological f a c u l t y , Slovak t e c h n i c a l u n i v e r s i t y B r a t i s l a v a , CSFR
A c t i v a t e d s l u d g e p r o c e s s combined w i t h b i o f i l m p r o c e s s i s used i n two main m o d i f i c a t i o n s :
1. Suspended b i o m a s s a n d a t t a c h e d g r o w t h b i o m a s s a r e i n s e p a r a t e r e a c t o r s and b i o f i l m r e a c t o r s a r e m o s t l y preceded.
2.
B o t h f o r m s o f b i o m a s s a r e i n one r e a c t o r .
B i o f i l m s u p p o r t mate-
t i a l i s e i t h e r p l a c e d i n an a c t i v a t e d s l u d g e t a n k
f i r m l y or i s
kept i n f r e e motion together with activated sludge. many t e c h n o l o g i c a l e.g.
submerged p l a s t i c m e d i a o r n e t s ,
s m a l l p a r t i c l e s made o f
p l a s t i c abd p o r o u s m a t e r i a l d i s p e r s e d i n a t a n k , g i c a l contactors,
o f biomass,
r e p r e s e n t systems w i t h two k i n d s
which d i f f e r i n t h e i r main parameter
ex.
rotating biolo-
etc.
A l l r e a c t o r s mentioned-above t i o n time
I t i s obvious,
-
s o l i d s reten-
t h a t t h i s combination i s s u i t a b l e f o r
t h e t r e a t m e n t o f f a s t a n d s l o w d e g r a d a b l e compounds.
A typical e-
xample i s t h e i m p r o v e m e n t o f n i t r i f i c a t i o n e f f i c i e n c y . t o this effect,
There a r e
systems u t i l i z i n g t h i s biomass c o m b i n a t i o n ,
I n addition
a l l s y s t e m s e x h i b i t good s e t t l i n g p r o p e r t i e s and
suppress f i l a m e n t o u s microorganisms growth.
P r e s e n c e o f s u p p o r t ma-
t e r i a l w i t h b i o m a s s a l s o r e s u l t s i n an i n c r e a s e o f t h e t o t a l amount o f biomass and a decrease o f a c t i v a t e d s l u d g e l o a d i n g w i t h o u t
nega-
t i v e e f f e c t s on f i n a l c l a r i f i e r s 11, 2 1 . The m a i n a i m o f f o r the treatment of
t h i s s t u d y was t o s p e c i f y o p t i m a l c o n d i t i o n s i n d u s t r i a l waste water c o n t a i n i n g hexamethyle-
n e t e t r a m i n e (HMT) a n d h i g h c o n c e n t r a t i o n s o f NH; p r o c e s s w i t h combined biomass.
i n a c t i v a t e d sludge
HMT a s a n o n - b i o d e g r a d a b l e
organic
compound c a n b e r e m o v e d f r o m w a s t e w a t e r a f t e r a c i d h y d r o l y s i s :
-
(CH2)6
+
4H+
66
+ 6H20
-
4NHl
+ N COH
(1)
The p r o d u c t o f t h i s h y d r o l y s i s i s a b i o d e g r a d a b l e f o r m a l d e h y d e . T h e r e a r e t w o ways t o c r e a t e an a c i d pH. t i o n o f inorganic n i t r i f i c a t i o n o f NH; hydrolysis.
The f i r s t one i s t h e a d d i -
a c i d t o t h e w a s t e w a t e r a n d t h e s e c o n d one i s t h e p r e s e n t e d i n t h e w a s t e w a t e r a n d c r e a t e d by
I t i s w i d e l y known,
t h a t n i t r i f i c a t i o n i s inhibited i n
a c i d media and so t h e n i t r i f i c a t i o n r a t e s a r e v e r y low. h e r hand, pH
t h e s c t i v i t y o f n i t r i f y i n g b a c t e r i a was o b s e r v e d e v e n a t
= 4 131.
i n systems, l o w e r pH.
On t h e o t -
These f a c t s i n d i c a t e ,
t h a t i t i s neccessary t o maintain
a s u f f i c i e n t concentration o f n i t r i f y i n g bacteria a t a
I n t h i s s t u d y we h a v e o b s e r v e d t h e e f f e c t s o f
and t h e
a d d i t i o n o f b i o f i l m s u p p o r t s on n i t r i f i c a t i o n a n d on pH c r e a t e d b y t h e n i t r i f i c a t i o n . P i e c e s o f p o r o u s media - cubes from p o l y u r e t h a 3 served as f i x e d f i l m biomass s u p p o r t (system n e foam (1 cm )
-
LINPOR)
1 4 1 . We h a v e d e c i d e d t o a p p l y t h i s s y s t e m b e c a u s e o f i t s
technological
simplicity.
I n a compressed a i r a e r a t i o n t a n k ,
the
only step i s the i n s t a l l a t i o n o f a sieve a t the o u t l e t o f t h e tank.
EXPERIMENTAL The s u b s t r a t e c o n t a i n e d 480 mg.1-' c y c l o h e x a n o l and cyclohexanon.
o f HMT,
1 5 0 mg.1-'
The t o t a l C O D was 4 0 0 0 mg.1-l.
The l a b o r s t o r y s y s t e m s o p e r a t e d s e m i c o n t i n u o u s l y as c o m p l e t e l y mixed r e a c t o r .
o f NH;
and c o n t i n u o u s l y
Technological parameters are given i n
t a b l e 1. TABLE 1 T e c h n o l o g i c a l parameters o f models Parameter Volume
iemicontinual
111
Volumetric
94
l o a d i n g on COD [ k g . ~ n - ~ d - l
Recirculation r a t i o Solids retention time
[dl
Solids retention time only
5,
Continual
4.4
2
Hydraulic retention time [ h l
1
80
1.02
1.2
1
1
15,
25,
35
25
f o r suspended biomass.
K i n e t i c c o n s t a n t s o f n i t r i f i c a t i o n were d e t e r m i n e d b y b a t c h feed t e s t s .
A l l c h e m i c a l a n a l y s e s were c a r r i e d o u t a c c o r d i n g t o
t h e Czechoslovak S t a n d a r d Methods.
-
67
-
RESULTS A N D DISCUSSION The p o s i t i v e e f f e c t o f Elx a n d t h e p r e s e n c e o f f i x e d f i l m b i o mass i s c l e a r l y d e m o n s t r a t e d i n t a b l e 2.
Nitrification kinetic
t e s t s c a r r i e d o u t w i t h b o t h forms o f biomass h a v e shown, t h a t i n s p i t e o f h i g h Elx o f s u s p e n d e d b i o m a s s , occurred mainly i n biofilm.
(Fig.
1).
active nitrifying bacteria T h e pH o f a c t i v a t e d s l u d g e
m i x t u r e i n a c o n t i n u o u s l y o p e r a t e d c o m p l e t e l y mixed r e a c t o r v a r i e d from 3.9 t o 4.7.
Average r e s u l t s c a r r i e d out d u r i n g a p e r i o d o f
3 weeks o f o p e r a t i o n ( a f t e r 2 months of a d a p t a t i o n )
i n t a b l e 3.
are displayed
T h e e x t r e m e l y l o w pH v a l u e s were t h e o b j e c t o f t h e
following research.
The aim o f n e x t e x p e r i m e n t s was t o e x p l a i n t h e
mechanism o f n i t r i f i c a t i o n p r o c e s s e s i n b i o m a s s f i x e d i n p l a s t i c cubes.
TABLE 2 Influence of
ex
a n d f i x e d f i l m b i o m a s s o n pH a n d H M T r e m o v a l
Absence o f b i o f i l m O X
[dl
PH
-
Presence
HMT I m q . 1-’1
of biofilm
HMT
PH [d
-
I
[ mq.l-’l
5
7.4
470
5
6.6
418
15
6.9
460
15
6.2
400
25
6.6
422
25
5.3
365
35
6.4
406
35
4.2
270
E f l u e n t s from semicontinuously operated models, s t r a t e i n Experimental,
pH o f s u b s t r a t e 7 . 1 ,
composition of sub-
alkalinity o f substra-
te 5
TABLE 3 C o n t i n u o u s l y o p e r a t e d c o m p l e t e l y mixed r e a c t o r Psrameter
COD
HMT
NO;-N
NO;-
N
NH~-N
PH
mg. 1-11
Kinetic tests with continuously fed biomass confirned,
too,
t h a t o n l y a low p o r t i o n o f n i t r i f y i n g b a c t e r i a was i n s u s p e n d e d
form. H o w e v e r , t h e r e was n o n i t r i f i c a t i o n o b s e r v e d a t a pH b e l o w 5 , 3 i n b i o m a s s s q u e e z e d from s u p p o r t m a t e r i a l .
I t is v i s i b l e from
t a b l e 3,
68
-
t h a t n i t r i f i c a t i o n o c c u r r e d e v e n a t a pH l o w e r t h a n 5,3.
K i n e t i c t e s t s c a r r i e d o u t w i t h o n l y f i x e d f i l m b i o m a s s h a s shown t h s t t h e b i o m a s s f i x e d i n s u p p o r t m a t e r i a l p r o d u c e d NO;
a n d NO;
at
a l o w e r pH (4,O) t h a n t h e same b i o m a s s s q u e e z e d f r o m p l s s t i c c u b e s
(5,5). These r e s u l t s c o n f i r m e d t h e e x i s t e n c e o f m e d i a i n d e e p e r p a r t s o f support meterial,
w h e r e t h e pH i s h i g h e r t h a n i n t h e s u r -
rouding activsted mixture.
E x i s t e n c e o f t h i s media i s connected
with simultaneous d e n i t r i f i c a t i o n . h e r l o c a l c o n c e n t r a t i o n o f biomass,
I n biofilm,
according t o a hig-
organic substrate i s u t i l i z e d
i n an o x i c a n d i n d e e p e r p a r t s i n a n a n o x i c way.
i s c o n n e c t e d w i t h t h e p r o d u c t i o n o f OHo f m e d i a w i t h a h i g h e r pH.
Anoxic r e s p i r a t i o n
i o n s and w i t h t h e g e n e r a t i o n
To c o n f i r m t h i s t h e o r y ,
we h a v e m e a s u r e d
d e n i t r i f i c a t i o n r a t e s a t s e v e r a l d i s s o l v e d oxygen c o n c e n t r a t i o n s . F i g u r e 2 c l e a r l y demonstrates,
t h s t simultaneous d e n i t r i f i c a t i o n
3
t a k e s p l a c e i n b i o m a s s f i x e d i n p l a s t i c c u b e s ( 1 cm ) e v e n a t h i g h 0
concentrations.
2
PH
Fig.
-
8,
-
-
1. N i t r i f i c a t i o n r a t e s r N a t v s r i o u s pH. o suspended biomass, b i o f i l m fixed i n support, x b i o f i l m squeezed from s u p p o r t , 25 days ( o n l y f o r suspended biomass).
-
CONCLUSIONS
1. The p o s i t i v e e f f e c t confirmed.
o f f i x e d f i l m b i o m a s s o n n i t r i f i c a t i o n waa
A t a l o w e r pH,
n i t r i f i c a t i o n o c c u r r e d o n l y i n biomass
f i x e d i n support m a t e r i a l ( p l a s t i c cubes).
This fact
i s connec-
t e d w i t h t h e e x i s t e n c e o f m e d i a w i t h a h i g h e r pH i n d e e p e r p a r t s o f biofilm.
2.
A h i g h e r pH i s c r e a t e d b y OHnitrification.
i o n s p r o d u c e d b y s i m u l t a n e o u s de-
T h i s p r o c e s s was c o n f i r m e d i n 1 cm3 c u b e s w i t h a
f i x e d b i o m a s s e v e n a t O 2 c o n c e n t r a t i o n s o f 6.5
.
mg.1- 1
-
69
-
e
F i g . 2 . D e n i t r i f i c a t i o n r a t e s rD a t v a r i o u s 0 2 c o n c e n t r a t i o n s . Cuadded w i t h b e s w i t h b i o m a s s m i x e d w i t h a i r a n d n i t r o g e n b u b b l e s NO; s u b s t r a t e a t t h e b e g i n n i n g o f t h e t e s t , a l l y l t h i o u r e a added t o p r e 1 0 mg.1 vent n i t r i f i c a t i o n , c o n c e n t r a t i o n o f biomass i n cubes cube-', volume o f cubes = 1 5 X o f t o t a l r e a c t o r volume.
3.
The a c t i v a t e d s l u d g e p r o c e s s c o m b i n e d w i t h b i ' o f i l m c u l t i v a t i o n c s n be u t i l i z e d f o r HMT r e m o v a l f r o m i n d u s t r i a l w a s t e w a t e r cont a i n i n g h i g h e r c o n c e n t r a t i o n s o f NH;.
Non-
b i o d e g r a d a b l e HMT i s
h y d r o l y z e d i n a c i d media c r e a t e d by n i t r i f i c a t i o n t o biodegradab-
l e formaldehyde.
When t h e v o l u m e o f s u p p o r t m a t e r i a l o f f i x e d
f i l m b i o m a s s was 1 5 X o f t h e t o t a l a c t i v a t e d s l u d g e t a n k , c r e a t e d a n d m a i n t a i n e d i n t h e r e a c t o r v a r i e d f r o m 4.0
-
t h e pH
4.7.
( S u p p o r t s w e r e 1 cm3 c u b e s f r o m p o l y u r e t h a n e f o a m ) .
LITERATURE
1 2
3 4
3. Wanner, K . Kucman a n d P. Grau, W a t e r r e s . 22, 1 9 8 8 , 2 0 7 . W . Hegeman a n d E. Englmann, GWF Wasser - Abwasser 1 2 4 , 1 9 8 3 , 233. D . S . M a v i n i c and D.A. K o e r s , JWPCF 54, 1 9 8 2 , 342. W. Hegemann, W a t e r S c i . Tech. 1 6 , 1 9 8 4 , 1 1 9 .
-
This Page Intentionally Left Blank
HEXAMETHYLENETETRAAMINE REMOVAL I N SINGLE
J. DERCO'
I.B O O I K ,
a n d M.
-
SLUDGE A C T I V A T I O N S Y S T E M
DRTIL'
I n s t i t u t e o f Biotechnology, Slovak Technical U n i v e r s i t y , 81237 B r a t i s l a v a , Czecho-Slovakia ' F a c u l t y o f Chemistry and Chemical Technology, Slovak T e c h n i c a l U n i v e r s i t y , 81237 B r a t i s l a v a , C z e c h o - S l o v a k i a
H e x a m e t h y l e n e t e t r a a m i n e (HMT) stance which i s s o l u b l e i n water t l y b a s i c aqueous s o l u t i o n s . tics,
explosives,
i s a c o l o r l e s s c r y s t a l l i n e sub-
(813 g . l - l ,
12
OC)
and forms s l i g h -
HMT i s used i n t h e p r o d u c t i o n o f p l a s -
d r u g s and d i s i n f e c t a n t s .
The H M T m o l e c u l e h a s
A
s t a b l e s y m m e t r i c a l s t r u c t u r e t h a t causes
t h e r e s i s t e n c e o f HMT i n t h e p r o c e s s e s o f w a s t e w a t e r t r e a t m e n t . The d e g r e e o f HMT b i o l o g i c a l d e g r a d a t i o n i s r e p o r t e d i n l i t e r a t u r e i n t w o d i f f e r e n t ways ( 1 - 4 ) .
The a u t h o r s h a v e f o u n d e.g.
necessity o f long-term adaptation o f a c t i v a t e d sludge, ce o f a c i d h y d r o l y s i s on HMT removal e f f i c i e n c y , hydrolysis r a t e etc.
I n general,
the
the influen-
and l o w s p e c i f i c
t h e w o r k s d e a l i n g w i t h HMT d e g r a -
d a t i o n can be d i v i d e d i n t o s t u d i e s o f HMT b i o l o g i c a l d e g r a d a t i o n i n a c i d s o l u t i o n s a n d s t u d i e s o f HMT b i o l o g i c a l d e g r a d a t i o n i n n e u t r a l solutions. The s t u d i e s o f HMT b i o l o g i c a l d e g r a d a t i o n i n n e u t r a l m e d i a (ph
E
7)
i n d i c a t e t h a t t h e HMT m o l e c u l e s a r e n o t decomposed b y a c -
t i v a t e d sludge microorganisms.
HMT c a n b e r e m o v e d f r o m w a s t e w a t e r s
o n l y a f t e r c h e m i c a l h y d r o l y s i s i n a c i d media:
(CH2l6N4
+
4 H+
where t h e p r o d u c t s ,
+
6 H20
-
4 NH;
+
ammonia a n d f o r m a l d e h y d e ,
6 HCHO
(1)
a r e b i o d e g r a d a b l e com-
pounds.
A d e c r e a s e o f pH v a l u e s by t h e a d d i t i o n o f a c i d s ,
or using the
c a t a l y s t e f f e c t s o f some i n o r g a n i c or o r g a n i c compounds ( e . g . aldehydes,
g l y c o l etc.)
t h e HMT r e m o v a l .
HN02,
i n c r e a s e s t h e h y d r o l y s i s r a t e and improves
However,
these methods a r e connected w i t h problems
-
72
-
o f h i g h concentrations o f s a l t s i n waters.
These m e t h o d s a r e a v a i -
l a b l e f o r t h e t r e a t m e n t o f w a s t e w a t e r s w i t h h i g h HMT c o n c e n t r a t i o n s (more t h a n 500 mg.1-l)
and f o r s h o r t h y d r a u l i c r e t e n t i o n t i m e o f
t r e a t e d water. The a i m o f t h i s w o r k was t o d e t e r m i n e t h e p o s s i b i l t y o f c r e a t i n g a c i d media by n i t r i f i c a t i o n processes. N i t r i f i c a t i o n i s t h e b i o l o g i c a l o x i d a t i o n o f ammon a a n d i s c h a r a c t e r i z e d b y H+ i o n s p r o d u c t i o n :
N H + ~ 2
-
o2
P r o d u c e d H+ i o n s s u p p o r t a n d a t t h e same t i m e ,
+
NO;
2 H+
+
H20
t h e a c i d h y d r o l y s i s o f HMT ( e q u a t i o n 1)
t h e HMT h y d r o l y s i s p r o d u c t ,
t h e n i t r i f i c a t i o n process.
NH;
ions,
support
From t h e e q u a t i o n s 1 a n d 2 i t i s c l e a r ,
t h a t 1 mmol o f H M T ( 1 4 0 mg H M T )
f o r m s 7 2 mg NH;
t r i f i c a t i o n 4 mmol H+ i o n s a r e p r o d u c e d . t h e t o t a l a l c a l i n i t y o f waste water,
i o n s and a f t e r n i -
T h i s p r o c e s s d e p e n d s on
BOO5,
HMT c o n c e n t r a t i o n and
n i t r i f y i n g bacteria activity. The n i t r i f i c a t i o n p r o c e s s i s i n h i b i t e d a t pH v a l u e s b e l o w 6 , 5 . the l i t e r a t u r e (5
Hcwever,
v e d e v e n a t pH
=
4.0.
-
8) shows t h a t n i t r i f i c a t i o n was o b s e r -
Low s p e c i f i c n i t r i f i c a t i o n r a t e s i n a c i d m e -
d i a can be compensated b y h i g h e r s o l i d s r e t e n t i o n t i m e ( S R T , values,
ex)
which support t h e existence o f slowly growing n i t r i f y i n g
bacteria.
EXPERIMENT The H M T b i o l o g i c a l d e g r a d a t i o n was s t u d i e d i n l a b o r a t o r y s c a l e semi-continuous
and c o n t i n u o u s models w i t h p a r a m e t e r s i n Table 1
and Table 2 . These p a r a m e t e r s w e r e s e t up t o s i m u l a t e r e a l p a r a m e t e r s i n t h e w a s t e w a t e r t r e a t m e n t p l a n t i n c h e m i c a l e n t e r p r i s e CHEMKO S t r A f s k e (Czecho-slovakia).
A n a l y t i c a l methods used i n t h i s work were c a r r i e d
o u t a c c o r d i n g t o Czecho-slovak
s t a n d a r d m e t h o d s ( 9 ) . The H M T c o n c e n -
t r a t i o n was d e t e r m i n e d b y t h e s p e c t r o p h o t o m e t r i c m e t h o d w i t h c h o rotropic acid after acid d i a t i l a t i o n /lo). RESULTS AND D I S C U S S I O N
1. S e m i - c o n t i n u o u a
System
The HMT c o n c e n t r a t i o n was g r a d u a l l y rimente.
i n c r e a s e d d u r i n g t h e expe-
The t i m e o f a d a p t a t i o n was 1 0 0 d a y s .
The u s e d c o n c e n t r a t i o n s
- 73
-
Substrate
Model parameters parameter
amount
peptone
3.0
9.1-1
starch
0.5
g . 1-1
-
KH2P04
0.05
g.1-l
PH
7.2
COD
4.2
9.1-l
5.5
mmol.1
2 1
e
SRT2e
concentration
100 h
volume V
HRT'
componen t
5
50 d
recirculation
1
ratio R
total alcalinity
Model parameters
-__
parameter
-1
Substrate amount
component
concentration
! 1
SRT'
4
V
volume
HRT'
e e
1
120 h 50 d
recirculation ratio
3
R
cyclohexanole
150
mg.1-'
HMT
225
mg.1"
NH4C1
ZOO
mg.1-l
KH 2P04
150
mg.1-I
COD
550
mg.1-l
PH
7.0
total 6.5
alcalinity
... ...
HRT SRT
mmol ..l-l
hydraulic r e t e n t i o n time s o l i d s r e t e n t i o n time
o f HMT h a v e n o t e x h i b i t e d any a f f e c t s o n b i o m a s s . t i n u o u s s y s t e m s t h e S R T v a l u e s were 5 ,
10,
15,
I n s i x semi-con-
2 0 , 3 0 a n d 50 d a y s .
Some m e a s u r e d d a t a c a n b e f o u n d i n T a b l e 3 .
I t i s c l e a r t h a t n i t r i f y i n g a c t i v i t y c o n n e c t e d w i t h H+ i o n p r o d u c t i o n i m p r o v e s t h e HMT d e g r a d a t i o n . lue o f
8,
= 5
F o r example,
d any pH d e c r e a s e a n d any NO;
was n o t o b s e r v e d ,
i n such systems.
a n d NO;
when t h e vaproduction
t h a t means any n i t r i f i c a t i o n d o e s n o t t a k e p l a c e When
8,
was i n c r e a s e d t o t h e v a l u e s h i g h e r t h a n
10 days,
-
n i t r i f i c a t i o n ( d e c r e a s e o f pH, p r o d u c t i o n o f NO;
HMT d e g r a d a t i o n )
l y s i s rate.
8,
a n d NO;,
was o b s e r v e d .
The c r e a t i o n o f NH; 1 for
74
i o n s i s connected w i t h a h i g h e r HMT hydro-
Time d e p e n d e n c e o f m e a s u r e d p a r a m e t e r s i s shown i n F i g . 50 days.
I n spite of inhibited nitrification,
t h e pH c r e a t e d a n d m a i n -
t a i n e d d u r i n g t h i s p r o c e s s i s a v a i l a b l e f o r HMT r e m o v a l .
PH
O X
(d)
2.
COD
[?;I
5
8.5
46.4
10
6.6
56.2
‘b
HMT
tXI
[g
1.1
.1-’3
0.7
18.2
1.7 3.0
15
5.8
61.4
25.5
20
5.7
67.4
33.6
3.9
30
5.5
70.0
41.3
5.7
50
5.2
73.0
52.5
1.0
C o n t i n u o u s System The p r o b l e m s c o n n e c t e d w i t h t h e s e m i - c o n t i n u o u s
c y c l e can be
s o l v e d i n c o n t i n u o u s system ( T a b l e 2 ) . Long h y d r a u l i c r e t e n t i o n t i me 8 a n d s o l i d s r e t e n t i o n t i m e e x c a u s e a h i g h e f f i c i e n c y o f HMT r e moval, 5.7.
t h a t was more t h a n 7 0 X w i t h t h e pH i n t h e r a n g e o f 5.4
The c o n s e q u e n c e o f n i t r i f i c a t i o n was t h e f o r m a t i o n
-
o f NO;
a n d NH+* i o n s .
CONCLUSIONS I n t h i s work,
t h e e f f e c t o f t h e n i t r i f i c a t i o n p r o c e s s o n HMT
r e m o v a l f r o m w a s t e w a t e r s was o b s e r v e d .
H i g h e r v a l u e s o f SRT and
o x y g e n c o n c e n t r a t i o n a r e an a s s u m p t i o n f o r n i t r i f i c a t i o n p r o c e s s e s i n aystema.
The a c i d m e d i a , t h a t i s c a u s e d b y n i t r i f i c a t i o n i n wa-
t e r s w i t h low b u f f e r q u a l i t i e s ,
s u p p o r t s t h e a c i d h y d r o l y s i s o f HMT.
The r e s u l t o f a l l t h e s e p r o c e s s e s i s t h e i n c r e a s e o f HMT r e m o v a l efficiency without
t h e a d d i t i o n o f a c i d s t o t h e system.
-
75
-
6
-*-+
0
12
2L
36 t [hl
F i g . 1. Time d e p e n d e n c e o f m e a s u r e d p a r a m e t e r s d u r i n g one a e r a t i o n - HMT’ Bx = 50 d a y s (1 - pH, 2 - COD, 3 c cycle for NO;? C NO;
-
-
LITERATURE
1 2 3 4 5 6
E . Gomolka a n d B. Gomolka, R e s i s t e n c e o f H e x a m e t h y l e n e t e t r a a r n i n e t o B i o d e g r a d a t i o n i n A e r a t e d M u n i c i p a l Sewage. E n v i r o n . P r o t . Eng., 1 0 ( 1 9 8 4 ) 29-43. A . S m i t h and K.O. Colquhoun, B i o d e g r a d a b i l i t y o f Hexamethylenet e t r a a m i n e . Chernosphere, 16 ( 1 9 8 7 ) 1 5 5 5 - 1 5 5 6 . H . Tada, D e c o m p o s i t i o n R e a c t i o n o f Hexearnine b y A c i d . J. Am. Chem. S O C . 82 ( 1 9 6 0 ) 255-263. V . 6 e r e f n ) i a n d J. M i S k o v c o v B , S t u d y o f t h e B i o d e g r a d a b i l i t y o f H e x a m e t h y l C n e t e t r a a m i n e . V o d n f h o s p o d e r s t v f , 39 8 ( 1 9 8 9 ) 1 0 6 - 1 0 9 . D.S. M a v i n i c a n d D.A. Koera, F a t e o f N i t r o g e n i n A e r o b i c Sludge D i g e s t i o n . J. Wat. P o l l u t . C o n t r o l Fed. 5 4 ( 1 9 8 2 ) 3 4 2 - 3 6 0 . D.S. Bharqava and M.T. D a t a r , N i t r i f i c a t i o n D u r i n a A e r o b i c D i gestion A c t i v a t e d 5ludge:Effluent Wet. T r e a t . - J . , 24 (1984) 352-355.
OF
7 8 9 10
76
-
E . K o w a l s k i a n d Z . L e w a n d o w s k i , N i t r i f i c a t i o n P r o c e s s i n a Pac h e d Bed R e a c t o r w i t h a C h e m i c a l l y A c t i v e Bed. Wat. Res., 17 ( 1 9 8 3 ) 157-160. Z . Lewadowski, N i t r i f i c a t i o n P r o c e s s i n A c t i v a t e d Sludge w i t h Suspended M a r b l e P a r t i c l e s . Wet. Res., 1 9 ( 1 9 8 5 ) 535-539. M. H o r A k o v 6 , P. L i s c h k e a n d A . G r u n w a l d , C h e m i c k e a f y z i k h l n f m e t o d y a n a l f z y vod. SNTL A l f a , P r a h a 1 9 8 8 . Anon.: J e d n o t n i m e t o d y c h e m i c k e h o r o z b o r u v o d . SNTL, P r a h a 1965.
E X P E R I M E N T A L A N D M A T H E M A T I C A L M O D E L L I N G OF A C T I V A T E D SLUDGE PROCESS P . F A R K A S O V A l , J . DERCO'
and M.
KRALIK'
Department o f E n v i r o n m e n t a l Chemistry and Technology, S l o v a k Technical Univeraity, Bratislava Department o f Organic Technology, Slovak Technical U n i v e r s i t y , Bratislava SUMMARY T h i s p a p e r d e a l s w i t h e x p e r i m e n t a l i n v e s t i g a t i o n a n d m at h em at i c a l m o d e l l i n g o f a c t i v a t e d s l u d g e p r o c e s s . T h r e e m a t h e m a t i c a l mod e l s f o r p r o c e s s d e s c r i p t i o n were d e r i v e d , e x p e r i m e n t a l l y v e r i f i e d f o r a t r a n s i e n t s u b s t r a t e c o n c e n t r a t i o n l o a d a n d t h e r e s u l t s were c o m p a r e d . The f i r a t t w o m o d e l s a r e b a s e d o n s u b s t r a t e a n d b i o m a s s m a t e r i a l b a l a n c e s a r o u n d a n a e r a t e d t a n k . The t h i r d o n e i s a d i s c r e t e s t a t i s t i c a l m o d e l . The b e s t f i t b e t w e e n e x p e r i m e n t a l a n d c s l c u l a t e d v a l u e s was o b t a i n e d u s i n g t h e s t a t i s t i c a l m o d e l . PREFACE C u r r e n t l y , t h e moat economic t r e a t m e n t o f w a s t e w a t e r s c o n t a i n i n g b i o d e g r a d a b l e o r g a n i c c o m p o u n d s i s a c h i e v e d by t h e u t i l i z a t i o n o f b i o c h e m i c a l r e a c t i o n s m e d i a t e d by m i c r o o r g a n i s m s . One o f t h e moat w i d e l y u s e d b i o l o g i c a l t r e a t m e n t methods t h a t r e q u i r e s a n a e r o b i c environment f o r e f f e c t i v e o p e r a t i o n is t h e a c t i v a t e d s l u d g e pro-
cess 1 1 1 . Because o f time v a r i a t i o n a n d c h a n g e i n t h e f l o w r a t e a n d t h e composition of t h e wastewater, t h e process is usually operated under highly variable losding conditions with variability of effluent q u a n t i t y . Many d e s i g n e n g i n e e r s d o n o t a p p r e c i a t e t h e d y n a m i c c h a m r a c t e r of t h e p r o c e s s , and s t e a d y - s t a t e p r o c e d u r e s are used.
Tran-
s i e n t l o a d i n g s t u d i e s o f a c t i v a t e d s l u d g e p r o c e s s e s a r e of i n t e r e s t b o t h t o m i c r o b i o l o g i s t s and e n g i n e e r s . M i c r o b i o l o g i a t s have been i n t e r e s t e d i n t h e dynamics o f m i c r o b i a l r e s p o n s e from t h e p o i n t o f
.
view t h a t i n f o r m a t i o n o b t a i n e d c o u l d b e h e l p f u l t o u n d e r s t a n d i n g t h e mechanisms i n v o l v e d i n m i c r o b i a l growth and r e p r o d u c t i o n .
Practical
i n t e r e s t o f e n g i n e e r s is focussed on d e s i g n and c o n t r o l o f t h e a c t i vated sludge process.
The i n c r e a s i n g a v a i l a b i l i t y o f c o m p u t e r s e n -
c o u r a g e s t h e uae o f m a t h e m a t i c a l models, which are a p p l i c a b l e b o t h
-
-
78
i n d e s i g n and o p e r a t i o n o f w a s t e w a t e r
treatment plants.
A l a r g e amount o f l i t e r a t u r e h a s a p p e a r e d i n t h e l a s t t w e n t y y e a r s on t h e d y n a m i c m o d e l l i n g o f a c t i v a t e d s l u d g e p r o c e s s e s . o f the transient
Many
l o a d i n g s t u d i e s have been p e r f o r m e d u s i n g t h e c o n t i -
nuous f l o w s t i r r e d t a n k r e a c t o r w i t h o u t s l u d g e r e c y c l e s t a t e o f wastewater
t r e a t m e n t system c o n t r o l ,
f2-81.
The
d y n a m i c m o d e l s a n d i-
d e n t i f i c a t i o n a p p l i c a t i o n s h a v e b e e n r e v i e w e d b y Andrews [ 9 1 a n d Olson (101.
Dynamic b e h a v i o u r o f a c t i v a t e d s l u d g e has been s t u d i e d
u s i n g c o m p u t e r s i m u l a t i o n b y B u s b y 1111. A t t i r
1 1 2 1 has d e s c r i b e d
t h e r e s u l t s o f a s i m u l a t i o n s t u d y o f t h e dynamics and c o n t r o l o f t h e a c t i v a t e d sludge process,
u s i n g a model o f dynamics o f c o n t i n u o u s
s e d i m e n t a t i o n t h a t a c c o u n t s f o r s e v e r a l d i s t i n c t models o f operation.
A dynamic model o f n i t r i f i c a t i o n i n t h e a c t i v a t e d s l u d g e p r o -
c e s s has been developed,
a n d an e x p e r i m e n t a l a n d s i m u l a t i o n s t u d y
h a s b e e n p r e s e n t e d b y P o d u s k a 1131.
T h k r i e n I 1 4 1 h a s p r e s e n t e d a mo-
d e l f o r p r e d i c t i n g t h e dynamics o f oxygen u t i l i z a t i o n i n t h e a c t i v a t e d sludge process.
M o d e l s m e n t i o n e d above u s e u s u a l l y f o r p r o c e s s
d e s c r i p t i o n Monod t y p e k i n e t i c e q u a t i o n s f o r a m i c r o b i a l g r o w t h a n d Michaelis-Menten type k i n e t i c equations f o r t h e b i o l o g i c a l o x i d a t i o n o f organic substrate.
These t y p e s o f m o d e l s c o n t a i n a l a r g e s e t o f
d i f f e r e n t i a l e q u a t i o n s i n which t h e k i n e t i c c o n s t a n t s appear.
The
v a l u e o f t h e s e k i n e t i c parameters i s sometimes d i f f i c u l t t o d e t e r m i ne w i t h p r e c i s i o n .
From t h e p r a c t i c a l p o i n t o f view t h e s t a t i s t i c a l
model c o u l d a l s o be a v a i l a b l e f o r t h e a c t i v a t e d s l u d g e p r o c e s s control.
Berthouex
1151 h a s d e v e l o p e d s t a t i s t i c a l t e c h n i q u e s t o s t u d y
t h e d a t a from m u n i c i p a l wastewater
treatment plants.
died the impact o f operating conditions,
Hansen I 1 6 1 s t u -
waste c o n t r i b u t i o n s ,
e n v i r o n m e n t a l f a c t o r s on t r e a t m e n t o f i n d u s t r i a l wastewater
and
evaluated
using a s t a t i s t i c a l technique. The p u r p o s e o f t h i s w o r k was t o i n v e s t i g a t e t h e r e s p o n s e t o quantitative
s h o c k l o a d i m p o s s e d u p o n t h e p r o c e s s a n d t o e x a m i n e a-
v a i l a b i l i t y o f t h r e e d e r i v e d m a t h e m a t i c a l models f o r p r o c e s s desc r i p t i o n under t r a n s i e n t
conditions.
MATHEMATICAL MODEL DESCRIPTION
F o r t h e m a t h e m a t i c a l p r o c e s s d e s c r i p t i o n we d e r i v e d t h r e e models.
The f i r s t two a r e k i n e t i c models,
t h e t h i r d one i s a s t a t i s t i -
c a l model. The s u b s t r a t e a n d b i o m a s s m a t e r i a l b a l a n c e f o r a c o m p l e t e l y m i x e d b i o r e a c t o r i n k i n e t i c m o d e l s may be d e s c r i b e d i n e q u a t i o n s (1, 2 ) .
-
79
-
Substrate balance
(Symbols a r e e x p l a i n e d a t t h e end o f t h i s p a p e r ) . Biomass b a l a n c e dX R9
-
= dt
qx
Michaelis-Menten
(2)
'a
t y p e r e l a t i o n s h i p was u s e d f o r d e s c r i p t i o n
o f s u b s t r a t e u t i l i z a t i o n r a t e rs
r
x.5
= - - pmax
8
K~
'obs
+
Monod r e l a t i o n s h i p was u s e d f o r d e s c r i p t i o n o f maximum m i c r o o r g a n i s m s g r o w t h r a t e pmax
5 "max
Model No.
(4)
KS
+
2 i s b a s e d on t h e same p r i n c i p l e s ,
l a t i o n s h i p i s extended,
b u t t h e Monod r e -
and s l s o t a k e s i n t o a c c o u n t t h e decay o f
which can be d e s c r i b e d as
microorganisms,
S
p
=
%ax
Ks
+
The e x p l i c i t f o u r t h - o r d e r
-
(5)
kd.X
S
Runge-Kutta-Merson
m e t h o d [ 1 7 1 was
used f o r s o l v i n g t h e s e t o f d i f f e r e n t i a l equations.
The s i m p l e x o p -
t i m i z a t i o n t e c h n i q u e 1 1 8 1 waa u s e d t o d e t e r m i n e t h e v a l u e o f b i o k i n e t i c p a r a m e t e r s by m i n i m i z a t i o n o f t h e f u n c t i o n
To r e d u c e t h e c o m p u t a t i o n a l t i m e , r i z a t i o n u s i n g t h e T a y l o r s e r i e s 1191.
we u s e d t h e m e t h o d o f l i n e a -
-
80
-
The t h i r d m o d e l i s a d i s c r e t e s t a t i s t i c a l m o d e l w i t h one i n p u t a n d one o u t p u t ,
and c a n b e d e s c r i b e d a s
... an,
The p a r a m e t e r s al
...
bo
bm w e r e e s t i m a t e d u s i n g l i n e a r
[ 19 1 .
regression
EXPERIMENTAL The e x p e r i m e n t s w e r e c a r r i e d o u t i n l a b o r a t o r y a p p a r a t u s c o n s i s t i n g o f a c o m p l e t e l y m i x e d b i o r e a c t o r and s e t t l e r . had a volume o f a p p r o x i m a t e l y f e e d f l o w r a t e o f 3.06
4.4
ml.min-l.
The b i o r e a c t o r
1 and was s u p p l i e d w i t h a c o n s t a n t T h r e e a i r d i f f u s e r s a t r i g h t an-
g l e s a t the bottom o f the bioreactor provided aeration o f the biomass.
S l u d g e was c o n d i t i o n e d t o a f e e d c o n t a i n i n g c y c l o h e x a n o l e
( c = 0.56 (c
=
0.33
dehyde ( c
k ~ j . m - ~ ) c, y c l o h e x a n o n e ( c
= 0.56
k g . n ~ - ~ ) ,p e n t a e r y t r i t o l
k g . ~ n - ~ ) ,h e x a m e t y l e n e t e t r a a m i n e ( c
=
0.0375
0.48
k g . ~ n - ~ ) ,as s o u r c e s o f c a r b o n ,
a m o u n t s o f m i n e r a l s a l t s a c c o r d i n g t o t h e r a t i o C:N:'P The a v e r a g e COD v a l u e was 3.894
k g . n ~ - ~ ) ,f o r m a l -
besides the proper o f 100:5:1.
k g . ~ n - ~ .The b i o d e g r a d a b l e p o r t i o n
o f s u b s t r a t e corresponds t o 0.5.
The s e t t l e d s l u d g e was r e c y c l e d t o
t h e b i o r e a c t o r u s i n g a p e r i s t a l t i c pump a n d t h e s l u d g e was w a s t e d f r o m t h e a e r a t i o n t a n k i n o r d e r t o m a i n t a i n t h e mean s l u d g e age Qx
= 10
days.COD,
suspended s o l i d s ,
NH;
and f o r m a l d e h y d e c o n c e n t r a -
t i o n a n a l y s i s were p e r f o r m e d f o l l o w i n g s t a n d a r d m e t h o d s b y 1201. pH and d i s s o l v e d o x y g e n m e a s u r e m e n t s w e r e p e r f o r m e d u s i n g a R a d e l k i s Aquacheck. R E S U L T S AND D I S C U S S I O N
Before s t a r t i n g t h e s t e p shock l o a d , under steady-state
conditions.
t h e s y s t e m was o p e r a t e d
A f t e r reaching the steady-state,
( o u t p u t C O O and M L S S v a l u e s were o s c i l a t i n g a r r o u n d s t a t i o n a r y
va-
l u e s ) t h e s t e p t w o f o l d d e c r e a s e i n s u b s t r a t e c o n c e n t r a t i o n was i m possed t o t h e system.
The d i s s o l v e d o x y g e n c o n c e n t r a t i o n
r e a c t o r was a l w a y s m a i n t a i n e d a b o v e t h e g r o w t h - l i m i t i n g i.e. the
above 2 m g . 1 - l .
i n the bio-
conditions,
The a v e r a g e C O D s u b s t r a t e c o n c e n t r a t i o n a f t e r
s t e p c h a n g e was 1 8 0 0 m g . 1 - l .
The C O O c o n c e n t r a t i o n r e s p o n s e o f
t h e a c t i v a t e d s l u d g e r e a c t o r i s shown i n F i g .
1. One c a n o b s e r v e
oscillations
COO v a l u e s .
-
r a n g i n g a b o v e a n d b e l o w new s t e a d y - s t a t e
possed change. steady-state
81
after
an i m -
R e l a t i v e l y s m o o t h t r a n s m i t i o n s w e r e made t o t h e new
i n t h e case o f biomass c o n c e n t r a t i o n i n comparison w i t h
I n l e s s t h a n 1 0 d a y s a f t e r s h o c k was i m p o s e d , c h a n g e s o f
biomass c o l o u r and f l o c s m a c r o s c o p i c appearance were observed. new s t e a d y - s t a t e ved,
was r e a c h e d ,
b u t no changes i n m a g n i t u d e o f
o f the transient
After
t h e i n i t i a l b i o m a s s c o l o u r was o b s e r s l u d g e f l o c s had occured.
Some
r e s p o n s e d a t a were u s e d t o o b t a i n t h e b i o k i n e t i c
parameters f a r t h e m a t h e m a t i c a l models.
The c a l c u l a t e d COD v a l u e s
d u r i n g t h e s t e p s h o c k t e s t u s i n g t h e Monod and m o d i f i e d Monod equat i o n are a l s o p l o t t e d i n F i g .
l. F r o m t h i s F i g . l one c a n s e e t h a t
a b e t t e r f i t b e t w e e n e x p e r i m e n t a l a n d c a l c u l a t e d d a t a was o b t a i n e d
n 0 u
T O
5
1;
1;
2b
215
o;
3;j
Lb
L; t IDAYSl
F i g . 1. C O O c o n c e n t r a t i o n r e s p o n s e o f a c t i v a t e d s l u d g e p r o c e s s t o twofold decreasing o f feed concentration experimental - - - - - - c a l c u l a t e d u s i n g Monod e q u a t i o n . . . . . . . . . . . c a l c u l a t e d u s i n g m o d i f i e d Monod e q u a t i o n .
-
u s i n g t h e m o d i f i e d Monod e q u a t i o n .
The g r e a t e s t d i f f e r e n c e s between
e x p e r i m e n t a l a n d c a l c u l a t e d v a l u e s w e r e o b s e r v e d i n t h e c a s e o f COD d u r i n g t h e f i r s t stage o f t h e experimental run.
One c a n c o n c l u d e t h a t
an i n s t a n t a n e o u s c h a n g e i n e p e c i f i c g r o w t h r a t e d i d n o t o c c u r a s p r e d i c t e d b y t h e Monod e q u a t i o n . w o r k o f Mor 1 2 1 1 .
These r e s u l t s a r e c o n s i s t e n t w i t h t h e
I t was o b s e r v e d t h a t t h e t i m e d e l a y f o r t h e s y s t e m
t o r e s p o n d t o t h e s h o c k was d e p e n d e n t o n t h e m a g n i t u d e o f t h e s p e c i f i c growth rate.
I t s h o u l d be n o t e d t h a t s a t u r a t i o n c o n s t a n t s c a l c u -
l a t e d ( f o r t h e Monod m o d e l
-
82
K s = 0 . 7 8 4 kg.m-3
a n d f o r m o d i f i e d Monod
K s = 0.786 k g . ~ n - ~ )a r e s i g n i f i c a n t l y h i g h e r t h a n t h o s e p u b l i s h e d e l s e w h e r e 1 2 2 1 . We assume t h a t t h i s i s b e c a u s e o f a r e l a t i v e l y h i g h p o r t i o n o f b i o l o g i c a l l y r e s i s t e n t HMT compound i n t h e f e e d o f t h e a c t i v a t e d s l u d g e p r o c e s s o p e r a t e d u n d e r pH v a l u e s a b o u t 7 .
Comparing
c a l c u l a t e d a n d e x p e r i m e n t a l v a l u e s one c a n s e e t h a t t h e M o n o d - t y p e k i n e t i c e q u a t i o n i s n o t adequate f o r t h e p r e d i c t i o n o f t r a n s i e n t b e h a v i o u r o f an a c t i v a t e d s l u d g e p r o c e s s . S i m i l a r r e s u l t s w e r e o b t a i n e d a l s o u s i n g l i n e a r i z e d Monod a n d m o d i f i e d Monod e q u a t i o n s . E x p e r i m e n t a l a n d c a l c u l a t e d v a l u e s o f COD c o n c e n t r a t i o n u s i n g s t a t i s t i c a l m o d e l s a r e shown i n F i g .
2.
2 one c a n c o n f i r m
From F i g .
t h a t t h e d i s c r e t e s t a t i s t i c a l m o d e l i s more s u i t a b l e f o r d e s c r i b i n g a c t i v a t e d sludge process dynamics.
The c o m p u t a t i o n s 1 t i m e f o r t h e
m o d e l p a r a m e t e r s e s t i m a t i o n was s i g n i f i c a n t l y s h o r t e r i n c o m p a r i s o n t o b o t h n o n l i n e a r and l i n e a r i z e d k i n e t i c models.
mL
0.6
l5
Y
I
0
0
0.5
OA
0.3
0.2
(
5
10
15
20
25
30
35
40
45 t [ OAYSl
F i g . 2. C O D c o n c e n t r a t i o n r e s p o n s e o f a c t i v a t e d s l u d g e p r o c e s s t o twofold decreasing o f feed concentration experimental ------ c a l c u l a t e d u s i n g d e s c r e t e s t a t i s t i c a l model.
CONCL US I ON5 The m a j o r o b j e c t i v e o f t h i s w o r k was t o e x a m i n e t h e e x p e r i m e n t a l l y dynamic b e h a v i o u r o f a c t i v a t e d s l u d g e process.
Previously the
-
83
-
o b t a i n e d e x p e r i m e n t a l d a t a was u s e d f o r v e r i f i c a t i o n o f t h r e e d e r i ved m a t h e m a t i c a l models.
From c a l c u l a t i o n s we c a n assume,
that the
Monod-type k i n e t i c models a r e n o t a c c u r a t e i n t h e p r e d i c t i o n o f t r a n s i e n t behaviour o f t h e a c t i v a t e d sludge process. r i f i e d model
-
d i s c r e t e s t a t i s t i c a l model
-
The t h i r d ve-
provides a better f i t
between e x p e r i m e n t a l and c a l c u l a t e d v a l u e s . The n e x t s t e p o f o u r work i s t o v e r i f y a s t a t i s t i c a l m o d e l u s i n g more i n p u t s . SYMBOLS ai,
bi
parameters o f d i s c r e t e s t a t i s t i c a l model
J
COD kd KS
c h e m i c a l o x y g e n demand endogenous decay c o e f f i c i e n t substrate saturation constant
M
number o f m e a s u r e m e n t s
m
number o f p a r a m e t e r s b .
n
number o f p a r a m e t e r s a
9
feed flow r a t e
qX
rs R
9
RS
S
J
i
biomass wastage r a t e substrate u t i l i z a t i o n rate microbial growth r a t e substrate removal r a t e e f f l u e n t substrate concentration
=o
feed substrate concentration
t
time
A t
time
U
i n p u t i n s t a t i s t i c a l model
Ut "a
X 'obs Y
yY L1
Pmax
interval
value o f u i n time t a e r a t i o n t a n k volume mixed l i q u o r suspended s o l i d s ( M L S S ) observed y i e l d c o e f f i c i e n t o u t p u t i n s t a t i s t i c a l model value o f y i n time t s p e c i f i c growth r a t e maximum s p e c i f i c g r o w t h r a t e
w
minimization
e
s l u d g e age
function
-
84
-
REFERENCES
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22
M e t c a l f Eddy, W a s t e w a t e r E n g i n e e r i n g , T r e a t m e n t , d i s p o s a l , r e u s e , M c G r a w - H i l l I n c . , New Y o r k , 1972. K . K o m o l r i t a n d A.F. Gaudy, J o u r n a l WPCF, 3 8 , 85, 1 9 6 6 . K. K o m o l r i t a n d A.F. Gaudy, J o u r n a l WPCF, 3 8 , 1 2 5 9 , 1 9 6 6 . J.R. M o r a n d A. F i e c h t e r , B i o t e c h . a n d B i o e n g . , X , 7 8 7 , 1968. J.W. G i l l e y a n d H.R. Bungay, B i o t e c h . a n d B i o e n g . , I X , 6 1 7 , 1967. J.W. G i l l e y a n d H.R. Bungay, B i o t e c h . a n d B i o e n g . , X, 99, 1968. T.B. Young e t a l , B i o t e c h . a n d B i o e n g . , X I I , 747, 1970. S. Koga a n d A.F. Humprey, B i o t e c h . a n d B i o e n g . , I X , 3 7 5 , 1 9 6 7 . J.F. Andrews, W a t e r Res., 8, 261, 1974. G. O l s o n , A I C h E Symp. S e r . N. 1 5 9 , 72, 52, 1976. J.B. B u s b y a n d J.F. Andrews, J o u r n a l WPCF, 47, 1055, 1 9 7 5 . V . A t t i r a n d M.M. Denn, A I C h E J . 24,, 6 9 3 , 1978. R.A. P o d u s k a , J.F. Andrews, J o u r n a l WPCF, 4 7 , 2599, 1 9 7 5 . N. T h 6 r i e n a n d S. P e r d i e u x , J o u r n a l WPCF, 53, 576, 1 9 8 1 . P . M . B e r t h o u e x e t a l l . , W a t e r Res., 1 0 , 6 8 9 , 1976. J.L. Hansen, A.E. F i o k and J.C. H o v i o u s , J o u r n a l WPCF, 52, 1 9 6 6 , 1980. M. K u b f E e k , N u m e r i c k 6 a l g o r i t m y GeSeni c h e m i c k o - i n f e n f r s k f c h d l o h , SNTL P r a h a 1 9 8 3 . D.A. P i e r r e , O p t i m i z a t i o n t h e o r y w i t h a p p l i c a t i o n s , J . W i l l e y , New Y o r k 1969. R e k t o r y s a k o l . , P F e h l e d u f i t b m a k e m a t i k y SNTL P r a h a 1 9 8 8 . M. HorBkovB, P. L i s c h k e a n d A . G r u n w a l d , M e t o d y c h e m i c k b a n a l y z y vod, SNTL P r a h a , 1981. J.R. Mor a n d A. F i e c h t e r , B i o t e c h . a n d B i o e n g . , X, 7 8 7 , 1 9 6 8 . G. T c h o b a n o g l o u s , W a s t e w a t e r E n g i n e e r i n g , M c G r a w - H i l l , I n c . , New Y o r k , 1977.
AEROBIC THERMOPHILIC SLUDGE TREATMENT
M . BOMIO Department o f B i o t e c h n o l o g y , Swiss F e d e r a l I n s t i t u t e o f Technology, 8093 Z i r i c h , S w i t z e r l a n d
1
INTRODUCTION
1.1 S l u d g e t r e a t m e n t A c h a r a c t e r i s t i c o f most i n d u s t r i a l i z e d c o u n t r i e s i s c o m b i n e d t r e a t m e n t o f domestic and i n d u s t r i a l l i q u i d wastes.
The p r i m a r y ob-
j e c t i v e o f w a s t e w a t e r t r e a t m e n t p l a n t s i s a h i g h degree o f w a t e r pur i f i c a t i o n with r e l a t i v e l y l e s s a t t e n t i o n directed t o the primary byproduct,
sewage s l u d g e .
The e c o n o m i c a l v a l u e o f sewage s l u d g e i s
amongst t h e l o w e s t o f a l l m a t e r i a l s a v a i l a b l e on e a r t h ,
b u t even so
t h e sludge w i l l c o n t i n u e t o be produced i n very l a r g e q u a n t i t i e s i n t h e f u t u r e a n d i t s e f f e c t i v e t r e a t m e n t w i l l b e one o f t h e m o a t i m p o r t a n t problems t o solve. I n Switzerland,
where 95 X o f t h e p o p u l a t i o n i s c o n n e c t e d t o
one o f t h e 1 0 0 9 w a s t e w a t e r t r e a t m e n t p l a n t s , sewage s l u d g e i s 4 000 000 m 3 a - l o r 250 000 t corresponding t o 0 , l
kg d - l p e r s o n - '
t h e p r o d u c t i o n o f wet 8-l
dry matter.
p f dry matter, This high quantity
o f sewage s l u d g e i s t y p i c a l f o r i n d u s t r i a l i z e d c o u n t r i e s a n d w i l l even i n c r e a s e i n t h e f u t u r e ,
p a r t i c u l a r l y i n t h o s e c o u n t r i e s where
w a s t e w a t e r t r e a t m e n t i s ' s t i l l e x p a n d i n g (BUWAL 1 9 9 0 ) . I n Switzerland,
culture,
t h e sludge produced i s p r e s e n t l y used i n a g r i -
d e p o s i t e d i n l a n d f i l l s i t e s or i n c i n e r a t e d .
The amount r e -
30 % o f t h e t o t a l p r o d u c t i o n ;
cycled i n a g r i c u l t u r e i s approximately a percentage t h a t v a r i e s from r e g i o n t o
region.
A b o u t 40-50
s l u d g e p r o d u c e d i s d e p o s i t e d i n l a n d f i l l s and 10-30
% o f the
X incinerated.
The m a g n i t u d e o f t h e s l u d g e p r o b l e m c a n b e i l l u s t r a t e d b y t h e s i t u a t i o n t h a t e x i s t a t t h e . l a r g e s t waatewater t r e a t m e n t p l a n t i n S w i t z e r land,
the Werdh6lzli p l a n t i n Zirich
t h e near f u t u r e , of
dry matter.
T h i s p l a n t w i l l produce,
an e s t i m a t e d a n n u a l s l u d g e v o l u m e o f 1 6 0 0 0 t
in 8-l
Aa o n l y a v e r y s m a l l amount c a n b e r e c y c l e d i n a g r i -
- 86
culture,
-
t h e a u t h o r i t i e s a r e planning t o e i t h e r i n c i n e r a t e or export
t h e sludge for disposal! The u s e o f s e w a g e s l u d g e i n a g r i c u l t u r e i s d e c l i n i n g :
a t the
b e g i n n i n g o f t h e 1980s t h e amount u s e d was 5 0 I o f t h e t o t a l s l u d g e production,
b u t r e a l i s t i c e s t i m a t e s s u g g e s t t h i s q u a n t i t y w i l l re-
d u c e t o 2 0 % o r 5 0 0 0 0 t a-'
o f d r y m a t t e r i n t h e n e x t few y e a r s
( S c h w e i z e r 1 9 8 8 ) . O n l y i f waste s l u d g e c a n b e p r o c e s s e d t o g i v e a p propriate bacteriological,
chemical and p h y s i c a l p r o p e r t i e s , w i l l
any e x p a n s i o n o f sewage s l u d g e u t i l i z a t i o n a s f e r t i l i z e r b e p o s s i b le. Bioprocesses f L . t h e t r e a t m e n t o f t h e sewage s l u d g e have been implemented a t 766 wastewater t r e a t m e n t p l a n t s i n Switzerland.
Until
now t h e m o s t p o p u l a r b i o l o g i c a l t r e a t m e n t t e c h n i q u e s were m e s o p h i l i c anaerobic s t a b i l i z a t i o n a t l a r g e p l a n t s and a e r o b i c c o l d s t a b i l i z a tion a t small plants.
The a e r o b i c t h e r m o p h i l i c p r o c e s s r e p r e s e n t s
a new t e c h n o l o g y t h a t c a n e i t h e r b e i n t e g r a t e d i n t h e t r a d i t i o n a l treatment sequence or s u b s t i t u t e d f o r t h e anaerobic process giving h y g i e n i z a t i o n w i t h much i m p r o v e d t r e a t e d s e w a g e s l u d g e q u a l i t y .
Tab-
l e 1 summarizes t h e t y p e s o f s l u d g e b i o p r o c e s s i n g used i n Switzerl a n d (BUWAL 1 9 9 0 ) .
p l a n t s number
percentage
anaerobic mesophilic
575
7 5 A:
aerobic cold
139
1 8 ?A
sludge treatment
hy g i e n i z a t i o n total
52 766
I n t h e decade 1980-1990,
7
x
1 0 0 7;
20 p l a n t s w i t h a n a e r o b i c t h e r m o p h i -
l i c s l u d g e t r e a t m e n t s t e p were c o n s t r u c t e d i n S w i t z e r l a n d , b u t t h i s
s i t u a t i o n was n o t a c o n s e q u e n c e o f t e c h n o l o g i c a l contrary,
innovation.
On t h e
i t w a s c a u s e d by l e g i s l a t i o n c o n c e r n i n g t h e u t i l i z a t i o n
o f sewage s l u d g e i n a g r i c u l t u r e . T h i s l e g i s l a t i o n r e q u i r e s t h a t on-
l y 100 E n t e r o b a c t e r i a c e a e g - l and,
should be detected i n treated sludge
f u r t h e r , s l u d g e m u s t a l s o b e f r e e o f p a r a s i t i c worm e g g s b e f o -
r e i t i s a c c e p t a b l e f o r s p r e a d i n g o n a g r i c u l t u r a l l a n d ( F e d e r a l De-
partment o f I n t e r i o r 1981).
87
-
B e t w e e n 1975 a n d 1985 t h e d e v e l o p m e n t o f
t h e a e r o b i c t h e r m o p h i l i c s l u d g e t r e a t m e n t t e c h n o l o g y was c h a r a c t e r i zed by r a p i d p r o g r e s s i o n from t h e o r y t o p r a c t i c e w i t h o u t
t h e deve-
l o p m e n t o f any s o l i d b a c k g r o u n d . The m a j o r i t y o f t h e s t u d i e s c a r r i e d o u t enhanced t r e a t m e n t p e r f o r m a n c e i n e x i s t i n g p l a n t s and sought t o demonstrate the e f f i c i e n c y o f these,plants plant constructor
responsible.
However,
and t h e a b i l i t i e s o f t h e
v i r t u a l l y no a t t e m p t s were
made t o e x a m i n e t h e p h y s i o l o g y o f t h e m i c r o o r g a n i s m s i n v o l v e d i n a e robic thermophilic
t r e a t m e n t u s i n g sewsge s l u d g e a s s u b s t r a t e .
Most
authors f i r s t considered small scale bioreactors using c l a s s i c a l b i o t e c h n o l o g i c a l approaches t o determine t h e performance l i m i t s o f the process.
One r e a s o n f o r t h i s was t h a t t h e a u t h o r i t i e s r e s p o n s i b -
l e f o r e n f o r c i n g l e g i s l a t i o n were t o be s o l v e d very q u i c k l y .
f a c e d w i t h a new p r o b l e m t h a t h a d
Further,
i n Switzerland,
m u n i c i p a l was-
t e w a t e r t r e a t m e n t p l a n t s a r e managed b y p u b l i c a u t h o r i t i e s .
T h i s has
an i m p o r t a n t e f f e c t on t h e d e v e l o p m e n t o f new s o l u t i o n s f o r t h e t r e atment o f b o t h wastewater
a n d sewage s l u d g e .
The t s r g e t s o f n o n - p r o -
f i t o r g a n i z a t i o n s d i f f e r from t h o s e o f c o m m e r c i a l companies.
1.2
P o t e n t i s l o f a bioprocess
A b i o t e c h n o l o g i c a l approach t o t h e study o f sludge t r e a t m e n t i n v o l v e s i n v e s t i g a t i o n s o f microorganisms as b i o c a t a l y s t s i n t h e process environment.
However, t h e p r e s e n t proposed p r o c e s s f o r s l u d -
ge b i o t r e s t m e n t d i f f e r s f r o m m o s t b i o t e c h n o l o g i c a l p r o c e s s e s i n t h e f o l l o w i n g ways:
. . . .
a p p l i c a t i o n o f mixed populations complex and i l l - d e f i n e d
substrates
i r r e l e v a n t commercial value o f the f i n a l product presently low technology
M o s t c o m m e r c i a l b i o t e c h n o l o g i c s l p r o c e s s e s a r e c a r r i e d o u t usinr
s p e c i f i c m i c r o b i a l s t r a i n s i n c o n t r o l l e d c h e m i c a l and p h y s i c a l
environments. peptides,
H i g h v a l u e p r o d u c t s such as a n t i b i o t i c s ,
hormones,
enzymes a n d o p t i c a l l y p u r e c h e m i c a l s o b t a i n e d b y b i o t r a n s -
formation f o r medical, representative
a n a l y t i c a l or i n d u s t r i a l a p p l i c a t i o n s are
o f biotechnology
.
Such h i g h c o s t b i o t e c h n o l o g i c a l
products are t y p i c a l l y produced a t low concentrations.
Most f u t u r e
developments i n b i o t e c h n o l o g y w i l l p r o b a b l y concern improvements i n c u l t i v a t i o n techniques,
g e n e t i c s t s b i l i t y and m a n i p u l a t i o n o f
pro-
c e s s m i c r o b e s a n d i m p r o v e m e n t s i n down s t r e a m p r o c e s s t e c h n o l o g y .
-
88
-
Few new b u l k b i o t e c h n o l o g i c a l p r o d u c t s c a n b e e x p e c t e d i n t h e n e x t decade. The s t u d y o f t h e r m o p h i l i c m i c r o o r g a n i s m s f o r b i o t e c h n o l o g i c a l processes i s a w e l l developed f i e l d o f research a c t i v i t y ,
but u n t i l
now o n l y a few l a r g e s c a l e i n d u s t r i a l a p p l i c a t i o n s h a v e b e e n d e v e l o p e d ( S o n n l e i t n e r 1983). amylases,
nucleases a r e examples o f ganisms.
T h e r m o s t a b l e enzymes s u c h a s p r o t e a s e s ,
g l u c o s e i s o m e r a s e , DNA p o l y m e r a s e a n d r e s t r i c t i o n endoproducts produced by t h e r m o p h i l i c microor-
Other a p p l i c a t i o n s a r e under development ( B e r g q u i s t e t a l .
1987). The t r e a t m e n t o f sewage s l u d g e w i t h a e r o b i c t h e r m o p h i l i c
mic-
roorganisms i s a genuine p r a c t i c a l a p p l i c a t i o n o f t h e r m o p h i l i c process microbes. zerland,
M o s t d e v e l o p m e n t w o r k h a s b e e n d o n e i n Germany,
Sweden,
UK,
Swit-
R e p u b l i c o f S o u t h A f r i c a a n d USA.
A e r o b i c b i o p r o c e s s e s f o r t h e t r e a t m e n t o f sewage s l u d g e a t h i g h t e m p e r a t u r e s o f f e r many a d v a n t a g e s ,
The b e n e f i t s o f t h e t e c h -
n o l o g y a l l o w t h e p r o d u c t t o be s a f e l y u s e d as a n a g r i c u l t u r a l f e r t i l i z e r a n d when d i s p o s a l i s t h e f a v o u r e d o p t i o n , t h e t r e a t e d s l u d g e can a l s o be improved.
the quality o f
Advantages can be summari-
zed as f o l l o w s :
. . . .
b i o d e g r a d a t i o n o f n o r m a l l y b i o d e g r a d a b l e o r g a n i c components a t high r a t e s b i o d e g r a d a t i o n o f r e c a l c i t r a n t compounds improvement o f t h e p h y s i c a l c h a r a c t e r i s t i c s s t a b i l i t y a n d r e l i a b i l i t y o f t h e p r o c e s s due
o f t h e sludge t o t h e uniform
m i c r o f l o r a employed ( s e l e c t i v i t y p r e s s u r e o f t h e temperatu-
.
re 1 hygienization o f the sludge ( i n a c t i v a t i o n o f pathogenic organisms)
The h y g i e n i z a t i o n o f s l u d g e c a n a l s o b e a c h i e v e d u s i n g n o n - b i o l o g i c a l thermal technology,
p h y s i c a l processes such as i r r a d i a t i o n
o r c h e m i c a l p r o c e d u r e s s u c h as t h e a d d i t i o n o f l i m e .
However,
such
p r o c e s s e s do n o t i n c o r p o r a t e t h e f u l l r a n g e o f b e n e f i t s t h a t c a n be achieved with bioproceasing. The t r e a t m e n t o f t h e sewage s l u d g e w i t h t h e r m o p h i l i c m i c r o o r g a n i s m s r e p r e s e n t s an e x a m p l e o f a l o w t e c h n o l o g y b i o p r o c e s s ( B e r g quist e t el.
1987);.
The n o n - p r o f i t
n a t u r e o f wastewater
industry i n Switzerland i n h i b i t s innovation,
treatment
b u t l e g i s l a t i o n can
g i v e t h e n e c e s s a r y p o s i t i v e i m p u l s e t o change t h e s t a t u s quo.
2
89
-
MATERIAL AND M E T H O D S
A d e t a i l e d d e s c r i p t i o n o f m a t e r i a l and methods can be f o u n d elsewhere
3
( B o m i o 1990).
RESULTS AND D I S C U S S I O N
3 . 1 G r o w t h l i m i t a t i o n s and a c t i v i t i e s Growth i s g e n e r a l l y under t h e c o n t r o l o f e x t r a c e l l u l a r chemic a l f a c t o r s s u c h as c a r b o n e n e r g y s o u r c e , and g r o w t h f a c t o r a v a i l a b i l i t i e s . r e s p e c t t o such a v a i l a b i l i t i e s .
nutrient,
t r a c e element
Sewage s l u d g e . i s i l l d e f i n e d w i t h
T h e r e f o r e e x p e r i m e n t s t h a t sough
t o i d e n t i f y m e t a b o l i z a b l e c a r b o n s o u r c e s and l i m i t i n g f a c t o r s f o r thermophilic 3.1.1
b a c t e r i a d u r i n g t h e t r e a t m e n t were performed.
Limitinq factors The n a t u r e o f l i m i t a t i o n s r e s p o n s i b l e f o r d e c r e a s e s i n b o t h
t h e o x y g e n u p t a k e r a t e and t h e t o t a l d e h y d r o g e n a s e a c t i v i t y d u r i n g g r o w t h were d e t e r m i n e d b y p u l s i n g t h e c u l t u r e w i t h d i f f e r e n t c a r b o n energy s u b s t r a t e s ,
salts,
t r a c e e l e m e n t s and v i t a m i n s .
Figure 1
100
--$
0” a
80
60
40
20
0 0
4
8
12
16
20
24
TlME [ h l F i g . 1. Oxygen u p t a k e r a t e ( ) and oxygen p a r t i a l p r e s s u r e p 0 2 ( m d u r i n g a f e d b a t c h c u l t i v a t i o n a t 6 5 O C , 1 5 0 0 m i n - 1 , vvm a n d pH 7 w i t h f r u c t o s e p u l s e e x p e r i m e n t i n t h e c a r b o n l i m i t e d g r o w t h phase. The e x p o n e n t i a l i n c r e a s e o f t h e OUR i m m e d i a t e l y a f t e r p u l s e shows t h a t t h e f r u c t o s e p u l s e d was l i m i t i n g .
)
-
90
-
shows a t y p i c a l r e s p o n s e a f t e r a c a r b o n s u b s t r a t e p u l s e :
the increa-
s e o f t h e oxygen u p t a k e r a t e and t h e s i m u l t a n e o u s decrease o f t h e oxygen p a r t i a l p r e s s u r e i n t h e s l u d g e , fructose,
immediately a f t e r p u l s i n g
shows t h a t c a r b o n l i m i t a t i o n was o c c u r i n g .
no r e a c t i o n ,
I f t h e r e wss
t h e c u l t u r e s were n o t l i m i t e d by t h e s u b s t a n c e p u l s e d .
The p u l s e e x p e r i m e n t s were d o n e a t t h e e n d o f f e d b a t c h c u l t u -
r e s and r e s u l t s a r e summarized i n T a b l e 2.
.
They c l e a r l y show t h a t
b i o d e g r a d a b l e c a r b o n e n e r g y s o u r c e a v a i l a b i l i t y was the only l i m i t a t i o n
.
salts,
t r a c e e l e m e n t s and v i t a m i n s w e r e n o t l i m i t i n g .
Oxygen was d e f i n i t e l y n o t l i m i t i n g b e c a u s e p 0 2 was a l w a y s m o r e t h a n 80
X d u r i n g these pulse experiments.
TABLE 2 C a r b o n s o u r c e s o u l s e d a t a c o n c e n t r a t i o n o f 4 k o m-3 a n d s a l t s . t r a c e e l e m e n t s and' v i t a m i n s p u l s e d a t t h e c o n c e n t r e t i o n s d e s c r i b e d ( K ( K e n k e l and T r e l a 1979) t o t h e r m o p h i l i c c u l t u r e s g r o w i n g on s l u d g e d u r i n g t h e c a r b o n l i m i t e d phase (phase V ) . An i n c r e a s e o f OUR i s m a r k e d a s + r e s p o n s e ; n o c h a n g e o f O U R i s response. marked as
-
~~
Glucose,
fructose
Maltose Sucrose, Xylose,
lactose ribose
Pyruvate,
glycerol
Glutamic acid Valine Casein Soya p r o t e i n s Gelatine :I
t a r ch
Pect i n e Cellulose Olive o i l Micrococcua l u t e u s Salts Trace elements
V it a m i n a
~~
OUR i n c r e a s e i m m e d i a t e l y after pulsing
substance
1
-
':suspension
3.1.2
o f 10.2
kg
91
-
wet w e i g h t .
A c t i v i t i e s i n sewaqe s l u d q e a n d p u r e c u l t u r e s The p r e v i o u s e x p e r i m e n t s i n d i c a t e d p r o t e o l y t i c a c t i v i t y b e c a u -
se o f g r o w t h i m m e d i a t e l y protein.
a f t e r pulses o f casein,
g e l a t i n e and soya
T h i s was d e m o n s t r a t e d b y m e a s u r i n g t h e a c t i v i t y o f t o t a l
p r o t e o l y t i c enzymes a n d a l s o b y i s o l a t i n g a m i x e d s u b - p o p u l a t i o n o f t h e r m o p h i l e s w h i c h g r e w on s e m i - s y n t h e t i c m e d i a w i t h s o y a p r o t e i n a s t h e s o l e c a r b o n s o u r c e (Bomio e t a l .
1989)
P u l s e e x p e r i m e n t s showed t h a t
.
e x t r a c e l l u l a r proteaseswere the only polymer degrading enzymes p r o d u c e d d u r i n g c u l t i v a t i o n o f t h e p r o c e s s m i c r o b e s on sewage s l u d g e .
These r e s u l t s were c o n f i r m e d b y m e a s u r e m e n t s o f e n z y m a t i c a c t i v i t i e s i n t h e sludge.
Other polymers than p r o t e i n s normally pre-
s e n t i n sewage s l u d g e r e p r e s e n t p o t e n t i a l s u b s t r a t e s f o r t h e r m o p h i -
l e s , b u t c a n n o t be h y d r o l i z e d b y t h e p r o c e s s c u l t u r e .
The a c t i v i t i e s
t e s t e d a r e s u m m a r i z e d i n T a b l e 3.
TABLE 3 E x t r a c e l l u l a r enzymes a c t i v i t i e s i n sewage s l u d g e d e t e r m i n e d b y p u l s e s o f t h e p o l y m e r s and d e t e r m i n a t i o n o f t h e e n z y m a t i c a c t i v i t y . I n c r e a s e o f OUR a f t e r a pulse experiment
Enzymatic a c t i v i t
+
+
-
-
Lipase
-
Pectinase
-
-
Protease Amylase Cellulase Keratinase
-
The p r o t e o l y t i c a c t i v i t y c o r r e l a t e d w i t h t h e i n c r e a s e o f t h e o x y g e n u p t a k e r a t e d u r i n g b o t h b a t c h and f e d b a t c h c u l t i v a t i o n s o f a e r o b i c t h e r m o p h i l i c m i c r o o r g a n i s m s on sewage s l u d g e i n d i c a t i n g a The p r o t e o l y t i c a c t i v i t y c o r r e l a t e d w i t h t h e i n c r e a s e o f t h e g r o t ef o l y tbi ac t cenzymes o x y g e nr ouwpttha kaes sr oa ct iea tdeudr ipnrgo dbuoct thi obna toc fh pand ed h c u l t i v (aFtiigounrse o2 f) . T h i s a l s o c o r r e l a t e d w i t h a n i n c r e a s e i n f r e e ammonium a e r o b i c t h e r m o p h i l i c m i c r o o r g a n i s m s on sewage s l u d g e i ncdoi nc ca et n i nt rga tai o n i n the c u l t u r e . g r o w t h a s s o c i a t e d p r o d u c t i o n o f p r o t e o l y t i c enzymes
(Figure 2).
This
a l s o c o r r e l a t e d w i t h a n i n c r e a s e i n f r e e ammonium c o n c e n t r a t i o n i n the c u l t u r e .
-
7
i
P c n Y
I
92
-
4.5 4.0 3.5
[L
3 0
3.0 2.5 2.0
1.5 1 .o
0.5
I
4
PROTEOLYTIC ACTIVITY
I mu rni-11
F i g . 2. L i n e a r c o r r e l a t i o n between p r o t e o l y t i c a c t i v i t y and oxygen u p t a k e r a t e d u r i n g a b a t c h c u l t i v a t i o n o n s e w a g e s l u d g e a t 2500 m i n - l , 6 5 O C , 0 . 8 vvm a n d pH 7 . C o r r e l a t i o n c o e f f i c i e n t r = 0.935. The a c t i v i t y was d e t e r m i n e d r e l a t i v e t o p r o t g i n a s e K ( S i g m a P-0390, t y p e X I ) s t a n d a r d s m e a s u r e d i n v i t r o a t 8 0 C . The c o r r e l a t i o n i n d i c a t e s a growth a s s o c i a t e d p r o d u c t i o n o f e x t r a c e l l u l a r p r o t e a a e by t h e p r o cess microbes.
-
c
50
! d
E 3
E
I
EI
45 40
35
I-
U
a
30
u c
25 20 15 10 5
0 4 0
I
1
2
3
4
5
6
7
8
9
1
0
TIME h l
F i g . 3. P r o t e o l g t i c a c t i v i t y i n t h e s l u d g e ( m ) a n d s u p e r n a t a n t ( 0 ) m e a g u r e d a t 80 C a n d pH 7 d u r i n g a s l u d g e c u l t i v a t i o n a t 2 5 0 0 m i n - 1 , 65 C , 0 . 8 vvm a n d pH 7 . The a c t i v i t y was c o m p a r e d t o p r o t e i n a s e K s t a n d a r d s . The a r r o w a h o w a t h e e n d o f t h e l a g p h a s e . The a c t i v i t y measured i n t h e s u p e r n a t a n t i s n o t i n c r e a s e d a f t e r t h e l a g phase, because p r o t e o l y t i c enzymes are absorbed t o s l u d g e p a r t i c l e .
-
93
-
The R Q v a l u e f o r sewage s l u d g e c u l t i v a t i o n s h a d an a v e r a g e val u e o f 0.82
which i s t y p i c a l f o r o x i d a t i v e metabolism o f p r o t e i n s
(Lentner 1981).
C u l t i v a t i o n s on s y n t h e t i c medium showed t h a t t h e
p r o t e o l y t i c a c t i v i t y was n o t c e l l w a l l b o u n d b e c a u s e h i g h a c t i v i t y was f o u n d i n t h e c e l l f r e e s u p e r n a t a n t .
On t h e o t h e r hand,
analyses
i n t h e s u p e r n a t a n t o f c u l t i v a t i o n s w i t h sewage s l u d g e a s s u b s t r a t e gave l o w a c t i v i t y .
T h i s i n d i c a t e s t h a t t h e enzymes a r e e x c r e t e d i n t o
t h e medium b u t may b e i m m e d i a t e l y a b s o r b e d b y p a r t i c l e s i n t h e c a s e o f sludge c u l t i v a t i o n s ,
a s shown i n F i g u r e 3 .
The R Q v a l u e o f a l l c u l t i v a t i o n s on sewage s l u d g e showed an a v e r a g e v a l u e o f 0.82 d u r i n g b o t h e x p o n e n t i a l a n d o x y g e n l i m i t e d g r o w t h phase.
T h i s v a l u e r o s e t o 1.1 i n t h e c a r b o n l i m i t e d p h a s e ,
i n d i c a t i n g changes i n t h e o v e r a l l metabolism. semi-synthetic
l e c a r b o n s o u r c e showed an a v e r a g e r e s p i r a t o r y which i s t y p i c a l f o r
.
C o n t r o l c u l t u r e s on a
m e d i a w i t h t h e same i n o c u l u m b u t w i t h g l u c o s e a s s o -
RQ values,
c o e f f i c i e n t o f 1.05
f u l l o x i d a t i v e g r o w t h on c a r b o h y d r a t e s .
proteolytic activity,
the pulse experiments
w i t h p r o t e i n s u b s t r a t e s and t h e g r o w t h a s s o c i a t e d p r o d u c t i o n o f f r e e ammonium s t r o n g l y i n d i c a t e t h a t t h e t h e r m o p h i l i c p o p u l a t i o n s p r e f e r t o u s e p r o t e i n a c e u s mat e r i a l as t h e i r carbon source.
Determinations o f lipase,
amylase,
c e l l u l a s e and p e c t i n a s e a c -
t i v i t i e s gave n e g a t i v e r e s u l t s w i t h b o t h t h e o r i g i n a l methods desc r i b e d and a f t e r m o d i f i c a t i o n and a d a p t i o n o f t h e a n a l y t i c a l methods f o r use i n complex media.
T h i s happened a l t h o u g h t h e r m o p h i l i c popu-
l a t i o n s i n sewage s l u d g e a r e p o t e n t i a l l y s b l e t o m e t a b o l i z e s u b s t r a t e s such as s t a r c h and l i p i d s i n complex media ( B a i e r 1987).
Figu-
re 4 shows t h e t i m e c o u r s e f o r p r o t e o l y t i c a c t i v i t y a n d t h e r e s p i r a t o r y q u o t i e n t o f one r e p r e s e n t a t i v e sewage s l u d g e c u l t u r e . D u r i n g t h e l a g phase t h e r e i s n o p r o d u c t i o n o f p r o t e a a e s , even i n t h i s phase, t e o l y t i c enzymes.
After
t h e l a g phase,
which l a s t e d 6 h i n t h e c u l -
t i v a t i o n f o r w h i c h t h e r e s u l t s a r e p l o t t e d i n f i g u r e 4,
thermophilic
p o p u l a t i o n s began t o grow on s l u d g e and t h e R Q i m m e d i a t e l y t o 0.81.
The p r o t e o l y t i c a c t i v i t y m e a s u r e d i n v i t r o a t 8 0
7 rose r a p i d l y , i n t o t h e medium. a n d pH 7 ,
but
t h e s l u d g e c o n t a i n s a s i g n i f i c a n t amount o f p r o -
increased OC
a n d pH
i n d i c a t i n g t h a t thermophilic proteaaes are excreted These p r o t e a s e s a r e l e s s a c t i v e i n v i t r o a t 6 5 O C
so t h a t t h e v a l u e s measured a t t h i s t e m p e r a t u r e d i d n o t
c c;
94
-
. 0.9 5 0
60
L
E
. 0.8
3
-E
50 '
t
0 . 7 ;3
a
! I
f
-EE
. 0.6
40
V
Q '
3
z: &
30
0.5
. 0.4
. 0.3
20
[L
LL
0 -I
E
10
-
0.2
-
0.1
- 0
0
1
2
5
4
3
7
6
8
9
10
TIME 1 h
1
F i g . 4. P r o t e o l y t i c a c t i v i t y d e t e r m i n e d a t 80 O C i n t h e s l u d g e ( ) and s u p e r n a t a n t ( * ) and r e s p i r a t i o n q u o t i e n t ( ) as a function o f t i m e d u r i n g a b a t c h c u l t i v a t i o n o f sewage s l u d g e a t 6 5 O C , 0 , 5 vvm, 1 5 0 0 m i n - l a n d pH 7 . A f t e r a l a g p h a s e o f 6 h, t h e r e s p i r a t o r y q u o t i e n t i n c r e a s e and p r o t e a s e a c t i v i t y measured a t 8 0 OC a l s o i n c r r a sed d e m o n s t r a t i n g t h e a c t i v i t y o f t h e r m o p h i l i c microbes. 1.4
05
1.2 0 4 1 .o
03
0.8 0.6
02
0.4 0 1
0.2
0.0
00 50
55
60
65
70
75
80
85
90
TEMPERATURE [ "C1
Temperature dependence o f p r o t e o l y t i c a c t i v i t y (Abs 3 7 6 ) f o r r a w - ( * ) a n d A T S - s l u d g e ( 0 ) a n d p r o t e a s e K ( m ) a t pH 7. The o p t i m u m f o u n d a t 8 0 OC f o r A T S s l u d g e a n d t h e i n s i g n i f i c a n t a c t i v i t y f o u n d i n raw s l u d g e a t t h i s t e m p e r a t u r e , a l l o w s t h e d e t e r m i n a t i o n o f thermophilic microbes a c t i v i t y w i t h the protease t e s t .
Fig. 5.
increase.
95
-
The h y d r o l y s i s o f p r o t e i n a c e o u s m a t e r i a l s w i t h s u b s e q u e n t
m e t a b o l i z a t i o n o f amino a c i d s
c a u s e d ammonium t o be r e l e a s e d i n t o
t h e medium. F i g u r e 5 shows t h e t e m p e r a t u r e d e p e n d e n c e o f p r o t e o l y t i c a c t i v i t y compared w i t h t h e commercial p r o t e a s e K . The t e m p e r a t u r e d e p e n d e n c e o f p r o t e o l y t i c a c t i v i t y was measur e d e i t h e r i n c u l t u r e s g r o w i n g on r a w s l u d g e a s c a r b o n e n e r g y s o u r ce d u r i n g a e r o b i c t h e r m o p h i l i c
semi-synthetic available. similar
t r e a t m e n t o r i n c o n t r o l c u l t u r e s on
media w i t h s o j a p r o t e i n as o n l y carbon energy source
The t e m p e r a t u r e d e p e n d e n c e f o r p r o t e o l y t i c a c t i v i t y was
f o r c u l t i v a t i o n s on b o t h m e d i a .
t h e r m o p h i l e s h a d an o p t i m u m a t 80 O C s l u d g e p r o t e a s e s were n o t a c t i v e .
.
The p r o t e o l y t i c a c t i v i t y o f
b u t a t h i s t e m p e r a t u r e raw
Therefore:
M i c r o b i o l o g i c a l a c t i v i t y and p r o c e s s performance can be f o l l o w e d by m e a s u r i n g p r o t e o l y t i c a c t i v i t y i n v i t -
r o a t 80 OC. T h i s t e m p e r a t u r e dependence i s o f i n t e r e s t compared t o t h a t o f t h e c o m m e r c i a l enzyme p r o t e a s e K ,
w h i c h shows a maximum a t 6 0
OC.
P o p u l a t i o n s e n r i c h e d f r o m a e r o b i c t h e r m o p h i l i c s l u d g e s showed a c t i v i t i e s u p t o 60 mU m 1 - l .
The t e m p e r a t u r e d e p e n d e n c e a t d i f f e r e n t pH
,
v a l u e s w i t h t h e a z o c a s e i n m e t h o d i s shown i n f i g u r e 6.
-,
0.45
I
l n rW
m
%
0.40 0.35
0.30 0.25
0.20 0.15 0.10 0.05
0.00 50
55
60
65
70
75
80
85
90
TEMPERATURE [ "C 1
F i g 6. P r o t e o l y t i c a c t i v i t y o f a e r o b i c t h e r m o p h i l i c t r e a t e d s l u d g e a t d i f f e r e n t t e m p e r a t u r e s i n v a r i o u s b u f f e g s a t pH 5 ( o 1, pH 7 ( m ) a n d pH 9 (I). The o p t i m u m i s f o u n d a t 8 0 C a n d pH 7. A t pH 9 a c t i v i t y i a d e t e c t a b l e a t l o w e r t e m p e r a t u r e s , w h i l e a t pH 5 o n l y v e r y l i t t l e a c t i v i t y i s measured.
The t h e r m o p h i l i c
-
96
p r o t e a s e s m u s t b e c l a s s i f i e d as n e u t r a l p r o -
t e a s e s a t t e m p e r a t u r e s u p t o 8 0 O C , b e c a u s e o f l o w a c t i v i t y a t pH 9 a n d p r a c t i c a l l y n o a c t i v i t y a t pH 5.
The i d e n t i c a l a c t i v i t y f o u n d
a t 65 O C f o r pH v a l u e s o f 7 a n d 9 , e x p l a i n a m i n i m a l e f f e c t o f t h i s f a c t o r d u r i n g a e r o b i c t h e r m o p h i l i c sewage s l u d g e t r e a t m e n t i n t h e pH r a n g e f r o m 6.8
t o 8.8.
3 . 2 I n a c t i v a t i o n o f pathoqenic microorqanisms A t t h e b e g i n n i n g o f t h e 1970s t h e i n a c t i v a t i o n o f p o t e n t i a l l y p a t h o g e n i c o r g a n i s m s i n sewage s l u d g e became an i m p o r t a n t q u e s t i o n i n Switzerland.
I t r e s u l t e d i n t h e i n t r o d u c t i o n o f d i f f e r e n t compe-
t i n g technologies.
After
disastrous experience w i t h p a s t e u r i z a t i o n
u n i t s i n s t a l l e d a f t e r the anaerobic d i g e s t i o n step,
ATS processes
were i n t r o d u c e d as p r e t r e a t m e n t p r o c e s s e s (Bomio 1 9 8 8 ) .
Although the
i n a c t i v a t i o n o f p o t e n t i a l l y p a t h o g e n i c o r g a n i s m s was r e q u i r e d b y Swiss law,
few k i n e t i c d a t a f o r m i c r o b i a l l y m e d i a t e d t h e r m o p h i l i c
p r o c e s s e s were a v a i l a b l e .
Whilst
the influence o f the thermophilic
m i c r o f l o r a d u r i n g t h e p r o c e s s was f r e q u e n t l y d i s c u s s e d ,
scientific
d a t a were l a r g e l y u n a v a i l a b l e .
3.2.1
Heat i n a c t i v a t i o n o f p a t h o q e n i c microorqanisms I n order t o investigate the heat i n a c t i v a t i o n k i n e t i c s of
h o g e n i c m i c r o b e s i n sewage s l u d g e ,
pat-
t h r e e s t a n d a r d t e s t o r g a n i s m s we-
r e e m p l o y e d f o r i n a c t i v a t i o n i n v e s t i g a t i o n s : E. c o l i , 5 . a u r e u s a n d P . Aeruqinosa. Theywere p u l s e d i n t o a e r o b i c t h e r m o p h i l i c s l u d g e c u l t u r e s i n d e f i n e d c o n c e n t r a t i o n s d u r i n g d i f f e r e n t . phases o f t h e p r o c e s s a n d i n a c t i v a t i o n was f o l l o w e d b y d e t e r m i n a t i o n o f t h e v i a b l e c o u n t o f t h e t e s t b a c t e r i a on s e l e c t i v e m e d i a .
5. a u r e u s was v e r y g o o d w i t h a z i d e a g a r
The s e l e c t i v i t y f o r
and f o r P .
aeruqinosa,
m i l a r l y good o n a g a r s u p p l e m e n t e d w i t h c e n t r i m i d e - n a l d i x i n s e l e c t i v e d e t e r m i n a t i o n o f E.
Therefore,
t h e ac-
c o l i was a l s o i d e n t i f i e d w i t h s u b c u l t u r i n g on f l u o r o -
cult-laurylsulphate development,
The
c o l i on e i t h e r e o s i n methylene b l u e
a g a r o r v i o l e t r e d b i l e a g a r was u n s a t i s f a c t o r y . t i v i t y o f E.
si-
acid.
b r o t h a t 44 OC t o g e t h e r w i t h d e t e c t i o n o f gas
f l u o r e s c e n c e and a p o s i t i v e i n d o l e r e a c t i o n .
The p r o b -
lem o f t h e a c t u a l d e t e c t i o n method f o r E n t e r o b a c t e r i a c e a e has a l s o b e e n r e c o g n i z e d by t h e S w i s s l e g i s l a t i v e a u t h o r i t i e s Department o f
the I n t e r i o r ,
Bern),
(BUWAL,
Federal
and a program f o r method impro-
vement h a s b e e n e s t a b l i s h e d ( W i t t e k i n d 1 9 9 0 ) .
-
97
-
The p u l s e e x p e r i m e n t s w e r e c a r r i e d o u t i n a 5 0 1 C O L O R b i o r e a c t o r d u r i n g g r o w t h o f t h e t h e r m o p h i l i c p r o c e s s c u l t u r e on sewage s l u d ge a t l o w a n d h i g h a e r a t i o n r a t e s a n d i n n u t r i e n t b r o t h i n o r d e r t o compare i n a c t i v a t i o n k i n e t i c s w i t h d e f i n e d m e d i a .
The r e s u l t s o f t h e
p u l s e e x p e r i m e n t s a r e s u m m a r i z e d i n T a b l e 4. TABLE 4 Compsrison o f h e a t i n a c t i v a t i o n and c o n d i t i o n s f o r p u l s e e x p e r i m e n t s . C o n s t a n t o p e r a t i n g c o n d i t i o n s were t e m p e r a t u r e o f 6 5 O C , pH 7, s t i r r e r s p e e d 1 0 0 0 min'l,
s
Medium
Aeration
Sludge
0.3
vvm
l a g phase
Sludge
0.3
vvm
e x p o n e n t i a l g r o w t h phase
none
vvm
carbon l i m i t e d phase
none
Synergis 1 effect
Pulse
-
Sludge
0.3
Sludge
0.05
vvm
Sludge
0.05
vvm
oxygen l i m i t e d phase
none
nutrient broth
0.15
vvm
e x p o n e n t i a l g r o w t h phase
none
nutrient broth
0.15
vvm
carbon l i m i t e d phase
none
nutrient broth
no aeration
-
l a g phase
-
medium s t e r i l e
d e c i m a l r e d u c t i o n t i m e s compared w i t h e q u i v a l e n t l a g phase
I n a c t i v a t i o n k i n e t i c s were s i m i l a r
values i n the
for a l l conditions tested
a n d t h e p u l s e e x p e r i m e n t s show t h s t t h e r e i s n o d i f f e r e n c e i n t h e heat i n a c t i v a t i o n a t low or h i g h aeration r a t e s i n the sludge. reover,
Mo-
the i n a c t i v a t i o n k i n e t i c s during experiments a t d i f f e r e n t
g r o w t h phases demonstrated t h a t t h e r m o p h i l i c
g r o w t h does n o t have
any e f f e c t o n t h e i n a c t i v a t i o n o f t e s t o r g a n i s m s . p i c a l i n a c t i v a t i o n p u l s e i s p l o t t e d f o r P.
I n f i g u r e 7,
a e r u q i n o s a and
a ty-
S. a u r e u s
i n sewage s l u d g e a t a l o w a e r s t i o n r a t e . The l o g a r i t h m i c p l o t o f c o l o n y
f o r m i n g u n i t s on s e l e c t i v e c u l -
t i v a t i o n m e d i a w i t h r e s p e c t t o t i m e showed, ment,
t h a t f o r each e x p e r i -
a s i m i l a r time course with a r a p i d d e c l i n e o f the mesophilic
t e s t organisms i m m e d i a t e l y a f t e r p u l s i n g , f o l l o w i n g by a s l o w e r dec r e a s e i n s second phase o f t h e i n a c t i v a t i o n .
Immediately a f t e r p u l -
s i n g t h e i n a c t i v a t i o n was s i m i l a r t o t h a i i n n u t r i e n t b r o t h ,
indi-
c s t i n g t h a t t h e m i c r o o r g a n i s m s were s u b j e c t t o t h e h e a t i n a c t i v a t i o n w i t h o u t any i n f l u e n c e o f t h e s l u d g e .
I n t h e second phase,
which a l -
-
98
-
ways o c c u r e d 4 t o 5 m i n u t e s a f t e r p u l s i n g , slower.
t h e i n a c t i v a t i o n was much
This s t r o n g l y s u g g e s t s t h a t s l u d g e components and p a r t i c l e s
p r o v i d e a p r o t e c t i v e e f f e c t f o r t h e t e s t organisms.
T h i s e f f e c t was
a l s o d e s c r i b e d w i t h S a l m o n e l l a sp a s t h e t e a t o r g a n i s m (Hammel 1 9 8 3 , Wassen 1 9 7 5 ) .
Average d e c i m a l r e d u c t i o n t i m e s f o r a l l e x p e r i m e n t s
a r e s u m m a r i z e d i n T a b l e 5. not obtained,
V a l u e s f o r E.
c o l i i n sewage s l u d g e w e r e
because o f t h e l o w s e l e c t i v i t y and u n r e l i a b l e . d e t e r m i -
n a t i o n on e i t h e r VRBD o r EMB c u l t i v a t i o n m e d i a .
1 lo9 1 loB 1 1 0 ~ 1 lo6 1 105 1 1 0 4 1 lo3
J 0
i
20
10
30
40
50
60
70
80
90
100
TIME [min 1
F i g . 7. R e s i d u a l v i a b l e c e l l s o f P. a e r u g i n o s a ( m ) a n d 5. a u r e u s ( A ) i n sewage s l u d g e a t 0.05 vvm, 6 5 O C , s t i r r e r s p e e d 1 0 0 0 m i n - l a n d pH 7 . The i n a c t i v a t i o n k i n e t i c w i t h t w o p h a s e s i s t y p i c a l f o r i n a c t i v a t i o n e x p e r i m e n t s w i t h p r o t e c t i v e e f f e c t s o f t h e medium.
TABLE 5 A v e r a g e d e c i m a l r e d u c t i o n t i m e a i n aewage s l u d g e a n d n u t r i e n t b r o t h a t T = 65 O C o b t a i n e d a t d i f f e r e n t a e r a t i o n r a t e s . D-Values
Test organism on n u t r i e n t broth
[ min
1
directly after pulse
i n t h e second
-
phase
E.
coli
0.3
-
P.
aeruginosa
0.8
1.7
22
1.7
2.6
62
5. a u r e u s E.
c o l i a n d P.
a e r u q i n o a a (Gram
-1
are l e s s heat r e s i s t a n t than
t h e Gram
+ o r g a n i s m 5. a u r e u s i n e i t h e r d e f i n e d medium o r i n sewage
sludge.
The d e c i m a l r e d u c t i o n r a t e s i n t h e s e c o n d p h a s e o f t h e i n a c -
-
99
-
t i v a t i o n , which a r e r e p r e s e n t a t i v e f o r t h e e f f e c t i v e i n a c t i v a t i o n i n the sludge, i n d i c a t e t h a t even
.
2 h o u r s h e a t t r e a t m e n t a t 6 5 OC i s i n s u f f i c i e n t
for the
complete hygienization of t h e sludge, although allowing t h e i n a c t i v a t i o n o f commonly u s e d i n d i c a t o r b a c t e r i a . In 2 hours it is only possible t o achieve a reducti0.n of only 2 o r d e r s o f magnitude
f o r 5.
aureus.
The c o n s i d e r a t i o n o f E n t e r o b a c t e r i a c e a e c e l l c o u n t s a s a n i n d i c a t o r f o r t h e s u c c e s s f u l h y g i e n i z a t i o n o f sewage s l u d g e is quest i o n a b l e . As a m a t t e r o f f a c t a n i n d i c a t o r f o r a n y i n a c t i v a t i o n s h o u l d f u l f i l a t l e a s t two r e q u i r e m e n t s :
.
i t s h o u l d b e more r e s i s t a n t t o t h e t r e a t m e n t t h a n a l l
.
other pathogenic organisms
i t s h o u l d be s t a b l e ( n o f u r t h e r growth or i n a c t i v a t i o n ) during storage after the treatment.
C o n s i d e r i n g t h e r e s u l t s f o r E.
c o l i i n t h i s work a n d r e s u l t s
o f o t h e r w o r k e r s ( K a b r i c k a n d Jewel1 1 9 8 2 , L a n g e l a n d e t a l .
S t r a u c h e t a l . 1 9 8 5 , Camp e t a l .
1985,
1 9 8 1 , F e a c h e m e t a l . 1983, E r a l p
a n d F a r r e l 1 9 8 6 ) , t h e s e r e q u i r e m e n t s a r e n o t met b y E n t e r o b a c t e r i a ceae. 3.2.2
S y n e r q i s t i c e f f e c t s o f t h e r m o p h i l e s on t h e i n a c t i v a t i o n Some a u t h o r s h a v e s u g g e s t e d t h e e x i s t e n c e o f e i t h e r a n t i b i o t i c
or a n t a g o n i s t i c e f f e c t s o f t h e r m o p h i l i c p o p u l a t i o n s o n p o t e n t i a l l y p a t h o g e n i c m i c r o o r g a n i s m s ( N e b i k e r 1 9 8 1 , Hammel 1 9 8 3 ) . H o w e v e r , t h e i n a c t i v a t i o n e x p e r i m e n t s showed t h a t t h e r e i s no i n f l u e n c e of t h e t h e r m o p h i l e s on t h e i n a c t i v a t i o n o f p o t e n t i a l p a t h o g e n s i n s l u d g e . E x p e r i m e n t a l d e t e r m i n a t i o n o f p o s s i b l e a n t i m i c r o b i a l s u b s t a n c e s was c a r r i e d o u t w i t h t h e MIC (Minimal I n h i b i t o r y C o n c e n t r a t i o n ) t e s t and conclusively confirmed t h e absence of such e f f e c t s . T o t a l m e s o p h i l i c microorganisms, i s o l a t e d from sewage s l u d g e , E. c o l i a n d S . a u r e u s were c u l t i v a t e d o n i s o s e n s i t e s t b r o t h w i t h a d d i t i o n of d i f f e r e n t amounts o f raw and a e r o b i c t h e r m o p h i l i c trea t e d s l u d g e . The r e s u l t s o f t h e t e s t f o r t o t a l m e s o p h i l i c m i c r o o r g a n i s m s , i s o l a t e d from s e w a g e s u l d g e a r e shown i n F i g u r e 8 S i m i l a r r e s u l t s o f t h e M I C t e s t were o b t a i n e d w i t h E . c o l i a n d S, aureus.
-
100
-
The a d d i t i o n o f b o t h r a w a n d t r e a t e d s l u d g e i n c r e a s e d t h e g r o w t h o f m e s o p h i l i c m i c r o o r g a n i s m s i n s t e a d o f i n h i b i t i n g them ( i n c r e a s i n g
OD546 w i t h p r o g r e s s i v e i n c r e a m e n t s o f s l u d g e ) .
The s l o p e o f t h e ab-
s o r p t i o n v a l u e s i s p o s i t i v e and s i g n i f i c a n t l y h i g h e r f o r a e r o b i c thermophilic
t h a n f o r t h e raw sludge;
t h i s t y p i c a l response o f t h e
M I C e x p e r i m e n t s shows c l e a r l y t h a t :
t h e r e i s no p r o d u c t i o n o f a n t i m i c r o b i a l agents d u r i n g aerobic thermophilic sludge treatment.
0
0.05
0.15
0.1
0.2
0.25
0.3
0.35
0.4
SLUDGE VOLUME FRACTION I rnt m i 4 1 F i g . 8. R e l a t i v e a b s o r p t i o n a t 5 4 6 n m o f t h e c u l t u r e a f t e r 18 h o f i n c u b a t i o n a t 37 OC w i t h d i f f e r e n t raw ( m ) and a e r o b i c t h e r m o p h i l i c s l u d g e ( 0 ) c o n c e n t r a t i o n s . The p o s i t i v e s l o p e o b t a i n e d i n d i c a t e t h a t t h e r e a r e no i n h i b i t o r y e f f e c t s i n b o t h raw and A T S s l u d g e . T r e a t e d s l u d g e even a c c e l e r a t e t h e g r o w t h o f p o t e n t i a l pathogens (higher slope).
S i m i l a r r e s u l t s were o b t a i n e d w i t h t h e r m o p h i l i c l a t e d f r o m sewage s l u d g e a t t e m p e r a t u r e s o f 45
OC
populations iso-
(Wassen 1 9 7 5 ) .
T h e r m o p h i l i c p o p u l a t i o n s i s o l a t e d f r o m sewage s l u d g e a r e a b l e t o grow i n a s e m i - s y n t h e t i c s u b s t r a t e (Mason e t e l .
medium u t i l i z i n g i n t a c t y e a s t c e l l s a s
1986,
o f a l y t i c enzyme f r o m 6 .
Hamer a n d Mason 1 9 8 7 ) .
The p r o d u c t i o n
atearothermophilus cultures a f t e r induction
by m i t o m y c i n C has a l s o been d e s c r i b e d (Welker
and Campbell 1966).
These o b s e r v a t i o n s s t i m u l a t e d t h e i n v e s t i g a t i o n o f t h e p r o d u c t i o n o f
-
101
l y s o z y m e by m i x e d p o p u l a t i o n s o f B.
s t e a r o t h e r m o p h i l u s s t r a i n s grown
o n sewage s l u d g e . Sewage s l u d g e c o n t a i n s a b o u t u n i t s per m l .
Naturally,
7 1 0 -10'
mesophilic colony forming
a c e r t a i n number o f n o n - a c t i v e c e l l s w i t h
i n t a c t c e l l w a l l s can a l s o be found i n t h e sludge. be u t i l i z e d by t h e t h e r m o p h i l e s as s u b s t r a t e . degradation o f c e l l s ,
for the bio-
t h e f i r s t obstacle i s the degradation o f the
c e l l w a l l a n d membrane. be lysozyme,
These c e l l s c o u l d
However,
The r e s p o n s i b l e enzyme w o u l d b e e x p e c t e d t o
e i t h e r a m u r a m i d s s e o r an endo-
t h e maximum c o n t e n t o f
13-glucanase.
c e l l s i n sewage s l u d g e t o b e
lo9
which i s a t l e a s t 1 o r d e r o f magnitude g r e a t e r t h a n c f u ' s b u t a l l o w s f o r dead c e l l s ,
Assuming
per m l , found,
an a v e r a g e p a r t i c l e s i z e o f 1 x 5 p m a n d
20 ?A d r y m a t t e r , t h e t o t a l b i o m a s s i s 0.8
kg
One may f u r t h e r
assume t h a t t h i s b i o m a s s c a n b e c o m p l e t e l y u t i l i z e d b y t h e t h e r m o p h i l e s d u r i n g growth.
Thus,
t h i s smount c a n n o t s i g n i f i c a n t l y c o n -
t r i b u t e a s a s u b s t r a t e when c o m p a r e d t o an a v e r a g e c o n t e n t o f 3 0 k q
m
-3
o f o r g a n i c m a t e r i a l i n sewage s l u d g e . Three d i f f e r e n t methods were u s e d i n o r d e r t o d i m i s h t h e un-
c e r t a i n t y o f t h e l y t i c a c t i v i t y d e t e r m i n a t i o n due t o t h e c o m p l i c a t e d
A l l m e t h o d s p e r m i t t e d t h e d e t e c t i o n o f m i n i m a l amounts
substrate.
o f lysozyme w i t h standards.
The e x t r a c t i o n o f l y s o z y m e f r o m c u l t u r e s
o f sewage s l u d g e showed a r e c o v e r y o f 8 5 - 9 0 % when s t a n d a r d enzyme L y t i c a c t i v i t y c o u l d n o t b e d e t e c t e d i n sewa-
s o l u t i o n s w e r e added.
i n s u p e r n a t a n t s o f c u l t u r e s o r i n e x t r a c t s o f sewage s l u d -
ge s l u d g e ,
ge f r o m a l l p h a s e s i n v o l v i n g t h e r m o p h i l i c
growth.
The m e t h o d c h a r a c -
t e r i z e d b y t h e f l u o r o g e n i c s u b s t r a t e c o u l d be u s e d o n l y a f t e r d i l u t i o n o f t h e sample because o f t h e s t r o n g background f l u o r e s c e n c e o f t h e r a w sewage s l u d g e .
Thesincrease o f 4-methylbelliferone
release
was i n s i g n i f i c a n t . L y t i c a c t i v i t y was m e a s u r e d d u r i n g t h e p u l s e e x p e r i m e n t s w i t h
E.
coli,
P.
a e r u g i n o s a a n d 5. a u r e u s ,
h o g e n i c c e l l a was a c h i e v e d .
u n t i l inactivation o f the pat-
The g r e a t e s t
increase o f l y t i c a c t i v i t y
was f o u n d when t h e p u l s e s w e r e a p p l i e d i n t h e c a r b o n l i m i t e d g r o w t h phase,
r a t h e r t h a n i n any o t h e r p h a a e .
mely low.
B u t g e n e r a l l y t h i s was e x t r e -
During these pulse experiments d i f f e r e n t populations o f
on
aerobic thermophilic
s t r a i n s were i s o l a t e d and grown a t 65
n u t r i e n t agar.
i s o l a t i o n o f the i n d i v i d u a l s t r a i n s these pure
After
OC
s t r a i n s were s c r e e n e d f o r l y a o z y m e p r o d u c t i o n u s i n g t h e l y s o - p l a t e agar technique.
Amongst 43 d i f f e r e n t
a positive result.
a t r a i n a i s o l a t e d o n l y one g a v e
This i n d i c a t e d t h e presence o f s thermophilic
-
-
102
b a c t e r i a l s t r a i n during sludge treatment w i t h a p o t e n t i a l f o r releas i n g lysozyme.
However,
t h e a c t i v i t y was s o l o w t h a t i t c o u l d n o t
e v e n b e d e t e c t e d a f t e r e x t r a c t i o n o f t h e l y s o z y m e f r o m sewage s l u d g e . These e x p e r i m e n t s s u g g e s t t h a t : i n a c t i v a t i o n o f pathogenic microorganism i s a p u r e l y thermal process without the thermophilic
3.2.3
any s y n e r g i s t i c e f f e c t s f r o m
process culture.
Recontamination w i t h pathoqenic microorqanisms R e c o n t a m i n a t i o n e x p e r i m e n t s were c a r r i e d o u t a t 20 OC i n a 50 1
C O L O R r e a c t o r b y p u l s i n g d e f i n e d c o u n t s o f E. a n d S.
aureus i n t o t h e r e a c t o r .
ated aerobic thermophilic
coli,
P.
aeruqinosa
The p u l s e s w e r e added t o f u l l y t r e -
s l u d g e a n d t o s l u d g e w h i c h was p a r t i a l l y
b i o d e g r a d e d . The b i o d e g r a d a t i o n was d e f i n e d b y m o n i t o r i n g t h e o x y gen u p t a k e r a t e o f a e r o b i c t h e r m o p h i l i c c a r b o n l i m i t e d p h a s e was a t t a i n e d ,
t r e a t e d sludge:
when t h e
t h e s l u d g e was d e f i n e d a s t o t a l l y
biodegraded by the aerobic t h e r m o p h i l i c process. A f t e r 4 days o f i n c u b a t i o n c o l o n y f o r m i n g u n i t s o f a l l t e s t organisms i n c r e a s e d i n b o t h f u l l y and p a r t i a l l y b i o d e g r a d e d s l u d g e .
T h e i n c r e a s e was g r e a t e r i f t h e s l u d g e was o n l y p a r t i a l l y b i o d e g r a ded,
b u t t h e r e s u l t s d e m o n s t r a t e t h a t even a t o t a l b i o d e g r a d a t i o n
w i t h aerobic thermophilic
t r e a t m e n t cannot p r e v e n t subsequent growth
o f m e s o p h i l i c b a c t e r i a i n t h e s l u d g e ( F i g u r e 9). When t h e s l u d g e i s t r e a t e d o n l y by an a e r o b i c t h e r m o p h i l i c
pro-
a r e c o n t a m i n a t i o n w i t h p o t e n t i a l pathogens microorganisms i s
cess,
s t i l l possible,
e s p e c i a l l y i f t h e s l u d g e i s s t o r e d i n open v e s s e l s
before a p p l i c a t i o n t o a g r i c u l t u r a l land. I d e n t i c a l e x p e r i m e n t s were c a r r i e d o u t w i t h t h e same t e s t o r ganisms w i t h a e r o b i c t h e r m o p h i l i c / a n a e r o b i c ge.
t h e r m o p h i l i c sewage s l u d -
The a n a e r o b i c t r e a t m e n t was c a r r i e d o u t o n t h e l a b o r a t o r y s c a l e .
R e c o n t a m i n a t i o n d a t a w i t h t h i s d o u b l e t r e a t m e n t a r e shown i n f i g u -
re 10. The p u l s e e x p e r i m e n t s w i t h t h e s e o r g a n i s m s c l e a r l y show t h a t g r o w t h o f p a t h o g e n s a f t e r r e c o n t a m i n a t i o n i s p r e v e n t e d when t h e s l u d ge i s s u b m i t t e d t o a n a e r o b i c t r e a t m e n t a f t e r t h e a e r o b i c t h e r m o p h i l i c pretreatment. These r e s u l t s s u g g e s t t h a t t h e c o n c e p t o f h y g i e n i z a t i o n t h a t i n v o l v e s o n l y t h e i n a c t i v a t i o n o f p o t e n t i a l l y pathogens i s uncomplete and s h o u l d be r e f o r m u l a t e d .
-
103
-
.=- 1000 1
-
‘ L
E
i?
) ‘
STANDARD
100
10
1
0 0
20
80
.60
40
100
120
TIME [ h 1 F i g . 9. Number o f c o l o n y f o r m i n g u n i t s i n t r e a t e d s l u d g e ( f u l l symb o l s ) and p a r t i a l l y t r e a t e d s l u d g e ( o p e n s y m b o l s ) f o r E. c o l i ( s q u a r e s ) a n d S. a u r e u s ( t r i s n g l e s ) . E v e n i f c a r b o n l i m i t a t i o n i s achieved d u r i n g ATS treatment, substrates f o r p o t e n t i a l pathogenic microbes a r e s t i l l p r e s e n t i n t h e s l u d g e and a l l o w g r o w t h i n case t h a t a contamination take place.
-E
7
1000
L
ii
”
100
10
1
1 I
0 4 0
. . . . . . . . . . , . . 20
40
60
80
100
120
T
140
TIME h 1 F i g . 10. Number o f c o l o n y f o r m i n g u n i t s o f a e r o b i c t h e r m o p h i l i c / a n s e r o b i c t h e r m o p h i l i c b i o d e g r a d e d s l u d g e f o r E. c o l i ( s q u a r e s ) a n d s . 0 u r e u s ( t r i s n g l e s ) . The l o w r e d o x p o t e n t i a l o f t h e s l u d g e a f t e r t h e a n a e r o b i c t r e a t m e n t i n h i b i t s t h e grow o f p o t e n t i a l pathogens p u l s e d t h e t r e a t e d sludge.
-
.
104
-
Recontamination t e s t s w i t h selected p o t e n t i a l l y pathog e n i c microorganisms s h o u l d be i n t e g r a t e d i n t o t h e concepts f o r sludge hygienization tests.
3.3
D e w a t e r i n q c h a r a c t e r i s t i c s o f sewaqe a l u d q e I n a d d i t i o n t o h y g i e n i z a t i o n o f sewage s l u d g e ,
thermophilic se,
the aerobic
treatment g i v e s c e r t a i n o t h e r advantages.
f o r m u l a t e d a s an o b j e c t i v e f u n c t i o n o f t h i s w o r k ,
vement o f t h e d e w a t e r i n g c h a r a c t e r i s t i c s
o f t h e sludge.
ment o f t h e s l u d g e d e w a t e r i n g c h a r a c t e r i s t i c s f u l l y a e r o b i c and d u a l a e r o b i c / a n a e r o b i c ses.
Such enhancement
One o f t h e i s t h e improEnhance-
i s valid for both
sludge treatment proces-
i s sometimes c a l l e d s l u d g e c o n d i t i o n i n g .
Due t o t h e s l u d g e c o m p o s i t i o n a n d s t r u c t u r e ,
the water
frac-
t i o n c a n be d i v i d e d i n t o t h r e e p a r t s ( M g l l e r 1 9 6 6 ) :
. . .
f r e e water
70 X
( i n t e r s t i t i a l water)
r e t a i n e d water
+
c a p i l l a r y water
i n t r a c e l l u l a r water
+
22
adsorbed water
Sludge can be s e p a r a t e d f r o m t h e f i r s t
X
8 % f r a c t i o n by s e d i m e n t a -
from t h e second e i t h e r by c e n t r i f u g a t i o n o r p r e s s u r e f i l t r a -
tion,
t i o n and f r o m t h e t h i r d ,
by d r y i n g .
F o r measurement o f t h e s e p a r a -
t i o n o f water from t h e s o l i d f r a c t i o n , technique
(8aaerga 1986) i s o f t e n used.
compared u s i n g t h i s t e c h n i q u e .
a c a p i l l a r y suction time D i f f e r e n t s l u d g e s can be
Lower c a p i l l a r y s u c t i o n t i m e s i n d i -
c a t e enhanced d e w a t e r i n g c h a r a c t e r i s t i c s .
E x p e r i m e n t s w i t h b o t h ae-
r o b i c t h e r m o p h i l i c and raw s l u d g e s gave i n c o n s i s t e n t r e s u l t s f o r measurements o f t h e CST v a l u e s . red ten-timea
I n spite of this, hence,
F o r each sample,
t h e C S T was measu-
and t h e t w o l o w e s t a n d t w o h i g h e s t v a l u e s d i s c a r d e d . t h e r e l a t i v e s t a n d a r d d e v i a t i o n was 8 . 1
was u n a c c e p t a b l e .
% and,
A comparison o f d i f f e r e n t b a t c h e s o f raw
s l u d g e a n d A T S s l u d g e i s p r e s e n t e d i n f i g u r e 11. A l t h o u g h d a t a a r e e f f e c t e d by a r e l a t i v e h i g h s t a n d a r d d e v i a t i o n ,
the trend of
results
show t h a t a e r o b i c t h e r m o p h i l i c
t r e a t m e n t had a n e g a t i v e i n f l u e n c e
on t h e c a p i l l a r y s u c t i o n t i m e
c o n f i r m i n g p r e v i o u s works (Jewel1
e t al.
1982,
Morgan e t a l .
1984).
The e x p e r i m e n t s c a r r i e d o u t f o r t h e d e t e r m i n a t i o n o f s e t t l i n g c h a r a c t e r i s t i c s gsve r e s u l t s t h a t a r e c o n t r o v e r s i a l w i t h t h e CST values (Figure 12).
CST v a l u e s o f 80.1
s f o r r a w a n d 245.4
s for
-
105
-
n
BATCH 2
BATCH 1
BATCH 3
F i g . 11. C a p i l l a r y s u c t i o n t i m e b e f o r e ( m ) thermophilic treatment f o r d i f f e r e n t sludge c u l t i v a t i o n c o n d i t i o n s . The v a l u e s o b t a i n e d d i c a t e a d e c r e a s e o f d e w a t e r a b i l i t y w i t h an t h i s c o n c l u s i o n i s n o t r e l i a b l e , because o f t i c a l v a l i d i t y o f t h e C S T method.
BATCH L
n BATCH 5
and a f t e r ( 0 1 a e r o b i c batches a t d i f f e r e n t w i t h t h i s method i n A T S t r e a t m e n t . However, unsatisfactory analy-
100
>
v,
90
80
70 60
50 40 30
! 0
i
10
20
30
40
50
60
70
80
90
100
TIME 1 h 1 F i g . 12. Time c o u r s e f o r t h e s e t t l e d v o l u m e o f r a w s l u d g e ( m ) a n d a e r o b i c t r e a t e d s l u d g e ( o 1. A v e r a g e v a l u e s o f t h r e e b a t c h f r o m t h e 7 1 b i o r e a c t o r . The s e t t l i n g c h a r a c t e r i s t i c s a r e i m p r o v e d by t h e ATS treatment.
t r e a t e d sludge,
106
i n d i c a t e d t h a t poor dewatering c h a r a c t e r i s t i c f o r
t r e a t e d s l u d g e s h o u l d be expected, contrary.
-
b u t s e t t l i n g data demonstrate the
S i m i l a r u n c e r t a i n c o r r e l a t i o n s between s e t t l i n g t i m e and
r e s u l t s o f CST-tests
are reported f o r aerobic thermophilic sludges
( B r e i t e n b G c h e r 1985,
B r e i t e n b i c h e r 1983). F o r t h i s reason,
termination o f settling characteristics
t h e de-
was p r e f e r r e d t o t h e C S T -
t e s t f o r process optimization.
X
D a t a c o n c e r n i n g m e t a b o l i c a c t i v i t y showed t h a t 70-80 microbiological activity
o f the
r e s u l t s from degradation o f p a r t i c u l a t e
matter,
s o t h a t a change i n s l u d g e p a r t i c u l a t e m a t t e r i s t o be e x -
pected.
The i n t e r a c t i o n b e t w e e n i m p r o v e d s e t t l i n g c h a r a c t e r i s t i c s
a n d s l u d g e s o l i d s d e g r a d a t i o n was d e m o n s t r a t e d b y d e t e r m i n a t i o n o f the p a r t i c l e size d i s t r i b u t i o n during the treatment.
F i g u r e 1 3 shows
t h e changes i n t h e r e l a t i v e p a r t i c l e s i z e d i s t r i b u t i o n f o r d i f f e r e n t size classes o f s o l i d s during aerobic thermophilic
growth,
whilst
F i g u r e 1 4 shows t h e r e l a t i v e c h a n g e s i n t h e m e a s u r e d s i z e r a n g e .
4.0
5.0 Yo
c
f
I
0,
3.5
z
Y
4.5 %
I
LL
3 0
3.0 2.5
4.0
/o '
0 I-
3
m ti IF L3 W
2.0
E
ul
3.5
1.5
o/o
1 .o 3.0 %
0.5
0 0
2.5o'?
0
5
10
15
20
25
TIME [ h l F i g . 1 3 . Oxygen u p t a k e r a t e ( 0 ) a n d r e l a t i v e p a r t i c l e s i z e d i s t r i b u t i o n f o r 3 d i f f e r e n t p a r t i c l e c l a s s e s ( 4 9 0 p m : m ; 3 1 p m : o ; 12 pm: + ) during a fed batch c u l t i v a t i o n i n the laboratory scale bioreact o r under o p t i m a l c o n d i t i o n : s t i r r e r speed 1500 m i n - 1 , a e r a t i o n r a The c h a n g e s i n t h e d i s t r i t e 1.5 vvm, pH 7 a n d t e m p e r a t u r e 6 5 OC. bution correlate with microbial metabolic a c t i v i t y , i n d i c a t i n g the a c t i v e a n d s e l e c t i v e d e g r a d a t i o n o f t h e non s o l u b l e f r a c t i o n .
-
107
-
60 50 40
30
20 10 W
0
.-l
u t, a
-1 0
[r
a -20 4 -30 -40
PRACTICLE SIZE I ,urn 1 F i g . 1 4 . Changes o f p a r t i c l e s i z e d i s t r i b u t i o n r e l a t i v e t o r a w s l u d ge a t d i f f e r e n t c u l t i v a t i o n t i m e s ( 5 . 5 h:.; 8 . 0 h : o ; 10.5 h : + ) during a fed batch c u l t i v a t i o n i n the laboratory scale bioreactor u n d e r o p t i m a l c o n d i t i o n : s t i r r e r s p e e d 1 5 0 0 min-1, a e r a t i o n r a t e 1 . 5 v v m pH 7 a n d t e m p e r a t u r e 6 5 OC. P a r t i c l e s w i t h a l o w d i a m e t e r a r e a t t a c k e d by t h e r m o p h i l e s and a g g l o m e r a t e t o p a r t i c l e s w i t h a large diameter.
The p a r t i c l e s j z e d i s t r i b u t i o n c h a n g e d d u r i n g t h e c u l t i v a t i o n from small t o larger particles. l a g phase o f t h e t h e r m o p h i l i c
Some c h a n g e s e v e n o c c u r e d d u r i n g t h e
culture,
supporting the hypothesis
t h a t enzymes w h i c h a r e n o t d e r i v e d f r o m t h e r m o p h i l i c a l s o present i n the sludge, f i c a t i o n process.
However,
but
t h e most i m p o r t a n t c h a n g e s w e r e d e t e c t e d
during growth o f thermophiles. a t t a c k e d by t h e r m o p h i l e s
microbes,
p l a y an i m p o r t a n t r o l e i n t h e s i z e m o d i P a r t i c l e s i n t h e range 1 t o 2 0 . m
are
and p a r t i a l l y m e t a b o l i z e d w i t h a n i n c r e a s e
o f t h e p a r t i c l e s b e t w e e n 5 0 and 6 0 0 p m due t o a g g l o m e r a t i o n .
As c o n -
sequence o f t h e p r o g r e s s i o n t o l a r g e r s i z e d p a r t i c l e s ,
.
s e t t l i n g c h a r a c t e r i s t i c s o f t h e s l u d g e a r e improved by the aerobic thermophilic treatment
Another
i m p o r t a n t consequence i s t h e change i n t h e r e l a t i v e s u r -
face area o f the p a r t i c u l a t e matter,
as d e s c r i b e d i n F i g u r e 15.
-
108
. 0.56
4. 0
i
2
E hr
3.5
. 0.54
Y 0
LL 3
T
3.0 2.5
E
. 0.52
2.0
. 0.50
1 .5 1 .o
. 0.48
0.5
. 0.46
0.0
0
5
15
10
20
25 TIME [ h I
F i g . 15. S p e c i f i c s u r f a c e a r e a ( m ) a n d o x y g e n u p t a k e r a t e ( 0 ) dur i n g a fed batch c u l t i v a t i o n i n the laboratory scale bioreactor at o p t i m u m c o n d i t i 0 n : s t i r r e r s p e e d 1 5 0 0 m i n - 1 , a e r a t i o n r a t e 1 . 5 vvm, pH 7 a n d t e m p e r a t u r e 6 5 OC. The d e c r e a s e o f t h e s p e c i f i c s u r f a c e i s a consequence o f t h e s h i f t e d p a r t i c l e s i z e d i s t r i b u t i o n .
Owing t o t h e c h a n g i n g s i z e d i s t r i b u t i o n , o f t h e p a r t i c u l a t e m a t t e r decreased by 16
the specific surface
Z d u r i n g t r e a t m e n t . The
d e c r e a s e was m o s t s i g n i f i c a n t d u r i n g t h e a c t i v e p h a s e o f t h e r m o p h i l i c microorganism growth.
The r e d u c e d s p e c i f i c s u r f a c e a r e a c o r r e s -
ponds w i t h t h e i n c r e a s e d C S T o b t a i n e d d u r i n g a e r o b i c t h e r m o p h i l i c t r e a t m e n t and i m p l i e s an i n c r e a s e i n c a p i l l a r y a n d b o u n d w a t e r r e l a t i v e t o f r e e water
(Baserga 1984).
f o r aerobic thermophilic
The d e w a t e r i n g c h a r a c t e r i s t i c s
sludge a f t e r e i t h e r a pretreatment o f a f u l l
b i o d e g r a d a t i o n process has two dominant aspects:
.
t h e i n c r e a s e d p a r t i c l e s i z e has a p o s i t i v e i n f l u e n c e on s l u d g e d e w a t e r i n g e i t h e r by g r a v i t y s e t t l i n g o r c e n t r i -
.
fugation t h e decreased s p e c i f i c s u r f a c e has a n e g a t i v e i n f l u e n c e on t h e s e p a r a t i o n o f b o u n d w a t e r e i t h e r b y f i l t r a t i o n o r drying.
The n e g a t i v e i n f l u e n c e o n l y p l a y s a r o l e when t h e s l u d g e i s dryed a f t e r f u l l biodegradation.
I n a l l o t h e r cases,
the benefit o f
aerobic thermophilic
-
109
s l u d g e t h a t a c c r u e s i s enhanced d e w a t e r i n g cha-
racteristics.
4
CONCLUSIONS The d e v e l o p m e n t o f
an e f f i c i e n t
process f o r the treatment o f
w a s t e sewage s l u d g e i n v o l v e s d e f i n i t i o n a n d q u a n t i f i c a t i o n o f o b j e c tive
functions.
I n t h e c a s e o f a m i c r o b i o l o g i c a l p r o c e s s i n t h e was-
tewater treatment industry, t i o n s between s c i e n t i f i c
t h i s step requires synergistic
authorities,
h o r i t i e s and p l a n t c o n s t r u c t o r s .
interac-
p o l i t i c a l and l e g i s l a t i v e a u t -
R e p o r t e d r e s u l t s and u n c e r t a i n ob-
j e c t i v e s a t t e s t s t h a t t h e s y n e r g i s t i c e f f e c t i s f a r from f i n d i n g a solution.
D i f f e r e n t sources f o r a q u a l i f i e d d e f i n i t o n o f o b j e c t i v e s
f o r o p t i m i z a t i o n were c o n s i d e r e d .
The a p p r o a c h i n v o l v e d i n t e r v i e w s
and d i s c u s s i o n s w i t h p l a n t o p e r a t o r s , suthorities.
c o n s t r u c t o r s and r e g u l a t i n g
The p r o d u c t i o n o f a minimum amount o f t h e r m o p h i l i c b i o -
mass w i t h maximum h e a t p r o d u c t i o n i s t h e m o s t i m p o r t a n t o b j e c t i v e . O t h e r o b j e c t i v e i n c l u d e m a x i m i z a t i o n o f d e g r a d a t i o n p e r f o r m a n c e , enz y m a t i c a c t i v i t i e s and t h e improvement o f d e w a t e r i n g c h a r a c t e r i s t i c s . The i n f l u e n c e o f t h e a e r o b i c t h e r m o p h i l i c
p r o c e s s as a p r e t r e a t m e n t
process w i t h a f o l l o w i n g anaerobic d i g e s t i o n process has a l s o t o be These a d d i t i o n a l o b j e c t i v e s c a n b e i n t e g r a t e d i n t h e i n a c -
considered.
t i v a t i o n o f p o t e n t i a l l y p a t h o g e n i c o r g a n i s m s t h a t a r e p r e s e n t and c o n c e n t r a t e d i n t h e sewage s l u d g e .
The h y g i e n i z a t i o n o f t h e s l u d g e
i s t h e o n l y t a r g e t t h a t i s f o r m u l a t e d by t h e S w i s s l a w . Aerobic
thermophilic
take the greatest
s l u d g e t r e a t m e n t p l a n t s o p e r a t i n g a t 65 O C
a d v a n t a g e o f maximum t h e r m o p h i l i c m i c r o b i a l r e s p i -
r a t o r y a c t i v i t y and a s s o c i a t e d h e a t p r o d u c t i o n . t h a n 60 cy.
OC
a r e u n i n t e r e s t i n g because o f l o w h y g i e n i z a t i o n e f f i c i e n -
Temperatures g r e a t e r t h a n 70
t o m i c r o b i a l reaources. process efficiency sary,
Temperatures l e s s
OC
are too r e s t r i c t e d w i t h respect
The pH v a l u e i s n o t a r e l e v a n t f a c t o r
p r o v i d e d i t exceeds 6.8
a l t h o u g h pH measurement
for
pH r e g u l a t i o n i s u n n e c e s -
i s an i m p o r t a n t p r o c e s s i n d i c a t o r .
Ae-
r o b i c t h e r m o p h i l i c m i c r o o r g a n i s m s a r e i n a c t i v e s t pH v a l u e s b e t w e e n 5 and 6,
b u t s u c h pH v a l u e s o f t e n o c c u r i n u n t r e a t e d w a s t e s l u d g e .
Proteolytic a c t i v i t y i s the only extracellulsr
enzymatic a c t i v i t y
associated with the growth o f thermophilic process microbes, always d e t e c t e d d u r i n g an e f f e c t i v e t r e a t m e n t .
that i s
I t h a s an a c t i v i t y op-
t i m u m i n v i t r o a t 80 OC. P r o t e a s e s p r e s e n t i n t h e r a w s l u d g e a r e in a c t i v e a t t h i s temperature.
Therefore,
i t i s possible t o quantify
- 110
-
t h e p e r f o r m a n c e o f a t r e a t m e n t u n i t by m e a s u r i n g t h e p r o t e o l y t i c a c t i v i t y a t t h i s temperature. E x t r a c e l l u l a r p r o t e a s e s a r e t h e enzymes t h a t a r e a c t i v e d u r i n g normal o p e r a t i n g c o n d i t i o n s , b u t t h e presence o f s t a r c h i n s l u d g e rapidly induces t h e production of amylases. Experiments a t l a b o r a t o r y s c a l e COLOR b i o r e a c t o r s o f 7 and 50 1 i n d i c a t e t h a t d e c r e a s e s i n a c t i v i t y d u r i n g b a t c h and fed b a t c h c u l t i v a t i o n s a r e d u e t o c a r b o n l i m i t a t i o n . The h e a t i n a c t i v a t i o n o f pot e n t i a l l y p a t h o g e n i c m i c r o o r g a n i s m s was a p u r e t e m p e r a t u r e e f f e c t w i t h no s y n e r g i s t i c e f f e c t s from t h e t h e r m o p h i l i c p o p u l a t i o n .
Neit-
h e r a n t i m i c r o b i a l a g e n t s n o r l y s o z y m e w e r e d e t e c t a b l e i n s l u d g e undergoing treatment,
a l t h o u g h one t h e r m o p h i l i c s t r a i n t h a t was i s o -
lated exhibited l y t i c potential.
Pulse experiments with potentially
pathogenic microorganisms demonstrate t h a t t h e i r i n a c t i v a t i o n is s l o w e d down by s l u d g e c o m p o n e n t s t h a t e x e r c i s e a p r o t e c t i v e a c t i o n . A g r e a t advantage r e s u l t i n g from t h e u s e o f a e r o b i c thermophi-
l i c microorganisms is t h e enhancement o f s l u d g e s e t t l i n g c h a r a c t e -
ristics.
T h i s e x t r a b e n e f i t is due t o a d e c r e a s e o f s m a l l p a r t i c l e s
a n d a n i n c r e a s e o f p a r t i c l e s l a r g e r t h a t 3 0 ,urn d u r i n g t h e p r o c e s s . I n t h e f u t u r e , c o n t i n u i n g i n c r e a s e s i n s l u d g e p r o d u c t i o n and i n c r e a s e d a w a r e n e s s o f e n v i r o n m e n t a l p r o b l e m s may s t i m u l a t e t h e r e s e a r c h and development of t e c h n i c a l - s c a l e using thermophilic microorganisms.
sludge treatment processes
Should t h i s occur, t h e present
work w i l l g i v e p r a c t i c a l b a c k g r o u n d knowledge f o r t h e d e s i g n and c o n s t r u c t i o n of sludge treatment processes t h a t is not subjected t o historical prejudice.
REFERENCES 1
U.
Eaier
Zur P h y s i o l o g i e t h e r m o p h i l e r B a c i l l i .
Diss E T H Z G r i c h ,
Nr 8423. i1987). 2
3
4 5 6
U. Baserga,Der
E i n f l u s s der anaeroben Schlammstabilisation auf d i e F a u l s c h l a m m e n t w l s s e r b a r k e i t . Diss E T H N r 7 5 4 2 , ( 1 9 8 4 ) . P.L. E e r g q u i s t , D . R . L o v e , J.R. C r o f t , M.E. D a n i e l a n d W . H . Morgan, G e n e t i c s and p o t e n t i a l a p p l i c a t i o n s o f t h e r m o p h i l i c and e x t r e m e l y t h e r m o p h i l i c m i c r o o r g a n i s m s . B i o t e c h n o l o g y a n d Genet i c E n g i n e e r i n g r e v i e w s 5:199-24, (1987). M . E o m i o , H y g i e n i s i e r u n g v o n K l a r s c h l a m m . 20. V S A - F o r t b i l d u n g s k u r s , Klarschlamm: Behandlung-Verwertung-Entsorgung, Engelberg,
(1968). M. Eomio, E i o p r o c e s s development f o r a e r o b i c t h e r m o p h i l i c s l u d g e t r e a t m e n t . Diss E T H Z i r i c h N r 9 1 5 9 , ( 1 9 9 0 ) . M. Eomio, 8 . S o n n l e i t n e r and A. F i e c h t e r , Growth and b i o c a t a l y t i c a c t i v i t i e s o f a e r o b i c t h e r m o p h i l i c p o p u l a t i o n s i n sewage sludge. Appl Microbiol Eiotechnol 32:356-362, (1989).
7 8
9
10
11 12
13
14 15
16
17
18 19 20
21 22
23
24
25
111 -
K. B r e i t e n b i c h e r , A e r o b - t h e r m o p h i l e S t a b i l i s i e r u n g von Abwasserschlammen H o h e n h e i m e r A r b e i t e n , R e i h e A g r a r t e c h n i k , ( 1 9 8 3 ) . K. B r e i t e n b d c h e r , E n g i n e e r i n g and p r a c t i c a l e x p e r i e n c e s o f a u t o In: I n a c t i v a t i o n o f micheated aerobic-thermophilic d i g e s t i o n r o o r q a n i s m s i n sewage s l u d g e b y s t a b i l i s a t i o n p r o c e s s e s . D . S t r a u c h , A.H. H a v e l a a r a n d P. L ’ H e r m i n e ( e d s ) , E l s e v i e r A p p l i e d S c i e n c e P u b l i s h e r s , L o n d o n New Y o r k 1 9 2 - 2 0 5 , ( 1 9 8 5 ) . BUWAL S w i s s F e d e r a l D e p a r t m e n t o f t h e I n t e r i o r , E n v i r o n m e n t a l P r o t e c t i o n Agency, p e r s o n a l c o m m u n i c a t i o n , ( 1 9 9 0 ) . Camp, D r e s s e r , McKee, E n g i n e e r i n g a n d e c o n o m i c a s s e s s m e n t o f autoheated thermophilic aerobic d i g e s t i o n w i t h a i r aeration. EPA R e p o r t - 6 0 0 / 2 - 8 1 1 7 1 1-39, (1981). Jewell, Thermophilic aerobic digestion o f R.J. Cummings and W . J . d i a r y waste. I n ; f o o d f e r t i l i z e r and a g r i c u l t u r a l r e s i d u e s , L o e h r R C ( e d ) , Ann A r b o r S c i e n c e P r e s s , Ann A r b o r 6 3 7 , ( 1 9 7 7 ) . A . E . E r a l p J.B. F a r r e l , R e c e n t d e v e l o p m e n t s i n t h e r m o p h i l i c s l u d g e d i g e s t i o n i n t h e U n i t e d S t a t e s . US E n v i r o n m e n t a l P r o t e c t i o n Agency EPA/600/D-86/073, (1986). R.G. Feachem, D . J . B r a d l e y , H . G a r e l i k a n d D.D. Mara, S a n i t a t i o n a n d d i s e a s e . H e a l t h a s p e c t s o f w a s t e w a t e r management W o r l d b a n k S t u d i e s i n V a t e r S u p p l y a n d S a n i t a t i o n 3, ( 1 9 8 3 ) . F e d e r a l D e p a r t m e n t o f t h e I n t e r i o r , K l a r s c h l a m m v e r o r d n u n g vom 8. A p r i l (1981)/814.225.23. EDMZ B e r n , 1 1 9 8 1 ) . G. Hamer a n d C . A . Mason, F u n d a m e n t a l a s p e c t s o f w a s t e sewage s l u d g e t r e a t m e n t : M i c r o b i a l s o l i d s b i o d e g r a d a t i o n i n an a e r o b i c t h e r m o p h i l i c semi-continuous system. B i o p r o c e s s E n g i n e e r i n g 2 ~ 6 9 - 7 7 , (1987). H.E. Hammel, H y g i e n i s c h e U n t e r s u c h u n g e n :her d i e W i r k u n g v o n V e r f a h r e n zur Kompostierung von Entwassertem Klarschlamm und zur a e r o b - t h e r m o p h i l e n S t a b i l i s i e r u n g von Fldssigschlamm. D i s s Just u s L i e b i g - U n i v e r s i t a t Giessen, (1983). W.J. J e w e l l , R . M . K a b r i c k a n d J . S . Spada A u t o h e a t e d , a e r o b i c t h e r m o p h i l i c d i g e s t i o n w i t h a i r a e r a t i o n . E P A P r o j e c t Summary, (1982). R M. K a b r i c k a n d W.J. J e w e l l F a t e o f p a t h o g e n s i n t h e r m o p h i l i c a e r o b i c s l u d g e d i g e s t i o n . W a t e r Res 1 6 : 1 0 5 1 - 1 0 6 0 , (1982). T . K e n k e l and J.M. Trela, P r o t e i n turnover o f t h e extreme t h e r (1979). m o p h i l e Th. a q u a t i c u s . J. B a c t e r i o l 1 4 0 : 5 4 3 - 5 4 6 , G . L a n g e l a n d , 6. P a u l s r u d a n d B.E. Haugan, A e r o b i c t h e r m o p h i l i c s t a b i l i s a t i o n . I n : I n a c t i v a t i o n o f m i c r o o r g a n i s m s i n sewage s l u d H a v e l a a r , P. ge b y s t a b i l i s a t i o n p r o c e s s e s . D. S t r a u c h , A.H. L ’ H e r m i t e ( e d s ) , E l s e v i e r A p p l i e d s c i e n c e p u b l i s h e r s , London New Y o r k 3 8 - 4 7 , ( 1 9 8 5 ) . C . L e n t n e r , G e i g y S c i e n t i f i c T a b l e s . V o l 1, u n i t s o f m e a s u r e m e n t , body f l u i d s , c o m p o s i t i o n o f t h e body, n u t r i t i o n , (1981). C.A. Mason, G . Hamer a n d J . D . B r y e r s , The d e a t h a n d l y s i s o f microorganisms i n environmental processes FEMS M i c r o b i o l o g y Rewiews 3 9 : 3 7 3 - 4 0 1 , (1986). U. M o l l e r , S c h l a m m e n t w a s s e r u n g a l s t e c h n i s c h - w i r t s c h a f t l i c h e s Energieproblem. S t u t t g a r t e r B e r i c h t e zur Siedlunggswasserwirts c h a f t 18:265-280, (1966) Gunson, M.H. L i t t l e w o o d a n d R . W i n s t a n l e y , AeS.F. Morgan, H . G . r o b i c t h e r m o p h i l i c d i g e s t i o n o f s l u d g e u s i n g a i r . I n : Sewage Sludge S t a b i l i s a t i o n and D i s i n f e c t i o n , A. B r u c e ( e d ) , E l l i s Horwood L i m i t e d , C h i c h e s t e r 2 7 8 - 2 9 2 , ( 1 9 8 4 ) . H. N e b i k e r , F l b s s i g r o t t e a l a G r u n d l a g e s t a b i l e r S c h l a m m h y g i e n i s i e r u n g d u r c h n a t G r l i c h e n A n t a g o n i s m u s . C h e m i s c h e Rundschau, (19A1).
26
27
28
29
30
31
112
-
H.U. S c h w e i z e r , R e c h t l i c h e G r u n d l a g e n d e r K l a r s c h l s m m e n t s o r g u n g . 20. V S A - F o r t b i l d u n g s k u r s , K l a r s c h l a m m : B e h a n d l u n g - v e r w e r t u n g Entsorgung, Engelberg, (1988). 8. S o n n l e i t n e r , B i o t e c h n o l o g y o f t h e r m o p h i l i c b a c t e r i a growth, p r o d u c t s and a p p l i c a t i o n . Advances i n B i o c h e m i c a l E n g i n e e r i n g / B i o t e c h n o l o g y 28:70-138, (1983). D. S t r a u c h , H.E. Hammel a n d W. P h i l i p p , I n v e s t i g a t i o n s on t h e h y g i e n i c e f f e c t o f s i n g l e s t a g e and t w o - s t a g e a e r o b i c - t h e r m o p h i l i c s t a b i l i s a t i o n o f l i q u i d raw s l u d g e In: Inactivation o f m i c r o o r g a n i s m s i n sewage s l u d g e b y s t a b i l i s a t i o n p r o c e s s e s . D. S t r a u c h , A.H. H a v e l a a r , a n d P. L ’ H e r m i t e ( e d s ) , E l s e v i e r App l i e d s c i e n c e p u b l i s h e r s , L o n d o n New Y o r k 48-63, (1985). H . Wassen, H y g i e n i s c h e U n t e r s u c h u n g e n g b e r d i e V e r w e n d b a r k e i t d e r U m w a l r b e l u f t u n g (System FUCHS) z u r A u f b e r e i t u n g v o n f l u s s i g e n A b f a l l e n a u s dem kommunalen u n d l a n d w i r s c h a f t l i c h e n B e r e i c h . D i s s J u s t u s L i e b i g - U n i v e r s i t a t Giessen, (1975). N.E. W e l k e r a n d L.L. C a m p b e l l , P u r i f i c a t i o n a n d p r o p e r t i e s o f a l y t i c enzyme f r o m i n d u c e d c u l t u r e s o f B a c i l l u s s t e a r o t h e r m o p h i (TP-1). B a c t e r i o l o g i c a l P r o c A m S O C M i c r o b i o l 66:126-126, lus m 6 6 ) . N. W i t t e k i n d , D e t e r m i n a t i o n o f E n t e r o b a c t e r i a c e a e i n sewage s l u d ge. I n p r e p a r a t i o n , ( 1 9 9 0 ) .
-
ELIMINATION OF SPECIAL BACTERIA FROM TREATMENT EFFLUENT BY CILIATES
M.
M A C E K a n d P. H A R T M A N
H y d r o b i o l o g i c a l I n s t i t u t e , C z e c h o s l o v a k Academy o f S c i e n c e s 370 (15 E e s k d B u d G j o v i c e , C z e c h o s l o v a k i a
INTRtIDUCTION Activated-sludge
treatment i s the best technology f o r the e l i -
m i n a t i o n o f o r g a n i c p o l l u t i o n from waste waters. ciency of
H o w e v e ~ , t h ee f f i -
t h e t r e a t m e n t may b e l o w i f t h e y c o n t a i n s p e c i f i c s u b s t r a -
t e s which a r e degradable o n l y by d i s p e r s e d g r o w i n g b a c t e r i a w i t h very low growth rate. t i v e p r e d a t o r s (e.g.
These b a c t e r i a c o u l d b e e l i m i n a t e d b y e f f e c rotifers)
and nondegraded p o l l u t i o n l e a v e s t h e
system o r , t h e s e substances as t h e dominant s u b s t r a t e promote g r o w t h o f d i s p e r s i o n a n d t h e r e f o r e t h e e f f l u e n t i s p o l l u t e d by b a c t e r i a . C i l i a t e s c o u l d s u p p r e s s t h e s e p r o b l e m s c a u s e d b y t h e means o f t w o mechanisms w h i c h a f f e c t t h e b a c t e r i a l c o m m u n i t y as:
1. a l t e r n a t i v e p r e y ,
2. induced f l o c c u l a t i o n . 1. A l t e r n a t i v e p r e y The a s s u m p t i o n o f m e c h a n i c a l s e l e c t i o n o f o p t i m a l f o o d b y c i l i a t e s has n o t been d i s p r o v e d y e t
111.
S e l e c t i o n o f a p a r t i c u l a r volume
or d i a m e t e r range o f p a r t i c l e s m i g h t be caused by t h e i r mechanical p r o p e r t i e s and t h e o r e t i c a l l y c o u l d e l i m i n a t e t h e p o s s i b i l i t y o f d i f f e . r e n t i a t i o n among b a c t e r i a l c e l l s . b a c t e r i a should be ingeated. were s l i g h t l y
Thus,
a r a t h e r wide spectrum o f
T h i s was a l s o p r o v e d w i t h b a c t e r i a w h i c h
t o x i c f o r c i l i a t e s upon monoxenic c u 1 , t i v a t i o n b u t p r o -
v i d e d g r o w t h i f t h e y were i n g e s t e d a l o n g w i t h s u i t a b l e f o o d (Escher i c h i a c o l i [ 2 1 , S a l m o n e l l a t y p h i m u r i u m 131 ).
However,
t h i s problem
c a n b e s t u d i e d more t h o r o u g h l y now o w i n g t o t h e d e v e l o p m e n t o f a d i r e c t m e t h o d f o r e s t i m a t i o n o f p r o t o z o a n f e e d i n g r a t e s 141.
2.
Induced f l o c c u l a t i o n The e f f e c t o f c i l i a t e s on t h e f l o c c u l a t i o n o f b a c t e r i a a n d a t a -
b i l i z a t i o n o f f l o c c u l a t e d b i o c e n o a i s h a s b e e n s t u d i e d f o r many y e a r s
-
114
-
from t h e v i e w p o i n t o f technology 151,
m a t h e m a t i c a l m o d e l l i n g 161,
a n d m i c r o b i a l e c o l o g y [7]. P r e d a t i o n p r e s s u r e o f p r o t o z o a m i g h t i n duce t h e development o f f l o c s or o t h e r m o r p h o l o g i c a l t y p e s o f b a c t e r i a l growth r e s i s t i n g p r e d a t i o n a t t a c k ( f i l a m e n t s ,
zoogleas etc.),
though pure c u l t u r e s o f these b a c t e r i a are dispersed-growing. o t h e r hand,
On t h e
t h e promotion o f a d i s p e r s e d growth o f f a s t growing bac-
t e r i a was t h e o r e t i c a l l y loaded systems,
too.
p r e d i c t e d and p r a c t i c a l l y v e r i f i e d i n o v e r -
The p r o t o z o a n e f f e c t on t h e d e v e l o p m e n t o f
d i f f e r e n t m o r p h o l o g i c a l t y p e s o f b a c t e r i a i s supposed t o be caused b y c i l i a t e c o n t r o l o f t h e b a c t e r i a l community s t r u c t u r e 1 5 1 . Continuous
-
flow c u l t i v a t i o n
T h e s y s t e m s were o r i g i n a l l y i n o c u l a t e d by t h e s t o c k b a c t e r i a l
s t r a i n NTA-1
i s o l a t e d i n o u r l a b o r a t o r y 181.
The s t o c k c u l t u r e o f
c i l i a t e C o l p i d i u m campylum ( S T O K E S ,
t h e free-swimming
1 8 8 6 ) was u s e d
191. Two c o l u m n t a n k s w e r e u s e d f o r t h e e x p e r i m e n t s .
These s y s t e m s
w e r e c o n t i n u o u s l y f e d ( p e r i s t a l t i c pump) b y a n u t r i e n t medium ( T a b . 1 ) c o n t a i n i n g n i t r i l o t r i a c e t i c a c i d aa t h e s o l e o r g a n i c c a r b o n a n d n i t r o g e n source.
The o u t f l o w was p e r i o d i c a l b y s i p h o n a c t i o n r e a -
c h i n g t h e maximum volume flowed a t a time.
(480 m l ) ,
a n d one s i x t h o f i t (80 m l )
out-
A e r a t i o n a n d t h e s t i r r i n g o f t h e s y s t e m s were a-
c h i e v e d by a i r b u b b l i n g t h r o u g h t h e column f o o t
or by a i r l i f t c i r -
c u l a t i o n o f a c u l t i v a t i o n m i x t u r e f r o m t h e f o o t u p t o t h e maximum volume l e v e l .
The p o s i t i v e p r e s s u r e on a l l o u t f l o w s f r o m t h e s y s t e m
kept the c u l t u r e protozoan-free,
or w i t h j u s t a s i n g l e i n o c u l a t e d
protozoan speciea. During the f i r s t p e r i o d o f c u l t i v a t i o n (a)
biomass l e f t t h e
system as mixed l i q u o r o u t l e t ( l i k e a chemostat).
Then d a i l y b i o m a s s
w a s t i n g was a d d e d b e c a u s e m i x i n g c a u s e d b y a i r l i f t waa n o t a u f f i c i e n t t o p r e v e n t biomass accumulation i n t h e systems (b, m i x i n g was u s e d a g a i n a t t h e e n d o f e x p e r i m e n t
( e , f).
TABLE 1 B a s a l n u t r i e n t medium
NTA NaOH
(mg .l-l)
300 90
c).
A i r
-
-
115
a
b
C
Dilution rate (d-l)
0.5
0.5
D a i l y wasting ( V W / y m a x l
0
0
0.06
0.11
Denotation
C
or9
l o a d i n g (9.1-
.
‘1
d
d
e
f
0.5
0.6
0.5
1.0
1/5
1/5
1/5
1/5
0.11
0.20
0.14
0.70
E v a l u a t i o n o f biomass g r o w t h The number o f N T A - 1
s t r a i n colony
f o r m i n g u n i t s (CFU) was e s -
t i m a t e d on a g a r p l a t e s w i t h N T A medium o n l y , number on a g a r w i t h 200 m g . 1 - l
and t h e t o t a l
o f yeast e x t r a c t
(CFU)
(Difco) or 100-fold
d i l u t e n u t r i e n t agar ( D i f c o ) . T o t a l b i o m a s s was d e t e r m i n e d b y means o f t h e d i c h r o m a t e c h e m i c a l o x y g e n demand
COD
[lo]
from which t h e o r g a n i c carbon c o n t e n t
o f t h e b i o m a s s was c a l c u l a t e d u s i n g t h e q u o t i e n t C O D / C = 2 . 8 1 g. or9 -1 g The d i s p e r s e d p o r t i o n o f b i o m a s s was e s t i m a t e d a f t e r r e m o v i n g
.
f l o c c u l a t e d biomass by low-speed c e n t r i f u g a t i o n
(2000 m i n - l ,
S o l u b l e C O D c o n t e n t was d e t e r m i n e d i n a s u p e r n a t a n t
5 min).
a f t e r 5 minutes
o f c e n t r i f u g a t i o n a t 1 2 500 m i n - l .
The number o f c i l i a t e s was d e t e r m i n e d i n p r e s e r v e d s a m p l e s (Uterrnohl’s
-
DaFano s o l u t i o n s ) b y d i r e c t m i c r o s c o p i c c o u n t s u s i n g
1 m l Kolkwitz’s
s e d i m e n t a t i o n chambers.
was assumed t o b e 1 0 0 m g . m l - I
The o r g a n i c c a r b o n c o n t e n t
o f volume biomass 1111,
w h i c h was c a l -
c u l a t e d from c e l l dimensions u s i n g t h e e q u a t i o n f o r t h e volume of ellipsoid.
F o r t h e measurement o f c i l i a t e s u s p e n s i o n f e e d i n g r a t e s ,
the b a c t e r i a c e l l s from the c u l t i v a t i o n u n i t without f l u o r e s c e n t l y l a b e l l e d (41. r i a f o r 10 minutes, enumerated.
fixed,
The ( v o l u m e )
p r o t o z o a were
C i l i a t e s were l e f t w i t h l a b e l l e d b a c t e and t h e number o f i n g e s t e d p a r t i c l e s was
c l e a r i n g r a t e was e s t i m a t e d
111.
The c i l i a -
t e u p t a k e r a t e o f b a c t e r i a was c a l c u l a t e d f r o m c l e a r l p g r a t e s u p p o s i n g f e e d i n g on d i s p e r s e d b a c t e r i a o n l y . n i c carbon content
For t h e budget,
t h e orga-
o f t h e volume biomass o f b a c t e r i a (measured u s i n g
f l u o r e s c e n t m i c r o s c o p e ) was assumed t o b e 258 mg.ml
-1
1121.
R E S U L T S AND D I S C U S S I O N Though t h e c u l t i v a t i o n c o n d i t i o n s were s t a b l e i n t h e f i r s t p e r i o d ( s e e Tab. (Figs l A ,
1B):
2),
t w o t y p e s o f c o m m u n i t y d e v e l o p m e n t were o b s e r v e d
-
116
-
1. d o m i n a n t l y d i s p e r s e d g r o w t h ( 4 1 s t do 5 5 t h day i n s y s t e m A , t o 4 1 s t day i n
a),
s i m u l t a n e o u s d i s p e r s e d and f l o c c u l a t e d g r o w t h ( s y s t e m A
2.
10th
and
-
10th
t o 41st day).
-
? A
c;-
DISPERSED GROWTH
-
7
6
‘2
4 % 2 m
w
12%
log 8 6 4 2
TIME DAYS 1 F i g . 1. C h a r a c t e r i z i n g d a t a o f s y s t e m s A a n d B A : T o t a l i n o r g a n i c n i t r o g e n ( 0 1 and n i t r a t e n i t r o g e n ( 0 1 B: D i s p e r s e d a n d o u t - f l o w i n g b i o m a s s ( 0 1 ; number o f o u t - f l o w i n g ciliates (0) C : I n - s y s t e m t o t a l b i o m a s s l o ) , a n d number o f c i l i a t e s ( 0 ) . T h i s depended o n t h e b a c t e r i a l c o m m u n i t y d i v e r s i t y :
t h e r e was
a l i n e a r c o r r e l a t i o n o f t h e r a t i o between d i s p e r s e d and t o t a l biomass
(COD),
-
117
versus t h e i n v e r s e r a t i o betwen N T A - 1
a n d t h e t o t a l number o f
b a c t e r i a ( d i r e c t r e l a t i o n s h i p between N T A - 1 p o r t i o n and d i s p e r s e d b i o m a s s p o r t i o n on t o t a l v a l u e s i n F i g .
2).
The e q u a t i o n was a l s o
v a l i d f o r b a c t e r i a l (dispersed) culture A w i t h a i r - l i f t (112nd t o 1 4 3 r d day),
circulation
although the accumulation o f f l o c c u l a t e d bio-
mass m i g h t h a v e b e e n p r o m o t e d b y s e d i m e n t a t i o n . system B i n o c u l a t e d w i t h c i l i a t e s (a+;
Similarly,
4 1 s t day)
d a t a from
agreed w i t h t h i s
r e l a t i o n s h i p u n l e s s t h e c i l i a t e c o n c e n t r a t i o n r e a c h e d c r i t i c a l val u e ( a p p r o x i m a t e l y 5x103 m 1 - l ) . significant
=
(N
34;
The l i n e a r r e l a t i o n s h i p was h i g h l y
r = 0.926)
e x c e p t i n g t h r e e p o i n t s ( t w o o f them
were b i a s e d b y an u n c o n t r o l l e d w a l l g r o w t h f r o m 6 3 r d t o 9 6 t h day). This v e r i f i e d the observed dispersed growth o f pure NTA-1
[el. The r e l a t i o n s h i p d i d n o t
without s e l f f l o c c u l a t i o n tendencies
i f t h e c i l i a t e c o n c e n t r a t i o n came c l o s e t o
apply,
culture
lo4
m1-l.
The ob-
s e r v e d e f f e c t o f c i l i a t e s on b a c t e r i a l f l o c c u l a t i o n was i n c o n c o r dance w i t h t h e d e s c r i b e d e f f e c t o f p r e d a t i o n p r e s s u r e 15,
71. P r o -
d u c t i o n o f autochthonous s u b s t r a t e s c o u l d s e r v e as a f e e d source f o r other (NTA nondegrading) b a c t e r i a . The m i x e d c u l t u r e s u n d e r c o n d i t i o n s o f a i r - s t i r r i n g B ) showed s h i g h e r a m m o n i a - n i t r o g e n
(Figs.
content than n i t r a t e ,
lA,
along
w i t h a r a t h e r l o w c o n c e n t r a t i o n o f i n o r g a n i c n i t r o g e n ( u p t o 20 mg. 1-l).
N i t r i f i c a t i o n (an increase o f n i t r a t e concentration)
started after
t h e a i r l i f t c i r c u l a t i o n was s w i t c h e d - o n
only
(Fig l A ,
B).
Linear increase o f n i t r a t e concentration i n the non-protozoan c u l -
=
t u r e A o v e r t i m e was s i g n i f i c a n t ( N
20;
r = 0.966)
as w e l l as t h e
l i n e a r c o r r e l a t i o n between n i t r a t e and biomass c o n c e n t r a t i o n s 19;
(N
=
r = 0.881). T h i s t r e n d c o n t i n u e d a f t e r c i l i a t e i n o c u l a t i o n and d u r i n g t h e i r
growth.
A d e c r e a s e o f n i t r a t e c o n c e n t r a t i o n was o b s e r v e d a f t e r t h e
r e - i n s t a l l a t i o n o f a i r - s t i r r i n g d u r i n g t h e wash-out
o f t h e biomass.
Though t h e n i t r a t e c o n c e n t r a t i o n i n t h e p r o t o z o a n s y s t e m B was a l s o increasing,
e s p e c i a l l y a f t e r i n o c u l a t i o n o f b s c t e r i s l c u l t u r e from
s y s t e m A on t h e 1 4 3 r d day ( F i g .
lB),
g a n i c n i t r o g e n remained r a t h e r low.
the t o t a l concentration o f i n o r T h i s c o u l d be due t o s i m u l t a n e -
o u s n i t r a t e r e d u c t i o n i n t h e b a c t e r i a l f l o c s w h i c h s e d i m e n t a t e d on t h e column b o t t o m
13
. NTA-1
b a c t e r i a t h e m s e l v e s were n o t a b l e t o
r e d u c e n i t r a t e s 181.
A h i g h e r c i l i a t e a b u n d a n c e was a s a o c i a t e d w i t h a h i g h e r p r o p o r t i o n o f b a c t e r i a o t h e r t h a n NTA-1;
under c u l t i v a t i o n condition8 i t
was a l s o a a s o c i a t e d w i t h a h i g h e r p o r t i o n o f f l o c c u l a t e d b i o m a s s .
-
118
-
D a t a f o r an e x a c t e x p l a n a t i o n o f mass g r o w t h i n b o t h s y s t e m s a f t e r t h e 1 5 0 t h day were n o t a v a i l a b l e .
B a c t e r i a c o m m u n i t y s t r u c t u r e appa-
r e n t l y d i d n o t change and t h e c u l t i v a t i o n c o n d i t i o n s remained unchanged.
Probably,
t h e i n o c u l a t i o n o f b a c t e r i a from system A t o B (143rd
day) promoted h i g h e r growth o f c i l i a t e s .
Also,
under extremely h i g h
s u b s t r a t e l o a d i n g o f system B ( f ) t h e c i l a t e s were e b l e t o c o n t r o l dispersed growth,
$1
9
X
and t h e c u l t u r e r e m a i n e d f l o c c u l a t e d .
0.8
0,2 0.1 0.1 0.2
0,4
0.6
BACTERIAL NUMBER RATIO
0,8 NTA X1
F i g . 2. The r e l a t i o n s h i p b e t w e e n d i s p e r s e d b i o m a s s p o r t i o n ( l )o g - l i n e a r (Xl;disg/X1) and N T A - 1 b a c t e r i a p o r t i o n ( X ~ ; N T A / X ~ r e g r e s s i o n except o u t - s t a n d i n g p o i n t s s i g n e d + and d a t a from c u l t i v a t i o n with c i l i a t e s o f 1041nl-~).
The e s t i m a t e d r a t e s o f s u s p e n s i o n f e e d i n g o f c i l i a t e s ( t h e mean v a l u e o f c i l a t e p o p u l a t i o n up t o 20 n 1 . h - l ) ssary
f o r providing growth [ l ] ,
g e s t i o n was supposed.
were l o w e r t h a n necce-
i f only the dispersed bacteria i n -
U n d e r - e s t i m a t i n g m i g h t be caused by s e l e c t i v e
p r e d a t i o n on b a c t e r i a o f p a r t i c u l a r shape,
b u t e s p e c i a l l y by a l t e r -
n a t i v e p r e d a t i o n on b a c t e r i a l f l o c s [ 9 1 . CONCLUSIONS
1. The s e l e c t i v e e f f e c t o f t h e s u b s t r a t e on t h e b a c t e r i a l c o m m u n i t y s t r u c t u r e was v e r i f i e d u s i n g n i t r o l o t r i a c e t i c a c i d a s t h e s o l e o r g a n i c c a r b o n and n i t r o g e n source.
The s i g n i f i c a n t r e l a t i o n s h i p
-
119
-
b e t w e e n t h e N T A - 1 p o r t i o n a n d t h e d i s p e r s e d b a c t e r i a p o r t i o n on t h e t o t a l v a l u e s was o b s e r v e d i n t h e s y s t e m s w i t h o u t c i l i a t e s o r
w i t h a l o w c o n c e n t r a t i o n o f them. 2.
I n t h e b a c t e r i a l c u l t u r e g r o w i n g on s l o w l y - d e g r a d a b l e
substrate,
t h e p o s i t i v e r o l e o f c i l i a t e s on s t a b i l i z i n g t h e f l o c c u l a t e d , well-separable
b i o m a s s was p r o v e d .
Complete f l o c c u l a t i o n o f bac-
t e r i a was .observed a l o n g w i t h c i l i a t e c o n c e n t r a t i o n s a r o u n d
10~~1-l. 3.
The d e g r a d a t i o n o f N T A waa n o t d i s t u r b e d by c i l i a t e p r e d a t i o n . The s t a b i l i z i n g e f f e c t o f c i l i a t e s on b a c t e r i a l f l o c s m i g h t b e caused d i r e c t l y by p r e d a t i o n ( d i s p e r s i o n d i d n o t aerve as t h e sole food source f o r c i l i a t e s )
b u t a l s o by autochthonous s u b s t r a -
t e p r o d u c t i o n d u r i n g d i g e s t i o n w h i c h c o u l d be used by N T A nondegrading f l o c c u l a t i n g b a c t e r i a .
4. P r o d u c t i o n o f n i t r a t e s was o b s e r v e d i n t h e s y s t e m A a n d i t s lin e a r d e p e n d e n c e on b i o m e s s c o n c e n t r a t i o n r e s i d e n c e t i m e ) was v e r i f i e d .
( i n d i r e c t l y on biomass
In well-flocculated
system 8 con-
c e n t r a t i o n o f t o t a l i n o r g a n i c n i t r o g e n was r a t h e r l o w p r o b a b l y due t o p a r a l l e l d e n i t r i f i c a t i o n i n s i d e f l o c s .
REFERENCES
1
2 3
4 5 6 7
8 9 10
11 12 13
T. F e n c h e l , Prog. P r o t i a t o l . , 1 (1986) 65-113. C.R. C u r d s a n d G.J. F e y , W a t e r Res., 3 ( 1 9 6 9 ) 853-867. L.M. M a l l o r y , Ch. Yuk, L . L i a n g a n d M. A l e x a n d e r , A p p l . E n v i r o n . M i c r o b i o l . , 46 (1983) 1073-1079. 13.F. S h e r r , E.8. S h e r r a n d R.D. F a l l o n , Appl. Environ. M i c r o b i o l . , 53 ( 1 9 8 7 ) 9 5 8 - 9 6 5 . R. Sudo a n d S . A i b a , Adv. B i o c h e m . Engn., 29 ( 1 9 8 4 ) 1 1 7 - 1 4 1 . C.R. C u r d s , W a t e r Rea. W. GUde, C u r r . M i c r o b i o l . , 7 ( 1 9 8 2 ) 347-350. J.S. t e c h , P. H a r t m a n a n d J. Chudoba, N e w s l e t t e r Spec. Group A c t i v a t e d S l u d g e P o p u l . D y n a m i c s I A W P R C , 1 ( 1 9 8 9 ) 29 3 0 . M. L e g n e r , P r o c . 7 t h Symp. C o n t i n u o u s C u l t i v a t i o n o f M i c r o o r g a n i s m s P r a g u e ( 1 9 8 0 ) 371-381. J . H e j z l a r , J. Chudoba a n d P. Chudoba, P r o c . H y d r o c h e m i a B r a t i a l a v a ( C z e c h o a l o v a k i s ) (1981) 129-144. K.G. B d r a h e i m a n d G. B r a t b a k , M a r . E c o l . P r o g . S e r . 3 6 ( 1 9 8 7 ) 171-175. M. Simon a n d F. Azam, Mar. E c o l . P r o g . S e r . 5 1 ( 1 9 8 9 ) 201-213. J . Wanner, K. Kucman a n d P. G r a u , W a t e r Res. 22 ( 1 9 8 8 ) 207-211.
This Page Intentionally Left TBlank
M I C R O B I O L O G I C A L T R E A T M E N T OF M U N I C I P A L S E W A G E SLUDGE AND REFUSE A S MEANS OF D I S I N F E C T I O N P R I O R T O R E C Y C L I N G I N A G R I C U L T U R E
D.
STRAUCH
I n s t i t u t e o f Animal M e d i c i n e and A n i m a l Hygiene, U n i v e r s i t y o f Hohenheim, P.O.B. 70 0 5 6 2 , D-7000 S t u t t g a r t 70, FRG
INTRODUCTION I t i s a well established
as a r u l e ,
f a c t t h a t m u n i c i p a l sewage s l u d g e s ,
do c o n t a i n a b r o a d v a r i e t y o f b a c t e r i a l ,
t i c a l and o t h e r pathogens,
viral,
parasi-
which a r e e x c r e t e d by i n f e c t e d i n d i v i but i n a
d u a l s (Tables 1-4).
The same a p p l i e s t o m u n i c i p a l r e f u s e ,
m o d i f i e d dimension.
These p a t h o g e n s may c o n s t i t u t e a h e a l t h h a z a r d
f o r man a n d a n i m a l when t h e s l u d g e and r e f u s e a r e u s e d a s o r g a n i c f e r t i l i z e r s o r f o r amending s o i l s .
TABLE 1 B a c t e r i a l p a t h o g e n s t o b e e x p e c t e d i n sewage a n d sewage s l u d g e ( C A R R I N G T O N , 1 9 7 8 ; WHO, 1981; LEHMANN a n d WALLIS, 1 9 8 2 ) ~~~
Primary pathoqenic
Secondary p a t h o q e n i c
S a l m o n e l l a spp.
Escherichia
S h i g e l l a spp.
Klebsiella
E s c h e r ic h ia c o 1i
Enterobacter
P s e u d om on a s ae r u g in o s a
Serratia
Yersinia enterocolitica
C itrobacter
Clostridium perfringens
Proteus
Clostridium botulinum
Providencia
Bacillus anthracis L i s t e r i a monocytogenes V i b r i o cholerae M y c o b a c t e r i u m spp. L e p t o s p i r a spp. Campylobacter spp. Staphylococcus '
5 t rep t oc oc c u a
-
122
-
T h e r e f o r e t h e C o u n c i l o f t h e European Communities has i s s u e d a D i r e c t i v e o n t h e u s e o f sewage s l u d g e i n a g r i c u l t u r e on 1 2 J u n e 1986.
W i t h i n 3 y e a r s t h e Member S t a t e s h a v e t o b r i n g i n t o f o r c e t h e
laws,
r e g u l a t i o n s and a d m i n i s t r a t i v e p r o v i s i o n s n e c e s s a r y t o comply
w i t h t h i s Directive (1). TABLE 2 Human e x c r e t e d v i r u s e s w h i c h c a n b e e x p e c t e d i n sewage a n d sewage s l u d q e (FEACHEM e t a l . , 1 9 8 1 ) lirusgroup
D i s e a s e s o r symptoms c a u s e d
Number o f t y p e s
Interovirus
3
Poliovirus Coxsackievirus A
24
Coxsackievirus B
6
Poliomyelitis, Herpangina, meningitis,
New e n t e r o v i r u s e s
r e s p i r a t o r y disease, fever
M e n i g i t i s , r e s p i r a t o r y disease, rash, diarrhoea, fever Meningitis, encephalitis, reapir a t o r y disease, a c u t e haemorrhag i c c o n j u c t i v i t i s , fever
4
30
idenovirus
fever
Myocarditis, congenital heart anomalies, m e n i n g i t i s , r e a p i r a t o r y disease, pleurodynia, rash, fever
34
Echovirus
meningitis,
Respiratory disease, tions
eye i n f e c -
Not c l e a r l y e s t a b l i s h e d
leovirus
3
l e p a t i t i s A-virus
1
Infectious hepatitis
Iotavirus
?
V o m i t i n g and d i a r r h o e a
rstrovirus
?
?
:alicivirus
?
V o m i t i n g and d i a r r h o e a
:oronavirus
?
Common c o l d
l o r w a l k agent and o t ier s m a l l r o u n d v i r u s e s
?
V o m i t i n g and d i a r r h o e a
tdenoaasociated
4
Not c l e a r l y established b u t associated with respiratory d i sease i n c h i l d r e n
virus
I n t h e F e d e r a l R e p u b l i c o f Germany (FRG)
t h e Government h a s i s -
s u e d an " O r d i n a n c e on Sewage S l u d g e " w h i c h came i n t o f o r c e 1 A p r i l 1983.
T h i s o r d i n a n c e p r o v i d e s t h a t t h e u s e o f sewage s l u d g e o n p a s -
t u r e and f o r a g e l a n d i s n o t l o n g e r a l l o w e d i f i t i s n o t " h y g i e n i c a l l y safe"
(sanitized,
disinfected)
not define the term "hygienically
(2).
safe",
Since the l e g i s l a t o r d i d a w o r k i n g g r o u p was e s t a b -
l i s h e d t o e l a b o r a t e s u c h a d e f i n i t i o n and a l s o t o d e f i n e t h e appro-
-
123
-
p r i a t e technologies t o achieve " h y g i e n i c a l l y safe" finitions
sludge.
These de-
a r e a l s o a d o p t e d f o r p r o d u c t s made f r o m m u n i c i p a l r e f u s e .
The t e c h n o l o g y f o r s a n i t a t i o n m u s t r e s u l t i n s p r o d u c t i n w h i c h d i r e c t l y a f t e r i t s t r e a t m e n t i n one gram
-
no s a l m o n e l l a s and n o t more t h a n 1 0 0 0 e n t e r o b a c t e r i e c e a e c a n b e d e t e c t e d f u r t h e r m o r e t h e t e c h n o l o g y must e n s u r e t h a t a s c s r i s ova have l o s t their infectivity.
TABLE 3 P a r a s i t e s t o b e e x p e c t e d i n sewage a n d sewage s l u d g e (HANNAN, WHO, 1981) Protozoa
Entamoeba h i s t o l y t i c a Giardia lamblis Toxoplasma g o n d i i S a r c o c y s t i s spp.
Ce s t o d e s
Taenia saginata Taenia solium Diphyllobothrium latum Enchinococcus granulosus
Nematodes
Ascaris lumbricoides Ancylostoma duodenale Toxocara c a n i s Toxocara c a t i Trichuris trichiura
1981;
TABLE 4 P a t h o g e n i c y e a s t s a n d f u n g i t o be e x p e c t e d i n sewage a n d sewage s l u d g e (WHO, 1981)
Yeasts
Candida a l b i c a n s Candida k r u s e i Candida t r o p i c a l i s Candida g u i l l e r m o n d i i Cryptococcus neoformans Trichosporon
Funqi
A s p e r g i l l u s spp. Aspergillus fumigatus Phialophora r i c h a r d s i i G e o t r i c h u m candidum T r i c h o p h y t o n spp. E p i d e r m o p h y t o n spp.
-
124
-
S a n i t a t i o n m e t h o d s b a s e d on m i c r o b i o l o g i c a l p r o c e s s e s a n d e f f e c t s o f m i c r o b e s a r e 1. a e r o b i c - t h e r m o p h i l i c q u i d sludge
a n d 2.
s t a b i l i z a t i o n o f li-
composting o f dewatered sludge or m i n u c i p a l re-
fuse i n windrows or r e a c t o r s (in-vessel-composting).
I n these techno-
l o g i e s e x o t h e r m i c a n d a n t a g o n i s t i c m i c r o b i a l e f f e c t s c a n a c h i e v e an i n a c t i v s t i o n o f p a t h o g e n s w h i c h may e x i s t i n t h e r a w m a t e r i a l s . INVESTIGATIONS UNDER PRACTICAL C O N D I T I O N S I N SEWAGE T R E A T M E N T PLANTS
(3
-
9)
Aerobic-thermophilic
s t a b i l i z a t i o n o f l i q u i d sludqe (ATS)
T h i s t e c h n o l o g y uses t h e a e r e t i o n o f l i q u i d s l u d g e t o i n i t i a t e the growth o f aerobic thermophilic
microorganisms which are produ-
c i n g exothermic heat j u s t l i k e i t occurs d u r i n g composting o f r e f u se, manure w i t h s t r a w e t c .
t h a t a one-stage
system,
I n v e s t i g a t i o n s i n AT5 p l a n t s h a v e shown
u s i n g o n l y one r e a c t o r c a n n o t p r e v e n t s h o r t
c i r c u i t s w h i c h may r e s u l t i n t h e s u r v i v a l o f p a t h o g e n s i n t h e e f f l u ent (Fig.
1). T h e r e f o r e i t i s n e c e s s a r y t o o p e r a t e an AT5 p l a n t
w i t h a t l e a s t two r e a c t o r s .
I n v e s t i g a t i o n s i n such a p l a n t under
TEMPERATUR “T 1
. TT ee mm ppeerraattuurrev ecrul ar vuef
-.
pH c o u r s e :pH-Verlauf T o t a l germ c o u n t 0 0 : Gesamtkeime Coliforms *-d:Coliforme Keime
-----
0
a ANZAHL KEIME / rnl NUMBER OF GERMSlrnl
1
Salmonellas i s o l a t e d :Salmonellen nachweisbar Salmonellas not i s o l a t e d :Salmonellen n i c h t nachweisbar Coliforms not isolated : C o l i f o r m e n i c h t nachweisbar
F i g . 1. B a c t e r i o l o g i c a l r e s u l t s o f a e r o b i c - t h e r m o p h i l i c s t a b i l i z a t i o n ( A T S ) o f l i q u i d sewage s l u d g e i n a o n e - s t a g e r e a c t o r . p r a c t i c a l c o n d i t i o n s h a v e shown t h a t b y t h i s c o n s t r u c t i o n t h e m i c r o b i o l o g i c a l disadvantages o f h y d r a u l i c s h o r t - c i s c u i t s
c a n be a v o i -
ded i n t h a t t h e aecond r e a c t o r i s a c t i n g a s s e c u r i t y r e s e r v e i n
-
125
-
TABLE 5 R e s u l t s o f m i c r o b i o l o g i c a l s t u d i e s w i t h sewage s l u d g e o f two d i f f e r e n t two-stage aerobic-thermophilic s t a b i l i z a t i o n p l a n t s (Strauch 1988). .ITUS ATS -
ddedova S E suum inactivat.
.
100 100 100
Rs ATS
--
Raw sludge Effluent of aerobic-thermphilic Stabilization
TABLE 6 R e s u l t s o f a Windrow Composting E x p e r i m e n t (Summer). Material: Germ Carrier: Test Germs: ComFOsting Time:
Samples Taken After Weeks 1
2
3
9 m3 S l u d g e + 1.350 kg Straw Silk Gauze Pieces + Ampules Salmonella typhimurium, senftenberg 9 Weeks - Turning 1 x Weekly 12 May - 13 J u l y
Placement
Peak Margin Nucleus
S . typhimurium Silk Piece Ampule
+ +
+
+
Peak
1
Margin Nuc 1e u 5
+
+ + +
Peak Margin
Nucleus
+
4
Peak Margin Nucleus
+
5
Peak Marg." Nucleus
6
s. senftenberg Silk Piece1 Ampule
Peak Margin Nucleus
7
Peak Margin Nucleus
8
Peak Margin Nucleus
-
126
-
w h i c h t h e complete d e s t r u c t i o n o f pathogens i s a c h i e v e d once t h e y h a v e s l i p p e d o u t o f r e a c t o r No. 1 d u e t o a s h o r t - c i r c u i t
(Fig.
2).
M i c r o b i o l o g i c a l c o n t r o l i n v e s t i g a t i o n s i n t w o o t h e r A T S p l a n t s have proved t h a t not only enterobacteriaceae, duced and,salmonellas
f e c a l s t r e p t o c o c c i are re-
are r e l i a b l y i n a c t i v a t e d by t h i s technology
b u t a l s o e n t e r o v i r u s e s a n d A s c a r i s suum o v a ( T a b l e 5 ) .
REAKTOR
I
REAKTOR
1 Temperature curve .Temperaturverlauf pH c o u r s e -_-__. :p H - V e r l a u f T o t a l germ c o u n t 0 0 : Gesamtkeime Coliforms 8 - -e: C o l i f o r m e Keime -*
50 c 40
2
- o..,
30 -
A ........ .......
. ..... .
\.
20 -
\
I lot a
1
1 2
2
3
,
4
lo2
3 4 5 6 7 8 ENVlRKUhGSZElT [TAGE 1
0 1
Salmonellas i s o l a t e d :S a l m o n e l l e n n a c h w e i s b a r Salmonellas not i s o l a t e d :S a l m o n e l l e n n i c h t n a c h weisbar Coliforms not isolated : C o l i f o r m e n i c h t nachweisbar
F i g . 2. B a c t e r i o l o g i c a l r e s u l t s o f a e r o b i c - t h e r m o p h i l i c s t a b i l i z a t i o n (ATS) o f l i q u i d sewage s l u d g e i n a t w o - s t a g e r e a c t o r .
Compostinq o f dewetered s l u d q e w i t h s t r a w i n windrows The i n v e s t i g a t i o n s w e r e made i n t h e s l u d g e c o m p o s t i n g p l a n t o f a small municipality. bales o f straw.
L i q u i d s l u d g e i s s p r a y e d w i t h a t a n k wagon on
W i t h a s p e c i a l t u r n i n g d e v i c e d r a w n by a t r a c t o r
s t r a w and s l u d g e a r e m i x e d a n d t h e c h a r a c t e r i s t i c t r a p e z o i d a l shape o f a windrow i s formed.
The w i n d r o w s t h e n were t u r n e d once a weak,
one w i n d r o w was n e v e r t u r n e d a s a c o n t r o l . The r e s u l t s show t h a t d u r i n g w i n d r o w c o m p o s t i n g o f s l u d g e w i t h s t r a w i n t h e warm s e a s o n s a l m o n e l l a s were d e s t r o y e d w i t h i n s e v e n weeks ( T a b l e 61, w h e r e a s t h e y s u r v i v e d u n t i l t h e e n d o f t h e e x p e r i ment a f t e r n i n e weeks i n t h e w i n d r o w w h i c h was n e v e r t u r n e d ( T a b l e
7).
D u r i n g t h e l o w e r t e m p e r a t u r e s i n w i n t e r t h e k i l l i n g e f f e c t on
-
127
-
salmonellas
and E C B O - v i r u s
the surface
o f t h e windrows w i t h a 1 0 - 1 5
was u n r e l i a b l e ( T a b l e 8 ) .
By covering
cm t h i c k l a y e r o f c u r e d
compost t h e d i s a d v a n t a g e s o f t h e l o w e r t e m p e r a t u r e s d u r i n g t h e w i n t e r p e r i o d can b e compensated.
TABLE 7 R e s u l t s o f a Windrow C o m p o s t i n g E x p e r i m e n t ( S u m m e r ) . 6 m3 S l u d g e + 9W kg S t r a w S i l k Gauze P i e c e r + Ampules Salmonella typhhurium, senftenberg 9 Weeks - N o T u r n i n g 1 2 May - 1 3 J u l y
Material: Germ C a r r i e r : T e s t germs: Cornposting T h e :
jamplea Taken 4 f t e r Weeks
S. typh S i l k Piece
+++
1
+++ +++
2 3
+++ +++
4
5 6
+++ +++ +++ +++
7 8 9
+++
-
+++
S. a e n f r Silk Piece
+++
+++ +++
Ampule
+++
+++ +++ +++
+++ +++ +++ +++ +++ +++ +++ +++
+++ +++
3eTq
+++
+++
+++ +++ +++ +++ +++
irium Ampule
+++ +++
+++ +++
+++ +++
+++
+++ +++
+++
+++ +++ +++ +++ +++ +++
+++
+++
+++ +++ +++ +++ +++ +++
+++
+++
I
S a l m o n e l l a s C u l t u r e d frcm Germ C a r r i e r s i n P e a k , Margin and NUc l e u s of Windrow
TABLE 8 R e s u l t s o f a Windrow C o m p o s t i n g E x p e r i m e n t ( W i n t e r ) . 0 m3 Sludge + 1200 kg S t c a w hterlal: C m p s t i n g T i n e : 6 Weeks-Turning 1 x Weekly 31 October - 1 2 December
Samples Taken A f t e r Weeks
Placement
s.
typhiaurium
5 . senftenbers
ECBO V I r u 6
Nucleus
/
Peak Maigin
Peak Margin N"C1.US
40 20 44
50 40 55
33 20 30
60 16 63
51 18
50
Peak
/
60
nargm
/
NuCleub
/
20 56
Peak Margin Nucleus
++-++ +++*+
. . . .
T e s t Germs On S i l k PleCeE virus Culture ~n O ~ d l y s l sTubes
++-++ +++++ -++-+
40
11 61
57 9 65
53
59
60 14 59
15
12
56
50
65
52 16 56
6 0 51 I 4 I5 59 5 0
59 12 65
52 16
Peak Marg," N"C1.US
I
30 30
15
+
NYCl."S
D =
-
50 7.0 44
Peak Margin
S
Maximum Temperatur Durlng 1 6 Weeks in "C 1 . 2. 3. 4 . 5. 6.
20 5 20 20 5 20
10 4 13
-
128
-
I n s t e a d o f u s i n g s t r a w a l s o o t h e r b u l k i n g a g e n t s may b e u s e d t o i m p r o v e t h e p o r e volume o f t h e s l u d g e and t h u s t h e o x y g e n s u p p l y a n d t h e d e g r a d a t i o n t e m p e r a t u r e w h i c h i s t h e most i m p o r t a n t f a c t o r
for
t h e pathogen k i l l (Table 9 ) .
TABLE 9 B u l k i n g A g e n t s R e p o r t e d As S a t i s f a c t o r y I n C o m p o s t i n g T e s t s P e r f o r m e d A t B e l t s v i l l e , MD, And O t h e r L o c a t i o n s ( E p s t e i n e t a l . , 1981) Wood c h i p s
Cotton g i n trash
F l y ash-wood
chips
Cereal straws
Saw d u s t
Leaves
Tree t r i m m i n g s
Dry,
Bark
U n c r e e n e d compost
Shredded b a r k
Refuse
Lorn stover
A i r c l a s s i f i e d refuse
c o m p o s t e d sewage s l u d g e
Sugarcane bagasse
Refuse d e r i v e d f u e l cubes,
Rice h u l l s
Automobile Tires-woodchips
pellets
Peanut h u l l s
Compostinq o f dewatered sludqe i n b i o r e a c t o r s ( I n - v e s s e l - c o m p o s t i n q ) B i o r e a c t o r s are p l u g - f l o w v e s s e l s f o r composting dewatered sludge.
U s u a l l y saw d u s t ,
ground bark,
r e f l u x c o m p o s t o r o t h e r sub-
s t a n c e s a r e added a s b u l k i n g a g e n t s and t o i n c r e a s e t h e l o w c a r b o n c o n t e n t o f t h e s l u d g e a n d t h u s i m p r o v e t h e C/N
r a t i o which r e s u l t s
i n a more i n t e n s i v e c o m p o s t i n g p r o c e s s a n d i n h i g h e r t e m p e r a t u r e s . The m i x t u r e i s t r a n s p o r t e d w i t h a c o n v e g o r i n t o t h e b i o r e a c t o r ,
rested and e m p t i e d f r o m b e l o w .
a-
The c o m p o s t i n g t i m e i s a b o u t t w o
weeks and t h e s y s t e m i s a c o n t i n u o u s one. E x p e r i m e n t s were made i n a b i o r e a c t o r w i t h s a l m o n e l l a s a n d ECBO-virus.
As shown i n T a b l e 1 0 b o t h t y p e s o f p a t h o g e n s w e r e d e -
s t r o y e d d u r i n g t h e p a s s a g e o f t h e compost
through the reactor.
Another t y p e o f r e a c t o r i s t h e B i o - C e l l r e a c t o r n i c a l l y c l a s s i f i e d as f l o w r e a c t o r w i t h s t o r i e s . watered s l u d g e w i t h a b u l k i n g agent and/or ported t o the top story.
which i s tech-
The m i x t u r e o f de-
carbon c a r r i e r i s trans-
The b o t t o m s o f t h e s t o r i e s a r e a l u m i n u m
f l a p s w h i c h c a n b e t u r n e d down s o t h a t t h e c o m p o s t f a l l s down i n t o the next story.
I n e a c h s t o r y t h e compost l a y e r o f a b o u t 4 0 cm h e -
i g h t i s aerated.
129
-
T h i s c o n t i n u o u s c o m p o s t i n g p r o c e s s t a k e s u s u a l l y 30
days ( 3 days p e r s t o r y ) . TABLE 1 0 R e s u l t s o f Composting E x p e r i m e n t s w i t h S a l m o n e l l a s and E n t e r o v i r u s i n a B i o - R e a c t o r ( S y s t e m KNEER; Fa. W E I S S ) .
Material: Germ C x r i e r s : T e s t Organisms:
Sludge-Compost-Saw D u s t Salmonellas S i l k Gauze P i e c e s + Ampules Virus D i a l y s i s T u b e + Ampules Salmonella typhimirium, e n t e ritidis, senftenberg V i r u s S t r a i n ECBO-LCR-4
-
-~
S. t y p h i m u r i u m S. e n t e r i t i d i s S. s e r i f t e n b e r g Virus Strain ACBO-LCR-4
S
A
/
/
(15)
Exp. 5 1 2 Samples (12)
-
/
Exp. 4 1 5 Samples
Exp. 3 10 Samples (10) S A
EXp. 2 10 Samples (10)
Exp. 1 30 Samples (5) S R
Test Organisms
/
/
1
/
Maximum Temperature
7 0 OC
74
"c
P a s s a g e Time i n Days
14
11
14
Sludge
40 a
40 %
50 %
50 a
50 %
Compost
10 %
10 %
10 a
10 %
25 %
Saw D u s t
50 a
50 %
40 %
40 %
40 %
7
I
-
6
I
= T e s t Organisms n o t Detectable
/ = N o t Done o f Detected Samples ( N ~ & ~= ~Number ) S = T e s t O r g a n i s m s on S i l k G a u z e A = C u l t u r e s i n Ampules D = V i r u s c u l t u r e i n D i a l y s i s Tube
1 5 experiments under p r a c t i c a1 c o n d i t i o n s i n a composting p l a n t showed t h a t s a l m o n e l l a s , stroyed,
ECBO-virus
a n d a s c a r i s o v a w e r e de-
p r o v i d e d t h a t t h e compost m a t e r i a l i s homogeneously mixed
and w e l l and e v e n l y a e r a t e d i n each s t o r y o f t h e r e a c t o r .
One t y p i -
c a l r e s u l t i s shown i n T a b l e 11 w i t h s a l m o n e l l a s a n d B a c .
anthracis
spores.
The l a t t e r w e r e n o t c o m p l e t e l y d e s t r o y e d ( 4 o u t o f 1 5 sam-
p l e s remained p o s i t i v e ) .
Since spore-forming
b a c t e r i a g e n e r a l l y do
n o t p l a y an i m p o r t a n t r o l e f o r h y g i e n e o f c o m p o s t i n g , t h e i r
survival
i s not o f importance. B u t i n any c a s e o f t e c h n i c a l d i s t u r b a n c e s o f t h e b i o r e a c t o r c o m p o s t i n g o p e r a t i o n which r e s u l t s i n a d e c r e a s e o f t e m p e r a t u r e b e -
low 5 0
OC,
t h e b a t c h has t o be c o n s i d e r e d as n o t d i s i n f e c t e d and
-
-
130
f o r a second t i m e o r s h o u l d
m u s t p a s s t h e r e a c t o r as r e f l u x compost
b e c o m p o s t e d i n w i n d r o w s f o r a t l e a s t t h r e e weeks w i t h one t u r n i n g . TABLE 11 R e s u l t s o f Composting E x p e r i m e n t s w i t h S a l m o n e l l a s and A n t h r a x Spores i n a Bio-Cell-Reactor ( S y s t e m DAMBACH-SCHNORR; 1 0 S t o r i e s ) . Mate r ia1 :
Refuse-Sledge (4x) Bark-Composit-Sludge (1x1 Germ Carriers: Silk Gauze Pieces + Ampules Test Germs: Salmonella typhimurium, senftenberg, enteritidis, dublin Spores of Bacillus anthracis 28 - 31 Days Passage Time:
Exp. 2 3 0 Samples S A
Exp. 1 50 Samples S A
Test Germs
S. typhimurium S . senftenberg S . enteritidis S . dublin S . anthracis
Maximum Temperature - = = / =
+
-(7)
-(a)
-(7)
-(7) -(15)
/ /
/
-
80
"c
3 0 Samples
S
S
A
Exp. 4 A
Exp. 5 30 Samples S A
/ /
/ /
-
-
-(7) -(8)
-(15) /
Exp. 3 3 0 Samples
-
/ /
-
79
+(4)
C(4)
-(15)
-(15)
"c
Test Germs not Detectable Growth of Test Germs Not Done
/ /
/ /
/ /
-
70 "C
7 0 "C
/ /
-
75
"c
S = Test Germs on Silk Gauze A = Culture in Ampules (Number) = Number of Detected Samples
As an a i d f o r t h e e v a l u a t i o n o f t h e e f f i c a c y o f c o m p o s t i n g temp e r a t u r e s on t h e i n a c t i v a t i o n o f v a r i o u s p a t h o g e n i c microorganisms t h e g r a p h i n F i g u r e 3 c a n be u s e d . DEFINITIONS OF THE MICROBIOLOGICAL T R E A T M E N T METHODS As a l r e a d y m e n t i o n e d i n t h e i n t r o d u c t i o n l a German w o r k i n g p a r t y h a s b a s e d on i n t e r n a t i o n a l e x p e r i e n c e s e l a b o r a t e d d e f i n i t i o n s f o r s l u d g e d i s i n f e c t i o n t e c h n o l o g i e s under t h e o n l y p r o c e s s a i m o f a secured s s n i t a t i o n .
The d e f i n i t i o n s f o r t h e d i s i n f e c t i o n o f s l u d g e a n d
r e f u s e w i t h m i c r o b i o l o g i c a l methods a r e g i v e n i n t h e f o l l o w i n g . Aerobic-thermophilic
s t a b i l i z a t i o n o f sludqe (ATS)
Process d e s c r i p t i o n I n t h e c o u r s e o f t h e ATS-process
caused by a i r (oxygen) s u p p l y
e x o t h e r m a l m i c r o b i a l d e g r a d a t i o n and m e t a b o l i c p r o c e s s e s r e s u l t i n a r i s e o f t e m p e r a t u r e a n d o f t h e pH up t o v a l u e s a b o u t 8. t h a t t h e r e a c t i o n v e s s e l h a s a good i n s u l a t i o n ,
Provided
the a i r supply i s
c o r r e c t l y c a l c u l a t e d and t h e s l u d g e has a s u f f i c i e n t c o n c e n t r a t i o n o f o r g a n i c d r y m a t t e r i n t h e ATS-process
t e m p e r a t u r e s c a n be r e a c h e d
-
131
-
which besides t h e s t a b i l i z a t i o n a l s o ensure a s a n i t a t i o n o f the sludge. ATS-processes
s h o u l d be o p e r a t e d a t l e a s t as t w o - s t a g e r e a c t o r s
( 2 vessels i n series connection)
( t o avoid the microbiological d i -
sadvantages o f h y d r a u l i c s h o r t - c i r c u i t s .
As d e t e n t i o n t i m e s i n t h e
c o m p l e t e s y s t e m a t l e a s t 5 d a y s a r e t o be c a l c u l a t e d when t h e r e a c t o r s have t h e same volume.
-
Y r n I
8
2 8
65
$ 6 0
+
55 50
45
LO 35
30 25 2c I
F i g . 3. E f f e c t o f t e m p e r a t u r e and t i m e on some e n t e r i c p a t h o g e n s (Feachem e t e l . 1978).
Under c o n s i d e r a t i o n o f t h e b a t c h - t y p e
operation
(e.9.
f e e d i n g p e r day) and 23 h o u r s s t a b i l i z a t i o n ( r e a c t i o n t i m e )
one h o u r and o f
t h e temporary decrease o f temperature i n e v i t a b l y connected w i t h t h i s type o f operation, r e s are necessary:
t h e f o l l o w i n g r e a c t i o n t i m e s and t e m p e r a t u -
-
23 h o u r s a t 5 0
OC
-
10 h o u r s a t 55
OC
-
4 h o u r s a t 60
132
-
or or
OC.
Process c o n t r o l
For supervision o f the process c o n d i t i o n s t h e f o l l o w i n g param e t e r s a r e t o be c o n t r o l l a b l e r e g i s t e r e d b y c o n t i n u o u s p l o t t l n g :
-
t h e t e m p e r a t u r e s and t h e i r r e a c t i o n t i m e s i n t h e r e a c t o r s i n a t l e a s t two p o s i t i o n s w i t h r e c o r d i n g i n s t r u m e n t s
-
t h e pH-values
o f t h e raw s l u d g e and o f t h e e f f l u e n t o f t h e
ATS-process
-
t h e d a i l y s l u d g e volume f l o w ,
b y w h i c h a t known v o l u m e s o f t h e
r e a c t o r s t h e r e a c t i o n t i m e can be c a l c u l a t e d .
Aerobic-thermophilic
s t a b i l i z a t i o n o f sludqe (ATS)
w i t h subsequent
anaerobic diqestion T h i s c o m b i n s t i o n o f an a e r o b i c w i t h an a n a e r o b i c m i c r o b i o l o g i c a l t r e a t m e n t i s d e f i n e d 8s f o l l o w s .
Process d e s c r i p t i o n
I n the aerobic-thermophilic
f i r s t stage t h e sludge i s sanitized.
The s a n i t a t i o n i s e n s u r e d b y s u f f i c i e n t l y h i g h t e m p e r a t u r e s i n t h e s l u d g e which can be produced by a d d i t i o n a l h e a t i n g w i t h e x t r a n e o u s e n e r g y and e x o t h e r m i c m i c r o b i a l p r o c e s s e s d u r i n g t h e p a r t i a l s t a b i lization.
By t h e s u b s e q u e n t a n a e r o b i c m e s o p h i l i c or t h e r m o p h i l i c
s t a b i l i z a t i o n t h e necessary s e c u r i t y o f the s a n i t a t i o n process i s ensured. By t r e a t m e n t i n t h i s t w o - s t a g e
process t h e sludge i s considered
as s a n i t i z e d ifi n t h e f i r s t s t a g e e i t h e r t h e c o n d i t i o n s o f p r e - p a s t e u r i z a t i o n ( s e e No. t u r e of
a t l e a s t 60
11/11 a r e f u l f i l l e d or i f t h e r e a c t i o n t e m p e r a OC
is c o n t i n u o u s l y k e p t f o r a t l e a s t f o u r h o u r s .
D u r i n g t h e s e f o u r h o u r s n o r a w s l u d g e may b e added. (anaerobic)
I n t h e second
s t a g e a p r o c e s s t e m p e r a t u r e o f a t l e a s t 30
OC
must be
kept.
Process c o n t r o l
F o r s u p e r v i s i o n o f t h e p r o c e s s c o n d i t i o n s t h e f o l l o w i n g psramet e r s a r e t o be c o n t r o l l a b l e r e g i s t e r e d by c o n t i n u o u s p l o t t i n g :
-
133
-
I n the f i r s t stage:
-
the temperature i n two p o s i t i o n s the reaction time
i n t h e second stage:
-
t h e temperature.
Compostinq o f s l u d q e i n windrows
Process d e s c r i p t i o n The s a n i t a t i o n o f s l u d g e by c o m p o s t i n g i n w i n d r o w s w i t h b u l k i n g m a t e r i a l (e.g. vings)
municipal refuse,
straw,
saw d u s t ,
wood s h a -
i s caused by t h e h e a t generated d u r i n g composting by m i c r o -
b i a l processes.
B e s i d e s t h i s t e m p e r a t u r e and t h e r e a c t i o n t i m e a l s o
m i c r o b i a l metabolic substsnces w i t h a n t i b i o t i c e f f e c t s a r e o f i m portance. Requirement for t h e s a n i t i z i n g e f f e c t i s a s u f f i c i e n t a e r a t i o n o f t h e m i x t u r e o f s l u d g e a n d b u l k i n g m a t e r i a l b y t e c h n i c a l means a s
for i n s t a n c e t u r n i n g o f t h e windrows or f o r c e d a e r a t i o n o f s t s t i c windrows o r p i l e s ( w h i c h s r e n o t t u r n e d ) . I t must be e n s u r e d t h a t t h e e f f e c t i v e t e m p e r a t u r e s r e a c h e a c h p a r t o f t h e c o m p o s t i n g mater i a l for t h e necessary r e a c t i o n time. The i n i t i a l w a t e r c o n t e n t o f t h e c o m p o s t n g m a t e r i a l m u s t b e
4 0 - 6 0 I and t h e r e a c t i o n t e m p e r a t u r e
n t h e w n d r o w a t l e a s t 55
OC
d u r i n g t h r e e weeks.
Process c o n t r o l F o r s u p e r v i s i o n o f t h e p r o c e s s c o n d i t i o n s f o r each windrow t h e
f o l l o w i n g p a r a m e t e r s a r e t o be c o n t r o l l a b l e r e g i s t e r e d :
-
t h e i n i t i a l water c o n t e n t o f t h e m i x t u r e t h e temperature a t l e a s t d a i l y i n t h r e e p o s i t i o n s snd i n d i f f e r e n t d i s t a n c e s from t h e s u r f a c e o f t h e windrow;
one o f t h e p o -
s i t i o n s i n t h e c e n t r a l p a r t e n d one i n t h e o u t e r z o n e
-
t h e c o m p o s t i n g t i m e and t u r n i n g (number,
date).
Compostinq o f sludqe i n r e a c t o r s (In-vessel-compostinq)
Process d e s c r i p t i o n The s a n i t a t i o n o f s l u d g e b y c o m p o s t i n g i n r e a c t o r s ( i n - v e s s e l composting) with b u l k i n g m a t e r i a l (e.9.)
saw d u s t ,
wood s h a v i n g s ,
bark,
reflux material)
134
-
i s c a u s e d b y t h e h e a t g e n e r a t e d d u r i n g com-
p o s t i n g by m i c r o b i a l p r o c e s s e s .
B e s i d e s t e m p e r a t u r e and r e a c t i o n t i -
me a l s o m i c r o b i a l m e t a b o l i c s u b s t a n c e s w i t h a n t i b i o t i c e f f e c t s a r e o f importance. Requirement f o r t h e s a n i t i z i n g e f f e c t
i s a sufficient aeration
o f t h e m i x t u r e o f s l u d g e and b u l k i n g m a t e r i a l b y t e c h n i c a l means. The s t e a d i n e s s o f d e s i r e d t e m p e r a t u r e p r o f i l e s i n t h e r e a c t o r s c a n b e i n f l u e n c e d and c o n t r o l l e d b y t h e t e c h n i q u e s o f a e r a t i o n , and e m p t y i n g .
filling
I t must b e e n s u r e d t h a t t h e e f f e c t i v e t e m p e r a t u r e s
r e a c h each p a r t o f t h e composting m a t e r i a l f o r t h e necessary react i o n time. The i n i t i a l w a t e r n o t exceed 70
X.
content o f t h e composting m a t e r i a l should
The c o m p l e t e m i x t u r e s h o u l d b e e x p o s e d t o a tempe-
rature o f a t least 55 o f a t l e a s t 10 days.
OC
d u r i n g a passage t i m e t h r o u g h t h e r e a c t o r
Besides t h a t t h e composting m a t e r i a l should
n o t pass t h e " h o t zone"
w i t h a t e m p e r a t u r e o f a t l e a s t 65
OC
faster
than i n 48 hours. The r e a c t o r p a s s a g e s h a l l be f o l l o w e d by a p h a s e o f c u r i n g t h e m a t e r i a l i n w i n d r o w s o r p i l e s o f a t l e a s t t w o weeks w i t h a t l e a s t one t u r n i n g o r i n a s e c o n d r e a c t o r by w h i c h m e a s u r e d t h e n e c e s s a r y s e c u r i t y o f t h e s a n i t a t i o n process i s ensured. The a c h i e v e m e n t o f
s a n i t a t i o n depends t o a l a r g e e x t e n t on an
undisturbed operation o f the composting process.
When d i s t u r b a n c e s
o f o p e r a t i o n s are connected w i t h a decrease o f temperatures t h e b a t c h o f compost m u s t e i t h e r b e u s e d as r e f l u x m a t e r i a l a n d t h u s p a s s t h e r e a c t o r f o r a s e c o n d t i m e o r i t must a g a i n b e c o m p o s t e d i n a w i n d r o w u n d e r t h e c o n d i t i o n s d e s c r i b e d i n No.
II/6
f o r composting o f sludge
i n windrow.
Process c o n t r o l
F o r s u p e r v i s i o n o f t h e p r o c e s s c o n d i t i o n s t h e f o l l o w i n g paramet e r s a r e t o be c o n t r o l l a b l e r e g i s t e r e d :
-
t h e i n i t i a l water c o n t e n t o f t h e m i x t u r e
-
the temperature i n a t l e a s t t h r e e p o s i t i o n s .
One p o s i t i o n h a s
t o b e l o c a t e d b e f o r e and one i n t h e " h o t z o n e "
and a t l e a s t
one i n t h e p e r i p h e r a l z o n e o f t h e r e a c t o r
-
t h e s t o r a g e t i m e and t u r n i n g o f t h e c u r i n g w i n d r o w s ( d a t e , number) and r e a c t i o n t i m e i n t h e second r e a c t o r ,
-
d i s t u r b a n c e s o f o p e r a t i o n s (causes,
duration).
resp.
-
135
-
B e s i d e s t h e s e m i c r o b i o l o g i c s l s a n i t a t i o n p r o c e s s e s a l s o some o t h e r s have been d e f i n e d : w i t h l i m e a s Ca(OH)2,
sludge p a s t e u r i z a t i o n ,
sludge treatment
s l u d g e t r e a t m e n t w i t h l i m e a s CaO.
I n addition,
E x e c u t o r y P r o v i s i o n s f o r each o f t h e s l u d g e s a n i t a t i o n systems have been e l a b o r a t e d .
The r e q u i r e m e n t s a r e c l a s s i f i e d a s f o l l o w s :
ral-Pretreatment
o f sludge
-
Constructional requirements
n a l control - - S t a r t i n g operation system
-
-
-
C l e a n i n g and d i s i n f e c t i o n o f t h e
I n s t r u c t i o n o f the s t o f f - Operational malfunctions
stallations for operational control
Gene-
Operatio-
-
-
In-
Sampling f o r process c o n t r o l .
F u r t h e r t h e b a c t e r i o l o g i c a l a n d p a r a s i t o l o g i c a l m e t h o d s f o r t h e det e r m i n a t i o n o f s a l m o n e l l a s e n t e r o b a c t e r i a c e s e and a s c a r i s ova a r e l a i d down f o r t h e s y s t e m a n d p r o c e s s c o n t r o l
(10,
11).
When a l l t h e s e p r e r e q u i s i t e s a r e met i t i s assumed t h a t t h e s l u d g e can be c o n s i d e r e d as h y g i e n i c a l l y s a f e and t h a t t h e s l u d g e complies w i t h the m i c r o b i o l o g i c a l values mentioned i n t h e introduction. REFERENCES C E C ( 1 9 8 6 1 , C o u n c i l D i r e c t i v e of 12. June 1986 on t h e p r o t e c t i o n o f t h e e n v i r o n m e n t a n d i n p a r t i c u l a r o f t h e s o i l , when O f f . J. E sewage s l u d g e i s u s e d i n a g r i c u l t u r e ( 8 6 / 2 7 8 / E E C ) . u r o p . Comm. No L 1 8 1 / 6 , 4.7.86. B R D - FR G ( 1 9 8 2 ) , K l a r s c h l a m m v e r o r d n u n g ( O r d i n a n c e on sewage s l u d g e ) , BGBl I, 7 3 4 . A . M . B r u c e , A.H. H a v e l a a r a n d P. L ’ H e r m i t e (Eds., 19831, D i s i n f e c t i o n o f sewage s l u d g e : t e c h n i c a l , e c o n o m i c a n d m i c r o b i o l o g i c a l a s p e c t s . D. R e i d e l P u b l . Comp., D o r d r e c h t / N L . D. S t r a u c h , A.H. H a v e l a a r a n d P. L ’ H e r m i t e ( E d s . , 1 9 8 5 1 , I n a c t i v a t i o n o f m i c r o o r g a n i s m s i n sewage s l u d g e b y s t a b i l i z a t i o n p r o c e s s e s . E l s e v i e r A p p l i e d S c i e n c e P u b l . , London/New Y o r k . D. S t r a u c h [ H r s g . , 1 9 8 6 1 , B e r i c h t d e s 1. H o h e n h e i m e r S e m i n a r s “ E n t s e u c h u n g von K l a r s c h l a m m ( P r o c . 1. Hohenheim S e m i n a r “ D i s i n f e c t i o n o f sewage s l u d g e ) . D t . V e t . M e t . G e s e l l s c h a f t , F r a n k f u r t e r S t r . 89, D-6300 G i e s s e n . J. H u b e r , 0 . S i g e l a n d P.H. B r u n n e r ( E d s . , 1 9 8 7 1 , S u r v e y o f s e wage s l u d g e d i s i n f e c t i o n p r o c e s s e s . CEC/SL/l21/87-XII/ENV/l5/87. CEC-DG X I I / E - 1 , Rue de l a L o i 2 0 0 , 8 - 1 0 4 9 , B r u s s e l s . D. S t r a u c h (Ed., 1 9 8 8 ) , B e r i c h t des 2 . H o h e n h e i m e r S e m i n a r s “ E n t s e u c h u n g von K l a r s c h l a m m - E r f a h r u n g s b e r i c h t e a u s d e r P r a x i s “ . ( P r o c . 2. Hohenheim S e m i n a r “ D i s i n f e c t i o n o f sewage s l u d ge R e p o r t s on p r a c t i c a l e x p e r i e n c e s “ ) . D t . V e t . Med. G e s e l l s c h a f t , F r a n k f u r t e r S t r . 89, D-6300 G i e s s e n . J.H. Hannan a n d P. L ’ H e r m i t e ( E d s . , 1 9 8 7 ) , H y g i e n i c a s p e c t s o f t h e t r e a t m e n t and u s e o f o r g a n i c s l u d g e a n d l i q u i d a g r i c u l t u r a l CEC-DG X I I / E - 1 , Rue de w a s t e s ( I ) . CEC/SL/120/87-XII/ENV/l4/87. l a L o i 200, 8-1049 B r u s s e l s . D. S t r a u c h , H . Over and P. L ’ H e r m i t e ( E d s . , 1 9 8 9 ) , H y g i e n i c a s p e c t s o f t h e t r e a t m e n t and u s e o f o r g a n i c s l u d g e a n d l i q u i d aCEC-DG X I I / g r i c u l t u r a l w a s t e s ( 1 1 ) . CEC/SL/29/89-XII/ENV/l/89. E - 1 , Rue de l a L o i 2 0 0 , 8-1049 B r u s s e l s .
-
10
11
136
-
A T V / V K S ( 1 9 8 8 ) : 2. A r b e i t s b e r i c h t d e r A T V / V K S - A r b e i t s g r u p p e 3.2.2 " E n t s e u c h u n g v o n K l a r s c h l a m m " ( 2 n d r e p o r t o f t h e A T V / V K S w o r k i n g p a r t y " D i s i n f e c t i o n o f sewage s l u d g e " ) . K o r r e s p o n d e n z Abwasser 35 ( 1 ) 71-74. A T V / V K S ( 1 9 8 8 ) : 3. A r b e i t s b e r i c h t d e r A T V / V K S - A r b e i t s g r u p p e 3.2.2 " E n t s e u c h u n g v o n K l a r s c h l a m m " ( 3 r d r e p o r t o f t h e A T V / V K S w o r k i n g p a r t y " D i s i n f e c t i o n o f sewage s l u d g e " ) . K o r r e s p o n d e n z Abwasser 3 5 ( 1 2 ) 1 3 2 5 - 1 3 3 3 .
M O D E L I N G OF O R G A N I C MATTER D E S T R U C T I O N BY MICROORGANISMS COMMUNITY
V.A.
VAVILIN
W a t e r P r o b l e m s I n s t i t u t e USSR Academy o f S c i e n c e
The m i c r o o r g a n i s m s w o n d e r f u l a b i l i t y t o u t i l i z e a w i d e s p e c trum o f o r g a n i c substances has been used f o r a l o n g t i m e i n a r t i f i c i a l b i o l o g i c a l treatment plants.
Simulating b i o l o g i c a l treatment
s y s t e m s where t h e d e s t r u c t i o n o f a m u l t i - c o m p o n e n t ce i s caused by microorganisms community,
organic substan
p r e s e n t s a c o n v e n i e n t ob-
j e c t o f p o p u l a t i o n dynamics research. B i o l o q i c a l t r e a t m e n t s y s t e m s a s open s y s t e m s .
The t h e o r y o f
pure microorganisms c u l t u r e growth i s u s u a l l y used f o r t h e d e s c r i p t i o n o f b i o l o g i c a l treatment processes.
Through b i o l o g i c a l t r e a t m e n t
systems t h e c o n t i n u o u s f l o w o f biomass and s u b s t r a t e s i s p a s s i n g . U s i n g Monod f u n c t i o n s t h e s t e a d y s t a t e p r o c e s s o f b i o l o g i c a l t r e a t ment i n a c o m p l e t e - m i x i n g
a e r a t i o n t a n k can be d e s c r i b e d by t h e
f o l l o w i n g system o f e q u a t i o n s
1 - ( L T o
where L
e'
Xe
1
pm ' e L e =
- L ) - Y
K L + L
a r e t h e summary p o l l u t a n t a n d t o t a l b i o m a s s c o n c e n t r s -
t i o n i n aeration tank,
Le i s the input p o l l u t a n t concentration,
T i s the water r e t e n t i o n time, me,
CI
i s t h e mean b i o m a s s r e s i d e n c e t i -
i s t h e maximum s p e c i f i c g r o w t h r a t e o f b i o m a s s ,
yield coefficient, microorganisms,
K
L Traditionally,
Y i s the
k d i s t h e d e a t h and a u t o o x i d a t i o n c o n s t a n t f o r i s the half-saturation coefficient. t h e phenomenological d e s c r i p t i o n o f t h e t r e a t -
ment p l a n t o p e r a t i o n d o e s n o t t a k e i n t o a c c o u n t t h e f a c t t h a t h e t e -
-
138
-
r o t r o p h i c microorganisms are d i f f e r e n t i a t e d .
The m o r e c o m p o n e n t s
t h e more t y p e s o f m i c r o o r g a n i s m s a r e p r e -
t h e waste w a t e r s c o n t a i n ,
A general multi-component m u l t i -
s e n t i n t h e biomass composition.
s p e c i e s m o d e l o f b i o l o g i c a l t r e a t m e n t was s u g g e s t e d b y t h e a u t h o r
(2) d Si
1
-
-
(sOi - Si) T p o l l u t a n ts i n f l o w and outflow
d t
psi ,
i
= 1,2,
...,N,
removal o f pollutants
(2)
- -fB g r o w t h and death o f biomass w h e r e Si,
j
1,2,
j
'
...,M ,
withdrawal o f bi.omass
6 . a r e t h e c o n c e n t r a t i o n s o f t h e i - t h p o l l u t a n t and j - t h
J
qBj
are t h e r a t e s o f removal o f the i - t h group o f biomass, psi, i s the i n f l u e n t s u b s t r a t e and g r o w t h o f j - t h group; Soi = ciLo c o n c e n t r a t i o n o f t h e i - t h p o l l u t a n t , w h e r e Ei is t h e f r a c t i o n o f t h e i - t h p o l l u t a n t i n t h e summary p o l l u t a n t c o n c e n t r a t i o n L o . Two t y p e s o f w i t h d r a w a l o f b i o m a s s c o r r e s p o n d t o t h e t w o t y pes o f reactors:
y =1 /
[ Z, rBj M
d = const
F'=
max
/ j;
,
0
j=1
chemostat
turbidostat where X
7 0 i s a constant,
t o t a l biomass.
equaled t h e s t a t i o n a r y concentration o f
For t h e r a t e s o f
psi
and
PBj
t h e f o l l o w i n g expre-
i
1,2
s s i o n s were used
M;1 ysi
,urn. 6 . ri.
'i
j
= 511
N
Yij
(KLj+
r. .S.)
i=l 1J 1
,
,..., N
M-1 P 'EM
j=1
-
XjkdjBj
where flmj, k d j ,
KLj,
-
139
kdMBM,
Y..
a r e t h e c o r r e s p o n d i n g Monod c o e f f i c i e n t s
1J
f o r j - t h group o f microorganisms;
j = M corresponds t o a non-viable
b i o m a s s ; kdM i s t h e r a t e c o n s t a n t o f d e g r a d a t i o n o f n o n - v i a b l e mass;
X
.i
bio-
r. . i s the substrate pre-
i s the stechiometric c o e f f i c i e n t ,
13
ferability coefficient.
1 i l l u s t r a t e s t h e adequancy o f model ( 2 ) i n t h e case o f
Fig.
two s u b s t r a t e s ( g l u c o s e ,
phenol).
A n a l y s i s o f t h i s a n d some o t h e r m u l t i - c o m p o n e n t m o d e l s i n d i c a tes that the complexity,
stability,
p r o d u c t i v i t y and e f f i c i e n c y o f
t h e community a r e i n t e r r e l a t e d c h a r a c t e r i s t i c s
o f t h e open b i o l o g i -
c a l s y s t e m d e p e n d e n t o n s u c h m a c r o p a r a m m e t e r a s mean b i o m a s s r e s i dence ( r e n e w a l )
t i m e and o r g a n i c l o a d i n g ( t a b l e 1).
Black-box models o f b i o l o g i c a l t r e a t m e n t . I n t r o d u c i n g t h e aggreN M L = . c S1 a n d X-C B o b t a i n i n s t e a d o f t h e m u l t i 1=1 =1 .i component m u l t i - s p e c i e s m o d e l ( 2 3 t h e f o l l o w i n g one gated v a r i a b l e s
d L d t
where
-
yL =
1 (Lo
1
-
N
c fSi i=l
Le)
,
- YL
ex
9
d X -
ex
d t
- yx ,
M
N
ysj
=
and
Lo
j=l
I t is e a s y t o s e e t h a t i n s t e a d y - s t a t e t y p e r e a c t o r and Monod f u n c t i o n s , equivalent t o (1).
qL
and
=
c Soi . i=l
case o f t h e chemostat
f', t h e model ( 5 ) i s
A t t h e r e s u l t o f multi-component model's calcu-
l a t i o n s i t was p r o v e d t h a t t h e b e a t a p p r o x i m a t i o n o f t h e
vL
function
was n o t Monod b u t t h e f o l l o w i n g o n e s : , n
where n, p a r e t h e c o n s t a n t s , u t i l i z a t i o n rate,
y,
i s t h e maximum s p e c i f i c p o l u t a n t
i s t h e non-degradable f r a c t i o n o f organic matter,
X i s t h e biomass c o n c e n t r a t i o n i n a e r a t i o n tank.
-
140
F=
BOD5 ICOD = 0.59
5-
5.8 rng COD Irng MLSS . d
2320
I-
BIOMASS
d
a
OCOD --
I-
x GLUCOSE
z w V z 0
o PHENOL
............ BOD5 ICOD = 0.61
V
-______
L a - - . - -0 -.......
. . . . . . . . . . . . . . . . . . . . . . . . . . . . " n
0
I
' O . . '
X-
2-2
11
F = 0.58 mg CODImg MLSS.d
0
22
11
TIME [ H R S I F i g . 1. K i n e t i c c u r v e s f o r a c t i v a t e d s l u d g e o x i d i z i n g a m i x t u r e o f g l u c o s e and p h e n o l a t d i f f e r e n t o r g a n i c l o a d i n g d u r i n g a s e q u e n c i n g batch expariment.
Simultaneous carbon and n i t r o q e n removal model. tertuary
t r e a t m e n t i s v e r y a c t u a l now. A t p r e s e n t ,
technological
schemes a r e b a s e d o n t e m p o r a l o r s p a t i a l s e p a r a t i o n o f
such proceases as carbonaceous o x i d a t i o n , fication.
The p r o b l e m o f
a l l t h e known t
n i t r i f i c a t i o n and d e n i t r i -
T h r e e m o d i f i c a t i o n s o f a n a c t i v a t e d a l u d g e s y s t e m a r e u-
s u a l l y u s e d f o r m u n i c i p a l sewage w a t e r Scheme
(Fig.
2):
I i s a t w o - s e c t i o n s a e r a t i o n tank. There a r e a e r o b i c
c o n d i t i o n s i n t h e f i r s t s e c t i o n and a n o x i c c o n d i t i o n s i n t h e second s e c t i o n f o r t h e d e n i t r i f i c a t i o n process. Scheme I 1 i s f o u r - s e c t i o n s
a e r s t i o n tank.
I n t h e second and
f o u r t h sections the aerobic conditions are held.
-
141
-
Scheme 111 i s t h e s o c a l l e d B a r d e n p h o p r o c e s s w i t h a d d i t i o n a l r e c i r c u l a t i o n o f s l u d g e m i x t u r e from t h e second s e c t i o n t o t h e i n l e t o f the f i r s t section.
I n s u c h a scheme,
a l l r a w sewage w a t e r
comes t o t h e f i r s t s e c t i o n o f t h e a e r a t i o n t a n k .
REACTOR
qF
SCHEME
REACTOR
I
SCHEME
ANOXIC REACTOR
AEROBIC REACTOR
ANOXIC REACTOR
II
AEROBIC REACTOR
t
1 ANOXIC REACTOR
qF
AEROBIC REACTOR
I Fig.
2.
ANOXIC REACTOR
AEROBIC REACTOR
F ‘
t
M o d i f i c a t i o n s o f a c t i v a t e d sludge system.
T h e r e a r i s e a t h e q u e s t i o n o f how t o d e t e r m i n e t h e o p t i m u m val u e s o f t h e p o r t i o n s o f t h e t o t a l f l u x o f sewage w a t e r Ai,
inflo-
wing i n t o t h e s e p a r a t e s e c t i o n and t h e r e l a t i v e volume o f t h e such s e c t i o n Zi.
A t these optimum values,
t h e f i n e s t l e v e l o f w a s t e wa-
t e r t r e a t m e n t from n i t r o g e n i s achieved.
One o f t h e waya o f s o l v i n g
t h i s p r o b l e m c o n s i s t s o f t h e a p p l i c a t i o n o f t h e m a t h e m a t i c a l model i n g technique.
For such a purpose t h e model w i t h t h r e e main v a r i a b -
l e s (sewage w a t e r o r g a n i c c a r b o n c o n c e n t r a t i o n , gen c o n c e n t r a t i o n ,
SD)
SN,
was s u g g e s t e d ( 7 ) .
Sc,
ammonium n i t r o -
and c o n c e n t r a t i o n o f n i t r a t e s and n i t r a t e s , The v i a b l e s l u d g e b i o m a s s i s c o n s i d e r e d aa
b e i n g composed o f h e t e r o t r o p h i c X,,
and a u t o t r o p h i c XA p a r t s .
In
t u r n t h e h e t e r o t r o p h i c biomass can u t i l i z e for o x i d a t i o n o f organ i c carbon e i t h e r d i s a o l v e d oxygen o r t h a t c o n t a i n e d i n n i t r i t e s and n i t r a t e s .
The m a t e r i a l b a l a n c e e q u a t i o n s f o r t h e i - t h s e c t i o n
o f the n-sectional
a e r a t i o n t a n k may b e w r i t t e n a s f o l l o w a :
- 142
-
TABLE 1 Some p r o p e r t i e s o f o p e n b i o l o g i c a l c o m m u n i t i e s
Typical values o f macroparameters
P r o p e r t i e s of b i o l o g i c a l c o m m u n i t i e s w i t h fixed spectrum of available substrates
Large loading, small biomass t u r n - o v e r time
fast-growing species and organisms s e t t l e d , low s p e c i e s and groups d i v e r s i t y becouse o f displacement o f slow-growing organisms, simple trophic structure, i n s t a b i l i t y t o environmental changes, consumption of easyto-degradate p r o f i t a b l e f r a c t i o n s o f organ i c substance only
Small loading, l a r g e biomass t h r n - o v e r time
slow-growing s p e c i e s and organisms s e t t l e d , l a r g e portion of non-viable biomass, l a r g e s p e c i e s and groups d i v e r s i t y , complicated trophic structure, s t a b i l i t y to environmental changes, u t i l i z a t i o n o f a wide spectrum of s u b s t r a t e s
2. Direction of evolution processes
Chemostat: given values o f subs t r a t e s and biomass f l o w s , s t e a d y - s t a t e reg i m e i s d e t e r m i n e d by deficient substrate
K-strategy: increasing organisms a d a p t a b i l i t y t o biomass growth a t d e f i c i e n t s u b s t r a t e , i . e . of s y s t e m t h r i f t n e s s
Turbidostat: g i v e n s t a t i o n a r y value o f biomass, high r a t e of biomass growth is provided
r-strategy: i n c r e a s i n g maximum b i o m a s s g r o w t h r a t e , i . e . o f system p r o d u c t i v i t y
3 . S p a t i a l settlement of organisms
Type o f o p e n system w i t h s u b s t r a t e flow and biomass exchange
Organisms a b i l i t y t o s p a c e expansion i n continuous flow system
System with suspended biomass
o r g e n i e m s move t o g e t h e r w i t h s u b s t r a t e f l o w and according t o s u b s t r a t e s consumption t h e i r proportion changes
~~~
System with a t t a c h e d biomass
compact s t r u c t u r e o f d i f f e r e n t organisms g r o u p s i s f o r m e d i n s p a c e , when f a s t - g r o w i n c groups, consuming easy-to-degradate s u b s t r a tes s e t t l e n e a r t h e s u b s t r a t e s s o u r c e and slow-growing groups, u t i l i z i n g hard-to-degradate substrates, are displaced t o distant regions
-
where 1 = 1 , 2 , 3
143
-
ammonium n i t r o g e n N , n i t r i t e s
c o r r e s p o n d t o c a r b o n C,
and n i t r a t e s D ,
and t h e s p e c i a l e x p r e s s i o n s u s e d t o d e s c r i b e t h e
r a t e s o f c o n c e n t r a t i o n s c h a n g e s yil,
qi
i s the discharge o f the
sludge mixture s t the o u t l e t o f the i - t h section, Vi
flux,
qF i s t h e t o t a l
i s t h e volume o f t h e i - t h s e c t i o n .
The e x s m p l e o f t h e r e s u l t s o f t h e m o d e l ' s c a l c u l a t i o n s u n d e r t h e s e l e c t e d v a l u e s o f t h e c o n s t a n t s and parameters a r e p r e s e n t e d i n T a b l e 2. Ai
L e t u s n o t e t h a t t h e optimum v a l u e s o f t h e p a r a m e t e r s
s t w h i c h t h e t o t s 1 c o n c e n t r a t i o n o f n i t r o g e n compounds a t t h e
Zi, aeration tank o u t l e t ,
STN
SNn
+
SDn
,
become m i n i m a l d e p e n d i n g
c o n s i d e r s b l y on t h e t o t a l r e t e n t i o n t i m e T ,
concentration of organic
p o l l u t a n t i n raw wastes SCF and t h e r e c y c l e c o e f f i c i e n t R .
TABLE 2 The v a l u e s o f Scn a n d SNn ( m g / l ) a t t h e o p t i m u m v a l u e s o f p s r s m e t e r s Zi a n d Ai f o r t h e d i f f e r e n t schemes.
Scheme CF
h$s
2 75 10
150
-
I
R
Sc2
STN
I Sche I TN c4 --
Sche
rn
sc4
'TN
1
9.90
7.70
9.64
6.82
8.67
6.40
3
9.55
6.46
10.2
5.51
8.72
5.36
1
5.52
6.17
5.77
4.94
4.11
3.92
3
6.67
4.86
4.76
3.82
5.42
3.57
1
14.6
4.36
14.6
4.72
13.4
3.79
3
12.7
2.97
10.2
3.14
10.9
2.67
4.27
2.31
3.62
1.30
4.59
1.58
4.91
1.18
1 lo3
4.78
1.99
5.67
1.53
--
T one-section
12.9
15.7
11.1
15.7
8.39
15.8
8.00
15.9
19.6
10.5
15.7
10.5
9.86
11.0
9.01
11.1
From T a b l e 2 i t i s e a s y t o s e e t h s t n i t r o g e n r e m o v a l e f f i c i e n cy o f the t r a d i t i o n a l one-section F o r carbonaceous removal,
a e r a t i o n t a n k i s bad.
t h e B a r d e n p h o p r o c e s s (scheme 1 1 1 )
i s more e f f e c t i v e i n t h e c s s e o f t h e m a j o r i t y o f r e g i m e s s t u d i e d , a n d i t i s t h e b e s t one f o r t h e n i t r o g e n r e m o v a l u n d e r t h e d i f f e r e n t v a l u e s o f SCF
,
T and R.
But f o r t h i s process,
s d d i t i o n a l energy i s
required f o r the r e c d r c u l a t i o n o f the sludge mixture. t h e complete-mixing (9).
aeration tank the plug-flow
By i n c r e a s i n g
regime i s created
-
-
144
The p h y s i o l o q i c a l a d a p t a t i o n m o d e l o f b a c t e r i a p o p u l a t i o n o f a c t i v a t e d sludqe. essentially
I n t h e u s u a l model o f b a c t e r i a g r o w t h ,
assumed t o be some k i n d o f c a t a l y s t
oxidizing characteristics
a c e l l was
w i t h a fixed set o f
w h i c h were i n t r o d u c e d t h r o u g h t h e Monod
c o n s t a n t s . A t t h e same t i m e ,
t h e b a c t e r i a c e l l i s capable o f i n t e n -
s i f y i n g i t s own r e s o u r c e s s o a s t o p r o v i d e a maximum g r o w t h r a t e a t given conditions.
O n t h e b a s i s o f knewn e v i d e n c e on t h e c e l l ’ s
s t r u c t u r e and f u n c t i o n i n g ,
3 i n d i c a t e s the processes o f i n t e -
Fig.
r a c t i o n s between t h e elementq c o n s t i t u t i n g a c e l l . scheme,
the d i f f e r e n t substrates
S1, S 2 ,
...,
S.
According t o the
are oxidizing w i t h
t h e h e l p o f t h e c o r r e s p o n d i n g f e r m e n t a t i v e s y s t e m s Xfl,
Xfi
thesis. sis.
Xf2,
...,
t o some u n i v e r s a l s u b s t r a t e which was a p r e d e c e s s o r t o b i o s y n This storage substrate X8
i s consumed b y means o f b i o s y n t h e -
For a d e s c r i p t i o n o f t h i s process,
c e n t r a t i o n o f b i o s y n t h e s i s systems.
Xa
i s i n t r o d u c e d a s t h e con-
Biosynthesis production i s u t i -
l i z e d b o t h f o r t h e g r o w t h o f b i o s y n t h e s i s systems and t h e d e v e l o p ment o f f e r m e n t a t i v e systems,
Xfi.
Additionally,
some p o r t i o n o f
r e s o u r c e s i s s p e n t o n t h e c o n s t r u c t i o n o f c e l l u l a r membranes,
PAR AME T E R 5
I II
xs
-
xrn
F i g . 3 . Block-scheme o f a b a c t e r i a c e l l u t i l i z i n g a m i x t u r e o f substrates.
Xm.
-
145
-
Membranes p l a y an i m p o r t a n t r o l e i n t h e mechanism o f t h e c e l l ’ s functioning. The c o r r e s p o n d i n g m a t h e m a t i c a l e x p r e s s i o n s were s u g g e s t e d , d e s c r i b e t h e dynamics o f a balanced g r o w t h o f a c e l l , a polyaubstrate. conditions,
which
w h i l e consuming
I n o r d e r t o p r o v i d e t h e maximum g r o w t h r a t e a t g i v e n
a c e l l m u s t r e d i s t r i b u t e i t s r e s o u r c e s i n a n o p t i m a l way.
F o r t h i s p u r p o s e t h e c o n t r o l l i n g p a r a m e t e r s urn, ua, ufi duced i n t o t h e suggested model.
Thus,
on n o r m a l l y d u r i n g t h e g r o w t h process,
were i n d t r o -
i n order f o r a c e l l t o functi-
t h e r a t i o Xm/B s h o u l d b e m a i n -
t a i n e d a t a c o n s t a n t l e v e l w i t h t h e h e l p o f t h e p a r a m e t e r urn. With the help of
t h e ua parameter,
b o l i c ferments i s adjusted.
t h e o p e r a t i o n o f t h e c a t a b o l i c and sna-
I f there are a l o t o f storage substrates,
p r e f e r e n t i a l development i s g i v e n t o b i o s y n t h e a i s systems.
Otherwise
t h e m a j o r p a r t o f resources i s s p e n t on t h e g r o w t h o f c a t a b o l i c s y s tems,
which a r e t h e main s u p p l i e r s o f r e s e r v e d s u b s t r a t e s .
Finally,
w i t h t h e h e l p o f t h e c o n t r o l l i n g p a r a m e t e r s ufi,
t h e remaining re-
sources a r e s p e n t on t h e g r o w t h o f t h e ferments,
w h i c h t r e a t t h e ea-
a i l y degradate substrate.
A t t h e aame t i m e ,
synthesis o f t h e remai-
n i n g f e r m e n t a t i v e s y s t e m s i s r e p r e s a e d . F u r t h e r on,
a cell starts
t o u t i l i z e t h e s u b s t r a t e s w h i c h a r e more d i f f i c u l t t o u t i l i z e . The c h o i c e o f t h e a p p r o p r i a t e f o o d s t r a t e g y h a s a n e f f e c t u p o n t h e s e t t l e m e n t o f t h i s o r some o t h e r b a c t e r i a i n a c t i v a t e d s l u d g e . The p h y s i o l o g i c a l a d a p t a t i o n m o d e l m e n t i o n e d above,
was i n v o l v e d i n
t h e c y c l e model o f t h e a c t i v a t e d s l u d g e system ( 3 ) .
I t was shown t h a t
t h e b a c t e r i a - g e n e r a l i s t s capable o f u t i l i z i n g a broad substrates range a r e s e t t l e d i n a c t i v a t e d s l u d g e u n d e r a l o w o r g s n i c l o a d i n g o n l y . Under a h i g h o r g a n i c l o a d i n g t h e y a r e d i s p l a c e d by t h e b a c t e r i a - s p e cialists.
I n d e p e n d e n t o f what k i n d o f s p e c i e s ( g e n e r a l i s t o r a p e c i a -
l i s t ) i n h a b i t the a c t i v a t e d sludge,
i t s equilibrium composition in-
cludes a r e l a t i v e l y greater proportion o f the d i f f e r e n t catabolic ferments.
With t h e d e c r e a s e o f t h e l o a d i n g o f t h e s p e c t r u m ,
these
f e r m e n t s become w i d e r . CONCLUSION M o d e l i n g o r g a n i c m a t t e r by d e s t r u c t i o n o f t h e m i c r o o r g a n i s m s community p r o v i d e s t h e u s e f u l knowledge f o r t h e o r y and p r a c t i c e development. REFERENCES 1 A.W. L a w r e n c e a n d P.L. V. 9 6 , N3, 757-700.
McCarty,
J. S a n i t . Eng. D i v . ASCE, 1 9 7 0 ,
-
9
146
-
V.A. V a v i l i n , B i o m a s s R e s i d e n c e Time a n d O r g a n i c M a t t e r D e a t r u c t i o n i n B i o l o g i c a l T r e a t m e n t S y s t e m s . Moscow: Nauka P u b l i s h e r s , 1986. V.A. V a v i l i n a n d V.B. V a s i l i e v , E f f i c i e n c y o f M i c r o o r g a n h m s Community o f O r g a n i c M a t t e r D e s t r u c t i o n ( t o b e p u b l i s h e d ) . V.A. V a v i l i n , V o d n i e R e s u r s i , 1 9 8 8 , N 1 , 91-99. V.A. V a v i l i n , V o d n i e R e s u r s i , 1 9 8 8 , N4, 1 3 7 - 1 4 3 . V.A. V a v i l i n e t a l . A c t a H y d r o c h i m . H y d r o b i o l . , 1987, v.15, N6, 665-668. V.B. V a s i l i e v a n d V . A . V a v i l i n , Vodnie R e s u r s i . , 1990, N1, 119127. A.M. N i e k e r k e t a l . . J.WPCF. 1 9 8 8 . v . 60, N1, 1 0 0 - 1 0 6 . J. Chuddoba e t a l . W a t e r Res., 1 9 7 3 , v . 7., N8, 1 1 6 3 - 1 1 7 1 .
EFFECT OF P R O T O Z O A ON BACTERIAL DEGRADATION O F A R O M A T I C HYDROCARBONS
Yu.
L.
G U R E V I C H and V . P .
LADYGINA
I n s t i t u t e o f B i o p h y s i c s , U S S R Academy o f S c i e n c e s , 6 6 0 0 3 6 K r a s n o y a r s k , USSR
r h e p r o t o z o a sp. wastewaters.
are o f t e n found i n the communities p u r i f y i n g
The m o s t p r o b a b l e and m a i n r o l e o f p r o t o z o a i s t h o u g h t
t o maintain a bacterial population a t the condition o f physiologic a l youth,
and t o promote t h e c e l l s '
a g g r e g a t i o n 11, 2 1 .
The i d e a o f p h y s i o l o g i c a l y o u t h o f a b a c t e r i a l p o p u l a t i o n i s t o o general. rification.
Indeed,
o f water q u a l i t y , shouldn't
cells'
f l o c c u l a t i o n improve t h e wastewater pu-
This f a c t i s displayed by generalized c h a r a c t e r i s t i c s
C O D a n d BOD
e.g.
111.
Nevertheless,
that
fact
be i n t e r p r e t e d as a d i r e c t a f f e c t o f p r o t o z o a on t h e b i o -
c h e m i c a l p r o c e s s o f an o r g a n i c s o x i d a t i o n .
Hence,
t h e i r role i n the
biodegradation o f organic matter i s not obvious yet.
We h a v e s t u d i e d
t h i s p r o b l e m i n e x p e r i m e n t s on p h e n o l a n d n a p h t h a l e n e d e g r a d a t i o n by the simple t r o p h i c chain "substrate + b a c t e r i a " ,
and " s u b s t r a t e +
b a c t e r i a + protozoa".
M A T E R I A L S AND METHODS E : x p e r i m e n t s were c a r r i e d o u t i n a s i n g l e - s t a g e aeration,
mixing,
from 0.06
h - l t o 0.12
We've
pH and t e m p e r a t u r e c o n t r o l .
chemostat w i t h
The d i l u t i o n r a t e was
h-I.
used s e l e c t i v e b a c t e r i a l c u l t u r e s ,
which
1) u t i l i z e d naphthalene,
2) u t i l i z e d phenol. C i l i a t e Colpoda sp.
was u s e d a s a p r e d a t o r ;
t h i s l a t t e r was i s o l a -
t e d from t h e wastes t r e a t m e n t f a c i l i t y o f coke and b y - p r o d u c t
plant.
Colpotla c e l l s a r e a b l e t o g r a z e b o t h suspended b a c t e r i a l c e l l s ,
and
t h e a t t a c h e d ones a t t h e s u r f a c e . The c u l t i v a t i o n medium was a s o l u t i o n o f N H 4 C 1 , MgSO& i n p o t a b l e w a t e r .
KH2P04, Na2HP04,
P h e n o l was s u p p l i e d w i t h t h e medium,
and i t s
-
148
-
i n p u t c o n c e n t r a t i o n was e q u a l t o 0.8 9.1-'. was i n d e p e n d e n t f r o m t h e medium i n p u t .
The n a p h t h a l e n e s u p p l y
The n a p h t h a l e n e f l o w was e -
nough t o m a i n t a i n t h e o u t p u t biomass c o n c e n t r a t i o n i n t h e range o f
0.5
-
1.0
g.1-l
(dry weight).
The r e s i d u a l n a p h t h a l e n e c o n c e n t r a t i o n was d e t e c t e d b y g a s c h r o -
matography;
t h a t o f p h e n o l was d e t e c t e d b y p h o t o m e t e r ,
u s i n g 4 - ami-
n i a n t i p y r i n e as a c o l o r i n d i c a t o r . RESULTS
1. N a p h t h a l e n e + b a c t e r i a s y s t e m s The b a c t e r i a l c o n c e n t r a t i o n was c l o s e t o 1 g . 1 - l
d/w.
n i m a l r e s i d u a l n a p h t h a l e n e c o n c e n t r a t i o n was e q u a l t o 0 . 1
I t s h o u l d be n o t e d , tuated considerably.
t h a t the output naphthalene czncentration Probably,
Fig. 1). t o 1.32 mg.1-' The o u t p u t b i o m a s s c o n c e n t r a t i o n i n c r e a s e d , Hence,
fluc-
The a v e r a g e o v e r t h e
w i t h no c o n s i d e r a b l e d i s t u r b a n c e s o f t h e p r o c e s s ,
input increased
.
-1
the low s o l u b i l i t y o f the substrate
made t h i s i n p u t i n t o t h e c u l t u r e n o n u n i f o r m . period,
The m i mg.1
was e q u a l
as t h e substrate
t h i s form t h e ground t o c o n s i d e r . n a p h t h a l e -
ne the l i m i t i n g factor.
a
R
3
1
5
9
7
11
DAYS
3
DAYS
w
a
b
I
,
u0
I 3 0
1
2
3
DAYS
0
1
2
F i g . 1. D e g r a d a t i o n o f n a p h t h a l e n e i n c h e m o s t a t c u l t u r e o f Pseudomonas ap. a b a c t e r i a l c u l t u r e , 100 L phosphorus; b bacterial + c i l i a t e , 100 L p h o s p h o r u s ; c b a c t e r i a l + c i l i a t e , 1 0 Vn p h o s p h o r u s .
-
-
-
2.
Naphthalene
-
149
+ b a c t e r i a + Colpodae systems
The a v e r a g e o u t p u t n a p h t h a l e n e c o n c e n t r a t i o n i n c r e a s e d u p t o
6.7
rng.l-',
when t h e c i l i a t e was i n t r o d u c e d i n t o t h e c u l t u r e ( u n d e r
t h e same c u l t i v a t i o n c o n d i t i o n s ) . m a i n e d p r a c t i c a l l y t h e same. 3 4.10 cells/rnl.
The mean t o t a l c o u t p u t b i o m a s s r e -
-
number was e q u a l t o 0.5
Ciliate's
P h o s p h o r - l i m i t e d n u t r i t i o n o f t h e c u l t u r e made t h e r e c o v e r y o f t h e q u a l i t y o f b i o p u r i f i c a t i o n o f water.
Moreover,
t h e a v e r a g e nap-
h t a l e n e c o n t e n t was l o w e r d u r i n g t h e p e r i o d s w i t h n o l a r g e f l u c t u a tions.
lo3
30.
The C o l p o d a sp.
p o p u l a t i o n d e n s i t y v a r i e d f r o m 5 . 1 ~ 1t ~o
cells/ml.
The s i g n i f i c a n t p h o s p h o r u s l i m i t a t i o n r e s u l t e d i n a h e a v y i n The C i l i a t e were f o u n d t o b e v e r y
crease o f naphthalene content.
sensible t o increased naphthalene concentration;
e x p e r i m e n t showed
or
e n c y s t a t i o n a n d w a l l g r o w t h a t t h e c o n c e n t r a t i o n o f 30 mg.1-' more.
Our m a i n s t a t e m e n t i s t h a t t h e r e i s an o p t i m a l p h o s p h o r u s c o n centration,
t h a t r e s u l t e d i n t h e most e f f i c i e n t u t i l i z a t i o n o f a t o -
x i c carbon source (here naphthalene).
Both the c e l l s '
aggregation
a n d w a l l g r o w t h were o b s e r v e d d u r i n g t h e e x p e r i m e n t s .
3.
Phenol
+
b a c t e r i a systems
The d i l u t i o n r a t e a t 0.07 medium o f 8 0 0 mg.1-'
4.
mg.1-
Phenol
and a p h e n o l c o n c e n t r a t i o n i n a
r e s u l t e d i n an a p p e a r a n c e o f t h e a v e r a g e d r y
w e i g h t o u t p u t biomass 0.61 0.36
h-l,
.
g.1-l
and o u t p u t p h e n o l c o n c e n t r s t i o n a t
1
+ b a c t e r i a + p r o t o z o a systems
As i n t h e f i r s t e x p e r i m e n t ,
the i n t r o d u c t i o n o f Protozoa bro-
u g h t about c o n s i d e r a b l e d i s t u r b a n c e i n t h e system. t r a t i o n of growth-limiting 150 mg.1-l.
R e s i d u a l concen-
a o u r c e o f c a r b o n s h a r p l y i n c r e a s e s up t o
T h i s i n c r e a s e was a c c o m p a n i e d b y an i n c r e a s e o f t h e t o -
t a l biomass and t h e numbers o f t h e c i l i a t e a t t h e o u t p u t . the values of
t h e observed v a r i a b l e s s t a r t e d t o recover,
reaching the steady state, 0.12
h-'.
t h e d i l u t i o n r a t e waa i n c r e a s e d up t o
A t t h i s d i l u t i o n r a t e 1 3 0 mg.1-'
p h e n o l a n d 128.103
cells/ml
Afterwards, but before
mg.1-'
of
o f c i l i a t e established (Table 1).
biomass,
2,2
The
p o p u l a t i o n o f p r o t o z o a v a r i e d w i t h i n t h e l i m i t s o f 20.103
-
140.10
cells/ml. As e a r l i e r ,
the ten-fold
decrease of
phosphorus c o n c e n t r a t i o n
3
-
-
150
a t t h e i n p u t made d e c r e a s e t h e a v e r a g e v a l u e o f p h e n o l a t t h e o u t p u t t o 0.66
mg.1-l
(minimum v a l u e s a b o u t 0 . 2
c e n t r a t i o n o f b i o m a s s was 1 5 0 m g . l - l , 179,l-1
cells/ml.
150.103
-
So,
600.10
I n t h i s case con-
mg.1-’).
the population o f c i l i a t e
-
The n u m b e r s o f P r o t o z o a v a r i e d w i t h i n t h e l i m i t s 3
cells/ml.
t h e experiments proved t h e p o s i t i v e ( w i t h l i m i t e d nonenergy
substrate)
and n e g a t i v e ( w i t h l i m i t e d s o u r c e o f c a r b o n and e n e r g y )
e f f e c t o f predation o f b a c t e r i a l oxidation o f t o x i c substrates. TABLE 1 D e g r a d a t i o n o f p h e n o l by b a c t e r i a o r b a c t e r i a Input concentration o f phosphorus a t 7;
O il u tion rate
[h-l]
+
c i l i a t e i n chemostat
Dry weight o f phenol [ m q 111
[g/ll
[c e 11s/m 1 1
I
-
I
100
0.07
0.61
100
0.12
0.13 flocs, wall growth
2.2
128.10~
I
10
0.12
0.15 more w a l l growth
0.66
178,6.
L
0.36
lo3
THEORETICAL ANALYSIS The m o d e l o f t h e “ p r e d a t o r - p r e y - s u b s t r a t e ” presumes t h e p r e s e n c e o f t u r n o v e r l i m i t i n g factor. o f t h e system’s
system (nonenergy)
i n a simple trophic chain o f the
Under t h e c o n d i t i o n s o f t h e t u r n o v e r ,
the region
e x i s t e n c e i n t h e p l a n e o f c o n t r o l l i n g parameters So,
D ( l i m i t i n g substrate a t the input,
d i l u t i o n r a t e ) as w e l l as t h e
d i v i s i o n o f t h i s r e g i o n i n t o zones o f s t a b i l i t y and i n s t a b i l i t y , n o t change. ters,
However,
do
a t t h e same v a l u e s o f t h e c o n t r o l l i n g parame-
the population o f Protozoa increases,
o f t h e s y s t e m on t h e w h o l e ,
ensuring the survival
as t h i s is much more t h a n t h e minimum
c r i t i c a l value o f the s i z e o f the population.
T h i s r e s u l t o f nume-
r i c a l s i m u l a t i o n i s i n agreement w i t h t h e e x p e r i m e n t a l d a t a . Taking i n t o account t h a t t h e l e a d i n g r o l e i n t h e *preypredator” s y s t e m is p e r f o r m e d n o t o n l y b y t h e t u r n o v e r a s an a d d i t i o n a l s o u r c e o f biogenous element o f n u t r i t i o n , strate,
b u t a l s o t o t h e a u t o c h t o n e sub-
stimulating b a c t e r i a l reproduction,
the region o f s t a b i l i t y
and t h e r e g i o n o f s u r v i v a l o f t h e system i a c o n s i d e r a b l y e n l a r g e d .
-
151
-
The m o d e l u n d e r c o n s i d e r a t i o n a d m i t s t h a t t h e a u t o c h t o n e s u b s t r a t e i s 11ot t h e p r o d u c t o f l y s i s o f d e a t h o f t h e c e l l s , a s i t i s a s s u med i n t h e w o r k 1 2 1 , b u t t h e r e s u l t o f t h e m e t a b o l i s m o f t h e P r o t o zoa. The e x p e r i m e n t s r e v e a l e d f l o c c u l a t i o n a n d w a l l g r o w t h . T h i s h i n d e r s a d e t a i l e d d e s c r i p t i o n o f t h e p r o c e s s o f naphthalene o r phen o l b i o o x i d a t i o n , may b e t h e o r i g i n o f f l u c t u a t i o n s a n d o t h e r a f f e c t s . On t h e . o t h e r h a n d , w a l l g r o w t h i s t o h e l p s t a b i l i z e t h e p r o c e s s and e n h a n c e t h e q u a l i t y o f s u b s t r a t e b i o o x i d a t i o n . We have an a l y s e d t h i s pnehomenon i n w o r k s 1 3 , 41. We h a v e c o n s i d e r e d t h e mod e l s o f b a c t e r i a l b i o d e g r a d a t i o n o f t o x i c compounds u n d e r c h e m o a t a t c o n d i t i o n s w i t h an a c c o u n t o f f i l m f o r m a t i o n a n d t h e m o d e l o f g r o w t h of
i n f u s o r i a a p t t o s t i c k i n g i n an i n h o m o g e n e o u s c h e m o s t a t c u l t u r e .
DILUTION
RATE
F i g . 2. I n f l u e n c e o f t h e d i l u t i o n r a t e on t h e - g r o w t h o f p r o t o z o a i n c h e m o s t a t ( c a l c u l a t e d c u r v e s ) . An a n a l o g i c a l p i c t u r e f o r b a c t e r i a . X - f r e e - s w i m m i n g c e l l s , X - a t t a c h e d c e l l s , I , 11, 111 d i f f e r g n t r e g i o n s o f s t a b l e and i n s t a b l e s t a t e s and p h y s i o l o g y o f c u l ture.
-
From t h i s a n a l y s i s t h e n e c e s s i t y e n s u e s t o t a k e i n t o a c c o u n t t h e t r a n s i t i o n o f b a c t e r i a and p r o t o z o a from t h e f r e e s t a t e i n t o t h e a g g r e q a t e one a n d b a c k .
T h i s c u l t u r e i s shown t o h a v e a r e g i o n i n t h e p l a n e o f t h e c o n t r o l l i n g p a r a m e t e r s ( S o , D ) , where t h e d e n s i t y o f t h e c u l t u r e i s o b s e r v e d t o depend on n o n - s i n g l e -
valuedly
the d i l u t i o n rate.
D e t e r m i n e d a r e t h e t y p e s o f model s o l u t i o n s , ce o f t h r e e s t a t i o n a r y p o i n t s .
predicting the existen-
The v a r i a n t o f t h e m o d e l w i t h l i m i -
t e d g r o w t h o f aggregate c e l l s i n i t s main f e a t u r e ( a b i l i t y t o recover a f t e r l a r g e disturbances) ses.
corresponda t o d e f i n i t e r e a l proces-
-
152 -
W i t h t h e a c c o u n t o f t h e above m e n t i o n e d p e c u l i a r r e l a t i o n s b e t organisms and t h e s u b s t r a t e i n our t r o p h i c
ween t h e s i n g l e - c e l l chain,
i t can be r e p r e s e n t e d i n t h e f o l l o w i n g f o r m :
attached
free-swimming
bacteria
bacteria
st t ached protozoa
I%-
-a
free-swimming protozoa
C o m p l e t e a n a l y s i s o f s u c h a s y s t e m n e e d s much t i m e .
Besides,
t h i s system c s n h a r d l y be s u f f i c i e n t l y adequate t o a r e a l o b j e c t , under c e r t a i n c o n c e n t r a t i o n s o f naphthalene,
f o r example,
30 mg.1-
as
1
,
t h e c i l i a t e form c y s t s and t h e r e v e r s e excystment p r o c e s s s t a r t s , when t h e c o n c e n t r a t i o n o f n a p h t h a l e n e d e c r e a s e s . n o l wasn't
ss s t r o n g .
S e n s i t i v i t y t o phe-
E n c y s t a t i o n a n d e v e n t h e d e a t h o f c i l i a t e we-
r e o b s e r v e d a t v e r y h i g h p h e n o l c o n c e n t r a t i o n s ( r 500 mg.1
-1
1.
Also
a n a c c o u n t s h o u l d b e made o f t h e p o s s i b i l i t y o f d e p o s i t i o n o f t h e growth-limiting
s u b s t r a t e i n t h e f o r m o f t r a n s f o r m e d compounds i n
the b i o f i l m or i n the c e l l .
R e s u l t s o f n u m e r i c a l c a l c u l a t i o n s by t h e
m o d e l p r o p o s e d do n o t d i s a g r e e w i t h t h e e x p e r i m e n t a l d a t a . CONCLUSION The e x p e r i m e n t a n d t h e o r e t i c a l a n a l y s i b showed t h a t t h e p o s i t i v e e f f e c t o f p r e d a t i o n on b a c t e r i a l d e g r a d a t i o n o f t h e t o x i c agents i s connected w i t h t h e t u r n o v e r o f t h e biogenous elements i n t h e s i m p l e t r o p h i c c h a i n u n d e r i n v e s t i g a t i o n e n d t h e emergence o f autochthonous substrate s t i m u l a t i n g b a c t e r i a l reproduction. REFERENCES
1 2 3
C.R. C u r d s , The e c o l o g y a n d r o l e o f p r o t o z o a i n a e r o b i c sewage t r e a t m e n t p r o c e s s e s . -Ann. Rev. M i c r o b i o l . , 1 9 8 2 , 36, p. 27-46. A . Sambania, S . P a v l o u a n d A . G . Fredrickson, Analysis o f the Chemical dynamics o f c i l i a t e - b a c t e r i a l i n t e r a c t i o n s i n C S T R . Eng. S c i e n c e , v. 41, N6, p. 1 4 5 5 - 1 4 6 9 , 1986. L a d y g i n a , The s t a b i l i t y o f b i o d e g r a d a Yu. L. G u r e v i c h a n d V.P. t i o n o f t o x i c s u b s t r a t e s i n a chemostat with r e s p e c t t o c e l l s Book o f A b s t r a c t s . 9 t h I S C C "Continuous C u l t u r e attachment.
-
-
-
4
153
-
i n B i o t e c h n o l o g y a n d E n v i r o n m e n t C o n s e r v a t i o n " , 19-24 J u l y , 1 9 8 7 , Hradec K r a l o v e , Czechoslovakia. Yu.L. G u r e v i c h and V . P . L a d y g i n a , F o r m a t i o n o f w a l l g r o w t h f i l m s and b i o d e g r a d a t i o n p e r s i s t e n c e o f t o x i c compounds i n c o n t i n u o u s c u l t u r e systems. P r o b l e m o f E c o l o g i c a l M o n i t o r i n g and Ecosystem m o d e l i n g . v . 9 , p . 2 2 - 3 0 , L e n i n g r a d , G i d r o m e t e o i z d a t , 1 9 8 6 .
-
This Page Intentionally Left TBlank
P H E N O L AND NAPHTHALENE DEGRADATION B Y M I X E D CULTURE
OF M I C R O O R G A N I S M S N.S.
MANUKOVSKI,
M.I.
TEREMOVA,
I n s t i t u t e o f Biophysics,
Yu.L.
GUREVICH and I . M .
PAN’KOVA
U S S R Academy o f S c i e n c e s ,
660036, K r a s n o y a r s k , U S S R
Wastewater c o n t a i n s , ces;
as a r u l e ,
a mixture o f organic substan-
i t ’ s b i o d e g r a d a t i o n i s r e a l i z e d by m i c r o b i a l c o m m u n i t i e s .
The
composition o f t h e communities i s e s t a b l i s h e d spontaneously under non-sterile
c o n d i t i o n s o f no e x t e r n a l c o n t r o l
impact.
T h i s communication d w e l l s upon t h e problem o f t h e p u r p o s e f u l f o r m a t i o n o f t h e m i c r o o r g a n i s m community t h a t i s c a p a b l e t o p u r i f y w a t e r more e f f i c i e n t l y .
The o b j e c t u n d e r i n v e s t i g a t i o n was t h e wa-
t e r o f a cokechemical i n d u s t r y .
B i o d e g r a d a t i o n o f p h e n o l a n d na-phtha-
l e n e was m o s t i n t e r e s t i n g t o u s . We h a v e s t u d i e d t w o ways t o i m p r o v e t h e c o m p o s i t i o n o f m i c r o b i a l community, which p u r i f i e d wastewater
-
from aromatic hydrocar-
bons.
1. One c a n i n t r o d u c e a new s t r a i n i n t o t h e m i c r o b i a l c o m m u n i t y . The s t r a i n c o u l d be o b t a i n e d by a r e c o m b i n a n t DNA,
or s p e c i a l l y se-
l e c t e d , or found i n a d i f f e r e n t environment.
2.
The s p e c i e s c o m p o s i t i o n o f a c o m m u n i t y i s n o t a f f e c t e d
(i.e. n o new s p e c i e s o r s t r a i n i s i n t r o d u c e d ) ,
but the r a t i o o f the
densities o f the species present i s appropriately varied. Community c o m p o s i t i o n s h o u l d b e c h a n g e d w i t h r e s p e c t t o t h e feature o f both microorganisms i n t e r a c t i o n ,
and t h e o x i d a t i o n k i n e -
t i c s o f t h e mixed s u b s t r a t e . S p e c i e s and q r o w t h c o n d i t i o n s . monas s p .
and N o c a r d i a sp.
The b a c t e r i a l c u l t u r e o f P s e u d o -
have been i s o l a t e d from t h e wastewater
on t h e s e l e c t i v e media c o n t a i n i n g p h e n o l , g u i a c o l , The g l a s s f e r m e n t o r
o f t h e 0.45-0.6
and
naphthalene
1 e f f e c t i v e v o l u m e was e q u i p p e d
w i t h an a u t o m a t i c d e v i c e t o m a i n t a i n t h e pH a n d t e m p e r a t u r e . was m a i n t a i n e d w i t h i n t h e 6.7-7.5
range,
The pH
a n d t h e c u l t i v a t i o n tempe-
r a t u r e was e q u a l t o 20
156
a n d 30
OC
OC
f o r N o c a r d i a sp.,
b u t 32-34
OC
f o r Pseudomonas s p . Analysis.
The c o n c e n t r a t i o n o f b o t h p h e n o l a n d g u i a c o l was d e -
termined c o l o r i m e t r i c a l l y over 4-aminosntipyrine 2,3-oxygenase
as t h e i n d i c a t o r ;
a c t i v i t y i n c e l l s was d e t e r m i n e d c o l o r i m e t r i c a l l y o v e r
c a t e c h o l ; n a p h t h a l e n e c o n c e n t r a t i o n was d e t e r m i n e d b y t h e c h r o m a t o graph.
I n addition,
s u p e r n a t a n t a b s o r p t i o n maximum was d e t e r m i n e d
-
w i t h i n t h e r e g i o n o f 370
420 n m a t pH 1 1 . 0
111.
1. D e g r a d a t i o n o f a s i n g l e s u b s t r a t e The c u l t u r e s s t u d i e d h a v e shown d i f f e r e n t a b i l i t i e s t o o x i d i z e the substrate
( s e e T a b l e 1). B o t h t h e d e p e n d e n c e o f t h e c e l l s den-
s i t y and t h e s u b s t r a t e c o n c e n t r a t i o n on t h e d i l u t i o n r a t e ,
and t h e
dependence o f t h e s p e c i f i c r a t e o f s u b s t r a t e c o n s u m p t i o n on t h e g r o w t h r a t e f i t i n Monod's and P i r t ' s models ( s e e F i g .
1
-
3).
TABLE 1 Degradation o f aromatic hydrocarbons as s o l e sources o f carbon i n c h e m o s t a t c u l t u r e s o f Pseudomonas a n d N o c s r d i a Dilution rate
Substrate
Culture, substrate
input
output
Gs/ll
[h-']
1000800
< 1
N o c a r d i a spp. guiacol
250
1-5
Pseudomonas sp. + N o c a r d i a sp. p h e n o l
BOO
Pseudomonas sp. phenol
Pseudomonas spp.
Growth yield
0.070.27
0.065-
0.6
0.12
c1
20004000
c 0.5
0.140.20
+
0.0750.12
+
N o t d e t e r m i n e d f o r w a l l g r o w t h and i n s o l u b i l i t y o f n a p h t h a l e n e .
We h a v e m e a s u r e d t h e d e p e n d e n c e o f t h e s p e c i f i c r a t e o f s u b s t r a t e
consumption on t h e d i l u t i o n r a t e . g r o w t h and c e l l s a g g r e g a t i o n ,
The o c c u r r e n c e o f t h e a t t a c h e d
has been measured as w e l l .
o x i d a t i o n d a t a a r e p r e s e n t e d i n T a b l e 2;
I t s h o u l d be n o t e d ,
we'll
d i s c u s s them b e l o w .
t h a t t h e observed v a l u e o f t h e economic
c o e f f i c i e n t i s l e s s tl- n t h e t h e o r e t i c a l one, spent f o r maintenance i s c l o s e t o zero.
a l t h o u g h t h e energy
One c a n e a s i l y see t h a t
d u r i n g t h e p h e n o l d e g r a d a t i o n b y Pseudomonas sp. was a l w a y s c o l o r e d g r e e n ,
The p h e n o l
or b r o w n .
t h e c u l t u r a l medium
-
157
-
0.1
0.2
0.3 DIWTDN RATE [ h-'1
Fig. 1. C h e m o s t a t c u l t u r e o f P s e u d o m o n a s s e . with phenol a s a lim i t i n g substrate. 1 - b i o m a s s , 2 - output c o n c e n t r a t i o n o f phenol
--
- 0.200,
J
0
0.15
-
0.10
.
0.05
-
0
0.05
0.1
0.15
DILUTION RATE
1 0 .h-']
Fig. 2. C h e m o s t a t c u l t u r e o f N o c a r d i a s p . w i t h g u i a c o l a s a limiting s u b s t r a t e ( S o = 0.25 9/11. 1 biomass, 2 autput concentration o f guiacol; a r r o w 8 i n d i c a t e c h a n g e s o f d i l u t i o n r a t e
-
-
-
-
158
1.0
-
'p
c
2
P
n
F i g . 3. S p e c i f i c u p t a k e r a t e o f p h e n o l ( 1 ) a n d g u i a c o l ( 2 ) i n r e l a t i o n t o t h e d i l u t i o n r a t e i n c h e m o s t a t c u l t u r e o f Pseudomonas s p . and N o c a r d i a spp.
N o t e some d i s c r e p a n c i e s b e t w e e n t h e e v i d e n c e a n d t h e m o d e r n theories:
1. N o n - s i n g l e - v a l u e d
r e s u l t o f t h e s u b s t r a t e d e g r a d a t i o n under
c o n s t a n t c u l t i v a t i o n c o n d i t i o n s was o b s e r v e d i n a s e r i e s o f e x p e r i m e n t s (see dash l i n e i n F i g . as w e l l ,
2.
as exp.
7va expa.
Pseudomonaa ap.
2 f o r t h e case o f q u i a c o l o x i d a t i o n ,
1-6 and 13-16 i n Table 2).
c u l t u r e s a l w a y s show m e t e - c l e a v a g e
pathway
f o r catechol oxidation a t the i n i t i a l stage o f c u l t i v a t i o n . (rather long)
2.
t i m e i t disappeared b o t h f o r mixed,
I n some
and m o n o - c u l t u r e s .
Substrate mixture degradation I n s p i t e o f some i n e x p l i c a b l e f e a t u r e s i n s i n g l e s p e c i e s c u l -
t u r e behavior,
t h a t oxidase phenol,
guiacol,
t r i e d t h e m i x e d c u l t u r e o f Pseudomonas aD. them.
+
and naphthalene, N o c a r d i a sp.
we
t o treat
We assumed t h e enzyme k i n e t i c s o f d i f f e r e n t m i c r o o r g a n i s m s t o
d i f f e r f o r v a r i o u s a r o m a t i c h y d r o c a r b o n s . So, complement each o t h e r .
t h e c u l t u r e s should
-
159
-
TABLE 2 Parameters o f phenol d e g r a d a t i o n process i n chemostat ~
NN
Dilution r a p ]
-
Substrate input
hdil
Biomass
output
[mg/l]
1
0.07
1000
0.2
594
2
0.07
1000
0.2
600
Cleavage pathway, absorbtion p e a k [nm]
Economical coef f i c i e n
b/gJ 0.59 0.60
375 meta-
3
0.07
1000
0.3
630
4
0.07
1000
0.2
490
5
0.07
1000
0.2
550
6
0.07
80 0
0.2
510
7
0.07
1000
0.45
440
8
0.08
800
0.2
478
9
0.09
800
0.6
474
10
0.12
1000
0.8
58 2
11
0.14
BOO
0.5
400
12
0.15
1000
0.3
590
13
0.17
880
19.0
454
14
0.17
800
0.5
467
15
0.19
800
21.0
384
0.49
16
0.20
1000
0.5
700
0.70
17
0.23
1000
0.4
510
18
0.26
1000
1.5
672
19
0.27
800
0.9
512
20
0.27
800
1.0
21
0.07
800
0.36
0.63 375
0.55 375 380
0 . 1 h-'.
0.59 0.58 meta-
0.50 0.59 0.50
375
0.58
375
0.51 0.67 0.64
450
410
0.56
610
s m a l l meta
0.76
9/11 and n a p h t h a l e n e because o f t h e e x t r e -
The d i l u t i o n r a t e was e q u a l t o
T h i s i s t h e c r i t i c a l f l o w f o r N o c a r d i a sp.,
i s u t i l i z e d moat e f f i c i e n t l y ;
0.44 0.60
375
t h i s i s the calculated concentration,
mely poor s o l u b i l i t y o f naphthalene).
0.63 ortho-
The m i x e d a u b s t r a t e c o n t a i n e d p h e n o l ( 0 . 5
( 2 g/l);
0.49
that culture didn't
a t which phenol
o x i d i z e t h e naph-
thalene. F o r t h e e x p e r i m e n t we u s e d Pseudomonas ap.
naphthalene.
adapted t o u t i l i z e
The a d d i t i o n o f p h e n o l t o t h e n a p h t h a l e n e u t i l i z i n g
c u l t u r e r e s u l t e d b o t h i n t h e i n t e n s i v e brown c o l o r appearance i n t h e culture,
a n d an i n c r e a s e d r e s i d u a l p h e n o l c o n c e n t r a t i o n .
-
160
-
The m i x e d c u l t u r e was a b s o l u t e l y c o l o r l e s s ,
but the residual
c o n c e n t r a t i o n s o f b o t h p h e n o l and n a p h t h a l e n e were l e s s t h a n 0.2 mg/l.
I t s h o u l d be s t r e s s e d ,
t h a t N o c a r d i a sp.
successfully u t i l i z e d
phenol a t r e l a t i v e l y h i g h i n p u t concentrations o f the former,
with rather great d i l u t i o n rates, The No.
and
mixed c u l t u r e .
2 m e t h o d was i l l u s t r a t e d w i t h t h e f o l l o w i n g e x p e r i m e n t .
The n a p h t h a l e n e o x i d i z i n g c u l t u r e ,
i s o l a t e d from wastewater d i s c h a r -
ged from p h e n o l i c w a t e r b i o l o g i c a l t r e a t m e n t p l a n t , i n t o a n a e r o t a n k i n a s p e c i f i c way.
As s r e s u l t ,
d u a l p h e n o l c o n c e n t r a t i o n d e c r e a s e d a s much a s 30
was i n o c u l a t e d
t h e average r e s i -
X,
b u t the process
s t a b i l i t y o f a sewage b i o l o g i c a l t r e a t m e n t e n h a n c e d ( t h e v a r i a t i o n c o e f f i c i e n t d e c r e a s e d 2.8
4
times).
8
These d a t a s r e shown i n F i g .
12
4.
20
16
MONTMS
F i g . 4. D y n a m i c s o f p h e n o l a t t h e o u t p u t o f b i o l o g i c a l p u r i f i c a t i o n o f wastewater i n coke and b y - p r o d u c t p l a n t . Arrow i n d i c a t e sowing o f nsphth a l e n e - o x i d i z i n g b a c t e r i a
Thus,
t h e e x p e r i m e n t s c a r r i e d o u t show t h a t t h e c h a n g e s i n t h e
q u a l i t y a n d number c o m p o s i t i o n o f a m i c r o b i a l c o m m u n i t y , n a l l y s t a b l e c o n t i n u o u s c u l t u r e have a p o s i t i v e e f f e c t , community r e a r r a n g e .
with functioi.e.
make t h e
-
161
-
Now, w e ’ l l d i s c u s s t h e s e i n e x p l i c a b l e f e a t u r e s m e n t i o n e d a b o v e i n t h e s i n g l e species c u l t u r e behaviour. DlSCUSSION
Both b i o c h e m i s t r y and g e n e t i c s of t h e m i c r o b i a l o x i d a t i o n o f
it is
a r o m a t i c h y d r o c a r b o n s are r a t h e r well s t u d i e d . N e v e r t h e l e s s ,
s t r a n g e , t h a t t h e e v i d e n c e on t h e c a t a b o l i s m m u l t i r o u t i n e s s are n o t i n c l u d e d i n t o w a s t e w a t e r t r e a t m e n t , when c o n s i d e r e d a t t h e p o p u l a t i o n and community l e v e l s .
T h i s e v i d e n c e m a k e s us d i s c u s s t h e p r o -
blem of a m u l t i r o u t i n e s s . Jones e t a l . I 2 1 found t h a t t h e r e g i o n o f m i c r o b i a l growth lim i t a t i o n a s w e l l a s i t s i n h i b i t i o n b y p h e n o l h a d t h e i r s p e c i f i c economic c o e f f i c i e n t s . These r e g i o n s a r e n ’ t o f any i n t e r e s t and have n o g e n e r a l b o u n d a r y , a s i t i s shown i n F i g . 5 [2, 3 1 . Assume t h e g r o w t h r a t e d e p e n d e n c e on s u b s t r a t e c o n c e n t r a t i o n b e a s s h o w n i n F i g . 6 . Q u i t e a few r e s e a r c h e r s s u p p o r t t h i s a s s u m p t i o n , T h e maximum o f regions.
p ( S ) belong t o both t h e l i m i t a t i o n , and i n h i b i t i o n
There is no corresponding p o i n t for i t i n Fig.
5, or a
t r a n s i t i o n a r e a from l i n e 1 t o l i n e 2 . Hence, t h e b a s i c assumption presented a t Figs.
5, 6 should be changed.
The p o s s i b l e c h a n g e f o r
i t i s shown i n F i g s . 5 a n d 6 i n d a s h l i n e s .
0
1
2
5
3
6
7 1l p
f h-’I
F i g . 5. R e c i p r o c a l p l o t o f g r o w t h y i e l d a n d g r o w t h r a t e w i t h p h e n o l oxidizing b a c t e r i a (from /3.2/). 1 limitation, 2 inhibition, 3 h y p o t h e t i c a l l i n e o f p a s s a g e from l i m i t a t i o n t o i n h i b i t i o n
-
-
-
- 162
-
Taking i n t o account k i n e t i c features o f t h e aromatic hydrocarone c a n e a s i l y show t h e e x i s t e n c e o f t h e a r e a o f t h e
bons o x i d a t i o n , bi-stability i n Fig.
i n behaviour.
I t ’ s evident,
i n part,
f r o m o u r d a t a shown
3 a n d T a b l e 2.
P o s i t i o n 7 i n T a b l e 2 shows t h e r e s u l t s t o b e s t a t i s t i c a l l y d i f f e r e n t from t h o s e p r e s e n t e d i n p o s i t i o n s 1-6. meta-cleavage
o f t h e c a t e c h o l wasn’t
s i t i o n 7 v s p o s i t i o n s 1-6
The c o m p a r i s o n o f
shows t h a t m e t a - c l e a v a g e
l e s s output phenol concentration; p o s i t i o n 21,
observed.
I n t h i s case t h e po-
pathway p r o v i d e s
t h e aame shows t h e e v i d e n c e s i n
obtained from another s e r i e s o f long-time
experiments.
W
t-
a
n
SUBSTRATE
F i g . 6. S p e c i f i c growth r a t e vs. s u b s t r a t e c o n c e n t r a t i o n (hypothet i c a l curves; f o r example, 1 meta-cleavage and 2 - o r t h o - c l e a v a g e pathways o f phenol, dash l i n e - o t h e r h y p o t h e s i s )
-
O n t h e o t h e r hand, p o s i t i o n s 1 3 - 1 6 d o n ’ t 2,3-oxygenase way)
(which i s the f i r s t -
activity
o f r e g a r d l e s s s i g n i f i c a n t v a r i a t i o n s i n t h e o u t p u t p h e n o l con-
centration.
Probably,
enzymes ( n a m e l y ,
2,3-
we j u s t o b s e r v e d a v a r i a t i o n o f t h e d i f f e r e n t and 1,Z-oxygenase)
complete e l i m i n a t i o n of ta, Fig.
show t h e d e c a y o f
s t e p enzyme o f m e t a - p a t h -
activities,
t h e c a t a b o l i c pathway.
contrary t o
Our e x p e r i m e n t a l d a -
unfortunately, f a i l s t o prove i t . One c a n e a s i l y d e s c r i b e t h e a r e a s o f m u l t i - s t a b l e
2 ( e a r d i a spe.)
and F i g .
3 (Pseudomonas s p . ) .
behaviour i n
Genetic features
o f m i c r o o r g a n i s m s used t o degrade t h e a r o m a t i c h y d r o c a r b o n s have resulted i n the following. t u r e changed meta-pathway
The p h e n o l o x i d i z i n g Pseudornonas sp. f o r ortho-pathway
shown i n p o s i t i o n 2 1 o f T a b l e 2.
i n some t i m e ;
cul-
that’s
When o x i d i z i n g n a p h t h a l e n e ,
we’ve
-
163
-
i n o c u l a t r e d t h e clones showing a g r e a t a c t i v i t y o f i n t o a culture,
b u t ortho-pathway
2,3-oxygenase
h a s b e g u n t o d o m i n a t e soon.
The d e l a y o f t r a n s i t i o n f r o m m e t e - c l e a v a g e
i n t o the orthoclea-
vage p a t h w a y i s e v i d e n c e o f t h e i n t e r a c t i o n b e t w e e n t h e c e l l s m i c r o b i a l p o p u l a t i o n and s u b s t r a t e b i o d e g r a d a t i o n p l a s m i d s , t h e enzyme a c t i v i t i e s t u r n o u t . e x p e r i m e n t s 1-7,
rather than
T h i s l a t t e r c o u l d be observed i n
T a b l e 2 , t h a t were c a r r i e d o u t as a p i l o t e x p e r i -
ment. Hence,
i t i s evident,
t h a t some f e a t u r e s o f a s u b s t r a t e c a t a -
b o l i s m ( a t i n t r e c e l l u l a r l e v e l ) h a v e a s t r o n g i m p a c t on t h e w a s t e w a t e r p r o c e s s i n g on t h e w h o l e .
REFERENCES
1 2 3
M a n u a l o f M e t h o d s f o r G e n e r a l B a c t e r i o l o g y . P. G e r h a r d t e.a. ed., W a s h i n g t o n 1 9 8 1 . G.L. J o n e s , F. J a n s e n and A . J . McKay, S u b s t r a t e I n h i b i t i o n o f t h e g r o w t h o f b a c t e r i u m NCIB 8250 b y p h e n o l . L . Gen. M i c r o b i o l . , 7 4 ( 1 9 7 3 ) N I , p. 139-148. Yu.L. G u r e v i c h , S t a b i l i t y a n d R e g u l a t i o n o f G r o w t h i n M i c r o b i a l P o p u l a t i o n s . N o v o s i b i r s k , Nauka, 1 9 8 4 , 165 p .
This Page Intentionally Left TBlank
SPECIFIC A D S O R P T I O N O F METAL C A T I O N S ON THE SURFACE OF L I P I D MEMBRANE S Y S T E M S A.M.
OMEL'CHENKO
I n s t i t u t e o f Chemical Technology, Department o f I n o r g a n i c C h e m i s t r y , G a g a r i n a v . , 8 , D n e p r o p e t r o v s k , 320640, USSR INTRODUCTION
S t u d i e s o f t h e m e t a l c a t i o n s b i n d i n g w i t h a r t i f i c i a l l i p i d membrane systems a r e o f s p e c i a l i n t e r e s t i n c o n n e c t i o n w i t h g r e a t phys i o l o g i c a l r o l e o f t h i s cations. life",
Some o f t h e s e s o - c a l l e d " m e t a l s o f
a r e necessary f o r t h e f u n c t i o n o f l i v i n g organisms.
t a l s are t o x i c a l .
O t h e r me-
I n t h e common c a s e t h e r e i s n o t a s t r i c t b o r d e r
between t o x i c a l and u n t o x i c a l m e t a l s because t h e l a r g e c o n c e n t r a t i o n i n o r g a n i s m s some u n t o x i c a l m e t a l s c a n l e a d t o a number o f d i seases.
I n t h i s c o n n e c t i o n t h e e c o l o g i c a l aspect o f t h e m e t a l ca-
t i o n s b i n d i n g w i t h l i p i d membranes i s a t t r a c t i n g s p e c i a l a t t e n t i o n . The b i l s y e r l i p i d membranes (BLMa)
s e p a r a t i n g t w o a q u e o u s so-
l u t i o n s h a v e b e e n m a i n l y u s e d a s a m o d e l o f b i o l o g i c a l membranes. We h a v e c a r r i e d o u t some e x p e r i m e n t a l s t u d i e s o f t h e i n f l u e n c e o f
m e t a l c a t i o n s such as a l k a l i e a r t h c a t i o n s , o f aluminium,
c a t i o n s o f t h e subgroup
f i r s t row t r a n s i t i o n m e t a l c a t i o n s ,
a n d cadmium o n e l e c t r o c o n d u c t a n c e ,
lanthanides,
zink
e l e c t r o c a p a c i t y and d i f f e r e n c e o f
membrane s u r f a c e p o t e n t i a l s o f t h e BLMs. MATERIALS AND METHODS F o r t h e f o r m a t i o n o f t h e BLMs we u s e d t h e c o n v e n t i o n a l m e t h o d worked o u t i n 1961 by M u e l l e r , Rudin, different
T i e n a n d W e a c o t t (1). T h r e e
t y p e s o f ELM s y s t e m a were u s e d :
from bovine b r a i n l i p i d s ,
f r o m egg p h o s p h a t i d y l c h o l i n e a n d f r o m p h o s p h a t i d y l s e r i n e .
I n a l l ca-
s e s t h e B L M s - f o r m i n g s o l u t i o n c o n s i s t e d o f 20 mg/ml c h o l e s t e r o l d i s s o l v e d i n n - h e p t a n e or i n n - o c t a n e . The membrane e l e c t r o c o n d u c t a n c e waa d e t e r m i n e d f r o m Ohm'a
law.
The e l e c t r o c e p a c i t y o f t h e BLMa waa i n v e s t i g a t e d by t h e c y c l i c v o l tammetry method a t l i n e a r v a r i a b l e v o l t a g e with a v e l o c i t y
Of
2
mV/S*
-
166
-
The d i f f e r e n c e o f membrane s u r f a c e p o t e n t i a l s was d e t e r m i n e d b y mea s u r i n g t h e second h a r m o n i c s o f a l t e r i n g c u r r e n t s .
The b a t h i n g e -
l e c t r o l y t e c o n t a i n e d 0 . 0 1 M a q u e o u s K C 1 b u f f e r e d b y 0.002 a c e t a t e o r 0 . 1 M aqueous K C 1 b u f f e r e d by 0.02
4.7-4.9).
M sodium
M s o d i u m a c e t a t e (pH
A l l e x p e r i m e n t s were p e r f o r m e d a t t h e t e m p e r a t u r e 20-22
OC.
RESULTS
I t was shown t h a t i n a d d i t i o n t o b a t h i n g t h e e l e c t r o l y t e i n 10-4-10-2
M M 2 + - s a l t s (M2+
-
mark f o r d i v a l e n t c a t i o n s )
c r e a s e i n t h e b o v i n e b r a i n l i p i d s BLM’s
i n d u c e d de-
X (in
c o n d u c t i v i t y on 1 0 - 2 0
average) b u t e l e c t r o c a p a c i t y i n c r e a s e d from 15-25
X
with small d i f f e -
r e n c e f o r v a r i o u s c a t i o n s . The maximum e f f e c t h a s b e e n o b s e r v e d f o r 2+ Cu T h i s m o d i f i c a t i o n i s t e s t i n g t h e c o n d e n s a t i o n o f t h e membranes
.
s t r u c t u r e and t h e i r t h i c k n e s s d e c r e a s e .
The d i v a l e n t c a t i o n s r e d u c e
the s o l u b i l i t y o f hydrocarbons i n t h e l i p i d r e g i o n o f bovine b r a i n l i p i d membranes.
The a b u n d a n c e o f h y d r o c a r b o n e s o l v e n t i s e x t r u d e d
i n t o t h e t o r u s and m i c r o l e n s e s u p o n a c t i o n o f t h e d i v a l e n t c a t i o n s . C o n s i d e r a b l e i n c r e a s e was shown o f t h e e l e c t r o m e c h a n i c a l s t a b i l i t y o f BLMs i n t h e p r e s e n c e o f t h e d i v a l e n t c a t i o n s .
The e l e c t r o m e c h a n i -
c a l s t a b i l i t y o f BLMs wss d e t e r m i n e d b y m e a s u r i n g t h e b r e a k d o w n v o l -
t age. Consequently, t h e a d d i t i o n o f 10-5-10-3 mon mark f o r t r i v a l e n t m e t a l c a t i o n s )
M M 3 + - s a l t s (M3+
o f c o n d u c t i v i t y o f t h e BLMs b u t t h e n an a b r u p t v i t y was o b s e r v e d .
com-
increase o f conducti-
The minimum c o n d u c t i v i t y o f BLM’s
a t s Concentration o f about
-
induced a t f i r s t a decrease
M M3+-salts.
has been found
The e l e c t r o m e c h a n i c a l
M
s t a b i l i t y o f t h e BLMs h a d a maximum c o n c e n t r a t i o n o f a b o u t M3+-salts also.
A t l o w c o n c e n t r a t i o n s t h e t r i v a l e n t c a t i o n s were
acting s i m i l a r l y t o divalent cations but a t high concentrations the t r i v a l e n t c a t i o n s were
l e a d i n g t o l a t e r a l phase s e p a r a t i o n and t o
t h e f o r m a t i o n o f i o n - c o n d u c t i n g d e f e c t s o f t h e BLM’s
structure.
The b i n d i n g o f t h e m e t a l c a t i o n s c a u s e d a s h i f t o f BLM’s face p o t e n t i a l t o p o s i t i v e r e g i o n .
sur-
T h i s was s u g g e s t e d by t h e c h a n g e
o f d i f f e r e n c e o f membrane s u r f a c e p o t e n t i a l s i n t h e p r e s e n c e o f t h e c a t i o n s w h i c h were m e a s u r e d b y t h e p o t e n t i o d y n a m i c m e t h o d . were a d d e d t o one s i d e o f t h e BLMs.
The s a l t s
The b i n d i n g o f t h e c a t i o n s was
r e v e r s i b l e a n d was r e m o v e d u p o n t h e a d d i t i o n o f E D T A .
E D T A was a d d e d
as t h e disodium s a l t d i s s o l v e d i n c o r r e s p o n d i n g e l e c t r o l y t e . The d i f f e r e n c e
o f surface p o t e n t i a l s o f l i p i d b i l a y e r s from
b o v i n e b r a i n l i p i d s on dependence f r o m m e t a l s a l t s c o n c e n t r a t i o n h a s
-
167
-
5 I
b
E -
-s-
80-
a
201
I
-3
-2
lg CIMI
1
E
E
3-
80
a 80
60
60
LO
40
20
20
-2
-3
-
Lg CIMl
> E
4
lg C[Ml
I
I
a
I.
-
-> s
-2
-3
110
100
80 60 -5
-4
Lg CIMl
-5
-4
-3
ig C[MI
F i g . 1. Dependence o f t h e d i f f e r e n c e o f b o r d e r p o t e n t i a l s o f ELMS f r o m b o v i n e b r a i n l i p i d s on t h e m e t a l l i c cation’s concentration. E l e c t r o l y t e : 0 . 0 1 M KC1+0.002 M a c e t a t e b u f f e r . E a c h p o i n t shows t h e a v e r a g e v a l u e f r o m 4-5 e x p e r i m e n t s . On F i g “ c ” a n d I‘d‘* f o r c u r v e s 2 e l e c t r o l y t e : 0’1 M K C 1 + 0.02 M a c e t a t e b u f f e r . C a t i o n s : Mg2+, .Ca2+, S r 2 + ’ CI Ba2+’ R Co2+, rMn2+, X Ni2+’ re2+’ Q Cu2+’ @Zn2+, Cd2+, fl A l 3 + , ~ p r 3 + ,8 ~ a 3 + , o ~ d 3 + , 0 Cr3+, OGa3+, In3+.
d+,
a)
b e e n shown i n F i g .
168
-
1. S i m i l a r e x p e r i m e n t s h a v e b e e n c a r r i e d o u t
f o r BLMs f r o m egg p h o s p h a t i d y l c h o l i n e a n d f r o m p h o s p h a t i d y l s e r i n e .
I t was d e m o n s t r a t e d t h a t t h e b i n d i n g o f t h e m e t a l c a t i o n s w i t h BLMs decrease i n t h e o r d e r :
-
f o r BLMs f r o m e g g p h o s p h a t i d y l c h o l i n e ( a t any i o n i c s t r e n g h of electrolyte)
-
> Be 2+
(I
Ca2+ > Mg2+
Sr2+
A13+
> La3+ >
P r 3 + > Nd3+ > Tb3+
( 1 group)
re2+
Mn2+
z
Co2+ > N i 2+
(11 g r o u p )
Cd2+ > Cu2+
z
Zn
for
2+
group)
(111 g r o u p )
BLMs f r o m p h o s p h a t i d y l s e r i n e ( a t any i o n i c s t r e n g h o f
electrolyte) Be2+
Ca2+
S r 2+ > Mg2+
A 1 3 + > Tb3+ > P r 3 + > Nd3+ > L a 3 + N i 2 + > Co2+ > F e z + > Mn 2+ Cu2+ > Zn2+ > Cd2+
-
M KC1 buffered
M sodium a c e t a t e )
Ba2+ > S r 2 + > Ca2+ > Mg2+
A13+
( 1 group)
(11 g r o u p ) (111 group)
f o r BLMs f r o m b o v i n e b r a i n l i p i d s ( 0 . 0 1 by 0,002
( 1 group)
z Pr3+ z
Tb3+
5
Nd3+ > L a 3 +
(1 group) (Ig r o u p )
N i 2 + > M n 2 + > Co2+ > Fe 2+
( I 1 group)
Cu2+ > Zn2+ > Cd2+
(111 g r o u p )
F o r BLMs f r o m b o v i n e b r a i n l i p i d s t h e i n c r e a s e o f i o n i c s t r e n g h (0,l
M K C 1 b u f f e r e d b y 0.02
M sodium a c e t a t e )
c a u s e d some a l t e r a -
t i o n s a s c o m p a r e d w i t h t h e above c o n s e q u e n c e s :
2+
Mn2+ > N i 2 + > Co Cu2+ Cd2+ > Zn 2+
( I 1 group) (IIIg r o u p )
I n a l l cases t h e appearance o f t h e above consequences depends
on t h e k i n d o f l i p i d s a n d d o e s n o t d e p e n d o n t h e m e t a l c a t i o n s c o n c e n t r a t i o n i n a s u f f i c i e n t l y wide c o n c e n t r a t i o n r e g i o n .
I n these
c o n s e q u e n c e s t h e m e t a l c a t i o n s were d i s t r i b u t e d i n t o t h r e e , c l a s s i f i c a t i o n groups according t o t h e i r covalent c h a r a c t e r i s t i c s .
The
p r i n c i p l e s o f c a t i o n s c l a s s i f i c a t i o n i a discussed below.
DISCUSSION We c a r r i e d o u t t h e p r o f o u n d a n a l y s i s o f p u b l i s h e d s c i e n t i f i c p a p e r s d e a l i n g w i t h t h e b i n d i n g o f m e t a l c a t i o n s w i t h l i p i d membrane
systems (liposomes,
mono-
169
-
and b i l a y e r s ) .
h e r w i t h o u r own e x p e r i m e n t a l r e s u l t s ,
The r e s u l t i n g d a t a ,
toget-
demonstrated the i n e q u a l i t y
o f adsorption properties o f metal cations.
T h i s i n e q u a l i t y i s usu-
a l y p r e s e n t e d as a c o n s e q u e n c e o f m e t a l c a t i o n s a n d d e a l s w i t h p h y sico-chemical
p r o p e r t i e s o f b o t h m e t a l c a t i o n s and i o n i c g r o u p s o f
l i p i d molecules.
The l i p i d m o l e c u l e s ,
f o r t h e f o r m a t i o n o f BLMs, phosphate group - P o i , ternary -N(CH
3
which have been used m a i n l y
c o n t a i n t h e w e l l known i o n i c g r o u p s :
c a r b o x y l g r o u p -COO-,
+
p r i m a r y -NH3
and q u a r -
) + amine g r o u p s i n d i f f e r e n t c o n f o r m a t i o n s a n d c o m b i -
n a t i o n s f o r each t y p e o f l i p i d .
The a n a l y s i s o f s c i e n t i f i c
litera-
t u r e d e m o n s t r a t e d t h a t t h e c o n s e q u e n c e s o f some t y p e m e t a l c a t i o n s r e p r o d u c e w e l l u n l i k e t h e q u a n t i t i v y d a t a on m e t a l c a t i o n s a d s o r p t i o n a t membrane s u r f a c e .
U s i n g t h e consequences o f m e t a l c a t i o n s
a f f i n i t y t o s u r f a c e o f BLMs we c a n e s t i m a t e t h e p h y s i c o c h e m i c a l nat u r e o f t h e membrane b i n d i n g s i t e s .
F o r t h i s p u r p o s e t h e conaequen-
c e s must i n c l u d e o n l y c a t i o n s h a v i n g c o m p a r a b l e p r o p e r t i e s . I n t h i s connection,
t h e m e t a l c a t i o n s were d i s t r i b u t e d i n t o
t h r e e c l a s s i f i c a t i o n groups a c c o r d i n g t o t h e i r c o v a l e n t c h a r a c t e r i s t i c s (Table 1).
The c o v a l e n t c h a r a c t e r i s t i c s
o f the metal cations
a r e d i f f e r e n t b e t w e e n t h e summary i o n i z a t i o n e n e r g y o f t h e m e t a l
TABLE 1 C l a s s i f i c a t i o n o f t h e m e t a l c a t i o n s on t h e b a s i s o f t h e i r c o v a l e n t characteristics
I Li+,
Na+,
K+,
Cu+, Ag+,
Rb+ Mn2+,
Fe2+,
(Mg2+),
( a b o u t 125 k J / m o l )
Co2+,
(Mg2+)
(300-380 kJ/mol)
y3+,
T1+
( a b o u t 250 k J / m o l )
Cs+ ( a b o u t 85 k J / m o l )
Ca2+, S r 2 + , Be2+
~ n ~ s+c 3, + ,
I11 group
I 1 group
I group
Ni2+
Cu2+, Zn2+, Pb2+,
Cd2+,
5n2+ (more t h a n
560 k J / m o l )
ea3+,
I ~ ~c r+ 3 + ,,
Fe3+, A13+
T13+
(160-590 kJ/mol)
1000 kJ/mol)
(more t h a n
atoms a n d h y d r a t i o n e n e r g y o f c a t i o n s . T h e s e q u a n t i t i e s c h a r a c t e r i z e t h e a b i l i t y o f m e t a l c a t i o n s t o form a c h e m i c a l c o v a l e n t bond.
A l l c o r r e l a t i o n s b e t w e e n c h e m i c a l p r o p e r t i e s a n d membrane a c t i v i t y o f t h e m e t a l c a t i o n s may f u l f i l o n l y one a n d t h e same c l a s s i f i c a t i o n group.
-
170
-
Summary on t h e b a s i s o f a n a l y s i s o f p u b l i s h e d r e s u l t s d e t e r m i ned such consequences:
-
f o r membranes f o r m e d f r o m z w i t t e r i o n i c l i p i d s a n d f r o m a c i -
d i c l i p i d s w h i c h c o n t a i n one a n i o n i c g r o u p p e r m o l e c u l e ( e g g p h o s p h a -
dipalmitoylphosphatidylcholine, phosphatidylglycerol, phosphatidylglycerol + phosphatidylethanolamine): tidylcholine,
phosphatidylcholine +phosphatidic acid,
Na+ > K+
Li+
Ca2+ > Mg2+
Rb+
Sr2+
z
Mn2+ > C o 2 + > N i
Cs
+
Ba 2+
2+
Cd2+ > Cu2+ > Zn
Pb2+
-
5
2+
f o r membranes f o r m e d f r o m a c i d i c l i p i d s w h i c h c o n t a i n t w o
a n i o n i c groups per molecule (phosphatidylserine L i + > Na+ > K+ > Rb+ > Cs Ca2+ > Be2+ > S r 2+ > Mg2+
and c a r d i o l i p i n ) :
+
2+
€la2+ > Ca2+ > S r > Mg2+ €la2+ > S r 2 + > Ca 2+ > Mg2+
N i 2 + > C o 2 + > Mn 2n2+
2+
(only
f o r phosphatidylserine)
(only f o r phosphatidylserine)
Cd2+
>
F o r e s t i m a t i o n o f t h e p h y s i c a l and c h e m i c a l n a t u r e o f b i n d i n g s i t e s on t h e s u r f a c e o f BLMs t h e a l t e r a t i o n o f f r e e e n e r g y
A FiB
f o r i o n exchanged r e a c t i o n
+
A"+
AXn
BXn
+
Bn+
had been c a l c u l a t e d by e q u a t i o n 1
where
AU An+
-
,
AU
X
Bn+
-
are the energies o f e l e c t r o s t a t i c in-
X
t e r a c t i o n o f c a t i o n s A a n d B w i t h a d s o r p t i o n s i t e nX-,
AU An+
-
9
H20
AU B"+
A and 8 , r e s p e c t i v e l y ,
-
respectively,
are the hydration energies o f cations
H20 X i s the anionic centre.
T h i s model i s based
on t h e p u r e l y c o u l o m b i c i n t e r a c t i o n b e t w e e n a n i o n s f o r m i n g t h e b i n d i n g s i t e and t h e m e t a l c a t i o n s .
I t waa shown b y E i a e n m a n ( 2 ) t h a t t h e number o f c o n s e q u e n c e s o f t h e m o n o v a l e n t c a t i o n s a f f i n i t y t o t h e s u r f a c e o f an i o n - e x c h a n g e d
-
171
-
m a t e r i a l as f u n c t i o n o f a n i o n i c r a d i u s r- i s independent f r o m d i s tance d between a n i o n i c c e n t r e s .
However,
i n t h e case o f p o l y v a l e n t
c a t i o n s t h e d i s t a n c e between a n i o n i c c e n t r e s i s e x e r t i n g t h e c r i t i c a l i n f l u e n c e on t h e number o f c a t i o n s c o n s e q u e n c e s .
We s u p p o s e d
that polyvalent cation i s interacting with binding s i t e t h a t i s vieeach w i t h a r a d i u s
wed as c o n s i s t i n g o f t w o a n i o n s , by a distance d (Fig.
r- separated
2).
F i g . 2 . Scheme f o r c a l c u l a t i o n o f e l e c t r o s t a t i c i n t e r a c t i o n o f divalent cation with anionic centres. The e n e r g y o f e l e c t r o s t a t i c i n t e r a c t i o n ( w i t h o u t c a l c u l a t i o n o f t h e i n t e r a c t i o n between a n i o n i c c e n t r e s )
where N A
-
Avogadro's
r i c constant,
-
r+
number,
e
-
cation radius.
a t d > 2r+ i s
e l e c t r o n i c charge,
Lo
-
dielect-
Eq. 2 gives
A t d Q 2r+
n
N~ e L AU
An+ ( B n+) - X
= - -
( + z & ~r
1
+ r-
I n Eqns 2 a n d 3 t h e v a l u e s o f d, and t h e v a l u e s o f Fig.
1
+ 4(d
+ 2r-
1
. lo6
(3)
r + a n d r- a r e s u b s t i t u t i n g i n n m
A U a r e o b t a i n i n g i n kJ/mol.
3 shows t h e i s o t h e r m s o f a l k a l i e a r t h c a t i o n s p e c i f i c i t y
f o r t h e ion-exchanged m a t e r i a l as a f u n c t i o n o f a n i o n i c r a d i u s a t d
=
0-0.160
nm.
V a r i o u s consequences o f a l k a l i e a r t h c a t i o n s c a l c u -
l a t e d f r o m E q n s 1, 2 a n d 3 a r e shown i n T a b l e 2 .
Analogous conse-
q u e n c e s f o r m e t a l c a t i o n s o f a l l c l a s s i f i c a t i o n g r o u p s h a v e b e e n obtained. The a f f i n i t y c o n s e q u e n c e s f o r t h e d i v a l e n t c a t i o n s o f any g r o u p s we o b t a i n e d h e r e f o r t h e membranes f o r m e d f r o m z w i t t e r i o n i c
lipids
a n d f r o m a c i d i c l i p i d s w h i c h c o n t a i n one a n i o n i c g r o u p p e r m o l e c u l e
Table 2 . Consequencee of the cation s p e c i f i c i t y f o r the a l k a l i earth metals (
No
I
I
e2+, Ca2+, Sr2+,
Be2+)
Distances between anionic centres d (Anionic radius), m
Consequencee L
= 0
- 0,1601
d= 0,200
1
d= 0,240
1
d= 0,280
I
1 d= 0 , 3 2 0
- d o go
~~~~
I Ba2% sr2+> Ca2% mg2+ +(more 0,163 +(more 0,163) +(More 0,146) +(more 0,036, +(more 0,043) +(0 160 11 ~ a 2 + ca2+s > Sr2+> +(0 160 0,163) 0,163) +(O 150 +(0 150 0,1609 0,160) +(0,138 +(0,092
-
-
0,150) +(0,134 0,138) +(0,120 -
0,150) +(0,076 0,092) +(0,030 -
a2+
-
+(0,032 0,048) +(0,025
-
0,032) 0,134) 0,076) +(less 0,12O)+(less 0,030) + ( l e s s 0,025)
-
-
-
-
-
-
-
+ ( l e s s 0,026) +(0,036 0,038)
+(more 0,078) +(0,074 0,078) +(0,072 0,074) +(0,071 0,072) +(0,070 0,071) +(0,066 0,070) + ( l e s s 0,066)
-
-
-
+(0,025
-
0,036) +(less 0,025)
-
-
-
-
173
-
[nml
F i g . 3 . Dependence o f a l k a l i e a r t h c a t i o n s p e c i f i c i t y o f i o n e x c h a n g e d m a t e r i a l on a n i o n i c r a d i u s r a t d=O 0 , 1 6 0 nm.
-
a r e e x p l a i n e d on t h e b a s i s o f c a l c u l a t i o n i f t h e b i n d i n g s i t e i s c o n s i d e r e d t o b e f o r m e d b y t w o a n i o n s w i t h c h a r g e -1 a n d s e t t i n g
r-=0.07-0.09
nm w i t h d - 0 . 2 4 0 - 0 . 3 2 0
metal cations belonging t o
1
nm.
For the binding o f t r i v a l e n t
g r o u p t h e b i n d i n g s i t e t o be f o r m e d b y
t w o u n i o n s w i t h c h a r g e -1 a n d r - = 0 . 0 9 5 - 0 . 1 1 0
nm, d = 0 , 2 0 0
nm.
The
decrease o f d p r o b a b l y d e a l t w i t h t h e i n f l u e n c e o f t h e t r i v a l e n t cat i o n s on c o n f o r m a t i o n o f t h e l i p i d p o l a r g r o u p s .
A t the i n t e r a c t i o n o f the p o l y v a l e n t metal c a t i o n s o f group I w i t h membranes f o r m e d f r o m a c i d i c l i p i d s w h i c h a r e c o n t a i n i n g t w o a n i o n i c groups per molecule,
t h e a f f i n i t y consequences can be e x p l a -
i n e d i f d approaches z e r o ( a d i v a l e n t anion)
w i t h r-=0.150
b i n d i n g o f t h e d i v a l e n t c a t i o n s and r-=0.085-0.095
nm f o r
nm f o r b i n d i n g o f
the t r i v a l e n t cations. The a n a l y s i s o f t h e i n t e r a c t i o n o f t h e p o l y v a l e n t m e t a l c a t i o n s b e l o n g i n g t o g r o u p s I 1 a n d I11 w i t h p h o s p h a t i d y l s e r i n e membranes obtained unusually small values of
anionic radius.
T h i s f a c t shows
t h a t t h e i n t e r a c t i o n o f t h e c a t i o n s b e l o n g i n g t o g r o u p s I 1 and I11 w i t h p h o s p h a t i d y l s e r i n e membranes r e a l i z e s a n o t h e r t y p e o f c h e m i c a l bonds t h a n t h a t i n t h e caae o f t h e i n t e r a c t i o n between t h e c a t i o n s belonging t o group
I.
-
174
-
= -11-
0-
0 -10-
0
d
-9-8-7-6-5-4-
-3-2-1 I
1 2 3 4 5 6 7 8
b KO F i g . 4. C o r r e l a t i o n b e t w e e n m e t a l l i c c a t i o n ' s c o n s t a n t s ( K O ) 131 o f t h e b i n d i n g w i t h liposomes f r o m m i x t u r e p h o s p h a t i d y l c h o l i n e + phosp h a t i d i c a c i d a n d s o l u b i l i t y (5) o f m e t a l o r t h o p h o s p a h t e . The l i n e has been drawn u s i n g t h e c o r r e l a t i o n e q u a t i o n l o g S = -1.89-1.22*1og KO ( c o r r e l a t i o n c o e f f i c i e n t 0 . 9 2 ) .
\ Q
'u 10
a
0
d
(
64 -
8
d $9
2-
.2 v
-
175
-
On t h e b a s i s o f t h e c o r r e l a t i o n a n a l y s i s i t was ahown t h a t e x -
p e r i m e n t a l l y o b t a i n e d consequences a r e t y p i c a l i n t h e case o f phosphatidylcholine
+
p h o s p h a t i d i c a c i d membranes f o r t h e b i n d i n g o f t h e
m e t a l c a t i o n s w i t h phosphate groups (Fig.
4) and i n t h e case o f
p h o s p h a t i d y l s e r i n e membranes f o r t h e c h e l a t e b i n d i n g o f t h e m e t a l c a t i o n s w i t h c a r b o x y l a n d amine g r o u p s ( a t a d s o r p t i o n o f t h e t r a n s i t i o n metal cations,
Zn2+, Cd2+ a n d Pb2+ ( F i g .
5) o r f o r t h e e l e c -
t r o s t a t i c b i n d i n g w i t h phosphate and c a r b o x y l groupa ( a t a d s o r p t i o n o f the a l k a l i e a r t h cations,
l a n t h a n i d e s and aluminium).
REFERENCES
1 2
3
P . M u e l l e r , D.O. R u d i n , H.T. T i e n a n d W.C. W e s c o t t , N a t u r e . 1962. V o l . 1 9 4 NO 4832. P . 979-980. G. E i s e n m a n , B i o p h y s i c a l J. 1 9 6 2 . V o l 2. No 2. P a r t 2. p. 259323. P.G. B a r t o n , J. E i o l . Chem. 1 9 6 8 . V o l . 243. No 1 4 . p. 3884-3890
This Page Intentionally Left TBlank
T H E I N V E R S E FLUIDIZATION DESIGN,
L.
-
A NEW APPROACH T O BIOFILM R E A C T O R
T O AEROBIC W A S T E W A T E R T R E A T M E N T
NIKOLOV a n d D.
KARAMANEV
S o f i a U n i v e r s i t y , Center o f Biotechnology Tsankov S t r . , 1421 S o f i a , B u l g a r i a
8 Dr.
The s u b s t a n t i a l a d v a n t a g e s o f f l u i d i z e d s y s t e m s s u c h a s e f f e c t i v e mixing, sons f o r
and i n t e n s i v e mass a n d h e a t t r a n s f e r
are the main rea-
t h e unabated i n t e r e s t i n f l u i d i z a t i o n from s p e c i a l i s t s i n
d i f f e r e n t f i e l d s d u r i n g t h e l a s t 3-4
d e c a d e s [I].
Among t h e v a r i o u s d i f f e r e n t modes o f f l u i d i z a t i o n ,
t h e most
s p r e a d o n e s a r e t h e w e l l known u p f l o w s y s t e m s c o n s i t i n g o f g a s - s o lid,
liquid-solid
or gas-liquid-solid
phases.
I n these systems,
a
b e d o f s o l i d p a r t i c l e s i s s u s p e n d e d i n a f l u i d m e d i a due t o t h e n e t drag force o f the f l u i d s flowing opposite t o the net g r a v i t a t i o n a l f o r c e on t h e p a r t i c l e s [ 1 1 .
The u p f l o w f l u i d i z e d b e d s a r e t h e s u b -
j e c t o f numerous i n v e s t i g a t i o n s and a p p l i c a t i o n s i n t h e f i e l d o f bioreactor design.
Moreover,
the popularity o f t h i s type o f f l u i d i -
z a t i o n i n b i o p r o c e s s e n g i n e e r i n g h a v e l e d t o i n t r o d u c t i o n o f a new term " b i o f l u i d i z a t i o n "
[ 21.
The m a i n a c h i e v e m e n t s o f b i o f l u i d i z a t i o n a r e l i n k e d w i t h t h e development o f u p f l o w b i o p r o c e s s systems w i t h spontaneously
fixed
b i o m a s s on s o l i d p a r t i c l e s o r i n o t h e r w o r d s w i t h b i o f i l m f l u i d i z e d bed r e a c t o r s [ 2 , 31.
A v e r y i m p o r t a n t f e a t u r e o f these systems i s
t h a t t h e d e n s i t y o f t h e b i o p a r t i c l e s i s h i g h e r t h a n t h e media d e n s i ty.
I n t h e s e t y p e s o f b i o r e a c t o r s moving upwards,media
bed o f b i o p a r t i c l e s
-
f l u i d i z e s the
support p a r t i c l e s covered w i t h b i o f i l m , pro-
v i d i n g good c o n d i t i o n s f o r t h e b i o p r o c e s s i n t e n s i f i c a t i o n .
However,
t h e p e c u l i a r i t i e s o f t h e b i o f i l m s I 4 1 make t h e a p p l i c a t i o n o f t h e upflow b i o f l u i d i z a t i o n inconvenient
f o r aerobic processes.
The c o l l i
s i o n s between t h e b i o p a r t i c l e s and t h e s t r o n g s h e a r s t r e s s p r o v o k e d b y t h e i n t e n s i v e h y d r o d y n a m i c s c a u s e some d i f f i c u l t i e s i n t h e s p o n taneous f i x a t i o n o f microorganisms o r c e l l s . t h e b i o f i l m i s formed once,
On t h e o t h e r h a n d ,
if
another very important problem a r i s e s
-
- 178 -
t h a t of biofilm thickness control. A l l t h i s confines the upflow fluidization a p p l i c a b i l i t y t o t h e comparatively narrow f i e l d of liquid-solid anaerobic bioprocess systems.
The s e a r c h f o r n e w o p p o r
t u n i t i e s t o expand t h e p o s s i b l e f i e l d s o f a p p l i c a t i o n o f b i o f l u i d i z a t i o n l e d t o t h e i n t r o d u c t i o n o f i n v e r s e f l u i d i z e d b e d s a s a new a p p r o a c h f o r h i g h p e r f o r m a n c e b i o f i l m r e a c t o r d e s i g n I51 ( F i g .
1).
I n t h i s case the bioparticles with a density lower than t h a t of t h e l i q u i d media a r e suspended i n t h i s media due t o t h e n e t d r a g f o r c e o f t h e f l u i d f l o w i n g d o w n w a r d s e .g .
J
f
o p p o s i t e t o t h e i r buoyancy
force. A t
a glance, one should find no consider a b l e difference between t h e upflow and t h e i n v e r s e (downflow) f l u i d i z e d beds.
However, t h e smaller p a r t i c l e
d e n s i t y c a u s e s a d e c r e a s e o f t h e for-
ce o f t h e c o l l i s i o n s b e t w e e n t h e p a r t i c l e s . I n t h e case o f t h r e e - p h a s e beds,
t h e gas holdup i n t h e inverse
f l u i d i z a t i o n i s much l a r g e r b e c a u s e of t h e countercurrent flow. The s e a r c h f o r a b i o r e a c t o r . F l g . 1. Scheme o f t h e u p f l o w (a) and i n v e r s e ( b ) f l u i d i -
zarqion.
which
could allow t h e control o f t h e biof i l m t h i c k n e s s h a s l e d t o t h e combination of the inverse
fluidization
I t gave
with the a i r l i f t principle.
a s a n o u t c o m e a new t y p e o f b i o f i l m reactor for aerobic processes
-
the
c a l l e d inverse fluidized bed biofilm reactor.
The scheme o f t h e i n v e r s e
f l u i d i z e d bed b i o f i l m r e a c t o r 15, i s shown i n F i g .
2.
61
The a i r i n t r o d u -
ced t o t h e d r a f t tube causes recircul a t i o n f o t h e l i q u i d media
-
upwards
i n t h e d r a f t t u b e and downwards i n t h e annulus.
A bed o f support p a r t i c l e s
w i t h a smaller d e n s i t y t h a n t h a t o f t h e l i q u i d media is placed i n t h e annulus.
*'
The d o w n f l o w i n q l i q u i d e x -
pands t h i s bed t h u s c r e a t i n g a l i q u i d Scheme
Of
the
s o l i d inverse f l u i d i z e d bed.
Initially,
-
179
-
t h e l o w e r l e v e l o f t h e bed i s w e l l above t h e l o w e r o p e n i n g o f t h e d r a f t tube.
The g r o w t h o f t h e b i o f i l m on t h e s u p p o r t p a r t i c l e s c a u -
s e d an i n c r e a s e o f t h e o v e r a l l b i o p a r t i c l e d e n s i t y .
This r e s u l t s i n
t h e e x p a n s i o n o f t h e i n v e r s e f l u i d i z e d b e d and t h e m o v i n g o f i t s l o w e r l e v e l downwards. tube opening,
When t h e b e d l e v e l r e a c h e s t h e l o w e r d r a f t
some o f t h e b i o p a r t i c l e s e n t e r t h e d r a f t t u b e t o g e t h e r The s t r o n g s h e a r s t r e s s i n t h e d r a f t t u b e
w i t h t h e l i q u i d stream.
causes p a r t i a l e r o s i o n o f t h e b i o f i l m and t h e r e f o r e , t h e b i o f i l m t h i c k n e s s and t h e b i o p a r t i c l e d e n s i t y .
bioparticles
a decrease o f
The l i g h t e n e d
move t o t h e t o p o f t h e i n v e r s e f l u i d i z e d b e d ,
t h e process o f b i o f i l m growth continues.
where
I n s u c h a way t h e b i o f i l m
thickness i s controlled. I n i t i a l l y t h i s b i o r e a c t o r was u s e d a s a t o o l f o r b i o f i l m p r o cess research. compared, tor,
The i n v e r s e f l u i d i z e d b e d b i o r e a c t o r
(IFRBR)
on t h e b a s i s o f t h e f e a t u r e s o f t h e " i d e a l "
was
b i o f i l m reac-
w i t h o t h e r apparatuses used f o r e x p e r i m e n t a l s t u d i e s o f b i o -
f i l m processes [ 7 ] .
I t was shown t h a t IFBBR h a s t h r e e i m p o r t a n t ad-
vantages i n comparison w i t h t h e o t h e r b i o f i l m r e a c t o r s , p u b l i s h e d
i n the l i t e r a t u r e
[a].
the b i o f i l m thickness; b i o f i l m formation.
They a r e :
e f f e c t i v e and s i m p l e c o n t r o l o f
l a r g e s p e c i f i c support surface area [91;
fast
A comparison between t h e b i o f i l m f o r m a t i o n i n 4
d i f f e r e n t t y p e s o f b i o r e a c t o r s shows t h a t I F B B R p r o v i d e s b e t t e r c o n d i t i o n s f o r biomass f i x a t i o n .
1.3
The b i o f i l m f o r m a t i o n r a t e i s b e t w e e n
and 2 t i m e s f a s t e r t h a n i n a b i o d i s k r e a c t o r ,
three-phase b i o r e a c t o r s (Fig.
3 ) . The i n v e r s e f l u i d i z e d b e d b i o f i l m
I 3
3 . B i o f i l m formation time. IFBBR; 2 biodisk; 3 fix e d bed; 4 - t h r e e - p h a s e f l u i d i zed bed ( n o t formed). 1
-
-
c
4
TYPE OF BIOREACTOR
Fig.
f i x e d bed and
-
HEIGHT Icm 1
F i g . 4. Oxygen c o n c e n t r a t i o n p r o f i l e s . 1 - experimental data; 2 - theoretical profile, calculat e d by t h e model.
-
180
-
r e a c t o r was u s e d f o r t h e i n v e s t i g a t i o n o f t h e f e r r o u s i r o n o x i d a t i o n k i n e t i c s by b i o f i l m o f T h i o b a c i l l u s
ferrooxidans
-
s i m p l e b i o p r o c e s s w i t h one m a i n p r o d u c t was f o u n d t h a t t h e t e m p e r a t u r e ,
pH,
-
a comparatively
t h e f e r r i c i r o n [lO]:It
t h e p r o d u c t and s u b s t r a t e con-
c e n t r a t i o n s v a r i e d i n w i d e r a n g e s a n d do n o t s i g n i f i c a n t l y a f f e c t the process rate.
The same e f f e c t was o b s e r v e d i n t h e c a s e o f BOD
r e m o v a l by b i o f i l m o f m i x e d a e r o b i c c u l t u r e 1 9 1 . On t h e b a s i s o f t h e r e s u l t s o f t h e l a b o r a t o r y - s c a l e
investiga-
t i o n o f t h e h y d r o d y n a m i c s a n d k i n e t i c s a n d on some l i t e r a t u r e d a t a , a m a t h e m a t i c a l model o f t h e i n v e r s e f l u i d i z e d bed b i o f i l m r e a c t o r was d e v e l o p e d 1111. The m a i n a s s u m p t i o n s o f t h e m o d e l a r e :
plug
f l o w o f t h e l i q u i d i n t h e a i r l i f t s e c t i o n and i n t h e a n n u l u s ;
per-
f e c t m i x i n g o f t h e l i q u i d i n t h e b i o r e a c t o r as whole because o f t h e intensive r e c i r c u l a t i o n ; molecular d i f f u s i o n o f the substrate w i t h i n the biofilm;
Monod k i n e t i c s o f t h e s u b s t r a t e u t i l i z a t i o n ;
f r e e suspended i n t h e l i q u i d c e l l s .
was p e r f o r m e d on t h e b a s i s o f t h e l a b o r a t o r y - s c a l e formance.
no
An i d e n t i f i c a t i o n o f t h e m o d e l bioreactor per-
A comparison between t h e e x p e r i m e n t a l and t h e c a l c u l a t e d
o x y g e n p r o f i l e s b y t h e r e a c t o r h e i g h t a r e shown i n F i g .
4.
I t can
be seen t h a t t h e model p r e d i c t s t h e r e a l s i t u a t i o n w i t h an a c c e p t a b l e accuracy. The m a t h e m a t i c a l m o d e l o f t h e IFBBR waa u s e d f o r d e s i g n o f a pilot-scale
v e r s i o n o f t h e b i o r e a c t o r w i t h 90 m volume.
I t was d e -
v e l o p e d and s u c c e s s f u l l y i m p l e m e n t e d u n d e r i n d u s t r i a l c o n d i t i o n s f o r a e r o b i c wastewater t r e a t m e n t
7 identical sections (Fig.
5),
[12].
The b i o r e a c t o r c o n s i s t e d o f
connected i n series.
-=.
100-
z E ? -
g> 80--
The BOD a n d COD
" BOD
V
z
60n
-
A A
COD
8 40-
n
5 -
3
' F i g . 5 . One s e c t i o n o f t h e p i l o t scale bioreactor.
-
0
2
4
6 8 10 RETENTION TIME I h l
F i g . 6 . The e f f e c t o f t h e r e t e n t i o n t i m e on o u t p u t COD a n d BOD profilea.
-
181
-
p r o f i l e s i n the bioreactor are presented i n Fig.
6.
These d a t a show
t h a t t h e i n v e r s e f l u i d i z e d bed b i o f i l m r e a c t o r has up t o 17 t i m e s h i g h e r e f f i c i e n c y i n comparison w i t h t h e waatewater
with mechanical surface aeration. aame c o n d i t i o n s .
treatment plant
B o t h apparatuaea worked under t h e
The o p e r a t i o n a l c o s t s f o r t h e t r e a t m e n t o f 1 m o f
wastewater d i f f e r e d a l s o about 17 t i m e s . The e x p e r i m e n t s w i t h t h e p i l o t - s c a l e b i o r e a c t o r showed some d i s c r e p a n c i e s between t h e m a t h e m a t i c a l model and t h e r e a l l s r g e scale b i o r e a c t o r performance.
F u r t h e r development o f t h i s model r e -
q u i r e s a m o r e p r e c i s e d e s c r i p t i o n o f t h e phenomena w h i c h t a k e p l a c e i n t h e b i o f i l m r e a c t o r s w i t h i n v e r s e f l u i d i z e d beds.
The h y d r o d y n e -
mic subsystem o f t h e model d e s c r i b e d t h e i n v e r s e f l u i d i z e d bed hydrodynamics by t h e model o f Richardson and Z s k i [131, r i v e d o r i g i n a l l y f o r t h e u p f l o w f l u i d i z e d beds.
w h i c h was de-
The r e c e n t i n v e s t i -
g a t i o n s o f h y d r o d y n a m i c s a n d l i q u i d - s o l i d mass t r a n s f e r o f t h e i n v e r s e f l u i d i z e d b e d showed v e r y i n t e r e s t i n g r e s u l t s .
The e f f e c t o f
d e s c r i b e d w i t h r e l a t i v e l y h i g h accu-
,l.OJ
racy by t h e Richardson-Zski
-m
However,
model.
the terminal velocity
-
one o f t h e m a i n p a r a m e t e r s o f t h i s model
-
can n o t be c a l c u l a t e d by t h e
proposal i n the l i t e r a t u r e equations f o r t h e u p f l o w systems.
0.4+.
. . . . . .
.
. .
Fig. 7' A comparison the expansion c h a r a c t e r i s t i c s o f i n v e r s e end u p f l o w f l u i d i z e d b e d s with the number (Mv 0.8) a n d p a r t i c l e s i z e ( d o = 2.1 m m ) .
The t e r m i n a l
velocity o f l i g h t particles i n in-
f l u i d i z e d b e d s w i t h t h e same a b s o l u t e v a l u e o f t h e d e n s i t y number. We a r e w o r k i n g now o n t h e d e t e r m i n a t i o n o f s new m o d e l f o r p r e d i c t i n g the terminal velocity o f the l i g h t particles.
The l i q u i d - a o l i d maas t r a n s f e r i n t h e t w o - p h a s e d i z e d b e d waa a l a o s t u d i e d .
inverse f l u i -
The e l e c t r o c h e m i c a l m e t h o d o f c a t h o d e
r e d u c t i o n was a p p l i e d . I n the preliminary
experiments
i t waa ahown t h a t i n g e n e r a l
t h e maaa t r a n s f e r r a t e b e t w e e n t h e l i q u i d a n d t h e p a r t i c l e s u r f a c e
X
i s 10
182
-
lower than i n t h e case o f t h e upflow f l u i d i z a t i o n [141.
It
c o u l d be e x p l a i n e d b y t h e s m a l l e r m e c h a n i c a l i n e r t i a o f t h e p a r t i c les.
When t h e i r
i n e r t i a i s small,
t h e p a r t i c l e s move i n t h e t u r b u -
l e n t l i q u i d together w i t h t h e t u r b u l e n t eddies. lative interfacial liquid-solid the mass-transfer
Therefore,
v e l o c i t y decreases,
t h e re-
thus decreasing
coefficient.
The e x p e r i m e n t s w i t h l a b o r a t o r y , f l u i d i z e d bed b i o f i l m r e a c t o r s ,
p i l o t and f u l l - s c a l e
inverse
a n d t h e s i m u l a t i o n b y means o f t h e
mathematical model o f t h e b i o r e a c t o r ,
showed t h a t t h e use o f i n v e r -
se f l u i d i z a t i o n i n b i o p r a c e s s s y s t e m s d e v e l o p m e n t i s v e r y p r o m i s i n g . F u r t h e r i n v e s t i g a t i o n s s h o u l d r e v e a l some new t h e o r e t i c a l a n d p r a c t i c a l opportunities for
implementation o f t h i s approach i n b i o p r o -
cess engineering. REFERENCES 1
2 3 4 5
6 7 8
9
10
11 12 13 14
Muroyama and L . S . Fan, A I C h E J., 311, 1 ( 1 9 8 5 ) . S c h u g e r l , Can. J. Chem. E n g . , 6 7 1 , 1 7 8 ( 1 9 8 9 ) . L . N i k o l o v , B i o t e c h n o l o g y a n d C h e m i s t r y ( b u l g . ) , No 5 , 4 1 (198'9). P.A. W i l d e r e r and W.G. C h a r a c l i s , S t r u c t u r e and F u n c t i o n s o f B i o f i l m s . D . 1 2 , J o h n W i l e v d, S o n s , 1 9 8 9 . L . N i k o l o v ' , D. K a r a r n a n e v a n d D . E l e n k o v , B u l g . P a t e n t No. 32910 ( 1 9 8 1 ) . L . N i k o l o v a n d D . K a r a m a n e v , Can. J. Chem. E n g . , 2 4 , 2 1 4 ( 1 9 8 7 ) . L . N i k o l o v a n d D . K a r a m a n e v , J. F e r m . B i o e n g . ( 1 9 9 0 ) ( i n p r e s s ) . A . Moser, i n : H.-J. Rehm a n d G . R e e d ( e d s . ) , B i o t e c h n o l o g y , WCH P r e s s , W e i n h e i m , 1 9 8 5 . D e B o n t , J. V i s s e r , L . N i k o l o v a n d D. K a r a m a n e v , i n : J . A . M . B. M a t i a s s o n and J . Tramper Eds,), P h y s i o l o g y o f I m m o b i l i z e d 990. C e l l s , E l s e v i e r , Amsterdam, D. Karamanev a n d L . N i k o l o v , B i o t e c h n o l . B i o e n g . , 31, 295 (1988). N i k o l o v a n d J. Champagne, T r a v . C . C h a v a r i e , D. K a r a m a n e v , L de 4 J o u r n e e s E u r o p e e n e s s u r l a F l u d i z a t i o n , 254, T o i l l o u s e (1985). L . N i k o l o v a n d D. K a r a m a n e v . P r o c e e d i n g s o f t h e 2 I n t . C o n f e r e n ce o f Biotechnology, Seoul (1990). J . F . R i c h a r d s o n a n d W.N. Z a k i , T r a n s . I n s t . Chem. E n g . , 3 2 , 3 5 (1954). I . N i k o v , D . K a r a m a n e v a n d D. E l e n k o v , Can. J. Chem. E n g . ( i n press).
K. K.
P R O D U C T I O N OF S U G A R S FROM LIGNOCELLULOSIC W A S T E S BASIC R E S E A R C H AND P I L O T S T U D I E S
H. H.
ESTERBAUER’ STEINMULLER’,
M. H A Y N ~ , w . S A T T L E R ~ , w . STEINER~, Th. S T E I N E R 2 a n d M. S I N N E R ’
I n s t i t u t e o f Biochemistry, A-8010 G r a z , A u s t r i a VOEST-Alpine
AG,
P.O.
U n i v e r s i t y o f Graz,
Box 2 ,
A-4031 L i n z ,
S c h u b e r t s t r a D e 1,
Austria
INTRODUCTION R e s e a r c h and d e v e l o p m e n t i n t h e f i e l d o f e n z y m a t i c s a c c h a r i f i cation of vement.
l i g n o c e l l u l o s e h a s l o s t some o f t h e o r i g i n a l l y l i v e l y mo-
The m a i n r e a s o n f o r t h a t i s c e r t a i n l y t h e l o w p r i c e o f c r u -
de o i l w h i c h p l a c e s r e n e w a b l e r e s o u r c e s i n c l u d i n g l i g n o c e l l u l o s i c s apparently i n a non-competitive f r a n k l y a d m i t now t h a t
position.
Additionally,
one m u s t
t h e o p t i m i s t i c f o r e c a s t s on t h e t e c h n i c a l f e a -
s i b i l i t y made i n t h e e a r l y and m i d t h s e v e n t i e s c o u l d n o t b e v e r i f i e d .
A t t h a t t i m e p r o c e s s e n g i n e e r i n g and economic e v a l u a t i o n were m o s t l y b a s e d on s m a l l s c a l e l a b o r a t o r y e x p e r i m e n t s w h i c h m i g h t s o m e t i m e s e v e n n o t h a v e a l l o w e d t o make a r e a s o n a b l e g u e s s on t e c h n i c a l f e a s i bility.
I n r e t r o s p e c t i v e one m u s t a l s o r e a l i z e t h a t i t t a k e s i t s
t o l l now,
t h a t the basic research i n the f i e l d o f cellulase d i d not
come up t o t h e d e s i r e d l e v e l .
F o r example,
t h e m o l e c u l a r mechanisms
how c e l l u l a s e s c a n h y d r o l y z e c r y s t a l l i n e c e l l u l o s e , t h e s y n e r g i s m o f t h e d i f f e r e n t c e l l u l a s e components, tery.
the basis for i s s t i l l a mys-
The measurement o f enzyme a c t i v i t i e s as FPU g i v e s v e r y d i f f e -
rent results i n different
laboratories,
w h i c h makes i t d i f f i c u l t t o
o b j e c t i v e l y compare enzyme p r o d u c t i o n d a t a .
Briefly,
we n e e d b o t h ,
more b a s i c k n o w l e d g e on c e l l u l a s e s and t h e i r a c t i o n a s w e l l as obj e c t i v e and w e l l p r o v e n d a t a o f p i l o t s t u d i e s . We r e v i e w i n t h i s a r t i c l e some o f o u r r e c e n t r e s u l t s on t h e mo-
I, t h e a d s o r p t i o n o f c e l l u l o -
l e c u l a r structure of
cellobiohydrolase
s e and t h e e f f e c t o f
enzyme dosage on t h e e x t e n t o f h y d r o l y s i s .
We
a l s o r e p o r t some r e s u l t s o b t a i n e d i n p i l o t s t u d i e s p e r f o r m e d w i t h f a c i l i t i e s for
p r o c e s s i n g u p t o 1 t o n l i g n o c e l l u l o s e p e r day.
I n our
long term strategy,
-
184
t h e e n z y m a t i c s a c c h a r i f i c a t i o n i s o n l y one a s -
p e c t o f a much b r o a d e r c o n c e p t f o r t h e d e v e l o p m e n t o f new t e c h n i q u e s f o r t h e p r o d u c t i o n o f base and f i n e c h e m i c a l s ,
fibres,
fuel,
f o o d and f e e d f r o m p l a n t b i o m a s s . MATERIAL AN0 METHODS The d e t a i l e d e x p e r i m e n t a l c o n d i t i o n s f o r t h e s m a l l a n g l e X - r a y s c a t t e r i n g s t u d i e s on c e l l o b i o h y d r o l a s e given i n (ref. VTT-0-80133
I f r o m T.
r e e s e i MCC 77 a r e
l), t h e c o r r e s p o n d i n g s t u d i e s on CEH I f r o m T .
and i t s c o r e p r o t e i n a r e d e s c r i b e d i n ( r e f .
reesei
2).
F o r t h e a d s o r p t i o n s t u d i e s a c e l l u l a s e p r e p a r a t i o n f r o m T. s e i M C G 7 7 g r o w n on a u l f i t e p u l p was u s e d .
p r e c i p i t a t e d from t h e c u l t u r e f i l t r a t e w i t h acetone, r e d e s o l v e d i n w a t e r and f r e e z e d r i e d .
centrifuged,
T h i s enzyme p r e p a r a t i o n h a d
0 . 5 1 FPU/mg p r o t e i n a n d 0 . 2 1 u n i t s O - g l u c o s i d a s e / m g
protein.
s u b s t r a t e f o r t h e a d s o r p t i o n s t u d i e s was A v i c e l f r o m M e r c k . adsorption experiments A v i c e l pH 4.8,
( 0 t o 200 g / L )
200 rpm s h a k i n g w i t h 2.02,
per l i t r e f o r 1 hour.
ree-
The c e l l u l a s e p r o t e i n was
4.05
The For the
was i n c u b a t e d a t 50
OC,
o r 8.1 g c e l l u l a s e p r o t e i n
T h e r e a f t e r t h e s a m p l e s were c e n t r i f u g e d a n d
t h e n o t a d s o r b e d p r o t e i n a n d t h e n o t a d s o r b e d FPU were d e t e r m i n e d . A l s o d e t e r m i n e d were t h e s o l u b i l i z e d s u g a r by HPLC t o c a l c u l a t e t h e r e s i d u a l amount o f A v i c e l .
A l l the other d e t a i l s are given i n (ref.
10). F o r t h e i n v e s t i g a t i o n o f t h e e f f e c t o f enzyme dosage o n t h e e x t e n t o f h y d r o l y s i s C e l l u c l a s t C C N 3000 85/4 ( N o v o i n d u s t r i e s ) , vozym TN 1 8 8 ( 0 - g l u c o s i d a s e ,
p r e t r e a t e d p o p l a r wood r(as u s e d .
Briefly,
FPU/g l i q u i d ) a n d Novozym ( 5 2 0 u n i t s / g c i t a t e b u f f e r pH 4.8, n a l volume o f 100 m l .
0.01
wood)
the l i q u i d Celluclast
(45
l i q u i d ) were a d d e d t o 0.05
M
X Thimerosal (aa b i o c i d e ) t o g i v e a f i -
1 0 0 m l a n d f i n a l enzyme t i t e r s f r o m 10 t o 2 0 0 FPU p e r was a l w a y s 1:l. The 1 0 0 m l b u f f e r
The r a t i o F P U : O - g l u c o s i d a s e
enzyme m i x t u r e was warmed up t o 50 2 g
No-
Novo) a n d S i g m a c e l l 5 0 ( S i g m a ) o r s t e a m
i n a 300 m l E r l e n m e y e r f l a s k ,
OC
Sigmacell (or 2 g water i n s o l u b l e f i b r e s from p r e t r e a t e d poplar were t h e n a d d e d t o e a c h f l a s k .
aluminium f o i l and i n c u b a t e d a t 50
The f l a s k s were s e a l e d w i t h an
OC,
200 rpm s h a k i n g t o p e r i o d s up
t o 9 4 h. S a m p l e s w e r e w i t h d r a w n a t d i f f e r e n t t i m e p o i n t s a n d t h e sol u b i l i z e d g l u c o s e was d e t e r m i n e d b y HPLC.
-
185
-
R E S U L T S AND DISCUSSION
1. M o l e c u l a r s h a p e o f c e l l o b i o h y d r o l a s e
I
C o n s i d e r a b l e p r o g r e s s h a s b e e n made i n t h e r e c e n t y e a r s i n t h e p r e p a r a t i v e s e p a r a t i o n o f t h e i n d i v i d u a l enzyme c o m p o n e n t s c o n t a i ned i n Trichoderma r e e s e i c e l l u l a s e s . c h r o m a t o f o c u s i n g u s i n g a pH g r a d i e n t separated t h e T. proteins.
We ( r e f s .
3 , 4 ) have employed
r a n g i n g f r o m 6.5
t o 3.0
and
r e e s e i M C G 77 enzyme i n t o 1 4 i n d i v i d u a l enzyme
The m a j o r enzyme,
w h i c h c o m p r i s e d a b o u t 60-65
X o f the
t o t a l c e l l u l a s e p r o t e i n was i d e n t i f i e d as c e l l o b i o h y d r o l a s e
I). The CBH I enzyme i s o l a t e d b y us h a d a n i . e . P . a s i n g l e band i n SDS-PAGE c u l a r w e i g h t o f 59000.
o f 3.6
I (CBH
a n d gave
e l e c t r o p h o r e s i s corresponding t o a mole-
O t h e r m e t h o d s g a v e f o r t h e same p r e p a r a t i o n s
somewhat d i f f e r e n t m o l e c u l a r w e i g h t s
(Tab.
s c a t t e r i n g p e r f o r m e d on t h e CBH I f r o m T .
1). S m a l l a n g l e X-ray r e e s e i M C G 77 ( r e f .
1)
gave a v e r y u n u s u a l m o l e c u l a r shape comparable t o a t a d p o l e w i t h a l a r g e h e a d d o m a i n ( l e n g t h 7.0
nm,
d i a m e t e r 4.4
nm) a n d a r a t h e r
l o n g a n d f l e x i b l e t a i l w i t h a l e n g t h o f 11 nm a n d a maximum d i a m e t e r o f 2.2
nm (Fig.
1).
by s m a l l a n g l e X-ray t r a t e o f t h e T.
T h i s f o r m was t h e n f u l l y c o n f i r m e d
r e e s e i s t r a i n VTT-D-80133
n i t y chromatography. and a d i a m e t e r o f 4.4
2)
(ref.
a n a l y s i s o f CBH I p u r i f i e d f o r t h e c u l t u r e f i l (Espoo,
Finland)
by a f f i -
The h e a d o f t h i s enzyme h a d a l e n g t h o f 6 . 7
nm,
diameter o f 3 . 2 nm (Fig.
t h e t a i l i s 12.9
nm
nm l o n g w i t h a m a x i m a l
1).
F i g . 1. M o l e c u l a r shape o f c e l l o b i o h y d r o l a s e I from T . r e e s e i s t r a i n s M C C 77 ( A ) and VTT-D-80133 (8) and t h e c o r e p r o t e i n (C). The s h a p e s were d e t e r m i n e d by s m a l l a n g l e X-ray scattering (refs. 3,4).
18 nm
5nm
C
I
5 nm
-
186
-
TABLE 1 M o l e c u l a r w e i g h t o f CBH I f r o m M C G 7 7 a s e s t i m a t e d by v a r i o u s methods
I method
I
molecular weight 59000
SDS-PAGE e l e c t r o p h o r e s i s Ultracentrifugation
68500
HPLC w i t h LKB G 2 0 0 0 SW c o l u m n
48400
HPLC w i t h L K B G 3 0 0 0 SW c o l u m n
51300
Small angle X-ray
58000
scattering
59400
Amino a c i d a n a l y s i s
I t was known f r o m o t h e r s t u d i e s on t h e s t r u c t u r e o f C B H I t h a t p a r t i a l p r o t e o l y s i s w i t h p a p a i n s p l i t s CBH t h e l a r g e r fragment
(core protein)
I i n t o two fragments,
possesses t h e c a t a l y t i c a c t i v i t y
w h e r e a s t h e s m a l l e r p e p t i d e a p p e a r s t o be r e s p o n s i b l e f o r t h e ad-
5).
sorption t o cellulose (ref.
The s m a l l a n g l e X - r a y
analysis cle-
a r l y r e v e a l e d t h a t t h e core p r o t e i n i s t h e head p a r t o f t h e tadpole.
I t i s o f i n t e r e s t t o n o t e t h a t a s i m i l a r s t r u c t u r e c o u l d be t e n -
t a t i v e l y d e r i v e d f r o m t h e a m i n o a c i d s e q u e n c e o f CBH o f t h e CBH
I gene ( r e f .
I and a n a l y s i s
6 ) . I n t h i s c a s e t h e i n v e s t i g a t o r s came t o
I s h o u l d h a v e a m o l e c u l a r shape l i k e a " d e a d b e a v e r " (J. K n o w l e s , V T T F i n l a n d , p r i v a t e c o m m u n i c a t i o n ) . So f a r i t t h e a s s u m p t i o n t h a t CBH
is n o t known i f a n d how t h e s p e c i f i c p r o p e r t i e s o f CBH I a r e d e t e r m i n e d by t h i s u n u s u a l s h a p e .
2 . A d s o r p t i o n o f c e l l u l a s e on c e l l u l o s e Over many y e a r s we h a v e p e r f o r m e d a d s o r p t i o n s t u d i e s w i t h d i f f e r e n t c e l l u l a s e p r e p a r a t i o n s and v a r i o u s c e l l u l o s e s i n c l u d i n g l i g n o cellulosics.
However,
we e n c o u n t e r e d many p r o b l e m s i n e v a l u a t i n g o u r
e x p e r i m e n t a l l y m e a s u r e d d a t a a c c o r d i n g t o known p h y s i c a l l a w s .
I f
f o r e x a m p l e a d s o r p t i o n s t u d i e s w e r e p e r f o r m e d w i t h a f i x e d amount o f cellulaae
(i.e.
2 , 4 or 8 g p r o t e i n / l )
and v a r i a b l e amounts o f A v i -
c e l (i.e.
1 0 t o 200 g / l )
(ES-/Po*)
was t h e n p l o t t e d a g a i n s t t h e A v i c e l c o n c e n t r a t i o n we ob-
and t h e f r a c t i o n o f p r o t e i n adsorbed
t a i n e d a h y p e r b o l i c c u r v e s u g g e s t i n g t h a t t h e Langmuir t y p e e q u a t i o n
1, w h i c h was a l s o u s e d by o t h e r s ( r e f . sorption studies i s valid.
However,
7) i n cellulase/cellulose
i f we l i n e a r i z e d a n d made t h e
ad-
-
187
-
r e c i p r o c a l p l o t a c c o r d i n g t o e q u a t i o n 2,
t h e c o r r e l a t i o n was v e r y
bad and r a t h e r i n d i c a t e d t h a t t h e e q u a t i o n s 1 or 2 do n o t adequatel y describe the adsorpfion o f cellulaae t o cellulose.
Our f i r s t
s u s p i c i o n was t h a t we made some s y s t e m a t i c e x p e r i m e n t a l e r r o r ( s ) i.e.
t h a t t h e a d s o r p t i o n e q u i l i b r i u m was n o t y e t e s t a b l i s h e d ,
a f r a c t i o n o f c e l l u l o s e was h y d r o l y z e d d u r i n g t h e e x p e r i m e n t ,
that
or
t h a t t h e d i f f e r e n t c o m p o n e n t s o f c e l l u l a s e enzyme i n f l u e n c e d t h e dependancy o f t h e a d s o r p t i o n f r o m t h e c e l l u l o s e c o n c e n t r a t i o n .
W e
then found o u t t h a t t h e a d s o r p t i o n e q u i l i b r i u m i s e s t a b l i s h e d w i t h i n a b o u t one h o u r a n d t h a t t h e f r a c t i o n o f c e l l u l o s e h y d r o l y z e d d u r i n g t h i s t i m e must o f c o u r s e b e t a k e n i n t o a c c o u n t . e v e n i f t h e s e t w o p o i n t s ( a d s o r p t i o n measurement
Nevertheless,
a f t e r one h o u r
measurement o f l i b r a t e d s u g a r s a n d c a l c u l a t i n g r e s i d u a l c e l l u l o s e ) were c o n s i d e r e d n o s t r a i g h t l i n e was o b t a i n e d when t h e d a t a were p l o t t e d according t o equation 2 (Fig.
2).
E S - = adsorbed c e l l u l a a e g/1,
P o = t o t a l i n i t i a l l y added p r o t e i n i n g / l , So-=
c o n c e n t r a t i o n o f c e l l u l o s e i n g / 1 ( i n i t i a l l y added minus f r a c t i o n hydrolyzed during 1 hour),
d
= f r a c t i o n o f Po’which can b i n d t o c e l l u l o s e ,
K-
a d s o r p t i o n e q u i l i b r i u m c o n s t a n t i n gram c e l l u l o s e / l .
Fortunately, Ristroph (ref.
8).
we t h e n r e a d a p a p e r j u s t p u b l i s h e d b y S t u a r t a n d
I n t h i a paper t h e a u t h o r s gave a b a s i c t h e o r e t i -
c a l d e r i v a t i o n f o r t h e d e s c r i p t i o n o f t h e a d s o r p t i o n phenomenom. I n c o n s i d e r i n g t h e v a r i o u s p r o p o s a l s made i n t h i s p a p e r we d e r i v e d
a l l t h e b a s i c e q u a t i o n s w h i c h c o r r e c t l y d e s c r i b e t h e dependancy o f t h e a d s o r p t i o n from b o t h t h e c e l l u l a s e and t h e c e l l u l o s e c o n c e n t r a tion.
A l l t h e d e r i v a t i o n s were b a s e d on t h e a s u m p t i o n t h a t t h e b i n -
ding o f c e l l u l a a e t o c e l l u l o s e f o l l o w s the c l a s s i c a l Michaelia-Ment e n k i n e t i c s described by equation 3 .
-
188
-
A
l2
.
t
0.02 0.04 0,06 0.08 0.10
O,l2 0,U
1 I RESIDUAL AVICET 1I / g 1 F i g . 2 . A d s o r p t i o n o f T . r e e s e i c e l l u l a s e t o A v i c e l e v a l u a t e d by d o u b l e r e c i p r o c a l p l o t . The i n i t i s 1 p r o t e i n c o n c e n t r a t i o n was 2.02 g,'l ( o p e n c i r c l e s ) , 4 . 0 5 g / l ( t r i a n g l e ) a n d 8 . 1 g / l ( c l o s e d c i r c l e s ) . D o t t e d l i n e o b t q i n e d by l i n e a r r e g r e s s i o n a n a l y s i s ( r2 0.900, K * = 4 0 0 g A v i c e l / l , d = - 5 . 1 ) .
Where E i s t h e c o n c e n t r a t i o n o f t h e f r e e enzyme i n m o l / l , t h e concentration o f t h e enzyme-cellulose
complex i n m o l / l ,
the concentration o f the free cellulose i n mol/l,
=
ES
and S
whereby 1 m o l o f
f r e e c e l l u l o s e i s d e f i n e d a s t h a t amount o f c e l l u l o s e i n gram w h i c h has t h e p o t e n t i a l t o
b i n d 1 m o l enzyme.
K i s the Michaelis constant
or adsorption e q u i l i b r i u m constant i n mol/l. I n equation 3 a l l the concentrations are i n mol/l;
t o obtain
t h e corresponding e q u a t i o n s f o r c o n c e n t r a t i o n s i n gram/l, introduce a molecular weight
one m u s t
f o r t h e c e l l u l a s e ME a n d a n a p p a r e n t
m o l e c u l a r weight f o r t h e b i n d i n g c e l l u l o s e MS,
w h e r e MS i s t h a t a-
mount o f c e l l u l o s e i n gram w h i c h c a n b i n d 1 m o l c e l l u l a s e .
With t h e
i n t r o d u c t i o n o f ME a n d M5 t h e f o r m u l a d e s c r i b i n g t h e a d s o r p t i o n f o r v a r i a b l e c e l l u l o s e c o n c e n t r a t i o n s i s g i v e n by e q u a t i o n 4 and t h e formula describing the adsorption for t i o n s i s g i v e n by e q u a t i o n 5 .
variable c e l l u l a a e concentra-
-
[ES
eq.
4
eq.
5
--
189
-
I
Where E S - j s t h e a d s o r b e d c e l l u l a s e i n g / l ,
i n gll,
so*
t o t a l cellulose i n g/l,
t h e f r a c t i o n o f Po*
E*
free
Po*
total protein
cellulase i n g/l,
CL
b g i v e s t h e amount
which can b i n d t o c e l l u l o s e ,
o f c e l l u l a s e i n gram w h i c h c a n m a x i m a l l y b e b o u n d t o 1 g c e l l u l o s e ,
b i s a l s o t h e r a t i o ME/MS, mol/l,
K i s the Michaelis-Menten constant i n
ME i s t h e a v e r a g e m o l e c u l a r w e i g h t o f t h e c e l l u l a s e a n d M S
i s t h e average m o l e c u l a r weight o f t h e c e l l u l o s e . U s i n g t h e t w o e q u a t i o n s a n d an a v e r a g e m o l e c u l a r w e i g h t c e l l u l a s e ME
= 48000
(ref.
91,
we c o u l d o b t a i n some i m p o r t a n t
for the data
d e s c r i b i n g t h e a d s o r p t i o n e q u i l i b r i u m f o r t h e s y s t e m 1. r e e s e i c e l l a ae a n d A v i c e l ( r e f .
10).
The M i c h a e l i s c o n s t a n t i s 2.0
t h e apparent molecular weight
x
Mol/l,
f o r t h e b i n d i n g A v i c e l i s 520.000,
t h e m a x i m a l b i n d i n g c a p a c i t y b i s 9 2 mg c e l l u l a s e p r o t e i n o r 5 5 FPU -6 p e r 1 gram A v i c e l , 1 gram A v i c e l c o n t a i n s 1 . 9 2 x 1 0 mol b i n d i n g sites for cellulase,
t h i s means t h a t o n l y one o u t o f a b o u t 3 0 0 0 g l y -
c o s i d i c bonds i n c e l l u l o s e
f o r m s an e n z y m e - s u b s t r a t e
complex,dthe f o r FPU t h e
f r a c t i o n o f p r o t e i n s w h i c h c a n b i n d t o A v i c e l i s 0.98, d v a l u e i s 0.84.
An a d d i t i o n a l v e r y i m p o r t a n t c o n c l u s i o n r e g a r d s t h e
s u r f a c e c o v e r e d b y t h e enzyme on A v i c e l . m e n t s g a v e f o r t h e 1. r e e s e i c e l l u l a s e
L i g h t s c a t t e r i n g measure-
( = m i x t u r e o f a l l enzymes)
a n a v e r a g e m o l e c u l a r w e i g h t o f 48 0 0 0 ( r e f . l e has a diameter o f
6.58
9),
t h e a v e r a g e molecu-t
n m a n d a v o l u m e o f 1.49
cm3 ( r e f .
x
9). W i t h t h e s e d a t a a n d t h e b i n d i n g c a p a c i t y o f 92 mg c e l l u l a s e / g A v i c e l i t r e s u l t s t h a t o n c o n d i t i o n s o f maximum s u r f a c e c o v e r a g e
( = maximum b i n d i n g , a l l b i n d i n g s i t e s o c c u p i e d ) t h e enzyme c o v e r s 2 3 a s u r f a c e o f 42 m / g A v i c e l e n d a v o l u m e o f 0.186 cm In relative 2 c l o s e a g r e e m e n t w i t h o u r v a l u e s a r e t h e 17.5 t o 35 m / g A v i c e l r e -
.
p o r t e d b y L e e e t a l (11). T h i s l a r g e s u r f a c e c o v e r e d by t h e enzyme s t a n d s i n c o n t r a d i c t i o n t o t h e 2 t o 5 m2 s p e c i f i c s u r f a c e a r e a p e r gram A v i c e l m e a s u r e d by p h y s i c o - c h e m i c a l
methods ( n i t r o g e n adsorp-
tion,
X-ray
diffraction,
190
-
f o r more d e t a i l see r e f .
10).
The f a c t t h a t
c e l l u l a s e o c c u p i e s a b o u t a 10 t i m e s l a r g e r s u r f a c e t h a n a p p a r e n t l y a v a i l a b l e c a n n o t be n e g l e c t e d and d e s e r v e s f u r t h e r
investigation.
P o s s i b l e e x p l a n a t i o n s c o u l d be t h a t c e l l u l o s e i n t h e h y d r a t e d form ( a s used f o r t h e a d s o r p t i o n s t u d i e s )
i n f a c t h a s a much l a r g e r s u r -
f a c e a r e a t h a n d r y c e l l u l o s e as u s e d f o r n i t r o g e n a d s o r p t i o n ,
alter-
n a t i v e l y i t c o u l d b e t h a t t h e enzyme i t s e l f c r e a t e s new s u r f a c e s by forming micropores.
3 . E f f e c t o f enzyme d o s a q e on h y d r o l y s i s o f c e l l u l o s e Many r e s e a r c h e r 3 w o r k i n g on e n z y m a t i c h y d r o l y s i s h a v e p r o b a b l y o b s e r v e d t h a t t h e amount o f c e l l u l o s e h y d r o l y z e d a t a g i v e n t i m e d o e s n o t l i n e a r l y i n c r e a s e w i t h t h e amount o f enzyme added b u t r a t h e r f o l l o w s h y p o b o l i c c u r v e s as shown f o r e x a m p l e i n F i g .
3.
y4n
-
70h 46h 24h
60
c
m
13h 9h
40
r
I
I
I
1
I
20
40
60
80
100
F i g . 3 . E f f e c t o f enzyme d o s a g e o n h y d r o l y s i s o f c e l l u l o s e . A v i c e l ( 2 0 g / l ) was i n c u b a t e d w i t h C e l l u c l a s t C C N s u p p l e m e n t e d w i t h b e t a g l u c o s i d a s e Novozym TN 1 8 8 ( 5 t o 1 0 0 FPU/g A v i c e l ) f o r 2 t o 9 4 h a n d t h e amount o f g l u c o s e f o r m e d was m e a s u r e d .
We f o u n d ( s e e F i g .
3,4) t h a t f o r a l l t i m e p o i n t s ( 2 t o 9 4 h)
t h e enzyme d e p e n d e n c y o f t h e h y d r o l y s i s y i e l d c a n b e d e s c r i b e d by the simple formulas i n equation 6 or 7 ( r e f .
12).
[El eq.
6
Y = Y
max '
1
eq.
7
K
+ [El
K + -- . -1 + 'max
1 Ymax
-
191
-
Where Y i s t h e f r a c t i o n o f a u b a t r a t e ( o r c e l l u l o s e )
hydrolyzed
a t a given time, f r a c t i o n of substrate which c o u l d maximally Ymax i s be h y d r o l y z e d a t i n f i n i t e enzyme c o n c e n t r a t i o n s , E i s t h e enzyme dosage i n FPU/g s u b s t r a t e a n d K i s t h e enzyme d o s a g e i n FPU/g t e yielding
substra-
t h e h a l f maximal (Ymax/Z) h y d r o l y s i s .
0.05 0.04
0.03 0.02 0.01
t
1
4
l
4
I
l
0.04 0.08 0.12 0,16 020 €-'I FPU lg I-' F i g . 4.
D o u b l e r e c i p r o c a l p l o t o f t h e c u r v e s shown i n F i g .
The v a l u e s f o r F i g .
3 a n d 4 w e r e o b t a i n e d by h y d r o l y z i n g on
s t a n d a r d i z e d c o n d i t i o n S i g m a c e l l 50 ( 2 0 9 / 1 1 (Novo)
w i t h C e l l u c l a s t CCN
s u p p l e m e n t e d w i t h Novozym TN 1 8 8 ( b e t a - g l u c o s i d a s e , was a l w a y s 1:l.
t h e r a t i o FPU: O - g l u c o s i d a s e o n l y t h e Novo enzyme-mix,
b u t t h a t a l l t h e o t h e r Trichoderma enzyenzymes p r o d u c e d
b y u s ) f o l l o w e d t h e same c o n f o r m i t y aa ahown i n F i g
7.
Novo),
We a l s o f o u n d t h a t n o t
mes ( v a r i o u s c o m m e r c i a l l y a v a i l a b l e p r e p a r a t i o n s , pressed by e q u a t i o n 6,
3.
3 , 4 and ex-
The e v a l u a t i o n o f enzymes a c c o r d i n g t o
t h i s l a w c o u l d o f f e r a v e r y u s e f u l method t o o b j e c t i v e l y d e f i n e t h e e f f e c t i v e n e s s o f d i f f e r e n t enzymes;
Ymax
good enzymes s h o u l d h a v e a h i g h
v a l u e and a low K v a l u e . Even more i m p o r t a n t c o u l d be t h a t t h e e q u a t i o n s 6 a n d 7 c o u l d
b e u s e d t o d e f i n e a n d compare t h e e f f e c t i v e n e s s o f d i f f e r e n t p r e t r e a t m e n t ~f o r l i g n o c e l l u l o s e .
We h a v e f o u n d t h a t e q u a t i o n s 6 , 7
are not
r e s t r i c t e d t o h y d r o l y a i s o f p u r e c e l l u l o s e b u t o b v i o u s l y c a n b e applied for a l l lignocellulosics.
Wheat a t r a w a n d p o p l a r wood h a v e b e e n
t e s t e d so f a r . p l a r wood.
192
-
5 a s an e x a m p l e shows r e s u t s o b t a i n e d w i t h p o -
Fig.
For that,
t e d s t e a m f o r 10 min.
c h i p s o f p o p l a r wood w e r e t r e a t e d w i t h s a t u r a a t 20 0,
220 a n d 240
OC,
he steamed m a t e r i a l
was washed a n d t h e r e m a i n i n g w a t e r i n s o l u b l e f i b r e s were h y d r o l y z e d
on s t a n d a r d i z e d c o n d i t i o n ( 2 0 g/l, 5 0 same enzyme-mix
s h a k i n g 24 h) w i t h t h e
OC,
a s u s e d f o r t h e e x p e r i m e n t shown i n F i g .
enzyme dosage v a r i e d f r o m 5 t o 1 0 0 FPU/g
substrate.
p r o c a l p l o t a c c o r d i n g t o e q u a t i o n 7 i s shown i n F i g .
3 , 4.
The
A double r e c i 5.
The i m p o r -
t a n t c o n c l u s i o n s w h i c h can be drawn f r o m t h e s e e x p e r i m e n t s a r e as follows: wood,
First,
the equation 7 i s also v a l i d f o r pretreated poplar
the correlation coefficient
t h a n 0.95.
Second,
t e r m i n e t h e v a l u e s o f Ymax perature i . e .
i s for a l l three lines better
t h e t h r e e d i f f e r e n t p r e t r e a t m e n t t e m p e r a t u r e deand K (Tab.
2).
t h e b e s t p r e t r e a t m e n t i s 220
t h e y i e l d i s very c l o s e t o t h e o r e t i c a l (45 and t h e K v a l u e i s l o w e s t (Tab.
Third, OC,
t h e optimum tem-
a t t h i s temperature
I g l u c a n / g p o p l a r wood)
2).
F i g . 5. E f f e c t on enzyme d o s a g e on t h e e x t e n t o f h y d r o l y s i s o f s t e a m p r e t r e a t e d p o p l a r wood. C h i p s w e r e s t e a m e d i n a n a u t o c l a v e a t 200 ( A ) , 220 ( B ) a n d 240 O C ( C ) . The m a t e r i a l was washed a n d t h e w a t e r i n s o l u b l e f i b r e s , WIF ( 2 0 9 / 1 1 were i n c u b a t e d w i t h 5 t o 1 0 0 FPU/g WIF f o r 24 h. The c e l l u l o s e h y d r o l y z e d was c a l c u l a t e d f r o m t h e amount o f g l u c o s e f o r m e d . The enzyme u s e d was a m i x t u r e o f C e l l u c l a s t C C N a n d Novozym T N 1 8 8 ( N o v o ) , t h e r a t i o F P U : f l - g l u c o s i d a s e was a l w a y s 1 : l . The f i g u r e shows t h e d o u b l e r e c i p r o c a l p l o t a c c o r d i n g t o e q u a t i o n 7.
Ordinate:
r e c i p r o c a l v a l u e o f gram c e l l u l o s e h y d r o l y z e d p e r 1 0 0 g WIF,
abscissa:
r e c i p r o c a l v a l u e o f FPU/g WIF u s e d f o r h y d r o l y s i s .
-
193
-
TABLE 2 E v a l u a t i o n o f t h e h y d r o l y s i b i l i t y o f s t e a m e d p o p l a r wood by u s i n g the relationship Y = Y E/K + E (eq. 6 ) . max
.
1. P r e t r e a t m e n t t e m p e r a t u r e 2. Y i e l d o f w a t e r i n s o l u b l e 3.
4.
200
220
OC
240
OC
OC
f i b r e s (WIF) Y m a x , X o f WIF t h e o r e t i c a l l y h y d r o l y s a b l e a t i n f i n i t e en-
86.3 %
69.0
X
6 1 .0
X
zyme d o s a g e ( F i g . 5 , e q . 7) K , FPU/g W I F , e n z y m e l o a d i n g
43.9 %
64.9 X
68.0
x
f o r Ymax/2
9 . 3 9 FPU/g
2 .6 9 FPU/g
4.0
0.999
0.993
0.954
FPU/g
5. Correlation c o e f f i c i e n t f o r
the double reciprocal p l o t
'.
(Fig. 5 ) expressed i n X of t h e
'-max o r i g i n a l p o p l a r wood,
'*max
4.
37.8
= WIF y i e l d x Y m a x
x
4 4 .7
x
41 X
x 100
P i l o t s t u d i e s and economic e v a l u a t i o n A small p i l o t f a c i l i t y was i n o p e r a t i o n from 1982 t o 1986 a t
a p u l p a n d p a p e r company ( S t e y r e r m i h l A C , A u s t r i a , w i t h VOEST-Alpine
AC).
for cellulase production
(one 300 l i t r e s t i r r e d t a n k r e a c t o r , two
250 l i t r e d e e p j e t a e r a t i o n f e r m e n t o r a ) , 50 L,
i n cooperation
The e q u i p m e n t c o n s i s t e d o f t h r e e f e r m e n t o r s f i v e hydrolysis tanks aach
a p u l p e r , a f i l t e r - b e l t p r e s s , a d i s k r e f i n e r a n d s e v e r a l u-
n i t s f o r p r e t r e a t m e n t . A b o u t 1 0 0 k g l i g n o c e l l u l o s i c raw m a t e r i a l s could be processed p e r day. I n l a t e 1 9 8 7 a much l a r g e r p i l o t f a c i l i t y d e s i g n e d f o r p r o c e s s i n g a b o u t 1 t o n raw m a t e r i a l / d a y Alpine AG (Linz, A u s t r i a ) . f o r p r e t r e a t m e n t , 1 5 m3
w e n t i n o p e r a t i o n a t VOEST3 digeator
The m a i n u n i t s h e r e a r e : 3 m
fermentor with prefermentora,
s t i r r e d 15 m
tank for hydrolysis, evaporation u n i t f o r concentration of auger
3
SO-
l u t i o n s and a u n i t f o r f u r f u r a l production , T h e d e s i g n and t h e tests r u n n i n g i n t h i s "Biomass R e f i n e r y " a r e b a a e d on t h e c o o p e r a t i o n i n b a s i c r e a e a r c h ( U n i v e r s i t y o f Graz) and i n d u a t r i a l e n g i n e e r i n g (VOEST-Alpine
I n d u s t r i e a n l a g e n b a u C e s . m . b . H .) .
R e s u l t s o f t h e on-
going tests i n t h e Biomass Refinery w i l l be r e p o r t e d i n d e t a i l elaewhere.
a)
194
-
P i l o t fermentations F e r m e n t a t i o n s were c a r r i e d o u t o n b a t c h ,
n u o u s c o n d i t i o n s w i t h 2-3
7;
i n was i n t h e e a r l y phase Q M 9414 a n d l a t e r T . SVG-17
and V-44,
f e d b a t c h and c o n t i -
s u l f i t e p u l p as c a r b o n s o u r c e .
The s t r a -
r e e s e i mutants termed
w h i c h a r e good c e l l u l a s e p r o d u c e r s w i t h w h e a t s t r a w
as c a r b o n s o u r c e . C o s t a n a l y s i s showed t h a t t h e p r o d u c t i o n c o s t f o r 1 k g enzyme p r o t e i n i n s o l u t i o n ( w i t h 3 FPU/ml a n d 0 . 5 ween 54 A u s t r i a n S c h i l l i n g (AUS)
FPU/mg p r o t e i n )
i s bet-
f o r c o n t i n u o u s f e r m e n t a t i o n and
63 AUS f o r b a t c h f e r m e n t a t i o n ;
35 7;
from t h e s u l f i t e p u l p .
D. t h e r e f o r e a i m e d t o u s e w h e a t s t r a w
Our R . 8
o f t h e p r o d u c t i o n c o s t stem
o r s p e n t h y d r o l y s i s r e s i d u e s f o r enzyme p r o d u c t i o n . W i t h s t e a m t r e a t e d wheat s t r a w and t h e SVC-17
o r V-44 m u t a n t s we now o b t a i n i n
t h e p i l o t f e r m e n t o r enzyme b r o t h s w i t h 6 - 7
3.0-3.7 se/ml.
fPU/ml,
25 u n i t s xylanase/ml
mg c e l l u l a s e p r o t e i n / m l ,
and 2-2.5
units
6-glucosida-
The i n t e g r a t e d p r o d u c t i v i t y i n b a t c h f e r m e n t a t i o n ( f r o m t h e
s t a r t t o t h e end)
v a r i e s b e t w e e n 40-80
FPU/l.h.
b) Pretreatment E n z y m a t i c s a c c h a r i f i c a t i o n o f l i g n o c e l l u l o s i c m a t e r i a l w i l l onl y be f e a s i b l e i n an i n d u s t r i a l p r o c e s s i f a s i m p l e , t i v e pretreatment i s possible. o n l y academic i m p o r t a n c e .
cheap a n d e f f e c -
Many o f t h e p r o p o s e d t e c h n i q u e s h a v e
F o r example,
c h e m i c a l p r e t r e a t m e n t c a n on-
l y be e c o n o m i c i f t h e r e a g e n t s a r e cheap a n d u s e d i n s m a l l q u a n t i t i e s w i t h no w a s t e o r c a n be r e c o v e r e d w i t h h i g h e f f i c i e n c y .
We c o n -
c e n t r a t e d o u r p i l o t s t u d i e s m a i n l y on t h r e e p r e t r e a t m e n t m e t h o d s , w h i c h seemed t o b e m o s t p r o m i s i n g t o u s .
I n t h e following p a r t these
methods a r e b r i e f l y d e s c r i b e d f o r wheat s t r a w ,
t h e y a r e h o w e v e r ap-
p l i c a b l e w i t h some s l i g h t m o d i f i c a t i o n s t o o t h e r l i g n o c e l l u l o s i c s . CaO-pretreatment The w h e a t s t r a w was s o a k e d w i t h C a O - s o l u t i o n straw)
(5
X per dry matter
f o r one h o u r a t a m b i e n t t e m p e r a t u r e a n d t h e n m i l l e d i n a s i n -
gle disk refiner,
d e w a t e r e d on a b e l t p r e s s a n d n e u t r a l i z e d w i t h
H2S04. NaOH-pretreatment Cooking w i t h 12-20
X NaOH p e r d r y m a t t e r i s a w e l l k n o w n d e l i g n i -
f i c a t i o n process i n the pulp industry.
Due t o t h e h i g h c o s t s o f t h e
c h e m i c a l and t h e n e c e s s i t y o f i t s r e c o v e r y , for
the enzymatic s a c c h a r i f i c a t i o n
an N a O H - p r e t r e a t m e n t
c a n a f f o r d o n l y a l o w NaOH c h a r g e .
-
195
-
Our e x p e r i e n c e s showed t h a t t h e m o s t p r o m i s i n g p a r a m e t e r s a r e t h e following:
2
X NaOH p e r d r y m a t t e r , 180
OC cooking temperature,
10
minutes r e t e n t i o n time a t t h e cooking temperature. The e x p e r i m e n t s a l s o showed t h a t t h e h e m i c e l l u l o s e w i l l n o t b e solubized w i t h this pretreatment.
T h e r e f o r e no f u r t h e r
reaction o f
t h e pentoses can t a k e p l a c e as i n t h e a u t o h y d r o l y s i a p r o c e s s w i t h o u t NaOH. N e g a t i v e a s p e c t s o f t h e NaOH p r e t r e a t m e n t a r e t h e l i g n i n d e g r a d a t i o n which n e c e s s i t a t e s t h e c l e a n i n g o f l i q u o r s i n a wastewater treatment plant, production,
l e s s q u a n t i t y o f t h e h y d r o l y s i s r e s i d u e f o r energy
a n d a more d i f f i c u l t r e c o v e r y o f a c e t i c a n d f o r m i c a c i d
f r o m t h e a l k a l i n e c o o k i n g l i q u o r c o m p a r e d t o an a c i d l i q u o r .
Steam p r e t r e a t m e n t
F o r many y e a r s s t e a m p r e t r e a t m e n t h a s b e e n w e l l known i n t h e p u l p and p a p e r i n d u s t r y e s p e c i a l l y
for
the production o f viscose
p u l p by t h e k r a f t p r o c e s s where t h e p e n t o a e a a r e s o l u b i z e d b y a wat e r and/or are:
steam p r e h y d r o l y s i s .
Typical p r e h y d r o l y s i s parameters
t e m p e r a t u r e b e t w e e n 3 0 a n d 60 m i n u t e s a t s maximum t e m p e r a t u r e .
The d i g e s t e r s u s e d a r e e i t h e r b a t c h a u t o c l a v e s o r c o n t i n u o u s t u b e digesters.
A p e n t o s e r e c o v e r y o f up t o 80 % c a n be a c h i e v e d .
We a l s o u s e d t h e s e p a r a m e t e r s f o r t h e p r e t r e a t m e n t o f s t r a w and f o u n d o u t t h a t between 160-170 high extent,
OC
t h e x y l o s e c a n be r e c o v e r e d t o a
b u t t h a t the glucose y i e l d i n the f o l l o w i n g enzymatic
h y d r o l y s i s was l o w ( u p t o 60
X
o f the theoretical).
T h e r e f o r e we r e -
duced t h e r e t e n t i o n t i m e and i n c r e a s e d t h e t e m p e r a t u r e . m a x i m a l g l u c o s e y i e l d a t 190-200 batch cooking.
OC and 10 min.
We f o u n d s
retention time i n
F o r an i n d u s t r i a l p r o c e s a t h e d i g e s t e r s h o u l d be de-
s i g n e d f o r a t r e a t m e n t w i t h s a t u r a t e d s t e a m up t o 220 OC. The x y l o s e y i e l d waa r e d u c e d a t h i g h e r t e m p e r a t u r e s ,
due t o
t h e d e g r a d a t i o n o f t h e x y l o s e t o f u r f u r a l and p o l y m e r i z a t i o n o f f u r f u r a l i n the presence o f l i g n i n .
T h e r e f o r e we d e c i d e d t o a p p l y a
t w o s t e p p r o c e s s where t h e p e n t o a e s a r e s o l u b i z e d i n t h e f i r s t s t e p w i t h t h e known p a r a m e t e r s o f t h e p u l p i n d u s t r y a n d a s e c o n d s t e p a t a t e m p e r a t u r e o p t i m a l f o r t h e g l u c o s e p r o d u c t i o n i n enzymatic saccharification. The p e n t o s e y i e l d i n s a c c h a r i f i c a t i o n o f s t e a m t r e a t e d m a t e r i a l i s l o w because pentoaanea a r e e x t r a c t e d a f t e r t h e f i r s t s t e p o f t h e steam t r e s t m e n t .
c)
-
196
S a c c h a r i f i c a t i o n and c o s t s n a l y s i s U s i n g t h e t h r e e p r e t r e a t m e n t 8 (CaO,
NaOH
o r s t e a m o n l y ) we o b -
tained i n l a b scsle or small p i l o t scale hydrolysis yielda reported i n lab.
3.
TABLE 3 Y i e l d s o f g l u c o s e o b t a i n e d f r o m some s e l e c t e d l i g n o c e l l u l o s i c s b y e n z y m a t i c h y d r o l y s i s on l a b o r a t o r y o r s m a l l p i l o t s c a l e . C o n d i t i o n s f o r h y d r o l y s i s were a l w a y s 1 0 F P U / g , 50 O C , 48 t o 1 2 h.
cellulose content % o f oven d r y w e i g h t
raw m a t e r i a l
glucose y i e l d ?A o f t h e o r y
wheat s t r a w
37
75
s w e a t sorghum b a g a s s e
42
65
palm press f i b r e s
22
60
palm p r e s s s t a l k s
22
h a r d woods birch,
(poplar,
beech,
fruit-tree)
s o f t woods ( s p r u c e ,
31
pine)
38
-
-
42
60
42
50
36
65
reed gras
42
70
s u g a r cane b a g a s s e ,
pith
Pulpe
b a r k from beech
m u n i c i p a l s o l i d waste
(BRAM)
-
37
80
53
100
23
80
cellulose r i c h fraction o f 23
90
70 65
100
corn stover
potato residue,
-
I
-
213
80 65 75
00
about 50
The g r o s s m a t e r i e l b a l a n c e f o r t h e p r o d u c t i o n o f s u g a r a f r o m wheat s t r a w
(450 t o n s / d a y )
g i v e n i n Tab.
f o r the three pretreatment options i s
4.
The l o w e s t c o n v e r s i o n c o s t s o f t h e steam p r e t r e a t m e n t ,
1.49
sugar a r i s e w i t h
AUS/kg
i f c r e d i t f u r f u r a l as a b y p r o d u c t i s t a k e n
i n t o a c c o u n t t h e p r i c e w o u l d b e a t 1.34
AUS/kg
sugar.
s i o n c o s t s a r e baaed on z e r o raw m a t e r i a l c o s t a , a day dream. a procesa,
I n A u s t r i a wheat s t r a w would c o a t ,
a b o u t 0 . 8 AUS/kg
These c o n v e r -
which a r e o f course
i f needed f o r s u c h
a n d b a s e d on t h i s p r i c e t h e p r o d u c t i o n
c o s t s f o r a u g a r a a r e b e t w e e n 3.2 sent t h i s p r i c e i s f a r t o o high
a n d 4.5
AUS/kg
(Tab.
4).
A t pre-
to be c o n s i d e r e d t o b e a b a s i s f o r
t h e production o f b i o t e c h n o l o q i c s l products from sugars derived from
lignocellulosics.
Nevertheless,
197
-
s e n s i t i v i t y a n a l y s e s c l e a r l y show
t h a t c o n v e r s i o n c o s t s c o u l d be c o n s i d e r a b l y r e d u c e d ( i n t o t a l about
5 0 X ) by an i m p r o v e m e n t o f enzyme r e c y c l i n g and r e d u c e d enzyme l o a ding.
Moreover,
t h e p r o c e s s e c o n o m i c s l o o k s much mor'e f a v o r a b l e i f
some o f t h e l i g n i n c o u l d b e s o l d aa b y p r o d u c t s a n d i f a l l t h e p e n t o ses a r e c o n v e r t e d t o f u r f u r a l and i f a c e t i c a c i d and f o r m i c a c i d
are r e c o v e r e d . TABLE 4 P r o d u c t i o n o f s u g a r s f r o m wheat s t r a w . Cross m a t e r i a l b a l a n c e b a s e d on d r y m a t t e r , c o n v e r s i o n and p r o d u c t i o n c o s t s f o r 3 p r e t r e a t m e n t o p t i o n s ( s e e t e x t ) . P l a n t s i z e 450 MT/day, o t h e r c o n d i t i o n s f o r c o s t e v a l u a t i o n see ( r e f . 1 3 ) . MT = m e t r i c tons. ~ _ _ _ _ _
steam
N G 7 - l
CEO
190-200 OC
refiner
milling
steam 180
enzyme p r o t e i n n e e d e d , MT/day
5.30
6.58
6.24
hexoses produced,
121
90
135
50
77
MT/day
pentoses produced,
MT/day
f u r f u r a l produced,
MT/day
fuel,
81
hydrolysis residue,
MT/day
I
'
OC/
__
~~~
4
0
0
164
250
120
conversion c o s t s f o r sugar-mix (hexoses without
+
pentoses)
f u r f u r a l byproduct,
w i t h f u r f u r a l byproduct,
AUS/kg
AUS/kg
1.49
1.99
2.01
1.34
-
-
3.12
4.56
p r o d u c t i o n c o s t s f o r sugar-mix
w i t h a p r i c e o f 0 . 8 AUS/kg straw,
wheat
with f u r f u r a l byproduct,
AUS/kg s u g a r - m i x 12 A u s t r i a n S c h i l l i n g (AUS)
= 1 US
3 71
D o l l a r (June 1988)
I n c o n s i d e r i n g f u t u r e s c e n a r i o s one must a l s o b e aware t h a t p l a n t end f o r e s t g e n e t i c s i s v e r y r a p i d l y d e v e l o p i n g and w i l l w i t h o u t any d o u b t l e a d t o l i g n o c e l l u l o s i c p l a n t s ( t r e e s , s p e c i f i c a l l y d e s i g n e d f o r i n d u s t r i a l needs.
g r a s s e s a.o.1
Short r o t a t i o n forestry
w i t h p o p l a r a n d w i l l o w a l r e a d y g i v e h e c t a r y i e l d s u p t o 20 t o n s d r y matter/year
a s c o m p a r e d t o 2-3 t o n s / y e a r
with conventional forestry
(ref.
14).
198
-
With t h e m o d e r n t e c h n i q u e s o f g e n e t i c e n g i n e e r i n g i t
s h o u l d a l s o be p o s s i b l e t o d e v e l o p p l a n t s w i t h a h i g h and a l o w l i g n i n c o n t e n t .
cellulose
T h i s t o g e t h e r w i t h many o t h e r a s p e c t s
w i l l c o n t i n u o u s l y i n c r e a s e t h e i m p o r t a n c e o f l i g n o c e l l u l o s i c s as a
raw m a t e r i a l source. ACKNOWLEDGEMENT The w o r k o f t h e I n s t i t u t e o f B i o c h e m i s t r y was i n p a r t s u p p o r t e d by t h e B u n d e s m i n i s t e r i u m f;'r
Wissenschaft und Forschung,
Wien.
REFERENCES M . Schmuck, I. P i l z , M. Hayn e n d H. E s t e r b s u e r , I n v e s t i g a t i o n o f c e l l o b i o h y d r o l a s e from Trichoderms r e e s e i by s m a l l angle Xr a y s c a t t e r i n g , B i o t e c h n o l . L e t t . 8 ( 6 ) ( 1 9 8 6 ) 397-402. 2 P . M . A b u j a , M. Schmuck, I. P i l z , P. Tomme, M. C l s e y s s e n s and H. E s t e r b a u e r , S t r u c t u r a l a n d f u n c t i o n a l d o m a i n s o f c e l l o b i o hydrolase I from Trichoderma r e e s e i , Eur. Biophys. J. 1 5 (1988) 339-342. 3 M. Hayn and H. E s t e r b a u e r , S e p a r a t i o n a n d p a r t i a l c h a r a c t e r i z a t i o n o f Trichoderma r e e s e i c e l l u l s s e by f a s t chromatofocusing, J . Chrom. 329 ( 1 9 8 5 ) 379-387. 4 H. E s t e r b a u e r , M. Hsyn, G. J u n g s c h a f f e r , E . T a u f r s t z h o f e r a n d J . Schurz, Enzymatic c o n v e r s i o n o f l i g n o c e l l u l o s i c m a t e r i a l s t o s u g a r s , J. Wood Chem. T e c h n o l . 3 ( 3 ) ( 1 9 8 3 ) 261-287. 5 H. v a n T i l b e u r g h , P. Tomme, M. C l a e y s s e n s , R . B h i k h a b h a i a n d G. P e t t e r s o n , L i m i t e d p r o t e o l y s i a o f t h e c e l l o b i o h y d r o l a s e I f r o m T r i c h o d e r m a r e e s e i , FEBS L e t t . 2 0 4 ( 2 ) ( 1 9 8 6 ) 223-227. 6 T . T . T e e r i , P . L e h t o v s s r a , S. K a u p p i n e n , I. S a l o v u o r i a n d J . K n o w l e s , Homologous d o m a i n s i n T r i c h o d e r m a r e e s e i c e l l u l o l y t i c enzymes: gene s e q u e n c e a n d e x p r e s s i o n o f c e l l o b i o h y d r o l a s e 11, Gene 5 1 ( 1 9 8 7 ) 4 3 - 5 2 . 7 H. Ooshima, M. S a k a t a a n d Y . H a r a n o , A d s o r p t i o n o f c e l l u l a s e f r o m T r i c h o d e r m a v i r i d e on c e l l u l o s e , B i o t e c h n o l . B i o e n g . 25 ( 1 9 8 3 ) 3103-3114. 8 J.Y. S t u a r t and D.L. R i s t r o p h , A n a l y s i s o f c e l l u l s s e - c e l l u l o s e a d s o r p t i o n d s t a : s f u n d a m e n t a l a p p r o a c h , B i o t e c h n o l . B i o e n g . 27 ( 1 9 8 5 ) 1056-1059. 9 J. S c h u r z , J . B i l l i a n i , A . H E n e l , W.D. E i g n e r , A. J a n o s i , M. H s y n a n d H. E s t e r b a u e r , R e a c t i o n m e c h a n i s m e n d s t r u c t u r a l c h a n g e s a t enzymatic d e g r a d a t i o n o f c e l l u l o s e by Trichoderma r e e s e i c e l l u l a s e , A c t a P o l y m e r i c a 36(2) ( 1 9 8 5 ) 76-80. 1 0 W . S t e i n e r , W . S a t t l e r a n d H. E s t e r b a u e r , A d s o r p t i o n o f T r i c h o derma r e e s e i c e l l u l a s e on c e l l u l o s e : e x p e r i m e n t a l d a t a a n d t h e i r a n a l y s i s by d i f f e r e n t e q u a t i o n s , B i o t e c h n o l . B i o e n g . ( 1 9 8 8 i n press), 11 S.B. L e e , H.S. Shin, D.D. Ryu, A d s o r p t i o n o f c e l l u l a s e : E f f e c t o f p h y s i c o c h e m i c a l p r o p e r t i e s o f c e l l u l o s e on a d s o r p t i o n a n d r s t e o f h y d r o l y s i s , B i o t e c h n o l . B i o e n g . 27 ( 1 9 8 2 ) 2137-2153. 1 2 W . S a t t l e r , H. E s t e r b s u e r , 0. G l e t t e r a n d W . S t e i n a r , The e f f e c t o f enzyme c o n c e n t r a t i o n o n t h e r a t e o f t h e h y d r o l y s i s o f c e l l u l o s e , B i o t e c h n o l . Bioeng. (1988 accepted for p u b l i c a t i o n ) . 1
13 14
199
-
H . S t e i n m i l l e r , T h e s i s , Graz U n i v e r s i t y o f Technology, A u s t r i a (1988). C . F . M i t c h e l l , Advances i n h a r v e s t i n g t e c h n o l o g y f o r s h o r t r o t a t i o n p o p l a r and w i l l o w s , i n : D. S c h l i e p h a k e and P . Kramer ( E d . ) A g r i c u l t u r a l S u p l u s e s , DECHEMA, F r a n k f u r t , 1 9 8 5 , 1 2 1 - 1 4 3 .
This Page Intentionally Left TBlank
THE FUTURE OF THE LIGNOCELLULOSIC W A S T E S BIOCONVERSION I. SPILDA,
A.
B L A t E J a n d M.
KOSIK
The S l o v a k T e c h n i c a l U n i v e r s i t y ,
Lignocellulose
r e f o r m ca.
95
X
B r a t i s l a v a 81237,
Czechoslovakia
i s t h e most a b u n d a n t p o l y m e r on t h i s p l a n e t whe-
o f t h e d r y w e i g h t o f p l a n t o r i g i n a t e d wastes.
c o n v e r s i o n o f l i g n o c e l l u l o s e w a s t e s (LCW)
The
i n t o valuable products i s
u s u a l l y t r e a t e d i n t h e b r o a d e r c o n t e x t o f renewable r e s o u r c e s and i s studied from technical,
s o c i a l and economical aspects.
I n recent
y e a r s e c o l o g i c a l a s p e c t s became i m p o r t a n t a l s o a n d o n l y s i g n i f i c a n t p r e s s u r e f r o m t h e p u b l i c s e c t o r f o r e n v i r o n m e n t a l c o n s i d e r a t i o n and r e c y c l i n g dominate t h e s t i m u l a t i o n o f t h e search f o r a b e t t e r u t i l i z a t i o n o f LCW. The b a s i c p r o b l e m w h i c h f a c e d t h e r e s e a r c h e r s i n LCW c o n v e r s i o n have changed l i t t l e . simple
-
Technically speaking the process i s r e l a t i v e l y
t h e h y d r o l y s i s o f c e l l u l o s e polymer i n t o s a c c h a r i d e s and
t h e subsequent b i o c o n v e r s i o n i n t o e t h a n o l o r o t h e r p r o d u c t s . p r o c e s s e s were i m p l e m e n t e d c a . y e a r s ago,
Such
80 y e a r s ago and were i m p r o v e d 5 0
b u t i n l a s t 20 y e a r s t h e y became e c o n o m i c a l l y n o n - c o m p e t i
t i v e w i t h crude o i l bssed products.
I n the future,
a commercially
f e a s i b l e c o n v e r s i o n p r o c e s s would s o l v e a t l e a s t two problems. tly,
Firs-
t h e problem o f waste d i s p o s a l and secondly t h e need f o r a con-
tinuous supply o f low-cost l o s e s a r e renewable,
chemical intermediates.
Since l i g n o c e l l u -
b o t h p r o b l e m s can be s o l v e d .
THE FUTURE OF RESOURCES The p r i n c i p s l p r o b l e m s e m e r g i n g f r o m t h e a n a l y s i s e x t e n s i v e l y discussed i n t e c h n i c a l l i t e r a t u r e ,
are associated with fundamentally
d i f f e r e n t c h a r a c t e r i s t i c s o f LCW r e s o u r c e s . sed and b u l k y .
Also,
when compared w i t h c r u d e o i l r e s o u r c e s . resource tent.
of
They a r e w i d e l y d i s p e r -
t h e d e n s i t y o f energy i s ca. Thus,
one o r d e r l o w e r
LCW r e p r e s e n t s t h e
a d e c e n t r a l i z e d c h a r a c t e r and o f a l o w e r e n e r g y con-
Table 1 l i s t s t h e p o t e n t i a l s o u r c e s and t h e i r d i v e r s e n a t u r e .
-
202
-
TABLE 1 P o t e n t i a l s o u r c e s o f LCW Source
Description
Crop r e s i d u e s
S t r a w , weeds, c o r n c o b s a n d s t a l k s , sugarcane waste, wasted f o d d e r
Forest residues
Bark,
sawdust,
A g r i c u l t u r a l by-products
Bagasse,
S o l i d urban wastes
Waste p a p e r ,
The q u a n t i t i e s ( a n d a l s o q u a l i t i e s ) areas o f t h e world.
branches,
g r a i n bran,
twigs
seeds,
hulls
vegetable wastes
o f LCW a r e d i f f e r e n t i n v a r i o u s
E s t i m a t e s o f a v a i a l i i l i t y o f LCW i n t h e USA i n -
d i c a t e t h a t c o l l e c t a b l e LCW f r o m a g r i c u l t u r e i s i n t h e r a n g e o f 500
400
-
800 m i l l i o n t o n s o f d r y m a t t e r p e r y e a r and from f o r e s t r y ,
600 m i l l i o n t o n s p e r y e a r .
source c o u l d s u p p l y ca.
5
-
When c o n v e r t e d i n t o e n e r g y ,
ca.
this
7 X o f t h e t o t a l consumed e n e r g y .
Ligno-
c e l l u l o s i c s p r o d u c t i o n i n E u r o p e i s g i v e n i n T a b l e 2 a n d shows t h a t ca.
300 m i l l i o n t o n s i s a v a i l a b l e a t p r e s e n t .
TABLE 2 L i g n o c e l l u l o s i c s p o t e n t i a l i n Europe [ i n m i l l i o n s o f t / y ] Source
Now
Future
Wood short r o t a t i o n forestry
1 85
conventional forestry s c r u b woodland Sweet s o r g h u m A g r i c u l t u r a l wastes
1e.g.
straw1
M u n i c i p a l s o l i d wastes
I n the l o n g term perspective, changed d r a m a t i c a l l y , a v a i l a b l e wastes,
100
150
5
10
2
250
250
250
60
75
t h e amount o f LCW i n E u r o p e w i l l n o t b e
although t h e r e i s a wider range o f l o c a l l y
o n l y two c a t e g o r i e s a r e a v a i l a b l e i n l a r g e scale.
T h e r e i s c e r e a l s t r a w a n d a n i m a l manure.
A t present, about a h a l f
o f t h e s t r a w p r o d u c e d i n West E u r o p e i s b u r n t
i n the fields.
The
-
203
-
amount o f manure i s n o t p r o p e r l y r e c o r d e d a n d i s c o n s i d e r e d f o r r e c y c l i n g as f e r t i l i z e r
[ a f t e r p a s s i n g b i o m e t h a n i z a t i o n c y c l e i n some
cases]. The w h o l e p r o b l e m o f LCW h a s b e e n t h e s u b j e c t o f many r e v i e w studies covering regional,
n a t i o n a l o r g l o b a l c o n s i d e r a t i o n and t h e y
i l l u s t r a t e t h e e x t e n t o f i n t e r e s t w h i c h LCW h a s g e n e r a t e d .
On t h e
b a s i s o f the consideration o f the cspacity o f p l a n t s t o produce l i g n o c e l l u l o s e a s s o c i a t e d w i t h t h e a n t i c i p a t e d i m p a c t o f new b i o t e c h n o logies,
i t can be p r e d i c t e d t h a t t h e i n c r e a s e i n p l a n t p r o d u c t i v i t y
w i l l continue.
I f no c h a n g e s o c c u r i n w e s t E u r o p e t h e p r e d i c t e d s u r -
p l u s i n y e a r 2 0 0 0 w i l l be so l a r g e t h a t i t w i l l r e q u i r e t h e u t i l i z a t i o n o f technologies other than the conventional burning applied a t the present time. n o t be used,
I f t h e s u r p l u s o f p r o d u c t i o n a s w e l l a s LCW w i l l
t h i s may f o r m many e c o n o m i c a l a n d p o l i t i c a l p r o b l e m s .
T h i s w i l l a l s o form a major impetus for t h e f u r t h e r development o f conversion technologies. ached t h e i r maximum,
As c h e m i c a l c o n v e r s i o n t e c h n o l o g i e s r e -
the future l i e s i n bioconversion technologies.
CCoommbbuusst it oi onn oor r oot thheer r t h t heer rmmoocchheemmi ci caal l t teecchhnnool o l oggi e i ess aar ree ppr reeddoommi -i nnaannt tl y u s e d i n LCW c o n v e r s i o n p r e s e n t l y . S i n c e t h e l y u s e d i n LCW c o n v e r s i o n p r e s e n t l y . S i n c e t h eyy aar ree nnoot t new, new, i inn hhi isst toor ryy t thheeyy hhaavvee ppaasssseedd ppeer ri o i oddss oof f i innt teennssi ivvee r reesseeaar rcchh aanndd ddeevvee- l ol oppmmeennt .t . They They aar ree eer ri inngg ppr ri inncci ippl leess, , ssuucchh ppr roocceesssseess i iss
bbaasseedd on on t thhee aappppl li iccaat ti ioonn oof f cchheemmi ci caal l aanndd eennggi n i nee- aanndd t thhee ppoot teennt ti iaal l f foorr f fuur rt thheer r i m p r o v e m e n t s o i m p r o v e m e n t s of f
ccoonnssi d i deer reedd aass l o l oww. . PPr roommi si si n i ngg t teecchhnnool o l oggi e i ess oof f t thhee f fuut tuur ree wwoouul dl d bbee bbaasseedd on on bbi o i occoonnvveer rssi o i onn oor r t thhee aappppl li iccaat ti ioonn oof f ppr ri inn- cci ippl leess oof f bbi o t e c h n o l o g y . I n T a b l e 3 i o t e c h n o l o g y . I n T a b l e 3 l li isst tss t thhee mmaai n i n ppr roocceesssseess uut ti il li izzcc c o n v e n s i o n o t h e r t h a n t h e d i r e c t c o n s u m p t i o i inn LCW LCW c o n v e n s i o n o t h e r t h a n t h e d i r e c t c o n s u m p t i onn as as aanni m i maal l f e f eeedd
oor r f of ooodd. .
oe c rhm eo mci hc e am l itceacl h pn rool coegsi e ssa r e predomit icoen s so er s o t h e r t h e r m Th se B i o l o gC i coaml b u p sr o n a n t l y u s e d i n LCW c o n v e r s i o n p r e s e n t l y . S i n c e t h e y a r e n o t new, ) n s i v e r e s e a r c h and deveI n de i ns hi ti u sto r yc a yt h e( Ny ) h a v e p a s s e d p C eo r imo bduss toi of n i n( Ct e T ha e rpmp ol icchae tmi o i cna l o cf o cn hv ee m r si icoanl a (D) C loom ( C ) a r e b a s e d on t h e pp moesnt ti n . g They nd engineC a t a l y t i c l i q u e f a c t i o n ( R ) Le a rni d i tsi o, n a n (0 n fgi l pl r di necpiopsl e d , t hC)e p o t e n t i a l f o r f u r t h e r i m p r o v e m e n t s o f h .y dPr o i si n g(0) ( Cs, i D Fs e ur m c he nptraotci oe n sse s) considered A a sc i dl o w r ol ymsi s technologies o f the A fnuateur roeb i c d i g e s t i o n ( C ) P u l p i n g (C) w o u l d b e b a s e d on b i o c o n v e r s i o n o r t h e a p p l i c a t i o n o f p r i n t i ot hn e ( Cm) a i n p r o c e s s e s u t i l i z c Scaicpcl h e as r iof if c be itoi ot enc h( Rn ,o l oD g) y . I n TDa e b ll ei g 3n i lf ii cs st s i n LCW c o n v e n s i o n o t h e r t h a n t h e d i r e c t c o n s u m p t i o n as a n i m a l f e e d
o r food.
-
204
-
The f e a s i b i l i t y o f t h e b i o c o n v e r s i o n o f LCW h a s b e e n s t u d i e d intensively
i n recent years.
I n general,
lignocellulose materials
a r e n o t i n a s u i t a b l e s t a t e f o r immediate b i o c o n v e r s i o n .
The c r y s -
t a l l i n i t y o f the c e l l u l o s e serves t o r e t a r d the r a t e o f production o f monomeric sugars.
Also,
t h e a c c e s s i b i l i t y o f enzyme s y s t e m s t o
p o l y s a c c h a r i d e s i s r e s t r i c t e d by t h e p r e s e n c e o f l i g n i n .
Pretreatment
( p h y s i c a l o r c h e m i c a l ) o f LCW i s t h e r e f o r e n e c e s s a r y t o e v e r c o m e these problems.
A t t h e p r e s e n t t i m e we h a v e a r e l a t i v e l y g o o d f u n d a -
m e n t a l k n o w l e d g e on enzymes d e g r a d i n g l i g n o c e l l u l o s e o r i t s compon e n t s e.g.
cellulase,
xylanases,
l i g n i n a s e s a n d some p i l o t p l a n t s
or s m a l l s c a l e p r o d u c t i o n o f c e l l u l a s e s , m a i n l y o p e r a t i n g f r o m T r i choderma f u n g i .
P o t e n t i a l p o s s i b i l i t i e s f o r the f u t u r e promise the
g e n e t i c a l l y manipulated microorganisms which could increase the p r o d u c t i o n a n d a c t i v i t y o f l i g n o c e l l u l o s e d e g r a d i n g enzymes.
Enzyme
systems d e g r a d i n g c e l l u l o s e e x h i b i t an u n u s u a l c o m p l e x i c i t y
i n the
t e r m o f t h e number o f p r o d u c e d enzymes a n d t h e i r m e c h a n i s m o f a c t i o n . From f u n g i ,
T r i c h o d e r m a h a s b e e n i s o l a t e d a n d c h a r a c t e r i z i d e d t o mo-
r e t h a n 1 8 d i f f e r e n t t y p e s d e g r a d i n g c e l l u l o s e a n d x y l s n . The u n d e r s t a n d i n g o f t h e n a t u r e o f v a r i o u s a c t i v i t i e s o f enzymes on d i f f e r e n t components o f l i g n o c e l l u l o s e i s v e r y i m p o r t a n t f o r p r a c t i c a l reasons. As t h e r e a r e l a r g e p o s s i b i l i t i e s o f i m p l e m e n t i n g x y l a n a s e s i n p u l p production,
there i s s growing i n t e r e s t i n the production o f xyla-
n o l y t i c enzyme s y s t e m s r a t h e r t h a n t h e s e a r c h f o r c e l l u l o l y t i c s y s tems w h i c h a r e a s s o c i a t e d w i t h e t h a n o l p r o d u c t i o n on a l a r g e s c a l e . The q u e s t i o n o f enzyme s p e c i f i c i t y h a s n o t y e t b e e n s o l v e d . I n t h e f i e l d o f c e l l u l a s e s t h e gene f o r enzyme p r o d u c t i o n was a n a l y z e d a n d an a t t e m p t h e r o r g a n i s m s 1e.g.
e x i s t s t o introduce proper vectors i n t o o t -
yeast] f o r the production o f cellulases.
C e l l u l a s e s a r e p r o d u c e d n o t o n l y b y f u n g i b u t a l s o b y many m i c r o o r g a n i s m s s u c h as b a c t e r i a , animals.
Therefore,
a c t i m o m y c e t e s and b y some i n v e r t e b r a t e
the search i s s t i l l continuing f o r the optimal
m i c r o o r g a n i s m p r o d u c i n g c e l l u l o l y t i c enzymes. i s the u t i l i z a t i o n o f thermophilic cellum,
C.
Considered as important
b a c t e r i a e.g.
C l o s t r i d i u m thermo-
thermosaccharolyticum,as h a v i n g advantageous h i g h r e a c t i o n
r a t e s and a wide range o f m e t a b o l i z i n g s u b s t r a t e a . E n z y m a t i c h y d r o l y s i s o f LCW h a s v e r y h i g h y i e l d s ,
because en-
zymes o n l y c a t a l y z e h y d r o l y s i s r e a c t i o n s a n d n o t s u g a r d e g r a d a t i o n r e a c t i o n s as i n t h e case o f chemical h y d r o l y s i s .
But s t i l l a consi-
d e r a b l e i m p r o v e m e n t i s n e c e s s a r y b e f o r e t h e p r o c e s s w i l l be e c o n o m i c a l l y competitive.
The m o a t i m p o r t a n t r e a e a r c h p r o b l e m s a r e :
-
205
-
a) performance o f pretrentment b ) p r o d u c i n g more e f f e c t i v e a n d l e s s e x p e n s i v e enzymes c) developing a hydrolysis process with greater y i e l d s ,
pro-
d u c t s c o n c e n t r a t i o n and r a t e s .
With t h e c u r r e n t s t a t e o f t h e a r t ,
t h e most c o s t l y p a r t o f t h e p r o -
ceas i s t h e enzyme p r o d u c t i o n w h i c h t a k e s ca.
1 4 days i n a fedup t o
I n the hydrolysis section,
o f enzyme c a n b e o b t a i n e d .
t h e most i m p o r t a n t p a r a m e t e r s as y i e l d , etc.
-
A t these conditons,
b a t c h aystern a t 1 5 0 g o f b i o m a s s / l i t e r . 100 I U / L . h r
10
concentrations,
duration
a r e s t r i c t l y i n t e r r e l a t e d a n d depend o n t h e p r e t r e a t m e n t a n d Y i e l d s a r e h i g h e r i n d i l u t e d systems ( l o w
t h e t y p e o f enzyme u s e d .
i n h i b i t i o n ) a n d l o n g e r r e a c t i o n t i m e s make h i g h e r y i e l d . i s s e l e c t e d as t h e f i n a l p r o d u c t ,
b i o c o n v e r s i o n (SSF p r o c e s s ) c a n b e u s e d . s i b l e products from glucose,
I f ethanol
s i m u l t a n e o u s s a c c h a r i f i c a t i o n and The g e n e r a l scheme o f p o s -
r e s u l t i n g from enzymatic h y d r o l y s i s i s
given i n Fig.
1. The f o u r m a i n g r o u p s o f p r o d u c t s a r e c o n s i d e r e d
(biopolymers,
alcohols,
c a r b o x y l i c a c i d s and b i o c h e m i c a l s ) .
Ethanol Isopropanol Butanol 2,3 b u t a n d i o l Glycerol Carboxylic acids Alcohols Acetic acid Propanoic a c i d Butanoic acid Lactic acid Gluconic a c i d Fumaric a c i d Itaconic acid Malic acid C i t r i c acid
Biopolymers Enzymes Polysaccharides
P HB Biochemicals
! Aminoacids Antibiotics Hormones e t c
Fig.
1. F e r m e n t a t i o n p r o d u c t s o f g l u c o s e As t h e r e a r e p r o b l e m s w i t h t h e n o n h o m o g e n e i t y o f t h e s u b s t r a t e
and l o w y i e l d s o f g l u c o s e ,
t h e i n t e r e s t i n b i o c o n v e r s i o n moved more
t o hemmicellulose p a r t o f l i g n o c e l l u l o s i c s .
Hemmicelluloses are rea-
d i l y s o l u b l e i n a l k a l i a n d a p p r e c i a b l e q u a n t i t i e s o f them a r e c u r r e n t l y n o t u t i l i z e d aa w o u l d b e d e s i r e d . p i n g and p u l p p r o c e s s i n g ,
R e l e a s e d f r o m wood d u r i n g p u l -
xylans are dissolved i n apentliquor.
Some
-
206
-
wood p r e h y d r o l y s a t e s c o n t a i n s s i g n i f i c a n t q u a n t i t i e s o f x y l o o l i q o s a ccharides. z e d Form.
There are a l s o wastes which c o n t a i n x v l a n s i n non-hydroly-
A t steam e x p l o s i o n p r o c e s s water s o l u b l e f r a c t i o n o f x y l a n
i s also released.
S t e a d y i n c r e a s e s o f non-wood p u l p i n g ,
especially
i n wood d e f i c i e n t c o u n t r i e s w i l l b e a c c o m p a n i e d b y an a d d i t i o n a l stream o f xylan,
t h e u s e o f w h i c h must a w a i t t h e d e v e l o p m e n t o f e c o -
n o m i c a l l y and t e c h n o l o g i c a l l y b e n e f i c i a l p r o c e s s .
Direct bioconver-
s i o n o f x y l a n b y m i c r o o r g a n i s m s seems t o b e t h e m o s t p r o m i s i n g approach t o the developing process.
The x y l a n b i o c o n v e r s i o n r o u t e
2.
i s s i m i l a r t o g l u c o s e and i s g i v e n i n F i g .
r
Ethanol Butanol Aceton
I
Acetic acid Lactic acid Butyric acid
X Y L O S E
Polysaccharides
I
Enzymes
sc P Fig.
2 . F e r m e n t a t i o n p r o d u c t s from D-xylose
Xylan can be h y d r o l y z e d t o x y l o s e
(enzymatically or chemically)
and s u b s e q u e n t l y x y l o s e can be c o n v e r t e d t o a s i n g l e c e l l p r o t e i n
or t o low molecular weight products (alcohols).
I n chemical hydro-
l y s i s p a r t o f xylan i s converted i n t o f u r f u r a l ,
w h i c h may i n h i b i t
further microbial fermentation. i n m i l d (enzymic)
F o r t h i s reason t h e r e i s i n t e r e s t
h y d r o l y s i s o f xylans.
The i n d u s t r i a l a p p l i c a t i o n
o f enzymes u t i l i z a t i o n f o r x y l a n c o n v e r s i o n i s h i n d e r e d b y t h e complex structure of
t h e s u b s t r a t e and r e q u i r e m e n t
for specific
com-
p o s i t i o n o f u s e d enzymes.
A t p r e s e n t , m o s t o f LCW b i o c o n v e r s i o n o c c u r s a t a n a e r o b i c d i g e s t i o n o r b i o m e t h a n i z a t i o n l e a d i n g t o b i o g a s and i t s e n e r g y uses. The amount a n d q u a l i t y o f b i o g a s p r o d u c e d d e p e n d s o n t h e LCW u s e d
-
207
-
and e n g i n e e r i n g t e c h n o l o g y o f t h e w h o l e s y s t e m .
The b i o g a s s y s -
tem r e p r e s e n t s t e c h n o l o g i c a l l y a d v a n c e d s m a l l s c a l e LCW u t i l i z a t i o n , however, connected w i t h v a r i o u s e c o l o g i c a l problems. S i n c e b i o c o n v e r s i o n o f c e l l u l o s e and advanced,
hemicelluloses
are w e l l
t h e l i g n i n a l s o a v a i l a b l e i n LCW r e p r e s e n t s an
u n d e r u-
sed r e s o u r c e .
Because o f i t s u n i q u e p o l y p h e n o l i c s t r u c t u r e ,
g r a d a t i o n o f l i g n i n by m i c r o o r g a n i s m s i s v e r y d i f f i c u l t .
biode-
L i g n i n and
i t s degradation products are then major sources o f p o l l u t i o n i n the wood p u l p i n g i n d u s t r y .
I n nature,
the degradation o f l i g n i n i s the
r e s u l t o f t h e c o o p e r a t i v e a c t i o n o f f u n g i and b a c t e r i a ,
but the
a b i l i t y t o d e g r a d e o r m o d i f y l i g n i n i s l i m i t e d t o r e l a t i v e l y few microorganisms.
S t u d i e d t h e most,
f u n g i Phanerochaete
chrysosDorium
s e c r e t s a c o m p l e x o f enzymes who a r e c a t a l y z i n g l i g n i n d e g r a d a t i o n t o l o w m o l e c u l a r compounds.
A l s o i n t h i s area,
t h e usage o f g e n e t i c
m a n i p u l a t i o n i s e x p e c t e d t o e n h a n c e t h e p r o d u c t i o n o f enzymes as w e l l as i t s a c t i v i t i e s . FUTURE P R O S P E C T S FOR LCW B I O C b N V E R S I O N
I t i s v e r y d i f f i c u l t t o p r e d i c t the p r o b a b i l i t y o f success o r failure
o f some f u t u r e b i o c o n v e r s i o n p r o j e c t .
We m u s t r e a l i z e
t h a t f u t u r e m a r k e t s w i l l b e more u n c e r t a i n a n d c a p i t a l r e q u i r e m e n t s l a r g e r than i n the past.
These f a c t o r s c o n t r i b u t e t o m i s t a k e s t h a t
a r e made i n d e v e l o p i n g new t e c h n o l o g i e s .
Despite this,
there i s
common i n t e r e s t i n d e v e l o p i n g LCW ( o r b i o m a s s ) c o n v e r s i o n t e c h n o logies.
I n West E u r o p e u n d e r t h e name o f LEBEN ( L a r g e E u r o p e a n B i o -
mass E n e r g y N e t w o r k )
a s e r i e a o f p r o j e c t s was s t a r t e d s e r v i n g a s an
i n s t r u m e n t f o r r e g i o n a l r e d e v e l o p m e n t a n d f o r m i n g an o p p o r t u n i t y f o r l a r g e s c a l e e x p l o i t a t i o n o f renewable resources.
Such p r o j e c t s
o f f e r a t l e a s t a p a r t i a l s o l u t i o n t o t h e problems associated w i t h a g r i c u l t u r a l surpluses, g l o b a l issues: quality,
etc.
l a n d use,
greenhouse e f f e c t ,
r u r a l e m p l o y m e n t a s w e l l a s some q u a l i t y o f t h e environment,
water
The o b j e c t i v e s o f LEBEN i n c l u d e t h e d e m o n s t r a t i o n o f
i n t e g r a t e d biomass based systems f o r m a t e r i a l and energy p r o d u c t i o n , a n d t h e d e v e l o p m e n t and e x p a n s i o n o f a g r i c u l t u r e and f o r e s t r y
and
t h e improvement o f socioeconomic c o n d i t i o n s w h i l e p r o v i d i n g
b-
?I
s t a n t i a l environmental benefits. T h i s t y p e o f development w i l l r e q u i r e a t f i r s t , changes i n b i o c o n v e r s i o n p r o c e s s e s . aches t o t e c h n o l o g i c a l ,,push"
changes.
theory o f technological
I n theory
t h e r e a r e two appro-
The f i r s t a p p r o a c h , change,
technological
c a l l e d the
c o n s i d e r s i n v e n t i o n and
-
208
-
i n n o v a t i o n as s e l f g e n e r a t i n g a c t i v i t i e s . process responding t o technological s i d e r a t i o n o f the f u t u r e market. "pull"
theory
I t i s t h e s c i e n c e pushed
o p p o r t u n i t i e s w i t h o u t t h e con-
The s e c o n d a p p r o a c h c a l l e d t h e
o f t e c h n o l o g i c a l change i s based on i n v e n t i o n s and
i n n o v a t i o n d e t e r m i n e d b y t h e e x i s t i n g n e e d s o r b y e c o n o m i c a l demand
(or m a r k e t p l a c e ) .
I n t h e f i e l d o f b i o c o n v e r s i o n o f LCW,
b o t h appro
aches a r e a c c e p t a b l e because f u t u r e t e c h n o l o g i c a l change o c c u r s as a r e s u l t o f both forces.
However,
t y p e s o f c h a n g e s is d i f f e r e n t .
t h e p r e d i c t a b i l i t y o f t h e s e two
The s c i e n c e p u s h e d i n n o v a t i o n c a n
n o t be p l a n n e d f o r t h e o b v i o u s reasons. o n s a r e more e a s i l y f o r e c a s t e d ,
The demand p u l l e d i n n o v a t i -
b u t i t m u s t be r e a l i z e d t h a t some
new p r o c e s s c a n b e c o m m e r c i a l i z e d o n l y i f i t p r e s e n t s some a d v a n t a ges t o w a r d s t h e e x i s t i n g ones.
B i o c o n v e r s i o n o f l i g n o c e l l u l o s i c can
be d e f i n e d as a demand p u l l e d p r o b l e m , ventions o f biotechnology.
a p p l y i n g new s c i e n t i f i c
F o r the near future,
in-
i t i s expected t h a t
w i t h b e t t e r k n o w l e d g e o f s u b s t r a t e p r o p e r t i e s new a r e a s w i l l b e op e n e d f o r p r o d u c t d e v e l o p m e n t b a s e d on b i o c o n v e r s i o n o f l i g n o c e l l u l o s e and/or
i t s components.
REFERENCES
1
2
3
4 5 6 7
8 9
10
D.O. H a l l and J. Coombs, The A q r o - E n e r g y F i l i e r e : E x p e r i e n c e s a n d P e r s p e c t i v e s , I n : The A g r o - T e c h n o l o g i c a l S y s t e m s t o w a r d s 200 0 (G. A n t o n e l l i , A . Q u a d r i o - C u r z i o e d s . ) , E l s e v i e r , A m s t e r dam, 1 9 8 8 . J. Coombs, B i o t e c h n o l o g y a n d b i o m a s s e n e r g y , I n : Biomass-Regen e r a b l e Energy (D.O. H a l l a n d R . P . O v e r e n d , e d s . ) , W i l e y , New York 1987. M. A r e s t a a n d G. F o r t i , C a r b o n d i o x i d e aa a s o u r c e o f c a r b o n , D . R e i d e l P u b l . Co., 1 9 8 7 . F. P a r i s i , Advances i n l i g n o c e l l u l o s i c s h y d r o l y s i s and i n u t i l i z a t i o n o f hydrolyzates, I n : L i g n o c e l l u l o s i c M a t e r i a l s (A. F i e c h t e r e d . ) , A k a d e m i e V e r l a g , B e r l i n 1 9 8 9 , p . 53. L.R. L y n d l , P r o d u c t i o n o f e t h a n o l f r o m l i g n o c e l l u l o s i c s m a t e r i a l u s i n g t h e r m o p h i l i c b a c t e r i a , In: L i g n o c e l l u l o s i c M a t e r i a l s ( A . F i e c h t e r ed.), Akademie V e r l s g , B e r l i n 1 9 8 9 . A.G. L o b a n o k , B.G. B a b i t s k a y a a n d Zh.H. B o g d a n o v s k a y a , M i k r o b n i j s i n t e s n a osnove t s e l j u l o z y ( C e l l u l o s e based m i c r o b i s l s y n t h e s i s ) , Nauka i t e c h n i k a , M i n s k 1 9 8 8 . A.A. Klesov (eds.), T s e l j u l o l y t i t s c h i j e m i k r o o r g a n i z m y i ferment y ( C e l l u l o l y t i c m i c r o o r g a n i s m and enzymes), I t o g i n a u k i i t e c h n i k y , V o l . 10, V N I I T I Moscow, 1 9 8 8 . M.N. Monakhov, B i o k o n v e r s i y a t s e l j u l o s y : m i k r o b i o l o g i y a i b i o chemia ( C e l l u l o s e b i o c o n v e r s i o n : m i c r o b i o l o g y and b i o c h e m i s t r y ) , I t o g i n a u k i i t e c h n i k y , V a l . 11, V N I I T I M O S C O W 1 9 8 8 . A . B l a z e j and P . B i e l y , B i o c o n v e r s i o n o f p l a n t x y l a n s , I n : Wood and C e l l u l o s i c s ( J . F . Kennedy, G . O . P h i l l i p s , P.A. Williams, e d s . ) , E . Horwood L t d . , C h i c h e s t e r 1987. L.H. S e e n a t h , I n d u s t r i a l B i o t e c h n o l o g y I n t e r n a t i o n a l 1 9 8 8 / 8 9 , Longman, 1988.
DETOXIFICATION OF PHENOL POLLUTED SOIL BY SOME N O C A R D I A
AND BASIDIOMYCETES E.
MALARCZYK,
R.
APALOVIC,
2.
M.
LEWICKA-KRbL,
3.
STASZCZAK and A.
KOCHMAQSKA-RDEST, LEONOWICZ
Department o f B i o c h e m i s t r y , M a r i a Curie-Sklodowska Sklodowska P l a c e 3 , 20-031 L u b l i n , P o l a n d
University,
SUMMARY I t has been s t a t e d t h a t i n t r o d u c i n g t h e m i c r o b i o l o g i c a l mater i a l i n t o t h e s o i l c o n t a m i n a t e d b y p h e n o l and heavy m e t a l s ( m a i n l y i r o n ) improves t h e chances o f d e c r e a s i n g t h e d i s a s t r o u s e f f e c t s o f a d e v a s t a t e d n a t u r a l e n v i r o n m e n t . N o c a r d i a sp. b e l o n g i n g t o A c t i n o m y c e t e s a n d B a e i d i o m y c e t e s f u n g i known a s l i g n i n a n d p h e n o l i c subs t a n c e s t r a n s f o r m e r a . When g r o w n i n t h e medium e n r i c h e d w i t h wood d u s t w h i c h comes f r o m f u r n i t u r e m a n u f a c t u r i n g , were added i n t o t h e c o n t a m i n a t e d s o i l s . As a r e s u l t o f t h e r e l a t i v e l y s h o r t i n c u b a t i o n p e r i o d , a c o n s i d e r a b l e d e c r e a s e o f t h e p h e n o l c o n t e n t and g r o w t h a c c e l e r a t i o n were o b s e r v e d .
INTRODUCTION The p r o b l e m o f r e c u l t i v a t i o n o f f o u n d r y i n d u s t r y d e s t r u c t e d s o i l and t h e u t i l i z a t i o n o f i n d u s t r i a l wastes, l i o n s o f tons every year,
w h i c h amounts t o m i l -
i s u r g e n t because o f c o n t i n u o u s devasta-
t i o n t o t h e human e n v i r o n m e n t [ r e f .
11. The m o s t a r d u o u s c o n t a m i n a n t s
a r e p h e n o l i c s u b s t a n c e s and t h e wastes t h e y i n c l u d e e.g. o f phenol-formaldehyde r e s i n ,
t u t e a source o f about 1 k q o f pure phenol o u t d i n g mass.
t h e remains
which a f t e r depolirnerization,
consti-
o f 1000 t o n s o f mol-
I t i s u s u a l l y s t o r e d i n dumps a n d f r o m t h e r e i t i s washed
directly i n t o the soil, minates t h e environment.
r i v e r s or w a t e r r e s e r v o i r s w h e r e i t c o n t a Therefore,
there i s a very urgent problem
w i t h t h e e f f i c i e n t d e t o x i f i c a t i o n o f s u c h w a s t e m o l d i n g dump mass and i f p o s s i b l e i t s r a t i o n a l u t i l i z a t i o n .
U s i n g i t as a c o n s t i t u e n t
i n t h e b i t u m e n maaa f o r r o a d s u r f a c e s o r t o p r e v e n t s o i l e r o s i o n (what happens from t i m e t o time,
ref.
2 and 3 ) d o e s n o n p a y .
I t re-
q u i r e s huge c o s t s a n d d o e s n o t s o l v e t h e p r o b l e m a t a l l . This r e p o r t deals w i t h t h e a d v i s a b i l i t y o f enrichment o f s o i l s contaminated w i t h p h e n o l i c substances,
w i t h m i c r o o r g a n i s m s decompo-
s i n g them,
-
210
s t a b i l i z e d on t h e w o o d - d u s t
as a n a t u r a l c a r r i e r .
Such
a procedure a c c e l e r a t e s t h e r e g e n e r a t i o n process o f t h e contaminat e d s o i l and makes i t e a s i e r i n i t through environmental
for
o t h e r m i c r o o r g a n i s m s t o s e t t l e down
enrichment
w i t h a v a i l a b l e carbon sour-
ces. METHODS Microbioloqical material preparation
10 s t r a i n s o f N o c a r d i a w e r e g r o w n [ r e f .
4 and 5 1 i n t h e H o r v a t h
4 1 w i t h s u c c i n i c a c i d as a c a r b o n s c u r c e .
and A l e x a n d e r
medium [ r e f .
T h e wood d u s t
f r o m t h e b e e c h t r e e i n 4 g p o r t i o n s was p l a c e d i n a
f l a t b o t t o m e d f l a s k o f 20 m l v o l u m e a n d w e t t e d w i t h 2 5 m l o f m i n e r a l
or
c u l t u r e medium-according t o H o r v a t h and A l e x a n d e r
f o r Nocardia,
a c c o r d i n g t o Czapek-Lindeberq
The m i x t u r e o f
[ref.
Nocardia autotrophica ( 4 s t r a i n s ) ,
61 f o r
fungi.
N o c a r d i a opaca ( 2 s t r a i n s ) ,
&-
c a r d i a q l o b e r u l a ( 3 s t r a i n s ) and s e p a r a t e m y c e l i a o f I n o n o t u s o b l i quus, P l e u r o t u s o s t r e a t u s and P o l y s t i c t u s v e r s i c o l o r ( c u l t i v a t e d according t o r e f .
6 ) was s p r e a d i n d i v i d u a l l y on t h e s t e r i l e medium.
M a c e r a t i o n o f t h e m i c r o b i o l o g i c a l m a t e r i a l w i t h wood d u s t was c a r r i w e t t i n g t h e medium as r e -
ed o u t a t room t e m p e r a t u r e f o r 3 m o n t h s ,
q u i r e d w i t h t h e s t e r i l e c a r b o n w h i c h was f r e e o f m i n e r a l c u l t u r e medium. P r e p a r a t i o n o f s o i l samples contaminated w i t h p h e n o l E x p e r i m e n t s w e r e c a r r i e d o u t on v a r i o u s s o i l s s a t u r a t e d e i t h e r w i t h p h e n o l o r w i t h p h e n o l m i x e d w i t h m o l d i n g mass o b t a i n e d f r o m the Lorry Factory i n Lublin.
S a w d u s t f r o m t h e c o n i f e r s was a l s o i n -
t r o d u c e d t o some p o r t i o n s o f b o t h t y p e s o f s o i l . cluded i n the detailed description.
The RESULTS a r e i n -
D e t e r m i n a t i o n s o f changes i n t h e
p h e n o l c o n c e n t r a t i o n w e r e made u s i n g t h e c o l o r i m e t r i c m e t h o d i n t h e r e a c t i o n w i t h DASA I r e f .
41.
To t h i s a i m ,
and p r e c i p i t a t e d from 5 m l o f w a t e r ,
1 g o f s o i l was a c i d i f i e d
c e n t r i f u g e d and t h e r e a c t i o n
w i t h D A S A was c a r r i e d o u t i n t h e f l u i d .
The a b s o r b a n c e was r e a d a t
4 8 0 nm. RESULTS Recultivation o f the s o i l c u l t i v a t e d w i t h phenol Eight
Portions o f 250 g o f the f e r t i l e ,
non-sterile
s o i l prepa-
r e d a c c o r d i n g t o t h e p r o c e d u r e p r e s e n t e d i n T a b l e 1, were p l a c e d on g l a s s f u n n e l s and w e t t e d w i t h 150 m l o f 0 . 5
X p h e n o l s o l u t i o n added
-
211
-
i n t o t h e s o i l . i n t h r e e p o r t i o n s o f 5 0 m l e v e r y t w o weeks. h r s from t h e l a s t phenol a d d i t i o n i n t o each sample, o a t Avena s a t i v a were sowed i n . t h r e e days.
24
The s e e d s b e g a n t o g e r m i n a t e a f t e r
After
The e x p e r i m e n t l a s t e d t w o weeks.
germination,
After
32 seeds o f t h e seven days from
t h e l e n g t h o f t h e r o o t s and g r e e n o v e r g r o u n d p o r t i o n s
w e r e measured.
After
1 4 d a y s t h e g r e e n mass o f l e a v e s was s e p a r a t e d
f r o m t h e r o o t mass and t h e i r w e i g h t was d e t e r m i n e d .
The p h e n o l c o n -
t e n t i n t h e s o i l was d e t e r m i n e d on t h e f i r s t a n d l a s t d a y s o f t h e experiment.
The r e s u l t s a r e g i v e n i n T a b l e 1 a n d F i g .
1.
TABLE 1 The p h e n o l l e v e l on t h e f i r s t a n d t h e l a s t day o f t h e Avena s a t i v a g r o w t h m e a s u r e d i n 8 t y p e s o f s o i l . P h e n o l c o n c e n t r a t i o n was d e t e r m i n e d a s A400nm i n O A S A r e a c t i o n ( d e t a i l s i n t h e t e x t ) .
;oil dos
Phenol c o n c e n t r a t i o n l t h day 1 0 t h day
Characteristic
1.
Soil (control)
2.
Soil
+
3.
Soil
4.
3.
5.
3.
+ +
0.02
0.05
0.75
1.70
+ p h e n o l + sawdust ( c o n t r o l )
0.55
0.86
Nocardia (10 s t r a i n s )
0.05
0.75
f u n g i ( 3 species)
0.04
0.60
0.05
0.20
phenol ( c o n t r o l )
6.
2. + fungi ( 3 species)
7.
2.
8.
3 . + Nocardia + Fungi
+ N o c a r d i a (10 s t r a i n s )
0.03
0.25
0.04
0.45
R e c u l t i v a t i o n o f s o i l c o n t a m i n a t e d w i t h m o l d i n q mass Soil,
l:l:l,
m o l d i n g mass a n d s a w d u s t were m i x e d a t t h e v o l u m e r a t i o
o b t a i n i n g t h e t o t a l volume o f t h r e e l i t e r s .
The f u n g i and
N o c a r d i a were added t o i n d i v i d u a l s a m p l e s i n g l a s s j a r s as shown i n T a b l e 1. The o b s e r v a t i o n s o f i n d i v i d u a l v a r i a n t s were c a r r i e d o u t f o r 22 m o n t h s w i t h p e r i o d i c a l d e t e r m i n a t i o n s o f t h e p h e n o l c o n t e n t
i n t h e s o i l samples.
E v e r y week t h e s a m p l e s w e r e s t i r r e d f o r b e t t e r
o x i d a t i o n a n d t h e w a t e r was
refilled.
After
a year,
b i o l o g i c a l use-
f u l n e s s o f t h e i n d i v i d u a l v a r i a n t s was e x a m i n e d b y s o w i n g s e e d s o f r e d f e s c u e g r a s s o f Leo s p e c i e s .
A f t e r t h r e e weeks,
d r y masses o f
o v e r g r o u n d and r o o t p a r t s o f a l l t h e v a r i a n t s were compared. p e r i m e n t a l d a t a i s shown i n T a b l e 2 and F i g .
2.
The e x -
-
212
A
I 3
6
7
8
NUMBER OF SOIL
B
3
5
7
8
NUMBER OF SOIL
F i g . 1. The d i f f e r e n c e b e t w e e n w e i g h t ( A ) a n d l e n g h t (8) o f l e a v e s and r o o t s o f Avena s a t i v a a f t e r t h e c u l t i v a t i o n o n 8 t y p e s o f s o i l (according t o Table1)ntaminated with ohenol: leaves, r o o t s I( d e t a i l s i n t h e t e x t ) . '
-
-
- 3 0, I
I-
I
P Y
2
n
1
1
2
3
4
5
6
7
L
8 NUMBER OF SOIL
F i g . 2. The d i f f e r e n c e b e t w e e n w e i g h t o f l e a v e s a n d r o o t s o f r e d fascue g r a s s (Leo s p e c i e s ) a f t e r t h e c u l t i v a t i o n on 8 t y p e s o f s o i l ( a c c o r d i n g t o T a b l e 2 ) e n r i c h e d i n m o l d i n g masses a f t e r a y e a r c u l t i v a t i o n w i t h f u n g i and N o c a r d i a ; 0 leaves, rn - r o o t s ( d e t a i l s i n t h e t e x t ) .
-
DISCUSSION The r e c u l t i v a t i o n o f c o n t a m i n a t e d s o i l b y p h e n o l was r e a c h e d b y i t s e n r i c h m e n t w i t h m i c r o o r g a n i s m a c a p a b l e o f p h e n o l a n d l i g n i n decomposition.
R e c u l t i v a t i o n o f s o i l c o n t a m i n a t e d w i t h dump masses
-
213
-
c a r r i e d o u t i n t h e same way showed t h e a p p l i c a b i l i t y o f t h i s p r o c e dure i n decreasing the degradation o f the n a t u r a l environment.
I t was s t a t e d t h a t t h e p r e s e n c e o f p h e n o l i n c r e a s e s t h e r o o t mass g r o w t h ,
i n h i b i t i n g t h e development o f a p l a n t s green p a r t s .
The
a d d i t i o n o f wood m a t e r i e l seems t o d i m i n i s h t h e s e p r o p o r t i o n s .
TABLE 2 The p h e n o l i c s u b s t a n c e s l e v e l m e a s u r e d i n 8 t y p e s o f s o i l e n r i c h e d i n m o l d i n g mass. The c o n c e n t r a t i o n was d e t e r m i n e d as A4OOnm i n O A S A r e a c t i o n ( d e t a i l s i n t h e t e x t ) a t t h e b e g i n n i n g and end o f a y e a r cultivation.
'Oil
Nos
P h e n o l i c s u b s t a n c e s (A4001
Characteristic
s t a r t 4 t h month 2 4 t h month ~~
1.
0.05
s o i l (control)
0.03
0.04
2.
S o i l - m o l d mass-sawdust
0.41
0.22
0.12
3.
S o i l - m o l d mass ( c o n t r o l )
0.40
0.35
0.30
4.
S o i l - m o l d mass-Nocardia
0.42
0.05
0
5.
S o i 1 - m o l d mass- f u n g i
0.31
0.05
0.21
6.
S o i l - m o l d mass-sawdust-fungi
0.38
0.03
0.35
7.
S o i l - m o l d mass-sawdust-Nocardis
0.40
S o i l - m o l d mass-sawdust-Nocardis-fungi
0.38
0 0
0.33
18.
Enrichment of
(control)
0
t h e c o n t r o l v a r i a n t s i n t h e fungus m a t e r i a l o r
i n Nocardis c e l l s a c c e l e r a t e s s i g n i f i c a n t l y t h e phenol substance d e c o m p o s i t i o n w h i c h i s o b s e r v e d i n more e x u b e r a n t p l a n t g r o w t h . I n b o t h t y p e s o f c o n t a m i n a t i o n t h e most adequate p r o p o r t i o n s between t h e p l a n t s o v e r g r o u n d and u n d e r g r o u n d p a r t s were o b t a i n e d i n t h e variants,
w i t h o u t t h e a d d i t i o n o f sawdust.
g r o w t h p r o v e s t o b e more p r o f i t a b l e ,
The e f f e c t o f f u n g i on p l a n t
w h i c h c s n be s e e n i n t h e b y -
products wich are substances o f a n t i b i o t i c types w i t h Nocardia c e l l s which can a f f e c t
the plants secondarily.
The m o s t u s e f u l v a r i a n t s
seem t o b e t h o s e w h i c h i n c l u d e b o t h f u n g u s m a t e r i a l a n d A c t i n o m y c e -
t e s whose
m u t u a l p r o p o r t i o n s c a n be c h a n g e d .
The p o s i t i v e e f f e c t
b o t h k i n d a o f microorganisms i s o u t o f q u e s t i o n and c r e a t e s t h e
Of PO-
s s i b i l i t y o f a d d i n g m o l d i n g mass i n t o weak s o i l s ( p o o r f e r t i l i t y , b u i l d side-spaces, a t u r f layer,
embankmenta e . t . c . ,
to
where a f t e r t h e f o r m a t i o n o f
t h e y can p r o t e c t t h e ground f r o m l o w e r i n g .
The b i o l o -
g i c a l r e g e n e r a t i o n o f h e a v y i n d u s t r y w a s t e s c r e a t e s a g r e a t e r chance
-
214
-
for c o n t a m i n a t i o n t o d e c r e a s e t h a n i f u s i n g t h e w a s t e s w i t h o u t b e i n g processed.
The s o u r c e o f f u n g u s m a t e r i a l a n d A c t i n o m y c e t e s
can be
i n t e n t i o n a l y c u l t i v a t e d o n w a s t e m a t e r i a l s f r o m t h e f o o d a n d wood industry [refs.
7,
8 a n d 91.
REFERENCES
1
2 3
4 5
6
7 8 9
A . L e o n o w i c z , M . W o j t a s - W a s i l e w s k a , J . R o g a l s k i a n d J. L u t e r e k B i o l o g i c a l decomposition o f l i g n o c e l l u l o s e , I n t e r b i o t e c h '87, P r o c . I n t e r n . Symp. o n B i o t e c h n o l o g y , B r a t i s l a v a , C z e c h o s l o v a k i a , June 25-26, 1987, p p . 416-451. Z . Kin, S t a t e and knowledge on l i g n i n s and t h e i r a p p l i c a t i o n , Chem. T e c h n o l . C ' 'il., 7 ( 1 9 8 5 ) 1 1 - 2 0 . K.-E. Eriksson, Swedish developments i n biotechnology r e l a t e d t o t h e p u l p and p a p e r i n d u s t r y , T a p p i , 68 ( 1 9 8 5 ) 46-55. E . Malarczyk, Transformation o f phenolic a c i d s by Nocardia, Acta M i c r o b i o l . P o l o n . , 38(1) ( 1 9 8 9 ) 4 5 - 5 3 . E . M a l a r c z y k , I. K o r s z e h - P i l e c k a , J. R o g a l s k i a n d A . L e o n o w i c z , G u a i a c o l and i s o v a n i l l i c a c i d a s m e t a b o l i t e s i n t h e t r a n s f o r m a t i o n o f methoxyphenolic a c i d by Nocardia a u t o t r o p h i c a , Phytochem i s t r y , 26(3) (1987) 1321-1324. A . L e o n o w i c z , R.U. E d g e h i l l a n d J-M. B o l l a g , The e f f e c t o f pH o n t h e t r a n s f o r m a t i o n o f s v r i n q i c and v a n i l l i c a c i d s by t h e l a c c a s e o f R h i z o c t o n i a p r a t i c o l a and Trametes v e r s i c o l o r , Arch. Microb i o l . . 137 (1984) 89-96. A . L e o n o w i c z , A . P a s z c z y h s k i a n d J. T r o j a n o w s k i , The way o f h i g h p r o t e i n biomass p r o d u c t i o n f r o m d i s t o l l e r y brew, P o l i s h P a t e n t No 9 3 0 5 4 , 1 9 7 4 . A . L e o n o w i c z a n d J . T r o j a n o w s k i , The way o f h i g h p r o t e i n b i o m a s s p r o d u c t i o n f r o m w h e y , P o l i s h P a t e n t No 9 5 2 2 5 , 1 9 7 5 . J . T r o j a n o w s k i , A . L e o n o w i c z a n d S . L a b e d z i h s k i , The way o f h i g h p r o t e i n biomass p r o d u c t i o n from l i g n o c e l l u l o s i c waste m a t e r i a l s , P o l i s h P a t e n t No 1 1 9 8 9 2 , 1 9 7 6 .
THE DETOXIFYING ROLE OF FERRO-PHENOLIC COMPLEXES PRODUCED B Y N D C A R D I A
E.
MALARCZYK,
A.
LEONOWICZ
J.
KOCHMANSKA-RDEST,
M.
WOJTAS-WASILEWSKA
Department o f B i o c h e m i s t r y , M a r i a Curie-Sklodowska Sklodowska P l a c e 3, 2 0 - 0 3 1 L u b l i n , P o l a n d
and
University,
'
SUMMARY The p o s s i b i l i t y o f r e c u l t i v a t i o n o f s o i l c o n t a m i n a t e d w i t h t h e e x c e s s o f p h e n o l s u b s t a n c e s o r i r o n b y some s p e c i e s o f N o c a r d i a was s t u d i e d . A complex o f t h e p r o p e r t i e s c l o s e t o n a t u r a l s i d e r o p h o r e was f o r m e d u n d e r t h e m o d e l c o n d i t i o n s i n t h e b a r r e n s o i l c o n t a m i n a ted w i t h t h e a d d i t i o n o f p-hydroxybenzoic a c i d i n t h e presence o f c e l l s . I t was s t a t e d t h a t t h e p r o c e s s p r o t e c t e d v e g e t a t i o n , a s c o u l d be seen i n t h e c a s e o f , t h e b e t t e r o a t g r o w t h i n t h e s o i l .
I N T f
and s e l f - p u r i f y i n g
However,
system i n
i n t h e case o f s i g n i f i c a n t
c o n t a m i n a t i o n by i n d u s t r i a l s u b s t a n c e s i t becomes s t e r i l e and r e quires recultivation
( r t t . 1).
One o f t h e f a c t o r s d i s t u r b i n g t h e s o i l s e c o l o g i c a l b a l a n c e i s contamination o f the environment by substrates o f phenol character o f excesses o f heavy m e t a l s i n t h e s o i l . czyk e t a l . ,
ref.
ferro-phenolic
21,
As s t a t e d e a r l i e r ( M a l a r -
some s p e c i e s o f N o c a r d i a c a n f o r m a s p e c i f i c
complex i n t h e c o n d i t i o n o f excess p - h y d r o x y b e n z o i c
and p r o t o c a t e c h u i c a c i d s i n a s l i g h t l y a l k a l i n e medium.
The p r e s e n -
ce o f t h e complex p r o t e c t s N o c a r d i a c e l l s a g a i n s t t h e d i r e c t e f f e c t o f n o n o and d i p h e n o l s a s w e l l a s i r o n e x c e s s . T h i s p a p e r c o n s i d e r s t h e p o s s i b i l i t y o f u s i n g N.
opaca complex
f o r m i n g p r o p e r t i e s t o i n c r e a s e t h e f e r t i l i t y o f s o i l s d e s t r o y e d by c o n l i n u o u s e n v i r o n m e n t a l c o n t a m i n a t i o n on t h e b a s i s o f m o d e l i n v e s tigations. MATERIALS AND METHODS The c o m p l e x f o r m i n g s t r a i n s o f N o c a r d i a o p a c a DSM 43202,PCM
2136
-
216
2).
were u s e d i n t h e i n v e s t i g a t i o n s ( r e f . t i n g i t a t 160 O C f o r 6 h r s . calcium carbonate. zoic acid,
The o b j e c t o f t h e s t u d i e s
i n the experiments,
was f e r t i l e s o i l w h i c h ,
was s t e r i l i z e d b y h e a -
The s o i l was a l k a l i z e d t o p h 7 . 4
using
The c o n t a m i n a t i n g a g e n t u s e d was p - h y d r o x y b e n -
w h i c h was a d d e d i n t o t h e s o i l i n t h e f o r m o f s o d i u m s a l t ,
i n t h e amount o f 0.3
%,w i t h t h e a d d i t i o n o f 0.06
X ferrous sulfa-
te. T h e r e were 3 v a r i a n t s i n t h e e x p e r i m e n t : soil,
non-sterile
non-sterile
acidic
a l k a l i z e d s o i l and s t e r i l e a l k a l i z e d s o i l .
c o n t r o l s a m p l e s were c o n t a m i n a t e d w i t h p - h y d r o x y b e n z o i c ferrous sulfate solution.
The
a c i d and
The b a s i c s a m p l e s i n c l u d e d t h e s u s p e n s i o n
o f N o c a r d i a c e l l s i n t h e amount c o r r e s p o n d i n g t o 3 0 mg o f d r y mass. S o i l p o r t i o n s were p l a c e d i n g l a s s c r y s t a l l i z e r s p r o t e c t e d a g a i n s t drying.
E v e r y day 3 g s o i l p r o b e s w e r e a c i d i e f i e d ,
w i t h 2 5 m l o f w s t e r and c e n t r i f u g e d . content
( b y means o f t h e t e s t w i t h M e r c k r e a g e n t ) ,
acid content
precipitated
Then i n t h e s u p e r n a t a n t i r o n p-hydroxybenzoic
( c o l o r e d r e a c t i o n w i t h DASA w i t h maximum a t 440nm)
and
p r e s e n c e o f t h e c o l o r e d p h e n o l - i r o n camplex (absorbance measurements a t 5 7 0 nm) were d e t e r m i n e d .
RESULTS The e f f e c t o f p - h y d r o x y b e n z o i c
a c i d o n t h e s o i l t h a t was me-
dium r i c h i n i r o n i o n s on t h e f o r m s t i o n o f t h e c o l o r e d p h e n o l - i r o n complex i n t h r e e k i n d s o f s o i l : r i l e was i n v e s t i g a t e d .
acid,
a l k a l i n e and a l k a l i n e b u t a t e -
The r e s u l t s a r e p r e s e n t e d i n F i g .
The r e s u l t s show t h a t t h e f e r r o - p h e n o l i c
1.
c o m p l e x was f o r m e d
only i n the s t e r i l e s o i l with the alkaline reaction.
The amount o f
c o m p l e x was h i g h e s t j u s t a f t e r t h e f i r s t day o f i n c u b a t i o n , c o r r e s p o n d e d t o s b o u t a 50 a c i d content.
which
l o w e r i n g o f primary p-hydroxybenzoic
D e c o m p o s i t i o n o f t h e c o m p l e x l a s t e d a b o u t one week.
The i r o n c o n t e n t i n t h e s t u d i e d v a r i a n t o f s o i l was e q u a l t o t h e complex c o n t e n t , form,
b u t t h e i r o n o c c u r r e d i n t h e medium i n t h e s o l u b l e
contrary t o the o t h e r v a r i a n t s o f the experiment.
s t e r i l e s o i l samples,
p-hydroxybenzoic
t h e same r a t e a s b e f o r e , soil.
I n t h e non-
a c i d decomposed a l m o s t a t
w i t h o u t s t a r t i n g i r o n i o n s adsorbed b y t h e
T h i s i n d i c a t e s a d i f f e r e n t mechanism o f p - h y d r o x y b e n z o i c
decomposition i n n o n - s t e r i l e After
t h e seven day i n c u b a t i o n ,
s o i l o f variant
acid
(but with Nocardia) s o i l s . when t h e c o m p l e x c o n t e n t i n t h e
I 1 1 was c l o s e t o z e r o ( T a b l e 11, t h e o a t s e e d was
sown b o t h i n t h e c o n t r o l a n d p r o p e r s o i l s o f t h i s v a r i a n t .
A t first
-
217
-
-
0
1
2
5;
B
A
3 4 5 TIME [DAYS]
1
2
C
U
3 4 5 TIME [DAYS]
1
2
3 4 5 TIME [DAYS1
F i g . 1. The c o m p s r i s o n o f t h e l e v e l o f i r o n ( 3 + ) , p - h y d r o x y b e n z o i c a c i d and f e r r o - p h e n o l complex i n t h r e e t y p e s o f s o i l . Acid s o i l ( 0 1; a l k a l i n e s o i l ( I 1; ~ l k a l i n es t e r i l e s o i l (A); A p-hydroxybenzoic a c i d l e v e l ; B - i r o n ( 3 + ) l e v e l ; C ferro-phenols complex l e v e l .
-
-
1 2
-
-
1 2 R A N T MATERIAL
F i g . 2 . The d i f f e r e n c e b e t w e e n w e i g h t e n d l e n g t h o f g r e e n p a r t s o f A v e n s s a t i v e p l a n t s a f t e r g r o w t h on a l k a l i n e s t e r i l e s o i l (A) a n d leae n r i c h e d i n Nocardia c u l t u r e s (8) ( d e t a i l s i n t h e t e x t ) ; 1 ves; 2 roots.
-
-
t h e p l a n t s f r o m t h e c o n t r o l were g r o w i n g f e s t e r e n d t h e g r e e n mass increase
WES
greater.
After t h r e e days t h e p l a n t s of both samples
were t h e same. A f t e r t e n d a y s t h e d i f f e r e n c e b e t w e e n t h e p l a n t s was s t a t i s t i c a l l y s i g n i f i c a n t , i n f a v o r o f t h e s o i l e n r i c h e d w i t h Nocerd i e c e l l s . The g r o w t h d i f f e r e n c e s a r e shown i n F i g . 2.
-
-
218
-
TABLE 1 The e f f e c t o f pH a n d s t e r i l e c o n d i t i o n s on t h e l e v e l o f i r o n ( ) + ) , p - h y d r o x y b e n z o i c a c i d and f e r r o - p h e n o l complex i n s o i l s e n r i c h e d i n Nocardia c u l t u r e s ( d e t a i l s i n the t e x t ) . Acid s o i l Ce(3+)
(+)
Alkaline s o i l
pOHB
cpx F e ( 3 + )
Alkaline s t e r i l e s o i l
pOHB
cpx Fe(3+)
pOH8+ c p x + +
I
C - t h e c o n t r o l s o i l , + N - t h e same s o i l w i t h N o c a r d i a c u l t u r e s p-OHB p-hydroxybenzoic acid, cpx - t h e f e r r o - p h e n o l complex
-
+
++
DISCUSSION The o b t a i n e d r e s u l t s a l l o w u t t o d r a w a f e w i m p o r t a n t c o n c l u sions:
1. S o i l i s a b l e t o r e s i s t c o n t a m i n a t i o n b y b o t h p h e n o l s u b s t a n ces and heavy m e t a l s because s t r o n g s o r p t i o n p r o p e r t i e s and a c t i v i t y o f m i c r o o r g a n i s m s make i t i m p o s s i b l e f o r s o i l t o f u l f i l l b a s i c detoxification functions 2.
i n t h e medium.
The mechanism o f t h e f e r r o - p h e n o l i c
complex f o r m a t i o n i n t h e
s o i l seems t o b e q u i t e a n a l o g o u s t o t h a t d e s c r i b e d p r e v i o u s l y ,
re-
f e r r i n g t o c h a n g e s i n t h e s y n t h e t i c N o c a r d i a o p a c a medium e n r i c h e d
with p-hydroxybenzoic a c i d (ref. 2 ) . des t h e p r e s e n c e o f N o c a r d i a opaca, and t h e p r e s e n c e o f p - h y d r o x y b e n z o i c
The n e c e s s a r y c o n d i t i o n ,
or p - a n i s i c a c i d i n excess,
needed f o r p r o t o c a t e c h u i c a c i d f o r m a t i o n . molecules o f p-hydroxybenzoic
besi-
i s a s l i g h t l y a l k a l i n e medium The c o m p l e x is made o f t w o
a c i d and two m o l e c u l e s o f p r o t o c a t e -
-
219
-
c h u i c a c i d w h i c h p r o b a b l y c o m b i n e t h r o u g h a common i r o n i o n .
Du-
r i n g t h e c o m p l e x d e c o m p o s i t i o n ( a l s o w i t h t h e p a r t i c i p a t i o n of>c a r d i a opaca c e l l s ) , takes place,
gradual dearomatization o f protocatechiuc acid
which i s tantamount t o t h e appearance o f e a s i l y a v a i -
l a b l e a l i p h a t i c compounds, H20
-
m e t a b o l i t e s o f K r e b s c y c l e a n d C02 a n d
t h e p r o d u c t s o f p h e n o l compounds c o m p l e t e c o m b u s t i o n .
3 . Formation o f a p e c u l i a r ferro-phenolic
complex i n t h e p r e -
sence o f N o c a r d i a i n s o i l causes r e p e a t e d t r a n s f o r m a t i o n o f i r o n ions i n t o a soluble state,
w h i c h p r o m o t e s t h e s e t t i n g o f new m i c r o -
organisms f r o m a i r and w a t e r .
Gradual d e g r a d a t i o n o f p-hydroxyben-
z o i c and p r o t o c a t e c h i u c a c i d s coming from t h e decomposing complex becomes a new,
a v a i l a b l e source o f carbon.
The p h e n o l s u b s t a n c e s
c a n b e u s e d a s monomers f o r d e v e l o p i n g humus m o l e c u l e s whose q u a l i t y determines s o i l f e r t i l i t y . 4.
The p h e n o l s u b s t a n c e s a r e o f t e n u s e d a s g r o w t h s t i m u l a t o r s
f o r many p l a n t s .
P-hydroxybenzoic a c i d i n the f i r s t stage o f oat.
g e r m i n a t i o n a n d g r o w t h seems t o f u l f i l l t h i s r o l e .
However,
t h e ex-
c e s s o f t h i s s u b s t a n c e i n t h e medium i s n o t p r o f i t a b l e f o r f u r t h e r p l a n t growth.
Therefore,
i n t h e main sample where p - h y d r o x y b e n z o i c
a c i d e x c e s s was r e d u c e d b y c o m p l e x f o r m a t i o n , t i o n c o n d i t i o n s were c r e a t e d ,
5.
more n a t u r a l v e g e t a -
and t h e p l a n t s grew b e t t e r .
The o b t a i n e d r e s u l t s show t h a t a r e a l p o s s i b i l i t y e x i s t s
o f a t l e a s t p a r t i a l r e c u l t i v a t i o n o f t h e s o i l d e s t r o y e d by t h e i n d u s t r i a l e m i s s i o n o f p h e n o l s u b s t a n c e s and excesses o f i n s o l u b l e iron.
Also,
t h e s o i l s b u r n t by a h i g h t e m p e r a t u r e s e t t i n g o f s u i t a b -
l e s t r a i n s o f Actinomycetes,
w i t h t h e i n t e n t i o n a l a d d i t i o n o f phe-
n o l s u b s t a n c e s and m e t a l l i c i o n s ,
can a c c e l e r a t e t h e p e r i o d o f t h e
soils natural reconstruction function significantly.
REFERENCES
1
A. Leonowicz and J.M. E o l l a g , Laccases i n s o i l and t h e f e a s i b i l i t y o f t h e i r e x t r a c t i o n , S o i l E i o l . E i o c h e m . , 1 9 ( 1 9 8 7 ) 237-
2
E . M a l a r c z y k , I. K o r s z e n - P i l e c k a a n d A . L e o n o w i c z . P r o d u c t i o n o f a f e r r o - p h e n o l i c complex by N o c a r d i a opaca and m e t a b o l i s m o f p h e n o l i c a c i d s i n b a c t e r i a l c u l t u r e s , P h y t o c h e m i s t r y , 28 (1989) 4 1 5 - 4 1 8.
242.
This Page Intentionally Left TBlank
MICROBIAL TREATMENT OF INDUSTRIAL WASTES L.I.
Vorobjevs,
and E. V.
L.V.
Modyanova,
P.B.
Terentijev,
F.M.
Chasaeva
Dovgilevich Moscow, USSR
Moscow S t a t e U n i v e r s i t y ,
B i o c h e m i c a l wastes t r e a t m e n t w i t h a c t i v a t e d s l u d g e as s m a j o r a g e n t i s e f f e c t i v e f o r t h e d e t o x i f i c a t i o n o f d e t o x i f i c a t i o n o f dom e s t i c wastes.
I n d u s t r i a l wastes d i f f e r from d o m e s t i c ones because
t h e y h a v e a n u n s t a b l e c o m p o s i t i o n e n d c o n t a i n many compounds i n c l u d i n g those t h a t are o x i d i z e d with d i f f i c u l t y .
I n those conditions
the o x i d i z i n g a c t i v i t y o f t h e microorganisms o f sludge i s repressed and t h e s c r e e n i n g o f a c t i v e d e s t r u c t o r 6 i s n e c e s s a r y . I n t h e S o v i e t Union, t h e m i c r o b i a l d e s t r u c t i o n o f hexamethyle-
nedismine, dioxine,
several surfsctanta,
aromatic dicarbonic acids,
n i t r o z o b e n z o l e have a t e c h n i c e l s o l u t i o n ( 1 - 5 ) .
dimethyl-
Recently,
s method o f wastes t r e a t m e n t o f a c e t a l d e h y d e and r u b l e r i n d u s t r i e s
was recommended. More t h a n 50 a c t i v e s t r a i n s o f m i c r o o r g a n i s m s w e r e i s o l a t e d from a c t i v a t e d s l u d g e and waste w a t e r s t h a t were c a p a b l e o f d e s t r o y i n g t h e t o x i c compounds o f t h e a e i n d u s t r i e s : n i c a l d e h y d e and t o l u o l ( 5 ) . mones e n d B a c i l l u s . 2-3
I n 5-6
croto-
The s t r a i n s b e l o n g t o t h e g e n u s Pseudo-
days t h e b a c t e r i a Bac.
pumillus u t i l i z e
After the hydratetion o f crotonic sl-
g/1 o f c r o t o n i c aldehyde.
dehyde,two
methylstyrola,
m o l e c u l e s o f a c e t a l d e h y d e a r e formed,
which are then oxi-
d i s e d t o a c e t i c a c i d and i n v o l v e d i n anabolism: CH3
-
CH
=
CH
-
-
CHO
CH3CH0
-
CH3COOH
A l m o s t a l l i s o l a t e d s t r a i n s o f pseudomonada u t i l i z e s u c h s u b s t a n c e s as t o l u o l , b i p h e n y l ,
n s p h t a l i n and a r e r e a i s t s n t t o h i g h
c o n c e n t r e t i o n o f Hg ( u p t o 200 m g / l ) .
Many o f t h e a e a t r a i n s c o n t a i n
p l s s m i d s o f b i o d e g r a d a t i o n t h a t d e t e r m i n e t h e i r g r o w t h on t h e aromst i c compounds.
Pseudomones s t r a i n s were c a p a b l e o f g r o w i n g a n d u t i -
l i z i n g or-methylstyrol quickly.
A f t e r 48 h r s .
u
-
methylatyrole i n
the i n i t i a l concentration 4 g / l
222 -
d i s s i p a t e d f r o m t h e g r o w t h medium.
The d e g r a d a t i o n p r o c e s s c a n l e a d t o t h e m i n e r a l i z a t i o n o f s u b s t r a t e s or t o t h e a c c u m u l a t i o h o f i n t e r m e d i a t e s w h i c h a r e m o r e t o x i c than,
t h e i n i t i a l compounds.
So t h e i n v e s t i g a t i o n o f c a t a b o l i c
p r o c e s s e s i s i m p o r t a n t i n t h e o r e t i c a l and p r a c t i c a l a s p e c t s . Eight products o f d - m e t h y l s t y r o l
d e g r a d a t i o n have been i d e n t i -
f i e d and t w o d i f f e r e n t ways o f d e g r a d a t i o n were p r o p o s e d ( F i g .
1).
I SH2
C- COOH
0' J
a!; CH\3,CH2
&TA
- CLEAVAGE
T
F i g . 1. P a t h w a y s f o r t h e d e g r a d a t i o n o f a - m e t h y l a t y r o l monas a e r u q i n o s a s t r a i n s .
b y Pseudo-
-
223
-
The m a i n way t h a t o x i d a t i o n b e g i n s i s f r o m t h e h y d r o x y l a t i o n of
t h e a r o m a t i c r i n g a n d t h e f o r m a t i o n o f compound I a n d 1 1 , f o l l o w -
i n g t h e m e t a s p l i t and f o r m a t i o n o f t h r e e a l i f a t i c a c i d s w i t h c a r b o n c h a i n s from C7
ato Cg
( t h e acids q u i c k l y involved i n the metabolism).
The m i n o r p a r h w a y l a y s t h r o u g h a - p h e n o l a c r y l i c phenylmethylglycol.
a c i d and
a,a -
A c e t o p h e n o n e was a l s o f o r m e d a n d t h e f o r m a t i o n
o f a w h o l e s p e c t r u m o f compounds i s t y p i c a l f o r m i c r o b i a l o x i d a t i o n o f xenobiotics.
B y u s i n g b a c t e r i a l s t r a i n s c a p a b l e o f d e s t r o y i n g a r o m a t i c com-
p o u n d s and c r o t o n i c a l d e h y d e and a c c u m u l a t e Hg,
a new t e c h n o l o g y
was d e v e l o p e d t h a t p r o v i d e s a p r e l i m i n a r y t r e a t m e n t o f w a s t e s ,
con-
t a i n i n g h i g h c o n c e n t r a t i o n s o f t o x i c compounds b y i m m o b i l i z e d m i c r o o r g a n i s m s b e f o r e t h r o w i n g t h e m i n t o t h e a e r o t a n k where s p o n t a n e o us m i c r o f l o r a m i n e r a l i z e less t o x i c
and more e a s i l y m e t a b o l i z e d com-
pounds. A t t h e U n i v e r s i t y o f K a s a n s t r a i n s were i s o l a t e d t h a t a r e a c -
t i v e d e s t r u c t o r s o f i s o m e r s o f p h t h a l i c a c i d u s e d as monomers i n the production o f polymeric materials.
Among o t h e r s ,
a flocculant
s t r a i n o f P h o d o c o c c u s was i s o l a t e d t h a t was c a p a b l e o f u t i l i z i n g a l l three isomers o f arylcarboxylates. t e s treatment o f terephtalic
T h i s t r a i n i s u s e d i n t h e was-
acid industry
2).
(Fig.
I n t h e U S S R a b i o t e c h n o l o g y o f w a s t e w a t e r t r e a t m e n t was d e v e l o p e d which c o n t a i n e d an a r o m a t i c x e n o b i o t i c 2 , 4 , 6 - t r i n i t r o t o l u o l ( u p t o 200 m g / l ) s u p p l i e s 94-100
(4).
and n i t r a t e s ( u p t o 650 m g / l ) .
This biotechnology
% water cleaning from t r i n i t r o t o l u o l s
and n i t r a t e s
The t r e a t m e n t i s r e a l i z e d b y u s i n g t w o i m m o b i l i z e d a s s o c i a t i o n s
o f bacteria.
One a s s o c i a t i o n f u n c t i o n s i n a c o n d i t i o n o f n i t r a t e and.
t h e o t h e r i n t h e c o n d i t i o n o f oxygen r e s p i r a t i o n .
By c h a n g i n g t h e
a n a e r o b i c a n d a e r o b i c c o n d i t i o n s o f b a c t e r i a c u l t i v a t i o n i t i s pos s i b l e t o transform t h e mutagenic xenobiotic no-4,6-dinitrotoluol
( t r i n i t r o t o l u o l , 2-ami-
and 4 - a m i n o - 2 , 6 - d i n i t r o t o l u o l )
i n t o nonmutage-
n i c 2 , 4 - d i a m i n o - 7 - n i t r o t o l u o l t h a t i s u s e d by b a c t e r i a a s a s o l e source o f nitrogen.
A t t h e Moscow U n i v e r s i t y some s t r a i n s o f m i c r o o r g a n i s m s were i s o l a t e d t h a t a r e capable o f d e g r a d i n g p y r i d i n e bases.
P y r i d i n e and
i t s d e r i v a t i v e s belong t o t h e t o x i c substances which a r e produced during fuel processing.
P y r i d i n e bases,
l i k e d e r i v a t i v e s o f benzol,
a r e examples o f h i g h c h e m i c a l i n e r t n e s s and t h e i r a c c u m u l a t i o n i n w a s t e s and s o i l s i n s i g n i f i c a n t q u a n t i t i e s as i n d u s t r i a l w a s t e s , p e s t i c i d e s and f e r t i l i z e r s r e p r e s e n t a s e r i o u s t h r e a t
f o r many l i v -
i n g things.
Thus,
224
-
the i n v e s t i g a t i o n o f microbial degradation o f the-
se x e n o b i o t i c s i s v e r y a c t u a l .
U n t i l recently only oxygen-containing ke n i c o t i n i c a c i d ,
p y r i d i n e d e r i v a t i v e s li-
p y r i d o x i n a n d o t h e r s were s t u d i e d ,
while the mic-
r o b i a l m e t a b o l i s m o f p y r i d i n e and i t s a l k y l - d e r i v a t i v e s well-known
was n o t
a n d c o r r e s p o n d i n g b i o t e c h n o l o g y was n o t d e v e l o p e d .
We h a v e shown t h a t t h e b a c t e r i a l s t r a i n s N o c a r d i a sp., monas s p . ,
Arthrobacter
Pseudo-
g l o b i f o r m i s and A r t h r o b a c t e r c r y s t a l o p o i e t e s
a r e c a p a b l e o f u t i l i z i n g p y r i d i n e a n d i t s mono a n d d i m e t h y l d e r i v a tives.
COOCH,
coo-
COOCH,
COOCH3
coo-
coo-
coo-
0- 0-0Y . r Gem- 0""OH
coo-
OH
coo-
a
@OH OH
coo-
coo.- p C m -
OH
0
coo-
6oH
-0OC - C H Z - C O - C H ~ - C H ~ -COO-
F i g . 2. Pathways f o r t h e d e g r a d a t i o n o f t e r e p h t a l a t e , i s o p h t a l a t e a n d d i m e t h y l p h t a l a t e b y P h o d o c o c c u s r u b r o p e r t i n c t u s M3.
-
-
225
I t i s curious t o n o t i c e t h a t Arthrobacter g l o b i f o r m i s growing i n a medium w i t h
a - p i c o l i n e p r o d u c e d much more r i b o f l a v i n e t h a n
when g r o w i n g i n a medium w i t h g l u c o e s e a s a s o l e s o u r c e o f c a r b o n . So i t was recommended t o p r o d u c e b i o m a s s c o n t a i n i n g l o t s o f v i t a m i n
B2
a-picoline.
by u s i n g t o x i c
T h i s w o r k was t h e b e g i n n i n g o f o u r
i n v e s t i g a t i o n s o f m i c r o b i a l d e g r a d a t i o n o f p y r i d i n e bases.
2- a n d 3 - m e t h y l p y r i d i n e s was d i s -
The m e t a b o l i s m o f p y r i d i n e , cussed e a r l y
(6,7). The i s o l a t i o n o f o x y g e n - c o n t a i n i n g s u b s t a n c e s
and t h e s i g n i f i c a n t u t i l i z a t i o n o f oxygen b y b a c t e r i a l s u s p e n s i o n s u s i n g p y r i d i n e s i n d i c a t e t h e p a r t i c i p a t i o n o f oxygen a t t h e f i r s t stages of p y r i d i n e s u t i l i z a t i o n , of
a l t h o u g h e a r l i e r a reduced-pathway
p y r i d i n e m e t a b o l i s m was s u g g e s t e d (7). We a l s o s t u d i e d t h e d e g r a d a t i o n o f 2 - m e t h y l - 5 - e t h y l - p y r i d i n e .
The c o n v e r s i o n o f 2 - m e t h y l - 5 - e t h y l p y r i d e has been demonstrated, the aromatic ring.
and f u r t h e r
t o h y d r o x y a l k y l compounds
oxidation l e a d t o cleavage o f
Thus t h e m e t a b o l i s m o f t h i s compound was a l s o
c o n n e c t e d w i t h o x i d a t i o n (8).
I t was d e m o n s t r a t e d t h a t s u b s t r a t e s p e c i f i c i t y o f s t r a i n s - d e s t r u c t o r s i s d e p e n d e n t on t h e i r p r e l i m i n a r y c o n t a c t w i t h c o r r e s ponding xenobiotics,
b u t we h a v e i s o l a t e d a s t r a i n A r t h r o b a c t e r
c r y s t a l l o p o i e t e s w i t h a wide s u b s t r a t e s p e c i f i t y . pable of
T h i s s t r a i n i s ca-
2- a n d 4 m e t h y l p y r i d i n e
u t i l i z i n g 2,6-dimethylpyridine,
t o g e t h e r as w e l l a s s e p a r a t e l y ,
and o f u s i n g them as a s o l e s o u r c e
of
(9,101.
carbon,
n i t r o g e n and energy
F u l l u t i l i z a t i o n o f t h e mix-
t u r e o f t h e above m e n t i o n e d s u b s t a n c e s i n c o n c e n t r a t i o n s o f 0,25 0,lO
% and 0,04
%,
?6 r e s p e c t i v e l y i s c o m p l e t e d i n 9 0 - 9 5 h o u r s i n t h e
w i d e t e m p e r a t u r e r a n g e t i n g f r o m 22-40
OC.
I t was e s t a b l i s h e d t h a t t h e f i r s t s t e p o f m e t a b o l i s m o f a l l s t u d i e d compounds i s a n o x i d a t i o n o f h e t e r o c y c l i c r i n g w i t h t h e f o r mation of-2-
and 3 - h y d r o x y
and t r i h y d r o x y p y r i d i n e s .
derivatives,
which f u r t h e r y i e l d s d i -
The c l e a r a g e o f t h e p y r i d i n e r i n g o f d i -
a n d t r i h y d r o x y p y r i d i n e s l e a d s t o a f o r m a t i o n o f l o w m o l e c u l a r compounds:
ammonia,
ketoacids,
mono-
and d i c a r b o n i c a c i d .
Thus,
we h a -
ve t h e n e x t p r o p o s e d p a t h w a y s o f 2 , 6 - d i m e t h y l p y r i d i n e
and 4-methyl-
p y r i d i n e degradation by Arthrobacter c r y s t s l l o p o i e t e s
(Fig.
Strains-destructor
A.
t e r s t h a t c o n t a i n e d benzopyrene (20-200 (40-90 m g / l ) ,
methanol (0,2-5,0
c y a n i d e (0,5-5,0 tions,
A.
3,4).
c r y s t a l l o p o i e t e s w a s t e s t e d i n w a s t e wa-
9/11,
% ) , pH 6,O-8,O; T o
-
mkg/l),
p y r i d i n e bases
ammonium s a l t 25-28
OC.
(10-100 m g / l ) ,
Under t h e s e c o n d i -
c r y s t a l l o p o i e t e s d e s t r u c t s p y r i d i n e bases a t s h i g h r a t e :
-
226
$COOH
-
+
NHZ-C, // 0 CH3
CH3 0 F i g . 3 . Pathway f o r t h e d e g r a d a t i o n o f 2 , 6 - d i m e t h y l p y r i d i n e Arthrobacter crystallopoietes.
6-
by
112 02
H
H
F C O O H COOH
F i g . 4 . Pathway for t h e d e g r a d a t i o n o f 4 - m e t h y l p y r i d i n e bacter crystallopoietes.
by A r t h r o -
- 227
-
i n 6 h o u r t h e i r c o n t e n t d e c r e a s e s f r o m 90 m g / l
t o 0,9 mg/l
and a f -
t e r 24 h o u r s a f u l l s u b s t r a t e m i n e r a l i s a t i o n i s a c h i e v e d . A consortium o f microorganisms capable o f e f f e c t i v e l y destroy-
i n g 2,4-dimethylpyridine 4 bacterial strains:
nes and
P.
putida.
a substrate.
was a l s o i s o l a t e d .
Pseudomonas d i m i n u t a ,
A consortium consists o f
P.
P.
syringa,
alcalige-
Each i n d i v i d u a l s t r a i n c o u l d n o t grow and u t i l i z e
The g r o w t h waa a l s o a b s e n t i n t h e a s s o c i a t i o n o f t w o
or t h r e e s t r a i n s .
Degradation o f 2,4-dimethylpyridine
only i n spontaneously i s o l a t e d strains-association. hed t h a t t h e P.
was r e a l i z e d
I t was e s t a b l i s -
d i m i n u t a was a d o m i n a n t s t r a i n o f t h e a s s o c i a t i o n .
F u l l u t i l i z a t i o n o f s u b s t r a t e ( 2 9/11
i s c o m p l e t e d i n 36 h o u r s .
The i n v e s t i g a t i o n o f t h e m e t a b o l i c p a t h w a y o f 2 , 4 - d i m e t h y l p y r i d i n e d e g r a d a t i o n showed t h a t t h e h y d r o x y l a t i o n o f t h e p y r i d i n e r i n g as w e l l as t h e o x i d a t i o n o f m e t h y l groups t a k e s p l a c e ,
so t h e
m e t a b o l i c pathway o f d i m e t h y l p y r i d i n e d e g r a d a t i o n by mixed c u l t u r e d i f f e r s f r o m a pathway c a r r i e d o u t by m o n o c u l t u r e o f A. poietes (Fig.
crystallo-
5).
:~cooul-
COOH
COOH H O O C A
COOH HOOC&OH
F i g . 5 . Pathway f o r t h e d e g r a d a t i o n o f 2 , 4 - d i m e t h y l p y r i d i n e xed c u l t u r e .
by m i -
-
228
-
The r e s u l t s o f o u r i n v e s t i g a t i o n s g i v e s b a s i s f o r t h e c o n s t r u c t i o n o f b i o t e c h n o l o g i c a l d e g r a d a t i o n o f p y r i d i n e bases i n i n d u s t r i a l wastes. REFERENCES
1 M. 2
3 4
5 6
7
8
9
10
R o t m i s t r o v , P. G v o s d j a k a n d 5. S t a v s k a j , M i c r o b i a l w a t e r c l e a i n i n g . Russ. K i e v : Naukova Dumka, 1 9 7 8 . 5. S t a v s k a j , B i o l o g i c a l d e s t r u c t i o n o f a n i o n i c s u r f a c t a n t s . Russ. K i e v : N a u k o v a Dumka, 1 9 8 3 . R. Naumova, M i c r o b i a l m e t a b o l i s m o f x e n o b i o t i c s . Russ. K a s a n j , 1986. R . Naumova e t e l . B i o o x i d a t i o n o f o z o p h t h a l a t e i n c o n n e c t i o n w i t h t h e t e c h n o l o g y o f sewage d i s p o s a l i n m i c r o b i a l m e t h o d s o f e n v i r o n m e n t a l c o n t r o l . Russ. P u s h i n o , 1 9 6 8 . R . A l i e v a , M i c r o b i a l a s p e c t s o f i n d u s t r i a l sewsge d i s p o s e 1 f r o m t o x i c compounds. Russ. / / 4 t h Symp. o f S o c i a l i s t c c o u n t r i e s o n b i o t e c h n o l o g y , 1986. P. 86. K o s t , P.B. T e r e n t i j e v , L.A. K o r o s t e l e v a , L . I . V o r o b j e v a , A.N. S h i b i l k i n a , The r o l e o f m i c r o o r g a n i s m s L.V. Modyanova a n d O.K. i n p r e s e r v a t i o n o f t h e e n v i r o n m e n t / / P r o c . INCHEBA, 1978. B r a t i s l a v a . P. 81. K o s t , L . I . V o r o b j e v s , P.8. T e r e n t i j e v , L.A. K o r o s t e l e v a , A.N. Kulikov, Microbiological degradation L.V. Modyanova a n d N.S. o f p y r i d i n e and 3 - m e t h y l p y r i d i n e // P r i k l . biochem., m i c r o b i o l . 1981. V . 1 7 , N 3 . P. 380. A.H. K o s t , P.B. T e r e n t i j e v , M . B . K u p l e t s k a y a , L.V. Modyanova, A.S. Oemina, M.P. C h o v r i t c h e v and E.V. Shushenschevs, M i c r o b i o l o g i c a l t r a n s f o r m a t i o n o f 2 - m e t h y l - 5 - e t h y l p y r i d i n e / / DAN S S S R . 1 9 7 4 . V . 214, N 4. P. 947-950. F.M. K h s s a e v a , L.A. K o r o s t e l e v a , L . I . V o r o b j e v s , L.V. Modyenova a n d P.B. T e r e n t i j e v , D e g r a d a t i o n o f p y r i d i n e , mono- a n d d i m e t h y l p y r i d i n e s by m i c r o o r g a n i s m s / / P r o c . 4 t h E u r o p . C o n g r e s s on B i o technol., 14-19 j u n e . V. 2 , P. 286. Amsterdam. L . I . V o r o b j e v a , F.M. K h a s a e v a , S.D. T a p t y k o v a a n d L.V. Modyanova, U n i q u e p r o p e r t i e s o f new i s o l a t e s o f a r t h r o b a c t e r / / P r o c . 3d Symponium o f E u r o p . Group. o f A c t i n o m i c e t o l o g i s t s , 2-4 s e p t e m b e r , 1 9 8 8 , B u d a p e s t . P. 6.
H I G H E R FUNGI A S A POTENTIAL FEED AND FOOD SOURCE FROM LIGNOCELLULOSIC WASTES
A.
LEONOWICZ, M.
.I.ROGALSKI a n d J.
WOJTAS-WASILEWSKA,
LUTEREK
B i o c h e m i s t r y Department, M a r i a Curie-Sklodowska U n i v e r s i t y , M. C u r i e - S k l o d o w a k a S q u a r e 3 , 2 0 - 0 3 1 L u b l i n ( P o l a n d )
INTRODUCTION I n t h e age o f
demand f o r
food,
fast
p o p u l a t i o n g r o w t h and c o n s e q u e n t l y a g r e a t e r
especially p r o t e i n containing products,
man a t t e m p t s
t o s o l v e t h e p r o b l e m o f f o o d s h o r t a g e s i n a number o f ways. f r o m t h e c o n v e n t i o n a l manners o f p r o t e i n p r o d u c t i o n , a r e b e i n g examined.
Among o t h e r s ,
t h e m i c r o b i o l o g i c a l m e t h o d s seem
t o be h o p e f u l f o r two b a s i c reasons:
f a s t biomass g r o w t h and t h e po-
s s i b i l i t y o f i n d u s t r i a l waste u t i l i z a t i o n (e.g. paper i n d u s t r i e s ) .
Apart
new a p p r o a c h e s
f r o m f o o d o r p u l p and
The i d e a o f f e e d o r f o o d b i o m a s s p r o d u c t i o n b y t h e
submerged c u l t u r e i n t h e a g i t a t e d a n d a e r a t e d b a f f l e t t a n k s r e s u l t s f r o m t h e e x p e r i m e n t s c a r r i e d o u t on p e n i c i l l i n a n d o t h e r a n t i b i o t i c fermentation processes.
I n t h i s csse,
l o w - c o s t m a t e r i a l s m i g h t b e u-
s e d as s u b s t r a t e s f o r f u n g a l m y c e l i u m p r o d u c t i o n , me,
a n d a t t h e same t i -
t h e r e d u c t i o n o f t h e b i o l o g i c a l oxygen r e q u i r e m e n t by waste by
p r o d u c t s t o an a c c e p t a b l e
l e v e l c o u l d be a c h i e v e d .
I t r e s u l t s from
t h e f a c t t h a t h i g h e r f u n g i a r e e q u i p p e d w i t h e f f i c i e n t e n z y m a t i c appar a t u s w h i c h c a n a t t a c k t h e s u b s t r a t e s n o t a c c e p t a b l e f o r y e a a t and bacteria.
Solid-stationary
o r submerged and a g i t a t e d c u l t u r e s have
b e e n c a r r i e d i n o r d e r t o o b t a i n e i t h e r b i o m a s s o r some n u t r i t i v e s u b stances such as v i t a m i n s ,
aminoacids or monosaccharides.
The i n t e r e s t i n h i g h e r
f u n g i a s a s o u r c e o f f o o d p r o t e i n comes
f r o m t h e f a c t t h a t t h e y h a v e b e e n u s e d f o r many t h o u s a n d s o f y e a r s . T h e i r t . a s t e a n d aroma a r e p l e a s a n t f o r man,
and u n l i k e y e a s t and bac-
t e r i a t h e y c o n t a i n f e w e r n u c l e i c a c i d s w h i c h s l l o w them t o b e c o n sumed w i t h o u t s i d e e f f e c t s .
A c c o r d i n g t o Torew,
(cited i n ref.
1)
t h e o v e r a l l c o n t e n t s o f n u c l e i c a c i d s i n b a c t e r i a amount t o 1 7 . 0 0 0
m g % a s c a l c u l a t e d i n i t s d r y maas; f u n g i o n l y 500 mg% ( e . g .
i n y e a s t o v e r 5.000
Aqaricua campestris).
However,
mgX a n d i n even t h i s
- 230 -
c o n s i d e r a b l y low amount o f n u c l e i c a c i d s s u b s t a n t i a l l y r e d u c e s t h e n u t i r t i o n value of fungal biomass.
T h e r e f o r e , modern b i o t e c h n o l o g y
aims a t t h e i r c o m p l e t e e l i m i n a t i o n ( r e f .
O u t o f a b o u t 2.000
2).
species of edible fungi, only three a r e cul-
t i v a t e d on a l a r g e , c o m m e r c i a l s c a l e u n d e r a r t i f i c i a l c o n d i t i o n s e.g.
Aqaricus campestris (Europe and North America), C o r t i n e l l u s
shii-take
(Japan) and Volvaria volvacea (China and South E a s t Asia)
( r e f . 3 ) . I n Poland and a l s o i n o t h e r c o u n t r i e s P l e u r o t u s o s t r e a t u s i s s u c c e s s f u l l y c u l t i v a t e d , however,
on a s m a l l e r scale compared t o
A q a r i c u s c a m p e s t r i s ( r e f . 4 ) . A v a s t m a j o r i t y of o t h e r e d i b l e f u n g i i a t i o n f o r t h e f r u c t i f i c a t i o n mechanism still
defies classical cul'
r e m a i n s l a r g e l y unknown.
I t is b e l i e v e d t h a t c e r t a i n endogenic sub-
s t a n c e s o f a hormone c h a r a c t e r p l a y a c r u c i a l r o l e i n t h e p r o c e s s . Their n a t u r e , however,
h a s n o t b e e n f u l l y d e t e r m i n e d so f a r .
An a l t e r n a t i v e seems t o b e o f f e r e d n o t b y t h e c u l t u r e o f f r u i t i n g b o d i e s b u t r a t h e r by c u l t i v a t i o n of v e g e t a t i v e m y c e l i u m .
I t exhi-
b i t s i d e n t i c a l biochemical p r o p e r t i e s and compostition t o f r u i t i n g The v e g e t a t i v e m y c e l i u m c o n t a i n s a f a i r l y g o o d a m o u n t o f p r o -
bodies.
t e i n (up t o 50%) p a r t i c u l a r l y r i c h i n l i s i n e and d i c a r b o x y l i c aminoacids.
The q u a l i t y a n d amount o f p r o t e i n a n d o t h e r i m p o r t a n t compo-
n e n t s c a n b e r e g u l a t e d by m e a n s o f v a r i o u s c u l t u r e c o n d i t i o n s .
The a -
mount o f v i t a m i n s ( e s p e c i a l l y o f g r o u p B) e q u a l s t h a t o f y e a s t .
The
mycelium i s a l w a y s m u l f i c e l l u l a r a n d l a r g e l y r a m i f i e d which a l l o w s for the aggregation.
T h i s form u s u a l l y f i l l s t h e whole volume of t h e
culture. K I N D S OF T H E F U N G A L C U L T U R E The e f f i c i e n c y a n d q u a l i t y o f b i o m a s s d e p e n d s o n t h e f u n g a l T h e r e a r e two known k i n d s o f s h a l l o w s t a t i o n a r y and submerged, mixed and a e r a t e d i n t h e l i q u i d p h a s e . T h e l a t t e r i s m o r e a d v a n t a g e o u s b e c a u s e o f t h e f o l 0-
s p e c i e s and methods o f c u l t u r e growth. cultures:
wing f a c t o r s :
-
f a s t v e g e t a t i o n ( a b o u t 3 times as f a s t a s i n t h e c a s e o f t h e shallow stationary),
- r e l a t i v e l y e a s y s e p a r a t i o n o f m y c e l i u m from t h e c u l t u r e m e d i u m
-
p o s s i b i l i t y t o grow a s a c o n t i n u o u s c u l t u r e o c c u p y i n g a r e l a t i v e l y small area,
- p o s s i b i l i t y o f t h e medium s t e r i l i z a t i o n i n t h e g r o w i n g f e r m e n t o r and keeping t h e c u l t u r e a s e p t i c ,
- p o s s i b i l i t y t o c o n t r o l c u l t i v a t i o n conditions during t h e fermentation process.
- 231
However,
-
t h i s k i n d o f c u l t u r e demands more w o r k a n d e n e r g y t h a n
the shallow stationary culture. P a t e n t l i t e r a t u r e p r o v i d e s numerous e x a m p l e s o f b i o m a s s p r o d u c t i o n using the vegetative mycelium c u l t u r e . s u b s t a n t i a l research i n t h i s aspect.
Poland a l s o c a r r i e s out
I t r e s u l t s i n many P o l i s h p a -
t e n t s d e s c r i b i n g t h e way o f m y c e l i u m c u l t i v a t i o n f o r b i o m a s s p r o d u c t i o n u s i n g v a r i o u s b y p r o d u c t s e.g. d i s t i l l e r y brew ( r e f s . sawdust ( r e f .
s u l f i t e waste l i q u o r s ( r e f .
9 1 , whey ( r e f s .
6 - 8 ) , molasses ( r e f .
13) and s t r a w ( r e f s .
14,15).
Also,
t h e a u t h o r s from
o t h e r c o u n t r i e s r e s t r i c t e d t h e i r own i n v e s t i o n s i n P o l a n d . p l e s may b e t h e p a t e n t o f
51,
10-121, The exam-
the English authors concerning the process
o f m y c o p r o t e i n p r o d u c t i o n from t h e F u s a r i u m qraminosum c u l t u r e ( r e f . 1 6 ) a n d t w o J a p a n e s e p a t e n t s d e s c r i b i n g c o n d i t i o n s o f t h e submerged cul.ture o f Basidiomycete fungi
(refs.
17,181.
SOME H I S T O R I C A L D A T A
R e s e a r c h on t h e p o s s i b i l i t i e s o f v e g e t a t i v e m y c e l i u m c u l t u r e was i n i t i a t e d on a w o r l d w i d e s c a l e more t h a n 4 0 y e a r s a g o ( r e f . The f i r s t campestris
i n c u b a t e d u n d e r t h e submerged,
agitated conditions i n a
s y n t h e t i c n u t r i e n t medium c o n t a i n i n g g l u c o s e , (ref.
19).
successful attempt pertained t o the c u l t u r e o f Aqaricus
u r e a , and m i n e r a l s a l t s
20). U n t i l 1959 t h e r e a p p e a r e d s e v e r a l d o z e n s i m i l a r p i l o t w o r k s ,
a l l d i s c u s s e d a t l e n g t h i n a m o n o g r a p h by R o b i n s o n a n d D a v i d s o n ( r e f . 21). far
The a u t h o r s e s t i m a t e d t h e v a l u e o f t h e r e s e a r c h c a r r i e d o u t a 0 rnd f o u n d i t e n c o u r a g i n g f o r t h e i n i t i a l c o m m e r c i a l p r o d u c t i o n
o f mvcelium as food.
( r e f s . 1,3,22) t e d so f a r
A n o t h e r more c o m p r e h e n s i v e m o n o g r a p h i c a n a l y s i s
i s a compendium o f m u l t i d i r e c t i o n a l r e s e a r c h c o m p l e -
and a s u r v e y o f t h e used f u n g a l s t r a i n s and t h e k i n d s o f
n u t r i e n t media ( s y n t h e t i c and waste)
as w e l l as t h e p h y s i c a l and
chew c a l p a r a m e t e r s o f t h e c u l t u r e s .
The f u n g a l s p e c i e s ,
referred t o
i n t h e monographs as o p t i m a l p r o d u c e r s o f biomass f o r n u t r i t i o n a r e the following:
*,
Aqaricus blazei,
Collybia velutipes,
Morchella rimosipes,
Aqaricus campestris,
Cantharellus cibarius,
Boletus inde-
Morchella hybrida,
T r i c h o l o m a nudum a n d X y l a r i s p o l y m o r p h a .
They
may grow o n t h e m e d i s c o n t a i n i n g s u c h c s r b o h y d r a t e s 8 s g l u c o s e , tose,
lactose,
spent molasses,
mal.
a n d t h e w a s t e m a t e r i a l s o r b y p r o d u c t s s u c h a s whey, s u l f i t e waste l i q u o r ,
wastes from t h e p r o d u c t i o n o f
soybean o i l and f r o m c o r n and pumpkin p r e s e r v a t i o n .
8
- 232
-
COMMERCIAL P R O D U C T I O N The c u l t u r e s on a m i c r o - ,
semi-
and f u l l t e c h n o l o g i c a l s c a l e s
a r e c a r r i e d i n t h e f e r m e n t o r s o f some t o s e v e r a l h u n d r e d a n d e v e n t h o u s a n d l i t r e s i n volume. fermentor o f 400 revs/min
Humfeld e t a l .
20) u s e d a 2 0 l i t r e
(ref.
a t the aeration r a t e o f 1-3 l i t r e s o f a i r
p e r l i t r e o f medium p e r m i n u t e .
A f t e r reaching the optimal y i e l d ,
t h e A q a r i c u s c a m p e s t r i s c u l t u r e was i n c u b a t e d 1 - 3 order t o obtain strong,
p l e a s a n t aroma.
Finally,
15 k g o f m y c e l i u m ( 1 3 . 6 % o f d r y mass)
incubation,
1 5 0 l i t r e s o f medium,
days l o n g e r i n a f t e r 93 hours o f were o b t a i n e d f r o m
I n o t h e r mic-
a n d t h e aroma was s a t i s f a c t o r y .
r o - a n d s e m i - t e c h n o l o g i c a l c a s e s T r i c h o l o m a nudum s t i r r e d a n d t h e a e r a t e d c u l t u r e c a r r i e d o u t by R e u s s e r e t a l . optimum a f t e r 9 5 h o u r s .
(ref.
231, reached i t s
The a e r a t i o n r a t e was o f 0 . 3 a i r p e r l i t r e
o f t h e c u l t u r e p e r m i n u t e a t a s t i r r i n g r a t e o f 400 r e v s / m i n . t h i s case, (ref.
p o r k l a r d was u s e d a s an a n t i f o a m a g e n t .
I n
RehaEek e t a l .
24) incubated Boletus e d u l i s i n a 10 l i t r e fermentor.
The me-
d i u m was i n o c u l a t e d w i t h 5 0 0 m l o f 7 day o l d h o m o g e n i z e d m y c l l i u m a n d a e r a t e d w i t h 0.7
l i t r e o f a i r p e r l i t r e o f t h e c u l t u r e per minu-
t e a t t h e a g i t a t i o n speed o f 430 r e v s / m i n .
Maximum y i e l d o f m y c e l i u m
was r e a c h e d a f t e r 1 2 0 h o u r s o f i n c u b a t i o n .
However,
a f t e r 72 hrs,
t h e c u l t u r e r e a c h e d t h e maximum y i e l d o f p r o t e i n ( 5 7 . 5 % ) .
An A m e r i -
2 5 ) was t h e b a s i s f o r t h e c o m m e r c i a l c u l t i v a t i o n o f
can p a t e n t ( r e f .
M o r c h e l l a e s c u l e n t a by S p e c i a l P r o d u c t s ,
Inc.,
C r e a m e r y Company ( S p r i n g f i e l d ,
USA)
c o n t a i n i n g glucose,
Missouri,
ammonium p h o s p h a t e ,
n a t e a n d w i t h s i l i c o n a s an a n t i - f o a m .
D i v i s i o n o f Producers
i n t h e l i q u i d medium
corn extract,
calcium carbo-
The m y c e l i u m f r o m t h e a g a r
s l a n t s was t r a n s f e r r e d s e q u e n t i a l y o r i n s e q u e n c e t o 500 m l c o n i c a l flasks,
10 l i t r e glass vessels,
l i t r e tanks.
500 l i t r e t a n k s and f i n a l l y t o 10.000
A f t e r 3-4 days o f c u l t i v a t i o n a t 21-24
r e a c h e d t h e f o r m o f b e a d s w i t h 2 cms i n d i a m e t e r . translocation, y i e l d of of
yield,
The
l i t r e t a n k r a n g e d on t h e a v e r a g e f r o m 1 . 2 t o 2 t o n s
which a f t e r c e n t r i f u g a t i o n (1.000
r e v s p e r m i n ) was
d r i e d i n a way t o i m p r o v e i t s f r a g r a n c e a n d f l a v o u r
4 3 . 5 OC).
t h e mycelium
t h e m a t e r i a l undergoes s t e r i l e homogenization.
a 10.000
wet biomass,
OC
I n the process o f
(optimal at
I t has been assessed t h a t c u l t u r e a e r a t i o n i n t e s i f i e s t h e
e s p e c i a l l y when t h e a i r i s a d m i t t e d i n t o t h e f e r m e n t a t i o n t a n k
while the culture i s being stirred.
The e f f i c i e n t g r o w t h o f M o r c h e l h
m y c e l i u m was a c h i e v e d b y t h e a e r a t i o n r a t e o f 0 . 1 mM 0 / l i t r e / m i n u t e .
2 I t i s worth n o t i n g t h a t t h e n u t r i t i o u s value o f t h e product surpasses t h a t o f t h e M o r c h e l l a f r u i t i n g b o d i e s ,
found i n t h e i r n a t u r a l
22).
environment ( r e f .
233
21)
A c c o r d i n g t o Robinson and Davidson ( r e f .
t h e M o r c h e l l a c u l t u r e may b e d e v e l o p e d f r o m t h e c o l o n y on a s l a n t . The medium i n a 2 5 0 m l f l a s k was i n o c u l a t e d w i t h t h e s t e r i l e homog e n a t e and i n c u b a t e d a t s h a k i n g ( 1 0 0 r e v s p e r m i n u t e ) .
Lower speeds
c a u s e d l a r g e a g g l o m e r a t i o n s and t h e i r c o l l e c t i n g i n t h e f l a s k n e c k o f t h e mycelium;
b u t h i g h e r speeds d i d n o t y i e l d g r a n u l e s .
3 days o f i n c u b a t i o n ,
t e t h e medium o f a 7 l i t r e b o t t l e .
Then t h e m a t e r i a l was f u r t h e r
u s e d t o i n o c u l a t e t h e medium o f a 20 l i t r e f e r m e n t o r .
400 and 75.000
l i t r e f e r m e n t o r s were i n o c u l a t e d .
b i g f e r m e n t o r s l a s t e d 3 d a y s a t 25 b e s t r e s u l t s and s u b s t a n t i a l l y r i n g incubation, consumption. se,
After
t h e c o n t e n t o f t h e f l a s k was u s e d t o i n o c u l a -
OV.
Consequently,
The i n c u b a t i o n i n
T h i s t e m p e r a t u r e gave t h e
reduced t h e danger o f i n f e c t i o n .
Du-
t h e pH o f t h e c u l t u r e l o w r e d t o g e t h e r w i t h s u g a r t h e pH b e g a n t o r i -
When t h e r e was n o more s u g a r l e f t ,
and t h a t p r o v e d t o b e t h e b e s t moment t o c o l l e c t t h e m y c e l i u m .
G l o b u l e s o f 0.5-2.5
cm i n d i a m e t e r w e r e r e c e i v e d .
l i t r e f e r m e n t o r c o n t a i n i n g 5.700 o f wet m y c e l i u m were o b t a i n e d .
From t h e 7 . 5 0 0
l i t r e s o f t h e medium,
1.5-2.0
o r d e r t o remove t h e s m e l l c o m i n g f r o m t h e f e r m e n t e d s u p p o r t . t a i n e d m y c e l i u m was d r i e d ,
tons
The p r o d u c t was r i n s e d w i t h w a t e r i n
powdered o r p r e s s e d ,
and f i n a l l y
The obsold.
A n o t h e r example o f c o m m e r c i a l p r o d u c t i o n o f m y c e l i u m i s t h e F u s a r i u m graminearum c u l t u r e c a r r i e d o u t i n England ( r e f s .
2,161.
The b i o m a s s
p r o d u c e d i n t h e c o n t i n u o u s c u l t u r e c o n t a i n e d 45% p r o t e i n o f a v e r y a d v i a b l e a m i n o a c i d c o m p o s i t i o n and a v e r y l o w l e v e l o f f a t a n d c h o lesterol.
An a p p r o p r i a t e m e t h o d ,
t e l y h e a t e d up t o 64' limination (refs. are inactivated
for
2,16).
i n w h i c h t h e m y c e l i a a r e immedia-
20 m i n . ,
a l l o w s f o r t h e n u c l e i c a c i d s e-
U n d e r t h e s e c o n d i t i o n s p r o t e o l y t i c enzymes
s o t h a t t h e r e i s n o b r e a k i n g down o f p r o t e i n w h i l e
t h e r m o s t a b l e n u c l e u s e s a r e s t i m u l a t e d t o be a c t i v e .
The d e g r a d a t i o n
p r o d u c t s o f n u c l e i c a c i d s c a n b e washed o f f t h e c e l l s .
i n t h e c o n t i n u o u s c u l t u r e a t 30
OC
The y e a r l y
The f u n g u s was g r o w n
p r o d u c t , i o n o f b i o m a s s a m o u n t e d up t o 1 0 0 t o n s .
i n t h e 1.300
l i t r e fermentation
t a n k s i n t h e medium c o n t a i n i n g g l u c o s e s y r u p a n d ammonia a s t h e s o u r c e o f c a r b o n and n i t r o g e n r e s p e c t i v e l y .
The i n c o m i n g m y c o p r o -
t e i n was t h e f i r s t p r o d u c t w h i c h c o u l d b e u s e d f o r human c o n s u m p t i o n .
POLISH CONTRIBUTION P i l o t a t t e m p t s t o c u l t i v a t e f u n g i on a s e m i t e c h n i c a l s c a l e have a l s o been s u c c e s s f u l i n o u r l a b o r a t o r y ( r e f s . t i o n t a n k s o f 700 and 1.250 l i t r e s were used.
26,27).
Fermenta-
Innonotus obliquous
-
234
-
m y c e l i u m was c u l t i v a t e d f o r 48 h o u r s i n t h e medium c o n t a i n i n g d i s t i l l e r y brew (3.71% d r y mass),
0.2% b e e t m o l a s s e s a n d 0.2% c a l c i u m
n i t r a t e a t t h e a e r a t i o n r a t e o f 10 l i t r e s p e r h o u r f o r one l i t r e o f the culture.
The s t i r r i n g r a t e was 1 0 0 r e v s p e r m i n u t e .
The y i e l d
was 250 k g o f w e t m y c e l i u m p e r 1 . 0 0 0 l i t r e o f t h e medium i . e . k g o f d r y mass i n c l u d i n g 6 . 2
kg o f pure protein.
t h e m y c e l i u m grew i n t h e f o r m o f b e a d s ,
13.4
During c u l t i v a t i o n ,
which i n t h e process o f
growth underwent spontaneous comminution,
so t h e r e was n o n e e d f o r
h o m o g e n i z a t i o n when t r a n s f e r r i n g t h e i n o c u l u m .
After
d r y i n g a t 65 O C ,
t h e c o m p o s i t i o n o f t h e a m i n o a c i d s was d e t e r m i n e d a n d n u t r i t i o n t e s t s on a n i m a l s were made.
The h y d r o l i z a t e i n c l u d e d a m i n o a c i d s i m p o r t a n t
f o r n u t r i t i o n such as m e t h i o n i n e ,
t i o n t e s t s made on m i c e ,
rats,
l y s i n e and p h e n y l a l a n i n e .
hamsters,
Nutri-
and c h i c k e n s i n our l a b o r a -
t o r y h a v e shown f u l l a p p l i c a b i l i t y o f b i o m a s s a s p r o t e i n s u p p l e m e n t i n g animal feed.
No s i d e e f f e c t s o n h e a l t h o r g r o w t h r a t e w e r e ob-
s e r v e d i n p i g s w h i c h r e a d i l y consumed t h e p r o d u c t ( r e f s .
26,271.
The r e s u l t s o f l a b o r a t o r y r e s e a r c h c a r r i e d o u t b y some o t h e r authors i n Poland are a l s o very encouraging.
I t was r e p o r t e d t h a t
t h e submerged c u l t u r e o f P l e u r o t u s o s t r e a t u s i n t h e l i q u i d m i n e r a l s a c c h a r o s e medium,
e n r i c h e d w i t h whey a n d s u l f i t e w a s t e l i q u o r ,
pro
d u c e d 1 4 g o f d r y mass o f m y c e l i u m p e r l i t r e o f t h e medium d u r i n g 3 days.
( r e f . 28).
I t was a l s o r e p o r t e d t h a t T r a m e t e s v e r s i c o l o r
T y r o m y c e s a l b e l l u s w e r e submerged
f o r 120 h o u r s ,
r a t e d c u l t u r e s on whey a m o u n t e d t o 21.7 p e r l i t r e o f t h e medium r e s p e c t i v e l y .
and
f r o m w h i c h t h e ae-
a n d 1 6 . 2 grams o f d r y mass
I t i s important t o note t h a t
an a p p r o p r i a t e d i l u t i o n o f whey p l a y e d a c r u c i a l r o l e f o r t h e mycelium y i e l d ( r e f .
29).
F A C T O R S INFLUENCING FUNGAL G R O W T H AND BIOMASS QUALITY Carbon s o u r c e The c a r b o n u t i l i z a t i o n b y h i g h e r f u n g i d e p e n d s n o t o n l y on i t s s o u r c e b u t on t h e o t h e r c o m p o n e n t s o f t h e medium a s w e l l .
The p r e -
s e n c e ~~fv i t a m i n s a n d t h e r e l a t i o n o f c a r b o n t o n i t r o g e n i n t h e med i u m seems t o b e o f s p e c i a l i m p o r t a n c e . A c c o r d i n g t o P e r l m a n ,
(ref.
3 0 ) g l u c o s e u t i l i z a t i o n b y P o l y p o r u s a n c e p s a n d c o n s e q u e n t l y mycel i u m g r o w t h i s much g r e a t e r ( a b o u t f o u r t i m e s ) thiamine.
i n the presence o f
The P e r l m a n ' s e x p e r i m e n t a l s o p r o v e d t h a t t h i s f u n g u s u t i -
l i z e s s t a r c h t w i c e a s much a s f r u c t o s e .
I t can be seen from Table 1 t h a t m a n n i t o l i s t h e b e s t c a r b o n s o u r c e f o r b o t h biomass and p r o t e i n p r o d u c t i o n b y A q a r i c u s c a m p e s t r i s .
-. 2 3 5 -
I t i s a l s o i n t e r e s t i n g t o n o t e t h a t l a c t o s e and saccharose p r o d u c e d
worse r e s u l t s . TABLE 1 The e f f e c t o f v a r i o u s c a r b o n s o u r c e s o n b i o m a s s arid p r o t e i n y i e l d i n t h e submerged c u l t u r e o f A g a r i r u s c a m p e s t r i s ( r e f . 31) C a r b o n source
P r o t e i n content
M y c e l i u m dry mass
c g’ll
M a n n i to1 Glucose
[%I 31 . O 28.2 27.1 28.0
3.8
4.4 3.2 2.6 2.4 1.9 1.4
D(+)-Xylose D(+)-Fructose Maltose Lactose Saccharone
27.5 27.0 24.0
r
T h o u g h t h e l a b o r a t o r y e x p e r i m e n t s p r o v i d e d some i n f o r m a t i o n o f how t o f i t t h e b e s t c o n d i t i o n s f o r
the cultivation of funqi,
can n o t be used on a wider s c a l e because o f t h e h i g h p r i c e .
they To a v o i d
the high cost o f low molecular carbon sources the conceptions are evaluated t o u t i l i z e natural i n d u s t r i a l byproducts l i k e l i g n o c e l l u -
l o s e s and w a s t e s o f o r g a n i c o r i g i n .
These e x p e r i m e n t s w i l l be des-
c r i b e d i n d e t a i l i n t h e r e m a i n i n g part, o f t h e paper. Nitroqen source U t i l i z a t i o n o f v a r i o u s s o u r c e s o f n i t r o g e n depends o n i n d i v i d u a l f e a t u r e s o f t h e fungus.
I t was e s t a b l i s h e d t h a t o n l y a f e w
s t r a i n s o f h i g h e r f u n g i can u t i l i z e i n o r g a n i c n i t r o g e n s o u r c e s (e.9. Lentinus lepidus,
Ptychoqaster r u b e s c e s ) .
n i c n i t r o g e n sources,
grow b e t t e r on aminoacids, (e.9.
Other f u n g i p r e f e r orga-
t h o u g h w i t l i some d i f f e r e n c e s : m o r e o f t h e m b u t some p r e f e r o r g a n i c ammonium s a l t s
Fomes a n n o s u s w h i c h g r o w s t h e b e s t i n t h e p r e s e n c e o f ammonium
tartrate).
Among i n o r g a n i c n i t r o g e n s o u r c e s ,
t o be t h e b e s t t o u t i l i z e , n i c one ( r e f .
ammonium p h o s p h a t e s e e m s
b u t t o a much l o w e r e x t e n t t h a n t h e o r g a -
31).
Some n a t u r a l p r o d u c t s ,
l i k e yeast extract,
mand f o r c a r b o n a n d n i t r o g e n s o u r c e s .
i n f l u e n c e f u n g a l de-
I t depends on t h e carbon and
n i t r o g e n r a t i o w h i c h p r o v e s t o b e t h e m o s t f a v o r a b l e a t 20-3O:l (ref.
32).
The y e a s t e x t r a c t p r o b a b l y s e r v e s a s a v i t a m i n s o u r c e .
The y i e l d o f A q a r i c u s c a m p e s t r i s b i o m a s s ,
grown on asparagine,
n y l a l a n i n e o r p r o l i n e as a source o f n i t r o g e n , t h i a m i n e o r y e a s t e x t r a c t was a b o u t 4 - 1 0
phe-
i n the presence o f
times greater
than t h a t
-
236
devoided o f v i t a m i n s a t a l l ( r e f .
-
33).
The m i x t u r e s o f v a r i o u s n i -
t r o g e n sources a r e sometimes e f f i c i e n t e . g . w e l l on ammonium s u l p h a t e ,
T r i c h o l o m a nudum g r o w s
ammonium c h l o r i d e ,
urea,
ammonium t a r -
The b e s t r e s u l t s f o r p r o t e i n p r o d u c t i o n a r e ob-
t r a t e and n i t r a t e s .
t a i n e d w i t h t h e m i x t u r e o f ammonium s u l p h a t e ,
t a r t r a t e and c h l o r i d e
( r e f . 2 3 ) . However, t h e b e s t s o u r c e o f n i t r o g e n a r e a m i n o a c i d s , e s pecially valine,
glutamine,
a c i d or arginine. sources ( r e f .
asparagine,
L i s i n e and
31).
-alanine
glutamic
acid,
aspartic
p r o v e t o b e weaker n i t r o g e n
As i n t h e c a s e o f c a r b o n ,
a t t e m p t s a r e made t o
use cheaper b u t e q u a l l y e f f e c t i v e n i t r o g e n s o u r c e s .
The whey p r o t e -
i n s a n d d i s t i l l e r y b r e w may s e r v e a s e x a m p l e s ( r e f s .
6-8,
10-12).
Some o t h e r b y p r o d u c t s o f t h e f o o d i n d u s t r y w e r e a l s o e f f e c t i v e l y used i n our l a b o r a t o r y
(refs.
5,13,15).
M i n e r a l components The m i n e r a l c o m p o n e n t s o f t h e medium l i k e p h o s p h o r u s ,
sulphur,
magnesium a n d p o t a s s i u m i n f l u e n c e n o t o n l y t h e y i e l d o f t h e f u n g a l biomass b u t a l s o i t s q u a l i t y e . g .
fragrance.
I t s h o u l d be n o t e d
t h a t optimum f o r biomass p r o d u c t i o n u s u a l l y does n o t c o i n c i d e w i t h t h a t f o r aroma.
F o r example A q a r i c u s c a m p e s t r i s c u l t u r e grows b e s t
i n t h e medium w i t h 50 m g / l ma,
however,
400 m g / l ) .
o f phosphorus
I n t h e case o f potassium,
3).
The o p t i m u m a r o (300-
t h e optimum c o n c e n t r a t i o n i n
t h e medium f o r b i o m a s s y i e l d was 50 m g / l . component,
(ref.
r e q u i r e s a much h i g h e r p h o s p h o r u s c o n c e n t r a t i o n
I n t h e absence o f t h i s
t h e m y c e l i u m y i e l d d e c r e a s e s by 1 0 % . The b e s t f r a g r a n c e
was o b t a i n e d a t t h e p o t a s s i u m c o n c e n t r a t i o n b e t w e e n 1 0 0 a n d 3 0 0 m g / l d e p e n d i n g on t h e c u l t i v a t i o n t i m e . t h e c o n c e n t r a t i o n o f 200 m g / l tion.
S u l p h u r g a v e t h e b e s t aroma a t
o f medium a f t e r e i g h t d a y s o f c u l t i v a -
Magnesium a t t h e c o n c e n t r a t i o n o f 2 0 m g / l
d e d t h e h i g h e s t amount o f m y c e l i u m ( r e f .
i n t h e medium y i e l -
3).
P l a n t o i l s and t h e i r c o n s t i t u e n t s The r e s p e c t i v e r e s e a r c h shows t h a t some n a t u r a l o i l s , flower,
cottonseed,
t h e c o n c e n t r a t i o n o f a b o u t 0.21 s u b s t a n t i a l l y nary c u l t u r e growth. f a t t y acids.
sun-
3).
improved the s t a t i o -
The s i m i l a r e f f e c t was o b t a i n e d w i t h e s t e r s o f
Free acids,
ged c u l t u r e ( r e f .
e.g.
s o y b e a n o r o l i v e a d d e d t o t h e f u n g a l medium a t
however,
i n h i b i t e d t h e g r o w t h o f t h e submer-
I t i a interesting that the positive effect o f
p l a n t o i l s waa o b s e r v e d a l s o d u r i n g l i g n i n a s e p r o d u c t i o n .
This en-
zyme was h i g h l y s t i m u l a t e d b y s u n f l o w e r a n d o l i v e o i l s ( r e f . 3 4 ) .
-
237
-
Temperature The h i g h e r f u n g i u s u a l l y r e q u i r e s a l o w e r t e m p e r a t u r e f o r v e g e t a t i o n t h a n t h e y e a s t and m o u l d ( r a n g i n g 25-28
9).I t
was e s t a b -
l i s h e d t h a t even s l i g h t t e m p e r a t u r e changes s u b s t a n t i a l l y i n f l u e n ced t h e mycelium g r o w t h ( r e f .
32).
A t e m p e r a t u r e h i g h e r t h a n 30 OC
u s u a l l y i n h i b i t s the fungal growth, 1 5 O C s l o w s i t down. of 0
OC
Below 1 5
OC
while a temperature lower than A temperature
f u n g i s t i l l grow.
u s u a l l y does n o t k i l l h i g h e r f u n g i ,
b u t t h e i r growth i n
t h i s case i s extremely poor. The o p t i m u m t e m p e r a t u r e f o r A q a r i c u s c a m p e s t r i s r a n g e s f r o m 25-30 OC ( r e f s .
32,331,
M o r c h e l l a h y b r i d a 20-25 (ref.
361,
f o r B o l e t u s e d u l i s 25 'C OC
(ref.
f o r Trametes v e r s i c o l o r ,
t u s o s t r e a t u s 27
OC
(ref.
31, for
3 5 ) f o r P h l e b i a r a d i a t a 28 O C P h o l i o t a m u t a b i l i s and P l e u r o -
( r e f . 37).
M The h i g h e r f u n g i u s u a l l y r e q u i r e l o w e r pH o f t h e c u l t u r e t h a n bacteria, o f 4.0
but n o t as l o w as moulds.
and 7.5.
For example,
I t u s u a l l y r a n g e s b e t w e e n a pH
pH o p t i m u m f o r A q a r i c u s c a m p e s t r i s
submerged c u l t u r e i s b e t w e e n pH 5 . 1 a n d 7 . 5
Morchella 4.5
-
5.5
h y b r i d a pH 4.0 (ref.
-
6.2
(ref.
351,
(refs.
31,32,38),
-
3 ) a n d f o r P o l y p o r u s a n c e p s pH 4.0
Wood r o t t i n g f u n g i l i k e T r a m e t e s v e r s i c o l o r , Pleurotus ostreatus,
for
f o r B o l e t u s e d u l i s pH 7.0
(ref.
30).
Pholiota mutabilis,
P h l e b i a r a d i a t a o f Phanerochaete chrysosporium
p r e f e r a s l i g h t l y l o w e r pH r a n g i n g f r o m 3.5
-
5.5
( r e f s . 34,36,39).
A e r a t i o n and s t i r r i n g H i g h e r f u n g i u s u a l l y r e q u i r e a l o w e r i n t e n s i t y o f a e r a t i o n and s t i r r i n g t h a n y e a s t and moulds. Sometimes t h e y even p r e f e r t h e s t a t i o n a r y s h a l l o w c u l t u r e t o t h e submerged and a g i t a t e d one g i v i n g , i n t h i s case,
b e t t e r aroma a n d p r o d u c i n g more enzymes ( r e f
40).
The r e s u l t s o b t a i n e d d u r i n g t h e f e r m e n t o r c u l t i v a t i o n o f
Mar-
h e l l a h y b r i d a show t h a t i t r e q u i r e s a r a t h e r l o w s p e e d o f s t i r r i n g (below 100 revs/min) O2
a n d v e r y weak a e r a t i o n ( 0 . 0 8
-
0.15
micromole
p e r l i t r e o f t h e medium p e r m i n u t e ) i n c o m p a r i s o n w i t h t h e o t h e r
investigated fungi.
F o r example, AQaricus c a m p e s t r i s grows t h e b e s t
i n a f e r m e n t o r when t h e s p e e d o f t h e c u l t u r e s t i r r i n g is 1 8 0 - 3 5 0
r e v s / m i n and a e r a t i o n a b o u t h u n d r e d p e r c e n t more i n t e n s i v e t h a n i n t h e case o f M o r c h e l l a ( r e f .
41).
I n some e x p e r i m e n t s ,
o f t h e fermentor c u l t u r e loweLed t h e mycelium y i e l d , t i o n was o n l y a p p l i e d ( r e f .
41).
the s t i r r i n g t h e r e f o r e aera-
- z3rj
-
MYCELIAL BIOMASS COMPOSIIION P r o t e i n and aminoacids The p r o t e i n c o n t e n t v a r i e s w i t h i n e x t r e m e l y w i d e l i m i t s u n d e r d i f f e r e n t c u l t u r a l c o n d i t i o n s f o r any organism.
I t r a n g e s from seve-
r a l t o s e v e r a l s c o r e s p e r c e n t o f m y c e l i u m d r y mas. No p r e c i s e d a t a on t h e p r o t e i n c o n t e n t a r e a v a i l a b l e d u e t o d i f f i c u l t i e s i n complet i n g t h e e x t r a c t i o n o f t h e p r o t e i n from t h e mycelium and t h e c o n t e n t o f chitin.
Thus a n a r b i t r a r y f i g u r e o f N x 6.25
is f a l l a c i o u s l y em-
ployed t o determine t h e p r o t e i n codntent i n mycelium.
T h e r e f o r e some
works s u g e s t t h a t t h e n i t r o g e n c y c o e f f i c i e n t s h o u l d range from 4.05 t o 4.45
or even lower.
For example, i n t h e case o f Aqaricus bisporus,
t h e s u g g e s t e d v a l u e is 3.0; choloma e q u e s t r a 2.84
a n d f o r A r m i l l a r A J l a m e l l e a 3.44
However, F i z p a t r i c e t a l . tein calculation, 8.48.
f o r C a n t h a r e l l u s u b e r i u s 2.8;
Tri-
for
(ref.
1).
( r e f . 4 2 ) p r o p o s e d i n some e x a m p l e s o f p r o -
t o r e p l a c e t h e commonly u s e d c o e f f i c i e n t 6 . 2 5 by
i.e.
I n s u c h c a l c u l a t i o n s t h e l e v e l o f d i g e s t i v e f a c t o r (NPU,
n i t r o g e n p r o t e i n u t i l i z a t i o n c e o f f i c i e n t f o r fungal mycelium) f o r p a r t i c u l a r f u n g a l p r o t e i n s s h o u l d be t a k e n i n t o c o n s i d e r a t i o n . T h i s v a l u e f o r B o l e t u s e d u l i s e q u a l s 6 4 . 9 2 and i s 100 p e r c e n t a s h i g h a s t h a t of Aqaricus campestris. Despite t h e f a c t t h a t the protein of B o l e t u s e d u l i s and Aqaricus c a m p e s t r i c a r e l e s s v a l u a b l e t h a n t h e other vegetable proteins, products, (ref.
i t was e s t a b l i s h e d t h a t when a d d e d t o c o r n
they s u b s t a n t i a l l y improve t h e b i o l o g i c a l value o f g l u t e n
4 3 ) . A c c o r d i n g t o o u r e x p e r i m e n t s i t was p o s s i b l e t o r e p l a c e
t h e c o n v e n t i o n a l p r o t e i n s o u r c e o f a n i m a l f e e d , by t h e f u n g a l mycelium (ref. 4 4 ) . The c h e m i c a l c o m p o s i t i o n o f t h e c u l t u r e medium h a s n o b e a r i n g on t h e p r o t e i n q u a l i t y , t h o u g h i t d o e s have a n e f f e c t on its cont e n t s i n t h e mycelium. 50.4% o f p r o t e i n ,
For example Aqaricus c a m p e s t r i s accumulates
when n i t r o g e n c o m e s f r o m c a s e i n h y d r o l i s a t e ,
and
o n l y 4 5 . 0 % w h e n ammonium n i t r a t e i s t h e s o u r c e o f n i t r o g e n ( r e f .
38).
Trametes v e r s i c o l o r a c c u m u l a t e s 2 9 - 3 6 . 9 % p r o t e i n i n t h e m y c e l i u m w i t h t h e same amino a c i d c o m p o s i t i o n r e g a r d l e s s o f t h e k i n d of medium. The p r o t e i n c o n t e n t i n t h e c u l t u r e s g r o w n o n m o l a s s e s wastes r a n g e d f r o m 30-58% ( r e f . contains
2 4 ) . The m y c e l i u m o f t h e
submerged c u l t u r e u s u a l l y
more p r o t e i n t h a n c a n b e f o u n d i n f r u i t i n g b o d i e s .
g e s t i b i l i t y i s a l s o much h i g h e r
(ref.
Its di-
1 ) . For example t h e f r u i t i n g
b o d i e s o f _ P l e u r o t u s o s t r e a t u s c o n t a i n 25% p r o t e i n , a n d i t s d i g e a t i b i l i t y i s 54X, w h e r e a s f o r mycelium t h e s e v a l u e s are 76.2% a n d 84.7% r e s p e c t i v e l y ( r e f . 1 ) . The p r o t e i n h y d r o l i z a t e s o f v e g e t a t i v e myce-
-
239
-
l i u m c o n t a i n a l m o s t a l l a m i n o a c i d s w h i c h can be found i n o t h e r p l a n t materials (refs.
45-48).
Indispensable aminoacids u s u a l l y occur i n
a n a c c e p t a b l e amount ( r e f .
49).
The a m i n o a c i d c o m p o s i t i o n i s compa-
r a b l e t o t h a t o f e g g s o r y e a s t and s o m e t i m e s ,
particularly in rela
t i o n t o l y s i n e and t r y p t o p h a n e i t i s e v e n b e t t e r ( T r i c h o l o m a nudum and Jrametes
versicolor)
(refs.
40,46,50).
The c o n t e n t s o f a m i n o a -
c i d s undergo changes d u r i n g f u n g a l c u l t u r e g r o w t h .
F o r example t h e
m e t h i o n i n e was n o t d i s c o v e r e d a t a n e a r l y s t a g e o f B o l e t u s e d u l u s c u l t i v a t i o n t h o u g h i t a p p e a r e d l a t e r on ( r e f .
24). A f t e r 24 h r s o f
i n c u b a t i o n a s u b s t a n t i a l i n c r e a s e o f v a l i n e c o n c e n t r a t i o n was n o t i ced,
though i t d i d n o t appear a t t h e b e g i n n i n g ( r e f .
24).
Some e x p e -
r i m e n t a l data f o r m y c e l i a l aminoacid composition i n comparison with t h a t f o u n d i n e g g s o r y e a s t a n d t h o s e recommended by FA0 a r e d i s played i n Table 2 . TABLE 2 The a m i n o a c i d c o m p o s i t i o n o f some f u n g a l m y c e l i a i n c o m p a r i s o n w i t h o t h e r p r o t e i n s o u r c e s a n d FA0 r e c o m m e n d a t i o n ( r e f s . 2 4 , 4 0 , 4 5 - 4 9 , 5 1 1 .
Amino
Trick
Inon:
oloma
otus
nudm
obliqw
acid
Trum etrr
Cha, t .
omium
uerst- c e l u l o color lyticwn
Trich; odermn
FA0
Egg
2.1
3.2
0.3
2.6
1.5
2.2
-
-
2.0
3.4
5.2
4.7
3.5
6.0
6.3
9.3
7.5
6.0
2.9
5.3
6.8
1.6
1.7
1.7
3.4
3.2
3.4
3.6
3.2
-
-
-
4.2
6.1
-
3.0
4.9
-
1.5
recon aenda tion
viride
-
4.2
Yeant
0.6
-
2.0
2.8
-
6.0
5.5
4.2
5.8
9.0
8.3
4.8
4.4
6.3
6.8
4.2
2.3
1.4
3.1
2.6
2.2
4.6
3.0
3.7
6.0
4.5
2.0
5.6
6.1
4.9
-
5.0
5.0
2.8
5.8
4.4
1.7 7.4
0.8 5.9
1.4 4.2
-
Nucleic acid However. t h e i m p o r t a n t ,
negative f a c t o r which l i m i t s t h e a p p l i -
c a t i o n o f m i c r o o r g a n i s m p r o t e i n s as a source o f f e e d o r f o o d i s t h e content o f nucleic acids. a f f e c t s kidney diseases,
T h e i r consumption i n l a r g e r q u a n t i t i e s e.g.
u r i n a r y gout.
As m e n t i o n e d e a r l i e r ,
-
240
-
t h e amount o f n u c l e i c a c i d s i n t h e c e l l s o f h i g h e r f u n g i i s s u b s t a n t i n a l l y s m a l l e r t h a n i n b a c t e r i a and y e a s t . shown i n T a b l e 3 ,
According t o t h e data
i t i s a b o u t 1 0 a n d 50 t i m e s s m a l l e r i n y e a s t a n d
bacteria respectively. TABLE 3 C o m p a r i s o n o f n u c l e i c a c i d c o n t e n t s i n d r y mass o f some f u n g a l m y c e l i a , y e s s t a n d b a c t e r i a c e l l s ( r e f . 1).
A#aricur birporw l w cibariw
Ccmthar.1
Ncluel la c r i s p Ycamt T o r u l a E s c h o r i c h i a col i
On t h e o t h e r h a n d ,
i c acid metabolites. "meat"
rig%!
Nuclcic acid content
Organin.
RNA
DNA
604.5
116.1
616.6
123.7
395.8
119.6
3.950.0
310.0
135.000.0
3.500.0
a p o s i t i v e e f f e c t i s o b s e r v e d i n some n u c l e -
V a r i o u s p u r i n e s and n u c l e o t i d e s cause s p e c i f i c
aroma o f m y c e l i u m ,
w h i c h makes f u n g i m o r e a t t r a c t i v e a s f o o d
compared w i t h o t h e r m i c r o o r g a n i s m s ( r e f .
23).
Carbohydrates Carbohydrates appear i n f u n g i as aminopolysaccharide c e l l w a l l constituents, rides, well.
i n the form o f m a t r i x glycoproteins,
some o l i g o s a c c h a r i d e s ,
monosaccharides and sugar a l c o h o l s as
The m a i n c e l l w a l l c o m p o n e n t ,
constitued entirely o f
f r e e polysaccha-
A-1.4
chitin,
i s a l i n e a r molecule
l i n k e d N-acetylglucosamine residues.
The l o n g c h a i n s o f s u c h u n i t s may a c h i e v e a m o l e c u l a r w e i g h t o f cellulose
(ref.
52).
des a l s o appear, lactosamine enzymes)
(ref.
I n the fungal c e l l w a l l other aminopolysacchari-
which are d i f f e r e n t 53).
f r o m c h i t i n e.g.
appear i n t h e form o f g l y c o p r o t e i n .
o f aminosugar,
mannan,
polvsaccharide moiety,
p o l y m e r o f ga-
Almost a l l f r e e fungal p r o t e i n s ( i n c l u d i n g g l u c a n and p r o t e i n .
They o c c u r a s a c o m p l e x
I n the hydrolizate o f
o f N e u r o s p o r a c r a s s a l a c c a s e p r o t e i n mannose
a n d g l u c o s a m i n e were f o u n d i n l a r g e a n d s m a l l s m o u n t s r e s p e c t i v e l y (ref.
54).
The s t r u c t u r e o f g l y c o p r o t e i n c o m p l e x e s i s unknown,
but i
i t h a s b e e n s u g g e s t e d t h a t g l u c o s a m i n e s e r v e s as a l i n k b e t w e e n p r o t e i n and p o l y s a c c h a r i d e s ( r e f . llusose (refs. (ref.
56,571,
55).
g l u c a n s (e.9.
58) and l e n t i n o n ( r e f .
Among f r e e p o l y s a c c h a r i d e s , glicogen (ref.
5 9 1 1 , mannans ( r e f .
ce-
5 6 1 , pachyman
60) and p o l y u r o n i d s
( r e f . 6 1 ) a r e t h e main.
-
241
Among o l i g o s a c c h a r i d e s t h e most p o p u l a r i s
t r e h a l o a e ( r e f . 621, which a p p e a r s i n f r u i t t i n g b o d i e s and mycelium a s well i n 90% o f h i g h e r f u n g i ( r e f . 6 3 ) . Monosaccharides l i k e g a l a c tose (ref.
561, glucose
( r e f . 5 6 ) , mannose ( r e f .
refs.
56,64),
fructose (ref.
5 6 1 , mannose
5 6 ) a n d s e d o h e p t u l o a e ( r e f . 6 5 ) were i d e n -
t i f i e d i n various fungal mycelia.
Polyhydroxylalcohols (sugar alco-
h o l s ) a r e r e p r e s e n t e d by m a n n i t o l ( d i s c o v e r e d f o r t h e f i r s t time i n Aqaricus i n t e q e r ( r e f
56), very popular i n higher fungi ( r e f .
6 2 ) ) , v o l e m i t o l ( i s o l a t e d from L a c t a r i u a volemus ( r e f . 5611, s o r b i t o 1 (found i n B o l e t u s bovinus ( r e f . 6 2 ) ) , e r y t h r i o l ( A l m i l s r i e l l a
mellea ( r e f . 6611, a r a b i t o l ( F r u s t u l i n a h e p a t i c a and B o l e t u s b o v i n u s (refs.
67,68)), i n o a i t o l (Romariopsis croccea ( r e f .
l i t o l (Agaricus campestris (ref.
5 6 ) ) and ksy-
69)).
The t o t a l a m o u n t o f c a r b o h y d r a t e s i n h i g h e r f u n g i r a n g e s f r o m 28% d r y mass o f L a c t a r i u a d e l i c i o s u s t o 7 6% i n A r m i l l a r i e l l a m e l l e a . The d r y mass o f A q a r i c u s c a m p e s t r i s c o n t a i n e d 2 4 . 9 % c a r b o h y d r a t e s , w h e r e g l y c o q e n , c e l l u l o s e , aome r e d u c i n g s u g a r a n d m a n n i t o l were dominant ( r e f . 70). Alcohols w i t h t h e i r r e s p e c t i v e k e t o n e s , espec i a l l y octene-1-on-3 f u n g a l aroma.
are p a r t l y r e s p o n s i b l e f o r
and octene-2-on-3,
These s u b s t a n c e s are s t i l l p e r c e p t i b l e a t v e r y low
concentrations reaching
and
lo-’
mg% r e s p e c t i v e l y ( r e f .
71).
Fats The m y c e l i u m o f e d i b l e f u n g i c o n t a i n s v a r i o u s f a t c o m p o u n d s o l e i c and l i n o l e i c a c i d s are t h e main c o n s t i t u e n t s I t i s s u g g e s t e d t h a t t h e f u n g a l aroma d e p e n d s p a r t l y o n
where p a l m i t i c , (ref. 72).
the autooxidation of these unsaturated fatty acids (ref.
71).
The
c o m p o s i t i o n o f mycelium l i p i d e s c h a n g e s d u r l n g t h e c u l t u r e growth. The a m o u n t o f t r i g l y c e r i d e a i n y o u n g c u l t u r e s i s 2 0 % , w h e r e a s i n t h e o l d e r ones decreaaea t o 1.7% ( r e f .
71).
V i t amina The h i g h e r f u n g i a r e a r e l a t i v e l y g o o d s o u r c e o f so m e v i t a m i n s . I t h a s b e e n e s t a b l i s h e d f o r e x a m p l e t h a t 1 0 0 g o f f r e s h f u n g i may p r o v i d e 20% o f t h e d a i l y human d e m a n d o f r i b o v l a v i n e a n d 2 5 % o f n i a c i n ( r e f . 7 0 ) . The a m o u n t o f r i b o f l a v i n e a n d n i a c i n i n f u n g i p l a c e s t h e m b e t w e e n h i g h e r p l a n t a n d y e a s t a n d i n some c a s e s ( e . 9 . e d u l i s ) even higher ( r e f .
Boletus
1 ) . A vegetative mycelium is e s p e c i a l l y
r i c h i n vitamins o f group 8. According t o Bell
,
(ref.
73) 5% o f
Morchella esculenta mycelium i n a s y n t h e t i c d i e t f u l l y s a t i s f i e s t h e
-
242
Nine vitamins are contained i n
demand f o r t h e g r o u p B v i t a m i n s . t h i s group, tol.
as w e l l as n i a c i n ,
-
panthotenic acid,
c h o l i n e and i n o a i -
T a b l e 4 shows t h e v i t a m i n c o n t e n t i n t h e m y c e l i a o f some f u n g i
in comparison w i t h t h a t o f yeast. TABLE 4 The v i t a m i n c o n t e n t i n some f u n g a l m y c e l i a a n d y e a s t ( r e f .
A#UriCW
Vitamins
campstris
P b r c h l La osculonta
T r i cho L oma nudrar
74)
Yeaat CToruld
MS/g Of d r y ma88
Biotin Polic acid Niacin Pantothenic acid Pyridoxin Riboflavin Thiamine
-
I
-
0.8
3.5
146.0
690.
-
1.8 2.8
82.0
150.0
500.0
8.7
145.0
130.0
-
-
5.8
34.0
24.6
53.0
49.0
2.0
3.9
11.0
6.2
F r a q r ance Aroma i s one o f t h e moat c h a r a c t e r i s t i c f e a t u r e s o f e d i b l e fungi,
b u t due t o t h e l a c k o f a p r e c i a e m e t h o d o f i t s d e t e r m i n a t i o n ,
many c o n f u s i o n s r e s u l t . "not plessant".
Usually fragrance i s c a l l e d "pleasant"
or
I n o r d e r t o a c h i e v e t h e s t r o n g e r aroma i t was p r o -
v e d t h a t t h e c u l t u r e m u s t b e g r o w n one or t w o d a y a l o n g e r t h a n need e d t o r e a c h t h e maximum f u n g a l g r o w t h ( r e f .
70).
I t was a l s o i n t e n -
s i f i e d by m i x i n g m y c e l i u m w i t h NaCl and i n c u b a t i n g i t a t 4 t e r one d a y o f s u c h t r e a t m e n t , ved,
OC.
Af-
aome i m p r o v e m e n t o f aroma was o b a e r -
b u t t h e b e s t r e s u l t s were a c h i e v e d a f t e r aeven days ( r e f .
75).
P o s i t i v e e f f e c t a w e r e a l s o o b s e r v e d when l e c i t i n o r v e g e t a b l e o i l
or m i l k was a d d e d t h e g r o w t h c u l t u r e ( r e f . g o o d aroma,
t h e c o n c e n t r a t i o n o f N,
P,
K,
70). S,
I n order t o achieve
Fe a n d Zn a h o u l d b e
f a r g r e a t e r t h a n t h a t n e e d e d t o o b t a i n t h e maximum y i e l d o f t h e mycelium (ref.
20).
I n concluaion,
i t can be s a i d t h a t a more concen-
t r a t e d medium a n d s l o w e r g r o w t h o f t h e c u l t u r e e n s u r e a s t r o n g e r a n d more p l e a s a n t aroms.
Research s h o u l d aim a t f i n d i n g a mutant
which could, w h i l e growing feet,
p r o d u c e a d e s i r e d aroma.
-
243
-
Toxicity A l t h o u g h numerous f u n g a l s p e c i e s have been u s e d as f o o d f o r t h o u s a n d s o f y e a r s w i t h o u t any s i d e e f f e c t s ,
i t i s h a r d t o assume
t h a t t h e mycelium o f e d i b l e f u n g i grown i n t h e submerged c u l t u r e i s equally safe.
(ref.
So f a r ,
i t s t o x i c i t y has n o t been observed.
73,761.
LIGNOCELLULOSIC BYPRODUCTS A S A SUPPORT FOR FUNGAL BIOMASS PRODUCTION As m e n t i o n e d ,
i t i s possible t o c u l t i v a t e higher fungi not
o n l y f r o m e x p e n s i v e s y n t e h t i c m e d i a b u t a l s o f r o m b y p r o d u c t s or even waste m a t e r i e l s . s e a r c h f o r cheep,
I t i s important,
therefore,
t o proceed i n the
abundant and e a s i l y a c c e s s i b l e s u p p o r t s w h i c h can
s i m u l t a n e o u s l y m e e t t h e p h y s i o l o g i c a l demands o f f u n g i .
One s h o u l d
mention t h e cheapest o r g a n i c substance which c o u l d be t r a n s f o r m e d i n t o p r o t e i n by f u n g i ,
that i s lignocellulose
g r e a t number o f i n d u s t r i a l w a s t e s , wood i n d u s t r i e s .
-
a component o f a
e s p e c i a l l y t h o s e o f paper and
According t o Bellamy ( r e f .
77),
t h e world produc-
t i o n o f c e l l u l o s e b y e l l p l a n t s on t h e e a r t h a m o u n t s t o 2 4 t o n s p e r capita
8
year.
A m e a n i n g p a r t o f t h a t mass u s e d i n t h e p a p e r i n -
d u s t r y i s r e s p o n s i b l e f o r waste ( m o a t l y l i g n i n weate) a b o u t 500 b i l l i o n t o n s a y e a r on a w o r l d w i d e s c a l e .
r a n g i n g up t o Therefore,
i t
w o u l d be d e s i r a b l e t o f i n d o r g a n i s m s w h i c h c o u l d u t i l i z e t h e l i g n o cellulose,
e s p e c i a l l y t h e i r l i g n i n component a n d a t t h e same t i m e
e l i m i n a t e any c o n s t r a i n t s i n t r e a t i n g t h e m a t e r i e l a s e s o u r c e o f f e e d biomas.
In fact,
these
r e q u i r e m e n t s a r e f u l f i l l e d by a r b o r e s l
f u n g i f o r which l i g n o c e l l u l o s e i s t h e n a t u r a l growth environment. A l r e a d y i n t h e 308,
t h e f i r s t a t t e m p t s w e r e made t o d e t e r m i n e
t h e p r o c e s s o f wood d e l i g n i f i c a t i o n c a u a e d b y t h e a c t i v i t y o f v a r i o u s white rot Baaidiomycetes. sicolor
(ref.
wood d e l i g n i f i e r s . (ref. it
WBS
I t h s s b e e n ahown t h a t T r e m e t e s v e r -
78) end Trsmetes p i n i ( r e f .
79) a r e t h e most a c t i v e
The s e c o n d o f t h e above m e n t i o n e d p i o n e e r w o r k a
79) i n t h i s f i e l d i s o f p a r t i c u l a r i m p o r t a n c e f o r ua because prepared by a Pole.
Several years l a t e r ,
n a l y s i s was o f f e r e d on b e e c h - t r e e species 8s Polyporus e b i e t i n u s , donius (refs.
80,Bl).
a m o r e d e t a i l e d a-
sawdust d e l i g n i f i c s t i o n by such
S t e r e u m ruqosum a n d M a r s s i m i u s s c o r o -
These w o r k a f o r t h e f i r s t t i m e s t r e s s e d t h e
f a c t t h a t d e l i g n i f i c a t i o n end c e l l u l o a e d e c o m p o s i t i o n were p a r a l l e l processes.
I t t o o k 9 months end t h e consumption o f b o t h components
r a n g e d f r o m 4 5 t o 65% d e p e n d i n g o n t h e s p e c i e s .
This r e l a t i v e l y low
-
244
-
l i g n o c e l l u l o s e complex d e g r a d a t i o n r e s u l t s from l i g n i n r e s i s t a n c e t o
I t h a s b e e n s t a t e d t h a t i n t h e wood, c e l l u l o forming a three-dimensional n e t w o r k w h i c h p r o t e c t s c e l l u l o s e f r o m c e l l u l o l y t i c e n z y m e s A s a res u l t o f s u c h " l i g n i n b a r r i e r ' ' a p p e a r a n c e , wood c a r b o h y d r a t e s a r e n o t d e c o m p o s e d by t h e m a j o r i t y o f c a r b o h y d r a t e d e g r a d i n g m i c r o b e s the biological attack. se
f i b e r s are surrounded with l i g n i n ,
(ref. 82). The p r o b l e m o f " l i g n i n b a r r i e r " h a s b e e n t h e f o c a l p o i n t o f a numbe r o f b i o t e c h n o l o g i c a l s t u d i e s .
T h e r e are two p o s s i b l e ways o f
s o l v i n g i t . The f i r s t c o n s i s t s i n u s i n g a s a s u p p o r t , k f o r t h e f u n g a l c u l t u r e , c e l l u l o s e waste or i t a h y d r o l i s a t e s which can be che-
m i c a l l y o b t a i n e d o r d e r i v e d from t h e c e l l u l o s e complex a c t v i t y i s o l a t e d from c e l l u l o s e - d e g r a d i n g
f u n g i . The s e c o n d c o n s i s t s
l i g n o c e l l u l o s e waste as a suport f o r fungi possesing both
n using igno-
and c e l l u l o l y t i c a c t i v i t y ( i n t h e case o f o n l y c e l l u l o l y t i c f u n g i , t h e e x t e n t o f d e g r a d a t i o n was l i m i t e d a n d t h e p r o d u c t w i l l a l w a y s contain indigested lignin). More i n f o r m a t i o n a b o u t t h e f i r s t way c a n b e f o u n d i n many r e views and p a p e r s ( r e f s . 77,83-100).
T h e r e f o r e we s h a l l l i m i t our
p r e s e n t a t i o n t o t h e most popular and t y p i c a l examplex o f biotechnol o g i c a l methods a l r e a d y a p p l i e d or i n t e n d e d t o be a p p l i e d soon. M u r r a y Moo-Young
of t h e Canadian Waterloo University, develo-
p e d a m e t h o d by w h i c h p a p e r i n d u s t r y waste i s c o n v e r t e d i n t o g l u c o -
ae ( r e f . 101). Thia c o p y r i g h t p r o c e s s i s c a r r i e d o u t i n s p e c i a l f e r mentation tanks f o r s e l e c t e d lower fungus species.
The p r o d u c t i s
f u r t h e r u s e d as a s u p p o r t f o r y e a s t c u l t i v a t i o n and f i n a l l y t h e val u a b l e feed biomass is o b t a i n e d . ( r e f .
102).
S w e d i s h r e s e a r c h e r s h e a d e d by P r o f . E r i k s s o n o f t h e F o r e s t P r o d u c t s L a b o r a t o r y i n S t o c k h o l m d e s c r i b e d a m e t h o d o f p a p a r m i l l waste u t i l i z a t i o n by m e a n s o f S p o r o t r i c h u m p u l v e r u l e n t u m . produced biomass c o n t a i n i n g 14% p r o t e i n .
This culture
To i m p r o v e t h e y i e l d a n d
a synergic c u l t u r e of Sporotrichum pulvelurentum a n d C a n d i d a u t i l i s was s u g g e s t e d ( r e f . 1 0 3 ) . A n o t h e r s p e c i e s , Trichoderma v i r i d e c o u l d v e g e t a t e e f f i c i e n t l y on straw a u t o c l a v e d p r e q u a l i t y of biomass,
v i o u a l y with 5% natrium lhydroxide.
A f t e r t h e 5 day growth, t h e pro-
t e i n c o n t e n t i n t h e p r o d u c t was 2 5 % a n d t h e d e g r a d a t i o n o f s t r a w c e l l u l o s e r e a c h e d 75% ( r e f .
104).
A m e t h o d o f P a e c i l o m y c e s v a r i o t t i c u l t u r e o n s u l f i t e w a s t e liq u o r s f r o m t h e c e l l u l o s e p r o d u c t i o n waa p a t e n t e d i n F i n l a n d a n d i n t r o d u c e d o n a c o m m e r c i a l s c a l e ( t h e p r o c e s s "PEKILO").
I n t h i s method,
-
245
-
c a r b o h y d r a t e f r a c t i o n s o f t h e s u l f i t e w a s t e s a r e m o s t l y consumed by t h e mycelium.
The y e a r l y y i e l d o f b i o m a s s ( c o n t a i n i n g 55% p r o -
t e i n ) amounts t o 1 0 . 0 0 0 (refs.
t o n s and i s a p p r o p r i a t e d f o r a n i m a l f e e d
105,106).
A n American p a t e n t w h i c h p o i n t s t o t h e p o s s i b i l i t y o f t h e sub-
merged c u l t u r e on s u l f i t e wastes l i q u o r o f s u c h h i g h e r f u n g i a s T r i c h o l o m a nudum,
Callybia velutipes,
-b l a z e i i s o f a p i o n e e r i n g c h a r a c t e r .
L e p i o t a neuryna and A q a r i c u s
An a g a r m y c e l i u m i s t r a n s f e r r e d
i n t o t h e medium c o n t a i n i n g s u l f i t e w a s t e l i q u o r e n r i c h e d w i t h 0.1% ammonium p h o s p h a t e .
Then i t i s moved a g n i n i n t o t h e s u l f i t e w a s t e
o f a concentrstion i n the c i n g !3ugsrs,
medium c o r r e s p o n d i n g t o 15 g / l
o f redu-
n e t u r s l i z e d b y c a l c i u m c a r b o n a t e t o pH 5 e n d e n r i c h e d
w i t h 0.1% ammonium p h o s p h a t e .
as i n t h e p r e v i o u s case, o f the aerated culture,
A f t e r fl h o u r s
t h e y i e l d was f a i r l y s m a l l a n d r a n g e d u p t o
10 g o f dYy mass p e r 1 l i t e r o f t h e c u l t u r e ( r e f .
107).
P r e t r e a t m e n t o f c e l l u l o s e wastes w i t h c e l l u l s s e complex prepar a t i a n s i s a very useful starting-paint specialized fungi. strains)
for further cultivation of
T r i c h o d e r m a v i r i d e ( e s p e c i a l l y Q M 9123 a n d OM 9 4 1 4
i s known a s a n e f f i c i e n t c e l l u l a s e p r o d u c e r ( r e f .
108),
so
i t s e n z y m a t i c s y s t e m waa u s e d t o o b t a i n t h e g l u c o s e s y r u p f r o m p a p e r m i l l waste.
This syrup ( f r e e o f fungal metabolites)
s e r v e d a s a sup-
p o r t i n biomass p r o d u c t i o n f o r a p p r o p r i a t e s p e c i e s o f f u n g i ,
o r was
used d i r e c t l y as a s u b s t r a t e i n r e f i n e r i e s o r o t h e r i n d u s t r i e s ( r e f s .
loe-llo). ning,
B e c a u s e p a p e r m i l l w a s t e c o n t a i n s a c e r t a i n amount o f l i g -
which renders
c e l l u l o l y t i c enzyme a c c e a a d i f f i c u l t ,
a prelimi-
n a r y c u l t i v a t i o n was s u g g e s t e d o n t h o s e w a s t e m a t e r i a l s o f T r s m e t e s versicolor,
w i d e l y known a s a l i g n o l y t i c s p e c i e s .
The p a r t l y d i g e s -
t e d waste s u b s t r a t e by Trametea v e r a i c o l o r no l o n g e r c o n t a i n s l i g n i n a n d t h u s becomes m o r e a c c e s s i b l e f o r c e l l u l o l y t i c enzymes o f T r i c h o derma v i r i d e ( r e f .
111).
Some a u t h o r s s u g g e s t t h e a p p l i c a t i o n o f c s l l u l o l y t i c f u n g u s a s a d i r e c t p r o t e i n biomass p r o d u c e r ( r e f .
101)
The t h e r m o r e s i s t a n t
Ghaetomium c e l u l o l y t i c u m s t r a i n p r o v e s t o b e s u c h a s p e c i e s ( r e f . 112).
I t surpasses Trichoderma v i r i d e by 100 % a s f a r as t h e vegeta-
t i o n r a t e i s concerned,
and has t h e p o s s i b i l t y t o grow a t a r e l a -
t i v e l y h i g h t e m p e r a t u r e (37
OC).
This temperature serves aa a b a r r i e r
a g a i n s t t h e i n v a s i o n o f many f u n g a l s p e c i e s w h i c h w o u l d i n f e c t t h e culture. The a t t e m p t s d e s c r i b e d so f a r d o n o t a u t h o r i t a t i v e l y s o l v e t h e p r o b l e m o f t h e l i g n i n component o f l i g n o c e l l u l o s i c s u p p o r t a .
The
-
-
246
r e m a i n i n g un d i g e s t e d l i g n i n s u b s t a n t i a l l y t r i e n t value.
r e d u c e s t h e b i o m a s s nu-
I t i s necessary t o look f o r appropriate organisms or
enzymatic systems d i r e c t l y degrading l i g n i n .
Another problem i s t o
f i n d an a d e q u a t e m o d e l o f t h e l i g n i n p o l y m e r .
Such a m o d e l w o u l d
s e r v e e i t h e r as a s o u r c e o f carbon for f u n g i or as a s u b s t r a t e f o r t h e l i g n o l y t i c enzmye s y s t e m .
I n t h e f i r s t case,
t o a c h i e v e a more a c c e p t a b l e o r b e t t e r s u p p o r t
Moreover,
t h e f u n g a l biomass
b u t i n t h e s e c o n d i t w o u l d be p o s s i b l e
would be d i r e c t l y o b t a i n e d ,
for fungal growth.
t h e f u n g i g r o w i n g d i r e c t l y on a l i g n i n model would produce
t h e i n d u c i b l e enzymatic system u s e f u l
i n t h e second case.
g r a d a t i o n p r o d u c t s o b t a i n e d i n t h e e n z y m a t i c way,
L i g n i n de-
would s e r v e as a
The s o c a l l e d l i g n o s u l p h o n i c
valuable substrate f o r biotechnology.
a c i d s can s e r v e as t h e adequate l i g n i n model.
They a p p e a r a s t h e
b y p r o d u c t when c e l l u l o s e i s o b t a i n e d b y t h e s u l f i t e m e t h o d .
I n this
c a s e t h e w h o l e amount o f l i g n i n i n t h e f o r m o f c a l c i u m l i g n o s u l f o n a t e s s o l u b l e i n water is t r a s f e r r e d .
S u l f i t e waste l i q u o r s a r e
u s u a l l y a c c o m p a n i e d by s i m p l e s a c c h a r i d e s i n t h e f o r m o f f r e e h e x o s e s a n d h i g h m o l e c u l a r p e n t o s a n s w h i c h c a n be e l i m i n a t e d b y means o f yeasting.
The c u l t u r e o f B s s i d i o m y c e t e s ,
metes p i n i ,
and P l e u r o t u s o s t r e a t u s )
i n i n g medium was a s u b j e c t
(Trametes v e r s i c o l o r ,
Tra-
i n the lignosulphonates conta-
o f the Polish patent ( r e f
5).
The r e s e -
a r c h e r s i n C z e c h o s l o v a k i a showed t h a t t h e m e l i u m s t e r i l i u m s t r a i n , which they i s o l a t e d ,
wss a b l e t o d e g r a d e l i g n o a u l f o n i c a c i d e f f e c -
t i v e l y a n d y i e l d 32-35:;
p r o t e i n c o n t a i n i n g biomass ( r e f .
113).
The
f u n g a l u t i l i z a t i o n o f s u l f i t e waste l i q u o r p r e v i o u s l y d e p r i v e d o f c a r b o h y d r a t e s b y y e a s t i n g was s u c c e s s f u l l y a c h i e v e d i n N i e d o m i c e , Poland,
on a s e m i - t e c h n o l o g i c a l
scale.
n i n g medium was e n r i c h e d w i t h whey, superphosphate,
The l i g n o s u l p h o n a t e c o n t a i -
yeast e x t r a c t ,
some m i c r o e l e m e n t s a n d a n e u r i n e .
c u l t u r e was g r o w n i n a 4 . 0 0 0
1 f e r m e n t a t i o n t a n k and t h e s u p p o r t
was s t e r i l i z e d b y o v e r h e a t e d w a t e r steam. of
the culture,
1 l i t r e (ref.
natrium n i t r a t e ,
Trametes v e r s i c o l o r
A f t e r a 4 day i n c u b a t i o n
t h e y i e l d o f m y c e l i u m r e a c h e d 4 0 g o f d r y mass p e r
114).
The l i g n o c e l l u l o s e c o m p l e x ( v a r i o u s k i n d s o f s a w d u s t a n d s t r a w ) was d i r e c t l y u t i l i z e d u s i n g t h e f u n g a l c u l t u r e s i n o u r l a b o r a t o r y . P r e l i m i n a r y s c r e e n i n g t e s t s p r o v e d Trametes v e r s i c o l o r ,
Pleurotus
o s t r e a t u s a n d Chaetomium p i l u l i f e r u m g r e w t h e b e s t on l i g n o c e l l u l o s e supports. optimized.
The c o m p o s i t i o n o f t h e s u p p o r t s f o r t h e s e f u n g i was f u r t h e r Under t h e o p t i m a l c o n d i t i o n s ,
3 0 a n d 40% o f l i g n i n a n d
c e l l u l o s e d e g r a d a t i o n were a c h i e v e d r e s p e c t i v e l y
( r e f . 1 1 4 ) . The p o s s i
-
-
247
b i l i t y o f b a r k u t i l i z a t i o n f o r f u n g a l biomass p r o d u c t i o n s h o u l d a l so be mentioned.
A c i d i c p i n e b a r k e x t r a c t s were used t o grow about
200 p u r e f u n g a l c u l t u r e s .
Out o f a l l t e s t e d s p e c i e s ,
a f a i r l y r a p i d vegetation process,
Trametes v e r s i c o l o r and P o l y p o r u s b r e n n i s , ratory,
38 e x h i b i t e d
smong them t h e l i g n i n d e g r a d e r s (ref.
115).
I n our labo-
d e l i g n i f i c a t i o n o f t h e p i n e b a r k was a c h i e v e d i n t h e a t a -
t i o n a r y c u l t u r e o f aome B a s i d i o m y c e t e s . Inonotus obliquus,
The m o s t a c t i v e d e g r a d e r was
w h i c h r e m o v e d f r o m t h e s u p p o r t 23.3% o f l i g n i n
and 29.51 o f c e l l u l o s e .
Some i n d u s t r i a l w a s t e s w h i c h s e r v e d aa a
n i t r o g e n source s t i m u l a t e d t h e g r o w t h o f t h e fungus and d e g r a d a t i o n o f support s i g n i f i c a n t l y ( r e f . Lignin,
as p o i n t e d o u t ,
116).
i s extremely r e s i s t a n t t o the attack o f
microorganisms. I n t h e l a s t two decades a s u b s t a n t i a l p r o g r e s s has b e e n made t o w a r d s t h e f u l l e x a m i n a t i o n o f i t s b i o l o g i c a l d e g r a d a t i o n
( r e f s . 117-120).
First of all,
f o r t h a t has s u b s t a n t i a l l y
a number o f o r g a n i s m s r e s p o n a i b l e
i n c r e a s e d and i t h a s been s t a t e d t h a t n o t
only white r o t fungi are responaible f o r l i g n i n degradation, soft r o t fungi (ref. as w e l l ( r e f s .
121),
123,124).
brown r o t f u n g i ( r e f .
Recently,
a number o f enzymes a c t i v e i n l i g -
n i n d e g r a d a t i o n were m a r k e d l y e n l a r g e d . r e d a s a m a i n l i g n i n d e g r a d i n g enzyme) biose:
quinone oxidoreductase
1 3 2 1 , manganese - d e p e n d e n t
(ref.
Despite ligninaae (conside (refs.
35,
125-1301,
cello-
131), c e l l o b i o a e oxidase ( r e f .
peroxidaae (refs.
133,
oxidase ( r e f .
135),
formaldehyde diamutase ( r e f .
oxidase ( r e f .
137),
g l i o x a l oxidase ( r e f .
139-141) and methylase ( r e f .
but
122) and b a c t e r i a
1341, m e t h a n o l 136),
glucose-2-
1381, demethylaee ( r e f s .
1 4 2 ) were d i s c o v e r e d .
Knowledge a b o u t
t h e r o l e o f t h e o t h e r enzymes s u c h a s l a c c a s e ( r e f s .
143,1441,
pe-
roxidase (refs.
118,145,146),
144,1471,
dio-
xygenaae ( r e f s .
148,149)
markedly increased.
glucose oxidase (refs.
p a r t i c i p a t i n g i n l i g n i n d e g r a d a t i o n haa
The c o o p e r a t i o n among t h e s e enzymes i s t a k e n i n -
t o consideration (refs.
118,131,144,147,150).
I t t h i a case,
aimul-
t a n e a u a t r a n s f o r m a t i o n o f c e l l u l o s e a n d l i g n i n b y means o f c e l l u l a ae a n d o x y g e n a a e c o m p l e x e s may o c c u r ( r e f s .
120,131,147).
The e x i a -
t e n c e o f t h e enzyme c o n n e c t i n g t h e t w o m e t a b o l i c a l s e q u e n c e i . e . cel1obiose:quinone (ref.
oxidoreductaae
1 4 7 ) was shown.
(ref.
1 3 1 ) or g l u c o a e o x i d a s e
A l l these achievements g i v e a h o p e f u l o u t l o o k
f o r a s o l u t i o n t o the " l i g n i n b a r r i e r " problem i n the near future. REFERENCES
1
R . C r z y b o w s k i , The f r u i t i n g b o d i e s a n d m y c e l i a o f h i g h e r f u n g i s s a f o o d s o u r c e , Przem. Spoz, 32 ( 1 9 7 8 ) 1 3 - 1 6 .
2 3 4 5
6
7
8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23 24
248
-
P . Newmark, F u n g a l f o o d , N a t u r e , 287 ( 1 9 8 0 ) 6 - 6 . R . G r z y b o w s k i , The s u b m e r g e d c u l t u r e o f h i g h e r f u n g i a s a p o t e n t i a l p r o t e i n a o u r c e s , Przem. Spoz. 3 1 ( 1 9 7 7 ) 3 7 1 - 3 7 4 . E . T b t h a n d L . T b t h , The way o f t i m e r e g u l a t i o n f o r t h e c o r p o f e d i b l e f u n g i , H u n g a r i a n P a t e n t no. 1 5 8 9 5 2 ( 1 9 7 2 ) . J. T r o j a n o w s k i a n d A . L e o n o w i c z , The way o f b i o m a s s p r o d u c t i o n f r o m w a s t e s u l p h i t e c e l l u l o s e l i q u o r , P o l i s h P a t e n t no. 7 2 4 9 8 (1974). A . L e o n o w i c z , A . P a s z c z y n s k i a n d J. T r o j a n o w s k i , The way o f h i g h p r o t e i n biomass p r o d u c t i o n from d i s t i l l e r y brew, P o l i s h P a t e n t no. 93054 ( 1 9 7 4 ) . A . L e o n o w i c z , A . P a s z c z y n s k i a n d J. T r o j a n o w a k i , The way o f h i g h o r o t e i n biomass o r o d u c t i o n from d i s t i l l e r y brew, P o l i s h P a t e n t ;lo. 1 1 5 1 6 2 ( 1 9 7 7 ) . A . L e o n o w i c z , A . P a s z c z y n s k i a n d J. T r o j a n o w s k i , The way o f f e e d biomass p r o d u c t i o n from- d i s t i l l e r y brew-by h i g h e r f u n g i c u l t i v a t i o n , P o l i s h P a t e n t no. 124417 (1977). 0 . I l n i c k a - O l e j n i c z a k and J. M a l a n o w s k a , The way o f p r o t e i n b i o m a s s p r o d u c t i o n , P o l i s h P a t e n t no. 1 0 2 7 0 6 ( 1 9 7 9 ) . A . L e o n o w i c z a n d J. T r o j a n o w s k i , The way o f h i g h p r o t e i n b i o m a s s p r o d u c t i o n f r o m whey, P o l i s h P a t e n t no. 9 5 2 2 5 ( 1 9 7 5 ) . A . L e o n o w i c z a n d J. T r o j a n o w s k i , The way o f h i g h p r o t e i n b i o m a s s p r o d u c t i o n f r o m whey, P o l i s h P a t e n t n o . 1 2 0 0 1 1 ( 1 9 7 7 ) . A . L e o n o w i c z a n d J. T r o j a n o w s k i , The way o f b i o m a s s p r o d u c t i o n f r o m whey, P o l i s h P a t e n t n o . 1 2 2 8 1 8 ( 1 9 7 7 ) .
J. T r o j a n o w s k i , A . L e o n o w i c z a n d 5. L a b e n d z i n a k i , The way o f h i g h p r o t e i n b i o m a s s p r o d u c t i o n f r o m l i g n o c e l l u l o s i c w a s t e mat e r i a l s , P o l i s h P a t e n t no. 1 1 9 8 9 2 ( 1 9 7 6 ) . R . M a j c h r z a k , The way o f f i e l d p r o t e i n i z a t i o n a n d u s u a b i l i t y o f s t r a w a n d o t h e r b y p r o d u c t s f o r f e e d b y means o f h i g h e r f u n g i , P o l i s h P a t e n t no. 89151 (1977). J. T r o j a n o w s k i a n d A . L e o n o w i c z , The way o f b i o m a s s p r o d u c t i o n f r o m s t r a w , P o l i s h P a t e n t no. 1 2 4 4 1 7 ( 1 9 8 0 ) . Scammel, The way o f p r o d u c t i o n o f e d i b l e G.L. Solomons a n d G.W. s u b s t a n c e s c o n t a i n i n g p r o t e i n , P o l i a h P a t e n t no. 7 7 1 9 4 ( 1 9 7 5 ) . C . Y o s h i k u m i , T . Hada, H. M a k i t a , K . S u z u k i , A . Ohkubo, T . Nak a n o y a , K . M i u r a a n d T . S a g i , The way o f B a s i d i o m y c e t e s f u n g i c u l t i v a t i o n , P o l i a h P a t e n t no. 1 0 3 7 3 6 ( 1 9 7 9 ) . C . Y o s h i k u m i , T . F u r o a h o , K . M a t s u n a g a a n d 1. Toyada, The way o f c u l t i v a t i o n o f Basidiomycetes fungi belonging t o Coriolus ( P o l y p o r a c e a e ) g e n u s , P o l i s h P a t e n t no. 1 0 4 8 7 1 ( 1 9 8 0 ) . C . T r e s c h o w , N u t r i t i o n o f t h e c u l t i v a t e d mushroom, D a n s k , B o t . 11 ( 1 9 4 4 ) 1 - 1 8 0 . Ark.,
m-
H . H u m f e l d a n d T.F. S u g i h a r a , The n u t r i e n t r e q u i r e m e n t s o f r i c u s c a m p e s t r i s grown i n submerged c u l t u r e , M y c o l o g i a , 44 ( 1 9 5 2 ) 605-620. D a v i d a o n , The l a r g e - s c a l e g r o w t h o f h i g h e r R.F. R o b i n s o n a n d R.S. U m b r e i t (Ed.), Advances i n A p p l i e d M i c r o b i o l o g y , f u n g i , i n : W.W. Academic P r e a s , New Y o r k , L o n d o n , 1 9 5 9 , p p . 261-278. J.H. L i t c h f i e l d , Submerged c u l t u r e o f mushrooom m y c e l i u m , i n : H.J. Poppler (Ed.), M i c r o b i a l Technology, R e i n h o l d P u b l i s h i n g C o r p o r a t i o n , New Y o r k , Amsterdam, L o n d o n , 1 9 6 7 , p p . 1 0 7 - 1 4 4 . F. R e u s s e r , J.F.T. S p e n c e r a n d H.R. S a l l a n a , T r i c h o l o m a nudum as a s o u r c e o f m i c r o b i o l o g i c a l p r o t e i n , A p p l . M i c r o b . , 6 ( 1 9 5 8 ) 5-8, 2. RehBEek, G. F a r b e r , V . S e v c i k , V . M u s i l e k a n d A. P i l a t , Submerged c u l t i v a t i o n o f t h e b a s i d i o m y c e t e B o l e t u s e d u l i s v a r r e t i c u l a t u s , F o l i a M i c r o b i o l . , 7 (1962) 75-79.
25 26 27 28
29 30 31 32 33
34
36
37
38 39 40 41 42 43 44
-
J. S z u e c s , Submerged c u l t u r e o f M o r c h e l l a a p . , U.S. P a t e n t no. 2,761,246 (1956). A . P a s z c z y n s k i , A . L e o n o w i c z , J. T r o j a n o w s k i a n d K . Wachowicz. P r o d u c t i o n o f f u n g a l p r o t e i n - f r o m d i s t i l l e r y b r e w . Przem. Ferm. R o l n y , 4 ( 1 9 7 5 ) 22-24. A . L e o n o w i c s , 8. Sadowska a n d E. B o l u k , C u l t i v a t i o n o f h i g h e r f u n g i i n t h e d i s t i l l e r y b r e w c o n t a i n i n g medium, i n : M a r i a C u r i e S k l o d o w s k a U n i v e r s i t y ( E d . ) , L u b l i n , 1 9 7 8 , pp. 1 - 4 3 . H. U r b a n e k , G. Y i r d a w a n d A . B o r o w i n s k a , P r o d u c t i o n o f P l e u r o t u s o s t r e a t u s b i o m a s s f o r f e e d b y means o f t h e s u b m e r g e d c u l t u r e , Przem. Ferm. R o l n y , 2 1 ( 1 9 7 7 ) 22-22. J. L o b a r z e w s k i , Whey a s a s u p p o r t f o r c u l t i v a t i o n o f h i g h e r f u n g i , Przem. Ferm. R o l n y , 2 0 ( 1 9 7 6 ) 1 3 - 1 4 . D. P e r l m a n , S t u d i e s o n t h e g r o w t h a n d m e t a b o l i s m o f P o l a n c e p s i n submerged c u l t u r e , Amer. J. B o t a n y , 36 (194-4 A . K . Guha a n d A.B. B a n e r . i e e . E f f e c t o f d i f f e r e n t c a r b o n comp o u n d s o n t h e s u b m e r g e d " p r o d u c t i 0 n o f A q a r i c u s c a m p e s t r i s myc e l i u m . J. F o o d S c i . Techn.. 8 ( 1 9 7 1 ) 8 2 - 8 3 . A.M. M o u s t a f a , N u t r i t i o n a n d t h e d e v e l o p m e n t o f mushroom f l a v o r i n A q a r i c u s campestris mycelium, Appl. M i c r o b i o l . , 8 (1960) 63-67. I.W. F r a s e r a n d 8 . S . F u j i k a w a , The g r o w t h - p r o m o t i n g e f f e c t o f s e v e r a l a m i n o a c i d a o n t h e common c u l t i v a t e d mushroom, A q a r i c u s b i s p o r u s , M y c o l o g i a , 50 (1958) 538-549.
M . A s t h e r , L . L e s a g e , R. D r a p r o n , G. C o r r i e u a n d E . O d i e r , Phosp h o l i p i d and f a t t y a c i d e n r i c h m e n t o f Phanerochaete chrysospor i u m INA-12 i n r e l a t i o n t o l i g n i n a s e p r o d u c t i o n , A p p l . M i c r o b i o l . B i o t e c h n o l . , 27 ( 1 9 8 8 ) 3 9 3 - 3 9 8 . J.H. L i t c h f i e l d , M o r e l mushroom m y c e l i u m a s a f o o d - f l a v o r i n g m a t e r i a l , B i o t e c h n o l . Bioeng., 9 (1967) 289-304. A.I. H a t a k k a , A.L.M. T e r v i l l - W i l o a n d M.-L. Niku-Paavola, Prod u c t i o n and p r o p e r t i e s o f l i g n i n a s e s o f t h e w h i t e - r o t fungus P h l e b i a r a d i a t e , i n : Swedish F o r e s t P r o d u c t s Research L a b o r a t o r y and The S w e d i s h A s s o c i a t i o n o f P u l p a n d P a p e r E n g i n e e r s ( E d s . ) , Proc. 3 r d I n t e r n . Conf. B i o t e c h n o l . P u l p Paper Ind., Stockholm, Sweden, J u n e 16-19, 1 9 8 6 , pp. 1 5 4 - 1 5 6 . A . L e o n o w i c z , J. T r o j a n o w s k i a n d 8. O r l i c z , I n d u c t i o n o f l a c c a s e i n B a s i d i o m y c e t e a : a p p a r e n t a c t i v i t y o f t h e i n d u c i b l e and cons t i t u t i v e f o r m s o f t h e enzyme w i t h p h e n o l i c s u b s t r a t e s , A c t a B i o c h i m . P o l o n . , 25 ( 1 9 7 8 ) 3 6 9 - 3 7 8 . A . K . Guha a n d A . B . B a n e r j e e , E f f e c t o f d i f f e r e n t n i t r o g e n o u s compounds o n t h e s u b m e r g e d p r o d u c t i o n o f A q a r i c u s c a m p e s t r i s , J . F o o d S c i . Techn., 7 ( 1 9 7 0 ) 2 3 - 2 5 . J.-M. B o l l a g a n d A . L e o n o w i c z , C o m p a r a t i v e s t u d i e s o f e x t r a c e l l u l a r f u n g a l l a c c a s e s , A p p l . E n v i r o n . M i c r o b i o l . , 48 ( 1 9 8 4 ) 849-854. B . N o r k r a n s , I n f l u e n c e o f some c u l t u r a l c o n d i t i o n s on f u n q a l c e l l u l o s e p r o d u c t i o n , P h y s i o l . Plant., 1 6 (1963) 11-19. Overbeck and R.S. O a v i d s o n , F a c t o r s a f f e c J.H. L i t c h f i e l d , R . C . t i n g t h e g r o w t h o f t h e m o r e l mushroom m y c e l i u m i n s u b m e r g e d c u l t u r e , J. A g r i c u l . F o o d Chem., 11 ( 1 9 6 3 ) 1 5 8 - 1 6 2 . M.H. F i t z p a t r i c k , W.B. E s s e l e n Jr. a n d E . W e i r , C o m p o s i t i o n a n d n u t r i t i v e v a l u e o f mushroom p r o t e i n , J. Am. D i e t e t i c . ASSOC., 22 ( 1 9 4 6 ) 318-323. H. R a f a l s k i , P. T y f a a n d E . N o g a l , A r a p i d m e t h o d f o r d i r e c t eat i m a t i o n o f t h e c a l o r i c v a l u e o f f o o d b y means o f a t h e r m o e l e c t r i c c a l o r i m e t e r , Rocz. P a n s t w . Z a k l . H i g . , 17 ( 1 9 6 6 ) 575-580. A . L e o n o w i c z a n d M. W o j t a s - W a s i l e w s k a , F u n g a l b i o m a s s a s a f e e d f o r h a m s t e r s , 1975, p e r s o n a l c o m m u n i c a t i o n .
35
249
45 46 47 48
49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65
250
-
2 . Bano, K . S . S r i n i v a s a n a n d H.C. S r i v a s t s v a , Amino a c i d compos i t i o n o f t h e p r o t e i n f r o m a mushroom ( P l e u r o t u s ) , A p p l . M i c r o b i o l . , 11 ( 1 9 6 3 ) 184-187. 2 . Bsno, K . S . S r i n i v s s s n and N.S. S i n g h , E a a e n t i s l amino a c i d c o m p o s i t i o n o f t h e p r o t e i n s o f a mushroom ( V o l v a r i e l l a d i p l a s i s ) , J. F o o d S c i . Techn., 8 ( 1 9 7 1 ) 1 8 0 - 1 8 2 . W. L a a o t a , H. M l o d e c k i a n d 2 . W l o d a r c z y k , C o n t e n t o f a v a i l a b l e l y s i n e i n some mushrooms, Rocz. P a n a t w . Z a k l . H i g . , 1 9 ( 1 9 6 8 ) 459-462. H. M l o d e c k i , W. L s s o t a , I. C h o c i s n o w s k a , M. J a n u s z k i e w i c z , T . K u b i s a e n d A . P e d z i m a z , Amino a c i d s , c a l c i u m , p h o s p h o r u s , i r o n , a n d f a t s u b s t a n c e s i n some mushrooms, Rocz. P a n s t w . Z a k l . H i g . , 1 9 ( 1 9 6 8 ) 239-244. H . M l o d e c k i , W. L a s o t a a n d Z . W l o d a r c z y k , T r y p t o p h a n c o n t e n t o f some e d i b l e mushrooms, Rocz. P a n s t w . Z s k l . H i g . , 1 9 ( 1 9 6 8 ) 453-457. S . S . B l o c k , T.W. S t e a r n s , R.L. S t e p h e n s e n d R.F.J. McCandless, Mushroom m y c e l i u m , E x p e r i m e n t s w i t h s u b m e r g e d c u l t u r e , Mushroom S c i . , 3 (1956) 261-268. A . L e o n o w i c z a n d M. W o j t s a - W a a i l e w s k a , The a p p l i c a t i o n o f h i g h e r f u n g i i n biotechnology, i n : Maria Curie-Sklodowsks U n i v e r s i t y (Ed.), L u b l i n , 1980, pp. 1-65. A.B. F o s t e r e n d J.M. Webber, A d v a n c e s i n C a r b o h y d r a t e C h e m i s t r y , i n : M.L. W o l f r o m a n d R . S . T i p a o n ( E d s . ) , A c a d e m i c P r e s s , New Y o r k , V o l . 1 5 , 1960, pp. 3 7 1 - 3 9 3 . F.M. H a r o l d , B i n d i n g o f inorganic polyphosphate t o c e l l w a l l o f N e u r o s p o r a c r a s s a , B i o c h i m . B i o p h y s . A c t a , 57 ( 1 9 6 2 ) 59-66. S.C. F r o e h n e r a n d K.-E. E r i k s a o n , P u r i f i c a t i o n and p r o p e r t i e a o f N e u r o s p o r a c r a s s a l a c c s s e , J. B a c t e r i o l . , 1 2 0 ( 1 9 7 4 ) 4 5 8 - 4 6 5 . E.D. K o r n a n d D.H. N o r t h c o t e , P h y s i c a l e n d c h e m i c a l p r o p e r t i e s o f p o l y s a c c h a r i d e s and g l y c o p r o t e i n s o f t h e y e a s t - c e l l w a l l , B i o c h e m . J., 75 ( 1 9 6 0 ) 1 2 - 1 7 . S. K o h l m U n z e r a n d J. G r z y b e k , The c h a r a c t e r i s t i c c h e m i c a l comp o n e n t s o f h i g h e r f u n g i ( m a c r o m y c e t e s ) , W i s d . B o t a n . , 16 ( 1 9 7 2 ) 100-176. C.J. A l e x o p o u l o s , I n t r o d u c t o r y M y c o l o g y , 2 n d ed., W i l e y , New York, 1962, pp. 1-613. S.A. W s r a i e n d M . I . Whelan, S t r u c t u r e o f pschyman, The p o l y s a c c h a r i d e c o m p o n e n t s o f f o r i s c o c o s , Chem I n d . , 3 0 ( 1 9 5 7 ) 1573-1577. G. C h i h a r s , J. Hamuro, Y . Meada, Y . A r a i e n d F. F u k u o k a , F r a c t i o n a t i o n end p u r i f i c a t i o n o f t h e p o l y s s c c h a r i d e s w i t h marked a n t i t u m o r a c t i v i t y , e s p e c i a l l y l e n t i n a n , f r o m L e n t i n u s edodes ( a n e d i b l e mushroom), C a n c e r Res., 30 ( 1 9 7 0 ) 2 7 7 6 - 2 7 7 6 . S. B a r t n i c k i - G a r c i a a n d W.J. N i c k e r s o n , I s o l a t i o n , c o m p o s i t o n and s t r u c t u r e o f c e l l w a l l s o f f i l a m e n t o u s and y e a s t l i k e forms o f M u c r o r o u x i i , B i o c h i m . B i o p h y s . A c t a , 58 ( 1 9 6 2 ) 1 0 2 - 1 1 9 . S. I). Graham, The m o r p h o l o g y a n d a c h e m i c a l a n a l y s i s o f t h e t e l i o s p o r e o f t h e d w a r f b u n t f u n g u s , T i l l e t i a c o n t r a v e r s a , Mycol o g i a , 5 2 ( 1 9 6 0 ) 97-118. R . H e g n a u e r , Chemotaxonomie d e r P f l a n z e n , T h a l l o p h y t e n , B r y o p h y t e n , P t e r i d o p h y t e n a n d Gymnospermen, v o l . 1, B i r k h l l u s e r V e r l a g , B a s e l , S t u t t g a r t , 1962, pp. 1-517. R.R. P a r i s , M. D u r a n d a n d J.L. B o n n e t , S t u d y o f mushrooms b y means o f p a p e r c h r o m a t o g r a p h y , Ann. Pharm. F r a n c . , 1 5 ( 1 9 5 7 ) 677-682. 5. W a k i t s , C a r b o h y d r a t e s a n d a m i n o a c i d s o f mushrooms, N i p p o n N o g e i K a g s k u K s i s h i , 3 6 ( 1 9 6 2 ) 96-100. R . G . B e n e d i c t , V.E. T y l e r , L.R. B r a d y a n d D.D. S t u n t z , O c c u r e n c e o f sedopheptuloae i n carpophores and b a s i d i o a p o r e s o f I n o c y b e s p e c i e s , N a t u r e , 192 (1961) 1077-1078.
66
67 68 69 70 71 72
73 74 75 76
77 78 79 80 81 82 83 84 85 86 87
251
-
J.H. B i r k i n s h a w , C . E . S t i c k i n g a e n d P. T e s s i e r , B i o c h e m i s t r y o f t h e w o o d - r o t t i n g f u n g i . V . The p r o d u c t i o n o f D - t h r e i t o l ( L - e r y t h r i t o l ) b y A r m i l l a r i a m e l l e a , Biochem. J., 42 (1948) 329-333. M. F r e r e j a c q u e , P r e s e n c e o f d - a r a b i t o l i n F i s t u l i n a h e p a t i c a , Compt. Rend. Acad. S c i . F r . , 208 ( 1 9 3 9 ) 1 1 2 3 - 1 1 2 4 . M. F r e r e j a c q u e , The p r e s e n c e o f d - a r a b i t o l i n B o l e t u s b o v i n u s , ComDt. Rend. Acad. S c i . F r . . 217 ( 1 9 4 3 ) 251-252. K . K r a t z l , H. S i l b e r n a g e l a n d H . K . B a e s s l e r , The o c c u r e n c e o f x y l i t o l i n t h e e d i b l e mushroom, P a a l l i o t a c a m p e s t r i s , M o n a t s h . , 94 (1963) 106-109. J. S z u e c s , G r o w i n g mushroom m y c e l i u m , U.S. P a t e n t n o . 2 , 8 5 0 , 8 4 1 (1958). F. R e u s s e r , J.F.T. S p e n c e r a n d H.R. S s l l a n s , P r o t e i n a n d f a t c o n t e n t o f aome mushrooms g r o w n i n s u b m e r g e d c u l t u r e , A p p l . M i c r o b i o l . , 6 (1958) 1-4. D.C. L e e g w a t e r a n d B.M. C r a i g , I n v e s t i g a t i o n s i n t o t h e p r o d u c t i o n o f l i p i d s b y aubmerged c u l t u r e s o f t h e mushroom T r i c h o l o ma nudum 11. S t u d i e s w i t h u n i f o r m l y l a b e l e d g l u c o s e , Can. J. B i o c h e m . P h y s i o l . , 40 ( 1 9 6 2 ) 8 5 7 - 8 6 7 . J.M. B e l l , J.D. E r f l e , J.F.T. S p e n c e r a n d F. R e u s a e r , T r i c h o l o m a nudum a s a a o u r c e o f a m i n o a c i d s , v i t a m i n s , a n d u n i d e n t i f i e d f a c t o r s , Can. J. A n i m a l S c i . , 38 ( 1 9 5 8 ) 1 2 2 - 1 2 8 . J.H. L i t c h f i e l d , N u t r i e n t c o n t e n t o f m o r e l mushroom m y c e l i u m : 8 - v i t a m i n c o m p o s i t i o n , J. F o o d S c i . , 29 ( 1 9 6 4 ) 7 2 3 - 7 2 9 J. S z u e c a , E n h s n c i n g muahroom m y c e l i u m f l a v o r , U S . P a t e n t no. 2111693,664 ( 1 9 5 4 ) . M.W. J e n n i s o n , C.G. R i c h b e r g and A.E. K r i k s z e n s , P h y s i o l o g y o f w o o d - r o t t i n g B a s i d i o m y c e t e a . 11. N u t r i t i v e c o m p o s i t i o n o f mycel i u m grown i n aubmerged c u l t u r e , Appl. M i c r o b i o l . , 5 (1957) 87-95. W.D. B e l l a m y , S i n g l e c e l l p r o t e i n f r o m c e l l u l o s i c w a s t e s , B i o t e c h . Bioeng., 1 6 (1974) 869-880. W.G. C a m p b e l l , The c h e m i e t r y o f t h e w h i t e r o t s o f wood. I..The e f f e c t on wood s u b s t a n c e o f P o l y s t i c t u a v e r a i c o l o r ( L i n n . ) F r . , B i o c h e m . J. ( C a m b r i d g e ) , 2 4 ( 1 9 3 0 ) 1 2 3 5 - 1 2 4 3 . J. W i e r t e l a k , The e f f e c t o f d e c a y c a u s e d b y w h i t e r o t f u n g i o n t h e c h e m i c a l c o m p o s i t i o n o f wood, B u l l . I n t . Acad. P o l o n . S c i . L e t t r . C1. S c i . Math. Nat., Krakbw (81, 1 (1932) 19-36. H. Robak, C u l t u r a l s t u d i e s o n some N o r w e g i a n w o o d - d e s t r o y i n g f u n g i , Medd. V e s t l a n d e t s F o r s t l i g e F o r s o k a s t a , 25 ( 1 9 4 2 ) 1 - 2 4 8 . G. F a h r a e u s , R. N i l s s o n a n d G. N i l s s o n , S t u d i e s i n t h e d e c o m p o s i t i o n o f wood b y means o f aome w h i t e r o t f u n g i , S v e n s k . B o t . T i d a k r . , 43 ( 1 9 4 9 ) 343-356. D . F e n g e l , U l t r a s t r u c t u r a l o r g a n i z a t i o n o f t h e c e l l w a l l compon e n t s , J. Polym. S c i . , C 36 ( 1 9 7 1 ) 3 8 3 - 3 9 2 . D.S. C h a h a l a n d M. Moo-Younq. B i o c o n v e r a i o n o f l i g n o c e l l u l o s i c s i n t o a n i m a l f e e d w i t h Chaetomium c e l l u l o l y t i c u m , Dev. I n d . M i c r o b i o l . , 22 ( 1 9 8 1 ) 1 4 3 - 1 5 9 . D.S. C h a h a l , M. Moo-Young a n d G . S . Dhillon, Bioconversion o f w h e a t a t r a w a n d w h e a t c o m p o n e n t s i n t o s i n g l e - c e l l p r o t e i n , Can. J . M i c r o b i o l . , 25 ( 1 9 7 9 ) 7 9 3 - 7 9 7 . D.S. C h a h a l , M. Moo-Young a n d D. V l a c h , P r o t e i n p r o d u c t i o n a n d g r o w t h c h a r a c t e r i s t i c s o f Jhaetomium c e l l u l o l y t i c u m d u r i n g s o l i d s t a t e f e r m e n t a t i o n o f c o r n s t o v e r , M y c o l o g i a , 7 5 ( 1 9 8 3 ) 597-603. D.S. Chahal and D.I.C. Wang, Chaetomium c e l l u l o l y t i c u m , g r o w t h b e h a v i o r o n c e l l u l o s e a n d p r o t e i n p r o d u c t i o n ..~ M y c o l o -s i a ,- 7 0 (1978) 160-170. M. Ek a n d K . - E . E r i k s a o n , Conversion o f waates f i b r e s i n t o p r o Ghose ( E d . ) , P r o c . I n t . Symposium on B i o c o n v e r t e i n , i n : T.K. s i o n , Haus Khas, New D e h l i , I n d i a , F e b r u a r y 2 1 - 2 3 , 1 9 7 7 , p p . 1 - 6 .
-
252
-
K.-E. E r i k s s o n , Swedish developments i n b otechnology r e l a t e d t o t h e p u l p and p a p e r i n d u s t r y , T a p p i , 6 8 ( 1 9 8 5 ) 46-55. 8 9 A . I . H a t a k k a , P r e t r e a t m e n t o f w h e a t s t r a w by w h i t e - r o t f u n g i f o r enzymic s a c h a r i f i c a t i o n o f c e l l u l o s e , E u r J. Appl. M i c r o b i o l . B i o t e c h n o l . . 18 ( 1 9 8 3 ) 3 5 0 - 3 5 7 . 90 A.I. H a t a k k a and T.I. P i r h o n e n , C u l t i v a t i o n o f w o o d - r o t t i n g f u n g i on a g r i c u l t u r a l l i g n o c e l l u l o a i c m a t e r i a l s f o r t h e p r o d u c t i o n o f c r u d e p r o t e i n , i n : A . Temmes ( E d . ) , C o l l e c t e d S c i e n t i f i c P s p e r s t o Commemorate t h e 6 0 t h B i r t h d a y o f P r o f e s s o r H e l g e G y l l e n b e r g , 4 t h J u l y , 1984, H e l s i n k i , pp. 1-23. 9 1 A.I. H a t a k k a a n d T . I . P i r h o n e n , C u l t i v a t i o n o f w o o d - r o t t i n g f u n g i on a g r i c u l t u r a l l i g n o c e l l u l o s i c m a t e r i a l s f o r t h e p r o d u c t i o n o f c r u d e p r o t e i n , A g r i c . Wastes, 1 2 ( 1 9 8 5 ) 81-.97. 92 A. Leonowicz, M. Wojtas-Wasilewska and A. P s s z c z y h s k i , P r o p o s a l s c o n c e r n i n g t h e c u l t i v a t i o n o f h i g h e r f u n g i o n i n d u s t r i a l wastes, P o l i s h Techn. Rev., 67 ( 1 9 7 5 ) 6-8. 9 3 S . L a b e n d z i n s k i , S e a r c h f o r n o n - c o n v e n t i o n a l home s u b s t r a t e s f o r f e e d b i o m a s s p r o d u c t i o n , P r z e m . F e r m . R o l n y , 18 ( 1 9 7 4 ) 1 - 4 . 9 4 P . P . Matteau a n d D . H . B o n e , S o l i d - s t a t e f e r m e n t a t i o n o f m a p l e wood, B i o t e c h n o l . L e t t . 2 ( 1 9 8 0 ) 1 2 7 - 1 3 2 . 9 5 M . Moo-Young, A . J . D a u g u l i s , D . S . C h a h a l a n d D . G . M a c D o n a l d , The W a t e r l o o p r o c e s s f o r SCP p r o d u c t i o n f r o m w a s t e b i o m a s s , P r o c e s s Biochem., 1 4 ( 1 9 7 9 ) 38-40. 96 2. P i o t r o w s k i , T r e n d s i n t h e b r a n c h e o f f e e d biomass p r o d u c t i o n from l i g n o c e l l u l o s e b y p r o d u c t s , i n : I n f o r m a t i o n C e n t r a l C e n t e r ( E d . ) C I N T E , WIT 1 2 / 8 0 , Warsaw, 1 9 8 0 , p p . 1 - 1 2 . 97 J . F . Seaman, Energy a n d m a t e r i a l s from t h e f o r e s t b i o m a s s , i n : P r o c . I n t . S y m p o s iu m o n O l e e n F u e l s f r o m Biomass a n d Wastes, Orlando, J a n u a r y 25-28, 1977, pp. 153-168. 9 8 M . T a n s k a a n d R . M a t s u n o , C o n v e r s i o n o f l i g n o c e l l u l o s i c mater i a l s t o s i n g l e - c e l l p r o t e i n (SCP): r e c e n t d e v e l o p m e n t s and p r o b l e m s , Enzyme M i c r o b . T e c h n o l . , 7 ( 1 9 8 5 ) 1 9 7 - 2 0 6 . 9 9 M . T a n i g u c h i , Y . K o m e t a n i , M . T a n a k s , R . Mat suno and T Komikubo, P r o d u c t i o n o f s i n g l e - c e l l p r o t e i n from e n z y m a t i c h y d r o l y z a t e o f r i c e s t r a w , E u r . J . Appl. M i c r o b i o l . B i o t e c h n o l , 14 ( 1 9 8 2 ) 74-80. 1 0 0 J. T r o j s n o w s k i , A . L e o n o w i c z a n d M . W o j t s s - W a s i l e w a k a , P r o t e i n from i n d u s t r i a l wastes, Problemy, 372 ( 1 9 7 7 ) 26-29 1 0 1 M . Moo-Young, D . S . C h a h a l , J.E. Swan a n d C . W . R o b i n s o n , SCP p r o d u c t i o n by C h a e t o m i u m c e l l u l o l y t i c u m , a new t h e r m o t o l e r a n t c e l l u l o l y t i c f u n g u s . B i o t e c h n o l . B i o e n g . , 19 ( 1 9 7 7 ) 5 2 7 - 5 3 8 . 102 Canadian F o r e s t I n d u s t r i e s , Paper and sawdusts as s o u r c e s o f , y e s , p r o t e i n , Can. F o r . I n d . , 9 5 ( 1 9 7 5 ) 7 6 - 7 7 . E r i k s s o n , C o n v e r s i o n o f c e l l u l o s i c waste i n t o 1 0 3 M. Ek and K.-E. p r o t e i n , App. P o l y m e r Symp., 2 8 ( 1 9 7 5 ) 1 9 7 - 2 0 3 . 1 0 4 C.S. P e i t e r s e n , P r o d u c t i o n o f c e l l u l o s e a n d p r o t e i n f r o m b a r l e y s t r a w by T r i c h o d e r m a v i r i d e , B i o t e c h n o l . B i o e n g . , 1 7 ( 1 9 7 5 ) 361-374. 1 0 5 H . R o m a n t s c h u k , The P e k i l o p r o c e s s : a d e v e l o p m e n t p r o j e c t , i n : C o n t i n u o u s C u l t u r e 6: A p p l i c a t i o n a n d N e w F i e l d s , L o n d o n , 1 9 7 6 , pp. 116-121. 1 0 6 H . R o m a n t s c h u k , F e e d i n g c a t t l e s t t h e p u l p m i l l , U n a s y l v s , 26 (1974) 15-17. 1 0 7 V.P.C. C r e s t w o o d , W . A . H a r d w i c k , 0 . S e e l e y , R.D. S e e l e y a n d W . Grlwes, F e r m e n t a t i o n p r o c e s s f o r p r o d u c i n g e d i b l e muahroom m y c e l i u m , U.S. P a t e n t n o . 2 , 9 2 8 , 2 1 0 ( 1 9 6 0 ) . 1 0 8 R.K. Andren, M.H. Mandels and J.E. Madeiros, P r o d u c t i o n o f s u g a r s f r o m w a a t e c e l l u l o s e by e n z y m i c h y d r o l y s i s . I . P r i m a r y e v a l u a t i o n o f s u b s t r a t e s , A p p l . P o l y m e r S y m p ., 2 8 ( 1 9 7 5 ) 2 05- 2 1 9 . 88
-
253
-
C . R . W i l k e and R . D . Yang, P r o c e s s - d e v e l o p m e n t s t u d i e s o f t h e e n z y m a t i c h y d r o l y s i s o f n e w s p r i n t , App. P o l y m e r Symp., 2 8 (1975) 175-188. 1 1 0 T.-M. Su a n d J . P a u l a v i c u s , E n z y m a t i c s a c c h a r i f i c a t i o n o f cel l u l o s e by t h e t h e r m o p h i l i c A c t i n o m y c e t e s , A p p l . P o l y m e r Sy m p ., 28 ( 1 9 7 5 ) 221-236. 111 Y . Yam an ak a, P.A. C a r r o a d , M . R i a z a n d C . R . W i l k e , D e c o m p o s i t i o n of l i g n i n and c e l l u l o b i o s e i n r e l a t i o n t o t h e enzymatic h y d r o l y s i s o f c e l l u l o s e , i n : P r o c . 2 n d Symp. Res. A p p l . N a t l . N e e d s , W a s h i n g t o n D C , November 7 - 9 , 1 9 7 7 , R A N N , W a s h i n g t o n D C , 1977. DD. 108-115. 1 1 2 D.S. . C h a h a l a n d D . L . H a w k w o r t h , C h a e t o m i u m c e l l u l o l y t i c u m , a new t h e r m o t o l e r a n t a n d c e l l u l o l y t i c C h a e t o m i u m . I . I s o l a t i o n , d e s c r i p t i o n and g r o w t h r a t e , Mycologia, 6 8 (1976) 600 610. 113 R . J i l e k , J . K o m i n e k , H. P r o h a z k a , J . F u s k a , V . S e v c i k , 0 . Mack o a n d J. K a t z e r , D e g r a d a t i o n o f s u l p h i t e l i q u o r w i t h l i g n i v o r o u s f u n g i , C z e c h o s l o v a k i a n P a t e n t no. 140576 ( 1 9 7 1 ) . 1 1 4 J. T r o j a n o w s k i , A . Leonowicz a n d M. Wojtas-Wasilewska, Microb i a l s y n t h e s i s o f f e e d p r o t e i n f r o m l i g n o c e l l u l o a i c raw m a t e r i a l s a n d wastes. I . The s e l e c t i o n o f s t r a i n s o f h i g h e r f u n g i , i n : Maria Curie-Sklodowaka U n i v e r s i t y (Ed.), Lublin, 1975, pp. 1-35. 115 D . M . U p t e r g r a f f a n d W . D . G r a n t , M i c r o b i a l u t i l i z a t i o n o f P i n u s r a d i a t a b a r k , Appl. M i c r o b i o l . , 30 (1975) 722-726 1 1 6 A . L e o n o w i c z , J . S z c z o d r a k a n d Z . I l c z u k , C u l t i v a t i o n o f some B a a i d i o m y c e t e a on t h e p i n e b a r k , 1979, p e r s o n a l communication. 1 1 7 J.A. B u a w e l l a n d E . O d i e r , L i g n i n b i o d e g r a d a t i o n , i n : G . G . S t e wart a n d I . R u s s e l l ( E d s . ) , C r i t i c a l R e v i e w a i n B i o t e c h n o l o g y , C R C Press, Boca R a t o n , F l o r i d a , 6 , 1 9 8 7 , p p . 1 - 6 0 . 118 C.S. E v a n s , L i g n i n d e g r a d a t i o n , P r o c . B i o c h e m . , 2 2 ( 1 9 8 7 ) 102-105. 1 1 9 T . K . K i r k a n d R . L . F a r r e l l , E n z y m a t i c " c o m b u s t i o n " : The m i c r o b i a k d e g r a d a t i o n o f l i g n i n , Ann. Rev. M i c r o b i o l . , 4 1 ( 1 9 8 7 ) 465-505. 1 2 0 A . L e o n o w i c z , M. W o j t a s - W a s i l e w s k a , J . R o g a l s k i a n d J . L u t e r e k , B i o l o g i c a l decomposition o f l i g n o c e l l u l o s e , i n : A. B l a z e j and J . Z e m e k ( E d s . ) , I n t e r b i o t e c h ' 8 7 : Enzyme T e c h n o l o g i e - P r o g r e s s i n B i o t e c h n o l o g y , E l s e v i e r , Amsterdam, O x f o r d , New York, Tokyo, 4 , 198B, pp. 415-451. 121 K Haider and J. Trojanowaki, Decomposition o f s p e c i f i c a l l y 14C-labelled phenols and dehydropolymers o f c o n i f e r y l a l c o h o l a s m o d e l f o r l i g n i n d e g r a d a t i o n by s o f t a n d w h i t e r o t f u n g i , A r c h . M i c r o b i o l . , 105 ( 1 9 7 5 ) 3 3 - 4 1 . E r i k s s o n , L i g n i n d e g r a d a t i o n und u t i l i z a t i o n 122 P. Ander and K . - E . by m i c r o - o r g a n i s m s , l i n : M.J. B u l l ( E d . ) , P r o g r e s a i n I n d u s t r i a l M i c r o b i o l o g y , E l a e v i e r , A m s t e r d a m , 14, 1 9 7 8 , p p . 1 - 5 8 . 1 2 3 K . H a i d e r , J . T r o j a n o w a k i a n d V . S u n dm an , S c r e e n i n g f o r l i g n i n d e g r a d i n g b a c t e r i a by m e a n s o f 1 4 C - l a b e l l e d l i g n i n a , A r c h . M i c r o b i o l . , 119 (1978) 103-106. 1 2 4 R . V i c u n a , 8 . G o n z a l e s , M . D . Mozuch a n d T . K . K i r k , M e t a b o l i s m o f l i g n i n model compounds o f t h e a r y l g l y c e r o l - h - a r y l e t h e r t y p e by Pseudomonas a c i d o v o r a n s 03, A p p l . E n v i r o n . M i c r o b i o l . , 5 3 (1987) 2605-2609. 1 2 5 A.I. H a t a k k a , A. K a n t e l i n e n , A . T e r v i l a - W i l o a n d L . V i i k a r i , P r o d u c t i o n o f l i g n i n a a e s by P h l e b i a r a d i a t a i n a g i t a t e d c u l t u r e s , i n : E . O d i e r ( E d . ) , P r o c . I n t . S e m i n a r o n L i g n i n En zy mic a n d M i c r o b i a l D e g r a d a t i o n , P a r i a , A p r i l 2 3 - 2 4 , 1 9 8 7 , I N R A P u b l i c a t i o n s , P a r i a , 1987, pp. 185-189. 1 2 6 L . J b n s s o n , T . J o h a n s s o n , K . S j b s t r b m a n d P . O . Nyman, P u r i f i c a t i o n o f l i g n i n a s e isozymes from t h e w h i t e r o t f u n g u s Trametea 109
-
127
128
129
130
131
132
133
134
135
136
137
138 139
140
141
142
254
-
v e r s i c o l o r , A c t a Chem. Scand., B 4 1 ( 1 9 8 7 ) 766-769. A . K a n t e l i n e n , R. W a l d n e r , M.-L. N i k u - P a a v o l a and M.S.A. Leis o l a , Comparison o f two l i g n i n - d e g r a d i n g f u n g i : P h l e b i a r a d i a t a and Phanerochaete c h r y s o s p o r i u m , Appl. M i c r o b i o l . B i o t e c h n o l . , 28 ( 1 9 8 8 ) 1 9 3 - 1 9 8 . T.K. K i r k , M. T i e n , P . J . K e r s t e n , M.D. Mozuch a n d B . K a l y a n a r a man, L i g n i n a s e o f P h a n e r o c h a e t e c h r y s o s p o r i u m , M e c h a n i s m o f i t s degradation o f the non-phenolic a r y l g l y c e r o l - h - a r y l ether s u b s t r u c t u r e o f l i g n i n , B i o c h e m . J., 236 ( 1 9 8 6 ) 279-287. K . M i k i , V . R e n g a n a t h a n , M.B. M a y v i e l d a n d M.H. G o l d , A r o m a t i c r i n g cleavage o f a &biphenyl e t h e r dimer catalysed by l i g n i n p e r o x i d a s e o f P h a n e r o c h a e t e c h r y s o s p o r i u m , FEBS L e t t . , 210 (1987) 199-203. M. Shimada, 1. H a t t o r i , T . Umezawa, T . H i g u c h i a n d K . U z u r a , R e g i o s p e c i f i c oxygenations d u r i n g r i n g cleavage o f a secondary m e t a b o l i t e 3,4-dimethoxybenzyl a l c o h o l c a t a l y z e d by l i g n i n per o x i d a s e , FEES L e t t . , 2 2 1 ( 1 9 8 7 ) 3 2 7 - 3 3 1 U . W e s t e r m a r k a n d K.-E. Eriksson, Cellobiose: quinone oxidored u c t a s e , a new w o o d - d e g r a d i n g enzyme f r o m w h i t e - r o t f u n g i , A c t a Chem. Scand., B 28 ( 1 9 7 4 ) 209-214. A.R. Ayers, S.B. A y e r s and K.-E. Eriksson, C e l l l o b i o s e oxidase, p u r i f i c a t i o n l a n d p a r t i a l c h a r a c t e r i z a t i o n o f a hemoprotein E u r . J. B i o c h e m . , 9 0 ( 1 9 7 8 ) f r o m S p o r o t r i c h u m pulverulen-. 171-181. J . K . G l e n n a n d M.H. Gold, P u r i f i c a t i o n and c h a r a c t e r i z a t i o n o f an e x t r a c e l l u l a r Mn(I1)-dependent p e r o x i d a a e from t h e l i g n i n degrading Basidiomycete, Phanerochaete chrysosporium, Arch. B i o chem. B i o p h y s . , 242 (1985) 329-341. T . J o h a n s s o n a n d P . O . Nyman, A manganese ( 1 1 ) - d e p e n d e n t e x t r a c e l l u l a r p e r o x i d a s e from t h e w h i t e - r o t fungus Trametes v e r s i c o lor, A c t a Chem. Scand., B 4 1 ( 1 9 8 7 ) 7 6 2 - 7 6 5 . A. N i s h i d a and K.-E. E r i k s s s o n , Formation, p u r i f i c a t i o n and p a r t i a l c h a r a c t e r i z a t i o n o f methanol oxidase, a H202-producing Appl. B i o enzyme i n P h a n e r o c h a e t e c h r y s o s p o r i u m , B i o t e c h n o l chem., 9 ( 1 9 8 7 ) 3 2 5 - 3 3 8 . N. K a t o , S . M i z u n o , Y . Imada, M. Shimao a n d C. Sakazawa, F o r mate p r o d u c t i o n f r o m m e t h a n o l b y f o r m a l d e h y d e d i s m u t a s e coup l e d w i t h a methanol o x i d a t i o n system, Appl. M i c r o b i o l . B i o technol., 27 ( 1 9 8 8 ) 5 6 7 - 5 7 1 . K.-E. E r i k s s o n , B. P e t t e r s o n , J. V o l c a n d V . M u s i l e k , Format i o n and p a r t i a l c h a r a c t e r i z a t i o n o f g l u c o s e - 2 - o x i d a s e , a H202 p r o d u c i n g enzyme i n P h a n e r o c h a e t e c h r y a o s p o r i u m , A p p l . M i c r o b i o l . B i o t e c h n o l . , 23 ( 1 9 8 6 ) 257-262. P . J . K e r s t e n a n d T . K . K i r k , I n v o l v e m e n t o f a new enzyme, glyoxal oxidase, i n e x t r a c e l l u l a r H 0 p r o d u c t i o n by Phaneroc h a e t e c h r y s o s p o r i u m , J. B s c t e r i o 1 . f ? 6 9 ( 1 9 8 7 ) 2195 2201. T.D. F r i c k a n d R.L. C r a w f o r d , M e c h a n i s m s o f m i c r o b i a l demeH i g u c h i , H.-m. Chang t h y l a t i o n o f l i g n i n model polymers, i n : T K i r k (Eds.), Recent Advances i n L i g n i n B i o d e g r a d a t i o n and T.K. R e s e a r c h , U n i . P u b l i s h e r s Co., L t d . Chuo-ku, T o k y o 1 0 3 Japan, 1983, pp. 1 4 3 - 1 5 2 . A.I. Hatakka, D e g r a d a t i o n o f v e r a t r i c a c i d and o t h e r l i g n i n - r e l a t e d a r o m a t i c sompounds b y t h e w h i t e - r o t f u n g u s P y c n o p o r u s c i n n a b a r i n u s , Arch. M i c r o b i o l . , 1 4 1 (1985) 22-28. M.H. G o l d , M.B. M a y f i e l d , T . M . Cheng, K K r i a n a n g k u r a , M. S h i made, A. E n o k i a n d J . K . Glenn, A Phanerochaete c h r y s o s p o r i u m mutant d e f e c t i v e i n l i g n i n d e g r a d a t i o n as w e l l as s e v e r a l o t h e r secondary m e t a b o l i c f u n c t i o n s , Arch. M i c r o b i o l . , 132 (1982) 1 1 5 - 1 22. A.C. F r a z e r , I. B o s s e r t a n d L . Y . Young, E n z y m a t i c a r y l - 0 - m e t h y l -
-
143 144 145 146
147
148 149
150
255
-
14C l a b e l i n g o f m o d e l l i g n i n monomers, A p p l . E n v i r o n . M i c r o b i o l . , 5 1 ( 1 9 8 6 ) 80-83. A . L e o n o w i c z , G. S z k l a r z a n d M. W o j t a a - W s s i l e w s k a , The e f f e c t o f f u n g a l l a c c s s e on f r a c t i o n a t e d l i g n o s u l p h o n a t e s ( P e r i t a n - N a ) , P h y t o c h e m . , 24 ( 1 9 8 5 ) 393-396. G. S z k l a r z a n d A . L e o n o w i c z , C o o p e r a t i o n b e t w e e n f u n g a l l a c c a a e and g l u c o s e o x i d a s e i n t h e d e g r a d a t i o n o f l i g n i n d e r i v a t i v e s , Phytochem., 25 ( 1 9 8 6 ) 2537-2539. J. L o b a r z e w s k i , J. T r o j a n o w s k i a n d M. W o j t a s - W a s i l e w s k a , The e f f e c t o f f u n g a l p e r o x i d a s e on N a - l i g n o s u l p h o n a t e s , H o l z f o r s c h . , 36 ( 1 9 8 2 ) 173-176. P . J . K e r s t e n , 6 . K a l y a n a r a m s n , K . E . Hammel a n d T . K . Kirk, H o r s e r a d i s h p e r o x i d s s e o x i d i z e s , 1,2,4,5-tetramethoxybenzene b y a c a t i o n r a d i c a l mechanism, i n : E . O d i e r ( E d . ) , P r o c . I n t . Sem i n a r on L i g n i n E n z y m i c a n d M i c r o b i a l D e g r a d a t i o n , P a r i s , A p r i l 23-24, 1987, I N R A P u b l i c a t i o n s , P a r i s , 1 9 8 7 , p p 7 5 - 7 9 . A. L e o n o w i c z , J . R o g a l s k i , J . S z c z o d r s k and J . F i e d u r e k , The p o s s i b l e k e y r o l e o f g l u c o s e o x i d s s e i n t r a n s f o r m a t i o n o f l i g n o c e l l u l o s e , i n : Swedish F o r e s t P r o d u c t s Research Labor a t o r y a n d The S w e d i s h A s s o c i a t i o n o f P u l p a n d P a p e r E n g i n e e r s ( E d s . ) , P r o c . 3 r d I n t e r n . C o n f . E i o t e c h n o l . F u l p P a p e r Ind., S t o c k h o l m , Sweden, J u n e 1 6 - 1 9 , 1 9 8 6 , p p . 1 6 0 - 1 6 2 . M. W o j t a s - W a s i l e w s k a a n d J . L u t e r e k , The e f f e c t o f f u n g a l p r o t o c a t e c h u a t e 3,4-dioxygenase on sodium l i g n o s u l p h o n a t e f r a c t i o n s , P h y t o c h e m . , 26 ( 1 9 8 7 ) 2 6 7 1 - 2 6 7 4 . M . W o j t a s - W a s i l e w a k a , J. L u t e r e k , A . D a w i d o w i c z a n d A . L e o n o wicz, D e a r o m a t i z a t i o n o f l i g n i n d e r i v a t i v e s by f u n g a l p r o t o c a t e c h u a t e 3 , 4 - d i o x y g e n a s e i m m o b i l i z e d on p o r o s i t y g l a s s , B i o t e c h n o l . B i o e n g . , 29 ( 1 9 8 7 ) i n p r e s s . 3. L o b s r z e w s k i e n d P a s z c z y n s k i , L i g n o c e l l u l o s e b i o t r a n s f o r m a t i o n with i m m o b i l i z e d c e l l u l a s e , D-glucose o x i d a s e and f u n g a l p e r o x i d a s e a , Enzyme M i c r o b . T e c h n o l . , 7 ( 1 9 8 5 ) 5 6 4 - 5 6 6 .
ACKNOWLEDGEMENT T h i s w o r k was s u p p o r t e d b y t h e P o l i s h S c i e n t i f i c P r o j e c t s Nos.
C P E P 04.11.2.33,
CPEP 0 4 . 0 2 / 2 . 2
a n d CPER 3 . 1 3 . 2 . 1 . 1 8 .
This Page Intentionally Left TBlank
II. Bioenergy and Environment
This Page Intentionally Left TBlank
IMMOBILIZED P H O T O S Y N T H E T I C S Y S T E M S F O R THE P R O D U C T I O N
OF F U E L S AND CHEMICALS D.O.
HALL,
K.K.
R A O and I . H .
PARK
D i v i s i o n o f Biosphere Sciences, King’s L o n d o n WE 7AG, U . K .
C o l l e g e London
ABSTRACT The e f f i c i e n c y o f s o l a r e n e r g y c o n v e r s i o n b y p h o t o s y n t h e s i s i n t h e n a t u r a l ecosystem seldom exceeds 1 % on an annual b a s i s , r e p r e s e n t s s t o r e d energy.
but t h i s
B i o m i m e t i c systems w i t h i s o l a t e d components
o f t h e p h o t o s y n t e h t i c l i g h t e n e r g y h a r v e s t i n g a n d c o n v e r s i o n appar a t u s have been d e s i g n e d w i t h t h e a i m o f a c h i e v i n g h i g h e r s o l a r e n e r gy c o n v e r s i o n e f f i c i e n c e s .
Chloroplasts,
t h y l a k o i d membranes a n d P S I
p a r t i c l e s f r o m p l a n t s and c y a n o b a c t e r i a have been used t o g e t h e r w i t h r e d o x c a t a l y s t s a n d enzymes f o r t h e p h o t o p r o d u c t i o n o f H 2 , NADPH2.
H202 and
T h y l a k o i d s and P S I 1 membranes h a v e a l s o b e e n u s e d f o r t h e
g e n e r a t i o n o f H2 and p h o t o c u r r e n t s r e s p e c t i v e l y w i t h w a t e r a s t h e e l e c t r o n source.
C y a n o b a c t e r i a a r e good “ b i o c a t a l y s t s ”
NH3,
d u c t i o n o f H2,
H202,
organic acids etc.
p o t e n t i a l sources f o r g l y c e r o l ,
h c a r o t e n e and o t h e r p l a n t p i g m e n t s .
Microalgae a r e a l s o prime p o t e n t i a l organisms
CO
f o r photopro-
Other microalgae are
f o r the absorption o f
from t h e environment since they r e q u i r e only i n o r g a n i c n u t r i e n t s
2
and water
for
growth.
Immobilization o f the microalgae i n gels,
v i n y l a n d p o l y u r e t h a n e foams,
h o l l o w f i b r e membranes e t c .
poly-
stabilises
t h e i r p h o t o s y n t h e t i c a c t i v i t y and f a c i l i t a t e s t h e i r m a n i p u l a t i o n i n photobioreactora.
1
INTRODUCTION
1.1
Importance o f photosynthesis
A l l our f o s s i l ( o i l ,
coal,
gas)
and b i o l o g i c a l
are derived v i a the process o f photosynthesis.
(biomass)
The amount o f c a r b o n
f i x e d a n n u a l l y by p h o t o s y n t h e t i c p r o c e s s e s i s a p p r o x i m a t e l y 10 tonnes. num,
fuels
11
The e n e r g y c o n t e n t o f t h i s f i x e d c a r b o n i s 3 ~ 1 0 ’ J~ p e r an-
which i s about 10 times the world’s
present annual consumption
o f energy.
260
-
Photosynthetic carbon f i x a t i o n u s i n g s o l a r r a d i a t i o n i s
a s i g n i f i c a n t c o n t r i b u t o r t o our energy resource:
i t has been and
w i l l c o n t i n u e t o be one o f t h e m a j o r s o u r c e s o f e n e r g y on E a r t h .
A t p r e s e n t p h o t o s y n t h e s i s i s t h e o n l y p r o c e s s w h i c h removes v a s t
C O P from t h e atmosphere; t h i s u n i q u e r o l e p l a y e d by pho-
amounts o f
t o s y n t h e s i s i s v i t a l i n r e d u c i n g t h e a t m o s p h e r i c C02 c o n t e n t and t h u s p r e v e n t i n g e x c e s s i v e g l o b a l warming.
P h o t o s y n t h e s i s and C O P
r e c y c l i n g has r e c e n t l y a t t r a c t e d t h e a t t e n t i o n o f p o l i c y makers concerned w i t h energy p l a n n i n g , depollution
g l o b a l w a r n i n g and e n v i r o n m e n t a l
[ll.
I n a d d i t i o n t o C02 f i x a t i o n t o carbohydrates,
photosynthetic
p r o c e s s e s can a l s o be used t o p r o d u c e l i p i d s ( f a t s and o i l s ) , nia,
amino a c i d s ,
proteins,
hydrogen,
hydrogen peroxide,
The t h e o r e t i c a l maximum e f f i c i e n c y energy conversion,
etc.
for photosynthetic
solar
d e f i n e d as t h e r a t i o o f s t o r e d c h e m i c a l e n e r g y
t o t h e i n c i d e n t s o l a r r a d i a t i o n on t h e p h o t o s y n t h e s i z e r , l a t e d t o b e a b o u t 1 3 %; However,
X (J.R.
B o l t o n and D.0
t h i s maximum c o n v e r s i o n e f f i c i e n c y
chieved i n the f i e l d ; o n an a n n u a l b a s i s .
i s calcu-
t h e p r a c t i c a l maximum c o n v e r s i o n e f f i c i e n c y
under optimal c o n d i t i o n s i s 9 blished).
ammo-
Hall,
unpu-
i s n e v e r a-
f o r most p l a n t s p e c i e s i t seldom exceeds 1
X
There i s t h e r e f o r e a g r e a t i n t e r e s t i n d e v e l o -
ping photobiological/photochemical
systems w h i c h would mimic t h e
energy conversion process o f n a t u r a l photosynthesis,
hopefully with
better efficiency.
1.2 P h o t o m i m e t i c s y s t e m s There a r e two t y p e s o f n a t u r a l p h o t o s y n t h e s i s v i z o x y g e n i c (water-splitting) and anoxygenic
c a r r i e d o u t by p l a n t s ,
a l g a e and c y a n o b a c t e r i a
( w h e r e w a t e r i s n o t u s e d aa e l e c t r o n s o u r c e )
t i n g i n photosynthetic bacteria.
opera-
I n both types the essential featu-
r e s are: l i g h t energy a b s o r p t i o n b y antenna pigments, t r a n s f e r o f absorbed energy t o
a reaction centre with special chlorophylls,
charge s e p a r a t i o n and t r a n s f e r t o quinones v i a p h e o p h y t i n s and f i n a l l y e n e r g y c o n v e r s i o n t o ATP a n d NAD(P)H t h r o u g h r e d o x p r o t e i n s .
A l l t h e s e p r o c e s s e s o c c u r a t a f a s t r a t e t h r o u g h components l o c a t e d i n membrsnes.
P h o t o b i o l o g i s t s and p h o t o c h e m i a t s a r e i n v o l v e d i n un-
d e r s t a n d i n g and m i m i c k i n g v a r i o u s s e g m e n t s o f t h i s p h o t o s y n t h e t i c energy c o n v e r s i o n process. (a)
These i n c l u d e :
s y n t h e s i s and s t r u c t u r e a n a l y s i s o f Mn complexes m i m i c k i n g
t h e P S I 1 o x y g e n e v o l u t i o n c o m p l e x 121,
(b)
261
-
s y n t h e s i s and s t u d y o f r e a c t i o n r a t e s and k i n e t i c s o f mul-
ticomponent carotenoid-porphyrin-quinone l i g h t a b s o r p t i o n and energy t r a n s f e r ria.
Molecular t r i s d s ,
tetrads,
complexes m i m i c k i n g
i n photosynthetic bacte-
and r e c e n t l y a p e n t a d have been
assembled [ 3 1 , ( c ) synthesis o f e l e c t r o n donor-acceptor t h e mechanism o f e l e c t r o n t r a n s f e r
compounds t o u n d e r s t a n d
141,
w i t h pho-
( d ) d e s i g n o f p r o t e o - l i p i d m o l e c u l a r a s s e m b l i e s (e.9. tosensitizer
dyes e n t r a p p e d i n l i p i d v e s i c l e s )
t o study elec-
t.ron m i g r a t i o n and c h a r g e a e p s r s t i o n i n v e s i c l e s [ 5 1 , ( e ) b u i l d i n g p h o t o c h e m i c s l e n d p h o t o e l e c t r o c h e m i c a l a r r a y s comprising photosensitizer, electron relay,
and r e d o x c a t a l y s t s
f o r w a t e r s p l i t t i n g o r f o r C02 r e d u c t i o n 161, ( f ) i s o l a t i o n o f t h y l a k o i d membranes, particles
i n d i v i d u a l photosystem
( P S I a n d PS 1 1 ) o r b a c t e r i a l c h r o m s t o p h o r e a a n d deaystems f o r t h e p h o t o p r o d u c t i o n o f energy
signing " i n vitro" r i c h chemicals,
and
( g ) c u l t u r i n g c y a n o b a c t e r i a o r algae under " s t r e s s "
f o r the
e x c r e t i o n o f s p e c i f i c m e t a b o l i t e s 1 7 1. Our l a b o r a t o r y h a s m a i n l y b e e n i n t e r e s t e d i n t h e l a s t t w o ( f and 9 )
2
t o p i c s a n d e m p h a a i s w i l l b e p l a c e d on t h e s e p r o c e s s e s .
IMMOBILIZATION I m m o b i l i z a t i o n i s t h e p r o c e s s o f a t t a c h i n g c e l l s o r t h e i r con-
s t i t u e n t b i o c a t a l y a t s t o a s o l i d m a t r i x s o t h a t t h e y do n o t move i n d e p e n d e n t l y when p l a c e d i n a f l u i d e n v i r o n m e n t . b e c a r r i e d o u t b y p h y s i c a l means, i n a g e l o r foam m a t r i x , binding.
o f t e n e n h a n c e d r e d u c t i o n r a t e s due t o c o n c e n t r a -
t i o n o f c a t a l y s t surface, permeability,
are
1OSS
such 5s a d s o r p t i o n o r entrapment
o r by c h e m i c a l methods such a s c o v a l e n t
The a d v a n t a g e s o f i m m o b i l i z a t i o n a r e s t a b i l i z a t i o n o f c a -
talytic activity,
products,
I m m o b i l i z a t i o n can
i n c r e a s e d c e l l metabolism and c e l l w a l l
ease o f s e p a r a t i o n and r e u s e o f c a t a l y s t s f r o m f l u i d
and p r o c e s s c o n t r o l i n a b i o r e a c t o r . o f a c t i v i t y during immobilization,
Main disadvantagea
t h e enzyme a c t i v i t i e s
a r e e x t r s c e l l u l a r a n d l i m i t a t i o n o f r e a c t i o n r a t e s due t o d i f f u s i o n resistance.
Gels (acrylamide,
glutaraldehyde-albumin
agar,
sponges,
elginate,
carrageenan,
r e t i c u l a t e foams ( p o l y v i n y l
chitosen), end po-
l y u r e t h a n e ) p o l y p r o p y l e n e and p o l y a u l f o n e h o l l o w f i b r e s and c e r a m i c s (silica)
a r e t h e u s u a l m a t e r i e l s u s e d aa t r a n s p a r e n t o r r e f l e c t i n g
supports f o r immobilization [8,91.
-
262
Entrapment i n porous g e l s o r
-
foam m a t r i x i s t h e f a v o u r e d t e c h -
nique f o r the immobilization o f chloroplasts, and a l g a l c e l l s ,
chromatophores,
plant
e t c a s i t d o e s n o t m o d i f y o r c a u s e any damage t o
t h e o r g a n e l l e or c e l l .
Since l i g h t i s a d i r e c t substrate f o r photo-
s y n t h e s i z e r s t h e i m m o b i l i z a t i o n m a t r i x must be reasonably transpar e n t as w e l l as b e i n g p o r o u s f o r p e n e t r a t i o n o f t h e c e l l s .
I n our
i m m o b i l i z a t i o n w o r k w i t h c h l o r o p l a s t s a n d c y a n o b a c t e r i a we h a v e used agar and a l g i n a t e t e l s ,
p o l y u r e t h a n e a n d p o l y v i n y l foams,
and
membrane h o l l o w f i b r e s . A l q i n a t e i s a p o l y m e r o f mannuronic a c i d and g u l u r o n i c a c i d and i s i s o l a t e d from m a r i n e a l g a e .
A l g i n a t e bead i m m o b i l i z a t i o n i s
performed by mixing a suspension o f c h l o r o p l a s t s or a l g a l c e l l s w i t h an e q u a l v o l u m e o f 2 % s o d i u m a l g i n a t e i n b u f f e r a n d d i s p e n s i n g t h e m i x t u r e i n d r o p s t o a 0 . 1 M CaC12 s o l u t i o n k e p t s t i r r e d i n an i c e bath.
Calcium a l g i n a t e g e l beads w i t h e n t r a p p e d p h o t o s y n t h e t i c
m a t e r i a l a r e o b t a i n e d [ 10
I.
-
U r e t h a n e i s f o r m e d b y t h e r e a c t i o n b e t w e e n an i s o c y a n a t e and a h y d r o x y l group: a r y l group.
RNCO
+ R’-OH
urethane polymer.
are toluene 2 , 4 diisocyanate ( T D I )
(MDI).
where R i s an a l k y l or
Condensation with o t h e r isocyanates,
produces a c r o s s - l i n k e d
t e
RNHCOOR’
a l c o h o l s o r amines
P r i n c i p a l i s o c y a n a t e s used
and d i p h e n y l methane d i i s o c y a n a -
The h y d r o x y l compounds g e n e r a l l y u s e d a r e p o l y e t h e r o r
p o l y e s t e r based. i s evolved.
D u r i n g h y d r o l y t i c c o n d e n s a t i o n s o f u r e t h a n e s C02
The o v e r a l l t e x t u r e o f p o l y u r e t h a n e m a t r i x i s d e p e n d e n t
on t h e c h e m i c a l n a t u r e o f t h e p o l y o l ,
t h e t e m p e r a t u r e o f condensa-
t i o n and t h e presence o f added c a t a l y s t . C e l l i m m o b i l i z a t i o n can be p e r f o r m e d e i t h e r by entrapment,
i.e.
by s t i r r i n g an a q u e o u s s u s p e n s i o n o f c y a n o b a c t e r i a l c e l l s i n t o a ur e t h a n e p r e p o l y m e r ( e g H y p o 1 2002,
W.R.
Grace L i m i t e d ,
London) and
g e n e r a t i n g t h e p o l y m e r by c o n d e n s a t i o n or by a d s o r p t i o n o f t h e c e l l s on t o s m a l l p i e c e s o f p o l y m e r
foams b y c u l t u r i n g .
Entrapment r e s u l t s
i n a homogeneous d i s t r i b u t i o n o f t h e c e l l s w i t h i n t h e m a t r i x ;
howe-
v e r loss o f c e l l v i a b i l i t y h a s b e e n r e p o r t e d a s a r e s u l t o f e n t r a p ment. P o l y v i n y l foams l y v i n y l alcohol.
a r e u s u a l l y p r e p a r e d by t h e c o n d e n s a t i o n o f po-
These foams w h i c h r e t a i n r e a c t i v e OH g r o u p s ,
t r a n s p a r e n t and q u i t e s t a b l e .
are
Immobilization o f c e l l s i s carried out
m a i n l y by a d s o r p t i o n . Membrane h o l l o w f i b r e r e a c t o r s h a v e b e e n u s e d f o r a l o n g t i m e for
t h e i m m o b i l i z a t i o n and p r o d u c t i o n o f a n i m a l c e l l s ;
t h e y a r e now
-
263
-
finding application i n the immobilization o f plant, terial cells. fone,
polypropylene, etc.)
polymers.
a l g a l and bac-
These membranes a r e made f r o m h y d r o p h o b i c
They p r o v i d e a h i g h s u r f a c e a r e a a n d c a n a c t a s a m o l e c u -
l a r sieve.
P o t e n t i a l advantages o f h o l l o w - f i b r e b i o r e a c t o r s a r e h i g h
c e l l r e t e n t i o n , more e f f i c i e n t c o n t i n u o u s p r o c e s s i n g , paration o f products, b i l i t y t o s c a l e up. ticulate-free ons,
a n d amena-
Major l i m i t a t i o n s are the requirement o f a par-
media,
f i b r e r u p t u r e , maintenance o f s t e r i l e c o n d i t i e s p e c i a l l y gases
A p o l y s u l f o n e h o l l o w f i b r e membrane b i o r e s c t o r u s e d f o r
t h e p r o d u c t i o n o f NH;, i n Fig.
a u t o m a t i c se-
r e c o v e r y and reuse o f b i o c a t a l y s t s ,
and d i f f i c u l t y i n t h e s u p p l y o f n u t r i e n t s ,
111,121.
(polyaul-
or h y d r o p h i l l i c (rayon, c e l l u l o s e acetate
w i t h i m m o b i l i z e d Anebaena a z o l l a e ,
1 (Wang and H a l l , B i o m a s s ,
i a shown
i n press).
Serum a l b u m i n p o l y m e r s c r o s s l i n k e d w i t h q l u t a r a l d e h y d e i s a favoured technique f o r chemical i m m o b i l i z a t i o n o f c h l o r o p l a s t s , c h r o m a t o p h o r e s a d a p t e d by Thomas e t a 1
[el.
C r i t e r i a f o r successful
i m m o b i l i z a t i o n a r e maintenance o f p h o t o s y n t h e t i c a c t i v i t y measured as o x y g e n e x c h a n g e o f cells,
fluorescence,
and i n t h e case o f i m m o b i l i z e d
t h e maintenance o f v i a b i l i t y and g r o w t h a s d e t e r m i n e d by
c h l o r o p h y l l c o n c e n t r a t i o n o r enzyme a c t i v i t y
(eg n i t r o g e n a a e
or hy-
droyenase).
F i g . 1. S c h e m a t i c i l l u s t r a t i o n o f a membrane h o l l o w f i b r e r e a c t o r f o r t h e c o n t i n u o u s p r o d u c t i o n a n d m o n i t o r i n g o f NHJ f r o m i m m o b i l i zed A . a z o l l a e .
- 264
3
-
APPLICATIONS T y p i c a l e x a m p l e s o f t h e u s e o f i m m o b i l i z e d s y s t e m s f o r t h e pho-
t o p r o d u c t i o n o f f u e l s and c h e m i c a l s a r e shown i n T a b l e 1. D e t a i l s c a n b e f o u n d i n r e c e n t r e v i e w s and monographs. I l 3 - 1 6 1 TABLE 1 P r o d u c t s f r o m i m m o b i l i z e d P h o t o s y n t h e t i c Systems
Matrix used and Material Immobilized
Biotechnological Application
AGAR
Mastigocladus, Phormidium
HZ production
A n a b a e ~7363
H2, fuel cells
Chromatiumand Rhohspirillum rubrwn chloroplasts+ catalysts Photosystem I +catalysts thylakoid membranes
H2production
N2 + NADPH2 H2 HzO2
ALBUMIN-GLUTARALDEHYDE
thylakoid membranes Scenedesmur chromatophores PSI1 membranes
H2, A" biochemical studies ATP
ATP
ALGINATE GEL
Botryococcus Chlorella emersoni Dunaliella sp Anatmena 27893 Mastigocladus laminosus synechococcus 40607 Rhodobacter capsdata @a) thylakoid membranes
hydrocarbons (oils) glycollate glYCW! arnrmn? ammDllla
glutamate HZ ?PZ
PoLYVINYLANDmLYmEm4NEmAMs Porphyridiwn and Chlamydomnas sp Anabaenaawllae
Phonnidium Variouscyanobacteria Capsicumfrutescens
exocellularpolysaccharides ammonia and HZ H202 H2 and NADPHZ Capsaicin (alkaloid)
MEMBRANEHOLLOWWRES A. azollae
$andammonia
-
265
-
3 . 1 Hydrogen Hydrogen i s t h e i d e s 1 llgreen"
fuel,
i t s combustion product
( w a t e r ) i s n o n - p o l l u t i n g end i s renewable. ( w a t e r ) i s cheap and abundant.
Besides t h e feed stock
There i s p r e s e n t l y renewed i n t e r e s t
i n t h e development o f s o l a r hydrogen p r o d u c t i o n t e c h n o l o g i e s .
3.la
Photosynthetic Bscteria
H2
Hydrogen i s a m e t a b o l i c p r o d u c t o f p h o t o s y n t h e t i c b a c t e r i a , e v o l u t i o n b e i n g c a t s l y s e d b y t h e n i t r o g e n a s e enzyme.
Feasibility
o f H 2 p r o d u c t i o n has been demonstrated w i t h i m m o b i l i z e d c e l l s o f R h o d o s p i r i l l u m rubrum ( a g a r ) , capsulsta (8s alginate).
Chromatium sp ( a g a r ) and Rhodobacter
1171 L a b o r a t o r y - s c a l e b i o r e a c t o r s packed
w i t h i m m o b i l i z e d c e l l s produced H2 a s e f f i c i e n t l y as f r e e - l i v i n g cells. etc.)
S u b s t r a t e s f o r c a r b o n and e l e c t r o n s o u r c e ( m a l a t e , a r e a v a i l a b l e i n o r g a n i c wastes from a g r o i n d u s t r y ;
lactate, simulta-
neous d e p o l l u t i o n o f i n d u s t r i a l wastes can be a c h i e v e d t o g e t h e r w i t h
H p production.
I f e n e r g y i n p u t f r o m s u b s t r a t e s is d i s r e g a r d e d t h e
e f f i c i e n c y o f H2 p r o d u c t i o n c o u l d be n e a r u n i t y .
The d i s a d v a n t a g e
o f t h e process i s t h a t t h e p h o t o s y n t h e t i c b a c t e r i a cannot use water as s u b s t r a t e a n d t h a t t h e p h o t o b i o r e a c t o r h a s t o b e m a i n t a i n e d anaerobic t o prevent oxygen-inhibition o f nitrogenase.
3.lb
Cyanobacteris Nitrogen f i x i n g cysnobacteria (blue-green
successfully
a l g a e ) have been
i m m o b i l i z e d and used f o r t h e p h o t o p r o d u c t i o n o f energy,
H 2 e v o l u t i o n is c a t e l y s e d m a i n l y by n i t r o g e n a s e and t o a l e s s e r ext e n t by hydrogenaae.
C y a n o b a c t e r i a a r e good h a r v e s t e r s o f s u n l i g h t
and a r e easy and e c o n o m i c a l t o grow. b e e n p e r f o r m e d w i t h A n a b s e n s spp;
A.
Most H2 e v o l u t i o n s t u d i e s have c y l i n d r i c a and A.
azollse.
Se-
v e r a l marine c y a n o b a c t e r i a have a l s o been screened f o r t h e i r pot e n t i a l as s o l a r H 2 p r o d u c e r s [181. l e t o immobilization.
C y s n o b a c t e r i s a r e q u i t e arneneb-
An o u t d o o r b i o p h o t o l y t i c s y s t e m u s i n g A .
cy-
l i n d r i c a 8 6 2 9 s u s p e n d e d i n g l a s s b e a d s was shown t o p r o d u c e H 2 c o n t i n u o u s l y f o r o v e r t h r e e weeks.
Continuous H2 e v o l u t i o n l a s t i n g
f o r o v e r 5 m o n t h s was o b s e r v e d f r o m A . lyvinyl
szollee immobilized i n p o -
o r p o l y u r e t h a n e foams [ 1 9 1 . The v i a b i l i t y o f t h e enzymes
end p h o t o c a t a l y s t s i s p r e s e r v e d f o r m o n t h e . a f t e r
A t the present time,
immobilized cyanobacterisl
t h e most p r o m i s i n g source f o r
immobilizetion. c e l l s appear t o be
H2 generation i n photobioresctors.
3.lc
-
266
Green A l g a e Hydrogenase a c t i v i t y can be i n d u c e d i n g r e e n a l g a e by g r o w i n g
them a n a e r o b i c a l l y ;
t h e a l g a e w i l l t h e n e v o l v e H 2 and O 2 s t o i c h i o -
m e t r i c a l l y by water p h o t o l y s i s . efficiencies
(3 t o 12
X)
Maximum l i g h t e n e r g y c o n v e r s i o n
were r e p o r t e d w i t h t h i n f i l m s o f a l g a e en-
t r a p p e d on f i l t e r p a p e r s 1 2 0 1 .
However t h e e x t r e m e o x y g e n s e n s i t i v i -
t y o f hydrogenase l i m i t s t h e use o f t h e s e organisms f o r b i o p h o t o l y t i c H2 p r o d u c t i o n .
3.1d
C h l o r o p l a s t membranes ( t h y l a k o i d s ) E l e c t r o n s and p r o t o n s g e n e r a t e d b y l i g h t - i n d u c e d
water s p l i t t i n g
a t Photosystem I 1 can be t r a n s p o r t e d t o P S I where t h e y can reduce an e x o g e n o u s e l e c t r o n m e d i a t o r .
The r e d u c e d m e d i a t o r c a n b e c o u p l e d
t o hydrogenase o r P t t o produce H2.
S e v e r a l l a b o r a t o r i e s have s t u -
d i e d H 2 p r o d u c t i o n b y t h i s r o u t e w i t h t h y l a k o i d s a n d c a t a l y s t s immob i l i z e d i n various types o f matrices.
Although immobilization resul-
t e d i n some s t a b i l i z a t i o n o f t h e s y s t e m ,
problems o f p h o t o i n h i b i t i o n
o f t h y l a k o i d components and oxygen i n h i b i t i o n o f c a t a l y s t s c o u l d n o t be s o l v e d c o m p l e t e l y
[ l o ] . The p h o t o b i o r e a c t o r c o u l d n o t f u n c -
t i o n f o r m o r e t h a n a few h o u r s
-
we h a v e t o l e a r n m o r e a b o u t p h o t o -
i n h i b i t i o n b e f o r e s v i a b l e system can be developed.
An alternative
would be t o bypass Photosystem I 1 and use o n l y Photosystem I a c t i vity
f o r H2 production.
This,
o f course,
w o u l d be more e x p e n s i v e s i n -
ce i t would n e c e s s i t a t e t h e c o n s u m p t i o n o f P S I e l e c t r o n d o n o r s ,
as
i n photosynthetic bacteria. 3.2
HYDROGEN P E R O X I D E H y d r o g e n p e r o x i d e s i s an e n e r g y - r i c h
compound,
i t l i b e r a t e s mo-
r e t h a n 1 0 0 k J p e r m o l when i t decomposes t o w a t e r a n d 0 2 . I s o l a t e d c h l o r o p l a s t s a r e a b l e t o p h o t o r e d u c e O 2 t o H 2 0 2 by t h e s o c a l l e d "Mehler"
r e a c t i o n "211. The r a t e o f H 2 0 2 f o r m a t i o n c a n b e e n h a n c e d
by t h e a d d i t i o n o f P S I e l e c t r o n a c c e p t o r s s u c h a s m e t h y l v i o l o g e n , f l a v i n nucleotides, reduction o f H 0
2 2
quinones,
etc.,
a l l o f which can c a t a l y z e t h e
O 2 t o H202 v i a s u p e r o x i d e . L i g h t - i n d u c e d f o r m a t i o n o f
m e d i a t e d by r i b o f l a v i n ,
h a s b e e n shown w i t h s p i n a c h t h y l a k o i d
i m m o b i l i z e d i n d i f f e r e n t g e l s a n d foams entrapped c h l o r o p l a s t s [221.
-
b e s t y i e l d was f r o m a g a r -
The r e a c t i o n was
'short
lived'
w i t h wa-
t e r as e l e c t r o n s o u r c e ( p o s s i b l y d u e t o l i g h t a n d O 2 i n h i b i t i o n o f PSII);
however,
w i t h P S I d o n o r s H202 p r o d u c t i o n c o n t i n u e d f o r h o u r s .
P r o d u c t i o n o f H 2 0 2 w i t h i n i t i a l r a t e s o f 5 0 0 N m o l H202 p e r mg c h l o -
rophyll.h,
267
-
from m i c r o a l g a e i l l u m i n a t e d i n t h e presence o f methyl v i o -
l o g e n has been r e p o r t e d 1 2 3 1 . We h a v e r e c e n t l y s u c c e e d e d i n d e s i g n i n g a p h o t o b i o r e a c t o r
for
c o n t i n u o u s H 2 0 2 p r o d u c t i o n w i t h p o l y v i n y l foam i m m o b i l i z e d P h o r m i d i u m laminosum c e l l s as p h o t o s y n t h e s i z e r and m e t h y l v i o l o g e n as P S I e l e c t r o n acceptor. (Park,
The a r r a n g e m e n t o f t h e ' r e a c t o r '
Rao a n d H a l l ,
i s shown i n F i g .
2
unpublished).
jq
c )
PI .... ................... ... ............... . ........... . ..... ........ . .. . . .. ................... . ............
PHOTOPRODUCTION
A
IMMOB. CELL
WATER
LIGHT SOURCE
4
t
.
ORANGE COLOUR FILTER F i g . 2 . Column r e a c t o r f o r t h e p h o t o p r o d u c t i o n o f H202 u s i n g P V i m m o b i l i z e d Phormidium laminosum c e l l s .
3 . 3 A T P a n d NAD(P)H2 These m o l e c u l e s a r e f o r m e d d u r i n g p h o t o s y n t h e t i c e l e c t r o n t r a n s p o r t and p h o s p h o r y l a t i o n end s r e h i g h v a l u e , micals.
energy-rich,
bioche-
I n v i t r o systems c o n s i s t i n g o f c h l o r o p l a s t s or b a c t e r i a l c h r o -
matophores i m m o b i l i s e d i n m a t r i c e s such as agar, rum a l b u m i n foam,
polyscrylamide,
se-
b a r i u m a l g i n e t e o r p o l y u r e t h a n e have a l l been used
f o r photophosphorylation y i e l d i n g ATP.
I n a l l o f the reported studies
immobilization resulted i n s t a b i l i z a t i o n o f photosynthetic a c t i v i t i e s o f the i s o l a t e d organelle
1241.
C y a n o b a c t e r i a l c e l l s i m m o b i l i z e d on p o l y u r e t h a n e foams p h o t o r e d u c e d NADP t o N A D P H 2 i n t h e p r e s e n c e o f c a t a l y t i c a m o u n t s o f t h e e n z y me f e r r e d o x i n - N A D P
dehydrogenase
1251.
P h o t o c h e m i c a l r e d u c t i o n o f NAD
t o NADH c a n b e a c c o m p l i s h e d b y b a n d gap i l l u m i n a t i o n o f T i 0 2 c o l l o i d a
i n s o l u t i o n s o f NAD i n t h e p r e s e n c e o f r h o d i u m t r i s b i p y r i d y l c o m p l e x , n o n e n z y m a t i c r e d u c t i o n o f NAD 1261.
4
-
268
AMMONIA Nitrogen f e r t i l i s e r s
up t o 50
(nitrate,
ammonium,
urea,
etc.)
contribute
X o f t h e energy i n p u t i n modern a g r i c u l t u r e . Development
o f photobiological or photochemical N2 f i x a t i o n processes could sign i f i c a n t l y r e d u c e t h e b u r n i n g o f f o s s i l f u e l s o r wood ( t h u s i n c i d e n t a l l y r e d u c i n g C02 e m i s s i o n ) cing nitrogen fertilisers.
i n t h e chemical p l a n t s p r e s e n t l y produ-
Ammonia i n s d d i t i o n i s a v a l u a b l e c h e m i -
cal fuel.
I t i s e s t i m a t e d t h a t a s much s s 10'
t o n n e s o f N 2 p e r annum i s
c o n v e r t e d t o ammonia b y b i o l o g i c a l p r o c e s s e s ( c y a n o b a c t e r i s a n d r h i zobia-legume
symbiosis).
The e n e r g y demand f o r t h i s N 2 f i x a t i o n i s
u l t i m a t e l y met b y t h e s u n v i e p h o t o s y n t h e s i s .
A l t h o u g h l a r g e amounts
o f N 2 a r e f i x e d by c y a n o b a c t e r i a l n i t r o g e n a s e o n l y i n a few cases can t h i s f i x e d N 2 b e d i r e c t l y u t i l i s a b l e ss s c r o p f e r t i l i s e r . s p e c i a l case i s t h e Anabaena-Azolla
One s u c h
symbiotic a s s o c i a t i o n which i s
e x t e n s i v e l y used as a n a t u r a l f e r t i l i s e r
i n r i c e f i e l d s and w h i c h i s
c a p a b l e o f h i g h r a t e s o f N2 f i x a t i o n ( u p t o 3 k g o f N f i x e d p e r h e c t s r e per day).
I n t h i s a s s o c i a t i o n t h e N2 f i x e d by t h e cyanobscteria
i s e x c h a n g e d f o r p h o t o s y n t h a t e s p r o d u c e d by t h e A z o l l a f e r n
-
any
u n u s e d ammonia i s e x c r e t e d i n t o t h e medium C 2 7 1 . We h a v e c h o s e n Anabaena a z o l l a e t o d e v e l o p an i m m o b i l i z e d p h o -
t o s y n t h e t i c r e a c t o r f o r t h e c o n t i n u o u s p r o d u c t i o n o f smmonia.
A.
azo-
c e l l s were i m m o b i l i z e d i n h y d r o p h i l i c p o l y u r e t h a n e o r p o l y v i n y l foam p i e c e s o r i n p o l y s u l p h o n e h o l l o w f i b r e s . constructed with t h e foam-immobilized
A p h o t o b i o r e a c t o r was
c y a n o b a c t e r i a packed i n t o a
f l u i d i s e d b e d c o l u m n w i t h c o n s t s n t c i r c u l a t i o n o f g r o w t h medium.
The
medium was o c c a s i o n a l l y g i v e n p u l s e s o f L-methionine-D-L-sulfoximine, an i n h i b i t o r o f g l u t a m i n e s y n t h e t a s e ,
which minimised the conversion
o f ammonia t o g l u t a m i n e a n d o t h e r m e t a b o l i t e s . e f f l u e n t was d e t e r m , i n e d ,
The ammonia i n t h e
either colorimetrically or
A p h o t o b i o r e a c t o r w i t h A.
polarographically.
a z o l l a e i m m o b i l i z e d i n p o l y v i n y l foam gene-
r a t e d one mmol NH3 p e r l i t r e e f f l u e n t p e r h o u r w h i c h i s e q u i v a l e n t o n a n a r e a b a s i s t o t h e f i x a t i o n o f 900 k g o f N p e r h e c t a r e p e r annum.
This r a t e s h o u l d be compared t o t h e t y p i c a l N f i x a t i o n r a t e s o f 400 k g p e r h a p e r annum i n l e g u m e s a n d 1 1 0 k g p e r h a p e r annum i n t h e n a t u r a l Anabaena-Azolla
symbiosis.
The o n l y l i m i t a t i o n i n t h i s i m m o b i l i z e d
s y s t e m i s t h a t t h e ammonia i n t h e e f f l u e n t i s r a t h e r d i l u t e ( 0 . 1 however,
mM);
t h i s w i l l n o t b e a drawback i f t h e a f f l u e n t i s c h a n n e l l e d
t o i r r i g a t i o n water f o r t h e crop.
5
269
-
OTHER FUELS a n d CHEMICALS Hydrocarbons ( o i l s and l i p i d s ) a r e produced as m a j o r m e t a b o l i c
products o f several green algae.
F o r example,
c a n s y n t h e s i z e h y d r o c a r b o n s up t o 8 0
Botryococcus brauni
YO o f i t s d r y mass. The h y d r o -
c a r b o n s can b e e x t r a c t e d by t r e a t m e n t o f t h e c e l l s w i t h hexane w i t hout a f f e c t i n g t h e i r photosynthetic a c t i v i t y . and y i e l d s were s u b s t a n t i a l l y
increased,
Hydrocarbon recovery
relative t o free cells,
b y i m m o b i l i z a t i o n o f t h e a l g a i n p o l y u r e t h a n e foams 1 2 8 1 . Polyurethane-immobilized
forphyridium
cruentum (a r e d alga)
have produced s u l p h a t e d p o l y s a c c h a r i d e s f o r l o n g p e r i o d s i n a tubul a r p h o t o b i o r e a c t o r s t t h e r a t e o f 20 g p e r sq m e t r e p e r d a y . b i l i z e d g r e e n a l g a e ( C h l o r e l l a a n d Chlamydomonas)
Immo-
secretes extra-
c e l l u l a r p o l y s a c c h a r i d e s u s e d i n f o o d a n d a g r i c u l t u r e , The g r e e n algs Dunaliella,
i m m o b i l i z e d i n Cs a l g i n a t e ,
p r o d u c t i o n o f g l y c e r o l and
R carotene.
can be used f o r t h e
Immobilized m i c r o a l g a l sys-
tems i s a r a p i d l y e x p a n d i n g f i e l d o f b i o t e c h n o l o g y
6
"291.
ENVIRONMENTAL DEPOLLUTION Two o f t h e c h a l l e n g i n g p r o b l e m s f a c i n g s c i e n t i s t s c o n c e r n e d
w i t h t h e environment a r e t h e accumulation o f "greenhouse"
gases i n
t h e atmosphere and t h e s c c u m u l a t i o n o f i n o r g a n i c f e r t i l i s e r s
(nitra-
t e s a n d p h o s p h a t e s ) i n t h e b i o s p h e r e c a u s i n g e u t r o p h i c a t i o n i n wat e r reservoirs,
l a k e s and r i v e r s .
What c o n t r i b u t i o n c a n p h o t o b i o l o -
g i s t s make t o w a r d s t h e a l l e v i a t i o n ,
i f n o t complete a b o l i t i o n ,
of
t h e s e p o l l u t i o n problems? 6 . 1 l e r t i s r y Treatment o f Water The e f f l u e n t s f r o m p r i m a r y a n d s e c o n d a r y u r b a n w a s t e w a t e r t r e a t m e n t s may s t i l l c o n t a i n u n a c c e p t a b l e and P(P03-)
4
l e v e l s o f N(NO;,
compounds f o r u a e i n d o m e s t i c w a t e r s u p p l y .
NO;,
NHd)
These i n o r -
ganics are responsible f o r t h e e u r o t r o p h i c a t i o n o f water bodies prod u c i n g m i c r o a l g a l blooms w h i c h a r e v e r y d i f f i c u l t t o remove from t h e water.
T e r t i a r y t r e a t m e n t o f w a t e r w i t h i m m o b i l i z e d m i c r o a l g a e may
p r o v i d e a a o l u t i o n t o t h i s p o l l u t i o n problem.
Preliminary studies
h a v e shown t h a t p a s s a g e o f s e c o n d a r y t r e a t e d w a t e r t h r o u g h c h i t o s a n i m m o b i l i z e d Phormidium laminosum ( a cyanobacterium) a n d 60
r e m o v e d 98
X N
X P compounds i n 24 h. The m i c r o a l g a e consumes t h e s e n u t r i e n t s
d u r i n g t h e i r growth i n t h e c h i t o s a n m a t r i x [ 301.
Periodically the
a l g a e can be s t r i p p e d o u t o f t h e m a t r i x and s t o r e d o r used as b i o mass.
We h a v e now s u c c e a s f u l l y
270
-
i m m o b i l i z e d Phormidium laminosum i n
p o l y v i n y l foams a n d u t i l i s e d t h e i m m o b i l i z e d c e l l s f o r p h o t o s y n t h e t i c n i t r a t e uptake ( G i l , hed).
Garbisu,
Hall,
S e r r a and B a z i n ,
unpublis-
N i t r a t e u p t a k e was m a i n t a i n e d f s r 3 m o n t h s w i t h v e r y l i t t l e
e v i d e n c e o f c e l l l e a k a g e f r o m t h e foams. 6.2
Abatement o f
t h e C02-induced
tl
greenhouse e f f e c t " .
The b u i l d up o f C02 i n t h e a t m o s p h e r e ( 2 7
X increase t o date,
w i t h h a l f t h e r i s e o c c u r r i n g o v e r t h e l a s t 30 y e a r s )
l e c o n t r i b u t i o n o f t h e o t h e r so c a l l e d
'qreenhouse gases'
v e r a l l w a r m i n g o f t h e e a r t h ( a b o u t a 0.5' century)
i s now w i d e l y r e c o g n i s e d .
accompanying s e a l e v e l r i s e s ,
The
and t h e p o s s i b t o t h e o-
increase over the l a s t
'greenhouse e f f e c t '
with i t s
c h a n g i n g r a i n f a l l p a t t e r n s and p o s s s i b -
l e i n c r e a s i n g p l a n t p r o d u c t i v i t y a r e s u b j e c t s o f much s t u d y i n t r y i n g t o u n d e r s t a n d t h e p r e s e n t s i t u a t i o n and where t h e i n c r e a s i n g a t m o s p h e r i c e m i s s i o n s may l e a d us i n t h e f u t u r e . ture
( n e x t 100 years)
The s h o r t - t e r m
fu-
a p p e a r s t o d e p e n d on how we u s e f o s s i l f u e l s
a n d how t h e c h a n g i n g a t m o s p h e r e a f f e c t s c l i m a t e a n d t h e p h o t o s y n t h e t i c p r o d u c t i v i t y o f p l a n t s and microorganisms,
e s p e c i a l l y on s r e g i o -
n a l basis. Unfortunately,
i t i s t h e r a t e o f change w h i c h w i l l d e t e r m i n e
w h e t h e r we c a n a d a p t t o c h a n g i n g c i r c u m s t a n c e s .
Humans p r e s e n t l y
d e t e r m i n e t h e r a t e o f b u i l d up o f g r e e n h o u s e g a s e s i n t h e a t m o s p h e -
re because t h e y c o n t r o l f o s s i l f u e l use and most d i s t u r b a n c e s t o the biota. Over t h e p a s t t w o c e n t u r i e s up u n t i l t h e 1 9 2 0 s - 1 9 4 0 ~ ,b i o s p h e r i c e m i s s i o n s and ocean b u f f e r i n g have been t h e m a j o r c o n t r o l s o f a t m o s p h e r i c C02 l e v e l s . century
A b o u t a t h i r d t o h a l f way t h r o u g h t h i s
( t h e t i m i n g i s s t i l l debated)
f o s s i l f u e l C02 e m i s s i o n s b e -
csme t h e p r e d o m i n a n t s o u r c e o f a t m o s p h e r i c relative contribution so c o n t e n t i o u s .
COP; the extent o f the
from f o s s i l f u e l and b i o s p h e r e s o u r c e s i s a l -
N o t w i t h s t a n d i n g t h i s debate,
i t must be a p p r e c i a t e d
t h a t t h e r a t e o f i n c r e a s e i n t h e use o f f o s s i l f u e l s o v e r t h e l a s t 15 y e a r s has f l u c t u a t e d g r e a t l y , t o forecast trations.
t h u s making i t e s p e c i s l l y d i f f i c u l t
f u t u r e e n e r g y t r e n d s and hence s t m o s p h e r i c
C O P concen-
Thus i n t h e p e r i o d 1 9 6 7 - 7 3 c o m m e r c i a l f u e l use i n c r e a -
s e d b y a b o u t 6 . 4 % p e r annum, o n l y 0 . 1 % p e r annum,
f r o m 1973-83
t h e r a t e o f i n c r e a s e waa
due t o t h e t w o " e n e r g y c r i s e s " ,
t h e i n c r e a s e h a s b e e n 2.9
b u t s i n c e 1983
% p e r annum a s t h e w o r l d a d j u s t s t o h i g h e r
e n e r g y p r i c e s and l e a r n s t o use e n e r g y more e f f i c i e n t l y .
A brief
-
-
271
summation o f c a r b o n f l u x e s and s i n k s i s c o m p i l e d i n T a b l e 2
[311.
I f t h e C02 c o n t e n t o f t h e a t m o s p h e r e were t o d o u b l e o v e r t h e n e x t c e n t u r y t o r e a c h a b o u t 5 4 0 ppm ( p r e - i n d u s t r i a l
l e v e l about
270
ppm) i t i s p r e d i c t e d t h a t t h e E a r t h w i l l e x p e r i e n c e an a v e r a g e w a r m i n g up o f a b o u t 3' house e f f e c t "
over p r e i n d u s t r i a l temperatures. This "green-
c o u l d be p r o d u c e d s o l e l y as a r e s u l t o f COP e m i s s i o n s
o r a c o m b i n a t i o n o f C02 a n d o t h e r " g r e e n h o u s e g a s e s " s u c h a s C H 4 , CFCs ( c h l o r o f l u o r o c a r b o n s ) ,
N 2 0 a n d 03.
6 . 3 A l g a e a n d C y a n o b a c t e r i a i n C02 a b a t e m e n t One p o s s i b l e s t r a t e g y f o r l a r g e - s c a l e
C02 f i x a t i o n w o u l d i n -
v o l v e t h e a p p l i c a t i o n o f p r e s e n t p h o t o b i o l o g i c a l knowledge i n a l g a l and c y a n o b a c t e r i a l systems.
P h o t o b i o r e a c t o r s c o u l d be a t t a c h e d t o
C O - e m i t t i n g s o u r c e s , f o r d i r e c t c o n v e r s i o n o f C02 t o f u e l s o r s t o 2 r a g e compounds. F o r e x a m p l e , p r o d u c t i o n o f h y d r o c a r b o n f u e l s a n d o t h e r o i l s by B o t r y o c o c c u s , N a n n o c h l o r o p s i s ,
etc.
c a n be e n v i s a g e d
i n l a r g e open p o n d s i n t o w h i c h t h e C02 o u t p u t s t r e a m i s d i r e c t l y injected.
Alternatively,
closed photobioreactors which exclude out-
p u t siream i s d i r e c t l y i n j e c t e d .
Alternatively,
closed photobiore-
a c t o r w h i c h e x c l u d e o u t s i d e a i r c o u l d be u s e d f o r p r o d u c t i o n o f h y drogen,
ammonium and o t h e r compounds.
Such a l g a l s y s t e m s w o u l d r e -
q u i r e o n l y s i m p l e g r o w t h medium ( b r a c k i s h w a t e r be u s e d i n many c a s e s ) ,
o r sea w a t e r c o u l d
need l i t t l e or no n i t r o g e n f e r t i l i s e r
c o u l d b e s e t up on d e s e r t o r s t e r i l e l a n d ,
and
w h e r e t h e y w o u l d n o t com-
pete with agriculture. I f t h e a i m were t o p e r m a n e n t l y s t o r e c a r b o n , c o u l d be f i x e d w i t h a l d e h y d e s , r e d d r y i n d e s e r t areas.
Section o f a l g a l s t r a i n s ( a research area
w h i c h shows c o n s i d e r a b l e p o t e n t i a l ) C02-scavenging
t h e a l g a l biomass
f i x e d as o r g a n i c c a r b o n a t e s o r s t o -
w o u l d be r e q u i r e d f o r maximum
and p h o t o s y n t h e t i c e f f i c i e n c y ,
o f carbon content a f t e r harvesting. r r i e r s w o u l d n e e d t o be o v e r c o m e ,
as w e l l as s t a b i l i t y
A l t h o u g h more t e c h n o l o g i c a l ba-
a l g a l s y s t e m s o f f e r c e r t a i n ad-
v a n t a g e s o v e r c a r b o n s t o r a g e a s wood.
S t r a i n s e l e c t i o n and g e n e t i c
m a n i p u l a t i o n w o u l d be g r e a t l y e n h a n c e d by t h e s h o r t g e n e r a t i o n t i m e , o f f e r i n g t h e p o t e n t i a l o f a wide range o f p r o d u c t s and c h a r a c t tics.
E f f i c i e n c y o f l i g h t e n e r g y c o n v e r s i o n ( a n d hence C O P
rate)
is a l s o p o t e n t i a l l y much h i g h e r t h a n f o r f o r e s t s ,
ris-
fixation
which would
reduce the requirement f o r land. Another p o s s i b l e response t o t h e b u i l d - u p w o u l d be t h e l a r g e - s c a l e
o f a t m o s p h e r i c COP
reforestation (or other reveqetation)
of
TABLE 2 C a r b o n f l u x e s and sinks-a s y n t h e s i s o f d a t a f r o m B a r n o l a e t e l . ( 1 9 8 7 1 , B o l i n e t a l . (19861, G i f f o r d (1980), Houghton e t a l . (19871, Kohlmaier e t a l . (1987), T r a b a l k a (1985), L i e t h (1985), S i e g e n t h a l e r 8 Oeschger ( 1 9 8 7 ) a n d M i n t z e r ( 1 9 8 7 ) 1311. ~
~~
CO
CO CO
2 2 2
i n atmosphere ( p r e s e n t a n n u a l i n c r e a s e )
i n atmosphere
(preindustrial)
i n atmosphere (change from p r e i n d u s t r i a l t o 1986)
1.5
ppm ( = 3. 2 Pg c a r b o n )
272 ppm ( = 575 Pg c a r b o n ) 7 4 ppm ( = 27 X; 155 Pg c a r b o n r e m a i n e d i n atmosphere
COi! f o s s i l - f u e l e m i s s i o n s ( 1 9 8 6 )
5.3
Pg c a r b o n p e r y e a r
Cog fossil-fuel
183
2 15 2 0.9
emissions (cumulative t o date)
Pg c a r b o n (1.0
C02 b i o s p h e r i c e m i s s i o n s ( p r e s e n t )
1.8
C02 b i o s p h e r i c e m i s s i o n ( c u m u l a t i v e t o d a t e )
150
F o s s i l f u e l s carbon content
1 7 0 Pg c a r b o n
(reserves)
F o s s i l f u e l s carbon content (resources) Biomass ( t e r r e s t r i a l ;
80 X i n t r e e s )
-
2.6)
6500 Pg c a r b o n 560 Pg c a r b o n
Gross p r i m a r y p r o d u c t i o n ( t e r r e s t r i a l )
120 Pg c a r b o n p e r y e a r
Net p r i m a r y p r o d u c t i o n ( t e r r e s t r i a l )
60 Pg c a r b o n p e r y e a r
Net p r i m a r y p r o d u c t i o n ( a q u a t i c )
46 Pg c a r b o n p e r y e a r
Net p r i m a r y p r o d u c t i o n ( t o t a l )
1 0 6 Pg c a r b o n p e r y e a r
S o i l carbon content
1 5 1 5 Pg c a r b o n
(75 m )
carbon content
725 Pg c a r b o n
O c e a n - i n t e r m e d i a t e a n d deep c a r b o n c o n t e n t
38000 Pg c a r b o n
C02 u p t a k e b y o c e a n
1.9
Pg c a r b o n p e r y e a r
C o g uptake by freshwater
0.8
Pg c a r b o n p e r y e a r
1 Pg = 10
15 g
Pg c a r b o n p e r yea1
5 0 Pg c a r b o n
3 Pg c a r b o n
Biomass ( a q u a t i c )
Ocean-surface
~~
346 ppm ( = 730 Pg c a r b o n )
C02 i n a t m o s p h e r e ( 1 9 8 6 )
I N
4 N I
p r e v i o u s l y degraded lands.
273
-
A t present,
i t i s e s t i m a t e d t h a t about
1 . 8 b i l l i o n t o n n e s o f c a r b o n a r e r e l e a s e d a n n u a l l y b y f o r e s t des t r u c t i o n and a l s o l a r g e amounts f r o m o t h e r f o r m s o f d e v e g e t a t i o n s u c h as g r a s s l a n d b u r n i n g s ,
c o m p a r e d w i t h a b o u t 5.2
p e r annum f r o m f o s s i l f u e l b u r n i n g .
b i l l i o n tonnes
The f i r s t s t e p w o u l d t h e r e f o r e
be t o h a l t t h e n e t r e m o v a l o f t r e e s and o t h e r p l a n t c o v e r ,
and t h e n
t o r e v e r s e i t by t r e e p l s n t i n g c o m b i n e d w i t h g o o d f o r e s t management.
T h i s o b v i o u s l y m u s t be c o m b i n e d on a g l o b a l s c a l e w i t h i n c r e -
ased energy use e f f i c i e n c y and o t h e r measures t o decrease t h e emis s i o n s o f greenhouse gases.
ELECTRICITY GENERATION V I A
7
IMMOBILIZED P H O T O S Y S T E M S
Whole c e l l s o f c y a n o b a c t e r i a ,
isolated thylakoids,
individual
p h o t o s y s t e m s a n d e v e n c h l o r o p h y l l d e p o s i t e d on s e m i c o n d u c t o r e l e c t r o d e s c a n be u s e d f o r t h e g e n e r a t i o n o f p h o t o c u r r e n t s a n d p h o t o voltages.
M a s t i q o c l a d u s l a m i n o s u s i m m o b i l i z e d i n Ca a l g i n a t e a n d
d e p o s i t e d on t h e s u r f a c e o f an o p t i c a l l y t r a n s p a r e n t Sn02 e l e c t r o d e when
illuminated
photocurrent, 132
I.
i n an e l e c t r o c h e m i c a l c e l l n o t o n l y g e n e r a t e d a
b u t a l s o c o n t i n u e d t o grow on t h e e l e c t r o d e s u r f a c e
The " l i v i n g a l g a l e l e c t r o d e "
generating a steady photocurrent.
f u n c t i o n e d f o r more t h a n 2 0 d a y s ,
I n a much m o r e s i m p l i f i e d s y s t e m ,
P h o t o s y s t e m I 1 membrane p a r t i c l e s i m m o b i l i z e d o n a d y e - d e r i v a t i s e d T i 0 2 e l e c t r o d e g e n e r a t e d p h o t o c u r r e n t s o f t h e o r d e r o f 35p A cm-' o f e l e c t r o d e s u r f a c e and 10 m A mg-l photon-to-current
chlorophyll.
Maximum i n c i d e n t
c o n v e r s i o n e f f i c i e n c y was 1 2 % [331. B i o s o l a r
b a t t e r i e s w i t h p h o t o s y n t h e t i c p i g m e n t s sandwiched between e l e c t r o d e s u r f a c e s may s o o n b e a v a i l a b l e .
8
CONCLUSION We h a v e o u t l i n e d some p r o c e s s e s w h e r e b y i m m o b i l i z e d p h o t o s y n t h e -
t i c systems c a n be a p p l i e d f o r
t h e p r o d u c t i o n o f f u e l s and c h e m i c a l s
and f o r t h e a l l e v i a t i o n o f e n v i r o n m e n t a l p o l l u t i o n .
Most o f t h e s e
t e c h n i q u e s a r e s t i l l i n a l a b o r a t o r y s t a g e and need a c a l i n g up before extensive f i e l d t r i a l s . conversion technology wide f l u c t u a t i o n s
The p r o b l e m i n h e r e n t i n s o l a r e n e r g y
is t h a t t h e i n c i d e n t e n e r g y i s d i f f u s e w i t h
i n i n s o l a t i o n o v e r b o t h d a i l y and annual c y c l e s ,
t h i s d i s a d v a n t a g e i n s o l a r e n e r g y u t i l i s a t i o n whereby l a r g e c o l l e c t i n g s u r f a c e s a r e r e q u i r e d s h o u l d be w e i g h e d a g a i n s t i t s u n i q u e advantage t h a t s o l a r energy i s b o t h c o s t and p o l l u t i o n f r e e .
We d o
n o t v e n t u r e a t p r e s e n t t o compare t h e e c o n o m i c s o f s o l a r ' e n e r g y
-
274
-
technology a g a i n s t those u s i n g c o n v e n t i a l energy d e r i v e d from fos s i l f u e l s and n u c l e a r f i s s i o n . terest,
a l l over the world,
t h e p r o d u c t i o n o f H2 from water. cesses,
we h o p e ,
However,
t h e r e i s now a r e n e w e d i n -
i n s o l a r conversion,
particularly in
I n t e r e s t and s u p p o r t
for other pro-
would f o l l o w .
REFERENCES
1
2 3
4
5
6 7
8 9
10
11 12
13 14 15 16
Summaries o f I n v i t e d P r e s e n t a t i o n s , ' S o l a r P h o t o c o n v e r s i o n P r o c e s s e s For R e c y c l i n g C O from t h e atmosphere', Colorado S p r i n g s , U S A , M a r c h 1990. g E R I , G o l d e n , C o l o r a d o . A.W. R u t h e r f o r d , ( 1 9 8 9 ) ' P h o t o s y s t e m 11, t h e W a t e r - s p l i t t i n q enzyme', T I E S , 1 4 , 227-232. D. G u s t a n d T.A,Moore (1989) ' M i m i c k i n q P h o t o s y n t h e s i s ' , S c i e n c e , 244, 3 5 - 4 1 , S e e a l s o : New S c i e n t i s t , L o n d o n , 26 May 1990, p. 34. J.W. V e r h o e v e n , J. K r o o n , M.N. Paddon-Row and A.M. Oliver (1989) ' E l e c t r o n and energy t r a n s f e r a c r o s s r i g i d , s a t u r a t e d h y d r o c a r b o n b r i d g e s ' : m o l e c u l a r e n g i n e e r i n g o f t h e b r i d g e conH a l l a n d G. G r a s s i ( e d s . ) P h o t o c o n v e r s i o n f i g u r a t i o n ' i n D.O. Processes f o r Energy and Chemicals, E l s e v i e r A p p l i e d Science, L o n d o n pp. 100-108. L. H a u s s l i n g , C. M e r t e s d o r f and H. R i n g s d o r f (1989) 'Photochem i c a l l y i n d u c e d s t r u c t u r a l changes i n m u l t i l a y e r s and columnar pp. 5 3 - 6 7 . systems' I.W i l l n e r , D. M a n d l e r a n d R . Maidaw ( 1 9 8 7 ) ' B i o - m o d e l s a n d a r t i f i c i a l m o d e l s f o r p h o t o s y n t h e s i s ' . N e w J. o f C h e m i s t r y , ll, 109-122. D.O. H a l l and K.K. Rao ( 1 9 8 8 ) ' I m m o b i l i z e d p h o t o s y n t h e t i c memb r a n e s and c e l l s f o r t h e p r o d u c t i o n o f f u e l s and c h e m i c a l s ' , Schmur, J . M . a n d Chapman, D. ( e d s . ) B i o t e c h n o i n G r a b e r , B.P., l o g i c a l A p p l i c a t i o n s o f L i p i d M i c r o - s t r u c t u r e s , Plenum Press, New Y o r k pp. 2 2 5 - 2 4 9 . K . Mosbach, ed. ( 1 9 8 7 ) M e t h o d s i n E n z y m o l o g y . V o l . Immobil i z e d Enzymes and C e l l s . A c a d e m i c P r e s s , New Y o r k . M. B r o u e r s , D - J - S h i a n d D.O. H a l l , ( 1 9 8 8 ) " I m m o b i l i z a t i o n methods f o r c y a n o b a c t e r i a i n s o l i d m a t r i c e s " , Methods i n Enzymolog y , 167, 6 2 9 - 6 3 6 . P.E. G i s b y and D.O. H a l l ( 1 9 8 0 ) ' B i o p h o t o l y t i c H 2 p r o d u c t i o n u s i n g a l g i n a t e - i m m o b i l i z e d c h l o r o p l a s t s , enzymes a n d s y n t h e t i c c a t a l y s t s ' , N a t u r e 287, 251-253. A.W. B u n c h ( 1 9 8 8 ) The u s e s a n d f u t u r e p o t e n t i a l o f m i c r o b i a l h o l l o w - f i b r e b i o r e a c t o r s , J . M i c r o b . M e t h o d s , E, 1 0 3 - 1 1 9 . M. C h e r y a n and M.A. M e h a i a ( 1 9 8 6 ) 'Membrane b i o r e a c t o r s ' i n W.C. McGregor ( e d . ) Membrane S e p a r a t i o n s i n B i o t e c h n o l o g y , Marc e l D e k k e r , New Y o r k pp. 2 5 2 - 3 0 1 . D.O. H a l l and K . K . Rao ( 1 9 8 9 ) ' I m m o b i l i z e d p h o t o s y n t h e t i c membranes and c e l l s f o r t h e p r o d u c t i o n o f f u e l s and c h e m i c a l s ' C h i m i c a o g g i , 1, ( 3 ) 41-47. M.A. B o r o w i t z k a a n d L . J . B o r o w i t z k a e d s . ( 1 9 8 8 ) M i c r o a l g a l B 0 t e c h n o l o g y . Cambridge U n i v e r s i t y Press. R.C. Cresswell, 1.A.V Rees a n d N. Shah e d s . ( 1 9 8 9 ) A l g a l a n d C y a n o b a c t e r i a l B i o t e c h n o l o g y . Longman S c i e n t i f i c B T e c h n i c a l London. M.D. T r e v a n a n d A.L. Mak ( 1 9 8 8 ) ' I m m o b i l i z e d a l g a e a n d t h e i r P O t e n t i a l f o r u s e a s b i o c a t a l y s t s ' . TIBTECH, 6 , 6 8 - 7 3
m.
x,
17 18 19
275
-
P.M. V i g n a i s , A . C o l b e a u , J.C. W i l s o n a n d Y . J o u a n n e a u ( 1 9 8 5 ) ’Hydrogenase, n i t r o g e n a s e and hydrogen m e t a b o l i s m i n t h e p h o t o s y n t h e t i c b a c t e r i a ’ , A d v a n c e s M i c r o b . P h y s i o l . 26, 156-232. T . M a t s u n a g a a n d A. M i t s u i ( 1 9 8 2 ) ’ S e a w a t e r b a s e d h y d r o g e n p r o d u c t i o n by i m m o b i l i z e d marine p h o t o s y n t h e t i c b a c t e r i a ’ B i o t e c h . B i o e n g . Symp. l2, 4 4 1 - 4 5 0 . D . J . . S h i , M. B r o u e r s , D.O. H a l l a n d R.J. R o b i n s ( 1 9 8 7 ) ’The e f f e c t s o f i m m o b i l i z a t i o n on t h e b i o c h e m i c a l , p h y s i o l o g i c a l a n d m o r p h o l o g i c a l f e a t u r e s o f Anabaena a z o l l a e ’ , P l a n t a , 293-308. E . C . Greenbaum ( 1 9 8 5 ) ’ P l a t i n i z e d c h l o r o p l a s t s : a n o v e l p h o t o 1373-1375. c a t a l y t i c m a t e r i a l ’ , Science C.H. F o y e r a n d D.O. H a l l ( 1 9 8 0 ) ’ O x y g e n m e t a b o l i s m i n t h e a c t i v e c h l o r o p l a s t ’ TIBS 5 , 1 8 8 - 1 9 1 . M.A. de l a Rosa, K . K . Rao a n d D.O. H a l l ( 1 9 8 6 ) ’ H y d r o g e n p e r o x i d e p h o t o p r o d u c t i o n by f r e e and i m m o b i l i z e d s p i n a c h t h y l a k o i d s , P h o t o b i o c h e m . P h o t o b i o p h y s . ll, 1 7 3 - 1 8 7 . F.F. d e l a Rosa a n d I. M o r a l e s ( 1 9 8 9 ) ’ P h o t o b i o l o g i c a l p r o d u c t i o n 373-377. o f h y d r o g e n p e r o x i d e : A m o d e l s y s t e m ’ . S o l a r E n e r g y 9, M-F Coquempot a n d 0 . Thomas ( 1 9 8 4 ) ’ I m m o b i l i z e d c h l o r o p l a s t memb r a n e s : K i n e t i c s s p e c t s o f t h e i r c o n t i n u o u s use i n b a t c h and c h e m o s t a t ’ , Enzyme M i c r o b . T e c h n o l . 6 , 3 2 1 - 3 2 4 . A . M u a l l e m , D . B r u c e a n d D.O. H a l l ( i 9 8 3 ) ’ P h o t o p r o d u c t i o n o f H 2 a n d NADPH b y p o l y u r e t h a n e - i m m o b i l i z e d c y a n o b a c t e r i a ’ , B i o t e c h . L e t $ 2 , 365-368. P. C u e n d e t a n d M. G r a e t z e l ( 1 9 8 4 ) ’ P h o t o r e d u c t i o n o f NAD t o NADH i n semiconductor d i s p e r s i o n s ’ , Photochem. P h o t o b i o l . 9 , 6 0 9 - 6 1 2. D.J. Sh i and 0.0. H a l l (1988) ’ A z o l l a and i m m o b i l i z e d cysnobact e r i a : from t r a d i t i o n a l a g r i c u l t u r e t o biotechnology, Plants 5-12. Today, J. F r e n z , C . L a r g e a u and E . C a s a d e v a l l ( 1 9 8 9 ) ’ H y d r o c a r b o n r e covery by e x t r a c t i o n w i t h a b i o c o m p a t i b l e s o l v e n t f r o m f r e e and i m m o b i l i z e d c u l t u r e s o f B o t r y o c o c c u s b r a u n i i , Enzyme M i c r o b . T e c h n o l . 11, 717-724. M . O r e n - S G r n i r , M. A v r o n , a n d H . D e g a n i ( 1 9 8 8 ) FEBS L e t t . , 2 , 124-128, J. de l a Noue a n d D. P r o u l x ( 1 9 8 8 ) ’ B i o l o g i c a l t e r t i a r y t r e a t ment o f u r b a n waste w a t e r s w i t h c h i t o s a n - i m m o b i l i z e d Phormidium’ A p p l . M i c r o b i o l . B i o t e c h n o l . 29, 292-297 D.O. H a l l ( 1 9 8 9 ) ’ C a r b o n f l o w s i n t h e b i o s p h e r e : p r e s e n t a n d f u t u r e ’ , J. G e o l . S O C . London. 146, 1 7 5 - 1 8 1 . H. O c h i a i , A. Tanska and S. F u k u i ( 1 9 8 3 ) ’ I m m o b i l i z e d O r g a n e l l e s ’ , A p p l . B i o c h e m . B i o e n g . 4, 1 5 3 - 1 8 7 . K . K . Rao, D . O . H a l l , N. V l a c h o p o u l o s , M . G r a t z e l , M . C . W . Evans a n d M. S e i b e r t ( 1 9 9 0 ) ’ P h o t o e l e c t r o c h e m i c a l r e s p o n s e s o f p h o t o s y s t e m I 1 p a r t i c l e s i m m o b i l i z e d on d y e - d e r i v a t i s e d T i 0 2 f i l m s ’ J. Photochem. P h o t o b i o l . 8 . B i o l . 2 , 3 7 9 - 3 8 9 .
172,
20 21 22 23 24
25
26 27
=,
1,
28
29 30
,
31 32 33
This Page Intentionally Left TBlank
ANAEROBIC T R E A T M E N T OF E X C R E M E N T S FROM LARGE-SCALE ANIMAL FARMS
J. K E R E K R E T Y , B. P E T R O V I C O V A ,
K.
BODA a n d 0.
ADAMEC
S l o v a k Academy o f S c i e n c e , I n s t i t u t e o f Animal B i o c h e m i s t r y and G e n e t i c s , Ivanka p r i Dunaji, Czechoslovakian Federative Republic
ABSTHACT The m e t h a n o g e n i c d i g e s t i o n o f p o u l t r y m a n u r e i s u s e d a s a moresulting i n large-scale
d e l [if w a s t e management
f e r m e n t a t i o n p r o c e s s t a k e s away a b o u t 40
animal
L o f the
COO,
farms.
The
removes t h e
a g g r e s s i v e o d o r , r e d u c e s b o t h t h e number o f p a t h o g e n s a n d w i l d o a t g r a s s seeds,
produces gas f u e l ( a b o u t 1 m3 o f b i o g a s f r o m 1 k g o f
degraded o r g a n i c m a t t e r ) t o smmonia.
and changes t h e o r g a n i c a l l y bound n i t r o g e n
The m a t e r i a l a n d e n e r g y b a l a n c e o f a f a r m w i t h 100 0 0 0
l a y e r s i s counted.
The b a l a n c e d a n a e r o b i c t r e a t m e n t a n d d r y i n g o f
e x c r e m e n t s i s s u g g e s t e d a s a mode w h i c h may s o l v e t h e e n v i r o n m e n t a l
problems o f l a r g e - s c a l e
animal farms l u c r a t i v e l y .
INTRODUCTION The p r e v i o u s e c o n o m i c a l l y
o r i e n t e d development i n t h e meat,
m i l k a n d e g g p r o d u c t i o n r e s u l t e d i n a g r e a t number o f i n t e n s i v e l i t t e r l e s s farms. p i g production,
T h i s was t r u e e s p e c i a l l y i n t h e c a s e o f p o u l t r y o r where t h e p r o d u c t i o n u n i t s a c h i e v e d t h e h i g h e s t c o n -
c e n t r a t i o n o f animals.
The number o f f a r m s i n C z e c h o s l o v a k i a c o n s i -
1. F o r e x a m p l e , t h e r e s r e about 5 8 egg p r o d u c i n g farms h o u s i n g o v e r 100 000 hens i n
d e r e d a s h i g h c a p a c i t y u n i t s a r e shown i n Tab.
cages,
t h a t i s 45
L o f t h e t o t a l number o f l s y e r s .
The c o n c e n t r a t i o n o f a l a r g e number o f a n i m a l s i n a r e l a t i v e l y s m a l l space g e n e r a t e s s e r i o u s e c o l o g i c a l problems, immense v o l u m e o f e x c r e m e n t s .
because o f t h e
M a n i p u l a t i o n and s t o r a g e problems o f
t h i s c o n t i n u a l l y g r o w i n g mass may a c h i e v e t h e c r i t i c a l p o i n t , t i n g t h e s i z e o f l i v e s t o c k number. the ground water or r i v e r s ,
limi-
The p o t e n t i a l c o n t a m i n a t i o n o f
and t h e e m i s s i o n o f a g g r e s s i v e odor a r e
the primary environmental
278
r i s k s connected w i t h t h e occurrence o f
t h i s hazardous m a t e r i a l . TABLE 1 Large-scale
A n i m a l Farms,
U s i n g L i t t e r l e s s Technology,
Category o f Farm Animals more t h a n
I1
Number of Farms
Number of Animals
I1
Average of Animals i n one Farm
(1)
x
of Total Number of Animals
450
164
1 0 2 500
6 25
450
93
98 9 5 2
1 064
3.1
3 000
166
1 053 7 6 8
6 348
17 .O
100 0 0 0
58
1 0 352 1 3 0
1 7 8 485
44.7
I
Swine L a y i n g Hens
II
i n CSFR
According t o the data i n Table 2., one o f t h e m o s t p o l l u t i n g a n i m a l w a s t e s .
5.5
p o u l t r y manure seems t o b e The t h e o r e t i c a l BOD v a l u e
o f e x c r e m e n t s p r o d u c e d b y 1 0 0 0 k g o f l a y i n g h e n s i s a b o u t 2.5 higher than i n other animal species.
times
And r e p r e s e n t s a p o l l u t i o n
e q u i v a l e n t o f about 100 i n h a b i t a n t s . The a n n u a l BOO v a l u e o f t h e w h o l e amount o f l i v e s t o c k w a s t e s produced i n l a r g e - s c a l e
l i t t e r l e s s a n i m a l farms r e p r e s e n t s 164 m i l l i -
on k g O 2 i n Czechoslovakia. o f 8.3
T h i s e q u a l s t o t h e e n v i r o n m e n t a l demand
million o f inhabitants,
t h i s country’s
r e p r e s e n t i n g m o r e t h a n one h a l f o f
population.
TABLE 2 E x c r e m e n t P r o d u c t i o n o f 1 0 0 0 k g L i v e W e i g h t o f Farm A n i m a l s a n d t h e i r Pollution Equivalents
P r o d u c t i o n o f Excr e m e n t s k g TS/d
Dairy Cattle
Beef
11.08 1.90
Pigs
Laying Hens
10.08
7.10
24.26
2.12
2.44
5.82
BOD kg 02/d Number o f E q u i v a l e n t Inhabitants
THE PRINCIPLE
35.2
39.2
45.0
107.8
OF M E T H A N O G E N E S I S
The s t u d y o f m e t h a n o g e n i c a l l y
o r i e n t e d a n a e r o b i c t r e a t m e n t and
i t s a p p l i c a t i o n t o a n i m a l wastes were m o t i v a t e d b y t h e l a t e s t w o r l d
-
279
-
energy c r i s i s i n t h e m i d d l e o f t h e s e v e n t i e s .
T h i s was t h e r e a s o n
why t h e p r e v i o u s t r e n d o f d r y i n g t h e p o u l t r y manure was changed. The r e c e n t e m p h a s i s on e n v i r o n m e n t a l p r o t e c t i o n a n d p o l l u t i o n c o n t r o l has i n c r e a s e d t h e e f f o r t f o r f u r t h e r development o f methanogen i c fermentation.
The r e s e a r c h r e s u l t s a n d t h e t e c h n o l o g i c a l e x p e -
r i e n c e s p r o m i s e t h a t a n a e r o b i c d i g e s t i o n may b e one o f t h e p o s s i b l e ways o f a n e f f e c t i v e f a r m w a s t e management. The p r i n c i p l e o f m e t h a n o g e n e s i s i s b a s e d o n t h e t r e a t m e n t o f e x c r e m e n t s b y a m i x e d c u l t u r e o f m i c r o o r g a n i s m s i n sn o x y g e n f r e e atmosphere under m e s o p h i l i c t e m p e r a t u r e c o n d i t i o n s a t about 40
i n a s t i r r e d digester.
OC
The r e t e n t i o n t i m e f o r s p e c i f i c a n i m a l w s s t e
s u b s t r s t e r a n g e s b e t w e e n 15 t o 4 0 d a y s .
The p r o d u c t s o f t h e m i c r o -
b i a l t r a n s f o r m a t i o n o f o r g a n i c m a t t e r a r e b i o g a s a n d f e r m e n t e d ma-
1).
t e r i a l (Fig.
I
I
AGRONOMY L
w4
I-IX
%
&'
I
----- -
- -I I
I
ANIMAL
I
FARM
I
u) W
I
t-
cn
9
Z W
Fig.
1
A
1
u) W Iu)
nJ
I I
OUTPUTS MEAT, MILK, EGGS
INPUTS FORAGE ENERGY
I I
5, M E T H A N O G E N E S I S
I I
- - _ -METHANE -_-___
I
-1
1. The p l a c e o f m e t h a n o g e n e s i s i n t h e a g r i c u l t u r a l e c o s y s t e m .
Biogas
-
t h e main p r o d u c t o f anaerobic f e r m e n t a t i o n ,
o f methane and c a r b o n d i o x i d e .
consists
The h i g h methane c o n c e n t r a t i o n i n
b i o g a s p e r m i t s i t s d i r e c t use as a f u e l .
I n s p e c i a l cases i f needed
t h e r e i s a l s o t h e p o s s i b i l i t y t o p u r i f y i t t o t h e n a t u r a l gas q u a l i ty. The s e c o n d p r o d u c t o f t h e p r o c e s s i s f e r m e n t e d s l u d g e .
It i s a
w a t e r s u s p e n s i o n o f t h e s o l i d manure p s r t i c l e s and t h e s o l u b l e organ i c and i n o r g a n i c substances.
Under a n a e r o b i c c o n d i t i o n s t h e g r e a t e r
p a r t o f t h e o r g a n i c m a t e r i a l i s t r a n s f o r m e d t o an i n o r g a n i c o r more
simple orgsnic matter. nitrogen,
280
-
The e s s e n t i a l f e r t i l i z e r n u t r i e n t s ,
such as
p h o s p h o r u s a s w e l l ss h u m u s o g e n i c s u b s t a n c e s a r e b e i n g s a -
v e d a n d may b e r e c y c l e d .
M E T H A N O G E N I C FERMENTATION OF POULTRY MANURE The m e t h a n o g e n i c t r e a t m e n t o f p o u l t r y m a n u r e , ged l a y e r s ,
e s p e c i a l l y o f cs-
i s p r e s e n t e d s s a m o d e l f o r w a s t e management.
The r e s e s r c h was a i m e d s t s o l v i n g t h e f o l l o w i n g p r o b l e m s :
1. The a p p l i c s t i o n o f m e t h a n o g e n e s i s t o a s u b s t r a t e w i t h a high TS content.
2.
The e f f e c t i v e u s e o f p r o d u c e d e n e r g y .
3 . The management o f t h e f e r m e n t e d s l u d g e . Ad 1. R e c e n t l y t h e a p p l i c s t i o n o f a n a e r o b i c d i g e s t i o n t o p o u l t r y m a n u r e p r o c e s s i n g wss c o n n e c t e d w i t h some s e r i o u s p r o b l e m s
. The
main
X
o b s t s c l e wss t h e n e c e s s i t y t o d i l u t e e x c r e m e n t s t o s l e v e l o f 4-6
i n o r d e r t o a v o i d p o t e n t i a l i n h i b i t i o n b y h i g h ammonia c o n c e n t r a t i o n s .
However,
w a t e r a d d i t i o n i n c r e a s e d t h e s l u d g e volume end enhanced e-
n e r g y demand f o r h e a t i n g i t t o t h e f e r m e n t a t i o n t e m p e r a t u r e . The r e s u l t s o f t h e e x p e r i m e n t s o f o u r l s b o r s t o r y show t h a t ,
the
m i x e d a n a e r o b i c c o n s o r t i u m may b e a d a p t e d t o a r e l a t i v e l y h i g h smmon i a nitrogen concentration.
As i t i s s e e n i n F i g .
2 t h e methane p r o -
d u c t i o n i n s t i m e p e r i o d o f s b o u t 80 weeks s l i g h t l y i n c r e a s e s . i n c r e m e n t i s s b o u t 0.0216
MJ/kg/week.
The f e r m e n t a t i o n p r o c e s s was
n o t i n h i b i t e d a t l e v e l s r a n g i n g b e t w e e n 4.1-5.9
7.5
g N/1
The
g N/1,
extremely
(2).
-
cn
ff E K R GY PRCI)UCTIDN
-TREK,
0'
10
20
3b
io
50
$0
I
70
80
WEEKS
F i g . 2. The d a i l y e n e r g y p r o d u c t i o n f r o m 1 k g o f t o t a l s o l i d s i n p u t o f p o u l t r y manure.
-
281
-
The l i q u i d f o r m o f t h e s u b s t r a t e i s e s s e n t i a l n o t b e c a u s e o f t h e proper fermentation process, b y pumps.
a b o u t 1 5 76, liquid.
b u t because o f i t s t r a n s p o r t a t i o n
F o r t h i s r e a s o n t h e s o l i d s c o n t e n t o f t h e i n p u t may be w h i c h i s t h e c o n c e n t r a t i o n a t w h i c h t h e m a n u r e becomes
T h i s T S c o n t e n t does n o t i n t e r f e r e w i t h t h e methanogenic d i -
gestion. The c a l c u l a t i o n s b a s e d o n t h e l a b o r a t o r y s c a l e m e t h a n e p r o d u c t i o n l e a d t o t h e c o n c l u s i o n t h a t s t a r t i n g from 4
X o f TS c o n t e n t ,
t h e l a r g e s c a l e t e c h n o l o g y may a l s o b e p e r f o r m e d a s an e n e r g e t i c a l l y e f f i c i e n t o p e r a t i o n (see Fig.
3 ) . The m e t h a n o g e n e s i s o f p o u l t r y ma-
n u r e w i t h a 12 % T S c o n c e n t r a t i o n u n d e r m e s o p h i l i c c o n d i t i o n s may p r o d u c e up t o 10 M J o f n e t e n e r g y p e r 1 k g o f t h e t o t a l s o l i d s i n put.
-
90
TOTAL SOLIDS CONCENTRATION ['//,I F i g . 3 . The t h e o r e t i c a l n e t e n e r g y y i e l d and t h e t o t a l s o l i d s c o n c e n t r a t i o n o f p o u l t r y manure.
Ad 2 .
I n t h e s p e c i f i c c a s e o f p o u l t r y manure t h e p r o d u c e d e n e r g y may
b e e f f e c t i v e l y u t i l i z e d by u s i n g a model o f b a l a n c e d a n a e r o b i c t r e atment and d r y i n g .
I n the fermentation process only t h a t p a r t o f
t h e e x c r e m e n t i s u s e d w h i c h p r o d u c e s a s u f f i c i e n t amount o f e n e r g y
f o r d r y i n g t h e r e s t o f i t . The r a t i o b e t w e e n f e r m e n t e d manure a n d t h e m a t e r i a l w h i c h i s d r i e d i s a b o u t 3:2 o f b o t h o p t i o n s a r e shown i n T a b l e 3 .
(Fig.
4).
The m a t e r i a l b a l a n c e
The f e r m e n t e d s l u d g e a s w e l l
a s t h e d r i e d e x c r e m e n t s may b e u s e d a s f e r t i l i z e r s i n a g r i c u l t u r e . Such a f l o w s h e e t s i g n i f i c a n t l y material, rial.
reduces t h e t o t a l volume o f waste
and s i m p l i f i e s t h e m a n i p u l a t i o n o f t h e r e s t o f t h e mate-
-
Fig.
4.
282
-
B a l a n c e d methanogenesia and d r y i n g o f p o u l t r y manure.
TABLE 3 The M a t e r i a l B a l a n c e o f B o t h V a r i a n t s o f t h e M e t h a n o g e n e s i s A p p l i c a t i o n i n a F a r m w i t h 100 000 L a y e r Hens Methanogenesis and D r y i n g
Methanogenesis P h y s i o l o g i c a l Manure 15 400
T e c h n o l o g i c a l Water
Ik g / d 1 1kg/d 1
F e r m e n t e r I n p u t T S 12 %
Ikg/dl
32 0 8 0
Fermented Sludge
[ kg/d
P r o d u c t i o n T S 25 %
B i o g a s Volume 62,5 D r i e d Excrementa
16 680
1
30 1 8 0
X CH4 [ m 3 / d l [ kg/d 1
1 338
-
1 5 400 I
,
10 180 1 9 580 18 410
-
1 700
This organization o f t h e technology i s supported a l s o by the e c o l o g i c a l aspect.
As i t i s s e e n i n F i g .
5 the application o f the
b a l a n c e d d i g e s t i o n a n d d r y i n g r e m o v e s a b o u t 6 5 X o f t h e w a s t e COD, w h i l e t h e s i n g l e methanogenic f e r m e n t a t i o n e l i m i n a t e s o n l y 40 % o f
-
-
283
i t . The v a l u e o f COD o f p h y s i o l o g i c a l m a n u r e i s a b o u t 3 3 7 . 6 1 2 7 1 . 9 1 and a f t e r a n a e r o b i c t r e a t m e n t i t i s a b o u t 98.67 2 45.15
METHANOGENESIS AND DRYING
METHANOGENESIS
5000
&OOO 3000
2000 1000 0 EXCREMENTS F i g . 5. drying.
FERMENTED SLU)GE
EXCREMENTS 'ERMENTED SLU~GE
The r e m o v e d COD u s i n g m e t h a n o g e n e s i s a n d m e t h a n a g e g i s a n d
T h i s s u b s t a n t i a l l y r e d u c e s t h e p r o b l e m o f waste m a n i p u l a t i o n
a s well a s t h e p o l l u t i o n r i s k . M o r e o v e r , i t o f f e r s a c o m p l e m e n t a r y energy source f o r d i r e c t u t i l i z a t i o n . Ad 3 .
The f e r t i l i z i n g q u a l i t y o f t h e d i g e s t e d s u d g e c o n t r i b u t e s t o
economical and environmental p r o t e c t i o n e f f e c t .
The a m m o n i a c a l f o r m
o f n i t r o g e n may a u p p o r t t h e n u t r i e n t r e c y c l i n g , o w i n g t o i t s b e t t e r u t i l i z a t i o n by p l a n t s .
The f e r m e n t a t i o n p r o c e s s d o e s n o t s i g n i f i -
c a n t l y d e c r e a s e t h e n i t r o g e n c o n t e n t o f manure
ig.
6.
T H E ADVANTAGES OF A N A E R O B I C T R E A T M E N T The b e n e f i t s o f t h e p r e s e n t e d mode o f a n i m a l w a s t e m a n a g e m e n t may b e i l l u s t r a t e d i n c o m p a r i s o n t o t h e g e n e r a l l y known a e r o b i c p r o -
cess ( T a b . 4 ) . (e.i.
The l a t t e r e l i m i n a t e s p r a c t i c a l l y t h e t o t a l p o l l u t i o n
COD o r BOD) o f t h e l i q u i d m a n u r e a n d e n a b l e s i t s d i r e c t a p p l i -
c a t i o n t o t h e water r e c i p i e n t a .
I t s u b s t a n t i a l l y reduces t h e troub-
l e s o f t h e waste m a n i p u l a t i o n m i n i m i z i n g i t s volume. On t h e o t h e r hand, t h e a e r o b i c t r e a t m e n t r e q u i r e s i n a d d i t i o n t o i n v e s t m e n t s a l s o enormous p r o c e s s e n e r g y i n p u t s .
The a p p r o x i m a t e a s s e s s m e n t o f t h e
-
284
-
d a i l y e n e r g y c o n s u m p t i o n o f t h e a e r o b i c t r e a t m e n t o f p o u l t r y msnu-
r e o n a 100 0 0 0 l a y e r f a r m r e p r e s e n t s 1 8 . 7 1
9
GJ.
8
E 22
6 z
2D
18 1:6 14 1:2
l,o
0.8
0
10
30
40
50
60
70
80
30
40
50
60
70
80
32.5 - -
2 -. 1S -I--
0.51 0
I
10
20
WEEKS F i g 6. The n i t r o g e n c o n t e n t o f p o u l t r y m a n u r e b e f o r e a n d s f t e r methanogenesis.
Treatment
Var.
IGJ 1
Process Energy
Anaerobic 1 Var.
6.11
2
Aerobic
3.73
18.71
Energy Requirement f o r F e r t i l e Nutrient Substitution
[GJ1
-
-
12.60
P r o d u c t i o n o f Energy
[GJI
35.74
21.80
-
Sum E n e r g y
lGJl
*
+ 29.63
+
18.07*
-
31.31
The e n e r g y i s u s e d f o r e x c r e m e n t d r y i n g The a e r o b i c e l i m i n a t i o n o f a n n u a l p o l l u t i o n c a u s e d b y p o u l t r y
farms u s i n g caged l a y e r t e c h n o l o g y i n C z e c h o s l o v a k i a r e p r e s e n t s a t o t a l p r o c e s s e n e r g y i n p u t o f a b o u t 1 1 8 0 TJ. Moreover,
t h e a e r o b i c method o r t h e s t o r a g e u n d e r n o r m a l con-
d i t i o n s d e s t r o y s t h e e s s e n t i a l f e r t i l i z e r n u t r i e n t s and e l i m i n a t e s them from n a t u r a l r e c y c l i n g . industrial fertilizers is,
The n e c e s s i t y o f t h e i r s u b s t i t u t i o n b y
o w i n g t o a h i g h e n e r g y demand f o r t h e i r
production,
285
-
a g a i n c o n n e c t e d w i t h an a d d i t i o n a l e n e r g y c o n s u m p t i o n .
The s u b s t i t u t i o n o f a n a e r o b i c a l l y
saved n i t r o g e n r e q u i r e a o n l y i n
t h e case o f a e r o b i c t r e a t m e n t o f p o u l t r y manure an energy i n p u t o f
000 l a y e r s o f 2376 T J / y e a r
12.6[1 GJ/100
i n Czechoslovakia.
T a b l e 5 shows t h e h y p o t h e t i c a l e n e r g y s a v i n g i n C z e c h o s l o v a k i a o n l y i n t h e case o f
a t methanogenic f e r m e n t s t i o n o f a n i m a l waste, l a y i n g hens.
i t may s a v e a b o u t 1 7 %
According t o t h i s c a l c u l a t i o n s
o f a n n u a l n a t u r a l g a s p r o d u c t i o n o f CSFR
(3).
TABLE 5 C a l c u l a t i o n s o f Annual Energy Saving a t Anserobic Treatment o f P o u l t r y Manure i n t h e CSFR
I
810 5 5 0
GJ
Saved e n e r g y i n f e r t i l e nutrients
2 3 7 6 000
GJ
Saved Eneinqy by A n a e r o b i c Treatment S u b s t i t u t i o n
1 1 8 0 000
GJ
The h y p o t h e t i c e n e r g y s a v i n g
4 266 5 5 0
GJ
Net Energy P r o d u c t i o n
The e n e r g y p r o d u c e d b y t h e a n a e r o b i c p r o c e s s comes f r o m r e n e w able resources,
which i s an a l t e r n a t i v e o f l i m i t e d q u a n t i t i e s o f
f o s s i l f u e l s or n u c l e a r energy c a r r i e r s n o t o n l y from t h e e n e r g e t i c p o i n t o f view
b u t a l s o from t h e e n v i r o n m e n t a l p o i n t o f view.
The
energy produced by t h i s method does n o t cause such a s e v e r e p o l l u t i o n o f t h e atmosphere a s t h e f o s s i l s o r t h e n u c l e a r power p l a n t s do.
I n a d d i t i o n t o the energetic aspect, ce o f t h e anaerobic treatment: fermented sludge.
there i s another preferen-
the better f e r t i l e quality o f the
The b e n e f i t o f t h e t r a n s f o r m a t i o n o f o r g a n i c a l l y
b o u n d n i t r o g e n t o ammonia h a s b e e n m e n t i o n e d a b o v e . me a u t h o r s ,
g e n s a n d t h e number o f w i l d o a t - g r a s s s e e d s p o s i t i v e h y g i e n i c consequences i . e . requirement.
A c c o r d i n g t o so-
t h e a n a e r o b i c t r e a t m e n t a l s o r e d u c e s t h e number o f p a t h o -
(4). T h i s l e s d s t o some
the reduction o f the herbicide
The f e r m e n t a t i o n p r o c e s s a l s o e l i m i n a t e s t h e a g g r e s a i -
ve o d o r o f e x c r e m e n t s a n d t h e i r t o x i c compounds o c c u r r i n g d u r i n g spontaneous
degradation o f organic matter.
I n some d e v e l o p e d c o u n t r i e s (Denmark,
H o l l a n d and I t a l y ) t h e
s o i l a p p l i c a t i o n o f n o n f e r m e n t e d manure i s p r o h i b i t e d .
-
286
-
CONCLUSION A s s u m i n g t h e p r e s e n t k n o w l e d g e , o n e may s t a t e t h a t ,
t h e metha-
nogenic fermentation p r o c e s s can be a p p l i e d t o l a r g e s c a l e animal f a r m s , e s p e c i a l l y p o u l t r y f a r m s , a s an e c o l o g i c a l l y and economi-
cally e f f e c t i v e technology.
T h i s c a n b e a c h i e v e d b o t h by t h e o r g a -
n i z a t i o n o f t e c h n o l o g y a s w e l l a s by u s i n g h i g h l y e f f i c i e n t m i x e d c u l t u r e s o f r e s i s t a n t m i c r o o r g a n i s m s a d a p t e d t o a h i g h ammonia n i trogen concentration.
LITERATURE 1 2
3
4
K . Boda a n d M . C e r n f , M o f n o s t i p o u f i t i a m e t a n o g e n e z y p r e s p r a c o v a n i e exkrementov hospoderskych z v i e r a t v podmienkach 2 i v o E i S n e j v f r o b y S R , V e s t n f k CSAZ E . 1 0 9 , SZN P r a h a 1 9 8 7 . 2. P e c h a n , 0 . K n a p p o v a , B . P e t r o v i E o v A a n d 0 . Adamec, A n a e r o b i c d i g e s t i o n o f p o u l t r y m a n u r e a t h i g h ammonium n i t r o g e n c o n c e n t r a t i o n s . Biol. Wastes 2 0 , 1987, 117-131. S t a t i s t i c k 6 r o E e n k a ESSR 1 9 8 8 , s . 6 6 1 , ALFA/SNTL 1 9 8 8 Bigadan Danmark, 1989. 0 . Adsmec,
INTENSIFICATION AND ECOLOGICAL ASPECTS OF M E T H A N E FERMENTATION OF AGRICULTURAL W A S T E S
A.P.
M.J.
BEKER,
GRINBERGS,
J.E.
BLUMBERGS a n d M.K.
V.E.
DAVIDS,
L.J.
LABANE,
MARAUSKA
I n s t i t u t e o f Microbiology, 226067 R i g a , L a t v i a
L a t v i a n Academy o f S c i e n c e s ,
Methane f e r m e n t a t i o n o f a g r i c u l t u r a l wastes,
including l i q u i d
f a r m w a s t e s c a n b e recommended as a good m e t h o d i n e n s u r i n g e n v i ronment p r o t e c t i o n . tages:
Methane f e r m e n t a t i o n possesses s e v e r a l advan-
substrate detoxication,
r a e n d weed s e e d s , More o v e r ,
i n a c t i v a t i o n o f pathogenic m i c r o f l o -
dehelminthization
and s u b s t r a t e d e o d o r a t i o n .
methane f e r m e n t a t i o n a l l o w s a v a l u a b l e f e r t i l i z e r and a
s o u r c e o f humus f o r m i n g s u b s t a n c e s , nergy source,
as w e l l as b i o g a s
-
a l o c a l e-
t o be o b t a i n e d .
T h r e e m e t h o d s a r e m a i n l y u s e d i n o r d e r t o i n t e n s i f y any b i o t e c h n o l o g i c a l process:
s e l e c t i o n o f a more p r o d u c t i v e s t r a i n ,
i t s
physiologico-biochemical a c t i v a t i o n and v a r i o u s t e c h n o l o g i c a l meth o d s . The r e a l i z a t i o n o f i s a v e r y s i m p l e one.
spontaneous methane f e r m e n t a t i o n p r o c e s s
You n e e d a h e r m e t i z e d r e s e r v o i r w i t h o r g a n i c
s u b s t r a t e a n d a n a e r o b i c c o n d i t i o n s h e a t e d up t o 3 0 - 5 0
C.
I n a few
weeks methane f o r m a t i o n t a k e s p l a c e f o l l o w e d b y b i o g a s e x c r e t i o n . I n t h e p r o c e s s o f methane f e r m e n t a t i o n t h e r e p a r t i c i p a t e s a v e r y complex a s s o c i a t i o n o f microorganisms w h i c h r e a l i z e s a b i o d e g r a d a t i o n o f o r g a n i c a u b s t a n c e s i n a c e r t a i n sequence i n t h e f o l l o wing processes:
1
h y d r o l y s i s and a c i d f o r m a t i o n ;
2
a c e t o g e n e s i s and d e h y d r o g e n i z a t i o n ;
3
methanogeneais. I n t e r r e l a t i o n s o f microorganisms r e a l i z i n g these conversions
i n a s u b s t r a t e s r e v e r y complex.
For instance,
a c i d s i n h i b i t methanogenic b a c t e r i a . robes,
t h e formed o r g a n i c
The l a t t e r a r e o b l i g a t e anae-
a n d d u e t o t h i s t h e y depend a l s o on t h e m i c r o o r g a n i s m s r o n -
auming t h e oxygen f r o m s u b s t r a t e .
S u b s t r a t e s f o r methanogenic bacte-
r i a are acetate,
formiate,
-
288
carbon dioxide,
m e t h a n o l and m e t h y l a m i n e
w h i c h a r e f o r m e d due t o t h e a c t i v i t i e s o f c e r t a i n o t h e r m i c r o o r o g a nisms.
An i n t e s i f i c a t i o n o f s u c h a c o m p l e x p r o c e s s a s m e t h a n e f e r -
mentation,
p o s s e s s e s i t s own s p e c i f i c a t i o n s as c o m p a r e d t o b i o t e c h -
n o l o g i c a l processes which are r e a l i z e d w i t h monocultures.
The s e -
l e c t i o n o f p r o d u c e r s and t h e f o r m a t i o n o f a r t i f i c i a l a s s o c i a t i o n are not i n practice yet, b e i n g done.
however,
investigations i n t h i s f i e l d are
Physiologico-biochemical
activation,
natural associations t o a given substrate,
the adaptation o f
t h e r e g u l a t i o n o f medium
c o m p o s i t i o n a n d t h e o p t i m i z a t i o n o f pH a n d medium t e m p e r a t u r e a r e giving a positive result. The i n s t i t u t e o f M i c r o b i o l o g y o f t h e L a t v i a n Academy o f S c i e n ces,
is c a r r y i n g o u t t h e m e t h a n e f e r m e n t a t i o n o f p i g b r e e d i n g f a r m
l i q u i d w a s t e s as w e l l a s w a s t e s o f a g r i c u l t u r a l p l a n t s . t a b l i s h e d t h a t a t h e r m o p h i l i c regime (53O-55OC)
I t was e s -
significantly in-
a s c o m p a r e d t o a m e s o p h y l i c one ( 3 5 ' -
creases t h e methanogenesis, 4OoC),
which s t i m u l a t e s an i n a c t i v a t i o n o f t h e pathogenous m i c r o -
flora,
h e l m i n t h s a n d weed s e e d s .
T a b l e 1 shows t h e i n f l u e n c e o f t h e t h e r m o p h i l i c t o t a l amount o f b a c t e r i a , and E .
regime on t h e
as w e l l a s on some p h y s i o l o g i c a l g r o u p s
c o l i i n the substrate
( l i q u i d p i g manure)
a f t e r 3 days and
a f t e r 1 t o 3 months o f methane f e r m e n t a t i o n ( c o u n t o f m i c r o o r g a n i s m s i n 1 m l o f native substrate).
TABLE 1 D y n a m i c s o f some g r o u p s o f m i c r o f l o r a g r o w t h i n p i g s l u r r y u p o n t h e r m o p h i l i c a n d m e s o p h y l i c methane d i g e s t i o n
DM
Sample
Proteolytic ucing bacteria
[%I
Coli bacteri
Mesophylic digestion
1.1
6.8
5.10
4.106
A f t e r 1 month.
1.2
7.7
2.106
6.10 4
A f t e r 2 month.
0.4
8.7
7.10~
3.10~
Fresh s l u r r y .
0.8
7.3
8.10
4.106
A f t e r 3 days.
0.8
7.5
4.10~
3.10~
A f t e r 5 days.
0.6
7.5
2.10~
0.5
7.5
2.10
Fresh
slurry.
Thermophilic
After
27 d a y s .
I
3.10~
lo4 lo3
4.10'
digestion
lo5 2.10
lo4
4.10 5.
4.10~ I
4.10'
lo3
1
6.10'
3
0
2
0
lo3
0 I
t
-
289
-
Upon m e s o p h y l i c f e r m e n t a t i o n d u r i n g 2 m o n t h s , o f E.
c o l i b a c t e r i a were o b s e r v e d i n t h e s u b s t r a t e .
r e g i m e i n a c t i v a t e d a l l c e l l s o f E.
c o l i i n 3 days.
1000 l i v i n g c e l l s The t h e r m o p h i l i c Methane fermen-
t a t i o n o f wastes a l l o w s t h e d e g r a d a t i o n n o t o n l y o f carbohydrates, p r o t e i n s and l i p i d s ,
b u t a l s o o f a r o m a t i c a n d h e t e r o c y c l i c compounds.
D u r i n g t h e methane f e r m e n t a t i o n ,
p r a c t i c a l l y a l l petrochemicals are
metabolized. The i n f l u e n c e o f t h e t h e r m o p h i l i c m e t h a n e f e r m e n t a t i o n on t h e d e g r e e o f a d e n i n e and c y t o s i n e b i o d e g r a d a t i o n was i n v e s t i g a t e d .
I t was f o u n d t h a t a t 55OC a b o u t 65 compounds w e r e d e g r a d e d , t h a t the thermophilic c y c l i c compounds.
o f t h e t o t a l amount o f t h e s e
and o n l y 40-45
X
a t 35OC.
This indicates
regime increases the degradation o f hetero-
These e x a m p l e show,
m e n t a t i o n by p h y s i o l o g i c a l methods Fig.
X
-
how t o i n t e n s i f y m e t h a n e f e r by r e g u l a t i o n t e m p e r a t u r e .
1 shows s u g g e s t e d d e c o m p o s i t i o n o f some a r o m a t i c a n d h e t e r o -
c y c l i c compounds d u r i n g m e t h a n e f e r m e n t a t i o n (Sahm, c i a l e x p e r i m e n t s i t was d e m o n s t r a t e d ( T a b l e 2 ) a s sodium t r i c h l o r a c e t a t e , s i m a s i n e ( a n a c t i v e
bis-ethylamino-simm-triazine)
1984).
I n spe-
t h a t such p e s t i c i d e s reagent 2-chlor-4,6
a n d t i l t 2 5 0 ( S w i s s p r e p a r a t i o n ) , were
b i o d e g r a d e d d u r i n g t h e t h e r m o p h i l i c methane f e r m e n t a t i o n . Methane f e r m e n t a t i o n can be used a l s o f o r t h e e f f e c t i v e u t i l i z a t i o n o f wastes from f e e d p r o d u c t i o n i n farms.
TABLE 2 A d e g r e e o f some added p e s t i c i d e d e s t r u c t i o n u p o n 1 9 - d a y a n a e r o b i c thermophilic
Pesticide
fermentation o f p i g s l u r r y
Concentration o f pesticide Initial
[mg/ll
D e s t r u c t i o n degree
Postfermentation
Simasine
100
2.4
97.6
Simasine
150
4.0
97.4
Simasine
200
13.7
93.2
Na-trichloracetate
8
0
100
Na-trichloracetate
24
0
100
Na-trichloracetate
40
0
100
Tilt-250
4.2
0.16
T i I t - 250
10.5
0.20
98.1
T i I t - 250
21
1.80
91.4
96.2
[X
-
290
BENZOIC ACID
-
CYCLOHEXANECARBOXYLIC
ACID
!
2-OXOCYCCOHEXANE
'
CARBOXYLIC ACID
'
I
I
' 3 H 2 \H20
I
//
I
/
&:H2cmH PHENYL ACETIC
I
6:b:H ADlPlC ACID
ACID
F i g . 1. S u g g e s t e d m o d e l f o r d e c o m p o s i t i o n o f some a r o m a t i c compounds t o methane (Sahm, 1 9 8 4 ) . L a t v i a n s p e c i a l i s t s d e v e l o p e d a t e c h n o l o g y o f wet g r e e n c r o p f r a c t i o n a t i o n and l i q u i d l e a f p r o t e i n c o a g u l a t e p r o d u c t i o n from alfalfa,
c l o v e r and o t h e r g r a s s e s .
f i r m "Uzvara"
i n Latvia.
The p r o d u c t i v i t y o f t h e e q u i p m e n t i s 5 - 7
t o n s o f green crop p e r hour. presented i n Fig.
T h i s t e c h n o l o g y i s b a s e d on a g r o -
The f l o w s h e e t o f t h e p r o c e s s T P F - 1 i s
2.
M o i s t and p r o t e i n r i c h g r e e n c r o p i s t r a n s p o r t e d b y a f e e d i n g l i n e i n t o a f r a c t i o n i n g device
-
lacetrator,
t h e n t o a screw press.
The j u i c e i s f e d b a t c h w i s e o r c o n t i n u o u s l y i n t o a f e r m e n t a t o r - c o a gulator.
D u r i n g f e r m e n t a t i o n t h e p r o t e i n c o a g u l a t e s and s e d i m e n t s
i n the form o f coagulate.
Coagulate,
c o n t a i n i n g 3-5
% protein,
i s
-
291
b a t c h w i s e pumped i n t o a c o l l e c t o r .
-
The s t a b i l i z e d j u i c e f r o m t h e
top p a r t o f the fermentator-coagulator daily).
i s used t o feed p i g s ( 2 - 3
1
F r e s h o r s i l a g e d p r e s s cakes a r e f e d t o ruminants. JUICE WHEY
BIOGAS
A JUICE
GREEN MASS 3
-
A
FRACTIONING
1 - FEEDER
5 - JUICE 8 11
I I L I COAGU-l
BLOCK
- GREEN
FERMENTATION
PUMP JUICE
, ,
F i g . 2. F l o w - s h e e t fermented j u i c e .
I'
BLOCK
ELEVATOR , 2 - CONVEYER , 3 - SHREDDER
MASS
COLLECTOR , 6 - PUMP , 7 - SIEVE
- COAGULATE - TANK FOR
Y
9 -COAGULATE
- SEPARATOR
O F FIBROUS
COLLECTOR , 10 - FERMENTOR
,
4 - PRESS ,
FRACTION,
- COAGULATOR ,
1 2 - BIOREACTOR ;
f o r t h e p r o d u c t i o n o f p r o t e i n c o a g u l a t e and
Comparative e x p e r i m e n t s have d e m o n s t r a t e d t h a t t h e T P F - 1 c e s s consumes, technology.
a l m o s t b y an o r d e r ,
The c o s t o f a 5
w i t h a s t a f f o f 1 - 2 people.
-
7 t/h
e q u i p m e n t i s 50 t h o u s a n d r o u b l e s ,
With s i n g l e s h i f t work,
o f herbage d u r i n g 5 months every y e a r , sand r o u b l e s ,
pro-
l e s s energy t h a n t h e t r a d i t i o n a l t r e a t i n g 5600 t
t h e e x p e n d i t u r e was 53 t h o u -
as compared w i t h t h e p r o d u c t i o n o f g r a s s f l o u r
from
herbage. We s t u d i e d t h e p o s s i b i l i t y o f a m o r e r a t i o n a l u s e o f p r o t e i n f r e e f e r m e n t e d brown j u i c e by s u b j e c t i n g i t t o methane f e r m e n t a t i o n . Spontaneous a n a e r o b i c f e r m e n t a t i o n o f l e a f j u i c e a c c o r d i n g t o t h e TPF-1 p r o c e s s c a n b e d e f i n i t e , tation, ce.
as t h e f i r s t s t a g e o f m e t h a n e f e r m e n -
i n which development o f a c i d p r o d u c i n g m i c r o f l o r a t a k e s . p l a -
Table 3 p r e s e n t s m i c r o b i o l o g i c a l d a t a o f a l f a l f a j u i c e
t a t i o n d u r i n g 4 8 h a t room t e m p e r a t u r e .
fermen-
93 % a c i d producing bacte-
r i a f r o m t o t a l amount t a k e s p a r t i n t h e f e r m e n t a t i o n p r o c e s s u n d e r anaerobic conditions. acid,
0.2-0.4
Fermented j u i c e c o n t a i n s 0.7-1.2
X of lactic
?6 o f a c e t i c a c i d a n d pH14.0-4.5.
A novel e f f i c i e n t process f o r anaerobic thermophilic bioconv e r s i o n o f b r o w n j u i c e was r e a l i z e d i n a l a b o r a t o r y s c a l e f e r m e n t e r
w i t h a b o t t o m l a y e r o f a c t i v e biomass and a c a r r i e r o f a b i o l o g i c a l
-
292
-
o r i q i n with immobilized microorganisms i n i t s t o p s e c t i o n (Fig. The c h e m i c a l c o m p o s i t i o n o f
3).
t h e i n i t i a l and f e r m e n t e d brown j u i c e
( r e t e n t i o n t i m e 5.6 l a y s a n d l o a d 11 g COD/day)
i s p r e s e n t e d i n Tab-
l e 4. '4BLE 3 Crowth o f m i c r o f l o r a upon a s p o n t a n e o u s a n a e r o b i c f e r m e n t a t i o n o f 5lfalfa juice
I Group
of microorganisms
I
N[mill./mll
I
[XI
I
I ~ ~ c t e r i at o, t a l ~
Acid producing b a c t e r i a
1 Proteolytic
1 Yeasts
bacteria
~
'
0.001 0.001
-
3 . An e q u i p m e n t fo: a n a e r o b i c f e r m e n t a t i o n o f s i l a g e e f f l u e n t a n d bror:n j u i c e . 1 - s u b s t r a t e s t o r a g e t a n k ; 2 - p e r i s t a l t i c pump; - r e a c t o r , 3 . 1 - l a y e r o f t h e s e d i m e n t , 3 . 2 - h e a t e r , 3 . 3 - micr o o r g h n i s m c a r r i e r ; 4 - d i s c h a r g e p h a s e s e p a r a t o r ; 5 - g a s meter. Fig.
A 50 m 3
b i o r e a c t o r was i n s t a l l e d o n t h e a q r o f i r m " U z v a r a " f o r
t h e r e a l i z a t i o n o f m e t h a n e f e r m e n t a t i o n . One o f t h e c o m p a r t m e n t s i n t h e r e a c t o r i s equipped w i t h capron b r u s h e s t o i n t e n s i f y methanoge-
nesis. I n s p e c i a l e x p e r i m e n t s i t w a s d e m o n s t r a t e d t h a t a d h e s i o n o f m e t h a n o g e n i c b a c t e r i a a t c a p r o n s u r f a c e s i s m o s t e f f e c t i v e a s compareo with t h e g i a s s one (Fig. 4).
The t o t a l a m o u n t o f m e t h a n o g e n i c
b a c t e r i a c a l c u l a t e d o n 1 g d r y w e i g h t o n c a p r o n b r u s h e s is 10 bu!
12 ,
i n l i q c i d i s l o l o . We f o u n d t h a t 6 0 X t o 7 0 X o f m e t h a n o g e n i c
-
293
-
b a c t e r i a a r e i n an i m m o b i l i z e d s t a t e .
1 m3 o f whey o r b r o w n j u i c e
y i e l d s 1 5 - 2 0 m 3 o f b i o g a s w i t h 55-60
?A m e t h a n e . D u r i n g m e t h a n e f e r -
X reduction o f juice
m e n t a t i o n a 70-80 takes place,
COO and i t s n e u t r a l i z a t i o n
h e n c e i t c a n be w e l l u s e d f o r t h e w a t e r i n g o f f i e i d s ,
t h u s i n c r e a s i n g h e r b a g e y i e l d by 1 0 - 2 5 76. TABLE 4 Chemical c o m p o s i t i o n o f t h e i n i t i a l and f e r m e n t e d brown j u i c e Initial juice
Parame t e r Dry
matter content.
[XI
Fermented j u i c e
4.55
2.5 39.4
44.4
COO [ g / l l
18.3
NH4 1 9 / 1 1
0.70
0.77
PH
4.0
7.1
Acetic acid
[%I [#I
Propionic acid Lactic acid [ X I n-butyric
acid [ % I
n-valeric
acid
[%I
0.044
0.107
0.009
0.170
1.617
0.0
0.0
0.002
0.010
0.013
CAPRON
* t 4
-f
I V
/.-
2.0
0.5
"
/
----
/ /
f, 1
2
3
CONTROL
, , ,
I
4
7
WEEKS
5
6
OF FERMENTATION
F i g . 4. An e f f e c t o f i m m o b i l i z a t i o n s u r f a c e ( c a p r o n a n d g l a s s ) on t h e process o f methanogenesis. C o n t r o l - w i t h o u t i m m o b i l i z a t i o n surface.
Good r e s u l t s w e r e o b t a i n e d d u r i n g m e t h a n e f e r m e n t a t i o n o f b r o w n j u i c e t o g e t h e r w i t h a n i m a l manure ( F i g .
5).
T h i s means t h a t wet
g r e e n c r o p f r a c t i o n a t i o n a c c o r d i n g t o t h e TPF-1 p r o c e s s m u s t be o r -
-
294 -
g a n i z e d d i r e c t l y on t h e a n i m a l f a r m s t o u t i l i z e i n one u n i t o f b i o r e a c t o r , both t h e w a s t e s o f f e e d t r e a t m e n t and farming. A very s i g n i f i c a n t f a c t o r i n a n i n t e n s i f i c a t i o n of methane fer-
m e n t a t i o n is an o p t i m i z a t i o n o f t h e C/N rich with nitrogen,
r e l a t i o n . Farm w a s t e s a r e
and due t o t h e given example demonstrated above,
a n a d d i t i o n o f p l a n t mass brown j u i c e c o n s i d e r a b l y r a i s e d t h e b i o gas yield.
: :I 0.8
0.4
I
I
I
I
I
I
l
l
1
2
3
4
5
6
7
FERMENTATION DAYS
F i g . 5 . An e f f e c t o f b r o w n j u i c e a d d i t i o n o n t h e p r o c e s s o f p i g s l u r r y methanogenesis. E x p e r i m e n t a l l y t h e e f f i c a c y was t e s t e d o f w h e a t s t r a w a d d i t i o n t o p i g s l u r r y . As o n e s e e s f r o m F i g . 6 t h e b i o g a s y i e l d c a n b e r a i s e d by a d d i n g up t o 8 % c h o p p e d straw ( i n d r y w e i g h t ) .
Thus, a straw
u t i l i z a t i o n i s p o s s i b l e i f t h e r e i s a b i o r e a c t o r b y t h e f a r m . An addition of straw t o slurry improves t h e s u b s t r a t e surface, bettering properties a s the fermentation microflora practically does n o t d e s t r o y l i g n i n , b u t h e m i c e l l u l o s e and c e l l u l o s e a t a s h o r t e n e d r e t e n t i o n time c a n b e t o a g r e a t e x t e n t p r e s e r v e d a s humus f o r m i n g factors
.
-E
: 30 E
8 '/o
-
STRAW - BIOGAS
I
8 '10 STRAW- CHq
10
20
30
40
50 DAYS
F i g . 6 . E f f e c t o f a n 8 % a d d i t i o n o f s t r a w on m e t h a n o g e n e s i s of p i g farm wastes.
-
295
The a g r i c u l t u r a l f i r m " O g r e " r e a c t o r s o f 100 m 3 c a p a c i t y f o r i n a thermophilic
regime.
-
has been u s i n g f o r s i x y e a r s b i o -
f e r m e n t i n g methane from p i g s l u r r y
Mean t e c h n i c a l and e c o n o m i c d a t a a r e g i -
ven i n Table 5. TABLE 5 Average p a r a m e t e r s o f a 1 2 month work o f t h e e x p e r i m e n t a l b i o e n e r g e t i c e q u i p m e n t on t h e s t a t e f a r m " O q r e " 3 per m I 3 o f sludge i n b i o r e a c t o r , [ m /m rdayl. D a i l y y i e l d o f biogas
[m3
3
D a i l y y i e l d o f biogas [m3
2.6
per kg 1
3
o f d r y o r g a n i c m a t t e r , [ m /kg*day 1. C o n t e n t o r methane i n b i o g a s ,
[XI.
D e s t r u c t i o n o f d r y o r g a n i c m a t t e r , [ 861.
0.5 65 33
A t present t h i s farm i s organizing a complete b i o t e c h n o l o g i c a l system o f waste t r e a t m e n t
( a p p r o x i m a t e l y f o r 20,000
pigs).
t e m i n c l u d e s methane f e r m e n t a t i o n o f p i g f a r m wastes,
The s y s -
t h e usage o f
f e r m e n t e d manure f o r t h e w a t e r i n g o f g r e e n c r o p f i e l d s and t h e e quipment f o r pigs.
f r a c t i o n a t i o n o f grass t o obtain p r o t e i n coagulate f o r
The c a l c u l a t e d i n c o m e p e r y e a r e q u a l s 244,000
r o u b l e s and t h e
t o t a l investment c o s t o f t h i s system i s about 1 . 6 m i l l i o n r o u b l e s . We c a l c u l a t e d t h e m e n t i o n e d i n v e s t m e n t c o s t b y c o v e r i n g t h e i n c o m e d u r i n g t h e 6-7
year e x p l o i t a t i o n o f t h e system.
A f t e r t h e methane f e r m e n t a t i o n , was p a r t l y e l i m i n a t e d . i s
t h e s p e c i f i c o d o r o f manure
The e c o l o g i c a l e f f e c t i s m o s t i m p o r t a n t ,
as
t h e e c o n o m i c a l one f r o m s u c h a w a s t l e s s t e c h n o l o g y .
O u r t o t s 1 c o n c l u s i o n i s ; m e t h a n e f e r m e n t a t i o n c a n b e recommend e d a s a g o o d and s i m p l e m e t h o d f o r e n v i r o n m e n t a l p r o t e c t i o n i n agriculture.
LITERATURE
1 2
3
H . Sahm A n a e r o b i c W a s t e w a t e r T r e a t m e n t , A d v a n c e s i n B i o c h e m i c a l E n g i n e e r i n g , B i o t e c h n o l o g y , S p r i n g e r , B e r l i n , H e i d e l b e r g , New Y o r k , T o k i o , 1984, p. 8 5 - 1 1 5 . M.J. B e k e r , A.P. G r i n b e r g s , L . J . Labane, C a r b o n h y d r a t e b i o c o n v e r s i o n i n methane f e r m e n t a t i o n . S e v e n t h A u s t r a l i a n B i o t e c h n o l o g y conference. U n i v e r s i t y o f Melbourne, 2 5 t h - 2 8 t h August, Proceed i n g s , 1986, p. 3 5 2 - 3 5 5 . C . Cooney and D. W i s e , T h e r m o p h i l i c a n a e r o b i c d i g e s t i o n o f s o l i d w a s t e f o r f u e l g a s p r o d u c t i o n . B i o t e c h . B i o e n g . , 1 9 7 5 , v o l . 17, p. 1119.
4
5
6 7 8
J.G.
296
-
Z e i k u s , The b i o l o g y o f m e t h a n o g e n i c b a c t e r i a . B a c t e r i o l . Rev., 1 9 7 7 . , v o l . 4 1 , No 2, p . 514-541. M A . Beker, A.A. K l i n t s a r e , A.A. U p i t i s , A.P. G r i n b e r g s , A.P. Vilc a n s and M . K . M a r a u s k a . E x p e r i m e n t a l s t u d y a n d i n d u s t r i a l u s e o f anaerobic f e r m e n t a t i o n f o r o b t a i n i n g feeds and b i o g a s . World B i o t e c h . R e p o r t . 1985, v o l . 3: A s i a p. 427-430. V.S. D u b r o v s k i i a n d U.E. V i e s t u r s , Metanovoe s b r a z i v a n i e s e l s k o h o z a i s t v e n i h otxodov, Riga, Z i n a t n e , 1988. ( i n r u s s i a n ) B i o t e c h n o l o g i a k o r m o p r o i z v i d s t v a i pererabotka othodov. ( e d i t e d by M . J . B e k e r ) , R i g a , Z i n a t n e , 1 9 8 7 , ( i n r u s s i a n ) . T r a n s f o r m a c i a p r o d u k t o v f o t o s i n t e z a . ( e d i t e d by M . J . B e k e r ) , Riga, Z i n a t n e , 1984. ( i n r u s s i a n ) .
E C O N O M I C A N D B I O E N E R G E T I C A S P E C T S OF M E T H A N O G E N E S I S
-
QUANTITATIVE INVESTIGATIONS
S.
VASSILEVA,
M.
ROBEVA'
and S .
MUTAFOV'
C e n t r a l L a b o r a t o r y B i o i n s t r u m e n t a t i o n and A u t o m a t i o n 1 I n s t i t u t e o f Microbiology B u l g a r i a n Academy o f S c i e n c e , S o f i a , B u l g a r i a
INTRODUCTION
One o f t h e b a s i c c o n t e m p o r a r y t a s k s i s k e e p i n g t h e e c o l o g i c a l balance i n nature.
Increasing accumulation o f i n d u s t r i a l ,
agricul-
t u r a l and m u n i c i p a l w a s t e s h a v e a s e r i o u s i m p a c t on t h e e c o l o g i c a l equilibrium.
These w a s t e s a r e a v a l u a b l e r a w m a t e r i a l f o r o b t a i n i n g
e n e r g y r i c h compounds,
s u c h as v a r i o u s a l c o h o l s a n d m e t h a n e ,
t h e i r s t o r a g e more o f t e n t h a n n o t i s v e r y d i f f i c u l t .
yet
T h a t i s why
t h e c r e a t i o n o f t e c h n o l o g i e s i n c l u d i n g r e c y c l i n g o f waste i n i n d u s t r y and a g r i c u l t u r e
i s a primary task.
The p r e s e n t work d e a l s w i t h some b i o e n e r g e t i c f a c t o r s S o ,
6, r
,
Y T 111 and t h e i r i m p a c t on b i o g a s a n d e t h a n o l o u t p u t i n l a b o r a t o r y conditions.
The d e s i g n o f m a t h e m a t i c a l m o d e l s s i m u l a t i n g t h e b e h a -
v i o u r on r e a l s y s t e m s o n a c o m p u t e r i s an i m p o r t a n t a s p e c t o f t h e m e t h o d o l o g y o f p r e s e n t day e n g i n e e r i n g a n a l y s i s .
The m o d e l s p r e s e n -
t e d i n t h i s w o r k a r e f o r m u l a t e d by u s i n g e x p e r i m e n t a l d a t a s u m m a r i z i n g t h e b i o c h e m i c a l as w e l l as p h y s i o l o g i c a l a s p e c t s o f t h e m e t h a nogenesis.
O u r m a i n g o a l was t o c r e a t e a m a t h e m a t i c a l m o d e l w h i c h
c o u l d be used f o r p r e d i c t i n g t h e p r o c e s s o f p r o d u c t i v i t y and r e n t a b ilit.y
.
M A T E R I A L AND METHODS The q u a n t i t a t i v e a n d q u a l i t a t i v e a n a l y s i s o f t h e i n p u t and o u t p u t s u b s t a n c e s was b a s e d on t h e m a s s - e n e r g y thermodynamic e f f i c i e n c y ,
b a l a n c e m e t h o d 111. The
t h e d i s t r i b u t i o n o f c a r b o n and energy o f
t h e s u b s t r a t e w i t h d e f i n e d c h e m i c a l c o m p o s i t i o n was e s t a b l i s h e d b y t h e amrnount o f C H 4 a n d C 0 2 p r o d u c e d .
The k i n e t i c s o f d e g r a d a t i o n o f
these s u b s t r a t e s from t h e mixed m i c r o b i a l p o p u l a t i o n t a k e n from t h e
-
298
-
a c t i v a t e d s l u d g e was e s t a b l i s h e d o n t h e b a s i s o f t h e c h a n g e s i n t h e amount and c o m p o s i t i o n o f t h e o u t p u t g a s m i x t u r e . The m e t h o d o l o g i c a l b a s i s f o r a l l t h e s e e x p e r i m e n t s was e l a b o r a t e d i n t h e Biotechnology Department o f t h e M i c r o b i o l o g i c a l I n s t i t u t e i n Prague 121. As a m o d e l p r o c e s s f o r a n a e r o b i c d e g r a d a t i o n i n w h i c h t h e p r o t h e e x p e r i m e n t s w i t h a c u l t u r e o f 5.
d u c t i s i n l i q u i d phase,
cepe-
v i s i a e s t r a i n R X I I was u s e d f r o m t h e c o l l e c t i o n o f t h e M i c r o b i o l o g i c a l I n s t i t u t e i n Prague. ethanol,
carbon dioxide,
The t i m e c o u r s e o f t h e b i o m a s s ,
glucose,
i n o r g a n i c n i t r o g e n a n d pH was m e a s u r e d .
The c h a n g e s i n t h e c o n t e n t o f p r o t e i n a n d t o t a l R N A were c l o s e l y ob-
I n t h e second
served.
and t h i r d experiment o f a s e t o f t h r e e e x p e r i -
X o f e t h a n o l was a d d e d i n t h e r e a c t i o n
m e n t s an amount o f 2 a n d 5 mixture.
The q u a n t i t y o f medium and i n n o c u l u m was e q u a l
[2,
31.
MODELLING M E T H A N E YIELD A S A FUNCTION OF BIOENERGETIC FACTOR OF THE S U B S T R A T E
Based o n 3 2 t h r i c e r e p e a t e d e x p e r i m e n t s c a r r i e d o u t w i t h 7 s u b strates, time, exp.
t h e f o l l o w i n g models f o r b i o g a s p r o d u c t i o n as a f u n c t i o n o f
have been o b t a i n e d : No 1 P(t)
(1)
209
=
s t a t i s t i c a l c r i t e r i u m RL exp.
=
exp.
0,9556;
exp.
No 4
(4)
= 502 -
107.102/t
+
398.102/t2;
P(t)
924
+
178.102/t
-
0,76.1O6/t’;
P(t)
= 83,5 +
P(t)
=
2.37.t
+
0.0495.t’;
-
290.103/t
5
(5)
=
P(t)
0,9502;
exp.No
RL
0,7598;
No 3
R2
I
5980/t2;
0,9253;
(3)
RL
+
No 2
(2) RL
2240/t
0,3951;
406
+
74,60/t
2
;
exp.No
2
=
-
6
(6) R
299
p(t)
=
5888
P(t)
=
575
-
+ 324.lo3/t2;
0,26.105/t
0,7931;
e x p o No 7 (7)
+
-
620/t
233.10
3
2
/t
,
R 2 = 0,9435. With t h e e x c e p t i o n o f m o d e l No 4 ,
t h e s t r u c t u r e s o f models a r e
The c o e f f i c i e n t o f t h e m o d e l P ( t ) = a
similar.
+
b/t
+ c/t2 (a, b
and c ) c o u l d be p r e s e n t e d as a f u n c t i o n o f b i o e n e r g e t i c T 6 , r, Y ( s e e T a b l e 1).
factors So,
YT
so
6
r
1.
0,66
1
0,17
0,028
exp.
No
2.
4,95
2
0,18
0,060
3.
4,95
3
0,32
0,160
4.
0,66
4
0,40
0,260
5.
393
4
0,18
0,120
6.
0,99
4,67
0,48
0,370
7.
0,66
5
0,55
0,460
T h i s dependence c o u l d be e x p r e s s e d i n t h e f o l l o w i n g models:
(8)
a
=
statistical
(9)
b
=
(10)
F
=
c
=
0,56413;
1,15735.So
0,49499.Y
criteria F 7,1865
T
=
R
-
0,68232.r
R
=
59,645,
+
-
-
0,9997;
3,57902. r
+ 3,83303. 6
-
0,74596;
-
-9,15623
12,98107.So T + 14,15378.Y ;
R
+ 1,96685.6
;
3,5058.So T 5,63393.Y
F = 0,31364;
+
0,06746
=
+
10,90564.r
-
17,63561.6
+
0,83242.
The m o d e l s (8)
-
(lo),
s u b s t i t u t e d i n t h e equations (1)
-
(7),
show q u a n t i t a t i v e d e p e n d e n c e b e t w e e n m e t h a n e p r o d u c t i v i t y a n d b i o e nergetic factors o f t h e substrate.
For convenience t h e b i o e n e r g e t i c
-
300 -
f a c t o r s and t h e c o e f f i c i e n t s were s c a l e d up a s f o l l o w s : 6 -2 , b - b.10-3, c - c . ~ O - ~ . a - a.10
-
6
.lo,
yT
-
YT.102,
Fig.
1 shows e x p e r i m e n t a l d a t a f o r m e t h a n e p r o d u c t i v i t y d e p e n -
d i n g on b i o e n e r g e t i c
factors o f d i f f e r e n t substrates.
A pH1 1 - 1 0 pH3 1 - 1
D H ~1 - 1
,
25 t Ihl
0
Fig.
1.
INFLUENCE OF SOME A B I O T I C FACTORS ON ALCOHOL FERMENTATION As a m o d e l p r o c e s s f o r a n a e r o b i c d e g r a d a t i o n i n w h i c h t h e p r o three experiments w i t h a c u l t u r e o f
d u c t i s i n a l i q u i d phase, S.
c e r e v i s i a e were c a r r i e d o u t .
Changes i n t h e p r o t e i n c o n t e n t w e r e
m e a s u r e d i n t h e t i m e c o u r s e o f t h e b i o m a s s X, c a r b o n d i o x i d e C02,
nitrogen
glucose S , ethanol E,
N , pH. The ammount o f 2 a n d 5 X e t h a -
n o l was added i n t h e s e c o n d a n d t h i r d e x p e r i m e n t . E x p e r i m e n t a l d a t a were e l a b o r a t e d w i t h t h e aim o f smooth s p l i nes,
b u t t h e d e r i v a t i v e s were d e t e r m i n e d by t h e method o f p o l y n o m i a l
approximation w i t h parabol passing through every three neighbouring points. A p p l y i n g t h e method o f n o n l i n e a r r e g r e s s i o n t h e f o l l o w i n g models were o b t a i n e d . exp.No (1)
1 dX/dt
=
dS/dt
= 1,42 + 9,02/X
E
u.X
-
0,879/X2
= 2599 - 0,2335.5 + 0,006.S 2
-
301
(4)
d(C02)/dt
=
(5)
u
+0,0879/pH
I
0,366
6,72
8,39/X
dX/dt
=
u.X
dS/dt
=
1/[9,ll(dX/dt
E
=
-
59,O
d(COp)/dt
u
-
-
0,00296/pHL
-
0,2331’
- 3 , 8 + 5,31.X
= 0,0738 -
2,37/X2
-
0,5361
+ 0,0033.5 2
0,782.5 I
+
-
0,905.X 2
+ 0,136.(dpH/dt)
0,24l.(dpH/dt)
exp.No 3
=
(1)
dX/dt
(2)
dS/dt
(3)
E
(4)
d(C02)/dt
(5)
u ‘= 0,0639
=
u.X -1,69
79,6
-
- 64,2.dX/dt
+ 237.(dX/dt) 2
0,885.S 0,636
I
-
+ O,OO19/X
0,075.(dpH/dt)
-
O,lll.(dpH/dt)’
D i s c r i m i n a t i o n o f t h e m o d e l s f o r t h r e e e x p e r i m e n t s was b a s e d on a s t a t i s t i c c r i t e r i a . The f o r m u l a e f o r s p e c i f i c g r o w t h r a t e ,
d e p e n d i n g on pH,
c a n be
u s e d f o r o p t i m a l c o n t r o l [ 4 , 51. Changes o f pH f o r t h r e e e x p e r i m e n t s a r e shown i n F i g .
2.
CONCLUSION The e x p e r i m e n t a l d a t a were p r e s e n t e d i n m a t h e m a t i c a l m o d e l s , d e s c r i p t i n g p r o c e s s p r o d u c t i v i t y as a f u n c t i o n o f b i o e n e r g e t i c f a c tors. The m o d e l s c o n c e r n i n g b i o g a s p r o d u c t i o n shown above c a n s e r v e f o r p r e d i c t i o n process p r o d u c t i v i t y f o r a given time a t t h e determined s t a r t i n g c o n d i t i o n . Two i m p o r t a n t e c o n o m i c a l t a s k s c o u l d b e s o l v e d w i t h t h e m o d e l s T f ( S o , 6 , r , Y 1:
P ( t ) and P =
1. p r e d i c t i o n o f b i o g a s y i e l d b a s e d on t h e i n p u t b i o e n e r g e t i c p a rameters o f the substrate; 2.
maximizing o f the P ( t ) a t the condition o f the biodegradation o f o r g a n i c wastes for m i n i m a l t i m e course.
-
302
-
0 20
70 t Ihl
Fig.
2.
The c o m p l e t e s o l v i n g o f t h e s e t w o t a s k s a n d t h e c h o i c e o f a s u i t a b l e method c o u l d be t h e aim o f f u r t h e r work.
L I S T OF SYMBOLS
s
-
substrate concentration
6
-
mass f r a c t i o n o f c a r b o n
Y
- degree
YT
-
P
-
o f reductance
theoretical yield product (biogas) product
f r o m ammonium o x a l i c u m
product from n a t r i u m formicum p3
p4 p5 '6
p7
-
product from g l y c i n product from l a c t i c a c i d product from natrium aceticum product from propionic acid product from b u t y r i c a c i d
LITERATURE
1
2
M . S o b o t k a , J . V o t r u b a , I. H a v l i k a n d I . G . M i n k e v i c h , The M a s s Energy Balance o f Anaerobic Methane P r o d u c t i o n . F o g l i a M i c r o b i o l o g i c a 2 8 , 1983, p . 1 9 5 - 2 0 4 . M. R o b e v a , Fh. T h e s i s o f D i s s e r t a t i o n : A n a e r o b i c p r o d u c t i o n o f E n e r g y - R i c h Compounds: B i o t e c h n o l o g i c a l a s p e c t s , 1988.
3
4
5
S.H. Z i n d e r and R . A .
303
-
Man, I s o l a t i o n a n d c h a r a c t e r i z a t i o n o f a T h e r m o p h i l i c s t r a i n o f M e t h a n o s a r c i n a u n a b l e t o u q e H2C02 f o r M e c h a n o g e n e s i s . A p p l . Env. M i c r o b i o l . 3 8 , 1 9 7 9 , p . 996 - 1008. K . S i g l e r , Knotkova and A. K o t y k , F a c t o r s g o v e r n i n g s u b s t r a t e i n d u c e d g e n e r a t i o n a n d e x t e n t i o n o f p r o t o n s i n t h e y e a s t 5. c e r e v i s i a e . Biochem. B i o p h y s . A c t a 6 4 3 : 1 9 8 1 , p. 5 7 2 - 5 8 2 . L.N. A n d r e y e v a and V . V . B i r y u k o v , A n a l y s i s o f m a t h e m a t i c a l mod e l s o f t h e e f f e c t o f pH on t h e f e r m e n t a t i o n p r o c e s s a n d t h e i r use f o r c a l c u l a t i n g o p t i m a l f e r m e n t a t i o n c o n d i t i o n s . B i o t e c h n o l . B i o e n g . Symp. No 4 , 1 9 7 4 , p. 6 1 - 7 6 .
This Page Intentionally Left TBlank
R E C O V E R Y OF ENERGY FROM MUNICIPAL SOLID WASTE
I N FABRICATED
DIGESTERS
J. COOMBS a n d Y . R .
COOMBS
CPL S c i e n t i f i c T O , S c i e n c e House, B e r k s h i r e , RG14 5 P X , UK.
Winchcombe Road,
Newbury,
SUMMARY The u s e o f a n a e r o b i c d i g e s t i o n (AD) o f t h e o r g a n i c f r a c t i o n (OF) o f m u n i c i p a l s o l i d w a s t e (MSW) i n f a b r i c a t e d d i g e s t e r s w i t h t h e o b j e c t i v e o f b o t h waste d i s p o s a l and e n e r g y g e n e r a t i o n i s r e viewed. V a r i o u s t y p e s o f feeds a r e d i s c u s s e d i n terms o f composit i o n , energy c o n t e n t and b i o d e g r a d a b i l i t y i n r e l a t i o n t o p o t e n t i a l gas e v o l u t i o n . P o s s i b i l i t i e s o f i n c r e a s i n g gas p r o d u c t i o n b y p r e t r e a t m e n t o f t h e OF/MSW o r b y u s e o f m u l t i - s t a g e r e a c t o r s a r e d i s cussed and r e s u l t s from v a r i o u s p i l o t and c o m m e r c i a l s c a l e f a c i l i t i e s u s e d t o i l l u s t r a t e t h e most i m p o r t a n t f a c t o r s w h i c h d e t e r m i n e gas p r o d u c t i o n r a t e s and economic v i a b i l i t y . Advantages o f thermop h i l i c d i g e s t i o n o f s o u r c e - s o r t e d m a t e r i a l , admixed w i t h o r g a n i c sludges, a t h i g h s o l i d s concentration i n simple d i g e s t e r s w i t h low c a p i t a l cost are stressed.
INTRODUCTION A l t h o u g h an i n c r e a s i n g amount o f e n e r g y i s b e i n g r e c o v e r e d i n t h e f o r m o f l a n d f i l l g a s f r o m MSW t h i s is a c h i e v e d o n l y o v e r a l o n g perioo or
Lime
-
o r r e n e s r i m a r e u a r arouriu
IU
years ur
SU.
LYIIUII-
l l i n g a l s o has t h e d i s a d v a n t a g e t h a t m a t e r i a l s such as m e t a l s , a n d p l a s t i c s a r e n o t r e c o v e r e d u n l e s s s o r t e d a t s o u r c e and, more,
a s i g n i f i c a n t amount o f t h e e n e r g y c o n t e n t ,
n i c materials r e s i s t a n t t o biodegradation,
glass
further-
p r e s e n t i n orga-
i s not recovered.
The a-
mount o f e n e r g y t h a t i s r e c o v e r e d f r o m MSW c a n be i n c r e a s e d by a d o p t i n g thermal or thermochemical techniques ration,
pyrolysis,
g a s i f i c a t i o n or
including direct incine-
m a n u f a c t u r i n g RDF.
Sorting plants
have been d e s i g n e d t o r e c o v e r f e r r o u s and o t h e r m e t a l s , and/or
glass.
r i a l s a s r e f u s e d e r i v e d f u e l s (RDF lets)
plastics
I n g e n e r a l such p l a n t a l s o r e c o v e r t h e o r g a n i c mate-
-
i n t h e form o f f l u f f or p e l -
o r as s e r o b i c c o m p o s t . I r r e a p e c t i v e o f t h e range o f p r o d u c t s g e n e r a t e d waste s o r t i n g
p l a n t a r e c a p i t a l i n t e n a i v e and have s i g n i f i c a n t r u n n i n g c o s t s . s e c o s t s c a n be o f f s e t ,
The-
a n d i n some c a s e a t h e o v e r a l l c o s t p e r t o n n e
- 306
-
o f MSW t r e a t e d r e d u c e d b e l o w t h a t o f l a n d f i l l i n g ,
i f t h e waste t r e -
atment p l a n t g e n e r a t e s income f r o m t h e s a l e o f r e c o v e r e d s o l i d mater i a l s (metal,
plastic,
glass,
t h e s a l e o f energy o r f u e l s .
paper,
card,
b o a r d o r wood)
and/or
I f t h e income f r o m s a l e o f e n e r g y and
m a t e r i a l s i s n o t i n excess o f c a p i t a l and r u n n i n g c o s t s t h e d i f f e r e n c e can be c o n v e r t e d i n t o a t i p p i n g f e e ,
charged f o r waste d i s p o -
s a l through the p l a n t . P l a n t p r o d u c i n g s o l i d f u e l s f r o m MSW u s e t h e d r i e r f r a c t i o n , i n c l u d i n g paper,
card,
wood,
p l a s t i c s and l a m i n a t e s ,
which form t h e
b u l k o f t h e m a t e r i a l r e c o v e r e d as f l u f f o r p e l l e t e d RDF.
The c a l o r i -
f i c v a l u e o f t h e s o l i d f u e l i n c r e a s e s w i t h r e m o v a l o f b o t h i n e r t mat e r i a l and m o i s t o r g a n i c s d e r i v e d f r o m f o o d wastes, e t c (Fig.
1). I t i s t h i s e a s i l y biodegradable,
garden c l i p p i n g s ,
or putrescible,
1 CV(net)=7.06MJ k g - 1
,9
H20 ASH
c
~ 3 3 % =29%
Raw r e f u s e Removal o f m e t a Is Glass and noncombs.
2 CV(net)=9.ZMJ k g - l HzO ~ 3 9 % ASH =12.62 3 CV(net)=10.5MJkgH20 ~ 3 9 % ASH =8.3?6
1
4 CV(net)-12.9MJ k g - l H20 =28% ASH ~8.5% 1 5 CV(net)=26.OMJ kg-
=20x
YlELEDlWElGHT OF FUEL AS
'/o
Removal
of
e t c and
-
meta I s 1 0 mm
Removal o f m e t a e t c - 10 mm p u t rescibles Only
plastic
remaining
OF INPU'I
F i g . 1. E f f e c t o f s o r t i n g on t h e p o t e n t i a l f o r r e c o v e r i n g e n e r g y f r o m r a w w a s t e by c o m b u s t i o n . f r a c t i o n which c o n t r i b u t e s l a r g e l y t o the formation o f biogas i n l a n d f i l l s and i s t h e most o b v i o u s s u b s t r a t e f o r A D i n f a b r i c a t e d d i gesters.
The i n c o r p o r a t i o n o f
wet p u t r e s c i b l e m a t e r i a l s i n w a s t e
f r a c t i o n s w h i c h a r e t o b e u s e d as d i r e c t c o m b u s t i o n f u e l s d e c r e a s e s t h e c a l o r i f i c value.
I t i s c l e a r t h a t e n e r g y p r o d u c t i o n f r o m MSW c a n
be o p t i m i s e d by i n c l u d i n g A D i n i n t e g r a t e d w a s t e s o r t i n g a n d m a t e r i a l s r e c o v e r y systems.
I n t h e s i m p l e s t c o n c e p t AD o f t h e p u t r e s c i b -
l e f r a c t i o n w i l l r e c o v e r e n e r g y f r o m a component o f t h e w a s t e w h i c h i s not otherwise o f value,
d e t r a c t s f r o m t h e c a l o r i f i c v a l u e o f RDF
a n d ifs e p a r a t e d c u r r e n t l y
-
307
requires disposal t o l a n d f i l l .
The amount
o f gas e n e r g y a n d i t s m a r k e t v a l u e d e p e n d s on t h e c o m p o s i t i o n o f wast e and p l a n t d e s i g n s a s w e l l a s c u r r e n t g a s ,
o i l and e l e c t r i c i t y p r i -
ces.
A l l waste s e p a r a t i o n p l a n t use s i g n i f i c a n t amounts o f p r o c e s s energy;
f r o m 1 5 t o 75 kWh p e r t o n n e o f MSW t r e a t e d r e s u l t i n g i n t o -
t a l a n n u a l energy b i l l s e x c e e d i n g E 300.000 ce,
i n some i n s t a n c e s .
Hen-
t h e main b e n e f i t o f i n t e g r a t i n g a d i g e s t e r i n t o such p l a n t i s
r e p l a c i n g bought i n energy. intangible benefits b e t t e r separation,
I n a d d i t i o n t h e r e may b e m e a s u r a b l e
from other aspects,
or
such as improved s o l i d f u e l s ,
decreased l a n d f i l l i n g c o s t s ,
decreased problems
o f LFG c o n t r o l a n d l e s s l e a c h a t e g e n e r a t i o n . However,
s o f a r t h e number o f A D p l a n t t r e a t i n g w a s t e w h i c h h a -
ve b e e n b u i l t i s l i m i t e d t o a s m a l l number o f p i l o t , and c o m m e r c i a l p l a n t i n EC c o u n t r i e s , and i n t h e US.
i n Japan
The l i m i t a t i o n s shown b y s i m p l e s y s t e m s r e f l e c t de-
g r a d a t i o n o f l i g n o c e l l u l o s i c as a r a t e l i m i t i n g s t e p . exist for increasing digestibility, using multi-stage merization.
demonstration
elsewhere i n Europe,
Possibilities
and hence t o t a l gas p r o d u c t i o n ,
processes i n c l u d i n g chemical or b i o l o g i c a l depoly-
I n c r e a s e d gas p r o d u c t i o n would f a v o u r t h e g e n e r a t i o n o f
e l e c t r i c i t y f o r s u p p l y t o t h e g r i d w h i c h may become more a t t r a c t i v e f r o m an e c o n o m i c v i e w p o i n t i n t h e f u t u r e .
R e s u l t s from such p r o j e c t s
a r e used t o e v a l u a t e o p t i m a 1 p r o c e s s o p t i o n s . AVAILABILITY,
C O M P O S I T I O N AND ENERGY OF MSW
The n a t u r e o f MSW a v a i l a b l e i n a g i v e n l o c a l i t y i s t h e m o s t i m portant
f a c t o r i n t h e s i z i n g and d e s i g n o f a waste t r e a t m e n t p l a n t .
Composition w i l l i n f l u e n c e the separation flowsheet, gy c o n t e n t ,
t h e t o t a l ener-
t h e p r o p o r t i o n o f energy t h a t can be r e c o v e r e d and t h e
c h o i c e o f technology used t o r e c o v e r t h i s energy. t e w i l l determine the s i z e o f the p l a n t .
The amount o f was-
There a r e two c l e a r a l t e r -
n a t i v e s i n a p p l y i n g t h e AD p r o c e s s t o t r e a t m e n t o f OF/MSW.
The f i r s t
i s t o u s e AD a a a means o f r e m o v i n g a f r a c t i o n o f t h e w a s t e w h i c h h a s l i t t l e v a l u e a n d may d e t r a c t
f r o m t h e e f f i c i e n c y and c o s t e f f e c -
tiveness o f other energy of m a t e r i a l recovery processes. i s t o d e s i g n an e n e r g y r e c o v e r y p r o c e s s b a s e d on AD,
The s e c o n d
which uses f r a c -
t i o n o f MSW a s f e e d s t o c k a n d i s o p t i m i s e d f o r e n e r g y r e c o v e r y . The amount o f g a s w h i c h c a n b e g e n e r a t e d f r o m a g i v e n w e i g h t o f u n s o r t e d MSW as c o l l e c t e d w i l l b e p r o p o r t i o n a l t o t h e c o n t e n t o f e a s i l y biodegradable material.
I n o r d e r t o i n c r e a s e gas p r o d u c t i o n i t
-
308
-
may b e n e c e s s a r y t o s e p a r s t e t h e MSW t o i n c r e a s e t h e c o n t e n t o f b i o d e g r a d a b l e v o l a t i l e s o l i d s (bVS) se d i g e s t i b i l i t y
pretreate i t t o increa-
content,
o r add o t h e r o r g a n i c m a t e r i a l .
Additions could i n -
c l u d e s u i t a b l e i n d u s t r i a l or sewage s l u d g e s a s w e l l as o t h e r s o l i d ( i n d u s t r i a l or a g r i c u l t u r a l ) energy crops.
r e s i d u e s o r even purpose grown biomass
T h i s may b e p a r t i c u l a r l y t r u e i n c o u n t r i e s w h e r e t h e
r e l a t i v e p r o p o r t i o n o f p u t r e s c i b l e m a t t e r is l o w ( F i g .
I2O 100
2).
1
80
60 40
20 0 5 6 7 8 9 10 11 TOWN OR COUNTRY El WTRESCBLES 63 PAPER ETC PLASTIC DMETAL BGLASS OTHER 2
1
3
4
f3l
F i g . 2 . C o m p o s i t i o n o f MSW f r o m v a r i o u s s o u r c e s : 1. F r a n c e , 2 . U K , 3 J a p a n , 4. Canada, 5.Sweden, 6 . U S A , 7 . F r a n c e , 8 . I t a l y , 9 . Swed en, 1 0 . I t a l y , 11. G r e e c e .
.
E N E R G Y POTENTIAL I f o r g a n i c m a t t e r i s combusted i n a b o i l e r o r f u r n a c e t h e a v s i l a b l e h e a t w i l l d e c r e a s e a s t h e m o i s t u r e c o n t e n t i n c r e a s e s due t o t h e f a c t t h a t p a r t o f t h e e n e r g y i s u s e d i n t h e e v a p o r a t i o n o f water.
However,
t h e energy w h i c h can be r e c o v e r e d by a n a e r o b i c d i g e s -
t i o n i s n o t a f f e c t e d by t h e m o i s t u r e c o n t e n t s i n c e t h e p r o c e s s t e k e s p l a c e i n an aqueous e n v i r o n m e n t .
I n general,
vegetable matter
w i t h a h i g h e r w a t e r c o n t e n t i s more e a s i l y d i g e s t e d t h a n m a t e r i a l s such as paper,
n a t u r a l f i b r e s and t e x t i l e s ,
c a r d a n d wood.
Hence,
e n e r g y r e c o v e r y f r o m w a s t e c a n b e m a x i m i s e d by s e p a r a t i n g t h e o r g a n i c material i n t o a putrescible fraction for and a n o n - d i g e s t i b l e
f r a c t i o n f o r combustion.
anaerobic d i g e s t i o n
-
310 -
GAS PRODUCTION H i s t o r i c a l l y , i n p r a c t i c a l systems, o r i n r e s e a r c h s t u d i e s , t h e r e h a s b e e n a t e n d e n c y t o o p t i m i s e s p e c i f i c g a s p r o d u c t i o n ( c u m/kg
t h e r e t e n t i o n time ( d e c r e a s i n g t h e l o a d i n g o r
increasing
VS) b y
dilution rate).
However, a s t h e r e t e n t i o n time i s i n c r e a s e d t h e r e i s
a corresponding increase i n t h e s i z e o f the vessel required t o deal w i t h a g i v e n d a i l y i n p u t o f raw m a t e r i a l .
As
per volume o f g a s p r o d u c e d w i l l i n c r e a s e .
Gas p r o d u c t i o n a l s o ref-
l e c t s the loading regime,
a result,
capital cost
composition of feed and temperature.
w i l l p r e f e r e n t i a l l y d i g e s t s o l u b l e components and l o w - l i g n i f i e d
ganic solids.
I n OF/M‘;W
l e f t as n o n - d i g e s t e d may br, d i g e s t e d
AD
or-
d i g e s t i o n o v e r 5 0 L o f t h e m a t e r i a l may b e
s o l i d s w h e r e a s 95-98 % o f pure v e g e t a b l e m a t t e r
An a p p r o x i m a t i o n o f t h e p o t e n t i a l g a s p r o d u c t i o n
c a n b e c a l c u l a t e d b y m u l t i p l y i n g t h e VS b y a n e x p e r i m e n t a l t h e o r e t i c a l s p e c i f i c g a s y i e l d , w h i c h f o r MSW may b e i n t h e r a n g e o f 0 . 3 5 0.75
c u m/kg
to
VS a d d e d ( F i g . 4 a ) .
-
b
[L
v , >
kJ ’01
a
I
,.=l
,”lf
..
?;
\.
~
.35 .3 0
0
CSTR
5
10
105 10 15 20 25 LOAOIG RATE IKG VSlrn31DAY I
8662-
I 0
*.
AND SIMILAR PLANT
,
,
,
15
20
25
-/ -. HIGH DIGESTERS THERMOPHILIC
’ SOLIDS
* MESOPHlLlC 1
5 10 15 20 25 LOADING RATE IKG VS/m3/DAY 1
F i g . 4 . a - S p e c i f i c b i o a a s y i e l d s a s FI f t i n c t i o n o f o r g a n i c l o a d i n g r a t e . b -Volumetric b i o g a s y i e l d s as a f u n c t i o n o f o r g a n i c l o a d i n g rate.
-
309
-
The d r y b a s i s HV o f o r g a n i c w a s t e s o f n a t u r a l o r i g i n w i t h a h i g h c a r b o h y d r a t e c o n t e n t i s a r o u n d 16-18
MJ/kg,
2 3 MJ/kg a s p r o t e i n o r o i l c o n t e n t i n c r e a s e s . c a r d e d m a t e r i a l d r o p s due t o w a t e r c o n t e n t .
i n c r e a s i n g towards
The a c t u a l HV o f d i s -
The HV o f MSW c a n t h u s
be d e t e r m i n e d by summation o f t h e a c t u a l H V s o f components c o r r e c t e d f o r p e r c e n t a g e c o m p o s i t i o n a n d w a t e r c o n t e n t a s shown i n F i g u -
r e 3 . I n t h e UK i t h a s b e e n e s t i m a t e d t h a t t h e HV f o r t y p i c a l r e f u s e i s between 7.5
and 9 GJ/tonne
MSW.
Assuming t h a t p l a n t t r i m -
mings and f o o d wastes are t h e main s u b s t r a t e s f o r a n a e r o b i c d i g e s t i o n and l a r g e l y c a r b o h y d r a t e ,
t h e n t h e r e a l i s a b l e energy p e r tonne
o f MSW w i l l r e f l e c t t h e d r y w e i g h t c o m p o s i t i o n r a t h e r t h a n w e t w e i g h t g i v i n g an e n e r g y c o n t r i b u t i o n f r o m p u t r e s c i b l e m a t e r i a l o b t a i n e d t h r o u g h AD o f
a r o u n d 2 G J p e r t o n n e MSW.
T h i s can be compared w i t h
t h e h e a t g e n e r a t e d b y i n c i n e r a t i o n o f a r o u n d 6 G J p e r t o n n e MSW,
or
t h a t r e c o v e r e d i n R O F p e l l e t s o f a r o u n d 7 GH p e r t o n n e MSW.
a
b
F i g . 3 . F r a c t i o n a l composition, energy c o n t e n t , m o i s t u r e c o n t e n t a n d d i s t r i b u t i o n o f e n e r g y b e t w e e n f r a c t i o n s o f MSW. a - P e r c e n t c o m p o s i t i o n o f MSW; b - S p e c i f i c e n e r g y c o n t e n t o f f r a c t i o n s ; c- Percentage moisture; d - Actual recoverable energy content o f e a c h f r a c t i o n ( L H V ) . From l e f t t o r i g h t i n e a c h f i g u r e 1. Food w a s t e s , 2 . P a p e r , 3 . C a r d , 4 . P l a s t i c s , 5. T e x t i l e s , 6 . R u b b e r , 7 . L e a t h e r , 8. P l a n t d e b r i s , 9. Wood.
- 311
I n general,
-
r a t e s o f gas p r o d u c t i o n a r e i n c r e a s e d as r e a c t o r
t e m p e r a t u r e i s i n c r e a s e d f r o m t h e m e s o p h i l i c r a n g e ( a r o u n d 3 5 C) t o the thermophilic
range (around 55 C).
The s o l i d s c o n t e n t o f t h e ma-
t e r i a l as l o a d e d i n t o t h e d i g e s t e r h a s a v e r y s i g n i f i c a n t e f f e c t on t h e volume o f lids;
t h e d i g e s t e r r e q u i r e d t o t r e a t a g i v e n w e i g h t o f so-
the higher the s o l i d s content o f feed t h e lower t h e d i g e s t i o n
volume r e q u i r e d .
A t t h e same t i m e t h e volume o f l i q u i d e f f l u e n t ge-
n e r a t e d i s s i m i l a r l y decreased.
Hence,
d e s i g n systems which can accept, l o g i c a l view,
i t i s clearly preferable t o
f r o m b o t h a t e c h n i c a l and m i c r o b i o -
a s h i g h an i n p u t c o n c e n t r a t i o n o f MSW a s p o s s i b l e .
W i t h i n t h e ranges o f V S c o n c e n t r a t i o n which do n o t i n h i b i t m i c r o b i a l a c t i v i t y t h e v o l u m e t r i c gas p r o d u c t i o n r a t e ( c u m methane/cu m d i g e s t e r volume)
w i l l also increase w i t h increase i n s o l i d s concentra-
tion. The o n l y way t o i n c r e a s e s o l i d s c o n t e n t w h i l s t m a i n t a i n i n g a constant
-
r e t e n t i o n t i m e i s t o increase the organic l o a d i n g r a t e (ORL
t h e q u a n t i t y o f o r g a n i c m a t t e r f e d p e r u n i t volume o f d i g e s t e r p e r
u n i t time;
k g VS/cu
m/day).
The ORL a n d t h e f e e d c o n c e n t r a t i o n d e -
f i n e t h e d e t e n t i o n t i m e f o r a g i v e n volume.
The d e t e n t i o n t i m e i s
c h a n g e d o n l y by c h a n g i n g t h e f e e d c o n c e n t r a t i o n .
However,
f o r any
p a r t i c u l a r r e t e n t i o n t i m e t h e r e w i l l be a l i m i t t o t h e l o a d i n g r a t e that i s practicable.
With c o n v e n t i o n a l pumps t h e maximum s o l i d s c o n -
t e n t i s l i m i t e d t o a r o u n d 1 0 t o 1 2 % .However, f e e d o f up t o 30 % s o l i d s may be l o a d e d .
u s i n g s l u r r y pumps,
Increase i n feed s o l i d s a t
a q i v e n H R T i n c r e a s e s t h e l o a d i n g r a t e u n t i l a t some u p p e r l i m i t a d d i t i o n a l biomass s u b s t r a t e w i l l
r e m a i n u n c r e a c t e d due t o d i f f u s i o n
o r m o t a b o l i c l i m i t a t i o n s . M e t h a n e p r o d u c t i o n p r o b a b l y becomes l i m i ted at solids
0.f
o v e r 3 0 7;.
However,
up t o t h i s l e v e l v o l u m e t r i c g a s
p r o d ~ c t i o nw i l l i n c r e a s e p r o p o r t i o n a l l y t o l o a d i n g r a t e a s shown i n F i g u r e 4b.
E N G I I E E R I N G AND S Y S T E M S D E S I G N T h r e e d i s t i n c t a p p r o a c h e s t o t r e a t i n g t h e OF/MSW c a n b e t a k e n . The f i r s t
i s t o use a d i l u t e s l u r r y o f t h e m a t e r i a l ,
w i t h sewage s l u d g e , red tank reactor
-
p o s s i b l y mixed
i n a conventional tank reactor (continuous s t i r CSTR).
The s e c o n d a p p r o a c h i s t o d i g e s t t h e ma-
t e r i a l a t a higher s o l i d s content,
possibly using a larger
o f t h e w a s t e i n c l u d i n g more p a p e r e t c .
fraction
The t h i r d o p t i o n i s t o p r e -
t r e a t t h e w a s t e i n o r d e r t o i n c r e a s e t h e amount o f s o l u b l e m a t e r i a l p r i o r t o d i g e s t i o n i n a second s t a g e r e a c t o r .
D e p e n d i n g on t h e e x -
-
-
312
t e n t o f s o l u b i l i s a t i o n t h i s second
r e a c t o r c o u l d b e any o f t h e
r e c o g n i s e d h i g h r a t e systems i n c l u d i n g CSTR, UASB,
anaerobic f i l t e r s ,
c o n t a c t systems o r f l u i d i s e d bed r e a c t o r s .
A l l t h r e e o p t i o n s have been i n v e s t i g a t e d i n e x t e n s i v e p i l o t p l a n t s t u d i e s or commercial p l a n t .
These i n c l u d e a ) C o n v e n t i o n a l
f u l l y m i x e d d i g e s t e r s R E F O R M (US); ( B e l g i u m ) and V a l o r g a ( F r a n c e ) ; (Japan).
b ) H i g h s o l i d s d i g e s t e r s Dranco c)
Two p h a s e d i g e s t e r s H i t a c h i
C o n v e n t i o n a l C S T R r e a c t o r s may be u s e d w i t h d i l u t e d s l u r -
r i e s p r o d u c e d u s i n g w a t e r o r sewage s l u d g e i n m e c h a n i c a l l y m i x e d d i -
X s o l i d s . O p e r a t e d a s a one = MRT (where HRT h y d r a u l i c re-
g e s t e r s o p e r a t i n g a t between 3 and 8 pass f u l l y mixed r e a c t o r HRT = SRT tention time,
SRT
=
t i o n t i m e ) . However,
s o l i d s r e t e n t i o n t i m e and MRT = m i c r o b i a l r e t e n l a r g e t a n k s may b e r e q u i r e d t o a c h i e v e t h e m i -
nimum SRTs o f b e t w e e n 1 5 a n d 30 d a y s i n t h e m e s o p h i l i c r a n g e a t a t e m p e r a t u r e o f 35 C.
Such p r o c e s s e s c a n o n l y b e u s e d w i t h OF/MSW i f
the material i s d i l u t e d f i r s t .
T h i s means t h a t f r o m 6 t o 1 0 c u m o f
w a t e r w i l l have t o be added p e r t o n n e o f o r g a n i c m a t e r i a l i n o r d e r t o reduce t h e T S c o n t e n t t o around 5 t o 10
X. T h i s w a t e r
w i l l have
t o be h e a t e d a n d w i l l i n t u r n f o r m an e f f l u e n t w h i c h w i l l r e q u i r e post-digestion
treatment.
The t e r m h i g h s o l i d s d i g e s t i o n , as i t i s s o m e t i m e s c a l l e d ,
or dry anaerobic fermentation
i s used t o d e s c r i b e systems i n which t h e
t o t a l s o l i d s c o n c e n t r a t i o n w i t h i n t h e d i g e s t e r i s more t h a n 20 t o
25 X .
Such d r y f e r m e n t a t i o n s h a v e a n a d v a n t a g e w h e r e t h e f e e d s t o c k ,
s u c h as MSW,
i s a v a i l a b l e w i t h m o i s t u r e c o n t e n t s o f l e s s t h a n 60 t o
7 0 X s i n c e t h e n e e d t o trdd w a t e r i s r e d u c e d . sed p o s t - d i g e s t e r
treatment costs,
This r e s u l t s i n decrea-
d e c r e a s e d r e a c t o r v o l u m e and t h e
p o s s i b i l i t y o f h i g h e r OLRs a t l o n g e r r e t e n t i o n t i m e s .
These i n c l u d e
s y s t e m s i n w h i c h t h e m a t e r i a l i s p a r t l y m i x e d as w e l l a s s y s t e m s w h i c h e s s e n t i a l l y work a s p l u g f l o w r e a c t o r s u n d e r t h e i n f l u e n c e o f gravity.
P l u g f l o w d i g e s t e r s t y p i c a l l y r e c e i v e f e e d a t one e n d
w h i l s t e f f l u e n t i s removed from t h e o t h e r .
MRT.
However,
and e f f l u e n t
Hence a g a i n H R T
SRT
=
such systems d i f f e r f r o m t h e CSTR i n t h a t i n f l u e n t a r e n o t mixed and hence u n d i g e s t e d m a t e r i a l i s n o t l o s t
a l t h o u g h t h e r e c a n b e some v e r t i c a l m i x i n g d u e t o g a s p r o d u c t i o n and some s o l i d s s e p a r a t i o n d u e t o g r a v i t y .
Consequently,
t h e SRT can
e x c e e d t h e HRT.
I t i s a l s o q u i t e common f o r t h e r e a c t o r t o become i n e f f e c t two stage,
w i t h h y d r o l y s i s and a c i d p r o d u c t i o n d c c u r i n g a t t h e
in-
-
313
-
f l u e n t end a n d m e t h a n o g e n e s i s a t t h e o u t f l o w .
T h i s can l e a d t o prob-
lems w i t h f e e d s t o c k s such as MSW s i n c e u n l e s s microorganisms a r e c o n t i n u a l l y s e e d e d b a c k i n t o t h e r e a c t o r m e t h a n o g e n s may wash o u t preferentially
causing decreased s t a b i l i t y .
A d d i t i o n o f sewage s l u d -
ge o r r e c y c l e o f t h e e f f l u e n t c a n h e l p overcome
such problems.
High
s o l i d s s y s t e m s c a n show v e r y h i g h r a t e s o f g a s p r o d u c t i o n r e f l e c t i n g t h e h i g h l o a d i n g r a t e s a n d a r e more r o b u s t due t o t h e f a c t t h a t c r u s t f o r m a t i o n a n d a c c u m u l a t i o n o f i n e r t s o l i d s d o e s n o t o c c u r a s i n mo-
re d i l u t e s t i r r e d tank reactors.
Systems have a l s o been r e s e a r c h e d
or designed i n which the o v e r a l l process o f conversion o f i n s o l u b l e p o l y m e r i c m a t e r i a l t o methane i s c a r r i e d o u t i n two o r more r e a c t o r s a r r a n g e d i n s e r i e s i n s u c h a way t h a t t h e p r o c e s s t a k e s p l a c e i n t w o microbiologically
independent phases.
Conditions i n the f i r s t
reactor are adjusted i n order t o o p t i -
m i s e t h e g r o w t h o f o r g a n i s m s w h i c h a r e c a p a b l e o f b r e a k i n g down b i o polymers with the release o f s h o r t chain f a t t y acids.
Since t h i s re-
s u l t s i n l i q u e f a c t i o n and a c i d o g e n e s i s t h e s e r e a c t o r s a r e sometimes r e f f e r e d t o as t h e liquefaction-acidfication
(LA)
phase.
The s o l u -
t i o n o f VFAs p r o d u c e d i s t h e n p a s s e d t o t h e s e c o n d p h a s e w h i c h may b e one o f any o f t h e s o - c a l l e d
h i g h r a t e second g e n e r a t i o n d i g e s t i o n
s y s t e m s where m e t h a n o g e n e s i s o c c u r s .
The a d v a n t a g e s o f two phase
systems r e l a t e t o i n c r e a s e d c o n v e r s i o n o f p o l y m e r i c m a t e r i a l and t h e f a c t t h a t t h e f i r s t s t a g e may be o f s i m p l e c o n s t r u c t i o n a n d l a r g e size,
o f t e n c o n s i s t i n g o f a simple container through which l i q u i d
i s p e r c o l a t e d b e f o r e p a s s i n g t o t h e second r e a c t o r .
A t one e x t r e m e
proposals t o recycle leachate through l i n e d l a n d f i l l s i t e s with the o u t f l o w p a s s i n g t h r o u g h a d i g e s t e r c a n be r e g a r d e d a s a l a r g e t w o phase p e r c o l a t i o n system. c u s s e d above.
The f i r s t p h a s e i s r a t e l i m i t i n g ,
I t i s possible t o pretreat the s o l i d material i n order
t o increase d i g e s t i b i l i t y , of
as d i s -
cellulolytic
or t o incubate the material with cultures
or l i g n o l y t i c f u n g i o r b a c t e r i a .
The r a n g e o f p r e -
t r e a t m e n t s w h i c h have been t r i e d w i t h v a r i o u s s t a r t i n g m a t e r i a l s , i n c l u d i n g a g r i c u l t u r a l r e s i d u e s and i n d u s t r i a l wastes, se w h i c h have been used i n t h e t r e a t m e n t o f s i m i l a r
order t o produce paper pulp,
resemble tho-
feedstocks i n
increase d i g e s t i b i l i t y o f animal
feeds
or generate a fermentation feedstock f o r f u e l a l c o h o l production These i n c l u d e ateam t r e a t m e n t s o f v a r i o u s t y p e s , a c i d and a l k a l i t r e a t m e n t s , etc.
steam e x p l o s i o n ,
t h e use o f hydrogen p e r o x i d e ,
solvents,
I n g e n e r a l t h e s e a p p r o a c h e s r e m a i n more o f a c a d e m i c i n t e r e s t
t h a n r e a l p r a c t i c a l a p p l i c a b i l i t y f o r two reasons.
The f i r s t r e l a t e s
-
314
-
t o c o s t s o f such t r e a t m e n t and t h e second t o p r o b l e m s o f e f f l u e n t treatment,
chemical n e u t r a l i s a t i o n etc.
ECONOMICS A t t e m p t s t o answer
t h e q u e s t i o n o f economic b e n e f i t s o f adding
an A D p l a n t t o a w a s t e d i s p o s a l f a c i l i t y h a v e b e e n made b y c o n s i d e r i n g t h e n e t cash b a l a n c e p e r c u b i c m e t r e o f d i g e s t e r volume, systems o p e r a t e d under v a r i o u s regimes,
for
which r e s u l t from various
energy s a l e p r i c e s w i t h v a r y i n g c a p i t a l c o s t s expressed i n terms o f p e r c u b i c m e t r e d i g e s t e r volume,
a s s u m i n g a m a r k e t v a l u e o f gas
o f b e t w e e n 1 0 and 3 0 p p e r t h e r m a n d a v a l u e f o r e l e c t r i c i t y o f b e t ween 2 a n d 6 p p e r KWh
(Fig.
5).
zoo] 1004
/
-100 I I 10 20 30 I PENCElTHERM 1
ELECTRICITY PRKE [plKWhl
401
z -40
- 80 -120
-60 -80 200 300 400 500
200 300
200
400 500
DIGESTER COST [ E l m 3
300 400 500
1
F i g . 5.. Changes i n t h e n e t a n n u a l c a s h f l o w , e x p r e s s e d i n t e r m s o f L/cubi m e t r e d i g e s t e r v o l u m e p e r annum, f o r s y s t e m s d e s i g n e d f o r the anaerobic digestion o f t h e organic f r a c t i o n o f municipal s o l i d waste. A ( t o p row) n e t cash f l o w as a f u n c t i o n o f f u e l p r i c e f o r s y s t e m s i n w h i c h an i n c l u s i v e c o s t o f f, 3 0 0 p e r c u b i c m e t r e o f d i g e s t e r c a p a c i t y i s assumed. B ( b o t t o m r o w ) n e t c a s h f l o w as a f u n c t i o n o f c a p i t a l c o s t s a t f i x e d gas p r i c e o f 15p p e r t h e r m o r e l e c t r i c i t y p r i c e o f 2 , 5 p/KWh. L e f t a n d r i g h t v e r t i c a l c o l u m n s a r e c a l c u l a t e d on t h e a s s u m p t i o n t h a t t h e s y s t e m i s h e a t e d f r o m an e x t e r n a l b o i l e r u s i n g non- d i g e s t i b l e m a t e r i a l o r w a s t e h e a t f r o m a C H P u n i t . C e n t r a l column g i v e s r e s u l t s f o r systems h e a t e d by b u r n i n g p a r t o f 1 = CSTR digester; 2 = mesophilic high s o l i d s digester t h e gas. and 3 = t h e r m o p h i l i c h i g h s o l i d s d i g e s t e r .
- 315 -
I n t h e s e c a l c u l a t i o n s g a s p r o d u c t i o n is e s t i m a t e d from t h e aver a g e v a l u e s u n d e r e a c h c o n d i t i o n d e r i v e d from d a t a shown i n f i g u r e 3 and 4.
For c o n v e n i e n c e a n i n t e r e s t r a t e o f 10 L o v e r a 1 5 y e a r li-
f e i s u s e d t o compute t h e a n n u a l c a p i t a l c h a r g e a s s o c i a t e d w i t h varying digester costs.
A d d i t i o n a l e s t i m a t e s were m a d e f o r o p e r a t i n g
c o s t s a n d t h e sum s u b t r a c t e d f r o m t h e r e v e n u e f r o m s a l e s o f n e t g a s
or e l e c t r i c i t y f o r d i f f e r i n g d i q e s t e r t y p e s , a s shown i n f i g u r e 5 , t o g i v e a n e t c o s t . C a l c u l a t i o n s assumed t h a t t h e d i g e s t e r producing e l e c t r i c i t y w a s h e a t e d u s i n g h e a t f r o m a CHP u n i t .
D i g e s t e r s produ-
c i n g g a s were a s s u m e d e i t h e r t o b e h e a t e d by g a s c o m b u s t i o n o r b y h e a t from i n c i n e r a t i o n i n a b o i l e r , ded.
t h e c o s t o f which was n o t i n c l u -
Obviously t h e d e t a i l e d f i g u r e s a r e site s p e c i f i c .
However,
this
g e n e r a l a n a l y s i s s u p p o r t s t h e c o n c l u s i o n s o f V e a l t h a t CSTR s y s t e m s
are u n l i k e l y t o be economic, b u t a t t h e same t i m e shows t h e p o t e n t i a l o f h i g h s o l i d s t h e r m o p h i l i c d i g e s t e r s . However, systems,
even with such
u n l e s s e n e r g y p r i c e s r i s e a b o v e t h e lower limits o f 1 5 p
p e r t h e r m o r 2 , 5 p p e r KWh, e c o n o m i c s a r e d e p e n d e n t o n a n a l l - i n
ca-
p i t a l c o s t o f d i g e s t i o n o f a r o u n d € 2 0 0 t o € 250 p e r c u b i c metre. CONCLUSIONS T h e g e n e r a l c o n c l u s i o n i s t h a t t h e d i g e s t i o n o f s l u r r i e d MSW w i t h sewage s l u d g e i s b a s i c a l l y an e s t a b l i s h e d technology.
However,
a t p r e s e n t t h e r e i s l e s s e x p e r i e n c e w i t h A D s y s t e m s b a s e d on h i g h e r s o l i d s and l o a d i n g r a t e s .
J u s t i f i c a t i o n f o r AD systems d e s i g n e d t o
p r o d u c e g a s or power f o r s a l e , r a t i n g energy f o r in-house
r a t h e r t h a n j u s t a s a means o f gene-
use i n a sorting/RDF
p l a n t , d e p e n d s on
assumptions r e l a t i n g t o t h e f u t u r e p r i c e o f energy a s well a s f u t u re methods o f d i s p o s a l o f wastes and/or
identification of additio-
n a l b e n e f i t s a s s o c i a t e d w i t h t h e r o u t e t h r o u g h f a b r i c a t e d AD systems. I n t h e s h o r t term p r o b a b l y t h e m o r e i m p o r t a n t f a c t o r s w h i c h a r e a l r e a d y p r o m p t i n g many w a s t e d i s p o s a l a u t h o r i t i e s t o c o n s i d e r t h i s o p t i o n r e l a t e t o waste disposal.
These i n c l u d e d e c r e a s i n g a v a i l a b i l i -
t y o f l a n d f o r w a s t e d e p o s i t , more s t r i n g e n t l e g i s l a t i o n o n c o n t r o l o f l e a c h a t e and g a s l e a k s from l a n d f i l l s i t e s l e a d i n g t o h i g h e r c o s t s , s i m i l a r i n c r e a s e d c o s t s of i n c i n e r a t i o n due t o t h e need t o i n s t a l l stack-gas
c l e a n u p , c h a n g e s i n l e g i s l a t i o n on r e l e a s e of
s l u d g e i n t o t h e s e a or t o l a n d and environmental c o n s i d e r a t i o n s i n general.
I n some c o u n t r i e s t h e e c o n o m i c c l i m a t e f o r s m a l l s c a l e po-
wer g e n e r a t i o n f r o m w a s t e s i s i m p r o v i n g , a s s o c i a t e d w i t h t h e c o n c e r n a b o u t n u c l e a r power on t h e o n e hand a n d c a r b o n d i o x i d e l e v e l s a n d
a c i d r a i n on t h e o t h e r .
316
-
A t t h e same t i m e i n c r e a s e d r e c y c l i n g o f com-
p o n e n t s o f MSW w i l l r e v e r s e t h e t r e n d w h i c h h a s b e e n s e e n o v e r t h e l a s t 20 y e a r s o r so,
w h e r e t h e amount o f b i o d e g r a d a b l e m a t e r i a l de-
c l i n e d as p l a s t i c s r e p l a c e d paper as t h e major packaging m a t e r i a l a n d p e o p l e w e n t f r o m p r e p a r i n g t h e i r own f o o d t o b u y i n g p r o c e s s e d food.
The c u r r e n t t r e n d t o w a r d s h e a l t h i e r e a t i n g ,
more v e g e t a b l e s
and b i o d e g r a d a b l e p a c k a g i n g w i l l a l l i n c r e a s e t h e p u t r e s c i b l e f r a c tion,
f a v o u r i n g AD.
I n t h e UK s u c h c o n s i d e r a t i o n s h a v e p r o m p t e d a
number o f c i t y c o u n s i l s ,
whilst the
UK
including Cardiff,
t o look at t h i s option
Department o f Energy i s f u n d i n g r e s e a r c h and d e v e l o p -
ment s t u d i e s a n d p l a n t .
E l s e w h e r e t h e E C E n e r g y Programme ( D G X V I I )
h a s f u n d e d a number o f d e m o n s t r a t i o n s a n d i n F r a n c e s e v e r a l m o r e
f u l l s c a l e p l a n t a r e planned.
LANDFILL GAS FUEL AN0 ECOLOGICAL PROBLEMS
2.
PIETRZYK
T e c h n i c a l U n i v e r s i t y o f Cracow,
1
POLAND.
INTRODUCTION Annual i n c r e m e n t o f r e f u s e g e n e r a t i o n and a i r and w a t e r p o l l u -
t i o n i s r e a l l y h i g h e r t h a n f o o d o r i n d u s t r i a l p r o d u c t i o n and g r o w t h o f the population i t s e l f (Fig.
1).
~~
WASTE
Fig.
PRODUCTION
INCREASE PROD
1. G r o w t h o f p r o d u c t i o n . A c i t i z e n i n a w e l l d e v e l o p e d c o u n t r y p r o d u c e s 1.5
o f m u n i c i p a l waste y e a r l y .
with time.
cubic meters
T h i s amount h a s a t e n d e n c y t o i n c r e a s e
Because o f t h e h i g h d e n s i t y o f t h e p o p u l a t i o n ,
municipal
w a s t e becomes a s e r i o u s p r o b l e m n o t o n l y f o r m u n i c i p a l i t i e s b u t a l s o f o r c i t i z e n s themselves. Waste w a t e r t r e a t m e n t i s i m p o r t a n t t o e n s u r e c l e a n r i v e r s a n d
water resources.
318
-
The p u r i f i c a t i o n p r o c e s s i s r e a l i z e d a l s o w i t h p o l -
l u t e d f l u e gases i n t h e industry. Solid municipal wastes a r e f a i r l y o f t e n not disposed of immediately.
They a r e m a i n l y l a n d f i l l e d . S t o c k s
o f t h e m g r o w p e r m a n e n t l y a n d we a r e t h r e a t e n e d w i t h a t i m e bomb.
Up
t o now t h e r e h a s b e e n a l a c k o f s u c c e s s f u l w a y s t o c o m p l e t e d e g r a d a t i o n , destroying or u t i l i z a t i o n of a l l t h e ingredients of t h e municip a l waste. The p r i n c i p a l ways o f d e a l i n g w i t h m u n i c i p a l w a s t e a r e : ling,
recyc-
i n c i n e r a t i o n , c o m p o s t i n g and l a n d f i l l i n g . Most o f t h e w a s t e
( U S - 9 5 % , UK-89 % ,F R G - 7 1 % ) i s l a n d f i l l e d . T h e r e m a i n i n g p a r t i s i n c i n e r a t e d ( U S - 5 X , UK-10 3
% ,F R G - 2 5
X). P a r t s o f t h e r e f u s e ( b e l o w 2 0
X) o r c o m p o s t e d ( U S - 1 X , %) l i k e g l a s s ,
rubber,
FRG-
plastics,
c e l l u l o s e and e s p e c i a l l y non f e r r o u s m e t a l s c a n be r e c y c l e d .
I t is
t h e most e f i c i e n t and e c o n o m i c a l way f o r s e c o n d a r y m a t e r i a l r e c o very
[ll.
he w a s t e i n c i n e r a t i o n p r o c e s s i s r e a l i z e d i n s p e c i a l f u r -
naces with heat recovery
f o r t h e s t e a m o r warm w a t e r p r o d u c t i o n .
Combustion is o f t e n supported with n a t u r a l f u e l s ( o i l ,
natural gas)
b e c a u s e o f h i g h h u m i d i t y and low c a l o r i f i c v a l u e o f r e f u s e . compounds
Waste
i k e PVC a n d f r e o n s ( f r o m s p r a y c a n s ) c r e a t e d i o x i n e s a n d
f u r a n e s i n combustion chambers. nents of f l u e gases.
T h e s e a r e t h e h i g h l y t o x i c compo-
Some y e a r s a g o e v e r y m a j o r t o w n h a d o n e o b j e c t
- t o b u i l d an i n c i n e r a t i o n p l a n t f o r municipal r e f u s e . S u i t a b l e l o c a t i o n s a r e commonly d i s c u s s e d . As
t h e b i o d e g r a d a t i o n methods a r e used:
aerobic composting i n
h e a t e d and a e r a t e d r e a c t o r s , a n a e r o b i c biodecomposition o f hydrocarb o n s i n dump c o n d i t i o n s .
The main p r o d u c t o f t h e a n a e r o b i c p r o c e s s
l a n d f i l l g a s c o n t a i n s methane and carbon d i o x i d e . nical progress,
I n s p i t e of tech-
t h e century old p r a c t i c e of l a n d f i l l i n g remains t h e
p r i n c i p l e means o f w a s t e d i s p o s a l .
The p o p u l a r i t y o f l a n d f i l l i n g i s
d u e t o low t e c h n o l o g i c a l r e q u i r e m e n t s , c o s t s o f t h i s method.
s i m p l i c i t y and low i n v e s t m e n t
The m a i n d r a w b a c k i s t h a t much l a n d i s n e e d e d
and i t i s g e t t i n g more a n d more d i f f i c u l t t o o b t a i n i t i n t h e v i c i nity of large cities.
L a n d f i l l i n g a s a means o f s o l i d w a s t e d i s p o s a l
is generally a nuisance t o the surrounding area a s is the recently
criticized incinerators. One o f t h e r e a s o n s why l a n d f i l l s a r e a p r o b l e m i s b e c a u s e o f t h e generation of landfill gas. 55-33
T h i s i s a m i x t u r e o f 44-66
?i C 0 2 a n d s o m e o d o r i n g r e d i e n t s .
% methane and
Due t o t h e h i g h c o n t e n t o f
m e t h a n e , when l a n d f i l l g a s m i x e s w i t h a i r t h e r e i s a d a n g e r o f f i r e and p o s s i b l e explosions.
The h a z a r d s o f e x p l o s i o n s e x t e n d o u t s i d e t h e
-
319
-
l a n d f i l l limits b e c a u s e t h e g a s c a n m i g r a t e u n d e r t h e s u r f a c e o f t h e e a r t h f o r hundreds
o f meters.
From e a c h k i l o g r a m o f w a s t e c a l c u l a t e d , t h e c a r b o n b a l a n c e t h e m3 o f g a s 1 2 1 . I n p r a c t i c e t h i s vam3 g a s / k g w a s t e e x t e n d e d f o r 20 y e a r s .
o r e t i c a l l y o b t a i n e d i s 0.26-0.41 l u e i s r e d u c e d t o 0.10-0.20
The c h a n g e o f g a s g e n e r a t i o n i n e x p l o i t a t i o n time i s shown i n [ 3 1 Fig.
2.
The s p e e d o f t h e g a s g e n e r a t i o n i s p r o p o r t i o n a l
ber o f b a c t e r i a and t h e i r a c t i v i t y , (humidity,
contents of antibiotics).
t o t h e num-
due t o the external conditions Absence o f oxygen i n biomass is
a very important factor f o r successful running of t h e decomposition process.
100
ma
I I
I
SUPPLY
STORAGE
TIME
0
Fig.
2.
Production of t h e l a n d f i l l g a s .
L a n d f i l l g a s is generated i n t h r e e s e q u e n t i a l s t a g e s and t h e p r o d u c t s o f e a c h one a r e u s e d a s a raw m a t e r i a l i n t h e n e x t . o f t h e c u r v e s f o r main g a s e o u s c o m p o n e n t s a r e shown i n F i g .
2
Trends 3.
U T I L I Z A T I O N OF T H E LANDFILL G A S To r e d u c e t h e r i s k o f e x p l o s i o n s t h e g a s i s e x t r a c t e d by a s y s -
tem o f w e l l s d r i l l e d i n t h e l a n d f i l l , w h i c h i s t h e n f i l l e d w i t h t h e 4 ) . The p i p e s c o n n e c t t h e wells w h i c h extract t h e g a s [ 4 1 . T h e w e l l s a r e 1 0 0 meters a p a r t ( 1 p e r h e c t a r e )
pebbles and a i r sealed (Fig.
-
320
-
I
f
Y
I
1
3 0
>
& z
0 t In 0 a
z
0 V
in
cn
a
a _J
4 LL
n z
a _I
TIME Fig.
3.
L a n d f i l l gas p r o d u c t i o n p a t t e r n .
DESTRUCTION TORCH Fig.
4.
UTILIZATION FUEL
FURNACE
OVEN
BOILER
CHP
L a n d f i l l gas p r o c e e d i n g
3
a n d e a c h y i e l d s an a v e r a g e 0 . 4
m / m i n o f gas.
ned i n a t o r c h o r i n f u r n a c e s .
The g a s a f t e r p u r i f i c a t i o n i s i n c i n e -
The r a w g a s c a n b e b u r -
r a t e d w i t h h e a t r e c o v e r y i n a b o i l e r or gas e n g i n e ( F i g . lers,
5).
I n boi-
p u r e g a s i s u s e d f o r warm w a t e r p r o d u c t i o n ( t e m p e r a t u r e
o r hot water (90 h i g h C02 c o n t e n t , c a l o r i c value 10
OC)
f o r central heating.
55
OC)
R e d u c i n g t o a minimum t h e
l a n d f i l l gas can b e q u a l i f i e d between gas L ( l o w
X C o g ) a n d g a s H ( h i g h c a l o r i c v a l u e 5 7;
i n t r o d u c e d i n t o n a t u r a l gas n e t w o r k .
C02)
and
-
321
-
Q
MUNICIPAL
( W A S T E WATER BARRIER) Fig.
5.
L a n d f i l l gas r e c o v e r y w e l l .
The p u r e g a s h a s a d v a n t a g e s a s a f u e l i n t h e i n t e r n a l c o m b u s t i on engine o r i n t h e gas t u r b i n e . o n l y w i t h gas, of
The c a r b u r e t o r e n g i n e c a n b e f e d
w h i l e a d i e s e l u n i t r e q u i r e s an a d d i t i o n o f 20-30
o i l f o r gas-air
and Power) system,
mixture ignition. o n l y 30
X
I n CHP ( C o g e n e r a t i o n o f H e a t
X o f t h e c h e m i c a l energy o f t h e gas i s b u t 40-60 X may b e r e c o v e d f r o m
u t i l i z e d f o r generating e l e c t r i c i t y ;
waste h e a t ( c o o l i n g water and e x h a u s t gases) and used f o r domestic purposes ( F i g .
6).
U t i l i z i n g t h e l a n d f i l l g a s i n an e n g i n e e n o u g h e n e r g y i s gener a t e d t o c o v e r e n e r g y demand a t t h e l a n d f i l l s i t e ( p r o p u l s i o n o f pumps a n d f a n s )
and e n a b l e s h o t w a t e r p r o d u c t i o n f o r c l e a n i n g t r u c k s
and c o n t a i n e r s .
From 1 h a o f l a n d f i l l i t i s p o s s i b l e t o o b t a i n
30 kWatta i n e l e c t r i c i t y
and a d d i t i o n a l l y 50 k W a t t s o f h e a t .
Elec-
t r i c i t y g e n e r a t i n g f r o m t h e l a n d f i l l g a s b y means o f e n g i n e a n d e l e c t r i c g e n e r a t o r i s e c o n o m i c a l when t h e a r e a o f l a n d f i l l i s a minimum o f 10 h a a n d a d e p t h 8-12 m e t e r s .
I f t h e gas i s b u r n e d i n water b o i l e r s , n i c i t y of approx.
t h e l a n d f i l l can be covered.
h e a t demand i n t h e v i -
From 1 h a (1 w e l l )
one o b t a i n s
100 k W a t t s o f h e a t w h i c h i s enough t o s u p p l y h e a t f o r c e n t r a l
h e a t i n g a n d warm w a t e r p r o d u c t i o n t o 6 s i n g l e f a m i l y h o u s e s .
Such b e -
-
322
-
n e n e f i t s i n c l u d e reduced p r i m a r y energy consumption f o r a g i v e n l e v e l o f economic o u t p u t ( F i g .
7).
EL.
EN.
CHP
Fig.
6 . L a n d f i l l gas i n s t a l l a t i o n w i t h e n e r g y r e c o v e r y .
Nevertheless,
u t i l i z a t i o n o f energy from t h e l a n d f i l l gas has
a m a r g i n a l i m p a c t on t h e e n e r g y b a l a n c e i n t h e c o m m u n i t y a n d t h e l o c a t i o n o f t h e l a n d f i l l n a t u r a l l y l i m i t s t h e number o f t h e p o t e n t i a l users.
The e c o l o g i c a l i m p a c t o f t h e p r o b l e m i s f a r m o r e s i g n i -
ficant.
L a n d f i l l gas
-
ecological problem
L a n d f i l l gas d e n s i t y i s s i m i l a r t o a i r , i s quite different.
but i t s optical density
T h i s causes t h e r e f r a c t i o n o f l i g h t and t h e r e f -
l e c t i o n o f r a y s on a i r - l a n d f i l l
gas i n t e r f a c i a l a u r f a c e .
I t i s possi-
b l e t h a t u n e x p l a i n a b l e c a r a c c i d e n t s d u r i n g f u l l d a y l i g h t may b e c a u s e d b y e n t e r i n g an a r e a w i t h a l i g h t c o n c e n t r a t i o n o f l a n d f i l l
gas.
-
323
-
300 (30 O/o 1
ELECTRICAL ENERGY 200
STATION I L8 % ) 100 SYSTEM GAS
I 0
1000
2000 V
FIG:
7.
(85%)
( 8 5 O/Ol
BOILER [ H E A T )
C o s t o f energy g e n e r a t i o n from
The a p p r o a c h i n g c a r c a n b e i n v i s i b l e ,
[nm3/h1
l a n d f i l l gas. as i f i t was u n d e r w a t e r .
This
phen0meno.n i n a d d i t i o n t o t h e l a c k o f c o n c e n t r a t i o n c a n l e a d t o f a t a l r e s u l t s (Fig.
6).
A
Fig.
8.
L a n d f i l l gas l a y e r a s a m i r r o r .
L a n d f i l l w i t h a i r c r e a t e s an e x p l o s i v e m i x t u r e .
For hydrogen-
a i r m i x t u r e t h e i g n i t i o n range i s between 4 and 7 5 % o f H 2 and t h e same f o r m e t h a n e i s 5 . 3
t o 16 X.
The s t o i c h i o m e t r i c d e t o n a t i o n r a n g e
f o r methane i s f i v e t i m e s s m a l l e r t h a n t h a t
for
hydrogen,
b u t the
i n c r e a s e o f p r e s s u r e i n t h e d e t o n a t i o n wave o f m e t h a n e i s 5 0 X h i g p2 h e r t h a n t h a t f o r hydrogen ( p r e s s u r e i n c r e a s e - f o r CH4 i s e q u a l 31
P1
and f o r H 2 i s o n l y 20).
Assuming t h a t l a n d f i l l gas c o n s i s t s o n l y o f q a r d i n g t h e o t h e r components,
CH4 a n d C02 d i s r e -
t h e f l u e gases a f t e r c o m b u s t i o n o f 1 m
o f g a s w i l l a l w a y s i n c l u d e 1 m3 o f C02. When t h e c o n c e n t r a t i o n o f m e t h a n e c h a n g e s f r o m 1 0 0 % t o 40
X i n t h e l a n d f i l l gas t h e maximal
3
-
324
-
C02 c o n c e n t r a t i o n i n d r y f l u e g a s e s i n c r e a s e s f r o m 1 1 . 7
t o 2 5 76.
T h a t i s much h i g h e r C02 c o n t e n t s t h a n f o r p u r e c a r b o n i n c i n e r a t i n g
o r f o r e n e r g e t i c c o a l ( 1 8 . 4 + 1 8 . 8 X).
( 2 1 7;)
T h i s i s h a r m f u l because o f t h e green house e f f e c t . s i n c e l a n d f i l l g a s w i t h o n l y 5 0 7; r i c value o f n a t u r a l gas.
Especially
o f methane h a s h a l f o f t h e c a l o -
I n o t h e r words,
one m u s t u s e t w i c e t h e
l a n d f i l l g a s t o a c h i e v e t h e same amount o f h e a t a n d t h e same i s p r o d u c e d t w i c e more C02 w h i c h s h o u l d b e l a u n c h e d i n t o t h e a t m o s p h e r e . Combustion o f l a n d f i l l gas i s l e s s h a r m f u l t o t h e e n v i r o n m e n t t h a n i n c i n e r a t i o n o f g o l i d m u n i c i p a l waste i t s e l f . contain PVC,
nor polyurethanes.
r i n e compounds a n d i n t h e c a s e o f drogen.
S u l f u r hydrogen,
The g a s d o e s n o t
The i n c i n e r a t i o n o f P V C y i e l d s c h l o p o l y u r e t h a n e s forms t h e cyano hy-
f r e o n s and f l u o r i n e hydrocarbons a r e t h e
most h a r m f u l s u b s t a n c e s i n l a n d f i l l gas. When t h e i n c i n e r a t i o n p r o c e s s i s n o t r e a l i z e d a t t o o h i g h temperatures, ted (Fig.
s t r o n g l y t o x i c b e n s o d i o x i n e and b e n s o f u r a n e s a r e genera-
9).
[ 5 1 These p r o d u c t s a r e v e r y s t a b l e a n d c a n b e decom-
posed o n l y t h r o u g h c o m b u s t i o n i n f u r n a c e s a t t e m p e r a t u r e s above 1300 'C.
T h i s i s why t h i s i s t h e o n l y way o f c o m b u s t i o n p e r m i t t e d i n
some c o u n t r i e s . cumstances,
L a n d f i l l gas c o n t a i n s ,
d e p e n d i n g on t h e l o c a l c i r -
1 5 t 2 0 0 mgs o f c h l o r i n e p e r m3 a n d t h e c h l o r i n e h y d r o -
c a r b o n compounds ( S e v e s o t o x i n e ) a r e t h e p r o m i n e n t e n v i r o n m e n t a l p r o b lems i n l a n d f i l l gas combustion,
a n d i s f a r m o r e h a z a r d o u s t h a n com-
m o n l y r e c o g n i z e d s u l f u r compounds.
DlBENZODlOXlNE
2 3.7.0
TCDD
( TE TRACHLORINEDIBENZODIOXINE
Fig.
DIBENZOFURANE
2 3 7 . 0 TCDF
1
9. D i o x i n e a n d f u r a n e t o x i n .
( TETRACHLORINEDIBENZO FURANE 1
-
-
325
When i n l a n d f i l l g a s t h e c o n t e n t s o f C02 i n c r e a s e s , t h e
amount
o f w a t e r s t e a m i n f l u e g a s e s d e c r e a s e s a n d t h e i r dew p o i n t w i l l b e lower.
I n flue
g a s e s f r o m p u r e m e t h a n e H20 m o l f r a c t i o n i s 0 . 1 9
t h e dew p o i n t 56 t o 0.4
-
OC,
and
when m e t h a n e c o n t e n t s i n l a n d f i l l g a s d e c r e a s e s
t h e dew p o i n t i s a t 53
OC.
I t makes e x p l o i t a t i o n o f c o n -
densing the appliance r a t h e r d i f f i c u l t b u t r e a l l y possible t o j e t . The c o n d e n s i n g a p p l i a n c e a s s u r e s h i g h e r t h e r m a l e f f i c i e n c y t h a n c l a s s i c gas u n i t .
T h e s e a r e u s e d a s d o m e s t i c and communal b o i l e r s
a n d warm w a t e r s h e a t e r s .
Gas c o n s u m p t i o n f o r t h e s e i s 1 0
-
15
X lo-
wer t h a n i t i s f o r c l a s s i c g a s u n i t s . Unfortunately
the sulfur,
c h l o r i n e a n d f l u o r i n e compounds f r o m
l a n d f i l l g a s go i n t o c o m b u s t i o n p r o d u c t s a n d i n t h e p r e s e n c e o f c o n densate they c r e a t e a very hazardous water s o l u t i o n . corrosive e f f e c t s o f the ingredients, l o w e r t h a n 25 mg/m
3
,
the total
Considering the
f l u o r i n e should be
c h l o r i n e l o w e r t h a n 5 0 mg/m3 a n d s u l f u r h y d r o -
g e n l o w e r t h a n 1 5 0 0 mg/m3
o f l a n d f i l l gas.
P r o b l e m number one f o r l a n d f i l l g a s i s e c o n o m i c a n d t h e r e l i a b i l i t y o f t h e c l e a n i n g and e n r i c h i n g process. means o f :
-
dry
I n t h e a d s o r p t i o n method,
I t can be r e a l i z e d by
or wet-absorption treatment.
a d s o r p t i o n way,
[ 6 1 u s i n g t h e a c t i v a t e d carbon and
t h e z e o l i n e o r t h e m o l e c u l a r membrane u n d e r p r e s s u r e 2 - 3 MPa a r e c a p t u r e d and removed under pressure
2-3
-
s u l f u r hydrogen,
p i p e l i n e s o f a gas s y s t e m .
C a r b o n a c t i v e i s r e g e n e r a t e d b y means o f
h i g h t e m p e r a t u r e w a t e r steam. using zeolite,
f r e o n s and carbon d i o x i d e
1 0 ) . Gas a f t e r p u r i f i c a t i o n f l o w s i n t o
MPa ( F i g .
Carbon d i o x i d e i s removed from t h e gas
and a f t e r two s t a g e s t h e a d s o r b e r t o t a l methane i n -
c r e a s e s t o 95 %. I n t h e a b s o r p t i o n p r o c e s s [ 6 1 c a r b o n d i o x i d e i s washed o u t f r o m l a n d f i l l g a s u s i n g p u r e w a t e r i n t h e p r e s s u r e s w i n g mode, c a l l y - i n amine b a t h ( F i g .
11).
o r chemi-
I n t h e p r e s s u r e swing method
-
car-
bon d i o x i d e i s t r e a t e d by water i n t h e a b s o r p t i o n tower under p r e -
s s u r e 1 MPa, a n d t h e n t h e s a t u r a t e d w a t e r i s d e c o m p r e s s e d i n t h e s t r i p p e r w h e r e C02 i s r e l e a s e d . t h e gas i n a c h e m i c a l b a t h .
O t h e r i n g r e d i e n t s a r e removed from
Compressed m e t h a n e f l i e s i n t o t h e c o l l e c -
tor. I n t h e system ( f o r l o w 5 mg/m3, 0.5
mg/m
3
communal u s e ) g a s H 2 S m u s t b e r e d u c e d t o b e -
C02 b e l o w 5 % ( m i n H gas)
. For
a n d c h l o r i n e compounds b e l o w
gas c l e a n i n g and e n r i c h i n g
method i s p r e f e r r e d .
-
the dry (adsorption)
-
STEAM
ZEO-
C ACT
LlTE
ADS
ADS
ADS
+
Fig.
Fig.
-
CACT
Fe
11
326
+
I
1 0 . Gas c l e a n i n g p l a n t ( d r y m e t h o d ) .
11. Gas c l e a n i n g p l a n t ( w e t m e t h o d ) .
-
327
-
CONCLUSIONS
L a n d f i l l gas i s t h e f u e l r e c e i v e d from s o l i d waste i n a v e r y s i m p l e and e c o n o m i c way i n a n a t u r a l r e a c t o r
-
landfill.
C o m b u s t i o n and u t i l i z a t i o n o f l a n d f i l l g a s i s , hazardous t h a n s o l i d waste i t s e l f , med i n t o g a s w i t h 4 0 t 6 0
as a r u l e ,
less
I n the bioprocess i t i s transfor-
X o f refuses hydrocarbons.
The p r o b l e m i s c o n n e c t e d w i t h g a s e o u s i n g r e d i e n t s ( c h l o r i n e , f l u o r i n e compounds) w h i c h a t l o w t e m p e r a t u r e s o f t h e c o m b u s t i o n p r o cess ( b e l o w 1300 furane.
OC)
cause p r o d u c t i o n o f h i g h l y t o x i c d i o x i n e and
By r e m o v i n g t h o s e ,
k i n g gas c l e a n i n g p l a n t ,
the a p p l i c a t i o n o f the economically
i s very important.
wor-
I n t h e l a n d f i l l g a s com-
b u s t i o n p r o c e s s more C02 i s p r o d u c e d p e r 1 kWh t h a n i n p u r e c a r b o n burning.
BIBLIOGRAPHY
1 2
3 4
5 6
7
R . P o r t e r a n d 1. R o b e r t s - E n e r Q y s a v i n q- b .y w a s t e s r e c y c l i n g , _. London 1985. W . Dahm - T e c h n i s c h e u n d w i r t s c h a f t l i c h e A s p e k t e d e r D e p o n i e gasnutzung. W i s s e n s c h a f t u. Umwelt 1986 - n r 3-4. Z. P i e t r z y k , T. S t y p k a Gaz w y s y p i s k o w y n i e k o n w e n c j o n a l n e ;r;dlo e n e r g i i . Gas Woda T e c h n i k a S a n i t a r n a 1 9 8 7 n r 6. R . L o o c k - A s p e k t e d e r D e p o n i e g a s n u t z u n g . Gas E r d g a s 1 9 8 8 n r 6. T . Weidenbach, I. K e r n e r a n d D . Radek D i o x i n d i e chemise Zeit-bombe Kiepenhauer W i t s c h K b l n 1984. K . Hedden - A u f b e r e i t u n g u n d N u t z u n g v o n D e p o n i e g e s . Gas E r d g a s 1987 n r 1 1 / 1 2 . K.H. L a u e r K l a r u n d D e p o n i e g a s a l s Ausgang p r o d u k t e z u r H e r s t e l l u n g v o n E r g a s - A u s t a u s c h g a s e n . Gas E r d g a s 1 9 8 7 n r 8.
-
-
-
-
This Page Intentionally Left TBlank
BIOMASS AND THE PROBLEMS OF E C O L O G Y ,
E.S.
A G R O C H E M I S T R Y AND E N E R G Y
PANTSKHAVA
A.N. Each I n s t i t u t e o f B i o c h e m i s t r y , U S S R Academy o f S c i e n c e s , L e n i n s k y p r . 3 3 , Moscow, 1 1 7 0 7 1 , U S S R About 95 % o f modern f u e l
s o u r c e s f o r m e d a s a r e s u l t o f an-
c i e n t p h o t o s y n t h e s i s , and r e p r e s e n t t h e a n c i e n t biomass t h a t has been c o n v e r t e d t o f o s s i l f u e l energy t h r o u g h a v e r y complex geophysical,
g e o c h e m i c a l and b i o l o g i c a l p r o c e s s e s .
Thus, biomass
-
t h e r e a r e a number o f p o s s i b l e a p p l i c a t i o n s o f m o d e r n t h e m a j o r a c c u m u l a t o r o f s o l a r e n e r g y on t h e E a r t h
-
as
an a d d i t i o n a l f u e l s o u r c e . The n e c e s s i t y o f t h e d e v e l o p m e n t o f t h i s f u e l s o u r c e i s d i c t a t e d n o t o n l y b y e c o l o g i c a l p r o b l e m s s u c h as a t m o s p h e r i c p o l l u t i o n w i t h e x c e s s i v e C02 a n d h e a t e n e r g y r e s u l t i n g f r o m t h e c o m b u s t i o n o f organic fuels, fuels.
b u t m a i n l y by t h e i n c r e a s i n g d e f i c i e n c y o f f o s s i l
A new b r a n c h o f modern e n g i n e e r i g n g aimed a t s o l v i n g t h e two
problems,
i.e.
f u e l s u p p l y and e x t e r n a l e n v i r o n m e n t a l p r o t e c t i o n ,
called "bioenergetics".
I t is b o t h f u n d a m e n t a l
a r i s e n from modern b i o t e c h n o l o g y , gineering.
i s
and a p p l i e d s c i e n c e
chemical technology,
and power en-
B i o e n e r g e t i c s i s t h e s t u d y o f s o l a r energy b i o c o n v e r s i o n
i n t o b i o m a s s w h i c h d e v e l o p s ways o f b i o l o g i c a l a n d t h e r m o c h e m i c a l t r a n s f o r m a t i o n o f biomass t o f u e l and energy
(1).
The i n t r o d u c t i o n o f a c h i e v e m e n t s i n b i o e n e r g e t i c s i n t o t h e n a t i o n a l economy d e p e n d s ,
f ir st of all,
on t h e s o l u t i o n o f t h e t a s k s
connected with i n t e n s i f i c a t i o n o f o r g a n i c m a t e r i a l c o n v e r s i o n t o f u e l and w i t h l a r g e - s c a l e
p r o d u c t i o n o f biomass.
O n l y i n t e n s i v e and f u n d a -
mental research i n t o the problem w i l l enable a h i g h l y - e f f i c i e n t b r a n c h o f t h e n a t i o n a l economy t o meet t h e r e q u i r e m e n t s o f s c i e n t i f i c and t e c h n i c a l p r o g r e s s t h a t w i l l be e s t a b l i s h e d .
The s o l u t i o n
o f p r o b l e m s o f b i o e n e r g e t i c s d e p e n d s on t h e f o l l o w i n g :
-
t h e p r o s p e c t f o r and development o f h i g h l y - p r o d u c t i v e o f biomass,
e.g.
photosynthesis,
dustrial cultivation o f plants
-
sources
p r o d u c t i o n o f woody b i o m a s s , production of
hydrocarbons,
inpro-
I O
/B
Liquid hydrocarbons, plant oils, latex
i
A
55
Industrial processing
F oa on du sf at uc ft uf sr e ad n gd o o d s m Liquid
Agricultural processing
-
Astuffs
\
olid
\
Therrnochemical
1. L i q u i d f u e l : e t h a n o l , b u t a n o l , 2,3-butandiol, acetone, organic acids 2. Gaseous f u e l :
biogas, hydrogen
3 . Heat e n e r g y r e l e a s e d d u r i n g biooxidation
1. D i r e c t c o m b u s t i o n e l e c t r i c power
-
heat energy
conversion
-
w
2 . P y r o l y s i s - s o l i d f u e l ( c o a l ) , l i q u i d and gaseous f u e l (synthesis gas) 3 . G a s i f i c a t i o n - p r o d u c t i o n o f s y n t h e s i s gasa r t i f i c i a l p e t r o l and methanol 4 . Liquefaction (methanol)
-
5. F a s t - p y r o l y s i s
p r o d u c t i o n of l i q u i d f u e l
-
production of l i q u i d fuel
-
6 . Synthesis - gasification i n t h e presence o f catalysts production o f liquid fuel (methanol, a r t i f i c i a l p e t r o l )
Fig.
I
1. P r o d u c t i o n o f F u e l a n d E n e r g y f r o m B i o m a s s by B i o c o n v e r s i o n a n d T h e r m o c h e m i c a l C o n v e r s i o n .
w
0 I
d u c t i o n o f non-vood
331
-
biomass, growth of aquatic biomass,
and t h e
u t i l i z a t i o n of municipal wastes;
-
biotechnological conversion, i.e.
p r o d u c t i o n o f e t h a n o l or o t h e r
a l c o h o l s , o r g a n i c a c i d s , s o l v e n t s , b i o g a s and hydrogen from d i f f e rent kinds of biomass;
-
t h e r m o c h e m i c a l c o n v e r s i o n ( d i r e c t c o m b u s t i o n , g a s i f i c a t i o n , PY r o lysis, liquefaction, fast-pyrolysis, synthesis) t o produce iquid s o l i d and gaseous fuels.
(Figure)
T h e b i o m a s s c o n t e n t i n t h e b i o s p e r e i s e s t i m a t e d a t 8.10
tons
9 0 7; o f t h i s i s a c c o u n t e d f o r b y w o o d . A n n u a l l y 2.1011 t o n s a r e r e n e w e d , o f w h i c h 7.1010 t o n s a c c u m u l a t e i n c o n t i n e n t a l f o r e s t s w i t h a t o t a l e n e r g y c o n t e n t e x c e e d i n g t h r e e times o f t h e u p - t o - d a t e (21,
world energy consumption.
I t is noteworthy t h a t prospected r e s e r v e s of coal a r e estima11 o f o i l - 2.10l1 t o n s , o f n a t u r a l g a s - 1 . 1 0
t e d a t 5.1011 t o n s ,
tons (coal equivalent)
(2).
I n a number o f d e v e l o p e d a n d d e v e l o p i n g c o u n t r i e s , b i o m a s s i s a l r e a d y used t o produce f u e l and energy. About 1 b i l l i o n people i n t h e w o r l d u s e wood a s f u e l ; t h e o n e - s e v e n t h p a r t o f t h e e n e r g y u s e d o r i g i n a t e s from biomass ( 3 ) .
I n such developing c o u n t r i e s a s Ethio-
p i a , Nepal and T a n z a n i a , power e n g i n e e r i n g d e p e n d s on b i o m a s s u t i l i z a t i o n b y 9 5 %,:i n N i g e r , S o m a l i a a n d S u d a n b y 8 5 7;;
i n Bangladesh
a n d K e n y a b y 7 5 X , i n T h a i l a n d b y 6 5 X ; i n I n d i a b y 5 5 Z; i n B o l i v i a b y 45 %;
i n C h i n a b y 35 X ; i n B r a z i l by 2 5 L ( 3 ) .
I n 1 9 8 3 B r a z i l p r o d u c e d 6.3 m i l l i o n t o n s o f e t h a n o l f r o m s u g a r cane wastes,
a n d i n t h e s a m e y e a r i n B r a z i l , 9.3 m i l l i o n c a r s r a n o n
g a s o h o l , a mixture of p e t r o l (80 L) and e t h a n o l (20
XI, o f which
1 m i l l i o n c a r s used gasohol c o n t a i n i n g e t h a n o l with 5 Z o f water. B i o m a s s a s a n e n e r g y s o u r c e i s a l s o u s e d i n some d e v e l o p e d coun-
3.5 X , i n C a n a d a - 5 X , i n Swe17 X , a n d i t i s c o n s i d e r e d t o b e a v e r y den - 10 X, and i n F i n l a n d p r o i n i s i n g e n e r g y s o u r c e . By t h e y e a r 2000, i t s c o n t r i b u t i o n t o t h e US n a t i o n a l e n g i n e e r i n g p o w e r i s e x p e c t e d t o i n c r e a s e u p t o 4-5 Z, w h i c h w i l l make u p 156 m i l l i o n t o n s o f i d e a l f u e l . tries, e.g.
i n t h e United S t a t e s
-
-
The US D e p a r t m e n t o f P o w e r , E n g i n e e r i n g a n d A g r i c u l t u r e r e p o r t e d t h a t i n 1 9 8 2 1.6.1Ol5
B t u were p r o d u c e d f r o m b i o m a s s ,
p l a n s t o g e t u p t o 4.lOl5 B t u .
i n o r d e r t o r e p l a c e l i q u i d f u e l , e q u i v a l e n t l y t o &.lo3
f o r w h i c h 1 5 2 m i l l i o n b u s h e l s o f g r a i n were u s e d , used a s a fodder ( 3 ) .
a n d i n 1990 i t
The U n i t e d S t a t e s p r o d u c e d e t h a n o l , E t u i n 1983,
the protein being
-
332
I n t h e European Communities,
-
t h e c o n t r i b u t i o n o f biomass t o po-
wer e n g i n e e r i n g by 1990 s h o u l d make u p t h e same f i g u r e , e n a b l e o i l i m p o r t s t o be r e d u c e d by 100 m i l l i o n t o n s , o f 10 b i l l i o n U S 0 p e r annum.
P r i o r t o 1983,
which w i l l
w i t h savings
t h e EEC a l l o t t e d u p t o
5 m i l l i o n ECU a n n u a l l y t o s o l v e t h e problem o f f u e l p r o d u c t i o n from biomass,
while
f r o m 1 9 8 4 t o 1987 t h e y a s s i g n e d u p t o 1 3 0 m i l l i o n
ECU. The West German g o v e r n m e n t p l a n n e d t o p r o d u c e 5.105 e t h a n o l w h i c h was a d d e d ( 2 . 5
%)
t o motor f u e l .
tons o f
The b i o m a s s c o n t r i -
b u t i o n t o n a t i o n a l p o w e r e n g i n e e r i n g o f West Germany h a d t o b e 2.5
X
o f t h e t o t a l i n 1985. G r e a t B r i t a i n e x p e c t s t h e same l e v e l t o b e r e a c h e d by 1 9 9 0 , and b i o g a v w i l l have t o c o v e r a l l t h e energy needs o f a g r i c u l t u r e . The F r e n c h g o v e r n m e n t p l a n n e d t h a t b e g i n n i n g f r o m 1985 i t w o u l d u t i l i z e 14-15 m i l l i o n t o n s o f s t r a w a n n u a l l y t o produce m e t h a n o l f o r a g r i c u l t u r a l vehicles.
I n the 21st century,
France e x p e c t s a l l t h e energy t o be d e r i -
ved f r o m r e n e w a b l e s o u r c e s ,
w i t h b i o m a s s m a k i n g u p 25 X.
A c c o r d i n g t o A p p l i e d Power T e c h n o l o g y I n c .
(California),
the
d r o p o f o i l p r i c e s o b s e r v e d i n 1 9 8 5 - 1 9 8 6 on t h e w o r l d m a r k e t w i l l hardly i n f l u e n c e the production o f bioenergy. The i n t e r e s t i n b i o m a s s as a n e n e r g y s o u r c e i s e x p l a i n e d b y the following facts:
-
biomass i s renewable; energy
s t o r e d i n biomass can be p r e s e r v e d and used d u r i n g a l o n g
period;
-
i t can be c o n v e r t e d t o d i f f e r e n t f u e l s ;
-
many m o d e r n t e c h n o l o g i e s o f b i o e n e r g y p r o d u c t i o n a v a i l a b l e
for
i m m e d i a t e a p p l i c a t i o n have a l r e a d y been d e v e l o p e d and t e s t e d ,
-
biomass p r o d u c t i o n i s a v e r y p r o m i s s i n g b r a n c h o f power e n g i n e e ring;
-
v a r i o u s t y p e s o f o r g a n i c wastes can be used e f f i c i e n t l y ; f o r some r e g i o n s ,
b i o m a s s i s more a d v a n t a g e o u s when c o m p a r e d t o
c o n v e n t i o n a l f u e l s or i t i s even t h e b a s i c t y p e o f e n e r g y ;
-
b i o f u e l i s e c o l o g i c a l l y advantageous,
s i n c e n o h a r m f u l gaseous
s u l p h u r o x i d e s form and t h e C o g b a l a n c e i n t h e b i o s p h e r e i s n o t affected. However,this disadvantages:
new b r a n c h o f p o w e r e n g i n e e r i n g h a s a number o f
-
333
-
l a r g e l a n d areas a r e r e q u i r e d t o produce t h e biomass, water,
fertilizers,
as w e l l as
etc;
-
t h e b i o f u e l c o s t v a r i e s w i t h i n a wide range,
-
o n l y l o c a l u t i l i z a t i o n o f biomass i s p r o f i t a b l e ;
and sometimes i t i s
s i g n i f i c a n t l y higher than t h a t o f conventional fuels;
biomass,
as a r u l e ,
c o n t a i n s more t h a n 5 0
X
water,
which makes
t h e t e c h n o l o g y and i t s c o n v e r s i o n t o f u e l and energy more expen-
si ve ;
-
b i o m a s s p r o d u c t i v i t y s i g n i f i c a n t l y depends o n a g r i c u l t u r a l c l i m a t i c conditions;
-
some t y p e s o f b i o m a s s a r e s e a s o n a l ; e f f i c i e n c y o f p h o t o s y n t h e s i s i s v e r y low; some t e c h n o l o g i e s o f t h e b i o m a s s c o n v e r s i o n t o f u e l a r e s t i l l in e f f ic i e n t ;
-
b i o m a s s g r o w i n g r e q u i r e s some c h a n g e s i n f a r m i n g a n d f o r e s t r y m e t hods;
-
i t i s more d i f f i c u l t t o s t o r e b i o m a s s t h a n o i l o r n a t u r a l gas.
Amounts and t y p e s o f b i o m a s s - d e r i v e d the
f u e l s depend n o t o n l y on
b u l k o f r e n e w a b l e b i o m a s s b u t a l s o on i t s q u a l i t y ,
composition o f organics,
physical characteristics,
i.e.
Biomass i n v o l v e s a l l k i n d s o f p l a n t and a n i m a l t i s s u e s , d u c t s o f human a n d a n i m a l m e t a b o l i s m , I n t h e f o r t h c o m i n g 10-15
dampness,
etc. pro-
and o r g a n i c wastes.
y e a r s v a r i o u s o r g a n i c w a s t e s seem t o
b e m a j o r r a w m a t e r i a l t o p r o d u c e f u e l and e n e r g y ,
since i n developed
c o u n t r i e s a b o u t 5 t o n s o f o r g a n i c wastes ( d r y w e i g h t ) p e r head accum u l a t e i n one y e a r .
F u r t h e r i n t e n s i f i c a t i o n and u r b a n i z a t i o n w i l l
causes h i g h e r c o n c e n t r a t i o n o f w a s t e s , w h i c h w i l l r e q u i r e , o n t h e one hand,
u r g e n t ways t o u t i l i z e t h e m and d e v e l o p t h e m i n o r d e r t o
p r o t e c t the e x t e r n a l environment. t i o n o f promising high-efficient
I t w i l l also require the introduct e c h n o l o g i e s o f biomass p r o c e s s i n g
w i t h p o s s i b l e secondary a p p l i c a t i o n s i n p a r t i c u l a r , gy,
o r g a n i c and m i n e r a l f e r t i l i z e r s ,
t o produce ener-
and o t h e r v a l u a b l e p r o d u c t s .
B i o m a s s c a n b e t r a n s f o r m e d t o f u e l a n d e n e r g y by b i o l o g i c a l a n d thermochemical conversion. The f o l l o w i n g
two methods o f b i o l o g i c a l c o n v e r s i o n e x p e c t t o
be d e v e l o p e d i n t h e n e a r f u t u r e ,
namely,
and e t h a n o l ,
first,
which i s explained,
o f the fuels;
second,
technologies;
and f i n a l l y ,
the production o f biogaa by p h y s i c a l c h a r a c t e r i s t i c s
b y t h e r e l a t i v e s i m p l i c i t y and e f f i c i e n c y o f by s p e c i f y i n g t h e p r o c e s s e s w h i c h e f f i -
c i e n t l y r e n d e r wastes which a r e h a r m f u l f o r t h e f o l l o w i n g u t i l i z a t i o n .
I n most c o u n t r i e s , tion,
-
334
p r e f e r e n c e w i l l be g i v e n t o b i o g a s p r o d u c -
coming m a i n l y f r o m a g r i c u l t u r a l ,
i n d u s t r i a l and m u n i c i p a l was-
tes. C o n v e r s i o n o f wastes from p l a n t g r o w i n g and s t o c k - r a i s i n g
could
s u p p l y 10 76 o f t h e w o r l d a n n u a l e n e r g y n e e d s ( 4 ) . Biogas, de ( 3 0
composed o f m e t h a n e ( o n a v e r a g e 7 0 X ) a n d c a r b o n d i o x i -
X ) i s a product
n i c wastes.
o f anaerobic b a c t e r i a l decomposition o f orga-
Biogas competes w i t h t h e c a l o r i f i c v a l u e ( a b o u t 5.5-6.0 3 ) w i t h t h e b e s t t y p e s o f c o n v e n t i o n a l f u e l s , such
thousand kcal/m
as k e r o s e n e ( 9 0 0 0 k c a l / l ) ,
c o a l (7000 k c a l / k g ) ,
k g ) , b u t a n e 11 0 0 0 k c a l / k g ) ,
f i r e w o o d (5000 k c a l /
and manure b r i q u e t t e s ( 2 0 0 0 k c a l ( g )
(4). Methane f e r m e n t a t i o n o r b i o g a s p r o d u c t i o n p r o c e e d s i n temperat u r e s r a n g i n g f r o m 10-15' mesophilic used.
(30-40')
o r even a t
t o 55-60'
and t h e r m o p h i l i c
(55-60')
looo,
b u t as a r u l e
processes are widely
Methane f e r m e n t a t i o n i s c a r r i e d o u t i n m e t h a n e t a n k s w i t h a v o -
l u m e o f 1 t o some t h o u s a n d c u b i c m e t r e s . One t o n o f f e r m e n t e d o r g a n i c w a s t e s ( d r y w e i g h t ) g i v e s f r o m 2 0 0 t o 500-600
m3
o f biogas.
I n d u s t r i a l b i o g a s p r o d u c t i o n f r o m o r g a n i c w a s t e s h a s a number o f advantages:
-
b i o g a s p r o d u c t i o n i s a c c o m p a n i e d by e f f i c i e n t t r e a t m e n t o f sewage; o r g a n i c w a s t e s a r e c o n v e r t e d t o v a l u a b l e f u e l a n d t h e i r amount i n wastewaters decreases 1 0 times;
anaerobic decomposition i s a t the
same t i m e s a n i t a r y t r e a t m e n t o f w a s t e w a t e r s , se d e r i v e d f r o m a n i m a l husbandry
s t r o y s h e l m i n t h eggs,
-
i n p a r t i c u l a r o f tho-
and m u n i c i p a l sewage,
w h i c h de-
p a t h o g e n i c m i c r o f l o r a a n d weed s e e d s ;
anaerobic treatment o f sludge,
a n i m a l h u s b a n d r y and p l a n t g r o w i n g
w a s t e s r e s u l t s i n t h e m i n e r a l i z a t i o n o f n i t r o g e n and p h o s p h o r u s t h e main components o f f e r t i l i z e r s , be preserved,
-
and a l l o w s t h e s e compounds t o
i n c o n t r a s t t o t h e t r a d i t i o n a l way o f o r g a n i c f e r t i -
l i z e r p r o d u c t i o n by c o m p o s t i n g ,
when a b o u t 3 0 - 4 0
X o f the n i t r o -
gen i s l o s t ;
-
e f f i c i e n c y o f c o n v e r s i o n o f o r g a n i c w a s t e s t o b i o g a s is v e r y h i g h
-
b i o g a s c a n b e u s e d w i t h h i g h e f f i c i e n c y as a f u e l or c a n b e t r a n s -
i n t h e c a s e o f methane f e r m e n t a t i o n a n d r e a c h e s up t o 8 0 - 9 0
f o r m e d w i t h t h e h e l p o f g a s p r o d u c e r s w i t h an e f f i c i e n c y o f e l e c t r i c p o w e r ( 3 3 ?A)
5; 83 %
o r h e a t energy ( 5 0 X ) and can be used i n i n -
t e r n a l conbustion engines;
-
b i o g a s p l a n t s c a n b e i n s t a l l e d i n any r e g i o n s a n d do n o t r e q u i r e e x p e n s i v e gas p i p e - l i n e s .
- 335 -
N o w a d a y s b i o g a s is s u c c e s s f u l l y p r o d u c e d i n a n u m b e r o f c o u n -
tries. F o r i n s t a n c e , China had about 7 m i l l i o n b i o g a s p l a n t s w i t h a v o l u m e o f 8 - 1 0 m 3 i n 1 9 8 3 , i . e . w i t h a t o t a l v o l u m e o f a b o u t 600 m i l 3 lion m T h i s e n a b l e d a b o u t 90-100 b i l l i o n t o n s o f b i o g a s t o b e p r o -
.
d u c e d a n n u a l l y or up t o 80 m i l l i o n t o n s o f i d e a l f u e l t o b e r e p l a c e d , and a b o u t 200-250 m i l l i o n t o n s ( d r y w e i g h t ) o f o r g a n i c w a s t e s t o be processed.
This p r o v i d e s 30 m i l l i o n p e a s a n t s w i t h f u e l . By t h e
year 2000, C h i n a p l a n s t o c o n s t r u c t 30 m i l l i o n b i o g a s p l a n t s t o p r o d u c e up t o 4 0 0 b i l l i o n m3 o f b i o g a s .
Besides s m a l l b i o g a s p l a n t s Chi-
na h a s 36000 l a r g e p l a n t s . I n d i a had 58000 f a m i l y p l a n t s i n 1985 and planned t o c o n s t r u c t an
e x t r a 400000 p l a n t s . I n t h e European Communities, 41 p l a n t s operated i n 1978; i n 1983,
5 7 1 p l a n t s p r o c e s s e d l i q u i d w a s t e s a n d 1 7 p l a n t s c o n v e r t e d rnunicip a l g a r b a g e t o b i o g a s ( u p t o 100 m i l l i o n m3
p e r annum).
Large biogas p l a n t s a r e widely used i n the United S t a t e s . p r o c e s s m u n i c i p a l g a r b a g e t o p r o d u c e up t o 100 m i l l i o n m3
They
of biogas
annually. T h e S o v i e t U n i o n h a s a g o o d p o t e n t i a l i n terms o f r a w m a t e r i a l and t e c h n i c a l p r o v i s i o n t o produce s i g n i f i c a n t amounts of b i o g a s , a n d t h i s w i l l e n a b l e f o s s i l f u e l s t o b e r e p l a c e d i n some i n d u s t r i e s . I n t h e S o v i e t Union,
t h e m a i n wastes t o b e u t i l i z e d a r e m u n i c i -
p a l sewage and garbage, w a s t e s of a g r i c u l t u r e and wood-workings.
Va-
r i o u s i n d u s t r i e s a n n u a l l y g i v e m o r e t h a n 500 m i l l i o n t o n s o f o r g a n i c wastes (dry weight), which s t o c k - r a i s i n g
i n c l u d i n g a g r i c u l t u r e - 360 m i l l i o n t o n s , o f g i v e s 230 m i l l i o n t o n s and p l a n t - g r o w i n g
g i v e s 130 m i l l i o n t o n s ; w o o d - w o r k i n g bage
-
weight)
-
70 million tons;
60 m i l l i o n t o n s ; m u n i c i p a l sewage
-
which
municipal gar-
10 m i l l i o n t o n s ( d r y
(1).
T h e p r o c e s s i n g o f a s i g n i f i c a n t p a r t o f t h e o r g a n i c w a s t e s by m o d e r n t e c h n o l o g i e s c o u l d g i v e u p t o 1 2 0 b i l l i o n m3 o f b i o g a s p e r annum o r r e p l a c e up t o 1 0 0 m i l l i o n t o n s o f i d e a l f u e l . t h e coming 20-25
However,
in
years it w i l l be possible i n f a c t t o produce only
1 5 - 1 6 b i l l i o n rn3 o f b i o g a s p e r a n n u m ,
a t l a r g e s t o c k - r a i s i n g and po-
u l t r y farms and i n c i t i e s , where i t i s n e c e s s a r y t o t r e a t sewage. As a r u l e , b i o g a s p l a n t s p a y
f o r t h e m s e l v e s f o r 3-5
years.
The l a r g e r
t h e p l a n t , t h e higher its economic e f f i c i e n c y . A n i m a l m a n u r e i s t h e most w i d e l y s p r e a d t y p e o f o r g a n i c w a s t e t h a t r e q u i r e s e f f i c i e n t methods t o u t i l i z e it under t h e c o n d i t i o n that it preserves the fertilizing capacity.
I n t h e S o v i e t Union,
336 -
i t i s p o s s i b l e t o p r o d u c e up t o 100 b i l l i o n
m3 o f b i o g a s p e r annum, w h i c h makes up 1 0 % o f t h e a n n u a l m e t h a n e production. Besides, organo-mineral from o r g a n i c wastes.
f e r t i l i z e r s can a l s o be obtained
O f t h e m e n t i o n e d amount of s t o c k - r a i s i n g
wastes,
i t i s p o s s i b l e t o r e t u r n t o a g r i c u l t u r e o f which up t o 5 m i l l i o n t o n s of n i t r o g e n ,
2.5 m i l l i o n t o n s o f phosphorus o x i d e , and 1 0 m i l l i -
on t o n s o f p o t a s s i u m o x i d e , e n a b l e s t h e p r o d u c t i o n o f m i n e r a l fert i l i z e r s to be reduced. Municipal garbage and sewage a r e i m p o r t a n t s o u r c e s f o r b i o g a s production.
I n l a r g e c i t i e s i n t h e S o v i e t Union, b i o g a s p l a n t s a r e
c o m p o n e n t s o f systems f o r w a s t e w a t e r t r e a t m e n t .
For i n s t a n c e , bio-
g a s p l a n t s i n Moscow a n n u a l l y p r o d u c e u p t o 1 0 0 m i l l i o n m 3 o f b i o g a s which c o v e r s t h e h e a t and energy needs o f t h e p l a n t s themselves. P o t e n t i a l i t i e s of p r o c e s s i n g s e d i m e n t s and s l u d g e from t h e municip a l s e w a g e o f l a r g e S o v i e t c i t i e s o n l y a r e 700-1000 m i l l i o n m3
of
b i o g a s p e r annum. As w a s m e n t i o n e d a b o v e ,
some c o u n t r i e s s u c c e s s f u l l y p r o d u c e
b i o g a s from m u n i c i p a l g a r b a g e .
P o t e n t i a l i t i e s o f t h e S o v i e t Union
b i o g a s p r o d u c t i o n f r o m t h i s t y p e o f waste a m o u n t s u p t o 20 b i l l i o n
m 3 p e r annum. I m p o r t a n t raw m a t e r i a l f o r b i o g a s p r o d u c t i o n i s f r o m t h e wast e s o f wood-workinq,
wood-pulp
and the paper industry, microbiolo-
g i c a l and food i n d u s t r i e s . P o t e n t i a l i t i e s o f t h e S o v i e t Union f o r p r o c e s s i n g a l l t h e org a n i c w a s t e s formed a n n u a l l y u s i n g modern m e t h o d s o f b i o l o g i c a l a n d t h e r m o c h e m i c a l c o n v e r s i o n a r e e s t i m a t e d a t 150 m i l l i o n t o n s o f i d e a l fuel. I n a number o f c o u n t r i e s ,
i n c l u d i n g t h e S o v i e t Union, b i o g a s is
w i d e l y u s e d e v e n now t o g e t h e a t e n e r g y t h a t c a n b e s u p p l i e d t o t h e a g r i c u l t u r a l i n d u s t r y t o h e a t appartments and s e r v i c e rooms, t o g e t hot water and steam, e l e c t r i c power.
t o d r y g r a i n and hay, and f i n a l l y ,
I n some c o u n t r i e s ,
for
t o produce
i n s t a n c e i n C h i n a , Romania
a n d West G e r m a n y , b i o g a s i s u s e d a s e x t r a m o t o r f u e l (4). Liquid sludge produced during fermentation is successfully used a s an organo-mineral
f e r t i l i z e r . Moreover,
p h o t o b a c t e r i a and a l g a e
g r o w n on t h e s l u d g e e f f i c i e n t l y p u r i f y i t ; c l e a n w a t e r t h e n i s e i t h e r r e l e a s e d i n t o r e s e r v o i r s or used f o r i n d u s t r i a l p u r p o s e s , w h i l e t h e grown b i o m a s s i s u s e d a s a f o d d e r . Thus b i o g a s p r o d u c t i o n from o r g a n i c w a s t e s c a n o n l y h e l p t o a
-
337
-
c e r t a i n extent i n solving t h e t h r e e problems simultaneously: prot e c t i o n o f e x t e r n a l environment and supply o f energy and food (production of organo-mineral
fertilizers).
Ethanol is the o t h e r type of b i o f u e l t h a t i n t h e near f u t u r e
w i l l c o n t r i b u t e t o t h e power e n g i n e e r i n g o f some c o u n t r i e s a n d w i l l b e used a s a modern m o t o r f u e l . starch-
Nowadays i t i s m a i n l y d e r i v e d from
and s u g a r c r o p s or from v a r i o u s w a s t e s i n c o u n t r i e s w i t h
t r o p i c a l and s u b t r o p i c a l c l i m a t e s ,
o r f r o m wood ( l i g n o c e l l u l o s e ) i n
c o u n t r i e s w i t h a moderate c l i m a t e and i n zones or r i s k farming, including Russia. I n a d d i t i o n , b i o f u e l c a n b e p r o d u c e d by t h e r m a l c o n v e r s i o n o f wood t o l i q u i d , s o l i d a n d g a s e o u s f u e l . One o f t h e m e t h o d s w i d e l y used t o date is pyrolysis, a t 450-550
OC
t h a t is a n a e r o b i c c o n v e r s i o n o f biomass
t o charcoal, methanol, a c e t i c acid, combustible gases
such as methane, hydrogen, carbon monoxide. The o t h e r p r o m i s i n g m e t h o d i s g a s i f i c a t i o n , t h a t i s t h e b u r n i n g o f s o l i d biomass a t 900-1500
OC
t o produce synthetic gas ( a mixture
o f h y d r o g e n a n d c a r b o n m o n o x i d e ) , w h i c h c a n t h e n b e u s e d t o g e t methanol or a r t i f i c i a l petroleum.
L i q u e f a c t i o n is a l s o a v e r y promi-
s i n g method u s e d f o r t h e p r o d u c t i o n o f l i q u i d f u e l s from s o l i d b i o mass.
I n c o n t r a s t t o g a s i f i c a t i o n , t h e p r o c e s s r e q u i r e s s p e c i a l ca-
t a l y sts. Thus t h e n a t i o n a l p r o g r a m s i n c l u d i n g v a r i o u s t y p e s o f biomass c o n v e r s i o n t o f u e l a r e v e r y e x t e n s i v e a n d p r o m i s i n g ; many o f t h e m
can b e r e a l i z e d i n t h e n e a r f u t u r e , w h i l e t h e o t h e r s a r e a l r e a d y i m plemented, But biomass w i l l never b e a b l e t o completely r e p l a c e fo-
ssil f u e l s . Biomass is not only a s o u r c e of f u t u r e energy, b u t ,
i s l i f e on
the Earth. Biomass c o n t r i b u t i o n t o power e n g i n e e r i n g w i l l v a r y d e p e n d i n g on t h e biomass y i e l d and p r o d u c t i v i t y i n each i n d i v i d u a l country, and w i l l h a r d l y exceed 5-15 X o f t h e t o t a l . I t is q u i t e o b v i o u s t h a t t h e r m o n u c l e a r f u s i o n w i l l b e t h e main energy s o u r c e i n t h e n e a r f u t u r e , b u t t h i s d o e s not exclude t h e development of o t h e r p r o m i s i n g energy s o u r c e s , i n p a r t i c u l a r d i r e c t catalytic bioconversion developed.
Of
solar energy t o f u e l t h a t is already being
A good example is w a t e r p h o t o l y s i s a n d t h e t r a n s f o r m a t i o n
of t h e r e l e a s e d e n e r g y u s i n g v a r i o u s systems t o p r o d u c e f u e l s .
-
338
-
REFERENCES
1
2 3 4
E.S. Pantskhava and I . V . B e r e z i n , T e c h n i c a l b i o e n e r g e t i c s , 1986, B i o t e c h n o l o g y , N 2, p. 1 - 1 2 , and N 3 , p. 8 - 1 5 . D.O. H a l l , B i o m a s s d o e s e n e r g y f u e l s now a n d i n t h e f u t u r e . I n s t . Chem. Eng. Symp., Sep., 1 9 8 2 , N 7 8 , T 6 / 1 - T / 1 3 . I n t e r n a t i o n a l B i o e n e r g y D i r e c t o r y Handbook, W a s h i n g t o n , Amer, C o u n c i l B i o e n e r g y , 1984, pp. 1000. U n i t e d Nations,New-York, 1 9 8 3 , A d a p t e d G u i d e b o o k on B i o g a s D e v e l o p m e n t , ESCAP, B a n g k o k , T a y l a n d .
I11. Possible Positive and Negative Impacts of Biotechnology on Environment
This Page Intentionally Left TBlank
P O S I T I V E AND N E G A T I V E I M P A C T S OF BIOTECHNOLOGY O N THE E N V I R O N M E N T
D r . L . HUBER Bayerische Landesanstalt D-8000 Munchen 2 2 , F.R.G.
fgr
Wasserforschung,
K a u l b a c h s t r a s s e 37,
INTRODUCTION From t h e h i s t o r i c a l p o i n t o f v i e w ,
f e r m e n t a t i o n i s one o f man-
k i n d ’ s e a r l i e s t achievements i n t h e f i e l d o f a p p l i e d m i c r o b i o l o g y
It involved the deliberate application o f the
and b i o t e c h n o l o g y .
f o r t h e c o n v e r s i o n o f one p r o d u c t o r
a c t i v i t i e s o f micro-organisms substance i n t o another. such as cheese,
The e a r l i e s t p r o d u c t s w e r e f o o d s a n d d r i n k s
b e e r and wine.
t h e r o l e o f micro-organisms
These were b e i n g made l o n g b e f o r e
had been r e c o g n i z e d .
Modern b i o t e c h n o l o g y i n t h e c o n t e x t o f t h i s p a p e r i s u n d e r s t o o d as t h e b r a n c h o f a p p l i e d m i c r o b i o l o g y a n d b i o c h e m i s t r y i n w h i c h b i o l o g i c a l methods a r e a p p l i e d i n i n d u s t r i a l - s c a l e cesses.
production pro-
A l l b i o t e c h n i c a l processes a r e i n t e n d e d t o o p t i m i z e biomass
p r o d u c t i o n and t h e s p e c i f i c b i o c h e m i c a l c a p a c i t y o f b i o l o g i c a l systems,
a n d t o make maximum e c o n o m i c u s e o f them.
Figure 1 outlines
t h e b a s i c s t r u c t u r a l i n t e r r e l a t i o n s and f u n c t i o n s o f b i o t e c h n o l o g y . L i k e any o t h e r man-made
technology,
b i o t e c h n o l o g y has b o t h
p o s i t i v e and n e g a t i v e e f f e c t s on t h e e n v i r o n m e n t . t e c h n i c a l methods sms
-
-
The u s e o f b i o -
including genetically-engineered micro-organi-
is i n d i s p e n s a b l e f o r t h e m a n u f a c t u r e o f many p r o d u c t s e s s e n -
t i a l t o mankind.
I t i s t h u s i m p o r t a n t t h a t t h e u n q u e s t i o n a b l e bene-
f i t s o f t h i s technology be exploited.
A t t h e same t i m e ,
it
however,
i s n e c e s s a r y t o m i n i m i z e t h e n e g a t i v e e n v i r o n m e n t a l e f f e c t and hezards which r e s u l t from i t s a p p l i c a t i o n .
It i s significant that
b i o t e c h n o l o g i c a l p r o c e s s e s t h e m s e l v e s a r e w i d e l y used t o combat t h e d e t r i m e n t a l e f f e c t s o f t h e i n d u s t r i a l a p p l i c a t i o n o f such t e c h n o l o 9Y. APPLICATION OF BIOTECHNOLOGICAL P R O C E S S E S The e x t e n t t o w h i c h b i o t e c h n o l o g i c a l p r o c e s s e s a r e s p p l i e d
-
-
342
-
DISCIPLINES
[ BIOTEF~NOLDGYI
AREA Fig.
1. F u n c t i o n o f B i o t e c h n o l o g y .
- can be described i n very crude terms o n l y . C o m m e r c i a l o r i n d u s t r i a l a p p l i c a t i o n s a r e f o u n d p a r t i cularly i n the following fields:
which is nowadays c o n s i d e r a b l e
-
production of biomass and s p e c i f i c
compounds
fermented foods, beverages and food processing m i c r o b i a l c e l l s as raw m a t e r i a l s for t h e e x t r a c t i o n of b i o c h e micals, especially pharmaceutical products.
-
environmental protection
I t i s t y p i c a l o f t h i s b r a n c h o f i n d u s t r y t h a t t h e number of p r o d u c t s , which a r e produced i n l a r g e q u a n t i t i e s , i s r e l a t i v e l y s m a l l compared t o t h e i r v a r i e t y . Biomass p r o d u c t i o n c o m p r i s e s p r e d o m i n a n t l y t h e p r o d u c t i o n of y e a s t s grown o n c a r b o h y d r a t e s which s e r v e a s a n i m a l f e e d o r which a r e i n t e n d e d f o r human c o n s u m p t i o n . T h e p r o d u c t i o n o f s i n g l e - c e l l p r o t e i n s from d i f f e r e n t s o u r c e s can l i k e w i s e be mentioned i n t h i s c o n t e x t .
I n t h e f i e l d of produc-
-
343
-
t i o n o f s p e c i f i c compounds o r p r o d u c t s t h e m o s t i m p o r t a n t w i t h r e g a r d t o q u a l i t y and q u a n t i t y a r e : a l c o h o l s ( s u c h as e t h a n o l ,
butanol),
and o r g a n i c a c i d s ( a c e t i c a c i d ,
k e t o n e s ( s u c h as acetone)
l a c t i c acid,
propionic acid),
w h i c h a r e s y n t h e s i z e d by way o f i n c o m p l e t e o x i d a t i o n s o r t e c h n i c a l fermentations c i t r i c a c i d as a b i o s y n t h e s i s p r o d u c t o b t a i n e d f r o m c e r t a i n f u n g i ( A s p e r g i l l u s ) and o t h e r a c i d s o f t h e c i t r i c a c i d c y c l e fermented foods such as bread,
milk,
cheese,
sour p r o d u c t s and
beverages e x t r a c e l l u l a r polysaccharides o f the dextran type a n t i b i o t i c s s u c h as p e n i c i l l i n s ,
t e t r a c y c l i n e s and cephalospo-
r r n e s as secondary b i o s y n t h e s i s p r o d u c t s ,
m a i n l y from f u n g i
s t e r o i d s b y way o f s e l e c t i v e b i o t r a n s f o r m a t i o n a m i n o a c i d s a n d n u c l e o t i d e s by way o f s p e c i f i c f e r m e n t a t i o n methods t e c h n i c a l enzymes a n d b i o c a t a l y s t s ( p r o t e a s e s , ses),
e.g.
f o r detergents;
amylases,
lipa-
some o f t h e s e a r e a l r e a d y b e i n g p r o -
d u c e d u s i n g s t r a i n s t h a t h a v e b e e n m o d i f i e d b y way o f g e n e t i c engineering. Table 1 p r o v i d e s a qeneral i n d i c a t i o n i n terms o f annual p r o d u c t i o n volume o f t h e i m p o r t a n c e w o r l d w i d e o f f e r m e n t a t i o n p r o d u c t s .
TABLC 1 Economic i m p o r t a n c e o f b i o t e c h n o l o g i c a l p r o d u c t s (1979-82) ( a c c o r d i n g t o DELLWEG, 1 9 8 7 ) -.
mill.
Beer
97,5
Wine a n d s p a r k l i n g w i n e
37,l m i l l .
Antibiotics
18.000
l l c o h o l s (ethanol) Arnino a c i d s ( g l u t a m i c a c i d a n d l y a i n e ) Fodder y e a s t Baker's yeast C i t r i c acid Enzymes Vinegar
5,9
m3
t
mill.
342.000
m3 p.a. p.a.
t
t
m i l l .
t
1,4
mill.
t
26.000 1,6
t
mill.
p.a. p.a.
1,4
350.000 t
p.a.
p.a. p.a. p.a. p.a.
m3 p.e.
- 344
Last but not least,
-
b i o t e c h n o l o g y a l s o i n c l u d e s a e r o b i c and
a n a e r o b i c b i o l o g i c a l sewage p u r i f i c a t i o n p r o c e s s e s ,
c o m p o s t i n g and
anaerobic sludge digestion. NEGATIVE EFFECTS OF BIOTECHNOLOGY ON THE E N V I R O N M E N T S i n c e b i o t e c h n i c a l p r o d u c t i o n p r o c e s s e s t a k e p l a c e i n aqueous medium,
and t h e c o r r e s p o n d i n g t r a n s f o r m a t i o n s a r e f a i r l y s i m i l a r
t o chemical conversions,
t h e y a l s o g i v e r i s e t o t h e same p r o b l e m s
with:
-
i n c o m p l e t e u t i l i z a t i o n o f s u b s t r a t e s or s t a r t i n g p r o d u c t s (nutrient
solutions)
-
formation
o f i n t e r m e d i a t e s or end p r o d u c t s which cannot be
-
technological
exploited otherwise and b i o l o g i c a l l i m i t a t i o n s w i t h r e g a r d t o r e a l i -
z i n g maximum y i e l d s o r c o n v e r s i o n s . These p r o c e s s e s a c c o r d i n g l y r e s u l t i n e f f l u e n t s w h i c h a r e p o l l u t e d t o a g r e a t e r or l e s s e r e x t e n t .
The a c t u a l p o l l u t a n t s h e r e
are n u t r i e n t s o l u t i o n admixtures which cannot p l a y a r o l e i n the metabolic a c t i v i t i e s of t a i n non-fermentable
t h e microorganisms b e i n g used,
sugars i n molasses,
such as c e r -
or e l s e i n o r g a n i c substan-
c e s w h i c h h a v e t o b e p r o v i d e d i n e x c e s s b u t a r e o n l y p a r t i a l l y us e d up d u r i n g t h e c o n v e r s i o n s . As i s t h e c a s e w i t h c h e m i c a l s y n t h e s e s , processes a l s o l e a d t o by-products
biochemical production
w h i c h c a n n o t be u t i l i z e d and
w h i c h as a r u l e have t o be d i s p o s e d o f v i a t h e waste w a t e r . b i o l o g i c a l waste-water mixed c u l t u r e s ,
p u r i f i c a t i o n processes,
Even
w h i c h make u s e o f
p r o d u c e o r g a n i c e n d m e t a b o l i t e s w h i c h c a n n o t b e de-
graded f u r t h e r m i c r o b i a l l y
Important here i s the f a c t t h a t
the in-
t e r m e d i a t e and end p r o d u c t s o f b i o c h e m i c a l s y n t h e s e s a r e n o t a l l o wed t o have p r o p e r t i e s w h i c h w o u l d r e s u l t i n t h e i r b e i n g c l a s s i f i e d as dangerous substances. e.g.
There a r e c e r t a i n l y examples o f t h i s s o r t
i n t h e f i e l d o f b i o l o g i c a l sewage p u r i f i c a t i o n ;
as t h e n o n y l p h e n o l e t h o x y l a t e s ,
substances such
w h i c h a r e b r o k e n down t o t h e s i g n i -
f i c a n t l y more e c o t o x i c n o n y l p h e n o l . As b e i n g t y p i c a l o f t h e w a s t e - w a t e r
p o l l u t i o n r e s u l t i n g from
b i o t e c h n o l o g i c a l p r o c e s s e s m e n t i o n c a n be made h e r e o f t h e p o l l u t a n t c o n t e n t s d e r i v i n g f r o m t h e p r o d u c t i o n o f beer or yeast. B a s i c a l l y t h e y a r e a p p l i c a b l e t o many o t h e r b i o t e c h n o l o g i c a l p r o c e s s e s t o o , where t h e p o l l u t a n t c o n t e n t o f t h e e f f l u e n t w a s t e i s p r e d o m i n a n t l y organic.
-
345
-
D u r i n g t h e brewing o f beer s p e c i f i c waste-water q u a n t i t i e s o f 3 p r o d u c t a r e p r o d u c e d , w i t h an o r g a n i c p o l l u t a n t c o n 3 t e n t o f 3 - 6 k g BOD5/m T h i s c o r r e s p o n d s t o r e l a t i v e l y h i g h BOD5
-
4
1 2 m /m3
.
c o n c e n t r a t i o n s o f 500 de,
-
1100 mg/l.
amongst o t h e r t h i n g s ,
l e sugars,
The d i s s o l v e d p o l l u t a n t s i n c l u -
p r o t e i n compounds,
v a r i o u s non-fermentab-
e x t r a c t e d o r g a n i c s u b s t a n c e s and o r g a n i c a c i d s ,
which
f o r t h e most p a r t however a r e e a s i l y b i o l o g i c a l l y d e g r a d a b l e .
Solid
r e s i d u e s s u c h as y e a s t can be used as a n i m a l f e e d ( H U B E R ) . The p r o d u c t i o n o f y e a s t l i k e w i s e r e s u l t s i n w a s t e w a t e r w h i c h i s h i g h l y p o l l u t e d w i t h o r g a n i c compounds; o t h e r hand, r u l a yeast
a t t h e same t i m e ,
t h e y e a s t i n g o f c e r t a i n e f f l u e n t wastes
-
e.g.
on t h e
w i t h To-
( C a n d i d a u t i l i s ) - f r o m t h e p u l p i n d u s t r y i s an i m p o r -
t a n t way o f
s u b j e c t i n g such waste water a t l e a s t t o a p a r t i a l b i o l o -
gical purification. The h i g h c o n c e n t r a t i o n o f o r g a n i c p o l l u t a n t s i n t h e w a s t e wa-
t e r f r o m y e a s t p r o d u c t i o n i s due p r i m a r i l y t o t h e f a c t t h a t a b o u t one t h i r d o f t h e d r y m o l a s s e s s u b s t r a t e c o n s i s t s o f o r g a n i c o r i n o r g a n i c s u b s t a n c e s w h i c h c a n b e a s s i m i l a t e d by t h e y e a s t c e l l s .
These
compounds t h u s t a k e n o p a r t i n t h e f e r m e n t a t i o n o r y e a s t i n g p r o c e s s , and pass unchanged i n t o t h e waste w a t e r ,
3
m /t product.
245 k g C O D / t
w h i c h amounts t o 10
-
80
The s p e c i f i c p o l l u t a n t c o n t e n t r a n g e s f r o m 1 5 6 t o molasses.
The COD:80D5 r a t i o i n u n t r e a t e d w a s t e w a t e r
r a n g e s o n a v e r a g e f r o m 1:3 h i g h o x y g e n demand,
t o 1:5.
I n p a r t i c u l a r because o f t h e
comprehensive t r e a t m e n t o f e f f l u e n t d e r i v i n g
f r o m y e a s t p r o d u c t i o n i s n e c e s s a r y when i t i s d i s c h a r g e d i n t o s u r face water.
The u s e o f r e c o m b i n a n t y e a s t r e s u l t i n g i n h i g h e r s u b -
s t r a t e u t i l i z a t i o n p r o v i d e s an i m p o r t a n t o p e n i n g f o r gene t e c h n o l o gy i n r e s p e c t o f r e d u c i n g p o l l u t a n t s i n e f f l u e n t s .
The s i t u a t i o n i s
s i m i l a r i n t h e case o f c i t r i c a c i d p r o d u c t i o n from molasses u s i n g Aspe r q i11us. A new s i t u a t i o n i s c r e a t e d when u s e i s made o f m i c r o o r g a n i s m s
w i t h r e c o m b i n a n t DNA,
e s p e c i a l l y w i t h pathogenic properties,
*here
b e s i d e s t h e u s u a l o r g a n i c p o l l u t a n t c o n t e n t i n w a s t e w a t e r an a d d i t i o n a l r i s k p o t e n t i a l a r i s e s due t o c e r t a i n q u a l i t i e s o f t h e o r g a nisms used f o r
b i o t e c h n o l o g i c a l production processes,
The v e r y e x -
t e n s i v e a n d h i g h l y c o n t r o v e r s i a l d i s c u s s i o n s a b o u t t h e p o s s i b l e dang e r s i n t h i s case such as
-
t h e r e l e a s e o f r-DNA
o r r-DNA organisms i n t o t h e e n v i r o n m e n t
and t h e p o s s i b i l i t y o f t h e i r s u p p l a n t i n g w i l d s t r a i n s
-
346
-
u n w a n t e d h o r i z o n t a l gene t r a n s f e r
t o other microorganisms
the spreading o f pathogenic or otherwise g e n e t i c a l l y a l t e r e d and dangerous m i c r o o r g a n i s m s ,
w i t h r i s k s f o r man,
a n i m a l s and
plants h a v e r e s u l t e d i n b o t h t h e WHO a n d t h e EFB P a r t y on S a f e t y i n R i o technology i n t r o d u c i n g a & - c l a s s system i n b i o t e c h n o l o g y
which
a s s i g n s t h e i n d i v i d u a l microorganisms used t o c e r t a i n r i s k categories.
T a b l e 2 shows t h e EFB c l a s s e s (FROMMER,
KRAMER):
TABLE 2
EFB Classes
I I1 I11 I V
harmless low r i s k medium r i s k high r i s k
There i s v i r t u a l l y worldwide agreement t h a t t h i s system
S
s u f f i c i e n t f o r p r a c t i c a l purposes. Many o f t h e h a r m l e s s m i c r o o r g a n i s m s o f g r o u p h i s t o r y o f s a f e use i n l a r g e - s c a l e (beer,
antibiotics,
enzymes,
sumption ( d a i r y products)
I have
a long
biotechnological production
a m i n o a c i d s ) a s w e l l as i n human c o n -
or i n agriculture (Bacillus thuringien-
sis). Class I 1 organisms (low r i s k )
a r e weak p a t h o g e n s w h i c h a r e u -
s u a l l y employed i n t h e p r o d u c t i o n o f v a c c i n e s or i n d i a g n o s t i c s . The e x t e n t o f t h e i r u s e ( c o m p a r e d w i t h c l a s s
I) i s f a i r l y limited.
H a r d l y any u s e i s made i n i n d u s t r i a l p r o d u c t i o n o f medium a n d high-risk
micro-organisms.
As f a r a s r-DNA
organisms a r e concerned,
t h e r e i s now a more o r l e s s g e n e r a l c o n s e n s u s o f o p i n i o n t h a t n o f u n d a m e n t a l l y o r q u a l i t a t i v e l y new r i s k s a r e t o b e e x p e c t e d i n research or production.
A r e l i a b l e r i s k assessment i s p o s s i b -
l e i f t h e p r o p e r t i e s o f t h e d o n o r s , r e c i p i e n t and v e c t o r a r e known
r-DNA
and r-DNA
o r g a n i s m s c a n n o t be c l a s s i f i e d p e r se as p a t h o -
g e n i c or hazardous The t r a n s f e r o f p l a s m i d s a n d g e n e s i s a n a t u r a l p r o c e s s w h i c h occurs i n every h a b i t a t .
-
347
-
I n v i e w o f t h i s t h e WHO p u b l i s h e d a s t a t e m e n t a s l o n g ago as 1983 w h i c h r e a d as f o l l o w s : "There a r e no u n i q u e o r s p e c i f i c s a f e t y r i s k s a s s o c i a t e d w i t h r e c o m b i n a n t DNA work
(genetic engineering);
t h e r i s k s a r e no g r e -
a t e r t h a n t h o s e a s s o c i a t e d w i t h w o r k w h e r e u s e i s made o f known pathogens,
a n d t h e y do n o t n e c e s s i t a t e s p e c i a l l a b o r a t o r y d e s i g n
or practice. P O S I T I V E I M P A C T S OF BIOTECHNOLOGY ON T H E E N V I R O N M E N l The p o s i t i v e i m p a c t w h i c h b i o t e c h n o l o g y h a s on t h e e n v i r o n m e n t derives
p r i m a r i l y f r o m t h e u s e o f numerous t r e a t m e n t m e t h o d s f o r was-
t e w a t e r and r e f u s e and,
t o an i n c r e a s i n g e x t e n t o f l a t e ,
t h e s o i l and f o r g a s e o u s w a s t e s .
also for
The q r e a t b e n e f i t t o b e r e a p e d f o r
t h e environment t h r o u g h t h e use o f b i o t e c h n o l o g i c a l p r o c e s s e s i n t h e n i e d i c a l and a g r i c u l t u r a l t i o n e d here.
f i e l d s w i l l be o n l y v e r y b r i e f l y men-
T h e r e i s nowadays a g r e a t v a r i e t y
of biotechnological
p u r i f i c a t i o n p r o c e s s e s a v a i l a b l e w h i c h make u s e o f m i c r o b i a l d e g r a dations i n order t o e l i m i n a t e p o l l u t a n t s r e s u l t i n q predominantly f r o m human a c t i v i t i e s .
These t e c h n o l o g i e s a r e d e s i g n e d t o r e n d e r
harmless a l l those substances which a r e g e n e r a l l y mixed t o g e t h e r i n l a r g e numbers t o c o n s t i t u t e w a s t e a n d w h i c h c a n n o t be u t i l i z e d o t herwise.
A b r i e f s u r v e y o f t h o s e p r o c e s s e s u s e d i n t h e f i e l d s o f domest i c and i n d u s t r i a l w a s t e w a t e r s i s g i v e n i n T a b l e 3 .
TABLE 3 Waste-water
t r e a t m e n t methods
A c t i v a t e d sludge processes Trickling f i l t e r s Rotating b i o l o g i c a l contactors Anaerobic contactors Waste s t a b i l i z a t i o n p o n d s
The a c t i v a t e d s l u d g e p r o c e s s i n p a r t i c u l a r ,
with i t s various
m o d i f i c a t i o n s , has a v e r y wide r a n g e o f a p p l i c a t i o n f o r a l a r g e number o f p o l l u t a n t s ;
one m i g h t a l m o s t s p e a k o f a p h y s i o l o g i c a l om-
nipotence i n respect o f t h e metabolism o f those micro-organisms
in-
v o l v e d i n t h e e l i m i n a t i o n o f o r g a n i c and p a r t i a l l y a l s o i n o r g a n i c
substances.
348
-
T h e r e i s h a r d l y any t y p e o f w a s t e w a t e r w i t h o r g a n i c
compounds w h i c h c a n n o t b e t r e a t e d b i o l o g i c a l l y . D u r i n g t h e l a s t few y e a r s i t h a s a l s o b e e n p o s s i b l e t o i s o l a t e a number o f b a c t e r i a whose enzymes a r e a b l e t o r e l e a s e t h e h a l o g e n from c h l o r i n a t e d hydrocarbons,
a t t h e moment c o n s i d e r e d t h e m o s t
c r i t i c a l compounds i n t h e e n v i r o n m e n t . t h e dehalogenases, enzymes,
Some o f
t h e s e enzymes,
namely
r e p l a c e t h e halogen w i t h a h y d r o x i d e group.
the so-called
mono-
and di-oxygenases,
Other
make u s e o f m o l e c u -
l a r o x y g e n t o i n t r o d u c e one o f t w o h y d r o x y l g r o u p s r e s p e c t i v e l y . O f considerable importance i n t h i s f i e l d i s the a v a i l a b i l i t y ,
gst other things, cation,
amon-
o f t e c h n i c a l means o f n i t r i f i c a t i o n a n d d e n i t r i f i -
w h i c h make i t p o s s i b l e t o r e m o v e
-
i n t h e form o f N
t e d n i t r o g e n compounds f r o m w a s t e w a t e r a n d d r i n k i n g w a t e r . m i c a l methods o f r e m o v i n g phosphorous, i s l i k e w i s e becoming i n c r e a s i n g l y
-
unwan-
Bioche-
using Acinetobacter strains,
important.
G e n e t i c e n g i n e e r i n g c a n i n f u t u r e p l a y an i m p o r t a n t r o l e , mely by p r o v i d i n g t a i l o r e d micro-organisms,
na-
i n p a r t i c u l a r where t o -
x i c a n d p e r s i s t e n t compounds ( c h l o r i n a t e d h y d r o c a r b o n s ,
PAC) n e e d
a t t e n t i o n w i l l n a t u r a l l y ha-
t o be degraded t o h a r m l e s s components;
v e t o be p a i d t o t h e p r o b l e m o f t h e r e l e a s e o f such m i c r o - o r g a n i s m s i n t o the environment.
S u i t a b l e g e n e r a a p p e a r t o b e Pseudomonas,
v o b a c t e r i u m and A r t h r o b a c t e r
PAC)
(CHAKRABARTY);
have l i k e w i s e a l r e a d y been d e s c r i b e d .
Fla-
s u i t a b l e p l a s m i d s (B 13, However,
such p r o d u c t s
and p r o c e s s e s a r e s t i l l i n a f a i r l y e a r l y s t a g e o f development. Whereas a e r o b i c p r o c e s s e s p l a y a d o m i n a n t r o l e i n sewage p u r i fication,
a n a e r o b i c p r o c e s s e s p r e d o m i n a t e i n t h e f i e l d o f s o l i d was-
t e disposal;
i t must o f c o u r s e b e remembered,
though,
t h a t use has
b e e n made f o r o v e r a c e n t u r y o f b i o m e t h a n a t i o n i n t h e t r e a t m e n t o f sewage s l u d g e . I n these f i e l d s too,
due t o b e t t e r k n o w l e d g e o f t h e b i o c h e m i c a l
and m i c r o b i o l o g i c a l i n t e r r e l a t i o n s h i p s ,
t h e r e has been c o n s i d e r a b l e
i m p r o v e m e n t d u r i n g t h e l a s t few y e a r s i n t h e t e c h n i q u e s u s e d ; has r e s u l t e d i n t h e processes becoming more s t a b i l i z e d ,
this
thus a l l o -
wing t h e u n p r o b l e m a t i c a l t r a n s f e r o f such technology t o t h e f i e l d s o f s o i l conditioning,
composting o f garbage and t r e a t m e n t
o f other
s o l i d and l i q u i d waste p r o d u c t s (REHM). N o t a s m a l l number o f h a l o g e n a t e d compounds,
which are b u i l t
up i n k e e p i n g w i t h t h e p a r a m e t e r s A O X o r T O C I and w h i c h were h i t h e r -
t o r e g a r d e d a8 m o s t l y non-degradable, s i s t e n t t o such a h i g h degree.
h a v e now p r o v e d n o t t o b e p e r -
I t seems t o b e e a s i e r t o r e m o v e t h e s e
-
349
-
compounds f r o m t h e e n v i r o n m e n t u n d e r a n a e r o b i c c o n d i t i o n s ,
although
t h e speed o f d e g r a d a t i o n i n t h e case o f i n t r i n s i c c o m e t a b o l i s m i s r a t h e r s l o w (REHM).
LEGAL A S P E C T S AND R E Q U I R E M E N T S The momentous p r o g r e s s i n b i o t e c h n o l o g y a n d e s p e c i a l l y i n g e n e t i c e n g i n e e r i n g r e q u i r e s t h e development o f a p p r o p r i a t e r e g u l a tory
frameworks t o p r e c l u d e r i s k s f o r t h e environment as a whole.
Work i s now b e i n g c a r r i e d o u t t o w a r d s t h i s e n d i n m o s t d e v e l o p e d countries.
The F . R . G .
nik-Cesetz"
har3 j u s t i m p l e m e n t e d t h e s o - c a l l e d
( G e n e t i c s Law),
"Gentech-
w h i c h f o r t h e moment c o n t a i n s 7 s p e c i -
f i c regulations covering a l l important negative aspects which might a r i s e from t h e i n d u s t r i a l use o f g e n e t i c a l l y m o d i f i e d organisms (ANONYMOUS).
W o r k i n g on t h e b a s i s o f 4 r i s k l e v e l s ,
m e a s u r e s a r e d e s c r i b e d e.g.
the necessary
f o r e n s u r i n g t h a t such o r g a n i s m s con-
t a i n e d i n e f f l u e n t waste a r e rendered i n a c t i v e .
Discharges from
p1ant.s w o r k i n g w i t h o r g a n i s m s o f r i s k l e v e l s I 1 1 o r I V m u s t b e s t e -
o r e l s e i n a c t i v a t e d u-
r i l i i e d a t 1 2 1 C f o r a p e r i o d o f 20 m i n u t e s ,
s i n g o t h e r e q u a l l y e f f e c t i v e methods (SANDERS e t a l l . E f f l u e n t and r e f u s e c l a s s i f i e d a s r i s k l e v e l I 1 m u s t l i k e w i s e be p r e t r e a t e d such t h a t t h e q e n e t i c a l l y m o d i f i e d organisms c o n t a i ned t h e r e i n a r e i n a c t i v a t e d t o t h e e x t e n t where no danger expected.
-
i s t o be
The most l i k e l y m e t h o d s h e r e a r e :
i n a c t i v a t i o n through the e f f e c t
o f s u i t a b l e chemicals under g i -
ven c o n d i t i o n s
-
i n a c t i v a t i o n by means o f p h y s i c a l m e t h o d s .
SUMMARY B i o t e c h n o l o g y as a whole, genetic engineering, human,
i n c l u d i n q t h e l a t e s t developments i n
i s h a v i n g a tremendous e f f e c t on a l l s t a g e s o f
a n i m a l and p l a n t l i f e .
For b e t t e r or
f o r worse,
i t i s our
t a s k t o t a c k l e t h e problems which a r e a s s o c i a t e d w i t h t h e use o f t h i s t e c h n o l o g y and w h i c h t o a h i g h degree a r e l o c a t e d i n t h e f i e l d o f unwanted e n v i r o n m e n t a l impacts.
A t t h e same t i m e ,
biotechnologi-
c a l p r o c e s s e s t h e m s e l v e s p r o v i d e u s w i t h t h e means a n d p o w e r f u l t o o l s t o c o m b a t t h e n e g a t i v e e f f e c t s w h i c h m i g h t r e s u l t f r o m t h e app l i c a t i o n o f these processes.
The b e s t t i m e i s now,
before things
become e v e n m o r e c o m p l i c a t e d a n d p o s s i b l y g e t o u t o f c o n t r o l ( W R A G G , ZECHENDORF).
I n my o p i n i o n ,
the general b e n e f i t s o f bio-technologi-
- 350
-
c a l processes f u l l y outweigh t h e i r r i s k f o r t h e environment. ver,
Moreo-
o r g a n i s m s p r o d u c e d by way o f m o l e c u l a r b i o t e c h n o l o g y a r e e x -
p e c t e d t o h a v e a b e n e f i c i a l i m p a c t on many o f o u r e n v i r o n m e n t a l p r o blems,
s u c h as w a t e r p o l l u t i o n ,
dous s u b s t a n c e s i n e f f l u e n t s ,
t h e d e g r a d a t i o n o f t o x i c and h a z a r -
r e f u s e and s o i l s ,
and maybe e v e n t h e
e l i m i n a t i o n o f atmospheric p o l l u t a n t s .
I t can g e n e r a l l y b e s t a t e d t h a t b y a p p l y i n g t h e b e s t p h y s i c a l , c h e m i c a l and b i o l o g i c a l t r e a t m e n t methods a v a i l a b l e ,
practically
a l l r i s k s c o n n e c t e d w i t h t h e u s e o f b i o t e c h n o l o g y c a n be m i n i m i z e d
o r e l i m i n a t e d t o t h e e x t e n t t h a t t h e r e need be n o s e v e r e l i m i t a t i o n s t o i t s common u s e .
REFERENCES
Anonymous B u n d e s r a t p u b l i c a t i o n 226/90 - V e r o r d n u n g f i b e r d i e S i c h e r h e i t s s t u f e n u n d S i c h e r h e i t s m a nahmen b e i g e n t e c h n i s c h e n A r b e i t e n i n g e n t e c h n i s c h e n A n l e g e n - (GenTSV) 29.3.90. A.M. C h a k r a b a r t y , " G e n e t i c E n g i n e e r i n g and P r o b l e m s o f E n v i r o n m e n t a l P o l l u t i o n " - B i o t e c h n o l o g y , V o l . 8 , p u b l . b y V C H , Weinheim 1986. H. D e l l w e g , " B i o t e c h n o l o g i e " - p u b l . b y VCH, Weinheim 1987. W . Frommer a n d P . K r a m e r , " S a f e t y Aspects i n Biotechnology: C l a s s i f i c a t i o n s and S a f e t y P r e c a u t i o n s f o r H a n d l i n g o f B i o l o g i c a l A g e n t s " - C o m e t t Course Management o f B i o t e c h n o l o g i c a l R i s k s , 3-5 O c t o b e r 1 9 8 9 , P a r i s . L . Huber, "Untersuchungen uber A b w a s s e r v e r h a l t n i s s e i n Brauer e i e n " - Munchen. B e i t r . z. Abw., F i s c h . - Und F l u O b i o l o g i e , Vol. (1969). E . Sanders, R . A . K . E g y p t i e n and W.D. Deckwer, "Thermische I n a k t i v i e r u n g r e k o m b i n a n t e r D N A " - B i o e n g i n e e r i n g 2 / 9 0 , V o l . 6 29-33. P . Wragg a n d B. Z e c h e n d o r f , " E t h i c s a n d t h e New B i o l o g y " - BFE, V o l . 7 , 1 March 1990, 57-59.
la
R E L E A S E OF GENETICALLYENVIRONMENT:
W.P.M.
ENGINEERED M I C R O O R G A N I S M S I N THE
R I S K OF HORIZONTAL GENETIC-TRANSFER
HOEKSTRA
Department f o r M o l e c u l a r C e l l B i o l o g y , U n i v e r s i t y o f U t r e c h t , 3 5 8 4 C H U t r e c h t , The N e t h e r l a n d s Padualaan 8 INTRODUCTION G e n e t i c a l l y - e n g i n e e r e d m i c r o o r g a n i s m s (GEMs) f o r more t h a n one decade
i n research laboratories.
t h e y a r e a l s o employed f o r i n d u s t r i a l purposes. large scale,
have been a p p l i e d S i n c e a few y e a r s
I n these,
s m a l l and
a p p l i c a t i o n s t h e GEMs a r e r e a d i l y c o n t r o l l e d b y e f f e c -
t i v e b i o l o g i c a l and p h y s i c a l c o n t a i n m e n t .
E f f e c t i v e containment w i l l
m i n i m i z e t h e p o s s i b i l i t y o f random s p r e a d o f GEMs. Q u i t e r e c e n t l y GEMs a r e u s e d o r p l a n n e d t o b e u s e d f o r d e l i b e r a t e release i n the environment,
u n d e r c o n d i t i o n s where s t r i c t b i o -
l o g i c a l c o n t a i n m e n t i s n o t d e s i r a b l e and p h y s i c a l c o n t a i n m e n t i s n o t feasible. D e l i b e r a t e r e l e a s e o f GEMs ( f o r b i o l o g i c a l c o n t r o l i n a g r i c u l -
o r waste water d e t o x i f i c a t i o n e t c . )
ture,
for soil
tion:
how t o p r e v e n t u n c o n t r o l l e d s p r e a d o f t h e GEMs o r t h e i r DNA.
r a i s e s t h e ques-
I n t h i s p a p e r I w i l l d i s c u s s t h i s q u e s t i o n and f o c u s m a i n l y on t h e possible horizontal transfer
o f DNA b y t h e GEMs.
WHY DELIBERATE RELEASE OF GEMs? T h e r e a r e many b i o l o g i c a l i n t e r a c t i o n s i n t h e e n v i r o n m e n t w h e r e microorganisms
play a v i t a l role.
I f one i s f a m i l i a r w i t h t h e p r e -
cise nature o f
such i n t e r a c t i o n s and i f t h e i n v o l v e d m i c r o o r g a n i s m s
a r e w e l l known,
e n g i n e e r i n g o f t h e m i c r o o r g a n i s m s c o u l d h e l p t o ma-
nipulate the interactions.
A w e l l known e x a m p l e t o i l l u s t r a t e t h i s i s t h e a p p l i c a t i o n o f a n I c e - m i n u s m u t a n t o f Pseudomonas s y r i n q a e t o p r e v e n t f r o s t damage
i n p l a n t s ( H i r a n o and Upper,
1985;
L i n d o w and P a n o p o u l o s ,
1988). I n
f a c t t h i s i s t h e f i r s t example o f an approved a p p l i c a t i o n o f i n a f i e l d experiment.
an GEM
-
352 -
F r o s t damage t o p l a n t s i s s t i m u l a t e d by t h e p r e s e n c e o f i c e nucleating sites, p l a n t leaves.
p r o v i d e d by many p a t h o v a r s o f Ps.
s y r i n q a e on
B a s e d on t h e k n o w l e d g e o f t h e b a c t e r i a l i c e - n u c l e a t i n g
p r o t e i n and t h e gene c o d i n g f o r i t , a v a r i a n t l a c k i n g t h i s p r o t e i n h a s b e e n c o n s t r u c t e d by DNA t e c h n o l o g y .
The I c e - m i n u s m u t a n t when
a p p l i e d i n t h e f i e l d under a p p r o p r i a t e c o n d i t i o n s c o u l d e x l u d e t h e w i l d type Ice-plus
bacteria.
I n t h a t way
f r o s t damage t o p l a n t s
c o u l d be p r e v e n t e d . T h e r e a r e many m o r e e x a m p l e s f o r a p p l i c a t i o n o f GEMs i n t h e environment.
A v e r y i n t e r e s t i n g and e x t e n s i v e l y
studied issue i s
the microbial degradation o f xenobiotic pollutants.
By g e n e t i c e n -
g i n e e r i n g o f v a r i o u s Pseudomonads i t i s p o s s i b l e t o c r e a t e new c a t a b o l i c p a t h w a y s by e x p a n d i n g e x i s t i n g p a t h w a y s ,
s o t h a t some r e c a l -
c i t r a n t p o l l u t a n t s c a n be u s e d a s s u b s t r a t e s (Ramos a n d T i m m i s ,
1987).
B e s i d e s g e n e t i c e n g i n e e r i n g c o u l d c r e a t e new c a t a b o l i c p a t h w a y s i n Pseudomonads by a s s e m b l i n g enzymes f r o m d i f f e r e n t s t r a i n s al.,
(Rojo e t
1987).
C O N C E R N ABOUT T H E DELIBERATE RELEASE E c o l o g i s t s and e n v i r o n m e n t a l i s t s
O F GEMS have shown c o n c e r n a b o u t t h e
d e l i b e r a t e r e l e a s e o f GEMS i n t h e e n v i r o n m e n t .
Their main concern
i s t h e u n p r e d i c t a b l e e c o l o g i c a l e f f e c t o f t h e GEMs.
The o r g a n i s m s
w h i c h a r e r e l e a s e d i n t h e e n v i r o n m e n t a r e m e a n t t o be a c t i v e f o r a w h i l e (some d a y s o r e v e n a w h o l e s e a s o n ) m i s s i o n and a r e ,
moreover,
i n order t o f u l f i l t h e i r
m o s t l y a p p l i e d i n h i g h numbers.
therefore a l t e r the pre-existing ecological niches. e x e r t c o n t r o l on t h e i n t r o d u c e d GEMs,
I n order t o
p r o p o s a l s t o endow a n GEM w i t h
a c o n d i t i o n a l l e t h a l g e n e t i c d e t e r m i n a n t h a v e b e e n made. t y p e o f c o n t r o l m i g h t be t h e s e l f - c o n t a i n e d mid-borne
k i l l i n g gene.
may s e r v e a s an e x a m p l e . plasmid R1.
T h i s gene
(e). I t i s however
They may
An u s e f u l
system based on a p l a s -
The s y s t e m d e s c r i b e d b y M o l i n e t al.
(1988)
They a p p l y a k i l l i n g gene d e r i v e d f r o m t h e
(m)i s
n o r m a l l y c o n t r o l l e d by a n o t h e r gene
p o s s i b l e t o s e p a r a t e t h e k i l l e r gene f r o m i t s
c o n t r o l l i n g gene and t o i n t r o d u c e i t i n an GEM u n d e r c o n t r o l o f a s p e c i f i c p r o m o t e r t h a t can be s w i t c h e d "on"
or " o f f " a t w i l l .
The GEM w i l l n o r m a l l y g r o w a n d f u n c t i o n when t h e s w i t c h i s " o f f " , b u t t h e G E M i s k i l l e d when t h e s w i t c h i s " o n " , T h e r e a r e v a r i o u s t y p e s o f s w i t c h e s t h a t c a n b e a p p l i e d i n o r d e r t o c o n t r o l t h e GEM a f t e r i t s release.
Whether t h i s t y p e o f "eco-
safeguard",
and a l l
-
353
-
o t h e r systems t h a t h a v e b e e n p r o p o s e d ,
are effective outside the
l a b o r a t o r y s i t u a t i o n i s n o t known. A n o t h e r c o n c e r n d e a l s w i t h t h e f a t e o f t h e m i c r o b i a l DNA i n t r o d u c e d by t h e G E M s .
Even i f , a f t e r a w h i l e ,
t h e GEMs a r e e f f e c t i v e l y k i l -
l e d , t h e r e w i l l s t i l l be t h e DNA o f t h e s e m i c r o o r g a n i s m s .
T h a t DNA
o r p a r t s o f t h a t D N A m a y f i n d a way t o n a t u r a l o c c u r i n g m i c r o o r g a n i s m s by v a r i o u s t r a n s m i s s i o n m e c h a n i s m s ( h o r i z o n t a l g e n e t i c - t r a n s fer).
TRANSI-ER OF D N A T h i s s e c t i o n w i l l be r e s t r i c t e d t o t r a n s f e r o f DNA i n b a c t e r i a , s i n c e f o r t h e s e o r g a n i s m s most k n o w l e d g e i s a v a i b l e . B e f o r e d i s c u s s i n q t h e v a r i o u s p o s s i b i l i t i e s f o r g e n e t i c t r a n s f e r from g e n e t i cally-engineered bacteria, it is important t o consider the nature of the genetic modification in the bacteria.
I t may b e t h a t t h e mo-
d i f i c a t i o n is l o c a t e d i n t h e b a c t e r i a l chromosome, l i k e i n t h e c a s e o f t h e Ice-minus m u t a n t o f Ps. s y r i n q a e r h e r e a chromosomal d e l e t i o n was i n t r o d u c e d .
The m o d i f i c a t i o n c o u l d a l s o b e i m p o s e d o n a b a c t e -
r i u m by i n t r o d u c t i o n o f a n a u t o n o m o u s r e p l i c a t i n g D N A v e h i c l e ( a plasmid or a phage).
As we w i l l s e e
later, a modification i n the
chromosome w i l l i n g e n e r a l c a u s e l e s s c o n c e r n f o r r i s k o f h o r i z o n t a l g e n e t i c t r a n s f e r t h a n m o d i f i c a t i o n s i n t r o d u c e d by p l a s m i d s o r p h a ges. There a r e s e v e r a l ways f o r h o r i z o n t a l g e n e t i c teria.
t r a n s f e r i n bac-
Table 1 presents a survey of t h e c h a r a c t e r i s t i c s of i ) trans-
f e c t i o n a l s o termed transformation i i ) conjugation and i i i ) transduction.
The d e t a i l s a b o u t t h e s e p r o c e s s e s h a v e b e e n r e v e a l e d f r o m
s t u d i e s under laboratory conditions.
I t is o n l y s i n c e a few years
t h a t i n v e s t i g a t i o n s have been performed t o test whether t h e s e t r a n s m i s s i o n r o u t e s a r e e f f e c t i v e " i n e c o " ( a term t o r e f e r t h a t n o r m a l ecological situations a r e involved). The r a n g e o f b a c t e r i a l g e n e r a f o r which g e n e t i c -
t r a n s f e r sys-
tems a r e d e m o n s t r a t e d ,
at l e a s t under laboratory conditions, is q u i t e e x t e n s i v e a n d i n c l u d e s G r a m - p o s i t i v e as w e l l a s G r a m - n e g a t i v e species.
I n g e n e r a l DNA t r a n s f e r o c c u r s e x c l u s i v e l y b e t w e e n members
b e l o n g i n g t o t h e same g e n u s .
S u c h s p e c i f i c i t y i s d e t e r m i n e d by s p e -
c i f i c r e c o g n i t i o n p r o c e s s e s a t t h e c e l l e n v e l o p e l e v e l a s well a s b y s p e c i f i c D N A r e c o g n i t i o n p r o c e s s e s by r e s t r i c t i o n e n d o n u c l e a s e s . However, t h e r e a r e m a n y r e p o r t s w h i c h s h o w t h a t some c o n j u g a t i o n , t r a n n d u c t i o n a n d t r a n s f e c t i o n systems h a v e l e s s r e s t r i c t e d o r e v e n
- 354
-
TABLE 1 Trans fer-System transfect ion
1)
(transformation)
mechanism
remarks
transmission
natural
o f f r e e DNA
artificial
2)
systems
conjugation
transduction
transmission
s e l f transmission
o f DNA by
mobilization
c e l l - c e l l contact
conduction
transmission o f
3)
g e n e r a l and 4 )
DNA by phage
restricted
particles
systems
1)
t o a v o i d c o n f u s i o n w i t h t h e term t r a n s f o r m a t i o n , used i n c e l l b i o l o g y t o d e s c r i b e t h e t r a n s i t i o n o f a normal c e l l t o a tumor c e l l , the term t r a n s f e c t i o n i s preferable.
2) n a t u r a l s y s t e m s a r e t h o s e s y s t e m s where DNA u p t a k e i s p o s s i b l e d u r i n g t h e l i f e c y c l e o f t h e b a c t e r i u m . A r t i f i c i a l systems a r e t h o s e systems where e x p e r i m e n t a l c o n d i t i o n s s h o u l d b e c r e a t e d t o f o r c e c e l l s t o DNA u p t a k e .
3)
Some p l a s m i d s c a r r y a l l i n f o r m a t i o n f o r c o n j u g a l t r a n s f e r , t h e y a r e s e l f - t r a n s m i s s i b l e . O t h e r s l a c k some t r a n s f e r f u n c t i o n s b u t c a n b e m o b i l i z e d t h r o u g h c o m p l e m e n t a t i o n by o t h e r ( s e l f t r a n s m i s s i b l e ) + n o n - m o b i l i z a b l e p l a s m i d c a n be plasmids. A non-self-transmissible, conjugally transferred a f t e r recombination w i t h a self-transmissible plasmid (conduction).
4 )
Some p h a g e s a r e a b l e , a f t e r l y t i c i n f e c t i o n , t o p i c k up any gene from t h e h o s t ( g e n e r a l t r a n s d u c t i o n ) . Other phages a r e a b l e , a f t e r l y s o g e n i c i n d u c t i o n , t o t r a n s d u c e o n l y t h o s e genes t h a t a r e i n c l o s e v i c i n i t y t o t h e l y s o g e n i c p h a g e ( s p e c i a l i z e d or r e s t r i c t e d t r a n s d u c tion).
r a t h e r broad host ranges.
A r e c e n t o b s e r v a t i o n shows t h a t ,
d i t i o n s w h i c h a b o l i s h e f f e c t i v e DNA r e s t r i c t i o n , negative (E. i s possible
c o l i ) t o Gram-positive (Schafer e t e l . ,
1990).
transfer
under conf r o m Gram-
b a c t e r i a (coryneform bacteria)
A v e r y f a s c i n a t i n g example o f
b r o a d h o s t r a n g e i s t h e t r a n s f e r o f DNA b y c o n j u g a t i o n f r o m A q r o b a c t e r i u m tumefaciens t o p l a n t s ( s e e Zambryski,
1988 f o r a r e v i e w ) .
When D N A i s t r a n s f e r r e d ,
355
-
whatever t h e t r a n s f e r mechanism,
the
f a t e o f t h e t r a n s f e r r e d D N A i s d e t e r m i n e d f i r s t o f a l l by t h e f a c t whether i t i s a r e p l i c o n or n o t .
DNA n o t i n t h e form o f a r e p l i c o n
can only be maintained i n t h e c e l l a f t e r recombination w i t h a r e p l i c o n i n t h e c e l l . DNA i n t h e f o r m o f a r e p l i c o n , h o w e v e r , m a y b e maintained a s such i n a cell. pect t o horizontal genetic ments.
-
I n t e r e s t i n g DNA m o l e c u l e s w i t h rest r a n s f e r a r e f o r m e d by t r a n s p o s o n e l e -
T h e s e DNA e l e m e n t s , w h i c h a r e f r e q u e n t l y u s e d f o r e n g i n e e r i n g
b a c t e r i a , a r e a b l e t o move a u t o n o m o u s l y t o a l l k i n d s o f DNA m o l e c u l e s (see Berg, 1989 f o r a review).
I n t h a t way s u c h D N A e l e m e n t s
may b e s p r e a d v e r y e x t e n s i v e l y e v e n o v e r b r o a d h o s t r a n g e s .
A spe-
c i a l group o f transposons ( T n w , and r e l a t e d elements) codes f o r t h e i r . own c o n j u g a l t r a n s f e r , w h i c h e n a b l e s a n e f f e c t i v e s p r e a d ( C l e w e l l and Gawron-Burke,
1986).
D N A TRANSFER F R O M BACTERIA IN T H E E N V I R O N M E N l A s s t a t e d b e f o r e most DNA t r a n s f e r p r o c e s s e s have b e e n s t u d i e d However, e p i d e m i o l o g i c a l s t u -
i n d e t a i l under laboratory conditions.
d i e s i n t h e s i x t i e s o n t h e s p r e a d o f a n t i b i o t i c - r e s i s t a n c e s i n Ent e r o b a c t e r a c i a e , s u g g e s t e d t h a t c o n j u g a t i o n mechanisms c o u l d opera-
t e i n t h e c o l o n or i n t h e b l a d d e r . G r i f f i t h i n h i s p i o n e e r i n g exper i m e n t s on t r a n f o r m a t i o n i n S t r e p t o c o c c u s p n e u m o n i a e i n f a c t t a u g h t us,
in retrospect,
t h a t t r a n s f o r m a t i o n t o o k p l a c e i n t h e body o f
t h e mice u s e d i n h i s e x p e r i m e n t s .
Later transformation of Bacillus
s u b t i l i s i n t h e s o i l was d e m o n s t r a t e d (Graham a n d I s t o c k ,
19781,
w h i l e Wackernagel and h i s c o w o r k e r s c l e a r l y showed t h a t DNA i n t h e s o i l c a n b e very s t a b l e a n d c a n e f f i c i e n t l y b e t a k e n u p by r e c i p i e n t b a c t e r i a (Lorenz e t a l . ,
1 9 8 8 ) . T r a n s d u c t i o n a s a mean t o t r a n s f e r
g e n e t i c i n f o r m a t i o n i n t h e n a t u r a l environment h a s been demonstrated f o r e x a m p l e by M o r r i s o n e t e l . ,
(1978).
T h e r e a r e v e r y many e x a m p l e s
d e s c r i b e d f o r t r a n s f e r o f DNA i n t h e n a t u r a l e n v i r o n m e n t ,
the inte-
r e s t e d r e a d e r i s r e f e r r e d t o a r e c e n t book i n t h e s e r i e s E n v i r o n m e n t a l Biotechnology: and R.V.
Gene t r a n s f e r i n t h e e n v i r o n m e n t .
eds.
S.B.
Levy
Miller (1989).
For t h e d i s c u s s i o n a b o u t t h e p o s s i b i l i t i e s f o r g e n e t i c t r a n s f e r under environmental conditions, i t is of great importance t o understand t h e relevant microbial ecology.
I n f a c t o u r l i m i t a t i o n i n ma-
k i n g r i s k a n a l y s i s f o r t h e a p p l i c a t i o n o f GEMS i n f i e l d e x p e r i m e n t s ,
i s c a u s e d by t h e c o m p l e x i t y o f t h e e c o s y s t e m s . I n t h e r i s k a n a l y s i s
-
356
-
o f GEMs f o r l a b o r a t o r y o r i n d u s t r i a l u s e we a r e f a m i l i a r w i t h c o n s i d e r a t i o n s a b o u t t h e e n g i n e e r e d g e n e s as w e l l a s a b o u t t h e v e c t o r o f t h o s e genes and t h e n a t u r e o f t h e e n g i n e e r e d h o s t .
However,
as
s t a t e d c l e a r l y by M i l l e r a n d L e v y i n t h e r e f e r e n c e s t a t e d a b o v e ,
for
e n v i r o n m e n t a l r e l e a s e one h a s t o t a k e i n t o c o n s i d e r a t i o n a number o f e c o l o g i c a l f a c t o r s (e.9. anorganic surfaces,
water content,
temperature,
nature o f organic or
pH,
m i c r o b i a l competion etc.)
as w e l l
a s a number o f s p e c i f i c b i o l o g i c a l f a c t o r s w h i c h may i n f l u e n c e t h e transfer
p o t e n t i a l o f i n f o r m a t i o n f r o m a GEM t o i n d i g e n o u s b a c t e r i a
i n the s o i l , tinent
i n t i s s u e s or i n w a t e r .
considerations i s clear:
The c o n s e q u e n c e o f t h e s e p e r -
i t is i m p o s s i b l e t o p r e d i c t t h e f a -
t e o f an GEM a f t e r i t s r e l e a s e i n t h e e n v i r o n m e n t .
The f a t e w i l l
d i f f e r f r o m c a s e t o c a s e a n d e v e n when t h e same GEM i s u s e d u n d e r d i f f e r e n t conditions, analysis.
t h e s e c o n d i t i o n s may a f f e c t g r e a t l y t h e r i s k
A n o t h e r consequence o f t h e n o t i o n t h a t t h e e c o l o g i c a l con-
d i t i o n s a r e s o complex,
c o u l d b e t h a t one s h o u l d o n l y c o n s i d e r GEMs
f o r d e l i b e r a t e r e l e a s e t h a t do n o t d e v i a t e e x t e n s i v e l y from t h e wild,
n a t u r a l occuring,
organism.
Moreover s i n c e chromosomal modi-
f i c a t i o n s a r e l e s s l i k e l y t o be s p r e a d e f f e c t i v e l y ,
such m o d i f i c a -
t i o n s s h o u l d be p r e f e r r e d o v e r p l a s m i d or phage b o r n e m o d i f i c a t i o n s .
A C A S E S T U D Y ON THE FATE OF
I N THE
TnS
MODIFIED PSEUDOMONAS FLUORESCENS
FIELD
F o r t h e r o l e o f Ps.
fluorescens i n growth promotion o f potato-
e s i n f i e l d s t h a t a r e f r e q u e n t l y used t o c u l t i v a t e p o t a t o e s , r o p h o r e s p r o d u c e d b y pseudomonads may be v i t a l To t e s t t h i s i n a c r i t i c a l e x p e r i m e n t ,
(Geels e t a l . ,
side1986).
a TnS i n s e r t i o n was i n t r o d u -
c e d i n one o f t h e s i d e r o p h o r e g e n e s o f Ps.
fluorescens.
m i n u s m u t a n t s were l a t e r i n t r o d u c e d w i t h p o t a t o
Such S i d -
seed t u b e r s i n a
f i e l d a t t h e e x p e r i m e n t a l f a r m "de S c h r e e f " n e a r L e l y s t a d i n H o l l a n d . After introduction o f the genetically-engineered
s t r a i n JM3742,
the
f a t e o f t h i s b a c t e r i u m i n t h e f i e l d was s t u d i e d as w e l l a s p o s s i b l e t r a n s f e r o f the transposon t o other b a c t e r i a i n the rhizosphere. Although t h e a n a l y s i s i s n o t y e t complete, and H o e k s t r a ,
i n JM3742,
t h e r e s u l t s s o f a r (Bakker
u n p u b l i s h e d r e s u l t s ) show t h a t :
Tn5
i s stable i n stra-
t h e s u r v i v a l o f s t r a i n JM3742 a f t e r one s e a s o n i n t h e
f i e l d was p o o r and t r a n s f e r o f t h e t r a n s p o s o n t o o t h e r pseudomonads c o u l d n o t be detected.
Spread o f
s t r a i n 31.13742 t o f i e l d s n e i g h b o u r i n g
t h e e x p e r i m e n t a l f i e l d was r a r e b u t c o u l d b e d e t e c t e d .
From t h e s e
-
357
-
s t u d i e s we a l s o e x p e r i e n c e d t h a t i n o r d e r t o d r a w f i r m c o n c l u s i o n s , d e t e c t i o n o f Tn? r e q u i r e d m o l e c u l a r g e n e t i c a p p r o a c h e s dization)
(DNA h y b r i -
a n d c o u l d n o t b e b a s e d on t h e s p e c i f i c f e n o t y p i c c h a r a c t e -
r i s t i c s o f t h e transposon.
T h a t i m p l i e s t h a t r i s k a n a l y s i s a r e do-
omed t o b e e x p e n s i v e a n d t i m e c o n s u m i n g .
REFER tI NC E 5
1 2 3
4 5 6
7 8
9 10 11 12 13
14
D . E . B e r g , I n : Gene t r a n s f e r i n t h e e n v i r o n m e n t 5.8. L e v y a n d R . V . M i l l e r eds. Mc. G r a w - H i l l P u b l . Comp. New Y o r k 1 9 8 9 , p.99. D . B . C l e w e l l . a n d C . Grawon-Burke. Annu. Rev. M i c r o b i o l . 4 0 ( 1 9 8 6 ) 635. F . P . G e e l s . e t a l . N e t h . J. P 1 . P a t h o l . 92 ( 1 9 8 6 ) 257. J . B . Graham, a n d C . A . I s t o c k . M o l . Gen. G e n e t 1 6 6 ( 1 9 7 8 ) 287. S . S . H i r a n o , a n d C.D. U p p e r . B i o / t e c h n o l o g y 3 ( 1 9 8 5 ) 1 0 7 4 . S.E. Lindow, and N.J. P a n o p o u l o s . I n The r e l e a s e o f g e n e t i Collins, c a l l y - e n g i n e e r e d m i c r o - o r g a n i s m s . M. Sussman, C.H F . A . S k i n n e r a n d O . E . S t e w a r t - T u l l e d s . Acad. P r e s s L o n d o n , 1988. p. 1 2 1 . M.G. L o r e n z , e t a l . J. Gen. M i c r o b i o l . 1 3 4 ( 1 9 8 8 ) 107. R.V. M i l l e r a n d 5 . 8 . L e v y . I n : Gene t r a n s f e r i n t h e e n v i r o n m e n t . S . 8 . L e v y and R . V . M i l l e r e d s . Mc G r a w - H i l l P u b l . Comp. New Y o r k 1 9 8 9 , p. 405. S . M o l i n , e t a l . B i o / t e c h n o l o g y 5 (1987) 1315 M o r r i s o n e t a l . A p p l . E n v i r o n . M i c r o b i o l . 36 (1978) 724. J . L . Ramos, and K . N . Timmis. M i c r o b i o l o g i c a l S c i e n c e s 4 (1987) 228. R o j o e t a l . S c i e n c e 238 ( 1 9 8 7 ) 1 3 9 5 . A . S c h l f e r , , e t a l . J. Bacterial. 1 7 2 ( 1 9 9 0 ) 1653. P . Z a m b r y s k i , Annu. Rev. G e n e t . 22 ( 1 9 8 8 ) 1.
This Page Intentionally Left TBlank
THE ROLE OF CULTURE COLLECTIONS T O S A F E G U A R D N A T U R E ’ S MICROBIOLOGICAL RESOURCES
K.A.
MALIK
D S M - D e u t s c h e Sammlung v o n M i k r o o r g a n i s m e n u n d Z e l l k u l t u r e n GmbH M a s c h e r o d e r Weg 1 B , D - 3 3 0 0 B r a u n s c h w e i g , FRG
E a r l y man c o n s t a n t l y s t r u g g l e d them as d a n g e r o u s a n d u n d e s i r a b l e . agricultural
revolution,
t o destroy animals,
human b e i n g s f i r s t
u s e f u l n e s s a n d began t o d o m e s t i c a t e them. efforts,
considering
During the times o f the n e o l i t h i c s t a r t e d t o sense t h e i r
As a r e s u l t o f t h e i r h a r d
t o d a y we b e n e f i t f r o m t h e u s e f u l a n i m a l s t h e y d o m e s t i c a t e d
and need n o t f e a r t h e dangerous ones w h i c h have e i t h e r been d e s t r o y ed o r c o n t r o l l e d . U n f o r t u n a t e l y microorganisms had t o f a c e a s i m i l a r f a t e a f t e r t h e i r recognition i n the 17th century.
A t f i r s t c o n s i d e r i n g them as
d a n g e r o u s a n d p a t h o g e n s we s t a r t e d t o d e s t r o y t h e m i n t e n t i o n a l l y . And now, b y d i s t u r b i n g t h e e c o l o g i c a l b a l a n c e ,
by c r e a t i n g e n v i r o n -
m e n t a l p o l l u t i o n a n d b y t h e u s e o f e x t e n s i v e c h e m i c a l s we a r e c o n s t a n t l y d e s t r o y i n g them u n i n t e n t i o n a l l y .
However,
we know t h a t m i c r o -
organisms a r e i n d i s p e n s a b l e f o r t h e c o n t i n u e d e x i s t e n c e o f p l a n t and animal l i f e fore,
a n d we c a n n o t a f f o r d t o d e s t r o y t h e m any l o n g e r .
i t i s our responsibility t o collect,
There-
keep and p r e s e r v e t h e
m i c r o o r g a n i s m s f o r o u r own u s e and f o r t h e uae o f c o m i n g g e n e r a t i o n s . f’rof.
F r a n t i s e k K r a l ( 1 8 4 6 - 1 9 2 1 ) f r o m P r a g u e was t h e f i r s t who
r e a l i z e d t h e i m p o r t a n t n e e d o f c u l t u r e c o l l e c t i o n s more t h a n h u n d r e d y e a r s ago a n d he c o l l e c t e d c u l t u r e s w h i c h he made a v a i l a b l e f o r a f e e t o o t h e r w o r k e r s (1, 2 ) .
T h i s was t h e w o r l d ’ s
f i r s t known c u l t u -
r e c o l l e c t i o n w h i c h was l a t e r t r a n s f e r r e d t o t h e U n i v e r s i t y o f V i e n n a i n 1915 by P r o f e s s o r Ernst Pribram.
Later,
i n 1904 t h e f i r s t i n d e -
p e n c ‘ ? n t c o l l e c t i o n t o p r e s e r v e and s u p p l y a w i d e r a n g e o f f u n g a l c u l t u r e s wss e s t a b l i s h e d a n d i t s t i l l e x i s t s a s t h e C e n t r a l b u r e a u v o o r S c h i m m e l c u l t u r e s (CBS) many o f t h e m t h r o u g h o u t
a t Baarn,
The N e t h e r l a n d s ( 3 ) .
the world providing cultures,
Now t h e r e a r e information
-
360
-
and a wide r a n g e o f s e r v i c e s f o r t h e g e n e r a l s u p p o r t of m i c r o b i o l o gy a n d b i o t e c h n o l o g y
( 4 - 9).
The u s e o f m i c r o o r g a n i s m s a n d c e l l c u l t u r e s t o s o l v e a g r i c u l tural,
food,
h e a l t h , e n e r g y a n d e n v i r o n m e n t a l p r o b l e m s i s now r a -
p i d l y i n c r e a s i n g and w i t h t h i s t h e r e i s an e v e r growing need f o r t h e p r e s e r v a t i o n and s t o r a g e o f newly i s o l a t e d s t r a i n s ,
g e n e t i c a l l y en-
g i n e e r e d s t r a i n s , s t r a i n s w i t h p l a s m i d s and o t h e r u s e f u l microorganisms.
C u l t u r e c o l l e c t i o n s , which p l a y a v i t a l role t o s a f e g u a r d
natural microbiological resources, preserving representative,
are s p e c i a l i s e d i n keeping and
t y p e , r e f e r e n c e and b i o t e c h n o l o g i c a l l y
important s t r a i n s o f microorganisms and cell l i n e s i n v i a b l e and s t a b l e s t a t e and a r e a c o n s t a n t s o u r c e of s u p p l y f o r such a u t h e n t i c cultures. I n i t i a l l y , t h e m a i n r o l e s o f most f u n g a l c o l l e c t i o n s were i n a g r i c u l t u r e , brewing and medicine.
I t was d r a m a t i c a l l y e x t e n d e d i n
t h e 1930s t o t h e pharmaceutical industry following t h e discovery o f p e n i c i l l i n , and i n 1980’s, t o biotechnology
( 3 ) . U n t i l t h e 1920’s
t h e m a i n a r e a s o f a c t i v i t y o f b a c t e r i a l c u l t u r e c o l l e c t i o n s were f o r taxonomic and e p i d e m i o l o g i c a l s t u d i e s . I n 1930s t h e s t u d i e s o f microb i a l physiology and biochemistry extended t h e i r importance due t o t h e maintenance o f microorganisms w i t h s p e c i a l p r o p e r t i e s and p r o d u c t i v e q u a l i t i e s . Now c u l t u r e c o l l e c t i o n s a s s o c i a t e d w i t h b i o l o g i c a l a n d b i o t e c h n o l o g i c a l i n d u s t r y and i n s t i t u t i o n s have proved worthwhile f o r t h e p r e s e r v a t i o n and maintenance of important and d i v e r s e groups o f p r o k a r y o t i c and e u k a r y o t i c recombinant and non-recombinant
strains
(1, 2 ) . C u l t u r e c o l l e c t i o n s i n a d d i t i o n t o t h e c a r e f u l d e p o s i t o n , docum e n t a t i o n , m a i n t e n a n c e , p r e s e r v a t i o n and d i s t r i b u t i o n o f u s e f u l , rep r e s e n t a t i v e and t y p e s t r a i n s p l a y s e v e r a l o t h e r important roles. T h e m a i n i n t e r e s t o f some b a c t e r i a l a n d f u n g a l s e r v i c e c u l t u r e c o l l e c t i o n s and t h e i r t y p e o f h o l d i n g s and s e r v i c e s o f f e r e d t o microbiology a n d b i o t e c h n o l o g y h a s a l r e a d y b e e n summarized i n few a r t i l e s (1 - 3 , 10, 11).
A c c o r d i n g t o t h e W o r l d D a t a C e n t r e o f M i c r o o r g a n i s m s (WDC), a b o u t h a l f a m i l l i o n c u l t u r e s a r e o n r e c o r d s i n 360 c u l t u r e c o l l e c t i o n s from 60 c o u n t r i e s ( 1 2
-
1 4 ) . The number o f d i f f e r e n t i s o l a t e s o f f u n -
g i currently maintained i n t h e l i v i n g s t a t e throughout t h e world’s c o l l e c t i o n s i s i n e x c e s s o f 17000 w h i c h r e p r e s e n t s a b o u t 7000 s p e c i e s . A b o u t 6 0 % o f WDC r e g i s t e r e d c o l l e c t i o n s h a v e a p p l i e d m i c r o b i l o g y a s t h e i r s p e c i a l i n t e r e s t and mainly cover a r e a s o f a g r i c u l t u r e , i n d u s t r y ,
dairy,
food and
361
-
g e o m i c r o b i o l o g y . Such c o l l e c t i o n s a r e a w o r l d re-
s o u r c e , t h e s i g n i f i c a n c e o f w h i c h may o n l y b e r e c o g n i z e d i n t h e l i g h t of future s c i e n t i f i c discoveries.
The s t r a i n s c o l l e c t i v e l y
maintained between t h e fungal c u l t u r e c o l l e c t i o n s a l s o p r o v i d e a tremendous g e n e t i c r e s o u r c e o f b i o t e c h n o l o g i c a l importance f o r t h e p r e s e n t and c o u l d p r o v e t o be o f immense s i g n i f i c a n c e f o r t h e f u t u re. However,
a c c o r d i n g t o o n e e s t i m a t e , 2-4 m i l l i o n s p e c i e s o f o r -
g a n i s m s o c c u r i n l o w l a n d t r o p i c s a n d 50 X o f t h e s e may b e c o m e e x t i n c t by t h e y e a r 2 0 0 0 b e c a u s e o f t h e u s e o f i n a d e q u a t e m e t h o d s o f maintenance.
T h e r e f o r e , a s t a b l e n a t i o n a l and i n t e r n a t i o n a l germ
plasm base i s r e q u i r e d f o r maintaining our g e n e t i c r e s o u r c e s once we h a v e a c q u i r e d
we h a v e a c q u i r e d a n d a s s e m b l e d .
The m a i n t e n a n c e a n d p r e s e r v a t i o n o f a f u l l r a n g e o f i s o l a t e s i s an enormoua t a s k and e v e n t h e l a r g e s t c o l l e c t i o n s a r e g e n e r a l l y
n o t a b l e t o b u i l d up l a r g e h o l d i n g s o f s t r a i n s o f s i n g l e s p e c i e s , genera or groups.
T h e r e f o r e t h e c u l t u r e c o l l e c t i o n s b u i l d up g e n e
b a n k s t h a t t h e y j u d g e v a l u a b l e or t h a t would b e u s e f u l i n t h e f u t u -
re e.g.
strains including type strains, strains deposited for their
special properties,
assay s t r a i n s , genetically engineered strains,
i n d u s t r i a l s t r a i n s , plasmid bearing s t r a i n s and o t h e r s .
Once a c q u i -
r e d , such s t r a i n s a r e a u t h e n t i c a t e d , documented and s u b j e c t e d t o p r e s e r v a t i o n u s i n g most a p p r o p r i a t e methods i n o r d e r t o f u n c t i o n a s 1
a continuous source o f supply f o r v i a b l e and s t a b l e s t r a i n s (Fig. and 2 ) . 'The p r e s e r v a t i o n o f m i c r o o r g a n i s m s a n d a n i m a l o r p l a n t c e l l s i s a h i g h l y s p e c i a l i z e d a c t i v i t y c a l l i n g f o r e x p e r i e n c e d back up
and o f t e n very s p e c i a l i z e d equipment.
I t is not possible f o r the
c o i l e c t i o n s t o optimize t h e preservation of each c u l t u r e and put forward a u n i v e r s a l method of p r e s e r v a t i o n a s o f t e n a s i t h a s been observed becaus there is a g r e a t v a r i a t i o n i n s u s c e p t i b i l i t y of t h e v a r i o u s p r e s e r v a t i o n methods and u s u a l l y t h e method s u i t a b l e f o r one group, g e n e r a or s p e c i e s might n o t be s u i t a b l e for a n o t h e r (15
-
18).
D u r i n g i n a d e q u a t e p r e s e r v a t i o n , some m i c r o o r g a n i s m s c o u l d a l s o u n dergo changes i n t h e i r physiology, biochemistry,
p a t h o g e n i c i t y or
o t h e r d e s i r a b l e c h a r a c t e r s ( 1 9 , 20). T h u s t h e c o l l e c t i o n s t h a t a r e r e s p o n s i b l e t o m a i n t a i n a b r o a d s p e c t r u m o f i s o l a t e s o v e r l o n g per i o d s i n a v i a b l e and s t a b l e s t a t e must have a d e q u a t e equipment, pers o n n e l and f i n a n c i a l r e s o u r c e s t o o p e r a t e a v a r i e t y o f modern pres e r v a t i o n m e t h o d s . Major c u l t u r e c o l l e c t i o n s w i t h s p e c i a l i s t s b a c k
- 362
up t h e r e f o r e f r e q u e n t l y
(21
-
-
t e s t a n d a d o p t new m e t h o d s o f p r e s e r v a t i o n
28).
A l l p r e s e r v e d c u l t u r e s n o t o n l y s h o u l d r e t a i n maximum v i a b i l i t y o v e r p r o l o n g e d p e r i o d s o f s t o r a g e b u t t h e y must r e m a i n unchanged i n their properties.
I t has been o f t e n observed t h a t d u r i n g i n a d e q u a t e
maintenance and p r e s e r v a t i o n ,
s t r a i n d r i f t o c c u r s and i n d u s t r i a l
p r o d u c t i o n s t r a i n s f a i l t o show c o n s i s t a n c y o f p e r f o r m a n c e . vice culture collections
The s e r -
a c t as d e p o s i t o r i e s f o r a l l k i n d s o f m i c r o -
organisms t h a t a r e o f p a s t ,
p r e s e n t o r p o t e n t i a l i m p o r t a n c e and t h u s
f u n c t i o n as r e s o u r c e and i n f o r m a t i o n c e n t r e s f o r t h e g e n e r a l s u p p o r t o f m i c r o b i o l o g y and b i o t e c h n o l o g y . fundamental
For service collections i t i s o f
importance t h a t they adopt a s e l e c t i o n o f maintenance
m e t h o d s t h a t p r o d u c e maximum s u r v i v a l l e v e l s a n d g u a r a n t e e s t r a i n stability.
Fig.
1. S t o r a g e o f f r e e z e - d r i e d
ampoules a t 9
OC
a t t h e DSM.
The m a j o r a c t i v i t i e s common t o a l l s e r v i c e c u l t u r e c o l l e c t i o n s g e n e r a t e a q u a n t i t y o f e s s e n t i a l i n f o r m a t i o n w h i c h i s now s y s t e m a t i c a l l y recorded u s i n g computers ( 2 9 , 30). computer,
S t r a i n data,
stored i n a
a l l o w t h e s e a r c h and r e t r i e v a l o f s c i e n t i f i c i n f o r m a t i o n
- 363
-
a n d e s t a b l i s h a d a t a b a s e t h a t may b e u s e d s u b s e q u e n t l y f o r comp u t e r i d e n t i f i c a t i o n and f o r t h e p r e p a r a t i o n o f a catalogue o f s t r a ins.
An u p - t o
ffective
d a t e c a t a l o g u e i s a n e s s e n t i a l r e q u i r e m e n t f o r t h e e-
f u n c t i o n i n g o f a s e r v i c e c o l l e c t i o n and t h e t r a n s f e r o f
c a t a l o g u e d a t a t o a c o m p u t e r a l l o w s a r e a d y u p d a t i n g f o r new e d i t i ons.
The WDC w h i c h h a s b e e n r e l o c a t e d f r o m B r i s b a n e ,
RIKEN,
Australia t o
Saitama i n Japan,
i s a p a r t o f t h e World Federation f o r Cul-
t u r e C o l l e c t i o n s (WFCC).
I t p r o v i d e s i n f o r m a t i o n on c o l l e c t i o n s and
t h e i r h o l d i n g s world wide. provides a Directory and c u l t u r e d c e l l s .
The WDC makes s e v e r a l d a t a b a s e s a v a i l a b l e t h r o u g h
t h e MSDN n e t w o r k (MSDN, versity,
Cambridge,
The MSDN ( M i c r o b i a l S t r a i n D a t a N e t w o r k )
t o t h e sources o f i n f o r m a t i o n on microorganisms
I n s t i t u t e o f Biotechnology,
Cambridge Uni-
U.K.).
I n o r d e r t o have a b e t t e r access t o t h e w e a l t h o f i n f o r m a t i o n a v a i l a b l e i n European C u l t u r e C o l l e c t i o n s and t o p u b l i c i z e ,
various
i n f o r m a t i o n networks and databases such as M i c r o b i a l C u l t u r e I n f o r maticin S e r v i c e
(MiCIS)
and M i c r o b i a l I n f o r m a t i o n Network Europe
(MINE) a n d I C E C C ( I n f o r m a t i o n C e n t r e f o r E u r o p e a n C u l t u r e C o l l e c t i o n s ( b a s e d a t t h e DSM) h a v e b e e n s t a r t e d ( 3 0 ) .
Fig.
2.
L i q u i d . n i t r o g e n s t o r a g e o f s t o c k c u l t u r e s a t t h e DSM.
- 364 -
M i c r o b i a l c u l t u r e c o l l e c t i o n s were p r i m a r i l y a r e s o u r c e f o r m i c r o o r g a n i s m s b u t now many o f t h e s e h a v e a b r o a d e r r o l e a s w o r l d gene b a n k s ,
r e s u l t i n g f r o m new d e v e l o p i n e n t s i n m o l e c u l a r b i o l o g y .
C o l l e c t i o n s s e r v e as r e p o s i t o r i e s f o r o r g a n i s m s c i t e d o r u s e d i n s c i e n t i f i c p u b l i c a t i o n s so t h a t
t h e m i c r o o r g a n i s m s can be used
f o r r e f e r e n c e w o r k and t h a t t h e o r i g i n a l w o r k c a n b e r e p e a t e d o r confirmed.
Many c u l t u r e c o l l e c t i o n s f u n c t i o n a s I n t e r n a t i o n a l Depo-
sitory Authorities
(IDAs)
and a r e a b l e t o p r o v i d e necessary i n f o r -
m a t i o n t o p a t e n t p r o c e s s e s and t h e s t r a i n s used i n p a t e n t a p l l i c a t i o n s ( 3 1 ) . C u l t u r e c o l l e c t i o n s c a r r y o u t r e s e a r c h programmes t h a t c o m p l e m e n t t h e i r i n t e r e s t s and h a v e t h e a d v a n t a g e o f a c c e s s t o l a r ge number o f a u t h e n t i c a t e d m i c r o o r g a n i s m s a v a i l a b l e f o r s t u d y .
The
m a j o r i t y o f microorganisms i n a c u l t u r e c o l l e c t i o n are o f t e n n o t f u l l y c h a r a c t e r i z e d and provi.de t h e p o s s i b i l i t y o f b e i n g e x p l o r e d and screened f o r t h e i r
f u l l r e s e a r c h and i n d u s t r i a l p o t e n t i a l .
e x p e r t i s e developed a t the c o l l e c t i o n s , t o g i v e a d v i c e on t a x o n o m y , maintenance,
preservation,
enables the c o l l e c t i o n s t a f f
identification, supply,
The
isolation,
culturing,
d e p o s i t i o n and s e v e r a l o t h e r
c o l l e c t i o n related matters. The i n t e r a c t i o n and c o l l a b o r a t i o n b e t w e e n c u l t u r e c o l l e c t i o n s through national, creasing.
r e g i o n a l and i n t e r n a t i o n a l n e t w o r k i s r a p i d l y i n -
The W o r l d F e d e r a t i o n o f C u l t u r e C o l l e c t i o n s (WFCC) promo-
t e s and c o - o r d i n a t e s
such a c t i v i t i e s .
t i o n s O r g a n i z a t i o n (ECCO),
The E u r o p e a n C u l t u r e C o l l e c -
e s t a b l i s h e d i n 1 9 8 1 h a s now 4 1 members
and i t p r o v i d e s a chance f o r t h e C u r a t o r s t o meet a n n u a l y t o d i s c u s s c o l l e c t i o n s r e l a t e d problems i n Europe.
There a r e s e v e r a l r e g i o n a l
f e d e r a t i o n s o f c u l t u r e c o l l e c t i o n s (USFCC, collaborative actions.
UKFCC),
t o promote such
The u s e f u l n e s s o f c u l t u r e c o l l e c t i o n s i n t h e
w o r l d and t h e i r f u n d a m e n t a l r o l e i n m i c r o b i o l o g y h a s o f t e n b e e n p r o j e c t e d i n t h e I n t e r n a t i o n a l Cultures C o l l e c t i o n Conferences ( 3 2
-
34)
a n d b y t h e w o r l d n e t w o r k o f M i c r o b i a l R e s o u r c e s C e n t r e s (MIRCEN). Today,
t h e r e a r e 1 8 MIRCEN c e n t r e s w o r l d w i d e w h i c h p a r t i c i p a t e i n
a g l o b a l c o l l a b o r a t i v e network p a r t i c u l a r l y i n the harnessing o f t h e b e n e f i c i a l a p p l i c a t i o n s o f t h e m i c r o b i a l w o r l d f o r human p r o gress ( 3 5 ) . In short,culture
t h i n g s t o a l l men’,
c o l l e c t i o n s h a v e many r o l e s a n d t r y t o b e ’ a l l
b u t t h e conservation o f microorganisms remains
t h e p r i m a r y o b j e c t i v e o f f u n g a l and b a c t e r i a l c u l t u r e c o l l e c t i o n s , which c o n s t i t u t e s a fundamental sources.
resource f o r n a t u r e ’ s genetic re-
-
365 -
REFERENCES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
K.A. Malik, Preservation o f biotechnologically important microiirganisms i n c u l t u r e c o l l e c t i o n s , In: Progress i n B i o t e c h n o l o g y v o l . 4 , ( I n t e r b i o t e c h 8 7 , Enzyme T e c h n o l o g i e s ) , A B l a z e j and J , Zemek ( E d i t o r s ) , E l s e v i e r S c i e n c e P u b l i s h e r s , Amsterdam, 145-186, (1988). K . A . M a l i k and D . C l a u s , B a c t e r i a l C u l t u r e C o l l e c t i o n s : T h e i r i m p o r t a n c e t o B i o t e c h n o l o q y and M i c r o b i o l o q y . I n t h e B i o t e c h n o R u s s e l Ed.), V o l . 5, l o g y and G e n e t i c E n g i n e e r i n g R e v i e w ( G . E . pp. 137-197, ( 1 9 8 7 ) . I n t e r c e p t L t d . Ferndown, D o r s e t , U K . D.L. Hawksworth, Fungus C u l t u r e C o l l e c t i o n s as a B i o t e c h n o l o g i c a l Resource. I n B i o t e c h n o l o g y and G e n e t i c E n g i n e e r i n g Reviews (G.E. R u s s e l , E d . ) , volume 3 , p p . 4 1 7 - 4 4 0 , ( 1 9 8 5 ) . I n t e r c e p t , P o n t e l a n d , N e w c a s t l e u p o n Tyne. S . M . M a r t i n and V . B . D . Skerman ( E d s ) World D i r e c t o r y o f C o l l e c t i o n s o f C u l t u r e o f M i c r o o r g a n i s m s , W i l e y - I n t e r s c i e n c e , New York, (1972). J.R. P o r t e r , The w o r l d v i e w o f c u l t u r e c o l l e c t i o n s . A m e r i c a n Type C u l t u r e C o l l e c t i o n 5 0 t h A n n i v e r s a r y Symposium. The R o l e Colo f c u l t u r e c o l l e c t i o n i n t h e E r a o f M o l e c u l a r B i o l o g y (R.R. w e l l , E d . ) , pp. 62-72, ( 1 9 7 6 ) , American S o c i e t y f o r M i c r o b i o l o gy, Washington, DC. M . Rogosa (Ed). N a t i o n a l Wnrk C o n f e r e n c e on M i c r o b i a l C o l l e c t i o n s o f Major Importance t o A g r i c u l t u r e . American P h y t o p a t h o l o g i c a l Society, S t . Paul. Minesota (1981). V . McGowan and V.B.D. Skerman ( E d s ) . W o r l d D i r , e c t o r y o f C o l l e c t i o n s o f C u l t u r e s o f M i c r o o r g a n i s m s , 2nd e d n . W o r l d D a t a C e n t r e f o r M i c r o o r g a n i s m s , B r i s b a n e . (15'82). W . A . C l a r k and W.O. L o e g e r i n g , F u n c t i o n s and maintenance o f a t y p e c u l t u r e c o l l e c t i o n . Annual Review o f P h y t o p a t h o l o g y 5, 319-342 ( 1 9 6 7 ) . E . J . Da S i l v a , A.C.J. B u r g e r s a n d R . J . Olembo, U N E S C O , UNEP a n d t h e i n t e r n a t i o n a l community o f c u l t u r e c o l l e c t i o n s . I n Proceedings o f t h e T h i r d I n t e r n a t i o n a l C o n f e r e n c e s on C u l t u r e C o l l e c t i o n s . P e r e i r a , Eds.) pp. 1071 4 - 1 9 M a r c h , 1977 ( F . F e r n a n d e s a n d R . C . 1 2 0 ( 1 9 7 7 ) . U n i v e r s i t y o f Bombay, Bombay. S.P. L a p a g e , J.E. S h e l t o n , T . G . M i t c h e l l and A.R. Mackenzie, C u l t u r e C o l l e c t i o n s and p r e s e r v a t i o n o f b a c t e r i a . I n Methods i n M j c r o b i o l o g y (J.R. N o r r i s a n d D.W. R i b b o n s , E d s ) , v o l u m e 3A, pp. 135-227 ( 1 9 7 0 ) . Academic P r e s s , London. L . I . S l y , The r o l e o f c u l t u r e c o l l e c t i o n s i n m i c r o b i o l o g y a n d b i o t e c h n o l o g y . I n : UNESCO/WFCC/ICY/TISR T r a i n i n g C o u r s e on Yeasts: T h e i r i d e n t i f i c a t i o n , p r e s e r v a t i o n and use i n B i o t e c h n o l o g y , pp. 67-74 ( 1 9 8 4 ) . Bangkok M i r c e n , T h a i l a n d . I n s t i t u t e o f S c i e n t i f i c and T e c h n o l o g i c a l R e s e a r c h , B a n g k o k . V.B.D. Skerman, W o r l d D a t a C e n t r e f o r M i c r o o r g a n i s m s . I n P r o c e e d i n g s o f t h e F o u r t h I n t e r n a t i o n a l C o n f e r e n c e on C u l t u r e C o l l e c t i o n , 20-24 J u l y 1 9 8 1 (M. K o c u r and E . J . da S i l v a , E d s ) , p p . 1 1 - 1 7 ( 1 9 8 4 ) . W o r l d F e d e r a t i o n o f C u l t u r e C o l l e c t i o n s , London. S.M. M a r t i n , R e g i o n a l c u l t u r e c o l l e c t i o n s i n t h e d e v e l o p i n g w o r l d . I n P r o c e e d i n g s o f t h e Second C o n f e r e n c e o n C u l t u r e C o l l e c Da S i l v a , V.B.D. Skerman t i o n s (A.F. Pestana de C a s t r o , E . J . L e v e r i t t E d s . ) , p p . 9 6 - 9 9 ( 1 9 7 6 ) . UNESCO/UNEP/WFCC/ and W . W . World Data Centre f o r Microorganisms, Brisbane, A u s t r a l i a . F.A. S k i n n e r , E . Hamatova a n d V.F. McGowan, I B P W o r l d C a t a l o g u e o f R h i z o b i u m C o l l e c t i o n s , 2nd e d n . ( 1 9 8 3 ) , (V.B.D. Skerman, E d ) . World Data Centre, Brisbane.
- 366 -
15 16 17
18 19
20
21
22 23 24 25 26 27 28
29 30
31 32 33
K . A . Malik and P. Hoffmann, P r e s e r v a t i o n and s t o r a g e o f b i o t e c h n o l o g i c a l l y i m p o r t a n t m i c r o o r g a n i s m s . Chimica Oggi-June, 61-66 (1989). 8 . K i r s o p a n d J . J . S . S n e l l , M a i n t e n a n c e o f M i c r o o r g a n i s m s : A Man u a l o f L a b o r a t o r y M e t h o d s , ( 1 9 8 4 ) . Academic Press, London. H . H a t t , ( E d . ) , A m e r i c a n T y p e C u l t u r e C o l l e c t i o n M e t h o d s . 1. L a b o r a t o r y Manual on P r e s e r v a t i o n F r e e z i n g a n d F r e e z e - d r y i n g , ( 1 9 8 0 ) . American Type C u l t u r e C o l l e c t i o n , R o c k v i l l e , M a r y l a n d , USA. K . A . M a l i k , Modern M e t h o d s o f Gene C o n s e r v a t i o n , ( 1 9 8 5 ) . A Lab o r a t o r y M a n u a l . PASTIC P r e s s , P a k i s t a n S c i e n c e a n d T e c h n o l o g y Information Centre, Islamabad, Pakistan. A. D i e t z , C u l t u r e p r e s e r v a t i o n and i n s t a b i l i t y . I n B i o a c t i v e M i c r o b i a l P r o d u c t s : S e a r c h a n d D i s c o v e r y ( J . D . B u l o c k , L . J . Nisb e t and D.J. W i n s t a n e l y , E d s . ) , pp. 27-35 ( 1 9 8 2 ) . Academic P r e s s , N e w York. K . A . M a l i k , The r o l e o f c u l t u r e c o l l e c t i o n i n t h e s t a b i l i t y a n d p r e s e r v a t i o n o f m i c r o o r g a n i s m s , I n : 12eme C o l l o q u e o r g a n i s e p a r la S e c t i o n de Microbiologie I n d u s t r i e l l e e t de Biotechnologie d e l a SFM, S o c i e t e F r a n c a i s e d e M i c r o b i o l o g i e , S t a b i l i t e e t Cons e r v a t i o n d e s M i c r o o r g a n i s m e s , J . Amen, P . l e s s o n ( E d i t o r ) , 118-150 (1987). K . A . M a l i k , A new m e t h o d f o r l i q u i d n i t r o g e n s t o r a g e o f p h y t o t r o p h i c b a c t e r i a under a n a e r o b i c c o n d i t i o n s . J o u r n a l o f Microb i o l M e t h o d s 2, 4 1 - 4 7 ( 1 9 8 4 ) . K . A . M a l i k , A new f r e e z e - d r y i n g m e t h o d f o r t h e p r e s e r v a t i o n o f n i t r o g e n - f i x i n g a n d o t h e r f r a g i l e b a c t e r i a . J o u r n a l o f Microb i a l . M e t h o d s !, 2 5 9 - 2 7 1 ( 1 9 8 8 ) . P . H o f f m a n n , C r y o p r e s e r v a t i o n o f f u n g i . P u b l i c a t i o n No. 5 , ( 1 9 8 9 ) . UNESCO/WFCC T e c h n i c a l I n f o r m a t i o n S h e e t s . DSM, B r a u n s c h w e i g . J . Henry and 8 . K i r s o p , C r y o p r e s e r v a t i o n o f y e a s t s i n p o l y p r o p y l e n e s t r a w s . P u b l i c a t i o n No. 3 . UNESCO/WFCC T e c h n i c a l I n f o r m a t i o n S h e e t s . DSM, B r a u n s c h w e i g . K.A. Malik, Cryopreservation of bacteria with s p e c i a l reference t o a n a e r o b e s . P u b l i c a t i o n No. 4 , ( 1 9 8 9 ) . UNESCO/WFCC T e c h n i c a l I n f o r m a t i o n S h e e t s . DSM, B r a u n s c h w e i g . K . A . M a l i k , Use o f a c t i v a t e d c h a r c o a l f o r t h e p r e s e r v a t i o n o f a n a e r o b i c p h o t o t r o p h i c and o t h e r s e n s i t i v e b a c t e r i a by f r e e z e d r y i n g J o u r n a l o f M i c r o b i a l . Methods ( i n p r e s s ) , (1990). K . A . Malik, A s i m p l i f i e d l i q u i d - d r y i n g method f o r t h e p r e s e r v a t i o n o f microorganisms s e n s i t i v e t o f r e e z i n g and freeze-drying. J o u r n a l o f M i c r o b i a l Methods ( i n p r e s s ) , (1990). K . A . M a l i k , A new m e t h o d f o r l i q u i d - d r y i n g o f m i c r o o r g a n i s m s under a n a e r o b i c c o n d i t i o n s . J o u r n a l of M i c r o b i a l . Methods ( i n p r e s s ) , (1990). L . R . H i l l a n d M.I. K r i c h e v s k y , I n t e r n a t i o n a l S t r a i n D a t a Network. MIRCEN J o u r n a l 2 , 341-347 ( 1 9 8 6 ) . D. A l l s o p , D . L . Hawksworth a n d R . P l a t t , The CAB I n t e r n a t i o n a l Mycological I n s t i t u t e Culture Collection Database, Microbial C u l t u r e I n f o r m a t i o n S e r v i c e (MiCIS) and M i c r o b i a l I n f o r m a t i o n Network E u r o p e (MINE). I n t . B i o d e t e r . 2 5 , 1 6 9 - 1 7 4 , ( 1 9 8 9 ) . Guide t o t h e Deposit o f Microorganisms under t h e Budapest Treat y ; World I n t e l l e c t u a l P r o p e r t y O r g a n i z a t i o n Geneva, Second ed i t i o n , 1 9 8 9 , ISBN 9 2 - 8 0 5 - 0 1 9 5 - x . H . I i z u k a a n d T . H a s e g a w a ( E d s ) , P r o c e e d i n g s o f The F i r s t I n t e r n a t i o n a l C o n f e r e n c e on C u l t u r e C o l l e c t i o n s . U n i v e r s i t y Park Press. Baltimore (1970). M . Kocur a n d E . J . d a S i l v a ( E d s ) , P r o c e e d i n g o f The F o u r t h I n t e r n a t i o n a l C o n f e r e n c e on C u l t u r e C o l l e c t i o n s , 20-24 J u l y , 1 9 8 1 ,
-
34 35
367
-
Brno, C z e c h o s l o v a k a . World F e d e r a t i o n o f C u l t u r e Col e c t o n s , London ( 1 9 8 4 ) . Anonymous, P r o c e e d i n g s o f t h e Vth I n t e r n a t i o n a l C o n g r e s s o f C u l t u r e C o l l e c t i o n s , (1984). P o s t e r S e s s i o n A b s t r a c t s . Funny Press. Bangkok. MIRCEN News ( C o n t a c t Dr. E . J . d a S i l v a , D i v . S c i e n t i f i c R e s e a r c h a n d H i g h e r E d u c a t i o n , UNESCO, F - 7 5 0 0 7 P a r i s , F r a n c e .
This Page Intentionally Left TBlank
I S BIOTECHNOLOGY A BLESSING I N DISGUISE?
R.
KOKKE
R o y a l N e t h e r l a n d s Academy o f A r t s a n d S c i e n c e s , 1 0 0 0 G C , Amsterdam, The N e t h e r l a n d s We a r e c o n f r o n t e d w i t h t h e m a j o r p r o b l e m s : health,
t h e environment and p o l l u t i o n .
P.0.Box
19121,
population,
food,
I n many c a s e s b i o t e c h n o l o g y
can p r o v i d e l a s t i n g s o l u t i o n s and i s l i k e l y t o a f f e c t t h e d a i l y l i v e s o f a l l o f us. B e f o r e d i s c u s s i n g some n e g a t i v e a s p e c t s o f t h e a r e a s a l r e a d y mentioned, sently mation.
I want t o d r a w y o u r a t t e n t i o n t o a p r o b l e m t h a t h a s p r e -
received our greatest concern.
That i s t h e problem o f i n f o r -
B i o t e c h n o l o g y i s knowledge i n t e n s i v e .
We j u s t now know t h a t
we do n o t know e n o u g h a n d y e t we a r e s t i l l f o r c e d e.g. GEMS i n t o t h e e n v i r o n m e n t .
The q u e s t i o n i s :
t o release
When do we know enough?
I t i s n o t e a s y t o o b t a i n good k n o w l e d g e t h r o u g h l i t e r a t u r e s e a r c h e s
or by experiments. A l s o ,
knowledge once g a t h e r e d ,
i s p r o t e c t e d so
t h a t t h e p r o f i t s g a i n e d from i t w i l l b e n e f i t t h e r e s e a r c h e r s t o o . This i s i n turn,
a s t r o n g i n c e n t i v e f o r good r e s e a r c h .
There i s a l s o t h e q u a l i t y problem. posed t o t h e F l o o d o f f r e e i n f o r m a t i o n ,
Immediately a f t e r b e i n g exthe problem o f s e l e c t i n g
r e l e v a n t and r e l i a b l e i n f o r m a t i o n o c c u r s .
I t i s already d i f f i c u l t
t o c h o o s e f r o m t h e n u m b e r s o f b i o t e c h n o l o g i c a l s y m p o s i a . They h a v e increased logarithmically.
I n t h i s v e r y week t h e r e i s a l s o a n i n t e r -
n a t i o n a l b i o t e c h n o l o g y symposium j u s t n e x t d o o r t o me i n Amsterdam. N e x t week t h e r e i s one i n Copenhagen e t c . I n f o r m a t i o n h a s become a m a j o r c o n c e r n i n t h e w e s t e r n w o r l d a n d h a s s o m e t i m e s become " i n f o r m a t i o n
pollution".
I t i s often d i f f i -
c u l t t o f i n d o u t w h e t h e r one i s r e i n v e n t i n g t h e w h e e l o r , e v e n w o r -
s e , f o l l o w i n g a dead-end s t r e e t .
The p r o b l e m o f i n f o r m a t i o n o v e r l o -
ad i s o f c o u r s e n o t r e s t r i c t e d t o b i o t e c h n o l o g y .
B u t because o f i t s
m u l t i d i s c i p l i n a r y n a t u r e t h i s s c i e n c e i s p r o n e t o a l a r g e a n d sometimes errorneous i n f o r m a t i o n supply. The f a c t h a s b e e n r e c o g n i z e d t h a t t h e p r o l i f e r a t i o n o f i n f o r m a -
- 370 -
t i o n poses a g r e a t problem.
I t has e.g.
be come a c o n c e r n o f t h e Eu-
ropean Communities w i t h t h e r e s u l t s b e i n g t h a t i n f o r m a t i o n technol o g y and q u a l i t y c o n t r o l becoming a m a j o r p a r t o f t h e i r s c i e n c e programmes.
I n t h e p r o g r a m c a l l e d ESPRIT
11. ( E u r o p e a n S t r a t e g i c
Programme f o r R e s e a r c h a n d D e v e l o p m e n t i n I n f o r m a t i o n T e c h n o l o g i e s ) t h e e q u i v a l e n t o f about
I n another project
US d o l a r s i s s e t a s i d e f o r
2000 m i l l i o n
research s u p p o r t on t h i s m a t t e r
for
o f t h e EC,
a p e r i o d o f 5 years.
w i t h t h e acronym MINE
(standing
f o r M i c r o b i a l I n f o r m a t i o n Network Europe) c u l t u r e c o l l e c t i o n s o f m i c r o o r g a n i s m s a r e c o o p e r a t i n g t o c r e a t e a f u l l y i n t e g r a t e d and onl i n e a c c e s s i b l e common d a t a b a n k strains.
for a l l properties o f the stored
Q u a l i t y c o n t r o l i s an i n t e g r a l p a r t o f t h i s n e t w o r k .
European L a b o r a t o r y w i t h o u t w a l l s :
MINE].
A
[CEC
v a r i a t i o n f r o m o l d en-
glish dictionary states that information control i s l i k e diction a r i e s and watches,
y o u c a n n o t do w i t h o u t t h e m b u t e v e n t h e b e s t
cannot be expected t o always be acurate.
Q u a l i t y c o n t r o l and peer
r e v i e w a r e n e c e s s a r y c o n d i t i o n s f o r sound s c i e n t i f i c development s i n c e t h e y a v o i d i n f o r m a t i o n p o l l u t i o n a s much a s p o s s i b l e . hand,
On t h e o t h e r
they s h o u l d never v i o l a t e t h e p r i n c i p l e o f f r e e exchange o f
information.
You w i l l
agree t h a t t h i s i s a problem.
1990. Maintaining the growth o f science through infromation,
free
[C.W.
Gear;
exchange o f
A S M News 5 6 p p 6 4 a n d 6 5 1 .
SIDE-EFFECTS
I n t h i s context biotechnologists
should not solely
be concer-
ned about t h e r e l e a s e o f g e n e t i c a l l y manipulated organisms. mastered t h e n o n - l i v i n g
We h a v e
n a t u r e a n d a r e now w e l l i n t h e c o u r s e o f
d o m e s t i c a t i n g l i v i n g n a t u r e and t h e e n v i r o n m e n t .
Molecular biology
may r e f o r m l i v i n g n a t u r e t o c o n f o r m w i t h h uman w i l l s a n d n e e d s . have l e a r n e d from o u r s t r u g g l e t o m a s t e r p h y s i c a l n a t u r e .
We
We know
that i t i s impossible t o act without provoking counteraction.
And i n
b i o t e c h n o l o g y we m u s t l e a r n t o b a l a n c e o u r i n t e r e s t s a g a i n s t t h e negative side-effects.
F o r t h i s r e a s o n we n e e d t o p r o d u c e r e l i a b l e
r e s e a r c h d a t a and b e r e a l i s t i c .
Although the majority o f people to-
d a y c o n s i d e r t h e i n d u s t r i a l r e v o l u t i o n t o h a v e b e e n a p o s i t i v e movement,
the negative r e s u l t s should not be ignored.
h a s t a k e n many p e o p l e s l i v e s a n d h a p p i n e s s .
Industrialization
F o r example,
t h e number
o f p e o p l e b e i n g k i l l e d e v e r y y e a r b y c a r a c c i d e n t s i s many t i m e s h i g h e r t h a n t h e number o f p e o p l e d y i n g f r o m AIDS.
The i n d u s t r y a n d
i t s p r o d u c t s a l s o pose a g r e a t t h r e a t t o our environment.
Unfortu-
- 371
nately,
however,
-
a t the onset o f the i n d u s t r i a l revolution these
h a r m f u l e f f e c t s were n o t weighed a g a i n s t t h e b e n e f i t s .
Thus,
indus-
t r i a l d e v e l o p m e n t was d e t e r m i n e d b y t h e f r e e m a r k e t e c o n o m y . E v e n t o d a y many c o u n t r i e s s t i l l s t r i v e t o w a r d i n d u s t r i a l i z a t i o n , they consider
t o be t h e gateway t o p r o s p e r i t y .
which
I n t h i s context I
want t o remind you t h a t b i o t e c h n o l o g y i n t h e b r o a d e r sense i s n o t new.
A g r i c u l t u r a l development and t h e d o m e s t i f i c a t i o n o f a n i m a l s
h a v e gone o n f o r m i l l e n i a .
I r r e p a r a b l e n e g a t i v e e f f e c t s o f t h i s hu-
man i n t e r a c t i o n w i t h n a t u r e a r e v i s i b l e a l l o v e r t h e g l o b e . was f e r t i l e r e g i o n s , r i s delta for
What
as t h e M e d i t e r r a n e a n and t h e E u p h r a t e and T i g -
i n s t a n c e a r e now d e f o r e s t a t e d d r y l a n d .
A c e n t u r y ago
t h e l a s t g r e a t s l a v o n i a n oak f o r e s t s were c u t t o s u p p o r t t h e r a i l s o f w h a t was t h e n t h e new E u r o p e a n r a i l w a y s y s t e m .
W i t h t h e d e v e l o p m e n t o f b i o t e c h n o l o g y we h a v e t o t a k e i n t o account the negative side-effects. assesment.
This should be part o f our r i s k
It i s often j u s t a matter o f concentration,
though,
whet-
h e r w e c a l l i t a b e n i f i c i a l b i o l o g i c a l e f f e c t o r an unwanted s i d e effect.
[ F i g u r e 1. E f f e c t / d o s e
c u r v e f o r i n t a k e o f an e l e m e n t ] .
POPULATION AND FOOD The e n v i r o n m e n t a l r e l e a s e o f g e n e t i c a l l y m a n i p u l a t e d m i c r o o r g a n i s m s seems t o b e j u s t a m i n o r p r o b l e m when c o m p a r e d t o t h e n e e d f o r an i n c r e a s e i n c r o p p r o d u c t i o n . i s cultivated.
Nearly a l l agriculturable land
The c o m p a r a t i v e l y s m a l l a r e a o f t h e r e m a i n i n g n o t
y e t c u l t i v a t e d f e r t i l e l a n d s h o u l d be k e p t as r e s e r v a t i o n s o f b i o l o gical diversity.
A t t h e turn o f t h e ' c e n t u r y t h e r e w i l l be 6 b i l l i o n
p e o p l e o n t h i s g l o b e a n d t h e a g r i c u l t u r a b l e a r e a o f t h e e a r t h i s lim i t e d t o 1,5
b i l l i o n h e c t a r e s ( a b o u t t w i c e t h e s i z e o f t h e USA w i t -
hout Alaska).
Mankind i s r e a l i z i n g more and more t h a t r e s t r i c t i o n s
m u s t b e s e t o n i t s own g r o w t h . searchers,
A c c o r d i n g t o a g r o w i n g number o f r e -
t h e t h r e s h o l d o f what i s c o n s d e r e d t h e a c c e p t a b l e number
o f t h e human p o p u l a t i o n h a s b e e n c r o s s e d
The e x p l o i t a t i o n o f n a t u -
r a l r e s o u r c e s s u c h a s f o s s i l f u e l s was f r s t c o n s i d e r e d t h e m o s t important l i m i t a t i o n t o growth. impending on our c h i l d r e n ,
Although an energy shortage i s s t i l l
o u r a t t e n t i o n i s now f o c u s e d m o s t l y o n wa-
t e r and a i r p o l l u t i o n and t h e greenhouse e f f e c t . The e x t e n s i v e e x p l o i t a t i o n o f a g r i c u l t u r a l
land for
food produc-
t i o n l e a v e s l i t t l e room f o r t h e u s e o f b i o m a s s f o r o t h e r p u r p o s e s such as energy p r o d u c t i o n .
E x t e n s i v e a g r i c u l t u r a l g r o w t h i s needed
t o f e e d t h e human b i o m a s s .
Biotechnology has h e l p e d by producing h i g h
-
372
-
INTAKE OF ELEMENT
F i g . 1. The " S u p e r n u t r i t i o n C u r v e " s h o w i n g t h e t h r e e r a n g e s o f i n t a k e v e r s u s h e a l t h b e n e f i t s d e s c r i b e d i n t h e t e x t . Source: Based on P a s s w a t e r , R . 1975. S u p e r n u t r i t i o n . New Y o r k : D i a l P r e s s .
yielding plant varieties, pesticides.
e n v i r o n m e n t a l f r i e n d l y f e r t i l i z e r s and
On t h e o t h e r h a n d b i o t e c h n o l o g y i s b e i n g u s e d t o d e v e l o p
more p e s t r e s i s t e n t p l a n t s .
The h e t e r o t r o p h i c b i o m a s s o f man i s i n -
c r e a s i n g l y d e p l e t i n g t h e a u t o t r o p h i c biomass. q u e s t i o n t h a t i s now a s k e d i s :
One o f t h e m o s t v i t a l
Can t h e p h o t o s y n t h e t i c c a p a c i t y o f
t h e b i o s p h e r e b e e n h a n c e d y i e l d i n g more b i o m a s s ? T h i s c o u l d a l s o c o u n t e r a c t t h e c a r b o n d i o x i d e s u r p l u s and be a r e a l t r i u m p h o f b i o technology.
Some p r o b l e m s a r e a l r e a d y b e i n g a d d r e s s e d s u c c e s f u l l y b y
b i o t e c h n o l o g y . I n t e n s i f i e d a g r i c u l t u r e i s e n a b l i n g us t o f e e d t h e peo p l e l i v i n g on t h e e a r t h ' s
poor surface.
t o i t i s a hugh c a t t l e s t o c k .
A Netherlands contribution
A n i m a l h u s b a n d r y p r o v i d e s h i g h l y ap-
p r e c i a t e d m i l k and meat w i t h e s s e n t i a l p r o t e i n . an h u g h d u n g p r o b l e m . t h e water supplies.
B u t i t has created
T h i s dung has a c i d i f i e d t h e s o i l and p o l l u t e d
Some t e l i e f c a n b e o b t a i n e d b y a n a e r o b i c f e r m e n -
t a t i o n o f t h e dung which p r o d u c e s c o m p o s t a n d g i v e s a s m a l l r e t u r n i n t h e form o f biogas.
I t w o u l d b e a g r e a t i m p r o v e m e n t i f we c o u l d consume l e s s a n i m a l protein.
G r o w i n g s o y b e a n s w o u l d y i e l d 7 t i m e s more e d i b l e p r o t e i n p e r
a c r e t h a n r a i s i n g c a t t l e on t h e same f i e l d . c a n b e made v e r y d i g e s t a b l e
Soybeans and o t h e r beans
f o r man b y a s i m p l e f e r m e n t a t i o n t e c h n i -
que t r a d i t i o n a l l y a p p l i e d i n I n d o n e s i a .
The p r o d u c t i s c a l l e d tempeh.
-
373
-
Soybeans a r e f e r m e n t e d i n s o l i d - s t a t e
w i t h t h e mould Rhizopus.
The
p r o d u c t h a s n o p r o n o u n c e d t a s t e and i t c a n b e c o o k e d o r b a k e d j u s t [ F i g u r e 2.
l i k e meat w i t h s i m i l a r f l a v o u r i n g . o f d e h u l l e d soybeans:
Tempehl.
t y a c i d s and l a c k s c h o l e s t e r o l , [W.
S h u r t l e f f and A .
p e r 8 Row p u b l .
Moreover,
Thisopus fermentation
i t i s low i n saturated fat-
t h u s i t i s good f o r o u r h e a r t s .
A o y a g i 1985.
The b o o k o f t e m p e h ,
2nd ed.
Har-
New Y o r k l .
F i g . 2 . Tempeh: D e h u l l e d s o y b e a n s a r e s o a k e d , i n o c c u l a t e d w i t h R h i zopus spores, wrapped i n p l a s t i c f o i l , i n c u b a t e d a t 30 degrees c e l s i u s f o r 3 6 h o u r s as shown. F o r c o n s u m p t i o n t h i s p r o d u c t is c o o k e d , baked, e t c . l i k e t e n d e r meat.
E N V I R O N M E N T AND POLLUTION The B r u n d t l a n d r e p o r t s t a t e s on t h i s s u b j e c t : development a r e n o t separate challenges.;
" E n v i r o n m e n t and
they are inexorably linked.
Development c a n n o t s u b s i s t upon a d e t e r i o r a t i n g e n v i r o n m e n t a l r e s o u r ce base;
t h e e n v i r o n m e n t c a n n o t b e p r o t e c t e d when g r o w t h d o e s n o t
account f o r t h e cost o f environmental d e s t r u c t i o n .
It i s evident
t h a t these problems cannot be t r e a t e d s e p a r a t e l y by fragmented i n s t i t u t i o n s and p o l i c i e s . s e and e f f e c t ,
They a r e l i n k e d i n a c o m p l e x s y s t e m o f c a u -
[ p 3 2 i n OUR C O M M O N FUTURE,
E n v i r o n m e n t and Development, s i t y P r e s s 19871.
b y G.H.
The W o r l d C o m m i s s i o n on
B r u n d t l a n d e.8.
Oxford Univer-
We b i o t e c h n o l o g i s t s h a v e a g r e a t t a s k t o a c c o m p l i s h
i n t h i s complex and i n t e r l i n k e d w o r l d .
B i o t e c h n o l o g i s t s a r e now t h e
-
374 -
hope f o r s u r v i v a l o f t h e b i o s p h e r e .
B u t how c a n b i o t e c h n o l o g i s t s
work w i t h t h i s " l i n k a g e " ? B i o t e c h n o l o g y c a n b e p o l l u t i n g and i t c a n b e u s e d t o f i g h t p o l lution.
An e x a m p l e :
the Philippines,
I n t h e I n t e r n a t i o n a l R i c e Research I n s t i t u t e i n
h i g h y i e l d i n g r i c e v a r i e t i e s have been developed.
A r i c e h a r v e s t can t h u s be i n c r e a s e d 2 t o 3 t i m e s . a l s o needs
more f e r t i l i z e r .
But t h i s crop
I n t r a d i t i o n a l agriculture the r i c e
c r o p was i n b a l a n c e w i t h t h e a v a i l a b l e n u t r i e n t s .
I t h a s b e e n shown
t h a t i n r i c e f i e l d s a very a c t i v e nitrogen f i x i n g m i c r o f l o r e e x i s t s w h i c h s u p p l i e s t h e g r o w i n g r i c e w i t h i t s need f o r n i t r o g e n . yielding r i c e plant
The h i g h
i s n o t i n b a l a n c e w i t h t h i s m i c r o f l o r e and t h e
requirement f o r a d d i t i o n a l n u t r i e n t s i s great.
A s o l u t i o n would be
t o increase the capacity o f the o r i g i n a l microflore.
Possibly
GEMS
c a n be made w h i c h keep t h e p a c e w i t h t h e r e q u i r e m e n t s o f t h e h i g h yielding rice.Their r y act,
r e l e a s e i n t h e e n v i r o n m e n t w i l l be a b e n e f a c t o -
we assume.
Another example.
P a r t o f t h e t o x i c compounds w h i c h we b r i n g
w a n t i n g l y or u n w a n t i n g l y i n t o t h e environment can be t r e a t e d by b i o remediation.
C h a k r a b a r t y was t h e f i r s t r e s e a r c h e r who was g r a n t e d
a p a t e n t i n t h e U S A on a g e n e t i c a l l y e n g i n e e r e d m i c r o - o r g a n i s m .
The
m i c r o b e s (Pseudomonas s p e c i e s ) were e n g i n e e r e d i n s u c h a way t h a t t h e y p r o d u c e a d e t e r g e n t w h i c h g i v e s them an e n h a n c e d c a p a c i t y t o attack o i l pollution.
R e c e n t l y i t was r e p o r t e d t h a t m i c r o o r g a n i s m s
h a v e b e e n u s e d s u c c e s f u l l y i n p r e v e n t i n g o i l p o l l u t i o n on t h e c o a s t o f Texas. Another example i s t h e development o f h e r b i c i d e - t o l e r a n t
crop
plants.
Tolerance f o r g l y p h o s p h a t e h e r b i c i d e s has been b u i l d i n t o
tomato,
cotton,
t o b a c c o and soybean.
c r o p s can be c u l t i v a t e d w i t h o u t w i l l have h i g h e r h a r v e s t y i e l d s .
The r e s u l t b e i n g t h a t t h o s e
t h e c o m p e t i t i o n f r o m weeds a n d t h u s
I n a d d i t i o n c o s t l y l a b o u r i s saved.
The h e r b i c i d e s and t h e h e r b i c i d e - t o l e r a n t c h e m i c a l companies f o r p r o f i t s sake. the plants.
p l a n t s a r e developed by
They s e l l t h e h e r b i c i d e s a n d
I t h i n k we s h o u l d n o t a l l o w a g r i c u l t u r e t o become s o d e -
p e n d a n t on i n d u s t r i a l c o m p a n i e s .
The b i o l o g i c a l d i v e r s i t y
s a v e d and e x p l o i t e d f o r t h e b e n e f i t o f m a n k i n d . blem.
Companies have n o e n v i r o n m e n t a l
task.
must b e
Here l i e s the pro-
Thus t o s u p p l y s o u n d
i n f o r m a t i o n on t h e r i s k s a n d b e n e f i t s i s a n o t h e r t a s k a n d r e s p o n s i b i l i t y of biologists.
I am n o t p l e a d i n g f o r a more a n d cumbersome
r e g u l a t i o n t h a t c a n b e c i r c u m v e n t e d anyway,
b u t f o r conscience.
P u b l i c awareness i s a v e r y p o w e r f u l t o o l i n t h e s e m a t t e r s .
- 375 -
ECONOMICS The c o m p e t e t i v e n e s s o f t h e E u r o p e a n e n t e r p r i s e s s h o u l d b e p r o -
I t w i l l b e bad i f a l l biotechnology h a s t o be i m p o r t e d . I n
tected.
t h i s c o n n e c t i o n t h e c h e c k l i s t made by t h e O E C D ( O r g a n i s a t i o n f o r Economic C o - o p e r a t i o n
and Development) is still r e l e v a n t . [ T a b l e 1).
TABLE 1 A check list f o r s t r a t e g i c planning i n biotechnology
1. R e s o u r c e s Raw m a t e r i a l s i n c l u d i n g f e e d s t o c k s , w a t e r a n d m i n e r a l s ; energy; land a v a i l a b i l i t y ; competing technol o g i e s ; manpower. 2 . S c i e n t i f i c and t e c h n o l o g i c a l
infrastructure
E d u c a t i o n ; t r a i n i n g ; r e s e a r c h b a s e a n d R II D p r i o r i t i e s ; information transfer. 3 . Climate f o r innovation
I n v e n t i o n - i n n o v a t i o n time l a g ; i n d u s t r i a l b a s e ; competition; finance; regulati3ns; patent laws; social acceotabilitv.
1
4. Trading position
Commodity p r i c e s ; i m p o r t - e x p o r t l a r l v f o r food: markets.
I
balances,
particu-
5. Environmental c o n s i d e r a t i o n s Land use; p o l l u t i o n , on a n d management.
e f f l u e n t and waste,
its l o c a t i -
An e x a m p l e o f a p p l i c a t i o n s o f b i o t e c h n o l o g y w i t h s e v e r e e c o n o m i c a l c o n s e q u e n c e s i s a c t u a l l y t h e c a s e o f High F r u c t o s e Corn S y r u p (HFCS)
[Table 21.
TABL' 2 C o m p o s i t i o n o f HFCS a n d i n v e r t s u g a r HFCS v a r i e t i e s
Components -
[XI
invert sugar [ x j
Fru 3t ose
42
55
90
49
GlLcose
51
40
2
49
5
3
2 (sucrose)
0.03
0.3
0.4
Maltose
4.5
Maltotriose
1
Higher sugars
1.5
Ash
0.04
HCFS i s d e r i v e d f r o m c o r n ( m a i z e ) s t a r c h a n d p r o d u c e d p a r t l y by u s i n g immobilized enzymes.
I t has a well established market.
I t is
-
376
-
u s e d a s a s w e e t e n e r i n many s o f t d r i n k s w h e r e i t r e p l a c e s i n v e r t s u gar.
S u g a r f l a v o u r c a n now a l s o b e p r o d u c e d a s t h a u m a t i n .
T h i s na-
t u r a l compound d e r i v e d f r o m t h e f r u i t o f an A f r i c a n t r e e i s on t h e b a s i s o f weight,1000
t i m e s sweeter
t h a n saccharose.
The g e n e s u s e d
t o produce t a u m a t i n i c a c i d have been s u c c e s f u l l y c l o n e d i n t o y e a s t and b r o u g h t t o e x p r e s s i o n .
[
L. Edens and H. Van d e r Wel, 1 9 8 5 . M i c r o -
b i a l s y n t h e s i s o f t h e sweet t a s t i n g p l a n t p r o t e i n Thaumatin, i n B i o t e c h n o l o g y 3 pp 61-64].
The u s e o f HFCS h a s e f f e c t e d t h e su-
g a r c a n e m a r k e t and t h u s many 3 r d w o r l d c o u n t r i e s . are l e f t over with a surplus o f sugar. ses a r e b e i n g used f o r
c a r combustion.
Trends
These c o u n t r i e s
I n B r a z i l the sugar surplus-
the fermentative production o f ethanol
for
T h i s example o f t h e economic consequences o f b i o -
t e c h n o l o g y s h o u l d however, be a w a r n i n g . may b e p r o d u c e d b y b i o t e c h n o l o g y
Many s p i c e s a n d f l a v o u r s
including coffee,
t e a and cocoa.
I n f a c t a l l t h o s e n a t u r a l p r o d u c t s w h i c h h a v e a l o w mass y i e l d when compared t o t h e b i o m a s s n e e d e d t o p r o d u c e i t , c o u l d t h e o r e t i c a l l y b e grown e c o n o m i c a l l y
i n fermentors.
I t depends on t h e m a r k e t whet-
h e r t h e y w i l l b e p r o d u c e d i n t h i s way o r
not.
Countries producing
t h e s e c o m m o d i t i e s s h o u l d know t h i s . HEALTH S i n c e man h i m s e l f i s a b i o l o g i c a l biotechnology too. diseases.
being,
he may b e s u b j e c t t o
Man h a s l e a r n e d t o c o p e w i t h t h e m o s t i n f e c t i o u s
Many p h a r m a c e u t i c a l s a r e n a t u r a l p r o d u c t s a n d c a n t h u s
be produced by f e r m e n t a t i o n .
A t t e m p t s t o c u r e human b e i n g s w i t h i n -
h e r i t e d a i l m e n t s h a v e a l r e a d y b e e n made b y t h e i m p l a n t a t i o n o f h e a l t h y f o r e i g n c e l l s o r m o d i f i e d human c e l l s .
The n e x t s t e p m i g h t b e
t h a t a p e r s o n would want t o improve c e r t a i n i n t e l l e c t u a l c a p a c i t i e s and t o f i g h t w h a t
i s called eurosclerosis.
May b e we w i s h t o h a v e
human b e i n g s t h a t a r e l e s s g r e e d y s i n c e t h i s p r o p e r t y c a n b e c o n s i dered as t h e f a c t o r r e s p o n s i b l e f o r t h e s e v e r e d e t e r i o r a t i o n ongoing i n t h i s o t h e r w i s e so b e a u t i f u l world. goal of
S h o u l d we a l l o w t h e u l t i m a t e
b i o t e c h n o l o g y t o be t h e improvement o f mankind b y mankind?
T h i s would c e r t a i n l y be t h e s o l u t i o n f o r t h e o v e r p o p u l a t i o n w h i c h
i n t u r n i s thecause o f the shortages.
F o r as l o n g a s m a n k i n d c a n n o t
c o n t r o l h i s own g r o w t h h e i s h e a d i n g f o r h i s own d o w n f a l l .
Do we
need b i o t e c h n o l o g y t o c o r r e c t o u r s e l v e s and c r e a t e A l d o u s H u x l e y ’ s B r a v e New W o r l d ?
-
377
-
T A K I N G RISKS Coming t o t e r m s w i t h t h e b i o s p h e r e a n d t a k i n g i n t o a c c o u n t a l l possible side-effects R i s k Assesment.
i s d e v e l o p i n g i n t o a s c i e n c e on i t s own m e r i t s :
T h i s s c i e n c e s h o u l d n o t become s o d o m i n a n t t h a t i t
w i l l hamper t h e d e v e l o p m e n t o f b i o t e c h n o l o g y ,
though.
Given the f a c t
t h a t . we h a v e c r o s s e d b o r d e r l i n e s we a r e u r g e d t o t a k e r i s k s e v e n i f we d o n ’ t
have enouph knowledge.
I n my p r e v i o u s t a l k i n t h i s same
town I s t r e s s e d t h e p o s s i b l e b l e s s i n g s o f b i o t e c h n o l o g y . t u a l e x e r t i o n s can be used w i t h e v i l i n t e n t i o n s .
m o s t o t h e r human e n t e r p r i s e s w i l l n o t b e p e r f e c t t o o . u n d e s i r a b l e and m a l i c i o u s s i d e e f f e c t s . ned i n t h i s t a l k .
Intellec-
Biotechnology l i k e There w i l l be
Some o f them I h a v e m e n t i o -
O t h e r s we may n o t e v e n h a v e t h o u g h t o f .
I am c o n -
f i d e n t h o w e v e r t h a t w i t h an open e x c h a n g e o f a l l t h e a v a i l a b l e knowl e d g e i n c l u d i n g t h a t on p o s s i b l e n e g a t i v e s i d e e f f e c t s ,
humanity
w i l l be a b l e t o use b i o t e c h n o l o g y w i t h a n e t r e s u l t o f b e i n g a b l e s -
sing.
B i o t e c h n o l o g i s t s m u s t now assume t h e r e s p o n s i b i l i t y
welfare o f our world.
s p h e r e o f w h i c h man i s t h e d o m i n a n t e l e m e n t . might
f o r the
Not o n l y f o r humankind b u t f o r t h e whole b i o This responsibility
t u r n o u t t o b e e v e n h e a v i e r t h a n when n a t i o n s d e v e l o p e d i n t o
n u c l e a r powers.
Therefore
I am p l e a d i n g f o r m o r e r e l i a b l e s c i e n t i f i c
i n f o r m a t i o n a n d f o r more c o n s c i e n c e .
As a g r o u p a n d i n d i v i d u a l l y ,
b i o t e c h n o l o g i s t s s h o u l d be h e l d r e s p o n s i b l e f o r t h e i r works a c t i o n s just
l i k e t h e e n g i n e e r i s r e s p o n s i b l e f o r t h e b r i d g e h e b u i l d s and
t h e medics1 d o c t o r f o r t h e h e a l t h o f h i s p a t i e n t s .
I r e m i n d you t h a t
p o l i t i c i a n s a n d s c i e n t i s t s once a g r e e d on e s t a b l i s h i n g t h e I n t e r n a t i o n a l A t o m i c E n e r g y Agency w i t h t h e o b j e c t i v e of
t o control
t h e misuse
t h e f e a r e d n u c l e a r power and a p p l y i t t o p e a c e f u l developments.
I t a l s o seems t i m e t h a t a p o l i t i c a l b o d y s h o u l d b e c r e a t e d t h a t sup e r v i s e s t h e sound a p p l i c a t i o n o f b i o t e c h n o l o g y t o t h e b e n e f i t o f all.
This Page Intentionally Left TBlank
I M P R O V E M E N T S O F AGRICULTURAL CROPS B Y G E N E T I C E N G I N E E R I N G
J . BOTTERMAN P l a n t G e n e t i c Systems N . V . , 900(1 G e n t , B e l g i u m
J.
Plateaustraat 22,
INTRODUCTION I m p r o v i n g t h e q u a l i t y and y i e l d o f c r o p s t h r o u g h b r e e d i n g has been f o r l o n g t i m e a s t r a i g h t f o r w a r d concept c o u l d o n l y be
U n t i l 1983,
t h i s goal
achieved by s e x u a l r e c o m b i n a t i o n f o l l o w e d by s e l e c -
t i o n o r , t o a l e s s e r degree,
by random o r i n d u c e d m u t a t i o n s .
t r a i t s have been t r a n s f e r r e d t o a g r i c u l t u r a l t e d p l a n t s t h r o u g h t e d i o u s and time-consuming
Useful
crops from non-cultivaprograms.
T h i s approach
has r e s u l t e d i n g e n e t i c improvements y i e l d i n g h i g h e r p r o d u c t i v i t y f o r several major crops i n c l u d i n g corn,
soybean and wheat.
Recent p r o g r e s s i n m o l e c u l a r and c e l l u l a r b i o l o g y has g r e a t l y e x t e n d e d t h e r a n g e o f s o u r c e s f r o m w h i c h new t r a i t s c a n b e o b t a i n e d f o r c r o p improvement.
DNA t e c h n o l o g y ,
U s i n g m o l e c u l a r t e c h n i q u e s b a s e d on r e c o m b i n a n t
i t became p o s s i b l e t o t r a n s f e r g e n e s f r o m any o r g a -
nism i n t o p l a n t s without
sexual crossing.
This technology should
represent a major progress i n our e f f o r t s towards i n c r e a s i n g t h e p r o d u c t i o n and u t i l i t y o f a g r i c u l t u r a l
crops.
The s p e e d a t w h i c h t h e new t e c h n o l o g y a d v a n c e s h a s t o be r e a l i z e d ( T a b l e 1). I n 1983 t h e f i r s t so c a l l e d t r a n s g e n i c p l a n t s were d e v e l o p e d u s i n g a common s o i l b a c t e r i u m ,
Aqrobacterium tumefaciens,
to shuttle a
b a c t e r i a l a n t i b i o t i c u m r e s i s t a n c e gene i n t o t h e m o d e l p l a n t s p e c i e s tobacco or petunia.
Only f i v e y e a r s l a t e r ,
and t i s s u e c u l t u r e t o t r a n s f o r m
i m p o r t a n t c r o p s a n d t h e gene t r a n s f e r
t e c h n o l o g y have grown d r a m a t i c a l l y .
by m i c r o i n j e c t i o n ,
the capacity t o apply c e l l
P l a n t c e l l s can be t r a n s f o r m e d
by use o f Aqrobacterium T i p l a s m i d v e c t o r s o r by
d i r e c t u p t a k e o f e x o g e n o u s DNA
[ l l . T r a n s g e n i c p l a n t s have been
o b t a i n e d f o r more t h a n t w e n t y d i f f e r e n t p l a n t s p e c i e s , p o r t a n t f i e l d c r o p s such as o i l s e e d rape,
sugarbeet,
including im-
cotton,
soybean
and c o r n and i t can be e x p e c t e d t h a t i n t h e n e a r f u t u r e a l l m a j o r
-
380
-
TABLE 1 History o f p l a n t genetic engineering 1911
A q r o b a c t e r i u m t u m e f a c i e n s causes c r o w n - g a l l
1974
Tumour i n d u c i n g p l a s m i d :
tumours
Ti-plasmid
1977
T-DNA
1982
Transformed tobacco p l a n t s
1983
C h i m e r i c gene t r a n s f e r r e d a n d e x p r e s s e d
1984
Versatile
1984
R e g u l a t e d e x p r e s s i o n o f c h i m e r i c gene
transfer t o plant cells
v e c t o r systems
E x p r e s s i o n o f agronomic u s e f u l t r a i t s insect resistance
1985
crop
1986
virus resistance
1986
herbicide resistance
s p e c i e s w i l l b e a c c e s s i b l e t o m o d i f i c a t i o n u s i n g gene t r a n s -
f e r technology. M o l e c u l a r b i o l o g i s t s h a v e made e q u a l l y d r a m a t i c p r o g r e s s i n t h e i d e n t i f i c a t i o n and improvement o f genes e n c o d i n g v a l u a b l e a g r o nomic t r a i t s .
T r a n s f e r o f t h e s e genes i n t o p l a n t s l e a d s t o t h e c r e -
a t i o n o f c r o p s w i t h p r o p e r t i e s w h i c h were u n a c h i e v a b l e by c l a s s i c a l b r e e d i n g approaches. Industry
i s r a p i d l y moving towards p r a c t i c a l a p p l i c a t i o n o f
t h e s e new o p p o r t u n i t i e s .
P r e s e n t r e s e a r c h and development programs
e m p h a s i z e on c r o p p r o t e c t i o n , and t e c h n i c a l
feasibility.
because o f i t s i n d u s t r i a l r e l e v a n c e
The f i r s t a c h i e v e m e n t s were t o i n t r o d u c e
agronomic t r a i t s such as t o l e r a n c e t o h e r b i c i d e s and r e s i s t a n c e t o i n s e c t s and v i r u s e s . MOLECULAR S T R A T E G I E S FOR C R O P P R O T E C T I O N
Herbicide tolerance H e r b i c i d e s a r e an i n d i s p e n s a b l e t o o l i n m o d e r n a g r i c u l t u r e f o r e c o n o m i c weed c o n t r o l .
A t present,
over a hundred p h y t o t o x i c mole-
c u l e s a r e u s e d as c o m m e r c i a l h e r b i c i d e s .
A number o f new compounds
combine h i g h e f f e c t i v i t y w i t h n o n - t o x i c i t y break-down i n t h e s o i l .
However,
t o a n i m a l s and r a p i d
they o f t e n l a c k s e l e c t i v i t y which
l i m i t s t h e i r use t o preemergence a p p l i c a t i o n s .
Engineering o f plants
t o become r e s i s t a n t t o b r o a d s p e c t r u m h e r b i c i d e s w o u l d a l l o w a a e l e c -
-
381
-
t i v e use o f these chemicals f o r c r o p p r o t e c t i o n . species w i t h b u i l t - i n tolerance,
[21.
ted
To c r e a t e new p l a n t -
two approaches have been i n v e s t i g a -
The f i r s t c o n s i s t o f e i t h e r r e n d e r i n g t h e t a r g e t
for
h e r b i c i d a l a c t i o n i n s e n s i t i v e t o t h e herbicide or overproducing a s e n s i t i v e t a r g e t p r o t e i n a s shown w i t h e n g i n e e r e d t o l e r a n c e t o g l y R p h o s a t e (RoundupR, M o n s a n t o ) , t h e s u l f o n y l u r e a s ( e . 9 . G l e a n R , O u s t , DuPont) and i m i d a z o l i n o n e s (e.9. mid).
S c e p t e r R , A r s e n a l R A m e r i c a n Cyana-
The s e c o n d a p p r o a c h i n v o l v e s t h e i n t r o d u c t i o n i n p l a n t s o f a
pathway w h i c h degrades or d e t o x i f i e s t h e h e r b i c i d e p r i o r t o i t s action.
Two s u c c e s s f u l e x a m p l e s i l l u s t r a t e how g e n e s f o r d e t o x i f y i n g
enzymes w e r e i s o l a t e d f r o m m i c r o o r g a n i s m s a n d p l a n t s e x p r e s s i n g t h e se genes w e r e r e s i s t a n t t o g l u f o s i n a t e ( B a s t a R H o e c h s t )
t o b r o m o x y n i l (Rhone P o u l e n c )
respectively.
131 o r
P l a n t s grown i n t h e
g r e e n h o u s e o r i n o p e n f i e l d showed c o m p l e t e r e s i s t a n c e t o w a r d s h i g h d o s e s o f g l u f o s i n a t e a n d t h e i r p e r f o r m a n c e was i n d e p e n d e n t f r o m t h e p l a n t s p e c i e s used, to,
a s shown w i t h t r a n s g e n i c t o b a c c o ,
potato,
toma-
o i l s e e d r a p e and s u g a r b e e t . The i n t r o d u c t i o n o f e n g i n e e r e d h e r b i c i d e r e s i s t a n t c r o p s w i l l
h a v e c o n s i d e r a b l e i m p a c t on f u t u r e weed c o n t r o l s t r a t e g i e s a n d on the g l o b a l herbicide markets.
F a r m e r s w i l l be a b l e t o a p p l y t h e s e
h e r b i d i c e s f o r p o s t emergence a p p l i c a t i o n s i n m o r e e f f e c t i v e ,
fle-
x i b l e a n d c h e a p e r weed c o n t r o l p r o g r a m s .
Insect resistance I n modern a g r i c u l t u r e ,
chemical i n s e c t i c i d e s are extensively
used f o r i n s e c t p e s t c o n t r o l .
However,
i t i s very d i f f i c u l t t o t a r -
get insecticides s p e c i f i c a l l y a t pest insects, ted ecological side effects.
Moreover,
without
h a v i n g unwan-
i n s e c t s become m o r e a n d m o r e
r e s i s t a n t t o t h e c h e m i c a l s making t h e i r use more e x p e n s i v e or even obsolete. B i o l o g i c a l c o n t r o l o f insect pests,
on t h e o t h e r hand,
combines a h i g h i n s e c t t o x i c i t y w i t h e n v i r o n m e n t a l s a f e t y .
Biological
i n s e c t i c i d e s based on f o r m u l a t i o n s o f t h e m i c r o o r g a n i s m B a c i l l u s t h u r i n q i e n s i s have been used o v e r t h e l a s t t w e n t y years.
Their to-
x i c i t y t o w a r d s i n s e c t s i s due t o t h e p r o d u c t i o n o f a p r o t e i n c a l l e d delta-endotoxin sects,
(Bt),
which i s s e l e c t i v e l y
t o x i c t o larvae o f in-
b u t c o m p l e t e l y h a r m l e s s t o humans a n d a n i m a l s a n d e v e n t o b e -
n e f i c i a l insects,
s u c h as honey bees.
However,
u s i n g t h e s e compouds
i n s p r a y i n g p r o g r a m s p r e s e n t s some p r a c t i c a l p r o b l e m s .
The t o x i n s a r e
r e l a t i v e l y u n s t a b l e i n f i e l d c o n d i t i o n s and t h e y have a l s o no s y s t e m i c a c t i o n on p l a n t s .
Moreover, production c o s t s f o r B.t.
sprayable
- 382
-
p r o d u c t s a r e s t i l l r e l a t i v e l y h i g h compared w i t h competing c h e m i c a l s . R e c e n t l y , a major o b j e c t i v e o f p l a n t b i o t e c h n o l o g y is t o c r e a t e i n sect resistant plants.
In 1986, c a t e r p i l l a r r e s i s t a n t tobacco p l a n t s
w e r e o b t a i n e d by e n g i n e e r i n g p l a n t s w h i c h e x p r e s s a B a c i l l t r s t h u r i n q i e n s i s (Bt) gene which encodes a h i g h l y a c t i v e and s p e c i f i c i n s e c t controlling protein.
These p l a n t s produce t h e B . t .
protein inside
t h e t i s s u e , thereby eliminating the drawbacks of a sprayable product 141. D i f f e r e n t s t r a i n s o f t h e b a c t e r i u m v a r y i n t h e r a n g e o f
i n s e c t s a g a i n s t which t h e i r t o x i n is a c t i v e and i n s e c t c o n t r o l l i n g p r o t e i n s with a c t i v i t y a g a i n s t Lepidoptera, D i p t e r a and Coleoptera h a v e b e e n i d e n t i f i e d a n d i s o l a t e d . Many g r o u p s a r e c u r r e n t l y w o r k i n g on t h e i n s e r t i o n o f t h e e n c o d i n g g e n e s i n d i f f e r e n t p l a n t s p e c i e s . Virus resistance
A l s o i n 1 9 8 6 , t r a n s g e n i c t o b a c c o p l a n t s p r o t e c t e d from v i r a l i n f e c t i o n were o b t a i n e d b y p r o d u c i n g t h e v i r a l c a p s i d p r o t e i n o f t o bacco mosaic v i r u s
[51.
Recently, engineered virus tolerance
h a s been shown w i t h a number o f v i r u s e s s u c h a s a l f a l f a m o s a i c v i -
rus, cucumber mosaic v i r u s , p o t a t o v i r u s X and t o b a c c o r i n g s p o t v i r u s a n d was o b t a i n e d by e x p r e s s i o n o f a c a p s i d p r o t e i n ,
antisense
mRNA s y n t h e s i s or expression of s a t e l l i t e RNA molecules i n d i f f e r e n t
p l a n t s p e c i e s . Although t h e commercial value o f t r a n s g e n i c p l a n t s e x h i b i t i n g v i r u s t o l e r a n c e i s d i f f i c u l t t o e s t i m a t e due t o l a c k of s u p p o r t i n g d a t a from c r o p l o s s e s from v i r u s a t t a c k , t h i s t e c h n o l o g y m i g h t h a v e b r o a d a p p l i c a t i o n s t o r e d u c e t h e y i e l d loss c a u s e d b y s o -
me w i d e s p r e a d v i r u s e s . FIELD TRIALS A N D R E G U L A T O R Y ISSUES These t h r e e examples i l l u s t r a t e t h e molecular s t r a t e g i e s f o l l o wed f o r c r o p p r o t e c t i o n a n d t h e s e a c h i e v e m e n t s h a v e a l r e a d y e n t e r e d i n t o a f u r t h e r phase of development.
I n 1987 s m a l l s c a l e f i e l d t r i a l s
were performed with t h e s e c r o p s and revealed f i e l d performance which was c o m p a r a b l e w i t h g r e e n h o u s e t e s t s . Some o f
t h e s e c r o p s c a n b e d e v e l o p e d i n t o commercial p r o d u c t s
i n l e s s t h a n f o u r y e a r s from now, b u t d i f f e r e n t i m p o r t a n t i s s u e s have s t i l l t o be a d d r e s s e d . Although p l a n t b r e e d i n g p r o d u c t s have a l ways been f r e e l y d i s t r i b u t e d , t r a n s g e n i c p l a n t s r e q u i r e r e g u l a t o r y a p p r o v a l b e f o r e e v e n small s c a l e f i e l d t e s t i n g c a n b e p e r f o r m e d .
The-
r e f o r e , i t is of extreme importance t h a t t h e process f o r e v a l u a t i n g f i e l d t e s t i n g of g e n e t i c a l l y modified crops responds quickly t o t h e
-
383
-
need f o r t e s t i n g p l a n t s a t m u l t i p l e l o c a t i o n s and under normal agronomic p r a c t i c e s , i n c l u d i n g c o m p l e t i o n o f t h e c r o p r e p r o d u c t i o n cycle i n normal production a r e a s .
Such a r e g u l a t o r y p r o c e s s should s a t i s f y
both l e g i t i m a t e concerns r e g a r d i n g environmental impact and h e a l t h and t h e need t o l e t r e s e a r c h and development proceed i n a r a t i o n a l a n d e f f i c i e n t way.
Moreover,
these f i e l d trials with engineered
c r o p s o v e r t h e n e x t t w o t o t h r e e y e a r s w i l l have t o t e a c h u s more about t h e q u a l i t a t i v e and q u a n t i t a t i v e c h a r a c t e r i s t i c s o f engineered c r o p s r e l a t i v e t o c o m p e t i t i v e e x i s t i n g p r o d u c t s , a b o u t t h e i r ecolog i c a l impact such a s p o t e n t i a l r i s k s f o r t h e outcrossing of herbicide r e s i s t a n c e t r a i t s and g e t t i n g i n s e c t r e s i s t a n c e t o B . t . controlling proteins.
insect
Also, it is c r i t i c a l t h a t regulations dealing
w i t h t h e c o m m e r c i a l i z a t i o n o f t h e s e c r o p s be f o r m u l a t e d a n d harmon i z e d i n a way w h i c h d o e s n o t d i s c r i m i n a t e t h e p a r t i c u l a r b i o t e c h nology p r o c e s s used t o improve t h e v a r i e t i e s . Another important i s s u e is t h a t g e t t i n g a c l e a r - c u t
patent protec-
t i o n i s a c o n d i t i o n e s i n e q u a non f o r t h e s u c c e s s o f a p r o d u c t from plant biotechnology.
Recently a tendency i s emerging t o l i b e r a l i z e
t h e p a t e n t p r o t e c t i o n f o r p l a n t s c r e a t e d t h r o u g h t h e use o f g e n e t i c e n g i n e e r i n g , which i n d i c a t e s t h a t p l a n t b i o t e c h p r o d u c t s w i l l g e t a s i m i l a r p r o p r i e t a r y p r o t e c t i o n a s f o r e x a m p l e new p h a r m a c e u t i c a l compounds.
C R O P QUALITY IMPROVEMENT Molecular s t r a t e g i e s a r e a l s o followed t o improve t h e end prod u c t o f t h e c r o p i t s e l f y i e l d i n g more n u t r i t i o u s o r h i g h e r - q u a l i t y c r o p s . A l t e r i n g t h e p r o t e i n q u a l i t y i n s e e d s by t r a n s f e r o f g e n e s t h a t encode p r o t e i n s c o n t a i n i n g l a r g e amounts o f l i m i t i n g amino a c i d s f r o m o n e p l a n t t o a n o t h e r i s r e c e i v i n g w i d e a t t e n t i o n . Work i s i n p r o g r e s s t o i n c r e a s e t h e o v e r a l l s u l f u r amino a c i d composition o f leguminous seeds and soybeans.
S i m i l a r a p p r o a c h e s w i l l be u s e d t o
overcome t h e l y s i n e d e f i c i e n c y o f s e r e a l s e e d s .
Plant genetic engi-
neering is a l s o j o i n i n g f o r c e s with c l a s s i c a l breeding programs t o improve o i l q u a l i t y i n o i l seeds.
The main o b j e c t i v e s a r e t h e con-
t r o l of chain length and t h e degree of unsaturation of f a t t y ? ( i d . PLANT B I O L O G I C A L SYSTEMS Engineering t r a i t s f o r c r o p p r o t e c t i o n h a s been t h e first g o a l m a j o r i l y because o f t h e l i m i t e d knowledge o f p l a n t biology. during the past five years,
However,
f u n d a m e n t a l r e s e a r c h showed a d r a m a t i c
-
384 -
progress i n the unraveling o f the unique reproductive, and p h y s i o l o g i c a l p r o c e s s e s o f p l a n t s
[ 6-7
1.
developmental
Present technology
and t h e d e v e l o p m e n t o f m o d e l o r g a n i s m s s u c h a s A r a b i d o p s i s t h a l i a n a p e r m i t a l m o s t a n y gene t h a t i s a s s o c i a t e d w i t h a n o b s e r v a b l e p h e n o t y p e t o bR i s o l a t e d a n d s t u d i e d .
F o r example,
p l a n t genes w h i c h a r e
s p e c i f i c a l l y i n v o l v e d i n n a t u r a l defense o f c e r t a i n p l a n t s t o fungal i n f e c t i o n and t o e n v i r o n m e n t a l s t r e s s f a c t o r s s u c h as c o l d ,
drought
o r s a l i n i t y h a v e b e e n i s o l a t e d a n d c r e a t e new o p p o r t u n i t i e s f o r c r o p improvement.
These p r o g r e s s e s teamed up w i t h g e n e r a l a d v a n c e s i n mo-
l e c u l a r b i o l o g y w i l l make i t p o s s i b l e t o d i s s e c t t h e m o l e c u l a r a n d c e l l u l a r events responsible f o r c o n t r o l l i n g p l a n t - s p e c i f i c
processes.
The u n d e r s t a n d i n g o f t h e m o l e c u l a r p r o c e s s e s c o n t r o l l i n g gene e x p r e s s i o n d u r i n g p l a n t d e v e l o p m e n t s h o u l d emerge i n t h e n o t t o o d i s t a n t f u t u r e and may p r o v i d e new o p p o r t u n i t i e s a n d may s u g g e s t n o v e l ways t o p r o d u c e s u p e r i o r c r o p s b y gene e n g i n e e r i n g t e c h n o l o g y . CONCLUSION
In general,
t h e p o t e n t i a l economic uses o f p l a n t g e n e t i c e n g i -
neering are i n p r i n c i p l e u n l i m i t e d (Table 2 ) . TABLE 2 Developments i n a g r i c u l t u r a l b i o t e c h n o l o g y
Crop p r o t e c t i o n herbicide tolerance insect resistance virus resistance fungus r e s i s t a n c e bacteria resistance cold resistance stress tolerance Crop q u a l i t y improved y i e l d increased n u t r i t i o n a l value improved processing value
T a r g e t e d m a n i p u l a t i o n s o f t h e p l a n t g e n e t i c m a t e r i a l t e a m e d up w i t h c l a s s i c a l b r e e d i n g techniques w i l l form a p o w e r f u l
new t e c h n o l o g y .
-
385
-
a l l o w i n q t h e i n t r o d u c t i o n o f e n t i r e l y new g e n e t i c t r a i t s i n commerc i a l germplasm.
The i n t e g r a t e d a p p l i c a t i o n o f t r a d i t i o n a l b r e e d i n g
and g e n e t i c e n g i n e e r i n g t e c h n o l o g i e s t h u s p r o m i s e s t o change d r a m a t i c a l l y t h e i n p u t c o s t s t r u c t u r e o f many c r o p s ,
t o r e d u c e and even
e l i m i n a t e t h e use o f e n v i r o n m e n t a l l y h a r m f u l a g r o c h e m i c a l s and t o d e s i g n c r o p s w i t h new i n d u s t r i a l e n d - u s e s .
A l t h o u g h modern a g r i c u l -
t u r e i n d e v e l o p e d c o u n t r i e s is a h i g h l y c o m p e t i t i v e b u s i n e s s e n t e r p r i s e t h a t o p e r a t e s on a s m a l l p r o f i t margin, developments,
i n view o f t h e ongoing
one may c o n c l u d e t h a t b i o t e c h n o l o g y i s c r e a t i n g a n o t -
h e r (green r e v o l u t i o n ,
w h i c h w i l l h a v e t h e same i m p a c t on a g r i c u l t u -
r a l i n d u s t r y as mechanization, development o f h y b r i d seed,
t h e b u r s t o f a g r o c h e m i c a l s and t h e
which occurred e a r l i e r t h i s century.
R E F ER E N C E S
1
R.T.
Fraley,
S.G.
i n higher plants,
R o g e r s , R.B. H o r s c h , G e n e t i c t r a n s f o r m a t i o n CRC C r i t i c a l Reviews i n P l a n t Sciences 4
(1986) 1-42. 2
3
4
5
6
7
J. B o t t e r m a n a n d J. Leemans, E n g i n e e r i n g o f h e r b i c i d e r e s i s t a n c e i n p l a n t s , i n : G . R u s s e l l (Ed.) B i o t e c h n o l o g y and G e n e t i c E n g i n e e r i n g R e v i e w s , V o l 6, I n t e r c e p t Wimborne 1 9 8 8 pp. 3 1 9 - 3 3 8 . M. De B l o c k , J. B o t t e r m a n , M. V a n d e w i e l e , J. D o c k x , C . Thoen, V . G o s s e l e , N. Movva, C . Thompson, M. Van M o n t a g u a n d J. Leemans, Engineering herbicide resistance i n plants by expressing o f a d e t o x i f y i n g enzyme, The EM80 J. 6 ( 1 9 8 7 ) 2 5 1 3 - 2 5 1 8 . M . Vaeck, A . R e y n a e r t s , H. H o f t e , S . J a n s e n s , M. D e B e u c k e l e e r , C . Dean, M. Zabeu, M. Van M o n t a g u a n d J. Leemans, T r a n s g e n i c p l a n t s p r o t e c t e d from i n s e c t a t t a c k , N a t u r e 328 (1987) 33-37. P. A b e l , R . N e l s o n , B. D e , N. H o f f m a n , 5. R o g e r s , R . F r a l e y a n d R . Beachy, D e l a y o f d i s e a s e d e v e l o p m e n t i n t r a n s g e n i c p l a n t s t h a t e x p r e s s t h e t o b a c c o mosaic v i r u s c o a t p r o t e i n gene, S c i e n c e . 232 ( 1 9 8 6 ) 7 3 8 - 7 4 3 . J. S c h e l l , P l a n t s a s t o o l s t o s t u d y t h e m o l e c u l a r o r g a n i s a t i o n o f p l a n t g e n e s , S c i e n c e 237 ( 1 9 8 7 ) 1 1 7 6 - 1 1 8 3 R . B . G o l d b e r g , P l a n t s : n o v e l d e v e l o p m e n t a l p r o c e s s e s , S c i e n c e 240 (1988) 1460-1467.
This Page Intentionally Left TBlank
THE CYCLODEXTRINS AND T H E I R A P P L I C A T I O N I N E N V I R O N M E N T A L BIOTECHNOLOGY
J.
SZEJTLI
C y c l o d e x t r i n Res. L a b o r a t o r y o f C H I N O I N Pharm.-Chem. 1026 B u d a p e s t , E n d r o d i S . 3 8 / 4 0
Works,
SU M M A R Y C y c l o d e x t r i n s and t h e i r d e r i v a t i v e s e n h a n c e t h e s o l u b i l i t y o f c o m p l e x e d s u b s t r a t e s i n a q u e o u s m e d i a , b u t do n o t damage t h e m i c r o b i a l c e l l s o r t h e enzymes. T h e r e f o r e t h e e n z y m a t i c c o n v e r s i o n o f l i p o p h y l i c s u b s t r a t e s can be i n t e n s i f i e d ( a c c e l e r a t e d , o r performed a t h i g h e r s u b s t r a t e c o n c e n t r a t i o n ) . Examples a r e t h e h y d r o l y s i s o f t r i g l y c e r i d e s or the conversion o f hydrocortisone t o prednisolon. I n t h e p r e s e n c e o f an a p p r o p r i a t e C D - d e r i v a t i v e ( e . 9 . 2 , 6 - d i m e t h y l 0 CD) t h e l i p i d l i k e i n h i b i t o r substances a r e complexed, t h e r e f o r e t h e p r o g a t e i o n o f ' B o r d a t e l l a p e r t u s s i s and t h e p r o d u c t i o n o f p e r t u s s i s t o x i n i n c r e a s e s u p t o 1 0 0 - f o l d . The t o l e r a b l e l e v e l o f t o x i c compounds a t b i o l o g i c a l d e t o x i c a t i o n o f sewage o f o r g a n i c c h e m i c a l i n d u s t r y c a n b e e l e v a t e d by a d m i x i n g a s m a l l amount o f R - c y c l o d e x t r i n t o t h e s y s t e m , b e c a u s e t h e c o m p l e x e d t o x i c s u b s t a n c e s do n o t k i l l the d e t o x i c a t i n g microbes.
C H E M I S T R Y OF C Y C L O D E X T R I N S C y c l o d e x t r i n s are c y c l i c ,
non-reducing oligosaccharides.
d i f f e r e n t c y c l o d e x t r i n s a r e known: d.
-,
-
R
Three
and 1 ' - c y c l o d e x t r i n .
A l l o f them e r e p r o d u c e d i n d u s t r i a l l y a s homogeneous ( p u r i t y o v e r 99,5
X)
c r y s t a l l i n e substances.
The s t r u c t u r e o f
(1,Z).
0 - c y c l o d e x t r i n and t h e m o l e c u l a r d i m e n s i o n s
o f t h e t h r e e c y c l o d e x t r i n s a r e shown i n F i g . The c4 - c y c l o d e x t r i n the
y
-cyclodextrin
c o n s i s t s o f 6,
the
8 glucopyranose u n i t s .
1.
R -cyclodextrin
7 and
A l l secondary OH-groups
a r e l o c a t e d o n one edge o f t h e t o r u s - l i k e c y c l o d e x t r i n m o l e c u l e , w h i l e e l l p r i m a r y OH-groups
a r e on t h e o t h e r s i d e .
t h e i n t a r n e l c a v i t y i s f o r m e d b y H-atoms, - b r i d g e atoms,
The " l i n i n g "
of
and g l u c o s i d i c oxygen-
therefore t h i s surface i s s l i g h t l y
apolar
(Fig
2).
The u n i q u e shape a n d p h y s i c a l - c h e m i c a l p r o p e r t i e s o f c y c l o d e x t r i n s e n a b l e s them t o i n c l u d e t h e m o l e c u l e s o f o t h e r s u b s t a n c e s : t h i s i s t h e essence o f t h e " m o l e c u l a r e n c a p s u l a t i o n " .
-
388
-
Ffg. 1. Structure o f 0 -cyclodextrin, and the approximative geometrical dimensions o f the a-,0 - and y -cyclodextrins.
MOLECULAR E N C A P S U L A T I O N W I T H C Y C L O D E X T R I N S A cyclodextrin molecule can be considered a s an empty capsule o f molecular size (Fig. 2 ) .
When it is Filled with the molecule o f another substance, it i s called "inclusion complex".
AFQLAR CAVITY
SECONDARY HYDROXYLS
PRIMARY HYDROXYLS Fig. 2 . Functional schema o f a cyclodextrin "cylinder". Inclusion complexes are entities comprising two or more molecules, in which one o f the molecules, the "host", includes totally o r in part, only by physical f o r c e s , i.e. without covalent bonding a
"guest"
molecule.
389
-
Cyclodextrins are t y p i c a l "host"
m o l e c u l e s and
may i n c l u d e a g r e a t v a r i e t y o f m o l e c u l e s h a v i n g t h e s i z e o f one o r two benzene r i n g s , comparable s i z e ,
o r e v e n l a r g e r ones w h i c h a r e a s i d e c h a i n o f
t o form c r y s t a l l i n e i n c l u s i o n complexes.
I n aqueous s o l u t i o n t h e s l i g h t l y a p o l a r c y c l o d e x t r i n c a v i t y i s
occupied by water m o l e c u l e s which a r e e n e r g e t i c a l l y u n f a v o u r e d (polar-apolar
i n t e r a c t i o n ) and t h e r e f o r e c a n b e r e a d i l y s u b s t i t u t e d
by a p p r o p r i a t e "guest m o l e c u l e s " which a r e l e s s p o l a r t h a n water. The d i s s o l v e d c y c l o d e x t r i n i s t h e " h o s t " force"
o f t h e complex
molecule,
formation i s the s u b s t i t u t i o n o f t h e high-ent-
h a l p y w a t e r m o l e c u l e s b y an a p p r o p r i a t e " g u e s t "
oo
0
Fig.
3.
and t h e " d r i v i n g
molecule (Fig.
3).
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O
0
J
Inclusion of
p-xylene
by a C D - " c a p s u l e " .
The c y c l o d e x t r i n c o m p l e x e s a r e r e l a t i v e l y s t a b l e .
Their water
s o l u b i l i t y compared t o p u r e c y c l o d e x t r i n s a r e s t r o n g l y r e d u c e d so t h e y r a p i d l y s e p a r a t e from t h e s o l u t i o n i n c r y s t a l l i n e form.
One,
t w o o r t h r e e c y c l o d e x t r i n m o l e c u l e s c o n t a i n one o r m o r e e n t r a p p e d "guest"
t i on"
molecules.
T h i s i s t h e essence o f t h e " m o l e c u l a r
encapsula-
. Though t h e p h y s i c o c h e m i c a l p r o p e r t i e s o f t h e m o l e c u l e s t r a p p e d
i n the c a v i t y are considerably altered,
t h e s e complexes d i s s o c i a t e
e a s i l y u n d e r p h y s i o l o g i c a l c o n d i t i o n s and t h e g u e s t m o l e c u l e s c a n thus exert t h e i r desired effects. A l m o s t a l l i n d u s t r i a l a p p l i c a t i o n s o f c y c l o d e x t r i n s i n v o l v e complexation.
I n many c a s e s c o m p l e x e s a r e s e p a r a t e d i n m o r e o r l e s s pu-
r e f o r m a n d u t i l i z e d as c r y s t a l l i n e s u b s t a n c e s ( d r o g a n d f l a v o u r complexes), state,
catalysis, patway,
w h i l e i n o t h e r cases complexation i s o n l y a t r a n s i e n t
and becomes a p p a r e n t t h r o u g h t h e f i n a l r e s u l t ( c y c l o d e x t r i n separation o f mixtures,
etc.)
(1, 2 ) .
modification o f the reaction-
M I C R O B I A L CONVERSION,
-
390
FERMENTATION
Enzymes ( e x c e p t a m y l o l y t i c o n e s )
o r m i c r o o r g a n i s m s a r e gene-
r a l l y n o t a f f e c t e d b y t h e p r e s e n c e o f CDs. T h e r e f o r e m i c r o b i o l o g i c a l
o r enzymic p r o c e s s e s can be p e r f o r m e d i n CD s o l u t i o n s , ssolved substrate concentrations, inhibitory,
a t higher d i -
b u t a t lower free-substance
or l e s s t o x i c ) c o n c e n t r a t i o n s . F i g u r e 4
(less
i l l u s t r a t e s the
s o l u b i l i t y o f h y d r o c o r t i s o n e i n v a r i o u s CD s o l u t i o n s ( 3 ) . The d i methyl-
R CD i s t o o e x p e n s i v e ( y e t )
f o r i n d u s t r i a l purposes,
but a
v e r y s i g n i f i c a n t improvement o f t h e m i c r o b i o l o g i c a l c o n v e r s i o n o f h y d r o c o r t i s o n e t o p r e d n i s o l o n i s b a s e d on t h e s e e m i n g l y s m a l l s o l u b i l i t y i n c r e a s e i n 0 CD s o l u t i o n . The s o l u b i l i t y o f h y d r o c o r t i s o n e i n w a t e r i s o n l y 0 . 4
mg/ml.
T h e r e f o r e i n l a r g e v o l u m e s o n l y a r e l a t i v e l y s m a l l amount o f t h i s s t e r o i d c o u l d be converted.
The c o n v e r s i o n p r o c e s s was s l o w ,
e n d p r o d u c t was n o t homogeneous,
because o f m i x e d - c r y s t a l
and t h e
formation
(hydrocortisone-prednisolon).
W
5
cn +
20
a
0
0
a
n > I
10
F i g . 4. S o l u b i l i t y o f h y d r o c o r t i s o n e i n v a r i o u s C D - s o l u t i o n s a t 2 5 OC. P e r f o r m i n g t h i s p r o c e s s i n an aqueous c i t y i n c r e a s e d by more t h a n 3 0 0 %. increases,
3-4
converter,
the reaction i s faster,
geneous.
ll CD s o l u t i o n ,
t h e capa-
The s o l u b i l i t y o f h y d r o c o r t i s o n e
t i m e s more h y d r o c o r t i s o n e c a n b e c h a r g e d i n t o t h e a n d t h e e n d p r o d u c t i s more homo-
P r a c t i c a l l y a l l m i c r o b i o l o g i c a l s t e r o i d conversion processes
have b e e n t e s t e d i n a q u e o u s CD s o l u t i o n s w i t h u n a n i m o u s l y p r o m i s i n g
-
391
-
r e s u l t s ( 4 ) . The m e n t i o n e d e x a m p l e i s a l r e a d y p r a c t i c e d i n t h e p h a r maceutical industry.
Recently,
examples have been p u b l i s h e d on t h e
u t i l i z a t i o n o f cyclodextrins i n a n t i b i o t i c fermentation.
The p r o d u c -
t i o n o f L a n k a c i d i n A a n d C b y S t r e p t o m y c e s r o c h e i v o l u b i l i s was enh a n c e d b y a d d i n g 11 mM
mM t o 0 . 5 5
0.04 ce,
SPF-1000
ccus,
0 CD t o t h e f e r m e n t a t i o n b r o t h f r o m 0 . 0 5
and 4 . 6 mM,
respectively.
A new a n t i - t u m o r
and
substan-
i s produced by g r o w i n g a s p e c i f i c s t r a i n o f S t r e p t o -
a c c o r d i n g t o t h e p a t e n t a p p l i c a t i o n t h e c u l t u r e media a l s o
c o n t a i n s CD ( 6 ) .
ENHANCEMENT OF V A C C I N E P R O D U C T I O N Pertussis t o x i n ( = Leukocytosis promoting factor, tinin)
LPF-hemaglu-
i s one o f t h e m a i n p r o t e c t i v e a n t i g e n s a g a i n s t w h o o p i n g c o u g h
infection,
a n d i s a l s o one o f t h e c o m p o n e n t s o f a p e r t u s s i s v a c c i n e .
I t i s produced by B o r d a t e l l a p e r t u s s i s . F o r t h e p r o d u c t i o n o f a l e s s reactogenic vaccine,
a s y n t h e t i c medium i s n e e d e d .
However t h e p r o -
d u c t i o n o f p e r t u s s i s t o x i n was r a t h e r d i f f i c u l t i n s y n t h e t i c medium, e s p e c i a l l y i n shaken c u l t u r e s .
B o r d a t e l l a p e r t u s s i s i s v e r y suscep-
t i b l e t o a number o f i n h i b i t o r s , i c acid)
(5).
f a t t y a c i d s ( p a l m i t i c or o l e -
e.g.
a l r e a d y a t 10 p M c o n c e n t r a t i o n s t o p s t h e c e l l p r o p a g a t i o n
A d d i n g however 0 . 5
0 CD ( o r t r i m e t h y l -
mg/ml d i m e t h y l -
an i n c r e a s e d c e l l g r o w t h was o b s e r v e d , t o x i n p r o d u c t i o n 100 f o l d ( 8 ,
9,
10).
x i n production a t various dimethyl-
0 CD)
w h i c h enhanced t h e p e r t u s s i s F i g u r e 5.
i l l u s t r a t e s the to-
0 CD-concentrations (11).
Howe-
v e r t h e mechanism o f t h e e f f e c t i s n o t y e t f u l l y u n d e r s t o o d ( s e q u e s tration of inhibitory
f a t t y acids,
or s t a b i l i z a t i o n o f reduced glu-
tathione,
o r m o d i f i c a t i o n o f c e l l membrane p e r m e a b i l i t y ) , i t i s an
important
e x a m p l e f o r u t i l i z a t i o n o f CDs i n b i o t e c h n o l o g y ( 1 2 ,
13).
The enhancement o f p r o d u c t i o n o f f i l a m e n t o u s h e m a g l u t i n i n was e v e n higher yet,
w i t h s e v e r a l h u n d r e d t i m e s more b e i n g p r o d u c e d i n t h e
presence o f d i m e t h y l -
0 CD t h a n w i t h o u t i t ( 9 ) .
E N Z Y M I C R E A C T I O N OF L I P I D S H y d r o l y s i s o f t r i g l y c e r i d e s by l i p a s e s i n a q u e o u s s y s t e m s i s a very slow process.
E i t h e r a l i p i d dissolving watermiscible organic
s o l v e n t h a s t o b e added t o t h e s y s t e m
-
which i s t o l e r a t e d only t o
a r e l a t i v e l y low c o n c e n t r a t i o n because o f t h e enzyme-protein turation
-
be present. se w i t h o u t
or an a p p r o p r i a t e d e t e r g e n t
-
e.g.
natural b i l e
-
denahas t o
T a b l e 1 i l l u s t r a t e s t h e h y d r o l y s i s o f o l i v e o i l by l i p a any d e t e r g e n t o f p r e s e n c e o f h o g b i l e ,
or d i m e t h y l - O C D
-
392
-
( 1 4 ) . The h y d r o l y s i s was f o l l o w e d b y t i t r a t i n g t h e l i b e r a t e d f a t t y a c i d s w i t h NaOH.
As i t i s seen,
t h e d i m e t h y l - 0 CD r e m a r k a b l y a c c e -
l e r a t e d the l i p o l y s i s . The o b s e r v a t i o n t h a t p h o s p h a t i d e s ( l i g n o c e r i c a c i d , de,
ceramide)
cerebrosi-
can be s o l u b i l i z e d w i t h COs p r o b a b l y w i l l b e e x p l o i -
t e d i n l i p i d enzymology
(15).
Studying the Lignoceryl-CoA t i o n prepared from r a t b r a i n , d C D was u t i l i z e d ,
l i g a s e a c t i v i t y i n microsomal f r a c
the lignoceric acid,
s o l u b i l i s e d by
b u t t h e one s o l u b i l i s e d by T r i t o n WR 1 3 3 9 was
not u t i l i z e d (16).
-E
\
3
1
DlMEB
1000
800v,
w 1
P
6oo-
3
*oo{
I-
HOURS OF INCUBATION
F i g . 5. E f f e c t o f d i m e t h y l - R - c y c l o d e x t r i n on p e r t u s s i s t o x i n p r o d u c t i o n i n B . p e r t u s s i s Tohama p h a s e I i n s y n t h e t i c medium.
r
Reaction time [h]
Consumed 0 . 0 0 5 a b control bile
n NaOH m l C
dimethyl-
0.5
0.0
0.82
1.74
1
0.36
1.17
2.00
2
0.48
1.37
2.20
19
0.63
2.62
4.77
reaction rate acceleration
- 4 x
-
7.4
x
0 CO
-
393
-
T I S S U E CULTURES The CD c o m p l e x e s o f u n s a t u r a t e d f a t t y a c i d s c a n b e u t i l i z e d as serum s u b s t i t u t e s i n mammalian c e l l c u l t u r e s .
Both o l e i c acid- O C D
a n d l i n o l e i c a c i d - O C D c o m p l e x e s showed a g r o w t h e n h a n c i n g e f f e c t o f human l y m p h o b l a s t c e l l s ,
up t o 1 0 0 m g / l
medium.
A t h i g h e r concen-
t r a t i o n s t h e f a t t y a c i d O C D complex appeared t o be t o x i c , can p r o b a b l y be a t t r i b u t e d t o t h e f a t t y a c i d s . O C D c o m p l e x and 1 0 0 0 mg f r e e effects,
100 mg o f f a t t y a c i d -
O CD t o g e t h e r r e s u l t e d i n n o t o x i c
b u t e x h i b i t e d a s t a b l e and r e p r o d u c i b l e g r o w t h p r o m o t i n g
I n human d i p l o i d f i b r o l a s t c u l t u r e s g r o w t h ,
effect.
but t h i s
i n t h e b o v i n e albumin, OCD-fatty
similar t o that
a s u p p l e m e n t e d medium was o b s e r v e d a f t e r t h e
a c i d complex r e s o l v e d t o a f i n a l c o n c e n t r a t i o n o f 10-20
B o v i n e serum a l b u m i n c a n b e p a r t i a l l y o r c o m p l e t e l y s u b s t i -
mg/ml.
t u t e d by O C D - f a t t y
a c i d c o m p l e x e s i n mammalian c e l l c u l t u r e s
(17,
18)
e . g . , i n human i n t e r f e r o n p r o d u c t i o n ( 1 9 ) .
High density c u l t u r e 0-lymphoblast-like
c e l l s t r a i n s can be
p r e p a r e d i n a s e r u m - f r e e medium w h i c h c o n t a i n s d C D . c a s e o f p r o d u c t i o n o f i n t e r f e r o n s f r o m UMCL c e l l s , t h e p r o d u c e d i n t e r f e r o n s may b e i n c r e a s e d ( 2 0 ) .
E.g.
i n the
t h e amount o f
Mouse mammary t u -
mor c e l l s c a n b e c u l t u r e d u n d e r serum f r e e c o n d i t i o n s when t h e b o v i n e a l b u m i n i s s u b s t i t u t e d b y d CD c o m p l e x o f o l e i c a c i d ( 2 1 ) . The s t e r i l i z a t i o n o f t h e c o m p o n e n t s o f s e r u m l e s s m e d i a f o r c u l t i v a t i n g animal c e l l s i s described.
Such c o m p o s i t i o n may c o n t a i n
a C D u n s a t u r a t e d f a t t y a c i d i n c l u s i o n complexes ( 2 2 ) . O C D i s a u s e f u l m a t e r i a l as a serum s u b s t i t u t e i n i n d u c i n g p r i m a r y a n t i b o d y response i n v i t r o . a t 113
X
antibody
F e t a l c a l f serum must be p r e s e n t
i n t h e c u l t u r e medium f o r o p t i c a l l y e l i c i t i n g t h e p r i m a r y response t o sheep e r y t r o c y t e s i n m u r i n e l y m p h o c y t e s .
The
response can n o t be o b s e r v e d w h e n t h e c o n c e n t r a t i o n o f t h e f e t a l c a l f serum i s l e s s t h a n 1 most e f f e c t i v e , a
,T
X. The a d d i t i o n o f 250-500 p g / m l -CD
O C D was t h e
a n d D I M E B were l e s s e f f e c t i v e ( 2 3 ,
24).
a C D can be used a s a c h o l e s t e r o l c a r r i e r i n a s e r u m - f r e e r i e r p r o t e i n f r e e medium i n t i s s u e c u l t u r e s , p a g a t i o n o f a newborn r a t a d r e n o c o r t i c a l n e a r l y 1:l
complex w i t h c h o l e s t e r o l
The u s e o f a C 0 i n a s e r u m - f r e e
res prolonged c e l l l i f e ,
car-
f o r example i n t h e p r o -
cells.
The a C D f o r m s a
(25). medium o f mammalian c e l l c u l t u -
and i n c r e a s e d t h e p r o d u c t i o n o f m o n o c l o n a l
antibody (26). B e s i d e s t h e s o l u b i l i t y enhancement,
the s t a b i l i z a t i o n i s the
o t h e r i m p o r t a n t consequence o f c o m p l e x a t i o n o f N y s t e t i n
-
a polyene
antibiotic
-
antibiotic, ment.
w i t h
CD.
The N y s t a t i n i s a f r e q u e n t l y u s e d a n t i f u n g a l
w i d e l y u s e d i n human m e d i c i n e f o r l o c a l a n t i f u n g a l t r e a t -
Tissue c u l t u r e
soluble,
-
394
-
an i m p o r t a n t t o o l i n b i o t e c h n o l o g y
a n t i f u n g a l agents,
t u r e medium.
-
needs
w h i c h have t o be d i s s o l v e d i n t h e c u l -
N y s t a t i n would be q u i t e adequate f o r t h i s purpose,
ho-
i t i s p r a c t i c a l l y i n s o l u b l e i n w a t e r a n d r a p i d l y decomposes
wever
by o x y d a t i o n .
The N y s t a t i n
y
CD c o m p l e x i s a r e l a t i v e l y s t a b l e ,
ea-
s i l y s o l u b l e powder, w e l l a p p l i c a b l e f o r such purpose ( 2 7 ) .
SEWAGE D E T O X I C A T I O N
A b i g v a r i e t y o f organic t o x i c substances (hydroxy-halogeno-, nitro-,
amino e t c .
d e r i v a t i v e s o f a r o m a t i c a n d a l i p h a t i c compounds)
o c c u r s i n t h e waste w a t e r s o f t h e o r g a n i c c h e m i c a l and pharmaceutical industry.
The b i o l o g i c a l w a s t e w a t e r t r e a t m e n t means t h a t t h e s e
t o x i c s u b s t a n c e s a r e degraded by c e r t a i n y e a s t s and b a c t e r i a w h i c h are present i n the b i o l o g i c a l sludge.
These m i c r o o r g a n i s m s c a n t o -
l e r a t e t h e t o x i c substances i f t h e i r c o n c e n t r a t i o n does n o t exceed a c r i t i c a l c o n c e n t r a t i o n a n d t r a n s f o r m s them b y m e t a b o l i c p r o c e s s e s t o non-toxic
substances.
By a p p r o p r i a t e a d a p t a t i o n ,
c o n c e n t r a t i o n o f t o x i c s u b s t a n c e s can be enhanced, t h i s c r i t i c a l concentration l i m i t
-
the tolerable but surpassing
even f o r a s h o r t t i m e
i n k i l l i n g the mentioned microorganisms,
i.e.
-
results
irreversible impairing
o f the detoxicating capacity o f the l i v i n g sludge.
t h i s b i o l o g i c a l system i s n o t a r a p i d process.
Regeneration o f
Therefore preserva-
t i o n o f the detoxicating capacity o f the " l i v i n g sludge"
i s a pri-
mary g o a l o f e n v i r o n m e n t a l p r o t e c t i o n . To a v o i d t h e c r i t i c a l
-
i.e.
"killing"
-
c o n c e n t r a t i o n o f waste,
w a t e r s o f s u p e r c r i t i c a l c o n c e n t r a t i o n s h a v e t o b e d i l l u t e d w i t h water,
t o reduce t h e c o n c e n t r a t i o n s t o s u b c r i t i c a l values.
Sometimes
t h i s method would need thousands o f t o x i c s u b s t a n c e f r e e w a t e r ,
which
is n o t always p o s s i b l e . A J d i n g CD,
w h i c h o f c o u r s e m u s t n o t be a p u r e o n e ,
the conver-
s i o n m i x t u r e w i t h about 50 % CD c o n t e n t i s s a t i s f a c t o r y t o t h e waste water,
and a c o n s i d e r a b l e p a r t o f t h e m e n t i o n e d o r g a n i c t o x i c compo-
unds w i l l be complexed.
(Fig.
6 ) . The c o m p l e x e d m o l e c u l e s w h i c h c a n
n o t p e n e t r a t e t h e c e l l membrane,
are not t o x i c
(28).
The c o n c e n t r a t i o n o f t h e f r e e t o x i c s u b s t a n c e s i s s t r o n g l y reduced,
below t h e c r i t i c a l c o n c e n t r a t i o n .
further
by t h e metabolic process,
As i t s c o n c e n t r a t i o n d e c r e a s e s
t h e CD-complex
behaves as a dynamic
depot,
-
395
r e l e a s i n g t h e i n c l u d e d molecules,
ned by t h e d i s s o c i a t i o n e q u i l i b r i u m ( F i g . Low CONC.
NON TOXIC FOR MICROORGANISMUS METABOLISM PROEEDS
and t h i s p r o c e s s i s gover-
7).
HIGH CONC
HIGH CONC
TOXIC FOR MICROORGANISMUS NO METABOLISM
NON TOXK: FOR MICROORGANISMUS METABOLISM PROCEEDS
F i g . 6 . The t o l e r a b l e l e v e l o f t h e t o x i c compounds i s a u g m e n t e d b y a d d i n g CD t o t h e t o x i c sewage.
NON -TOXIC
1
DETOXICATION
NON-TOXIC METABOCITES
F i g . 7. A d d i n g CD t o t h e t o x i c p - n i t r o c h l o r o b e n z e n e c o n t a i n i n g s e wage, a f r a c t i o n o f t h i s compounds w i l l b e c o m p l e x e d b y t h e C D . The CD-complexes b e i n g h y d r o p h y l i c - have l o w e r a f f i n i t y t o t h e l i p o p r o t e i n c e l l membranes o f t h e m i c r o b i a l c e l l s , t h e r e f o r e a r e c o n s i d e r e d t o be l e a s t o x i c . Only t h e non-complexed f r a c t i o n w i l l p e n e t r a t e t h r o u g h t h e c e l l membranes.
-
A m i x e d i n d u s t r i a l and communal w a s t e w a t e r , phenol,
p-chlorophenol,
t r e a t e d b y t h e c o n v e n t i o n a l merhod,
RCD.
t h a t contained
b e n z e n e a n d f u r t h e r o r g a n i c s u b s t a n c e s was
w i t h o r w i t h o u t a d d i n g 40 m g / l
The r e s u l t s a r e s e e n i n T a b l e 2.
Before treatment
Phenol p-Chlorphenol Benzene Oxygen C o n s u m p t i o n
30 10 4 BOO
A f t e r 24 h A f t e r 24 h conventional treatment w i t h treatment a d d i n g 40 m l / l 0 CD
10 5
3 200
1 1 0905 60
- 396
The a d d i t i o n o f s o l u b l e
n
-
CD-polymer
t o p h e n o l c o n t a i n i n g sewa-
ge i n c r e a s e s t h e e f f i c i e n c y o f m i c r o b i o l o g i c a l d e t o x i c a t i o n o f p h e n o l by Candida t r o p i c a l i s . with
0 CO-polymer
The c e l l s f i x e d i n p o l y m e r b e d s t o g e t h e r
c a n b e r e u s e d f o r sewage t r e a t m e n t
(29).
R EF E R E N C E S
1 2 3 4
5 6 7 8 9
10 11 12
13 14 15 16 17 18 19 20 21
22 23 24 25 26 27
J . S z e j t l i , " C y c l o d e x t r i n s a n d T h e i r I n c l u s i o n C o m p l e x e s " , Akad B m i a i K i a d 6 . B u d a p e s t , 1982. J . S z e j t l i , " C y c l o d e x t r i n T e c h n o l o g y " , K l u w e r Academic P u b l . , O o r d r e c h t , 1988. I.Habon, A . S t a d l e r - S z o k e and J. S z e j t l i , M a g y a r K B m i k u s o k L a p j a , 60 231 ( 1 9 8 5 ) . N.E. U d v a r d y , I. B a r t h a , G . H a n t o s , M. T r i n n , 2 s . V i d a , J. S z e j t l i , A . S t a d l e r - S z o k e , I.Habon a n d M. B a l d z s ( R i c h t e r Gedeon), 99:4069). B e l g . P a t . 894, 501 (19831, ( C . A . T . S u z u k i , J. Okada a n d H . Sawada ( T o k e d a C h e m i c a l I n d . ) , E u r . P a t . A o D ~ . E P 91. 7 8 1 ( 1 9 8 3 ) . ( C . A . 100:4792). S h i k i s h ' i m a B o s e k i ( 1 9 8 6 1 , J p n . K o k a i 8 5 , 239, 4 2 4 . Y . S u z u k i , A . I m a i z u m i , H . S a t o and Y . S a t o , J p n . J. Med. S . , 36 111 ( 1 9 8 3 ) . A . I m a i z u m i , Y . S u z u k i , 5 . Ono, H. S a t 0 a n d Y . S a t o , I n f e c t i o n a n d Immun. 1138 ( 1 9 8 3 ) . Y . S u z u k i , A . I m a i z u m i , 5 . Onos, H . S a t o a n d Y . S a t o A b s t r a c t ymp. o n Book o f 3 r d I n t . Symp. C l a t h r a t e Comp. a n d 2nd I n t . C y c l o d e x t r i n s , Tokyo, J u l y 23-27, 1 9 8 4 . T e i j i n KK ( 1 9 8 5 ) , J p n . K o k a i 8 5 , 1 5 5 , 1 2 7 . A . I m a i z u m i , Y . S u z u k i , 5 . Ono, H. S a t o a n d Y . S a t o , J. C l i n . Microbiol. 17 781 (1983). Y . S u z u k i , A . 1maizumi;H. Yamaguchi, M. K a n e s a k i a n d 5 . Ono, Jpn. K o k a i 8 3 , 6 7 , 1 8 2 ( 1 9 8 3 1 , (C.A. 3 3 : 1 3 8 1 9 1 ) . T e i j i n L t d , J p n . K o k a i , 83, 6 7 , 1 8 8 ( 1 9 8 3 1 , (C.A. 3 3 : 1 8 3 2 2 5 ) J. S z e j t l i , L . S z e n t e , K . K d l b i , J. M a r t o n a n d A . G e r l G c z y , Hung. P a t . A p p l . 7 5 / 8 5 1 9 8 5 . I. S i n g h a n d Y . K i s h i m o t o , J. L i p i d Res. 24 6 6 2 ( 1 9 8 3 ) . I. S i n g h , R . S i n g h , A . Bhushan a n d A . K . S G g h ( 1 9 8 5 ) , A r c h - 8 ochem. B i o p h y s . 236 418, ( C . A . 102:91817). I. Yamane, M. Kan, Y . M i n a m o t o a n d Y . A m a t s u j i , P r o c . J p n . Acad., S e r . B. 11 385 ( 1 9 8 1 ) (C.A. 8 6 : 1 0 0 4 8 8 ) . I. Yamane, M. Kan, Y . M i n a m o t o a n d Y . A m a t s u j i , C o l d S p r i n g H a r 97:212006). b o r Conf. C e l l P r o f i f e r a t i o n , 1982. p . 87, ( C . A . 98:124208). A j i n o m o t o Co., J p n . K o k a i , 8 2 , 1 9 4 , 787, ( 1 9 8 2 ) ( C . A . Agency o r I n d . S c i . Tech. ( 1 9 8 6 1 , J p n . K o k a i 86, 6 3 , 279. K . Kawamura, J. E n a m i , K . Kohmoto a n d M. Koga ( 1 9 8 5 1 , O o k k y o J. Med. S c i . 167, ( C . A . 104:164689). Agency o f I n d . S c i . Tech. ( 1 9 8 5 ) , Jpn. K o k a i 8 5 , 8 7 , 7 8 5 ) . H . O h m o r i , I. Yamamoto ( 1 9 8 7 1 , J. Immun. 17 79 ( C . A . 106:174219). H. O h m o r i , M . I e n a g a a n d I. Yamamoto ( 1 9 8 7 1 , Jpn. J. P h a r m a c o l . 44 2 2 5 , ( C . A . 107:51288). M. Hammani, G. Maume a n d B . Maume ( 1 9 8 6 ) , C e l l . B i o l . T o x i c o l . 105:219064). 2 41, ( C . A . Y . Minamoto and K. M i t s u g i , G r o w t h D i f f e r . C e l l s D e f i n e d E n v i r o n . Kodansha T o k y o , 1985. P r o c . I n t . Symp., 1 9 8 4 . (Ed.: M u r a k a m i H . ) , p. 127. J. S z e j t l i , A . S t a d l e r - S z o k e , A . Vikmon, 5. P i u k o v i c h , 1. I n c e f y , C . K u l c s A r a n d G. Z l a t o s , Hung. P a t . A p p l . 4 5 0 8 / 8 3 ( 1 9 8 3 ) .
2
12
28
29
397 -
P. F a r k a s , L . S z e n t e , J. O l a h , J . S z e j t l i and T . C s e r h e t i ( 1 9 8 6 ) 105:84597). Hung. T e l j e s HU 3 7 , 7 2 7 , ( C . A . B . B d n k y , K . Recseg and 8 . Novdk, Magy, K B m . L a p j a 40 1 8 8 ( 1 9 8 5 ) .
This Page Intentionally Left TBlank
BIOTECHNOLOGY OF METALS AND T H E E N V I R O N M E N T
KUSNIEROVA, D . K U P K A , E . P A S T I R f K O V A , J. E E C H O V S K A a n d V . S E P E L A K
F . SPALDON,
M.
Mining I n s t i t u t e o f the Slov.
Biotechnology of nology.
Academy o f Sc.,
ESFR
m e t a l s i s a new f i e l d o f s c i e n t i f i c b i o t e c h -
I t s aim i s t o e x t r a c t m e t a l from o r e s , c o n c e n t r a t e s ,
and s o l u t i o n s u n d e r t h e a c t i o n o f b o l i t s /l/. a)
KoSice,
microorganisms and/or
rocks
t h e i r meta-
I t s sections are:
biohydrometallurgy or b a c t e r i a l metal leaching,
b) ore enrichment, c) b i o s o r p t i o n o f m e t a l s from s o l u t i o n s . C o n s i d e r i n g b i o g e o t e c h n o l o g y p u r e l y f r o m t h e t e c h n o l o g i c a l and e c o n o m i c a l p o i n t o f v i e w we m u s t r e a l i z e t h e s h o r t c o m i n g s a s w e l l as t h e advantages.
As f o r t h e s h o r t c o m i n g s ,
i t i s mainly a tedious
p r o c e s s t h a t i n f l u e n c e s t h e r e l a t i v e l y l a t e r e t u r n o f t h e expended c a p i t a l costs.
However,
on t h e o t h e r h a n d ,
t h e o p e r a t i n g c o s t s can
b e r e d u c e d a n d t h e s t r e s s on t h e e n v i r o n m e n t c a n be d i m i n i s h e d . p o s i t i v e i n f l u e n c e o f b i o g e o t e c h n o l o g y on t h e e n v i r o n m e n t
The
i s the
subject matter o f our r e p o r t .
I t i s g e n e r a l l y known t h a t one o f t h e m o s t i m p o r t a n t p r o b l e m s a f f e c t i n g t h e environment i s the emission o f s u l f u r dioxide.
More
t h a n 100 m i l l i o n t o n s o f c o a l i s e x p l o i t e d annualy i n C z e c h o s l o v a k i a .
I f t h e e s t i m a t i o n o f t h e average c o n t e n t o f s u l f u r i s 1 , 5 X , then t h r e e m i l l i o n t o n s o f s u l f u r d i o x i d e i s r e l e a s e d d u r i n g t h e combust i o n . o f t h a t amount.
I f added t o i t a r e t h e e x h a l a t i o n s f r o m m e t a -
l l u r g i c a l and chemical p r o d u c t i o n and from t r a f f i c ,
we come t o v a -
l u e s which a r e a l a r m i n g and t h e y a r e r i s i n g w i t h i n c r e a s i n g i n d u strialization.
T h e r e f o r e i t i s n a t u r a l t o l o o k f o r methods t o dec-
rease t h i s danger t o a c c e p t a b l e l e v e l s .
The t h i o b a c t e r i a T h i o b a c i l -
l u s t h i o o x i d a n s and m a i n l y T h i o b a c i l l u a f e r r o o x i d a n s d i s c o v e r e d i n mining waters /2/
by Colmer and H i n k l e i n 1947 c o u l d h e l p i n s o l v i n g
t h a t problem.
They a r e a e r o b i c ,
400
-
a u t o t r o p h i c b a c t e r i a f o r which the
source o f carbon f o r t h e i r metabolism i s C02 from a i r , dation reactions o f inorganic substrates o f iron, t h e source o f energy.
and t h e o x i -
sulfur,
etc.
are
The p r a c t i c a l u s e o f phenomena o f b i o c h e m i c a l
oxidation o f sulfides i s investigated intensively f o r the exploitat i o n and t r e a t m e n t o f o r e s .
I t i s n o t w i t h o u t i n t e r e s t t h a t t h e European primacy o f o b t a i n i n g c o p p e r by b i o l e a c h i n g i s c o n c e d e d t o o u r m i n i n g / 3 / .
According
t o h i s t o r i c a l documents a s e a r l y a s 1 5 - t h c e n t u r y i n Smolnfk,
copper
was o b t a i n e d f r o m t h e d e p o s i t o f c h a l c o p y r i t e b y c e m e n t a t i o n r e d u c t i o n from m i n i n g water /4/.
T h i s way o f t r e a t m e n t h a s o u t l a s t e d t h e
c e n t u r i e s t o t h e p r e s e n t day / 5 / . c o p p e r went
into
ferrooxidans.
Our a n c e s t o r s d i d n o t know t h a t
s o l u t i o n by t h e o x i d a t i o n e f f e c t o f T h i o b a c i l l u s
A t p r e s e n t i t i s known a n d t h e r e f o r e i t w o u l d b e p o -
s s i b l e t o m o d i f y and modernize t h e o p e r a t i o n o f b i o l e a c h i n g e x p e d i e n tly.
The a c t i o n o f T h i o b a c i l l u s
f o r m a t i o n o f copper
f e r r o o x i d a n s b a c t e r i a on t h e t r a n s -
from i n s o l u b l e c h a l c o p y r i t e i n t o a s o l u b l e form
o f CuS04 c a n b e e x p r e s s e d by t h e f o l l o w i n g c h e m i c a l e q u a t i o n s :
T.f.
CuFeS2
+ 4 O2
CuS04 + FeS04
T.f.
4 FeS04
+
O2
+
2H2504
2 Fe2(SOLt)3 + 2 H20
Chem.
CuFeS2
+ 2
+
3 0
Fe2(S04)3
-
CuS04
+
5 FeS04
+
2 So
(3)
T.f.
2 So
2
+
H20
2 H2S04
(4)
T.f.
Oxidation reactions 1,2
and 4 t a k e p l a c e u n d e r t h e c o a c t i o n o f bac-
t e r i a l enzymes a n d r e a c t i o n 3 is e x c l u s i v e l y a c h e m i c a l o x i d a t i o n .
A l o w pH v a l u e i s o f i m p o r t a n c e f o r t h e o c c u r a n c e o f t h e a b o v e r e a c t i o n s s i n c e a t pH
=
1.91 formation o f hydroniumjarosite p r e c i p i t a t e
s t a r t s according t o the equation
Fe3+
+ SO, + HS04 + 6 H20
-1
HFe(S04)2(0H)6
+ 6 H+
(5)
- 401
a n d on f u t h e r pH i n c r e a s e s above 2.8
and a p r e c i p i t a t e o f f e r r i c
h y d r o x i d e i s formed Fe3+
whereby
+
-1
3 H20
Fe(OHI3
+
3 H'
t h e o x i d a t i o n a g e n t F e 2 ( S O 4 l 3 v a n i s h e s f r o m t h e l i q u i d me-
dium / 6 / . I n t h e c l o s e n e i g h b o r h o o d o f a c h a l c o p y r i t e o r e m i n e i n t h e Smoln i k l o c a l i t y t h e r e a r e o l d p i t dumps c o n t a i n i n g s e c t i o n s w i t h a c o p p e r c o n t e n t o f up t o 1 % .I t i s f r o m t h e o l d h i s t o r i c i m p e r f e c t o r e dressing technology,
the time p r i o r t o the i n v e n t i o n o f the f l o t a -
tion,
when p o o r e r f i n e l y i n t e r g r o w n o r e s were n o t r e c o v e r e d .
day's
technological feasibilities,
r a l deposits
and,
By t o -
s u c h dumps a r e c o n s i d e r e d n a t u -
consequently a r e p r o t e c t e d under the m i n i n g law
and must n o t be i m p a i r e d , o f e x t r a c t i n g copper
i.e.
nor recultivated.
One o f t h e m e t h o d s
f r o m o l d dumps i s b y b a c t e r i a l l e a c h i n g w h i c h
can be f o l l o w e d by r e g e n e r a t i o n o f t h e e n v i r o n m e n t t h r o u g h r e c u l t i vation.
l o r e c o v e r c o p p e r f r o m t h e S m o l n i k dumps a p l a n t was b u i l t i n t h e s e v e n t i e s f o r w e t t i n g dumps w i t h a s t r o n g a c i d s o l u t i o n o f F e S 0 4 , containing the bacteria o f Thiobacillus ferrooxidans. l h e l e a c h i n g s o l u t i o n s o a k e d t h r o u g h t h e dump a n d l e a c h e d c o p p e r from t h e c h a l c o p y r i t e , t h e mine water
soaked i n t o t h e mine,
and t o g e t h e r w i t h
( a l s o c o n t a i n i n g t h e leached copper
from underground
m i n e s p a c e s ) was pumped i n t o c e m e n t a t i o n f o r p r e c i p i t a t i o n o f c o p p e r
/7/.
1-hanks t o U V R t h e p l a n t was p r e p a r e d and e q u i p p e d w i t h g o o d
technical standards,
i n c l u d i n g copper c e m e n t a t i o n and r e g e n e r a t i o n
o f the bioleaching solution.
A t first,
extensive l a b o r a t o r y rese-
a r c h was c a r r i e d o u t t o f i n d t h e o p t i m a l p a r a m e t e r s f o r g r o w i n g t h e s t r a i n of
T h e o b a c i l l u s f e r r o o x i d a n s w h i l e i s o l a t e d from t h e Smolnik
mine water and under c o n d i t i o n s f o r o p t i m a l i z a t i o n o f a l e a c h i n g r a t e and r e c o v e r y r a t i o o f Cu f r o m t h e Smolnik o r e . the temperature e f f e c t , lues,
Besides studying
t h e g r a n u l o m e t r y o f t h e s o l i d phase,
pH va-
t h e a e r a t i o n e f f e c t and l e a c h i n g under s t a b l e as w e l l as k i -
n e t i c c o n d i t i o n s were a l s o s t u d i e d .
Under o u r c l i m a t i c c o n d i t i o n s
t h e t e m p e r a t u r e e f f e c t was o f g r e a t i m p o r t a n c e s i n c e t h e a c t i v i t y of
t h i o b a c t e r i a i s known t o d e c r e a s e w i t h a t e m p e r a t u r e d r o p a n d i t
was n e c e s s a r y t o f i n d o u t t h e l o w e r t e m p e r a t u r e l i m i t a t w h i c h t h e technological
u t i l i z a t i o n o f b i o l e a c h i n g can s t i l l be p r o f i t a b l e .
The number a n d t h e a c t i v i t y o f b a c t e r i a a r e r e v e a l e d b y t h e o x i d a t i o n
o f Fez+.
402
-
Thus t h e d r o p o f F e 2 + c o n c e n t r a t i o n i n d e p e n d e n c e on t h e
d r o p o f c u l t i v a t i o n t e m p e r a t u r e g a v e us i n f o r m a t i o n o n t h e c u l t i v a -
1). Hence a c o n c l u s i o n was d r a w n
t i o n temperature conditions (Fig.
t h a t t h e l e a c h i n g i n t e n s i f i c a t i o n p r o c e s s can be c o n s i d e r e d t o be s u c c e s s f u l i f t h e ambient t e m p e r a t u r e does n o t d r o p b e l o w 12
OL--
12 14 16 I8 20
OC.
Z 24 T
[TI
F i g . 1. D i a g r a m o f F e z + d e c r e a s e ( b y b a c t e r i s l o x i d a t i o n i n t o F e 3 + ) i n d e p e n d e n c e on T ( O C ) .
This l e d us t o the d e c i s i o n t o r e s t r i c t the a p p l i c a t i o n o f the leac h i n g t e c h n o l o g y t o dumps i n t h e m o n t h s o f A p r i l - O c t o b e r t h e t e m p e r a t u r e c o n d i t i o n s can be met.
i n which
On t h e b a s i s o f l a b o r a t o r y
r e s u l t s a n d m o d e l t e s t s a p i l o t p l a n t was b u i l t f o r t h e l e a c h i n g o f dumps a n d f o r i n t e n s i f i c a t i o n o f c o p p e r l e a c h i n g f r o m dumps a t Smolnik.
The t e c h n o l o g i c a l
scheme i s shown i n F i g .
2.
The w h o l e i n s t a l l a t i o n c o n s i s t s o f t w o s e c t i o n s . presents a modernized cementation.
S e c t i o n Z re-
A p a r t o f waste water i s u t i l i z e d
f o r scavenging t h e p r e c i p i t a t e d cementation copper
from t h e troughs.
The w a a t e w a t e r t h e n f l o w s i n t o t h e n e i g h b o r i n g s e c t i o n R ,
w h i c h 8er
v e s f o r i t s r e g e n e r a t i o n o f pH c o n d i t i o n i n g b y means o f a u l p h u r i c acid,
a d d i t i o n o f f r e s h a c t i v e b a c t e r i a l c u l t u r e and t h e n e c e s a a r y
o x i d a t i o n by a e r a t i n g .
The r e g e n e r a t i o n i s p e r f o r m e d i n t h e r e g e n e -
r a t i o n t a n k t h e volume o f w h i c h a l l o w s r e p l a c e m e n t o f t h e l i q u i d i n
1.8
day /8/. D u r i n g one c a m p a i g n ( A p r i l - O c t o b e r )
l i q u i d p h a s e was f o u n d t o b e 9.8
the lose of
the
%.
A f r e s h a c t i v e b a c t e r i a l c u l t u r e was p r e p a r e d i n t h e c u l t i v a t o r set-up
shown i n F i g .
3.
I t s main p a r t s are a c u l t i v a t o r o f the
shape o f a t h e r m a l i s o l a t e d c y l i n d r i c a l v e s s e l w i t h b u i l t - i n a e r a t i n g t u b e s and a c y l i n d r i c a l m i x i n g t a n k .
arch
-
403
'I-
z
-
R
F i g . 2 . L a y o u t o f c e m e n t a t i o n a n d o f b a c t e r i a l l e a c h i n g i n t h e Smolbiologic leaching; n i k l o c a l i t y 2- cementation; R - r e g e n e r a t i o n . 1 2 , 4 , 6 - e n r i c h e d s o l u t i o n ; 3 - c o l l e c t i n g t a n k f o r t h e e n r i c h e d sol u t i o n ; 5 - c o n i c a l cementator; 7 - trough cementator; 8 - cementat i o n sediment; 9 - d r y i n g o f cementation sediment; 10 - d r y cementaa c i d wast i o n s e d i m e n t f i n a l p r o d u c t ; 11 - d e p l o t e d s o l u t i o n ; 1 2 t e s o l u t i o n ; 13 - c o l l e c t i n g t a n k f o r r e g e n e r a t i o n o f t h e s o l u t i o n ; 14 h o p p e r ti2504; 1 5 - H z S 0 4 ; 1 6 - c u l t i v a t o r ; 1 7 - a i r i n l e t ; 18 - s u p p l y t a n k f o r n u t r i e n t m e d i a ; 1 9 - n u t r i e n t s u b s t a n c e s ; 20 - n u t r i e n t medium; 2 1 - f r e s h l e a c h i n g medium; 2 2 - medium f o r l e a c h i n g a n d c e m e n t a t i o n ; 23 - p a r t i a l f l o w o f w a s t e c e m e n t a t i o n m e d i a f o r r i n s i n g t h e t r o u g h ; 24 - e m e r g e n c y o u t f l o w i n c a s e o f f a i lure i n regeneration s e c t i o n .
-
-
-
-
c u l t i v a t o r ; B - mixingF i g . 3 . R e g e n e r a t i o n o f l e a c h i n g medium A cementing water; 2 - additions to t a n k ; C - h e a t e r ; D - pump; 1 c u l t i v a t i n g medium 9 K ; 3 cultivating substrate 9 K; 4 - air inlet; 5 p e r f o r a t e d t u b e s f o r a i r d i s t r i b u t i o n ; 6 - l e a c h i n g solution of high bacteria concentration.
-
-
-
-
404
-
The d a i l y c o p p e r r e c o v e r y was a b o u t 1 5 0 k g w h i c h a f f o r d e d ab o u t 30 t o f copper.
When m a k i n g a c o m p a r i s o n b e t w e e n t h e p r o d u c t i o n
w i t h t h e i n t r o d u c e d b a c t e r i a l c u l t i v a t i o n and t h e p r o d u c t i o n w i t h o u t i t , t h e former proved t o be 18-20
X h i g h e r . However,
i n the meantine
t h e S m o l n i k d e p o s i t was d e p l e t e d a n d i t was d e c i d e d t o c e a s e t h e m i n i n g o p e r a t i o n s and a l l o w a b l a s t o u t o f t h e abandoned p i l l a r s w h i c h were p o o r i n c o p p e r
( a b o u t 0,15
% Cu) a n d t o r e c o v e r c o p p e r
from
them b y a p p l y i n g t h e m e t h o d o f u n d e r g r o u n d l e a c h i n g . An i m p o r t a n t f i e l d o f u t i l i z i n g t h e a c t i o n o f m i c r o o r g a n i s m s i s i n t h e t r e a t m e n t o f t h e mined o r e and i n b e n e f i c a t i o n o f concent r a t e s where t h e f a c t i s made u s e o f t h a t t h e b i o c h e m i c a l o x i d a t i o n
i n the presence o f several s u l p h i d i c minerals i s c a r r i e d o u t selectively.
K a r a v a j k o /1/ s t a t e s t h a t m i x t u r e s o f d i f f e r e n t p a i r s o f
sulphides forming a galvanic c e l l , wer e l e c t r o d e p o t e n c i a l , t h e anode,
t h e sulphide possessing the l o -
i n the given galvanic p a i r representing
w i l l be o x i d i z e d p r e f e r e n t i a l l y by b a c t e r i a ,
e.g.
p a i r s o f sulphides:
preferential biooxidstion:
chalcopyrite-arsenopyrite
arsenopyrit e
chalcopyrite-sphalerite
s p h a l e r it e
chalcopyrite-molybdenite chalcopyrite-pentlandite
pentlandite
antimonite-cinnabar
antimonite
chalcopyrite
T h i s f a c t may be u s e d i n s e l e c t i n g l e a c h i n g a 0 t h a t t h e p r e f e r e n t i a l l y o x i d i z e d m i n e r a l w i l l pass f i r s t
i n t o the solution,
or
i n s e l e c t i v e f l o t a t i o n o f t h e above p a i r s o f m i n e r a l s s o t h a t t h e p r e f e r e n t i a l l y o x i d i z e d m a t e r i a l w i l l be suppressed. I n an e n d e a v o r t o c o n t r i b u t e t o i m p r o v i n g t h e e n v i r o n m e n t , we h a v e i n v e s t i g a t e d t h e p r o b l e m o f d e a r s e n i s a t i o n o f c h a l c o p y r i t e from
t h e S l o v i n k y l o c a l i t y by m i c r o b i o l o g i c a l l e a c h i n g o f t h e con-
c e n t r a t e c o n t a i n i n g 2,5
up t o 3
X As. F o r t h i s r e a s o n we i s o l a t e d
b a c t e r i a l s t r a i n Thiobacillus ferrooxidans from t h e mining waters o f a number o f d e p o s i t s ( S r n o l n i k , Hora, Moat).
Pezinok, Odbrava,
HodruSa,
KutnA
We h a v e a t u d i e d t h e i r o x i d a t i o n a c t i o n i n l e a c h i n g a n d
c a r r i e d o u t an e x t e n s i v e i n v e s t i g a t i o n o f t h e i r a d a p t i b i l i t y i n t h e presence o f heavy m e t a l s and a r s e n i c
as w e l l as t h e e f f e c t o f t h e
p u l p d e n s i t y on t h e l e a c h i n g p r o c e s s a n d t h e e f f e c t s o f a e r a t i o n and c o n c e n t r a t i o n o f c e l l s on t h e r e s u l t a n t p a r a m e t e r s o f l e a c h i n g . Leaching t e s t s used a Cu-concentrate
c o n t a i n i n g 24,82
X
Cu,
23,67
X
Fe,
34,94
-
405
L S i 0 2 , w h i l e t h e p r e s e n c e o f a r s e n o p y r i t e was
% 5 , 2,74
m a n i f e s t e d b y t h e c o n t e n t o f 2 , 4 ?A As.
According t o P o l k i n e t a1
( 9 ) t h e r e i s an e l e c t r o d e p o t e n t i a l o f a r s e n o p y r i t e V i n an a c i d medium a t pH 2,5
c h a l c o p y r i t e -0,547
a r e p r e s e n t i n t h e medium.
-
V and o f
0,497
i f thiobacteria
The a n o d i c d i s s o l u t i o n o f t h e a r s e n o p y -
r i t e w i l l occur as f o l l o w s :
bact.
FeAsS
o r t h e o x i d a t i o n r e a c t i o n w i t h Fe
+
FeAsS
+
F e z + + As3+
-
So
7 e-
(7)
3+
chem.
Fe3+
+
+
2 Fez+
As3+
+
So
+ 6
s-
..
(8)
u n s t a b l e As3+ r e a c t s w i t h w a t e r i n t o H3As03. H3As03, F e z + , S o s r e t h e r m o d y n a m i c a l l y
unstable t h e r e f o r e t h e reac-
t i o n s continue
H ~ A S O+ ~ 3 H ~ O
-
bact.
Fez+
Fe3+
+
H ~ A ~ O+ ; 3 H+
+
2 e-
e-
bact.
So
+
4 H20
SO:-+
8 H+
+
6 e-
a n d Fe3+ r e a c t s w i t h H2As04 i n t o f e r r i c a r s e n a t e :
chem.
Fe3+
+
H2As04
FeAs04
+
2 H+
(12)
L e a c h i n g was c a r r i e d o u t i n 250 m l f l a s k s on a l a b o r a t o r y s h a k e r r o t a t i n g a t 240 min-'
s h a k e s w i t h t h e a m p l i t u d e o f 5 mm a t t h e tem-
p e r a t u r e o f 28-30
The c h a r a c t e r i s t i c r e s u l t s a r e g i v e n i n F i g ,
OC.
I t i s e v i d e n t f r o m t h e above p i c t u r e 4-F s i t i o n o f a r s e n i c i n t o t h e l i q u i d phase,
that during the tran-
some c o p p e r i n t h e f o r m
o f s o l u b l e s a l t CuS04 g e t s i n t o t h e s o l u t i o n f r o m t h e c o n c e n t r a t e . T h i s c o p p e r c a n b e r e c o v e r e d s o t h a t t h e l e a c h pH v a l u e i s m o d i f i e d t o 3 . 1 by h e l p o f l i m e m i l k .
3 H2Aa0;
+
3 Ca(OH)2 + Fe3+-
FeAs04
+
Ca3(AsO4I2
+
6 H20
(13) I n s o l u b l e a r s e n a t e s a l t s p r e c i p i t a t e and t h e r e m a i n i n g l e a c h c o n t a i n i n g CuS04 i s p a a a e d i n t o c e m e n t a t i o n o r e l e c t r o l y s i s w h e r e c o p p e r
4.
-
-s 70
406 -
0
s
m
I
3 60
80
50 40
60
30 20 10
LO
20
40pz<
20
5
10
l5 t [ d l
2L, 80
u.
u?
60 40 20
0
F i g . 4 . A - A d a p t a t i o n e f f e c t on e x t r a c t i o n o f As f r o m C u - c o n c e n t r a E x t r a c t i o n o f As t e , l... n o t a d a p t e d , 2 . . . a f t e r a d a p t a t i o n ; B b y b a c t e r i a Th. f e r r . from v a r i o u s l o c a l i t i e s : M . . . M o s t , KH... Kutn6 Hora, S . . . S m o l n i k , D... Ddbrava, H . . . HodruSa, P . . . P e z i n o k ; C - S u s p e n s i o n d e n s i t y o n As e x t r a c t i o n ; l... ? = 2 X , Z... ? 4 5, 3... 7 1 0 76, 4 . . . P = 2 0 X ; D - E f f e c t o f i n o c u l a v o l u m e on As e x t r a c t i o n from Cu-concentrate, E - A e r a t i o n e f f e c t on e x t r a c t i o n o f As f r o m C u - c o n c e n t r a t e ; F L e a c h i n g s e l e c t i v i t y o f As a n d Cu f r o m Cu-concentrate.
-
-
.
-
407
-
i s r e c o v e r e d f r o m i t . The a c i d l e a c h e d s o l u t i o n i s t h e n r e c i r c u l a t e d i n t o the bioleaching process. Another method o f u s i n g b a c t e r i a l o x i d a t i o n o f s u l f i d e s i s t h e recovery o f fine-disseminated gold from s u l f i d e minerals.
There a r e
ores i n which g o l d i n s u l f i d e s i s u l t r a f i n e d i s s e m i n a t e d and i t i s n o t p o s s i b l e t o o b t a i n i t by c y a n i z a t i o n a f t e r u s u a l g r i n d i n g . ores are c a l l e d "refractory usually contain free gold, pyrhotine.
gold ores"
(10).
Such
Refractory g o l d ores
submicroscopic gold,
carbon,
heavy m e t a l s ,
By means o f t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y a n d Mtlssba-
uer spectroscopy,
r e f r a c t o r y o r e s have been f o u n d t o c o n t a i n g o l d
a l s o c h e m i c a l l y combined i n s u l p h i d e s .
There a r e i n d i c a t i o n s t h a t
etoms o f g o l d s u b s t i t u t e a r s e n i c i n t h e s u l p h i d i c l a t t i c e
Such s u l -
p h i d e s h a v e t o b e c o m p l e t e l y decomposed s o a s t o f r e e o f t h e g o l d bonded i n t h e l a t t i c e .
T h i o b a c t e r i a a r e a b l e t o decompossite c r y s -
t a l i c l a t t i c e o f s u l f i d e s t o such an e x t e n t t h a t d i s s e m i n a t e d g o l d i s r e v e a l e d a n d opened t o t h e l e a c h i n g e f f e c t o f c y a n i d e , a substantial increase of
by which
A comparison o f c a p i t a l
gold i s achieved.
c o s t s f o r o b t a i n i n g g o l d between c l a s s i c m e t a L l u r g i c a 1 methods and b a c t e r i a l leaching. a) by method o f r o a s t i n g b ) by method o f p r e s s u r e l e a c h i n g c) comes
100
x
134
X X
by method o f b a c t e r i a l l e a c h i n g
81
out i n favor o f b a c t e r i a l leaching,
m a i n l y due t o t h e a d v a n t a -
geous s o l v i n g o f t o x i c e m i s s i o n s .
A t o u r w o r k i n g - p l a c e we a r e s t u d y i n g t h e p r o b l e m o f b a c t e r i a l r e l e a v i n g g o l d from our domestic sources o f m i n e r a l ores.
Sulphidic
a u r i f e r o u s c o n c e n t r a t e f r o m t h e P e z i n o k d e p o s i t was u s e d f o r o u r r e search. As,
The c h e m i c a l c o n c e n t r a t e c o m p o s i t i o n was a s f o l l o w s :
L,58 % Sb, 2 8 , 2 8 X Fe, 31,63 7; S ,
From t h e m i n e r a l o g i c a l p o i n t o f v i e w , c a r r i e r s o f gold are arsenopyrite,
6,12
X
S i 0 2 , 37,82
the main s u l p h i d i c minerals-
a n t i m o n i t e and p y r i t e .
The c o n c e n t r a t e g r a i n s i z e d i s t r i b u t i o n : G r a n u l a r i t y g r a d [mm]
0,07 0,04
0,03
-
-
0,Ol 091 0,07 0,04
0,02 0,03 0 , O l - 0,02 0,005- 0901 - 0,006
14,6
ppm Au.
Grade p o r t i o n
7
9 1
17,7
35,5 10,3 10,4 992 397 6 1 100,o
[X]
X
-
408
-
The i n v e s t i g a t i o n o f t h e c o n c e n t r a t e s a m p l e s by means o f an e l e c t r o n m i c r o s c o p e and by o t h e r i n s t r u m e n t s l e a d s t o t h e c o n c l u s i o n t h a t g o l d i s c h e m i c a l l y bonded i n t h e c a r r i e r s u l p h i d e s .
The p o r t i o n
o f t h e i n t i m a t e l y b o n d e d g o l d i s h i g h e r t h a n 9 5 % a n d t h u s t h e samp l e i s t o be c h a r a c t e r i z e d as r e f r a c t o r y g o l d ore. F o r l e a c h i n g t h e a u r i f e r o u s c o n c e n t r a t e we h a v e c h o s e n b a c t e -
r i a l strains
Thiobacillus
va D and M o s t M.
f e r r o o x i d a n s from two d e p o s i t s a t Dubra-
The s t r a i n D i s a n e f f i c i e n t one a n d comes f r o m t h e
deposit i n which t h e m i n e r a l o g i c a l ore composition i s s i m i l a r t o t h a t f r o m P e z i n o k ; t h e s t r a i n M comes f r o m a c o a l d e p o s i t ,
hovewer i t
p o s s e s s e d a c u l t i v a t e d h i g h r e s i s t a n c e t o a r s e n i c a t a good l e a c h i n g efficiency.
The l e a c h i n q was c a r r i e d o u t p a r a l l e l on s h a k e r s i n
f l a s k s o f 2 5 0 m l w h i l e t h e amount o f p u l p was 1 0 0 m l , d e n s i t y o f t h e s o l i d phase. OC
a t t h e 20 %
The t e m p e r a t u r e was m a i n t a i n e d a t 2 8 - 3 0
a l l the time.
The l e a c h i n g t e s t r e s u l t s a r e p r e s e n t e d i n t h e f o l l o w i n g t a b l e : -
Sequence of samples
Degree o f t h e s t r u c t u r e breakdown Arsenopyrite Pyrite
1x3
[z3
Bact. leaching
Extract. gold leaching
I
Gold r e r n v ~ r y i n the leach
(x 1
1
0
D
0
Tm
2
0
0
0
NaCN
3
55,8
11,3
D
Tm
4
55,8
11,3
D
NaCN
37,15
5
48,5
18,5
M
Tm
35,c)O
3,B6
2,98 41,04
The s u l p h i d e d i s s o c i a t i o n d e g r e e s p r e s e n t e d i n t h e s e c o n d a n d t h e t h i r d c o l u m n s o f t h e t a b l e a b o v e were d e t e r m i n e d by t h e X - r a y f f r a c t i o n method. urea-Tm,
di-
G o l d e x t r a c t i o n l e a c h i n g was p e r f o r m e d w i t h t h i o -
o r w i t h s o d i u m cyanide-NaCN.
The f i r s t t w o s a m p l e s u s e d i n
t h e e x t r a c t i o n l e a c h i n g w i t h o u t any p r e v i o u s d i s s o c i a t i o n o f c r y s t a l l a t t i c e s by b a c t e r i a l o x i d a t i o n ,
afforded a very low gold recovery,
which proved t h a t there i s l e s s than 4 p l e o f a refractory character.
L f r e e g o l d i n t h e g i v e n sam-
B a c t e r i a l l e a c h i n g i n samples 3,
4,5
d i s s o c i a t e s t h e s u l p h i d e l a t t i c e s and t o t h i s corresponds g o l d ext r a c t i o n o f 35 up t o 4 1 %.
These v a l u e s depend on u n e q u a l p y r i t e and
arsenopyrite dissociations, differences of
w h i c h f o l l o w s from t h e above m e n t i o n e d
t h e i r e l e c t r o d e p o t e n t i a l s as w e l l as from t h e arse-
nopyrite p r i o r i t y oxidation.
~
-
409
-
With respect t o a very f i n e gold intergrowth w i t h auriferous sulphides,
i t w i t 1 1 be r e a s o n a b l e t o t r e a t t h e s u l p h i d i c c o n c e n t r a -
t e p r i o r t o b a c t e r i a l l e a c h i n g by m e c h a n i c a l a c t i v a t i o n b y g r i n d i n g w h i c h a l l o w s t h e g o l d b e t t e r c o n t a c t w i t h t h e l e a c h i n g medium and, s t same t i m e ,
i n c r e a s i n g c h e m i c a l r e a c t i v i t y o f t h e s o l i d phase.
The i n v e s t i g a t i o n o f t h e m e c h a n i c a l a c t i v a t i o n e f f e c t on t h e r a t e o f b i o o x i d a t i o n a n d on t h e a r s e n o p y r i t e d e c o m p o s i t i o n h a s b r o u q h t t h e r e s u l t s shown i n F i g .
5.
I t f o l l o w s from t h e d i a g r a m t h a t
the optimal g r i n d i n g time i s f i f t e e n minutes,
a t which t h e r a t e o f
=
a r s e n i c r e l e a s i n g i n t o t h e l e a c h has been r e a c h e d as vo d - l by means o f a d a p t e d b a c t e r i a l r a c e Th. lity,
d e n o t e d a s TF-M
ferr.
0,62
g l
-1
f r o m t h e Most l o c s -
2 i n a r s e n o p y r i t e s u s p e n s i o n o f t h e 20
X solid
phase d e n s i t y .
-1
.d-l/ t o i n c r e a s e d t i m e F i g . 5 . C o u r s e o f As l e a c h i n g r a t e v o / g . l o f mechanochemical a c t i v a t i o n t / m i n / . 1 - c o n t r o l t e s t w i t h o u t bact e r i a ; 2 - TF-S n o t s d a p t e d ; 3 - TF-S ada t e d t o 6 g A s . 1 - 1 a n d TF-M 4 s u s p . 4%; 4 - TF-M d s p t e d t o 6 g As.1-f a n d (I s u s p . 4 X; 5 a n d Y s u s p . 2 0 X. adapted t o 10 q
-
AS.^-^
EIxperiments w i t h b i o o x i d a t i o n d e c o m p o s i t i o n o f a r e f r a c t o r y a u r i f e r o u s c o n c e n t r a t i o n f r o m P e z i n o k h a v e shown t h a t : t r a f i n e l y intergrown with auriferous sulfphides,
g o l d is u l -
and t h a t i t s l i b e -
r a t i o n and i t s g e t t i n g i n t o c o n t s c t w i t h c y a n i d e o r t h i o u r e a c a n b e made p o s s i b l e b y b a c t e r i a l p r e l e s c h i n g .
The g o l d r e c o v e r y w i l l b e
proportional t o the dissociation o f sulphides. r i t e oxidation,
I n view o f slow py-
a b o u t 80 % g o l d r e c o v e r y c a n be a c h i e v e d i n a t e c h -
nologicslly tolerable
time.
As f o r t h e d e s u l f u r i z a t i o n o f c o a l , main bearer o f s u l f u r ,
where t h e p y r i t e i s t h e
t h e r e are the f o l l o w i n g problems:
-
-
410
1. A c c o r d i n g t o p r e s e n t s t a t e o f k n o w l e d g e o n l y p a r t i a l d e s u l f u r i te.
2.
bounded i n c o a l i n t h e f o r m o f s u l f a t e o r o r -
The o t h e r s u l f u r ,
ganic s u l f u r ,
c a n n o t be r e c o v e r e d by t h i o b a c t e r i a .
a ) P y r i t e c a n b e l e a c h e d f r o m b l a c k c o a l by t h i o b a c t e r i a .
c o a l must be f i n e d o n t o g r a n u l a r i t y t o bacterial effect. days),
-
i t i s b a c t e r i a l decomposition o f p y r i -
zation o f coal i s possible,-
The
u n d e r 1 0 0 tan t o open t h e s u r f a c e
S i n c e l e a c h i n g is a l o n g p r o c e s s ( a t l e a s t 1 0
t h e necessary l e a c h i n g d e v i c e s would achieve g i a n t dimensi-
ons ( 1 1 ) . b) A short-time
b a c t e r i a l o x i d a t i o n o f p y r i t e and t h e s u c c e s s i v e
f l o t a t i o n a p p e a r more h o p e f u l . /12,13/
the o x i d a t i o n o f 10
-
A c c o r d i n g t o some f o r e i g n s o u r c e s
120 m i n u t e s w i l l do.
The p r o b l e m
of
r e s e a r c h under Czechoslovak c o n d i t i o n s i s b e f o r e us. C) D e p i r i t i z a t i o n o f
b r o w n c o a l i s a u n i q u e p r o b l e m w h i c h was r e -
s e a r c h e d b y t h e I n s t i t u t e o f G e o t e c h n i c s o f C z e c h o s l o v a k Academy o f Sciences i n Prague /14/. r a c t e r i z e d as f o l l o w s :
The a c h i e v e d r e m a r k a b l e r e s u l t s c a n b e c h a While i t i s necessary t o g r i n d t h e batch o f
black coal t h a t i s fine-disseminated i n i n g 30
by p y r i t e ,
t h e brown c o a l c o n t a -
X o f w a t e r w i l l do t o b e c r u h e d t o - 1 5 0
mm.
Coal has a w e l l -
developed p o r o s i t y t h a t enables a s u f f i c i e n t f a s t t r a n s i t i o n o f t h e l e a c h i n g o x i d a t i o n agent t o t h e s u l f i d e p a r t i c l e s i n s i d e c o a l g r a i n s and t h e d r a w i n g o f o x i d a t i o n p r o d u c t . d e t e r m i n e d t o be a d e c i s i v e p a r a m e t e r ,
The d i f f u s i o n r a t e o f i o n s was on w h i c h d e p e n d t h e r a t e o f
t r a n s i t i o n o f oxygen t o c o a l g r a i n s and d r a w i n g o f o x i d a t i o n p r o ducts,
A t t h e same t i m e ,
a substantial p a r t o f arsenopyrite present
i n c o a l is l e a c h e d t o g e t h e r w i t h p y r i t e u n d e r t h e e f f e c t o f t h i o bacteria. I n an e f f o r t t o a p p l y t h e r e s u l t s o f t h e b a s i c r e s e a r c h t o p r a c tice, from
a r e a l i z g t i o n s t u d y has been e l a b o r a t e d d e m o n s t r a t i n g t h a t t e c h n i c a l and e c o n o m i c a l p o i n t s o f v i e w t h e most f a v o r a b l e w o u l d
be t h e l e a c h i n g o f p y r i t i c s u l p h u r f r o m c o a l i n t h e head o f t h e c o a l c u t t h a t i s p r e p a r e d by s h a k i n g b l a s t and t h e c o a l i s showered w i t h m i n i n g w a t e r t h a t c o n t a i n s a s u f f i c i e n t number o f b a c t e r i a a s w e l l as t h e n u t r i e n t s u b s t a n c e s n e c e s s a r y f o r them.
A large-scale
expe-
r i m e n t a t t h e CSA l a r g e mine a f f o r d e d t h e f o l l o w i n g r e s u l t s presented i n the table. Another troublesome m i n i n g and b e n e f i c a t i o n problem i s t h e a t t e n d a n ce t o p u r i f i c a t i o n o f waste w a t e r s which, creased content of
as a r u l e ,
c o n t a i n an i n -
i o n s o f heavy o r r a d i o a c t i v e m e t a l s .
Heavy m e t a l s
s u p p r e s s k h e c o u r s e o f m e t a b o l i c p r o c e s s e s o f h i g h e r aa w e l l a s l o w e r
-
Days o f leaching
Content o f S ( i n d r y mate: X rial)
411
-
Decrease o f sulphur 0, 0
Consumption o f l e a c h i n g s o l u t i o n m3 p e r 1 t o f coal
0 66,24
1,07
69,62
2,48
organisms by b l o c k i n q t h e i r e n z y m a t i c systems so t h a t t h e y r e a c t
w i t h s u l p h i d i c g r o u p s o f k e y enzymes a n d d e s t r o y t h e i n t e g r i t y o f the c e l l walls /15/.
The d e g r e e o f h a r m f u l n e s s o f e l e m e n t s f o u n d i n
w a t e r may depend o n t h e i r p h y s i c a l o r c h e m i c a l s t a t e . F o r e x a m p l e , 6+ . chromium C r is h i g h l y p o i s o n o u s b u t i n t h e f o r m C r 3 + i t i s a l m o s t 5+ . is l e s s t o x i c t h a n n e u t r a l b i o l o g i c a l l y , a r s e n i c p e n t a v a l e n t As As3+.
Thus one o f t h e ways o f d e c r e a s i n g w a t e r t o x i c i t y may b e b i o -
chemical reduction o r oxidation.
F o r example,
b a c t e r i a o f t h e spe-
c i e s Aeromonas d e c h r o m a t i c u m r e d u c e p o i s o n o u s C r 6 + t e r i a B a c i l l u s a r a e n i c o x i d a n s o x i d i z e As3+ t o As5+.
t o Cr3+,
o r bac-
Selen reducing
b a c t e r i a o f t h e space C l o a t r i d i u m r e d u c e s e l e n i d e s and s e l e n a t e s f r o m t h e a o l u t i o n and a r e d m e t a l s e l e n e p r e c i p i t a t e i s p r e c i p i t a ted.
S u l p h a t e s r e d u c i n g b a c t e r i a r e d u c e d i s s o l v e d s u l p h a t e s o f some
m e t a l s w h i l e p r e c i p i t a t e s o f t h e i r s u l p h i d e s a r e b e i n g formed.
Cya-
n i d e - o x i d i z i n g b a c t e r i a a r e c a p a b l e o f decomposing and n e u t r a l i z i n g c y a n i d e s and t h i o c y a n i d e s . O f g r e a t e r i m p o r t a n c e f o r t h e p u r i f i c a t i o n o f waste w a t e r
metal ions is biosorptin. fungi,
from
A g r e a t number o f m i c r o o r g a n i s m s b a c t e r i a ,
a n d a l g a e a r e known t o b e a b l e t o a d s o r b a n d c u m u l a t e on t h e i r
or i n s i d e t h e i r c e l l s ,
surfaces,
s u c h m e t a l s a s Ag,
Cd,
Cu,
Pb,
Zn,
Au r a d i o a c t i v e m e t a l s a n d o t h e r s .
An e x t e n s i v e r e s e a r c h i n t o t h e p u r i f i c a t i o n o f w a s t e w a t e r s b y means o f s e l e c t e d r a c e s o f a l g a e h a s b e e n c a r r i e d o u t i n t h e l a b o r a t o r i e s o f t h e C S A V i n Prague /16/.
Nevertheless,
there are l o t s o f
p r o b l e m s ahead o f us c o n c e r n i n g t h e i n d i v i d u a l c h a r a c t e r o f p a r t i c u l a r c o n t a m i n a t i o n s o f i n d u s t r i a l waste.
R E F ER E N C E S
1
G.I. kian:
K a r a v a i k o , G . R o s s i , A.D. A g a t e , S . N . G r u d e v and Z . A . AvaB i o g e o t e c h n o l o g y o f M e t a l s - M a n u a l , UNEP, Moskva 1 9 8 8 , p.8,15.
-
6
7
412
-
A.R. C o l m e r a n d M.E. H i n k l e : The r o l e o f m i c r o o r g a n i s m s i n a c i d m i n e d r a i n a g e . i n S c i e n c e 1 0 6 ( 1 9 4 7 ) p. 253-256. T . P o d a n y i : I n P r o c e e d i n g s o f t h e I n t e r n a t i o n a l C o n f e r e n c e on Use o f M i c r o o r g a n i s m u a i n H y d r o m e t a l l u r g y . PBcs 1 9 8 0 p . 1 0 9 . R.Y. Hajnbczy: A s z e p e s i banyavarosok t b r t 6 n e t e . L e v o r a 1903. F . S p a l d o n a n d M. K u g n i e r o v b : Anwendung v o n M i k r o o r g a n i s m e n i n d e r A u f b e r e i t u n g b e r g b a u l i c h e r R o h s t o f f e . i n : P r o c e e d i n g s 2. I n t e r n a t i o n a l e F a c h t a g u n g - F o r t s c h r i t t e i n T h e o r i e und P r a x i s d e r A u f b e r e i t u n g a t e c h n i k . F I A F r e i b e r g 1 9 8 9 p. 21. L . Ahonen, P. H i l t u n e n a n d O.H. T u o v i n e n : The r o l e o f p y r r h o t i t e and p y r i t e i n t h e b a c t e r i a l l e a c h i n g o f c h a l c o p y r i t e o r e s . i n : F u n d e m e n t e l a n d a .D.D l i e d b i o h y d r o m e t a l l u r q- y_,- E l s e v i e r , Amsterdam 1 9 8 6 p. 20. V. SDaEek. J. B a r b n e k , J. TombBek a n d MarBblek: Proces bakter i o l o g i c k k h o l o u f e n f r u d s problemy p r i j e h o a p l i k a c i na l o f i s ko Smolnik. i n : Proceedingsof t h e Conference Poznatky a skds e n o s t i z cementbcie a m i k r o b i o l o g i c k d h o l d h o v a n i a h a l d na l o 2 i s k u S m o l n f k , 1 9 7 6 p p . 55-81. J . Tombgek a n d V. SpaEek: E x p e r i e n c e i n R e g e n e r a t i o n o f B i o l o g i c a l L e a c h i n g S o l u t i o n s u s i n g S u r f a c e A e r a t i o n . i n : G. R o s s i , A.E. Torma: R e c e n t P r o g r e s s i n B i o h y d r o m e t a l l u r g y ( C o n g r e s , S a r d i n i a 1983). S . J . P o l k i n , V.V. Psnin, E.V. Adamov, G . I . K a r a v a i k o a n d A.S. E e r n i a k : Theory and p r a c t i c e o f u t i l i z i n g m i c r o o r g a n i s m s i n p r o c e s s i n g d i f f i c u l t - t o - d r e s s o r e s and c o n c e n t r a t e s . i n : P r o c e e d i n g s o f XI. Min. P r a p . c o n g r e s , C a g l i a r i 1 9 7 5 p p . 901-923. P.M. Svash: A m i n e r a l o g i c a l i n v e s t i g a t i o n o f r e f r a c t o r y g o l d o r e s and t h e i r b e n e f i c a t i o n w i t h s p e c i a l r e f e r e n c e t o a r s e n i c a l ores. i n : J o u r n s l o f t h e S o u t h A f r i c a n I n s t i t u t o f M i n i n g and M e t a l l u r g y . Vol. 8-5/1988. P. B o s , T.F. H u b e r , C h . Koa, C . Ras a n d J . G . Kuenen: A D u t c h f e a s i b i l i t y s t u d y on m i c r o b i a l c o a l d e s u l p h u r i z a t i o n . i n : Fundamental and A p p l i e d B i o h y d r o r n e t a l l u r g y , E l s e v i e r , Amsterdam 1 9 8 6 . Z.M. Dogan, G. O z b a y o g l u , C. H i c y i l m a z , M. S a r i k a y a a n d G. Ozceng i z : B a c t e r i a l l e a c h i n g v e r s u s b a c t e r i a l c o n d i t i o n i n g and f l o t a t i o n i n desulphurization o f three d i f f e r e n t coals. i n : Fundamental and a p p l i e d B i o h y d r o m e t a l l u r g y , E l s e v i e r , Amsterdam 1 9 8 5 . P.R. Dugan: M i c r o b i a l d e s u l f u r i a a t i o n o f c o a l a n d i t s i n c r e a s e d m o n e t a r y v a l u e . i n : B i o t e c h n o l o g y a n d B i o e n g i n e e r i n g Symp. No. 6(1986). Z . V o l S i c k f : o p r a v a o b s a h u p o p o l o v i n a s f r y v hngd6m u h l i SHR. D o c t o r a l t h e s i s , P r a h a 1985. A.N. I l j a l e t d i n o v : MikrobiologiEeskije prevraBEenija metsllov. I z d a t e l s t v o "Nauka" K a z . S S R , A l m a - A t a 1 9 8 4 . K. N e b e r a n d J. Z b h r a d n i k : D o E i i 3 t o v b n f v o d a u t o t r o f n f m i m i k r o o r g a n i z m y a v y B B i m i r a e t l i n a m i . i n : S t u d i e E S A V 2 4 1986, Academia Praha.
.
-
9
10
11
12
13 14 15 16
A SMALL SIMULATION SYSTEM A N D E C O L O G I C A L FORECASTING
DEGERMENDZKY
A.G.
I n s t i t u t e o f B i o p h y s i c s o f t h e S i b e r i a n B r a n c h o f t h e USSR Academy o f S c i e n c e s , 660036, USSR INTRODUCTION
Water q u a l i t y p r e d i c t i o n a n d t h e f o r e c a s t i n g o f t h e s t s t e o f a q u a t i c e c o s y s t e m s becomes a v i t a l problem g i v e n an i n c r e a s i n g s h o r t a g e of f r e s h water.
The d e v e l o p m e n t o f m e t h o d o l o g y f o r c r e a t i n g
t h e a d e q u a t e m a t h e m a t i c a l m o d e l s o f a q u a t i c e c o s y s t e m s a n d t h e rel a t i v e s e l f p u r i f i c a t i o n model i s t h e n e c e s s a r y s t a g e i n p r o g n o s t i c m o d e l i n g i n b i o c h e m i c a l e c o l o g y . The p r i n c i p l e s o f s u c h m o d e l b u i l d i n g c a n b e e l a b o r a t e d b y m o d e l i n g t h e d y n a m i c s o f l a b o r a t o r y homogeneous ecosystems o f continuous t y p e f o r c o n t r o l l e d b i o p h y s i c a l e x p e r i m e n t c o n d i t i o n s [ l l . I n t h i s p a p e r , we c o n s i d e r t h e n o n - c o n v e n t i o n a l a p p r o a c h t o water q u a l i t y m o d e l l i n g ,
b a s e d on t h e "biophy-
s i c a l " c h a i n o f t h e o r e t i c a l and e x p e r i m e n t a l r e s e a r c h s t e p s :
inves-
t i g a t i n g t h e l a w s g o v e r n i n g t h e o r g a n i z a t i o n , s t a b i l i t y and cont r o l a b i l i t y o f "ideal" laboratory ecosystems - - * i d e n t i f y i n g t h e
-
means t o d e t e r m i n e c h e m i c a l and o t h e r d e n s i t y - d e p e n d e n t ( a u t o s t a b i l i z a t i o n phenomenon)
--
-
factors
f i e l d experiments t o determi-
ne t h e l i m i t i n g f a c t o r s i n t h e n a t u r a l ecosystem
-
--
carrying
e x p e r i m e n t s w i t h i d e n t i f i e d c h e m i c a l f a c t o r s a n d some o t h e r h y d r o bi0nt.s t o meaaure k i n e t i c parameters
-
--
synthesizing t h e ecosys-
tem m o d e l , i n c o r p o r a t i n g t h e o b t a i n e d k i n e t i c c h a r a c t e r i s t i c
--
(i.e.,
-
-
--
v e r i f y i n g t h e model on t h e b a s i s o f t h e e x i s t i n g e v i d e n c e r e l a t i n g t o a s i m i l a r water b o d y )
--
computations of t h e
f o r e c a s t and o v e r a l l c o a t o f e c o l o g i c a l i m p l i c a t i o n a o f t h e p r o j e c t . LAWS OF A N I D E A L " H O M O G E N E I T Y "
COMMUNITIES A N D ECOSYSTEMS
1. S t a b i l i t y o f m i x e d c u l t u r e ; p r i n c i p l e s o f i n t e r a c t i n g populations coexistence Criterion.
An i d e a l c o m m u n i t y i s a c o l l e c t i o n o f p o p u l a t i o n s
w i t h t h e d e n s i t y d y n a m i c s g o v e r n e d e x c l u s i v e l y by c e r t a i n e n v i r o n m e n -
-
- 414
t a l chemical f a c t o r s ,
which,
a c t u a l p o p u l a t i o n numbers.
i n turn,
m i g h t be i n f l u e n c e d by t h e
Some o f t h e s e f a c t o r s may o r i g i n a t e o u t s i -
A s u f f i c i e n t degree o f
de t h e s y s t e m and b e s u p p l i e d f r o m w i t h o u t . e n v i r o n m e n t a l h o m o g e n e i t y i s a l s o assumed.
I n o r d e r t o o b t a i n a ge-
n e r a l c o n d i t i o n r e l a t i n g t h e number o f c o e x i s t i n g s p e c i e s i n t h e c o m m u n i t y a n d t h e number o f d e n s i t y - d e p e n d e n t t h e environment,
chemical f a c t o r s i n
c o n s i d e r a mixed c u l t u r e w i t h no p r e d a t i o n .
It i s
convenient t o s t a r t a t h e o r e t i c a l analysis o f i n t e r a c t i n g populations (e.g.,
b a c t e r i a l ) w i t h t h e model d e s c r i b i n g t h e d e n s i t y dynamics o f
m s p e c i e s i n an open s y s t e m o f t h e c h e m o s t a t t y p e
t h e SGR
[ 2 , 3 1 . We assume
( s p e c i f i c g r o w t h r a t e ) o f e a c h s p e c i e s t o b e d e p e n d e n t on o r
c o n t r o l l e d by a few n u m b e r s ( n ) o f medium f a c t o r s ,
i n turn,
which,
a r e c o n t r o l l e d by t h e a c t u a l d e n s i t i e s o f t h e s e s p e c i e s .
We a r r i v e
a t t h e f o l l o w i n g system o f d i f f e r e n t i a l e q u a t i o n s ,
X.=
...,
[gi(A1,
-
An)
D1
.
Xi,
-
i=l,m,
m
D ( A OJ -
A .
J
where gi
(A1,
A,)
J
...,
+ t
..., An) .
ajkfkj(Al,
-
A ) i s t h e SGR f o r t h e i - t h species,
A 0 and A are, respectively, J j trations o f the j - t h growth-influencing
z e r o ) . The t e r m a j k f k j X k
D i s the
t h e i n p u t a n d medium c o n c e n factor
(some o f A 0 c a n b e
J
stands f o r the production or u t i l i z a t i o n
s u b s t a n c e by t h e k - t h s p e c i e s .
I t i s o b v i o u s l y v e r y d i f f i c u l t t o s u g g e s t any " v e r s a t i l e " o f g.
...,
a s a f u n c t i o n o f A1,
system o f e q u a t i o n s ( l ) , i n steady-state
o f these species
l o g i c a l theorem"
An.
However,
i t c a n b e shown t h a t t h e number o f s p e c i e s
(i.e.,
factors,
m L n).
determined by the d e n s i t i e s ,
I n the sequel,
cept o f the c o n t r o l l i n g factor i.e.,
t h i s "eco-
f o r mixed c u l t u r e s w i l l be c a l l e d t h e main s t a t e -
ment o r t h e e x t e n s i o n o f t h e Gause p r i n c i p l e . factor,
form
u s i n g t h e form o f t h e
c o e x i s t e n c e w i l l n o t p o s s i b l y e x c e e d t h e number o f
independent q r o w t h - c o n t r o l l i n q
Xi,
(1)
j=l,n,
k=l
flow rate,
rate o f the j - t h
Xk,
I f we e x t e n d t h e c o n -
t o include also the "biotechnological"
t h e c o n t r o l p e r f o r m e d by an e x t e r n a l d e v i c e a n d d i -
r e c t e d t o w a r d s t h e s t a b i l i z a t i o n o f a c e r t a i n f u n c t i o n o f t h e dens i t i e s o f the species
(turbidistat,
chlorophyllostat,
pH-stat,
t h e n t a k i n g i n t o a c c o u n t t h e number o f " b i o t e c h n o l o g i c a l "
t
,
does n o t c h a n g e t h e c r i t e r i o n o f c o - e x i s t e n c e : One o f t h e r e a l m e c h a n i s m s o f c o e x i s t e n c e .
etc.),
factors,
m ,< n t t .
The e x p e r i m e n t s w e r e
-
415
w i t h m i x t u r e o f two k i n d s o f yeast. cerevisiae
-
Two k i n d s o f y e a s t S a c c h a r o m y c e s
t h e d i p l o i d and h a p l o i d forms
j e c t s o f experiments.
-
w e r e c h o s e n a s t h e ob-
G r o w t h was p e r f o r m e d i n a c h e m o s t a t a t s e v e r a l
v a l u e s o f t h e d i l u t i o n r a t e (D)
r a n g i n g from 0.05
h-l
t o 0.4
h-'.
I n t h e z o n e o f g l u c o s e l i m i t a t i o n S G R t h e e x p e r i m e n t showed s t a b i l i z a t o n o f t h e t o t a l c o u n t and s t a b l e c o e x i s t e n c e o f t h e two forms
1, c ) .
o f y e a s t w i t h 40 % b e i n g h a p l o i d a n d 60 % d i p l o i d ( F i g .
The
s t e a d y - s t a t e c o m p o s i t i o n o f t h e m i x e d c u l t u r e was i n d e p e n d e n t f r o m t h e i n i t i a l p r o p o r t i o n o f t h e two forms [ l ] .
c
10 "PH
F i g . 1. The d y n a m i c s o f t h e c o m p o a i t i o n o f t h e m i x e d c u l t u r e a n d i n t e r a c t i o n c o e f f i c i e n t s 6 i n d i l u t i o n e x p e r i m e n t s (50-5 9/11: a , 0 - 0 . 2 h - 1 pH0=6.3, K-4.06; b , D = 0 . 1 2 h-1, pHo= 6 . 3 , K=4.06; c , D-0.05 h - i , pHo= 6 . 3 , K-4.06; d, 0 ~ 0 . 0 5 h-1, pHOz5.5, Kz3.7. E x p e r i m e n t a l d a t a : ooo t h e percentage o f t h e h a p l o i d form; rn t h e t o t a l biomass; A - r e s i d u a l s u g a r ; 0.0 - pH. C a l c u l a t i o n w i t h t h e m o d e l (1): - t h e p r o p o r t i o n o f t h e h a p l o i d form (Xh); -'''-' - t h e t o t a l biomass; -0-0-0- - pH; - glucose.
-
-
- - -
I n t h i s connection,
according t o the coexistence p r i n c i p l e ,
a
s u p p o s i t i o n was p r o p o u n d e d s u g g e s t i n g t h e e x i s t e n c e o f one more dens i t y dependent g r o w t h - c o n t r o l l i n g f a c t o r
(DOGF):
n >, m-2.
t o r was f o u n d t o b e t h e c o n c e n t r a t i o n o f h y d r o g e n i o n s , n = 2 ) d e t e r m i n i n g t h e a c i d i t y o f t h e medium,
H+
This fac(i.e.,
because i n t h o s e e x p e r i -
m e n t s t h e pH o f t h e c r o p i n t h e f e r m e n t e r was l o w e r e d down t o a l e v e l
-
- 416
of 3.2
I n t h e acute experiments,
( t h e i n l e t pH was 6 . 3 ) .
pH depen-
The t w o DDGF ( h y d r o g e n
d e n c e s o f t h e maximum S G R s were m e a s u r e d .
i o n s and g l u c o s e ) were i n t r o d u c e d t o t h e model. N u m e r i c a l a n d a n a l y t i c a l c a l c u l a t i o n s p e r f o r m e d w i t h a comput e r using independently-determined
parameters have demonstrated t h e
s p p l i c a b i l i t y o f t h e model t o t h e d e s c r i p t i o n and e x p l a n a t i o n o f experimental r e s u l t s (see Fig.
1; t h e c o m p u t a t i o n a l d a t a a r e r e p r e s e n -
t e d by c u r v e s ) .
2 . A u t o s t a b i l i z a t i o n o f DDGF I 4 1 P a r t i c u l a r property.
The e s s e n c e o f t h i s phenomenon c o n s i s t s
o f a l a c k o f dependence o f t h e s t e a d y - s t a t e t i o n o f the growth-limiting
supply r a t e s o f these factors.
Theoretically,
f r o m an a n a l y s i s o f t h e r e l a t i o n s h i p s
x J. i n
tions
factors,
-
A , J
= r
.(D)
J
t h i s result follows
f o r the steady-state
concentra-
m=n,
f(Ao),
#
J
I n o t h e r words,
-
X.
. . . , A:);
w . (A;,
j =
p; .i
1,m.
t h e r e i s a c o r r e l a t i o n between p o p u l a t i o n biomasses
and i n p u t c o n c e n t r a t i o n s o f t h e l i m i t a n t s ,
and no c o r r e l a t i o n w i t h
t h e background l e v e l o f t h e l i m i t i n g f a c t o r s ( F i g . Hence,
l e v e l o f concentra-
s y s t e m (1) a s s u m i n g a n e q u a l number o f s p e c i e s a n d
eq.
i.e.,
(mean)
f a c t o r s i n t h e ecosystem upon t h e i n p u t
2;
(51).
no c o r r e l a t i o n s h o u l d be observed between t h e l i m i t e d - p o p u l a -
t i o n biomass and t h e b a c k g r o u n d l i m i t a n t c o n c e n t r a t i o n . f i r s t i d e a f o r a m e t h o d o f DDGF d e t e r m i n a t i o n ,
i.e.
I t i s the
independence o f
t h e r e q u l a t o r c o n c e n t r a t i o n i n t h e medium a t t h e i n p u t l e v e l . The n e x t i d e a
-
the analysis o f steady-state
a t an a c c i d e n t a l p e r t u r b a t i o n o f
level of
input levels.
regulators
B o t h methods a l -
l o w u s t o f i n d t h e number o f c o e x i s t i n g p o p u l a t i o n s ( m )
as w e l l as
using only t h e t h e o r e t i c a l l y developed i n v a r i a n t : n
m
= n
-
1 j=1
Kinetic characteristics (SGR).
-
dA./dAo
J
dence o f SGR ( g )
( f o r example:
(Fig.
1).
(5.1.
[3l
A f t e r d e t e r m i n a t i o n some DDGF
( a c c o r d i n g a u t o s t a b i l i z a t i o n phenomenon)
glucose concentration
J
may b e r e c e i v e d t h e depen-
h a p l o i d and d i p l o i d ,
f o r Fig.
3 ) on
The S G R s a r e u s e d by m a t h e m a t i c a l m o d e l
-
= I
417
I
a
0,
I
b
f
/
1s
/ f
I f
/
0
2
4
6 So
8
1
0
1
2
METANOL. g l I 1
F i g . 2. S t e a d y - s t a t e o f b i o m a s s c o n c e n t r a t i o n M e t h y l o m o n a s ap. (Ti) a n d r e s i d u a l m e t h a n o l c o n c e n t r a t i o n ( S ) vs. i n p u t m e t h a n o l ( S O ) : D = 0 . 2 4 h-l [ S l .
O
P
0
-10
0
10
20
1.2
2.4
s
[g/l1
Fig. 3. D e p e n d e n c e o f S G R ( g ) for t h e h a p l o i d ( h ) a n d d i p l o i d (d) f o r m s o f y e a s t S. c e r e v i s i a e o n g l u c o s e c o n c e n t r a t i o n ( S ) (a); t h e s a m e o n s r e c i p r o c a l s c a l e (b). E x p e r i m e n t a l values: 0 , x - f o r t h e haploid and diploid forms respectively. 3. T o t a l e f f i c i e n c y o f p o p u l a t i o n a u t o r e g u l a t i o n The c o n t r o l o f t h e S G R o f m i c r o b i a l a n d o t h e r p o p u l a t i o n s p r o c e e d s via b i o c h e m i c a l a n d p h y s i c a l , a s a r u l e u n k n o w n , c o n t r o l l i n g
factors,
DDGF.
From t h e p h y s i c a l p o i n t o f v i e w ,
t i o n and t o t a l " f o r c e " o f t h e system's
response t o a p e r t u r b a t i o n o f biomass c o n c e n t r a t i o n
for the i - t h population,
population,
i n response t o t h e p e r t u r b a t i o n ,
1-th
t h a t must be c o n s i d e r e d t h e c r i t e r i o n o f i n t e r a c t i o n :
-
=
Bil
dgi/dt
I
P
-
dgi/dt
t*
I
U
Coefficients
Eil
,
T-*.
[Eil]
t*
where P s t a n d s f o r t h e p e r t u r b e d s t a t e , te.
the type o f interac-
o f r e g u l a t i o n c a n b e j u d g e d by t h e c h a r a c t e r
I t i s t h e increment o f the time d e r i v a t i v e o f the growth r a t e ,
A X1. e.g.
-
418
and U ,
t h e unperturbed sta-
have t h e n e x t a n a l y t i c a l view: n
A X1
Bli
1
-
l,i=I,m.
(dgi/dAj).(dAj/dt),
j=l Hence,
t h e e x p e r i m e n t a l l y - d e t e r m i n e d c h a r a c t e r and i n t e n s i t y
t e r a c t i o n s expressed i n terms o f i n t e r a c t i o n c o e f f i c i e n t s
Eil
f
i
l-
can
serve as a b a s i s f o r comparison w i t h t h e c o e f f i c i e n t s "synthesized" theoretically
f o r t h e c o n s i d e r e d ecosystem model.
The c o m p a r i s o n
c a n b e made f o r s p a c e a s w e l l a s f o r t i m e .
APPLICATION:
K R A S N O Y A R S K R E S E R V O I R MODELLING
C o n s t r u c t i o n o f ecomodel: E x p e r i m e n t s .
The a b o v e r e s u l t s h a v e
been used as a b a s i s i n d e v e l o p i n g w a t e r q u a l i t y p r e d i c t i o n models f o r the worst blooming p a r t o f the Krasnoyarsk r e s e r v o i r ,
t h e Sydin-
s k i bay.
The w o r k was c o n d u c t e d w i t h i n t h e s c i e n t i f i c p r o j e c t " C l e a n
Enisei".
Necesssry e x p e r i m e n t s and measurements o f t h e a l g a e k i n e t i c
c h a r a c t e r i s t i c s were c a r r i e d o u t a f t e r a n a l y s i n g f i e l d e v i d e n c e p r o v i d e d by f i e l d s t a t i o n s , I n 1984,
PO,,'
b a s e d on t h e a u t o s t a b i l i z a t i o n phenomenon.
t h e common d y n a m i c s o f t h e m i n e r a l p h o s p h o r u s c o n c e n t r a t i o n ,
and t h e n e t a l g a e biomass i n t h e bay had been m o n i t o r e d (Fig.4)
P h o s p h o r u s was s e l e c t e d a s a p o s s i b l e f a c t o r t o l i m i t t h e p r o d u c t i o n process. ve,
We h a v e made s n a t t e m t t o t e s t t h e t h e o r e t i c a l r e s u l t s abo-
implying a
week
c o r r e l a t i o n between t h e background l e v e l o f t h e
l i m i t i n g f a c t o r a n d t h e amount o f l i m i t e d b i o m a s s . Actually,
i n s t e a d o f t h e a l g a e biomass,
t i o n o f t h e c h l o r o p h y l l 'la",
Cch,
i t was t h e c o n c e n t r a -
t h a t was m e a s u r e d ,
p e r i o d s o f t i m e i s d i r e c t l y r e l a t e d t o t h e biomass.
which over small The v a l u e o f
C c h c a n b e t r a n s l a t e d i n t o t h e e q u i v a l e n t amount o f p h o s p h o r u s ,
Cph,
-
-
419
. ... . a
a
ma
. . .
..
.:**
1
2.5
POL [ m k g l l l F i g . 4. O b s e r v a t i o n d a t a on s j o i n t o c c u r e n c e o f t h e c h l o r o p h y l l II a II C and t h e l e v e l o f phosphorus c o n c e n t r a t i o n from 24/08/84 9 t o 29 / 6 B j 8 4 i n t h e S y d i n s k y bay.
which p r o v i d e d t h e a l g a e g r o w t h and t h e f o r m a t i o n o f t h e g i v e n qusnt i t y o f the chlorophyll.
I t i s known t h a t C
v a r i a t i o n range o f t h e " i n p u t "
--
0.325.Cch Then, t h e Ph p h o s p h o r u s c o n c e n t r a t i o n , A C;h, co-
rreaponding t o t h e observed c h l o r o p h y l l content v a r i a t i o n ,
50 m c g / l ,
(Fig.
=
4 ) e s t i m a t e s t o A Co
16 mcg/l.
w
A Cch
The v a r i a t i o n r a n -
Ph ge o f t h e b a c k g r o u n d p h o s p h o r u s c o n c e n t r a t i o n c a n b e a p p r o x i m a t e l y estimated from Fig.
4 a t 1.6 mcg/l,
concentration (no c o r r e l a t i o n " i n p u t
i.e.
-
one-tenth o f the "input"
phone ( p h o s p h o r u s ) " ) .
This
f a c t p r o v i d e s a s e r i o u s b a s i s f o r an e x p e r i m e n t a l t e a t o f t h e l i m i t i n g a c t i o n o f phosphorus, work season.
a n d t h i s was done, d u r i n g t h e 1 9 8 5 f i e l d
We o b t a i n e d t h e SGR ( F i g .
(Aphanizomenon f l o s - a q u a e )
5 ) f o r blue-green algae,
gBGA,
as a f u n c t i o n o f t h e m i n e r a l phosphorus
concentration,
P.
obtained (Fig.
6 ) , w h i c h i a t h e SGR o f a g g r e g a t e d b a c t e r i o p l a n k t o n ,
Similarly,
t h e f o l l o w i n g k i n e t i c c u r v e s have been
-
420
-
gB, v e r s u s d i s s o l v e d o r g a n i c m a t t e r (COD). d i a t o m a c e o u s a l g a e gDA ( E ,
The c h a r a c t e r i s t i c s f o r
t o ) ( E i s i l l u m i n a t i o n and t o i s tempe-
r a t u r e ) have been t a k e n from l i t e r a t u r e
[61.
I
2 m
01
0.35 -
0.1
1
0
0,12
0.24 P Irnglll
F i g . 5 . Dependence o f gBGA f o r t h e Aphanizomenon f l o s - a q u a e n e r a l phosphorus.
0
50
on m i -
100 SCOD [ mg I L 1
Fig.
6.
D e p e n d e n c e o f gB f o r t h e a g g r e g a t e d b a c t e r i o p l a n k t o n on COD.
-
421
-
U s i n g f i e l d d a t a on e c o s y s t e m c o m p o n e n t s a n d t h e o b t a i n e d e x perimental characteristics,
t h e m o d e l o f t h e e c o s y s t e m was f o r m u l a -
t e d ( b l o c k d i a g r a m shown i n F i g .
I
Fig.
7.
7).
DIATOMS
B l o c k - d i a g r a m f o r t h e Sydinsky bay ecosystem model.
The s m a l l s i m u l a t i o n p r e d i c t i o n s y s t e m ( S S P S )
and c a l c u l a t i o n .
The e c o l o g i c a l m o d e l was i n c o r p o r a t e d i n t o a s p e c i a l l y d e s i g n e d s i m u l a t i o n p r e d i c t i o n system i n t e n d e d f o r p e r s o n a l computers. tem f e a t u r e s t h e f o l l o w i n g m a i n u n i t s : menting g r a v i t a t i o n a l , morphometry u n i t ,
w i n d and r e s i d u a l c u r r e n t s ) ,
the ecological unit,
The s y s -
a hydrological u n i t (imple
etc.
t h e w a t e r body
The S S P S i a i n t e n d e d
t o be used i n s i m u l a t i o n e x p e r i m e n t s based on a m a t h e m a t i c a l model o f an a q u a t i c e c o s y s t e m ( a l a k e ,
a water reservoir,
a bay,
A s e q u e n t i a l c o m p u t a t i o n a l f l o w c h a r t i s implemented.
a river). First,
h y d r o l o g i c a l parameters a r e c a l c u l a t e d by t h e E u l e u r method, then a f t e r a hydrological mixing, ecosystem model a r e computed. j u s t i t t o a new w a t e r v o d y , i d e n t i f y s u r f a c e chambers,
t h e e c o l o g i c a l parameters o f the
The m o d e l i s q u i t e v e r s a t i l e .
To ad-
one h a s t o s p e c i f y t h e d e p t h map,
to
t o set the appropriate input aeries ( e i t -
h e r r e t r o s p e c t i v e o f p r e d i c t e d ones),
and t o d e s c r i b e t h e c o r r e s p o n -
d i n g hydro-meteorological c o n d i t i o n s (winds, r a t i o n , solar radiation,
the
and
water temperature,
precipitation, and e t c . ) .
evapo-
-
-
422
The e c o l o q i c a l u n i t o f t h e m o d e l ( E C O S )
d e s c r i b e s t h e ecosystem
processes i n water l a y e r s and i s designed u s i n g r e s u l t s o f s p e c i a l e x p e r i m e n t a l t e s t s and a v a i l a b l e e v i d e n c e f r o m l i t e r a t u r e a s w e l l aa pertinent hypothesis. series unit (ISU)
The i n p u t ( t i m e )
provides i n f o r m a t i o n about
t h e known e x t e r n a l p a r a m e t e r s f o r t h e g i v e n e c o s y s t e m d y n a m i c s c a l c u l a t i o n scenario.
The I S U i s a l o c a l d a t a b a n k o f s p a t i a l a n d tem-
poral characteristics. Multi-variant
c a l c u l a t i o n s t a k i n g i n t o account h y d r o l o g i c a l ,
m e t e o r o l o g i c a l and o t h e r i n f o r m a t i o n r e l a t i n g t o t h e model have been c a r r i e d o u t f o r t h e f o l l o w i n g e c o s y s t e m s t r u c t u r e s ( d e n o t e d b y 1,2,
...,
8 i n Fig.
1
8):
cesses a r e " f r o z e n " ; l e organic matter, are present: n i c matter, mations;
4
-
h y d r o l o g i c a l model alone,
-
2
-
-
3
n o o t h e r components;
diatomaceous and blue-green, phosphorus,
b i o l o g i c a l pro-
b a c t e r i o p l a n k t o n i a l i m i t e d by t h e a v a i l a b -
nitrogen,
t h e f o l l o w i n g components
bacteria,
protozoa,
no zooplankton ( Z )
orga-
and no t r a n s f o r -
i t i s t h e 3 r d supplemented w i t h t r a n s f o r m a t i o n s ;
l i k e t h e 3 r d e x c e p t t h a t gDA i s i n c r e a s e d a n d Z i s i n t r o d u c e d ; l i k e the 5 t h but with transformations, gDA i s s t i l l f u r t h e r i n c r e a s e d ;
8
-
7
6
goA i s somewhat
smaller.
+ 3
3 -.-.4 ====== 5 6 = = = =
46
7-
I
1.4
1
+
7
8
I
0
20
1
I
1
40
60 DAYS
Fig
8.
-
l i k e the 6 t h except t h a t
close t o 3rd but also includes
Z c a n n i b a l i s m as w e l l as t r a n s f o r m a t i o n s ,
2.t
-
-
5
D y n a m i c s o f t h e t o t a l m i n e r a l n i t r o g e n (g/m 3 1.
-
423
-
Component d y n a m i c s due t o h y d r o l o q i c a l p r o c e s s e s .
Shown i n
8 t o I1 are part o f c a l c u l a t i o n r e s u l t s for the e i g h t variants
Figs.
a l o n g w i t h t h e o b s e r v a t i o n d a t a ( + ) . An a n a l y s i s o f h y d r o l o g i c a l c a l c u l a t i o n s ( v s r i a n t No. t h e season,
1) shows t h a t on t h e a v e r a g e t h r o u g h o u t
and e x c l u d i n g t h e b l o o m i n g p e r i o d s ,
s u l t s are q u a l i t a t i v e l y , quantitatively,
the s i m u l a t i o n re-
a n d f o r some c h a m b e r s a n d c o m p o n e n t s a l s o
close t o the observations.
The d y n a m i c s o f a q q r e a q a t e d b a c t e r i o p l a n k t o n
of
B
(Fig.
growth-limiting clines,
The d y n a m i c s
o r g a n i c s i n t o t h e chambers.
W h e r e v e r t h i s i n f l o w de-
t h e d y i n g p r o c e s s becomes p r e d o m i n a n t a n d t h e d e n s i t y o f B
g o e s down ( e s p e c i a l l y flow).
(B).
9) i s related t o the variations i n the inflow o f the
i n chambers,
which l a c k strong s u b s t r a t e i n -
An i m p o r t a n t i m p l i c a t i o n o f t h i s r e s u l t i s t h a t t h e i n f l o w
o f t h e a l l o c h t h o n i c o r g a n i c m a t t e r cannot by i t s e l f a d e q u a t e l y exp l a i n t h e observed B dynamics,
and t h e f o r m a t i o n o f a d d i t i o n a l a u t o -
c h t h o n i c m a t t e r h a s t o b e assumed.
T h i s was t h e r e a s o n t o a d v a n c e
t o more c o m p l e x e c o s y s t e m m o d e l s . The d y n a m i c s o f t h e e c o s y s t e m w i t h t h e t u r n - o v e r account.
taken i n t o
I n t h i s a n d t h e n e x t c a l c u l a t i o n o f v a r i a n t s we s h a l l d i s -
c u s s o n l y t h e d y n a m i c s o f some s p e c i f i c b i o l o g i c a l c o i a p o n e n t s o f a n d we h a v e t o a d m i t i t , t h e d y n a m i c s o f h y d -
t h e ecosystem because, ro-chemical
components (COD,
phosphorus ( F i g .
t o t a l mineral nitrogen (Fig.
8 ) and
1 0 ) ) d o e s n o t whow much c h a n g e w i t h t h e e c o s y s t e m
variant.
. . _ . . .. . ' 19
. 0
'
20
I
LO
1
I
60
75 DAYS
Fig.
9. B a c t e r i a l d y n a m i c s .
-
424
-
0,:
0.1'
I
Or
Fig.
40
20
6o
DAYS
10. Dynamics o f phosphorus.
Diatoms.
The o b t a i n e d DA d y n a m i c s i s q u a n t i t a t i v e l y q u i t e c l o -
se t o the experiment i n the flow-through regions w i t h t h e calculat i o n according t o variant 8 ( w i t h the Z cannibalism). ce o f the pressure o f 2 ,
I n t h e absen-
t h e number o f DA r i s e s t o v e r y h i g h l e v e l s .
I t f o l l o w s t h a t t h e Z g r o w t h k i n e t i c s and t h e n u t r i t i o n range a r e bou n d t o p l a y a n i m p o r t a n t p a r t i n t h e DA " b l o o m i n g "
kinetics (parti-
c u l a r l y so i n t h e f a l l ) . The b l u e - q r e e n
alqae.
The c a l c u l a t e d BGA d y n a m i c s ( F i g .
l e s s c l o s e t o o b s e r v a t i o n s t h a n i n t h e c a s e o f DA,
11) i s
a l t h o u g h t h e a-
utumn e x p l o s i o n phase i s r e a s o n a b l y w e l l p r e d i c t e d i n v a r i a n t s 7 and B ( i n c r e a s e d SGR o f DA o r c a n n i b a l i s m ,
Z).
b r i n g i n g down t h e n u m b e r s o f
We a r e a s y e t u n a b l e t o a d e q u a t e l y r e p r o d u c e t h e f a l l - o f f
phase
i n BGA n u m b e r s b e c a u s e o f t h e o b v i o u s l a c k o f i n f o r m a t i o n a b o u t t h e r e a l b a s i c mechanisms o f t h i s p r o c e s s . Bacterioplankton.
The d y n a m i c s w e r e c a l c u l a t e d f o r t h e s e a s o -
n a l c h a n g e o f t h e f e e d b a c k c o e f f i c i e n t Ebb f o r s e v e r a l e c o s y s t e m t y -
pe variants, etc.
t a k i n g i n t o a c c o u n t t h e d y n a m i c s o f COD,
temperature,
We c a n s e e i n t r a s e a s o n a l p e a k s i n t h e amount o f n e g a t i v e f e e d -
back i n the B c o n t r o l ,
r e a c h i n g u p t h e l e v e l Ebb= 0.005 h-*.
If t h e
-
425
40
20
0
-
60 DAYS
F i q . 11. B l u e - g r e e n a l g a e d y n a m i c s ; i s i n c r e a s e d b y a f a c t o r o f 10.
COD l e v e l ,
a B l i m i t i n g factor,
h a v e Bbb=-0.004
h-
t h e o r d e r o f -0.07
2
. The
h-2,
was as a c t u a l l y o b s e r v e d ,
"natural" i.e.
for variants 5 t o 8 the scale
some 20 t o 2 0 0 t i m e s g r e a t e r i n t h e
a b s o l u t e v a l u e t h a n one o b t a i n e d t h e o r e t i c s l l y .
The s i g n o f t h e
feedback ( i t i s n e g a t i v e ) c o i n c i d e s w i t h t h e p r e d i c t i o n . t h e n a t u r a l "amount"
we w o u l d
e x p e r i m e n t a l l e v e l o f Ebb is o f
Therefore,
o f f e e d b a c k i n t h e 8 r e g u l a t i o n is s u b s t a n t i a l l y
larger than i n the theory.
There a r e s e v e r a l hypotheses t h a t c o u l d
e x p l a i n t h e above d i s c r e p a n c y .
The p r o p o s e d p a r a m e t e r s B
i.i a r e
an
e s s e n t i a l l y new c r i t e r i o n t o t e a t t h e m o d e l s v a l i d i t y a n d t o o b t a i n new k n o w l e d g e a b o u t t h e n a t u r e o f i n t r a e c o s y s t e m r e l a t i o n s (Bbb i s j u s t one o f s u c h p a r a m e t e r s ) . CONCLUSION
1. A n o n - c o n v e n t i o n a l
approach i s proposed t o develop p r e d i c -
t i o n models f o r water q u a l i t y .
Thi;
a p p r o a c h i s b a s e d on a t h e o r e t i -
c a l and e x p e r i m e n t a l a n a l y s i s o f l a b o r a t o r y ecosystems and t h e " i d e alization"
o f aome h y d r o p h y s i c a l p a r a m e t e r s ( i d e a l m i x i n g ,
thermo-
stabilization). 2.
The a n a l y s i a o f s t a b l e l a b o r a t o r y c o m m u n i t i e s h a s l e d t o t h e
f o l l o w i n g conclusions:
(a)
426
-
t h e number o f c o e x i s t i n g s p e c i e s i s n o t
g r e a t e r t h a n t h e number o f e n v i r o n m e n t a l t h e Gause p r i n c i p l e ) ;
(b)
p a r t t o play i n species coexistence, weak e x c h a n g e f l o w s ; effect;
(c)
f a c t o r s (an extension o f
s p a t i a l h e t e r o g e n e i t y has a v e r y l i t t l e even under t h e c o n d i t i o n s o f
the importance o f the a u t o s t a b i l i z a t i o n
( d ) t h e method f o r d e t e r m i n i n g t h e t o t a l e f f i c i e n c y o f po-
pulation autoregulation.
These p r i n c i p l e s w e r e t h e b a s i s f o r t h e
ecosystem model o f t h e S y d i n s k y bay o f t h e K r a s n o y a r s k r e s e r v o i r ( t h e s m a l l s i m u l a t i o n p r e d i c t i o n system).
3 . M u l t i v a r i a n t c a l c u l a t i o n s o f t h e ecosystem dynamics were i n r e a s o n a b l e agreement w i t h t h e f i e l d o b s e r v a t i o n data.
For the f i r s t
t i m e t h e t h e o r e t i c a l and e x p e r i m e n t a l e s t i m a t e s have corresponded t o t h e t y p e and t h e s t r e n g t h o f n a t u r a l i n t r a p o p u l a t i o n r e l a t i o n s i n t h e a g g r e g a t e d b a c t e r i o p l a n k t o n component.
On t h e w h o l e ,
the
accuracy o b t a i n e d by t h e model i s n o worse t h a n t h a t o b t a i n e d by t h e c o n v e n t i o n a l approach. REFERENCES M i x e d c o n t i n u o u s c u l t u r e s o f m i c r o o r g a n i s m s , N o v o s i b i r s k , "Nauka" (Russ.), 1 9 8 1 , p p . 26-106. A.G. D e g e r m e n d z k y , On t h e P r o b l e m o f c o - e x i s t e n c e o f i n t e r a c t i n g c o n t i n u o u s p o p u l a t i o n s , 1981, aee r e f . I l l . A.G D e g e r m e n d z k y , V . A . A d a m o v i c h a n d V.N. P o z d y a y e v , On t h e c y b e r n e t i c s o f b a c t e r i a l communities: o b s e r v a t i o n s , experiments, 1 9 8 9 , 2 ( 6 1 , pp. 437-477. and t h e o r y . " C y b e r n e t i c s and Systems A . G . Degermendzk'y,N.S. P e c h u r k i n a n d A.N. S h k i d c h e n k o , A u t o s t a b i l i z a t i o n o f f a c t o r s c o n t r o l l i n g t h e g r o w t h i n b i o l o g i c a l systems, N o v o s i b i r s k , "Nauka" ( R u s s . ) , 1 9 7 9 , 1 4 1 pp. J.H. K i m a n d D . Y . Ryu, O p t i m i z a t i o n o f medium a n d m a x i m i z a t i o n o f biomass p r o d u c t i v i t y i n p r o d u c t i o n o f s i n g l e - c e l l p r o t e i n from J. F e r m e n t . T e c h n o l . " , 1 9 7 6 , ( 6 ) , pp. 4 2 7 - 4 3 6 . methanol. D. T i l m a n , E c o l o g i c a l c o m p e t i t i o n b e t w e e n a l g a e : e x p e r i m e n t a l c o n f i r m a t i o n o f r e s o u r c e - based c o m p e t i t i o n t h e o r y . "Science", 1 9 7 6 , 192 ( 4 2 3 8 1 , pp. 463-4651,
,
A STERILIZABLE CENTRIFUGAL S E P A R A T I O N S Y S T E M FOR A S E P T I C AND C O N T A I N E D CELL H A R V E S T AND RECYCLE C.
KRODK,
H.
AXELSSON a n d C.
Alfa-Lava1 Separation AB,
THORSSON
Tumba,
Sweden
ABSTRACT Many new p r o c e s s e s i n t h e b i o t e c h n o l o g i c a l i n d u s t r y r e q u i r e c o m p l e t e l y c l o s e d equipment because o f t h e concern f o r t h e s a f e t y o f process operators.
I n s o l v i n g t h e containment problem,
s o l u t i o n s a r e employed,
technical
which are also suitable i n solving also the
T h i s i s t h e case w i t h c e n t r i f u g a l s e p a r a t o r s .
a s e p s i s problem.
c e n t l y developed separator, i t s complete i n s t a l l a t i o n .
t h e BTUX 5 1 0 ,
A re-
i s p r e s e n t e d as w e l l as
Performance d a t a f o r b a c t e r i a s e p a r a t i o n
are alao given. C e n t r i f u g a l s e p a r a t o r s a r e f r e q u e n t l y used f o r down-stream processing i n biochemical processes.
The s t a n d a r d m a c h i n e s r e q u i r e ,
however, a i r f r o m t h e o u t s i d e f o r v e n t i l a t i o n and c o o l i n g t o reduce f r i c t i o n heating,
g e n e r a l l y m a k i n g them u n a c c e p t a b l e f o r
aseptic pro-
cessing. The o u t g o i n g a i r s t r e a m w i l l a l s o i n many c a s e s c a r r y w i t h i t a e r o s o l a p r o d u c e d i n t h e machine.
These m i g h t c a u s e p r o b l e m s i f a
biosafe installation i s required.It
has been s u g g e s t e d t h a t separa-
t o r s s h o u l d be p l a c e d i n c l o s e d boxes,
but this i s only practical i n
caae o f v e r y s m a l l a e p a r a t o r s . There a r e ,
however,
s p e c i a l l y designed s e p a r a t o r s which can be
u s e d i n c l o s e d s y s t e m s a n d w h i c h c a n be s t e r i l i z e d b y steam. SPECIAL FEATURES FOR S E P A R A T O R S I N CLOSED S Y S T E M S The m a i n d i f f e r e n c e s b e t w e e n a n o r m a l b i o p r o c e s s i n g s e p a r a t o r (e.g.
f o r bakers’ yeaat)
and a s p e c i a l s e p a r a t o r d e s i g n e d f o r con-
t a i n m e n t and a s e p s i s and s t e r i l i z a t i o n are:
A.
The n o r m a l l a b y r i n t h s p i n d l e s e a l i n g i s r e p l a c e d b y a m e c h a n i c a l sealing (Fig,
1). I f t h e r e q u i r e m e n t s a r e n o t t o o h i g h ,
a single
-
428
m e c h a n i c a l s e a l m i g h t be u s e d ,
-
b u t normally a double s e a l i n g
w i t h some b a r r i e r l i q u i d b e t w e e n t h e s e a l s i s u s e d .
During ste-
r i l i z a t i o n t h e b a r r i e r l i q u i d i s r e p l a c e d b y s t e a m w h i c h means t h a t t h e p r o d u c t c o n t a c t e d p a r t o f t h e s e a l between t h e gear hous i n g and t h e b o w l c a s i n g w i l l b e s t e r i l i z e d f r o m b o t h s i d e s a t t h e same t i m e .
B.
I f t h e s e p a r a t o r i s t o be s t e r i l i z e d by s t e a m ,
t h e n t h e bowl co-
v e r and s o l i d s r e c e i v i n g c y c l o n e must be d e s i g n e d as p r e s s u r e vessels.
S e a l i n g s a n d o t h e r m a t e r i a l m u s t be o f t y p e s t h a t c a n
be used a t t h e s t e r i l i z a t i o n t e m p e r a t u r e ( n o r m a l l y 1 2 1 C ) .
C.
I f i t i s a separator w i t h i n t e r m i t t e n t s o l i d s discharge a t the p e r i p h e r y o f t h e bowl,
t h e n p r e c a u t i o n s must be t a k e n t h a t t h e
a i r s h o c k wave p r o d u c e d when d i s c h a r g i n g i n t o a c l o s e d s y s t e m ,
w i l l n o t c a u s e any p r o b l e m s .
Normally,
t h i s i s a c h i e v e d by f i t -
t i n g an a i r r e c i r c u l a t i o n t u b e b e t w e e n t h e c y c l o n e a n d t h e b o w l c o v e r t o d e c r e a s e t h e s h o c k wave ( s e e F i g .
1).
ADVANTAGES W I T H C O N T I N U O U S DISCHARGE T h e r e a r e a number o f a d v a n t a g e s w i t h c o n t i n u o u s p r e s s u r i s e d discharge o f solids,
-
namely
r e c y c l i n g t o t h e f e r m e n t e r o f c e l l s o r s u p e r n a t a n t w i t h o u t need o f e x t r a equipment.
I t i s very valuable i f i t i s performed i n s i d e
the s t e r i l e barrier
-
l e s s c e l l breakage and l e a s t e m p e r a t u r e i n c r e a s e s i n c e sudden l a r ge p r e s s u r e d r o p s , c h a r g i n g machine,
-
a s a t t h e d i s c h a r g e o f an i n t e r m i t t e n t l y d i s are avoided
l o w e r m e c h a n i c a l c o m p l e x i t y o f t h e n o z z l e s e p a r a t o r means l e s s mec h a n i c a l wear and m a i n t e n a n c e
-
n o d i s t u r b a n c e o f t h e s e p a r a t i o n p r o c e s s a s when d i s c h a r g i n g an i n t e r m i t t e n t l y d i s c h a r g i n g machine.
C O N C E N T R A T I O N OF BIOMAS'S The B T U X 510 c e n t r i f u g a l s e p a r a t o r i s a n o z z l e - t y p e m a c h i n e . N o z z l e machines d i s c h a r g e c o n t i n u o u s l y a s o l i d s c o n c e n t r a t e a t a cons t a n t f l o w r a t e t h r o u g h n o z z l e s n e a r o r a t t h e max.
bowl diameter.
The f l o w r a t e i s p r o p o r t i o n a l t o t h e o p e n i n g a r e a o f t h e n o z z l e , number o f n o z z l e s , t h e b o w l speed.
t h e i r d i s t a n c e f r o m t h e c e n t e r o f r o t a t i o n and
the
-
A.
IMPROVED S P I N D L E S E A L I N G
8.
BOWL COVER D E S I G N E D AS PRESSURE V E S S E L
C.
A I R R E C I R C U L A T I O N LOOP
429
-
1. C e n t r i f u g e d e s i g n d e t a i l s f o r b i o s a f e t y
Fig.
I n p r a c t i c e there i s a lower l i m i t o f the nozzle diameter, 0.6
mm d e p e n d i n g on t h e r i s k o f b l o c k a g e b y o v e r s i z e d p a r t i c l e s .
0.3This
means o f c o u r s e t h a t t h e r e i s a l o w e r l i m i t o f t h e c o n c e n t r a t e F l o w rate. When t h e s u s p e n s i o n c o n s i s t s o f c o m p a r a t i v e l y l a r g e p a r t i c l e s , that settle quickly,
t h e r e s i d e n c e t i m e i n t h e b o w l can be s h o r t t o
achieve' t h e s e p a r a t i o n . t h e r e f o r e be l a r g e ,
The p o s s i b l e f l o w r a t e t o t h e s e p a r a t o r w i l l
and t h e n o z z l e Flow can e a s i l y be c o n t r o l l e d t o
-
430
-
achieve the r i g h t concentration i n the nozzle concentrate.
This i s
t h e case w i t h yeast suspensions. When,
however,
t h e p a r t i c l e s t o be s e p a r a t e d a r e s m a l l ,
the
p o s s i b l e f e e d f l o w r a t e w i l l b e o f t h e same o r d e r o f m a g n i t u d e a s t h e minimum p o s s i b l e n o z z l e f l o w r a t e a n d t h e c o n c e n t r a t e o b t a i n e d n o t much m o r e c o n c e n t r a t e d t h a n t h e f e e d m a t e r i a l . case w i t h b a c t e r i a .
Therefore,
T h i s is o f t e n t h e
t h e u s u a l t y p e o f s e p a r a t o r f o r bac-
t e r i a i s the i n t e r m i t t e n t l y discharging centrifuge.
N O Z Z L E M A C H I N E FOR B A C T E R I A S E P A R A T I O N H a v i n g d e t e r m i n e d t h a t t h e b e s t s e p a r a t o r t y p e i s a n o z z l e machine,
t h e m o s t i m p o r t a n t t e c h n i c a l p r o b l e m t o s o l v e i s how t o r e d u -
ce t h e f l o w r a t e t h r o u g h t h e nozzles.
By c r e a t i n g a f l o w - l i m i t i n g
w h i r l i n a chamber i n f r o n t o f t h e n o z z l e o p e n i n g , r e d u c e d by a f a c t o r o f 5
-
t h e f l o w can be
10, w h i c h i n p r a c t i c e i s t h e n e c e s s a r y
r e d u c t i o n t o concentrate b a c t e r i a s u c c e s s f u l l y (see F i g 2).
1. BODY 2 . TANGENTIAL INLET 3. SPIN CHAMBER 4. COVER 5. OUTLET HOLE Fig.
2.
V o r t e x chamber a n d n o z z l e .
-
431
-
These s o c a l l e d V O R T E X n o z z l e s h a v e a l s o a n o t h e r c h a r a c t e r i s t i c feature;
Fig.
t h e f l o w r a t e i s d e p e n d e n t on t h e v i s c o s i t y ( s e e F i g 3 ) .
3 . The dependence o f v i s c o s i t y on V O R T E X n o z z l e f l o w r a t e
The v i s c o s i t y e f f e c t i s shown i n F i g s 4 a n d 5.
They i l l u s t r a -
t e t h e i n f l u e n c e o f s o l i d s c o n t e n t a n d v o r t e x n o z z l e a n d chamber d i m e n s i o n s on t h e n o z z l e f l o w r a t e f o r b a k e r s ’
y e a s t a n d E.
c o l i KlZ,,
respectively. The w h i r l a c t s a s a r e s i s t a n c e chamber.
With a t h i n c o n c e n t r a t e ,
f o r the flow through t h e vortex
t h e w h i r l r u n s a t h i g h speed,
which
c r e a t e s a h i g h c o u n t e r - a c t i n g p r e s a u r e g r a d i e n t and a h i g h r e s i s t a n ce t o the flow,
so t h a t t h e f l o w r a t e t h r o u g h t h e system i s b e i n g
reduced.
I f s o l i d s concentration,
and t h e r e f o r e a l s o v i s c o s i t y i n c r e a s e s ,
t h e speed o f t h e w h i r l w i l l be l o w e r and t h e c o u n t e r a c t i n g p r e s s u r e g r a d i e n t w i l l a l s o be l o w e r .
T h i s causes a h i g h e r f l o w
f r o m t h e noz-
zle. The a d v a n t a g e o f t h i s phenomenon i s t h a t t h e s e p a r a t i o n r e s u l t i s stabilized.
The s o l i d s c o n t e n t o f
the discharged concentrate i s
k e p t a t a r e l a t i v e l y h i g h and even l e v e l i r r e s p e c t i v e o f f l u c t u a t i o n s
i n feed flow r a t e or feed concentration.
This regulation takes place
a u t o m a t i c a l l y within t h e v o r t e x system d u r i n g separation.
-
432
-
f 2200 Y 0, I
4
2000
U W
t 5 a
VORTEX :
1800
CHPMElER1WTLET HOLE
+ V
1
[ mrnlrnm
1600
V
1012
1400
1200
. 0 l
/
1
&a
1000
1011.4
800
10/1,0
600
51 1.0 511.4
400
200
5 /0,6
0 2
4
6
0
u) 12
14 16 18 20 22
t
0
10
1
20
30
2
LO
50
5
10
60 50
70
I
80
lo001 100 5000
-p
'10WEIGHT 1 WEIGHT o/o
VOL / VOL
VISCOSITY mPas (15.C)
F i g . 4. B T U X 510 w i t h c o u n t e r p r e s s u r e ( 6 0 0 k P a ) . C o n c e n t r a t e f l o w a s a f u n c t i o n o f c o n c e n t r a t e c o n c e n t r a t i o n f o r b a k e r s y e a s t a t 15 O C
T H E CENTRIFUGAL S E P A R A T O R TYPE BTUX 510 An e x a m p l e o f a n o z z l e s e p a r a t o r d e s i g n e d a c c o r d i n g t o t h e r e q u i r e m e n t s o f a s e p s i s and c o n t a i n m e n t and s u i t a b l e for b a c t e r i a separation i s the Alfa-Lava1 T h i s machine,
s e p a r a t o r BTUX 510.
see F i g 6 , i s a d i s k s t a c k s e p a r a t o r where t h e
c o n c e n t r a t e o f s o l i d p a r t i c l e s is d i s c h a r g e d b y VORTEX n o z z l e s t o wards t h e c e n t e r o f t h e bowl,
w h e r e i t i s p i c k e d up b y a p a r i n g t u b e ,
which
-
a c t i n g a s a pump
-
433
-
discharges t h e c o n c e n t r a t e under pressu-
re. l h e s e p a r a t o r h a s a l s o an i n t e r m i t t e n t d i s c h a r g e s y s t e m a t t h e periphery o f t h e bowl,
o p e r a t e d by p r e s s u r i z e d a i r .
T h i s system i s
however n o r m a l l y o n l y employed d u r i n g c l e a n i n g - i n - p l a c e
(CIP).
A n advantage i n h a v i n g a pneumatic d i s c h a r g e system,
which i s
is t h a t t h e r e i s n o r i s k f o r c o n t a m i n a t i o n b e t w e e n
r a t h e r unusual,
p r o d u c t o r any o p e r a t i n g l i q u i d . S e p a r a t o r has a d o u b l e m e c h a n i c a l s e a l as s p i n d l e s e a l i n g and there i s also a seal a t the bottom o f the spindle f o r supply o f d i s charge a i r .
The b o w l c o v e r i s d i m e n s i o n e d a s a p r e s s u r e v e s s e l a n d
t h e r e i s an a i r r e c i r c u l a t i o n t u b e f r o m t h e c y c l o n e .
0
20
40
60
100
80 x Iv l v
F i g , 5.
V i s c o s i t y e f f e c t on E .
c o l i K12
O h 1
- 434 -
F i g . 6 . B T U X 5 1 0 B o w l a n d I n - and O u t l e t . P r e s s u r i z e d d i s c h a r g e o f b o t h c o n c e n t r a t e and e f f l u e n t = N O n e e d f o r d o w n s t r e a m pump. A - F e e d i n l e t , B Concentrate o u t l e t , C - C e n t r i f u g a t e o u t l e t ; 1 - P a r i n g d i s c , 2 - D i s c s t a c k , 3 - Par i n g tube, 4 - Concentrate tubes, 5 - C I P v a l v e plugs, 6 - C I P valve s l i d e , 7 Vortex nozzles
-
-
-
435
-
The b o w l c o v e r h a s a j a c k e t f o r c o o l i n g . can be used.
Tap w a t e r o r g l y c o l
The f i l l e d c o o l i n g j a c k e t r e d u c e s s o u n d l e v e l s u b s t a n -
tially. The c a p a c i t y o f t h i s s e p a r a t o r i s u p t o 10 c u b i c m e t e r p e r h o u r
A s l i g h t l y modified version,
suitable f o r yeast separation,
has a
c a p a c i t y o f 60 c u b i c m e t e r p e r h o u r .
BIOSAFETY AND ASEPSIS
R u l e s and g u i d e l i n e s about b i o s a f e t y c o n s i d e r o n l y complete systems.
As t h e s e p a r a t o r i s o n l y o n e c o m p o n e n t i n s i d e s u c h a s y s t e m ,
i t i s i m p o s s i b l e t o say t h a t a b i o p r o c e s s i n g s e p a r a t o r i s designed according t o a c e r t a i n biosafety l e v e l
because,
d e p e n d i n g o n how
t h e s e p a r a t o r i s i n s t a l l e d a n d how t h e c o m p l e t e s y s t e m i s u s e d , f e r e n t l e v e l s can be reached.
F o r BL-1,2
dif-
and 3 t h e s e p a r a t o r has t o
be equipped w i t h mechanical s e a l s p r e s s u r e r e s i s t a n t cover and a i r r e c i r c u l a t i o n t u b e a s d e s c r i b e d above. The i n s t a l l a t i o n p r i n c i p l e s f o r o b t a i n i n g g o o d a s e p s i s a r e i n c a s e s t h e same a s t h o s e u s e d f o r c o n t a i n m e n t . inevitable,
Small deviations are
b u t some o f t h e d i f f e r e n c e s c o n c e r n o n l y t h e way o f o p e -
r a t i n g the unit. THE CLOSED STERILE BTUX 5 1 0 S Y S T E M I n o r d e r t o e x p l a i n how t h e BTUX i s i n s t a l l e d i n a c l o s e d a n d s t e r i l i z a b l e s y s t e m a n u m b e r o f f l o w c h a r t s ( f i g s 8 - 181, e a c h s h o wing a p a r t o f t h e system,
w i l l be used.
PRODUCT
CIP LIQUID WAlER (STERILE)
CONCENTRATE DRAIN OR CIP RETURN CENTRIFUGATE
a
SOLIDS
Fig.
7.
BTUX 5 1 0 P r o c e s s L i n e $ .
-
436
-
P R O C E S S LINES Fig.
7 shows t h e p r o c e s s l i n e s f o r a n o r m a l ,
installation.
not sterilizable
These l i n e s a r e a r r a n g e d i n s u c h a way t h a t t h e s e p a -
r a t o r c a n e i t h e r be f e d w i t h p r o d u c t o r w i t h s t e r i l e w a t e r .
The o u t -
l e t l i n e s f o r c o n c e n t r a t e and c e n t r i f u g a t e can e i t h e r be connected t o the process or t o drain.
Often,
t h e d r a i n l i n e must c o n t a i n a
k i l l tank i n a contained i n s t a l l a t i o n . Fig.
8 shows how t h e p r o c e s s l i n e s c a n b e s t e r i l i z e d .
f e d t o t h e e n d o f one o f t h e s e l i n e s , trifuge line.
Steam i s
w h i c h i n t h i s case i s t h e cen-
Condensate i s removed a t t h e end o f a l l o t h e r l i n e s .
A t a l l these p o i n t s there i s a pneumatic s h u t o f f valve,
a temperatu-
r e t r a n s m i t t e r and a steam t r a p .
PRODUCT
CONCENTRATE
CIP LIQUID
DRAIN OR CIP RETURN CENTRIFUGATE
WATER (STERILE]
CONDENSATE STEAM
0
CONDENSATE
Fig.
8.
BTUX 510 P r o c e s s L i n e s S t e r i l i z a t i o n
FLUSHING S Y S T E M The f l u s h i n g s y s t e m makes i t p o s s i b l e t o c l e a n t h e b o w l c o v e r , the cyclone, Fig.
t h e a i r r e c i r c u l a t i o n t u b e and t h e o u t s i d e o f t h e bowl.
9 shows t h e s y s t e m i n a n o r m a l i n s t a l l a t i o n .
The e x t e n t t o
w h i c h t h e system i s used depends on t h e r e q u i r e m e n t s o f t h e p r o d u c t and t h e process.
-
437
-
FLUSHING WATE ( STERILE 1 CIP LIQUID
DRAIN
Fig.
9 . BTUX 510 F l u s h i n g System
Fig.
1 0 shows how t h e s y s t e m i s s t e r i l i z e d .
Steam f r o m t h e b o w l
c o v e r goes backwards t h r o u g h t h e f l u s h i n g l i n e s t o a steam t r a p . Condensate i s a l s o removed f r o m t h e b o w l c o v e r d r a i n o u t l e t .
During
o p e r a t i o n t h i s o u t l e t s h o u l d be c o n n e c t e d e i t h e r t o an open d r a i n , a k i l l t a n k o r t o a n o t h e r c l o s e d s y s t e m d e p e n d i n g on t h e r e q u i r e d containment l e v e l .
FLUSHING WATER ISTERILE) CIP LIQUID
DRAIN CONOENSATE
Fig.
10.
B T U X 510 F l u s h i n g S y s t e m S t e r i l i z a t i o n
- 438
-
PNEUMATIC DISCHARGE SYSTEM Fig.
11 s h o w s t h i s s y s t e m i n i t s c o n t a i n e d v e r s i o n .
f i l t e r s a r e p l a c e d on t h e i n -
Sterilizing
and o u t l e t l i n e s f o r d i s c h a r g e a i r .
S m a l l t a n k s a r e p l a c e d on t h e s e l i n e s i n o r d e r t o l i m i t t h e p r e s s u r e s h o c k s t o t h e f i l t e r s upon d i s c h a r g e .
AIR
Fig.
TILATION
11. B T U X 5 1 0 P n e u m a t i c D i s c h a r g e S y s t e m
The s t e r i l i z a t i o n i s shown i n F i g .
12.
The i n l e t l i n e i s s t e r i -
l i z e d by a s e p a r a t e s t e a m s u p p l y a n d t h e o u t l e t l i n e by s t e a m c o m i n g from t h e bowl c o v e r .
STEAM1 -VENTILATION
CONDENSATE Fig.
1 2 . B T U X 510 P n e u m a t i c D i s c h a r g e S y s t e m S t e r i l i z a t i o n
-
439
-
SEALING L I Q U I D SYSTEM Fig.
13 shows t h e s e a l i n g l i q u i d system which i n c l u d e s t h e flow
c o n t r o l and s u p e r v i s i o n o f t h e b a r r i e r l i q u i d t o t h e mechanical sealings.
T h i s s y s t e m i s s t e r i l i z e d b y r u n n i n g steam i n s t e a d o f b a r r i e r
l i q u i d through t h e s e a l s (see F i g .
14).
SEALING LIQUID(STERILE )
USED SEALING WATER
Fig.
13. BTUX 510 S e a l i n g L i q u i d S y s t e m .
SEALING LIQUID STEAM S fERlLE
f
I
Fig.
1 4 . B T U X 510 S e a l i n g L i q u i d s y s t e m S t e r i l i z a t i o n .
CONDENSATE AND USED SEALNG WATER
-
440
-
V E N T I L A T I O N SYSTEM
The v e n t i l a t i o n s y s t e m i n a c l o s e d i n s t a l l a t i o n c o n s i s t s o f a sterilizing 15.
f i l t e r p l a c e d i n t h e v e n t i l a t i o n l i n e a s shown i n ~ i g .
T h i s s y s t e m i s s t e r i l i z e d a s shown i n ~ i g .1 6 by p l a c i n g a s h u t -
o f f v a l v e a f t e r t h e f i l t e r a n d r e m o v i n g c o n d e n s a t e . As t h e s y s t e m a b u r s t i n g d i s c has been
i s completely closed during s t e r i l i z a t i o n ,
placed i n the v e n t i l a t i o n l i n e t o p r o t e c t the separator against overpressure.
T h i s l i n e has t o be c o n n e c t e d a c c o r d i n g t o t h e r u l e s t h a t
a r e a p p l i c a b l e f o r each s p e c i f i c p l a n t .
VENTILATION
Fig.
1 5 . BTUX 510 V e n t i l a t i o n S y s t e m
TI1.ATION
0
CONDENSATE WATER
Fig,
1 6 . B T U X 510 V e n t i l a t i o n s y s t e m S t e r i l i z a t i o n
C O O L I N G SYSTEM F i n a l l y t h e c o o l i n g s y s t e m i s shown i n F i g .
17.
Both bowl cover
and c y c l o n e have c o o l i n g j a c k e t s w h i c h s h o u l d b e s u p p l i e d w i t h c o o l i n g
liquid.
441
-
T h i s s y s t e m i s o u t s i d e t h e s t e r i l i z a t i o n a r e a b u t h a s t o be
drained during s t e r i l i z a t i o n .
THE TOTAL S Y S T E M The c o m b i n e d f l o w c h a r t f o r a l l s y s t e m s c o m b i n e d i s shown i n Fig.
18.
VALIDATION OF T H E STERILIZATION PROCEDURE The s t e r i l i z a t i o n t i m e a n d t e m p e r a t u r e a r e f r e e l y p r o g r a m m a b l e . The s t e r i l i z a t i o n c a n n o t s t a r t u n t i l a few v a l v e s h a v e b e e n s e t i n the r i g h t position
-
they are i n t e r l o c k e d v i a p o s i t i o n switches.
Ot-
h e r v a l v e s w i t h a c t u a t o r s a r e s e t i n c o r r e c t p o s i t i o n by t h e comput e r programme. There a r e 10 t e m p e r a t u r e t r a n s m i t t e r s i n t h e system m o n i t o r i n g t h a t t h e d e s i r e d t e m p e r a t u r e has been reached.
The s t e r i l i z a t i o n t i -
me i s c o u n t e d f r o m t h e moment when a l l t h e t r a n s m i t t e r s show t h e pre-set degr.
temperature.
I t w i l l t a k e a b o u t 20 m i n u t e s t o r e a c h 1 2 1
C. I n one' v a l i d a t i o n
test,
8 s p o r e bags w i t h 8.
stearothermophilus
were p l a c e d o n d i f f e r e n t p o s i t i o n s i n t h e s e p a r a t o r . a n d i n t h e p e r i p h e r a l equipment.
A f t e r 60 mins a t 121 degr.
C t h e y were a l l s t e r i l e .
SOME PROCESS D A T A W I T H B T U X 510 I n T a b l e 1 some d a t a c a n be f o u n d on t h e s e p a r a t i o n o f l i v e c e l l s o f E.
c o l i K12 g r q w n on a s y n t h e t i c medium.
I t i s t o be n o t e d
that
-
t h e DS c o n t e n t o f
-
t h e c o n c e n t r a t e f l o w i n c r e a s e s w i t h f e e d f l o w r a t e and f e e d con-
the separation efficiency i s excellent the concentrate i s v i r t u a l l y constant
centration. The BTUX i s a l s o u s e d f o r t h e c o n c e n t r a t i o n o f b a c t e r i a f o r t h e p r o d u c t i o n o f amino a c i d s , rDNA p r o d u c t s .
starter cultures,
enzymes a n d v a r i o u s
I t has a l s o been t e s t e d w i t h good r e s u l t s i n b l o o d
fractionation. I n aseptic processing,
t h e BTUX 510 s y s t e m h a s b e e n p r o v e n t o
k e e p s t e r i l e f o r a t l e a a t 72 h o u r s i n an a s e p t i c c e l l r e c y c l e s y s t e m . This,
however,
i s n o t t h e upper time l i m i t .
-
442
-
COOLING LIQUID
LIQUID Fig.
1 7 . BTUX 5 1 0 C o o l i n g S y s t e m
TABLE 1 T e s t r u n s w i t h B T U X 510
Feed
[m3/hl 05 [g/11 1st batch
2nd b a t c h
Concentrate
Supernatant
I m 3 / h l D S 19/11
DS [ g / l l
I
Separation efficiency
I %I
2
22
[
0.31
143
3
24
0.43
168
3.6
23
I I
0.52
159
I I
2.1
39
1
0.44
138
I
3.0
39
0.61
185
1.04
97.9
3.5
39
0.68
153
5.98
87.8
2
18
0.37
97
3
17
4
17
I I I
0.41
124
0.52
130
I I I
0.04
99.8
0.09
99.7
0.13
I
99.5
I
0.07
I
99.8
I
0.18
I
99.2
0.17
I
99.1
0.26
I
98.7
I I I
PRODUCT
CIP LIQUID
WATER (STERILE) FLUSHING WATER ISTERILEI
3
CIP LIQUID
STEAM COOLING LIQUID SEALING LlOUlD AIR
I
c c W I
Fig.
18.
BTUX 5 1 0 T o t a l S y s t e m
-
444
-
CONCLUSION
By l o o k i n g a t s e p a r a b i l i t y d a t a f o r b a c t e r i a , t h e c o n c e n t r a t i o n r e q u i r e m e n t s , i t c o u l d , u n t i l r e c e n t l y , e a s i l y b e found t h a t i n most cases an i n t e r m i t t e n t l y d i s c h a r g i n g h i g h s p e e d c e n t r i f u g a l s e p a r a t o r i s t h e most s u i t a b l e t y p e o f machine. However, w i t h t h e i n t r o d u c t i o n of vortex n o z z l e s , a l s o t r u l y continuously o p e r a t i n g nozzle machine c a n be employed.
The m a c h i n e c a n a l s o b e s o d e s i g n e d t h a t steam s t e -
rilization is possible,
which o p e n s t h e way t o a p p l i c a t i o n s where
an i n c r e a s e d b i o s a f e t y l e v e l i s n e e d e d , e.g.
c e l l recycle.
or t o a s e p t i c processing,
Other volumes in this series
1 Atmospheric Pollution 1978 edited by M. M. Benarie 2 Air Pollution Reference Measurement Methods and Systems edited by T. Schneider, H. W. de Koning and L. J. Brasser 3 Biogeochemical Cycling o f Mineral-Forming Elements edited by P. A. Trudinger and D. J. Swaine 4 Potential Industrial Carcinogens and Mutagens by L. Fishbein 5 Industrial Waste Management by S. E. Jsrgensen 6 Trade and Environment: A Theoretical Enquiry by H. Siebert, J. Eichberger, R . Gronych and R . Pethig 7 Field Worker Exposure during Pesticide Application edited by W. F. Tordoir and E. A. H. van Heemstra-Lequin 8 Atmospheric Pollution 1980 edited by M . M . Benarie 9 Energetics and Technology of Biological Elimination of Wastes edited by G. Milazzo 10 Bioengineering, Thermal Physiology and Comfort edited by K. Cena and J. A. Clark 11 Atmospheric Chemistry. Fundamental Aspects by E. MBszaros 12 Water Supply and Health edited by H. van Lelyveld and B. C. J. Zoeteman 13 Man under Vibration, Suffering and Protection edited by G. Bianchi, K. V. Frolov and A. Oledzki 14 Principles o f Environmental Science and Technology by S. E. Jsrgensen and I. J o hnsen 15 Disposal of Radioactive Wastes by 2. Dlouhg 16 Mankind and Energy edited by A. Blanc-Lapierre 17 Quality of Groundwater edited by W. van Duijvenbooden, P. Glasbergen and H. van LeIyveld 18 Education and Safe Handling i n Pesticide Application edited by E. A. H. van Heemstra-Lequin and W. F. Tordoir 19 Physicochemical Methods for Waste and Wastewater Treatment edited by L. Pawlowski 20 Atmospheric Pollution 1982 edited by M . M. Benarie 21 Air Pollution by Nitrogen Oxides edited by T. Schneider and L. Grant 22 Environmental Radioanalysis by H. A. Das, A. Faanhof and H. A. van der Sloot 23 Chemistry for Protection of the Environment edited by L. Pawlowski, A. J. Verdier and W. J. Lacy 24 Determination and Assessment of Pesticide Exposure edited by M. Siewierski 25 The Biosphere: Problems and Solutions edited by T. N. Veziroglu 26 Chemical Events i n the Atmosphere and their Impact on the Environment edited by G. B. Marini-Bettdo 27 Fluoride Research 1985 edited by H. Tsunoda and M - H . Yu 28 Algal Biofouling edited by L. V. Evans and K. D. Hoagland 29 Chemistry for Protection of the Environment 1985 edited by L. Pawlowski, G. Alaerts and W. J. Lacy 30 Acidification and its Policy Implications edited by T. Schneider 31 Teratogens. Chemicals which cause birth defects edited by V. M. Kolb Meyers 32 Pesticide Chemistry by G. Matolcsy, M. Niidasy and V. Andriska 33 Principles o f Environmental Science and Technology by S. E. Jsrgensen (second revised edition)
34 Chemistry for Protection of the Environment 1987 edited by L. Pawlowski, E. Mentasti, C. Sarzanini and W. J. Lacy 35 Atmospheric Ozone Research and its Policy Implications edited by T. Schneider, S. D. Lee, G. J. R . Wolters and L. D. Grant 36 Valuation Methods and Policy Making in Environmental Economics edited by H. Folmer 37 Asbestos in the Natural Environment by H. Schreier 38 How t o Conquer Air Pollution. A Japanese Experience edited by H. Nishimura 39 Aquatic Bioenvironmental Studies by C. D. Becker 40 Radon in the Environment by M. Wilkening 41 Evaluation o f Environmental Data for Regulatory and Impact Assessment by S. Ramamoorthy and E. Baddaloo 42 Environmental Biotechnology edited by A. Blaiej and V. Privarova